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PREFACE

Brief Overview 

Digital Signal Processors (DSPs) are microprocessors specifi cally designed to handle Digital Signal 

Processing tasks and are deployed in a variety of applications like hard-disk controllers, cellular phones, 

speech-recognition systems, image processing, wireless communication systems, and so on. They are 

replacing conventional microprocessors in several applications. DSPs from companies such as Analog 

Devices, Motorola and Texas Instruments are deployed in all these applications.

This book presents details of DSPs from Texas Instruments (TI) in greater depth as compared to the 

DSPs from other vendors. The TI processors are used in major universities, institutes and in the industry. 

TI has been donating DSP kits and literature to universities periodically under the University Program 

called UNITI. The individual institutions have supplemented this with their own funding and have set 

up DSP labs.

Courses on Digital Signal Processing have undergone a gradual change during the last decade. The 

focus is shifting gradually from the design of DSP systems and algorithms to effi cient implementation 

of the systems and algorithms. To facilitate this, the subject of DSP Architecture and Programming is 

now included by many leading institutions in the main curriculum. However, students have to generally 

rely on the data manuals of various companies for their study since formal textbooks are not readily 

available. This book has fulfi lled the student’s requirements and has been used extensively in universities 

and leading institutions.

Aim of the Revision

The fi rst edition of this text was published eight years back in 2002. Since then, a lot of new DSPs have 

evolved due to continuous research and development in this fi eld.

The objective of this revision is to include the recent developments in the fi eld of Digital Signal 

Processors including TMSC6X Series and FPGA based system design methodology. We also aim to 

bridge the gap in topical coverage in the current edition and improve the pedagogical features to meet 

the students’ requirements.

 New to this Edition

In the revised edition, the introductory chapter is expanded with more real-world applications. This 

includes power spectrum estimation, orthogonal frequency division multiplexing, algorithm for the 

computation of 1D and 2D discrete wavelet transforms and JPEG2000.

Some of the digital signal processors such as 55X and 6X were treated in brief in the fi rst edition. Since 

a large number of systems are implemented using these processors, a more detailed treatment of these 

chapters are given in this edition.



The last chapter in the previous edition had a brief introduction on the FPGA based system. However, 

FPGAs are now deployed in many high-speed applications such as network routers and front ends of 

software-defi ned as well as cognitive radio. In view of these, more details of the FPGA based system 

design including implementation of system on programmable chips are presented in this revised 

edition.

In order to illustrate the use of FPGAs and PDSPs in Digital radio receiver, a separate chapter is devoted 

for the presentation of the design details of the various blocks of a radio receiver with digital hardware 

and the case study of a software-defi ned spread spectrum transmitter and receiver is presented. The 

pedagogy is also refreshed with inclusion of new review questions, multiple choice questions and new 

programs. The chapter on ‘Motorola DSP563XX Processors’ is uploaded on the website.

To summarise, the changes made to this edition are the following: 

New Chapters 

 v TMS320C6X Assembly Language Instructions (Chapter 14)

 v Architecture and Application Programs of TMS320C55X (Chapter 16)

 v FPGAs in Telecommunication Applications (Chapter 18)

New Topical Inclusion

 v Convolution and real time fi ltering using FFT 

 v OFDM Using FFT 

 v Data Paths in TMS320C6X 

Organization of the Book 

Chapter 1 presents an overview of DSP principles, algorithms and applications. At the beginning of this 

chapter, a simple treatment on DSP theory, algorithms and applications is presented for students having 

no prior knowledge of DSPs. Introduction to DSP architecture and comparison of this with that of μPs, 

DSPs and RISC processors is given in Chapter 2. Chapters 3, 4, 5 and 6 present the detailed architecture, 

addressing modes, instruction sets, and pipelining and application programs on TMS320C5xDSP. The 

corresponding details on TMS320C3X are presented in chapters 7, 8, and 9. Chapter 10 introduces 

the TMS30C54X and presents a comparison of the features of 5X with that of 54X. The instruction set 

and addressing modes of 54X are discussed in Chapter 11. Application programs on 54X and program 

development using Code Composer Studio are presented in Chapter 12. Architecture, assembly-

language instructions, application programs and peripherals of TMS320C6X are given in chapters 13, 

14 and 15 respectively. Architecture of TMS320C55X is explained in Chapter 16. Chapter 17 gives a 

list of some of the recent DSP application case studies and introduces an alternate DSP system design 

approach using programmable logic devices and FPGAs. Examples of architectures of two leading 

FPGA families and hardcore as well as softcore processors for these families are explained in this 

chapter. Algorithms for effi cient implementation of DSP systems in FPGA are also given here. Chapter 

18 explains the different applications of FPGAs in telecommunication.

Web Supplements

The web supplements can be accessed at, http://www.mhhe.com/venkataramani/dsp2 and contain the 

following material:

xiv  Preface



Instructor Resources 

 v  Solution manual 

 v  PowerPoint lecture slides

Student Resources 

 v  Interactive quiz 

 v  Chapter on Overview of Motorola DSP563XXX Processors
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SIGNALS AND THEIR ORIGIN 1.1

A signal refers to any continuous function f ( ) which is a function of one or more variables like time, 

space, frequency, etc. Some common examples of signals are the voltage across a resistor, the velocity 

of a vehicle, light intensity of an image, temperature, pressure inside a system, etc., as a function of time, 

space or any other independent variable. These signals are processed in order to either monitor or control 

one or more parameters of a system. Detection of the average, RMS or peak values of a parameter, 

separation between adjacent peaks or zero crossings are examples of some processing carried out on the 

signal. In some applications, the processing may be done in order to produce another signal which has 

better characteristics than the original signal. The processing of the signal is carried out effi ciently and 

with ease if these signals are converted to equivalent electrical voltages or currents using transducers. 

Hence, the emphasis in this book will be restricted to processing signals in electrical form. 

NOISE 1.2

Processing of the signal is made complex by the presence of other signals called noise. The noise 

signals are generated from man made and natural objects. Electrical appliances/machinery, lightening 

and thunderstorms are some of the sources of noise. In addition to this, any signal which interferes 

with the detection of the desired signal may be called as an intereference or noise. The fi rst step in 

signal processing is to combat the effect of noise. When the noise and the desired signal have different 

characteristics, the signal can be completely separated from the noise before processing the signal 

further. Even though this step is an overhead, this may be mandatory. Let us consider the following 

example to illustrate this. 

FILTERS AND NOISE 1.3

Frequency shift keying is a technique adopted for transmitting binary data from one place to another. 

For example, the transmitted sinusoidal signal may be chosen to be 1025 Hz or 1225 Hz depending upon 

whether 0 or 1 is to be transmitted. 

1
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On the receiver, the signal frequency is determined in order to decode the transmitted data to be 0 or 

1. One of the techniques adopted for determining the frequency (also called frequency detection) is to 

count the number of zero crossings of the signal in a given period of time. This can be done effi ciently 

if the transmitted signal is received without noise. However, one of the common noise which appears at 

the receiver input is the power supply ripple. A noise of 60/50 Hz frequency may appear at the input to 

the receiver. Alternately, if the receiver site has any high frequency oscillator, it may get leaked through 

the power supply lines and will appear at the input to the receiver. 

Both these types of noise will make the detector to take wrong decisions. However, its performance 

can be improved if these two types of noise are removed from the received signal before it is fed to 

detector. This can be achieved by using a low pass fi lter for removing the high frequency signal and 

high pass fi lter for removing the low frequency power supply ripple. The ideal characteristics of low 

pass, high pass and band pass fi lters are shown in Fig. 1.1. These fi lters may be constructed using 

discrete components and their frequency response do not have the ideal characteristics. The ideal fi lters 

pass the signals in the pass band without any attenuation. The signals in the stop band have infi nite 

attenuation. The transition from pass band to stop band occurs instantaneously as the frequency of the 

signal is swept. The frequency at which this occurs is called as the cut off frequency fc. These fi lters by 

themselves qualify to be called as signal processors as they remove the unwanted frequency components. 

Additional processing may be required to carry out a particular task like frequency detection.

CORRELATORS 1.4

However, separation of the signal from the noise cannot always be achieved using simple fi lters shown 

above. The desired signal and the interfering noise may both lie in the same frequency range (bandwidth). 

In this case, the signal may be retrieved from noise by exploiting its behaviour in the time domain. The 

effect of the interference signal may be minimized by multiplying the received signal with the replica of 

all possible transmitted signals with suitable delay and then integrating them over one period (for e.g.,

1 bit duration in the case of FSK) of the transmitted signal. This operation is called correlation.

 

H( )f

- 0 Frequency ( )fc fc f  

H f( )

- 2f - 1f 0 f1 f2 Frequency ( )f

H f( )

 (a) Low pass fi lter response (b) Bandpass fi lter response

H f( )

- 1f 0 f1 Frequency ( )f

(c) Highpass fi lter response

Fig. 1.1
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CONVOLUTION AND INVERSE FILTERING 1.5

On its transit to the receiver, the transmitted signal may pass through several systems and each of these 

systems may modify it. The output y(t) of a linear time invariant (LTI) causal system can be expressed 

as the convolution of the input x(t), with the impulse response h(t) which is given by the expression:

0

( ) ( ) ( ) ( ) * ( )

t

y t x h t d x t h tt t t= - =Ú  (1.1)

Here ∗ denotes the convolution operation .

A system is said to be linear if the superposition principle is true. In other words if y1(t) is the response 

to the input x1(t) and y2(t) is the response to the input x2(t), then for any scalar a, b let the response of 

the system to the input a x1(t) + b x2(t) be y(t). If the system is linear then

y(t) = a y1(t) + b y2(t) (1.2)

A system is said to be time invariant if a shift in the input causes a corresponding shift in the output. 

In other words if y(t) is the response of the system to x(t), then for a time invariant system the response 

to the time shifted input x(t – t) is given by y(t – t).

A system is said to be causal if the output at any instant is determined only by its present input and 

its past input/outputs but not by its future inputs. Only causal system can be realised in practice and this 

requires the impulse response of the system h(t) to be zero for t < 0 

For simplicity and to a good accuracy, the systems can be modelled to be LTI and causal in majority 

of signal processing applications. However, there are applications such as image processing system 

where causality is not true. 

In order to nullify the effect of a system on the transmitted signal, the received signal may be passed 

through another system whose transfer function (Laplace transform of the impulse response) is the 

inverse of the original system. Inverse fi lters and equalisers use this principle. 

FOURIER TRANSFORM AND CONVOLUTION THEOREM 1.6

The signals may be processed either in the time domain or in the transform domain, e.g., computation of 

the output y(t) using the convolution integral given by (1.1) is an example of time domain processing. 

The output may also be computed using transform domain techniques. This can be explained as follows: 

A signal is said to be of fi nite energy if 

2| ( ) |  f dt t
•

-•

< •Ú  (1.3)

Any fi nite energy signal f(t) can be represented using the Fourier transform F(w) given by

( ) ( ) j tF f t e dtww
•

-

-•

= Ú  (1.4)

f(t) can be obtained from F(w) using the inverse Fourier transform given by

( ) 1
( )

2

j tf t F e dww w
p

•

-•

= Ú  (1.5)
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 When the lower limit in (1.4) and (1.5) are 0 and jw is replaced by s, we get the expression for the 

Laplace transform of f(t) and inverse Laplace transform of F(s) respectively.

Convolution theorem relates h(t), x(t) and the convolved output y(t) to their Fourier and Laplace 

Transforms. Let the Fourier transform and the Laplace Transform of (x(t), h(t), y(t)) be (X(w), H(w), 

Y(w)) and (X(s), H(s), Y(s)) respectively. 

Then if y(t) = x(t) ∗ h(t) then Y(w) = X(w) H(w) and Y(s) = X(s) H(s).

Similarly if Y(w) = A(w) ∗ B(w) then y(t) = a(t). b(t) 

and Y(s) = A(s) ∗ B(s) fi y(t) = a(t). b(t) 

As mentioned earlier ∗ denotes the convolution operation. H(s), the Laplace Transform of the impulse 

response h(t) of a causal LTI system is called as the transfer function of the system and is given by

( )
( )

( )

Y s
H s

X s
=  (1.6)

where X(s), Y(s) are the Laplace transforms of x(t) and y(t) respectively. Laplace Transforms have a no. 

of applications like studying the stability of the system, solving the differential equations and fi nding the 

initial value and fi nal value of a system.

SAMPLING THEOREM AND DISCRETE TIME SYSTEM 1.7

Various signal processing operations explained above can be carried out either directly on the continuous 

signal or indirectly using the samples of the input signal and impulse responses. Accordingly, they 

are called as continuous time signal processing and discrete time signal processing respectively. The 

discrete time signal offers no. of advantages. Firstly, it permits a no. of such signals to be transmitted 

using the same channel by sending them at disjoint time intervals. This technique is called as the time 

division multiplexing. However, in order to transmit the information without any loss of information the 

discrete time signal should satisfy the Nyquist’s sampling theorem which states:

 Any signal bandlimited to a maximum frequency of fm can be perfectly reconstructed from its 

samples if the sampling rate, fs is greater than or equal to 2fm. If fs is equal to 2fm, then it is called the 

Nyquist rate. 

If the sampling rate is less than 2fm, then any signal component fh which is greater than fs/2 by Df 

(i.e., fh = fs/2 + Df) gets mapped to a frequency fs/2 – Df after sampling and appears as a low frequency 

signal. This is called as aliasing. To avoid this, either the sampling rate should be chosen to be above 

Nyquist rate or the sampler should be preceded by a low pass fi lter with cut off frequency, fc = fs/2.

LINEARITY, SHIFT INVARIANCE, CAUSALITY AND STABILITY 
OF DISCRETE TIME SYSTEMS 1.8

Some of the properties of the continuous time system discussed in Section 1.5 can be extended for the 

discrete time system as follows: A discrete time system is said to be LSI if the superposition property 

holds and a shift in the input causes a corresponding shift in the output.

In other words if y1(n) is the response of a discrete time system to the input x1(n) and y2(n) is the 

response to the input x2(n), then for any scalar a, b let the response of the system to the input a x1(n) + 

b x2(n) be y(n). Then if the system is linear 

y(n) = a y1(n) + b y2(n) (1.7)
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The discrete time system is said to be shift invariant if a shift in the input causes a corresponding 

shift in the output. In other words if y(n) is the response of the system to x(n), then for a shift invariant 

system the response to the input x(n – k) is given by y(n – k). A LSI system can also be called as linear 

time invariant (LTI) system if the shift in the index (e.g., k in N – k) corresponds to a different sampling 

instant.

A discrete time system is causal if the impulse response sequence h(n) = 0 for n < 0. The system is 

stable, if a bounded input sequence x(n) i.e a sequence for which | x(n) | < h for all n and any arbitrary 

h results in bounded output sequence y(n). This is achieved if

0
| ( ) |

k
h k

•
= < •Â  (1.8)

Z TRANSFORM  1.9

Analogous to the Laplace transform for the continuous time system, for the discrete time system, 

unilateral Z transform is defi ned. The unilateral Z transform of a sequence x(n) is denoted as X(z) and 

is given by

0

( ) ( ) n

n

X z x n z
•

-

=
= Â  (1.9)

Here, z denotes a complex variable.

The z transform H(z) of the impulse response sequence h(n) of a causal LSI system is called as the 

system function. H(z) can be used to examine the stability of a discrete time system. For a stable system, 

the magnitude of the poles of H(z) should be < 1. In other words, the magnitude of the points at which 

the denominator of H(z) becomes zero should be less than 1, in a system with system function H(z) 

given by 

1

1
( )

(1 )
H z

az-=
-

 (1.10)

| a | should be < 1 for the system to be stable.

1.9.1 Additional Properties of z transform

1. Linearity If x(n) and X(z) are z transform pairs (denoted as x(n) ´ X(z)) and y(n) ´ Y(z) then 

(a x(n) + b y(n)) ´ (a X(z) + b Y(z))

2. Multiplication by Exponential Sequence If x(n) ´ X(k), then an x (n) ´ X(a–1z)

3. Initial and Final Value Theorems The initial value x(0) and fi nal value x(μ) can be evaluated us-

ing the Z transform X(z) as follows:

(0) lim ( )
z

x X z
Æ•

=  (1.11)

1
( ) lim( 1) ( )

z
x z X z

Æ
• = -  (1.12)
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4. Differentiation of X(k) If ( ) ( ) thenx n X z´

( ) ( )
d

nx n z X z
dz

´ -

5. Convolution The convolution sum y(n) of two sequences x(n) and h(n) denoted as x(n) ∗ h(n) is 

given by 

0

( ) ( ) ( )
n

k

y n x k h n k
=

= -Â  (1.13)

If x(n) ´ X (z), h(n) ´ H(z) and y(n) ´ Y(z) and then (x(n) ∗ h(n) ) ´ X(z) H(z) = Y(z).

Similarly (a(n) b(n)) ´ (A(z) ∗ H(z))

6. Shifting Property If X(z) is the z transform of the sequence x(n), then the z transform of the 

sequence x(n – k) is given by X(z)z – k. This property can be used for solving a difference equation. For 

e.g., consider the output sequence y(n) of a LSI system expressed in terms of the input sequence x(n) by 

the difference equation 

y(n) = x(n) + a y(n – 1) (1.14)

Taking the z transform of each of the terms of (1.14) and using the shifting property Y(z) is given by

Y(z) = X(z) + (az –1) Y(z)

Rearranging the terms we get

1

( ) 1
( )

( ) (1 )

Y z
H z

X z az-= =
-  (1.15)

The impulse response of the system can be found by taking the inverse z transform of (1.15). In 

general, z transform can be used to convert a difference equation into an algebraic equation involving 

the z transforms of the sequences.

7. The inverse z transform of a sequence can be obtained either using the power series expansion of 

X(k) or using partial fraction expansion, e.g., if X(z) is given by (1.10), its power series expansion is 

given by 

1 1 2 1 3

0

( ) 1 ( ) ( ) ( ) n n

n

X z az az az a z
•

- - - -

=
= + + + + = Â�  (1.16)

Comparing this with (1.9), it can be concluded that x(n) = an

Similarly if 

1 1

1
( )

(1 )(1 )
H z

az bz- -=
- -  (1.17)

Using partial fraction expansion H(z) can be rewritten as 

1 1

1 1
( )

( ) ( )(1 ) (1 )

a b
H z

a b b aaz bz- -= +
- -- -  (1.18)
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Comparing (1.18) with (1.10) it can be concluded that 

( )
( ) ( )

n na b
h n a b

a b b a
= +

- -
 (1.19)

Z transform can be used to arrive at effi cient schemes for implementation of discrete time systems. This 

is considered in Section 1.13.

FREQUENCY RESPONSE OF LTI DISCRETE TIME SYSTEM 1.10

The response y(n) of a LTI discrete time system with impulse response h(n) for a complex exponential 

sequence given by 

x(n) = ejnw for – μ < n < μ
is given by 

( )( ) ( ) j n m

m

y n h m e w
•

-

=-•
= Â  (1.20)

Let H(e jw) be defi ned as 

( ) ( )j jm

m

H e h m ew w
•

-

=-•
= Â  (1.21)

Using (1.21) in (1.20), y(n) is given by 

( ) ( ) ( ) ( ) ( )jn jm jn j j

m

y n e h m e e H e x n H ew w w w w
•

-

=-•
= = =Â  (1.22)

Hence the complex exponential sequence is the eigen function of the discrete LTI system . Since it 

corresponds to the sampled sinusoid of frequency w, the response, H(e jw) is called as the frequency 

response of the system.

Properties

 1. H(e jw) can be obtained from the transfer function H(z) by evaluating it at z = e jw. This can be 

verifi ed by comparing (1.21) with (1.9) . 

 2. H(e jw) is periodic in w with period equal to 2p. In the sampled data system y(n) actually denotes 

the value y(t) at the nth sampling instant nTs. The dependence of the sampling frequency on 

the frequency response can be made clear by replacing w by wTs. Hence for the sampled data 

system with sampling interval Ts, the frequency response is given by H(e jwTs) and it is periodic 

with a period of (2p/Ts). Since w is equal to 2pf, when the frequency response is plotted as a 

function of f, it is periodic with a period of (1/Ts).

 3. As H(e jw) is periodic in w with period of 2p, (1.21) can be viewed as the Fourier series expansion 

for H(e jw) with the Fourier coeffi cients h(n) given by

1
( ) ( )

2

j j nh n H e e d

p
w w

p

w
p -

= Ú  (1.23)

  For real values of h(n), |H(ejw)|, the magnitude of the frequency response is symmetric in the 

interval (0, 2p) and the phase response is antisymmetric in this interval.
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DIGITAL SIGNAL PROCESSING 1.11

As mentioned in Section 1.7, one of the advantages of discrete time signal is time division multiplexing. 

The second advantage of discrete time signal is that they can be digitized and they can be processed 

either using digital hardware or using software. For the digitization, fi rstly, the discrete time signal 

which can take any value in the range (–Am, Am) where Am denotes the maximum amplitude of the signal 

is approximated to one of the 2N levels which is closest to the signal. The approximation error is called  

the quantisation error and it can be made small by choosing N to be large.

The 2N levels may be chosen to be at equal intervals in the range (–Am, Am) in which case the signal 

is said to be uniformly quantized. The next step is to represent each of these 2N levels by an n bit 

number. The number of bits, n is given by log22N. Processing the n bit numbers corresponding to the 

various samples of the signal is called as digital signal processing. It offers a number of advantages 

compared to processing the continuous time signal directly. The latter approach is also called analog 

signal processing if the signal amplitude range is also continuous.

ADVANTAGES OF DIGITAL SIGNAL PROCESSING (DSP)  1.12

1.12.1 Ease of Processing

One of the requirements in signal processing is to delay the signal by a particular duration. For example 

in moving target indicator radar, a number of pulses are transmitted one after another and the received 

signal corresponding to adjacent pulses are to be subtracted. This requires the received signal to be 

delayed by one pulse repetition interval. For the analog signal processing, this is achieved using acoustic 

delay line. Increasing or decreasing the delay requires the delay line length to be changed which is 

cumbersome. On the other hand, for DSP, the samples of the received signal can be stored in memory 

and they can be read after one pulse repetition interval. Delay can be easily changed without switching 

in or switching out cables. 

1.12.2 Thermal Drift and Reliability

For analog signal processing, circuits consisting of analog components like resistors, capacitors, and 

op amps are used and their characteristics change with temperature. DSP circuits use digital hardware 

like adders, multipliers and shift registers whose characteristics show no variation with temperature 

throughout their operating range. Component aging alters the performance of the analog circuit. For 

example, the dielectric material of capacitors is particularly prone to aging which changes the impedance 

and alters the performance. DSP circuits have the same performance throughout their life time.

1.12.3 Repeatability

Component tolerance makes the analog circuit to have different characteristics with different set of 

components of same nominal value. For example, a resistor with 100 W resistor with 10% tolerance can 

have any value in the range (90, 110) W. Accordingly, the circuit behaviour cannot be exactly predicted. 

This problem can be minimised by using components with smaller tolerance. But this increases the 

system cost as these components are costly. Typical capacitors have a tolerance of 20% or worse. This 

makes the characteristics of an analog circuit to be poorly repeatable with new set of components with 

same nominal values. Digital circuits, however, are inherently repeatable.
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1.12.4 Immunity to Noise

In analog signal processing, the signals are allowed to take any value within a particular range and noise 

can easily alter the magnitude. In DSP, the signals take binary values and for altering a 1 to 0 and vice 

versa a noise voltage of a large magnitude is required. In digital data transmission, the effect of noise 

can be completely eliminated by putting repeaters at suitable intervals. However, a repeater used with an 

analog signal will amplify both signal and noise and will be ineffective in combating the noise.

1.12.5 Programmability

DSP functions can be implemented either using microprocessors/microcontrollers or Programmable 

Digital Signal Processors. This enables the same hardware confi guration to be reprogrammed to perform 

a very wide variety of signal processing tasks by loading in different software. In the analog case this 

would call for rewiring/resoldering. 

1.12.6 Some Special Signal Processing Techniques

There are some signal processing techniques that cannot be performed by analog systems. Examples of 

these techniques are linear phase fi lters, notch fi lters, adaptive fi lters, data compression, errol control 

coding. In control systems, an example is a deadbeat controller used when a very rapid settling time is 

required.

DSP IN THE SAMPLE AND TRANSFORM DOMAIN 1.13

For a discrete time system, the convolution integral given by eqn. (1.1) reduces to the convolution sum 

given by

0

( ) ( ) ( )
n

k

y n x n k h k
=

= -Â  (1.24)

where y(n), x(n) and h(n) are the nth sample of output, input and the impulse response of the LTI causal 

discrete time system and x(n) and h(n) are assumed to be 0 for n < 0. If x(t) and h(t) are of fi nite duration 

they may be represented faithfully using M, N samples respectively. In this case the output is also 

of fi nite duration and can be represented using M+N–1 samples. In other words convolution of two 

sequences of length M, N results in a sequence of length M+N–1. For fi nding y(n), n+1 multiplications 

and n additions are required. For large values of n, this may call for signifi cant computational effort; 

y(n) may be alternately computed using an indirect approach using the transforms of the input and the 

impulse response. One of the transform that may be used is the Discrete Fourier transform (DFT). The 

DFT X(k) of a sequence x(n) of fi nite length M, for k = 0, … M–1 is defi ned as 

2
1

0

( ) ( )
M j kn

M

n

X k x n e

pÊ ˆ- - Á ˜Ë ¯

=
= Â  (1.25)

The computation of the M DFT coeffi cients X(0), … X(M–1) requires M2 complex multiplications. 

However, using the Fast Fourier Transform (FFT) algorithm, the no. of multiplications required is 

reduced to 2

M
log M

2
.

The inverse DFT (IDFT) is used to fi nd x(n) from X(k) using the expression given by 
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2
1

0

1
( ) ( )

M j kn
M

k

x n X k e
M

pÊ ˆ- Á ˜Ë ¯

=
= Â  (1.26)

IDFT can also be computed using FFT.

FAST FOURIER TRANSFORM (FFT) 1.14

The direct computation of DFT of a sequence of length N requires N2 complex multiplications. The 

number of multiplications can be reduced to 2

N
log N

2
 using the FFT algorithm. There are two popular 

FFT algorithms: Decimation in Time (DIT) algorithm and Decimation in Frequency (DIF) algorithm. 

These two algorithms are dealt in detail in the literature. For the sake of brevity, one of the algorithms, 

DIT is presented here.

1.14.1 Decimation in Time Algorithm

The fi rst step in this algorithm is to rearrange the sequence in the bit reversed order. In the bit reversed 

number representation, the binary pattern corresponding to a particular decimal number is obtained by 

writing the natural binary equivalent of the number in the reverse order so that the most signifi cant bit 

of the natural binary number becomes the least signifi cant bit of the bit reversed number and vice versa. 

Using this rule, it can be verifi ed that the binary equivalent of the numbers 0–15 is as shown in Table 1.1.

Let the input sequence be x(0), x(1) … x (N–1). Let the bit reversed sequence be x1(0), x1(1) … 

x1(N–1). The computation of FFT involves log N stages of computation. 

In the fi rst stage, 2 point DFT of blocks of every consecutive two 

elements of x1(0) … x1(N–1) is computed and the resulting sequence is 

denoted as X1(0), X1(1), … X1(N–1) as shown in Fig. 1.3. The manner in 

which X1(k) is obtained from x1(l), for k,l = 0, 1, … N–1 can be explained 

using the FFT butterfl y diagram shown in Fig. 1.2. Let WN be given by

Table 1.1 Natural binary numbers and their bit reversed equivalents

Decimal 

number

Natural binary 

number

Bit reversed 

number

Decimal num-

ber

Natural binary 

number

Bit reversed 

number

0 0000 0000  8 1000 0001

1 0001 1000  9 1001 1001

2 0010 0100 10 1010 0101

3 0011 1100 11 1011 1101

4 0100 0010 12 1100 0011

5 0101 1010 13 1101 1011

6 0110 0110 14 1110 0111

7 0111 1110 15 1111 1111

WN = e –j(2p/N)  (1.27)

The multiplication factor WN
K is called the twiddle factor. For the 2 point DFT, the value of k is N and 

hence the twiddle factor is equal to one. 

In the second stage, every consecutive block of 4 elements of X1(0), X1(1) … X1(N – 1) are combined 

using two FFT butterfl ies. For n = 0, 1, … (N/4 –1), the fi rst butterfl y is formed between the 4nth element 

Fig. 1.2 FFT Butterfl y with a 

twiddle factor of WN
k
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and (4n + 2)th element. The second butterfl y is formed between the (4n +1)th element and (4n + 3)th 

element. The twiddle factor for the fi rst butterfl y is WN
0. The twiddle factor for the second butterfl y is 

WN
N/2 .

For example, for N = 8, the second twiddle factor becomes W8
4. Let the output of the butterfl ies at the 

2nd stage be X2(0), X2(1), … X2(N – 1).

In the third stage, every consecutive block of 8 elements of X2(0), X2(1) … X2(N – 1) are combined 

using four FFT butterfl ies. For n = 0, (N/8 – 1), the fi rst butterfl y is formed between the 8nth element and 

(8n + 4)th element. The second butterfl y is formed between the (8n +1)th element and (8n + 5)th element. 

The third butterfl y is formed between the (8n +2)th element and (8n + 6)th element. The fourth butterfl y 

is formed between the (8n +3)th element and (8n + 7)th element. The twiddle factor for the kth butterfl y 

(for k = 1, 2, 3, 4) is obtained as WN
(k–1)N/4. For example, for N = 8, the four twiddle factors are W8

0, 

W8
2, W8

4, W8
6 respectively. Let the resulting output of the butterfl ies be X2(0), X2(1), … X2(N – 1).

The procedure can be generalized as follows: At the rth stage of FFT computation, every block of 

consecutive 2r elements of the output of the 

previous butterfl ies Xr – 1(0), Xr – 1(1) … Xr 

– 1(N – 1) are combined using 2r–1 butterfl ies. 

For m = 0, 1, ... (N/2r – 1), the kth butterfl y is 

formed between the (2rm + k)th element and 

(2r m + k + 2r–1)th element.

The twiddle factor for the kth butterfl y is 

given by 

WN
(k–1)N/p where p = 2r–1.

Twiddle factors at various stages of FFT 

computation for N = 4, 8, 16 are given in Table 

1.2. The complete FFT butterfl y fl ow diagram 

for N = 8 is given in Fig. 1.3.

Fig. 1.3 Decimation-in-time FFT fl ow diagram for 8 point FFT

Table 1.2 Twiddle factors the FFT butterfl ies for N = 4, 8 16

N = 4 N = 8 N = 16

Stage 2

Twiddle factor

1, W4
2 1, W8

4 1, W16
8

Stage 3

Twiddle factor

1, W8
2

W8
4, W8

6

1, W16
4 

W16
8, W16

12

Stage 4

Twiddle factor

1, W16
2

W16
4, W16

6

W16
8, W16

10

W16
12, W16

14
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Fig. 1.4 Convolution using FFT

1.14.2 Convolution using FFT

The convolution can be done using FFT as shown in Fig.1.4. Let the sequences x(n), h(n) be of length L, 

M respectively. New sequences x¢(n) and h¢(n) are formed by appending M – 1, L – 1 zeros to x(n) and 

h(n) respectively at their end. Lengths of both of the sequences become L + M – 1. Let N = L + M – 1. 

The FFT of both of these sequences are found and the corresponding FFT coeffi cients are multiplied and 

a new set of coeffi cients are obtained. ie. X¢(0) is multiplied with H¢(0), X ¢(1) is multiplied with H¢(1) 

and so on. The inverse FFT of these coeffi cients gives the convolution of the sequence x(n) with h(n). 

The total number of real multiplications required for convolution becomes 4([3N/2] log2(N) + N).

Using the direct approach the number of multiplications required is LM. This can be verifi ed as 

follows: Let L > M. The fi rst M – 1 outputs (y(0) – y(M – 1) require (1 + 2 + 3 + …. M – 1) multiplications. 

The last M – 1 outputs (y(n) – y(M + N – 2) require (M – 1 + M – 2 + … 3 + 2 + 1 ) multiplications 

respectively. The remaining L – M + 1 outputs require M multiplications each. Hence, the total no. of 

multiplications is given by

2 21
2 ( 1)

2

M
M L M M M M LM M M LM

-¥ + - + ¥ = - + - + =

For small values of L and M, the direct approach is computationally effi cient. For large values, the 

FFT approach is effi cient, e.g. for L=M=8, the number of multiplications required using direct, DFT 

approaches are 64, 444 respectively. For L=M=64, they are 4096, 5888 respectively. 
DIGITAL FILTERS 1.15

In Section 1.3, the use of low pass and high pass fi lters are illustrated. The fl atness of the amplitude 

response in the pass band and the sharpness of the transition from pass band to stop band determines the 

complexity of the fi lter or the no. of components required for building the fi lter. Digital fi lters use the 

digital hardware like adder, multiplier and shift registers. The design of digital fi lters using the transfer 

function/impulse response of the analog fi lters has been dealt in detail in several textbooks. (see for 

e.g., Rabiner, Oppenheim). The digital fi lters can be classifi ed into broadly two types: Finite Impulse 

response (FIR) fi lters and Infi nite impulse response (IIR) fi lters. FIR, IIR fi lters described below are 

examples of linear shift invariant system (LSI).

1.15.1 FIR Filters

The output of the FIR fi lter at the nth sampling instant y(n), can be expressed as the function of the 

present as well as the past (M–1) input samples and the impulse response sequence h(k) as follows:

1 1

0 0

( ) ( ) ( )
M M

n k k
k k

y n x n k h k x h
- -

-
= =

= - =Â Â  (1.28)
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This is a difference equation of order M. It is also referred to as tapped delay line fi lter with M taps or 

FIR fi lter with M taps. Comparing (1.28) with (1.13), it can be seen that FIR fi lter is a convolver where 

the present as well as past M – 1 input samples are convolved with M impulse response coeffi cients. 

Hence, it can also be called as a convolver. It may be noted that the past M – 1 samples can be obtained 

by storing them in M – 1 shift registers. Each shift register introduces a delay equal to 1 sampling 

interval and has a transfer function of z–1.

With this observation a structure for the implementation of the FIR fi lter can be obtained as shown in 

Fig. 1.5. This is also referred to as the direct implementation scheme as it uses M multipliers and adder 

for M products. In this case, the minimum sampling interval Tsd is given by

Tsd = TM + (M – 1)TA (1.28a)

where TM,TA are respectively the time required for one 

multiplication, addition respectively. An alternative 

fi lter given in Fig. 1.6 is obtained by taking the 

transpose of the fi lter structure given in Fig. 1.5. The 

minimum sampling time, Tst of the transpose fi lter is 

given by 

Tst = TM + TA (1.28b)

The transpose of a fi lter/network is obtained as follows: The direction of the signal fl ow in each 

branch of the fi lter is reversed. The branching points are replaced by adders and adders are replaced 

by branching nodes. The nodes at which the input is fed and the output is tapped are interchanged. 

The transfer function of the transpose structure is the same as the original structure. However their 

other characteristics like the effect of inaccuracy due to fi nite number of bits used for representing the 

numbers in a fi lter (referred to as the fi nite word length effect) will be different. This structure can also 

be used for serial/parallel convolution as in this case the input data can be fed serially bit by bit and the 

output can also be obtained serially.

For implementation either in software or hardware another scheme that can be used is shown in 

Fig. 1.7. This consists of two circulating registers for storing and circulating M numbers, a multiplier 

and an accumulator consisting of a register and an adder.

In this case, an M tap fi lter requires M clock cycles for computation of each output of the fi lter. If Tc 

is the clock period, the minimum sampling interval Ts, required for the inputs to this fi lter is given by

Ts = MTc (1.28c)

  

 Fig. 1. 6 Serial/parallel convolver Fig. 1.7 Direct implementation scheme with single 

  multiplier/adder

Fig. 1.5 Direct Implementation scheme for FIR fi lter
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Merits and Demerits of FIR Filters 

FIR fi lters have a numbers of advantages. They are stable and can be made always realizable with 

suitable delays. The inaccuracy in the output due to the number of bits used for representation of the input 

samples and the impulse response sequence is smaller in FIR fi lters than in IIR fi lters. The inaccuracy 

that results in both FIR and IIR fi lter due to the number of bits used for the representation is referred to 

as fi nite wordlength effect. For speech processing and data transmission, it is required to have frequency 

selective fi lters whose magnitude response is fl at and the phase response is linear with frequency in the 

pass band. Such fi lters are referred to as linear phase fi lters and they can be realised using FIR structure. 

In this case, the impulse response has even symmetry . For example the impulse response of the N tap 

linear phase FIR fi lter satisfi es 

h(n) = h(N – 1 – n) 0 £ n < (N/2) (1.29)

For example, in an 8 tap linear phase FIR fi lter, the impulse response coeffi cients satisfy the 

conditions:

h(7)=h(0), h(6)= h(1), h(5) =h(2), h(4) = h(3) (1.30)

This reduces the number of multiplications required for computing (1.28) by half. In hardware 

implementation of the fi lter the number of multipliers required is reduced by half.

Another advantage of the FIR fi lter is that an FIR fi lter can be designed using well proven techniques 

for any arbitrary frequency response. IIR fi lters can be designed only for four basic types like Low 

pass (LP), High pass (HP), bandpass (BP), Bandstop (BS) and few others. More general fi lters such as 

multiband fi lters are diffi cult to design using IIR fi lters but can be designed as FIR fi lters. 

One of the limitations of FIR fi lter is the need for large number of taps for obtaining fi lters with sharp 

cut off characteristics. IIR fi lters require only less no. of taps compared to FIR fi lters. More no. of taps 

require more hardware resources or more computation time. Another disadvantage is the linear phase 

fi lter may result in non integral no. of sample delays with frequency and it may not be acceptable in 

some applications. 

1.15.2 Real Time Filtering Using FFT

In real time fi lters, the input samples to be processed 

arrive periodically. If an M Tap FIR fi lter is used 

for processing, between every sampling interval 

M multiplications and M-1 additions are to be 

performed.

Overlap and Save Method

 In stead of processing every sample individually, the 

input sequence may be segmented into overlapping 

blocks of subsequences of N samples as shown in 

Fig. 1.8. The no. of samples overlapping between 

the adjacent block is chosen to be M – 1. Let us 

see what happens when the block of N samples are 

convolved with the impulse response sequence. The 

fi rst M – 1 outputs would be wrong as we require the 

present and the past M – 1 samples to compute the 
Fig. 1.8 Real time fi ltering using overlap

and save method
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output. The outputs corresponding to sampling instants M to N  would be correct as all the past samples 

required are contained in the block. The second block contains the samples N – M + 1 to 2N – M. In 

this block, the outputs corresponding to sampling instants N – M + 1 to N would be wrong and the 

outputs corresponding to sampling instants N to 2N – M would be correct. However, the correct outputs 

corresponding to the instants N – M + 1 to N  have been already computed using the fi rst block. Hence, 

in each block, the fi rst M – 1 outputs may be discarded and the remaining N – M + 1 outputs may be 

saved. This technique for performing convolution using a block of input samples is called as overlap 

and save method. The convolution may be effi ciently performed using FFT as shown in Section 1.14.2. 

The following steps are adopted for this purpose.

 1. The impulse response sequence h(n) is appended with N – M zeros and the FFT of resulting 

sequence is found. Denote the FFT coeffi cients as H(0) – H(N – 1) 

 2. The FFT of the N samples in the ith block (xi(0) – xi(N – 1) are found. The FFT coeffi cients are 

denoted as Xi(0) – Xi(N – 1)

 3. Compute Yi(k) using the relation Yi(k) = Xi(k)H(k) for k = 0 – (N – 1) 

 4. Compute the inverse DFT of {Yi(0), Yi(1) … Yi(N – 1)} and fi nd yi(k). Discard yi(0) – yi(M – 2) 

and save yi(M – 1) to yi(N – 1) 

Overlap and Add Method

In this method, the input sequence is segmented into 

non-overlapping blocks of subsequences of L samples 

as shown in Fig. 1.9. 

The samples of the ith block can be written as 

xi(n) = x(n + iL) n = 0,1, … L – 1  (1.31a)

The L samples of the ith block are appended with 

M – 1 zeros to form a sequence of length N which is a 

power of 2. Let us denote this as xi¢(n). Xi¢(k), the FFT 

of this sequence is found. Similarly another sequence 

h¢(n) of length N is formed by appending L – 1 zeros 

to h(n). H¢(k), the FFT of this sequence is found. Yi(k) 

is computed as the product of Xi¢(k) and H¢(k). yi(n) 

is found by computing inverse FFT of Yi(k). Each 

output block contains N output samples. Since the 

input blocks are non overlapping, out of the N outputs, 

fi rst M – 1 outputs and the last M – 1 outputs would 

be incorrect as at least one sample from the adjacent 

block is required to get the correct output for these 

sampling instants. To fi nd the correct output, the 

outputs corresponding to ith and (i + 1)th block are aligned as shown in Fig.1.9 such that the last M – 1 

outputs of ith block overlaps with fi rst M – 1 outputs of the (i + 1)th block. The overlapping outputs are 

added column wise to get the correct output. L output samples corresponding to ith block are obtained 

from the N outputs of ith and (i – 1)th block as follows:

y(iN + k) = y(iN + k) + y(iN – M + 1 + k) for k = 0,1, 2, ... M–2 (1.31b)

y(iN + k) = y(iN + k) for k = M – 1, M, … L (1.31c)

1 outputs of previous block added with
the first
M –

M – 1 outputs of previous block and
then saved

h n( ) 0….0

( )x n1

M

Add overlapped output Æ

Final output sequence

L M + 1 outputs
saved directly
–

Non overlapping input blocks; each
block is zero-padded by 1 samplesM –

0

( )x n2

( )x n3

( )1 ny ( )2 ny ( )3 ny

0

0

N

N

N

L

+

+

Coefficients vector zero-padded to N

x

Fig. 1.9 Real time fi ltering using overlap

and add method
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This can be verifi ed by fi nding y(iN + k) for k = 0 and M – 2 as follows 

y(iN) = y(iN) + y( iN – M + 1) (1.31d)

y(iN + M – 2) = y(iN + M – 2) + y( iN – 1) (1.31e)

1.15.3 Design of FIR Filters

The FIR fi lter may be specifi ed by the frequency response of the fi lter. This in turn can be specifi ed 

by the magnitude response and the desired phase response of the fi lter. A number of techniques have 

been developed for fi nding the fi lter coeffi cients and computer programs have also been developed to 

facilitate this. Overview of two of the methods the window method and frequency sampling method is 

presented next.

Window Method Using the periodicity property of the frequency response, it is shown in section 

1.10 that h(n) the impulse response coeffi cients can be obtained as the Fourier coeffi cients given by Eqn. 

(1.23). However, this requires an infi nite sequence and the fi lter will be non causal as h(n) is nonzero 

for n < 0. This series may be truncated to have N coeffi cients. However this will result in overshoot 

and ripples in both pass band and stop band and is referred to as Gibb’s oscillation or phenomena. 

Another problem with the fourier series technique is its slow convergence. Choosing larger values of 

N does not automatically reduce the magnitude of the ripples in the transition region from pass to stop 

band signifi cantly. This problem is overcome by choosing a window sequence w(n) and multiplying it 

with h(n) obtained using the Fourier series approach. w(n) is chosen so as to obtain a smooth transition 

from the pass band to the stop band and to be non-zero for 0 £ n £ N – 1. The resulting hw(n) is made 

causal by shifting it by (N – 1)/2 towards right. Some of the window functions used are the rectangular 

window, Von Hann (also referred to as Hanning) window, Hamming window, Blackman window and 

kaiser window. The expressions for the fi rst three windows can be specifi ed using the parameter a as 

follows: 

w(n) = a + (1 – a)cos 2
1

n

N
p

Ê ˆ
Á ˜Ë ¯-

 for 0 £ n £ N – 1 (1.32)

        = 0 otherwise.

The value of a is 1, 0.5, 0.54 respectively for rectangular, Hanning, Hamming windows. The 

Blackman window function is also of similar form and is given by 

w(n) = 0.42 – 0.5 cos 2
1

n

N
p

Ê ˆ
Á ˜Ë ¯-

+ 0.08 cos 4
1

n

N
p

Ê ˆ
Á ˜Ë ¯-

 for 0 £ n £ N–1 

          = 0 otherwise. (1.33)

The frequency response of the window functions have a main lobe and a no. of side lobes. The ripple 

ratio defi ned as the ratio of the fi rst side lobe amplitude to the main lobe amplitude in the frequency 

response of the window function increases with a  and the main lobe width decreases with a. 

Frequency Sampling Method In this method the value of the frequency response at M points in the 

interval (0, (2p/Ts)) is taken. In other words H(e jwTs) is evaluated for w = (2pk/MTs) for 0 £ k £ M – 1 

and are taken to be M DFT coeffi cients. The inverse DFT of this sequence is taken and is treated as M 

impulse response samples h(n). Out of these M samples N samples (N < M) is taken to be the impulse 

response sequence for the FIR fi lter with N taps. To minimize the Gibb’s oscillations, this is combined 
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with one of the window functions discussed in the last section. The choice of the value of N may be done 

iteratively. Starting with a value of N, the fi lter frequency response may be evaluated after windowing. 

If it differs signifi cantly from the desired frequency response, the value of N may be changed. This step 

is repeated till a satisfactory response is obtained. Several variations of the frequency sampling method 

is used in practice. For example, instead of choosing all the M DFT coeffi cients using the frequency 

response, some of the coeffi cients in the transition region from pass band to the stop band may be chosen 

using optimization techniques in order to achieve the required ripple as well as undershoot/overshoot 

characteristics.

1.15.4 IIR Filters 

The output of the IIR fi lter at the nth sampling instant y(n), can be expressed as the function of the 

present input and past M-1 input samples as well as the past N – 1 output samples and is given by : 

1 1

0 1

( ) ( ) ( ) ( ) ( )
M N

k k

y n x n k a k y n k b k
- -

= =
= - + -Â Â  (1.34)

where a(k) and b(k) are weight factors for the inputs and past outputs. For ease of notation, the samples 

are represented using suffi xes wherever convenient. In terms of this notation, (1.34) can be written as 
1 1

0 1

M N

n n k k n k k
k k

y x a y b
- -

- -
= =

= +Â Â  (1.35)

Since the present output depends on the past outputs, IIR fi lter is also called as a recursive fi lter. The 

Z transform of (1.34) can be used to arrive at different structures for implementation of the fi lter. For M 

= N and b(0) = 1, the transfer function H(k) of the fi lter given by (1.34) is 

( ) ( )
( )

( ) ( )

Y z A z
H z

X z B z
= =  (1.36)

1 2 3 2 1
0 1 2 3 2 1

1 2 3 2 1
1 2 3 2 1

 ...  
( )

1  ...  

N N
N N

N N
N N

a a z a z a z a z a z
H z

b z b z b z b z b z

- - - - + - +
- -

- - - - + - +
- -

+ + + + +
=

+ + + + +
 (1.37)

where A(z), B(z) are the z transform of the weights 

a(k) and b(k). Structure for implementation of the 

fi lter by given (1.34) – (1.36) is shown in Fig. 

1.10. It is called as the direct implementation 

structure. It can be verifi ed that the top set of 

adders and delay units with transfer function z 

–1 realises the function A(k) and the bottom units 

realise the function 1/B(z). Transpose of this fi lter 

is shown in Fig. 1.11. Both of these fi lter structures 

require 2(N – 1) delay units, 2(N – 1) adders and 

2N – 1 multipliers. The number of delay units can 

be reduced by realising 1/B(z) fi rst and feeding 

the output of this fi lter to the fi lter with transfer 

function A(z) as shown in Fig. 1.12. Since the 

delay units in both of these fi lters have the same 
Fig. 1.10 Direct implementation structure for an IIR fi lter
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inputs, a single delay unit can be shared by both of the fi lters 

with the transfer function 1/B(z) and A(z). The resulting fi lter 

structure is given in Fig. 1.13. A digital fi lter is said to be 

canonic if the no. of delay units is equal to the order of the 

transfer function. Since in the above case, the order of the 

transfer function is N – 1 and the number of delay units used 

in Fig. 1.13, the fi lter given by Fig. 1.13 represents a canonic 

realization. Several other realizations can be obtained by 

factorizing H(z) or writing it as a sum of a number of transfer 

functions. 

Accordingly a cascade realisation and parallel realisation 

of the fi lters are obtained.

As mentioned earlier an IIR requires less hardware and 

computational effort compared to FIR fi lter for the same 

sharpness and fl atness in the fi lter. However, these fi lters may 

not always be realisable and may become unstable and are affected more by the fi nite word length 

effects. When an IIR scheme exists for an FIR fi lter, then it requires less memory and less computation 

time compared to the latter. For example consider an FIR fi lter with M coeffi cients in which the nth 

coeffi cient is given by 

h(n) = an (1.38)

The transfer function of this fi lter can be written as 

H(z) = 1+ (az–1) + (az–1)2 + (az–1) (M – 1) (1.39a) 

1

1

1 ( )

1

Maz

az

-

-
-=

-
 (1.39b)

(1.39a) represents an FIR fi lter and it requires M – 1 delay units, M – 1 adders as well as multipliers. (1.39b) 

represents an equivalent IIR fi lter. This requires M + 1 delay units, two adders and two multipliers. 

  

 Fig. 1.11 Direct implementation scheme for the IIR Fig. 1.12 An alternate implementation scheme

 fi lter using the transpose structure for the IIR fi lter

Fig. 1.13 Canonic realisation scheme for 

the IIR fi lter
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1.15.5 Design of IIR Filters

Design of analog fi lters for LP. HP, BP, and BS has been studied in detail in the past and has been 

implemented in a large number of communication and consumer electronic circuits. The impulse 

response of the IIR fi lters can be obtained from the corresponding analog circuits commonly using one 

of the techniques impulse invariance method and the bilinear transform method. These two techniques 

are discussed in brief next.

1.15.6 Impulse Invariance Method

In this method, a digital IIR fi lter with impulse response h(n) is obtained from the analog fi lter with 

impulse response ha(t) by evaluating h(n) as

h(n) = ha(t) for t = nTs ; N = 0,1,2 (1.40a)

where Ts is the sampling interval. However this method is applicable only if the analog fi lter response 

is bandlimited such that the frequency response H(jw) is given by 

H(jw) = 0 for | w | > 1/2Ts (1.40b)

If this condition is not satisfi ed, aliasing occurs; i.e., the signal with frequency f, in the frequency 

range 1/2Ts to 1/Ts gets mapped to (f – 1/2Ts). Because of periodic nature of the frequency response of 

the LTI digital fi lters, for m = 1, 2, …, all the signals in the frequency range (m/Ts, (2m + 1)/2Ts) gets 

mapped to the frequency range (0, 1/2Ts) in the digital fi lters. The signal with frequency f in the range

((2m + 1)/2Ts, (2m + 2)/2Ts) appears as f – 1/2Ts due to aliasing. Hence eventhough this method is 

simple it is not applicable for fi lters whose response is not bandlimited. For example, this method is not 

suitable for the design of high pass fi lters. In practice, this method can be adopted if 

H(jw) < 0.01 Hmax for | w | > 1/2Ts (1.40c)

where Hmax denotes the maximum amplitude of the frequency response of the analog fi lter in the 

frequency range (0, 1/2Ts).

1.15.7 Bilinear Transform Method 

In this method the transfer function H(z) of the digital fi lter is obtained from the corresponding analog 

fi lter transfer function H(s) by using the mapping given by

H(z) = H(s) with

1

1

2 1

1s

z
s

T z

-

-

Ê ˆ-= Á ˜+Ë ¯  (1.41)

The relationship between the digital frequency w and the analog frequency Ω can be obtained by 

substituting s = jW and z = ejwTs in (1.41) as follows:

 2 1

1

j Ts

j Ts
s

e
j

T e

w

w

-

-

Ê ˆ-W = Á ˜+Ë ¯  (1.42)

W = (2/Ts) tan (wTs/2) (1.42a)

In this case the upper half of the imaginary axis (or in other words the frequency range (0, μ) is 

mapped uniquely within the unit circle corresponding to the z transform. Hence, aliasing does not occur 

in this case. However, this method introduces distortion in the frequency response of the digital fi lter 
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designed. Specifi cally, the phase response of this fi lter is distorted and hence a fi lter with linear phase 

characteristics cannot be obtained using the bilinear transform method.

This is because the bilinear transform results in nonlinear mapping between the the digital frequency 

w and the analog frequency W as given by (1.42a). This is called as frequency warping. 

To overcome this nonlinearity, compensation has to be applied to the fi lter. One of the technique 

adopted is to prewarp the cutoff frequencies of the fi lter.This is called as prewarping. For example, if 

a digital fi lter with the cut off frequencies in the pass band as w1, w2, w3, w4 is desired, an analog fi lter 

with cut off frequencies given by 

Wi = (2/Ts) tan (wi Ts/2) for i = 1, 2, 3,4 (1.42b)

is designed. After the warping given by (1.42a), a digital fi lter with the desired cut off frequencies 

is obtained. The prewarping can only compensate for the amplitude nonlinearities and the phase 

nonlinearities cannot be overcome.

FINITE WORD LENGTH EFFECT IN DIGITAL FILTERS 1.16

Due to fi nite size of the registers used for storing the output of the processing elements like adders and 

multipliers, overfl ow can occur in FIR fi lters if the results exceed the capacity of the registers. These 

results will normally be rounded off and this gives rise to round off noise. Overfl ow can be avoided by 

using fl oating point arithmetic. However, in fi lters using fi xed point computations, the overfl ow can be 

minimized by scaling the impulse response coeffi cients suitably. 

In the case of IIR fi lters, because of the feed back connection, fi nite precision arithmetic can lead to 

oscillations which make the output to keep alternating between two values. Such oscillations are called 

as limit cycle oscillations. This can occur when the input to the fi lter is zero for example during silence 

periods in voice communication. In this case the output keeps oscillating between two small values 

and is referred to as zero input limit cycles. Another type of oscillation called as overfl ow limit cycle 

oscillation occurs when overfl ow occurs at the output due to the fi nite precision arithmetic. In this case 

output can keep oscillating with amplitudes equal to the full supply voltage. Another effect of fi nite 

word length is the quantization noise. It can arise due to inadequate no. of bits for representing the input 

to the fi lter, output of the fi lter or the output of the processing elements like multipliers and adders. 

POWER SPECTRUM ESTIMATION 1.17

Power spectrum of a stationary signal may be obtained by considering a block of N samples and 

computing the FFT of these samples. Power spectrum or periodogram is defi ned as

2 *1 1
( ) ( ) ( ) ( )P k X k X k X k

N N
= =  (1.43a)

where X(k) is the FFT of the input sequence. When the length of the data sequence is large, the power 

spectrum is estimated by segmenting the data sequence into a number of overlapping segments. Figure 

1.14 shows the most commonly used method for the power spectrum estimation using the Welch method. 

In this method, the averaged periodogram is obtained by segmenting the input into blocks of N samples 

and multiplying them with a bell shaped window w(n) to reduce spectral leakage. The accuracy of the 

averaged spectrogram can be increased by increasing the number of samples, M, overlapping between 

consecutive blocks. Typically M is chosen to be N/2. K, the total number of segments of data sequence 

of length L is given by 
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int 1
L N

K
M

-Ê ˆ= +Á ˜Ë ¯  (1.43b)

where int(.) is the integer operator. For each of the windowed segment, N point FFT is found and the 

Power spectrum corresponding to the ith segment is denoted as Pi(k) and is given by 

21
( ) ( )i i

w

P k X k
NP

=  (1.43c)
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Fig. 1.14 Computation of power spectrum using Welch algorithm 

This includes the contribution due to the window function. Power of the window function is denoted 

as Pw and is given by

1
2

0

1
( ) ( )

N

w
n

P k w n
N

-

=
= Â  (1.43d)

The averaged power spectrum of the entire data sequence is denoted as P(k) and is given by 

2

1

1
( ) ( )    0,1,2,  ... 1

K

i
iw

P k X k k N
NKP =

= = -Â  (1.43e)

Compared to the periodogram obtained using a single window of length L, the computation of 

periodogram using Welch method (given by (1.43e)) results in more accurate and smoother estimate 

of power spectrum. Size of the window N has to be chosen as a compromise between accuracy and 

frequency resolution: Smaller N results in poor frequency resolution but better accuracy; the reverse is 

true for larger N.

SHORT TIME FOURIER TRANSFORM 1.18

Many real world signals such as speech, radar and sonar signals are non stationary in nature. Their 

frequency, phase and peak amplitude may vary with time. For example, the chirp signal, also referred to 

as linear frequency signal (LFM), given by 

x[n] = A cos (w0n2) (1.44a)

is used in continuous wave radar to determine the range of a target. In this signal, the frequency of the 

signal linearly increases over a time period. Similarly, the frequency components in the speech signal 
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varies from time to time. In order to evaluate the frequency content of a signal as a function of time, 

short time fourier transform (STFT) may be used.The STFT of a sequence x[n] is defi ned by

STFT ( , ) [ ] [ ]
m

j j m

m

X e n x n m w m ew w
=•

-

=-•
= -Â  (1.44b)

w[m] is a window sequence. The width of window is chosen so that the signal may be considered to 

be stationary in that interval. When w[n] is rectangular window, the resulting transform is called as the 

discrete time fourier transform (DTFT).

In practice, the window sequence of fi nite length R is chosen. Moreover, the STFT is evaluated at N 

(N ≥ R) equi-distant points along the unit circle 
2

k
N

p
. The sampled values of the STFT is denoted as

2
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j k
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 (1.44c)
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From (1.44d), it may be noted that XSTFT [k,n] may be obtained by fi nding DFT of x[n–m]w[n].

XSTFT [k,n] is periodic with respect to k with period N. Assuming w[m] to be non zero, x[n–m] can be 

obtained by computing the inverse DFT of XSTFT [k,n] and is given by

1

STFT
0

2
1

[ ] [ , ]      0 1
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j km
N

x n m X k n e m R
w m N

p-

=
- = £ £ -Â  (1.44e)

As XSTFT [k,n] is a function of 2 variables, it requires a three dimensional plot. In practice, a two 

dimensional plot known as spectrogram is used to plot XSTFT [k, n]. In this plot, the X and Y axis 

denote the time sample index and frequency sample index respectively. The magnitude of XSTFT [k, n] is 

indicated by the darkness of the point. Higher the darkness, higher is the amplitude of XSTFT [k,n].

The characteristics of the window function determine the time resolution (Dt) and frequency 

resolution(Dw). If R is small, the window duration is small and STFT has very good time resolution. 

Two signals of the same frequency but occurring one after another with a delay of Dt can be perceived 

as two different signals in the STFT plot. However, small R implies small N and the frequency resolution  

2

N

p
 becomes poor. On the other hand, large window duration results in better frequency resolution but 

poor time resolution.

MULTIRATE SIGNAL PROCESSING 1.19

Multirate signal processing refers to the techniques adopted for processing a digital signal by sampling 

it further either using a higher rate than the rate at which the digital samples were obtained or using a 

lower sampling rate. The sampler used for this purpose is accordingly called as upsampler, downsampler 

respectively. The down sampler is also referred to as a decimator and a decimator which downsamples 

the input by a factor of M is denoted by the symbol given in Fig. 1.15.a. The upsampler is also referred 

to as interpolator and an interpolator which increases the sampling rate by a factor of M is denoted by 
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the symbol given in Fig. 1.15.b. If xd(n) denotes the output of an M factor decimator of an input signal 

x(n), then xd(n) can be written as

xd(n) = x(Mn) for N = 1, 2, 3, … (1.45) 

Similarly if yu(n) denote the output of an M factor interpolator 

of a signal y(n), yu(n) is given by

yu(n) = y(n/M) for n = 0, M, 2M, 3M … (1.46) 

          = 0 otherwise

1.19.1 Frequency Domain Characterization of the Decimator and Interpolator

The frequency domain characterization of the decimator and interpolator can be obtained using the z 

transform of xd(n) and yu(n) denoted as Xd(k) and Yu(k) respectively. 

( ) ( ) ( )n n
d d

n n

X z x n z x Mn z
• •

- -

=-• =-•
= =Â Â  (1.47a)

    
1 2 3(0) ( ) (2 ) (3 )x x M z x M z x M z- - -= + + + +� (1.47b)

Let us defi ne an intermediate sequence xa(n) as follows:

xa(n) = x(n) for n = kM; k = 0, 1, 2, …. (1.47c)

   = 0 otherwise

xa(n) can be rewritten as 

xa(n) = x(n)c(n) (1.47d)

where c(n) is a periodic sequence with period M and is defi ned as:

c(n) = [1, 0, 0, 0, … 0] (1.47e)

C(k), the DFT of c(n) is given by 

C(k) = 1 for k = 0, 1, 2, …. M–1 (1.47f)

Computing the inverse DFT of C(k) and denoting 
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Substituting eqn (1.47g) in (1.47d), Xa(k) can be obtained as
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Fig. 1.15 (a) Downsampler; (b) Upsampler
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Using (1.47c) in (1.47b), Xd(k) can be rewritten as 

1 2 3( ) (0) ( ) (2 ) (3 )d a a a aX z x x M z x M z x M z- - -= + + + +�  (1.47l)

For M = 2, Xd(k) is given by 

1 2 3( ) (0) (2) (4) (6)d a a a aX z x x z x z x z- - -= + + + +�  (1.47m)

Since xa(1), xa(3), xa(5) ... are zero, Eqn. (1.47m) can be rewritten as 
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Using (1.47k) in (1.47n), we get 
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Similarly, Yu(k) can be written as follows:
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 (1.48)

1.19.2 Spectrum at the Output of the Downsampler and Upsampler

More insight into the downsampling and upsampling process can be gained by looking at the spectrum 

of the sampled signal and comparing it with the spectrum of the original signal. 

Frequency spectrum at the output of the decimator and interpolator can be obtained by substituting 

z = e–jw in (1.47o) and (1.48). For M =2, the frequency response of the decimator and interpolator are 

given by (1.49) and (1.50).

/2 /21
( ) [ ( ) ( )]

2

j j j
dX e X e X ew w w- -= +  (1.49)

Yu(z) = Y(e–j2w) (1.50)

Let H(w), denote the frequency spectrum of a signal bandlimited to fm. Hs(w) denotes the spectrum 

at the output of sampler which samples the analog input at the rate of fs samples/sec. Xd(w) denotes the 

frequency spectrum at the output of the downsampler which samples the output of the above sampler 

at the rate of fd (i.e., fs/M) samples/sec. Yu(w) denotes the frequency spectrum at the output of the 

upsampler which samples the output of the above sampler at the rate of Mfs samples/sec.

For the case, where the input signal is assumed to be a low pass signal bandlimited to wm = 0.4p 

radians and M = 2, the spectrum of H(w), Hs(w) and Hd(w) and Hu(w) are shown in Fig. 1.16(a), Fig. 

1.16(b), Fig. 1.16(c). and Fig. 1.16(e) respectively.
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–0.4p 0.4p

Fig. 1.16(a) Spectrum of the input signal

–4p –3p –2p –p 0 p 2p 3p 4p 5p

Fig. 1.16(b) Spectrum of the sampled signal w

–4p –3p –2p –p 0 p 2p 3p 4p 5p

Fig. 1.16(c) Spectrum at the decimator output for M =2 and wM =0.4p

–4p –3p –2p –p 0 p 2p 3p 4p 5p

Fig. 1.16(d) Spectrum at the decimator output for M=2 and wM = 0.6p 

–4p –3p –2p –p 0 p 2p 3p 4p 5p

Fig. 1.16(e) Spectrum at the interpolator output for M =2 and wM = 0.4p

In Fig. 1.16(b). the frequency spectrum given in Fig. 1.16(a). gets replicated at intervals of 2p radians. 

Fig. 1.16(c) is obtained by stretching the frequency spectrum of the sampled signal by a factor of two 

along the w axis and replicating it at intervals of p radians. The magnitude of the spectrum is scaled 

by a factor of 2. Spectrum at the output of the interpolator is shown in Fig. 1.16(e). This is obtained 

by compressing the frequency spectrum of the sampled signal by a factor of two along the w axis and 

replicating it at intervals of p radians. It may be noted that a signal which is sampled and decimated by 

2 can be recovered by interpolating it by 2 and passing it through a low pass fi lter with cutoff frequency 

of wm = 0.4p. Similarly, a signal which is sampled and upsampled by 2 can be recovered by decimating 

it by 2 and passing it through a low pass fi lter with cutoff frequency of wm = 0.4p.

It can be verifi ed from Fig. 1.16(c) that the band of signals centred around 0 radians and its replicas at 

intervals of p radians will be non overlapping only if wm £ 0.5p radians. Fig. 1.16(d) shows the spectrum 

at the output of the decimator when wm = 0.6p radians. In this case, the replicas at intervals of p overlap 
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and aliasing is said to occur. In this case, the original signal cannot be faithfully recovered from the 

decimated signal by passing it through an interpolator and a low pass fi lter.

In general, in order to avoid the aliasing, the input to the decimator should be bandlimited to p/M. 

A low pass fi lter, also referred to as antialiasing fi lter, with cut off frequency wc = p/M is used for this 

purpose.

1.19.3 Subband Coding

Processing a signal after downsampling or upsampling has a no. of advantages. To appreciate it let us 

consider the example of a voice coder/decoder. When an analog signal is digitized using the sampler 

followed by the quantizer, the minimum sampling rate required is determined by the maximum frequency 

component in the signal and the no. of bits used for quantisation is independent of the relative importance 

of the various frequency components that constitute the signal. Nonuniform quantizers allocate different 

step sizes for different amplitude ranges of the signal taking into account their probability of occurrence. 

Low amplitude signals occur more frequently and are more important. They are allocated small step 

sizes. Large amplitude signals are quantized with large step size. 

Quantisation noise and the bit rate required for digitizing an analog signal can be reduced further 

by examining their frequency content and allocating the no. of bits per sample depending upon their 

importance. For example, the energy in the speech signal is concentrated more in the low frequency 

region of (0–1 kHz) and is of decreasing concentration as the frequency is increased. Hence, more 

number of bits may be allocated in frequency bands where there is more energy concentration and 

less number of bits may be allocated where there is less concentration. This technique is called as 

the subband coding. The fi rst step required for subband coding is to separate the incoming signal into 

separate bands using low pass, band pass and high pass fi lters. This may be done in the digital domain; 

i.e., the analog signal may fi rst be sampled and quantized without any regard to the frequency. The 

resulting digital signal may then be passed through the digital fi lters to separate the different band of 

frequencies. The individual band of frequencies may be individually processed further. However they 

need not be processed at the rate at which the analog signal was sampled. This can be be verifi ed using 

the sampling theorem for the bandpass signal.

1.19.4 Sampling Theorem for Bandpass Signals and its Application

Bandpass Sampling Theorem A band pass signal can be faithfully reproduced from its samples if it 

is sampled at the rate fs = 2(f1–f2) = 2B if either f1 or f2 is a harmonic of 2B. Here, f1 and f2 denote the 

lowest and highest frequency components of the signal respectively. B denotes the bandwidth. If neither 

f1 nor f2 is a harmonic of 2B, then fs is chosen to be greater than 2B such that this condition is satisfi ed. 

In general, the range of fs required for a bandpass signal is 2B £ fs £ 4B

In the above subband encoder, if one of the subband is of bandwidth 0.5 kHz, it need not be sampled 

at 8 kilosamples/s(KSPS) for further processing but a sampling rate of 1KSPS may be just adequate. In 

practice, one may choose 2 KSPS as the sampling rate. When the voice signal is sampled at 8 KSPS rate, 

at the output of the fi lter corresponding to a sub band, the samples depart at 8 KSPS rate, but all of these 

samples are not required for processing. In the above case only 1/4th of the samples may be retained and 

the rest of them may be discarded. This is achieved using a down sampler. 

At the receiver, the decoder has to combine the outputs from the individual sub bands and deliver a 

single contiguous band. Even though the individual bands generate samples at a rate lower than 8 KSPS 

the signal has to be delivered at the 8 KSPS rate to the play out device. This is achieved by sampling the 
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output of the sub band at a rate higher than the rate at which the sample arrive at its input. This is achieved 

by inserting zeros between the actual sample values. This process is achieved by the upsampler. 

1.19.5 Block Diagram of a Subband Processing System and Filter Banks

The block diagram of a subband processing system which processes M subbands individually using 

decimation by M and then upsampling by M is shown in Fig. 1.17. The fi lters H1(k), H2(k) … HM(k) 

denote the fi lters used for separating the M bands and are called as analysis fi lter banks. When the 

bandwidth of each of the fi lter band is the same, each of them can be decimated by a factor of M or 

lower without causing aliasing. In this case the fi lter banks are called as the decimated fi lter banks. If the 

decimation factor is M, then they are called as maximally decimated fi lter banks and they result in the 

maximum computational effi ciency. The fi lters G1(k), G2(k), … GM(k) are called as the synthesis fi lter 

banks. The analysis and synthesis fi lter banks shown in Fig. 1.18 require narrow bandpass fi lters. The 

design of the analysis fi lter banks can be simplifi ed by using the tree structure given in Fig. 1.18. The 

corresponding tree structure for the synthesis fi lter bank is shown in Fig. 1.19. These structures use only 

the low pass and high pass fi lters. The cutoff frequency of the low pass fi lter is increased as the tree is 

traversed towards the right. In Fig. 1.18 H0(k), H1(k) denote the transfer function of the low pass, high 

pass fi lter respectively and it can be verifi ed that
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 Fig. 1.17 A subband processor with fi lter banks  Fig. 1.18 Tree structured analysis fi lter bank

H0(k) = H1(–z) (1.51)

The two channel fi lter bank which satisfi es(1.51) is 

referred to as a quadrature mirror fi lter bank (QMF). 

The tree structure is obtained by splitting every 

branch into two. However it may not always be 

required to split each branch into two for subband 

processing. For eg. in the subband coding scheme 

proposed by Crochiere[1983], the analog speech 

signal is sampled at 8 KSPS and split into 4 bands 

as shown in Fig. 1.19(a). Each of these bands has a 

bandwidth of 1 kHz. Next the band 0–1 kHz is split 

into 2 bands and a pruned tree with 5 bands: 0–0.5, 

0.5–1, 1–2, 2–3 and 3–4 kHz is shown in Fig. 1.19(a) 
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Fig. 1.19 Tree structured synthesis fi lter bank
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and coded individually. Quantization of the fi rst two bands with 5 bits/sample, the next two bands with 

4 bits/sample and the last band with 3 bits/sample gives a bit rate of 32 kbps. Quantization of the fi rst 

two bands with 4 bits/sample, the next two bands with 2 bits/sample and the last band with 0 bits/sample 

gives a bit rate of 16 kbps. With the 8 KSPS sampling 8 bits/samples, the bit rate required is 64 kbps. 

Hence the decimation/interpolation has facilitated the data compression by a factor of 2–4.
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Fig. 1.19(a) Subband encoder 

1.19.6 Reuse of Digital Filters for Different Subbands 

One of the important characteristics of digital fi lters is that the cut off frequency of the fi lter cannot 

be uniquely determined from the fi lter architectural diagram and the impulse response response 

coeffi cients. For example, the cut off frequency of the M tap FIR fi lter shown in Fig. 1.4 cannot be 

uniquely determined if the impulse response coeffi cients h0, h1, …hM–1 are specifi ed. This is because, 
cut off frequency normalized by the sampling rate is used for the design of digital fi lter. Hence, a low 

pass fi lter with cut off frequency of 0.2p radians has the cut off frequency of 1 kHz if the sampling rate 

is 10 KSPS. The same fi lter has the cut off frequency of 10 kHz if the sampling rate is 100 KSPS. Hence, 

the same fi lter may have different pass band characteristics depending upon the rate at which inputs 

arrive and the registers (delay units in the fi lter) are clocked. 

In Fig 1.19(a), the normalized cut off frequencies of H0(z), H00(z) and H000(z) are the same (0.5p). 

Hence, a single low pass fi lter with pass band 0 – 0.5p radians may be time shared or reused for all the 

three bands. Similarly, H1(z), H01(z) and H001(z) have the same normalized cut off frequency and have 

pass bands 0.5p – p. Hence, a single fi lter may be time shared or reused for all the three bands.

Highest frequency band up to which a fi lter works satisfactorily depends on the fi lter architecture. 

The maximum sampling rate is determined by (1.28a) – (1.28c) depending on the fi lter type used. 

1.19.7 Polyphase Filters

Another application of multirate signal processing is design of polyphase fi lter structures for speeding 

up the computation. Consider a LTI fi lter with N fi lter coeffi cients whose output is given by 

1

0

( ) ( ) ( )
N

K

y n x n k h k
-

=
= -Â  (1.52)
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where y(n), x(n) and h(n) are the nth sample of output, input and the impulse response of the LTI causal 

discrete time system and x(n) and h(n) are assumed to be 0 for N < 0.

Let us fi nd y(n) for n= 70 and 71 for N =6. Using (1.52) we get

y(70) = x(70)h(0) + x(68)h(2) + x(66)h(4) + x(69)h(1) + x(67)h(3) + x(65)h(5) 

y(71) = x(71)h(0) + x(69)h(2) + x(67)h(4) + x(70)h(1) + x(68)h(3) + x(66)h(5) 

Hence (1.52) can be rewritten as 

/2 1 /2 1

0 0

( ) ( 2 ) (2 ) ( 2 1) (2 1)
N N

m m

y n x n m h m x n m h m
- -

= =
= - + - + +Â Â  (1.53)

Hence, y(n) can be obtained using two subfi lters H0(z2), H1(z2) as 

shown in Fig. 1.20. Internal architecture of these fi lters are shown in 

Fig. 1.20a and Fig.1.20b respectively. The fi rst fi lter contains only 

the even indexed impulse response coeffi cients (h(0), h(2), h(4)). 

The second fi lter contains only the odd indexed impulse response 

coeffi cients. (h(1), h(3), h(5)). When N is even, the 1st fi lter processes 

the even samples and the 2nd fi lter processes the odd samples. The 

reverse happens when N is odd. Since each of them have N/2 taps 

and their computational complexity is reduced by a factor of two. In 

other words, the sub fi lters need to perform only N/2 multiplications 

and N/2 – 1 additions within each sampling interval instead of 

N multiplications and N–1 additions. When the sub fi lters are implemented in hardware, reduced 

computational complexity implies that slower and cheaper multipliers and adders can be used for the 

implementation. This technique can be extended further. Using M–1 delay units and M sub fi lters, the 

computational complexity of the individual fi lters can be reduced by a factor of M. The M individual 

fi lters are called as the polyphase fi lters.

  

 Fig. 1.20(a) Subfi lter with system function H0(z
2) Fig. 1.20(b) Subfi lter with system function H1(z

2)

1.19.8 Sampling Rate Conversion

Another application of multirate signal processing is the conversion of an analog signal digitized at 

one sampling rate to another digital signal which is stored and retrieved at another sampling rate. For 

example CD quality voice is sampled, digitized and stored in the CD at the rate of 44.1 K samples/

sec. When this signal is to be stored/read in/from a digital audio Tape (DAT), the samples have to be 

processed at the rate of 48 K samples/s. Hence for this application sampling rate conversion 44.1 /48 K 

samples is required. This is achieved by choosing an interpolator with a factor of 160 and a decimator 

with decimation factor of 147 as shown in Fig. 1.21. In Fig. 1.21, M=160 and N =147. Similar technique 

Fig. 1.20 Linear fi ltering with

2 polyphase fi lters
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can be adopted for playing out a video signal digitized at one sampling rate on a system where the 

sampling rate is different. 

Fig. 1.21 Sampling rate conversion for CD to DAT data

1.19.9 Cascade Equivalence   

In many multirate systems such as the subband encoder discussed in Section 1.19.6, fi lters and decimators 

are used in cascade. Similarly,  interpolators and fi lters are used in cascade. Interpolator and decimator 

are used in cascade in sampling rate conversion systems. Cascade equivalences, also referred to as 

Noble identities, enable the order in which these operations are performed to be interchanged resulting 

in signifi cant reduction on the computational complexity.  

 1. When M and N are relatively prime, the order in which the interpolation and decimation are 

performed can be changed without any change  in the input output relationship. This is depicted 

in Fig. 1.22(a)

 2. A fi lter represented in polyphase form in cascade with  a decimator   can be replaced by a 

decimator and a polyphase fi lter in cascade as shown in Fig. 1.22(b). Similarly, an interpolator 

followed by a fi lter in  poly phase form has an equivalent cascade form as shown in Fig. 

1.22(c).

Fig. 1.22(a) Cascade equivalence for interpolators and decimators

Fig. 1.22(b)

Fig. 1.22(c) Cascade equivalence for fi lters and interpolators 

1.19.10 Effi cient Implementation of Filters Used with Decimators and Interpolators

In a number of applications such as the subband encoder and computation of discrete wavelet 

transform(DWT), decimators are used in cascade with low pass and high pass fi lters. Cascade equivalence 

discussed in the previous section can be used for the effi cient implementation of these fi lters. Let us 

consider the implementation of a fi lter H(z) with N taps using a poly phase fi lter with M phases. The kth 

sub fi lter has the transfer function Hk(z
M). H(z) can be expressed as 
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1 2( ) (0) (1) (2)k k k kH z h h z h z- -= + + +�
 (1.50b)

( ) ( )kh n h Mn k= +  (1.50c)

Polyphase fi lter in cascade with the decimator can be realized using two schemes shown in Fig. 

1.23(a). The second scheme is obtained by using the cascade equivalence discussed in the previous 

section. Let us assume that the sub fi lters have direct form I realization scheme. In the fi rst scheme, 

each of the sub fi lters receive a new input at an interval of Ts (sampling rate fs = 1/Ts) and each sub 

fi lter needs to perform one multiplication and (N/M) – 1 additions within this interval. In the second 

scheme, each of the sub fi lters receive a new input at an interval of MTs and each sub fi lter needs to 

perform one multiplication and (N/M) – 1 additions within this interval. Hence, scheme 2 requires 

multipliers and adders whose speeds are M times smaller. This not only reduces the cost but also the 

power dissipation.

Similarly, interpolators in cascade with low pass/high pass fi lters are used in synthesis section of sub 

band coders and in the computation of inverse DWT. The interpolator and the fi lter using poly phase 

form have two equivalent implementation schemes as shown in Fig. 1.23(b). Scheme 2 requires slower 

and cheaper hardware and hence is to be preferred. 

Fig. 1.23(a) Effi cient implementation of decimator fi lter

Fig. 1.23(b) Effi cient implementation of interpolator fi lter
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1.19.11 Realisation of Time Division Multiplexer, Frequency Division Multiplexer and
   Transmultiplexer Using Mutirate Signal Processing 

Fig. 1.24(a) shows the block diagram of a time division multiplexer. This is used in short haul com-

munication. In this case, each of the input is digitized using an A/D converter before multiplexing. Fig. 

1.24(b) gives the block diagram of the demultiplexer for the multiplexed data. For long haul commu-

nication, frequency division multiplexing is used. It may involve one or more analog exchanges. Fig. 

1.25(a) shows the block diagram Frequency division multiplexer realized using interpolators and a bank 

of synthesis fi lters. It converts TDM signal into FDM signal. Fig. 1.25(b) shows the block diagram of 

Frequency division demultiplexer realized using decimators and a bank of analysis fi lters. It converts 

the FDM signal into TDM signal. The TDM-FDM-TDM converter is called as transmultiplexer. It takes 

digitized signal such as voice from M users and send them as FDM signal. y(n) denotes the FDM out-

put. The D/A converter at the output of the FDM signal enables this signal to be processed by analog 

exchanges. The analog FDM signal originating from the analog exchange is digitized using the A/D 

before conversion to TDM signal.

  

 Fig. 1.24(a) Block diagram of a time division multiplexer Fig. 1.24(b) Block diagram of the TDM demultiplexer

  

 Fig. 1.25(a) Block diagram of TDM- FDM converter Fig.1.25(b) Block diagram of FDM- TDM converter

Let us consider the example of a transmultiplexer for M = 4, Fig. 1.26 shows the spectrum of four 

signals x0(n) – x3(n). Fig. 1.27 shows the spectrum at the output of the interpolators. By choosing 

the synthesis fi lter F0(z) – F3(z) to have equal bandwidth of p/2 and non overlapping passbands, the 

multiplexed output y(n) whose spectrum is given in Fig. 1.28 can be obtained. The output of the 

transmultiplexer xŸ0(n) – xŸ3(n) will be perfect reconstruction of x0(n) – x3(n) excepting for a delay by n0 

samples if the analysis fi lters H0(z) – H3(z) and synthesis fi lters F0(z) – F3(z) satisfy the condition
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Fk(z) G�(z) = dk� z
–n0 k = 0,1..3, � = 0,1 ... 3 (1.51a)

where dk� is the kronecker delta.
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Fig. 1.26 Spectrum of the input signals to be multiplexed

1.19.12 Implementation of Orthogonal Frequency Division Multiplexing (OFDM) System

A simplifi ed block diagram of an OFDM system is shown in Fig. 1.29. It uses M orthogonal carriers for 

transmitting M data streams. For this reason, it is called as discrete multitone transmission system.This 

differs from the conventional FDM in two aspects:

 1. In the conventional FDM, the signal to be multiplexed originate from M different users. Each 

user is allocated one channel or band of frequencies. In the case of OFDM, the data originating 

from a single user is split into M substreams, each substream data is sent over one of the M 

channels.

 2. In the conventional FDM, M distinct carriers which are amplitude modulated (single sideband 

modulation) by the signal from M users need not be harmonically related. M carriers used in the 

case of OFDM are integral multiple of a fundamental frequency 
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Fig. 1.28 FDM output

To understand the operation of the OFDM, let us consider 3 orthogonal carrier signals shown in 

Fig.1.30. They can be expressed as 

sk(t) = cos(kw0t)  where k =1,2,3 

By shifting these signals by 90° we can get 

sk(t) = sin(kw0t)

Using these two sets of signals, complex carrier signals can be obtained as follows: 

sk(t) = cos(kw0t) + j sin(kw0t) = e+jkw0t (1.51b)
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It may be verifi ed that 

0

0

( ) ( ) 0 for

T

k ls t s t dt k l= πÚ  (1.51c) 

where 0

0

2

T

p
w = . These three orthogonal carriers may 

be modulated by three message signals m1(t) – m3(t) 

individually and transmitted simultaneously by com-

bining the modulated outputs as follows

3

1
( ) ( ) ( )k kk

y t s t m t== Â  (1.51d)

At the receiver, the message signal can be recovered 

without cross talk by correlating the received signal 

with the carrier corresponding to the required message 

signal as follows:

0

0

( ) ( ) ( )

T

k km t y t s t dt= Ú  (1.51e)

In the discrete time implementation of OFDM, 

samples of M orthogonal carriers may be multiplied 

with M data streams, added and transmitted as shown 

in Fig. 1.29. In Fig. 1.29, sk(n) is given by 

( )k

n
s n s M k

M

Ê ˆÍ ˙= +Í ˙Á ˜Ë ¯Î ˚
 (1.51f)

However, OFDM output can be generated without 

using the multipliers and the samples of M orthogonal 

complex exponential carriers by using Inverse DFT. To understand this, let us compute y(n) for n = 0, 

1, M–1.

y(0) = s0(0) + s1(0) + s2(0) + … sM–1(0) (1.51g)

y(1) = s0(1) + s1(1) W –1
M + s2(1) W –2

M  + � M–1(1) (1.51h)

y(2) = s0(2) + s1(2) W –2
M + s2(2) W –4

M  + � sM–1(2)  (1.51l)

y(M–1) = s0(M–1) + s1(M–1)W –
M
(M–1) + s2(M–1) W –

M
2(M–1) … sM–1(M-1) W –

M
(M–1)

2

 (1.51m)

where 
2 k

j
k M

MW e

p-
=

Using (1.51f), it may be noted that

sk(0) = sk(1) = sk(2) … = sk(M–1) = s(k) for k = 0, 1, … M–1

Fig.1.29 Block diagram of an OFDM system using 

orthogonal carriers

Fig. 1.30 Orthogonal carriers used for OFDM
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Using this (1.51g–1.51m) can be written in the matrix form as follows: 

1 2 3 ( 1)

2 4 6 2

1

1       1            1             1           ...   1(0)

1                             ...  (1)

(2) 1                             ...  

  ...

( )

M
M M M M

M M M M

M

y

W W W Wy

y W W W W

y

- - - - -

- - - -

-

È ˘
Í ˙
Í ˙
Í ˙ =
Í ˙
Í ˙
Í ˙Î ˚ 2

( 1)

( 1) 2( 1) 3( 1) ( 1)

(0)

(1)

(2)

  ...          . .. 

( 1)1           ... 

M

M M M M
M M M M

s

s

s

s MW W W W

-

- - - - - - - -

È ˘ È ˘Í ˙ Í ˙Í ˙ Í ˙Í ˙ Í ˙Í ˙ Í ˙Í ˙ Í ˙Í ˙ Í ˙-Í ˙ Î ˚Î ˚

 (1.51n)

From (1.51n), it may be noted that y(0) – y(M–1) can be obtained by fi nding the inverse DFT of the 

sequence s(0)–s(M–1). The IDFT can be computed effi ciently using the FFT algorithm.When the input 

to the IDFT block is real, the IDFT coeffi cients become complex valued. This requires two channels for 

transmitting the real and imaginary components. In order to overcome this limitation, the input to the 

IDFT block is formed as follows:

Let ak(t), bk(t) for k = 1,2, … M–1 be two real valued data streams sampled at a rate of FT that are to 

be transmitted. A new set of complex data stream, ak(n) of length N = 2M is formed as follows:

0                                    0,

[ ] [ ]                1 1
2

[ ]
0                                    ,

2

[ ] [ ]           1 1
2

k k

k

N k N k

k

N
a n jb n k

n N
k

N
a n jb n k N

a

- -

=Ï
Ô
Ô + £ £ -
ÔÔ= Ì =Ô
Ô
Ô - + £ £ -ÔÓ

 (1.51o)

Applying the inverse DFT to the above set of N sequences, we get the sequence ul(n). 

1

0

1
[ ] [ ] ,           0,1,...., 1

N
k

k N
K

u n n W N
N

a
-

-

=
= = -Â �

�
�  (1.51p)
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pass
filter

z–1

z–1

a0( )n

a1( )n

aN–1( )n

N
-p
o
in
t
ID
F
T

U n0( )

u n1( )

u nN–1( ) x ta( )

Fig. 1.31 Block diagram of DMT transmitter using the IDFT block. 

The manner in which ak(n) is formed ensures that ul(n) is real valued. The N transform coeffi cients 

(ul(n)) may be converted to a serial stream using interpolators and delay elements and converted into 



An Overview of Digital Signal Processing and its Applications  37

analog signal using a D/A converter and a 

fi lter. The resulting analog signal xa(t) is 

transmitted over the channel. Fig. 1.31 shows 

the block diagram of the DMT transmitter 

using the above processes. 

Fig. 1.32 shows the block diagram of the 

DMT receiver. At the receiver, the received 

signal ya(t) is passed through an antialiasing 

fi lter and converted into digital data using a 

sample and hold circuit and an A/D converter. 

A sampling rate NFT is used for both A/D, 

D/A and S&H converters. The data stream 

is converted to parallel form using the decimator and delay elements. The resulting N parallel streams 

vk(n) are applied to the DFT block and the DFT coeffi cients bk(n) are generated using the equation: 

1

0

[ ] [ ] ,              0,1,.  . ., 1
N

k
k Nn n W k Nb u

-
-

=
= = -Â �

�

�

 (1.51q)

If we assume the frequency response of the channel to have fl at passband, A/D and D/A converters 

to be linear and assume the analog reconstruction and antialiasing fi lters to be ideal low pass fi lters, we 

can assume y[n] = x[n]. From the manner in which the interleaving and deinterleaving is performed in 

Fig. 1.31 and Fig. 1.32 respectively, the sequences at the receiver can be shown to be related to that of 

the transmitter as follows:

vk(n) = uk-1(n–1)  k = 1,2, ... N–2 (1.51r)

v0(n) = uN–1(n) (1.51s)

bk(n) = ak–1(n–1)  k = 1,2, ... N–2 (1.51t)

b0(n) = aN–1(n) (1.51u)

1.19.13 Applications of DMT

Digital Subscriber Loop (DSL) Modems The frequency response of the twisted pair used for car-

rying the signal from the telephone exchange to the subscriber premises is not fl at if a large frequency 

band is considered. 

Figure 1.33 shows the magnitude of the Frequency response of a band limited channel. If a high 

speed data is to be directly transmitted over the channel, a complex equalizer is required for perfect 

reconstruction. However, if the datastream is split into a number of substreams and DMT is used for 

transmission, then frequency band occupied by each of the subcarriers and sidebands after modulation 

by each substream occupies only a fraction of the entire 

bandwidth. If the subchannels are of smaller bandwidth as 

shown in Fig. 1.32, the frequency response can be assumed 

to be fl at within this band. In this case, the equalizer required 

becomes merely a gain adjustment scheme for each of the 

substream. Hence, the attenuation of the channel for each 

of the substream data can be found by sending a test data. 

By providing suffi cient amplifi cation, imperfections in the 

N
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N
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pass
filter
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z–1

b0( )n

bN–1( )n
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-p
o
in
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y n( ) v n0( )

v nN–1( )

x ta( )
S H/

v n1( ) b1( )n

Fig. 1.32 Block diagram of the DMT receiver

Fig. 1.33 Frequency response of a band 

limited channel
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channel can be compensated. Moreover, if the signal strength is low in some of the sub channels, data 

rate can be reduced in those sub channels and error control coding can be adopted to reduce the errors. 

DSL modems use DMT scheme. The data transmission rate required from an internet server to the client 

at customer premises is much higher compared to that required from the client to the server. For this 

reason, the modem used in the digital subscriber loop is called as asymmetric digital subscriber loop 

(ADSL) modem. The data transmitted from server to client is called as downstream data and the data 

rate is 24Mbps in ADSL2. The data transmitted in the reverse direction is called as upstream data and 

the data rate is 1.3 Mbps in ADSL2.

Modems for Wireless LANs The advantages of using MCM holds good for the wireless channel as 

well. In addition to this, it can also remove ambiguity due to multipath propagation. For example, if the 

data transmission rate is 50 Mbps, bit time is 20 ns. If the propagation delay between two paths is of the 

order of 20ns, at the receiver, both nth and (n+1)th bits will be received simultaneously through two paths 

and it may become diffi cult to demodulate the data. If the substream data rate is 1 Mbps, the difference 

in propagation delays will have negligible effect on the demodulation. The signal strength in the channel 

decreases with frequency and also with distance. In order to minimize the errors, error control coding 

may be used and in this case it is called as coded OFDM. 

DISCRETE WAVELET TRANSFORM  1.20

Our eyes and ears can resolve low frequency signals better than the high frequency signals. Hence, 

we require better frequency resolution at low frequencies. The high frequency signals are normally 

of shorter duration and hence we require better time resolution at high frequency. In order to analyze 

both high and low frequency components of a signal properly, we require multi resolution capability 

or ability to provide different resolutions at different frequency bands. STFT does not have the multi 

resolution capability. 

The continuous wavelet transform and discrete wavelet transform have multiresolution property and 

are extensively used for the analysis and classifi cation of signals. 

The continuous wavelet transform of a function f(t) is defi ned as

( ( ), , ) ( )
t

WT f t s f t dt
s

t
t y

•

-•

-Ê ˆ= Á ˜Ë ¯Ú  (1.52a)

where 
t

s

t
y

-Ê ˆ
Á ˜Ë ¯  is called as a small wave or mother wavelet. t and s are called as the translation and 

scaling parameter. Examples of typical wavelets used for analysis are shown in Fig. 1.34. Since wavelet 

is of fi nite duration, the parameter t determines the time interval overwhich the mother wavelet is 

nonzero. The parameter s determines the width of the interval over which the wavelet is non zero. The 

discrete time version of CWT is called as the discrete wavelet transform. Every mother wavelet does not 

have a DWT representation. For a CWT to have a DWT, it should be realizable using a two channel fi lter 

bank as shown in Fig. 1.35 . Another equivalent condition for the existence of DWT is to test whether 

the scaling equation given by

( ) ( ) (2 )
n

t g n t nf f= -Â  (1.52b)

exists, where the actual wavelet is computed with 
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Fig. 1.34 Some mother wavelets

( ) ( ) (2 )
n

t h n t ny f= -Â  (1.52c)

Here, g(n) is a low pass fi lter and h(n) is a high pass fi lter. In Fig.1.34a, 

the decimated outputs of low pass and high pass fi lters are denoted as l 

and g and are called as scaling coeffi cient and wavelet coeffi cient. 

1.20.1 Discrete Wavelet Analysis of Signals Using Filter Banks

In discrete wavelet analysis, a signal is represented using a set of basis functions called as the wavelets. 

These basis functions are obtained by shifting and dilating(scaling) the mother wavelet sequence h(n). 

If a signal x(k) is represented using m basis functions given by

hi(2
i+1 n – k) for ( 0 £ i £ m–1, –μ < k < μ )

the 1 dimensional discrete wavelet transform (DWT) is defi ned as 

    1( ) ( ) (2 )  for 0 2i
i iy n x k h n k i m

•
+

-•
= - £ £ -Â  (1.52d)

1
1 1( ) ( ) (2 ) for 1m

m my n x k h n k i m
•

-
- -

-•
= - = -Â  (1.52e)

yi(n) are called as the wavelet coeffi cients. The inverse discrete wavelet transform is computed by the 

expression

x n( )

H z( )

G z( )

2

2

g

l

Fig. 1.35 Filter bank for the 

computation of 1 D DWT
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 (1.52f)

where fi (n – 2i+1k) are designed such that (1.52f ) perfectly reconstructs the original signal x(n). It may 

be noted that the computation of the DWT and IDWT coeffi cients are similar to convolution operations. 

They can be calculated recursively as a series of convolutions and decimations using fi lter banks 

considered in section 1.19.6. 

For e.g., let us consider the computation of the DWT for m = 4 

using fi lter banks. The wavelet coeffi cients are given by

( )0 0( ) ( ) 2y n x k h n k
•

-•
= -Â  (1.52g)

( ) ( ) ( )1 1 4y n x k h n k
•

-•
= -Â  (1.52h)

( ) ( ) ( )2 2 8y n x k h n k
•

-•
= -Â  (1.52i)

( ) ( ) ( )3 3 8y n x k h n k
•

-•
= -Â  (1.52j)

They can be computed using the analysis fi lter banks with the 

decimators given in Fig.1.36.
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 Fig. 1.37 Synthesis fi lter bank for Inverse DWT Fig. 1.38 Octave band fi lter bank for DWT

The signal x(n) can be reconstructed by computing the inverse DWT using the interpolators and 

synthesis fi lter bank as shown in Fig.1.37. Discrete wavelet transform processes M samples at a time and 

generates M transform coeffi cients. When M is chosen to be of the form M = 2m the wavelet coeffi cients 

can be computed using the tree structured fi lter bank shown in Fig. 1.38. The tree has m nodes or level 

at which a low pass fi lter and a high pass fi lter is used. As the tree is traversed from the root towards the 

child nodes, the cut off frequency of the low pass fi lter decreases. However, the tree structure for the 

computation of DWT differs from that given in Fig.1.18. In this case in the tree the branch corresponding 

to the output of the low pass fi lter alone is split into branches; the high pass output is not split further. 
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Fig. 1.36 Analysis fi lter banks for 

discrete wavelet transform
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Such a special kind of pruned – tree fi lter bank is called as the octave band fi lter bank. The resulting tree 

structure for 3 level 1D DWT (i.e., m = 3) is shown in Fig.1.38.

1.20.2 DWT for Two Dimensional Signals

The wavelet theory can be extended for the analysis of 2 dimensional signals and can be used for the 

compression of 2D signals such as image data. Fig.1.39 shows the fi lter bank used for the computation 

of one level 2D DWT. In this fi gure, the image matrix is converted into a vector and the resulting input 

samples x(n) are passed through the 2 stages of analysis fi lters. In the fi rst stage it is passed through 

the low pass and high pass horizontal fi lters (h(n) and g(n)) and are sub sampled by two. In the second 

stage, the output of these two fi lters are processed by low pass and high pass vertical fi lters. Because 

of the decimation by a factor of 2 at the output of both horizontal and vertical fi lters, if an image 

matrix of size 512X512 is fed as input to the one level 2D DWT, all the four sub bands (LL1, LH1, 

HL1, HH1) contain 256X256 transform coeffi cients. In the 2 level 2D DWT, LL1 component alone is 

passed through horizontal and vertical fi lters. In the 3 Level DWT, LL2 component is passed through 

horizontal and vertical fi lters. The size of the various sub bands corresponding to 3 level DWT is shown 

in Fig.1.40. For image processing applications, wavelet transform is increasingly used. They have a 

number of advantages over the other transforms. One of the advantages is that a subset of the transform 

coeffi cients represents a coarse form of the image and can be displayed without computing the inverse 

transform. This has an attractive application in Progressive Image transmission (PIT) scheme used for 

Internet applications. It has proved its effi ciency in many other fi elds ranging from general-purpose 

multimedia to medical imaging. As a consequence, it is a part of the JPEG 2000 standard for still image 

coding.
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 Fig. 1.39 Block diagram of one level 2D DWT Fig. 1.40 Subbands corresponding to 3 level 2D DWT

1.20.3 Condition for Perfect Reconstruction of Signals Using 2 Channel Filter Banks

Two channel analysis and synthesis fi lters banks are cascaded in applications such as computation of 

wavelet transform and reconstruction of the signal from the wavelet coeffi cients. Such a fi lter bank along 

with decimator and interpolator is shown in Fig.1.41. The fi lters at the analysis section and synthesis 

section may be chosen to satisfy the QMF property. The z transform of the output sequence y(n) can be 

obtained from the z transform of the input sequence x(n) as follows:

Let v0[n] and v1[n] denote the outputs of the analysis fi lters. u0[n] and u1[n] denote the outputs of the 

analysis fi lters after decimation by 2. v
Ÿ

0[n] and v
Ÿ

1[n] denote the outputs of the interpolators. Hk(z) and 

Gk(z) denote the transfer function of the analysis and synthesis fi lters respectively (k takes the values 0 

and 1 corresponding to the two fi lters in the fi lter bank). The z transform of the outputs of the analysis 

fi lter (Vk(z)) can be written as 
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Fig. 1.41 Two channel fi lter bank with decimator and interpolator

Vk(z) = Hk(z)X(z)  (1.53)

Using (1.47o) and (1.48) respectively, the outputs of the decimators (Uk(z)) and the z transforms of 

the outputs of the interpolators (V
Ÿ

k(z) can be written as.

{ } { }1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
k k k k kV z V z V z H z X z H z X z

Ÿ È ˘= + - = + - -Í ˙Î ˚
 (1.54a)

(V
Ÿ

k(z) = Uk(z)2 (1.54b)

The z transform of the fi nal output (Y(z)) obtained by combining the outputs of the synthesis fi lter is 

given by 

10 0 1( ) ( ) ( ) ( ) ( )Y z G z V z G z V z
Ÿ Ÿ

= +  (1.55)

{ } { }0 0 1 1 0 0 1 1

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
Y z H z G z H z G z X z H z G z H z G z X z= + + - + - -  (1.56)

The second term in (1.56) is the aliasing component due to sampling rate conversion. It can be made 

zero by properly choosing transfer function of the analysis and synthesis fi lter bank. One of the choices 

is 

H1(z) = H0(–z)

G0(z) = H1 (–z)  G1(z) = –H0 (–z)

1.20.4 Effi cient Implementation of 2 Channel Filter Banks

Two channel fi lter bank shown in Fig. 1.35 and Fig. 1.39 may be effi ciently implemented using poly 

phase structure with 2 phases and using cascade equivalence. A more effi cient implementation scheme 

for wavelet transform is proposed by Swelden [1998] and is referred to as the lifting scheme. This uses 

a polyphase structure for the analysis fi lter and uses a transformation which permits the use of integer 

wavelet and scaling coeffi cients instead of fl oating-point coeffi cients. The lifting scheme requires less 

hardware complexity and memory.

For obtaining the lifting scheme, fi rst express the low pass fi lter G(z) and high pass fi lter H(z) in 

polyphase form with two phases as follows:

G(z) = G0(z2) + z–1G1(z2) (1.57a)

H(z) = H0(z2) + z–1H1(z2) (1.57b)

The l(z) and g (z), the transform of scaling coeffi cients and wavelet coeffi cients can be written as 
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l(z) = G0(z2)X0(z2) + z–1G1(z2)X1(z2) (1.57c)

g (z) = H0(z2) X0(z2) + z–1H1(z2) X1(z2) (1.57d)

where X0(z2), X1(z2) denote the z transform of the even indexed and odd indexed input samples 

respectively. (1.57a) and (1.57b) can be written in the matrix form as follows

2 1 2 2
0 1 0

2 1 2 2
0 1 1

( )  ( ) ( )( )

( ) ( )  ( ) ( )
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= Í ˙ Í ˙Í ˙

Í ˙ Í ˙Î ˚ Î ˚Î ˚
 (1.57e)
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 (1.57f)

P(z) is called as the polyphase matrix. It is factored into the following form to obtain the lifting 

structure:
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ii

K

K

G z G z s z
P z

t zH z H z
 (1.57g)

The resulting fi lter structure is shown in Fig.1.42. The advantage of this structure is that the low pass 

and high pass fi lter outputs are computed using a number of sub fi lters of smaller length. This can result 

in upto 50% reduction in the number of multiplications.

Fig. 1.42 Computation of 1 level 1D DWT using lifting scheme

ADAPTIVE FILTERS 1.21

As mentioned in Section 1.3, inverse fi lters and equalizers are used in a numbers of applications. The 

impulse response coeffi cients of these fi lters may have to be varied with respect to time as the original 

degradation mechanism itself may vary w.r.t time. For example, the charactersitics of the channel 

through which the signal is transmitted and reaches the receiver may change with time. A fi lter in which 

the fi lter coeffi cients are adapted to ensure that the desired signal is obtained as faithfully as possible is 

called an adaptive fi lter. If d(n) is the desired signal and y(n) is the output of the fi lter, the error e(n) at 

the output of the fi lter at the nth sampling instant is given by 

e(n) = d(n) – y(n) 

One of the methods used for choosing the fi lter coeffi cients of the adaptive fi lter is to choose the 

coeffi cients so as to minimise the mean square error E[e2(n)]; e(n) is a random variable which can take 

any value between –2N–1 to 2N–1 where N is the no. of bits used for representing a no. in the fi lter. Knowing 

the probability distribution of d(n) and y( ) , the mean square error (MSE) can be computed. One of 

the popularly used technique for adaptive fi lter uses the FIR structure given in Fig. 1.43 and is called 
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as the Wiener fi lter. The fi lter coeffi cients 

are adapted so as to minimize the MSE. 

If h(i)
n denotes the nth fi lter coeffi cient at 

the ith iteration, then its value at the (i+1)th 

iteration h(i+1)
n is given by 

h(i+1)
n = h(i)

n + e(n)ax(n) (1.58)

the value of a should be chosen to be in 

the range 

0 < a £ [1/ (N E(x2(n))]

where x(n) is the input to the adaptive fi lter and E(x2(n)) denotes the average input signal power. The 

algorithm used above for the adaptation is called as the least mean square algorithm (LMS). 

In addition to the adative equalizers and inverse fi lters which may require adaptive fi lters, the adaptive 

fi lters are used in a number of applications. For example an application may require the ambient noise 

present to be cancelled in preference to the signal. This for example, could be used in an audio system 

used in an automobile. Since the background noise depends on the objects present, the noise generated 

would also change with time. The LMS algorithm can be used to adjust the fi lter coeffi cients to reduce 

the interference. The noise can be modelled as autoregressive or autoregressive moving average process. 

They are equivalent to outputs of FIR and IIR fi lters respectively. 

IMAGE DATA COMPRESSION  1.22

1. 22.1 Discrete Cosine Transform and JPEG Standard

One of the popular methods used for compression of image data is using a combination of sample 

domain and transform domain techniques. An image may be considered to be consisting of a large 

number of picture elements called as pixels. The image intensity corresponding to each of these pixels 

is digitized and processed further for either storage or transmission to another point. The no. of pixels 

which constitutes an image depends on the image resolution used. One of the standards used is to assume 

the image to have 512 ¥ 512 pixels/ frame. On the other hand the VGA standard assumes a resolution 

of 640 ¥ 480 pixels/frame. Real time transmission of images requires 25 frames to be transmitted/sec. 

For monochrome images with a resolution of 512X512 this requires a transmission rate of about 50 

Mbps assuming 8 bit accuracy/pixel. For colour images, the transmission rate becomes 150 Mbps. This 

calls for a large bandwidth and hence, the image data has to be compressed for transmitting it using a 

moderate BW. For compression of images two commonly used standards are the Joint Photographic 

Expert Group (JPEG) and Motion Picture Experts Group (MPEG). JPEG is used for still images and 

MPEG is used for moving images. They both make use of discrete cosine transform for image data 

compression.

An orthogonal transform is said to be effi cient if it is able to pack the energy in the signal in the form 

of a set of samples in the fi rst few transform coeffi cients. This is useful for image transmission as well 

as storage as only less no. of coeffi cients need to be considered compared to the original signal. For 

the image data which can be approximated by a fi rst order Markov process to a good accuracy, DCT is 

an effi cient transform. X(k), the kth transform coeffi cient of 1 Dimensional DCT of a sequence x(n) of 

length M is given by 

Fig. 1.43 Adaptive FIR fi lter
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Similarly x(n), the nth data in the sampled sequence, can be expressed in terms of the DCT coeffi cients 

as follows:
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where a(k) is 1/÷2 if k = 0 and is 1 if k π 0

The M point DCT and IDCT can be computed using 2M point DFT of a sequence y(n) obtained as 

follows:

y(n) = x(n) for 0 £ n < M

       = x(2M – n – 1) for M £ n < 2M (1.59c)

Let the kth DFT coeffi cient of y(n) be Y(k). The DCT coeffi cient X(k) is given by 

X(k) = a(k)Y(k) e –j (kp/2M) for 0 £ k < M (1.60)

     = 0 otherwise

The M point IDCT of the transform coeffi cients X(k) may be obtained by computing the Inverse DFT 

of the 2M DFT coeffi cients Y(k) given by

Y(k) = X(k) for 0 £ k < M

   = 0 for k = M (1.61)

    = – X(2M–1–k) for M+1 £ k < 2M

If y(n) denotes the inverse DFT coeffi cients of Y(k), then x(n) is obtained from y(n) as follows:

x(n) = y(n) for 0 ≤ n < M (1.62)

Since DFT can be computed using FFT, the computational complexity for DCT and IDCT are of the 

order of M log2 2M.

Image data is normally an M¥N 2D array. This may be converted to an 1 D array and the 1 D DCT 

may be computed for data compression. Alternately, X(k, l), the MN 2D DCT coeffi cients of the 2 D 

image data array x(m,n) may be computed using the 2D DCT equation given by 

1 1

0 0
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m n
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M N

p p
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The 2D image data array elements x(m,n) can be obtained from the 2D DCT coeffi cients X(k, l) using 

the inverse DCT and are given by

1 1

0 0

(2 1) (2 1)
( , ) ( , ) ( , )cos cos

2 2

M N

K l

m k n l
x m n X k l k l

M N

p p
a

- -

= =

+ += Â Â  (1.64)

where a(k, l) = 1/√2 if k = 0 and l = 0 (1.65) 

         = 1 k π 0 and l π 0

To reduce the computational and storage requirements, the MXN image data array is split into square 

blocks of size L¥L where (L < N).
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DCT for each of these square blocks may be computed either using the 2D DCT or using 1D DCT. 

This also permits the computation of DCT using a no. of processors simultaneously. DCT coeffi cients 

may be truncated to be zero when their value is below a threshold for data compression. For this purpose 

either threshold coding or zonal coding may be used. See Jain [1995 ]. for more details. 

Further, the DCT coeffi cients matrix becomes almost like an upper triangular matrix with almost 

identical elements along the off diagonals. This property is used to achieve further data compression 

using run length encoding. In this scheme, a sequence of data which has identical value is encoded into 

two n bit numbers where the fi rst number denotes the frequency of repetition of the number and the 

second number denotes the actual value of the number. 

Fig. 1.44 Block diagram of the JPEG coding scheme

Block diagram of the JPEG coding scheme is shown in Fig. 1.44. Let the image resolution be 640 ¥ 
480 pixels. The function performed by each of the blocks is as follows:

Block Preparation The given colour image matrix of size 640 ¥ 480 is split into 3 matrices one into 

4800 luminance (Y) matrices each of size 8 ¥ 8, and the remaining into two 1200 matrices each of size 

8 ¥ 8. They are called as the in phase (I) and Quadrature (Q) matrices. The Red, Green, Blue (RGB) 

components are mapped into Y, I, Q components using the equation given in (1.66).

 Y = 0.30R + 0.59G + 0.11B (1.66)

 I = 0.60R – 0.28G – 0.32B

 Q = 0.21R – 0.52G + 0.31B

This is done in order to achieve data compression. Our eye has poor resolution to colour (chrominance) 

information compared the intensity (Y) information. Hence the full image matrix is mapped into Y 

matrix. However the I and Q matrices representing the chrominance information is obtained by reducing 

the image matrix size by a factor of 2 along the X and Y coordinates.

Discrete Cosine Transform and Quantization DCT is computed for each of the 8 ¥ 8 matrices 

corresponding to the Y, I and Q components. The DCT has very good energy compaction. Hence in the 

DCT coeffi cients of an 8 ¥ 8 matrix, only the elements corresponding to the left hand top corner has 

signifi cant values as shown in Fig. 1.45. The higher order coeffi cients along the rows and column cor-

respond to high frequency components and they need to be reproduced with only less no. of levels. This 

is because our eye has a poor high frequency response. Different coeffi cients are allocated different no. 

of bits based on their importance. One such allocation scheme is shown in Fig. 1.46. 

Using this allocation scheme, the image matrix coeffi cients are modifi ed as shown in Fig. 1.47. 

For coding this image either the zonal coding or the threshold coding can be employed. The number 

of bits required for transmission is reduced further by encoding only the difference in the amplitude 

corresponding to the DC component in the successive blocks along the vertical and horizontal direction. 

This corresponds to the top left corner element of the 8 ¥ 8 transform matrix. This is called as the 

differential quantization and is used only for the DC coeffi cients.
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90 50 24 16 16 32 0

102 86 46 20 8 16 0 0

62 48 36 16 16 16 0 0

24 20 16 12 24 32 0 0

16 16 16 0 0 0 0 0

16 16 32 32 0 0 0 0

32 32 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Fig. 1.45 DCT coeffi cients of a 8X8 matrix

8 8 7 6 5 4 3 2

8 8 7 6 5 4 3 2

7 7 7 6 5 4 3 2

6 6 6 6 5 4 3 2

5 5 5 5 5 4 3 2

4 4 4 4 4 4 3 2

3 3 3 3 3 3 3 2

2 2 2 2 2 2 3 2

Fig. 1.46 Quantization table for the DCT coeffi cients

160 90 25 6 2 1 1 0

102 86 23 5 1 1 0 0

31 24 18 4 2 1 0 0

6 5 4 3 3 2 0 0

2 2 2 0 0 0 0 0

1 1 2 2 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Fig. 1.47 Quantized DCT coeffi cients

Runlength Encoding The quantized matrix is converted in to a linear vector using the zig zag pattern. 

This helps to combine the 0s using run length encoding explained above.

Source Coding The resulting vector is further compressed using Huff man coding which allocates 

more number of bits for those amplitudes whose probability of occurrence is less and vice versa.

1.22.2 JPEG 2000 Standard

The JPEG2000 standard for still image compression uses wavelet transform. JPEG2000 is targeted 

for a no. of applications such as Internet , facsimile, Printing , Scanning, Digital photography, Remote 

Sensing, Medical imaging, E-commerce and Digital libraries. JPEG2000 is aimed at providing the 

following features: 
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Low Bit-rate Performance It should give acceptable quality below 0.25 bpp. Remote sensing and 

networking require this feature. 

Provision for both Lossless and Lossy Compression 

Progressive Transmission The standard allows progressive transmission which enables images to be 

reconstructed with increasing pixel accuracy and resolution depending upon the size of the fi le transmit-

ted. 

Region of Interest Coding It can preferentially allocate more bits to the regions of interest (ROIs) as 

compared to the non-ROI ones. For example, the area corresponding to the face may be allocated more 

bits than the rest of the body of a picture of a person. 

Comparison of the Performance of JPEG2000 and JPEG Compression Schemes

The codestream obtained after compression of an image with JPEG 2000 is scalable. It can be decoded 

in a number of ways: by truncating the codestream at any point, one may obtain a representation of 

the image at a lower resolution, or signal-to-noise ratio. By ordering the codestream in various ways, 

applications can achieve signifi cant performance increases. However, this is achieved at the cost of 

higher computational complexity. 

At compression ratios less than 25:1 or so, the JPEG performs better numerically than the wavelet 

coders. At compression ratios above 30:1, JPEG performance rapidly deteriorates, while wavelet coders 

degrade gracefully well beyond ratios of 100:1. 

The block diagram JPEG2000 encoder and decoder are shown in Fig. 1.48 and Fig. 1.49 respectively. 

A brief description of the various blocks of the encoder are as follows:

Fig. 1.48 Block diagram JPEG2000 encoder 

Fig. 1.49 Block diagram JPEG2000 decoder 

Tiling The input image is partioned into a number of non overlapping blocks if the image is large. 

Each of these blocks is called a tile. Tile size of 256 ¥ 256 or 512 ¥ 512 is chosen in order to simplify 

the VLSI implementation of the encoder. Smaller tiles create more boundary artifacts and degrade the 

compression effi ciency.

DC Level Shifting The pixels in the image are normally stored as unsigned integers. For mathemati-

cal computations, it is necessary to convert them into two’s complement form. The purpose of the DC 
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level shifting is to ensure that the input image samples have a dynamic range that is approximately 

centred around zero. 

Multi-component Transform This is effective in reducing the correlations amongst the multiple 

components in a multicomponent image. This increases the compression performance. For this purpose, 

images in the RGB color space are transformed to another color space, leading to three components that 

are handled separately. There are two possible choices:

Irreversible Color Transform (ICT) uses the well known YCBCR color space. It is called “irreversible” 

because it has to be implemented in fl oating or fi xed point and causes round-off errors. 

Reversible Color Transform (RCT) uses a modifi ed YUV color space that does not introduce 

quantization errors, so it is fully reversible. Proper implementation of the RCT requires that numbers 

are rounded as specifi ed that cannot be expressed exactly in matrix form. 

2D DWT

JPEG 2000 uses two types of wavelet transforms:

Irreversible This is implemented using a 9/7 Daubechies fi lter, whose analysis and synthesis fi lter 

coeffi cients are shown in Table 1.3

It is said to be “irreversible” because it introduces quantization noise that depends on the precision 

of the decoder. 

Reversible It uses the biorthogonal 5/3 Daubechies fi lter whose analysis and synthesis fi lter coeffi -

cients are shown in Table 1.4. It uses only integer coeffi cients, so the output does not require rounding 

(quantization) and so it does not introduce any quantization noise. It is used in lossless coding.

The wavelet transforms are implemented using either the lifting scheme or convolution.

Table 1.3 Daubechies 9/7 analysis and synthesis fi lter coeffi cients

Analysis Filter Coeffi cients 

i Low-pass fi lter g(i) High-pass fi lter h(i) 

0 0.6029490182363579 1.115087052456994 

1± –0.2668641184428723 0.5912717631142470 

2± –0.07822326652898785 –0.05754352622849957

3± 0.01686411844287495 –0.09127176311424948

4± 0.02674875741080976

Synthesis Filter Coeffi cients 

i Low-pass fi lter g(i) High-pass fi lter h(i) 

0 1.115087052456994 0.6029490182363579 

1± 0.5912717631142470 -0.2668641184428723 

2± -0.05754352622849957 -0.07822326652898785 

3± -0.09127176311424948 0.01686411844287495 

4± 0.02674875741080976
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Table 1.4 Daubechies 5/3 analysis and synthesis fi lter coeffi cients

Analysis Filter Coefi cients Synthesis Filter Coeffi cients

i Low-pass fi lter g(i) High-pass fi lter h(i) Low-pass fi lter g(i) High-pass fi lter h(i)

0 6/8 1 1 6/8 

1± 2/8 –1/2 1/2 –2/8 

Quantization After the wavelet transform, the coeffi cients are scalar-quantized to reduce the number 

of bits required to represent them, at the expense of a loss of quality. 

Entropy Coding A two step coding scheme (Tier 1 and Tier 2 coding) is adapted in JEPEG2000. In 

Tier 1 coding, Embedded block coding with optimized truncation (EBCOT) algorithm is used for com-

pressing the quantized transform coeffi cients. Each sub band LL,LH,HL,HH is partitioned into small 

code blocks of size 32 ¥ 32 or 64 ¥ 64 . The EBCOT algorithm generates a highly scalable bit stream 

for each code block Bi. The bit stream associated with Bi may be independently truncated to a predeter-

mined lengths depending upon the specifi ed distortion. Next a post compression rate distortion step is 

used to truncate the bit stream of each code block optimally so as to minimize the distortion subject to 

the bit rate contraint. Tier 2 coding is used to effi ciently represent the layer and block summary informa-

tion for each code block. 

LINEAR PREDICTIVE CODER AND SPEECH COMPRESSION  1.23

Another application of digital signal processing is the data compression of the speech signal using the 

linear predictive coder. For this purpose the human vocal tract is modelled as a linear time varying 

fi lter. The voiced sounds(for example vowels) are produced by exciting this fi lter with quasi periodic 

impulses. These impulses are called quasi periodic as periods of the impulses are not exactly equal 

and the amplitude of the impulses are not exactly equal. The unvoiced sounds (for example S, SH) are 

produced by exciting the above fi lter with white noise. The time varying fi lter is normally approximated 

by a linear time invariant fi lter over short time intervals. One of the common models used for the vocal 

tract is the linear predictive coder which is a LTI fi lter over a short term interval where the output at the 

nth sample y(n) is predicted based on the past p samples and is given by 

y(n) = a1y(n–1) + a2y(n–2) + � apy(n–p) + u(n) 

The error u(n) in turn may be obtained by exciting another linear LTI fi lter fed with another exciting 

signal. In the European standard for cellular telephone GSM 6.10, the output rate of the speech coder 

used is 13 kbps and the input to the coder is voice signal sampled at the rate of 8 Kilo samples with 

13 bits/samples. Hence the compression factor is 8. To achieve this, samples corresponding to every 

20 msec are used to compute the LPC model parameters and the model parameters corresponding to 

excitation signal including the LTI fi lter used if any for generating the excitation. Additional details on 

estimating the LPC model parameters may be obtained from Rabiner and Juang [1993].
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Review Questions 

1.1 Find the output y(n) of a linear shift invariant system 
with unit sample (impulse) response h(n) given by h(0) = 

3, h(1) = 2, h(2) = 1 and h(n) = 0 for all other value of n if it 
is fed with an input x(n) which is non zero for only for n = 
0 and 1. x(0) = 2 and x(1) =1.

1.2 Show that the output y(n) of a causal linear time 
invariant discrete time system for the input x(n) given by 
x(n) = ejwn is y(n) = x(n) H(ejw) where H(z) is the system 
(transfer) function of the LTI system.

1.3 Find the frequency response of the LSI causal 
system given by y(n) = x(n) + a y(n–1) for a < 1 and sketch 
the magnitude and the phase response of this system. 
Find also its impulse response. Show that the phase 
response of this system denoted as –H(ejw) is given by 
–H(ejw) = w – tan–1(sin w / (a – cos w))

1.4 Find the frequency response of the LSI causal 
system given by y(n) = x(n) + a y(n–2) for a < 1. Find also 
its impulse response.

1.5 The magnitude of the frequency response of the 
LSI causal system given by y(n) = x(n) – ax(n–1) + by 
(n–1) is independent of frequency and a π b. Find the 
relationship between a and b. Such a system is called as 
an all pass system. 

[Hint: Assume the magnitude of the numerator of the 
frequency response to be k times the magnitude of the 
denominator.]

1.6 Determine the impulse response coeffi cients of a 
digital low pass fi lter with [H(ej2pf Ts) = 1 for f < fc and is 0 

for fc < f < fs/2].

where fs = 1/ Ts is the sampling rate of the digital fi lter.

1.7 Determine the impulse response coeffi cients of a 
digital fi lter with H(ej2pfTs) given in Fig. 1.

-350 -250 -50 50 250 350 550 650

f ®

… 1 …

H ej fTs( 2 )p 

Fig. 1 Frequency response of the fi lter 

1.8 Determine the impulse response coeffi cients of a 
digital low pass fi lter with [H(ejw) = 1 for w < wc and is 0 
for wc < w < p

1.9 Determine the impulse response coeffi cients of a 
digital fi lter with H(ejw) given in Fig. 2

… 1 …

9p/4    -7p/4         -p/4      p/4            7p/4       9p/4        15p/4    17p/4
w ®

H e( )jw 

Fig. 2 Frequency response of the fi lter 

1.10 Sketch the frequency spectrum of f(t) = sin 2p(1250)
t. Determine the minimum sampling rate required to 
reconstruct the signal from its samples. What should be 
the cut off frequency of the reconstruction (smoothing) 
fi lter? If the signal is sampled is at the rate of 2000 
samples/s what would be the output of the smoothing 
fi lter .

1.11 Sketch the frequency spectrum of 

 f(t) = sin 2p(1000)t + sin 2p(1250)t

Determine the minimum sampling rate required to 
reconstruct the signal from its samples. What should be 
the cut off frequencies of the reconstruction (smoothing) 
fi lter? If the signal is sampled is at the rate of 2000 
samples/s what would be the output of the smoothing 
fi lter .

1.12 Let f(t) be sin2p(1000)t + sin2p(1250)t and y(t) = 
[f(t)]2. Determine the minimum sampling rate required 
to reconstruct y(t) from its samples. What should be the 
cut off frequencies of the reconstruction (smoothing) 
fi lter? 

1.13 A continuous time signal is to be fi ltered to remove 
frequency components in the range 10 kHz < f < 25 kHz. 
The maximum frequency component present in the 
signal is 50 kHz. If the signal is sampled at the Nyquist 
rate what range of digital frequencies should be rejected 
by the fi lter. Sketch the magnitude characteristics of the 
ideal digital fi lter required for this purpose.

1.14 Find the impulse response of a system whose 
system function is given by 
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- +1 1

2
( )

(1 0.5 )(1 0.5 )
X z

z z  

1.15 Find the impulse response of a system whose 
system function is given by 

-

- -
-

=
- -

2

1 1

(3 )
( )

(1 0.25 )(1 0.75 )

z
X z

z z
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1.16 The impulse response of a discrete time system is 
given by h(n) = a –n for 0 £ n £ 15 and 0 otherwise. Find 
the system function of this fi lter.

1.17 The impulse response of a discrete time system is 
given by h(n) = [ 1, 0.2, 0.04, 0.008, 0.0016, 0, 0, 0, …]. 
Find the system function of this fi lter.

1.18 For a sampling rate of 10KSPS and cutoff frequency 
of 1 kHz, a low pass fi lter requires 18 taps. Under what 
condition will the above fi lter work as a low pass fi lter 
with cut off frequency of 100 kHz? Using the same idea, 
the above fi lter was proposed to be used as a low pass 
fi lter with cut off frequency of 10 MHz. However the 
fi lter was found to be not satisfactory. What could be the 
reason? (Hint: critical path delay)

1.19 Sketch the frequency response of QMF. How are 
the impulse response of the two fi lters related?

1.20 The impulse response of a low pass fi lter is given 
by the sequence { 0.9, 0.6, 0.3, 0.1, 0.03, 0.008}. If a high 
pass fi lter is implemented as the QMF, fi nd its impulse 
response.

1.21 (a) Find the system function of the following LTI 
causal systems 

 (i) y1(n) = x1(n) + 0.25 x1(n–1) + 0.5 y1(n–1)

 (ii) y2(n) = x2(n) + 0.5 x2(n–1) + 0.75 y2(n–1)

(b) If x2(n) = y1(n), fi nd the system function of the LTI 
system whose input is x1(n) and the output is y2(n)

(c) If x1(n) = y2(n), fi nd the system function of the LTI 
system whose input is x2(n) and the output is y1(n)

(d) If the systems given in (a) are cascaded, fi nd the 
system  function of an equivalent LTI system.

(e) If the systems given in (a) are connected in parallel, 
fi nd the system function of an equivalent system.

1.22 Find the 3 point DFT of the sequence given by  
x(n) = 1 for n = 0,1,2 

1.23 Find the 8 point DFT of the sequence given by  x(n) 
= 1 for n = 0,1,2 and x(n) = 0 for n = 3, 4, … 7.

1.24 Find the 8 point DFT of the infi nite sequence 
given by a(n) = (0.5)n for n = 0, 1, 2, …. 

1.25 Find the 16 point DFT of the infi nite sequence 
given by h(n) = (0.25)n for n = 0, 1, 2, ….

1.26 Show that the computation of the DFT of a N point 
sequence is equivalent to a multiplication of matrix by a 
vector.  What is the (m,n)th element of this matrix.

1.27 It is required to design a low pass digital fi lter with 
cut off frequency of 0.5p.

(a). If the sampling period is 1 sec, what should be the 
cut off frequency of the corresponding analog fi lter if 

the digital fi lter is designed using (i) impulse invariant 
technique, and (ii) bilinear transform method. 

(b). If the sampling period is 0.1 msec, what should be 
the cut off frequency of the corresponding analog fi lter 
if the digital fi lter is designed using (i) impulse invariant 
technique (ii) bilinear transform method. 

1.28 It is required to design a low pass digital fi lter 
with cut off frequency of 0.5π. If the sampling period is 
0.01 msec, what should be the cut off frequency of the 
corresponding analog fi lter if the digital fi lter is designed 
using (i) impulse invariant technique (ii) Bilinear 
transform method. 

1.29 Determine the impulse response coeffi cients of a 
digital fi lter whose frequency response is given by 

 H(ejw) = 0 for |w| < .85p and is 1 for .85p < |w| < p

1.30 (a) Obtain the impulse response of the analog 
fi lter whose transfer function is given by

=
-
1

( )
0.5

H s
s

(b) If the sampling rate used is 1/T what is the impulse 
response of the equivalent digital fi lter obtained using 
the impulse invariant method.

(c) What is the transfer function of the equivalent digital 
IIR fi lter?

1.31 The transfer function of an analog fi lter is given by

=
-
1

( )H s
s a

(a) What is the transfer function of the equivalent digital 
IIR fi lter if bilinear transform is used to convert the 
analog fi lter to the equivalent digital fi lter? Assume the 
sampling rate to be 1/T.

(b) What is the impulse response of the equivalent digital 
IIR fi lter? 

1.32 Obtain the impulse response of the analog fi lter 
whose transfer function is given by

=
-

1
( )

0.75
H s

s

If the sampling rate used is 10000 samples/sec what 
is the impulse response of the equivalent digital fi lter 
obtained using the impulse invariant method.

1.33 Determine the impulse response coeffi cients of a 
digital FIR fi lter whose frequency response is given by 

 H(ejw) = 0 for |w| < .75p  and is 1 for .75p < |w| < p

using a fi lter of order 8 and windowing using Black man 
window given by
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 w(n) = 0.42– 0.5 cos (2pn/N–1) + 0.08cos(4pn/N–1) for 
0 £ n £ N–1 = 0 otherwise. 

1.34 A digital FIR fi lter of order 8 is to be designed 
using the frequency sampling method. The frequency 
response of the fi lter is given by 

 H(ejw) = 1 for |w| < .3p 

      = 0 for .3p < | w | < p

Determine the impulse response coeffi cients.

1.35 Show that the frequency response function 
H(ejw) of a linear phase fi lter with M (odd) taps and with 
impulse response h(n), n = 0, ... N–1 symmetrical about 
(N–1)/2 is given by 

w w w
-

- -

=
= Â

( 1)/2
( 1)/2

0

( ) ( )cos
N

j j N

n

H e e a n n

where a(0) = h[(N–1)/2] and a(n) = 2h[(N–1)/2 – n] for n 
= 1,.. (N–1)/2

1.36 Show that the frequency response function H(ejw) 
of a linear phase fi lter with M (even) taps and with 
impulse response h(n), n = 0, ... N–1 symmetrical about 
(N–1)/2 is given by

w w w- -

=
= -È ˘Î ˚Â

/2
( 1/2)

1

( ) ( )cos ( 1/ 2)
N

j j N

n

H e e b n n

where b(n) = 2h[N/2 – n] for n =1, ... N/2

1.37 Show that the frequency response function 
H(ejw) of a linear phase fi lter with M (odd) taps and with 
impulse response h(n), n = 0, ... N–1 anti symmetrical 
about (N–1)/2 is given by 

w w p w
-

- -

=
= Â

( 1)/2
( 1)/2 /2

1

( ) ( )sin( )
N

j j N j

n

H e e e c n n

where c(n) = 2h[(N–1)/2 – n] for n = 1, ... (N–1)/2 and 
h[(N–1)/2] = 0

1.38 Show that the frequency response function H(ejw) 
of a linear phase fi lter with M (even) taps and with 
impulse response h(n), n = 0, ... N–1 symmetrical about 
(N–1)/2 is given by 

w w p w- -

=
= -È ˘Î ˚Â

/2
( 1)/2 /2

1

( ) ( )sin ( 1/ 2
N

j j N j

n

H e e e d n n

where b(n) = 2h[N/2 – n] for n =1,... N/2

1.39 Realize the system given by the transfer function 

 X(z) = a0 + a1 z
 –1 + a2z –2 + a3z –3 + a4z –4

 in direct form I and direct form II.

1.40 Realize the system given by the transfer function 

- - - -

- - - -
+ + + +

=
+ + + +

1 2 3 4
0 1 2 3 4

1 2 3 4
1 2 3 4

( )
1

a a z a z a z a z
H z

b z b z b z b z

in (a) direct form I (b) the transpose of direct form I (c) 
canonic form

1.41 State and explain the three cascade equivalence 
relations for the multirate DSP systems using block 
diagrams. 

1.42 With a diagram, explain how a poly phase fi lter 
with three phases followed by decimator by a factor 
of three can be effi ciently implemented using noble 
identity. Compare the computational complexity with 
the direct implementation approach.   

1.43 Show how the computational complexity of an 
FIR fi lter of order 21 can be reduced by using 3 polyphase 
fi lters.

1.44 Find the output of the systems consisting of (i) 
a decimator by 3 followed by a interpolator by 3 (ii) an 
interpolator by 3 followed by a decimator by 3. If the 
sequence 0, 1,2,3,4,5, …. is fed to both of the systems, 
what will be the output of both of the systems?

1.45 Draw the block diagram of a sub band encoder for 
speech signal. Explain how it can be implemented using 
fi lter bank.

1.46 A multirate system is used to convert the sampling 
rate from 32 to 48 KSPs. Show how this system can be 
effi ciently implemented using noble identity.  

1.47 Derive the condition for the perfect reconstruction 
of 2 channel fi lter bank.

1.48 If transfer function of the high pass fi lter is
½(1– z–1), fi nd the T.F. of other fi lters at analysis and 
synthesis sides for perfect reconstruction of a 2 channel 
fi lter bank.

1.49 A low pass signal bandlimited to ±p/4 radians is 
decimated by a factor of 4. Sketch the magnitude of the 
frequency response at the output of the decimator. 

1.50 Derive the z transform of the output of decimator 
by a factor of M.

1.51 A 64 tap fi lter followed by decimation by 4 is 
effi ciently implemented using poly phase scheme and 
noble identity. The fi lters use multipliers and adders with 
computation time of 8ns, 2ns. Compare the maximum 
sampling rates of the original fi lter and the one using the 
polyphase structure and noble identity. Assume Direct 
Form I realization. 

1.52 A low pass signal bandlimited to ±p/3 radians is 
decimated by a factor of M. What is the maximum value 
of M for which the aliasing does not occur. Sketch the 
magnitude of the frequency response at the output of 
the decimator corresponding to this M. 
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1.53 An interpolator by 4 followed by 128 tap fi lter is 
effi ciently implemented using poly phase scheme and 
noble identity. The fi lters use multipliers and adders with 
computation time of 8ns, 2ns. Compare the maximum 
sampling rates of the original fi lter and the one using the 
polyphase structure and noble identity. Assume Direct 
Form II realization. 

1.54 Write the equation for the computation of short 
time Fourier transform (STFT). How is its frequency 
spectrum plotted? What are the limitations of STFT? 

1.55 Given STFT, how is the original function f(n) 
obtained?

1.56 What is meant by spectrogram? Give an example 
plot.

1.57 What is the limitation of STFT? How does the 
frequency resolution and time resolution vary with 
window size?

1.58 Explain how STFT can be found using DFT/FFT.

1.59 What is the relationship between R and N of STFT? 
(N > R) What do R and N denote?

1.60 The down stream data corresponding to ADSL 
modem is split into no. of sub streams (e.g., using serial to 
parallel converter) and each substream data modulates a 
separate carrier. How is this scheme superior compared 
to the case where the entire data stream modulates a 
single carrier?

1.61 Why is multicarrier modulation scheme preferred 
for wireless LAN?

1.62 Explain how the DFT techniques can be used for 
transmission of discrete multi tone modulated signals.

1.63 802.11a WLAN systems employ a 64 point 
transform with 52 of the subcarriers actually used for 
Carrying user data from 16-QAM alphabet. 16 symbol  
duration is used as guard time between adjacent block 
of data.The symbol rate used is 20 Msymbols/sec What 
is the bit rate corresponding to user data if (i) no error 
correction code is used (ii) A convolution code with  
coding effi ciency of 0.75 is used? 

1.64 State the three differences between conventional 
FDM scheme and OFDM.

1.65 What is meant by (i) coded OFDM (ii) Multirate 
OFDM? What are their applications?

1.66 Draw the block diagram of OFDM transmitter and 
OFDM receiver

1.67 State the relationship between the sequence at 
the output of IFFT block and input of FFT block used with 
the OFDM transmitter and receiver.

1.68 How is the input to the IFFT block formed from 
the input data stream?

1.69 Write the equation for continuous time wavelet 
transform. What is the condition to be satisfi ed for a 
mother wavelet to have DWT? 

1.70 What are the two advantages of DWT over DCT 
for image Data compression

1.71 State two differences between basis functions 
used for wavelet transform and Fourier series expan-
sion.

1.72 Draw the block diagram of 3 level ID DWT. Explain 
how a single LPF & HPF may be used at all levels. 

1.73 State the Heisenberg’s uncertainty principle w.r.t. 
time & freq. resolution. Which function meets the bound?

1.74 Sketch the waveforms of any three wavelets.

1.75 Show that the computation of wavelet transform 
is equivalent to analyzing a function using window 
functions of varying durations.

1.76 Explain why different mother wavelets are used 
for wavelet transform unlike the fourier series/FT? 

1.77 Write the equation for continuous time wavelet 
transform.

1.78 Does DWT exist corresponding to every CWT? 

1.79 Explain how scaling function is obtained from 
mother wavelet?

1.80 Explain how scaling function and wavelet function 
at one level is related to scaling function at another 
level 

1.81 Draw the block diagram of 1 level 2D DWT. 
Qualitatively explain how 2D DWT of an image of size 
512 x 512 is computed. What is the size of each of the 
transform coeff. matrices?

1.82 What are the two advantages of DWT over DCT 
for image Data compression? 

1.83 Show how a three level ID DWT consisting of 4 
subband outputs can be obtained using a fi lter bank 
consisting of 4 fi lters (Use Noble Identity). In the fi lters 
used which parameter is the same for all the fi lters?

1.84 Write the polyphase matrix for the fi lter bank with 
2 fi lters.

1.85 Explain the lifting scheme for the computation of 
1 D DWT.

1.86 What is meant by (i) lifting (ii) dual lifting blocks? 

1.87 What are the two steps which are repeatedly 
carried out to derive the lifting structure? What are the 
two advantages of lifting scheme over the conventional 
scheme?
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1.88 Show how Discrete cosine Transform (DCT) of 
an 8 point sequence can be computed using a 2N point 
FFT.

1.89 Show how the DCT coeffi cients of an eight point 
sequence can be computed using a bank of fi lters.

Self Test Questions 

1.1 y(n) denotes the output of a linear shift invariant 
system with unit sample (impulse) response h(n) given 
by h(0) = 3, h(1) = 2, h(2) = 1 and h(3) = 0.5. h(n) = 0 for 
all other value of n. This system is fed with an input x(n) 
which is non zero for only for n = 0, 1 and 2 with x(0) = 
2, x(1) = 1 x(2) = 0.5. The minimum value of n (n > 0) for 
which y(n) = 0 is 
(a) 8 (b) 7 (c) 6 (d) 5

1.2 Which of the following systems are causal?
(a) y(n) = x(n) + 0.25 x(n–1) + 0.5 x(n–2)
(b) y(n) = x(n) + 0.25 x(n–3) + 0.75 y(n–1)
(c) y(n) = x(n) + 0.5 x(n–1) + 0.5 y(n–1) + 0.8 y(n–2)
(d) y(n) = x(n+1) – 0.5 x(n–1) + 0.8 x(n–1)

1.3 The minimum sampling rate required to reconstruct 
the signal f(t) = sin 2pf(1000)t from its samples is ——— 
Hz.
(a) 500  (b) 1000
(c) 2000  (d) none of the above

1.4 The cut off frequency of the reconstruction 
(smoothing) fi lter for a signal sampled at a frequency of 
fs is ———.
(a) fs/2             (b) fs
(c) 2fs (d) fm i.e. the signal max. frequency

1.5 The signal f(t) = sin 2pf(1000)t is sampled is at the 
rate of 1800 samples/sec. The frequency of the signal at 
the output of the smoothing fi lter is ——— Hz.
(a) 1000  (b) 900 (c) 1100 (d) 800

1.6 Speech is digitized using a sampling rate of 8 kHz. 
An antialiasing fi lter with cut off frequency of 3.4 kHz is 
preceded by the sampler. The loss of the speech signals 
in the frequency range 3.4–20 kHz due to antialiasing 
fi lter introduces a degradation in the signal quality. On 
the otherhand sampling without the antialiasing fi lter 
also introduces degradation in the signal quality. Which 
of the following statements are true.

(a) Degradation with antialiasing fi lter is less

(b) Degradation without antialiasing fi lter is less

(c) Degradation with or without the fi lter is the same.

1.7 The no. of stages of FFT computations required for 
the computation of the DFT of a 512 point sequence is 
———
(a) 9 (b) 8 (c) 7 (d) 6

1.8 At the 5th stage of FFT computation of a 512 point 
FFT, the no. of distinct twiddle factors used is 2———.

(a) 2 (b) 3  (c) 4 (d) 5 

1.9 Which of the the following properties are true for 
an IIR fi lter designed using bilinear transform method.
(a) Requires the use of antialiasing fi lter
(b) Requires prewarping the fi lter cutoff frequencies
(c) Not suited for the design of high pass fi lters
(d) Results in unique mapping from analog to digital 

frequencies.

1.10 Which of the the following properties are true for 
an IIR fi lter designed using impulse invariant technique 
.
(a) Requires the use of antialiasing fi lter
(b) Requires prewarping the fi lter cutoff frequencies
(c) Not suited for the design of high pass fi lters
(d) Results in unique mapping from analog to digital 

frequencies.

1.11 Which of the following properties are true for the 
linear phase FIR fi lter with even no. of coeffi cients and 
symmetric impulse response. 
(a) not suited for high pass fi lter but has real magnitude 

response
(b) suited for high pass fi lter and has real magnitude 

response
(c) has imaginary magnitude response 
(d) suited for differentiators and hilbert transformers

1.12 Which of the following properties are true for the 
linear phase FIR fi lter with odd no. of coeffi cients and 
symmetric impulse response. 
(a) not suited for high pass fi lter but has real magnitude 

response
(b) suited for high pass fi lter and has real magnitude 

response
(c) has imaginary magnitude response 
(d) suited for differentiators and hilbert transformers

1.13 Which of the following characteristics are true for 
a half band fi lter 
(a) In a fi lter with M taps, the value of the coeffi cients of 

the odd taps is zero.
(b) The frequency response of the fi lter is antisymmetric 

w.r.t to the frequency fs/4 where fs is the sampling 
frequency.
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(c) The ripple in the pass band is equal to that in the stop 
band.

(d) These fi lters are used in multirate systems

Table 1 Impulse response coeffi cients of 4 fi lters

Filter 

no

h(0) h(1) h(2) h(3) h(4) h(5) h(6)

I 2 6  7 6 2 0 0

II 2 5  8 –5 –2 0 0

III 2 3  4 4 3 2 0

IV 2 0  3 0 2 0 0

1.14 Among the fi lters given in Table 1, the fi lter which 
has imaginary magnitude response and is suited for 
differentiators and hilbert transformers is 
(a) I (b) II (c) III (d) IV

1.15 Among the fi lters given in Table 1, the fi lter which 
is not suited for high pass fi lter but has real magnitude 
response is
(a) I (b) II (c) III (d) IV

1.16 Among the fi lters given in Table 1, the fi lter which 
is suited for high pass fi lter and has real magnitude 
response
(a) I (b) II (c) III (d) IV

1.17 Among the fi lters given in Table 1, the fi lter 
whose frequency response is antisymmetric w.r.t to the 
frequency fs/4 is.
(a) I (b) II (c) III (d) IV

1.18 The no. of multiplications required for performing 
the convolution of two sequences with identical length 
8 using the direct method is
(a) 256 (b) 120  (c) 128 (d) 64

1.19 The no. of multiplications required for performing 
the convolution of two sequences with identical length 
8 using the indirect method using FFT is
(a) 256 (b) 120 (c) 192 (d) 185 

1.20 A multirate system is required for converting the 
sampling rate from 48 K samples to 42.1 K samples, the 
interpolation factor, decimation factor to be used is
(a) 147, 160 (b) 160,147 (c) 480, 421 (d) 421,480

1.21 The z transform of the input to a decimator by 
factor 4 is 1+ z–1 + z–2 + –3. The z transform at the output 
is ———.



The programmable digital signal processors (P-DSPs) are designed with features that are specifi cally 

required for digital signal processing applications. The conventional microprocessors are meant 

for general purpose applications and hence they do not have these features. However, an advanced 

microprocessor or a RISC processor may use some of the techniques adopted in P-DSPs or may even 

have instructions that are specifi cally required for DSP applications. They may have performances close 

to that of a P-DSP for certain operations. For example, the DEC Alpha 21064 computes a 1024 point 

complex FFT in 480 ms, as compared to the Analog device ADSP 21060 that takes about 460 ms to 

carry out the same operation. However in terms of low power requirement, cost, real time I/O capability 

and availability of high speed on-chip memories, the P-DSPs have an advantage over the advanced 

microprocessors and the RISC processors. In this chapter some of the features specifi cally required for 

performing digital signal processing operations effi ciently are discussed in detail.

MULTIPLIER AND MULTIPLIER ACCUMULATOR (MAC) 2.1

One of the most common operations required in digital signal processing applications is array 

multiplication. For example, convolution and correlation require array multiplication. In Chapter 1, it was 

shown how the array multiplication can be done using a single multiplier and adder. The implementation 

scheme is reproduced in Fig. 2.1. One of the important requirements of these array multipliers is that 

they have to process the signals in real time. Before the next sample of the input signal arrives at the 

input to the array, the array multiplication should be completed. This requires the multiplication as 

well as accumulation to be carried out using hardware elements. There are two approaches to solve 

this problem. A dedicated MAC unit may be implemented in hardware, which integrates multiplier 

and accumulator in a single hardware unit. This 

approach is adopted by the Motorola DSP processor 

DSP5600X. The other approach is to have multiplier 

and accumulator separate. For example, in the Texas 

Instruments DSP processor, 320C5X, the output of 

the multiplier is stored into the product register. The 

content of this in turn can be added to accumulator 

register ACC in the central ALU. In both of the 

2
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Fig. 2.1 Implementation of convolver with single 

multiplier/adder
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above approaches, the MAC operation can be completed in one clock cycle. The presence of H/W 

multipliers and/or multiplier accumulator is one of the mandatory requirements of a P-DSP.

In Fig. 2.1, y
n
 , the output at the nth sampling instant, is obtained by multiplying the array x

n
 = [x

n 

x
n –1

 x
n–2

 � , x
n – M + 3

 x
n – M + 2

 x
n – M + 1

] corresponding to the present and the past M – 1 samples of the input 

with the array h = [h
0
 h

1
 h

2
 ... h

M – 3
 h

M – 2
 h

M – 1
] corresponding to the impulse response sequence. To obtain 

y
n + 1

, the input signal array x
n + 1

 is multiplied with the array h. The vector x
n + 1

 is obtained by shifting 

the array x
n
 towards right so that the (n + 1)th sample of the input data x

n
 
+

 
1
 becomes the fi rst element 

and all the elements of x
n
 are shifted towards right by 1 position so that the ith element of x

n
 becomes the

(i + 1)th element of x
n + 1

. Instead of shifting the elements of x
n
 towards right all at a time after fi nishing 

the vector multiplication, each of the elements may be shifted separately soon after the MAC operation 

that uses these elements is over. For example, after obtaining the product x
n – M + 1

 h
M – 1

 the element

x
n – M

 may be made to be equal to x
n – M + 1

. Similarly, after obtaining the product x
n – M + 2 

h
M – 2

 the element 

x
n – M + 1

 may be made equal to x
n – M + 2

 and so on.

This is achieved in P-DSP by using a special instruction called MACD multiply accumulate with data 

shift. For example, TMS320C5X has the instruction MACD pma, dma, which multiplies the content of 

the program memory pma with the content of the data memory with address dma and stores the result in 

the product register. The content of product register is added to the accumulator before the new product 

is stored. Further, the content of dma is copied to the next location whose address is dma + 1.

MODIFIED BUS STRUCTURES AND MEMORY ACCESS SCHEMES IN P-DSPs 2.2

It may be noted that the MAC operation with data move (i.e. the MACD instruction) requires four 

memory accesses per instruction cycle. (An instruction cycle is the time that elapses since an instruction 

is fetched till the particular instruction completes execution including the time taken for writing the result 

into a register or memory. Many of the instructions in P-DSPs including the MACD instruction require 

only one processor clock period/instruction cycle. In the conventional microprocessors one instruction 

cycle corresponds to several clock periods.) The four memory accesses/clock period required for the 

MACD instructions are as follows:

 1. Fetch the MACD instruction from the program memory

 2. Fetch one of the operands from the program memory

 3. Fetch the second operand from the data memory

 4. Write the content of the data memory with address dma into the location with the address

dma + 1

The relatively static impulse response coeffi cients are stored in the program memory and the 

samples of the input data are stored in the data memory. If the MACD instruction is to be executed 

in a machine with Von Neumann architecture, it requires 

four clock cycles. This is because in the Von Neumann 

architecture shown in Fig. 2.2 there is a single address 

bus and a single data bus for accessing the program as 

well as data memory area. One of the ways by which the 

number of clock cycles required for the memory access 

can be reduced is to use more than one bus for both 

address and data. For example in the Harvard architecture 

shown in Fig. 2.3, there are two separate buses for the Fig. 2.2 Von Neumann architecture
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 Fig. 2.3 Harvard architecture Fig. 2.4 Modifi ed harvard architecture

program and data memory. Hence the content of program memory and data memory can be accessed in 

parallel. The instruction code can be fed from the program memory to the control unit while the operand 

is fed to the processing unit from the data memory. The processing unit consisting of the registers and 

processing elements such as MAC units, multiplier, ALU, shifter, etc., are also referred to as data path. 

The P-DSPs follow the modifi ed Harvard architecture shown in Fig. 2.4. One set of bus is used to access 

a memory that has both program and data and another that has data alone. Data can also be transferred 

from one memory to another. The modifi ed Harvard architecture is used in several P-DSPs, for example 

P-DSPs from Texas Instruments and Analog devices.

With the Harvard architecture, the number of memory accesses/clock cycle was shown to be two. 

This can be increased further by using more number of buses. For example, by using three separate 

address and data buses, the number of memory accesses/clock cycle can be increased to three. Motorola 

DSP5600X, DSP96002, etc. have three separate buses. TMS320C54X has four address buses.

Since the cost of an IC increases with the number of pins in the IC, extending a number of buses outside 

the chip would unduly increase the price. Hence the P-DSP’s use multiple buses only for connecting 

the on-chip memory to the control unit and data path. For accessing off-chip memory only a single bus 

is used for accessing both the program memory and data memory. Because of this, any operation that 

involves an off-chip memory is slow compared to that using the on-chip memory.

MULTIPLE ACCESS MEMORY 2.3

The number of memory accesses/clock period can also be increased by using a high speed memory that 

permits more than one memory access/clock period. For example, the DARAM, the dual access RAM, 

permits two memory access/clock period. Multiple access RAM may be connected to the processing 

unit of the P-DSP by using the Harvard architecture. For example DARAM connected to a P-DSP with 

two independent data and address buses can be used to achieve four memory accesses/ clock period.

MULTIPORTED MEMORY 2.4

Another technique that is adopted for increasing the number of accesses/clock period is to use multiport-

ed memory. For example the dual port memory has two independent 

data and address buses as shown in Fig. 2.5 and hence two memory 

accesses can be achieved in a clock period. Multiported memories dis-

pense with the need for storing the program and data in two different 

memory chips in order to permit simultaneous access to both program 

and data memory. However, one of the major limitations of the dual-

ported memory is the increase in the cost compared to two single port 

Address bus 1

Address bus 2

Data bus 1

Data bus 2

Dual port
memorye

Fig. 2.5 Block diagram of a

dualported memory
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memory of the same total capacity. This is because of the increased number of pins and larger chip area 

required for the dualported memory. Larger number of I/O pins require a larger and more expensive 

package and a larger die size.

Some P-DSPs combine the modifi ed Harvard architecture with the dualported memories. For 

example, the Motorola DSP 561XX processors have a singleported program memory and a dualported 

data memory. Hence one program memory access and two data memory accesses can be achieved per 

clock period.

VLIW ARCHITECTURE 2.5

Another architecture used for P-DSPs, for example in TMS320C6X, is the very long instruction word 

(VLIW) architecture. These P-DSPs have a number of processing units (data paths). In other words, 

they have a number of ALUs, MAC units, shifters, etc. The VLIW is accessed from memory and is 

used to specify the operands and operations to be performed by each of the data paths. As shown in Fig. 

2.6, the multiple functional units share a common multiported register fi le for fetching the operands 

and storing the results. Parallel random access by the functional 

units to the register fi le is facilitated by the read/write cross bar. 

Execution of the operations in the functional units is carried out 

concurrently with the load/store operation of data between a 

RAM and the register fi le.

The performance gains that can be achieved with VLIW 

architecture depends on the degree of parallelism in the algorithm 

selected for a DSP application and the number of functional 

units. The throughput will be higher only if the algorithm 

involves execution of independent operations. For example, in 

Fig. 2.1, by using eight functional units, the time required for 

convolution can be reduced by a factor of 8 compared to the 

case where a single functional unit is used.

However, it may not always be possible to have independent 

stream of data for processing. Further the number of functional 

units is also limited by the hardware cost for the multiported 

register fi le and cross bar switch.

PIPELINING 2.6

One of the approaches adopted for increasing the effi ciency of the advanced microprocessors as well 

as P-DSPs is instruction pipelining. An instruction cycle starting with the fetching of an instruction and 

ending with the execution of the instruction including the time storage of the results can be split into a 

number of microinstructions. Execution of each of the microinstructions is also referred to as one phase 

of an instruction. For example, an instruction cycle requiring four microinstructions can be said to be in 

four phases as follows:

 1. Fetch phase in which the instruction is fetched from the program memory

 2. Decode phase in which the instruction is decoded

 3. Memory read phase in which the operand required for the execution of the instruction may be 

read from the data memory

P
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Functional
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Fig. 2.6 Block diagram of the VLIW 

architecture
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 4. Execution phase in which execution as well as the storage of the results in either one of the 

registers or memory is carried out

Each of the above microinstructions may be carried out separately by four functional units. Let us 

assume that each of the above four phases take equal time for completion. In this case in a conventional 

microprocessor with no pipelining, each of the functional units is busy only 25% of the time. This is 

because only one instruction is processed at the CPU at a time. Figure 2.7 shows when each of the 

functional unit is busy when a program containing three instructions I1, I2, I3 is executed.

Value of T Fetch Decode Read Execute

1

2

3

4

5

6

7

8

9

10

11

12

I1

I2

I3

I1

I1

I1

I2

I2

I2

I3

I3

I3  

Fig. 2.7 Instruction cycles of processor with no pipelining Fig. 2.8 Instruction cycles of a processor with pipelining

The functional units can be kept busy almost all the time by processing a number of instructions 

simultaneously in the CPU. For example, in a machine with four functional units, four instructions I1, 

I2, I3 and I4 can be processed simultaneously as shown in Fig. 2.8. When I1 enters the decode phase 

I2 can enter the opcode fetch phase. When I1 enters the operand read phase I2 enters the decode phase 

and I3 enters the opcode fetch phase. When I1 enters the execute phase I2 enters the operand read phase 

I3 enters the decode phase and I4 enters the opcode fetch phase. The pipeline is fully loaded now and 

all the functional units have useful work to do. The instructions that follow I4 keep the functional units 

busy till the program is exited. Let T denote the time required for each phase of the instruction. One 

clock cycle of the processor corresponds to T. In a period of 12T only three instructions can be executed 

in a machine without pipelining. In the same period nine instructions can be executed as shown in 

Fig. 2.8. Hence the throughput is increased by a factor of 3 in this case.

It may be noted that the initial latency of a machine with four phases is 4T. Hence for executing a 

program with N instructions, the time required for execution is (N + 4)T
s
. With a non-pipelined machine, 

the time required for executing N instructions is 4NT.

Instruction pipeline shown in Fig. 2.8 corresponds to a highly optimistic case. In the case of processors 

requiring single clock cycle for execution for each of the instructions in the program, the throughput 

shown in Fig. 2.8 can be achieved. This is normally achieved with restricted instruction set computers 

(RISC). However in complex instruction set computers (CISC), there are also instructions with multiple 

word requiring multiple clock cycles for execution. In this case all the functional units cannot be kept 

busy all the time. For example, in the case of call and branch instructions of a P-DSP, four phases or T 

states are required for the call/branch instruction to exit execution phase. By that time two more single 

word instructions or one double instruction enters the instruction pipeline. These instructions should not 

be executed. Hence two words have to be fl ushed out of the instruction pipeline before the instructions 

are fetched starting from the new program address.
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To overcome this problem, some of the P-DSPs have special branch/call and return instructions 

called as delayed branch/call/return instructions. When the delayed branch instruction is executed, the 

program branches to the new program address only after the two 1 -word instructions or the single 2-word 

instruction following the branch instruction are completely executed. Similarly, when the delayed call 

instruction is executed, the program calls to the subroutine only after the two 1-word instructions or 

the single 2-word instruction following the call instruction are completely executed. When the delayed 

call/branch/return instructions are executed, there is no need for fl ushing the pipeline and maximum 

throughput is obtained. Examples of pipeline operation of delayed as well as undelayed branch/call 

instructions are given in Chapter 4.

The throughput effi ciency of the pipeline may also be reduced because of confl icts between the 

instructions in the instruction pipeline in different phases. This happens if the same memory is used to 

store the data and program and there is only a single address bus for addressing both the program and 

data memory. This is true in the case of off-chip memory. For example, an instruction in fetch phase may 

try to fetch the instruction code from a memory chip that is also accessed by another instruction that is in 

the operand read phase. To avoid the confl ict, the operand read phase will be done fi rst and the opcode 

fetch phase will be repeated till there is no confl ict again.

The number of instructions that are processed simultaneously in the CPU, also referred to as depth 

of the instruction pipeline, differs in different families of P-DSPs. The pipeline depths of some of the 

P-DSPs are given in Table 2.1.

Table 2.1 Instruction pipeline depth of some P-DSPs

P-DSP Name/family Pipeline Depth

Analog devices 2

Motorola DSP5600X 3

Tl TMS320C5X 4

Tl TMS 320C54X 6

SPECIAL ADDRESSING MODES IN P-DSPs 2.7

In addition to the addressing modes such as direct, indirect and immediate supported by the conventional 

microprocessors, P-DSPs have special addressing modes that permit single word/instruction format and 

thereby speed up the execution by making effective use of the instruction pipelining. Further there are 

also special addressing modes such as cyclic addressing and bit reversed addressing that are specifi cally 

tailored for DSP applications. The details of these addressing are presented next.

2.7.1 Short Immediate Addressing

This permits the operand to be specifi ed using a short constant that forms part of a single word instruction. 

The length of the short constant depends on the instruction type and the P-DSP. For example in the 

case of Tl TMS320C5X, an 8-bit constant can be specifi ed as one of the operands in the single word 

instructions for addition, subtraction, AND, OR, XOR, etc.
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2.7.2 Short Direct Addressing

This permits the lower order address of the operand of an instruction to be specifi ed in the single word 

instruction. In the Tl TMS320 DSPs, the higher order 9 bits of the memory are stored in the data page 

pointer and only the lower 7 bits are specifi ed as a part of the instruction. Each contiguous block of 

128 words is referred to as one page in the Tl DSPs. The argument in the instruction specifi es only the 

location within the current page. In the Motorola DSP5600X, short direct memory addressing permits a 

6-bit address to be specifi ed in the instruction.

2.7.3 Memory-mapped Addressing

The CPU registers and the I/O registers of the P-DSPs are also accessible as memory location. This is 

achieved by storing them in either the starting page or the fi nal page of the memory space. For example, 

in TMS320C5X, page 0 corresponds to the CPU registers and I/O registers. In the case of Motorola 

DSP5600X, the last page of the memory space containing 64 locations is used as the memory map for 

the CPU and I/O registers. When these registers are accessed using memory mapped addressing modes, 

the higher address bits are not taken from the data page pointer and instead made to be 0 in the case of 

TI DSPs and made to be 1 in Motorola DSPs.

2.7.4 Indirect Addressing

In P-DSPs this addressing mode has a number of options. This permits an array of data to be processed 

in P-DSP to be effi ciently fetched and stored. The address of the operands can be stored in one of the 

registers called indirect address registers. In the case of TI processors, the indirect address registers are 

called auxiliary registers ARs. Any of these registers can be updated when the operand fetched using 

these registers are being executed. This is made possible by having an additional ALU in the CPU core 

specifi cally for the indirect address registers or ARs. The ARs may be incremented or decremented 

either in steps of 1 or in steps specifi ed by the content of an offset register. In the case of TI processors, 

the offset register is called an INDX register. In the P-DSPs from analog devices it is called the modifi er 

register. The content of the indirect address registers may also be updated by a constant using bit reversed 

addressing mode explained in the next section. In the TI 5X processors the new address computed by 

the auxiliary ALU is not used for fetching the operand for the current instruction that is being decoded 

and is executed. It is used for fetching the operand that uses the indirect addressing mode next with this 

particular AR. For this reason, the indirect addressing mode used in TI 5X P-DSPs is called indirect 

addressing mode with post-increment/decrement. In Motorola DSP563XX, the updated indirect address 

register content may also be used to fetch the operand for the current instruction. Hence this mode is 

called the indirect addressing mode with pre-increment/ decrement. In TI TMS320C54X processors 

both post-increment/decrement and pre-increment/dec-rement operations are supported.

2.7.5 Bit Reversed Addressing Mode

The bit reversed number representation is explained in Section 1.14. The binary pattern corresponding 

to a particular decimal number is obtained by writing the natural binary equivalent of the number in the 

reverse order so that the most signifi cant bit of the natural binary number becomes the least signifi cant 

bit of the bit reversed no and vice versa.

For the computation of the FFT, the data is to be arranged in the bit reversed order and 2-point DFT 

of the resulting sequence is to be computed fi rst. In the bit reversed addressing mode, when a 16-point 

FFT is to be computed, 2-point DFT of X(0) and X(8) is to be found. Similary 2-point DFT of X(4) and 



64  Digital Signal Processors

X(12) and so on. It may be noted from Table 1.1 that the value 0, 8, 4, 12 corresponds to the consecutive 

numbers in the bit reversed number representation. In the bit reversed addressing mode, the address is 

incremented/decremented by the number represented in the bit reversed form.

2.7.6 Circular Addressing

In real time processing of signals, the input signal is continuously stored in the memory. The processed 

data is stored in another memory space continuously and may be written onto the output device. In 

this case input as well as output program will be simple. However, since the input as well as output 

memory space will be fi nite in size, the entire memory space would be exhausted after processing the 

input signal for some time, if the data is written into the memory by using linear addressing mode. One 

way to overcome this problem is to keep checking whether the range of either the input or the output 

memory space is exceeded. In that case, the new data is to be stored starting from the beginning of the 

particular memory space. However, checking this condition is an overhead that can be overcome using 

the circular addressing mode. In this mode, the memory can be organised as a circular buffer with the 

beginning memory address and the ending memory address corresponding to this buffer defi ned by the 

programmer. In the circular addressing mode, when the address pointer is incremented, the address will 

be checked with the ending memory address of the circular buffer. If it exceeds that, the address will be 

made equal to the beginning address of the circular buffer.

ON-CHIP PERIPHERALS 2.8

The P-DSPs have a number of on-chip peripherals that relieve the CPU from routine functions. Further 

they also help to reduce the chip count on the DSP system based around P-DSP. Some of the on-chip 

peripherals in the P-DSPs and their functions are as follows.

2.8.1 On-chip Timer

Two of the common applications of the timers are generation of periodic interrupts to the P-DSPs and 

generation of the sampling clocks for the A/D converters. The timer mode can be programmed by the 

P-DSPs. The timers can generate a single pulse or a periodic train of pulses. They can also generate a 

single square wave or a periodic square wave. The period of the timer is also made programmable.

2.8.2 Serial Port

This enables the data communication between the P-DSP and an external peripheral such as A/D 

converter, D/A converter or an RS232 C device. These ports normally have input and output buffers so 

that the P-DSP writes or reads from the serial port in parallel form and the serial port sends and receives 

data to the peripherals in serial form. They also generate interrupts when the serial port output buffer 

is empty or the input buffer is full, These devices have parallel to serial and serial to parallel converter 

inbuilt into them. The shift clock can be fed either from the P-DSP or an external device can supply 

it. The serial ports can operate either in the asynchronous mode or in the synchronous mode. In the 

asynchronous mode, the transmit data and receive data lines alone are used for communication and bit 

clock is transmitted from either end. In the case of synchronous mode, both bit clock and a frame sync 

signal that indicates the beginning of the fi rst bit of the data transmitted using synchronous mode is 

transmitted from the serial port to the I/O device and also from I/O port to the serial port. Example, of 

the two signals with respect to the transmitted data is shown in Fig. 2.9.
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Fig. 2.9 Burst mode serial port receive operation

2.8.3 TDM Serial Port

The P-DSPs have a special serial port called TDM serial port. This permits a P-DSP to communicate 

with other devices or P-DSPs by using time division multiplexing (TDM). One of the devices can 

generate the frame sync pulse that indicates the beginning of a TDM frame and bit clock, the duration 

for which a bit is to be transmitted. As shown in Fig. 2.10 the TDM frame is split into a number of equal 

slots and each slot can be allotted for one of the devices.

One TDM frame

Ch 1 Ch 2 Ch 3 Ch 4 Ch 6Ch 5 Ch 7 Ch 8

Fig. 2.10 TDM frame with 8 time slots

For example, in Fig. 2.10, there are 8 slots/frame and is referred to as a TDM with eight channels. In 

each of the slots, a number of bits may be transmitted by a channel. The TDM serial port normally uses 

four lines for the purpose of serial communication. They are

TFRM: the frame sync signal

TClock: the bit clock

TADD: The address of the serial device that is outputting data in a particular TDM slot

TDAT: The data transmitted into the TDM channel by the authorised device

The signals TADD and TDAT are bidirectional and are tristate controlled so that only one of the 

devices transmit the data and address in these lines at a time. Any one of the devices can generate the 

TFRM and clock signals and they are used by the other devices as a reference. A scheme where eight 

devices are interconnected using the TDM serial port is shown in Fig. 2.11. An example of how TI 

TMS320C5X can be confi gured to be one of the devices is shown in Fig. 2.12. An example, of each of 

the devices outputting a 16-bit data (D15 - DO) in its slot and also the address of the device (A0-A15), 

which is supposed to receive this data, is shown in Fig. 2.13.
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DEVICE 0 DEVICE 1 DEVICE 7

TFRM

TADD

TCLK

TDAT

Fig. 2.11 Interconnecting 8 devices using TDM serial using 4-biPbus

TDX

TDR

TFSX

TFSR

TCLKX

TCLKR

C5X

TCLK

TADD

TFRM

TDAT

Fig. 2.12 TMS320C5X confi gured to be one of TDM devices

Fig. 2.13 Data transfer using TDM channel

2.8.4 Parallel Port

Parallel ports enable communication between the P-DSP and other devices to be faster compared to the 

serial communication by using a number of lines in parallel. In addition, they also have additional lines, 

which are for strobing or for handshaking purposes. The P-DSPs have two approaches for assigning 

lines for parallel port. In one approach used by the TI, the data bus itself is used for parallel ports. This 

is achieved by allocating a specifi c address space for I/O and whenever this address space is addressed 

using the I/O instructions, the parallel port signals including the handshaking signals are sent over the 

data bus. In another approach, separate lines are dedicated for parallel ports including the handshaking 

signals.

2.8.5 Bit I/O Ports

The P-DSPs have additional I/O ports that are single bit wide. These port bits may be individually set, 

reset or read. These bits are normally used for control purposes but they can also be used for data transfer. 

There are no handshaking signals for these I/O ports. Some of these bits are also used for conditional 

branching or calls. For example, in TI processors there are instructions such as branch if I/O zero.
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2.8.6 Host Port

The P-DSPs also have a special parallel port normally 8-bit or 16-bit wide called the host port that 

enables them to communicate with a microprocessor or PC, which is called as a host. In addition to data 

communication, the host can generate interrupts and also cause the P-DSP to load a program from ROM 

to the RAM on reset. Almost all the P-DSPs including the ones from Analog devices, Motorola and TI 

have host ports.

2.8.7 Comm Ports

These are parallel ports that are used for interprocess communication between a number of identical 

P-DSP in a multiprocessor system. For example, a multiprocessor system may be built using a number 

of TI TMS320C4X. For the purpose of communication of the data between these processors six comm 

ports each of width 8 bits is provided. Since the data to be processed may be 32 or more number of bits, 

the P-DSPs have provision for splitting the data in streams of 8 bits and also assemble the 8 bits into 

words of 32 bits. Analog devices DSP ADSP 2106X has 6 comm ports each of which is 4 bits wide.

2.8.8 On-Chip A/D and D/A Converters

Some of the P-DSPs targeted towards voice applications such as cellular telephones and tapeless 

answering machines have A/D and D/A converters inside the P-DSP. For example, Motorola DSP 

561XX and Analog devices ADSP 21MSP5X both have the A/D and D/A on chip and permit effective 

sampling rates of about 8 kHz.

2.8.9 P-DSPs with RISC and CISC

P-DSPs may be implemented using either the RISC processor or the CISC processor. For example, 

TI TMS320C6X P-DSPs uses RISC processor and a large number of P-DSPs from Analog devices, 

Motorola and TI make use of CISC. For example, TI TMS32054X and the Motorola DSP563XX and 

analog devices ADSP 2100X make use of CISC. TI TMS320C8X has a RISC and four P-DSPs with 

CISC in a single core. The relative advantages of each of these processors are as follows:

RISC Advantages

The chip area dedicated to the realisation of the control unit is considerably reduced because of the 

reduced number of instructions. About 20% of the chip area may be used for the control unit in RISC. 

In CISC processors about 30 - 40% of the chip area is used up for the control unit. Therefore in a RISC 

there is more area available for incorporating other features.

As a result of considerable reduction in the control area, the CPU registers and the data paths 

(processing units) can be replicated and the throughput of the processor can be increased by applying 

pipelining and parallel processing.

In a RISC, all the instructions are of uniform length and take the same time for execution. Hence the 

dummy periods or hold periods in the instruction pipeline is reduced to the minimum. This increases the 

computational speed.

A simpler and smaller control unit in RISC has fewer gates. This reduces the propagation delay and 

increases the speed. Reduced number of instructions, formats and addressing modes result in simpler 

and smaller decoder, which, in turn, increase the speed.

In RISC processors, the delayed branch and call instructions can be effectively used and they improve 

the speed.
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HLL support Writing the programs in C and C++ relieves the programmer from learning the instruc-

tion set of a P-DSP and instead concentrate on the application. It increases the throughput of the pro-

grammer. Since RISC has a smaller number of instructions, the compiler for any HLL is shorter and 

simpler. The availability of a relatively large number of CPU registers permits a more effi cient code 

optimisation by maximising the use of CPU registers over slower memories.

CISC Advantages

Some of the advantages of RISC also turn out to be disadvantages when viewed from a different 

perspective. The CISC processors have a very rich instruction set that even support high level language 

constructs similar to “if condition true then do”, “for” and “while”. The P-DSPs with CISC also have 

instructions specifi cally required for DSP applications such as MACD, FIRS, etc. This makes the 

application program written in the assembly language to be shorter and easy to follow. Since RISC has 

a smaller number of instructions, implementation of a single CISC instruction might require a number 

of instructions in RISC. This increases the memory required for storing the program and the traffi c 

between CPU and memory is increased. This is on the one hand increases the computation time and on 

the other hand makes the program diffi cult to debug.

The HLL compilers are costly by several orders of magnitude compared to the P-DSPs themselves. 

For P-DSP with RISC architecture, compilers are essential. For most of the low cost applications, DSP 

platforms without the compilers are preferred. Hence a majority of P-DSPs are CISC based. The P-DSP 

manufacturers have tried to keep the codes for the new processors upward compatible with the older 

processors. This makes the learning curve steeper.

The relative disadvantages of each of these architectures are diminishing. By making the RISC 

processors applicable for larger and larger applications, the cost of the chip per se and the compiler costs 

are being brought down. The HLL compilers for the CISC processors are also becoming as effi cient as 

hand assembly and the costs are coming down. Hence the distinction between the two in terms of cost 

and debugging effi ciency is likely to narrow down further. The code composer studio from TI permits 

the programming in HLL as well as assembly language in a single development environment so that the 

best features of both the HLL and assembly language programming can be used by the programmer.

Review Questions 

2.1 Explain why a MAC operation is implemented in 

hardware in programmable DSPs.

2.2 Explain how convolution is performed using a 

single MAC unit.

2.3 Explain the difference between a MAC instruction 

and MAC with data shift instruction. When is the latter 

instruction preferred?

2.4 Explain the difference between Von Neumann 

and Harvard architecture for the computer. Which 

architecture is preferred for DSP applications and why?

2.5 Explain why the P-DSPs have multiple address 

and data buses for internal memory and peripherals but 

have only a single address and data bus for the external 

memory and peripherals?

2.6 Explain the different techniques adopted for in-

creasing the number of memory accesses/instruction 

cycle.

2.7 Explain how a higher throughput is obtained using 

the VLIW architecture. Give an example, of a DSP that 

has VLIW architecture.

2.8 Explain what is meant by instruction pipelining. 

Explain with an example, how pipelining increases the 

throughput effi ciency.

2.9 Explain how delayed branch/call instructions are 

superior to the undelayed branch/call instructions.

2.10 Explain the memory mapped addressing mode 

used in P-DSPs.
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2.11 What are the different ways in which the operand 

for instructions can be specifi ed using indirect addressing 

mode.

2.12 What is meant by bit reversed addressing mode? 

What is the application for which this addressing mode 

is preferred?

2.13 What is meant by circular addressing mode? What 

is the application for which this addressing mode is pre-

ferred?

2.14 Mention some applications of on-chip timer in 

P-DSPs.

2.15 Distinguish between the synchronous and 

asynchronous mode of operation of serial ports.

2.16 Explain the operation of TDM serial ports in 

P-DSPs.

2.17 What is the use of host ports in P-DSPs? How do 

they differ from the comm ports?

2.18 List the relative merits and demerits of RISC and 

CISC processors.

Self Test Questions 

2.6 The number of instruction cycles required for 

executing a program in a microprocessor with no 

pipelining is ———.

(a) 1 (b) 2 (c) 3 (d) 4

2.7 The addressing mode that is convenient for FFT 

computation is———.

(a) Indirect addressing (b) Circular mode

(c) Bit reversed addressing (d) Memory mapped

2.8 The addressing that permits the content in internal 

register of the CPU & I/O to be accessed as memory 

location is———.

(a) Indirect addressing (b) Circular mode

(c) Bit reversed addressing (d) Memory mapped

2.9 The serial port that permits the data from a number 

of I/O devices to be sent using a single serial port is 

called———.

(a) Comm port

(b) Host port

(c) Time division multiplexing

(d) Bit I/O port

2.10 Which of the following characteristics are true for 

a RISC processor?

(a) Smaller control unit

(b) Small instruction set

(c) Short program length

(d) Less traffi c between CPU & memory

2.1 The features in which PDSP is superior to advanced 

microprocessors is———.

(a) Low cost  (b) Low power

(c) Computational speed (d) Real time I/O capability

2.2 In modifi ed Harvard architecture for fetching the 

content of program and data memory, a separate bus 

is used for ——— memory and a single bus is used for 

——— memory.

2.3 Number of memory accesses/clock /period that can 

be achieved using on chip DARAM of a P-DSP is ———.

(a) 1 (b) 2 (c) 3 (d) 4

2.4 VLIW architecture differs from conventional P-DSP 

in which of the following aspects:

(a) Instruction cache

(b) Number of functional units

(c) Use pipelining

(d) A single word fetched from memory has a number of 

instructions

2.5 A P-DSP has four pipeline stages and uses four 

phase clock. The number of clock cycles required for 

executing a program with 25 instruction is ———.

(a) 29 (b) 28 (c) 25 (d) 26



INTRODUCTION 3.1

Leading manufacturers of integrated circuits such as Texas Instruments (TI), Analog Devices and 

Motorola manufacture the digital signal processor (DSP) chips. These manufacturers have developed 

a range of DSP chips with varied complexity. The underlying concepts are broadly the same. Some of 

these concepts are discussed in Chapter 2. In order to give a feel for the design of systems with DSP 

chips, in this chapter, some details on the design of systems using the TMS320C5X DSP chip (denoted 

in brief as 5X ) manufactured by TI are given.

The TMS320 DSP family consists of two types of single-chip DSPs: 16-bit fi xed-point and 32-bit 

fl oating-point. These DSPs possess the operational fl exibility of high-speed controllers and the numerical 

capability of array processors. Combining these two qualities, the TMS320 processors are inexpensive 

alternatives to custom fabricated VLSI and multichip bit-slice processors. TMS320C5X belongs to the 

fi fth generation of the TI’s TMS320 family of DSPs. The fi rst fi ve generations of TMS320 family are 

C1X, C2X, C3X, C4X and C5X. The C1X, C2X, C2XX and C5X are 16-bit fi xed-point processors. 

Instruction sets of the higher generation fi xed-point processors are upward compatible to the lower 

generation fi xed-point processors. For example C5X can execute the instructions of both C1X and C2X. 

The 54X is upward compatible with 5X. C3X and C4X are 32-bit fl oating-point processors and C4X 

is upward compatible with C3X instruction set. The sixth generation C6X devices feature VelociTI™, 

an advanced very long instruction word (VLIW) architecture developed by TI and can execute 1600 

MIPS. The eighth generation C8X devices, have, on a single piece of silicon, a number of advanced 

DSPs (ADSPs) and a RISC master processor. Typical application of the above families of TI DSPs are 

as follows:

C1X, C2X, C2XX, C5X, C54X: toys, hard disk drives, modems, cellular phones and active car 

suspensions

 C3X: fi lters, analysers, hi-fi  systems, voice mail, imaging, bar-code readers, motor control, 3D 

graphics or scientifi c processing

 C4X: parallel-processing clusters in virtual reality, image recognition telecom routing, and parallel-

processing systems.

 C6X: wireless base stations, pooled modems, remote-access servers, digital subscriber loop systems, 

cable modems and multichannel telephone systems

3

ARCHITECTURE OF

TMS320C5X
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 C8X: video telephony, 3D computer graphics, virtual reality and a number of multimedia applications

The TI DSP chips have IC numbers with the prefi x TMS320. If the next letter is C (e.g. TMS320C5X), 

it indicates that CMOS technology is used for the IC and the on-chip non-volatile memory is a ROM. 

If it is E (e.g. TMS320E5X) it indicates that the technology used is CMOS and the on-chip non-volatile 

memory is an EPROM. If it is neither (e.g. TMS3205X), it indicates that NMOS technology is used 

for the IC and the on-chip non-volatile memory is a ROM. Under C5X itself there are three processors, 

‘C50, ‘C51 and ‘C5X, that have identical instruction set but have differences in the capacity of on-chip 

ROM and RAM. The characteristics of some of the TMS320 family DSP chips are given in Table 3.1.

The instruction set of TMS320C5X and other DSP chips is superior to the instruction set of 

conventional microprocessors such as 8085, Z80, etc., as most of the instructions require only a single 

cycle for execution. The multiply accumulate operation used quite frequently in signal processing 

applications such as convolution requires only one cycle in DSP.

Table 3.1 Characteristics of some of the TMS320 family DSP chips

¢C15 ¢C25 ¢C30 ¢C50 ¢C541

Cycle time (ns) 200 100 60 50 25

on chip RAM 4K 4K 4K 2K 5K

Total memory 4K 128K 16M 128K 128K

Parallel ports 8 16 16M 64K 64K

Architecture of TMS320C5X DSPs The block diagram of the internal architecture of C5X is shown 

in Fig. 3.1. The 320C5X DSPs are said to have advanced Harvard architecture because they have sepa-

rate memory bus structures for program and data and have instructions that enable data transfer between 

the program and data memory area.

BUS STRUCTURE 3.2

Separate program and data buses allow simultaneous access to program instructions and data, providing 

a high degree of parallelism. For example, while data is multiplied, a previous product can be loaded 

into, added to or subtracted from the accumulator and, at the same time, a new address can be generated. 

Such parallelism supports a powerful set of arithmetic, logic and bit-manipulation operations that can 

all be performed in a single machine cycle. In addition, the ¢C5X includes the control mechanisms to 

manage interrupts, repeated operations and function calling. The ¢C5X architecture has four buses and 

their functions are as follows:

Program bus (PB) It carries the instruction code and immediate operands from program memory 

space to the CPU.

Program address bus (PAB) It provides addresses to program memory space for both reads and 

writes.

Data read bus (DB) It interconnects various elements of the CPU to data memory space.

Data read address bus (DAB) It provides the address to access the data memory space. The program 

and data buses can work together to transfer data from on-chip data memory and internal or external 

program memory to the multiplier for single-cycle multiply/accumulate operations.



72  Digital Signal Processors

Fig. 3.1 Internal architecture of C5X

CPU registers (except STO and ST1), peripheral registers and I/O ports occupy data memory space. 

Some of the registers/execution units in the CPU of C5X DSP processors and their functions are as 

follows.

CENTRAL ARITHMETIC LOGIC UNIT (CALU) 3.3

It consists of the following elements: (16xl6)-bit parallel multiplier, arithmetic logic unit (ALU), 

accumulator (ACC), accumulator buffer (ACCB), product register (PREG) each with 32 bits and 0-16-

bit left barrel shifter and right barrel shifter.

One of the operands for the ALU operation comes from ACC. The result of operations performed in 

central ALU are stored in ACC. Either the higher order word or lower order word of ACC can be loaded 

from memory. A 32-bit register denoted as ACCB is used for temporary storage of ACC. The hardware 
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multiplier unit in the C5X processors performs 16 x 16 multiplication of numbers represented in 2’s 

complement form. The 32-bit PREG holds the result of multiplication. The 16-bit temporary register 0 

(TREG0) holds the multiplicand. The other operand for the multiplication can be specifi ed using one of 

the addressing modes.

0-16-bit left barrel shifter and right barrel shifter in CALU permit the contents of memory to be 

left shifted by 0 to 16 bits before they are either fed to ALU or stored from ALU to memory. The CPU 

registers ACC and PREG can also be shifted using these shifters. In this case they require two cycles. 

A 5-bit register TREG1 specifi es the number of bits by which the scaling shifter should shift either the 

incoming data to one of the CPU registers or vice versa. When the incoming data to CPU is left shifted 

by the scaling shifter the LSBs are fi lled with 0.

AUXILIARY REGISTER ALU (ARAU) 3.4

It consists of eight 16-bit auxiliary registers (ARs) AR0-AR7, a 3-bit auxiliary register pointer (ARP) 

and an unsigned 16-bit ALU. ARAU calculates indirect addresses by using inputs from ARs, 16-bit index 

register (INDX) and auxiliary register compare register (ARCR). The ARAU can autoindex the current 

AR while the data memory location is being addressed and can index either by ± 1 or by the contents of 

the INDX. As a result, accessing data does not require the CALU for address manipulation; therefore, 

the CALU is free for other operations in parallel. This makes the instructions to be executed faster 

compared to the conventional microprocessors. For example, let us consider the following sequence of 

8085 instructions:

M0V A,M

INX H

These instructions enable the accumulator to be loaded using indirect addressing mode and HL 

register used as the address pointer is incremented. These two instructions can be replaced by a single 

5X instruction LACC *+, 0.

Further, any one of the auxiliary registers can be used as the address pointer and incremented by the 

above instruction. The register that will be used is specifi ed by the content of the ARP.

The auxiliary registers AR0-AR7 may also be used as the general purpose registers for holding the 

operands for arithmetic and logical operations in CALU. Some of the other registers of ARAU and their 

functions are as follows:

INDEX REGISTER (INDX) 3.5

The 16-bit INDX is used by the ARAU as a step value (addition or subtraction by more than 1) to 

modify the address in the ARs during indirect addressing. For example, when the ARAU steps across 

a row of a matrix, the indirect address is incremented by 1. However, when the ARAU steps down a 

column, the address is incremented by the dimension of the matrix. The ARAU can add or subtract the 

value stored in the INDX from the current AR as part of the indirect address operation. INDX can also 

map the dimension of the address block used for bit-reversal addressing.

AUXILIARY REGISTER COMPARE REGISTER (ARCR) 3.6

The 16-bit ARCR is used for address boundary comparison. The CMPR instruction compares the ARCR 

to the selected AR and places the result of the compare in the TC bit of ST1.
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BLOCK MOVE ADDRESS REGISTER (BMAR) 3.7

The 16-bit BMAR holds an address value to be used with block moves and multiply/accumulate 

operations. This register provides the 16-bit address for an indirect-addressed second operand.

BLOCK REPEAT REGISTERS (RPTC, BRCR, PASR, PAER) 3.8

All these registers are 16-bit wide. Repeat counter register (RPTC) holds the repeat count in a repeat 

single-instruction operation and is loaded by the RPT and RPTZ instructions. Block repeat counter 

register (BRCR) holds the count value for the block repeat feature. This value is loaded before a block 

repeat operation is initiated. Block repeat program address start register (PASR) indicates the 16-bit 

address where the repeated block of code starts. The block repeat program address end register (PAER) 

indicates the 16-bit address where the repeated block of code ends. The PASR and PAER are loaded by 

the RPTB instruction.

PARALLEL LOGIC UNIT (PLU) 3.9

It performs Boolean operations or the bit manipulations required of high-speed controllers. The PLU 

can set, clear, test or toggle bits in a status register control register, or any data memory location. The 

PLU allows logic operations to be performed on data memory values directly without affecting the 

contents of the ACC or PREG. Results of a PLU function are written back to the original data memory 

location.

MEMORY-MAPPED REGISTERS 3.10

The ‘C5X has 96 registers mapped into page 0 of the data memory space. All ‘C5X DSPs have 28 CPU 

registers and 16 input/output (I/O) port registers but have different numbers of peripheral and reserved 

registers. Since the memory-mapped registers are a component of the data memory space, they can be 

written to and read from in the same way as any other data memory location. The memory-mapped 

registers are used for indirect data address pointers, temporary storage, CPU status and control, or 

integer arithmetic processing through the ARAU.

PROGRAM CONTROLLER 3.11

The program controller contains logic circuitry that decodes the instructions, manages the CPU pipeline, 

stores the status of CPU operations and decodes the conditional operations. Parallelism of architecture lets 

the ¢C5X perform three concurrent memory operations in any given machine cycle: fetch an instruction, 

read an operand and write an operand. The program controller consists of the following elements:

16-bit program counter (PC)

16-bit status registers ST0, ST1, processor mode status register (PMST) and circular buffer control 

register (CBCR)

(8 x 16)-bit hardware stack

Address generation logic

Instruction register

Interrupt fl ag register and interrupt mask register
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ARP OV OVM INTM DP1

15 – 13 12 11 10 9 8 – 0

Fig. 3.2(a) Status register 0 (ST0) bit assignment

SOME FLAGS IN THE STATUS REGISTERS 3.12

The status registers can be stored into data memory and loaded from data memory, thereby allowing the 

‘C5X status to be saved and restored for subroutines. The ST0 and ST1 each have an associated 1-level 

deep shadow register stack for automatic context-saving when an interrupt trap is taken. These registers 

are automatically restored upon a return from interrupt.

The bit assignment details for ST0 and ST1 are given in Fig. 3.2. Signifi cance of the various bits of 

ST0 and ST1 are as follows:

ARP (Auxiliary Register Pointer) These bits select the AR to be used in indirect addressing. When the  

ARP is loaded, the previous ARP value is copied to the auxiliary register buffer (ARB) in ST1.

OV (Overfl ow) fl ag bit This bit indicates that an arithmetic operation overfl ow in the ALU.

OVM (Overfl ow Mode) bit This bit enables/disables the accumulator overfl ow saturation mode in the 

ALU. 

INTM (Interrupt Mode) bit This bit globally masks or enables all interrupts. The INTM bit has no ef-

fect on the non-maskable R
—

S
–
 and N

—
M
—

I interrupts.

DP (Data Memory Page Pointer) bits These bits specify the address of the current data memory page. 

The DP bits are concatenated with the 7 LSBs of an instruction word to form a direct memory address 

of 16 bits.

Fig. 3.2(b) Status register 1 (ST1) bit assignment

ARB Auxiliary Register Buffer

This 3-bit fi eld holds the previous value contained in the ARP in ST0. Whenever the ARP is loaded, the 

previous ARP value is copied to the ARB, except when using the LST #0 instruction. When the ARB 

is loaded using the LST #1 instruction, the same value is also copied to the ARP. This is useful when 

restoring context (when not using the automatic context save) in a subroutine that modifi es the current 

ARP.

CNF On-chip RAM confi guration control bit This 1-bit fi eld enables the on-chip dual-access RAM 

block 0 (DARAM B0) to be addressable in data memory space or program memory space. The CNF bit 

can be modifi ed by the LST #1 instruction. If CNF is 0, the on-chip DARAM block 0 is mapped into 

data memory space. The CNF bit can be cleared by a reset or the CLRC CNF instruction. When CNF is 

1, the on-chip DARAM block 0 is mapped into program memory space. The CNF bit can be set by the 

SETC CNF instruction.
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TC Test/control fl ag bit This 1-bit fl ag stores the results of the ALU or parallel logic unit (PLU) test 

bit operations. The status of the TC bit determines if the conditional branch, call and return instructions 

are to be executed.

SXM Sign-extension mode bit This 1-bit fi eld enables/disables sign extension of an arithmetic opera-

tion. The SXM bit does not affect the operations of certain arithmetic or logical instructions; the ADDC, 

ADDS, SUBB or SUBS instruction suppresses sign extension, regardless of SXM.

C Carry bit This 1-bit fi eld indicates an arithmetic operation carry or borrow in the ALU. The single-

bit shift and rotate instructions affect the C bit.

HM Hold mode bit This 1-bit fi eld determines whether the central processing unit (CPU) stops or 

continues execution when acknowledging an active H
—

OL
—

D
—

 signal.

XF pin status bit This 1-bit fi eld determines the level of the external fl ag (XF) output pin.

PM Product shift mode bits This 2-bit fi eld determines the product shifter (P-SCALER) mode and 

shift value for the PREG output into the ALU. Table 3.2 gives the PM bits and the function performed.

Table 3.2 PM bits and the function performed

PM bits Function

b1 b0 P-SCALER mode for PREG output

0 0 No shift

0 1 Left-shifted 1 bit; LSB zero-fi lled

1 0 Left-shifted 4 bits; 4 LSBs zero-fi lled

1 1 Right-shifted 6 bits; sign extended; 6 LSBs lost. The product is always sign extended, regard-

less of the value of the SXM bit

ON-CHIP MEMORY 3.13

The ¢C5X architecture contains a considerable amount of on-chip memory to aid in system performance 

and integration:

Program Read-Only Memory (ROM)

Data/Program Dual-Access RAM (DARAM)

Data/Program Single-Access RAM (SARAM)

The ¢C5X has a total address range of 224K words x 16 bits. The memory space is divided into 

four individually selectable memory segments: 64K-word program memory space, 64K-word local data 

memory space, 64K-word I/O ports and 32K-word global data memory space.

3.13.1 Program ROM

All ‘C5X DSPs carry a 16-bit on-chip maskable programmable ROM (see Fig. 3.1 for sizes). Some of 

the ‘C5X DSPs have boot loader code resident in the on-chip ROM, and the other ¢C5X DSPs offer 

the boot loader code as an option. This memory is used for booting program code from slower external 

ROM or EPROM to fast on-chip or external RAM. Once the custom program has been booted into 

RAM, the boot ROM space can be removed from program memory space by setting the MP/ MC bit 

in the processor mode status register (PMST). The on-chip ROM is selected at reset by driving the 

MP/ MC  pin low. If the on-chip ROM is not selected, the ‘C5X devices start execution from off-chip 

memory.
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3.13.2 Data/Program Dual-Access RAM

All ¢C5X DSPs carry a 1056-word x 16-bit on-chip dual-access RAM (DARAM). The DARAM is 

divided into three individually selectable memory blocks: 512-word data or program DARAM block 

B0, 512-word data DARAM block B1 and 32-word data DARAM block B2. The DARAM is primarily 

intended to store data values but, when needed, can be used to store programs as well. DARAM blocks 

B1 and B2 are always confi gured as data memory; however. DARAM block B0 can be confi gured by 

software as data or program memory.

DARAM improves the operational speed of the ‘C5X CPU. The CPU operates with a 4-deep pipeline. 

In this pipeline, the CPU reads data on the third stage and writes data on the fourth stage. Hence, for 

a given instruction sequence, the second instruction could be reading data at the same time the fi rst 

instruction is writing data. The dual data buses (DB and DAB) allow the CPU to read from and write to 

DARAM in the same machine cycle.

3.13.3 Data/Program Single-Access RAM

Almost all ¢C5X DSPs carry a 16-bit on-chip single-access RAM (SARAM) of sizes varying from 

1-9K (16–bits) words. Code can be booted from an off-chip ROM and then executed at full speed once 

it is loaded into the on-chip SARAM. The SARAM can be confi gured by software as data memory, as 

program memory or combination of both data memory and program memory. The SARAM is divided 

into 1K- and/or 2K-word blocks contiguous in address memory space. All ¢C5X CPUs support parallel 

accesses to these SARAM blocks. However, one SARAM block can be accessed only once per machine 

cycle. In other words, the CPU can read from or write to one SARAM block while accessing another 

SARAM block.

3.13.4 On-Chip Memory Protection

The ¢C5X DSPs have a maskable option that protects the contents of on-chip memories. When the 

related bit is set, no externally originating instruction can access the on-chip memory spaces.

ON-CHIP PERIPHERALS 3.14

All ¢C5X DSPs have the same CPU structure; however, they have different on-chip peripherals connected 

to their CPUs. The ‘C5X DSP on-chip peripherals available are as follows:

Clock Generator

Hardware Timer

Software-Programmable Wait-State Generators

Parallel I/O Ports

Host Port Interface (HPI)

Serial Port

Buffered Serial Port (BSP)

Time-Division Multiplexed (TDM) Serial Port

User-Maskable Interrupts

3.14.1 Clock Generator

The clock generator consists of an internal oscillator and a phaselocked loop (PLL) circuit. The clock 

generator can be driven internally by a crystal resonator circuit or driven externally by a clock source. 
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The PLL circuit can generate an internal CPU clock by multiplying the clock source by a specifi c factor 

and so a clock source with a frequency lower than that of the CPU can be used.

3.14.2 Hardware Timer

A 16-bit hardware timer with a 4-bit prescaler is available. This programmable timer clocks at a rate 

that is between 1/2 and 1/32 of the machine cycle rate (CLKOUT1), depending upon the timer’s divide-

down ratio. The timer can be stopped, restarted, reset or disabled by specifi c status bits. Three registers 

control and operate the timer. The timer counter register (TIM) gives the current count of the timer. The 

timer period register (PRD) defi nes the period for the timer. The 16-bit timer control register (TCR) 

controls the operations of the timer.

3.14.3 Software-Programmable Wait-State Generators

Software-programmable wait-state logic is incorporated in ‘C5X DSPs allowing wait-state generation 

without any external hardware for interfacing with slower off-chip memory and I/O devices. This 

feature consists of multiple wait-state generating circuits. Each circuit is user-programmable to operate 

in different wait states for off-chip memory accesses.

3.14.4 Parallel I/O Ports

A total of 64K I/O ports are available, 16 of these ports are memory-mapped in data memory space. 

Each of the I/O ports can be addressed by the IN or the OUT instruction. The memory-mapped I/O ports 

can be accessed with any instruction that reads from or writes to data memory. The IS  signal indicates 

a read or write operation through an I/O port. The ¢C5X can easily interface with external I/O devices 

through the I/O ports while requiring minimal off-chip address decoding circuits.

3.14.5 Host Port Interface (HPI)

The HPI is available on the ¢C57S and ¢LC57. It is an 8-bit parallel I/O port that provides an interface 

to a host processor. Information is exchanged between the DSP and the host processor through on-chip 

memory that is accessible to both the host processor and the ‘C57.

3.14.6 Serial Port

Three different kinds of serial ports are available: a general-purpose serial port, a time-division 

multiplexed (TDM) serial port and a buffered serial port (BSP). Each ¢C5X contains at least one general-

purpose, high-speed synchronous, full-duplexed serial port interface that provides direct communication 

with serial devices such as codecs, serial analog-to-digital (A/D) converters and other serial systems. 

The serial port is capable of operating at up to one-fourth the machine cycle rate (CLKOUT1). The 

serial port transmitter and receiver are double-buffered and individually controlled by maskable external 

interrupt signals. Data is framed either as bytes or as words.

Five 16-bit registers (SPC, DRR, DXR, XSR, RSR) control and operate the serial port interface. The 

serial port control (SPC) register contains the mode control and status bits of the serial port. The data 

receive register (DRR) holds the incoming serial data, and the data transmit register (DXR) holds the 

outgoing serial data. The data transmit shift register (XSR) controls the shifting of the data from the 

DXR to the output pin. The data receive shift register (RSR) controls the storing of the data from the 

input pin to the DRR.
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3.14.7 Buffered Serial Port (BSP)

The BSP is available on the ¢C56 and ¢C57 devices. It is a full-duplexed, double-buffered serial port and 

an autobuffering unit (ABU). The BSP provides fl exibility on the data stream length. The ABU supports 

high-speed data transfer and reduces interrupt latencies. The BSP has a 2K-word buffer, which resides 

in the ‘C5X internal memory. Five BSP registers control and operate the BSP.

3.14.8 TDM Serial Port

The TDM serial port available on the ‘C50, ‘C51 and ‘C53 devices is a full-duplexed serial port that can 

be confi gured by software either for synchronous operations or for time-division multiplexed operations. 

The TDM serial port is commonly used in multiprocessor applications.

3.14.9 User-Maskable Interrupts

Four external interrupt lines (IN
—

T
—

1 – IN
—

T
—

4) and fi ve internal interrupts, a timer interrupt and four serial 

port interrupts are user maskable. When an interrupt service routine (ISR) is executed, the contents 

of the program counter are saved on an 8-level hardware stack, and the contents of 11 specifi c CPU 

registers, ACC, ACCB, PREG, ST0, ST1, PMST, TREG0, TREG1, TREG2, INDX and ARCR, are 

saved in one deep stack (shadow registers). When a return from interrupt instruction is executed, the 

CPU registers’ contents are restored.

Review Questions 

3.1 Mention few applications of each of the families of 

TI DSPs

3.2 What are the different buses of TMS320C5X and 

their functions?

3.3 List the functional units in CALU of 5X and explain 

the source and destination of operands of each of these 

units.

3.4 List the various registers used with the ARAU and 

their functions.

3.5 What is meant by memory mapped register? How 

is it different from a memory?

3.6 List status register bits of 5X and their functions.

3.7 Distinguish between the dual-access RAM and 

single-access RAM used in the on-chip memory of 5X.

3.8 List the on-chip peripherals in 5X and their 

functions.

3.9 What are the various interrupt types supported by 

5X?

3.10 Draw the internal architecture diagram of 5X and 

indicate the various blocks.

Self Test Questions 

3.1 The 320C5X DSPs are said to have advanced Harvard 

architecture because

(a) they have separate memory bus structures for 

program and data

(b) they have instructions that enable data transfer 

between the program and data memory area

(c) they have same memory bus structures for program 

and data

(d) the contents of program memory cannot into the 

data memory or vice versa

3.2 The central ALU of C5X DSP processors have ——— 

bit ALU and one of the operands for the ALU operation 

comes from ———.

(a) 32,ACC (b) 16,ACC (c) 32,ACCB (d) 16,ACCB

3.3 The result of operations performed in central ALU 

are stored in ———.

(a) ACC (b) ACCB (c) TREG0 (d) PREG

3.4 The ALU register whose either higher order word 

or lower order word can be loaded from memory is.
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(a) ACC (b) ACCB (c) TREG0 (d) PREG

3.5 The ——— bit register used for temporary storage 

of accumulator is ———.

(a) 32, PREG (b) 32, ACCB (c) 16, TREG0, (d) 32, ACC

3.6 The ——— permits execution of logical operations 

on data without affecting the contents of ACC.

(a) parallel logic unit (b) auxiliary ALU

(c) central ALU

3.7 The hardware multiplier unit in the C5X processors 

perform multiplication of ——— times ——— bit 

represented in ——— complement form.

(a) 16, 16, 1s (b) 8,8 1s (c) 16, 16, 2s (d) 8, 8, 2s

3.8 ——— holds the result of multiplication and is 

——— bit wide.

(a) PREG, 32  (b) PREG, 16

(c) TREG0, 16 (d) TREG0, 32

3.9 The register in which the multiplicand is stored 

before multiplication is performed is ——— and is ——— 

bit wide.

(a) PREG, 32  (b) PREG, 16

(c) TREG0, 16 (d) TREG0, 32

3.10 ——— permits the contents of memory to be left 

shifted by 0-16 bits before they are either fed to ALU or 

stored from ALU to memory.

(a) Scaling shifter (b) ALU

(c) PLU  (d) Auxiliary ALU

3.11 The register that specifi es the number of bits by 

which the scaling shifter should shift either the incoming 

data to one of the CPU registers or vice versa is ——— 

and is ——— bit wide.

(a)TREG1,4 (b) TREG1, 5 (c) TREG2, 5 (d) TREG2, 4

3.12 When the incoming data to CPU is left shifted by 

the scaling shifter the LSBs are fi lled with ———

(a) 0 (b) 1 (c) LSB before shifting

3.13 The bit of status register ST1, which determines 

whether the MSBs of the bits left shifted by the scaling 

shifter is zero, are sign extended is ———.

(a) SXM (b) TC (c) OV (d) OVM

3.14 In the hardware stack of C5X processors ——— bit 

numbers can be stored.

(a) 16, 16 (b) 16, 8 (c) 8, 8 (d) 8, 16

3.15 The bit of status register 0 (ST0) that becomes 1 if 

overfl ow occurs from an ALU operation is ———

(a) SXM (b) OV (c) OVM (d) TC (e) C

3.16 The bit of ST0 that determines whether the ACC is 

replaced with either largest positive or negative number 

or left unmodifi ed is ———.

(a) SXM (b) OV (c) OVM (d) TC (e) C

3.17 The bit of ST1 that is used for testing whether a 

particular memory is zero or not or for comparing one 

register against another register memory is ———.

(a) SXM (b) OV (c) OVM (d) TC (e) C

3.18 The bit of ST1 that becomes 1 if either addition 

generates a carry or subtraction results in borrow is 

———.

(a) SXM (b) OV (c) OVM (d) TC (e) C

3.19 The status register bit that determines whether 

multiplier’s 32-bit product is left shifted by 0, 1, 4 or right 

shifted by 6 with sign extension before it is transferred/

added to the ACC is ———.

(a) PM (b) CNF (c) HM (d) XF

(e) INTM

3.20 The RAM confi guration control bit that indicates 

whether the on-chip reconfi gurable dual-access RAM is 

mapped to data space or program space is ———.

(a) PM (b) CNF (c) HM (d) XF

(e) INTM

3.21 The bit of status register that determines whether 

the processor halts the internal operation while 

acknowledging a hold or not is ———.

(a) PM (b) CNF (c) HM (d) XF

(e) INTM

3.22 The ——— bit of the status register indicates the 

status of the general purpose output pin.

(a) PM (b) CNF (c) HM (d) XF

(e) INTM

3.23 The pointers that are contained in the status 

register 0 are ———.

(a) ARP (b) DP (c) ARB (d) IPTR

(e) INTM

3.24 The pointers that are contained in the status 

register 1 are ———.

(a) ARP (b) DP (c) ARB (d) IPTR

(e) INTM

3.25 If ——— bit is set to 0, all unmasked interrupts 

are enabled. Otherwise all the maskable interrupts are 

disabled.

(a) ARP (b) DP (c) ARB (d) IPTR

(e) INTM



The ¢C5X instruction set supports numerically intensive signal processing operations as well as general-

purpose applications, such as multiprocessing and high-speed control. The C5X instruction set is 

a superset of the ¢C1X and ¢C2X instruction sets and is source-code upward compatible with both 

devices.

ASSEMBLY LANGUAGE SYNTAX 4.1

For programming in the assembly language the C5X assembler assumes the following assembly language 

syntax. A source statement can contain four ordered fi elds. The general syntax for source statements is 

as follows:

[ label ] [:] mnemonic [ operand list ][;comment ]

They in turn follow these guidelines:

 ∑ All statements must begin with a label, a blank, an asterisk or a semicolon.

 ∑ Labels are optional; if used, they must begin in column 1.

 ∑ Labels may be placed either before the instruction mnemonic on the same line or on the 

preceding line in the fi rst column.

 ∑ One or more blanks must separate each fi eld. Tab characters are equivalent to blanks.

 ∑ Comments are optional. Comments that begin in column 1 can begin with an asterisk or a 

semicolon (* or ;), but comments that begin in any other column must begin with a semicolon.

The following types of operands are permitted:

0 £ dma £ 127 dma: Data Memory Address

0 £ pma £ 65535 pma: Program Memory Address

0 £ shift £ 15

0 £ shift2 £ 7

0 £ n £ 7  n:AR no.

0 £ k £ 255  k: Short Constant

0 £ lk £ 65535 lk: Long Constant

ind: {**+*–*0+ *0– *BR0+ *BR0–}

Operands can be constants or assembly-time expressions that refer to memory, I/O ports, register 

addresses, pointers, shift counts and a variety of other constants.

4
TMS320C5X ASSEMBLY

LANGUAGE INSTRUCTIONS
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The complete list of the mnemonics of the various instructions supported by 5X and a brief 

description of each of these instructions are given in Appendix A4. More detailed explanation of these 

instructions with examples is given in the TMS30C5X user reference manual. In this chapter, in Section 

4.2 the various addressing modes supported by C5X are discussed. In Sections 4.3-4.5 some of the most 

commonly used C5X instructions are explained individually with examples. In chapter 6 application 

programs which make use of the instructions explained in the above sections are presented.

ADDRESSING MODES 4.2

C5X processors can address 64K words of program memory and 96K words of data memory. C5X 

supports the following six addressing modes:

Direct addressing

Memory-mapped register addressing

Indirect addressing

Immediate addressing

Dedicated-register addressing

Circular addressing

The details of each of these addressing modes are considered next.

4.2.1 Direct Addressing

The data memory used with C5X processors is split into 512 pages each of 128 words long. The data 

memory page pointer (DP) in ST0 holds the address of the current data memory page. In the direct 

addressing mode of C5X, only lower-order 7 bits of the address are specifi ed in the instruction. The 

upper 9 bits are taken from the DP as shown in Fig. 4.1.

DP(9)

DP

15
9 MSBs

6
7 LSBs

0

Instruction Register (16)

Direct Memory Address

Fig. 4.1 16-bit data memory address bus (DAB)

4.2.2 Memory-Mapped Register Addressing

The RAM area in page 0 is used for storing some of the registers, interrupt vector addresses and so on. 

These locations can be accessed by specifying the actual address or by the register name, (e.g., the AR0 

can either be denoted by the actual memory location (10h) used for storing its value or by the symbol 

AR0). Since these memory locations can be interchangeably used with the register names, the registers 

corresponding to page 0 are referred to as memory-mapped registers (MMRs).

With memory-mapped register addressing, the MMRs can be modifi ed without affecting the current 

data page pointer value. In addition, any scratch pad RAM (DARAM B2) location or data page 0 can 

also be modifi ed. The memory-mapped register addressing mode operates like the direct addressing 

mode, except that the 9 MSBs of the address are forced to 0 instead of being loaded with the contents 
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of the DP. This allows the memory-mapped registers of data page 0 to be modifi ed directly without the 

overhead of changing the DP or auxiliary register. The following instructions operate in the memory-

mapped register addressing mode. Using these instructions does not affect the contents of the DP:

LAMM—Load accumulator with memory-mapped register

LMMR—Load memory-mapped register

SAMM—Store accumulator in memory-mapped register

SMMR—Store memory-mapped register

Example 4.1 The instruction LMMR AR0, #1500h loads AR0 with the content of the location 

1500h as shown in Fig. 4.2. Let the content of AR0 and the data memory location 

1500h be 2345h and 6789h, respectively, before executing the instruction.  After executing the instruction 

their contents become 6789h and 6789h.

Before execution of LMMR AR0, # 1500 h after execution.

Fig. 4.2 Memory-mapped register addressing example 4.1

Before execution of SMMR ARO, #1500h After execution.

Fig. 4.3 Memory-mapped register addressing example 4.2

The SMMR does the reverse operation.

Example 4.2 Let the content of AR0 and the data memory location be 2345h and 6789h, 

respectively, before executing the instruction SMMR AR0, # 1500h. After executing 

the instruction their contents become 2345h and 2345h as shown in Fig. 4.3.

LAMM * loads lower 16 bits of ACC, i.e., ACCL from the location pointed by the lower-order 7 bits of 

the current AR. The higher 16 bits ACCH is fi lled with 0.

Example 4.3 Let the content of ARP, AR1, ACC, the value of data memory locations 25h and 

825h be as shown in Fig. 4.4. After execution of the LAMM * instructions, the 

register contents are as shown on the right hand column in Fig. 4.4. It can be seen that the value in data 

memory location 25h is loaded into ACC. 25h corresponds to the lower-order 7 bits of AR1 and the higher 

bits of PAB are made to be 0 as the MMR corresponds to page 0.
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1

325 h

ARP

6789 h

8345 h

2345 h

Data mem.
825 h

Data mem.
25 h

ACC

1

325 h

ARP

6789 h

8345 h

Data mem.
825 h

Data mem.
25 h

ACC 8345 h

Before execution of LAMM * After execution

Fig. 4.4 Memory-mapped register addressing example 4.3

4.2.3 Immediate Addressing

The immediate addressing mode can be used to load either a 16-bit constant or a constant of length 13, 9 

or 7. Accordingly it is referred to as long immediate or short immediate addressing mode. This mode is 

indicated by the symbol #. For e.g., ADD # 56h adds 56h to ACC. Similarly ADD # 4567h adds 4567h 

to ACC.

4.2.4 Indirect Addressing

The ARs AR0-AR7 are used for accessing data, using indirect addressing mode. In the indirect addressing 

mode, out of the eight ARs the one which is currently used for accessing data is denoted by the register 

ARP. The contents of ARP can be temporarily stored in the ARB register. The indirect addressing mode 

of C5X permits the AR used for the addressing to be updated automatically either after or before the 

operand is fetched. Hence a separate instruction is not required to update the AR. However, if required, 

the contents of an AR can be incremented or decremented by any 8-bit constant using SBRK and ADRK 

instructions, (e.g., SBRK #k, ADRK #k subtracts, adds the constant k from/ to the AR pointed by 

ARP).

In the indirect addressing mode, the manner in which the memory address is computed and the 

manner in which the AR is altered after the instruction depends on the instruction. This is indicated to 

the assembler by the symbols *, *+, *–,*0+ , *0–, *BR0+ and *BR0–. The symbol used to indicate the 

indirect addressing mode and the action taken after executing the instruction are given in Table 4.1.

Table 4.1 Various options in the indirect addressing mode of 5X

Symbol Value of AR pointed by ARP after instruction execution

* AR unaltered

*+ AR incremented by 1

*– AR decremented by 1

*0+ AR incremented by the content of INDX

*0– AR decremented by the content of INDX

*BR0+ AR incremented by the content of INDX with reverse carry propagation

*BR0– AR decremented by the content of INDX with reverse carry propagation
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The details on addition/subtraction of INDX with AR with reverse carry propagation is given in 

Section 4.2.5.

Example 4.4 Let the value of ARP, AR2 and INDX register be 2, 1250h and 2h, respectively, and 

the content of the data memory location 1240h–1260h be  fi lled with the data 

2345h. Let SXM be 0. The value of ACC and AR2 after the following sequence of LACC (load accumulator 

with shift) instructions are executed is shown in Fig. 4.5.

LACC *, 0

LACC *+, 1

LACC *–, 2

LACC *0+, 4

LACC *0–, 3

2345h

468Ah

9786Ah

11A28h

8D14h

ACC

ACC

ACC

ACC

ACCLACC *, 0

LACC *+, 1

LACC *– , 2

LACC * 0+, 4

LACC * 0– , 3

Instruction executed Contents after execution

1250h

1251h

1250h

1252h

1250h

AR2

Fig. 4.5 Contents of ACC and AR after execution of program in example 4.4

4.2.5 Bit-Reversed Addressing

In the bit-reversed addressing mode, INDX specifi es one-half the size of the FFT. The value contained 

in the current AR must be equal to 2n – 1, where n is an integer, and the FFT size is 2n. An AR points to the 

physical location of a data value. When INDX is added to the current AR, using bit-reversed addressing, 

addresses are generated in a bit-reversed fashion.

Example 4.5 Assume that the ARs are eight bits long, that AR2 represents the base address of 

the data in memory (0110 0000
2
) and that INDX contains the value 0000 1000

2
. 

When the MAC (Multiply Accumulate) instruction MAC 0FF00h, *BR0+ is repeatedly executed eight times, 

the value of AR2 is modifi ed as given in Table 4.2.
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Table 4.2 Bit-reversed addresses example 4.5

Instruction executed Value of AR2

MAC 0FF00h,*BR0+ ; AR2 = 0110 0000 (0th value)

MAC 0FF00h,*BR0+ , AR2 = 0110 1000 (1st value)

MAC 0FF00h,*BR0+ ; AR2 = 0110 0100 (2nd value)

MAC 0FF00h,*BR0+ ; AR2 = 0110 1100 (3rd value)

MAC 0FF00h,*BR0+ ; AR2 = 0110 0010 (4th value)

MAC 0FF00h,*BR0+ ; AR2 = 0110 1010 (5th value)

MAC 0FF00h,*BR0+ ; AR2 = 0110 0110 (6th value)

MAC 0FF00h,*BR0+ ; AR2 = 0110 1110 (7th value)

4.2.6 Immediate Addressing

In immediate addressing, the instruction word(s) contains the value of the immediate operand. The 

‘C5X has both 1-word (8-bit, 9-bit and 13-bit constant) short immediate instructions and 2-word 

(16-bit constant) long immediate instructions. Table 4.3 lists the instructions that support immediate 

addressing.

Table 4.3 Instructions that support immediate addressing

Short Immediate (1-word)

8-bit constant 9-bit constant 13-bit constant

ADD LDP MPY

ADRK

LACL

LAR

RPT

SBRK

SUB

Long immediate (2-word) 16-bit constant

ADD AND APL CPL

LACC LAR MPY OPL

OR RPT RPTZ

SPLK SUB XOR XPL

4.2.6.1 Short Immediate Addressing

In short immediate instructions, the operand is contained within the instruction machine code.

Example 4.6 ADD#0FFh

In this example, the lower 8 bits are the operand and are added to the ACC by the CALU.
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4.2.6.2 Long Immediate Addressing

In long immediate instructions, the operand is contained in the second word of a 2-word instruction There 

are two long immediate addressing modes: one-operand instructions and two-operand instructions.

4.2.6.3 Long Immediate Addressing with Single/No Data Memory Access

Example 4.7 ADD #1234h

In this example, the second word (1234h) of the 2-word instruction is added to 

the ACC by the CALU.

4.2.6.4 Long Immediate Addressing with Dual Data Memory Access
The long immediate addressing also could apply for a second data memory access for the execution of 

the instruction.

Example 4.8 BLDD #2345h, 012h

In this example, the source address (operand1) is fetched via PAB, and the 

destination address (operand2) uses the direct addressing mode. Bits 15 through 

8 of machine code1 contain the opcode. Bit 7, with a value of 0, defi nes the addressing mode as direct, 

and bits 6 through 0 contain the dma

4.2.7 Dedicated-Register Addressing

The dedicated-registered addressing mode operates like the long immediate addressing mode, except 

that the address comes from one of two special-purpose memory-mapped registers in the CPU: the block 

move address register (BMAR) and the dynamic bit manipulation register (DBMR) The advantage of 

this addressing mode is that the address of the block of memory to be acted upon can be changed during 

execution of the program.

The syntax for dedicated-register addressing can be stated in one of two ways:

Specify BMAR by its predefi ned symbol:

Example 4.9 BLDD BMAR, DAT100; DP = 0

If BMAR contains the value 200h, then the content of data memory location 200h 

is copied to data memory location 100 on the current data page.

Exclude the immediate value from a parallel logic unit (PLU) instruction:

Example 4.10 OPL DAT10; DP = 6

If DBMR contains the value 00FF0h and the address 030Ah contains the value 01h, 

then the content of data memory location 030Ah is ORed with the content of the 

DBMR. The resulting value 0FFF is stored back in memory location 030Ah.

4.2.8 Circular Addressing

Many algorithms such as convolution, correlation and fi nite impulse response (FIR) fi lters can use 

circular buffers in memory to implement a sliding window, which contains the most recent data to be 

processed. The ¢C5X supports two concurrent circular buffers operating via the ARs. The following fi ve 

memory-mapped registers control the circular buffer operation:
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CBSR1—Circular buffer 1 start register

CBSR2—Circular buffer 2 start register

CBER1—Circular buffer 1 end register

CBER2—Circular buffer 2 end register

CBCR—Circular buffer control register

The 8-bit CBCR enables and disables the circular buffer operation. To defi ne circular buffers, the 

start and end addresses are loaded into the corresponding buffer registers fi rst; next, a value between 

the start and end registers for the circular buffer is loaded into an AR. The corresponding circular buffer 

enable bit in the CBCR should be set.

LOAD/STORE INSTRUCTIONS 4.3

Mnemonics and brief description of some of the load and store instructions of C5X are as follows:

LACB Load ACC To ACCB

LACC Load data memory value, with left shift, to ACC

 Load long immediate, with left shift, to ACC

 Load data memory value, with left shift of 16, To ACC

LACL Load data memory value to ACCL; zero ACCH

 Load short immediate to ACCL; zero ACCH

LACT Load data memory value, with left shift specifi ed by TREG1, to ACC

LAMM Load contents of memory-mapped register to ACCL; zero ACCH

SACB Store ACC in ACCB

SACH Store ACCH, with left shift, in data memory location

SACL Store ACCL, with left shift, in data memory location

SAMM Store ACCL in memory-mapped register

LAR Load data memory value to ARX

SAR Store ARX in data memory location

LDP Load data memory value to DP bits

MAR Modify AR

SPLK Store long immediate in data memory location

LPH Load data memory value to PREG high byte

LT Load data memory value to TREG0

PAC Load PREG, with shift specifi ed by PM bits, to ACC

SPH Store PREG high byte, with shift specifi ed by PM bits, in data memory location

SPL Store PREG low byte, with shift specifi ed by PM bits, in data memory location

LST Load data memory value to ST0

 Load data memory value to ST1

SST Store ST0 in data memory location

 Store ST1 in data memory location

The instructions LACC, SAMM, LAMM, SMMR and LMMR have already been explained in 

Section 4.2.

The ARP can be loaded either using the MAR instruction or LST # 0, LST #1 instruction as 

follows: 

When ST0 is loaded using the LST #0, it modifi es the content of ARP but leaves the ARB in STl 

unaltered. On the other hand, if ARB is modifi ed using LST #1, it makes ARP to be equal to ARB.
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Example 4.11 Let the value of DP and the content of dma 400h be 7 and 3E00h, respectively. 

After executing the LST #0, 00h instruction, the contents of ST0 and ST1 are as 

shown in Fig. 4.6.

Fig. 4.6 Loading ARP using LST #0 instruction

Example 4.12 Let the value of DP and the content of dma 400h be 7 and 0580h, respectively. 

After executing the LST #1, 00h instruction, the contents of ST0 and ST1 are as 

shown in Fig. 4.7.

Fig. 4.7 Loading ARB using LST #0 instruction

ST0 and STl can also be loaded using indirect addressing mode. In this case if the next ARP value 

is specifi ed in the instruction as an argument, it is ignored. The value of ARP is determined only by the 

value loaded into ST0/ST1.

Example 4.13 Let the value of ARP be 2 and the content of AR2, 0400h be 0400h, 0587h 

respectively. After executing the LST #1, *, AR3 instruction, the contents of ST0 

and ST1 are as shown in Fig. 4.8.

Data mem.
400h

ST0

ST1

0587h

5E07h

09A0h

Data mem.
400h

ST0

ST1

1E07h

Before executing LST # 1, *, AR3 After execution

0587h

0587h

2ARP 0ARP

Fig. 4.8 Loading ARP using indirect addressing
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The ARP can be modifi ed using the MAR *+, ARn instruction. In this case, content of the current AR 

is incremented and the new value of ARP becomes n.

Example 4.14 Let the present value of ARP be 5. When the Instruction MAR *+, AR3 executed, the 

value of ARP becomes 3. The content of AR5 is incremented.

ADDITION/SUBTRACTION INSTRUCTIONS 4.4

In the addition/subtraction instructions of C5X, one of the operand is ACC. The other operand can be 

PREG, ACCB or the content of memory fetched using one of the addressing modes. For the ADD and 

SUB instructions alone, the number fetched from memory, using dma, indirect addressing and immediate 

addressing with long constant, can be shifted left in the scaling shifter by 0-16 before performing the 

required operation.

Example 4.15 Let the initial content of ACC be 1234h. After executing the instruction ADD 

#2345h, 2, the content of ACC is as shown in Fig. 4.9.

Fig. 4.9 Addition using immediate addressing, example 4.14

In this case the data 2345h is left shifted by two positions before it is added to ACC.

In the case of indirect addressing mode, for the ADD/SUB instructions, the third arguement (if it is 

present) denotes the new value to which ARP is to be updated after executing the instruction.

ARP

Before executing of ADD *, 1, AR2 After execution

Data mem.
2100h

1

2100h

4563h

1234h

ARP

Data mem.
2100h

2

4563h

9CFAH

2100h

Fig. 4.10 Addition with shifting and changing ARP in a single instruction

Example 4.16 Let the initial content of ARP, AR1, ACC and data memory location 2100h be 2, 

2100h, 1234h and 4563h, respectively; after executing the instruction ADD *, 1, 

AR2, the content of these registers and memory location are as shown in Fig. 4.10. In this case after the 

instruction is executed, the content of ARP becomes 2. 

Examples of the some more ADD/SUB instructions are given next.

Example 4.17 ADD 55h, 2 ACC is added with the content of data memory with dma 55h in the 

current page after shifting it left by two positions.
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Example 4.18 ADD #23h; ACC is added with the immediate constant 23h.

Example 4.19 SUB 55h, 2; ACC is subtracted with the content of data memory with dma 55h in 

the current page after shifting it left by two positions.

Example 4.20 SUB *, 2;  ACC is added with the content of location pointed by the current AR after 

shifting it left by two positions.

The mnemonics of some of the other addition/subtraction instructions of 5X are as follows: ADCB, 

ADDB, ADDC, ADDS, ADDT, SBB, SBBB, SUBB, SUBC, SUBS, SUBT.

Description of these instructions is given in Appendix A4.1.

MOVE INSTRUCTIONS 4.5

The data move (DMOV) instruction copies the data from one memory location to the next higher 

location. It can use either direct or indirect addressing mode. For e.g., DMOV 45 copies the contents of 

location 45h to 46h.

Some more move instructions of C5X are as follows:

BLDP: Block move data from data memory to program memory

BLDD: Block move data from one data memory to another

BLPD: Block move data from program memory to data memory

TBLR: Block move data from program memory to data memory; the program memory address 

is contained in ACC lower order word. The dma can be specifi ed using either direct 

addressing or indirect addressing.

TBLW: Block move data from data memory to program memory; The program memory 

address is contained in ACC lower order word. The dma can be specifi ed using either 

direct addressing or indirect addressing.

BLDP and BLPD For the block move instruction BLDP the program memory address for the transfer 

is specifi ed using block move address register (BMAR).

Example 4.21 Let the value of dma page pointer DP and the BMAR be 8, 2850. After executing 

the instruction BLDP 00h, the contents of the memory locations and BMAR are as 

shown in Fig. 4.11.

Fig. 4.11 Block move from data to program memory
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The data memory address is specifi ed using direct memory address in Example 4.21. The dma may 

also be specifi ed using indirect addressing. For example, BLDP * is a valid instruction.

For the block move instruction BLPD, the program memory address for the transfer may be specifi ed 

using BMAR. The pma may also be specifi ed using immediate addressing mode. For the instruction 

BLPD, either direct addressing or indirect addressing may be used for specifying the dma.

Example 4.22 Let the value of dma page pointer DP and the BMAR be 8, 2850h. After executing 

the instruction BLDP 00h, the contents of the memory locations and BMAR are as 

shown in Fig. 4.12.

Before execution of BLPD # 850h 00h After execution

Data mem.
400h

2100h

2850BMAR

Prog. mem.
2850h

4523h

2850

Data mem.
400h

2100h2100h

BMAR

Prog. mem.
2850h

Fig. 4.12 Block move with BMAR from program to data memory

Example 4.23 Let the value of dma page pointer DP be8. After executing the instruction BLPD 

#850h, 00h, the contents of the memory locations are as shown in Fig. 4.13.

Before execution of BLPD # 850h 00h After execution

Data mem.
400h

2100h4523h
Data mem.

400h

2100h2100h
Program mem.

850h
Program mem.

850h

Fig. 4.13 Block move with immediate addressing from program to data memory

BLDD Instruction This instruction is used for moving data from one data memory to another. This 

permits a variety of combinations for specifying the source and destination addresses. BMAR may be 

used to specify either the source address or the destination address. Alternately one of the addresses may 

be specifi ed using immediate addressing and the other address may be specifi ed using either direct or 

indirect addressing. The various possible BLDD instructions and the addressing mode for source and 

destinations are given in Example 4.24.

Example 4.24 Let the value of DP and ARP be 8 and 2 and the content of AR2 and BMAR be 

2800 h and 2900h, respectively. Specify the addressing modes and the addresses 

for the source and destination for the following instructions:

BLDD #400, 25h

BLDD #400h, *+

BLDD 45h,#400h

BLDD *+, #456, AR4
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BLDD BMAR,*

BLDD BMAR, 25h

BLDD 00h, BMAR

BLDD *+, BMAR

The addressing modes and the addresses for the source and destination for the above instructions are 

given in Table 4.4.

Table 4.4 Addressing modes for the various instruction types of BLDD

Instruction Source Destination

Address Addressing mode Address Addressing mode

BLDD # 400, 25h 400h Imm. 425h Direct

BLDD #400h, *+ 400h Imm. 2800h Ind.

BLDD 45h, #450h 445h Direct 450h Imm.

BLDD *+, #456, AR4 2800h Ind. 456h Imm.

BLDD BMAR, * 2900h (BMAR) 2800h Ind.

BLDD BMAR, 25h 2900h (BMAR) 425h Direct

BLDD 00h, BMAR 400h Direct 2900h BMAR

BLDD *+, BMAR 2800h Ind. 2900h BMAR

MULTIPLICATION INSTRUCTIONS 4.6

The mnemonic for some of the instructions which multiply two 16-bit numbers are as follows:

MPY: Multiply numbers in 2’s complement form

MPYU: Multiply unsigned numbers

MPYA: Multiply and add the product to ACC

MPYS: Multiply and subtract the product from ACC

MADD: Multiply and add the product to ACC address of an operand given by BMAR

MPYA: Multiply and add the product to ACC and move the on-chip RAM by one word.

In all the above multiply instructions one of the operand is taken from TREG0 and the other operand 

is specifi ed using one of the addressing modes. In the MACD instruction, a data memory value is 

multiplied by a program memory value. The previous value of the product register is shifted and added 

to the ACC before the PREG is loaded with the product. The number of shifts is specifi ed by the PM 

status bits. This instruction is useful for performing convolution of one array with another.

Example 4.25 Let the initial content of the data memory locations 315h and 316h, program mem-

ory location FF0Fh and the content of the registers TREG0, PREG and ACC be 45h, 

28h, 8h, 46h, 0025 4235h, 0234 5678h, respectively. Let the value of data memory page pointer DP be 6 

and the value of PM be 0 (i.e., no shift by the prescaler). After executing the instruction MACD 0FF0Fh, 15h, 

the content of the memory locations and registers are as shown in Fig.4. 14.
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Before execution of MACD 0FF0Fh, 15h After execution

Data mem.
315h

Program mem.
FF0Fh

45h

28h

8h

1234h

4563h

1234h

Data mem.
316h

TREG0

PREG

ACC

Data mem.
315h

Program mem.
FF0Fh

45h

8h

0045h

5797h

Data mem.
316h

TREG0

PREG

ACC

45h

45h

Fig. 4.14 Multiply accumulate and data move in a single instruction

The data memory address from which one of the operand is obtained is 315h. This is because higher-

order data memory address bus (DAB) bits 15 – 8 is 0000 0011 0 corresponding to DP 6. The lower-

order bits specifi ed in the instruction is 15h, i.e., 001 0101. The complete address in binary form is 0000 

0011 0001 0101 and it corresponds to 0315h.

It may be noted from Example 4.24 that the previous value of PREG is added to ACC before the new 

value of the product is stored in PREG. The same thing is true if MAC is used in place of MACD. When 

either of these instructions are used for the convolution, when the last data is multiplied by the multiplier, 

accumulator will contain only the sum upto previous data. Hence to add the product corresponding to 

the last data, one more addition operation is required. This is achieved using the instruction APAC 

which adds the product register to the ACC.

The instructions ZAP and ZPR can be used for initialisation in this case. ZAP makes both ACC and 

PREG to be 0. ZPR makes PREG to be 0.

C5X has instructions for fi nding square of a number. The SQRA instruction adds the shifted value 

of PREG to ACC and stores the square of the content of data memory location in PREG. The SQRS 

instruction subtracts the shifted value of PREG from ACC and stores the square of the content of data 

memory location in PREG. Number of shifts for both these instructions are determined from the PM 

status bits. Brief description of all the multiply instructions is given in Appendix A4.4

4.6.1 Shift/logical Instructions

One of the operands for the AND, OR and XOR instructions is ACC. The other operand can be the 

content of a memory location specifi ed using direct addressing or indirect addressing. Alternately a long 

constant can be specifi ed using immediate addressing. In this case the constant may be shifted by 0–15 

bits towards left before performing the operation.

AND ANDing the ACC with a long constant k, the content of a dma or pma

OR ORing the ACC with a long constant k, the content of a dma or pma

Example 4.26 Let the initial content of ACC be 1234h. After executing the instruction AND 

#2345h, 2, the content of ACC is as shown in Fig. 4.15. 
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Fig. 4.15 AND operation using immediate addressing, example 4.25

In this case the data 2345h is left shifted by two positions before it is ANDed with ACC.

Example 4.27 Let the initial content of ARP, AR1, ACC and data memory location 2100h be 2, 

2100h, 1234h and 4563h, respectively; after executing the instruction OR *,AR2, 

the content of these registers and memory location is as shown in Fig. 4.16.

Before execution of OR *,AR2 After execution

ARP

AR1

Data mem.
2100h

Data mem.
2100h

ARP

AR1

ACC ACC

1

4563h

2

2100h 2100h

4563h

5777h1234h

Fig. 4.16 ORing using indirect addressing, example 4.26

Example 4.28 Let the initial content of DP, ACC and data memory location FFD0h be 511, 1234h 

and 4563h, respectively; after executing the instruction XOR 50h, the content of 

these registers and memory location is as shown in Fig. 4.17.

Before execution of XOR 50h After execution

DP

Data mem.
FFD0h

DP

ACC ACC

1

4563h

2

4563h

5757h1234h

Data mem.
FFD0h

Fig. 4.17 XORing using direct addressing, example 4.27

Mnemonics for some of the other shift/logical instructions are as follows:

ANDB ANDing ACC with ACCB

XORB EX ORs the ACC with ACCB

ROLB rotate both ACC and ACCB left once

ROL rotate ACC left once

RORB rotate both ACC and ACCB right once

ROR rotate ACC right once
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BSAR n Rotates ACC right by n(1–16) bits

EXAR exchange the contents of ACC, ACCB

NEG fi nd 2’s complement of ACC

CMPL fi nd 1’s complement of ACC

BIT copy bit n of a memory onto TC

BITT copy bit n of a memory onto TC.

 n is given by the 4 LSBs of TREG2

Status bits affected by the above logical/shift instructions are given in Table 4.5.

Table 4.5 Status bits affected/unaffected by the shift/logical instructions

Mnemonic Status bit affected Status bits not affected

AND All bits

ANDB None

BIT, BITT TC

BSAR None

CMPL C

EXAR None

NEG C and OV

OR C

ORB None

ROL ROLB C

ROR, RORB C

XOR C

XORB None

THE NORM INSTRUCTION 4.7

This instruction is useful for converting a fi xed point number into a fl oating point number. The number 

to be converted is stored in ACC. In a sign extended number some of the most signifi cant bits denote 

the sign extended bits and only the remaining bits denote the magnitude. Every time NORM instruction 

is executed, it removes an extra bit in ACC, which denotes the bit corresponding to sign extension. 

By repeated use of the NORM instruction, the ACC can be made to contain only the magnitude. The 

exponent is stored in the current AR. This instruction adjusts the value of ACC, current AR and TC bit 

as follows:

If ACC = 0 TC is set to 1;

Else if ((ACC(31) XOR ACC(30)) = 0)

   then

    {TC is set to 0;

    current AR is modifi ed as specifi ed by the

    NORM instruction;
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    ACC is shifted left once;

    }

   Else TC is made 0;

The value of AR can be modifi ed using one of the following schemes:

*, *+, *-, *0+, *0-, *BR0+, *BR0-

Example 4.29 Let the initial value of ARP, AR2 and ACC be 3, 00, and 0FFFF F002h, respectively. 

After executing the norm instruction NORM *+, their contents are shown in Fig. 4.18.

Before execution of NORM *+ After execution

ARP ARP

ACC ACC

1

01h

2

00h

0FF E004hFFFF F002h

AR2 AR2

TC TC 0X

Fig. 4.18 NORM instruction incrementing AR if ACC has extra sign bits

Example 4.30 Let the initial value of ARP, AR2 and ACC be 3, 0Fh and 0FFFF F002h, respectively. 

After executing the norm instruction NORM *–, their contents are shown in Fig. 4.19.

Before execution of NORM *– After execution

ARP ARP

ACC ACC

2

0Eh

2

0Fh

0FFF E004hFFFF F002h

AR2 AR2

TC TC 0X

Fig. 4.19 NORM instruction decrementing AR if ACC has extra sign bits

PROGRAM CONTROL INSTRUCTIONS 4.8

4.8.1 Branch and Call Instructions

The C5X instruction set has both conditional and unconditional branch and call instructions. The branch 

and call instructions of C5X permit more than one condition to be tested using a single instruction. 

Branching occurs only if all the conditions are satisfi ed. The conditions which can be tested and the 

corresponding condition codes are given in Table 4.6.
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Table 4.6 Condition codes for 5X

Conditions Condition codes

ACC = 0 EQ

ACCπ0 NEQ

ACC<0 LT

ACC£0 LEQ

ACC>0 GT

ACC≥0 GEQ

C = 0 NC

C = 1 C

OV = 0 NOV

OV=1 OV

TC = 0 NTC

TC = 1 TC

BIO low BIO

Unconditionally UNC

Example 4.31 BCND PGM1FFh, LEQ, OV In this case branch occurs to program memory address 1FFh 

only if ACC £ 0 and OV= 1. Otherwise branching does not occur. The ¢C5X performs 

speculative fetching by reading two additional instruction words. Hence if the conditions are not met, the 

fetched instructions would be executed. Otherwise these two instruction words are discarded.

The mnemonics for some of the program control instructions are as follows:

B branch unconditionally

BACC branch unconditionally to the address given by ACC

BCND branch conditionally

BANZ branch conditionally if ARn not zero

CALA call a subroutine using indirect addressing

CALL call a subroutine unconditionally

CC call a subroutine conditionally

The branch instruction requires four cycles when branching occurs; one for the B instruction to enter 

the execute phase, one for fetching the branch address, two more for fl ushing out the two 1-word or 

one 2-word instruction which enter the instruction pipeline after the branch instruction. (Instruction 

pipelining in C5X is explained in Chapter 5.) The same is true with the call instructions. They also 

require four cycles out of which the last two cycles are required for fl ushing out the pipeline.

However the delayed branch and call instructions permit the call and branching to be carried out in 

two clock cycles. The one 2-word instruction or two 1-word instructions following the delayed branch/

call instruction are fetched from program memory and executed before the branch/call is carried out. 

Hence instruction pipeline need not be fl ushed out after the call/branch instruction and the execution 

can resume from the branch address. Mnemonics of some of the delayed branch/call instructions are as 

follows:.

BACCD delayed branch to program memory location specifi ed by ACCL
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BANZD delayed branch to program memory location if AR not zero

BCNDD delayed branch conditionally to program memory location

BD delayed branch unconditionally to program memory location

CALAD delayed call to subroutine addressed by ACCL

CALLD delayed call to subroutine unconditionally

CCD delayed call to subroutine conditionally

4.8.2 PUSH and POP Instructions

The PUSH instruction pushes the values down one level in the seven lower locations of the stack. The 

contents of the accumulator low byte (ACCL) are copied to the top of the stack (TOS). The values on 

the stack are pushed down before the ACC value is copied. The hardware stack is last-in, fi rst-out with 

eight locations. If more than eight pushes (CALA, CALL, CC, INTR, NMI, PSHD, PUSH or TRAP 

instructions) occur before a POP, the fi rst data values written are lost with each succeeding push. The 

PSHD instruction pushes a data memory location to the top of the stack instead of ACC after pushing 

the contents of the stack one level down. The POP and POPD instruction does the reverse operations. 

POP instruction pops the top of the stack to ACC and POPD instruction pops the top of the stack to a 

data memory. When the stack is popped, the bottom word is left unaffected and hence the bottom two 

words contain the same values.

4.8.3 RET Instruction

When this instruction is executed, the contents of the TOS are copied to the program counter (PC). The 

stack is popped one level after the contents are copied. The RET instruction is used with the CALA, 

CALL and CC instructions for subroutines.

Example 4.32 Let the RET instruction be stored in PGM address 96h. After executing the RET instruction, 

the contents of PC and stack are modifi ed as shown in Table 4.7.

Table 4.7 Contents of PC and stack In example 4.31

Before executing RET After execution

PC  96h 137h

Stack 137h 451h

451h 751h

751h 212h

212h 3F3h

3F3h 454h

454h 16Eh

16Eh 16Eh

16Eh 16Eh

Note that in C5X, the stack is of size 8. Like the conditional and delayed call/branch instructions, 

there are also conditional and delayed return instructions. The mnemonics of these instructions are as 

follows:
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RETCD delayed return from subroutine conditionally

RETD delayed return from subroutine

4.8.4 Repeat Instructions

The RPT instruction can be used to execute a single instruction repeatedly to a maximum no. of 65535 

times. The iteration count can be specifi ed using direct addressing, indirect addressing, short as well as 

long immediate addressing. Hence the following RPT instructions are valid

RPT 20

RPT *

RPT #7

RPT #2345h

If n is the content of the memory location or immediate constant, the operation is repeated n+1 

times.

The RPTB instruction can be used to execute a block of instructions repeatedly to a maximum number 

of 65535 times.

For the RPTB instruction, the register block repeat count register (BRCR) determines the number of 

times a block of instructions is repeatedly executed. It should be loaded before the RPTB instruction is 

used. The PASR and PAER registers give the starting and ending address of the block of instructions.

For example, in the instruction RPTB 1500h, the PAER is loaded with 1500h and the block of 

instructions till the program memory address 1500h is executed. If the instructions following RPTB till 

the instruction in 1500h are to be executed n times, BRCR should be loaded with n–1.

Example 4.33 
 SPLK #9h, BRCR

   RPTB 1500h

   LACC *+

   SUB 30h

   ADDB

  1500h LACB

In this example, the block starting at LACC instruction and ending with LACB is executed 10 

times.

The instruction RPTZ # k clears both ACC and PREG and then executes the next instruction k 

times.

Only some of the instructions of C5X can be repeated. The instructions which can be repeatedly 

executed using repeat instructions are indicated in bold face form in the Appendix 4.

PERIPHERAL CONTROL 4.9

4.9.1 IN and OUT Instructions

The IN instruction of C5X reads a 16-bit number from input port and stores it in the data memory 

location. The OUT instruction of C5X reads a 16-bit number from data memory and writes it onto the 

output port. The data memory address could be given either using direct or indirect addressing I/O 

ports can either be the ports (PA0-PA15) inside C5X or ports outside. The ports PA0-PA15 are memory 

mapped to the locations 50h-5Fh in data page 0. Examples of valid IN and OUT instructions are as 

follows:
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Example 4.34 IN 20h, PA5; Let DP = 7; In this case,  the data is read from PA5 (i.e. data memory 

location 55h) and stored in data memory location 420h. 

Example 4.35 IN *,100h; In this case, the data is read from I/O port with address 1000h and 

stored in the dma pointed by the current AR. 

Example 4.36 OUT *,PA7; In this case, the data is read from data memory location pointed by 

the current AR and stored in PA7 (i.e. data memory location 57h in page 0).

Example 4.37 OUT 30h, 1000h; Let DP = 06h. In this case, the data is read from the data 

memory location 330h and stored in I/O port with address 1000h.

4.9.2 Instructions Used with Interrupts

As mentioned in Chapter 3, the core of C5X consists of the following on-chip devices: serial port, 

TDM serial port, timer, software programmable wait state generators, I/O ports and divide by one clock 

circuit. They are controlled using memory mapped registers.

The C5X devices have four external maskable interrupts  NI
——

T
—
4–IN

—        
T
—

1 and a non-maskable interrupt 

(NMI) . Internal interrupts are generated by the serial port (RINT and XINT), the timer (TINT), the 

TDM port (TRNT and TXNT) and the software interrupt instructions (TRAP, NMI and INTR).

Interrupt priorities are set so that R
—

S
–
 has the highest priority and IN

—
T
—

4 has the lowest priority. N
—

MI
—

 

has the second highest priority. The memory-mapped register interrupt mask register (IMR) is used for 

masking external and internal interrupts. The bit assignment for the IMR is shown in Fig. 4.20.

Fig. 4.20 Bit assignment for interrupt mask register (IMR)

The IMR is accessible with both read and write operations. A 1 in bit positions 15 through 0 of 

the IMR enables the corresponding interrupt provided the interrupt enable fl ag INTM is 0. INTM =1 

disables all interrupts. The instructions SETC INTM and CLRC INTM are used for this purpose. The 

IFR register indicates the interrupts which are pending. The bit assignment for the IFR is shown in 

Fig. 4. 21.

R
E
S
D

H
I
N
T

R
E
S
D

----
INT4

T
X
N
T

T
R
N
T

X
I
N
T

R
I
N
T

T
I
N
T

----
INT3

----
INT2

----
INT1

Fig. 4.21 Bit assignment for interrupt fl ag register (IFR)
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An IFR bit is cleared by reset, servicing of the corresponding interrupt or by writing a 1 to the 

corresponding bit. Writing a 0 to a specifi c bit has no effect. All pending interrupts can be cleared by 

writing the current contents of the IFR back into the IFR.

When the CPU accepts an interrupt, before fetching the instruction at the interrupt vector location, 

it stores each of the following registers ACC, ACCB, PREG, ST0, ST1, PMST, TREG0, TREG1, 

TREG2, INDX and ARCR in one deep stack (shadow registers). The PC is stored in an 8 deep hardware 

stack. These registers are popped back when the return from interrupt instructions RETE and RETI 

are executed. RETE also clears INTM but RETI does not do that. The following list gives a list of 

instructions used with interrupts.

IDLE wait till an unmasked interrupt or reset

IDLE2  enter low power mode and wait till

 an unmasked interrupt or reset occurs

NMI execute the ISR starting at 0024h

NOP  increment PC; perform nothing else

XC n, [] execute the next n instructions if the condition [ ] is met else it executes NOPs for

 the Next n instructions

TRAP Execute the ISR Starting at 0022h

INTR K execute a software ISR starting at an address

 depending on the value of k

 k is not the starting address of ISR

RETE return from ISR and clear INTM

RETI return from ISR but do not clear INTM

When the IDLE instruction is executed, the CPU enters the lower power wait state and comes out of 

it only if an interrupt occurs. After it comes out, it will execute the ISR if the INTM = 0. Otherwise it 

skips the ISR and executes the instruction following IDLE.

When the IDLE2 is executed, the CPU behaves the same way as for IDLE. In addition to that, the 

peripherals also become inactive.

When interrupts are disabled (INTM =1) and an interrupt causes an IDLE or IDLE2 instruction to 

be exited, none of the IFR bits are cleared (including the IFR bit that caused the IDLE or IDLE2 to be 

exited). The only event, other than reset or clearing the IFR bits directly in software, that can cause an 

IFR bit to be cleared is actually taking the interrupt trap when the ISR is entered. Therefore, if an interrupt 

causes an IDLE or IDLE2 instruction to be exited when interrupts are disabled, the corresponding IFR 

bit is not cleared; whereas, if interrupts are enabled and the ISR is entered, the IFR bit is cleared.

The INTR instruction allows any ISR to be executed through the software. An INTR interrupt for the 

external interrupts (INT1 INT4)-  executes like an external interrupt.

The NMI instruction has the same affect as a hardware non-maskable interrupt (NMI). The NMI 

instruction transfers program control to program memory location 24h. Interrupts are globally disabled 

(INTM =1), but key registers are not saved into context shadow registers.

The TRAP instruction transfers program control to program memory location 22h. The TRAP 

instruction disables interrupts (INTM =1), but key registers are not saved into context shadow 

registers.
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APPENDIX 4 

INSTRUCTION SET SUMMARY

A4.1 Accumulator Memory Reference Instructions

 Mnemonic Description

ABS Absolute value of ACC; zero carry bit

ADCB Add ACCB and carry bit to ACC

ADD Add data memory value, with left shift, to ACC

 Add data memory value,with left shift of 16, to ACC

 Add short immediate to ACC

 Add long immediate, with left shift, to ACC

ADDB Add ACCB to ACC

ADDC Add data memory value and carry bit to ACC with sign extension suppressed

ADDS Add data memory value to ACC with sign extension suppressed

ADDT Add data memory value, with left shift specifi ed by TREG1, to ACC

AND AND data memory value with ACCL; zero ACCH

 AND long immediate, with left shift, with ACC

 AND long immediate, with left shift of 16, with ACC

ANDB AND ACCB with ACC

BSAR Barrel-shift ACC right

 CMPL 1s complement ACC

CRGT Store ACC in ACCB if ACC > ACCB

CRLT Store ACC in ACCB if ACC < ACCB

EXAR Exchange ACCB with ACC

LACB Load ACC to ACCB

LACC Load data memory value, with left shift, to ACC

 Load long immediate, with left shift, to ACC

 Load data memory value, with left shift of 16, to ACC

LACL Load data memory value to ACCL; zero ACCH

 Load short immediate to ACCL; zero ACCH

LACT Load data memory value, with left shift specifi ed by TREG1, to ACC

LAMM Load contents of memory-mapped register to ACCL; zero ACCH

NEG Negate (2s complement) ACC

NORM Normalise ACC

OR OR data memory value with ACCL

 OR long immediate, with left shift, with ACC

 OR long immediate, with left shift of 16, with ACC

ORB OR ACCB with ACC

ROL Rotate ACC left 1 bit

ROLB Rotate ACCB and ACC left 1 bit

ROR Rotate ACC right 1 bit

RORB Rotate ACCB and ACC right 1 bit
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SACB Store ACC in ACCB

SACH Store ACCH, with left shift, in data memory location

SACL Store ACCL, with left shift, in data memory location

SAMM Store ACCL in memory-mapped register

SATH Barrel-shift ACC right 0 or 16 bits as specifi ed by TREG1

SATL Barrel-shift ACC right as specifi ed by TREG1

SBB Subtract ACCB from ACC

SBBB Subtract ACCB and logical inversion of carry bit from ACC

SFL Shift ACC left 1 bit

SFLB Shift ACCB and ACC left 1 bit

SFR Shift ACC right 1 bit

SFRB Shift ACCB and ACC right 1 bit

SUB Subtract data memory value, with left shift, from ACC

SUBB Subtract data memory value and logical inversion of carry bit from ACC with sign extension 

suppressed

SUBS Subtract data memory value from ACC with sign extension suppressed

SUBT Subtract data memory value, with left shift specifi ed by TREG1, from ACC

XOR Exclusive-OR data memory value with ACCL

XORB Exclusive-OR ACCB with ACC

ZALR Zero ACCL and load ACCH with rounding

ZAP Zero ACC and PREG

A4.2 Auxiliary Registers and Data Memory Page Pointer Instructions

Mnemonic Description

ADRK Add short immediate to AR

CMPR Compare AR with ARCR as specifi ed by CM bits

LAR Load data memory value to ARx

LDP Load data memory value to DP bits

MAR Modify AR

SAR Store ARx in data memory location

SBRK Subtract short immediate from AR

A4.3 Parallel Logic Unit (PLU) Instructions

Mnemonic Description

APL AND data memory value with DBMR, and store result in data memory location

 AND data memory value with long immediate and store result in data memory location

CPL Compare data memory value with DBMR

 Compare data memory value with long immediate

OPL OR data memory value with DBMR and store result in data memory location

OR Data memory value with long immediate and store result in data memory location

SPLK Store long immediate in data memory location

XPL Exclusive-OR data memory value with DBMR and store result in data memory location
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 Exclusive-OR data memory value with long immediate and store result in data memory 

location

LPH Load data memory value to PREG high byte

LT Load data memory value to TREG0

A4.4 TREG0, PREG and Multiply Instructions

Mnemonic Description

LTA Load data memory value to TREG0; add PREG, with shift specifi ed by PM bits, to ACC

LTD Load data memory value to TREG0; add PREG, with shift specifi ed by PM bits, to ACC; 

and move data

LTP Load data memory value to TREG0; store PREG, with shift specifi ed by PM bits, in ACC

LTS Load data memory value to TREG0; subtract PREG, with shift specifi ed by PM bits, from 

ACC

MAC Add PREG, with shift specifi ed by PM bits, to ACC; load data memory value to TREG0; 

multiply data memory value by program memory value and store result in PREG

MACD Add PREG, with shift specifi ed by PM bits, to ACC; load data memory value to TREG0; 

multiply data memory value by program memory value and store result in PREG; and 

move data

MADD Add PREG, with shift specifi ed by PM bits, to ACC; load data memory value to TREG0; 

multiply data memory value by value specifi ed in BMAR and store result in PREG; and 

move data

MADS Add PREG, with shift specifi ed by PM bits, to ACC; load data memory value to TREG0; 

multiply data memory value by value specifi ed in BMAR and store result in PREG

MPY Multiply data memory value by TREG0 and store result in PREG

 Multiply short immediate by TREG0 and store result in PREG

 Multiply long immediate by TREG0 and store result in PREG

MPYA Add PREG, with shift specifi ed by PM bits, to ACC; multiply data memory value by

 TREG0 and store result in PREG

MPYS Subtract PREG, with shift specifi ed by PM bits, from ACC; multiply data memory value 

by TREG0 and store result in PREG

MPYU Multiply unsigned data memory value by TREG0 and store result in PREG

PAC Load PREG, with shift specifi ed by PM bits, to ACC

SPAC Subtract PREG, with shift specifi ed by PM bits, from ACC

SPH Store PREG high byte, with shift specifi ed by PM bits, in data memory location

SPL Store PREG low byte, with shift specifi ed by PM bits, in data memory location

SPM Set product shift mode (PM) bits

SQRA Add PREG, with shift specifi ed by PM bits, to ACC; load data memory value to TREG0; 

square value and store result in PREG

SQRS Subtract PREG, with shift specifi ed by PM bits, from ACC; load data memory value to 

TREG0; square value and store result in PREG

ZPR Zero PREG
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A4.5 Branch and Call Instructions

Mnemonic Description

B Branch unconditionally to program memory location

BACC Branch to program memory location specifi ed by ACCL

BACCD Delayed branch to program memory location specifi ed by ACCL

BANZ Branch to program memory location if AR not zero

BANZD Delayed branch to program memory location if AR not zero

BCND Branch conditionally to program memory location

BCNDD Delayed branch conditionally to program memory location

BD Delayed branch unconditionally to program memory location

CALA Call to subroutine addressed by ACCL

CALAD Delayed call to subroutine addressed by ACCL

CALL Call to subroutine unconditionally

CALLD Delayed call to subroutine unconditionally

CC Call to subroutine conditionally

CCD Delayed call to subroutine conditionally

INTR Software interrupt that branches program control to program memory location

NMI Nonmaskable interrupt and globally disable interrupts

 (INTM =1)

RET Return from subroutine

RETC Return from subroutine conditionally

RETCD Delayed return from subroutine conditionally

RETD Delayed return from subroutine

RETE Return from interrupt with context switch and globally enable interrupts (INTM = 0)

RETI Return from interrupt with context switch

TRAP Software interrupt that branches program control to program memory location 22h

XC Execute next instruction(s) conditionally

A4.6 I/O and Data Memory Instructions

Mnemonic Description

BLDD Block move from data to data memory

 Block move from data to data memory with destination address long immediate

 Block move from data to data memory with source address in BMAR

 Block move from data to data memory with destination address in BMAR

BLDP Block move from data to program memory with destination address in BMAR

BLPD Block move from program to data memory with source address in BMAR

 Block move from program to data memory with source address long immediate

DMOV Move data in data memory

IN Input data from I/O port to data memory location

LMMR Load data memory value to memory-mapped register

OUT Output data from data memory location to I/O port

SMMR Store memory-mapped register in data memorylocation
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TBLR Transfer data from program to data memory with source address in ACCL

TBLW Transfer data from data to program memory with destination address in ACCL

A4.7 Control Instructions

Mnemonic Description

BIT Test bit BITT Test bit specifi ed by TREG2

CLRC Clear overfl ow mode (OVM) bit

 Clear sign extension mode (SXM) bit

 Clear hold mode (hM) bit

 Clear test/control (TC) bit

 Clear carry (C) bit

 Clear confi guration control (CNF) bit

 Clear interrupt mode (INTM) bit

 Clear external fl ag (XF) pin

IDLE Idle until non-maskable interrupt or reset

IDLE2 Idle until non-maskable interrupt or reset, low-power mode

LST Load data memory value to ST0

 Load data memory value to ST1

NOP No operation

POP Pop top of stack to ACCL; zero ACCH

POPD Pop top of stack to data memory location

PSHD Push data memory value to top of stack

PUSH Push ACCL to top of stack

RPT Repeat next instruction specifi ed by data memory value

 Repeat next instruction specifi ed by short immediate

 Repeat next instruction specifi ed by long immediate

RPTB Repeat block of instructions specifi ed by BRCR

RPTZ Clear ACC and PREG; repeat next instruction specifi ed by long immediate

SETC Set overfl ow mode (OVM) bit

 Set sign extension mode (SXM) bit

 Set hold mode (hM) bit

 Set test/control (TC) bit

 Set carry (C) bit

 Set external fl ag (XF) pin high

 Set confi guration control (CNF) bit

 Set interrupt mode (INTM) bit

SST Store ST0 in data memory location

 Store ST1 in data memory location
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Review Questions 

4.1 Explain how the memory address of the operand 

is obtained in (i) direct addressing mode and (ii) MMR 

addressing mode.

4.2 What are the different ways in which the auxiliary 

register pointer can be updated in 5X?

4.3 Explain the immediate addressing mode of C5X 

with examples.

4.4 Give a brief account of the load/ store instructions 

of 5X.

4.5 Let the content of ARP,  AR1, ACC and the value of data 

memory locations 25h and 825h be as shown in Fig. 4.22.

Fig. 4.22 Content of ARP, AR1, ACC and value of data

memory locations 25h and 825h

After execution of the SAMM * instruction, What are the 

contents of the above registers and memory locations?

4.6 Explain the arithmetic instructions of C5X.

4.7 What are the instructions of C5X which are used 

for block transfer?

4.8 Give the list of the mnemonics of the shift/logical 

expressions of C5X and explain them in brief.

4.9 Explain how NORM instruction of C5X is used?

4.10 Explain how the delayed and undelayed call 

and branch instructions of C5X are different in their 

operation.

4.11 How is the repeat count determined in the RPT & 

RPTB instructions of C5X?

4.12 Explain the use of the interrupt mask register and 

interrupt fl ag register of C5X.

Self Test Questions 

4.1 The data memory used with C5X processors is split 

into ——— pages each of ——— words long.

(a) 512, 128 (b) 256, 256 (c) 128, 512 (d) 1024, 64

4.2 The register which holds the address of the current 

data memory page is ———.

(a) DP (b) ARP (c) ARB

4.3 No. of words of program memory, data memory 

that can be addressed by C5X processors are ——, ——.

(a) 64K,64K (b) 64K, 96K (c) 96K, 64K (d) 96K, 96K

4.4 The memory-mapped direct addressing mode is 

used to access data in page ———.

(a) 1 (b) 0 (c) 511 (d) 512

4.5 The no. of registers which can be used for accessing 

data using indirect addressing mode is ———.

(a) 16, 16 (b) 16, 8 (c) 8, 8 (d) 8, 16

4.6 The registers used for indirect addressing of 

memory are called ———.

(a) auxiliary registers (ARs)

(b) block move address register (BMAR)

(c) TREGn

(d) index register (INDX)

4.7 In the indirect addressing mode, out of the eight 

ARs, the one which is currently used for accessing data is 

denoted by the register ———.

(a) ARB (b) ARP (c) DP (d) BRCR

4.8 The register which is used for storing the contents 

of ARP temporarily is

(a) ARB (b) DP (c) TREG1 (d) TREG2

(e) TREG3

4.9 When an operand for an instruction is accessed 

using the indirect addressing mode and the content of 

the AR used for accessing the data is to be left unaltered 

after the instruction is executed, the addressing mode is 

specifi ed by the symbol ———.

(a) # (b) * (c) *– (d) *+

4.10 When an operand for an instruction is accessed 

using the indirect addressing mode and the content of 

the auxiliary register used for accessing the data is to 

be decremented after the instruction is executed, the 

addressing mode is specifi ed by the symbol ———.
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(a) # (b) * (c) *– (d) *+

4.11 The 16-bit register used with indirect addressing 

mode for testing whether an increment/decrement 

operation of an AR has exceeded a particular value or 

not is ———.

(a) ARCR (b) ARP (c) ARB (d) INDX

4.12 The 16-bit register used for incrementing/

decrementing the ARn in steps larger than 1 is ———.

(a) ARCR (b) ARP (c) ARB (d) INDX

4.13 The contents of ARs are decremented/increment-

ed using ———.

(a) central ALU  (b) auxiliary ALU (c) PLU

4.14 When an operand for an instruction is accessed 

using the indirect addressing mode and after the data 

is fetched, the content of the AR used for accessing 

the data is to be decremented by the number in INDX 

register, the addressing mode is specifi ed by the symbol 

———.

(a) *0+ (b) *0– (c) *BR0+ (d) *BR0-

4.15 When an operand for an instruction is accessed 

using the indirect addressing mode and after the data 

is fetched, the content of the AR used for accessing the 

data is to be incremented by the number in INDX register 

with reverse carry propagation, the addressing mode is 

specifi ed by the symbol ———.

(a) *0+ (b) *0– (c) *BR0+ (d) *BR0–

4.16 The AR ALU (ARAU) performs ——— arithmetic 

on ——— numbers.

(a) unsigned, 16 (b) signed, 16

(c) signed, 32  (d) unsigned, 32

4.17 The symbol used to indicate the immediate 

address mode for the operand is ———.

(a) $ (b) * (c) # (d) *-(e)*+

4.18 In the dedicated register addressing mode, 

the register whose contents are used if an immediate 

operand is unspecifi ed is ———.

(a) ARCR (b) BMAR (c) DBMR (d) ACCB

4.19 Before the instruction SBRK #5H is executed, the 

contents of ARP, AR3 and AR5 are 3H, 1058H and 1000H, 

respectively. After the execution of the instruction, the 

content of AR3 is ———.

(a) 5H (b) 1053H (c) 1058H (d) 1000H

4.20 Assume that the contents of ACC, ARP, AR3 

and locations 0045H, 40C5H are 1000H, 3, 40C5H and 

2400,2300H, respectively, initially. When the instruction 

LAMM * is executed, the content of ACC is ———.

(a) 2400H (b) 2300H (c) 40C5H (d) 0003H

4.21 The mnemonic for the instruction used to move a 

word from data memory to program memory is ———.

(a) BLDD (b) BLDP (c) BLPD (d) TBLR

(e) TBLW

4.21 The mnemonic for the instruction used to move 

a word from data memory to program memory and in 

which the program memory address is contained in ACC 

lower order word is ———.

(a) BLDD (b) BLDP (c) BLPD (d) TBLR

(e) TBLW

4.22 The mnemonic for the instruction which multiplies 

two 16-bit numbers represented in 2’s complement form 

is ———.

(a) MPYA (b) MPY (c) MPYU (d) MPYS

(e) MADD (f) MADS

4.23 The mnemonic for the instruction which loads 

zero into PREG is ———.

(a) SQRA (b) SQRS (c) ZPR (d) ZAP

4.24 The mnemonic for the instruction which makes 

the program to branch unconditionally is ———.

(a) B (b) BACC (c) BANZ (d) BCND

4.25 Using the RPT #k instruction, the maximum no. 

of times a single instruction can be repeatedly executed 

is ———.

(a) 65535 (b) 255 (c) 256 (d) 65536

4.26 The mnemonic for the instruction which executes 

next k instructions repeatedly and which clears both ACC 

and PREG before starting the execution of the block of 

instructions is ———.

(a) RPTB #k  (b) RPTB #(k–1)

(c) RPTZ #k  (d) RPTZ #(k–l)

4.27 The IN instruction of C5X reads a ——— number 

from input port and stores it in ———.

(a) 8, ACC  (b) 8, memory

(c) 16, ACC  (d) 16, memory

4.28 The mnemonic for the instruction which forces 

the program being executed to wait until an unmasked 

interrupt or reset occurs is ———.

(a) NOP (b) IDLE (c) IDLE2 (d) XC

4.29 The mnemonic for the instruction which executes 

the next n instructions if the condition specifi ed with the 

instruction is met else it executes NOPs for the next n 

instructions is ——— n conditions.

(a) XC (b) RPT (c) RPTB (d) RPTZ



PIPELINE STRUCTURE 5.1

C5X permits four operations, viz., Fetching, Decoding, Reading and Execution to be performed simul-

taneously using a 4-phase clock. This allows four instructions to be processed simultaneously in the 

CPU. When the fi rst instruction is in the execute phase, the second instruction can be in the read phase, 

the third instruction can be in the decode phase, and the fourth instruction can be in the fetch phase.

The functions performed in the four phases of the ¢C5X pipeline are as follows:

Fetch (F): This phase fetches the instruction words from memory and updates the program coun-

ter (PC).

Decode (D): This phase decodes the instruction word and performs address generation and ARAU 

updates of auxiliary registers.

Read (R): This phase reads operands from memory, if required.

 If the instruction uses indirect addressing mode, it will read the memory location 

pointed at by the ARP before the update of the previous decode phase.

Execute (E): This phase performs any specify operation, and, if required, writes results of a previous 

operation to memory.

PIPELINE OPERATION 5.2

The pipeline is essentially invisible to the user except in some cases, such as AR updates, memory-

mapped accesses of the CPU registers, the NORM instruction and memory confi guration commands. 

Furthermore, the pipeline operation is not protected. The user has to understand the pipeline operation 

to avoid the pipeline confl ict by arranging the code. The following sections show how the pipeline 

operation and the pipeline confl ict affect the result.

NORMAL PIPELINE OPERATION 5.3

5.3.1 Instructions with Single Word and Two Words

When a program segment involves single-word single-cycle instructions executing with no wait state, 

there is perfect overlapping in the pipeline, where all four phases operate in parallel. In the case of 

5
INSTRUCTION

PIPELINING IN C5X
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programs involving two-word instructions, it is not possible to keep all the functional units busy all 

the time and the operation performed by some of the units may be dummy operations resulting in no 

productivity. Examples 5.1 and 5.2 illustrate these facts.

Example 5.1 Consider the following program involving only single-word single-cycle instructions:

 ADD *+

   SAMM  TREG0

   MPY *+

   SQRA *+, AR2

When this program is executed, the instruction pipeline is loaded as shown in Table 5.1.

Table 5.1 Pipeline operation of 1 -word instruction

Cycle PC Fetch Decode Read Execute

1 [SAMM] ADD

2 [MPY] SAMM ADD

3 [SQRA] MPY SAMM ADD

4 SQRA MPY SAMM ADD

5 SQRA MPY SAMM

6 SQRA MPY

7 SQRA

Example 5.2 Consider the following program involving two-word two-cycle instructions in addi-

tion to single-word single-cycle instructions:

   ADD # 2500h

   SAMM  TREG0

   MPY *+

   SQRA *+, AR2

When this program is executed, the instruction pipeline is loaded as shown in Table 5.2.

Table 5.2 Pipeline operation with a 2 -word instruction

Cycle PC Fetch Decode Read Execute

1 [2500h] ADD

2 [SAMM] 2500h ADD

3 [MPY] SAMM Dummy ADD

4 [SQRA] MPY SAMM Dummy ADD

5 SQRA MPY SAMM Dummy

6 SQRA MPY SAMM

7 SQRA MPY

SQRA

From Table 5.2 it can be verifi ed that the decode, read and execute functional units are doing 

unproductive operations in cycles 3, 4 and 5 respectively.
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5.3.2 Pipeline Operation with Branch and Call Instructions

The branch instruction requires two cycles when branching does not occur and four cycles when branching 

occurs; one for the B instruction to enter the execute phase, one for fetching the branch address, two 

more for fl ushing out the one two-word or two 1-word instructions which enter the instruction pipeline 

after the branch instruction. The same is true with the call instructions. They require two cycles when 

the subroutine is not called. When the subroutine is called they also require four cycles out of which the 

last two cycles are required for fl ushing out the pipeline.

However, the delayed branch and call instructions permit the call and branching to be carried out in 

two clock cycles. The one 2-word instruction or two 1-word instructions following the delayed branch/

call instruction are fetched from program memory and executed before the branch/call is carried. Hence 

instruction pipeline need not be fl ushed out after the call/branch instruction and the execution can resume 

from the branch address. Examples 5.3-5.6 illustrate these facts.

Example 5.3 When the following program

 ZAP

   BPGM1250h

   ADD *

   SACL *+

   MAC 4500h,25h

 PGM1250h: LACC *+

is executed, the instruction pipeline is loaded in different cycles as shown in Table 5.3.

Table 5.3 Instruction pipeline for branch instruction, Example 5.3

Cycle PC Fetch Decode Read Execute

1 [B] ZAP

2 [1250h] B ZAP

3 [ADD*] 125Oh B ZAP

4 [SACL*+] ADD* Dummy B ZAP

5 [LACC*-] SACL*+ Dummy Dummy B

6 LACC*+ Dummy Dummy Dummy

7 LACC*+ Dummy Dummy

8 LACC*+ Dummy

9 LACC*+

In Table 5.3, [B], [1250h], etc., denote the program memory (PGM) address where the branch 

instruction, the next operand, etc., are stored.

When the instruction B enters the execute phase, the ADD and SACL instructions enter the decode 

and fetch phases, respectively. However, since these two instructions are not to be executed, they are 

dummy phases and these instructions have to be fl ushed out of the instruction pipeline. This requires 

two cycles. Hence branch requires four cycles (one for the B instruction to enter the execute, one for 

fetching the branch address and two more for fl ushing out the unwanted instructions.)

The same is true with the call instructions. They also require four cycles out of which the last two 

cycles are required for fl ushing out the pipeline. However the delayed branch and call instructions 
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permit the call and branching to be carried out in two clock cycles. The one 2-word instruction or two 

1-word instructions following the delayed branch/call instruction are fetched from program memory 

and executed before the branch/call is carried. Hence instruction pipeline need not be fl ushed after the 

call/branch instruction and the execution can resume from the branch address.

Example 5.4 When the following program

 ZAP

   BD PGM1250h

   ADD *

   SACL *+

   MAC 4500h, 25h

 PGM1250h: LACC *+

is executed, the instruction pipeline is loaded in different cycles as shown in Table 5.4.

Table 5.4 Instruction pipeline for delayed branch instruction

Cycle PC Fetch Decode Read Execute

1 [BD] ZAP

2 [1250h] BD ZAP

3 [ADD*] 1250h BD ZAP

4 [SACL*+] ADD* Dummy BD ZAP

5 [LACC *+] SACL*+ ADD* Dummy BD

6 LACC*+ SACL*+ ADD* Dummy

7 LACC*+ SACL*+ ADD*

8 LACC*+ SACL*+

9 LACC*+

The ADD and SACL instructions are in the instruction pipeline when the delayed branching BD 

occurs to PGM1250h and the LACC instruction enters the fetch phase. After these two instructions are 

executed, LACC instruction enters the execute phase.

Example 5.5 When the following program

 SACL *+

   CC PGM1250h, GT, NOV

   LDP 127h

   SUB 20h

   MAC 4500h,25h

 PGM1250h: LACC *+

is executed, the instruction pipeline is loaded in different cycles (as shown in Table 5.5) if the condi-

tion GT, NOV is not met,
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Table 5.5 Instruction pipeline for CC instruction when condition not met

Cycle PC Fetch Decode Read Execute

1 [CC] SACL

2 [1250h] CC SACL

3 [LDP] 1250h CC SACL

4 [SUB] LDP Dummy CC SACL

5 [MAC] SUB LDP Dummy CC

6 MAC SUB LDP Dummy

7 MAC SUB LDP

8 MAC SUB

9 MAC

(i.e., subroutine is not called). If the condition is met, the instruction pipeline in different cycles is as 

shown in Table 5.6.

In Table 5.5, the CC instruction requires only two cycles as the condition is not met. The instruc tions 

LDP, SUB and MAC which enter the pipeline are executed one after another.

Table 5.6 Instruction pipeline for CC instruction when condition met

Cycle PC Fetch Decode Read Execute

1 [CC]

2 [1250h] SACL

3 [LDP] CC SACL

4 [SUB] 1250h CC SACL

5 [LACC] LDP Dummy CC SACL

6 SUB Dummy Dummy CC

7 LACC Dummy Dummy Dummy

8 LACC Dummy Dummy

9 LACC Dummy

LACC

In Table 5.6, the CC instruction requires four cycles as the condition is met. The instructions LDP 

and SUB which enter the pipeline are fl ushed out of pipeline in the last two cycles. After four cycles the 

fi rst instruction in the subroutine (LACC) is executed.

5.3.3 Pipeline Operation with Return Instructions

The unconditional return instruction RET requires four clock cycles of which the last two cycles are 

required for fl ushing out the pipeline. The conditional return instruction RETC requires four clock 

cycles if the condition is met. Out of the four cycles the last two cycles are required for fl ushing out the 

pipeline. If the condition is not met, it requires only two cycles. Delayed return instructions RETD and 

RETCD require only two clock cycles and they do not require the pipeline to be fl ushed out.
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5.3.4 Pipeline Operation on ARAU Memory-Mapped Registers

Auxiliary register arithmetic unit (ARAU) updates of the ARs occur during the decode (D) phase of the 

pipeline. Hence the ARs are updated in the decode phase itself when the indirect addressing mode is 

used with arguments such as *+, *–, *0+, etc. This enables any instruction which follows this instruction 

to have the correct address when it enters the data read phase. This is desirable because when one 

instruction enters the execute phase the next instruction enters the data read phase.

However, when the ARs are modifi ed using load, store, using memory-mapped addressing (e.g., 

LAR, SAMM, LMMR, SACL, or SPLK, etc), they are modifi ed only in the execute (E) phase of the 

pipeline. Therefore, the use of ARs for the next two instructions after a memory-mapped load of the AR 

is prohibited. This means that the next two instructions after a memory-mapped load of the AR should 

not use this AR. Modifi cations to the index register (INDX) and auxiliary register compare register 

(ARCR) also occur in the E phase of the pipeline. Therefore, any AR updates using the INDX or the 

ARCR must take place at least two cycles after a load of these registers.

In Example 5.6, a case where SAMM instruction is immediately followed by instructions which use 

AR is presented. In this case unexpected results are obtained. In Example 5.7, this program is modifi ed 

so that the AR is used only after two cycle elapses after the AR is loaded. This is achieved by using two 

NOPs. In this case correct results are obtained.

Example 5.6 Assume that the contents of the memory location 164h, 165h, 166h, 167h, 168h 

are as follows:

   (164h) = 90h, (165h) = 80h, (166h) = 60h, 

   (167h) = 40h, and (168h) = 30h.

   When the following program

   LAR  AR1,#167h

   LACC #164h

   SAMM AR1

   LACC *+

   ADD *+

is executed the instruction pipeline at various clock cycle is as shown in Table 5.7.

Table 5.7 Instruction pipeline with SAMM followed by illegal instructions

Cycle PC Fetch Decode Read Execute ACC ARl

1 [LACC] LAR XX XX

2 [164h] LACC LAR XX XX

3 [SAMM] 164h LACC LAR XX XX

4 [LACC] SAMM Dummy LACC LAR XX 167h

5 [ADD] LACC SAMM Dummy LACC 164h 167h

6 ADD LACC SAMM Dummy 164h 168h

7 ADD LACC SAMM 164h 164h

8 ADD LACC 40h 164h

9 ADD 70h 164h

In Example 5.6 what was expected was to add the content of location 164h, i.e., 90h, with that of 

165h, i.e., 80h, and store the result in ACC. But what actually happens is that the content of location 

167h is added with that of location 168h and the result is stored in ACC. This is because SAMM 
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instruction is followed immediately by LACC *+ and ADD *+ both of which make use of ARl for 

indirect addressing. Unexpected results are obtained because of the the following reasons:

When the instruction LACC + enters the decode phase in cycle 6 the value of AR1 is 167h and this 

is used for accessing the data in its data read phase in cycle 6. Further even though LACC *+ enters the 

instruction pipeline after the SAMM instruction, it modifi es AR1 to be 168h in its decode phase in clock 

cycle 6 itself. SAMM modifi es the value of AR1 only in its execute phase in clock cycle 7.

In 7th clock cycle the ADD *+ enters the decode phase. At that time the value of AR1 is 168h and 

hence it uses this address when it enters the data read phase in cycle 8. It also modifi es AR1 to 169h in 

cycle 7. But SAMM also tries to modify AR1 to 164h. In this confl ict only SAMM succeeds.

Example 5.7 Assume that the contents of the memory location 164h, 165h, 166h, 167h, 168h 

are as follows:

   (164h) = 90h, (165h) = 80h, (166h) = 60h, 

   (167h) = 40h, and (168h) = 30h.

   When the following program

   LAR  AR1,#167h

   LACC #164h

   SAMM AR1

   NOP

   NOP

   LACC *+

   ADD *+

is executed the instruction pipeline at various clock cycles is as shown in Table 5.8.

Table 5.8 Instruction pipeline with SAMM followed by illegal instructions

Cycle PC Fetch Decode Read Execute ACC AR1

1 [LACC] LAR XX XX

2 [164h] LACC LAR XX XX

3 [SAMM] 164h LACC LAR XX XX

4 [NOP] SAMM Dummy LACC LAR XX 167h

5 [NOP] NOP SAMM Dummy LACC 164h 167h

6 [LACC] NOP Dummy SAMM Dummy 164h 168h

7 [ADD] LACC Dummy Dummy SAMM 164h 164h

8 ADD LACC Dummy Dummy 164h 165h

9 ADD LACC Dummy 164h 166h

10 ADD LACC 90h 166h

11 ADD 110h 166h

In Example 5.7 what was expected was to add the content of location 164h, i.e., 90h, with that of 

165h, i.e., 80h, and store the result in ACC. This actually happens as the SAMM instruction is followed 

immediately by two NOP instructions which do not make use of AR1. Expected results are obtained 

because of the the following reasons:

When the instruction LACC *+ enters the decode phase in cycle 8, the value of AR1 is 164h and this 

is used for accessing the data in its data read phase in cycle 9. The SAMM instruction modifi es AR1 to 

164h in its execute phase in clock cycle 7 itself. In this case since the decode phase of LACC *+ occurs 
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after the execute phase of SAMM, no problem arises. In the decode phase of LACC *+, the value of 

AR1 is modifi ed to 165h.

In 9th clock cycle, the ADD *+ enters the decode phase. At that time the value of AR1 is 165h and hence it 

uses this address when it enters the data read phase in cycle 10. It also modifi es AR1 to 166h in cycle 9.

5.3.5 Pipeline Confl icts

When more than one pipeline stage requires processing on the same resource, such as memory and 

CPU registers, a pipeline confl ict occurs. There is no priority between these four phases and unex pected 

results are obtained when pipeline confl ict occurs. Therefore, confl ict between these four phases should 

be avoided in order to get the correct results.

Since the ‘C5X only has one set of external address and data buses, a bus confl ict occurs between 

instruction fetch (F), operand read (R), and execute (E) write phases if both program and data memory 

are external. While the bus confl ict is occurring, a dummy operation can be inserted to eliminate the bus 

confl ict. Example 5.8 shows pipeline operation with a bus confl ict and a dummy operation.

Example 5.8 In the following program assume that the DP and the current AR point to memory 

in the external memory space.

   LDP 120h

   LACC 50h

   ADD *+

   SACL *+

   NOP

   LACC 51h

The instruction pipeline when this program is executed is shown in Table 5.9.

Table 5.9 Pipeline operation with external bus confl icts

Cycle PC Fetch Decode Read Execute

1 [LACC] LDP

2 [ADD] LACC LDP

3 [SACL] ADD LACC LDP

4 [SACL] Dummy ADD LACC LDP

5 [NOP] Dummy Dummy ADD LACC

6 SACL Dummy Dummy ADD

7 NOP SACL Dummy Dummy

8 Dummy SACL Dummy

9 Dummy SACL

10 Dummy

In the operand read (R) phase of LACC, a bus confl ict occurs with the fetch of SACL. Therefore, 

a dummy fetch operation is inserted. In the next fetch (F) phase, the SACL has a bus confl ict with the 

ADD operand read (R) phase. Therefore, the fetch of SACL is delayed again by one cycle. Two dummy 

instruction fetches are inserted between ADD and SACL because of this delay. A similar situation 

occurred in the execute (E) phase of SACL. Since external memory writes take three cycles, during the 

execution of SACL any instruction fetch or operand read access on the external bus will be delayed for 

three cycles.
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Review Questions 

5.1 Explain when a program can make all the four 

functional units in the CPU to do productive work in all 

the cycles.

5.2 Explain with reference to the C5X instruction 

pipeline why the branch and call instructions require 

four clock cycles for program control transfer

5.3 When are the unexpected results obtained when 

the load/store instruction of a AR is contained in a C5X 

program? How is the problem overcome?

5.4 Explain how pipeline confl icts occur when the 

program memory and data memory spaces of a program 

are contained in external memory space.

5.5 Execute the program in Example 5.6 in a C5X system 

(e.g. starter kit) and verify that the AR1 and ACC are as 

shown in Table 5.7.

5.6 Execute the program in example 5.7 in a C5X system 

(e.g. starter kit) and verify that the AR1 and ACC are as 

shown in Table 5.8.

5.7 Draw the table showing the content of the 

instruction pipeline when each of the following programs 

are executed.

Program 1

LDP 20h

LACC 10h

SUB 30h

SACL 11h

CMPL

SACL 12h

Program 2
LAR 1200h

LDP 20h

ZAP

ADD 30h

ADD *+

SACL #1300h

NEG

Program 3

 LDP 20

 LACC 30h

 SUb #30h

 BCND YY, GT

 B YY

XX NEG

YY SACL 30h

Program 4 MAR *, AR1

 LDP 20h

 LACC 10h

 SUB 30h

 SACL 11h

 CALL YY

XX LACC *+1

 ADD *+

YY MAR *+, AR2

Program 5

 MAR *, AR1

 LDP 20h

 LACC 10h

 SUB 30h

 SACL *

 RET

XX LACC * +1

 ADD *+

Program 6

 LAR ARI, 1200h

 LAR AR2, 1300h

 LAR AR3, 02h

 MAR *,  ARI

XX LACC *+, AR2

 SACC *+, AR3

 BANZ XX,  AR1

 ADD *-

 ADD *-



Instruction Pipelining in C5X  119

Program 7

LAR ARl,#167h

LACC #164h

SAMM AR2

LACC *+

ADD *+

SACL *+

LAMM AR2

Program 8

LAR ARl,#167h

LACC #164h

SAMM AR1

NOP

LACC *+

ADD *+

SACL *+

LAMM AR1

Self Test Questions 

5.1 The program containing ——— instructions will 

ensure perfect overlapping of the operations in the four 

stages of the instruction pipeline of 5X.

(a) single-word single-cycle

(b) both single-word and double-word

(c) delayed branch

(d) delayed call

5.2 The number of clock cycles required for fl ushing 

out the pipeline in the case of execution of branch 

instruction B begin is ———.

(a) 0 (b) 1 (c) 2 (d) 3

5.3 The number of clock cycles required for fl ushing out 

the pipeline in the case of execution of delayed branch 

instruction BD BEGIN is ———.

(a) 0 (b) 1 (c) 2 (d) 3

5.4 The number of single-cycle instructions which can 

be executed after the delayed branch instruction of 5X 

before the execution begins the new branch address is 

———.

(a) 0 (b) 1 (c) 2 (d) 3

5.5 The number of double-cycle instructions which can 

be executed after the delayed branch instruction of 5X 

before the execution begins the new branch address is 

———.

(a) 0 (b) 1 (c) 2 (d) 3

5.6 Which of the following instructions does not 

require the instruction pipeline to be fl ushed out before 

executing additional instructions?

(a) CC cond when cond true

(b) CC cond when cond false

(c) RETC cond when cond true

(d) RETC cond when cond false

5.7 In which phase of the instruction pipeline, the AR is 

modifi ed when the instruction LACC *+ is executed?

(a) Fetch (b) Decode (c) Read (d) Execute

5.8 In which phase of the instruction pipeline, AR 

is modifi ed when the instruction LAR AR0 #1000h is 

executed?

(a) Fetch (b) Decode (c) Read (d) Execute

5.9 In 5X programs using indirect addressing mode, 

to ensure proper operation the number of single-

word instructions that should be inserted between the 

instruction which loads an AR and an instruction which 

fetches the operand using this AR is ———.

(a) 1 (b) 2 (c) 3 (d) 4

5.10 An external memory used with 5X requires three 

clock cycles, the number of dummy operations carried 

out by the 5X CPU to avoid pipeline confl ict is ———.

(a) 1 (b) 2 (c) 3 (d) 4



In this chapter, some application programs on 5X are given which illustrate the diverse applications 

to which the P-DSPs can be used. For testing these programs with real time inputs and to verify that 

the expected results occur, we require a suitable experimental set-up. This should have a provision for 

loading the program into the P-DSP, digitise the analog input and store it into the P-DSP memory and 

execute the program which simultaneously processes the data and keep communicating with the input/ 

output units when required. For this purpose it will be assumed that the experimental set-up/development 

environment used is the TI’s DSP starter kit (DSK) for 5X. The programs given here would also work in 

other 5X-based kits. However, the external memory used, if any, and the A/D and D/A converters used 

in the other kits have to be taken into account for making this program work in the other kits. However, 

many of the other kits also use the same A/D and D/A converter and no external memory is used. Hence, 

the programs given in this chapter would work without any modifi cation in the other kits as well.

¢C50-BASED DSP STARTER KIT (DSK) 6.1

6.1.1 Block Diagram of the DSK

Figure 6.1 depicts the block diagram of the C50-based DSK starter kit. The host interface permits 

the application program to be downloaded from a host (Personal Computers, e.g.) to the P-DSP. PC 

communications are via the RS-232 port on the DSK board. The 2K bytes of on-chip PROM of C50 

contain the kernel program for boot loading. This facilitates execution as well as debugging of the 

programs. The analog interface permits the audio input signals in the frequency range 0-9.6 kHz to be 

digitised using the analog interface circuit (AIC) TLC32040 AIC on the board. The AIC also permits the 

processed signal to be converted into an analog signal. The AIC has the following characteristics:

 • Single-chip digital-to-analog (D/A) and analog-to-digital (A/D) conversion with 14 bits of 

dynamic range

 • Variable D/A and A/D sampling rate and fi ltering

 • The AIC interfaces directly to the ‘C50 serial port

 • The master input clock to the AIC is provided by a 10.368 MHz timer output from the ‘C50

 • The maximum sampling rate of the AIC is limited to 19.2 kilo samples/s.

 • The AIC is hard-wired for 16-bit word mode operation

Additional details on AIC TLC32040 are given in Section 6.4.3.

6
APPLICATION PROGRAMS
IN C5X
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In addition to the above, DSK also has an emulation interface. All pins of the ‘C50 are connected to 

the external I/O interfaces. The external I/O interfaces include four 24-pin headers, a 4-pin header and 

a 14-pin header.

Fig. 6.1 C5X DSK block diagram

6.1.2 Memory in DSK

The ¢C5X DSK does not have any external memory on the board. However, the 10K on-chip RAM of 

the ¢C50 provides enough memory for most DSP application programs. The kernel program is contained 

in the 2K, 8-bit PROM. The PROM is only for DSK boot loading and cannot be accessed after boot 

loading, as this portion of the on-chip memory is reserved for the kernel program. Figure 6.2 shows the 

memory map of the ¢C5X DSK.

Fig. 6.2 Memory map for C5X DSK



122  Digital Signal Processors

The on-chip, dual-access, random-access-memory (DARAM) B2 is reserved as a buffer for the 

status registers. The single-access, random-access-memory (SARAM) is confi gured as program and 

data memory. The kernel program is stored in this area from 0X840h-0X980h. If the kernel program 

performs an overwrite, a reset signal is required to let the DSK reload the kernel program. Since the 

kernel program is stored in the SARAM, this on-chip memory cannot be confi gured as data memory 

only (RAM = 0). The interrupt vectors are allocated, starting from 0X800h. The IPTR in the PMST 

register should not be modifi ed by the programmer. B0 may be confi gured as either program or data 

memory, depending on the value of the CN bit in status register ST1.

6.1.3 Development Environment in DSK

The ‘C5X DSK has a PC windows-oriented debugger that makes it easy to develop and debug software 

code. The DSK communicates with the PC using the XF and BIO pins through the RS-232 serial port. 

Figure 6.3 shows the display of the debugger screen. The DSK has its own assembler.

Fig. 6.3 TMS320C5X debugger screen display

6.1.4 Assembling a Program

For programming in the assembly language the C5X assembler assumes the following assembly 

language syntax. A source statement can contain four ordered fi elds. The general syntax for source 

statements is as follows:

[ label ] [:] mnemonic [ operand list ][;comment ]

They in turn follow these guide lines:

 • All statements must begin with a label, a blank, an asterisk, or a semicolon
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 • Labels are optional; if used, they must begin in column 1

  Labels may be placed either before the instruction mnemonic on the same line or on the 

preceding line in the fi rst column

 • one or more blanks must separate each fi eld. Tab characters are equivalent to blanks

 • Comments are optional. Comments that begin in column 1 can begin with an asterisk or a 

semicolon (* or ;), but comments that begin in any other column must begin with a semicolon

The following types of operands are permitted:

0 < dma < 127 dma: Data Memory Address

0 < pma < 65535 pma: Program Memory Address

0 < shift < 15

0 < shift2 < 7

0 < n < 1  n: AR no.

0 < k < 255  k: Short Constant

0 < lk < 65535 lk: Long Constant

ind: {*, *+, *-, *0+, *0-, *BR0+, *BR0-}

Operands can be constants or assembly-time expressions that refer to memory, I/O ports, register 

addresses, pointers, shift counts and a variety of other constants.

The mnemonics for the various instructions of C5X is given in Appendix A4 of Chapter 4. In addition 

to this the assembler of C5X permits a set of assembler directives or pseudo instructions which simplifi es 

the programming in assembly language. For example, the .ps assembler directive specifi es the program 

memory address from where the program should be loaded and the execution should begin. Similarly 

the .mmregs directive permits the memory mapped registers to be referred by their short names instead 

of their actual memory address. The list of assembler directives is given in Appendix 6.1. The list of 

memory mapped registers and their actual memory addresses is given in Appendix 6.2.

Even though there are many assembler directives in Appendix 6.1, only some of them are more 

frequently used. Some of these pseudo instructions are given in Table 6.1. Sample programs in assembly 

language are given in Program 6_1a.asm and Program 6_1b.asm. To create assembly source fi le, any 

ASCII program editor can be used. The fi le name should have the extension .asm.

Table 6.1 Some most commonly used pseudoinstructions

Pseudo instruction Description

.mmregs Includes memory map registers

.ps XXXX Assemble into program memory address XXXX

.entry Initialise the starting address of the program counter when loading a fi le

.include “yy.asm” This enables a list of instructions in program yy.asm to be inserted in the place where this 

directive appears

•end Program end

Program 6_1a.asm  

 Pseudo instruction Description

 .mmregs ;includes memory map registers

 .ps 0a00h ;assemble with origin as program memory
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  ;address as 0a00h

 .entry ;initialise the value of the program

  ;counter when loading a fi le

 LACC #1000h ;accumulator loaded with the constant 1000h

 LACC #0004h,4 ;the constant 4h is left shifted by four

  ;bits and leaded to accumulator

 LAR AR0,#1000h ;AR0 loaded with constant 1000h

loop: b loop ;infi nite loop

 .end ;program end

Program 6_la.asm may be rewritten using the .include directive as shown in Program 6_lb.asm; 

include directive is useful if a no. of instructions are commonly used in a no. of programs. For example, 

some of the initialisation instructions may be commonly required for a no. of programs. These common 

instructions may be put in a single fi le and this fi le can be included wherever required. The .include 

directive reduces the length of the source program but the object code is not reduced. This is because 

at the time of assembly, wher ever .include statement occurs, the instructions in the included fi le are 

inserted and assembled as if they appeared in the fi le being assembled.

Program 6_1b.asm 

 .mmregs ;includes memory map registers

 .ps 0a00h ;assembles with origin of program memory

  ;address as 0a00h

 .entry ;initialise the program counter when

  ;loading a fi le

 .include “init.asm” ;3 lines corresponding to init.asm are

  ;inserted here at the time of assembly

loop b loop ;infi nite loop

 . end  ;program end

init.asm

 LACC #1000h  ;accumulator loaded with the constant

   ;1000h

 LACC #0004h,4  ;the constant 4h is left shifted by

   ;four bits and loaded to accumulator

 LAR AR0,#1000h  ;AR0 loaded with constant 1000h

The program written in source code using mnemonics and pseudo instructions has to be assembled 

to generate the program in the object code of C5X. The object code is loaded into the DSK using the 

debugger and it can be executed using the debugger. The command for invoking the assembler when 

preparing a program for debugging is:

dsk5a [ fi lename(s)][-options]

dsk5a : The command that invokes the assembler,

fi lenames : One or more assembly language source fi les. Filenames are not case sensitive.

-options : affect the way the assembler processes input fi les.
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Options and fi lenames can be specifi ed in any order on the command line. Table 6.2 lists the assembler 

options.

Table 6.2 Summary of assembler options

Option Description

–k Generates an output fi le regardless of errors or warnings

–I Generates a temporary fi le containing a list of any unresolved opcodes or symbols

asm Allows the user to defi ne assembler statements from the command line

Program 6_la. asm can be assembled using the command dsk5a program 6_1a

6.1.5 Using the DSK Debugger

After successfully assembling the program, the object code is to be loaded into the DSK by invoking the 

debugger using the command:

dsk5d ci

if DSK is connected to serial communication port i (comi) of PC. The legal values of ci are cl, c2, 

c3 and c4 corresponding to coml, com2, com3, com4. For example, if DSK is connected to serial 

communication port 2 (com2) of PC, the command entered should be

dsk5d c2

The default setting is cl. In that case the command dsk5d would suffi ce. After entering the dsk5d 

command, the display similar to the one shown in Fig. 6.3 appears on the PC screen. It can be seen 

that the debugger screen has 6 sections/windows. The details presented in each of the windows are as 

followed:

Command List Window Displays the list of debugger commands. For each of the commands only 

a single character needs to be entered for invoking. The character to be entered is shown in boldface 

form.

Reverse Assembler Window It shows the disassembly of the code presently stored in the program 

memory specifi ed by the user. Default program memory address is taken as 0a00h.

Watch Window In this, the content of one or memory locations may be displayed as the program is 

being executed.

Register Window The content of various internal registers of C5X is displayed.

Command Window This permits the command to be entered.

Dialog (box) Window This permits the additional parameters required for specifying a command. It is 

also used for displaying as well as modifying any one of the C5X registers and the memory locations.

Normally debugging phase starts with loading a fi le with extension .DSK from the PC to the C5X 

using the load command. Then this fi le is executed using the execute command. The execution may be 

done either using single-step mode or using break points. In the learning phase it is helpful to execute 

the program in single-step mode and examine the register window to verify that the various registers are 

altered by the DSK as expected. After gaining confi dence in programming, breakpoints may be set at 

points which are critical in the program. More details on using the various commands of the DSK can 

be obtained from the 5X DSK user’s guide [1996].
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PROGRAMS FOR FAMILIARISATION OF THE ADDRESSING MODES 6.2

6.2.1 Immediate Addressing Mode

Program 6_2.asm gives an example of an assembly language program in which the instruction word 

contains the value of the immediate operand. The immediate operand is used for the accumulator 

(ACCU), auxiliary registers (AR0 & AR1) load, memory mapped register store, addition, subtraction 

and multiply operations. It is also possible in some instructions to left shift the immediate operand 

defi ned by the shift code followed by the operand and the respective operations can be performed. For 

the memory mapped registers there is no need to specify their hexadecimal address; the abbreviation of 

the respective registers can be written in the instruction.

Program 6_2.asm  Immediate addressing mode

label Mnemonic Comments

 .mmregs ;includes memory map registers

 .ps 0a00h ;assemble with origin of the program

  ;memory address as 0a00h

 .entry initialise the starting value of the

  ;program counter when loading a fi le

 LACC #1000h ;value 1000h loaded into accumulator

 LACC #1111h,3 ;the constant 1111h left shifted by 3

  ;bits & loaded into ACCU. The contentof

  ;ACCU after execution is 8888h

 LAR AR0,#1000h ;AR0 is loaded with the constant 1000h

 LAR AR1,#1100h ;1100h is loaded into AR1

 ADD #00FFh ;FFh is added to the content of ACCU and

  ;the result is stored into ACCU

 ADD #0011h,2 ;0011h left shifted by 2 bits & added to

  ;ACCU

 SPLK #10h,TREG0 ;10h is stored into register TREG0

 MPY #0010h ;0010h is multiplied with the content of

  ;TREG0 and the result stored into the

  ;product register (PREG)

 SUB #0022h ;0022h is subtracted from ACCU

 SUB #0011h,3 ;0011h left shifted by 3 bits & sub

  ;tracted from the content of ACCU

 .end ;program end

6.2.2 Direct Addressing Mode

In direct addressing mode, the instruction word contains the location of the operand in a particular data 

page. The starting address of the operand page is indicated by the data page pointer (DP). It is loaded 

using the LDP instruction. Program 6_3.asm gives an example illustrating how the operations such 

as load accumulator and ARs, store the operands in data memory, add, subtract and multiply can be 



Application Programs in C5X  127

performed in direct addressing mode. It is also possible in some instructions to left shift the data memory 

content defi ned by the shift code in the instruction and the respective operations can be performed.

Program 6_3.asm  Direct addressing mode

label Mnemonic Comments

 .mmregs ;includes memory map registers

 .ps 0a00h ;origin of the program 0a00h

 .entry ;program counter initialised

 LDP #20h ;the data page no. 20h (32) is loaded into

  ;the data page pointer (DP)

 LACC 10h ;content of 20h (32) page 10 th location

  (i.e. ;content of data memory address

  (dma) ;(1010h) is loaded into ACCU

 LACC 5h,2 ;content of dma 1005h is left shifted by 2

  ;bits and then loaded into ACCU

 LDP #22h ;DP loaded with 22h (dma page starting

  ;address 1100h)

 LAR AR0,15h ;AR0 loaded with content of dma 1115h

 SACL 15h ;ACCU low byte stored into dma 1115h

 SACL 20h,3 ;ACCU low byte left shifted by 3 bits &

  ;stored into dma 1120h

 SAMM AR7 ;ACCU low byte stored into AR7 in

  ;page 0. DP remains unaffected

 LDP #12h ;the data page no. 12h loaded into DP

 ADD 25h ;the content of dma 0925h added to

  ;ACCU & the result stored into ACCU

 ADD 7h,2 ;the content of dma 0907h left shifted by

  ;2 bits & added to ACCU

 SUB 10h ;the content of 0910h is subtracted from

  ;the content of ACCU

 SUB 12h,2 ;the content of 0912h is left shifted by 2

  ;bits & subtracted from ACCU

 SPLK #10h,TREG0 ;constant 10 stored into TREG0

 MPY 15h ;content of 0915h is multiplied with

  ;TREG0 & the result stored into PREG

 .end ;program end

6.2.3 Indirect Addressing Mode

The address of the operand in indirect addressing mode is the content present in the current AR. The 

current AR is indicated by the auxiliary register pointer (ARP). Program6_4.asm gives an example for 

loading and storing of various registers and data memory locations, as well as performing arithmetic 
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operations such as add, subtract and multiply. This program also illustrates how INDX register is used 

to modify the address of the operand and how bit-reversed addressing can be used.

Program 6_4.asm  Instructions using indirect addressing mode

label Mnemonic Comments

 .mmregs ;includes memory map registers

 .ps 0a00h ;origin of the program 0a00h

 .entry ;initialise the program counter

 LAR AR0,#1000h

 LACC * ;content of dma pointed by AR0

  ;(i.e. 1000h) is loaded into ACCU

 LACC *,4,AR1 ;content of dma 1000h left shifted by 4

  ;bits & loaded into ACCU, ARP points to

  ;auxiliary register 1

 LAR AR1 #1010h

 SACL * ;ACCU low byte stored into the dma

  ;pointed by AR1 i.e. 1010h

 SACL *+,2,AR0 ;ACCU low byte is left shifted by 2 bits &

  ;stored into dma pointed by AR1, AR1 is

  ;incremented by one , ARP points to AR0

 LACC *–,2,AR1 ;ACCU loaded with the 2 bits left shifted

  ;content of dma pointed by AR0, AR0

  ;decremented ARP points to AR1

 LACC *0+ ;ACCU loaded with the content of dma

  ;pointed by AR1, AR1 is incremented by

  ;the content of INDX register

 LACC *BR0+ ;ACCU loaded with the content of dma

  ;pointed by AR1 and the content of INDX

  ;register added to AR1 with reverse carry

  ;propagation

 ADD *+,0,AR0 ;content of dma pointed by AR1 is added to

  ;the content of ACCU, AR1 is incremented

  ;and ARP points to AR0

 SUB *-,2 ;content of dma pointed by AR0 left

  ;shifted by 2 bits & subtracted from the

  ;content of ACCU, the result is stored

  ;into ACCU, AR0 is decremented by 1.

 SPLK #10h,TREG0

 MPY * ;content of dma pointed by AR0 is

  ;multiplied with the content of TREG0 and

  ;the result is stored into PREG, the

  ;content

  ;of AR0 & ARP are not modifi ed

 .end ;program end
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Data Block Move In this example two data blocks are considered in the data memory space whose 

starting addresses are 1000h and 1100h respectively and each of them have 10 data values. The indirect 

addressing mode is used to exchange the data content present in these locations. Two ARs are used 

to indicate the address values of the blocks. The data value from one block is loaded into ACCU and 

exchanged with the contents of ACCB. Then the content from the other block is loaded into ACCU and 

stored in the starting address of the fi rst block. Now the fi rst block data which is present in ACCB is 

loaded into ACCU and stored in the starting address of the second block. The ARs can be incremented 

and repeated operation will exchange the data block contents. The resulting program is given in Program 

6_5.asm. This program may be modifi ed to copy the content of data memory to program memory and 

vice versa.

Program 6_5.asm  Block move using indirect addressing

label Mnemonic Comments

 .mmregs

 .ds 1000h

 .word 1h,2h,3h,4h,5h

 .word 6h,7h,8h,9h,0ah; ;10 data values are stored in block 1

 .ds 1100h

 .word 11h,12h,13h,14h,15h ;10 data

 .word 16h,17h,18h,19h,20h ;values are stored into block 2

 .ps 0a00h

n .set 09h ;size of the block is assigned to the variable n

 .entry

 LAR AR0,#1000h

 LAR AR1,#1100h

 LAR AR2,#n ;block size is loaded in AR2

loop LACC *,0,AR1 ;block 1 data value is loaded into ACCU

 EXAR ;content of ACCU and ACCB are exchanged

 LACC *,0,AR0 ;block 2 data value is loaded into ACCU

 SACL *+,0,ARl ;block 2 data value is stored in block 1

 LACB ;ACCB content loaded back to ACCU

 SACL *+,0,AR2 ;block 1 data value is stored in block 2

 BANZ loop,AR0 ; branch to loop until content of AR2

  ;decrements to zero

 NOP

 NOP

 .end

6.2.4 Circular Addressing Mode

To defi ne circular buffers, start and end addresses are loaded into the corresponding buffer registers, 

a value between start and end address is loaded into an AR. Next the AR which is used for circular 

addressing and the circular buffer which is used for the addressing are chosen by programming the 
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appropriate bits in the CBCR. In the example shown in Program 6_6.asm, the start and end addresses are 

1000h & 1003h respectively. The auxiliary register AR0 and circular buffer 1 are used for the circular 

addressing. For this 0008h is to be loaded into CBCR register. When the instructions using indirect 

addressing mode are used, the content of AR specifi ed in CBCR (i.e. AR0) is incremented. When its 

value is greater than CBER1, the CBSR1 address is loaded into the auxiliary register AR0.

Program 6_6.asm  Program for circular addressing mode

label Mnemonic Comments

 .mmregs

 .ps 0a00h

 .entry

 SPLK #1000h, CBSR1 ;load 1000h into the circular buffer

  ;start address register 1

 SPLK #1003h, CBER1 ;load 1003h into the circular buffer end

  ;address register 1

 SPLK #08h, CBCR ;load 8h into CBCR to activate circular

  ;buffer 1 & choose AR0 as the auxiliary

  ;register for circular buffer 1

 LACC #AR0, #1000h ;the start address of the buffer is loaded in AR0

 LACC *+ ;ACCU loaded from 1000h, AR0 =1001h

 LACC *+ ;ACCU loaded from 1001h, AR0 =1002h

 LACC *+ ;ACCU loaded from 1002h, AR0 =1003h

 LACC *+ ;ACCU loaded from 1003h, AR0 =1000h

 .end ;program end

PROGRAM FOR FAMILIARISATION OF ARITHMETIC INSTRUCTIONS 6.3

6.3.1 Finding the Sum of n Integers

The example given in Program 6_7.asm illustrates how the series 1, 2, 3, ..., n may be generated and 

stored in data memory. It also shows how its sum is calculated. The indirect addressing mode is used for 

storing and retrieving the numbers.

Program 6_7.asm  Finding the sum of n integers

Label Mnemonic Comments

 .mmregs

 .ds 1000h

 .ps 0a00h

 .entry

 LAR AR0,#10h ;’n’ of the sequence loaded; here n =10

 LAR AR1,#1000h ;starting address (1000h) from where the

  ;sequence is stored is loaded into AR1
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 LACC #1h ;ACCU is initialised with value 1

 MAR *,AR1 ;modify auxiliary register pointer to AR1

loop: SACL *+,0,AR0 ;sequence generated & stored from data

  ;memory address 1000h

 ADD #1h ;increment ACCU by 1

 BANZ loop.AR1 ;branch to loop on AR0 not zero; AR0 is

  decremented & ARP points to AR1

 LAR AR0,#10h 

 LAR AR1,#1000h

 ZAP ;zero ACCU and product register

loop1: MAR *,AR1 ;loop1 starts here: it fi nds the sum

 ADD *+,0,AR0 ;content of dma starting from 1000h added

  ;to ACCU

 BANZ loop1,AR1 ;branch to loop1 on AR0 not zero

  ;AR0 is decremented & ARP points to AR1

 .end ;program end

The value of n is stored in one of the ARs (AR0). First the series is generated and stored by using a 

loop. Using another loop the sum is calculated. Each time the loop is executed once, the AR having the 

value of n is decremented once its value decrements to zero the execution completes.

6.3.2 Generation of Fibonacci Series

The generation of the numbers corresponding to Fibonacci series is achieved using Program 6_8.asm. 

If the fi rst two numbers of the sequence are assumed, the next number in the series is the sum of the 

previous two numbers. For example, x(0) = 0 , x(l) = 1 then x(i) = x(i–1) + x(i–2), where i>1. The length 

of the sequence ‘n’ is stored into one of the AR (AR1). The previous two numbers are needed for the 

generation of the next number. One number is stored in ACCU and another number is stored into the 

accumulator buffer ACCB. The sum of these two registers give the next number in the series. Each time 

the next number is calculated, the content of AR1 is decremented, once the content of AR1 decrements 

to zero the generation of the additional numbers in the sequence is stopped.

Program 6_8.asm  Generating the Fibonacci series numbers

Label Mnemonic Comments

 .mmregs

 .ds 1000h

 .ps 0a00h

 .entry

 LAR AR0,#1000h ;starting dma (1000h) stored into AR0

 LAR AR1,#10h ;sequence length (N =10) loaded into AR1

 LACC #0h ;zero ACCU

 EXAR ;contents of ACCU & ACCB exchanged

 LACC #01h ;load the constant 1 into ACCU
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loop: MAR *, AR0 ;modify ARP to AR0

 SACL *,0 ;store ACCU low byte in dma pointed by AR0

 ADDB ;the content of ACCB added to ACCU

 EXAR ;contents of ACCU & ACCB exchanged

 SACL *+,0,AR1 ;store the ACCU low byte in dma pointed

  ;by AR0, increment the content of AR0 and

  ;ARP points to AR1

 BANZ loop,AR0 ;branch to loop if AR1 non-zero AR1

  ;decremented & ARP points to AR0

 .end ;program end

6.3.3 Convolution Using MAC and MACD Instructions

The convolution of the following two sequences of length N and M is performed using MAC and 

MACD instructions in the following examples.

Example 6.1 Convolve two sequences x(n), y(m) of length N and M respectively for N = 5, M = 3 and x(n), 

y(m) given by

   X(n) = 1, 2, 3, 2, 1 where 0 £ n £ 4

   Y(m) = 3, 4, 5  where 0 £ m £ 2

Solution The sequence after convolution is

z(l) = x(n) * y(m) = 03, 0A, 16, 1C, 1A, E, 05 where 0 £ l £ 6

6.3.3.1 Convolution Using MAC Instruction

Program 6_9.asm gives the listing of the program for convolving two sequences x(n) and y(m) given 

in example 6.1. One of the sequences is loaded into program memory space and another one in data 

memory space using .word assembler directive. For one of the sequences (x(n) in the above example) 

padding of zeros is not required, but for the other sequence, (y(m) in the above example) padding of 

zeros is necessary. The sequence which is to be stored into data memory should be padded with zeros. 

The number of zeros to be padded is N – 1, at the beginning and at the end of the y(m) sequence. The 

starting address of the x(n) sequence is indicated in the MAC instruction (0a00h). The starting address 

of the y(m) sequence is to be loaded into an AR (AR0). Since zeros are padded, the starting address for 

convolution is not equal to the address which is indicated in the .ds assembler directive (1000h), but it is 

(N – 1) locations ahead of it, i.e. (1000 + (N – 1)). The length of the convolved sequence is

Program 6_9.asm  Convolution using MAC

Label Mnemonic Comments

 .mmregs

 .ps 0a00h

 .word 1h,2h,3h,2h,1h ;x(n) stored from pma 0a00h

 .ds 1000h ;origin of dma is 1000h

 .word 0h,0h,0h,0h ;y(m) stored from dma 1000h after
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 .word 3h,4h,5h ;padding 4 zeros at the beginning

 .word 0h,0h,0h,0h

 .entry

 LAR AR0,#1004h ;actual data starts only at 1004h

 LAR AR1,#1050h ;starting address for result: 1050h

 LAR AR2,#07h ;length of the output sequence

loop: ZAP

 MAR *,AR0

 RPT #5h ;execute the instruction followed by RPT

  ;instruction 5 times

 MAC 0a00h,*- ;the PREG content is added to ACCU.

  ;contents of pma given by PFC & dma multiplied

  ;& product loaded into PREG pma is

  ;incremented & dma pointer decremented

  ;(see note 1)

 MAR *,AR1 ;AR pointed to output dma

 SACL *+,0,AR0 ;one result stored

 ADRK #7h ;add 7 to the current AR i.e. AR0

 MAR *,AR2

 MAR *-

 BANZ loop

 .end

N + M – 1 (l = 7). This is loaded into an AR (AR2). The constant that is to be put in RPT instruction is 

N. The constant that is to be added to AR0 each time in the execution of the loop is N + 2. The convolved 

sequence is stored in the data memory location. Its starting address is indicated in an AR (AR1). The 

same procedure can be extended for any sequence and its convolution can be obtained.

Note 1: When the MAC instruction is executed for the fi rst time, the pma given in the MAC instruction 

is copied into the prefetch counter (PFC) for the program memory and the contents of pma given by 

PFC are multiplied with that of the dma. After this operation PFC is incremented and dma pointer is 

incremented /decremented depending upon whether the MAC instruction has *+ or *- as the argument 

for the indirect addressing mode. When the MAC instruction is repeatedly executed, when the MAC 

instruction is executed for the second time onwards, the pma given in the MAC instruction is not copied 

into PFC. The pma address is directly taken from the PFC.

6.3.3.2 Convolution Using MACD Instruction

Program for the convolution of the two sequences given in Example 6.1 using MACD instruction is 

given in Program 6_10.asm. As in Program 6_9.asm, out of the two sequences x(n) and y(m), one 

is loaded into program memory space and another one in data memory space using .word assembler 

directive. For both the sequences x(n) and y(m), padding of zeros is necessary. For x(n) sequence zeros 

are to be padded at the end only. But for the y(m) sequence zeros are to be padded at the beginning and at 

the end. The number of zeros to be padded for x(n) sequence is (M – 1), whereas for y(m) it is (N – 1).

The starting address of the x(n) sequence is indicated in the MACD instruction (0a00h). For MACD 

instruction the end address of the y(m) sequence is to be loaded into an AR (AR0 in this program). 
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Since zeros have been padded, to fi nd the end address of dma M + 2(N – 1) is added to the address 

indicated in the .ds assembler directive. The length of the convolved sequence is N + M – 1 (l = 7). 

This is loaded into an AR (AR2). The constant that is to be put in the RPT instruction is (N + M – 1). 

The convolved sequence is stored in the data memory. Its starting address is indicated by an AR (AR1). 

Each time the loop is executed, the end address of the sequence in data memory space is reloaded. Since 

convolution sum computation starts with the last value of the resultant sequence, the resultant sequence 

is stored from 1050h,104Fh to 104Ah using *– option in SACL instruction. The same procedure can be 

extended to any sequence and its convolution can be obtained. MACD instruction is useful for real 

time convolution as the input data array is shifted towards right (to higher memory location) and 

the new input data can be inserted at the beginning of the dma.

Program 6_10.asm  Convolution using MACD instruction

Label Mnemonic Comments

 .mmregs

 .ps 0a00h

 .word 1h,2h,3h,2h ;x(n) sequence is stored in program

 .word 1n,0h,0h ;memory from the address 0a00h

 .ds 1000h ;origin of data memory: 1000h

 .word 0h,0h,0h,0h ;y(n) sequence is stored in data

 .word 3h, 4h,5h ;memory with 4 zeros added at the

 .word 0h, 0h,0h,0h ;beginning and end of the sequence

 .entry

 LAR AR1,#1050h ;output sequence length

 LAR AR2,#07h ;output sequence length

loop: LAR AR0,#100ah ;the end address of the sequence y(n)

  ;stored in DM space is loaded into AR0

 ZAP

 MAR *,AR0

 RPT #7

 MACD 0a00h,*- ;the PREG content is added to ACCU.

  ;contents of pma given by PFC& dma multiplied

  ;& product loaded into PREG PFC is

  ;incremented & dma pointer decremented.

  ;content of dma pointed by ARO moved to

  ;dma+l (see note 2);

 MAR *,AR1

 SACL *-,0,AR2

 BANZ loop,AR0

 .end

Note: When the MACD instruction is executed for the fi rst time, the pma given in the MACD instruction 

is copied into the PFC for the program memory and the contents of pma given by PFC are multiplied with 

that of the dma. After this operation PFC is incremented and dma pointer is incremented/ decremented 

depending upon the whether the MAC instruction has *+ or *– as the argument for the indirect addressing 

mode. When the MACD instruction is repeatedly executed, when the MACD instruction is executed 
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for the second time onwards, the pma given in the MACD instruction is not copied into PFC. The pma 

address is directly taken from the PFC. The content of data memory is copied to the next higher location 

each time the MACD instruction is executed.

PROGRAMS IN C5X FOR PROCESSING REAL TIME SIGNALS 6.4

In many DSP applications, the signals to be processed are in analog form. The analog signals are fi rst 

converted into digital data and then the required processing is done using P-DSPs. After processing, 

the digital data are once again converted back to analog signals. So it is essential that an A/D converter 

and a D/A converter are interfaced with the P-DSPs. The digital data to the A/D and D/A converter 

from/to the P-DSP may be fed using either parallel ports or serial ports. Accordingly they are called 

as parallel A/D, D/A and serial A/D, D/A respectively. In this section, interfacing the analog interface 

circuit (AIC) TLC320C40 to the serial port of C5X is considered. This AIC consists of a serial A/D and 

D/A converter.

The sampling clock to the AIC is generated using the on-chip timer in C5X. The details on programming 

the timer is presented fi rst. Next, programming the serial port of C5X is considered. Finally the details 

on the AIC and its programming are considered.

6.4.1 The on-chip Timer in C5X and Programming its Mode

The timer is an on-chip down counter that can be used to periodically generate CPU interrupts. The timer 

mode is programmed using the timer control register (TCR). The TCR diagram is shown in Fig. 6.4. The 

signifi cance of some of the frequently used bits of the TCR is shown in Table 6.3. The remaining bits of 

TCR may be chosen to be 0.

Fig. 6.4 The timer control register diagram

Table 6.3 Signifi cance of some of the Bits of the TCR

TCR 

bits

Parameter 

name

Value on 

reset Description

d9-d6 PSC — Timer prescaler counter bits. These bits specify the count for the on-chip timer. 

When the PSC is decremented past 0 or the timer is reset, the PSC is loaded 

with the contents of the TDDR, and the TIM is decremented

d5 TRB — Timer reload bit. This bit resets the on-chip timer. When the TRB is set, the 

TIM is loaded with the value in the PRD and the PSC is loaded with the value 

in the TDDR. The TRB is always read as a 0

d4 TSS 0 Timer stop status bit. This bit stops or starts the on-chip timer. At reset, the 

TSS bit is cleared and the timer immediately starts timing.

TSS = 0 The timer is started

TSS = 1 The timer is stopped

d3-d0 TDDR 0000 Timer divide-down register bits. These bits specify the timer divide-down 

ratio (period) for the on-chip timer. When the PSC bits are decremented past 

0, the PSC is loaded with the contents of the TDDR
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The timer is decremented by one at every CLKOUTl cycle. A timer interrupt (TINT) is generated 

each time the counter decrements to zero. The timer provides a convenient means of performing periodic 

I/O or other functions. The timer interrupt rate, TINTrate, is given by

TINTrate = [tc *(TDDR + 1)*(PRD + 1)]–1

where tc is period of CLKOUTl of C5X. TDDR is a 4-bit register and its value is loaded by writing 

into the lower order 4 bits of TCR. PRD is a 16-bit memory-mapped register. For the timer interrupt to 

cause the DSP to branch to the interrupt service routine, the mask bit corresponding to TINT should be 

unmasked in the IMR. An example program for programming the on-chip timer is given in Program 

6.11_asm.

Program 6_11.asm  Programming the on-chip timer

Timerinit Splk #020h, tcr DSP on-chip timer control register

  ;programmed to run in free running

  ;mode

 Splk #01h, prd ;timer period register programmed to

  ;divide CPU clock by 2

 Ret

6.4.2 5X Serial Port Block Diagram and Its Operation

The full duplex on-chip serial port in C5X provides direct communication with serial devices such 

as codecs and serial A/D converters. The block diagram of the on-chip serial port of C5X is given in 

Fig. 6.5. Three signals each are used to connect the transmit pins of the transmitting device with the 

Fig. 6.5 Serial port interface block diagram
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receiving device and vice versa for data transmission. The pins used for serial communication and their 

functions are given in Table 6.4.

Table 6.4 The pins used for serial communication and their functions

Pin Function

CLKX Transmit clock signal

DX Transmit serial data signal

FSX Transmit frame synchronisation signal

CLKR Receive clock signal

RX Receive serial data signal

FSR Receive frame synchronisation signal

The serial port operates through three memory-mapped registers: serial port control (SPC) register, 

data transmit register (DXR) and data receive register (DRR) and two other registers: transmit shift 

register (XSR) and receive shift register (RSR). The details on the bits allocated for various functions of 

SPC register are given in Fig. 6.6. The description of the bits of SPC is given in Table 6.5.

Fig. 6.6 Serial port control (SPC) register diagram

A transmit is executed by writing data to XSR when XSR is empty (the last word is serially shifted 

out through the DX pin). The XSR manages the shifting of the data and allows another write to DXR as 

soon as the DXR to XSR copy is completed. Upon completion of this copy, a 0–1 transition occurs on 

the XRDY bit in the SPC and generates the serial port transmit interrupt (XINT) and signals that DXR is 

ready for a new word. The process is similar on the receive side. Data from the DR pin is shifted into the 

RSR, which copies it into the DRR from which it may be read. Upon completion of the RSR–DSR copy, 

a 0–1 transition occurs on the receive ready (RRDY) bit in the SPC and generates the serial port receive 

interrupt (RINT). Thus while a data is being received or transmitted serially another 8- or 16-bit data 

can be either read or written into the serial port. The signals FSR and FSX initiate the serial shifting of 

the data at the beginning of every frame in burst mode and for the fi rst frame in the synchronous transfer 

mode for the shift registers used at the receive and transmit side respectively.

Table 6.5 The description of the Bits of serial port control register

Bitname Description

RSRFULL Receive Shift Register Full. This bit indicates whether the receiver has experienced overrun. Overrun 

occurs when RSR is full and DRR has not been read since the last RSR-to-DRR transfer.

(Contd.)
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XSREMPTY Transmit Shift Register Empty. This bit Indicates whether the transmitter has experienced underfl ow. 

Underfl ow occurs when XSR is empty and DXR has not been loaded since the last DXR-to-XSR 

transfer.

XRDY Transmit Ready. A transition from 0 to 1 of the XRDY bit indicates that the DXR contents have 

been copied to XSR and that DXR is ready to be loaded with a new data word. A transmit interrupt 

(XINT) is generated upon the transition. This bit can be polled in software instead of using serial 

port interrupts.

RRDY Receive Ready. A transition from 0 to 1 of the RRDY bit indicates that the RSR contents have been 

copied to the DRR and that the data can be read. A receive interrupt (RINT) is generated upon the 

transition. This bit can be polled in software instead of using serial port interrupts.

IN1 Input 1. This bit allows the CLKX pin to be used as a bit input.

IN0 Input 0. This bit allows the CLKR pin to be used as a bit input.

RRST Receive Reset. This signal resets and enables the receiver.

XSRT Transmitter Reset. This signal is used to reset and enable the transmitter.

TXM Transmit Mode. This bit confi gures the FSX pin as an input (TXM = 0) or as an output (TXM=1).

MCM Clock Mode. This bit specifi es the clock source for CLKX. MCM = 0 CLKX is taken from the CLKX 

pin. MCM = 1 CLKX is driven by an on-chip clock source.

FSM Frame Sync Mode. This bit specifi es whether frame synchronisation pulses (FSX and FSR) are 

required after the initial frame sync pulse for serial port operation. FSM = 0 Continuous mode. 

FSM = 1 Burst mode.

FO Format. This bit specifi es the word length of the serial port transmitter and receiver. FO = 0 The 

data is transmitted and/or received as 16-bit words. FO = 1 The data is transferred as 8-bit bytes. 

The data is transferred with the MSB fi rst.

DLB Digital Loopback Mode. This bit can be used to put the serial port in digital loopback mode.

Res Reserved.

6.4.2.1 Serial Port Initialisation

To have effective communication between DSP and AIC, it is necessary to initialise the serial port of 

the DSP.

The serial port initialisation involves activating the interrupts and programming the serial port control 

register (SPC). For the DSP to transmit and receive data from the AIC, the serial port receive interrupt 

(RINT), transmit interrupt (XINT) and external interrupt INT2  are to be set. Whenever a particular 

interrupt is to be enabled, all the maskable pending interrupts are globally disabled. This is done by 

setting the INTM bit of status register 0 (ST0) to be 1. For the required interrupt to be enabled, the 

control word is transferred to the interrupt mask register (IMR), then the interrupts are enabled by 

clearing the INTM bit. The control word 32h written into IMR will enable both transmit and receive 

interrupt from the serial port.

The SPC register is programmed for the desired operation of the serial port. The control word of 

0008h written into SPC disables the loop back mode of serial port, selects 16-bit word length for data 

Table 6.5 (Contd.)
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transfer and enables burst mode of data transfer between DSP and AIC. Further, the CLKX is taken 

from CLKX pin, external frame synchronisation is used and the serial port transmitter and receiver are 

enabled.

The data transfer between the serial port and the CPU can be achieved without any wait states. So 

the program/data wait register (PDWSR) and wait state control registers (CWSR) are cleared. A sample 

initialisation program for serial port is given in Program6_12.asm.

Program 6_12.asm  Program for initialisation of serial port

spc_init lacc #0008h ;SPC programmed to transmit in burst

  ;mode, 16-bit data transfer mode

 sacl spc

 lacc #00c8h ;the Rx and Tx reset signals generated

 sacl spc

 setc intm ;intm bit in interrupt mask register set

  ;& all unmaskable interrupts disabled

 splk #32h, imr ;32h to imr to enable both Tx & Rx intr

 splk #0h,cwsr ;clear wait-state control register

 splk #0h,pdwsr ;clear program/data wait state control

  ;register zero wait state programmed

 clrc intm ;all unmasked interrupts are enabled

 Ret

6.4.3 An Overview of the Analog Interfacing Circuit (AIC)

TLC320C40 and TLC320C41 are single monolithic CMOS chips consisting of 14-bit resolution A/D 

and D/A converters and four microprocessor compatible serial port modes. These AICs also consist of a 

BP switched-capacitor antialiasing input fi lter and a LP switched-capacitor output-reconstruction fi lter.

These devices offer numerous combinations of master clock input frequencies and conversion/ 

sampling rates, which can be changed via digital processor control. The devices can transmit and receive 

synchronously as well as asynchronously. When the communication is happening synchronously it can 

interface two SN74299 serial-to-parallel shift registers. These serial-to-parallel shift registers can then 

interface in parallel to the DSPs or external FIFO circuitry.

A fl exible control scheme is provided so that the functions of this integrated circuit can be selected and 

adjusted coincidentally with signal processing via software control. A selectable, auxiliary, differential 

analog input is provided for applications where more than one analog input is required. The functional 

block diagram of the IC is given in the Fig. 6.7.

6.4.3.1 Terminal Functions

The abbreviations of the terminals of the AIC are given below.

ANLG GND Analog ground for all internal analog circuits

AUX IN+ Non-inverting auxiliary analog input

AUX IN– Inverting auxiliary analog input

DGTL GND Internal digital ground for logic circuits

DR Data receive, used to transmit ADC output bits to DSP serial port
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Fig. 6.7 Functional block diagram of AIC

DX Data transmit, used to receive the input bits, timing and control information from the 

DSP

EODR End of data receive

EODX End of data transmit

FSR Frame synchronisation receive

FSX Frame synchronisation transmit

IN+ Non-inverting input to analog input amplifi er stage

IN– Inverting input to analog input amplifi er stage

MSTRCLK Master clock. This is used to derive all the key logic signals of AIC. This signal is fed 

from DSP

OUT+ Non-inverting output to analog output power amplifi er stage

OUT– Inverting output to analog output power amplifi er stage

REF Internal reference voltage for the TLC320C40

RESET Active low reset, the reset function is provided to initialise the TA,TA’,RA,RA’,TB,RB 

and control registers in the AIC. This reset function initiates serial communication 

between DSP and AIC with an 8-kHz conversion rate for 5.184 MHz master clock 

when the control register bits of AIC are set with default value.
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SHIFT CLK Shift clock. Shift clock signal is obtained by dividing master clock frequency by four.

Vdd Digital supply voltage, 5 V ± 5%

Vcc+ Positive analog supply voltage, 5 V ± 5%

Vcc– Negative analog supply voltage, –5 V ±5%

WORD/BYTE A 16-bit (word) or 8-bit (byte) is transmitted or received in conjunction with the control 

register

The following sections give the description of AIC functional blocks.

6.4.3.2 Analog Input and Output

Two sets of analog inputs are provided. Normally, the IN+ and IN- input set is used; however, the 

auxiliary input set, AUX IN+ and AUX IN-, can be used if a second input is required. The auxiliary 

input can be enabled or disabled by bit d4 of the AIC control register. Each input set can be operated 

in either differential or single-ended modes, since suffi cient common-mode range and rejection are 

provided. The gain for the IN+, IN-, AUX IN+ and AUX IN- inputs can be programmed to be either 1, 

2 or 4 using the control bits d7 and d6 in the AIC control register. An analog output power amplifi er is 

provided at the output circuitry. Both non-inverting and inverting outputs are brought out of the chip. 

The amplifi er can drive loads directly in either a differential or a single-ended confi guration.

6.4.3.3 A/D and D/A Filters

The input fi lter comprises seventh-order LP and fourth-order Cc-type (chebyshev/elliptical transitional) 

high fi lters whereas the output is seventh-order LP fi lter. The input fi lter is preceded and the output fi lter 

is followed by a continuous time fi lter to eliminate any possibility of aliasing caused by sampled data 

fi ltering at the input end and to eliminate images of the digitally encoded signal at the output end. Both 

input and output fi lter are followed by fourth-order equalisers. When no fi ltering is desired, the entire 

composite fi lter can be switched out of the signal path. The A/D BP fi lter can be selected or bypassed 

using the bit d0 present in the control register.

The A/D fi lter is a switched-capacitor and the switched-capacitor fi lter clock frequency of 288 kHz is 

generated in several options by programming the TX counter A. The A/D conversion rate is then attained 

by frequency dividing the 288 kHz switched-capacitor clock with TX counter B. The unwanted aliasing 

is prevented because the A/D conversion rate is an integral submultiple of the band pass switched-

capacitor fi lter sampling rate, and the two rates are synchronously locked. It is to be noted that when the 

BP fi lter clock frequency is not 288 kHz the fi lter transfer function is frequency scaled by the ratio of 

the actual clock frequency to 288 kHz.

The D/A LP fi lter is also a switched-capacitor fi lter which operates at the clock frequency of 288 kHz. 

The 288 kHz clock signal is obtained by programming the RX counter A. The D/A conversion rate is 

obtained by frequency dividing the 288 kHz fi lter clock with RX counter B. Similar to A/D converter 

the frequency scaling happens when the fi lter clock frequency is not 288 kHz. A continuous time fi lter is 

provided at the output of the D/A converter to attenuate the switched-capacitor clock feedthrough.

6.4.3.4 Internal Timing Confi guration

All the internal timing signals of AIC are derived from the master clock input. The shift clock signal 

is obtained by dividing the master clock input four times and this is used for the data communication 

between AIC and DSP. The internal timing confi guration of the AIC is given in Fig. 6.9.
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Shift clock frequency = master clock frequency/4

Switched-capacitor fi lter (SCF) = master clock frequency/(2 x contents of counter A)

Clock frequency

conversion frequency = SCF clock frequency/contents of counter B

Fig. 6.8 AIC DR or DX word bit pattern

Table 6.6 The LSB two bits of DX data format and their signifi cance for primary communication

d1 d0 Function

0 0 TX and RX counter A’s are loaded with TA, RA B’s are loaded with TB and RB register values

0 1 The TX and RX counter A’s are loaded with the TA+TA’ and RA+RA’ register values. The TX and RX 

counter B’s are loaded with the TB and RB register values

1 0 The TX and RX counter A’s are loaded with the TA-TA’ and RA-RA’ register values. The TX and RX 

counter B’s are loaded with the TB and RB register values

1 1 TX and RX counter A’s are loaded with TA and RA register values. The TX and RX counter B’s are 

loaded with the TB and RB register values. A secondary transmission starts immediately after four shift 

clock cycles to program the AIC to operate in the desired confi guration

The switched-capacitor fi lter frequency 288 kHz is derived both for the A/D conversion BP fi lter and 

D/A LP fi lter from the master clock frequency by frequency dividing with TX counter A and RX counter 

A respectively. The TX and RX counter A’s can be loaded with the values of TA and RA register (5 bits) 

contents during every conversion period. Both counters can also be loaded with the values of TA and 

RA register contents subtracted or added with the contents of TA’ and RA’ registers (6 bits). This can be 

selected with the d1 and d0 bits of DX word bit pattern as shown in Table 6.6. The AIC DR or DX word 

bit pattern is given in Fig. 6.8.

The D/A and A/D conversion frequencies are derived from the 288 kHz switched-capacitor clock 

frequency by frequency dividing with TX counter B and RX counter B respectively. The TX counter B 

and RX counter B are loaded with the values of TB and RB registers (6 bits) during every conversion 

period.

6.4.3.5 AIC Serial Port Modes and its Registers

There are four modes of transmission possible using the serial port in AIC. The WORD/BYTE pin 

present in AIC, in conjunction with bit d5 in the AIC control register, is used to establish one of the four 

serial modes. The active high/low signal given to the pin WORD/BYTE selects transmission of 16-

bits (word)/8-bits (byte). The 0/1 stored in the bit d5 of the AIC control register selects asynchronous/

synchronous mode of transmission between DSP and AIC. The selection of these possible modes is 

listed in Table 6.7.
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Fig. 6.9 Internal timing confi guration of AIC
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Table 6.7 The AIC serial port modes

AIC mode Word/ Byte  pin level Bit d5 of AIC

Asynchronous transmission of 8 bits (byte) 0 (low level) 0

Synchronous transmission of 8 bits (byte) 0 (low level) 1

Asynchronous transmission of 16 bits (word) 1 (high level) 0

Synchronous transmission of 1 6 bits (word) 1 (high level) 1

For all the four modes, two communication protocols exist, namely, the primary and secondary 

communication protocols. In the primary communication protocol, the data transfer between AIC and 

DSP is performed, whereas in secondary communication the TA, RA, TB, RB and AIC control registers 

are programmed to operate in the desired confi guration.

The d1 and d0 both bits set to 1 in the DX data word format in primary communication initiates the 

secondary communication after a four shift clock cycles. During the secondary communication the 

counter registers A’s, B’s and AIC control register are programmed. The d1 and d0 bits of the DX data 

format are used to load various registers of AIC as shown in Table 6.8.

Table 6.8 The LSB two bits of DX data format and its signifi cance for secondary communication

d1 d0 Function

0 0 The TA and RA register are loaded with the 5-bit value given in the AIC initialisation routine

0 1 The TA’ and RA’ register are loaded with the 6-bit value given in the AIC initialisation routine

1 0 The TB and RB register are loaded with the 5-bit value given in the AIC initialisation routine

1 1 The AIC control register is loaded with the 5-bits value given in the initialisation routine

The data format of DX word during the secondary communication to load various counter registers 

and AIC control register is given in Figs 6.10-6.13. Table 6.9 gives the TA and TB bits for different 

master clocks. Table 6.10 shows how the functions of AIC are programmed by selecting the AIC control 

register bits.

Table 6.9 The TA and RA Bits for Different Master Clocks

Master clock Content of TA and RA register

5.184 MHz 9 (01001)

10.368 MHz 18 (10010)

Fig. 6.10 Data format for programming TA and RA registers
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Fig. 6.11 Data format for programming TA’ and RA.’ registers

Fig. 6.12 Data format for programming TB and RB registers

Fig. 6.13 Data format for programming the AIC control registers

Table 6.10 AIC control register bits and the function programmed

d2 0/1 deletes/inserts the highpass fi lter

d3 0/1 disables/enables the loopback function

d4 0/1 disables/enables the AUX IN+ and AUX IN-

d5 0/1 asynchronous/ synchronous transmit and receive sections

d6 0/1 gain control bits

d7 0/1 gain control bits

6.4.3.6 AIC Serial Port Operation and Reset Function

After power has been applied to the AIC, a negative going pulse from DSP is sent to AIC RESET pin 

to initialise the AIC registers. The default values are loaded into the counter A’s and counter B’s and the 

control register. For the master clock frequency of 5.184 MHz the A/D and D/A conversion rate of 8 

kHz and for 10.368 MHz a conversion rate of 14.4 kHz is selected. The AIC control register is loaded 

with the value 111001 and the synchronous primary communication between DSP and AIC starts. If 

the AIC is to be programmed to the desired operation then all the registers present in the AIC are to be 

programmed before starting the primary communication. The programming of the registers is given as 

AIC initialisation subroutine. It is necessary to call the subroutine before the primary communication 

is initiated.

6.4.3.7 AIC Secondary Communication Protocol Routine

This routine is called by the main program for AIC initialisation. The program required for the 

secondary communication is given in Program6_13.asm. The TA, RA, TB, RB and AIC control register 

contents that are to be loaded during the secondary communication of the AIC are defi ned using the 

word assembler directive in the main program. In Program 6_13. asm, fi rst the DSP on-chip timer is 

programmed to generate the master clock signal for the AIC. For that the timer control register (TCR) 

and the timer period registers (PRD) are loaded with the appropriate control words. The value 20h 

transferred to TCR, makes timer to operate in the free running mode. The constant 01h loaded into the 
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PRD, frequency divides the CPU clock by two so as to get the master clock signal of 10.368 MHz in 

the TMS320C50 starter kit. The required program is given in timerinit.asm. Then the (SPC) register is 

programmed for the burst mode of transmission and the receive and transmit reset signals are generated. 

The global memory allocation register (GREG) is programmed to allocate 0000h to 7fffh locations as 

global memory. The required program for these functions is given in spc_init.asm. The wait state of 

0.5 ms is introduced before programming the AIC. Program for inserting the required delay is given in 

delay.asm. Next the control words for TA, RA, TB, RB and AIC control registers are generated as per 

the data format described for these registers and the subroutine AIC2 given at the end of Program6_13.

asm actually transmits the control words to the respective registers.

Program 6_13.asm  Program for secondary communication

    Splk #020h,tcr ;DSP on-chip timer control register

  ;programmed to run in free running mode

    Splk #01h,prd ;timer period register programmed to

  divide CPU clock by 2

timeinit.asm: Initialisation of on-chip timer

    spc_init: Lacc #0008h ;SPC programmed to transmit in burst

 Sacl spc ;mode, 16-bit data transfer mode

 Lacc #00c8h ;the Rx and Tx reset signals generated

 Sacl spc

 Sacl #0080h

 Sach dxr

 Sacl greg ;global memory allocation register

  ;Programmed

Spc__init.asm: Initialisation of serial port and global memory

    delay: Lar ar0,#0ffffh ;AR for rpt instruction initialized

 Rpt #10000 ;next instruction executed 10000 times

 Lacc *,0,ar0 ;to introduce delay of 0.5 ms

delay.asm: Delay routine

 .mmregs

 .ds 1000h

 .ps 0a00h

ta .word 12h ;control word for TA & RA to generate

  ;switched capacitor fi lter (SCF) clock

ra .word 12h ;frequency of 288 kHz from 10.368 MHz

  ;master clock signal

tb .word 40 ;control word for TB & RB to generate A/D &

  ;D/A conversion rate of 7.2 kHz

rb .word 40 ; from SCF clock.

aic_ctr .word 30h ;30-BP fi lter is not included in the

  ;input path, 31-BP fi lter is included

 .entry
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aicint: .include “timeinit.asm” ;on-chip timer initialised

 .include “spc_init.asm” ;serial port initialised

 .include “delay.asm” ;delay of 0.5 ms introduced

 ldp # ta ;control word for TA register is obtained

 ssxm

 Lacc ta,9

 Add ra,2

 call aic2 ;control word loaded into aic ta register

 ldp #tb ;control word for TB register is obtained

 Lacc tb,9

 Add rb,2

 Add #02h

 Call aic2 ;control word loaded into aic tb register

 ldp #aic _ctr ;control word for AIC control register

  ;read

 Lacc aic_ctr,2

 Add #03h

 Call aic2 ;AIC control register written

 ret

;Assignment of values for TA, RA, TB, RB, AIC control register completed

aic2: Ldp #0h

 Idle

 Sach dxr

 Add #06h,15 ;initialisation of secondary communica-

  ;tion

 Idle

 Sach dxr ;AIC reset

 Idle

 Sacl dxr ;control word transmission happens here

 Zap

 Idle

 Sacl dxr ;control words transferred from DSP to AIC

 Ret

 . end

The initialisation of timer, serial port and the delay routine are given in separate fi les in order to im-

prove the readability of the program. They are inserted in Program6_13.asm by the include statements.

6.4.3.8 Interfacing the DSP and AIC

The interfacing diagram of the TMS320C50 and TLC320C40 is given in Fig. 6.14. The timer clock out 

signal is fed as master clock to AIC and the shift clock signal generated by the AIC is applied to clock 

receive and transmit pins of DSP. The receive and transmit frame synchronisation signals from DSP and 

AIC are interconnected. Similarly the DX and DR pins are interconnected.
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Fig. 6.14 AIC interface to TMS320C50

Waveform Generation using AIC Programs for generating various waveforms such as square, ramp, 

triangular and trapezoidal are given in this section.

6.4.3.9 Square Wave

For square wave generation the positive and negative amplitudes and Ton and Toff time periods are to 

be fi xed. For this the following symbol declaration is used. The values are set for these symbols using 

.set assembler directive. In the source program it is enough to mention only these symbols wherever 

required.

Amp+ve: positive amplitude  Ton: on period of the wave

Amp-ve: negative amplitude  Toff: off period of the wave

Table 6.11 Parameters for generating different square waves

Amp -ve Amp +ve Ton Toff Type of square wave generated

9fffh 7fffh 0f00h 0f00h Sqr wave with 50% duty cycle & 0 dc component

9fffh 7fffh 7f00h 5f00h Sqr wave with duty cycle >50% & 0 dc component

9fffh 7fffh 3f00h 7f00h Sqr wave with duty cycle <50% & 0 dc component

0000h 7ffeh 0f00h 0f00h +ve clamped sqr wave with 50% duty cycle

9ffeh 0000h 0f00h 0f00h -ve clamped sqr wave with 50% duty cycle

The maximum positive and negative values that can be assigned are 7FFFh and 9FFFh respectively. 

Similarly the maximum and minimum Ton and Toff periods are 7FFFh and 0F00h. Table 6.11 lists the 

various types of square waveforms that can be generated by choosing various values for Amp+ve, Amp-

ve, Ton and Toff. The amplitude and time period can be varied to any value by properly selecting the 

constants within the range given. Two programs are given for square wave generation.The fi rst-program 

Program6_14.asm uses RPT instruction to generate the square wave, whereas in the second program 

Program6_15.asm two loops are present; one loop is executed for positive amplitude and another one 

is executed for the negative amplitude. The time periods are loaded into the ARs and decremented each 

time the loop is executed.
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Spc init1.asm  Serial port initialisation for Transmit mode

 spc initl Setc intm ;intm bit in the interrupt mask register

  ;set, unmasked interrupts disabled

 Splk #22h,imr ;control word 22h stored in IMR

 Splk #0h,cwsr ;clear wait-state control register

 Splk #0h,pdwsr ;clear program/data wait-state control

  ;register

 Clrc intm ;all unmasked interrupts enabled

The serial port is initialised in spc_initl.asm, with the control word 22h being transferred to IMR for 

serial port transmit (Tx) mode [refer Section 6.4.2.1] and for the A/D and D/A conversion rates of AIC 

the default values are used [refer Section 6.4.3.5].

Program 6_14.asm  Square wave generation using repeat instruction

Label Mnemonic Comments

 .mmregs

 .ds 1000h

 .ps 0a00h

 .entry

amp+ve .set 7fffh ;7FFFh is chosen for Amp+ve

amp-ve .set 9fffh ;9FFFh is chosen for Amp-ve

ton .set 0f00h ;0F00h is set for Ton

toff .set 0f00h ;0F00h is set for Toff

 .entry

 .include spc_init1.asm

  ;serial port for Tx mode

loop lar ar0,#ton

 lar ar1,#toff

 Lacc #amp+ve

 And #0fffch ;last 2 bits of DX data format to be 0 fo

  ;primary commn between DSP and AIC

 rpt #ton

 Samm dxr ;constant in ACCU low byte loaded into DXR

 Lacc # amp-ve

 And #0fffch

 rpt # toff

 Samm dxr

 b loop

 .end
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6.4.3.10 Ramp Signal Generation

Program6_16.asm is used to generate ramp signal. The amplitude and the slope of the ramp are set in the 

assembler directive using ‘amp’ and ‘step’ symbols. The amplitude value is loaded in the AR compare 

register (ARCR). The ACCU is reset and step-size value is added with the content of the ACCU. After 

addition the content of ACCU is transmitted to DXR. The step size is also added to an AR (AR0 is used 

here) and compared with ARCR. Once the AR value reaches the amplitude value in the ARCR, the 

ACCU is reset and once again the execution starts in a loop.

Program 6_15.asm  Square wave generation with two loops

Label Mnemonic Comments

 .mmregs

 .ds 1000h

 .ps 0a00h

 .entry

amp+ve .set 7fffh ;7FFFh is chosen for Amp+ve

amp-ve .set 9fffh ;9FFFh is chosen for Amp-ve

ton .set 0f00h ;0F00h is set for Ton

toff .set 0f00h ;0F00h is set for Toff

 .entry

 .include

 spc initl.asm

  ;serial port initialised for Tx mode

loop Lar ar0,#ton

 Lar ar1,#toff

 Lacc #amp+ve

 And #0fffch

 Mar *,ar0

loop1 Samm dxr

 Nop ;2 nops introduced to avoid pipeline

  ;confl ict when using indirect

 Nop ;addressing followed by memory

  ;mapped register write operation

 Banz loop1,*-

 Lacc #amp-ve

 And #0fffch ;last 2 bits of DX data format to be

  ;0 for primary communication

  ;between DSP and AIC

 Mar *,ar1

Ioop2 Samm dxr

 Nop

 Nop

 Banz Ioop2,*-

 B loop

 .end
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Program 6_16.asm  Ramp signal generation

Label Mnemonic Comments

 .mmregs

 .ds 1000h

Amp .set 7fffh

Step .set 010h ;min 4h, max 10h

 .ps 0a00h

 .entry

 .include spc_init1.asm

loop Lacc #amp

 Lar ar0,#0h

 Samm arcr ;amplitude stored into ARCR register

 Lacc #0h

loop1 Add #step ;step size added to ACCU

 And #0fffch ;last 2 bits of DX data format to be 0 for

  ;primary communication between DSP & AIC

 Samm dxr

 Nop

 Nop

 Adrk #step ;the step size is added to the auxiliary

  ;register AR0

 Bcnd loop1,tc ;content of AR0 compared with ARCR.

  ;if content of AR is less.TC fl ag bit is

  ;set,

  ;if not TC is cleared. If TC set, branch to

  ;loop1, if not execute next instruction

 b loop ;unconditional branch to loop

 .end

6.4.3.11 Triangular Wave Generation

Program6_17.asm is used to generate a triangular wave signal. The required amplitude and slope of the 

wave is set in the assembler directive section using the symbols ‘amp’ and ‘step’. The amplitude value 

is loaded into the ARCR. The ACCU is reset and step-size value is added with the content of the ACCU. 

After addition the content of ACCU is transmitted to DXR. The step size is also added to an AR (AR0 

is used here) and compared with ARCR. Once the AR value reaches the amplitude value in the ARCR, 

the loop1 execution stops and loop2 execution starts. The ARCR is loaded with the constant zero. The 

step size is subtracted from the content of ACCU and then it is transferred to DXR. The content of AR 

is also decremented by step size. Once the AR content reaches zero the loop2 execution stops and loopl 

execution starts. Alternate execution of loop1 and loop2 generates the triangular wave form.
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Program 6_17.asm  Triangular wave generation

Label Mnemonic Comments

 .mmregs

 .ds 1000h

amp .set 7fffh

step .set 010h

 .ps 0a00h

 .entry

 .include spc_init1.asm

loop Lacc lamp

 Lar ar0,#0h

 Samm arcr ;Maximum amplitude stored into ARCR

 Lacc #0h

loop1 Add #step

 And #0fffch ;last 2 bits of DX data format to be 0 for

  ;primary communication between DSP & AIC

 Samm dxr

 Nop

 Nop

 Adrk #step

 Bcnd loop1,tc ;content of AR0 compared with ARCR.

  ;if content of AR is less.TC fl ag bit is set,

  ;if not TC is cleared. If TC set branch to

  ;loopl, if not execute next instruction

 Splk #0h,arcr ;the minimum amplitude is stored in

  ;the ARCR register

loop2 Sub #step

 And #0fffch

 Samm dxr

 Nop

 Nop

 Sbrk #step

 Bcnd loop2,tc ;content of AR0 compared with ARCR.

  ;if content of AR is less.TC fl ag bit is set,

  ;if not TC is cleared, If TC set branch to

  Ioop2, if not execute next instruction

 Nop

 Nop

 b loop

 .end

6.4.3.12 Capture and Display (Without AIC Initialisation)

Program 6_18.asm is used for digitising an analog signal, store it in DSP memory and convert it back 

to analog waveform. A sine wave signal is fed to the analog input pin of AIC, it is converted into digital 

word, stored in the accumulator, transmitted back to AIC, converted back to analog signal and displayed 
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in the CRO. It is verifi ed that the input and output signals are the same and also the Nyquist theorem is 

verifi ed. In this example the AIC control register and A/D and D/A conversion rate control registers are 

loaded with the default values. The control word 32h transferred to interrupt mask register (IMR) will 

enable both the transmit and receive interrupts. If the data value loaded into the ACCU is left shifted 

and transmitted to the D/A converter of AIC, the amplitude of the output analog signal will increase. 

Similarly if the data samples are stored in the data memory and alternate samples are sent to AIC, the 

frequency can be modifi ed.

Program 6_18.asm  Capture and display of waveforms with default values for timer, SPC 

         and AIC registers

Label Mnemonic Comments

 .mmregs

 .ps 0a00h

 .entry

 Setc intm

 Splk #32h,imr ;control word 32h enables RINT, XINT and

  ; INT2

 Splk #0h,pdwsr 

 Splk #0h,cwsr 

 Clrc intm 

 Nop 

 Nop 

loop: Lamm drr ;data word receive and transmit loop

 Nop ;(Primary communication)

 Nop 

 And #0fffch 

 Samm dxr 

 Idle 

 B loop 

 .end 

As per the Nyquist theorem if the baseband signal maximum frequency is fm, if the sampling of the 

baseband signal is done at a rate fs (≥ 2fm), then the original signal can be reconstructed back. In this 

sample program the sampling rate is selected as 14.4 kHz. It can be seen that when the input frequency 

is < 7.2 kHz, the input signal and the output signal are the same. Otherwise aliasing occurs.

6.4.3.13 Capture and Display (With AIC Initialisation)

In Program 6_19.asm, the DSP serial port is initialised and the A/D and D/A conversion rates are software 

programmed using the AIC initialisation routine [refer Section 6.4.3.7]. The conversion rate is selected 

as 7.2 kHz with master clock signal frequency of 10.368 MHz. After initialising the interrupts, it is 

enough to execute the AIC initialisation routine once, then the data conversion will be decided based on 

the AIC register values set in the initialisation routine. The programs timeinit.asm, spc_init.asm, delay.

asm and aic_init.asm are given in Section 6.4.3.7.
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Program 6_19.asm  Capture and display of waveforms with values for timer, SPC and

         IC registers specifi ed by the user

Label Mnemonic Comments

 .mmregs

 .ds 1000h

 .ps 0a00h

ta .word 12h ;control word for TA & RA to generate

  ;switched-capacitor fi lter (SCF) clock

ra .word 12h frequency of 288 kHz from 10.368 MHz

  ;master clock signal

tb .word 40 ; control word for TB & RB to generate A/D & 

  ;D/A conversion rate of 7.2 kHz

rb .word 40 ;from SCF clock.

ai c_ctr .word 30h ;30-BP fi lter is not included in the

  ;input path, 31-BP fi lter is included

 .entry

 Setc intm ;serial port interrupt and AIC initialisation

 Splk #32h,imr ;control word 32h enables RINT, XINT &

  ;INT2

 Splk #0h,pdwsr

 Splk #0h,cwsr

 Clrc intm

 Call aicint ;call AIC initialisation routine

 Nop

 Nop

loop: Lamm drr ;data word receive and transmit loop

 Nop ;(primary communication)

 Nop 

 And #0fffch

 Samm dxr

 Idle

 B loop

aicint: .include “aic_int.asm” ;program for AIC initialisation inserted here

 .end

6.4.3.14 FSK Generation

Frequency shift keying (FSK) technique is used in digital communication systems for transmission of 

digital data by changing the carrier frequency in accordance with the data to be transmitted. For example, 

in the binary data transmission system, the input signals to the digital communication system will be 1 s 

and 0s. To transmit this data through the communication channel, FSK technique may be used.

In binary FSK system two different carrier frequency signals are transmitted through the channel 

based on the binary information. For the binary 1, carrier signal of one frequency is transmitted and for 

logic 0 another signal of different frequency is transmitted. The two sine wave signals may be generated 

by using the look up table approach. The samples of the sine waves corresponding to a bit duration may 

be stored in the look up table and transmitted to the AIC. The AIC converts these samples into analog 

signals.
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In Program 6_20.asm used for the generation of FSK signal, the two different carrier signals are 

assumed to be captured (digitised) and stored in two different data fi les using the capture and display 

assembly language program given in Program6_17.asm or Program6_18.asm. Based on the binary 

information the sine wave samples present in the look up table are transmitted to the output.

6.4.3.15 Generating Sine Wave Look Up Table Using Capture Program

The sampling rate of the AIC (TLC320C40) can be varied using the contents present in the TB and RB 

counter registers (refer Chapter AIC initialisation). Select a 1 kHz sine wave as input signal and the TB 

and RB register values as 15. This will enable a sampling rate of 19.2 kHz for A/D and D/A conversion. 

Execute the capture and display program, where the captured sample values will be stored in the data 

memory space. It can be noted that 18 sample values are stored for each input cycle of the sine wave. If 

the sampling rate selected is 8 kHz (TB & RB = 36) the number of sample values that get stored are 8 

per cycle. Similarly for rest of the sampling rate, corresponding sample values that will be stored. It is to 

be noted that if the input frequency doubles, the samples stored reduce to half of the previous input.

The sampled data values can be stored into a data fi le using the save option available in the 

TMS320C5X DSK debugger. The number of sample values to be stored in a data fi le depends on the 

number of cycles needed to be transmitted. For example, 1-kHz input with 19.2 kHz sampling rate 

stores 18 sample values. If four cycles are to be reproduced, 72 sample values are to be stored in a 

data fi le. As FSK generation needs two different frequencies, two signals of different frequency can be 

captured and stored in two data fi les. With the different sampling rate conversion it is also possible to 

generate various frequencies with one frequency signal being captured. For example, the input samples 

can be captured at the 19.2 kHz conversion rate and if it is displayed at the 9.6 kHz rate, at half the 

capture rate, the frequency can be increased. Similarly any frequency in multiples of one frequency can 

be easily generated by changing the A/D and D/A conversion rates.

In the following example 1 kHz and 2 kHz input signals are captured and stored in two data fi les 

‘sinlk.dat’ and ‘sin2k.dat’. These fi les containing the sine wave sample values are included in the FSK 

generation program, The subroutines aic_init used for the initialisation of the AIC is given in Program 

aic_init.asm in Section 6.4.3.7 and is included at the end of Program6_20.asm.

Program 6_20.asm  FSK generation program

 .mmregs

 .ds 1000h

 .include ‘sin1k.dat’ ;include 1 kHz sine wave look up table in

  ;data

  ;memory space starting address 1000h

 .ds 1200h

 .include ‘sin2k.dat ;include 2 kHz sine wave look up table in

  ;data

  ;memory space starting address 1200h

 .ps 0a00h

ta .word 12h

ra .word 12h

tb .word 15

rb .word 15



156  Digital Signal Processors

aic_ctr .word 31h ;30-bpf not inluded, 31-bpf included

 .entry

 setc intm

 splk #32h,imr

 splk #0h,pdwsr

 splk #0h,cwsr

 clrc intm

 call aicint

loop1 lamm drr ;content of drr register loaded into

  ;accumulator

 idle

loop sfr ;right shift the content of accumulator

 exar ;exchange content of ACCU with ACCB

 Bcnd Ioop3,nc ;if there is no carry branch to Ioop3,

  ;else execute next instruction

 lar ar0,#1000h ;load the starting address of the look up

  ;table 1 (1000h) in AR0

 lar ar1,#53 ;the no. of sample values to be

  transmitted (54) is loaded in AR1

 mar *,ar0

loop2 lacc *+,0,ar1 ;loop2 transmits 1 kHz sine wave

  ;samples to output

 and #0fffch

 samm dxr

 idle

 Banz Ioop2,ar0

 lacb ;load the ACCB content back to ACCU

 Bcnd loop1.eq ;branch to loopl if ACCU content is zero,

  ;to get new sample from drr

 b loop ;branch to loop to know the next bit

  ;information of ACCU

loop3 lar ar2,#1200h ;load the starting address of the look

  ;up table 2 (1200h) in AR2

 lar ar3,#26 ;the no. of sample values to be

  ;transmitted (27) is loaded in AR3

 mar *,ar2

loop4 lacc *+,0,ar3 ;loop4 transmits 2 kHz sine wave sample

  ;to output

 and #0fffch

 samm dxr

 idle

 Banz Ioop4,ar2

 lacb

 Bcnd loop1.eq

 b loop

aicint: .include “aic_int.asm” ;program for AIC initalisation inserted

  ;here

 .end
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6.4.3.16 The Shine Wave Look Up Tables For 1 kHz and 2 kHz

The sine wave samples captured using the AIC routine will have hexadecimal values. It is needed that 

.word assembler directive be included in the beginning of the sample values and a lower case h at the 

end to indicate to the assembler that the sample values are hexadecimal values. It is also important that 

the sample values having their MSBs logic 1, zero to be put in front of the sample values. The look up 

tables given in Tables 6.12 and 6.13 contain the samples of 1 kHz and 2 kHz, for three cycles of input 

stored at the 19.2 kHz conversion rate of AIC.

Table 6.12 Lookup table for 1 kHz signal

First 18 samples Second 18 samples Third 18 samples

.word 0ff60h .word 0ff58h .word 0ff54h

.word 0fe1ch .word 0fe1 8h .word 0fe14h

.word 0fd1ch .word 0fd18h .word 0fd14h

.word 0fc74h .word 0fc74h .word 0fc74h

.word 0fc40h .word 0fc44h .word 0fc44h

.word 0fc88h .word 0fc8ch .word 0fc90h

.word 0fd44h .word 0fd48h .word 0fd4ch

.word 0fe54h .word 0fe58h .word 0fe60h

.word 0ffa0h .word 0ffa8h .word 0ffa8h

.word 00fch .word 00fch .word 00fch

.word 0238h .word 0240h .word 0240h

.word 0334h .word 0338h .word 0338h

.word 03d0h .word 03cch .word 03d0h

.word 03fch .word 03f8h .word 03fch

.word 03b0h .word 03b0h .word 03ach

.word 02fch .word 02fch .word 02f8h

.word 01f0h .word 01f4h .word 01ech

.word 00b0h .word 00b0h .word 00ach

Table 6.13 Lookup table for 2kHz signal

First 9 samples Second 9 samples Third 9 samples

.word 0038h .word 0060h .word 0084h

.word 02b8h .word 02d4h .word 02ech

.word 0400h .word 0404h .word 0404h

.word 0374h .word 0360h .word 034ch

.word 015ch .word 0134h .word 0110h

.word 0feach .word 0fe88h .word 0fe68h

.word 0fcb4h .word 0fca0h .word 0fc90h

.word 0fc5ch .word 0fc64h .word 0fc6ch

.word 0fdd0h .word 0fdech .word 0fe08h
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6.4.3.17 FIR Filter Implementation

This section discusses the details on Program 6_21.asm used for realising a FIR LP fi lter in real time. 

The input, output relation of the FIR fi lter may be expressed using the convolution expression given 

by
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where y[n] is the output and x[n] is the input sequence, h(n) is the impulse response sequence 

corresponding to the fi lter and M is the number of fi lter coeffi cients. The fi lter coeffi cients may be 

generated using various methods, such as using a C program or using MATLAB . For these programs, 

some of the parameters to be specifi ed are given in Table 6.14. Values of the parameters used for the FIR 

LP fi lter in Program6_21.asm are also given in Table 6.14. It is important that to get good fi lter response, 

the coeffi cients are represented in Q15 data format.

Table 6.14 Parameters for the FIR Filter

Parameter name Parameter used for the fi lter in Program6_20.asm

Type of fi lter Low pass

Cutoff frequency 1 kHz

Sampling rate 9 kHz

No. of fi lter taps (fi lter coeffi cients) 81

The fi lter coeffi cients are inserted into the FIR fi lter assembly program using the .include assembler 

directive. The real time samples of the input signals are captured by initialising the AIC with 9 kHz 

A/D conversion rate. The captured samples are stored in the data memory and convolved with the fi lter 

coeffi cients using the MACD instruction. Each time the MACD instruction is repeated in a loop, the fi rst 

sample stored in data memory gets right shifted by one location. The process is repeated for ‘n’ number 

of sample values. Each time the convolution is completed, the resultant MSB 16 bits of accumulator are 

written to scratch pad RAM with left shift of one bit to remove the sign bit and then it is transmitted to 

the AIC output. The LSB 16 bits are discarded.

To start with, the data memory locations corresponding to the input samples have to be fi lled with 

0s. Subsequently, these locations are fi lled with the input sample one after another every time one 

convolution of the input sequence with the fi lter coeffi cient is completed. The manner in which the 

convolution is required to be performed for the real time fi lter is different from the way it is performed 

in the non real time case explained in Section 6.3.3.2. In Section 6.3.3.3 two sequences of length M 

and N are convolved and an output sequence of length M + N – 1 is generated. However, in the present 

case every time a new sample arrives, this along with the past 80 samples is convolved with the fi lter 

sequence and a single output value is generated. This process is continued infi nitely. The number of 

times the MACD instruction is repeated is 81, as the fi lter sequence length is 81. The fi lter coeffi cients 

corresponding to the LP fi lter used for this program is given in Appendix 6.3. It may be noted that this 

program can be used for the implementation of HP fi lter as well as BP fi lters. The values of Ta and Tb 

should be chosen to correspond to the sampling rate used. The repeat count should be chosen so as to be 

equal to the no. of taps –1 used for the fi lter.
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Program 6_21.asm  

 .mmregs

 .ps 1200h

 .include ‘coeff.dat’ ; include the fi lter coeffi cients

 .ds 1000h

 .include ‘pad.dat’ ; padding of 0s for the second sequence

 .ps 2000h

ta .word 12h ;sampling rate chosen as 9 kHz

ra .word 12h

tb .word 15

rb .word 15

aic_ctr .word 30h ; 30-bpf no, 31-bpf yes

 .entry

 setc intm

 splk #32h,imr

 splk #0h,pdwsr

 splk #0h,cwsr

 clrc intm

 ssxm ;set sign extension mode bit

 call aicint

 nop

 nop

 lar ar0,#1000h ;starting address of the data sequence

  ;being

  ;stored is loaded into AR0

loop1 lamm drr

 nop

 nop

 sacl *,0,ar2

 nop

 nop

 lar ar2,#1050h ;end address of data sequence loaded into

  ;AR2

 zap

 rpt #050h

 macd 1200h,*- ;convolution & data move operation is

 apac  ;performed

 sach output,1  ;ACCU high bits left shifted by 1 bit to

  ;remove sign extension bit, & then stored

  ;into

  ;scratch pad RAM (location 127 of data

  ;page zero)

 lacc output ;accu loaded with scratch pad ram content

 sfl 

 and #0fffch
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 samm dxr ;convolved data transmitted to serial

  ;port

 idle

 mar *,ar0

 b loopl

 .include “aic_init.asm” ;AIC initialisation routine in-

  ;serted here.

 .end

pad.dat

     .WORD 0,0,0,0,0,0,0,0,0,0

     .WORD 0,0,0,0,0,0,0,0,0,0

     .WORD 0,0,0,0,0,0,0,0,0,0

     .WORD 0,0,0,0,0,0,0,0,0,0

     .WORD 0,0,0,0,0,0,0,0,0,0

     .WORD 0,0,0,0,0,0,0,0,0,0

     .WORD 0,0,0,0,0,0,0,0,0,0

     .WORD 0,0,0,0,0,0,0,0,0,0

6.4.3.18 Study of Periodic Frequency Response of the Digital Filters

In Chapter 1, it was mentioned that the digital fi lters have periodic frequency response with period equal 

to the sampling frequency. In the LP fi lter considered in Section 6.4.3.17, assume that the continuous 

time switched-capacitor BP fi lter is not included (aic_ctr = 30h) at the input to the AIC. In this case if 

the input to the AIC is greater than fs/2 (i.e. 4.5 kHz) aliasing would occur. Since the LP fi lter designed 

has a cutoff frequency of 1 kHz, only those aliased components which lie within ±1 kHz from nfs would 

be passed by the LP fi lter. Hence if the frequency of input signal to the fi lter is increased, it will have 

a periodic response with period equal to fs (9 kHz in the above example). Hence if an input signal of 

frequency 108 kHz is fed to the digital LP fi lter discussed above, the output is not zero, it is as strong 

as the input itself. This is because of aliasing. The periodicity property of the digital fi lter may also 

be used to determine the sampling rate of the AIC for different values of Ta and Tb. With the fi lter 

coeffi cients chosen in Section 6.4.3.18, vary the values of Ta and Tb. The LP fi lter cutoff frequency will 

not be 1000 Hz as the sampling rate is changed. The output will be zero for frequency f/X. As the input 

frequency is increased further, the output would start rising again at fcl. As the frequency is increased 

further, the output amplitude rises and reaches the full amplitude. With further increase in frequency, the 

output would become zero again at fx2. The sampling frequency fs is then given by (fx1+fx2)/2. This 

is because

fx1 = fs – fx and fx2 = fs+ fx

If the switched-capacitor BP fi lter is included at the input to the AIC, aliasing would not occur. A LP 

fi lter in this case really behaves like a LP fi lter. In this case for all frequencies greater than fc., the cutoff 

frequency of the LP fi lter, the output would be zero.
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APPENDIX 6 

A6.1 ASSEMBLER DIRECTIVES

Mnemonic and syntax Description

(a) Directives that defi ne sections

 .data Assemble into data memory

 .ds [address] Assemble into data memory

  (initialise data address)

 .entry [address] Initialise the starting address of the program counter when loading 

a fi le

 .ps [address] .text Assemble into program memory (initialise program address)

 .text Assemble into program memory

(b) Directives that reference other fi les

 .copy [ “] fi lename[ “] Include source statements from another fi le

 .include [ “] fi lename[ “] Include source statements from another fi le

(c) Conditional assembly directives

 .else Optional conditional assembly

 .endif End conditional assembly

 .if well-defi ned expression Begin conditional assembly

(d) Directives that initialise constants (data and memory)

 bfl oat value1 [ ,..., valuen] Initialise a 16-bit, 2s-complement exponent and a 32-bit,

  2s-complement mantissa—an unpacked fl oating-point number

 .byte value1 [ ,..., valuen] Initialise one or more successive words in the current section

 .double value1 [,...,valuen] Initialise a 64-bit, IEEE double-precision, fl oating-point constant

 .efl oat value1 [ ,..., valuen] Initialise a 16-bit, 2s-complement exponent and a 16-bit,

  2s-complement mantissa—a less accurate unpacked fl oating-point 

number

 .fl oat value1 [ ,..., valuen] Initialise a 32-bit, IEEE single-precision, fl oating-point constant

 .int value1 [ ,..., valuen] Initialise one or more 16-bit integers

 .long value1 [ ,..., valuen] Initialise one or more 32-bit integers

 .lqxx value1 [ ,..., valuen] Initialise a 32-bit, signed 2s-complement integer whose decimal

  point is displaced xx places from the LSB

 .qxx value1 [ ,..., valuen] Initialise a 16-bit, signed 2s-complement integer whose decimal

  point is displaced xx places from the LSB

 .space size in bits Reserve size bits in the current section; note that a label points to

  the beginning of the reserved space

 .string “stringl” [ ,..., string n”] Initialise one or more text strings

 .tfl oat value1 [ ,..., valuen] Initialise a 32-bit, 2s-complement exponent and a 64-bit,

  2s-complement mantissa; note that the initialised integers are in 

unpacked form

 .word value1 [,..., valuen] Initialise one or more 16-bit integers
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(e) Miscellaneous directives

 .end Program end

 .listoff End source listing (overrides the -1 assembler option)

 .liston Restart the source listing (overrides the -1 assembler option)

 .set Equate a value with a local symbol

 .mmregs Enter memory-map registers into symbol table

A6.2 MEMORY-MAPPED REGISTERS AND THEIR ADDRESSES

 Address DEC HEX Description

 name   

  0-3 0-3 Reserved

 IMR 4 4 Interrupt mask register

 GREG 5 5 Global memory allocation register

 IFR 6 6 Interrupt fl ag register

 PMST 7 7 Processor mode status register

 RPTC 8 8 Repeat counter register

 BRCR 9 9 Block repeat counter register

 PASR 10 A Block repeat program address start register

 PAER 11 B Block repeat program address end register

 TREG0 12 C Temporary register used for multiplicand

 TREG1 13 D Temporary register used for dynamic shift count

 TREG2 14 E Temporary register used as bit pointer in

    dynamic bit test

 DBMR 15 F Dynamic bit manipulation register

 AR0 16 10 Auxiliary register 0

 AR1 17 11 Auxiliary register 1

 AR2 18 12 Auxiliary register 2

 AR3 19 13 Auxiliary register 3

 AR4 20 14 Auxiliary register 4

 AR5 21 15 Auxiliary register 5

 AR6 22 16 Auxiliary register 6

 AR7 23 17 Auxiliary register 7

 INDX 24 18 Index register

 ARCR 25 19 Auxiliary register compare register

 CBSR1 26 1A Circular buffer 1 start register

 CBER1 27 IB Circular buffer 1 end register

 CBSR2 28 1C Circular buffer 2 start register

 CBER2 29 ID Circular buffer 2 end register

 CBCR 30 IE Circular buffer control register

 BMAR 31 IF Block move address register

 DRR 32 20 Data receive register

 DXR 33 21 Data transmit register

 SPC 34 22 Serial port control register

  35 23 Reserved
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 TIM 36 24 Timer register

 PRD 37 25 Period register

 TCR 38 26 Timer control register

  39 27 Reserved

 PDWSR 40 28 Program S/W wait-state register

 IOWSR 41 29 I/O S/W wait-state register

 CWSR 42 2A S/W wait-state control register

  43-47 2B-2F Reserved

 TRCV 48 30 TDM data receive register

 TDXR 49 31 TDM data transmit register

 TSPC 50 32 TDM serial port control register

 TCSR 51 33 TDM channel select register

 TRTA 52 34 Receive/transmit address register

 TRAD 53 35 Received address register

  54-79 36-4F Reserved

A6.3

The values of the fi lter coeffi cients for the LP fi lter with a cutoff frequency of 1 kHz and a sampling rate 

of 9 kHz is computed using MATLAB and the coeffi cients are as follows.

Values of coeffi cients after scaling   Actual fi lter coeffi cients

.word 0 40 0.0000

.word -157 39 -0.0048

.word -261 38 -0.0080

.word -268 37 -0.0082

.word -170 36 -0.0052

.word 0 35 -0.0000

.word 180 34 0.0055

.word 301 33 0.0092

.word 310 32 0.0095

.word 198 31 0.0060

.word 0 30 0.0000

.word -211 29 -0.0065

.word -354 28 -0.0108

.word -367 27 -0.0112

.word -236 26 -0.0072

.word 0 25 -0.0000

.word 255 24 0.0078

.word 431 23 0.0132

.word 451 22 0.0138

.word 292 21 0.0089

.word 0 20 0.0000

.word -323 19 -0.0098

.word -551 18 -0.0168

.word -584 17 -0.0178
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.word -383 16 -0.0117

.word 0 15 -0.0000

.word 438 14 0.0134

.word 763 13 0.0233

.word 827 12 0.0252

.word 557 11 0.0170

.word 0 10 0.0000

.word -681 9 -0.0208

.word -1240 8 -0.0378

.word -1417 7 -0.0432

.word -1022 6 -0.0312

.word 0 5 -0.0000

.word 1533 4 0.0468

.word 3307 3 0.1009

.word 4960 2 0.1514

.word 6131 1 0.1871

.word 6554 0 0.2000

.word 6131 1 0.1871

.word 4960 2 0.1514

.word 3307 3 0.1009

.word 1533 4 0.0468

.word 0 5 -0.0000

.word -1022 6 -0.0312

.word -1417 7 -0.0432

word -1240 8 -0.0378

.word -681 9 -0.0208

word 0 10 0.0000

word 557 11 0.0170

word 827 12 0.0252

word 763 13 0.0233

word 438 14 0.0134

word 0 15 -0.0000

word -383 16 -0.0117

word -584 17 -0.0178

word -551 18 -0.0168

word -323 19 -0.0098

word 0 20 0.0000

word 292 21 0.0089

word 451 22 0.0138

word 431 23 0.0132

word 255 24 0.0078

word 0 25 -0.0000

word -236 26 -0.0072

word -367 27 -0.0112
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word -354 28 -0.0108

word -211 29 -0.0065

word 0 30 0.0000

word 198 31 0.0060

word 310 32 0.0095

word 301 33 0.0092

word 180 34 0.0055

word 0 35 -0.0000

word -170 36 -0.0052

word -268 37 -0.0082

word -261 38 -0.0080

word -157 39 -0.0048

word 0 40 0.0000

Review Questions 

6.1 What are the addresses of the program memory 

address space and data memory address space in the on-

chip memory of C50 in the DSP starter kit where user 

programs and data may be stored?

6.2 In the C5X DSK, can the data be stored in the space 

3000-37FF?

6.3 What is the command for invoking the DSK 

assembler, debugger for 5X kit?

6.4 What is the use of the .mmregs DSP assembler 

directive?

6.5 If the program given in Program6_2.asm is executed 

in single-step mode, what are the values of AR0, ARl, 

ACC, TREG0 and PREG after each of the instructions are 

executed?

6.6 If the program given in Program6_3.asm is executed 

in single-step mode, what are the values of DP, AR0, AR7, 

ACC, TREG0 and PREG after each of the instructions are 

executed?

6.7 If the program given in Program6_4.asm is executed 

in single-step mode, what are the values of AR0, ARl, 

ACC, TREG0 and PREG after each of the instructions are 

executed?

6.8 Write an assembly language program in C5X to 

transfer a block of 256 16-bit words of data from program 

memory address space 2000h to data memory address 

space starting with 2000h.

6.9 Write an assembly language program in C5X to 

transfer a block of 256 16-bit words of data from data 

memory address space 2000h to program memory 

address space starting with 2500h.

6.10 Explain with an example how the circular 

addressing mode is useful for real time processing of 

signals. Write a program which illustrates the operation 

of the circular addressing mode.

6.11 Write an assembly language program in C5X which 

generates the fi rst 20 numbers corresponding to the 

infi nite sequence 5, 3, 8, 11, 19, ....

6.12 Write an assembly language program in C5X 

to convolve two sequences of length 32 and 48 

respectively.

6.13 Write an assembly language program in C5X to 

convolve two sequences of length 32 and 48 respectively. 

One of the sequences should be shifted by one position 

towards right (to higher memory location) after the 

convolution is completed.

6.14 Explain with a block diagram how the data 

transmission/reception is achieved using the on-

chip serial port of C5X. How is the data transmission/

reception rate programmed?

6.15 Explain how the data transmission to an external 

device is achieved through the on-chip C5X serial port 

using (a) polling and (b) interrupt.

6.16 If the data transmission through the serial port 

of C5X is achieved using interrupt, what should be the 

control word for the interrupt mask register (IMR) if 

(a) transmission alone is required and (b) both serial 

transmission as well as reception are required. Give 

the program required for setting the IMR in both of the 

cases. What determines the data transmission/reception 

rate?
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6.17 How does the on-chip timer of C5X affect the 

operation of the serial port?

6.18 What is the maximum frequency of the signal 

which may be digitised using AIC TLC320C40?

6.19 How is the data transfer between the AIC and the 

5X processor achieved in the DSK kit.

6.20 For the AIC TLC320C40, the value of Ta is chosen 

to be 24h to obtain the switched capacitor frequency of 

288 kHz. What is the value of the master clock frequency 

fed from the C5X to AIC?

6.21 For a sampling rate of 9 kHz, what should be the 

value of Tb of AIC, if the switched capacitor frequency 

is 288 kHz?

6.22 Explain how the values of the registers Ta, Tb, Ra 

and Rb of the AIC determine the mode of operation of 

the AIC?

6.23 What is the function performed by the switched 

capacitor BP fi lter used in AIC? What happens if it is not 

included?

6.24 In the AIC initialisation routine why is the global 

memory register programmed?

6.25 Distinguish between the primary and secondary 

communication modes of AIC? How is the type of 

communication mode chosen through the program?

6.26 When a data is written into DXR of serial port 

when is it ANDed with 0FFFCh and why is it ANDed?

6.27 What is the use of the idle instruction in the AIC 

initialisation routine?

6.28 Explain how a waveform may be digitised and 

converted back to analog signal in real time using the 

5X DSK and AIC TLC320c40. Explain any two methods 

for outputting a signal whose frequency is (i) half that of 

the signal applied to the AIC input and (ii) double that of 

the input signal (Hint: You may do this by choosing either 

the Tx and Rx rates to be same or choose them to differ 

by a factor of 2).

6.29 A program given for waveform generation using 

C5X (e.g., Program6_14.asm-Program6_16.asm ), the AIC 

is not initialised. What parameters determine the period 

of the AIC? How can this period be varied without 

changing the ton and toff values?

6.30 A digital LP fi lter is implemented in C5X and it 

uses the AIC TLC320C40. The AIC is programmed so as 

to exclude the switched capacitor BP fi lter. Explain how 

the A/D conversion rate of the AIC may be determined 

by fi nding the frequency response of this fi lter.

6.31 A digital LP fi lter is implemented in C5X and it 

uses the AIC TLC320C40. The output of this fi lter is zero 

at frequencies close to DC. What could be the reason for 

this? In case non-zero output is required for frequencies 

of the order of 100 Hz, what should be done?

6.32 Explain how the FSK signal may be demodulated 

using a C5X program.

Self Test Questions 
6.1 The assembler directive of C5X which permits the 

memory-mapped registers to be denoted by their names 

instead of their actual memory address is ———.

(a) .ps (b) .mmregs (c) .entry (d) .include

6.2 The assembler directive of C5X which is similar to 

ORG (origin) instruction of 8085 assemblers is ———.

(a) .ps (b) .mmregs (c) .entry (d) .include

6.3 The assembler directive of C5X which indicates 

the location from where the program will be executed 

is ———.

(a) .ps (b) .mmregs (c) .entry (d) .include

6.4 The assembler directive of C5X which permits a 

main program to be split into more than one modules 

and assemble them individually is ———.

(a) .ps (b) .mmregs (c) .entry (d) .include

6.5 If the debugger is invoked by typing in the command 

dsk5d, the com port to which the DSK is assumed to be 

connected to PC is ———.

(a) coml (b) com2 (c) com3 (d) com4

6.6 In Program 6_la.asm, a constant is loaded to ACC 

using the instruction LACC #0004h, 4. The actual value 

of the constant loaded to ACC is ———.

(a) 0004h (b) 0008h (c) 0010h (d) 0020h

(e) 0040h

6.7 In Program 6_2.asm, a constant is added to ACC 

using the instruction ADD #001 lh, 2. The actual value of 

the constant added to ACC is ———.

(a) 001 lh (b) 0022h (c) 0044h (d) 0088h

6.8 When the instruction MPY 10h is executed, one of 

the operands for the multiplier is taken from the CPU 

register ———.

(a) ACC (b) PREG (c) TREG0 (d) TREGl

6.9 When the instruction MPY 10h is executed, the 

output of the multiplier is stored into the CPU register 

———.

(a) ACC (b) PREG (c) TREG0 (d) TREGl
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6.10 When the instruction BANZ loopl, AR1 is executed 

which of the following operations are performed?

(a) branching occurs to loop 1 if the current AR is non-

zero.

(b) current AR content is decremented before branching

(c) branching occurs if AR1 is non-zero

(d) ARP made to point to AR1 after branching

6.11 The timer of C5X is an on-chip-counter and 

interrupt (TINT) is generated each time the counter 

reaches the state ———.

(a) down, all l’s (b) down, all 0’s

(c) up, all l’s  (d) up, all 0’s

6.12 The signals used to connect the transmit pins of 

the serial port of C5X with the receiving device for data 

transmission are ———.

(a) CLKX (b) DX (c) FSX (d) CLKR

(e) RX (f) FSR

6.13 The signals used to connect the receive pins of 

the serial port of C5X with the transmitting device data 

reception are ———.

(a) CLKX (b) DX (c) FSX (d) CLKR

(e) RX (f) FSR

6.14 The registers of on-chip serial port of C5X which 

cannot be directly accessed by the CPU are

(a) SPC (b) DXR (c) DRR (d) XSR

(e) RSR

6.15 The registers of on-chip serial port of C5X which 

shifts the data serially in or out are

(a) SPC (b) DXR (c) DRR (d) XSR

(e) RSR

6.15 Writing the data into ——— of serial port of C5X 

generates the XINT.

(a) SPC (b) DXR (c) DRR (d) XSR

(e) RSR

6.16 Writing the data into ——— of serial port of C5X 

generates the RINT.

(a) SPC (b) DXR (c) DRR (d) XSR

(e) RSR

6.17 The signals which initiate the serial shifting of 

the data in the on-chip serial port at the beginning of 

every frame in burst mode and for the fi rst frame in the 

synchronous transfer mode for the shift registers used at 

the receive and transmit side respectively are ———.

(a) CLKX (b) DX (c) FSX (d) CLKR

(e) RX (f) FSR

6.18 In the AIC, the registers which are used to obtain 

the switched capacitor frequency of 288 kHz are

(a) TX counter A, TX counter B

(b) TX counter A, RX counter A

(c) RX counter A, RX counter B

(d) TX counter B, RX counter A

6.19 In the AIC, the registers which are used to obtain 

the required sampling frequency are ———.

(a) TX counter A, TX counter B

(b) TX counter A, RX counter A

(c) RX counter A, RX counter B

(d) TX counter B, RX counter B

6.20 To program the AIC, the secondary communica-

tion is initiated by choosing the d0, dl bits of the data 

transmitted through the DX pin in the primary commu-

nication mode as ———, ———.

(a) 0, 0 (b) 1, 0 (c) 0, 1 (d) 1,1

6.21 256 samples of a sine wave of frequency 1000 Hz 

are stored in data memory organised as a circular buffer 

of size 256. The data is read one after another from this 

buffer and transmitted through the DX pin infi nitely. The 

frequency at the output of the AIC is ——— Hz.

(a) 1000 (b) 500 (c) 2000 (d) 4000

6.22 256 samples of a sine wave of frequency 1000 Hz 

are stored in data memory organised as a circular buffer 

of size 256. The data is read one after another from this 

buffer and the alternate data is transmitted through the 

DX pin infi nitely. The frequency at the output of the AIC 

is ——— Hz.

(a) 1000 (b) 500 (c) 2000 (d) 4000

6.23 256 samples of a sine wave of frequency 1000 Hz 

are stored in data memory organised as a circular buffer 

of size 256. The data is read one after another from this 

buffer and each data is transmitted twice through the 

DX pin infi nitely. The frequency at the output of the AIC 

is ——— Hz.

(a) 1000 (b) 500 (c) 2000 (d) 4000

6.24 Sampling frequency of the AIC is programmed 

to be 8 kHz. A LP fi lter with cutoff frequency of 4 kHz 

is implemented using the kit. The antialiasing fi lter at 

the input section of AIC is not enabled. If a signal of 

frequency 9 kHz is fed to the AIC, the output of the LP 

fi lter has a frequency of ———kHz.

(a) 9 (b) 1 (c) 5 (d) 7



INTRODUCTION 7.1

The TMS320C3X series of digital signal processors (DSPs) are high-performance CMOS 32-bit fl oat-
ing-point devices in the TMS320 family of single-chip DSPs. The ¢C3X devices integrates both system 
control and math-intensive functions on a single controller. This system integration allows fast, easy data 
movement and high-speed numeric processing performance. Extensive internal busing and a powerful 
DSP instruction set provide the devices with the speed and fl exibility to execute upto 60 million fl oating-
point operations per second (MFLOPS) and 30 million fi xed-point instructions per second (MIPS). The 
devices also feature a high degree of on-chip parallelism that allows users to perform up to 11 operations 
in a single instruction.

AN OVERVIEW OF TMS320C3X DEVICES 7.2

The ¢C3X family consists of three members: the ¢C30, ¢C31 and ¢C32. These processors can perform 
parallel multiply and arithmetic logic unit (ALU) operations on integer or fl oating-point data in a single 
cycle. These processors consist of the following:

general-purpose register fi le,
program cache,
dedicated auxiliary register arithmetic units (ARAU),
internal dual-access memories,
direct memory access channel (DMA) supporting concurrent I/O,
large address space,
multiprocessor interface,
internal and externally generated wait states,
external interface ports,
timers,
serial ports and
multiple-interrupt structure.
The speed, memory and list of peripherals for the ¢C3X family processors are given in Table 7.1. 

The ¢C30 is the fi rst member of the ¢C3X generation. It differs from the ¢C31 and ¢C32 by offering 

7
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more ROM (4K), RAM (2K), a second serial port, and a second external bus. The ¢C31 and ¢LC31 
are the second members of the ¢C3X generation. They are low-cost 32-bit fl oating-point DSPs which 
have a boot-loader program, 2K RAM, single external port, single serial port and are available in 3.3-V 
operation (¢LC31). The ¢C32 is the newest member of the ¢C3X generation. They are enhanced ver-
sions of the ¢C3X family and the lowest cost fl oating-point processors. These enhancements include a 
variable-width memory interface, two-channel DMA coprocessor with confi gurable priorities, fl exible 
boot loader and a relocatable interrupt vector table.

Table 7.1 TMS320C3X family processor details

Device 

name

Frequency cycle time 

(MHz/ns)

Memory (words) Peripherals

On-chip Off-chip

¢C30

(5 V)

27/75

33/60

40/50

50/40

RAM = 2K

ROM = 4 K

Cache = 64

16Mx32

8Kx32

Serial port = 2

DMA channel = 1

Timers = 2

¢C31

(5 V)

27/75

33/60

40/50

50/40

60/33

RAM =2K

ROM is Boot loader

Cache = 64

16Mx32 Serial port = 1

DMA channel = 1

Timers = 2

¢LC31

(3.3 V)

33/60

40/50

RAM =2K

ROM is Boot loader

Cache = 64

16Mx32 Serial port = 1

DMA channel = 1

Timers = 2

¢C32

(5 V)

40/50

50/40

60/33

RAM =512K

ROM is Boot loader

Cache = 64

16Mx

32/16/8

Serial port = 1

DMA channel = 2

Timers = 2

It may be noted from Table 7.1 that in the ¢C3X family processors the memory confi guration is the 
same for ¢C30 and ¢C31 but the speed of the DSPs and the peripheral present are different. The ¢C3X 
supports a wide variety of system applications from host processor to dedicated coprocessor. High-
level language is implemented more easily through a register-based architecture, large address space, 
powerful addressing modes, fl exible instruction set and well-supported fl oating-point arithmetic.

INTERNAL ARCHITECHTURE 7.3

The block diagram of TMS320C3X is given in Fig. 7.1. The ¢C3X processors have the following four 
major blocks.
 1. Central Processing Unit (CPU)
 2. Memory unit (RAM, ROM and Cache)
 3. Peripherals (Serial ports, Timer, etc.) and
 4. DMA controller
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Fig. 7.1 The TMS320C3X block diagram

CENTRAL PROCESSING UNIT (CPU) 7.4

The ¢C3X devices have a register-based CPU architecture. The CPU consists of the following units:
 • Internal buses (CPU1/CPU2 and REG1/REG2)
 • Floating-point/integer multiplier
 • Arithmetic logic unit (ALU)
 • 32-bit barrel shifter
 • Auxiliary register arithmetic units (ARAUs)
 • CPU register fi le
 • The various CPU components of ¢C3X processors are shown in Fig. 7.2.
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Fig. 7.2 CPU components of ¢C3X
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7.4.1 CPU Internal Buses

The CPU unit consist of four buses, CPU1, CPU2, REG1 and REG2. The data bus DDATA carries data 
to the CPU over the CPU1 and CPU2 buses. The CPU1 and CPU2 buses can carry two data memory 
operands to the multiplier, ALU and the register fi le for every machine cycle. Internal to the CPU are 
the two buses REG1 and REG2, these buses can carry two data values from the register fi le to multiplier 
and ALU for every machine cycle. The CPU internal buses are shown in the Fig. 7.2.

7.4.2 Floating-Point/Integer Multiplier

The multiplier performs multiplications on 24-bit integer and 32-bit fl oating-point values in a single 
cycle. The ¢C3X implementation of fl oating-point arithmetic allows for fl oating-point or fi xed-point 
operations at speeds upto 33 ns per instruction cycle. To get further higher speed, parallel instructions 
can be used. The parallel instructions will perform a multiply and an ALU operation in a single cycle. 
When the multiplier performs fl oating-point multiplication, the inputs are 32-bit fl oating-point numbers 
and the result is a 40-bit point fl oating number, whereas in the case of integer multiplication, the input 
data is 24 bits and yields a 32-bit result.

7.4.3 Arithmetic Logic Unit (ALU) and Barrel Shifter

The ALU performs single-cycle arithmetic and logical operations. It performs operations on 32-bit 
integer, 32-bit logical and 40-bit fl oating-point data. It also performs integer and fl oating-point conver-
sions in a single cycle. The results of the ALU are always maintained at 32-bit integer or 40-bit fl oating-
point formats. The barrel shifter is used to shift the operands upto 32 bits left or right in a single cycle.

7.4.4 Auxiliary Register Arithmetic Unit (ARAU)

The ¢C3X family processors consists of two ARAUs (ARAU0 and ARAU1). These two units can generate 
two addresses in a single cycle. The ARAUs operate in parallel with the multiplier and ALU and they are 
used for indirect addressing mode. The ARAUs support address displacement and the displacement can 
be indicated in the assembly code using the displacement fi eld or the two index register (IR0 and IR1) 
contents. They also support circular and bit-ieversed addressing modes.

CPU REGISTER FILE 7.5

The ¢C3X processors consists of 28 registers in a multiport register. These registers are tightly cou pled 
to the CPU. The list of the registers present in the CPU register fi le are given below.
 (a) Extended-precision registers  (R7-R0 )
 (b) Auxiliary registers   (AR7-AR0)
 (c) Data page pointer   (DP)
 (d) Index registers    (IR1 and IR0)
 (e) Block size register   (BK)
 (f) System stack-pointer   (SP)
 (g) Status register    (ST)
 (i) CPU/DMA interrupt-enable’ register (IE)
 (j) CPU interrupt fl ag register  (IF)
 (k) I/O fl ag register    (IOF)
 (1) Repeat start-address register  (RS)
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 (m) Repeat end-address register  (RE)
 (n) Repeat count register   (RC)

These registers can be operated on by the multiplier and ALU and can be used as general-purpose 
32-bit registers. The eight extended-precision registers are especially suited for maintaining extended-
precision 40-bit fl oating-point results. The eight ARs used for a veriety of indirect addressing modes 
and also as general-purpose 32-bit integer and logical registers. The remaining registers provide system 
functions such as addressing, stack management, processor status, interrupts and block repeat, etc.

7.5.1 The Extended-precision Registers (R7-R0)

All the eight extended precision registers are 40 bits in size. They are capable of storing and supporting 
operations on 32-bit integer and 40-bit fl oating-point numbers. If the operands are fl oating-point num-
bers, bits 39-0 (40 bits) are used. The extended-precision register fl oating-point format is illustrated in 
Fig. 7.3. The bits 39-32 are dedicated to store the exponent (e) and bits 31-0 are for the mantissa part of 
the fl oating-point number. In the mantissa part of the fl oating-point number, bit 31 is assigned as sign bit 
and bits 30-0 are dedicated for the fraction.

39 32 31 30

e s Fraction (f)

0

Mantissa

Fig. 7.3 Extended-precision register fl oating-point format

For integer operands, either signed or unsigned, only bits 31-0 (32 bits) are used. Bits 39-32 remain 
unchanged. The extended-precision register integer format is shown in Fig. 7.4.

039 32 31

Unchanged Signed or unsigned integer

Fig. 7.4 Extended-precision register integer format

7.5.2 Auxiliary Registers (AR7-AR0)

There are eight ARs, each 32-bit in size,. They are used for the generation of 24-bit addresses. These 
registers can be accessed by the CPU and modifi ed by the two ARAUs. They can also be used as loop 
counters in indirect addressing modes or as 32-bit general purpose registers that can be modifi ed by the 
multiplier and ALU.

7.5.3 Data-page Pointer (DP)

The data page pointer is a 32-bit register used to point the page of the data being addressed by the direct 
addressing mode. In ¢C3X processors the number of pages present are 256 and each page contains 64K 
words (each of 32 bits). To point these 256 pages LSB (bits 7-0) of the DP are used and bits 31-8 are 
reserved (these bits should always be kept zero). The DP format is given in Fig. 7.5. To load DP, LDP 
instruction is used.

31 8 7 0

... Page no.0000

Fig. 7.5 Data-page pointer format
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7.5.4 Index Registers (IR1,IR0) and Block Size Register (BK)

The index and block size registers are 32-bit each in size. The index registers are used by the ARAU for 
indexing the address (refer Section 8.2.3) whereas the block size register is used by the ARAU to specify 
the data block size in circular addressing mode (refer Section 8.2.6 ).

7.5.5 System Stack Pointer (SP)

The system stack pointer is a 32-bit register, which contains the address of the 
top of the system stack. The system stack fi lls from low-memory address to 
high-memory address. The system stack confi guration is shown in Fig. 7.6. The 
SP always points to the last element pushed onto the stack. A push performs 
preincrement, whereas a pop postdecrement of the system stack pointer.

The program counter is pushed onto the system stack on subroutine calls, 
traps and interrupts. It is popped from the system stack on returns. The system 
stack can be pushed using PUSH & PUSHF and popped by POP & POPF 
instructions.

7.5.6 Status Register (ST)

The status register is 32-bit in size, out of which bits 13-10 and 8-0 are used; rest of the bits are reserved 
(i.e. the reserved bits should always be set zero). The status register format for ¢C30, ¢C31 and ¢C32 is 
shown in Fig. 7.7. The status register contains global information about the state of the CPU. There are 
certain conditional fl ag bits present in the status register. Based on the results of the operations such as 
load and store, as well as arithmetic and logical functions, these fl ag bits are set or cleared. The results 
could be zero, negative, carry, overfl ow, etc.

0123456789101112131431 – 16

X
G

I

E

C

C

C

E

C

F
X

R

M

O

V

M

L

U

F

L

V

U

F
N Z V C

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/WR/W

15

R

PR

G

W

Sta.

INT

Con.

(b)

0123456789101112131431

X X
G

I

E

C

C

C

E

C

F
X

R

M

O

V

M

L

U

F

L

V

U

F
N Z V C

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

(a)

Fig. 7.7 (a) The status register format (¢C30 and ¢C31); (b) The status register format CC32)

Note: (1) x - reserved bit, read as 0 and (2) R- read, W - write

It is possible to read the information in the status register bits, it can be written as well. When the status 
register is loaded, the contents of the source operand replace the current contents of ST bit-for-bit, 
regardless of the state of any bits in the source operand. The source operand content can be written as 

Low memory

Bottom of stack

Top of stack

(F )ree

High memory

.
.
.

Fig. 7.6 System stack 

confi guration
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such in the status register. This allows the status register to be saved and restored. At system reset, logic 
0 is written to this register. Table 7.2 defi nes the status register bit names and their functions.

Table 7.2 Status register bits summary

Bit name Function

C Carry condition fl ag

V Overfl ow condition fl ag

Z Zero condition fl ag

N Negative condition fl ag

UF Floating-point underfl ow condition fl ag

LV Latched overfl ow condition fl ag

LUF Latched fl oating-point underfl ow condition fl ag

OVM Overfl ow fl ag. The overfl ow mode fl ag affects only integer operations

If OVM = 0, the overfl ow mode is turned off

If OVM = 1, integer results overfl owing in the positive direction are set to the most positive,

2s-complement number (7FFFFFFFh), and integer results overfl owing in the negative

direction are set to the most negative 32-bit, 2s-complement number (8000 0000h)

RM Repeat mode fl ag

If RM = 1, the PC is modifi ed in either the repeat-block or repeat-single mode

CF Cache freeze. Enables or disables the instruction

cache. Set CF = 1 to freeze the cache (cache is not updated). When CF = 0, the cache is

automatically updated by instruction fetches from external memory

CE Cache enable. CE enables or disables the instruction

cache. Set CE = 1 to enable the cache, Set CE = 0 to disable the cache

CC Cache clear. CC = 1 invalidates all entries in the cache

CIE Global interrupt-enable. If GIE = 1, the CPU responds to an enabled interrupt. If GIE = 0, the 
CPU does not respond to an enabled interrupt

INT Interrupt confi guration(¢C32 only)

Con. Sets the external interrupt signals INT3-INT0 for level- or edge-triggered interrupts

0: All the external interrupts (INT3-INT0)

are confi gured as level-triggered interrupts. Multiple interrupts may be triggered

when the signal is active for a long period of time

1: All the external interrupts (INT3-INT0)

are confi gured as edge-triggered interrupts

Edge and duration are required for ail interrupts to be recognised

PRGW Program width status CC32 only)

Sta. Indicates the status of the external input PRGW pin

0: Instruction fetches use one 32-bit external program memory read

1: instruction fetches use two 16-bit external program memory reads
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7.5.7 CPU/DMA Interrupt Enable (IE) Register and CPU Interrupt Flag (IF) Register

The CPU/DMA interrupt enable (IE) register is a 32-bit register. The CPU IE bits are in locations 10-0 
and DMA IE bits are in locations 26-16. Rest of the bits are reserved. A logic 1 set in bit 26 of IE will 
enable the DMA interrupts, whereas a logic 0 set will disable DMA interrupts and similarly bit 10 of IE 
can be used to enable/disable interrupts.

The CPU interrupt fl ag (IF) register is also a 32-bit register. Bits 10-0 is used as IFs. The logic 1 
present in an IF register bit indicates that the corresponding interrupt is set, and a logic 0 indicates that 
it is not set. Whenever an interrupt occurs the IF bits are set logic 1. They may also be set and cleared 
through software to cause an interrupt or to clear. At reset, logic 0 is written in the IE as well as IF 
registers. Figure 7.8 shows the format of IE and IF registers.
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Fig. 7.8 Interrupt enable and interrupt fl ag register format

7.5.8 I/O Flag (IOF) Register

The ¢C3X processors have two dedicated external pins XF0 and XF1. The IOF register controls the 
function of these pins. These pins can be confi gured for input or output using the IOF register. Figure 7.9 
shows the format of an IOF register. This will be useful in interlocked operations of ¢C3X processors. 
Table 7.3 shows the bit-fi eld names and their functions of IOF register.

23456731 – 8

X

R W/R W/R W/R

X

R

INXF1 OUTXF1 I/OXF1 INXF0 OUTXF0

01

R W/

XI/OXF0

X - reserved bit, read as 0, R – read, W – write

Fig. 7.9 I/O fl ag register format
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Table 7.3 IO fl ag register bits summary

Bit name Function

Ī/OXF0 If 0, XF0 is confi gured as a general-purpose input pin. If 1, XF0 is confi gured as a general-purpose 
output pin

OUTXF0 Data output on XF0

INXF0 Data input on XF0. A write has no effect

Ī/OXF1 If 0, XF1 is confi gured as a general-purpose input pin. If 1, XF1 is confi gured a general-purpose 
output pin

OUTXF1 Data output on XF1

INXF1 Data input on XF1. A write has no effect

7.5.9 Block-Repeat Registers (RS, RE) and Repeat-Count (RC)

The block-repeat start address, end address and repeat counter registers are 32-bits in size. The start 
address register (RS) contains the starting address and end address register (RE) contains the end address 
of the block of program memory to be repeated, when the CPU is operating in the repeat mode. The 
repeat-count (RC) register is used to specify the number of times a block of code is to be repeated. If RC 
has the number n, the block is executed n + 1 times.

7.5.10 Program Counter (PC) and Instruction Register (IR)

The program counter (PC) and Instruction register (IR) are 32-bit registers and they are not in the register 
fi le. The PC contains the address of the next instruction to be fetched. The IR holds the instruction op-
code during the decode phase of the instruction. This register is used by the instruction decode control 
circuitry and is not accessible to the CPU.

MEMORY ORGANISATION 7.6

The total memory space of a ¢C3X processor is 16 million (16M) 32-bit words. This space contains 
Program, data and I/O spaces. The ¢C3X processors have on-chip RAM, ROM and cache memories.

The memory organisation and internal buses are shown in Fig. 7.10. In ¢C3X there are two RAM 
blocks, Block 0 and Block 1, (each of IK x 32 bits in ¢C30 and ¢C31 and each of 256 x 32 bits in ¢C32) 
and a ROM block (4K x 32 bits only in ¢C30 and boot loader in ¢C31 and ¢C32). The RAM and ROM 
blocks are capable of supporting two CPU accesses (dual access memory) in a single cycle. A 64 x 32 
bit instruction cache is present to store often-repeated sections of code. This will reduce the number of 
off-chip accesses.

7.6.1 Memory Internal Buses

The high performance of ¢C3X processors is due to the internal buses and parallelism. The memory 
buses are program bus, data bus and DMA buses. The separate program bus consists of program address 
(PADDR) bus and program data (PDATA) bus. There are two data address buses (DADDR1 and 
DADDR2) and one data (DDATA) bus. The DMA bus contains DMA address (DMAADDR) bus and a 
DMA data (DMADATA) bus. These buses allow parallel instruction code fetch from program memory, 
two data accesses and DMA access. These buses connect on-chip memory, off-chip memory and on-
chip peripherals. All address buses are 24 bits and data buses are 32bits in size.
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Fig. 7.10 Memory organisation

The PC is connected to PADDR bus and the IR is connected to PDATA bus. These buses can fetch 
a single instruction word for every machine cycle. The two data address buses are connected to the AR 
unit, which generates the data memory addresses and the data bus is connected to the CPU over CPU1 
and CPU2 buses, which carry the data to the CPU.

The DMA controller is connected with a 24-bit address bus (DMAADDR) and a 32-bit data bus 
(DMADATA). These buses allow the DMA to perform memory access in parallel with the memory 
accesses occurring from the data and program buses.
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7.6.2 Memory Maps

The memory map of ¢C3X devices depend on the logic level applied to the external pin MC/M
—

P
–

 or 
MCBL/M

—
P
–

. For logic 0 the processor runs in microprocessor mode, whereas for logic 1 it runs in 
microcomputer mode. The number of address lines for the memory is 24 bits and start and end address 
of the memory are 000000h-FFFFFFh.

Microprocessor mode In microprocessor mode, the 4K on-chip ROM is not mapped into the ¢C3X 
memory map. The memory maps of ¢C30, ¢C31 and ¢C32 devices are almost similar. The memory map 
for microprocessor mode of ‘C30, ‘C31 and ‘C32 can be found in C3X User’s guide [1996].

The external memory port with STRB signal active accesses the address locations 000000h-FFFFFFh 
(8.192M words). In this space, locations 0h-03Fh (192 words) consists of interrupt, trap vectors and 
reserved locations in ¢C30 and ¢C31, whereas in ¢C32 location 0h alone is containing the reset vector. 
The locations 800000h-807FFFh (32K words) are reserved in ¢C31 and ¢C32. In ¢C30 the total 32K size 
is partitioned into four 8K segments. The fi rst and third 8K segments are mapped to the expansion bus 
and can be accessed when MSTRB & lOSTRB signals are active respectively. The second and fourth 
8K segments are reserved locations. In all the three processors, locations 808000h-8097FFh (6K words) 
are memory-mapped for the peripheral bus registers.

The ¢C30 and ¢C31 processors have two IK word RAM blocks starting from 809800h to 809FFFh, 
whereas in ¢C32 it has two 256-word blocks starting from 87FE00h to 87FFFFh. The locations 80A000h-
FFFFFFh (7.96M words) of ¢C30 and ¢C31 are mapped to external space and accessed when STRB 
signal is active. In ¢C32 device, locations 809800h-80FFFFh (26K words) and 830000h-87FDFFh 
(319.5K words) are reserved. The locations 810000h-82FFFFh (128K words), 880000h-8FFFFFh (512K 
words) and 900000h-FFFFFFh (7.168M words) are mapped to external space and can be accessed when 
lOSTRB, STRBO and STRB1 signals are active.

Microcomputer Mode In microcomputer mode the 4K on-chip ROM in ¢C30 and boot loader in ¢C31 
and ¢C32 are mapped into locations 000000h-FFFFFFh. The locations 001000h-7FFFFFh are mapped 
to external space similar to microprocessor mode. Rest of the locations are similar to the microprocessor 
mode in all the devices. The memory map of ¢C30, ¢C31 and ¢C32 devices for micro computer mode can 
be found in C3X User’s guide [1996]. The locations 000h-0BFh (192 words) in ¢C30 are used for reset, 
interrupt and trap vectors and reserved locations, whereas in ‘C31 the locations 809FC1h-809FFFh (the 
last 63 words of internal RAM block 1) are used for interrupt and trap branches.

7.6.3 Memory Mapped Registers (Peripherals)

The ¢C3X devices have on-chip DMA controller, the peripherals such as timers and serial ports, and 
primary and expansion ports. All these units have programmable registers. By programming these 
registers the operations such as DMA transfer, serial port communication, external device interface, etc. 
can be performed. These peripheral registers are memory mapped from the starting address 808000h to 
8097FFh. Each peripheral occupies a 16-word region of the memory map.

CACHE MEMORY 7.7

A 64 x 32-bit instruction cache increases the processor performance. When a section of code is repeatedly 
accessed by the processor from the off-chip memory, the cache stores the code in the cache. This reduces 
the number of off-chip accesses needed. Because of this facility the codes can be stored on even slower, 
low-cost off-chip memories. It is to be noted that the cache also frees the external buses from source code 
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fetches, so that the external bus can be used by the DMA or other system elements. The cache functions 
automatically, with no user intervention. Only instruction words are fetched from cache, whereas the 
data reads and writes and bypasses the cache. The instruction fetches from the on-chip memory do not 
modify the cache.

7.7.1 Cache Control Bits

There are three control bits for the effi cient management of the cache. They are cache clear (CC), cache 
enable (CE) and Cache freeze (CF) bits. These control bits are present in the status register. All the 64 
words present in the cache are having a fl ag bit P. At reset the cache is cleared and zero is written to 
these three bits.

Cache Clear Bit (CC) This bit is used to clear all the entries present in the 64 words of the cache and 
the P fl ags. Writing logic 1 to this bit will clear the cache and the CC bit present in the status register is 
cleared after the cache is being cleared.

Cache Enable Bit (CE) This bit is used to enable or disable the cache. When logic 1 is written in this 
bit, the cache is enabled and it is used according to the cache algorithm, whereas writing logic 0 disables 
the cache and there will not be any updates or modifi cations of the cache entries.

Cache Freeze (CF) When the cache freeze bit is 1, the cache is frozen. The operation of the cache is 
determined by the CF bit along with the CE bit. Table (7.4) shows the combined effect of CE and CF 
bits. When the cache is frozen and it is enabled, no modifi cation of the state of the cache is allowed, but 
the instruction code fetch from the cache is allowed. This function is used to keep frequently used codes 
stored in the cache and used by the CPU.
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Table 7.4 The CE and CF Bit values and its functions

CE CF Function

0 0 Cache not enabled

0 1 Cache not enabled

1 0 Cache enabled and not frozen

1 1 Cache enabled and frozen

7.7.2 Cache Architecture

The 64 x 32-bit words of cache RAM are divided into two segments. Each segment contains 32 words 
and each word in the segment is assigned a single fl ag bit called P-fl ag. There are segment start address 
(SSA) registers of 19-bit for each segment. The cache architecture is shown in Fig. 7.11. There is a LRU 
stack, which determines out of the two segments which one is the least recently used segment. Each time 
the segment is accessed, its segment number (0 or 1) is removed and pushed to the top of the stack. The 
number at the top is most recently used and number at the bottom of the stack is recently used segment 
number.

7.7.3 Cache Algorithm

When the CPU requests an instruction word from the external memory, the cache algorithm checks 
whether the word is already present in the cache. Out of the 24-bit instruction word address, the cache 
algorithm uses the 19 MSBs of the instruction address to select the segment and 5 LSBs to defi ne the 
address of the instruction word within the segments. The algorithm compares the 19 MSBs of the 
instruction address with the two SSA registers.

If neither of the SSA registers match, then the least recently used segment is used for writing the 
instruction word. All the P fl ags are cleared in that segment and the SSA register is loaded with the 19 
MSBs of the instruction address. The instruction word is fetched from the external memory, copied into 
the cache and the corresponding P-fl ag is set. The segment number now accessed is pushed to the top of 
the stack, thus the other segment number will come to the bottom of the stack.

If there is a match, then the algorithm checks within the segment for the P-fl ag, because the P-fl ag 
present for each segment word indicates whether a word within a particular segment is already preset 
or not. If the P-fl ag is set, the instruction word present in the cache is read by the CPU. The segment 
number now accessed is pushed to the top of the stack, thus the other segment number will come to the 
bottom of the stack.

If there is no match then the word is read from the external memory and copied into the cache and the 
corresponding fl ag bit is set. The segment number now accessed is pushed to the top of the stack, thus 
the other segment number will come to the bottom of the stack.

PERIPHERALS 7.8

The ¢C3X processors peripherals include serial ports, timers and on-chip DMA (Direct Memory Ac-
cess) controllers. The ¢C30 processor has two serial ports and a DMA controller, whereas ‘C31 has only 
one serial port and ¢C32 has one serial port and two DMA controllers. All the three devices have two 
timers. Figure 7.12 shows the details about the TMS320C3X peripherals. The peripheral bus is used to 
communicate with the peripherals. The peripheral bus consists of a 24-bit address bus and a 32-bit data 
bus.
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Fig. 7.12 Block diagram of ¢C3X peripherals

7.8.1 Timers

The ¢C3X timers are general-purpose 32-bit timer/event counters. The block diagram of the timer is 
shown in Fig. 7.13. The timer operates in two signaling modes, internal or external clocking. With 
internal clock we can use the timer to signal external devices such as A/D converter, D/A converters, 
etc. When external clock is applied to the timer, it can count the external events and interrupts the CPU 
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after a specifi ed number of events. Each timer has an I/O pin that can be confi gured as an input, output 
or general-purpose I/O pin. The three memory-mapped registers, global control register, period regis-
ter and counter register, are used by the timer. These registers, can be accessed using the memory map 
address values.

The 32-bit counter present in the timer increments for the rising edge or the falling edge of the input 
clock. The input clock can be half of the internal clock of’C3X or it can be the external clock signal 
on TCLKx pin. The counter register holds the value of the counter and its present value is compared 
with the content of the period register. When the values are equal, the counter is zeroed. This causes 
the internal interrupt. The pulse generator present generates two types of external clock signals, either 
pulse or clock.

Counter
(32 )BIT

Counter register
(31 – 0)

Period register
(31 – 0)

Comparator
Period = Counter

Pulse generator

INTERNAL CLOCK/2

EXTERNAL CLOCK

INV

32 32

INV TSTAT

TIMER OUT

Fig. 7.13 Timer block diagram

7.8.2 Serial Ports

The ¢C30 and ¢32 devices have two serial ports. These serial ports are independent bidirectional serial 
ports and are identical. The ¢C31 device has only one serial port, which is also a bidirectional port. 
Each serial port has eight control registers, which are memory mapped (refer Section 7.6.3. memory-
mapped peripherals), and can be programmed by the user for the desired modes of operation. The block 
diagram of the serial port is given in Fig. 7.14. The control registers include a global control register, 
two control registers for the serial I/O pins, three transmit/receive timer registers and one data transmit 
and receive register. The serial ports can be programmed to transfer 8,16, 24 or 32 bits of data words 
simultaneously in both directions. The clock signal needed for the serial port can be generated in DSP 
itself by programming the timer, or it can be externally supplied. The serial port can transmit data words 
in continuous mode or burst mode.

In the transmit section of the serial port, the data transmit register (DXR) will hold the 32-bit data to 
be transmitted and it is copied to transmit shift register (XSR), whenever the XSR is empty. Once XSR 
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starts shifting the data bits to the DX pin, the next data word is copied to the DXR register. Once the 
DXR content is completely copied to XSR register, the transmit ready (XRDY) bit is set in the serial 
port global control register. This will initiate a serial port transmit interrupt (XINT) and this signal 
indicates that the DXR is ready to accept new data. The transmit fram synchronisation (FSX) signal will 
be generated at the beginning of each frame and this initiates the data transfer. All the transmit section 
operations are synchronised by the transmit clock signal (CLKX).
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Fig. 7.14 Serial port block diagram

At the receive section of the serial port, the data from the DR pin is shifted into receive shift register 
(RSR). The content of RSR is copied to the data receive register (DRR) and from this register it is read 
by the CPU. Once the RSR content is completely copied to DRR, the receive ready bit (RRDY) bit in 
the serial port global control register is set. This initiates the serial port receive interrupt (RINT). Similar 
to transmit section the receive frame synchronisation (FSR) of the receiver section initiates the receive 
operation and receiver clock signal CLKR is used to synchronise all the receiver section ac tions.

7.8.3 DMA Controller

The on-chip DMA controller present in C3X devices can be used to read or write the 32-bit operands in 
any locations in the memory map. The ¢C30 and ¢C31 devices have only one DMA controller, whereas 
¢C32 has two DMA controllers. The DMA operations never interfere with the operations of the CPU and 
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this enables to interface slow external devices 
such as memory, peripherals, etc., without 
reducing the throughput to the CPU. The DMA 
controller consists of address generators, source 
and destination registers and transfer counter. 
The block diagram of DMA controller is shown 
in Fig. 7.15. The DMA controller has its own 
address bus and data bus and this minimise the 
confl ict with CPU.

The CPU and DMA controller busses can 
function independently, but when they access the 
same on-chip or the external memory location 
the priority is provided. As far as ¢C30 and ¢C31 
devices are concerned, the highest priority is for 
the CPU access, but in ¢C32 devices the user can 
confi gure the priorities.

Review Questions 

7.1 List the processors available in the ‘C3X family.

7.2 What are all the various units present in ‘C3X 

CPU?

7.3 List the data buses and address buses in the ‘C3X 

processor.

7.4 What are all the various registers in the ‘C3X 

register fi le?

7.5 What is the use of data page pointer?

7.6 What is the use of auxiliary registers?

7.7 List the various fl ags available in the ‘C3X status 

register.

7.8 What is the use of interrupt enable and interrupt 

fl ag registers?

7.9 What are the various registers used for the repeat 

operations?

7.10 What are the differences between microprocessor 

and microcomputer mode of operation of ¢C3X 

processor?

7.11 What is the use of cache memory?

7.12 What are all the bits used for controlling the cache 

operation?

7.13 What are all the on-chip peripherals available in 

¢C3X processor?

7.14 What are all the registers to be programmed for 

activating the serial port?

7.15 What are the memory map registers available for 

controlling the on-chip timer operation?
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DMAD BusATA
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Fig. 7.15 The block diagram of DMA controller

Self Test Questions 

7.1 The ¢C3X family processors are ——— bit fl oating-

point processors.

(a) 8 (b) 16 (c) 24 (d) 32

7.2 The ¢C3X family processor suitable for low power 

application is ———.

(a) ¢C30 (b) ¢C31 (c) XC31 (d) ¢C32

7.3 The on-chip RAM available in the ¢C3X family 

processors is ———.

(a) 2K (b) 4K (c) 8K (d) 64K

7.4 The ¢C3X family processors are different in ———.

(a) architecture (b) memory size

(c) speed of operation

7.5 The ¢C3X family processors have ———.

(a) onlySARAM (b) onlyDARAM

(c) both SARAM and DARAM
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7.6 The no. of address buses present in the ‘C3X family 

processors are ———

(a) 5 (b) 6 (c) 3 (d) 2

7.7 The no. of data buses present in the ‘C3X family 

processors are ———

(a) 8 (b) 7 (c) 9 (d) 4

7.8 The multiplier in the ¢C3X family processors can 

perform ——— multiplications.

(a) 24-bit integer

(b) 32-bit fl oating point

(c) both 24-bit integer and 32-bit fl oating-point

7.9 The size of the ¢C3X processor ALU is ———.

(a) 24 bits (b) 16 bits (c) 32 bits (d) 40 bits

7.10 The no. of ARAUs in the ¢C3X processors are 

———.

(a) 2 (b) 3 (c) 1 (d) 4

7.11 The no. of index registers in the ¢C3X processors 

are ———.

(a) 3 (b) 1 (c) 2 (d) 4

7.12 The ¢C3X processor register fi le contains ——— 

registers.

(a) 12 (b) 24 (c) 28 (d) 34

7.13 The no. of data pages and location in each page of 

data memory of the ¢C3X processor are

(a) 512, 128K  (b) 256, 64K

(c) 256, 32K  (d)512,8K

7.14 The no. of bits of the DP used for direct addressing 

mode are ———.

(a) LSB9bits  (b) LSB 8 bits

(c)LSB12bits  (d) all bits of DP

7.15 The no. of ARs used for indirect addressing mode 

of the ¢C3X processor are ———.

(a) 6 (b) 8 (c) 4 (d) 2

7.16 The no. of fl ag bits present in the status (ST) 

register of the ¢C3X processor are ———.

(a) 4 (b) 6 (c) 9 (d) 10

7.17 Which bit present in the ST register of the 

¢C3X processor will globally disable and enable the 

interrupts?

(a) GIE (b) C (c) Z (d) OV

7.18 The purpose of I/O fl ag register is to

(a) to control the function of XFO and XF1 pins

(b) to control the interrupt operation

(c) to control the read and write operations

7.19 The no. of registers used for the repeat instruction 

of ¢C3X processor are ———.

(a) 2 (b) 3 (c) 4 (d) 1

7.20 The ¢C3X processor which is having on-chip ROM 

is ———.

(a) ¢C30 (b) ¢C31 (c) LC31 (d) ¢C32

7.21 The cache size of’C3X processor is ———.

(a) 64K (b) 64 words (c) 4K (d) 2K

7.22 The address buses of the ¢C3X processor are of 

——— width.

(a) 32 bits (b) 24 bits (c) 16 bits (d) 40 bits

7.23 The on-chip RAM memory address location of the 

¢C3X processor is ———.

(a) 808000h-80FFFFh (b) 809800h-809FFFh

(c) 800000h-80FFFFh

7.24 The segment start address register of the ‘C3X 

processor cache is of ——— size.

(a) 19 bits (b) 20 bits (c) 24 bits (d) 32 bits

7.25 The cache available in the ‘C3X processor is for 

———.

(a) program memory

(b) data memory

(c) hpth program and data memory

7.26 The no. of serial ports in ‘C31 and ‘C32 processors 

are ———.

(a) 1 (b) 2 (c) 3 (d) 0

7.27 The no. of registers which control the timer 

operation is ———.

(a) 2 (b) 3 (c) 4 (d) 1

7.28 The size of the ¢C3X processor timer is ———.

(a) 32 bit (b) 16 bit (c) 24 bit (d) 40 bit

7.29 The no. of control registers for each serial port of 

the ¢C3X processor are ———.

(a) 4 (b) 5 (c) 7 (d) 8

7.30 The no. of DMA controllers in ‘C32 processor are 

———.

(a) 1 (b) 2 (c) 3 (d) 4



The TMS320C3X processors support four groups of addressing modes. There are six types of addressing 

modes which can be used within the groups. These addressing modes allow the access of instruction 

word and access of data from memory and registers. The ¢C3X processors instructions set contains 113 

instructions, which are organised into six groups. These assembly language instructions set supports 

numeric-intensive, signal processing and general purpose applications. In this chapter details of various 

addressing modes and instructions are discussed with examples.

DATA FORMATS 8.1

The TMS320C3X processors support both integer and fl oating-point data formats. As far as the integer 

data format is concerned both the signed and unsigned integer can be used. The fl oating-point operations 

make fast, trouble-free, accurate and precise computations. In fl oating-point data format short fl oating-

point, single-precision and double-precision formats are used.

8.1.1 Integer Formats

The signed and unsigned integer formats have a 16-bit short integer format and a 32-bit single-precision 

integer format. In short integer format only the least signifi cant 16 bits are used to represent the operands, 

whereas in single-precision integer format all the 32 bits are used.

Short Integer Format The short integer format is a 16-bit two’s complement integer format for im-

mediate integer operands. In the instructions in which this format is used, the least signifi cant 15-bits 

are used to represent the operand and the most signifi cant bit (MSB) is used as sign bit, whereas in the 

unsigned short integer format all the 16 bits are used to represent the operands.

In signed short integer format, the most signifi cant 16 bits (31-16) can be used as sign bits and this 

is called sign extension of a short integer. In the case of unsigned short integer the most signifi cant 16-

bits are zero fi lled and it is called zero fi ll of an unsigned short integer. The range of integers that can be 

represented in short integer format is –215 £ X £ 215 – 1.

Single-precision Integer Format In the single-precision integer format, the integer is represented 

in two’s complement format. In this format the MSB (31st bit) is used as sign bit and the rest of the 31 

8
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bits (30-0) are used to represent the operand. In the case of unsigned format, all the 32 bits are used to 

represent the operands. The range of integers that can be represented in short integer format is –231 £ X 

£ 231 – 1.

8.1.2 Floating-point Formats

The fl oating-point data format consists of three fi elds. They are exponent fi eld (e), single sign bit fi eld 

(s) and a fraction fi eld (f). The combined sign fi eld and fraction fi eld is referred as mantissa fi eld. 

The exponent fi eld is a two’s complement number and mantissa part is a two’s complement fraction 

combined with the sign bit and the implied most signifi cant bit. The fl oating-point format is shown in 

Fig. 8.1.

exponent ( )e sign ( )s fraction ( )f

Mantissa (man)

Fig. 8.1 Floating-point format

The mantissa represents a normalised 2s-complement number. In a normalised representation, a most 

signifi cant nonsign bit is implied, thus providing an additional bit of precision. The implied sign bit is 

used as follows:

 • s = 0, then the leading two bits of the mantissa are 01

 • s = 1, then the leading two bits of the mantissa are 10

If the sign bit ‘x’ is equal to 0, the mantissa becomes 01.f
2
, whereas if ‘s’ is 1, the mantissa becomes 

10. f
2
 , where f is the binary representation of the fraction fi eld.

The fl oating point two’s complement number X as a function of the fi elds e, s and f is given below.

 X = 01.f ¥ 2e if s = 0 or if the leading 0 is the sign bit and 1 is the implied most signifi cant bit

 = 10.f ¥ 2e if s = 1 or if the leading 1 is the sign bit and

  0 is the implied most signifi cant nonsign bit

 = 0 if e = most negative two’s complement value

  of the specifi ed exponent fi eld width

As far as the fl oating-point format is concerned, there are three formats, short fl oating-point format, 

single-precision fl oating-point format and extended precision fl oating-format, present.

Short Floating-Point Format In the short fl oating-point format, 16 bits are used to represent the 

operand. The fl oating-point numbers are represented with a 4-bit exponent fi eld and a 12-bit mantissa 

with an implied most signifi cant nonsign bit.

Single Precision Floating-Point Format In the single precision fl oating-point format, an 8-bit ex-

ponent fi eld and a 24-bit mantissa with an implied most signifi cant nonsign bit is used to represent the 

operands.

Extended Precision Floating-Point Format In the extended precision fl oating-point format the op-

erands are represented with an 8-bit exponent fi eld and a 32-bit mantissa with an implied signifi cant 

nonsign bit.
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The maximum positive, negative, minimum positive and negative numbers that can be represented 

using the three fl oating-point formats are given in Table 8.1.

Table 8.1 Most, least positive and negative numbers in fl oating-point format

Short fl oating-point 

format

Single precision fl oating-

point format

Extended precision 

fl oating-point format

Most, positive (2–2–11) ¥ 27 =

2.5594 ¥ 102

(2–2–23) ¥ 2127 =

3.4028234 ¥ 1038

(2–2–23)¥2127=

3.4028234 ¥ 1038

Least, positive (1 ¥ 2–7) =

7.18125 ¥ 10–3

(1¥2–l27) =

5.8774717 ¥ 10 –39

(1¥2–127) =

5.8774717541 ¥ 10–39

Least, negative (–1–2–11) ¥ 2–7 =

–7.8163 ¥ 103

(–1–2–23) ¥ 2–127 =

–5.8774724 ¥ 10–39

(–1–2–23) ¥ 2–127 =

–5.8774717569 ¥ 10–39

Most, negative (–2¥27) =

–2.5600¥102

(–2¥2127) =

–3.4028236¥1038

(–2¥2127) =

–3.4028236691¥1038

ADDRESSING MODES 8.2

The TMS320C3X processor supports the following six addressing modes:

(1) Register addressing mode, (2) Direct addressing mode, (3) Indirect addressing mode, (4) Short-

immediate addressing mode, (5) Long-immediate addressing mode and (6) PC-relative addressing 

mode. In this section, the various addressing modes are explained with examples.

8.2.1 Register Addressing

The TMS320C3X processor register fi le contains eight extended precision registers (R0-R7). These 

CPU registers contain the operand. The syntax of this addressing mode is

mnemonic src, dst

The mnemonic can be any assembly instruction code that support register addressing mode, src is the 

source register and dst is the destination register. The registers R0-R7 can be used both for source and 

destination registers.

Example 8.1 ADD1 R3,R5—This instruction adds the two hexadecimal integer operands present 

in the registers R3 and R5. The result is stored in the register R5. The content of 

register R3 is unchanged.

  Before execution    After execution

 R3 11223344    R3 11223344

 R5 22334455     R5 33557799

Example 8.2 LDF R4,R5—This instruction loads the fl oating point operand present in the source 

register R4 to the destination register R5. The content of register R4 is 

unchanged

    Before execution   After execution

 R4 1.23425354e + 01    R4 1.23425354e + 01

 R5 2.34353674e + 01    R5 1.23425354e + 01
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8.2.2 Direct Addressing

The number of address bits of TMS320C3X processor is 32 bits, and the total addressable data space 

with 32 bits is 16 M words. The data space of the ¢C3X processor is organised in such a way that, there 

are 256 pages and each page contains 64K words. The data page pointer (DP), a separate 32-bit register 

holds the value of the data page. The location of the operand in a specifi c page is given in the instruction 

code. The data page pointer is to be loaded fi rst before the access of the data from the page using direct 

addressing.

In direct addressing mode, the least signifi cant 16-bits of the instruction code and the least signifi cant 

8-bits of DP are combined to form the 24-bit address of the data operand present in the data space. Figure 

8.2 shows the data address formation in direct addressing mode. The syntax for the direct addressing 

mode is

mnemonic @expr, dst

and the expr is the LSB 16-bit value of the operand in a particular page.

31 16 15 0

31 8 7 0

31 24 23

Instruction word

Data page
pointer (DP)

expr

Page

Address00 - - - - 0

Fig. 8.2 24-Bit data address formation

Example 8.3 LDF @1000h,R4—This instruction loads the fl oating point operand present in the 

location 1000h of the page 128 (Take content of DP=80h) into the register R4. The 

address of the operand is 00801000h

 Before execution   After execution

 DP  00000080     00000080

Data in the location 00801000h

  2.34353674e + 01     2.34353674e + 01

 R4 1.23425354e + 01    R4 2.34353674e + 01

Example 8.4 ADDI @2010h,R5—This instruction adds the integer operand in the data location 

602010h(Take content of DP=60h) and the content in the register R5, the result is 

stored in register R5.

 Before execution   After execution

 DP  00000060     00000060

Data in the location 00602010h

   11223344       11223344

 R5  23459872     R5  3467CBB6



Addressing Modes and Assembly Language Instructions of ¢C3X  191

8.2.3 Indirect Addressing

In indirect addressing mode the address of an operand in memory is specifi ed through the content of an 

auxiliary register. There are eight auxiliary registers (AR0-AR7) in ¢C3X processors, any one of which 

can be used to specify the address. The auxiliary register is of 32 bits, the LSB 24 bits are used to specify 

the address; rest of the bits are not modifi ed by the instructions, which load ARs. The two auxiliary 

register arithmetic units (ARAUs) present are used to perform the arithmetic operations needed for the 

address displacement. The instruction code format of the indirect addressing mode is given in Fig. 8.3. 

It consists of three fi elds, MOD, ARn and disp fi elds.

MSB MOD Arn Disp LSB

5 bits 3 bits 0,5, or 8 bits

Fig. 8.3 Indirect addressing instruction code format

The 5-bit MOD fi eld specifi es the type of indirect addressing, the 3-bit ARn fi eld specifi es the content 

of auxiliary register that can be used as the operand address and the disp (displacement) fi eld is used to 

modify the address value after the current memory access. The displacement of the address is either an 

explicit unsigned 8-bit integer contained in the instruction word or an implicit displacement of one. The 

displacement can also be provided by the two index registers IR0 and IR1. The circular and bit-reversed 

addressing mode is also possible. Tables 8.2, 8.3 and 8.4 lists the indirect addressing MOD fi eld value, 

its syntax and its operation.

Table 8.2 Indirect addressing with displacement

MOD Field Syntax Operation

00000 *+ARn(disp) Address = Content of ARn + the displacement

00001 *–ARn(disp) Address = Content of ARn - the displacement

00010 *++ARn(disp) Address = Content of ARn + the displacement

New ARn content = Old Content of ARn + the displacement

00011 *– –ARn(disp) Address = Content of ARn - the displacement

New ARn content = Old Content of ARn - the displacement

00100 *ARn++(disp) Address = Content of ARn

New ARn content = Old Content of ARn + the displacement

00101 *ARn––(disp) Address = Content of ARn

New ARn content = Old Content of ARn - the displacement

00110 *ARn++(disp)% Address = Content of ARn

New ARn content = circular addressing of ( old content of

ARn + displacement)

00111 *ARn––(disp)% Address = Content of ARn

New ARn content = circular addressing of ( old content of

ARn - displacement)

In indirect addressing with index registers, either the content of index register 0 or index register 1 

can be used for displacement. For the MOD fi elds 01000 – 01111 the content of index register 0 is used 
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and from 10000 – 10111 the content of index register 1 is used. In the following table the syntax is given 

only for IR0, the same way all the indirect addressing mode is possible with IRl also.

Table 8.3 Indirect addressing with index register IR0/IR1

MOD Field Syntax Operation

01000 *+ARn(IR0) Address = Content of ARn + the content of index register IR0

01001 *–ARn(IR0) Address = Content of ARn - the content of index register IR0

01010 *++ARn(IR0) Address = Content of ARn + the content of index register IR0

New ARn content = Old Content of ARn + the content of index register IR0

01011 *– –ARn(IR0) Address = Content of ARn - the content of index register IR0

New ARn content = Old Content of ARn - the content of index register IR0

01100 *ARn++(IR0) Address = Content of ARn

New ARn content = Old Content of ARn + the content of index register IR0

01101 *ARn––(IR0) Address = Content of ARn

New ARn content = Old Content of ARn - the content of index register IR0

01110 *ARn++(IR0)% Address = Content of ARn

New ARn content = Circular addressing of (Old Content of ARn + the content 

of index register IR0)

01111 *ARn––(IR0)% Address = Content of ARn

New ARn content = Circular addressing of (Old Content of ARn - the content 

of index register IR0)

Table 8.4 Indirect Addressing (special cases)

MOD Field Syntax Operation

11000 *ARn Address = content of ARn

11001 *ARn++(IR0)B Address = content of ARn

New ARn content = Old content of ARn + Bit reversed content

of index register IR0

Example 8.5 STI R3,*+AR2(3)—This is a store instruction, the integer operand present in register 

R3 is stored in the data memory location. The address of the data memory location 

is the sum of the content of AR2 and the displacement (disp = 3). Take the content of AR2 is 00803010h 

then the address of the operand is 00803013h

 Before execution   After execution

 AR2  00803010     00803010

 R3  23459872     R3  23459872

Content of the location 00803013h

  11223344       23459872
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Example 8.6 STF R4,*--AR5(5)—The fl oating point operand present in the register R4 is stored in 

data memory. The data memory address is the subtraction of displacement (disp=5) 

from the content of AR5. After execution, the new content of AR5 is the subtraction of displacement 

from the old content AR5. Take the content of AR5 as 00602020h, then the memory address is 006020 

lBh.

 Before execution   After execution

 AR5  00602020     AR5  0060201B

 R4 2.34353674e + 01    R4 2.34353674e + 01

Content of the location 0060201Bh

 1.23425354e + 01     2.34353674e + 01

Example 8.7 SUBB *AR2++(4),R6—The integer operand present in the data memory location, 

pointed by AR2 is subtracted from the content of register R6 and the result is 

stored in register R6, The data memory address before execution is the content of AR2, the new content 

of AR2 is the sum of displacement and the old content AR2. Take the content of AR2 as 00701010h.

 Before execution   After execution

 AR2  00701010     AR2  00701014

 R6  23459872     R6  23459872

Content of the location 00701010h

  11223344       1223652E

Example 8.8 ADDF *AR6++(IR1),R0—The fl oating point operand present in the data memory 

address pointed by AR6 is added with the content of the register R0 and the result 

is stored in R0. The new content in AR6 is the sum of the old content in AR6 and the content of IR1.

 Before execution   After execution

 AR6  00800000     AR6  00801000

 IR1  00001000       00001000

Content of the location 0080000h

 1.23425354e + 01     1.23425354e + 01

 R0 2.34353674e + 02    R0 2.46696209e + 02

8.2.4 Immediate Addressing

In immediate addressing mode the operand can be given directly in the instruction. There are two types 

of immediate addressing modes,

 1. Short-immediate addressing and

 2. Long-immediate addressing

The syntax of the immediate addressing mode is;

mnemonic expr

The fi eld expr can be a 16-bit or 24-bit operand value. In short immediate addressing mode the 

operand is a 16-bit immediate value contained in the 16 LSBs of the instruction word (expr). The short-

immediate operand can be two’s complement integer, an unsigned integer, or a fl oating-point number.

In long-immediate addressing mode the operand is a 24-bit immediate value contained in the 24 

LSBs of the instruction word (expr).
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Example 8.9 LDI 1000h,R7—The immediate operand 1000h is loaded in to register R7

 Before execution   After execution

   R7  00000200   R7  00001000

8.2.5 PC-Relative Addressing

The Program counter (PC) - relative addressing is used for branching. It loads the 16-bit or 24-bit LSBs 

of the instruction word to the PC register. The syntax of the addressing is;

mnemonic src

The mnemonic can be branch, call and repeat instructions codes and src is a label or address.

Example 8.10 BR 8000h—When this instruction is in execute phase the address 8000h is loaded

in to PC.

 Before execution   After execution

 PC  00080200     PC  00008000

8.2.6 Circular Addressing

The digital signal processing algorithms which use convolution and correlation requires the circular 

addressing. In this section the circular addressing mode is described.

The block size register (BK) specifi es the size of the circular buffer(R). The starting address (Top 

of buffer) and end address (End of buffer) of the circular buffers are computed immediately from 

buffer length. The index register is used as increment or decrement counter. Figure 8.4 illustrates the 

relationship between the various registers used in circular addressing.

The length of the block size is loaded in register BK. The address of the top of the buffer is found by 

fi lling K LSB bits zero, where K is an integer that satisfi es the condition 2K ≥ R and the K+l to 31 bits are 

concatenated from ARn. The address of the bottom of the buffer is found by fi lling K LSBs of the BK 

register as such and K+1 to 31 bits of ARn. The index register is loaded with the K LSB bits of ARn.

 • The fi rst time the circular buffer is used, the auxiliary register must be pointing to an element in 

the circular queue.

 • The step used must be less than or equal to the block size and it is treated as unsigned integer.

The algorithm for circular addressing is given below

if 0 £ index +step < BK;

 index = index + step.

Else if index + step ≥ BK

 index = index + step – BK.

Else if index + step < 0;

 index = index + step + BK 

Example 8.11 Assume that the size of the circular buffer is 20, the auxiliary register used is AR3 

and its content is 00601000. The length of the buffer is entered in the block size 

register (BK) and it is 00000014h. The value of K bits needed for fi nding the address of the top and 

bottom of the buffer is 5 (25 > 20).
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Fig. 8.4 Address computation in circular addressing

The top of the buffer is found by fi lling K LSB bits zero and taking K+1 to 31 bits from AR3. The 

address of the top of the buffer is 00601000h. The bottom of the buffer is found by fi lling K LSB bits 

of BK register and K+1 to 31 bits from AR3. The address of the bottom of the buffer is 00601014h. 

The index register IR0 is used as counter. The following instruction code illustrates the circular buffer 

addressing. The content of AR3 before execution and after execution is given.

   Content of AR3

  Before execution  After execution

LDI *AR3++(5), R0  00601000    00601005

LDI * AR3++(5), R1  00601005    0060100A

ADDI *AR3++(5), R0  0060100A    0060100F

ADDI *AR3++(5), R1  0060100F    00601014

SUBB *AR3++(2), R2  00601014    00601002

SUBB *AR3 - -(4), R3  00601002    00601012
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8.2.7 Bit-Reversed Addressing

Bit-reversed addressing is used for the implementation of FFT algorithms. The base address of bit-

reversed addressing must be located on a boundary of the size of the table. For example, if IR0 = 2n – 1, 

the n LSBs of the base address must be 0. The base address of the data in memory must be on a 2n 

boundary. One auxiliary register points to the physical location of a data value. IR0 specifi es one-half 

the size of the FFT, that is, the value contained in IR0 must be equal to 2n – 1, where n is an integer and 

the FFT size is 2n. When you add IR to the auxiliary register by using bit-reversed addressing, addresses 

are generated in a bit-reversed fashion.

Example 8.12 Consider that AR4 is used for bit-reversed addressing and its address value is 

00700100h. The index register IR0 is used, and its values for the following 

instructions are 0,2,4,8 respectively.

    Content of AR4

   Before execution  After execution

 LDI *AR4++(IR0)B, R0  00701000    00701000

 LDI *AR4++(IR0)B, R0  00701000    00701004

 LDI *AR4++(IR0)B, R0  00701000    00701002

 LDI *AR4++(IR0)B, R0  00701000    00701001

GROUPS OF ADDRESSING MODES 8.3

There are six types of addressing modes. Since some addressing modes are not appropriate for some 

instructions, the types of addressing modes are used in four groups as follows 1. General addressing 

modes (G); 2. Three operand addressing modes (T); 3. Parallel addressing modes (P); 4. Conditional 

branch addressing modes. This section explains about the groups of addressing modes.

1. General Addressing Modes The general addressing mode includes register addressing, direct ad-

dressing, indirect addressing and immediate addressing modes. The general addressing mode uses the 

general-purpose instructions. The bits 31-29 set 000 indicates the general addressing mode. The bits 22 

and 21 of the instruction word specify the general addressing mode.

0 0 - register addressing

0 1 - direct addressing

1 0 - indirect addressing

1 1 - immediate addressing

2. Three-operand Addressing Modes In three-operand addressing modes two source operands and 

one destination operand are used. The instructions which use three operand addressing mode have the 

form ADDI3, LSH3, CMPF3, XOR3, etc. The three-operand addressing modes include register and 

indirect addressing modes. The bits 31-29 set to 001 indicates the three-operand addressing mode. The 

bits 22 and 21 of the instruction word specify the type of addressing mode to be used for two source 

operands

         SRC1 SRC2

0 0 - register register

0 1 - indirect register
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1 0 - register indirect

1 1 - indirect indirect

3. Parallel Addressing Modes Some of the ¢C3X instructions can occur in pair and those instructions 

will be executed in parallel. The parallel instructions are indicated with two vertical bars (||) and this 

includes register and indirect addressing modes. For parallel addressing mode four operands are needed. 

The instruction code format of the parallel addressing mode is shown in Fig. 8.5 and its fi eld description 

is given in Table 8.5 

31 30 29 26 25 24 23 22 21 19 18 16 15 11 10 8 7 3 2 0

10 operation P d1 d2 src1 src2 modn ARn modm ARm

Src4Src3

Fig. 8.5 The instruction code format of parallel addressing mode

Table 8.5 Description of parallel addressing mode instruction code format

Bits Description

31 &30 The value set is 10, this indicates the parallel addressing mode

29–26 These four bits, indicates the type of operation to be performed

25&24 Parallel addressing mode fi eld (P), this specifi es how the bits 21-0 are used for addressing the 

source operands 23&22 These two bits specify the destination of the operands

d1 If 0, dst is R0. If 1, dst is R1

d2 If 0, dst is R2. If 1, dst is R3

21–19 This fi eld specifi es the source operand 1 (src1) address

18–16 This fi eld specifi es the source operand 2 (src2) address

15–8 This fi elds specifi es the source operand 3 (src3) address

Bits 15-11 (modn) specifi es the type of indirect addressing used for src3 and

Bits 10-8 (ARn) specifi es the auxiliary register used for pointing the address of src3

7–0 This fi elds specifi es the source operand 4 (src4) address

Bits 7-3 (modm) specifi es the type of indirect addressing used for src4 and

Bits 2-0 (ARm) specifi es the auxiliary register used for pointing the address of src4

4. Conditional-Branch Addressing Modes The ¢C3X processors instruction set includes condition-

al and branch addressing mode instructions (Bcond, BcondD, DBcond, DBcondD and CBLLcond). 

These instructions can perform variety of conditional operations. The conditional-branch addressing 

mode includes only the register and PC-relative addressing modes. The instruction code format of the 

conditional-branch instruction is shown in Fig. 8.6 and its fi eld description is given in Table 8.6.

31 29 26 25 24 22 21 16 15 0

ARn

28 27 20 45

011

011

B D

B D cond

cond 0 0 . . . 0 0 src reg

Immediate(PC relative)ARm

Fig. 8.6 The instruction code format of parallel addressing mode



198  Digital Signal Processors

Table 8.6 Description of parallel addressing mode instruction code format

Bits Description

31–29 These bits set 011 specify conditional-branch addressing mode

28&27 01 – specifi es branch instructions

10 – specifi es call instructions

26 1 – specifi es the DBcond branch instruction

0 – specifi es the Bcond branch instruction

25 This bit specifi es the addressing mode

0 – specifi es the register addressing mode

1 – specifi es the PC-relative addressing mode

24–22 This fi eld specifi es the auxiliary register used

21 This fi eld specifi es the branch is a standard branch or a delayed branch

0 – specifi es standard branch

1 – specifi es the delayed branch

20–16 Specifi es the condition used in the branch and call instructions

15–0 Specifi es the new PC value either in register addressing or in PC-relative addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 8.4

The TMS320C3X assembly instructions set supports numeric-intensive, signal processing and general-

purpose applications. There are 113 instructions organised in six groups. All instructions sets are one 

word and most of them require one cycle to execute. In the instructions set some instructions support 

fl oating-point and some use fi xed-point operands. The six functional groups of addressing modes are as 

follows.

 • Load and store

 • Two-operand arithmetic/logical

 • Three-operand arithmetic/logical

 • Program control

 • Interlocked operations

 • Parallel operations

In this section the groups of addressing modes are discussed and some important instructions sets are 

explained with examples. The general syntax of assembly instructions is as follows.

 1. Three operand instructions

  mnemonic src2,src1,dst

The source operands src2 and src1 can be accessed by the register and indirect addressing modes, 

whereas the destination operand dst should be accessed only by register addressing mode.

 2. Other instructions

  mnemonic src,dst

The source operand src can be accessed by general addressing mode (G) and the destination operand 

dst should be accessed only by register addressing mode. But for store instructions the source and 

destination operand addressing modes are reverse.
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Load and Store Instructions The ¢C3X processors support 13 load and store instructions. Using 

these instructions a word can be loaded from memory into a register, stored from register into memory. 

Certain instructions are used to manipulate data on the system stack. Load instructions can also be con-

ditional instructions.

Two-Operand Instructions There are 35 two-operand arithmetic and logical instructions. Out of this 

two-operands one is source and another is destination. The source operand can be a memory word, a 

register, or a part of the instruction word, where as the destination operand is always a register.

Three-Operand Instructions Some arithmetic and logical instructions have three operands. There 

are 17 such three operand instructions, which allow the processor to read two source operands from 

memory or from the CPU register fi le in a single cycle and store the results in destination, which is 

always a register.

Program-Control Instructions The program-control instruction group consists of repeat instruc-

tions, both standard and delayed branch, call and return instructions. There are 17 such instructions, 

which affect the program fl ow. Several program-control instructions support conditional operations.

Interlocked-Operation Instructions There are 5 instructions which support interlocked operations. 

These instructions are used for multiprocessor communication through the external signals (XF0 and 

XF1) to allow for powerful synchronisation mechanisms. The source address is accessed only through 

direct and indirect addressing modes and the destination address is accessed only through register ad-

dressing.

Parallel-Operations Instructions Some TMS320C3X instructions can occur in pairs that will be 

executed in parallel. These instructions can perform parallel loading of registers, parallel arithmetic 

operation, or arithmetic/ logical operations in parallel with a store instruction. Each instruction in a pair 

is entered as a separate source statement. The second instruction in the pair must be written followed by 

two vertical bars (||).

8.4.1 Load Instructions

The assembly instructions and description of the various load instructions are listed in Table 8.6. The 

load instructions can load integer and fl oating-point values in various addressing modes. It is also 

possible to load separately the fl oating-point exponent and mantissa values. The load operation can be 

performed both in interlocked and parallel operation modes.

Table 8.6

Instruction Description

LDP Load data page pointer

LDI Load integer

LDF Load fl oating point value

LDM Load fl oating point mantissa

LDE Load fl oating point exponent

LDII Load integer, interlocked

LDFI Load fl oating point value, interlocked

LDF| | LDF Load fl oating point, parallel

LDI | | LDI Load integer value, parallel
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Example 8.13 LDP @601000h,DP - This is data page pointer load instruction. The address of the 

source operand given in the instruction is 24-bits. The MSB 8 bits of the 24-bit 

source address is loaded into the 8 LSBs of the data page pointer (DP)

 Before execution   After execution

 DP  00000010     00000060

Example 8.14 LDI *AR4++(2),R1—The integer operand present in the address location pointed by 

AR4 is loaded into register R1. The new address content of AR4 is the sum of the 

old content of AR4 and the displacement (2).

 Before execution   After execution

 AR4  00800000    AR4  00800002

Content of the location 00800000h

  23459872     23459872

 R1  11223344       R1  23459872

Example 8.15 LDFI *+AR4(1),R5—An interlocked operation is signaled over XF0 and XF1 pins. The 

fl oating-point data operand content is loaded into register R5. The address of the 

data operand is the sum of the content of AR4 and the displacement (1).

 Before execution   After execution

 AR4  00602020     AR4  00602020

Content of the location 00602021h

 1.23425354e + 01     1.23425354e + 01

 R5 2.34353674e + 02    R5 1.23425354e + 01

Example 8.16 LDI * AR2++(5),R5 || LDI *-AR4( 1 ),R2—In this instruction two integer operands are 

loaded into registers in parallel. The. address of the fi rst operand is the content 

of AR2, the address of the second operand is the subtraction of the displacement (1) from the content of 

AR4. After execution the new address content in AR2 is the sum of the old content in AR2 and the 

displacement (5).

 Before execution   After execution

 AR2  00602020    AR2  00602025

 AR4  00700001    AR4  00700001

Content of the location 00602020h

  23456789     23456789

Content of the location 00700000h

  22446688     22446688

 R5  00000000     R5  23456789

 R2  22343547       R2  22446688

8.4.2 Store Instructions

The various kinds of store instructions present in ¢C3X processor are listed in Table 8.7. The store 

instructions can store the operands in various addressing modes. The operands can be stored both in 
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parallel and interlocked operations. It is to be noted that the source operand can be accessed only with 

register addressing mode and the destination operand can be accessed with general addressing modes.

Table 8.7

Instruction Description

STI - Store Integer operand

STF - Store fl oating point operand

STII - Store integer operand, interlocked

STFI - Store fl oating point operand, interlocked

STI | | STI - Store integer operand parallel

STF| | STF - Store fl oating point operand parallel

Example 8.17 STF R4, @ 1000h—(Consider the data page pointer value as 80h) This instruction 

stores the fl oating point operand present in the register R4 into the data page 128 

and the location 1000h (data address 801000h)

 Before execution   After execution

 DP  00000080     00000080

 R4 2.34353674e + 01    R4 2.34353674e + 01

Content of the location 00801000h

 1.23425354e + 01     2.34353674e + 01

Example 8.18 STII R2, *AR2++(4)—The integer operand present in the register R2 is loaded in the 

data memory. The address of the data memory is the content of AR2. An interlocked 

operation is signaled over pins XF0 and XFl, After execution the new content of AR2 is the sum of the old 

content of AR2 and the displacement (4).

 Before execution   After execution

 R2  23456789     R2  23456789

 AR2  00601000     AR2  00601004

Content of the location 00601000h

  22446688       23456789

Example 8.19 STF R4, *AR4 || STF R3, *-AR3(4)—This is a parallel store instruction. Two fl oating 

point operands present in registers R4 and R3 are stored into the data memory. 

The data memory address of the fi rst operand is the content of AR4 and for the second operand, it is the 

subtraction of displacement (4) from the current content of AR3 (i.e. 0070000h).

 Before execution   After execution

 R4 2.34353674e + 01    R4 2.34353674e + 01

 R3 1.23425354e + 01    R3 1.23425354e + 01

 AR4  00802000     AR4  00802000

 AR3  00700004     AR3  00700004
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Content of the location 00802000h

 2.46696209e + 02     2.34353674e + 01

Content of the location 00700000h

  3.57796412e + 02     1.23425354e + 01

8.4.3 Addition/Subtraction Instructions

The list of addition and subtraction instructions present in ¢C3X processor is given in Table 8.8. In 

addition and subtraction operations there are two operand and three operand instructions. In two operand 

instructions, one source operand can be added/subtracted with the register content and result is stored 

in the same register. Where as in three operand instructions, two source operands are added/ subtracted 

and the result is stored in a different register. It is also possible to add the carry bit and subtract borrow 

bit with the operands in some instructions.

Table 8.8

Instruction Description

ADDC Add integers with carry

ADDF Add fl oating pointing operands

ADDI Add integer operands

ADDC3 Add two integer source operands with carry

ADDF3 Add two fl oating point source operands

ADDI3 Add two integer source operands

SUBB Subtract integer with borrow

SUBF Subtract fl oating point operands

SUBI Subtract integer operands

SUBRB Subtract reverse integer with borrow

SUBRF Subtract reverse fl oating point value

SUBRI Subtract reverse integer value

SUBB3 Subtract two source fl oating point

operands with borrow

SUBF3 Subtract two fl oating point source

operands

SUBI3 Subtract two integer source operands

Example 8.20 ADDC R2,R7—This instruction adds the integer operands present in register R2, R7 

and the carry bit. The result of addition is stored in register R7.

 Before execution   After execution

 Carry bit C=1    C=1

 R2  23456789     R2  23456789

 R7  4567A158       R7  68AD08E2
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Example 8.21 ADDI *AR4++(5),R1—The integer operand present in the data memory address location 

pointed AR4 is added with the integer content in register R1. The result is stored in 

register R1. The new address content of AR4 is the sum of the old content and the displacement (5).

 Before execution   After execution

 AR4  00601000    AR4  00601005

Content of the location 00601000h

  22446688     22446688

 R1  23456789       R1  4589CE11

Example 8.22 ADDF3 *AR4, *--AR0(1),R0—The two fl oating point operands are accessed from the 

data memory, added and the result is stored in the register R0. The data memory 

address of the fi rst operand is the content of AR4 and the second is subtraction of the displacement (1) 

from the current content of AR0 and the same will be the new content in AR0 after execution.

 Before execution   After execution

 AR4  00803000     AR4  00803000

 AR0  00905006     AR0  00905005

Content of the location 00803000h

 2.34353674e + 02     2.34353674e + 02

Content of the location 00905005h

 1.23425354e + 01     1.23425354e + 01

 R0  00000000     R0 2.46696209e + 02

Example 8.23 SUBF *AR1—(IR0),R0—The fl oating point operand present in the data address 

location pointed by AR1 is subtracted from the content of register R0 and the 

result is stored in R0. The new address content of AR1 is the subtraction of the index register content IR0 

from the old content of AR1.

 Before execution   After execution

 AR1  00809880     AR1  00809800

 IR0  00000080     IR0  00000080

Content of the location 00809880h

 1.40500000e + 02     1.40500000e + 02

 R0 1.79750000e + 02    R0 3.92500000e + 01

Example 8.24 SUBRI *AR7++(IR1), R7—The integer operand content of the register R7 is subtracted 

from the data memory content pointed by AR7. This is just the reverse of the rest 

of the subtract operations, here the destination operand is subtracted from the source operand content. 

The new content of AR7 is the sum of IR1 content with the old content of AR7.

 Before execution   After execution

 AR7  00809000     AR1  00809080

 IR1  00000080     IR1  00000080

Content of the location 00809000h

  00006500       00006500

 R7  00003500     R7  00003000
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8.4.4 Mulitply Instructions

The two operand and three operand multiply instructions present in ‘C3X processors are listed in Table 

8.9. In two operand instructions, the product of the destination operand and the source operand is loaded 

into the destination register. In three operand instructions, the product of the two source operands is 

loaded into the destination register.

Table 8.9

Instruction Description

MPYF Multiply fl oating point operands

MPYI Multiply integer operands

MPYF3 Multiply two fl oating point source operands

MPYI3 Multiply two integer source operands

Example 8.25 MPYI R1,R2—The integer operand present in register R2 is multiplied with the 

content of register R1 and the result is stored in register R2.

 Before execution   After execution

 R1  00003457     R1  00003457

 R2  00002356       R2  07397A3A

Example 8.26 MPYF3 *AR6, R5,R0—The fl oating point operands present in the register R5, the 

data memory location pointed by AR6 are multiplied and the result is stored in 

register R0.

 Before execution   After execution

 AR6  00809000     AR6  00809000

Content of the location 00809000h

 1.40500000e + 02     1.40500000e + 02

 R5 6.28125000e + 01    R5 6.28125000e + 01

 R0  00000000     R0 8.82515625e + 03

8.4.5 Logical Instructions

The instructions that support logical operations in ¢C3X are listed in Table 8.10. The two operand and 

three operand logical OR, AND and EXOR operations can be performed. The complement operation 

can be separately performed for the operands or it can be performed along with the AND operation.

Table 8.10

Instruction Description

AND Logical-AND operation

ANDN Logical-AND between destination operand and the complement of the source operand

NOT Logical complement operation

OR Logical-OR operation

XOR Logical exclusive-OR operation

AND3 Logical-AND operation between two source operands

ANDN3 Logical-AND operation between sourcel operand and the complement of the source2 operand

OR3 Logical-OR between two source operands

XOR3 Logical exclusive-OR between two source operands
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Example 8.27 ANDN R1,R2—The bitwise logical-AND operation is performed between the (dst) 

operand in register R2 and the complement value of the content of the (src) 

register R1. The result of the AND operation is stored in the register R2.

 Before execution   After execution

 R1  00002A2B     R1  00002A2B

 R2  0002C2D       R2  00000404

Example 8.28 OR *AR2++(5),R7—The bitwise logical OR operation is performed between the data 

operand in the data memory address location pointed by AR2 and the register 

content R7. The result is stored in register R7. The new address content in AR2 is the sum of displacement 

(5) with the old content of AR2.

 Before execution   After execution

 AR2  00809000    AR2  00809005

Content of the location 00809000h

  01245000     01245000

 R7  00002A2B       R7  01247A2B

Example 8.29 XOR3 *--AR2(1), R4,R2—The bitwise logical exclusive OR operation is performed 

between data memory operand and the content of register R4. The address of the 

data memory operand is the subtraction of the displacement (1) from the content of AR2. The result is 

stored in register R2.

 Before execution   After execution

 AR2  00809005    AR2  00809004

Content of the location 00809004h

  000FF5C1     000FF5C1

 R4  000FFA32     R4  000FFA32

 R2  00000000       R2  00000F33

8.4.6 Conditional Instructions

The TMS320C3X processors support conditional instructions. There are 20 conditions that can be 

specifi ed in the condition (cond) fi eld of any of the conditional instructions. The conditions include, 

signed and unsigned comparisons, comparisons to 0, and comparisons based on the status of individual 

fl ags. The status register contains seven conditional fl ags. These fl ags provide the information about the 

properties of the result of arithmetic and logical instructions. The fl ag bits and its details are explained in 

Table 8.11. The conditional codes are based on the status of these fl ag bits. The list of conditions and its 

description are given in Table 8.12. The specifi ed condition in the conditional fi eld is true, the respective 

operation is performed, if it is false the next instruction is executed. The load, branch, call, return and 

trap instructions can be conditional instructions.



206  Digital Signal Processors

Table 8.11 The status register fl ags and its descriptions

Flag Description

1. Latched Floating-point 

underfl ow conditional fl ag 

(LUF)

LUF is set whenever UF is set.

LUF can be cleared by resetting the processor or by modifying it in the status 

register.

2. Latched overfl ow condi-

tion fl ag (LV)

LV is set Whenever V is set. LV can be cleared by resetting the processor or by 

modifying it in the status register.

3. Floating-point underfl ow 

condition fl ag (UF)

Whenever the exponent of the result is less than or equal to –128, a fl oating point 

under fl ow occurs. UF is set for under fl ow, if not it is cleared. The output value is 

set to zero for under fl ow.

4. Negative condition fl ag 

(N) 

For logical, integer and fl oating point operations N is set if the result is negative, 

and cleared otherwise. Zero is positive.

5. Zero condition fl ag (Z) For logical integer and fl oating point operations, Z is set if the output is 0 and 

cleared otherwise.

6. Overfl ow condition 

fl ag(V) 

For integers if the maximum positive (232–1) and negative (–232) numbers are obtained in 

the result V is set, otherwise it is cleared. For fl oating point operations, if the exponent 

of the result is greater than 127, V is set; otherwise it is cleared.

7. Carry fl ag (C) When integer addition results a carry or in an integer subtraction, a borrow occurs 

to the MSB of the output, the C bit is set otherwise it is cleared.

Table 8.12 Flag conditions and descriptions

Condition Description

Unconditional Compares

U Unconditional

Unsigned Compares

LO Lower than

LS Lower than or same as

HI Higher than

HS Higher than or same as

EQ Equal to

NE Not equal to

Signed Compares

LT Less than

LE Less than or equal to

GT Greater than

GE Greater than or equal to

EQ Equal to

NE Not equal to

Compare to Zero

Z Zero

NZ Not zero

P Positive

N Negative

NN Nonnegative

(Contd.)
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Compare to Condition Flags

NN Nonnegative

N Negative

NZ Nonzero

Z Zero

NV No overfl ow

V Overfl ow

NUF No underfl ow

UF Underfl ow

NC No carry

C Carry

NLV No latched overfl ow

LV Latched overfl ow

NLUF No latched fl oating-point underfl ow

LUF Latched fl oating-point underfl ow

ZUF Zero or fl oating-point underfl ow

Example 8.30 LDFZ R3,R5—The fl oating point operand load operation from register R3 to R5 is 

performed, if the Z fl ag bit is set, if not this instruction will not be executed.

 Before execution   After execution

 Z-Flag bit value =1   Z=1

 R3 1.40500000e + 02    R3 1.40500000e + 02

 R5 6.28125000e + 01    R5 1.40500000e + 02

8.4.7 Shift and Rotate Instructions

The operands in TMS320C3X processor can be shifted and rotated right as well as left. The instructions 

that support the shift and rotate operations are listed in Table 8.13.

Table 8.13

Instruction Description

ASH Arithmetic shift

ASH3 Arithmetic shift (three operand instruction)

LSH Logical shift

LSH3 Logical shift (three operand instruction)

ROL Rotate left

ROLC Rotate left through carry

ROR Rotate right

RORC Rotate right through carry

There are two kinds of shift operations, the arithmetic shift and logical shift. The syntax of the two 

operand and three operand shift instructions are;

 Two-operand instructions mnemonic count, dst

 Three-operand instructions mnemonic count, src, dst

In two-operand instructions, if the count operand is greater than zero, the left shift operation is done. 

The dst operand is left-shifted by the value of the count operand. The lower order bits, which are shifted 

Table 8.12 (Contd.)
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in are zero-fi lled and the higher order bits are shifted out through carry bit. This is same both for the 

arithmetic and logical shift instructions.

If the count operand is less than zero, the right shift operation is done. The dst operand is right shifted 

by the absolute value of the count operand. The higher order bits of the dst operand during the right shift 

are sign extended and the lower order bits are shifted out through the carry bit for the arithmetic shift. 

But for the logical shift operation the difference is, during the right shift, the higher order bits are zero-

fi lled and the lower order bits are shifted out through the carry bit.

If the count operand is zero, no shift is performed both for arithmetic and logical shift operations and 

the C bit is set zero. It is to be noted that only seven LSBs of the count operand are used for the shift 

operation. In arithmetic shift both the count and dst operands are considered to be signed integers. But 

for logical shift the count operand is considered as signed integer and the dst operand is considered as 

the unsigned integer.

As far as the rotate operations are concerned there are two kinds of rotate operations, rotate right and 

left. The syntax of the rotate instructions is;

mnemonic dst

In rotate left/right operation, the dst operand is left/right rotated by one bit and loaded into dst register. 

In the case of rotate left, the content of MSB bit is transferred into LSB and for rotate right; the LSB bit 

is transferred into the MSB bit. In both case, the shifted MSB (rotate left) and LSB (rotate right) bits 

are copied into carry bit. It is also possible to perform the rotate right and left operations through the 

content of carry bit.

Example 8.31 ASH R2,R3—The content of the register R3 is shifted based on the content of register 

R2 and the result is loaded into register R3. Consider the content of register R2 is 08h. 

The content of register R3 is left shifted by 8 bits and the result is loaded into register R3.

 Before execution   After execution

 R2  00000008     R2  00000008

 R3  00002458       R3  00245800

Example 8.32 LSH3 *AR2,R0,R2—The register content of R0 is shifted based on the content of 

data memory location pointed by AR2. The result of the shift operation is loaded 

into register R2. Consider the content of data memory location value is —8 (FFFFFFF8h). The content of 

register R0 is right shifted by 8 bits and the result is loaded into register R2.

 Before execution   After execution

 AR2  00801000    AR2  00801000

Content of the location 00801000h

  FFFFFFF8     FFFFFFF8

 R0  00569800     R0  00569800

 R2  00000000       R2  00005698

Example 8.33 ROL R7 - The content of register R7 is rotated left by one bit. The content of MSB 

bit is transferred to LSB bit and also copied to carry bit.

 Before execution   After execution

 R7  82233455     R7  044668AB

 Carry bit C = 0   C = 1
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Example 8.34 RORC R2—The content of the register R2 is rotated right through the carry bit. The 

content of LSB is transferred into carry bit, the content of carry bit is transferred 

to MSB bit.

 Before execution   After execution

 R2  04060040     R2  82030020

 Carry bit C = 1   C = 0

8.4.8 Program Control Instructions

The program control instruction group consists of 17 instructions, which affect the program fl ow. The 

standard and delayed branch instructions, call instructions and return instructions are supported. Certain 

program control instructions support both conditional and unconditional operations. There are two 

repeat mode instructions, one allows repetition of a single code and the other allows repetition of a 

block of code.

Branch, Call and Return Instructions The ¢C3X processors support branch, call and return instruc-

tions. The branch operation can be conditional, unconditional, delayed and decrement & branch instruc-

tions. The call operations are conditional and unconditional, and the return instructions are conditional 

only. The list of branch, call and return instructions is given in Table 8.14.

Table 8.14

Instruction Description

BR Standard unconditional branch

BRD Delayed unconditional branch

Bcond Standard conditional branch

BcondD Delayed conditional branch

Dbcond Decrement and standard conditional branch

DBcondD Decrement and delayed conditional branch

CALL Call subroutine (unconditional)

CALL cond Call subroutine conditionally

RETS cond Return from subroutine conditionally

RETI cond Return from interrupt conditionally

Due to pipeline operation, the branch operation happens only after four machine cycles. In delayed 

branch, before branch instruction is being executed, three instructions after the delayed branch instruction 

are executed. The effect is a single cycle branch. In the case of decrement and branch instruction, the 

content of the specifi ed auxiliary register is decremented before the branch operation is performed.

The syntax of the branch/ call instructions are mnemonic src. The src operand is 24-bit unsigned 

integer, which is the new address to be loaded into the program counter (PC). If the src operand is 

expressed in register addressing mode, the contents of the specifi ed register are loaded into the PC. If 

the src operand is expressed in PC-relative addressing mode, the assembler generates a displacement. 

The displacement is label - (PC of branch instruction +1) for the conditional branch/call instructions. It 

is label - (PC of branch instruction +3) for the delayed conditional branch. The new PC value is the sum 

of the PC value of the branch/call instruction, the displacement plus one for conditional instructions and 

plus 3 for the delayed conditional instructions.
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Example 8.35 BR 8900h—This is an unconditional branch instruction. When this instruction is 

executed, the current content of program counter (PC) is pushed to the stack and 

the new integer value given in the instruction (8900) is loaded into PC.

 Before execution   After execution

 PC  00001000     PC  00008900

Example 8.36 BNZD 36h—This branch instruction is executed, if the condition specifi ed in the 

instruction is true. Since this is a delayed branch instruction the three instructions 

after the delayed branch instruction are fetched before the PC is modifi ed. The displacement for this 

instruction is 39h (36+3). This will be added with the current content of PC.

 Before execution   After execution

 PC   001000     PC   001039

 Z Flag bit Z = 0   Z = 0

Repeat Instructions The ¢C3X processors support two repeat instructions to support zero-overhead 

looping.

RPTB – Repeat a block of code

RPTS – Repeat a single instruction

These two instructions are four-cycle instructions; these four cycles are needed only in the initial 

execution of the loop and all subsequent executions of the loop have no overhead.

There are three memory-mapped registers, RS - Repeat start address register, RE - Repeat end address 

register, RC - Repeat counter register and Two fl ag bits RM bit and S bit, used for the repeat operations. 

The RS register holds the address of the fi rst instruction of the block of code to be repeated and RE 

holds the last address. The RC register contains a value one less than the number of times the block to 

be repeated. For single repeat instruction both RS and RE will have the same value of the address of the 

instruction to be repeated.

The repeat mode fl ag bit (RM), which is present in the status register (ST), specifi es whether the 

processor is running in the repeat mode. The S bit is internal to the processor and cannot be programmed 

but this bit is necessary to describe the single instruction repeat operation. If the RM fl ag bit is set, it 

specifi es the repetitions of a black of code. If both RM bit and S bit are set, it indicates single instruction 

repeat operation. The maximum number of repetitions that is possible in ¢C3X processor is 8000 000 

lh times.

8.4.9 Low-power Control Instructions

The low-power control instruction group consists of four instructions that can be used for low-power 

modes. The low-power instructions and its description are given in Table 8.15.

Table 8.15

Instruction Description

IDLE Idle until interrupt

IDLE2 Low-power idle

LOPOWER Divide the clock by 16

MAXSPEED Restore clock to regular speed
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The IDLE instruction stops the CPU operations until an interrupt is received. The global interrupt bit 

is set. The IDLE2 instruction serves the same function as IDLE, but it removes the functional clock input 

from the internal devices. When LOPOWER instruction is used, the processor continues the execution 

of instructions at the reduced clock rate. The input clock rate is divided by 16 times. For MAXSPEED, 

it exits the LOPOWER power down mode and starts the execution with full speed.

APPENDIX 8 

INSTRUCTION SET SUMMARY—FUNCTIONAL GROUPS

A8.1 Load, Store, Push and Pop Instructions

Mnemonic  Description

LDE Load fl oating-point exponent

LDF Load fl oating-point value

LDF cond Load fl oating-point value conditionally

LDI Load integer

LDI cond Load integer conditionally

LDM Load fl oating-point mantissa

LDP Load data page pointer 

STF Store fl oating-point value

STI Store integer

POP Pop integer from stack

POPF Pop fl oating-point value from stack

PUSH Push integer on stack

PUSHF Push fl oating-point value on stack

A8.2 Two-operand Instructions

Mnemonic  Description

ABSF Absolute value of a fl oating-point number

ABSI Absolute value of an integer

ADDC Add integers with carry

ADDF Add fl oating-point values

ADDI Add integers ROL Rotate left

AND Bitwise-logical AND

ANDN Bitwise-logical AND with complement

ASH Arithmetic shift

CMPF Compare fl oating-point values

CMPI Compare integers

FIX Convert fl oating-point value to integer

FLOAT Convert integer to fl oating-point value

LSH Logical shift

MPYF Multiply fl oating-point values

MPYI Multiply integers
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NEGB Negate integer with borrow

NEGF Negate fl oating-point value

NEGI Negate integer

NORM Normalize fl oating-point value

NOT Bitwise-logical complement

OR Bitwise-logical OR

RND Round fl oating-point value

ROLC Rotate left through carry

ROR Rotate right

RORC Rotate right through carry

SUBB Subtract integers with borrow

SUBC Subtract integers conditionally

SUBF Subtract fl oating-point values

SUBI Subtract integer

SUBRB Subtract reverse integer with borrow

SUBRF Subtract reverse fl oating-point value

SUBRI Subtract reverse integer

TSTB Test bit fi elds

XOR Bitwise-exclusive OR

A8.3 Three-operand Instructions

Mnemonic  Description

ADDC3 Add with carry

ADDF3 Add fl oating-point values

ADDI3 Add integers

AND3 Bitwise-logical AND

ANDN3 Bitwise-logical AND with complement

ASH3 Arithmetic shift

CMPF3 Compare fl oating-point values

CMPI3 Compare integers

LSH3 Logical shift

MPYF3 Multiply fl oating-point values

MPYI3 Multiply integers

OR3 Bitwise-logical OR

SUBB3 Subtract integers with borrow

SUBF3 Subtract fl oating-point values

SUBI3 Subtract integers

TSTB3 Test bit fi elds

X0R3 Bitwise-exclusive OR

A8.4 Program Control Instructions

Mnemonic  Description

B cond Branch conditionally (standard)

B condD Branch conditionally (delayed)
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BR Branch unconditionally (standard)

BRD Branch unconditionally (delayed)

CALL Call subroutine

CALL cond Call subroutine conditionally

DB cond Decrement and branch conditionally(standard)

DB condD Decrement and branch conditionally(delayed)

IACK Interrupt acknowledge

IDLE Idle until interrupt

NOP No operation

RETI cond Return from interrupt conditionally

RETS cond Return from subroutine conditionally

RPTB Repeat block of instructions

RPTS Repeat single instruction

SWI Software interrupt

TRAP cond Trap conditionally

A8.5 Low-power Control Instructions

Mnemonic  Description

IDLE2 Low-power idle

LOPOWER Divide clock by 16

MAXSPEED Restore clock to regular speed

A8.6 Interlocked Operations Instructions

Mnemonic  Description

LDFI Load fl oating-point value, interlocked

LDII Load integer, interlocked

SIGI Signal, interlocked

STFI Store fl oating-point value, interlocked

STII Store integer, interlocked 

A8.7 Parallel Instructions

(a) Parallel Arithmetic with Store Instructions

Mnemonic  Description

ABSF || STF Absolute value of a fl oating point

ABSI || STI Absolute value of an integer

ADDF3 || STF Add fl oating-point value (3 operand)

ADDI3 || STI Add integer (3 operand)

AND3 || STI Bitwise-logical AND (3 operand)

ASH3 || STI Arithmetic shift (3 operand)

FIX || STI Convert fl oating-point value to integer

FLOAT || STF Convert integer to fl oating-point value

LDF || STF Load fl oating-point value

LDI || STI Load integer

LSH3 || STI Logical shift
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MPYF3 || STF Multiply fl oating-point value

MPYI3 || STI Multiply integer

NEGF || STF Negate fl oating-point value

NEGI || STI Negate integer

NOT || STI Complement

OR3 || STI Bitwise-logical OR

STF || STF Store fl oating-point value

STI || STI Store integer

SUBF3 || STF Subtract fl oating-point value

SUBI3 || STI Subtract integer

X0R3 || STI Bitwise-exclusive OR

(b) Parallel Load Instructions

Mnemonic  Description

LDF || LDF Load fl oating-point value

LDI || LDI Load integer

(c) Parallel Multiply and Add/Subtract Instructions

Mnemonic  Description

MPYF3 || ADDF3 Multiply and add fl oating-point value

MPYF3 || SUBF3 Multiply and subtract fl oating-point value

MPYI3 || ADDI3 Multiply and add integer

MPYI3 || SUBI3 Multiply and subtract integer

INSTRUCTION SET SUMMARY—ALPHABETICAL ORDER

Mnemonic  Description

ABSF Absolute value of a fl oating-point number

ABSI Absolute value of an integer

ADDC Add integers with carry

ADDC3 Add integers with carry

ADDF Add fl oating-point values

ADDF3 Add fl oating-point values

ADDI Add integers

ADDI3 Add integers

AND Bitwise-logical AND

AND3 Bitwise-logical AND (3-operand)

ANDN Bitwise-logical AND with complement

ANDN3 Bitwise-logical ANDN (3-operand)

ASH Arithmetic shift

ASH3 Arithmetic shift (3-operand)

B cond Branch conditionally (standard)

B condD Branch conditionally (delayed)

BR Branch unconditionally (standard)

BRD Branch unconditionally (delayed)
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CALL Call subroutine

CALL cond Call subroutine conditionally

CMPF Compare fl oating-point values

CMPF3 Compare fl oating-point values (3-operand)

CMPI Compare integers

CMPI3 Compare integers (3-operand)

DB cond Decrement and branch conditionally (standard)

DB condD Decrement and branch conditionally (delayed)

FIX Convert fl oating-point value to integer

Mnemonic  Description

FLOAT Convert integer to fl oating-point value

IACK Interrupt acknowledge

IACK Toggled low, then high

IDLE Idle until interrupt

IDLE2 Low-power idle

LDE Load fl oating-point exponent

LDF Load fl oating-point value

LDF cond Load fl oating-point value conditionally

LDFI Load fl oating-point value, interlocked

LDI Load integer

LDI cond Load integer conditionally

LDII Load integer, interlocked

LDM Load fl oating-point mantissa

LDP Load data page pointer

LOPOWER Divide clock by 16

LSH Logical shift If count

LSH3 Logical shift (3-operand)

MAXSPEED Restore clock to regular speed

MPYF Multiply fl oating-point values

MPYF3 Multiply fl oating-point value (3-operand)

MPYI Multiply integers

MPYI3 Multiply integers (3-operand)

NEGB Negate integer with borrow

NEGF Negate fl oating-point value

NEGI Negate integer

NOP No operation

NORM Normalize fl oating-point value Normalize

NOT Bitwise-logical complement

OR Bitwise-logical OR Dreg

OR3 Bitwise-logical OR (3-operand)

POP Pop integer from stack

POPF Pop fl oating-point value from stack

PUSH Push integer on stack
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PUSHF Push fl oating-point value on stack

RETI cond Return from interrupt conditionally

RETS cond Return from subroutine conditionally

RND Round fl oating-point value round

ROL Rotate left dreg rotated left 1 bit

ROLC Rotate left through carry

ROR Rotate right dreg rotated right

RORC Rotate right through carry

RPTB Repeat block of instructions

RPTS Repeat single instruction

SIGI Signal, interlocked

STF Store fl oating-point value

STFI Store fl oating-point value, interlocked

STI Store integer

STII Store integer, interlocked

SUBB Subtract integers with borrow

SUBB3 Subtract integers with borrow (3-operand)

SUBC Subtract integers conditionally

SUBF Subtract fl oating-point values

SUBF3 Subtract fl oating-point values (3-operand)

SUBI Subtract integers

SUBI3 Subtract integers (3-operand)

SUBRB Subtract reverse integer with borrow

SUBRF Subtract reverse fl oating-point value

SUBRI Subtract reverse integer

SWI Software interrupt

TRAP cond Trap conditionally

TSTB Test bit fi elds

TSTB3 Test bit fi elds (3-operand)

XOR Bitwise-exclusive OR

XOR3 Bitwise-exclusive OR (3-operand)

Review Questions 

8.1 List the various data formats available in ‘C3X 

processor.

8.2 What are all the various addressing modes available 

in ‘C3X processor?

8.3 Explain how the address of the operand is computed 

in direct addressing mode?

8.4 In indirect addressing mode, what is use of 

displacement fi eld?

8.5 In indirect addressing mode, what all are the 

various ways you can modify AR?

8.6 Explain what all are the registers to be programmed 

for circular addressing?

8.7 Explain, how bit reversed addressing is useful for 

the computation of FFT?

8.8 List the group of addressing modes in ‘C3X 

processor.

8.9 Explain the various conditional branch instructions 

available in ‘C3X processor.

8.10 Explain about three operand instructions and its 

functions



Addressing Modes and Assembly Language Instructions of ¢C3X  217

8.11 What is meant by interlocked operation? What is 

the use of this?

8.12 Explain parallel instructions. What are its advantage?

8.13 Explain the various registers that are to be 

programmed for block repeat operation.

8.14 Explain the various conditions that can be specifi ed 

in conditional instructions

8.15 Explain the various low power control instructions 

available in ‘C3X processor.

Self Test Questions 

8.1 The number of types of addressing modes in ‘C3X 

processor are

(a) 4 (b) 5 (c) 6 (d) 3

8.2 The number of assembly instructions in ‘C3X 

processor are

(a) 120 (b) 130 (c) 113 (d) 100

8.3 In short integer format the number of bits used to 

represent the operand are

(a) 8 (b) 16 (c) 24 (d) 32

8.4 In single precision and extended precision fl oating 

point format the exponent is of size

(a) 4 bits (b) 6 bits (c) 8 bits (d) 12 bits

8.5 The registers used in register addressing mode are

(a) AR0-AR7 (b) R0-R7 (c) IR0&IR1

8.6 The total memory space accessible by direct 

addressing mode of ‘C3X processor is

(a) 64 K (b) 256 K (c) 16 M (d) 8M

8.7 In direct addressing the number of bits of the 

instruction word used for address computation are

(a) 8 (b) 16 (c) 24 (d) 32

8.8 The symbol used to specify the direct addressing 

mode is

(a) *  (b) #

(c) @  (d) no symbol used

8.9 The registers used to specify the address of the 

operand in indirect addressing mode are

(a) R0-R7 (b) AR0-AR7 (c) ST, IE and IF

8.10 The number of bits of AR used to specify the 

operand address in indirect addressing mode are

(a) 16 (b) 8 (c) 24 (d) 32

8.11 In indirect addressing mode the possible maximum 

displacement of the address using (disp) fi eld is

(a) 4 (b) 32 (c) 256 (d) FFFFh

8.12 For bit reversed addressing mode of’C3X the index 

register used is

(a) IR0 (b) IR1 (c) both IR0 and IRl

8.13 In immediate addressing mode the operand value 

can be

(a) 16 bits (b) 24 bits (c) both 16 and 24 bits

8.14 The PC-relative addressing mode is used for

(a) direct memory access (b) indirect memory access

(c) for branch operation (d) for interrupt operation

8.15 In circular addressing mode the block size register 

(BK) specifi es

(a) the size of the buffer

(b) the starting address of the buffer

(c) the end address of the buffer

8.16 In circular addressing the maximum size of the 

circular buffer can be

(a) 32 (b) 16K (c) 24K (d) 64K

8.17 In circular addressing the registers to be 

programmed are

(a) BK and ARn  (b) BK and IRn  (c) ARn and IRn

8.18 Bit reversed addressing is used for

(a) FIR fi lters (b) FFT computation (c) IIR fi lters

8.19 In three operand instructions the destination 

operand (dst) is

(a) data memory location

(b) program memory location

(a) (c) registers R0-R7 (d) register AR0-AR7

8.20 The number of conditions available in conditional 

instructions are

(a) 10 (b) 4 (c) 20 (d) 8

8.21 The number of conditional fl ags in ST are

(a) 9 (b) 7 (c) 5 (d) 3

8.22 The number of machine cycles needed for the 

execution of branch, call and return instructions are

(a) 2 (b) 3 (c) 4 (d) 5

8.23 In repeat instructions, the maximum number of 

times the repetition is possible is

(a) 8000 0000h  (b) 8000 0001h  (c) FFFF FFFFh

8.24 The number of low-power control instructions in 

‘C3X processor are

(a) 2 (b) 3 (c) 4 (d) 5

8.25 In parallel operation instructions the type of 

addressing mode that can be used are

(a) direct and indirect (b) register and indirect

(c) register and direct



In this chapter, some application programs in TMS320C3X processors are given. To test these pro-

grams, assembly language programming tools and certain hardware accessories are needed. The pro-

gramming tools are used to write the ¢C3X assembly language programs and converted into machine 

language codes. The machine language codes are then loaded into the ¢C3X DSP using the hardware 

accessories. It is necessary to supply the real time signals to the DSP for processing. The real time 

signals, which are analog in nature are to be digitised and after processing the signal digitally in DSP, 

they have to be converted back to analog signals. So, along with DSP, a minimum number of devices are 

to be connected for real time signal processing. In this chapter application program development using 

the TI’s TMS320C3X starter kit is discussed.

TMS320C3X STARTER KIT (DSK) 9.1

9.1.1 Overview of TMS320C3X Starter Kit

The ¢C3X starter kit (DSK) is a low-cost, simple, high-performance stand-alone application develop ment 

board. The DSK has on-board, industry standard TMS320C31 fl oating-point processor. This allows us 

to verify ¢C3X codes with full speed and experiment real time signal processing. The block diagram of 

DSK is shown in Fig. 9.1. The 50 MHz system clock makes the instruction cycle time of ¢C31 as 40 

ns (25 MHz) and this allows execution of instructions upto 50 MFLOPS and 25 MIPS. A standard or 

enhanced parallel port interface is used to connect the DSK to host PC and through this interface, the 

communication is carried out between ¢C31 and PC.

The DSK has TLC320C40, an analog interface circuit (AIC). The AIC consists of variable rate analog-

to-digital converter (ADC) and a digital-to-analog converter (DAC) with 14-bit dynamic range 20,000 

samples per second. There are two standard RCA plug connectors, for analog input and outputs.

All the signals of ¢C3X are routed to expansion connectors. The expansion connectors include four 

32-pin headers, an 11-pin jumper block, and a 12-pin XDS510 header. This feature gives freedom to 

design new daughter boards, to create new software on a host PC and to run the software on the DSK 

board.

The software tool used for development of ¢C3X code, downloading and running it on the DSK board 

are the ¢C3X assembler and debugger. The debugger is windows oriented and this simplifi es the code 

development and debugging capabilities.

9
APPLICATION PROGRAMS

IN C3X
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I/O
Expansion
conector

Parallel
port
interface

XDS 510 port
MPSD port

TMS320C31-50

Control

D0-D31

A0-A23
Serial
port

JTAG
Emulation port

Analog in

Analog out

TLC320C40
A/C

Fig. 9.1 TMS320C3X starter kit block diagram

9.1.2 DSK Software Tools

The TMS320C3X starter kit uses the DSK assembler and debugger tools. These tools help to develop, 

test and refi ne the ¢C3X assembly language programs.

The assembler converts the assembly language codes into machine language codes. This assembler is 

different from other assemblers because it does not go through the linker phase to create the output fi le. 

The DSK uses special directives to assemble code at an absolute address during the assembly phase. The 

command to run the assembler is dsk3a [fi le name] [-options].

The debugger can load and execute source codes with single-step, with break points and can be run 

with halt capabilities. The command to invoke the debugger windows is dsk3d.

The debugger is used to download the machine language code generated by the assembler on an actual 

¢C3X DSP. The debugger is a window-oriented interface that reduces the need of complex commands 

and learning time. The list of the debugger commands and their descriptions is given in Appendix 

9A. There are four windows in the debugger display. They are disassembly window, regis ter window, 

command window and memory window. The debugger display is shown in the Fig. 9.2.

Fig. 9.2 C3X debugger display
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The disassembly window’s fi rst column consists of the on-chip memory address values, the sec ond 

column contains the op-codes of the assembly codes and the third column has the assembly source 

codes. The register window shows the latest values of the register fi le contents during the execution of 

the program. The command window is used to write the required commands for the proper operation of 

the debugger. The memory window is used to see the content of the on-chip memory.

9.1.3 Code Development in DSK

The text editors present in PC can be used to write the assembly source 

fi les. The name of the assembly fi le should have the fi le extension .asm. 

This is to indicate to the assembler that the input fi le is a valid assembly 

fi le. The syntax for writing the source code is as follows

[label] [:] mnemonic [operand list] [;comments]

Whatever guidelines are used to write assembly language program in 

TMS320C5X (Section 6.1.4.) are valid for ¢C3X. Once the development 

of assembly fi le is over, the assembler is invoked using the syntax

dsk3a [fi le name] [-options]

The assembler takes the assembly fi le as input fi le and creates 

an executable fi le with fi le 

extension .dsk. If there are any 

errors in the assembly language 

input fi le, the valid executable 

fi le will not be created. During 

the assembling process, status 

of the progress of the assembly 

is fl ashed through messages. These messages include the type of 

errors if any in the program. The software development fl ow is 

shown in Fig. 9.3.

After the successful assembly, the debugger is invoked using 

the command dsk3d. The executable fi le (.dsk) is now loaded 

into the target system (TMS320C31) and the execution of the 

program is carried out in the ¢C31 DSP.

9.1.4 DSK Memory Map

The target system, TMS320C31 DSP has two lK-32-bit word 

on-chip dual access memory. The executable fi les created by the 

assembler are loaded into the on-chip RAM. It is to be noted 

that the starting address of assembly language program is to be 

indicated in the beginning of the program using the assembler 

directive .start. The address that can be used for the source code 

is according to the memory DSK memory map shown in Fig. 

9.4. The user can use the on-chip address locations starting from 

809800h to 809F00h and the last 256 location of RAM block 1 

is used for the DSK kernel, interrupt, and trap tables. If the ap-

plication program source code is more than 2K in size, external 

memory space can be used.

Assembly
Language source

files
.asm

Assembler

Executable
files
.dsk

Debugger

DSK Target
system

TMS320C31

Fig. 9.3 DSK software 

development fl ow

Oh
FFFh
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400000h
7FFFFFh
800000h
807FFFh
808000h

8097FFh
809800h

809BFFh
809C00h

809F00h

809FC0h
809FC1h
809FFFh
80A000h

0X0BFFFFFH
0X0C00000H
0X0DEFFFFH
0X0E00000H

0X0EFFFFFH
0X0FFF000H

0X0FFFFFFH

Reserved for
loader operations

Boot 2

External
USER_BOOT

Boot 1

Reserved (32 k)

Peripheral bus
memory-mapped
register 5(6K

internal)

RAM block 0
(1K word)

RAM block 1
(1K word)

Kernal

Interrupt and trap
branches

External
USER_RAM

External
USER_IO

External HIP
(noninterlocking)

Boot 3

External HPI
(interlocking)

Fig. 9.4 C3X DSK memory map
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9.1.5 Assembler Directives

The assembler directives are used to supply data for the program and to control the assembly process. 

They assemble the code and data into specifi ed locations. The initialisation of memory space is carried out 

and they also reserve space for uninitialised variables. The basic assembler directives needed for writing 

the assembly programs are .start, .sect, .entry, .word, .fl oat and .end. The complete list of assembler 

directives used in ¢C3X programming is given in Appendix 9B. Program 9.1 gives an example which 

illustrates the basic format of the ¢C3X assembly language program.

Program 9.1  Example program for C3X assembler directives

Label Mnemonic Comments

 .start “ example”,

 0x809800 ;the starting address of the section example

  ;is 809800h (on-chip memory location)

 .sect “ example” ;assemble the code into the named section

a .word 1000h ;the integer 1000h is reserved for the variable a

b .fl oat 10.5 ;the fl oating-point value 10.5 is reserved

  ;for the variable b

 .entry ;initialise the program counter with start-

  ;ing address when the program is loaded into ;DSP

 LDI 10h, R0 ;the integer 10h is loaded into R0

 LDF 10.5, R1 ;the fl oating-point integer 10.5 is loaded

  ;into R1

 ADDI 20h, R2 ;the content of R2 is added with the given

  ;integer 20h and result is stored in R2

 .end ;program end

The .start assembler directive is used to specify the starting address for the section program (here the 

name of the section is example). For the ¢C3X starter kit on-chip RAM starting address is 0x809800h. 

.sect assembler directive assemble the source code into the named section. The assembler directives 

.word and .fl oat are used to initialise one or more integers and fl oating-point constants respectively, 

.entry assembler directive will end the assembler directive section and after this the ¢C3X processor 

source code will start. This assembler directive initialises the starting address of the pro gram counter 

when the assembled fi le is loaded into the DSP starter kit using the ¢C3X debugger. The assembler 

directive .end is to end the program section.

Program 9.2  Example program on immediate addressing mode in C3X

Label Mnemonic Comments

 .start “immediate”

 ,0x809800 ;the starting address of the section immedi-

  ;ate is 809800h (on-chip memory location)

 .sect “immediate” ;assemble the source code into the named

  ;section

 .entry ;initialise the program counter with start-
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  ;ing address when the program is loaded into

  ;DSP

 LDI 44h, R0 ;the integer operand 44h is loaded into R0

 LDI –10h, R1 ;the two’s complement value of 10h is loaded

  ;into R1

 ABSI –34.5, R4 ;the absolute value of the operand 34.5 is

  ;loaded into R4, the sign and the fractional

  ;value is discarded

 ADDI 10h, R0 ;the operand 10h is added with the content of

  ;R0 and the result of addition is stored in R0

 SUBI 10h, R0 ;the operand 10h is subtracted from the

  ;content of R0 and the result of subtraction

  ;is loaded into R0

 MPYI 10h, R0 ;the operand 10h is multiplied with the

  ;content of R0 and the result is stored in R0

 AND 55h, R0 ;the bit-by-bit and operation is performed

  ;with the content of R0 and the operand 55h and

  ;the result is stored in R0

 LDF 10.5, R2 ;the operand 10.5 is loaded into R2 in fl oat-

  ;ing-pointing format

 LDF -20.5, R3 ;the operand 20.5 is loaded into R3 with the

  ;sign-bit set

 ADDF 9.6, R2 ;the fl oating-point operand 9.6 is added with

  ;the content R2, result is stored back in R2

 SUBF 10.1, R2 ;the fl oating-point operand 10.1 is

  ;subtracted from the content of R2, the

  ;result is loaded back into R2

 MPYF 4.5, R2 ;the fl oating-point operand 4.5 is multi-

  ;plied with the register content R2, the result

  ;is stored back into R2

 LDI 10h, AR0 ;the operand 10h is loaded into the auxiliary

  ;register ARO

 LDI 20h, IR0 ;the operand 20h is loaded into the index

  ;register IR0

 LDI 40h, BK ;the operand 40h is loaded into blcck size

  ;register BK

 .end ;program end

EXAMPLE PROGRAMS FOR ADDRESSING MODES 9.2

9.2.1 Immediate Addressing Mode

The example in Program 9.2 illustrates some instructions which use the immediate operands. The 

operand can be given in the instruction itself as 16-bits or 24-bits immediate values (short integer or 

long integer). The immediate operand can be both integer and fl oating-point values. The immediate 

operands are loaded into all the registers in the register fi le. The extended precision register accepts both 

the integer and fl oating-point operands, whereas the other registers accept only the integer oper ands. 
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The negative numbers are represented in two’s complement format. The fi rst set of instructions are using 

integer operands for the various operations, the second set of instructions use fl oating point operands 

and the last set of instructions are to load the various registers in the register fi le. It is to be noted that for 

any of the integer operand instructions, the fl oating-point value is used, the fractional value is discarded 

and the integer value is used for the operation. If the integer operands are used for the fl oating-point 

operand instructions, the integer value is loaded in fl oating-point format.

9.2.2 Direct Addressing Mode

In direct addressing mode, to access a particular memory location, the page number is to be loaded fi rst in 

data page pointer (DP) and then the location in that particular page is to be given in the instruction word 

(LSB 16 bits). This is given as four hexadecimal numbers followed by the symbol after the mnemonic. 

The start and end values of the page location are 0000h and FFFFh respectively. The example given 

in Program 9.3 illustrates some instructions that uses direct addressing mode. The on-chip memory 

available in ¢C3X processor is only 2K in size and it is present in page 128 (80h). The CPU and peripheral 

memory-mapped registers are also present in this page. To access on-chip memory and the memory-

mapped registers it is enough to load 80h in DP.

To load the data page value in DP, LDP instruction is used. Followed by the symbol @ 24-bit 

information (6 hexadecimal integers) is provided. Out of this, the 8 MSB are used to indicate the page 

number. These 8 MSB are loaded into DP during the execution. The load, store, arithmetic and logic 

instructions in direct addressing mode are also given in Program 9.3.

Program 9.3  Example program on direct addressing mode in C3X

Label Mnemonic Comments

 .start “direct”, ;the starting address of the section

 0x809850 ;immediate is ;809850h (on-chip memory

  ;location)

 .sect “direct”

 .entry

 LDI 10h, R0

 LDI 05h, R1

 LDI 12h, R3

 LDF 10.5, R2

 LDP @800000h ;the page 128 (80h) is loaded into data page

  ;pointer, the 8 MSB of the value given after

  ;the symbol @ is used to indicate the page

  ;number

 STI R0,@9900h ;the integer operand available in R0 is

  ;stored into the location 9900h of page 80h

 LDI @9905h, R7 ;the integer operand available in location

  ;9905h of data page 80h is loaded into R7

 ADDI @9910h, R0 ;the integer operand present in location

  ;9910h of data page 80h is added with the

  ;content of R0, the result of addition is

  ;stored in R0
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 ASH @9901h, R3 ;the content of R3 is shifted by the number

  ;of times the absolute value of integer in the

  ;location 9901h of data page 80h. If the data

  ;content is greater than 0, the register

  ;content R3 is left shifted and it is right

  ;shifted, if the data content is less than

  ;zero. When left shifted, the LSBs are zero

  ;fi lled and for right shift the MSBs are sign extended

 OR @9900h, R2 ;the bit wise logical 0R is performed between

  ;the content of data memory location 9900h of

  ;data page 80h and the content of R2

 SUBI @9900h, R3 ;the integer operand present in location

  ;9900h of data page 80h is subtracted from the

  ;register content of R3 and the result is

  ;stored in R3

 MPYI @9910h, R0 ;the integer operand present in the location

  ;9910h of data page 80h is multiplied with the

  ;content of R0 and the result is stored in R0

 STF R2,@9902h ;the fl oating-point operand present in R2 is

  ;stored into the data memory location 9902h

  ;of data page 80h

 LDF @9902h, R6 ;the fl oating-point operand present in the

  ;data memory location 9902h of data page 80h

  ;is loaded into R6

 ADDF @9902h, R2 ;the fl oating-point operand present in the

  ;data memory location 9902h of data page 80h

  ;is added to the content of register R2 and the

  ;result is stored in R2

 SUBF @9902h, R2 ;the fl oating-point operand present in the

  ;data memory location 9902h of data page 80h

  ;is subtracted from the content of R2 and the

  ;result is stored in R2

 MPYF @9902h, R2 ;the fl oating-point operand present in the

  ;data memory location 9902h of data page 80h

  ;is multiplied with the content of R2 and the

  ;result is stored in R2

 .end

9.2.3 Register Addressing Mode

The ¢C3X processor CPU has eight extended precession registers R0-R7. These registers are used for the 

various fi xed-point and fl oating-point operations. In this addressing mode the operations are per formed 

with the content of these eight registers. These registers accept fi xed-point and fl oating-point operands. 

The example given in Program 9.4 illustrates some instructions which use the register-addressing mode. 

It is to be noted that the register-addressing mode supports three operand instruc tions. The two different 

operands in two different registers can be used for the arithmetic and logic operations. The three-operand 

instructions are valid for both fi xed-point and fl oating-point operands.
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Program 9.4  Example program on register addressing mode in C3X

Label Mnemonic Comments

 .start “register”, ;the starting address of the section register

 0x809800 ;is 809800h

 .sect “register”

 .entry

 LDI 10h, R1

 LDI 20h, R2

 LDF 10.5, R4

 LDF 20.5, R5

 LDI R1, R0 ;fi xed-point operand present in R1 is loaded

  ;into R0

 LDF R4, R3 ;the fl oating-point operand present in R4 is

  ;loaded into R3

 ADDI R1, R2 ;the fi xed-point content present in R1 is

  ;added with the content of R2 and the result is

  ;stored in R2

 ADDI3 R1, R2, R0 ;the fi xed-point contents present in R1 and R2

  ;are added and the result is stored in R0

 MPYI R1, R2 ;the fi xed-point operand present in R1 is

  ;multiplied with the content R2 and the result

  ;is stored in R2

 MPYI3 R1, R2, R2 ;the fi xed-point operands present in R1 and R2

  ;are multiplied and the result is stored in R2

 SUBF R5, R4 ;the fl oating-point operand present in R5 is

  ;subtracted from the content of R4 and the

  ;result is stored in R4

 SUBF3 R5, R4, R5 ;the fl oating-point operand present in R5 is

  ;subtracted from the content of R4 and the

  ;result is stored in R5

 MPYF R4, R5 ;the fl oating-point operand present in R4 is

  ;multiplied with the content of R5 and the

  ;result is stored in R5

 .end

9.2.4 Indirect Addressing Mode

In indirect addressing mode the address of the operand is stored in some temporary registers. In ¢C3X 

processors there are two dedicated auxiliary register arithmetic units (AR0 & ARl) with eight auxiliary 

registers for this addressing mode. This facilitates the processor to generate two data addresses simul-

taneously. In indirect addressing mode of ¢C3X, the AR having address for that instruction is specifi ed 

in that instruction itself. It also supports the pre- or postdisplacement of eight bits (256 locations) for the 

address, in the instruction itself using (disp) displacement fi eld. There are two index registers IR0 and 

IR1. They support the address displacement more than 256 locations and this is called index-addressing 

mode. The content of index register IR0 alone is used for bit reversed addressing mode.
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In indirect addressing mode assembly code syntax, the +/– symbol that comes before the ARn 

value indicates the predisplacement add/subtract for the address value of the operand. If the symbol 

++/–– is present before ARn value, then it is predisplacement add/subtract for the address value of the 

operand and also the content of AR used in that instruction is modifi ed (add/subtract) by the displace-

ment value. The symbol ++/–– after the ARn value indicates that postdisplacement, the address of the 

operand is content of AR used in the instruction and the content of AR is modifi ed (add/subtract) by the 

displacement value. If the index register is used in the displacement fi led, the content of index register is 

used for pre- and postdisplacement for the address of the operand and the content of the AR. The indirect 

addressing mode supports three operand instructions, in which two source operands can be specifi ed 

with indirect addressing mode and the destination must be a register (R0-R7). It is important to note that 

the displacement that can be given in three operand instructions using indirect addressing mode is only 

0 and 1. An example on the use of indirect addressing mode is given in Program 9.5.

Program 9.5  Example program on indirect addressing mode in C3X

Label Mnemonic Comments

 .start “indirect”,

 0x809800

 .sect “indirect”

 .entry

 LDI 10h, R0

 LDI 20h, R1

 LDF 10.5, R2

 LDF 20.5, R3

a .word 809900h ;variable ‘a’ is assigned the address value

  ;809900h

 LDI @a,AR0 ;value assigned to the variable ‘a’ is loaded

  ;into auxiliary register AR0

 STI R0,*AR0 ;integer value in R0 is stored into data

  ;memory pointed by auxiliary register AR0.

  ;(809900h)

 STI R1, *+AR0(5) ;the integer content of R1 is stored into the

  ;data address location, which is sum of the

  ;content of AR0 and the displacement (here it

  ;is 5), i.e., 809905h

b .word 809915h ;variable ‘b’ is assigned data address value

  ;809915h

 LDI @b, AR2 ;the value assigned to the variable ‘b’ is

  ;loaded into the auxiliary register AR2,

  ;i.e., the address 809915h

 STF R2, *AR2 ;fl oating-point value in R2 is stored into

  ;data memory address pointed by auxiliary

  ;register AR2

 STF R3, *–AR2(5)  ;fl oating-pcint value in R3 is stored into

  ;the data memory address (which is the dis-



Application Programs in C3X  227

  ;placement value subtracted from the content

  ;of auxiliary register AR2, i.e., 809910h)

 ADDI *++AR0(5), R7 ;the integer content present in data memory

  ;address location (which is sum of AR0

  ;content and the displacement (5)) is added

  ;with content of R7. The result is stored in

  ;R7 and the content of auxiliary register is

  ;incremented by the displacement value given

  ;in the instruction

 ADDF *-AR2(5), R6 ;the fl oating-point operand present in data

  ;memory address location (which is the

  ;displacement value (5) subtracted from the

  ;content of AR2) is added to the content of

  ;R6. The result is stored in R6 and the

  ;content of AR2 is decremented by the

  ;displacement value given in the instruction

 SUBI *AR0-(5), R5 ;the integer operand in the data memory

  ;address location, whose value is the content

  ;of AR0 is subtracted from the content of R5.

  ;The result is stored in R5 and the content of

  ;AR0 is decremented by the displacement

  ;value (5) given in the instruction

 ADDI3 *AR0++(2),

 *AR2 - (3), R7  ;the integer operands in data

  ;memory locations pointed by AR0 and AR2 are

  ;added. The result is stored in R7. The

  ;content of AR0 is incremented and AR2 is

  ;decremented by the value of displacement

  ;given in the instruction respectively

ir0 .word 05h ;the variable ir0 is assigned the integer

  ;value 5h

 LDI @IR0, IR0 ;integer value 5h is loaded into index register IR0

 SUBF *AR2-(IR0), R4  ;fl oating-point operand present in data

  ;memory location pointed by auxiliary 

  ;register AR2 is subtracted from the content

  ;of R4. The result is stored in R4 and the

  ;content of index register IR0 is subtracted

  ;from the content of AR2 and the result is

  ;stored in AR2 as new address

 MPYI *AR0++(5),R7 ;integer content present in data memory

  ;location pointed by auxiliary register AR0

  ;is multiplied with the content of R7. Result

  ;is stored in R7 and content of AR0 is

  ;incremented by the value of displacement (5)

  ;given in the instruction

ir1 .word 10h ;the variable ir1 is assigned the value 10h
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 LDI @IR1,IR1 ;integer value 10h is loaded into index

  ;register ir1

 MPYF *AR2++(IR1),R6 ;the fl oating-point content of data memory

  ;location pointed by auxiliary register AR2

  ;is multiplied with the content of R6. The

  ;result is stored in R6 and the content of

  ;index register is added with content in AR2

  ;and the result is stored in AR2

 .end

9.2.5 Circular Addressing Mode

In circular addressing mode, the size of the block is to be loaded into the block size register (BK). A 

data memory address value between start and end address of the block is to be loaded into the AR which 

is being used for circular addressing. The continuous incrementing of the address value in AR can be 

performed by some instruction. Once the address value in AR reaches the address value of the end of 

the block, the start address value is automatically loaded into the AR. The same way decrementing 

the address will tend to load the end address of the block in AR once the start address of the block is 

encountered. Program 9.6 gives an example which illustrates the circular addressing mode. The block 

considered in this example has 6h locations. This is loaded into the register BK and the start address 

of the block 809900h is loaded into the auxiliary register AR0. The value of AR0 is incremented in the 

ADDI instruction and once the address in AR0 exceeds 809905h, the content AR0 is loaded with the 

start address 809900h. In the same way, while decrementing the address in AR0, when it exceeds the 

start address value 809900h, the end address is loaded into AR0.

Program 9.6  Example program on circular addressing mode in C3X

 .start “circular”,

 0x809800

 .sect “circular”

 .entry

bk .word 6h ;the variable ‘bk’ is assigned the integer 6h

 LDI @BK, BK ;the block size register BK is loaded the value

  of the block size (6h)

a .word 809900h ;the variable ‘a’ is assigned the integer

  809900h, the data memory address value

 LDI @a, AR0 ;data memory address value is loaded into

  auxiliary register AR0, this is the start

  address of the block

 LDI 10h, R0

 LDI 20h, R1 ;the operand address new AR0 value

 ADDI *AR0++(2)%, R2 ;809900h  809902h

 ADDI *AR0++(2)%, R3 ;809902h  809904h

 ADDI *AR0++(2)%, R4 ;809904h  809900h

 ADDI *AR0++(2)%, R5 ;809900h  809902h
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 ADDI *AR0—(2)%, R6 ;809902h  809900h

 SUBI *AR0— (1)%, R7 ;809900h  809905h

 .end

9.2.6 Parallel Instructions

The ¢C3X processor architecture has four buses in CPU (CPU1, CPU2, REG1 and REG2 buses) and 

two address generation units (ARU1 and ARU2). This facilitates the CPU to get four operands and can 

perform two operations in parallel in CPU. Program 9.7 gives an example which illustrates some of the 

instructions that can be executed in parallel in ¢C3X processors. In parallel instructions, only register 

and indirect addressing modes are used. The three-operand instructions can be used in parallel instruc-

tions. If only one three-operand instruction is used all the eight extended precision registers (R0-R7) 

can be used for destination. If two three-operand instructions are used there will be four source operands 

and two destination operands. Out of the four source operands, two of them can be register addressed 

and two of them can be indirect addressed. As far as the two destination operands are concerned, for the 

fi rst three-operand instruction only registers R0 and R1 can be used and for the second three-operand 

instruction only registers R2 and R3 can be used.

Program 9.7  Example program on parallel instructions in C3X

 .start “parallel”,

 0x809800

 .sect “parallel”

 .entry

 Ldi 10h, r1

 Ldi 10h, r2

 Ldf 10.5, r4

 Ldf 20.5, r5

a .word 809900h ;variable ‘a’ is assigned integer value 809900h

 Ldi @a, ar0 ;auxiliary register AR0 is loaded the data 

  memory address value 809900h

b .word 809905h ;variable ‘b’ is assigned integer value 809905h

 Ldi @b, ar1 ;the auxiliary register AR1 is loaded the

  data memory address value 809905h

 Sti r0, *ar0++

 || sti r1, *ar1++ ;the integer content in R0 and R1 is stored into the 

  data memory location pointed by auxiliary register 

  AR0 and AR1 respec tively. The content of AR0 and AR1 

  is incremented by the value of displacement (since 

  the displacement value is not given the default value 

  (1) will be taken for the increment of data memory 

  address)

 ldi *++ar0, r3
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 || ldi *-ar1, r6 ;the integer content present in the data memory 

  location (i.e. the content of AR0 added with the 

  displacement (here it is 1)) is loaded into the register 

  R3 and the content of ARO is incremented by the 

  value of displacement. By the same time the content 

  of data memory location (i.e. the displacement (here 

  it is 1) is subtracted from the content of AR1) is

  loaded into R6 and also the content of AR1 is 

  decremented by the value of displacement

 addi3 *ar0, r2, r3 ;the integer data present in the data memory

 || sti r4, *ar1 location pointed by auxiliary AR0 is added with the 

  content of R2 and the result is stored in R3. By the 

  same time, the content of R4 is stored in the data 

  memory address location pointed by AR1

 mpyf3 *ar1,r5,r6 ;the fl oating-point data present in the data memory

 || stf r2,*ar2++(1) location pointed by auxiliary register AR1 is

  multiplied with the register content of R5 and the 

  result is stored in R6. By the same time the

  fl oating-point operand present in R2 is stored into the 

  data memory location pointed by AR2 and the

  content of AR2 is incremented by displacement value

 subi3 r0, *ar1, r3 ;the integer content of R0 is subtracted from the 

 || sti r5, *ar1-(1) content of data memory location pointed by AR1 and 

  the result is stored in R3, by the same time the

  content of R5 is stored in the data memory location 

  pointed by AR1 and the content of AR1 is

  decremented  by the displacement value

 mpyi3 r1, r2, r0 ;the integer content present in R1 and R2 are

 || addi3 *ar1, *ar0, r3 multiplied, the result is stored in R0 and at the same 

  time the integer operands present in data memory 

  locations pointed by auxiliary register AR1 and AR0

  are added and the result is stored in R3

 .end

GENERATION AND FINDING THE SUM OF SERIES 9.3

The two examples given in Programs 9.8 and 9.9 illustrate the generation of some sequences and 

fi nding their sum. The number of values to be calculated in the sequence is assigned for the variable 

‘n’. This value can be loaded in any one of the extended precision registers R0-R7, used as counter 

and decremented. The sequence values generated are stored in the data memory; the starting address 

from which the sequence is to be stored is assigned to the variable ‘a’. Each time the sequence value is 

generated, the sum is calculated and accumulated. Once the generation of sequence for the given value 

of ‘n’ is completed, the accumulated sum is stored in the data memory.
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(a) Generation and fi nding the sum of series 1+2 + 3 + 4 + ... + n

Program 9.8  Example C3X program for sum of n integers

 .start “series”

 0x809900

 .sect “series”

n .word 10h ;the number of the sequence values to be

  ;computed is assigned for ‘n’

 .entry

a .word 809a00h ;the starting address from which the gener-

  ;ated sequence is to be stored is assigned

 LDI @a, AR0 ;the address is loaded into auxiliary

  ;register AR0

 LDI @n, R2 ;the number of sequence values is loaded

  ;in R2

loop ADDI 1h, R0 ;the integer 1h is added to R0

 ADDI3 R0, R1, R1 ;the new value of the sequence generated

  ;in R0 is added with the previous sum present

  ;in R1 and accumulated in R1 itself

 STI R0, *AR0++(1) ;the new value of the sequence generated

  ;in R0 is stored in the data memory location

  ;pointed by AR0 and the content of AR0 is

  ;incremented by one

 SUBI 1h, R2 ;the content of R2 is used as counter, it is

  ;decremented by one for each sequence value

  ;being generated, added and accumulated

 STI R1, *AR0 ;the sum of the sequence present in R1 is

  ;stored in data memory address location

  ;pointed by AR0

 .end

(b) Generation and fi nding sum of series 12 + 22 + 32 + 42 + 52 + ... + n2

Program 9.9  Example C3X program for sum of squares of n integers

 .start “series2”

 0x809800

 .sect “series2”

 .entry

n .word 10h

 .entry

a .word 809a00h

 LDI @a, AR0
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 LDI @n, R2

loop ADDI 1h, R0

 MPYI3 R0, R0, R1 ;the content of R0 is multiplied with the

  ;content of R0 and stored in R1, i.e. the

  ;square of the integer is computed

 ADDI3 Rl, R3, R3 ;the content of R1 (squared value) is added

  ;with the content of R3 and the result is

  ;stored in R3. This is done for fi nding the

  ;sum of the sequence

 STI R1, *AR0++(1) ;the sequence values present in R1 are stored

  ;in data memory location pointed by AR0 and

  ;the content of AR0 is incremented by a value one

 SUBI 1h, R2 BNZ loop

 STI R3, *AR0 ;the sum of the sequence values present in R3

  ;is stored in the address location pointed by AR0

 .end

(c) Fibonacci Series Generation

The generation of the Fibonacci series numbers is explained in the following example. The fi rst two 

numbers are assumed; the next number in the series is the sum of the previous two numbers. For example, 

x(0) = 0, x(1) = 1, then x(i) = x(i – 1) + x(i – 2) where i > 1. The initial two values of the sequence are 

assigned to the variables ‘b’ and ‘c’ and they are stored in two registers R0 and Rl respectively. The 

number of sequence values to be computed (n) and the data memory address (a) to store the computed 

sequence are stored in register R7 and AR0 respectively. The sequence value is computed in register 

R2 and it is stored in the data memory location pointed by AR0, each time the loop is executed. The 

instructions for generating the series are given in Program 9.10.

Program 9.10  C3X program for generation of Fibonacci series

 .start “series3”,

 0x809900

 .sect “series3”

n .word 8h

a .word 809950h

b .word 0h

c .word 1h

 .entry

 LDI @n, R7

 LDI @b, R0

 LDI @c, R1

 LDI @a, AR0

 STI R0, *AR0++

 STI R1, *AR0++
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loop ADDI3 R0, R1, R2

 STI R2, *AR0++

 LDI R1, R0

 LDI R2, R1

 SUBI 1h, R7

 BNZ loop

 .end

CONVOLUTION OF TWO SEQUENCES 9.4

In DSP applications, one of the operations, which is commonly used, is convolution. Programs 9.11 and 

9.12 give two examples which illustrate the method used for convolution of fi xed-point and fl oating-

point sequences. The assembly program steps for the both fi xed-point and fl oating-point convolution 

are same. The difference in fi xed-point and fl oating-point sequence convolution is that in fi xed-point 

convolution the fi xed-point assembly instructions are used and in fl oating point convolution the fl oating-

point assembly instructions are used.

The two sequences, which are to be convolved, are stored in on-chip memory location in different 

sectors (sectors x and y). The number of sequence values in these sectors is ‘n’ and ‘m’ respectively. The 

data memory address of one sequence is incremented and that of the other one is decremented for the 

convolution operation. The sequence which is incremented is not padded with zeros (n values), whereas 

the sequence which decrements for convolution is padded with zeros (m values). The number of zeros 

to be padded for the sequence having m values is n – 1 at the beginning and at the end.

The number of values in the resultant sequences is n + m – 1 values. The basic function needed for the 

convolution operation is multiply and accumulate. The ¢C3X processor supports three operand multi-

ply instruction. Using this instruction, two data sequence values from memory are fetched, multiplied 

and stored in registers R0–R7. The add instruction followed by the multiply instruction can be used 

for the convolution operation. For fi nding each convolution sum, the multiply and accumulate of the 

sequence values is to be repeated. The number of times it is to be repeated is ‘n’. The starting address 

of the two sequences and the starting address in which the convolved sequence is stored are stored in 

ARs. The number of sequence values in the convolved sequence and the number of times the multiply 

and accumulate operation is to be performed for each convolution sum are stored in extended preces-

sion registers.

(a) Convolution of Sequence (Integer Values)

Program 9.11  C3X program for convolution of two integer sequences

 .start “x”, 0x809900 ;starting address for segment ‘x’ is 809900h

  ;(on-chip memory location)

 .sect “x”

 .word 3h, 4h, 5h ;integer values of the sequence ‘x’ are

  ;stored from 809900h

 .start “y”, 0x809910 ;the starting address for segment ‘y’ is

  ;809910h

 .sect “y”



234  Digital Signal Processors

 .word 0h, 0h, 1h, 2h, 3h, 2h, 1h, 0h, 0h

  ;integer values of sequence ‘y’ are stored

  ;from address 809910h

 .start “convolution”, ;the starting address for the segment

 0x809800 ;‘convolution’ is 809800h

 .sect “convolution”

 .entry

xs .word 809900h ;staring address of the sequence ‘x’ is

  ;assigned to the variable xs

ye .word 809912h ;the end address of the sequence ‘y’ is

  ;assigned to the variable ye

zs .word 809950h ;the starting address in which the convolu-

  ;tion result is to be stored is assigned to

  ;variable zs

n .word 7h  ;the number of sequence values in the result-

  ;ant sequence is assigned to variable n

rpt .word 2h ;the number of times the multiply and accumu-

  ;late operation is to be repeated for each

  ;convolution sum is assign to the variable rpt

 LDI @ye, AR1 ;end address of sequence y is loaded in AR1

 LDI @zs, AR2 ;the start address from which the result of

  ;the convolved sequences to be stored is

  ;loaded in AR2

 LDI @n, R6 ;the number of sequence values in resultant

  ;sequence is loaded in R6

loop1 LDI @xs, AR0 ;start address of the sequence x is loaded in

  ;auxiliary register AR0

 LDI 0h, R1 ;the register content R1 is cleared

 LDI @rpt, RC ;the number of times the multiply and accumu-

  ;late operation is to be repeated is loaded

  ;into repeat counter register

 RPTB loop ;the block repeat operation starts, the

  ;block ‘loop’ is repeated until the repeat

  ;counter register decrements to zero

 MPYI3 *AR0++, ;the integer operands in data memory address

 *AR1-, R0 ;location pointed by AR0 and AR1 are multi-

  ;plied, stored in register R1, the content of

  ;AR0 is incremented and AR1 is decrement by

  ;one

 ADDI R0, R1 ;content of R0 is added with the content of R1

  ;and the result is stored in R1

loop NOP 

 STI R1, *AR2++ ;the convolution sum present in R1

 ADDI 4h, AR1 ;the integer 4h is added to the content AR1,

  ;this is done to point the next value of

  ;sequence ‘x’
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 SUBI 1h, R6 ;the content of R6 is decremented by one, this

  ;done each time one convolution sum is com-

  ;puted loaded into repeat counter register

 BNZ loop1 ;branch to label address loop1 if the content

  ;of R6 is not zero, if zero go to next instruc tion

 .end

(b) Convolution of Sequences (Floating-point Values)

Program 9.12  C3X program for convolution of 2 real number sequences

 .start “x”, 0x809900

 .sect “x”

 .fl oat 3.1, 4.1, 5.1 ;the fl oating-point value of the sequence

  ;‘x’ stored from the address 809900h

 .start “y”, 0x809910

 .sect “y”

 .fl oat 0.0, 0.0, 1.1, ;the fl oating-point sequence y’ is stored

 2.1, 3.1, 2.1, 1.1, 0.0, 0.0 ;from the address 809910h

 .start “convolution”,

 0x809800

 .sect “convolution”

 .entry

xs .word 809900h

ye .word 809912h

zs .word 809950h

n .word 7h

Rpt .word 2h

 LDI @ye, AR1

 LDI @zs, AR2

 LDI @n, R6

loop1 LDI @xs, AR0

 LDI 0h, R1

 LDI @rpt, RC

 RPTB loop

 MPYF3 *AR0++, *AR1-, R0 ;the fl oating-point operands in data memory

  ;address location pointed by AR0 and AR1 are 

  ;multiplied, stored in R1, the content of AR0

  ;is incremented and AR1 is the fl oating-point

  ;content in R0 is R1 and the result is stored in

  ;R1

 ADDF R0, R1

loop N0P

 STF R1, *AR2++ ;store the fl oating-point convolution sum in

  ;R1 into the data memory location pointed by

  ;AR2 and the content of AR2 is incremented by
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  ;one

 ADDI 4h, AR1

 SUBI 1h, R6

 BNZ loop1

 .end

PROCESSING REAL TIME SIGNALS WITH C3X KIT 9.5

The real time signals are commonly in analog form. For processing these signals, they are converted 

into digital signals and stored in memory. The processing of these real time digital samples is carried out 

in programmable DSPs. After processing, the digital signals are converted back to analog signals. This 

requires a analog to digital converter (A/D) and a digital to analog converter (D/A) which work either at 

same or different sampling and conversion rates respectively.

The C3X starter kit is provided with TLC320C40, an analog interface circuit IC (AIC), 14 bit, for 

audio applications. This programmable AIC has both A/D and D/A converters. The bandwidth of the IC 

is from 200 Hz to 19.2 kHz. The operation and programming of this AIC is given in Section 6.4.3.

This AIC is interfaced with the standard serial port of C3X and the clock signal needed for TLC320C40 

is generated from the on-chip timer of C3X processor. To have the real time signal to be stored in the 

on-chip memory of the DSP, the AIC initialisation routine is to be executed fi rst. The AIC initialisation 

routine consists of the following steps:

 (a) the on-chip timer initialisation

 (b) the on-chip serial port initialisation

 (c) the AIC reset

 (d) programming the control words of AIC

 (e) interrupt processing

In this section, fi rst the details of on-chip timer and serial port are discussed, and then programming 

details of AIC are given.

9.5.1 TMS320C3X On-chip Timer

The two on-chip timers present in C3X are 

programmable 32-bit timer. This timer is used to 

generate clock signals for the external devices 

such as A/D and D/A converters or it can generate 

interrupt signal for DMA transfer. The C3X timer 

can be operated in two signaling modes, one with 

the internal clock and the other with the external 

clock. Each timer has an I/O pin that can be 

programmed as an input clock to timer, an output 

clock signal, or a general purpose I/O pin.

The functional block diagram of the timer is 

shown in Fig. 9.5. The three memory-mapped 

registers present in each timer are used to determine 

the function. The three memory-mapped timer 

registers are global control register (GCR), period 

register (PR) and counter register (CR).

32
32

Period register
(31 – 0)

Counter
(32 bit)

Counter register
(31 – 0)

Comparator

Period = counter

INV TSTAT

Pulse generator

INV

External clock

External clock/2

Timer out

Fig. 9.5 The functional block diagram of the C3X timer
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The timer global control register determines the operating mode of the timer, monitors the timer 

status and controls the function of the I/O pin of the timer. The period register specifi es the timer’s 

signaling frequency. The counter register contains the current value of the incrementing counter. The 

on-chip memory address locations of the timer registers are given in Table 9.1. For the required mode 

of timer operation, the control word for the global control register, and for the required frequency, the 

count value of the period register are stored in the respective memory-mapped address locations.

Table 9.1 Memory-mapped address locations of timer registers

Register name On-chip memory address of Timer 0 On-chip memory address of Timer 1

Global control register 808020h 808030h

Timer counter register 808024h 808034h

Timer period register 808028h 808038h

9.5.2 Timer Global Control Register

The timer global control register is a 32-bit register that contains the global and port control bits for the 

timer. The bits 3–0 are the port control bits; bits 11–6 are the timer global control bits. Fig. 9.6 shows 

the format of timer global control register. The various bits of the timer global control register and its 

functions are given in Table 9.2. At reset all bits are set to 0 except the DATIN bit.

31 – 12 11 10 9 8 7 6 5 4 3 2 1 0

XX TSTAT INV
CLK
SRC

C/P HLD GO
DAT
IN

DAT
OUT

I/O FUNC

R R/W R/W R/W R/W R/W R R/W R/W R/W

XX

Fig.  9.6 Timer global control register

9.5.3 Timer Operation and Timer Modes

The timer can operate both for internal and external clock signals. Depending upon the timer output 

frequency, the divide ratio of the input clock is loaded into the timer period register. For each input 

clock pulse, the timer counter (32-bits) increments. The increment operation can be programmed for 

leading edge or the falling edge of the input clock. The counter register (32-bits) holds the current count 

value of the counter. The period register content and the counter register content are compared in the 

comparator. If the values are equal, an internal interrupt is generated, the pulse generator gener ates a 

pulse, the counter is reset and starts incrementing and this action is repeated. The pulse genera tor can 

generate two types of external clock signals, the pulse or the clock signal.

Table 9.2 Global control register bits and its functions

Bit Name Function

FUNC Function controls the function of TCLK

If FUNC = 0, TCLK is confi gured as a general-purpose digital I/O port

If FUNC = 1, TCLK is confi gured as a tinner pin

(Contd.)
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I/O
—

Input/output

If FUNC = 0 and CLKSRC = 0, TCLK is confi gured as a general-purpose I/O pin

If I/O = 0, TCLK is confi gured as a general-purpose input pin

If I/O = 1, TCLK is confi gured as a general-purpose output pin

DATOUT Data output

Drives TCLK when the ¢C3X is in I/O port mode. You can use DAT-OUT as an input to the timer

DATIN Data input on TCLK or DATOUT. A write has no effect

GO
—

Go resets and starts the timer counter

When GO = 1 and the timer is not held, the counter is zeroed and begins incrementing on the next 

rising edge of the timer input clock. The GO bit is cleared on the same rising edge

GO = 0 has no effect on the timer

HLD Counter hold signal

When this bit is 0, the counter is disabled and held in its current state. If the timer is driving TCLK, the 

state of TCLK is also held. The internal divide-by-2 counter is also held so that the counter can continue 

where it left off when HLD is set to 1. You can read and modify the timer registers while the timer is 

being held. RESET has priority over HLD. The effect of writing to GO and HOLD is shown below

GO HLD Result

 0  0  All timer operations are held. No reset is performed

 0  1  Timer proceeds from state before write

 1  0  All timer operations are held, including zeroing of the counter. The GO bit is not 

       cleared until the timer is taken out of hold

 1  1  Timer resets and starts

C/P
—

Clock/pulse mode control

When C/P = 1, clock mode is chosen, and the signaling of the TSTAT fl ag and external output has a 

50% duty cycle

When C/P = 0, the status fl ag and external output will be active for one H1 cycle during each timer 

period

CLKSRC Clock source. This bit specifi es the source of the timer clock When CLKSRC = 1, an internal clock 

with a frequency equal to one-half of the H1 frequency is used to increment the counter. The INV bit 

has no effect on the internal clock source

When CLKSRC = 0, you can use an external signal from the TCLK pin to increment the counter. The 

external clock is synchronised internally, thus allowing external asynchronous clock sources that do not 

exceed the specifi ed maximum allowable external clock frequency. This is less than f(H1)/2

INV Inverter control bit

If an external clock source is used and INV = 1, the external clock is inverted as it goes into the coun-

ter. If the output of the pulse generator is routed to TCLK and INV = 1, the output is inverted before 

it goes to TCLK.

If INV = 0, no inversion is performed on the input or output of the timer. The INV bit has no effect, 

regardless of its value, when TCLK is used in I/O port mode

TSTAT Timer status bit. This bit indicates the status of the timer. It tracks the output of the uninverted TCLK 

pin. This fl ag sets a CPU interrupt on a transition from 0 to 1. A write has no effect

Table 9.2 (Contd.)
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The timer can receive its input and send its output in several different modes, depending upon the 

setting of CLKSRC, FUNC and I/O
—

. The four timer modes of operation are defi ned in Table 9.3. The 

timer output frequency depends on the input frequency and the count value in the period register. The 

following equations can be used to calculate the output frequency of the timer either in clock mode or 

in pulse mode.

f(pulse mode) = f(timer input clock)/period register

f(clock mode) = f(timer input clock)/(2X period register)

Table 9.3 Timer modes

CLKSRC FUNC Timer mode

1 0 The timer input comes from the internal clock. The internal clock

is not affected by the INV bit in the global control register. In

this mode, TCLK is connected to the I/O port control, and

TCLK can be used as a general-purpose I/O pin

1 1 The timer input comes from the internal clock, and the timer

output goes to TCLK. This value can be inverted using INV,

and you can read in DATIN the value output on TCLK

0 0 The timer is driven according to the status of the I/O bit

If I/O = 0, the timer input comes from TCLK

If I/O = 1, TCLK is an output pin

0 1 TCLK drives the timer

If INV = 0, all 0-to-1 transitions of TCLK increment the counter

If INV = 1, all 1-to-0 transitions of TCLK increment the counter

9.5.4 Timer Initialisation

The on-chip timer can be used to generate clock signals for external devices. By programming the 

global control register, timer period register and timer counter register, the required frequency can be 

obtained from the timer output pin of the timer. In C3X starter kit the timer input is 25 MHz and it is 

from internal clock. The period register is prograrnmed to divide this input clock by a factor of two. The 

initialisation routine for the timer is given in Program 9.13. First the on-chip timer memory-map register 

address values and the timer period register count value are set to variables. Then the control word for 

the global control register and count value for the period register are loaded into respective registers 

using these memory-map address values.

Program 9.13  Initialisation routine for the C3X timer

Tgcr .set 0x808020 ;memory-map address value for the timer global

  ;control register

Tcount .set 0x808024 ;memory-map address value for the counter

  ;register

Tprd .set 0x808028 ;memory-map address value for the timer period

  ;register
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Tperiod .set 2 ;the count value for the period register

aic Ldp Tgcr ;the starting address of the memory-map regis-

  ;ter is loaded into data page pointer

 Ldi 0, R0 ;integer 0 is loaded into R0

 Sti R0, @Tgcr ;0 is stored into timer global control register

 Sti R0, @Tcount ;zero is stored into timer counter register

 Ldi Tperiod, R0 ;the count value (2) for the period register is

  ;loaded into period register

 Sti R0, @Tprd ;the count value is stored into period register

 Ldi 0x2C1, R0 ;the control word 2C1 for the global control

  ;register is loaded into R0

 Sti R0, @Tgcr ;the control word is stored into timer global

  ;control register

SERIAL PORT 9.6

The C3X processor has two independent bidirectional serial ports and they are identical. A set of eight 

control registers is available for each serial port. These registers are memory-mapped registers and they 

are global-control register, two control registers for the six serial I/O pins, three receive/transmit timer 

registers, data transmit register and data receive register. The serial port can be confi gured to transfer 

8, 16, 24, or 32 bits of data per word simultaneously in both-directions. The clock signal for each serial 

port can be fed internally, via the serial port timer or externally, via a supplied clock.

The global control register controls the global functions of the serial port and determines the serial-

port operating mode. Two port-control registers control the functions of the six serial-port pins. The 

transmit buffer contains the next complete word to be transmitted. The receive buffer contains the last 

complete word received. Three additional registers are associated with the transmit/receive sections of 

the serial-port timer. The operation of the serial port is discussed in detail in section 7.7.2. The memory-

mapped address values of the serial port registers are given in Table 9.4.

Table 9.4 Memory-mapped address values for serial port registers

Register name On-chip memory address

of Timer 0

On-chip memory

address of Timer 1

Serial port global control 808040h 808050h

FSX/DX/CLKX port control 808042h 808052h

FSR/DR/CLKR port control 808043h 808053h

R/X timer control 808044h 808054h

R/X timer counter 808045h 808055h

R/X timer period 808046h 808056h

Data transmit 808048h 808058h

Data receive 80804Ch 80805Ch
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9.6.1 Serial Port Global Control Register

The serial port global control register is a 32-bit register. It contains the global control bits for the serial 

port. The format of the global control register is shown in Fig. 9.7. The various bits and their functions 

are given in Table 9.5.

11 10

9 8 7 6 5 4 3 2 1 0

R

R/W

12131415161718192021

22232425262731-28

XXXX

R/W R/W R/W R/W R/W

RRESET XRESET RINT RTINT XINT XTINT

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

RLEN XLEN FSRP FSXP DRP DXP CLKRP CLKXP RFSM XFSM

R/W R/W R/W R/W R/W R/WR R R

RVAREN XVAREN
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SRCE

XCLX
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RSR
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XSR
EMPTY

FSX
OUT

XRDY RRDYHS

Fig. 9.7 Serial port global control register

Table 9.5 Bit Functions of Serial-port Global-control Register

Bit name Function

RRDY Receive ready fl ag. If RRDY = 1, the receive buffer has new data and is ready to be read. A three 

H1/H3 cycle delay occurs from the loading of DRR to RRDY = 1. The rising edge of this signal 

sets RINT. If RRDY = 0, the receive buffer does not have new data since the last read. RRDY = 0 

at reset and after the receive buffer is read

XRDY Transmit ready fl ag. If XRDY = 1, the transmit buffer has written the last bit of data to the shifter and 

is ready for a new word. A three H1/H3 cycle delay occurs from the loading of the transmit shifter 

until XRDY is set to 1. The rising edge of this signal sets XINT. If XRDY =0, the transmit buffer 

has not written the last bit of data to the transmit shifter and is not ready for a new word

FSXOUT Transmit frame sync confi guration

FSXOUT = 0 confi gures the FSX pin as an input

FSXOUT = 1 confi gures the FSX pin as an output

XSREMPTY Transmit-shift register empty fl ag

If XSREMPTY = 0, the transmit-shift register is empty

If XSREMPTY = 1, the transmit-shift register is not empty

Reset or XRESET causes this bit to = 0

RSRFULL Receive-shift register full fl ag

If RSRFULL = 1, an overrun of the receiver has occurred. In continuous mode, RSRFULL is set to 

1 when both RSR and DRR are full. In noncontinuous mode, RSRFULL is set to 1 when RSR and 

DRR are full and a new FSR is received. A read causes this bit to be set to 0. This bit can be set to 0 

only by a system reset, a serial-port receive reset (RRESET = 1) or a read. When the receiver tries 

to set RSRFULL to 1 at the same time that the global register is read, the receiver dominates, and 

RSRFULL is set to 1. If RSRFULL = 0, no overrun of the receiver has occurred

(Contd.)
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HS Handshake.

If HS = 1, the handshake mode is enabled.

If HS = 0, the handshake mode is disabled.

XCLK SRCE Transmit clock source

If XCLK SRCE = 1, the internal transmit clock is used

If XCLK SRCE = 0, the external transmit clock is used

RCLK SRCE Receive clock source

If RCLK SRCE = 1, the internal receive clock is used

If RCLK SRCE = 0, the external receive clock is used

XVAREN Transmit data rate mode. Specifi es a fi xed or variable data rate mode when transmitting. With a fi xed 

data rate, FSX is active for at least one XCLK cycle and then goes inactive before transmission 

begins. With variable data rate, FSX is active while all bits are being transmitted. When you use an 

external FSX and variable data rate signaling, the DX pin is driven by the transmitter when FSX is 

held active or when a word is being shifted out

RVAREN Receive data rate mode

Specifi es a fi xed or variable data rate mode when receiving. If RVAREN = 0 (fi xed data rate), FSX 

is active for at least one RCLK cycle and then goes inactive before reception begins. If RVAREN = 

1 (controlled data rate), FSX is active while all bits are being received

XFSM Transmit frame sync mode

Confi gures the port for continuous mode operation or standard mode operation. If XFSM = 1 

(continuous mode), only the fi rst word of a block generates a sync pulse, and the rest are transmitted 

continuously to the end of the block. If XFSM = 0 (standard mode), each word has an associated 

sync pulse

RFSM Receive frame sync mode

Confi gures the port for continuous mode operation or standard mode operation. If RFSM = 1 

(continuous mode), only the fi rst word of a block generates a sync pulse, and the rest are received 

continuously to the end of the block. If RFSM = 0 (standard mode), each word received has an 

associated sync pulse

CLKXP CLKX polarity. If CLKXP = 0, CLKX is active high

If CLKXP = 1, CLKX is active low.

CLKRP CLKR polarity. If CLKRP = 0, CLKR is active (high)

If CLKRP = 1, CLKR is active (low)

DXP DX polarity. If DXP = 0, DX is active (high)

If DXP = 1, DX is active (low)

DRP DR polarity. If DRP = 0, DR is active (high)

If DRP = 1, DR is active (low)

FSXP FSX polarity, if FSXP = 0, FSX is active (high)

If FSXP=1, FSX is active (low)

FSRP FSR polarity. If FSRP = 0, FSR is active (high)

If FSRP = 1, FSR is active (low)

(Contd.)
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XLEN Transmit word length. These two bits defi ne the word length of serial data transmitted. All data is 

assumed to be right justifi ed in the transmit buffer when fewer than 32 bits are specifi ed

0 0—8 bits

1 0—24 bits

0 1—16 bits

1 1—32 bits

RLEN Receive word length. These two bits defi ne the word length of serial data received. All data is 

right justifi ed in the receive buffer

0 0—8 bits

1 0—24 bits

0 1—16 bits

1 1—32 bits

XTINT Transmit timer interrupt enable

If XTINT = 0, the transmit timer interrupt is disabled

If XTINT = 1, the transmit timer interrupt is enabled

XINT Transmit interrupt enable

If XINT = 0, the transmit interrupt is disabled

If XINT = 1, the transmit interrupt is enabled

RTINT Receive timer interrupt enable

If RTINT = 0, the receive timer interrupt is disabled

If RTINT = 1, the receive timer interrupt is enabled

RINT Receive interrupt enable

If RINT = 0, the receive interrupt is disabled

If RINT = 1, the receive interrupt is enabled

XRESET Transmit reset. If XRESET = 0, the transmit side of the serial port is reset. To take the transmit side 

of the serial port out of reset, set XRESET to 1. Do not set XRESET to 1 until at least three cycles 

after RESET go inactive. This applies only to system reset. Setting XRESET to 0 does not change the 

contents of any of the serial-port control registers. It places the transmitter in a state corresponding 

to the beginning of a frame of data. Resetting the transmitter generates a transmit interrupt. Reset 

this bit during the time the mode of the transmitter is set. You can toggle XFSM without resetting 

the global control register

RRESET Receive reset. If RRESET = 0, the receive side of the serial port is reset. To take the receive side 

of the serial port out of reset, set RRESET to 1. Do not set RRESET to 1 until at least three cycles 

after RESET go inactive. This applies only to system reset. Setting RRESET to 0 does not change 

the contents of any of the serial-port control registers. It places the receiver in a state corresponding 

to the beginning of a frame of data. Reset this bit at the same time that the mode of the receiver is 

set. You can toggle without resetting the global control register

9.6.2 Serial Port Signal Control Register

The serial port needs frame synchronisation and clock signals for transmission and reception. These 

signals are FSX and FSR, CLKX and CLKR respectively. Similarly, there are two pins for data trans-

mission and reception, DX and DR respectively. The two port-control registers control the functions of 

these six pins. The format of these registers and functionality are the same; the difference is that one 

register controls the functions of transmission and the other controls the functions of reception. The 

Table 9.5 (Contd.)
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format of the port-control register is shown in Fig. 9.8. The bit name and its functionality are given in 

Table 9.6.
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DATIN
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Fig. 9.8 FSX/DX/CLKXport-control register

Table 9.6 Bit functions of FSX/DX/CLKX port-control register

Bit name Function

CLKX FUNC Clock transmit function. Controls the function of CLKX

If CLKX FUNC = 0, CLKX is confi gured as a general-purpose digital I/O port. If CLKX 

FUNC = 1, CLKX is confi gured as a serial-port pin

CLKX I/O Clock transmit input/output mode

If CLKX I/O = 0, CLKX is confi gured as a general-purpose input pin. If CLKX I/O = 1, 

CLKX is confi gured as a general-purpose output pin

CLKX DATOUT Clock transmit data output

Data output on CLKX when confi gured as general-purpose output

CLKX DATIN Clock transmit data input

Data input on CLKX when confi gured as general-purpose input

A write has no effect

DX FUNC DX function. DXFUNC controls the function of DX

If DXFUNC = 0, DX is confi gured as a general-purpose digital I/O port. If DXFUNC = 1,

DX is confi gured as a serial-port pin

DX I/O DX input/output mode

If DX I/O = 0, DX is confi gured as a general-purpose input pin

If DX I/O = 1, DX is confi gured as a general-purpose output pin

DX DATOUT DX data output. Data output on DX when confi gured as general-purpose output.

DX DATIN DX data input. Data input on DX when confi gured as general-purpose input. A write has 

no effect

FSX FUNC FSX function. Controls the function of FSX

If FSX FUNC = 0, FSX is confi gured as a general-purpose digital I/O port.

If FSX FUNC = 1, FSX is confi gured as a serial-port pin

FSX I/O FSX input/output mode

If FSX I/O = 0, FSX is confi gured as a general-purpose input pin

If FSX I/O = 1, FSX is confi gured as a general-purpose output pin

FSX DATOUT FSX data output. Data output on FSX when confi gured as general-purpose output

FSX DATIN FSX data input. Data input on FSX when confi gured as general-purpose input. A write 

has no effect
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9.6.3 Serial Port Initialisation

In the C3X starter kit, the TLC320C40 audio codec IC is connected to the serial port0 of C3X DSP. 

Through the serial port, the digital samples obtained from the AIC A/D converter are received; also after 

processing, the samples are transmitted to the D/A converter in the AIC. To have the serial communication 

between the AIC and the DSP, it is necessary to initialise the serial-port control regis ter. The routine 

used to initialise the serial-port global control register, FSX/DX/CLKX port control register and FSR/

DR/CLKR port control register is given in Program 9.14. The memory-mapped address values and the 

control word for the registers are assigned to some variables. Then the control words are loaded into the 

respective registers using the memory-mapped address.

Program 9.14  Program for initialisation of C3X serial port registers

Sgcr .set 0x808040 ;memory-map address value for the serial port

  ;global control register

Sxpctrl .set 0x808042 ;memory-map address value for the FSX/DX/CLKX

  ;port control register

Srpctrl .set 0x808043 ;memory-map address value for the FSR/DR/CLKR

  ;port control register

Sxdata .set 0x808048 ;memory-map address value for the data transmit

  ;register

Srdata .set 0x80804C ;memory-map address value for the data receive

  ;register

Sgcrval .word0x0E970300 ;the control word for serial port global

  ;control register

Sxpctrlval .word0x00000111 ;the control word

  ;for FSX/DX/CLKX port control register

Srpctrlval .word0x00000111 ;the control word for FSX/DX/CLKX port control

  ;register

ldi @Sxpctrlval, R0 ;the control word for FSX/DX/CLKX port

  ;control register is loaded into R0

sti R0,@Sxpctrl ;the control word is stored into FSX/DX/CLKX

  ;port control register

ldi @Srpctrlval, R0 ;the control word for FSR/DR/CLKR port control

  ;register is loaded into R0

sti R0,@Srpctrl ;the control word is stored into

  ;FSR/DR/CLKR port control register

ldi 0,R0 ;integer 0 is loaded into R0

sti R0,@Sxdata ;zero is stored into the data transmit

  ;register

ldi @Sgcrval, R0 ;the control word for the serial port control

  ;register is loaded into R0

sti R0, @Sgcr ;the control word is stored Into the serial

  ;port control register
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9.6.4 Analog Interface Circuit Programming

The AIC contains programmable registers such as TA register, RA register, TB register, RB register and 

AIC control register. The sampling rate for A/D converter, conversion rate to D/A converter and the 

various parameters of the AIC can be programmed by loading control word into these programma ble 

registers. The secondary communication protocol executed from the DSP to AIC will load the control 

words to AIC registers. The details of the various registers in AIC and the operation of AIC are discussed 

in Chapter 6 (Section 6.4.3). In this section the assembly code for resetting the AIC and programming 

the registers present in AIC are given for C3X processor.

AIC Reset The XF0 pin of DSP is connected to TLC320C40 AIC reset pin. The XF0 pin can be pro-

grammed as I/O pin through the I/O fl ag register. The XF0 pin is confi gured as output pin and zero volts 

is set at this pin for 64 machine cycles. This will reset the AIC; after reset the voltage in XF0 pin is made 

logic high. The assembly source code for the AIC reset operation is given in the following Program.

Label Mnemonic Comments

 ldi 0, R0 ;integer zero is loaded into R0

 sti R0, @Sxdata ;zero is stored into serial port data transmit

  ;register, i.e. the register content is cleared

 RPTS 0x040 ;repeat 65 times the following instruction

 LDI 2, I0F ;integer 2 is loaded into 1/0 fl ag register,

  ;this will reset the AIC

 RPTS 0x40 ;repeat 65 times the following instruction

 LDI 6, I0F ;integer 6 is loaded into I/0 fl ag register,

  ;this will allow AIC to run

Programming AIC Control Registers The sampling rate of A/D converter and the conversion rate of 

D/A converter are selected using the control words loaded into TA, RA, TB and RB register. The various 

programmable functions of the AIC are selected using the control word loaded into AIC control register. 

As discussed in Chapter 6 (Section 6.4.3), the various control words for these regis ters are computed. 

The AIC secondary communication protocol routine will load all these control words into their respec-

tive registers. The AIC routine for loading the control words from DSP to AIC registers is given in Pro-

gram 9.15 and it invokes the secondary communication protocol which is given in Program 9.16.

Program 9.15  Program for loding the control words in the AIC of C3X kit

Label Mnemonic Comments

Ta .set 9 ;TA register value

Tb .set 15 ;TB register value

Ra .set 9 ;RA register value

Rb .set 15 ;RB register value

TAcon .word (TA«9) + (RA«2)+0 ;control word for loading both TA

  ;and RA registers above the set value

TBcon .word (TB«9) + (RB«2)+2 ;control word for loading both TB

  ;and RB registers, above the set value
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AlCcon .word 11010111b ;control word for AIC control register

 Ldi @AICcon, R0 ;the control word for AIC control

  ;register is loaded into R0

 Call AIC2nd ;call the AIC secondary

  ;communication protocol routine

 Ldi @TBcon, R0 ;the control word to load TB and RB

  ;register is loaded into R0

 Call AIC2nd ;call the AIC secondary communication

  ;protocol routine

 Ldi @Tacon, R0 ;the control word to load TA and RA

  ;register is loaded into R0

 Call AIC2nd ;call the AIC secondary communication

  ;protocol routine

Program 9.16  AIC secondary communication protocol routine

Label Mnemonic Comments

AIC2nd Ldi @Sxdata, R1 ;the data available in data transmit

  ;register of the serial port is loaded

  ;into R1

 Sti R1, @Sxdata ;the content in R1 is stored into data

  ;transmit register

 Idle

 Ldi @Sxdata, R1 ;the data present in data transmit

  ;register is loaded into R1

 Or 3, R1 ;logical OR operation between the

  ;content of R1 and integer 3 is

  ;performed

 Sti R1, @Sxdata ;the content of R1 stored into data

  ;transmit register, this will enable

  ;the secondary communication

 Idle

 Sti R0, @Sxdata ;the control word in R0 transmitted to

  ;the respective register in AIC

 Idle

 Andn 3, R1 ;logical 0R operation between the

  ;content of R1 and complement of integer

  ;3 is performed

 Sti R1, @Sxdata ;the original content of R1 is stored

  ;into data transmit register

 Ldi @Srdata, R0 ;the content in data receive register

  ;is loaded into R0

 Rets ;return to main program
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Interrupt Processing The signals used by the AIC interface to interrupt the DSP are the transmit 

interrupt (XINT), receive interrupt (RINT) and the hardware interrupt INT2. The corresponding bits in 

the interrupt enable register (IE) of C3X processor are to be enabled. Whenever the new word is to be 

loaded into IE register, all the pending interrupts are to be cleared. This is done by globally disabling 

all the maskable interrupts using global interrupt enable (GIE) bit present in the status register. In C3X 

the transmit and receive interrupt need certain delay time; this is introduced by the two delay routines 

ADC and DAC.

CAPTURE AND DISPLAY OF SINE WAVE 9.7

The sine wave signal is fed to the RCA jack present in the C3X starter kit. It is digitised using the A/D 

converter in the AIC and transmitted to the DSP on-chip data memory via the serial port of the DSP. 

After storing the samples the samples are once again read from the data memory and transmitted back to 

the AIC D/A converter. The output of the signal obtained from the DSP can be compared with the input 

signal in a CRO. By varying the sampling rate and conversion rate this exercise can be repeated and 

the sampling theorem can be verifi ed. The complete assembly source code along with the initiali sation 

routine is given in Program 9.17A-9.17I.

Program 9.17A  Capture and display main routine

Label Mnemonic Comments

 .start “capture”, 

 0x809802 ;interrupt service routine seg-

  ;ment start address

 .sect “capture” 

Tgcr .set 0x808020 ;on-chip timer memory-map regis-

  ter

Tcount .set 0x808024 ;address values

Tprd .set 0x808028 

Tperiod .set 2 

Sgcr .set 0x808040 

Sxpctrl .set 0x808042 

Srpctrl .set 0x808043 

Sxdata .set 0x808048 

Srdata .set 0x80804C 

ta .set 9 

tb .set 15 

ra .set 9 

rb .set 15 

gie .set 0x2000 ;control word to enable global

  interrupt enable bit in status

  ;register

TAcon .word (TA<<9) + (RA<<2)+0 
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TBcon .word (TB<<9) + (RB<<2)+2 

AlCcon .word 11010111b 

sgcrval .word 0x0E970300 

sxpctrlval .word 0x00000111 

srpctrlval .word 0x00000111 

ramp .word 0 

adclast .word 0 

store .word 809a00h 

n .word 50 

 .entry 

 call aic 

main ldi @store, ar1 

 ldi @n, r2 

main1 or gie.ST ;disable all the interrupts

 ldi 0xF4, IE ;enable XINT/RINT/INT2 interrupts

 ldi @Srdata, r0

 sti r0, *ar1++

 subi 1h, r2

 sti r0, @Sxdata

 bnz main1

 b main

Program 9.17B  Interrupt service routine for RINT

dac push ST

 push R3

 ldi @adclast, R3

 sti R3, @Sxdata

 pop R3

 pop ST

 reti

Program 9.17C  Interrupt service routine for XINT

adc push ST

 push R3

 Ldi @Srdata, R3

 sti R3, @adclast

 pop R3

 pop ST

 Reti
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Program 9.17D  Timer initialisation for capture and display

aic Idp Tgcr

 ldi 0, R0

 sti R0, @Tgcr

 sti R0, @Tcount

 ldi Tperiod, R0

 sti R0, @Tprd

 ldi 0x2C1, R0

 sti R0, @Tgcr

Program 9.17E  Serial port initialisation for capture and display

 ldi @Sxpctrval, R0

 sti R0, @Sxpctrl

 ldi @Srpctrval, R0

 sti R0, @Srpctrl

 ldi 0, R0

 sti R0, @Sxdata

 ldi @Sgcrval, R0

 sti R0, @Sgcr

Program 9.17F  AIC RESET

 LDI 0x10, IE

 Andn 0x34, IF

 ldi 0, R0

 sti R0, @Sxdata

 RPTS 0x040

 LDI 2, I0F

 Rpts 0x40

 LDI 6, I0F

Program 9.17G  Program to load control words for aic initialisation

 Ldi @AICcon, R0

 Call prog_AIC

 Ldi @TBcon, R0

 Call prog_AIC

 ldi @TAcon, R0

 Call prog_AIC

 B main
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Program 9.17H  Secondary communication routine for capture and display

AlCsecond ldi @Sxdata, R1

 sti R1, @Sxdata

 Idle

 ldi @Sxdata, R1

 or 3, R1

 sti R1, @Sxdata

 idle

 sti R0, @Sxdata

 idle

 andn 3, R1

 sti R1, @Sxdata

 ldi @Srdata, R0

 rets

Program 9.17I  Interrupt delay routine for capture and display

 .sect “intvectors”

 B dac

 B adc

APPENDIX 9A 

TMS32OC3X STARTER KIT DEBUGGER TOOL COMMANDS

A9.1 Keyboard Commands

F1 Help screen

F2 40-bit hex display

F3 FLOAT display

F4 Source/DASM debug toggle

F5 Run

F6 Display breakpoints

F7 Clear all breakpoints

F8 Single step

F9 Toggle DASM window size

F10 Step over function

shift+F8 Force single step

shift+F10 Force function step

ALT+D Select disassembly window

ALT+M Select memory window
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A9.2 Editing a Command

Page up Selects fi rst command in buffer

Page down Selects last command in buffer

Up/down Move through the command buffer

Left/right Move cursor

Home Move cursor to start

End Move cursor to end

Shift+end Erase remaining command

Insert Insert mode

Delete Delete char

Tab Re-executes last used command

Enter Executes command

A9.3 Debugger Commands

? <exp> What is the value of <exp>

HELP Display HELP

SS Single step

XN n Single step n times

STEP <n> Single step <n> times

FSTEP <n> Step through functions <n> times

XG addr Single step until <addr>

GO addr Run until <addr>

RUN Execute with breakpoints

RUNF Execute without breakpoints

MEM <addr> View mem @<addr>, 32-bit hex

MEMX <addr> ”, 32-bit hex

MEMI <addr> ”, signed

MEMD <addr> ”, signed

MEML <addr> ”, signed

MEMUI<addr> ”, unsigned

MEMUD<addr> ”, unsigned

MEMUL<addr> ”, unsigned

MEMU<addr> ”, unsigned

MEMF <addr> ”, TMS fl oat

MEMQxx <addr> “ (xx is int), Qxx format

DASM addr Disassemble from <addr>

MM addr Modify memory at <addr>

MM addr, leng, val Fill memory with <value>

SB addr Set breakpoint at <addr>

CBaddr Clear breakpoint at <addr>

CB Clear all breakpoints

DB Display breakpoints

LF <fi le> Load fi le (defaults to last)

LOAD<fi le> Load fi le
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RELOAD <fi le> Load fi le

SLOAD<fi le> Load symbols

BLOAD<fi le> Load binary only

FILE2HEX<fi le> .dsk|.out to HEX

DSK2HEX<fi le> .dsk to HEX

COFF2HEX<fi le> .out to HEX

DSK2COFF fi le .dsk to COFF

MEM2HEX fi le, a, 1 Mem at address, length to HEX

MEM2COFF fi le, a, 1 Mem at address, length to HEX

MAXFLEN length Max out fi le length (no ‘=’)

FLF <fi le> Fast load from HEX fi le

SCLEAR or SC Clear symbols

RESET DSK reset

QUIT or EXIT Quit debugger

DOS DOS prompt

DOS <dos_exec> Execute a DOS program

EDIT <name> EDIT <name> (DOS editor)

DSK3 A <name> DSK3A assemble <name>

FLOAT CPU display in fl oat format

REG40 CPU display in 40-bit hex

SYMBOLS or SYM View symbol table

MOVE/MOV src, dst, n Move src->dst n<256 times

XON/XOFF Enable PG6 extended opcodes

CMDxx ‘cmd string’ Copies ‘cmd string’ to buffer xx

DASM0-DASM3 Set DASM window display mode

PAUSE Pauses a TAKE fi le

END End a take fi le

TAKE <fi lename> Load commands from a fi le

CREAD <fi lename> Default is CMDFILE.SAV

CLOAD <fi lename>

CSAVE <fi lename> Save DSK3D context to a fi le

CSAVEALL<fi lename> ‘ALL’ saves all on-chip memory

CSAVEALLHEX <fi lename> To HEX (default) or COFF fi le

CSAVEALLCOFF <fi lename> Default name is FULLSAVE.HEX

SAVE name, addr, leng, t Saves ‘leng’ memory at ‘addr’

<t>ypes

L or LONG - ASCII long

U or UNSIGNED - ASCII unsigned long

F or FLOAT - ASCII fl oat

X or H or HEX - ASCII hexadecimal

B or BIN - Binary byte

C or CHAR - Binary byte

I or INT - Binary integer

W or WORD - Binary long word

D or DASM - DASM listing
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APPENDIX 9B 

TMS320C3X ASSEMBLER DIRECTIVES 

Mnemonic and syntax Description 

(1) Directives that defi ne sections

.data Assemble source code into data memory

.sect “ section name” Assemble source code into a named (initialised) section

.text Assemble source code into program memory

(2) Directives that initialise constants (data and memory)

.byte value 1 [,..., value n ] Initialise one or more 8-bit integers

.fi ll size in words Reserve size words in the current section;

 note that a label points to the beginning of the reserved space

.fl oat expression Initialise a 32-bit TMS320C3X fl oating-point constant

.fl oat 16 expression Initialise a 16-bit TMS320C3X fl oating-point constant

.fl oat8 expression Initialise an 8-bit TMS320C3X fl oating-point constant

.ieee expression Initialise one or more 32-bit, IEEE single-

 precision, fl oating-point constants

.int value 1 [,..., value n] Initialise one or more 16-bit integers

.long value 1[, ... , value n] Initialise one or more 32-bit integers

.pfl oatl6 Initialise 16-bit TMS320C3X fl oating-point

 constants into a single word

.pfl oat8 Initialise 8-bit TMS320C3X fl oating-point

 constants into a single word

.q xx value 1 [,..., value n] Initialise a 16-bit, signed 2s-complement integer, whose 

 decimal point is displaced xx places from the LSB

.space size in words Reserve size words in the current section; note that a label

  points to the beginning of the reserved space

.string “string 1 “ [,..., “string n”]

 Initialise one or more text strings

.word value 1 [, ... , value n] Initialise one or more 32-bit integers

(3) Directives that reference other fi les

.copy [“] fi lenamef ”] Include source statements from another fi le

.include “ fi lename” Include source statements from another fi le

(4) Directives that enable conditional assembly

.else Optional conditional assembly

.endif End conditional assembly

.if well-defi ned expression Begin conditional assembly

.loop [well-defi ned expression]
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 Begin repeatable assembly of a code block.

 The loop count is determined by the well defi ned expression

.endloop End .loop code block

(5) Directives that modify the section program counter (SPC)

.align [ size in bytes] Align the SPC on a boundary specifi ed by

 size in bytes, which must be a power of 2;

 default to byte boundary

.entry [ address] Initialise the starting address of the SPC when loading a fi le

(6) Directives that defi ne symbols at assembly time

.set value Equate a value with a local symbol

.sdef value Equate a value with a local symbol multiple times

(7) Miscellaneous directives

.brstart “section name”, n Align the named section to the next 2n address boundary

.end Program end

.start “section name”, address

 Links the named section to start assembling 

 at the location address

Review Questions 

9.1 What are the basic blocks present in the C3X starter 

kit?

9.2 What are the software tools needed for the C3X 

starter kit? Explain them.

9.3 Explain the starter kit memory map. Why is it 

needed?

9.4 Explain the syntax for writing the assembly codes 

in C3X tools.

9.5 What are the programming steps needed to activate 

the circular buffer in C3X?

9.6 What are the limitations in parallel instructions?

9.7 How MAC operation can be performed in C3X 

DSPs?

9.8 What are the programming steps needed to 

capture real time signal in C3X DSP?

9.9 Explain the operation of C3X timer.

9.10 Explain the programming steps needed to 

initialise the timer.

9.11 List the memory-map registers present in the 

serial port of C3X.

9.12 Explain the programming steps needed to start 

communication through serial port.

9.13 How AIC can be reset from the C3X DSP?

9.14 What are all the interrupts to be enabled in AIC 

interface with DSP? Why?

9.15 List the assembler directives used to initialise 

constants in C3X processor.

Self Test Questions 

9.1 The C3X DSP present in C3X starter kit is ———.

(a) ¢C30 (b) ¢C31 (c) ¢C32

9.2 The crystal oscillator present in C3X starter kit is 

———.

(a) 20 MHz (b) 40 MHz (c) 25 MHz (d) 50 MHz

9.3 The interface between C3X starter kit to PC is 

through ———.

(a) serial port (b) HPI (c) parallel port

9.4 The C3X debugger is based on ——— operating 

system.
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(a) DOS (b) windows (c) unix

9.5 The number of windows in C3X starter kit debugger 

are ———.

(a) 4 (b) 2 (c) 3 (d) 5

9.6 The starting address location from which the 

assembly codes can be written in C3X starter kit is 

———.

(a) 800000h (b) 809800h (c) 809900h (d) FF0000h

9.7 The end address location up to which the assembly 

codes can be written in C3X starter kit is ——— .

(a) 809800h (b) 809A00h (c) 809900h (d) 809F00h

9.8 In C3X starter kit the least 256 locations of on-chip 

RAM block 1 are used for ———.

(a) DSK kernel (b) Interrupt

(c) trap table  (d) all of these

9.9 The assembler directive that is used to assign 

starting address location to a program section is ———.

(a) .start (b) .sect (c) .entry (d) .word

9.10 The assembly directive used to assign fl oating-

point values for a variable is ———.

(a) .word (b) .int (c) .fl oat (d) .string

9.11 The symbol used in assembly code to indicate 

immediate addressing mode in C3X is ———.

(a) # (b) @ (c) $ (d) *

(e) none of these

9.12 In immediate addressing mode the maximum size 

of operand can be ———.

(a) 8 bits (b) 16 bits (c) 24 bits (d) 32 bits

9.13 The symbol used in assembly code to indicate 

direct addressing mode in C3X is ———.

(a) @ (b) # (c) $ (d) *

9.14 In direct addressing mode the number of bits used 

to specify the address is ———.

(a) 8 bits (b) 16 bits (c) 24 bits (d) 32 bits

9.15 The symbol used in assembly code to indicate 

indirect addressing mode in C3X is ———.

(a) # (b) @ (c) $ (d) *

9.16 The symbol used in assembly code to indicate 

circular addressing mode in C3X is ———.

(a) % (b) @ (c) # (d) *

9.17 In three-operand instructions the addressing 

mode used are ———.

(a) register, direct (b) indirect, direct

(c) register, indirect

9.18 In parallel instructions the addressing mode used 

are ———.

(a) register, indirect (b) indirect, direct

(c) register, direct

9.19 The size of AIC present in C3X starter kit is 

———.

(a) 14 bits (b) 16 bits (c) 8 bits (d) 10 bits

9.20 In timer initialisation, the value set in the timer 

period register is ———.

(a) 2 (b) 4 (c) 16 (d) 24

9.21 The number of registers to be programmed in 

serial port initialisation routine is ———.

(a) 2 (b) 3 (c) 4 (d) 5

9.22 The pin used for AIC reset in C3X starter kits is 

———.

(a) BR (b) XF0 (c) XF1 (1) HLD

9.23 The number of AIC control registers to be 

programmed in AIC initialisation routine of C3X is

(a) 5 (b) 4 (c) 6 (d) 3

9.24 The number of interrupts to be set in AIC 

initialisation routine is ———.

(a) 3 (b) 4 (c) 2 (d) 5

9.25 The maximum sampling rate at which the audio 

signals can be sampled in AIC of C3X starter kit is 

———.

(a) 9.2 kHz (b) 14.4 kHz (c) 8 kHz (d) 19.2 kHz



INTRODUCTION 10.1

The ¢54X has been developed to be almost upward compatible to the earlier fi xed-point processors from 

TI such as 1X, 2XX and 5X and at the same time has been built with more advanced features and more 

DSP application specifi c logic in its hardware and instruction set so as to make it widely applicable. 

¢54X has a large no. of instructions compared to its predecessors and a variety of ways in which the 

application programs can be written, viz., using assembly language, algebraic instructions, high level 

language or combinations of these. ¢54X is easy to learn and use if it is seen as an attempt to remove 

some of the limitations of its predecessor, for example, 5X. The simplest approach would be to migrate 

from 5X to 54X. Almost all the programs written in 5X can be made to work in 54X without any major 

modifi cation. For the majority of instructions of 5X there is an equivalent instruction in 54X. There 

are programs which take a 5X assembly language program and convert it to an equivalent program in 

assembly language with 54X syntax. Appendix 10.1 gives a summary of C54X instructions. Appendix 

10.2 gives the list of 54X instructions and the equivalent 5X instructions. This may be used to translate 

the 5X program to 54X program either manually or with the aid of a program (see, e.g., Code Composer 

Studio in Chapter 12).

One of the advantages of 54X for the users who have used 5X before is that the on-chip memory and 

peripherals in 5X and 54X are almost identical. For example, the on-chip timer and synchronous serial 

port in both 5X and 54X are identical in operation. The programs used for initialising the on-chip timers 

and serial ports work without any modifi cation.

In the next sections some of the features of 54X are reviewed and only those features which differ 

from those of the 5X DSP or which are new in 54X are discussed in some detail.

ARCHITECTURE OF 54X 10.2

A quick review of the architecture of 54X is achieved by comparing the features of 5X with 54X as 

shown in Table 10.1. From this table it can be verifi ed that some of the registers of 54X are identical to 

that of 5X.

Many of the on-chip peripherals are also identical. However, the actual memory map addresses of the 

CPU registers and the on-chip peripherals of 54X and 5X are not identical. This should be taken care 

while porting the 5X program to 54X platform. The block diagram of TMS320C54X internal hardware 

10

AN OVERVIEW OF

TMS320C54X
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Table 10.1 Comparison of the features of 5X and 54X

Description 5X 54X

Name of program bus One, PB One, PB

Name of the data bus One, DB DB and CB (for Read) EB

(for write)

Name of address buses PAB, DAB PAB, CAB, DAB, EAB

MainALU 32-bit ALU 40-bit ALU

Accumulators 32-bit ACC 40-bit ACCA and ACCB

Barrel shifter 0-16-bit left shift 0-16-bit right shift 40 bit: 0-31 left shift 0-15 right 

shift

Multiplier 16 X 16 bit 17 X 17 bit

Adder 32 bit 40 bit

Auxiliary Register ALU ARAU ARAU0&ARAU1

Auxiliary registers AR0-AR7 AR0-AR7

Stack pointer (SP) Not available 16 bit: SP

Circular buffer register Two 16-bit start & end register. 16-bit BK

Status registers 16-bit PMST, ST0, ST1 16-bit PMST, ST0, ST1

Block repeat registers 16-bit BRCR,PASR,PAER 16-bit BRC, RSA,REA

Program counter 16-bit PC 16-bit PC

Extended progm memory Not available 7-bit XPC

Interrupt registers 16-bit IMR and IFR 16-bit IMR and IFR

General purpose I/O BI
—

O
—

 and XF Same as that of 5X

Wait state generator PDWSR SWWSR

Hardware timer 16-bit timer Same as that of 5X

Clock generator PLL based Same as that of 5X

Synchronous serial port Full duplex and double buffered Same as that of 5X

TDM serial ports Upto 7 devices using TDM can com-

municate serially

Same as that of 5X

Buffered serial port Standard 5X serial port with additional 

autobuffering unit

Same as that of 5X

Host port interface 8-bit standard HPI 8-bit standard HPI or enhanced 

8-bit and 16-bit HPI

Multichannel buffered serial port in-

cluding internal programmable clock 

and other advanced features

Not available Available

On-chip ROM for look up table for 

A law, u. law companding, sine wave 

generation

Not available Available
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is shown in Fig. 10.1. It consists of the CPU containing the various functional units such as ALU, MAC 

unit, EXP encoder, barrel shifter, memory mapped registers, system control interface, peripheral interface,

Sign ctr

Program address generation
logic (PAGEN)

Data address generation
(DAGEN)logic

PC, IPTR, RC
BRC, RSA, REA

ARAUO, ARAU1 ARO-AR7
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Fig. 10.1 Block diagram of 54X internal hardware
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memory and external interface, program address generation logic (PAGEN) and data address generation 

logic (DAGEN) and eight 16-bit buses which interconnect these units. Details of each of these units are 

considered next.

¢54X BUSES 10.3

The ¢54x architecture is built around eight major 16-bit buses (four program/data buses and four address 

buses): The program bus (PB) carries the instruction code and immediate operands from program 

memory. Three data buses (CB, DB and EB) interconnect to various elements, such as the CPU, data 

address generation logic, program address generation logic, on-chip peripherals and data memory. The 

CB and DB carry the operands that are read from data memory. The EB carries the data to be written 

to memory. Four address buses (PAB, CAB, DAB and EAB) carry the addresses needed for instruction 

execution.

The ¢54X can generate upto two data-memory addresses per cycle using the two ARAUs (ARAU0 

and ARAU1). The PB can carry data operands stored in program space (for instance, a fi lter coeffi cient 

table) to the multiplier and adder for multiply/accumulate operations or to a destination in data space 

for data move instructions (MVPD and READA). The capability to read one coeffi cient from program 

memory and two data values from the data memory using ARAU0 and ARAU1 enables the operation 

[x(i) + x(N-1-i)] ¥ h(i) required for the symmetric FIR fi lter in single cycle. The 54X instruction FIRS 

is used for this purpose.

The ¢54x also has an on-chip bidirectional bus for accessing on-chip peripherals; this bus is connected 

to DB and EB through the bus exchanger in the CPU interface. Accesses that use this bus can require 

two or more cycles for reads and writes, depending on the peripheral’s structure.

INTERNAL MEMORY ORGANISATION 10.4

The ¢54x memory is organised into three individually selectable spaces: program, data and I/O space. 

All ¢54X devices contain both random access memory (RAM) and read only memory (ROM). Among 

the devices, two types of RAM are represented: dual-access RAM (DARAM) and single-access RAM 

(SARAM). The DARAM and SARAM may be confi gured either as data memory or program/data 

memory. Table 10.2 shows how much ROM, DARAM and SARAM are available on the different ¢54X 

devices. The ¢54X also has 26 CPU registers plus peripheral registers that are mapped in data memory 

space.

Table 10.2 Program and data memory on the TMS320C54x devices

Memory type ¢541 ¢542, ¢543 ¢545, ¢546 ¢548 ¢549 ¢5402 ¢5410 ¢5420

ROM: 28K 2K 48K 2K 16K 4K 16K 0

Program 20K 2K 32K 2K 16k 4k 16k 0

Program/data 8K 0 16K 0 16K 4K 0 0

DARAM† 5K 10K 6K 8K 8K 16K 8K 32K

SARAM† 0 0 0 24K 24K 0 56K 168K

† TheDARAM and SARAM may be confi gured as data memory or program/data memory.
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10.4.1 On-ChipROM

The on-chip ROM is part of the program memory space and, in some cases, part of the data memory 

space. The amount of on-chip ROM available on each device varies, as shown in Table 10.2. On devices 

with a small amount of ROM (2K words), the ROM contains a boot loader, which is useful for booting 

to faster on-chip or external RAM. On devices with larger amounts of ROM, a portion of the ROM may 

be mapped into both data and program space.

10.4.2 On-Chip Dual-Access RAM (DARAM)

The DARAM is composed of several blocks. Because each DARAM block can be accessed twice per 

machine cycle, the CPU can read from and write to a single block of DARAM in the same cycle. The 

DARAM is always mapped in data space and is primarily intended to store data values. It can also be 

mapped into program space and used to store program code.

10.4.3 On-Chip Single-Access RAM (SARAM)

The SARAM is composed of several blocks. Each block is accessible once per machine cycle for either 

a read or a write. The SARAM is always mapped in data space and is primarily intended to store data 

values. It can also be mapped into program space and used to store program code.

10.4.4 On-Chip Memory Security

The ¢54X maskable memory security option protects the contents of on-chip memories. When this 

option is chosen, no externally originating instruction can access the on-chip memory spaces.

10.4.5 Memory-Mapped Registers

The data memory space contains memory-mapped registers for the CPU and the on-chip peripherals. 

These registers are located on data page 0, simplifying access to them. The memory-mapped access 

provides a convenient way to save and restore the registers for context switches and to transfer 

information between the accumulators and the other registers.

CENTRAL PROCESSING UNIT (CPU) 10.5

The ¢54X CPU is common to all the ¢54X devices. The block diagram of Internal hardware of 54X is 

given in Fig. 10.1. The 54X CPU contains:

40-Bit Arithmetic Logic Unit (ALU)

Two 40-Bit Accumulator Registers

Barrel Shifter Supporting a -16 to 31 Shift Range

Multiply/Accumulate Block

16-Bit Temporary Register (T)

16-Bit Transition Register (TRN)

Compare, Select and Store Unit (CSSU)

Exponent Encoder

The CPU registers are memory-mapped, enabling quick saves and restores. Table 10.3 gives the list 

of memory-mapped CPU registers and their functions are as follows:

10.5.1 Interrupt Registers (IMR, IFR)

The interrupt mask register (IMR) individually masks off specifi c interrupts at required times. The 

interrupt fl ag register (IFR) indicates the current status of the interrupts.
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10.5.2 Status Registers (ST0 and ST1)

The status registers ST0 and ST1 contain the status of the various conditions and modes for the ¢54X 

devices. ST0 contains the fl ags (OVA, OVB, C and TC) produced by arithmetic operations and bit 

manipulations, in addition to the DP and the ARP fi elds. ST1 refl ects the status of modes and instructions 

executed by the processor. ST0 and ST1 contain the status of various conditions and modes; PMST 

contains memory-setup status and control information. Because these registers are memory-mapped, 

they can be stored into and loaded from data memory; the status of the processor can be saved and 

restored for subroutines and interrupt service routines (ISRs). The individual bits of the ST0 and ST1 

registers can be set or cleared with the SSBX and RSBX instructions. For example, the sign-extension 

mode is set with SSBX 1, SXM, or reset with RSBX 1, SXM. The ARP, DP and ASM bit fi elds can be 

loaded using the LD instruction with a short-immediate operand. The ASM and DP fi elds can also be 

loaded with data-memory values by using the LD instruction. The ST0 bits are shown in Fig. 10.2 and 

described in Table 10.3. The ST1 bits are shown in Fig. 10.3 and described in Table 10.5.

Table 10.3 CPU memory-mapped registers

Add Name Description

0 IMR Interrupt mask register

1 IFR Interrupt fl ag register

2-5 — Reserved for testing

6 ST0 Status register 0

7 ST1 Status register 1

8 AL Accumulator A low word (bits 15-0)

9 AH Accumulator A high word (bits 31-16)

A AG Accumulator A guard bits (bits 39-32)

B BL Accumulator B low word (bits 15-0)

C BH Accumulator B high word (bits 31-16)

D BG Accumulator B guard bits (bits 39-32)

E T Temporary register

F TRN Transition register

10 AR0 Auxiliary register 0

11 AR1 Auxiliary register 1

12 AR2 Auxiliary register 2

13 AR3 Auxiliary register 3

14 AR4 Auxiliary register 4

15 AR5 Auxiliary register 5

16 AR6 Auxiliary register 6

17 AR7 Auxiliary register 7

18 SP Stack pointer

19 BK Circular-buffer size register

1A BRC Block-repeat counter

1B RSA Block-repeat start address

1C REA Block-repeat end address

1D PMST Processor mode status register

1E XPC Program counter extension register (¢548/9/02/10/20)

1F - Reserved
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ARP TC C OVA OVB DP

15 – 13 12 11 10 9 8 – 0

Fig. 10.2 Status register 0 (ST0) diagram

Table 10.4 Status register 0 (ST0) bit summary

Name Function

ARP Auxiliary register pointer. This 3-bit fi eld selects the auxiliary register to be used in indirect 

single-operand addressing. ARP must always be set to zero when the DSP is in standard mode 

(CMPT = 0)

TC Test/control fl ag. TC stores the results of the arithmetic logic unit (ALU) test bit operations. TC is 

affected by the BIT, BITF, BITT, CMPM, CMPR, CMPS and SFTC instructions. The status (set or 

cleared) of TC determines if the conditional branch, call, execute and return instructions execute

C Carry: set to 1 if the result of an addition generates a carry; it is cleared to 0 if the result of a sub-

traction generates a borrow. Otherwise, it is reset after an addition and is set after a subtraction, 

except for an ADD or SUB with a 16-bit shift

OVA Overfl ow fl ag for accumulator A . OVA is set to 1 when an overfl ow occurs in either the ALU or 

the multiplier’s adder and the destination for the result is accumulator A

OVB Overfl ow fl ag for accumulator B . OVB is set to 1 when an overfl ow occurs in either the ALU or 

the multiplier’s adder and the destination for the result is accumulator B

DP Data-memory page pointer . This 9-bit fi eld is concatenated with the seven LSBs of an instruction 

word to form a direct-memory address of 1 6 bits for single data-memory operand addressing. This 

operation is done if the compiler mode bit in ST1 (CPL) = 0

BRAF CPL XF HM INTM 0 OVM SXM C16 FRCT CMPT ASM

15 14 13 12 11 10 9 8 7 6 5 4 – 0

Fig. 10.3 Status register 1 (ST1) diagram

Table 10.5 Status register 1 (ST1) bit summary

Name Function

BRAF Block-repeat active fl ag. BRAF indicates whether a block repeat iscurrently active. BRAF = 0, the block 

repeat is deactivated. BRAF is cleared when the block-repeat Counter (BRC) decrements below 0. BRAF 

= 1, the block repeat is active. BRAF is automatically set when an RPTB instruction is executed

CPL Compiler mode. CPL indicates which pointer is used in relative direct addressing: CPL = 0, the rela-

tive direct-addressing mode using the data page pointer (DP) is selected. CPL = 1, the relative direct-

addressing mode using the stack pointer (SP) is selected

XF XF status. XF indicates the status of the external fl ag (XF) pin, which is a general-purpose output pin. 

The SSBX instruction can set XF and the RSBX instruction can reset XF

HM Hold mode. HM indicates whether the processor continues internal execution when acknowledging 

an active HOLD signal: HM = 0, the processor continues execution from internal program memory 

but places its external interface in the high-impedance state. HM = 1, the processor halts internal 

execution

(Contd.)
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Name Function

INTM Interrupt mode. INTM globally masks or enables all interrupts. INTM = 0, all unmasked interrupts 

are enabled. INTM = 1, all maskable interrupts are disabled. The SSBX instruction sets INTM and the 

RSBX instruction resets INTM. INTM is set to 1 by reset or when a maskable interrupt trap is taken 

(INTR or external interrupts). INTM is cleared to 0 when a RETE or RETF instruction (return from 

interrupt) is executed. INTM does not affect the nonmaskable interrupts (RS and NMI). INTM cannot 

be set by memory-write operations

0 Always read as 0

OVM Overfl ow mode. OVM determines what is loaded into the destination accumulator when an overfl ow 

occurs: OVM = 0, an overfl owed result from either the ALU or the multiplier’s adder overfl ows nor-

mally in the destination accumulator. OVM = 1, the destination accumulator is set to either the most 

positive value (00 7FFF FFFFh) or the most negative value (FF 8000 0000h) upon encountering an 

overfl ow. The SSBX and RSBX instructions set and reset OVM, respectively

SXM Sign-extension mode. SXM determines whether sign extension is performed: SXM = 0, sign extension 

is suppressed. SXM = 1, data is sign extended before being used by the ALU

C16 Dual 16-bit/double-precision arithmetic mode. CT6 determines the arithmetic mode of the ALU’s 

operation: C16 = 0, the ALU operates in double-precision arithmetic mode. C16 = 1, the ALU operates 

in dual 16-bit arithmetic mode

FRCT Fractional mode. When FRCT is 1, the multiplier output is left-shifted by 1 bit to compensate for an 

extra sign bit

CMPT Compatibility mode. CMPT determines the compatibility mode for the ARP: CMPT = 0, ARP is not 

updated in indirect addressing mode with a single data-memory operand. ARP must always be set to 

0 when the DSP is in this mode. CMPT = 1, ARP is updated in indirect addressing mode with a single 

data-memory operand, except when the instruction is selecting auxiliary register 0 (AR0).

ASM Accumulator shift mode. The 5-bit ASM fi eld specifi es a shift value within a -16 through 15 range 

and is coded as a 2s-complement value.

10.5.3 Processor Mode Status Register (PMST)

The PMST register is loaded with memory-mapped register instructions such as STM. The PMST bits 

are shown in Fig. 10.4 and described in Table 10.6.

IPTR MP/MC OVLY AVIS DROM CLKOFF SMUL+ SST+

6 5 4 3 2 1 015-7

Fig. 10.4 Processor mode status register (PMST) diagram. + only on the LP devices; reserved bits on all other devices

Table 10.6 Processor mode status register (PMST) bit summary Name Function

Name Function

IPTR Interrupt vector pointer. The 9-bit IPTR fi eld points to the 128-word program page where the inter-

rupt vectors reside

MP/M
—

C
—

MP/M
—

C
—

 pin microprocessor/ microcomputer mode MP/M
—

C
—

 enables/disables the on-chip ROM to be 

addressable in program memory space. MP/M
—

C
—

 = 0, the on-chip ROM is enabled and addressable. 

MP/M
—

C
—

 = 1, the on-chip ROM is not available

Table 10.5 (Contd.)

(Contd.)
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OVLY RAM overlay. OVLY enables on-chip dual-access data RAM blocks to be mapped into program space. 

The values for the OVLY bit are: OVLY = 0, the on-chip RAM is addressable in data space but not 

in program space. OVLY = 1, the on-chip RAM is mapped into program space and data space. Data 

page 0 (addresses Oh to 7Fh), however, is not mapped into program space

AVIS Address visibility mode. AVIS enables/disables the internal program address to be visible at the address 

pins. AVIS = 0, the external address lines do not change with the internal program address. Control 

and data lines are not affected and the address bus is driven with the last address on the bus. AVIS = 

1, this mode allows the internal program address to appear at the pins of the ¢54X so that the internal 

program address can be traced

DROM Data ROM. DROM enables on-chip ROM to be mapped into data space. DROM = 0, the on-chip ROM 

is not mapped into data space. DROM = 1, a portion of the on-chip ROM is mapped into data space

CLKOFF CLOCKOUT off. When the CLKOFF bit is 1, the output of CLKOUT is disabled and remains at a 

high level

SMUL† Saturation on multiplication. When SMUL = 1, saturation of a multiplication result occurs before 

performing the accumulation in a MAC or MAS instruction

SST† Saturation on store. When SST = 1. saturation of the data from the accumulator is enabled before 

storing in memory. The saturation is performed after the shift operation

†Only on the LP devices; reserved bits on all other devices.

10.5.4 Accumulators A and B

The ¢54X devices have two 40-bit accumulators: accumulator A and accumulator B. Each accumulator 

is memory-mapped and partitioned into accumulator low word (AL, BL), accumulator high word (AH, 

BH) and accumulator guard bits (AG, BG). Accumulator A and accumulator B can be confi gured as the 

destination registers for either the multiplier/adder unit or the ALU. In addition, they are used for MIN 

and MAX instructions or for the parallel instruction LD||MAC, in which one accumulator loads data 

and the other performs computations. Each accumulator is split into three parts, as shown in Figs 10.5 

and 10.6.

15 0–31 16–39 – 32

AG AH AL

Guard bits High-order bits Low-order bits    

15 0–31 16–39 – 32

AG BH BL

Guard bits High-order bits Low-order bits

Fig. 10.5 Accumulator A              Fig. 10.6 Accumulator B

The guard bits are used as a headmargin for computations. Headmargins allow the prevention of some 

overfl ow in iterative computations such as autocorrelation. AG, BG, AH, BH, AL and BL are memory-

mapped registers that can be pushed onto and popped from the stack for context saves and restores by 

using PSHM and POPM instructions. These registers can also be used by other instructions that use 

memory-mapped registers (MMR) for page 0 addressing. The only difference between accumulators A 

and B is that bits 32-16 of A can be used as an input to the multiplier in the multiplier/ adder unit.

10.5.5 Temporary (T) Register

The temporary (T) register has many uses. For example, it may hold

 (a) one of the multiplicands for multiply and multiply/accumulate instructions;

Table 10.6 (Contd.)
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 (b) a dynamic (execution-time programmable) shift count for instructions with shift operation such 

as the ADD, LD and SUB instructions;

 (c) a dynamic bit address for the BITT instruction, and

 (d) branch metrics used by the DADST and DSADT instructions for ACS operation of Viterbi 

decoding. In addition, the EXP instruction stores the exponent value computed into T register, 

and then the NORM instruction uses the T register value to normalise the number.

10.5.6 Transition (TRN) Register

The 16-bit transition (TRN) register holds the transition decision for the path to new metrics to perform 

the Viterbi algorithm. The CMPS (compare select max and store) instruction updates the contents of 

TRN register on the basis of the comparison between the accumulator high word and the accumulator 

low word.

10.5.7 Auxiliary Registers (AR0-AR7)

The eight 16-bit ARs (AR0-AR7) can be accessed by the CPU and modifi ed by the ARAUs. The primary 

function of the ARs is to generate 16-bit addresses for data space. However, these registers can also act 

as general-purpose registers or counters.

10.5.8 Stack-Pointer (SP) Register

The 16-bit stack-pointer (SP) register contains the address of the top of the system stack. The SP always 

points to the last element pushed onto the stack. The stack is manipulated by interrupts, traps, calls, 

returns and the PSHD, PSHM, POPD and POPM instructions. Pushes and pops of the stack predecrement 

and postincrement, respectively, the 16-bit value in the stack pointer.

10.5.9 Circular-Buffer Size Register (BK)

The ARAUs use 16-bit circular-buffer size register (BK) in circular addressing to specify the data block 

size. For information on BK and circular addressing, see Section 11.1.5.7.

10.5.10 Block-Repeat Registers (BRC, RSA and REA)

The 16-bit block-repeat counter (BRC) register specifi es the number of times a block of code is to repeat 

when a block repeat is performed. The 16-bit block-repeat start address (RSA) register contains the 

starting address of the block of program memory to be repeated. The 16-bit block-repeat end address 

(REA) register contains the ending address of the block of program memory to be repeated.

10.5.11 Program Counter Extension Register (XPC)

This is available on ¢548/9/02/10/20. The program counter extension register (XPC) contains the upper 

7 bits of the current program memory address. This allows access of upto 8192K words of program 

memory. In all these devices, the no. of address lines is increased to 23. They have six extra instructions 

for addressing the extended program space.

ARITHMETIC LOGIC UNIT (ALU) 10.6

The 40-bit ALU, shown in Fig. 10.8, implements a wide range of arithmetic and logical functions, most 

of which execute in a single clock cycle. After an operation is performed in the ALU, the result is usually 

transferred to a destination accumulator (accumulator A or B). Instructions that perform memory-to-

memory operations (ADDM, ANDM, ORM and XORM) are exceptions.
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10.6.1 ALU Input

ALU input takes several forms from several sources. The X input source to the ALU is either of two 

values:

 ∑ The shifter output (a 32-bit or 16-bit data-memory operand or a shifted accumulator value)

 ∑ A data-memory operand from data bus DB

The Y input source to the ALU is any of three values:

 ∑ The value in one of the accumulators (A or B)

 ∑ A data-memory operand from data bus CB

 ∑ The value in the T register

When a 16-bit data-memory operand is fed through data bus CB or DB, the 40-bit ALU input is 

constructed in one of two ways:

If bits 15 through 0 contain the data-memory operand, bits 39 through 16 are zero fi lled (SXM = 0) 

or sign-extended (SXM = 1). If bits 31 through 16 contain the data-memory operand, bits 15 through 0 

are zero fi lled, and bits 39 through 32 are either zero fi lled (SXM = 0) or sign extended (SXM =1).

Fig.10.7 ¢C54X arithmetic logic unit functional diagram

10.6.2 Overfl ow Handling

The ALU saturation logic prevents a result from overfl owing by keeping the result at a maximum (or 

minimum) value. This feature is useful for fi lter calculations. The logic is enabled when the overfl ow 

mode bit (OVM) in status register ST1 is set. When a result overfl ows:

  If OVM = 0, the accumulators are loaded with the ALU result without modifi cation

  If OVM = 1, the accumulators are loaded with either the most positive 32-bit value (00 7FFF 

FFFFh) or the most negative 32-bit value (0FF 8000 0000h), depending on the direction of the 

overfl ow
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The overfl ow fl ag (OVA/OVB) in status register ST0 is set for the destination accumulator and 

remains set until one of the following occurs:

A reset is performed

A conditional instruction (such as a branch, a return, a call or an execute) is executed on an overfl ow 

condition.

The overfl ow fl ag (OVA/OVB) is cleared

The accumulator may also be saturated by using the SAT instruction, regardless of the value of OVM.

10.6.3 The Carry Bit

The ALU has an associated carry (C) bit that is affected by most arithmetic ALU instructions, including 

rotate and shift operations. The C bit supports effi cient computation of extended-precision arithmetic 

operations. The C bit is not affected by loading the accumulator, performing logical operations or 

executing other nonarithmetic or control instructions, so it can be used for overfl ow management. 

Two conditional operands, C and NC, enable branching, calling, returning and conditionally executing 

according to the status (set or cleared) of the C bit. Also, the RSBX and SSBX instructions can be used 

to load the C bit. The C bit is set on a hardware reset.

10.6.4 Dual 16-Bit Mode

For arithmetic operations, the ALU can operate in a special dual 16-bit arithmetic mode that performs 

two 16-bit operations (for instance, two additions or two subtractions) in one cycle. This mode is 

selected by setting the C16 fi eld of ST1. This mode is especially useful for the Viterbi add/compare/ 

select operation (see Section 10.9, Compare, Select and Store Unit (CSSU)).

BARREL SHIFTER 10.7

The barrel shifter is used for scaling operations such as prescaling an input data-memory operand or the 

accumulator value before an ALU operation; performing a logical or arithmetic shift of the accumulator 

value; normalising the accumulator; postscaling the accumulator before storing the accumulator value 

into data memory. The SXM bit controls signed/unsigned extension of the data operands; when the bit 

is set, sign extension is performed. Some instructions, such as LDU, ADDS and SUBS operate with 

unsigned memory operands and do not perform sign extension, regardless of the SXM value. The shift 

count determines how many bits to shift. Positive shift values correspond to left shifts, whereas negative 

values correspond to right shifts. The shift count is specifi ed as a 2s-complement value in several ways, 

depending on the instruction type,

MULTIPLIER/ADDER UNIT 10.8

The ¢54X CPU has a 17-bit ¥ 17-bit hardware multiplier coupled to a 40-bit dedicated adder. This 

multiplier/adder unit provides multiply and accumulate (MAC) capability in one pipeline phase cycle. 

The multiplier/adder unit is shown in Fig. 10.8.

The multiplier can perform signed, unsigned and signed/unsigned multiplication with the following 

constraints:

For signed multiplication, each 16-bit memory operand is assumed to be a 17-bit word with sign 

extension. For unsigned multiplication, a 0 is added to the MSB (bit 16) in each input operand. For 
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signed/unsigned multiplication, one of the 

operands is sign extended, and the other is 

extended with a 0 in the MSB (zero fi lled). The 

multiplier output can be shifted left by 1 bit to 

compensate for the extra sign bit generated 

by multiplying two 16-bit 2s-complement 

numbers in fractional mode. (Fractional mode 

is selected when the FRCT bit = 1 in ST1.) 

The adder in the multiplier/adder unit contains 

a zero detector, a rounder (2s complement) 

and overfl ow/saturation logic. Rounding 

consists of adding 215 to the result and then 

clearing the lower 16 bits of the destination 

accumulator. Rounding is performed in some 

multiply, MAC and multiply/subtract (MAS) 

instructions when the suffi x R is included 

with the instruction. The LMS instruction 

also rounds to minimise quantisation errors 

in updated coeffi cients. The adder’s inputs 

come from the multiplier’s output and from 

one of the accumulators. Once any multiply 

operation is performed in the unit, the result 

is transferred to a destination accumulator (A 

orB).

10.8.1 Multiplier Input Sources

Sources for the multiplier inputs are as 

follows:

The XM input source to the multiplier is 

any of the following values:

The T Register

A Data-memory Operand from Data Bus DB

Accumulator A Bits 32-16

The YM Input source to the multiplier is any of the following values:

A Data-memory Operand from Data Bus DB

A Data-memory Operand from Data Bus CB

A Program-memory Operand from Program Bus PB

Accumulator A bits 32-16

Since bits A(32-16) can be an input to the multiplier, some sequences that require storing the result 

of one computation in memory and feeding this result to the multiplier can be made faster. For some 

application-specifi c instructions (FIRS, SQDST, ABDST and POLY), the contents of accumulator A can 

be computed by the ALU and then input to the multiplier without any overhead.

Fig. 10.8 C54X multiplier and adder functional diagram
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COMPARE, SELECT AND STORE UNIT (CSSU) 10.9

The compare, select and store unit (CSSU) is an application-

specifi c hardware unit dedicated to add/ compare/select 

(ACS) operations of the Viterbi operator. Figure 10.9 

shows the CSSU, which is used with the ALU to perform 

fast ACS operations. The CSSU allows the ¢54X to support 

various Viterbi butterfl y algorithms used in equalisers and 

channel decoders. The add function of the Viterbi operator 

in Fig. 10.10 is performed by the ALU. This function 

consists of a double addition function (Metl±Dl and Met2± 

D2). Double addition is completed in one machine cycle if 

the ALU is confi gured for dual 16-bit mode by setting the 

C16 bit in ST1. With the ALU confi gured in dual 16-bit 

mode, all the long-word (32-bit) instructions become dual 

16-bit arithmetic instructions. T is connected to the ALU 

input (as a dual 16-bit operand) and is used as local storage 

in order to minimise memory access.

The CSSU implements the compare and select operation 

via the CMPS instruction, a comparator and the 

16-bit transition (TRN) register. This operation 

compares two 16-bit parts of the specifi ed 

accumulator and shifts the decision into bit 0 of 

TRN. This decision is also stored in the TC bit 

of ST0. Based on the decision, the corresponding 

16-bit part of the accumulator is stored in data 

memory. TRN register contains information of 

the path transition decisions to new states. This 

information can be used for a back-tracking 

routine that fi nds the optimal path, which results 

in decoding the code.

EXPONENT ENCODER 10.10

The exponent encoder is an application-specifi c hardware device dedicated to supporting the EXP 

instruction in a single cycle. With the EXP instruction, the exponent value in the accumulator can be 

stored in T as a 2s-complement value within a -8 through 31 range. The exponent is defi ned as the number 

of leading redundant bits - 8, which corresponds to the number of shifts required in the accumulator 

to eliminate non-signifi cant sign bits. This operation results in a negative value when the accumulator 

value exceeds 32 bits. The EXP and NORM instructions use the exponent encoder to normalise the 

accumulator’s contents effi ciently. NORM supports shifting the accumulator value by the number of 

bits specifi ed in T in a single cycle. A negative value in T produces a right shift of the accumulator’s 

contents, which normalises any value beyond the 32-bit range of the accumulator.

EB15–EB0

From Acc A

From
Acc B

B A

COMP

TRN

TC

From Barrel
shifter

MSW/LSW
select

16

S

Fig. 10.9 Compare, select and store unit (CSSU)

Old state D1

2J

(Met1)

2J + 1
(Met2)

(Old Metrics)

D2

J + STNB/2
(New Met2)

If (Met1 + D1)>(Met2+D2)
Then new Met1=Met1 + D1
Else new Met1 = Met2 + D2

(New Metrics)

Legend:

STNB No of states
Met Path Metrics
D Branch Metrics

Fig. 10.10 Viterbi operator
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THE C54X PIPELINE 10.11

The C54X instruction pipeline consists of six levels: prefetch, fetch, decode, access, read and execute. At 

each of the levels, an independent operation occurs. Because these operations are independent, from one 

to six instructions can be active in any given cycle, each instruction at a different stage of completion. 

Typically, the pipeline is full with a sequential set of instructions, each at one of the six stages. When a 

PC discontinuity occurs, such as during a branch, call or return, one or more stages of the pipeline may 

be temporarily unused.

ON-CHIP PERIPHERALS 10.12

All the ¢54X devices have the same CPU, but different on-chip peripherals are connected to their CPUs. 

The ¢54X devices have these on-chip peripheral options:

General-purpose I/O Pins (BIO and XF)

Software-programmable Wait-State Generator

Programmable Bank-switching Logic

Host Port Interface (HPI)

Hardware Timer

Clock Generator

Serial Ports

Synchronous Serial Ports

Buffered Serial Ports

Time-division Multiplexed (TDM) Serial Ports

10.12.1 General-Purpose I/O Pins

Each ¢54X device has two general-purpose I/O pins: BIO and XF. BIO is an input pin that can be used to 

monitor the status of external devices. XF is a software-controlled output pin that allows you to signal 

external devices.

10.12.2 Software-Programmable Wait-State Generator

The software-programmable wait-state generator extends external bus cycles upto seven machine 

cycles to interface with slower off-chip memory and I/O devices. The software wait-state generator is 

incorporated without any external hardware. For off-chip memory accesses, from zero to seven wait 

states can be specifi ed within the software wait-state register (SWWSR) for each 32K-word block of 

program and data memory, and for the 64K-word block of I/O space.

10.12.3 Programmable Bank-Switching Logic

The programmable bank-switching logic can automatically insert one cycle when an access crosses 

memory bank boundaries inside program memory or data memory. One cycle can also be inserted when 

an access crosses from program memory to data memory. This extra cycle prevents bus contention by 

allowing memory devices to release the bus before other devices start driving the bus. The size of a 

memory bank for bank switching is defi ned by the bank switching control register (BSCR).

10.12.4 Host Port Interface

The host port interface (HPI) is an 8-bit parallel port that provides an interface to a host processor. 

Information is exchanged between the ¢54X and the host processor through ¢54X on-chip memory that 

is accessible to both the host processor and the ¢54X.
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10.12.5 Hardware Timer

The ¢54X features a 16-bit timing circuit with a 4-bit prescaler. The timer counter is decremented by 1 at 

every CLKOUT cycle. Each time the counter decrements to 0, a timer interrupt is generated. The timer 

can be stopped, restarted, reset or disabled by specifi c status bits.

10.12.6 Clock Generator

The clock generator consists of an internal oscillator and a phase-locked loop (PLL) circuit. The clock 

generator can be driven internally by a crystal resonator circuit or externally by a clock source. The PLL 

circuit can generate an internal CPU clock by multiplying the clock source by a specifi c factor; thus, a 

clock source with a lower frequency than that of the CPU should be used.

10.12.7 Serial Ports

The serial ports on the ¢54X vary by device, but four types of serial ports are represented: synchronous, 

buffered, multichannel buffer (McBSP) and time-division multiplexed (TDM). Table 10.7 gives the 

number of each type of serial ports on the various ¢54X devices.

Table 10.7 Serial port interfaces on the TMS320C54X devices

Serial ports ¢541 ¢542, ¢543 ¢545, ¢540 ¢548/ ¢549 ¢5402 ¢5410 ¢5420

Synchronous 2 0 1 0 0 0 0

Buffered 0 1 1 2 0 0 0

McBSP 0 0 0 0 2 3 6

TDM 0 1 0 0 0 0 0

Synchronous Serial I/O Ports The synchronous serial ports are high-speed, full-duplexed serial 

ports that provide direct communication with serial devices such as codecs, analog-to-digital (A/D) 

converters and other serial systems. When more than one synchronous serial port resides on a ¢54X, 

these ports are identical but independent. Each synchronous serial port can operate at upto one-fourth 

the machine cycle rate (CLKOUT). The synchronous serial port transmitter and receiver are double 

buffered and individually controlled by maskable external interrupt signals. Data is framed either as 

bytes or as words.

10.12.8 Buffered Serial Ports

A buffered serial port (BSP) is a synchronous serial port that is enhanced with an autobuffering unit and 

is clocked at the full CLKOUT rate. It is full-duplexed and double-buffered to offer fl exible data stream 

length. The autobuffering unit supports high-speed transfers and reduces the overhead of servicing 

interrupts.

10.12.9 TDM Serial Ports

A time-division multiplexed (TDM) serial port is a synchronous serial port that is enhanced to allow 

time-division multiplexing of the data. It can be confi gured for either synchronous operations or for 

TDM operations and is commonly used in multiprocessor applications.

EXTERNAL BUS INTERFACE 10.13

The ¢54X can address upto 64K words of data memory, 64K words of program memory (8M words in 

the ¢548/9/02/10/20), and 64K words of 16-bit parallel I/O ports. Accesses to either external memory or 
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I/O ports take place through the external interface. Individual space-select signals, D
—

S
–
, P
—

S and I
—
S allow 

the selection of physically separate spaces. The interface’s external ready input signal and software-

generated wait states allow the processor to interface with memory and I/O devices of many different 

speeds. The interface’s hold modes allow an external device to take control of the ¢54X buses; in this 

way, an external device can access the resources in the program, data and I/O spaces. External memory 

can be accessed by most ¢54X instructions. However, accessing I/O ports requires the use of special 

instructions: PORTR and PORTW.

DATA-ADDRESSING 10.14

The ¢54X offers seven basic data addressing modes:

Immediate Addressing uses the instruction to encode a fi xed value.

Absolute Addressing uses the instruction to encode a fi xed address.

Accumulator Addressing uses accumulator A to access a location in program memory as data.

Direct Addressing uses 7 bits of the instruction to encode the lower 7 bits of an address. The 7 bits are 

used with the data page pointer (DP) or the stack pointer (SP) to determine the actual memory address.

Indirect Addressing uses the ARs to access memory.

Memory-Mapped Register Addressing uses the memory-mapped registers without modifying either 

the current DP value or the current SP value.

Stack Addressing manages adding and removing items from the system stack. During the execution 

of instructions using direct, indirect or memory-mapped register addressing, the data-address generation 

logic (DAGEN) computes the addresses of data-memory operands.

PROGRAM ADDRESS GENERATION LOGIC (PAGEN) 10.15

Program memory is usually addressed on a ¢54X device with the program counter (PC). With some 

instructions, however, absolute addressing may be used to access data items that have been stored in 

program memory. The PC, which is used to fetch individual instructions, is loaded by the program-

address generation logic (PAGEN). Typically, the PAGEN increments the PC as sequential instructions 

are fetched. However, the PAGEN may load the PC with a non-sequential value as a result of some 

instructions or other operations. Operations that cause a discontinuity include branches, calls, returns, 

conditional operations, single-instruction repeats, multiple-instruction repeats, reset and interrupts. For 

calls and interrupts, the current PC is saved onto the stack, which is referenced by the SP.

When the called function or interrupt service routine is fi nished, the PC value that was saved is 

restored from the stack via a return instruction.

APPENDIX 10 

54X INSTRUCTION SET SUMMARY AND TRANSLATION FROM 5X TO 54X INSTRUCTIONS

A10.1

TMS320C54X Instruction Summary

ABDST Absolute distance

ABS Absolute value of accumulator
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ADD Add to accumulator

ADDC Add to accumulator with carry

ADDM Add long-immediate value to memory

ADDS Add to accumulator with sign-extension suppressed

AND And with accumulator

ANDM And memory with long immediate

B[D] Branch unconditionally

BACC[D] Branch to location specifi ed by accumulator

BANZ[D] Branch on auxiliary register not zero

BC[D] Branch conditionally

BIT Test bit

BITF Test bit fi eld specifi ed by immediate value

BITT Test bit specifi ed by TREG

CALA[D] Call subroutine at location specifi ed by accumulator

CALL[D] Call unconditionally

CC[D] Call conditionally

CMPL Complement accumulator

CMPM Compare memory with long immediate

CMPR Compare auxiliary register with ARO

CMPS Compare select max and store

DADD Double precision/dual mode add to accumulator

DADST Double precision load with TREG add/dual 16-bit load with TREG add/subtract

DELAY Memory delay

DLD Long word load to accumulator

DRSUB Double precision/dual 16-bit subtract from long word

DSADT Long load with TREG add/dual 16-bit load with TREG subtract/add

DST Store accumulator in long word

DSUB Double precision/dual 16-bit subtract from accumulator

DSUBT Long-word load with TREG subtract/dual 16-bit load with TREG subtract

EXP Accumulator exponent

FIRS Symmetrical fi nite impulse response fi lter

FRAME Stack pointer immediate offset

IDLE Idle until interrupt

INTR Software interrupt

LD Load accumulator with shift

LD Load TREG/DP/ASM/ARP

LDM Load memory-mapped register

LD||MAC[R] Multiply accumulate with/without rounding and parallel load

LD||MAS[R] Multiply subtract with/without rounding and parallel load

LDR Load memory value in accumulator high with rounding

LDU Load unsigned memory value

LMS Least mean square

LTD Load TREG and insert delay

MAC[R] Multiply accumulate with/without rounding
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MACA[R] Multiply by accumulator A and accumulate

MACD Multiply by program memory and accumulate with delay

MACP Multiply by program memory and accumulate

MACSU Multiply signed by unsigned and accumulate

MAR Modify auxiliary register

MAS[R] Multiply and subtract

MASA[R] Multiply by accumulator A and subtract

MAX Accumulator maximum

MIN Accumulator minimum

MPY[R] Multiply

MPYA Multiply by accumulator A

MPYU Multiply unsigned

MVDD Move data from data memory to data memory with X, Y addressing

MVDK Move data from data memory to data memory with destination addressing

MVDM Move data from data memory to memory-mapped register

MVDP Move data from data memory to program memory

MVKD Move data from data memory to data memory with source addressing

MVMD Move data from memory-mapped register to data memory

MVMM Move data from memory-mapped register to memory-mapped register

MVPD Move data from program memory to data memory

NEG Negate accumulator

NOP No operation

NORM Normalisation

OR OR with accumulator

ORM OR memory with constant

POLY Polynomial evaluation

POPD Pop top of stack to data memory

POPM Pop top of stack to memory-mapped register

PORTR Read data from port

PORTW Write data to port

PSHD Push data-memory value onto stack

PSHM Push memory-mapped register onto stack

RC[D] Return conditionally

READA Read data memory addressed by accumulator A

RESET Software reset

RET[D] Return

RETE[D] Enable interrupts and return from interrupt

RETF[D] Enable interrupts and fast return from interrupt

ROL Rotate accumulator left

ROLTC Rotate accumulator left using TC

ROR Rotate accumulator right

RPT Repeat next instruction

RPTB[D] Block repeat

RPTZ Repeat next instruction and clear accumulator
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RSBX Reset status register bit

SACCD Store accumulate conditionally

SAT Saturate accumulator

SFTA Shift accumulator arithmetically

SFTC Shift accumulator conditionally

SFTL Shift accumulator logically

SQDST Square distance

SQUR Square

SQURA Square and accumulate

SQURS Square and subtract

SRCCD Store block repeat counter conditionally

SSBX Set status register bit

ST Store TREG, TRN, or immediate value into memory

STH Store accumulator high into memory

STL Store accumulator low into memory

STLM Store accumulator low into memory-mapped register

STM Store immediate value into memory-mapped register

ST||ADD Store accumulator with parallel add

ST||LD Store accumulator with parallel load

ST||MAC[R] Parallel store and multiply accumulator with/without rounding

ST||MAS[R] Parallel store and multiply and subtract

ST||MPY Parallel store and multiply

ST||SUB Parallel store and subtract

STRCD Store TREG conditionally

SUB Subtract from accumulator

SUBB Subtract from accumulator with borrow

SUBC Subtract conditionally

SUBS Subtract from accumulator with sign-extension suppressed

TRAP Software interrupt

WRITA Write memory data addressed by accumulator A

XC Execute conditionally

XOR Exclusive-or with accumulator

XORM Exclusive-or memory with constant

*Highlighted instruction are non-repeatable instructions.

A10.2 Instruction Set of C54X

In this appendix, to facilitate the quick understanding of the instruction set of 54X, various registers, 

bit fi elds and instructions of 5X and their equivalents in 54X are given. The registers, bit fi elds and 

instructions which are new in 54X are also given. Some of the 5X registers, bit fi elds and instructions 

don’t have an equivalent in 54X. The entries where a “- “ appears in the tables in this appendix denote 

that there is no 54X equivalent for the corresponding 5X register/bit fi eld/instruction.

CPU Register Mapping Table A 10.2.1b gives the list of C5X registers and their equivalent 54X reg-

isters. Even where there is an equivalent register, bit positions and/or functionality may change between 
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¢C5X and ¢C54X. Table A 10.2. la gives the list of CPU registers which are not in 5X but are present in 

54X.

Table A10.2.1a New ¢C54X CPU registers/fi elds

¢C54X ¢C54X register description

AG A Register guard band

BG B Register guard band

BK Block size register

SP Stack pointer

TRN Transition register

XPC Extended addressing register (548/9/02/10/20 only)

Table A10.2.1b CPU register mapping

¢C5X ¢C54X ¢C5X fi eld description

ACC A Accumulator

ACCB B Accumulator buffer

AR0 AR0 Auxiliary register 0

AR1-AR7 AR1-AR7 Auxiliary register 1-7

ARCR — Auxiliary register compare register

BMAR — Block-move address register.

BRCR BRC Block repeat counter register.

CBER1 — Circular buffer end address 1

CBER2 — Circular buffer end address 2

CBSR1 — Circular buffer start address 1

CBSR2 — Circular buffer start address 2

DBMR — Dynamic bit manipulation register

GREG — Global memory allocation register

IFR IFR Interrupt fl ag register

IMR IMR Interrupt mask register

INDX — Indirect addressing index register

PAER REA Block repeat end address

PASR RSA Block repeat start address

PMST PMST Processor-mode-status register

PREG — Product register

RPTC — Repeat-counter register

STO STO Status register 0

ST1 ST1 Status register 1

TREGO T Temporary register 0

TREG1 — Temporary register 1

TREG2 — Temporary register 2
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Peripheral Register Mapping Peripheral Register Mapping between 5X and 54X is given in Table 

A10.2.2b. The new peripheral registers in 54X are given in Table A 10.2.2a. Peripheral registers dif-

fer according to the original and target processor family members. No single processor will contain all 

registers in Table A 10.2.2a or A10.2.2b.

Table A10.2.2a New 54X peripheral registers

¢C54X ¢C54X register description

ARR[0,1] Address receive register (BSP)

AXR[0,1] Address transmit register (BSP)

BSCR Bank switch control register

BDXR[0,1] Transmit register (BSP)

BDRR[0,1] Receive register (BSP)

BKR[0,1] Receive buffer-size register (BSP)

BKX[0,1] Transmit buffer-size register (BSP)

BSPC [0,1] Serial port control (BSP)

SPCE [0,1] Serial port control extension (BSP)

Table A10.2.2b Peripheral register mapping

¢C5X ¢C54X ¢C5X fi eld description

ARR ARR Address receive register (BSP)

AXR AXR Address transmit register (BSP)

BKR BKR Receive buffer-size register (BSP)

BKX BKX Transmit buffer-size register (BSP)

BDXR BDXR Transmit register (BSP)

BDRR BDRR Receive register (BSP)

BSPC BSPC Serial port control (BSP)

CWSR — Wait-state control register

DRR DRR Transmit register(SP)

DXR DXR Receive register(SP)

IOWSR IOWSR IO wait-state register

HPIC HPIC Host port control register

PA[0-15] [0x50-0x5F] IN or OUT operand

PDWSR SWWSR Software wait-state control register

PRD PRD Timer period register

SPC SPC Serial port (SP) control

SPCE SPCE Serial port control extension (BSP)

TCSR TCSR Channel select register (TDM-SP)

TCR TCR Timer control register

TDXR TDXR Transmit data register (TDM-SP)

TIM TIM Timer counter register

TRAD TRAD Received address register (TDM-SP)

TRCV TRCV Receive data register (TDM-SP)

TRTA TRTA RXATX address register (TDM-SP)

TSPC TSPC Serial port control (TDM-SP)
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CPU Bit Field Mapping The assembler and instruction sets allow for some bit fi elds to be accessed 

and modifi ed explicitly as well as implicitly. Table A 10.2.3b gives CPU Bit-fi eld Mapping between 5X 

and 54X. Table A 10.2.3a gives the list of bit fi elds which are unique to 54X.

Table A10.2.3a New ¢C54X bit fi elds

¢C54X ¢C54X fi eld description

ASM Accumulator shift mode

C16Dual 16-bit ALU arithmetic mode

CLKOFF Disable CLKOUT bit

CMPT ARP compatibility

CPL Compiler mode

DROM Data ROM enable

OVB Overfl ow fl ag for B accumulator

SMUL Saturation on multiplication

Table A10.2.3b CPU bit-fi eld mapping

¢C5X ¢C54X ¢C5X fi eld description

ARB — Auxiliary register pointer buffer

ARP ARP Auxiliary register pointer

AVIS AVIS Address visibility

BRAF BRAF Block repeat active fl ag

C C Carry

CAR1 — Circular buffer auxliary register 1

CAR2 — Circular buffer auxiliary register 2

CENB1 — Circular buffer enable 1

CENB2 — Circular buffer enable 2

CNF — On-chip RAM confi guration

DP DP Data page pointer

HM HM Hold mode bit

 % INTM INTM Global interrupt mask bit

IPTR IPTR Interrupt vector table pointer

MPNMC MPNMC Microprocessor/Microcontroller

NDX — Enable INDX register

OV OVA Overfl ow fl ag

OVLY OVLY Internal RAM overlay

OVM OVM Overfl ow mode

PM FRCT Product mode PM = 0,1 only

RAM — Program RAM enable

SXM SXM Sign extension mode

TC TC Test control bit

TRM — Enable multiple T registers

XF XF External fl ag
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Data, Program and I/O Addressing Modes In the assembly language, the symbols used for indicat-

ing the addressing modes/operand addresses in 5X and their equivalents in 54X assembly language are 

given in Table A10.2.4b. Table A10.2.4a gives the syntax for the new 54X addressing modes/operands.

Table A10.2.4a Syntax for new ¢C54X data and program addressing modes

¢C54X ¢C54X addressing description

*SP0 Stack pointer relative

*+ARx. Indirect with preincrementation

*ARx-% Indirect with modulo circular addressing

*ARx +% Indirect with modulo circular addressing

*ARx -0% Indirect with modulo circular addressing and offset

*ARx +0% Indirect with modulo circular addressing and offset

*ARx (Ik) Indirect with long immediate offset and no modify

*+ARx(lk) Indirect with long immediate offset and premodify

*+ARx (lk)% Indirect with long immediate offset, premodify and circular

Xmem,Ymem 1 or 2 indirect operands per instruction

*(lk) Absolute addressing

[XPC] Far program addressing

Table A10.2.4b Data, program and I/O addressing modes mapping

¢C5X ¢C54X ¢C5X addressing mode

Dma Dma Direct

Dma,shift dma,shift Direct with shift

* *AR[ARP] Indirect

*+ *AR[ARP]+ Indirect with increment modify

*– *AR[ARP]- Indirect with decrement modify

*0+ *AR[ARP]+0 Indirect with index modify

*0- *AR[ARP]-0 Indirect with index modify

*BR0+ *AR[ARP]+0B Indirect with bit-reverse modify

*BR0- *AR[ARP]-0B Indirect with bit-reverse modify

*,shift *AR[ARP] Shift indirect with shift

*,ARP *AR[ARP] Indirect with ARP modify

*,shift ARP*AR[ARP] Shift indirect with shift and ARP modify

#k #k Short immediate (8, 9, 13 bit)

#lk #lk Long immediate (16 bit)

MMR MMR Memory mapped register

Dmad Dmad Data memory address

[ACC] [A] Accumulator program addressing

Pmad Pmad Program memory address

PAx. PA Port address
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Conditional Code Mapping The combinations of conditional codes that can be used on the ¢C5X are 

more fl exible than that of the ¢C54X (i.e. mixing control and signed conditions). If this ¢C54X criteria 

is breached, then an error will be reported by the assembler. Table A10.2.5b gives the mapping between 

5X and 54X condition codes. Table 10.2.5a gives the list of new condition codes in 54X.

Table A10.2.5a New ¢C54X conditional codes

¢C54X ¢C54X condition description

BOV Overfl ow detected (B)

BNOV No Overfl ow detected (B)

BEQ B = 0

BNEQ B <> O

BLT B < 0

BLEQ B <= 0

BGT B > 0

BGEQ B => 0

NBIO BIO signal high

Table A10.2.5b Conditional code mapping

¢C5X ¢C54X ¢C5X condition description

EQ AEQ ACC = 0

NEQ ANEQ ACC <> 0

LT ALT ACC < 0

LEQ ALEQ ACC <= 0

GT AGT ACC > 0

GEQ AGEQ ACC => 0

C C Carry = 1

NC NC Carry = 0

OV AOV Overfl ow detected

NOV ANOV No Overfl ow detected

IO BIO BIO signal low

TC TC Test control = 1

NTC NTC Test control = 0

UNC UNC Unconditional

 Accumulator Source Instructions Table A10.2.6b gives the list of instructions in 5X that do not use 

Data or Program memory as the source of the operation. The accumulators are the only source.

Table A10.2.6a New ¢C54X accumulator source instructions

¢C54X ¢C54X instruction description

ADD [ASM] Add with fi xed shift or using ASM register

AND AND with fi xed shift

(Contd.)
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LD [ASM] Load with fi xed shift or using ASM register

OR OR with fi xed shift

RND Round accumulator (215 )

ROLTC Rotate register left with TC shifted into LSB

SAT Saturate accumulator

SFTC Shift register left if 2 sign bits

SUB [ASM] Sub with fi xed shift or using ASM register

XOR XOR with fi xed shift

Table A10.2.6a gives the list of new instructions of 54X with the accumulator as the source.

Table A10.2.6b Accumulator source instructions

¢C5X ¢C54 X ¢C5 X instruction description

ABS ABS A Absolute value of ACC

ADCB ADDC/ADD ACC = ACC + ACCB + C

ADDB ADDA, B, A ACC = ACC + ACCB

ANDB ANDA,B,/A ACC = ACCB & ACC

BSARk(k=1...16) LDA, -k, A ACC >> k (barrel shift)

CMPL CMPL A Complement ACC

CRGT MAX A ACC = Max (ACC, ACCB), set C

CRLT MINA ACC = Min (ACC, ACCB), set C

EXAR — Exchange ACCB and ACC(3)

LACB LDB,A ACC = ACCB

NEG NEC A Negate ACC

NORM *[+/-] EXPA

NORM A Normalise ACC

ORB OR A, B, A OR ACCB with ACC

ROL ROL A Rotate ACC << 1

ROLB ROL, ROL Rotate ACCB and ACC << 1

ROR ROR A Rotate ACC >> 1

RORB ROR, ROR Rotate [ACCB I ACC] >> 1

SACB LDA, B ACCB = ACC

SATH — ACC >> 16 if T[4:4] = 1

SATL — ACCL >> T[3:0]

SBB SUBB,A ACC = ACC - ACCB

SBBB SUBB/SUB ACC = ACC - ACCB -B

SFL SFTLA,1 ACC << 1

SFLB SFTL, ROL [ACC I ACCB] << 1

SFR SFTA, SFTA ACC >> 1

SFRB SFTA, SFTA, ROL [ACC I ACCB] >> 1

XORB XORB, A ACC = ACCB XOR ACC

ZAP LD # 0, A ACC = P = 0

Table A10.2.6a (Contd.)



An Overview of TMS320C54X  283

Accumulator and Memory Source Instructions Instructions of 5X and its near equivalents in C54X 

that use accumulators, program and data memory as sources are given in Table A10.2.7b. The new in-

structions of 54X are given in Table A10.2.7a.

Table A10.2.7a New ¢C54X accumulator and memory source instructions

¢C54X ¢C54X instruction description

ABDST Xmem, Ymem AB5 distance of 2 memory values

ADD Xmem, Ymem Add 2 data memory operands

BIT Test bit in memory location

CMPS Compare, select, store

DADD 32-bit add with memory

DADST 32-bit add/sub with T

DLD Load 32-bit value

DRSUB 32-bit reverse sub with memory

DSADT 32-bit sub/add with T

DST 32-bit store to memory

DSUB 32-bit sub with memory

DSUBT 32-bit sub with T

LD (ASM) Load with ASM shift

SACCD Conditional store of accumulator

SRCCD Conditional store of BRC

ST || LD Parallel store, load

ST || ADD Parallel store, add

ST || SUB Parallel store, sub

STH/L (ASM) Store with ASM shift

STRCD Conditional store of T

SUB Xmem, Ymem Sub 2 data memory operands

Table A10.2.7b Accumulator and memory source instructions

¢C5X ¢C54X ¢C5X instruction description

ADD dma[,shift] ADD dma[,shift], A ACC+=dma[<< shift]

ADD #k ADD #lk, A ACC +=lk

ADD #lk[,shift] ADD #lk[,shift],A ACC +=lk [<< shift]

ADD dma,16 ADD dma,16, A ACC +=dma << 16

ADDC dma ADDC dma, A ACC +=(dma + C)

ADDS dma ADDS dma, A ACC +=(unsigned)dma

ADDT dma ADDT dma,TS, A ACC +=dma << T

AND dma AND dma, A ACC =dma & ACC

AND #lk[,shift] AND #lk[,shift],A ACC =lk[,<<shift]&ACC

AND #lk,16 AND #lk,16, A ACC =lk<<16l ACC

LACC dma[,shift] LD dma[,shift], A ACC =dma [«shift]

(Contd.)
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LACC #lk[,shift] LD #lk[,shift],A ACC =lk[<< shift]

LACC dma,16 LD dma,16, A ACC =dma << 1 6

LACL #k LD #k, A ACCL =k

LACL dma LDU dma, A ACCL =(dma + C)

LACT dma LD dmaJS, A ACC =dma << T

LAMM mmr LDM mmr, A . ACC =mmr

OR dma OR dma, A ACC =dma I ACC

OR #lk[,shift] OR #lk[,shift],A ACC =lk[,<< shift] I ACC

OR #lk,16 OR #lk,16 ACC =lk<<16 I ACC

SACH dma[,shf] STHA, dma[,shift] Dma = ACCH<< shf

SACL dma[,shf] STLA, dma[,shift] Dma = ACCL<< shf

SAMM mmr STLM A,mmr mmr = ACCL

SUB dma[,shift] SUB dma[,shift],A ACC= dma [<< shift]

SUB #k SUB #lk, A ACC= lk

SUB #lk[,shift] SUB #lk[,shift],A ACC= lk [« shift]

SUB dma,16 SUB dma,16, A ACC= dma << 1 6

SUBB dma SUBB dma, A ACC= (dma + C)

SUBC dma SUBC dma, A ACC= dma (conditional)

SUBS dma SUBS dma, A ACC= (unsigned)dma

SUBT dma SUB dmaJS, A ACC= dma << T

XOR dma XOR dma, A ACC= dmaXORACC

XOR #lk[,shift] XOR #lk[,shift],A ACC= lk[,<< shift] XORACC

XOR #lk,16 XOR #lk,16,A ACC= lk<< 16XORACC

ZALR dma LDR dma, A ACC= 0, ACCH=dma

 Auxiliary Register and Data Page Pointer Instructions

Table A10.2.8a Auxiliary register and data page pointer instructions

¢C5X ¢C54X ¢C5X instruction description

ADRKk MAR*+AR[ARP](+k) Add short immediate to AR[ARP]

CMPR [0,1,2,3] CMPR #10,1,2,3], AR[ARP] Compare AR[ARP] with ARCR

LAR ARx, dma MVDK dma,Arx Load ARx. from memory

LAR ARx, #k STM #k, Arx Load ARx. with short immed.

LARARx, #lk STM #lk, Arx Load ARx. with long immed.

LDP dma LDdma, DP Load DP from memory

LDP#k LD#k, DP Load DP with 9bit immediate

MAR *, ARP — Modify ARP

MAR *[+/-] [,ARP] MAR*AR[ARP][+/-] Modify auxiliary register

SAR ARx, dma MVKD ARx, dma Store Auxiliary register to mem.

SBRKk MAR*+AR[ARP](-k) Sub short immediate from AR[ARP]

Table A10.2.7b (Contd.)
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T Register, P Register and Multiply Instructions

Table A10.2.9a T register, P register and multiply instructions

¢C5X ¢C54X ¢C5X Instruction Description

APAC — Add PREG to ACC(1)

LPH dma — Load PREG from data mem(1)

LT dma LD dma, T Load T from data mem

LTA dma LD dma, T Load T from data mem & ACC +=P

LTD dma LD dma, T Load T from data mem & ACC +=P & dmov

LTP dma LD dma, T Load T from data mem & ACC=P

LTS dma LD dma, T Load T from data mem & ACC-=P

MAC pma, dma MACP dma, pma, A Multiply & accumulate

MACD pma, dma MACD dma, pma, A Multiply & accumulate & dmov

MADD dma — Multiply & accumulate & dmov using BMAR(2)

MADS dma — Multiply & accumulate & dmov using BMAR(2)

MPY dma MPY dma, A Multiply signed

MPY#k MPY#lk, A Multiply signed with short immed.

MPY#lk MPY#lk, A Multiply signed with long immed.

MPYA dma MPY dma, A Multiply & accumulate

MPYS dma MPY dma, A Multiply & accumulate

MPYU dma MPYU dma, A Multiply unsigned

PAC — ACC = PREC(1)

SPAC — ACC-=PREG(1)

SPH dma — Store PREG hi to data mem.(1)

SPL dma — Store PREG lo to data mem.(1)

SPM0 RSBX FRCT PREG shift count = 0

SPM 1 SSBX FRCT PREG shift count = 1

SPM [2,3] — PREG shift count = 4,-6

SQRAdma SQURdma,A Square & accumulate

SQRSdma SQURdma,A Square & accumulate

ZPR — Zero PREG(1)

Note. (1) PREG is invalid register for 54X.

 (2) BMAR is invalid register for 54X.

Table A10.2.9b New ¢C54X T register, P register and multiply instructions

¢C54X ¢C54X instruction description

FIRS Symmetrical fi lter operation

LD || MAC Load and MAC

LD || MACR Load and MACR

LD || MAS Load and MAS

LD || MASR Load and MASR

LMS Least mean squares fi lter

(Contd.)
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MACR Multiply/accumulate with rounding

MACA[R] Multiply/accumulate with AH as input [& rounding]

MACSU Multiply/accumulate signed/unsigned

MASR Multiply/accumulate with rounding

MASA[R] Multiply/accumulate with AH as input [& rounding]

MPYA Multiply with AH as input

MPYR Multiply & rounding

POLY Polynomial operation

SQDST Square distance

SQUR Square with A register input

SQUR[A,S] Square with accumulate

ST || MAC Store and MAC

ST || MACR Store and MACR

ST || MAS Store and MAS

ST || MASR Store and MASR

ST || MPY Store and MPY

Branch, Call and Return Instructions

Table A10.2.10a Branch, call and return instructions

C5X ¢C54X ¢C5X instruction description

B pma B pma Branch direct translation

B pma, *[+/-][,ARP] BD pma Branch with AR update

BACC BACC Branch on ACC

BACCD BACCD Delayed branch on ACC

BANZ pma BANZ pma,*ARx- ARx conditional branch

BANZ pma,*[+/-], ARP BANZ pma,*ARx[+/-] ARx conditional branch

BANZD pma BANZ pma,*ARx- ARx conditional delayed branch

BANZD pma, *[+/-], ARP BANZ pma,*ARx[+/-] ARx conditional delayed branch

BCND pma,conds BC pma, conds Conditional branch

BCNDD pma,conds BCD pma, conds Conditional delayed branch

BD pma BD pma Delayed branch

BD pma[,*,ARP] BD pma Delayed branch with AR update

CALA CALA A Call on ACC

CALAD CALAD A Delayed call on ACC

CALL pma CALL pma Call

CALL pma*[+/-][,ARP] CALLD pma Call with AR update

CALLD pma CALLD pma Delayed call

CALLD pma[,*,ARP] CALLD pma Delayed call with AR update

CC pma, conds CC pma, conds Conditional call

Table A10.2.9b (Contd.)

(Contd.)
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CCD pma, conds CCD pma, conds Conditional delayed call

INTRk INTRk+15 Software interrupt

NMI INTR1 Non-maskable interrupt

RET RET Return

RETC conds RC conds Conditional return

RETD RETD Delayed return

RETE RETE Return from interrupt with enable

RETI RET Return from interrupt

TRAP TRAP 2 Software TRAP

Table A10.2.10b New ¢C54X branch, call, return instructions

¢C54X ¢C54X instruction description

FB[D] Far branch (548/9)

FBACC[D] Far branch on ACC(548/9)

FCALA[D] Far call on ACC(548/9)

FCALL[D] Far call (548/9)

FRET[D] Far return (548/9)

FRETE[D] Far return with INTM enable (548/9)

RESET Software reset

RETF[D] Fast return

Program Control Instructions Instructions that modify the program counter in a non-sequencial 

manner, but which does not use branch instructions.

Table 10.2.11a New ¢C54X program control instructions’

C54X ¢C54X instruction description

FRAME Modify stack pointer by immediate

Table A10.2.11b Program control instructions

¢C5X ¢C54X ¢C5X instruction description

POP POPM AL Pop low ACC from stack (1)

POPD dma POPD dma Pop data memory from stack

PSHD dma PSHD dma Push data memory to stack

PUSH PUSHMAL Push low ACC to stack

RPT #k RPT #k Single repeat(short Imm.)

RPT #lk RPT #lk Single repeatdong Imm.)

RPT dma RPT dma Single repeat(dma)

RPTB RPTB Block repeat

RPTZ #lk RPTZ A, #lk Single repeat with ACC clear

XC 1,conds XC 1,conds Execute conditional 1

XC 2, conds XC 2,conds Execute conditional 2

Note. (1) Stack for ¢C54Xis RAMbased and must have SP initialized.

Table A10.2.10a (Contd.)
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I/O and Data Memory Operations

Table A10.2.12a I/O and data memory operations

¢C5X ¢C54X ¢C5X instruction description

BLDD #addr, dma MVKD #addr, dma Data to data

BLDD dma, #addr MVDK dma, #addr Data to data reversed

BLDDBMAR, dma — Data to data using BMAR (1)

BLDD dma, BMAR — Data to data using BMAR reversed (1)

BLDP dma — Data to program using BMAR (1)

BLPD #pma, dma MVPD pma, dma Program to data

BLPD BMAR,dma — Program to data using BMAR (1)

DMOV dma DELAY dma Data move

IN dma, PA PORTR PA, dma I/O port to data

LMMR mmr, #addr MVDM #addr, mmr Data to memory-mapped register

LMMR *, #addr MVDM #addr, *AR[ARP] Data to memory-mapped register

OUT dma, PA PORTW dma, PA Data to I/O port

SMMR mmr, #addr MVMD mmr, #addr Memory-mapped register to data

SMMR *, #addr MVMD AR[ARP],#addr Memory-mapped register to data

TBLR dma READA dma Program to data using ACC

TBLW dma WRITA dma Data to program using ACC

Note. (1) BMAR is invalid register for 54X.

Table A10.2.12b New ¢C54X I/O and data memory operations

¢C54X ¢C54X instruction description
ADDM Add long immediate to data memory
MVDD Move Xmem to Ymem
MVMM Move Mmr to Mmr

Miscellaneous Control Instructions

Table A10.2.13a Miscellaneous control instructions

¢C5X ¢C54X ¢C5X instruction description

BIT dma, bit BITF dma, #1«(15-bit) Test bit (immediate)

BITT dma BITT dma Test bit (TREG)

CLRC bit RSBX bit Clear bit

IDLE IDLE1 Idle

IDLE2 IDLE 2 Idle 2 (low-power mode)

LST #0, dma MVDM dma, STO Load status register

LST #1, dma MVDM dma, ST1 Load status register

LST #0, *[+/-...] MVDK*ARx[+/-], STO Load status register

LST #1, *[+/-...] MVDK*ARx[+/-], ST1 Load status register

NOP NOP No operation

SETC bit SSBXbit Set bit

SST #0, dma MVMD STO, dma Store status register

SST #1, dma MVMDST1, dma Store status register

SST #0, *[+/-...] MVKDST0,*ARx [+/-..] Store status register

SST #1, *[+/-...] MVKDST1,*ARx[+/-..] Store status register
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Review Questions 

10.1 What are the functional blocks present in 54X but 
not in 5X? Explain the function performed by each of 
them.

10.2 Compare the multiplier units in 54X and 5X.

10.3 Compare the address and data buses of 54X and 
5X.

10.4 The data stored in data memory is 16 bits long. But 
the multiplier requires 17 bit data. Explain how the MSB 
is generated?

10.5 Explain the two ways in which the accumlator may 
be loaded with the most positive value or most negative 
value when overfl ow occurs.

10.6 Explain how the rounding operation is carried by 
the adder/multiplier units of 54X.

10.7 What is the use of guard bits in accumlators?

10.8 What is the use of the following registers of 54X?

10.9 (a) T  (b) TRN  (c) BIC  (d) XPC

10.10 Explain the operation of CSSU of 54X and explain 
its use with an application.

10.11 Explain the operation of the exponent encoder in 
54X.

Self Test Questions 

10.1 No. of Auxiliary Register ALU(s) in 54X is ——— 
and number of data buses which can be used for reading 
data from data memory is ———.
(a) 1, 1 (b) 1, 2 (c) 2, 1 (d) 2, 2

10.2 Which of the following are available in 54X but not 
in 5X?
(a) SP (b) 16 bit timer (c) XPC (d) 8-bit HPI

10.3 Number of data bus in 54X is ———.
(a) 1 (b) 2 (c) 3 (d) 4

10.4 Number of address bus in 54X is ———.
(a) 1 (b) 2 (c) 3 (d) 4

10.5 is used to store the result of adder units in the 
ALU of 54X.
(a) Accumlator A (b) Accumlator B
(c) Either A or B (d) T Register

10.6 ——— is used to store the result of multiplier units 
in the ALU of 54X.
(a) Accumlator A (b) Accumlator B

(c) Either A or B (d) PREG
(e) T register

10.7 In the LD || MAC parallel instruction, the register 
where the MAC result is stored is ———.
(a) A (b) B (c) A or B (d) T register

10.8 Bits 32-16 of ——— can be used as an input to the 
multiplier in 54X.
(a) A  (b) B
(c) Either A or B (d) Neither A or B

10.9 Which of the following registers are present in 5X 
but not in 54X?
(a) PC (b) SP (c) PREG (d) INDX

10.10 The max no. of wait states that software wait-
state generator can produce is ———.
(a) 1 (b) 4 (c) 7 (d) 8



The ¢54X has a number of instructions and addressing modes which are tailored for various DSP 

applications such as FFT computation, symmetric FIR fi ltering, adaptive fi lter (least mean square 

algorithm) and Viterbi decoding. While some of the instructions and registers of its predecessors such 

as ¢2X, ¢24X and ¢5X are retained, some additional registers, instructions and addressing modes for 

both data and program are introduced in ¢54X. To facilitate a quick overview and understanding of the 

instructions of ¢54X with its predecessor, a summary of the instructions of ¢54X and the comparison of 

¢5X registers, bit fi elds and instruction and their equivalent in ¢54X are given in Appendix 10. A list of 

the new registers, bit fi elds and instructions in ¢54X is also given in Appendix 10. In this chapter details 

on the various addressing modes for the operands in the ¢C54X instructions and a brief account of the 

new instructions and instruction syntax in ¢C54X is presented. Additional details on these topics can be 

obtained from TMS320C54X DSP CPU and Peripherals user manual.

DATA ADDRESSING IN ¢C54X 11.1

C54X offers seven basic addressing modes:

Immediate Addressing

Absolute Addressing

Accumulator Addressing

Direct Addressing

Indirect Addressing

Memory-Mapped Register Addressing

Stack Addressing

11.1.1 Immediate Addressing

In immediate addressing, the operand required for an instruction is specifi ed in the instruction word 

itself. The number of bits of the operand can be 3, 4, 8 or 9 bits in length in short immediate addressing 

requiring 1 instruction word. In long immediate addressing the operand is 16 bits long and the instruction 

word is of length 2. Table 11.1 lists the ¢54X instructions in which the operand may be specifi ed using 

immediate addressing. In this table length of the operand for each type of instruction is also specifi ed. 

The immediate addressing is indicated by using the hash (No.) symbol (#) immediately preceding the 

11
TMS320C54X ASSEMBLY

LANGUAGE INSTRUCTIONS
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value or symbol to indicate that it is an immediate value. For example, to load accumulator A, with the 

value 55h in hexadecimal, the instruction syntax used is LD #55h, A

Table 11.1 C54X instructions using immediate addressing modes and the operand length

3&4-bit constant 8-bit constant 9-bit constant 16-bit constant

LD FRAME LD ADD ORM

LD ADDM RPT

RPT AND RPTZ

ANDM ST

BITF STM

CMPM SUB

LD XOR

MAC XORM

OR

11.1.2 Absolute Addressing

In the absolute addressing mode the complete address of the operand is explicitly specifi ed in the 

instruction word itself. In this addressing mode, the content of neither the data page pointer/stack pointer 

nor any of the registers including the accumulators and ARs are used for fi nding the address. Absolute 

addresses are always encoded with a length of 16 bits, so instructions that encode absolute addresses are 

always at least two words in length. There are four types of absolute addressing:

Dmad addressing

 ∑ MVDK Smem, dmad

 ∑ MVDM dmad, MMR

 ∑ MVKD dmad, Smem

 ∑ MVMD MMR, dmad

pmad addressing

 ∑ FIRS Xmem, Ymem, pmad

 ∑ MACD Smem, pmad, src

 ∑ MACP Smem, pmad, src

 ∑ MVDP Smem, pmad

 ∑ MVPD pmad, Smem

PA addressing

 ∑ PORTR PA, Smem

 ∑ PORTW Smem, PA

*(lk) addressing

 ∑ This is used with all instructions that support the use of a single data-memory (Smem) 

operand.

11.1.2.1 Dmad Addressing

Data-memory address (dmad) addressing uses a specifi c value to specify an address in data space. The 

syntax for dmad addressing uses a symbol or a number to specify an address in data space. For example, 

to copy the value contained at the address labeled data1 in data space to the memory location in data 
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space pointed to by AR3, the syntax used is MVKD datal, *AR3. In this example, the address referenced 

by datal is the dmad value.

11.1.2.2 pmad Addressing

Program-memory address (pmad) addressing uses a specifi c value to specify an address in program 

space. The syntax for pmad addressing uses a symbol or a number to specify an address in program 

space. For example, to copy a word in the program-memory location labeled COEFF to a data-memory 

location specifi ed by AR7, the instruction syntax is MVPD COEFF, *AR7-. In this example, the address 

referenced by COEFF is the pmad value.

11.1.2.3 PA Addressing

Port address (PA) addressing uses a specifi c value to specify an external I/O port address. The syntax for 

PA addressing uses a symbol or a number to specify the port address. For example, to copy a value from 

the I/O port at port address FIFO to a data-memory location pointed to by AR5, the instruction used is 

PORTR FIFO, *AR5. In this example, FIFO refers to the port address.

11.1.2.4 *(lk)Addressing

*(lk) addressing uses a specifi c value to specify an address in data space. The syntax for *(lk) addressing 

uses a symbol or a number to specify an address in data space. For example, to load accumulator A with 

the value contained in address BUFFER in data space, the instruction used is LD *(BUFFER), A. The 

syntax for *(lk) addressing allows all instructions that use Smem addressing to access any location in 

data space without changing the DP or initialising an AR. When this form of absolute addressing is used, 

the length of the instruction is extended by one word. For example, a l-word instruction would become 

a 2-word instruction or a 2-word instruction would become a 3-word instruction. The addition of one 

word to an instruction affects its usability in delay slots. Instructions using the *(lk) form of absolute 

addressing cannot be used with repeat single instructions (RPT, RPTZ).

11.1.3 Accumulator Addressing

Accumulator addressing uses the accumulator content as an address. This addressing mode is used to 

address program memory as data. Two instructions allow the accumulator to be used as an address: 

READA Smem and WRITA Smem. READA transfers a word from a program-memory location specifi ed 

by accumulator A to a data-memory location specifi ed by the single data-memory (Smem) operand of 

the instruction. WRITA transfers a word from a data-memory location specifi ed by the Smem operand of 

the instruction to a program-memory location specifi ed by accumulator A. In repeat mode, an increment 

may be used to increment accumulator A.

In most ¢54X devices, the program-memory location is specifi ed by the lower 16 bits of accumulator 

A. However, because the 548/9/02/10/20 has 23 address lines, the program-memory location in an 

548/9/02/10/20 is specifi ed by the lower 23 bits of accumulator A.

11.1.4 Direct Addressing

In direct addressing mode, the instruction contains the lower seven bits of the data-memory address 

(dma). The 7-bit dma is an address offset that is combined with a base address, with the data-page 

pointer (DP) or with the stack pointer (SP) to form a 16-bit data-memory address. Using this form of 

addressing, any of the 128 locations in a page can be accessed in random order without changing the 

DP or the SP. Direct addressing is not the only method of offset addressing. However, the advantage 
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of this mode is that it encodes each instruction and address into a single word. Either DP or SP can be 

combined with the dma offset to generate the actual address. The compiler mode bit (CPL), located in 

status register ST1, selects which method is used to generate the address: When CPL = 0, the dma fi eld 

is concatenated with the 9-bit DP fi eld to form the 16-bit data-memory address. When CPL = 1, the 

dma fi eld is added (positive offset) to SP to form the 16-bit data-memory address. The syntax for direct 

addressing uses a symbol or a number to specify the offset value. For example, to add the contents of 

the memory location VALUE1 to accumulator B, provided that the correct base address is in DP (CPL = 

0) or SP (CPL = 1), the instruction to be used is ADD VALUE 1, B. The lower seven bits of the address 

of VALUE 1 are stored in the instruction word. Figure 11.1 shows the opcode format for instructions 

that use direct addressing. Table 11.2 describes the bits of the direct-addressing instruction. Figure 11.2 

illustrates how the 16-bit data address is formed.

15 - 8 7 6 - 0

Opcode I = 0 dma

Fig. 11.1 Direct-addressing instruction format

CPL

Legend

Register

EA Effective Address
IR Instruction Register

7 LSBs from IR(dma)

DAB(16) (Read)

EAB(16) (Write)
or

CAB(16)(32-Read)

DAGENCPL

0EA DP: offset (IR)
1EA = SP+offset (IR)

Data Bus DB(16)

Data Bus EB(16)

DP(9)

SP(16)

Fig. 11.2 Direct addressing block diagram

Table 11.2 Direct-addressing instruction bit summary

Bit Name Function

15-8 Opcode This 8-bit fi eld contains the operation code for the instruction

7 I = 0 The addressing mode used by the instruction is the direct addressing mode

6-0 Dma This 7-bit fi eld contains the data-memory address offset for the instruction

11.1.4.1 SP-Referenced Direct Addressing

In SP referenced direct addressing, the 7-bit dma in the instruction register is added as a positive offset 

to the SP to form the effective 16-bit data-memory address. The SP points to any address in memory. 

The dma points to the specifi c location on the page, allowing you to access a contiguous 128-word 

(27 – 1) block in memory from any base address. SP can also add or remove items from the stack.
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11.1.4.2 DP-Referenced Direct Addressing

In DP-referenced direct addressing, the 7-bit dma in the instruction register is concatenated with the 

9-bit DP to form the address. Figure 11.3 shows how the two values make up the resulting address.

15 - 7 6 - 0

Value from the DP Value from the IR (dma)

Fig. 11.3 DP-referenced direct address

DP-referenced direct addressing divides memory into 512 pages, because the DP’s range is from 0 to 

511 (29 – 1). Each page has 128 addressable locations, because the dma ranges from 0 to 127 (27 – 1). 

In other words, the DP points to 1 of 512 possible 128-word data-memory pages; the dma points to the 

specifi c location within that page. The only difference between an access to location 0 on page 1 and to 

location 0 on page 2 is the value of the DP. The DP is loaded by the LD instruction.

11.1.5 Indirect Addressing

In indirect addressing, any location in the 64K-word data space can be accessed via a 16-bit address 

contained in an AR. The ¢54X has eight 16-bit ARs (AR0–AR7). Indirect addressing is used mainly 

when there is a need to step through sequential locations in memory in fi xed-size steps. When memory is 

addressed with indirect addressing, the AR and the address can be optionally modifi ed by a decrement, 

an increment, an offset or an index. Special modes offer circular and bit-reversed addressing. A circular 

buffer size register (BK) is used with circular addressing. The AR0 register is used for indexed and bit-

reversed addressing modes in addition to being used to point to memory as the other ARs do. Indirect 

addressing can also be used to access two data-memory locations with one instruction. All four possible 

operations can be performed With the two independent memory locations, viz, (Read, Read), (Write, 

Read), (Write, Write) and (Read, Write).

11.1.5.1 Single-Operand Addressing

Figure 11.4 shows the indirect-addressing instruction format for a single data-memory (Smem) 

operand.

15 - 8 6 - 37 2 - 0

Opcode I = 1 MOD ARF

Fig. 11.4 Indirect-addressing instruction format for a single data-memory operand

In Fig. 11.4, MOD defi nes the type of indirect addressing. ARF defi nes the AR used for addressing. 

ARF depends on the compatibility mode bit (CMPT) in status register ST1:

CMPT - 0 Standard mode. In standard mode, ARF always specifi es the AR regardless of the value in 

ARP. ARP is not updated. ARP must always be set to zero when the DSP is in this mode.

CMPT = 1 Compatibility mode. In compatibility mode, ARP selects the AR if ARF = 0. Otherwise, 

ARF selects the AR and the ARF value is loaded into ARP when the access is completed. *AR0 in the 

assembly instruction indicates the AR selected by ARP in compatibility mode.

11.1.5.2 ARAU and Address-Generation Operation

Two ARAUs (ARAU0 and ARAU1) operate on the contents of the ARs. The ARAUs perform unsigned, 

16-bit AR arithmetic operations. Some addresses can be obtained by premodifying the AR. The ARs 

can be:
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loaded with an immediate value using the STM instruction,

loaded via the data bus by writing to the memory-mapped ARs,

modifi ed by the indirect addressing fi eld of any instruction that supports indirect addressing,

modifi ed by the modify auxiliary register (MAR) instruction and

used as loop counters using the BANZ[D] instruction.

Normally, STM or MVDK is used to load ARs. Both of these instructions allow the next instruction 

to use the new value in the register. Other instructions that load a new value into an AR produce a 

pipeline latency.

11.1.5.3 Single-Operand Address Modifi cations

The addresses used for fetching the operands using indirect addressing mode may be modifi ed before 

or after they are accessed, or left unchanged. The addresses can be modifi ed by incrementing or 

decrementing the address by 1, adding a 16-bit offset or indexing with the value in AR0. These three 

types of actions combined with taking the action either before or after the access, plus the ways of 

leaving the address unchanged make a total of 16 addressing types, each assigned to a value of MOD, 

the 4-bit modifi cation fi eld in the encoding of an instruction using indirect addressing. Table 11.3 lists 

the operand syntax and the description of each addressing type.

Table 11.3 Indirect addressing types with a single data-memory operand

Operand 

syntax

Function Description†

*ARx addr = ARx ARx contains the data memory address

*ARx- addr = ARx

ARx = ARx - 1 After access, the address in Arx is decremented‡ 

*ARx+ addr = ARx

ARx = ARx + 1 After access, the address in ARx is incremented‡§#

*+ARx addr = ARx + 1 ARx = 

ARx + 1 Before access, the address in ARx is incremented

*ARx-0B addr = ARx

ARx = B(ARx–AR0) After access, AR0 is subtracted from ARx with rc-propagation

*ARx-0 addr = ARx

ARx = ARx-AR0 After access, AR0 is subtracted from Arx

*ARx+0 addr = ARx

ARx = ARx + AR0 After access, AR0 is added to Arx

*ARx+0B addr = ARx

ARx = B(ARx + AR0) After access, AR0 is added to ARx with re propagation

*ARx-% addr = ARx

ARx = circ(ARx-1) After access, the address in ARx is decremented with circular addressing‡

*ARx-0% addr = ARx 

ARx=circ(ARx-AR0) After access, AR0 is subtracted from ARx with circular addressing

*ARx+% Addr = ARx

ARx = circ(ARx + 1) After access, the address in ARx is incremented with circular addressing‡

(Contd.)
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*ARx+0% Addr = ARx 

ARx=circ(ARx + AR0) After access, AR0 is added to ARx with circular addressing

*ARx(lk) Addr = ARx + Ik

ARx = ARx The sum of ARx and the 1 6-bit long offset (Ik) is used as the data-memory 

address. ARx is not updated

*+ARx(lk) Addr = ARx + Ik

ARx = ARx + Ik The address in ARx is incremented before its use and added to the signed 

16-bit long offset (Ik). It is then used as the data-memory address

*+ARx(lk)% Addr = circ(ARx + lk) 

ARx = circ(ARx + lk) The address in ARx is incremented before its use and added to a signed 1 

6-bit long offset (Ik) with circular addressing. It is then used as the data-

memory address§

*(lk) addr = Ik An unsigned 16-bit long offset (Ik) is used as the absolute address of data 

memory (absolute addressing)

†
ARx is used as the data-memory address unless otherwise specifi ed.

‡Increment/decrement value is 1 for 16-bit word access and 2 for 32-bit word access.
§This mode is not allowed in memory-mapped register addressing.
#This mode is allowed only for write accesses.

11.1.5.4 Increment/Decrement Address Modifi cations

While an AR is being used, the AR can be modifi ed by incrementing or decrementing its value. The 

syntaxes for using the AR without modifi cation, postdecrementing the AR by 1, postincrementing the AR 

by 1, and preincrementing the AR by 1 are shown in Table 11.3 in the fi rst four entries. Preincrementing 

(*+ARx) is supported only in instructions that access operands in a write operation.

11.1.5.5 Offset Address Modifi cations

Offset addressing is a type of indirect addressing in which a predetermined off-set, or step size, is 

added to the contents of an AR. There are two options for offset addressing. In both cases, a 16-bit long 

offset, which is part of the instruction, is added to the value in the AR and the result is used to address a 

location in data memory. In the fi rst case, the AR is not updated. In the second case, the AR is updated 

with the new address. This type of addressing is useful in accessing a specifi c element of an array or 

structure, especially when the AR is not updated. When the AR is updated, this type of addressing is 

especially useful for stepping through an array in fi xed-size steps. The syntaxes for offset addressing 

of an AR without and with updating the AR using offset addressing are shown in Table 11.3 in line 13 

and 14, respectively. It may be noted that instructions using offset addressing cannot be repeated using 

the repeat single instruction. Premodifi cation by a 16-bit word offset (*+ARx(lk)) uses an extra cycle 

because the instruction code has two or three words. The last word is the offset.

11.1.5.6 Indexed Address Modifi cations

Indexed addressing is a type of indirect addressing in which the contents of AR0 are added to, or 

subtracted from, any other AR, ARx. Indexed addressing differs from offset addressing in that the index 

or step size can be determined during code execution. Because the index is determined during code 

execution, step sizes can easily be adjusted. Indexed addressing also offers an advantage over offset 

addressing: it does not require an additional word for the instruction. The syntaxes for subtracting AR0 

from ARx and for adding AR0 to ARx are shown in Table 11.3.

Table 11.3 (Contd.)
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11.1.5.7 Circular Address Modifi cations

The use of circular addressing is explained in Chapter 2. Many algorithms, such as convolution, 

correlation and FIR fi lters, require the implementation of a circular buffer in memory. In these algorithms, 

a circular buffer is a sliding window containing the most recent data. As new data comes in, the buffer 

overwrites the oldest data. The key to the implementation of a circular buffer is the implementation 

of circular addressing. The circular-buffer size register (BK) specifi es the size of the circular buffer. A 

circular buffer of size R must start on a N-bit boundary (that is, the N LSBs of the base address of the 

circular buffer must be 0), where N is the smallest integer that satisfi es 2N > R. The value R must be 

loaded into BK. For example, a 51-word circular buffer must start at an address whose six LSBs are 0 

(that is, XXXX XXXX XX00 0000
2
 ), and the value 51 must be loaded into BK. In some applications, 

however, it may be possible to use bit-reversed addressing to place a 2N buffer on a 2N boundary and 

offer the effect of circular addressing.

The effective base address (EFB) of the circular buffer is determined by zeroing the N LSBs of a user-

selected AR (ARx). The end of buffer address (EOB) of the circular buffer is determined by replacing 

the N LSBs of ARx with the N LSBs of BK. The index of the circular buffer is simply the N LSBs of 

ARx and the step is the quantity being added to or subtracted from the AR. The following three rules are 

used when circular addressing is to be used:

 ∑ Place the fi rst (lowest) address of the circular buffer on a 2N boundary where 2N is larger than 

the circular buffer size.

 ∑ Use a step less than or equal to the circular buffer size.

 ∑ The fi rst time the circular queue is addressed, the AR must point to an element in the circular 

queue.

Circular addressing typically uses a decrement or an increment by one or a decrement or an increment 

by an index. Premodifi cation by a 16-bit word offset (*+ARx(1k)%) requires an extra code word so that 

the instruction code has two or three words. The last word is the offset. An instruction using indirect-

offset addressing cannot be repeated using a single repeat operation. The syntaxes for each of the fi ve 

types of circular addressing are shown in Table 11.3.

11.1.5.8 Bit-Reversed Address Modifi cations

Bit-reversed addressing enhances execution speed and program memory for FFT algorithms that use 

a variety of radixes. In this addressing mode, AR0 specifi es one half of the size of the FFT. The value 

contained in AR0 must be equal to 2N–1 , where N is an integer, and the FFT size is 2N. An AR points to 

the physical location of a data value. When AR0 is added to the AR using bit-reversed addressing, the 

address is generated in a bit-reversed fashion, with the carry bit propagating from left to right, instead 

of the normal right to left. The syntaxes for each of the two bit-reversed addressing modes are shown 

in Table 11.3.

11.1.5.9 Dual-Operand Address Modifi cations

Dual data-memory operand addressing is used for instructions that perform two reads or a single read 

and a parallel store (indicated by two vertical bars, ||) at the same time. These instructions are all one 

word long and operate in indirect addressing mode only. Two data-memory operands are represented 

by Xmem and Ymem: Xmem is a read operand with access through the D bus. Store instructions, for 

example STH and STL with shift operation, change Xmem to a write operand. Ymem is used as a read 

operand in instructions with dual reads (accessed through the C bus) or as a write operand in instructions 

with a parallel store (accessed through the E bus). Figure 11.5 shows the indirect-addressing instruction 

format for a dual data-memory operand. Table 11.4 describes the bits of the instruction.
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Xmod Xar Ymod Yar

15 - 8 7 - 6 5 - 4 3 - 2 1 - 0

Opcode

Fig. 11.5 Indirect-addressing instruction format for dual data-memory operands

Table 11.4 Indirect-addressing instruction bit summary—dual data-memory operands

Name Function

Opcode This fi eld contains the operation code for the instruction

Xmod Defi nes the type of indirect addressing mode used for accessing the Xmem operand

Xar Xmem AR selection fi eld defi nes the AR that contains the address of Xmem

Ymod Defi nes the type of indirect addressing mode used for accessing the Ymem operand

Yar Ymem AR (AR) selection fi eld defi nes the AR that contains the address of Ymem

Because only two bits are available for selecting each AR in this mode, only four of the ARs can be 

used, AR2-AR5. (For Xar or Yar AR selected is: 00 for AR2, 01 for AR3, 10 for AR4 and 11 for AR5). 

Hence the dual data-memory operand addressing uses four ARs (AR2-AR5). The ARAUs, together with 

these registers, provide the capability to access two operands in a single cycle.

In instructions that perform dual-operand reads, if the auxiliary register specifi ed by the Yar fi eld 

accesses one of the memory-mapped registers, the value read will not represent the contents of the 

register. Table 11.5 shows the different ways in which the address can be modifi ed in dual-operand 

indirect addressing mode.

Table 11.5 Indirect addressing types with a dual data-memory operand

Operand syntax Function Description†

*ARx addr = ARx ARx contains the data memory address

*ARx- addr = ARx

ARx = ARx – 1 After access, the address in ARx is decremented

*ARx+ Addr = ARx

ARx = ARx + 1 After access, the address in ARx is incremented

*ARx+0% Addr = ARx

ARx=circ(ARx + AR0) After access, AR0 is added to ARx with circular addressing‡

†ARx is used as the data-memory address unless otherwise specifi ed.
‡Size of the circular buffer is specifi ed in circular buffer size register BK.

11.1.5.10 Single-Operand Instructions using the Dual-operand Format

Some instructions with only one data-memory operand use dual data-memory operand addressing so 

that they fi t in a single word for single-cycle execution. In these instructions, only Xmem is available and 

the Xmod and Xar fi elds defi ne the addressing mode for the operand. Four single-operand instructions 

can be executed in a single cycle:

BIT Xmem, BITC

SACCD src, Xmem, cond

SRCCD Xmem, cond

STRCD Xmem, cond
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Five instructions with optional shift also support this type of addressing for single-word, single-cycle 

execution:

ADD Xmem, SHFT, src

LD Xmem, SHFT, dst

STH src, SHFT, Xmem

STL src, SHFT, Xmem

SUB Xmem, SHFT, src

11.1.5.11 TMS320C2X/C2XX/C5XCompatibility (ARP) Mode

ARP can be used in indirect addressing. This allows the AR to be defi ned by ARP to ease code translation 

from a ¢C2X/C2XX/C5X device. With CMPT = 1 and ARF = 0, ARP is used to determine which AR is 

used to address memory. In using ARP, the ¢54X differs from the ‘C5X in that when the ¢54X uses the 

AR pointed to by ARP, the ¢54X does not update the ARP with the same instruction. Table 11.6 shows 

the assembler syntax for the ¢C2X/C2XX/C5X compared to the ¢54X.

Table 11.6 Assembler syntax comparison for TMS320C2X/C2XX/C5X and ¢54X

Syntax for

¢C2X/C2XX/C5X

Syntax for

¢54X

Syntax for

¢C2X/C2XX/C5X

Syntax for

¢54X

* AR0 *+ *AR0+

*0- *AR0–0 *BR0– *AR0–0B

* *AR0– *BR0+ *AR0+0B

*0+ *AR0+0

11.1.6 Memory-Mapped Register Addressing

Memory-mapped register addressing is used to modify the memory-mapped registers without affecting 

either the current data-page pointer (DP) value or the current stack-pointer (SP) value. Because DP and 

SP do not need to be modifi ed in this mode, the overhead for writing to a register is minimal. Memory-

mapped register addressing works for both direct and indirect addressing. In this mode, the addresses 

are generated by forcing the nine MSBs of data-memory address to 0, regardless of the current value 

of DP or SP when direct addressing is used. When indirect addressing is used, the seven LSBs of the 

current AR value are used for the lower order address.

In indirect addressing, the nine MSBs of the AR are forced to 0 after the operation. For example, if 

ARl is used to point to a memory-mapped register in memory-mapped register addressing mode and it 

contains a value of FF25h, then AR1 points to the timer period register (PRD), since the seven LSBs 

of AR1 are 25h and the address of the PRD is 0025h. After execution, the value remaining in AR1 is 

0025h.

In addition to registers, any scratch-pad RAM located on data page 0 can be modifi ed by using memory-

mapped register addressing. Only eight instructions can use memory-mapped register addressing:

LDM MMR, dst

MVDM dmad, MMR

MVMD MMR, dmad

MVMM MMRx,MMRy

POPM MMR
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PSHM MMR

STLM src, MMR

STM # Ik, MMR

11.1.7 Stack Addressing

The system stack is used to automatically store the program counter during interrupts and subroutines. It 

can also be used at your discretion to store additional items of context or to pass data values. The stack 

is fi lled from the highest to the lowest memory address. The processor uses a 16-bit memory-mapped 

register, the SP, to address the stack. SP always points to the last element stored onto the stack. Four 

instructions access the stack using the stack addressing mode:

PSHD pushes a data-memory value onto the stack.

PSHM pushes a memory-mapped register onto the stack.

POPD pops a data-memory value from the stack.

POPM pops a memory-mapped register from the stack.

A push predecrements and a pop 

postincrements the address in the 

SP. Figure 11.6 shows an example 

of the stack and SP before and after 

a push of X2 into the stack (PSHD 

X2). The content of dmad X2 is 

stored in the location pointed by 

SP-1 in this case.

Other operations also affect the 

stack and the SP. The stack is used 

during interrupts and subroutines to 

save and restore the PC contents. When a subroutine is called or an interrupt occurs, the return address 

is automatically saved in the stack using a push operation. Instructions used for subroutine calls and 

interrupts are CALA[D], CALL[D], CC[D], INTR and TRAP. When a subroutine returns, the return 

address is retrieved from the stack using a pop-operation and loaded into the PC. Instructions used for 

returns from subroutines are RET[D], RETE[D], RETEF[D] and RC[D]. The FRAME instruction also 

affects the stack. This instruction adds a short-immediate offset to the SP. The stack is also used in SP-

referenced direct addressing.

11.1.8 Data Types

There are two basic data types for accessing memory in the ¢54X: 16-bit and 32-bit. Most instructions 

can access 16-bit data. Accessing 32-bit data, however, requires the use of the special instructions listed 

in Table 11.7.

Table 11.7 Instructions with 32-bit word operands

Instruction Syntax Description

DADD DADD Lmem, src [,dst] Double-precision add/dual 16-bit add to accumulator

DADST DADST Lmem, dst Double-precision load with T add/dual 16-bit load with T add/subtract

DLD DLD Lmem, dst Long-word load to accumulator

(Contd.)
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Fig. 11.6 Stack and SP before and after executing a PSHD instruction
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DRSUB DRSUB Lmem, src Double-precision subtract/dual 16-bit subtract from long word

DSADT DSADT Lmem, dst Long load with T subtract/dual 16-bit load with T subtract/add

DST DST src, Lmem Store accumulator in long word

DSUB DSUB Lmem, src Double-precision subtract/dual 16-bit subtract from accumulator

DSUBT DSUBT Lmem, dst Long load with T subtract/dual 16-bit load with T subtract

For a 16-bit operand access, a 16-bit word is read from data memory through the D bus and written 

to data memory through the E bus. For a 32-bit operand access, both the C (for most-signifi cant word) 

and the D (for least-signifi cant word) buses are used for a read. However, because only the E bus is used 

for a write, the write operation (DST instruction) is executed in two cycles. With 32-bit accesses, the 

fi rst word accessed is treated as the most-signifi cant word (MSW), while the second word accessed is 

the least-signifi cant word (LSW). If the fi rst word accessed is at an even address, then the second word 

is at the next (higher) address. If the fi rst word accessed is at an odd address, then the second word is at 

the previous (lower) address.

ARITHMETIC INSTRUCTIONS 11.2

In the ¢C54X instructions, the source of the operand is specifi ed fi rst and the destination is specifi ed as 

the last parameters. The mnemonics for the arithmetic instructions of ¢C54X are given in Table 11.8.

Table 11.8 The mnemonics for the arithmetic instructions of ¢C54X

ABDST ABS ADD ADDC AD DM ADDS

SUB SUBB SUBC SUBS

EXP FIRS LTD MAC[R] MACA[R] MACD

MACP MACSU MAS[R| MASA[R] MAX MIN

MPY[R] MPYA MFYU NEG NORM POLY

SAT SQDST SQUR SQURA SQURS LMS

11.2.1 Instructions for Finding the Absolute Value

The syntax and description of instructions ABDST and ABS are as follows:

ABDST: Absolute Distance Syntax ABDST Xmem, Ymem

Description: ABDST calculates the absolute value of the distance between two vectors, Xmem and 

Ymem. The absolute value of A(32-16) is added to the accumulator B. The content of Ymem is subtracted 

from Xmem, and the result is left-shifted 16 bits and stored in accumulator A. If the fractional mode bit 

FRCT =1, the absolute value is multiplied by two.

Example ABDST *AR2+, *AR3+—The absolute value of A(32-l6) is added to the accumulator 

B. The content of location pointed by AR3 is subtracted from the content of 

location pointed by AR2 and the result is left-shifted 16 bits and stored in accumulator A. The contents 

of AR2 and AR3 are incremented.

Table 11.7 (Contd.)
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ABS - Absolute Value of Accumulator Syntax ABS src [,dst]

Description: The ABS instruction calculates the absolute value of the source accumulator and loads it 

into the destination accumulator. If no destination is given, ABS loads the absolute value into the source 

accumulator.

Example 1. ABS A, B – Absolute value of A is stored into B

2. ABS A - Absolute value of A is stored into A

11.2.2 Instructions for Addition and Subtraction

ADD and SUB Instructions These two instructions have a similarity w.r.t syntax and the manner in 

which the source and destinations for operands and the result are specifi ed. Table 11.9 gives the list of 

the different ways in which the operands can be specifi ed for both of these instructions. The ADD in-

struction adds a 16-bit value to the contents of the selected accumulator or to a 16-bit Xmem operand in 

dual data-memory operand addressing mode. The 16-bit value to be added is one of the following:

The content of a single data-memory operand

The content of a dual data-memory operand

A 16-bit long-immediate operand

The shifted value in the source accumulator

If a destination is specifi ed, ADD stores the result in the destination accumulator. If no destination is 

specifi ed, ADD stores the result in the source accumulator.

Most of the second operands can be shifted. For a left shift, low-order bits are cleared and high-order 

bits are sign-extended if SXM is 1, otherwise they are cleared. For a right shift, the high order bits are 

signextended if SXM is 1, otherwise they are cleared.

Example 1. ADD *AR2+, 12, A—The content of the location pointed by AR2 is read, shifted 

towards left by 12 bits and added to A register. The result is stored in A. AR2 is 

incremented by 1 after its content is used for fetching the operand.

 2. ADD B, -5, A-B register is read, the value obtained is shifted towards right by 5 

bits and added to A register. The result is stored in A.

 3. ADD #2345h, 7, B, A—The constant 2345h is left shifted by seven bits and added 

to B.The result is stored in A.

Table 11.9 Syntax for ADD and SUB instructions ¢C54X

ADD - Add to accumulator syntax SUB - Subtract from accumulator syntax

1: ADD Smem, src 1: SUB Smem, src

2: ADD Smem, TS, src 2: SUB Smem, TS, src

3: ADD Smem, 16,src [,dst] 3: SUB Smem, 16, src [,dst]

4: ADD Smem, [SHIFT,] src [,dst] 4: SUB Smem, [SHIFT,] src [,dst]

5: ADD Xmem, SHIFT,src 5: SUB Xmem, SHIFT, src

6: ADD Xmem, Ymem, dst 6: SUB Xmem, Ymem, dst

7: ADD #lk, [SHIFT,] src[,dst] 7: SUB #lk, [SHIFT,]src[,dst

8: ADD #lk,16, src[,dst] 8: SUB #lk, 16, src [,dst]

9: ADD src [, SHIFT] [,dst] 9: SUB src [, SHIFT] [,dst]

10: ADD src, ASM [,dst] 10: SUB src, ASM [,dst]
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The SUB instruction subtracts a 16-bit value from the contents of the selected accumulator or from 

a 16-bit Xmem operand in dual data-memory addressing mode. The 16-bit value to be subtracted is one 

of the following:

The content of a single data-memory operand

The content of a dual data-memory operand

A 16-bit long-immediate operand

The shifted value in the source accumulator

If a destination is specifi ed, the SUB instruction stores the result in the destination accumulator. If no 

destination is specifi ed, SUB stores the result in the source accumulator.

Most of the second operands can be shifted. For a left shift, low-order bits are cleared and high-order 

bits are sign-extended if SXM is 1, otherwise they are cleared. For a right shift, the high order bits are 

sign-extended if SXM is 1, otherwise they are cleared.

Example 1. SUB *AR1+, 14, A—The content of the location pointed by AR1 is’read, shifted 

towards left by 14 bits and subtracted from A register. The result is stored in A. 

AR1 is incremented by 1 after its content is used for fetching the operand.

 2. SUB A, -8, B—A register is read, the value obtained is shifted towards right by 

eight bits and subtracted from B register. The result is stored in B.

 3. SUB #2345h, 8, A, B—The constant 2345h is left shifted by eight bits and 

subtracted from A. The result is stored in B.

Mnemonics for some additional addition and subtraction instructions and their syntaxes are given in 

Table 11.10. More details of these instructions are considered next.

Table 11.10 Mnemonics and syntax for some additional addition and subtraction instructions of ¢C54X

Mnemonic and description Syntax

ADDC—Add to accumulator with carry ADDC Smem, src

SUBB—Subtract from accumulator with borrow SUBB Smem, src

ADDS—Add to accumulator with sign-extension suppressed ADDS Smem, src

SUBS—Subtract from accumulator with sign-extension suppressed SUBS Smem, src

SUBC—Subtract conditionally SUBC Smem, src

ADDC and SUBB Instructions The ADDC Instruction adds the 16-bit single data-memory operand 

and the carry bit to the source accumulator. ADDC stores the result in the source accumulator. Sign-

extension is suppressed regardless of the value of the SXM bit.

Example ADDC *+AR2 (15h), A—15h is added to the content of AR2 fi rst. Then the content of 

location pointed by AR2 is added to A register with carry.

The SUBB instruction subtracts the contents of the single data-memory operand and the logical 

inverse of the carry bit from the source accumulator without sign-extension.
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Example 1. SUBB DAT5, A—The content of the fi fth location in the current page and the 

logical inverse of the carry bit are subtracted from the accumulator A without 

sign-extension.

 2. SUBB * AR1+, B—The content of the location pointed by AR1 and the logical 

inverse of the carry bit are subtracted from the accumulator A without sign-

extension. The content of AR 1 is incremented after this operation.

ADDS and SUBS Instructions The ADDS instruction adds the 16-bit single data-memory operand 

to the source accumulator and stores the result in the source accumulator. Sign-extension is suppressed 

regardless of the value of the SXM bit.

Example ADDS *AR2-, B—Content of the location pointed by AR2 is added to accumulator B 

and the result is stored in B without sign extension. AR2 is decremented after this 

operation.

The SUBS instruction subtracts the content of the 16-bit single data-memory operand Smem from 

the content of the source accumulator. Smem is considered a 16-bit unsigned number regardless of the 

value of SXM. The result is stored in the source accumulator.

Example SUBS * AR2-, B—Content of the location pointed by AR2 is subtracted from 

accumulator B and the result is stored in B without sign extension. AR2 is 

decremented after this operation.

Adding a Long Immediate Constant The ADDM (Add long-immediate value to memory ) instruc-

tion adds the 16-bit single data-memory operand to the 16-bit long-immediate memory value. ADDM 

stores the result in the data-memory location specifi ed by Smem.

Syntax ADDM lk, Smem

Example ADDM 0123Bh, *AR4+—The 16-bit constant 0123B is added to the content of the 

location pointed by AR4 and the result is stored back in that location. After this 

instruction AR4 is incremented.

Instruction for Division The instruction SUBC (subtract conditionally) may be used for division. 

The SUBC instruction subtracts the 16-bit single data-memory operand Smem, left-shifted 15 bits, from 

the content of the source accumulator. If the result is greater than 0, it is shifted 1 bit left and 1 is added 

to the result. The SUBC instruction stores the result in the source accumulator. Otherwise, SUBC shifts 

the contents of the source accumulator 1 bit left and stores the result in the source accumulator. SUBC 

assumes that the divisor and the dividend are both positive. The SXM bit will affect this operation:

 If SXM = 1, the divisor must have a 0 value in the MSB.

 If SXM = 0, any 16-bit divisor value produces the expected results.

The dividend, which is in the accumulator, must initially be positive (that is, bit 31 must be 0) and 

must remain positive following the accumulator shift, which occurs in the fi rst portion of the SUBC 

instruction. Note that SUBC affects OVA or OVB (depending on the source accumulator) but is not 

affected by OVM; therefore, the accumulator does not saturate on positive or negative overfl ows when 

executing this instruction.
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Example SUBC DAT2, A—Let the content of DP be 06 and A be 00 0000 0004h. The content 

of 0302h (i.e. 0000 0011 0 000 0010
2
) be 0001h. After shifting this by 15 bits 

towards left, we get 1000h. When this is subtracted from A, the result is negative. Hence A register is 

left shifted by 1 bit. The result is 0008h.

By repeated use of SUBC instruction a no. can be divided by the other.

11.2.3 Multiply Instructions

MPY[R]—Multiply The MPY instruction multiplies the contents of TREG or a data-memory value 

by a data-memory value or an immediate value. TREG is loaded with the Smem or Xmem value in the 

read phase of the fi rst or second execution cycle.

MPYR rounds the result of the MPY operation by adding 215 to the result and then clearing bits 15-0. 

Syntax

 1: MPY[R] Smem, dst

 2: MPY Xmem, Ymem, dst

 3: MPY Smem, #lk, dst

 4: MPY #lk,dst

MPYA—Multiply by Accumulator A The MPYA instruction multiplies the high part (bits 32-16) of 

accumulator A by a single data-memory operand or by TREG. TREG is updated in the read phase.

Syntax

 1: MPYA Smem

 2: MPYA dst

MPYU—Multiply Unsigned The MPYU instruction multiplies the unsigned contents of TREG by 

the unsigned contents of the single data-memory operand and stores the result in destination accumu-

lator. The multiplier acts as a signed 17 ¥ 17-bit multiplier for this instruction with the MSB of both 

operands cleared to 0. The MPYU instruction is particularly useful for computing multiple-precision 

products, such as multiplying two 32-bit numbers to yield a 64-bit product.

Syntax MPYU Smem, dst

11.2.4 Multiply and Accumulate Instructions

MACP—Multiply by Program Memory and Accumulate This instruction is equivalent to the 

MAC instruction of 5X. The MACP instruction multiplies data-memory value by program-memory 

value, adds the product to the source accumulator and stores the result in the same accumulator. The 

data-memory value is copied into TREG. When this instruction is repeated, the program-memory ad-

dress (in the program address register PAR) is incremented by 1. Once the repeat pipeline is started, the 

instruction becomes a single-cycle instruction.

Syntax MACP Smem, pmad, src

Example MACP * AR3-, COEFFS, A—Content of the location pointed by AR3 and the content 

of the program memory location COEFFS are multiplied and then added to A. AR3 

is decremented after this operation. If this instruction is preceded by a repeat instruction PAR is 

incremented by 1.
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MACD—Multiply by Program Memory and Accumulate with Delay This instruction is equiva-

lent to the MACD instruction of 5X. The MACD instruction multiplies a data-memory value by a 

program-memory value, adds the product to the source accumulator and stores the result in that accu-

mulator. The data-memory value is copied into TREG and into the next address following the Smem ad-

dress. When this instruction is repeated, the program-memory address (in the program address register 

PAR) is incremented by 1. Once the repeat pipeline is started, the instruction becomes a single-cycle 

instruction. 

Syntax MACD Smem, pmad, src

LTD—Load TREG and Insert Delay The LTD instruction copies the content of a data-memory loca-

tion into TREG, and into the address following this data-memory location. When data is copied, the 

content of the address location remains the same. This function is useful for implementing a Z delay in 

DSP applications. This function is also contained in the DELAY and MACD instructions.

Syntax LTD Smem

MACSU—Multiply Signed by Unsigned and Accumulate The MACSU instruction multiplies an 

unsigned data-memory value (Xmem) by a signed data-memory value (Ymem) and adds the result to 

the source accumulator. The 16-bit unsigned value Xmem is stored in TREG. The TREG is updated with 

the unsigned value (Xmem) in the read phase.

Syntax MACSU Xmem, Ymem, src

MAC[R]—Multiply Accumulate With/Without Rounding The MAC[R] instruction multiplies and 

adds with or without rounding. The result is stored in the destination accumulator, if specifi ed, or in 

the source accumulator. For syntaxes 2 and 3, the data-memory value after the instruction is stored in 

TREG. TREG is updated during the read phase. The MACR instruction rounds the result of the MAC 

operation by adding 215 to the result and clearing the 16LSBs (bits 15-0) to 0.

Syntax

 1: MAC[R] Smem, src

 2: MAQ[R] Xmem, Ymem, src [,dst]

 3: MAC #lk, src [,dst]

 4: MAC Smem, #lk, src [,dst]

MACA[R]—Multiply by Accumulator A and Accumulate The MACA[R] instruction multiplies 

the high part of accumulator A (bits 32-16) by a single data-memory operand or by TREG. MACA[R] 

then adds 215 the product to the source accumulator and stores the result in the destination accumulator, 

if specifi ed, or in the source accumulator. A(32-16) is used as a 17-bit operand for the multiplier. The 

MACA[R] instruction rounds the result of the MACA operation by adding 215 to the result and clearing 

the 16 LSBs of the destination accumulator (bits 15-0).

Syntax

 1: MACA[R] Smem [,B]

 2: MACA[R] T, src [,dst]

11.2.5 MAX and MIN Instructions

The MAX (accumulator maximum) instruction compares the contents of the accumulators and stores 

the maximum value in the destination accumulator. If the maximum value is in accumulator A, the carry 

bit is cleared to 0; otherwise, it is set to 1.
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Syntax MAX dst

The MIN (accumulator minimum) instruction compares the contents of the accumulators and stores 

the minimum value in the destination accumulator. If the minimum value is in accumulator A, the carry 

bit is cleared to 0; otherwise, it is set to 1.

Syntax MIN dst

11.2.6 Instructions for Squaring

SQUR—Square The SQUR instruction squares the single data-memory operand or the high part of 

accumulator A (bits 32-16) and stores the result in the destination accumulator. TREG is unaffected 

when accumulator A is used.

Syntax

 1: SQUR Smem. dst

 2: SQURA, dst

SQURA—Square and Accumulate The SQURA instruction stores the content of data-memory lo-

cation Smem, i.e. *(Smem) in TREG. Then, SQURA squares content Smem and adds the result to the 

source accumulator. The result is stored in the source accumulator.

Syntax SQURA Smem, src

SQURS—Square and Subtract The SQURS instruction stores the data-memory value in TREG. 

Then, it squares Smem and subtracts the product from the source accumulator. The result is stored in 

the source accumulator.

Syntax SQURS Smem, src

SQDST—Square Distance Used in repeat single mode, the SQDST instruction computes the square 

distance between two vectors. The high part of accumulator A (bits 32-16) is squared and the product is 

added to accumulator 8. The result is stored in accumulator B. Ymem is subtracted from Xmem and the 

difference is shifted 16 bits left. The result is stored in accumulator A. The value to be squared A(32-

16) is the value of the accumulator before the subtraction is executed by the SQDST instruction. Syntax 

SQDST Xmem, Ymem

11.2.7 Some Special Instructions

POL Y—Polynominal Evaluation The POLY instruction shifts the content of the single data-mem-

ory operand (Smem) 16 bits to the left and stores the result in accumulator B. In parallel, POLY multi-

plies bits 32-16 of accumulator A by the content of TREG, adds the product to accumulator B, rounds 

the result of this operation and stores the fi nal result in accumulator A. This instruction is useful for 

polynominal evaluation to implement computations that take one cycle per monomial to execute.

Syntax POLY Smem

SA T—Saturate Accumulator Regardless of the OVM value, SAT allows the saturation of the con-

tent of the accumulator on 32 bits. If the MSB is 0 and if the value of the accumulator is greater than 00 

7FFF FFFF, accumulator content is saturated to the value 00 7FFF FFFF. If the MSB is 1 and the value 

of the accumulator is greater than 80 7FFF FFFF, accumulator content is saturated to the value FF 8000 

0000. Otherwise the accumulator is left unchanged. Syntax SAT src



308  Digital Signal Processors

EXP—Accumulator Exponent The EXP instruction computes the exponent value, which is a signed 

2s-complement value in the -8 to +31 range, and stores the result in TREG. The exponent is computed 

by calculating the number of leading bits in the source accumulator and subtracting 8 from this value. 

The number of leading bits is equivalent to the number of left shifts needed to eliminate the signifi cant 

bits from the 40-bit source accumulator with the exception of the sign bit. The source accumulator is not 

modifi ed after this instruction.

The result of subtracting 8 from the number of leading bits produces a negative exponent for 

accumulator values that have signifi cant bits in the guard bits (the eight MSBs of the accumulator used 

in error detection and correction). Syntax EXP src

Example EXP A

 Before execution  After execution

 A  FF FFFF FFCB   FF FFFF FFCB

 T  xxxx   19 

The no. of leading ones excluding the sign bit is 33. Subtracting 8 (guard bits), the no. of leading bits 

become 25. The hex equivalent of this is 19.

 Before execution  After execution

 B  07 86001234   07 86001234

 T  XXXX   FFFC 

In this case the signifi cant bits are in guard bits. The no. of leading bits excluding the sign bit is 4. Sub-

tracting 8 from this we get -4. 2’s complement representation of –4 is FFFC.

NORM—Normalisation The NORM instruction allows single-cycle normalisation of the accumula-

tor once the EXP instruction, which computes the exponent of a number, had executed. The shift value is 

defi ned by TREG (5-0) and coded as a 2s-complement number. For the normalisation, the shifter needs 

the shift value (in TREG) in the read phase; the normalisation is executed in the execution phase.

Syntax NORM src [,dst]

Example NORM A

 Before execution  After execution

 A  FF FFFF F001   FF 8008 0000

 T  0013   0013 

The 19 (13h) leading ones excluding the sign bit and the guard bits are removed and A has a single sign 

bit after the normalisation.

FIRS-—Symmetrical Finite Impulse Response Filter FIRS is useful to implement symmetrical FIR 

fi lters. The FIRS instruction multiplies accumulator A(32-16) with a program-memory value addressed 

by pmad (program memory address) and adds the result to the value in accumulator B. At the same time, 

it adds the memory operands Xmem and Ymem, shifts the result left 16 bits and loads this value into 

accumulator A. In the next iteration, pmad is incremented by 1. Once the repeat pipeline is started, the 

instruction becomes a single-cycle instruction.

Syntax FIRS Xmem, Ymem, pmad
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Example FIRS *AR3+, *AR4+, COEFFS—Accumulator A(32-16) is multiplied with the program 

memory with address COEFFS and adds the result to the value in accumulator B. 

The content of the locations pointed by AR3 and AR4 are added, shifted towards left by 16 bits and then 

loaded into ACC A. AR3 and AR4 are incremented. In the repeat mode the content of the next pma 

(COEFFS +1) is mutiplied with A(32-16).

MOVE INSTRUCTIONS OF ¢54X 11.3

Mnemonics and syntax for the move instructions of ¢C54X are given in Table 11.11. In this table, either 

the source or the destination address is specifi ed as dmad for some of the instructions. This corresponds 

to 16-bit long immediate constant. When these instructions are used in the repeat mode, the dmad is 

loaded in address register corresponding to E bus (EAR) and it is incremented by one each time the 

instruction is executed. Similarly, either the source or the destination address is specifi ed as pmad for 

some other instructions. This corresponds to 16-bit long immediate constant. When these instructions 

are used in the repeat mode, the pmad is loaded in address register corresponding to P bus (PAR) and it 

is incremented by one each time the instruction is executed.

READA and WRITA use the lower 16 bits of A for the program memory address (pma). They can 

also be used in repeat mode. In this case, in the fi rst time, content of A will be copied to PAR and PAR 

is incremented each time it is executed in the repeat mode.

When the address is specifi ed as Xmem, Ymem, the address is specifi ed using indirect addressing 

mode. Smem can use both direct and indirect addressing mode.

As mentioned earlier, in ¢54X, the address of the destination is indicated as the last parameter in the 

instruction.

Table 11.11 Mnemonics and syntax for the move instructions of ¢C54X

Mnemonic Description Syntax

MVDM Move data from data memory to memory-mapped register MVDM dmad, MMR

MVMD Move data from memory-mapped register to data memory MVMD MMR, dmad

MVMM Move data from memory-mapped register to memory-mapped register MVMM MMR1, MMR2

MVDD Move data from data memory to data memory with X, Y addressing MVDD Xmem, Ymem

MVDK Move data from data memory to data memory with destination addressing MVDK Smem, dmad

MVKD Move data from data memory to data memory with source addressing MVKD dmad, Smem

MVDP Move data from data memory to program memory MVDP Smem, pmad

MVPD Move data from program memory to data memory MVPD pmad, Smem

READA Read data memory addressed by accumulator A: pma given by the lower 

16 bits A to dma specifi ed by Smem

READA Smem

WRITA Write memory data addressed by accumulator A: dma specifi ed by Smem 

to pma given by lower 16 bits of A

WRITA Smem

DELAY Memory delay: Copy the content of a single data-msmory location into the 

next higher address

DELAY Smem
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LOAD/STORE INSTRUCTIONS OF ¢54X 11.4

In the syntaxes for the load instructions, Smem denotes a single memory operand using either direct or 

indirect addressing. Xmem denotes a dual-memory operand using indirect addressing (in this case only 

AR2-AR5 can be used as pointers). The symbols src and dst denote either A or B. 1k denotes a 16-bit 

long immediate constant.

LD Load Accumulator with Shift The LD instruction loads the accumulator with a data-memory 

value or an immediate value. This instruction supports different shift quantities. This instruction also 

supports accumulator-to-accumulator moves with shift. The syntax for this instruction is as follows:

Syntax

 1: LD Smem, dst

 2: LD Smem, TS, dst

 3: LD Smem, 16, dst

 4: LD Smem [,SHIFT], dst

 5: LD Xmem, SHIFT, dst

 6: LD #K,dst

 7: LD #lk [,SHIFT], dst

 8: LD #lk, 16, dst

 9: LD src, ASM [,dst]

 10: LD src [,SHIFT] [,dst]

Load TREG/DP/ASM/ARP The LD instruction loads a value into TREG or into the following fi elds 

of the status register: DP, ASM and ARP. The value loaded can be a single data-memory operand or a 

constant.

Table 11.12 Mnemonics and syntax for some load instructions of ¢C54X

LDM Load ACC from a memory-mapped register LDM MMR, dst

LDU Load ACC with unsigned memory value LDU Smem, dst

ST Store TREG, TRN, or immediate value Into memory ST T, Smem

ST TRN, Smem

ST #lk, Smem

STH Store accumulator high Into memory STH src, Smem

STH src, ASM, Smem

STH src, SHIFT, Xmem

STH src[,SHIFT], Smem

STL Store accumulator low into memory STL src, Smem

STL src, ASM, Smem

STL src, SHIFT, Xmem

STL src [,SHIFT],Smem

STLM Store accumulator low into memory mapped register STLM src, MMR

STM Store immediate value into memory mapped register STM #lk, MMR
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 1: LD Smem, T

 2: LD Smem, DP

 3: LD #k9,DP

 4: LD #k5,ASM

 5: LD #k3,ARP

 6: LD Smem, ASM

LDR—Load Memory Value in Accumulator High with Rounding The LDR instruction loads the 

data-memory value into the high part of the destination accumulator (bits 31-16). The data-memory 

value is rounded by adding 1/2 LSB, that is, 215 to this value (8000h) and clearing the 15 LSBs of the 

accumulator to 0. Bit 15 of the accumulator is set to 1.

Syntax LDR Smem, dst

The Mnemonics and syntax for some of the other load instructions of ¢C54X are given in Table 11.12.

LOGICAL INSTRUCTIONS 11.5

The AND, OR and XOR instructions have identical syntaxes as shown in Table 11.13. Description and 

syntax for some of the other logical instructions are given in Table 11.14.

Table 11.13 Syntax for the AND, OR and XOR instructions

Mnemonic Description Syntax

AND And with accumulator 1: AND Smem, src

2: AND #lk[,SHIFT],src[,dst]

3: AND #lk, 16, src [,dst]

4: AND src [,SHIFT] [,dst]

OR OR with accumulator 1: OR Smem, src

2: OR #lk [SHIFT] src [,dst]

3: OR #lk, 16, src[,dst]

4: OR src[,SHIFT] [, dst]

XOR Exclusive-OR with accumulator 1: XOR Smem, src

2: XOR #lk [SHIFT] src[,dst]

3: XOR #lk, 16, src [,dst]

4: XOR src[,SHIIFT] [,dst]

Table 11.14 Description and syntax for some of the logical instructions

Mnemonic Description Syntax

ANDM And memory with long immediate ANDM #lk, Smem

ORM OR memory with 16-bit constant ORM #lk, Smem

XORM Exclusive-OR memory with constant XORM #lk, Smem

CMPL Find 1 ‘s complement of accumulator CMPL src [,dst]

NEG Find 2’s complement of accumulator NEG src [,dst]

CMPM Compare memory with long immediate CMPM Smem, #lk

CMPR Compare auxiliary register with AR0 CMPR CC, ARx
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CMPS—Compare Select Max and Store The CMPS instruciion compares the two 16-bit signed 

values located in the high and low parts of the source accumulator (considered 2s-complement values). 

CMPS stores the maximum value in the single data-memory location, stores the result in the transition 

(TRN) register after shifting left one bit and sets or clears the test control (TC) bit. This instruction does 

not follow the standard pipeline operation. The comparison is performed in the read phase; thus, the src 

value, is the value one cycle before the CMPS instruction executes. The TRN register and the TC bit are 

updated during the execution phase.

Syntax CMPS src, Smem

Rotate and Shift Instructions Syntax for the rotate and shift instructions of ¢54X are given in Table 

11.15. The manner in which the LSB, MSB and carry bits are affected by the rotate instructions are 

given in Table 11.16. In this table the bits with suffi x of old denotes the bit before the rotate instruction 

is executed. For example carry
old 

denotes the carry bit before the rotate instruction is executed.

Table 11.15 Syntax for the rotate and shift instructions of ¢54X

Mnemonic Description Syntax

ROL Rotate accumulator left ROL src

ROLTC Rotate accumulator left using TC ROLTC src

ROR Rotate accumulator right ROR src

SFTA Shift accumulator arithmetically SFTA src, SHIFT [,dst]

SFTC Shift accumulator conditionally SFTC src

SFTL Shift accumulator logically SFTL src, SHIFT [,dst]

Table 11.16 The effect of the rotate instructions on LSB, MSB and carry

Instruction Carry bit MSB LSB Guard bits TC

ROL MSB
old

(MSB-1)
old

Carry
old

0 X

ROLTC MSB
old

(MSB-1)
old

TC
old

0 X

ROR LSB
old

Carry
old

(LSB+1)
old

0 X

ROL rotates each bit of the accumulator to the left by one bit, shifts the value of the carry bit into the 

LSB of the accumulator, shifts the value of the MSB of the accumulator into the carry bit and clears the 

accumulator’s guard bits. ROR rotates each bit of the accumulator to the right by one bit, shifts the value 

of the carry bit into the MSB of the accumulator, shifts the value of the LSB of the accumulator into the 

carry bit and clears the accumulator’s guard bits. The ROLTC instruction (rotate accumulator left with 

TC) rotates the accumulator to the left and shifts the TC bit into the LSB of the accumulator. In SFTA 

and SFTL, the shift count is defi ned as -16 SHIFT 15. SFTA is affected by the SXM bit. When SXM = 

1 and SHIFT is a negative value, SFTA performs an arithmetic right shift and maintains the sign of the 

accumulator. When SXM = 0, the MSBs of the accumulator are zero fi lled. SFTL is not affected by the 

SXM bit; it performs the shift operation for bits 31-0, shifting 0s into the MSBs or LSBs, depending on 

the direction of the shift. SFTC performs a 1-bit left shift when both bits 31 and 30 are 1 or both are 0. 

This normalises 32 bits of the accumulator by eliminating the most signifi cant nonsign bit.
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CONTROL INSTRUCTIONS 11.6

Branch Call and Return Instructions of ¢54X The syntax for the branch, call and return instructions 

of ¢54X are given in Table 11.17. In this table, the instructions which are indicated with a suffi x of [D] 

imply that there are instructions with the suffi x and without the suffi x. For example, B[D] implies that 

there are two instructions B and BD. Similarly, CALA[D] refer to two instructions CALA and CALAD. 

The instructions with the suffi x D, for example, BD, BACCD, CALAD, RETD, etc. denote the delayed 

branch, call and return instructions. If the branch is a delayed branch (specifi ed by the D suffi x), the two 

1-word instructions or the one 2-word instruction following the branch instruction are fetched from pro-

gram memory and executed before the branch is taken. For a delayed call (specifi ed by the D suffi x), the 

next two instruction words are fetched and executed before the call. If the return is delayed (specifi ed by 

the D suffi x), the two 1-word instructions or one 2-word instruction following the RETD instruction is 

fetched and executed before executing the return. For the conditional instructions, for example, BC, the 

word [,cond] denote the additional conditions that may be tested before the action (either branch, call or 

return) is taken. The codes used for describing various conditions in ¢54X are given in Section A 10.2.5. 

However, the conditions which may be simultaneously tested are restricted in ¢54X. For example, let us 

consider the instruction CC[D]: Call Conditionally.

Table 11.17 ¢54X Instructions for branch, call and return

B(D] Branch unconditionally B{D] pmad

BACC[D] Branch to location specifi ed by accumulator BACC[D] src

BANZ[D] Branch on auxiliary register not zero BANZ[D] pmad, Sind

BC[D] Branch conditionally BC[D] pmad, cond [,cond] [,cond]

CALA[D] Call subroutine at location specifi ed by accumulator CALA[D] src

CALL[D] Call unconditionally CALL[D] pmad

CC[D] Call conditionally CC[D] pmad, cond [,cond] [,cond]

RC[D] Return conditionally RC[D] cond [,cond] [,cond]

RET[D] Return RET[D]

RETE[D] Enable interrupts and return from interrupt RETE[D]

RETF[D] Enable interrupts and fast return from interrupt RETF[D]

The CC[D] instruction tests multiple conditions before passing control to another section of the 

program. CC[D] can test the conditions individually or in combination with other conditions. But the 

users can only combine conditions from one group from Table 11.18 as follows:

 Group 1: Up to two conditions may be selected. Each of these conditions must be from a different 

category (category A or B); two conditions from the same category cannot be selected. For 

example, we can test EQ and OV at the same time but we cannot test GT and NEQ at the 

same time.

 Group 2: Up to three conditions may be selected. Each of these conditions must be from a different 

category (category A, B or C); we cannot have two conditions from the same category. For 

example, we can test TC, C and BIO but we cannot test NTC, C and NC at the same time. 

The same rule is also applicable for the conditional branch and return instructions.
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Table 11.18 Groups and categories for conditional instructions

Group 1 Group 2

Category A Category B Category A Category B Category C

EQ OV TC C BIO

NEQ NOV NTC NC NBIO

LT

LEQ

GT

GEQ

Stack and Stack Pointer Control Instructions The mnemonics for the push and pop instructions are 

given in Table 11.19. These instructions are used with the subroutines.

Table 11.19 Push & pop instructions

PSHD Push data-memory value onto stack PSHD Smem

PSHM Push memory-mapped register onto stack PSHM MMR

POPD Pop top of stack to data memory POPD Smem

POPM Pop top of stack to memory mapped register POPM MMR

FRAME Add an 8-bit short immediate signed no. to stack pointer FRAME K

CONDITIONAL STORE INSTRUCTIONS 11.7

There are three conditional store instructions. In each of them one of the conditions “cond”, where the 

condition codes are given in Section A 10.2.5, is tested for storing.

SRCCD—Store Block Repeat Counter Conditionally If the condition is true, SRCCD stores the 

content of the block repeat counter (BRC) in Xmem. If the condition is false, the instruction reads 

Xmem and writes the value in Xmem back to the same address; thus, Xmem remains the same. Regard-

less of the condition, Xmem is always read and updated. Syntax SRCCD Xmem, cond

SACCD—Store Accumulator Conditionally If the condition is true, the SACCD instruction stores 

the source accumulator left-shifted by ASM -16. The shifted no. is stored in the memory location des-

ignated by Xmem. If the condition is false, the instruction reads Xmem and writes the value in Xmem 

back to the same address; thus, Xmem remains the same. Regardless of the condition, Xmem is always 

read and updated. Syntax SACCD src, Xmem, cond

STRCD—Store TREG Conditionally If the condition is true, the STRCD instruction stores the con-

tent of TREG into the Xmem location. If the condition is false, the instruction reads Xmem and writes 

the value in Xmem back to the same address; thus, Xmem remains the same. Regardless of the condi-

tion, Xmem is always read and updated.

Syntax STRCD Xmem, cond
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REPEAT INSTRUCTIONS OF ¢54X 11.8

Only some of the instructions of ¢54X are repeatable. The instructions which cannot be repeated are 

highlighted with † symbol (Refer to the ¢54X instruction set summary) in Table A 10.1.

RPT—Repeat Next Instruction The repeat counter (RC) is loaded with the number of iterations 

when RPT is executed. The number of iterations (n) is obtained from a 16-bit single data-memory op-

erand or an 8- or 16-bit constant. The instruction following the RPT instruction is repeated n + 1 times. 

We cannot access RC while it decrements.

Syntax

 1: RPT Smem

 2: RPT #k

 3: RPT #lk

RPTB[D]—Block Repeat The RPTB[D] instruction allows a block of instructions to be repeated the 

number of times specifi ed by the memory-mapped BRC. BRC must be loaded before the execution of 

an RPTB instruction. When the RPTB is executed, the Block-Repeat Start Address Register (RSA) is 

loaded with PC + 2 (PC + 4 if delayed) and the Block-Repeat.End Address Register (REA) is loaded 

with the program-memory address (pmad).

The RPTB instruction is interruptible. Single-instruction repeat loops (RPT and RPTZ) can be 

included as part of RPTB blocks. To nest instructions we need to ensure that the BRC, RSA and REA 

registers are appropriately saved and restored and the block repeat active fl ag (BRAF) is properly set.

In the RPTBD instruction, which specifi es a delayed block repeat, the two 1-word instructions or the 

one 2-word instruction following the RPTB is fetched and executed before the execution of the RPTBD 

instruction.

Block repeat can be deactivated by clearing the BRAF bit.

Syntax RPTB[D] pmad

RPTZ—Repeat Next Instruction and Clear Accumulator The RPTZ instruction clears the destina-

tion accumulator and repeats the instruction following RPTZ n + 1 times, where n is the value in the 

repeat counter (RC). The RC value is obtained from the long-immediate constant.

Syntax RPTZ dst, #1k

INSTRUCTIONS FOR BIT MANIPULATIONS 11.9

BIT—Test Bit The BIT instruction copies the specifi ed bit of the dual data-memory operand into the 

TC bit of status register STO.

Syntax Bit Xmem, BITC

If nth bit is to be copied, BITC should be specifi ed as 15-n.

Example BIT * AR5+, 15-12—This copies bit 12 of the location pointed by AR5 into TC.

BITF—Test Bit Field Specifi ed by Immediate Value The BITF instruction tests the specifi c bit or 

bits of the data memory value. If the specifi ed bit is 0, the TC bit in status register ST0 is cleared to 0; 

otherwise, TC is set to 1. The Ik constant is a mask for the bit or bits tested.
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Syntax BITF Smem, Ik

Example 1. BITF-DAT3, 00FFh This tests 8 LSBs of the third location in the current data 

page

 2. BITF DAT5, 0800h This tests lower order eleventh bit of the fi fth location in the 

current data, page

BITT—Test Bit Specifi ed by TREG The BITT instruction copies the specifi ed bit of the data-memory 

value into the TC bit of status register ST0. The four LSBs of TREG contain a bit code that specifi es 

which bit is copied.

The bit address corresponds to (15-TREG(3-0)). The bit code corresponds to the contents of 

TREG(3-0).

Syntax BITT Smem

RSBX—Reset Status Register Bit The RSBX instruction clears the specifi ed bit in status register 0 

or 1 to a logic 0. N designates the status register to modify and SBIT (0<= SBIT <= 15) specifi es the bit 

to be modifi ed. The name of a fi eld in a status register (Sname) can be used as an operand instead of the 

N and SBIT operands.

Syntax

1. RSBX N, SBIT

2. RSBX Sname

Example 1. RSBX SXM—SXM means: n=1 and SBIT =8

2. RSBX 1, 8

SSBX—Set Status Register Bit The SSBX instruction sets the specifi ed bit in status register 0 or 1 

to a logic 1. N designates the status register to modify and SBIT (0<= SBIT <= 15) specifi es the bit to 

be modifi ed. The name of a fi eld in a status register (Sname) can be used as an operand instead of the N 

and SBIT operands.

Syntax

1. SSBX N, SBIT

2. SSBX Sname

SOME SPECIAL CONTROL INSTRUCTIONS 11.10

MAR—Modify Auxiliary Register The MAR instruction modifi es the contents of the selected AR 

as specifi ed by Smem. In compatibility mode (CMPT = 1), it modifi es the AR content as well as the 

ARP value. In compatibility mode, if ARX = AR0 or ARX is null, then X is 0. Null is represented by an 

operand with only an asterisk (*). If CMPT = 0, the AR is modifi ed but ARP is not.

Syntax MAR Smem

NOP—No Operation No operation is performed. Only the program counter is incremented. NOP is 

useful to create pipeline and execution delays.

Syntax NOP
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RESET—Software Reset The RESET instruction performs a nonmaskable software reset that can be 

used at any time to put the ¢C54X into a known state. When the RESET instruction is executed, the op-

erations listed in the execution section occur. The MP/M
—

C
—

 pin is not sampled during this software reset. 

The initialisation of IPTR and the peripheral registers is different from the initialisation using -RS. This 

instruction is not affected by INTM; however, it sets INTM to 1 to disable interrupts. PC is loaded with 

the content of IPTR after left shifting it by seven bits. IFR (interrupt Flag register) is cleared to 0. The 

content of the status registers ST0 and ST1 are initialised to the values given in Table 11.20 and 11.21. 

Syntax RESET

Table 11.20 The content of ST0 after software RESET

ARP TC C OVA OVB DP

000 1 1 0 0 0000 0000 0

Table 11.21 The content of ST1 after software RESET

BRAF CPL XF HM INTM OVM SXM C16 FRCT CMPT ASM

0 0 1 0 1 0 1 0 0 0 00000

INTR—Software Interrupt The INTR instruction transfers program control to the interrupt vector 

specifi ed by K. (0<=K< = 31). This instruction allows the user software to execute any interrupt service 

routine.

During execution of the instruction, the content of PC is incremented by one and pushed onto the 

stack. Then, the interrupt vector specifi ed by K is loaded in the PC and the interrupt service routine for 

this interrupt is executed. The corresponding bit in the IFR is cleared and interrupts are globally disabled 

(INTM = 1). Note that the interrupt mask register (IMR) has no effect on the INTR instruction. INTR is 

executed regardless of the value of INTM.

Syntax INTR K

TRAP—Software Interrupt The TRAP instruction is a software interrupt that transfers program con-

trol to an interrupt service routine specifi ed by K. The TRAP instruction pushes the program counter 

plus 1 onto the data-memory location addressed by SP. This enables a return instruction to retrieve the 

pointer to the instruction after the TRAP from the data-memory location addressed by SP. The TRAP 

instruction is not maskable. It is not affected by INTM nor does it affect INTM.

Syntax TRAP K (0<=K<=31)

IDLE—Idle Until Interrupt The IDLE instruction forces the program being executed to wait until 

an unmasked interrupt or reset occurs. The PC is incremented once. The device remains in an idle state 

(power-down mode) until it is interrupted.

The idle state is exited after an unmasked interrupt, even if INTM = 1. If INTM = 1, the program 

continues executing at the instruction following the idle. If INTM = 0, program branches to the 

corresponding interrupt service routine. The interrupt is enabled by the IMR, regardless of the INTM 

value. The following options, indicated by the value of K, determine the type of interrupts that can 

release the device from idle:

K = 1, Peripherals, such as the timer and the serial ports, are still active. The peripheral interrupts as 

well as reset and external interrupts release the processor from idle mode.
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K =2, Peripherals, such as the timer and the serial ports, are inactive. Reset and external interrupts 

release the processor from idle mode. Because interrupts are not latched in idle mode as in normal 

device operation, they must be low for a number of cycles to be acknowledged.

K = 3, Peripherals, such as the timer and the serial ports, are inactive and the PLL is halted. Reset and 

external interrupts release the processor from idle mode. Because interrupts are not latched in idle mode 

as in normal device operation, they must be low for a number of cycles to be acknowledged.

Syntax IDLE K

Example 1. IDLE 1—The. processor idles until a reset or unmasked interrupt occurs.

 2. IDLE 2—The processor idles until a reset or unmasked external interrupt occurs.

  3. IDLE 3—The processor idles until a reset or unmasked external interrupt occurs.

XC—Execute Conditionally The execution of XC depends on the value of N and the selected condi-

tions:

If N = 1 and the condition(s) is met, the 1-word instruction following the XC instruction is 

executed.

If N = 2 and the condition(s) is met, the 2-word instruction or the two 1-word instructions following 

the XC instruction are executed.

If the condition(s) is not met, one or two NOPs are executed depending on the value of N.

The XC[D] instruction tests multiple conditions before executing. XC[D] can test the conditions 

individually or in combination with other conditions. But only the conditions from either group 1 or 

group 2 in Table 11.18 may be combined. In a group only one condition may be chosen from each 

category in Table 11.18.

The XC instruction and the two instruction words following XC are uninterruptible.

The conditions tested are sampled two full cycles before the XC instruction is executed. Therefore, if 

the two instructions before XC are single-cycle instructions, their execution will not affect the condition 

of XC. If the two instructions before XC affect the condition being tested, the interrupt operation using 

XC can cause undesirable results.

Syntax XC N, cond [,cond][,cond|

I/O INSTRUCTIONS OF ¢54X 11.11

PORTR—Read Data From Port The PORTR instruction reads a 16-bit value from an external I/O 

port into the specifi ed data-memory location. The -IS
–
 signal goes low to indicate an I/O access, and the 

IOSTRB and READY timings are explicit I/O read. PA designates the 16-bit immediate address of an 

I/O port.

Syntax PORTR PA, Smem

PORTW—Write Data to Port The PORTW instruction writes a 16-bit value from the specifi ed 

data-memory location to external I/O port (PA). The -IS
–
 signal goes low to indicate an I/O access, and 

the IOSTRB and READY timings are explicit I/O write. PA designates the 16-bit immediate address of 

an I/O port.

Syntax PORTW Smem, PA
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Table 11.22 Syntax and description of parallel instructions of ¢54X

LD||MAC[R] Multiply accumulate with/without rounding 

and parallel load

LD Xmem, dst || MAC[R] Ymem [,dst2]

LD||MAS[R] Multiply subtract with/without rounding and 

parallel load

LDXmem, [,dst] || MAS[R] Ymem [,dst2]

ST||ADD Store accumulator with parallel add ST src, Ymem || ADD Xmem, dst

ST||LD Store accumulator with parallel load 1: ST src, Ymem || LD Xmem, dst

2: ST src, Ymem || LD Xmem, T

ST||MAC[R] Store accumulator with parallel multiply 

accumulate with/without rounding

ST src, Ymem || MAC[R] Xmem, dst

ST||MAS[R] Store accumulator with parallel multiply 

subtract with/without rounding

ST src, Ymem || MAS[R] Xmem, dst

ST||MPY Parallel store and multiply ST src, Ymem || MPY Xmem, dst

ST||SUB Parallel store and subtract ST src, Ymem || SUB Xmem, dst

PARALLEL INSTRUCTIONS 11.12

Parallel instructions of ¢54X are single word instructions and two instructions can be specifi ed in a 

single word. The syntax and descriptions of the parallel instructions of ¢54X are given in Table 11.22. 

The LD||MAC[R] instruction is explained in detail. The same notation is followed for the other parallel 

instructions.

LD||MAC[R]—Multiply Accumulate With/Without Rounding and Parallel Load The 

LD||MAC[R] is a single word instruction which multiplies a dual data-memory operand by the contents 

of TREG and adds the result of the multiplication to dst2. In parallel, it loads the higher part of the des-

tination accumulator (bits 31-16) with a dual data-memory operand. The LD||MACR instruction rounds 

the result of the MAC operation by adding 215 to the result and clearing the LSBs (15-0).

Syntax LD Xmem, dst

||MAC[R] Ymem [,dst2]

dst: either A or B; dst2: If dst = A, then dst2 = B; if dst = B, then dst2 = A

LMS INSTRUCTION 11.13

The LMS instruction is used to execute the least mean square (LMS) algorithm. The dual data-memory 

operand Xmem is added to accumulator A and shifted left 16 bits. The result is rounded by adding 

215 to the high part of the accumulator (bits 31-16). The fi nal result is stored in accumulator A. In 

parallel, Xmem and Ymem are multiplied and the result is added to accumulator B. Xmem and Ymem 

are multiplied and the result is added to accumulator B. Xmem does not overwrite TREG; therefore, 

TREG always contains the error value used to update coeffi cients. Syntax LMS Xmem, Ymem

Example LMS*AR3+,*AR4+
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Review Questions 

11.1 What does the following keywords signify in the 

instruction set of ¢54X?

(a) pmad (b) dmad (c) Ik (d) k

(e) smem (f) xmem (g) ymem (h) shift

(I) shift2 (j) src (k) dst

11.2 Can you load T register using immediate addressing 

mode? If so, give an example.

11.3 Give examples for the absolute addressing using

(a) pmad addressing

(b) dmad addressing

11.4 The content of the location 2050h in data memory 

space is to be copied to ACCU B. What is the instruction 

to be used if absolute addressing is used.

A B DP SP 1020 1125

45h 33h 20h 1105h 33 23

Fig. 11.7

11.5 The content of some of the registers and data 

memory location are initialised as shown in Fig 11.7. What 

is the content of A, B after executing instruction ADD 

20h, A, B assuming CPL bit to be

(a) 0 (b) 1

11.6 Write an ALP which initialises the registers to 

the values given in Fig. 11.7 using immediate addressing 

mode.

11.7 Write an ALP which initialises the memory location 

to the values given in Fig. 11.7 using

(a) Absolute addressing

(b) Direct addressing using DP

(c) Direct addressing using SP

(d) Indirect addressing with AR2, AR3 as memory address 

pointers

11.8 Assume that AR2 is initialised to 1025h, what is 

the value of AR2 before and after execution of each of 

the following instructions

LD *AR2, 20h?

LD *AR2+, 20h

LD *AR2-, 20h

LD *+AR2(2), 20h

LD *AR2(2), 20h

11.9 Write a program for division using repeated use of 

SUBC instruction. The divisor is in location 1020h.

Hint: Find the number of leading zeros in the divisor, let 

it be N. The number of times SUBC should be repeated 

is N + 1.

11.10 Write a program to fi nd the number of leading 

zeros in the location 1020h using ROL instruction.

11.11 Write a program to fi nd the number of leading 

zeros in the location 1020h using EXP instruction.

11.12 How does the multiply instruction of ¢54X differ 

from that of 5X in the manner in which the result is 

stored?

11.13 When the instruction LTD 20h is executed the 

contents of which register and memory location are 

altered?

11.14 In the FIRS instruction where should the 

coeffi cients be stored? Where are the input data samples 

to be stored?

11.15 How does the rounding operation performed in 

LDR instruction differ from the other instructions which 

perform rounding such as MPYR, MACR?

11.16 How does the conditional instruction in ¢54X 

differ from those of 5X?

11.17 How does the delayed call instruction differ from 

the undelayed calls?

11.18 How do the three idle instructions affect the 

operation of internal hardware of ¢54X?

11.19 Explain the operation of parallel instructions of 

¢54X?

11.20 Explain how an adaptive fi lter can be implemented 

using the LMS instruction.

Self Test Questions 
11.1 Which of the following instructions has an operand 

which is of length 3 bits?

(a) LD#05, ARP (b) LD #04, AG(?)

(c) LD #143h, DP (d) AND #1234h, A, A

(e) LD#1234h, B

11.2 Which of the following instructions has an operand 

which is of length 6 bits?

(a) LD #05,ARP (b) LD #04, AG(?)

(c) LD #143h, DP (d) AND #1234h, A, A

(e) LD #1234h, B
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11.3 Which of the following instructions has an operand 

which is of length 9 bits?

(a) LD#05, ARP (b) LD #09, AG(?)

(c) LD#143h, DP (d) AND #1234h, A, A

(e) LD#1234h, B

11.4 Which of the following instruction does not alter 

the value of AR2?

(a) LD*AR2, 20h (b) LD *AR2+, 20h

(c) LD *+AR2(2), 20h (d) LD *AR2(2), 20h

11.5 When the ——— bit is ———, the SP is used to 

compute address in direct addressing mode.

(a) CPL, 0 (b) CPL, 1 (c) CMPT, 0 (d) CMPT, 1

11.6 When the ——— bit is ——— and the ARP = 0, the 

ARP specifi es the AR used for indirect addressing mode

(a) CPL, 0 (b) CPL, 1 (c) CMPT, 0 (d) CMPT, 1

11.7 The AR which is used as index register in ¢54X is 

———.

(a) AR0 (b) AR2 (c) AR4 (d) AR7

11.8 The mnemonic for the instruction which loads 

ACCB using indirect addressing mode (AR3) and fetches 

the operand after incrementing the address by constant 

8h is LD ———, B.

(a) *+AR3(8)  (b) *AR3(8)

(c) *+AR3(8)% (d) AR3*(8)

11.9 The mnemonic for the instruction which loads 

ACCB with the content of the data memory location 

1000h is ———.

(a) LD *(1000h), B (b) LD #1000h, B

(c) LD 1000h, B (d) None of the above

11.10 The dual data-memory operand addressing mode 

instructions are ——— word long and can perform ——— 

read operation/cycle.

(a) 1,2 (b) 2, 1 (c) 2,2 (d) 1, 1

11.11 Which of the ARs cannot be used for specifying 

the address in the dual operand indirect addressing 

mode?

(a) AR0-AR1 (b) AR2-AR3 (c) AR4-AR5 (d) AR6-AR7

11.12 The content of DP is 20h. The instruction for 

ADDing the content of the location 1040h using direct 

addressing mode after shifting it towards left by fi ve bits 

to A register is ———.

11.13 The instruction for shifting ACC B by eight bits 

towards left and adding it to A register is ———. The 

result is to be stored in A.

11.14 The instruction for shifting ACC B by eight bits 

towards left and subtracting it to A register is ———. The 

result is to be stored in A.

11.15 The instruction for adding the content of the 

location pointed by AR2 to that pointed by AR3 and 

storing the result in A register is ———.

11.16 The instruction for subtracting the content of 

location pointed by AR2 from that pointed by AR3 and 

storing the result in B register is ———.

11.17 The instruction for adding the content of location 

pointed by AR2 to A register by the number of bits 

specifi ed by the ASM bits of ST1 and adding it to B is 

———. The result should be in A register.

11.18 The instruction for subtracting the content of 

location pointed by AR2 from A register by the number 

of bits specifi ed by the ASM bits of ST1 from A is ———. 

The result should be in A register.

11.19 In the ADD #4567, 0, B, the content of ——— is 

added with the constant 4567 and the result is stored in 

———.

(a) A,B (b) A, A (c) B,B (d) B,A

11.20 In SUB B, 0, A instruction, the content of ——— is 

subtracted from ——— and the result is stored in ———.

(a) B,A,A (b) A,B,A (c) B,A,B (d) A,B,B

11.21 The content of ACCA is 80 8000 2345h. If the SAT 

A instruction is executed, the content of A Reg. becomes 

———.

(a) 00 7FFF FFFFh (b) FF 8000 0000h

(c) 80 8000 2345h (d) None of the above

11.22 The content of TREG and location I020h are 

FFFFh, 8000h. The content of A after executing the 

instruction MPY 20h, A is ———.

(a) 00 7FFF 8000 (b) 00 8000 0000

(c) 00 7FFF FFFF (d) FF 8000 0000

11.23 The content of TREG and location 1020h are 

FFFFh, 8000h. The content of A after executing the 

instruction MPYR 20h, A is ———.

(a) 00 7FFF 8000 (b) 00 8000 0000

(c) 00 7FFF FFFF (d) FF 8000 0000

11.24 The instruction for multiplying the contents of 

the location pointed by AR3 with the program memory 

1120h and adding the product to ACC A is ———.

11.25 The instruction for multiplying the contents of 

the location pointed by AR3 with the program memory 

1120h and adding the product to ACC A is ———. In 

addition to this, this instruction should also copy the 

content of location pointed by AR3 to the next higher 

location, i.e. (AR3)+1.

11.26 The instruction LTD 1000h moves the content of 

the location 1000h to ——— and to the memory location 

———.
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(a) TREG, 1002h (b) TREG, 1000h

(c) ACCA, 1002h (d) ACCA, 1000h

11.27 The instruction LTD 10h copies the content of 

location 10h in the current data page to ——— and the 

location ——— in the current page.

(a) TREG, 11h (b) TREG, 0Fh

(c) ACCA, 11h (d) ACCA,0Fh

11.28 The ARs which can be used for specifying the 

address for the data memory values for FIRS instruction 

are ———.

(a) AR0-AR1 (b) AR2-AR3 (c) AR4-AR5 (d) AR6-AR7

11.29 The FIRS instruction is of length ——— and 

requires cycles required for execution.

(a) 1, 1 (b) 1, 2 (c) 2, 1 (d) 2, 2

11.30 The FIRS *AR4+, *AR4+, coeff instruction 

multiplies ——— bits of ——— with the program memory 

address coeff and adds the result to the value in ———.

(a) (32-16), A, B (b) (15-0), A, B

(c) (32-16), B, A (d) (15-0), B, A

11.31 The FIRS *AR4+, *AR4+, coeff instruction adds 

the content of location pointed by AR4 & AR5 and loads 

them into ——— bits of Accumulator ———.

(a) (32-16), A (b) (15-0), B (c) (32-16), B (d) (15-0), A

11.32 The instruction which enables a branch to 

location 1050h if AR5 is zero and also postdecrements 

AR5 by 1 is ———.

11.33 The instruction which decrements AR5 fi rst and 

then branches to 1050h if AR5 is zero, is ———. 

11.34 The Max B instruction compares ACC A with 

ACCB and stores the maximum value in the ——— 

register. The carry bit is set to 1 if the accumulator ——— 

has the maximum value.

(a) B,B (b) B,A (c) A,B (d) A, A

11.35 The Min A instruction compares ACC A with ACCB 

and stores the maximum value in the ——— register. 

The carry bit is set to 1 if the accumulator ——— has the 

maximum value.

(a) B,B (b) B,A (c) A,B (d) A, A



In this chapter some application programs in ¢C54X are considered. In Chapter 11, the instruction set 

of ¢C54X is discussed. For writing programs in ¢C54X, in addition to the knowledge on the instruction 

set of ¢C54X, the interdependencies between the various instructions should also be taken into account. 

This is because of the instruction pipelining and concurrency of execution of different instructions in 

different phases in ¢C54X. Hence, the details on the instruction pipeline are presented fi rst. Next the 

details on the assembly language programming and executing the programs using the code composer 

studio are considered. The details on the execution of the programs using both the ¢C54X simulator and 

¢C5402-based DSP starter kit are discussed. Finally, the application programs in ¢C54X are considered. 

There are three different approaches to write a ¢C54X program:

Using Assembly Language

Using the Algebraic Instruction Set

Using the High Level Language C In this chapter only the fi rst approach is discussed.

PIPELINE OPERATION 12.1

The ¢C54X CPU has a six-level deep instruction pipeline. The six stages of the pipeline are independent 

of each other, which allows overlapping execution of instructions. During any given cycle, from one 

to six different instructions can be active, each at a different stage of completion. The six levels and 

functions of the pipeline structure are

Program Prefetch Program address bus (PAB) is loaded with the address of the next instruction to be 

fetched.

Program Fetch An instruction word is fetched from the program bus (PB) and loaded into the instruc-

tion register (IR). This completes an instruction fetch sequence that consists of this and the previous 

cycle.

Decode The contents of the IR are decoded to determine the type of memory access operation and the 

control sequence at the data-address generation unit (DAGEN) and the CPU.

Access DAGEN outputs the read operand’s address on the data address bus, DAB. If a second operand 

is required, the other data address bus, CAB, is also loaded with an appropriate address. ARs in indirect 

12
APPLICATION PROGRAMS
IN C54X
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addressing mode and the stack pointer (SP) are also updated. This is considered the fi rst of the two-stage 

operand read sequence.

Read The read data operand(s), if any, are read from the data buses, DB and CB. This completes the 

two-stage operand read sequence. At the same time, the two-stage operand write sequence begins. The 

data address of the write operand, if any, is loaded into the data write address bus (EAB). For memory-

mapped registers, the read data operand is read from memory and written into the selected memory-

mapped registers using the DB.

Execute The operand write sequence is completed by writing the data using the data write bus (EB). 

The instruction is executed in this phase.

12.1.1 Branch, Call and Return Instructions in Pipeline

Similar to ¢C5X, in ¢C54X, the undelayed call and return instructions (e.g., CALL sub, B loop) require 

four clock cycles to start execution in the new address specifi ed by the call/branch instruction. Out of 

this, two clock cycles are required to fl ush out the pipeline. The delayed call and return instructions (e.g., 

CALLD sub, BD loop) require four clock cycles to start execution in the new address specifi ed by the 

call/branch instruction. Out of this 2-clock cycles are used to execute either a single 1-word instruction 

or two 1-word instructions following the delayed branch/call instructions. The undelayed conditional 

call and branch (e.g., CC sub, BC loop) require fi ve clock cycles out of which the last two cycles are 

used to fl ush out the pipeline. The delayed conditional call and branch instructions (e.g., CCD sub, 

BCD loop) require fi ve clock cycles to start execution in the new address specifi ed by the call/branch 

instruction. Out of this two clock cycles are used to execute either a single 2-word instruction or two 

1-word instructions following the delayed branch instructions.

The delayed as well as undelayed return instructions (ret and retd) both require fi ve clock cycles. Out 

of this two clock cycles are used to execute either a single 2-word instruction or two 1-word instructions 

following the delayed return instructions.

12.1.2 Dual-Access Memory and the Pipeline

The ¢C54X features on-chip memory that supports two accesses in a single cycle. This dual-access 

memory is organised as several independent memory blocks. Simultaneous accesses to different blocks 

are supported with no confl icts: while one instruction in the pipeline accesses one block, another 

instruction at the same stage in the pipeline can access a different block without confl ict. Furthermore, 

each memoiy block supports two accesses in a single cycle: two instructions, each in different stages 

of the pipeline, can access the same block simultaneously. However, a confl ict can occur when two 

simultaneous accesses are performed on the same block. The ¢C54X CPU resolves these confl icts 

automatically. This however introduces one clock cycle latency that is, it requires one additional clock 

cycle to complete the execution. If a dual-access memory block is mapped in both program and data 

spaces, an instruction fetch will confl ict with a data operand read access if they are performed on the 

same memory block.

Another confl ict arises if a single-operand write instruction is followed by an instruction that does not 

perform a write access and this instruction is followed by a dual-operand read instruction.

Example STL A, *AR3+

LD #0, A

ADD *AR4+. *AR5+, A; AR3 and AR5 both point to the same dual-access memory block

The CPU resolves the confl ict by inserting a dummy cycle after the fi rst instruction.
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12.1.3 Single-Access Memory and the Pipeline

The ¢C54X also features on-chip single-access memory that supports one access per cycle to each 

memory block. There are two different types of single-access memory that are available on ¢C54X 

devices:

Single Access Read-Write Memory (SARAM)

Single-Access Read-Only Memory (ROM or DROM)

Both types of single-access memory behave similarly in terms of pipelined accesses, with the 

exception that ROM and DROM cannot be written to. These memory blocks are contiguous in memory 

with the fi rst block beginning at the start address of SARAM or ROM. Simultaneous accesses with no 

confl icts are supported by single-access memory as long as the access are to different memory blocks; 

while one instruction in a pipeline stage accesses one memory block, another instruction can access a 

different memory block in the same cycle without any confl ict.

A confl ict can occur when two simultaneous accesses are performed on the same memory block. In 

case of such a confl ict, only one access is performed in that cycle and the second access is delayed until 

the following cycle. This results in a one-cycle pipeline latency.

A pipeline confl ict due to single-access memory may occur in several different situations.

Dual-Operand Instructions Many instructions have two memory operands to read or write data. If 

both operands are pointing to the same single-access memory block, a pipeline confl ict occurs. The CPU 

automatically delays the execution of that instruction by one cycle to resolve the confl ict.

Example  MAC *AR2+, *AR3+%, A, B ;This instruction will take two cycles if both

     ;operands are in the same SARAM or DROM

             ;block.

32-Bit Operand Instructions Instructions that read 32-bit memory operands still take only one 

cycle to execute, even if their oper and is in single-access memory. Single-access memory blocks are 

designed to allow a 32-bit read to occur in one cycle. Instructions that write 32-bit operands take two 

cycles to execute.

Example  DLD *AR2, A ;This instruction takes only one cycle even

      ;if the operand is in single-access memory

Read-Write Confl ict If an instruction that writes to a single-access memory block is followed by 

an instruction that reads from the same single-access memory block, a confl ict occurs because both 

instructions try to access the same memory block simultaneously. In this case, the read access is delayed 

automatically by one cycle.

Example  STL A, *AR1+ ;AR1 and AR3 points at the same SARAM block. 

LD *AR3, B    ;This instruction takes one additional

      ;cycle due to a memory access confl ict

On the other hand, a dual-operand instruction that has a read operand and a write operand does not 

cause this confl ict because the two accesses are done in two different pipeline stages.
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Example  ST A, *AR2+  ;This instruction does not take any 

||ADD *AR3+, B  ;extra cycles, even if AR2/AR3 point

      ;at the same single-access memory block

Code-Data Confl ict Another type of memory access confl ict can occur when SARAM or ROM is 

mapped in both program and data spaces. In this case, if instructions are fetched from a memory block 

and data accesses (read or write) are also performed on the same memory block, the instruction fetch is 

delayed by one cycle.

Example  LD *AR1+, A  ;This read data access delays a

   ;subsequent instruction fetch

     STH A, *AR2  ;This write data access delays a

     ;subsequent instruction fetch

This situation causes signifi cantly higher pipeline latency than the cases described previously. This 

is because each time there is a read or write access to the memory block, the pipeline is stalled for one 

cycle. It is generally recommended that each single-access memory block be reserved for either data or 

program storage to avoid hits each time a data access is made to that block.

12.1.4 Pipeline Latencies

The ¢C54X pipeline allows multiple instructions to access CPU resources simultaneously. Because CPU 

resources are limited, confl icts can occur when one CPU resource is accessed by more than one pipeline 

stage. Some of these pipeline confl icts are resolved automatically by the CPU by delaying

accesses. Other confl icts are unprotected and must be resolved by the programmer. In general, unpro-

tected confl icts are resolved by rearranging instructions or by inserting NOP instruction (no operation 

performed). They can also be avoided by using only instructions that do not create any pipeline confl icts 

or by observing necessary delays before certain registers are accessed.

12.1.5 Recommended Instructions for Accessing Memory-Mapped Registers

Unprotected pipeline confl icts can occur when any one of the following memory-mapped registers is 

accessed:

Auxiliary Registers (AR0-AR7)

Block Size Register (BK)

Stack Pointer (SP)

Temporary Register (T)

Processor Mode Status Register (PMST)

Status Registers (ST0 and ST1)

Block-repeat Counter Register (BRC)

Memory-mapped Accumulator Registers (AG, AH, AL, BG, BH, BL)

However, certain instructions can access these registers without causing pipeline confl icts if the 

appropriate latency cycles are noted. Table 12.1 lists these instructions. Table 12.1 is valid only if 

programmers limit themselves to those instructions that are listed in column 2 in order to perform 

functions listed in column 1. Refer to the TMS320C54X CPU and Peripherals reference manual to fi nd 

the latency of each individual instruction. Furthermore, this table is provided as a quick reference for 

pipeline latencies.
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Table 12.1 Recommended instructions for accessing memory-mapped registers

Category and function Instruction(s) Latency and restrictions

1. Writing to ARx/BK without using 

an accumulator

STM ARx update: None

MVDK BK update: The next word must

MVMM not use circular addressing

MVMD

2. Writing to ARx/BK using an ac-

cumulator

STLM The next two words

STH (ARx) or three words (BK) must not use

STL the same register.

Store type * The next instruction must not write to any ARx, BK 

or SP using STM, MVDK or MVMD

3. Popping ARx/BK from stack POPM The next one word (ARx) or two words (BK) must 

not use the same register.

Do not precede a category 3 instruction with any 

category 2 or 5 instruction that writes to any ARx, 

BKorSP

4. Writing to SP without using an 

accumulator

STM None if CPL = 0. The next one word must

MVDK not use SP if CPL = 1

MVMM

MVMD

5. Writing to SP using STLM The next two (if CPL = 0) or three (if CPL = 1)

an accumulator STH words must not use SP.

STL The next instruction must not write to ARx,

Store type * BK or SP using STM, MVDK or MVMD.

6. Writing to T without using an ac-

cumulator

STM None

MVDK

LD Smem, T

LDSmem, T||ST

7. Writing to T using an accumulator STLM The next word must not use T

STH

STL

8. Writing to BRC without using an 

accumulator

STM None

MVDK

9. Writing to BRC using an 

accumulator

STLM The next instruction must not be a RPTB[D]

STH

(Contd.)
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STL

Store type *

10. Writing to ARP LD #k, ARP None

11. Writing to DP LD #k, DP None

LDSmem, DP

12. Writing to CPL RSBX The next three words must not use direct addressing 

modeSSBX

13. Writing to SXM RSBX The next word must not be affected by SXM status

SSBX

14. Writing to ASM LD #k, ASM None

LD Smem, ASM

15. Writing to BRAF RSBX The next fi ve words must not contain the

SSBX last instruction word in the RPTB loop

16. Writing BRC to memory SRCCD The next two words must not contain the

last instruction word in the RPTB loop

17. Writing to OVLY, ANDM The next six cycles must not include an

MP/MC, or IPTR ORM instruction fetch from the on-chip memory’s

XORM address range.

An external-bus cycle may cause additional latency

18. Writing to DROM bit ANDM The next three words must not access the

ORM DROM’s address range.

XORM An external-bus cycle may cause additional latency.

19. Calculating an exponent EXP The next instruction must not use T

20. Stack manipulation in FRAME The next instruction must not use direct

compiler mode (CPL=1) POPM/POPD addressing mode (CPL = 1).

PSHM/PSHD

21. Reading AG, AH, AL, BG, BH, or 

BL as memory mapped registers

Any instruction 

that can read 

from memory

The previous instruction must not modify accumula-

tor A or accumulator B

*Any other store-type instruction. Refer table 7-5 of CPU and Peripherals reference set, Texas Instruments, 1996 for 

store-type instructions.

CODE COMPOSER STUDIO 12.2

Code composer studio (CCS) is an advanced tool for development and debugging programs for DSPs 

such as ¢C54X and ¢6X family of processors from Texas Instruments. It provides an integrated devel-

opment environment (IDE) wherein editing source fi le, executing and debugging program and viewing 

the graphical output waveform can all be carried out using multiple windows simultaneously. It has a 

no. of advanced features such as the following:

Table 12.1 (Contd.)
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Advanced editor which permits easy fi le manipulation and which enables to easily view source, 

include library fi les, etc. It automatically tracks fi le dependencies and edits within the IDE supporting 

the features such as Editing C and assembly source code together, syntax highlighting, parenthesis and 

brace matching, fi nd and replace, quick search and context-sensitive help.

CCS has an effi cient compiler which saves time by programming in C. It includes integrated code 

generation tools which supports features like graphically confi guring build options, background build, 

etc.

The debugger within the IDE which permits to inject/extract data signals and customize and auto-

mate testing. It gathers profi le information on one part of the code while debugging another profi le 

interactively. It supports multiple profi le points and helps to identify hotspots and measure perform ance. 

It also optimises code and permits visualization of data.

Real-time data exchange (RTDX) tool in CCS enables real-time analysis. This sets up a real-time 

channel between host and target. It supports a 20KB per second bandwidth on ‘C6000.

DSP/BIOS in the CCS includes a priority-based, preemptive real-time scheduler, It also supports 

multi-threading and minimal interrupt latency.

A detailed account of the CCS can be obtained from the Manual (Tutorials on TMS320c54X Code 

Composer Studio).

12.2.1 An Introduction to Debugging Using CCS

The CCS can be invoked by double clicking on the CCS icon. If the CCS version 1.10 is installed, this 

enables the ¢C54X program to be simulated. If the CCS version 1.11 is installed, this enables the ¢C54X 

program to be executed on the 5402 based DSK. CCS version 1.11 may also be used without the kit. In 

this case when the system displays the message.

Failure to initialise target DSP Host port 378h, Click on the ignore option. It will be assumed that the 

CCS is properly installed and hence the installation details would not be considered here. The procedure 

for executing a assembly language program is discussed here.

After invoking the CCS, a window similar to that shown in Fig. 12.1 appears.

Fig. 12.1 Code composer studio main window
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First a project is created by clicking on project This pops up a menu with a no. of options. Click on 

the option new. This opens up the fi le selection window similar to one shown in Fig. 12.2.

Fig. 12.2 File selection window of code composer studio

The fi le type and fi le name are specifi ed in this window. Choose the fi le type as .mak and enter a fi le 

name, for example, myasm and then enter save. Now the new project has been created and entered into 

the menu with heading fi les.

Under this menu, if the icon project is clicked, it can be verifi ed that the new project fi le with the name 

as myasm.mak.is included If you click on myasm.mak, the list of fi les in this batch fi le is displayed. To 

this mak fi le, the hello.cmd fi le has to be included to enable the assembly language program to be linked 

after it is assembled. To include this fi le, click on the project icon on the main window and choose the 

Add fi les to project option. This pops up the fi le selection window similar to one shown in Fig. 12.2. 

Choose the fi le type as .cmd and fi le name as Hello and then enter open. The Hello.cmd fi le may be edited 

to confi gure the on-chip and on-board RAM anywhere within the permit ted memory map for RAM in 

5402. Click on the Hello.cmd in the fi les window to see its contents. It contains the memory map details 

such as the internal data memory (IDATA) and the external data memory (EDATA), their origin and the 

length. This may be edited to suit our requirement within the space allocated for RAM. The next step is 

including the assembly language fi le to be executed. To include this fi le, click on the project icon on the 

main window and choose the Add fi les to project option. This pops up the File selection window shown 

in Fig. 12.2. Choose the fi le type as .asm, choose the folder where the required asm fi le is stored and then 

enter fi le name, for example, fi rs and then enter open. Now the asm fi le is included. Next double click 

on the fi rs.asm in the fi les window to edit this fi le. This fi le has to be compiled and linked to the project 

to run the program. To do this, in the fi les window, single click on the asm fi le, and then double click the 

compiler button on the tool bar shown in Fig. 12.3.
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Fig. 12.3 CCS project tool bar

The fi rs.asm fi le is compiled and the compiler reports if there are errors in the program. If there are 

errors, correct the errors in the source fi le by double clicking on the fi rs.asm in the fi les window and 

repeat the above process. Figure 12.4 shows a sample of the CCS display after a fi le is compiled. The 

.asm fi le is also listed in this fi gure.

Fig. 12.4 A sample of the compiler output of the CCS

When the program is successfully compiled, it is linked by double clicking the build all button in the 

tool bar window. Now the assembly language program is ready to be executed. To execute this program 

enter the fi le option in the main window and click on the load program. Note the program is loaded 

and disassembly of the program loaded appears in the disassembly window. To verify the correctness 

of the operation and to debug the program, the registers and memory may have to be viewed. To view 

them, click on the view option in the main window and choose the CPU registers. This pops up the CPU 

register window, move it to a convenient place so that the disassembly window is visible. Next click 

on the view option in the main window and choose the memory option. This opens up another window 
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where the details of the contents of the chosen memory area is displayed. Move it to a convenient 

place so that the disassembly window is visible. Next step is setting break points. Place the cursor in 

the disassembly window at the instruction upto which the program should be run. Now click on the 

icon for the break point in the project tool bar shown in Fig. 12.3. Now the program is ready to be run. 

Figure 12.5 shows a sample debugger screen in the CCS. It displays two memory areas, the contents of 

CPU registers and the disassembly of the program to be executed along with the points where the break 

points are set. Now click on the debug button followed by run; the program will be executed till the 

point at which the break point is set. Alternately, the program may be executed using single stepping. 

Press the control key F8 for this.

Fig. 12.5 A sample debugger screen of code composer studio

This completes the lists of steps required for creating a new project and running it. When a project is 

already created, whenever CCS is invoked afresh, the project has to be opened before it can be edited 

or executed.

The above example introduces only some of the features of the CCS. It does not consider features 

such as compiling and running a C program, displaying the output of the program in graphical form, 

etc. For details of the more advanced features such as these, the CCS tutorial may be referred. The CCS 

also has a help button in the main window. It provides a wealth of information, such as the details on the 

DSK, the component lay out, circuit diagram, details on the components used, software used, viz., CCS, 
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tutorial on using the CCS, ¢C54X instruction set with examples including timing details, the details on 

the CPU and peripheral registers, memory map and so on.
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AN OVERVIEW OF THE ¢C5402-BASED DSK 12.3

¢C5402-based DSP starter kit (DSK) is available with the CCS as the development and debugging 

tool. The details on the on-chip memory and peripherals on TMS320C5402 is given in Table 12.2. The 

on-chip memory is augmented by two external RAM in VC5402-based DSK operating at 100 MHz 

CPU clock. It has 64K 16-bit words of external one wait-state SRAM and 256K words of FLASH 

memory. The memory map of 5402 is given in Fig. 12.6(a). The on-chip and the off-chip RAM can be 

confi gured to lie anywhere within the permissible address space. The memory map of the DSK or the 

CCS simulator as well as the actual address space allocated for each of the on-chip and off-chip RAM 

may be edited using the option in the main window of CCS and by selecting memory map in this menu 

or by editing the hello.cmd fi le attached to the project. As mentioned earlier the CCS gives complete 

details about the DSK.

Table 12.2 Program and data memory and serial ports on the TMS320C5402 devices

Memory type Size Serial ports No.

ROM: 4K Synchronous 0

Program 4k Buffered 0

Program/data 4K McBSP 2

DARAM† 16K TDM 0

SARAM† 0

†The dual-access RAM (DARAM) and single-access RAM (SARAM) may be confi gured as data memory or program/

data memory.

The DSP interfaces to external SRAM, FLASH memory and an expansion memory interface con-

nector through its 16-bit external memory interface (EMIF). The DSP’s EMIF is also routed to an 

expansion memory interface connector to allow a daughter board to be used.

The external SRAM and FLASH devices on the board are +3.3 V devices. The expansion memory 

connector is able to support both +3.3 V and +5 V devices since it uses +5V-tolerant buffers. The 

amount of external data memory available depends on the setting of the DROM bit. If DROM = 0, 

then the region from 0x4000h to 0xFFFFh (48K words) is external memory (FLASH or SRAM). (As 

de scribed below, a paging mechanism exists for accessing more than the 32K-word blocks of either 

SRAM or FLASH when used in data space.) If DROM = 1, then external data memory is available only 

from 0x4000h to 0xEFFFh. (See the 5402 data sheet for additional details of its internal memory map 

and external memory interface.)

Whether on-board or daughterboard data memory is accessed depends on the DMSEL control register 

bit or the DMSEL DIP switch setting. If DMSEL = 0 (default), then on-board data memory is used. If 

DMSEL=1, then daughterboard memory is available starting at 0x8000 (32k blocks with same page 

register feature as on board).

The amount of external program memory available will depend on the setting of the OVLY bit and 

the MP/M
—

C
—

# DIP switch setting. If the OVLY bit is 0 and MP/M
—

C
—

# = 0, then the program memory 

region from 0x0000 to 0xEFFF (60K words) is mapped to the external memory, either FLASH or 

SRAM depending on the state of the FLASHENB control register bit. On power-up, the FLASHENB bit 

is set to allow booting from the FLASH device. Software may then clear this bit to enable the one wait-

state SRAM into the same memory space. If MP/M
—

C
—

# = 0, then the region from 0xF000 to 0xFFFF is 
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reserved for on-chip ROM and interrupt vectors and the external program memory is not available in 

page 0, but may still be available in other pages, depending on the setting of the OVLY bit.

If MP/M
—

C
—

# = 1 and OVLY - 0, the region from 0x0000h to 0xFFFFh is decoded for external memory, 

either FLASH or SRAM. In the case of 70-ns FLASH memory (FLASHENB = 1), with 100 MHz bus 

speed, seven wait states will be required via the 5402’s internal wait-state generator. In the case of 

SRAM (FLASHENB = 0), one wait state will be required at 100 MHz bus speed. Since the SRAM and 

the FLASH share the same wait-state generator, the 5402’s internal wait-state generator will have to be 

changed from one wait state when accessing SRAM to seven wait states when accessing FLASH. If MP/

M
—

C
—

 = 1 and OVLY = 1, only the region from 0 x 4000h to 0xFFFFh is mapped to external memory.

The DSK has two TLC320AD50C analog interface circuit on board. The AIC provides high resolu-

tion low speed signal conversion from D/A and A/D using oversampling delta sigma modulation. This 

device consists of two serial synchronous conversion paths, one for each direction, and is connected 

to McBSP of the 5402. It includes an interpolation fi lter before the DAC and the decimation fi lter after 

the ADC. It has fi ve user controllable registers using which the operating mode of the AIC can be 

programmed using the secondary communication. Primary serial communication is used to transmit 

and receive conversion signal data. The ADC and DAC length can be chosen to be either 15 or 16 bit. 

In the 15-bit mode, the last bit of the primary serial communication word of DAC is used to request a 

secondary communication. More details on the AIC can be had from the TI Mixed Signal Products user 

manual.

The DSK has an analog network interface DAA and an AD50 AIC provide DSP access to a single 

telephone interface via one of the multichannel buffered serial ports (McBSP0). McBSP0 can option ally 

be routed to an expansion connector under software control.

In the DSK, microphone and speaker interfaces (via 3.5 mm audio jacks) are provided via a second 

AD50 AIC that is connected to the DSP’s second McBSP (McBSP 1). McBSP 1, along with signals for 

its two timers and an external interrupt, is also routed to an expansion connector to allow a daughter 

board to be used. The audio input is AC-coupled and includes an amplifi er with fi xed 10-dB gain, a stage 

for conversion from single-ended to differential (prior to being digitised by the TLC320AD50 connected 

to the DSP’s McBSP 1) and passive fi ltering (between the DSK’s audio jacks and the CODEC) for 

increased performance.

The DSK provides an eight-position DIP switch control for external user options. A push button 

allows the DSK to be manually reset. A voltage supervisor monitors the internally generated voltage, 

and will hold the board in reset until the supplies are within operating specifi cations. The four LEDs on 

the DSK provide a power-on indicator and three user-controlled indicators.

The DSK provides embedded IEEE Std. 1149.1 (JTAG) emulation that is directly compatible with the 

code composer debugger. The DSK can also be used with an external XDS510 for the PC via its external 

JTAG connector. The DSK’s embedded JTAG emulation, provided by a test bus controller (TBC), and 

the DSP’s Host Port Interface (HPI) is available via an IEEE-1284 compliant parallel interface.

INTRODUCTION TO C54X ASSEMBLY LANGUAGE PROGRAMMING 12.4

The fi le names of assembly language programs of ¢C54X has extensions as .asm. The TMS320C54X 

assembly language users manual gives a complete list of directives for the assemblers as well as linker. 

Only those directives which are required for writing a simple assembly language program in ¢C54X are 

discussed here.
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The assembly language is split into three sections:.text section, .data section and .bss section.

The .text section consists of the assembly program which is translated into object code by the 

assembler and loaded into program memory for execution. By default, .text section is assumed and 

the assembly language instructions including the pseudo instructions are assembled into the program 

memory area.

The .data section consists of constants and variables which are initialised and are loaded into the data 

memory area. The origin of the data memory is determined by the hello.cmd fi le. It corresponds to the 

address to which IDATA in the hello.cmd fi le is initialised.

The .bss section is used to reserve a block of memory which is uninitialised. Some of the assembler 

directives are listed in Table 12.3.

Table 12.3 Some assembler directives

Assembler directive Description

.mmregs Permits the memory map registers to be referred using the names such as AR0, SP etc.

.include “XX” Informs the assembler to insert a list of instructions in the fi le XX to be inserted in this 

place and assemble it

.end The end of the assembly language program

.data Assemble into data memory area

.text Assemble into program memory area

.equ Equate a symbol to a constant

.word x, y, ..., z Reserves 1 6-bit locations and initialises them with values x, y, ..., z. This may be used in 

both the text section and data section

.space n Reserve and initialise n bits of memory and when a label is used with this directive, the 

label is assigned the address of the fi rst word of the block reserved

.bes n Reserve and initialise n bits words of memory and when a label is used with this directive, 

the label is assigned the address of the last word of the block reserved

Program 12.1 contains Example 1.asm. It gives an example of a ¢C54X assembly language program. 

In this program the use of the assembler directives given in Table 12.2 is illustrated. In this program, 

the operands required for the program are specifi ed using two methods. One method is to use the .data 

directive and place the data in the data memory area specifi ed in the hello.cmd fi le. The second method 

is to specify the operand in the .text section and copy the operands to the required location using block 

transfer. Program 12.1 adds three vectors of size 5. Two vectors are stored in locations starting from 

1000h and 1l00h respectively. The third vector is initially stored in the program memory starting from 

location start. This vector is copied to the data memory area 1500-1504h using the block transfer. 

Program 12.2 gives the bcopy.asm which is used for copying the block of data from program memory 

area to the data memory area. The resultant vector is stored in the memory area 1200-1204h. The vector 

addition is achieved by adding the fi rst element of each vector and storing the result in the fi rst location 

1200h. Next the second elements are added and the result is stored in the second location 1201h and so 

on. The size of vector is specifi ed by the symbol count. By changing the value of this any vector can be 

added.
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Program 12.1  Example1.asm: Vector addition

Label Mnemonic Comments

 .mmregs Permits the use of memory-mapped

  registers using names instead of

  their actual memory address

 .text Assemble into program memory area

Count .equ 4 Permits the constant 4 to be referred

  by the symbol count

 Id #0, a Accumulator A loaded with constant 0

 Stm #1500h, ar1 The register AR1 loaded with the

  constant 1500h

 Stm #1000h, ar2 The register AR2 loaded with the

  constant 1000h

 Stm #1100h, ar3 The register AR3 loaded with the

  constant 1100h

 Stm #1200h, ar4 The register AR4 loaded with the

  constant 1200h

 Stm #count, ar5 The register AR5 loaded with the

  constant 4 (count =4)

 .include “bcopy.asm”

 Stm #1500h, ar1 The register AR1 loaded with the constant 1500h

 Nop Nop introduced to take care of pipeline

  latency for stm

loop Add *ar2+, *ar3+, a The contents of location pointed by AR2 and AR3

  are added and the result is stored in the ACC A

  higher order word. In a dual-operand indirect-

  addressing mode, the result is stored only after

  shifting the result by 16 bits towards left. AR2 and

  AR3 are incremented by 1

 Add *ar1+, 16, a The content of location pointed by AR1 is left shifted 

  by 16 bits and added to A register AR1 is incremented

 Sth a, *ar4+ Result contained in higher word of A register is stored 

  in the location pointed by AR4. AR4 is incremented

 Banz loop, *ar5- If AR5 is not zero, the execution is resumed at the 

  address loop. AR5 is also decremented by 1.

  Otherwise the execution resumes with the next

  instruction

 Nop Nop introduced to enable smooth exit

  if no branch occurs

start .word 1, 2, 3, 4, 5 Data required for operation stored in program

  memory. This data is copied to the data memory
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  using the block copy program: bcopy.asm

 .data This assembler directive causes the following data to 

  be stored into the data memory area

Data1 .word 5, 6, 7, 8, 9 fi ve words are stored. The address corresponding to 

  data1 = 1000h if IDATA =1000h in the Hello.cmd linker 

  fi le

data2 .bes (0fbh*16) 251 words reserved and the datal is assigned the 

  address of the last word i.e., data2 = 10ffh

  if data1=1000h

data3 .word 10h, 11h, 12h,

 .word 13h, 14h Data3 address = 1100h if datal address is 1000h.

  Five words are stored here

Data4 .space (0fbh*16) 251 words are reserved, the fi rst address of the 

  reserved space, viz, 1105h is assigned to data4

Data5 .word 0, 0, 0, 0, 0 Address of data5 is 1200h: fi ve words initialised to 0

 .end Assembler terminates the assembly here

Program 12.2  bcopy.asm

Label Mnemonic Comments

 rpt #count Repeat the next instruction count times

 mvpd start, *ar1+ Copy the data from the program memory with the 

  label start to the data memory pointed by AR1. 

  Increment AR1. In the repeat mode the program 

  memory address is incremented and the

  corresponding data is copied to the data memory

Program 12.3 gives Example2.asm which performs the vector addition using repeat block instruc-

tion. The block of instructions which add a vector element of each of the vectors and store the result is 

repeated a no. of times equal to the size of the vector. For this purpose, the no. of times the block is to 

be executed is stored in the Block repeat count (BRC) register. (The no. to be stored is one less than the 

actual no. of times. For example, in the above case 4 has to be stored to execute the block fi ve times.) 

The end of the block is specifi ed in the RPTB instruction by specifying the label corresponding to the 

last instruction in the block.

Program 12.3  Example2.asm: Vector addition using repeat block

Label Mnemonic Comments

 .mmregs Permits the use of memory-mapped registers using 

  names instead of their actual memory address

Count .equ 4 Permits the constant 4 to be referred by the

  symbol count

 Id #0, a Accumulator A loaded with constant 0
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 Stm #1500h, ar1 The register AR1 loaded with the constant 1500h

 Stm #1000h, ar2 The register AR2 loaded with the constant 1000h

 Stm #1100h, ar3 The register AR3 loaded with the constant 1100h

 Stm #1200h, ar4 The register AR4 loaded with the constant 1200h

 Stm #count, brc Block repeat count register (BRC) stored with

  the count

 .include “bcopy.asm” Inserts the list of instructions in the fi le

  bcopy.asm here

 Stm #1500h, ar1 The register AR1 loaded with the constant 1500h

 Nop Nop introduced to take care of pipeline latency

  for stm

 Rptb store Repeats the block of instructions including the 

  instruction with the label store.

 Add *ar2+, *ar3+, a The contents of location pointed by AR2 and AR3 are 

  added and the result is stored in the ACC A higher 

  order word. In a dual-operand indirect-address ing 

  mode, the result is stored only after shifting the

  result by 16 bits towards left. AR2 and AR3 are 

  incremented by 1

 Add *ar1+, 16, a The content of location pointed by AR1 is left shifted 

  by 16 bits and added to A register AR1 is incremented

Store Sth a, *ar4+ Result contained in higher word of A register Is stored 

  in the location pointed by AR4. AR4 is incremented 

  This is the last instruction in the repeat block

 Nop Nop introduced to enable smooth exit if no branch 

  occurs

Start .word 1, 2, 3, 4, 5 Data required for operation stored in program

  memory. This data is copied to the data memory

  using the block copy program: bcopy.asm

 .data This assembler directive causes the following data

  to be stored into the data memory area

Data1 .word 5, 6, 7, 8, 9 fi ve words are stored. The address corresponding to 

  data1 = 1000h if IDATA -1000h in the Hello.cmd linker

  fi le

Data2 .bes (0fbh*16) 251 words reserved and the datal is assigned the 

  address of the last word, i.e., data2 - 10ffh

  if datal=1000h

Data3 .word 10h, 11h, 12h,

 .word 13h, 14h Data3 address = 1100h if datal address is 1000h.

  Five words are stored here

Data4 .space (0fbh*16) 251 words reserved, the fi rst address of the reserved 

  space, viz., 1105h is assigned to data4

Data5 .word 0, 0, 0, 0, 0 Address of data5 is 1200h:fi ve words initialised to 0

 .end Assembler terminates the assembly here
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APPLICATIONS PROGRAMS IN C54X 12.5

12.5.1 Example Program on Immediate Addressing

Program 12.4: immediate.asm gives an example for loading the various registers and memory locations 

using immediate addressing.

Program 12.4  immediate.asm:Immediate addressing

Label Mnemonic Comments

 .mmregs Permits the use of memory-mapped registers using 

  names instead of their actual memory address

 Id #1000h, A A Register loaded with the value 1000h

 Id #2000h, B B Register loaded with the value 2000h

 Id #0011h, 8, A The constant 0011h is left shifted by eight bits and

  the resulting no. 1100 is stored into A register

 Id #1000h, 16, B The constant 1000h is left shifted by 16 bits and the 

  resulting no. 1000 0000h is stored into B register

 STM #1000h, AR0 AR0 is loaded with the constant 1000h

 STM #1100h, AR1 AR1 is loaded with the constant 1100h

 ADD #00FFh, A The constant 0ffh is added to A regis ter and the

  result is stored in A

 ADD #0011h, 2, A The constant 0011h is left shifted by two bits and

  the resulting no. 0044h is added to A

 STM #45h, T The constant 45h is stored into T register

 MPY #0010h, A The content of T register multiplied by the constant 

  10h and the result is stored into A

 SUB #0022h, A The constant 22h is subtracted from A and the result

  is stored into A

 SUB #0011h, 3, A The constant 11h is left shifted by three bits and

  the resulting no. 0088h is subtracted from A. The 

  result is stored into A

 STM #110Fh, BK The constant 110fh is stored into circular buffer

  size register BK

 LD #20h, DP The data page pointer (DP) is initialised with

  the value 20h

 STM #1100h, SP The stack pointer is initialised to ll00h

 St #1000h, 1050h Constant 1000h is stored into the location 1050h

 .END

12.5.2 Example Program on Direct Addressing

Program 12.5: direct.asm gives an example for loading the various registers and memory locations and 

specifying the operands for the instructions using direct addressing. This program uses the instruc tions 

in fi ll.asm in order to fi ll up known contents into the memory location. The fi ll.asm fi lls the locations 

1000h-1FFFh with the numbers 0000h-0FFFh. This simplifi es the debugging procedure. When location 

101 0h is read we know that its contents should be 0010h. Further by executing the program in single-
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step mode, we can study the pipeline latency. This can be achieved by looking at the time when the PC 

points to the location containing the LD 10h, A instruction and the time the no. of cycles after which 

A becomes 0010h. Similarly by looking at the PC value corresponding to the instruction LD #20h, DP 

and the no. of cycles required for the DP to actually become 20h, the delay can be found. When the 

desired result does not occur, NOPs are inserted immediately after the particular instruction to avoid 

pipeline confl icts. No. of NOPs depends on the pipeline latency given in Table 12.1 and also the no. of 

instructions which lie in between the two instructions which have pipeline confl ict. One way to avoid 

the use of NOPs is to insert some instructions which are actually required for the program in between 

the instructions causing pipeline confl ict. However, trying to optimise the code this way may be at the 

cost of readability of the program. Hence use of NOPs may be preferred.

Program 12.5  direct.asm: Direct addressing

Label Instruction Comments

 .MMREGS Permits the use of names for memory-

  mapped registers

 .include “fi ll.asm” Inserts the instructions in the fi le fi ll.asm here at

  the time of assembly. This program fi lls the memory 

  1000-1FFFh with the nos. 0000-0FFFh

 RSBX CPL Compiler mode bit CPL reset to 0

 LD #20h, DP DP initialised to page 20h. This corresponds to the 

  page starting with the address 1000h

 STM #1100h, SP SP initialised to the address 1100h

 LD 10h, A Content of 1010h is loaded into A register Because

  of the fi ll opera tion the content of A becomes 10h

 LD 5h, 2, B The content of 1005h is left shifted by 2 bits and 

  loaded into B. Because of the fi ll operation, B

  register be comes 0014h

 SSBX CPL CPL bit changed to 1; SP gives the base address for 

  direct addressing

 STM 15h, AR0 Content of 1115h i.e., (SP+15) is stored into AR0

 STL A, 15h Content of lower word of A stored in location 1115h

 STL A, 3, 20h Content of lower word of A stored in location 1120h 

  after left shifting it by three bits

 STLM A, AR7 Content of lower word of A stored into AR7

 LD #30h, DP DP changed to page no. 30h with base address =1800h

 ADD 25h, A Content of the location 1125h (i.e., SP+25h) is added 

  to A and the result is stored into A

 ADD 7h, 2, A Content of the location 1107h (i.e., SP+07h) is left 

  shifted by two bits and added to A and the result is 

  stored into A

 SUB 10h, A Content of the location 1110h (i.e., SP+10h) is 

  subtracted from A and the result is stored into A

 RSBX CPL The base register for direct address ing is chosen as DP

 NOP Nops to take care of pipeline latencies
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 NOP 

 NOP 

 ADD 12h, A Content of the location 1812h (i.e., 1800h+12h) is 

  added to A and the result is stored into A

 STM #10h, T Load the constant 10h into T register

 MPY 15h, A Content of the location 1815h (i.e., 1800h+15h) is 

  multiplied with the T register and the result is

  stored into A

 MPY 16h, B Content of the location 1816h (i.e., 1800h+16h)

  is multiplied with the T register and the result is

  stored into A

 .End

12.5.3 Example Program on Indirect Addressing

Program 12.6 indirect.asm gives an example program on indirect-addressing mode. The ARs used for 

specifying the operand may be modifi ed in different values in the auxiliary ALU ARAU while the 

operand is processed by the main ALU. The no. of ways in which they can be modifi ed are postincrement 

and decrement with and without indexed addressing. They may also postdecrement or increment the 

ARs or use circular addressing along with indexed addressing and so on. The modifi ca tion of AR using 

circular addressing is considered in Program 12.7. The other options are considered in this program.

Program 12.6  Indirect.asm: Example Program on Indirect Addressing

Label Instruction Comments

 .MMREGS Permits the use of names for memory-

  mapped registers

 .Include “Fill.Asm” Inserts the instructions in the fi le fi ll.asm here at the 

  time of assembly. This program fi lls the memory

  1000-1FFFh with the nos. 0000-0FFFh

 Stm #1000h, Ar0 AR0 intialised to the value 1000h

 Stm # H00h, Ar1 AR1 intialised to the value 1100h

 Ld *Ar0+, A The content of the address pointed by AR0, i.e., 

  address 1000h is loaded into A. Because of the fi ll 

  operation A will be loaded with 0; AR0 incremented

  by 1

 Ld *Ar0+, 4, A The content of the address pointed by AR0, i.e., 

  address 1001h is loaded into A after left shifting it by 

  four bits. Because of the fi ll operation A will be

  loaded with 0010h, i.e., 0001 left shifted by 4 bits; 

  AR0 incremented by 1

 Stl A, *Ar1+ Lower order of A stored into the location pointed by 

  AR1. AR1 incremented by 1

 Stl A, 5, *+Ar1 Lower order of A stored into the location pointed by 

  AR1. after left shifting it by fi ve bits. AR1

  incremented by 1
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 Ld *+Ar0, 2,, A Ar0 is incremented by 1. The content of the location 

  pointed by the new value of AR0 is left shifted by

  two bits and stored into A

 Ld *Ar1+0, B The content of address pointed by AR1 is loaded

  into B register Content of AR0 is added to Ar1

 Ld *Ar1(10h), A The content of address pointed by AR1 + 10h is

  loaded into A register Content of AR1 is not altered 

 Ld *+Ar1(20h), B AR1 is incremented by 20h. The content of address 

  pointed by the new value of AR1 is loaded into A 

  register

 Ld *+Ar1(-30h), B AR1 is decremented by 30h. The content of address 

  pointed by the new value of AR1 is loaded into A 

  register

 Add *Ar1+0, B The content of address pointed by AR1 is added to B. 

  Content of AR0 is added to Ar1

 Sub *Ar0-, 2, A The content of location pointed by AR0 is left

  shifted by two bits and sub tracted from A. AR0 is 

  decremented by 1

 Stm #10h, T Load the constant 10h into T register

 MUL *AR1, A The content of the location pointed by AR1

  multiplied with T register and the result stored

  into A register

 Stm #1200h, Ar2 AR2 initialised to the value 1200h

 Stm # 1300h, Ar3 AR3 initialised to the value 1300h

 add *ar2+, *ar3+, a The content of the locations pointed by AR2 is added 

  to the content of the location pointed by AR3, the 

  result is left shifted by 16 bits and stored into A.

  AR2 and Ar3 are incremented

 .End End of assembly

12.5.4 Example Program on Filling a Memory Block

Program 12.7, Fill.asm is a program for fi lling numbers 0000h-0FFFh in the memory area 1000h-1FFFh. 

This uses indirect-addressing mode. In this program AR0 contains the no. of locations to be fi lled. A 

Register contains the data to be fi lled. It is initialised to be 0 and incremented by 1 after fi lling one 

location. This program makes use of BANZ instruction for fi lling the block. This program can also be 

modifi ed using RPTB instruction. In this case the BRC has to be initialised to be equal to the number of 

words to be fi lled - 1. The indirect-addressing mode is used for fi lling the location in this program.

Program 12.7  Fill.asm: Program for fi lling a memory block

Label Instruction Comments

 .MMREGS Permits the use of names for memory-

  mapped registers

 Stm #400h, Ar0 AR0 initialised to 0400h; It denotes

  the no. of words to be fi lled
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 Stm #1000h, Ar1 AR1 initialised to 1000h; It holds the address of the 

  location to be fi lled

 Ld #000h, A A initialised to 0

 Nop Nops to take care of pipeline latency after

 Nop Stm instruction

 Nop

Loop: Stl A, *Ar1+ One value fi lled and the address incremented

 Add #1h, A A incremented by 1

 Banz Loop, *Ar0- Continues in loop till AR0 is not zero;

  AR0 decremented

 Nop

 Stm #400h, Ar0 AR0 initialised to 0400h; It denotes

  the no. of words to be fi lled -1

 Stm #1800h, Ar1 AR1 initialised to 1800h; It holds the

  address of the location to be fi lled

 Ld #800h, A initialised to 800h

Loop1: Stl A, *Ar1+ One value fi lled and the address incremented

 Add #1h, A A incremented by 1

 Banz Loop1, *Ar0- Continues in loop till AR0 is not

  zero; Ar0 decremented

 Nop

 .end

12.5.5 Example Program on Circular Addressing

Program 12.8: Circular.asm gives an example where operand is fetched using circular addressing 

individually and also along with index addressing. The circular buffer is assumed to be of size 3. The 

circular buffer is initialised to be 1000h. First the manner in which the address gets incremented in the 

circular-addressing mode is illustrated. Next the circular-addressing mode is combined with indexed 

addressing and the manner in which the address gets incremented is illustrated. AR0 which is used as 

the index register is initialised to be 2.

Program 12.8  Circular addressing: Example on both circular and index addressing

Label Instruction Comments

 .mmregs Permits the use of names for memory-

  mapped registers

 Stm #3, Bk Circular buffer length register BK initialised to 3

 Stm #1000h, Ar1 AR1 initialised to 1000h

 Nop Nops for taking care of pipeline latency after

 Nop Stm #3, BK instruction

 Ld *Ar1+%, A Content of 1000h copied to A, AR1

  incremented to 1001h

 Ld *AR1+%, A Content of 1001h copied to A, AR1

  incremented to 1002h

 Ld *AR1+%, A Content of 1002h copied to A, AR1
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  incremented to 1000h

 Ld *AR1+%, A Content of 1000h copied to A, AR1

  incremented to 1001h

 Ld *Ar1+%, A Content of 1001h copied to A, AR1

  incremented to 1002h

 Ld *AR1+%, A Content of 1002h copied to A, AR1

  incremented to 1000h

 Nop Nops introduced to observe the changes properly

 Nop

 Stm #02h, Ar0 AR0 which is used as the index register is

  initialised to 2

 Stm #1000h, Ar1 AR1 initialised to 1000h

  Following lines use both circular and

  indexed addressing

 Ld *AR1+0%, A Content of 1000h copied tc A, AR1

  incremented to 1002h

 Ld *AR1+0%, A Content of 1002h copied to A, AR1

  incremented to 1001h

 Ld *AR1-0%, A Content of 1001h copied to A, AR1

  incremented to 1000h

 Ld *AR1-0%, A Content of 1000h copied to A, AR1

  incremented to 1002h

 Ld *AR1+0%, A Content of 1002h copied to A, AR1

  incremented to 1001h

 Ld *AR1+0%, A Content of 1001h copied to A, AR1

  incremented to 1000h

 Nop Nops introduced to observe the changes properly

 Nop

 .End

12.5.6 Convolution using MACP and MACD Instructions

Convolution operation can be performed using either MACP or MACD instruction. When the convolu-

tion is performed using the MACP instruction, the input data-memory area is left unaffected. When 

MACD is used the input data memory is shifted towards right. In other the content of location N is 

copied to the location N+1. As mentioned in Chapter 6, the MACD instruction is useful when the real 

time data is to be processed. In this case by shifting the data to the higher memory location, the input 

data which is no longer required can be gradually pushed out of the processing window. Program 12.9: 

conv.asm gives the program which uses the MACP instruction. Program 12.10: convd.asm gives the 

program which uses the MACD instruction. For convolution the input data sequence is assumed to be of 

length 3 and is stored into the data-memory area. The impulse response coeffi cients are assumed to be of 

length 5 and are stored into the program-memory area. The length of the resulting sequence is of length 

3+5-1, i.e., 7 and is stored into the data-memory area. Note that if an instruction is to be repeatedly 

executed N times using RPT instruction, the no. to be loaded as the argument to RPT instruction is N–1. 

Hence to perform MACP operation fi ve times the repeat instruction used is RPT #4.
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Program 12.9  Conv.asm: Convolution using MACP instruction

Label Instruction Comments

 .Mmregs

 Stm Data+4, Ar2 The address Data+4 denotes the address of the fi rst 

  input data; AR2 is initialised to this value

 Stm #1050h, Ar3 AR3 initialised to the starting address of the

  output array

 Stm #07h, Ar5 Initialise AR5 with the length of the output array

Loop Ld #0, B B initialised to 0

 Nop

 Rpt #4h One of the output element found by computing the 

  product of the coeffi cient array with the input

  array and

 Macp *Ar2-, Coeff, B Accumulating the products

 Stl B, *Ar3+ One output element is stored

 Mar *+Ar2(6) AR2, The data array pointer is made to point to the 

  next ele ment in the input array

 Banz Loop, *Ar5- Computation of next output element taken up if AR5

  is not zero. AR5 is decremented by 1

 Nop

 Nop

 Nop

Coeff .Word 1h, 2h, 3h, 4h, 5h The impulse response coeffi  cients stored here

 .Word 0, 0, 0, 0

 .Data

Data .Word 0, 0, 0, 0, 3h, 4h, 5h, 0h The input data stored here. Four zeros are inserted

  at the beginning and end of the input sequence

 .Word 0h, 0h, 0h

 .End

Program 12.10  Convd.asm: Convolution using MACD instruction

Label Instruction Comments

 .Mmregs

 Stm Data+9, Ar2 The address Data+9 denotes the address of the

  last element in the input array; AR2 is initialised to 

  this value

 Stm #1056h, Ar3 AR3 initialised to the end address of the output array

 Stm #07h, Ar5 Initialise AR5 with the length of the output array

Loop: Ld #0, B B initialised to 0

 Rpt #6h One of the output element found by

  computing the product of the coeffi cient array

  with the input array and

 Macd *Ar2-, Coeff, B Accumulating the products. Each of
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  the input data is shifted to one

  location higher

 Delay *Ar2 The new data is shifted into left of

  the input array

 St1 B, *Ar3- One output element is stored

 Mar *+Ar2(7) AR2, The data array pointer is made 

  to point to the end of the input array again

 Banz Loop, *Ar5- Computation of next output element

  taken up if AR5 is not zero. AR5 is

  decremented by 1

 Nop

Coeff .Word 1h, 2h, 3h, 4h, 5h

 .Word 0, 0, 0, 0

 .Data

Data .Word 0, 0, 0, 3h, 4h, 5h

 .Word 0h, 0h, 0h, 0h

 .End

12.5.7 Convolution using FIRS Instruction

The computational complexity of performing convolution can be reduced by a factor of 2 by using the 

FIRS instruction if either the input sequence or the impulse response has a symmetry about the middle 

of the sequence. The linear phase FIR fi lters can be designed to have symmetry about the middle of the 

sequence. Program 12.11: fi rs.asm gives an example where the impulse response is of length 4 and has 

even symmetry about the middle of the sequence. If the coeffi cients are denoted as h0, h1, h2, h3 and 

h4, it is assumed that h0=h3 and h1=h4. The input sequence is assumed to be of length 5. In order to 

perform the convolution, three zeros are appended before and after the given input sequence and the 

resulting sequence is stored in the location 1000h-1009h in fi rs.asm using .data directive. Each element 

of the convolved output is determined by four input values and four impulse response coeffi cients. So 

the input sequence is considered in blocks or windows of four elements. To fi nd out the last element 

of the convolver, the window consisting of the last non-zero input element and the three padded zeros 

is considered. In fi rs.asm it corresponds to the window 1006h-1009h. To fi nd the last element in the 

output array, the input elements in the locations 1007h and 1008h are to be added and multiplied by the 

second impulse response coeffi cient. Next the input elements in the locations 1006h and 1009h are to 

be added and multiplied by the fi rst impulse response coeffi cient. These two products are added to get 

the last element. To get the last but one element, the window is moved towards left by 1 location that is, 

the window 1005h-1008h is used to fi nd the output element. This process is repeated till all the output 

elements are found. The impulse response elements are stored in the program memory area starting with 

label coeffi cient and the coeffi cients are stored in the reverse order.

To use the FIRS instruction, the higher word of A should contain the sum of two elements which is 

to be multiplied by one of the impulse response coeffi cients. To ensure this, second and third element 

in the processing window of the input array are added and stored into the higher order word of A. Next 

the FIRS *ar2+, *ar3- instruction is used to multiply this sum with the content of coeffi  cient and add it 

to B register. The content of the locations pointed by AR2 and AR3 are added and stored into the higher 

order word of A, that is, the fi rst and last element of the processing window are added and stored into the 

higher order word of A. The next FIRS instruction multiplies this sum with the next coeffi cient, viz., the 
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content of coeff+1 and adds it to B register. The two elements outside the processing window are also 

added and stored into higher word of A. But this sum is not subsequently used as no FIRS instruction 

follows this.

Program 12.11  Firs.asm: Convolution using FIRS instruction

Label Instruction Comments

 .Mmregs

 stm #1009h, ar2 AR2 initialised to (end address -1) of the input array

 stm #1008h, ar3 AR3 initialised to (end address -2)

  of the input array

 stm #1057h, ar4 AR4 initialised to end address of

  the output array

 stm #0008h, ar5 AR5 initialised to the length of the

  output array

Loop Id #0, a A register initialised to 0

 Id #0, b B register initialised to 0

 Id *ar2+, 16, A The two input values which are to be

  multiplied by h1

 add *ar3-, 16, A are left shifted by 16 bits, added

  and stored into A

 Rpt # 1

 fi rs *ar2+, *ar3-, coeff First time execution: Higher order word of A 

  multiplied by the content of the location

  coeffi cient and added to B register. The content of

  the locations pointed by Ar2 and Ar3 are added

  and stored into the higher order word of A. AR2

  is incremented by 1. AR3 is decremented by 1

  Second time execution: Higher order word of A 

  multiplied by the content of the location

  coeffi cient and added to B register. The content of

  the locations pointed by Ar2 and Ar3 are added

  and stored into the higher order word of A. AR2

  is incremented by 1. AR3 is decremented by 1

 stl b, *ar4- One value of output in lower order word of B

  stored into the location pointed by AR4.

  AR4 decremented by 1 to point to the next lower 

  element of output array

 mar *+ar2(-4) AR2 made to point to the last but one element of

  the next input window

 mar *+ar3(2) AR2 made to point to the second element of

  the next input window

 banz loop, *ar5- Output element computation taken up for the next 

  input window if Ar5 is not zero. AR5 decremented

  by 1
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 Nop

Coeff .word 3h, 4h No. of impulse response coeffi  cients (N) is 4

 .data

Data .word 0h, 0h, 0h Input elements appended with (N-l) zeros at the

 .word 1h, 2h, 3h, 4h, 5h beginning and at the end are stored here

 .word 0h, 0h, 0h

Data1 .space 0f5h*16 245 locations reserved

Data2 .word 1, 2, 3, 4, 5 Address of data2 is 1100h

 .end

12.5.8 Generation of the Harmonics of a Sinusoidal Signal

Program 12.12: Harmonic.asm gives an example of generation of subharmonic and superharmonic of a 

sinusoidal signal. This example is taken up to illustrate how the CCS can be used to display informa tion 

in graphical form. In this program, 256 samples of a sinusoidal signal are stored in one array starting 

with the address 1000h. The samples corresponding to the fi rst subharmonic, that is, fs/2 is stored in 

second array and the second harmonic, that is, 2fs is stored in the third array using the program. If s1, 

s2, s3, s4, ... are the samples of the input array, in the fi rst subharmonic array, the values stored are s1, 

(s1+s2)/2, s2, (s2+s3)/2, s3, .... Similarly the values stored in the second har monic array are (sl+s2)/2,, 

(s3+s4)/2, (s5+s6)/2, ... After the elements of each of the arrays are computed in this fashion, the fi rst 

128 samples of all the three arrays are displayed as shown in Fig. 12.7. The parameters chosen for 

displaying one of the array in graphical form is also shown in Fig. 12.7. Similarly, the parameters for the 

other arrays can be chosen by changing the memory address as 1000h and 1600h respectively. The 256 

samples of a sinewave are given in Appendix 12.

It may be noted that the technique adopted here can also be used to display the samples of the real-

time input digitised using the AIC and also the output of a fi lter which processes this input signal. Hence 

CCS helps to observe the waveform without the help of the CRO, especially at low frequencies.

Program 12.12  Harmonic, asm

Label Instruction Comments

 .Mmregs

 stm #02, ar0 Ar0 used as index reg initialised to 2

 stm #1000h, ar2 AR2 pointing to the sine table initialized to the

  beginning address

 stm #1001h, ar3 AR3 points to the next address in the sine table

 stm #1200h, ar4 AR4 pointing to the second harmonic array

  initialised to 1200h

 stm #1600h, ar5 AR5 pointing to the subharmonic array

  initialised to 1200h

 stm #255, brc Repeat count initialised to 255

 Nop Pipeline latency

 Nop

 rptb fi nal Instructions till fi nal repeated

 Id *ar2+0, a Content of location pointed by ar2 copied to A,

  AR2 incremented by 2
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 Id *ar3, b Content of location pointed by AR3 copied to B

 st1 a, *ar5+ First value stored in subharmonic array

 add b, a Sum of the fi rst two elements found

 stl -1, *ar5+ Sum divided by 2 and stored in both the

 stl -1, *ar4+ Subharmonic and second harmonic array

 stl *ar5+ Second element of sine array stored as third

  element of subharmonic array

 Id *ar2, b Third element of sine array copied to b

 add *ar3+0, b Sum of second and third element found

 st1 b, -1, *ar5+ Sum divided by 2 and stored as fourth element of

  subharmonic array

Final Nop

 Nop

 .data

 .include “sine.asm” Contains 256 samples of sinewave

 .end

Fig. 12.7 CCS display with graphical outputs



Application Programs in C54X  351

12.5.9 Programs for Processing Real Time Inputs

One of the ways for feeding the real-time input to kit is through the AIC TLC320AD50C and the 

multichannel buffered serial port (BSP) also referred to as McBSP. Some of the features of the AIC 

AD50 are listed in Sec. 12.3.

The BSP has a full-duplex, double-buffered serial port interface and an autobuffering unit (ABU). 

BSP can be programmed either as a standard ¢54X serial port or as a standard serial port with enhanced 

features. The operation of the ¢54X standard serial port is identical to that of the ¢5X serial port dis cussed 

in Chapter 6. The block diagram of the standard ¢54X serial port is the same as that given in Fig. 6.6. The 

BSP has its own dedicated memory-mapped 16-bit data transmit, data receive and serial port control 

registers (BDXR, BDRR and BSPC) and the signifi cance of the various bits of these registers is the 

same as that of the (DXR, DRR and SPC) registers of the standard serial port given in Figs 6.7-6.12. The 

BSP has an additional control register, the BSP control extension register (BSPCE), for implementing its 

enhanced features and controlling the ABU. The BSP has four interrupt pins WXINT, WRINT, BXINT 

and BRINT. The operation of BXINT and BRINT is identical to that of XINT and RINT of the standard 

serial port in the standard mode. WXINT and WRINT interrupts are generated each time a word is 

transmitted or received. They in turn generate the interrupt BXINT and BRINT depending upon the 

operating mode of ABU.

The enhanced features that the BSP offers include the capability to generate programmable rate 

serial port clocks, select positive or negative polarities for clock and frame sync signals and to perform 

transfers of 10- and 12-bit words, in addition to the 8- and 16-bit transfers offered by the serial port. 

Additionally, BSP implements the capability to specify that frame sync signals be ignored until in-

structed otherwise, and provides a dedicated operating mode which facilitates its use with PCM inter-

faces. The BSPCE contains the control and status bits that are used in the implementation of these 

enhanced BSP features and the ABU.

The ABU of BSP allows the serial port section to read/write directly to ¢54X internal memory 

independent of the CPU. This results in a minimum overhead for serial port transfers and faster data 

rates. The ABU has a set of circular addressing registers, each with corresponding address generation 

units. Memory for transmit and receive buffers resides within a special 2K word block of ¢54X internal 

memory. This memory can also be used by the CPU as general purpose storage, however, this is the 

only memory block in which autobuffering can occur. Using autobuffering, word transfers occur 

directly between the serial port section and the ¢54X internal memory automatically using the ABU

Program 12.13  Capture_Display.C

#include <type.h>

#include <board.h>

#include <codec.h>

#inc1ude <mcbsp54.h>

HANDLE hHandset;

void main() S16 data

{

 if (brd_init(100))

 return;   /* Initialise the board for 100MHz */

 hHandset = codecopen(HANDSETCODEC);

    /* Open Handset Codec */
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 codecdacmode(hHandset, C0DEC_DAC_15BIT);

    /* Set DAC in 15-bit mode */

 codec_adc_mode(hHandset, C0DEC_ADC_15BIT);

    /* Set ADC in 15-bit mode */

 codecai ngai n(hHandset, C0DEC_AIN_6dB);

    /* 6dB gain on analog input to ADC */

 codec_aout_gain(hHandset, C0DEC_A0UT_MINUS_6dB);

    /* -6dB gain on analog output from DAC */

 codec_sample_rate(hHandset,SR_16000);

    /*16KHz sampling rate */

while (1)

{

while (!MCBSP_RRDY(HANDSET_CODEC)) {};

    /* Wait for sample from handset */

 (data = *(volatile u16*)DRR1_ADDR(HANDSET_C0DEC));

 *(volatile u16*)DXR1_ADDR(HANDSET_C0DEC) = data;

    /*Read sample from & write back to handset

 codec*/

 }

}

-embedded address generators. The length and starting addresses of the buffers within the 2K block are 

programmable, and a buffer empty/full interrupt can be generated to the CPU. Buffering can also be 

halted using the autodisabling capability. The BSP autobuffering capability can be separately enabled 

for the transmit and receive sections. When autobuffering is disabled (standard mode), data transfers 

with the serial port section occur under software control in the same fashion as with the standard ¢54X 

serial port. In this mode, the ABU is transparent, and the WXINT and WRINT interrupts are sent to the 

CPU as transmit interrupt (BXINT) and receive interrupt (BRINT). When autobuffering is enabled, the 

BXINT and BRINT interrupts are only generated to the CPU each time half of the buffer is transferred. 

Initialisation of the devices in the 5402 DSK is greatly simplifi ed by the CCS. The 5402 DSK is equipped 

with a no. of header fi les such as McBSP54.h, board.h and codec.h which contain a no. of Macro function 

routines. These functions can be called by passing the appropriate parameter. The initialisation routine 

may be written in C, compiled and verifi ed for the proper operation. For example, Program 12.13: 

Capture_Display.C gives the program for capture and display of an audio signal from an oscillator and 

display the same in CRO. To compile and download the code to the DSK, fi rst a project such as AD50.

mak is opened and the fi le Capture_Display.C is added to this project. Rest of the procedure is the same 

as that used for a asm fi le used in the previous examples. After verifi cation of the expected result in 

the DSK, the initialisation routine may be used as a part of an assembly language program. This can be 

achieved by converting the C program to the equivalent asm fi le. For example, to convert the above C 

fi le to the asm fi le, the command to be used, under command prompt, is

c1500 Capture_Display.C -ss

This generates the asm fi le Capture_Display.asm. (The path has to be properly chosen so that the header 

fi les are also accessible) This asm fi le can be edited as per the user requirement. For example, this 

routine may be modifi ed to store the data in a circular buffer (either the ABU or some other buffer). The 

data in the buffer may be processed and the result may be stored in another circular buffer. The content 

of this buffer may be displayed on real-time basis. The data may obtained from the AIC using either 
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DMA or interrupt so that some other operation such as modulation/demodulation of FSK signal may 

also be carried out on real time basis.

APPENDIX 12 

The 256 samples of a sinusoidal signal are given in this appendix.

Label Mnemonic

 .word 0x0000, 0x000f, 0x001e, 0x002d, 0x003a, 0x0046, 0x0050

 .word 0x0059, 0x005f, 0x0062, 0x0063, 0x0062, 0x005f, 0x0059

 .word 0x0050, 0x0046, 0x003a, 0x002d, 0x001e, 0x000f, 0x0000, 0xfff1

 .word 0xffe2, 0xffd3, 0xffc6, 0xffba, 0xffb0, 0xffa7, 0xffa1, 0xff9e

 .word 0xff9d, 0xff9e, 0xffa1, 0xffa7, 0xffb0, 0xffba, 0xffc6, 0xffd3

 .word 0xffe2, 0xfff1, 0x0000, 0x000f, 0x001e, 0x002d, 0x003a, 0x0046

 .word 0x0050, 0x0059, 0x005f, 0x0062, 0x0063, 0x0062, 0x005f, 0x0059

 .word 0x0050, 0x0046, 0x003a, 0x002d, 0x001e, 0x000f, 0x0000, 0xfff1

 .word 0xffe2, 0xffd3, 0xffc6, 0xffba, 0xffb0, 0xffa7, 0xffa1, 0xff9e

 .word 0xff9d, 0xff9e, 0xffa1, 0xffa7, 0xffb0, 0xffba, 0xffc6, 0xffd3

 .word 0xffe2, 0xfff1, 0x0000, 0x000f, 0x001e, 0x002d, 0x003a, 0x0046

 .word 0x0050, 0x0059, 0x005f, 0x0062, 0x0063, 0x0062, 0x005f, 0x0059

 .word 0x0050, 0x0046, 0x003a, 0x002d, 0x001e, 0x000f, 0x0000, 0xfff1

 .word 0xffe2, 0xffd3, 0xffc6, 0xffba, 0xffb0, 0xffa7, 0xffa1, 0xff9e

 .word 0xff9d, 0xff9e, 0xffa1, 0xffa7, 0xffb0, 0xffba, 0xffc6, 0xffd3

 .word 0xffe2, 0xfff1, 0x0000, 0x000f, 0x001e, 0x002d, 0x003a, 0x0046

 .word 0x0050, 0x0059, 0x005f, 0x0062, 0x0063, 0x0062, 0x005f, 0x0059

 .word 0x0050, 0x0046, 0x003a, 0x002d, 0x001e, 0x000f, 0x0000, 0xfff1

 .word 0xffe2, 0xffd3, 0xffc6, 0xffba, 0xffb0, 0xffa7, 0xffa1, 0xff9e

 .word 0xff9d, 0xff9e, 0xffa1, 0xffa7, 0xffb0, 0xffba, 0xffc6, 0xffd3

 .word 0xffe2, 0xfff1, 0x0000, 0x000f, 0x001e, 0x002d, 0x003a, 0x0046

 .word 0x0050, 0x0059, 0x005f, 0x0062, 0x0063, 0x0062, 0x005f, 0x0059

 .word 0x0050, 0x0046, 0x003a, 0x002d, 0x001e, 0x000f, 0x0000, 0xfff1

 .word 0xffe2, 0xffd3, 0xffc6, 0xffba, 0xffb0, 0xffa7, 0xffa1, 0xff9e

 .word 0xff9d, 0xff9e, 0xffa1, 0xffa7, 0xffb0, 0xffba, 0xffc6, 0xffd3

 .word 0xffe2, 0xfff1, 0x0000, 0x000f, 0x001e, 0x002d, 0x003a, 0x0046

 .word 0x0050, 0x0059, 0x005f, 0x0062, 0x0063, 0x0062, 0x005f, 0x0059

 .word 0x0050, 0x002d, 0x001e, 0x000f, 0x0000, 0xfff1, 0xffe2, 0xffd3

 .word 0xffc6, 0xffba, 0xffb0, 0xffa7, 0xffa1, 0xff9e, 0xff9d, 0xff9e

 .word 0xffa1, 0xffa7, 0xffb0, 0xffd3, 0xffe1, 0xfff1, 0x0000, 0x000f

 .word 0x001e, 0x002d, 0x003a, 0x0046, 0x0050, 0x0059, 0x005f, 0x0062

 .word 0x0063, 0x0062, 0x005f, 0x0059, 0x0050, 0x0046 
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Review Questions 

12.1 How does the conditional call instructions of C54X 

differ from the unconditional call instructions w.r.t. the 

no. of cycles required for execution?

12.2 What should be the value of IDATA in the hello.

cmd if the data memory is required to have the starting 

address as 1500h?

12.3 The data memory is initialised to have the address 

1000h. Explain how four values 43h, 44h, 45h and 46h 

can be stored in the memory space 1050-1053h using (a) 

.bes directive (b) .space directive (c) bkpd instruction.

12.4 Explain the sequence of steps required for running 

a C54X assembly program in code composer studio.

12.5 Explain how a C54X program may be run using 

break points in CCS environment?

12.6 What is the modifi cation required in Program 12.1 

if it is used to add three vectors each of size 15?

12.7 What is the modifi cation required in Program 12.1 

if the RPTB instruction is to be used instead of the banz 

instruction. Of the two approaches which one would 

consume less clock cycles for execution?

12.8 Write a C54X assembly language program to fi nd 

the sum of the series 1 + 2 + 3 + ... 1000.

12.9 Write a C54X assembly language program to fi nd 

the sum of the series 12 + 22 + 32+ ... 1002

12.10 Write a C54X program to read a sequence of 

256 samples of a sine wave signal from a fi le and store 

them in a circular buffer of size 80. Every time the buffer 

reaches the end address, the content of the buffer should 

be displayed on the screen.

12.11 Write a C54X program to generate the FSK 

signal using the stored sample values of two sinusoidal 

signals.

12.12 Write a C54X program to decode the FSK signal.

12.13 Write a program to initialise the McBSP of 54X 

and test its operation using the loop back mode.

12.14 Write a program to initialise the A1C AD50 and 

digitise the sinusoidal signal fed to the AIC input and 

store 256 samples in the address space 1000-10FFh.

12.15 Write a program to initialise the AIC AD50 and 

digitise the sinusoidal signal fed to the AIC input, divide 

it by two and display the same in the CR0 by converting 

the signal back to analog signal.

12.16 Write a program to digitise the signal fed to AIC 

and display the same in the CR0 by converting the signal 

back to analog signal.

12.17 Write a program which processes the input 

data from the AIC on real-time basis and display the LP 

fi ltered output in the CR0. Assume the LP fi lter to have 

81 taps and to be stored in the program memory area.

12.18 Write a program which processes the input 

data from the AIC on real-time basis and display the LP 

fi ltered output in the CCS output screen. Assume the LP 

fi lter to have 81 taps and to be stored in the program-

memory area.

12.19 The impulse response coeffi cients of a 5-tap fi lter 

are initially [1.5, 1.3, 1.0, 0.5, 0.3]. An adaptive fi lter is to 

be designed which adapts the fi lter coeffi cients till the 

coeffi cients become [1, 0, 0, 0, 0]. Write a C54X program 

using the LMS instruction to implement this fi lter. The 

input samples may be assumed to be fi xed and of length 

7.

12.20 Explain with an example how convolutional 

codes can be generated using a C54X program.

12.21 With a simple example illustrate how the 

convolutional codes may be decoded using the Viterbi 

algorithm. Write a C54X program for the Viterbi 

decoder.

12.22 Write a C54X program to fi nd the Eucludian 

distance between two vectors of dimension 10.

12.23 Write a C54X program to fi nd the Hamming 

distance between two vectors of dimension 10.

12.24 Write a C54X program to fi nd the vector which 

has the minimum Hamming distance to a given vector of 

dimension 10 among fi ve vectors.

12.25 Write a program in C54X to multiply a 3X3 matrix 

by a vector.
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Self Test Questions 

12.11 ——— C54X assembler directive reserves and 

initialises n bits of memory and when a label is ——— 

used with this directive, the label is assigned the address 

of the last word of the block reserved.

(a) .bes (b) .space (c) .word (d) .data

12.12 ——— C54X assembler directive which enables 

the code to be assembled into data memory area.

(a) .bes (b) .space (c) .word (d) .data

12.13 For displaying the waveform corresponding to 

256 samples, the acquisition buffer size and display data 

size in the view window of CCS should be chosen as 

———, ———.

(a) 128, 256 (b) 128, 128 (c) 256, 256 (d) 256, 128

12.14 If any one of the following pairs of instructions 

are executed sequentially, unexpected results may 

occur. One way to avoid this is to separate the pairs of 

instructions by a no. of nops or instructions do not use 

the registers which are modifi ed in the fi rst instruction 

of the pair. How many nops are required between each 

of the pairs of instructions to ensure that expected 

results occur?

(a) STM #1000h, AR0

 LD *AR0, A

(b) STL A, *AR7+

 STM #1000h, AR3

(c) STLM A, AR0

 LD *AR0-, A

(d) STM #08h, BK

 LD *AR2+%, A

(e) STM #10h, T

 MUL 20h, A

(f) STL A,T

 MUL 20h, A

(g) STM #10h, BRC

 RPTB start

(h) STLM A, BRC

 RPTB start

(i) RSBX CPL

 LD 20h, A

(j) RSBX CPL

 STL A, 20h

(k) SSBX CPL

 LD 20h, A

(l) SSBX CPL

 STL B, 20h

12.1 Which of the following call instructions require 

fi ve clock cycles for execution?

(a) CCsub (b) CALL sub (c) CCD sub (d) CALLDsub

12.2 Which of the following call instructions executes 

either a single 2-word instruction or two 1-word 

instructions before executing the subroutine?

(a) CCsub (b) CALL sub (c) CCD sub (d) CALLDsub

12.3 Which of the following branch instructions require 

four clock cycles for execution?

(a) Bloop (b) BDloop (c) BCD loop (d) BCloop

12.4 Which of the following branch instructions 

executes either a single 2-word instruction or two 1-word 

instructions before branching to loop?

(a) Bloop (b) BDloop (c) BCD loop (d) BCloop

12.5 Which of the following instructions require two 

clock cycles for execution?

(a) Any two memory operand instructions in which the 

two operands reside in the same block of S ARAM

(b) Any instruction that reads a 320-bit operand from 

DARAM

(c) Any instruction that reads a 32-bit operand from 

SARAM

(d) Any instruction that writes a 32-bit operand to 

SARAM

12.6 The rate at which the data can be exchanged 

between the host and the target DSP board using the 

RTDX feature of CCS is.

(a) 20 Kbytes/s (b) 20 Kbits/s

(c) 64 Kbytes/s (d) 64 Kbits/s

12.7 The external SRAM capacity in C5402 kit is 

words and requires ——— wait states.

(a) 64K, 1 (b) 64K, 7 (c) 256K, 1 (d) 256, 7

12.8 The external Flash memory capacity in 5402 kit is 

——— Mwords and requires ——— wait states.

(a) 64K, 1 (b) 64K, 7 (c) 256K, 1 (d) 256, 7

12.9 In the C5402 kit there are ——— AD50 AICs and 

C5402 has ——— enhanced buffered multichannel serial 

ports on chip.

(a) 1, 1 (b) 1,2 (c) 2, 1 (d) 2,2

12.10 ——— C54X assembler directive reserves and 

initialises n bits of memory and when a label is used with 

this directive, the label is assigned the address of the 

fi rst word of the block reserved.

(a) .bes (b) .space (c) .word (d) .data
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The TMS320C6X DSPs use the VelociTITM architecture, the fi rst DSPs to use advanced VLIW (Very Large 

Instruction Word) architecture to achieve high performance through increased instruction parallelism. 

This makes the ¢C6X DSPs an excellent choice for multichannel and multifunction applications.

The conventional VLIW architecture consists of multiple execution units running in parallel 

performing multiple instructions during a single clock cycle. The VelociTI architecture is a highly 

deterministic architecture having reduced code size, fl exibility of code and data type and zero overhead 

in branching.

The TMS320C62X, TMS320C64X and TMS320C67X are the family of DSPs in the ¢C6X generation. 

The ¢C62X and ¢C64X devices are fi xed point and ¢C67X devices are fl oating point DSPs. In ¢C6X DSPs 

¢C62X and ¢C64X processors are code compatible, ¢C62X and ¢C67X processors are code compatible.

The ¢C6X devices execute up to eight 32-bit instructions per cycle with an execution speed of up 

to 6000 million instructions per second (MIPS). The ¢C6X CPU consists of eight functional units, two 

multiplier and six ALUs and some general purpose registers. The CPU of ¢C62X and ¢C67X device 

consists of 32 general purpose registers of 32-bit size, where as ¢C64X devices have 64 general purpose 

registers of 32-bit size. 

FEATURES OF ¢C6X PROCESSORS 13.2

 
  

∑ Advanced VLIW CPU with eight functional units, including two multipliers and six ALUs

 ∑ Executes up to eight instructions per cycle allows to develop effective RISC like code

 ∑ Instruction packing reduces code size, program fetches and power consumption

 ∑ Conditional execution of all instructions

 ∑ Effi cient code execution on independent functional units

 ∑ Supports 8/16/32- bit data formats

 ∑ 40-bit arithmetic operations, saturation and normalization operations 

 ∑ Field manipulation and instruction extract, set, clear and bit counting operations

 ∑ The ¢C67X device has hardware support for single precision (32-bit) and double precision (64-

bit) IEEE fl oating point operations and also 32 X 32 bit integer multiplication with 32 or 64 

– bit results.

13

ARCHITECTURE OF 

TMS320C6X
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 ∑ The ¢C64X device multiplier can perform two 16 X16 bit or four 8 X 8 bit multiplications per 

cycle, quad 8-bit and dual 16-bit instruction set extensions with data fl ow support, memory 

access for non-aligned 32-bit and 64-bit, special communication-specifi c instruction useful in 

realizing error-correcting codes, bit count and rotate hardware. 

INTERNAL ARCHITECTURE 13.3

The block diagram of TMS320C6X devices is given in Fig. 13.1. The ¢C6X devices contains 32-bit 

CPU, on-chip program, data memory and on-chip peripherals. The on-chip memory has cache either for 

program space or for both program and data space. The ¢C6X devices have peripherals such as external 

memory interface (EMIF), direct memory access controller (DMA), timers, multi-channel buffered 

serial ports (McBSP), host port interface (HPI) and power down logic. 

Fig. 13.1 Internal Architecture of TMS320C62X/¢C64X/¢C67X Devices

CPU 13.4

The central processing unit of ¢C6X device is 32-bit size. The block diagram of ¢C6X CPU is given in 

Fig. 13.2. The CPU contains the following units:

 (a) Program fetch unit
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 (b) Instruction dispatch unit

 (c) Instruction decode unit

 (d) Two data paths, each data path 

consists of four functional units

 (e) Register fi le for each data path

 (f) Control registers

 (g) Control logic

 (h) Test, emulation and interrupt 

logic

The functional units shaded in Fig. 

13.2. are common to all ¢C6X devices. The 

¢C6X CPU is based on advanced VLIW 

architecture, which accepts eight 32-bit 

instructions (the instruction fetch packet 

size is 256 bits) at a time. The program 

fetch unit generates the addresses of eight 

instructions and sends it to the program 

memory for each fetch packet. Once the 

contents of the program memory read occurs, the fetch packet is received at the CPU. 

The instruction dispatch unit receives the fetch packet and splits it into execute packets. The 

instructions in the execute packet (eight instructions) are assigned to the appropriate eight functional 

units in the data path. During the instruction decode, the source registers, destination registers and 

associated paths are decoded for the execution of the instructions in the functional units. Finally the 

instructions are executed by the functional units. 

The register fi le (A&B) of all the ¢C6X devices contain 32 numbers of 32-bit registers (16 register for 

each data path) except ¢C64X devices. The ¢C64X device register fi le has 64 numbers of 32-bit registers 

with 32 registers for each data path.

The ¢C6X CPU contains eight functional units, six arithmetic and logic units and two multipliers 

(.L1, .L2, .S1, .S2, .M1, .M2, .D1 and .D2.). These functional units can be divided into two groups of 

four. The L, S & D units are arithmetic and logic units (ALU), and the M unit is a multiplier unit. Each 

data path has almost identical functional units.

GENERAL-PURPOSE REGISTER FILES 13.5

There are two general-purpose register fi les A and B in ¢C6X CPU data paths. In ¢C62X/¢C67X devices 

each register fi le contains 16 numbers of 32-bit registers, the registers A0-A15 for register fi le-A and 

B0-B15 for register fi le-B. The ¢C64X devices have double the number of general-purpose registers as 

that are in ¢C62X/¢C67X processors. There are 32 numbers of 32-bit registers for each data path, where 

A0-A31 for register fi le-A and B0-B31 for register fi le-B. The general-purpose registers can be used for 

handling data; data address pointers or condition registers.

The ¢C62X/¢C67X general-purpose register fi les supports packed 16-bit, 40-bit fi xed point data and 

64-bit fl oating point data types. The packed data type can store four 8-bit values or two 16-bit values 

in a single 32-bit register or four 16-bit values in 64-bit register. The values larger than 32 bits, such as 

40-bit fi xed point and 64-bit fl oating point are stored in register pairs. The storage scheme for 40-bit 

Fig. 13.2 CPU Unit of TMS320C6X DSP
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long data in register pair is shown in Fig. 13.3. In register pairs (A3:A2), 32 LSBs of data are placed 

in an even numbered register (A2) and the remaining 8-bit or 32 MSBs in the next upper register (A3), 

which is always odd numbered register. The ¢C64X register fi le has this facility by supporting packed 

8-bit and 64-bit fl oating point data types. For 40-bit and 64-bit data, there are 16 valid register pairs in 

¢C62X/¢C67X and 32 valid register pairs in ¢C64X core. The valid register pairs in ¢C6X devices are 

given in Table 13.1.

Fig. 13.3 Storage Scheme for 40-Bit Data in a Register Pair

Table 13.1  Valid Register Pairs in ¢C6X CPU Register fi les

Register Pairs

Device Family Data path – A  Data path – B

¢C62X/¢C64X/¢C67X A1 : A0

A3 : A2

A5 : A4

A7 : A6

A9 : A8

A11 : A10

A13 : A12

A15 : A14

B1 : B0

B3 : B2

B5 : B4

B7 : B6

B9 : B8

B11 : B10

B13 : B12

B15 : B14

¢C64X only A17 : A16

A19 : A18

A21 : A20

A23 : A22

A25 : A24

A27 : A26

A29 : A28

A31 : A30

B17 : B16

B19 : B18

B21 : B20

B23 : B22

B25 : B24

B27 : B26

B29 : B28

B31 : B30

FUNCTIONAL UNITS AND OPERATION 13.6

The ¢C6X CPU consists of eight functional units, .L1, .S1, .M1, .D1, .L2, .S2, .M2 and .D2. These 

eight functional units of ¢C6X devices are divided into two groups, one group for each data path. Each 

functional unit in one data path is almost identical to the corresponding unit in the other data path and 

arranged as mirror image to each functional unit. The .L, .S and .D units are arithmetic and logic unit, 

.M unit is a multiplier unit. The fi xed point operations performed in ¢C6X processor functional units and 

the bit size of the operation are given in Table 13.2. 

The .L unit performs arithmetic and logical operations, other operations like compare and count are 

performed in this unit. The .S unit is used for arithmetic and logical operations as well as for branch, 

shift, constant generation and move operations. The .D unit does add and subtract operations. The .D 

unit is a dedicated unit for the load, store operations, linear and circular address calculations. The .M unit 
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is dedicated unit to perform multiply operations. The functional units in ¢C64X processor supports Dual 

16-bit and Quad 8-bit functional operations pertaining to their units apart from the normal operations. 

The operations performed by ¢C67X processor functional units are given in Table 13.3. The .L unit 

performs arithmetic operations and .S unit does the compare operations. The .M unit can do 32 x32 

bit fi xed-point multiply operations and fl oating point operations. The .D unit is used to load and store 

double words with 5-bit constant offset.

Table 13.2 Functional units of ¢C6X and its fi xed point operations

Name of the 

UnitType of 

operation

.L unit .S unit .M unit .D unit

Arithmetic 

operation

32/40 bit operation

Dual 16 bit, Quad 

8 bit arithmetic 

and min/max 

operations*

32-bit operation

Dual 16 bit, Quad 8 

bit saturated arith-

metic operations*

— 32-bit add & subtract 

operations only

Logical operation 32-bit operations 32-bit operations — 32-bit logical 

operations*

Multiply operations — — 16x16 multiply op-

erations16x32, Quad 

8x8, Dual 16x16 

multiply operations

—

Shift operations

Byte shifts*

32/40 bit shift opera-

tions

Byte shifts, Dual 16 

bit shift operation*

Variable shift opera-

tions*

—

Compare operations 32/40 bit operations Dual 16 bit, Quad 

8 bit compare 

operations *

— —

Branch operations — Yes — —

Load and Store 

operations

— — — Load and stores 

with 5-bit constant 

offset(15-bit constant 

offset in .D2 only)

Linear and circular 

address calculation

— — — Yes 

Constant generation 5 bit constant gen-

eration*

Yes — 5 bit constant 

generation*

Count operations 32/40 bit count 

operations

— — —

Move operations Register to register 

only 16-bit move 

operations*

16-bit move 

operations

    —

Register to register 

only*

Register to register 

only16-bit move 

operations*

* - additional operations performed by the functional units in ¢C64X processors.
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Table 13.3 Functional units of ¢C6X and its fl oating point operations

Name of the unit Type of fl oating point operation

 .L unit Arithmetic operations

.S unit Compare, square-root and Absolute value operations

.M unit 32x32 bit Fixed point multiply operations and Floating point multiply operations

.D unit Load double word with 5-bit constant offset

DATA PATHS 13.7

The ¢C6X CPU has two data paths, Data path – A and Data path – B. The data paths of ¢C62X, ¢C67X 

and ¢C64X devices are shown in Fig. 13.4., Fig. 13.5., and Fig. 13.6. respectively.

13.7.1 Register File Data Paths

Most of the data lines in the CPU data path are 32-bit wide but some support 40-bit (long operands) 

and 64-bit (double word operands) lines. The functional units ending in 1 (.L1, .S1, .M1 and .D1) have 

access to register fi le A, and functional units ending in 2 (.L2, .S2, .M2 and .D2) to register fi le B. 

Each functional unit has two 32-bit ports for reading source operands src1 and src2 from the respective 

register fi les. The .L and .S units have an extra 8-bit line for 40-bit long src operand reads. 

Each functional unit has its own 32-bit write port into the respective register fi le for destination dst 

operands except .M unit of ¢C64X. The ¢C64X multiplier unit can return up to a 64-bit result, so an extra 

32-bit write port is available to the register fi le. The same way us the read port, .L and .S units have an 

extra 8-bit line for 40-bit long dst operand writes. Since each unit has its own port for operand read and 

writes, when performing 32-bit operations all the eight functional units can be used in parallel every 

machine cycle. 

13.7.2 Register File Cross Paths

The ¢C6X processors functional units can read and write the operands directly from their respective 

register fi les using its own data paths. The register fi les are connected to the opposite side functional 

units through 1X and 2X cross paths. These cross paths allow the functional units from one data path to 

access 32-bit operand from the opposite side register fi le. The functional units of data path –A read their 

source operands from register fi le B via 1X cross path and the 2X cross path allows the functional units 

of data path –B to read the source operand from register fi le A. 

The six functional units (.L1, .L2, .S1, .S2, .M1 and .M2) out of the eight units of ¢C62X and ¢C67X 

processors, have access to the opposite side register fi le via cross path. In .S1, .S2, .M1 and .M2 units 

src2 operand is selectable between the cross path and the same side register fi le path but in the case of 

.L1 and .L2 units, both src1 and src2 operands are selectable. 

In ¢C64X processor, all the eight functional units have access to the register fi le of the opposite side 

through cross path. In ¢C64X also .L1 and .L2 units both src1 and src2 operands are selectable between 

the cross path and the same side register fi le path but in the case of other six functional units only src2 

operand is selectable.
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Fig. 13.4 TMS32C62X CPU Data Paths
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Fig. 13.5 TMS32C67X CPU Data Paths
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Fig. 13.6 TMS32C64X CPU Data Paths
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13.7.3 Register File Memory Access Paths

In order to access data from memory to CPU register fi les, ¢C6X CPU has address paths, data load and 

store paths. The DA1 and DA2 the address paths, LD1 and LD2 the data load paths and ST1 and ST2 

the data store paths are used for memory access. 

The DA1 and DA2 address paths are 32-bit size and are connected to .D unit of the respective data 

paths. The paths allow addresses generated by any one path to access data to or from any register. The 

DA1 and DA2 resources and their associated data paths are specifi ed as T1 and T2 respectively in the 

instruction set. It is important to note that there is cross path for the address buses, the address generated 

in .D1 and .D2 units can have access to DA2 and DA1 paths (opposite paths) respectively.

The ¢C62X processor has two 32-bit paths for loading data from memory to register fi le, LD1 for 

register fi le A and LD2 for register fi le B, but both ¢C64X and ¢C67X processors have additional 32- 

bit load paths (LD1a and LD1b, LD2a and LD2b) for register fi les A and B. This allows CPU to load 

simultaneously two 32-bit (64-bit) values in register fi les A and B. 

As for as the store path is concerned, both ¢C62X and ¢C67X processors have two 32-bit paths to store 

data values from register fi le to memory. The ¢C64X has additional 32-bit store paths ST1a and ST1b 

and ST2a and ST2b for register fi les A and B. The¢C64X processor alone supports double word load and 

store instructions. The size of memory access paths in C6X processors are given in Table 13.4.

Table 13.4 Size of memory access paths in ¢C6X processors

Data path 

type
¢C62X ¢C64X ¢C67X

Size Number Size Number Size Number

Address path 32-bit 2

(DA1 and DA2)

32-bit 2

(DA1 and DA2)

32-bit  2

(DA1 and DA2)

Load path 32-bit 2

(LD1 and LD2)

64-bit 2

(LD1a, LD1b and 

LD2a, LD2b)

64-bit  2

(LD1a, LD1b and 

LD2a, LD2b)

Store path 32-bit  2(ST1 and ST2) 64-bit 2

(ST1a, ST1b and 

ST2a, ST2b)

32-bit  2

(ST1 and ST2)

CONTROL REGISTER FILE 13.8

The control register fi le of ¢C6X processor contains ten control registers common to ¢C62X, ¢C64X and 

¢C67X. The .S2 unit alone can read and write to control register fi le. The control registers are generally 

accessed by the MVC (Move between the Control fi le and Register fi le) instruction but some of the 

control register bits are specially accessed in other ways. For example, the global interrupt enable bit, 

maskable interrupt bits and interrupt fl ag bits are accessed in different way. The list of control registers 

common to ¢C6X processors and their description is given in Table 13.5.

13.8.1 Addressing Mode Register (AMR)

The eight registers A4-A7 and B4-B7 of the CPU register fi le can be used for linear and circular addressing. 

The Addressing Mode Register (AMR) specifi es the addressing mode; it consists of mode select fi elds 

and block select fi elds. The various fi elds of the AMR are shown in Fig. 13.7. A 2-bit fi eld, mode select 

fi led for each register in AMR selects the address modifi cation mode between linear or circular mode. 
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The 5-bit fi eld, block size fi eld BK0 and BK1 is used to select the block size of the circular buffer in 

circular addressing. The 2-bit fi eld in AMR also specifi es which BK (block size) fi eld is to be used for a 

circular buffer. The mode select fi eld encoding is given in Table 13.6. The calculation of block size for 

circular addressing based on the 5-bit block size fi elds in BK0 and BK1 is given below.

 Block size in bytes = 2(N+1)

 where, N is the 5-bit value in BK0 and BK1 

The buffer must be aligned on a byte boundary equal to the block size. The reserved portion of AMR 

is always 0 and AMR is initialized to 0 at reset.

Table 13.5 Control registers common to ¢C6X processors

Register Name Abbreviation Description

Addressing Mode Register AMR Specifi es linear or circular addressing for eight 

registers A4-A7 and B4-B7. Also used to select size of 

the circular buffer in circular addressing

Control Status Register CSR Contains important control and status bits of the 

processor

Program Counter, E1 phase PCE1 Contains the address of the fetch packet that is in the 

E1 phase of pipeline

Interrupt Flag Register IFR Contains the status of INT4-INT15 and NMI 

maskable interrupts

Interrupt Set Register ISR Used to manually set maskable pending interrupts

Interrupt Clear Register ICR Used to manually clear maskable pending interrupts

Interrupt Enable Register IER Used to enable/disable the individual maskable 

interrupts 

Interrupt Service Table Pointer ISTP Points to the beginning of the interrupts service table

Interrupt Return Pointer IRP Contains the address to be used to return from a 

maskable interrupt

Nonmaskable interrupt Return 

Pointer

NRP Contains the address to be used to return from a non-

maskable interrupt

Fig. 13.7 Address Mode Register (AMR) fi elds
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Table 13.6 AMR Mode select fi eld encoding

Mode select bits Description of mode

0 0 Linear modifi cation of address (default at reset)

0 1 Circular addressing using the BK0 fi eld

1 0 Circular addressing using the BK1 fi eld

1 1 Reserved 

13.8.2 Control Status Register (CSR)

The Control Status Register (CSR) of ¢C6X contains control and status bits of the processor. The various 

fi elds of the CSR are given in Fig. 13.8 and the functions of each fi eld are listed in table 13.7. The bits 

0-7 and 10-15 are both readable and writable, but bits 8, 9 and 16-31 are only readable. During reset of 

the processor, 16 LSB bits are reset to zero; the 16 MSB bits containing Revision ID and CPU ID are 

fi xed for a particular processor. 

Fig. 13.8 Control Status Register (CSR) fi elds

Table 13.7 Control Status Register fi eld functions

Field Name Functions of the fi eld

CPU ID CPU ID defi nes which family of CPUs:

CPU ID = 00h - ¢C62X family of processors

CPU ID = 02h - ¢C67X family of processors

CPU ID = 04h - ¢C64X family of processors

Revision ID Revision ID defi nes silicon version of the CPU

PWRD Control power down modes; the values are always read as zero

SAT The saturate bit. Bit is set only by the functional units when it performs saturate and can be 

cleared only by the MVC instruction

EN Endian bit1 = little endian , 0 = big endian

PCC Program cache control mode

DCC Data cache control mode

PGIE Previous GIE bit; saves GIE when an interrupt is taken.

GIE Global Interrupt Enable bit.

Used to enable (1) and disable (0) all the maskable interrupts 
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13.8.3 Control Register File Extensions

The ¢C67X and ¢C64X processors contain additional control registers. The ¢C67X processor contains 

three confi gurations registers to support fl oating point operations. These registers specify the desired 

fl oating-point rounding mode for the .L, .S and .M units. The ¢C67X additional control registers and 

its functions are given in Table 13.8. There in only one additional control register in ¢C64X, the Galois 

Field Polynomial Generator Function Register (GFPGFR). This GFPGFR register along with the Galois 

Filed Multiply hardware in ¢C64X can be used for Reed Solomon encode and decode functions. The 

GFPGFR register contains 8-bit (0-7) polynomial generator fi eld (POLY) and 3-bit (24-26) fi eld size 

fi eld (SIZE), remaining bits are reserved. The Galois Field Multiply on ¢C64X processor is performed 

using GMPY4 instruction. The GMPY4 instruction performs four parallel operations on 8-bit packed 

data on the .M unit. All Galois Multiplies for fi elds of the form GF (2m) can be programmed using Galois 

Field Multiplier in ¢C64X. The value of m can range between 1 and 8 using any generator polynomial. 

Table 13.8 Control Register File Extensions in ¢C67X

Register Name Abbreviation Description

Floating-point adder confi gura-

tion register

FADCR Specifi es underfl ow mode, rounding mode, not a number 

(NaN) and other exceptions for the .L unit

Floating-point auxiliary confi gu-

ration register

FAUCR Specifi es underfl ow mode, rounding mode, not a number 

(NaN) and other exceptions for the .S unit

Floating-point multiplier confi gu-

ration register

FMCR Specifi es underfl ow mode, rounding mode, not a number 

(NaN) and other exceptions for the .M unit

Review Questions 

13.1 What is VLIW architecture? 

13.2 List the processors in ¢C6X family. Which 

processors are code compatible?

13.3 What are the blocks present in the CPU of ¢C6X?

13.4  What is register fi le? What is the size of register 

fi les in ¢C6X processors?

13.5 What is ¢C6X register pair? Explain its use.

13.6 List the various functional units in ¢C6X CPU.

13.7 What are the functions performed by .L unit?

13.8 Explain the functions performed by .S unit?

13.9 What are the different multiply operations 

performed by .M unit?

13.10 List the functions performed by .D unit? 

13.11 How many data paths are in ¢C6X register fi le?

13.12 What is register fi le cross path? What is its use?

13.13 How many data paths are in ¢C6X to access 

memory? What is its size?

13.14 List the control registers common to ¢C6X family 

of processors.

13.15 What are the fi elds in the addressing mode 

register? Explain the functions of each fi eld.

13.16 List the additional control registers in ¢C64X and 

¢C62X processors.
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Self Test Questions 

13.15 ——— functional unit of ¢C6X is used to load and 

store the data values.

(a) .L unit (b) .S unit (c) .M unit (d) .D unit

13.16 The functional unit of ¢C6X used for linear and 

circular addressing is ———

(a) .L unit (b) .S unit (c) .M unit (d) .D unit

13.17 ——— functional units is used for 32/40 bit 

compare operations

(a) .L unit (b) .S unit (c) .M unit (d) .D unit

13.18 The ____ functional unit of ¢C6X is used for 32/40 

bit count operation

(a) .L unit (b) .S unit (c) .M unit (d) .D unit

13.19 The number of data paths from ¢C6X register fi le 

to functional units is

(a) 16 (b) 32 (c) 24 (d) 40

13.20 The number of cross paths in ¢C6X register fi le is

(a) 4 (b) 2 (c) 6 (d) 8

13.21 ——— functional units of ¢C62X and ¢C67X is not 

having cross path access

(a) .L unit (b) .S unit (c) .M unit (d) .D unit

13.22 ——— ¢C6X processor has all the memory access 

paths with 32-bit.

(a) ¢C62X  (b) ¢C62X and ¢C64X

(c) ¢C62X and ¢C67X (d) ¢C64X

13.23 The ¢C6X processor having both load and store 

paths with 64-bit is ———

(a) ¢C62X  (b) ¢C62X and ¢C64X

(c) ¢C62X and ¢C67X (d) ¢C64X

13.24 The ¢C6X processor having load path with 64-bit 

is ———

(a) ¢C62X  (b) ¢C62X and ¢C64X

(c) ¢C64X and ¢C67X (d) ¢C64X

13.25 The number of control registers common to ¢C6X 

family of processor is __

(a) 10 (b) 16 (c) 8 (d) 3

13.26 ——— numbers of additional control registers 

are in ¢C67X processor.

(a) 10 (b) 16 (c) 8 (d) 3

13.1 The ¢C6X processor is based on ——— 

architecture

(a) Modifi ed Harvard (b) Advanced Harvard

(c) Veloci TI  (d) Davinci 

13.2 The fi xed point devices in ¢C6X processors are

(a) ¢C62X  (b) ¢C62X and ¢C64X

(c) ¢C67X  (d) ¢C64X

13.3 The fl oating point devices in ¢C6X processors are

(a) ¢C62X  (b) ¢C62X and ¢C64X

(c) ¢C67X  (d) ¢C64X

13.4 The number of functional units in ¢C6X CPU is

(a) 2 (b) 8 (c) 4 (d) 16

13.5 The size of the ¢C6X CPU is

(a) 16-bit (b) 32-bit (c) 40-bit (d) 64-bit

13.6 The number of general purpose register fi les in 

¢C6X CPU is

(a) 2 (b) 3 (c) 4 (d) 8

13.7 The number of register in ¢C62X and ¢C67X CPU 

register fi le is

(a) 16 (b) 32 (c) 40 (d) 64

13.8 The number of register in ¢C64X CPU register fi le 

is

(a) 16 (b) 32 (c) 40 (d) 64

13.9 The number of ALU units in ¢C6X CPU is

(a) 8 (b) 4 (c) 6 (d) 2

13.10 The number of multiplier units in ¢C6X CPU is

(a) 8 (b) 4 (c) 6 (d) 2

13.11 The ¢C6X CPU accepts ——— instructions at a 

time

(a) 8 (b) 4 (c) 6 (d) 2

13.12 Which units of the following are ALU units in 

¢C6X CPU?

(a) .L unit (b) .S unit (c) .M unit (d) .D unit

13.13 The ——— functional unit of ¢C6X is used for 

32/40 bit shift operation 

(a) .L unit (b) .S unit (c) .M unit (d) .D unit

13.14 The functional unit of ¢C6X that can be used for 

branch operation is

(a) .L unit (b) .S unit (c) .M unit (d) .D unit



In the ¢C6X family of DSPs ¢C62X and ¢C64X, ¢C62X and ¢C67X processors are code compatible. 

All the fi xed point instruction sets of C62X processor are valid for ¢C64X and ¢C67X processors. The 

¢C67X is a fl oating-point device; there are certain instructions unique to it which do not execute on 

the fi xed point devices. Similarly, ¢C64X with additional functionality to the ¢C62X devices has some 

unique instructions. This chapter describes about the assembly language instructions corresponding to 

functional units of the CPU, addressing modes, parallel, and conditional operations. Also, details about 

the fi xed point instructions common to the ¢C62X, ¢64X and ¢C67X devices as well as ¢C67X fl oating-

point instructions are described. 

FUNCTIONAL UNITS AND ITS INSTRUCTIONS  14.1

The ¢C6X devices have six ALU (.L1, .L2, .S1, .S2, .D1 and .D2 units) and two multiplier units (.M1 and 

.M2 units). The ALU units can perform basic arithmetic and logical operations; apart from that each unit 

has special functions as listed in Table 13.2. The multiplier unit can perform only multiply operations.

14.1.1 Instructions to .L Functional unit

The .L unit (Basic ALU unit) performs 32/40 bit arithmetic, 32-bit logical, 32/40 bit compare and 32/40 

bit count operations. The .L unit of ¢C64X processor is used to do dual 16-bit, quad 8-bit arithmetic, byte 

shifts and 5-bit constant generation operations. The fi xed point instructions of .L unit common to ¢C62X, 

¢C64X and ¢C67X processors are given in Table 14.1.

14.1.2 Instructions to .S Functional unit

The .S unit (Shift and Branch unit) is a dedicated unit to perform 32/40 bit shift operations and branch 

operations. It is also used to perform 32-bit arithmetic, 32-bit logical operations and constant generation 

operations. The ¢C64X processor .S unit performs dual 16-bit, quad 8-bit arithmetic operations, dual 16-

bit shift operation, dual 16-bit and quad 8-bit compare operations. The fi xed point instructions those are 

common to ¢C62X, ¢C64X and ¢C67X processors for .S unit are given in Table 14.2.

14
TMS320C6X ASSEMBLY

LANGUAGE INSTRUCTIONS
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Table 14.1 Assembly Language Instructions for .L Function unit

Type of operations Mnemonic Description

Arithmetic operations ABS Integer absolute value with saturation

ADD/ADDU Signed/unsigned integer addition operation without saturation

SADD Integer addition operation with saturation to result size 

SSUB Integer subtraction operation with saturation to result size

SUB/SUBU Signed/unsigned integer subtraction operation without saturation 

SUBC Conditional integer subtract and shift operation

NEG Negate operation (Pseudo-operation)

Logical operations AND Bitwise AND operation

NOT Bitwise NOT operation

OR Bitwise OR operation

XOR Bitwise XOR operation

Compare operations CMPEQ Integer compare operation for equality

CMPGT/ CMPGTU Signed/unsigned integer compare operation for greater than

CMPLT/ CMPLTU Signed/unsigned integer compare operation for less than

Other operations NORM Normalize integer operation

MV Move from register to register operation(Pseudo-operation)

LMBD Left most bit detection operation

SAT Saturate a 40-bit integer to a 32-bit integer operation

ZERO Zero a register (pseudo-operation)

Table 14.2 Assembly Language Instructions for .S Function unit

Type of operations Mnemonic Description

Arithmetic operations ADD Signed integer addition operation without saturation

ADDK Integer addition operation using signed 16-bit constant

ADD2 Two 16-bit integer addition on upper and lower register halves

SUB/SUBU Signed/unsigned integer subtraction operation without saturation

SUB2 Two 16-bit integer subtractions on upper & lower register halves

NEG Negate operation (Pseudo-operation)

Logical operations AND Bitwise AND operation

NOT Bitwise NOT operation

OR Bitwise OR operation

XOR Bitwise XOR operation

Shift operations SHL Arithmetic shift left operation

SHR Arithmetic shift right operation

SHRU Logical shift right operation

(Contd.)
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SSHL Shift left with saturation operation

Branch operations B disp Branch operation using a displacement

B reg Branch operation using a register

B NRP Branch operation using NMI return pointer

B IRP Branch operation using interrupt return pointer

Move operations MV Move from register to register operation(Pseudo-operation)

MVC Move between control fi le and the register fi le operation

MVK Move a 16-bit signed constant into a register and sign extend

MVKH/ MVKLH Move 16-bit constant into the upper/lower bits of a register 

Other operations CLR Clear a bit fi eld operation

EXT/EXTU Extract and sign-extend/zero-extend a bit fi eld operation

SET Set a bit fi eld operation

ZERO Zero a register (Pseudo-operation)

14.1.3 Instructions to .M Functional unit

The .M unit (Multiply unit) is a dedicated unit, which performs 16x16 bit multiply operations. In the 

¢C64X processor, in .M unit 16 ¥ 32, dual 16 ¥ 16 and quad 8 ¥ 8 multiply operations can be performed. 

The fi xed point instructions of .M unit common to ¢C62X, ¢C64X and ¢C67X processors are given in 

Table 14.3.

Table 14.3 Assembly Language Instructions for .M Function unit

Type of operations Mnemonic Description

Multiply operations MPY/MPYU/MPYUS/

MPYSU

Signed/unsigned integer multiply of 16LSB X 16 LSB 

operation

MPYH/MPYHU/

MPYHUS/MPYHSU

Signed/unsigned integer multiply of 16MSB X 16 MSB 

operation

MPYHL/MPYHLU/

MPYHULS/MPYHSLU

Signed/unsigned integer multiply of 16MSB X 16 LSB 

operation

MPYLH/MPYLHU/

MPYLUHS/MPYLSHU

Signed/unsigned integer multiply of 16LSB X 16 MSB 

operation

SMPY/SMPYHL/

SMPYLH/SMPYH

Integer multiply with left shift and saturation operation

14.1.4 Instructions to .D Functional unit

The .D unit (Data access unit) is a dedicated unit for memory access. The linear and circular address 

generation, load and store operations with 5-bit constant offset are performed by this unit. The load 

and store operations of .D2 unit alone can have 15-bit constant offset. Apart from the data access, .D 

unit is used to do only 32-bit add and subtract operations. The .D unit of ¢C64X is used to perform 32-

bit logical operations and 5-bit constant generation. The fi xed point instructions of .D unit common to 

¢C62X, ¢C64X and ¢C67X processors are given in Table 14.4.

Table 14.2 (Contd.)
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Table 14.4 Assembly Language Instructions for .D Function unit

Type of operations Mnemonic Description

Arithmetic operations ADD Signed integer addition operation without saturation

ADDAB/ADDAH/

ADDAW

Integer addition using byte/half word/word addressing mode

SUB Signed integer subtraction operation without saturation

SUBAB/SUBAH/

SUBAW

Integer subtraction using byte/half word/word addressing mode

Load store operations LDB/LDBU/ LDH/

LDHU/ LDW

Load byte/half word/word from memory with 5-bit/15-bit un-

signed constant offset or register offset

STB/STH/STW Store byte/half word/word to memory with 5-bit/15-bit unsigned 

constant offset or register offset

Other operations MV Move from register to register operation(Pseudo-operation)

ZERO Zero a register (Pseudo-operation)

ADDRESSING MODES 14.2

The addressing modes of ¢C62X, ¢C64X and ¢C67X are

 (i) Register addressing mode 

 (ii) Linear addressing mode or (Indirect addressing mode) 

 (iii) Circular addressing mode

All the functional units (.L, .S, .M and .D) with all registers in the register fi le (A0-A15 and B0-B15) 

are used to perform Register addressing. For linear and circular addressing mode, .D unit alone is used. 

All the registers of the register fi le are used for linear addressing mode, but for circular addressing the 

registers A4-A7 are used by the .D1 unit and registers B4-B7 are used by the .D2 unit 

14.2.1 Register Addressing Mode

The register fi le of ¢C62X and ¢C67X contains 32 registers and of ¢C64X contains 64 registers. The 

content of these registers are used as operand. The syntax of the assembly language instruction for 

register addressing mode is given below. The instruction contains four fi elds, the mnemonic, functional 

unit, source operands and the destination operand.

mnemonic .unit src1, src2, dst

The mnemonic fi led is for the assembly codes like ADD, MPY and SUB etc that support register 

addressing mode. For the .unit fi eld, any of the eight functional units is specifi ed depending upon the 

operation performed as per the Table 14.1 to 14.4. The source operands (src1, src2) and destination 

operand (dst) are the registers of the register fi le. 
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Example 14.1 ADD .L1 A1,A2,A3 – This instruction adds the hexadecimal signed integer operands 

in register A1 and A2. The result is stored in register A3. The content of register A1 

and A2 are unchanged. The functional unit used is .L1 and the registers of path A are used for both source 

and destination operands.

 Before execution   After execution

 A1  11223344     A1  11223344

 A2  33445566     A2  33445566

 A3  22222222     A3  446688AA

In the above example, to perform add operation the functional units .S1and .D1 are also used. For the 

source and destination operands, registers from register fi le A alone are to be used. Same way, to do add 

operation in register path B, the functional units .L2, .S2 and .D2 are used. The source and destination 

operand registers are to be used only from register fi le B (B1-B15 registers). For the arithmetic and logic 

instructions, the source and destination operand can be specifi ed with same register of the register fi le.

Example 14.2 ADD .S2 B1,B2,B2 – This instruction adds the hexadecimal signed integer operands 

in register B1 and B2. The result is stored in register B2 itself after addition. The 

content of register B1 is unchanged. The functional unit used is .S2 and the registers of path B are used 

for both source and destination operands.

 Before execution   After execution

 B1  3456789A     B1  3456789A

 B2  11112222     B2  45679ABC

The data path of ¢C6X architecture has cross paths between path A and B (1X &2X). This cross path 

is used to access one of the source operand from the opposite path. The destination operand cannot use 

the cross path.

Example 14.3 ADD .L1X A1,B2,A2 – This instruction adds the hexadecimal signed integer operands 

in register A1 and B2. The result is stored in register A2. The content of register A1 

and B2 are unchanged. The functional unit used is .L1 and the registers of path A are used for the source 

operand (A1) and destination operand (A2). The source operand B2 is obtained through cross path from 

register fi le B. 

 Before execution   After execution

 A1  22221111     A1  22221111

 B2  33332222     B2  33332222

 A2  44444444     A2  55553333

14.2.2 Linear Addressing Mode

The linear addressing mode uses .D (.D1 and .D2) unit alone, along with all the registers of the register 

fi le. The load instruction, store instruction, add and subtract with addressing mode instructions can 

use linear addressing mode. These instructions are of three kinds, byte access, half word access and 

word access. The syntax of the linear addressing mode type instruction is given below. The instruction 

contains four fi elds, the mnemonic, functional unit, mode fi eld and destination fi eld. 

 mnemonic .unit mode fi eld, dst
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The mnemonic fi eld uses load, store, add and subtract with addressing mode instructions only 

(LDB(U)/ LDH(U)/ LDW, STB(U)/ STH(U)/ STW, ADDAB/ ADDAH/ ADDAW/ADDAD & SUBAB/

SUBAH/SUBAW). For the unit fi eld, the .D1 and .D2 units are used. The mode fi eld specifi es the type 

of address access and address modifi cation type. The destination fi eld (dst) can use any of the register 

in the register fi le. The different types of mode fi elds that are used in linear addressing mode are given 

in Table 14.5. The register containing the base address of the operand is denoted as baseR. The offset 

(displacement) from the base address specifi ed in some register is represented as offsetR. Instead of 

using register to specify the offset, a 5-bit unsigned constant can be used as an offset, which is denoted 

as ucst5. The registers used for baseR and offsetR are must be in the same register fi le. The destination 

(dst) register can be from the opposite register fi le through cross path.

Table 14.5 Address generation Option for Mode fi eld in Linear addressing mode

Mode fi eld Syntax Address modifi cation performed

*+baseR[offsetR/ucst5] Positive offset from baseR specifi ed by offsetR/ucst5

*-baseR[offsetR/ucst5] Negative offset from baseR specifi ed by offsetR/ucst5

*++baseR[offsetR/ucst5] Pre-increment from baseR specifi ed by offsetR/ucst5

*––baseR[offsetR/ucst5] Pre-decrement from baseR specifi ed by offsetR/ucst5

*baseR++[offsetR/ucst5] Post increment from baseR specifi ed by offsetR/ucst5

*baseR– –[offsetR/ucst5] Post decrement from baseR specifi ed by offsetR/ucst5

The offset value specifi ed in the offset register (offsetR) or the 5-bit unsigned constant given in the 

instruction is left shifted by 0, 1 or 2 for the byte, halfword and word access instructions respectively. 

Then, to fi nd the address of the operand the following procedure is used:

 (i) The shifted offset value is added or subtracted from the value in the base register (baseR) for 

*+ or *- mode fi elds respectively. The added or the subtracted value from the content of the 

base register is the address of the operand to be accessed from memory. The content of the base 

register is unchanged.

 (ii) For *++ or *–– mode fi elds, the address of the operand is calculated as mentioned in (i), but the 

content of the base register increments or decrements by the shifted offset value respectively 

before accessing the memory (pre-increment/pre-decrement). The address of the operand is 

incremented or decremented value from the base register content.

 (iii) In the case of *baseR++ or *baseR––, the address of the operand is calculated as  mentioned 

in (i), but the content of the base register increments or decrements by the shifted offset value 

respectively after accessing memory (post increment/post decrement). The address of the 

operand is the content of the base register, after accessing the address changes as per the address 

modifi cation syntax.

Example 14.4 LDW .D1 *+A0[1],A1 – This instruction loads a hexadecimal word from memory to 

register A1. The address of the memory is the base address value in register A0 

added with the 5-bit constant offset given in brackets left shifted by two times. If the base address is 

500h, the given offset 1 is left shifted by two times is 4, the address of the memory to be accessed is 

504h. The content of A0 is unchanged after access.
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 Before execution   After execution

 A0  00000500    A0  00000500

 B1  11111111    A1  3456789A

 504h  3456789A    504h  3456789A

Example 14.5 LDW .D1 *++A0[A4],A1 – This instruction loads a hexadecimal word from memory 

to register A1. The address of the memory is the base address value in register A0 

added with the content of offset register A4 given in brackets left shifted by two times. If the base 

address is 500h, the content of offset register A4 is say 4, then it is left shifted by two is 10h (16). The 

content of A0 is incremented to 510h before accessing the memory. The address of the memory to be 

accessed is 510h. The content of offset register A4 is unchanged after access.

 Before execution   After execution

 A0  00000500    A0  00000510

 A4  00000004    A4  00000004

 A1  34587698    A1  55667788

 510h  55667788    510h  55667788

Example 14.6 LDW .D1 *A0++[2],A1 – This instruction loads a hexadecimal word from memory to 

register A1. The address of the memory is the base address value in register A0. 

After accessing the memory the new address in register A0 is the content of A0 added with the content 

of offset given in brackets left shifted by two times. If the base address is 500h, the address of the 

memory to be accessed is 500h. If the offset given is say 2, the two times left shifted value is 8h. Then 

the new address in A0 is the register value A0 added with the left shifted value i.e. 508h. 

 Before execution   After execution

 A0  00000500    A0  00000500

 B1  76234589    A1  99887766

 500h  99887766    500h  99887766

14.2.3 Circular Addressing Mode

In circular addressing mode .D1 unit of register path-A and .D2 unit of register path-B is used. The 

registers A4-A7 of path-A and B4-B7 of path-B can be used for circular addressing. To activate the 

circular buffer the corresponding mode select bits (two bit fi eld), the size of the block size (BK0/BK1, 

5-bit fi eld) are to be loaded in Address Mode Register (AMR) as given in section 13.8.1.

The load instruction, store instruction, add with addressing mode and subtract with addressing mode 

instructions can use circular addressing mode. These instructions are of three kinds, byte access, half 

word access and word access. The syntax of the circular addressing mode for load and store instructions 

is given below.

mnemonic .unit mode fi eld, dst

The instruction contains four fi elds, the mnemonic, functional unit, mode fi eld and destination fi eld. 

The mnemonic fi eld can be load and store instructions as described in Section 14.2.2. The unit fi eld 

has to be .D1 or .D2 unit. The mode fi eld specifi es the type of address modifi cation, the different types 

of address modifi cation that are used in circular addressing mode is given in Table 14.5. In circular 
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addressing mode the base register (baseR) specifi ed in the mode fi eld must be only the registers A4-A7 

and B4-B7, the destination (dst) register can be any of the registers of the register fi le. 

The offset value specifi ed in the offset register (offsetR) or the 5-bit unsigned constant given in the 

instruction is left shifted by 0, 1 or 2 for the byte, halfword and word access instructions respectively. 

The address increment/decrement for the shifted offset value happens up to the end address/start address 

of the circular buffer; once it is reached, the address is wrapped around to the start/end address of the 

circular buffer.

Example 14.7 For circular addressing mode, register A4 is used. To specify the block size, BK0 

fi eld in AMR register is used. The two bit mode fi eld for A4 is 01 and the 5-bit fi eld 

to specify the block size in BK0 is 01, hence the control word for AMR is 00010001h. The size of the block 

is 21+1 = 4. If the starting address of the memory is 0x0100h, the circular buffer boundary is from 0x0100h 

to 0x0103h. Content of memory locations 0100h-0103h is  44332211

MVK .S1 0X0001,A0 ;move the two bit mode fi eld value to LSB of A0 

MVKLH .S1 0X0001,A0 ;move the 5-bit BK0 value to MSB of A0

MVC .S 2X A0,AMR ;move the control word from A0 to AMR register

MVK .S1 0X0100,A4 ;the register A4 is loaded with the start address of

   the buffer 0x0100h

LDB .D1 *A4++[1], A1 ;load byte from the address of the memory pointed

NOP 4   by A4 register to A1 register, increment content 

   of A4 by one. Followed by that is 4 no operations

              Before executions  After execution

   A4  00000100  A4  00000101

   A1  00000000  A1  00000011

LDB .D1 *A4++[1], A1 A4  00000101  A4  00000102

NOP 4   A1  00000011  A1  00000022

LDB .D1 *A4++[1], A1 A4  00000102  A4  00000103

NOP 4    A1  00000022   A1  00000033

LDB .D1 *A4++[1], A1 A4  00000103  A4  00000100

NOP 4   A1  00000033  A1  00000044

In this example, the memory address increments by one location for each load byte instruction, once 

it reaches the end of the buffer 0x0103h, the next content in A4 is 0x100h. The data access happens 

circularly between 0x0100h to 0x0103h address locations. 

The syntax of the circular addressing mode instruction for add with addressing mode and subtract 

with addressing mode case is given below. 

mnemonic .unit src2, src1, dst

The mnemonic fi eld can be add and subtract with addressing mode instructions given in Section 

14.2.2. The source operand src2 should be registers A4-A7 and B4-B7 of the respective data paths. The 

source operand src1 can be any register in the register fi le and the destination operand dst should be the 

same register used for source operand src2. 

The content of source operand src1 in the instruction is left shifted by 0, 1 or 2 for the byte, half-

word and word access instructions respectively. The shifted content of src1 is added/subtracted from the 

content of src2, if the added/subtracted content is exceeding the circular buffer boundary, the content 
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src2 is wrapped around with in the buffer size, the result is available in the destination register dst. The 

content of src2 is always within the circular buffer size. 

Example 14.8 For circular addressing mode, register B5 is used. To specify the block size, BK1 

fi eld in AMR register is used. The two bit mode fi eld for B5 is 10 and the 5-bit fi eld 

to specify the block size in BK1 is 03, hence the control word for AMR is 00600800h. The size of the block 

is 23+1 = 16. If the starting address of the memory is 0x0100h, the circular buffer boundary is from 

0x0100h to 0x010Fh. 

MVK .S2 0X0800,B0 ; move the two bit mode fi eld value to LSB of B0 

MVKLH .S2 0X0060,B0 ; move the 5-bit BK1 value to MSB of B0 

MVC .S2 B0,AMR ; move the control word from B0 to AMR register

MVK .S1X 0X0100,B5 ; the register B5 is loaded with the start address of

     the buffer 0x0100h using cross path

MVK .S2 0x0002,B1 ;the register B1 is loaded with the value 02h

ADDAH .D1 B5,B1,B5 ; the content of B1 is left shifted by one (04h),

     added with the content of B5(0100h), result

     stored in B5(0104h). The content of B1 is 

     unchanged 

              Before executions  After execution

   B5  00000100  B5  00000104

ADDAH .D1 B5,B1,B5 B5  00000104  B5  00000108

ADDAH .D1 B5,B1,B5 B5  00000108  B5  0000010C

ADDAH .D1 B5,B1,B5 B5  0000010C  B5  00000100

ADDAH .D1 B5,B1,B5 B5  00000100  B5  00000104

In this example, the content of B5 increments by a value of 04h for each time ADDAH instruction is 

executed. Once the content of B5 exceeds the end value of the circular buffer 0x010Fh, it is wrapped 

around to the fi rst value 0x0100h. The register B5 content increments four values within the circular 

buffer size. 

FIXED POINT INSTRUCTIONS  14.3

In this section, the fi xed-point instruction details those are common for ¢C62X, ¢C64X and ¢C67X 

processors are given. The syntax of the instruction, the functional unit details and the addressing modes 

of the instruction are given with examples. 

14.3.1 Move Instructions

The move instructions are used to move the contents between registers of the register fi le, control 

register fi le to register fi les and also to move 16-bit constant into the lower and upper bits of the registers 

of the register fi le. To move contents between registers all .L, .S and .D units are used and to move 

values between control register fi le and register fi le, .S2 unit alone is used. To move 16-bit constant to 

registers of the register fi le, .S1 and .S2 units are used, but in ¢C64X processors, for the same 16-bit 

constant move operation all .L, .S and .D units are used. The register fi le cross path is not accessible for 

MVK instruction. The addressing mode used for move instructions is only register addressing mode. 

The instruction and its description of the ¢C6X processors move instructions are listed in Table 14.6.
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Table 14.6 Move Instructions of ¢C6X processor

Instruction Functional unit Description

MV .L1 or.L2,.S1 or.S2, .D1 

or .D2

Move value from one register to another register in register fi le

MVC .S2 only Move value between control register fi le and register fi le 

MVK .S1 or .S2(all .L, .S and 

.D units in ¢C64X only)

Move a 16-bit constant into lower 16-bits of a register and sign extended 

MVKLH .S1 or .S2 Move a 16-bit constant into upper 16-bits of a register 

MVKH .S1 or .S2 Move upper 16-bit value of 32-bit constant to upper 16-bits of a register

Example 14.9 MV .S1 A1,A2 – Move register to register instruction. The content of register A1 is 

moved to register A2, the content of register A1 is unchanged and the functional 

unit used is .S1

              Before executions   After execution

   A1  22334455  A1  22334455

   A2  20408754  A2  22334455

MV .L1X B1,A3 – Move register to register instruction using the cross path. The content of register B1 is 

moved to register A3, the content of B1 is unchanged and the functional unit used is .L1

              Before executions   After execution

   A3  30504321  A3  547698AB

   B1  547698AB  B1  547698AB

Example 14.10 MVC .S2 A1,AMR – Move value between control register fi le and register fi le 

instruction. The content of register A1 is moved to Address mode register (AMR) in 

control register fi le, the content of register A1 is unchanged and the functional unit used is .S2

              Before executions   After execution

   A1  00020005  A1  00020005

   AMR  00400001  AMR  00020005

MVC .S2 AMR,B2 – The content of AMR is moved to register B2, the content of AMR is unchanged and the 

functional unit used is .S2

              Before executions   After execution

   AMR  00020005  AMR  00020005

   B2  20408754  B2  00020005

Example 14.11 MVK .S1 0x1223,A1 – Move the 16-bit constant to lower 16-bit of register in register 

fi le. The 16-bit constant 1223h is moved to lower 16-bits of register A1 and the 

functional unit used is .S1

              Before executions   After execution

   A1  00020005  A1  00021223

MVK .S2 -0x012,B2 – The negative 16-bit constant -012h is moved to lower 16-bit of register B2 and the 

sign bit is extended to MSB bits. The 2-s complement value of 012h (FFEDh) appears as result in register 

B2 lower 16-bit.The MSB bits are sign extended and functional unit used is .S2

              Before executions   After execution

   B2  00050002  B2  FFFFFFED
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Example 14.12 MVKLH .S1 0x3344,A2 – Move the lower 16-bit constant to upper 16-bit of register 

in register fi le. The 16-bit constant 3344h is moved to upper 16-bit of register A2, 

the lower 16-bits are unchanged and functional unit used is .S1 

              Before executions   After execution

   A2  00220055  A2  33440005

MVKH .S2 0x44552233,B2 – The upper 16-bit of the 32-bit constant is moved to upper 16-bit of register B2. 

The upper 16-bit value 4455h is moved to register B2 upper 16-bit, lower 16-bit are unchanged. The

functional unit used is .S2

              Before executions   After execution

   B2  20404252  B2  44554252

14.3.2 Load/Store Instructions

The load and store instructions are used for the memory to register fi le and register fi le memory data 

transfer through load and store data paths respectively. The various types of load/store instructions are 

based on byte, half- word and word access. For load and store instructions linear and circular addressing 

modes are used (Sections 14.2.2, 14.2.3). The offset value given in the instruction is scaled by left-shift 

of 0, 1 or 2 for byte, half-word or word access respectively, It is added or subtracted from the base 

register content based on the address modifi cation specifi ed in the instruction. The functional units used 

for load and store operations with register offset or 5-bit constant offset are .D1 and .D2 units. For 15-

bit constant offset type of instructions, .D2 unit alone is used and the base register that could be used in 

the instruction is B14 and B15 only. The different load and store instructions of ¢C6X processors and its 

description are listed in Table 14.7. 

Table 14.7 Load Instructions of ¢C6X processor

Instruction Functional unit Description

LDB/STB .D1 or .D2 Load byte from memory to register in register fi le/Store byte from register in 

register fi le to memory

LDBU .D1 or .D2 Load byte unsigned from memory to register in register fi le

LDH/STH .D1 or .D2 Load half word from memory to register in register fi le/ Store half word from 

register in register fi le to memory

LDHU .D1 or .D2 Load half word unsigned from memory to register in register fi le

LDW/STW .D1 or .D2 Load word from memory to register in register fi le/ Store wrod from register 

in register fi le to memory

(For 15-bit constant offset, functional unit used is .D2 only)

Example 14.13 LDB .D1 *A0,A1 – Load byte instruction. The byte content of memory location, 

who’s address is present in base address register A0 is loaded into register A1, the 

sign bit is extended to MSB bits of register A1. The memory address is 100h, the byte content of 100h 

location is 44h. The value 44h is moved to LSB of A1 register and MSB bits are zero fi lled. The content of 

register A0 and 100h location are unchanged; the functional unit used is .D1

              Before executions   After execution

   A1  11111111  A1  00000044

   A0  00000100  A0  00000100

   100h  11223344  100h  11223344
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LDH .D1 *+A0[2],A2 – Load Half-word instruction with positive offset. To calculate the address of the 

memory to be accessed, the 5-bit constant offset given in the instruction is left shifted ones and added 

to base register content A0. The content of register A0 is unchanged. The half-word content of the 

memory address is moved to register A2. The offset value 2 left shifted once is 4; the content of base 

register is 100h, hence the address of memory is 104h. The half-word content of memory (104h) 8899h is 

loaded into register A2 LSB, the MSBs are sign extended as FFFF. The functional unit used is .D1 

              Before executions   After execution

   A2  11111111  A2  FFFF8899

   A0  00000100  A0  00000100

   104h  44558899  104h  44556677

LDW .D1 *++A0[1],B2 – Load word instruction with pre-increment. The 5-bit constant offset given in the 

instruction is left shifted two times and added to base register content A0. The content of base register 

A0 is pre-incremented and it is the address of the memory to be accessed. The word content of memory 

address is moved to register B2. The offset value 1 left shifted twice is 4. If the content of base register 

A0 is 100h, the new content of A0 is 104h and the memory address is also 104h. The word content of 

memory (104h) 44558899h is loaded into register B2. The content of 104h location is unchanged, the 

functional units used is .D1 along with the cross path. 

              Before executions   After execution

   B2  11111111  B2  44558899

   A0  00000100  A0  00000104

   104h  44558899  104h  44558899

STW .D2 B3,*B1--[B0] – Store word instruction with post-decrement. The content of register B3 is stored 

in memory. The address of the operand is the content of base register B1 and the offset is specifi ed in 

offset register B0. The content of offset register B0 is left shifted by two times and subtracted from the 

content of base register B1 and that is the new content in base register B1. If the content of register B3 

is 00004578h, the content of base register B1 is 100h the content of register B3 is stored in the memory 

location pointed by register B1. The content of base register B0 is 1h, left shifted twice is 4h, which 

subtracted from 100h is 0FCh that is the new content in B1. The content of B0 and B3 are unchanged and 

the functional unit used is .D2

              Before executions   After execution

   B3  00004578  B3  00004578

   B1  00000100  B1  000000FC

   B0  00000001  B0  00000001

   100h  11223344  100h  00004578

14.3.3 Add Instructions

The various types of add instructions of ¢C6X processor and its description are given in Table 14.8. 

All add instructions use register addressing mode except addition using addressing mode instructions 

(ADDAB/ADDAH/ADDAW). Addition with addressing mode instructions use circular addressing 

mode (Section 14.2.3). Signed integer addition with and without saturation, unsigned integer addition, 

16- bit constant and two 16-bit integer addition operations can be performed using add instructions. 

To perform signed integer addition operation, all .L, .S and .D functional units are used. For unsigned 

integer addition and integer addition with saturation, .L1 and .L2 units are used. To add 16-bit constant 

and two 16-bit integers, .S1 and .S2 units are used. Integer addition with addressing mode instructions 

uses .D1 and .D2 units. 
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Table 14.8 Add Instructions of ¢C6X processor

Instruction Functional unit Description

ADD .L1 or.L2, .S1 or 

.S2, .D1 or .D2

Signed integer addition without saturation

ADDU .L1 or .L2 Unsigned integer addition without saturation

SADD .L1 or .L2 Integer addition with saturation to result size

ADDK .S1 or .S2 Integer addition using singed 16-bit constant

ADD2 .S1 or .S2 Two 16-bit integer additions on upper and lower register halves

ADDAB/ADDAH/

ADDAW

.D1 or .D2 Integer Byte/ Half-word/Word addition using addressing mode

Example 14.14 ADD .D1 31,A0,A1 – Five bit signed constant (-31 to 31) add instruction.  The given 

fi ve bit signed constant is added to the content of register A0 and the result is 

stored in register A1. The 5-bit constant 31 is added to register A0 content 00008754h and the result 

00008773h is loaded in register A1. The functional unit used is .D1, the register content A0 is 

unchanged.

                   Before executions   After execution

 A0  00008754  A0  00008754

 A1  00020005  A1  00008773

Example 14.15 ADD .L1 A0,A1,A2 – Signed 32-bit integer add instruction. The signed integer 

content of register A0 and A1 are added, the result is stored in register A2. If the 

32-bit positive integers 00045566h in A0 and 00076655h in A1, they are added, the result 000BBBBBh is 

stored in register A2. The content of registers A0 and A1 are unchanged, the functional unit used is .L1

                   Before executions   After execution

 A0  00045566  A0  00045566   +284006

 A1  00076655  A1  00076655   +484949

 B0  12348765  B0    000BBBBB   +768955

ADD .S2X A0,B1,B2 – If the 32-bit positive integer in register A0 is 00045566h and the negative integer in 

register B1 is FFFFC742h, they are added and the result 00041CA8h is stored in register B2. The content 

of registers A0 and B1 are unchanged, the functional unit used is .S2 with the cross path.

                   Before executions   After execution

 A0  00045566  A0  00045566   +284006

 B1  FFFFC742  B1  FFFFC742   -  14526

 B2  12348765  B2    00041CA8   +269480

Example 14.14 SADD .L1 A1,A2,A3 – Signed integer add instruction with saturation. The signed 

integer content of register A1 and A2 are added; the added result is stored in 

register A3, if there is no saturation. If the result is saturated, for positive integer the maximum positive 

number (7FFF FFFF) and for negative integer the negative number (8000 0000) is loaded in register A3 

respectively. The SAT bit in CSR register is set. The functional unit used is .L1; the content of registers 

A1 and A2 are unchanged.
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                   Before executions   After execution

 A1  7D007D00  A1  7D007D00

 A2  13881388  A2  13881388

 A3  12247666  A3    7FFF FFFF

Example 14.17 ADDU .L1 A5,A6,A9:A8 – Unsigned 32-bit add instruction. The unsigned 32-bit 

contents in register A5 and register A6 are added and the resultant 40-bit content 

is loaded in A9:A8 register pair. If the 32-bit integer in register A5 is 00087654h and in register A6 is 

FFFF4332h, both of them are added and the resultant 40 bit content 10007B986h is loaded in A9:A8 

register pair. The functional unit used is .L1, the register contents A5 and A6 are unchanged. 

         Before executions         After execution

 A5  00087654  A1  00087654  +554580

 A6  FFFF4332  A6  FFFF4332  +4294918962

 A9:A8  00020005  00020005  A9:A8  00000001  0007B986  +4295473542

Example 14.18 ADDK .S1 2345,A1 – A 16-bit signed constant add instruction. The signed  16-bit 

constant given in the instruction is added with the content of register A1 and the 

result stored in A1. If the 16-bit positive constant is 2345 (0929h), the content in register A1 is 00015432h, 

they are added, the result 00015D5Bh is stored in register A1. The functional unit used is .S1

              Before executions   After execution

   A1  00015432  A1  00015D5B

ADD2 .S2 B1,B2,B3 – Two 16-bit integer add instruction on upper and lower register halves. The upper 

and lower halves content of register B1 are added to the upper and lower halves content of register B2, 

the result is stored in upper and lower halves of register B3 respectively. If the content of register B1 is 

00347698h, register B2 is 03127654h, the upper and lower halves are added, the result 0346ECECh stored 

in register B3. The content of registers B1 and B2 are unchanged, the functional unit used is .S2.

              Before executions   After execution

   B1  00347698  B1  00347698

   B2  03127654  B2  03127654

   B3  00000544  B3  0346ECEC

14.3.4 Subtract Instructions

The various types of subtract instructions of ¢C6X processor and its descriptions are given in Table 

14.9. All subtract instructions use register addressing mode except subtraction using addressing mode 

instructions (SUBAB/SUBAH/SUBAW). Subtraction with addressing mode instructions use circular 

addressing mode (Section 14.2.3). Signed integer subtraction with and without saturation, unsigned 

integer subtraction, conditional integer subtraction and two 16-bit integer subtraction operations can be 

performed using subtract instructions. To perform signed integer subtraction, all .L, .S and .D functional 

units are used. For unsigned integer subtract operation .L and .S units are used. .L units are used for 

conditional integer subtract and integer subtract with saturation operations. To subtract two 16-bit 

integers, .S1 and .S2 units are used. Integer subtraction with addressing mode instructions uses .D1 and 

.D2 units. The SUB, SUBU, SSUB, SUB2 and subtraction using addressing mode instruction operation 

modes are same us the respective add instructions, except that the operands are subtracted rather than 
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addition. The conditional subtract instruction SUBC is used for signed and unsigned integer division 

operation.

Table 14.9 Subtract Instructions of ¢C6X processor

Instruction Functional unit Description

SUB .L1 or.L2, .S1 or.S2, 

.D1 or .D2

Signed integer subtraction without saturation(For .D units src1 is 

subtracted from src2)

SUBU .L1 or .L2, .S1or .S2 Unsigned integer subtraction without saturation

SUBC .L1 or .L2 Conditional integer subtract and shift used for division

SSUB .L1 or .L2 Integer subtraction with saturation to result size

SUB2 .S1 or .S2 Two 16-bit integer subtractions on upper and lower register halves

SUBAB/SUBAH/

SUBAW

.D1 or .D2 Integer Byte/ Half-word/Word subtraction using addressing mode

Example 14.19 SUBC .L1 A1,A2,A3 – Conditional subtract and shift operation. The  content of 

register A2 is subtracted from the content of register A1. If the  subtraction result 

is ≥ 0, then the result is left shifted by one bit and 1 is added to LSB bit and the fi nal value is loaded in 

register A1. Else the subtracted result is less than zero, the content of register A1 is left shifted by one 

bit and the shifted value is loaded in register A1. 

(i) If the register content A2 is 00000404h and A1 is 00002222h, the A2 content is subtracted from A1 

content. The result 00001E1E which is > 0 is left shifted by 1 bit (00003C3C) and 1 is added to LSB bit, 

the fi nal result 00003C3D is loaded in register A3. 

              Before executions   After execution

   A1  00002222  A1  00347698

   A2  00000404  A2  00000404

   A3  12243333  A3  00003C3D

(ii) If the register content A2 is 00002424h and A1 is 00002222h, the A2 content is subtracted from A1 con-

tent. The result is less than zero. The content of register A1 is left shifted by 1 bit, the result 00004444h 

is loaded in register A3. The content of register A1 and A2 are unchanged and the unit used is .L1.

              Before executions   After execution

   A1  00002222  A1  00347698

   A2  00002424  A2  00002424

   A3  12243333  A3  00004444

14.3.5 Multiply Instructions

All multiply instructions of ¢C6X use register addressing mode. The various multiply instructions of 

¢C6X processor and its descriptions are given in Table 14.10. The multiply instructions are of signed 

and unsigned type. Multiplication operation can be performed on 16 LSBs, 16 MSBs, 16 LSBs with 

16 MSBs and vice versa on the register fi le register contents. Integer multiplication with left shift and 

saturation can also be performed on lower and higher order register contents of the register fi le. To 

perform multiplication .M1 and .M2 units are used. The MPY and MPYSU instructions supports signed 

5 bit constant multiplication. 
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Table 14.10 Multiply Instructions of ¢C6X processor

Instruction Functional unit Description

MPY/MPYU

MPYH/MPYHU

.M1 or .M2 Signed/Unsigned integer multiplication on 16 LSBs

Signed/Unsigned integer multiplication on 16 MSBs 

MPYLH/MPYLHU

MPYHL/MPYHLU

.M1 or .M2 Signed/Unsigned integer multiply on 16 LSBs and 16MSBs

Signed/Unsigned integer multiply on 16 MSBs and 16LSBs 

MPYUS/MPYSU

MPYHUS/MPYHSU

.M1 or .M2 US-unsigned and signed/ SU-signed and unsigned integer multipli-

cation on 16 LSBs

US-unsigned and signed/ SU-signed and unsigned integer multipli-

cation on 16 MSBs

MPYLUHS/MPYLSHU

MPYHULS/MPYHSLU

.M1 or .M2 Unsigned 16 LSBs and signed 16 MSBs /signed 16 LSBs and un-

signed 16 MSBs multiplication

Unsigned 16 MSBs and signed 16 LSBs/signed 16 MSBs ans un-

signed 16 LSBs multiplication

SMPY/SMPYH

SMPYHL/SMPYLH

.M1 or .M2 Integer multiplication with left shift and saturation on 16 LSBs /16 

MSBs

16MSBs and 16 LSBs/16 LSBs & 16 MSB s

Example 14.20 MPYU .M1 A1,A2,A3 – Unsigned integer multiply instruction. The Unsigned 16-bit 

number present in 16 LSBs of registers A1 and A2 are multiplied and the result is 

stored in register A3. If the content of register A1 is 56003442h and register A2 is 23451122h, the 16 LSBs 

are multiplied and the result 037F52C4h is stored in register A3. The content of register A1 and A2 are 

unchanged and the functional unit used is .M1

         Before executions         After execution

 A1  56003442  13378 A1  56003442  13378 16 LSB value

 A2  23451122  4386 A2  23451122  4386 16 LSB value

 A3  00007689  A3  037F52C4  58675908 Product value 

MPYHL .M1 A4,A5,A6 – Signed integer multiply instruction on 16 MSBs and 16 LSBs of registers. The signed 

16-bit number present in 16 MSBs of registers A4 and 16 LSBs of register A5 are multiplied and the result 

is stored in register A6. If the content of register A4 is FFA13344h and register A5 is 48480044h, the 16 

MSBs (FFA1h) and 16 LSBs (0044h) are multiplied and the result FFFFE6C4h is stored in register A6. The 

content of register A4 and A5 are unchanged and the functional unit used is .M1

         Before executions         After execution

 A4  56003442  (-95) A4  FFA13344  (-95) 16 MSB value

 A5  48480044  (68) A5  48480044  (68) 16 LSB value

 A6  00560544  A6  FFFFE6C4  (-6460) Product value 

Example 14.21 SMPYLH .M1 A1,A2,A3 – Integer multiply with left shift and saturation  instruction. 

The signed number in 16 LSBs of register A1 and 16 MSBs of register A2 are 

multiplied and the result is left shifted by one bit and stored in register A3. If the left shifted result is 

8000 0000h, then the result is saturated to 7FFF FFFFh. If the content of register A1 is F023 3344h, 

register A2 is 8787 4A81h, the 16 LSBs (3344h) and 16 MSBs (8787h) are multiplied and the result E7DF 

E4DCh is left shifted by one bit and the value CFBF C9B8h is stored in register A3. The content of register 

A1 and A2 are unchanged and the functional unit used is .M1
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         Before executions         After execution

 A1  F0233344  13124 A1  F0233344   16 LSB value

 A2  87874A81  -30841 A2  87874A81   16 MSB value

 A3  00007689  A3    CFBFC9B8  -809514568

MPY .M1 14,A1,A2 – Signed 5-bit constant multiply instruction on 16 LSBs of register. The signed 5-bit 

number in the instruction is multiplied with 16 LSBs of registers A1 and the result is stored in register 

A2. If the content of register A1 is 2131 3344h, the 16 LSBs (3344h) and 14 (Eh) are multiplied and the 

result 0002 CDB8h is stored in register A2. The content of register A1is unchanged and the functional 

unit used is .M1

         Before executions         After execution

 A1  21313344  A1  21313344

 A2  48480044  A2    0002CDB8

14.3.6 Logical, Shift and Compare Instructions

Like other processors, ¢C6X also supports logical operations; arithmetic and logical shift operations 

signed and unsigned integers compare operations. The list of logical, shift and compare operations 

of ¢C6X are given in Table 14.11. The logical operations are performed by .L and .S units, the shift 

operations by .S units and compare operations by .L units of the CPU functional units. All the logical 

operations are bitwise operations that use only register addressing mode. The AND and OR operations 

support signed 5-bit constant for the source operand, the remaining 27 MSBs are sign extended. The 

shift and compare operations also use only register addressing mode. 

The arithmetic shift supports both left and right shifting of register contents, but in logical shift 

instruction only right shift is possible. In both arithmetic and logical shift operations, when register is 

used the 6 LSBs specify the shift amount, the shift value is 0–40 and for immediate value given in the 

instruction the shift amount is 0–31 (5 bits). In the case of shift left with saturation instruction, the shift 

amount is 0–31 for both register and immediate types. If the shift amount is greater than 31 bits the 

result is saturated to 7FFF FFFFh. In all cases the shift value should be an unsigned number. 

In the case of compare operations, signed and unsigned integers can be compared for equality, greater 

than and less than cases. The compare instructions support signed 5-bit constant for the source operand. 

If the comparison is true, 1 is written else 0 is written in to destination (dst) register.

Example 14.22 AND .L1 A1,A2,A3 – Bitwise AND operation instruction. The bitwise AND operation 

is performed between the contents of register A1 and A2. The result is placed in 

register A3. If signed 5-bit constant is used as operand, the sign is extended to 32 bits. If the content of 

register A1 is 7367 5454h, register A2 is 8282 7676h, the bitwise AND operation between the register 

contents 0202 5454h is loaded in register A3. The functional unit used is .L1, the register content A1 and 

A2 are unchanged.

              Before executions   After execution

   A1  73675454  A1  73675454

   A2  82827676  A2  82827676

   A3  11224509  A3  02025454
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Table 14.11 Logical, Compare and Shift Instructions of ¢C6X processor

Instruction Functional unit Description

NOT .L1 or.L2, .S1 or.S2 Bitwise NOT-Pseudo operation

AND .L1 or.L2, .S1 or.S2 Bitwise AND - Pseudo operation

OR .L1 or.L2, .S1 or.S2 Bitwise OR - Pseudo operation

NEG .L1 or.L2, .S1 or.S2 Negate-Pseudo operation

SHL .S1 or.S2 Arithmetic shift left

SHR .S1 or.S2 Arithmetic shift right

SHRU .S1 or.S2 Logical shift right

SSHL .S1 or.S2 Shift left with saturation

CMPEQ .L1 or.L2 Integer compare for equality

CMPGT/CMPGTU .L1 or.L2 Signed/Unsigned integer compare for greater than

CMPLT/CMPLTU .L1 or.L2 Signed/Unsigned integer compare for less than

Example 14.23 SHR .S2 B1,B2,B3 – Arithmetic shift right instruction. The content of register B1 

is right shifted by n-bits specifi ed in register B2, the result is stored in register 

B3. If the content of register B1 is 7367 5454h, register B2 is 0012h, the content of B1 is right shifted by 

the content of B2 (12h=18bits) times, the result is stored in register B3. The functional unit used is .S2, 

the register content B1 and B2 are unchanged.

              Before executions   After execution

   B1  73675454  B1  73675454

   B2  00000012  B2  00000012

   B3  00020005  B3  00001CD9

Example 14.24 CMPGT .L1X A1,B2,A2 – Integer compare for greater than instruction. The  

contents of register A1 and B2 are compared for greater number. If register A1 

content is greater than B2, the comparison is true, 1 is stored in register A2. If content of A1 is less than 

B2, the comparison is false, 0 is stored in register A2. If the content of register A1 is 7676h, register B2 

is 5454h, the content of A1 is greater than B2. The comparison is true, 1 is set in register A2. The 

functional unit used is .L1 through cross path; the content of registers A1 and B2 are unchanged.

              Before executions   After execution

   A1  00007676  A1  00007676

   B2  00005454  B2  00005454

   A2  00020005  A2  00000001

14.3.7 Branch and other Instructions 

The ¢C6X processor supports branch operations. The location to which the branch could occur is specifi ed 

as label (displacement) in the branch instruction or a register in the register fi le or interrupt return pointer 

or NMI return pointer can hold it. The branch using displacement instruction is processed by .S1 and .S2 

units. All other branch instructions are processed only by .S2 unit. The CLR, SET, EXT, EXTU, LMBD 

and ZERO instructions are used for accessing the bit fi elds of registers in register fi le. These instructions 

are used to set, clear or extract information about the bit fi elds. The ABS, NORM and SAT instructions 
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are used for handing sign bits of the operands. The NOP instruction is used in programming to avoid 

confl icts between the functional units in the pipeline operation. The IDLE instruction is used to halt the 

processor operation until interrupt occurs. The list of ¢C6X branch instructions and other instructions 

are given in Table 14.12. 

Table 14.12 Branch and other Instructions of ¢C6X processor

Instruction Functional unit Description

B .S1 or.S2 Branch using displacement/using a register

B IRP/B NRP .S2 Branch using an interrupt return pointer/ using NMI return pointer

CLR .S1 or.S2 Clear a bit fi eld

SET .L1 or.L2 Set a bit fi eld

EXT .S1 or.S2 Extract and sign-extend a bit fi eld

EXTU .S1 or.S2 Extract and zero-extend a bit fi eld

LMBD .L1 or.L2 Leftmost bit detection

ZERO L1 or.L2, .S1 or.S2, .D1 or 

.D2

Zero a register (Pseudo-operation)

ABS .L1 or.L2 Integer absolute value with saturation

NORM .L1 or.L2 Normalize integer

SAT .L1 or.L2 Saturate a 40-bit integer to a 32-bit integer

NOP — No operation

IDLE — Multi-cycle NOP with no termination until interrupt

CONDITIONAL OPERATIONS 14.4

All the instructions in ¢C6X can be conditional instructions. The content of registers A1, A2, B0, B1 

and B2 are tested for conditional operations. These register contents equal to zero and non zero can be 

used as conditions. The conditional instructions are represented by square brackets, [ ], surrounding the 

register tested for condition. If register name alone is present in square bracket [A1] then the condition 

to be tested is register content being nonzero rather the exclamatory symbol [!A1] is used before the 

register in square bracket then the condition to be tested is register content being zero. The specifi ed 

condition register is tested at the beginning of the E1 phase of the pipeline for all instructions. Example 

14.25 shows how ¢C6X conditional instructions can be written and how it can get executed. 

PARALLEL OPERATIONS 14.5

In ¢C6X, instruction are fetched eight times to form a fetch packet. The fetch packets are aligned 256 bits 

(8 words x 32-bits) and the basic format of the fetch packet is shown in Fig. 14.1. The execution of these 

eight instructions is controlled by the p-bit. The execution of an instruction in the fetch packet in parallel 

with another instruction is determined by scanning the p-bit, bit-0 of an instruction from left to right. 
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Fig. 14.1 Basic Format of a Fetch packet

If the p-bit of the instruction i is 1, then the next instruction i+1 is to be executed in parallel with 

instruction i in the same machine cycle. If the p-bit is zero, then the instruction i+1 is executed in the 

next machine cycle after the execution of instruction i. All the eight instructions executing in parallel 

constitute an execute packet. Each instruction in the execute packet must use a different functional unit. 

The execute packet cannot be more than eight words, so the last p-bit of the last instruction in a fetch 

packet is always set to 0. There are three types of execution of the instructions in the fetch packet based 

on the p-bits. They are

 (i) Fully serial

 (ii) Fully parallel

 (iii) Partially serial 

In fully serial type of execution, all the p-bits are set zero. The eight instructions of a fetch packet are 

executed serially one after the other in eight machine cycles. For a fully parallel type, all the p-bits are 

set 1 except the last instruction. All the eight instructions of a fetch packet are executed in parallel at the 

same machine cycle itself. In case of partially serial scheme, p-bit of some instructions are set zero and 

some with one. The instructions are executed serially one after the other from left to right of the fetch 

packet until the fi rst p-bit with one is detected. Once the p-bit with one is detected, that instruction, the 

next instruction and the successive instructions who’s p-bits with one are executed parallel until next 

p-bit zero is detected. If the p-bit with zero is sensed then the next instruction will be executed serially 

and so on. The instruction that is to be executed parallel is represented by the symbol || in the beginning 

of the opcode. The sample programs illustrating the above concept are given in example 14.25, 14.26 

and 14.27.

Example 14.25 Fully serial execution with conditional operation. The following codes are to fi nd 

the sum of N numbers. The instructions are executed one after the other. 

 The conditional operation is used for branch instruction. Register B0 is used to check for non zero 

condition. The count N is loaded register B0. The generation of the sequence is done in register A3, sum-

mation of N number is done in register B1 using ADD instruction. At the end of each summation the count 

N in B0 register is decremented using SUB instruction. The condition for non zero of B0 is checked each 

time using the representation [B0] and branching to location loop is performed until B0 content becomes 

zero. On zero of register content B0, execution comes out of the loop.

 MVK .S2 05h, B0 ; count N specifi ed in register A1

LOOP ADD .L1 1,A3,A3 ; generation of sequence in A3

  ADD .L2 A3,B1,B1 ; summation of sequence in A4

  SUB .S2 B0,1,B0 ; decrement of count N in register A1

 [B0] B .S1 LOOP ; check for non zero of content A1, branch to loop

 NOP 5 ; no operation 5 times to avoid confl ict in pipeline
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Example 14.26 Partially serial and parallel execution. The codes given in example 14.25 to fi nd 

the sum on N numbers are modifi ed, written for partially serial and parallel type 

and is given below. Loading the count value in register B0 is done serially and all other operations are 

executed in parallel. The parallel operations are performed in .L1, .L2, .S1 and .S2 units. 

   MVK .S2 05H, B0

LOOP1  ADD .L1 1,A3,A3

  || ADD .L2 A3,B1,B1

  || SUB .S2 B0,1,B0

  || [B0] B .S1 LOOP1 

  NOP 5 

  NOP

  NOP

  NOP

Example 14.27 Fully parallel execution. The following codes are executed in parallel. All  the 

eight functional units in ¢C6X are used to perform fully parallel execution. 

  LDW .D1 *A4++,A3

  || STW .D2 B3,*B2++

  || ADD .L1 A4,A4,A5

  || ADD .L2 B4,B4,B5

  || MPY .M1 A5,A5,A6

  || MPYH .M2 B5,B5,B6

  || SUB .S1 A6,A5,A7

  || SUB .S2 B6,B5,B7

FLOATING POINT INSTRUCTIONS 14.6

The ¢C67X fl oating point DSP supports all the fi xed point instructions described in Section 14.3, but it 

has instructions that are specifi c to ¢C67X. Instructions like 32-bit integer multiply, double word load 

and fl oating point addition, subtraction and multiplication are specifi c instructions for ¢C67X processors. 

This topic describes about those specifi c instructions.

14.6.1 Data Formats

The ¢C67X fl oating point DSPs support both fi xed point and fl oating point data formats. For the fi xed 

point case, the operands can be signed 32-bit integer values or unsigned 32-bit integer values. As for 

as the fl oating point operands are concerned, either Single-Precision (SP) or Double Precision (DP) 

fl oating point format can be used. Single-precision fl oating point operands are 32-bit values stored in 

a single register, whereas double-precision fl oating point operands are 64-bit values stored in register 

pairs (Section 13.5) present in the register fi le. 

The fi elds of the single-precision fl oating point format operand are shown in Fig. 14.2. The LSBs 

0-22 of the register represent the fraction (mantissa) part (23-bits), the bits 23-30 are used to represent 

the exponent part (8-bits) and the MSB bit (31st bit) is the sign bit. The fl oating point fi elds represent 

fl oating point numbers in two ranges, normalized (exponent fi eld is between 0 to 255) and denormalized 

(exponent fi eld is 0).
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Fig. 14.2 Single-precision Floating point Fields

The formula to translate the s, e and f fi elds into single precision fl oating point number is given 

below.

Normal range: -1s * 2 (e-127) * 1.f 0 < e < 255

Denormalized range: -1s * 2 (-126) * 0.f e = 0; f - nonzero

The fi elds of the double-precision fl oating point format operand are shown in Fig. 14.3. The full even 

register 32-bits and odd register LSBs 0-19 (20-bits) of the register pair represent fraction (mantissa) 

part (52-bits), the bits 20-30 of odd register are used to represent the exponent part (11-bits) and the 

MSB bit (31st bit) of odd register is the sign bit. In double precision format for normalized range the 

value of exponent is between 0 and 2047 and for denormalized range the value of exponent is 0. 

Fig. 14.3 Double-precision Floating point Fields

The formula to translate the s, e and f fi elds into double precision fl oating point number is given 

below.

Normal range: -1s * 2 (e-1023) * 1.f 0 < e < 2047

Denormalized range: -1s * 2 (-1022) * 0.f e = 0; f - nonzero

14.6.2 Data Format Conversion Instructions

The ¢C67X processor supports fi xed point, single-precision and double-precision fl oating point data 

formats. To convert one data format to another data format ¢C67X processor supports various data 

format conversion instructions. The various data format conversion instructions of ¢C67X processors 

are listed in Table 14.13. All the data format conversion instructions are processed by .L units (.L1 and 

.L2) except single-precision fl oating point to double precision fl oating point conversion instruction 

(SPDP) which is processed by .S units of the CPU. All the data format conversion instructions use 

register addressing mode.
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Table 14.13 Data Format Conversion Instructions of ‘C67X processor

Instruction Functional 

unit

Description

INTSP/

INTSPU

.L1 or .L2 Convert signed /unsigned integer to single-precision fl oating point instruction

INTDP/

INTDPU

.L1 or .L2 Convert signed /unsigned integer to double-precision fl oating point instruction

SPINT .L1 or .L2 Covert single-precision fl oating point value to integer instruction

SPTRUNC .L1 or .L2 Covert single-precision fl oating point value to integer with truncation instruction

DPINT .L1 or .L2 Covert double-precision fl oating point value to integer instruction 

DPTRUNC .L1 or .L2 Covert double-precision fl oating point value to integer with truncation instruction

SPDP .S1 or .S2 Covert single-precision fl oating point value to double -precision fl oating point 

instruction

DPSP .L1 or .L2 Covert double-precision fl oating point value to single-precision fl oating point 

instruction

(SP-Single-Precision, DP- Double-Precision, INT-Integer)

Example 14.28 INTSP .L1 A1,A2 – Signed integer to single-precision fl oating point conversion 

instruction. The signed integer content of register A1 is converted to single-

precision fl oating point format and stored in register A2. If integer value content of register A1 is 

00007272h (29298), its single precision fl oating point value 46E4 E400h (2.9298E+4) is loaded in register 

A2.The functional unit used is .L1 and the content of registers A1 is unchanged. 

         Before executions         After execution

 A1  00007272  29298 A1  00007272  

 A2  00020005  A2  46E4E400  2.9298E+4

14.6.3 Arithmetic Operation Instructions

The ¢C67X processors has arithmetic instructions for single and double precision addition, subtraction 

and multiplication operations. Integer addition using double word addressing mode (ADDAD) is 

supported. It also has instructions to perform 32-bit integer multiplications, where the product can be 

obtained for 32-bits or 64-bits. The list of ¢C67X arithmetic instructions are given in Table 14.14. All add 

and subtract instructions are processed by .L units except ADDAD instruction, which is processed by .D 

units. The multiply instructions are processed by .M units of the CPU. All the arithmetic instructions use 

register addressing mode except ADDAD instruction. In case of ADDAD instruction default is linear 

addressing mode, but if src2 operand is one of the registers A4-A7 or B4-B7, then the mode is circular 

addressing mode. The src1 operand is left shifted 3 times for double word addressing mode (refer 

ADDAB/ADDAH/ADDAW in Section14.2.3).
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Table 14.14 Arithmetic Operation Instructions of ¢C67X processor

Instruction Functional unit Description

ADDSP .L1 or .L2 Single-precision fl oating point add instruction

ADDDP .L1 or .L2 Double-precision fl oating point add instruction

ADDAD .D1 or .D2 Integer addition using double word addressing mode instruction

SUBSP .L1 or .L2 Single-precision fl oating point subtract instruction

SUBDP .L1 or .L2 Double-precision fl oating point subtract instruction

MPYSP .M1 or .M2 Single-precision fl oating point multiply instruction

MPYDP .M1 or .M2 Double-precision fl oating point multiply instruction

MPYI .M1 or .M2 32-bit integer multiply instruction(32 LSBs of the product is placed in 

destination)

MPYID .M1 or .M2 32-bit integer multiply instruction(64-bits of the product is placed in 

destination register pair)

Example 14.29 ADDSP .L1 A1,A2,A3 – Single-precision fl oating point add instruction. The single-

precision fl oating point content of register A1 and A2 are added; the result in 

single-precision fl oating point format is stored in register A3. If the fl oating point content of register A1 

is 4370 0000h (2.4E+2), register A2 is C453 4000h (-8.45E+2), the added result C417 4000h (-6.05E+2) is 

stored in register A3. The functional unit used is .L1; the content of registers A1 and A2 are unchanged.

         Before executions         After execution

 A1  43700000  (2.40E+2) A1  43700000  (2.40E+2)

 A2  C4534000  (-8.45E+2) A2  C4534000  (-8.45E+2)

 A3  500F0D18  A3  C4174000  (-6.05E+2)

Example 14.30 SUBDP .L2 B1:B0,B3:B2,B5:B4 – Double-precision fl oating point subtract 

instruction. The double-precision fl oating point content of register pair B3:B2 is 

subtracted from the content of register pair B1:B0 and the result in double-precision fl oating point 

format is stored in register pair B5:B4. If the fl oating point content of register pair B3:B2 is 8.87634E+3, 

register pair B1:B0 content is -1.043567E+5, then B3:B2 content is subtracted from B1:B0 content and 

the result -1.1323304E+5 is stored in register pair B5:B4. The functional unit used is .L2; the content of 

registers pairs B1:B0 and B3:B2 are unchanged.

 Before execution

 B1:B0  C0F97A4B  33333333   (-1.043567E+5) 

 B3:B2  40C1562B  851EB852   (-8.8763E+3) 

 B5:B4  00000000  00000000   (0.0) 

 After execution 

 B1:B0  C0F97A4B  33333333  (-1.043567E+5)

 B3:B2  40C1562B  851EB852  (-8.8763E+3) 

 B5:B4    C0FBA5C0  3D70A3D    (1.1323304E+5)
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Example 14.31 MPYI .M1X A1,B1,A2 – 32-bit integer multiply instruction. The 32-bit integer 

content of register A1 and B1 are multiplied; the lower 32-bits of the product is 

stored in register A2. If the content of register A1 is 0008 5BDBh, register B1 is 000D B371h, the multiplied 

result is 72 8609 ACABh. The 32 LSBs of the product (8609 ACABh) alone are stored in register A2. The 

functional unit used is .M1 with the cross path; the content of registers A1 and B1 are unchanged. If the 

same operation is performed with MPYID instruction being register pairs used for destination, the entire 

result of the product is stored in register pairs.

         Before executions         After execution

 A1  00085BDB  547803 A1  00085BDB  547803

 B1  C4534000  897905 B1  000DB371  897905

 A2  00000000  A2    8609ACAB  491875052715

14.6.4 Compare and Reciprocal Approximation Instructions

The ¢C67X processors has instructions for compare and reciprocal approximation operations. The 

comparisons are performed for equality, less than and greater than cases using single and double-

precision fl oating point data formats. The src1 and src2 operands given in registers are compared, if the 

comparison case is true, ‘1’ is written in destination register else ‘0’ is written to destination register. 

The reciprocal and square-root reciprocal approximation operations are performed for single and 

double-precision fl oating point data formats. The list of ¢C67X compare and reciprocal approximation 

instructions are given in Table 14.15. The compare and reciprocal approximation instructions are 

processed by .S1 and .S2 units and all these instructions use register addressing mode.

Table 14.15 Compare and Reciprocal Approximation Instructions of ¢C67X processor

Instruction Functional unit Description

CMPEQSP .S1 or .S2 Single-precision fl oating point compare for equality instruction

CMPEQDP .S1 or .S2 Double-precision fl oating point compare for equality instruction

CMPLTSP .S1 or .S2 Single-precision fl oating point compare for less than instruction

CMPLTDP .S1 or .S2 Double-precision fl oating point compare for less than instruction

CMPGTSP .S1 or .S2 Single-precision fl oating point compare for greater than instruction

CMPGTDP .S1 or .S2 Double-precision fl oating point compare for greater than instruction

RCPSP .S1 or .S2 Single-precision fl oating point reciprocal approximation instruction

RCPDP .S1 or .S2 Double-precision fl oating point reciprocal approximation instruction

RSQRSP .S1 or .S2 Single-precision fl oating point square-root reciprocal approximation instruction

RSQRDP .S1 or .S2 Double-precision fl oating point square-root reciprocal approximation instruction

Example 14.32 CMPGTSP .S1 A3,A4,A5 – Single-precision fl oating point compare instruction for 

greater than case. The single-precision fl oating point content of register A3 and 

A4 are compared, if the content of register A3 is greater than the content of A4, then ‘1’ is written in 

register A5. If the fl oating point content of register A3 is 4608F59Ah (8.7654E+3), register A4 is 45F6 

3E66h (7.8798E+3), the comparison is true; hence ‘1’ is written in register A5. The functional unit used 

is .S1; the content of registers A3 & A4 are unchanged.
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         Before executions         After execution

 A3  4608F59A  (8.7654E+3) A3  4608F59A  (8.7654E+3)

 A4  45F63E66  (7.8798E+3) A4  45F63E66  (7.8798E+3)

 A5  00000000  A5  00000001  

Example 14.33 RSQRSP .S1 A1,A2 – Single-precision fl oating point square-root reciprocal 

approximation instruction. The square root of the single-precision fl oating point 

content of register A1 is obtained and its reciprocal value is stored in register A2 in single-precision 

fl oating point format. If the single-precision fl oating point content of register A1 is 4380 0000h (2.56E+2), 

it’s square root value is 1.6E+1 and its reciprocal value 3D80 0000h (6.25E-2) is stored in register A2. The 

functional unit used is .S1; the content of registers A1 is unchanged.

         Before executions         After execution

 A1  43800000  (2.56E+2) A1  43800000  (2.56E+2)

 A2  C4534000  (-8.45E+2) A2  3D800000  (6.25E-2)

14.6.5 Other Instructions

The ¢67X processor supports fi nding absolute value of single and double-precision fl oating point 

numbers. The absolute value of source register/register pair content is stored in destination register/

register pairs. The functional units used are .S1 and .S2; addressing mode used is register addressing. 

The ¢C67X processors also support loading double word from memory with unsigned constant offset or 

register offset (refer chapter 14.3.2). The absolute and load double word instructions of ¢C67X are given 

in Table 14.15. The type of addressing mode used for load double word instruction is linear addressing; 

the functional units used are .D1 and .D2 through LD1b and LD2b 32-bit MSB buses in ¢C67X (refer 

Fig. 13.5). 

Table 14.15 Absolute and Load Double word Instructions of ¢C67X processor

Instruction Functional unit Description

ABSSP .S1 or .S2 Absolute value of single-precision fl oating point number 

ABSDP .S1 or .S2 Absolute value of double-precision fl oating point number

LDDW .D1 or .D2 Load double word from memory with an unsigned constant offset or register offset 

PIPELINE OPERATION 14.7

The ¢C6X pipeline operation provides easy way of programming and improves performance. The major 

phases of ¢C6X pipeline

 ∑ Fetch

 ∑ Decode 

 ∑ Execute

All instructions require same number of pipeline phases for fetch and decode, but require a varying 

number of execute phases depending on the type of instruction. The ¢C62X/¢C64X fi xed point processors 

require less execution phases than the ‘C67X fl oating point processor. The fetch operation consists of 

four phases and the decode operation has two phases for all ¢C6X processors. But the execute operation 

of fi xed point processors have fi ve phases where as it is ten phases for fl oating point processors. The 

¢C6X fi xed point and fl oating point processor pipeline stages are show in Figs 14.4 and 14.5.
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Fig. 14.4 Fixed point processor (¢C62X/¢C64X) pipeline stages

Fig. 14.5 Floating point processor (¢C67X) pipeline stages

14.7.1 Fetch Operation

The ¢C6X processor uses eight instructions in a fetch packet (FP). The eight instructions are fetched 

from memory through four phases. The fetch phase is subdivided into the following phases. 

 ∑ Program address generate (PG)

 ∑ Program address send (PS)

 ∑ Program access ready wait (PW)

 ∑ Program fetch packet receive (PR)

Figure 14.6 shows the functional block diagram of fetch phase. During the PG phase the memory 

addresses corresponding to eight instructions of fetch packet are generated. In PS phase, the addresses 

Fig. 14.6 Functional Block Diagram of ¢C6X Fetch phases

are sent to memory and in PW phase the memory read operation is performed. Finally, in PR phase 

the eight instructions are received at the CPU. The number of execute packets in the fetch packet is 

based upon instructions written in fully serial, fully parallel and partially serial execution types. If eight 

instructions of a fetch packet are serial, there are eight execute packets, where as eight instructions are 

in parallel, there is only one execute packet. In case of partial serial type, the number of execute packets 
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varies between two to seven and depend on the number of instructions that are parallel in the fetch 

packet. 

14.7.2 Decode Operation

In decode phase the fetch packet having eight instructions are split into execute packets, assigned to 

appropriate functional units and are decoded. The decode phase is subdivided into the following two 

phases

 ∑ Instruction dispatch (DP)

 ∑ Instruction decode (DC)

The execute packet consists of one instruction or two to eight parallel instructions. In instruction 

dispatch phase (DP), the instructions in an execute packet are assigned to the appropriate functional 

units. In instruction decode phase (DC), the source registers, destination registers and associated data 

paths are decoded for the execution of the instructions in the eight functional units.

14.7.3 Execute Operation 

The execute phase of the pipeline for fi xed-point processor is subdivided into fi ve phases (E1-E5) and 

for fl oating point processors it is subdivide into ten phases (E1-E10). Different type of instructions 

require different numbers of execute phases to complete the execution. The execute phases and the 

operation performed in each phase for fi xed point processors are given in Table 14.16 and the same for 

fl oating point processors are given in Table 14.17. The pipeline operations of fi xed-point processors are 

categorized into seven instruction types. They are single-cycle, single 16x16 multiply (Two-cycle) and 

‘C64X non-multiply, store, ‘C64X extended multiply, load, branch and no operation (NOP) instructions. 

The pipeline operations of fl oating-point processors are categorized into fourteen instruction types. They 

are single-cycle, single 16x16 multiply, store, load, branch, 2-cycle DP, 4-cycle, INTDP, DP compare, 

ADDDP/SUBDP, MPYI, MPYID, MPYDP and no operation (NOP) instructions. The execute phase in 

which these instruction categories are executed are shown in Tables 14.16 and 14.17.

INTERRUPTS 14.8

The ¢C6X processors have three types of interrupts based on their priorities. First the reset interrupt

(RESET) which has the highest priority, second the nonmaskable interrupt (NMI) having the second 

highest priority and third are the twelve makeable interrupts INT4-INT15 having lowest priorities. In 

¢C6X, eight registers are present that control servicing the interrupts. The list of interrupts and their 

functions are given in Table 14.18. 

The reset interrupt is an active low signal and all other interrupts are active high signal. The reset 

interrupt must be held low for 10 clock cycles. The nonmaskable interrupt is used to alert the CPU for 

serious hardware problem such as power failures likely to happen immediately. The twelve maskable 

interrupts are associated with external devices, on-chip peripherals, software control or in some 

processor not be available. The ¢C6X processors have interrupt acknowledgement signal (IACK) to 

alert the external hardware that an interrupt has occurred and is being processed and INUMx signals 

(INUM3-INUM0) to indicate the number of interrupts that is being processed. 

When an interrupt occur, the CPU begins to process it and it references interrupt service table (IST). 

IST is a table containing codes for servicing the interrupts. The IST contains 16 consecutive fetch 

packets, where each fetch packet contains eight instructions. Instructions of ¢C6X is 32-bits, so for eight 
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instructions it occupies 32-bytes of program memory locations for each fetch packet. Hence the address 

of IST is incremented by 32 bytes (20h) for the next interrupt to be serviced. The interrupt service 

routine can fi t in with these eight instructions. 

Table 14.16 Operation performed in execute phases of ¢C6X fi xed-point processors

Ex-

ecute 

Phase

Type Operations performed

E1 Conditional 

Instructions

For all instructions, the conditions for the instructions are checked and 

operands are read.

Load and store 

instructions

Address generation is performed and address modifi cations are written to 

a register fi le

Branch Instructions Branch fetch packet in PG phase is affected

Single-cycle 

instructions

The results are written to a register fi le

E2 Load instructions The address is sent to memory

Store instructions The address and the data are sent to memory

Single-cycle 

instructions

Single-cycle instructions with saturate results, if saturation occurs, set the 

SAT bit in the control status register (CSR) 

Multiply instructions For 16x16 multiply instructions, results are written to a register fi le. In 

‘C64X multiply unit, for the non-multiply instructions, results are written 

to a register fi le

E3 Store instructions Data memory accesses are performed

Multiply instructions Multiply instructions with saturate results, if saturation occurs, sets the 

SAT bit in the control status register (CSR)

E4 Load instructions Data is brought to the CPU boundary

Multiply instructions In ‘C64X multiply extensions, results are written to a register fi le

E5 Load Instructions The data is written into a register

Table 14.17 Operation performed in execute phases of ¢C6X fl oating-point processors

Execute 

Phase Type Operations performed

E1 Conditional Instructions For all instructions, the conditions for the instructions are checked 

and operands are read.

Load and store instructions Address generation is performed and address modifi cations are 

written to a register fi le

(Contd.)
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Branch Instructions Branch fetch packet in PG phase is affected

Single-cycle instructions The results are written to a register fi le

DP compare, ADDDP/SUBDP and 

MPYDP instructions

The lower 32-bits of the source are read. For all other instructions, 

the source are read

2-cycle DP instructions The lower 32-bits of the result are written to a register fi le

E2 Load instructions The address is sent to memory

Store instructions The address and the data are sent to memory

Single-cycle instructions Single-cycle instructions with saturate results, if saturation occurs, 

set the SAT bit in the control status register (CSR) 

Multiply, 2-cycle DP and DP 

compare instructions

Results are written to a register fi le

DP compare and ADDDP/SUBDP 

instructions

The upper 32-bits of the source are read

MPYDP instruction The lower 32-bits of src1 and the upper 32-bits of src2 are read

MPYI and MPYID instruction The sources are read

E3 Store instructions Data memory accesses are performed

Multiply instructions Multiply instructions with saturate results, if saturation occurs, sets 

the SAT bit in the control status register (CSR)

MPYDP instruction The upper 32-bits of src1 and the lower 32-bits of src2 are read

MPYI and MPYID instruction The sources are read

E4 Load instructions Data is brought to the CPU boundary

MPYI and MPYID instruction The sources are read

MPYDP instruction The upper 32-bits of the source are read

4-cycle instructions Results are written to register fi le

INTDP instruction The lower 32-bits of the result are written to a register fi le

E5 Load Instructions The data is written into a register 

INTDP instruction The upper 32-bits of the result are written to a register fi le

E6 ADDDP/SUBDP instructions The lower 32-bits of the result are written to a register fi le

E7 ADDDP/SUBDP instructions The upper 32-bits of the result are written to a register fi le

E8 —- Nothing read or written

E9 MPYI instruction The result is written to a register fi le

MPYDP and MPYID instructions The lower 32-bits of the result are written to a register fi le

E10 MPYDP and MPYID instructions The upper 32-bits of the result are written to a register fi le

If the interrupt service routine for an interrupt is larger than eight instructions that cannot fi t in 

the IST, an interrupt service fetch packet (ISFP) is used to service an interrupt. The interrupt service 

fetch packet contains a branch to the interrupt return pointer instruction (B IRP) followed by fi ve no 

operations (NOP 5) for the branch to reach the execution stage of the pipeline. The additional interrupt 

service routine code is written from the branched memory location. In both IST and ISFP the interrupt 

service table pointer (ISTP) register is used to locate the interrupt service routine.

Table 14.17 (Contd.)
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Table 14.18 Interrupt Control Register and their Functions

Name of the register Abbreviation Functions

Control status register CSR To globally set or disable the maskable interrupts

Interrupt enable register IER To enable the makableinterrupts

Interrupt fl ag register IFR Shows the status of interrupts

Interrupt set register ISR To set the fl ags in IFR register manually

Interrupt clear register ICR To clear the fl ags in IFR register manually

Interrupt service table 

pointer

ISTP Pointer to the beginning of the interrupt service table

Nonmaskable interrupt 

return pointer

NRP Contains the return address used on return from a nonmaskable 

interrupt. This is accomplished using the B NRP instruction

Interrupt return pointer IRP Contains the return address used on return from a maskable interrupt. 

This is accomplished using the B IRP instruction

To process a maskable interrupt the following conditions are to be satisfi ed. 

 ∑ The global interrupt enable bit (GIE) in the control status register is set to 1

 ∑ The NMIE bit in the interrupt enable register (IER) is set to 1

 ∑ The interrupt enable bit (IE) in the interrupt enable register (IER) for the corresponding interrupt 

is set to 1

On the above conditions satisfi ed when an interrupt occurs, the corresponding bit in interrupt fl ag 

register (IFR) is set. Based on the priority of the interrupt, the interrupt service table pointer (ISTP) 

locates the interrupt service routine and the interrupt is processed.

Review Questions 

14.1 What are the types of operations performed by .L 

functional units?

14.2 List the various types of multiply operations 

performed by .M functional units.

14.3 Which unit is used to process the branch 

instructions? List the various types of branch instructions 

in ¢C6X.

14.4 What are the various types of load and store 

operations performed by .D units of ¢C6X processor?

14.5 List the addressing modes supported by the ¢C6X 

processor. 

14.6 What are the address generation options present 

in linear addressing mode?

14.7 Explain the operation of circular addressing mode 

with example.

14.8 What are the various types of move instructions 

in ¢C6X processors?

14.9 List the various types of addition and subtract 

instructions in ¢C6X processors.

14.10 What are the various shift and compare 

operations supported by ¢C6X processors?

14.11 Explain how logical conditional can be defi ned in 

¢C6X instructions?

14.12 What are the various instruction execution types 

in ¢C6X? Explain.

14.13 What are the various data formats supported by 

the ‘C67X processors?

14.14 List the various data format conversion 

instructions in ‘C67X processors.

14.15 What are the fl oating point arithmetic operations 

‘C67X processor supports?

14.16 Explain the different phases of fetch operation 

of ¢C6X pipeline.

14.17 What are operations performed in decode phase 

of ‘C67X pipeline.

14.18 List the categories of ¢C6X fi xed point processor 

pipeline execute phases
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14.19 What are the categories of ‘C67X processor 

pipeline execute phases?

14.20 List the register present in ¢C6X processor to 

process the interrupts.

14.21 What are the registers in ¢C6X register fi le used 

for conditional operations?

Self Test Questions 

14.1 Arithmetic operations are performed by ———  

units.

(a) .L (b) .S (c) . M (d) .L, .S and .D 

14.2 The logical operations are processed using ——— 

units.

(a) .L (b) .D (c) . M (d) .L and .S 

14.3 Shift operations are processed by ———  units.

(a) .L (b) .D (c) . M (d) .S 

14.4 Compare operations are processed by ———  

units.

(a) .L (b) .D (c) . M (d) .S 

14.5 ——— units are used to perform move operations 

(a) .L (b) .D (c) .S (d) .S and .D 

14.6 Multiply operations are processed by ———  

units.

(a) .L (b) .D (c) . M (d) .S 

14.7 Branch operations are processed by ———  units.

(a) .L (b) .D (c) . M (d) .S 

14.8 ——— units are used to perform load and store 

operations.

(a) .L (b) .D (c) . M (d) .S 

14.9 In linear addressing mode the number of address 

generation options is

(a) 4 (b) 10 (c) 6 (d) 8

14.10 For circular addressing registers used are ———.

(a) A0-A15  (b) B0-B15

(c) A0-A32  (d) A4-A7 and B4-B7

14.11 Instruction to move values between control 

register fi le and register fi le is

(a) MV (b) MVK (c) MVC (d) MVKH.

14.12 Instruction to perform signed 16-bit constant 

addition operation is ———.

(a) ADD (b) ADDU (c) ADD2 (d) ADDK.

14.13 Instruction to perform two 16-bit addition on 

upper and lower register halves is ——— 

(a) ADD (b) ADDU (c) ADD2 (d) ADDK.

14.14 ——— instruction is used to perform division 

operation.

(a) ADD (b) SUBC (c) SUB (d) SUBU

14.15 For fully parallel type of execution the P-bit set 

for ——— .

(a) all the eight instructions (b) the fi st instruction 

(c) the last instruction (d) fi st seven instructions

14.16 The condition checked for [!A1] is ——— 

(a) content of register A1 being non zero

(b) content of register A1 being zero

(c) content of register A1 being negative

(d) content of register A1 being positive

14.17 Integer addition using double word addressing 

mode instruction is in ———  processor.

(a) ‘C62X  (b) ‘C64X

(c) ‘C62X and ‘C64X  (d) ‘C67X 

14.18 32-bit integer multiply instruction is in ——— 

processor

(a) ‘C62X  (b) ‘C64X

(c) ‘C62X and ‘C64X (d) ‘C67X. 

14.19 Reciprocal approximation operations are 

processed by ———  units

(a) .L (b) .D (c) . M (d) .S 

14.20 The number of phases of ¢C62X fi xed point 

processor pipeline is ———.

(a) 5 (b) 10 (c) 11 (d) 16 

14.21 The number of phases of ¢C67X fl oating point 

processor pipeline is ———.

(a) 5 (b) 10 (c) 11 (d) 16 



In this chapter some application programs for TMS320C6X processors, some details on memory and on-

chip peripheral are given. To develop and test ¢C6X application codes, programming tools and hardware 

accessories are needed. The programming tool used is Code Composer Studio (CCS) and TMS320C6X 

starter kits are used for the implementation. The details about the internal memory resources and the 

various peripherals like timers, multichannel buffered serial ports, DMA controllers and external 

memory interface are discussed.

CODE COMPOSER STUDIO (CCS) 15.1

Code composer studio has the basic code generation tools with set of debugging and real-time analysis 

capabilities. The code composer studio is available in integrate development environment (IDE), which 

is designed to edit, build and debug ¢C6X processor target programs. The steps to do programming in 

¢C6X processor environment are:

 ∑ Setting up the target processor

 ∑ Code generation 

 ∑ Debugging and execution of codes

15.1.1 Setting up the Target Processor

The code composer studio tool of ¢C6X platform supports code generation for ¢C62X, ¢C64X fi xed point 

and ¢C67X fl oating point processors. The CCS tool supports processor simulator mode of operation 

where there is no target ¢C6X processor present. The other modes of operation are using starter kit 

(DSK) or evaluation module (EVM) in which a particular target ¢C6X processor present in the board can 

be selected. The selection of simulator mode or starter kit or EVM for specifi c target ¢C6X processor can 

be programmed using the setup option in the CCS tool. 

The setup menu of the ¢C6X code composer studio is shown in Fig. 15.1. The ¢C62X, ¢C64X, ¢C67X 

devices supported by the code composer studio tool are listed in the second window. Based on the mode, 

simulator or DSK or EVM and a device of a family can be selected. The selected device is updated in 

system confi guration window and the details about the selected device are available in third window. 

After proper selection of the mode and device click the save and quit button at the left bottom corner of 

the setup window. This completes the setup process of target processor for ¢C6X code generation. In this 

15
TMS320C6X APPLICATION

PROGRAMS AND PERIPHERALS



TMS320C6X Application Programs and Peripherals  403

F
ig

. 1
5
.1

 
C
od

e 
co

m
p
os

er
 s

tu
d
io

 s
et

u
p
 f
or

 ¢
C
6
4
1
6
 D

SK



404  Digital Signal Processors

chapter the code generation, debugging and execution are carried out using both TMS320C6416 DSK 

(Starter kit, operating at 720MHz) and TMS320C6713 DSK.

15.1.2 An Overview of the ¢C6416 DSK

The ¢C6416 Starter kit is a standalone board consisting of the following features. The code composer 

studio tool present in the host computer communicates with the DSK through an embedded JTAG 

emulator with a USB host interface. 

 ∑ TMS320C6416T processor operating at 1GHz

 ∑ 16 Mbytes of synchronous DRAM connected to CE0 space of EMIA

 ∑ 512 Kbytes of non-volatile Flash memory connected to CE1 space of EMIB

 ∑ Software board confi guration through registers implemented in CPLD of CE0 space of EMIB

 ∑ An AIC23 stereo codec connected to McBSP

 ∑ Confi gured boot options and clock input selection

 ∑ External memory, External peripheral and PCI/HPI connectors

 ∑ JTAG emulation through on-board JTAG emulator with USB host interface or external 

emulator

The ¢C6416 starter kit has TMS320C6416T processor with 1024 K (1M) bytes of the on-chip RAM 

as unifi ed memory space in the address range 0000 0000h to 000F FFFFh. This space can be used to 

store the program codes as well as data values. For more memory space applications, the external 16M 

bytes of DRAM connected to CE0 space of the starter kit can be used. The 512 K bytes of external 

Flash memory in CE1 space can be used for boot option. The CPLD is used to implement simple logic 

functions without additional discrete devices. The AIC23 stereo codec is used for input and output audio 

signals through multi-channel buffered serial port of the processor (McBSP).

15.1.3 Code Generation in CCS

The CCS tool supports ¢C6X code generation both in assembly and ‘C’ language. The code generation 

fl ow in assembly language is explained with an example in this section. In this example is used to 

generate an arithmetic series of N numbers, fi nd the summation of the series, the series and the sum to 

be stored in memory. Invoke the code composer studio tool using the shortcut on the desktop or from 

the program menu. The code composer studio window will open; the following are the steps to create a 

new project and build assembly language code.

Step 1: Creating a new project: Select Project menu - New project option in CCS, a project selection 

window will appear. A project name (e.g. series) is to be entered. The default location of the 

new project being created is in the folder –Code composer studio – Myprojects. Using the 

browse option, the folder for the new project creation can be altered. A folder in the name of the 

project will be created and a fi le in the name of project with the fi le extension .pjt (series.pjt) 

will be present in that folder. In the fi les window of CCS the project name appears.

Step 2: Creating source fi le in assembly: Select File-New - Source fi le option of CCS. A text edit 

window will appear; the assembly language code can be entered in the text window. The 

procedure to enter codes in assembly is common for all the processors (Section 6.1.4). The 

complete assembly language code for series generation is given in example 15.1. Once the 

complete code is entered in the text pad, use the save option or shortcut keys of the CCS to save 

the fi le in the project folder created (series). Save option window will appear, in which enter the 

fi le name with fi le extension .asm (sumn.asm).
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Step 3: Adding fi le to the project: The assembly language fi le created is to be added to the project. 

Select Project menu – Add fi les to the project option in CCS, add fi les to project window will 

appear in which select the fi le type as ‘Asm source fi les, select the asm fi le in the project folder 

(sumn.asm). In the fi les window click the project name, then source folder, added .asm fi le will 

appear. 

Example 15.1 The assembly code generates the arithmetic series, fi nds the sum of the series 

and stores it in memory. The fi rst few instructions initialize the content of 

registers used to zero. The register A1 specifi es the number of values of the series N (20h); register A2 

specifi es the start address of the memory (0200h) to store the series. The series is generated in register 

A3, the sum of the series values are accumulated in register A4. The N values of the series are stored in 

N words (4 bytes) of the memory starting from the next address in register A2 (0204h) and N+1th word 

the sum of the series is stored. The content of register A1 is used for conditional operation.

 Label  Mnemonic Comments
 .text ; assemble directive to initialize the program section

  (case sensitive)

 ZERO .S1 A1 ; zero the content of registers A1, A2, A3 done in parallel

 || ZERO .D1 A2

 || ZERO .L1 A3

 NOP 5

 ZERO .D1 A4 ;zero the content of register A4, the no. of series- 

 || MVK .S1 020h, A1  ;values (20h) entered in A1, done in parallel

 NOP 6

 MVK .S1 200h,A2  ; the start address of the memory (0200h) to store the-

   ; sequence is loaded in A2

LOOP ADD .L1 1,A3,A3  ; the series generation done in A3 

  STW .D1 A3,*++A2[1] ; the values of the series are stored

 ADD .L1 A3,A4,A4 ; the sum of the series is done in A4

 SUB .S1 A1,1,A1  ; decrement the count N 

  NOP 6

  [A1] B .S1 LOOP   ; the content of A1 being nonzero condition is tested

 NOP 6 

 STW .D1 A4,*++A2[1] ; the sum of the series is stored in N+1th location 

 NOP

 .end ;assembler directive to specify the end of section

  (case sensitive)

Step 4: Building the code: Select Project menu – Build option in CCS, a Debug window will appear 

in CCS. It checks the syntax of the ¢C6X assembly code. If the build is successful an .out fi le 

in the name of the project is created in Debug folder of the project folder (series.out) else error 

messages will appear in the debug window. By reading the error messages the correct syntax 

can be written in the assembly language fi le. The build option is to be continued till the end of 

successful build. 

Step 5: Down loading the code in target processor: Now the .out fi le is to be down loaded to the 

on-chip memory of the target processor, for this fi rst the target processor is to be connected. 

Select Debug menu – Connect option in CCS, a Disassembly window will open in CCS. To 

load the .out fi le, Select File menu-Load program option in CCS. A Load program window will 

popup, click the Debug folder and select the .out fi le in the name of the project (series.out). 
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The disassembly window will point the starting address 0000 0000h or the default location of 

the program counter (PC). The assembly codes developed by the user will be loaded from the 

starting address 00000020h. The complete assembly codes downloaded can be viewed in the 

disassembly window from this address. 

Fig. 15.2 Various windows of CCS for ¢C6416

15.1.4 Execution of ¢C6X Codes in Target Processor

The assembly codes which are loaded to the target processor are to be executed and the results can 

be verifi ed in the CPU register and memory of the processor. To view the results, the register window 

and memory widows are to be enabled. Select View – Registers – Core registers option in CCS. A new 

window appears in CCS, in which the content of all the CPU core registers can be viewed. As the same 

way select View – Memory option in CCS, a new small window will appear for options. Select the 

address of the memory that is to be viewed (e.g. 0x00000200) and the format in which the data is to be 

displayed (e.g. 32 Bit Hex – C style), a memory window appears in CCS. In the memory window, click 

the right button of the mouse; choose Float in main window option to view the memory window along 

with disassembly window in CCS. 
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To start execution, the program counter (PC) should point to the starting address of the code. This is 

being done in two ways; double click the PC in register window, the edit register window will appear, 

in which enter the start address (0x00000020). The other ways is either in text edit window or in 

disassembly window, keep the cursor in the fi rst line of the code, right click the mouse button and select 

Set PC to cursor option or use shortcuts options. 

To execute the code, select Debug-Step into option in CCS or shortcut key, the code will be executed 

line by line. Breakpoint can be introduced using the option in debug menu to the end address of the 

code or double click the cursor at the lost line of the code in disassembly window. The break points can 

be introduced to any line of the code and also ‘n’ number of such break points can be introduced in the 

program. The ‘run’ option in debug menu can be used to execute the code in one step. The arithmetic 

series values and the sum can be viewed in the memory window. The various windows of the CCS along 

with the result in memory window are shown in Fig. 15.2. 

APPLICATION PROGRAMS IN ¢C64X 15.2

The assembly language programs for various functions such as convolution, discrete Fourier transform, 

FIR fi lter and real time audio signal capture are implemented in TMS320C6416 starter kit. The details 

about the implementation are given in this section.

15.2.1 Integer Division 

The integer division operation is performed using SUBC instruction in ¢C6X processor more effi ciently. 

The division operation using SUBC needs the denominator content to be aligned to the numerator 

content. This can be performed by detecting the left most ‘1’ bit in the denominator using LMBD 

instruction of ¢C6X. The TMS320C6X assembly program to perform unsigned integer division is given 

in Program 15.1 and signed integer in Program 15.2. The numerator and denominator are stored in 

two CPU registers (A2 and A3) where denominator must be less than the numerator. Using LMBD 

instruction, both in numerator and denominators, the left most ‘1’ bit is detected and the result is 

stored in two new registers (A5 and A6). The difference value of the left most ‘1’ bit detection of 

the denominator to that of the numerator, say X is the critical value used in the division process. The 

denominator content is left shifted X bits to align to numerator content. The content of the aligned 

denominator content is subtracted from numerator using SUBC instruction. It is important to note that 

X+1 time the SUBC instruction is to be executed to complete the division. After division, both quotient 

and the remainder will be in a single register in which the numerator is loaded (A2). The quotient of the 

division can be computed by taking X+1 LSB bits of the numerator register and the remaining MSB bits 

is used compute the remainder of the division process. In signed integer division, the absolute value of 

the signed number is obtained and the division is performed same way as unsigned case and at end, sign 

information is added to the quotient. The Program 15.1 and 15.2 can be used for dividing unsigned and 

signed integers up to 32-bits respectively. 

Program 15.1  Unsigned Integer Division

Label Mnemonic Comments

 .text ; assembler directive to initialize the program section

 zero .s1 a1 ;zero the content of registers A1,A2 and A3 

 || zero .d1 a2
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 || zero .l1 a3

 zero .s1 a4  ; zero the content of registers A4,A5 and A6 

 || zero .d1 a5

 || zero .l1 a6

 zero .s1 a7 ;zero the content of registers A7,A8 and A9 

 || zero .d1 a8

 || zero .l1 a9

 zero .s1 a10 ;zero the content of registers A10,A11 and A16 

 || zero .d1 a11

 mvk .s1 20h,a2  ; 16 LSBs of numerator moved to register A2

 mvklh .s1 0h,a2  ; 16 MSBs of numerator moved to register A2

 mvk .s1 03h,a3  ; 16 LSBs of denominator moved to register A3

 mvklh .s1 0h,a3  ; 16 MSBs of denominator moved to register A3

 mvk .s1 01h,a4 ; 1 is moved in register A4

 lmbd .l1 a4,a2,a5 ; left most 1 detection for numerator, result in A5

 lmbd .l1 a4,a3,a6  ;left most 1 detection for denominator, result in A6

 sub .s1 a6,a5,a1 ;the difference in left most 1detection, result in A1

 shl .s1 a3,a1,a3 ;the denominator aligned to numerator by left shifting,

  ; the shift value is the content of A1

 add .l1 1,a1,a1

 neg .s1 a4,a7

 shl .s1 a7,a1,a8

 not .s1 a8,a9

 mv .l1 a1,a7

loop  subc .s1 a2,a3,a2  ;register A3 content subtracted from A2 content, result

  ;in A2 register

 sub .l1 a1,a4,a1 ;the content of A1 register decremented

 [a1] b .s2 loop ;branch to loop for content register A1 non-zero

 || nop 5 ; no operations

 and .d1 a2,a9,a10  ;quotient in A10 register

 and .d1 a2,a8,a11

 shr .s1 a11,a7,a11  ; reminder in A11 register 

 .end

Program 15.2  Signed Integer Division

Label Mnemonic Comments

 .text ; assembler directive to initialize the program section

 zero .s1 a1 ; zero the content of registers A1-A11,B0 and B1

 || zero .d1 a2

 || zero .l1 a3

 || zero .s2 b0

 || zero .d2 b1

 zero .s1 a4

 || zero .d1 a5

 || zero .l1 a6
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 zero .s1 a7

 || zero .d1 a8

 || zero .l1 a9

 zero .s1 a10

 || zero .d1 a11

 mvk .s2 -19,b0  ; numerator specifi ed in lsb 16 bits of register B0

 mvk .s2 10,b1  ; denominator specifi ed in lsb 16 bits of register B1

 abs .l1 b0,a2  ; absolute value of B0 stored in A2

 cmplt .l2 b0,a2,b0 ;the sign information is stored in B0

 abs .l1 b1,a3 ;absolute value of B1 stored in A3

 cmplt .l2 b1,a3,b1 ; the sign information is stored in B1

 sub .d2 b0,b1,b0

 mvk .s1 01h,a4

 lmbd .l1 a4,a2,a5 ; left most 1 detection for numerator, result in A5

 lmbd .l1 a4,a3,a6 ;left most 1 detection for denominator, result in A6

 sub .s1 a6,a5,a1

 shl .s1 a3,a1,a3 ;the denominator aligned to numerator by left shifting,

  ; the shift value is the content of A1

 add .l1 1,a1,a1

 neg .s1 a4,a7

 shl .s1 a7,a1,a8

 not .s1 a8,a9

 mv .l1 a1,a7

 loop subc .l1 a2,a3,a2  ; subtract operation performed result stored in A2

  sub .l1 a1,a4,a1

 [a1] b .s2 loop

 || nop 5

 and .d1 a2,a9,a10  

 [b0] neg .s1 a10,a10 ;quotient in register A10, for signed nos. sign information added

  and .d1 a2,a8,a11

  shr .s1 a11,a7,a11  ; reminder in register A11 

   .end

15.2.2 Convolution Operation

The basic operation to be implemented for signal processing applications is convolution. In ¢C6X 

processor it can be implemented using multiply (MPY) and add (ADD) instruction. The multiply 

and add instructions are executed in parallel to perform single cycle multiply and accumulate (MAC) 

operation. In ¢C6X there are two multipliers and six ALUs functioning in parallel, so two single cycle 

MAC operations can be performed simultaneously in path-A and path-B of the CPU paths respectively. 

The convolution operation can be performed for 8, 16 and 32-bits of data values in ¢C6X processor and 

the assembly language program to perform 8, 16 and 32-bit convolution is given in program 15.3. The 

8, 16 and 32 bit data values can be defi ned using assembler directives .byte, .half and .word respectively. 

The data values for the sequence can be directly defi ned in the program or it could be stored in separate 

data fi les. The values in the data fi les can be called in the assembly program using .include or .copy 

assembler directives. In program 15.3 the two sequence values that are to be convolved are defi ned 

using variables x and h and the number of values in the sequence are defi ned by the variables n and 
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m respectively. The number of time the convolution output is to be computed is n+m-1. While storing 

the sequence values in memory, padding of zeros for both the sequence x and h are necessary to avoid 

garbage values being accessed from memory during convolution operation. For sequence x, m-1 zeros 

are to be padded after the sequence and n-1 zeros to be padded before and after the sequence h as 

shown in the program 15.3. The stored values of the two sequences are read from memory one by one 

using load instruction through path-A and path-B simultaneously, get multiplied and accumulated, and 

repeated for n+m-1 times to get the fi rst convolution output. The result is stored in memory using store 

instruction. After the address update of both sequences, the next output is computed and this process 

continued for n+m-1 times. The conditional operations of ¢C6X are used to check the count values. The 

convolved output can be viewed in memory by invoking the memory window in CCS.

Program 15.3  Convolution operation

Label Mnemonic Comments

 .data ; assembler directive to initialize the data section

x .byte 1h,2h,2h,2h,2h,2h,1h  ; the values of sequence x defi ned

  ; .byte, .half and .word assembler directives to represent- 

   ; data in 8, 16 and 32 bit data formats respectively

xpa .byte 0h,0h,0h,0h  ; m-1 values of zeros padded after the sequence x

hpb  .byte 0h,0h,0h,0h,0h,0h  ; n-1 values of zeros padded before the sequence h

h .byte 1h,2h,2h,2h,1h  ; the values of sequence h defi ned

hpa .byte 0h,0h,0h,0h,0h,0h  ; n-1 values of zeros padded after the sequence h

n .set 7 ; the no. of values in sequence x (m)

m  .set 5 ; the no. of values in sequence h (n)

 .text  ; assembler directive to initialize the program section

 zero .s1 a1 ; zero the contents of CPU registers

 || zero .d1 a2

 || zero .l1 a3

 zero .s1 a0

 || zero .d1 a4

  || zero .l1 a5

  zero .s2 b2

  || zero .s1 a5

  || zero .d1 a6

   zero .s2 b3

  || zero .l2 b4

  || zero .d1 a7

  mvkl .s1 n+m-1,a7 ; (n+m-1), ((n+m)*2)-2 and ((n+m)*4)-4 for 8,16 and 32 bit- 

  ; data values respectively. The address displacement after-

  ; every convolution output

  ||mvkl .s2 h, b3 ; the start address of the sequence h loaded in register B3

  mvkl .s1 n+m -1,a1 ; the no. of times the convolution output to be computed

  || mvkl .s2 0100h,b5 ; the start address to store result is loaded in register B5

loop1   mvkl .s2 n+m -2,b0 ;the no. of times the multiplication and accumulation to be 

  ; performed
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  || mvkl .s1 x,a3 ; the start address of the sequence x loaded in register A3

  || zero .d1 a5

  || zero .l1 a6

loop   ldb .d1 *a3++,a4 ; the sequence values x and h are loaded from memory to-

  ||ldb .d2 *b3- -,b4 ; register A4 and B4 respectively. ldb, ldh and ldw instruction- 

  ||nop 6 ; for byte, half word and word load respectively

  mpy .m1 a4,b4,a5 ; multiplication and accumulation of x and h values

  || add .s1 a5,a6,a6 

  || sub .s2 b0,1,b0

  || nop 5

  [b0] b loop

 ||nop 7

 sub .s1 a1,1,a1

 || stb .d2 a6,*b5++ ; the convolved output sequence stored in memory. stb, sth-

 ||nop 6 ; and stw instructions for byte, half word and word store

  add .s2 b3,a7,b3 ; the address update for sequence h

  [a1] b loop1

  ||nop 7

  .end

15.2.3 DFT using FFT Algorithm

The fast computation method of Discrete Fourier Transform (DFT) is using Fast Fourier Transform 

(FFT) algorithm (refer chapter 1.14). The FFT algorithm is based on the symmetry property of the 

factor W
N 

kn, where (W
N

kn = e–j(2p/N)kn). The computation of DFT using FFT algorithm is carried out 

in two methods, Decimation in Time (DIT) and Decimation in Frequency (DIF). The best way to 

implement DFT either in DIT or DFT method is through butterfl y structures. In this chapter 8-point 

DFT implementation using DIT radix-2 FFT algorithm is presented and it’s ¢C64X assembly language 

program is given in Program 15.6. The fi rst module needed in DFT computation using radix-2 algorithm 

is the rearrangement of input sequence in bit reversed order. In ¢C5X, ¢C3X and ¢C54X processors a 

specifi c addressing mode called bit reversed addressing mode is available to perform the bit reversal. 

But in ¢C6X there is no such addressing mode. Hence ¢C6X assembly language program to rearrange the 

input sequence in bit reversed order is given in Program 15.4. The input sequence in DFT computation 

is real, but the coeffi cients of FFT and the outputs of the intermediate stage of the butterfl y structure are 

complex, hence the second module required is complex number multiplication. To perform complex 

multiplication, the ¢C6X assembly program is given in Program 15.5. 

The FFT coeffi cients are the twiddle factor W
N 

k represented in trigonometry form as cos (j2pk/N) 

+ j sin (j2pk/N), where k varies from 0-7 and N is the number of inputs i.e. 8 for 8-point DFT. The 

cosine and sine function can have values from + 1 to -1 as k varies from 0-7, the fractional values of the 

coeffi cients are scaled by an appropriate scaling factor S and rounded off to nearest integers. The scaling 

factors are selected in powers of 2 (S=2x), because after multiplying the inputs with coeffi cients in the 

butterfl y structure, the resultant product is to be divided by the scaling factor S to get back the actual 

value. If the scaling factor is selected in powers of 2, division can be done easily by shift right operation 

(SHR) for other scaling factors the division program given in program 15.1 and 15.2 can be used. The 

DFT outputs obtained in the butterfl y structure will have error comparing to manual calculation in the 

path where the twiddle factors are fractional and this error is due to rounding off of the coeffi cients. 
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Program 15.4  Bit reversal of input sequence

Label Mnemonic Comments

 .data ; assembler directive to initialize the data section

x  .byte 1,-1,1,0,2,-1,2,1 ; the input sequence that is to be bit reversed

 .text ; assembler directive to initialize the program section

n  .set 8 ; number of points

l  .equ (n/4)  ; number of swaps

k  .equ (n/2) ; half point value

 zero .s1 a1 ; zero the register contents

 || zero .d1 a2

 || zero .l1 a3

 zero .s1 a4

 || zero .d1 a5

 || zero .l1 a6

 zero .s1 a7

 || zero .d1 a8

 || zero .l1 a9

 zero .s1 a10

 || zero .d1 a11

 || zero .l1 a12

 mvkl .s1 x,a3 ;the start address of the sequence x loaded in register A3

 mvkl .s1 k,a1

 || mvkl .s2 l,b0

loop ldb .d1 *++a3[a1],a4

 ||nop 7

 mv .s1 a4,a5

 ||sub a1,1,a0

 ||nop 6

 ldb .d1 *--a3[a0],a4

 || nop 7

 stb .d1 a5,*a3++[a0]

 ||sub a1,2,a0

||nop 7

 stb .d1 a4,*a3--[a0]

 ||sub b0,1,b0

||nop 7

 [b0] b .s2 loop

 ||nop 7

 .end

Program 15.5  Complex number multiplication

Label Mnemonic Comments

 .data ; assembler directive to initialize the data section

re .byte -1,-1 ; real part of two complex numbers defi ned
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im .byte 1,1 ; imaginary part of two complex numbers defi ned

pro  .byte 0,0 ; multiplication result real and imaginary part output buffer

 .text ; assembler directive to initialize the program section

 mvkl re,a3 ; start address of real part loaded in register A3

 mvkl im,a4 ; start address of imaginary part loaded in A4

 mvkl pro,a15 ; start address of output buffer loaded in A15

 ldb *a3++,a5 ; real part loaded in register A5 and A6

 ||nop 7

 ldb *a3++,a6

 ||nop 7

 ldb *a4++,a7 ; imaginary part loaded in register A7 and A8

 ||nop 7

 ldb *a4++,a8

 ||nop 7

 mpy a5,a6,a9 ; real parts multiplied result in a9

 ||nop 4

 mpy a7,a8,a10 ; imaginary parts multiplied result in a10

 ||nop 4

 neg a10,a10  ; sign information of imaginary part product extended

 add a9,a10,a9 ; real part of multiplication obtained

 stb a9,*a15++ ; real part of multiplication stored in memory

 || nop 7

 mpy a5,a7,a9 ; real and imaginary part multiplied

 ||nop 4 

 mpy a6,a8,a10 ; real and imaginary part multiplied

 || nop 4

 add a9,a10,a9 ; imaginary part of multiplication obtained

 stb a9,*a15++ ; imaginary part of multiplication stored in memory

 || nop 7

 .end

Program 15.6  DFT computation (8-poit) using DIT FFT radix-2 algorithm

Label Mnemonic Comments

 .data ; assembler directive to initialize the data section

core  .byte 8,6,0,-6,-8,-6,0,6  ;real value of coeff. scaled by factor 8

coim .byte 0,-6,-8,-6,0,6,8,6  ;imaginary value of coeff. scaled by factor 8

xb  .byte 1,2,1,2,-1,-1,0,1 ;input sequence x in bit reversed order

n .set 8 ;no of inputs to fi nd DFT

h  .set (n/2) 

h1  .set h-1 

q  .set (n/4) 

q1  .set q-1

x2r  .byte 0,0,0,0,0,0,0,0 ;2point butterfl y output buffer

x4r  .byte 0,0,0,0,0,0,0,0 ;4point butterfl y real and imaginary output value buffer

  .byte 0,0,0,0,0,0,0,0  
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x8r  .byte 0,0,0,0,0,0,0,0 ;8point butterfl y real and imaginary output value buffer

  .byte 0,0,0,0,0,0,0,0 

 .text ; assembler directive to initialize the program section

; 2 point butterfl y computation

 mvkl .s1 core,a0 ;start address of real part of coeff. loaded in A0

 mvkl .s1 h,a1

 mvkl .s1 xb,a4 ;start address of input sequence loaded in A4

 mvkl .s1 x2r,a15 ;start address of x2r buffer loaded in A15

 ldb *++a0[h],a14  ;load coeffi cient in register A14

 ||nop 7 

loop

 ldb *a4++,a5   ; load fi rst two inputs in register A5 and A6

 ||nop 7

 ldb *a4++,a6

 || nop 7

 add .l1 a5,a6,a8

 ||mpy .m1 a6,a14,a9

 ||nop 6 

 shr a9,3,a9 ; product divided by a factor 8 by shift right operation

 add a5,a9,a9

 ||stb a8,*a15++ ; two point butterfl y output stored in buffer 

 ||nop 7

 stb a9,*a15++

 || sub a1,1,a1

 ||nop 7

 [a1] b loop

 ||nop 7

; 4 point butterfl y computation 

 mvkl x4r,a15 ;start address of x4r buffer loaded in A15

 ||mvkl 1,b2

 mvkl q,a2

loop3 

 mvkl core,a0 ;start address of real part of coeff. loaded in A0

 mvkl coim,a1 ;start address of imaginary part of coeff. loaded in A1

 ||mvkl q,b1

loop2 [b2] mvkl .s1 x2r,a3 ;start address of x2r buffer loaded in A3

 [!b2] mvkl .s1 x2r+h,a3 ;start address of the half of the buffer x2r loaded in A3

  mvkl q,b0

loop1 ldb *a0++[q],a14  ;load real part of coeffi cient in A14

 ||nop 7

 ldb *a1++[q],a13 ;load imaginary part of coeffi cient in A13

 ||nop 7

 ldb *a3++[q],a4 ; load inputs

 ||nop 7

 ldb *a3- -[q1],a5

 ||nop 7
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 mpy a5,a14,a6

 ||nop 4

 shr a6,3,a6 ; product divided by a factor 8

 ||mpy a5,a13,a7

 || nop 4

 shr a7,3,a7 ; product divided by a factor 8

 ||add a4,a6,a6

 ||nop 6

 stb a6,*a15++ ; real part of 4-point butterfl y output stored

 ||nop 7

 stb a7,*a15++ ; imaginary part of 4-point butterfl y output stored 

 || sub b0,1,b0 

 ||nop 7

 [b0] b loop1

 ||nop 7

 sub b1,1,b1

  [b1] b loop2

 || nop 7

 zero b2

 ||sub a2,1,a2

 [a2] b loop3

 ||nop 7

; 8 point butterfl y computation 

 mvkl x8r,a15 ;start address of x8r buffer loaded in A15

 mvkl core,a0 ;start address of real part of coeff. loaded in A0

 mvkl coim,a1 ;start address of imaginary part of coeff. loaded in A1

 ||mvkl q,b0

loop5 mvkl x4r,a3 ;start address of x4r buffer loaded in A3

 mvkl h,a2

loop4 ldb *a0++,a14  ;load real part of coeffi cient in A14

 ||nop 7

 ldb *a1++,a13 ;load imaginary part of coeffi cient in A13

 ||nop 7

 ldb *a3++,a4 ; load inputs

 ||nop 7

 ldb *a3++(h1+h),a5

 ||nop 7

 ldb *a3++,a6

 ||nop 7

 ldb *a3—(h1+h),a7

 ||nop 7

 mpy a6,a14,a8

 ||nop 4

 shr a8,3,a8 ; product divided by a factor 8

 ||mpy a7,a13,a9

 ||nop 4
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 shr a9,3,a9 ; product divided by a factor 8

 neg a9,a9

 add a8,a9,a9

 add a4,a9,a4

 stb a4,*a15++ ; real part of 8 point butterfl y output stored

 ||nop 7

 mpy a6,a13,a8

 ||nop 4

 shr a8,3,a8 ; product divided by a factor 8

 ||mpy a7,a14,a9

 ||nop 4

 shr a9,3,a9 ; product divided by a factor 8

 add a8,a9,a9

 add a5,a9,a5

 stb a5,*a15++ ; imaginary part of 8 point butterfl y output stored

 || sub a2,1,a2

 || nop 7

 [a2] b loop4

 || nop 7

 sub b0,1,b0

 [b0] b loop5

 ||nop 7

 .end

APPLICATION PROGRAMS IN ¢C67X 15.3

The programs in this section are executed in TMS320C6713 starter kit. The programs may be written 

in assembly language, C language and combination of both. In this section, examples using the last two 

approaches are presented. 

15.3.1 Code Development in C Environment using Code Composer Studio 

Code Composer Studio (CCS) supports the integrated development environment (IDE) for real - time 

digital signal processing applications based on the C programming language. It incorporates a C 

compiler, an assembler, and a linker. It has graphical capabilities and supports real - time debugging. 

Following are the various fi le extensions employed by code composer studio:

 1. fi le.pjt : To create and build a project named fi le.

 2. fi le.c : C source program.

 3. fi le.asm : Assembly source program created by the user,

     by the C compiler, or by the linear optimizer.

 4. fi le.sa  : Linear assembly source program. The linear optimizer uses fi le.sa

     as input to produce an assembly program fi le.asm.

 5. fi le.h  : Header support fi le.

 6. fi le.lib  : Library fi le, such as the run - time support library fi le rts6700.lib.

 7. fi le.cmd  : Linker command fi le that maps sections to memory.

 8. fi le.obj  : Object fi le created by the assembler.
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 9. fi le.out  : Executable fi le created by the linker to be loaded and run

     on the TMS320C6713 processor.

 10. fi le.cdb : Confi guration fi le when using DSP/BIOS.

The following steps are adopted for code development in C environment. In the Code Composer 

Studio, Click New Project under the menu Project. Enter the project name, project output and the target 

processor as shown in Figure 15.3. After completing this, the project will get added in the left side as 

shown in Figure 15.4. A sample C-code new.c is given in Program 15.7 and the linker command fi le 

C6713dsk.cmd fi le is given in Program 15.8. This is added to the project in order to provide the details 

about the memory map for the program.

Fig. 15.3

Program 15.7  New.c 

 #include <stdio.h>

 #include <math.h>

 void main() 

 {

  int a,b,c; 

   

  a=100;

  b=120;

  c=a+b;

  printf(“Sum of %d and %d is %d\n”,a,b,c);

 }
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Fig 15.4

Program 15.8  C6713dsk.cmd Linker command File

 /*C6713dsk.cmd Linker command fi le*/

 MEMORY

 {

 IVECS:  org=0h,   len=0x220

 IRAM: org=0x00000220, len=0x0000A000 /*internal memory*/

 SDRAM: org=0x80000000,  len=0x00100000 /*external memory*/

 FLASH: org=0x90000000,  len=0x00020000 /*fl ash memory*/ 

 }

 SECTIONS

 {

  .EXTRAM :> SDRAM

   .vectors :> IVECS

   .text :> IRAM

   .bss :> IRAM

   .cinit :> IRAM

   .stack :> IRAM

   .sysmem :> SDRAM

   .const :> IRAM

   .switch :> IRAM

   .far :> IRAM
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   .cio :> SDRAM

   .csldata :> IRAM

 }

 

 

Fig. 15.5 Build Options
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Fig. 15.6 CCS IDE with output window 

The code generation tools underlying CCS, that is, C compiler, assembler, and linker, have a number of 

options associated with each of them. These options must be set appropriately before attempting to build 

a project. Once set, these options will be stored in the project fi le. Figure 15.5 shows the build options 

set for the new.pjt. After setting the build options and adding necessary fi les, goto DebugÆConnect 

for connecting the target board with CCS. Then goto ProjectÆRebuild All to build the entire project. 

After building the entire project, goto FileÆLoad program and select the new.out to be loaded onto the 

target board. Then goto debugÆ Run the project to see the result on the output window as shown in 

Fig. 15.6. 

15.3.2 Computation of the 8- point DFT using FFT Algorithm in C Environment

The DSK6713 kit has an on-board Audio Codec (TLV320AIC23), which can be confi gured for speech 

input and speech output. The sampling frequency for speech input can be varied from 8KHz to 96KHz 

using software. More details about the AIC23 parameters which can be modifi ed using software are 

provided in dsk6713_aic23.h. The c6713dskinit.c fi le comprises functions necessary for speech input 
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and speech output and it includes the function input_sample(). This function given in Program 15.9. is 

used to capture speech input through microphone interface provided in the kit.

Program 15.9  Program to capture speech input through microphone interface

 Uint32 input_sample()    

 {

  short CHANNEL_data;

  if (poll) while(!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE));//if ready to receive

   AIC_data.uint=MCBSP_read(DSK6713_AIC23_DATAHANDLE); //read data

  CHANNEL_data=AIC_data.channel[RIGHT];  

  AIC_data.channel[RIGHT]=AIC_data.channel[LEFT];

  AIC_data.channel[LEFT]=CHANNEL_data;

  return(AIC_data.uint);

 }

The C-program for the computation of 8- point DFT using FFT algorithm is given in Program 15.10. 

The speech input through the microphone interface is sampled at the rate of 8 KSPS, digitized and stored 

in a data fi le ‘samplefft.txt’. The 8- point DFT is computed and the DFT coeffi cients are printed on the 

output window of CCS. 

Program 15.10  Computation of 8-Point DFT in ¢C6713 using C code

#include “DSK6713_aic23.h”

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#defi ne noof_stages 3 /* the no. of butter fl y stages – 3*/

#defi ne noof_samples 8 /* the no. of inputs 8*/

#defi ne PI 3.14159

struct complex { 

 fl oat real;

 fl oat imag;

}; 

struct buffer {

 struct complex data[1][20];

}; 

#pragma DATA_SECTION(real_buffer,”.EXTRAM”)

struct buffer real_buffer; 

FILE *f1;

void fft (struct buffer *, int , int ); 

/* Main Program */

void main() 

{ 

 int k;
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 fl oat sample;

 int sn,sm;

 sn=noof_samples;

 sm=noof_stages;

 

 printf(“Input\n”);

 f1=fopen(“samplefft.txt”,”r”);

 for(k=0;k<noof_samples;k++)

 {

  fscanf(f1,”%f”,&sample);

  real_buffer.data[0][k].real = ((fl oat)sample);

  fscanf(f1,”%f”,&sample);

  real_buffer.data[0][k].imag = ((fl oat)sample);

  printf(“%f\t%fi \n”,real_buffer.data[0][k].real,real_buffer.data[0][k].imag);

 }

  fclose(f1);

 fft(&real_buffer,sn,sm);

}

/* Function to Compute Fast Fourier Transform */

void fft (struct buffer *input_data, int n, int m) {

 int n1,n2,i,j,k,l; 

 fl oat xt,yt,c,s,e,a; 

  n2 = n;

  for ( k=0; k<m; k++) {

   n1 = n2;

   n2 = n2/2;

   e = PI/n1;

   for ( j= 0; j<n2; j++) {

    a = j*e;

    c = (fl oat) cos(a);

    s = (fl oat) sin(a);

    for (i=j; i<n; i+= n1) {

    l = i+n2;

xt = input_data->data[0][i].real - input_data->data[0][l].real;

  input_data->data[0][i].real = input_data->data[0][i].real+input_data->data[0][l].real;

yt = input_data->data[0][i].imag - input_data->data[0][l].imag;

  input_data->data[0][i].imag = input_data->data[0][i].imag+input_data->data[0][l].imag;

   input_data->data[0][l].real = c*xt + s*yt;

   input_data->data[0][l].imag = c*yt - s*yt;

   }

   }

  }

  j = 0;

  for ( i=0; i<n-1; i++) {

   if (i<j) {

xt = input_data->data[0][j].real; 
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  input_data->data[0][j].real = input_data->data[0][i].real; input_data->data[0][i].real = xt;

yt = input_data->data[0][j].imag; input_data->data[0][j].imag = input_data->data[0][i].imag;

    input_data->data[0][i].imag = yt;

  }

 }

/* printf(“Output\n”);

 for ( l=0; l<n; l++) 

 {

  printf(“%f\t”,input_data->data[0][l].real);

  printf(“%fi \n”,input_data->data[0][l].imag);

 }

*/

 return;

}

15.3.3 Estimation of Clock Cycles Required for Code Execution using CCS

The number of clock cycles/machine cycles required to excute the complete program in assembly, 

C as well as combined assembly and C environment can be estimated using CCS tool. In CCS, fi rst 

select the option Profi le – Clock – Enable and then select the option Profi le – Clock – View, a clock 

icon will appear on the right down corner of the CCS menu bar. The clock can be resetted by double 

clicking the clock icon. Once the project fi le is downloaded to the target processor, the PC will set to the 

starting point of the program code (default value of the start address is 0000 0020h). Break point can be 

introduced at the last line of the code. (To introduce break point refer section 15.1.4). Select the Debug- 

run option in the CCS tool or use the shortcut key to run the code from the current point of the program 

counter (PC) to the address where break point is introduced. The count shown in the clock icon of CCS 

tool is the measure of number of clock cycles required to execute the block of code from the starting 

address to the address where the break point is introduced. In the same way by introducing breakpoints 

at any other place of the program, the clock cycle count required to execute any block of the program 

can be computed. 

15.3.4 Comparison of the Number of Clock Cycles Required for the Computation of
 8 Point DFT in both Assembly Language and C Environment

The number of clock cycles required for the computation of DFT using assembly language program given 

in section 15.2.3 (Program 15.6) and the C program given in 15.3.2 (Program 15.10) are evaluated and 

compared in this section. For the evaluation of the number of clock cycles required for the computation 

of DFT using Program 15.6, the number of clock cycles required for bit-reversing the input sequence 

is computed using CCS tool as mentioned in section 15.3.3. The 8,16,32 and 64 input sequences take 

119, 197, 353 and 671 machine cycles respectively for bit-reversing. The clock cycle count for the 

computation of 8-point DFT using Program 15.6 is also evaluated. The number of clock cycles required 

to compute 2-point, 4-point and 8-point butterfl y outputs are 220, 585 and 565 respectively. For the 

complete computation of the 8-point DFT using assembly code the number of clock cycles evaluated 

using CCS tool in ¢C6416 starter kit is 1,479. 

The number clock cycles required for 8-point DFT computation using C-code in ¢C6713 starter kit 

is also evaluated and the value is 14,739 clock cycles. Hence, the number of clock cycles required for 

computing 8 point DFT using programming in C environment is larger by a factor of 10. In addition to 
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non optimality of the C compiler, the type of processor used for the implementation also contributes to 

the difference. The C6416 processor used for the assembly language programming in section 15.2.4 is 

a fi xed point processor where as the C6713 processor used executing the program in C environment is 

a fl oating point processor. The fl oating point processor in general requires more cycles than the fi xed 

point processor. It may be noted CCS can be used for both of these processors to develop programs in 

assembly language, C language or combinations of both. 

15.3.5 Mixing Assembly Language and C Language 

The programs in assembly language can be optimized by effi cient use of the architecture of the processor 

and hence require less number of clock cycles for execution. However, this requires the designer to learn 

the assembly language of the processor. On the other hand, the length of the source program in assembly 

language is larger compared to that of C language and hence requires more time for development, 

debugging and testing. Moreover, for programming in C language, the designer need not know either 

the architecture or the assembly language of the processor. In order to combine the advantages of 

both, assembly language program may be used for implementing the functions which are computation 

intensive and can be invoked from the C environment. 

15.3.6 Different Ways of Invoking Assembly Language in C-code

In this section, different ways of invoking assembly language in C-code is illustrated on a TMS320C6713 

fl oating point DSP processor using Code Composer Studio software. 

There are four ways of invoking assembly language in C-code for DSP programming: 

 ∑ callable assembly 

 ∑ intrinsic functions 

 ∑ linear assembly 

 ∑ inline assembly 

The above-mentioned approaches are illustrated with an example application which requires 

computing the Euclidean distance for input with two variables. The C-code for the computation of 

Euclidean distance is given in Program 15.11.

Program 15.11  C Code for the computation of Eucludian distance

#include<math.h>

#include<stdio.h>

main( )

{

 fl oat x1,x2,y1,y2,dx,dy,e;

 dx = x1-x2;

 dy = y1-y2;

 e = sqrt(dx*dx + dy*dy);

}

Callable Assembly The callable assembly approach uses the C source code, which calls an externally 

declared user defi ned assembly language function. The C-code can be re-written using callable assem-

bly as shown in Program 15.12. 
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Program 15.12    C Code for the computuation of Eucludian distance using callable assembly

         language function:

 #include<math.h>

 #include<stdio.h>

 extern fl oat errasm(fl oat,fl oat,fl oat,fl oat);

 main( )

 {

  fl oat x1,x2,y1,y2,e;

   e = errasm(x1,y1,x2,y2);

 }

In program 15.12, errasm() is a function called by c-code which is written in assembly language and 

saved as errasm.asm. The errasm.asm is given by Program 15.13. 

Program 15.13  errasm.asm Code

   .def _errasm

  

_errasm: SUBSP .L1 A4,A6,A7;

 NOP 5

 SUBSP .L2  B4,B6,B7;

 NOP 5

 MV .S1 A7,A8;

 MV .S2 B7,B8;

 MPYSP .M1 A7,A8,A5;

 NOP 5

 MPYSP .M2 B7,B8,B5;

 NOP 5

 ADDSP .L1X A5,B5,A9;

 NOP 5

 RSQRSP .S1 A9,A6;

 NOP 5

 RCPSP .S1 A6,A4;

 NOP 5

 B B3;

 NOP  3

 .end

Intrinsic Functions Intrinsics are special functions that map directly to inline C6x instructions. For 

example, int _mpy() is equivalent to the assembly instruction MPY to multiply the 16LSBs of two 

numbers. The above-mentioned C- code example can be written using intrinsic functions as shown in 

Program 15.14
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Program 15.14  C-code with Intrinsic functions:

 #include<ieeef.h>

 #include<fastrts67x.h>

 #include<stdio.h>

 main( )

 {

 fl oat x1,x2,y1,y2,dx,dy,e;

 dx = x1-x2;

 dy = y1-y2;

 e = _rcpsp(_rsqrsp(dx*dx + dy*dy));

 }

In the above C-code, two intrinsic functions are used. fl oat _rcpsp(fl oat src) computes the approximate 

32-bit fl oat reciprocal and fl oat _rsqrsp(fl oat src) computes the approximate 32-bit fl oat square root 

reciprocal.

Linear Assembly Linear assembly code is a cross between assembly and C. It uses the syntax of as-

sembly code instructions such as ADD, SUB, and MPY, but with operands/registers as used in C. The 

above-mentioned C- code example can be written using linear assembly as shown in Program 15.15. 

Program 15.15  C Code for linear assembly

 #include<math.h>

 #include<stdio.h>

 extern fl oat err(fl oat,fl oat,fl oat,fl oat);

 main( )

 {

 fl oat x1,x2,y1,y2,e;

  e = err(x1,y1,x2,y2);

 }

In program 15.15, err() is a function called by c-code which is written in linear assembly and saved 

as err.sa fi le. The linear assembly code for function err() is given in program 15.16. 

Program 15.16  Linear asm Code

  .def _err

_err:   .cproc  zc,zcs,msf,msfs

 .reg x,y,z,w,d1,d2,r;

 mv zc,x

 mv zcs,y

 mv msf,z;

 mv msfs,w;
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 subsp  x,y,d1;

 mpysp d1,d1,y;

 subsp  z,w,d2;

 mpysp  d2,d2,w;

 addsp  y,w,x;

 rsqrsp  x,y;

 rcpsp  y,r;

  .return  r

 .endproc

Inline Assembly An inline assembly code can be used with the asm statement within a C program. 

For example, asm(“ MVK 0x0040,B6”). The above-mentioned C- code example can be written using 

inline assembly as shown in Program in 15.17.

Program 15.17  C Code with Inline assembly

 #include<math.h>

 #include<stdio.h>

 main( )

 {

 fl oat x1,x2,y1,y2,dx,dy,e;

 dx = x1-x2;

  dy = y1-y2;

 asm(“ mpysp .m1 a4,a4,a6”);

 asm(“ NOP 5”);

 asm(“ mpysp .m2 b4,b4,b6”);

 asm(“ NOP 5”);

 asm(“ addsp .l1x a6,b6,a5”);

 asm(“ NOP 5”);

 asm(“ rsqrsp .s1 a5,a6”);

 asm(“ NOP 5”);

 asm(“ rcpsp .s1 a6,a4”);

 asm(“ NOP 5”);

 e=getans();

 asm(“ NOP 5”);

 }

The number of clock cycles required for the computation of Eucludian distance using different 

approaches of invoking assembly using C-code is reported in Table 15.1. It may be observed from 

Table 1 that a pure C source code takes a longer execution time followed by inline assembly, callable 

assembly, intrinsic functions and linear assembly based approaches. 
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Table 15.1 Number of Clock cycles required for computation of Eucluduian distance 

Approach No. of. Clock Cycles Accel. Factor

C-code 1378 —

In-line Assembly 466 2.957

Callable Assembly 411 3.353

Intrinsic Functions 401 3.436

Linear Assembly 371 3.714

INTERNAL MEMORY 15.4

The internal memory confi guration varies between the different ¢C6X processors. The TMS320C620X/

TMS320C670X family processors have separate on-chip program and data memories. The internal 

program memory can be accessed by the CPU or it can be operated as program cache. The size of 

internal program memory is 64 K bytes of RAM and it can accommodate 16K 32-bit instructions. The 

CPU accesses this program memory space through program memory controller. The program memory 

controller performs CPU and DMA (Direct Memory Access) requests to internal program memory, 

performs CPU requests to external memory through external memory interface (EMIF) circuit and also 

manages the internal program memory when it is confi gured as cache. 

The size of internal data memory is 64 K bytes of RAM. Both CPU and DMA controller can access 

this data memory space through data memory controller. The data memory controller connects CPU to 

external memory and on-chip peripherals through EMIF and peripheral bus controller respectively. The 

¢C6202 processor has 2x128 K bytes of internal program memory blocks out of which one 128K bytes 

block can be used as program cache. 

The ¢C621X/¢C671X family processors have cache-based internal memory architectures. They are 

provided with two level memory architecture for internal program and data busses. The fi rst level of 

internal memory is with separate level-one program (L1P) cache and data cache (L1D) each of size 4K 

bytes. The program and data cache spaces are not included in the memory map and are enabled at all 

times. The level-one cache memories are accessible only by the CPU. 

The program cache controller interfaces the CPU to the L1P cache. A 256 wide path is provided from 

to the CPU to allow a continuous stream of eight 32-bit instructions for maximum performance. The 4K 

L1P cache is organized as a 64 line direct mapped cache with a 64 byte line size.

The data cache controller provides interface between the CPU and L1D cache. The L1D is a dual-

ported memory. This allows simultaneous access by both paths of the CPU (Path A and B). The L1D, 4K 

cache is organized as a 64 set 2-way set associative cache with a 32 byte line size. The second level of 

internal memory is 64K bytes of RAM that is shared by both program and data memory space with L2 

cache controller. The internal memories and bus connections between the CPU and various controllers 

are shown in Fig. 15.7.

First the L1P and L1D caches are accessed, on a miss to either L1D or L1P; the request is passed to 

L2 controller. The L2 controller facilitates the following accesses

 ∑ The CPU and the enhanced direct memory access (EDMA) controller accesses to the internal 

memory, and performs the necessary arbitration

 ∑ The CPU data access to the EMIF
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Note: i) For ¢C67X processors – LD1 & LD2 data bus size - 64-bits

 ii) For ¢C64X processors – LD1, LD2, ST1& ST2 data bus size - 64-bits.

Fig. 15.7 Internal Memory Block diagram of ¢C6X processors

 ∑ The CPU access to on-chip peripherals

 ∑ Sends a request to EMIF for an L2 data miss.

On request to L2 service, the service depends on the operation mode of L2, which is set in the Cache 

Confi guration Register Fields (CCFG). This is a memory mapped register, whose memory map address 

is 0184 0000h. The format of the CCFG is shown in Fig. 15.8, and the various L2 modes are shown in 

the Table 15.2. The L2 memories are organized as four 64 bit wide banks.

Fig. 15.8 Format of Cache Confi guration Register (CCFG)
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Table 15.2 Cache confi guration register fi eld description

Field Description

L2 MODE L2 Operation modes

000b – 64 K bytes RAM

001b – 16 K bytes 1-way cache/48 K bytes mapped RAM

010b – 32 K bytes 2-way cache/32 K bytes mapped RAM

011b – 48 K bytes 3-way cache/16 K bytes mapped RAM

111b – 64 K bytes 4-way cache

ID Invalidate L1D

ID =0 - normal L1D operation, ID = 1 – All L1D lines invalidated

IP Invalidate L1P

IP =0 - normal L1P operation, IP = 1 – All L1P lines invalidated

P L2 Requestor Priority

P=0, CPU accesses prioritized over enhanced DMA accesses

P=1, Enhanced DMA accesses prioritized over CPU accesses

EXTERNAL MEMORY 15.5

On L2 data miss, the L2 controller sends a request to external memory interface (EMIF). The memory 

attribute register (MAR) can be programmed to turn on caching of each of the external chip enable (CE) 

spaces. In this way, a single word reads to external mapped devices are performed. Without this feature 

any external read would always read an entire L2 line of data. Each of the four CE spaces is dived in 

to four ranges, each of which maps the least signifi cant bit of an MAR register. If an MAR register is 

set, the corresponding address range is cached by L2. At reset, MAR registers are set to 0. To begin 

caching data in the L2, the initialization of the appropriate MAR register to 1 is necessary. The MAR 

defi nes the cacheability for the EMIF only. Addresses accessed by the EMIF which are not defi ned by 

the MAR register are always cacheable. The following Table 15.3 shows the various CE spaces and the 

corresponding MAR registers to access that space.

All the memory space base address registers, word count registers and the fi fteen memory attribute 

registers are memory mapped registers starting from the location 0184 0000h to 0184 82CCh. Before 

the memory access appropriate registers are to be initialized.

ON-CHIP PERIPHERALS 15.6

The ¢C6X processors programmable on-chip peripherals are listed below.

 ∑ Two 32-bit timers

 ∑ Two Multichannel buffered serial ports (McBSPs)

 ∑ Direct memory access (DMA)/Enhanced Direct memory interface (EDMA)

 ∑ External memory interface (EMIF)

 ∑ Host-Port Interface (HPI)

 ∑ Boot confi guration

 ∑ Interrupt selector

 ∑ Expansion bus
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 ∑ Power down logic

All ¢C6X processors have two McBSPs, but ‘6202 processor has three McBSPs. The ¢C620X/¢C670X 

family processors have DMA controllers where as ¢C621X/¢C671X processors are with EDMA 

controllers. The Expansion bus is available only in ¢C6202 processor but HPI is not available in it. All 

other peripheral devices are available in all ¢C6X processors. These peripherals are confi gured via a set 

of memory-mapped control registers. The peripheral bus controller performs the arbitration for accesses 

of on-chip peripherals. The boot confi guration is interfaced through external signals only and the power 

down logic is accessed directly by the CPU. The block diagram of ¢C6X processor with all on-chip 

peripherals are shown in Fig. 15.9. 

Table 15.3 MAR Registers and its corresponding CE space address range

MAR Address Range Enabled CE space

15 B300 0000h – B3FF FFFFh CE3

14 B200 0000h – B2FF FFFFh CE3

13 B100 0000h – B1FF FFFFh CE3

12 B000 0000h – B0FF FFFFh CE3

11 A300 0000h – A3FF FFFFh CE2

10 A200 0000h – A2FF FFFFh CE2

9 A100 0000h – A1FF FFFFh CE2

8 A000 0000h – A0FF FFFFh CE2

7 9300 0000h – 93FF FFFFh CE1

6 9200 0000h – 92FF FFFFh CE1

5 9100 0000h – 91FF FFFFh CE1

4 9000 0000h – 90FF FFFFh CE1

3 8300 0000h – 83FF FFFFh CE0

2 8200 0000h – 82FF FFFFh CE0

1 8100 0000h – 81FF FFFFh CE0

0 8000 0000h – 80FF FFFFh CE0

15.6.1 Timers

The ¢C6X devices have two 32-bit general purpose timers that are used to time events, count events, 

generate pulses, interrupt CPU and send synchronization event to DMA. The timer operation can be 

confi gured through three memory mapped registers namely timer control register, timer period register 

and timer counter register. The ¢C6X processor on-chip timer block diagram is given in Fig. 15.10. The 

timer control register (TCR) is programmed to select the different modes of operation of timer; the timer 

period register contains the number of timer input clock cycle to count and the timer counter register 

increments when it is enabled to count. The timer counter register resets to 0 when the count reaches the 

count value in the period register.
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Fig. 15.9 TMS320C621X/ ¢C671X block diagram with on-chip peripherals

Fig. 15.10 TMS320C6X Timer Block digaram
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The timer has two signaling modes, clock mode and pulse mode which can be selected by C/P
–
 bit 

in TCR. The timer has an input pin TINP and an output pin TOUT and these pins can function as timer 

clock input and output. These pins can also be confi gured for general purpose I/O pins respectively 

using FUNC bit in TCR. The timer functions with both internal clock signal from the CPU and also 

from the external clock, the clock source can be selected by CLKSRC pin in TCR. The start of the timer, 

holding it and resetting it are performed with GO and HLD pins in TCR. The frequency of the timer 

output when operated in clock and pulse modes are given below.

 f
clock

 = f(clock source)/ (2* timer period register) 

 f
pulse

 = f(clock source)/ timer period register

15.6.2 Multichannel Buffered Serial Port (McBSP)

The multichannel buffered serial port is based on the standard serial port interface available in earlier TI 

processors. The McBSP has the following features:

 ∑ Provides full-duplex communication

 ∑ Multichannel transmit and receive up to 128 channels

 ∑ Data selection size of 8,12,16,20,24 and 32 bits

 ∑ Independent framing and clocking for receive and transmit

 ∑ External shift clock or an internal programmable frequency shift clock for data transfer

 ∑ 8-bit data transfer with the option of LSB or MSB fi rst

 ∑ Programmable polarity for both frame synchronization and data clocks

 ∑ Double-buffered registers, which allow continuous data transmission

 ∑ Auto buffering capability through 5-channel DMA controller

 ∑ μ-law and A-law companding

 ∑ Direct interface to industry standard codecs, A/D, D/A converters, analog interface chips, T1/

E1, MVIP, H.100, SCSA framers, IOM-2, AC97, IIS complaint devices and SPITM devices

Fig. 15.11 Multichannel buffered serial port (McBSP) block diagram

The McBSP consists of two paths, a data path and a control path which is used to connect to external 

devices. The block diagram of McBSP is shown in Fig. 15.11. There are thirteen memory mapped 
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registers for each McBSPs present in the processor and these registers are accessed via 32-bit peripheral 

bus. The list of registers and its memory mapped address are given in Table 15.4. The different modes 

of operation of McBSP are programmed through a 32-bit serial port control register (SCR).

The data communication in McBSP is through data transmit (DX) and data receiver (DR) pins. The 

clocking and frame synchronization are via CLKX, CLKR, FSX and FSR pins. Either CPU or DMA 

controller reads the received data from data receiver register (DRR) and also the data to be transmitted 

is written in data transmit register (DXR). The data transmit shift register (XSR) shifts out the data in 

DXR to DX pin and the same way the data received in DR pin is shifted into receive shift register (RSR) 

and copied into the receive buffer register (RBR) and then copied to DRR. The received data is read by 

the CPU or DMA controller. 

Table 15.4 McBSP memory mapped registers

Memory mapped register address Abberivation Register Name

McBSP0 McBSP1 McBSP2(in ¢C6202 only)

— — — RBR Receive buffere register

— — — RSR Receiver shift register

— — — XSR Transmit shift register

018C 0000 0190 0000 01A4 0000 DRR Data receiver register

018C 0004 0190 0004 01A4 0004 DXR Data transmit register

018C 0008 0190 0008 01A4 0008 SPCR Serial port control register

018C 000C 0190 000C 01A4 000C RCR Receive control register

018C 0010 0190 0010 01A4 0010 XCR Transmit control register

018C 0014 0190 0014 01A4 0014 SRGR Sample rate generator register

018C 0018 0190 0018 01A4 0018 MCR Multichannel control register

018C 001C 0190 001C 01A4 001C RCER Receiver channel enable register

018C 0020 0190 0020 01A4 0020 XCER Transmit channel enable register

018C 0024 0190 0024 01A4 0024 PCR Pin control register

 Note: RBR, RSR and XSR registers are not directly accessible via CPU or DMA controller

15.6.3 DMA/EDMA Controller

The direct memory access (DMA) controller is available in ¢C620X/¢C670X devices. The DMA controller 

transfers data between regions in the memory map without affecting the operation of CPU. The DMA 

controller is used to move data to and from internal memory, internal peripherals or external devices to 

occur in the background of CPU operation. The DMA controller has four independent programmable 

channels, allowing four DMA operations and also there is a fi fth auxiliary channel to service requests 

from the host port interface (HPI). The DMA controller can access the following regions in the memory 

map.

 ∑ On-chip data memory

 ∑ On-chip program memory, if it is mapped into memory space rather than being used as cache

 ∑ On-chip peripherals

 ∑ External memory via EMIF

 ∑ Expansion memory via expansion bus
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The enhance DMA (EDMA) controller is available in ¢C621X/¢C671X devices. The EDMA controller 

performs block transfer of data to/from internal memory, transfer requests from peripherals and between 

external memory spaces in parallel to CPU intensive operations. The EDMA controller has enhancements 

than DMA controller and it provides 16 channels with programmable priority and the ability to link data 

transfers. The EDMA operations are controlled by eight memory mapped EDMA control registers.

15.6.4 External Memory Interface (EMIF)

The external memory interface (EMIF) of ¢C6X devices support a glueless interface to a variety of 

external devices. It can be used to interface synchronous as well as asynchronous devices such as 

SRAM, DRAM, ROM, FIFOs, FPGAs and external shared memory devices. The ¢C620X/¢C670X 

EMIF services requests of external bus from four requesters:

 ∑ The on-chip program memory controller that services CPU program fetches

 ∑ The on-chip data memory controller that services CPU data fetches

 ∑ The on-chip DMA controller

 ∑ An external shared-memory device controller

If multiple requests arrive at the same time, the EMIF prioritizes them and performs the necessary 

number of operations. The ¢C621X/¢C671X device services requests of the external bus from two 

requesters:

 ∑ An enhanced DMA controller 

 ∑ An external shared-memory device controller

15.6.5 Host-Port Interface (HPI)

The host-port interface is a16-bit wide parallel port through which a host processor can directly access 

the CPU’s memory space. The host device functions as a master to the interface, which increases the 

ease of access. The host and CPU can exchange information via internal or external memory. The host 

also has direct access to memory-mapped peripherals. The connectivity to the CPU’s memory space 

is provided through the DMA controller. Both the host and CPU can access the HPI control register 

(HPIC). The host can access HPI address register (HPIA), HPI data register (HPID) and HPIC using the 

external data interface control signals.

15.6.6 Boot Confi guration

The ¢C6X devices use variety of boot confi gurations to determine what action the devices are to perform 

after the reset signal is initialized. Each ¢C6X device has some or all of the following boot confi guration 

options:

 ∑ Selection of memory map- to determine whether internal or external memory is mapped at 

address zero

 ∑ Selection of type of external memory mapped address zero, if external memory map is selected

 ∑ Selection of boot process used to initialize the memory at address zero before the CPU is 

released from reset.

The external pins BOOTMODE [4:0] are used to select the boot confi guration. The values of the 

BOOTMODE are latched during the low period of RESET

15.6.7 Interrupt Selector

The ¢C6X peripheral set has up to 32 interrupt sources. The CPU has only 12 interrupts available for 

use. The interrupt selector allows the user to choose and prioritize the 12 of the 32 for the system needs. 
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The interrupt selector also allows to effectively change the polarity of the external interrupt inputs. 

The RESET and NMI are the non-maskable interrupts. The CPU interrupts are maskable. To mask the 

interrupts the global interrupt enable bit (GIE) in the control status register (CSR) is set to 1. To enable 

an interrupt the respecive bit in the interrupt enable register (IE) is set to 1. When the corresponding 

interrupt occurs, the bit in the interrupt fl ag register (IFR) is set and the CPU starts processing the 

interrupt. 

15.6.8 Expansion Bus

The expansion bus is available only in ¢C6202 processor. The expansion bus is 32-bit wide bus that is 

used to interface different types of asynchronous peripherals, asynchronous and synchronous FIFOs, PCI 

bridge chips and other external masters. The expansion bus offers a fl exible bus arbitration scheme. 

15.6.9 Power-down Logic

In CMOS logic circuits, power dissipation can be reduced by decreasing the switching from one logic 

state to another. By preventing some or all of the chip’s logic from switching, signifi cant power can be 

reduced without losing the data or operational context. PD1, PD2 and PD3 are three power-down modes 

available to perform this function. The PD1 mode blocks the internal clock inputs at the boundary of 

the CPU, preventing most of its logic from switching. PD1 effectively shuts down the CPU. The PD2 

mode halts the entire on-chip clock structure at the output of the PLL. The PD3 mode is like PD2 mode 

but also disconnects the external clock source (CLKIN) from reaching PLL. In addition to these power-

down modes, the IDLE instruction provides low CPU power consumption by executing continuous 

NOPs. The IDLE instruction terminates only upon servicing an interrupt.

Review Questions 

15.1 List the steps to do programming in ¢C6X tool.

15.2 What are the basic features of ¢C6416 starter kit?

15.3 Explain the memory resources available in ¢C6416 

DSK.

15.4 What are the steps involved in ¢C6X code 

generation using CCS tool?

15.5 Which instruction is used for division? How?

15.6 Explain the internal memory details of ¢C6X 

processors.

15.7 For what operations L2 controller is used?

15.8 List the on-chip peripheral in ¢C6X processors.

15.9 Explain the operation of ¢C6X timer.

15.10 What are the features of McBSP?

15.11 For what interfaces McBSP is used?

15.12 List the signals used for clocking and frame 

synchronization of ¢C6X McBSP.

15.13 What regions of memory map of ¢C6X DMA 

controller can be used?

15.14 Explain the uses of EMIF.

15.15 What is the use of interrupt selector?

15.16 Why power-down logic is needed? Explain the 

¢C6X power-down logics.
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Self Test Questions 

15.13 The size of on-chip memory in all ¢C6X processors 

except ¢C6202 is ___

(a) 64 K words (b) 16 K words

(c) 1024 bytes (d) 64K bytes

15.14 The size of on-chip memory in ¢C6202 processor 

is ____

(a) 64 K byes  (b) 128 K bytes

(c) 256 K bytes (d) 64 K words

15.15 The size of program & data cache in ¢C6X processor 

is ___

(a) 2K bytes  (b) 2 K words

(c) 4 K bytes  (d) 4K words

15.16 The number of external memory space in ¢C6X 

processor is ___

(a) 2 (b) 5 (c) 4 (d) 3

15.17 The no. of McBSP in ¢C6202 processor is _____

(a) 2 (b) 5 (c) 4 (d) 3

15.18 The expansion bus is available in ____ processor

(a) ¢C6201 (b) ¢C6202 (c) ¢C6211 (d) ¢C6711

15.19 The ¢C6X processor without HPI is ____

(a) ¢C6201 (b) ¢C6202 (c) ¢C6211 (d) ¢C6711

15.20 The no. of on-chip timers in ¢C6X processors is 

____

(a) 2 (b) 5 (c) 4 (d) 3

15.21 The no. of channels the McBSP can transmit and 

receive is ___

(a) 64 (b) 128 (c) 32 (d) 200

15.22 The no. of DMA channels in ¢C6X processor is __

(a) 2 (b) 5 (c) 4 (d) 3

15.23 The no. of EDMA channels in ¢C6X processor is 

___

(a) 4 (b) 8 (c) 16 (d)13

15.24 The Max. no. of interrupt sources present in ¢C6X 

processor is ___

(a) 12 (b) 13 (c) 32 (d) 28

15.25 The no. of interrupt sources the CPU can use in 

¢C6X processor is ____

(a) 12 (b) 13 (c) 32 (d) 28

15.26 The no. of power-down logic modes in ¢C6X 

processor is ____

(a) 4 (b) 2 (c) 5 (d) 3

15.1 The operating frequency of ¢C6416 starter kit is 

_____

(a) 200 MHz (b) 720 MHz (c) 1GHz (d) 800 MHz

15.2 The size of on-chip RAM in ¢C6416T processor is 

____

(a) 64 K words (b) 16 K words

(c) 1024 K bytes (d) 64 K bytes

15.3 The Max. operating frequency of ¢C6416T processor 

is ____

(a) 200 MHz (b) 720 MHz (c) 1GHz (d) 800 MHz

15.4 The size of external DRAM in ¢C6416 starter kit is 

_____

(a) 1024 K bytes (b) 512 K bytes

(c) 8 M bytes (d) 16 M bytes

15.5 The size of fl ash memory in ¢C6416 starter kit is 

_____

(a) 1024 K bytes (b) 512 K bytes

(c) 8 M bytes  (d) 16 M bytes

15.6 The name of extension given for a project in CCS 

is ___

(a) .pjt (b) .mak (c) .asm (d) .out

15.7 The fi le extension name an assembly language fi le 

should have is ___

(a) .pjt (b) .mak (c) .asm (d) .out

15.8 The executable fi le name extension for a project 

is _____

(a) .pjt (b) .mak (c) .asm (d) .out

15.9 The starting memory address of ¢C6X where the 

code is down loaded is _____

(a) 0x0000 0000h (b)0x0000 0200h

(c) 0x0000 0020h (d) 0x0000 F000h

15.10 The instruction used to perform division in ¢C6X 

processor is ___

(a) ADDH (b) SUB (c) SUBC (d) ADDU

15.11 The ¢C6X instruction used for the left most bit 

detection is ____

(a) LDB (b) LDHU (c) LMBD (d) LDH

15.12 ____ instruction is used to perform convolution in 

¢C6X processor.

(a) MPY & ADD (b) MPY & SUB

(c) MAC  (d) MACD



INTRODUCTION 16.1

The architecture of TMS320C55X digital signal processor is based on the architecture of the earlier 

¢C54X processor and is source compatible with ¢C54X. The ¢C55X processor architecture is optimized 

for power effi ciency, low system cost and best performance for low power applications. The ¢C55X 

processor offers a cost effective solution in personal and portable processing applications and low power 

digital communication infrastructure. Compared to ¢C54X processor, ¢C55X processor has high end 

performance and dissipates one-sixth the core power dissipation of ¢C54X.

The ¢C55X core delivers twice the cycle effi ciency that of ¢C54X through a dual-MAC architecture 

with parallel instructions, additional accumulators, ALUs and data registers. The ¢C55X device 

instructions are variable byte lengths ranging in size from 8 bit to 48 bits. With this feature, ¢C55X 

devices can reduce control code size per function, hence reduced memory requirements and lower the 

system cost. The typical applications for ¢C55X device are given below:

 ∑ Wireless handsets and personal communication systems

 ∑ Portable audio players

 ∑ Personal medical devices such as hearing aids

 ∑ Digital cameras

 ∑ Internet application

 ∑ Power effi cient multichannel telephony systems

FEATURES OF ¢C55X PROCESSORS 16.2

The ¢C55X devices have advanced features that provide processing effi ciency, low-power dissipation 

and ease of use. Some of the key features of the device are listed below:

 ∑ A 32x 16 instruction buffer queue

 ∑ Two 17-bit x 17-bit multiply and accumulate (MAC) units

 ∑ One 40-bit ALU

 ∑ One 16-bit ALU

 ∑ One 40-bit barrel shifter 

 ∑ Four 40-bit accumulators

16
ARCHITECTURE OF

TMS320C55X PROCESSORS
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 ∑ Twelve independent buses

 ∑ User confi gurable IDLE domains

The features of ¢C55X device are compared with ¢C54X device and are listed in Table 16.1. The 

processing power and superior code density of ¢C55X is its effi cient implementation. The ¢C55X 

processor uses variable length instruction encoding to achieve optimal code density and effi cient bus 

usage. Multiple computational units are included to carry out computations in parallel, hence reduction 

in number of cycles required per operation. The dual MAC units perform two 17-bit x 17-bit MAC 

operations in a single cycle where the 40-bit ALU can be used to perform arithmetic and logic operations 

on 32-bit data or can be used to perform dual 16-bit operations. A second 16-bit ALU is used for general 

purpose arithmetic operations, which further increases the parallelism and adds fl exibility. The ¢C55X 

device is based on modifi ed Harvard architecture, which has one program bus and three independent 

read and two independent write buses. The three read buses are used to bring operands simultaneously to 

various computational units. The high degree of parallelism and effi cient instruction encoding maximize 

the overall processor effi ciency without sacrifi cing its performance. 

Table 16.1 Comparison of features in ¢C54X and ¢C55X devices

Feature ¢C54X ¢C55X

Multiply and accumulate unit (MAC) 1 2

Arithmetic and logic unit (ALU) 1 (40-bit) 1(40-bit)1(16-bit)

Accumulators 2 4

Auxiliary register unit (ARU) 2 (16-bit) 3 (24-bit)

Auxiliary registers 8 8

Program bus 1 (PB) 1 (PB)

Data Read buses 2 (CB and DB) 3 (BB, CB and DB)

Data Write buses 1 (EB) 2 (EB and FB)

Program word size 16 bits 8/16/24/32/40/48 bits

Data word size 16 bits 16 bits

Data registers 0 4

Memory space Separate Program/Data space Unifi ed space

CPU ARCHITECTURE OF ¢C55X 16.3

The CPU of ¢C55X device consists of four important units, they are

 ∑ Instruction buffer unit (I – unit)

 ∑ Program fl ow unit (P – unit)

 ∑ Address data fl ow unit (A – unit)

 ∑ Data computational unit (D – unit) 

The instruction buffer unit buffers and decodes the instructions of the application program. This unit 

has the decode logic that interprets the variable length instructions. The instruction buffer unit maintains 

a constant stream of tasks for the various computational units. 

The program fl ow unit keeps track of the execution point of the program. This unit consists of hardware 

units used for effi cient looping as well as dedicated hardware for branching, conditional execution and 
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pipeline protection. This unit helps to reduce the number of processor cycles needed for program control 

changes such as branches and subroutine calls. 

The address fl ow unit has the address pointers for data accesses during program execution. This 

unit has dedicated hardware units for managing the fi ve data buses which keeps the data fl owing to the 

various computational units. The address fl ow unit has an additional general purpose ALU for simple 

arithmetic operations.

The data computation unit is the heart of the DSP and it performs the arithmetic computations on the 

data being processed. It consists of two MAC units, the main ALU and the accumulator registers. It also 

consists of barrel shifter, rounding & saturation control unit and dedicated hardware to perform Viterbi 

algorithm. The block diagram of ¢C55X CPU is given Fig. 16.1. 

Fig. 16.1 TMS320C55X Processor CPU Diagram

16.3.1 Instruction Buffer Unit (I-unit)

The instruction buffer unit of ¢C55X brings instruction stream from memory into the CPU. During each 

CPU cycle, the I-unit receives four bytes of program code from 32-bit program bus and places it in the 

instruction buffer queue. The instruction buffer queue can hold up to 64 bytes of code at a time and it 

is used to maintain continuous program fl ow to CPU. When the CPU is ready to decode the instruction, 

one to six bytes of code that were previously received in the queue are transferred to the instruction 

decoder. After decoding, the I-unit passes the data to P-unit, A-unit and D-unit. The block diagram of 

the I-unit is given Fig. 16.2.

In addition to helping with the pipelining of instructions, the instruction buffer queue with the help of 

local repeat instruction, is used to repeat or loop a block of codes stored in the queue. This techniques is 



Architecture of TMS320C55X Processors  441

extremely effi cient in both performance 

and power consumption because once 

the code is loaded into the queue, 

no additional fetches are required to 

execute the loop. Another benefi t of 

the instruction buffer queue is that it 

can perform speculative fetching of 

instructions while a condition is being 

tested for conditional program fl ow 

control instructions such as conditional 

branch, conditional call or conditional 

return. This minimizes the overhead 

due to program fl ow discontinuities by 

preventing the need to fl ush the pipeline. 

The cycles that are wasted to a pipeline 

fl ush are converted to useful processing 

cycles.

The instruction decoder identifi es the instruction boundaries so that it can decode 8, 16, 24, 32, 40 bit 

instructions. It determines whether the CPU has been instructed to execute two instructions in parallel. 

The instruction decoder sends the decoded execution commands and immediate values to the P-unit, 

the A-unit and the D-unit. Even though the decoder typically decodes not more than 6 bytes at a time; 

there are cases in which it decodes 7 bytes for a single instruction such as that in k23 absolute addressing 

mode.

16.3.2 Program Flow Unit (P-Unit)

The program fl ow unit generates all program-space addresses for instruction fetches from program 

memory and also it controls the sequtence of instructions executed in a program. The P-unit directs 

operations such as hardware loops, branches and conditional execution. This unit also includes the logic 

for managing the instruction pipeline and four status registers to control and monitor various features of 

CPU. The block diagram of the P-unit is given in Fig. 16.3. 

The program address generation logic in P-unit generates 24-bit addresses for instruction fetches 

from program memory and with 24-bit program memory address 16 M bytes of program code can 

be accessed. The P-unit normally generates sequential addresses using the program counter; however 

this logic also generates non sequential addresses for program control operations such as branches, 

calls, returns, repeat operations, and conditional operations and interrupt servicing. Once an address is 

generated, the memory access is done through program-read address bus (PAB). The program address 

generation logic can accept immediate data from I-unit and register values from D-unit. 

The P-unit registers used for program fl ow, repeat operations, interrupts and the status registers are 

given below:

 ∑ Program fl ow registers

  Program counter  - PC

  Return address register - RETA

  Control fl ow context register - CFCT

Fig. 16.2 Instruction Buffer Unit (I-unit) Diagram
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Fig. 16.3 Program Flow Unit (P-unit) Diagram

 ∑ Black-repeat registers

  Block-repeat counters 0 and 1 - BRC0 and BRC1

  BRC1 save register - BRS1

  Block-repeat start address registers 0 and 1 - RSA0 and RSA1

  Block-repeat end address registers 0 and 1 - REA0 and REA1

 ∑ Single-repeat registers

  Single-repeat counter register - RPTC

  Computed single-repeat register - CSR

 ∑ Interrupt registers

  Interrupt fl ag registers 0 and 1 - IFR0 and IFR1

  Interrupt enable registers 0 and 1 - IER0 and IER1

  Debug interrupt enable registers 0 and 1 - DBIER0 and DBIER1

 ∑ Status registers

  Status registers 0, 1, 2 and 3 - ST0_55, ST1_55, ST2_55 & ST3_55

16.3.3 Address Data Flow Unit (A-Unit)

The address data fl ow unit contains all the logic and registers necessary to generate addresses for read 

and write accesses to data-space and I/O space. This unit can generate addresses for the three data-read 

address buses and the two data-write address buses. The A-unit also contains 16-bit ALU unit that can 

perform arithmetical, logical, shift and saturation operations. The block diagram of the A-unit is given 

in Fig. 16.4.

The data-address generation unit (DAGEN) generates all addresses for accessing data-space and 

I/O space. While generating addresses, it can accept immediate values from the I-unit and register 

values from A-unit. The P-unit indicates to DAGEN, whether to use linear or circular addressing for an 

instruction that uses and indirect addressing mode. The DAGEN unit contains three auxiliary register 

units (ARUs) with eight auxiliary registers (XAR0-XAR7) to do indirect addressing mode access and 

fi ve circular buffers to do circular addressing mode access.
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Fig. 16.4 Address-Data Flow Unit (A-unit) Diagram

The 16-bit ALU present in A-unit accepts immediate values from the I-unit and communicates 

bidirectionally with memory, I/O space, A-unit registers, D-unit registers and P-unit registers. The 

A-unit ALU performs the following operations:

 ∑ Performs additions, subtractions, comparisons, Boolean logic operations, signed and logical 

shift operations and absolute value calculations

 ∑ Tests, sets, clears and complements A-unit register bits and memory bits

 ∑ Modifi es and moves register values

 ∑ Rotates register values

 ∑ Moves certain results from the shifter to an A-unit register

The list of A-unit registers is given below. All these registers can accept immediate data from I-unit 

and can accept or provide data to P-unit registers, D-unit registers and data memory. Within A-unit the 

registers have bidirectional connections with DAGEN unit and the 16-bit ALU. 

 ∑ Data page registers

  Data page registers   - DPH and DP

  Peripheral data page register  - PDP

 ∑ Pointer registers

  Coeffi cient data page registers  - CDPH and CDP

  Stack pointer registers  - SPH, SP and SSP

  Auxiliary registers  - XAR0-XAR7

 ∑ Circular buffer registers

  Circular buffer size registers  - BK03, BK47 and BKC

  Circular buffer start address registers  - BSA01, BSA23, BSA45, BSA67 and BSAC
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 ∑ Temporary registers

  Temporary registers 0, 1, 2 and 3  - T0-T3

16.3.4 Data Computation Unit (D-unit)

The data computational unit is the primary computational unit of the CPU where data is processed. The 

D-unit consists of two MAC (17-bitx17-bit) units, 40-bit ALU with four 40-bit accumulators (AC0-

AC3) and shift registers. The three data-read buses feed these computational units. The block diagram 

of the D-unit is show in Fig. 16.5.

Fig. 16.5 Data Computation Unit (D-unit) Diagram

The two MACs support multiplication and addition/subtraction operations. In a single cycle each 

MAC unit can perform fractional or integer 17-bit x 17-bit multiplication and a 40-bit addition or 

subtraction with optional 32/40-bit saturation. The four accumulators receive the results of the MACs. 

The MACs accept immediate values form I-unit, accept data values from memory, I/O space and A-unit 

registers. It can communicate bidirectionally with D-unit registers and P-unit registers.

The 40-bit ALU accepts immediate values from the I-unit and communicates bidirectionally with 

memory, I/O space, A-unit registers, D-unit register and P-unit registers. It can also receive results from 

shifter. The D-unit performs the following actions:

 ∑ Performs additions, subtractions, comparisons, rounding, saturation, Boolean logic operations 

and absolute value calculations

 ∑ Performs two arithmetical operations simultaneously when dual 16-bit arithmetic instruction is 

executed.

 ∑ Tests, sets, clears and complements D-unit register bits 

 ∑ Moves register values
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The D-unit shifter accepts immediate value from I-unit and communicates bidirectionally with 

memory, I/O space, A-unit registers, D-unit registers and P-unit registers. It also sends the shifted value 

to the D-unit ALU and A-unit ALU. The shift count value can be read from one of the temporary 

registers (T0-T3) or it can be represented as a constant in the instruction. The shifter can perform the 

following operations:

 ∑ Shifts 40-bit accumulator content up to 31-bits to the left and 32-bits to the right

 ∑ Shifts 16-bit immediate values up to 15-bits to the left

 ∑ Rotates register values

 ∑ Normalizes the accumulator values

 ∑ Extracts and expands bit fi elds and perform bit counting

The D-unit registers are Accumulators 0, 1, 2 and 3 (AC0-AC3) and Transition registers TRN0 and 

TRN1

16.3.5 Internal Address and Data Buses

The ¢C55X CPU has one program bus and fi ve data buses. The size of the program- read address bus is 

24-bits and program-read data bus is 32-bits. Out of fi ve data buses three buses are data-read buses and 

two are data-write buses. All the data-read & data-write address buses are of size 23-bits and data-read 

& data-write data buses are of 16-bits in size. The parallel bus architecture enables up to 32-bit program 

read, three 16-bit data reads and two 16-bit data write per CPU clock cycle. The functions of 12 CPU 

buses are given in Table 16.2.

Table 16.2 Functions of ¢C55X CPU buses

Name of the 

Bus(es)

Width Function

Program-read address 

bus (PAB)

24-

bits

Carries a 24-bit byte address to read instructions from program space

Program-read data 

bus (PDB)

32-

bits

Carries 4-bytes (32-bits) of program code from program memory to CPU

Data-read address 

buses(CAB & DAB)

23-

bits

Carries 23-bit data memory address to read data values. DAB carries address for a read 

from data space or I/O space. CAB carries second address for dual operand read.

Data-read data 

buses(CDB & DDB)

16-

bits

Carries 16-bit data value from memory to CPU. DDB carries data value from data 

space or I/O space. CDB carries second value during long data reads or dual data 

reads

Data-read address 

bus (BAB)

23-

bits

Carries 23-bit data memory address for coeffi cient reads to internal memory only. 

This bus is used for instructions that use coeffi cient addressing mode.

Data-read data bus 

(BDB)

16-

bits 

Carries 16-bit coeffi cient data value from internal memory to CPU. BDB is not 

connected to external memory.

Data-write address 

buses(EAB & FAB)

23-

bits

Carries 23-bit data memory address to write a data value. EAB carries address for a 

write to data space or I/O space. FAB carries a second address for dual data writes.

Data-write data 

buses(EDB & FDB)

16-

bits

Carries 16-bit data value from CPU to memory. EDB carries data value to data space 

or I/O space. FDB carries a second data value during long data writes and dual data 

writes.
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MEMORY ARCHITECTURE 16.4

The ¢C55X processor has 16M bytes of unifi ed memory for program/data space and a 64K words (16-

bits) of separate memory for I/O space. The 24-bit program memory address is used to read program 

code from memory. The program memory access is byte access. For accessing the data space 23-bit data 

memory address is used. The data memory access is word access (16-bits). In both program memory and 

data memory access the address busses carry 24-bit values, but during the data space access, the least 

signifi cant bit (LSB) on the address but is forced to 0.

The ¢C55X processor uses byte addresses to fetch instructions of size 8, 16, 24, 32, 40 and 48 bits. 

When instructions are stored in program memory, the user need not have to align them but the instruction 

fetches are aligned to even-address 32-bit boundaries.

The CPU uses word addresses to read or write data values of size 8, 16 or 32-bit values. The address 

that needs to be generated for a particular value depends on how it is stored within the word boundaries 

in data space. 

The data-space is divided into 128 data pages where each data page has 64K addresses. An instruction 

to access a location in the data page concatenates a 7-bit data page value and a 16-bit offset from 

instruction. On data page 0, 96 addresses are reserved for memory-mapped registers (MMR).

I/O space is separate from program/data space and is available only accessing registers of the 

peripherals on the DSP. The word address is used access the 64K locations. The CPU uses the bus DAB 

for data reads and the bus EAB for data writes to I/O space. 

The ¢C55X processor has an on-chip boot loader, which provides option for transferring code and 

data from an external source to the RAM inside the processor at power up/reset. 

ADDRESSING MODES  16.5

The ¢C55X processors support the following three types of addressing modes that are used to access data 

memory, memory-mapped registers, register bits and I/O space:

 ∑ Register addressing mode

 ∑ Immediate addressing mode

 ∑ Absolute addressing mode

 ∑ Direct addressing mode

 ∑ Indirect addressing mode

16.5.1 Register Addressing Mode

The ¢C55X processor has four accumulators AC0-AC3 and four temporary registers T0-T3. The register 

addressing mode uses these eight registers for source (src) as well as destination (dst) operands to 

perform operations. Examples for register addressing mode are given below:

 (i) ADD ACx,ACy

 (ii) ADD Tx,Ty

 (iii) MPY Tx,ACx,ACy

 (iv) ADDR ACx,ACy

 (v) ADDV ACx,ACy
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16.5.2 Immediate Addressing Mode

The ¢C55X processor supports immediate addressing mode. The 4-bit unsigned constant (k4)/8-bit 

signed constant (k8)/16-bit signed constant can be used as source operand, the destination can be any of 

the accumulators (AC0-AC3). For some instructions the destination can be temporary registers (T0-T3). 

Examples for the immediate addressing mode are given below. The symbol used to represent immediate 

addressing is # after the mnemonic.

ADD #k4,dst

ADD #k16,src,dst

MPYK #k8,ACx,ACy

MPYK #k16,ACx,ACy

In this addressing mode, the immediate operand can be left shifted by 4-bit (1-16) shift value specifi ed 

in the instruction and the respective operation can be performed, example for prescaled immediate 

addressing mode instruction is given below:

ADD #k16<<#shift,ACx,ACy

16.5.3 Absolute Addressing Mode

The absolute addressing mode is used to access a memory location by supplying all or part of an address 

as a constant in an instruction. There are three modes of absolute addressing available, they are:

∑ k16 absolute addressing

∑ k23 absolute addressing

∑ I/O absolute addressing

k16 Absolute Addressing  The k16 absolute addressing mode uses the source operand syntax 

*abs16(#k16), where k16 is a 16-bit unsigned constant and the destination can be any of the accumula-

tors. The 7 MSBs of data page register (DPH) and k16 specifi ed in the source operand are concatenated 

to form a 23-bit data-space address. The 7 MSBs of DPH are the MSBs and k16 value is the LSBs of the 

data-space address. This mode can be used to access a memory location or a memory-mapped register. 

Example for this addressing mode is given below:

ADD *abs16(#1000h),ACx

k23 Absolute Addressing The k23 absolute addressing mode uses the source operand syntax *(#k23), 

where k23 is a 23-bit unsigned constant and the destination can be any of the accumulators. The 23-bit 

constant specifi ed in the instruction is used as the data-space address. This mode can be used to access a 

memory location or a memory-mapped register. Example for this addressing mode is given below:

ADD *(#201000h),ACx

I/O Absolute Addressing In the case of mnemonic instruction type, the I/O addressing mode is 

provided by the syntax port(#k16) by port() operand qualifi er and for the algebraic instruction set it is 

provided by the syntax *port(#k16), where k16 is a 16-bit unsigned constant. Since the I/O space is 64K 

words 16-bits are used to specify the I/O space address.

16.5.4 Direct Addressing Mode

The direct addressing mode of ¢C55X is to access the data-space using data page register (DPH) & stack 

register (SPH) and to access I/O space using peripheral data page register (PDP). The direct addressing 

mode has the following modes:
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 ∑ DP direct addressing

 ∑ SP direct addressing 

 ∑ Register-bit direct addressing 

 ∑ PDP direct addressing

The direct addressing mode with DPH and SPH are mutually exclusive and the mode selection 

depends on the compiler mode bit (CPL) in status register ST1_55.

16.5.4.1 DP Direct Addressing Mode

The DP direct addressing mode uses the extended data page pointer (XDP) for data-space address 

calculation. The concatenation of DPH and DP is called the extended data page register (XDP). 

XDP (23-bits) = DPH (7-bits):DP(16-bits)

To access the data-space of ¢C55X device 23-bit data address is to be generated. At run-time, the 23-

bit data address is generated as given below:

Data-space address (23-bits) = DPH:(DP+Doffset) 

The data-space is divided into 128 pages and each page has 64K addresses. To select one of the 128 

main pages (0-127), 7-bits are required and it is obtained from MSBs of DPH register. The remaining 

16-bit LSBs of the address is obtained by the summation of the value in the data page register (DP) and 

the 7-bit offset (Doffset) calculated by the assembler. 

The value of DP can be from 0000h – FFFFh. The 7-bit offset value is calculated by the assembler 

as given below:

 Doffset = (Daddr- current data page value-DP) & 7Fh

Where Daddr is the 16-bit value specifi ed in the direct addressing mode instruction. The current 

data page pointer (DP) value is subtracted from Daddr value, to the result bit wise AND operation is 

performed with 7Fh to obtain the Doffset value. Example for direct addressing mode is given below:

 AMOV #012000h,XDP ;the main data page 01 loaded in DPH, 2000h loaded in DP

 ADD @2010h,AC0 ;Daddr specifi ed in the instruction is 2010h

 Doffset = (Daddr-DP) & 7Fh = (2010-2000) & 7Fh = 0010h (& - bit wise AND operation)

 23-bit data address = DPH:(DP+Doffset) = 012010h

The symbol used for direct addressing mode is @ after the mnemonic, followed by 16-bit Daddr value 

is specifi ed. The content of data memory address 012010h is added to the content of AC0, result stored 

in AC0. Loading DPH and DP can be done individually or XDP can be loaded using instrucions. 

16.5.4.2 SP Direct Addressing Mode

The SP direct addressing mode uses the extended data stack pointer (XSP) for data-space address 

calculation. The concatenation of SPH and SP is called the extended data stack pointer (XSP). 

XSP (23-bits) = SPH (7-bits):SP(16-bits)

At run-time, the 23-bit data address is generated using XSP as given below:

Data-space address (23-bits) = SPH:(SP+Doffset) 

The 7 MSBs of the SPH register is used to point the main data page, the 16 LSBs of the data address 

is calculated by the summation of the 16-bit SP value and the 7-bit offset (Doffset) specifi ed in the 

instruction itself. The offset value can be from 0-127. Loading SPH and SP can be done individually 

or XSP can be loaded using instrucions. In main page 0, 96 locations are reserved for memory mapped 

registers (MMR), so in SP direct addressing other than these locations of the main page 0 (00 0060h- 00 

FFFFh) are to be used. 
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16.5.4.3 Register-bit Direct Addressing Mode

The register-bit direct addressing mode is to access bits in accumulators AC0-AC3, temporary registers 

T0-T3 and the auxiliary registers AR0-AR7 only. The register bit test/set/clear/complement instructions 

support this addressing mode. The offset in the operand fi eld is specifi ed by the syntax @bitoffset. The 

offset specifi ed in the instruction is the bit value from the LSB of the respective register used in the 

instruction. Example for register-bit direct addressing mode is given below:

BSET @5,AC0 ; the LSB 5th bit in Accumulator AC0 is set to 1

16.5.4.4 PDP Direct Addressing Mode

The PDP direct addressing mode is used to access the I/O space. The 64K words of I/O space are divided 

into 512 pages and each page contains 128 words. To specify the 512 pages 9-bits are required and it is 

selected using peripheral data page register (PDP). The 7-bit offset (Poffset) required to select a word 

in a page is specifi ed in the instruction. The concatenation of PDP and Poffset is used to generate the 

address for the I/O space. 

16.5.5 Indirect Addressing Mode

The ¢C55X processor supports indirect addressing mode, this addressing mode uses the auxiliary register 

units present in the address data fl ow unit (A-unit) along with eight auxiliary registers (AR0-AR7). The 

indirect addressing mode can be used for linear addressing or circular addressing. The following are the 

types of indirect addressing modes:

 ∑ AR indirect

 ∑ Dual AR indirect

 ∑ CDP indirect

 ∑ Coeffi cient indirect

16.5.5.1 AR Indirect Addressing Mode

The AR indirect addressing mode uses an auxiliary register ARn (n = 0-7) to point the data address. 

The size of auxiliary register is 16-bits and it is used to access the data within one data page (64K). 

The main page can be selected using higher order 7-bits of the ARnH. The concatenation of ARnH 

and ARn is called extended auxiliary register XARn. The 23-bits of XARn are used to access the data-

space. To access a data space location an instruction that loads XARn is used. The ARn register can 

be individually loaded but not ARnH. The types of addressing mode operands available in this mode 

depend on the auxiliary register mode switch bit (ARMS) in status register ST2_55. The format of 

ST2_55 is given in Fig. 16.6. 

ARMS=0: DSP mode – the addressing mode operands are used for the DSP intensive applications

ARMS=1: Control mode – the addressing mode operands are used for control system applications

The addressing mode operands for DSP mode and control mode are given in Table 16.3. The following 

are the three important points to remember in AR indirect addressing:

 (i) The ARn modifi cation linear or circular depends on the confi guration bit ARnLC in status register 

ST2_55 (ARnLC = 0: linear addressing & ARnLC = 1: circular addressing). Normally ARnLC 

will be zero; to activate circular addressing this bit is to be set 1 with BSET instruction. 

 (ii) The address increment and decrement are made to 16-bit ARn contents only i.e. only within 

main data page. The data memory access across the main pages are not possible; to do that full 

23-bit in XARn register is to be modifi ed.
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 (iii) The index addressing and bit-reversed addressing use the content of T0/AR0 register for address 

increment/decrement. Using the content of T0 or AR0 depends on C54 compatibility mode 

bit (C54CM) in status register ST1_55 (C54CM = 0: T0 content used and C54CM = 1: AR0 

content used). The default value of C54CM bit is 0, hence to use T0 in ¢C55X, clear the C54CM 

bit using BCLR C54CM instruction.

Examples for AR indirect addressing mode are given below:
ADD *AR3+,T0,T1 ;the memory content pointed by AR3 added with T0, result in T1

ADD uns(*AR3),AC0,AC ;the unsigned content pointed by AR3 added with AC0, result in AC1

BCLR C54CM ;clear the C54CM bit in status register ST1_55. 

ADD *(AR3+T0), AC0 ;the memory content pointed by AR3 added with AC0, result in AC0

 ;the content of AR3 added with content of T0, result stored in AR3

Fig. 16.6 Format of Status register -ST2_55

16.5.5.2 AR Indirect Access of Register Bits

The AR indirect addressing mode is also used to access a register bit. The bits of accumulators AC0-

AC3, temporary registers T0-T3 and the auxiliary registers AR0-AR7 can be accessed through register 

bit test/set/clear/complement instructions. The content of ARn contains the bit to be accessed and the 

corresponding bit is accessed from LSB of the register to be accessed. Example for register-bit access 

using indirect addressing mode is given below:

BSET AR0,AC0 ;if content of AR0=5,the LSB 5th bit in Accumulator AC0 is set to 1

16.5.5.3 AR Indirect Accesses of I/O Space
The AR indirect addressing mode is also used to access I/O space. The words in I/O space are accessed 

using 16-bit addresses. When AR indirect addressing mode is used the 16-bit content ARn is used to 

access the I/O space. The content of ARn is the I/O space memory address.

16.5.5.4 Dual AR Indirect Addressing Mode
The dual AR indirect addressing mode is used to access two data-memory locations using eight auxiliary 

registers AR0-AR7. The dual addressing mode can be used for linear or circular data accesses and it 

is based on the ARnLC bit in status register ST2_55. The address increment and decrement are made 

to 16-bits within main page only. The dual AR addressing mode can be used to two 16-bit data access 

for a single instruction or for two instructions that are executed in parallel. The syntax of dual operand 

instruction and parallel instruction is given below:
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ADD Xmem,Ymem,ACx  ;dual operand access

ADD Smem,dst    ;parallel instruction, fi rst Smem is Xmem & 

|| AND Smem,src,dst  ;second Smem is Ymem

The ARMS bit in status register does not affect the dual AR indirect addressing mode. The dual AR 

addressing mode operands supported in dual AR addressing mode are *ARn, *ARn+,*ARn-, *ARn(T0/

AR0), *(ARn+T0/AR0), *(ARn-T0/AR0), *(ARn+T1) and *(ARn-T1) only. Examples for dual AR 

addressing mode are given below:

ADD *AR1,*AR2-,AC0 ;the data memory content pointed by AR1&AR2 are added, result stored

   ;in AC0, after address generation AR2 content decremented

MPY *AR2,AC0,AC1 ;the multiply and add instructions are executed parallel

|| ADD *AR1,T0,T1 ;the data memory content pointed by AR2 & AR1 are accessed 

Table 16.3 Addressing mode operands for AR Indirect addressing mode 

Addressing 

mode operand

ModeType Description

*ARn DSP mode/ control 

mode

The 16-bits of ARn used for data memory address generation. ARn is not 

modifi ed 

*ARn+ DSP mode / control 

mode

The 16-bits of ARn used for data memory address generation, ARn is 

incremented after address generation (Post increment) 

*ARn- DSP mode / control 

mode

The 16-bits of ARn used for data memory address generation, ARn is 

decremented after address generation (Post decrement)

*+ARn DSP mode only The 16-bit ARn value is incremented before address generation, the 

incremented value is used for address generation (Pre-increment) 

*-ARn DSP mode only The 16-bit ARn value is decremented before address generation, the 

decremented value is used for address generation (Pre-decrement) 

*ARn(T0/AR0) DSP mode / control 

mode

Index addressing. The 16-bit ARn content used as a base pointer. The 16-bit 

signed constant in T0/AR0 is used as an offset from the base pointer

*(ARn+T0/AR0) DSP mode / control 

mode

Index addressing (Post increment). The 16-bits of ARn used for address 

generation. The 16-bit signed constant in T0/AR0 added to ARn after 

address generation

*(ARn-T0/AR0) DSP mode / control 

mode

Index addressing (Post decrement). The 16-bits of ARn used for address 

generation. The 16-bit signed constant in T0/AR0 subtracted from ARn 

after address generation

*(ARn+T0B/

AR0B)

DSP mode only Bit-reversed addressing (Post increment). The 16-bits of ARn used for 

address generation. The 16-bit signed constant in T0/AR0 added with reverse 

carry propagation to ARn after address generation to create bit-reversed 

addressing.

*(ARn-T0B/

AR0B)

DSP mode only Bit-reversed addressing (Post decrement). The 16-bits of ARn used for 

address generation. The 16-bit signed constant in T0/AR0 added with reverse 

carry propagation is subtracted from ARn after address generation to create 

bit-reversed addressing.

*ARn(T1) DSP mode only Index addressing with T1. The 16-bit ARn content used as a base pointer. The 

16-bit signed constant in T1 is used as an offset from the base pointer

(Contd.)
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*(ARn+T1) DSP mode only The 16-bits of ARn used for data memory address generation. The 16-bit 

signed constant in T1 is added to ARn after address generation. 

*(ARn-T1) DSP mode only The 16-bits of ARn used for data memory address generation. The 16-bit 

signed constant in T1 is subtracted from ARn after address generation. 

*ARn(#k16) DSP mode / control 

mode

The 16-bit ARn content used as a base pointer. The 16-bit signed constant 

k16 is used as an offset from the base pointer

*+ARn(#k16) DSP mode / control 

mode

The 16-bit signed constant k16 is added to the content of ARn before address 

generation. The added value is used for address generation

*ARn(short(#k3)) Control modeonly The 16-bit ARn content used as a base pointer. The 3-bit signed constant k3 

is used as an offset from the base pointer

Note: For 16-bit data size ARn increment/decrement for one location (ARn+1) and for 32-bit data size ARn increment/

decrement for two locations (ARn+2)

16.5.5.5 CDP Indirect Addressing Mode

The CDP indirect addressing mode uses coeffi cient data pointer (CDP) to point data. This addressing 

mode is similar to AR indirect addressing mode and it can be used to access data space, register bits and 

I/O space. 

Accesses of Data Space The 7-bits required to point the main page is supplied by 7 MSBs of CDPH 

and 16 LSBs to access the location in a data page is obtained from CDP register. The concatenation of 

CDPH and CDP is called extended coeffi cient data pointer (XCDP). The 23-bit XCDP value is the data 

memory address. The same way as AR indirect addressing mode in this addressing mode also the ad-

dress modifi cation can be linear or circular. The linear or circular address modifi cation is decided by the 

CDP confi guration bit (CDPLC) in status register ST2_55. Default value is linear addressing; to activate 

circular addressing CDPLC bit is to be set. The various CDP indirect operands supported in this address-

ing mode are given in Table 16.4. Examples for CDP indirect addressing mode are given below:

ADD *CDP+,AC0,AC1 ; the data memory content pointed by CDP register is added to AC0, 

   ; result stored in AC1

The address increments and decrements are made with the main data page only using the 16-bit CDP 

value.

Table 16.4 Addressing mode operands for CDP Indirect addressing mode 

Addressing mode operand Description

*CDP The 16-bits of CDP used for data memory address generation. CDP is not modifi ed 

after address generation

*CDP+ The 16-bits of CDP used for data memory address generation, CDP is incremented 

after address generation (Post increment) 

*CDP- The 16-bits of CDP used for data memory address generation, CDP is decremented 

after address generation (Post decrement)

*CDP(#k16) The 16-bit CDP content used as a base pointer. The 16-bit signed constant k16 is used 

as an offset from the base pointer

*+CDP(#k16) The 16-bit signed constant k16 is added to the content of CDP before address 

generation. The added value is used for address generation

Note: For 16-bit data size CDP increment/decrement for one location (CDP+1) and for 32-bit data size 

   CDP increment/decrement for two locations (CDP+2)

Table 16.3 (Contd.)
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Accesses of Register Bits The CDP indirect addressing mode can be used to access a register bit. The 

CDP register contains the bit number to be accessed in the register. The bits of accumulators AC0-AC3, 

temporary registers T0-T3 and the auxiliary registers AR0-AR7 can be accessed through register bit 

test/set/clear/complement instructions. Example for CDP indirect access to register bit is given below:

BSET CDP,T0 ; if the content of CDP is 7, the LSB 7th bit of T0 is set to 1 

Accesses of I/O Space The CDP indirect addressing mode is used access the I/O space. The 16-bit 

content of CDP is used to access the entire 64K I/O space.

16.5.5.6 Coeffi cient Indirect Addressing Mode

The coeffi cient indirect addressing mode is used only for the data space access with three memory 

operands per cycle. It uses both dual AR indirect addressing and CDP indirect addressing to access 

three operands. The three operands are represented as Xmem, Ymem and Cmem, where Xmem and 

Ymem are accessed by AR indirect addressing through CB & DB data memory read buses and Cmem 

is accessed by CDP indirect addressing through BB data read bus. This addressing mode supports the 

following instructions:

 ∑ Memory move/initialization

 ∑ Multiply

 ∑ Multiply and accumulate (MAC)

 ∑ Multiply and subtract

 ∑ Dual multiply

 ∑ Dual multiply and accumulate/subtract

The address generation can be linear or circular according to the pointer confi guration bit in status 

register ST2_55. The increments and decrements of address are within the main data page only. The 

address modifi cation operands pertaining to dual AR indirect addressing are used. As for as the CDP 

indirect addressing is concerned only the address modifi cation operands *CDP, *CDP+, *CDP- and 

*(CDP+T0/AR0) are used. Examples for coeffi cient indirect addressing mode are given below:

MPY *AR2,*CDP,AC0 ;multiply and multiply accumulate instruction are executed in parallel

|| MAC *AR3,*CDP,AC1 ;the data memory pointed by AR2,AR3 &CDP are accessed, result

   ;stored in respective accumulators

For parallel instructions either the symbol || or :: can be used in ¢C55X. The BB bus is not connected 

to external memory; hence Cmem operand access through BB must in internal memory.

16.5.5.7 Circular Addressing Mode

The AR indirect addressing mode and CDP indirect addressing mode can be used for circular addressing 

by setting the ARnLC and CDPLC confi guration bits in ST2_55 to 1 respectively. The ¢C55X processor 

can be confi gured for fi ve circular buffers. The size of the circular buffer is defi ned by one of the three 

registers BK03, BK47 and BKC. To specify the start address of the circular buffer one of the fi ve 

registers BSA01, BSA23, BSA45, BSA67 and BSAC are used. The ARn register or CDP register can 

be used as a pointer for the circular buffer. The ARn & CDP pointer registers and the corresponding 

register to specify the start address and buffer size are given in Table 16.5. The fi ve circular start address 

registers and three buffer size registers are each 16-bits in size. 

Each address within the circular buffer is 23-bits; the 7 MSBs are used to access the main data page 

and 16-LSBs to access the locations in the page. To set the main data page ARnH and CDPH are loaded. 

To access the locations in the page ARn register and CDP registers are loaded. 



454  Digital Signal Processors

Table 16.5 Pointers, Buffer start address & Buffer size registers for Circular addressing

Circular address pointer Buffer start address register Buffer size register

AR0 BSA01 BK03

AR1 BSA01 BK03

AR2 BSA23 BK03

AR3 BSA23 BK03

AR4 BSA45 BK47

AR5 BSA45 BK47

AR6 BSA67 BK47

AR7 BSA67 BK47

CDP BSAC BKC

The steps for implementing the circular buffer are as follows:

 (i) Load the size of the circular buffer in an appropriate buffer size register based on the pointer 

used. For example, if the buffer size is 16 and the pointer used is AR2, the value 16 is to be 

loaded in register BK03.

 (ii) Set the appropriate circular buffer confi guration bit ARnLC or CDPLC in ST2_55 using BSET 

instruction. For AR2 pointer to be confi gured in circular addressing mode, use BSET AR2LC 

instruction.

 (iii) Load main data page value in the appropriate XARn or XCDP registers. For example, if the 

main data page is 7 and the circular pointer being AR2, the MSB 7-bits of XAR2 is to be loaded 

with 7. If CDP is used as pointer 7 MSBs of XCDP register is to be loaded. 

 (iv) Load the appropriate buffer start address register. For example for AR2 pointer the buffer 

start address is to be loaded in register BSA23. The concatenation of the 7-bit main data page 

information and 16-bit buffer start address (BSA) defi nes the 23-bit start address of the buffer 

in data memory.

 (v) Load the selected pointer ARn or CDP, with a value from 0 to (buffer size -1). For buffer size 

16, AR2 being pointer, load a value less than 15 in AR2.

In circular buffer the address increment and decrements must be within the 16-bit content of ARn or 

CDP. Example program to initialize and access the circular buffer is given below. The program is access 

the array of 16 numbers present in the memory location 021000h to 02100Fh repeatedly. The size of 

buffer is 16, pointer used is AR2. The data page value is 02.

Example (Initializing and accessing the circular buffer in ¢C55X)

 .text

 MOV #16, BK03 ; the size of the buffer 16 loaded in BK03 register

 BSET AR2LC ; AR2LC bit is set for AR2 circular addressing mode

 AMOV #020000h, XAR2 ; the main data page value 02 loaded in 7-bit AR2H

 MOV #1000h,BSA23 ;the start address of the buffer 1000h loaded in BSA23

 MOV #0000h,AR2 ;0h is loaded in register AR2

 ADD *AR2+,AC0 ;the address pointed by AR2 is accessed, the content of- 

  . ;memory location 021000h is added to AC0 content,-

  . 15 instructions   ;result in AC0. The content of AR2 incremented to- 

  . ;1001h. After the 16th instruction the address in AR2-

 ADD *AR2+,AC0 ;will point the fi rst location 1000h

  .end
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16.5.6 Memory Mapped Register Access

The fi rst page of the data memory space is mapped to 96 CPU registers of ¢C55X. The memory mapped 

registers can be accessed using immediate addressing, absolute addressing, direct addressing, indirect 

addressing modes and using memory mapped register access qualifi er. 

MMR access through immediate addressing: The #k4 and #k16 immediate addressing operands can 

be used to access the MMR registers. 

 MOV #9h,BKC ; the immediate value 9h is loaded in register BKC

 MOV #0FFFFh,AR1 ;the immediate value FFFFh is loaded in register AR1

MMR access through Absolute addressing: The k16 absolute addressing mode with DPH=0 and k23 

absolute addressing mode can be used to access MMR registers. 

Examples MOV *abs(#10h),T0 ;the 10h location of fi rst page is mapped to AR0, the content 

;of AR0 is moved to T0 register

  MOV *(#ACOL),T1 ;The 16 LSBs of accumulator AC0 is moved to T1 register

MMR access through Direct addressing: The DP direct addressing mode with CPL bit =0 & DPH=0 

can be used to access MMR registers. Example for MMR access

Example  MOV @AC0L,T2 ; the 16 LSBs of accumulator AC0 is moved to T2 register

MMR access through indirect addressing: The AR indirect addressing and CDP indirect addressing 

modes can be used to access MMR registers with ARnH and CDPH values being zero respectively. The 

content of ARn and CDP must contain the address of the memory mapped register present in the fi rst 

main page. 

Examples  MOV #08h,AR2 ;the memory mapped address for AC0L register is 08h, loaded in AR2

MOV *AR2,T2 ;the 16 LSBs of AC0L is moved to register T2 

      MOV #0Bh,CDP ;the memory mapped address for AC1L register is 0Bh, loaded in CDP

         MOV *CDP+,T3 ;the 16 LSBs of AC1L is moved to register T3

MMR access through access qualifi er: The memory mapped register access qualifi er mmap() can 

be used in direct addressing mode to access memory mapped registers. This access qualifi er forces the 

address-generation unit (DAGEN) to make DPH =0, CPL = 0 and DP = 0 only for the memory mapped 

register access instruction. 

Example  MOV mmap(@AC0L),T2; the 16 LSBs of accumulator AC0 is moved to T2 register

ASSEMBLY LANGUAGE INSTRUCTIONS 16.6

The ¢C55X processor has assembly language instructions to perform effectively arithmetic operations, 

logical operations, data move operations, compare operations, program control operations, bit manipu-

lation operations, parallel operations, extended auxiliary register operations and other miscellaneous 

operations. In the instruction syntax src & dst operands correspond to registers (AC0-AC3 & T0-T3). 

The Smem, Xmem, Ymem, Lmem corresponds to direct/indirect addressing mode operands. The Cmem 
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corresponds to CDP indirect addressing mode/coeffi cient indirect addressing mode. The ACx & ACy 

operands correspond to accumulators (AC0-AC3).

16.6.1 Arithmetic Operations

The ¢C55X processor has two ALU units, one 40-bit ALU in D-unit and another 16-bit ALU in A-unit. 

Both ALUs can be used to perform arithmetic operations (addition/subtraction). The 40-bit D-unit ALU 

is used, when the destination operand in the instruction is an accumulator, The 16-bit ALU is used, when 

the destination operand specifi ed in the instruction is an auxiliary register or temporary register. The 

syntax and description of addition/subtraction instructions performed by the ALUs are given in Table 

16.6.

Table 16.6 Addition/subtraction Instructions of ¢C55X

Syntax Description

ADD/SUB src,dst The addition/subtraction operation performed between the content of two regis-

ters 

ADD/SUB #k4,dst The 4-bit unsigned constant specifi ed in the instruction is added to/ subtracted from 

the destination register

ADD/SUB #k16,dst The 16-bit unsigned constant specifi ed in the instruction is added to/ subtracted 

from the destination register

ADD/SUB Smem,src,dst The content of memory location (Smem) is added to/subtracted from the source 

register (src) content, result stored in destination register (dst) 

SUB src,Smem,dst The source register (src) content is subtracted from the memory location (Smem) 

content, result stored in destination register

ADD/SUB ACx<<Tx,ACy The content of accumulator ACx is left shifted by the content of temporary register 

Tx and added to/subtracted from the accumulator ACy, result stored in ACy.

ADD/SUB ACx<<#shiftw,ACy The content of accumulator ACx is left shifted by the 6-bit value (shiftw) and added 

to/subtracted from the accumulator ACy, result stored in ACy. Maximum of 31-bits 

can be shifted.

ADD/SUB #k16<<#16,ACx,ACy The sixteen bit signed constant (k16) is left shifted by 16-bits and added to/subtracted 

from the content of accumulator ACx, result stored in accumulator ACy

ADD/SUB 

#k16<<#shft,ACx,ACy

The sixteen bit signed constant (k16) is left shifted by 4-bit value (shft) and added 

to/subtracted from the content of accumulator ACx, result stored in accu. ACy. 

Maximum of 15-bits can be shifted

ADD/SUB 

Smem<<Tx,ACx,ACy

The content of the memory location (Smem) is left shifted by the content of Tx 

and added to/subtracted from the content of accumulator ACx, result stored in ac-

cumulator ACy

ADD/SUB 

Smem<<#16,ACx,ACy

The content of the memory location (Smem) is left shifted by 16-bits and added 

to/subtracted from the content of accumulator ACx, result stored in accumulator 

ACy

SUB ACx,Smem<<#16,ACy The accumulator ACx content is subtracted from the content of memory location 

(Smem) left shifted by 16-bits, result stored in ACy

ADD

uns(Smem),Carry, ACx,ACy

The content of the memory location (Smem) and the carry bit are added to the content 

of accu. ACx, result stored in accu. ACy

SUB uns(Smem),Barrow, 

ACx,ACy

The logical compliment of carry bit & the content of memory location (Smem) are 

subtracted from the content of accu. ACx, result stored in accu. ACy

(Contd.)
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ADD/SUB uns(Smem),ACx,ACy The unsigned content of the memory location (Smem) is added to/subtracted from 

the content of accumulator ACx, result stored in accumulator ACy

ADD/SUB

uns(Smem),<<#shiftw ACx,ACy

The unsigned content of the memory location (Smem) is left shifted by 6-bit value 

(shiftw) and added to/subtracted from the content of accumulator ACx, result stored 

in accumulator ACy. Maximum of 31-bit can be shifted.

ADD/SUB dbl(Lmem),ACx,ACy The long word (two memory locations) of the memory location (Lmem) is added 

to/subtracted from accumulator ACx, result stored in accumulator ACy

SUB ACx,dbl(Lmem),ACy The content of accumulator ACx is subtracted from the long word (two memory 

locations) of the memory location (Lmem), result stored in accumulator ACy

ADD/SUB Xmem,Ymem,ACx The content of memory location (Ymem) is left shifted by 16-bits and added to/

subtracted from the content of memory location (Xmem) left shifted by 16-bits, 

result stored in accumulator ACx

ADD #k16,Smem The signed 16-bit constant (k16) is added to the content of memory location (Smem), 

result stored back into the same memory location (Smem)

The multiplication operations are performed in D-unit multiply and accumulate unit (MAC). The 

D-unit has two MAC units, hence two multiply operations can be performed simultaneously in ¢C55X 

processor. In multiply instructions, when the accumulators AC0-AC3 are used for source operands (src), 

the MSB 17-bits (32-16) are used for the multiplication and for other source operands, the sign extended 

to 17-bits. The product is 32-bits and the multiply instructions of ¢C55X processor are given in Table 

16.7.

Table 16.7 Multiply Instructions of ¢C55X

Syntax Description

SQR ACx,ACy The 17 MSBs of accumulator ACx multiplied with itself (ACx *ACx), result stored in 

accumulator ACy

MPY ACx, ACy The 17 MSBs of accumulator ACx & ACy are multiplied, result stored in accumulator 

ACy

MPY Tx,ACx, ACy The content of temporary register Tx, sign extended to 17-bits and the 17 MSBs of 

accumulator ACx are multiplied, result stored in accumulator ACy

MPY #k8,ACx, ACy The signed 8-bit constant (k8), sign extended to 17-bits and the 17 MSBs of accumulator 

ACx are multiplied, result stored in ACy

MPY #k16,ACx, ACy The signed 16-bit constant (k16), sign extended to 17-bits and the 17 MSBs of 

accumulator ACx are multiplied, result stored in ACy

SQRM Smem,ACx The content of memory location (Smem), sign extended to 17-bits is multiplied with 

itself (Smem*Smem), result stored in accumulator ACx

MPYM Smem, Cmem,ACx The content of memory location (Smem), sign extended to 17-bits and the content data 

memory operand (Cmem) addressed through coeffi cient addressing mode, sign extended 

to 17-bits are multiplied, result stored in accumulator ACx

MPYM Smem, ACx, ACy The content of memory location (Smem), sign extended to 17-bits and the 17 MSBs of 

accumulator ACx are multiplied, result stored in accumulator ACy

MPYMK Smem,#k8, ACx The content of memory location (Smem), sign extended to 17-bits and the signed 8-bit 

constant (k8), sign extended to 17-bits are multiplied, result stored in accumulator 

ACx

Table 16.6 (Contd.)

(Contd.)
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MPYM

uns(Smem),uns(Ymem),ACx

The unsigned content of data memory locations (Smem) and (Ymem) are extended to 

17-bits, multiplied and result stored in accu. ACx

MPYM Smem,Tx, ACx The content of memory location (Smem), sign extended to 17-bits and the content of 

temporary register Tx, sign extended to 17-bits are multiplied, result stored in accumulator 

ACx

The MAC unit in D-unit can be used for multiply accumulate (MAC) and multiply subtract (MAS) 

instructions. The multiplication is carried out for the operands sign extended to 17-bits and the product is 

of size 32-bits. The product is sign extended to 40-bits, when accumulation or subtraction is performed 

after multiply operation. The multiply and accumulate/subtract instructions of ¢C55X processor are 

given in Table 16.8.

Table 16.8 Multiply and Accumulate/subtract Instructions of ¢C55X

SQA/SQS ACx,ACy The 17 MSBs of accumulator ACx is multiplied with itself (ACx*ACx). 

The product is added to/subtracted from the content of accumulator ACy, 

result stored in accumulator ACy

SQAM/SQSM Smem, ACx,ACy The content of memory location (Smem), sign extended to 17-bits is 

multiplied with itself (Smem*Smem). The product is added to/subtracted 

from the content of accumulator ACx, result stored in accumulator ACy

MAC ACx,Tx,ACy The 17 MSBs of accumulator ACx and the content of temporary register 

Tx, sign extended to 17-bits are multiplied. The product is added to the 

content of accu. ACy, result stored in accu. ACy

MAC ACy,Tx,ACx,ACy The 17 MSBs of accumulator ACy and the content of temporary register 

Tx, sign extended to 17-bits are multiplied. The product is added to the 

content of accu. ACx, result stored in accu. ACy

MAS Tx,ACx,ACy The content of temporary register Tx, sign extended to 17-bits and the 17 

MSBs of accumulator ACx are multiplied. The product is subtracted from 

the content of accumulator ACy, result stored in accumulator ACy

MACK Tx,#k8,ACx,ACy The content of temporary register Tx, sign extended to 17-bits and the 8-bit 

constant (k8), sign extended to 17-bits are multiplied. The product is added 

to the content of accumulator ACx, result stored in accumulator ACy

MACK Tx,#k16,ACx,ACy The content of temporary register Tx, sign extended to 17-bits and the 

16-bit constant (k16), sign extended to 17-bits are multiplied. The product 

is added to the content of accumulator ACx, result stored in accumulator 

ACy

MACM/MASM Smem,Cmem,ACx The content of memory location (Smem), sign extended to 17-bits and 

the content data memory operand (Cmem) addressed through coeffi cient 

addressing mode, sign extended to 17-bits are multiplied. The product is 

added to/subtracted from the content of accumulator ACx, result stored 

in accumulator ACx

MACM/MASM Smem,ACx,ACy The content of memory location (Smem), sign extended to 17-bits and 

the 17 MSBs of accumulator ACx are multiplied. The product is added 

to/subtracted from the content of accumulator ACy, result stored in 

accumulator ACy

(Contd.)

Table 16.7 (Contd.)
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MACM/MASM Smem, Tx,ACx,ACy The content of memory location (Smem), sign extended to 17-bits and the 

content of temporary register Tx, sign extended to 17-bits are multiplied. 

The product is added to/subtracted from the content of accumulator ACx, 

result stored in accu. ACy

MACMK Smem,#k8,ACx,ACy The content of memory location (Smem), sign extended to 17-bits and 

the signed 8-bit constant (k8), sign extended to 17-bits are multiplied. 

The product is added to the content of accumulator ACx, result stored in 

accumulator ACy

MACM /MASM uns(Xmem), 

uns(Ymem),ACx,ACy

The unsigned content of data memory locations (Smem) and (Ymem) are 

extended to 17-bits and multiplied. The product is added to/subtracted from 

the content of accumulator ACx, result stored in accumulator ACy 

MACM

uns(Xmem),uns(Ymem),ACx>>#16,ACy

The unsigned content of data memory locations (Smem) and (Ymem) are 

extended to 17-bits and multiplied. The product is added to the content 

of accumulator ACx, which is right shifted by 16-bits with sign extended 

and result stored in accu. ACy

MACMZ Smem, Cmem, ACx 

(Equivalent to multiply accumulate and 

data move in ¢C54X-MACD)

The content of memory location (Smem), sign extended to 17-bits and 

the content data memory operand (Cmem) addressed through coeffi cient 

addressing mode, sign extended to 17-bits are multiplied. The product is 

added to the content of accumulator ACx, result stored in accumulator 

ACx. This instruction can be in parallel with the delay memory 

instruction. The content of memory location (Smem) is copied into 

the next higher address. 

The 40-bit signed shift operations can be performed in D-unit shifter. The accumulator content can 

be shifted left by a range of 1 to +31 and right by a range of 1 to 32. The right shift value is indicated by 

negative number and if the shift value is out of range then the shift is saturated to -32 or +31. The signed 

shift instructions of ¢C55X processors are given in Table 16.9.

Table 16.9 Signed shift Instructions of ¢C55X

Syntax Description

SFTS dst, #-1 The content of destination register (dst) is right shifted by 1-bit. The registers are accumulators, 

auxiliary and temporary registers.

SFTS dst, #1 The content of destination register (dst) is left shifted by 1-bit. The registers are accumulators, 

auxiliary and temporary registers.

SFTS ACx,Tx,ACy The content of accumulator ACx is shifted by the content of temporary register Tx, result stored 

in accumulator ACy.

SFTSC ACx,Tx,ACy The content of accumulator ACx is shifted by the content of temporary register Tx, result stored 

in accumulator ACy. The shifted out bit is stored in CARRY status bit 

SFTS 

ACx,#shiftw,ACy 

The content of accumulator ACx is shifted by the 6-bit value (shiftw), result stored in accumulator 

ACy. Max. of 31-bits can be shifted right and 32-bits right

SFTSC 

ACx,#shiftw,ACy

The content of accumulator ACx is shifted by the 6-bit value (shiftw), result stored in accumulator 

ACy. The shifted out bit is stored in CARRY status bit

Table 16.8 (Contd.)
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The 40-bit D-unit ALU can perform dual 16-bit arithmetic operations. The dual 16-bit arithmetic 

instructions are used to perform an addition or subtraction. In dual 16-bit mode, lower 16 bits of both 

ALU and accumulator are separated from their higher 24 bits. Arithmetic operations are carried out 

separately in lower and upper part of ALUs in the same machine cycle. The syntax of dual 16-bit 

arithmetic instructions are given in Table 16.10.

Table 16.10 Dual 16-bit arithmetic Instructions of ¢C55X

Syntax Description

ADDSUB 

Tx,Smem,ACx

The addition & subtraction operations performed parallel in one cycle. The content of temporary 

register Tx is added to the content of memory location (Smem), result stored in higher order 

bits of accumulator ACx (39-16). Also the content of Tx is subtracted from the content of 

memory location (Smem) & the result stored in lower order bits of accu. ACx(15-0)

ADDSUB 

Tx,dual(Lmem),ACx

The addition & subtraction operations performed parallel in one cycle. The content of temporary 

register Tx is added to the content of memory location pointed by Lmem, result stored in higher 

bits of accu. ACx (39-16). Also the content of Tx is subtracted from the content of memory 

location Lmem+1 & the result stored in lower order bits of ACx (15-0)

ADD/SUB  

dual(Lmem),ACx, 

ACy

Two parallel additions/subtractions are performed. The memory content pointed by Lmem is 

added to/subtracted from the higher order bits of accu. ACx (39-16), result stored in higher 

order bits of accu. ACy (39-16). Also, the memory content pointed by Lmem+1 is added to/

subtracted from the lower order bits of accu. ACx(15-0) result stored in lower order bits of 

accu. ACy(15-0). 

ADD/SUB 

dual(Lmem),Tx,ACx

Two parallel additions/subtractions are performed. The memory content pointed by Lmem is 

added to/subtracted from the higher order bits of temporary register Tx (39-16), result stored 

in higher order bits of accu. ACx (39-16). Also, the memory content pointed by Lmem+1 is 

added to/subtracted from the lower order bits of temporary register Tx (15-0) result stored in 

lower order bits of accu. ACx(15-0).

SUBADD 

Tx,Smem,ACx

The subtraction &addition operations performed parallel in one cycle. The content of temporary 

register Tx is subtracted from the content of memory location (Smem), result stored in higher 

order bits of accumulator ACx (39-16). Also, the content of Tx is added to the content of 

memory location (Smem) & the result stored in lower order bits of accu. ACx(15-0)

SUB 

ACx,dual(Lmem),ACy

Two parallel subtractions are performed. The higher order bits of accu. ACx (39-16) are 

subtracted from the memory content pointed by Lmem, result stored in higher order bits of 

accu. ACy (39-16). Also, the lower order bits of accu. ACx(15-0) is subtracted from the memory 

content pointed by Lmem+1, result stored in lower order bits of accu. ACy(15-0).

SUB 

Tx,dual(Lmem),ACx

Two parallel subtractions are performed. The higher order bits of Tx (39-16) are subtracted 

from the memory content pointed by Lmem, result stored in higher order bits of accu. ACy 

(39-16). Also, the lower order bits of Tx(15-0) is subtracted from the memory content pointed 

by Lmem+1, result stored in lower order bits of accu. ACy(15-0).

SUBADD 

Tx,dual(Lmem),ACx

The subtraction & addition operations performed parallel in one cycle. The content of temporary 

register Tx is subtracted from the content of memory location pointed by Lmem, result stored 

in higher bits of accu. ACx (39-16). Also the content of Tx is added to the content of memory 

location Lmem+1 & the result stored in lower order bits of ACx (15-0)

The ¢C55X processor supports conditional addition or subtraction, conditional subtraction and 

conditional shift operations based on the test control fl ag bits TC1 & TC2 in status register ST0_55. 

These conditional operations are performed in D-unit ALU. The conditional arithmetic operations are 

given in Table 16.11.
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Table 16.11 Conditional Arithmetic Instructions of ¢C55X

Syntax Description

ADDSUBCC 

Smem,ACx,TCx,ACy

The content of memory location (Smem) left shifted by 16-bits is added to the content 

of accu. ACx, result stored in accu. ACy – If TCx = 1The content of memory location 

(Smem) left shifted by 16-bits is subtracted from the content of accu. ACx, result 

stored in accu. ACy – If TCx = 0

ADDSUBCC

Smem,ACx,TC1, TC2,ACy

The instruction performs subtraction, addition and move operation based on TC1 & 

TC2 bits. If TC2=1, The content of accu. ACx is moved to accu. ACy. If TC2=0 & 

TC1=0, The content of memory location (Smem) left shifted by 16-bits is subtracted 

from the content of accu. ACx, result stored in accu. ACy. If TC2=0 & TC1=1, The 

content of memory location (Smem) left shifted by 16-bits is added to the content 

of accu. ACx, result stored in accu. ACy

ADDSUB2CC

Smem, ACx,Tx, TC1, TC2,ACy

The instruction left shifts the content of Smem by 16-bits or by the content of Tx 

based TC2 bits and addition or subtraction operation is performed based on TC1 bits. 

TC2=0, If TC1=0, the content memory location Smem is left shifted by Tx content 

and subtracted from the content of ACx, result stored in ACy. If TC1=1 addition 

operation is performed instead of subtraction. TC2=1, If TC1=0, the content memory 

location Smem is left shifted by 16-bits and subtracted from the content of ACx, result 

stored in ACy. If TC1=1 addition operation is performed instead of subtraction

SUBC Smem, ACx,ACy Conditional subtract instruction. The content of memory location (Smem) is left 

shifted 15-bits and subtracted from the content of ACx. If the result is greater than 

0, the result is left shifted by 1-bit and 1 is added and stored in ACy. Else the content 

of ACx is left shifted by 1-bit and stored in ACy. This instruction is used for division 

operation. 

SFTCC ACx, TCx Conditional shift operation. The sign bits are extracted from the bit positions of 31and 

30 of ACx. If the sign bit information is present, the content of ACx is left shifted 

by 1-bit and TCx is cleared to 0. If the sign bit information is not present the content 

of ACx is not shifted and TCx bit is set to 1.

16.6.2 Logical Operations

The bitwise logic operations like AND, OR, XOR, NOT, negate and logical shift are supported by 

¢C55X processor. It also supports bit fi eld counting and rotate left and rotate right operations. In logical 

operations, if the destination operand is an accumulator, the operation is performed in D-unit. If the 

destination operand is an auxiliary register or a temporary register or memory, the A-unit is used. The 

syntax and description of logic instructions are given in Table 16.12.

Table 16.12 Logical Instructions of ¢C55X

Syntax Description

NOT src,dst The content of source (src) operand is complimented and stored in destination (dst). 1’s 

compliment of src stored in destination.

AND/OR/XOR src,dst The bit wise AND/OR/XOR operations are performed between source and destination 

operand registers, result stored in destination. 

AND/OR/XOR 

#k8,src,dst

The bit wise AND/OR/XOR operations are performed between the 8-bit value (k8) and the 

source (src) register, result stored in destination register

(Contd.)
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AND/OR/XOR 

#k16,src,dst

The bit wise AND/OR/XOR operations are performed between the 16-bit value (k16) and 

the source (src) register, result stored in destination register

AND/OR/XOR 

Smem,src,dst

The bit wise AND/OR/XOR operations are performed between the content of memory 

location (Smem) and the source (src) register, result stored in destination register

AND/OR/XOR 

ACx<<#shiftw,ACy

The bit wise AND/OR/XOR operations are performed between the content of accu. ACy 

and the accu ACx content left shifted by 6-bit value (shifw), result stored in accu. ACy.

AND/OR/XOR 

#k16<<#16,ACx,ACy

The bit wise AND/OR/XOR operations are performed between the content of accu. ACx 

and the 16-bit value (k16) left shifted by 16-bits, result stored in accu. ACy.

AND/OR/XOR 

#k16<<#shft,ACx,ACy

The bit wise AND/OR/XOR operations are performed between the content of accu. ACx 

and the 16-bit value (k16) left shifted by 4-bit value (shft) , result stored in accu. ACy.

AND/OR/XOR 

#k16,Smem

The bit wise AND/OR/XOR operations are performed between the content of memory 

location (Smem) and the 16-bit value (k16), result stored back in memory location 

(Smem)

NEG src,dst The 2’s compliment for the content of the source register is stored in dst.

BCNT ACx,ACy,TCx,Tx The bitwise AND operation is performed between the contents of accu. ACx & ACy. The 

number of bits set to 1 in the result is evaluated and stored in temporary register Tx. If the 

number of bits is even TCx bit cleared & if the number bits is odd TCx bit is set to 1.

SFTL dst,#1 The content of destination operand (dst) register is logically shifted left by 1-bit. The shifted 

out bit stored in CARRY status bit. 

SFTL dst,#-1 The content of destination operand (dst) register is logically shifted right by 1-bit. The 

shifted out bit stored in CARRY status bit.

SFTL ACx,Tx,ACy The content of the accu. ACx is left shifted by the content of Tx and the result is stored in 

accu. ACy. The shifted out bit stored in CARRY status bit.

SFTL ACx,#shiftw,ACy The content of the accu. ACx is left shifted by 6-bit value (shiftw) and the result is stored in 

accu. ACy. The shifted out bit stored in CARRY status bit. Max. 31-bits can be shifted.

ROL Bitout,src,Bitin,dst Bitwise rotate left the accumulator content (src). Bitin & Bitout are shift in one bit and 

shifted out bit respectively during rotation. Both TC2 & CARRY status bit can be used for 

bitin & bitout. The rotated result is stored in destination register.

ROR Bitin,src,Bitout,dst Bitwise rotate right the accumulator content (src). Bitin & Bitout are shift in one bit and 

shifted out bit respectively during rotation. Both TC2 & CARRY status bit can be used for 

bitin & bitout. The rotated result is stored in destination register.

16.6.3 Move Operations
The ¢C55X processor has the following three categories of move instructions:

 ∑ Move instructions to access accumulators, auxiliary and temporary registers. 

 ∑ Move instructions to access CPU registers other than registers mentioned in (i).

 ∑ Move instructions to perform memory-to-memory move operations. 

(i) Accumulator, Auxiliary and Temporary Register Move Instructions

In ¢C55X processor, assembly language instructions are available to swap the content of accumulators, 

auxiliary registers and temporary registers. Instructions are there to move, load and store values in these 

registers. The register swap instructions in Table 16.13, the register move instructions in Table 16.14, 

the register load instructions in Table 16.15 and register store instructions in Table 16.16 are given. 

Table 16.12 (Contd.)
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Table 16.13 Register Swap Instructions of ¢C55X

Syntax Description

SWAP ARx,Tx Parallel move between auxiliary registers (ARx) and temporary registers (Tx). The content of 

ARx moved to Tx and the content of Tx moved to ARx. Only the auxiliary registers AR4-AR7 

are used for this operation. 

SWAP Tx,Ty Parallel move between temporary registers. The content of Tx moved to Ty and the content of 

Ty moved to Tx

SWAP ARx,ARy Parallel move between auxiliary registers (ARx). The content of ARx moved to ARy and the content 

of ARy moved to ARx. Only the auxiliary registers AR0-AR3 are used for this operation.

SWAP ACx,ACy Parallel move between accumulators (ACx). The content of ACx moved to ACy and the content 

of ACy moved to ACx.

SWAPP ARx,Tx Parallel move between two adjacent auxiliary registers (ARx) and two adjacent temporary registers 

(Tx). The content of two adjacent ARx moved to two adjacent Tx and the content of two adjacent Tx 

moved to two adjacent ARx. Only the auxiliary registers AR4-AR7 are used for this operation

SWAPP T0,T2 Parallel move between two adjacent temporary registers. The content of T0 moved to T2 and the 

content of T1 moved to T3. Also, the content of T2 moved to T0 and the content of T3 moved 

to T1

SWAPP AR0,AR2 Parallel move between two adjacent auxiliary registers (ARx). The content of AR0 moved to AR2 

and the content of AR1 moved to AR3. Also, The content of AR2 moved to AR1 and the content 

of AR3 moved to AR1. Only the auxiliary registers AR0-AR3 are used for this operation.

SWAPP AC0,AC2 Parallel move between two adjacent accumulators (ACx). The content of AC0 moved to AC2 and 

the content of AC1 moved to AC3. Also, The content of AC2 moved to AC1 and the content of 

AC3 moved to AC1. 

SWAP4 AR4,T0 Parallel move between four auxiliary register to temporary registers. The content of auxiliary 

registers AR3, AR5, AR6 & AR7 are moved to temporary registers T0, T1, T2 & T3 respectively 

and also its reciprocal move operation performed. Only the auxiliary registers AR4-AR7 are used 

for this operation

Table 16.14 Register Move Instructions of ¢C55X

Syntax Description

MOV src,dst The source register content is moved to destination register content

MOV HI(ACx),TAx The 16 MSBs of the accumulator ACx are moved to temporary or auxiliary register

MOV TAx, HI(ACx) The temporary or auxiliary register content is moved to 16 MSBs of accu. ACx

Table 16.15 Register Load Instructions of ¢C55X

Syntax Description

MOV #k4, dst The 4-bit unsigned constant (k4) is loaded to the destination register(dst).

MOV #-k4, dst The 2’s complement value of the 4-bit unsigned constant (k4) is loaded to destina-

tion register (dst).

MOV #k16, dst The 16-bit signed constant (k16) is loaded to destination register (dst).

MOV Smem, dst The content of memory location (Smem) is loaded to destination register.

MOV uns(high_byte(Smem)),dst The high byte content (15-8) of memory location (Smem) is loaded to destination 

register (dst).
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MOV uns(low_byte(Smem)),dst The low byte content (7-0) of memory location (Smem) is loaded to destination 

register (dst).

MOV #k16 << #16, ACx The 16-bit signed constant (k16) is left shifted by 16-bits and loaded to accumula-

tor ACx

MOV #k16 << #shft, ACx The 16-bit signed constant (k16) is left shifted by the 4-bit value (shft) and loaded 

to accumulator ACx

MOV Smem << Tx,ACx The content of memory location (Smem) is left shifted by the content Tx and 

loaded to accumulator ACx.

MOVlow_byte(Smem) << 

#SHIFTW, ACx

The low byte content (7-0) of memory location (Smem) is left shifted by 6-bit shift 

value (shifw) and loaded to accumulator ACx.

MOVhigh_byte(Smem) << 

#SHIFTW, ACx

The high byte content (15-8) of memory location (Smem) is left shifted by 6-bit 

shift value (shifw) and loaded to accumulator ACx.

MOV Smem << #16, ACx The high byte content of memory location (Smem) is left shifted by 16-bits and 

loaded to accumulator ACx.

MOV uns(Smem), ACx The content of memory location (Smem) is zero extended to 40-bits and loade to 

accumulator ACx. If syntax ‘uns’ is not used no zero extension.

MOV

uns(Smem) << #SHIFTW, ACx

The content of memory location (Smem) is zero extended to 40-bits and left shited 

by 6-bit value (shiftw). The result is loade to accumulator ACx. If syntax ‘uns’ is 

not used no zero extension.

MOV dbl(Lmem),ACx The long word load instruction. The content of memory location pointed by Lmem 

and Lmem+1 are loaded to accumulator ACx. The operand is sign extended to 

40-bits.

MOV Xmem, Ymem, ACx Dual 16-bit load instruction. The memory content pointed by Xmem is loaded to 

lower order bits (15-0) of accu. ACx. The memory content pointed by Ymem is sign 

extened to 24-bits and loaded to higher order bits (40-16) accumulator ACx.

MOV dbl(Lmem), pair(HI(ACx)) The memory content point by Lmem is loaded to the higher order bits (31-16) of 

accumulator ACx and the memory content pointed by Lmem+1 is loaded to the 

higher order bits (31-16) of the next accumulator ACx+1. 

MOV dbl(Lmem), pair(LO(ACx)) The memory content point by Lmem is loaded to the lower order bits (15-0) of 

accumulator ACx and the memory content pointed by Lmem+1 is loaded to the 

lower order bits (15-0) of the next accumulator ACx+1.

MOV dbl(Lmem), pair(TAx) The memory content point by Lmem is loaded to the lower order bits (15-0) of 

temporary register Tx and the memory content pointed by Lmem+1 is loaded to 

the lower order bits (15-0) of the next temporary register Tx+1.

Table 16.16 Register Store Instructions of ¢C55X

Syntax Description

MOV src, Smem The 16 LSBs of source register (src) is stored to the memory 

location pointed by Smem.

MOV src, high_byte(Smem) The low byte content (7-0) of the source register (src) is stored 

to high byte of the memory (15-8) location pointed by Smem.

Table 16.15 (Contd.)
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MOV src, low_byte(Smem) The low byte content (7-0) of the source register (src) is stored 

to low byte of the memory (7-0) location pointed by Smem.

MOV HI(ACx), Smem The higher part of accu. ACx (31-16) is stored to the memory 

location pointed by Smem.

MOV rnd(HI(ACx)), Smem The higher part of accu. ACx (31-16) is rounded and stored to 

memory location pointed by Smem.

MOV ACx << Tx, Smem The content of accumulator ACx is left shifted by the content of 

temporary register Tx and 16 LSBs of ACx are stoted to memory 

location pointed by Smem.

MOV rnd(HI(ACx << Tx)), Smem The content of accumulator ACx is left shifted by the content of 

temporary register Tx and rounded (rnd-optional). The higher 

part of ACx (31-16) is stoted to memory location pointed by 

Smem.

MOV ACx << #SHIFTW, Smem The content of accu. ACx is left shifted by the 6-bit shift value 

(shiftw) and 16 LSBs of ACx is stored to the memory location 

pointed by Smem.

MOV HI(ACx << #SHIFTW), Smem The content of accu. ACx is left shifted by the 6-bit shift value 

(shiftw) and the higher part of ACx (31-16) is stored to the 

memory location pointed by Smem.

MOV rnd(HI(ACx << #SHIFTW)), Smem The content of accu. ACx is left shifted by the 6-bit shift value 

(shiftw) and rounded (rnd –optional). The higher part of ACx 

(31-16) is stored to the memory location pointed by Smem.

MOV uns( rnd(HI(saturate(ACx)))), Smem The unsigned content of accu. ACx is rounded (rnd-optional). 

For shift/rounding overfl ow 40-bit ACx content is saturated 

(saturate-optional) The higher part of ACx (31-16) is stored to 

the memory location pointed by Smem.

MOV uns(rnd(HI(saturate (ACx << Tx)))), Smem The unsigned content of accu. ACx is left shifted by the content 

of temporary register Tx and rounded (rnd-optional). For shift/

rounding overfl ow 40-bit ACx content is saturated (saturate-

optional) The higher part of ACx (31-16) is stored to the memory 

location pointed by Smem.

MOV

uns((rnd(HI(saturate(ACx<<#SHIFTW)))),Smem

The unsigned content of accu. ACx is left shifted by the 6-bit 

value (shiftw) and rounded (rnd-optional). For shift/rounding 

overfl ow 40-bit ACx content is saturated (saturate-optional) The 

higher part of ACx (31-16) is stored to the memory location 

pointed by Smem.

MOV ACx, dbl(Lmem) The long word store. The 16 MSBs of the accumulator ACx 

(31-16) are stored to memory location pointed by Lmem and 

16 LSBs of accumulator ACx are stored to memory location 

pointed by Lmem+1

MOV uns(saturate(ACx)), dbl(Lmem) The unsigned content of accumulator ACx is saturated (optional) 

on overfl ow. The 16 MSBs of the accumulator ACx (31-16) 

are stored to memory location pointed by Lmem and 16 LSBs 

of accumulator ACx are stored to memory location pointed by 

Lmem+1

Table 16.16 (Contd.)
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MOV ACx >> #1, dual(Lmem) The higher part of accumulator ACx (31-16) is right shifted by 

1-bit and stored to memory location pointed by Lmem. The 16 

LSBs of accumulator ACx is right shifted by 1-bit and stored 

to the memory location pointed by Lmem+1.

MOV pair(HI(ACx)), dbl(Lmem) The higher part of accumulator content ACx (31-16) is stored 

to memory location pointed by Lmem. The next accumulator 

(ACx+1) higher part content (31-16) is stored to memory loca-

tion pointed by Lmem+1

MOV pair(LO(ACx)), dbl(Lmem) The 16 LSBs of accumulator ACx (15-0) is stored to memory 

location pointed by Lmem. The 16 LSBs (15-0) of the next 

accumulator (ACx+1) is stored to memory location pointed 

by Lmem+1

MOV pair(TAx), dbl(Lmem) The content of temporary register Tx is stored to memory loca-

tion pointed by Lmem. The next temporary register (Tx+1) is 

stored to memory location pointed by Lmem+1

MOV ACx, Xmem, Ymem The lower part of accumulator (15-0) is stored to memory loca-

tion point by Xmem. The higher part of accumulator (31-16) is 

stored to memory location pointed by Ymem.

(ii) CPU Register Access Instructions

Instructions to access CPU registers other than accumulators, auxiliary registers and temporary registers 

are available. There are CPU register move, load and store instructions.

CPU Register Move Instructions Instructions are used to move temporary or auxiliary register values 

(TAx) to CPU registers BRC0, BRC1, CDP, CSR, SP and SSP and vice versa. The A-unit is used to 

perform these operations. The syntax for CPU register move instruction is given below:

 MOV TAx, Register ; the content of temporary or auxiliary register is moved to 

    ; specifi ed CPU register

 MOV Register, TAx ; the content of specifi ed CPU register is moved to temporary or

      auxiliary register 

CPU Register Load Instructions Instructions to load unsigned integers of size kx (k7, k9, k12 and k16) 

to destination CPU registers are available. Also instructions to load the content of memory location to 

destination CPU registers are present. The destination CPU registers are BK03, BK47, BKC, BRC0, 

BRC1, CSR, DPH, PDP, BSA01, BSA23, BSA45, BSA67, BSAC, CDP, DP, SP, SSP, TRN0, TRN1 and 

RETA. The CPU register load instructions are given in Table 16.17.

Table 16.17 CPU Register Load Instructions of ¢C55X

Syntax Description

MOV #k7, DPH The unsigned 7-bits are loaded to 7 MSBs (DPH) of extended data page pointer XDP

MOV #k9,PDP The unsigned 9-bits are loaded to peripheral data page pointer PDP

MOV #k12,Register The unsigned 12-bits are loaded to destination register. The destination registers are BK03, 

BK47, BKC, BRC0, BRC1 and CSR

MOV #k16,Register The unsigned 12-bits are loaded to destination register. The destination registers are BSA01, 

BSA23, BSA45, BSA67, BSAC, CDP, DP, SP and SSP

Table 16.16 (Contd.)
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MOV Smem,Register The content of memory location (Smem) is loaded to destination register. The destination 

registers are BK03, BK47, BKC, BRC0, BRC1, CSR, DPH, PDP, BSA01, BSA23, BSA45, 

BSA67, BSAC, CDP, DP, SP, SSP, TRN0 and TRN1

MOV dbl(Lmem), RETA The long word (32-bits) content of memory location (Lmem) is loaded to destination register 

RETA. The LSB 24-bits are loaded to RETA register and MSB 8-bits to CFCT register

CPU Registers Stored Instructions Instructions to store the CPU register content to memory is sup-

ported by ¢C55X. The CPU registers having this option are BK03, BK47, BKC, BRC0, BRC1, CSR, 

DPH, PDP, BSA01, BSA23, BSA45, BSA67, BSAC, CDP, DP, SP, SSP, TRN0, TRN1 and RETA. The 

syntax for the CPU register store instructions are given below:

 MOV Register, Smem ; the register content is stored in memory location Smem

    ; the registers are above mentioned registers except RETA

 MOV RETA, dbl(Lmem) ; The 24-bits of RETA and 8-bits of CFCT are stored in two

    ; data memory locations pointed by Lmem

(iii) Memory-to-Memory Move Instructions

Instructions to move 8-bit or 16-bit signed constant to memory locations are available in ¢C55X. Also 

instructions to move data values from one memory location to another memory location are available. 

The memory-to-memory move instructions are given in Table 16.18.

Table 16.18 Memory-to-memory move Instructions of ¢C55X

Syntax Description

MOV Cmem, Smem The data memory content addressed by coeffi cient data page poinet (CDP) is copied 

to the memory location pointed by Smem.

MOV Smem, Cmem The data memory location pointed by Smem is copied to the memory location ad-

dressed by coeffi cient data page pointer (CDP)

MOV #k8, Smem The 8-bit signed constant (k8) is stored to memory location pointed by Smem.

MOV #k16, Smem The 16-bit signed constant (k16) is stored to memory location pointed by Smem.

MOV Cmem, dbl(Lmem) The long word move, two consecutive memory locations are moved. The data memory 

location addressed by coeffi cient data page pointer (CDP) is moved to memory loca-

tion pointed by Lmem. The next memory location pointed by CDP+1 is moved to the 

memory location pointed by Lmem+1

MOV dbl(Lmem), Cmem The long word move, two consecutive memory locations are moved. The data memory 

location pointed by Lmem is moved to memory location addressed by coeffi cient 

data page pointer (CDP). The next memory location pointe by Lmem+1 is moved to 

memory location addressed by CDP+1

MOV dbl(Xmem), dbl(Ymem) Two consecutive memory locations are moved using dual addressing mode. The data 

memory content pointed by Xmem and Xmem+1 are moved to memory locations 

Ymem and Ymem+1 respectively.

MOV Xmem, Ymem The data memory content pointed by Xmem is moved to memory content pointed 

by Ymem.

DELAY Smem The data move instruction. The instruction copies the content of memory location point 

by Smem to its higher address Smem+1. The content of memory location pointed by 

Smem remains the same.

Table 16.17 (Contd.)
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16.6.4 Compare Operations

The ¢C55X processor supports register compare, maximum compare, minimum compare and memory 

compare operations. The memory comparison is performed in A-unit ALU and other comparisons are 

performed in D-unit or A-unit ALU units. If the comparison is true the test control fl ag bit TCx is set 1, 

otherwise it is cleared to 0. There are two test control fl ags TC1 and TC2 in status register ST0_55 of 

¢C55X processor and any one can be used. The syntax and description of compare instructions are given 

in Table 16.19.

Table 16.19 Compare Instructions of ¢C55X

Syntax Description

MAX src, dst The maximum comparison instruction. The content of source register (src) and destina-

tion register (dst) are compared. If the content of source is greater than the destination, 

the source content is stored to destination and the CARRY status bit is cleared to 0. 

If the content of source is less than the destination, the destination register content 

remains the same and the CARRY status fl ag bit is set to 1.

MIN src, dst The minimum comparison instruction. The content of source register (src) and destina-

tion register (dst) are compared. If the content of source is less than the destination, 

the source content is stored to destination and the CARRY status bit is cleared to 0. 

If the content of source is greater than the destination, the destination register content 

remains the same and the CARRY status fl ag bit is set to 1.

CMP Smem = = #k16, TCx Memory compare instruction. The content of memory location pointed by Smem is 

compared to the 16-bit signed constant (k16). If they are equal the TCx status bit in 

status register is set to 1 else it is cleared to 0

CMP src RELOP dst, TCx

(RELOP operators

= = - equal

< - less than

>= - greater than or equal to

!= - not equal to)

RELOP refers relational operator. The content of source register and destination 

register are compared. If the relation operator (RELOP) specifi ed in the instruction is 

true the TCx status bit in status register is set to 1 else the TCx bit is cleared to 0.

CMPAND/CMPOR

src RELOP dst, TCy, TCx

The content of source register & destination register are compared. If the relation 

operator (RELOP) specifi ed in the instruction is true, TCx status bit in status register 

is set to 1 else the TCx bit is cleared to 0. The comparison result of TCx bit ANDed/

ORed with TCy bit and result is updated in TCx.

CMPAND/CMPOR

src RELOP dst, !TCy, TCx

The content of source register & destination register are compared. If the relation 

operator (RELOP) specifi ed in the instruction is true, TCx status bit in status register 

is set to 1 else the TCx bit is cleared to 0. The comparison result of TCx bit ANDed/

ORed with the complement of TCy bit and result is updated in TCx.

16.6.5 Program Control Operations

The program control operations of ¢C55X include instructions to perform single repeat, block repeat, 

branch, call, return, compare and branch, software interrupts and execute conditional operations. The 

single repeat, branch, call and return instructions can be executed conditionally or unconditionally. 

The various test conditions that can be used for the ¢C55X processor conditional instructions are given 

below:

 (i) Conditions testing of accumulator, auxiliary and temporary register content
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The content of registers are tested for equal to zero, not equal to zero, greater than, greater than or 

equal to zero, less than or less than or equal to zero. The syntax to represent the conditions in instructions 

is given below:
  == #0 – the content equal to zero  !==#0 – the content not equal to zero

  < #0 – the content less than zero   <=#0 – the content less than or equal to zero

  > #0 – the content greater than zero  >=#0 – the content greater than or equal to zero

Examples  ACx <#0 – the content accumulator less than zero

*ARx >#0 – the content of auxiliary register greater than zero

     Tx !==#0 – the content of temporary register not equal to zero

 (ii) Conditions testing accumulator overfl ow

The accumulator over fl ow fl ag bit (ACOVx) in status register can be tested for 1 or 0. The syntax 

for testing overfl ow is: 
overfl ow(ACx) – overfl ow fl ag bit tested for 1 & !overfl ow(ACx) – overfl ow fl ag bit tested for zero

 (iii) Conditions testing CARRY status bit

The CARRY status bit in status register can be tested for 1 or 0. The syntax for testing carry bit is: 

CARRY – carry fl ag bit tested for 1 & ! CARRY – carry fl ag bit tested for 0 

 (iv) Conditions testing test control fl ags TC1 & TC2 

The test control fl ag bits TC1 and TC2 can be independently tested for 1 or 0. The syntax for testing 

TCx bit is: TCx – test control fl ag tested for 1 & !TCx – test control fl ag tested for 0

The TC1 and TC2 bits can be combined with AND (&), OR (|) and XOR(^) logical bit combinations. 

The syntax is given below:

AND TC1 & TC2  TC1 & !TC2 OR TC1 | TC2 TC1 | !TC2 XOR TC1 ^ TC2  TC1 ^ !TC2

  !TC1 & TC2 !TC1 & !TC2  !TC1 | TC2 !TC1 | !TC2     !TC1 ^ TC2 !TC1 ^ !TC2

The program control instructions of ¢C55X are given in Table 16.20.

Table 16.20 Program Control Instructions of ¢C55X

Syntax Description

Single Repeat Instructions

RPT CSR The next instruction or the next two paralleled instructions followed by the RPT 

instruction is executed by the number of times specifi ed in computed single repeat 

register (CSR) + 1 time. 

RPTADD CSR, TAx The next instruction or the next two paralleled instructions followed by the RPT 

instruction is executed by the number of times specifi ed in computed single repeat 

register (CSR) + 1 time. The content of CSR is incremented by the content of temporary 

or auxiliary register content TAx. 

RPT #k8 The next instruction or the next two paralleled instructions followed by the RPT 

instruction is executed by the number of times specifi ed by the 8-bit immediate value 

k8 + 1 time. 

RPT #k16 The next instruction or the next two paralleled instructions followed by the RPT 

instruction is executed by the number of times specifi ed by the 16-bit immediate 

value k16 + 1 time.
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RPTADD/RPTSUB CSR, #k4 The next instruction or the next two paralleled instructions followed by the RPT 

instruction is executed by the number of times specifi ed in computed single repeat 

register (CSR) + 1 time. The content of CSR is incremented (ADD)/decremented 

(SUB) by the unsigned 4-bit value (k4) specifi ed in the instruction.

RPTCC #k8, cond Conditional single repeat instruction. If the condition specifi ed in the conditional 

operator fi eld is true, the next instruction or the next two paralleled instructions 

followed by the RPT instruction is executed by the number of times specifi ed by the 

8-bit immediate value k8 + 1 time.

Block repeat instructions

RPTB pmad Repeat block instruction. The block of instructions defi ned can be executed by number 

of times block repeat counter register (BRCx) + 1 time. There are two block repeat 

counter registers BRC0 & BRC1. If no loop has been already detected BRC0 content 

is used to repeat the block. If one level loop is detected BRC1 content is used to repeat 

the block. 

RPTBLOCAL pmad Nested repeat block instruction. The block of instructions defi ned can be executed by 

number of times block repeat counter register (BRCx) + 1 time. If no loop has been 

already detected BRC0 content is used to repeat the block. If one level loop is detected 

BRC1 content is used to repeat the block.

Branch instructions

B ACx Branch to 24-bit program memory address defi ned by lower order bits of accumulator 

ACx (23-0)

B L7/ L16/P24 Branches to a program address defi ned by a program address label assembled into 

Lx/P24

BCC I4/L8/L16/P24, cond Conditional branch instruction. Branches to a program address defi ned by a program 

address label assembled into I4/Lx/P24, if the condition specifi ed in the conditional 

operator fi led (cond) is true

BCC L16, ARn_mod != #0 Branch on auxiliary register content not zero instruction. Branch to program memory 

address specifi ed as a 16-bit signed offset, L16, relative to PC, if the auxiliary register 

address modifi cation content (ARn_mod) not zero. 

BCC L8, src RELOP #k8 Compare and branch instruction. The comparison operation between the source register 

content and the 8-bit signed value (k8) is performed. If the comparison is true, the branch 

to program memory address specifi ed as a 8-bit signed offset (L8), relative to PC.

Call instructions

CALL ACx/L16/L24 Call subroutine program address defi ned by the content of the 24 lowest bits of the 

accumulator ACx/a program address label assembled into L16 or P24.

CALLCC L16/P24, cond Conditional call instruction. A subroutine call occurs to the program address defi ned 

by the program address label assembled into L16 or P24, if the condition specifi ed in 

the conditional operator fi eld (cond) is true.

RET Return instruction. The program counter is loaded with the return address of the 

calling subroutine.

RETCC cond The program counter is loaded with the return address of the calling subroutine, if the 

condition specifi ed in the conditional operator fi eld (cond) is true.

RETI The program counter is loaded with the return address of the interrupted task.

Table 16.20 (Contd.)
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INTR #k5 This instruction passes control to a specifi ed interrupt service routine (ISR) and 

interrupts are globally disabled. The ISR address is stored at the interrupt vector address 

defi ned by the content of an interrupt vector pointer (IVPD or IVPH) combined with 

the 5-bit constant (k5).

RESET This instruction performs a nonmaskable software reset that can be used any time to 

put the device in a known state.

TRAP #k5 This instruction passes control to a specifi ed interrupt service routine (ISR). The ISR 

address is stored at the interrupt vector address defi ned by the content of an interrupt 

vector pointer (IVPD or IVPH) combined with the 5-bit constant (k5). This instruction 

is not maskable.

XCC label,cond This instruction evaluates a single condition defi ned by the conditional fi eld (cond) 

and allows to control the execution fl ow of an instruction, or instructions, from the 

address phase to the execute phase of the pipeline.

XCCPART label,cond This instruction evaluates a single condition defi ned by the conditional fi eld (cond) 

and allows to control the execution fl ow of an instruction, or instructions, from the 

execute phase of the pipeline

IDLE Power-down mode instruction. This instruction forces the program being executed to 

wait until an interrupt or a reset occurs.

NOP No operation. The program counter is incremented by 1 byte.

NOP_16 No operation. The program counter is incremented by 2 byte.

16.6.6 Bit Manipulation Operations

The bit manipulation instructions are to bit set or clear the status registers ST0_55 to ST3_55 and bit test/

set/clear/complement the registers and memory. Instructions are also available for bit fi eld comparison, 

bit fi eld expand and bit fi eld extract. The bit manipulation instructions are given in Table 16.21.

Table 16.21 Bit Manipulation Instructions of ¢C55X

Syntax Description

BCLR # k4,STx_55 Bit clear instruction. This instructions clear to 0 a single bit, as defi ned by a 4-bit immediate 

value ( k4) in the selected status register

BSET #k4,STx_55 Bit set instruction. This instructions set to 1 a single bit, as defi ned by a 4-bit immediate value 

(k4) in the selected status register

BCLR f-name The bit fi eld name (f-name) is cleared to 0 in the selected status register. The name of the bit to 

be cleared in status register can be specifi ed directly.

BSET f-name The bit fi eld name (f-name) is set to 1 in the selected status register. The name of the bit to be 

cleared in status register can be specifi ed directly

BTST Baddr, src,TCx A single bit of the source register location as defi ned by the bit addressing mode (Baddr) is tested. 

The tested bit is copied into the selected TCx status bit.

BNOT Baddr,src A single bit of the source register location as defi ned by the bit addressing mode (Baddr) is 

complemented. 

BCLR Baddr,src A single bit of the source register location as defi ned by the bit addressing mode (Baddr) is cleared 

to 0.

(Contd.)
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BSET Baddr,src A single bit of the source register location as defi ned by the bit addressing mode (Baddr) is set to 1.

BTSTP Baddr,src The two consecutive bits of the source register location as defi ned by the bit addressing mode 

(Baddr) and Baddr + 1are tested. The tested bits are copied into status bits TC1 and TC2.

BTST src,Smem,TCx A single bit in the memory location pointed by Smem is tested as defi ned by the content of the 

source operand (src). The tested bit is copied into the selected TCx status bit.

BNOT src,Smem A single bit in the memory location pointed by Smem is complemented as defi ned by the content 

of the source operand (src).

BCLR src,Smem A single bit in the memory location pointed by Smem is cleared to 0 as defi ned by the content 

of the source operand (src).

BSET src,Smem A single bit in the memory location pointed by Smem is set to 1 as defi ned by the content of the 

source operand (src).

BTSTSET 

#k4,Smem,TCx

A single bit in the memory location pointed by Smem is tested as defi ned by the 4-bit immediate 

value (k4). The tested bit is copied into status bit TCx. The selected bit in the memory location 

pointed by Smem is set to 1.

BTSTCLR 

#k4,Smem,TCx

A single bit in the memory location pointed by Smem is tested as defi ned by the 4-bit immediate 

value (k4). The tested bit is copied into status bit TCx. The selected bit in the memory location 

pointed by Smem is cleared to 0.

BTSTNOT 

#k4,Smem,TCx

A single bit in the memory location pointed by Smem is tested as defi ned by the 4-bit immediate 

value (k4). The tested bit is copied into status bit TCx. The selected bit in the memory location 

pointed by Smem is complemented.

BTST #k4,Smem,TCx A single bit in the memory location pointed by Smem is tested as defi ned by the 4-bit immediate 

value (k4). The tested bit is copied into status bit TCx. 

BAND Smem,#k16,TCx Bit fi eld comparison instruction. The 16-bit immediate value (k16) is ANDed with the content 

of memory location point by Smem. If the result is equal to zero, the TCx bit cleared to 0, else 

TCx bit is set to 1.

BFXPA #k16,ACx,dst Bit fi eld expand instruction. The 16-bit immediate value (k16) is scanned from the least signifi cant 

bit (LSB) to the most signifi cant bit (MSB). According to the bit set to 1 in the bit fi eld mask, 

the 16 LSBs of the source accumulator (ACx) bits are extracted & separated with 0 toward the 

MSBs. The result is stored in dst.

BFXTR #k16,ACx,dst Bit fi eld extract instruction. The 16-bit immediate value (k16) is scanned from the least signifi cant 

bit (LSB) to the most signifi cant bit (MSB). According to the bit set to 1 in the bit fi eld mask, 

the corresponding 16 LSBs of the source accu.(ACx) bits are extracted and packed toward the 

LSBs. The result is stored dst.

16.6.7 Parallel Operations

The ¢C55X processor supports instruction execution in parallel. The instructions can perform the 

following parallel operations:

 ∑ Multiply and store

 ∑ Multiply and accumulate (MAC), and store

 ∑ Multiply and subtract (MAS), and store

 ∑ Addition and store

 ∑ Subtraction and store

 ∑ Load and store

 ∑ Multiply and accumulate (MAC), and load

 ∑ Multiply and subtract (MAS), and load 
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 ∑ Dual multiply

 ∑ Multiply and accumulate (MAC) and multiply

 ∑ Multiply and multiply and accumulate (MAC) 

 ∑ Multiply and subtract (MAS) and multiply

 ∑ Dual multiply and accumulate (MAC)

 ∑ Dural multiply and subtract (MAS)

 ∑ Multiply and subtract (MAS) and multiply and accumulate (MAC) 

 ∑ Auxiliary register modifi cation and multiply

 ∑ Auxiliary register modifi cation and multiply and accumulate (MAC)

 ∑ Auxiliary register modifi cation and multiply and subtract (MAS)

 ∑ Multiply and accumulate (MAC) and add (Least mean square-LMS and Finite Impulse Response 

-FIRS)

 ∑ Multiply and accumulate (MAC) and subtract (Finite Impulse Response – FIRS and Square 

Distance-SQDST)

The syntax and description of parallel operation instructions are given in Table 16.22.

Table 16.22 Parallel Instructions of ¢C55X

Syntax Description

MPYM Xmem,Tx,ACy::

MOV HI(ACx << T2),Ymem

The content of memory location pointed by Xmem and the content 

of temporary register Tx are sign extended to 17-bits and multi-

plied. In parallel, the higher order bits of accu. ACx (31-16) is left 

shifted by the content of T2 and stored in memory location pointed 

by Ymem.

MACM Xmem, Tx, ACy::

MOV HI(ACx << T2),Ymem

The content of memory location pointed by Xmem and the content 

of temporary register Tx are sign extended to 17-bits, multiplied, 

the product is added to the content of ACy and the result stored in 

ACy. In parallel, the higher order bits of accu. ACx (31-16) is left 

shifted by the content of T2 and stored in memory location pointed 

by Ymem.

MASM Xmem, Tx, ACy::

MOV HI(ACx << T2),Ymem

The content of memory location pointed by Xmem and the content 

of temporary register Tx are sign extended to 17-bits, multiplied, 

the product is subtracted from the content of ACy and the result 

stored in ACy. In parallel, the higher order bits of accu. ACx (31-16) 

is left shifted by the content of T2 and stored in memory location 

pointed by Ymem.

ADD Xmem << #16, ACx, ACy::

MOV HI(ACy << T2), Ymem

The content of memory location pointed by Xmem is left shifted 

by 16-bits, added to the content of ACx and the result stored in 

ACy. In parallel, the higher order bits of accu. ACx (31-16) is left 

shifted by the content of T2 and stored in memory location pointed 

by Ymem.

SUB Xmem << #16, ACx, ACy::

MOV HI(ACy << T2), Ymem

The content of accu. ACx is subtracted from the content of memory 

location pointed by Xmem left shifted by 16-bits and the result 

stored in ACy. In parallel the higher order bits of accu. ACx (31-16) 

is left shifted by the content of T2 and stored in memory location 

pointed by Ymem.

(Contd.)
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MOV Xmem << #16, ACy::

MOV HI(ACx << T2), Ymem

The content of memory location pointed by Xmem is left shifted 

by 16-bits and stored in ACy. In parallel, the higher order bits of 

accu. ACx (31-16) is left shifted by the content of T2 and stored in 

memory location pointed by Ymem.

MACM Xmem, Tx, ACx::

MOV Ymem << #16, ACy

The content of memory location pointed by Xmem and the content 

of temporary register Tx are sign extended to 17-bits, multiplied, 

the product is added to the content of ACx and the result stored in 

ACx. In parallel, the content of memory location pointed by Ymem 

is left shifted by 16-bits and stored in ACy. 

MASM Xmem, Tx, ACx::

MOV Ymem << #16, ACy

The content of memory location pointed by Xmem & the content 

of temporary register Tx are sign extended to 17-bits, multiplied, 

the product is subtracted from the content of ACx and the result 

stored in ACx. In parallel, the content of memory location pointed 

by Ymem is left shifted by 16-bits stored in ACy. 

MPY uns(Xmem), uns(Cmem),ACx::

MPY uns(Ymem), uns(Cmem), ACy

The unsigned values in memory location pointed by Xmem and 

memory location addressed by coeffi cient data page pointer (CDP) 

are sign extended to 17-bits and multiplied, result stored in accu. 

ACx. In parallel, The unsigned values in memory location pointed 

by Ymem and memory location addressed by coeffi cient data page 

pointer (CDP) are sign extended to 17-bits and multiplied, result 

stored in accu. ACy.

MAC uns(Xmem),uns(Cmem), ACx::

MPY uns(Ymem), uns(Cmem),ACy

The unsigned values in memory location pointed by Xmem and 

memory location addressed by coeffi cient data page pointer (CDP) 

are sign extended to 17-bits and multiplied. The product is added 

to the content of ACx and the result stored in accu. ACx. In paral-

lel, The unsigned values in memory location pointed by Ymem 

and memory location addressed by coeffi cient data page pointer 

(CDP) are sign extended to 17-bits and multiplied, result stored 

in accu. ACy.

MAS uns(Xmem),uns(Cmem), ACx:: MPY 

uns(Ymem),uns(Cmem), ACy

The unsigned values in memory location pointed by Xmem and 

memory location addressed by coefficient data page pointer 

(CDP) are sign extended to 17-bits and multiplied. The product is 

subtracted from the content of ACx and the result stored in accu. 

ACx. In parallel, The unsigned values in memory location pointed 

by Ymem and memory location addressed by coeffi cient data page 

pointer (CDP) are sign extended to 17-bits and multiplied, result 

stored in accu. ACy.

AMAR Xmem::

MPY uns(Ymem),uns(Cmem), ACx

The content of auxiliary register is modifi ed as specifi ed by the con-

tent of memory location pointed by Xmem. In parallel, The unsigned 

values in memory location pointed by Ymem and memory location 

addressed by coeffi cient data page pointer (CDP) are sign extended 

to 17-bits and multiplied, result stored in accu. ACx.
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MAC uns(Xmem),uns(Cmem), ACx::

MAC uns(Ymem),uns(Cmem), ACy

The unsigned values in memory location pointed by Xmem and 

memory location addressed by coeffi cient data page pointer (CDP) 

are sign extended to 17-bits and multiplied. The product is added 

to the content of ACx and the result stored in accu. ACx. In paral-

lel, the unsigned values in memory location pointed by Ymem and 

memory location addressed by coeffi cient data page pointer (CDP) 

are sign extended to 17-bits and multiplied. The product is added to 

the content of ACy and the result stored in accu. ACy.

MAS uns(Xmem),uns(Cmem), ACx::

MAC uns(Ymem),uns(Cmem), ACy

The unsigned values in memory location pointed by Xmem and 

memory location addressed by coeffi cient data page pointer (CDP) 

are sign extended to 17-bits and multiplied. The product is subtracted 

from the content of ACx and the result stored in accu. ACx. In paral-

lel, the unsigned values in memory location pointed by Ymem and 

memory location addressed by coeffi cient data page pointer (CDP) 

are sign extended to 17-bits and multiplied. The product is added to 

the content of ACy and the result stored in accu. ACy.

AMAR Xmem::

MAC uns(Ymem),uns(Cmem), ACx

The content of auxiliary register is modifi ed as specifi ed by the con-

tent of memory location pointed by Xmem. In parallel, the unsigned 

values in memory location pointed by Ymem and memory location 

addressed by coeffi cient data page pointer (CDP) are sign extended 

to 17-bits and multiplied. The product is added to the content of 

ACx and the result stored in accu. ACx.

MAS uns(Xmem),uns(Cmem), ACx::

MAS uns(Ymem),uns(Cmem), ACy

The unsigned values in memory location pointed by Xmem and 

memory location addressed by coeffi cient data page pointer (CDP) 

are sign extended to 17-bits and multiplied. The product is subtracted 

from the content of ACx and the result stored in accu. ACx. In paral-

lel, the unsigned values in memory location pointed by Ymem and 

memory location addressed by coeffi cient data page pointer (CDP) 

are sign extended to 17-bits and multiplied. The product is subtracted 

from the content of ACy and the result stored in accu. ACy.

AMAR Xmem ::

MAS uns(Ymem),uns(Cmem), ACx

The content of auxiliary register is modifi ed as specifi ed by the 

content of memory location pointed by Xmem. In parallel, the un-

signed values in memory location pointed by Ymem and memory 

location addressed by coeffi cient data page pointer (CDP) are sign 

extended to 17-bits and multiplied. The product is subtracted from 

the content of ACx and the result stored in accu. ACx.

MAC uns(Xmem),uns(Cmem), ACx >> #16::

MAC uns(Ymem),uns(Cmem), ACy

The unsigned values in memory location pointed by Xmem and 

memory location addressed by coeffi cient data page pointer (CDP) 

are sign extended to 17-bits and multiplied. The product is added 

to the content of ACx right shifted by 16-bits and the result stored 

in accu. ACx. In parallel, the unsigned values in memory location 

pointed by Ymem and memory location addressed by coeffi cient 

data page pointer (CDP) are sign extended to 17-bits and multiplied. 

The product is added to the content of ACy and the result stored 

in accu. ACy.
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MPY uns(Xmem),uns(Cmem), ACx::

MAC uns(Ymem),uns(Cmem), ACy >> #16

The unsigned values in memory location pointed by Xmem and 

memory location addressed by coeffi cient data page pointer (CDP) 

are sign extended to 17-bits and multiplied, result stored in accu. 

ACx. In parallel, the unsigned values in memory location pointed 

by Ymem and memory location addressed by coeffi cient data page 

pointer (CDP) are sign extended to 17-bits and multiplied. The 

product is added to the content of ACy right shifted by 16-bits and 

the result stored in accu. ACy.

MAC uns(Xmem), uns(Cmem), ACx >> #16::

MAC uns(Ymem),uns(Cmem), ACy >> #16

The unsigned values in memory location pointed by Xmem and 

memory location addressed by coeffi cient data page pointer (CDP) 

are sign extended to 17-bits and multiplied. The product is added 

to the content of ACx right shifted by 16-bits and the result stored 

in accu. ACx. In parallel, the unsigned values in memory location 

pointed by Ymem and memory location addressed by coeffi cient 

data page pointer (CDP) are sign extended to 17-bits and multiplied. 

The product is added to the content of ACy right shifted by 16-bits 

and the result stored in accu. ACy.

MAS uns(Xmem),uns(Cmem), ACx::

MAC uns(Ymem), uns(Cmem), ACy >> #16

The unsigned values in memory location pointed by Xmem and 

memory location addressed by coeffi cient data page pointer (CDP) 

are sign extended to 17-bits and multiplied. The product is subtracted 

from the content of ACx and the result stored in accu. ACx. In 

parallel, the unsigned values in memory location pointed by Ymem 

and memory location addressed by coeffi cient data page pointer 

(CDP) are sign extended to 17-bits and multiplied. The product is 

added to the content of ACy right shifted by 16-bits and the result 

stored in accu. ACy.

AMAR Xmem::

MAC uns(Ymem),uns(Cmem), ACx >> #16

The content of auxiliary register is modifi ed as specifi ed by the con-

tent of memory location pointed by Xmem. In parallel, the unsigned 

values in memory location pointed by Ymem and memory location 

addressed by coeffi cient data page pointer (CDP) are sign extended 

to 17-bits and multiplied. The product is added to the content of ACx 

right shifted by 16-bits and the result stored in accu. ACx.

AMAR Xmem, Ymem, Cmem Two auxiliary register modify & one CDP modify operation 

executed in one cycle. The content of two auxiliary registers is 

modifi ed as specifi ed by the content of memory location pointed by 

Xmem & Ymem respectively. The content of coeffi cient data page 

pointer is modifi ed as addressed by coeffi cient data page pointer 

CDP addressing mode. 

LMS Xmem,Ymem, ACx, ACy

(MAC and Add)

The content of memory locations pointed by Xmem & Ymem is 

sign extended to 17-bits and multiplied. The product is added to 

the content of accu. ACy and the result stored in ACy. In parallel, 

the content of memory location pointed by Xmem is left shifted by 

16-bits and added to the content of accumulator ACx. The added 

result is rounded and stored in accumulator ACx. 
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FIRSADD/FIRSSUB

Xmem, Ymem, Cmem, ACx, ACy

FIRSADD - MAC and Add

FIRSSUB - MAC and Subtract

The higher order bits of accu. ACx (32-16) is multiplied with the 

content of memory location addressed by coeffi cient addressing 

mode Cmem, sign extended to 17-bits. The product is added to 

the content of accu. ACy and result stored in ACy. In parallel, the 

content of memory locations pointed by Xmem & Ymem are left 

shifted by 16-bits and added. The added result is stored in accu-

mulator ACx.

SQDST Xmem, Ymem, ACx, ACy

(MAC and Subtract)

The higher order bits (32-16) of the accumulator ACx is multiplied 

with itself (ACx*ACx – squaring) and added to the content of accu-

mulator ACy, result stored in ACy. In parallel, the content of memory 

location pointed by Ymem left shifted by 16-bits is subtracted from 

the content of memory location pointed by Xmem left shifted by 

16-bits. The subtracted result is stored in accumulator ACx.

16.6.8 AR, Tx, SP and XAR Register Access Operations

Instructions to modifty the conent of auxiliary registes (ARs), temporary registers (Tx), stack pointers 

(SP) and extended data page pointers (XDP) are available. The access of ARs, Tx and SP are performed 

in A-unit ALU and XDP access is done by D-unit ALU. Arithmetic operations can also be performed in 

ARs, Tx and SP registers. The instructions to access ARs, Tx, SP and XAR are given in Table 16.23.

Table 16.23 AR, Tx , SP and XAR access Instructions of ¢C55X

Syntax Description

AADD/ASUB TAx, 

TAy

Addition/subtraction between two temporary registers or auxiliary registers. The content of Tx/

ARx is added to/subtracted from the content of Ty/ARy and the result is stored in Ty/ARy.

AMOV TAx, TAy The content of temporary register Tx or auxiliary register ARx it moved to Ty or ARy content 

respectively.

AADD/ASUB #k8, 

TAx

The 8-bit unsigned constant (k8) is added to/subtracted from the content of temporary or 

auxiliary register and the result stored in Tx or ARx respectively.

AMOV #k8, TAx The 8-bit unsigned constant (k8) is moved to temporary or auxiliary register.

AMOV #D16, TAx The absolute data address signed constant D16 is loaded to temporary or auxiliary 

registers. 

AMAR Smem The auxiliary register is modifi ed as specifi ed by Smem

AADD #k8, SP The 8-bit signed constant (k8) is sign extended to 16-bits and added to the content of stack 

pointer (SP)

MOV xsrc, xdst Extended auxiliary register move instruction. The source and destination registers could be 

ACx (40-bits), XARx(23-bits), XSP(23-bits), XSSP(23-bits), XDP(23-bits), or XCDP(23-

bits). If the source register is accumulator ACx, the lower order bits (22-0) is moved to 

destination pointer registers. If the source register is 23-bit pointer register and the destination 

register is accumulator ACx, the higher order bits of ACx (39-23) are extended with zero. 

AMAR Smem, XAdst The 23-bit destination register (XARx, XSP, XSSP, XDP, or XCDP) content is modifi ed as 

per the effective address specifi ed by the Smem operand fi eld. 

(Contd.)
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AMOV #k23, XAdst The 23-bit unsigned constant (k23) is loaded into the 23-bit destination register (XARx, XSP, 

XSSP, XDP, or XCDP).

MOV dbl(Lmem), 

XAdst

The lower 7-bits of the memory content pointed by Lmem and 16-bits of the memory content 

pointed by Lmem+1 are loaded into the 23-bit destination register (XARx, XSP, XSSP, XDP, 

or XCDP).

MOV XAsrc, 

dbl(Lmem)

The content of the 23-bit source register (XARx, XSP, XSSP, XDP, or XCDP) is stored to 

32-bit data memory location addressed by data memory operand Lmem. The 7 MSBs of 

the register are stored into 7-LSBs of the memory location pointed by Lmem with 9-MSB 

of memory fi lled with zero and 16 LSBs of the register are stored into the memory location 

pointed by Lmem+1

PIPELINE OPERATION 16.7

The ¢C55X instruction pipeline is a protected pipeline that has the following two decoupled segments:

 • Fetch pipeline segment and

 • Execution pipeline segment

16.7.1 Fetch Pipeline Segment

The fi rst segment of the ¢C55X pipeline is fetch pipeline. In this segment, the program memory address 

is passed to program memory; the 32-bit instruction packet is fetched from memory and placed in the 

64 byte instruction buffer queue (IBQ). Then 48-bit instruction packet is fed to second pipeline segment. 

The phases of the fetch pipeline segment are Prefetch1, Prefetch2, Fetch and Predecode and are shown 

in Fig. 16.7(a). The operations performed in each phases of the fetch pipeline segment is given in Table 

16.5.

Fig. 16.7(a) First Segment of ¢C55X pipeline (Fetch Pipeline)

Table 16.5 Fetch pipeline segment phase operations 

Pipeline phase Description of the operation

Prefetch1 – PF1 The 24-bit program memory address is passed to memory

Prefetch 2 – PF2 Wait for memory to respond

Fetch – F The 32-bit instruction packet is fetched from memory and placed in the instruction buffer queue 

(IBQ)

Predecode – PD The instructions in the IBQ are pre-decoded. Identifying where the instructions begin and end. 

Identifying parallel instructions.

16.7.2 Execution Pipeline Segment 

The second segment of the pipeline phase is execution pipeline. In this segment the instructions are 

decoded, the data accesses are performed and computations are completed. The execution pipeline 

segment has eight phases namely decode, address, access1, access2, read, execute, write and write+ 

and are shown in Fig. 16.7(b). The operations performed in each phase of execute pipeline is given in 

Table 16.24.
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Fig. 16.7(b) Second Segment of ¢C55X pipeline (Execution Pipeline)

Table 16.24 Execution pipeline segment phase operations 

Pipeline 

phase

Description of the operation

Decode - D The six byte instruction is read from the instruction buffer queue (IBQ). The instruction pair or a single 

instruction is decoded. The instructions to the appropriate CPU functional units are dispatched. The 

STx_55 bits associated with data address generation is read.

Address - AD Registers involved in data address generation are read and address modifi cation in registers is performed. 

The operations pertaining to A-unit 16-bit ALU are performed. For the conditional branch instruction 

using ARx, the content of ARx is decremented and braches on ARx being non zero. The condition of 

the XCC instruction is evaluated as an exception.

Access1 (AC1) The data memory addresses are sent on the appropriate CPU address buses for memory read opera-

tion.

Access2 (AC2) One cycle is allowed for memories to respond to read requests.

Read (R) The data from memory and memory mapped register (MMR) addressed registers are read and passed 

to CPU. The A-unit registers are read, when executing specifi c D-unit instructions. The conditions of 

conditional instructions are evaluated except the exception cases.

Execute (X) The registers that are not MMR addressed are read /modifi ed. The individual register bits are read/ 

modifi ed. The conditions are set. The condition of the XCCPART and RPTCC instructions are evalu-

ated as an exception. 

Write (W) The data write to MMR addressed registers or to peripheral registers are performed. From the perspec-

tive of CPU the data memory write operation is performed. 

Write+ (W+) From the perspective of memory, the data memory write operation is performed.

16.7.3 Pipeline Protection 

The ¢C55X pipeline is a protected pipeline. In an unprotected pipeline, when multiple instructions are 

executed simultaneously in the pipeline, where read and write at the same location lead to pipeline 

confl icts. The ¢C55X has a mechanism that automatically protect against pipeline confl icts by adding 

inactive cycles between instructions that would cause confl icts. The pipeline protection cycles are 

inserted based on the following two rules:

 ∑ If an instruction is a write instruction to a location, but the previous instruction has not yet 

read from that location, extra cycles are inserted so that the read occurs fi rst then the write can 

happen. 

 ∑ If an instruction is a read instruction from a location, but the previous instruction has not yet 

written to that location, extra cycles are inserted so that the write occurs fi rst followed by that 

read can happen.

INTERRUPTS 16.8

The ¢C55X processor supports up to 32 interrupts. Some interrupts can be triggered by software or 

hardware, where others can be triggered only by software. All the interrupt in ¢C55X are placed in 

two categories, nonmaskable and maskable interrupts. The maskable interrupts can be blocked through 

software. 
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The RESET and NMI are the two nonmaskable interrupts. These two interrupts can be triggered 

both by hardware and software. There are 30 maskable interrupts, in which IV2-IV29 are hardware or 

software interrupts and SIV30 and SIV31 are only software interrupts. The IV24 interrupt is bus error 

interrupt (BERR), IV25 is data log interrupt (DLOG) and IV26 is real-time operating system interrupt 

(RTOS). The interrupts IV27-IV29 are reserved.

The interrupt vector pointer IVPD and IVPH points up to 32 interrupt vectors in program space. 

IVPD points 256 byte program page for interrupts 0-15 and 24-31 and IVPH points to the 256 byte 

program page for interrupts 16-23. The registers used to enable the maskable interrupts are interrupt 

enable registers IER0 and IER1 and debug interrupt enable registers DBIER0 and DBIER1. The INTM 

bit is used to globally enable/disable all the maskabale interrupts. 

PERIPHERALS  16.9

The ¢C55X DSPs have the following common on-chip peripherals in all the devices

 ∑ Clock generator with PLL

 ∑ General purpose timer

 ∑ Multichannel serial ports (McBSP)

 ∑ Direct memory access controller (DMA)

 ∑ External memory interface (EMIF)

 ∑ Host port interface (HPI)

 ∑ Power management/Idle confi gurations

They also have the following certain other on-chip peripherals in some devices of ¢C55X.

 ∑ Watchdog timer

 ∑ Analog-to-digital converter (ADC)

 ∑ Real-time clock (RTC)

 ∑ Instruction cache (IC)

 ∑ Inter-integrated circuit (I2C) module

 ∑ Universal asynchronous receiver/transmitter (UART)

 ∑ Universal serial bus module (USB)

 ∑ Multimedia card/SD card controller

The list of peripherals in various ¢C55X DSPs and its quantity are given in Table 16.25.

Table 16.25 TMS320C55X DSP Peripherals 

Description of the Peripheral ¢C5501 ‘5502 ¢C5509 ¢C5510

Clock generator with PLL 1 1 1 1

General purpose timer 2 2 2 2

Multichannel serial ports (McBSP) 2 3 3 3

Direct memory access controller (DMA),External memory 

interface (EMIF), Host port interface (HPI) & Power 

management/Idle confi gurations

1 1 1 1

Watchdog timer &Inter-integrated circuit (I2C) module 1 1 1 —

Instruction cache (IC) 1 1 — 1
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Universal asynchronous receiver/ transmitter (UART) 1 1 — —

Analog-to-digital converter (ADC),Real-time clock (RTC) and 

Universal serial bus module (USB)

— — 1 —

Multimedia card/SD card controller — — 2 —

Clock Generator with PLL The clock generator accepts an input clock at the CLKIN pin and enables 

to produce an output clock of desired frequency. The output clock signal is passed to CPU, peripherals 

and other modules inside ¢C55X processor. A digital phase-lock loop (PLL) is included in the clock 

generator and it can be enabled or bypassed by programming clock mode register (CLKMD). The fre-

quency of the input clock signal is divided by 1, 2 or 4 in PLL bypass mode. In PLL enable mode, the 

input clock signal is multiplied by a factor decided by PLL MULT and PLL DIV bits in the CLKMD 

register. The CPU clock can also be passed through a programmable clock divider to the CLKOUT pin. 

The frequency of CLKOUT pin depends on the CLKDIV bits of the system register (SYSR) and the 

divide value can be varied from 1 to 14 times of the CPU clock frequency. 

General Purpose Timer The ¢C55X processors have two identical 20-bit software programmable 

timers. These timers are used to generate periodic clock signal for the devices outside the processor and 

to generate periodic interrupts. The general-purpose timer has up to a 20-bit dynamic range provided 

by two counters, a 4-bit prescaler counter and a 16-bit main counter. The timer has two count registers 

PSC and TIM along with two corresponding period registers TDDR and PRD of size 4-bits and 16-bits 

respectively. The operation is same as that of timer in ¢C5X device except that the PSC and TDDR bits 

are present separately in timer prescaler register (PRSC) instead of in timer control register (TCR) and 

more control bits are introduced in TCR. 

Multichannel Serial Ports (McBSP) The ¢C55X DSPs have 2/3 high-speed, multichannel buffered 

serial ports that allow direct interface to other C55x DSPs, codecs, and other devices in a system. 

The operation and features of McBSP in ¢C55X device is same as that in ¢C6X devices (refer chapter 

15.5.2). 

External Memory Interface (EMIF) The ¢C55X EMIF controls all data transfers between the DSP 

and external memory. The EMIF provides a glueless interface to the following three types of memory 

devices:

 ∑ Asynchronous devices, including ROM, fl ash memory and asynchronous SRAM.

 ∑ Synchronous burst SRAM (SBSRAM)

 ∑ Synchronous DRAM (SDRAM)

The EMIF also supports the following types of accesses

 ∑ 32-bit instruction fetches for the CPU or the instruction cache

 ∑ 8, 16 and 32-bit data accesses for the CPU or the DMA controller

Host Port Interface (HPI) The HPI enables an external host processor to directly access a portion of 

the memory in the memory map of the ¢C55X DSP through a 16-bit-wide parallel port. The host and the 

DSP can exchange information via memory internal or external to the DSP and within the address reach 

of the HPI. The HPI uses 20-bit addresses, where each address is assigned to a 16-bit word in memory. 

Table 16.25 (Contd.)
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The DMA controller handles all HPI accesses. Through the DMA controller, one of two HPI access con-

fi gurations can be chosen. In one confi guration, the HPI shares internal memory with the DMA chan-

nels. In the other confi guration, the HPI has exclusive access to the internal memory. The HPI cannot 

directly access other peripherals’ registers. If the host requires data from other peripherals, then the data 

must be moved to memory fi rst, either by the CPU or by activity in one of the six DMA channels. Same 

way data from the host must be transferred to memory before being transferred to other peripherals.

The HPI allows two modes for passing data and addresses, the nonmultiplexed mode and the 

multiplexed mode. In nonmultiplexed mode the host processor is provided with separate address and 

data buses, but in multiplexed mode it provides a single bus to transport address and data information. 

The following three HPI registers that a host can be used to access the memory of the DSP:

 ∑ HPI data register –HPID

 ∑ HPI address register – HPIA

 ∑ HPI control register - HPIC 

Watchdog Timer The watchdog timer available in certain devices of ¢C55X and it is to prevent a 

system from locking up if the software becomes trapped in loops with no controlled exit. It provides an 

automatic mechanism for recovery from application software error conditions by counting down for a 

pre-defi ned number of cycles and used to trigger an interrupt or a DSP reset. 

The watchdog timer consists of a prescaler up to 16- bit resolution followed by a 16-bit main counter, 

which provides a counter up to 32-bit dynamic range. The watchdog timer is disabled after reset allowing 

the application software to confi gure it before it is enabled. After the watchdog timer is enabled, it 

cannot be disabled without a DSP reset or timeout condition due to software error. 

Analog-to-Digital Converter (ADC) The on-chip ADC is available in ‘VC5507 and ¢C5509 de-

vices. The 10-bit successive approximation ADC converts an analog input signal to a digital value for 

use by the DSP. There are four input AIN0-AIN3 and the ADC can sample one of the inputs with a 

maximum sampling rate of 21.5KHz and generates a 10-bit digital representation. This ADC is suitable 

for sampling analog signals that change at a slow rate.

Real-Time Clock (RTC) The RTC provides a time reference and the capability to generate time-based 

alarms to interrupt the DSP. The current date and time is tracked in a set of counter registers that update 

once per second. The time can be represented in 12-hour or 24-hour mode. The calendar and time reg-

isters are buffered during reads and writes so that updates do not interfere with the accuracy of the time 

and date. Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, 

such as once per minute or once per day. In addition, the RTC can interrupt the CPU every time the cal-

endar and time registers are updated, or at programmable periodic intervals. The real-time clock (RTC) 

provides the following features:

 ∑ 100-year calendar up to year 2099

 ∑ Counts seconds, minutes, hours, day of the week, date, month, and year with leap year 

compensation

 ∑ Binary-coded-decimal (BCD) representation of time, calendar, and alarm

 ∑ 12-hour clock mode (with AM and PM) or 24-hour clock mode

 ∑ Second, minute, hour, day, or week alarm interrupt

 ∑ Update cycle interrupt

 ∑ Periodic interrupt
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 ∑ Single interrupt to the DSP CPU

 ∑ Supports external 32.768-kHz crystal or external clock source of the same frequency

 ∑ Separate isolated power supply

Instruction Cache (IC) Some ¢C55X devices have instruction cache. The instructions can reside 

in internal memory or external memory. When instructions reside in external memory, the instruction 

cache (I-Cache) can improve the overall system performance by buffering the most recent instructions 

accessed by the CPU. The CPU status register ST3_55 contains three cache control bits for enabling, 

freezing, and fl ushing the I-Cache. To confi gure the I-Cache and to check its status, the CPU accesses a 

set of registers in the I-Cache. For storing instructions, the I-Cache has the following:

 ∑ One 2-way cache. The 2-way cache uses 2-way set associative mapping and holds up to 16K 

bytes. It has 512 sets, two lines per set, four 32-bit words per line. In the 2-way cache, each line 

is identifi ed by a unique tag.

 ∑ Two RAM sets. These two banks of RAM are available to hold blocks of code. Each RAM set 

holds up to 4K bytes. It has 256 lines, four 32-bit words per line. Each RAM set uses a single 

tag to identify a continuous range of memory addresses that is represented in the RAM set. 

Before enabling the I-Cache, confi gure the I-Cache to use zero, one, or both RAM sets.

Inter-Integrated Circuit (I2C) Module The I2C module provides an interface between one of the 

¢C55X DSPs and devices compliant with Philips Semiconductors Inter-IC bus (I2C-bus) specifi cation 

version 2.1 and connected by way of an I2C-bus. External components attached to this 2-wire serial bus 

can transmit/receive 1to 8-bit data to/from the ¢C55X DSP through the I2C module.

Universal Asynchronous Receiver/Transmitter (UART) The UART peripheral is based on the 

industry-standard TL16C550 asynchronous communications element. The UART can be placed in an 

alternate FIFO mode and relieves the CPU of excessive software overhead by buffering received and 

transmitted characters. The receiver and transmitter FIFOs, store up to 16 bytes including three addi-

tional bits of error status per byte for the receiver FIFO. The UART performs serial-to-parallel conver-

sions on data received from a peripheral device and parallel-to-serial conversion on data received from 

the CPU. The CPU can read the UART status at any time. The UART includes control capability and a 

processor interrupt system that can be tailored to minimize software management of the communica-

tions link. The UART includes a programmable baud generator capable of dividing the UART input 

clock by divisors from 1 to 65535 and producing a 16X reference clock for the internal transmitter and 

receiver logic. 

Universal Serial Bus Module (USB) Using the USB module, the ¢C55X DSP can be used to create a 

full speed (12Mbps) USB slave device that is compliant with Universal Serial Bus Specifi cation Version 

2.0. The ¢C55X USB module has the following 16 endpoints:

 ∑ Two control endpoints OUT0 and IN0 for control transfers only.

 ∑ Fourteen general-purpose endpoints OUT1-OUT7 and IN1-IN7, for other types of transfers.

Each of these endpoints can support the following:

 ∑ Bulk, interrupt and isochronous transfers.

 ∑ An optional double-buffer scheme for fast data throughput.

 ∑ A dedicated DMA channel. 
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A DMA controller inside the USB module can pass data between the general-purpose endpoints and 

the DSP memory while the CPU performs other tasks. The USB DMA controller cannot access the 

control endpoints.

Multimedia Card/SD Card Controller The multimedia/SD card controller supports both the Mul-

tiMediaCard (MMC) protocol and the Secure Digital (SD) Memory Card protocol. The controller has 

a programmable option for the frequency of operation of the MMC controller and for the clock that 

controls the timing of transfers between the MMC controller and the memory card. The MMC controller 

passes data between the CPU or the DMA controller on one side and one or more a memory cards on the 

other side. The CPU or the DMA controller can read from or write to the control and status registers in 

the MMC controller. The CPU and/or the DMA controller can store or retrieve data in the DSP memory 

or in the registers of other peripherals. Data transfers between the MMC controller and a memory card 

can use one bidirectional data line (for the MMC protocol) or four parallel data lines (for the SD proto-

col). If multiple cards are connected, the MMC controller uses commands of the MMC/SD protocol to 

select and communicate with one card at a time.

Review Questions 

16.1 What are the key features of TMS320C55X 

processors?

16.2 Compare the features of TMS320C54X and 

TMS320C55X processors.

16.3 What are the important units in the CPU of ¢C55X 

processor?

16.4 Explain the function of I-unit.

16.5 List the various buses present in ¢C55x processor.

16.6 Explain the opration of program folw unit (P-unit).

16.7 List the registers present in the program fl ow 

unit.

16.8 What are the operations performed by the address 

generation unit (A-unit) ALU?

16.9 What is the function of address generation unit 

(A-unit)?

16.10 What are the various functional units present in 

data computation unit (D-Unit)?

16.11 Explain the actions performed by the D-unit.

16.12 Explain the on-chip memory details of ¢C55X 

processor.

16.13 What are the various addrssing modes of ¢C55x 

processor?

16.14 Explain the types of abosulte addressing mode.

16.15 How DP and SP are used for direct addressing 

mode?

16.16 List the types of indirect addressing mode 

access.

16.17 Explain the important points to be remembered 

in indirect addressing mode?

16.18 What are the various ways the address modifi cation 

can be done in AR indirect addressing mode?

16.19 Explain about CDP indirect addressing mode and 

its uses.

16.20 How circular buffer can be initialized in ¢C55X? 

Explain.

16.21 Explain different ways memory mapped register 

(MMR) can be accessed in ¢C55X.

16.22 What are the different types of arithmetic 

instructions in ¢C55X?

16.23 Explain about the logical operations in ¢C55X.

16.24 What are the different categories of move 

oprations in ¢C55X? Explain.

16.25 Explain about the compar operation in ¢C55X 

processor.

16.26 What are the various test conditions present in 

¢C55X processor?

16.27 List the different parallel operations that can be 

executed in ¢C55X.

16.28 How AR, SP and CDP registers are accessed? 

Explain.

16.29 Explain the different phases of ¢C55X pipeline.

16.30 List the various interrupts in ¢C55x processor.

16.31 What are the peripheral devices present in ¢C55X 

processor?



Architecture of TMS320C55X Processors  485

Self Test Questions 
16.1 The bit size of the ¢C55X processor is __

(a) 16 (b) 32 (c) 8 (d) 24

16.2 The size of ¢C55X CPU is __

(a) 16 (b) 32 (c)40 (d) 24

16.3 The number of ALUs in ¢C55X CPU is ___

(a) 1 (b) 2 (c) 4 (d) 6

16.4 The size of the instrcion buffer queue is __

(a) 32x 16 (b) 32 x32 (c) 16x16 (d) 24x16

16.5 The numer of MAC units in ¢C55X processor is ___

(a) 1 (b) 2 (c) 4 (d) 6

16.6 The number of accumulators in ¢C55X processor is 

___

(a) 1 (b) 2 (c) 4 (d) 6

16.7 The number of auxiliary register (ARs) units in 

¢C55X processor is ___

(a) 3 (b) 2 (c) 4 (d) 6

16.8 The number of read buses in ¢C55X processor is 

___

(a) 2 (b) 3 (c) 4 (d) 6

16.9 The number ofwrite buses in ¢C55X processor is 

___

(a) 3 (b) 2 (c) 4 (d) 6

16.10 What is the size of program read address bus?

(a) 16 (b) 32 (c) 23 (d) 24

16.11 The size of data read address bus is ___

(a) 16 (b) 32 (c) 23 (d) 24

16.12 The number of status registers present in ¢C55X 

processor is ___

(a) 3 (b) 2 (c) 4 (d) 6

16.13 The number of block repeat counters (BRC) 

present in ¢C55X processor is ___

(a) 3 (b) 2 (c) 4 (d) 6

16.14 The size of XAR and XDP is ___

(a) 16 (b) 32 (c) 23 (d) 24

16.15 The size of program/data space of ¢C55X processor 

is ___

(a) 64K words (b) 16 M words

(c) 16 M bytes (d) 64 K bytes

16.16 The size of I/O of ¢C55X processor is ___

(a) 64K words (b) 16 M words

(c) 16 M bytes (d) 64 K bytes

16.17 In absolute addressing mode the size of unsigned 

constants used are ___

(a) 8 & 16 (b) 16 &23 (c) 4 & 8 (d) 16 &24

16.18 In AR indirect addressing the linear/circular 

address modifi cation depends on __ bit.

(a) ARnLC (b) CDPLC (c) C54CM (d) ARMS

16.19 In CDP indirect addressing linear/circular address 

modifi cation depends on __ bit.

(a) ARnLC (b) CDPLC (c) C54CM (d) ARMS

16.20 The number of circular buffers present in ¢C55X 

processor is ___

(a) 3 (b) 5 (c) 4 (d) 6

16.21 The numer of memory mapped CPU registers in 

¢C55X processor is___

(a) 80 (b) 96 (c) 120 (d) 128

16.22 The number of test control fl ag bits in ¢C55X 

processor is ___

(a) 3 (b) 2 (c) 4 (d) 1

16.23 The number of phases in fetch pipeline segment 

of ¢C55X is ___

(a) 4 (b) 6 (c) 8 (d) 5

16.24 The number of phases in execute pipeline 

segment of ¢C55X is ___

(a) 4 (b) 6 (c) 8 (d) 5

16.25 The number of nonmaskable interrupts in ¢C55X 

processor is ___

(a) 3 (b) 2 (c) 16 (d) 1

16.26 The number of maskable interrupts in ¢C55X 

processor is ___

(a) 8 (b) 16 (c) 30 (d) 32

16.27 The number of on-chip timers in ¢C55X processor 

is ___

(a) 3 (b) 2 (c) 4 (d) 1

16.28 The size of the timer in ¢C55X processor is ___

a) 16 (b) 32 (c) 24 (d) 20

16.27 The maximum sampling rate for the ADC in ¢C55X 

processor is ___

(a) 8 KHz (b) 19.2 KHz (c) 21.5 KHz (d) 44.1 KHz



In the previous chapters, some of the simple applications such as waveform generation, convolution of 

sequences, Symmetric FIR fi lter are used to illustrate the use of programmable DSPs. The real world DSP 

applications are more sophisticated than them. To appreciate the computational requirements as well as 

the storage requirements for using the P-DSPs for these advanced applications, thorough understanding 

of the various issues relating to the particular application is required. For example, to design an echo 

canceller scheme for cellular telephone applications, the various sources of echo, the models used for 

the echo , the strength of the desired signal, the extent to which the echo needs to be cancelled should be 

known. One may not always have the luxury of implementing a fi lter whose fi lter coeffi cients and the 

sampling rates are completely specifi ed. Since diverse applications require the knowledge on diverse 

fi elds, to keep the treatment simple, these applications are not discussed in detail in this book. However, 

a brief description of some of the real world applications where the P-DSPs are deployed is given in 

Section 17.1.

In the recent past, DSP systems are also being built around an alternate approach based on Field 

Programmable Gate arrays (FPGA). An introduction to this approach is presented in Section 17.2-17.10. 

This approach is also compared with that using the P-DSPs in Section 17.11.

AN OVERVIEW OF THE APPLICATION NOTES ON DSP SYSTEMS 17.1

Texas instruments offi cial web site www.ti.com contains rich information on the TI DSPs, their 

applications and interfacing details. To access the documents pertaining to a particular digital signal 

processor, the following steps may be followed:

 ∑ Select technical documents on home page

 ∑ In the product type, select Digital signal processors & ARM processor platforms

 ∑ Then choose the name of processor such as TMS320c54X and document type required (such as 

application notes)

The web site includes details on the TI DSP processors, application notes on programming these 

devices, interfacing details, details on the C compiler, and no. of application reports. A brief summary of 

some of these application reports are given next. Some of these reports are also available in Papamichalis 

et al [1991].

17

RECENT TRENDS IN 

DSP SYSTEM DESIGN
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The report on Telecommunication applications with TMS30c5X has an exhaustic account of the theory 

and implementation of various applications using the 5X processor. This describes how the systems for 

speech synthesis, error-correction coding, baseband modem, etc. required for Digital Cellular Systems 

can be implemented using general-purpose DSPs. This report also includes an application paper on 

U.S. Digital Cellular vocoder implementation using 5X. Details of Concatenated coding schemes used 

to provide protection against bit errors using both the CRC and convolutional codes is discussed in this 

report. Details on Forward error correcting coding (FEC) schemes and implementation of forward error-

correction technique used for V.32 Modems is also discussed in this report.

The implementation of the U.S. Digital Cellular IS-54 standard modem for mobile phones using 5X 

is discussed in this report. Additional topics discussed in this report include the following:

 ∑ U.S. digital cellular error-correction coding algorithm on TMS320c5x DSPs 

 ∑ Viterbi implementation on the TMS320c5x for V.32 modems 

 ∑ Automated dialing of cellular telephones using speech recognition 

 ∑ Channel equalization for the IS-54 digital cellular system with the TMS320c5x 

 ∑ Digital voice echo canceler implementation on the TMS320c5x 

 ∑ DSP-Based Handprinted Character Recognition 

In the report, DSP solutions for Telephony and data/fax modem, a detailed account of the principle of 

operation of Telephony as well as Modems is presented fi rst. Next the implementation details of voice 

mail systems using TI DSPs for the following operations 

 ∑ Tone detection and generation

 ∑ DTMF generation and detection

 ∑ Voice compression and decompression using ADPCM

and implementation of functions like Line echo cancellation, acoustic echo cancellation required for Full 

duplex speakerphone and modem applications are discussed in detail. Another application discussed in 

this report is transmission of Caller Identifi cation (CID) information from the telephone company, via 

the local loop, to the subscriber’s CID unit. 

All the above applications can also be implemented in TMS320C54x processors. The report, Viterbi 

Decoding Techniques in the TMS320C54x Family, gives an outline of the theory of convolutional coding 

and decoding and explains the programming techniques for Viterbi decoding in the Texas Instruments 

(TI) TMS320C54x family of digital signal processors (DSPs). Some of the other applications discussed 

in the C5000 website includes the following

 ∑ Extended Precision IIR Filter Design on the TMS320C54x 

 ∑ TMS320C54x Digital Filters

 ∑ Fast Fourier Transform Algorithms of Real-Valued Sequences with TMS320 Family 

 ∑ Implementation of the Double-Precision Complex FFT for the TMS320C54x DSP 

 ∑ Overfl ow Avoidance Techniques in Cascaded IIR Filter Implementation on TMS320 DSPs 

 ∑ Implementation of a Software UART on TMS320C54x Using I/O Pins 

 ∑ TMS320C5000 DMA Applications 

Some of the applications on 3X discussed in the website is listed below. 

Some of them are also available on the above CD.

 ∑ Engine knock detection using spectral analysis with TMS320c25 or TMS320c30 dsps 

 ∑ Enhanced control of an ac motor using fuzzy logic and a TMS320 dsp 

 ∑ Integrated automotive signal processing and audio system using a TMS320c3x dsp 

 ∑ FFT, DCT, and Other Transforms on TMS320C30
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 ∑ A DSP-Based Three-Dimensional Graphics System 

 ∑ Adaptive Active Noise Control for Headphones Using the TMS320C30 DSP 

 ∑ Adaptive Filters With TMS320C25 or TMS320C30 

 ∑ CELP Speech Coder for TMS320C30 Using SPOX 

 ∑ Implementing a Fast 3-D Vision Sensor With Multiple TMS320C31 DSPs 

 ∑ Integrated Automotive Signal Processing and Audio System Using a TMS320C3x DSP 

AN OVERVIEW OF OPEN MULTIMEDIA APPLICATIONS PLATFORM(OMAP) 17.2

The OMAP architecture is based on a combination of Texas Instruments TMS320 DSP core (such as 

55x, 64x) and high performance RISC processor such as ARM925T, ARM Cortex A8 and A9 CPU. It 

is targeted for 2.5G and 3G wireless systems requiring advanced video and speech processing tasks 

such as encoding and decoding video/audio data, data compression, motion compensation, pixel 

Interpolation, speech recognition and synthesis. OMAP combines both DSP and RISC core in a single 

IC in order to gain the maximum benefi ts from both. The RISC architecture is well suited for execution 

of control instructions commonly required for Operating System (OS), man-machine Interfaces and 

OS applications. DSP is best suited for signal processing applications, such as MPEG4 video, speech 

recognition, and audio playback. A comparative benchmarking study [Jamil Chaoui,2001], using 

StrongARM™, ARM9E™ and C55x™ DSP shows that signal processing task such as echo cancellation, 

MP3, MPEG4 and JPEG decoding executed on these RISC machines requires three times more cycles 

compared to that required for execution on a C55x™ DSP. In terms of power consumption, tests show 

that a given signal-processing task executed on such a RISC engine consumes more than twice the 

power required to execute the same task on a C55x DSP architecture.

 Hence, battery life is much greater when such tasks are executed on a DSP.The OMAP architecture’s 

use of two processors provides this kind of power consumption benefi ts. At the same time, it allows the 

DSP to gain support from the RISC processor. For instance, a single C55x DSP can process, in real time, 

a full videoconferencing application (audio and video at 15 images/sec.), using only 40 percent of the 

available computational capability. Therefore, 60 percent of the capacity can be employed to run other 

applications concurrently. At the same time, in the OMAP dual-core architecture, the ARM processor 

stands ready to handle any other application requirements or can be suspended, thus saving battery life. 

As a result, the mobile user can enjoy access to popular OS applications (Word™, Excel™, etc.) while 

also engaging a videoconferencing application.

Both processors utilize an instruction cache to reduce the average access time to instruction memory 

and eliminate power-hungry external accesses. In addition, both cores have a memory management unit 

(MMU) for virtual-to-physical memory translation and task-to-task memory protection. The OMAP 

core contains two external memory interfaces and one internal memory port. The external memory 

interfaces support direct connection to synchronous DRAMs and to standard asynchronous memories, 

such as SRAM, FLASH, or burst FLASH devices. The latter interface is typically used for program 

storage. The OMAP core also contains numerous interfaces to connect to peripherals or external devices 

from either the DSP or GPP.

To support common operating system requirements, the OMAP architecture includes several 

peripherals, timers, general purpose input/ output interfaces (I/Os), UART, and watchdog timers. These 

are the minimum peripherals required in the system; other peripherals can be added on the TI peripheral 

bus (TIPB) interfaces.
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OMAP supports high-level operating systems (OSs), such as  Linux and  Windows CE. OMAP has a 

number of on chip hardware accelerator such as graphics accelerator and image processing hardware for 

DCT, IDCT, Pixel Interpolation and Motion Estimation. OMAP has four families OMAP1 – OMAP4. 

The type of RISC CPU, DSP and on chip hardware accelerators in an OMAP device depends on the 

family. Many of these OMAP devices such as that belonging to OMAP2 are available only for high 

volume manufacturers such as the vendors of Internet Tablets and mobile phones. Table 17.1 gives a 

sample list of devices belonging to different families. It may be noted that some OMAP devices do not 

contain 320x family DSP. Devices such as OMAP3530 also contain DAC. Functional block diagram of 

OMAP1510 and OMAP3530 are shown in Fig.17.1 and 17.2 respectively.

Table 17.1 Features of some OMAP devices 

Device No. RISC CPU DSP h/w accelerator

No. speed No. speed

OMAP1510 ARM925T 168 MHz C55x 200 MHZ Dct, Idct, Pixel Interpola-

tion, Motion Estimation 

OMAP2431 ARM1136 330 MHz C64x 220 MHz —

OMAP2420 ARM1136 330 MHz C55x 220 MHz PowerVR MBX GPU

OMAP3410 ARM Cortex 

A8

600 MHz C64x 430MHz PowerVR SGX 530 GPU

OMAP3530 ARM Cortex 

A8

720 MHz C64x 520 MHz PowerVR SGX 530 GPU

OMAP4430 ARM Cortex 

A9

720 MHz — — PowerVR SGX 540 GPU, 

DSP ISP, IAV3

Fig. 17.1 Functional block diagram of OMAP 1510 (Courtesy of Texas Instruments inc.)
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The OMAP architecture abstracts the implementation of the DSP software architecture from the GPP 

environment. This is achieved defi ning an interface scheme that allows the GPP to be the system master. 

This interface scheme is called the DSP/BIOS™ Bridge and consists of a set of APIs that includes device 

driver interfaces. The most important function of the DSP/BIOS Bridge is providing communications 

between GPP applications and DSP tasks. The application developers develop programs on the 

OMAP platform as if they were developing on a single RISC processor. The environment provided for 

development allows the application developer to call the localized functions for video, audio, speech, 

etc. and to develop in the traditional manner on platforms such as the PC. The high-level application 

developer does not require any awareness of the DSP or DSP/BIOS Bridge API. The DLL and driver 

developers actively use the DSP/BIOS Bridge API to: Initiate and control tasks on the DSP, Exchange 

messages with the DSP Stream data to and from the DSP and Perform status queries. 

EVOLUTION OF FPGA BASED DSP SYSTEM DESIGN 17.3

The digital signal processors have completed one complete cycle. In the 1970’s, some of the DSP 

systems like fi lters and equalizers were built in hardware using multipliers, shift registers and adders. 

However, towards the end of 1970’s, processing the signal in transform domain appeared to be attractive 

and several computationally effi cient algorithms such as FFT were invented which enabled several 

DSP problems to be solved using computers. With the advent of fast and cost effective computers, 

this trend continued in 1980’s. Some of the special purpose hardware such as multipliers and multiply 

accumulate units as well as memory were embedded with the microprocessors in the programmable 

DSPs considered in the previous chapters. The availability of very high density FPGAs since 1990’s 

have again attracted attention of the designers in pure hardware oriented solutions in preference to the 

processor oriented solutions. For example, one of the FPGA manufacturers, Xilinx introduced Virtex E 

family of FPGAs with 3.2 million gates and 622 MHz differential I/O performance in the Fourth quarter 

of 1999 (see for eg. Data source [2000]). In the fi rst quarter of 2009, Xilinx introduced the Virtex 6 

FPGA which has 760,000 logic cells, 38 Mb block RAM, 6.5 Gbps serial transceiver and support for 

Microblaze for soft core processor. In this section, a brief overview of a few FPGA families and some 

algorithms used for implementation of systems on FPGAs are presented. 

AN INTRODUCTION TO FPGA 17.4

FPGAs are fabricated in Integrated Circuit form and consist of an array of logic cells. Each logic cell 

may be used individually to implement simple logic functions. Alternately, the outputs of several 

logic cells may be combined in one or more logic cells to realize complex logic functions. In FPGAs, 

programmable interconnect elements are used to interconnect the input of the logic cells to either one of 

the input variables from the IC pad or the output of another logic cell. The programmable interconnect 

elements may be either antifuses or transistor switches (pass transistors). The state of the interconnect 

element determines the function performed by the logic cell.

The FPGAs from the companies Actel and Quicklogic use antifuses as the interconnect elements. 

The antifuses have high impedance in unprogrammed state. Passing a current of the order of 10mA 

through them convert them to low impedance state permanently. Hence, the antifuse based FPGAs can 

be programmed only once. 
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The FPGAs from the companies Altera and Xilinx use transistor switches as the interconnect 

elements. In this case, by choosing the required logic level to the gate of the transistor switches, they 

can be switched on or off. The state of the various switches in the FPGA is normally stored in static 

RAMs (SRAM) and hence they are called SRAM based FPGAs. The function performed by the FPGA 

is programmed by storing the required pattern in the SRAM. SRAM based FPGAs can be programmed 

any number of times. Further, the function performed by the FPGAs can be programmed even after it is 

mounted onto the board. For this reason, they are called as in system programmable. The Antifuse based 

FPGAs are not in system programmable. Since the content of SRAM is lost when power is switched 

off, to keep the SRAM content intact, normally the confi guration data is stored in a serial PROM and 

is transferred to the SRAM whenever the FPGA is powered up. By changing the contents of serial 

PROMs, the function performed by the FPGA can be altered. 

Over the years, Xilinx has developed a variety of FPGA families such as XC4000, Spartan, Spartan 

II, Spartan III, Spartan VI, Virtex, Virtex II, Virtex II PRO, Virtex III , IV, V and VI . They have different 

speed, power dissipation, cost and complexity. Similarly, Altera has come up with different FPGA 

families such as Flex, Apex,Acex, Excalibur,Cyclone, Cyclone II, Cyclone III, Cyclone IV, Arria, Arria 

II, Stratix, Stratix II, Stratix III, Stratix IV FPGAs. As newer families of FPGAs with better features 

are introduced in the market, supply of devices of older families are gradually discontinued. In the next 

sections, a brief overview of four FPGA families XC4000, Spartan III, Cyclone III and Virtex II PRO 

are presented. 

17.4.1 An Overview of Xilinx XC4003E FPGA

This belongs to the XC4000 family FPGA from Xilinx. The individual family members differ only 

in the number of confi gurable logic blocks, input output blocks, I/O pins, package on which they are 

offered and their speed. They contain the same building blocks. XC4003E is an SRAM based FPGA 

containing 100 logic cells. Each of the logic cell of XC4000 family FPGA is referred to as a confi gurable 

logic block (CLB). The 100 CLBs in XC4003E is organized as a 2D array of 10X10 CLBs. A simplifi ed 

functional block diagram of a CLB is given in Fig.17.3. It consists of two 4X1 look up tables(LUT), 

one 2X1 LUT, two F/Fs and additional circuitry for fast carry logic and control function. The CLB can 

also be confi gured as a single 5X1 LUT. Alternately, it can be confi gured as two 16X1 RAM or a single 

32X1 RAM. A CLB in XC4003E can be used to implement 2 four variable Boolean functions, or one 5 

variable Boolean function or a limited no. of 6 variable Boolean functions. By using more CLBs, more 

complex functions can be implemented. 

17.4.2 An Overview of Xilinx Spartan 3 Family FPGAs

The Spartan-3 family architecture shown in Fig.17.4 consists of fi ve fundamental programmable 

functional elements:

Confi gurable Logic Blocks (CLBs) The CLBs contain RAM-based Look-Up Tables (LUTs) to imple-

ment logic and storage elements that can be used as fl ip-fl ops or latches. The no. of CLBs in a device 

varies from 192-8320 CLBs depending the device chosen. CLBs can be programmed to perform a wide 

variety of logical functions as well as to store data. Each CLB comprises four interconnected slices, as 

shown in Fig.17.5. These slices are grouped in pairs. Each pair is organized as a column with an inde-

pendent carry chain.
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Fig. 17.3 Function block diagram of XC4000E family CLB (Courtesy of Xilinx, Inc.)

Fig.17.4 The Spartan-3 family architecture (Courtesy of Xilinx, Inc.)

The letter ‘X’ followed by a number identifi es columns of slices. The ‘X’ number counts up in 

sequence from the left side of the die to the right. The letter ‘Y’ followed by a number identifi es the 

position of each slice in a pair as well as indicating the CLB row. Fig.17.5 shows the CLB located in the 



494  Digital Signal Processors

lower left-hand corner of the die. Slices X0Y0 and X0Y1 make up the column-pair on the left whereas 

slices X1Y0 and X1Y1 make up the column-pair on the right. For each CLB, the term “left-hand” (or 

SLICEM) indicates the pair of slices labeled with an even ‘X’ number, such as X0, and the term “right-

hand” (or SLICEL) designates the pair of slices with an odd ‘X’ number, e.g., X1.

All four slices have the following elements in common: two logic function generators, two storage 

elements, wide-function multiplexers, carry logic, and arithmetic gates, as shown in Fig.17.6 . Both the 

left-hand and right-hand slice pairs use these elements to provide logic, arithmetic, and ROM functions. 

Besides these, the left-hand pair supports two additional functions: storing data using Distributed RAM 

and shifting data with 16-bit registers. Fig. 17.6 is a diagram of the left-hand slice. The function generators 

located in the upper and lower portions of the slice are referred to as “G” and “F”, respectively. The 

storage element, which is programmable as either a D-type fl ip-fl op or a level-sensitive latch, provides 

a means for synchronizing data to a clock signal, among other uses.

The storage elements in the upper and lower portions of the slice are called FFY and FFX, 

respectively.

Wide-function multiplexers effectively combine LUTs in order to permit more complex logic 

operations. Each slice has two of these multiplexers with F5MUX in the lower portion of the slice and 

FiMUX in the upper portion.

Block RAM All Spartan-3 devices support block RAM, which is organized as confi gurable, 

synchronous 18Kbit blocks. The no. of 18K blocks in a device varies from 4-104 depending the device 

chosen. Block RAM stores relatively large amounts of data more effi ciently than the distributed RAM 

feature described earlier. The aspect ratio i.e., width vs. depth of each block RAM is confi gurable. 

Furthermore, multiple blocks can be cascaded to create still wider and/or deeper memories. A choice 

Fig.17.5 Organisation of the CLB located in the lower left-hand corner of the die (Courtesy of Xilinx, Inc.)



Recent Trends in DSP System Design  495

Fig.17.6 Internal architecture of a left side slice (Courtesy of Xilinx, Inc.)
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among primitives determines whether the block RAM functions as dual- or single-port memory. The 

XC3S50 has a single column of block RAM embedded in the array. Those devices ranging from the 

XC3S200 to the XC3S2000 have two columns of block RAM. The XC3S4000 and XC3S5000 devices 

have four RAM columns.

Digital Clock Manager (DCM) Spartan-3 devices provide fl exible, complete control over clock fre-

quency, phase shift and skew through the use of the DCM feature. The DCM supports three major 

functions:

 ∑ Clock-skew Elimination: Clock skew describes the extent to which clock signals may, under 

normal circumstances, deviate from zero-phase alignment. It occurs when slight differences 

in path delays cause the clock signal to arrive at different points on the die at different times. 

This clock skew can increase set-up and hold time requirements as well as clock-to-out time, 

which may be undesirable in applications operating at a high frequency, when timing is critical. 

The DCM eliminates clock skew by aligning the output clock signal it generates with another 

version of the clock signal that is fed back. As a result, the two clock signals establish a zero-

phase relationship. This effectively cancels out clock distribution delays that may lie in the 

signal path leading from the clock output of the DCM to its feedback input.

 ∑ Frequency Synthesis: When DCM is provided with an input clock signal, the DCM can generate 

a wide range of different output clock frequencies. This is accomplished by either multiplying 

and/or dividing the frequency of the input clock signal by any of several different factors.

 ∑ Phase Shifting: The DCM provides the ability to shift the phase of all its output clock signals 

with respect to its input clock signal.

Input/Output Blocks (IOBs) IOBs control the fl ow of data between the I/O pins and the internal log-

ic of the device. A ring of IOBs surrounds a regular array of CLBs. Each IOB supports bidirectional data 

fl ow plus 3-state operation. Twenty-six different signal standards, including eight high-performance 

differential standards, are available. Double Data-Rate (DDR) registers are included. The Digitally Con-

trolled Impedance (DCI) feature provides automatic on-chip terminations, simplifying board designs.

Multiplier Blocks accept two 18-bit binary numbers as inputs and calculate the product. Each 18K 

RAM block is associated with a dedicated multiplier.

Switching Networks The Spartan-3 family features a rich network of traces and switches that in-

terconnect all fi ve functional elements, transmitting signals among them. Each functional element has 

an associated switch matrix that permits multiple connections to the routing. Interconnect (or routing) 

passes signals among the various functional elements of Spartan-3 devices. There are four kinds of 

interconnect: Long lines, Hex lines, Double lines, and Direct lines. Long lines connect to one out of 

every six CLBs (see Fig.17.7). Because of their low capacitance, these lines are well-suited for carrying 

high-frequency signals with minimal loading effects (e.g. skew). If all eight Global Clock Inputs are 

already committed and there remain additional clock signals to be assigned, Long lines serve as a good 

alternative. Hex lines connect one out of every three CLBs (see Fig.17.8). These lines fall between Long 

lines and Double lines in terms of capability: Hex lines approach the high-frequency characteristics of 

Long lines at the same time, offering greater connectivity.

Double lines connect to every other CLB (see Fig.17.9). Compared to the types of lines already 

discussed, Double lines provide a higher degree of fl exibility when making connections. Direct lines 
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afford any CLB direct access to neighboring CLBs (see Fig.17.10). These lines are most often used 

to conduct a signal from a “source” CLB to a Double, Hex, or Long line and then from the longer 

interconnect back to a Direct line accessing a “destination” CLB. 

Fig.17.7 Long lines in a spartan 3 FPGA (Courtesy of Xilinx, Inc.)

Fig.17.8 Hex lines in a spartan 3 FPGA (Courtesy of Xilinx, Inc.)

 

Fig.17.9 Double lines in a spartan 3 FPGA (Courtesy of Xilinx, Inc.)

Fig.17.10 Direct lines in a spartan 3 FPGA (Courtesy of Xilinx, Inc.)
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SRAM Confi guration SRAM-based FPGAs are reconfi gured by changing the contents of the con-

fi guration SRAM. A few pins on the chip are dedicated to confi guration. Some additional pins may be 

used for confi guration and later released for use as general-purpose I/O pins. As the FPGAs are recon-

fi gured relatively infrequently, confi guration lines are usually bit-serial. However, it is possible to send 

several bits in parallel if confi guration time is important. During prototyping and debugging, we change 

the confi guration frequently. A download cable can be used to download the confi guration directly from 

a PC. When we move the design into production, we do not want to rely on a download cable and a PC. 

Specialized programmable read-only memories (PROMs) are typically used to store the confi guration 

on the printed circuit board with the FPGA. Upon power-up, the FPGA runs through a protocol on its 

confi guration pins. The EPROM has a small amount of additional logic to supply a clock signal and 

answer the FPGA’s confi guration protocol. Many modern FPGAs incorporate their reconfi guration scan 

chains into their testing circuitry. Manufacturing test circuitry is used to ensure that the chip was prop-

erly manufactured and that the board on which the chip is placed is properly manufactured. The JTAG 

standard (JTAG stands for Joint Test Action Group) was created to allow chips on boards to be more eas-

ily tested. Spartan-3 devices are confi gured by loading application specifi c confi guration data into the 

internal confi guration memory. Confi guration is carried out using a subset of the device pins, some of 

which are “Dedicated” to one function only, while others, indicated by the term “Dual-Purpose”,can be 

re-used as general-purpose User I/Os once confi guration is complete. Depending on the system design, 

several confi guration modes are supported, selectable via mode pins.

The chip can be confi gured in one of the following modes:

 ∑ Master serial mode assumes that the chip is the fi rst chip in a chain (or the only chip). The 

master chip loads its confi guration from an EPROM or a download cable.

 ∑ Slave serial mode gets its confi guration from another slave serial mode chip or from the master 

serial mode chip in the chain.

 ∑ Master parallel and Slave parallel mode allow fast 8-bit-wide confi guration.

 ∑ Boundary scan mode uses the standard JTAG pins.

17.4.3 An Overview of Cyclone III Family FPGAs 

The Cyclone III family architecture consists of fi ve fundamental programable functional elements:

Logic Elements and Logic Array Blocks The logic array block (LAB) consists of 16 logic 

elements(LEs) and a LAB-wide control block. An LE is the smallest unit of logic in the Cyclone III 

device family architecture. Each LE has four inputs, a four-input look-up table (LUT), a register, and 

output logic. The four-input LUT is a function generator that can implement any function with four 

variables.

Memory Blocks Each M9K memory block of the Cyclone III device family provides nine Kbits of 

on-chip memory capable of operating at up to 315 MHz for Cyclone III devices and up to 274 MHz 

for Cyclone III LS devices. The embedded memory structure consists of M9K memory blocks columns 

that can be confi gured as RAM, fi rst-in fi rst-out (FIFO) buffers, or ROM. The Cyclone III device family 

memory blocks are optimized for applications such as high throughout packet processing, embedded 

processor program, and embedded data storage.

Embedded Multipliers and Digital Signal Processing Support Cyclone III devices support up to 288 

embedded multiplier blocks and Cyclone III LS devices support up to 396 embedded multiplier blocks. 

Each block supports one individual 18 ¥ 18-bit multiplier or two individual 9 ¥ 9-bit multipliers.
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Clock Networks and PLLs Cyclone III device family includes 20 global clock networks. Global 

clock signals may be driven from dedicated clock pins, dual-purpose clock pins, user logic, and PLLs. 

Cyclone III device family includes up to four PLLs with fi ve outputs per PLL to provide robust clock 

management and synthesis. PLLs may be used for device clock management, external system clock 

management, and I/O interfaces. The Cyclone III device family PLLs can be dynamically reconfi gured 

to enable auto-calibration of external memory interfaces while the device is in operation. This feature 

enables the support of multiple input source frequencies and corresponding multiplication, division, 

and phase shift requirements. PLLs in Cyclone III device family may be cascaded to generate up to ten 

internal clocks and two external clocks on output pins from a single external clock source.

I/O Features Cyclone III device family has eight I/O banks. All I/O banks support single-ended and 

differential I/O standards. Cyclone III device family supports high-speed differential interfaces such as 

BLVDS, LVDS, mini-LVDS, RSDS, and PPDS. These high-speed I/O standards in Cyclone III device 

family provide high data throughput using a relatively small number of I/O pins and are ideal for low-

cost applications.

Fig.17.11 Internal architecture of Cyclone III Logic element (Courtesy of Altera Corporation.)

Fig.17.11 gives the diagram of the internal architecture of Cyclone III Logic element. LEs are 

the smallest units of logic in Cyclone III family devices architecture. LEs are compact and provide 

advanced features with effi cient logic usage. Each LE consists of a four-input look-up table (LUT), a 

programmable register, a carry chain connection and a register chain connection. LUTs can implement 
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any function of four variables. LEs have the ability to drive the following interconnects: Local, Row, 

Column, Register chain and Direct link. The registers in LE can be either packed together or fedback. 

The registers can be programmed for D, T, JK, or SR fl ipfl op operation. Each register has data, clock, 

clock enable, and clear inputs. Signals that use the global clock network, general-purpose I/O pins, or 

any internal logic can drive the clock and clear control signals of the register. Either general-purpose 

I/O pins or the internal logic can drive the clock enable. For combinational functions, the LUT output 

bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The LUT or 

register output independently drives these three outputs. Two LE outputs drive the column or row and 

direct link routing connections, while one LE drives the local interconnect resources. This allows the 

LUT to drive one output while the register drives another output. This feature, called register packing, 

improves device utilization because the device can use the register and the LUT for unrelated functions. 

The LAB-wide synchronous load control signal is not available when using register packing.

Cyclone III family devices LEs operate in either Normal mode or Arithmetic mode. In each of these 

modes, LE resources are used differently. In each mode, there are six available inputs to the LE. These 

inputs include the four data inputs from the LAB local interconnect, the LE carry-in from the previous 

LE carry-chain, and the register chain connection. Each input is directed to different destinations to 

implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, synchronous 

clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available 

in all LE modes.

Normal Mode Normal mode is suitable for general logic applications and combinational functions. 

In normal mode, four data inputs from the LAB local interconnect are inputs to a four-input LUT as 

shown in Fig. 17.12.

Fig. 17.12 LE of cyclone III FPGA in normal mode (Courtesy of Altera Corporation.)
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Fig. 17.13 LE of cyclone III FPGA in arithmetic mode (Courtesy of Altera Corporation.)

Arithmetic Mode

Arithmetic mode is ideal for implementing adders, counters, accumulators and comparators. Fig. 17.13 

gives the diagram of LE of cyclone III FPGA in normal mode. In arithmetic mode, an LE implements a 

2-bit full adder and basic carry chain. LEs in arithmetic mode can drive out registered and unregistered 

versions of the LUT output. Register feedback and register packing are supported when LEs are used 

in arithmetic mode.

Topology Each LAB consists of 16 LEs, LAB control signals, LE carry chains, Register chains and 

Local interconnect. The local interconnect transfers signals between LEs in the same LAB. Register 

chain connections transfer the output of one LE register to the adjacent LE register in an LAB. The 

Quartus II Compiler places associated logic in an LAB or adjacent LABs, allowing the use of local and 

register chain connections for performance and area effi ciency.

LAB Interconnects

The LAB local interconnect is driven by column and row interconnects and LE outputs in the same 

LAB. Neighboring LABs, phase-locked loops (PLLs), M9K RAM blocks, and embedded multipliers 

from the left and right can also drive the local interconnect of a LAB through the direct link connection. 

The direct link connection feature minimizes the use of row and column interconnects, providing 

higher performance and fl exibility. Each LE can drive up to 48 LEs through fast local and direct link 

interconnects.

Confi guration Cyclone III device family uses SRAM cells to store confi guration data. Confi guration 

data is downloaded to Cyclone III device family each time the device powers up. Anyone of the fi ve 

methods used to program the Stratix 3 FPGA can be used for the cyclone III FPGA
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Fig.17.14 Interconnect structure of a Logic array block (Courtesy of Altera Corporation.)

17.4.4 Platform FPGAs

A platform FPGA has all the components necessary to build a complete system and should require few, 

if any, additional chips. Platform FPGAs include the basic fi ve functional blocks of an advanced FPGA. 

(CLBs, block RAM, Embedded multiplier, Interconnection network and I/O blocks with different 

interfaces). It also includes CPUs, high-speed serial interfaces and bus interfaces.

Advantages of Platform FPGAs

Moving more functions onto a single chip generally provides several advantages such as Smaller physical 

size, higher speed, increase in system complexity, Lower power consumption and Higher reliability. 

Platform FPGAs provide the best of both worlds viz Microcontrollers and FPGAs. Microcontrollers 

have a no. of advantages such as availability of the off the shelf device drivers for a variety I/O 

devices, off the shelf software for different protocol stacks used for serial communication in disks and 

computer networks, support for implementation of different operating system kernels and support for 

programming in high level languages. CPUs can be easily programmed, can execute large and complex 

programs, and can take advantage of pipelining and other design optimizations. On the other hand, 

FPGAs provide faster computational speed: Techniques such as pipelining and parallel processing can 

be used to increase the speed as per user requirement. They can also be implemented more effi ciently for 

low sampling rate systems. Their reconfi gurability enables their speed and performance to be scaled as 

the system evolves. FPGA fabrics can handle a wide variety of data widths and can perform specialized 

operations on that data. 
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Due to their higher speed, FPGAs were originally proposed as coprocessors for advanced 

microprocessors and digital signal processors. Integration of both CPU and FPGA fabric in a single chip 

results in higher speed and lower power dissipation than the off the chip coprocessor approach. 

Xilinx Virtex-II Pro family [Xil02] is an example of a platform FPGA. It has the following features:

 ∑ One or more IBM Power PC 405DC RISC CPUs.

 ∑ Multi-gigabit I/O circuitry.

 ∑ Embedded memory.

 ∑ An FPGA fabric consisting of CLBs, block RAM, embedded multipliers, DCMs , gigabit 

transceivers, and user I/O pins. The operation of these functional blocks are similar to that of 

Spartan III discussed in the previous section.

The largest Virtex-II Pro has four PowerPC CPUs, 125,136 logic cells, 10 Mbits of block RAM, 556 

multipliers, 12 clock management blocks, 24 gigabit I/O transceivers, and 1200 user pins.

The gigabit transceiver units, known as Rocket I/O, operates in a range of 622 Mb/s to 3.125 Gb/s. It 

can be used to implement a variety of standard protocols, such as Fibre Channel, Ethernet, Infi niband, 

and Aurora. Each transceiver has a Physical Media layer which serializes and deserializes the data. It 

also has a Physical Coding Layer that contains CRC, elastic buffers, and 8-to-10 encoding/decoding.

PowerPC 405DC core has 32- bit Harvard architecture and operates at over 300 MHz on chip. It 

supports both 32-bit and 64-bit fi xed-point arithmetic. The CPU has both instruction and data caches. 

The CPU can address a 4 GB address space. Its memory management unit (MMU) provides address 

translation, memory protection, and storage attribute control. The MMU supports demand-paged 

virtual memory. The CPU also has a complete interrupt system and a set of integrated timers. The IBM 

CoreConnect bus is used to connect the PowerPC to other parts of the FPGA.

DESIGN FLOW FOR AN FPGA BASED SYSTEM DESIGN  17.5

As discussed in Section 17.2.1, the content of the SRAM in the FPGA determines the function performed 

by the FPGA. FPGA has to be programmed so that the system uses the minimum resources (CLBs, F/

Fs etc) and performs the required function satisfactorily meeting all the objectives specifi ed. When the 

system to be implemented is complex, the computer aided design tools (CAD) are used for the design 

and optimization. Design of Very large Scale Integrated Circuits (VLSI) based system in general and 

FPGA based systems in particular is achieved using the following 6 steps with the help of CAD tools.

 1. Design entry: Specifi cation for the system to be designed is submitted to the CAD tool in this 

step. This may be in the form of logic diagram or schematic diagram for small systems. In the 

case of large systems, the design is specifi ed using a hardware description language like VLSI 

hardware description language (VHDL) or Verilog.

 2. Synthesis : The system represented by a schematic or description in HDL is translated to a 

network of components using parts available in the library. This in turn depends on the technique 

adopted for the implementation. In the case of FPGA based system design, the model, make and 

IC no. of the FPGA has to be specifi ed. In the VLSI terminology the standard parts are called as 

library cells. Synthesis step also optimises the no. of library cells used for the translation.

 3. Simulation : This uses the models for the building blocks in the implementation library. This 

step is used to check whether the logic diagram or the HDL description accurately represents 

the design requirement. For example, the design specifi cation in terms of truth tables may 

be translated to logic circuits using traditional methods. This in turn may be expressed using 
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HDLs. To check the correctness of the translation, input test vectors are fed to the model for the 

system and the results obtained are compared with the expected results. For a complex system, 

exhaustic testing of the system for all possible combinations of inputs is impossible due to the 

large testing times required. An effi cient simulator enables the testing with a smaller test vector 

set with less testing time.

 4. Placement and Route (P&R) : A particular application may require only n out of N (n>N) 

CLBs in an FPGA for the implementation. Depending upon which CLBs are chosen, the 

performance of the system (propagation delay, maximum operating frequency, output drive 

capability, loading at the output etc.) may vary. The P&R step is concerned with choosing the 

correct combination of n CLBs and interconnecting them so that the system meets the required 

performance characteristics.

 5. Post layout simulation and Timing analysis: This step checks whether the system implemented 

using the library of cells and interconnected in a particular fashion using the P&R step works 

as per specifi cation. This step is essential as the interconnect delays may become available only 

after P&R step is completed. If required P&R step may be revisited to alter the performance 

characteristics.

 6. Implementation: In the case of FPGAs, this step is used to translate the design using CLBs and 

their optimum interconnect pattern determined using steps 2, 4 & 5 above to bit patterns to be 

stored in the SRAM to program the CLBs and the interconnects appropriately. The resulting 

bitmap fi le may be transferred to the SRAM either directly through a download cable or by 

programming a serial PROM.

The above steps are also adopted for the design of application specifi c integrated circuits using 

standard library cells from IC fabricators. In this case, the implementation step generates a bit map fi le 

which is used for producing the masks for IC fabrication.

VLSI design has matured signifi cantly and powerful VLSI CAD tools have been developed by a 

no. of companies like Cadence, Mentorgraphics, Avant, Synopsis and so on. Cost effective CAD tools 

targeted towards FPGA based system design have also become available. 

CAD TOOLS FOR FPGA BASED SYSTEM DESIGN 17.6

The CAD tools developed for use with FPGAs provide a no. of features which enable the design and 

testing of a system based on FPGAs to be carried out in short period of the order of the few weeks to 

few months. Some of these features are:

 ∑ Availability of freeware: The FPGA vendors such as Altera and Xilinx offer two versions of 

some of their of CAD tools: One which is priced and another which is free. For example, The 

Quartus II software from Altera and Integrated Software Environment (ISE) from Xilinx has 

both the versions. The free version has the same look as the priced version but supports only 

designs of lower complexity. The procedure for design entry, simulation etc are the same for 

both the versions. This enables a beginner to learn the features of the tool at his own pace so that 

very little training is required when he/she is required to design a more complex system with the 

priced version.

 ∑ Lower cost and availability of CAD tools on PC platform: Most of the CAD tools for FPGAs 

are cheap and can be executed on Personal computers in both windows and linux operating 

systems. These features enable these tools to be learnt by a large number of designers in a short 

span of time. 
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 ∑ Availability of Intellectual proprietary cores and reuse of designs : Some of the system blocks 

such as central processing units (CPUs), input/ouput ports, universal synchronous asynchronous 

receiver transmitter (USART), FSK modulator/demodulator, microcontroller, convolutional 

encoder, viterbi decoder, FIR fi lter, DCT,FFT, DWT, speech and video codec are already 

designed and tested by the FPGA vendors. They are made available as a library component 

along with the CAD tools. They can be instantiated in the user program and can be synthesized 

along with the modules designed by the user. This reduces the time required for designing a 

system. Further, some of the earlier designs of a user may be reused in a future design.

 ∑ The CAD tools also support design entry using different mix of hardware description languages 

such as Verilog and VHDL. They also support the use of high level language such as C for the 

design of one part of the system and use HDL for another part of the system. This enables the 

harware/software partitioning of a system to be effi ciently carried out.

 ∑ Support for high level DSP system design and Simulation: DSP Builder software from Altera 

facilitates the use of algorithmic DSP design in the MATLAB software and system integration in 

the Simulink software. The design can then be ported to hardware description language (HDL) 

fi les for use in the Quartus II design software. DSP Builder also produces HDL test bench fi les 

that can be used in ModelSim- Altera and other third-party HDL simulators. Similarly, the 

Xilinx System Generator for DSP is a plug-in to Simulink that enables designers to develop 

high-performance DSP systems for Xilinx FPGAs. Designers can design and simulate a system 

using MATLAB, Simulink, and Xilinx library of bit/cycle-true models. The tool will then 

automatically generate synthesizable Hardware Description Language (HDL) code mapped to 

Xilinx pre-optimized algorithms. This HDL design can then be synthesized for implementation 

in Virtex-II Pro Platform FPGAs and Spartan-IIE FPGAs. As a result, designers can defi ne an 

abstract representation of a system-level design and easily transform this single source code into 

a gate-level representation. Additionally, it provides automatic generation of a HDL testbench, 

which enables design verifi cation upon implementation. 

 ∑ Support for development of system on a programmable chip: For the Altera FPGAs, SoPC Builder 

automates the task of adding, parameterizing and linking intellectual property cores, including 

multiple embedded processors, for system-on-a-programmable chip (SoPC) applications. 

The user defi nes the switch architecture component interconnect matrix to maximize system 

performance and then generates the system. SoPC Builder automatically assembles all the 

hardware components using the high-performance Avalon switch bus architecture. Moreover, 

a.h header fi le is automatically created that embodies a software view of the entire system with 

register and memory maps, as well as pre-defi ned software routines to control all the IP. 

  For the Xilinx FPGAs, the Embedded Development Kit provides the support for the development 

of SOPC. It consists of four tools: 

  Xilinx Platform Studio (XPS) Tool Suite which contains Graphical IDE and command line 

support for developing hardware platforms for embedded applications. The Base System Builder 

wizard enables creation of a working embedded system within minutes. XPS also includes 

other intelligent design wizards to quickly confi gure the embedded system architecture, buses 

and peripherals.

  Software Development Kit (SDK) for MicroBlaze and PowerPC which includes GNU C/C++ 

compiler and debugger; Xilinx Microprocessor Debug (XMD) target server; Data2MEM utility 

for bitstream loading and updating. 
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  Real-Time Operating System and Embedded OS Support - Provides design support and board 

support package (BSP) generation for numerous third party suppliers in the Xilinx ecosystem, 

including vendors such as Wind River, Green Hills, Mentor, LynuxWorks and other embedded 

industry leaders. 

  Processing IP and MicroBlaze Soft Processor Core Pre-verifi ed IP catalog, including a wide 

variety of processing peripheral cores for customizing the embedded systems as well as the 

fl exible MicroBlaze 32-bit soft processing core. The MicroBlaze processor offers memory 

management and FPU confi guration options enabling commercial grade RTOS support, unique 

for a soft processor. 

 ∑ Support for Real-time on-chip verifi cation: 

  The following tools are available for the Altera FPGAs for this purpose. 

  SignalTap® II Logic Analyzer: This embedded logic analyzer uses FPGA resources to sample 

tests nodes and outputs the information to the Quartus II software for display and analysis.

  SignalProbe: This tool incrementally routes internal signals to I/O pins while preserving results 

from the last place-and-routed design.

  Logic Analyzer Interface (LAI): This tool multiplexes a larger set of signals to a smaller 

number of spare I/O pins. LAI allows us to select which signals are switched onto the I/O pins 

over a JTAG connection.

  In-System Memory Content Editor: This tool displays and allows the users to edit on-chip 

memory.

  For the Xilinx FPGAs, ChipScope™ Pro tool provides the support for real-time on-chip 

verifi cation. It inserts logic analyzer, bus analyzer, and virtual I/O low-profi le software cores 

directly into the design. It allows us to view any internal signal or node, including embedded 

hard or soft processors. Signals are captured at or near operating system speed and brought out 

through the programming interface, freeing up pins for our design. Captured signals can then 

be analyzed through the included ChipScope Pro Logic Analyzer. 

SOFTCORE PROCESSORS  17.7

The Power PC in a Virtex II PRO IC is called as hardcore processor as it is pre fabricated and its hardware 

architecture cannot be altered through programming. Instead of using a CPU fabricated and integrated 

to the FPGA fabric in a single chip, We may also implement a CPU into any FPGA by programming 

and confi guring a part of the FPGA fabric. Such a processor is called as a softcore processor or IP CPU. 

Many Verilog or VHDL models for CPUs are available on the Internet. One advantage of using an IP 

CPU is that we can modify the CPU’s architecture to add instructions or modify the cache organization. 

However, an IP CPU requires a lot of logic elements and we need a fairly large FPGA to have room left 

over for non-CPU logic or memory.The relative merits of softcore processors and hardcore processors 

are as follows:

Advantages 

 ∑ Soft processors are far more fl exible than hard processors. Soft processors can be enhanced 

with custom hardware to extend the instruction set with custom instructions and coprocessors 

targeted to the application using the processor. This can signifi cantly enhance the performance 

of the soft processor in targeted applications.
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 ∑ Design utilizing soft processors can be migrated to the latest FPGA fabric and onto any device 

in an FPGA family. This portability and design reuse extends the life cycle of soft-processor 

based designs.

 ∑ Soft processors can be deeply embedded into the system architecture for integrated control of 

the hardware architecture.

 ∑ Designs can be implemented by utilizing more than one processor to increase the overall system 

performance. While this is possible with hard processors, in software defi ned radio-based 

systems this can be changed from confi guration to confi guration of the modem.

Disadvantages

 ∑ Soft processors cannot reach the same clock rate as hard processors, generally resulting in 

lower performance than hard processors (unless custom instructions and coprocessors are used 

to enhance the soft processors).

 ∑ Soft processors do not have the power saving features available in many wireless-focused hard 

processors such as the ARM processor.

 ∑ Soft processors do not have the installed base of software available for mainstream processors 

such as the ARM processor. In general, a soft processor will not have a standardized wireless 

protocol stack available from a third party vendor.

Let us consider two examples of two popular soft core processors. 

17.7.1 Softcore Processors from Xilinx 

The Embedded Development Kit (EDK) from Xilinx, includes the soft processor core such as Microblaze 

and picoblaze and a standard set of peripherals. The kit includes a complete set of GNU-based software 

tools including the compiler, assembler, debugger, and linker. More details of MicroBlaze softcore 

processor(SCP) is considered next.

It is a standard 32-bit RISC Processor with Harvard architecture. Figure 17.15 shows a typical 

MicroBlaze SCP with its peripherals. The 32 by 32-bit registers are lookup table (LUT) RAM based. 

It guarantees a very short register access time. For memory, either the on-chip block RAM or off-chip 

memory can be used. The access time to the on-chip block RAM is minimal because there are dedicated 

routing resources to access them. The MicroBlaze SCP can be customized for any application. Its barrel 

shifter, divide unit, data cache, instruction cache, and the FSL bus system are optional. The sizes of the 

caches are confi gurable from 2 to 64 Kbytes. Standard peripherals are provided as well and are Core 

Connect compatible. Consequently, they can be integrated in an embedded design very easily. These 

peripherals are either free, such as the memory controller, UART, interrupt controller, and timer, or 

commercial cores such as the Ethernet controller, gigabit Ethernet controller, PCI, HDLC, etc. 

Generally, there are two ways to integrate a customized IP core into a MicroBlaze-based embedded 

soft processor system. One way is to connect the IP on the On-chip Peripheral Bus (OPB). The OPB is 

part of the IBM Core ConnectTM on-chip bus standard. The second way is to connect the user IP to the 

MicroBlaze dedicated Fast Simplex Link (FSL) bus system. If the application is time-critical, the user 

IP should be connected to the FSL bus system; otherwise, it can be connected as a slave or master on 

the OPB. If the customized core is connected to the dedicated FSL interface, it is then possible to use 

predefi ned C functions to use the user core in the application software.

MicroBlaze contains eight input and eight output FSL interfaces. The FSL channels are dedicated 

unidirectional point-to-point data streaming interfaces. The FSL interfaces on MicroBlaze are 32 

bits wide. Further, the same FSL channels can be used to transmit or receive either control or data 
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words. A separate bit indicates whether the transmitted (received) word is control or data information. 

The performance of the FSL interface can reach up to 300 MB/sec. This throughput depends on the 

target device itself. The FSL bus system is ideal for MicroBlaze-to-MicroBlaze or streaming I/O 

communications. The FSL bus is driven by one Master and drives one Slave. Fig.17.16 shows the 

principle of the FSL bus system and the available signals.

Fig.17.15 Architecture of Microblaze processor (Courtesy of Xilinx, Inc.)

Fig.17.16 FSL system bus (Courtesy of Xilinx, Inc.)
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FSL peripherals may be created as a Master or a Slave to the FSL bus. A peripheral connected to the 

master ports of the FSL bus pushes data and control signals onto the FSL. All peripherals that act as a 

master to the FSL bus should create a bus interface of the type MASTER for the bus standard FSL in 

the Microprocessor Peripheral Description (MPD) fi le. A peripheral connected to the slave ports of the 

FSL bus reads and pops data and control signals from the FSL. All peripherals that are a slave to the FSL 

bus should create a bus interface of the type SLAVE for the bus standard FSL in the MPD fi le. The put 

and get instructions of MicroBlaze can be used to transfer the contents of a MicroBlaze register onto the 

FSL bus and vice-versa. The FSL bus confi guration of MicroBlaze can be used in conjunction with any 

of the other bus confi gurations.

Application As an application to demonstrate the use of the FSL interface, a 1-dimension IDCT is 

used. [Hans04] This DSP application highlights very well the performance win that could be reached. 

A 1-dimension IDCT realized in software would require a high execution time because the C- program 

would consist mainly of loops which get executed sequentially by the processor. If the application is im-

plemented as its own hardware module, the execution time requires much fewer clock cycles. The used 

1-IDCT core on the FSL interface is an example and needs approximately 150 LUTs and the latency of 

64 clock cycles. It may be noted that this IDCT core is used to show how to implement a user core on the 

FSL interface. The software application writes 8 values from memory to the FSL. The IDCT core gets 

the data and calculates the result. When the 

result is available, MicroBlaze reads the data 

(8 words) back from the FSL. The IDCT core 

is connected to the FSL interface as shown 

in Fig. 17.17. For the FSL0 connection, the 

MicroBlaze is the Master on the FSL bus and 

the IDCT core is the Slave. Thus, MicroBlaze 

controls the data sent on the FSL0 bus to the 

IDCT core. For the FSL1 bus, it is vice versa, 

and the IDCT core is the Master and the Mi-

croBlaze the Slave. The IDCT controls the 

data on the FSL1 bus.

Predefi ned C functions are provided in 

EDK for integrating the customized user IP in 

the C/C++ application program.

17.7.2 Nios II Processor System

A Nios II processor system includes a processor core, a set of on-chip peripherals, on-chip memory, 

and interfaces to off-chip memory, all implemented on a single Altera ® chip. To facilitate the design of 

embedded systems using Nios processor, Altera offers System on chip (SOC) kits with different Altera® 

devices such as APEX, Cyclone and Stratix device which are pre-loaded with a 32-bit Nios/Nios II 

softcore processor system. The Nios II processor has the following features:

32-bit instruction set, data path, and address space

32 general-purpose registers

32 external interrupt sources

Single-instruction 32 ×32 multiply and divide producing a 32-bit result

Fig 17.17 On-dimensional IDCT IP via the FSL

interface onto MicroBlaze (Courtesy of Xilinx, Inc.)
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Dedicated instructions for computing 64-bit and 128-bit products of multiplication

Single-instruction barrel shifter

Access to a variety of on-chip peripherals, and interfaces to off-chip memories and peripherals

Hardware-assisted debug module enabling processor start, stop, step and trace under integrated 

development environment (IDE) control 

Software development environment based on the GNU C/C++ tool chain and Eclipse IDE

Instruction set architecture (ISA) compatible across all Nios II processor systems

Performance beyond 150 DMIPS 

Figure 17.18 shows an example of a Nios II processor reference design available in an Altera Nios 

II development kit.

Fig. 17.18 Nios II processor reference design (Courtesy of Altera Corporation.)

Custom Peripherals Designers can also create their own custom peripherals and integrate them into 

Nios II processor systems. For performance-critical systems that spend most CPU cycles executing a 

specifi c section of code, it is a common technique to create a custom peripheral that implements the same 

function in hardware. This approach offers a double performance benefi t: the hardware implementation 

is faster than software; and the processor is free to perform other functions in parallel while the custom 

peripheral operates on data. 

17.7.3 Custom Instructions

Like custom peripherals, custom instructions are a method to increase system performance by augmenting 

the processor with custom hardware. The soft-core nature of the Nios II processor enables designers 

to integrate custom logic into the arithmetic logic unit (ALU). Similar to native Nios II instructions, 

custom instruction logic can take values from up to two source registers and optionally write back a 
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result to a destination register. The interfacing details of the custom logic with the Nios ALU is shown in 

Fig.17.19. The performance of the Nios processor is enhanced by integrating these blocks with the Nios 

core using the SOPC builder system development tool. The program to be executed by the Nios core 

is written in C/C++ and the custom instructions executed by the custom block are defi ned as software 

macro and invoked in C/C++ program.

Custom instructions consist of two essential elements, a Custom logic block, the hardware that 

performs the user-defi ned operation, and a Software 

macro, which allows the system designer to access 

the custom logic through software code. 

The task performed by the custom block may 

be defi ned either as single-cycle combinatorial 

operation or as multi-cycle sequential operation. 

In both cases, two 32-bit operands may be passed 

to custom block and a 32-bit result is returned. The 

CPU clock is made available to the custom block 

only when it is defi ned to be sequential. 

A 11 bit prefi x code may be sent to the custom 

block along with the other operand(s) through the 

prefi x port. This may be used to specify the type of 

operation to be performed in the custom block. 

To study the effi cacy of the custom instruction, 

2D DWT of a subimage of size 32¥32 is computed 

using both custom logic and the in-built instructions 

in section 17.6.2. The computation using custom 

instruction is found to be faster by a factor of 90.

17.7.4 Hardware/Software Partitioning

In an FPGA based system consisting of both CPU and non CPU logic, it is important to decide about 

the parts of the application which go into the CPU as software and what parts should go into the non 

CPU logic of FPGA fabric. This problem is known as hardware/software partitioning. As shown in 

Fig.17.19, we are trying to fi t the application into a pre-existing architecture consisting of a CPU and 

FPGA fabric connected by a bus. We refer to the logic on the FPGA side as an accelerator; in contrast, 

a co-processor would be dispatched by the execution unit of the CPU.

We must partition the application into two pieces, the CPU side of the bus and the FPGA side of the 

bus. There are many different ways to do this and a careful analysis is required to fi nd a partitioning that 

results in a higher-performance system. 

FPGA BASED DSP SYSTEM DESIGN 17.8

An FIR or IIR fi lter is built using multipliers, adders and delay elements (shift registers). The effi cient 

implementation of these elements in VLSI circuits in general and FPGAs in particular have been 

discussed in detail in a no. of works (see for. Eg. Pirsch [1998], Smith[1999], Swartzlander[1987], 

Weste[1999] ). For example, for implementing the multiplier, a no. of algorithms such as shift and add 

algorithm, serial/parallel algorithm, array multiplication, pipelined array multiplication, Wallace Tree 

Fig.17.19 Adding Custom Logic to the Nios ALU
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algorithm etc. have been proposed. A simple example of a DSP system using FPGAs is discussed in 

Section 17.7.1. In addition to direct implementation of these fi lters, alternate realizations of the DSP 

system which either operate at higher speed or which require less hardware have been proposed in the 

recent past. A brief description of some of these approaches are given in Section 17.8

17.8.1 Implementation of Serial/Parallel Convolver using FPGAs

The block diagram of a serial/parallel convolver is given in Fig. 1.5 in Chapter 1. For the sake of 

simplicity, let us assume that the length of the impulse response sequence M is 4. Fig.17.20 shows the 

diagram of the convolver for M=4. Let both the input samples and impulse response coeffi cients be 

represented as unsigned 4 bit numbers. 

From Fig. 17.20, it may be noted that 

four 4¥4 multipliers, three 8 bit adders 

and three 8 bit shift registers are required. 

This may be verifi ed as follows: When 

two 4 bit numbers are multiplied, the 

result is 8 bits long. The output of adder 

S3 is 9 bit long. The LSB is discarded 

and the remaining bits are fed to the Shift 

register. Similarly at the output of the 

adders S2 and S1, LSBs are discarded. 

Next, consider the implementation of 8 bit adders. For implementing the adders, there are several 

algorithms such as carry save, carry propagation, ripple carry, serial addition and so on. For example, 

the ripple carry adder for two 4 bit 

numbers may be obtained by cascading 

4 full adders as shown in Fig. 17.21. 

Each full adder may be implemented 

using two 4 input LUTs as shown in 

Fig.17.22. In Fig.17.22, a0 and b0 

denote two bits and Cin denotes the 

carry in. S0, C0 denote the sum and 

carry outputs. It may be noted that in 

Fig.17.22, four input look up tables are 

used for generating the sum and carry 

outputs eventhough only three inputs 

are normally fed to a F/A. The fourth 

output is chosen arbitrarily as 0 as the 

CLBs of XC4000E family ICs given 

in Fig.17.3 has only 4 input LUTs. 

In Fig.17.20, the output of the adders 

are stored in a shift registers (which 

correspond to the delay elements). 

From Fig.17.3, it may be observed that 

the output of the LUTs may be taken 

out of the CLB using two unlatched 

output lines X, Y and two latched 

Fig. 17.20 Serial/parallel convolver for M=4

Fig. 17.21 Four bit ripple carry adder using Full adders

Fig. 17.22 Full adder implemented using two LUTs
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output lines XQ and YQ. The F/Fs in the CLB themselves can be used for obtaining the shift register. 

The clock frequency to these F/Fs should be made equal to the sampling rate of the input signal. To 

implement an 8 bit adder and 8 bit shift register, 8 CLBs are required. To simplify the treatment separate 

LUTs are used for generating the carry and sum output. However XC4000E ICs have fast carry logic 

and using this a single LUT can be used to generate both Carry and sum outputs. In this case only 4 

CLBs are required for implementing the 8 bit adder and shift register.

Next, consider the implementation of the 4 bit multipliers in FPGAs. For simplicity, consider the 

serial/parallel multiplier scheme. This scheme is similar to the serial/parallel convolver scheme given 

in Fig,17.20. For the 4 bit multiplier, the multipliers, adders and registers shown in Fig 17.20 should 

be replaced by single bit elements. For the adder, the carry output should be fed back to the input after 

a delay of 1 bit. It may be noted that the single bit multiplier is equivalent to the AND gate. The single 

bit adder is F/A. As noted earlier, only 3 input LUT is required for F/A. The 4 input LUT can be used 

to implement both the AND and full adder functions in a single LUT. The resulting diagram of the 4 bit 

serial/parallel multiplier is shown in Fig.17.23. In Fig.17.23, D denotes the delay elements corresponding 

to 1 bit time and is implemented using the F/Fs in the CLBs. The output of the LUTs are fed to these F/

Fs. Si , Ci for i = 0-3 denotes the sum and carry outputs of the full adder cum single bit multipliers. b0-

b3 and a0-a3 correspond to the 4 bits of the two numbers to be multiplied. a0-a3 are fed serially. These 

bits have to appended by 4 zeros to ensure carry propagation. This multiplier requires 8 clock cycles for 

multiplication. The serial shift clock is also used to latch the new carry and sum outputs in the CLBs. 

It can be observed from Fig.17.23 that 4 CLBs are required for 4 bit multiplication. Similarly, an N bit 

multiplication requires N CLBs and 2N clock cycles for multiplication. 

Fig. 17.23 Implementation of serial/parallel 4 bit multiplier using CLBs

Using the ripple carry adder and serial parallel multiplier, it may be concluded that the serial/parallel 

convolver for M=4 and for samples and impulse response coeffi cients represented using 4 bit numbers, 

the no. of CLBs required is 28. Out of these, 16 CLBs are required for the 4 multipliers and 12 CLBs are 

required for the three 8 bit shift registers and adders. Similarly, for a serial/parallel convolver for M=8 

and for samples and impulse response coeffi cients represented using 8 bit numbers, the no. of CLBs 

required is 120. 

17.8.2 Implementation of Convolver using Constant Coeffi cient Multiplier

When the impulse response coeffi cients h0-h3 in the above convolver are time invariant (constants), 

the constant coeffi cient multiplier (KCM) can be used to realize the fastest multiplier and the fastest 

convolver. KCM uses a ROM for fi nding the product of a constant and a variable. The variable is fed 
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as address to the ROM which contains the products corresponding to all possible combinations of the 

operands. For example, if a 4 bit constant is to be multiplied with a 4 bit variable, there are 16 possible 

products each product having 8 bit. Eight 4 input LUTs may be used to realize this multiplier. Each 

LUT can be treated as a 16X1 RAM. The F inputs F3-F0 may be treated as the address inputs.The MSB 

of the address lines to all the LUTs (F3’s of all LUTs) are tied together and the MSB of the variable is 

applied to it. Similarly, LSB of the address lines of all LUTs (F0’s of all LUTs) are tied together and the 

LSB of the variable is applied to it. Similarly, the other address lines of LUTs are connected. Among the 

8 LUTs, one of them stores the MSB of the products, next one stores the next bit of the product and so 

on. The speed of the multiplier is determined by the access time of the 16X1 RAM which is very much 

faster than actual multiplication time.

When the ROM is implemented using 4 input LUTs, a number of stages of LUTs and adders are 

required to fi nd the product. The circuit diagram of a 12x12 bit KCM is shown in Fig.17.24. This 

requires one ROM stage and two stages of addition. The speed of the KCM can be increased further by 

introducing the pipelining registers at the points denoted in dotted lines in Figure17.24 and this scheme 

is denoted as pipelined KCM.

Fig. 17.24 Block diagram of pipelined 12X12 KCM

The following observations may be made with regard to the above examples:

   The number of 4 input LUTs/CLB depends on the FPGA family. In the XC4000 family there 

are two 4 input LUTs/CLB wheras in Spartan 3 family, there are four 4 input LUTs/CLB. 

   The arguments given in this section, can be used to fi nd the no. of CLBs required for any 

convolver using serial/parallel scheme for both convolution and multiplication of the binary 

numbers. 
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   The no. of CLBs required would change if the algorithm used for addition and multiplication 

are different from the ones considered here. However, the no. of CLBs required can be found 

for anyother mix of adder and multiplier algorithms using the same arguments.

   Eventhough in this example, the multiplier and adders schemes are arrived at manually, in 

practice, the algorithm for the adder and the multiplier would be specifi ed to the CAD tools 

using logic and algebraic equations. The CAD tools would translate these equations to actual 

hardware circuit using CLBs and the interconnects.

   Eventhough, the function performed by each LUT or CLB may be manually forced or 

programmed, in practice the CAD tool would automatically do this exercise depending upon 

the requirement.

Taking recourse to CAD tools would result in better optimisation in terms of the no. of CLBs used 

and propagation delays especially for complex designs. 

NEW ALGORITHMS FOR IMPLEMENTATION OF FILTERS IN VLSI 17.9

A number of architectures have been proposed in the literature for the effi cient implementation of fi lters 

(IIR and FIR), fi lter banks and computation of transforms such as FFT, DCT, and DWT in both ASICs 

and FPGAs. [Parhi]. Techniques for either increasing the speed or reducing the power dissipation of 

systems using pipelining and parallel processing have been proposed in [Parhi]. FIR fi lters using delta 

sigma modulators have been proposed in the literature. In this scheme, an FIR fi lter with N taps and 

input samples of M bit each is implemented using another FIR fi lter with input samples with only m bits 

(m < M). This is achieved by using a prediction fi lter to predict the input values. Only the prediction 

error (represented using m bits) is fed as input to the FIR fi lter. To decrease the prediction error, the input 

is oversampled. Additional details of this scheme are given in Data source [2000]. 

In addition to the above, several other schemes such as Interpolated FIR fi lters, Filters using 

polynomial transforms etc have been proposed in the literature for effi cient implementation of fi lters in 

VLSI circuits.

A number of algorithms such as fast convolution algorithms, fast fi lter algorithms and distributed 

arithmetic algorithm have been proposed to realize faster systems including fi lters and transform blocks. 

For brevity, the distributed arithmetic algorithm alone is presented in more detail in the next section.

DISTRIBUTED ARITHMETIC ALGORITHM 17.10

Distributed Arithmetic (DA) plays an important role in embedding DSP functions in the LUT based 

FPGAs and enables the FPGAs to achieve performance which is superior to those of programmable 

DSPs. DA technique is applicable for both Xilinx FPGAs and Altera Flex devices. Distributed 

Arithmetic is used to perform multiplication with look-up tables. The sum of products also referred to 

as the vector dot product is required to be computed in a number of applications such as digital fi lters 

and computation of fast fourier transform as well as discrete cosine transform. The DA can be optimized 

for area effi ciency, speed effi ciency or for both. For effi cient implementation of DA on FPGAs, a no. of 

algorithms such as ROM decomposition technique and offset binary coding (Stanley[1989]) have been 

proposed in the literature. In this section a brief introduction to DA and its enhancements for FPGAs 

are considered.
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17.10.1 An Overview of the Distributed Arithmetic Algorithm

The output sequence y(n) of a linear, time invariant discrete time system can be expressed as
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where x(n-k) is the sample of the input at the (n-k)th sampling instant and h(k) for k = 0, 1, … N-1 are 

the samples of the impulse response. The transform coeffi cients X(n) of DFT and DCT may also be 

expressed in terms of the samples of the inputs x(n) as : 
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where h(n,k) denotes the (n,k)th element of the transform matrix. Both eqn. (17.1) and (17.2) involves the 

computation of the vector dot product of h and x and can be generalized as the problem of computation 

of the sum of products given by 
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In the case of LTI fi lters and transform computation, a(n,k) is time invariant and only x(k) varies 

with time. Computation of y(n) using (17.3) requires N multiplications to be performed every time 

a new input comes. For large values of N, it would either require a large area for implementation 

or restrict the maximum sampling rate that can be used. In the direct implementation scheme for the 

system given by eqn. (17.3), the minimum sampling period Tmin is limited to Tm + (N-1)Ta where Tm, 

Ta denote the computation time of a multiplier, adder respectively. With the transpose structure, Tmin 

can be increased to Tm+Ta. But, for large values N, driving N-1 registers with a single input sample 

synchronously becomes tricky. However, the fact that a(n,k)’s are constants can be used to compute eqn. 

(17.3) by using the look up tables for multiplication. This can be achieved as follows:

The input samples x(k) may be assumed to be represented in 2’s complement representation using W 

bits where the MSB x(W-1,k) is the sign bit and bits x(W-2,k) to x(0,k) represent the fractional part of 

the number. x(k) can be written as
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Substituting eqn (17.4) in (17.3) and interchanging the order of summation w.r.t m and k we get
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It may be noted that x(m,k) for m= 0,1, … W-1 takes binary values 1 or 0. Hence, the terms inside 

the square brackets of (17.5) can be computed using ROM with address as the bits x(m,0), x(m,1), … 

x(m,N-1). For N = 4, the content of the ROM is as shown in Table 17.2. Each location is of width W + 

log (N) assuming a(n,k) to be represented using W bits. For N=W=4, in each location a 6 bit number is 

to be stored. 
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Table 17.2 Content of DALUT ROM for N=4

X(m,3) x(m,2) x(m,1) x(m,0) Content of ROM

0 0 0 0 0

0 0 0 1 a(n,0)

0 0 1 0 a(n,1)

0 0 1 1 a(n,1)+ a(n,0)

0 1 0 0 a(n,2)

1 0 0 1 a(n,2)+ a(n,0)

1 0 1 0 a(n,2)+ a(n,1)

… … … …  ….

1 1 1 0 a(n,3)+a(n,2)+ a(n,1)

1 1 1 1 a(n,3)+a(n,2)+ a(n,1)+ a(n,0)

17.10.2 Fully Parallel DA Algorithm 

To compute y(n) , W ROMs whose contents are identical may be used. The LSBs of all the samples are 

fed as the address to the 0th ROM. The next bit of all the samples are fed to the 1st ROM address bits. 

Similarly, the MSB of all the samples are fed as address to the (W-1)th ROM. The contents of the ROMs 

W-2 to 0 are to be added after shifting their content suitably and the result is to be subtracted with the 

content of ROM W-1. For W= N =4, the manner in which the ROM contents are to be added is shown in 

Fig. 17.25. For computing the vector dot product, the scheme shown in Fig.17.25 requires a computation 

time of one LUT delay and two adder delays. In general, an N tap fi lter requires a computation time of 

Fig. 17.25 Fully parallel DA algorithm with W ROMs and W-1 adders
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1 LUT delay and logN adder delays. Parallel addition 

of the distributed arithmetic LUT (DALUT) contents 

results in the maximum speed.

17.10.3 Serial DA Algorithm

A single adder and a ROM may also be used for the 

computation of the dot product. In this case, the samples 

have to be stored in N shift registers and their contents are 

to be applied to the ROM one bit after another in parallel 

from the N registers. The products are to be accumulated 

and stored in a register. The resulting scheme is shown in 

Fig. 17.26. This requires W clock cycles for computation of the dot product. The clock period is equal to 

1 DALUT delay + 1 adder delay. Note that xjk denotes the kth bit of the jth sample of the input(xj). 

17.10.4 The Speed and Area Tradeoff

By using multiple DALUTs and adders, the speeds in between the above two cases can be obtained at 

the cost of additional gate count.

17.10.5 ROM Decomposition Technique
       for DA Algorithm

DA algorithm discussed above can be modifi ed 

to reduce the size of the ROM required. It 

can be verifi ed that an N tap fi lter requires 

DALUTs with 2N locations. The exponential 

growth in the ROM size can be avoided by 

splitting the N address bits to the ROM into 

blocks of K address bits each. Now, only K 

input DALUTs are required and hence the 

individual ROM size becomes 2K. Totally N/K 

such DALUTs are required for computing 

the output corresponding a particular bit of 

the input samples. To get the correct output, 

the outputs of the K input DALUTs have to 

be added. The serial DA algorithm using the 

ROM decomposition scheme is shown in Fig. 

17.27. 

Application to FPGAs The ROM decomposition technique can be gainfully used for not only reduc-

ing the ROM size but also for ease of implementation on FPGAs. Xilinx FPGAs such as XC4000, Spar-

tan and Virtex family FPGAs and Altera FPGAs such as Flex, Cyclone and Stratix family devices have 4 

input LUTs. Hence, the value of K can be chosen to be 4 for effi cient implementation on these FPGAs.

17.10.6 Implementation of Symmetric FIR Filters using DA Algorithm

The symmetry in the impulse response of such fi lters may be exploited to use DALUTs of size 2N/2 . In 

this case the input to the DALUT should be appropriately added to generate the correct address to the 

Fig. 17.26 Serial implementation of Distributed 

Arithmetic algorithm

Fig. 17.27 Distributed Arithmetic using ROM decomposition
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DALUT. In an N tap symmetric fi lter, the samples x(p) and x(N-P) should be added for p = n to n-N/2. 

The corresponding bits of these numbers should be fed as the input to the DALUT. 

17.10.7 Implementation Results

An 8 tap symmetric FIR fi lter is implemented in [Xcell 28] using XC4003E-3 devices assuming both 

the impulse response coeffi cients and input samples to be represented using 8 bit signed numbers. The 

fi lter using parallel DA algorithm operates at a maximum frequency of 70MHz and requires 150 CLBs. 

The gate-effi cient serial implementation of the 8 tap fi lter consumes only 30 CLBs but has a maximum 

sample rate of 7 MHz. We have an interesting tradeoff : the serial FIR fi lter uses 1/5 th the number of 

gates but produces 1/10 th the performance.

Fig. 17.28 Block diagram for the computation of one level 2D DWT

CASE STUDIES 17.11

Two examples of FPGA implementation of 2D DWT one using Xilinx FPGA and another using Altera 

FPGA with Nios processor and custom instruction are discussed in this section. These examples use 

both DAA and lifting scheme discussed earlier for the implementation.

17.11.1 Implementation of Image Encoder Using 2D DWT

In this section, implementation of one level 2-D DWT of sub images of size 32x32 on Xilinx Spartan II 

FPGA (XC2S150PQ208-5) is considered. For the implementation, 9/7 bi-orthogonal lowpass/highpass 

fi lters with fi lter coeffi cients given in Table 1.3 is assumed. The pixels and fi lter coeffi cients are assumed 

to be of size 11 and 8 bits respectively. 2D wavelet transform is computed using fi lter banks shown in Fig. 

17.28. The input samples x(n) are passed through 2 stages of analysis fi lters. They are fi rst processed by 

the low pass (h[n]) and high pass (g[n]) horizontal fi lters and are sub sampled by two. Subsequently, the 

outputs (L1, H1) are processed by low pass and high pass vertical fi lters. The 2D DWT is implemented 

using both lifting scheme and DAA and their results are compared. 

Computation of 2D DWT Using Lifting Scheme The lifting scheme (Swelden [1998]) uses a poly-

phase structure for the analysis fi lter. In the lifting scheme, the odd and even input samples are processed 

using 5 blocks (a, b, g, d, x1/x2) in cascade as shown in Fig.17.28. x1, x2 are scaling blocks. Details of 

a and b blocks are shown in Fig. 17.29 and Fig. 17.30. g and d blocks are obtained by replacing the 
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constants a, b with g, d. In order to speed up these blocks, the following techniques are adopted:

 • Since the blocks are in cascade, the maximum rate at which the input can be fed to the system 

depends on the sum of the delays in all the four blocks. The speed is increased by introducing 

pipelining at the output of each of the blocks. In this case, the input rate is determined by the 

largest delay among all the four blocks.

 • The delay in the individual stages is reduced further by using BW-PKCM (pipelined KCM with 

Baugh-Wooley multiplication algorithm) 

Details of the a block implemented using BW-PKCM is shown in Fig.17.31. 

Fig. 17.28 Simplifi ed block diagram of Lifting Scheme for 9/7 fi lter

  

 Fig.17.29 Details of a block Fig. 17.30 Details of b block

Computation of 2D DWT Using Full 

Parallel DAA Scheme for computa-

tion of DWT using DAA for 9/7 Bi-or-

thogonal fi lter is shown in Fig. 17.32. 

This represents the horizontal fi lter sec-

tion of Fig. 17.31 with the low-pass and 

high-pass fi lters implemented using sep-

arate DAAs. The DAA also exploits the 

symmetry property of the 9/7 fi lter and 

uses reduced size DA-LUTs. The verti-

cal fi lter is also implemented in the same 

manner.

Fig.17.31 Implementation of a block using BW-PKCM



Recent Trends in DSP System Design  521

Fig. 17.32 Computation of DWT using DAA

The content of DA-LUT is determined assuming multiplication using BW multiplier (Baugh [1973]) 

for each of the fi lter coeffi cients and accumulating the individual products. For a N tap fi lter, when BW 

algorithm is used, corresponding to each of the N products, MSBs which are to be ignored, will actually 

be added and form the higher order log2N bits of the sum of products. For those products which are 

positive, a one which is to be ignored is actually added to the 2Wth bit of the sum of products. To get 

the correct result, a one has to be subtracted from the result corresponding to the 2Wth bit of the ROM. 

For example, assume that both the fi lter coeffi cients and the input samples are represented using 4 bit 

numbers. Let one of the fi lter coeffi cient h0 be a positive number. If the MSB of the corresponding input 

sample x0 is one, the product is negative and there will be no carry. Otherwise there would be a carry 

and to get the correct result, the no. 1000 0000 has to be subtracted from the content of the ROM. This 

can be achieved by adding the 2’s complement of the number to the ROM. Since the sign of the fi lter 

coeffi cient is known apriori, by merely examining the sign bit of the input sample, the correction factor 

can be determined and correct result can be stored in the ROM.

Computation of 2D DWT for an image of Size 128X128 The image is split into a number of blocks 

in order to perform the computation of 2D DWT in parallel in a no. of ICs. Further, it reduces the 

memory required for storing the image and its transform. An overlapping scheme is proposed wherein 

the image block is formed such that a number of pixels overlapped between adjacent blocks along the 

vertical and horizontal direction is equal to the order of the fi lter. For example, for the 9/7 bi-orthogonal 

fi lter used for the 2D DWT, the no. of overlap pixels should be equal to 4 on the left and 4 on the right 

between horizontal blocks. Similarly, between vertical blocks, the number of overlap pixels should be 

equal to 4 on the top and 4 on the bottom. For the blocks on the boundary, overlapping needs to be done 

only on the non-boundary edge.

Implementation Results In order to test the functionality and for the purpose of comparison, 9/7 

horizontal fi lters are implemented on SPARTAN II device (XC2S150PQ208–5) using lifting and DAA 

schemes.

For the implementation on SPARTAN II, the lifting multiplier constants (a, b, g, d, x1, x2) are assumed 

to be of 8 bits each. For the DAA, the fi lter coeffi cients are assumed to be of 11 bits for both high pass 

and lowpass fi lters. The horizontal fi lters are implemented using DAA BW algorithm. The lifting scheme 
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is implemented using the BW-PKCM. The simulation results obtained for both the cases are found to be 

matching. Area as well as speed corresponding to both schemes are tabulated in Table 17.3.

Table 17.3 Performance of 9/7 biorthogonal fi lters 

Name of the scheme using 11x8 multipliers Area (No. Of slices) Speed in MHz

Lifting with BW-PKCM 377 136

DAA with BW 397 136

From Table 17.3, it may be observed that the lifting scheme with BW-PKCM requires about 5% less 

area but has the same speed as that of the DAA scheme.

To verify the correctness and effi cacy of the schemes proposed for the computation of 2D DWT, 

the overlap method proposed in the last section is used. The implementation of the one level 2D DWT 

for image block of size 32x32 is carried out using lifting scheme with BW-PKCM and the results are 

tabulated in Table 17.4. For storing the image input, outputs of the horizontal fi lter and the outputs of 

the vertical fi lters, the block RAMs are confi gured suitably. The image is loaded into the block RAMs 

through the user constraint fi le (UCF) of the implementation tool.

Table 17.4 Implementation report on 1 level 32x32 2D DWT

Scheme Area (no. of slices) Speed in MHz

Lifting with BW-PKCM 1197 100

The 2D DWT for the image is also computed using a C program. Lena image of size 128x128 with 

blocks (sub-images) of size 32x32 pixels is used for the computation of the 2D DWT. This is carried out 

using both high-level language C and hardware approach using FPGA. The Lena image shown in Fig. 

17.33a is obtained by compressing the image dimension by a factor of 4 along both dimensions. Totally 

36 image blocks are used for the 128x128 image.

For implementation in C language, the lifting multiplier constants (a, b, g, d, x1, x2) are declared as 

“double” type (64 bits) variables. The pixel intensities are declared as “short” type (16 bits) variables. 

The analysis fi lter output obtained corresponding to 36 image blocks are merged suitably and LL1 

component of the image obtained using software (C program) and FPGA are shown in Fig. 17.33b and 

17.33c respectively.

From these fi gures, it may be concluded that the LL1 components obtained through the FPGA 

implementation match well with that obtained using C.

Fig. 17.33 Orginal image and LL1 components of image
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17.11.2 System on Chip Implementation of 2D DWT Using Lifting Scheme

System on chip (SOC) kit based on Altera® APEX20K200E device is used for the implementation of 

2D DWT. 2D DWT is computed using Nios softcore processor with and without custom instructions 

and the results are compared. The custom instructions are added to the Nios core as discussed in section 

17.6. The sequential blocks require more than two clock cycles for correct operation. (The number of 

clock periods is chosen to be the number of clock cycles required for the sequential block + 1 ). The 

combinatorial blocks require 1 clock cycle. However, due to the overheads involved, for every call to 

a custom block, the Nios CPU spends at least 7 CPU cycles. For less computation intensive tasks, it 

would be preferable to make the Nios CPU to wait during every call to the custom block. For highly 

computation intensive tasks, it would be desirable to make the CPU concurrently working. 

To ensure the concurrency between the Nios processor and custom logic, the scheme shown in 

Fig.17.34 is adopted. The execution of the custom instruction is split into a number of phases: write 

operand and operand number, issue start or reset signal, and read the results. Each phase of the instruction 

requires only 2-3 clock cycles. When a custom instruction is to be executed, fi rst, the input data is fed 

into the input register fi le one after another. Next, a reset signal and start signal are issued to start the 

computation. The counter stops the computation process after a predetermined number of clock cycles. 

Using the read phase, the processor can read the result. 

While adding custom instructions in SOPC builder, the number of cycles after which we need to 

process the result of custom block, is given as either 2 or 3.

Fig. 17.34 Scheme for concurrent execution of custom logic with Nios core

As the input register fi le and output register fi le are the integral part of the custom logic, there is 

no need for separate arbitration for writing the data and reading the result of the custom logic. But the 

overhead here is additional memory needed to store the input data and output data in register fi les. 

Implementation of the 2D DWT on the APEX FPGA The 2D DWT scheme given in Fig.1.39 is 

implemented on the APEX20K200 using the lifting blocks with 9/7 biorthogonal fi lters and BW-PKCM 

multipliers. The lifting multiplier constants (a, b, g, d, x1, x2) are assumed to be of 8 bits each and the 

input samples are assumed to be of 11 bits. For 2D DWT, image block of size 32x32 is assumed. The 

input image and the outputs of the horizontal fi lters as well as vertical fi lters are assumed to be stored in 

the block RAMs. For the horizontal fi lters, the even and odd inputs are applied from two block RAMs of 
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size 512 X11. The result is written into 4 block RAMs of size 256X1. For the vertical fi lters, the inputs 

are applied from these four RAM blocks. For testing, the image is assumed to be loaded into the block 

RAMs using memory initialization fi le. However, the block RAMs may also be loaded using the data 

ports of the custom instruction. The block RAMs are realized using RAM library function altsyncram. 

The library function specifi es that two clock cycles are required for either read or write operation. How-

ever, it has been found that write operation is satisfactory even with a single clock cycle. 

From the synthesis and timing simulation using Quartus II, the critical path delay of the lifting blocks 

is found to be 20ns. The design is integrated with the Nios core and downloaded to the APEX device 

and tested. The 2D DWT is computed using the internal clock of frequency 66.66 MHz. These results 

matched with that obtained using a C program. 

The 2D DWT block added as a custom block to Nios CPU and downloaded to the APEX device is 

studied under the following two cases:

 • Declare the DWT block as a sequential block and run the DWT instruction in the foreground. 

The no. of clock cycles required for block is specifi ed as 808. This includes 512 cycles required 

for the horizontal fi lters and 256 cycles required for the vertical fi lters. In this case, the Nios 

processor keeps waiting till the result is returned by the custom block.

 • Declare the DWT block as a sequential block and run the DWT instruction in the background. 

The no. of clock cycles required for the block is specifi ed as 3. The custom block is invoked with 

three prefi x codes, one for clearing the internal registers, second for starting the computation of 

DWT and the third for latching any three words of the result in the output block RAM into the 

result port of custom block. The address of the RAM location to be read is specifi ed through 

the prefi x port. In this case, the Nios processor does not wait till the DWT is computed. It waits 

only for 3 clock cycles. 

The results obtained with case 1 matched with the results obtained in case 2. 2D DWT is also computed 

using the in-built instruction set of Nios. The number of CPU clocks for both the cases are tabulated in 

Table 17.5. The custom instruction for 2D DWT is found to be faster by a factor of 90 compared to the 

implementation using C.

Table 17.5 Computation time for 2D DWT for 32X32 sub-image

Function No. of CPU clock cycles for Software 

approach

Equivalent CPU clock cycles for custom 

block

2D- DWT 73280 814

The reading and writing of the block RAMs may be carried out concurrently with the computation of 

DWT by running the custom instruction in the background. Using dataa and datab outport ports of Nios 

core, 64 bits can be sent to the custom block for every custom call. In addition to this, the prefi x port may 

also be used for sending data. If 2 bits of the prefi x port are dedicated for sending the data, 66 bits can 

be sent to the custom block at a time. A 32x32 image requires 1024 eleven bit data to be transferred to 

the custom block. This can be achieved using 171 CPU calls to the custom block. Simultaneously about 

512 words of 11 bit results can be read. To read the remaining 512 words additional 171 CPU calls are 

required. The area required for the 2D DWT and Nios Core are given in Table 17.6. 
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Table 17.6 Resource utilization for 2D DWT and Nios Core for 32X32 sub-image

Function No. of logical elements No. Memory bits 

2D- DWT 3,705 34,688

CPU core 2,672 26,496

Available 8,320 1,06,496

COMPARISON OF THE PERFORMANCES OF THE SYSTEMS DESIGNED
USING FPGAS AND DIGITAL SIGNAL PROCESSORS 17.12

Digital signal processors enjoyed a number of advantages over the FPGAs in the past, such as availability 

of

 ∑ effi cient C compilers which enabled faster development and debugging of programs

 ∑ off the shelf subroutines for a variety of applications

 ∑ Interface with Matlab 

 ∑ Good debugging environment such as code composer studio 

But they are no longer valid. This is because the techniques for designing the system using FPGA 

have also matured over the past decade. The CAD tools for FPGA based systems support all the above 

features as discussed in section 17.5. However, FPGAs and digital processors have some distinct 

advantages of their own. 

The digital signal processors have the following advantages over the FPGAs: for systems with 

moderate speed requirements, they require lower cost and lower power dissipation for implementation. 

They have power down modes which enable them to be power effi cient. 

On the other hand, FPGAs are suitable for systems which require very small sampling rates as well as 

the ones which require very high sampling rates. FPGAs offer the the fl exibility to the users in choosing 

the word size. Adders and multipliers can be of any size. For example, when an application requires a 12 

bit adder or a multiplier, the FPGA based design builds only the adder or the multiplier of the required 

size. In the case of digital signal processors, the word size is dictated by the size of the ALU. In the case 

of P-DSP,the size of the multiplier and adder may be fi xed to be of 32 bits wide. Hence hardware of 

higher capacity is wasted for a smaller task. Further, the no. of adders and multipliers available in P-DSP 

is limited. In the case of FPGA based circuits, a no. of multipliers and adders can be realized in a single 

FPGA. Hence, parallel processing can be done to speed up the process. For example, a P-DSP operating 

at 100 MHz may be able to process only signals sampled at 10 MHz and below due to overheads 

involved in handling the repeat statements and loops. In the case of FPGAs operating at 100 MHz, the 

input sampling rates can be as high as 100 MHz. 

In applications such as software defi ned radio, FPGAs outperform the digital signal processors because 

of the availability of a large no. of embedded multipliers in their core. For example, let us consider the 

implementation of 256 tap root-raised cosine (RRC) fi lter for processing inputs sampled at the rate of 

200MSP. The total no. of MACs to be performed by the fi lter is 51.2 giga MACs/sec. This fi lter can be 

realized using a single Virtex-II Pro device. For example, XC2VP70 contains 328 multipliers and each 

multiplier can operate at a speed of 200MHz concurrently. ( we require only 256 multiplier for the fi lter). 

On the other hand, the number of MAC units in a digital signal processor is limited. Let us consider a 

processor with 4 MAC units and clock speed of 600 MHz. Each of the processors can provide only 2.4 

giga MACs/sec. Hence, to realize the above fi lter, we require 22 processors. This solution is area and 
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power intensive and is costlier than the alternate approach using FPGAs. Hence, FPGAs are suited for 

very high speed applications. They may also be used as coprocessors to the P-DSPs and the advantages 

of both the approaches can be combined.(see for example Pirch[1997], Bosi[1999]

It may be noted that FPGAs are used to build prototypes of large digital systems and test them 

with minimum time. If the resulting system is to be used in large volumes, the design in the FPGA is 

translated to an ASIC and the cost of the system can be brought down further.

Review Questions 

17.1 List the different tools used for front end and back 

end design  of VLSI and briefl y explain their function 

17.2 Explain how interconnects are realized using (i) 

Antifuse (ii) SRAM (iii) EPROM.  

17.3 Discuss the important features of the CLB in an 

FPGA such as XC4000. 

17.4 How many CLBs are required to implement (i) 

32X16 RAM (ii) 32 bit adder using XC4000.

17.5 How many CLBs are required to implement (i) 

32X16 RAM (ii) 32 bit adder using Spartan III FPGA.

17.6 List the relative merits and demerits of antifuse 

and SRAM cells.

17.7 Explain the advantages of hw/sw partitioning of a 

system?

17.8 Why is a serial PROM used with Xilinx FPGAs?

17.9 Compare the features of XC4000 and Virtex 2 

FPGAs

17.10 With an example show how FPGA outperforms 

P-DSPs for the implementation of high speed fi lters. 

17.11 Give examples of hardcore and softcore processors 

realized on FPGAs. Discuss their relative merits.  

17.12 Distinguish between distributed RAMs and block 

RAMs. Give examples of FPGAs which contain these 

RAMs.

17.13 Which FPGA requires serial EPROM? Why?

17.14 What is meant by in system programmability?

17.15 Which are the FPGA companies which use SRAM 

technology?

17.16 State anyone merit and demerit of using ACTEL 

FPGAs.

17.17 Explain the terms i antifuse ii Insystem 

programmability.

17.18 List the companies which develop FPGAs using 

antifuse technology and those using SRAM technology

17.19 With an example show how an FPGA baseband 

processor outperforms programmable DSPs

17.20 The highest frequency component that can be 

processed by an N tap fi lter implemented on P-DSP with 

MIPs rating of 100 MIPs is 250 KHz. Find the value of 

N. The above fi lter is implemented using the transpose 

of Direct form I structure on FPGAs. One multiply and 

accumulate operation requires 10 ns in FPGA. Find the 

maximum input frequency for which the FPGA based 

fi lter would be satisfactory



Digital implementation of the various blocks of a communication system such as mixer (frequency 

changer), fi lter, modulator and demodulator has a number of advantages over their analog counterparts. 

Greater accuracy and stability frees digital circuits from the drifts caused by temperature, humidity, 

pressure and supply voltage changes. The ability to store the samples for longer time, enables repeated 

processing of the received data and leads to more accurate detection and demodulation performance. 

The highest sampling rate of the data converters (A/D and D/A) has dictated the portions of the 

communication system which are implemented using digital circuits.

EVOLUTION OF THE RADIO RECEIVER  18.1

Figure 18.1 shows the block diagram of the 1st generation radio receiver [Gunn]. The analog quadrature 

mixers translate the received signal to the baseband and further processing is carried out in the digital 

domain. In the second generation radio receiver, shown in Fig.18.2, the in phase and quadrature 

signals required for demodulation are generated using digital quadrature mixers. This has a number of 

advantages over analog quadrature mixers such as better matching of in phase and quadrature channel 

amplitudes and phases. For multichannel receiver, one set of quadrature mixers is required for each 

channel. In this case, the mismatch in the amplitude/phase between the in phase and quadrature signals 

results in coupling between the base band channels and leads to ghosts or images. To circumvent this, 

processing of the signal at the intermediate frequency using digital techniques have been proposed for 

applications such as multi channel receivers and transmitters for the base station of a cellular mobile 

communication system [Dick]. 

The block diagram of 1st generation and 2nd generation transmitters are shown in Fig.18.3 and 

Fig.18.4 respectively. In the 1st generation transmitters, modulation of the carrier by an information 

source is achieved using analog circuits. This is true even when the modulating signal is binary as in 

the case of BPSK/BFSK or when it takes anyone of the N discrete values as in the case of Quadrature 

Amplitude modulation (QAM). In the second generation transmitters, the information source modulates 

an intermediate carrier in digital form. The modulated signal is converted to analog signal and then 

upconverted to the required transmitter frequency.

Implementation of transmitters with modulators realized using digital technology gives a number 

of advantages: The carrier frequency and the type of modulation (QPSK, QAM, FSK, AM, FM) can 

be altered through software. This makes a transmitter to be suitable for multiple carrier frequencies 

18
FPGAs IN TELECOMMUNICATION

APPLICATIONS
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and for multiple modulation schemes. Similarly, a receiver with low intermediate frequency blocks 

implemented in digital domain, enables it to be suitable for a range of carrier frequencies and a number 

of modulation schemes. Low intermediate frequency digital receivers have been proposed for a number 

of applications such as wireless LANs and IFM receivers for military communication. In the digital 

low IF receivers, the carrier frequency and the modulation scheme can be altered through software and 

hence these are examples of 1st generation software radio or software defi ned radio. In an ideal software 

radio, the A/D and D/A would be directly connected to the antenna and the rest of the blocks would 

be implemented using digital circuits. The lack of availability of very high speed, cost effective and 

low power data converters are presently the bottleneck for the implementation of all digital software 

radio. However, as the operating frequency of the data converters are increased with improvement in 

the technology and using novel techniques, the IF frequency of the digital receivers are also increased. 

Hence, implementation of a truly software defi ned radio is a distinct possibility. 

The digital receivers with intermediate frequencies of the order of hundreds of MHz can be implemented 

only using either ASICs or FPGAs. Since the FPGAs are cost effective for low volume applications and 

are reconfi gurable, they are more suitable for digital receivers. An example of a digital transceiver for 

wireless LAN is given in Fig.18.5 [Canet04]. In the fi rst block on the transmit section, the input data is 

converted to 48 parallel data streams. They modulate 48 orthogonal carriers. The modulation type could 

be BPSK, QPSK, 16-QAM or 64-QAM. For phase tracking, 4 additional orthogonal carriers are used. 

They are modulated by pilot signals. The multicarrier modulation is effi ciently achieved using the IFFT 

block. The 64-point IFFT coeffi cients are transmitted sequentially. They are followed by a guard band 

duration LAN corresponding to 16 samples. They are added to make the system robust to multipath 

and to prevent inter-symbol interference (ISI) from happening, this prefi x can also be employed to have 

some tolerance for symbol timing. The input data rate is 20 Msymbols/sec. Hence IFFT is computed 

every 4 ms. (80X 0.05ms).

Fig. 18.1 Block diagram of 1st generation receiver

Fig. 18.2 Block diagram of 2nd generation receiver
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Fig. 18.3 Block diagram of 1st generation transmitter

Fig. 18.4 Block diagram of 2nd generation transmitter

Fig. 18.5 Block diagram of a digital transceiver for wireless LAN

The output of the IFFT block has a frequency of 20 MHz and is upconverted to 120 MHz using 

two interpolation blocks with interpolation factors of 2 and 3 respectively. In Canet04, both fi lters are 

implemented using polyphase structure and distributed arithmetic algorithm with a precision of 8 bits.

The received analog signal is fi rst downconverted to an IF of 45 MHz and then undersampled at the 

rate of 60 MHz resulting in a digital signal of 15 MHz. After digital mixing, the obtained base-band 

signal is low-pass fi ltered and decimated by 3 giving a base-band rate of 20 MHz. This is performed 

using a FIR fi lter of 8th order realized using a polyphase structure and distributed arithmetic with a 

precision of 10 bits. After down-conversion, the following stages are applied to the base-band signal: 

timing synchronization, coarse and fi ne carrier frequency offset (CFO) estimation and correction, FFT-

based OFDM demodulation, channel estimation and compensation. 

Several important design techniques used in Canet04 is worth noting: Use of IFFT/FFT for multicar-

rier modulation/demodulation, polyphase structure and distributed arithmetic for fi lters, ROM approach 

for generation of the carriers for the digital quadrature mixers, CORDIC scheme for coarse and fi ne 

carrier frequency offset (CFO) estimation as well as correction and undersampling scheme for reducing 

the sampling rate of the ADC. (Undersampling technique is used in most of the digital receivers and is 

based on bandpass sampling theorem: The minimum sampling rate – fs required to sample a bandpass 
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signal with lower, upper pass band frequencies of fL and fH respectively is 2(fH - fL) < fs < 4(fH - fL) 

where fs is chosen to be submultiple of either fH or fL). All the above blocks are implemented in a single 

Spartan III FPGA. Techniques used for effi cient implementation of these blocks are discussed in more 

detail in section 18.2-18.4. These techniques are applicable for both ASICs and FPGAs.

DDFS WITH PHASE ACCUMULATOR AND ROM 18.2

Let us consider the implementation of direct digital frequency synthesizer (DDFS) [Lionel2004]. A 

periodic signal may be generated using a ROM, counter, Digital to Analog (D/A) converter and low pass 

fi lter as follows: If the signal is periodic with T, it may be sampled at M equidistant points in a period 

and the M samples may be stored in a ROM with M locations. The signal can then be regenerated by 

reading the content of ROM one by one and converting them to analog signal using the D/A converter. 

A modulo M counter is used for generating the log2M address inputs for the ROM. If M is a power of 

2 (ie. M = 2N ) and fs is the sampling rate, then, fmin, the fundamental frequency of the signal generated 

using the ROM is given by 

min
2

= s

N

f
f  (18.1) 

Fig. 18.6 Block diagram of DDFS with phase accumulator and ROM

Next, let us consider the case where the counter increments by 2 after every clock cycle. In this case, 

the modulus of the counter becomes M/2. If the ROM contents are read using the address generated by 

the above counter, fout , the frequency of the analog signal generated becomes 2fmin. In this case, only 

the alternate samples in the ROM are read and hence the period of the signal generated is reduced by 

half. Similarly, if the count is incremented by 3, the modulus of the counter is M/3 and fout is 3fmin. 

Proceeding in this fashion, higher and higher frequencies can be generated by reducing the modulus of 

the counter. However, fmax , the maximum frequency that can be generated in this fashion is limited to 

fmin(M/2). This is because, for perfect reconstruction of a signal, we require at least 2 samples/period 

(sampling theorem). 

max
2

= sff  (18.2)
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Figure 18.6 gives the block diagram of the DDFS using the above approach. The variable modulus 

counter is realized using the phase accumulator block as follows: The register is initially cleared. During 

the fi rst clock period, the sum output of the adder output is Dr. During the next clock period, it is 2Dr. 

Similarly, after every clock period, the output of the adder is incremented by Dr . After every M/Dr 

clock cycles, the adder output overfl ows. If Dr is 1, it takes M clock cycles for the adder to overfl ow and 

become 0. The output fout can be expressed using Dr as 

out
2

= Ds
rN

f
f  (18.3) 

If fi is denoted as the frequency generated when Dr =i, it may be noted that fi+1 – fi = f3 – f2 = f2 – f1 = 

fmin. In other words, the resolution of the frequency generator is fmin. If the ROM contains the samples 

corresponding to one period of a sinusoidal signal, incrementing the phase accumulator output by 1 is 

equivalent to advancing the phase of the sine wave wave by 2p/2N. In other words, phase resolution that 

can be achieved is 2p/2N. 

18.2.1 ROM Size and Resolution 

In the DDFS scheme with ROM, the resolution of the synthesizer can be chosen to be as small as we 

require, as it depends only on fs and N. However, this is achieved at the price of increase in the number 

of locations and the number of bits to be stored/location. Ideally, the number of bits stored in each 

location of ROM should be N. This is required in order to ensure that the adjacent samples read, do not 

have the same value. If they are indeed the same, a ROM with only 2N/2 locations needs to be used. In 

this case, only the most signifi cant N-1 bits of the adder is used as address to the ROM. 

Example 18.1 If fs - the sampling frequency of a DDFS is 1 MHz and the resolution is 1 Hz, the size 

of ROM computed using (18.1) is 106 X 20.

However, the size of the ROM required may be reduced from the following observation: If the DAC 

used is of a smaller resolution of W bits, a smaller ROM of size (2W X W ) is adequate. In this case, 

only the most signifi cant W bits of the accumulator are used as the address and the remaining bits are 

truncated. Since the lower order N-W bits of the accumulator are not used, the address to the ROM 

changes only at intervals of 2N-W sampling periods (ie. 2N-W /fs ). Hence, the output of the DAC remains 

constant for 2N-W sampling periods and it introduces a number of spurious frequencies - fspur , at the 

output, given by 

spur
2 -

D
= -r s

sN W

f
f kf   (18.4)

where k is an integer. The low pass fi lter used at the output of DAC is designed to remove these spurious 

frequency components. For example, for the DDFS of Example 18.1, if a DAC with 8 bits is used, only 

a ROM of size 28 X 8 is required. 

Example 18.2 Figure 18.7(a) shows 16 samples corresponding to one period of a sine wave. The 

0th and 8th samples are zero valued. For generating the sine wave, a 4 bit phase 

accumulator and ROM with 16 locations are required. Figure 18.7(b) shows the output of an ideal D/A 

converter (it has zero conversion time and holds the value till the next sample is applied). Figure18.7(c) 

shows the output of the ideal D/A converter if a ROM with only 8 locations is used. In this case only the 
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3 MSB bits of the phase accumulator output is used as the address. It can be seen from Fig. 18.7(c), the 

DAC levels remain constant for 2 sample periods (2Ts). Further, it may be noted that the waveform in Fig. 

18.7(c) may be obtained from Fig. 18.7(b) by adding a square wave whose period is 2Ts and whose 

amplitude changes with time. Hence, in addition to the desired frequency, the waveform shown in 

Fig.18.6.c, contains a sinewave of period 2Tclk and its harmonics. This is what is to be expected by the 

application of equation (18.4). In this example, N =4, W =3 and Dr =1, fout = fs/16 and fundamental 

component of fspur = 8fout = fs/2 

Fig. 18.7(a) Samples of a sine wave sampled at the rate of 16fs

Fig. 18.7(b) Output of an ideal D/A converter

Fig. 18.7(c) Output of the ideal D/A converter with 1 bit truncations

In addition to spurious components due to phase truncation, additional spurious components are 

present when Dr is not a power of 2. In this case, when the phase accumulator overfl ows, it may not lead 

to 0 output. To understand this, let us consider a phase accumulator with N = 4 and list the consecutive 
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outputs for Dr = 2, 3 corresponding to various clock cycles. Table 18.1 gives the outputs for both the 

cases at different clock cycles. 

Table 18.1 Output of the phase accumulator at different cycles

Clk cycle no 1 2 3 4 5 6 7 8 9 10

Dr =2 0 2 4 6 8 10 12 14 0 2

Dr =3 0 3 6 9 12 15 2 5 8 11

Clk cycle no 11 12 13 14 15 16 17 18 19 20

Dr =2 4 6 8 10 12 14 0 2 4 6

Dr =3 14 1 4 7 10 13 0 3 6 9

When Dr =2 , phase accumulator overfl ows after every 8 clock cycles and starts with the value 0. But 

when Dr =3, the overfl ow does not occur periodically, it takes 6, 5, 5 clock cycles to overfl ow. The value 

of accumulator at these instants are 2,1,0 respectively. At clk number 1, the 1st period of the sinewave 

starts with phase offset of 0. At the 7th clock cycle, it starts with second period with an offset of 2 (2p/24). 

At the 12th clock cycle, the third period starts with an offset of 2p/2N. At the 17th clock, the 4th period 

starts with an offset of 0. It takes 16 clock cycles for resynchronization to occur. Since different periods 

start with different phase offsets, spurious frequencies result. The spurious frequency components due 

to periodic jitter is given by

jitter

. . ( , 2 )

2

D
=

N
r s

N

g c d f
f  (18.5)

where g.c.d. stands for the greatest common divisor. 

18.2.2 ROM Compression Techniques

Compression Using Symmetry of Sine Wave When sinusoidal signals are to be generated, the num-

ber of ROM locations can be reduced by a factor of 4 using the symmetry property. From Fig.18.2a , 

it may be noted that only 4 samples corresponding to the fi rst quarter of the periods needs to be stored. 

The samples in the 2nd quarter cycle can be obtained using mirror symmetry about p/2. The samples in 

the 3rd quarter cycle is obtained by using mirror antisymmetry (sign change as well as mirroring) about 

p. The samples in the 4th quarter cycle can be obtained using mirror symmetry about 3p/2. For phase 

accumulator with N bits, only a ROM of 2N/4 locations are required for this method resulting in 75% 

savings in ROM. 

Sine-Phase Difference Algorithm

This technique is also used to reduce the storage requirements for the quarter-wave sine function. 

The idea is to store

 f(f) = sin(pf/2) – f (18.6) 

instead of sin(pf/2) in the ROM LUT and calculate sin(pf/2) from f(f) + f. The sine-phase difference 

algorithm is shown in Fig.18.8.
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The variation in f(f) values is small, and 

thus a small LUT can be used to represent f(f). 

sin(pf/2) can be easily calculated from f(f). 

This technique can save as many as two bits of 

amplitude in the storage of the sine function. 

Moreover, the sine LUT propagation delay 

is reduced, increasing the maximum clock 

frequency of the DDS [Lionel 2004].

Hutchison and Sunderland Algorithms In the Hutchison algorithm, the values of the sine function 

in the 1st quadrant is computed using two ROMs - a course ROM and a fi ne ROM. The given angle q 

is split into two parts qC and qF such that the maximum value of qF is of the order of p/128. Then sin(q) 

can be approximated as 

   sin(q) = sin (qC+qF)

 = sin(qC)cos(qF) + cos(qC)sin(qF) (18.7a) 

 = sin(qC) + cos(qC)sin(qF) (18.7b) 

The Sunderland algorithm is an improvement over the Hutchison algorithm and divides the phase 

angle into three parts, thus using three ROMs. The fi nal value of the sine function is computed using 

suitable combinatorial logic at the output of the ROMs. If q=qC+qs+qF where qC is the coarse angle. qS 

is the Sunderland angle, and qF is the fi ne angle.

   sin(q) = sin (qC+qS+qF) (18.8) 

 = sin(qC+qS)cos(qF) + cos(qC)cos(qS)sin(qF)

  – sin(qC)sin(qS)sub(qF) (18.9) 

The coarse angles are defi ned in the fi rst quadrant of a sine wave from 0 to p/2, divided into 2C equal 

angles. The Sunderland angle is defi ned as one of the coarse angles divided into 2S equal angles. Finally, 

the fi ne angle is defi ned as one of the Sunderland angles divided in to 2F equal angles. If qS and qF are small 

enough so that cos(qS)   1 and sin(qS) sin (qF)   0, then the following approximation can be used

Sin(q) = sin(qC+ qS) cos(qF) + cos(qC) sin (qF) (18.10) 

18.2.3 Generation of Modulated Signal Using DDFS with Phase Accumulator and ROM

The DDFS scheme above can be used for generating a carrier which is modulated using any one of 

the modulation schemes such as frequency modulation, phase modulation, amplitude modulation 

and quadrature amplitude modulation. Circuit for the three analog modulation schemes are shown in 

Fig.18.8. Frequency modulation is performed by directly modulating, Dr –the Frequency Control Word, 

thus no additional hardware is needed to implement this feature. In this case, the modulating signal is 

digitized and fed to the Dr input.

Phase modulation is obtained by adding a phase offset to the phase accumulator output before 

addressing the ROM look-up table. In hardware, this amounts to incorporating an extra adder stage 

as shown in Fig. 18.8. The modulating signal is fed as one of the inputs to the 2nd adder preceding the 

ROM. As observed in section 18.2, incrementing the ROM address by Dr corresponds to incrementing 

the phase of the waveform by (2p /2N)Dr. Hence, if binary phase shift keying (BPSK) is required, for 

Fig. 18.8 The Sine phase difference method
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modulation by 1 level, the input to the 2nd adder should be (p /2N)Dr so that a fi xed phase shift of p is 

introduced into carrier signal in each of the periods. When it is to be modulated by 0, the input to the 2nd 

adder should be 0 so that the offset is zero. Similarly, the input to the 2nd adder for different phase shifts 

can be found for anyother phase modulation scheme. 

Fig. 18. 9 Circuit for DDFS with modulation

The amplitude modulation is achieved by multiplying the output of ROM with the modulating signal 

and then feeding the output to the DAC. To perform quadrature amplitude modulation, we require two 

ROMs one which contains the sine values and another which contains the cosine values. The output of 

these two ROMs are multiplied by the in phase and quadrature modulating signals and then applied to 

two DACs. This scheme requires 4 multipliers. Only the values of sine and cosine in the interval (0, p/4) 

needs to be stored into the ROM. Using complementary property of sine and cosine functions, the value 

of sinq, for q lying between p/4 to p/2, is found using the ROM for cos(p/2–q). Similarly, the value of 

cosq, for q lying between p/4 to p/2, is found using the ROM for sin(p/2 – q). 

COORDINATE ROTATION DIGITAL COMPUTER (CORDIC) ALGORITHM 
AND ITS APPLICATIONS  18.3

The Coordinate Rotation Digital Computer (CORDIC) algorithms, proposed by Jack Voider[Vol 59] can 

be used for computation of a wide range of functions including certain trignometric, hyperbolic, linear 

and logarithmic functions. CORDIC unit uses only shifts and adds to compute these functions. CORDIC 

algorithm is used in diverse applications such as mathematical coprocessor units, calculators, waveform 

generators and digital modems.[Jean93]. Different architectures for the implementation of CORDIC 

unit in FPGAs are considered in [Ray78]. 

18.3.1 CORDIC ALGORITHM

The CORDIC algorithm provides an iterative method of performing vector rotations by arbitrary angles 

using shifts and adds. In the rotation mode, CORDIC is used for converting one vector in rectangular 

form to another vector in rectangular form. In the vector mode, it converts a vector in rectangular form 

to polar form. 

Rotation Mode of CORDIC 

The CORDIC algorithm for this mode is derived from the general rotation transform 
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xfi n = xin cosq – yin sinq (18.11a)

xfi n = xin cosq + yin sinq (18.11b)

which rotates a vector (xin, yin) in a Cartesian plane by an angle q to another vector with the coordinates 

(xfi n, yfi n). The rotation may be achieved by performing a series of successively smaller elementary 

rotations q0, q1. q2 … qN such that q = SN
0qi. Fig. 18.10, shows the case where a rotation of a vector of 

magnitude 1 by an angle q is achieved using three elementary 

rotations q0, q1 and q2.

Rotation of the vector by an angle  can be rewritten as 

1 cos sinq q+ = -i i i i ix x y  (18.12)

1
cos sinq q

+
= +i i i ii

y xy  (18.13)

1
tan

cos
q

q

+ = -i

i i i

i

x
x y  (18.14)

1
tan

cos
q

q

+ = +i

i i i

i

y
y x  (18.15)

The computational complexity of (18.14), (18.15) can be 

reduced by rewriting these equations as 

xi+1 = xi – yi tan qi (18.16)

yi+1 = yi – xi tan qi (18.17)

( )
1 1

, ,
cos cosq q

Ê ˆ
= Á ˜

Ë ¯’ ’
N N

N Nfin fin

i i

x y
x y  (18.18)

and performing the division by cos together for all the N iterations by dividing the value of (xN,yN) by 

1
cosq’N

i. Further, the value of  for i =1, 2, .. N is chosen such that tan is 2-i . The values of angles for 

i = 0- 9 are given in Table 18.2.

Table 18.2 The values of qi = tan-1 (2-i ) 

I qi tan qi

0 45 1

1 26.5 0.5

2 14 0.25

3 18.1 0.125

4 3.57 0.0625

5 1.78 0.03125

6 0.895 0.015625

7 0.4476 0.0078125

8 0.2238 0.00390625

9 0.1119 0.001953125

Fig. 18.10 Rotation of a vector by an 

angle qi using a number of steps
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This reduces the multiplication by the tan qi to simple shift operation. As the iteration increases qi  

becomes smaller and smaller. We may terminate the iteration when the difference between q & SN
1qi 

becomes very small for some value of N. The remaining angle by which the vector needs to be rotated 

after the completion of i iterations is indicated by the parameter zi+1 defi ned by equation (18.19).

zi+1 = zi – qi (18.19a) 

z0 = q (18.19b)

qi is considered to be positive when the rotation required is anticlock wise and is negative otherwise. To 

approximate an arbitrary angle using qi of the form tan–1 (2–i), qi may have to be chosen to be negative 

for some values of i. For example, to approximate 50, we have to choose  as 45, 26.5, –14, –18.1 in the 

fi rst four iterations.(The sum of these angles is 50.4). The sign (sgn) of zi indicates whether in the next 

iteration, the rotation has to be anticlockwise or clockwise. Since, tan is +2-i when  is positive and –2-i 

otherwise, the iterative equations may be rewitten as 

di = sgn (zi)  (18.20)

xi+1 = xi – di yi 2
–i  (18.21)

yi+1 = yi – di xi 2
–i  (18.22)

zi+1 = zi – di tan–1 (2–i) (18.23)

The computation of 
1

cosq’N

i  may be simplifi ed as follows: Since cos qi = 1 for very small values 

of qi, 1
cosq’N

i  may be computed for N=6 and may be used for any other value of N > 6. For N=6, K 

= 
6

1
cosq’ i  = 0.6073. 

18.3.2 Vector Mode

In this mode, an initial vector with the x, y coordinates of (xin, yin) is rotated such that its y coordinate 

becomes zero. The procedure used for rotation may be adopted for vector mode with the following 

modifi cations : Rotation is carried out along clock wise direction (so that the y coordinate can be made 

0); The total angle by which the vector has been rotated from the initial position after i rotation is 

indicated by the parameter zi+1 and z0 is defi ned as 0. The resulting equations are given in (18.24) – 

(18.27). Equation (18.24) is obtained as follows: When yi is positive, the rotation should be along 

the clockwise direction in the next iteration. When it is negative, it has to be along the anticlockwise 

direction. 

di = sgn (zi)  (18.24)

xi+1 = xi – di yi 2
–i  (18.25)

yi+1 = yi – di xi 2
–i  (18.26)

zi+1 = zi – di tan–1 (2–i) (18.27)

As i becomes large, yi Æ 0 and xfi n, the magnitude of the vector after N iterations and zfi n, the angle of 

the vector are obtained as 

1
cosq= ’fin N iN

x x  (18.28)
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1 0
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tan- Ê ˆ
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x
 (18.29)

18.3.3 Applications of CORDIC in Rotation Mode

DDFS Using CORDIC with Phase Accumulator Fig. 18.11 shows the circuit diagram of DDFS us-

ing CORDIC. The expression for the minimum and maximum frequencies generated and the frequency 

resolution are the same as that for DDFS with ROM. The output of the phase accumulator is fed to the 

q input of the CORDIC and is mapped such that 2N = 2p. Unlike the ROM approach, this generates two 

carriers in quadrature simultaneously. Compared to the ROM approach, CORDIC approach requires 

lower area but the highest frequency that can be generated is lower than that of ROM approach. This is 

because of the larger computation time required for rotation compared to the time required for reading 

from ROM. This can be explained as follows: If CORDIC requires M iterations for rotation, M stages of 

rotation blocks may be used. The 1st block rotates the input vector by p/4 (i.e. tan-1 (2-0 ), the 2nd block 

by tan-1 (2-1) and (i+1)th block rotates the input vector by angle tan-1(2-i).

Fig. 18.11 Circuit diagram of DDFS using CORDIC

Table 18.3 Number of iterations required (M) for different sizes of adder (N) 

N tan(2-N) computed using M : number of iterations

library function in C CORDIC 

4 0.414213 0.412651 13

5 0.198912 0.199332 14

6 0.098491 0.097918 12

7 0.049127 0.048959 13

8 0.024549 0.024479 14

9 0.012272 0.012240 15

10 0.006136 0.006120 16

11 0.003068 0.003060 17

12 0.001534 0.001530 18

13 0.000767 0.000765 19
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Such a scheme is referred to as unrolled CORDIC and is shown for M= 4, in Fig. 18.12. In this case, 

the time required for rotation by an angle q, is the sum of the delays in the M blocks. Pipelining may 

be used for speeding up the rotation operation. For this purpose, pipelining registers may be used in 

between the adjacent blocks. Number of iteration required depends on the frequency resolution. Table 

18.3 gives the number of iterations required (M) for different sizes of adder (N) in the phase accumulator. 

The iteration is terminated when the values of tan(2-N ) computed using the library function in C and that 

computed using CORDIC differ by less than 1%.

Fig. 18.12 Block diagram of unrolled CORDIC unit

DDFS Using CORDIC as Universal Modulator The universal modulator is obtained from the DDFS 

circuit of Fig. 18.11 by including an adder at the output of the phase accumulator and the resulting 

circuit is shown in Fig.18.13. (xin, yin) denote the inputs for amplitude modulation. f(t) and Dr denote 

the inputs for phase and frequency modulation respectively. When (xin, yin, f(t)) are chosen as (1,0,0) 

and Dr is chosen as a constant, the circuit shown in Fig.18.13, generates two unmodulated carrier sig-

nals in quadrature ( ie. sinwt and coswt ). When modulating signals are applied, modulated carriers are 
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obtained. When amplitude modulation is required, the modulating input is applied to the xin input and 

yin is made 0. For the generation of carrier with quadrature amplitude modulation, the two modulating 

signals are applied to xin and yin respectively. For generating the carrier with phase, frequency modula-

tion, the modulating inputs are fed to f(t) and Dr respectively. When f(t) and Dr are binary inputs, the 

carrier modulated with BPSK and BFSK are obtained. When (xin, yin ) are binary valued (1’s and 0’s), 

the QPSK signal is obtained at the outputs. 

Fig. 18.13 CORDIC as universal modulator

18.3.4 Applications of CORDIC in Vector Mode

CORDIC as Universal Demodulator If the carrier frequency, amplitude and phase of the received 

signal are fi , 2b(t) and q(t) respectively, then received signal r(t), is given by 

r(t) = 2b(t)sin(wi t + q(t) ) (18.30) 

One of the approaches for demodulating the above signal is the generation of the in-phase I(t) signal 

and quadrature signal Q(t) given by 

I(t) = b(t)sin[2p(fi – fo)t + q(t)] (18.31)

Q(t) = b(t)cos[2p(fi - fo)t + q(t)] (18.32)

using a local oscillator of frequency is fo with known initial phase. 

The in-phase and quadrature signals may be fed to the two inputs of CORDIC operated in rotation 

mode. The magnitude of the vector  gives the demodulated signal corresponding to amplitude modulation 

as 

2 2( ) ( ) ( )= + =finx I t Q t b t  (18.33)

Similarly, zfi n, the angle of the vector gives the phase shift introduced into the carrier and is given 

by 

1 1 sin[2 ( ) ( )]( )
tan tan ( ) ( )

( ) cos[2 ( ) ( )]

p q
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p q
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z f f t t

I t f f t t
 (18.34)

Differentiating (18.34 ), the instantaneous frequency of the carrier can be found. 
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Generation of in Phase and Quadrature Signals  Using the 

quadrature mixers shown in Fig. 18.14, I(t) and Q(t) may be gener-

ated. In this scheme, the input signal is divided into two in-phase 

paths and the local oscillator signals applied to the two mixers are 

90-deg out of phase. The outputs of the two mixers are

 Vif1 = 2b(t)sin(2pfit + q(t)) cos(2pfot) (18.35)

  = b(t){sin[2p(fi – fo)t + q(t)] + sin[2p(fi +fo)t + q(t)]} (18.36)

 vif2 = 2b(t)sin(2pfit + q(t)) sin 2pfot) (18.37)

  = b(t){cos[2p(fi – fo)t + q(t)]-cos[2p(fi + fo)t + q(t)]} (18.38)

The desired I & Q components are obtained by using low pass fi lters which fi lter out the high-

frequency signals represented by the fi+f0 terms in (18.36) and (18.38).

The I & Q components can be generated without using quadrature mixers using a scheme called as 

special sampling scheme or double nyquist rate sampling scheme.[Pellon92] In this case, if the local 

oscillator frequency is f0 , then r(t) is sampled at a rate of fs = 4f0 . If Vif1, Vif2 and r(t) are sampled at a 

rate of fs = 4f0, then 

t = nTs = n /4f0 (18.39)

2ptf0 = 2p (nTs)f0 = 2np /4 = np/2 (18.40)

If we substitute (18.40) in (18.32), (18.35) and (18.37), the sequence of outputs at different sampling 

instants are as shown in Table 18.4.

From Table 18.4, it can be verifi ed that the in phase and quadrature components can be generated 

by alternately passing r(t) to one of the two channels and inserting zeros alternately to each channel as 

shown in Fig. 18.15. The desired I & Q components are obtained by using low pass fi lters which fi lter 

out the high-frequency signals represented by the fi+f0 terms in (18.36) and (18.38). Let us denote the 

value of r(t), I(t), Q(t) at t = nTs as r(n), I(n) and Q(n) respectively. Then I(n) and Q(n) can be written 

as 

I(n) = r(0), 0, -r(2), 0, r(4), ….

Q(n) = 0, r(1), 0, -r(3), 0, r(5), ….

What happens if the local oscillator frequency f0 is chosen to be same as the the input frequency fi? In 

this case also, fs may be chosen as 4f0. Then, r(t), I(t) and Q(t) at various sampling instants are as shown 

in Table 18.5.

Hence, without using the mixers, the in-phase and quadrature components can be generated. The 

price paid is the use of higher sampling rate.

Fig. 18.15 Generation of in phase and quadrature signals using special sampling scheme 

Fig. 18.14 Generation of in-phase 

and quadrature signals
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Table 18.4 Samples of the received signal, in phase & quadrature channels for f0 π fi

Sample at t = tn 

= nTs for n =

Vif2 Vif1 R(t)

0 0 b(0)sin(q) b(0)sin(q)

1 b(t1)sin(2pfit1+) 0 b(t1)sin(2pfit1+)

2 0 –b(t2)sin(2pfit2 = q) –b(t2)sin(2pfit2 + q)

3 –(t3)sin(2pfit3 + q) 0 b(t3)sin(2pfit3 + q)

4 0 b(t4)sin(2pfit4 + q) b(t4)sin(2pfit4 + q)

Table 18.5 Samples of the received signal, in phase & quadrature channels for f0 = fi

Sample at

t = tn =

Vif2 Vif1 R(t)

0 0 b(0)sin(q) b(0)sin(q)

1 b(t1)cos(q) 0 b(t1)cos(q)

2 0 –b(t2)sin(q) –b(t2)sin(q)

3 –b(t3)cos(q) 0 b(t3)cos(q)

4 0 b(t4)sin(q) b(t4)sin(q)

18.3.5 Application of CORDIC in Carrier Recovery Circuits

The coherent demodulators give 1 dB better signal to noise ratio than the non coherent demodulators but 

require the phase of the incoming carrier signal to be tracked. For carrier phase recovery, two common 

techniques are the phase locked loop and the Costas loop. Block diagrams of these two techniques are 

given in Fig. 18.14 and Fig. 18.15 respectively. Note that the phase detectors can be implemented using 

multipliers. In Fig. 18.14, if the input signal is r(t) and the local oscillator signal is c(t), then the output 

of the multiplier m(t) can be written as 

 r(t) = sin(2pfit + q(t)) (18.41)

 c(t) = cos(2pfit) (18.42)

 m(t) = sin(2pfit + q(t)) cos(2pfit) 

  = (1/2) {sin[q(t)]+sin[2p(2f)t + q(t)]} (18.43)

The second term of (18.43) can be removed 

using the low pass fi lter and the output of the low 

pass fi lter m1(t) for small values of q(t) is 

m1(t) = (1/2)q(t) (18.44)

In the case of costas loop, a quadrature mixer 

is used to generate the inphase and quadrature 

signal and they are multiplied to get the phase 

of the carrier. If mI(t), mQ(t) denote the output of 

Fig. 18.16 Carrier recovery using PLL

Fig. 18.17 Carrier recovery using costas loop
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the inphase and quadrature channel outputs after passing through the low pass fi lter, the output of the 

third phase detector (multiplier) for small values of q(t), mp(t) can be written as follows:

mI(t) = sin[q(t)] (18.45)

mQ(t) = cos[q(t)] (18.46)

mP(t) = sin[q(t)] cos[q(t)] = (1/2) sin[2q(t)] = [q(t)] (18.47)

Hence, the Costas loop gives an output double that of PLL at the cost of increase in hardware 

complexity. However, the Costas loop may be implemented using CORDIC in vector mode. This 

scheme requires only one multiplier and does not require the two carrier signals sin(2pfit ) and cos(2pfit) 

in quadrature. 

18.3.6 Subsampling Receivers

In narrow band systems such as commercial FM, the bandwidth required for the required station is about 

200KHz whereas the carrier frequency lies in the range 88-108 MHz. In such systems, the band pass 

sampling theorem can be used to choose the sampling rate so as recover the modulating signal instead 

of the carrier. In the IF sampling or subsampling receiver for the commercial FM, the sampling rate 

may be chosen to be 80MSPS . This introduces aliasing and the aliased signal (8-28MHz) contains the 

required frequency bands. If this is downsampled by a factor of 200, 8 MHz will be mapped to 0 Hz and 

8.1 MHz, the carrier corresponding to the fi rst channel is aliased to 100KHz. Since the sampling rate is 

400 KSPS, this corresponds to double nyquist rate for the modulated signal at 100KHz. Hence, inphase 

and quadrature signals can be generated without using using multipliers as shown in Fig. 18.15. Note 

that the wireless LAN discussed in section 18.1 also uses subsampling scheme. 

18.3.7 Effi cient implementation of low pass fi lters

Low pass fi lters required for I/Q channel generation needs to operate at very high sampling rates. A 

special case of the fi lter given by (1.39a) is called as Moving average fi lter or boxcar fi lter when a =1. 

This becomes a multiplier free low pass fi lter and is preferred for systems with very high sampling rates. 

It is used in a variety of applications such as oversampling A/D converters and in wireless systems for 

conversion of signals sampled at IF and RF rates to baseband rate. MA fi lter is usually realized using a 

cascade of integrator I(z) and a comb fi lter C(z) with transfer functions given by 

1

1
( )

1 -=
-

I z
z

 (18.48)

C(z) = 1 – z–M = 1 – z–LN (18.49)

The boxcar fi lter using the cascaded integrator comb (CIC) fi lter is shown in Fig. 18.18 where L and 

N are integers and M=LN.

Fig. 18.18 Boxcar fi lter using a cascade of comb and integrators
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Fig. 18.19(a) CIC fi lter followed by decimator by factor L

Fig. 18.19(b) Effi cient implementation of CIC followed by decimator

Fig. 18.20(a) CIC fi lter preceded by interpolator by factor L

Fig. 18.20(b) Effi cient implementation of CIC fi lter preceded by interpolator

The low pass fi lter may be used either with decimator or interpolator. In this case the order of 

interpolation/decimation may be interchanged with comb fi lter in order to reduce the complexity of comb 

fi lter using the noble identity. In downsampling systems using CIC fi lters, integrators are connected fi rst, 

followed by decimators and the comb fi lter as shown in Fig. 18.19. In upsampling systems, comb fi lter is 

connected fi rst followed by interpolator and the integrator as shown in Figs 18.20(a) and 18.20(b). The 

CIC fi lters using the noble identity for effi cient realization is called as Hogenauer fi lter. 

Normally a single stage boxcar fi lter may not be adequate to provide suffi cient out of band attenuation 

and hence number of stages of comb and integrators are used in cascade. A CIC fi lter with K has stages 

in cascade has the transfer H(z) given by 
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1
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I z
z

 (18.50)

A K stage CIC fi lter may be converted to a Hogenauer fi lter by connecting all K stages of integrators 

fi rst, followed by decimator by a factor L and K stages of comb section with delay of L samples. Figures 

18.21(a) and 18.21(b) show a 2 stage CIC fi lter.

Fig. 18.21(a) Two stage CIC fi lter followed by decimator 

Fig. 18.21(b) Two stage Hogenauer fi lter 

Size of the Adders for CIC Filters As CIC fi lter computes the moving average of present and past 

M-1 samples, the adder size should n+ log2M for inputs of n bit wide in order to avoid overfl ow. This 

can be verifi ed as follows: If two n bit numbers are added, the sum should be represented using n+1 

bits. If four n bit numbers are added, the sum should be represented using n+2 bits. Hence, if M, n bit 

numbers are added, the sum should be represented using n+log2M bits. Similarly, if K stages of CIC 

fi lters are used, the word size should be n+Klog2M bits in order to avoid overfl ow. Sampling rate reduc-

tion by a factor of few hundreds is not uncommon in A/D converters and digital radio recivers. Let us 

consider an example: 

Example 18.3 Find the word size required for a single stage of 256 tap CIC fi lter whose inputs are 

8 bit wide. The CIC fi lter is succeeded by decimation by a factor of 128. If 4 such 

CIC fi lters are cascaded and realized using Hogenauer fi lter, fi nd the word size. 

Here, n=8, M =256. 

Hence, word size required for single stage= 8+log2256 = 16

Word size required for 4 stages = 8+4log2256 = 40.

From example 18.3 it may be noted that for very sampling rates and high undersampling factors, 

speed of the adders may become the bottleneck in the system. The conventional adders such as ripple 

carry adders become unsuitable for such applications. Adders using residue number systems where no 

carry propagation is required from LSB to MSB is preferred for these applications. 

Arithmetic Using Residue Number System(RNS)  Any integer less than M can be represented us-

ing an L digit number in the residue number system. Let M be represented as a product of L integers 
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m1, m2, … mL which are relatively prime. In other words 
1=

= ’
L

i
i

M m . Any number X < M can be rep-

resented in RNS form as XL … X2 X1 where Xk = Xmod(mk).

The rules for performing three primitive operations of addition, subtraction and multiplication on 

numbers represented in RNS arithmetic are the same:

If � denotes any one of the primitive operators, for any two integers X and Y which are less than M, 

Z = (X�Y)modM = ZL … Z2 Z1 where Zk = (Xk�Yk)mod(mk).

Example 18.4 Perform 53+ 45 using RNS arithmetic. Let us choose a three digit representation 

where M = 5X7X8=280= m3m2m1.

X = X3X2 X1 = 53mod5 53mod7 53mod8 = 345

Similarly, Y= Y3Y2 Y1= 035

Z= Z3Z2 Z1 = (3+0)mod5 (4+3)mod7 (5+5)mod8 = 302

Representation of 98 (53+45) in RNS is 302. Hence the result is correct.

Example 18.4 Perform 13X15 using RNS arithmetic. Let us choose the three digit representation 

where M = 5X7X8=280= m3m2m1.

X = X3X2 X1 = 13mod5 13mod7 13mod8 = 365

Similarly, Y= Y3Y2 Y1= 017

Z= Z3Z2 Z1 = (3X0)mod5 (6X1)mod7 (5X7)mod8 = 063

Representation of 195 (13X15) in RNS is 063. Hence the result is correct.

Addition and multiplication operations required for each digit of RNS in examples 18.4 and 18.5 can 

be carried out in parallel. Moreover, these operations can be carried using ROM or look up tables and 

hence these operations can be performed fast. 

CASE STUDY OF AN FPGA BASED DIGITAL RECEIVER  18.4

In this section, the design and implementation details of a reconfi gurable spread spectrum communication 

receiver is presented. 

18.4.1 Introduction to spread spectrum system

Spread spectrum is a technique whereby the bandwidth of a signal is spread such that it has the least 

probability of intercept and has the least interference with the signals operating in the same frequency 

band. Some of the benefi ts that can accrue simultaneously by spreading the spectrum are Anti-jamming, 

Anti-interference, Low probability of intercept, Multiple user random access communications with 

selective addressing capability and 

High resolution ranging. More details of the spread spectrum communication system may be found in 

[Raymond82], [Dixon76]. Details of implementation of spread spectrum systems on FPGA or combination 

of FPGA and DSP have been already reported in the literature [Cong 2001] [Yanxin2001]. Design 

and FPGA implementation of a chaotic frequency hopping (FH) sequence generator for asynchronous 

CDMA system is considered in [Cong 2001]. A hybrid system consisting of both FPGA and TI DSP 

is used for implementing the spread spectrum system in [Yanxin2001]. In this paper, baseband coding 

and disordering of data is done on the FPGA and the operating frequency of 5 MHz . In this section, a 

scheme which uses a single FPGA for modulation/demodulation, frequency hopping, synchronization 

and frequency synthesis is presented. 
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Among various spreading techniques [Dixon76], frequency hopped spread spectrum system (FHSS) 

is chosen for our implementation. In FHSS, the frequency of the carrier signal is hopped from one value 

to another using a pseudorandom sequence known to the transmitter and intended receiver only. FHSS 

requires less complex circuitry and consumes less power. 

Depending upon the rate at which the hops occur, there are two basic characterizations of frequency 

hopping:

 1. Slow – frequency hopping, in which the symbol rate is an integer multiple of the hop rate. 

 2. Fast – frequency hopping, in which the hop rate is an integer multiple of the symbol rate.

In order to reduce the complexity of the receiver, slow frequency hopping system is chosen for the 

implementation.

18.4.2 Synchronization of the Transmitter and Receiver

In spread-spectrum systems, the transmitter and receiver use identical PRBS sequence for hopping the 

carrier frequency. A synchronizer is required at the receiver to allow the regeneration of the duplicate of 

the chipping waveform used at the transmitter. 

The block diagram of synchronization circuit for the all digital FHSS system is shown in Fig.18.16. It 

consists of an ADC, a mixer for down conversion, a narrow band pass fi lter, a peak detector, a comparator 

and a numeric controlled oscillator (NCO). The BPF has a centre frequency of fo and a bandwidth equal 

to twice the hopping rate (B = 2fh). The NCO consists of a pseudo random binary sequence (PRBS) 

generator and direct digital frequency synthesizer (DDFS). Frequency of the DDFS is controlled by the 

output of the PRBS generator. All the blocks in the synchronizer excepting ADC are implemented using 

the FPGA. The clock input to the PRBS generator is enabled by the comparator output denoted as ON/

OFF control. When it is ON, clock pulses at the hopping rate fh are delivered to the PRBS generator. The 

PRBS generators and DDFS at the transmitter and receiver are identical.

The synchronization is achieved as follows: Let the receiver synthesizer generate a carrier of frequency 

fo+fj, while that of the transmitter is fk π fj. The mixer output i.e., the difference frequency fo +( fj – fk) is 

outside the passband of the band pass fi lter. Hence, the peak detector output becomes zero and the output 

of comparator is in OFF state. As long as the received frequency is not equal to fj, the PRBS generator 

has a fi xed output and the receiver synthesizer remains camped at fo + fj.

Fig. 18.22 Clamp and wait synchronization scheme
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When the carrier frequency of received signal becomes fj, the difference signal lies within the passband 

of the BPF and the peak detector output rises above the threshold. The comparator output changes to 1 

(ON state) and the numeric controlled oscillator is turned on. This enables the receiver 

Fig. 18.23 Synchronization scheme with analog interface

PRBS generator to advance through its states in synchronism with the transmitter generator.

In a practical system, the carrier frequencies required for the FHSS system is very much above 

what can be generated using DDFS. Hence, an analog down-conversion scheme is required. The 

synchronization circuit with analog down conversion scheme is shown in Fig. 18.23. 

In Fig. 18.23, all the analog components are indicated by shaded blocks. Once the synchronization 

is achieved, the incoming FM/FHSS signal, in the range 88-108MHz is down-converted to 10.7MHz 

(standard IF frequency). The down-converted signal is fed to digital FM Demodulator, which retrieves 

the message signal.

18.4.3 Block Diagram of FHSS Transmitter and Receiver 

The FHSS system is designed to operate in the commercial FM band of 88MHz-108MHz. It is diffi cult 

to generate the carrier signal in this band directly using FPGA due to their speed limitations. Hence, the 

FPGA is used to generate an FHSS signal in the band 5-25 MHz using CORDIC algorithm. This signal 

is upconverted to the FM band using the analog blocks as shown in Fig. 18.24.

Fig. 18.24 Frequency modulated and frequency hopped Transmitter
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The receiver consists of an analog mixer which down converts the incoming signal in the band 88-

108MHz to 10.7MHz. It also consists of synchronization loop which is described in section 18.4.2. As 

soon as synchronization is achieved, the FM demodulator is activated which uses the 10.7MHz IF signal 

to generate message output. Figure 18.25 shows complete architecture for the receiver.

Fig. 18.25 Block diagram of FHSS Receiver

18.4.4 Implementation Details 

The FHSS transmitter is implemented on Xilinx® Virtex-4® DSP development board using Xilinx® 

ISE®8.1i and receiver is implemented on Altera® Stratix-II ® DSP development board using Quartus II® 

6.0.This has been done to show the compatibility of design across the various FPGA families.

For generating frequency modulated signal, amplitude of carrier signal is fi xed and the message signal 

is given to Dr. (see Fig.18.9). To generate a smooth carrier signal of frequency 10.7 MHz, the clock to 

DDFS is chosen as 200 MHz. Frequency modulator is designed so as to get a peak to peak frequency 

deviation of less than 150 KHz which is the standard frequency deviation used in FM systems. In order 

to hop as well as to up-convert the FM signal, DDFS and PRBS Generator are connected to the analog 

blocks as shown in Fig.18.22. The total number of channels used for hopping and the bandwidth of 

each channel are chosen to be 31 and 645 KHz respectively. The outputs of FM modulator and FHSS 

transmitter are as shown in Fig. 18.25 and Fig. 18.26 respectively. These waveforms are obtained using 

Xilinx SignalTap II® Embedded Logic Analyzer.

Due to the delay incurred in the synchronization loop at the receiver, the time duration for each state 

of PRBS generator is chosen as 10micro seconds, i.e., the clock frequency for the LFSR is set as 100 

KHz. The frequency synthesizer output varies from 5 to 25 MHz depending upon the PRBS output.

For the frequency modulator, the Intermediate Frequency (IF) is chosen to be 10.7MHz. In order to 

simplify the receiver, ADC is sampled at the rate of 4 X 10.7MHz i.e., 42.8MHz. The bandpass fi lters 

are implemented using IP cores from the Altera® and Xilinx®. The narrow bandpass fi lter in Fig. 18.17 

is centered at an IF frequency of 10.7 MHz with band width equal to twice the frequency deviation 

i.e., from 10.625 – 10.775 MHz. The PRBS generator clamps at a given seed value until it receives 

the corresponding frequency from the transmitter. The digital peak detector detects the peak value of 

the BPF output, which is used to compare with a threshold value. When the peak value exceeds the 

threshold value, the comparator makes the on/off signal to be high which indicates that the receiver 

PRBS generator and transmitter PRBS generator are synchronous to each other. The control signal 

is used as the enable signal for FM Demodulator. Hence, FM Demodulator starts working only when 
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synchronization is fi nished. The output at FM demodulator is shown in Fig. 18.25. The output is captured 

and displayed using Chipscope Pro®8.1i. It has been verifi ed that receiver and transmitter are operating 

in synchronization with each other.

Table 18.6 FPGA Resources required for the Transmitter

Family Virtex-4

Device XC4VSX35F668-10

4-I/P LUT 5,742

Slice Flip Flops 4,578

DCM 1

DSP48s 37

Table 18.7 FPGA Resources required for the Receiver

Family Stratix II

Device EP2S60F1020C4

ALUT 3,712

Registers 3444

PLL 1

Embedded DSP blocks 2

The FPGA at the receiver and transmitter side is interfaced with the suitable analog interface. For 

the transmitter, DAC on the Virtex-4 board can work upto 160MSPS and hence is used for the FHSS 

transmitter. ADC on the Stratix II board can operate up to 125MSPS and hence is used for the FHSS 

receiver. Eventhough we have used the frequency modulation for the FHSS system, other modulation 

scemes such as FSK, PSK, QPSK can be easily implemented as the modulation type is determined based 

on the point at which the input is applied to the CORDIC block. The waveform obtained for the BPSK 

modulation is shown in the Fig.18.26. The summaries of the resources required for the transmitter and 

receiver are given in Table 18.6 is given in Table 18.7.

Fig. 18.26 Digital FM Generation for 100KHz signal –Signal Tap II Logic Analyzer output (channel 1. ADC clock, Chan-

nel 2.Digital Frequency modulated wave. Channel .3. message signal)
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Fig. 18.27 Digital FHSS Generation –Signal Tap II Logic Analyzer output (channel 1. ADC clock, Channel 2. DAC clock 

Channel 3.Digital Frequency hopped wave. Channel .4. PN generator)

Fig. 18.28 Digital FM demodulation (Channel 1. FM signal channel.2 100KHz FM demodulated signal)

Fig. 18.29 BPSK modulation using CORDIC
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Review Questions 

18.1 Draw the block diagram of 1st generation and 2nd 

generation transmitter and explain its operation.

18.2 Draw the block diagram of 1st generation and 2nd 

generation receiver and explain its operation.

18.3 Draw the block diagram of a digital transceiver for 

wireless LAN and and explain its operation.

18.4 List the important characteristics of software 

defi ned radio.

18.5 What are the bottlenecks in realizing an ideal 

software defi ned radio.

18.6 Discuss the relative merits and demerits of analog 

frequency synthesis over DDFS. 

18.7 Compare the digital and analog methods for 

carrier generation .

18.8 Explain a technique for DDFS. Explain how the 

frequency resolution and dynamic range of the output 

signal can be independently selected. 

18.9 Explain how the following with reference to 

DDFS with phase accumulator and ROM (i) frequency 

resolution (ii) ROM Size (iii) phase jitter (iv) spurious 

frequency components   

18.10 A DDFS scheme employing phase accumulator 

method uses 32 bit accumulator and has the input clock 

frequency as 100MHz. Find the minimum and maximum 

frequencies of sine wave which can be generated.

18.11 What is the size of the ROM required for the 

phase accumulator method for DDFS if the signal in the 

range 1 KHz to 1 GHz is to be generated? Explain how the 

no. of locations required can be reduced by a factor of 

256. How does this affect of the shape of the waveform 

generated? How can this effect be minimized?

18.12 A DDFS scheme employing phase accumulator 

method uses 10 bit accumulator and has the input clock 

frequency as 200MHz. Find the frequency resolution. 

Find the lowest frequency of DDFS for which periodic 

jitter occurs. 

18.13 A DDFS scheme employing phase accumulator 

method has frequency resolution of 1 Hz and the 

input clock frequency as 100MHz. Find the size of the 

accumulator and ROM required. 

18.14 Write the expression relating the spurious 

frequency components to the no. of bits of phase 

accumulator used as address to look up table. 

18.15 What is meant by spur (spurious components)? 

Explain an example when these components are 

generated by the carrier generation scheme.

18.16 Explain anyone technique for DDFS ROM data 

compression 

18.17 Explain the Sunderland technique for DDFS ROM 

data compression  
18.18 List any three techniques for ROM data 

compression for DDFS.

18.19 Write the equations used for computing the 

rectangular coordinates of a vector iteratively with 

CORDIC algorithm , given its initial position and the 

angle through which it is to be rotated. Explain how 

this technique can be used for generating the sin of an 

angle. 

18.20 Explain how CORDIC may be used as universal 

demodulator. Explain how CORDIC may be used for 

generation of (i)AM (ii) BPSK.

18.21 Compare the DDFS with ROM approach and 

DDFS using CORDIC approach with regard to the highest 

frequency which can be generated. Explain the reason 

for your observation.

18.22 What is the test used for terminating the 

iterations in the case of CORDIC scheme operating in (a) 

rotation mode (b) vector mode . How is the angle used 

for each rotation chosen in the case of CORDIC? When is 

the angle considered to be positive?

18.23 Show how BPSK signal can be generated using 

DDFS with ROM approach. Compare the universal 

modulator implemented using DDFS with ROM approach 

and that using CORDIC. 

18.24 Explain how CORDIC algorithm can be used for 

noncoherent demodulation of FM signal. What should be 

the initial value of “zi” for this application?

18.25 Draw the block diagram of unrolled CORDIC 

scheme. What are its advantages over rolled CORDIC 

scheme? 

18.26 Explain how QPSK signal can be generated using 

CORDIC approach.  

18.27 Compare the relative merits of unrolled and 

rolled CORDIC 

18.28 Explain how the amplitude modulated signal can 

be demodulated using CORDIC.

18.29 Explain how CORDIC may be used to generate 

the carrier required for coherent demodulation.

18.30 Explain the special sampling scheme for down 

conversion of both narrow band and wide band signals.

18.31 State the advantages of the following (i) special 

sampling (ii) down sampling. 
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18.32 What are the properties of digital Hilbert 

transformer? What are the advantages of generating I & 

Q channel using Hilbert transform?

18.33 Draw the block diagram of a 1st order digital 

Hilbert transformer with symmetric fi lter coeffi cients for 

a narrow band signal.

18.34 What is meant by undersampling receiver? When 

is it applicable?

18.35 What are advantages of digital technique for I/Q 

channel generation over analog techniques?

18.36 Sketch the frequency response of a Hilbert 

transformer if it is fed with a DSB signal? What is the 

nature of impulse response coeffi cients of a Hilbert 

transformer? 

18.37 Explain how the special sampling scheme can 

be used for down conversion of a signal with unknown 

input frequency.

18.38 In the FPGA based radio/baseband processor, 

how a 128 tap fi lter with sampling rate of 200 MSPS may 

be realized? How a A/D converter and DDR interface 

in the Virtex II Pro may be used to downconvert 1GHz 

signal to 200 MHz? 
18.39 Explain how a modulated signal with carrier 

frequency of 1 GHz can be demodulated using 

downsampling scheme and DDR interface in FPGAs. 
18.40 An AM signal with carrier frequency of 1 MHz 

and BW 10 KHz is downconverted using special sampling 

scheme and demodulated using CORDIC. Explain 

how the hardware required for the implementation is 

minimized by this approach. 
18.41 What is the transfer function of a VCO?

18.42 Compare the magnitude of the control voltage 

obtained in VCO with that obtained using costas loop. 

Justify your answer.

18.43 Compare the two schemes for coherent 

demodulation of BPSK. 

18.44 What is meant by CIC fi lter? 

18.45 Write the transfer function of a CIC fi lter used to 

realize an M tap boxcar fi lter.

18.46 Explain why multistage CIC fi lters are preferred 

for implementation of high speed low pass fi lters?

18.47 Write the transfer function of a low pass fi lter 

realized using K stages M tap boxcar fi lter. The boxcar 

fi lter is realized using CIC fi lter.

18.48 What is meant by Hogenauer fi lter? What are its 

advantages?

18.49 Draw the block diagram of Hogenauer fi lter if a 

K stage CIC fi lter is succeeded by a decimator by a factor 

of L.

18.50 Draw the block diagram of Hogenauer fi lter if a K 

stage CIC fi lter is preceded by an interpolator by a factor 

of L.

18.51  State any two applications of CIC fi lter. 

18.52 Explain how a moving average fi lter with 64 taps 

can be realized as CIC fi lter. If the input to this fi lter are 

12 bit wide, what should be the size of the adders if the 

overfl ow is to be avoided. If 8 such moving average fi lters 

are cascaded to improve the performance of the fi lter, 

what should be the size of the adders for no overfl ow. 
18.53 What is the advantage of residue number 

system? Show how the addition of two numbers 34D & 

54D is carried out using a 4 digit RNS. Assume the largest 

number to be represented as 199D.

18.54 Explain the adder using RNS with an 

example. Explain why RNS is preferred for high speed 

applications

18.55 Show how the multiplication of two numbers 25D 

& 20D is carried out using a 3 digit RNS.

18.56 Explain how ROM can be used to perform RNS 

arithmetic. Illustrate this technique by considering the 

addition of two three digit RNS numbers. 

18.57 State the Chinese remainder theorem.

18.58 Explain how an RNS number can be converted to 

a decimal number using CRT.

18.59 A matched fi lter with 64 taps is to be implemented 

using (i) FPGA with 128 dedicated multipliers (ii) 

Programmable DSP with 4 MAC units. The maximum 

clock frequency used for both FPGA and P-DSP is 

200MHz. The input signal is sampled at the rate of 200 

MSPs. Compare the hardware complexity for both the 

approaches.

18.60 Explain why slow frequency hopping is used for 

the digital implementation of FHSS.

18.61 Draw the block diagram of the synchronizer for 

the all digital FHSS system and explain its operation.

18.62  Explain why the digital FHSS requires analog 

circuits at the transmitter and receiver.

18.63 Draw the block diagram of digital FHSS (a) 

transmitter (b) receiver



ANSWERS TO SELECTED 

QUESTIONS

Chapter 1

Review Questions

1.5 b = 1/a

1.7 h(n)= (sin 2pfcn)/pn

1.8 h(n)= (sin wcn)/pn

1.10 fs = 2500 Hz; fc = fs/2 = 1250 Hz. Output signal :sin 2pf(750)t.

1.11 fs = 500 samples/sec; fc1= 1000 Hz, fc2 = 1250Hz;

 output = sin 2p(1000)t for fs = 2000 samples/sec

1.12 fs = 5000 samples/sec; fc = 2500Hz

1.13 0.2p £ w £ 0.5p,

 |H(e jw) | = 0 for 0.2p £ w £ 0.5p, and 1 otherwise

1.14 h(n) = 0.5n + (–0.5)n

1.15 h(n) = 1.5[3(0.75)n – (0.25)n] – 0.5 [3(0.75)n–2 – (0.25)n–2]

1.16 H(z) = 

16

1

1 ( )

1 ( )

az

az

-

-

-

-

1.18 (a) (i) 

1

1

1 0.25

1 0.5

z

z

-

-

+

-
 (ii) 

1

1

1 0.5

1 0.75

z

z

-

-

+

-

 (b) 

1 1

1 1

(1 0.25 )(1 0.5 )

(1 0.5 )(1 0.75 )

z z

z

- -

- -

+ +

- -

 (c) same as that for (b)

 (d) same as that for (b) 

 (e) 

1 1

1 1

(1 0.25 ) (1 0.5 )

(1 0.5 ) (1 0.75 )

z z

z

- -

- -

+ +
+

- -

1.19 X(k) = e–j(2pk/3) [1 + 2 cos(2pk)/3)] for k = 0,1,2
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1.20 X(k) = e–j(2pk/8) [1 + 2 cos(2pk)/8)] for k = 0,1, … 7.

1.21 X(k) = [1 – 0.5e–j(2pk/8) ]–1 for k = 0, 1, 2 … 7.

1.23 e–j(2p mn/N)

1.24 (a) (i) 0.5p, (ii) 2 (b) (i) 5000p, (ii) 20,000

1.27 (a) h(t) = u(t)e0.5t

   h(n) = h(nT) = u(n)e0.5nT where u(n) = l for n ≥ 0

  H(z) = [1 – e0.5T z–1]–1

1.28 (a) H(z) = 

1

1

(1 )

(2 ) (1 )

T z

aT cz

-

-

+

- -
 where c = 

(2 )

(2 )

aT

aT

+

-

   (b) h(n) = [T/(2 – aT)] (1 + c)cn–1 

1.30 h(n)= –(sin .75pn)/pn; ha(n) = h(n)w(n), N = 8

Self-Test Questions

 1.1 c  1.2 a,b,c 1.3   c 1.4 a  1.5 d

 1.6 a 1.7 b 1.8   c 1.9 b, d 1.10 a, c

 1.11  a 1.12 b 1.13 b, c, d 1.14 b 1.15  c

 1.16  a 1.17 d 1.18 b 1.19   d 1.20  a

 1.21 1

Chapter 2

Self-Test Questions

 2.1  d  2.2 program, data 2.3  c 2.4 b  2.5 d

 2.6 d  2.7  c 2.8  d 2.9  c 2.10  b 

Chapter 3

Self-Test Questions

 3.1 a,b    3.2   a  3.3   a    3.4   a 3.5  b

 3.6   b    3.7   c   3.8   a  3.9   c 3.10  a

 3.11  b   3.12  a  3.13  a     3.14  a 3.15  b

 3.16  c  3.17  d    3.18  e   3.19  a    3.20  b

 3.21  c 3.22  d 3.23  a, b 3.24  c 3.25 e

Chapter 4

Self-Test Questions

 4.1   a    4.2  a    4.3   b    4.4   b  4.5  b

    4.6   a    4.7  b   4.8   a 4.9   b   4.10  c

    4.11  a    4.12  d  4.13  b    4.14  b     4.15  c    

 4.16  a  4.17  c    4.18  b,c  4.19  d   4.20  a 

 4.21  b   4.22  d   4.23  b  4.24  c  4.25  d 

 4.26  a   4.27  c  4.28  d   4.29  b     4.30  a
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Chapter 5

Self-Test Questions

 5.1 a 5.2 c 5.3   c 5.4   c 5.5   b

 5.6  b, d  5.7  b 5.8   d 5.9   b 5.10  c 

Chapter 6

Self-Test Questions

 6.1 a 6.2  a 6.3  c 6.4  d    6.5  a

 6.6  e 6.7  c 6.8  c 6.9  b    6.10  a

 6.11  b  6.12  b 6.13  e    6.14  e,f   6.15  e,f

 6.16  b  6.17  f    6.18  c,f    6.19  b    6.20  d

 6.21  d    6.22  a    6.23  c    6.24  b 6.25  b

Chapter 7

Self-Test Questions

 7.1   d  7.2   c  7.3   a    7.4   c  7.5 b

 7.6   b 7.7   c 7.8   c 7.9  d 7.10 a

 7.11  c  7.12  c  7.13  b  7.14  b  7.15   b

 7.16  c  7.17  a  7.18  a  7.19  b  7.20   a

 7.21  b   7.22  b  7.23  b  7.24  a  7.25   a

 7.26  a       7.27  b  7.28  a 7.29  d  7.30   b

Chapter 8

Self-Test Questions

 8.1  c   8.2  c  8.3   b  8.4   c  8.5 b

 8.6  c   8.7  b  8.8   c  8.9   b  8.10   c

 8.11 c      8.12  a  8.13  c 8.14  c 8.15   a

 8.16 d 8.17  a 8.18  b 8.19  c 8.20  c

 8.21  b       8.22  c      8.23  b      8.24  c 8.25  b

Chapter 9

Self-Test Questions

 9.1   b     9.2  d 9.3  c    9.4   b 9.5 c

 9.6   b     9.7   d  9.8  d 9.9   b  9.10  c

 9.11  e    9.12  c  9.13  a  9.14  c  9.15  d

 9.16  a 9.17  c      9.18  a     9.19  a      9.20  a 

 9.21  b     9.22  b      9.23  a     9.24  a  9.25 d
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Chapter 10

Self-Test Questions

 10.1 d 10.2 a, c 10.3 c 10.4 d 10.5 c

 10.6 c 10.7 c 10.8 a 10.9 c, d 10.10 c

Chapter 11

Self-Test Questions

 11.1 a 11.2 b 11.3 c 11.4 a, d 11.5 b

 11.6 d 11.7 a 11.8 a 11.9 a 11.10 a

 11.11 a, d   11.12 ADD 40h,5, A

 11.13 ADDB,8,A   11.14 SUB B, 8, A

 11.15 ADD*AR2, *AR3,A 11.16 SUB *AR2, *AR3, B

 11.17 ADD A, ASM,B   11.18 SUB A, ASM   11.19 c

 11.20 a 11.21 b 11.22 a 11.23 b

 11.24 MACP*AR3,1120h,A 11.25 MACD *AR3,1120h,A

 11.26 a 11.27 a 11.28 b, c 11.29 a 11.30 a

 11.31 a   11.32 BANZ 1050h, AR5+

 11.33 BANZ 1050h, *+AR5 11.34 a 11.35 c

Chapter 12

Self-Test Questions

 12.1 a, c 12.2 c, d 12.3 a, b 12.4 b, c 12.5 a, d

 12.6 a 12.7 a 12.8 d 12.9 d 12.10 b

 12.11 a 12.12 d 12.13 c

 12.14 

 (a) 0 (b) 1 (c) 2 (d) 3 (e) 0

 (f) 1 (g) 0 (h) 1 (i) 3 (J) 3

 (k) 3 (1) 3

Chapter 13

Self-Test Questions

 13.1 c 13.2 b 13.3 c 13.4 b 13.5 c

 13.6 a 13.7 b 13.8 d 13.9 c 13.10 d

 13.11 a 13.12 a,b,d 13.13 b 13.14 b 13.15 d

 13.16 d 13.17 a 13.18 a 13.19 c 13.20 b

 13.21 d 13.22 a 13.23 d 13.24 c 13.25 a

 13.26 d
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Chapter 14

Self-Test Questions

 14.1 d 14.2 d 14.3 d 14.4 a 14.5 c

 14.6 c 14.7 d 14.8 b 14.9 c 14.10 d

 14.11 c 14.12 d 14.13 c 14.14 b 14.15 d

 14.16 b 14.17 d 14.18 d 14.19 d 14.20 c

 14.21 d

Chapter 15

Self-Test Questions

 15.1 b 15.2 c 15.3 c 15.4 d 15.5 b

 15.6 a 15.7 c 15.8 d 15.9 c 15.10 c

 15.11 c 15.12 a 15.13 a 15.14 c 15.15 c

 15.16 c 15.17 d 15.18 b 15.19 b 15.20 a

 15.21 b 15.22 c 15.23 c 15.24 c 15.25 ????

 15.26 d

Chapter 16

Self-Test Questions

 16.1 a 16.2 c 16.3 b 16.4 a 16.5 b

 16.6 c 16.7 a 16.8 d 16.9 b 16.10 d

 16.11 c 16.12 c 16.13 b 16.14 c 16.15 c

 16.16 a 16.17 b 16.18 a 16.19 b 16.20 b

 16.21 b 16.22 b 16.23 a 16.24 c 16.25 b

 16.26 c 16.27 b 16.28 d 16.29 c
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A

A/D and D/A converters 67

A/D and D/AFilters 141

Absolute addressing mode in

 ¢C54X processor 291

 ¢C55X processor 447

Absolute addressing *(lk) 292

Accumulator addressing 292

Accumulators 265

Actel 490

Adaptive fi lters 43

Addition instructions 90, 202,302,381 

Addresing Mode Register (AMR) 365

Address data fl ow unit (A-unit) 442

Addressing modes 62, 82, 189, 373, 446

Advantagesof Digital Signal processing 8

AIC 

 terminal functions 139

 internal timing confi guration 141

 serial port modes and its registers 142

 serial port operation and reset function 145

 secondary communication protocol 145

 reset in ¢C3X 246

 programming in ¢C3X DSK 246

ALU input in ¢C54X 267

Analog input and output 141

Analog Interface Circuit (AIC) 139

Antifuse 490

APEX FPGA 523

Application programs in

 ¢C5X processor 120

 ¢C3X processor 218

 ¢C54X processor 340

 ¢C64X processor 407

 ¢C67X processor 416

Applications of DMT 37

AR indirect addressing mode 449

Architecture of 

 ¢C5X processor 70

 ¢C3X processor 168

 ¢C54X processor 257

 ¢C6X processor 356

 ¢C55X processor 438

Arithmetic and logic unit (ALU) 172, 266

Arithmetic 

 instruction in ¢C54X 301

 operation instructions in ¢C6X 392

 operations 456

Arithmetic mode of Cyclone III 501

ARP compatibility mode 299

Assembler directives 221

Assembling a program 122

Assembly language instruction of 

 ¢C5X processor 82

 ¢C3X processor 198

 ¢C54X processor 290

 ¢C6X processor 370

 ¢C55X processor 455
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Assembly language 

 programming in ¢C54X 335

 syntax 81

Aulixilary register 

 arithmetic unit (ARAU) 73, 172

 compare register (ARCR) 73

Auxiliary registers (AR0-AR7) 173, 266

B

Bandpass Sampling Theorem 26

Barrel shifter 172, 268

Bilinear Transform Method 19

Bit I/O Ports 66

Bit manipulation operations  471

Bit Reversed Addressing Mode 63, 85, 196, 297

Bit-manipulation instructions 315

Block move address register 74

Block RAM 494

Block repeat registers 74, 177, 266

Block size registers (BK) 174, 266

Boot confi guration 435

Branch instructions 98, 209, 313, 387

Buffered serial port (BSP) 79, 272

Bus structure of ¢C5X 71

Buses is ¢C54X 260

C

Cache 

 algorithm 181

 architecture 181

 control bits 180

 memory 179

Call instructions 98, 209, 313

Callable assembly 424

Capture and Display 

 without AIC initialisation 152

 with AIC initialisation 153

 of sine wave in ¢C3X 248

Carrier recovery circuits 541

Carry bit 268

Cascade Equivalence 30

Causality 4

CDP indirect addressing mode 451

Central arithmetic and logic unit (CALU) 72

Central processing unit (CPU) 170, 261, 357, 439

ChipScope PROTM 550

CIC fi lters 543

Circular Addressing 64, 129, 194, 228, 297, 344

Circular addressing mode in

 ¢C55X processor 453

 ¢C6X processor 376

CISC advantages 68

Clock generator 77, 272

Clock networks 499

Code composer studio (CCS) 328, 402

Code development 

 in ¢C3X DSK  220

 in C environment 416

Code generation in CCS 404

Coeffi cient indirect addressing mode 453

Common ports 67

Compare instructions of ¢C6X 386, 394

Compare operations 468

Compare, select and store unit (CSSU) 270

Comparison of  FPGAs and digital signal  

 processors 525

Comparison of the features of 5X and 54X 258

Comparison of features of ¢C54X and ¢C55X 439 

Conditional 

 branch addressing mode 197

 instructions 205

 operation in ¢C6X 388

 store instructions 314

Confi gurable Logic Blocks (CLBs) 492

Confi guration 501

Constant coeffi cient multiplier 513

Control 

 instructions 313

 register fi le in ¢C6X 365

 register fi le extensions 368

Control Status Register (CSR) 367

Convolution and inverse fi ltering 3

Convolution 

 of sequences 6

 using FFT 12

 using MAC instruction 132

 using MACD instruction 133, 345

 of fl oating-point values 235

 of sequences in ¢C3X 233

 using FIRS instruction 345

 using MACP instruction 345

 program in ¢C64X 409
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CORDIC 

 algorithm 535

 rotation mode 535

 vector mode 537

 applications in rotation mode 538

 applications in vector mode 538

Correlators 2

Costas loop 542

Custom instructions 510

Custom peripherals 510

Cyclone III family FPGAs 498

D

Data addresing 273

Data addressing in ¢C54X 290

Data block move 129

Data computation unit (D-unit) 444

Data Format Conversion Instructions 391

Data 

 formats 187

 formats in ¢C6X 390

 paths in ¢C6X 361

 types in ¢C54X 300

Data-page pointer (DP) 173

DCT and Quantization 46
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