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Preface

This book conforms to the latest syllabus in ‘Discrete Mathematics’ prescribed 

not only to the students of Engineering at the graduate and postgraduate levels 

by Anna University but also to the students of BCA, MCA and other IT related 

professional courses in most colleges in various universities throughout India.

 This book has been designed to provide an introduction to some fundamental 

concepts in Discrete Mathematics in a precise and readable manner and most of 

the mathematical foundations required for further studies.

 Many students taking this course are used to express that this subject is quite 

abstract and vague and that they need more examples and exercises to under-

stand and develop an interest in the subject. To motivate such students, the book 

contains an extensive collection of examples and exercises with answers, so as 

to enable them to relate the mathematical techniques to computer applications 

in a sufficient manner.

 I have maintained my style of presentation as in my other books. I am sure 

that the students and the faculty will find this book very useful.

 Critical evaluation and suggestions for improvement of the book will be highly 

appreciated and gratefully acknowledged.

 I wish to express my thanks to Prof. M Jegan Mohan, Principal, SSCE, 

Aruppukottai for the appreciative interest shown and constant encouragement 

given to me while writing this book.

 I am thankful to my publishers, McGraw Hill Education (India) for their 

painstaking efforts and cooperation in bringing out this book in a short span of 

time.
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 I am grateful to the following reviewers for their feedback:

Dr. B. Pushpa Panimalar Engineering College, Chennai

Dr. D. Iranian Panimalar Institute of Technology, Chennai

M.S. Muthuraman PSNA College of Engineering & Technology, Dindigul

 I have great pleasure in dedicating this book to my beloved students, past and 

present.

 T Veerarajan
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Mathematical Logic

INTRODUCTION

Logic is the discipline that deals with the methods of reasoning. One of the

aims of logic is to provide rules by which we can determine whether a particular

reasoning or argument is valid. Logical reasoning is used in many disciplines

to establish valid results. Rules of logic are used to provide proofs of theorems

in mathematics, to verify the correctness of computer programs and to draw

conclusions from scientific experiments. In this chapter, we shall introduce

certain logical symbols using which we shall state and apply rules of valid

inference and hence understand how to construct correct mathematical

arguments.

PROPOSITIONS

A declarative sentence (or assertion) which is true or false, but not both, is

called a proposition (or statement). Sentences which are exclamatory,

interrogative or imperative in nature are not propositions. Lower case letters

such as p, q, r … are used to denote propositions. For example, we consider the

following sentences:

1. New Delhi is the capital city of India.

2. How beautiful is Rose?

3. 2 + 2 = 3

4. What time is it?

5. x + y = z

6. Take a cup of coffee.

In the given statements, (2), (4) and (6) are obviously not propositions as

they are not declarative in nature. (1) and (3) are propositions, but (5) is not,
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since (1) is true, (3) is false and (5) is neither true nor false as the values of x, y

and z are not assigned.

If a proposition is true, we say that the truth value of that proposition is true,

denoted by T or 1. If a proposition is false, the truth value is said to be false,

denoted by F or 0.

Propositions which do not contain any of the logical operators or connectives

(to be introduced in the next section) are called atomic (primary or primitive)

propositions. Many mathematical statements which can be constructed by

combining one or more atomic statements using connectives are called molecular

or compound propositions.

The truth value of a compound proposition depends on those of sub-

propositions and the way in which they are combined using connectives.

The area of logic that deals with propositions is called propositional logic or

propositional calculus.

CONNECTIVES

Definition

When p and q are any two propositions, the proposition “p and q” denoted by

p � q and called the conjunction of p and q is defined as the compound

proposition that is true when both p and q are true and is false otherwise. (� is

the connective used) A truth table is a table that displays the relationships

between the truth values of sub-propositions and that of compound proposition

constructed from them.

Table 1.1 is the truth table for the conjunction of two

propositions p and q viz., “p and q”.

Definition
When p and q are any two propositions, the propositions

“p or q” denoted by p � q and called the disjunction of p

and q is defined as the compound proposition that is

false when both p and q are false and is true otherwise.

(� is the connective used)

Table 1.2 is the truth table for the disjunction of two

propositions p and q, viz., “p � q”.

Definition
Given any proposition p, another proposition formed by

writing “It is not the case that” or “It is false that” before

p or by inserting the word ‘not’ suitably in p is called the

negation of p and denoted by p (read as ‘not p’). p is

also denoted as p�, p  and ~ p. It p is true, then p is

false and if p is false, then p is true.

Table 1.3 is the truth table for the negation of p. For

example, if p is the statement “New Delhi is in India”,

the p is any one of the following statements.

Table 1.1

p q p  q

T T T

T F F

F T F

F F F

Table 1.2

p q p  q

T T T

T F T

F T T

F F F

Table 1.3

p 7p

T F

F T
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Note

Table 1.4

p q p  q

T T T

T F F

F T T

F F T

(a) It is not the case that New Delhi is in India

(b) It is false that New Delhi is in India

(c) New Delhi is not in India

The truth value of p is T and that of p is F.

ORDER OF PRECEDENCE FOR LOGICAL

CONNECTIVES

We will generally use parentheses to specify the order in which logical operators

in a compound proposition are to be applied. For example, (p � q) � ( r) is the

conjunction of p � q and r. However to avoid the use of an excessive number

of parentheses, we adopt an order of precedence for the logical operators,

given as follows:

(i) The negation operator has precedence over all other logical operators.

Thus p � q means ( p) � q, not (p � q).

(ii) The conjunction operator has precedence over the disjunction operator.

Thus p � q � r means (p � q) � r, but not p � (q � r).

(iii) The conditional and biconditional operators � and � (to be introduced

subsequently) have lower precedence than other operators. Among them,

� has precedence over �.

CONDITIONAL AND BICONDITIONAL

PROPOSITIONS

Definition
If p and q are propositions, the compound proposition “if p, then q”, that is

denoted by p � q is called a conditional proposition, which is false when p is

true and q is false and true otherwise.

In this conditional proposition, p is called the hypothesis or premise and q is

called the conclusion or consequence.

Some authors call p � q as an implication.

For example, let us consider the statement.

“If I get up at 5 A.M., I will go for a walk”, which may be represented as

p � q and considered as a contract.

If p is true and q is also true, the contract is not violated and so ‘p � q’ is

true.

If p is true and q is false (viz., I get up at 5 A.M., but I do not go for a walk),

the contract is violated and so ‘p � q’ is false.

If p is false and whether q is true or false (viz., when

I have not got up at 5 A.M; I may or may not go for a

walk), the contract is not violated and so ‘p � q’ is true.

Accordingly, the truth table for the conditional

proposition p � q will be as given in Table 1.4.

The alternative terminologies used to express p � q

(if p, then q) are the following:
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(i) p implies q, (ii) p only if q [“If p, then q” formulation emphasizes the

hypothesis, whereas “p only if q” formulation emphasizes the conclusion; the

difference is only stylistic], (iii) q if p or q when p, (iv) q follows from p, (v) p

is sufficient for q or a sufficient condition for q is p and (vi) q is necessary for

p or a necessary conditions for p is q.

Definition
If p and q are propositions, the compound proposition “p if and only if q”, that

is denoted by p � q, is called a biconditional proposition, which is true when

p and q have the same truth values and is false otherwise.

It is easily verified that ‘p � q’ is true when both the conditionals p � q

and q � p are true. This is the reason for the symbol � which is a combination

of � and �.

Alternatively, ‘p � q’ is also expressed as ‘p iff q’

and ‘p is necessary and sufficient for q’.

The truth table for ‘p � q’ is given in Table 1.5.

The notation p� q is also used instead of p � q.

TAUTOLOGY AND CONTRADICTION

A compound proposition P = P(p1, p2, …, pn), where p1, p2, …, pn are variables

(elemental propositions), is called a tautology, if it is true for every truth

assignment for p1, p2, …, pn.

P is called a contradiction, if it is false for every truth assignment for p1, p2,

…, pn.

For example, p � p is a tautology, whereas p � p is a contradiction, as seen

from the Table 1.6 given below.

Table 1.6

p p p p p p

T F T F

F T T F

1. The negation of a tautology is a contradiction and the negation of a

contradiction is a tautology.

2. If P(p1, p2, …, pn) is a tautology, then P(q1, q2, …, qn) is also a tautology, where

q1, q2, …, qn are any set of propositions. This is known as the principle of

substitution.

For example, since p � p is a tautology, ((p � q) � r) �  ((p � q) � r) is also

a tautology.

3. If a proposition is neither a tautology nor a contradiction, it is called a contingency.

EQUIVALENCE OF PROPOSITIONS

Two compound propositions A(p1, p2, …, pn) and B(p1, p2, …, pn) are said to

be logically equivalent or simply equivalent, if they have identical truth tables,

viz. if the truth value of A is equal to the truth value of B for every one of the 2n

possible sets of truth values assigned to p1, p2, …, pn.

Table 1.5

p q p  q

T T T

T F F

F T F

F F T

Note

Note
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Note

The equivalence of two propositions A and B is denoted as A � B or A � B

(which is read as ‘A is equivalent to B’). � or � is not a connective.

For example, let us consider the truth tables of (p � q) and p � q (see

Table 1.7). The final columns in the truth tables for (p � q) and p � q are

identical. Hence (p � q) � p � q.

Table 1.7

p q p � q (p � q) p q p � q

T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

We have already noted that the biconditional proposition A � B is true

whenever both A and B have the same truth value, viz. A � B is a tautology, when A

and B are equivalent.

Conversely, A � B, when A � B is a tautology. For example, (p � q) � ( p � q), since

(p � q) � ( p � q) is a tautology, as seen from the truth Table 1.8 given below:

Table 1.8

p q p � q p p � q (p � q) � p � q)

T T T F T T

T F F F F T

F T T T T T

F F T T T T

DUALITY LAW

The dual of a compound proposition that contains only the logical operators �,

� and  is the proposition obtained by replacing each � by �, each � by �,

each T by F and each F by T, where T and F are special variables representing

compound propositions that are tautologies and contradictions respectively.

The dual of a proposition A is denoted by A*.

DUALITY THEOREM

If A(p1, p2, …, pn) � B(p1, p2, …, pn), where A and B are compound proposi-

tions, then A*(p1, p2, …, pn) � B* (p1, p2, …, pn).

Proof
In Table (1.7), we have proved that

(p � q) � p � q or p � q � ( p � q) (1)

Similarly we can prove that

p � q � ( p � q) (2)

(1) and (2) are known as De Morgan’s laws.

Using (1) and (2), we can show that

A(p1, p2, …, pn) � A*( p1, p2, …, pn) (3)

Note
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Equation (3) means that the negation of a proposition is equivalent to its

dual in which every variable (primary proposition) is replaced by its negation.

From Eq. (3), it follows that

A(p1, p2, …, pn) � A*( p1, p2, …, pn) (4)

Now since A(p1, p2, …, pn) � B(p1, p2, …, pn), we have A(p1, p2, …, pn) �

B(p1, p2, …, pn) is tautology

� A( p1, p2, …, pn) � B( p1, p2, …, pn) is also a tautology (5)

Using (4) in (5), we get

A*(p1, p2, …, pn) � B*(p1, p2, …, pn) is a tautology.

� A* � B* is a tautology.

� A* � B*

ALGEBRA OF PROPOSITIONS

A proposition in a compound proposition can be replaced by one that is equiva-

lent to it without changing the truth value of the compound proposition. By this

way, we can construct new equivalences (or laws). For example, we have

proved that p � q � p � q (Table 1.8). Using this equivalence, we get

another equivalence p � (q � r) � p � ( q � r). Some of the basic equivalences

(laws) and their duals which will be of use later are given in Tables 1.9, 1.10

and 1.11. They can be easily established by using truth tables.

Table 1.9 Laws of Algebra of Propositions

Sl. No. Name of the law Primal form Dual form

1. Idempotent law p � p � p p � p � p

2. Identity law p � F � p p � T � p

3. Dominant law p � T � T p � F � F

4. Complement law p � p � T p � p � F

5. Commutative law p � q � q � p p � q � q � p

6. Associative law (p � q) � r � p � (q � r) (p � q) � r � p � (q � r)

7. Distributive law p � (q � r) � (p � q) � (p � r) p � (q � r) � (p � q) � (p � r)

8. Absorption law � (p � q) � � (p � q) �

9. De Morgan’s law (p � q) � p � q (p � q) � p � q

Table 1.10 Equivalences Involving Conditionals

1. p � q � �

2. p � q � q � p

3. p � q � �

4. � q � (p � )

5. (p � q) � p � q

6. (p � q) � (p � r) � p � (q � r)

7. (p � r) � (q � r) � (p � q) � r

8. (p � q) � (p � r) � p � (q � r)

9. (p � r) � (q � r) � (p � q) � r
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Table 1.11 Equivalences Involving Biconditionals

1. p � q � � q � q � p)

2. p � q � p �

3. � q � (p � q) � p � q)

4. (p � q) � p � q

TAUTOLOGICAL IMPLICATION

A compound proposition A(p1, p2, …, pn) is said to tautologically imply or

simply imply the compound proposition B(p1, p2, …, pn), if B is true whenever

A is true or equivalently if and only if A � B is a tautology. This is denoted by

A � B, read as “A implies B”.

� is not a connective and A � B is not a proposition).

For example, p � p � q, as seen from the following truth Table 1.12. We note

that p � q is true, whenever p is true and that p � (p � q) is a tautology.

Table 1.12

p q p  q p � (p � q)

T T T T

T F T T

F T T T

F F F T

Similarly we note that (p � q) � ( q � p) from the following truth

Table 1.13.

Table 1.13

p q p q p � q q � p (p � q) � q � p)

T T F F T T T

T F F T F F T

F T T F T T T

F F T T T T T

Some important implications which can be proved by truth tables are given in

Table 1.14.

Table 1.14 Implications

1. p � q � p

2. p � q � q

3. � p � q

4. p � p � q

5. � p � q

6. (p � q) �

7. (p � q) � q

8. � (p � q) � q

9. q � (p � q) � p

10. p � (p � q) � q

11. (p � q) � (q � r) � p � r

12. (p � q) � (p � r) � (q � r) � r

Note
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We can easily verify that if A � B and B � A, then A � B. Hence to prove

the equivalence of two propositions, it is enough to prove that each implies

the other.

NORMAL FORMS

To determine whether a given compound proposition A(p1, p2, …, pn) is a

tautology or a contradictor or at least satisfiable and whether two given com-

pound propositions A(p1, p2, …, pn) and B(p1, p2, …, pn) are equivalent, we

have to construct the truth tables and compare them.

A(p1, p2, …, pn) is said to be satisfiable, if it has the truth value T for at

least one combination of the truth values of p1, p2, …, pn.

But the construction of truth tables may not be practical, when the number

of primary propositions (variables) p1, p2, …, pn increases. A better method is

to reduce A and B to some standard forms, called normal forms and use them

for deciding the nature of A or B and for comparing A and B. There are two

types of normal form—disjunctive normal form and conjunctive normal form.

We shall use the word ‘product’ in place of ‘conjunction’ and ‘sum’ in place

‘disjunction’ hereafter in this section for convenience.

DISJUNCTIVE AND CONJUNCTIVE NORMAL FORMS

A product of the variables and their negations (a conjunction of primary state-

ments and their negations) is called an elementary product.

Similarly, a sum of the variables and their negations is called an elementary

sum. For example, p, p, p � p, p � q, p � q and p � q are some

elementary products in 2 variables q, q, p � q, p � q and p � q are some

elementary sums is 2 variables. A compound proposition (or a formula) which

consists of a sum of elementary products and which is equivalent to a given

proposition is called a disjunctive normal form (DNF) of the given proposition.

A formula which consists of a product of elementary sums and which is

equivalent to a given formula is called a conjunctive normal form (CNF) of the

given formula.

Procedure to Obtain the DNF or CNF of a Given

Formula

Step 1
If the connectives � and � are present in the given formula they are replaced

by �, � and  viz. p � q is replaced by p � q and p � q is replaced by either

(p � q) � ( p � q) or ( p � q) � ( q � p).

Step 2

If the negation is present before the given formula or a part of the given

formula (not a variable), De Morgan’s laws are applied so that the negation is

brought before the variables only.

Note

Note
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Step 3

If necessary, the distributive law and the idempotent law are applied.

Step 4

If there is an elementary product which is equivalent to the truth value F in the

DNF, it is omitted. Similarly if there is an elementary sum which is equivalent

to the truth value T in the CNF, it is omitted.

For example, the DNF of q � (q � p) is given by

q � (q � p) � q � (q � p)

� q � ( q � p)

� ( q � q) � p, by associative law

� q � p, by idempotent law.

The CNF of (p � q) � (p � q) is given by

(p � q) � (p � q) � ( (p � q) � (p � q)) � ( ( (p � q)) � (p � q))

� ( p � q) � (p � q) � (p � q) � ( p � q)

� (p � p) � (q � q) � (p � q) � ( p � q)

� F � F � (p � q) � ( p � q)

� (p � q) � ( p � q)

PRINCIPAL DISJUNCTIVE AND PRINCIPAL

CONJUNCTIVE NORMAL FORMS

Given a number of variables, the products (or conjunctions) in which each

variable or its negation, but not both, occurs only once are called the minterms.

For two variable p and q, the possible minterms are p � q, p � q, p � q and

p � q.

For three variables p, q and r, the possible minterms are

p � q � r, p � q � r, p � q � r, p � q � r, p � q � r, p � q � r,

p � q � r and p � q � r.

We note that there are 2n minterms for n variables.

Given a number of variables, the sums (or disjunctions) in which each

variable or its negation, but not both, occurs only once are called the maxterms.

For the two variables p and q, the possible maxterms are p � q, p � q,

p � q and p � q. The maxterms are simply the duals of minterms.

A formula (compound proposition) consisting of disjunctions of minterms in

the variables only and equivalent to a given formula is known as its principal

disjunctive normal form (PDNF) or its sum of products canonical form of the

given formula. Similarly, a formula consisting of conjunctions of maxterms in

the variables only and equivalent to given formula is known as its principal

conjunctive normal form (PCNF) or its product of sums canonical form.

In order to obtain the PDNF of a formula, we first obtain a DNF of the

formula by using the procedure given above. To get the minterms in the dis-

junctions, the missing factors are introduced through the complement law (viz.

P � P = T) and then applying the distributive law. Identical minterms
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Note

appearing in the disjunctions are then deleted, as P � P = P. A similar proce-

dure with necessary modifications is adopted to get the PCNF of a formula.

In order to verify whether two given formulas are equivalent, we may obtain

either PDNF or PCNF of both the formulas and compare them.

If the PDNF of a formula A is known, the PDNF of A will consist of the

disjunctions of the remaining minterms which are not included in the PDNF

of A.

To obtain the PCNF of A, we use the fact that A = ( A) and apply

De Morgan’s laws to the PDNF of A repeatedly.

Examples

(a) The PDNF of (p � q) is given by

p � q � p � (q � q) � q � (p � p), by complement law

� (p � q) � (p � q) � ( q � p) � ( q � p),

by distributive law

� (p � q) � (p � q) � ( p � q), by commutative and

idempotent laws.

(b) To get the PCNF of p � q, we proceed as follows:

The PDNF of p � q � (p � q) � ( p � q) [assumed from Table (1.11)]

� PDNF of (p � q) � ( p � q) � (p � q) (remaining minterms) (1)

� (p � q) � (p � q)

� (( p � q) � (p � q), form (1)

� ( p � q) � (p � q), by De Morgan’s law

� (p � q) � ( p � q), by De Morgan’s law,

which is the same as

p � q � (p � q) � (q � p).

WORKED EXAMPLES 1(A)

Example 1.1 Construct a truth table for each of the following compound

propositions:

(a) (p � q) � (p � q); (b) (p � q) � (q � p);

(c) (q � p) � (p � q); (d) (p � q) � ((p � q) � ( p � q));

(e) ( p � q) � (p � q).

(a) Table 1.15 Truth Table for (p � q) � (p � q)

p q p � q p � q (p � q) � (p � q)

T T T T T

T F T F F

F T T F F

F F F F T
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(b) Table 1.16 Truth Table for (p � q) � (q � p)

p q p � q q � p (p � q) � (q � p)

T T T T T

T F F T T

F T T F F

F F T T T

(c) Table 1.17 Truth Table for (q � p) � (p � q)

p q p q � q p � q (q � p) � (p � q)

T T F F T F

T F F T F F

F T T T F F

F F T T T T

(d) Table 1.18 Truth Table for (p � q) � ((p � q) � ( p � q))

p q p q p � q p � q p � q(p � q) � p � q) given formula

T T F F T T F T T

T F F T F F F F T

F T T F F F F F T

F F T T T F T T T

(e) Table 1.19 Truth Table for ( p � q) � (p � q)

p q p p � q) (p � p � q) � (p � q)

T T F F T T T

T F F T F F T

F T T F F F T

F F T T T T T

Formulas given in (d) and (e) are tautologies.

Example 1.2 Construct the truth table for each of the compound proposi-

tions given as follows:

(a) ((p � (q � r)) � ((p � q) � (p � r))

(b) (p � (q � r)) � ((p � q) � (p � r))

(c) ( p � q) � (q � r)

(d) (p � (q � s)) � ( r � p) � q

(e) ((p � q) � r) � s

If there are n distinct components (sub-propositions) in a statement

(compound proposition), the corresponding truth table will consist of 2n

rows corresponding to 2n possible combinations. In order not to miss any of the combi-

nations, we adopt the following procedure: In the first column of the truth table corre-

sponding to the first component, we will write 
1

2
� 2n entries each equal to T, followed

Note

Note
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by 
1

2
� 2n entries each equal to F. In the second column, 

1
2

4
�

n  T’s will be first

written, then 
1

2
4

�
n  F’s will be written followed again by 

1
2

4
�

n  T’s. Finally

1
2

4
�

n  F’s will be written. In the third column 
1

2
8

�
n

 T’s and 
1

2
8

�
n

 F’s will

be alternately written starting with T’s and so on.

(a) Table 1.20 Truth Table for (p � (q � r)) � ((p � q) � (p – r))

p q r p � q p � r q � r p � (q � r) (p � q) � (p � r) a � b

� a  � b

T T T T T T T T T

T T F T F F F F T

T F T F T T T T T

T F F F F T T T T

F T T T T T T T T

F T F T T F T T T

F F T T T T T T T

F F F T T T T T T

The given compound proposition is a tautology.

(b) Table 1.21 Truth Table for (p � (q � r) � ((p � q) � (p � r))

p q r q � r p � � r) a p � q p � r (p � q) � (p � r) a � b

 a  b

T T T T T F T T T F

T T F F T F T F F T

T F T F T F T T T F

T F F F T F T F F T

F T T T T F T T T F

F T F F F T T T T T

F F T F F T F T F F

F F F F F T F T F F

(c) Table 1.22 Truth Table for ( p � q) � (q � r)

p q r p p � q) � a q � r � b a � b

T T T F F T T T

T T F F F T F F

T F T F T F F T

T F F F T F T F

F T T T F F T F

F T F T F F F T

F F T T T T F F

F F F T T T T T

Note



Mathematical Logic 13

(d) Table 1.23 Truth Table for (p � (q � s)) � ( r � p) � q

p q r s q � s � a p � a � b r � p) � c b � c b � c � q

T T T T T T F T T T

T T T F F F F T F F

T T F T T T T T T T

T T F F F F T T F F

T F T T T T F T T F

T F T F T T F T T F

T F F T T T T T T F

T F F F T T T T T F

F T T T T T F F F F

F T T F F T F F F F

F T F T T T T T T T

F T F F F T T T T T

F F T T T T F F F F

F F T F T T F F F F

F F F T T T T T T F

F F F F T T T T T F

(e) Table 1.24 Truth Table for ((p � q) � r) � s

p q r s p � q (p � q) � r ((p � q) � r) � s

T T T T T T T

T T T F T T F

T T F T T F T

T T F F T F T

T F T T F T T

T F T F F T F

T F F T F T T

T F F F F T F

F T T T T T T

F T T F T T F

F T F T T F T

F T F F T F T

F F T T T T T

F F T F T T F

F F F T T F T

F F F F T F T

Example 1.3 Determine which of the following compound propositions

are tautologies and which of them are contradictions, using truth tables:

(a) ( q � (p � q) � p

(b) ((p � q) � (q � r)) � (p � r)

(c) (q � r) � r � (p � q)

(d) ((p � q) � (p � r) � (q � r)) � r.
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(a) Table 1.25 Truth Table for ( q � (p � q)) � p

p q p q (p � q) q � (p � q � (p � q)) � p

T T F F T F T

T F F T F F T

F T T F T F T

F F T T T T T

Since the truth value of the given compound proposition is T for all

combinations of p and q, it is a tautology.

(b) Table 1.26 Truth Table for ((p � q) � (q � r)) � (p � r)

p q r p � q p � r q � r (p � q) � (q � r) ((p � q) � (q – r))

� (p – r)

T T T T T T T T

T T F T F F F T

T F T F T T F T

T F F F F T F T

F T T T T T T T

F T F T T F F T

F F T T T T T T

F F F T T T T T

Since the truth value of the given statement is T for all combinations of

truth values of p, q and r, it is a tautology.

(c) Table 1.27 Truth Tables for (q � r) � r � (p � q)

p q r p � q q � r (q � r) (q � r) � (q � r) � r � (p � q)

T T T T T F F F

T T F T F T F F

T F T F T F F F

T F F F T F F F

F T T T T F F F

F T F T F T F F

F F T T T F F F

F F F T T F F F

The last column contains only F as the truth values of the given statement.

Hence it is a contradiction.

(d) Table 1.28 Truth Table for ((p � q) � (p � r)� (q � r)) � r

p q r p � q p � r a � b q � r a � b � c (a  b � c)  r

� a � b � c

T T T T T T T T T

T T F T F F F F T

T F T T T T T T T

T F F T F F T F T

(Contd.)
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(Contd.)

F T T T T T T T T

F T F T T T F F T

F F T F T F T F T

F F F F T F T F T

Since all the entries in the last column are T’s, the given statement is a

tautology

Example 1.4 Without using truth tables, prove the following:

(i) ( p � q) � (p � (p � q) � p � q

(ii) p � (q � p) � p � (p � q)

(iii) (p � q) � (p � q) � (p � q) � (p � q) � ( p � q)

(i) ( p � q) � (p � (p � q)) � ( p � q) � (p � p) � q, by associative law

� ( p � q) � (p � q), by idempotent law

� (p � q) � ( p � q), by commutative law

� ((p � q) � p) � ((p � q) � q), by distributive law

� ( p � (p � q)) � ((p � q) � q), by commutative law

� (( p � p) � q) � (p � (q � q), by associative law

� (F � q) � (p � q), by complement and idempotent law

� F � (p � q), by dominant law

� p � q, by dominant law.

(ii) p � (q � p) � p � (q � p) [Refer to Table 1.10]

� p � ( q � p) [Refer to Table 1.10]

� q � (p � p), by commutative and associative laws

� p � T, by complement law

� T, by dominant law (1)

p � (p � q) � p � (p � q), by (1) of Table 1.10

� p � ( p � q), by (1) of Table 1.10

� (p � p)�� q, by associative law

� T � q, by complement law

� T, by dominant law, (2)

From (1) and (2), the result follows.

(iii) (p � q) � ((p � q) � (q � p)), from Table 1.11

� (( p � q) � ( q � q)), from Table 1.10

� [(( p � q) � q) � (( p � q) � p], by distributive law

� [(( p � q) � (q � q)) � (( p � p)) � (q � p))],

by distributive law

� [(( p � q) � F) � ((F � (q � p))], by complement law

� [( p � q) � (q � p)], by identity law

� [ (p � q) � (q � p)], by De Morgan’s law

� (p � q) � (q � p), by De Morgan’s law (1)

� (p � q) � ( q � p), by De Morgan’s law

� ((p � q) � q)) � ((p � q) � p)), by distributive law

� ((p � q) � (q � q)) � ((p � p) � (q � p)), by distributive law
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� ((p � q) � F) � ((F � (q � p)), by complement law

� (p � q) � (q � p), by identity law

� (p � q) � ( p � q), by commutative law (2)

From (1) and (2), the result follows.

Example 1.5 Without constructing the truth tables, prove the following:

(i) p � (q � r) � q � (p � r)

(ii) p � (q � r) � p � ( q � r) � (p � q) � r

(iii) ((p � q) � ( p � ( q � r))) � ( p � q) � ( p � r) is a tautology.

(i) p � (q � r) � p � (q � r), from Table 1.10

� p � ( q � r), from Table 1.10

� (p � q) � r, by associative law

� ( q � p)�� r, by commutative law

� q � (p � r), by associative law

� q � (p � r), from Table 1.10.

(ii) p � (q � r) � p � ( q � r), from Table 1.10 (1)

Now p � ( q � r)� p � ( q � r), from Table 1.10

� ( p � q) � r, by associative law

� (p � q) � r, by De Morgan’s law

� (p � q) � r (2)

(iii) ((p � q) � ( p � ( q � r))) � ( p � q) � ( p � r)

� ((p � q) � (p � (q � r))) � (p � q) � (p � r),

by De Morgan’s law

� ((p � q) � [(p � q) � (p � r)]) � [ (p � q) � (p � r)],

by distributive law

� [(p � q) � (p � r)] � [(p � q) � (p � r)],

by idempotent and De Morgan’s laws

The final statement is in the form of p � p.

� L.H.S. � T

Hence the given statement is tautology.

Example 1.6 Prove the following equivalences by proving the equiva-

lences of the duals:

(i) (( p � q) � ( p � q)) � (p � q) � p

(ii) (p � q)� r � (p � r) ��(q � r)

(iii) (p � (p � q)) � q � T

(i) The dual of the given equivalence is

(( p � q) � ( p � q)) � (p � q) � p

Let us now prove the dual equivalence.

L.H.S. � ( p � (q � q)) � (p � q), by distribution law

� ( p � F) � (p � q), by complement law

� ( p) � (p � q), by identity law

� p � (p � q)

� p, by absorption law
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(ii) (p � q) � r � (p � r) � (q � r)

i.e., (p � q) � r � ( p � r) � ( q � r)

Dual of this equivalence is

(p � q) � r � ( p � r) � ( q � r)

L.H.S � ( p � q) � r, by De Morgan’s law

� ( p � r) � ( q � r), by distributive law

� R.H.S.

(iii) (p � (p � q)) � q � T

i.e. p � ((p � q) � (q � p)) � q � T, from Table 1.11

i.e. p � (( p � q) � ( q � p)) � q � T

i.e. (p � (( p � q) � ( q � p))) � q � T

Dual of this equivalence is

(p � (( p � q) � ( q � p))) � q � F

L.H.S. � [(p � ( p � q)) � ( q � p)]�� q, by associative law

� [(T � (p � q)) � ( q � p)] � q, by distributive and complement

laws

� [(p � q) � ( q � p)] � q, by identity law

� [((p � q) � q) � ((p � q)�� p)] � q, by distributive law

� [(p � T) � (p � q)] � q, by idempotent and complement laws.

� [T � (p � q)] � q, by dominant law

� [p � q] � q, by identity law

� ( p � q) � q, by De Morgan’s law

� ( p � F), by complement law

� F, by dominant law.

Example 1.7 Prove the following implications by using truth tables:

(i) p � ((p � r) � (p � q) � (p � r)

(ii) (p � (q � s)) � ( r � p) � q � r � s

(i) We have defined that A � B, if and only if A� B is a tautology

(i) Table 1.29

p q r p � q q � r p � r p � b a � c d � e

(a) (b) (c) (d) (e)

T T T T T T T T T

T T F T F F F F T

T F T F T T T T T

T F F F T F T T T

F T T T T T T T T

F T F T F T T T T

F F T T T T T T T

F F F T T T T T T

Since d � e, viz., [p � (q � r)] � [(p � q) � (p � r)] is a tautology,

the required implication follows.
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(ii) Table 1.30

p q r s q � s p � a r � p) b � c d � q r � s e � f

(a) (b) (c) (d) (e) (f)

T T T T T T F T T T T T

T T T F F F F T F F F T

T T F T T T T T T T T T

T T F F F F T T F F T T

T F T T T T F T T F T T

T F T F T T F T T F F T

T F F T T T T T T F T T

T F F F T T T T T F T T

F T T T T T F F F F T T

F T T F F T F F F F F T

F T F T T T T T T T T T

F T F F F T T T T T T T

F F T T T T F F F F T T

F F T F T T F F F F F T

F F F T T T T T T F T T

F F F F T T T T T F T T

Since e � f is a tautology, e � f.

Example 1.8 Prove the following implications without using truth tables:

(i) (p � q) � (p � r) � (q � r) � r

(ii) ((p � p) � q) � ((p � p) � r) � q � r

(i) [(p � q) � (p � r) � (q � r)] � r

� (p � q) � ((p � q) � r) � r, from Table 1.10

� (p � q) � ( (p � q) � r) � r

� (F � (p � q) � r) � r

� ((p � q) � r) � r

� ((p � q) � r) � r

� ((p � r) � (q � r)) � r

� ( (p � r) � (q � r)) � r

� ( (p � r) � r) � ( (q � r) � r)

� ( p � r � r) � ( q � r � r)

� ( p � T) � ( q � T)

� T � T

� T

(ii) [((p � p) � q) � ((p � p) � r)] � (q � r)

� [(T � q) � (T � r)] � (q � r)

� [(F � q) � (F � r)] � (q � r)

� (q � r) � (q � r)

� T
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Example 1.9 Find the disjunctive normal forms of the following state-

ments:

(i) ( (p � q) � r)

(ii) p � ( p � (q � (q � r)))

(iii) p � (q � r) � (p � q)

(iv) (p � (q � r)) � (((p � q) � r) � p)

(i) ( (p � q) � r) � ( ((p � q) � ( p � q)) � r)

� [( (p � q) � ( p � q)) � r]

� [(( p � q) � (p � q)) � r]

� [(( p � p) � ( p � q) � ( q � p) � ( q � q)) � r],

by extended distributive law

� [(( p � q) � ( q � p)) � r)

� [(( p � q) � ( p � p) � (q � q) � (q � p)) � r]

� [((p � q) � ( p � q)) � r]

� (p � q) � ( p � q) � r

� ( p � q) � (p � q) � r

(ii) p � ( p � (q � (q � r)))

� p � ( p � (q � ( q � r)))

� p � (p � (q � ( q � r)))

� p � p � q � q � r

� p � q � q � r
The given statement is a tautology, as p � (q � q) � r � P � T � r � T

(iii) p � (q � r) � (p � q)

� p � (q � r) � ( p � q)

� (p � ( q � r)) � ( p � q)

� (p � q) � (p � r) � ( p � q)

� (p � q) � (p � r) � p � q

(iv) (p � (q � r)) � (((p � q) � r) � p)

� (p � ( q � r)) � ((p � q) � q) � ( r � p)

� (p � q � r) � (p � q) � (p � r)

Example 1.10 Find the conjunction normal forms of the following state-

ments:

(i) (p � (q � r)) � (p � q)

(ii) (q � (p � q)) � ((p � r) � q)

(iii) (p � (q � r)) � (((p � q) � r) � p

(i) (p � (q � r)) � (p � q)

� (p � ( q � r)) � ( p � q)

� (p � q) � (p � r) � ( p � q)

� (p � p) � (p � r) � ( q � p) � ( q � r) � ( p � q)

� (p � p) � (p � r) � (p � q) � ( p � q � q � r)

� (p � p) � (p � r) � (p � q) � ( p � T � r)

� (p � (p � r) � (p � q)

(ii) [q � (p � q)] � [(p � r) � q]

� q � [(p � r) � q], by absorption law

� q � [ (p � r) � q]

Note
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� q � [( p � r) � q]

� q � ( p � q) � ( q � r)

(iii) (p � (q � r)) � (((p � q) � r) � p)

� (p � ( q � r)) � ((p � r) � (q � r) � p)

� (p � q � r) � (p � (p � r) � q � r))

� (p � q � r) � (p � (q � r)), by absorption law

� [(p � ( q � r)) � p] � [(p � q � r) � (q � r)]

� p � [((p � q � r) � r) � q], by absorption law

� p � ( r � q), by absorption law

� p � (q � r)

Example 1.11 Obtain the principal disjunctive normal forms and the

principal conjunctive normal forms of the following statements using truth

tables:

(i) ( p � q) � (p � q)

(ii) p � ( p � (q � ( q � r)))

(iii) (p � (q � r)) � ( p � ( q � r))

Procedure If the given statement is not a contradiction, then the disjunction

(sum) of the minterms corresponding to the rows of the truth table having truth

value T is the required PDNF, as it is equivalent to the given statement.

For example, if the truth value T of the statement corresponds to the truth

values T, T and F for the variables p, q and r respectively, then the corresponding

minterm is taken as (p � q � r).

If the given statement A is not a tautology, we can find the equivalent PCNF

as follows:

We write down the PDNF of A, which is the disjunction of the minterms

corresponding to the rows of the truth table having the truth value F. Then if

we find A(=A), we will get the required PCNF of A. Equivalently the

PCNF is the conjunction of maxterms corresponding to the F values of A. But

the maxterm corresponding to T, T, F value of p, q, r is [( p � q � r)]

(i) Table 1.31

p q p p � q)  a p � q � b a � b

T T F F F F T

T F F T T T T

F T T F T T T

F F T T T F F

PDNF of ( p � q) � (p � q) � (p � q) � (p � q) � ( p � q),

since the minterms 
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(ii) Table 1.32

p q r p q q � r � a q � a � b p � b � c p � c

T T T F F T T T T

T T F F F T T T T

T F T F T T T T T

T F F F T F F T T

F T T T F T T T T

F T F T F T T T T

F F T T T T T T T

F F F T T F F F F

PDNF of the given statement

= (p � q � r) � (p � q � r) � (p � q � r) � (p � q � r)

� ( p � q � r) � ( p � q � r) � ( p � q � r).

Now PCNF of the given statement = ( p � q � r)

= p � q � r

(iii) Table 1.33

p q r p q r q � r p � a q � r p � c b � d

� a � b � c � d

T T T F F F T T F T T

T T F F F T F F F T F

T F T F T F F F F T F

T F F F T T F F T T F

F T T T F F T T F F F

F T F T F T F T F F F

F F T T T F F T F F F

F F F T T T F T T T T

PDNF of the given statement � (p � q � r) � ( p � q � r)

PDNF of (b � d) � (p � q � r) � (p � q � r) � (p � q � r)

p� q� r) � ( p � q � r) � ( p � q � r)

� PCNF of (b � d) � ( p � q � r) � ( p � q � r) � ( p � q � r)

� (p � q � r) � (p � q � r) � (p � q � r)

Example 1.12 Without constructing the truth tables, find the principal

disjunctive normal forms of the following statements:

(i) ( p � q) � (q � p)

(ii) (p � q) � ( p � q) � (q � r)

(iii) p � (q � r) � (p � q)

(iv) (q � (p � r)) � ((p � r) � q)

(i) ( p � q) � (q � p) � (p � q) � ((q � p) � ( q � p))

� (p � q) ��((p � q) � (p � q))

� ((p � q) � (p � q)) � ((p � q) � (p � q))

� ((p � q) � (p � q)) � F

� (p � (p � q)) � ((q � (p � q))
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� (p � q) � (p � q)

� p � q

(ii) (p � q) � ( p � q) � (q � r)

� �

(� Already the given statement is in the DNF, but not in PDNF)

� (p � q � r) � (p � q � r) � ( p � q � r) � ( p � q � r)

� (p � q � r) � ( p � q � r)

� (p � q � r) � (p � q � r) � ( p � q � r) � ( p � q � r)

(Deleting repetition of identical minterms)

(iii) p � (q � r) � (p � q)

� (p � ( q � r)) � ( p � q)

� (p � q) � (p � r) � p � q

� (p � q) � (p � r) � ( p � (q � q)) � (q � (p � p))

� (p � q) � (p � r) p � q) p � q) � (p � q) p � q)

� (p � q) � (p � r) � ( p � q) � ( p � q) � (p � q)

[Omitting the repletion of ( p � q)]

� ((p � q) � (r � r)) � ((p � r) � (q � q)) � (( p � q)

� (r � r)) � (( p � q) � (r � r)) � ((p � q) � (r � r))

� (p � q � r) � (p � q � r) � (p � q � r) � (p � q � r)

� ( p � q � r) � ( p � q � r) � ( p � q � r) � ( p � q

� r) ��(p � q � r) � (p � q � r)

� (p � q � r) � (p � q � r) � (p � q � r) � ( p � q � r)

p � q � r) p � q � r) p � q � r) � (p � q � r)

(Omitting repetitions)
Since all possible minterms are present in the PDNF, we infer that the

given statement is a tautology.

(iv) (q � (p � r)) � ((p � r) � q)

� (q � (p � r)) � ( (p � r) � q)

� (q � (p � r)) � (( p � r) � q)

� (q � p � r) � (q � q) � (p � r � p � r) � (p � r � q)

(By extended distribution law)

� ( p � q � r) � F � F � (p � q � r)

� ( p � q � r) � (p � q � r), deleting F’s

Example 1.13 Without constructing the truth tables, find the principal

conjunctive normal forms of the following statements:

(i) (p � q) � ( p � q � r)

(ii) (p � q) � (r � p) � (q � r)

(iii) (p � (q � r)) � (((p � q) � r) � p)

(iv) (p � (q � r)) � ( p �( q � r)

(i) (p � q) � ( p � q � r) � ((p � q) � p) � ((p � q) � q) � ((p � q) � r)

� (p � p) � (q � p) � (p � q) � (q � q) � (p � r) � (q � r)

� T � ( p � q) � (p � q) � q � (p � r) � (q � r)

� (( p � q) � (r � r)) � ((p � q) � (r � r)) � q � (p � p)

� (p � r) � (q � q) � (q � r) � (p � p)

(� A � F = A)

Note



Mathematical Logic 23

� ( p � q � r)� ( p � q � r) � (p � q � r) � (p � q � r)

� (q � p) � (q � p) � (p � r � q) � (p � r � q) � (q � r � p)

� (q � r � p)

� ( p � q � r) � ( p � q � r) � (p � q � r) � (p � q � r)

� (p � q � r) � ((q � p) � (r � r)) � ((q � p) � (r � r))

(Omitting repetitions)

� ( p � q � r) � ( p � q � r) � (p � q � r) � (p � q � r)

� (p � q � r) (1)

(Deleting repetitions)

In this process, we have directly found out the PCNF of the given statement

S. Alternatively we can first find the PDNF of S, write down the PDNF of S and

hence get the PCNF of S given as follows:

Aliter

S � (p � q) � (r � r) � ( p � q � r)

� (p � q � r) � (p � q � r) ��( p � q � r)

� S � (p � q � r) p � q � r) p � q � r) � (p � q � r)

� ( p � q � r)

� S = S � (p � q � r) � ( p � q � r) � ( p � q � r)

� (p � q � r) � ( p � q � r)

� ( p � q � r) � (p � q � r) � (p � q � r) � ( p � q � r)

� (p � q � r) (2)

We see that PCNF’s of S in (1) and (2) are one and the same.

(ii) Let S ��(p � q) � (r � p) � (q � r)

Already S is in the CNF. Hence we can get the PCNF directly quickly.

S � ((p � q) � (r � r) p � r) � (q � q)) � ((q � r) � (p � p))

� (p � q � r) � (p � q � r) � ( p � q � r) � ( p � q � r)

� (p � q � r) � ( p � q � r)

� (p � q � r) � (p � q � r) � ( p � q � r) � ( p � q � r)

� ( p � q � r)

(iii) Let S � (p � (q � r)) � ((p � q) � r) � p

� (p � ( q � r)) � (p � q � r � p)

� p � (q � q) � ( q � r) � (p � q � r)

� (p � q) � (p � q) � ( q � r) � (p � q � r)

� ((p � q) � (r � r)) � ((p � q) � (r � r)) � (( q � r)

� (p � p)) � (p � q � r)

� (p � q � r) � (p � q � r) � (p � q � r) � (p � q � r)

� (p � q � r) � ( p � q � r) � (p � q � r)

� (p � q � r) � (p � q � r) � (p � q � r) � (p � q � r)

� ( p � q � r) (1)

In (1), we have got the PDNF of S.

Now S � ( p � q � r) � ( p � q � r) � ( p � q � r)

� S � S � (p � q � r) � (p � q � r) � (p � q � r) (2)

(2) is the required PCNF of S.

(iv) Let S � (p � (q � r)) � ( p � ( q � r))

� ( p � (q � r)) � (p � ( q � r))

� ( p � q) � ( p � r)) � (p � q) � (p � r)

Note
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� (( p � q) � (r � r)) � (( p � r) � (q � q)) � ((p � q)

� (r � r)) � ((p � r) � (q � q))

� ( p � q � r) � ( p � q � r) � ( p � q � r) � ( p � q � r)

� (p � q � r) � (p � q � r) � (p � q � r) � (p � q � r)

� (p � q � r) � (p � q � r) � (p � q � r) � ( p � q � r)

� ( p � q � r) � ( p � q � r)

EXERCISE 1(A)

Part A: (Short answer questions)

1. Define the connectives conjunction and disjunction and give the truth

tables for p � q and p � q.

2. Define conditional and biconditional propositions and also give the truth

tables for p � q and p � q.

3. Define tautology and contradiction with simple examples.

4. When do you say that two compound propositions are equivalent?

5. Define the dual of compound proposition with an example.

6. What is the law of duality?

7. Give the primal and dual forms of the distributive law, absorption law

and De Morgan’s law.

8. Define tautological implication with an example.

9. When is a statement said to be satisfiable?

10. Define disjunctive and conjunctive normal forms of a statement.

11. Define PDNF and PCNF of a statement.

12. Construct the truth table for each of the following compound proposi-

tions:

(a) (p � q) � (p � q)

(b) (p � q) � ( q � p)

(c) (p � q) � ( p � q)

(d) (p � q) � ( p � q)

(e) (p � q) � ( p � q)

13. Determine which of the following statements are tautologies or contradic-

tions.

(a) (p � p) � p

(b) p � (p ��q)

(c) ( q � p) � q

(d) (q � p) � ( p � q)

14. Prove the following equivalences:

(a) (p � q) � p � q

(b) (p � q) � (p � q) � p

(c) (p � q) � (p � q) � p

(d) (p � q) � (p � q) � ( p � q)
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15. Write down the duals of the following statements:

(a) (p � q) � [( p) � q]�� p

(b) p � (p � q)

(c) (p � q) � (p � q)

(d) (p � q) � ( q � 7p)

16. Prove the following implications, using truth tables:

(a) (p � q) � (p � q)

(b) (q � p) � p � q

(c) p � q � p � (p � q)

(d) (p � q) � q � p � q

17. Find a DNF or a CNF of the following:

(a) (p � (p � q)

(b) (p � q)

(c) (p � q)

(d) q � (p � q)

18. Find the PDNF of the following statements using truth tables:

(a) p � (p � q)

(b) (p � q) � p � q

(c) q � (p � q)

(d) (q � p) � ( p � q)

19. Find the PCNF of the following statements using truth tables:

(a) p � q

(b) (p � q) � (p � q)

(c) ( (p � q)) � (p � q)

(d) (q � p) � ( p � q)

(e) p � (p � (q � p)

Part B

20. Construct the truth table for each of the following compound propositions:

(a) ( p � ( q � r)) � (q � r) � (p � r)

(b) (p � q) � (q � r) � (p � r)

(c) ((p � q) � ((p � r) � (q � r))) � r

(d) (p � q) � ( q � r)

(e) (p � q) � (r� s)

21. Determine which of the following statements are tautologies or contradic-

tions:

(a) (p � q) � (p � q)

(b) q � (p � q) � ( p � q)

(c) (p � q) � ( p � r) � (q � r)

(d) ((p � (q � r)) � ((p � q) � (p � r))

(e) ((p � q) � ( p � ( q � r))) � ( p � q) � ( p � r)

22. By constructing truth tables, prove the following equivalences:

(a) (p � q) � (p � r) � p � (q � r)
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(b) q � (p � q) � ( p � q) � F
(c) (p � q) � (r � q) � (p � r) � q

23. Without using truth tables, prove the following equivalences:

(a) (p � q) � ( p � ( p � q)) � ( p � q)

(b) ( p � ( q � r)) � (q � r) � (p � r) � r

(c) p � (q � r) � (p � q) � (p � r)

(d) (p � q) � r � (p � r) � (q � r)

(e) ( p � q) � (q � p) � T

24. Write down the duals of the following equivalences and prove the duals

without using truth tables:

(a) (p � q) � ( p � ( p � q)) � ( p � q)

(b) ( p � ( p � ( p � q))) � p � q

(c) p � q � (p � q) � (p � q)

(d) (p � r) � (q � r) � (p � q) � r

(e) p � (q � r) � q � (p � r)

25. Prove the following implications, using truth tables:

(a) ((p � (q � r)) � p) � ( q � r)

(b) (p � q) � (p � r) � (q � s) � (s � r)

26. Prove the following implications, without using truth tables:

(a) (p � q) � (q � r) � (p � r)

(b) (q � (p � p)) � (r � (p � p)) � (r � q)

27. Find the DNF of the following statements:

(a) (p � (q � r))

(b) ( p � r)�� (p � q)

(c) (q � (p � r)) � ((p � r) � q)

28. Find the CNF of the following statements:

(a) (p � q) � (p � q)

(b) ((p � q) � r)

(c) q � (p � r) � ((p � r) � q)

29. Find the PDNF and PCNF of the following statements using truth tables:

(a) p � (p � (q � p))

(b) (q � p) � ( p � q)

(c) (p � q) � (p � r) � (q � r)

(d) (p � q) � ( p � q) � (q � r)

30. Without using truth tables, find the PDNF of the following statements:

(a) (p � q) � ( p � r) � (q � r)

(b) p � ((p � q) � ( q � p))

(c) ( ((p � q) � r)) � (p � r)

(d) (p � q) � (q � p) � (r � p)

31. Without using truth tables, find the PCNF of the following statements:

(a) ( p � r) � (q � p)

(b) p � (p � q) � p � ( p � q)

(c) p � ( p � q � r)

(d) p � ( p � (q � ( q � r)))
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THEORY OF INFERENCE

Introduction

Inference theory is concerned with the inferring of a conclusion from certain

hypotheses or basic assumptions, called premises, by applying certain prin-

ciples of reasoning, called rules of inference. When a conclusion derived from

a set of premises by using rules of inference, the process of such derivation is

called a formal proof. The rules of inference are only means used to draw a

conclusion from a set of premises in a finite sequence of steps, called argument.

These rules will be given in terms of statement formulas rather than in terms of

any specific statements or their truth values. In this section we deal with the

rules of inference by which conclusions are derived from premises. Any

conclusion which is arrived at by following these rules is called a valid

conclusion and the argument is called a valid argument. The actual truth values

of the premises and that of the conclusion do not play any part in the determi-

nation of the validity of the argument. However, if the premises are believed to

be true and if proper rules of inference are used, then the conclusion may be

expected to be true.

TRUTH TABLE TECHNIQUE

When A and B are two statement formulas, then B is said to (logically) follow

A or B is a valid conclusion of the premise A, if A � B is a tautology, viz.,

A � B. Extending, a conclusion C is said to follow from a set of premises H1,

H2, … Hn, if (H1 � H2 � … � Hn) � C. If a set of premises and a conclusion

are given, it is possible to determine whether the conclusion follows from the

premises by constructing relevant truth tables, as explained in the following

example. This method is known as truth table technique.

For example, let us consider

(i) H1: p, H2: p � q, C : q

(ii) H1: p � q, H2: q, C : p

(i) H1 and H2 are true only in the third row,

in which case C is also true. Hence (i) is

valid

(ii) H1 and H2 are true in the first and third

rows, but C is not true in the third row.

Hence (ii) is not a valid conclusion.

The truth table technique becomes tedious, if the premises contain a large

number of variables.

RULES OF INFERENCE

Before we give the frequently used rules of inference in the form of tautologies

in a table, we state two basic rules of inference called rules P and T.

Rule P A premise may be introduced at any step in the derivation.

Note

Table 1.34

p q p p � q p � q

T T F T T

T F F T F

F T T T T

F F T F T
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Rule T A formula S may be introduced in the derivation, if S is tautologically

implied by one or more preceding formulas in the derivation.

Table 1.35 Rules of Inference

Rule in tautological form Name of the rule

(p � q) � p (viz., p � q � p)
Simplification

(p � q) � q (viz., p � q � q)

p � (p � q)
Addition

q � (p � q)

((p) � (q)) � (p � q) Conjunction

[p � (p � q)] � q Modus ponens

[ q � (p � q)] � p Modus tollens

[(p � q) � (q � r)] � (p � r) Hypothetical syllogism

[(p � q) � p] � q Disjunctive syllogism

[(p � q) � ( p � r)] � (q � r) Resolution

[(p � q) � (p � r) � (q � r)] � r Dilemma

FORM OF ARGUMENT

When a set of given statements constitute a valid argument, the argument form

will be presented as in the following example: “If it rains heavily, then travel-

ling will be difficult. If students arrive on time, then travelling was not diffi-

cult. They arrived on time. Therefore, it did not rain heavily.”

Let the statements be defined as follows:

p: It rains heavily

q: Travelling is difficult

r: Students arrived on time

Now we have to show that the premises p � q, r � q and r lead to the

conclusion p. The form of argument given as follows shows that the premises

lead to the conclusion.

Step No. Statement Reason

1. p � q Rule P

2. q � p T, Contrapositive of 1

3. r � q Rule P

4. r � p T, Steps 2, 3 and

hypothetical syllogism

5. r Rule P

6. p T, steps 4, 5 and

Modus ponen

RULE CP OR RULE OF CONDITIONAL PROOF

In addition to the two basic rules of inference P and T, we have one more basic

rule called Rule CP, which is stated below:

If a formula s can be derived from another formula r and a set of premises,

then the statement (r � s) can be derived from the set of premises alone.

�
�
�

�
�
�
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The rule CP follows from the equivalence

(p � r) � s � p � (r � s)

If the conclusion is of the form r � s, we will take r as an additional

premise and derive s using the given premises and r.

INCONSISTENT PREMISES

A set of premises (formulas) H1, H2, … Hn is said to be inconsistent, if their

conjunction implies a contradiction.

viz. if H1 � H2 � … � Hn � R � R, for some formula R.

A set of premises is said to be consistent, if it is not inconsistent.

INDIRECT METHOD OF PROOF

The notion of inconsistency is used to derive a proof at times. This procedure

is called the indirect method of proof or proof by contradiction or reduction

and absurdum.

In order to show that a conclusion C follows from the premises H1, H2, …

Hn by this method, we assume that C is false and include C as an additional

premise. If the new set of premises is inconsistent leading to a contradiction,

then the assumption that C is true does not hold good. Hence C is true

whenever H1 � H2 � … � Hn is true. Thus C follows from H1, H2, … Hn.

For example, we prove that the premises q, p � q result in the conclusion

p by the indirect method of proof.

We now include p as an additional premise. The argument form is given

below:

Step No. Statement Reason

1. p C

2. p T, double negation, 1

3. p � q C

4. q � p T, Contrapositive, 3

5. q C

6. p T, Modus ponens, 4, 5

7. p � p T, Conjunction, 2, 6

Thus the inclusion of C leads to a contradiction. Hence q, p � q � p.

PREDICATE CALCULUS OR PREDICATE LOGIC

Introduction

In mathematics and computer programs, we encounter statements involving

variables such as “x > 10”, “x = y + 5” and “x + y = z”. These statements are

neither true nor false, when the values of the variables are not specified.

The statement “x is greater than 10” has 2 parts. The first part, the variable

x, is the subject of the statement. The second part “is greater than 10”, which

Note
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Note

refers to a property that the subject can have, is called the predicate. We can

denote the statement “x is greater than 10” by the notation P(x), where P

denotes the predicate “is greater than 10” and x is the variable. P(x) is called

the propositional function at x. Once a value has been assigned to the variable

x, the statement P(x) becomes a proposition and has a truth value. For example,

the truth values of P(15){� 15 > 10} and P(5){� 5 > 10} are T and F respec-

tively. The statements “x = y + 5” and “x + y = z” will be denoted by P(x, y)

and P(x, y, z) respectively. The logic based on the analysis of predicates in any

statement is called predicate logic or predicate calculus.

QUANTIFIERS

Many mathematical statements assert that a property is true for all values of a

variable in a particular domain, called the universe of discourse. Such a state-

ment is expressed using a universal quantification. The universal quantification

of P(x) is the statement.

“P(x) is true for all values of x in the universe of discourse” and is denoted

by the notation (x)P(x) or � xP(x). The proposition (x)P(x) or � xP(x) is read

as “for all x, P(x)” or “for every x, P(x)”. The symbol � is called the universal

quantifier.
Let us consider �x P(x) � �x, (x2 – 1) = (x – 1)(x + 1) (1)

(1) is a proposition and not a propositional function, even though a variable

x appears in it. We need not replace x by a number to obtain a statement. The truth

value of �x P(x) is T.]

Examples

1. If P(x) � {(–x)2 = x}, where the universe consists of all integers, then the

truth value of �x((–x)2 = x2) is T.

2. If Q(x) � “2x > x”, where the universe consists of all real numbers, then

the truth value of �x Q(x) is F.

3. If P(x) � “x2 <10”, where the universe consists of the positive integers 1,

2, 3 and 4, then �x P(x) = P(1) � P(2) � P(3) � P(4) and so the truth

value of �x P(x) = T � T � T � F = F.

We have so far applied universal quantification to propositional func-

tions of a single variable only. Universal quantification (and also

existential quantification, that is discussed below) can be applied to compound

propositional functions such as P(x) � Q(x), P(x) � Q(x), P(x), P(x) � Q(x)

etc. and to propositional functions of many variables, as given in the following

examples.]

4. Let P(x) � x is an integer and Q(x) � x is either positive or negative.

Then P(x) � Q(x) is a compound propositional function.

Obviously �x(P(x) � Q(x)), where the universe of discourse consists of

integers.

5. Let P(x, y): x is taller than y.

If x is taller than y, then y is not taller than x.

viz. P(x, y) � P(y, x)

Note
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As this assertion is true for all x and y, it can be symbolically represented

as

�x � y (P(x, y) � P(y, x))

EXISTENTIAL QUANTIFIER

The existential quantification of P(x) is the proposition.

“There exists at least one x (or an x) such that P(x) is true” and is denoted by

the notation �xP(x). The symbol �  is called the existential quantifier.

The proposition �xP(x) is read as “For some x, P(x)”.

Examples

1. When P(x) denotes the propositional function “x > 3”, the truth value of

�xP(x) is T, where the universe of discourse consists of all real numbers,

since “x > 3” is true for x = 4.

When the elements of the universe of discourse is finitely many, viz.,

consists of x1, x2, … xn, then �xP(x) is the same as the disjunction

P(x1) � P(x2) � … � P(xn), since this disjunction is true if and only if at least one

of P(x1), P(x2), …, P(xn) is true.

2. When P(x) denotes “x2 > 10”, where the universe of discourse consists of

the positive integers not exceeding 4, then the truth value of �xP(x) is T,

since P(1) � P(2) � P(3) � P(4) is true as P(4) [viz., 42 > 10] is true.

NEGATION OF A QUANTIFIED EXPRESSION

If P(x) is the statement “x has studied computer programming”, then � xP(x)

means that “every student (in the class) has studied computer programming”.

The negation of this statement is “It is not the case that every student in the

class has studied computer programming” or equivalently “There is a student

in the class who has not studied computer programming” which is denoted by

�x P(x). Thus we see that �xP(x) � �x P(x).

Similarly, �xP(x) means that “there is a student in the class who has studied

computer programming “The negation of this statement is “Every student in

this class has not studied computer programming”, which is denoted by

� x P(x). Thus we get

�xP(x) � � x P(x)

Further we note that � xP(x) is true, when there is an x for which P(x) is

false and false when P(x) is true for every x, since

� xP(x) � �x P(x)

� P(x1) � P(x2) … � P(xn)

�xP(x) is true, when P(x) is false for every x and false when there is an x for

which P(x) is true,

since �xP(x) � � x P(x)

� P(x1) � P(x2) … � P(xn)

Note
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NESTED (MORE THAN ONE) QUANTIFIERS

There are situations when quantifiers occur in combinations in respect of

1-place or n-place predicate formulas (i.e., propositional functions containing 1

or n variables). For example let us consider a 2-place predicate formula P(x, y).

Now �x �y P(x, y) � �x[�y P(x, y)]

� �y[�x P(x, y)] (1)

and �x �y P(x, y) � �x[�y P(x, y)] � �y[�x P(x, y)] (2)

From the meaning of quantifiers and by (1) and (2) the following simplifica-

tions hold good:

�x �y P(x, y) � (�y) � x P(x, y) � � x �y P(x, y)

�y �x P(x, y) � (�x) � y P(x, y) � � y �x P(x, y)

The negation of multiply quantified predicate formulas may be obtained by

applying the rules for negation (given earlier) from left to right.

Thus [�x �y P(x, y)] � �x[ �y P(x, y)]

� �x �y[ P(x, y)]

FREE AND BOUND VARIABLES

When a quantifier is used on a variable x or when we have to assign a value to

this variable to get a proposition, the occurrence of the variable is said to be

bound or the variable is said to be a bound variable. An occurrence of a

variable that is not bound by a quantifier or that is set equal to a particular

value is said to be free.

The part of the logical expression or predicate formula to which a quantifier

is applied is called the scope of the quantifier.

Examples

Table 1.36

Predicate formula Bound variable and scope Free variable

1. � x P(x, y) x; P(x, y) y

2. � x (P(x) �Q(x)) x; P(x) �Q(x) —

3. � x (P(x) � E(y)Q(x, y)) x; P(x) � E(y)Q(x, y) —

y; Q(x, y)

4. � x (P(x) � Q(x)) � � y R(y) x; P(x) � Q(x) —

y; R(y)

5. � x P(x) � Q(x) First x; P(x) Second x

VALID FORMULAS AND EQUIVALENCES

Let A and B be any two predicate formulas defined over a common universe of

discourse E. When each of the variables appearing in A and B is replaced by

any element (object name) of the universe E, if the resulting statements have

the same truth values, then A and B are said to be equivalent to each other over

Note
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E and denoted as A � B or A� B over E. If E is arbitrary, we simply say that

A and B are equivalent and denote it as A � B or A � B.

Generally, logically valid formulas in predicate calculus can be obtained

from tautologies of propositional calculus by replacing primary propositions

(elementary statements) such as p, q, r by propositional functions.

For example, p � p � T and (p � q) � ( p � q) � T are tautologies in

statement calculus.

If we replace p by �R(x) and q by �x S(x) in the above, we get the following

valid formulas in predicate calculus.

(�x R(x)) � ( �x R(x)) � T

(� x R(x) � �x S(x)) � (( � x R(x)) � �x S(x)) � T

More generally, all the implications and equivalences of the statement calculus

can also be considered as implications and equivalences of the predicate calculus

if we replace elementary statements by primary predicate formulas. For example,

from p � p, we get P(x) � P(x) (1)

from p � q � q � p, we get P(x) � Q(x, y) � Q(x, y) � P(x) (2)

from p � q � p � q, we get P(x) � Q(x) � P(x) � Q(x) (3)

(1), (2) and (3) are some examples for valid formulas in predicate calculus.

Apart from the types of valid formulas given above, there are other valid

formulas also which involve quantifiers. Such valid formulas are obtained by

using the inference theory of predicate logic, discussed below:

INFERENCE THEORY OF PREDICATE CALCULUS

Derivations of formal proof in predicate calculus are done mostly in the same

way as in statement calculus, using implications and equivalences, provided

that the statement formulas are replaced by predicate formulas. Also the three

basic rules P, T and CP of Inference theory used in statement calculus can also

be used in predicate calculus. Moreover, the indirect method of proof can also

be used in predicate calculus.

Apart from the above rules of inference, we require certain additional rules

to deal with predicate formulas involving quantifiers. If it becomes necessary

to eliminate quantifiers during the course of derivation, we require two rules of

specification, called US and ES rules. Once the quantifiers are eliminated, the

derivation is similar to that in statement calculus. If it becomes necessary to

quantify the desired conclusion, we require two rules of generalisation, called

UG and EG rules.

Rule US Universal Specification is the rule of inference which states that

one can conclude that P(c) is true, if � x P(x) is true, where c is an arbitrary

member of the universe of discourse. This rule is also called the universal

instantiation.

Rule ES Existential Specification is the rule which allows us to conclude

that P(c) is true, if �x P(x) is true, where c is not an arbitrary member of the
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universe, but one for which P(c) is true. Usually we will not know what c is but

know that it exists. Since it exists, we may call it c. This rule is also called the

existential instantiation.

Rule UG Universal Generalisation is the rule which states that � x P(x) is

true, if P(c) is true, where c is an arbitrary member (not a specific member) of

the universe of discourse.

Rule EG Existential Generalisation is the rule that is used to conclude that

�x P(x) is true when P(c) is true, where c is a particular member of the

universe of discourse.

Examples

1. Let us consider the following “Famous Socrates argument” which is given

by:

All men are mortal.

Socrates is a man.

Therefore Socrates is a mortal.

Let us use the notations H(x): x is a man

M(x): x is a mortal

s: Socrates

With these symbolic notations, the problem becomes

� x(H(x) � M(x)) � H(s) � M(s)

The derivation of the proof is as follows:

Step No. Statement Reason

1. � x (H(x) � M(x)) P

2. H(s) � M(s) US, 2

3. H(s) P

4. M(s) T, 2, 3, Modus ponens

2. Application of any of US, ES, UG and EG rules wrongly may lead to a

false conclusion from a true premise as in the following example

Let D(u, v): u is divisible by v, where the universe of discourse is (5, 6,

10, 11).

Then �u D(u, 5) is true, since D(5, 5) and D(10, 5) are true.

But � u D(u, 5) is false, since D(6, 5) and D(11, 5) are false.

We now give the following derivation:

Step No. Statement Reason

1. � u D(u, 5) P

2. D(c, 5) ES, 1

3. � x D(x, 5) UG, 2

In step (3), UG has been applied wrongly, since c is not an arbitrary

member in step (2), as c(= 5 or 10) is only a specific member of the

given universe of discourse.

Note
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WORKED EXAMPLES 1(B)

Example 1.1 Find whether the conclusion C follows from the premises

H1, H2, H3 in the following cases, using truth table technique:

(i) H1: p, H2: p � q, C: p � q

(ii) H1: p � q, H2: p � r, H3: q � r, C: r

(i) Table 1.37

p q H1 � p H2 � p q H1 � H2 C � p � q

T T F T F T

T F F T F F

F T T T T F

F F T F F F

H1 and H2 and hence H1 � H2 are true in the third row, in which C is

false.

Hence C does no follow from H1 and H2.

(ii) Table 1.38

p q r H1(p � q) H2(p � r) H3(q � r) H1 � H2 � H3

T T T T T T T

T T F T F F F

T F T T T T T

T F F T F T F

F T T T T T T

F T F T T F F

F F T F T T F

F F F F T T F

H1, H2, H3 and hence H1� H2 � H3 are true in the first, third and fifth

rows in which r is also true.

Hence C follows from H1, H2 and H3.

Example 1.2 Show that (t � s) can be derived from the premises p � q,

q � r, r, p � (t � s).

Step No. Statement Reason

1. p � q P

2. q � r P

3. p � r T, 1, 2 and Hypothetical syllogism

4. r � p T, 3 and p � q � q � p

5. r P

6. p T, 4, 5 and Modus ponens

7. p � (t � s) P

8. t � s T, 6, 7 and Disjunctive syllogism
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Example 1.3 Show that (a � b) follows logically from the premises

p � q, (p � q) � r, r � (s � t) and (s � t) � (a � b).

Step No. Statement Reason

1. (p � q) � r P

2. r � (s � t) P

3. (p � q) � (s � t) T, 1, 2 and hypothetical syllogism

4. p � q P

5. s � t T, 3, 4 and modus ponens

6. (s � t) � (a � b) P

7. a � b T, 5, 6 and Modus ponens

Example 1.4 Show that (p � q) � (r � s), (q � t) � (s � u), (t � u)

and (p � r) � p.

Step No. Statement Reason

1. (p � q) � (r � s) P

2. p � q T, 1 and simplification

3. r � s T, 1 and simplification

4. (q � t) � (s � u) P

5. q � t T, 4 and simplification

6. s � u T, 4 and simplification

7. p � t T, 2, 5 and hypothetical syllogism

8. r � u T, 3, 6 and hypothetical syllogism

9. p � r P

10. p � u T, 8, 9 and hypothetical syllogism

11. t � p T and 7

12. u � p T and 10

13. ( t � u) � p T, 11, 12, and (a� b), (c� b) �

(a � c) � b

14. (t � u) � p T, 13 and De Morgan’s law

15. (t � u) P

16. p T, 14, 15 and modus ponens.

Example 1.5 Show that (a � b) � (a � c), (b � c), (d � a) � d

Step No. Statement Reason

1. (a � b) � (a � c) P

2. a � b T, 1 and simplification

3. a � c T, 1 and simplification

4. b � a T, 2 and contrapositive

5. c � a T, 3 and contrapositive

6. ( b � c) � a T, 4 and 5

7. (b � c) � a T and De Morgan’s law

8. (b � c) P

9. a T, 7, 8 and modus ponens

10. d � a P
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11. (d � a) � a T, 9, 10 and conjunction

12. (d � a) � (a � a) T, 11 and distributive law

13. (d � a) � F T, 12 and negation law

14. d � a T, 13 and identity law

15. d T, 14 and simplification

Example 1.6 Give a direct proof for the implication p � (q� s), ( r �

p), q � (r � s).

Step No. Statement Reason

1. r � p P

2. r � p T, 1 and equivalence of (1)

3. p � (q � s) P

4. r � (q � s) T, 2, 3 and hypothetical syllogism.

5. r � ( q � s) T, 4 and equivalence of (4)

6. q P

7. q � ( r � q � s) T, 5, 6 and conjunction

8. q � ( r � s) T, 7, 8 and negation and domination laws

9. r � s T, 8 and simplification

10. r � s T, 9 and equivalence of (9)

Example 1.7 Derive p � (q � s) using the CP-rule (if necessary) from

the premises p � (q � r) and q � (r � s).

We shall assume p as an additional premise. Using p and the two given

premises, we will derive (q � s). Then, by CP-rule, p � (q � s) is deemed to

have been derived from the two given premises.

Step No. Statement Reason

1. p P(additional)

2. p � (q � r) P

3. q � r T, 1, 2 and modus ponens

4. q � r T, 3 and equivalence of (3)

5. q � (r � s) P

6. q � (r � s) T, 5 and equivalence of (5)

7. q � (r � (r � s)) T, 4, 6 and distributive law

8. q � s T, 7 and modus ponens

9. q � s T, 8 and equivalence of (8)

10. p � (q � s) T, 9 and CP-rule

Example 1.8 Use the indirect method to show that r � q, r � s, s �

q, p � q � p.

To use the indirect method, we will include p � p as an additional

premise and prove a contradiction.

Step No. Statement Reason

1. p P (additional)

2. p � q P
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3. q T, 1, 2 and modus ponens

4. r � q P

5. s � q P

6. (r � s) � 7q T, 4, 5 and equivalence

7. r � s P

8. q T, 6, 7 and modus ponens

9. q � q T, 3, 8 and conjunction

10. F T, 9 and negation law

Example 1.9 Show that b can be derived from the premises a � b,

c � b, d � (a � c), d, by the indirect method.

Let us include b as an additional premise and prove a contradiction.

Step No. Statement Reason

1. a � b P

2. c � b P

3. (a � c) � b T, 1, 2 and equivalence

4. d � (a � c) P

5. d � b T, 3, 4 and hypothetical syllogism

6. d P

7. b T, 5, 6 and modus ponens

8. b P (additional)

9. b � b T, 7, 8 and conjunction

10. F T, 9 and negation law.

Example 1.10 Using indirect method of proof, derive p � s from the

premises p � (q � r), q � p, s � r, p.

Let us include (p� s) as an additional premise and prove a contradiction.

Now (p � s) = ( p � s) = p � s

Hence the additional premise to be introduced may be taken as p � s.

Step No. Statement Reason

1. q � (q � r) P

2. p P

3. q � r T, 1, 2 and modus ponens

4. p � s P (additional)

5. s T, 4 and simplification

6. s � r P

7. r T, 5, 6 and modus ponens

8. q T, 3, 7 and disjunctive syllogism

9. q � p P

10. p T, 8, 9 and modus ponens

11. p � p T, 2, 10 and conjunction

12. F T, 11 and negation law
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Example 1.11 Prove that the premises p � q, q� r, s � r and p � s

are inconsistent.

If we derive a contradiction by using the given premises, it means that they

are inconsistent.

Step No. Statement Reason

1. p � q P

2. q � r P

3. p � r T, 1, 2 and hypothetical syllogism

4. s � r P

5. r � s T, 4 and contrapositive

6. q � s T, 2, 5 and hypothetical syllogism

7. q � s T, 6 and equivalence of (6)

8. (q � s) T, 7 and De Morgan’s law

9. q � s P

10. (q � s) � (q � s) T, 8, 9 and conjunction

11. F T, 10 and negation law

Hence the given premises are inconsistent

Example 1.12 Prove that the premises a � (b � c), d � (b � c) and

(a � d) are inconsistent.

Step No. Statement Reason

1. a � d P

2. a T, 1 and simplification

3. d T, 1 and simplification

4. a � (b � c) P

5. b � c T, 2, 4 and modus ponens

6. b � c T, 5 and equivalence of (5)

7. d � (b � c) P

8. (b � c) � d T, 7 and contrapositive

9. b � c � d T, 8 and equivalence

10. d T, 6, 9 and modus ponens

11. d � d T, 3, 10 and conjunction

12. F T, 11 and negation law

Hence the given premises are inconsistent.

Example 1.13 Construct an argument to show that the following premises

imply the conclusion “ it rained”.

“If it does not rain or if there is no traffic dislocation, then the sports day

will be held and the cultural programme will go on”; “If the sports day is held,

the trophy will be awarded" and “the trophy was not awarded”.

Let us symbolise the statement as follows:

p: It rains.

q: There is traffic dislocation.
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r: Sports day will be held.

s: Cultural programme will go on.

t: The trophy will be awarded.

Then we have to prove that

p � q � r � s, r � t, t � p

Step No. Statement Reason

1. p � q � r � s P

2. ( p � (r � s)) � ( q � (r � s)) T, 1 and the equivalence

(a � b) � c � (a � c)

� (b � c)

3. (r � s) � p T, 2 and contrapositive of (2)

4. r � t P

5. t � r T, 4 and contrapositive of (4)

6. t P

7. r T, 5, 6 and modus ponens

8. r � s T, 7 and addition

9. (r � s) T, 8 and De Morgan’s law

10. p T, 3, 9 and modus ponens

Example 1.14 Show that the following set of premises is inconsistent:

If Rama gets his degree, he will go for a job.

If he goes for a job, he will get married soon.

If he goes for higher study, he will not get married.

Rama gets his degree and goes for higher study.

Let the statements be symbolised as follows:

p: Rama gets his degree.

q: He will go for a job.

r: He will get married soon.

s: He goes for higher study.

Then we  have to prove that

p � q, q � r, s � r, p � s are inconsistent

Step No. Statement Reason

1. p � q P

2. q � r P

3. p � r T, 1, 2 and hypothetical syllogism

4. p � s P

5. p T, 4 and simplification

6. s T, 4 and simplification

7. s � r P

8. r T, 6, 7 and modus ponens

9. r T., 3, 5 and modus ponens

10. r � r T, 8, 9 and conjunction

11. F T, 10 and negation law

Hence the set of given premises is inconsistent.
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Example 1.15 If L(x, y) symbolises the statement “x loves y”, where the

universe of discourse for both x and y consists of all people in the world,

translate the following English sentences into logical expressions:

(a) Every body loves z.

(b) Every body loves somebody.

(c) There is somebody whom everybody loves.

(d) Nobody loves everybody.

(e) There is somebody whom no one loves.

(a) L(x, z) for all x. Hence � x L(x, z)

(b) L(x, y) is true for all x and some y. Hence � �y L(x, y)

(c) Eventhough, (c) is the same as (b), the stress is on the existence of

somebody (y) whom all x love.

Hence ��y � x L(x, y)

(d) Nobody loves every body

i.e., There is not one who loves everybody

Hence �x �y L(x, y)

� �x � y L(x, y)

� �x �y L(x, y)

(e) The sentence means that there is somebody whom every one does not

love.

Hence �x �y L(x, y)

� �x �y L(x, y)

� �x �y L (x, y)

and logical operations, predicates and quantifiers, where the universe of discourse

consists of all computer science students/mathematics courses.

(a) Every computer science student needs a course in mathematics.

(b) There is a student in this class who owns a personal computer.

(c) Every student in this class has taken at least one mathematics course.

(d) There is a student in this class who has taken at least one mathematics

course.

(a) Let M(x) � ‘x needs a course in mathematics’, where the universe of

discourse consists of all computer science students.

Then �x M(x).

(b) Let P(x) � ‘x owns a personal computer’, where the universe consists of

all students in this class.

Then �x P(x)

(c) Let Q(x, y) � ‘x has taken y’, where the universe of x consists of all

students in this class and that of y consists of all mathematics courses.

Then �x �y Q(x, y)

(d) Using the same assumptions as in (c), we have �x �y Q(x, y).
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Example 1.17 Express the negations of the following statements using

quantifiers and in English:

(a) If the teacher is absent, then some students do not keep quiet.

(b) All the students keep quiet and the teacher is present.

(c) Some of the students do not keep quiet or the teacher is absent.

(d) No one has done every problem in the exercise.

(a) Let T represent the presence of the teacher and Q(x)  represent “x keeps

quiet”.

Then the given statement is:

T � �x Q(x) � T � �x Q(x)

� T � �x Q(x)

� Negation of the given statement is

(T � �x Q(x))

� T � �x Q(x)

i.e., the teacher is absent and all the students keep quiet.

(b) The given statement is:

�x Q(x) � T

� The negation of the given statement is

(�x Q(x) � T) � �x Q(x) � T

� �x  Q(x) � T

i.e., some students do not keep quiet or the teacher is absent.

(c) The given statement is:

�x Q(x) � T � �x Q(x) � T

� The negation of the given statement is

( �x Q(x) � T)

� �x Q(x) � T

i.e., All the students keep quiet and the teacher is present.

(d) Let D(x, y) represent “x has done problem y”.

The given statement is

( �x)(�y D(x, y)) (1)

� The negation of the given statement is

( � (x))(�y D(x, y))

� �x �y D(x, y) (2)

i.e., some one has done every problem in the exercise.

Aliter:

(1) can be re-written as

�x �y D(x, y)

� �x �y D(x, y)

� The negative of this statement is

�x �y D(x, y) � �x �y D(x, y)

� �x �y D(x, y),

which is the same as (2).
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Example 1.18 Show that the premises “one student in this class knows

how to write programs in JAVA” and “Everyone who knows how to write

programs in JAVA can get a high-paying job” imply the conclusion “Someone

in this class can get a high-paying job”.

Let C(x) represent “x is in this class” J(x) represent “x knows JAVA pro-

gramming” and H(x) represent “x can get a high paying job”.

Then the given premises are �x (C(x) � J(x)) and �x (J(x) � H(x)). The

conclusion is �x(C(x) � H(x)).

Step No. Statement Reason

1. �x(C (x) � J(x)) P

2. C(a) � J(a) ES and 1

3. C(a) T, 2 and simplification

4. J(a) T, 2 and simplification

5. �x (J(x) � H(x)) P

6. J(a) � H(a) US and 5

7. H(a) T, 4, 6 and modus ponens

8. C(a) � H(a) T, 3, 7 and conjunction

9. �x (C(x) � H(x)) EG and 8.

Example 1.19 Show, by indirect method of proof, that �x (p(x) � q(x))

� (�x p(x)) � (�x q(x)).

Let us assume that [(�x p(x)) � (�x q(x))] as an additional premise and

prove a contradiction.

Step No. Statement Reason

1. [(�x p(x)) � (�x q(x))] P(additional)

2. (�x p(x)) � (�x q(x)) T, 1, De Morgan’s law

3. (�x p(x)) T, 2, simplification

4. (�x q(x)) T, 2, simplification

5. �x p(x) T, 3 and negation

6. �x q(x) T, 4 and negation

7. p(a) ES and 5

8. q(a) US and 6

9. p(a) � q(a) T, 7, 8 and conjunction

10. (p(a) � q(a) T, 9 and De Morgan’s law

11. �x (p(x) � q(x)) P

12. p(a) � q(a) US and 11

13. (p(a) � q(a)) � (p(a) � q(a)) T, 10, 12 and conjunction

14. F T, 13

Example 1.20 Prove that �x (P(x) � (Q(y) � R(x))), �x P(x) � Q(y) �

�x (P(x) � R(x)).

Step No. Statement Reason

1. �x (P(x) � (Q(y) � R(x))) P

2. P(z) � (Q(y) � R(z)) US and 1
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3. �x P(x) P

4. P(z) ES and 3

5. Q(y) � R(z) T, 2, 4 and modus ponens

6. Q(y) T, 5 and simplification

7. R(z) T, 5 and simplification

8. P(z) � R(z) T, 4, 7 and conjunction

9. �x (P(x) � R(x)) EG and 8

10. Q(y) � �x (P(x) � R(x) T, 6, 10 and conjunction

Example 1.21 Show that the conclusion �x(P(x) � Q(x)) follows from

the premises

�x (P(x) � Q(x)) � �y (R(y) � S(y)) and �y (R(y) � S(y)).

Step No. Statement Reason

1. �y (R(y) � S(y)) P

2. R(a) � S(a) ES and 1

3. (R(a) � S(a)) T, 2 and equivalence

4. �y ( (R(y) � S(y))) EG and 3

5. 7�y (R(y) � S(y)) T, 4 and negation equivalence

6. �x (P(x) � Q(x))� �y P

(R(y) � S(y))

7. �x (P(x) � Q(x)) T, 5, 6 and modus tollens

8. �x (P(x) � Q(x)) T, 7 and negative equivalence

9. (P(b) � Q(b)) US and 8

10. P(b) � Q(b) T, 9 and De Morgan’s law

11. P(b) � Q(b) T, 10 and equivalence

12. �x (P(x) � Q(x)) UG and 11.

Example 1.22 Prove the derivation

�x P(x) � �x ((P(x) � Q(x)) � R(x)),

�x P(x), �x Q(x) � �x �y (R(x) � R(y))

Step No. Statement Reason

1. �x P(x) � �x((P(x) P

��Q(x)) � R(x)

2. P(a) � (P(b) � Q(b) ES, US and 1

� R(b))

3. �x P(x) P

4. P(a) ES and 3

5. (P(b) � Q(b)) � R(b) T, 2, 4 and modus ponens

6. �x Q(x) P

7. Q(b) ES and 6

8. P(b) � Q(b) T, 7 and addition

9. R(b) T, 5, 8 and modus ponens

10. �x R(x) EG and 9

11. R(a) ES and 9
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12. R(a) � R(b) T, 9, 11 and conjunction

13. �y (R(a) � R(y)) EG and 12

14. �x �y (R(x) � R(y)) EG and 13.

Example 1.23 Prove the implication

�x (P(x) � Q(x)), �x (R(x)� Q(x)) � �x (R(x) � P(x)).

Step No. Statement Reason

1. �x (P(x) � Q(x)) P

2. P(a) � Q(a) US and 1

3. �x (R(x) � Q(x)) P

4. R(a) � Q(a) US and 2

5. Q(a) � R(a) T, 4 and equivalence

6. P(a) � R(a) T, 2, 5 and hypothetical syllogism

7. R(a) � P(a) T, 6 and equivalence

8. �x R(x) � P(x)) UG and 7

Example 1.24 Use the indirect method to prove that the conclusion

�z Q(z) follows from the premises �x (P(x) � Q(x)) and �y P(y).

Let us assume the additional premise (�z Q(z)) and prove a contradiction

Step No. Statement Reason

1. (�z Q(z)) P (additional)

2. �z ( Q(z)) T, 1 and negation equivalence

3. Q(a) US and 2

4. �y P(y) P

5. P(a) ES and 4

6. P(a) � Q(a) T, 3, 5 and conjunction

7. ( P(a) � Q(a) T, 6 and equivalence

8. (P(a) � Q(a)) T, 7 and equivalence

9. �x (P(x) � Q(x)) P

10. P(a) � Q(a) US and 9

11. (P(a) � Q(a)) � T, 8, 10 and conjunction

(P(a) � Q(a))

12. F T, 11 and negative law

Example 1.25 Show that �x (P(x) � Q(x)) � �x P(x) � �x Q(x), using

the indirect method

Step No. Statement Reason

1. (�x P(x) � �x Q(x)) P (additional)

2. (�x P(x) � (�x Q(x)) T, 1 and De Morgan’s law

3. �x ( P(x)) � �x ( Q(x)) T, 2 and negation equivalence

4. �x ( P(x)) T, 3 and simplification

5. �x ( Q(x)) T, 3 and simplification

6. P(a) ES and 4

7. Q(a) US and 5
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8. P(a) � Q(a) T, 6, 7 and conjunction

9. (P(a) � Q(a)) T, 8 and De Morgan’s law

10. �x (P(x) � Q(x)) P

11. P(a) � Q(a) US and 10

12. (P(a) � Q(a)) � (P(a) � Q(a)) T, 9, 11 and conjunction

13. F T, 12 and negation law.

EXERCISE 1(B)

Part A: (Short answer questions)

1. What is meant by ‘formal proof’ in the context of mathematical logic?

Show that the conclusion C follows from the premises H1, H2, H3 in the

following cases, using truth table technique.

2. H1 : q, H2 : p � q, C : p

3. H1 : p � q, H2 : q � r, C : p � r

4. H1 : p � q, H2 : (p � q), C : p

5. H1 : p, H2 : p � q, C : (p � q)

6. State the P, T and CP rules of inference.

7. State the inference rules of modus ponens and modus tollens.

8. State the inference rules of hypothetical syllogism and disjunction syllo-

gism

9. When is a set of premises said to be inconsistent?

10. What do you mean by indirect method of proof?

11. Prove that p, p � q, q � r � r

12. Prove that q, p � q � p

13. Prove that p, p � q � q

14. Prove that (p � q) � p � (p � q)

15. Using indirect method, prove that p � q � (p � q).

16. Show that the hypotheses “x works hard”, “If x works hard, then he is a

dull boy” and “ If x is a dull boy, then he will not get a job” imply the

conclusion “x will not get a job”.

17. “If you help me, then I will do my home work”. “If you do not help me,

then I will go to sleep early”. “If I go to bed early, the teacher will punish

me”. Show that the above hypotheses lead to the conclusion “If I do not

do my home-work, then the teacher will punish me”.

18. What do you mean be predicate and predicate logic?

19. Define universal and existential quantifiers.

20. Prove or disprove:

[�x �y P(x, y)] = [�x �y P(x, y)]

21. What are free and bound variables in predicate logic?

22. What are the ways by which we can get valid formulas and equivalences

in predicate logic?

23. Define the rules of specification and generalisation in predicate logic.
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24. If A(x): x is an animal, B(x): x is black and C(x): x is a cat, translate the

following in words:

(a) �x[C(x)� A(x)];

(b) �x[C(x) � B(x)]

25. Show that �x P(x) � �x P(x) is a logically valid statement.

26. Show that �x (P(x) � Q(x)) � �x P(x) � �x Q(x) is a logically valid

statement.

27. Show that �x (P(x) � Q(x)) � �x P(x) � �x Q(x) is a logically valid

statement.

28. Show that �x P(x) � �x Q(x) � �x (P(x) � Q(x)) is a valid statement. Is

the statement �x (P(x) � Q(x)) � �x P(x) � �x Q(x) valid?

29. Show that the premises “ Everyone in the Computer Science branch has

studied Discrete Mathematics” and “Ram is in Computer Science branch”

imply that “Ram has studied Discrete Mathematics”.

30. Show that

[�x P(x) � Q(a)) � �x P(x) � Q(a)

31. Show that P(a, b) follow logically from �x �y (P(x, y) � Q(x, y)) and

Q(a, b).

32. Negate the statements “Every student in this class is intelligent” in two

different ways.

Part B

33. Show that the conclusion C follows from the premises H1, H2, H3 in the

following cases using truth table technique:

(a) H1 : p � (q � r), H2 : p � q, C : r

(b) H1 : p � q, H2 : (q � r), H3 : r ; C : p

34. Prove the following by using direct method:

(a) p � q, p � r, q � s � s � r.

(b) a � b, (a � b) � (c � d) � d � c.

(c) (p � q) � r, r � s, s � p � q.

(d) p � q, q � r, p � s, s � r � (p � q).

(e) (p � q), q � r, r � p.

(f) p � q, ( q � r) � r, ( p � s) � s.

(g) (p � q) � r, p � s, q � t � r.

(h) j � (m � n), (h � g) � j, h � g � m � n

35. Prove the following by using indirect method:

(a) p � q, q � r, (p � r), p � r � r.

(b) q, p � q, p � r � r.

(c) s � q, s � r, r, r� q � p.

(d) (p � q) � (r � s), (q � p) � r, r � p � q.

36. Prove the following by using the CP rule.

(a) (p � q) � r � (p � q) � r.

(b) p � q, q � r, r � s � p � s.

(c) p, p � (q � (r � s)) � q � s.

(d) p �(q � s), r � p, q � r � s.
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37. Prove that each of the following sets of premises is inconsistent:

(a) p � q, p � r, q � r, p.

(b) p � q, (q � r) � s, s � p, p � r.

(c) p � (q � r), q � (r � s), p � q � 7s.

Show that the following premises are inconsistent.

38. (i) If Raja misses many classes, then he fails in the final examination.

(ii) If Raja fails in the final examination, then he is uneducated.

(iii) If Raja reads a lot of books, then he is not uneducated.

(iv) Raja misses many classes and reads a lot of books.

39. “It is not sunny this afternoon and it is colder than yesterday”; “We will

go to the playground only if it is sunny”. “If we do not go to the ground,

then we will go to a movie” and “If we go to a movie, then we will return

home by sunset” lead to the conclusion “We will return home by sunset”.

40. Construct an argument using rules of inference to show that the hypotheses

“Radha works hard”, “If Radha works hard, then she is a dull girl” and

“If Radha is a dull girl, then she will not get the job” imply the conclusion”

“Radha will not get the job”.

41. “If I eat spicy food, then I have strange dreams”. “I have strange dreams,

if there is thunder while I sleep”. “I did not have strange dreams”. What

relevant conclusion can be drawn from the above premises? Construct an

argument to obtain your conclusion.

42. Show that the following set of premises is inconsistent:

John will get his degree, if and only if he passes all the examinations.

He will pass all the examinations, if and only if he works hard.

He will be unemployed, if and only if he does not get his degree.

John works hard if and only if he is employed.

43. If A works hard, then B or C will enjoy themselves. If B enjoys himself,

then A will not work hard. If D enjoys himself, then C will not. Therefore,

if A works hard, D will not enjoy himself.

Translate the above into statements and prove the conclusion by using

the CP-rule.

44. Symbolise the following expressions:

(a) x is the father of the mother of y.

(b) Everybody loves a lover.

45. Prove the following implications

(a) �x (P(x) � Q(x)) � �x (Q(x)� R(x)) � �x (P(x) � R(x)).

(b) �x P(x), �x (P(x) � Q(x)) � �x Q(x).

(c) �x (P(x) � Q(x)) � �x P(x)�� �x Q(x).

(d) �x P(x) � �x Q(x) � �x (P(x)� Q(x))

(e) �x (P(x) � Q(x)) � �x P(x)� �x Q(x)

(f) �x (C(x) � A(x)) � �x (�y (C(y)�� B(x, y)) � �y (A(y) � B(x, y))).

46. Show that the premises “A student in this class has not read the book”

and “Everyone in this class passed the first examination” imply the

conclusion “Someone who passed the first examination has not read the

book.”
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47. Establish the validity of the following argument:

Everyone who takes some fruit daily is healthy. X is not healthy. Therefore

X does not take fruit daily.

48. Verify the validity of the following argument:

Every living thing is a plant or an animal. Rama’s dog is alive and it is

not a plant. All animals have hearts. Therefore Rama’s dog has a heart.

49. Establish the validity of the following argument:

All integers are rational numbers. Some integers are powers of 2. Therefore

some rational numbers are powers of 2.

ANSWERS

Exercise 1(A)

Part (A)

12. (a) T, T, T, T (b) T, T, T, T (c) T, T, T, T (d) T, F, T, F

(e) T, T, T, T (for the conventional order of truth values of p and q)

13. (a) tautology (b) Tautology

(c) contradiction (d) contradiction.

15. (a) (p � q) � [( p) � q] � p (b) p � p � q

(c) ( (p � q)) � ( p � q) (d) ( p � q) � (q � p)

17. (a) p � q (b) p � q

(c) (p � q) � (q � p) (d) p � q

18. (a) p � q

(b) (p � q) � ( p � q)

(c) p � q

(d) PDNF cannot be found out as the given statement is a contradiction.

19. (a) ( p � q) � (p � q)

(b) ( p � q) � (p � q)

(c) ( p � q) � (p � q)

(d) ( p � q) � ( p � q) � (p � q) � (p � q)

(e) PCNF cannot be found out, as the given statement is tautology.

20. (a) T, F, T, F, T, F, T, T (b) Given statement is a tautology

(c) A tautology (d) T, T, T, F, F, T, T, T

(e) T, F, F, T, F, T, T, F, F, T, T, F, T, F, F, T

21. (a) to (e)—all contradictions

27. (a) (p � q) � (p � r)

(b) (p � q) � (p � q � r) � ( p � q � r)

(c) (p � q � r) � ( p � q � r)

28. (a) (p � q) � ( p � q)

(b) ( p � r) � (q � r)

(c) (p � q) � (q � r) � ( p � q) � ( q � r).

29. (a) (p � q) � (p � q) � ( p � q) � ( p � q); PCNF is not possible.

(b) PDNF is not possible; PCNF � ( p � q) � ( p � q) � (p � q)

� (p � q)
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(c) PDNF � (p � q � r) � (p � q � r) � (p � q � r) � ( p � q � r)

PCNF � ( p � q � r) � (p � q � r) � (p � q � r) � (p � q � r)

(d) PDNF � (p � q � r) � (p � q � r) � ( p � q � r) � ( p � q � r)

PCNF � ( p � q � r) � ( p � q � r) � (p � q � r) � (p � q � r)

30. (a) (p � q � r) � (p � q � r) � ( p � q � r) � ( p � q � r)

(b) (p � q) � ( p � q) � ( p � q)

(c) (p � q � r) � (p � q � r) � ( p � q � r)

31. (a) ( p � q � r) � ( p � q � r) � (p � q � r) � (p � q � r) �

(p � q � r)

(b) S is a tautology

(c) (p � q � r) � (p � q � r) � (p � q � r)

(d) (p � q � r)

Exercise 1(B)

24. (a) All cats are animals (b) Some cats are black.

28. No.

32. (i) Not every student in this class is intelligent

(ii) Some student in this class is not intelligent.

41. I did not eat spicy food or there was no thunder.

44. (a) P(x): x is a person; F(x, y): x is the father of y; M(x, y): x is the

mother of y.

�x (P(z) � F(x, z) � M(z, y))

(b) P(x): x is a person; L(x): x is a lover; R(x, y): x loves y

�x (P(x) � �y (P(y) � L(y) � R(x, y))).

48. Valid.



Combinatorics

INTRODUCTION

Combinatorics is an important part of discrete mathematics that solves counting

problems without actually enumerating all possible cases. More specifically,

combinatorics deals with counting the number of ways of arranging or choosing

objects from a finite set according to certain specified rules. In other words,

combinatorics is concerned with problems of permutations and combinations,

which the students have studied in some detail in lower classes.

As combinatorics has wide applications in Computer Science, especially in

such areas as coding theory, analysis of algorithms and probability theory, we

shall briefly first review the notions of permutations and combinations and then

deal with other related concepts.

PERMUTATIONS AND COMBINATIONS

Definitions
An ordered arrangement of r elements of a set containing n distinct elements is

called an r-permutation of n elements and is denoted by P(n, r) or nPr, where

r � n. An unordered selection of r elements of a set containing n distinct

elements is called an r-Combination of n elements and is denoted by C(n, r) or

nCr or 
� �
� �� �
n

r .

A permutation of objects involves ordering whereas a combination does

not take ordering into account.

Values of P(n, r) and C(n, r)

The first element of the permutation can be selected from a set having n

elements in n ways. Having selected the first element for the first position of

Note



52 Discrete Mathematics

the permutation, the second element can be selected in (n – 1) ways, as there

are (n – 1) elements left in the set.

Similarly, there are (n – 2) ways of selecting the third element and so on.

Finally there are n – (r – 1) = n – r + 1 ways of selecting the r th element.

Consequently, by the product rule (stated as follows), there are

n(n – 1) (n – 2) … (n – r + 1)

ways of ordered arrangement of r elements of the given set.

Thus, P(n, r) = n(n – 1) (n – 2) … (n – r + 1)

= 
!

( )!

n

n r�
In particular, P(n, n) = n!

Product Rule
If an activity can be performed in r successive steps and step 1 can be done in

n1 ways, step 2 can be done in n2 ways, …, step r can be done in nr ways, then

the activity can be done in (n1 � n2 … nr) ways.

The r-permutations of the set can be obtained by first forming the C(n, r)

r-combinations of the set and then arranging (ordering) the elements in each

r-combination, which can be done in P(r, r) ways. Thus

P(n, r) = C(n, r) � P(r, r)

� C(n, r) = 
( , ) !/( )!

( , ) !/( )!

P n r n n r

P r r r r r

�
�

�

= 
!

!( )!

n

r n r�
In particular, C(n, n) = 1.

Since the number of ways of selecting out r elements from a set of n

elements is the same as the number of ways of leaving (n – r) elements in

the set, it follows that

C(n, r) = C(n, n – r)

This is obvious otherwise, as

C(n, n – r) = 
!

( )!{ ( )}!

n

n r n n r� � �

= 
!

( )! !

n

n r r�  = C(n, r)

PASCAL’S IDENTITY

If n and r are positive integers, where n � r, then 
1

1

n n n

r r r

�� � � � � �
� �� � � � � ��� � � � � �

.

Proof
Let S be a set containing (n + 1) elements, one of which is ‘a’. Let S � � S – {a}.

The number of subsets of S containing r elements is 
1n

r

�� �
� �� �

.

Note
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Now a subset of S with r elements either contains ‘a’ together with (r – 1)

elements of S� or contains r elements of S � which do not include ‘a’.

The number of subsets of (r – 1) elements of S � = 
1

n

r

� �
� ��� �

.

� The number of subsets of r elements of S that contain ‘a’ = 
1

n

r

� �
� ��� �

.

Also the number of subsets of r elements of S that do not contain ‘a’ = that

of S � = 
n

r

� �
� �� �

. Consequently, 
1

1

n n n

r r r

�� � � � � �
� �� � � � � ��� � � � � �

This result can also be proved by using the values of ,
1

n n

r r

� � � �
� � � ��� � � �

 and

1n

r

�� �
� �� �

.

Corollary

C(n + 1, r + 1) = 
n

i r�
� C(i, r)

Proof
Changing n to i and r to r + 1 in Pascal’s identity, we get

C(i, r) + C(i, r + 1) = C(i + 1, r + 1)

i.e., C(i, r) = C(i + 1, r + 1) – C(i, r + 1) (1)

Putting i = r, r + 1, …, n in (1) and adding, we get
n

i r�
� C(i, r) = C(n + 1, r + 1) – C(r, r + 1)

= C(n + 1, r + 1) [� C(r, r + 1) = 0]

VANDERMONDE’S IDENTITY

If m, n, r are non-negative integers where r � m or n, then

C(m + n, r) = 
0

r

i�
� C(m, r – i) � C(n, i)

Proof
Let m and n be the number of elements in sets 1 and 2 respectively.

Then the total number of ways of selecting r elements from the union of sets

1 and 2

= C(m + n, r)

The r elements can also be selected by selecting i elements from set 2 and

(n – i) elements from set 1, where i = 0, 1, 2, …, r. This selection can be done

in C(m r – i). C(n, i) ways, by the product rule.

The (r + 1) selections corresponding to i = 0, 1, 2, …, r are disjoint. Hence,

by the sum rule (stated as follows), we get

C(m + n, r) = 
0

r

i �
� C(m, r – i) � C(n, i) or

0

r

i �
� C(m, i) � C(n, r – i)

Note
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Sum rule
If r activities can be performed in n1, n2, …, nr ways and if they are disjoint,

viz., cannot be performed simultaneously, then any one of the r activities can

be performed in (n1 + n2 + … + nr) ways.

PERMUTATIONS WITH REPETITION

Theorem
When repetition of n elements contained in a set is permitted in r-permutations,

then the number of r-permutations is nr.

Proof
The number of r-permutations of n elements can be considered as the same as

the number of ways in which the n elements can be placed in r positions.

The first position can be occupied in n ways, as any one of the n elements

can be used

Similarly, the second position can also be occupied in n ways, as any one of

the n elements can be used, since repetition of elements is allowed.

Hence, the first two positions can be occupied in n � n = n2 ways, by the

product rule. Proceeding like this, we see that the ‘r’ positions can be occupied

by ‘n’ elements (with repetition) in nr ways.

i.e., the number of r-permutations of n elements with repetition = nr.

Theorem
The number of different permutations of n objects which include n1 identical

objects of type I, n2 identical objects of type II, … and nk identical objects of

type k is equal to 
1 2

!

! ! !k

n

n n n�

, where n1 + n2 + � + nk = n.

Proof
The number of n-permutations of n objects is equal to the number of ways in

which the n objects can be placed in n positions.

n1 positions to be occupied by n1 objects of the I type can be selected from n

positions in C(n, n1) ways.

n2 positions to be occupied by the n2 objects of the II type can be selected

from the remaining (n – n1) positions in C(n – n1, n2) ways and so on. Finally

nk positions to be occupied by the nk objects of type k can be selected from the

remaining (n – n1 – n2 – � – nk –1) positions in C(n – n1 – n2 – � – nk –1, nk)

ways.

Hence, the required number of different permutations

= C(n, n1) � C(n – n1, n2) � … C(n – n1 – n2 – � – nk– 1, nk)

(by the product rule)

= 1 2 11

1 1 2 1 2

( )!( )!!

!( )! !( )! !0!
k

k

n n n nn nn

n n n n n n n n
�� � � ��

� � �
� � �

�

�

(� n1 + n2 + � + nk = n)

= 
1 2

!

! ! !k

n

n n n�

.
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Example

Let us consider the 3-permutations of the 3 letters A, B1, B2, the number of

which is 3! They are: AB1B2, AB2B1. B1AB2, B1B2A, B2AB1 and B2B1A. If we

replace B1 and B2 by B, the above permutations become

ABB, ABB, BAB, BBA, BAB and BBA.

These permutations are not different. The different 3-permutations of the 3

letters A, B, B are ABB, BAB and BBA. Thus the number of different 3-

permutations of 3 letters, of which 2 are identical of one type and 1 is of

another type is equal to

3 = 
3!

2!1!

This example illustrates the above theorem.

CIRCULAR PERMUTATION

The permutations discussed so far can be termed as linear permutations, as the

objects were assumed to be arranged in a line. If the objects are arranged in a

circle (or any closed curve), we get circular permutation and the number of

circular permutations will be different from the number of linear permutations

as seen from the following example:

We can arrange 4 elements A, B, C, D in a circle as follows: We fix one of

the elements, say A, at the top point of the circle. The other 3 elements B, C,

D are permuted in all possible ways, resulting in 6 = 3! different circular

permutations are as follows:

Circular arrangements are considered the same when one can be obtained

from the other by rotation, viz., The relative positions (and not the actual

positions) of the objects alone count for different circular permutations.

From the example given above, we see that the number of different circular

arrangements of 4 elements = (4 – 1)! = 6.

Similarly, the number of different circular arrangements of n objects = (n –

1)! If no distinction is made between clockwise and counterclockwise circular

arrangements [For example, if the circular arrangements in the first and the

last figures are assumed as the same], then the number of different circular

arrangements = 
1

2
(n – 1)!

PIGEONHOLE PRINCIPLE

Though this principle stated as follows is deceptively simple, it is sometimes

useful in counting methods. The deception often lies in recognising the problems

where this principle can be applied.

Note
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Statement
If n pigeons are accommodated in m pigeon-holes and n > m then at least one

pigeonhole will contain two or more pigeons. Equivalently, if n objects are put

in m boxes and n > m, then at least one box will contain two or more objects.

Proof
Let the n pigeons be labelled P1, P2, …, Pn and the m pigeonholes be labelled

H1, H2, …, Hm. If P1, P2, …, Pm are assigned to H1, H2, …, Hm respectively,

we are left with the (n – m) pigeons Pm + 1, Pm + 2, …, Pn. If these left over

pigeons are assigned to the m pigeonholes again in any random manner, at least

one pigeonhole will contain two or more pigeons.

GENERALISATION OF THE PIGEONHOLE PRINCIPLE

If n pigeons are accommodated in m pigeonholes and n > m, then one of the

pigeonholes must contain at least 
( 1)n

m

�� �
� �� �

 + 1 pigeons, where � x � denotes the

greatest integer less than or equal to x, which is a real number.

Proof

If possible, let each pigeonhole contain at the most 
( 1)n

m

�� �
� �� �

 pigeons.

Then the maximum number of pigeons in all the pigeonholes

= 
( 1) 1)n n

m m
m m

� � �� � � �� �� �
( 1) 1)n n

m m

� �� � �� � �� �� �� �� �
�

i.e., the maximum number of pigeons in all the pigeonholes � (n – 1)

This is against the assumption that there are n pigeons.

Hence, one of the pigeonholes must contain at least 
( 1)n

m

�� �
� �� �

 + 1 pigeons.

PRINCIPLE OF INCLUSION-EXCLUSION

Statement
If A and B are finite subsets of a finite universal set U, then

|A � B| = |A| + |B| – |A � B|, where |A| denotes the cardinality of (the number

of elements in) the set A.

This principle can be extended to a finite number of finite sets A1, A2, …, An

as follows:

|A1 � A2 � … � An| = 
i

� |Ai| – 
i j�
� |Ai � Aj| + 

i j k� �
� |Ai � Aj � Ak| – �

+ (–1)n + 1|A1 � A2 � … � An |,

where the first sum is over all i, the second sum is over all pairs i, j with i < j,

the third sum is over all triples i, j, k with i < j < k and so on.
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Proof
Let A \ B = {a1, a2, …, ar}

B \ A = {b1, b2, …, bs}

A � B = {x1, x2, …, xt},

where A \ B is the set of those elements A which are not in B.

Then A = {a1, a2, …, ar, x1, x2, …, xt}

and B = {b1, b2, …, bs, x1, x2, …, xt}

Hence, A � B = {a1, a2, …, ar, x1, x2, …, xt, b1, b2, …, bs}

Now |A| + |B| – |A � B| = (r + t) + (s + t) –t

= r + s + t = |A � B| (1)

Let us now extend the result to 3 finite sets A, B, C.

|A � B � C | = |A � (B � C)|

= |A| + |B � C | – |A � (B � C)|

= |A| + |B| + |C | – |B � C | – {(A � B) � (A � C)} by (1)

= |A| + |B| + |C | – |B � C | – {|A � B | + |A � C |

– |(A � B) � (A � C) |}, by (1)

= |A| + |B | + |C | – |A � B | – (B � C) – (C � A)

+ |A � B � C |

Generalising, we get the required result.

WORKED EXAMPLES 2(A)

Example 2.1
(a) Assuming that repetitions are not permitted, how many four-digit numbers

can be formed form the six digits 1, 2, 3, 5, 7, 8?

(b) How many of these numbers are less than 4000?

(c) How many of the numbers in part (a) are even?

(d) How many of the numbers in part (a) are odd?

(e) How many of the numbers is part (a) are multiples of 5?

(f) How many of the numbers in part (a) contain both the digits 3 and 5?

(a) The 4-digit number can be considered to be formed by filling up 4 blank

= the number of 4-permutations of 6 numbers

= P(6, 4) = 6 � 5 � 4 � 3 = 360

(b) If a 4-digit number is to be less than 4000, the first digit must be 1, 2, or

3. Hence the first space can be filled up in 3 ways. Corresponding to any

one of these 3 ways, the remaining 3 spaces can be filled up with the

remaining 5 digits in P(5, 3) ways. Hence, the required number = 3 �
P(5, 3)

= 3 � 5 � 4 � 3 = 180.

(c) If the 4-digit number is to be even, the last digit must be 2 or 8. Hence,

the last space can be filled up in 2 ways. Corresponding to any one of
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these 2 ways, the remaining 3 spaces can be filled up with the remaining

5 digits in P(5, 3) ways. Hence the required number of even numbers

= 2 � P(5, 3) = 120.

(d) Similarly the required number of odd numbers = 4 � P(5, 3) = 240.

(e) If the 4-digit number is to be a multiple of 5, the last digit must be 5.

Hence, the last space can be filled up in only one way. The remaining 3

spaces can be filled up in P(5, 3) ways.

Hence, the required number = 1 � P(5, 3) = 60.

(f) The digits 3 and 5 can occupy any 2 of the 4 places in P(4, 2) = 12 ways.

The remaining 2 places can be filled up with the remaining 4 digits in

P(4, 2) = 12 ways. Hence, the required number = 12 � 12 = 144.

Example 2.2
(a) In how many ways can 6 boys and 4 girls sit in a row?

(b) In how many ways can they sit in a row if the boys are to sit together and

the girls are to sit together?

(c) In how many ways can they sit in a row if the girls are to sit together?

(d) In how many ways can they sit in a row if just the girls are to sit together?

(a) 6 boys and 4 girls (totally 10 persons) can sit in a row (viz., can be

arranged in 10 places) in P(10, 10) = 10! ways.

(b) Let us assume that the boys are combined as one unit and the girls are

combined as another unit. These 2 units can be arranged in 2! = 2 ways.

Corresponding to any one of these 2 ways, the boys can be arranged in

a row in 6! ways and the girls in 4! ways.

� Required number of ways = 2 � 6! � 4! = 34,560.

(c) The girls are considered as one unit (object) and there are 7 objects

consisting of one object of 4 girls and 6 objects of 6 boys.

These 7 objects can be arranged in a row in 7! ways.

Corresponding to any one of these ways, the 4 girls (considered as one

object) can be arranged among themselves in 4! ways. Hence, the required

number of ways = 7! 4! = 1,20,960.

(d) No. of ways in which girls only sit together

= (No. of ways in which girls sit together)

– (No of ways in which boys sit together and girls sit together)

= 1,20,960 – 34,560 = 86,400.

Example 2.3 How many different paths in the xy-plane are there from

(1, 3) to (5, 6), if a path proceeds one step at a time by going either one step

to the right (R) or one step upward (U)?

To reach the point (5, 6) from (1, 3), one has to traverse 5 – 1 = 4 steps to

the right and 6 – 3 = 3 steps to the up.

Hence, the total number of 7 steps consists of 4 R’s and 3 U’s.

To traverse the paths, one can take R’s and U’s in any order.

Hence, the required number of different paths is equal to the number of

permutations of 7 steps, of which 4 are of the same type (namely R) and 3 are

of the same type (namely U).
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� Required number of paths = 
7!

4!3!
 = 35.

Example 2.4 How many positive integers n can be formed using the

digits 3, 4, 4, 5, 5, 6, 7, if n has to exceed 50,00,000?

In order that n may be greater than 50,00,000, the first place must be occupied

by 5, 6 or 7.

When 5 occupies the first place, the remaining 6 places are to be occupied

by the digits 3, 4, 4, 5, 6, 7.

The number of such numbers

= 
6!

2!
(� the digit 4 occurs twice)

= 360.

When 6 (or 7) occupies the first place, the remaining 6 places are to be

occupied by the digits 3, 4, 4, 5, 5, 7 (or 3, 4, 4, 5, 5, 6).

The number of such numbers

= 
6!

2! 2!
[��4 and 5 each occurs twice]

= 180

� No. of numbers exceeding 50,00,000 = 360 + 180 + 180 = 720.

Example 2.5 How many bit strings of length 10 contain (a) exactly four

1’s, (b) atmost four 1’s, (c) at least four 1’s (d) an equal number of 0’s and 1’s?

(a) A bit string of length 10 can be considered to have 10 positions. These 10

positions should be filled with four 1’s and six 0’s.

� No. of required bit strings = 
10!

4!6!
 = 210.

(b) The 10 positions should be filled up with no 1 and ten 0’s or one 1 and

nine 0’s or two 1’s and eight 0’s or three 1’s and seven 0’s or four 1’s

and six 0’s.

� Required no. of bit strings

= 
10! 10! 10! 10! 10!

0!10! 1!9! 2!8! 3!7! 4!6!
� � � �  = 386.

(c) The ten positions are to be filled up with four 1’s and six 0’s or five 1’s

and five 0’s etc. or ten 1’s and no 0’s.

� Required no. of bit strings

= 
10! 10! 10! 10! 10! 10! 10!

4!6! 5!5! 6! 4! 7!3! 8!2! 9!1! 10!0!
� � � � � �  = 848.

(d) The ten positions are to be filled up with five 1’s and five 0’s.

� Required no. of bit strings

= 
10!

5!5!
 = 252.
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Example 2.6 How many permutations of the letters A B C D E F G

contain (a) the string BCD, (b) the string CFGA, (c) the strings BA and GF, (d)

the strings ABC and DE, (e) the strings ABC and CDE, (f) the strings CBA and

BED?

(a) Treating BCD as one object, we have the following 5 objets:

A, (BCD), E, F, G.

These 5 objects can be permuted in

P(5, 5) = 5! = 120 ways

B, C, D should not be permuted in the string BCD.

(b) Treating CFGA as one object, we have the following 4 objects: B, D, E,

(CFGA).

The no. of ways of permuting these 4 objects = 4! = 24.

(c) The objects (BA), C, D, E and (GF) can be permuted in 5! = 120 ways.

(d) The objects (ABC), (DE), F, G can be permuted in 4! = 24 ways.

(e) Even though (ABC) and (CDE) are two strings, they contain the common

letter C. If we include the strings (ABCDE) in the permutations, it includes

both the strings (ABC) and (CDE). Moreover we cannot use the letter C

twice.

Hence, we have to permute the 3 objects (ABCDE), F and G. This can

be done in 3! = 6 ways.

(f) To include the 2 strings (CBA) and (BED) in the permutations, we require

the letter B twice, which is not allowed. Hence, the required no. of

permutations = 0.

Example 2.7 If 6 people A, B, C, D, E, F are seated about a round table,

how many different circular arrangements are possible, if arrangements are

considered the same when one can be obtained from the other by rotation?

If A, B, C are females and the others are males, in how many arrangements

do the sexes alternate?

The no. of different circular arrangements of n objects is (n – 1)!

� The required no. of circular arrangements = 5! = 120.

Since rotation does not alter the circular arrangement, we can assume that A

occupies the top position as shown in the figure.

Of the remaining places, positions 1, 3, 5 must be

occupied by the 3 males. This can be achieved in P(3, 3) =

3! = 6 ways.

The remaining two places 2 and 4 should be occupied

by the remaining two females. This can be achieved in

P(2, 2) = 2 ways.

� Total no. of required circular arrangements = 6 � 2 =

12.

Example 2.8 From a club consisting of 6 men and 7 women, in how

many ways can we select a committee of

Note
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(a) 3 men and 4 women?

(b) 4 persons which has at least one woman?

(c) 4 persons that has at most one man?

(d) 4 persons that has persons of both sexes?

(e) 4 persons so that two specific members are not included?

(a) 3 men can be selected from 6 men in C(6, 3) ways.

4 women can be selected from 7 women in C(7, 4) ways.

� The committee of 3 men and 4 women can be selected in C(6, 3) �
C(7, 4) ways. (by the product rule)

i.e., in 
6! 7!

3!3! 4!3!
�  = 700 ways.

(b) For the committee to have at least one woman, we have to select 3 men

and 1 woman or 2 men and 2 women or 1 man and 3 women or no man

and 4 women.

This selection can be done in

C(6, 3) � C(7, 1) + C(6, 2) � C(7, 2) + C(6, 1) � C(7, 3)

+ C(6, 0) � C(7, 4)

= 20 � 7 + 15 � 21 + 6 � 35 + 1 � 35

= 140 + 315 + 210 + 35 = 700 ways.

(c) For the committee to have at most one man, we have to select no man and

4 women or 1 man and 3 women.

This selection can be done in

C(6, 0) � C(7, 4) + C(6, 1) � C(7, 3) = 1 � 35 + 6 � 35 = 245 ways.

(d) For the committee to have persons of both sexes, the selection must

include 1 man and 3 women or 2 men and 2 women or 3 men and 1

woman.

This selection can be done in

C(6, 1) � C(7, 3) + C(6, 2) � C(7, 2) + C(6, 3) � C(7, 1)

= 6 � 35 + 15 � 21 + 20 � 7

= 210 + 315 + 140 = 665 ways.

(e) First let us find the number of selections that contain the two specific

members. After removing these two members, 2 members can be selected

from the remaining 11 members in C(11, 2) ways. In each of these

selections, if we include those 2 specific members removed, we get C(11,

2) selections containing the 2 members.

The no. of selections not including these 2 members

= C(13, 4) – C(11, 2)

= 715 – 55 = 660.

Example 2.9 In how many ways can 20 students out of a class of 30 be

selected for an extra-curricular activity, if

(a) Rama refuses to be selected?

(b) Raja insists on being selected?
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(c) Gopal and Govind insist on being selected?

(d) either Gopal or Govind or both get selected?

(e) just one of Gopal and Govind gets selected?

(f) Rama and Raja refuse to be selected together?

(a) We first exclude Rama and then select 20 students from the remaining 29

students.

� Number of ways = C(29, 20) = 1, 00, 15, 005.

(b) We separate Raja from the class, select 19 students from 29 and then

include Raja in the selections.

� Number of ways = C(29, 19) = 2, 00, 30, 010.

(c) We separate Gopal and Govind, select 18 students from 28 and then

include both of them in the selections.

� Number of ways = C(28, 18) = 1, 31, 23, 110

(d) Number of selections which include Gopal = C(29, 19)

Number of selections which include Govind = C(29, 19)

Number of selections which include both  = C(28, 18)

� By the principle of inclusion – exclusion, the required number of

selections

= C(29, 19) + C(29, 19) – C(28, 18)

= 2, 69, 36, 910.

(e) Number of selections including either Gopal or Govind

= (Number of selections including either Gopal or Govind or both)

– (Number of selections including both)

= [C(29, 19) + C(29, 19) – C(28, 18)] – C(28, 18)

= 2, 69, 36, 910 – 1, 31, 23, 110 = 1, 38, 13, 800.

(f) Number of ways of selecting 20 excluding Rama and Raja together

= (Total number of selections) – (Number of selections including both

Rama and Raja)

= C(30, 20) – C(28, 18) [as in part (c)]

= 3, 00, 45, 015 – 1, 31, 23, 110 = 1, 69, 21, 905.

Example 2.10 In how many ways can 2 letters be selected from the set

{a, b, c, d} when repetition of the letters is allowed, if (i) the order of the

letters matters (ii) the order does not matter?

(i) When the order of the selected letters matters, the number of possible

selections = 42 = 16, which are listed below:

aa, ab, ac, ad

ba, bb, bc, bd

ca, cb, cc, cd

da, db, dc, dd

In general, the number of r-permutations of n objects, if repetition of the

objects is allowed, is equal to nr, since there are n ways to select an object

from the set for each of the r-positions.

(ii) When the order of the selected letter does not matter, the number of

possible selections C(4 + 2 – 1, 2) = C(5, 2) = 10, which are listed below:
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aa, ab, ac, ad

bb, bc, bd

cc, cd

dd

In general, the number of r-combinations of n kinds of objects, if repetitions

of the objects is allowed = C(n + r – 1, r).

[The reader may try to prove this result.]

Example 2.11 There are 3 piles of identical red, blue and green balls,

where each pile contains at least 10 balls. In how many ways can 10 balls be

selected:

(a) if there is no restriction?

(b) if at least one red ball must be selected?

(c) if at least one red ball, at least 2 blue balls and at least 3 green balls must

be selected?

(d) if exactly one red ball must be selected?

(e) if exactly one red ball and at least one blue ball must be selected?

(f) if at most one red ball is selected?

(g) if twice as many red balls as green balls must be selected?

(a) There are n = 3 kinds of balls and we have to select r = 10 balls, when

repetitions are allowed.

� No. of ways of selecting  = C(n + r –1, r) = C(12, 10) = 66.

(b) We take one red ball and keep it aside. Then we have to select 9 balls

from the 3 kinds of balls and include the first red ball in the selections.

� No of ways of selecting = C(11, 9) = 55.

(c) We take away 1 red, 2 blue and 3 green balls and keep them aside.

Then we selcet 4 balls from the 3 kinds of balls and include the 6 already

chosen bolls in each selection.

� No. of ways of selecting = C(3 + 4 – 1, 4) = 15.

(d) We select 9 balls from the piles containing blue and green balls and

include 1 red ball in each selection.

� No. of ways of selecting = C(2 + 9 – 1, 9) = 10.

(e) We take away one red ball and one blue ball and keep them aside. Then

we select 8 balls from the blue and green piles and include the already

reserved red and blue balls to each selection.

� No. of ways of selecting = C(2 + 8 –1, 8) = 9.

(f) The selections must contain no red ball or 1 red ball.

� No. of ways of selecting = C(2 + 10 – 1, 10) + C(2 + 9 – 1, 9)

= 11 + 10 = 21

(g) The selections must contain 0 red and 0 green balls or 2 red and 1 green

balls or 4 red and 2 green balls or 6 red and 3 green balls.

� No. of ways of selecting = C(1 + 10 – 1, 10) + C(1 + 7 – 1, 7)

+ C(1 + 4 – 1, 4) + C(1 + 1 – 1, 1)

= 1 + 1 = 1 + 1 = 4.
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Example 2.12 5 balls are to be placed in 3 boxes. Each can hold all the

5 balls. In how many diifferent ways can we place the balls so that no box is

left empty, if

(a) balls and boxes are different?

(b) balls are identical and boxes are different?

(c) balls are different and boxes are identical?

(d) balls as well as boxes are identical?

(a) 5 balls can be distributed such that the first, second and third boxes

contain 1, 1 and 3 balls respectively.

� No. of ways of distributing in this manner

= 
5!

1!1!3!
 = 20.

Similarly the boxes I, II, III may contain 1, 3 and 1 balls respectively or 3,

1 and 1 balls respectively. (� the boxes are different). No. of ways of

distributing in each of these manners = 20.

Again the boxes I, II, III may contain 1, 2, 2 balls respectively or 2, 1,

2 balls respectively or 2, 2, 1 balls respectively. No. of ways of distributing

in each of these manners = 
5!

1! 2! 2!
 = 30.

� Total no. of required ways

= 20 + 20 + 20 + 30 + 30 + 30 = 150

(b) Total no. of ways of distributing r identical balls in n different boxes is

the same as the no. of r-combinations of n items, repetitions allowed.

It is  = C(n + r – 1, r) = C(3 + 2 – 1, 2) = 6 since 3 balls must be first

put, one in each of 3 boxes and the remaining 2 balls must be distributed

in 3 boxes.

(c) When the boxes are identical, the distributions of 1, 1, 3 balls, 1, 3, 1

balls and 3, 1, 1 balls considered in (a) will be treated as identical

distributions. Thus there are 20 ways of distributing 1 ball in each of

any two boxes and 3 balls in the third box.

Similarly, there are 30 ways of distributing 2 balls in each of any 2 boxes

and 1 ball in the third box.

� No. of required ways = 20 + 30 = 50.

(d) By an argument similar to that given in (c), we get from the answer in (b)

that the required no. of ways = 
6

3
 = 2.

Example 2.13 Determine the number of integer solutions of the equation

x1 + x2 + x3 + x4 = 32, where

(a) xi � 0, 1 � i � 4; (b) xi > 0, 1 � i � 4;

(c) x1, x2 � 5 and x3, x4 � 7; (d) x1, x2, x3 > 0 and 0 < x4 � 25.

(a) One solution of the equation is x1 = 15, x2 = 10, x3 = 7 and x4 = 0.

Another solution is x1 = 7, x2 = 15, x3 = 0 and x4 = 10. These two
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solutions are considered different, even though the same 4 integers 15,

10, 7, 0 are used. The first solution can be interpreted as follows:

We have 32 identical chocolates and are distributing them among 4

distinct children. We have given 15, 10, 7 and 0 chocolates to the first,

second, third and fourth child respectively.

Thus, each non-negative solution of the equation corresponds to a

selection of 32 identical items from 4 distinct sets, repetitions allowed.

Hence, the no. of solutions = C(4 + 32 – 1, 32)

= C(35, 32) = 6545

(b) Now xi > 0; 1 � i � 4

i.e., xi � 1; 1 � i � 4

Let us put ui = xi –1, so that ui � 0; 1 � i � 4

Then the given equation becomes

u1 + u2 + u3 + u4= 28,

for which the no. of non-negative integer solutions is required.

The required number = C(4 + 28 – 1, 28)

= C(31, 28) = 4495.

(c) Putting x1 – 5 = u1 , x2 – 5 = u2 , x3 – 7 = u3 and x4 – 7 = u4, the equation

becomes u1 + u2 + u3 + u4 = 8, where u1, u2, u3, u4 � 0.

The required no. of solutions = C(4 + 8 – 1, 8)

= C(11, 8) = 165.

No. of solutions such that x1, x2, x3 > 0 and 0 < x4 � 25 = (No. of

solutions such that xi > 0; i = 1, 2, 3, 4) – (No. of solutions such that xi >

0; i = 1, 2, 3 and x4 > 25) = a – b, say.

From part (b); a = C(31, 28) = 4495

To find b, we put u1 = x1 – 1, u2 = x2 – 1, u3 = x3 – 1 and u4 = x4 – 26.

The equation becomes u1 + u2 + u3 + u4 = 3.

We have to get the solution satisfying ui � 0; i = 1, 2, 3, 4.

No. of solutions = b = C(4 + 3 – 1, 3)

= C(6, 3) = 20.

� Required no. of solutions = 4495 – 20

= 4475.

Example 2.14 Find the number of non-negative integer solutions of the

inequality x1 + x2 + x3 + x4 + x5 + x6 < 10?

We convert the inequality into an equality by introducing an auxiliary variable

x7 > 0.

Thus, we get x1 + x2 + � + x6 + x7 = 10, where

xi � 0, i = 1, 2, …, 6 and x7 > 0 or x7 � 1.

Putting xi = yi, i = 1, 2, … 6 and x7 – 1 = y7, the equation becomes

y1 + y2 + � + y7 = 10 – 1 = 9, where yi � 0, for 1 � i � 7

The number of required solutions

= C(7 + 9 – 1, 9) = C(15, 9) = 5005.
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Example 2.15 How many positive integers less than 10,00,000 have the

sum of their digits equal to 19?

Any positive integer less than 10,00,000 will have a maximum of 6 digits. If

we denote them by xi; 1 � i � 6, the problem reduces to one of finding the

number of solutions of the equation

x1 + x2 + � + x6 = 19, where 0 � xi � 9 (1)

There are C(6 + 19 – 1, 19) = C(24, 5) solutions if xi � 0.

We note that one of the six xi’s can be � 10, but not more than one, as the

sum of the xi’s= 19.

Let x1 � 10 and let u1 = x1 – 10, ui = xi, 2 � i � 6

Then the equation becomes

u1 + u2 + � + u6 = 9, where ui � 0

There are C(6 + 9 – 1, 9) = C(14, 5) solutions for this equations.

The digit which is � 10 can be chosen in 6 ways (viz., it may be x1, x2, …, or

x6).

Hence, the number of solutions of the equation x1 + x2 + � + x6 = 19, where

any one xi � 10 is 6 � C(14, 5).

Hence, the required number of solutions of (1)

= C(24, 5) – 6 � C(14, 5)

= 42,504 – 6 � 2002 = 30,492.

Example 2.16 A man hiked for 10 hours and covered a total distance of

45 km. It is known that he hiked 6 km in the first hour and only 3 km in the last

hour. Show that he must have hiked at least 9 km within a certain period of 2

consecutive hours.

Since, the man hiked 6 + 3 = 9 km in the first and last hours, he must have

hiked 45 – 9 = 36 km during the period from second to ninth hours.

If we combine the second and third hours together, the fourth and fifth hours

together, etc. and the eighth and ninth hours together, we have 4 time periods.

Let us now treat 4 time periods as pigeonholes and 36 km as 36 pigeons.

Using the generalised pigeonhole principal,

the least no. of pigeons accommodated in one pigeonhole

= 
36 1

4

�� �
� �� �

 + 1

= �8.75� + 1 = 9

viz., the man must have hiked at least 9 km in one time period of 2 consecutive

hours.

Example 2.17 If we select 10 points in the interior of an equilateral

triangle of side 1, show that there must be at least two points whose distance

apart is less than 
1

3
.
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Let ADG be the given equilateral triangle. The

pairs of points B, C; E, F and H, I are the points of

trisection of the sides AD, DG and GA respectively.

We have divided the triangle ADG into 9 equilateral

triangles each of side 
1

3
.

The 9 sub-triangles may be regarded as 9 pigeon-

holes and 10 interior points may be regarded as 10

pigeons.

Then by the pigeonhole principle, at least one sub triangle must contain 2

interior points.

The distance between any two interior points of any sub triangle cannot

exceed the length of the side, namely, 
1

3
.

Hence the result.

Example 2.18
(i) If n pigeonholes are occupied by (kn + 1) pigeons, where k is a positive

integer, prove that at least one pigeonhole is occupied by (k + 1) or more

pigeons.

(ii) Hence, find the minimum number m of integers to be selected from S =

{1, 2, … 9} so that (a) the sum of two of the m integers is even; (b) the

difference of two of the m integers is 5. But there are (kn + 1) pigeons.

This results in a contradiction. Hence the result.

(i) If at least one pigeonhole is not occupied by (k + 1) or more pigeons,

each pigeonhole contains at most k pigeons. Hence, the total number of

pigeons occupying the n pigeonholes is at most kn.

But there are (kn + 1) pigeons. This results in a contradiction. Hence, the

result

(ii) (a) Sum of 2 even integers or of 2 odd integers is even.

Let us divide the set S into 2 subsets {1, 3, 5, 7, 9} and {2, 4, 6, 8},

which may be treated as pigeonholes. Thus n = 2.

At least 2 numbers must be chosen either from the first subset or

from the second.

i.e., at least one pigeonhole must contain 2 pigeons

i.e., k + 1 = 2 or k = 1

� The minimum no. of pigeons required or the minimum number

of integers to be selected is equal to

kn + 1 = 3.

(b) Let us divide the set S into the 5 subsets {1, 6}, {2, 7}, {3, 8}, {4, 9},

{5}, which may be treated as pigeonholes. Thus n = 5.

If m = 6, then 2 of integers of S will belong to one of the subsets

and their difference is 5.

Example 2.19 If (n + 1) integers not exceeding 2n are selected, show

that there must be an integer that divides one of the other integers. Deduce that

if 151 integers are selected from {1, 2, 3, …, 300} then the selection must

include two integers x, y either of which divides the other.
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Let the (n + 1) integers be a1, a2, …, an + 1. Each of these numbers can be

expressed as an odd multiple of a power of 2.

i.e., ai = 2ki � mi, where ki is a non-negative integer and mi is odd (i = 1, 2, …,

n + 1)

[For example, let n = 5 so that 2n = 10. Let us consider n + 1 = 6 nos. that are

less than or equal to 10, viz., 7, 5, 4, 6, 3, 10. Clearly 7 = 2° � 7; 5 = 2° � 5;

4 = 22 � 1; 6 = 21 � 3; 3 = 2° � 3 and 10 = 21 � 5].

But there are only n odd positive integers less than 2n (pigeonholes).

Hence, by the pigeonhole principle, 2 of the integers must be equal. Let

them be mi = mj.

� ai = mi and aj = mj

� 2

2

ki
i

kj
j

a

a
� (� mi = mj)

If ki < kj, then  divides  and hence ai divides aj.

If ki > kj, then aj divides ai.

Putting n = 150 (and hence, 2n = 300 and n + 1 = 151) the deduction

follows.

Example 2.20 If m is an odd positive integer, prove that there exists a

positive integer n such that m divides (2n – 1).

Let us consider the (m + 1) positive integers 21 – 1, 22 – 1, 23 – 1, …, 2m –

1 and 2m + 1 – 1.

When these are divided by m, two of the numbers will give the same

remainder, by the pigeonhole principle [(m + 1) numbers are (m + 1) pigeons

and the m remainders, namely, 0, 1, 2, …, (m – 1) are the pigeonholes].

Let the two numbers be 2r – 1 and 2s – 1 which give the same remainder ,

upon division by m.

viz., let 2r – 1 = q1 m +  and 2s – 1 = q2m + 

� 2r – 2s = (q1 – q2)m

But 2r – 2s = 2s(2r – s – 1)

� (q1 – q2)m = 2s(2r – s – 1)

But m is odd and hence cannot be a factor of 2s.

� m divides 2r – s – 1.

Taking n = r – s, we get the required results.

Example 2.21 Prove that in any group of six people, at least three must

be mutual friends or at least three must be mutual strangers.

Let A be one of the six people. Let the remaining 5 people be accommodated

in 2 rooms labeled “A’s friends” and “strangers to A”.

Treating 5 people as 5 pigeons and 2 rooms as pigeonholes, by the generalised

pigeonhole principle, one of the rooms must contain 
5 1

2

�� �
� �� �

 + 1 = 3 people.
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Let the room labeled “A’s friends” contain 3 people. If any two of these 3

people are friends, then together with A, we have a set of 3 mutual friends. If

no two of these 3 people are friends, then these 3 people are mutual strangers.

In either case, we get the required conclusion.

If the room labeled “strangers to A” contain 3 people, we get the required

conclusion by similar argument.

Example 2.22 During a four-weak vacation, a school student will attend

at least one computer class each day, but he won’t attend more than 40 classes

in all during the vacation. Prove that, no matter how he distributes his classes

during the four weeks, there is a consecutive span of days during which he will

attend exactly 15 classes.

Let the student attend a1 classes on day 1, a2 classes on day 2 and so on a28

classes on day 28.

Then bi = a1 + a2 + � + ai will be the total no. of classes he will attend from

day 1 to day i, both inclusive (i = 1, 2, …, 28).

Clearly 1 � b1 < b2 < … < b28 � 40

and b1 + 15 < b2 + 15 < … < b28 + 15 � 55

Now there are 56 distinct numbers (pigeons) b1, b2, …, b28 and b1 + 15, b2 +

15, …, b28 + 15.

These can take only 55 different values (1 through 55) (pigeonholes).

Hence, by the pigeonhole principle, at least two of the 56 numbers are equal.

Since bj > bi if j > i, the only way for two numbers to be equal is bj = bi +

15, for some i and j where j > i.

� bj – bi = 15

i.e., ai + 1 + ai + 2 + � + aj = 15

i.e., from the start of day (i + 1) to the end of day j, the student will attend

exactly 15 classes.

Example 2.23 If S is a set of 5 positive integers, the maximum of which

is at most 9, prove that the sums of the elements in all the nonempty subsets of

S cannot all be distinct.

Let the subsets of S be such that 1 � nA � 3 (i.e., A consists of only one

or two or three elements of S).

The number of such subsets C(5, 1) + C(5, 2) + C(5, 3)

= 5 + 10 + 10 (� there are 5 elements in S)

= 25

Let sA be the sum of the elements of A.

Then 1 � sA � 7 + 8 + 9 (� the maximum of any element of S = 9)

i.e., 1 � sA � 24

Treating the 24 values of sA as pigeonholes and 25 subsets A as pigeons, we

get, by the pigeonhole principle, that there are 2 subsets A of S whose elements

give the same sum.
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Example 2.24 Find the number of integers between 1 and 250 both

inclusive that are not divisible by any of the integers 2, 3, 5 and 7.

Let A, B, C, D be the sets of integers that lie between 1 and 250 and that are

divisible by 2, 3, 5, and 7 respectively.

The elements of A are 2, 4, 6, …, 250

� |A| = 125, which is the same as 
250

2

� �
� �� �

Similarly, |B| = 
250

3

� �
� �� �

 = 83; |C| = 
250

5

� �
� �� �

 = 50, |D| = 
250

7

� �
� �� �

 = 35.

The set of integers between 1 and 250 which are divisible by 2 and 3, viz.,

A � B is the same as that which is divisible by 6, since 2 and 3 are relatively

prime numbers.

� |A � B| = 
250

6

� �
� �� �

 = 41

Similarly, |A � C | = 
250

10

� �
� �� �

 = 25; |A � D| = 
250

14

� �
� �� �

 = 17

|B � C | = 
250

15

� �
� �� �

 = 16; |B � D| = 
250

21

� �
� �� �

 = 11;

|C � D| = 
250

35

� �
� �� �

 = 7; |A � B � C | = 
250

30

� �
� �� �

 = 8;

|A � B � D| = 
250

42

� �
� �� �

 = 5; |A � C � D| = 
250

70

� �
� �� �

 = 3;

|B � C � D| = 
250

105
� �
� �� �

 = 2; |A � B � C � D| = 
250

210
� �
� �� �

 = 1

By the Principle of Inclusion-Exclusion, the number of integers between 1

and 250 that are divisible by at least one of 2, 3, 5 and 7 is given by

|A � B � C � D| = {|A| + |B| + |C| + |D|} – {|A � B| + �

+ |C � D|} + {|A � B � C| + �

+ |B � C � D|} – {|A � B � C � D|}

= (125 + 83 + 50 + 35) – (41 + 25 + 17

+ 16 + 11 + 7) + (8 + 5 + 3 + 2) – 1

= 293 – 117 + 18 – 1 = 193

� Number of integers between 1 and 250 that are not divisible by any of the

integers 2, 3, 5 and 7

= Total no. of integers – |A � B � C � D|

= 250 – 193 = 57.

Example 2.25 How many solutions does the equation x1 + x2 + x3 = 11

have, where x1, x2, x3 are non-negative such that x1 � 3, x2 � 4 and x3 � 6? Use

the principal of inclusion-exclusion.
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Let the total no. of solutions with no restrictions be N.

Let P1, P2, P3 denote respectively the properties x1 > 3, x2 > 4 and x3 > 6.

Then the required no. of solutions is given by

N – {|P1| + |P2| + |P3| – |P1 � P2| – |P2 � P3| – |P3 � P1|

+ |P1 � P2 � P3|} (1)

Now N = C(3 + 11 – 1, 11) = 78 (Refer to Example 2.13)

|P1| = no. of solutions subject to P1 (viz. x1 � 4 or x1 = 4, 5, 6, …,

11) = C(3 + 7 – 1, 7) = C(9, 7) = 36 (� x2 � 7 and x3 � 7)

Similarly, |P2| = C(3 + 6 – 1, 6) = C(8, 6) = 28

|P3| = C(3 + 4 – 1, 4) = C(6, 4) = 15

|P1 � P2| = no. of solutions subject to x1 � 4 and x2 � 5

= C(3 + 2 – 1, 2) = C(4, 2) = 6 [� x3 � 2]

Similarly, |P2 � P3| = 0 (� x1 � – 1) and |P3 � P1| = C(3 + 0 – 1, 0) = 1

|P1 � P2 � P3| = no. of solutions subject to x1 � 4, x2 � 5 and x3 � 7

= 0

� Required number of solutions

= 78 – {(36 + 28 + 15) – (6 + 0 + 1) + 0}

= 6.

Example 2.26 There are 250 students in an engineering college. Of

these 188 have taken a course in Fortran, 100 have taken a course in C and 35

have taken a course in Java. Further 88 have taken courses in both Fortran and

C. 23 have taken courses in both C and Java and 29 have taken courses in both

Fortran and Java. If 19 of these students have taken all the three courses, how

many of these 250 students have not taken a course in any of these three

programming languages?

Let F, C and J denote the students who have taken the languages Fortran,

C and Java respectively.

Then |F | = 188; |C| = 100; |J | = 35

|F � C| = 88; |C � J | = 23; |F � J | = 29 and |F � C � J | = 19.

Then the number of students who have taken at least one of the three

languages is given by

|F � C � J | = |F | + |C| + |J | – |F � C| – |C � J | – |F � J | + |F � C � J |

= (188 + 100 + 35) – (88 + 23 + 29) + 19

= 323 – 140 + 19 = 202.

No. of students who have not taken a course in any of these languages

= 250 – 202 = 48.

Example 2.27 A1, A2, A3 and A4 are subsets of a set U containing 75

elements with the following properties. Each subset contains 28 elements; the

intersection of any two of the subsets contains 12 elements; the intersection of

any three of the subsets contains 5 elements; the intersection of all four subsets

contains 1 element.

(a) How many elements belong to none of the four subsets?
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(b) How many elements belong to exactly one of the four subsets?

(c) How many elements belong to exactly two of the four subsets?

Fig. 2.1

(a) No. of elements that belong to at least one of the four subsets

= |A1� A2 � A3 � A4|

= [{|A1| + |A2| + |A3| + |A4|} – {|A1 � A2| + |A1 � A3| + |A1 � A4|

+ |A2 � A3| + |A2 � A4| + |A3� A4|} + {|A1 � A2 � A3|

+ |A1 � A2 � A4| + |A1 � A3 � A4| + |A2 � A3 � A4|}

– |A1 � A2 � A3 � A4|]

= [4 � 28 – 6 � 12 + 4 � 5 – 1] = 59

�
(b) With reference to the Venn diagram given above Fig. 2.1, n(A1 alone)

= n[(2)]

= n(A1) – [n(6) + n(7) + n(8) + n(12) + n(13) + n(15) + n(16)]

= n(A1) – [{n(6) + n(12) + n(15) + n(16)} + {n(7) + n(13) + n(15)

+ n(16)} + {n(8) + n(12) + n(13) + n(16)} – n(12) – n(13) – n(15)

– 2n(16)]

+ n(A1 � A3 � A4) + n(A1 � A2 � A3)] – 2n[(A1 � A2 � A3 � A4)]

= 28 – 3 � 12 + 3 � 5 + 2 � 1

= 9

Similarly n(A2 alone) = n(A3 alone) = n(A4 alone) = 9

� No. of elements that belong to exactly one of the subsets = 36.

(c) With reference to the Venn diagram of Fig. 2.1 given above,

n(A1 and A2) only) = n(6)

= n(A1 � A2) – {n(15) + n(16)} – {n(12) + n(16)} + n(16)

= n(A1 � A2) – n(A1 � A2 � A3) – n(A1 � A2 � A4)

+ n(A1 � A2 � A3 � A4)

= 12 – 5 – 5 + 1 = 3

Similarly n(A1 and A3 only) = n(A1 and A4 only)

= n(A2 and A3 only) = n(A2 and A4 only) = n(A3 and A4 only) = 3

� No. of elements that belong to exactly two of the subsets = 18.
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Example 2.28 Show that the number of derangements of a set of n

elements is given by

Dn = n!
1 1 1 1

1 ( 1)
1! 2! 3! !

n

n

� �� � � � � �� �� �
� .

A derangement is a permutation of objects in which no object occupies its

original position. For example, the derangements of 1 2 3 are 2 3 1 and

3 1 2. viz., D3 = 2. 2 1 4 5 3 is a derangement of 1 2 3 4 5, but 2 1 5 4 3 is not a

derangement of 1 2 3 4 5, since 4 occupies its original position.

Proof
Let a permutation have the property Ar, if it contains the rth element in the rth

position.

Then Dn = the no. of the permutations having none of the properties

Ar(r = 1, 2, …, n)

= 1 2 nA A A� � �� � ��

= N – 
i

� |Ai| + 
i j�
� |Ai � Aj| – 

i j k� �
� |Ai � Aj � Ak | + �

+ (–1)n |A1 � A2 … An| (1)

by the principle of inclusion-exclusion, where N is no. of permutations of n

elements and so equals n!

Now |Ai| = (n – 1)!, since |Ai| is the number of permutations in which the i th

position is occupied by the i th element, but each of the remaining positions can

be filled arbitrarily.

Similarly, |Ai � Aj | = (n – 2)!, |Ai � Aj � Ak | = (n – 3) ! and so on.

Since there are C(n, 1) ways of choosing one element from n, we get

i

� |Ai| = C(n, 1) � (n – 1)!

Similarly,
i j�
� |Ai � Aj | = C(n, 2) � (n – 2)!,

i j k� �
� |Ai � Aj � Ak | = C(n, 3) � (n – 3)! and so on.

Using these values in (1), we have

Dn = n! – C(n, 1) � (n – 1)! + C(n, 2) � (n –2)! – …

+ (–1)n � C(n, n) � (n – n)! (2)

i.e., Dn = n! – 
! ! !

( 1)! ( 2)! – ( 1) 0!
1!( 1)! 2!( 2)! !0!

nn n n
n n

n n n
� � � � �

� �
�

= n! 
1 1 1 1

1 ( 1)
1! 2! 3! !

� � � � � ��
n

n

Example 2.29 Five gentlemen A, B, C, D and E attend a party, where

before joining the party, they leave their overcoats in a cloak room. After the

party, the overcoats get mixed up and are returned to the gentlemen in a

Note
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random manner. Using the principle of inclusion-exclusive, find the probability

that none receives his own overcoat.

Required probability = 
No. of permutations in which none gets his overcoat

No. of all possible permutations of the coats

= 5

5!

D
 = 

1 1 1 1 1
5! 1

1! 2! 3! 4! 5!

5!

� � � � �

= 
1 1 1 1 11

1 1 –
2 6 24 120 30

� � � � � .

Example 2.30 In how many ways can the integers 1 through 9 be permuted

such that

(a) no odd integer will be in its natural position?

(b) no even integer will be in its natural position?

(a) there are 5 odd integers between 1 and 9 inclusive.

Proceeding as in example (2.28) and from step (2) of that example,

The required no. of ways = 9! – [C(5, 1) � 8! – C(5, 2) � 7!

+ C(5, 3) � 6! – C(5, 4) � 5! + C(5, 5) � 4!]

= 2, 05, 056.

(b) There are 4 even integers between 1 and 9.

� The required no. of ways = 9! – [C(4, 1) � 8! – C(4, 2) � 7!

+ C(4, 3) � 6! – C(4, 4) � 5!]

= 2, 29, 080.

EXERCISE 2(A)

Part A: (Short answer questions)

1. Define r-permutation and r-combination of n elements and express their

values in terms of factorials.

2. Establish Pascal’s identity in the theory of combinations.

3. How many permutations are there for the 8 letters a, b, c, d, e, f, g, h?

How many of them (i) start with a, (ii) end with h, (iii) start with a and

end with h?

4. In how many ways can the symbols a, b, c, d, e, e, e, e, e be arranged so

that no e is adjacent to another e?

5. What is the number of arrangements of all the six letters in the word

PEPPER?

6. How many distinct four-digit integers can one make form the digits 1, 3,

3, 7, 7 and 8?

7. In how many ways can 7 people be arranged about a circular table? If 2

of them insist on sitting next to each other, how many arrangements are

possible?
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8. What are the number of r-permutations and r-combinations of n objects if

the repetition of objects is allowed?

9. How many different outcomes are possible when 5 dice are rolled?

10. A book publisher has 3000 copies of a Discrete Mathematics book. How

many ways are there to store these books in their 3 warehouses if the

copies of the book are identical?

11. State pigeonhole principle and its generalisation.

12. Show that in any group of eight people, at least two have birthdays which

fall on the same day of the weak in any given year.

13. In a group of 100 people, several will have birth days in the same month.

At least how many must have birth days in the same month?

14. If 20 processors are interconnected and every processor is connected to at

least one other, show that at least two processors are directly connected to

the same number of processors.

15. State the principle of inclusion-exclusion as applied to two finite subsets.

Extend it for three finite subsets.

16. Among 30 Computer Science students, 15 know JAVA, 12 know C++

and 5 know both. How many students know (i) at least one of the two

languages (ii) exactly one of the languages.

17. How many positive integers not exceeding 1000 are divisible by 7 or 11?

18. What is a derangement? Given an example.

19. Seven books are arranged in alphabetical order by author’s name. In how

many ways can a little boy rearrange these books so that no book is its

original position?

20. How many permutations of 1, 2, 3, 4, 5, 6, 7 are not derangements?

Part B

21. (i) In how many numbers with 7 distinct digits do only the digits 1 – 9

appear?

(ii) How many of the numbers in (i) contain a 3 and a 6?

(iii) In how many of the numbers in (i), do 3 and 6 occur consecutively in

any order?

(iv) How many of the numbers in (i) contain neither a 3 nor a 6?

(v) How many of the numbers in (i) contain a 3 not a 6?

(vi) In how many of the numbers in (i) do exactly one of the numbers 3, 6

appear?

(vii) In how many of the numbers in (i) do neither of the consecutive pairs

36 and 63 appear?

22. In how many ways can two couples Mrs. and Mr. A and Mrs. and Mr. B

form a line so that (i) the A’s are beside each other? (ii) the A’s are not

beside each other? (iii) each couple is together? (iv) the A’s are beside

each other but the B’s are not? (v) at least one couple is together:

(vi) exactly one couple is together?

23. Three couples, A’s, B’s and C’s are going to form a line (i) In how many

such lines will Mr. and Mrs. B be next to each other? (ii) In how many
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such lines will Mr. and Mrs. B be next to each other and Mr. and Mrs. C

be next to each other? (iii) In how many such lines will at least one

couple be next to each other?

24. A Computer Science professor has 7 different programming books on a

shelf, 3 of them deal with C++ and the other 4 with Java. In how many

ways can the professor arrange these books on the shelf (i) if there are no

restrictions? (ii) if the languages should alternate? (iii) if all the C++

books must be next to each other and all the Java books must be next to

each other? (iv) if all the C++ books must be next to each other?

25. (i) In how many possible ways could a student answer a 10-question true

or false test? (ii) In how many ways can the student answer the test in

(i) if it is possible to leave a question unanswered in order to avoid an

extra penalty for a wrong answer?

26. How many bit strings of length 12 contain (i) exactly three 1s? (ii) at

most three 1s? (iii) at least three 1s? (iv) an equal number of 0s and 1s?

27. A coin is flipped 10 times where each flip comes up either head or tail.

How many possible outcomes (i) are there in total? (ii) contain exactly 2

heads? (iii) contain at most 3 tails? (iv) contain the same number of heads

and tails?

28. How many bit strings of length 10 have (i) exactly three 0s? (ii) at least

three 1s? (iii) more 0s than 1s? (iv) an odd number of 0s?

29. How many permutations of the letters ABCDEFGH contain (i) the string

ED? (ii) the string CDE? (iii) the strings BA and FGH? (iv) the strings

AB, DE and GH? (v) the strings CAB and BED? (vi) the strings BCA and

ABF?

30. Determine how many strings can be formed by arranging the letters

ABCDE such that (i) A appears before D, (ii) A and D are side by side,

(iii) neither the pattern AB nor the pattern CD appears, (iv) neither the

pattern AB nor the pattern BE appears.

31. In how many ways can the letters A, B, C, D, E, F be arranged so that

(i) B is always to the immediate left of the letter E (ii) B is always to the

left of the letter E (iii) B is never to the left of the letter E?

32. In how different ways can the letters in the word MISSISSIPPI be arranged

(i) if there is no restriction? (ii) if the two Ps must be separated?

33. In how many ways can the letters A, A, A, A, A, B, C, D, E be permuted

such that (i) no two As are adjacent? (ii) if no two of the letters B, C, D, E

are adjacent?

34. A computer password consists of a letter of the English alphabet followed

by 3 or 4 digits. Find the number of passwords (i) that can be formed and

(ii) in which no digit repeats.

35. (i) In how many ways can 7 people be arranged about a circular table?

(ii) If two of the people insist on sitting next to each other, how many

arrangements are possible?
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36. There are 6 gentlemen and 4 ladies to dine at a round table. In how many

ways can they be seated so that no two ladies are together?

37. A committee of 12 is to be selected from 10 men and 10 women. In how

many ways can the selection be carried out if (i) there are no restrictions?

(ii) there must be equal number of men and women? (iii) there must be an

even number of women? (iv) there must be more women than men?

(v) there must be at least 8 men?

38. 7 women and 9 men are on the faculty in the mathematics department of

a college. (i) How many ways are there to select a committee of 5 members

of the department if at least one woman must be on the committee?

(ii) How many ways are there to select a committee of 5 members of the

department if at least one woman and at least one man must be on the

committee?

39. How many licence plates consisting of 3 English letters followed by 3

digits contain no letter or digit twice?

40 How many strings of 6 distinct letters from the English alphabet contain

(i) the letter A? (ii) the letters A and B? (iii) the letters A and B in

consecutive positions with A preceding B? (iv) the letters A and B where

A is somewhere to the left of B in the string?

41. A student has to answer 10 out of 13 questions in an exam. How many

choices has he (i) if there is no restriction? (ii) if he must answer the first

two questions? (iii) if he must answer the first or second question but not

both? (iv) if he must answer exactly three out of the first 5 questions?

(v) if he must answer at least 3 of the first 5 questions?

42. In how many ways can we distribute 8 identical white balls into 4 distinct

containers so that (i) no container is left empty? (ii) the fourth container

has an odd number of balls in it?

43. Find the number of unordered samples of size 5 (repetition allowed) from

the set of letters (A, B, C, D, E, F), if (i) there is no restriction, (ii) the

letter A occurs exactly twice, (iii) the letter A occurs at least twice.

44. Find the number of integer solutions of the equation x1 + x2 + x3 + x4

= 21, where x1 � 8 and x2, x3, x4 are non-negative.

45. There are 10 questions on a discrete mathematics test. How many ways

are there to assign marks to the problems, if the maximum of the test

paper is 100 and each question is worth at least 5 marks?

46. How many integers between 1 and 10,00,000 have the sum of the digits

equal to 15?

47. Show that among (n + 1) arbitrarily chosen integers, there must exist two

whose difference is divisible by n.

[Hints: n of (n + 1) integers, when divided by n will leave any of the

remainders 0, 1, 2, …, (n – 1) and (n + 1)th integer also will leave one of

the remainders 0, 1, 2, …, (n – 1).]

48. If there are 5 points inside a square of side length 2, prove that two of the

points are within a distance of 2  of each other.
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49. Of any 5 points chosen within an equilateral triangle whose sides are of

length 1, show that two are within a distance of 
1

2
 of each other.

50. Of any 26 points within a rectangle measuring 20 cm by 15 cm, show that

at least two are within 5 cm of each other.

[Hint: Divide the rectangle into subrectangles of dimension 4 � 3 cm.]

51. Prove that, in any list of 10 natural numbers a1, a2, … a10, there is a

string of consecutive items of the list whose sum is divisible by 10.

52. How many integers between 1 and 300 (both inclusive) are divisible by

(i) at least one of 3, 5, 7? (ii) 3 and by 5, but not by 7? (iii) 5 but by

neither 3 nor 7?

53. How many prime numbers are less that 200? Use the principle of inclusion-

exclusion.

[Hint To check if a natural number n is prime, we have to check whether

the prime numbers less than or equal to n  are divisors of n.]

54. How many solutions does the equation x1 + x2 + x3 = 13 have, where x1,

x2, x3 are non-negative integers less than 6? Use the principle of inclusion-

exclusion.

55. A total of 1232 students have taken a course in Tamil, 879 have taken a

course in English and 114 have taken a course in Hindi. Further, 103

have taken courses in both Tamil and English, 23 have taken courses in

both Tamil and Hindi and 14 have taken courses in both English and

Hindi. If 2092 students have taken at least one of Tamil, English and

Hindi, how many students have taken a course in all the three languages?

56. How many derangements of {1, 2, 3, 4, 5, 6} (i) begin with the integers

1, 2 and 3 in some order? (ii) end with the integers 1, 2 and 3 in some

order?

57. In how many ways can a teacher distribute 10 distinct books to his 10

students (one book to each student) and then collect and redistribute the

books so that each student has the opportunity to peruse two different

books?

58. There are 7 letters to be delivered to 7 houses in a block, one addressed

to each house. If the letters are delivered completely at random, at the

rate of one letter to each house, in how many ways can this be done if

(i) no letter arrives at the right house?

(ii) at least one letter arrives at the right house?

(iii) all letters arrive at the right house?

59. Twenty people check their hats at a theatre. In how many ways can their

hats be returned, so that

(i) no one receives his or her own hat?

(ii) at least one person receives his or her own hat?

(iii) exactly one person receives his or her own hat?

60. A child inserts letters randomly into envelopes. What is the probability

that in a group of 10 letters
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(i) no letter is put into the correct envelope?

(ii) exactly one letter is put into the correct envelope?

(iii) exactly 8 letters are put into the correct envelopes?

(iv) exactly 9 letters are put into the correct envelopes?

(v) all letters are put into the correct envelope?

MATHEMATICAL INDUCTION

One of the most basic methods of proof is mathematical induction, which is a

method to establish the truth of a statement about all the natural numbers. It

will often help us to prove a general mathematical statement involving positive

integers when certain instances of that statement suggest a general pattern.

Statement of the Principle of Mathematical

Induction

Let S(n) denote a mathematical statement (or a set of such statements) that

involves one or more occurrences of the variable n, which represents a positive

integer (a) If S (1) is true  and (b) If, whenever S(k) is true for some particular,

(1) The condition (a) is known as the basis step and the condition (b) is

known as the inductive step.

(2) In condition (a), the choice of 1 is not mandatory, viz., S(n) may be true for some

first element n0 � Z, so that the induction process has a starting place.

Strong Form of the Principle

Given a mathematical statement S(n) that involves one or more occurrences of

the positive integer n and if

(a) S(1) is true and

(b) whenever S(1), S(2), … S(k) are true, S(k + 1) is also true, then S(n) is

true for all n � Z+.

Well-ordering Principle

As an application of the principle of mathematical induction, we shall now

establish the well-ordering principle which states that every non-empty set of

non-negative integers has a smallest element.

A set containing just one element has a smallest member, namely the element

itself. Hence, the well-ordering principle is true for sets of size 1.

Now let us assume that the principle is true for sets of size k, viz., any set of

k non-negative integers has a smallest member.

Let us not consider a set S of (k + 1) numbers from which one element ‘a’ is

removed. The remaining k numbers have a smallest element, say b. [by the

induction hypothesis]. The smaller of a and b is the smallest element of S.

Hence, by the principle of mathematical induction, it follows that any finite

set of non-negative integers has a smallest element.

Note
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RECURRENCE RELATIONS

Definition

An equation that expresses an viz., the general term of the sequence {an} in

terms of one or more of the previous terms of the sequence, namely a0, a1, …,

an–1, for all integers n with n � n0, where n0 is a non-negative integer is called a

recurrence relation for {an} or a difference equation.

If the terms of a sequence satisfy a recurrence relation, then the sequence is

called a solution of the recurrence relation.

For example, let us consider the geometric progression 4, 12, 36 108, …, the

common ratio of which is 3. If {an} represents this infinite sequence, we see

that 
1n

n

a

a

�
 = 3 viz., an + 1 = 3an, n � 0 is the recurrence relation corresponding

to the geometric sequence {an}. However, the above recurrence relation does

not represent a unique geometric sequence. The sequence 5, 15, 45, 135, …

also satisfies the above recurrence relation. In order that the recurrence relation

an + 1 = 3an, n � 0 may represent a unique sequence, we should know one of the

terms of the sequence, say, a0 = 4. If a0 = 4, then the recurrence relation

represents the sequence 4, 12, 36, 108, … The value a0 = 4 is called the initial

condition. If a0 = 4, then from the recurrence relation, we get a1 = 3(4), a2 =

32(4) and so on. In general when n � 0, an = 4.3n. This is called the general

solution of the recurrence relation.

As another example, we consider the famous Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, …,

which can be represented by the recurrence relation

Fn + 2 = Fn + 1 + Fn, where n � 0 and F0 = 0, F1 = 1

Definitions
A recurrence relation of the form

co an + c1 an – 1 + c2 an – 2 + … + ck an – k = f (n) is called a linear recurrence

relation of degree k with constant coefficients, where c0, c1, … ck are real

numbers and ck � 0. The recurrence relation is called linear, because each ar is

raised to the power 1 and there are no products such as ar � as. Since an is

expressed in terms of the pervious k terms of the sequence, the degree or order

of the recurrence relation is said to be k. In other words the degree is the

difference between the greatest and least subscripts of the members of the

sequence occurring in the recurrence relation.

If f (n) = 0, the recurrence relation is said to be homogeneous; otherwise it is

said to be non-homogeneous.

The recurrence relations given in the above examples are linear homogeneous

recurrence relations with constant coefficients and of degrees 1 and 2

respectively.

Note
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Solving Recurrence Relations

Systematic procedures have been developed for solving linear recurrence relations

with constant coefficients. Let us first consider the solution of a homogeneous

relation of order 2, viz., the recurrence relation of the form

c0 an + c1 an – 1 + c2 an – 2 = 0, n � 2 (1)

Let an = rn (r � 0) be a solution of (1).

Then c0r
n + c1r

n – 1 + c2r
n – 2 = 0

i.e., c0r
2 + c1r + c2 = 0, since r � 0 (2)

(2) is a quadratic equation in r, which is called the characteristic equation,

whose roots r1 and r2 are called the characteristic roots of the recurrence

relation.

Depending on the nature of the roots r1 and r2, we get 3 different forms of

the solution of the recurrence relation. We state them as follows without proof:

Case (i) r1 and r2 are real and distinct.

The solution of the recurrence relation is an = 1 1 2 2
n nk r k r� , where k1 and k2, are

arbitrary constants determined by initial conditions.

Case (ii) r1 and r2 are real and equal.

The solution is an = (k1 + k2 n)rn, where r1 = r2 = r.

Case (iii) r1 and r2 are complex conjugate.

r1 = r(cos  + i sin )

Then r2 = r(cos  – i sin )

The solution in this case is, an = rn(k1 cos n  + k2 sin n )

Theorem
The solution of a linear non-homogeneous recurrence relation with constant

coefficients, viz., a recurrence relation of the form

c0an + c1an – 1 + c2an – 2 + � + cn –kan – k = f(n) (1)

where f(n) � 0 is of the form an = ( ) ( )h p
n na a� , where ( )h

na  is the solution of the

associated homogeneous recurrence relation, namely,

c0an + c1an – 1 + c2an – 2 + � + ckan – k = 0 (2)

and ( )p
na  is a particular solution of (1).

Proof

Since an = ( )p
na  is a particular solution of (1),

we have c0
( )p
na  + c1

( )
1

p
na �  + � + ck

( )p
n ka �  = f (n) (3)

Let an = bn be a second solution of (1).

Then c0bn + c1bn – 1 + � + ckbn – k = f (n) (4)

(4)–(3) gives

( ) ( )( )
0 1 1 1{ } { } {

p pp
n n n n k n kn n kc b a c b a c b a� � �� �� � � � � �� } = 0 (5)
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Step (5) means that bn – ( )p
na  is a solution of recurrence relation (2), viz., ( )h

na

� bn = ( ) ( )h p
n na a�  for all n.

i.e., the general solution of relation (1) is of the form an = ( ) ( )h p
n na a� .

PARTICULAR SOLUTIONS

There is no general procedure for finding the particular solution of a recurrence

relation. However for certain functions f (n) such as polynomials in n and

powers of constants, the forms of particular solutions are known and they are

exactly found out by the method of undetermined coefficients.

The following table gives certain forms of f (n) and the forms of the

corresponding particular solution, on the assumption that f (n) is not a solution

of the associated homogeneous relation:

Form of f(n) Form of ( )p
na  to be assumed

c, a constant A, a constant

n A0 n + A1

n2 A0 n2 + A1n + A2

nt, t � Z + A0n
t + A1n

t – 1 + … + An

rn, r � R Arn

n trn rn(A0 n t + A1n
t – 1 + … + An)

sin n A sin n + B cos n

cos n A sin n + B cos n

rn sin n rn(A sin n + B cos n)

rn cos n rn(A sin n + B cos n)

When f (n) is a linear combination of the terms in the first column, then ( )p
na  is

assumed as a linear combination of the corresponding terms in the second

column of the table. When f(n) = rn or (A + Bn)rn where r is a non-repeated

characteristic root of the recurrence relation, then ( )p
na  is assumed as An rn or

cn(A + Bn)rn as the case may be. When f(n) = rn, where r is a twice repeated

characteristic root, then ( )p
na  is assumed as An2 rn and so on.

For a different treatment of difference equation (recurrence relations) using

the finite difference operators such as � and E, the students are advised to

 refer to the chapter on ‘Difference Equations’ in the author’s book “Numerical Methods

with Programs in C”.

SOLUTION OF RECURRENCE RELATIONS BY
USING GENERATING FUNCTIONS

Definition
The generating function of a sequence a0, a1, a2, … is the expression

G(x) = a0 + a1x + a2x
2 + � � = 

0

n
n

n

a x
�

�
�

Note
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For example,

(i) the generating function for the sequence 1, 1, 1, 1, … is given by

G(x) = 
0

1

1
n

n

x
x

�

�
�

��

(ii) the generating function for the sequence 1, 2, 3, 4, … is given by

G(x) = 
0n

�

�
� (n + 1)xn = 1 + 2x + 3x2 + … = 

2

1

(1 )x�
(iii) the generating function for the sequence 1, a, a2, a3, … is given by

G(x) = 1 + ax + a2x2
� � = 

1

1 ax�
, for |ax | < 1.

To solve a recurrence relation (both homogeneous and non-homogeneous)

with given initial conditions, we shall multiply the relation by an appropriate

power of x and sum up suitably so as to get an explicit formula for the associated

generating function. The solution of the recurrence relation an is then obtained as

the coefficient of xn in the expansion of the generating function. The procedure is

explained clearly in the worked examples that follow.

WORKED EXAMPLES 2(B)

Example 2.1 Prove, by mathematical induction, that

11 + 32 + 52 + � + (2n – 1)2 = 
1

3
n(2n – 1) (2n + 1).

Let S(n): 12 + 32 + 52 + � + (2n – 1)2 = 
1

3
n(2n – 1) (2n + 1).

When n = 1,

S(1): 12 = 
1

3
� 1 � 1 � 3

So S(1) is true, viz., the basic step is valid.

Let S(n) be true for n = k

i.e., 12 + 32 + 52 + � + (2k – 1)2 = 
1

3
k(2k – 1) (2k + 1)

Now 12 + 32 + 52 + � + (2k – 1)2 + (2k + 1)2

= 
1

3
k(2k – 1) (2k + 1) + (2k + 1)2, using the truth of S(k)

= 
1

3
(2k + 1) {k(2k – 1) + 3(2k + 1)}

= 
1

3
(2k + 1) (2k2 + 5k + 3)

= 
1

3
(2k + 1) (2k + 3)(k + 1) or 

1

3
(k + 1) (2k + 1) (2k + 3)

i.e., S(k + 1) is valid.
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Thus the inductive step is also true.

Hence, S(n) is true for all n � Z+.

Example 2.2 Prove, by mathematical induction, that

1 � 2 � 3 + 2 � 3 � 4 + 3 � 4 � 5 + � + n(n + 1) (n + 2)

= 
1

4
n(n + 1) (n + 2) (n + 3).

Let Sn: 1 � 2 � 3 + 2 � 3 � 4 + � + n(n + 1) (n + 2) = 
1

4
n(n + 1) (n + 2) (n + 3).

Now S1: 1 � 2 � 3 = 
1

4
� 1 � 2 � 3 � 4

Thus, the basic step S1 is true.

Let Sk be true

i.e., 1 � 2 � 3 + 2 � 3 � 4 + � + k(k + 1) (k + 2) = 
1

4
k(k + 1) (k + 2) (k + 3)

(1)

Now [1 � 2 � 3 + 2 � 3 � 4 + � + k(k + 1) (k + 2)] + (k + 1) (k + 2) (k + 3)

= 
1

4
k(k + 1) (k + 2) (k + 3) + (k + 1) (k + 2) (k + 3), by (1)

= 
1

4
(k + 1) (k + 2) (k + 3) {k + 4}

Thus Sk + 1 is true, if Sk is true.

i.e., the inductive step is true.

Hence, Sn is true for all n � Z+.

Example 2.3 Prove, by mathematical induction, that

1 1 1 1

1.2 2.3 3.4 ( 1) 1

n

n n n
� � � � �

� �
�

Let Sn: 
1 1 1 1

1.2 2.3 3.4 ( 1) 1

n

n n n
� � � � �

� �
�

Then S1: 
1 1

1.2 1 1
�

�
 which is true.

i.e., the basic step S1 is true.

Let Sk be true.

i.e.,
1 1 1

1.2 2.3 ( 1) 1

k

k k k
� � � �

� �
� (1)

Now
1 1 1 1

1.2 2.3 ( 1) ( 1)( 2)k k k k
� � � �

� � �
�

= 
1

1 ( 1)( 2)

k

k k k
�

� � �
, by (1)

= 
( 2) 11

1 2

� �� �
� �� �� �

k k

k k
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= 
2( 1) 11

1 2 2

� �� �
�� �� � �� �

k k

k k k
(2)

(2) means that Sk +1 is also true.

i.e., the inductive step is true.

Hence, Sn is true for all n � Z+.

Example 2.4 Use mathematical induction to show that

n! � 2n – 1, for n = 1, 2, 3, …

Let Sn: n! � 2n – 1

� S1: 1! � 20, which is true.

i.e., the basic step is true

Let Sk be true

i.e., k! � 2k – 1 (1)

Now (k + 1)! = (k + 1). k!

� (k + 1). 2k – 1, by (1)

� 2 . 2k – 1, since k + 1 � 2

= 2k (2)

Step (2) means that Sk + 1 is also true.

i.e., the inductive step is true.

Hence, Sn is true for n = 1, 2, 3, ….

Example 2.5 Use mathematical induction to show that

1 1 1 1

1 2 3
n

n
� � � � �� , for n � 2

Let Sn: 
1 1 1 1

1 2 3
n

n
� � � � ��

� S2: 
1 1

2
1 2
� � , since L.S = 1.707 and R.S = 1.414

i.e., the basic step is true for n = 2.

Let Sk be true.

i.e.,
1 1 1 1

1 2 3
k

k
� � � � �� (1)

Now
1 1 1 1 1 1

1 2 3 1 1
k

k k k
� � � � � � �

� �
� , by (1)

Now
( 1) 11

1 1

k k
k

k k

� �
� �

� �
> 

1

1

k k

k

� �

�

i.e., > 
1

1

k

k

�
�
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i.e., > 1k �

� 1 1 1 1

1 2 1k k
� � � �

�
� > 1k � (2)

Step (2) means that Sk + 1 is also true.

Hence, Sn is true for n = 2, 3, 4, … .

Example 2.6 Use mathematical induction to show that

1 3 5 (2 1) 1

2 4 6 (2 ) 1

n

n n

� � �
�

� � �

�

�

, for n = 1, 2, 3, …

Let Sn: 
1 3 5 (2 1) 1

2 4 6 (2 ) 1

n

n n

� � �
�

� � �
�

�

� S1: 
1 1

2 2
� , which is true.

i.e., the basic step is true.

Let Sk be true.

i.e.,
1 3 5 (2 1) 1

2 4 6 (2 ) 1

k

k k

� � �
�

� � �
�

�

(1)

Now
1 3 5 (2 1) (2 1) 2 11

2 4 6 (2 ) (2 2) 2 21

k k k

k k kk

� � � � � �
� �

� � � � ��
�

�

, by (1) (2)

Now
12 1

2 2 2

kk

k k

��
�

� �
,

if
2

2

(2 1) 1

2(2 2)

k k

kk

� �
�

��

i.e., if
2

2

4 4 1 1

24 8 4

k k k

kk k

� � �
�

�� �
i.e., if 4k3 + 12k2 + 9k + 2 � 4k3 + 12k2 + 12k + 4

i.e., if 9k + 2 � 12k + 4

i.e., if 3k + 2 � 0, which is true.

Using this in step (2), we get

11 3 5 (2 1)(2 1) 1

2 4 6 (2 )(2 2) 1 2

kk k

k k k k

�� � � �
� �

� � � � �
�

�

i.e., � 1

2k �
(3)
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Step (3) means that Sk + 1 also true.

i.e., the induction step is true.

Hence, Sn is true for n = 1, 2, 3, …

Example 2.7 Use mathematical induction to prove that 
2

1
2

n

n
H � � , where

Hj = 
1 1 1

1
2 3 j

� � � �� .

Let Sn: 2
1

2
n

n
H � �

� S1: H2 = 
1 1

1 1
2 2

� � � , which is true.

i.e., the basic step is true.

Let Sk be true.

i.e.,
1 1 1

1 1
2 3 22k

k� � � � � �� (1)

Now
1

1 1 1 1
1

2 3 2 2k k �� � � � ��

= 
1

1 1 1 1 1 1
1

2 3 2 2 1 2 2 2k k k k �
� � � �� � � � � � � �� � � �� � � �� �

� �

� 1 1 1
1

2 2 1 2 2 2 2k k k k

k � �� � � � �� �� � �� �
�

�
1

1
1 2

2 2k

k
k �� � � (� each of the 2k terms in the second

group �
1

1

2k �
, the last term)

i.e., � 1
1

2 2

k� �

i.e., �
1

1
2

k �� �� � � (2)

Step (2) means that Sk + 1 is true.

i.e., the inductive step is true.

� Sn is true for n � Z+.

Example 2.8 Use mathematical induction to prove that n3 + 2n is divisible

by 3, for n � 1.

Let Sn: (n
3 + 2n) is divisible by 3.

� S1: (1
3 + 2) is divisible by 3, which is true.

i.e., the basic step is true.

Let Sk be true.

i.e., k3 + 2k is divisible by 3 (1)
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Now (k + 1)3 + 2(k + 1)

= (k3 + 2k) + (3k2 + 3k + 3)

(k2 + 2k) is divisible by 3, by (1)

Also 3k3 + 3k + 3 = 3(k2 + k + 1) is divisible by 3.

� The sum, namely, (k + 1)3 + 2(k + 1) is divisible by 3 (2)

i.e., Sk + 1 is also true

i.e., the inductive step is true.

� Sn is true for n � 1.

Example 2.9 Use mathematical induction to prove that

n3 + (n + 1)3 +(n + 2)3 is divisible by 9, for n � 1.

Let Sn: n
3 + (n + 1)3 + (n + 2)3 is divisible by 9.

� S1: 1
3 + 23 + 33 = 36 is divisible by 9, which is true.

i.e., the basic step is true.

Let Sk be true.

i.e., k3 + (k + 1)3 + (k + 2)3 is divisible by 9 (1)

Now (k + 1)3 + (k + 2)3 + (k + 3)3

= [k3 + (k + 1)3 + (k + 2)3] + [9k2 + 27k + 27]

= [k3 + (k + 1)3 + (k + 2)3] + 9(k2 + 3k + 3)

The first expression is divisible by 9 [by (1)] and the second expression is a

multiple of 9.

� Their sum is divisible by 9

i.e., Sk + 1 is true.

i.e., the inductive step is true.

� Sn is true for n � 1.

Example 2.10 Use mathematical induction to prove that (3n + 7n – 2) is

divisible by 8, for n � 1.

Let Sn: (3
n + 7n – 2) is divisible by 8

� S1: (3 + 7 – 2) is divisible by 8, which is true.

i.e., the basic step is true.

Let Sk be true.

i.e., (3k + 7k – 2) is divisible by 8 (1)

Now 3k + 1 + 7k + 1 – 2 = 3(3k) + 7(7k) – 2

= 3{3k + 7k – 2} + 4(7k + 1) (2)

3(3k + 7k – 2) is divisible by 8, by step (1)

7k + 1 is an even number, for k � 1

� 4(7k + 1) is divisible by 8

� R.S. of (2) is divisible by 8

i.e., 3k + 1 + 7k + 1 – 2 is divisible by 8

i.e., Sk + 1 is also true.

i.e., the inductive step is true

� Sn is true for n � 1.
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Example 2.11 Solve the recurrence relation an – 2an – 1 = 3n; a1 = 5

The characteristic equation of the recurrence relation is r – 2 = 0 � r = 2.

� ( )h
na  = c � 2n

Since the R.S. of the relation is 3n, let a particular solution of the relation be

an = A � 3n. Using this in the relation, we get

A � 3n – 2 � A � 3n–1 = 3n

i.e., 3A – 2A = 3 or A = 3

� ( )p
na  = 3n + 1

� General solution is an = ( ) ( )h p
n na a�  = c � 2n + 3n + 1

Using the condition a1 = 5, we get 2c + 9 = 5

� c = –2

Hence, the required solution is an = 3n + 1 – 2n+ 1.

Example 2.12 Solve the recurrence relation

an = 2an – 1 + 2n; a0 = 2

The characteristic equation of the R.R. is r – 2 = 0 � r = 2

� ( )h
na  = c � 2n

Since the R.S. of the R.R. is 2n and 2 is the characteristic root of the R.R., let

an = An � 2n be a particular solution of the R.R.

Using this in the R.R., we get

An 2n – 2(n –1)2n – 1 = 2n

i.e., An –(n – 1) = 1 � A = 1

� ( )p
na  = n2n

� General solution of the R.R. is

an = ( ) ( )h p
n na a�

= c � 2n + n � 2n

Given: a0 = 2 � c = 2

Hence, the required solution is an = (n + 2) � 2n.

Example 2.13 n circular disks with different diameters and with holes in

their centres can be stacked on any of the three pegs mounted on a board. To

start with, the pegs are stacked on peg 1 with no disk resting upon a smaller

one. The objective is to transfer the disks one at a time so that we end up with

the original stack on peg 2. Each of the three pegs may be used as temporary

location for any disk, but at no time a larger disk should lie on a smaller one on

any peg. What is the minimum number of moves required to do this for n

disks?

This problem is popularly known as the Tower of Hanoi problem.

Let Hn denote the number of moves required to solve the Tower of Hanoi

problem with n disks. Let us form a recurrence relation for Hn and then solve it.

Note
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To start with, the n disks are on peg 1 in the decreasing order from bottom

to top. We can transfer the top (n – 1) disks to peg 3, as per the rules specified,

in Hn – 1 moves (by the meaning assigned to Hn). We keep the largest disk fixed

in peg 1 during these moves. Then we use one move to transfer the largest disk

to peg 2. We can transfer the (n – 1) disks now on peg 3 to peg 2 using Hn – 1

additional moves, placing them on top of the largest disk which remains fixed

in peg 2 during the second set of Hn – 1 moves.

Since the problem cannot be solved using fewer moves, we get

Hn = 2Hn – 1 + 1, which is the required R.R. Obviously H1 = 1, since one

disk can be transferred from peg 1 to peg 2 in one move.

The characteristic equation of the R.R. is r – 2 = 0 � r = 2

� ( )h
nH  = c � 2n.

Since the R.S. of the R.R. Hn – 2 Hn – 1 = 1 is 1, let

Hn = A be a particular solution of the R.R. Using this in the R.R., we have

A = 2A + 1

i.e., A = –1 or
( )p
nH  = –1

� The general solution of the R.R. is

Hn = c ��2n – 1

Using the initial condition H1 = 1, we get 2c – 1 = 1 � c = 1

� The required solution of the Tower of Hanoi problem is Hn = 2n – 1.

Example 2.14 Solve the recurrence relation an + 1 – an = 3n2 – n; n � 0,

a0 = 3.

The characteristic equation of the R.R. is

r – 1 = 0 i.e., r = 1

� ( )h
na  = c � 1n = c

Since the R.S. of the R.R. is 3n2 – n � (3n2 – n) � 1n, let the particular

solution of the R.R. be assumed as an = (A0n
2 + A1n + A2) n, since 1 is a

characteristic root of the R.R. Using this in the R.R., we have

i.e., A0(3n2 + 3n + 1) + A1(2n + 1) + A2 = 3n2 – n

Comparing like terms, we have

A0 = 1, 3A0 + 2A1 =  –1 and A0 + A1 + A2 = 0.

Solving these equations, we get

A0 = 1, A1 = –2 and A2 = 1

� ( )p
na  = n3 – 2n2 + n

= n(n – 1)2

� The general solutions of the R.R. is

an = 
( ) ( )h p
n na a�

= c + n(n – 1)2
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Given that a0 = 3. � c = 3

� The required solution of the R.R. is

an = 3 + n(n – 1)2.

Example 2.15 Find a formula for the general term Fn of the Fibonacci

sequence 0, 1, 1, 2, 3, 5, 8, 13, ….

The recurrence relation corresponding to the Fibonacci sequence {Fn}; n � 0

is  Fn + 2 = Fn + 1 + Fn; n � 0 with the initial conditions F0 = 0, F1 = 1.

The characteristic equation of the R.R. is

r2 – r – 1 = 0.

Solving it, we have r = 
1 5

2

�
.

Since the R.S. of Fn + 2 – Fn + 1 – Fn = 0 is zero, the solution of the R.R. is

Fn = 1 2

1 5 1 5

2 2

n n

c c
� � � �� �

�� � � �� � � � .

F0 = 0 gives c1 + c2 = 0 (1)

F1 = 1 gives 1 2

1 5 1 5

2 2
c c
� � � �� �

�� � � �� � � �  = 1 (2)

Using (1) in (2), we get c1 – c2 = 
2

5
(3)

Using (1) in (3), we have c1 = 
1

5
 and c2 = –

1

5
.

� The general term Fn of the Fibonacci sequence is given by

Fn = 
1 5 1 51 1

2 25 5

n n
� � � �� �

�� � � �� � � � ; n � 0.

Example 2.16 A particle is moving in the horizontal direction. The

distance it travels in each second is equal to two times the distance it travelled

in the previous second. If ar denotes the position of the particle in the r th

second, determine ar, given that a0 = 3 and a3 = 10.

Let ar, ar + 1, ar + 2 be the positions of the particle in the r th, (r + 1)st and

(r + 2)nd seconds.

Then ar + 2 – ar + 1 = 2(ar + 1 – ar)

i.e., ar + 2 – 3ar + 1 + 2ar = 0 (1)

The characteristic equation of the R.R. (1) is m2 – 3m + 2 = 0

i.e., (m – 1) (m – 2) = 0 or m = 1, 2

Since the R.S. of (1) is zero, the solution of the R.R. is
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ar = c1 � 1r + c2 � 2
r

i.e., ar = c1 + c2 � 2r (2)

Using a0 = 3, we have c1 + c2 = 3 (3)

Using a3 = 10, we have c1 + 8c2 = 10 (4)

Solving (3) and (4), we get c1 = 2; c2 = 1.

� The required solutions is

a = 2r + 2.

Example 2.17 Solve the recurrence relation

an + 2 – 6an + 1 + 9an = 3(2n) + 7(3n), n � 0,

given that a0 = 1 and a1 = 4.

The characteristic equation of the R.R. is

r2 – 6r + 9 = 0 or (r – 3)2 = 0

� r = 3, 3

� ( )h
na  = (c1 + c2n)3n

Noting that 3 is a double root of the characteristic equation, we assume the

particular solution of the R.R. as

an = A0 � 2n + A1n
2 � 3n

Using this in the R.R., we have

A0 � 2
n + 2 + A1(n + 2)2 � 3n + 2 – 6{A0 � 2

n + 1 + A1 � (n + 1)2 � 3n + 1}

+ 9{A0 � 2n + A1n
2 � 3n} = 3(2n) + 7(3n)

i.e., A02
n (4 – 12 + 9) + A1 � 3n {9(n + 2)2 – 18 (n + 1)2 + 9n2}

= 3 � (2n) + 7 � (3n)

i.e., A0 � 2n + A1 � 3
n � 18 = 3 � (2n) + 7 � (3n)

Comparing like terms, we get

A0 = 1 and A1 = 
7

18

� ( )p
na  = 2n + 

7

18
n2 � 3n

Hence, the general solution of the R.R. is

an = 
( ) ( )h p
n na a�

i.e., an = (c1 + c2 � n) � 3n + 2n + 
7

18
n2 � 3n

Given a0 = 1 � c1 + 1 = 1

i.e., c1 = 0

Given a1 = 4 � 3c2 + 2 + 
7

6
 = 4 i.e., c2 = 

5

18
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� The required solution is

an = 
5

18
n � 3n + 2n + 

7

18
n2 � 3n.

Example 2.18 Solve the recurrence relation

an = 4an – 1 – 4an – 2 + (n +1)2n.

The given R.R. is an – 4an – 1 + 4an – 2 = (n + 1)2n.

The characteristic equation of the R.R. is

r2 – 4r + 4 = 0

i.e., (r – 2)2 = 0, i.e., r = 2, 2.

� ( )h
na  = (c1 + c2n) � 2n

Since the R.S. of the R.R. is (n + 1)2n, where 2 is a double root of the

characteristic equation, we assume the particular solution of the R.R. as

an = n2(A0 + A1n) � 2n

Using this in the R.R., we have

n2(A0 + A1n) � 2n – 4(n – 1)2 {A0 + A1(n – 1)}2n – 1

+ 4(n – 2)2 {A0 + A1(n – 2)} 2n – 2 = (n + 1)2n

i.e., 4n2(A0 + A1n) – 8 (n – 1)2 {A0 + A1(n – 1)}

+ 4(n – 2)2 {A0 + A1(n – 2)} = 4(n + 1)

Equating coefficients of n on both sides,

A1 = 
1

6

Equating constant terms on both sides,

2A0 – 6A1 = 1

i.e., A0 = 1

�
3

( ) 2 2
6

p n
n

n
a n

� �
� �� �� �

Hence, the general solution of the R.R. is

an = 
( ) ( )h p
n na a�

i.e., an = 
3

2
1 2 2

6

nn
c c n n
� �

� � �� �� � .

Example 2.19 Solve the recurrence relation

an = 2(an – 1 – an – 2); n � 2 and a0 = 1, a1 = 2.

The given recurrence relation is

an – 2an – 1 + 2an – 2 = 0

The characteristic equation of the R.R. is

r2 – 2r + 2 = 0

Solving, we have r = 1 ± i
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The modulus-amplitude form of

1 ± i = 
4 4

� ��� �

Hence, the general solution of the R.R. is

an = 
4 4

n

c c
� �

�� �
� �

(1)

Using the condition a0 = 1 in (1), we get c1 = 1

Using a1 = 2 in (1), we get

2
1 1

2
2 2

c� �� �� �
� �

 = 2

i.e., c2 = 1

� The required solution is

an = 
4 4

� ��� �
n n n

.

Example 2.20 Form a recurrence relation satisfied by an = 2

1�
�
n

k

k  and

find the value of 2

1�
�
n

k

k , by solving it

an = 2

1�
�
n

k

k and an –1 = 
1

2

1

�

�
�
n

k

k

Hence, an – an – 1 = n2. Clearly a1 = 1

The characteristic equation of the R.R. is

r – 1 = 0 or r = 1

� ( )h
na  = c � 1n = c

Since the R.S. of the R.R. is n2 = n2 � 1n, let the particular solution be assumed

as an = (A0n
2 + A1n + A2)n.

Using this in the R.R., we have

(A0n
2 + A1n + A2)n – {A0(n – 1)2 + A1(n – 1) + A2)}(n – 1) = n2

Equating like terms and solving, we get

A0 = 
1

3
, A1 = 

1

2
 and A2 = 

1

6

Hence,
( )p
na  = 

6

n
(2n2 + 3n + 1)

= 
6

n
(n + 1) (2n + 1)
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Hence, the general solution of the R.R. is

an = c + 
6

n
(n + 1) (2n + 1)

Using a1 = 1, we get c = 0

� an = 2n�  = 
1

6
n(n + 1) (2n + 1).

Example 2.21 Use the method of generating function to solve the

recurrence relation

an = 3an – 1 + 1; n � 1, given that a0 = 1.

Let the generating function of {an} be G(x) = 
0

n
n

n

a x
�

�
� .

The given R.R. is an = 3an – 1 + 1 (1)

� 1
1 1 1

3n n n
n n

n n n

a x a x x
� � �

�
� � �

� �� � � ,

on multiplying both sides of (1) by xn and summing up.

i.e., G(x) – a0 = 3x G(x) + 
1

x

x�

i.e., (1 – 3x) G(x) = 1 + 
1

x

x�
(� a0 = 1)

� G(x) = 

31

1 2 2

(1 )(1 3 ) 1 1 3x x x x

�
� �

� � � �

i.e., G(x) = 
1

2
� (1 – x)–1 + 

3

2
(1 – 3x)– 1

i.e.,
0

n
n

n

a x
�

�
�  = 

0 0

31
3

2 2

n n n

n n

x x
� �

� �
� �� �

� an = coefficient of xn in G(x)

= 
1

2
(3n + 1 – 1)

Example 2.22 Use the method of generating function to solve the

recurrence relation

an = 4an – 1 – 4an – 2 + 4n ; n � 2, given that a0 = 2 and a1 = 8.

Let the generating function of {an} be G(x) = 
0

n
n

n

a x
�

�
� .
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Multiplying both sides of the given R.R. by xn and summing up, we have

1 2
2 2 2 2

4 4 4n n n n n
n n n

n n n n

a x a x a x x
� � � �

� �
� � � �

� � �� � � �

i.e, {G(x) – a0 – a1x} = 4x{G(x) – a0} – 4x2 G(x) + 
1

1 4x�
 – 1 – 4x.

i.e., (1 – 4x + 4x2) G(x) = 
1

1 4x�
 – 1 – 4x + 2 (� a0 = 2 and a1 = 8)

� G(x) = 

2

2

1 (1 4 )

(1 2 ) (1 4 )

x

x x

� �

� � �

= 
2

4 2

1 4 (1 2 )x x
�

� �
, on splitting into partial fractions

i.e., G(x) = 
0

n
n

n

a x
�

�
�  = 4[1 + 4x + (4x)2 + … + (4x)n + � �]

– 2[1 + 2 � (2x) + 3 � (2x)2 + � + (n + 1) (2x)n + � �]

� an = 4n + 1 – (n + 2)2n + 1.

Example 2.23 Use the method of generating function to solve the

recurrence relation

an + 1 – 8an + 16an – 1 = 4n; n � 1; a0 = 1, a1 = 8.

Let the generating functions of {an} be

G(x) = 
0

n
n

n

a x
�

�
�

Multiplying both sides of the given R.R. by xn and summing up, we have

1 1
1 1 1 1

8 16 (4 )n n n n
n n n

n n n n

a x a x a x x
� � � �

� �
� � � �

� � �� � � �

i.e.,
1

x
{G(x) – a0 – a1x} –8{G(x) – a0} + 16x G(x) = 

1

1 4 x�
 – 1

i.e., (1 – 8x + 16x2) G(x) – a0 – a1x + 8a0x = 
24

1 4

x

x�

i.e., G(x) = 
2

0 1 0

2 3

( 8 ) 4

(1 4 ) (1 4 )

a a a x x

x x

� �
�

� �

= 
2

2 3

41

(1 4 ) (1 4 )

x

x x
�

� �
, on using the values of a0 and a1.

= (1 – 4x + 4x2) (1 – 4x)–3
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i.e.,
0

n
n

n

a x
�

�
�  = (1 – 4x + 4x2) �� 1

2
{1 � 2 + 2 � 3 (4x) + 3 � 4(4x)2 + �

+ (n + 1) (n + 2) (4x)n
�}

� an = 
1

2
[(n + 1) (n + 2) 4n – n(n + 1)4n + (n – 1)n 4n– 1]

= 
1

2
4n – 1{4(n2 + 3n + 2) – 4(n2 + n) + (n2 – n)}

= 
1

2
(n2 + 7n + 8) � 4n – 1.

Example 2.24 Use the method of generating function to solve the

recurrence relation an + 2 – 4an = 9n2; n � 0.

Let the generating function of {an} be

G(x) = 
0

n
n

n

a x
�

�
�

Multiplying both sides of the given R.R. by xn and summing up, we have

2
2

0 0 0

4 9n n n
n n

n n n

a x a x n x
� � �

�
� � �

� �� � �

i.e.,
2

1

x
{G(x) – a0 – a1x} – 4G(x)

= 9
0n

�

�
� {n(n + 1) – n}xn

= 9[1 � 2x + 2 � 3x2 + �] – 9[x + 2x2 + 3x3 + �]

= 9x � 2(1 – x)–3 – 9x(1 – x)–2

i.e.,
2

1
4

x

� ��� �� �
G(x) = 

0 1

2 3 2

18 9

(1 ) (1 )

a a x x

xx x x
� � �

� �

� G(x) = 
3 3

0 1

2 3 2 2 2

18 9

1 4 (1 ) (1 4 ) (1 ) (1 4 )

a a x x x

x x x x x

�
� �

� � � � �

= 

3 4
0 1

3

9 9

(1 2 )(1 2 ) (1 ) (1 2 )(1 2 )

a a x x x

x x x x x

� �
�

� � � � �

= 
2 3

17 271

3 5 6 12 4

1 2 1 2 1 1 2 1 2(1 ) (1 )
� � � � � �

� � � � �� �
A B

x x x x xx x

(On splitting into partial fractions)
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= c1(1 – 2x)–1 + c2(1 + 2x)–1 – 
17

3
(1 – x)–1 + 5(1 – x)–2

– 6(1 – x)–3,

where c1 = A + 
27

4
 and c2 = B – 

1

12

i.e.,
0

n
n

n

a x
�

�
� = 1 2

0 0

2 ( 1) 2n n n n n

n n

c x c x
� �

� �
� �� �  – 

0

17

3

n

n

x
�

�
�

+ 5
0n

�

�
� (n + 1) xn – 3

0n

�

�
� (n + 1) (n + 2)xn

Equating coefficients of xn, we get the general solution of the given R.R. as

an = c1 � 2n + c2 � (–1)n 2n – 
17

3
 + 5(n + 1) – 3(n + 1) (n + 2)

i.e., an = c1 � 2n + c2 � (–1)n � 2n – 3
2 204

3 9
n n
� �� �� � .

Example 2.25 Use the method of generating function to solve the

recurrence relation

an = 4an – 1 + 3n � 2n; n � 1, given that a0 = 4.

Let the generating function of {an} be

G(x) = 
0

n
n

n

a x
�

�
� .

Multiplying both sides of the given R.R. by xn and summing up, we have

1n

�

�
� anxn – 4

1n

�

�
� an – 1 xn = 3

1n

�

�
� n(2x)n

i.e., {G(x) – a0} – 4x G(x) = 6x �
1n

�

�
� n(2x)n – 1

i.e., (1 – 4x) G(x) = 
2

6

(1 – 2 )

x

x
 + 4 [� a0 = 4]

� G(x) = 
2

6

(1 4 )(1 2 )

x

x x� �

= 
2

10 3 3

1 4 1 2 (1 2 )x x x
� �

� � �
, on splitting into partial fractions

i.e.,
0n

�

�
� anxn = 10

0n

�

�
� (4x)n – 3

0n

�

�
� (2x)n – 3

0n

�

�
� (n + 1) (2x)n

Equating coefficients of xn, we get

an = 10 � 4n – 3 � 2n – 3(n + 1) � 2n

= 10 � 4n – (3n + 6) � 2n
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EXERCISE 2(B)

Part A: (Short answer questions)

1. What is mathematical induction? In what way is it useful?

2. State the principle of mathematical induction.

3. What are basic and inductive steps in mathematical induction?

4. State the strong form of the principle of mathematical induction.

5. What is well-ordering principle. Establish it using mathematical induction.

6. Use mathematical induction to show that 1 + 2 + 22 + � + 2n = 2n + 1 – 1.

7. Use mathematical induction to show that 1 + 2 + 3 + � + n = 
1

2
n(n + 1).

9. Find a formula for the sum of the first n even positive integers and prove

it by induction.

10. Define a recurrence relation. What do you mean by its solution?

11. Define a linear recurrence relation. What is meant by the degree of such a

relation?

12. When is a recurrence relation said to be homogeneous? Non-

homogeneous?

13. Define the characteristic equation and characteristic polynomial of a

recurrence relation.

14. What do you mean by particular solution of a recurrence relation?

15. Define generating function of a sequence and give an example.

16. How will you use the notion of generating function to solve a recurrence

relation?

Part B

Prove, by mathematical induction, the following results:

17. 1 + 3 + 5 + � + (2n – 1) = n2.

18. 12 – 22 + 32 – � + (–1)n – 1n2 = 

1( 1) ( 1)

2

n n n�� � �
.

19. 13 + 23 + 33 + � + n3 = 
1

4
n2(n + 1)2.

20. 1 � 2 + 2 � 3 + 3 � 4 + � + n(n + 1) = 
( 1)( 2)

3

n n n� �
.

21. 1 � 2 + 3 � 4 + 5 � 6 + � + (2n – 1) � 2n = 
1

3
n(n + 1)(4n –1).

22.
1 1 1 1

1 3 3 5 5 7 (2 1)(2 1) 2 1

n

n n n
� � � � �

� � � � � �
� .
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23.
1 3 1 3 5 1 3 5 (2 1)1

2 4 2 4 6 2 4 6 8 2 4 6 (2 2)

n

n

� � � � � �
� � � �

� � � � � � � � �
�

�

�

= 
1 3 5 (2 1)1

2 2 4 6 (2 2)

n

n

� � �
�

� � �
�

�

.

24.
2

1

( 1)

(2 1)(2 1) 2(2 1)

n

r

n nr

r r n�

�
�

� � �
� .

25. n < 2n, for n � 1.

26. n2 < 2n, for n > 4.

27. 2n < n3, for n � 10.

28. 2n < n! for n > 3.

29. 2n � (2n + 1), for n � 3.

30.
1 3 5 (2 1) 1

2 4 6 2 2

n

n n

� � �
�

� �
�

�

, for n � 1.

Prove, by mathematical indication, the following results, when n � Z+.

31. n3 – n is divisable by 6.

32. n5 – n is divisible by 5.

33. 5n – 1 is divisable by 4.

34. 8n – 3n is divisible by 5.

35. 52n – 25n is divisible by 7.

36. 10n + 1 + 10n + 1 is divisible by 3.

37. 6 � 7n – 2 � 3n is divisible by 4.

Solve the following recurrence relations:

38. an + 1 – 2an = 5; n � 0; a0 = 1.

39. an – 2an – 1 = n + 5; n � 1; a0 = 4.

40. an + 1 – an = 2n + 3; n � 0; a0 = 1.

41. an – 2an – 1 = 2n2; n � 1; a1 = 4.

42. an – 3an – 1 = 2n; n � 1; a0 = 1.

43. an = 2an – 1 + 3 � 2n; n � 1; a0 = 5.

44. an – an – 1 = 3(bn  – an – 1), where

bn = 
10

1000 (3/2) , for 0 10

1000 (3/2) , for 10

n n

n

� � � �
�

� ��
 given that a0 = 0.

45. an + 1 = 2an + 3an – 1; n � 1; given a0 = 0, a1 = 8.

46. 9an = 6an – 1 – an – 2; n � 2, given a0 = 3, a1 = –1.

47. an + 2 – an + 1 – 2an = 4; n � 0, given a0 = –1, a1 = 3.

48. an + 2 + 4an + 1 + 4an = 7; n � 0; given a0 = 1, a1 = 2.

49. an + 2 + 3an + 1 + 2an = 3n; n � 0; given a0 = 0, a1 = 1.

50. an + 2 – 3an + 1 + 2an = 2n; n � 0; given a0 = 3, a1 = 6.

51. an = 5an – 1 – 6an – 2 + 2n + 3n.
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52. an = 4an – 1 – 3an – 2 + 2n + n + 3; n � 2, given a0 = 1; and a1 = 4.

53. an + 2 – 4an + 1 + 3an = 2n � n2; n � 0; given a0 = a1 = 0.

54. an + 2 – 7an + 1 – 8an = n(n – 1)2n.

Use the method of generating functions to solve the following recurrence

relations:

55. an + 3an – 1 – 4an – 2 = 0; n � 2, given a0 = 3, a1 = –2.

56. an + 2 – 5an + 1 + 6an = 36; n � 0; given a0 = a1 = 0.

57. an + 2 – an = 2n; n � 0; given a0 = 0; a1 = 1.

58. an + 2 – 6an + 1 + 9yn = 3n; n � 0; given a0 = 2 and a1 = 9.

59. an + 1 + 4an + 4an – 1 = n – 1; n � 1, given a0 = 0 and a1 = 1.

60. an + 2 + an = n � 2n; n � 0.

ANSWERS

Exercise 2(A)

3. (i) 8! (ii) 7! (iii) 7! (iv) 6!

4. 24 5. 60 6. 90 7. 720, 240

9. 252 10. 45,04,501 13. 9 16. 22; 17

17. 220 19. 1854 20. 3186

21. (i) 1,81,440 (ii) 1,05,840 (iii) 30,240 (iv) 5040

(v) 35,280 (vi) 70,560 (vii) 75,600

22. 12; 12; 8; 4; 16; 8 23. 240; 96; 708

24. (i) 5040 (ii) 144 (iii) 288 (iv) 720

25. (i) 210 (ii) 310

26. (i) 220 (ii) 299 (iii) 4017 (iv) 924

27. (i) 1024 (ii) 45 (iii) 176 (iv) 252

28. (i) 120 (ii) 968 (iii) 386 (iv) 512

29. (i) 5040 (ii) 720 (iii) 120 (iv) 120

(v) 24 (vi) 0

30. (i) 60 (ii) 48 (iii) 78 (iv) 78

31. (i) 120 (ii) 360 (iii) 360

32. (i) 34650 (ii) 28350

33. (i) 24 (ii) 24

34. (i) 720 (ii) 240

35. (i) 2,86,000 (ii) 1,49,760

36. 43,200

37. (i) 1,25,970 (ii) 44,100 (iii) 63,900 (iv) 40,935

(iv) 10,695

38. (i) 4242 (ii) 4221

39. (i) 1,12,32,000

40. (i) C(25, 5) � 6! (ii) C(24, 4) � 6!

(iii) C(24, 4) � 5! (iv) 15 � C(24, 4) � 4!

41. (i) 286 (ii) 165 (iii) 110 (iv) 80

(v) 276
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42. (i) 35 (ii) 70

43. (i) 252 (ii) 35 (iii) 56

44. 560 45. C(59, 9) 46. C(20, 15) – 6 � C(10, 5)

52. (i) 162 (ii) 18 (iii) 34

53. 46 54. 6 55. 7

56. (i) 4 (ii) 36 57. 10! � D10

58. (i) D7 (ii) 7! – D7 (iii) 1

59. (i) D20 (ii) 20! – D20 (iii) 20 � D19

60. (i) D10/10! (ii) 10 � D9/10! (iii) C(10, 2)/10! (iv) 0

(v) 1/10!

Exercise 2(B)

38. an = 6(2n) – 5 39. an = 11(2n) – (n + 7)

40. an = (n + 1)2 41. an = 13(2n) – 2(n2 + 4n + 6)

42. an = 2(3n – 2n) 43. an = (3n + 5)2n

44. an = 
9000 3

( 2)
7 2

n
n

� �� � � �� �� �� �
, for 0 � n � 10

= 1000
10

3

2

� �
� � {1 – (–2)10}, for n > 10.

45. an = 2(3n) – 2(–1)n 46. an = (1 – 2n)/ 3n – 1

47. an = 2n + 1 + (–1)n + 1 – 2 48. an = 
5 72

( 2)
9 6 9

nn� �� � �� �

49. an = 
3

4
(–1)n – 

4

5
(–2)n + 

1

20
(3)n. 50. an = 1 + 2n + 1 + n � 2n – 1

51. an = A � 2n + B � 3n – n � 2n + 1 + 
3

4
(2n + 7)

52. an = 
391

8 8
� (3n) – 2n + 2 – 

1

4
n2 – 

5

2
n.

53. an = 3 + 5(3n) – (n2 + 8) � 2n.

54. an = A � 8n + B � (–1)n – 
1

54
(3n2 – 5n + 2) � 2n 55. an = 2 + (–4)n

56. an = 18[3n – 2n + 1 + 1] 57. an = 
1

3
[2n – (–1)n]

58. an = 
1

18
(n2 + 17n + 36) � 3n

59. an = 
2

27
(–2)n – 

5

9
n(–2)n – 

2 1

27 9
� n.

60. an = A cos
2

 + B sin 
2 25

n �
� � 2n.



Graph Theory

INTRODUCTION

Graphs are discrete structures consisting of vertices and edges that connect

these vertices. Depending on the type and number of edges that can connect a

pair of vertices, there are many kinds of different graphs. The graph models

can be used to represent almost every problem involving discrete arrangement

of objects, where we are not concerned with their internal properties but with

their inter-relationship. Eventhough Graph theory is an old subject, one of the

reasons for the recent interest in it is its applicability in many diverse fields

such as computer science, physical sciences, electrical and communication

engineering and economics.

In this section, we shall define a graph as an abstract mathematical system

and also represent graphs diagrammatically. Then we shall discuss some of the

basic concepts and theorems of graph theory.

BASIC DEFINITIONS

A graph G = (V, E ) consists of a non-empty set V, called the set of vertices

(nodes, points) and a set E of ordered or unordered pairs of elements of V,

called the set of edges, such that there is a mapping from the set E to the set of

ordered or unordered pairs of elements of V.

If an edge e � E is associated with an ordered pair (u, v) or an unordered

pair (u, v), where u, v � V, then e is said to connect or join the nodes u and v.

The edge e that connects the nodes u and v is said to be incident on each of the

nodes. The pair of nodes that are connected by an edge are called adjacent

nodes.
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A node of a graph which is not adjacent to any other node (viz., which is not

connected by an edge to any other node) is called an isolated node. A graph

containing only isolated nodes (viz. no edges) is called a null graph.

If in graph G = (V, E), each edge e � E is associated with an ordered pair of

vertices, then G is called a directed graph or digraph. If each edge is associated

with an unordered pair of vertices, then G is called an undirected graph.
When a graph is represented diagrammatically, the vertex set is represented

as a set of points in plane and an edge is represented by a line segment or

an arc (not necessarily straight) joining the two

vertices incident with it. In the diagram of a

digraph, each edge e = (u, v) is represented by

means of an arrow or directed curve drawn

from the initial point u to the terminal point v

as in the Figs 3.1.

An edge of a graph that joins a vertex

to itself is called a loop. The direction of

a loop is not significant, as the initial and

terminal nodes are one and the same.

If, in a directed or undirected graph, certain pairs of veritices are joined by

more than one edge, such edges are called parallel edges. In the case of

directed edges, the two possible edges between a pair of vertices which are

opposite in direction are considered distinct.

A graph, in which there is only one edge between a pair of vertices, is called

a simple graph.

A graph which contains some parallel edges is called a multigraph.

Fig. 3.1

Note

A graph in which loops and parallel edges are allowed is called a

pseudograph. Graphs in which a number (weight) is assigned to each edge are

called weighted graphs.

DEGREE OF A VERTEX

The degree of a vertex in an undirected graph is the number of edges incident

with it, with the exception that a loop at a vertex contributes twice to the

degree of that vertex. The degree of a vertex v is denoted by deg (v). Clearly

the degree of an isolated vertex is zero. If the degree of a vertex is one, it is

called a pendant vertex.

Fig. 3.2
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For example, let consider the graph in Fig. 3.3.

deg (v1) = 2, deg (v2) = deg (v3) = deg (v5) = 4,

deg (v4) = 1, deg (v6) = 3, deg (v7) = 0.

We note that v4 is a pendant vertex and v7 is an

isolated vertex.

Theorem (The Handshaking theorem)

If G = (V, E) is an undirected graph with e edges, then deg( )i
i

v�  = 2e.

Viz., the sum of the degrees of all the vertices of an undirected graph is

twice the number of edges of the graph and hence even.

Proof
Since every edge is incident with exactly two vertices, every edge contributes 2

to the sum of the degree of the vertices.

� All the e edges contribute (2e) to the sum of the degrees of the verities

viz., deg( )i
i

v�  = 2e.

Theorem
The number of vertices of odd degree in an undirected graph is even.

Proof
Let G = (V, E) be the undirected graph.

Let V1 and V2 be the sets of vertices of G of even and odd degrees respectively.

Then, by the previous theorem,

2e = 
1 2

deg( ) deg( )
i j

i j
v V v V

v v
� �

�� � (1)

since each deg(vi) is even, 
1

deg( )
i

i
v V

v
�
�  is even.

As the L.H.S. of (1) is even, we get

2

deg( )
j

j
v V

v
�
�  is even.

Since each deg(vj) is odd, the number of terms contained in 
2

deg( )
j

j
v V

v
�
�  or

in V2 is even, i.e., the number of vertices of odd degree is even.

Definitions
In a directed graph, the number of edges with v as their terminal vertex (viz.,

the number of edges that converge at v) is called the in-degree of v and is

denoted as deg– (v).

The number of edges with v as their initial vertex, (viz., the number of edges

that emanate from v) is called the out-degree of v and is denoted as deg+(v).

A vertex with zero in degree is called a source and a vertex with zero out-

degree is called a sink.

Fig. 3.3
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The number of edges in Kn is nC2 or 
( 1)

2

n n �
. Hence, the maximum

number of edges in a simple graph with n vertices  is 
( 1)

2

n n �
.

Regular graph
If every vertex of a simple graph has the same degree, then the graph is called

a regular graph. If every vertex in a regular graph has degree n, then the graph

is called n-regular. Figure 3.6 shows some 2-regular and 3-regular graphs.

Let us consider the following directed graph.

We note that deg–(a) = 3, deg–(b) = 1, deg–(c) = 2, deg–(d) = 1

and deg+(a) = 1, deg+(b) = 2, deg+(c) = 1, deg+(d) = 3.

Also we note that � deg–(v) = ��deg+(v) = the number of

edges = 7.

This property is true for any directed graph

G = (V, E ), viz., –deg ( )
v V

v
�
�

= deg ( )
v V

v�

�
�  = e.

This is obvious, because each edge of the graph converges at one vertex and

emanates from one vertex and hence contributes 1 each to the sum of the in-

degrees and to the sum of the out-degrees.

SOME SPECIAL SIMPLE GRAPHS

Complete graph
A simple graph, in which there is exactly one edge between each pair of

distinct vertices, is called a complete graph.

The complete graph on n vertices is denoted by Kn. Figure 3.5 shows the

graphs K1 through K6.

Fig. 3.4

Fig. 3.5

Note
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Bipartite graph

If the vertex set V of a simple graph G = (V, E) can be partitioned into two

subsets V1 and V2 such that every edge of G connects a vertex in V1 and a

vertex in V2 (so that no edge in G connects either two vertices in V1 or two

vertices in V2), then G is called a bipartite graph.

If each vertex of V1 is connected with every vertex of V2 by an edge, then G

is called a completely bipartite graph. If V1 contains m vertices and V2 contains

n vertices, the completely bipartite graph is denoted by Km, n. Figure 3.7 shows

some bipartite and some completely bipartite graphs.

Fig. 3.6

Subgraphs

A graph H = (V�, E�) is called a subgraph of G = (V, E), if V � � V and E � � E.

If V � � V and E � � E, then H is called a proper subgraph of G.

If V � = V, then H is called a spanning subgraph of G. A spanning subgraph

of G need not contain all its edges.

Any subgraph of a graph G can be obtained by removing certain vertices

and edges from G. It is to be noted that the removal of an edge does not go

Fig. 3.7
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with the removal of its adjacent vertices, whereas the removal of a vertex goes

with the removal of any edge incident on it.

If we delete a subset U of V and all the edges incident on the elements of U

from a graph G = (V, E ), then the subgraph (G – U ) is called a vertex deleted

subgraph of G.

If we delete a subset F of E from a graph G(V, E ), then the subgraph

(G – F ) is called an edge deleted subgraph of G.

A subgraph H = (V �, E � ) of G = (V, E), where V � � V and E � consists of

only those edges that are incident on the elements of V �, is called an induced

subgraph of G.

Figure 3.8 shows different subgraphs of a given graph G.

Isomorphic Graphs

Two graphs G1 and G2 are said to be isomorphic to each other, if there exists a

one-to-one correspondence between the vertex sets which preserves adjacency

of the vertices.

viz., a graph G1 = (V1, E1 ) is isomorphic to the graph G2 = (V2, E2 ), if there

is a one-to-one correspondence between the vertex sets V1 and V2 and between

the edge sets E1 and E2 in such a way that if e1 is incident on u1 and v1 in G1,

then the corresponding edge e2 in G2 is incident on u2 and v2 which correspond

to u1 and v1 respectively. Such a correspondence is called graph isomorphism.

Figure 3.9 shows pairs of isomorphic graphs.

From Fig. 3.9, we observe that isomorphic graphs have (i) the same number

of vertices, (ii) the same number of edges and (iii) the corresponding vertices

with the same degree. This property is called an invariant with respect to

isomorphic graphs. If any of these conditions is not satisfied in two graphs,

they cannot be isomorphic. However, these conditions are not sufficient for

graph isomorphism, as seen from the following Fig. 3.10.

Fig. 3.8
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There are 6 vertices and 5 edges in both the graphs.

There are 3 vertices namely V1, V5, V6 1 5 6( , , )V V V� � �  each of degree 1; 2

vertices namely V2, V3 2 4( , )V V� �  each of degree 2; 1 vertex namely V4 ( 3V � ) of

degree 3.

Thus, all the three conditions are satisfied, but the two graphs 3.10 (a) and

(b) are not isomorphic, since the vertices V2 and V3 are adjacent in (a) whereas

the corresponding vertices 2V �  and 4V �  are not adjacent.

To determine whether two graphs are isomorphic, it will be easier to consider

their matrix representations. Two types of matrices commonly used to represent

graphs will be discussed in the following section.

Fig. 3.9

Fig. 3.10
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MATRIX REPRESENTATION OF GRAPHS

When G is a simple graph with n vertices v1,v2,…vn, the matrix A(or AG ) �
[a i j ],

where, a
i j
 = 

1, if is an edge of

0, otherwise
i jv v G�

�
�

is called the adjacency matrix of G.

For example, if G is the graph given in Fig. 3.11, then the adjacency matrix

A is

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

� �
� �
� �
� �
� �
� �� �

The following basic properties of an adjacency matrix are obvious:

1. Since a simple graph has no loops, each diagonal entry of A, viz., aij = 0,

for i = 1, 2,… n.

2. The adjacency matrix of simple graph is symmetric, viz., aij = aji, since

both of these entries are 1 when vi and vj are adjacent and both are 0

otherwise. Conversely, given any symmetric zero-one matrix A which

contains only 0’s on its diagonal, there exists a simple graph G whose

adjacency matrix is A.

3. deg(vi) is equal to the number of 1’s in the i th row or i th column.
A pseudograph (viz., an undirected graph with loops and parallel edges)

can also be represented by an adjacency matrix. In this case, a loop at the

vertex vi is represented by a 1 at the (i, i)th position and the (i, j)th entry equals the

number of edges that are incident on vi and vj. The adjacency matrix of a pseudograph is

also a symmetric matrix. For example, the adjacency matrix of the pseudograph

(Fig. 3.12) is given alongside.

1 2 0 1

2 0 3 0

0 3 1 1

1 0 1 0

� �
� �
� �
� �
� �
� �� �

In a similar way, directed simple or multigraphs can also

be represented by adjacency matrices, which may not be

symmetric. For  example the adjacency matrix of the graph in

Fig. 3.13 is given along side.

0 1 0 0

0 1 1 0

0 1 1 1

1 0 0 0

� �
� �
� �
� �
� �
� �� �

Fig. 3.11

Fig. 3.12

Fig. 3.13

Note
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Definition
If G = (V, E ) is an undirected graph with n vertices v1, v2,… vn and m edges e1,

e2,…, em, then the (n � m) matrix B = [bij],

where bij = 
1, when edge is incident on

0, otherwise
j ie v�

�
�

is called the incidence matrix of G.

For example, the incidence matrix of the graph shown in Fig. 3.14 is given

alongside.

1

2

3

4

1 0 0 1 1

1 1 0 0 0

0 1 1 0 1

0 0 1 1 0

v

v

v

v

� �
� �
� �
� �
� �� �

The following basic properties of an incidence matrix are obvious:

1. Each column of B contains exactly two unit entries.

2. A row with all 0 entries corresponds to an isolated vertex.

3. A row with a single unit entry corresponds to a pendant vertex.

4. deg(vi) is equal to the number of 1’s in the ith row.

Incidence matrices can also be used to represent pseudographs. Parallel

edges are represented in the incidence matrix using columns with identical

entries, since these edges are incident on the same pair of vertices. Loop is represented

by a column with exactly one unit entry, corresponding to the concerned vertex. For

example, the incidence matrix of the graph in Fig. 3.15 is given alongside.

1

2

3

1 1 1 0 0

0 1 1 1 0

0 0 0 1 1

v

v

v

� �
� �
� �
� �� �

Isomorphism and Adjacency Matrices

We state two theorems (without proof) which will help us to prove that two

labeled graphs are isomorphic:

Theorem 1
Two graphs are isomorphic, if and only if their vertices can be labeled in such

a way that the corresponding adjacency matrices are equal.

Theorem 2
Two labeled graphs G1 and G2 with adjacency matrices A1 and A2 respectively

are isomorphic, if and only if, there exists a permutation matrix P such that

PA1P
T = A2.

A matrix whose rows are the rows of the unit matrix, but not necessarily in

their natural order, is called a permutation matrix.

e1 e2 e3 e4 e5

Fig. 3.14

Note

e1 e2 e3 e4 e5

Fig. 3.15

Note
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For example, let us consider the two graphs shown in Fig. 3.16.

Now A1 = 

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

� �
� �
� �
� �
� �

 and A2 = 

0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

� �
� �
� �
� �
� �

If we assume that P = 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

� �
� �
� �
� �
� �

, we can see that PA1PT = A2. Hence,

the two graphs G1 and G2 are isomorphic such that A � V1, B � V3, C � V2

and D � V4.

WORKED EXAMPLES 3(A)

Example 3.1 Find the number of vertices, the number of edges and the

degree of each vertex in the following undirected graphs. Verify also the

handshaking theorem in each case.

(i) For the graph G1 in Fig. 3.17,

the number of vertices = 6

the number of edges = 9

deg(A) = 2, deg(B )  = 4, deg(C) = 4,

deg(D) = 3, deg(E ) = 4, deg(F ) = 1

Now �deg(A) = 2 + 4 + 4 + 3 + 4 + 1 = 18

= 2 � 9 = 2 � no. of edges.

Hence, the theorem is true.

(ii) For the graph G2 in Fig. 3.18,

the number of vertices = 5

the number of edges = 13

deg (A) = 6, deg (B) = 6, deg (C) = 6,

deg (D) = 5, deg (E) = 3

Obviously, � deg A = 2 � no. of edges.

Hence, the theorem is verified.

Fig. 3.16

Fig. 3.17

Fig. 3.18
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Example 3.2 Find the in-degree and out-degree of each vertex of each of

the following directed graphs. Also verify that the sum of the in-degrees (or the

out-degres) equals the number of edges.

(i) For the graph G1 in Fig. 3.19,

deg–(A) = 2, deg–(B) = 1, deg–(C) = 2,

deg–(D) = 3 and deg–(E) = 0

deg+(A) = 1, deg+(B) = 2, deg+(C) = 1,

deg+(D) = 1 and deg+(E) = 3

We see that �deg–(A) = �deg+(A) = 8

= the no. of edges of G1.

(ii) For the graph G2 in Fig. 3.20

deg–(A) = 5, deg+(A) = 2

deg–(B) = 3, deg+(B) = 3

deg–(C) = 1, deg+(C) = 6

deg–(D) = 4, deg+(D) = 2

We see that � deg–(A)= � deg+(A) = 13

= the no. of edges of G2.

Example 3.3 If all the vertices of an undirected graph are each of odd

degree k, show that the number of edges of the graph is a multiple of k.

Since the number of vertices of odd degree in an undirected graph is even,

let it be 2n. Let the number of edges be ne.

Then by the hand-shaking theorem,
2

1

n

i �
� deg(vi) = 2ne

i.e.,
2

1

n

i �
� k = 2ne or 2nk = 2ne

� ne = nk

i.e., the number of edges is a multiple of k.

Example 3.4 For each of the following degree sequences, find if there

exists a graph. In each case, either draw a graph or explain why no graphs

exists.

(a) 4, 4, 4, 3, 2

(b) 5, 5, 4, 3, 2, 1

(c) 3, 3, 3, 3, 2

(d) 3, 3, 3, 3, 3, 3

(e) 5, 4, 3, 2, 1, 1

(a) Sum of the degrees of all the vertices = 17, which is an odd number. This

is impossible. Hence, no graph exists with the given degree sequence.

(b) There are 6 vertices. Hence, a vertex of degree 5 in the graph must be

adjacent to all other vertices.

As there are 2 vertices each of degree 5, all other vertices should be of

degree at least 2. But the given degree sequence contains a 1. Hence, no

graph is possible with the given degree sequence.

Fig. 3.19

Fig. 3.20
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(c) A simple graph with the given degree sequence is

possible, as shown in Fig. 3.21. The vertices B,

C, D, E are of degree 3, while the vertex A is of

degree 2.

(d) A simple graph with the given description is not

possible. Only a multigraph as shown in Fig. 3.22

is possible with the given degree sequence. Fig. 3.21

(e) Only a multigraph as shown in Fig. 3.23 is possible with the given degree

sequence.

The degrees of A, C, D, B, E and F are respectively 5, 4, 3, 2, 1, 1.

Example 3.5 Verify the handshaking theorem for the complete graph

with n vertices. Verify also that the number of odd vertices in this graph is

even. Also find the ratio of the number of edges to that of vertices (called the

Beta index) for this graph.

In a complete graph, every pair of vertices is connected by an edge. From

the n vertices of the complete graph Kn, we can choose nC2 pairs of vertices

and hence there are nC2 edges in Kn.

Also the degree of each of the n vertices = n – 1

�
1

n

i �
� deg(vi) = n(n – 1)

= 2 � nC2

Thus, the handshaking theorem is verified.

Now if n is even, the degree of each of these n vertices is (n – 1), that is odd.

viz., the number of odd degree vertices is even.

If n is odd, the degree of each of these n vertices is (n – 1), that is even.

viz., the number of odd degree vertices is zero, that is even.

Thus, the property is verified.

Now Beta index  ( ) = 2nC

n
 = 

1

2
(n – 1)

Example 3.6 Determine which of the following graphs are bipartite and

which are not. If a graph is bipartite, state if it is completely bipartite

(a) Let us try partitioning of the vertices into 2 subsets satisfying the conditions

of a bipartite graph. Since the vertices D, F, F are not connected by

edges, they may be considered as one subset V1. Then A, B, C belong to

Fig. 3.23Fig. 3.22
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(b) Taking V1 = (A, C) and V2 = (B, D, E), the conditions required for a

bipartite graph are satisfied. Hence, the given graph 3.24(b) is bipartite.

Now, for a bipartite graph to be completely bipartite, each vertex of the

subset V1 must be adjacent to every vertex of V2.

In graph 3.24(b), both A and C are adjacent to each of B, D, E.

Hence, the graph 3.24(b) is a completely bipartite graph.

(c) Taking V1 = (A, B, C) and V2 = (D, E, F), it is easily seen that the graph

3.24(c) is a bipartite graph.

Graph 3.24(c) is not a completely bipartite graph, as each vertex of V1 is

not connected to every vertex of V2. The vertices A and F as well as C

and D are not connected.

(d) Taking V1 = (A, C, E, G) and V2 = (B, D, F, H), we see that graph 3.24(d)

is a bipartite graph. However, it is not a completely bipartite graph, as

there is no edge between A and F, between C and H, between E and B

and between G and D.

Example 3.7 Prove that the number of edges in a bipartite graph with n

vertices is at most 
2

2

n� �
� �� � .

Let the vertex set be partitioned into the subsets V1 and V2. Let V1 contain x

vertices. Then V2 contains (n – x) vertices.

The largest number of edges of the graph can be obtained, when each of the

x vertices in V1 is connected to each of the (n – x) vertices in V2.

� The largest number of edges, f (x) = x( n – x), is a function of x.

Now we have to find the value of x for which f (x) is maximum.

By calculus, f �(x) = n – 2x and f ��(x) = –2

V2. The vertices of V1 are connected by edges to the vertices of V2, but

the vertices A, B, C of the subset V2 are connected by the edges AB, BC.

Hence, the given graph 3.24(a) is not a bipartite graph.

Fig. 3.24
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f �(x) = 0, when x = 
2

n  and f ��
2

n
 < 0.

Hence, f (x) is maximum, when x = 
2

n
.

� Maximum number of edges required

= f
2

n
 = 

2

2

n .

Example 3.8 Draw all the subgraphs of K3 containing at least one vertex.

The subgraphs of K3 are obtained by removing one or more vertices and edges

from it. We note that removal of an edge does not result in the removal of its

adjacent vertices, but the removal of a vertex results in the removal of all edges

incident on it.

There are 17 subgraphs of K3 which are given in Fig. 3.25.

Fig. 3.25

Example 3.9 For each pair of graphs given in Figs 3.26(a) and 3.26(b),

find whether or not the graph on the left is a subgraph of the one on the right. If

it is not, explain why not. If it is, label the vertices of the subgraph and then use

the same symbols to label the corresponding vertices of the main graph.

Fig. 3.26 (a) Fig. 3.26 (b)

The graph on the left of Fig. 3.26(a) is a subgraph of the graph on the right

3.26(b). The corresponding vertices in the main graph are labeled by the same

symbols used in the subgraph as given in Fig. 3.26(a� ).
The graph on the left of Fig. 3.26(b)

is not a subgraph of the graph on the

right, since in the left graph there are 2

vertices each of degree 3, but there is

only one vertex of degree greater than 3

in the right graph. Fig. 3.26 (a � )
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In Fig. 3.27, the vertices u1 and u5 are of degree 3 each, u2 and u4 are of

degree 4 each and u3 is of degree 2. Similarly v1 and v4 are of degree 3 each, v3

and v5 are of degree 4 each and v2 is of degree 2.

Moreover there are 5 vertices and 8 edges in each of the two graphs.

Thus, the two graphs in Fig. 3.27 agree with respect to the 3 invariants. Still,

we cannot conclude that the two graphs are isomorphic, unless we prove that

their adjacency matrices are the same.

We assume arbitrarily that the vertex u1 corresponds to v1, u2 corresponds to

v5 and u3 corresponds to v2 and find the adjacency matrices of the two graphs.

If this choice of corresponding vertices does not lead to identical adjacency

matrices, we may try another choice using the adjacency of vertices and degrees

as a guide.

Now for the choice of corresponding vertices given above, the adjacency

matrices of the two graphs are given below:

u1 u2 u3 u4 u5 v1 v5 v2 v3 v4

1

2

3

4

5

0 1 0 1 1

1 0 1 1 1

0 1 0 1 0

1 1 1 0 1

1 1 0 1 0

u

u

u

u

u

� �
� �
� �
� �
� �
� �
� �� �

1

5

2

3

4

0 1 0 1 1

1 0 1 1 1

0 1 0 1 0

1 1 1 0 1

1 1 0 1 0

v

v

v

v

v

� �
� �
� �
� �
� �
� �
� �� �

Since the two adjacency matrices are the same, the two graphs are isomorphic.

In Fig. 3.28, the vertex u2 is of degree

2, and all the other vertices are of degree 3

each. In the other graph, 2 vertices v1 and

v3 are of degree 2, 2 vertices v4 and v5

are of degree 3 and the vertex v2 is of

degree 4. Though, there are equal number

of vertices and equal number of edges in

the two graphs, the degrees of vertices are

not invariant. Hence, the two graphs in Fig. 3.28 are not isomorphic.

Example 3.11 Determine whether the graphs shown in Fig. 3.29 are

isomorphic.

Example 3.10 Determine whether the following pairs of graphs are

isomorphic. Exhibit the isomorphism explicitly or prove that it does not exist.

Fig. 3.27

Fig. 3.28
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The graphs G1 and G2 both have 8 vertices and 10 edges. Also they both

have 4 vertices each of degree 2 and 4 vertices each of degree 3. Thus, the 3

invariants agree in the graphs G1 and G2. However, the graphs are not isomorphic

as analysed below:

Deg (A) = 2 in G1.

Hence, A must correspond to either P, Q, T or U, which are of degree 2 each

in G2.

Now each of the vertices P, Q, T and U is adjacent to another vertex of

degree 2.

viz., P is adjacent to Q, Q is adjacent to P etc. But A is not adjacent to any

vertex of degree 2 in G1.

Hence, the two graphs G1 and G2 are not isomorphic.

Example 3.12 Establish the isomorphism of the two graphs given in

Fig. 3.30 by considering their adjacency matrices.

Fig. 3.29

The adjacency matrices A1 and A2 of G1 and G2 respectively are given

below:

A1 = 

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

� �
� �
� �
� �
� �
� �� �

; A2 = 

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

� �
� �
� �
� �
� �
� �� �

The matrices A1 and A2 are not the same.

To establish isomorphism between G1 and G2, we have to find a permutation

matrix P such that PA1P
T = A2.

Since A1 and A2 are fourth order matrices, P is a 4th order matrix got by

permuting the rows of the unit matrix I4. Thus, there are 4! = 24 different forms

for P. It is difficult to find the appropriate P from among the 24 matrices by

trial that will satisfy PA1P
T = A2.

Fig. 3.30
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To find the appropriate P, we proceed as follows, using the degree of the

vertices of G1 and G2:

Deg(A) = 3 and Deg(V
1
) = 3

Hence, the first row of I4 can be taken as the first row of P

Deg(D) = 3 and Deg(V
3
) = 3

i.e., the 4th vertex of G1 corresponds to the 3rd vertex of G2.

Hence, the 4th row of I4 may be taken as the 3rd row of P.

Deg(B) = Deg(C) = 2 and Deg(V
2
) = Deg(V

4
) = 2

i.e., the 2nd vertex of G1 may be taken to correspond to the 2nd or 4th vertex of

G2. Accordingly the 3rd vertex of G1 may be taken to correspond to 4th or 2nd

vertex of G2.

Hence, the 2nd and 3rd rows of I4 may be taken either as the 2nd and 4th rows

of P or as the 4th and 2nd rows of P.

Thus, there are 2 possible forms for P, namely

P = 

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

� �
� �
� �
� �
� �
� �� �

 or 

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

� �
� �
� �
� �
� �
� �� �

For both the forms of P, it is easily verified that PA1P
T = A2.

Hence, the two graphs G1 and G2 are isomorphic.

EXERCISE 3(A)

Part A: (Short answer questions)

2. What do you mean by degree of a vertex? What are the degrees of an

isolated vertex and a pendant vertex?

3. State and prove the hand-shaking theorem.

4. Define in-degree and out-degree of a vertex.

5. What is meant by source and sink in graph theory?

6. Define complete graph and give an example.

7. Draw K5 and K6.

8. Define regular graph. Can a regular graph be a complete graph?

9. Can a complete graph be a regular graph? Establish your answer by 2

examples.

10. Define n-regular graph. Give one example for each of 2-regular and

3-regular graphs.

11. Define a bipartite graph with an example.

12. In what way a completely bipartite graph differs from a bipartite graph?

13. Draw K2, 3 and K3, 3 graphs.
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14. Define a subgraph and spanning subgraph.

15. What is an induced subgraph? Give an example.

16. Define graph isomorphism and give an example of two isomorphic graphs.

17. What is the invariant property of isomorphic graphs?

18. Give an example to show that the invariant conditions are not sufficient

for graph isomorphism.

Represent the following graphs by adjacency matrices:

Draw the graphs represented by the following incidence matrices:

28.

1 1 1 0 0

1 0 0 1 0

0 0 1 0 1

0 1 0 1 1

A

B

C

D

� �
� �
� �
� �
� �
� �� �

29.

0 1 0 0 1

0 1 1 1 0

1 0 0 1 0

1 0 1 0 1

A

B

C

D

� �
� �
� �
� �
� �
� �� �

19. 20. 21.

Fig. 3.31 Fig. 3.32 Fig. 3.33

Draw the graphs represented by the following adjacency matrices:

22.

0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

� �
� �
� �
� �
� �
� �� �

23. 

1 2 0 1

2 0 3 0

0 3 1 1

1 0 1 0

� �
� �
� �
� �
� �
� �� �

24. 

0 0 1 1

0 0 1 0

1 1 0 1

1 1 1 0

� �
� �
� �
� �
� �
� �� �

Represent the following graphs by incidence graphs:

25. 26.

27.

Fig. 3.36

e1 e2 e3 e4 e5 e1 e2 e3 e4 e5

Fig. 3.35Fig. 3.34
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30.

1 2 3 4 5 6

1 0 0 0 0 1

0 1 1 0 1 0

1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 0 1 1

e e e e e e

a

b

c

d

e

� �
� �
� �
� �
� �
� �
� �� �

31. State a necessary and sufficient condition for the isomorphism of two

unlabeled graphs.

32. State a necessary and sufficient condition for the isomorphism of two

labeled graphs.

Part B

33. Verify the handshaking theorem for each of the following graphs:

35. Draw a graph with 5 vertices A, B, C, D, E, such that deg(A) = 3, B is

an odd vertex, deg(C) = 2 and D and E are adjacent.

36. If m and M denote the minimum and maximum degrees of the vertices of

a graph with nV vertices and nE edges, show that

m �
2 E

V

n

n
� M.

37. Does there exist a simple graph with 5 vertices of the given degrees? If

so draw such a graph.

(i) 1, 2, 3, 4, 5 (ii) 1, 2, 3, 4, 4 (iii) 3, 4, 3, 4, 3

(iv) 0, 1, 2, 2, 3 (v) 1, 1, 1, 1, 1.

(i) (ii)

Fig. 3.37

34. Verify that the sum of the in-degrees, the sum of the out-degree of the

vertices and the number of edges in the following graphs are equal.

Fig. 3.40Fig. 3.39

Fig. 3.38
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38.

39. Determine which of the following graphs are bipartite, and  which are

not. If bipartite, state whether it is completely bipartite.

Fig. 3.41

40. Draw the complete graph K5 with vertices A, B, C, D, E. Draw also all

the subgraphs of K5 with 4 vertices.

41. For each pair of graphs given in Figs 3.42(a) and 3.42(b), find whether or

not the graph on the right is a subgraph of the one on the left. If it is,

label the vertices of the subgraph and then use the same symbols to label

the corresponding vertices of the main graph.

(i) (ii)

Fig. 3.42(a) Fig. 3.42(b)

42. Examine whether the following pairs of graphs are isomorphic. If not

isomorphic, give the reasons.

Fig. 3.43(a)

(i)

(iv) (v)

(i) (ii) (iii)
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43. Examine whether the following pairs of graphs are isomorphic. If

isomorphic, label the vertices of the two graphs to show that their adjacency

matrices are the same.

(i)

Fig. 3.43(b)

Fig. 3.43(c)

(ii)

(iii)

(ii)

Fig. 3.44(a)

Fig. 3.44(b)

44. Establish the isomorphism of the following pairs of graphs, by considering

their adjacency matrices:

(i)

Fig. 3.45(a)
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(ii)

Fig. 3.45(b)

45. The adjacency matrices of two pairs of graphs are as follows. Examine

the isomorphism of G1 and G2 either graphically or by finding a

permutation matrix.

(i)
1GA �

0 0 1

0 0 1

1 1 0

� �
� �
� �
� �� �

;
2GA �

0 1 1

1 0 0

1 0 0

� �
� �
� �
� �� �

(ii)
1GA �

0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

� �
� �
� �
� �
� �
� �� �

;
2GA �

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

� �
� �
� �
� �
� �
� �� �

46. The incidence matrices of two pairs of graphs are as follows. Examine

the isomorphism of G and H either graphically or by finding a

permutation matrix.

(i) IG �

1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

� �
� �
� �
� �
� �
� �� �

; IH �

1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

� �
� �
� �
� �
� �
� �� �

(ii) IG �

1 0 1 1 0 0

1 1 0 0 1 0

0 1 1 0 0 1

0 0 0 1 1 1

� �
� �
� �
� �
� �
� �� �

; IH �

1 0 0 1 1 0

0 0 1 1 0 1

0 1 1 0 1 0

1 1 0 0 0 1

� �
� �
� �
� �
� �
� �� �

PATHS, CYCLES AND CONNECTIVITY

Definitions
A path in a graph is a finite alternating sequence of vertices and edges, beginning

and ending with vertices, such that each edge is incident on the vertices preceding

and following it.

It the edges in a path are distinct, it is called a simple path.
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V3 e5 V1 e1 V2 is a path, since it contains the

e1 twice.

V1 e4 V4 e6 V2 e2 V3 e7 V5 is a simple path,

as no edge appears more than once. The

number of edges in a path (simple or general)

is called the length of the path.

The length of both the paths given above is 4. If the initial  and final vertices

of a path (of non-zero length) are the same, the path is called a circuit or cycle.

If the initial and final vertices of a simple path of non-zero length are the

same, the simple path is called a simple circuit or a simple cycle.

In the graph given in Fig. 3.46, V1 e1 V2 e2 V3 e3 V4 e6 V2 e1 V1 is a circuit of

length 5 whereas V1 e5 V3 e7 V5 e8 V4 e4 V1 is a simple circuit of length 4.

Connectedness in Undirected Graphs

Definition
An undirected graph is said to be connected if a path between every pair of

distinct vertices of the graph.

A graph that is not connected is called disconnected.

In Fig. 3.47, G1 and G2 are connected, while G3 is not connected.

Fig. 3.46

Fig. 3.47

Clearly a disconnected graph is the union of two or more connected subgraphs,

each pair of which has no vertex in common. These disjoint connected subgraphs

are called the connected components of the graph.

Two useful results involving connectedness are given in the following

theorems:

Theorem
If a graph G (either connected or not) has exactly two vertices of odd degree,

there is a path joining these two vertices.

Proof

Case (i) Let G be connected.

Let v1 and v2 be the only vertices of G which are of odd degree.

But we have already proved that the number of odd vertices is even.

Clearly there is a path connecting v1 and v2, since G is connected.
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Case (ii) Let G be disconnected.

Then the components of G are connected. Hence, v1 and v2 should belong to

the same component of G.

Hence, there is a path between v1 and v2.

Theorem
The maximum number of edges in a simple disconnected graph G with n

vertices and k components is 
( )( 1)

2

n k n k� � �
.

Proof
Let the number of vertices in the ith component of G be ni (ni � 1).

Then n1 + n2 + � + nk = n or 
1

k

i
i

n
�
�  = n (1)

Hence,
1

( 1)
k

i
i

n
�

��  = n – k

�
2

1

( 1)
k

i
i

n
�

� �
�� �

� �
�  = n2 – 2n k + k2

i.e.,
1

k

i �
� (ni – 1)2 + 2

i j�
� (ni – 1)(nj – 1) = n2 – 2n k + k2 (2)

i.e.,
1

k

i �
� (ni – 1)2 � n2 – 2n k + k2

[� the second member in the L.S of (2) is � 0, as each ni � 1]

i.e., 2

1

( 2 1)
k

i i
i

n n
�

� �� � n2 – 2n k + k2

i.e., 2

1

k

i
i

n
�
� � n2 – 2n k + k2 + 2n – k (3)

Now the maximum number of edges in the ith component of G = 
1

2
ni (ni – 1)

� Maximum number of edges of G

= 
1

1

2

k

i �
� ni (ni – 1)

= 2

1

1 1

2 2

k

i
i

n n
�

�� , by (1)
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� 1

2
(n2 – 2n k + k2 + 2n – k) – 

1

2
n, by (3)

i.e., � 1

2
(n2 – 2n k + k2 + n – k)

i.e., � 1

2
{(n – k)2 + (n – k)}

i.e., � 1

2
(n – k)(n – k + 1).

Circuits and Isomorphism

Apart from the three invariants of two isomorphic graphs already discussed,

namely number of vertices, number of edges and degrees of corresponding

vertices, we have one more invariant of isomorphic graphs.

If two graphs are isomorphic, they will contain circuits of the same length k,

where k > 2.

If this invariant condition is not satisfied then the two graphs will not be

isomorphic.

For example, the two graphs G1 and G2 given in Fig. 3.48 have 6 vertices

each, 8 edges each, 8 edges each and 4 vertices of degree 3 and 2 vertices of

degrees 2. still they are not isomorphic, because G2 has a circuit of length 3,

namely, v1 – v2 – v  – v1, whereas G1 has no circuit of length 3.

Fig. 3.48

The two graphs G1 and G2 given in Fig. 3.49, satisfy the usual (three)

invariant conditions. We also note they have got circuits of length 5 which pass

through all vertices, namely, u1 – u2 – u3 – u4 – u5 – u1 and v5 – v3 – v2 – v1 –

v4 – v5.

Fig. 3.49

In both the circuits, the degrees of the ordered vertices are 3, 2, 3, 2, 2. The

two graphs are isomorphic, as their adjacency matrices are the same
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1GA �

1 2 3 4 5

1

2

3

4

5

0 1 1 0 1

1 0 1 0 0

1 1 0 1 0

0 0 1 0 1

1 0 0 1 0

u u u u u

u

u

u

u

u

� �
� �
� �
� �
� �
� �
� �� �

;
2GA �

5 3 2 1 4

5

3

2

1

4

0 1 1 0 1

1 0 1 0 0

1 1 0 1 0

0 0 1 0 1

1 0 0 1 0

v v v v v

v

v

v

v

v

� �
� �
� �
� �
� �
� �
� �� �

The Number of Paths between any two Vertices.

Obviously there can be more than one path between any two vertices of a

graph. The number of paths between any two vertices of a graph G can be

found out analytically using the adjacency matrix of G, by applying the following

theorem, the proof of which is omitted.

Theorem
If A is the adjacency matrix of a graph G (with multiple edges and loops

allowed), then the number of different paths of length r from vi to vi is equal to

the (i – j)th entry of Ar.

For example, let us consider the graph G shown in

Fig 3.50.

The adjacency matrix of this graph is

AG = 

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

A B C D

A

B

C

D

� �
� �
� �
� �
� �
� �� �

Let us now find the number of paths between B and D which are of length 4

by finding 4
GA .

Now 2
GA = 

3 0 1 1

0 1 1 1

1 1 2 1

1 1 1 2

� �
� �
� �
� �
� �
� �� �

 and 4
GA  = 

11 2 6 6

2 3 4 4

6 4 7 6

6 4 6 7

A B C D

A

B

C

D

� �
� �
� �
� �
� �
� �� �

Now the element in the (2 – 4)th entry of 4
GA  is 4. Hence, there are 4 paths

of length 4 from B to D in the graph G.

The 4 paths can be seen as

B – A – B – A – D, B – A – C – A – D, B – A – D – A – D and

B – A – D – C – D

Fig. 3. 50
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EULERIAN AND HAMILTONIAN GRAPHS

Definitions
A path of graph G is called an Eulerian path, if it includes each edge of G

exactly once.

A circuit of a graph G is called an Eulerian circuit, if it includes each edge

of G exactly once.

A graph containing an Eulerian circuit is called an Eulerian graph.

Fig. 3.51 Fig. 3.52

Graph G1 contains an Eulerian path between B and D namely, B – D – C – B

– A – D, since it includes each of the edges exactly once.

Graph G2 contains an Eulerian circuit, namely,  A – E – C – D – E – B – A,

since it includes each of the edges exactly once.

G2 is an Euler graph, as it contains an Eulerian circuit.

The necessary and sufficient conditions for the existence of Euler circuits

and Euler paths are given in two theorems, which we state below without

proof.

Theorem 1
A connected graph contains an Euler circuit, if and only if each of its vertices

is of even degree.

Theorem 2
A connected graph contains an Euler path, if and only if it has exactly two

vertices of odd degree.

The Euler path will have the odd degree vertices as its end points.

In the graph G1 given in Fig. 3.51, the vertices B and D are of degree 3 each.

Hence, an Eulerian path existed between B and D.

In the graph G2 [Fig. 3.52], all the vertices are of even degree. Hence, an

Euler circuit existed.

Definitions
A path of a graph G is called a Hamiltonian path, if it includes each vertex of

G exactly once.

A circuit of a graph G is called a Hamiltonian circuit, if it includes each

vertex of G exactly once, except the starting and end vertices (which are one

and the same) which appear twice.

A graph containing a Hamiltonian circuit is called a Hamiltonian graph.

Note
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The necessary an sufficient condition for the existence of Hamiltonian

circuit in a graph is not known yet, although a few sufficient conditions

have been found.

Note

The graph G1 has a Hamiltonian circuit namely, A – B – C – D – A. We note

that in this circuit all the vertices appear (each only once), but not all edges.

The graph G2 has a Hamiltonian path, namely, A – B – C – D, but not a

Hamiltonian circuit.

A few properties
(1) From the graphs shown in Figs. 3.53 and 3.54, it is clear that the path

obtained by deleting any one edge from a Hamiltonian circuit is a

Hamiltonian path.

(2) Also a Hamiltonian circuit contains a Hamiltonian path, but a graph

containing a Hamiltonian path need not have a Hamiltonian circuit.

(3) A compete graph Kn will always have a Hamiltonian circuit, when n � 3,

due to the fact that an edge exists between any two vertices and a circuit

can be formed by beginning at any vertex and by visiting the remaining

vertices in any order.

(4) A given graph may contain more than one Hamiltonian circuit.

CONNECTEDNESS IN DIRECTED GRAPHS

Definitions
A directed graph is said to be strongly connected, if there is a path from Vi to

Vj and from Vj to Vi where Vi and Vj are any pair of vertices of the graph.

For a directed graph to be strongly connected, there must be a sequence of

directed edges from any vertex in the graph to any other vertex.

A directed graph is said to be weakly connected, if there is a path between

every two vertices in the underlying undirected graph. In other words, a directed

graph is weakly connected if and only if there is always a path between every

two vertices when the directions of the edges are disregarded. Clearly any

strongly connected directed graph is also weakly connected.

A simple directed graph is said to be unilaterally connected, if for any pair

of vertices of the graph, at least one of the vertices of the pair is reachable from

the other vertex.

Fig. 3.53 Fig. 3.54



Graph Theory 131

We note that a unilaterally connected digraph is weakly connected, but a

weakly connected digraph is not necessarily unilaterally connected. A strongly

connected digraph is both unilaterally and weakly connected.

For example, let us consider the graphs shown in the Figs 3.55, 3.56 and

3.57.

G1 is a strongly connected graph, as the possible pairs of vertices in G1 are

(A, B), (A, C), (A, D), (B, C), (B, D) and (C, D) and there is a path from the

first vertex to the second and from the second vertex to the first in all the pairs.

For example, let us take the pair (A, B). Clearly the path from A to B is A –

B and the path from B to A is B – C – A.

Similarly if we take the pair (B, D), the path from B to D is B – C – A – D

and the path from D to B is D – C – A – B.

Clearly G2 is only a weakly connected graph.

G3 is unilaterally connected, since there is a path from A to B, but there is no

path form B to A. Similarly, there is a path from D to B, but there is no path

from B to D.

Definition
A subgraph of a digraph G that is strongly connected but not contained in a

larger strongly connected subgraph viz., the maximal strongly connected

subgraph is called the strongly connected component of G [see Example (3.8)].

SHORTEST PATH ALGORITHMS

A graph in which each edge ‘e’ is assigned a non-negative real number w(e) is

called a weighted graph w(e) called the weight of the edge ‘e’ may represent

distance, time, cost etc. in some units.

A shortest path between two vertices in a weighted graph is a path of least

weight. In an unweighted graph, a shortest path means one with the least

number of edges.

In this section, we shall deal with the problem of finding the shortest path

between any two vertices in a weighted graph. Many algorithms are available

to find the shortest path in a weighted graph. We shall discuss two of them here

one discovered by Edsger Dijkstra and the other by Warshall.

Dijkstra’s Algorithm

To find the length (or weight) of the shortest path between two vertices, say a

and z, in a weighted graph, the algorithm assigns numerical labels to the vertices

Fig. 3.55 Fig. 3.56 Fig. 3.57
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of the graph by an iterative procedure. At any stage of iteration, some vertices

will have temporary labels (that are not bracketed) and the others will have

permanent labels (that are bracketed). Let us denote the label of the vertex v by

L(v).

Initial Iteration 0

Let V0 denote the set of all the vertices v0 of the graph. The starting vertex is

assigned the permanent label (0) and all other v0’s the temporary label � each.

Let V1 = V0 – {v0*}, where v0* is the starting vertex which has been assigned a

permanent label.

Iteration 1

Let the elements of V1 be now denoted by v1. (The elements v1 are the same as

the elements v0 excluding v0*.) For the elements of V1 that are adjacent to v0*,

the temporary labels are revised by using L(v1) = L(v0*) + w(v0*v1), where L(v0*)

= 0, w(v0*v1) is the weight of the edge v0*v1 and for the other elements of V1,

the previous temporary labels are not altered. Let v1* be the vertex among the

v1’s for which L(v1) is minimum. If there is a tie for the choice of v1*, it is

broken arbitrarily. Now L(v1*) is given a permanent label. Let V2 = V1 – {v1*} �
{v2}.

Iteration i

For the elements of Vi that are adjacent to 1iv�
� , the temporary labels are revised

by using L(vi) = L( 1iv�
� ) + w( 1iv�

� vi) and for the other elements of Vi, the

previous temporary labels are not altered. If the temporary label to be assigned

to any vertex in the i th iteration is greater than or equal to that assigned to it in

the (i – 1)th iteration, the previous label is not changed.

The iteration is stopped when the final vertex z is assigned a permanent

label eventhough some vertices might not have been assigned permanent

labels. The permanent label of z is the length of the shortest path from a to z.

The shortest path itself is identified by working backward from z and including

those permanently labeled vertices from which the subsequent permanent labels

arose.

We will now consider an example and explain Dijkstra’s algorithm step

by step. Let us assume that the shortest path from the vertex A to the vertex F is

required in the weighted graph, given in Fig. 3.58.

Fig. 3.58
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Iteration Iteration Remarks

Number Details

0. V0: A B C D E F Initial labels for all the vertices are assumed.

L(v0): (0) � � � � � A gets the permanent label and L(A*) = 0

is bracketed.

1. V1: A* B C D E F B and C are adjacent vertices for A*.

L(vi): — (2) 3 � � � L(B) = L(A*) + w(A*B) = 0 + 2 = 2

L(C) = L(A*) + w(A*C) = 0 + 3 = 3

Since L(B) < L(C), B gets the permanent label

and L(B*) = 2 is bracketed.

2. V2: A* B* C D E F D and E are adjacent vertices to B*.

L(v2): — — (3) 7 4 � L(D) = L(B*) + w(B*D) = 2 + 5 = 7

L(E) = L(B*) = w(B*E) = 2 + 2 = 4

Since C is not adjacent to B*, L(C) is brought

forward from the previous iteration as 3.

Since L(C) is minimum among L(C), L(D) and

L(E), C gets the permanent label and L(C*) = 3

is bracketed.

3. V3: A* B* C* D E F D and F are not adjacent to C*. So L(D) and

L(v3): — — — 7 (4) � L(F) are brought forward from iteration (2).

L(E) = L(C*) + w(C*E) = 3 + 5 = 8

Since the revised L(E) > the previous L(E) >

the previous value of L(E) = 4 is retained. Now

E gets the permanent label and L(E*) = 4 is

bracketed.

4. V4: A* B* C* D E* F D and F are adjacent to E*

L(v4): — — — (5) — 8 L(D) = L(E*) + w(E*D) = 4 + 1 = 5

L(F) = L(E*) w(E*F) = 4 + 4 = 8

Since L(D) < L(F), D gets the permanent label

and L(D*) = 5 is bracketed.

5. V5: A* B* C*D* E* F Since F is the only vertex adjacent to D* and

L(v5): — — — — — (7) since L(F) = L(D*) + w(D*F) = 5 + 2 = 7, the

final vertex F gets the permanent label and

L(F*) = 7 is bracketed.

Since L(F*) = 7, the length of the shortest path from A to F = 7.

To find the shortest path, we work backward from F explained as follows:

F became F* from D* in iteration (5); D became D* from E* in iteration (4); E

became E* from B (but not from C), as L(E) = L(E*) assumed the label 4 in

iteration (2) itself; B became B* from A* in iteration (1).

Hence, the shortest path is A – B – E – D – F.

Warshall’s Algorithm

Warshall’s algorithm determines the shortest distances between all pairs of

vertices in a graph. It is popular because it is easier to describe than the other

algorithm and it can be applied to a directed graph too without any change. The

algorithm is explained below:
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The weight matrix W = (wij) of the given graph is first formed, where

wij = 
( ), if there is an edge from to

0 , if there is no edge.
i jw ij v v�

�
�

Let there be n vertices vi, v2, …, vn in the graph. Now a sequence of matrices

L0, L1, … Ln are formed, where Lr = {lr (i, j)}.

lr(i j), the ijth entry of Lr is computed by using the rule

lr (i, j) = min [lr – 1(i, j); lr – 1(i, k) + lr – 1(k, j)],

The initial matrix L0 is the same as the weight matrix W except that each non-

diagonal 0 in W is replaced by �.

The final matrix Ln is the required shortest (path) distance matrix L the ij–th

entry of which gives the length of the shortest path between the vertices vi

and vj.
Warshall’s algorithm can be applied to find the shortest distance matrix,

in the case of directed pseudograph with loops and parallel edges also.

But in this case all 0’s are replaced by �.

We will now take an example and explain Warshall’s algorithm setp by step.

We require the shortest distance matrix for the undirected graph, given in

Fig. 3.59.

Note

Fig. 3.59

W = 

0 3 4 2

3 0 0 5

4 0 0 1

2 5 1 0

A B C D

A

B

C

D

� �
� �
� �
� �
� �� �

; L0 = 

1 2 3 4

1

2

3

4

0 3 4 2

3 0 5

4 0 1

2 5 1 0

v v v v

v

v

v

v

� �
� ��
� �

�� �
� �� �

By Warshall’s algorithm,

l1(1, 2) = min{l0(1, 2); l0(1, 1) + l0(1, 2)}

= min {3; 0 + 3} = 3

l1(1, 3) = min{l0(1, 3); l0(1, 1) + l0(1, 3)}

= min {4; 0 + 4} = 4

l1(1, 4) = min{l0(1, 4); l0(1, 1) + l0(1, 4)}

= min {2; 0 + 2} = 2

l1(2, 3) = min{l0(2, 3); l0(2, 1) + l0(1, 3)}

= min {�; 3 + 4} = 7
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l1(2, 4) = min{l0(2, 4); l0(2, 1) + l0(1, 4)}

= min {5; 3 + 2} = 5

l1(3, 4) = min{l0(3, 4); l0(3, 1) + l0(1, 4)}

= min {1; 4 + 2} = 1

Since L0 is a symmetric matrix, L1 and the subsequent matrices L2, L3 and L4

will also be symmetric. Using the symmetry, we get

L1 = 

0 3 4 2

3 0 7 5

4 7 0 1

2 5 1 0

� �
� �
� �
� �
� �� �

Now l2(1, 2) = min{l1(1, 2); l1(1, 2) + l1(2, 2)}

= min{3; 3 + 0} = 3

Similarly proceeding, we get,

l2(1, 3) = 4; l2(1, 4) = 2; l2(2, 3) = 7; l2(2, 4) = 5; l2(3, 4) = 1

Hence, L2 = 

0 3 4 2

3 0 7 5

4 7 0 1

2 5 1 0

� �
� �
� �
� �
� �� �

Proceeding in the same way, we can get,

L3 = 

0 3 4 2

3 0 7 5

4 7 0 1

2 5 1 0

� �
� �
� �
� �
� �� �

 and L4 = 

0 3 3 2

3 0 6 5

3 6 0 1

2 5 1 0

� �
� �
� �
� �
� �� �

L4 gives the shortest distances between all pairs of vertices. The corresponding

shortest paths are given by the following matrix:

—

—

—

—

A B C D

A AB ADC AD

B BA BADC BD

C CDA CDAB CD

D DA DB DC

� �
� �
� �
� �
� �� �

WORKED EXAMPLES 3(B)

Example 3.1 Find which of the following vertex sequences are simple

paths, paths, closed paths (circuits) and simple circuits with respect to the

graph shown in Fig. 3.60.
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(a) A – D – E – B – C

(b) A – D – B – C – E

(c) A – E – C – B – E – A

(d) C – B – D – A – E – C

(e) A – D – B – E – C – B

(a) A – D – E – B – C is not a path, since DE is not

an edge of the given graph.

(b) A – D – B – C – E is a simple path between the vertices A and E, since

the vertices and edges involved are distinct.

(c) A – E – C – B – E – A is a closed path, since the initial and final vertices

are the same and the vertex E appears twice.

(d) C – B – D – A – E – C is a simple circuit, since the initial and final

vertices are the same and the vertices and edges are distinct.

(e) A – D – B – E – C – B is a path (but not a simple path) as the vertex B

appears twice.

Example 3.2 Find all the simple paths from A to F and all the circuits in

the graph given in Fig. 3.61.

The simple paths from A to F are the

following:

1. A – B – C – F;

2. A – D – E – F;

3. A – B – D – E – F ;

4. A – D – B – C – F;

5. A – B – C – E – F;

6. A – D – E – C – F;

7. A – B – D – E – C – F;8. A – D – B – C – E – F

The circuits in the graph are the following:

1. A – B – D – A; 2. C – F – E – C; 3. B – C – E – D – B;

4. A – B – C – E – D – A;5. B – C – F – E – D – B;

6. A – B – C – F – E – D – A.

Example 3.3 Find all connected subgraphs of the graph shown in

Fig. 3.62 containing all of the vertices of the original graph and having as few

edges as possible. In these subgraphs which are paths and simple paths from A

to G?

The graphs in Figs 3.62(a), 3.62(b) and 3.62(c) are the connected subgraphs

required. However they are not connected components of the original graph in

Fig. 3.60

Fig. 3.61

Fig. 3.62 Fig. 3.62(a)
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Fig. 3.62(b) Fig. 3.62(c)

Fig. 3.62. In Fig. 3.62(a), A – B – F – E – D – G is a simple path from A to G,

whereas A – B – F – C – F – E – D – G is a path from A to G.

In Fig. 3.62(b), A – B – F – E – D – G is a simple path, whereas A – B – C

– B – F – E – D – G is a path. In Fig. 3.62(c), A – B – C – F– E – D – G is a

simple path containing all the vertices of the original graph.

There are no closed paths and circuits in the subgraphs, whereas they are

present in the original graph.

Example 3.4 Using circuits, examine whether the following pairs of

graphs G1 and G2 given in Figs 3.63 and 3.64 are isomorphic or not.

Fig. 3.63

Fig. 3.64

(a)

(b)

(a) G1 and G2 have 4 vertices each and 6 edges each. Also all the 4 vertices

in both the graphs are of degree 3 each. Hence, the necessary conditions

for isomorphism are satisfied.

Now A – B – D – A, A – C – D – A and A – B – C – A are circuits of

length 3 each in G1.

Also A – B – C – D – A, A – B – D – C – A and A – D – B – C – A and

circuits of length 4 each in G1

Similarly V1 – V2 – V4 – V1, V1 – V3 – V4 – V1 and V1 – V2 – V3 – V1 are

circuit of length 3 each in G2.

Also V1 – V2 – V3 – V4 – V1, V1 – V2 – V4 – V3 – V1 and V1 – V4 –

V2 – V3 – V1 are circuits of length 4 each in G2.

Hence, the two graphs G1 and G2 are isomorphic.

(b) G1 and G2 have 8 vertices each and 10 edges each.
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Also there are 4 vertices each of degree 3 and 4 vertices each of degree

2 in G1 and G2.

Hence, the conditions necessary for isomorphism are satisfied.

Now there is only one circuit of length 4 from A to A, viz., A – B – C –

D – A in G1, but there are two circuits of length 4 each from a to a,

namely, a – b – d – c – a and a – e – g – c – a.

Hence, the two graphs G1 and G2 are not isomorphic.

Example 3.5 Find the number of paths of length 4 from the vertex D to

the vertex E in the undirected graph shown in Fig. 3.65 analytically. Identify

those paths from the graphs.

The adjacency matrix of the given graph is

A = 

0 1 0 1 0

1 0 1 0 1

0 1 0 1 1

1 0 1 0 0

0 1 1 0 0

A B C D E

A

B

C

D

E

� �
� �
� �
� �
� �
� �
� �� �

By matrix multiplication, A2 = 

2 0 2 0 1

0 3 1 2 1

2 1 3 0 1

0 2 0 2 1

1 1 1 1 2

� �
� �
� �
� �
� �
� �
� �� �

Again, by matrix multiplication, we get

A4 = 

9 3 11 1 6

3 15 7 11 8

11 7 15 3 8

1 11 3 9 6

6 8 8 6 8

A B C D E

A

B

C

D

E

� �
� �
� �
� �
� �
� �
� �� �

The entry in the (4 – 5)th position of A4 is 6.

Hence, there are 6 paths each of length 4 from D to E.

Those 6 paths identified from the given graphs are as follows:

1. D – A – D – C – E; 2. D – C – D – C – E; 3. D – A – B – C – E;

4. D – C – E – C – E; 5. D – C – E – B – E; 6. D – C – B – C – E.

Example 3.6 Find the number of paths of length 4 from the vertex B to

the vertex D in the directed graph shown in Fig. 3.66 analytically. Name those

paths using the graph.

Fig. 3.65



Graph Theory 139

The adjacency matrix of the given graph is

A = 

0 1 0 0

0 0 1 1

1 1 0 1

1 0 0 0

A B C D

A

B

C

D

� �
� �
� �
� �
� �
� �� �

By matrix multiplication, we get

A2 = 

0 0 1 1

2 1 0 1

1 1 1 1

0 1 0 0

� �
� �
� �
� �
� �
� �� �

Again by matrix multiplication, we get

A4 = 

1 2 1 1

2 2 3 3

3 3 2 3

2 1 0 1

A B C D

A

B

C

D

� �
� �
� �
� �
� �
� �� �

The entry in the (BD) position of A4 is 3. Hence, there are 3 paths each of

length 4 from B to D.

They are (i) B – C – B – C – D, (2) B – C – A – B – D and (3) B – D – A –

B – D.

Example 3.7 Find which of the following graphs given in Fig. 3.67 is

strongly, weakly or unilaterally connected. Give the reasons.

Fig. 3.66

Fig. 3.67

(i) G1 is strongly connected, since there is a path from each of the possible

pairs of vertices, namely, (A, B), (A, C), (A, D), (B, C), (B, D) and (C, D),

to the other are as follows:

A and B: A – B and B – D – A

A and C: A – C and C – B – D – A

A and D: A – B – D and D – A
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B and C: B – D – C and C – B

B and D: B – D and D – A – B

C and D: C – B – D and D – C

(ii) G2 is unilaterally connected since there is one-way path only for the 5 of

the 6 possible pairs of vertices as given below:

A and B: A – B and no path from B to A

A and C: A – D – C and no path from C to A

A and D: A – D and no path from D to A

B and C: B – C and no path from C to B

B and D: B – D and no path from D to B

C and D: C – D and D – C

(iii) G3 is not strongly connected, since there are no paths from A to the other

4 vertices. However there is one-way path only for some of the 10 possible

pairs of vertices. Hence, G3 is unilaterally connected and also weakly

connected.

(iv) G4 is unilaterally connected, since there is no path from C to the other

vertices, but C can be reached from them.

Example 3.8 Find the strongly connected components of the graph shown

in Fig. 3.68.

The strongly connected components of

the given graph are ABHI and CDFG, since

they are strongly connected and they are

not contained in larger strongly connected

subgraphs.

Example 3.9 Explain Konisberg bridge problem. Represent the problem

by means of graph. Does  the problem have a solution?

There are two islands A and B formed by a river. They are connected to

each other and to the river banks C and D by means of 7 bridges as shown in

Fig. 3.69. The problem is to start from any one of the 4 land areas A, B, C, D,

walk across each bridge exactly once and return to the starting point.

Fig. 3.68

Fig. 3.69 Fig. 3.70

This problem is the famous Konisberg bridge problem.

When the situation is represented by a graph, with vertices representing the

land areas and the edges the bridges, the graph will be as shown in Fig. 3.70.

This problem is the same as that of drawing the graph in Fig. 3.70 without

lifting the pen from  the paper and without retracing any line.
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In other words, the problem is to find whether there is an Eulerian circuit

(viz., a simple circuit containing every edge) in the graph. But a connected

graph has an Eulerian circuit if and only if each of its vertices is of even

degree.

In the present case all the vertices are of odd degree. Hence, Konisberg

bridge problem has no solution.

Example 3.10 Find an Euler path or an Euler circuit, if it exists in each

of the three graphs in Fig. 3.71. If it does not exist, explain why?

Fig. 3.71

In G1, there are only two vertices, namely, A and B of degree 3 and other

vertices are of even degree.

Hence, there exists an Euler path between A and B. The actual path is A – B

– E – D – A – C – D – B. This is an Eulerain path, as it includes each of the 7

edges exactly once.

In G2, there are 6 vertices of odd degree. Hence, G2 contains neither an

Euler path nor an Euler circuit.

In G3, all the vertices are of even degree. Hence, there exists an Euler circuit

in G3.

It is A – B – C – D – E – A – C – E – B – D – A. This circuit is Eulerian,

since it includes each of the 10 edges exactly once.

Example 3.11 Find a Hamiltonian path or a Hamiltonian circuit, if it

exists in each of the three graphs in Fig. 3.72. If it does not exist, explain why?

Fig. 3.72

G1 contains a Hamiltonian circuit, for example A – B – C – D – E – F – A.

In fact there are 5 more Hamiltonian circuits in G1, namely, A – B – C – F – E

– D – A, A – B – E – D – C – F – A, A – B – E – F – C – D – A, A – D –

C – B – E – F – A and A – D – E – B – C – F – A.

G2 contains neither a Hamiltonian path nor a Hamiltonian circuit, since any

path containing all the vertices must contain one of the edges A – B and E – F

more than once.
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Fig. 3.73

G3 contains 2 Hamiltonian paths from C to E and from D to E, namely,

C – B – D – A – E and D – B – C – A – E, but no Hamiltonian circuits.

Example 3.12 Give an example of a graph which contains

(i) an Eulerian circuit that is also a Hamiltonian circuit

(ii) an Eulerian circuit and a Hamiltonian circuit that are distinct

(iii) an Eulerian circuit, but not a Hamiltonian circuit

(iv) a Hamiltonian circuit, but not an Eulerian circuit

(v) neither an Eulerian circuit nor a Hamiltonian circuit.

(i) The circuit A – B – C – D – A in G1 consists of all edges and all vertices,

each exactly once.

� G1 contains a circuit that is both Eulerian and Hamiltonian.

(ii) G2 contains the Eulerian circuit A – B – D – B – C – D – A and the

Hamiltonian circuit A – B – C – D – A, but the two circuits are different.

(iii) G3 contains the Eulerian circuit A – B – C – D – B – E – A, but this

circuit is not Hamiltonian, as the vertex B is repeated twice.

(iv) G4 contains the Hamiltonian circuit A – B – C – D – E – A. However, it

does not contain Eulerian circuit as there are 4 vertices each of

degree 3.

(v) In G5, degree of B and degree of D are each equal to 3. Hence, there is no

Euler circuit in it. Also no circuit passes through each of the vertices

exactly once.

Example 3.13 Use Dijkstra’s algorithm to find the shortest path between

the vertices A and H in the weighted graph given in Fig. 3.74.

Fig. 3.74
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Dijkstra’s Iteration

Number Details of V and L(v) Adjacent vertices

of latest v*

0. V0 : A B C D E F G H B and F

L(v0) : (0) � � � � � � �
1. V1 : A* B C D E F G H D and G

L(v1) : — 2 � � � (1) � �
2. V2 : A* B C D E F* G H C, D and E

L(v2) : — (2) � 4 � — 7 �
3. V3 : A* B* C D E F* G H E and H

L(v3) : — — (4) 4 6 — � �
4. V4 : A* B* C* D E F* G H —

L(v4) : — — — � 7 — � (5)

Since H is reached from C, C is reached from B and B is reached from A,

the shortest path is A – B – C – H.

Length of the shortest path = w(AB) + w(BC) + w(CH )

= 2 + 2 + 1

= 5.

Example 3.14 Find the shorted distance matrix and the corresponding

shortest path matrix for all the pairs of vertices in the undirected graph given in

Fig. 3.75, using Warshall’s algorithm.

The weight matrix of the given graph is

given by

W = 

0 2 0 1 0 0

2 0 3 0 1 0

0 3 0 0 0 2

1 0 0 0 1 0

0 1 0 1 0 2

0 0 2 0 2 0

A B C D E F

A

B

C

D

E

F

� �
� �
� �
� �
� �
� �
� �
� �
� �

The initial distance (length) matrix L0 is got from W by replacing all the

non-diagonal 0’s by � each. Thus

L0 = 

0 2 1

2 0 3 1

3 0 2

1 0 1

1 1 0 2

2 2 0

A B C D E F

A

B

C

D

E

F

� � �� �
� �� �
� �
� � �� �
� �� � �� �
� �� �
� �� � �� �

Fig. 3.75
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Since all the Lr matrices are symmetric with zero diagonal elements, we

need only compute the following elements in the successive Lr matrices:

l12, l13, l14, l15, l16; l23, l24, l25, l26; l34, l35, l36; l45, l46 and l56

For the L1 matrix, the above elements are given by

lij = min [lij; li1 + lij of the L0 matrix]

Thus, l12 of L1 = min [l12; l11 + l12 of L0]

= min [2; 0 + 2] = 2 and so on.

l23 of L1 = min [l23; l21 + l13 of L0]

= min [3; 2 + �] = 3 and so on.

l34 of L1 = min [l34; l31 + l14 of L0]

= min [�; � + 1] = � and so on.

l45 of L1 = min [l45; l41 + l15 of L0]

= min [1; 1 + �] = 1 and so on.

l56 of L1 = min [l56; l51 + l16 of L0]

= min [2; � + �] = 2 and so on.

Hence, L1 = 

0 2 1

2 0 3 3 1

3 0 2

1 3 0 1

1 1 0 2

2 2 0

� � �� �
� ��
� �
� � �� �
� �� �� �
� �� �
� �
� � �� �

Proceeding like this, the required elements of Lr matrix are obtained by

using the rule lij of Lr = min [lij; lir + lrj of Lr – 1], where r = 2, 3, 4, 5, 6.

Accordingly, the successive matrices are given by:

L2 = 

0 2 5 1 3

2 0 3 3 1

5 3 0 6 4 2

1 3 6 0 1

3 1 4 1 0 2

2 2 0

�� �
� ��
� �
� �
� ��� �
� �
� �
� � �� �

; L3 = 

0 2 5 1 3 7

2 0 3 3 1 5

5 3 0 6 4 2

1 3 6 0 1 8

3 1 4 1 0 2

7 5 2 8 2 0

� �
� �
� �
� �
� �
� �
� �
� �
� �

L4 = 

0 2 5 1 2 7

2 0 3 3 1 5

5 3 0 6 4 2

1 3 6 0 1 8

2 1 4 1 0 2

7 5 2 8 2 0

� �
� �
� �
� �
� �
� �
� �
� �
� �

; L5 = 

0 2 5 1 2 4

2 0 3 2 1 3

5 3 0 5 4 2

1 2 5 0 1 3

2 1 4 1 0 2

4 3 2 3 2 0

� �
� �
� �
� �
� �
� �
� �
� �
� �
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L6 = 

0 2 5 1 2 4

2 0 3 2 1 3

5 3 0 5 4 2

1 2 5 0 1 3

2 1 4 1 0 2

4 3 2 3 2 0

A

B

C

D

E

F

� �
� �
� �
� �
� �
� �
� �
� �
� �

L6 is the required shortest distance matrix that gives the shortest distances

between all pairs of vertices of the given graph. The corresponding shortest

path matrix is as follows:

—

—

—

—

—

—

A B C D E F

A AB ABC AD ADE ADEF

B BA BC BED BE BEF

C CBA CB CFED CFE CF

D DA DEB DEFC DE DEF

E EDA EB EFC ED EF

F FEDA FEB FC FED FE

� �
� �
� �
� �
� �
� �
� �
� �
� �

Example 3.15 Find the shortest distance matrix and the corresponding

shortest path matrix for all the pairs of vertices in the directed weighted graph

given in Fig. 3.76, using Warshall’s algorithm.

The weight matrix of the given graph is

W = 

7 5 0 0

7 0 0 2

0 3 0 0

4 0 1 0

A B C D

A

B

C

D

� �
� �
� �
� �
� �
� �� �

The initial distance (length) matrix L0 is got from W by replacing all the 0’s

by � each.

Thus, L0 = 

7 5

7 2

3

4 1

� �� �
� �� �� �
� �� � �
� �

� �� �� �
Using Warshall’s algorithm and proceeding as in the previous example, we get

L1 = 

7 5

7 12 2

3

4 9 1

� �� �
� ��� �
� �� � �
� �

�� �� �

Fig. 3.76

A B C D E F
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L2 = 

7 5 7

7 12 2

10 3 5

4 9 1 11

�� �
� ��� �
� ��
� �
� �� �

; L3 = 

7 5 7

7 12 2

10 3 5

4 4 1 6

�� �
� ��� �
� ��
� �
� �� �

and L4 = 

7 5 8 7

7 11 3 2

9 3 6 5

4 4 1 6

� �
� �
� �
� �
� �
� �� �

,

which is the required shortest distance matrix that gives the shortest distances

between all pairs of vertices of the given graph.

The corresponding shortest path matrix is as follows:

A B C D

A AA AB ABDC ABD

B BA BDAB BDC BD

C CBDA CB CBDC CBD

D DA DCB DC DCBD

� �
� �
� �
� �
� �
� �� �

EXERCISE 3(B)

Part A: (Short answer questions)

1. Define a path and the length of a path.

2. When is a path said to be simple path? Give an example for each of

general path and simple path.

3. Define a circuit. When is it called a simple circuit?

4. Define a connected graph and a disconnected graph with examples.

5. What do you mean by connected components of a graph?

6. State the condition for the existence of a path between two vertices in a

graph.

7. Find the maximum number of edges in a simple connected graph with n

vertices.

8. State an invariant in terms of circuits of two isomorphic graphs.

9. How will you find the number of paths between any two vertices of a

graph analytically?

10. Define Eulerian path and Eulerian circuit of a graph, with an example for

each.

11. When is a graph called an Eulerian graph?

12. State the necessary and sufficient condition for the existence of an Eulerian

path in a connected graph.
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13. State the necessary and sufficient condition for the existence of an Eulerian

circuit in a connected graph.

14. Define Hamiltonian path and Hamiltonian circuit with an example for

each.

15. When is a graph called Hamiltonian graph?

16. For what value of n does the complete graph Kn have an Euler path but

no Euler circuit?

17. For what values of m and n does the complete bipartite graph Km, n have

an (i) Euler circuit and (ii) Euler path?

18. Find the number of Hamiltonian circuits in K33.

Give an example of a graph that contains

19. An Eulerian circuit that is also a Hamiltonian circuit.

20. Neither an Eulerian circuit nor a Hamiltonian circuit.

21. An Eulerian circuit, but not a Hamiltonian circuit.

22. A Hamiltonian circuit, but not an Eulerian circuit.

23. Give the definition of a strongly connected directed graph with an

example.

24. Define a weakly connected directed graph with an example.

25. Define a unilaterally connected directed graph with an example.

26. What is meant by a strongly connected component of a digraph?

27. What are the advantages of Warshall’s algorithm over Dijkstra’s algorithm

for finding shortest paths in weighted graph?

Part B

28. Find which of the following vertex sequences are simple paths, paths, no

paths, simple circuits and circuits with respect to the graph shown in

Fig. 3.77.

(i) A – B – C – F – B – A (ii) A – B – C – F – B – E

(iii) A – B – D – E – F (iv) A – B – C – F – B – C

(v) B – D – E – B – F – C – B

Fig. 3.77 Fig. 3.78

29. Identify the following vertex sequences as paths, simple paths, circuits

and simple circuits with respect to the graph given in Fig. 3.78.

(i) A – B – E – D – C – B – E; (ii) A – B – E – D – B – C

(iii) A – B – D – C – E – A; (iv) A – B – E – D – C – B – E – A

30. Find all the simple paths from A to F and simple circuits in the simple

graph shown in Fig. 3.79.
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31. Find all the connected subgraphs obtained from the graph given in

Fig. 3.80 by deleting each vertex. List out the simple paths from A to F in

each of the subgraph.

32. By using circuits, prove that the two graphs G1 and G2 given in Fig. 3.81

are isomorphic. Verify the same by using adjacency matrices.

33. By using circuits examine whether the graphs G1 and G2 given in

Fig. 3.82 are isomorphic. Verify your answer by using adjacency matrices.

34. Find the number of paths of length 4 from the vertex A to D in the simple

graph G given in Fig. 3.83 analytically. Identify those paths from the

graph.

Fig. 3.79 Fig. 3.80

Fig. 3.81

Fig. 3.82

Fig. 3.84Fig. 3.83

35. Find the number of paths length 3 from the vertex C to E in the

undirected graph given in Fig. 3.84 using adjacency matrix.

Identify those paths graphically.
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36. How many paths of length 4 are there from A to D in the directed graph

given in Fig. 3.85? What are they?

37. How many paths of length 4 are there from B to D in the directed graph

given in Fig. 3.86? What are they?

38. Find which of the graphs given in Fig. 3.87 is strongly, weakly or

unilaterally connected? Give reasons.

Fig. 3.86Fig. 3.85

Fig. 3.87

39. Find the strongly connected components of each of the graphs given in

Fig. 3.88.

Fig. 3.88

40. Find an Euler path or an Euler circuit, if it exists in each of the three

graphs in Fig. 3.89. If it does not exist, explain why?

Fig. 3.89
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41. Repeat Q. 40 with respect to the three graphs in Fig. 3.90.

42. Find a Hamiltonian path or a Hamiltonian circuit, if it exists, in each of

the three graphs in Fig. 3.91. If it does not exist, explain why?

Fig. 3.90

Fig. 3.91

43. Repeat Q. 42 with respect to the three graphs in Fig. 3.92.

Fig. 3.92

44. Give an example of a graph which contains

(i) an Eulerian circuit that is also a Hamiltonian circuit

(ii) an Eulerian circuit, but not a Hamiltonian circuit

(iii) a Hamiltonian circuit, but not an Eulerian circuit

(iv) neither an Eulerian circuit nor a Hamiltonian circuit.

Use Dijkstra’s algorithm to find the shortest path between the indicated

vertices in the weighted graph shown in Figs 3.93, 3.94, 3.95 and 3.96.

Fig. 3.93

45.
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46.

Find the shortest distance matrix and the corresponding shortest path

matrix for all the pairs of vertices in the weighted graph given in Figs

3.97, 3.98, 3.99, and 3.100, using Warshall’s algorithm.

Fig. 3.94

47.

Fig. 3.95

48.

Fig. 3.96

49. 50.

Fig. 3.98Fig. 3.97

51. 52.

Fig. 3.99 Fig. 3.100
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TREES

Definition
A connected graph without any circuits is called a tree.

Obviously a tree has to be a simple graph, since loops and parallel edges

form circuits.
Tress are useful in computer science, where they are employed in a wide

range of algorithms such as algorithms for locating items in a list.

The following are a few examples of trees:

Note

Some Properties of Trees

Property 1
An undirected graph is a tree, if and only if, there is a unique simple path

between every pair of vertices.

Proof
(i) Let the undirected graph T be a tree.

Then, by definition of a tree, T is connected.

If possible, let there be two paths between vi and vj—one from vi to vj

and the other from vj to vi. Combination (union) of these two paths would

contain a circuit.

But T cannot have a circuit, by definition.

Hence, there is a unique simple path between every pair of vertices in T.

(ii) Let a unique path exist between every pair of vertices in the graph T.

Then, T is connceted.

If possible, let T contain a circuit. This means that there is a pair of

vertices vi and vj between which two distinct paths exist, which is against

the data.

Hence, T cannot have a circuit and so T is a tree.

Property 2
A tree with n vertices has (n – 1) edges.

Proof
The property is true for n = 1, 2, 3 as seen from Fig. 3.102.

Let us now use mathematical induction to prove the prop-

erty completely. Accordingly, let the property be true for all

trees with less than n vertices.

Let us now consider a tree T with n vertices.

Fig. 3.101

Fig. 3.102
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Let ek be the edge connecting the vertices vi and vj of T.

Then, by property (1), ek is the only path between vi and vj.

If we delete the edge ek from T, T becomes disconnected and (T – ek)

consists of exactly two components, say, T1 and T2 which are connected.

Since T did not contain any circuit, T1 and T2 also will not have circuits.

Hence, both T1 and T2 are trees, each having less than n vertices, say r and

n – r respectively.

� By the induction assumption, T1 has (r – 1) edges and T2 has (n – r – 1)

edges.

� T has (r – 1) + (n – r – 1) + 1 = n – 1 edges.

Thus, a tree with n vertices has (n – 1) edges.

We give below two more properties without proof:

Property 3
Any connected graph with n vertices and (n – 1) edges is a tree.

Property 4
Any circuitless graph with n vertices and (n – 1) edges is a tree.

SPANNING TREES

Definition
If the subgraph T of a connected graph G is a tree containing all the vertices of

G, then T is called a spanning tree of G. for example, let us consider the graph

G shown in Fig. 3.103. Since G has 4 vertices, any spanning tree of G will also

have 4 vertices and hence, 3 edges [by property (2)].

Since G has 5 edges, removal of 2 edges may result in spanning tree. This

can be done in 5C2 = 10 ways, but 2 of these 10 ways result in disconnected

graphs. All the possible spanning trees are shown in Fig. 3.103.

Fig. 3.103

Every connected graph has at least one spanning tree. This is obvious when

G has no circuit, as G is its own spanning tree. If G has a circuit, we can

get a spanning tree by deleting an edge from the circuit.

MINIMUM SPANNING TREE

Definition
If G is a connected weighted graph, the spanning tree of G with the smallest

total weight (viz., the sum of the weights of its edges) is called the minimum

spanning tree of G.

Note
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Two popular algorithms for constructing minimum spanning trees are given

as follows.

Prim’s Algorithm

Step 1
Any edge of the given graph G with the smallest weight is chosen and put into

the spanning tree.

Step 2
Graph edges of minimum weight that are incident to a vertex already in the

tree and not forming a circuit with the edges already in the tree are added

successively.

Step 3
The procedure is stopped when (n – 1) edges have been added.

Equivalently, we may follow the working procedure given as follows:

Let v1, v2, …, vn be the vertices of the given graph G. The weight matrix W

of G is formed, with � as the weight of any non-existing edge. Then we start

with v1, list the eligible edges incident on v1 and select from this list the edge

v1vj (say) with least weight. After deleting v1vj from the list, we list all the new

eligible edges incident on vj and select from the list of eligible edges (consisting

of the old set excluding v1vj and the new set) the edge with the least weight.

This process is repeated until all the n vertices are connected by (n – 1) edges.

The required spanning tree is the tree consisting of the selected edges. [See

Worked Examples 3.2 and 3.3.]

Kruskal’s Algorithm

Step 1
The edges of the given graph G are arranged in the order of increasing weights.

Step 2
An edge G with minimum weight is selected as an edge of the required

spanning tree.

Step 3
Edges with minimum weight that do not from a circuit with the already

selected edges are successively added.

Step 4
The procedure is stopped after (n – 1) edges have been selected. [See Worked

Examples 3.4 and 3.5.]
1. The weight of a minimum spanning tree is unique, whereas different

minimum spainning trees are possible, as two or more edges can

have the same weight.

2. In Prim’s algorithm edges of minimum weight that are incident on a vertex

already in the spanning tree and not forming a circuit are selected, whereas in

Kruskal’s algorithm edges of minimum weight that are not necessarily incident

on a vertex already in the spanning tree and not forming a circuit are selected.

Note
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ROOTED AND BINARY TREES

Definitions
A tree in which a particular vertex is designated as the root of the tree is called

a rooted tree.
Since there is a unique simple path from the root to any other vertex of the

tree, the direction to the edges is determined.

Viz., every edge is directed away from the root. Thus, a rooted tree may be viewed as a

directed graph.

The length of the path from the root of a rooted tree to any vertex v is called

the level or depth of v or height of v.

The root is said to be at level zero. The maximum level of any vertex is

called the depth or height of the tree. Every vertex that is reachable from a

given vertex v is called a descendent of v.

Also the vertices that are reachable from v through a single edge are called

the children of v.

If a vertex v has no children, then v is called a leaf or a terminal vertex or a

pendant vertex. The degree of a leaf is 1. A non-pendant vertex is called an

internal vertex. Root is also considered an internal vertex. For example, we

consider the rooted tree given in Fig. 3.104.

Usually the rooted tree is drawn with the root

at the top.

In Fig. 3.104, A is the root of the tree and is

at level 0. The vertices B, C, D are at level 1, E,

F, G, H are at level 2 and I, J, K are at level 3.

The height of the tree is 3.

The vertices E, F and I are descendents of B.

Similarly, H, J and K are descendents of D. E and F are children of B and J

and K are children of H.

The vertices E, I, G, J and K are leaves of the tree.

The vertices A, B, F, C, D and H are internal vertices of the tree.

BINARY TREE

A special class of rooted trees, called binary trees, is of importance in applica-

tions of computer science.

Definition
If every internal vertex of a rooted tree has exactly/at most 2 children, the tree

is called a full binary tree/a binary tree.

In other words, a full binary tree is a tree in which there is exactly one

vertex (root) of degree 2 and each of the remaining vertices is of degree 1 or 3.

In Fig. 3.105, T1 is a binary tree, whereas T2 is a full binary tree.
In the definition of binary and full binary trees, if 2 is replaced by m, the

trees are called m-ary tree and full m-ary tree.

Note

Fig. 3.104

Note
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Properties of Binary Trees

Property 1
The number n of vertices of a full binary tree is odd and the number of pendant

verities (leaves) of the tree is equal to 
( 1)

2

n �
.

Proof
In a full binary tree, only one vertex, namely, the root is of even degree

Since the number of vertices of odd degree in an undirected graph is even,

(n –1) is even.

� n is odd.

Now let p be the number of pendant vertices of the full binary tree.

� The number of vertices of degree 3 = n – p – 1.

� The sum of the degrees of all the vertices of the tree

= 1 � 2 + p � 1 + (n – p – 1) � 3

= 3n – 2p – 1.

� Number of edges of the tree = 
1

2
(3n – 2p – 1)

(� each edge contributes 2 degrees)

But the number of edges of a tree with n vertices = n – 1(by an earlier property)

� 1

2
(3n – 2p – 1) = n – 1

i.e., 3n – 2p – 1 = 2n – 2

i.e., 2p = n + 1 or p = 
1

2

n �
.

The above property can also be stated as: If a full binary tree has i internal

vertices, it has (i + 1) terminal (pendant) vertices and (2i + 1) total vertices.

Here i = n – 
1

2

n �
 = 

1

2

n �

� n = 2i + 1 and the number of terminal vertices = 
2 1 1

2

i � �
 = i + 1

Property 2
The minimum height of a n-vertex binary tree is equal to [log2(n + 1) – 1],

where [x] denotes the smallest integer greater than or equal to x.

Fig. 3.105

Note
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Proof
Let h be the height of the binary tree.

viz., the maximum level of any vertex of the tree is h.

If ni represents the number of vertices at level i, then

n0 = 1; n1 � 21; n2 � 22; …; nh � 2h.

� n = n0 + n1 + n2 + � + nh � 1 + 21 + 22 + � + 2h.

i.e., n � 2h + 1 – 1

i.e., 2h + 1 � n + 1

� h + 1 � log2(n + 1) or h � log2 (n + 1) – 1

� Minimum value of h = [log2(n + 1) – 1]

To construct a binary tree with n vertices having the minimum height, the

above property can be made use of.

To construct a binary tree with n vertices having the maximum height, we should

have exactly 2 vertices at each level, except at zero level. Thus, maximum h = 
1

2

n �

(n is an odd integer)

TREE TRAVERSAL

One of the most common operations performed on tree graphs is that of

traversal. A traversal a tree is a process to traverse (walk along) a tree in a

systematic manner so that each vertex is visited and processed exactly once.

There are three methods of traversal of a binary tree, namely, preorder, inorder

and post order traversals.

Definitions
Let T1, T2,…, Tn be the subtrees of the given binary tree at the root R from left

to right. The process of visiting the root R first and traversing T1 in pre order,

then T2 in preorder and so on until Tn is traversed in preorder is called the pre-

order traversal.

The process of traversing T1 first in inorder and then visiting the root R and

continuing the traversal of T2 in inorder, T3 in inorder etc. until Tn is traversal

in inorder is called the inorder traversal.

The process of traversing T1 first in postorder then T2 in postorder etc., Tn in

postorder and finally visiting the root R is called the postorder traversal.

For example, let us consider the three methods of traversal of the binary tree

shown in Fig. 3.106.

Note

Fig. 3.106
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T1 and T2 are the subtrees of the given binary tree T with B and C as the

roots respectively.
If v is an internal vertex of a tree, then the subgraph of the tree consisting

of v, its descendents and all the edges incident to these descendents is

called the subtree with v as its root.).

(i) The preorder traversal of T visits the root A first and then traverses T1 and

T2 in preorder. The preorder traversal of T1 visits the root B and then D

and E in that order

The preorder traversal of T2 visits the root C and then F.

Thus, the preorder traversal of T is A B D E C F.

(ii) The inorder traversal of T traverses T1 in inorder first, then visits the root

A and finally traverses T2 in inorder.

But the inorder traversal of T1 processes D, B and E in that order and

the inorder traversal of T2 processes C and then F.

Thus, the inorder traversal of T is D B E A C F.

(iii) The postorder traversal of T-processes T1, then T2 in postorder and finally

visits A.

But the postorder traversal of T1 processes D, E and B in that order and

the postorder traversal of T2 processes F and then C.

Thus, the postorder traversal of T is D E B F C A.

EXPRESSION TREES

Binary trees can be used to represent algebraic expressions, as such represen-

tation facilitate the computer evaluation of expressions. In binary tree represen-

tation of expressions, the terminal vertices (leaves) are labeled with numbers or

variables, while the internal vertices are labeled with the operation such as

addition (+), subtraction (–), multiplication (*), division (/) and exponentiation

(�). The operation at each internal vertex operates on its left and right subtrees

from left to right.

We can represent expressions in three different ways by using binary trees.

They are known as Infix, Prefix and Postfix forms of an expression.

Infix Notation

The standard way of representing an expression in which the operator is placed

between its operands is called the infix form of the expression.

The infix from of an algebraic expression corresponds

to the in order traversal of the binary tree representing

the expression. It gives the original expression with the

operands and operations in the same positions. To avoid

ambiguity in the infix notation, we include a pair of

parentheses for each operation.

For example, the expression ((A + B)*(C/D)) is

represented by the binary tree shown in Fig. 3.107.

Note

Fig. 3.107
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Prefix Notation

The prefix from of an algebraic expression represented by a binary tree corre-

sponds to the preorder traversal of the tree. The expression in the prefix

notation is unambiguous and so no parentheses need be used in this form.

Expressions written in prefix from are also said to be in Polish notation, which

name is given after the polish logician Jan Lukasiewicz. For example, the prefix

from of the expression represented by the binary tree given in Fig. 3.107 is

* + AB/CD.

Postfix Notation

The postfix from of an algebraic expression represented by binary tree corre-

sponds to the postorder traversal of the tree. As the expression in the postfix

notation is unambiguous, no parentheses are required to be used in this form.

Expressions written in postfix form are also said to be in reverse Polish

notation.

For example, the postfix from of the expression represented by the binary

tree given in Fig. 3.107 is AB + CD/*.
The binary tree representation of an expression is the same, but the three

notations (forms) of the expression only are different.

WORKED EXAMPLES 3(C)

Example 3.1 Draw all the spanning trees of the graph G shown in

Fig. 3.108.

The given graph G has 4 vertices. Hence, any spanning

tree of G will also have 4 vertices and so 3 edges.

Since G has 5 edges, we have to delete 2 of the edges

of G to get a spanning tree. This deletion can be done in

5C2 = 10 ways, but 2 of these 10 ways (namely, removal

of AC, BC and AD, BD) result in disconnected graphs. All

the 8 spanning trees of G are given in Fig. 3.109.

Note

Fig. 3.108

Fig. 3.109
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Example 3.2 Use Prim’s algorithm to find a minimum spanning tree for

the weighted graph given in Fig. 3.110.

The weight matrix of the given graph is

W = 

1 4 2

1 3 3

4 1 3

3 1 2

2 3 3 2

A B C D E

A

B

C

D

E

� �� �
� �� �
� �

� �� �
� �� �� �
� ��� �

Iteration Eligible edges Selected edge

number (i) after i th iteration with weight

1 (1)AB , AC(4), (2)AE AB(1)

2 BD(3), BE(3) AE(2)

3 EC(3), (2)ED ED(2)

4 (1)DC DC(1)

Since all the 5 vertex are connected by 4 edges that do not from a circuit, the

edges of the minimum spanning tree are BA, AE, ED and DC. The minimum

spanning tree with weight 6 is shown in Fig. 3.111.

Fig. 3.110

Fig. 3.112Fig. 3.111

Example 3.3 Use Prim’s algorithm to find a minimum spanning tree for

the weighted graph given in Fig. 3.112.

The weight matrix of the given graph is

5 4 1

5 14 10

4 3 6

1 14 3 8 12 9

10 8 7

6 12 2

9 7 2

A B C D E F G

A

B

C

D

E

F

G

� � � �� �
� �� � � �
� �

� � � �� �
� ��� �
� �� � � �
� �� � � �� �
� �� � � �� �
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Iteration Eligible edges Selected edge

number (i) after i th iteration with weight

1. (5)AB , AC(4), (1)AD AD(1)

2. DB(14), (3)DC DE(8), DC(3)

DF(12), DG(9)

3. (6)CF CF(6)

4. (2)FG FG(2)

5. (7)GE AB(5)

6. BE(10) GE(7)

Since all the 7 vertices are connected by 6 edged that do not from a circuit,

the edges of the spanning tree are BA, AD, DC, CF, FG and GE. The total

weight of the minimum spanning tree = 5 + 1 + 3 + 6 + 2 + 7 = 24.

Example 3.4 Find the minimum spanning tree for the weighted graph

shown in Fig. 3.113, by using Kruskal’s algorithm.

Fig. 3.113

We first arrange the edges in the increasing order of the edges and proceed

as per Kruskal’s algorithm.

Edge Weight Included in the  If not included,

spanning tree or not circuit formed

AE 2 Yes —

CD 3 Yes —

AC 4 Yes —

CE 4 No A – E – C – A

AB 6 Yes —

BC 6 No A – B – C – A

BE 6 — —

DE 7 — —

AD 8 — —

BD 8 — —
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Since there are 5 vertices in the graph, we should stop the procedure for

finding the edges of the minimum spanning tree, when 4 edges have been

found out.

The edges of the minimum spanning tree are AE, CD, AC and AB, whose

total length is 15.

There are 5 other alternative minimum spanning trees of total length 15

whose edges are listed below:

(1) AE, CD, AC, BC; (2) AE, CD, AC, BE; (3) AE, CD, CE, AB;

(4) AE, CD, CE, BC; (5) AE, CD, CE, BE.

Example 3.5 Use Kruskal’s algorithm to find a minimum spanning tree

for the weighted graph shown in Fig. 3.114.

Edge Weight Included in the  If not included,

spanning tree or not circuit formed

EF 1 Yes —

AD 2 Yes —

HI 2 Yes —

BD 3 Yes —

CF 3 Yes —

EH 3 Yes —

BC 4 Yes —

FH 4 No E – F – H – E

FI 4 No E – F – I – H – E

GH 4 Yes —

AB 5 — —

BE 5 — —

BF 6 — —

DG 6 — —

DE 7 — —

DH 8 — —

The required minimum spanning tree consists of the 8 edges EF, AD, HI,

BD, CF, EH, BC and GH.

The total length of the minimum spanning tree = 22.

Fig. 3.114
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Example 3.6 Sketch the 11-vertex binary trees with minimum and maxi-

mum heights. Find also the path length of both the trees.

By property (2) of the binary trees, the minimum height of a 11-vertex

binary tree = [log212 –1] = [3.5850 – 1] = [2.5850] = 3,

(�[x] = the smallest integer � x)

To draw the binary tree with maximum height, we should have exactly 2

vertices at each level (except at zero level).

� Maximum height = 
11 1

2

�
 = 5.

The required binary trees are given in Fig. 3.115.

Fig. 3.115

The sum of the path lengths from the root to all terminal vertices of a binary

tree is called the path length of the tree.

For G1, path length = 2 + 2 + 3 + 3 + 3 + 3 = 16

For G2, path length = 1 + 2 + 3 + 4 + 5 + 5 = 20

Example 3.7 List the order in which the vertices of the tree given in

Fig. 3.116 are processed using preorder, inorder and postorder traversal.

Fig. 3.116
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(i) Preorder traversal

Stage (1) (after processing level 0 vertex A)

Fig. 3.116(a)

Stage (2) (after processing level 1 vertices B and C)

Fig. 3.116(b)

Stage (3) (after processing level 2 vertices D and E)

Fig. 3.116(c)

Stage (4) (after processing level 3 vertices F, G, H)

Fig. 3.116(d)

Stage (5) (after processing level 4 vertices I, J, K)

The required list of vertices using preorder traversal is

A, B, D, F, I, L, M, G, C, E, H, J, K.
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(ii) Inorder traversal [Figs 3.116(a) to 3.116(d) may be referred]

Stage (1)

B A C
� � �

Stage (2)

D B A E C
� � � � �

Stage (3)

F D G B A E H C
� � � � � �� �

Stage (4)

F I D G B A E J H K C
� � � � � � � �� � �

Stage (5)

F, L, I, M, D, G, B, A, E, J, H, K, C, which is the required list of

vertices using inorder traversal.

(iii) Postorder traversal [Figs 3.116(a) to 3.116(d) may be referred]

Stage (1)

B C A
� ��

Stage (2)

D B E C A
� � � ��

Stage (3)

F G D B H E C A
� � � � � �� �

Stage (4)

I F G D B J K H E C A
� � � � � � � �� � �

Stage (5)

L, M, I, F, G, D, B, J, K, H, E, C, A, which is the required list of vertices

using postorder traversal.

Example 3.8 In which order does (i) a preorder, (ii) inorder (iii) a

postorder traversal visit the vertices of the ordered rooted tree given in

Fig. 3.117.

Fig. 3.117

(i) Preorder traversal

Stage (1)

A B C D
� � ��



166 Discrete Mathematics

Stage (2)

A B E F C D G H I
� � � � � � �� �

Stage (3)

A B E J K F C D G L M H I
� � � � � � � � � �� � �

Stage (4)

A, B, E, J, K, N, O, P, F, C, D, G, L, M, H, I, which is the required

order of vertices.

(ii) Inorder traversal

Stage (1):

B A C D
� � ��

Stage (2):

E B F A C G D H I
� � � � � � �� �

Stage (3):

J E K B F A C L G M D H I
� � � � � � � � � �� � �

Stage (4):

J, E, N, K, O, P, B, F, A, C, L, G, M, D, H, I, which is the required

order of vertices.

(iii) Postorder traversal

Stage (1):

B C D A
� � ��Stage (2):

E F B C G H I D A
� � � � � � �� �Stage (3):

J K E F B C L M G H I D A
� � � � � � � � � �� � �Stage (4):

J, N, O, P, K, E, F, B, C, L, M, G, H, I, D, A, which is the required

order of vertices.

Example 3.9 Construct the binary tree whose in order and preorder

traversals are respectively E A C I F H D B G and F A E I C D H G B.

The first letter F in the preorder traversal represents the root of the tree.

The letters E, A, C, I and H, D, B, G that lie on the left and right sides of F

in the inorder traversal represent the vertices of the left subtree and right sub-

tree respectively.

Since A is the next letter in the right of F in the preorder traversal A is the

root of the left subtree and hence, the left child of F.

Among the letters E, A, C, I, the letter E lies on the left of A and C and I lie

on the right of A.

Hence, E is the only terminal vertex lying on the left edge emanating from

A.

Since C, I occur in that order in the inorder traversal, C is terminal vertex on

the left edge emanating form I. There is no right edge emanating from I, which

is the right child of A.
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Leaving F, A, E, I, C, which have been accounted

for, D is the next letter in the preorder traversal. Hence,

D is the root of the right subtree.

From the inorder traversal, we see that H is the

only terminal vertex on the left branch of D.

G is the right child of D. B is the terminal vertex

on the left branch of G.

Taking all these facts into account, we draw the

graph which is given in the adjacent Fig. 3.118.

Example 3.10 Construct the binary tree whose inorder and postorder

traversals are respectively D C E B F A H G I and D E C F B H I G A.

The last letter A in the postorder traversal represents the root of the tree.

The letters D, C, E, B, F and H, G, I that lie on the left and right sides of A

in the inorder traversal represent the vertices of the left and right subtrees

repectively.

Since G is the next letter in the left of A in the postorder traversal, G is the

root of the right subtree and hence the right child of A.

H and I are the left and right children of G respectively.

Leaving H, I, G, A, in the postorder traversal, B

is the next letter from right and it is the root of the

left subtree.

Since F is the only letter on the right of B, it is

the only right child of B.

Obviously among the letters D, C, E that lie on

the left of B, C is the right child of B. D and E are

the left and right children of C respectively.

Taking all these facts into consideration, we draw

the tree which is given in the following Fig. 3.119.

Example 3.11 Represent the expression ((a – c) * d)/(a + (b – d) as a

binary tree and write the prefix and postfix forms of the expression.

The binary tree for the expression can be built from the bottom upwards.

First the subtrees for the expressions within the innermost parentheses, namely,

a – c and b – d are constructed as shown in Fig. 3.120(a).

Fig. 3.118

Fig. 3.119

Fig. 3.120(a) Fig. 3.120(b)

Then these are incorporated as part of larger subtree representing (a – c)* d

and a + (b – d) which are shown in Fig. 3.120(b).
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Finally the subtrees given in Fig. 3.120(b) are combined to form the required

tree representing the given expression. The required binary tree is given in

Fig. 3.120(c).

Fig, 3.120(c)

The fully parenthesized expression, namely, (((a – c) * d)/(a + (b – d))) is

the infix form of the expression.

Prefix form

This is obtained by visited the vertices using preorder traversal.

Stage (1) /, *, +

Stage (2) /, *, –, d, +, a, –

Stage (3) / * – a c d + a – b d, which is the required prefix form.

Postfix form

This is obtained by visiting the vertices, using postorder traversal.

Stage (1) *, +, /

Stage (2) –, d, *, a, –, +, /

Stage (3) ac – d * a b d – + /, which is the required postfix form.

Example 3.12 Represent the prefix expression –/a * b + cde as a binary

tree and write the corresponding infix and postfix forms.

The subtrees are drawn by considering the operation form right to left when

the operands follow an operator. Accordingly we get the following subtrees in

the order given and the final tree.

Fig. 3.121(a) Fig. 3.121(c)Fig. 3.121(b)
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Finally the required binary tree is obtained as shown

in Fig. 3.121(d).

Infix form

Stage (1) /, –, e

Stage (2) a, /, *, –, e

Stage (3) a, /, b, * +, –, e

Stage (4) a, /, b, *, c, +, d, –, e.

The usual infix form of the expression is

a/(b *(c + d) – e.

The fully parenthesized infix form is

(((a/(b * (c + d))) – e)

Postfix form

Stage (1) /, e, –

Stage (2) a, *, /, e, –

Stage (3) a, b, +, *, /, e, –

Stage (4) a b c d + * / e –, which is the required postfix form of the

expression.

Example 3.13 Represent the postfix expression ab + cd * ef / – – a* as

a binary tree and write also the corresponding infix and prefix forms.

The subtrees are drawn by considering the operations from left to right,

when two operands precede an operator. Accordingly we get the following

subtrees in the order given and the final tree.

Fig. 3.121(d)

Fig. 3.122(a) Fig. 3.122(b) Fig. 3.122(c) Fig. 3.122(d)

Fig. 3.122(e) Fig. 3.122(f)

Infix form

Stage (1) –, *, a
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Stage (2) +, –, –, *, a

Stage (3) (a + b), –, *, –, /, *, a

Stage (4) ((a + b) – ((c * d) – (e/f))) * a, which is the usual infix form of

the expression.

The fully parenthesized form is (((a + b) – ((c * d) – (e/f))) * a)

Prefix form

Stage (1) *, –, a

Stage (2) *, – +, –, a

Stage (3) *, –, +, a, b, –, *, /, a

Stage (4) * – + a b – * c d / e f a, which is the required prefix form.

Example 3.14 Find the value of

(i) the prefix expression + – � 32 � 23/8 – 42.

(ii) the postfix expression 72 – 3 + 232 + – 13 – * /.

(i) To evaluate the prefix expression, we scan the operators and the associ-

ated operands from right to left.

Thus, + – � 32 � 23/8 – 42

= + – � 32 � 23/8 (– 42)

= + – � 32 � 23/8 (4 – 2)

= + – � 32 � 23(/82)

= + – � 32 � 23(8/2)

= + – � 32 (� 23)4

= + – � 32 (2 � 3) 4

= + – (� 32) 84

= + – (3 � 2) 84

= + ( – 98) 4

= + (9 – 8) 4

= (+ 14)

= 1 + 4

= 5.

(ii) To evaluate the postfix expression, we scan the operation and the associ-

ated operands from left to right.

Thus, 72 – 3 + 232 + – 13 – * /

= (72 –) 3 + 232 + – 13 – * /

= (7 – 2) 3 + 232 + – 13 – * /

= (53 +) 232 + – 13 – * /

= 82 (32 +) – 13 – * /

= 8(25 –) 13 – * /

= 8(– 3) (13 – )* /

= 8[(– 3) (–2) *]/

= (86/)

= 
8 4

or
6 3

.
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EXERCISE 3(C)

Part A: (Short answer questions)

1. Define a tree. Can a multiple graph be a tree?

2. State a few properties of tree.

3. Define a spanning tree.

4. Draw all the spanning trees of K3.

5. What is meant by minimum spanning tree?

6. Name two algorithms commonly used to find minimum spanning trees of

a connected weighted graph.

7. Give the step by step procedure of Prim’s algorithm.

8. Give the step by step procedure of Kruskal’s algorithm.

9. Define root of a tree and rooted tree.

10. Define the height of a vertex of a tree and height of a tree.

11. Define a descendent and a child of a vertex in a tree.

12. Define a leaf and an internal vertex of a tree.

13. In the rooted tree T with root at A, shown in

Fig. 3.123, name the following:

(i) the internal vertices,

(ii) the leaves,

(iii) the parent of C,

(iv) the children of G,

(v) the ancestors of E and

(vi) the descendents of B.

14. Define a binary tree. When is it called a full binary tree?

15. Define an m-ary tree. Give an example of a full 3-ary tree.

16. How many leaves and internal vertices does a full binary tree with 25

total vertices have?

17. What are the maximum and minimum heights of a binary tree with 25

vertices?

18. What do you mean by tree traversal?

19. Define the three kinds of tree traversal.

20. Explain the three different ways of representing expressions by binary

trees.

Part B

Draw all the spanning trees of the graph G1, G2 and G3 given in

Figs 3.124, 3.125 and 3.126.

21. 22. 23.

Fig. 3.123

Fig. 3.126Fig. 3.125Fig. 3.124



172 Discrete Mathematics

Find the minimum spanning trees of the weighted graphs given in

Figs 3.127 to 3.131 using Prim’s algorithm.

24. 25.

26. 27.

Fig. 3.129 Fig. 3.130

28.

Fig. 3.131

Find the minimum spanning trees for the weighted graphs given in

Figs 3.132 to 3.136, using Kruskal’s algorithm.

29. 30.

Fig. 3.127 Fig. 3.128

Fig. 3.132 Fig. 3.133
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31.

32.

33.

34. Draw all distinct full binary trees having seven vertices and height 3.

What are their path lengths?

35. Sketch the 9 vertex binary trees with minimum and maximum heights.

Find also the path lengths of both tress.

36. Sketch the 13 vertex binary trees with minimum and maximum heights.

Find also the path lengths of both trees.

List the order in which the vertex of the binary trees shown in

Figs 3.137 to 3.140 are processed using preorder, in order and postorder

traversals.

37. 38.

Fig. 3.134

Fig. 3.135

Fig. 3.136

Fig. 3.137 Fig. 3.138
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39. 40.

Fig. 3.139 Fig. 3.140

Construct the binary trees whose inorder and preorder traversals are as

follows:

41. Inorder: H D I B E A F C G

Preorder: A B D H I E C F G

42. Inorder: Q B A G C P E D R

Preorder: G B Q A C P D E R

Construct the binary trees whose inordr and postorder traversals are as

follows:

43. Inorder: D B H E I A F C G

Preorder: D H I E B F G C A

44. Inorder: H D I B J E K A F C G

Preorder: H I D J K E B F G C A.

Represent the following expressions as binary trees and also write the

prefix and postfix forms of those expressions:

45. (x + y * z) – 
u

+ w
v

.

46. (a* b – c) � d – (e * f + g)

47. ((x + 2) � 3) * ((y – (3 + x)) – 5)

Represent the following prefix expressions as binary trees and write

also the corresponding infix and postfix froms.

48. / * – A C D + A – B D

49. + – * A B � C D / E F

Represent the following postfix expressions as binary trees and write

the prefix forms.

50. A B C D + * / E –

51. A B C * * C D E + / –

Find the value of each of the following prefix expressions:

52. + – * 235/ � 238

53. + – � 32 � 23/6 – 42

Find the value of each of the following post fix expressions:

54. 723 * 4 � 93/+

55. 32 * 2 � 53 – 84/* –
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ANSWERS

Exercise 3(A)

19.

0 1 0 0 1

1 0 1 0 1

0 1 0 1 0

0 0 1 0 1

1 1 0 1 0

� �
� �
� �
� �
� �
� �
� �� �

20.

1 0 2 1

0 1 1 2

2 1 1 0

1 2 0 1

� �
� �
� �
� �
� �
� �� �

21.

0 1 0 0

0 0 1 1

1 1 0 1

1 0 0 0

� �
� �
� �
� �
� �
� �� �

22. 23. 24.

25.

1 2 3 4 5

1 1 0 0 0

1 0 1 0 1

0 0 0 1 1

0 1 1 1 0

e e e e e

A

B

C

D

� �
� �
� �
� �
� �
� �� �

26.

1 2 3 4 5 6

1

2

3

4

5

1 1 0 0 0 0

0 0 1 1 0 1

0 0 0 0 1 1

1 0 1 0 0 0

0 1 0 1 1 0

e e e e e e

V

V

V

V

V

� �
� �
� �
� �
� �
� �
� �� �

27.

1 2 3 4 5 6

1 1 1 0 0 0

0 1 1 1 0 1

0 0 0 1 1 0

0 0 0 0 1 1

e e e e e e

A

B

C

D

� �
� �
� �
� �
� �
� �� �

28.

29. 30.

35.
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37. (i) No, as the sum of the degrees is odd;

(ii) No, as explained in Worked Example 3.4(b);

(iii) No, as the sum of the degrees is odd;

(iv) Yes. ;

(v) No, as the sum of the degrees is odd.

38.  = 
mn

m n�

39. (i) bipartite ; (A, B, C, D) and (E); Yes

(ii) Not bipartite.

(iii) Not bipartite.

(iv) bipartite; (A, B, D, E) and (C, F); Yes.

(v) bipartite; (A, B, D) and (C, E, F, G); No.

40.

41. (i)

(ii)

(Edge AC and vertex E

removed from the main

graph to get the subgraph)

(Edges AD, DE, BE, CE

and vertex E removed

from the main graph to

get the subgraph)
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42. (i) Deg (u2) = 4; There is no vertex of degree 4 in the v-graph. Hence,

not isomorphic.

(ii) Deg (D) = Deg(B) = 4, whereas there is only vertex Q of degree 4.

Hence, not isomorphic.

(iii) u1, which is of degree 1 must correspond to v1, v3 v7 or v8. u1 is

adjacent to u2 which is degree 2; but v1 and v3 are adjacent to v2

which is of degree 3 and v7 and v8 are adjacent to v6 which is of

degree 3. Hence, not isomorphic.

43. (i) 0 1 0 1 0

1 0 1 1 1

0 1 0 1 1

1 1 1 0 0

0 1 1 0 0

� �
� �
� �
� �
� �
� �
� �� �

(ii) 0 1 0 1 0 1

1 0 1 0 0 1

0 1 0 1 1 0

1 0 1 0 1 0

0 0 1 1 0 1

1 1 0 0 1 0

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

The graphs are isomorphic.

44. (i)
1GA �

1 2 3 4 5 6

1

2

3

4

5

6

0 1 0 1 0 0

1 0 1 0 0 1

0 1 0 1 0 0

1 0 1 0 1 0

0 0 0 1 0 1

0 1 0 0 1 0

u u u u u u

u

u

u

u

u

u

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

; 
1GA �

6 3 4 5 1 2

6

3

4

5

1

2

0 1 0 1 0 0

1 0 1 0 0 1

0 1 0 1 0 0

1 0 1 0 1 0

0 0 0 1 0 1

0 1 0 0 1 0

v v v v v v

v

v

v

v

v

v

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

The graphs are isomorphic.
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(ii)
1GA �

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0 1 0 0 0 0 1

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

1 0 0 0 0 1 0

u u u u u u u

u

u

u

u

u

u

u

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �� �

;

2GA �

1 3 5 7 2 4 6

1

3

5

7

2

4

6

0 1 0 0 0 0 1

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

1 0 0 0 0 1 0

v v v v v v v

v

v

v

v

v

v

v

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �� �

45. (i) G1 and G2 are isomorphic. P = 

0 0 1

1 0 0

0 1 0

� �
� �
� �
� �� �

(ii) G1 and G2 are not isomorphic.

46. (i) G and H are isomorphic. (ii) G and H are isomorphic.

Exercise 3(B)

7.
( 1)

2

n n �
16. n = 2

17. (i) When m and n are even integers;

(ii) When m = 2 and n an odd integer

18. 8 19. 20.
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21. 22.

28. (i) circuit; (ii) simple path; (iii) not a path (iv) path;

(v) simple circuit.

29. (i) path; (ii) simple path; (iii) simple circuit (iv) circuit

30. Simple paths are A – F; A – E – F; A – B – C – F; A – B – E – F; A – B

– D – E – F, A – B – D – C – F, A – B – E – A – F etc.

Simple circuits are A – E – F – A; A – B – E – A; B – D – E – B; B; B –

C – D – B; A – B – E – F – A; B – C – D – E – B; A – B – C – F – A etc.

31.

In (i),and (vi), no path from A to F.

In (ii), A– D– E– F and A– D – E – C – F

In (iii), A – B – E – F and A – D – E – F

In (iv), A – B – C – F, A– B – E – F, A – B – C – E – F and A– B – E –

C – F

In (v), A – B – C – F.

33. G1 and G2 are not isomorphic.

34. 8; A – B – A – B – D; A – B – A – C – D; A – B – D – B – D; A – B –

D – C – D; A – C – A – B – D; A – C – A – C – D; A – C – D – B – D;

A – C – D – C – D.

35. 5; C – A – C – E; C – B – C – E; C – D – C – E; C – E – B – E; C –

E – C – E.

36. 3; A – B – D – C – D; A – D – C – B – D; A – C – D – C – D.

37. 5; B – A – D – A – D; B – A – D – C – D; B – C – D – A – D; B – C

– D – C – D; B – D – C – A – D.

38. G1 is unilaterally connected; G2 is unilaterally and strongly connected; G3

is unilaterally connected; G4 is strongly connected.

39. For G1, AEB; For G2, AFEB and CDE.
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40. In G1, neither an Euler path nor an Eular circuit;

In G2, there is an Euler path between B and D;

In G3, there is an Euler circuit.

41. In G1, neither an Eular path nor an Euler circuit.

In G2, there is an Euler path between B and D

In G3, there is an Euler circuit.

42. In G1, there is an H� path between A and D;

In G2, there is an H� circuit; In G3, there is neither

43. In G1, there is neither H� path nor H�circuit;

In G2, there is an H� path; In G3, there is an H� circuit.

44.

45. Shortest path is A – B – C – E – D – F; length = 9.

46. Shortest path is A – B – E – D – F; length = 9.

47. Shortest path is A – C – F – E – G; length = 74.

48. Shortest path is A – C – D – E – G – H; length = 16.

49.

0 2 3 5 4 7

2 0 5 3 2 5

3 5 0 6 5 8
;

5 3 6 0 1 2

4 2 5 1 0 3

7 5 8 2 3 0

� �
� �
� �
� �
� �
� �
� �
� �
� �

—

—

—

—

—

—

AB AC ABED ABE ABEDF

BA BAC BED BE BEDF

CA CAB CED CE CEDF

DEBA DEB DEC DE DF

EBA EB EC ED EDF

FDEBA FDEB FDEC FD FDE

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

50.

10 7 9 14

3 8 2 7
;

9 6 8 5

6 1 3 8

� �
� �
� �
� �
� �
� �� �

ABA AB ABC ABCD

BA BCDB BC BCD

CDBA CDB CDBC CD

DA DB DBC DBCD

� �
� �
� �
� �
� �
� �� �
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51.

7 5 8 7

6 6 3 2
;

9 3 6 5

4 4 1 6

� �
� �
� �
� �
� �
� �� �

AA AB ABDC ABD

BDA BDCB BDC BD

CBDA CB CBDC CBD

DA DCB DC DCBD

� �
� �
� �
� �
� �
� �� �

52.

7 4 1 5 6

6 10 6 3 2

;6 3 7 4 5

2 6 3 7 8

3 7 4 1 9

� �
� �
� �
� �
� �
� �
� �� �

ACDA ACB AC ACD ACBE

BDA BDACB BEDAC BED BE

CDA CB CDAC CD CBE

DA DACB DAC DACD DACBE

EDA EDACB EDAC ED EDACBE

� �
� �
� �
� �
� �
� �
� �� �

Exercise 3(C)

13. (i) A, B, C, G (ii) D, E, F, H, I, J

(iii) B (iv) H, I, J (v) C, B, A (vi) C, D, E.

Each of the internal vertices has 3 children.

15.

Each of the internal vertices has 3 children.

16. 13, 12 17. 13, 4

21.

22.

Note

and 8 other spanning trees got by removing the pairs of edges (AD, AE),

(AD, BC), (AD, BE), (AE, BC), (AE, BD), (BC, BD), (BC, BE) and (BD,

BE).
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23. 15 spanning trees with the following triplets of edges: (a, b, d), (a, b, f), (a,

c, d), (a, c, e), (a, c, f), (a, d, e), (a, e, f), (b, c, d), (b, c, e), (b, d, e), (b,

d, f), (b, e, f), (c, d, f), (c, e, f) and (d, e, f).

24. AC – CB – BE – ED; minimum total weight = 10.

25. AC – CB – BD – DE; minimum total weight = 8.

26. The edges of the MST are AB, AD, BC, BE, CF, DG, EH and FI;

minimum total weight = 21.

27. The edges of the MST are V1V5, V2V3, V2V6, V4V8, V5V6, V6V7, V7V8;

minimum total weight = 55.

28. The edges of the MST are AD, BC, BD, CF, EF, EH, GH and HI;

minimum total weight = 22.

29. The edges of the MST are AB, BC, BD, BF, DE; minimum total weight =

56.

30. The edges of MST are AF, AG, BG, CD, CG and DE; minimum total

weight = 57.

31. The edges of the MST are AC, AD, BE, CE, EF, EH, and FG; minimum

total weight = 18.

32. The edges of the MST are AE, BC, BF, CD, DG, DH, and EF; minimum

total weight = 191.

33. The edges of the MST are AB, AE, BF, CD, CG, FG, FJ, GH, HL, IJ,

and KL; minimum total weight = 24.

34.

Path length of each tree = 9

35. Minimum height = 3

Maximum height = 4

Path lengths are 12 and 14.

36.

37. A B D G C E H I F ; D G B A H E I C F ; G D B H I E F C A.

38. A B C E F G H D; E C G F H B D A; E G H F C D B A.

39. A B C D E F G; D C B A E F G ; D C B G F E A.

40. A B C D E F G H I J ; C B D E A F I H J G ; C E D B I J H G F A .

Minimum height = 3

Maximum height = 6

Path lengths are 20 and 27.
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Prefix form:

– + x * y z +/u v w

Postfix form:

xyz * + uv/w + –

Prefix form:

– � – * abcd + * efg

Postfix form:

ab * c – d � ef *g + –

Infix form:

((A – C) *D)/(A + (B – D))

Postfix form:

AC – D * ABD – +/

Prefix form:

*� + x23 – – y + 3x5

Postfix form:

x2 + 3 � y3x + – 5 – *

41. 42.

43. 44.

45. 46.

47. 48.



184 Discrete Mathematics

Infix form:

A/(B * (C + D)) – E

Prefix form:

–/A * B + CDE

Infix form:

((A * B)– (C � D) + (E/B))

Postfix form:

AB * CD � – EF/+

Infix form:

(A * (B * C)) – (C – (D + E))

Prefix form:

– *A * BC/C + DE

49. 50.

51.



Group Theory

INTRODUCTION

In this chapter, we shall first define general algebraic systems and discuss some

of their basic properties and concepts that will be later applied to particular

algebraic systems such as semigroups, monoids, groups and rings. Semigroups

find their applications in computer arithmetic such as multiplication, theory of

sequential machines and formal languages. Monoids are used in the study of

syntactic analysis and formal languages. Group theory is useful in the design of

fast adders and error-correcting codes. Towards the end of the chapter, basic

notions of error-detecting and error-correcting codes are introduced.

ALGEBRAIC SYSTEMS

Definition
A system consisting of a non-empty set and one or more n-ary operations on

the set is called an algebraic system. An algebraic system will be denoted by

{S, f1, f2, …}, when S is the non-empty set and f1, f2, … are n-ary operations on

S. We will mostly deal with algebraic systems, with n = 0, 1 and 2, containing

one or two operations only. Though we will mostly deal with one algebraic

system only, we may occassionally consider two or more systems which are of

the same ‘type’ in some sense.

General Properties of Algebraic Systems

1. Closure Property
For any a, b � S, a � b � S.
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For example, if a, b � Z, a + b � Z and a � b � Z, where + and � are the

operations of addition and multiplication.

2. Associativity
For any a, b, c � S, (a � b) � c = a � (b � c).

For example, if a, b, c � Z,

(a + b) + c = a + (b + c) and (a � b) � c = a � (b � c).

3. Commutativity
For any a, b � S, a � b = b � a.

For example, if a, b � Z, a + b = b + a and a � b = b � a

4. Identity Element
There exists a distinguished element e � S, such that for any a � S,

a � e = e � a = a

The element e � S is called the identity element of S with respect to operation

�. For example, 0 and 1 are the identity elements of Z with respect to the

operations of addition and multiplication respectively, since, for any a � Z.

a + 0 = 0 + a = a

and a � 1 = 1 � a = a

5. Inverse Element
For each a � S, there exists an element a–1 � S such that a � a–1 = a–1 � a = e.

The element a–1 � S is called the inverse of a under the operation �.

For example, for each a � Z, –a is the inverse of a under the operation of

addition, since, a + (–a) = (–a) + a = 0, where 0 is the identity element of Z

under addition.

6. Distributivity
For any a, b, c � S, a � (b � c) = a � b � a � c

In this case the operation � is said to be distributive over the operation

�.

For example, the usual multiplication is distributive over addition, since

a � (b + c) = a � b + a � c.

7. Cancellation Property
For any a, b, c � S and a � 0,

a � b = a � c � b = c

and b � a = c � a � b = c

For example, cancellation property holds good for any a, b, c � Z under

addition and multiplication.

8. Idempotent Element
An element a � S is called an idempotent element with respect to the operation

�, if a � a = a.

For example, 0 � Z is an idempotent element under addition, since, 0 + 0 =

0 and 0 and 1 � Z are idempotent elements under multiplication, since,

0 � 0 = 0 and 1 � 1 = 1
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9. Homomorphism
If {X, �} and {Y, �} are two algebraic systems, where � and � are binary (n-ary)

operations, then a mapping g: X � Y is called a homomorphism or simply

morphism from {X, �} to {Y, �}, if for any x1, x2 � X,

g(x1 � x2) = g(x1) � g(x2).

If a function g satisfying the above condition exists, then {Y, �} is called the

homomorphic image of {X, �}, even though g(X) � Y.

The concept of homomorphism holds good for algebraic systems with more

than one binary operations. Also more than one homomorphic mapping is

possible from one algebraic system to another.

9(a) Epimorphism

If the homomorphism g: {X, �} � {Y �} is onto, the g is called an epimorphism.

9(b) Monomorphism

If the homomorphism g: {X, �} � {Y, �} is one-to-one, then g is called a

monomorphism.

9(c) Isomosphism

If g: {X, �} � {Y, �} is one-to-one onto, then g is called an isomorphism. In

this case the algebraic systems {X, �} and {Y, �} are said to be isomorphic or

to be of the same type.

9(d) Endomorphism

A homomorphism g: {X, �} � {Y, �} is called an endomorphism, if Y � X.

9(e) Automorphism

An isomorphism g: {X, �} � {Y, �} is called an automorphism, if Y = X.

Example

Let {X, �}, where X = {a, b, c} and � is a binary operation on X be represented

by the composition table or Cayley’s representation table [Table 4.1(a)]. Let

{Y, �}, where Y = {1, 2, 3} and � is a binary operation on Y be represented by

Table 4.1(b). If g is defined by g(a) = 3, g(b) = 1 and g(c) = 2, then {X, �} and

{Y, �} are isomorphic.

If the set S = {a1, a2, …, an} has only a finite number of elements, then 

�
in a table such that ai � aj � S is entered in the point of intersection of the i th row

headed by ai and the j th column headed by aj [Refer to Table 4.1(a)]. The resulting table

is called the Cayley’s table or operation table or composition table.

Table 4.1(a) Table 4.1(b)

� a b c � 1 2 3

a a b c 1 1 2 1

b b b c 2 1 2 2

c c b c 3 1 2 3

Note
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Note

From the definition of g, we see that it is one-to-one onto.

Also

g(a � b) = g(b) = 1 = 3 � 1 = g(a) � g(b)

g(b � c) = g(c) = 2 = 1 � 2 = g(b) � g(c)

g(c � a) = g(c) = 2 = 2 � 3 = g(c) � g(a)

and so on for other combinations.

Thus g: {X, �} � {Y, �} is an isomorphism.

10. Subalgebra
If {X, �} is an algebraic system and Y is a non empty set such that Y � X is

closed under the operation �, then {Y, �} is called a sub-algebraic system or a

subalgebra of {X, �}.

For example, {Z+, �} is a subalgebra of the algebra {Z, �}, where X is the

multiplication operator.

11. Direct Product
If {X, �} and {Y, �} are two algebraic systems of the same type, then the

algebraic system {X � Y, �} is called the direct product of the algebras {X, �}

and {Y, �}, provided the operation � is defined for any x1, x2 � X and y1, y2 �
Y as (x1, y1) � (x2, y2) = {x1 � x2, y1 � y2}.

The original algebraic systems are called the factor algebras of {X � Y, �}.

SEMIGROUPS AND MONOIDS

Definition of a Semigroup
If S is a nonempty set and � be a binary operation on S, then the algebraic

system {S, �} is called a semigroup, if the operation � is associative.

viz., if for any a, b, c � S,

(a � b) � c = a � (b � c).

Since the characteristic property of a binary operation on a set S is the

closure property, it is not necessary to mention it explicity when algebraic

systems are defined.

For example, if E is the set of positive even numbers, then {E, +} and {E, �}

are semigroups.

Definition of a Monoid
If a semigroup {M, �} has an identity element with respect to the operation �,

then {M, �} is called a monoid.

viz., if for any a, b, c � M,

(a � b) � c = a � (b � c)

and if there exists an element e � M such that for any a � M, e � a = a � e = a,

then the algebraic system {M, �} is called a monoid.

For example, if N is the set of natural numbers, then {N, +} and {N, �} are

monoids with the identity elements 0 and 1 respectively.

The semigroups {E, +} amd {E, �} are not monoids.Note
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HOMOMORPHISM OF SEMIGROUPS AND
MONOIDS

Definition
If {S, �} and {T, �} are any two semigroups, then a mapping g: S � T such

that, for any two elements a, b � S,

g(a � b) = g(a) � g(b) (1)

is called a semigroup homomorphism. As defined in general algebraic system,

a semigroup homomorphism is called a semigroup epimorphism, monomorphism

or isomorphism, according as the mapping g is onto, one-to-one or one-to-one

onto. Similarly two semigroups {S, �} and {T, �} are said to be isomorphic if

there exists a semigroup isomorphic mapping from S to T.

Definition
If {M, �, eM} and {T, �, eT} are any two monoids, where eM and eT are identity

elements of M and T with respect to the corresponding binary operations � and

� respectively, then a mapping g: M � T such that, for any two elements a, b

� M,

g(a � b) = g(a) � g(b) (2)

and g(eM) = eT (3)

is called a monoid homomorphism. As before monoid epimorphism, mono-

morphism and isomorphism are defined.
1. Even if {T, �} is any arbitrary algebraic system, it can be proved to

be a semigroup, provided (1) is satisfied, where g is onto as given

below:

g{(a � b) � c} = g(a � b) � g(c), by (1)

= {g(a) � g(b)} � g(c), by (1)

Similarly g{a � (b � c)} = g(a) � {g(b) � g(c)}

Thus � is associative. i.e., {T, �} is a semigroup.

2. When g is a semigroup homomorphism from {S, �} to {T, �} and if a � S is an

idempotent element, then g(a) � T will also be an idempotent element, for

g(a � a) = g(a), since a is idempotent.

Also g(a � a) = g(a) � g(a), since g is homomorphism.

� g(a) � g(a) = g(a)

i.e., g(a) is idempotent.

3. As can be easily proved, commutativity is also preserved by semigroup and

monoid homomorphisms.

4. If {S, �} is a monoid or semigroup with an identity e and g is a epimorphism

from {S, �} to {T, �}, then the semigroup {T, �} is also a monoid, for,

if a � S, g(a � e) = g(e � a) = g(a), since e is the identity of {S, �}

i.e., g(a) � g(e) = g(e) � g(a), by epimorphism.

� g(a) � g(e) = g(e) � g(a) = g(a)

i.e., g(e), the image of e, is the identity element of {T, �}

i.e., {T, �} is also a monoid.

5. Even if {T, �, eT} is an arbitrary algebraic system, it can be proved to be a

monoid, provided condition (2) is satisfied where g is onto, by using the arguments

in notes (1) and (4).

Note
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6. The monoid homomorphism preserves the property of invertibility as explained

below.

Let a–1 � M be the inverse of a � M

Then g(a � a–1) = g(eM) = eT , by (3)

Also g(a � a–1) = g(a) � g(a–1), by homomorphism

� g(a) � g(a–1) = eT

Similarly, using g(a–1 � a), we can prove that g(a–1) � g(a) = eT

Hence the inverse of g(a) = g(a–1)

i.e., [g(a)]–1 = g(a–1).

Properties of Homomorphism

Property 1
Composition of two homomorphisms is also a homomorphism.

viz., if {S, �}, {T, �} and {V, �} are semigroups and if g: S � T and h: T � V

are homomorphisms, then (h � g): S � V is also a homomorphism.

Proof
Let a, b � S. Then

(h � g) (a � b) = h{g(a � b)}

= h{g(a) � g(b)}

= h{g(a)} � h{g(b)}

= (h � g) (a) � (h � g) (b)

i.e., (h � g): S � V is also a homomorphism.

Property 2
The set of all semigroup endomorphisms (automorphisms) of a semigroup is a

semigroup under the operation of (left) composition.

Proof
Let g: X � Y be a semigroup endomorphism. Then Y � X.

Let g1: X � Y, g2: X � Y and g3: X � Y be any 3 elements of the set E of all

endomorphisms of the semigroup.

Then (g1 � g2): X � Y, since Y � X

Now (g1 � g2) (a � b) = g1{g2(a � b)}

= g1{g2(a) � g2(b)}

= (g1 � g2)(a) � (g1 � g2)(b)

� g1 � g2 is a homomorphism (1)

Also {(g1 � g2) � g3} (a � b) = (g1 � g2) {g3(a � b)}

= (g1 � g2) {g3(a) � g3(b)}

= g1[g2{g3(a)}] � g1[g2{g3(b)}]

= g1� {(g2 � g3)}(a) � g1 � {(g2 � g3)}(b)

� (g1 � g2) � g3 = g1 � (g2 � g3) (2)

From (1) and (2), it follows that E is a semigroup.
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Property 3
If {S, �} is a semigroup, there exists a homomorphism g: S � SS, where {SS, �}

is a semigroup of functions from S to S under the operation of (left) composition.

Proof
For any element a � S, let g(a) = fa, where fa � SS is defined by

fa(b) = a � b, for any b � S (1)

Now g(a � b) = fa�b (2)

where fa�b(c) = (a � b) � c = a � (b � c),

by the associativity of the semigroup {S, �}

= fa{(fb(c)}, by (1)

= (fa � fb)(c)

= {g(a) � g(b)}(c)

i.e., fa�b = g(a) � g(b) (3)

From (2) and (3), we get

g(a � b) = g(a) � g(b)

i.e., g: S � SS is a homomorphism.

SUBSEMIGROUPS AND SUBMONOIDS

Definition
If {S, �} is a semigroup and T � S is closed under the operation �, then {T, �}

is called a subsemigroup of {S, �}.

For example, if the set E of all even non negative integers, then {E, +} is a

subsemigroup of the semigroup {N, +}, where N is the set of natural numbers.

If {M, �, e} is a monoid, T � M is closed under the operation � and e � T,

then {T, �� e} is called a submonoid of {M, �, e}.

For example, if E is the set of all non-negative even integers, then {E, +, 0}

is a submonoid of {N, +, 0}, where N is the set of natural numbers.

Property

The set of idempotent elements of a commutative monoid {M, �, e} forms a

submonoid of M.

Proof
Let S be the set of idempotent elements of M. Since e � e = e, e is an

idempotent element of M and hence e � S.

Let a, b � S. Then a � a = a and b � b = b.

Now (a � b) � (a � b) = a � (b � a) � b

= a � (a � b) � b, since, M is commutative

= (a � a) � (b � b)

= a � b

Hence, a � b is also an idempotent element.

� a � b � S and {S, �} is a submonoid.
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GROUPS

Definition
If G is a non empty set and � is a binary operation of G, then the algebraic

system {G, �} is called a group if the following conditions are satisfied:

1. For all a, b, c � G,

(a � b) � c = a � (b � c) (Associativity)

2. There exists an element e � G such that, for any a � G,

a � e = e � a = a (Existence of identity)

3. For every a � G, there exists an element a–1 � G such that

a � a–1 = a–1 � a = e (Existence of inverse)

The algebraic system {S, �} is a semigroup, if � is associative. If there

exists an identity element e � S, then {S, �} is a monoid. Further if there

exists an inverse for each element of S, then {S, �} is a group.

For example, {Z, +} is a group under the usual addition.

Definitions
When G is finite, the numbers of elements of G is called the order of G and

denoted by O(G) or |G|. If the element a � G, where G is a group with identity

element e, then the least positive integer m for which am = e is called the order

of the element a and denoted as O(a). If no such integer exists, then a is of

infinity order. A group {G, �}, in which the binary operation � is commutative,

is called a commutative group or abelian group.

For example, the set of rational numbers excluding zero is an abelian group

under the usual multiplication.

Properties of a Group

1. The identity element of a group (G, �) is unique.

2. The inverse of each element of (G, �) is unique.

3. The cancellation laws are true in a group

viz., a � b = a � c � b = c

and b � a = c � a � b = c

4. (a � b)–1 = b–1 � a–1, for any a, b � G.

5. If a, b � G, the equation a � x = b has the unique solution x = a–1 � b.

Similarly the equation y � b has the unique solution y = b � a–1.

6. (G, �) cannot have an idempotent element except the identity element.

Proof
1. If possible, let there be two identity elements in the group {G, �}, say e1

and e2. Since, e2 is an identity and e1 � G, we have

e2 � e1 = e1 � e2 = e1 (1)

Since e1 is an identity and e2 � G, we have

e1 � e2 = e2 � e1 = e2 (2)

Note
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From (1) and (2), we have

e1 = e1 � e2

= e2

Hence, the identity element of a group is unique.

2. If possible, let b and c be two inverses of the element a � G.

Then, by axiom (3) in the definition of a group,

a � b = b � a = e, where e is the identity of G (1)

Similarly a � c = c � a = e (2)

Now b = e � b

= (c � a) � b, by (2)

= c � (a � b), by axiom (1)

= c � e, by (1)

= c

Hence, the inverse of an element of (G, �) is unique.

3. (i) Given a � b = a � c

� a–1 � (a � b) = a–1 � (a � c), where a–1 is the inverse of a

i.e., (a–1 � a) � b = (a–1 � a) � c

i.e., e � b = e � c, where e is the identity

i.e., b = c

� a � b = a � c � b = c

i.e., the left cancellation is valid in a group.

(ii) Given b � a = c � a

� (b � a) � a–1 = (c � a) � a–1

i.e., b � (a � a–1) = c � (a � a–1)

i.e., b � e = c � e

i.e., b = c

� b � a = c � a � b = c

i.e., the right cancellation is valid in a group.

4. (a � b) � (b–1 � a–1) = a � (b � b–1) � a–1

= a � e � a–1

= a � a–1 = e

Also (b–1 � a–1) � (a � b) = b–1 � (a–1 � a) � b

= b–1 � e � b

= b–1 � b = e

Thus the inverse of (a � b) is b–1 � a–1

viz., (a � b)–1 = b–1 � a–1.

5. Let c = a–1 � b.

Then a � c = a � (a–1 � b) = (a � a–1) � b = e � b = b

a � c = b means x = c is a solution of the equation a � x = b.

If possible, let x = d be another solution of the equation a � x = b.

Then a � c = a � d = b
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By left cancellation, we get c = d.

i.e., x = a–1 � b is the unique solution of the equation a � x = b.

Similarly we can prove that y = b � a–1 is the unique solution of the

equation y � a = b.

6. If possible, let a be an idempotent element of (G, �) other than e.

Then a � a = a (1)

Now e = a � a–1

= (a � a) � a–1, by (1)

= a � (a � a–1)

= a � e

= a

Hence the only idempotent element of G is its identity element.

PERMUTATION

Definition
A bijective mapping of a non-empty set S � S is called a permutation of S. For

example, if S = {a, b}, the two possible permutations of {a, b} are {a, b} and

{b, a}. In this section, we will represent the two permutations as

p1 = 
a b

a b

� �
� �� �

and p2 = 
a b

b a

� �
� �� �

where the first row of p contains the elements of S in the given order and the

second row gives their images.

Now the set S2 = {p1, p2} is the set of all possible permutations of the

elements of S.

Let � denote a binary operation on S2 representing the right composition of

permutations, viz., when i, j, = 1, 2, pi � pj means the permutation obtained by

permuting the elements of S by the application of pi, followed by the application

of pj.

In other words, if pi and pj are treated as functions and � denotes the usual

left composition of functions, then pi � pj = pj � pi, for i, j = 1, 2.

For example,

p2 � p1 = 
a b a b

b a a b

� � � �
�� � � �� � � �

= 
a b b a

b a b a

� � � �
�� � � �� � � �

= 
a b

b a

� �
� �� �

 = p2
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Pictorially, p2 � p1 is found as follows:

PERMUTATION GROUP

Definition
The set G of all permutations on a non-empty set S under the binary operation

� of right composition of permutations is a group {G, �} called the permutation

group.

If S = {1, 2, …, n}, the permutation group is also called the symmetric

group of degree n and denoted by Sn. The number of elements of Sn or |Sn| = n!,

since there are n! permutations of n elements.

Now let us verify that {S3, �}, where S = {1, 2, 3} is a group under the

operation of right composition of permutations.

There will be 3! = 6 permutations of the elements 1, 2, 3 of S.

i.e., S3 = {p1, p2, p3, p4, p5, p6}, where

p1 = 
1 2 3

1 2 3

� �
� �� �

; p2 = 
1 2 3

1 3 2

� �
� �� �

; p3 = 
1 2 3

2 3 1

� �
� �� �

;

p4 = 
1 2 3

2 1 3

� �
� �� �

; p5 = 
1 2 3

3 1 2

� �
� �� �

; p6 = 
1 2 3

3 2 1

� �
� �� �

The Cayley’s composition table of permutations on S3 is given below in

Table 4.2.

Table 4.2

� p1 p2 p3 p4 p5 p6

p1 p1 p2 p3 p4 p5 p6

p2 p2 p1 p4 p3 p6 p5

p3 p3 p6 p5 p2 p1 p4

p4 p4 p5 p6 p1 p2 p3

p5 p5 p4 p1 p6 p3 p2

p6 p6 p3 p2 p5 p4 p1

To obtain pi * pj, it will be convenient if we rewrite the first row of pj so as

to coincide with the second row of pi

Using Table 4.2, all the three axioms of a group are easily verified.

For example, (p2 � p4) � p6 = p3 � p6 = p4

Also p2 � (p4 � p6) = p2 � p3 = p4

Thus associativity is satisfied.

Now p1 � pi = pi � p1 = pi, for i = 1, 2, …, 6.

Note
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Thus the existence of the identity element (in this example, e = p1) is verified.

Also 1
1p�  = p1, 

1
2p�  = p1, 

1
3p�  = p5, 

1
4p�  = p4, 

1
5p�  = p3, and 1

6p�  = p6.

Thus the existence of inverse of each element is verified.

Hence {S3, �} is a group.

However this symmetric group is not abelian, since, for example, p2 � p3 =

p4, whereas p3 � p2 = p6.

DIHEDRAL GROUP

Definition
The set of transformations due to all rigid motions of a regular polygon of n

sides resulting in identical polygons but with different vertex names under the

binary operation of right composition � is a group called dihedral group,

denoted by {Dn, �}.

By rigid motion, we mean the rotation of the regular polygon about its

centre through angles 1 � 360

n
, 2 � 360

n
, …, n � 360

n
in the anticlockwise

direction and reflection of the regular polygon about its lines of symmetry.

For example, let us consider a three sided regular polygon, viz., an equilateral

triangle whose vertices are 1, 2, 3.

Fig. 4.1

When we rotate the triangle [Fig. 4.1(a)] through 1 � 360

3
 = 120° in the

anticlockwise direction about the centre C (i.e., about an axis perpendicular to

its plane through C), we get the triangle in Fig. 4.1(b). We note that the

vertices originally labeled as 1, 2, 3 have now become 3, 1, 2 respectively. We

will denote this transformation, which is the result of rotation through 120° by

r5 = 
1 2 3

3 1 2

� �
� �� �

The notation r5 corresponds to p5 of the previous example.

Similarly, when we rotate the triangle in Fig. 4.1(a) through 2 � 360

3
 = 240°

and through 3 � 360

3
 = 360°, we get the triangles in Fig. 4.1(c) and Fig. 4.1(d)

respectively. The corresponding transformations are

Note
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r3 = 
1 2 3

2 3 1

� �
� �� �

and r1 = 
1 2 3

1 2 3

� �
� �� �

.

Now let us consider the reflections of the equilateral triangle about its lines of

symmetry, namely 1A, 2B and 3C.

Fig. 4.2

When the triangle in Fig. 4.2(a) is reflected about the line 1A, the vertex 1

remains in the original position and the other two vertices 2 and 3 interchange

their positions and result in the triangle in Fig. 4.2(b). Similarly the reflections

of the original triangle about the lines 2B and 3C result in the triangles in

Fig. 4.2(c) and 4.2(d) respectively.

The corresponding transformations are given by

r2 = 
1 2 3

1 3 2

� �
� �� �

; r6 = 
1 2 3

3 2 1

� �
� �� �

and r4 = 
1 2 3

2 1 3

� �
� �� �

Now the set {r1, r2, r3, r4, r5, r6} is the same as the permutation set {p1, p2, …,

p6} of the previous example.

Hence the set {r1, r2, … r6} is a group under the right composition � and

called dihedral group {D3, �}, which is of order 6 and degree 3 and which is

the same as {S3, �}.

In general, the dihedral group {Dn, �} is of order 2n and is a permutation

group of degree n. Also {Dn, �} is a subgroup of {Sn, �}. For n = 3, the

orders of both {S3, �} and {D3, �} are 6, but for n = 4, the order of S4 is 4! whereas

the order of D4 is 8. (See worked example (4.13) in this section).

CYCLIC GROUP

Definition
A group {G, �} is said to be cyclic, if there exists an element a � G such that

every element x of G can be expressed as x = an for some integer n.

In such a case, the cyclic group is said to be generated by a or a is a

generator of G. G is also denoted by {a}.

For example, if G = {1, –1, i, –i}, then {G, �} is a cyclic group with the

generator i, for 1 = i4, –1 = i2, i = i1 and –i = i3.

For this cyclic group, –i is also a generator.

Properties of a Cyclic Group

1. A cyclic group is abelian.

Note
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Proof
Let {G, �} be a cyclic group with a � G as generator.

Let b, c � G. Then b = am and c = an, where m and n are integers.

Now b � c = am � an = am + n

= an + m

= an � am

= c � b

Hence {G, �} is an abelian group.

Proof
Let b � G. Then b = am, where m is an integer.

Now b = (a–1)–m where –m is an integer.

� a–1 is also a genarator of {G, �}.

3. If {G, �} is a finite cyclic group generated by an element a � G and is of

order n, then an = e so that G = {a, a2, …, an(= e)}. Also n is the least

positive integer for which an = e.

Proof
If possible let there exist a positive integer m < n such that am = e.

Since G is cyclic, any element of G can be expressed as a k, for some

k � Z.

When k is divided by m, let q be the quotient and r be the remainder,

where 0 � r < m.

Then k = mq + r

� ak = amq + r = am q � ar

= (am)q * ar

= eq � ar

= e � ar

= ar

This means that every element of G can be expressed as ar, where 0 �
r < m.

This implies that G has at most m elements or order of G = m < n,

which is a contradiction.

i.e., am = e, for m < n is not possible.

Hence an = e, where n is the least positive integer. Now let us prove

that the elements a, a2, a3, …, an (= e) are distinct.

If it is not true, let ai = a j, for i < j � n

Then a– i � ai = a–i � a j

i.e., e = a j – i, where j – i < n,

which again is a contradiction.

Hence ai � a j, for i < j � n.

4. If {G, �} is a finite cyclic group of order n with a as a generator, then am

is also a generator of {G, �}, if and only if the greatest common divisor

of m and n is 1, where m < n.
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Proof
Let us assume that am is a generator of {G, �}.

Then, for some integer r,

a = (am)r = amr

i.e., a = amr � e = amr � es, where s is an integer

= amr � (an)s, since, an = e, by property (3)

= amr + ns

� mr + ns = 1

� GCD (m, n) = 1

To prove the converse, let us assume that GCD (m, n) = 1

� There exists two integers p and q such that

mp + nq = 1 (1)

Let H be the set generated by am.

Since, each integral power of am will also be an integral power of a,

H � G (2)

Now amp + nq = a, by (1)

i.e., amp � anq = a

i.e., (am) p � (an)q = a

i.e., (am) p � e = a, since an = e

i.e., (am) p = a

i.e., G � H (3)

From (2) and (3), we have H = G

i.e., am is a generator of G.

WORKED EXAMPLES 4(A)

Example 4.1 If � is the binary operation on the set R of real numbers

defined by a � b = a + b + 2ab,

(a) Find if {R, �} is a semigroup. Is it commutative?

(b) Find the identity element, if exists.

(c) Which elements have inverses and what are they?

(a) (a � b) � c = (a + b + 2ab) + c + 2(a + b + 2ab)c

= a + b + c + 2(ab + bc + ca) + 4abc

a � (b � c) = a + (b + c + 2bc) + 2a(b + c + 2bc)

= a + b + c + 2(ab + bc + ca) + 4abc

Hence, (a � b) � c = a � (b � c)

i.e., � is associative.

Hence, (R, �) is a semigroup.

Also b � a = b + a + 2ba

= a + b + 2ab = a � b

Hence, (R, �) is commutative.
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(b) If the identity element exists, let it be e.

Then for any a � R,

a � e = a

i.e., a + e + 2ae = a

i.e., e (1 + 2a) = 0

� e = 0, since 1 + 2a � 0, for any a � R.

(c) Let a–1 be the inverse of an element a � R. Then a � a–1 = e

i.e., a + a–1 + 2a � a–1 = 0

i.e., a–1 � (1 + 2a) = –a

� a–1 = 
1 2

a

a
�

�

� If a � 1

2
� , a–1 exists and = 

1 2

a

a
�

�
.

Example 4.2 If � is the operation defined on S = Q � Q, the set of

ordered pairs of rational numbers and given by (a, b) � (x, y) = (ax, ay + b),

(a) Find if (S, �) is a semigroup. Is it commutative?

(b) Find the identity element of S.

(c) Which elements, if any, have inverses and what are they?

(a) {(a, b) � (x, y)} � (c, d)

= (ax, ay + b) � (c, d)

= (acx, adx + ay + b)

Now, (a, b) � {(x, y) � (c, d)}

= (a, b) � (cx, dx + y)

= (acx, adx + ay + b)

Hence, � is associative on S.

� {S, �} is a semigroup.

Now (x, y) � (a, b) = (ax, bx + y) � (a, b) � (x, y)

� {S, �} is not commutative.

(b) Let (e1, e2) be the identity element of (S, �). Then for any (a, b) � S,

(a, b) � (e1, e2) = (a, b)

i.e., (ae1, ae2 + b) = (a, b)

� ae1 = a and ae2 + b = b

i.e. e1 = 1 and e2 = 0, since, a � 0

� The identity element is (1, 0).

(c) Let the inverse of (a, b) be (c, d), if it exists.

Then (a, b) � (c, d) = (1, 0)

i.e., (ac, ad + b) = (1, 0)

� ac = 1 and ad + b = 0

i.e., c = 
1

a
 and d = 

b

a
� , if a � 0.

Thus the element (a, b) has an inverse if a � 0 and its inverse is 
1

,
b

a a
� .
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Example 4.3 If Z6 is the set of equivalence classes generated by the

equivalence relation “congruence modulo 6”, prove that {Z6, �6} is a monoid

where the operation �6 and Z6 is defined as

[i] �6 [ j ] = [(i � j)(mod 6)], for any [i], [j] � Z6

Which elements of the monoid are invertible?

[For the definition of Z6, the congruence classes modulo 6, refer to example

13(ii) in worked example set 4(b) of Chapter 4.]

The composition table {Z6, �6} is given below in Table 4.3. For conve-

nience of notation we have written [i] as simply i in the body of the Table 4.3.

Table 4.3

�6 [0] [1] [2] [3] [4] [5]

[0] 0 0 0 0 0 0

[1] 0 1 2 3 4 5

[2] 0 2 4 0 2 4

[3] 0 3 0 3 0 3

[4] 0 4 2 0 4 2

[5] 0 5 4 3 2 1

The operation �6 is associative.

For example, {[2] �6 [4]} �6 [5] = [2] �6 [5] = [4]

Also [2] �6 {[4] �6 [5]} = [2] �6 [2] = [4]

From the second row and the second column of Table 4.3, we see that [1] is the

identity element of {Z6, �6}

Hence {Z6, �6} is a monoid.

From the Table 4.3, we see that

[1] � [1] = [1] and [5] � [5] = [1]

� The elements [1] and [5] alone are invertible and their inverses are [1] and

[5] respectively.

Example 4.4 If S = N � N, the set of ordered pairs of positive integers

with the operation � defined by

(a, b) � (c, d ) = (ad + bc, bd )

and if f : (S, �) � (Q, +) is defined by f(a, b) = 
a

b
, show that f is a semigroup

homomorphism.

{(a, b) � (c, d )} � (e, f ) = (ad + bc, bd ) � (e, f )

= {(ad + bc) f + bde, bdf }

= (adf + bcf + bde, bdf )

Also (a, b) � {(c, d ) � (e, f )} = (a, b) � (cf + de, df )

= {adf + b(cf + de), bdf }

= (adf + bcf + bde, bdf )

i.e., (S, �) is associative and hence a semigroup.
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Now f{(a, b) � (c, d )} = f(ad + bc, bd )

= 
ad bc

bd

�
( , )

a
f a b

b

� ��� �� �
�

= 
a c

b d
�

= f(a, b) + f(c, d )

� f : (S, �) � (Q, +) is a semigroup homomorphism.

Example 4.5 If f : X � X, where X = {1, 2, 3, 4} is defined by f = {(1,

2), (2, 3), (3, 4), (4, 1)}, prove that {F, �}, where F = {f 0, f 1, f 2, f 3} is a

monoid under the operation (�) of function composition, if f 0 = {(1, 1), (2, 2),

(3, 3), (4, 4) and f 1 � f 1 = f � f = f 2; f 2 � f = f 3, f 3 � f = f 4 = f 0.

Show also that the mapping g: (F, �) � (Z4, +4) given by g( f i) = [i], for

i = 0, 1, 2, 3 is a monoid homomorphism. Is it an isomorphism?

The Cayley Table 4.3 for {F, �} is given

in Table 4.4.

The operation, � is commutative, since,

for example,

f 2 � f 3 = f 1 = f 3 � f 2

Also for example

( f 1 � f 2 ) � f 3 = f 3 � f 3 = f 2

and f 1 � ( f 2 � f 3) = f 1 � f 1 = f 2

i.e., ( f 1 � f 2) � f 3 = f 1 � ( f 2 � f 3)

Thus, � is associative.

Also it is easily seen that f 0 is the identity

element of F with respect to �.

Hence, {F, �} is a commutative monoid.

If we define the operation +4 on Z4 as

[i] +4[ j ] = [(i + j ) (mod 4)],

for any [i], [ j ] � Z4,

The Cayley table for {Z4, +4} will be as given in Table 4.5.

It is easily verified that +4 is both commutative and associative. Also [0] is

the identity element of Z4 with respect to +4.

Hence {Z4, +4} is a commutative monoid.

{Z4, +4} is in fact a commutative group, as the inverse of every element of

Z4 exists.

From Table 4.4 and 4.5, it is easily verified that g( f i � f j) = g( f i) +4 g( f j)

For example,

g( f 2 � f 3) = g( f 1)

= [1]

= [2] +4 [3]

= g( f 2) +4 g( f 3)

Table 4.4

� f 0 f 1 f 2 f 3

f 0 f 0 f 1 f 2 f 3

f 1 f 1 f 2 f 3 f 0

f 2 f 2 f 3 f 0 f 1

f 3 f 3 f 0 f 1 f 2

Table 4.5

+4 [0] [1] [2] [3]

[0] [0] [1] [2] [3]

[1] [1] [2] [3] [0]

[2] [2] [3] [0] [1]

[3] [3] [0] [1] [2]

Note
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Table 4.6(c)

X10 [1] [3] [9] [7]

[1] 1 3 9 7

[3] 3 9 7 1

[9] 9 7 1 3

[7] 7 1 3 9

Note

Thus g: (F, �) � (Z4, +4) is a monoid homomorphism. Since g( f i) = [i] for

i = 0, 1, 2, 3, g is one-to-one. Also for every element in Z4, there is a preimage

in F. Hence g is onto.

� g is an isomorphism.

Example 4.6 If S = {0, 1, 2, 3} is a subset of the semigroup {Z4, +4},

T = {1, 3, 7, 9} is a subset of the semigroup {Z10, �10} with the Cayley Tables

4.6(a) and 4.6(b) and if a function g: S � T is defined by g(0) = 1, g(1) = 3,

g(2) = 9 and g(3) = 7, show that g is an isomorphism.

Table 4.6(a) Table 4.6(b)

+4 [0] [1] [2] [3] �10 [1] [3] [7] [9]

[0] 0 1 2 3 [1] 1 3 7 9

[1] 1 2 3 0 [3] 3 9 1 7

[2] 2 3 0 1 [7] 7 1 9 3

[3] 3 0 1 2 [9] 9 7 3 1

The Cayley table for {g(S), �10} is

obtained from Table 4.6(a) by replacing the

elements in S by their images by g and the

operation +4 �10. It is given in Table 4.6(c).

Interchanging the last two rows in Table

4.6(c) and the interchanging the last two

columns, we get exactly the same table as

Table 4.6(b), which is the Cayley table for

{T, �10}.

Hence, the mapping g: S � T is a homomorphism. Also g is one-to-one

onto.

Hence g is an isomorphism.
We have used an alternative method for proving that g: S � T is a

homomorphism. This method is equivalent to the proof by the definition

of homomorphism, as for example,

g(2 +4 3) = g(1) = 3

and g(2) �10 g(3) = 9 �10 7 = 3

i.e., g(2 +4 3) = g(2) �10 g(3)

When the composition tables of S and T are given, this method may be preferred.

Example 4.7 If {S, �} is a monoid, where S = {a, b, c} is given by the

composition Table 4.7(a) and if a mapping g: S � SS is defined by g(a) = fa,

g(b) = fb and g(c) = fc, where fa, fb, fc � SS and fx( y) = x � y; x, y � S, show that

{SS, �} is a monoid under function composition and g is a monoid isomorphism.

Since fx( y) = x � y, we get fa(a) = a � a = a, fa(b) = a � b = b, fa(c) =

a � c = c etc.
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Table 4.7(a) Table 4.7(b)

� a b c � fa fb fc

a a b c fa fa fb fc

b b c a fb fb fc fa

c c a b fc fc fa fb

The composition table for {SS, �} is given in Table 4.7(b). The entries of this

table are obtained as follows:

fa � fa = fa(fa) = f (a)

fa � fb = fa(fb) = f (b)

fa � fc = fa(fc) = f (c) etc.

From Table 4.7(b), it is easily seen that � satisfies associativity and fa is the

identity element of SS.

Hence {SS, �} is a monoid.

The composition Table 4.7(b) can be obtained from Table 4.7(a) by replacing

a, b, c respectively by g(a) = fa, g(b) = fb and g(c) = fc.

Hence g : S � SS is a monoid homomorphism. Obviously g is one-to-one

onto. Hence, g is a monoid isomorphism.

Example 4.8 Show that the set Q+ of all positive rational numbers forms

an abelian group under the operation � defined by a � b = 
1

2
ab ; a, b � Q+.

When a, b � Q+,
2

ab � Q+

� Q+ is closed under the operation �

Now (a � b) � c = 
2

ab � c = 
2 2 4

ab c abc� �

a � (b � c) = a � 1

2 2 2 4

bc bc abc
a� � �

� (a � b) � c = a � (b � c)

Hence � is associative.

Let e be the identity element of Q+ under �
� a � e = e � a = a, for a � Q+

i.e.,
1

2
ae  = a i.e., a(e – 2) = 0

Since a > 0, we get e = 2 � Q+

Hence identity element exists.

Let b be the inverse of the element a � G

Then a � b = b � a = e = 2

i.e.,
1

2
ab  = 2

� b = 
4

a
� Q+
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Thus, every element of Q+ is invertible

� (Q+, �) is a group.

Also b � a = a � b
1

2
ab

� (Q+, �) is an abelian group.

Example 4.9 Show that the set {Zm} of equivalence classes modulo m is

an abelian group under the operation +m of addition modulo m.

Zm = {[0], [1], [2], …, [m – 1]}.

If a, b, � Z, such that a + b = q1m + r1, (1)

0 � r1 < m, then

[a] +m [b] = [r1] � Zm (1)�
� Zm is closed under +m.

If c � Z, let b + c = q2m + r2 (2)

and r1 + c = q3m + r3  (3)

Then [b] + [c] = [r2] (2)�
and [r1] + [c] = [r3] (3)�
Now a + r2 = a + b + c – q2m, by (2)

= q1m + r1 + c – q2m, by (1)

= q1m + q3m + r3 – q2m, by (3)

= (q1 + q3 – q2) m + r3 (4)

� [a] +m [r2] = [r3] (4)�
Now {[a] +m [b]} +m [c] = [r1] +m [c], by (1)�

= [r3], by (3)�, (5)

Also [a] +m {[b] +m [c]} = [a] +m [r2], by (2)�
= [r3], by (4)�, (6)

From (5) and (6), we see that +m is associative.

For every [a] � Zm,

[a] +m [0] = [0] +m [a] = [a]

� [0] is the identity element of Zm with respect to +m.

Now [0] +m [0] = [0]. � [0]–1 = [0]

If [a] � [0] � Zm, then [m – a] � Zm such that

[a] +m [m – a] = [m] = [0], since m = 1 � m + 0.

Also [m – a] +m [a] = [0]

� [a]–1 = [m – a]. i.e., Inverse of [a] exists.

Now [a] +m [b] = [b] +m [a] = [r1], by (1)

� Zm is commutative with respect to the operation +m.

Thus, {Zm, +m} is an abelian group.

Example 4.10 If M2 is the set of 2 � 2 non-singular matrices over R,

viz.,

M2 = / , , , and 0
a b

a b c d R ad bc
c d

� �� �� �� � �� �� �
� �� �� �

,
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prove that M2 is a group under the operation of usual matrix multiplication. Is it

abelian?

If A = 
1 1

1 1

a b

c d

� �
� �
� �

and B = 
2 2

2 2

a b

c d

� �
� �
� �

, then

AB = 
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

a a b c a b b d

c a d c c b d d

� �� �
� �� �� �

Also |AB| = |A| � |B |

� If A and B are non-singular, AB is also non-singular.

Also if A, B � M2, then AB � M2

� Matrix multiplication is closed.

Now if I = 
1 0

1 0

� �
� �
� �

, then AI = IA = A.

Hence I is the identity element of M2 with respect to matrix multiplication.

If A = 
a b

c d

� �
� �
� �

, A–1 = 

1 1

| | | |

1 1

| | | |

d b
A A

c a
A A

� ��� �
� �
� ��
� �� �

, A–1 � M2.

� Inverse of every A � M2 exists.

Hence, {M2, �} is a group.

Since, AB � BA in general, {M2, �} is not abelian.

for all a, b � G, where n is a positive integer.

Since, {G, �} is an abelian group,

a � b = b � a (1)

For a, b � G, we have (a � b)1 = (b � a)1, by (1)

and (a � b)2 = (a � b) � (a � b)

= a � (b � a) � b, by associativity

= a � (a � b) � b, by (1)

= (a � a) � (b � b), by associativity

= a2 � b2

Thus, the required result is true for n = 1, 2. Let us assume that the result is

valid for n = m.

i.e., (a � b)m = am � bm (2)

Now (a � b)m +1 = (a � b)m � (a � b)

= (am � bm) � (a � b), by (2)

= am � (bm � a) � b, by associativity

= am � (a � bm) � b, since G is abelian
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= (am � a) � (bm � b), by associativity

= am +1 � bm +1

Hence, by induction, the result is true for positive integral values of n.

Example 4.12 If the permutations of the elements of {1, 2, 3, 4, 5} are

given by  = 
1 2 3 4 5

2 3 1 4 5

� �
� �� �

,  = 
1 2 3 4 5

1 2 3 5 4

� �
� �� �

,  = 
1 2 3 4 5

5 4 3 1 2

� �
� �� �

,

 = 
1 2 3 4 5

3 2 1 5 4

� �
� �� �

, find , , 2, , –1 and . Also solve the

equation x = .

1 2 3 4 5 1 2 3 4 5

: � � � � �  : � � � � �
2 3 1 4 5 1 2 3 5 4

: � � � � � : � � � � �
2 3 1 5 4 2 3 1 5 4

�  = 
1 2 3 4 5

2 3 1 4 5

� �
� �� �

;  = 
1 2 3 4 5

2 3 1 5 4

� �
� �� �

1 2 3 4 5 1 2 3 4 5

: � � � � � : � � � � �
2 3 1 4 5 5 4 3 1 2

: � � � � � : � � � � �
3 1 2 4 5 4 5 3 1 2

� 2 = 
1 2 3 4 5

3 1 2 4 5

� �
� �� �

;  = 
1 2 3 4 5

4 5 3 1 2

� �
� �� �

–1 is obtained by interchanging the two rows of  and then rearranging the

elements of the first row so as to assume the natural order.

Thus –1 = 
3 2 1 5 4 1 2 3 4 5

1 2 3 4 5 3 2 1 5 4

� � � �
�� � � �� � � �

While rearranging the elements of the first row, the correspondence

between the corresponding elements of the two rows is maintained).

1 2 3 4 5

: � � � � �
2 3 1 5 4 �  = 

1 2 3 4 5

4 3 5 2 1

� �
� �� �: � � � � �

4 3 5 2 1

Solving the equation x =  means finding the value of x that satisfies the

equation. Premultiplying by –1, the given equation becomes –1 x = –1

i.e., ex = –1 , where e is the identity permutation.

� x = –1

Note
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Now –1 = 
2 3 1 4 5 1 2 3 4 5

1 2 3 4 5 3 1 2 4 5

� � � �
�� � � �� � � �

1 2 3 4 5
–1 : � � � � �

3 1 2 4 5 � x = –1  = 
1 2 3 4 5

3 1 2 5 4

� �
� �� �: � � � � �

3 1 2 5 4

Example 4.13 Define the dihedral group (D4, �) and give its composition

table.

The set of transformations due to all rigid

motions of a square resulting in identical squares

but with different vertex names under the binary

operation of right composition � is a group,

called dihedral group of order 8 and denoted by

{D4, �}.

By rigid motion, we mean the rotation of the

square about its centre through angles 90°, 180°,

270°, 360° in the anticlockwise direction and

reflection of the square about 4 lines of symmetry

is as given in Fig. 4.3.

r1 = r(90°) = 
1 2 3 4

4 1 2 3

� �
� �� �

; r2 = r(180°) = 
1 2 3 4

3 4 1 2

� �
� �� �

r3 = r(270°) = 
1 2 3 4

2 3 4 1

� �
� �� �

; r4 = r(360°) = 
1 2 3 4

1 2 3 4

� �
� �� �

r5 = r(XX ) = 
1 2 3 4

2 1 4 3

� �
� �� �

; r6 = r(YY ) = 
1 2 3 4

4 3 2 1

� �
� �� �

r7 = r(13) = 
1 2 3 4

1 4 3 2

� �
� �� �

; r8 = r(2, 4) = 
1 2 3 4

3 2 1 4

� �
� �� �

The composition table is given in Table 4.8. For example, the composition

r1 � r2 is obtained as usual as given below:

1 2 3 4

r1 � � � �
4 1 2 3

r1 � � � �
3 4 1 2

i.e., r1 � r1 = r2

Fig. 4.3
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Table 4.8

� r1 r2 r3 r4 r5 r6 r7 r8

r1 r2 r3 r4 r1 r8 r7 r5 r6

r2 r3 r4 r1 r2 r6 r5 r8 r7

r3 r4 r1 r2 r3 r7 r8 r6 r5

r4 r1 r2 r3 r4 r5 r6 r7 r8

r5 r7 r6 r8 r5 r4 r2 r1 r3

r6 r8 r5 r7 r6 r2 r4 r3 r1

r7 r6 r8 r5 r7 r3 r1 r4 r2

r8 r5 r7 r6 r8 r1 r3 r2 r4

From the Table 4.8, it is seen that

r4 � ri = ri � r4 = ri; i = 1, 2, … 8.

� r4 is the identity element of {D4, �}.

Also we see that the inverses of r1, r2, …, r8 are respectively r3, r2, r1, r4,

r5, r6, r7 and r8.

Example 4.14 Show that, if �
is a cyclic group. Is it abelian?

11/n = (ei0 + 2 i)1/n = e2 i/n; r = 0, 1, 2, … (n – 1)

i.e., the nth roots of 1 are

1, e2 i/n, e4 i/n, e6 i/n, … e2(n–1) i/n.

If we denote e2 i/n by , the nth roots of 1 are {Un} = {1, , 2, 3, …, n–1.}

Now {Un} is closed under multiplication. Obviously 1 � Un is the identity

element,

as 1 � r = r � 1 = r, for n – 1).

Also for every element r �Un, there exists an element n – r �Un, such that
r � n – r = n – r � r = n = e2 i = 1

� n – r is the inverse of r [(r = 0, 1, … n – 1)]

Hence {Un, �
Also r � s = s � r, for r, s � Un

� {Un, �
The generator of this group is obviously . Even 1 is generated by , as

n = 1.

Hence {Un, � } is a cyclic group of order n.

Example 4.15 Show that every group of order 3 is cyclic and every

group of order 4 is abelian.

(i) Since G is of order 3, it must have two distinct elements a, b apart from

the identity element e.

Since G is closed under the operation �,

a � b � G

� a � b = a or a � b = b or a � b = e
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If a � b = a, a � b = a � e

� b = e, by cancellation law

If a � b = b, a � b = e � b

� a = e, by cancellation law

But a and b are not equal to e.

� a � b = e (1)

Again by closure law, a2 � G

� a2 = a or a2 = b or a2 = e

If a2 = a or a � a = a � e, then a = e, which is not true

If a2 = e, then a2 = a � b, by (1)

� a = b, which is not true.

� a2 = b (2)

Also a3 = a � a2 = a � b, by (2)

= e, by (1)

Hence G = {a, a2, a3 (= e)} is a cyclic group with generator a.

(ii) Let G = {e, a, b, c}, where e is the identity element.

Case 1 Let a2 = b2 = c2 = e (1)

Then in the composition table of (G)

given in Table 4.9, the elements in the

first row and first column are fixed by the

property of e.

By the assumption (1), the elements in

the principle diagonal are also fixed as e.

Let us now consider the element a � b

in the second row and third column.

If a � b = a, then a � b = a � e and so b = e, which is not true. Similarly

a � b � b. Hence a � b = c. Similarly the element in the second row and

fourth column is b. By similar reasoning, we find the other elements of

Table 4.9.

From the table, it is obvious that {G, �} is abelian.
The four-element group {G, �} represented by Table 4.9 is called Klein’s

four group. This group is not cyclic, since no element can generate the

other elements of G.

Case 2 At least one of a2, b2 and c2 is not equal to e. Let a2 � e. Also

a � e.

Hence a2 = b or c, since the elements of G are to be distinct.

Let a2 = b. Then c � e or a or a2.

� c = a3, since, a3 = a2 � a � G.

Similarly if a2 = c, then b = a3.

Thus, G � {e, a, a2, a3}

Obviously, {G, �} is abelian. Also it is cyclic with a as the generator.

Table 4.9

� e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Note
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EXERCISE 4(A)

Part A: (Short answer questions)

1. What is an algebraic system? Name some properties satisfied by algebraic

systems.

2. Define identity, inverse and idempotent elements of an algebraic system.

3. Find the identity element of the algebraic system {S, �}, where S is the

set of integers and � is defined by a � b = a + b + 2, for all a, b � S.

4. Find the inverse of the element a � S in the previous question.

5. What is homomorphism with respect to an algebraic system?

6. Define isomorphism with respect an algebraic system.

7. What is Cayley’s composition table? Give an example for the same.

8. Define sub-algebraic system with an example.

9. Define direct product of two algebraic systems.

10. Define semigroup and monoid with an example for each.

11. If {S, �} is a semigroup such that a � c = c � a and b � c = c � b, where

a, b, c � S, prove that (a � b) � c = c � (a � b).

12. If {(x, y), �} is a semigroup such that x � x = y, show that (i) x � y = y �
x and (ii) y � y = x.

13. If {S, �} is a commutative semigroup such that x � x = x and y � y = y,

show that (x � y) � (x � y) = x � y, where x, y � S.

14. A binary operation � is defined on Z by a � b = a + b – ab, where a, b �
Z. Show that {Z, �} is a semigroup.

15. If {M, �} is a monoid with identity e and b, b� are inverses of a � M,

show that b = b�. [Hint: b � (a � b�) = (b � a) � b�]
16. Show that {Z+, �}, where � is defined by a � b = a, for all a, b � Z+, is a

semigroup. Is it a monoid?

17. If S = N � N and the binary operation � is defined by (a, b) � (c, d) = (ac,

bd), for all a, b, c, d � N, show that {S, �} is a semigroup. Is it a monoid?

18. Show that {Z+, �} where � is defined by a � b = max(a, b) for all a, b �
Z+, is a monoid. What is the identity element?

19. If S = {1, 2, 3, 6} and � is defined by a � b = lcm(a, b), where a, b � S,

show that {S, �} is a monoid. What is the identity element?

20. Define subsemigroup and submonoid with an example for each.

21. Define a group with an example.

22. State the basic properties of a group.

23. Define the order of a group and order of an element of a group.

24. Find the order of every element of the group {(1, –1, i, –i), �}, for which

the identity element is 1.

25. Find the order of every element of the multiplication group G = {a, a2, a3,

a4, a5, a6 = e}.

26. Show that the identity element of a group is the only element whose order

is 1.



212 Discrete Mathematics

27. Prove that the inverse of the inverse of an element of a group is equal to

the element itself.

28. Show that the set {1, 2, 3, 4} is not a group under addition modulo 5.

29. Show that the set {1, 2, 3} is not a group under multiplication modulo 4.

30. If a is an element of a group with identity e such that a2 = a, prove that

a = e.

31. If every element of a group (G, �) is its own inverse, prove that G is

abelian. [Hint: Use (a � b) = (a � b)–1, where a, b � G].

32. If a and b are any two elements of an abelian group, prove that (ab)2 =

a2b2.

33. If a and b are any two elements of a group G such that (ab)2 = a2b2, show

that G is abelian.

34. Define a permutation group.

35. Define a dihedral group.

36. How are {Sn, �} and {Dn, �} related? What are their orders?

37. Define a cyclic group with an example.

38. Show that the multiplication group {1, , 2} where  is a complex

cube root of unity is a cyclic group. What are the generators?

39. Show that the group {G, +5} is a cyclic group where G = {0, 1, 2, 3, 4}.

What are its generators?

40. How many generators are there for a cyclic groups of order 8? What are

they? [Hint: Use property (4) of cyclic groups]

Part B

41. If N is the set positive integers and � denotes the least common multiple

on N, show that {N, �} is a commutative semigroup. Find the identity

element of �. Which elements in N have inverses and what are they?

42. If Q is the set of rational numbers and � is the operation on Q defined by

a � b = a + b – ab,

show that {Q, �� is a commutative semigroup. Find also the identity

element of �. Find the inverse of any element of Q if it exists.

43. If Z6 is the set of equivalence classes generated by the equivalence relation

“congruence modulo 6”, prove that {Z6, +6} is a monoid, where the

operation and +6 on Z6 is defined by [i] +6 [ j] = [(i + j )(mod 6)], where

[i], [j] � Z6. What are the inverses of the elements of Z6?

44. If R is the set of real numbers and � is the operation defined by a � b =

a + b + 3ab, where a, b � R, show that {R, �} is a commutative monoid.

Which elements have inverses and what are they?

45. Show that there exists a homomorphism from the algebraic system {N, +}

to the system {Z4, +4}, where N is the set of natural numbers and Z4 is the

set of integers modulo 4. Is it an isomorphism?

[Hint: Define g: N � Z4 by g(i) = [i]}

46. If {S, +} and {T, �} are two algebraic systems, where S is the set of all

real numbers and T is the set of non-zero real numbers, prove that the

mapping g: S � T defined by g(a) = 3a, for a � S is a homomorphism but

not an isomorphism.
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47. If {R+, �} and {R, +} are two semigroups in the usual notation, prove

that the mapping g(a): R+ � R defined by g(a) = loge a is a semigroup

isomorphism.

48. If {Z, +} and {E, +}, where Z is the set of all integers and E is the set of

all even integers, show that the two semigroups {Z, +} and {E, +} are

isomorphic. [Hint: g(a) = 2a, where a � Z.]

49. If C is the semigroup of non-zero complex numbers under multiplication

and R is the semigroup of non-zero real numbers under multiplication,

show that g: C � R, defined by g(z) = |z | is a homomorphism.

50. If S = N � N is the set of ordered pairs of positive integers and � is an

operation on S defined by (a, b) � (c, d) = (a + c, b + d), show that {S, �}

is a semigroup. If f : (S, �) � (Z, +) is defined by f (a, b) = a – b, show

that f is a homomorphism.

51. If S = N � N is the set of ordered pairs of positive integers and � is an

operation on S defined by (a, b) � (c, d) = (ac, bd), show that {S, �} is a

semigroup. If f : (S,�) � (Q, �) is defined by f (a, b) = a/b, show that f is

a homomorphism.

52. (i) Prove that the set {0, 1, 2, 3, 4} is a finite abelian group of order 5

under addition modulo 5 as composition.

(ii) Prove that the set {1, 3, 7, 9} is an abelian group under multiplication

modulo 10.

53. (i) If � is defined on Q+ such that a � b = 
3

ab
, for a, b � Q+, show that

{Q+, �} is an abelian group.

(ii) If � is defined on Z such that a � b = a + b + 1 for a, b � Z, show that

{Z, �} is an abelian group.

(iii) If � is defined on R such that a � b = a + b – ab, for a, b � R, show

that {R, �} is an abelian group.

54. Show that the set of all polynomials in x under the operation of addition

is a group.

55. Show that the sets of 2 � 2 matrices in (i), (iii), (iv) form groups under

matrix multiplication and the set in (ii) forms a group under matrix addition.

Which of them are abelian groups?

(i)
1 0 1 0 1 0 1 0

, , ,
0 1 0 1 0 1 0 1

� �� �� � � � � � � �� �
� �� � � � � � � �� �� �� � � � � � � �� �

(ii) ; , , , ; 0
a b

a b c d R ad bc
c d

� �� �� �� � �� �� �
� �� �� �

(iii) 2 2; , ; 0
a b

a b R a b
b a

� �� �� �� � �� �� ��� �� �� �

(iv) ; 0 and
a a

a R
a a

� �� �� �� �� �� �
� �� �� �
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56. If  = 
1 2 3 4 5 6

3 1 5 4 6 2

� �
� �� �

 and  = 
1 2 3 4 5 6

5 3 1 6 2 4

� �
� �� �

 are two

S6, find , , 2, 2, –1 and –1.

57. If ,  are elements of the symmetric group S4, given by

 = 
1 2 3 4

3 4 2 1

� �
� �� �

 and  = 
1 2 3 4

2 4 3 1

� �
� �� �

,

find , , 2 and –1. Find also the orders of ,  and .

58. In the symmetric group S3, find all those elements a and b such that

(i) (a � b)2 � a2 � b2; (ii) a2 = e; a3 = e.

59. Show that the group {(1, 2, 3, 4, 5, 6), �7} is cyclic. How many generators

are there for this group? What are they?

60. Show that the group {(1, 2, 4, 5, 7, 8), �9} is cyclic. What are its

generators?

SUBGROUPS

Definition
If {G, �} is a group and H � G is a non-empty subset, that satisfies the

following conditions:

1. For a, b � H, a � b � H.

2. e � H, where e is the identity of {G, �}.

3. For any a � H, a–1 � H, then {H, �} is called a subgroup of {G, �}.
{H, �} is itself a group with the same identity as that of {G, �} and with

the same binary operation � defined on G.

Obviously {e, �} and {G, �} are trivial subgroups of {G, �}. All other

subgroups are called proper subgroups.

For example, (1) the additive group of even integers is a subgroup of the

additive group of all integers, and (2) the multiplicative group (1, –1) is a

subgroup of the multiplicative group {1, –1, i, –i}.

Theorem
The necessary and sufficient condition for a non empty subset H of a group

{G, �} to be a subgroup is a, b � H � a � b–1 � H.

Proof
(i) Let H be a subgroup.

Then if a, b � H, b–1 � H

� a � b–1 � H, by closure property.

Thus, the condition is necessary.

(ii) Let a � b–1 � H, where a, b � H, where H is a nonempty subset of G.

If b = a, the given condition gives

a � a–1 � H

i.e., e � H (1)

Note
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Using the given condition for the pair e, a � H, we have e � a–1 � H

i.e., a–1 � H (2)

Similarly, b–1 � H

Using the given condition for the pair a and b–1 � H, we have

a � (b–1)–1 � H

i.e., a � b � H (3)

From (1), (2) and (3), it follows that {H, �} is a group and hence a

subgroup of G.

Thus the condition is sufficient.

GROUP HOMOMORPHISM

Definition
If {G, �} and {G�, �} are two groups, then a mapping f : G � G� is called a

group homomorphism, if for any a, b � G,

f(a � b) = f(a) � f(b).

A group homomorphism f is called group isomorphism, if f is one-to-one

onto.

Theorem
If f : G � G� is a group homomorphism from {G, �} to {G�, �}, then

(i) f(e) = e�, where e and e� are the identity elements of G and G� respectively,

(ii) for any a � G, f(a–1) = [ f(a)]–1

(iii) if H is a subgroup of G, then f(H) = { f(h)|h � H} is a group of G�.
Proof

(i) f(e � e) = f (e) � f (e), by definition of homomorphism.

i.e., f(e) = f(e) � f(e).

i.e., f(e) is an idempotent element of {G�, �}

But the only idempotent element of a group is its identity.

� f(e) = e�
(ii) For any a � G, a–1 � G

� f(a � a–1) = f(a) � f(a–1)

i.e., f(e) = f(a) � f(a–1)

i.e., e� = f(a) � f(a–1) (1)

Similarly, f(a–1 � a) = f(a–1) � f(a)

i.e., e� = f(e) = f(a–1) � f(a) (2)

From (1) and (2), we see that

f(a–1) is the inverse of f (a)

i.e., f(a–1) = [ f(a)]–1.

(iii) Let h1, h2 � H.

Then 1h�  = f(h1) and 2h�  = f(h2) � f(H)
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Now 1h� � 1
2( )h ��  = f(h1) � [ f(h2)]

–1

= f(h1) �
1

2( )f h� , by (ii)

= f(h1 � 1
2h� ), by homomorphism

1
2h�

i.e. 1h� � 1
2( )h �� � f(H)

Thus 1h �, 2h� � f(H) � 1h� � 1
2( )h �� � f(H).

� f(H) is a subgroup of G�.

KERNEL OF A HOMOMORPHISM

Definition
If f : G � G� is a group homomorphism from {G, �} to {G�, �}, then the set of

elements of G, which are mapped into e�, the identity element of G�, is called

the kernel of the homomorphism f and denoted by ker( f ).

Theorem
The kernel of a homomorphism f from a group (G, �} to another group (G�, �)

is a subgroup of (G, �}.

Proof
By the previous theorem,

f(e) = e�, where e and e� are the identities of G and G�
� e � ker( f )

i.e., ker( f ) is a non empty subset of (G, �)

Let a, b � ker( f )

� f(a) = e� and f (b) = e�, by definition

Now f(a � b–1) = f(a) � f(b–1)

= f(a) � { f(b)}–1, by the previous theorem

= e� � {e�}–1

= e� � e�
= e�

� a � b–1 � ker( f )

Thus, when a, b � ker( f ), a � b–1 � ker( f )

� ker( f ) is a subgroup of {G, �}.

COSETS

Definition
If {H, �} is a subgroup of a group {G, �}, then the set aH, where a � G,

defined by

aH = {a � h|h � H}

is called the left coset of H in G generated by the element a � G � a is called

the representative (element) of the left coset aH.
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Similarly the set Ha defined by

Ha = {h � a|h � H}

is called the right coset of H in G generated by a � G � a is again called the

representative (element) of Ha.

Lagrange’s Theorem
The order of a subgroup of a finite group is a divisor of the order of the group.

Proof
Let aH and bH be two left cosets of the subgroup {H, �} in the group {G, �}.

Let the two cosets aH and bH be not disjoint.

Then let c be an element common to aH and bH i.e., c � aH � bH.

Since, c � aH, c = a � h1, for some h1 � H (1)

Since, c � bH, c = b � h2, for some h2 � H (2)

From (1) and (2), we have

a � h1 = b � h2

� a = b � h2 � 1
1h� (3)

Let x be an element in aH

� x = a � h3, for some h3 � H

= b � h2 � 1
1h� � h3, using (3)

Since H is a subgroup, h2 � 1
1h� � h3 � H

Hence, (3) means x � b H

Thus, any element in aH is also an element in bH. � aH � bH

Similarly, we can prove that bH � aH

Hence aH = bH

Thus, if aH and bH are not disjoint, they are identical.

� The two cosets aH and bH are disjoint or identical. (4)

Now every element a � G belongs to one and only one left coset of H in G,

for,

a = ae � aH, since e � H

i.e., a � aH

a � bH, since, aH and bH are disjoint i.e., a belongs to one and only left coset

of H in G i.e., aH. (5)

From (4) and (5), we see that the set of left cosets of H in G form a partition

of G. Now let the order of H be m.

viz., let H = {h1, h2, …, hm}, where hi’s are distinct

Then aH = {ah1, ah2, … ahm}

The elements of aH are also distinct, for, ahi =  ahj � hi = hj, which is not

true.

Thus H and aH have the same number of elements, namely m.

In fact every coset of H in G has exactly m elements.

Now let the order of the group (G, �) be n, i.e., there are n elements in G.
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Let the number of distinct left cosets of H in G be p. [p is called the index of

H in G.]

� the total number of elements of all the left cosets = pm = the total number

of elements of G i.e. n = p � m

i.e. m, the order of H is a divisor of n, the order of G.

Deductions
1. The order of any element of a finite group is a divisor of the order of the

group.

Proof
Let a � G and let O(a) = m. Then am = e. Let H be the cyclic subgroup

generated by a. Then H = {a, a2, …, am(= e)}. i.e., O(H) = m.

By Lagrange’s theorem,

O(H) is a divisor of O(G)

� O(a) is a divisor of O(G)

2. If G is a finite group of order n, then an = e for any element a � G.

Proof
If m is the order of a, then am = e. Then m is a divisor of n. i.e., n = km

Now an = akm = (am)k = ek = e.

3. Every group of prime order is cyclic.

Proof
Let a(� e) be any element of G

� O(a) is a divisor of O(G) = p, a prime number

� O(a) = 1 or p (� the divisors of p are 1 and p only)

If O(a) = 1, then a = e, which is not true.

Hence, O(a) = p. i.e., ap = e

� G can be generated by any element of G other than e and is of order

p. i.e., the cyclic group generated by a(� e) is the entire G.

i.e., G is a cyclic group.

NORMAL SUBGROUP

Definition
A subgroup {H, �} of the group {G, �} is called a normal subgroup, if for any

a � G, aH = Ha (i.e., the left and right cosets of H in G generated by a are the

same)
aH = Ha does not mean that a � h = h � a for any h � H, but it means that

a � h1 = h2 � a, for some h1, h2 � H.

Theorem
A subgroup (H, �) of a group (G, �) is a normal subgroup if and only if a–1 � h

� a � H for every a � G and h � H.

Proof
(i) Let (H, �) be a normal subgroup of (G, �).

Then aH = Ha for any a � G, by definition of normal subgroup.

Note
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Now h � a � Ha = aH

� h � a = a � h1, for some h1 � H

i.e., a–1 � h � a = h1 � H.

(ii) Let a–1 � h � a � H, for every a � G and h � H

Then a � (a–1 � h � a) � aH

i.e., (a � a–1) � (h � a) � aH

i.e., e � (h � a) � aH

i.e., h � a � aH

� Ha � aH (1)

Let b = a–1 � G, since, a–1 � G

� b–1 � h � b � H

i.e., (a–1)–1 � h � a–1 � H

i.e., a � h � a–1 � H

� (a � h � a–1) � a � Ha

i.e., (a � h) � (a–1 � a) � Ha

i.e., (a � h) � e � Ha

i.e., a � h � Ha

� aH � Ha (2)

From (1) and (2), it follows that aH = Ha.

QUOTIENT GROUP (OR) FACTOR GROUP

Definition
If H is a normal subgroup of a group (G, �) and G/H denotes the set of all (left

or right) cosets of H in G and if the binary operation � is defined on G/H by

aH � bH = (a � b)H [or Ha � Hb = H(a � b)] for all a, b � G, then {G/H, �}

is a group called a quotient group or factor group.

Theorem
If H is a normal subgroup of a group (G, �), then {G/H, �} is a group, where

G/H and � are defined as above:

Proof
Let G/H = {aH/a � G}

Then eH = H, where e is the identity of (G, �)

� eH(=H) � G/H

i.e., G/H is not an empty set (1)

If aH, bH � G/H, then aH � bH = (a � b)H � G/H

Hence, G/H is closed under � (2)

Let aH, bH, cH � G/H

Now aH � {bH � cH} = aH � (b � c)H

= {a � (b � c)}H

= {(a � b) � c}H, since, a, b, c � G

= (a � b) H � cH

= {aH � bH} � cH

� the operator � is associative (3)
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Now aH � eH = (a � e) H {� eH � G/H by (1)}

= aH

Also eH � aH = (e � a)H = aH

� eH is the identity element of G/H (4)

Since, aH � g/H, a–1H � G/H.

Now aH � a–1H = (a � a–1)H = eH

Also a–1H � aH = (a–1 � a)H = eH

� a–1H is the inverse of aH (5)

By (1), (2), (3), (4) and (5), {G/H, �} is a group

The operation � is called coset multiplication.

Theorem
If f : (G, �) � (G�, �) is a homomorphism with kernel K, then K is a normal

subgroup of G and the quotient group G/K is isomorphic to f(G).

Proof
(i) We have already proved that

K = ker( f ) = {a � G | f(a) = e�} is a subgroup of (G, �), where e� is the

identity of (G�, �).

Now for any a � G and k � K,

f (a–1 � k � a) = f(a–1) � f(k) � f(a)

= f(a–1) � e� � f(a)

= [ f(a)–1 � f(a) = e�
� a–1 � h � a � K

� {K, � G, �)

(ii) Let : G/K � G� such that (aK) = f(a), for any a � G.

Let a, b � G such that aK = bK

Then (a–1 � a)K = (a–1 � b)K

i.e., eK = (a–1 � b)K, where e is the identity of G and so of K.

i.e., K = (a–1 � b)K

i.e., a–1 � � K

Thus, if aK = bK, a–1 � b � K (1)

� f(a–1 � b) = e�, where e� is the identity of G�
i.e.,  f(a–1) � f(b) = e�
i.e., [ f(a)]–1 � f (b) = e�
i.e., f(a) � [ f(a)]–1 � f(b) = f(a) � e�
i.e., f(b) = f(a)

i.e., (aK) = (bK)

This means that the  is well defined (2)

Now (aK � bK) = {a � b)K}

= f(a � b)

Note
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= f(a) � f(b)

= (aK) � (aK)

�  is a homomorphism. (3)

Now let (aK) = (bK)

Then f(a) = f(b)

� [ f(a)]–1 � f(a) = [ f(a)]–1 � f(b)

i.e., e� = f(a–1 � b)

� a–1 � b � K

� aK = bK, by (1)

This means that  is one-to-one (4)

Let x be any element of G�
Since f : G � G� is a homomorphism from G to G�, there is an element

a � G such that

f (a) = x.

� (aK) = f (a) = x

Since aK � G/K, : G/K � G� is an isomorphism, or : G/K � f(G) is

an isomorphism.

ALGEBRAIC SYSTEMS WITH TWO BINARY
OPERATIONS

Introduction

So far we have studied algebraic systems with one binary operation, namely

semigroup, monoid and group. As these are not adequate to describe the system

of real numbers satisfactorily, we shall now consider an abstract algebraic

system, called a ring, with two basic operations of addition and multiplication.

By imposing more restrictions on rings, other algebraic systems with two binary

operations will be obtained and discussed in this section.

RING

Definition
An algebraic system (R, +, �), where R is a nonempty set and + and � are two

closed binary operations (which may be different from ordinary addition and

multiplication) is called a ring, if the following conditions are satisfied:

1. (R, +) is an abelian group

2. (R, �) is a semigroup

3. The operation � is distributive over +, i.e., for any a, b, c � R,

a � (b + c) = a � b + a � c and

(b + c) � a = b � a + c � a

Conditions (1) and (2) given above include the following:

(i) a + b = b + a, for any a, b � R

(ii) (a + b) + c = a + (b + c), for any a, b, c � R.

Note
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(iii) There exists an identity element, denoted by 0 � R, such that a + 0 = 0 + a = a,

for every a � R.

(iv) For every a � R, there is an element b(= –a) such that a + b = b + a = 0.

(v) a � (b � c) = (a � b) � c, for any a, b, c.

Example of rings are the set of integers (Z), real numbers (R), rational

numbers (Q) and complex numbers (C).

Definitions
1. If (R, �) is commutative, then the ring (R, +, �) is called a commutative

ring.

2. If (R, �) is a monoid, then the ring (R, +, �) is called a ring with identity

or unity.

3. If a and b are two non-zero elements of a ring R such that a � b = 0, then

a and b are divisors of 0 or zero divisors.

(For example, if R is the set of integers modulo 6, under addition and

multiplication modulo 6, the elements of R are [0], [1], [2], … [5].

Now [2] �6 [3] = [0], but [2] � [0] and [3] � 0.

The [2] and [3] are zero divisors in R, i.e., in a ring R, a � b = 0 with

neither a = 0 nor b = 0.)

4. A commutative ring with unity (containing at least 2 elements) and without

zero divisors is called an integral domain.

Example

The ring of integers is an example of an integral domain, whereas (Z6, +6,

�6) is not an integral domain, since [2]6 �6 [3]6 = [0]6.

5. A commutative ring R with multiplication identity, containing at least

two elements is called a field, if every non-zero element of R has a

multiplicative inverse in R.

Example

The ring of rational numbers (Q, +, �) is a field, since it is a commutative

ring with identity and the multiplicative inverse of every non-zero element

of Q is in Q.

Similarly the set R of real numbers and the set of complex numbers

under ordinary addition and multiplication are fields.

6. A non-empty subset S � R, where (R, +, �) is a ring, is called a subring of

R, if (S, +, �) is itself a ring with the operations + and � restricted to S.

Example

The ring of even integers is a subring of the ring of integers under

ordinary addition and multiplication.

7. If (R, +, �) and (S, �, �) be rings and f : R � S is a mapping from R to S,

then f is called a ring homomorphism from R to S, if for any a, b � R,

f(a + b) = f(a) � f(b) and f(a � b) = f(a) � f(b).



Group Theory 223

Some Elementary Properties of a Ring

1. (a)

(b) The additive inverse of every element of the ring is unique.

(c) The multiplicative identity of a ring, if it exists, is unique.

(d) If the ring has multiplicative identity, then the multiplicative inverse

of any non-zero element of the ring is unique.

Proof
(a) If possible, let there be two elements of the ring, say 0 and 0�

Since 0� � R and 0 is a zero element, 0� + 0 = 0 + 0� = 0� (1)

Since 0 � R and 0� is a zero element, 0 + 0� = 0� + 0 = 0 (2)

From (1) and (2), we get 0� = 0.

i.e., zero element of ring is unique.

(b) Let b and c be two additive inverses of a � R, if possible.

Then a + b = b + a = 0 (1)

Similarly, a + c = c + a = 0 (2)

Now b = b + 0 = b + (a + c), by (2)

= (b + a) + c, by associativity

= 0 + c, by (1)

= c

Thus the additive inverse of a is unique. In a similar manner, the

proofs of (c) and (d) may be given.

2. The cancellation laws of addition

For all a, b, c � R,

(a) If a + b = a + c, then b = c (left cancellation)

(b) If b + a = c + a, then b = c (right cancellation)

Proof
(a) a + b = a + c

� (–a) + a + b = (–a) + a + c, where –a is the additive inverse of a

i.e., (–a + a) + b = (–a + a) + c, by associativity

i.e., 0 + b = 0 + c

i.e., b = c.

Similarly (b) part may be proved.

3. If (R, +, �) is a ring and a � R, then a � 0 = 0 � a = 0, where 0 is the zero

(additive identity) element of R.

Proof
a � 0 = a � (0 + 0), since 0 + 0 = 0

= a � 0 + a � 0, by distributivity (1)

� 0 + a � 0 = a � 0

= a � 0 + a � 0, by (1)

� By the cancellation law,

a � 0 = 0.

Similarly we can prove that 0 � a = 0.
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The operation � need not represent ordinary multiplication.

4. If (R, +, �) is a ring, then for any a, b, c � R,

(a) –(–a) = a

(b) a � (–b) = (–a) � b = –(a � b)

(c) (–a) � (–b) = a � b

(d) a � (b – c) = a � b – a � c

(e) (a – b) � c = a � c – b � c

Proof
(a) (–a) + a = a + (–a) = 0

� a is the additive inverse of (–a)

Also the additive inverse of (–a) is unique

� –(–a) = a.

(b) We have a � (–b + b) = a � (–b) + a � b, by distributivity

i.e., a � 0 = a � (–b) + a � b

i.e., 0 = a � (–b) + a � b, by property (3)

� the additive inverse of a � b is a � (–b)

i.e., –(a � b) = a � (–b) (1)

Similarly, we may prove that

–(a � b) = (–a) � b (2)

(c) From (1) of (b), we have

(–a) � (–b) = –[(–a) � b)], by replacing a by –a

= –[–(a � b)], from (2) of (b)

= a � b, by property 4(a)

(d) a � (b – c) = a � [b + (–c)]

= a � b + a � (–c), by distributivity

= a � b + [–(a � c), by (b)(1)

= a � b – a � c

(e) (a – b) � c= [a + (–b)] � c

= a � c + (–b) � c, by distributivity

= a � c + [–(b � c)]

= a � c – b � c

5. A commutative ring with unity is an integral domain if and only if it

satisfies cancellation law of multiplication.

Proof
(a) Let R be an integral domain and a(� 0) � R and let a � b = a � c (1)

�
Since R is an integral domain, a = 0 or b – c = 0. But a � 0.

� b – c = 0 or b = c (2)

From (1) and (2), we see that the left cancellation holds. Since the

ring is commutative, the right cancellation also holds.

Note
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Note

(b) Converse

Let the cancellation law hold good for R.

Then for a, b � R where a � 0,

if a � b = 0 = a � 0, then b = 0

Similarly, if b � 0, then a = 0.

Thus, if a � b = 0, then a = 0 or b = 0

i.e., R has no zero divisors

i.e., R is an integral domain.

6. Every field is an integral domain.

Proof
Since a field F is a commutative ring with unity, it is enough we prove

that F has no zero divisors to show that it is an integral domain.

Let a, b � F such that a � 0 and a � b = 0 (1)

Since a � 0, a–1 exists.

Hence, from (1), we have

a–1 � (a � b) = a–1 � 0 = 0

i.e., (a–1 � a) � b = 0

i.e., 1 � b = 0

i.e., b = 0

Similarly if b � 0, b–1 exists.

Hence, from (1), we have

(a � b) � b–1 = 0 � b–1 = 0

i.e., a � (b � b–1) = 0

i.e., a � 1 = 0

i.e., a = 0

Thus, if a � b = 0, where a, b � F, then

a = 0 or b = 0

i.e., the field F has no zero divisors

� F is an integral domain.
The converse of property (6) need not be true, viz., every integral domain is

not a field.

For example, the ring of integers is an integral domain, but it is not a field, as the

elements 1 and –1 only have inverses.

7. Every finite integral domain is a field.

Proof
Let {D, +, �} be a finite integral domain. Then D has a finite number of

distinct elements, say, {a1, a2, …, an}.

Let a (� 0) be any element of D.

Then the elements a � a1, a � a2, … a � an � D, since D is closed under

multiplication. The elements a � a1, a � a2, …, a � an are distinct, because

if a � ai = a � aj, then a � (ai – aj) = 0.



226 Discrete Mathematics

But a � 0. Hence ai – aj = 0, since D is an integral domain i.e., ai = aj,

which is not true, since a1, a2, …, an are distinct elements of D.

Hence, the sets {a � a1, a � a2, …, a � an} and {a1, a2, …, an} are the

same.

Since a � D is in both sets, let a � ak = a, for some k (1)

Then ak is the unity of D, detailed as follows:

Let aj(� D) = a � ai (2)

Now aj � ak = ak � aj, by commutativity

= ak � (a � ai), by (2)

= (ak � a) � ai

= (a � ak) � ai by commutativity

= a � ai, by (1)

= aj, by (2)

Since, aj is an arbitrary element of D

ak is the unity of D

Let it be denoted by 1.

Since, 1 � D, there exist a (� 0) and ai � D such that a � ai = ai � a = 1

� a has an inverse.

Hence, (D, +, �) is a field.

8. If (R, +, �) is a ring and S is non-empty subset of R, then (S, +, �) is

subring of R, if and only if for all a, b � S, a – b � S and a � b � S.

Proof
Since (R, +, �) is a ring, (R, +) is an abelian group.

Since S is a non-empty set of R, it is a subgroup of R, if and only if, for

all a, b � S, a � b–1 � S.

Here the binary operation is + and the additive inverse of b is –b

� S is a subring of the ring R, if and only if a + (–b) � S

i.e., a – b � S.

Now S is a ring by itself.

� When a, b � S, a � b � S.

9. If f : (R, +, �) � (S, �, �) is a ring homomorphism, then

(b) f(–a) = –f(a), for every a � R.

(c) f(na) = nf(a), for every a � R, where n is an integer.

(d) f(an) = [ f(a)]n, for every a � R, where n is a positive integer.

Proof
(a) Since f(0) � S, we have

0� � f(0) = f(0)

= f(0 + 0), since 0 is the identity of R

= f(0) � f(0)

� By cancellation law of addition in S, we have f(0) = 0�.
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(b) 0� = f(0) = f{a + (–a)}

= f(a) � f(–a)

Since additive inverses in S are unique, f(–a) is the additive inverse

of f(a)

i.e., f (–a) = – f(a).

(c) When n = 0, f(na) = f(0) = 0� = n f(a)

When n = 1, f(a) = 1 f(a)

Hence, the result is true for n = 0 and 1.

Let the result be true for n = k (� 1) (induction hypothesis)

Now f{(k + 1) a} = f(ka + a)

= f(ka) � f (a)

= k f(a) � f(a), by inductions hypothesis

= (k + 1) f(a)

i.e., the result is true for n = k + 1

� By mathematical induction, the result f(na) = nf(a) for all a � R,

n � Z+.

Now if n � Z+,

f(–na) � f(na) = f{n(–a)} � f(na)

= n f(–a) � n f(a), by the previous part

= n[ f(–a) � f(a)]

= n[–f(a) � f(a)], by part (b)

= n(0�)
= 0�

� f (–na) = the additive inverse of f(na) in S

= – f(na)

= –n f(a), by previous part.

� The result is true for all n � Z.

(d)  This result too can be proved by mathematical induction.

WORKED EXAMPLES 4(B)

Example 4.1 Every subgroup of a cyclic group is also cyclic.

Let G be the cyclic group generated by the element a and let H be a

subgroup of G. If H = G or {e}, evidently H is cyclic. If not, the elements of H

are non-zero integral powers of a, since, if ar � H, its inverse a–r � H.

Let m be the least positive integer for which am � H (1)

Now let an be any arbitrary element of H. Let q be the quotient and r the

remainder when n is divided by m.

Then n = mq + r, where 0 � r < m (2)

Since, am � H, (am)q � H, by closure property

i.e., am q � H

� (am q)–1 � H, by existence of inverse, as H is a subgroup

i.e., a– mq � H.
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Now since, an � H and a–mq � H,

an – mq � H

i.e., a r � H

By (1) and (2), we get r = 0 � n = mq

� a n = a m q = (a m)q

Thus, every element a n � H is of the form (a m )q.

Hence H is a cyclic subgroup generated by a m.

Example 4.2 If G is an abelian group with identity e, prove that all

elements x of G satisfying the equation x2 = e form a subgroup H of G.

H = {x |x2 = e}

e2 = e � the identity element e of G � H

Now x2 = e

� x–1 � x2 = x–1 � e

i.e., x = x–1 (1)

Hence, if x � H, x–1 � H.

Let x, y � H

Since, G is abelian, xy = yx

= y–1x–1, by (1)

= (xy)–1

� (xy)2 = e. i.e., xy � H

Thus, if x, y � H, we have xy � H

Thus, all the 3 conditions in the definition of a subgroup are satisfied.

� H is a subgroup of G.

Example 4.3 If G is the set of all ordered pairs (a, b), where a(� 0) and b

are real and the binary operation � on G is defined by

(a, b) � (c, d) = (ac, bc + d),

show that (G, �) is a non-abelian group. Show also that the subset H of all

those elements of G which are of the form (1, b) is a subgroup of G.

The reader can verify the closure and associative property of G.

If (e1, e2) is the identity of (a, b) � G,

then (e1, e2) � (a, b) = (a, b)

i.e., (e1a, e2a + b) = (a, b)

� e1a = a and e2a + b = b

� e1 = 1 and e2 = 0

i.e., (1, 0) is the identity of G.

If (x, y) is the inverse of (a, b) � G,

then (x, y) � (a, b) = (1, 0)

i.e., (xa, ya + b) = (1, 0)

� xa = 1 or x = 
1

a
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and ya + b = 0 or y = 
b

a
�

� Inverse of (a, b) is 
1

,
b

a a
� (1)

Thus, (G, �) is a group.

Obviously, H is not an empty set.

Now (1, b) � (1, c)–1 = (1, b) � 1
,

1 1

c�  by (1)

= (1, b) � (1, – c)

= (1 � 1, b � 1 – c), by definition of �
= (1, b – c)

(1, b – c) � H.

Hence, the necessary and sufficient condition for a subgroup is satisfied.

� H is a subgroup of G.

Example 4.4 Prove that the intersection of two subgroups of a group G

is also a subgroup of G. Give an example to show that the union of two

subgroups of G need not be a subgroup of G.

Let H1 and H2 be any two subgroups of G. H1 � H2 is a non-empty set,

since, at least the identity element e is common to both H1 and H2.

Let a � H1 � H2. Then a � H1 and a � H2

Let b � H1 � H2. Then a � H1 and b � H2

H1 is a subgroup of G.

� a � b–1 � H1, since, a and b � H.

H2 is a subgroup of G.

� a � b–1 � H2, since a and b � H.

Hence, a � b–1 � H1 � H2

Thus, when a, b � H1 � H2, a � b–1 � H1 � H2

� H1 � H2 is a subgroup of G.

Let G be the additive group of integers.

Then H1 = {�, –6, –4, –2, 0, 2, 4, 6, �} and

H2 = {�, –9, –6, –3, 0, 3, 6, 9, �} are both subgroups of G.

Now H1 � H2 is not closed under addition.

For example, 2 � H1 � H2 and 3 � H1 � H2

But 2 + 3 = 5 � H1 � H2

� H1 � H2 is not a subgroup of G.

Example 4.5 Show that the group {Zn, +n} is isomorphism to every

cyclic group of order n.

Let the cyclic group (G, �) of order n be generated by an element a � G.

Then the elements of G are {a, a2, a3, …, a n(= e)}.

Let us consider the mapping f : Zn � G, defined by f([i]) = ai, i = 0, 1, 2, …,

n – 1. Obviously [1] is the generator of {Zn, +n}, as [1] +n [1] = [2] etc.,

[1] +n [1] +n … n times = [n] = [1]
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Now f([i + j]) = ai + j

= ai � a j

= f([i]) � f([ j])

Example 4.6 If G is the set of all ordered pairs (a, b) of real numbers and

� is the binary operation defined by (a, b) � (c, d) = (a + c, b + d), prove that

(G, �) is a group. If G� is the additive group of all real numbers, prove that the

mapping f : G � G� defined by f(a, b) = a, for all a, b � G is a homomorphism.

It is easily verified that (G, �) is a group, with the identity element (0, 0).

The inverse of (a, b) is (–a, –b).

Now { f(a, b) � (c, d)} = f(a + c, b + d}

= a + c, since f(a, b) = a

= f(a, b) + f(c, d)

Hence, f is a homomorphism from G to G�.

Example 4.7 If R and C are additive groups of real and complex numbers

respectively and if the mapping f : C � R is defined by f (x + iy) = x, show that

f is a homomorphism. Find also the kernal of f.

Let a + ib and c + id be any two elements of C.

Then f{a + ib) + (c + id) = f{(a + c) + i(b + d)}

= a + c

= f(a + ib) + f(c + id)

Hence, f is a homomorphism from C to R.

The identity of R is the real number 0.

The images of all complex numbers with real part 0 are each equal to 0, the

identity of R, under f.

Hence, the kernal of f is the set of all purely imaginary numbers.

Example 4.8 If G is the multiplicative group of all (n � n) non-singular

matrices whose elements are real numbers and G� is the multiplicative group of

all non-zero real numbers, show that the mapping f : G � G�, where f (A) = |A|,

for all A � G is a homomorphism. Find also the kernel of f.

Let A, B � G.

Now f ( AB) = |AB|

= |A| � |B|

= f(A) � f(B)

� f is a homomorphism from G to G�. The identity of G� = 1.

� The elements of G whose images under f is 1 form the kernel of f.

Thus, the set of all matrices whose determinant values are equal to 1 form

the kernel of f.

Example 4.9 If G is the additive group of integers and H is the subgroup

of G obtained by multiplying each element of G by 3, find the distinct right

cosets of H in G.
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G = {…, –3, –2, –1, 0, 1, 2, 3, …}

H = {…, –9, –6, –3, 0, 3, 6, 9, …}

Now 0 � G.

H + 0 = {…, –9, –6, –3, 0, 3, 6, 9, …} = H

1 � G.

� H + 1 = {…, –8, –5, –2, 1, 4, 7, 10, …}

2 � G.

� H + 2 = {…, –7, –4, –1, 2, 5, 8, 11, …}

3 � G.

� H + 3 = {…, –6, –3, 0, 3, 6, 9, 12, …}

We see that H + 3 = H.

Similarly H + 4 = H + 1, H + 5 = H + 2, H + 6 = H etc.

We can also see that H + (–1) = H + 2, H + (–2) = H + 1, H + (–3) = H and

so on.

Hence, the three distinct right cosets of H in G are H, H + 1 and H + 2, as

they are disjoint. Also H � (H + 1) � (H + 2) = G.

Example 4.10 Show that (H, �) is a subgroup of the symmetric group

(S3, �) of degree 3, where H = {p1, p2}. Find also the left cosets of H in G.

Refer to Table 4.2, which is the Cayley’s composition table of permutations

on S3. From the table, it is seen that (H, �) is a group by itself with identity p1

and with 1
1p�  = p1 and 1

2
�p  = p2.

Hence, (H, �) is a subgroup of (S3, �).

Now p1H = (p1 � p1, p1 � p2) = (p1, p2) = H

p2H = (p2 � p1, p2 � p2) = (p2, p1) = H

p3H = (p3 � p1, p3 � p2) = (p3, p6)

p4H = (p4 � p1, p4 � p2) = (p4, p5)

p5H = (p5 � p1, p5 � p2) = (p5, p4)

p6H = (p6 � p1, p6 � p2) = (p6, p3)

� The three distinct left cosets of H in G are (p1, p2), (p3, p6) and (p4, p5).

Example 4.11 Show that the set of inverses of the elements of a right

coset is a left coset, viz., show that (Ha)–1 = a–1H.

Let Ha be a right coset of H in G, where a � G. If h � H, then h � a � H

Now (h � a)–1 = a–1 � h–1 (1)

Since H is a subgroup of G and h � H, h–1 � H. Hence, a–1 � h–1 � a–1 H

or (h � a)–1 � a–1 H, by (1)

i.e., the inverse of every element of Ha belongs to the left coset a–1H

� (Ha)–1 � a–1H (2)

Now let a–1 � h � a–1 H.

Then a–1 � h = a–1 � (h–1)–1 = (h–1 � a)–1 � (Ha)–1, since, h–1 � H

i.e., every element of a–1H belongs to the set of inverses of the elements of Ha

� a–1H � (Ha)–1 (3)
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From (2) and (3), it follows that

(Ha)–1 = a–1H.

Example 4.12 If H is a normal subgroup of G and K is a subgroup of G

such that H � K � G, show that H is a normal subgroup of K also.

H is a normal subgroup of G

� H is a subgroup of G.

Since H � K � G and K is a subgroup of G, H is a subgroup of K also.

Let x be any element of K.

Then x is an element of G too.

Since H is a normal subgroup of G, we have xH = Hx, for every x � G.

Since H is a subgroup of K and x � K,

xH = Hx, for every x � K

� H is a normal subgroup of K also.

Example 4.13 Show that the intersection of two normal subgroups of a

group G is also a normal subgroup of G.

Let H1 and H2 be two normal subgroups of G.

The H1 and H2 are subgroups of G and hence, H1 � H2 is also a subgroup

of G. [Refer to the Example 4.4.]

Now let x be any element of G and h any element of H1 � H2.

Then h � H1 and h � H2

Since H1 is a normal subgroup of G, we have x–1 � h � x � H1.

Similarly x–1 � h � x � H2. (� H2 is a normal subgroup of G)

� x–1 � h � x2 � H1 � H2

Hence, H1 � H2 is a normal subgroup.

Example 4.14 If H is a subgroup of G such that x2 � H for every x � G,

prove that H is a normal subgroup of G.

For any a � G and h � H, we have a � h � G, by closure property.

� (a � h)2 � H, by the given condition (1)

Also, since, a–1 � G, (a–1)2 = a–2 � H, by the given condition.

Since H is a subgroup (viz., a group by itself) and h–1, a–2 � H, we have

h–1 � a–2 � H (by closure property) (2)

From (1) and (2), we have

(a � h)2 � h–1 � a–2 � H

i.e., a � h � a � h � h–1 � a–2 � H

i.e., a � h � a � e � a–2 � H, where e is the identity

i.e., a � h � a–1 � H

or  a–1 � h � a � H (by replacing a by a–1)

� H is a normal subgroup.

Example 4.15 If G is the additive group of integers and H is a subgroup

of G, defined by H = {4x |x � G}, write down the elements of the quotient

group G/H. Also give the composition table for G/H.
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G = {…, –3, –2, –1, 0, 1, 2, 3, …}

H = {…, –12, –8, –4, 0, 4, 8, 12, …}

Obviously G is an abelian group. Let a � G and h � H.

Now a–1 � h � a = a–1 � a � h [� G is abelian]

= e � h

= h � H

Hence, H is a normal subgroup of G.

In this problem the binary operation � is the ordinary addition.

The elements of G/H are the left (or right) cosets of H in G which are as

follows:

0 + H = H = {…, –12, –8, –4, 0, 4, 8, 12, …}

1 + H = {…, –11, –7, –3, 1, 5, 9, 13, …}

2 + H = {…, –10, –6, –2, 2, 6, 10, 14, …}

3 + H = {…, –9, –5, –1, 3, 7, 11, 15, …}

4 + H = {…, –8, –4, –0, 4, 8, 12, 16, …} = H

Similarly 5 + H = 1 + H, 6 + H = 2 + H, 7 + H = 3 + H etc.

Thus, there are 4 distinct elements in the set G/H.

If we define the binary operation � as the ordinary addition, we see that

(1 + H) � (3 + H) = (1 = H) + (3 + H) = 4 + H

In general, if a, b � G, we see that

aH � bH = (a + b)H

Hence, {G/H, +} is a quotient group.

The composition table for this quotient group is given in Table 4.10.

Table 4.10

+ H 1 + H 2 + H 3 + H

H H 1 + H 2 + H 3 + H

1 + H 1 + H 2 + H 3 + H H

2 + H 2 + H 3 + H H 1 + H

3 + H 3 + H H 1 + H 2 + H

Example 4.16 Show that every quotient group of a cyclic group is cyclic.

Let G be a cyclic group and a be a generator of G.

Let H be a subgroup of G.

Since, every cyclic group is abelian and every subgroup of an abelian group

is a normal subgroup, H is a normal subgroup of G.

Let ar be any element of G when r is a positive integer. Then arH(or Har) is

any element of G/H.

Now arH = arHr = (aH)r

i.e., any element of G/H can be expressed as (aH)r

� G/H is a cyclic group, generated by aH.

Note
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Example 4.17 Show that the set M of all n � n matrices with real

elements is a non-commutative ring with unity with respect to matrix addition

and matrix multiplication as binary operations.

The sum and product of two n � n real matrices are again n � n real

matrices. Hence M is closed under matrix addition and matrix multiplication.

If A, B � M, then A + B = B + A. Hence, the binary operation + (i.e., matrix

addition) is commutative.

If A, B, C � M, then (A + B) + C = A + (B + C)

Hence, matrix addition is associative.

If 0 is an n � n null matrix, then A + 0 = 0 + A = A, for every A � M. Since

0 � M, 0 is the additive identity of (M, +).

Corresponding to every A � M, there exists a matrix –A � M such that

A + (–A) + (–A) + A = 0.

i.e., there exists an additive inverse for (M, +).

If A, B, C � M, then we can prove that

(AB)C = A(BC)

Hence, (M, �) is associative. Similarly we can prove that

A(B + C) = AB + AC and

(B + C)A = BA + CA.

Thus, matrix multiplication is distributive over matrix addition

Hence, (M, +, �) is a ring.

In general, AB � BA. Hence (M, +, �) is a non-commutative ring.

If I is the n � n unit matrix, then I � M and AI = IA = A, for every A � M.

Hence I is the multiplicative identity of (M, +, �) or (M, +, �) is a ring with

unity.

Example 4.18 Prove that the set Z4 = (0, 1, 2, 3) is a commutative ring

with respect to the binary operation +4 and �4.

The composition tables for addition modulo 4 and multiplication modulo 4

are given in Tables 4.11(a) and 4.11(b).

Table 4.11(a) Table 4.11(b)

+4 [0] [1] [2] [3] �4 [0] [1] [2] [3]

[0] 0 1 2 3 [0] 0 0 0 0

[1] 1 2 3 0 [1] 0 1 2 3

[2] 2 3 0 1 [2] 0 2 0 2

[3] 3 0 1 2 [3] 0 3 2 1

From the composition tables, we observe the following:

1. All the entries in both the tables belong to Z4. Hence, Z4 is closed under

+4 and �4.

2. The entries in the first row are the same as those of the first column in

both the tables. Hence Z4 is commutative with respect to both +4 and �4.
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3. If a, b, c � Z4, it is easily verified that

(a +4 b) +4 c = a +4 (b +4 c) and

(a �4 b) �4 c = a �4 (b �4 c)

For example, 3 +4 (1 +4 2) = 3 +4 3 = 2

Also (3 +4 1) +4 2 = 0 +4 2 = 2

and 3 �4 (1 �4 2) = 3 �4 2 = 2

Also (3 �4 1) �4 2 = 3 �4 2 = 2.

Thus, associative law is satisfied for +4 and �4 by Z4.

4. 0 +4 a = a +4 0 = a, for all a � Z4

and 1 �4 a = a �4 1 = a, for all a � Z4

Hence 0 and 1 are the additive and multiplicative identities of Z4.

5. It is easily verified that the additive inverses of 0, 1, 2, 3 are respectively

0, 3, 2, 1 and that the multiplicative inverses of the non-zero elements 1,

2, 3 are respectively 1, 2, 3.

6. If a, b, c � Z4, then it can be verified that

a �4 (b +4 c) = a �4 b +4 a �4 c

and (b +4 c) �4 a = b �4 a +4 c �4 a

For example,

2 �4 (3 +4 1) = 2 �4 0 = 0

and (2 �4 3) +4 (2 �4 1) = 2 +4 2 = 0

i.e., �4 is distributive over +4 in Z4

Hence, (Z4, +4, �4) is a commutative ring with unity.

Example 4.19 Show that (Z, �, �) is a commutative ring with identity,

where the operations � and � are defined, for any a, b � Z as a � b = a + b –

1 and a � b = a + b – ab.

When a, b � Z, a + b – 1 � Z and a + b – ab � Z

Hence, Z is closed under the operations � and �.

b � a = b + a – 1 = a + b – 1 = a � b

b � a = b + a – ba = a + b – ab = a � b

Hence, Z is commutative with respect to the operations � and �.

If a, b, c � Z, then

(a � b) � c = (a + b – 1) � c = a + b + c – 2

and a � (b � c) = a � (b + c – 1) = a + b + c – 2

Hence,  (a � b) � c = a � (b � c).

Also (a � b) � c = (a + b – ab) � c

= a + b – ab + c – (a + b – ab) c

= a + b + c – ab – bc – ca + abc

and a� (b� c) = a � (b + c – bc)

= a + b + c – bc – a(b + c – bc)

= a + b + c – ab – bc – ca + abc

Hence, (a � b) � c = a � (b � c)
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Thus, associative law is satisfied by � and � in Z.

If z is the additive identity of Z, then

a � z = z � a, for any a � Z

i.e., a + z – 1 = a � z = 1

If u is the multiplicative identity of Z then a � u = u � a = a

i.e., a + u – au = a

i.e., u (1 – a) = 0

� if a � 1, u = 0

Now a � b = b � a = 1,

If a + b – 1 = 1

i.e., if b = 2 – a

� The additive inverse of a � Z is (2 – a)

Also a � c = c � a = 0,

If a + c – ac = 0

i.e., if a + c(1 – a) = 0

i.e., if c = 
1�

a

a
, (a � 1)

� The multiplicative inverse of a (�1) � Z is 
1�

a

a
.

Finally, if a, b, c � Z,

a � (b � c) = a � (b + c – 1)

= a + b + c – 1 – a(b + c – 1)

= 2a + b + c – ab – ac – 1

and (a � b) � a � c = (a + b – ab) � (a + c – ac)

= a + b – ab + a + c – ac – 1

= 2a + b + c – ab – ac – 1

Thus, a � (b � c) = a � b + a � c.

Similarly, it can be verified that

(a � b) � c = (a � c) � (b � c)

Hence, (Z, �, �) is a commutative ring with identity.

Example 4.20 Prove that the set S of all ordered pairs (a, b) of real

numbers is a commutative ring with zero divisors under the binary operations

� and � defined by

(a, b) � (c, d) = (a + c, b + d)

and (a, b) � (c, d) = (ac, bd), where a, b, c, d are real.

Since, a + c, b + d, ac, bd are all real, S is closed under � and �.

(a, b) � (c, d) = (a + c, b + d)

= (c + a, d + b) = (c, d) � (a, b)

(a, b) � (c, d) = (ac, bd)

= (ca, db) = (c, d) � (a, b)

Hence S is commutative under the operations � and �.
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Let (a, b), (c, d), (e, f ) � S.

Now [(a, b) � (c, d)] � (e, f )

= (a + c, b + d) � (e, f )

= (a + c + e, b + d + f )

= [a + (c + e), b + (d + f )]

=(a, b) � [c + e, d + f ]

= (a, b) � [(c, d ) � (e, f )]

Thus, S is associative under �.

Similarly it is associative under �. Now (0, 0) � S.

(a, b) � (0, 0) = (0, 0) � (a, b) = (a + 0, b + 0)

= (a, b)

� (0, 0) is the additive identity in S.

Also (a, b) � (1, 1) = (1, 1) � (a, b) = (a, b)

� (1, 1) is the multiplicative identity in S.

If (a, b) � S, (–a, –b) � S, since a, b are real

Now (a, b) � (–a, –b) = (–a, –b) � (a, b) = (0, 0)

� (–a, –b) is the additive inverse of (a, b)

Now (a, b) � [(c, d) � (e, f )]

= (a, b) � [c + e, d + f ]

= a(c + e), b(d + f )

= (ac, bd ) � (ae, bf )

= (a, b) � (c, d ) � (a, b) � (e, f )

Thus, the left distributivity holds.

Similarly the right distributivity also holds.

Now (a, 0) and (0, b) � S, where a � 0, b � 0

and (a, 0) � (0, b) = (a � 0, 0 � b)

= (0, 0), which is the zero element of S.

But (a, 0) and (0, b) are not zero elements of S.

� (a, 0) and (0, b) are zero divisors of S.

Hence, (S, �, �) is a commutative ring with zero divisors.

Example 4.21 Prove that the set S of all real numbers of the form

a + b 2 , where a, b are integers is an integral domain with respect to usual

addition and multiplication.

Let c + d 2  be the additive identity (zero) of a + b 2  in S.

Then (a + b 2) + (c + d 2) = a + b 2

� a + c = a and b + d = b

� c = 0 and d = 0

Hence, the zero element of S is 0 + 0 2 .
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Let e + f 2  be the multiplicative identity (unity) of a + b 2 in S.

Then (a + b 2) (e + f 2) = a + b 2

� ae + 2bf = a and af + be = b

i.e., 2bf = a(1 – e) and b(1 – e) = af (1)

Multiplying, we get 2b2 f(1 – e) = a2f(1 – e)

i.e., (2b2 – a2) f(1 – e) = 0

Since, a and b are arbitrary, 2b2 – a2 � 0

� f(1 – e) = 0

� f = 0 or 1 – e = 0

But, from (1), when f = 0, e = 1

� unity of S is 1 + 0 2 .

We can easily verify the distributive laws with respect to � and + in S.

� (S, +, �) is a commutative ring with unity.

Let us now prove that this ring is without zero divisors.

Let a + b 2  and c + d 2 � S such that

(a + b 2) � (c + d 2) = 0 + 0 2 (2)

� ac + 2bd = 0 and bc + ad = 0

i.e., (a – b) c + d(2b – a) = 0 or

(c – d) a + b(2d – c) = 0

� Either a = 0 and b = 0 or c = 0 and d = 0

� a + b 2 = 0 or c + d 2  = 0, when (2) is true.

i.e., the ring has no zero divisors. Thus, (S, +, �) is an integral domain.

Example 4.22 If S is the set of ordered pairs (a, b) of real numbers and

if the binary operations � and � are defined by the equations

(a, b) � (c, d) = (a + c, b + d)

and (a, b) � (c, d) = (ac – bd, bc + ad),

prove that (S, �, �) is a field.

As usual, the closure, associativity, commutativity and distributivity can be

verified with respect to � and � in S.

Also the additive and multiplicative identities can be seen to be (0, 0) and

(1, 0) respectively.

Hence, (S, �, �) is a commutative ring with unity.

Let (a, b) be a non-zero element of S, i.e., a and b are not simultaneously

zero.

Let (c, d) be the multiplicative inverse of (a, b).

Then (a, b) � (c, d) = (1, 0)

i.e., (ac – bd, bc + ad) = (1, 0)

� ac – bd = 1 and bc + ad = 0
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Solving these equations for c and d, we get

c = 
2 2�

a

a b
 and d = –

2 2�
b

a b

a2 + b2 � 0, since a and b are not simultaneously zero.

� c or d or both are non-zero real numbers.

�
2 2 2 2

,
� ��� �� �� �

a b

a b a b
 is the multiplicative inverse of (a, b)

Hence, (S, � �) is a field.

Example 4.23 If M is the set of 2 � 2 matrices of the form 
� �
� �
� �

a b

b a
,

where a, b � Z and Z is the set of integers, show that (M, � �) and (Z, +, �)

are rings where � and � represent matrix addition and matrix multiplication.

Show that the mapping f : M � Z given by 
� �� �
� �� �� �� �

a b
f

b a
 = a – b is a

homomorphism.

The reader can verify that (M, �, �) and (Z, +, �) are rings.

Let M1 = 
� �
� �
� �

a b

b a
 and M2 = 

� �
� �
� �

c d

d c

Now f(M1 � M2) = f
� �� �� �
� �� �� �� �� �

a c b d

b d a c

= (a + c) – (b + d), by definition

= (a – b) + (c – d)

= f(M1) + f(M2)

f(M1 � M2) = f
� �� �� �
� �� �� �� �� �

ac bd ad bc

ad bc ac bd

= (ac + bd) – (ad + bc)

= (a – b) � (c – d)

= f(M1) � f(M2)

Hence, f is a ring homomorphism.

Example 4.24 Show that the set of matrices of the form 
0

� �
� �
� �

a b

c
 is a

subring of the ring of 2 � 2 matrices with integral elements.

Let R be the ring of 2 � 2 matrices with integral elements and let R� be the

subset of R consisting elements of the form 
0

� �
� �
� �

a b

c
.
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Let A = 
1 1

10

� �
� �
� �

a b

c
 and B = 

2 2

20

� �
� �
� �

a b

c
 be any two elements of R�.

Then A – B = 
1 2 1 2

1 20

a a b b

c c

� �� �
� ��� �

 belongs to R�

Also AB = 
1 1 2 2 1 2 1 2 1 2

1 2 1 20 0 0

�� � � � � �
� �� � � � � �

� � � � � �

a b a b a a a b b c

c c c c
 belongs to R�.

Hence, by property (8) of rings, R� is a subring of R under matrix addition

and matrix multiplication.

EXERCISE 4(B)

Part A: (Short answer questions)

1. Define subgroup and proper subgroup.

2. State the condition for a subset of a group to be a subgroup.

3. Prove that the identity of a subgroup is the same as that of the group.

4. Prove that the inverse of any element of a subgroup is the same as the

inverse of that element regarded as an element of the group.

5. Is the subset {1, 2, 22, 23, …} of the multiplicative group {…, 2–3, 2–2,

2–1, 1, 2, 22, 23, …} a subgroup?

6. Prove that (E, + ) is a subgroup of the group (Z, + ), where Z is the set of

integers and E is the set of even integers.

7. Find all the subgroups of a group G of prime order.

8. Define group homomorphism and group isomorphism.

9. If G is a group with identity e, show that the mapping f : G � G defined

by f(a) = a, for every a � G is a homomorphism.

10. Show that every homomorphic image of an abelian group under

multiplication is also abelian.

11. If R+ is the group of non-zero real numbers under multiplication and n is a

positive integer, show that f(x) = xn is a homomorphism from R+ to R+.

12. If G is a group of real numbers under addition and G� is the group of

positive real numbers under multiplication, show that the mapping defined

by f(x) = 2x is a homomorphism.

13. If (G, �) is a group, a � G and the mapping f : G � G is given by f (x) =

a* x* a–1 for every x � G, prove that f is an isomorphism of G onto G.

14. Define the kernel of group homomorphism.

15. Define left and right cosets of a subgroup. When will they be the same?

16. State Lagrange’s theroem in group theory.

17. If H is a finite subgroup of group G, show that H and any coset Ha have

the same number of elements.

18. Find the left cosets of {[0], [3]} in the group (z6, +6].
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19. Define normal subgroup and state a condition for a subgroup of a group

to be normal.

20. Show that every subgroup of an abelian group is normal.

21. Define quotient group.

22. Define a ring and give an example of a ring.

23. Define a commutative ring and a ring with unity.

24. Define an integral domain and give an example.

25. Define a field with an example.

26. If a, b, � R, where (R +, �) is a ring, show that

(a + b)2 = a2 + a � b + b � a + b2.

27. If R is a Boolean ring such that a2 = a for every a, show that R is

commutative.

28. If R is a Boolean ring, show that each element of R is its own additive

inverse.

29. Define ring homomorphism.

30. Define subring and give an example.

Part B

31. If H is the subset of the additive group of integers (G, +) whose elements

are multiples of integers by a fixed integer m, show that H is a subgroup

of G.

32. Prove that the set H of all elements a of a group (G, �) such that a � x =

x � a, where x is some (fixed) element of G is a subgroup of G.

[Hint: Verify that H is non-empty, satisfies closure and every element of

H has an inverse in H]

33. Show that the set {a + bi � C |a2 + b2 = 1} is a subgroup of (C, �) where

� is the multiplication operation of complex numbers.

[Hint: Verify that, if a + bi and c + di � H, then (a + bi)(c + di)–1 � H]

34. If H is subgroup of a group G, prove that aHa–1 = {aha–1|a � G; h � H}

is also a subgroup of G.

[Hint: Verify that (ah1a
–1) (ah2a

–1)–1 � aHa–1]

35. If � is defined on S = N � N by

(a, b) � (a1, b1) = (a + a1, b + b1)

and if the mapping f : (S, �) � (Z, +) is defined by f (a, b) = a – b, show

that f is a homomorphism.

36. If C* is the multiplication group of non-zero complex numbers and if the

mapping f: C* � C* is defined by f(z) = z4, show that f is a homomorphism

with kernel = {1, –1, i, –i}.

37. If R is the additive group of real numbers and C* is the multiplication

group of complex numbers whose modulus is unity, prove that the mapping

f : R � C* given by f(x) = eix is a homomorphism. Find the kernel of f.

38. If C* and R* are multiplication groups of non-zero complex numbers and

non-zero real numbers respectively and if the mapping f : C* � R* is
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defined by f (z) = |z|. Show that f is a homomorphism. What is the kernel

of f ?

39. Show that (H, �) is a subgroup of the symmetric group (S3, �) of degree

3, where H = {p1, p3, p5}. Find also the right cosets of H in G.

40. If G is the additive group of integers and H is a subgroup of G, defined

by H = {5x |x � G}, find the distinct left cosets of H in G.

41. If H is a subgroup of a group G and K is a normal subgroup of G, show

that H � K is a normal subgroup of H.

42. Show that {p1, p2}, {p1, p4}, {p1, p6} are subgroup of the symmetric

group (S3, �) of degree 3. Are they normal subgroups?

43. Find whether the subgroup H = {p1, p3, p5} of (S3, �) is a normal subgroup

of S3.

44. If G is a finite group and H is a normal subgroup of G, show that 0(G/H)

= 0(G) � 0(H), where G/H is the quotient group.

45. Show that every quotient group of an abelian group is abelian.

46. Show that (z6, +6, �6) is a commutative ring.

47. Find all the values of the integers m and n for which (Z �, �) is a ring

under the binary operations a � b = a + b – m and a � b = a + b – nab,

where a, b � Z.

48. Show that (Z, �, �) is a commutative ring with identity, where the

operations � and � are defined, for any a, b � z, as a � b = a + b + 1

and a � b = a + b + ab.

49. Show that (Q, �, �) is a ring, where � and � are defined, for any a, b �
Q, as a � b = a + b + 7 and a � b = a + b + (ab/7).

50. Prove that the set M of 2 � 2 real matrices is a ring with zero divisors.

51. Show that the set of complex numbers a + ib, where a and b are integers

is an integral domain under ordinary addition and multiplication.

52. Show that the set of complex numbers of the form a + b 5� , where a,

b, are integers is an integers is an integral domain.

53. Show that the set of numbers of the from a + b 2 , where a and b are

rational numbers is a field.

54. If R� is the set of all even integers and � is defined by a � b = 
2

ab
; ab �

R�. Show that (R�, + �) is a commutative ring. If R is the ring of integers

under ordinary addition and multiplication, prove that R is isomorphic to

R�.

55. If M is the set of matrices of the form 
0

0

� �
� �
� �

a

b
 where a, b are real

numbers, show that M is a subring of the ring R of all 2 � 2 real matrices.

56. Show that S = {[0], [2], [4]} and T = {[0], [3]} are subrings of the ring

(Z6, +6, �6) and that every of Z6 can be expressed as s +6 t, where s � S

and t � T.
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CODING THEORY

Introduction

The process of communication involves transmitting some information carrying

signal (message} that is conveyed by a sender to a receiver. Even though the

sender may like to have his message received by the receiver without any

distortion, it is not possible due to a variety of disturbances (noise) to which the

communication channel is subjected. Coding theory deals with minimizing the

distortions of the conveyed message due to noise and to retrieve the original

message to the optimal extent possible from the corrupted message.

ENCODERS AND DECODERS

An encoder is a device which transforms the incoming messages in such a way

that the presence of noise in the transformed messages is detectable. A decoder

is a device which transforms the encoded message into their original form that

can be understood by the receiver. By using a suitable encoder and decoder, it

may be possible to detect the distortions in the messages due to noise in the

channel and to correct them. The model of a typical data communication system

with noise is given in Fig. 4.4.

The input message which consists of a sequence of letters, characters or

symbols from a specified set (called alphabet) will be transformed by the

encoder into a string of characters or symbols of another alphabet in a one-to-

one fashion. In our discussion, we will deal with only a binary channel in

which the encoder will transform an input message into a binary string consisting

of the symbols 0 and 1. Decoding is only the inverse operation of encoding.

GROUP CODE

Definition
If B = {0, 1}, then Bn = {x1, x2, … xn |xi � B, i = 1, 2, 3, … n} is a group under

the binary operation of addition modulo 2, denoted by �. This group (Bn, �) is

called a group code.

Let us now prove that (Bn, �) is a group.

If x1 x2 … xn � (x1, x2 … xn) and y1y2,…,yn � (y1, y2 …, yn) � Bn, then

x1 x2 … xn � y1, y2 … yn = (x1 +2 y1, x2 +2 y2 …, xn +2 yn) �, Bn

since xi +2 yi = 1 or 0, as 0 +2 0 = 0, 0 +2 1 = 1, 1 +2 0 = 1 and 1 +2 1 = 1.

Fig. 4.4
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The operation +2 is also called binary addition.

(0, 0, 0, …, 0) is the identity element of Bn. Also the inverse of x1x2 … xn is

itself.

Hence, (Bn, �) is a group—it is abelian.

In general, any code which is a group under the operation � is called a

group code.

HAMMING CODES

The codes obtained by introducing additional digits called parity digits to the

digits in the original message are called Hamming codes. If the original message

is a binary string of length m, the Hamming encoded message is string of

length n, (n > m). Of the n digits, m digits are used to represent the information

part of the message and the remaining (n – m) digits are used for the detection

and correction of errors in the message received.

In Hamming’s single-error detecting code of length n, the first (n – 1) digits

contain the information part of the message and the last digit is made either 0

or 1. If the digit introduced in the last position gives an even number/odd

number of 1’s in the encoded word of length n, the extra digit is called an even/

odd parity check.

For example, when a single even parity check is appended, the words 000,

001, 010, 011, 100, 101, 110 and 111 become 0000, 0011, 0101, 0110, 1001,

1010, 1100 and 1111. On the other hand, when an odd parity is appended to

each of the above words, they will become 0001, 0010, 0100, 0111, 1000,

1011, 1101 and 1110.

We note that a single mistake in a word, say, 0000 produces another word

0001 or 0010 or 0100 or 1000. None of these words appear in the set of 8

words transmitted. Hence, it is an indication that an error has occurred in

transmission. However, it is not possible to correct the error, as, for example,

0001 might have been got from any of the words 0000, 0011, 0101, 1001 due

to a single error.

An error correcting method based on parity checks that helps the detection

of positions of erroneous digits, as developed by Hamming will be discussed

later.

Definitions
1. The number of 1’s in the binary string x � B2 is called the weight of x

and is denoted by |x |.

2. If x and y represent the binary strings x1 x2 x3 … xn and y1 y2 y3 … yn, the

number of positions in the strings for which xi � yi is called the Hamming

distance between x and y and denoted by H(x, y).

Obviously H(x, y) = weight of x � y

= 
1�

�
n

i

(xi +2 yi).

Note
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For example, if x = 11010 and y = 10101, then

H(x, y) = |x � y| = |01111| = 4

3. The minimum distance of a code (a set of encoded words) is the minimum

of the Hamming distances between all pairs of encoded words in that

code.

For example, if x = 10110, y = 11110 and z = 10011, then

H(x, y) = 1, H(y, z) = 3 and H(z, x) = 2 and so the minimum distance

between these code words = 1.
The term ‘code’ used above is sometime called an (m, n) encoding function,

which is a one-to-one function e: Bm � Bn (where n > m). If b � Bm is the

original word, them e(b) is the code word or encoded word representing b.

Theorem
A code [an(m, n) encoding function] can detect at the most k errors if and only

if the minimum distance between any two code words is at least (k + 1).

Proof
A set (combination) of errors in various digit positions cannot be detected if

and only if the set transforms a code word x into another code word y.

Since, the minimum distance between any two code words is at least (k + 1),

a set of at least (k + 1) errors would be required to change the code word x into

the code word y.

Hence, if the code word x is transformed to the word y due to at least (k + 1)

errors, almost k errors can be detected.

Example

Let 000 and 111 be the encoded words, viz., two values of the encoding

function.

These two code words differ in 3 digits, viz. the distance between them is 3.

If one error occurs during transmission, the word 000 would have become

100 or 010 or 001, whereas the word 111 would have been received as 011 or

101 or 110. The two sets of received words are disjoint.

Hence, if any of the above six words is received due to one error, it is easily

found out which encoded word has get altered and in which digit position the

error has occurred and hence, the error is corrected. On the other hand if two

errors occur during transmission, the word 000 would have been received as

110 or 011 or 101, whereas the word 111 would have been received as 001 or

100 or 010. If an error in a single digit is corrected in any of the received words

110, 011 and 101, the corrected word would be 111, which is not the transmitted

word.

Similarly if a single error correction is made in any of the received words

001, 100 and 010, the corrected word would be 000, which is not the transmitted

word. Hence error correction is not possible.

Theorem
A code can correct a set of at the most k errors if and only if the minimum

distance between any two code words is at least (2k + 1).

Note
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Proof
Let the code correct at the most k errors.

Then we have to prove that the minimum distance between any two code

words is at least 2k + 1.

If possible, let there be at least one pair of code words, say x and y such that

H(x, y) < 2k + 1.

By the previous theorem, H(x, y) � k + 1, as otherwise the k errors cannot

even be detected.

� k + 1 � H(x, y) � 2k (1)

Let x� be another word which differs from x in exactly k digits, which form a

subset of the set of the digits in which x and y differ i.e.,

H(x, x�) = k (2)

Since, H(x, x�), + H(x�, y) � H(x, y), we have from (1) and (2), H(x�, y) � k.

� By the previous theorem, the code can detect at the most (k – 1) errors.

Thus, we get a contradiction.

� H(x, y) � 2k + 1.

Converse: Let us assume that H(x, y) � 2k + 1.

Let x be a code word and x� be a received erroneous word with at most k

errors. If a decoding rule correctly decodes x� as x, then x� is nearer to x than

any other word y.

Since, H(x, x�) + H(x�, y) � H(x, y), we get

H(x�, y) � k + 1 [� H(x, y) � 2k + 1 and H(x, x�) � k]

This means that every code word y is farther away form x� than x.

Hence x� can be correctly decoded.

Example

Let us consider the encoded words 000 and 111. These words differ in 3 digits.

So zero or one error can be corrected.

If zero or one error occurs during transmission, 000 would have become any

one of 000, 100, 010 and 001 and 111 would have become any one of 111,

011, 101 and 110. These two sets of received words are disjoint. So whatever

be the words received, the single or no error can be easily detected and corrected.

Basic Notions of Error Correction using

Matrices
When m, n � Z+ and m < n, the encoding function e: Bm � Bn, where B � (0,

1) is given by a m � n matrix G over B. This matrix G is called the generator

matrix for the code and is of the form [Im |A], where Im is the m � m unit matrix

and A is an m � (n – m) matrix to be chosen suitably. If w is a message � Bm,

then e(w) = wG and the code (the set of code words) C = e (Bm) � Bn, where w

is a (1 � m) vector. For example, if the message w � B2, we may assume G

1 0 1 1 0

0 1 0 1 1

� �
� �
� �

Now row of A has only zeros or only 1.Note
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The words that belong to B2 are 00, 10, 01 and 11. Then the code words

corresponding to the above message words are respectively

e(00) = [0 0]
1 0 1 1 0

0 1 0 1 1

� �
� �
� �

 = [00 000]

e(10) = [1 0]
1 0 1 1 0

0 1 0 1 1

� �
� �
� �

 = [10 110]

e(01) = [0 1]
1 0 1 1 0

0 1 0 1 1

� �
� �
� �

 = [01 011]

e(11) = [1 1]
1 0 1 1 0

0 1 0 1 1

� �
� �
� �

 = [111 01]

While getting wG, the modulo 2 arithmetic is to be used.

Clearly C = e(B2) � B5.

We observe that we can get back the message word from the corresponding

code word by dropping the last 3( = n – m) digits.

For all w = x1 x2 � B2

e(w) = x1 x2 x3 x4 x5 � B5 (1)

where xi � B.

Since, e(w) = wG = [x1 x2]
1 0 1 1 0

0 1 0 1 1

� �
� �
� �

= [x1, x2, x1, x1 + x2, x2] (2)

From (1) and (2), we have x1 = x3, x1 + x2 = x4 and x2 = x5 (3)

Since, xi � B, by modulo 2 arithmetic – xi (mod 2) = (–xi + 2xi) (mod 2).

Hence, the equations (3) become

1 3

1 2 4

2 5

0

0

0

� � ��� � � �
�� � �

x x

x x x

x x

(4)

i.e.,

1 0 1 0 0

1 1 0 1 0

0 1 0 0 1

� �
� �
� �
� �� �

1

2

3

4

5

� �
� �
� �
� �
� �
� �
� �� �

x

x

x

x

x

 = 

0

0

0

� �
� �
� �
� �� �

i.e., H � [e(w)]T = 

0

0

0

� �
� �
� �
� �� �

(5)

Note



248 Discrete Mathematics

The (n – m) equations in (3) are called the parity check equations.

The matrix H in (5) is called the parity check matrix.

We note that H is an (n – m) � n matrix, whereas G is an m � n matrix.

Also H = [AT |In – m]. In the present example

AT = 

1 0

1 1

0 1

� �
� �
� �
� �� �

 and In – m = I3 = 

1 0 0

0 1 0

0 0 1

� �
� �
� �
� �� �

We also note that H does not contain a column of only 0’s and no two

columns of H are the same. This is achieved by a careful choice of A. This

unique parity check matrix H provides a decoding scheme that corrects a single

error in transmission as explained below:

(i) If r is a received word considered as a(1 � n) matrix and if H � rT = [0],

then we conclude that there is no error in transmission and that r is the

code word transmitted. The decoded (original) message then consists of

the first m components of r.

In the present example, if r = [1 1 1 0 1], then

H � rT = 

1 0 1 0 0

1 1 0 1 0

0 1 0 0 1

� �
� �
� �
� �� �

1

1

1

0

1

� �
� �
� �
� �
� �
� �
� �� �

 = 

0

0

0

� �
� �
� �
� �� �

Hence, r is itself the code word transmitted and the decoded message is

11 (got by taking the first (m =)2 components of r).

(ii) If H � rT = the ith column of H, then we conclude that a single error has

occurred during transmission and it has occurred in the ith component of

r. Changing the ith component of r, we get the code word c transmitted.

As before the first m components of c give the original message.

In the present example if r = [11 011], then

H � rT = 

1 0 1 0 0

1 1 0 1 0

0 1 0 0 1

� �
� �
� �
� �� �

1

1

0

1

1

� �
� �
� �
� �
� �
� �
� �� �

 = 

1

1

0

� �
� �
� �
� �� �

Since, H rT = the first column of H, a single error has occurred in the first

component of r. Changing the first component of r, we get the code word

transmitted as 01011. Taking the first 2 components of the code word, we

get 01 as the original message.
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(iii) If neither case (i) nor case (ii) occurs then we conclude that more than one

transmission error have occurred. Though detection of errors is possible

in this case, correction is not possible.

In the present example, if r = [11 010], then

H � rT = 

1 0 1 0 0

1 1 0 1 0

0 1 0 0 1

� �
� �
� �
� �� �

1

1

0

1

0

� �
� �
� �
� �
� �
� �
� �� �

 = 

1

1

1

� �
� �
� �
� �� �

Since, H � rT � any column of H, more than one transmission error has

occurred.

Since

1 1 0

1 1 0

1 0 1

� � � � � �
� � � � � �� �� � � � � �
� � � � � �� � � � � �

 = 1st column of H + 5th column of H,

2 errors have occurred in transmission, one in the first component and the

other in the fifth component of r. Changing these components in r, the

code word transmitted may be assumed as 01 011 and hence the original

message may be taken as 01.

Also

1 0 1

1 1 0

1 1 0

� � � � � �
� � � � � �� �� � � � � �
� � � � � �� � � � � �

 = the 2nd column of H + the 3rd column of H.

Hence, 2 errors might have occurred, one in the 2nd component and the

other in the 3rd component of r. Changing these components in r, the

code word transmitted may be assumed as 10110 and hence, the original

message may be taken as 10. Thus, there is an ambiguity as to which

message has been encoded and transmitted. In other words, the correction

of errors is not possible, even though errors have been detected.

We note that the minimum distance between any pair of code words is

3 in the present example. Hence, according to the two previous theorems,

atmost 2 errors can be detected and atmost 1 error can be corrected. We

have verified the same in the examples considered above.

ERROR CORRECTION IN GROUP CODES

We have already introduced a group code, that is any code which is a group

under the binary operation of addition modulo 2, denoted by �. In general

when the code words form a group, it is easier to find the minimum distance

between code words, using the following theorem.
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Theorem
In a group code, the minimum distance between distinct code words is the

minimum weight of the non zero code words in it.

Proof
Let a, b, c be 3 members of a group code C, such that a � b, H(a, b) is

minimum  and c is a non zero element with minimum weight.

Now a � b � C, by closure property in the group C.

As already seen, H(a, b) = Wt(a � b)

Since the weight of c is minimum, we have

H(a, b) � Wt(c) (1)

Also Wt(c) = H(c, 0), where 0 is the identity element of c.

Now H(c, 0) � H(a, b), since, H(a, b) is the minimum

i.e., Wt(c) � H(a, b) (2)

From (1) and (2), it follows that H(a, b) = Wt(c).

The parity check matrix H defined in the previous section satisfies

H � [e(w)]T = [0],

where e(w) is a code word and [0] is a column matrix consisting of 0’s.

Conversely, if x = [x1, x2 … xn] satisfies

H � [x]T = [0], where H is an (n – m) � n matrix, [x] is a 1 � n row matrix and

[0] is an (n – m) � 1 column matrix, then x is a code word.

The following two theorems will show that H always defines a group code

and the minimum weight of the code can be obtained from H.

Theorem
If H is a parity check matrix with n – m rows and n columns, then the set C of

code words x = (x1 x2 … xn) such that C = {x|H � [x]T = [0], modulo 2} is a

group code under the operation �.

Proof
Since, [H]n – m � n � [0]T

n � 1 = [0]m – n � 1, [0]1 � n � C.

If x, y, � C, then H � [x]T = [0] and H � [y]T = [0]

� H � [xT � yT] = [0]

i.e., H[x � y]T = [0]

� x � y � C satisfies the closure property.

Similarly the associativitly is satisfied by �.

Since (x � x)T = [0] or x � x = [0]T, every element x in C is its own inverse.

Hence, [C, �] is a group code.

Theorem
The parity check matrix H generates a code word of weight q if and only if

there exists a set of q columns of H such that their k-tuple sum (mod 2) is a

zero column, where k = n – m.

Proof
In the code word x generated by H let the components xi1, xi2, … xiq be 1 each

and the remaining components be 0 each.
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The components xi1, xi2, …, xin of x are the same as the components x1, x2,

…, xn written in a different order.

Now the weight of the code word x is q.

Since H � [x]T = [0], we get

hi1 � hi2 � … � hiq = 0, where

hi1, hi2, …, hiq are the elements of any row of H corresponding to the

positions of xi1 xi2, …, xiq in x.

Conversely, let us assume that there is a set of q distinct columns of H such

that hi1 � hi2 � � � hiq = 0 for all the rows (where hi1, hi2, …, hiq are the

elements of any row in the q columns). Then we can chosen x = [xi1, xi2, …,

xin] such that xi1, xi2, …, xiq are 1 each and the remaining components are 0

each.

Then x will satisfy the equation

H[x]T = [0]

This means that x is a code word of weight q generated by H.

Example

Let us consider the example considered in the previous section on “error

correction using parity check matrix”.

In that example, we established that

H � [x]T = 

1 0 1 0 0

1 1 0 1 0

0 1 0 0 1

� �
� �
� �
� �� �

1

1

1

0

1

� �
� �
� �
� �
� �
� �
� �� �

 = 

0

0

0

� �
� �
� �
� �� �

Now it is obvious that the sum of the 1st, 2nd, 3rd and 5th columns of H

(mod 2) is the zero column.

The weight of the corresponding code word [1 1 1 0 1] is 4, that verifies

the above theorem.

STEP BY STEP PROCEDURE FOR DECODING
GROUP CODES

Step 1
We list in a row all the code words in C, starting with the identity.

Thus, we have c1(=0) c2 c3 … 
2mc

For clarity, we shall write the corresponding step with respect to the problem

discussed in the previous section, in which m = 2

i.e., 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 1

Note
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Step 2
We select some word yj � Bn but not in C having minimum weight and

construct a new row or coset yj � ci for all i such that 1 � i � 2m.

Thus, we have

yj � c1 yj � c2 yj � c3 … yj �
2mc

i.e., y2 y2 � c2 y2 � c3 … y2 �
2mc

In the example, if y2 = 10000, then the second row would be

1 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1

Step 3
We now form the third row by selecting some yk � Bn which is not in the

preceding two rows and which has the minimum weight and proceeding as in

step 2.

Thus we have

y3 y3 � c2 y3 � c3 … y3 �
2mc

In the example, if y3 = 0 1 0 0 0, then the third row would be

0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1

Step 4
This process is continued until all the elements in Bn are entered in the table.

The complete decoding Table 4.12 will be of the form.

Table 4.12

c1 (= 0) c2 c3 …
2mc

y2 y2 � c2 y2 � c3 … y2 �
2mc

y3 y3 � c2 y3 � c3 … y3 �
2mc

… … … … …

2 �n my
2 �n my � c2 2 �n my � c3 …

2 �n my �
2mc

For the example in consideration, the complete decoding table is given in

Table 4.13.

Table 4.13

0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 1

1 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1

0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1

0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1

0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1

0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 0

1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 1

1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0
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Note

Note

The elements in the first row of the decoding table are the code words,

whereas the elements in the first column are the coset leaders, which

represent the errors that occur during transmission.

Step 5
Once the decoding table is constructed, the decoding of any received word r is

done as follows. First we identify the column of the decoding table in which r

occurs. If the weight of the coset leader corresponding to r is 1, then the

decoded word (viz. the coded word transmitted) is the element at the top of the

column in which r occurs.

In the current example, if the received word is 11011, we note that it lies in

the 3rd column and 2nd row of the table. Since, the weight of the coset leader in

the 2nd row is 1, the decoded word is 01011 that lies at the top of the 3rd

column. The corresponding message transmitted is 01.
If, by chance the received word happens to lie at the top of any column (or

in the first row) of the decoding table, no error has occurred during

transmission and the received word itself is the coded word transmitted.

Step 6
If the weight of the coset leader corresponding to the received word r is 2, the

decoding cannot be done, viz., the coded word transmitted cannot be determined

uniquely, as two coded words might have been received as the same word r

due to 2 errors during transmission, as explained below with respect to the

current example.

If the received word is 1 1 0 1 0, the weight of the corresponding coset

leader is 2 and hence, the top element in the 3rd column, namely, 0 1 0 1 1

cannot be taken as the code word transmitted for the following reason.

After filling up the first 7 rows of the decoding table, the words belonging

to B5 with weight 2 and not included in the table are 10001 and 01100. We

have constructed the 8th row by taking coset leader as 10001. Instead had we

taken 0 1 1 0 0 as the coset leader of the 8th row, it would have become

0 1 1 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1

Now as per the alternative 8th row of the decoding table, the received word

1 1 0 1 0 occurs in the record column. The top element in that column is

1 0 1 1 0 and this too can be taken as the code word transmitted. Thus if 2

errors occur during transmission, they can be detected but not corrected.

WORKED EXAMPLES 4(C)

Example 4.1 A binary symmetric channel has probability p = 0.05 of

incorrect transmission. If the code word c = 011 011 101 is transmitted, what is

the probability that (a) we receive r = 011 111 101? (b) we receive r = 111 011

100? (c) a single error occurs? (d) a double error occurs? (e) a triple error

occurs?

(a) The received word r = 011 111 101 differs from the transmitted word c =

011 011 101 only in the fourth position.
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The probability of occurrence of this specific error

= P(1 error and 8 non-errors)

= 0.05 � (0.95)8 = 0.0332.

(b) The received word r = 111 011 100 differs from the transmitted word c =

011 011 101 only in the first and ninth positions.

The probability of occurrence of these specific error

= P(2 errors and 7 non-errors)

= (0.05)2 � (0.95)7 = 0.0017.

(c) P(1 error in any one position and 8 non-errors in the remaining positions)

= “nC1 � p� � qn – 1”, by Bernoulli’s theorem in Probability theory

9C1 � (0.05)1 � (0.95)8 = 0.2985

(d) P(2 errors in any two positions and 7 non-errors in the remaining positions)

= 9C2 � (0.05)2 � (0.95)7 = 0.0629.

(e) P(3 errors in any three positions and 6 non-errors in the remaining

positions)

= 9C3 � (0.05)3 � (0.95)6 = 0.0077

Example 4.2 The (9, 3) three times repetition code has the encoding

function e = B3 � B9, where B = (0, 1).

(a) If d: B9 � B3 is the corresponding decoding function, apply ‘d’ to decode

the received words (i) 111 101 100, (ii) 000 100 011; (iii) 010 011 111 by

using the majority rule.

(b) Find three different received words r for which d(r) = 000

(a) Triple repetition code means that when we encode a word w = Bm, all the

m elements of w are repeated three times so as to produce e(w) � B3m.

To decode any received word by the majority rule we examine the 1st,

4th and 7th positions and note down the element (0 or 1) which appear

more times. This process is continued with 2nd, 5th and 8th positions, 3rd,

6th and 9th positions and so on and finally with mth, (2m)th and (3m)th

positions. The m elements thus noted down are written in the order to

give the original word.

(i) The received word is 111 101 100.

Among the elements in the 1st, 4th and 7th positions, 1 appears all

the three times. Hence 1 is taken as the first element of the original

word.

Among the elements in the 2nd, 5th and 8th positions, 0 appears

twice. Hence 0 is taken as the second element of the original word.

Among the elements in the 3rd, 6th and 9th positions, 1 appears twice.

Hence 1 is  taken as the third element of the original word.

� d(111 101 100) = 101

(ii) Similarly d(000 100 011) = 000

(iii) d(010 011 111) = 011
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(b) Since d(r) = 000, 0 must appear more times in the 1st, 4th and 7th positions

and similarly in the 2nd, 5th and 8th positions and in the 3rd, 6th and 9th

positions.

One set of such three words is:

100 000 000, 000 010 000, 000 000 001.

Example 4.3 Find the code words generated by the encoding function

e: B2 � B5 with respect to the parity check matrix

H = 

0 1 1

0 1 1

1 0 0

0 1 0

0 0 1

� �
� �
� �
� �
� �
� �
� �� �

In our discussion, if the encoding function is e: Bm � Bn, the generator

matrix was assumed as an m � n matrix G = [Im|A] and the parity check

matrix was assumed as an (n – m) � m matrix H = [AT|In – m] and as such there was less

number of rows and more number of columns in H. We shall stick to our notation. As

per our notation, what is given in this problem is not H, but HT. However some authors

use this notation to denote the parity check matrix.

Rewriting the given matrix as per our notation, we have

H = 

0 0 1 0 0

1 1 0 1 0

1 1 0 0 1

� �
� �
� �
� �� �

 = [AT|In – m]

Here n = 5 and m = 2.

Hence, the generator matrix G is given by

G = [Im |A] = 
1 0 0 1 1

0 1 0 1 1

� �
� �
� �

Now B2 � {0 0, 0 1, 1 0, 1 1} and e(w) = w G

� e(0 0) = [0 0]
1 0 0 1 1

0 1 0 1 1

� �
� �
� �

 = [0 0 0 0 0]

� e(0 1) = [0 1]
1 0 0 1 1

0 1 0 1 1

� �
� �
� �

 = [0 1 0 1 1]

� e(1 0) = [1 0]
1 0 0 1 1

0 1 0 1 1

� �
� �
� �

 = [1 0 0 1 1]

� e(1 1) = [1 1]
1 0 0 1 1

0 1 0 1 1

� �
� �
� �

 = [1 1 0 0 0]

Hence, the code words generated by H are 0 0 0 0 0, 0 1 0 1 1, 1 0 0 1 1 and

1 1 0 0 0.

Note
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Example 4.4 Find the code words generated by the parity check matrix

H = 

1 1 1

1 0 1

0 1 1

1 0 0

0 1 0

0 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

when the encoding function is e: B3 � B6.

Taking H = 

1 1 0 1 0 0

1 0 1 0 1 0

1 1 1 0 0 1

� �
� �
� �
� �� �

 = [AT |In – m]

as per our notation, the generator matrix

G is given by G = [Im | A] = 

1 0 0 1 1 1

0 1 0 1 0 1

0 0 1 0 1 1

� �
� �
� �
� �� �

Now B3 = {0 0 0, 0 0 1, 0 1 0, 1 0 0, 0 1 1, 1 0 1, 1 1 0, 1 1 1}

� e(0 0 0) = [0 0 0] � G = [0 0 0 0 0 0]

e(0 0 1) = [0 0 1] � G = [0 0 1 0 1 1]

e(0 1 0) = [0 1 0] � G = [0 1 0 1 0 1]

e(1 0 0) = [1 0 0] � G = [1 0 0 1 1 1]

e(0 1 1) = [0 1 1] � G = [0 1 1 1 1 0]

e(1 0 1) = [1 0 1] � G = [1 0 1 1 0 0]

e(1 1 0) = [1 1 0] � G = [1 1 0 0 1 0]

e(1 1 1) = [1 1 1] � G = [1 1 1 0 0 1]

Thus, the code words generated are

0 0 0 0 0 0, 0 0 1 0 1 1, 0 1 0 1 0 1, 1 0 0 1 1 1, 0 1 1 1 1 0,

1 0 1 1 0 0, 1 1 0 0 1 0 and 1 1 1 0 0 1.

Example 4.5 Decode each of the following received words corresponding

to the encoding function e: B3 � B6 given by e(000) = 000 000, e(001) =

001 011, e(010) = 010 101, e(100) = 100 111, e(011) = 011 110, e(101) = 101

100, e(110) = 110 010 and e(111) = 111001, assuming that no error or signal

error has occurred:

0 1 1 1 1 0, 1 1 0 1 1 1, 1 1 0 0 0 0, 1 1 1 0 0 0, 0 1 1 1 1 1.

We note that the minimum distance between the code words (viz., the

minimum weight of the non-zero code words) is 3 and hence, atmost 1 error

can be corrected that might have occurred in the received words.
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(i) The word 0 1 1 1 1 0 is identical with e(0 1 1). Hence, no error has

occurred in this word and the original message is 0 1 1.

(ii) The word 1 1 0 1 1 1 differs from e(1 0 0) = 1 0 0 1 1 1 in the second

position only. Correcting this single error, the transmitted word is

1 0 0 1 1 1 and the original message is 1 0 0.

(iii) The word 1 1 0 0 0 0 differs from e(1 1 0) = 1 1 0 0 1 0 in the fifth

position only. Correcting this error, the transmitted word is 1 1 0 0 1 0

and the original message is 1 1 0.

(iv) The word 1 1 1 0 0 0 differs from e(1 1 1) = 1 1 1 0 0 1 in the sixth

position only. Correcting this error, the transmitted word is 1 1 1 0 0 1

and the original message is 1 1 1.

(v) The word 0 1 1 1 1 1 differs from e(0 1 1) = 0 1 1 1 1 0 in the sixth

position only. Correcting this error, the transmitted word is 0 1 1 1 1 0

and the original message is 0 1 1.

Example 4.6 If x is a specific encoded word that belongs to B10 and

S(x, k) is the set of all received words corresponding to x with at most k errors,

determine |S(x, 1)|, |S(x, 2)|, |S(x, 3)|. If x � Bn, what is |S(x, k)|, where 1 � k � n.

S(x, 1) is the set of all received words  � B10. Since the position for the

single error can be chosen from the 10 positions of x in 10C1 = 10 ways. As

S(x, 1) includes the word with no error, S(x, 1) contains 1 + 10 = 11 words.

i.e., |S(x, 1)| = 11

Similarly |S(x, 2)| = No. of words with no error, 1 error and 2 errors

= 1 + 10C1 + 10C2

= 56.

|S(x, 3)| = No. of words with no error, 1 error, 2 errors and 3 errors

= 1 + 10C1 + 10C2 + 10C3

= 176.

In general,

|S(x, k)| = 1 + nC1 + nC2 + � nCk = 
k

i
i o

nC
�
�

Example 4.7 Given the generator matrix G �
1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

� �
� �
� �
� �� �

,

corresponding to the encoding function e: B3 � B6, find the corresponding

parity check matrix and use it to decode the following received words and

hence, to find the original message. Are all the words decoded uniquely?

(i) 1 1 0 1 0 1, (ii) 0 0 1 1 1 1, (iii) 1 1 0 0 0 1, (iv) 1 1 1 1 1 1

If we assume that G = [I3 |A], then

H = [AT |I3] = 

1 0 1 1 0 0

1 1 0 0 1 0

0 1 1 0 0 1

� �
� �
� �
� �� �
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We compute the syndrome of each of the received word by using H � [r]T.

(i) H � [r]T = 

1

1
1 0 1 1 0 0 0

0
1 1 0 0 1 0 0

1
0 1 1 0 0 1 0

0

1

� �
� �
� �� � � �� �� � � ��� �� � � �� �� � � �� � � �� �
� �
� �� �

Since, H � [e(w)]T = 

0

0

0

� �
� �
� �
� �� �

, the received word in this case is the transmitted

(encoded) word itself. Hence, the original message is 1 1 0.

(ii) H � [r]T = 

0

0
1 0 1 1 0 0 0

1
1 1 0 0 1 0 1

1
0 1 1 0 0 1 0

1

1

� �
� �
� �� � � �� �� � � ��� �� � � �� �� � � �� � � �� �
� �
� �� �

Since, the syndrome 

0

1

0

� �
� �
� �
� �� �

 is the same as the fifth column of H, the

element in the fifth position of r is changed.

� The decoded word is 0 0 1 1 0 1 and the original message is 0 0 1.

(iii) H � [r]T = 

1

1
1 0 1 1 0 0 1

0
1 1 0 0 1 0 0

0
0 1 1 0 0 1 0

0

1

� �
� �
� �� � � �� �� � � ��� �� � � �� �� � � �� � � �� �
� �
� �� �

Since, the syndrome 

1

0

0

� �
� �
� �
� �� �

 is the same as the fourth column of H, the

fourth component of r is changed to get the decoded word. It is

1 1 0 1 0 1 and the original message is 1 1 0.
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(iv) H � [r]T = 

1

1
1 0 1 1 0 0 1

1
1 1 0 0 1 0 1

1
0 1 1 0 0 1 1

1

1

� �
� �
� �� � � �� �� � � ��� �� � � �� �� � � �� � � �� �
� �
� �� �

Since, the syndrome is not identical with any column of H, the received

word cannot be decoded uniquely.

Example 4.8 Construct the decoding table for the group code given by

the generator matrix.

G �
1 0 0 1 1 1

0 1 0 1 0 1

0 0 1 0 1 1

� �
� �
� �
� �� �

Decode the following received words using the decoding table obtained.

Which of the words could not be decoded uniquely?

1 0 1 1 1 1, 0 1 1 0 1 0, 1 0 1 1 1 0, 1 1 1 1 1 1.

Since G is a 3 � 6 matrix, it corresponds to the encoding function e: B3 � B6.

Now, B3 = {0 0 0, 0 0 1, 0 1 0, 1 0 0, 0 1 1, 1 0 1, 1 1 0, 1 1 1}

e(0 0 0) = [0 0 0]G = [0 0 0 0 0 0];

Similarly e(0 0 1) = [0 0 1 0 1 1]; e(0 1 0) = [0 1 0 1 0 1]

e(1 0 0) = [1 0 0 1 1 1]; e(0 1 1) = [0 1 1 1 1 0];

e(1 0 1) = [1 0 1 1 0 0]; e(1 1 0) = [1 1 0 0 1 0]

and e(1 1 1) = [1 1 1 0 0 1].

We form the decoding table by making these encoded words as the elements

of the first row and the coset leaders as the elements of the first column. The

coset leaders with only one 1 have been taken in a certain order and then those

with two 1’s have been taken. The decoding table is given in Table 4.14.

Table 4.14

Code words� 000000 001011 010101 100111 011110 101100 110010 111001

100000 101011 110101 000111 111110 001100 010010 011001

010000 011011 000101 110111 001110 111100 100010 101001

001000 000011 011101 101111 010110 100100 111010 110001

000100 001111 010001 100011 011010 101000 110110 111101

000010 001001 010111 100101 011100 101110 110000 111011

000001 001010 010100 100110 011111 101101 110011 111000

011000 010011 001101 111111 000110 110100 101010 100001

�
Coset leaders
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The decoding table is not unique as the coset leader of the last row could

have been taken as 1 0 0 0 0 1 or 0 0 0 1 1 0.

Decoding of the received words
(i) 101 111 appears in the 4th row and 4th column. The coset leader of the 4th

row is 001 000, which contains only one 1,

Since the minimum weight of the code words is 3, atmost one error can

be corrected in the received word.

The corrected (received) word, viz., the code word transmitted is the

top element of the 4th column. It is 100 111 and hence the original

message is 100.

(ii) 0 1 1 0 1 0 appears in the 5th row and 5th column. Hence the corresponding

code word transmitted is 0 1 1 1 1 0 and hence the original message is

0 1 1.

(iii) 1 0 1 1 1 0 appears in the 6th row and 6th column. Hence the corresponding

code word transmitted is 1 0 1 1 0 0 and hence the original message is

1 0 1.

(iv) 1 1 1 1 1 1 appears in the 8th row, the coset leader of which contains two

1’s viz., the received word contains 2 errors. Hence, they cannot be

corrected and the code word transmitted cannot be uniquely determined.

EXERCISE 4(C)

Part A: (Short answer questions)

1. What is the main objective of coding theory?

2. What do you mean by encoder and decoder?

3. What is group code?

4. Define Hamming code.

5. Define even and odd parity checks.

6. What is meant by (i) the weight of a code word (ii) the Hamming distance

between two code words?

7. If the minimum distance between two code words is (i) 3, (ii) 4 and

(iii) 5, how many errors can be detected and how many can be corrected

in each case?

8. Define generator matrix corresponding to the encoding function e: Bm �
Bn.

9. What are the restrictions on A occurring in the generator matrix G =

[Im | A]?

10. How will you use the generator matrix to get the code words corresponding

to the given message words?

11. Define the parity check matrix. How is it related to the generator matrix?

12. How will you use the parity check matrix to retrieve the code word from

a received word?

13. How will you find the minimum distance between any two code words in

a group code?

Note
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14. What are the possible weight of the code word x, if

H � [x]T = 

1 0 1 0 0 0

1 1 0 1 0 [ ] 0

0 1 0 0 1 0

Tx

� � � �
� � � ��� � � �
� � � �� � � �

?

15. Explain briefly the step by step procedure for constructing the decoding

table for group code.

16. How will you make use of the decoding table to get back the code word

corresponding to a received word, if it contains a single error?

17. If x, y, z � Bn, prove that (i) H(x, y) � 0 (ii) H(x, y) = 0 � x = y (iii) H(x,

y) = H(y, x).

18. If x, y, z � Bn, prove the triangle inequality H(x, z) � H(x, y) + H(y, z)

[Hint: H(x, z) = Wt(x � z) = Wt{x � (y � y) � z} = Wt{(x � (y � y) �
z)}, since y � y = 0]

19. If C � B7, where C is a set of code words and r = c + e, where c � C, e is

the error pattern and r is the received word, find r, e and c respectively

from the following:

(i) c = 1 0 1 0 1 1 0 and e = 0 1 0 1 1 0 1

(ii) c = 1 0 1 0 1 1 0 and r = 1 0 1 1 1 1 1

(iii) e = 0 1 0 1 1 1 1 and r = 0 0 0 0 1 1 1

20. If e: B2 � B6 is given by e(0 0) = 0 0 0 0 0 0, e(1 0) = 1 0 1 0 1 0, e(0 1)

 and S(1 1 1 1 1 1, 1), where S(x, k) is the set of all received words

corresponding to x with at most k errors.

21. For each of the following encoding fucntions, find the minimum distance

between the code words. State also the error-detecting and error-correcting

capabilities of each code:

(i) e(0 0) = 0 0 0 0, e(1 0) = 0 1 1 0, e(0 1) = 1 0 1 1, e(1 1) = 1 1 0 0

(ii) e(0 0) = 0 0 0 0 1, e(1 0) = 1 0 1 0 0, e(0 1) = 0 1 0 1 0, e(1 1) =

1 1 1 1 1

(iii) e(0 0) = 0 0 0 0 0 0 0 0 0 0; e(1 0) = 1 1 1 1 1 0 0 0 0 0, e(0 1) =

0 0 0 0 0 1 1 1 1 1; e(1 1) = 1 1 1 1 1 1 1 1 1 1.

(iv) e(0 0 0) = 0 0 0 1 1 1; e(0 0 1) = 0 0 1 0 0 1; e(0 1 0) = 0 1 0 0 1 0;

e(1 0 0) = 1 0 0 1 0 0; e(0 1 1) = 0 1 1 1 0 0; e(1 0 1) = 1 0 1 0 1 0;

e(1 1 0) = 1 1 0 0 0 1, e(1 1 1) = 1 1 1 0 0 0.

(v) e(0 0 0) = 0 0 0 0 0 0 0 0; e(0 0 1) = 1 0 1 1 1 0 0 0; e(0 1 0) =

0 0 1 0 1 1 0 1; e(1 0 0) = 1 0 1 0 0 1 0 0; e(0 1 1) = 1 0 0 1 0 1 0 1;

e(1 0 1) = 1 0 0 0 1 0 0 1, e(1 1 0) = 0 0 0 1 1 1 0 0; e(1 1 1) =

0 0 1 1 0 0 0 1.

Part B

22. A binary symmetric channel has probability p = 0.001 of incorrect

transmission. If the code word 110 101 101 is transmitted, what is the

probability (i) of correct transmission (ii) of making atmost one error in

transmission (iii) of making atmost 2 errors in transmission?
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23. The (24, 8) triple repetition code has the encoding function e: B8 � B24,

where B � (0, 1). If d: B24 � B8 is the corresponding decoding function,

apply d to decode the received word 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1

1 0 1 1 0 1 1 0, by using the majority rule.

24. Find the code words generated by the parity check matrix H =

1 0 1 0 0

1 1 0 1 0

0 1 0 0 1

� �
� �
� �
� �� �

, when the encoding function is e: B2 � B5.

25. Find the code words generated by the parity check matrix H =

1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1

� �
� �
� �
� �� �

, when the encoding function is e: B3 � B6.

26. Prove that the code words generated by the parity check matrix H =

0 1 0 1 0 0 0

1 0 1 0 1 0 0

0 0 1 0 0 1 0

1 0 0 0 0 0 1

� �
� �
� �
� �
� �
� �� �

 with respect to the encoding function e: B4 �

B7 form a group code.

27. If the encoding function e: B3 � B8 is given by

e(0 0 0) = 0 0 0 0 0 0 0 0, e(0 0 1) = 0 0 1 1 0 0 1 0,

e(0 1 0) = 0 1 0 1 1 1 0 0, e(1 0 0) = 1 0 0 0 0 1 0 1;

e(0 1 1) = 0 1 1 0 1 1 1 0, e(1 0 1) = 1 0 1 1 0 1 1 1,

e(1 1 0) = 1 1 0 1 1 0 0 1, and e(111) = 11101011,

find the corresponding parity check matrix.

28. Decide each of the following received words corresponding to the encoding

function e: B3 � B6

e(0 1 0) = 0 1 0 0 1 1, e(1 0 0) = 1 0 0 1 1 0, e(0 1 1) = 0 1 1 1 1 0,

e(1 0 1) = 1 0 1 0 1 1, e(1 1 0) = 1 1 0 1 0 1 and e(1 1 1) = 1 1 1 0 0 0,

assuming that no error or single error has occurred:

1 0 0 1 0 1, 1 0 1 1 0 1, 0 1 1 0 1 0, 1 1 1 0 1 0, 1 0 0 0 1 0.

29. Given the generator matrix G = 

1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

� �
� �
� �
� �
� �
� �� �

, corresponding

to the encoding function e: B4 � B7, find the corresponding parity check

matrix and use it to decode the following received words and hence, to

find the original message:

1 1 0 0 0 0 1, 1 1 1 0 1 1 1, 0 0 1 0 0 0 1, 0 0 1 1 1 0 0.
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30. Given the generator matrix G = 

1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

� �
� �
� �
� �� �

 corresponding to

the encoding function e: B3 � B6, find the corresponding parity check

matrix and use it to decode the following received words and hence to

find the original message:

1 1 1 1 0 1, 1 0 0 1 0 0, 1 1 1 1 0 0, 0 1 0 1 0 0

31. Repeat problem (30) with G = 
1 0 1 0 1 0

0 1 0 1 0 1

� �
� �
� �

, e: B2 � B6 and

received words 0 0 0 1 0 0, 0 1 1 1 0 1, 1 1 1 0 1 0 and 1 0 1 0 1 1.

32. Repeat problem (30) with G = 

1 0 1 0 0 1 0 0

1 0 1 1 1 0 0 0

0 0 1 0 1 1 0 1

� �
� �
� �
� �� �

, e: B3 � B8

and received words 1 0 1 1 0 1 0 1, 1 0 0 1 1 0 0 1, 0 0 0 1 0 1 0 0,

0 0 1 1 0 0 1 1.

33. Construct the decoding table for the group code given by the generator

matrix

G = 
1 0 0 1 1

0 1 1 1 0

� �
� �
� �

Use the decoding table to decode the following received words:

34. Construct the decoding table for the group code given by the generator

matrix

G = 

1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

� �
� �
� �
� �� �

,

Use the decoding table to decode the following received words:

35. Construct the decoding table for the group code generated by the parity

check matrix

H = 

1 1 0 1 0 0

1 0 1 0 1 0

1 1 1 0 0 1

� �
� �
� �
� �� �

Use the decoding table to decode the following received words:
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36. Construct the decoding table for the group code generated by the parity

check matrix.

H = 

1 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

0 1 0 0 0 1

� �
� �
� �
� �
� �
� �� �

Use the decoding table to decode the following received words:

ANSWERS

Exercise 4(A)

3. e = – 2 4. a–1 = –(a + 4) 16. No 17. Yes

18. 1 19. 6 24. O(1) = 1, O(–1) = 2, O(± i) = 4

25. O(a) = 6, O(a2) = 3, O(a3) = 2, O(a4) = 3, O(a5) = 6, O(a6) = 1

36. O(Sn) = n!, O(Dn) = 2n; (38) w, w239. [1], [2], [3] and [4];

40. 4; a, a3, a5, a7 41. 1, only 1 42. 0, a–1 = a/(a – 1) (a � 1);

43. Inverses of 1, 2, 3, 4, 5 are 5, 4, 3, 2, 1 respectively

44. 0, 
3 1

a

a
�

�
45. No

56.  = 
1 2 3 4 5 6

6 5 3 2 1 4

� �
� �� �

,  = 
1 2 3 4 5 6

1 5 2 6 4 3

� �
� �� �

,

2 = 
1 2 3 4 5 6

5 3 6 4 2 1

� �
� �� �

, 2 = 
1 2 3 4 5 6

2 1 5 4 3 6

� �
� �� �

,

–1 = 
1 2 3 4 5 6

2 6 1 4 3 5

� �
� �� �

, –1 = 
1 2 3 4 5 6

3 5 2 6 1 4

� �
� �� �

;

57.  = 
1 2 3 4

3 1 4 2

� �
� �� �

,  = 
1 2 3 4

4 1 2 3

� �
� �� �

, 2 = 
1 2 3 4

2 1 4 3

� �
� �� �

,

–1 = 
1 2 3 4

4 3 1 2

� �
� �� �

, O( ) = 4, O( ) = 3, O( ) = 4;

58. a � p1, b � p1 and a � b; a = p1, p2, p4, p6; a =  p1, p3, p5;

59. 2; 3 and 5; 60. 2 and 5

Exercise 4(B)

5. No 7. {e} and G

18. The distinct left cosets are {[0], [3]}, {[1], [4]} and {[2], [5]}
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37. ker ( f ) = 2n�, n � Z 38. ker ( f ) = ei2n�, n � Z;

39. {p1 p3 p5} and {p2, p4, p6} 40. H, 1 + H, 2 + H, 3 + H, 4 + H

42. All the three are not normal subgroups;

43. Yes 47. m = n = 1 or m = n = –1.

Exercise 4(C)

7. (i) 2, 1 (ii) 2, 1 (iii) 4, 2

14. 3 or 4

19. (i) 1111011 (ii) 0001001 (iii) 0101000

20. (i) {101010, 001010, 111010, 100010, 101110, 10100, 101011}

(ii) {111111, 011111, 101111, 110111, 111011, 111101, 111110}

21. (i) 2; can detect atmost 1 error; cannot correct any error.

(ii) 3; can detect atmost 2 errors; can correct atmost 1 error;

(iii)5; can detect atmost 4 errors and can correct atmost 2 erros;

(iv) 2; can detect atmost 1 error and cannot correct any error.

(v) 3; can detect 2 errors and can correct 1 error;

22. (i) 0.991036 (ii) 0.999964 (iii) 0.999999

23. 10110111

24. e(00) = 00000, e(01) = 01011, e(10) = 10110, e(11) = 11101;

25. e(000) = 000000, e(001) = 001011, e(010) = 010101, e(100) = 100110;

e(011) = 011110, e(101) = 101101, e(110) = 110011, e(111) = 111000.

27. H = 

0 1 1 1 0 0 0 0

0 1 0 0 1 0 0 0

1 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

1 0 0 0 0 0 0 1

� �
� �
� �
� �
� �
� �
� �� �

28. 110101, 001101, 011110, 111000, 100110;

29. 1100, 1110, 0010, 0011

30. 101, 010, 100, could not be decoded.

31. 00, 01, 10, 10;

32. 011, 101, 110, 111.

33. Table 4.15

0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1

0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0

0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1 1

0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1

0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1

1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1

1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1

1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1

01110, 11101, 10011, 10011, 10011, 11101, 11101 and 01110

Massages are: 01, 11, 10, 10, 10, 11, 11, and 01,
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34. Table 4.16

000000 100110 010011 001101 110101 101011 011110 111000

100000 000110 110011 101101 010101 001011 111110 011000

010000 110110 000011 011101 100101 111011 001110 101000

001000 101110 011011 000101 111101 100011 010110 110000

000100 100010 010111 001001 110001 101111 011010 111100

000010 100100 010001 001111 110111 101001 011100 111010

000001 100111 010010 001100 110100 101010 011111 111001

010100 110010 000111 011001 100001 111111 001010 101100

100110, 010011, 001101, 110101, 101011 and 011110.

Messages: 100, 010, 001, 110, 101 and 011.

35. Table 4.17

000000 001011 010101 011110 100111 101100 110010 111001

100000 101011 110101 111110 000111 001100 010010 011001

010000 011011 000101 001110 110111 111100 100010 101001

001000 000011 011101 010110 101111 100100 111010 110001

000100 001111 010001 011010 100011 101000 110110 111101

000010 001001 010111 011100 100101 101110 110000 111011

000001 001010 010100 011111 100110 101101 110011 111000

000110 001101 010011 011000 100001 101010 110100 111111

111001, 110010, 101100, 100111, 011110 and 010101.

Messages: 111, 110, 101, 100, 011 and 010.

36. Table 4.18

000000 010101 101010 111111

000001 010100 101011 111110

000010 010111 101000 111101

000100 010001 101110 111011

001000 011101 100010 110111

010000 000101 111010 101111

100000 110101 001010 011111

110000 100101 011010 011111

100100 110001 001110 011011

100001 110110 001011 011110

011000 001101 110010 100111

010010 000111 111000 101101

001100 011001 100110 110011

001001 011100 100011 110110

000110 010011 101100 111001

000011 010110 101001 111100

010101, 101010, 101010, 111111, 010101 and 111111.

Messages: 01, 10, 10, 11, 01 and 11.



Set Theory

INTRODUCTION

Most of mathematics is based upon the theory of sets that was originated in

1895 by the German mathematician G. Cantor who defined a set as a collection

or aggregate of definite and distinguishable objects selected by means of some

rules or description. The language of sets is a means to study such collections

in an organised manner. We now provide a formal definition of a set.

BASIC CONCEPTS AND NOTATIONS

Definition
A set is a well-defined collection of objects, called the elements or members of

the set.

The adjective ‘well-defined’ means that we should be able to determine if a

given element is contained in the set under scrutiny. For example, the states in

India, the self-financing engineering colleges in a state, the students who have

joined the computer science branch in a college are sets.

Capital letters A, B, C, … are generally used to denote sets and lower case

letters a, b, c, … to denote elements. If x is an element of the set A or x belongs

to A, it is represented as x � A. Similarly y � A means that y is not an element

of A.

Notations

Usually a set is represented in two ways, namely, (1) roster notation and (2) set

builder notation.

In roster notation, all the elements of the set are listed, if possible, separated

by commas and enclosed within braces. A few examples of sets in roster

notation are given as follows:
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1. The set V of all vowels in the English alphabet: V = {a, e, i, o, u}

2. The set E of even positive integers less than or equal to 10: E = {2, 4, 6,

8, 10}

3. The set P of positive integers less than 100: P = {1, 2, 3, …, 99}

The order in which the elements of a set are listed is not important. Thus

{1, 2, 3}, {2, 1, 3} and {3, 2, 1} represent the same set.

In set builder notation, we define the elements of the set by specifying a

property that they have in common.

A few examples of sets in set builder notation are given as follows:

1. The set V = {x|x is a vowel in the English alphabet} is the same as V =

{a, e, i, o, u}

2. The set A = {x|x = n2 where n is a positive integer less than 6} is the same

as A = { 1, 4, 9, 16, 25}

3. The set B = {x|x is an even positive integer not exceeding 10} is the same

as B = {2, 4, 6, 8, 10}
The set V in example (1) is read as “The set of all x such that …”

The following sets play an important role in discrete mathematics:

N = {0, 1, 2, 3, …], the set of natural numbers

Z = {…, –2, –1, 0, 1, 2, …], the set of integers

Z+ = {1, 2, 3, …}, the set of positive integers

Q = | , , 0
p

p z q z q
q

� �� � �� �
� �

, the set of rational numbers

R = the set of real numbers.

Some More Definitions

The set which contains all the objects under consideration is called the Universal

set and denoted as U.

A set which contains no elements at all is called the Null set or Empty set

and is denoted by the symbol  or { }.

For example, the set A = {x|x2 + 1 = 0, x real} and the set B = {x|x > x2,

x � z+} are null sets.

A set which contains only one element is called a Singleton set. For example,

A = {0} and B = {n} are singleton sets.

A set which contains a finite number of elements is called a finite set and a

set with infinite number of elements is called an infinite set.

For example, the set A = {x2|x � z+, x2 < 100} is a finite set as A = {1, 4, 9,

16, 25, 36, 49, 64, 81}. The set B = {x|x is an even positive integer} is an

infinite set as B = {2, 4, 6, 8, …}

If a set A is a finite set, then the number of elements in A is called the

cardinality or size of A and is denoted by |A|. In the example given above, |A| =

9. Clearly | | = 0.

Note

Note
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The set A is said to be a subset of B, if and only if every element of A is also

an element of B and it is denoted as A � B. For example, the set of all even

positive integers between 1 and 100 is a subset of all positive integers between

1 and 100.

If A is not a subset of B, i.e., if A � B, at least one element of A does not

belong to B.
1. The null set  is considered as a subset of any set A. i.e., � � A.

2. Every set A is a subset of itself, i.e., A � A.

3. If A � B and B � C, then A � C.

4. If A is a subset of B, then B is called the superset of A and is written as B � A.

Any subset A of the set B is called the proper subset of B, if there is at least

one element of B which does not belong to A, i.e., if A � B, but A � B. It is

denoted as A � B.

For example, if A = {a, b}, B = {a, b, c} and C = {b, c, a}, then A and B are

subsets of C, but A is a proper subset of C, while B is not, since B = C.

Two sets A and B are said to be equal, i.e., A = B, if A � B and B � A.

Given a set S, the set of all subsets of the set S is called the power set of S

and is denoted by P(S).

For example, if S = {a, b, c}, P(S) is the set of all subsets of {a, b, c}. i.e.,

P(S) = [ , {a}, {b}, {c}, {a, b}, {b, c}, {c, a}, {a, b, c}.]

In this example, we note that |P(S)| = 8 = 23. This result is only a particular

case of a more general property, given as follows:

Property
If a set S has n elements, then its power set has 2n elements, viz., if |S| = n, then

|P(S)| = 2n.

Proof

Number of subsets of S having no element, i.e., the null sets = 1 or C(n, 0)

Number of subsets of S having 1 element = C (n, 1)

In general, the number of subsets of S having k elements = the number of

ways of choosing k elements from n elements = C(n, k); 0 � k � n.

� |P(S)| = total number of subsets of S

= C(n, 0) + C(n, 1) + C(n, 2) + … + C(n, n) (1)

Now (a + b)n = C(n, 0)an + C(n, 1) an–1b + C(n, 2)an–2b2

+ … + C(n, n)bn (2)

Putting a = b = 1 in (2), we get

C(n, 0) + C(n, 1) + C(n, 2) + … + C(n, n) = (1 + 1)n = 2n (3)

Using (3) in (1), we get |P(S)| = 2n.

ORDERED PAIRS AND CARTESIAN PRODUCT

A pair of objects whose components occur in a specific order is called an

ordered pair. It is represented by listing the two components in the specified

Notes
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order, separating by a comma and enclosing them in parentheses. For example,

(a, b), (1, 2) are ordered pairs.

The ordered pairs (a, b) and (c, d) are equal, if and only if a = c and b = d.

It is to be noted that (a, b) and (b, a) are not equal unless a = b.

If A and B are sets, the set of all ordered pairs whose first component

belongs to A and second component belongs to B is called the cartesian product

of A and B and is denoted by A � B. In other words,

A � B = {(a, b)|a � A and b � B}

For example, if A = {a, b, c} and B = {1, 2},

then A � B = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}

and B � A = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

A � B and B � A are not equal, unless A =  or B =  (so that A � B = ) or

unless A = B.

The cartesian product of more than two sets can also be defined as follows:

The cartesian product of the sets A1, A2, …, An, denoted by A1 � A2 � … �
An is the set of ordered n-tuples (a1, a2, …, an) where ai belongs to Ai for i = 1,

2, 3, … n. In other words,

A1 � A2 � … � An = {(a1, a2, …, an)|ai � Ai for i = 1, 2, … n}

A a, b}, , , A � B � C = {(a

), (a ), (a ), (a ), (a, 2, ), (a, 2, ), (b, 1, ), (b, 1, ), (b, 1, ),

(b, 2, ), (b, 2, ), (b, 2, )}.

SET OPERATIONS

Two or more sets can be combined using set operations to give rise to new sets.

These operations that play an important role in many applications are discussed

as follows:

Definition

The union of two sets A and B, denoted by A � B, is the set of elements that

belong to A or to B or to both, viz., A � B = {x |x � A or x � B}.

Venn Diagram

Sets can also be represented graphically by means of Venn diagrams in which

the universal set is represented by the interior of a rectangle and other sets are

Note

represented by the interiors of circles that lie inside the

rectangle. If a set A is a subset of another set B, the circle

representing A is drawn inside the circle representing B.

The union of two sets A and B is represented by the

hatched area within the circle representing A or the circle

representing B, as shown in the Fig. 5.1.

For example, if A = {1, 2, 3}, B = {2, 3, 4} and C =

{3, 4, 5}, then A � B = {1, 2, 3, 4},

B � C = {2, 3, 4, 5] and A � C = {1, 2, 3, 4, 5}.

Fig. 5.1 [A � B]
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Definition
The intersection of two sets A and B, denoted by A � B,

is the set of elements that belong to both A and B.

viz., A � B = {x|x � A and x � B}.

In the Venn diagram, the intersection of two sets A and

B is represented by the hatched area that is within both

the circles representing the sets A and B (Refer to Fig.

5.2).

In the example given earlier,

A � B = {2, 3}, B � C = {3, 4} and A � C = {3}.

Definition

If A � B is the empty set, viz., if A and B do not have any element in common,

then the sets A and B are said to be disjoint. For example, if A =  {1, 3, 5} and

B = {2, 4, 6, 8}, then A � B =  and hence A and B are disjoint.

Definition

If U is the universal set and A is any set, then the set of elements which belong

to U but which do not belong to A is called the complement of A and is denoted

by A� or Ac or A

viz., A� = {x |x � U and x � A}

For example, if U = {1, 2, 3, 4, 5} and A = {1, 3, 5}, then A  = {2, 4}.

Definition

If A and B are any two sets, then the set of elements that belong to A but do not

belong to B is called the difference of A and B or relative complement of B

with respect to A and is denoted by A – B or A\B.

viz., A – B = {x |x � A and x � B}

For example, if A = {1, 2, 3} and B = {1, 3, 5, 7}, then A – B = {2} and B – A

= {5, 7}.

Definition

If A and B are any two sets, the set of elements that belong to A or B, but not

to both is called the symmetric difference of A and B and is denoted by A � B or

A � B or A + B. It is obvious that A � B = (A – B) � (B – A).

For example, if A = {a, b, c, d} and B = {c, d, e, f} then A � B = {a, b, e, f}

The sets A , A – B and A � B are represented by the hatched areas shown in

Figs. (5.3), (5.4) and (5.5) respectively.

Fig. 5.2 [A � B]

Fig. 5.5 A � BFig. 5.4 A – BFig. 5.3 A
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The Algebraic Laws of Set Theory

Some of the important set identities or algebraic laws of set theory are listed in

Table 5.1. There is a marked similarity between these identities and logical

equivalences discussed in the chapter on Mathematical Logic. All these laws

can be proved by basic arguments or by using Venn diagrams and truth tables.

We shall prove some of these laws and leave the proofs of the remaining laws

as exercise to the reader.

Table 5.1 Set Identities

Identity Name of the law

1. (a) A �  = A
Identity laws

1. (b) A � U = A

2. (a) A � U = U
Domination laws

2. (b) A �  = 

3. (a) A � A = A
Idempotent laws

3. (b) A � A = A

4. (a) A � A  = U
Inverse laws or Complement laws

4. (b) A � A  = 

5. A  = A Double Complement law or Involution law

6. (a) A � B = B � A
Commutative laws

6. (b) A � B = B � A

7. (a) A � (B � C) = (A � B) � C
Associative laws

7. (b) A � (B � C) = (A � B) � C

8. (a) A � (B � C) = (A � B) � (A � C)
Distributive laws

8. (b) A � (B � C) = (A � B) � (A � C)

9. (a) A � (A � B) = A
Absorption laws

9. (b) A � (A � B) = A

10. (a) A B A B� � �
De Morgan’s laws

10. (b) A B A B� � �

Dual Statement and Principle of Duality

If s is a statement of equality of two set expressions each of which may contain

the sets A, B, A , B  etc., � and U and the only set operation symbols � and �,

then the dual of s, denoted by sd, is obtained from s by replacing (1) each

occurrence of � and U (in s) by U and � respectively and (2) each occurrence

of � and � (in s) by � and � respectively.

The principle of duality states that whenever s, a statement of equality of

two set expressions, is a valid theorem, then its dual sd is also a valid theorem.
All the set identities given in (b) parts of various laws are simply the duals

of the corresponding set identities in (a) parts.

Now let us establish some of the set identities:

(i) A � A = A

We recall that, to prove that A = B, we should establish that A � B and

B � A.

Note
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Now x � A � A � x � A or x � A

� x � A

� A � A � A (1)

x � A � x � A or x � A

� x � A � A

� A � A � A (2)

From (1) and (2), we get A � A = A

(ii) A � B = B � A

Let us use the set builder notation to establish this identity.

A � B = {x|x � A � B}

= {x|x � A and x � B}

= {x|x � B and x � A}

= {x|x � B � A}

= B � A

(iii) A � (B � C) = (A � B) � (A � C)

A � (B � C) = { x |x � A or x � (B � C)}

= {x |x � A or (x � B and x � C)}

= {x | (x � A or x � B) and (x � A or x � C)}

= {x |x � A � B and x � A � C}

= {x |x � (A � B) � (A � C)}

= (A � B) � (A � C)

(iv) A � (B � C) = (A � B) � (A � C)

Let us use Venn diagram to establish this identity.

Fig. 5.6
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(v) A B� = A B�

A B� = {x |x � A � B}

= {x |x � A or x � B}

= {x |x � A or x � B }

= {x |x � A � B }

= A B�
(vi) A B�  = A B�

� A B�  = A B�

WORKED EXAMPLES 5(A)

Example 5.1 Prove that (A – C) � (C – B) =  analytically, where A, B,

C are sets. Verify graphically

(A – C) � (C – B) = {x |x � A and x � C and x � C and x � B}

= {x |x � A and (x � C and x � C ) and x � B}

= {x | (x � A and x � ) and x � B}

= {x |x � A �  and x � B}

= {x |x �  and x � B}

= {x |x � � B}

x |x � }

= 

Let us now use Venn diagrams to verify the result.

Fig. 5.8

Fig. 5.7
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Example 5.2 If A, B and C are sets, prove, both analytically and

graphically, that A – (B � C) = (A – B) � (A – C).

A – (B � C) = {x |x � A and x � (B � C)}

= {x |x � A and (x � B or x � C)}

= {x |(x � A and x � B) or (x � A and x � C)}

= {x |x � (A – B) or x � (A – C)}

= {x |x � (A – B) � (A – C)}

= (A – B) � (A – C)

Fig. 5.9

Example 5.3 If A, B and C are sets, prove, both analytically and

graphically, that A � (B – C) = (A � B) – (A � C).

A � (B – C) = { x |x � A and x � (B – C)}

= {x |x � A and (x � B and x � C)}

= {x |x � A and (x � B and x � C )}

= {x |x � (A � B � C )}

= A � B � C

Now (A � B) – (A � C) = {x |x � (A � B) and x � A C� }

= {x |x � (A � B) and x � ( A C� }, by De Morgan’s law

= {x |x � (A � B) and (x � A  or x � C )}

A C

= {x |x � (A � A � B) or x � (A � B � C )}

= {x |x �  or x(A � B � C )}

= {x |x � A � B � C }

= A � B � C

Hence the result.
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Example 5.4 If A, B and C are sets, prove that

( )A B C� � = ( )C B A� � , using set identities

L.S. = ( )A B C� � = ( )A B C� � , by De Morgan’s law

= ( )A B C� � , by De Morgan’s law

= ( )B C A� � , by Commutative law

= ( )C B A� � , by Commutative law

= R.S.

Example 5.5 If A, B and C are sets, prove algebraically that A � (B � C)

= (A � B) � (A � C).

A � (B � C) = {(x, y)|x � A and y � (B � C)}

= {(x, y)|x � A and (y � B and y � C)}

= {(x, y)|(x � A and y � B) and (x � A and y � C)}

= {(x, y)|(x, y) � A � B and (x, y) � A � C}

= {(x, y)|(x, y) � (A � B) � (A � C)}

= (A � B) � (A � C)

Example 5.6 If A, B, C and D are sets, prove algebraically that (A � B) �
(C � D) = (A � C) � (B � D). Give an example to support this result.

(A � B) � (C � D) = {(x, y)| x � (A � B) and y � (C � D)}

= {(x, y)|(x � A and x � B) and (y � C and y � D)}

= {(x, y)|(x � A and y � C) and (x � B and y � D)}

= {(x, y)|(x, y) � (A � C) and (x, y) � (B � D)}

= {(x, y)|(x, y) � (A � C) � (B � D)}

= (A � C) � (B � D)

Fig. 5.10
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Example Let A = {1, 2, 3], B = {2, 3, 4], C = {5, 6, 7} and D =  {6, 7, 8}.

Then A � B = {2, 3} and C � D = {6, 7}

� (A � B) � (C � D) = {(2, 6), (2, 7), (3, 6), (3, 7)}

Now A � C = {(1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7), (3, 5), (3, 6), (3, 7)}

B � D = {(2, 6), (2, 7), (2, 8), (3, 6), (3, 7), (3, 8), (4, 6), (4, 7), (4, 8)}

(A � C) � (B � D) = {(2, 6), (2, 7), (3, 6), (3, 7)}

Hence (A � B) � (C � D) = (A � C) � (B � D)

Example 5.7 Use Venn diagram to prove that � is an associative

operation, viz., (A � B) � C = A � (B � C).

Instead of shading or hatching the regions in the Venn diagram, let us label

the various regions as follows:

Fig. 5.11

Set A consists of the points in the regions labeled 1, 2, 3, 4; set B consists of

the points in the region labeled 2, 3, 5, 6; set  C consists of the points in the

region labeled 3, 4, 6, 7.

Now A � B = (A � B) – (A � B)

= {R1, R2, R3, R4, R5, R6} – {R2, R3},

where Ri represents the region labeled i

= {R1, R4, R5, R6}

(A � B) � C = {R1, R3, R4, R5, R6, R7} – {R4, R6}

= {R1, R3, R5, R7}

Now B � C = {R2, R3, R4, R5, R6, R7} – {R3, R6}

= {R2, R4, R5, R7}

A � (B � C) = {R1, R2, R3, R4, R5, R7} – {R2, R4}

= {R1, R3, R5, R7}

Hence (A � B) � C = A � (B � C)

Example 5.8 Use Venn diagram to prove that (A � B) � C = (A � C) �
(B � C), where A, B, C are sets.

Using the same assumptions about A, B, and C and the Fig. 5.11 in the

Example (8), we have A � B = {R1, R4, R5, R6}.
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(A � B) � C = {R1, R4, R5, R6} � {R3, R4, R6, R7}

= {R1 � R3, R1 � R4, …, R6 � R7}

A � C = {R1, R2, R3, R4} � {R3, R4, R6, R7]

= {R � R3, R1 � R4, …, R4 � R7}

B � C = {R2, R3, R5, R6} � {R3, R4, R6, R7}

It is easily verified that

(A � B) � C = (A � C) � (B � C)

= {(R1 � Ri), (R4 � Ri), (R5 � Ri), (R6 � Ri)}

where i = 3, 4, 6, 7

Example 5.9 Simplify the following sets, using set identities:

(a) A � B � (A � B � C )

(b) (A � B) � [B � ((C � D) � (C � D ))]

(a) A � B ��(A � B � C) = ( )A B� � [(A � B) � C], by De Morgan’s

law

= [ ( )A B� � (A� B)] � [ A B� � C ], by distributive law

= U � A B� ��� C , by inverse law

= A B� �� C , by identity law

= A �� B �� C , by De Morgan’s law

(b) (A � B) � [B � ((C � D) � (C � D ))]

= (A � B) � [B � {C �� (D � D )}], by distributive law

= (A � B) � [B � (C � U)], by inverse law

= (A � B) � [B � C], by identity law

= (B � A) � (B � C), by commutative law

= B � (A � C), by distributive law

Example 5.10 Write the dual of each of the following statements:

(a) A = ( B � A) � (A � B)

(b) (A � B) � ( A � B) � (A � B ) � ( A � B ) = U

(a) Recalling that the dual of any statement is obtained by replacing � by �
and � by �, the dual of the statement in (a) is got as

A = ( B � A) � (A � B), which can be easily seen to be a valid statement.

(b) The dual of the statement in (b) is

(A � B) � ( A � B) � (A � B ) � ( A � B ) = 

Example 5.11 For each of the following statements in which A, B, C

and D are arbitrary sets, either prove that it is true or give a counter example to

establish that it is false:

(a) A � C = B � C � A = B
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(b) A � C = B � C and A � C = B � C � A = B

(c) A – (B � C) = (A – B) � (A – C)

(d) (A � B) � (C � D) = (A � C) � (B � D)

(e) A � C = B � C � A = B

(f) A � (B � C) = (A � B) � (A � C)

(a) The statement is false, as in the following counter example:

Let A = {1}, B = {2} and C = {1, 2}

Now A � C = B � C = {1, 2}

But A � B

(b) A = {x |x � A}

= {x |x � A � C}

= {x |x � B � C} (given)

= {x |x � B or x � C}

= {x |x � B} or {x |x � C}

= {x |x � B} or {x |x � A and x � C}

= B or {x |x � A � C}

= B or{x |x � B � C} (given)

= B or {x |x � B and x � C}

= B or {x |x � B}

= B or B

= B

Hence the given statement is true.

(c) The statement is false, as in the following counter example:

Let A = {1, 2, 3, 4, 5}, B = {1, 2}, C = {3, 4}

Then B � C = {(1, 3), (1, 4), (2, 3), (2, 4)

� A – (B � C) = {1, 2, 3, 4, 5}

Now A – B = {3, 4, 5} and A – C = {1, 2, 5}

� (A – B) � (A – C) = {(3, 1), (3, 2), (3, 5), (4, 1), (4, 2), (4, 5), (5, 1),

(5, 2), (5, 5)}

Hence A – (B � C) � (A – B) � (A – C)

(d) The statement is false, as in the following counter example:

Let A = {1, 2}, B = {2, 3}, C = {4, 5), D = {5, 6}

Then A � B = {1, 2, 3}, C � D = {4, 5, 6}

� (A � B) � (C � D) = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4),

 (3, 5), (3, 6)}

Now A � C = {(1, 4), (1, 5), (2, 4), (2, 5)}

and B � D = {(2, 5), (2, 6), (3, 5), (3, 6)}

� (A � C) � (B � D) = {(1, 4), (1, 5), (2, 4), (2, 5), (2, 6), (3, 5), (3, 6)}

Thus (A � B) � (C � D) � (A � C) � (B � D)

(e) x � A and x � C � x � A � C, by definition of A � C

� x � B � C (given)

� x � B and x � C

� x � B (1)
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Also x � A and x � C� x � A � C

� x � B � C (given)

� x � B (2)

From (1) and (2), it follows that A � B

Similarly we can prove that B � A

Hence A = B

i.e., the given statement is true.

(f) The statement is false, as in the following counter example:

Let A = {1, 2, 3, 4}, B = {3, 4, 5, 6} and C = {2, 3, 5, 7}

B � C = {3, 5} and A � (B � C) = {1, 2, 5}

A � B = {1, 2,  5, 6} and A � C = {1, 4, 5, 7}

� (A � B) � (A � C) = {1, 5}

Hence A � (B � C) � (A � B) � (A � C)

Example 5.12 Find the sets A and B, if

(a) A – B = {1, 3, 7, 11}, B – A = {2, 6, 8} and A � B = {4, 9}

(b) A – B = {1, 2, 4}, B – A = {7, 8} and A � B = {1, 2, 4, 5, 7, 8, 9}

(a) From the Venn diagram, it is clear that

A = {1, 3, 4, 7, 9, 11}

and B = {2, 4, 6, 8, 9}

Fig. 5.12 Fig. 5.13

(b) From the Venn diagram, it is clear that

A = {1, 2, 4, 5, 9}s

and B = {5, 7, 8, 9}

EXERCISE 5(A)

Part (A): (Short answer questions)

1. Explain the roster notation and set builder notation of sets with examples.

2. Define null set and singleton set.

3. Define finite and infinite sets. What is cardinality of a set?

4. Define subset and proper subset. When are two sets said to be equal?

5. What is a power set? State the relation between the cardinalities of a

finite set and its power set.
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6. Define the cartesian product of two sets and give an example.

7. Define union and intersection of two sets. Give their Venn diagram

representation.

8. When are two sets said to be disjoint?

9. Define complement and relative complement of a set. Give examples.

10. Define the symmetric difference of two sets.

11. State the identity, domination, idempotent and inverse laws of set theory.

12. State the commutative, associative and distributive laws of set theory.

13. State De Morgan’s laws of set theory.

14. State the principle of duality in set theory. Give an example.

15. Given that U = {1, 2, 3, …, 9, 10}, A = {1, 2, 3, 4, 5}, B = {1, 2, 4, 8},

find each of the following ((a)–(l)):

(a) (A � B) � C (b) A � (B � C)

(c) C D� (d) C D�
(e) (A � B) – C (f) A � (B – C)

(g) (B – C) – D (h) B – (C – D)

(i) (A � B) – (C � D) (j) (A – B) � (C – D)

(k) A � (B � C) (l) A � (B � C)

16. Prove the following analytically or graphically:

(a) A – B = A � B (b) A – (A � B) = A – B

(c) (A � B) � (A � B ) = A (d) A � (A � B) = A

(e) (A � B) � (A � ) = A (f) (A � B) � (B – A) = B

(g) ( )A B�  = A � B (h) A � (B – A) = 

(i) A – B = B A� (j) (A – B) � (A � B) = A

(k) (A – B) � (B – A) = 

(l) (A – B) � (B – A) = (A � B) – (A � B)

(m) A � B = (A � B) – (A � B) (n) A � B = (A – B) � (B – A)

(o) (A � B) � A � (A � B) (p) (A � B) � B � (A � B)

Part B

17. Prove the following statements analytically, where A, B and C are sets.

Verify them graphically also.

(a) A � B = (A � B) � (A � B ) � ( A � B)

(b) (A � B) – C = (A – C) � (B – C)

(c) A – (B � C) = (A – B) � (A – C)

(d) (B � C) – A = (B – A) � (C – A)

(e) (A – B) – C = A – (B � C)

(f) (A – B) – C = (A – C) – (B – C)

(g) A � (B – C) = (A � B) – (A � C)

(h) A B�  = A � B = A � B

(i) A � (B � C) = (A � B) � (A � C)

(j) (A � C) � (B � C) and (A � C ) � (B � C ) � A � B.
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18. For each of the following statements in which A, B, C and D are arbitrary

sets, either prove that it is true or give a counter example to show that it is

false.

(a) A � C = B � C � A = B

(b) A � B = A � C and A � B = A � C � B = C

(c) (A – C) = (B – C) � A = B

(d) A � C = B � C and A – C = B – C � A = B

(e) A � C = B � C and A– C = B – C � A = B

(f) A � (B � C) = (A � B) � (A � C)

(g) A � (B � C) = (A � B) � (A � C)

(h) (A � B) � C = (A � C) � (B � C)

(i) (A – B) � C = (A � C) – (B � C)

(j) (A – B) � (C – D) = (A � C) – (B � D)

(k) A � (B � C) = (A � B) � C

(l) (A � B) � C = (A � C) � (B � C)

19. Simplify the following set expressions, using set identities:

(a) ( ) ( ) ( )A B A C B C� � � � �
(b) (A � B) � (A � B � C � D) � ( A � B)

(c) (A – B) � (A � B)

20. Write the dual of each of the following statements:

(a) (A � B) � (A � ) = A

(b) A � B = (A � B) � (A � B ) � ( A � B)

(c) ( ) ( ) ( )A B C A C A B� � � � � � .

RELATIONS

Introduction

A relation can be thought of as a structure (for example, a table) that represents

the relationship of elements of a set to the elements of another set. We come

across many situations where relationships between elements of sets, such as

those between roll numbers of students in a class and their names, industries

and their telephone numbers, employees in an organization and their salaries

occur. Relations can be used to solve problems such as producing a useful way

to store information in computer databases.

The simplest way to express a relationship between elements of two sets is

to use ordered pairs consisting of two related elements. Due to this reason, sets

of ordered pairs are called binary relations. In this section, we introduce the

basic terminology used to describe binary relations, discuss the mathematics of

relations defined on sets and explore the various properties of relations.

Definition

When A and B are sets, a subset R of the Cartesian product A � B is called a

binary relation from A to B. viz., If R is a binary relation from A to B, R is a set

of ordered pairs (a, b), where a � A and b � B. When (a, b) � R, we use the



Set Theory 283

notation a R b and read it as “a is related to b by R”. If (a, b) � R, it is

denoted as a R b.

Mostly we will deal with relationships between the elements of two sets.

Hence the word ‘binary’ will be omitted hereafter.

If R is a relation from a set A to itself, viz., if R is a subset of A � A, then R

is called a relation on the set A.

The set {a � A|a R b, for some b � B} is called the domain of R and

denoted by D(R).

The set {b � B|a R b, for some a � A} is called the range of R and denoted

by R(R).

Examples

1. Let A = {0, 1, 2, 3, 4}, B = {0, 1, 2, 3} and a R b if and only if a + b = 4.

Then R = {(1, 3), (2, 2), (3, 1), (4, 0)}

The domain of R = {1, 2, 3, 4} and the image of R = {0, 1, 2, 3}

Then R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4),

(4, 4)}

The domain and range of R are both equal to A.

TYPES OF RELATIONS

A relation R on a set A is called a universal relation, if R = A � A.

For example if A = {1, 2, 3}, then R = A � A = {(1, 1), (1, 2), (1, 3), (2, 1),

(2, 2), (2, 3), (3, 1), (3, 2), (3, 3)} is the universal relation on A.

A relation R on a set A is called a void relation, if R is the null set . For

example if A = {3, 4, 5} and R is defined as a R b if and only if a + b > 10,

then R is a null set, since no element in A � A satisfies the given condition.

The entire Cartesian product A � A and the empty set are subsets of A � A.

A relation R on a set A is called an identity relation, if R = {(a, a)|a � A}and

is denoted by IA.

For example, if A = {1, 2, 3}, then R = {(1, 1), (2, 2), (3, 3)} is the identity

relation on A.

When R is any relation from a set A to a set B, the inverse of R, denoted by

R–1, is the relation from B to A which consists of those ordered pairs got by

interchanging the elements of the ordered pairs in R.

viz., R–1 = {(b, a)|(a, b) � R}

viz., if a R b, then b R–1 a.

For example, if A = {2, 3, 5}, B = {6, 8, 10} and a R b if and only if a � A

divides b � B, then R = {(2, 6), (2, 8), (2, 10), (3, 6), (5, 10)}

Now R–1 = {(6, 2), (8, 2), (10, 2), (6, 3), (10, 5)}

We note that b R–1 a, if and only if b � B is a multiple of a � A. Also we note

that

D(R) = R(R–1) = {2, 3, 5} and

R(R) = D(R–1) = {6, 8, 10}

Note

Note
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Note

SOME OPERATIONS ON RELATIONS

As binary relations are sets of ordered pairs, all set operations can be done on

relations. The resulting sets are ordered pairs and hence are relations.

If R and S denote two relations, the intersection of R and S denoted by

R � S, is defined by

a (R � S)b = a R b � a S b

and the union of R and S, denoted by R � S, is defined by a (R � S) b = a R b

� a S b.

� a S b.

The complement of R, denoted by R� or ~R is defined by a(R�)b = a R b.

For example, let A = {x, y, z}, B = {1, 2, 3}, C = {x, y} and D = {2, 3}. Let R

be a relation from A to B defined by R = {(x, 1), (x, 2), (y, 3)} and let S be a

relation from C to D defined by S = {(x, 2), (y, 3)}.

Then R � S = {(x, 2), (y, 3)} and R � S = R.

R – S = {(x, 1)}

R� = {(x, 3), (y, 1), (y, 2), (z, 1), (z, 2), (z, 3)}

COMPOSITION OF RELATIONS

If R is a relation from set A to set B and S is a relation from set B to set C, viz.,

R is a subset of A � B and S is a subset of B � C, then the composition of R

and S, denoted by R � S, [some authors use the notation S � R instead of R � S]

is defined by

a(R � S) c, if for some b � B, we have a R b and b R c.

1. For the relation R � S, the domain is a subset of A and the range is a

subset of C.

2. R � S is empty, if the intersection of the range of R and the domain of S is empty.

3. If R is a relation on a set A, then R � R, the composition of R with itself is always

defined and sometimes denoted as R2.

For example, let R = {(1, 1), (1, 3), (3, 2), (3, 4), (4, 2)} and S = {(2, 1),

(3, 3), (3, 4), (4, 1)}.

Any member (ordered pair) of R � S can be obtained only if the second

element in the ordered pair of R agrees with the first element in the ordered

pair of S.

Thus (1, 1) cannot combine with any member of S.

(1, 3) of R can combine with (3, 3) and (3, 4) of S producing the members

(1, 3) and (1, 4) respectively of R � S. Similarly the other members of R � S are

obtained.

Thus R � S = {(1, 3), (1, 4), (3, 1), (4, 1)}

Similarly, S � R = {(2, 1), (2,  3), (3, 2), (3, 4), (4, 1), (4, 3)}

R � R = {(1, 1), (1, 3), (1, 2), (1, 4), (3, 2)}

S � S = {(3, 3), (3, 4), (3, 1)}
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(R � S) � R = {(1, 2), (1, 4), (3, 1), (3, 3), (4, 1), (4, 3)}

R � (S � R) = {(1, 2), (1, 4), (3, 1), (3, 3), (4, 1), (4, 3)}

R3 = R � R � R = (R � R) � R = R � (R � R)

= {(1, 1), (1, 3), (1, 2), (1, 4)}

PROPERTIES OF RELATIONS

(i) A relation R on a set A is said to be reflexive, if a R a for every a � A,

viz., if (a, a) � R for every a � A.

For example, if R is the relation on A = {1, 2, 3} defined by (a, b) � R if

a � b, where a, b � A, then R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}.

Now R is reflexive, since each of the elements of A is related to itself, as

(1, 1), (2, 2) and (3, 3) are members in R.

A relation R on a set A is irreflexive, if, for every a � A, (a, a) � R.

viz., if there is no a � A such that a R a.

For example, R, {(1, 2), (2, 3), (1, 3)} in the above example is irreflexive.

(ii) A relation R on a set A is said to be symmetric, if whenever a R b then

b R a, viz., if whenever (a, b) � R then (b, a) also � R.

Thus a relation R on A is not symmetric if there exist a, b � A such that

(a, b) � R, but (b, a) � R.

(iii) A relation R on a set A is said to be antisymmetric, whenever (a, b) and

(b, a) � R then a = b. If there exist a, b � A such that (a, b) and (b, a) �
R, but a � b, then R is not antisymmetric.

For example, the relation of perpendicularity on a set of lines in the plane

is symmetric, since if a line a is perpendicular to the line b, then b is

perpendicular to a.

The relation � on the set Z of integers is not symmetric, since, for example,

4 � 5, but 5 �  4.

The relation of divisibility on N is antisymmetric, since whenever m is

divisible by n and n is divisible by m then m = n.

Symmetry and antisymmetry are not negative of each other. For

example, the relation R =  {(1, 3), (3, 1), (2, 3)} is neither symmetric

nor antisymmetric, whereas the relation S  = {(1, 1), (2, 2)} is both symmetric

and antisymmetric.

(iv) A relation R on a set A is said to be transitive, if whenever a R b and b R

c then a R c. viz., if whenever (a, b) and (b, c) � R then (a, c ) � R.

Thus if there exist a, b, c � A such that (a, b) and (b, c) � R but (a, c) �
R, then R is not transitive.

For example, the relation of set inclusion on a collection of sets is transitive,

since if A � B and B � C, A � C.

(v) A relation R on a set A is called an equivalence relation, if R is reflexive,

symmetric and transitive.

viz., R is an equivalence relation on a set A, if it has the following three

properties:

1. a R a, for every a � A

Note

Note
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2. If a R b, then b R a

3. If a R b and b R c, then a R c

For example, the relation of similarity with respect to a set of triangles T

is an equivalence relation, since if T1, T2, T3 are elements of the set T,

then

T1 ||| T1, i.e., T1 R T1 for every T1 � T,

T1 ||| T2 implies T2 ||| T1 and

T1 ||| T2 and T2 ||| T3 simplify T1 ||| T3

viz., the relation of similarity of triangles is reflexive, symmetric and

transitive.

(vi) A relation R on a set A is called a partial ordering or partial order

relation, if R is reflexive, antisymmetric and transitive.

viz., R is a partial order relation on A if it has the following three properties:

(a) a R a, for every a � A

(b) a R b and b R a � a = b

(c) a R b and b R c � a R c

A set A together with a partial order relation R is called a partially

ordered set or poset. For example, the greater than or equal to (�) relation

is a partial ordering on the set of integers Z, since

(a) a � a for every integer a, i.e. � is reflexive

(b) a � b and b � a � a = b, i.e. � is antisymmetric

(c) a � b and b� c � a � c, i.e. � is transitive

Thus (Z, �) is a poset.

EQUIVALENCE CLASSES

Definition
If R is an equivalence relation on a set A, the set of all elements of A that are

related to an element a of A is called the equivalence class of a and denoted by

[a]R.

When there is no ambiguity regarding the relation, viz., when we deal with

only one relation, the equivalence class of a is denoted by just [a].

In other words, the equivalence class of a under the relation R is defined as

[a] = {x|(a, x) � R}

Any element b � [a] is called a representative of the equivalence class [a].

The collection of all equivalence classes of elements of A under an 

viz. A/R = {[a]|a � A}

For example, the relation R on the set A = {1, 2, 3} defined by R = {(1, 1),

(1, 2), (2, 1), (2, 2), (3, 3)} is an equivalence relation, since R is reflexive

symmetric and transitive.

Now [1] = {1, 2}, [2] = {1, 2} and [3] = {3}

Thus [1], [2] and [3] are the equivalence classes of A under R and hence form

A/R.
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Theorem
If R is an equivalence relation on non-empty set A and if a and b � A are

arbitrary, then

(i) a � [a], for every a � A

(ii) [a] = [b a, b) � R

(iii) If [a] � [b] � , then [a] = [b]

Proof:

(i) Since R is reflexive, (a, a) � R for every a � A.

Hence a � [a]

(ii) Let us assume that (a, b) � R or a R b (1)

Let x � [b]. Then (b, x) � R or b R x (2)

From (1) and (2), it follows that a R x or (a, x) � R  (� R is transitive)

� x � [a]

Thus x � [b] � x � [a] � [b] � [a] (3)

Let y � [a]. Then a R y (4)

From (1), we have b R a, since R is symmetric. (5)

From (5) and (4), we get b R y, since R is transitive.

� y � [b]

Thus y � [a] � y � [b] � [a] � [b] (6)

From (3) and (6), we get [a] =  [b]

Conversely, let [a]  = [b]

Now b � [b] by (i)

i.e., b � [a] � a, b) � R

(iii) Since [a] � [b] � , there exists an element x � A such that x � [a] � [b]

Hence x � [a] and x � [b]

i.e., x R a and x R b

or a R x and x R b

� a R b, since R is transitive

Hence, by (ii), [a] = [b]

Equivalently, if [a] � [b], then [a] � [b] = .

From (ii) and (iii) of the above theorem, it follows that the equivalence

classes of two arbitrary elements under R are identical or disjoint.)

PARTITION OF A SET

Definition
If S is a non empty set, a collection of disjoint non empty subsets of S whose

union is S is called a partition of S. In other words, the collection of subsets Ai

S if and only if

(i) Ai � i

(ii) Ai � Aj = , for i � j and

(iii) �
i

Ai = S, where �
i

Ai represents the union of the subsets Ai for all i.

The subsets in a partition are also called blocks of the partition.

For example, if S = {1, 2, 3, 4, 5, 6}

(i) [{1, 3, 5}, {2, 4}] is not a partition, since the union of the subsets is not

S, as the element 6 is missing.

Note

Note
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(ii) [{1, 3}, {3, 5}, {2, 4, 6}] is not a partition, since {1, 3} and {3, 5} are not

disjoint.

(iii) [{1, 2, 3}, {4, 5}, {6}] is a partition.

PARTITIONING OF A SET INDUCED BY AN
EQUIVALENCE RELATION

Let R be an equivalence relation of a non-empty set A.

Let A1, A2, …, Ak be the distinct equivalence classes of A under R.

For every a � Ai, a � [a]R, by the above theorem.

� Ai = [a]R

� [ ]
i

R
a A

a
�
� = �

i

Ai = A

Also by the above theorem, when [a]R � [b]R, then

[a]R � [b]R = . viz., Ai � Aj = , if [a]R = Ai and [b]R = Aj

� The equivalence classes of A form a partition of A.

In other words, the quotient set A/R is a partition of A.

For example, let A � {blue, brown, green, orange, pink, red, white, yellow} and

R be the equivalence relation of A defined by “has the same number of letters”,

then

A/R = [{red}, {blue, pink}, {brown, green, white}, {orange, yellow}]

The equivalence classes contained in A/R form a partition of A.

MATRIX REPRESENTATION OF A RELATION

If R is a relation from the set A = {a1, a2, …, am} to the set B = {b1, b2, …, bn},

where the elements of A and B are assumed to be in a specific order, the

relation R can be represented by the matrix

MR = [mij], where

mij = 
1, if ( , )

0, if ( , ) .
i j

i j

a b R

a b R

��
� ��

In other words, the zero-one matrix MR has a 1 in its (i – j)th position when ai

is related to bj and a 0 in this position when ai is not related by bj.

For example, if A = [a1, a2, a3} and B = {b1, b2, b3, b4} and R = {(a1, b2),

(a2, b1), (a2, b3), (a2, b4), (a3, b2), (a3, b4)}, then the matrix of R is given by

MR = 

0 1 0 0

1 0 1 1

0 1 0 1

� �
� �
� �
� �� �

Conversely, if R is the relation on A = {1, 3, 4} represented by

MR = 

1 1 0

0 1 0

0 0 1

� �
� �
� �
� �� �
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then R = {(1, 1), (1, 3), (3, 3), (4, 4)}, since mij = 1 means that the ith element

of A is related to the jth element of A.

1. If R and S are relations on a set A, represented by MR and MS respectively,

then the matrix representing R � S is the join of MR and MS obtained by

putting 1 in the positions where either MR or MS has a 1 and denoted by

MR � MS i.e., MR � S = MR � MS.

2. The matrix representing R � S is the meet of MR and MS obtained by

putting 1 in the positions where both MR and MS have a 1 and denoted by

MR � MS i.e., MR�S = MR � MS.

The operations ‘join’ and ‘meet’, denoted by � and � respectively

are Boolean operations which will be discussed later in the topic on

Boolean Algebra.

For example, if R and S are relations on a set A represented by the

matrices

MR = 

1 0 1

0 1 1

1 0 0

� �
� �
� �
� �� �

and MS = 

1 0 1

1 0 0

0 1 0

� �
� �
� �
� �� �

 respectively,

then MR � S = MR � MS

= 

1 1 0 0 1 1 1 0 1

0 1 1 0 1 0 1 1 1

1 0 0 1 0 0 1 1 0

� � �� � � �
� � � �� � � �� � � �
� � � �� � �� � � �

and MR � S = MR � MS

= 

1 1 0 0 1 1 1 0 1

0 1 1 0 1 0 0 0 0

1 0 0 1 0 0 0 0 0

� � �� � � �
� � � �� � � �� � � �
� � � �� � �� � � �

3. If R is a relation from a set A to a set B represented by MR, then the

matrix representing R–1 (the inverse of R) is T
RM , the transpose of MR.

For example, if A = {2, 4, 6, 8} and B = {3, 5, 7} and if R is defined by

{(2, 3), (2, 5), (4, 5), (4, 7), (6, 3), (6, 7), (8, 7)}, then

MR = 

1 1 0

0 1 1

1 0 1

0 0 1

� �
� �
� �
� �
� �
� �� �

R–1 is defined by {(3, 2), (5, 2), (5, 4), (7, 4), (3, 6), (7, 6), (7, 8)

Now 1

1 0 1 0

1 1 0 0 .

0 1 1 1

T
RR

M M�

� �
� �� �� �
� �� �

Note



290 Discrete Mathematics

4. If R is a relation from A to B and S is a relation from B to C, then the

composition of the relations R and S (if defined), viz., R � S is represented

by the Boolean product of the matrices MR and MS, denoted by MR � MS.

operation 
For example, the matrix representing R � S

where MR = 

0 1 0

1 1 1

1 0 0

� �
� �
� �
� �� �

and MS = 

0 1 0

0 1 1

1 1 1

� �
� �
� �
� �� �

MR � S = MR � MS = 

0 0 0 0 1 0 0 1 0

0 0 1 1 1 1 0 1 1

0 0 0 1 0 0 0 0 0

� � � � � �� �
� �� � � � � �� �
� �� � � � � �� �

= 

0 1 1

1 1 1

0 1 0

� �
� �
� �
� �� �

5. Since the relation R on the set A = {a1, a2, …, an} is reflexive if and only if

(ai, ai) � R for i = 1, 2, …, n, mii = 1 for i = 1, 2, …, n. In other words,

R is reflexive if all the elements in the principal diagonal of MR are equal

to 1.

6. Since the relation R on the set A = {a2, a2, …, an} is symmetric if and

only if (aj, ai) � R whenever (ai, aj) � R, we will have mji = 1 whenever

mij = 1 (or equivalently mji = 0 whenever mij= 0). In other words, R is

symmetric if and only if mij = mji, for all pairs of integers i and j (i, j = 1,

2, …, n). This means that R is symmetric, if MR = (MR)T, viz., MR is a

symmetric matrix.

The matrix of an antisymmetric relation has the property that if mij =

1 (i � j), then mji= 0.

7. There is no simple way to test whether a relation R on a set A is transitive

by examining the matrix MR. However, we can easily verify that a relation

R is transitive if and only if Rn � R for n � 1.

REPRESENTATION OF RELATIONS BY GRAPHS

Let R be a relation on a set A. To represent R graphically, each element of A is

represented by a point. These points are called nodes or vertices. Whenever the

element a is related to the element b, an arc is drawn from the point ‘a’ to the

point ‘b’. These arcs are called arcs or edges. The arcs start from the first

element of the related pair and go to the second element. The direction is

indicated by an arrow. The resulting diagram is called the directed graph or

digraph of R.

Note

Note
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The edge of the form (a, a), represented by using an

arc from the vertex a back to itself, is called a loop.

if a divides b, then

R = (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)}

The digraph representing the relation R is given in

Fig. 5.14.

The digraph of R–1, the inverse of R, has exactly the

same edges of the digraph of R, but the directions of

the edges are reversed.

The digraph representing a relation can be used to determine whether the

relation has the standard properties explained as follows:

(i) A relation R is reflexive if and only if there is a loop at every vertex of

the digraph of the relation R, so that every ordered pair of the form (a, a)

occurs in R. If no vertex has a loop, then R is irreflexive.

(ii) A relation R is symmetric if and only if for every edge between distinct

vertices in its digraph there is an edge in the opposite direction, so that

(b, a) is in R whenever (a, b) is in R.

(iii) A relation R is antisymmetric if and only if there are never two edges in

opposite directions between distinct vertices.

(iv) A relation R is transitive if and only if whenever there is an edge from a

vertex a to a vertex b and from the vertex b to a vertex c, there is an edge

from a to c.

HASSE DIAGRAMS FOR PARTIAL ORDERINGS

The simplified form of the digraph of a partial ordering on a finite set that

contains sufficient information about the partial ordering is called a Hasse

diagram, named after the twentieth-century mathematician Helmut Haasse.

The simplification of the digraph as a Hasse diagram is achieved in three

ways:

(i) Since the partial ordering is a reflexive relation, its digraph has loops at

all vertices. We need not show these loops since they must be present.

(ii) Since the partial ordering is transitive, we need not show those edges that

must be present due to transitivity. For example, if (1, 2) and (2, 3) are

edges in the digraph of a partial ordering, (1, 3) will also be an edge due

to transitivity. This edge (1, 3) need not be shown in the corresponding

Hasse diagram.

(iii) If we assume that all edges are directed upward, we need not show the

directions of the edges.

Thus the Hasse diagram representing a partial ordering can be obtained

from its digraph, by removing all the loops, by removing all edges that are

present due to transitivity and by drawing each edge without arrow so that its

initial vertex is below its terminal vertex.

Fig. 5.14

Note
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For example, let us construct the Hasse diagram for the partial ordering

{(a, b)| a � b} on the set {1, 2, 3, 4} starting from its digraph. (Fig. 5.15)

Fig. 5.15

TERMINOLOGY RELATED TO POSETS

We have already defined poset as a set S together with a partial order relation

R. In a poset the notation a � b (or equivalently a b) denotes that (a, b) � R.

a � b is read as “a precedes b” or “b succeeds a”.

Definitions
When {P, �} is a poset, an element a � P is called a maximal member of P, if

there is no element b � P such that a < b (viz., a strictly precedes b).

Similarly, an element a � P is called a minimal member of P, if there is no

element b � P such that b < a.

If there exists an element a � P such that b � a for all b � P, then a is called

the greatest member of the poset {P, �}.

Similarly if there exists an element a � P such that a � b for all b � P, then

a is called the least member of the poset {P, �}.
1. The maximal, minimal, the greatest and least members of a poset can be

easily identified using the Hasse diagram of the poset. They are the top

and bottom elements in the diagram.

2. A poset can have more than one maximal member and more than one minimal

member, whereas the greatest and least members, when they exist, are unique.

For example, let us consider the Hasse diagrams of four posets given in

Fig. 5.16.

For the poset with Hasse diagram (b), a and b are minimal elements and d is

the greatest element (also the only maximal element). There is no least element.

For the poset with Hasse diagram (c), a is the least element (also the only

minimal element) and c and d are maximal elements. There is no greatest

element.

Note
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Fig. 5.16

For the poset with Hasse diagram (d), a is the least element and d is the

greatest element.

Definitions
When A is a subset of a poset  {P, �} and if u is an element of P such that a �
u for all elements a � A, then u is called an upper bound of A. Similarly if l is

an element of P such that l � a for all elements a � A, then l is called a lower

bound of A.
The upper and lower bounds of a subset of a poset are not necessarily

unique.

The element x is called the least upper bound (LUB) or supremum of the

subset A of a poset {P, �}, if x is an upper bound that is less than every other

upper bound of A.

Note

Note

Fig. 5.17

Note

Similarly the element y is called the greatest lower bound

(GLB) or infimum of the subset A of a poset {P, �}, if y is

a lower bound that is greater than every other lower bound

of A.

The LUB and GLB of a subset of a poset, if they exist,

are unique.

For example, let us consider the poset with the Hasse dia-

gram given in Fig. 5.17.

The upper bounds of the subset {a, b, c} are e and f.

[Note: d is not an upper bound, since c is not related to d]

and LUB of {a, b, c} is e.

The lower bounds of the subset {d, e} are a and b and GLB of {d, e} is b.
c is not a lower bound, since c is not related to d.

WORKED EXAMPLES 5(B)

Example 5.1 List the ordered pairs in the relation R from A = {0, 1, 2, 3,

4} to B = {0, 1, 2, 3} where (a, b) � R if and only if (i) a = b, (ii) a + b = 4,

(iii) a > b, (iv) a|b (viz., a divides b), (v) gcd(a, b) = 1 and (vi) lcm (a, b) = 2.

(i) Since a � A and b � B and a R b when a = b, R = {(0, 0), (1, 1), (2, 2),

(3, 3)}.

(ii) Since a R b if and only if a + b = 4, R = {(1, 3), (2, 2), (3, 1), (4, 0)}.

(iii) Since a R b, if and only if a > b, R = {(1, 0), (2, 0), (2, 1), (3, 0), (3, 1),

(3, 2), (4, 0), (4, 1), (4, 2), (4, 3)}.
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(iv) Since a R b, if and only if a|b, R = {(1, 0), (1, 1), (1, 2), (1, 3), (2, 0),

(2, 2), (3, 0), (3, 3), (4, 0)}.

0

0
 is indeterminate and so 0 does not divide 0.

(v) Since a R b, if and only if gcd (a, b) = 1, R = {(0, 1), (1, 0), (1, 1), (1, 2),

(1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (4, 1), (4, 3)}.

(vi) Since a R b, if and only if lcm (a, b) = 2, R = {(1, 2), (2, 1), (2, 2)}.

Example 5.2 The relation R on the set A = {1, 2, 3, 4, 5} is defined by

the rule (a, b) � R, if 3 divides a – b.

(i) List the elements of R and R –1,

(ii) Find the domain and range of R.

(iii) Find the domain and range of R–1.

(iv) List the elements of the complement of R.

The Cartesian product A � A consists of {(1, 1), (1, 2), (1, 3), (1, 4),

(1, 5), (2, 1), (2, 2), …, (2, 5), (3, 1), (3, 2) …, (3, 5), (4, 1), (4, 2), …,

(4, 5), (5, 1), (5, 2), …, (5, 5)}

(i) Since (a, b) � R, if 3 divides (a – b), R = {(1, 1), (1, 4), (2, 2), (2, 5),

(3, 3), (4, 1), (4, 4), (5, 2), (5, 5)}

R–1 (the inverse of R) = {(1, 1), (4, 1), (2, 2), (5, 2), (3, 3), (1, 4), (4, 4),

(2, 5), (5, 5)}

We note that R–1 = R

(ii) Domain of R = Range of R = {1, 2, 3, 4, 5}

(iii) Domain of R–1 = Range of R–1 = {1, 2, 3, 4, 5}

(iv) R� (the complement of R) = the elements of A � A, that are not in R =

{(1, 2), (1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (3, 5),

(4, 2), (4, 3), (4, 5), (5, 1), (5, 3), (5, 4)}

Example 5.3 If R = {(1, 2), (2, 4), (3, 3)} and S = {(1, 3), (2, 4), (4, 2)},

find (i) R � S, (ii) R � S, (iii) R – S, (iv) S – R, (v) R � S. Also verify that dom

(R � S) = dom(R) � dom (S) and range (R� S) � range (R) � range (S).

(i) R � S = {(1, 2), (1, 3), (2, 4), (3, 3), (4, 2)}

(ii) R � S = {(2, 4)}

(iii) R – S = {(1, 2), (3, 3)}

(iv) S – R = {(1, 3), (4, 2)}

(v) R � S = (R � S) – (R � S)

= {(1, 2), (1, 3), (3, 3), (4, 2)}

dom (R) = {1, 2, 3}; dom (S) = {1, 2, 4}

Now dom (R) � dom (S) = {1, 2, 3, 4}

 = domain (R � S)

Range (R) = {2, 3, 4}; Range (S) = {2, 3, 4}

Range (R � S) = {4}

Clearly {4} � {2, 3, 4} � {2, 3, 4}

i.e., Range (R � S) � Range (R) � Range (S).

Example 5.4 R and S are “Congruent modulo 3” and “Congruent modulo

4” relations respectively on the set of integers. That is R = {(a, b)|a � b (mod 3)}

and S = {a, b)|a � b (mod 4)}.

Note
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Find (i) R � S, (ii) R � S, (iii) R – S, (iv) S – R, (v) R � S.

R = {(a, b), where (a – b) is a multiple of 3

i.e. a – b = …, –9, –6, –3, 0, 3, 6, 9, …

i.e. a – b = {…, –9, 3, 15, 27, 39, …}, {…, –6, 6, 18, 30, …}, {…, –3, 9,

21, 33, …}, {…, 0, 12, 24, 36, …}

i.e. a – b = 3 (mod 12) or 6 (mod 12) or 9 (mod 12) or 0 (mod 12) (1)

S = {(a, b)}, where (a – b) is a multiple of 4

i.e. a – b = …, –12, –8, –4, 0, 4, 8, 12, …

i.e. a – b = {…, –8, 4, 16, 28, …}, {…, –16, –4, 8, 20, …}, {…, –24,

–12, 0, 12, 24, …}

i.e. a – b = 4 (mod 12) or 8 (mod 12) or 0 (mod 12) (2)

� R � S = {(a, b)|a – b = 0 (mod 12), 3 (mod 12), 4 (mod 12), 6 (mod

12), 8 (mod 12) or 9 (mod 12)}

R � S = {(a, b)|a – b = 0 (mod 12), from (1) and (2)

R – S = {(a, b)|a – b = 3 (mod 12), 6 (mod 12) or 9 (mod 12)}

S – R = {(a, b)| a – b = 4 (mod 12) or 8 (mod 12)}

R � S = {(a, b)|a – b = 3 (mod 12), 4 (mod 12), 6 (mod 12), 8 (mod

12) or 9 (mod 12)}.

Example 5.5 If the relations R1, R2, …, R6 are defined on the set of real

numbers as given below,

R1 = {(a, b)|a > b}, R2 = {(a, b)|a � b},

R3 = {(a, b)|a < b}, R4 = {(a, b)|a � b},

R5 = {(a, b)|a = b}, R6 = {(a, b)|a � b},

find the following composite relations:

R1 � R2, R2 � R2, R1 � R4, R3 � R5, R5 � R3, R6 � R3, R6 � R4 and R6 � R6

(i) R1 � R2 = R1. For example, let (5, 3) � R1 and let (3, 1), (3, 2), (3, 3) � R2

Then R1 � R2 consists of (5, 1), (5, 2), (5, 3) which belong to R1

(ii) R2 � R2 = R2. For example, let (5, 5), (5, 3), (5, 2) � R2

Then R2 � R2 = {(5, 5), (5, 3), (5, 2)} = R2

(iii) R1 � R4 = R2 (the entire 2 dimensional vector space). For example, let R1

= {(5, 4), (5, 3)} and R4 = {(4, 4), (4, 6), (3,3), (3, 5)}

Then R1 � R4 = {(5, 4), (5, 6), (5, 3), (5, 5)}

Thus R1 � R4 = {(a, b)|a > b, a = b and a < b}

(iv) R3 � R5 = R3. For example, let R3 = {(3, 4), (2, 4), (2, 5)} and R5 = {(3, 3),

(4, 4), (5, 5)}

Then R3 � R5 = {(3, 4), (2, 4), (2, 5)} = R3

(v) R5 � R3 = R3. For example, let R5 = {(3, 3), (4, 4), (5, 5)} and R3 = {(3, 4),

(4, 6), (5, 7)}

Then R5 � R3 = {(3, 4), (4, 6), (5, 7)} = R3

(vi) R6 � R3 = R2. For exasmple, let R6 = {(1, 2), (4, 3), (5, 2)} and R3 =

{(2, 5), (3, 4), (2, 3)}

Then R6 � R3 = {(1, 5), (1, 3), (4, 4), (5, 5), (5, 3)}

Thus R6 � R3 = {(a, b)|a > b, a = b and a < b}
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(vii) R6 � R4 = R2. For example, let R6 = {(1, 2), (4, 3), (5, 2)} and R4 = {(2, 3),

(2, 5), (3, 3)}

Then R6 � R4 = {(1, 3), (1, 5), (4, 3), (5, 3), (5, 5)}� R2

(viii) R6 � R6 = R2. For example, let R6 = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4)}

Then R6 � R6 = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3)} � R2

Example 5.6 Determine whether the relation R on the set of all integers

is reflexive, symmetric, antisymmetric and/or transitive, where a R b if and

only if (i) a � b, (ii) ab � 0, (iii) ab � 1, (iv) a is a multiple of b, (v) a � b

(mod 7), (vi) |a – b| = 1, (vii) a = b2, (viii) a � b2.

(i) ‘a � a’ is not true. Hence R is not reflexive

a � b � b � a. � R is symmetric

a � b and b � c does not necessarily imply that a� c. � R is not transitive

Hence R is symmetric only.

(ii) a2 � 0. � R is reflexive.

ab � 0 � ba � 0. � R is symmetric.

Consider (2, 0) and (0, –3), that belong to R. But (2, –3) � R, as 2(–3) <

0. � R is not transitive.

� R is reflexive, symmetric and not transitive.

(iii) ‘a2 � 1’ need not be true, since a may be zero. � R is not reflexive.

ab � 1 � ba � 1 � R is symmetric.

ab � 1 and bc � 1 � all of a, b, c > 0 or < 0

If all of a, b, c > 0, least a = least b = least c = 1

� ac � 1
If all of a, b, c < 0, greatest a = greatest b = greatest c = –1

� ac � 1. Hence R is transitive.

� R is symmetric and transitive.

(iv) a is a multiple of a. � R is reflexive. If a is a multiple of b, b is not a

multiple of a in general. But if a is a multiple of b and b is a multiple of

a, then a = b.

� R is antisymmetric.

� R is transitive.

Thus R is reflexive, antisymmetric and transitive.

(v) (a – a) is a multiple of 7 � R is reflexive. When (a – b) is a multiple of 7,

(b – a) is also a multiple of 7. � R is symmetric.

When (a – b) and (b – c) are multiples of 7, (a – b) + (b – c) = (a – c) is

also a multiple of 7.

� R is transitive.

Hence R is reflexive, symmetric and transitive.

(vi) |a – a| � 1. � R is not reflexive

|a – b| = 1 � |b – a| = 1. � R is symmetric.

|a – b| = 1 � a – b = 1 or –1 (1)

|b – c| = 1 � b – c = 1 or –1 (2)



Set Theory 297

(1) + (2) gives a – c = ±2 or 0

i.e. |a – c| = 2 or 0

i.e. |a – c| � 1
Hence R is symmetric only.

(vii) ‘a = a2’ is not true for all integers.

� R is not reflexive.

a = b2 and b = a2, for a = b = 0 or 1

� R is antisymmetric.

a = b2 and b = c2 does not simply a = c2

� R is not transitive

Hence R is antisymmetric only.

(viii) ‘a � a2’ is not true for all integers.

� R is not reflexive.

a � b2 and b � a2 imply that a = b

� R is antisymmetric

When a � b2 and b � c2, a � c2

� R is transitive

Hence R is antisymmetric and transitive.

Example 5.7 Which of the following relations on {0, 1, 2, 3} are

equivalence relations? Find the properties of an equivalence relation that the

others lack.

(a) R1 = {(0, 0), (1, 1), (2, 2), (3, 3)}

(b) R2 = {(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)

(c) R3 = {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}

(d) R4 = {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

(e) R5 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3)}

(a) R1 is reflexive, symmetric and transitive.

� R1 is an equivalence relation.

(b) R2 is reflexive

R2 is symmetric, but not transitive, since (3, 2) and (2, 0) � R2, but (3, 0)

� R2

� R2 is not an equivalence relation.

(c) R3 is reflexive, symmetric and transitive. � R3 is an equivalence relation.

(d) R4 is reflexive and symmetric, but not transitive, since (1, 3) and (3, 2) �
R4, but (1, 2) � R4. � R4 is not an equivalence relation.

(e) R5 is reflexive, but not symmetric since (1, 2) � R, but (2, 1) � R.

Also R5 is not transitive, since (2, 0) and (0, 1) � R, but (2, 1) � R.

� R5 is not an equivalence relation.

Example 5.8 Show that the following relations are equivalence relations:

(i) R1 is the relation on the set of integers such that aR1b if and only if a = b

or a = –b.

(ii) R2 is the relation on the set of integers such that aR2b if and only if a � b

(mod m), where m is a positive integer > 1.

(iii) R3 is the relation on the set of real numbers such that aR3b if and only if

(a – b) is an integer.
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(i) a = a or a = –a, which is true for all integers.

� R1 is reflexive.

When a = b or a = –b, b = a or b = –a.

� R1 is symmetric

When a, b, c � 0, a = b and b = c, if aR1b and bR1c

� a = c, i.e., aRc

Similarly when a � 0, b � 0, c � 0, we have a = –b and b = c, if aR1b and

bR1c.

� a = –c. i.e., aR1c.

� R1 is transitive.

Hence R1 is an equivalence relation.

(ii) (a – a) is multiple of m

� a � a (mod m) i.e., R2 is reflexive.

When a – b is multiple of m, b – a is also a multiple of m.

i.e. a � b (mod m) � b � a (mod m)

� R2 is symmetric.

When (a – b) = k1m and b – c = k2m, we get a – c = (k1 + k2)m

(by addition)

� When a � b (mod m) and b � c (mod m), a � c (mod m)

� R2 is transitive.

Hence R2 is an equivalence relation.

(iii) (a – a) is an integer. � R3 is reflexive.

When (a – b) is an integer, (b – a) is an integer.

� R3 is symmetric.

When (a – b) and (b – c) are integers, clearly (a – c) is also an integer

(by addition)

� R3 is transitive.

Hence R3 is an equivalence relation.

Example 5.9
(i) If R is the relation on the set of ordered pairs of positive integers such

that (a, b), (c, d) � R whenever ad = bc, show that R is an equivalence

relation.

(ii) if R is the relation on the set of positive integers such that (a, b) � R if

and only if ab is a perfect square, show that R is an equivalence relation.

(i) (a, b) R (a, b), since ab = ba

� R is reflexive.

When (a, b) R (c, d), ad = bc i.e., cb = da

This means that (c, d) R (a, b)

� R is symmetric.

When (a, b) R (c, d), ad = bc (1)

When (c, d) R (e, f), cf = de (2)

(1) and (2) gives af = be (� c and d are > 0)

This means that (a, b) R (e, f)

� R is transitive

Hence R is an equivalence relation.
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(ii) (a, a) � R1, since a2 is a perfect square

� R is reflexive.

When ab is a perfect square, ba is also a perfect square.

i.e. aRb � bRa

� R is symmetric.

If, a R b, let ab = x2 (1)

If b R c, let bc = y2 (2)

(1) � (2) gives ab2c = x2y2

� ac = 

2
xy

b

� �
� �  = a present square.

� aRc. i.e. R is transitive.

Hence R is an equivalence relation.

Example 5.10
(i) If R is the relation on the set of positive integers such that (a, b) � R if

and only if a2 + b is even, prove that R is an equivalence relation.

(i) a2 + a = a(a + 1) = even, since a and (a + 1) are consecutive positive

integers.

� (a, a) � R

Hence R is reflexive.

When a2 + b is even, a and b must be both even or both odd.

In either case, b2 + a is even

� (a, b) � R implies (b, a) � R

Hence R is symmetric.

When a, b, c are even, a2 + b and b2 + c are even. Also a2 + c is even.

When a, b, c are odd, a2 + b and b2 + c are even. Also a2 + c is even.

Then (a, b) � R and (b, c) � R � (a, c) � R i.e., R is transitive.

� R is an equivalence relation.

(ii) 3a + 4a = 7a, when a is an integer.

� (a, a) � R. i.e., R is reflexive.

3b + 4a = 7a + 7b – (3a + 4b)

= 7(a + b) – 7n

= 7(a + b – n), where a + b – n is an integer

� (b, a) � R when (a, b) � R.

i.e. R is symmetric.

Let (a, b) and (b, c) � R.

i.e. let 3a + 4b = 7m (1)

and 3b + 4c = 7n (2)

(1) and (2) gives, 3a + 4c = 7(m + n – b), where m + n – b is an integer.

� (a, c) � R

i.e. R is transitive

� R is an equivalence relation.
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Example 5.11
(i) Prove that the relation � of set inclusion is a partial ordering on any

collection of sets.

(ii) If R is the relation on the set of integers such that (a, b) � R if and only if

b = am for some positive integer m, show that R is a partial ordering.

(i) (A, B) � R, if and only if A � B, where A and B are any two sets.

Now A � A � (A, A) � R. i.e. R is reflexive.

If A � B and B � A, then A = B.

i.e. R is antisymmetric.

If A � B and B � C, then A � C

i.e. (A, B) � R and (B, C) � R � (A, C) � R

� R is transitive

Hence R is a partial ordering.

(ii) a = a1 � (a, a) � R.

Let (a, b) � R and (b, a) � R

i.e. b = am and a = bn

where m and n are positive integers. (1)

� a = (am)n = amn.

This means that mn = 1 or a = 1 or a = –1

Case (1): If mn = 1, then m = 1 and n = 1

� a = b [from (1)]

Case (2): If a = 1, then, from (1), b = 1m = 1 = a

If b = 1, then, from (1), a = 1n = 1 = b

Either way, a = b.

Case (3): If a = –1, then b = –1

Thus in all the three cases, a = b.

� R is antisymmetric.

Let (a, b) � R and (b, c) � R

i.e. b = am and c = bn

� c = (am)n = amn

� (a, c) � R. i.e. R is transitive.

� R is a partial ordering.

Example 5.12
(i) If R is the equivalence relation on the set A = {1, 2, 3, 4, 5, 6} given

below, find the partition of A induced by R:

R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5), (6, 6)}

(ii) If R is the equivalence relation on the set A = {(–4, –20), (–3, –9), (–2,

–4), (–1, –11), (–1, –3), (1, 2), (1, 5), (2, 10), (2, 14), (3, 6), (4, 8),

(4, 12)}, where (a, b) R (c, d) if ad = bc, find the equivalent classes of R.

(i) The elements related to 1 are 1 and 2.

� [1]R = {1, 2}

Also [2]R = {1, 2}

The element related to 3 is 3 only

i.e. [3]R = {3}

The elements related to 4 are {4, 5}
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i.e. [4]R = {4, 5} = [5]R

The element related to 6 is 6 only

i.e. [6]R = {6}

� {1, 2}, {3}, {4, 5}, {6} is the partition induced by R.

(ii) The elements related to (–4, –20) are (1, 5) and (2, 10)

i.e. [(–4, –20)] = {(–4, –20), (1, 5), (2, 10)}

The elements related to (–3, –9) are (–1, –3) and (4, 12)

i.e. [(–3, –9)] = {(–3, –9), (–1, –3), (4, 12)}

The elements related to (–2, –4) are (–2, –4), (1, 2), (3, 6) and (4, 8)

i.e. [(–2, –4)] = {(–2, –4), (1, 2), (3, 6), (4, 8)}.

The element related to (–1, –11) is itself only.

The element related to (2, 14) is itself only.

� The partition induced by R consists of the cells

[(–4, –20)], [(–3, –9)], [(–2, –4)], [(–1, –11] and [(2, 14)].

Example 5.13
(i) If A = {1, 2, 3, 4} � {1, 2, 3, 4} and the relation R is defined on A by

(a, b) R (c, d) if a + b = c + d, verify that A is an equivalence relation on

A and also find the quotient set of A by R.

(ii) If the relation R on the set of integers Z is defined by a R b if a � b (mod

4), find the partition induced by R.

(i) A = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2),

(3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)}

If we take R � A, it can be verified that R is an equivalence relation.

The quotient set A/R is the collection of equivalence classes of R.

It is easily seen that

[(1, 1)] = {(1, 1)}

[(1, 2)] = {(1, 2), (2, 1)}

[(1, 3)] = {(1, 3), (2, 2), (3, 1)}

[(1, 4)] = {(1, 4), (2, 3), (3, 2), (4, 1)}

[(2, 4)] = {(2, 4), (3, 3), (4, 2)}

[(3, 4)] = {(3, 4), (4, 3)}

[(4, 4)] = {(4, 4)}

Thus [(1, 1)], [(1, 2)], [(1, 3)], [(1, 4)], [(2, 4)], [(3, 4)], [(4, 4)] form the

quotient set A/R.

(ii) The equivalence classes of R are the following:

[0]R = {�, –8, –4, 0, 4, 8, 12, �}

[1]R = {�, –7, –3, 1, 5, 9, 13, �}

[2]R = {�, –6, –2, 2, 6, 10, 14, �}

[3]R = {�, –5, –1, 3, 7, 11, 15, �}

Thus [0]R, [1]R, [2]R and [3]R form the partition of R.

These equivalence classes are also called the congruence classes

modulo 4 and also denoted [0]4, [1]4, [2]4 and [3]4.
Note
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Example 5.14 If R is the relation on A = {1, 2, 3} such that (a, b) � R, if

and only if a + b = even, find the relational matrix MR. Find also the relational

matrices R–1, R  and R2.

R = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)}

� MR = 

1 0 1

0 1 0

1 0 1

� �
� �
� �
� �� �

Now –1R
M = (MR)T = 

1 0 1

0 1 0

1 0 1

� �
� �
� �
� �� �

R  is the complement R that consists of elements of A � A that are not in R.

Thus R  = {(1, 2), (2, 1), (2, 3), (3, 2)}

� R
M  = 

0 1 0

1 0 1

0 1 0

� �
� �
� �
� �� �

, which is the same as the matrix obtained from MR by

changing 0’s to 1’s and 1’s to 0’s.

2R
M = MR � MR = 

1 0 1

0 1 0

1 0 1

� �
� �
� �
� �� �

�
1 0 1

0 1 0

1 0 1

� �
� �
� �
� �� �

= 

1 0 1 0 0 0 1 0 1

0 0 0 0 1 0 0 0 0

1 0 1 0 0 0 1 0 1

� � � � � �� �
� �� � � � � �� �
� �� � � � � �� �

= 

1 0 1

0 1 0

1 0 1

� �
� �
� �
� �� �

It can be found that R2 = R � R = R. Hence 2R
M  = MR

Example 5.15 If R and S be relations on a set A represented by the

matrices

MR = 

0 1 0

1 1 1

1 0 0

� �
� �
� �
� �� �

and MS = 

0 1 0

0 1 1

1 1 1

� �
� �
� �
� �� �

,
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find the matrices that represent

(a) R � S (b) R � S (c) R � S (d) S � R (e) R � S

(a) MR� S= MR � MS

= 

0 0 1 1 0 0

1 0 1 1 1 1

1 1 0 1 0 1

� � �� �
� �� � �� �
� �� � �� �

 = 

0 1 0

1 1 1

1 1 1

� �
� �
� �
� �� �

(b) MR�S = MR � MS

= 

0 0 1 1 0 0

1 0 1 1 1 1

1 1 0 1 0 1

� � �� �
� �� � �� �
� �� � �� �

 = 

0 1 0

0 1 1

1 0 0

� �
� �
� �
� �� �

(c) MR�S = MR � MS

= 

0 0 0 0 1 0 0 1 0

0 0 1 1 1 1 0 1 1

0 0 0 1 0 0 0 0 0

� � � � � �� �
� �� � � � � �� �
� �� � � � � �� �

 = 

0 1 1

1 1 1

0 1 0

� �
� �
� �
� �� �

(d) MS�R = MS � MR

= 

0 1 0 0 1 0 0 1 0

0 1 1 0 1 0 0 1 0

0 1 1 1 1 0 0 1 0

� � � � � �� �
� �� � � � � �� �
� �� � � � � �� �

 = 

1 1 1

1 1 1

1 1 1

� �
� �
� �
� �� �

(e) MR�S = MR�S – MR�S

= 

0 0 0

1 0 0

0 1 1

� �
� �
� �
� �� �

Example 5.16 Examine if the relation R represented by MR = 

1 0 1

0 1 0

1 0 1

� �
� �
� �
� �� �

is an equivalence relation, using the properties of MR.

Since all the elements in the main diagonal of MR and equals to 1 each, R is

a reflexive relation.

Since MR is a symmetric matrix, R is a symmetric relation.

2R
M  = MR � MR = 

1 0 1

0 1 0

1 0 1

� �
� �
� �
� �� �

 = MR
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viz. R2 � R

� R is a transitive relation.

Hence R is an equivalence relation.

Example 5.17 List the ordered pairs in the relation on {1, 2, 3, 4}

corresponding to the following matrix:

1 1 1 0

0 1 0 0

0 0 1 1

1 0 0 1

� �
� �
� �
� �
� �
� �� �

Also draw the directed graph representing this

relation. Use the graph to find if the relation is

reflexive, symmetric and/or transitive.

The ordered pairs in the given relation are {(1, 1),

(1, 2), (1, 3), (2, 2), (3, 3), (3, 4), (4, 1), (4, 4)}. The

directed graph representing the relation is given in

Fig. 5.18.

Since there is a loop at every vertex of the digraph,

the relation is reflexive. The relation is not symmetric.

Fig. 5.18

For example, there is an edge from 1 to 2, but there is no edge in the opposite

direction, i.e. from 2 to 1. The relation is not transitive. For example, though

there are edges from 1 to 3 and 3 to 4, there is no edge from 1 to 4.

Example 5.18 List the ordered pairs in the

relation represented by the digraph given in Fig. 5.19.

Also use the graph to prove that the relation is a

partial ordering. Also draw the directed graphs

representing R–1 and R .

The ordered pairs in the relation are {(a, a), (a, c),

(b, a), (b, b), (b, c), (c, c)}.

Since there is a loop at every vertex, the relation is

reflexive.

Though there are edges b – a, a – c and b – c, the

Fig. 5.19

edges a – b, c – a and c – b are not present in the digraph. Hence the relation is

antisymmetric.

When edges b – a and a – c are present in the digraph, the edge b – c is also

present (for example). Hence the relation is transitive.

Hence the relation is a partially ordering. The digraph of R–1 is got by

reversing the directions of the edges (Fig. 5.20). The digraph of R  contains

the edges (a, b), (c, a), and (c, b) as shown in Fig. 5.21.
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Example 5.19 Draw the digraph representing the partial ordering

{(a, b)} | a divides b} on the set {1, 2, 3, 4, 5, 6, 7, 8}. Reduce it to the Hasse

diagram representing the given partial ordering.

Fig. 5.20

Fig. 5.21

Fig. 5.22

Deleting all the loops at the vertices, deleting all the edges occurring due to

transitivity, arranging all the edges to point upward and deleting all arrows, we

get the corresponding Hasse diagram as given in Fig. 5.23.

Fig. 5.23
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Fig. 5.24

Example 5.20 Draw the Hasse

diagram representing the partial ordering

{(A, B)|(A � B)} on the power set P(S),

where S = {a, b, c}. Find the maximal,

minimal, greatest and least elements of the

poset.

Find also the upper bounds and LUB of

the subset ({a}, {b}, {c}) and the lower

bounds and GLB of the subset ({a, b},

{a, c}, {b, c}).

Here P(S) = ({ }, {a}, {b}, {c}, {a, b},

{a, c}, {b, c}, {a, b, c}.

By using the usual procedure (as in the

previous example), the Hasse diagram is

shown, as shown in Fig. 5.24.

The element {a, b, c} does not precede

The element { } does not succeed any element of the poset and hence is the

only minimal element.

All the elements of the poset are related to {a, b, c} and precede it. Hence

{a, b, c} is the greatest element of the poset.

All the elements of the poset are related to { } and succeed it. Hence { } is

the least element of the poset. The only upper bound of the subset ({a}, {b},

{c}) is {a, b, c} and hence the LUB of the subset.

{a, b} is not an upper bound of the subset, as it is not related to {c}.

Similarly {a, c} and {b, c

The only lower bound of the subset ({a, b}, {a, c}, {b, c}) is { } and hence

GLB of the given subset.

{a}, {b}, {c} are not lower bounds of the given subset.

EXERCISE 5(B)

Part A: (Short answer questions)

1. Define a binary relation from one set to another. Give an example.

2. Define a relation on a set and give an example.

3. If R is the relation from A = {1, 2, 3, 4} to B = {2, 3, 4, 5}, list the

elements in R, defined by aRb, if a and b are both odd. Write also the

domain and range of R.

4. Define universal and void relations with examples.

5. If R is a relation from A = {1, 2, 3} to B = {4, 5} given by R = {(1, 4),

(2, 4), (1, 5), (3, 5)}, find R–1 (the inverse of R) and R  (the complement

of R).

6. If R = {(1, 1), (2, 2), (3, 3)} and S = {(1, 1), (1, 2), (1, 3), (1, 4)} find

R � S.

Note

Note
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7. Define composition of relations with an example.

8. When is a relation said to be reflexive, symmetric, antisymmetric and

transitive?

9. Give an example of a relation that is both symmetric and antisymmetric.

10. Give an example of a relation that is neither symmetric nor antisymmetric.

11. Give an example of a relation that is reflexive and symmetric but not

transitive.

12. Give an example of relation that is reflexive and transitive but not

symmetric.

13. Give an example of a relation that is symmetric and transitive but not

reflexive.

14. Define an equivalence relation with an example.

15. Define a partial ordering with an example.

16. Define a poset and give an example.

17. Define equivalence class.

18. Define quotient set of a set under an equivalence relation.

19. Find the quotient set of {1, 2, 3} under the relation {(1, 1), (1, 2), (2, 1),

(2, 2), (3, 3)}.

20. Define partition of a set and give an example.

21. What do you mean by partitioning of a set induced by an equivalence

relation?

22. If R is a relation from A = {1, 2, 3} to B = {1, 2} such that aRb if a > b,

write down the matrix representation of R.

23. If the matrix representation of a relation R on {1, 2, 3, 4} is given by

MR = 

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

� �
� �
� �
� �
� �
� �� �

list the ordered pairs in the relation.

24. If the relations R and S on a set A are represented by the matrices

MR = 

1 0 1

1 0 0

0 1 0

� �
� �
� �
� �� �

 and MS = 

0 1 1

1 0 1

0 1 0

� �
� �
� �
� �� �

What are the matrices representing R � S and R � S?

25. Draw the directed graph representing the relation on {1, 2, 3, 4} given by

the ordered pairs {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.

26. Draw the directed graph representing the relation on {1, 2, 3, 4} whose

matrix representation is

1 1 0 1

1 0 1 0

0 1 1 1

1 0 1 1

� �
� �
� �
� �
� �
� �� �
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27. What is Hasse diagram? Draw the Hasse diagram for � relation on {0, 2,

5, 10, 11, 15}.

28. Define maximal and minimal members of a poset. Are they the same as

the greatest and least members of the poset?

29. Define the greatest and least members of a poset. Are they different from

the maximal and minimal members of the poset?

30. Define supremum and infimum of a subset of a poset.

Part B

31. Show that there are 
2

2n  relations on a set with n elements. List all

possible relations on the set {1, 2}.

Hint: When a set A has n elements, A � A has n2 elements and hence the

number of subsets of A � A = 
2

2n .

32. Which of the ordered pairs given by {1, 2, 3} � {1, 2, 3} belong to the

following relations?

(a) a R b iff a � b, (b) a R b iff a > b,

(c) a R b iff a = b, (d) a R b iff a = b + 1 and

(e) a R b iff a + b � 4.

33. If R is a relation on the set {1, 2, 3, 4, 5}, list the ordered pairs in R when

(a) aRb if 3 divides a – b, (b) aRb if a + b = 6, (c) aRb if a – b is even,

(d) aRb if lcm (a, b) is odd, (e) aRb if a2 = b.

34. If R is the relation on the set {1, 2, 3, 4, 5} defined by (a, b) � R if a + b

� 6,

(a) list the elements of R, R–1 and R .

(b) the domain and range of R and R–1.

(c) the domain and range of R .

35. If R1 = {(1, 2), (2, 3), (3, 4)} and R2 = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3),

(3, 1), (3, 2), (3, 3), (3, 4} be the relations from {1, 2, 3} to {1, 2, 3, 4}.

Find

(a) R1 � R2, (b) R1 � R2, (c) R1 – R2,

(d) R2 – R1, (e) R1 � R2.

36. If R ={(x, x2)} and S = {(x, 2x)}, where x is a non-negative integer, find

(a) R � S, (b) R � S, (c) R – S,

(d) S – R, (e) R � S.

37. If R1 and R2 are relations on the set of all positive integers defined by

R1 = {(a, b)|a divides b} and R2 = {(a, b)|a is a multiple of b}, find

(a) R1 � R2, (b) R1 � R2, (c) R1 – R2,

(d) R2 – R1 (e) R1 � R2.

38. If the relations R1, R2, R3, R4, R5 are defined on the set of real numbers as

given below,

R1 = {(a, b)|a � b}, R2 = {(a, b)|a < b)},

R3 = {(a, b)|a � b}, R4 = {(a, b)|a = b}, R5 = {(a, b)|a � b}, find (a) R2, �
R5, (b) R3 � R5, (c) R2 – R5, (d) R1 � R5, (e) R2 � R4.

39. If the relations R and S are given by

R = {(1, 2), (2, 2), (3, 4)}, S = {(1, 3), (2, 5), (3, 1), (4, 2)}, find R � S,

S � R, R � R, S � S, R � (S � R), (R � S) � R and R � R � R.
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40. If R, S, T are relations on the set A = {0, 1, 2, 3} defined by R = {(a, b)|

a + b = 3}, S = {(a, b)| 3 is a divisor of (a + b) and T = {(a, b)|max(a, b)

= 3, find (a) R � T, (b) T � R and (c) S � S.

41. If the relations R1, R2, R3, R4, R5, R6 are defined on the set of real

numbers as given below,

R1 = {(a, b)|a > b}, R2 = {(a, b)|a � b}, R3 = {(a, b)|a < b},

R4 = {(a, b)|a � b}, R5 = {(a, b)|a = b}, R6 = {(a, b)|a � b},

42. Determine whether the relation R on the set of all real numbers is reflexive,

symmetric, antisymmetric and/or transitive, where (a, b) � R if and only

if

(a) a + b = 0 (b) a = � b

(c) a – b is a rational number (d) a = 2b

(e) ab � 0 (f) ab = 0

(g) a = 1 (h) a = 1 or b = 1

43. For each of the following relations, determine whether the relation is

reflexive, symmetric, antisymmetric and/or transitive:

(a) R � Z+ � Z+, where aRb if a divides b.

(b) R � Z � Z, where aRb if a divides b.

(c) R is the relation on Z, where aRb if a + b is odd.

(d) R is the relation on Z, where aRb if a – b is even.

(e) R is the relation on the set of lines in a plane such that aRb if a

perpendicular to b.

44. Determine whether the relation R on the set of people is reflexive,

symmetric, antisymmetric and/or transitive, where aRb if

(a) a is taller than b, (b) a and b were born on the same day, (c) a has the

same first name as b, (d) a is a spouse of b, (e) a and b have a common

grand parent.

45. Which of the following relations on the set {1, 2, 3, 4} is/are equivalent

relations? Find the properties of an equivalent relation that the others

lack.

(a) {(2, 4), (4, 2)

(b) {(1, 1), (2, 2), (3, 3), (4, 4)}

(c) {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)

(d) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}

(e) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}

46. If A = {1, 2, 3, …, 9} and R be the relation defined by (a, b), (c, d) � R if

a + d = b + c, prove that R is an equivalence relation.

47. If R is a relation on Z defined by

(a) aRb, if and only if 2a + 3b = 5n for some integer n.

(b) aRb if and only if 3a + b is a multiple of 4, prove that R is an

equivalence relation.
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48. If R is a relation defined by

(a) (a, b) R (c, d) if and only if a2 + b2 = c2 + d2, where a, b, c and d are

real.

(b) (a, b) R (c, d) if and only if a + 2b = c + 2d, where a, b, c and d are

real, prove that R is an equivalence relation.

49. (a) If R is the relation defined on Z such that aRb if and only if a2 – b2 is

divisible by 3, show that R is an equivalence relation.

(b) If R is the relation on N defined by aRb if and only if 
a

b
 is a power 2,

show that R is an equivalence relation.

50. If R is the relation the set A = {1, 2, 4, 6, 8} defined by aRb if and only if

b

a
is an integer, show that R is a partial ordering on A.

51. (a) If R is the equivalence relation on A = {0, 1, 2, 3, 4} given by {(0, 0),

(0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}, find the

distinct equivalence classes of R.

(b) If R is the equivalence relation on A = {1, 2, 3, 4, 5, 6} given by

{(1, 1), (1, 5), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 6), (4, 4), (5, 1),

(5, 5), (6, 2), (6, 3), (6, 6)}, find the partition of A induced by R.

52. If R is the equivalence relation on the set A = {1, 2, 3, 4, 5, 6, 7} defined

by aRb if a – b is a multiple of 3, find the partition of A induced by R.

find the partition of Z.

54. If R and S are equivalence relations on A = {a, b, c, d, e} given by R =

{a, a), (a, b), (b, a), (b, b), (c, c), (d, d), (d, e), (e, d), (e, e)} and S =

{(a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (c, a), (d, e), (e, d)}, determine

the partitions of A induced by (a) R–1, (b) R � S.

55. List the ordered pairs in the equivalence relations R and S produced by

the partitions of {0, 1, 2, 3, 4, 5} and {1, 2, 3, 4, 5, 6, 7} respectively that

are given as follows:

(a) [{0}, {1, 2}, {3, 4, 5}] (b) [{1, 2}, {3}, {4, 5, 7}, {6}]

Hint: R = {0} � {0} � {1, 2} � {1, 2} � {3, 4, 5} � {3, 4, 5}

56. If R is the relation on A = {1, 2, 3} represented by the matrix

MR = 

0 1 1

1 1 0

1 0 1

� �
� �
� �
� �� �

,

find the matrix representing (a) R–1, (b) R  and R2 and also express them

as ordered pairs.

57. If R and S are relations on A = {1, 2, 3} represented by the matrices

MR = 

1 0 1

0 1 0

0 0 0

� �
� �
� �
� �� �

 and MS = 

0 1 1

1 1 0

0 0 1

� �
� �
� �
� �� �

find the matrices that represent (a) R � S, (ii) R � S, (c) R � S, (d) S � R,

(e) R � S.
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58. Examine if the relations R and S represented by MR and MS given below

are equivalent relations:

(a) MR = 

1 0 1 1

0 1 0 0

1 0 1 0

1 0 0 1

� �
� �
� �
� �
� �
� �� �

(b) MS = 

1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

� �
� �
� �
� �
� �
� �� �

59. List the ordered pairs in the relations R and S whose matrix representations

are given as follows:

(a) MR = 

1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1

� �
� �
� �
� �
� �
� �� �

; (b) MS = 

1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 1

� �
� �
� �
� �
� �
� �� �

Also draw the directed graphs representing R and S. Use the graphs to

find if R and S are equivalence relations.

60. Draw the directed graphs of the relations

R = {(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)} and S =

{(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3)}. Use these

graphs to draw the graphs of (a) R–1, S–1 and (b) R  and S .

61. Draw the Hasse diagram representing the partial ordering P = {(a, b)|a

divides b} on {1, 2, 3, 4, 6, 8, 12}, starting from the digraph of P.

62. Draw the Hasse diagram for the divisibility relation on {2, 4, 5, 10, 12,

20, 25} starting from the digraph.

63. Draw the Hasse diagram for the “less than

or equal to” relation on {0, 2, 5, 10, 11,

15} starting from the digraph.

64. Find the lower and upper bounds of the

subsets {a, b, c}, (j, h} and {a, c, d, f} in

the poset with the Hasse diagram in Fig.

5.25. Find also the LUB and GLB of the

subset {b, d, g}, if they exist.

65. For the poset [{(3, 5, 9, 15, 24, 45}; divisor

of], find

(a) the maximal and minimal elements

(b) the greatest and the least elements

(c) the upper bounds and LUB of {3, 5}

(d) the lower bounds and GLB of (15, 45}

Fig. 5.25
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LATTICES

Definitions
A partially ordered set {L, �} in which every pair of elements has a least upper

bound and a greatest lower bound is called a lattice.

The LUB (supremum) of a subset {a, b} � L is denoted by a � b [or a � b

or a + b or a � b] and is called the join or sum of a and b.

The GLB (infemum) of a subset {a, b} � L is denoted by a � b [or a � b or

a ��b or a � b] is called the meet or product of a and b.
Since the LUB and GLB of any subset of a poset are unique, both � and �
are binary operations on a lattice.

For example, let us consider the poset ({1, 2, 4, 8, 16}|), where | means

‘divisor of’. The Hasse diagram of this poset is given in Fig. 5.26.

The LUB of any two elements of this poset is obviously the larger of them

and the GLB of any two elements is the smaller of them. Hence this poset is a

lattice.

Note

Fig. 5.26

Note All partially ordered sets are not lattices, as can be seen from the following

example.

Let us consider the poset ({1, 2, 3, 4, 5}, |) whose Hasse diagram is given in

Fig. 5.27.

The LUB’s of the pairs (2, 3) and (3, 5) do not exist and hence they do not have

LUB. Hence this poset is not a Lattice.

PRINCIPLE OF DUALITY

When � is a partial ordering relation on a set S, the converse � is also a partial

ordering relation on S. For example if � denotes ‘divisor of’, � denotes ‘multiple

of’.

The Hasse diagram of (S, �) can be obtained from that of (S, �) by simply

turning it upside down. For example the Hasse diagram of the poset ({1, 2, 4,

8, 16}, multiple of), obtained from Fig. 5.26 will be as given in Fig. 5.28.

Fig. 5.27
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From this example, it is obvious that LUB(A) with respect to

� is the same as GLB(A) with respect to � and vice versa, where

A � S. viz. LUB and GLB are interchanged, when � and � are

interchanged.

In the case of lattices, if {L, �} is a lattice, so also is {L, �}.

Also the operations of join and meet on {L, �} become the

operations of meet and join respectively on {L, �}.

From the above observations, the following statement, known

as the principle of duality follows:

Any statement in respect of lattices involving the operations �
and � and the relations � and � remains true, if � is replaced by

� and � is replaced by �, � by � and � by �.
The lattices {L, �} and {L, �} are called the duals of each

other. Similarly the operations � and � are duals of each other and the relations

� and � are duals of each other.

PROPERTIES OF LATTICES

Property 1

If {L, �} is a lattice, then for any a, b, c � L,

L1: a � a = a (L1)�: a � a = a (Idempotency)

L2: a � b = b � a (L2)�: a � b = b � a (Commutativity)

L3: a � (b � c) = (a � b) � c (L3)�: a � (b � c) = (a � b) � c

(Associativity)

L4: a � (a � b) = a (L4)�: a � (a � b) = a (Absorption)

Proof

(i) a � a = LUB (a, a) = LUB (a) = a. Hence L1 follows.

(ii) a � b = LUB (a, b) = LUB (b, a) = b � a {� LUB (a, b) is unique.}

Hence L2 follows.

(iii) Since (a � b) � c is the LUB {(a � b), c}, we have

a � b � (a � b) � c (1)

and c � (a � b) � c (2)

Since a � b is the LUB {a, b}, we have

a � a � b (3)

and b � a � b (4)

From (1) and (3), a � (a � b) � c by transitivity (5)

From (1) and (4), b � (a � b) � c by transitivity (6)

From (2) and (6), b � c � (a � b) � c by definition of join (7)

From (5) and (7), a � (b � c) � (a � b) � c by definition of join (8)

Similarly, a � a � (b � c) (9)

b � b � c � a � (b � c) (10)

and c � b � c � a � (b � c) (11)

From (9) and (10), a � b � a � (b � c) (12)

From (11) and (12), (a � b) � c � a � (b � c) (13)

Fig. 5.28
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From (8) and (13), by antisymmetry of �, we get

a � (b � c) = (a � b) � c.

Hence L3 follows.

(iv) Since a � b is the GLB {a, b}, we have

a � b � a (1)

Also a � a (2)

From (1) and (2), a � (a � b) � a (3)

Also a � a � (a � b) (4)

by definition of LUB

� From (3) and (4), by antisymmetry, we get a � (a � b) = a.

Hence L4 follows.

Now the identities (L1)� to (L4)� follow from the principle of duality.

Property 2

If {L, �} is a lattice in which � and � denote the operations of join and meet

respectively, then for a, b � L,

a � b � a � b = b � a � b = a.

In other words,

(i) a � b = b, if and only if a � b.

(ii) a � b = a, if and only if a � b.

(iii) a � b = a, if and only if a � b = b.

Proof
(i) Let a � b.

Now b � b (by reflexivity).

� a � b � b (1)

Since a � b is the LUB (a, b),

b � a � b (2)

From (1) and (2), we get a � b = b (3)

Let a � b = b.

Since a � b is the LUB (a, b),

a � a � b

i.e., a � b, by the data (4)

From (3) and (4), result (i) follows. Result (ii) can be probed in a way

similar to the proof (i).

From (i) and (ii), result (iii) follows.
Property (2) gives a connection between the partial ordering relation

� and the two binary operations � and � in a lattice {L, �}.

Property 3 (Isotonic Property)

If {L, �} is a lattice, then for any a, b, c, � L, the following properties hold

good:

If b � c, then (i) a � b � a � c and (ii) a � b � a � c.

Proof
Since b � c, b � c = c, by property 2(i).

Also a � a = a, by idempotent property

Note
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Now a � c = (a � a) � (b � c), by the above steps

= a � (a � b) � c, by associativity

= a � (b � a) � c, by commutativity

= (a � b) � (a � c), by associativity

This is of the form x � y = y. � x � y, by property 2(i).

i.e. a � b � a � c, which is the required result (i).

Similarly, result (ii) can be proved.

Property 4 (Distributive Inequalities)

If {L, �} is a lattice, then for any a, b, c, � L,

(i) a � (b � c) � (a � b) � (a � c)

(ii) a � (b � c) � (a � b) � (a � c).

Proof
Since a � b is the GLB(a, b), a � b � a (1)

Also a � b � b � b � c (2)

since b � c is the LUB of b and c.

From (1) and (2), we have a � b is a lower bound of {a, b � c}

� a � b � a � (b � c) (3)

Similarly a � c � a

and a � c � c � b � c

� a � c � a � (b � c) (4)

From (3) and (4), we get

(a � b) � (a � c) � a � (b � c)

i.e. a � (b � c) � (a � b) � (a � c), which is result (i).

Result (ii) follows by the principle of duality.

Property 5 (Modular Inequality)

(1)

Proof
Since a � c, a � c = c (1), by property 2(i)

a � (b � c) � (a � b) � (a � c) (2), by property 4(ii)

i.e. a � (b � c) � (a � b) � c (3), by (1)

Now a � (b � c) � (a � b) � c

� a � a � (b � c) � (a � b) � c � c, by the definitions of LUB and GLB

i.e. a � c (4)

From (3) and (4), we get

a � c � a � (b � c) � (a � b) � c.

LATTICE AS ALGEBRAIC SYSTEM

A set together with certain operations (rules) for combining the elements of the

set to form other elements of the set is usually referred to as an algebraic

system. Lattice L was introduced as a partially ordered set in which for every
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pair of elements a, b � L, LUB(a, b) = a � b and GLB(a, b) = a � b exist in the

set. That is, in a Lattice {L, �}, for every pair of elements a, b of L, the two

elements a � b and a � b of L are obtained by means of the operations � and �.

Due to this, the operations � and � are considered as binary operations on L.

Moreover we have seen that � and � satisfy certain properties such as

commutativity, associativity and absorption. The formal definition of a lattice

as an algebraic system is given as follows:

Definition
A lattice is an algebraic system (L, �, �) with two binary operations � and � on

L which satisfy the commutative, associative and absorption laws.
We have not explicity included the idempotent law in the definition, since

the absorption law implies the idempotent law as follows:

a � a = a � [a � (a � a)], by using a � a for a � b in (L4)� of property 1

= a, by using a � a for b in L4 of property 1.

a � a = a follows by duality.

Though the above definition does not assume the existence of any partial

ordering on L, it is implied by the properties of the operations � and � as

explained below:

Let us assume that there exists a relation R on L such that for a, b � L,

aRb if and only if a � b = b

For any a � L, a � a = a, by idempotency

� aRa or R is reflexive.

Now for any a, b, � L, let us assume that aRb and bRa.

� a � b = b and b � a = a

Since a � b = b � a by commutativity, we have a = b and so R is antisymmetric.

Finally let us assume that aRb and bRc

� a � b = b and b � c = c.

Now a � c = a � (b � c) = (a � b) � c = b � c = c

viz. aRc and so R is transitive.

Hence R is a partial ordering.

Thus the two definitions given for a lattice are equivalent.

SUBLATTICES

Definition
A non-empty subset M of a lattice {L, �, �} is called a sublattice of L, iff M is

closed under both the operations � and �. viz. if a, b, � M, then a � b and

a � b also � M.

From the definition, it is obvious that the sublattice itself is a lattice with

respect to � and �.

For example if aRb whenever a divides b, where a, b � Z+ (the set of all

positive integers) then {Z+, R} is a lattice in which a � b = LCM (a, b) and

a � b = GCD(a, b).

If {Sn, R} is the lattice of divisors of any positive integer n, then {Sn, R} is a

sublattice of {Z+, R}.

Note
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LATTICE HOMOMORPHISM

Definition
If {L1, �, �} and {L2, �, �} are two lattices, a mapping f : L1 � L2 is called a

lattice homomorphism from L1 to L2, if for any a, b � L1,

f(a � b) = f(a) � f(b) and f(a � b) = f(a) � f(b).

If a homomorphism f : L1 � L2 of two lattices {L1, �, �} and {L2, � �} is

objective, i.e. one-to-one onto, then f is called an isomorphism. If there exists

an isomorphism between two lattices, then the lattices are said to be isomorphic.

SOME SPECIAL LATTICES

(a) A lattice L is said to have a lower bound denoted by 0, if 0 � a for all

a � L. Similarly L is said to have an upper bound denoted by 1, if a � 1
for all a � L. The lattice L is said to be bounded, if it has both a lower

bound 0 and an upper bound 1.

The bounds 0 and 1 of a lattice {L, �, �, 0, 1} satisfy the following

identities, which are seen to be true by the meanings of � and �.

For any a � L, a � 1 = 1; a � 1 = a and a � 0 = a; a � 0 = 0.

Since a � 0 = a and a � 1 = a, 0 is the identity of the operation � and

1 is the identity of the operation �.

Since a � 1 = 1 and a � 0 = 0, 1 and 0 are the zeros of the operations

� and � respectively.
If we treat 1 and 0 as duals of each other in a bounded lattice, the

principle of duality can be extended to include the interchange of 0

and 1. Thus the identities a � 1 = 1 and a � 0 = 0 are duals of each other; so also

are a � 0 = a and a � 1 = a.

If L = {a1, a2, …, an} is a finite lattice, then a1 � a2 � a3 … � an and

a1 � a2 � a3 � … � an are upper and lower bounds of L respectively

and hence we conclude that every finite lattice is bounded.

(ii) A lattice {L, �, �} is called a distributive lattice, if for any elements a,

b, c � L,

a � (b � c) = (a � b) � (a � c) and

a � (b � c) = (a � b) � (a � c).

In other words if the operations � and � distribute over each other in a

lattice, it is said to be distributive. Otherwise it is said to be non distributive.

(iii) If {L, �, �, 0, 1} is a bounded lattice and a � L, then an element b � L is

called a complement of a, if

a � b = 1 and a � b = 0

Since 0 � 1 = 1 and 0 � 1 = 0, 0 and 1 are complements of each other.

When a � b = 1, we know that b � a = 1 and when a � b = 0, b � a = 0.

Hence when b is the complement of a, a is the complement of b.

An element a � L may have no complement. Similarly an element,

other than 0 and 1, may have more than one complement in L as seen

from Fig. 5.28.

Note 1

Note 2
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In Fig. 5.28(a), complement of a1 is a2, whereas in (b), complement of

a1 is a2 and a3. It is to be noted that 1 is the only complement of 0. If

possible, let x � 1 be another complement of 0, where x � L.

Then 0 � x = 1 and 0 � x = 0

But 0 � x = x � x = 1, which contradicts the assumption x � 1.

Similarly we can prove that 0 is the only complement of 1.

Now a lattice {L, �, �, 0, 1} is called a complemented lattice if every

element of L has at least one complement.

The following property holds good for a distributive lattice.

Property

In a distributive lattice {L, �, �} if an element a � L has a complement, then it

is unique.

Proof

If possible, let b and c be the complements of a � L.

Then a � b = a � c = 1 (1)

and a � b = a � c = 0 (2)

Now b = b � 0 = b � (a � c), by (2)

= (b � a) � (b � c), since L is distributive

= 1 � (b � c), by (1)

= b � c (3)

Similarly, c = c � 0 = c � (a � b), by (2)

= (c � a) � (c � b), since L is distributive

= 1 � (c � b), by (1)

= c � b (4)

From (3) and (4), since b � c = c � b, we get b = c.

From the definition of complemented lattice and the previous property, it

follows that every element a of a complemented and distributive lattice has

a unique complement denoted by a�.

Fig. 5.28

Note
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Note

BOOLEAN ALGEBRA

Definition
A lattice which is complemented and distributive is called a Boolean Algebra,

(which is named after the mathematician George Boole). Alternatively, Boolean

Algebra can be defined as follows:

Definition
If B is a nonempty set with two binary operations + and �, two distinct elements

0 and 1 and a unary operation �, then B is called a Boolean Algebra if the

following basic properties hold for all a, b, c in B:

B1: a + 0 = a

a � 1 = a Identity laws

B2: a + b = b + a

a � b = b � a Commutative laws

B3: (a + b) + c = a + (b + c)

(a � b) � c = a � (b � c) Associative laws

B4a + (b � c) = (a + b) � (a + c)

a � (b + c) = (a � b) + (a � c) Distributive laws

B5: a + a� = 1

a � a� = 0 Complement laws.

1. We have switched over to the symbols + and � instead of � (join) and �
(meet) used in the study of lattices. The operations + and �, that

will be used hereafter in Boolean algebra, are called Boolean sum and Boolean

product respectively. We may even drop the symbol � and instead use juxta-

position. That is a � b may be written as ab.

2. If B is the set {0, 1} and the operations +, �, � are defined for the elements of B as

follows:

0 + 0 = 0; 0 + 1 = 1 + 0 = 1 + 1 = 1

0 � 0 = 0 � 1 = 1 � 0 = 0; 1 � 1 = 1

0� = 1 and 1� = 0,

then the algebra {B, +, �, �, 0, 1} satisfies all the 5 properties given above and is

the simplest Boolean algebra called a two-element Boolean algebra. It can be

proved that two element Boolean algebra is the only Boolean algebra.

If a variable x takes on only the values 0 and 1, it is called a Boolean variable.

3. 0 and 1 are merely symbolic names and, in general, have nothing to do with the

numbers 0 and 1. Similarly + and � are merely binary operators and, in general,

have nothing to do with ordinary addition and multiplication.

ADDITIONAL PROPERTIES OF BOOLEAN
ALGEBRA

If {B, +, �, �, 0, 1} is a Boolean algebra, the following properties hold good.

They can be proved by using the basic properties of Boolean algebra listed in

the definition.
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(i) Idempotent Laws

a + a = a and a � a = a, for all a � B

Proof
a = a + 0, by B1

= a + a � a�, by B5

= (a + a) � (a + a�), by B4

= (a + a) � 1, by B5

= a + a, by B1

Now, a = a � 1, by B1

= a � (a + a�), by B5

= a � a + a � a�, by B4

= a � a + 0, by B5

= a � a, by B1.

(ii) Dominance Laws

a + 1 = 1 and a � 0 = 0, for all a � B.

Proof
a + 1 = (a + 1) � 1, by B1

= (a + 1) � (a + a�), by B5

= a + 1 � a�, by B4

= a + a� � 1, by B2

= a + a�, by B1

= 1, by B5.

Now a � 0 = a � 0 + 0, by B1

= a � 0 + a � a�, by B5

= a � (0 + a�), by B4

= a � (a� + 0), by B2

= a � a�, by B1

= 0, by B5

(iii) Absorption Laws

a � (a + b) = a and a + a � b = a, for all a, b � B.

Proof
a � (a + b) = (a + 0) � (a + b), by B1

= a + 0 � b, by B4

= a + b � 0, by B2

= a + 0, by dominance law

= a, by B1.

Now a + a � b = a � 1 + a � b, by B1

= a � (1 + b), by B4

= a � (b + 1), by B2

= a � 1, by dominance law

= a, by B1
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(iv) De Morgan’s Laws

(a + b)� = a� � b� and (a � b)� = a� + b�, for all a, b � B.

Proof
If y is to be the complement of x, by definition, we must show that x + y =

1 and x � y = 0.

(a + b) + a�b� = {(a + b) + a�} � {(a + b) + b�}, by B4

= {(b + a) + a�} � {(a + b) + b�}, by B2

= {b + (a + a�)} � {a + (b + b�)}, by B3

= (b + 1) � (a + 1), by B5

= 1 � 1, by dominance law

= 1, by B1. (1)

Now (a + b) � a�b� = a�b� � (a + b), by B2

= a�b� � a + a�b� � b, by B4

= a � (a�b�) + a� � b�b, by B3

= (a � a�) � b� + a� � (bb�), by B3 and B2

= 0 � b� + a� � 0, by B5

= b� � 0 + a� � 0, by B2

= 0 + 0, by dominance law

= 0, by B1. (2)

From (1) and (2), we get a�b� is the complement of (a + b). i.e. (a + b)� = a�b�.
[� the complement is unique]

The students are advised to give the proof for the other part in a

similar manner.

(v) Double Complement or Involution Law

(a�)� = a, for all a � B.

Proof
a + a� = 1 and a � a� = 0, by B5

i.e. a� + a = 1 and a� � a = 0, by B2

� a is the complement of a�
i.e. (a�)� = a, by the uniqueness of the complement of a�. [See example (14)]

(vi) Zero and One Law

0� = 1 and 1� = 0

Proof
0� = (aa�)�, by B5

= a� + (a�)�, by De Morgan’s law

= a� + a, by involution law

= a + a�, by B2

= 1, by B5

Now (0�)� = 1�
i.e. 0 = 1� or 1� = 0.

Note

Note
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DUAL AND PRINCIPLE OF DUALITY

Definition
The dual of any statement in a Boolean algebra B is the statement obtained by

interchanging the operations + and � and interchanging the elements 0 and 1 in

the original statement.

For example, the dual of a + a(b + 1) = a is a � (a + b � 0) = a.

PRINCIPLE OF DUALITY

The dual of a theorem in a Boolean algebra is also theorem.

For example, (a � b)� = a� + b� is a valid result, since it is the dual of the valid

statement (a + b)� = a� � b� [De Morgan’s laws]. If a theorem in Boolean

algebra is proved by using the axioms of Boolean algebra, the dual theorem

can be proved by using the dual of each step of the proof of the original

theorem. This is obvious from the proofs of additional properties of Boolean

algebra.

SUBALGEBRA

If C is a nonempty subset of a Boolean algebra such that C itself is a Boolean

algebra with respect to the operations of B, then C is called a subalgebra of B.

It is obvious that C is a subalgebra of B if and only if C is closed under the

three operations of B, namely, +, � and � and contains the element 0 and 1.

BOOLEAN HOMOMORPHISM

If {B +, �, �, 0, 1} and {C, �, �, –, , } are two Boolean algebras, then a

mapping f : B � C is called a Boolean homomorphism, if all the operations of

Boolean algebra are preserved. viz., for any a, b � B,

f(a + b) = f(a) � f(b), f(a � b) = f(a) � f(b),

f (a�) = ( )f a , f(0) =  and f(1) = ,

where  and  are the zero and unit elements of C.

ISOMORPHIC BOOLEAN ALGEBRAS

Two Boolean algebras B and B� are said to be isomorphic if there is one-to-one

correspondence between B and B� with respect to the three operations, viz.

there exists a mapping f: B � B� such that f(a + b) = f(a) + f(b), f(a � b) =

f(a) � f(b) and f(a�) = {f(a)}�.

BOOLEAN EXPRESSIONS AND BOOLEAN
FUNCTIONS

Definitions
A Boolean expression in n Boolean variables x1, x2, … xn is a finite string of

symbols formed recursively as follows:

1. 0, 1, x1, x2, … xn are Boolean expressions.
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Note

Note

2. If E1 and E2 are Boolean expressions, then E1 � E2 and E1 + E2 are also

Boolean expressions.

3. If E is a Boolean expression, E� is also a Boolean expression.
A Boolean exprssion in n variables may or may not contain all the n

literals, viz., variables or their complements.

If x1, x2, …, xn are Boolean variables, a function from Bn = {(x1, x2, …,

xn} to B = {0, 1} is called a Boolean function of degree n. Each Boolean

expression represents a Boolean function, which is evaluated by

substituting the value 0 or 1 for each variable. The values of a Boolean

function for all possible combinations of values of the variables in the

function are often displayed in truth tables.

For example, the values of the Boolean function f (a, b, c) = ab + c� are

displayed in the following truth table:

ab + c

1 1 1 1 0 1

1 1 0 1 1 1

1 0 1 0 0 0

1 0 0 0 1 1

0 1 1 0 0 0

0 1 0 0 1 1

0 0 1 0 0 0

0 0 0 0 1 1

Although the order of the variable values may be random, a symmetric

way of writing them in a cyclic manner which will be advantageous

is as follows:

If there be n variables in the Boolean function, there will obviously be

2n rows in the truth table corresponding to all possible combinations of

the values 0 and 1 of the variables.

We write 
1

2
� 2n ones followed by 

1

2
�� 2n zeros in the first column

representing the values of the first variable.

Then in the second column, we write 
1

4
� 2n ones and 

1

4
� 2n zeros

alternately, representing the values of the second variable. Next in the

third column, we write 
1

8
� 2n ones and 

1

8
� 2n zeros alternately,

representing the values of the third variable. We continue this procedure

and in the final column, we write 
1

2n
� 2n (=1) one and 1 zero alternately,

representing the values of the nth variable.]

Definitions
1. A minterm if n Boolean variables is a Boolean product of the n literals

(variables of complements) in which each literal appears exactly once.

Note
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For example, ab, a�b, ab� and a�b� form the complete set of minterms of

two variables a and b, abc, abc�, ab�c, a�bc, ab�c�, a�bc�, a�b�c and a�b�c�
form the complete set of minterms of three variables a, b, c.

2. A maxterm of n Boolean variables is a Boolean sum of the n literals in

which each literal appears exactlty once.

For example, a + b, a� + b, a + b� and a� + b� form the complete set of

maxterms in two variables a and b.

3. When a Boolean function is expressed as a sum of minterms, it is called

its sum of products expansion or it is said to be in the disjunctive normal

form (DNF).

4. When a Boolean function is expressed as a product of maxterms, it is

called its product of sums expansion or it is said to be in the conjunctive

normal form (CNF).

5. Boolean function expressed in the DNF or CNF are said to be in canonical

form.

6. If a Boolean function in n variables is expressed as the sum (product) of

all the 2n minterms (maxterms), it is said to be in complete DNF (complete

CNF).

7. Boolean functions expressed in complete DNF or complete CNF are said

to be complete canonical form.

EXPRESSION OF A BOOLEAN FUNCTION IN
CANONICAL FORM

1. Truth Table Method

If the Boolean function f(x, y, z) is represented by a truth table, we express

f (x, y, z) in DNF as follows:

We note down the rows in which ‘f ’ column entry is 1. The DNF of f is the

Boolean sum of the minterms corresponding to the literals in those rows. While

forming the minterm corresponding to a row, 1 entry is replaced by the

corresponding variable and 0 entry is replaced by the complement of the

variable concerned.

For example, let us consider the function f (x, y, z) whose truth table

representation is given as follows:

x y z f

1 1 1 0

1 1 0 1

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0
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1’s occur in the ‘f ’ column against the second, third and fourth rows. The

minterm corrsponding to the second row is xyz�, since 1 occurs in each of the x

column and y column and 0 occurs in the z column. Similarly the minterms

corresponding to the third and fourth rows are xy�z and xy�z� respectively.

Since f is the Boolean sum of these three minterms, the required DNF of f is

xyz� + xy�z + xy�z�
The CNF of f (x, y, z) represented by a truth table is obtained as follows:

We note down the rows in which the ‘f ’ column entry is 0. The CNF of f is

the Boolean product of the maxterms corresponding to the literals in those

rows. While forming the maxterm corresponding to a row, 0 entry is replaced

by the corresponding variable and 1 entry is replaced by the complement of the

variable concerned.

In the above example, 0’s occur in the ‘f ’ column against the 1st row and

the fifth to the eighth rows. The maxterm corresponding to the first row is (x��+
y��+ z�), since 1 occurs under each of x, y, z.

Similarly the maxterms corrsponding to the other rows are written.

The CNF of f is the Boolean product of these maxterms.

� f = (x� + y� + z�) (x + y� + z�) (x + y� + z) (x + y + z�) (x + y + z).

2. Algebraic Method

To get the DNF of a given Boolean function, we express it as a sum of

products. Then each product is multiplied in Boolean sense by a + a�, which is

equal to 1, if a is the missing literal and simplified. In the end if a product term

is repeated, the repetition is avoided since a + a = a.

To get the CNF of a given Boolean function, we express it as a product of

sums. Then to each sum is added in Boolean sense the term aa�, which is equal

to 0, if a is the missing literal and simplified. In the end if a sum factor is

repeated, the repetition is avoided since a � a = a. For example, let us consider

the Boolean function f (x, y, z) = x(y� + z�) and express it in the sum of products

canonical form:

f = xy� + xz�
= xy� � (z + z�) + xz�(y + y�) {� z is the missing literal in the first

product and y is the missing literal in the second product.}

= xy�z + xy�z� + xyz� + xy�z�
= xy�z + xy�z� + xyz� (� xy�z� is repeated)

Now let us express the same function in the product of sums canonical form.

f = x � (y� + z�)
= (x + yy�)� � (y� + z� + xx�)
= (x + y) � (x + y�) � (y� + z� + x) (y� + z� + x�)
= (x + y + zz�) (x + y� + zz�) (x + y� + z�) (x� + y� + z�)
= (x + y + z) � (x + y + z�) � (x + y� + z) (x + y� + z�)

(x + y� + z�) (x� + y� + z�)
= (x + y + z) � (x + y + z�) � (x + y� + z) � (x + y� + z�) (x� + y� + z�)

(repetition avoided)
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LOGIC GATES

A computer or any other electronic device is made up of a number of circuits.

Boolean algebra can be used to design the circuits of electronic devices. The

basic elements of circuits are solid state devices called gates, that implement

Boolean operations. The circuits that we consider in this section give the output

that depends only on the input and not on the current state of the circuit. In

other words these circuits have no memory capabilities. Such circuits are called

combinational circuits gating networks.

We shall now consider three basic types of gates that are used to construct

combinational circuits:

1. OR gate: This gate receives two or

more inputs (Boolean variables) and

produces an output equal to the

Boolean sum of the values of the

input variables. The symbol used for

an OR gate is shown in Fig. 5.29(a). The inputs are shown on the left

side entering the symbol and the output on the right side leaving the

symbol.

2. AND gate: This gate receives two or more inputs (Boolean variables) and

produces an outut equal to their Boolean product. The symbol used for an

AND gate is shown in Fig. 5.29(b).

Fig. 5.29(a)

3. NOT gate or Invertor: This gate accepts only one input (value of one

Boolean variable) and produces the complement of this value as the

output. The symbol for this NOT gate is shown in Fig. 5.29(c).

COMBINATION OF GATES

Combinational circuits are formed by interconnecting the basic gates. When

such circuits are formed, some gates may share inputs. One method is to

indicate the inputs separately for each gate [Fig. 5.30(a)]. The other method is

to use branchings that indicate all the gates that use a given input [Fig. 5.30(b)].

Fig. 5.29(b) Fig. 5.29(c)

Fig. 5.30(a)
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Thus we can compute the value of the output y by tracing the flow through

the circuit symbolically from left to right as in the following example.

[See Fig. 5.30(c)].

Fig. 5.30(b)

Fig. 5.30(c)

First the Boolean product of x1 and x2 is obatined as x1 � x2. This output is

Boolean added with x3 to produce x1x2 + x3. This output is conmplemented to

produce the final output y = (x1x2 + x3)�.

ADDERS

We shall consider two examples of circuits that perform some useful functions.

First we consider a half adder that is a logic circuit used to find x + y, where x

and y are two bits each of which has the value 0 or 1. The output will consist of

two bits, namely the sum bits and carry bit c. Circuits of this type having more

than one output are called multiple output circuits. The truth table for the half

adder is given as follows:

Inputs Outputs

x y s c

0 0 0 0

0 1 1 0

1 0 1 0
1 1 0 1

From the truth table, we get s = xy� + x�y and c = xy. The half adder circuit is

given in Fig. 5.31(a).

If we observe that

(x + y) (xy)� = (x + y) (x� + y�)
= xx� + xy�+ x�y + yy�
= xy� + x�y

the half adder circuit can be simplified with only four gates as shown in Fig.

5.31(b).
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A full adder accepts three bits x, y, z as input and produces two output bits s

(sum bit) and c (carry bit). The truth table for the full order is given as follows:

Inputs Outputs

x y z c s

1 1 1 1 1

1 1 0 1 0

1 0 1 1 0

1 0 0 0 1

0 1 1 1 0

0 1 0 0 1

0 0 1 0 1

0 0 0 0 0

From the truth table, we get

s = xyz + xy�z� + x�yz� + x�y�z

and c = xyz + xyz� + xy�z + x�yz

If we observe that

c = xyz + xyz� + xy�z + x�yz

= (xyz + xyz�) + (xyz + xy�z) + (xyz + x�yz)

= xy (z + z�) + zx(y + y�) + yz(x + x�)
= xy + yz + zx,

the circuit for the full adder can be drawn as given in Fig. 5.32.
If we simplify s, we can draw the circuit for full adder in a simpler way

using lesser number of gates.

Fig. 5.31(a)

Fig. 5.31(b)

Note
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Minimisation of Circuits/Boolean Functions

The important use of Boolean algebra is to express circuit design problems in a

simplified form that is more readily understood. The efficiency of a combinatorial

circuit depends on the number of gates used and on the manner of arranging

them, because the cost of a circuit depends on the number of gates in the circuit

to a certain extent.

For example, let us consider the following circuit, the output of which is xyz

+ xyz�, that is in the sum of products form.

Since the two products in this example differ in only one variable, namely z,

they can be combined as follows:

xyz + xyz� = xy(z + z�)
= xy � 1
= xy

The circuit for the simplified function xy is shown in Fig. 5.33(b).

Fig. 5.32
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The second circuit uses only one gate, whereas the first circuit used three

gates and an inverter. Thus the second circuit is a simplified or minimised

version of the first circuit.

From this example, we see that combining terms in the S of P expansion of

a circuit leads to a simpler expression for the circuit. Though simplification of

S of P expansions can be done algebraically using laws of Boolean algebra,

there are two other procedures which are more elegant and which will be

described as follows. The goal of all these procedures is to obtain Boolean

sums of Boolean products that contain the least number of products of least

number of literals.

KARNAUGH MAP METHOD

Karnaugh Map method is a graphical method for simplifying Boolean

expressions involving six or fewer variables that are expressed in the sum of

products form and that represent combinational circuits. Simplification requires

identification of terms in the Boolean expression which can be combined (as in

the previous example). The terms which can be combined can be easily found

out from Karnaugh maps.

A Karnaugh map (K-map) is a diagram consisting of squares. If the Boolean

expression contains n variables, the corresponding K-map will have 2n squares,

each of which represents a minterm. A ‘1’ is placed in the square representing

a minterm if it is present in the given expression. A ‘0’ is placed in the square

that corresponds to the minterm not present in the expression. The simplified

Boolean expression that represents the output is then obtained by combining or

grouping adjacent squares that contain 1. Adjacent squares are those that

represent minterms differing by only one litreral.

To identify adjacent cells (squares) in the K-map for grouping, the following

points may be borne in mind:

1. The number of cells in a group must be a power of 2, i.e., 2, 4, 8, 16, etc.

2. A cell containing 1 may be included in any number of groups.

3. To minimise the expression to the maximum possible extent, largest

possible groups must be preferred. viz., a group of two cells should not

be considered, if these cells can be included in a group of four cells and

so on.

4. Adjacent cells exist not only within the interior of the K-map, but also at

the extremes of each column and each row viz. the top cell in any column

is adjacent to the bottom cell in the same column. The left most 

Fig. 5.33(a) Fig. 5.33(b)
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Karnaugh maps for 2, 3 and 4 variables in two forms for each are given in

Figs. 5.34, 5.35 and 5.36. The minterms which the cells represent are written

within the cells.

While minimising Boolean expressions by K-map method, it will be

advantageous if we are familiar with patterns of adjacent cells and groups of

1’s, that will be enclosed by loops. All the basic patterns are given as follows

for 3 and 4 variable K-maps:

Fig. 5.34 K-map for 2 variables

� � � �

� � � � � � � � � � � � � � � � �

� � � � � � � �

�

� � � � � � �

� �

Fig. 5.35 K-map for 3 variables

Fig. 5.36 K-map for 4 Variables

� � � �

� � � � � � � � � � � � � �

� � � � � � � � �

� � � �

� � � � � � � � �

� � � � � � � � � � � �

� � � � � � � �

� � � �

� � � � � � � �
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Fig. 5.37(a) All possible forms of basic loops of 2 cells or 3 variables

Fig. 5.37(b) All possible forms of 4 cell basic loops for 3 variables

A loop of 2, 4 and 8 cells will eliminate from the simplified Boolean

expression 1, 2 and 3 variables.

Procedure for minimisation of Boolean expressions using K-maps

1. K-map is first constructed by placing 1’s in those squares corresponding

to the minterms present in the expression and 0’s in other squares.

2. All those 1’s that cannot be combined with any other 1’s are identified

and looped.

3. All those 1’s that combine in a loop of two but do not make a loop of

four are looped.

4. All those 1’s that combine in a loop of four but do not make a loop of

eight are looped.

5. The process is stopped when all the 1’s have been covered.

Fig. 5.38(a) All possible forms of 2 cell basic loops for 4 variables

Note
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6. The simplified expression is the sum of all the terms corresponding to

various loops.

Minimisation of Boolean expressions with 5 or 6 variables by the K-map

method is beyond the scope of this book.)

Alternative notation for S of P form of Boolean expressions

In each minterm of the sum of products form of a Boolean expression, a

variable is replaced by 1 and a complemented variable is replaced by 0. Thus

Fig. 5.38(b) All possible forms of 4 cell basic loops for 4 variables

Fig. 5.38(c) All possible forms of 8 cell basic loops for 4 variables

Note
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we get the binary equivalent of the minterm. Then the decimal equivalent of the

binary number is found out. All the decimal numbers corresponding to the

minterms are written after a � separated by commas.

For example let us consider the Boolean expression (xy �z + xy �z� + x�yz +

x�y�z + x �y �z�) in 3 variables.

The binary equivalents of the minterms in the given order are 101, 100, 011,

001, 000.

The decimal equivalents of the binary numbers in the given order are 5, 4, 3,

1, 0. The alternative notation for the given Boolean expression is f(x, y, z) =

�(0, 1, 3, 4, 5).

On the other hand, if the Boolean expression is given as f (a, b, c, d) =

�(0, 2, 6, 7, 8, 9, 13, 15), the binary equivalents to the given decimal numbers

are written as 4 digit numbers, as f is a 4 variable expression.

They are 0000, 0010, 0110, 0111, 1000, 1001, 1101 and 1111.

The minterms corresponding to these binary numbers are a�b�c�d�, a�b�cd�,
a�bcd�, a�bcd, ab�c�d�, ab�c�d, abc�d.

Thus the given Boolean expression is f (a, b, c, d) = a�b�c�d� + a�b�cd� +

a�bcd� + a�bcd + ab�c�d� + ab�c�d + abc�d.

DON’T CARE TERMS

The Boolean function to be simplified will contain two groups of minterms—

one group of minterms which are to be necessarily included in the function and

the other group of minterms which may or may not be included in the function.

The second group of minterms are called Don’t care terms.

will be filled up with  – a ‘0’ and a ‘1’ superimposed or with the letter d.

Those minterms in the don’t care group which when included with the regular

input terms will simplify the output to the maximum, viz. will yield the most

Thus a don’t care term of a Boolean function is a minterm whose value is

not of any consequence and as such its value can be chosen either as a 0 or as

a 1 at our convenience.

For example, let the Boolean function to be simplified be f (a, b, c) = � (3,

5) + � (0, 7). The regular terms in f (a, b, c) are a�bc and ab�c and the don’t

care terms are a�b�c� and abc.

The K-map representation of f (a, b, c) is given in

Fig. 5.39.

The most simplified output will be obtained if we include

‘abc’ as a regular input minterm. The ouptput function

in this case is (ac + bc).

QUINE-McCLUSKEY’S TABULATION METHOD

This method provides a mechanical procedure for simplifying Boolean

expressions in the sum of products form. K-map method is cumbersome when

Fig. 5.39
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there are five or six variables in the expression, whereas the Quine-McCluskey’s

method can be used to simplify Boolean functions in any number of variables.

When the K-map method is used, one has to depend on visual inspection to

identify adjacent cells that are to be looped, whereas the tabulation method

uses a step-by-step procedure, which is described as follows:

Step-by-step procedure of Quine-McCluskey’s method

1. The given Boolean function is first expressed in its canonical sum form.

2. Then each term in the function is converted to a binary form by replacing

xi in it by 1 and ix�  by 0.

3. Then the terms are separated into groups, according to the number 1’s in

each. (column 1)

4. The binary numbers are then converred  to the decimal form and the

decimal numbers are arranged in ascending order of their values within

the groups. (column 2)

5. The smallest decimal number in the uppermost group in column 2 is

compared successively with all numerically greater numbers that appear

in the next group in that column. When the two numbers under comparison

differ by a power of 2 [viz., 20, 2�, 22, etc.] the pair is placed is a new 3rd

column along with the value by which they differ in brackets. The second

number (next smaller number) in the first group is then compared with all

numerically greater numbers in the second group. The process is continued

until the first group is exhausted. A line is then placed under the last entry in

the 3rd column.

Now the first number in the second group is compared with all

numerically greater numbers in the third group. This procedure is continued

until the entire list in column 2 is exhausted.

Any decimal number that fails to combine with any other number is

noted for later reference. The Boolean term that corresponds to such a

number is called a prime implicant.

6. The second comparison is performed on column 3. This comparison is

almost identical with the procedure used on column 2, except that both

the decimal numbers in the brackets must be the same before checking

the difference of the leading number in each row.

For example, let us consider the following:

  The first row numbers in the first group are

compared with the second row numbers in the

second group, since the difference numbers in the

brackets are the same, namely 2. Similarly the

second row numbers in the first group are compared

with the first row numbers in the second group, since the bracketed

difference numbers are equal, namely 8. The third column entries will

then be

0, 2, 8, 10 (2, 8)

and 0, 8, 2, 10 (8, 2)

Column 3

0, 2 (2)

0, 8 (8)

2, 10 (8)

8, 10 (2)
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The first entry in the brackets is the difference in the previous column

just carried over and the second entry is the new difference between the

leading terms in the rows compared. As the order of the digits has no

significance, the two rows in column 4 are listed only once in the column

4 as 0, 2, 8, 10 (2, 8). Again the terms that fail to compare are recorded.

7. A new comparison is now performed on column 4. Again all the terms in

the brackets must be identical before a comparison is made. Only the

leading decimal numbers in the rows are actually checked to determine if

the compared numbers differ by a power of 2. A new comparison is

performed on each new column generated until further comparisons are

not possible.

8. A graphical method (Prime implicant chart method) is now used to

eliminate unnecessary prime implicants and to show all possible answers.

All the decimal numbers corresponding to the terms in the given Boolean

function are entered in the first row of the chart. All the prime implicants

chosen are entered in the first column of the chart. Check marks (�) are

now placed in the body of the chart below those decimal numbers in the

first row which also occur in the first column. Numbers in the brackets

are not considered for this purpose.

9. Columns that contain only one check mark are noted. The term in the

first column that produces that ckeck mark is required in the answer and

is called irredundant prime implicant. The check mark is now encircled.

10. The first decimal number in each irredundant prime implicant is converted

to its binary form. The bit positions in the binary number corresponding

to the decimal numbers in the brackets are crossed out. The remaining

bits are then converted to their Boolean (alphabetic) variables.

WORKED EXAMPLES 5(C)

Example 5.1 Determine whether the posets represented by the Hasse

diagrams given in Fig. 5.40 are lattices.

Fig. 5.40
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Note

Since P1 � Pj, for j = 2, 3, …, 12, P1 is

a lower bound of the lattice.

Similarly since Pj � P12 for j = 1, 2, …,

11, P12 is an upper bound of the lattice.

Since L has both a lower bound and

an upper bound, it is a bounded lattice.

(a) The poset represented by the Hasse diagram in Fig. 5.40(a) is a lattice,

since every pair of elements of this poset has both an LUB and a GLB.

(b) The pair of elements a, b does not have a GLB and the pair e, f does not

have an LUB. Hence the poset in Fig. 5.40(b) is not a lattice.

(c) Since every pair of elements of the poset in Fig. 5.40(c) has both an LUB

and a GLB, it is a lattice.

(d) Though the pair of elements {b, c} has 3 upper bounds d, e, f, none of

these precedes the other two i.e. {b, c} does not have an LUB. Hence the

poset in Fig. 5.40(d) is not a lattice.

Example 5.2 If P(S) is the power set of a set S and � and � are taken as

the join and meet, prove that {P(S), �} is a lattice.

Let A and B be any two elements of P(S), i.e. any two subsets of S.

Then an upper bound of {A, B} is a subset of S that contains both A and B

and the least among them is A � B � P(S), as can be seen from the following:

We know A � A � B and B � A � B. i.e. A � B is an upper bound of

{A, B}. If we assume that A � C and B � C, then A � B � C.

Thus the LUB {A, B} = A � B.

Similarly A � B � A and A � B � B

i.e. A � B is a lower bound of {A, B}.

If we assume that C � A and C � B, then C � A � B.

Thus the GLB {A, B} = A � B.

i.e. every pair of elements of P(S) has both an LUB and a GLB under set

inclusion relation.

Hence {P(S), �} is a lattice.
Refer to the example 20 of the previous section in which the Hasse diagram

of {P(S), �}, where S � {a, b, c} is given.

Example 5.3 If L is the collection of 12 partitions of S = {1, 2, 3, 4}

ordered such that Pi � Pj if each block of Pi is a subset of a block Pj, show that

L is a bounded lattice and draw its Hasse diagram.

The 12 partitions of S = {1, 2, 3, 4} are

P1 = {(1), (2), (3), (4)} i.e. [1, 2, 3, 4], P2 = {(1, 2), (3), (4)} i.e. [12, 3, 4]

P3 = [13, 2, 4], P4 = [14, 2, 3], P5 = [23, 1, 4], P6 = [24, 1, 3], P7 = [34, 1, 2],

P8 = [123, 4], P9 = [124, 3], P10 = [134, 2], P11 = [234, 1] and P12 = [1234].

Using the ordering relation, the Hasse diagram of L has been drawn as in

Fig. 5.41.

Fig. 5.41
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Example 5.4 Draw the Hasse diagram of the lattice {P(S), �} in which

the join and meet are the operations � and � respectively, where S = {a, b, c}.

Identify a sublattice of this lattice with 4 elements and a subset of this

lattice with 4 elements which is not a sublattice.

L1 = {S1, S2, S4, S6} is a sublattice of L, by the argument given below:

S1 � S2 = S2 � L1, S1 � S4 = S4 � L1, S1 � S6 = S6 � L1,

S2 � S4 = S6 � L1, S2 � S6 = S6 � L1 and S4 � S6 = S6 � L1

Thus L1 is closed under the operation �.

Now S1 � S2 = S1 � L1, S1 � S4 = S1 � L1, S1 � S6 = S1 � L1,

S2 � S4 = S1 � L1, S2 � S6 = S2 � L1, S4 � S6 = S4 � L1.

Thus L1 is closed under the operation �.

Let us now consider L2 = {S1, S5, S7, S8}.

S5 � S7 = b = S3 � L2. Hence L2 is not a sublattice of L.

Example 5.5 If Sn is the set of all divisors

of the positive integer n and D is the relation of

‘division’, viz., aDb if and only if a divides b,

prove that {S24, D} is a lattice. Find also all the

sublattices of D24 [= {S24, D}] that contain 5 or

more elements.

Clearly {S24, D} = {(1, 2, 3, 4, 6, 8, 12, 24),

D} is a lattice whose Hasse diagram is given in

Fig. (5.43).

The sublattices containing 5 elements are {1,

2, 3, 6, 12}, {1, 2, 3, 12, 24}, {1, 2, 6, 12, 24},

{1, 3, 6, 12, 24} and {1, 2, 4, 8, 24}

The sublattice containing 6 elements is {1, 2, 3,

6, 12, 24}.

Fig. 5.42

Fig. 5.43
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Example 5.6 If a and b are elements of a lattice L such that a � b and if

the interval [a, b] is defined as the set of all x � L such that a � x � b, show

that [a, b] is a sublattice of L.

Let x, y be in [a, b]. Then x, y � L.

� x � y and x � y � L, since L is a lattice.

Now a � x � x � y � b � x � y � [a, b]

Also a � x � y � x � b � x � y � [a, b]

Hence [a, b] is a sublattice.

Example 5.7 Verify whether the lattice given by the Hasse diagram in

Fig. 5.44 is distributive.

a � (b � c) = a � b = 0

Also (a � b) � (a � c) = 0 � 0 = 0

� a � (b � c) = (a � b) � (a � c) (1)

Now c � (a � b) = c � 1 = c

Also (c � a) � (c � b) = 0 � c = c

� c � (a � b) = (c � a) � (c � b) (2)

Steps (1) and (2) do not mean that the lattice is

distributive.

Now let us consider

b � (c � a) = b � 1= b

But (b � c) � (b � a) = c � 0 = c

This means that b � (c � A) � (b � c) � (b � a)

Hence the given lattice is not distributive.

Example 5.8 Prove that D42 � {S42, D} is a complemented lattice by

finding the complements of all the elements.

D42 = {1, 2, 3, 6, 7, 14, 21, 42}

The Hasse diagram of D42 is given in Fig. 5.45.

The zero element of the lattice is 1 and the unit element of the lattice is 42.

1 � 42 = LCM {1, 42} = 42 � ‘1’

and 1 � 42 = GCD {1, 42} = 1 � ‘0’

� 1� = 42

Fig. 5.44

Fig. 5.45
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Similarly we can find that 2� = 21, 3� = 14, 6� = 7, 7� = 6, 14� = 3, 21� = 2 and

42� = 1.

Since every element of D42 has a complements, it is a complemented lattice.

Example 5.9 Find the complements, if they exist, of the elements a, b, c

of the lattice, whose Hasse diagram is given in Fig. 5.46. Can the lattice be

complemented?

From the Hasse diagram, it is seen that a � e = 1 and

a � e = 0.

� The complement of a is e.

Similarly b � d = 1 and b � d = 0

� The complement of b is d.

But c � a = c and c � a = a

c � b = c and c � b = b

c � d = 1 and c � d = a

c � e = 1 and c � e = b

� c has no complement.

Since one of the elements of the lattice, namely c

has no complement, the lattice is not complemented.

Example 5.10 Prove that cancellation law holds good in a distributive

lattice, viz. if {L, �, �} is a distributive lattice such that a � b = a � c and

a � b = a � c, where a, b, c � L, then b = c.

c � (a � b) = (c � a) � (c � b), since L is distributive

= (a � c) � (c � b), by commutativity

= (a � b) � (c � b), given

= (b � a) � (b � c), by commutativity

= b � (a � b), by distributivity

= b � (b � a), by commutativity

= b, by absorption law (1)

Also c � (a � b) = c � (a � c), given

= c � (c � a), by commutativity

= c, by absorption law (2)

From (1) and (2), it follows that b = c.

distributive lattice {L, �, �}, viz. (a � b)� = a� � b� and (a � b)� = a� � b�, where

a, b � L.

Since the lattice is complemented, the complements of a and b exist. Let

them be a� and b�.
Now (a � b) � (a� � b�) = {(a � b) � a�} � {(a � b) � b�}, by distributivity

= {a � (b � a�)} � {a � (b � b�)}, by associativity

= {a � (a� � b)} � {a � 1}, by commutativity

= {(a � a�) � b} � {a � 1}, by associativity

= (1 � b) � (a � 1)

= 1 � 1

= 1 (1)

Fig. 5.46
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(a � b) � (a� � b�) = {a � (a� � b�)} � �b � (a� � b�)}, by distributivity

= {(a � a�) � b�} � {b � (b� � a�)},

by associativity and commutativity

= {(a � a�) � b�} � {(b � b�) � a�}, by associativity

= (0 � b�) � (0 � a�)
= 0 � 0

= 0 (2)

From (1) and (2), we get

a� � b� is the complement of a � b

or (a � b)� = a� � b� (3)

By principle of duality, it follows from (3) that

(a � b)� = a� � b�.

If P(S) is the power set of a non-empty set S, prove that

{P(S), �, �, \, , S} is a Boolean algebra, where the complement of any set

A � S is taken as S\A or S – A that is the relative complement of A with respect

to S.

Let X, Y and Z be any three elements of P(S).

Now X �  = X and X � S = X

Thus  and S play the roles of 0 and 1 and the identity laws are satisfied (1)

X � Y = Y � X and X � Y = Y � X

i.e. the commutative laws are satisfied (2)

(X � Y) � Z = X � (Y � Z) and (X � Y) � Z = X � (Y � Z)

i.e. the associative laws hold good (3)

X � (Y � Z) = (X � Y)�� (X � Z) and

X � (Y � Z) = (X � Y) � (X � Z)

i.e. the distributive laws hold good (4)

X � (S – X) = S and X � (S – X) = 

i.e. the complement laws hold good (5)

Hence {P(S), �, �, \, , S} is a Boolean algebra.

Example 5.13

(i) If a, b � S = {1, 2, 3, 6} and a + b = LCM (a, b), a � b = GCD (a, b)

and a� = 
6

a
, show that {S, +, �, �, 1, 6} is a Boolean algebra.

(ii) If a, b � S = {1, 2, 4, 8} and a + b = LCM(a, b), a, b = GCD (a, b) and

a� = 
8

a
, show that {S, +, �, �, 1, 8} is not a Boolean algebra.

(i) 1 and 6 are the zero element and unit element of {S, +, �, �, 1, 6}

If a represents any of the elements 1, 2, 3, 6 of S, clearly a + ‘0’ = LCM

(a, 1) = a and a � ‘1’ = GCD(a, 6) = a

i.e. identity laws hold good.
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Similarly commutative, associative and distributive laws can be verified.

a + a� = LCM 
6

,a
a

= 6 = ‘1’

and a ��a� = GCD 
6

,a
a

= 1 = ‘0’

i.e. the complement laws hold good.

Hence {S, +, �, �, 1, 6} is a Boolean algebra.

(ii) 1 and 8 are the zero element and unit element of {S, +, �, �, 1, 8}

The first 4 axioms can be verified to be true.

When a = 2, a + a� = LCM 
8

2,
2

= 4 � 8

Similarly a � a� = GCD 
8

2,
2

= 2 � 1

Hence the complement laws do not hold good.

Hence {S, +, �, �, 1, 8} is not a Boolean algebra.

Example 5.14 In Boolean algebra, if a + b = 1 and a � b = 0, show that

b = a�, viz., the complement of every element a is unique.

b = b � 1
= b � (a + a�), by B5

= b � a + b � a�, by B4

= a � b + b � a�, by B2

= 0 + b � a�, given

= a � a� + b � a�, by B5

= a� � a + a� � b, by B2

= a� � (a + b), by B4

= a� � 1, given

= a�, by B1

Example 5.15 In a Boolean algebra, prove that the following statements

are equivalent:

(1) a + b = b, (2) a � b = a, (3) a� + b = 1, (4) a � b� = 0.

Let (1) be true.

Then a � b = a � (a + b), by (1)

= a, by absorption law.

i.e. (1) � (2)

Now a + b = a � b + b, by (2)

= b + b � a

= b
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i.e. (2) � (1)

� (1) and (2) are equivalent.

a� + b = a� + (a + b), by (1)

= (a + a�) + b

= 1 + b

= 1, by dominance law.

i.e. (1) � (3)

Also a + b = (a + b) � 1
= (a + b) � (a� + b), by (3)

= a � a� + b

= 0 + b

= b

i.e. (3) � (1)

� (1) and (3) are equivalent.

Given: a� + b = 1 (3)

� (a� + b)� = 1�
i.e. (a�)� � b� = 0, by De Morgan’s law

i.e. a � b� = 0

i.e. (3) � (4)

Given: a � b� = 0 (4)

� a� + (b�)� = 0�, by De Morgan’s law

i.e. a� + b = 1

i.e. (4) � (3)

� (3) and (4) are equivalent.

Hence all the 4 statements are equivalent.

Example 5.16 The Hasse diagram of a Boolean

algebra B is given in Fig. 5.47. Which of the following

subsets are subalgebras of B, just Boolean algebras

and neither?

S1 = {0, a, a�, 1}; S2 = {0, a� + b, a � b�, 1};

S3 = {a, a � b�, b, 1};

S4 = {0, b�, a � b�, a�}; S5 = {0, a, b�, 1}

To test whether S is a subalgebra of B, it is

not necessary to check for closure with respect

to all the three operations +, � and �, nor is it necessary to

check whether 0 and 1 are in S1. Equivalently it is enough

to test the closure with respect to {+, �} or {�, �}]

0 + a = a, 0 + a� = a�, 0 + 1 = 1, a + a� = 1, a + 1 = 1 and a� + 1 = 1 are

in S1.

0� = 1, a�, (a�)� = a, 1� = 0 are in S1

� S1 is a subalgebra of B.

In fact, the general form of a 4-element subalgebra is (0, a, a�, 1).

Accordingly, (a� + b)� = a � b�. Hence S2 = {0, a� + b, a � b�, 1} is also a

subalgebra of B.

Fig. 5.47

Note
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Though S3 and S4 satisfy the axioms of Boolean algebra, they are not closed

with respect (+, �).
Hence S3 and S4 are Boolean algebras, but not subalgebras of B.

In S5, a� and (b�)� are not present. Hence S5 is not even a Boolean algebra,

but it is only a subset of B.

Example 5.17 Simplify the Boolean expression

a� � b� � c + a � b� � c + a� � b� � c�, using Boolean algebra identities.

a� � b� � c + a � b� � c + a � b� � c�
= a� � b� � c + a � b� �� (c + c�)
= a� � b� � c + a � b� � 1
= b� � (a + a� � c)

= b� � (a + a�) � (a + c)

= b� � 1 � (a + c)

= a � b� + b� � c

Example 5.18 In any Boolean algebra, show that

ab� + a� b = 0 if and only if a = b.

(i) Let a = b.

Then ab� + a�b = aa� + a�a
= 0 + 0

= 0.

(ii) Let ab� + a� b = 0 (1)

Then a + ab� + a� b = a

i.e. a + a� b = a, by absorption law

i.e. (a + a�) � (a + b) = a

i.e. 1 � (a + b) = a

i.e. a + b = a (2)

Similarly, from (1), ab� + a�b + b = b

i.e. ab� + b = b, by absorption law.

i.e. (a + b) � (b + b�) = b

i.e. (a + b) � 1 = b

i.e. a + b = b (3)

From (2) and (3), it follows that a = b.

Example 5.19 In any Boolean algebra, show that

(a + b�) (b + c�) (c + a�) = (a� + b) (b� + c) (c� + a)

L.S. = (a + b� + 0) (b + c� + 0) (c + a� + 0)

= (a + b� + c � c�) �� (b + c� + aa�) � (c + a� + bb�)
= (a + b� + c) � (a + b� + c�) � (b + c� + a) � (b + c� + a�)

� (c + a� + b) � (c + a� + b�)
= {(a� + b + c) (a� + b + c�)} � {(b� + c + a) (b� + c + a�)}

� {(c� + a + b) (c� + a + b�)}
= (a� + b + cc�) � (b� + c + aa�) � (c�+ a + bb�)
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= (a� + b + 0) � (b� + c + 0) � (c� + a + 0)

= (a� + b) � (b� + c) � (c� + a)

= R.S.

Example 5.20 In any Boolean algebra, prove that

(i) x + wy + uvz = (x + u + w) (x + u + y) (x + v + w) (x + v + y) (x + w + z)

(x + y + z)

(ii) ab + abc + a�b + ab�c = b + ac.

(i) R.S. = (x + u + wy) � (x + v + wy) (x + z + wy)

= {(x + wy) + uv} � (x + wy + z)

= x + wy + uvz

= L.S.

(ii) L.S. = (ab + a�b) + (abc + ab�c)

= (a + a�) � b + (b + b�) � ac

= 1 ��b + 1 � ac

= b + ac

= R.S.

Example 5.21 Find the output of the network given in Fig. 5.48(a) and

design a simpler network having the same output.

Fig. 5.48(a)

The output of the upper AND gate is xyz. The output

of the inverter before the lower AND gate is x� and so

the output of the lower AND gate is x�yz.

Consequently, the output of the OR gate is xyz +

x�yz.

Now xyz + x�yz = (x + x�) � yz

= 1 � yz

= yz

Thus the simplified Boolean expression is yz which is reresented by the simplified

circuit diagram given in Fig. 5.48(b).

Example 5.22 Find the output of the network given in Fig. 5.49(a) and

design a simpler network having the same output.

The outputs of the AND gates from top to bottom are

xyz�, xy�z�, x�yz� and x�y�z�.
Hence the output of the OR gate is

xyz� + xy�z� + x�yz� + x�y�z�.

Fig. 5.48(b)
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Fig. 5.49(a)

Simplfying algebraically, the output

= xz�(y + y�) + x�z�(y + y�)
= xz� � 1 + x�z� � 1
= (x + x�)z� = 1 � z� = z�

The simplified output is represented by the network [Fig. (5.49(b)].

Example 5.23 Find the output of the combinational circuit given in Fig.

5.50(a) and design a simpler circuit having the same output.

Proceeding backwards from the output f, we have

f = f1 + f2 + f3

= (f4 � f5) + f2 + (f6 � y)

= (yz)� (wx)� + w + x + y + (f7 + w)y

= (yz)� � (wx)� + w + x + y + (x + z + w)y

Fig. 5.49(b)

Fig. 5.50(a)
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Rewriting f using Boolean algebra rules, we have

f = (yz)� � (wx)� + w + x + y + xy + yz + yw

= (yz)� � (wx)� + (w + yw) + (x + xy) + (y + yz)

= (yz)� � (wx)� + w + x + y
(yz)� � (wx)� is not rewritten as (y �+ z �) � (w � + x �) = y �w � + x �y � + z �w � +
z �x �, as the modified form requires more gates and more inverters than the

original form.

The simpler circuit corresponding to the modified f is given in Fig. 5.50(b).

Note

Fig. 5.50(b)

Example 5.24 Simplify the following Boolean expressions using Boolean

algebra:

(i) (x + y + xy) (x + z)

(ii) x[y + z(xy + xz)�]
(iii) xy� + z + (x� + y) z�.
(i) (x + y + xy) (x + z) = (x + y) (x + z) [� y + xy = y]

= x � x + xz + xy + yz

= x + xz + xy + yz [� x � x = x]

= x + xy + yz [� x + xz = x]

= x + yz [� x + xy = x]

(ii) x[y + z(xy + xz)�]
= x[y + z(xy)� � (xz)�] [by De Morgan’s law]

= x[y + z(x� + y�) (x� + z�)] [by De Morgan’s law]

= x[y + z(x� + x�z� + x�y� + y�z�)] [� x� � x� = x�]
= x[y + z(x� + x�y� + y�z�)] [� x� + x�z� = x�]
= x[y + z(x� + y�z�)] [� x� + x�y� = x�]
= x[y + zx� + y�zz�]
= x(y + zx�) [� zz� = 0]

= xy + zxx�
= xy [� xx� = 0]

(iii) xy� + z + (x� + y)z� = (xy� + z) + (xy� + z)�, by De Morgan’s law

= 1 [� a + a� = 1]

Example 5.25 Simplify the following expressions using Boolean algebra:

(i) a�b(a�+ c) + ab�(b� + c)

(ii) a + a�bc� + (b + c)�
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(i) a�b(a� + c) + ab�(b� + c) = a�b + a�bc + ab� + ab�c
(� a� � a� = a� and b� � b� = b�)

= (a�b + ab�) + (a�b + ab�)c

= a�b + ab� [� x + xy = x]

(ii) a + a�bc� + (b + c)�

= a + a�bc� + b�c�, by De Morgan’s law

= a + (a�b + b�) � c�

= a + [(a�+ b�) � (b + b�)c�]

= a + (a� + b�)c� (� b + b� = 1)

= (a + a�c�) + b�c�

= (a + a�) (a + c�) + b�c�

= a + (c� + b�c�) [� a + a� = 1]

= a + c� [� x + xy = x]

Example 5.26 In any Boolean algebra, show that

(i) (x + y) (x� + z) = xz + x�y + yz = xz + x�y

(ii) (xy�z� + xy�z + xyz + xyz�) (x + y) = x

(i) (x + y) (x� + z)

= xx� + xz + x�y + yz

= xz + x�y + yz (� xx� = 0)

Now xz + x�y + yz

= xz + x�y + yz(x + x�)

= xz + x�y + xyz + x�yz

= (xz + xzy) + (x�y + x�yz)

= xz + x�y

(ii) L.S. = [xy�(z + z�) + xy(z + z�)] � (x + y)

= (xy� + xy) (x + y) [� a + a� = 1]

= x(y + y�) (x + y)

= x(x + y) [� y + y� = 1]

= x + xy

= x

= R.S.

Example 5.27 Find the disjunctive normal forms of the following Boolean

expressions by (i) truth table method and (ii) algebraic method:

(a) f (x, y, z) = xy + yz�
(b) f (x, y, z) = y� + [z� + x + (yz)�] (z + x�y)

(c) f (x, y, z, w) = xy + yzw�
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(a) (i) Truth Table Method

f

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 1 1

0 1 1 0 0 0

1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 1 1 1

1 1 1 1 0 1

The minterms corresponding to the 3 rows for which 1 occurs in the f

column are x�yz�, xyz� and xyz.

� DNF of f(x, y, z) = x�yz� + xyz� + xyz.

(ii) Algebraic method

f = xy + yz� = xy(z + z�) + (x + x�)yz�
= xyz + xyz� + xyz� + x�yz�
= xyz + xyz� + x�yz� (� a + a = a)

(b) (i) Truth Table Method

x y z yz (yz)  + x + (yz) y h = z + x y gh f = y  + gh

0 0 0 0 1 1 0 0 0 1

0 0 1 0 1 1 0 1 1 1

0 1 0 0 1 1 1 1 1 1

0 1 1 1 0 0 1 1 0 0

1 0 0 0 1 1 0 0 0 1

1 0 1 0 1 1 0 1 1 1

1 1 0 0 1 1 0 0 0 0

1 1 1 1 0 1 0 1 1 1

The minterms correspond to all the rows except the 4th and 7th rows.

� DNF of f (x, y, z) = x�y�z� + x�y�z + x�yz� + xy�z� + xy�z + xyz.

(ii) Algebraic method

f (x, y, z) = y� + [z� + x + y� + z�] (z + x�y), by De Morgan’s law

= y� + (x + y� + z�) (z + x�y) (� z� + z� = z�)

= y� + xz + y�z + x�y�z (� xx� = yy� = zz� = 0)

= y�(x + x�) + xz(y + y�) + y�z(x + x�) + x�yz�

= xy�(z + z�) + x�y�(z + z�) + xyz + xy�z + x�y�z + x�yz�

= xy�z + xy�z� + x�y�z + x�y�z� + xyz + x�yz�

(avoiding repetition of terms).



350 Discrete Mathematics

(c) (i) Truth Table Method

x 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

y 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

z 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

w 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

xy 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

yzw � 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

f 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1

DNF of f = x�yzw� + xyz�w� + xyz�w + xyzw� + xyzw

(ii) Algebraic method

f (x, y, z) = xy(z + z�) + (x + x�) yzw�
= xyz(w + w�) + xyz� (w + w�) + xyzw� + x�yzw�
= xyzw + xyzw� + xyz�w + xyz�w� + xyzw� + x�yzw�
= xyzw + xyzw� + xyz�w + xyz�w + x�yzw�

(repetition of xyzw� avoided).

Example 5.28 Find the conjuctive normal forms of the following Boolean

expressions using (i) truth table method and (ii) algebraic method:

(a) f(x, y, z) = (x + z)y;

(b) f(x, y, z) = x;

(c) f(x, y, z) = (yz + xz�) (xy� + z)�.

(a) (i) Truth Table Method

x y z x + z f = (x + z)y

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 1 1

1 0 0 1 0

1 0 1 1 0

1 1 0 1 1

1 1 1 1 1

The maxterms corresponding to the rows for which 0 occurs in the f

column are

(x + y + z), (x + y + z�), (x + y� + z), (x� + y + z) and (x� + y + z�)

� The required CNF of f (x, y, z) is

(x + y + z) (x + y + z�) (x + y� + z) (x� + y + z) (x� + y + z�).

(ii) Algebraic method

f = (x + z)y = (x + z + yy�)y
= (x + y + z) (x + y� + z) (y + xx�)
= (x + y + z) (x + y� + z) (x + y) (x� + y)

= (x + y + z) (x + y� + z) (x + y + zz�) (x� + y + zz�)
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= (x + y + z) (x + y� + z) (x + y + z) (x + y + z�)
(x� + y + z) (x� + y + z�)

= (x + y + z) (x + y� + z) (x + y + z�) (x� + y + z)

(x� + y + z�) (� aa = a).

(b) (i) Truth Table Method

Since f(x, y, z) = x, 0’s occur in the first rows of the f column.

The maxterms corresponding to three rows are

(x + y + z), (x + y + z�), (x + y� + z) and (x + y� + z�)

� DNF of f = (x + y + z) (x + y� + z) (x + y + z�) (x + y� + z�)

(ii) Algebraic method

f(x, y, z) = x = x + yy� = (x + y) (x + y�)
= (x + y + zz�) (x + y� + zz�)
= (x + y + z) (x + y + z�) (x + y� + z) (x + y� + z�)

(c) (i) Truth Table Method

h = xy  + z h f = gh

0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0

0 1 1 1 0 1 0 1 0 0

1 0 0 0 1 1 1 1 0 0

1 0 1 0 0 0 1 1 0 0

1 1 0 0 1 1 0 0 1 1

1 1 1 1 0 1 0 1 0 0

By Boolean multiplication of the maxterms corresponding to the 0’s in f

column, we get

DNF of f = (x + y + z) (x + y + z�) (x + y� + z) (x + y� + z�)
(x� + y + z) (x� + y + z�) (x� + y� + z�)

(ii) Algebraic method

f(x, y, z) = (yz + xz�) (xy� + z)�
= (yz + xz�) (x� + y)z�, by De Morgan’s laws.

= (yz + xz�) (x�z� + yz�)
= (yz + x) (yz + z�) (x�z� + y) (x�z� + z�)
= (x + y) (x + z) (y + z�) (x� + y) (y + z�) (x� + z�)z�

[� z + z� = 1 and z� + z� = z�]
= (x + y + zz�) (x + z + yy�) (y + z� + xx�) (x� + y + zz�)

(y + z� + xx�) (x� + z� + yy�) (z� + xx�)

= (x + y + z) (x + y + z�) (x + y + z) (x + y� + z) (x + y + z�)

(x� + y + z�) (x� + y + z) (x� + y + z�) (x + y + z�) (x� + y + z�)
(x� + y + z�) (x� + y� + z�) (z� + x + yy�) (z� + x� + yy�)

= (x + y + z) (x + y + z�) (x + y� + z) (x� + y + z) (x� + y + z�)
(x� + y� + z�) (x + y� + z�) [avoiding repetition of factors]
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Example 5.29 Find the minimal sum of products expression for the

function.

f (a, b, c) = ab�c� + abc� + abc + ab�c + a�b�c, using

Karnaugh map method.

Corresponding to each minterm, a 1 is placed in the

respective square.

For example, corresponding to the minterm ab�c�,
we place a 1 in the cell for which a = 1, b = 0 and c =

0 (Fig. 5.51).

The adjacent cells containing 1’s are looped as shown in the figure.

The bigger loop corresponds to a = 1, while the smaller one corresponds to

b = 0 and c = 1.

Hence the terms to be included in the minimum sum is a and b�c.

i.e. f (a, b, c) = a + b�c

Example 5.30 Use Karnaugh map method to minimise the Boolean

expression f (a, b, c) = � (0, 2, 5, 6).

Converting the decimal numbers contained in �,

the given expression is

f(a, b, c) = 000 + 010 + 101 + 110

= a�b�c� + a�bc� + ab�c + abc�

map representation of f(a, b, c) is given in Fig. 5.52.

The minimum possible loops to cover all the 1’s in the various cells are

shown in the figure. The two cell loop enclosing the 1’s in the 000 and 010

cells correspond to the term a�c�.
The common digits 0 in the 1st place and 0 in the 3rd place in the two

binary numbers 000 and 010 contribute a�c�.
Similarly the two cell loop enclosing the 1’s in the 010 and 110 cells

contribute bc�.
The 1 in the 101 cell cannot be grouped with any other 1. This contributes

the term ab�c.

Thus the minimum f(a, b, c) = a�c� + bc� + ab�c.

Example 5.31 Find the minimum sum for the

function f(a, b, c, d) = a�b�c�d� + a�bc�d + a�b�cd +

a�b�cd� + a�bcd, by Karnaugh map method.

The given minterms in f (a, b, c, d) correspond

to the binary numbers 0000, 0101, 0011, 0010,

and 0111. The number 1 is entered in the cells

corresponding to these numbers and the number 0 is

entered in the remaining cells.

The minimum possible number of loops containing

the maximum possible number of 1’s are shown in

Fig. 5.53.

Fig. 5.51

Note

Fig. 5.52

Fig. 5.53
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The terms corresponding to the loops are a�b�d�, a�bd and a�bd.

Hence minimum f (a, b, c, d) = a�b�d� + a�bd + a�bd.

Example 5.32 Minimise the function f (a, b, c,

d) = a�b�c�d� + a�b�c�d + a�b�cd� + a�bc�d� + a�bc�d +

a�bcd� + ab�c�d� + ab�c�d + abcd by Karnaugh map

method.

The given minterms in f(a, b, c, d) correspond to

the binary numbers 0000, 0001, 0010, 0100, 0101,

0110, 1000, 1001 and 1111. The number 1 is entered

in the cells corresponding to these number and 0 is

entered in the other cell in Fig. 5.54.

maximum number of 1’s are drawn as in Fig. 5.54.

The terms corresponding to the three 4-cell loops are a�c� [obtained by

decoding the common digits in 0000, 0001, 0100, 0101], a�d� are b�c�. The

single 1 encircled corresponds to abcd.

� Minimum f(a, b, c, d) = a�c� + a�d� + b�c� + abcd.

Example 5.33 Simplify the Boolean function f(a, b, c, d) = � (0, 1, 2,

3, 4, 5, 6, 7, 8, 9, 11), by Karnaugh map method.

The decimal numbers contained in � are converted

into 4 digit binary numbers are 0000, 0001, 0010,

0011, 0100, 0101, 0110, 0111, 1000, 1001 and 1011.

They are represented by 1’s in the respective cells as

shown in Fig. 5.55.

The minimum number of loops each containing

the maximum number of 1’s are drawn as in Fig.

5.55. There are one 8-cell loop and two 4-cell loops.

The common binary digit corresponding to all the

numbers in the 8-cell loop is the ‘0’ in the first place.

Hence all the 8 terms in 8-cell loop represent a�. Similarly the terms representing

the two 4-cell loops are b�c� and b�d.

Hence minimum f(a, b, c, d) = a� + b�c� + b�d.

Example 5.34 Minimise the function f(a, b, c, d) = � (0, 2, 6, 7, 8, 9,

13, 15), using Karnaugh map method.

Proceeding as usual, we get the Karnaugh map representation of the function

f(a, b, c, d) as shown in Fig. 5.56(a) and Fig. 5.56(b).

To cover the various 1’s, two ways of looping are possible as shown in

Fig. 5.56(a) and Fig. 5.56(b). The minimum values of f(a, b, c, d) got in both

ways require the same number of gates and the same number of literals.

Thus minimum f(a, b, c, d) = a�b�d� + a�bc + abd + ab�c� or b�c�d� + ac�d +

bcd + a�cd�.

Fig. 5.54

Fig. 5.55
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Example 5.35 Minimise the function f(a, b, c, d) = � (2, 3, 7, 9, 11,

13) + �  (1, 10, 15) by Karnaugh map method, where �  denote the don’t care

terms. Make optimum use of the don’t care terms.

Proceeding as usual, we get the Karnaugh map representation of the function

f(a, b, c, d). The cells corresponding to the ‘don’t care terms’, namely 1(0001),

10(1001) and 15(1111) are marked with  as shown in Fig. 5.57(a)

Fig. 5.56(a) Fig. 5.56(b)

Fig. 5.57(b)Fig. 5.57(a)

The  terms can be assumed as either 1 or 0. If we assume the  in the

Similarly if we assume the 

loop. On the other hand, if we assume the  in the (0001) cell, it does not result

Figure 5.57(b) shows the usual 1’s and the -converted 1’s and the loops.

Minimum f(a, b, c, d) = ad + cd + b�c.

Example 5.36 Find the minimum product of

sums for the function f(a, b, c, d) =  (1, 3, 5, 7, 8,

The decimal numbers contained in  (product

symbol) are converted into 4 digit binary numbers as

0001, 0011, 0101, 0111, 1000, 1010, 1011, 1100 and

1110. These numbers represent the maxterms (a + b

+ c + d�), (a + b + c� + d) etc. These are repersented

by 0’s in the respective cells in the Karnaugh map

given in Fig. 5.58.

Fig. 5.58
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The minimum number of loops each containing the maximum number of

0’s are drawn as in Fig. 5.58.

The 4-cell loop in the first two rows corresponds to a = 0 and d = 1 and

hence represents (a + d�).
The 4-cell loop in the last two rows corresponds to a = 1 and d = 0 and

hence represents (a� + d).

The 2 cell loop in the last row corresponds to a = 1, b = 0 and c = 1 and

hence represents (a� + b + c�).
Hence the minimum product form of f(a, b, c, d) = (a + d �) (a� + d) (a � +

b + c�).

Example 5.37 Find the minimum sum of products for the function

f (a, b, c) = �(0, 2, 3, 7) by using the Quine-McCluskey’s tabulation method.

First we find the binary number representations of the given decimal numbers

in � and arrange them in column 1 after separating them in groups according to

the number of 1’s. In column 2, we write the decimal equivalents, arranging

them in ascending order within each group.

Col. 1 Col. 2 Col. 3

000 0 � 0, 2 (2)*

010 2 � 2, 3 (1)*

011 3 � 3, 7 (4)*

111 7 �

The prime implicants are marked with *.

The entry 0 in the 1st group of Col. 2 is compared with the entry 2 in the 2nd

group. Since the difference is (2 – 0) = 2, a power of 2, the pair of numbers 0

and 2 are placed in the 1st group in the Col. 3 with the difference within

brackets as 0, 2(2). The numbers in col. 2 thus paired are ticked. Similarly the

numbers 2 and 3 paired and then the numbers 3 and 7 are paired.

The pair of numbers in the 1st group in Col. 3 cannot be compared with the

pair of numbers in the 2nd group, since the numbers in the brackets are not the

same. Similarly the pairs of numbers in the 2nd and 3rd groups cannot be

compared. The process ends.

The entries in the 2nd and 3rd columns which are not ticked are the prime

implicants.

Now to eliminate the unnecessary prime implicants from the minimum sum,

we form the prime implicant chart. In the first column of the chart, the prime

implicants are entered. In the top row of the chart, all the given decimal

numbers are entered as shown in the following chart.

Prime Implicant chart

P.I.’s 0 2 3 7

0, 2(2) � �
2, 3(1) � �
3, 7(4) � �

Note
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Since the first prime implicant is the pair 0, 2, we make a � mark below 0

and 2 of the chart in the 1st row.

Similarly � marks are made under 2 and 3 in the 2nd row and also under 3

and 7 in the 3rd row.

Columns containing only one check (�) mark are noted and encircled. The

terms in the 1st column corresponding to the � mark are to be included in the

minimum sum. If we note that the terms 0, 2(2) and 3, 7(4) include all the

given decimal numbers, we conclude that no further term given in the 1st

column need be included in the minimum sum.

Now the minimum sum is the sum of the irredundant prime implicants in

the following sense:

Minimum f(a, b, c) = 0(2) + 3(4),

taking only the leading number in the selected terms

= 000(2) + 001(4) [binary equivalents taken]

= 0 00 + 011 [the bit positions corresponding to the

bracketed difference numbers struck off]

= a�c� + bc.

Example 5.38 Minimise f (a, b, c, d) = � (0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 15)

by Quine-Mc Cluskey’s method.

Col. 1 Col. 2 Col. 3 Col. 4

0000 0� 0, 1(1)� 0, 1, 2, 3(1, 2)*

0001 1� 0, 2(2)� 0, 1, 8, 9(1, 8)*

0010 2� 0, 4(4)� 0, 2, 4, 6(2, 4)*

0100 4� 0, 8(8)� 1, 3, 9, 11(2, 8)*

1000 8� 1, 3(2)� 2, 3, 6, 7(1, 4)*

0011 3� 1, 9(8)� 3, 7, 11, 15(4, 8)*

0110 6� 2, 3(1)�
1001 9� 2, 6(4)�
0111 7� 4, 6(2)�
1011 11� 8, 9(1)�
1111 15� 3, 7(4)�

3, 11(8)�
6, 7(1)�
9, 11(2)�
7, 15(8)�
11, 15(4)�

The prime implicants are marked with * mark

1. Numbers in any group of Col. 2 should be compared with larger

numbers in the succeeding group. For example, the entry 4 in the 2nd group

should not be compared with the entry 3 in the 3rd group, eventhough the

numerical difference is 1 = 20.

2. In column 3, the entry 0, 1(1) can be compared with 2, 3(1) in the next group,

contributing 0, 1, 2, 3 (1, 2). Similarly the entry 0, 2(2) can be compared with 1,

3(2) in the next group, contributing the very same result 0, 2, 1, 3(2, 1), eventhough

the numebrs outside and inside the brackets are in different order. The entry 0, 1,

2, 3(1, 2) should be made only once in the Col. 4.

Note
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3. Of the two entries bracketed, one is the difference obtained while comparing Col.

entries and the other is the difference (of the leading numbers) obtained while

comparing Col. 3 entries.

Now all the terms corresponding to the entries in Col. 4 are the prime

implicants. To find the irredundant prime implicants, we proceed to the

prime implicant chart.

Prime Implicant Chart

P.I.’s 0 1 2 3 4 6 7 8 9 11 15

0, 1, 2, 3(1, 2) � � � �
0, 1, 8, 9(1, 8) � � � �
0, 2, 4, 6(2, 4) � � � �
1, 3, 9, 11(2, 8) � � � �
2, 3, 6, 7(1, 4) � � � �
3, 7, 11, 15(4, 8) � � � �

Minimum f (a, b, c, d) = 0(1, 8) + 0(2, 4) + 3(4, 8)

= 000 0  + 0 0 00 + 0 011

= b�c� + a�d� + cd.

Example 5.39 Minimise f(a, b, c, d, e) = � (0, 1, 3, 8, 9, 13, 14, 15, 16,

17, 19, 24, 25, 27, 31) by Quine-Mc Cluskey’s method.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

0, 1, 8, 9, 16,

17, 24, 25

(1, 8, 16)*

0, 1(1)�
0, 8(8)�
0, 16(16)�
1, 3(2)�
1, 9(8)�
1, 17(16)�
8, 9(1)�
8, 24(16)�
16, 17(1)�
16, 24(8)�
3, 19(16)�
9, 13(4)*

9, 25(16)�
17, 19(2)�
17, 25(8)�
24, 25(1)�
13, 15(2)*

14, 15(1)*

19, 27(8)�
25, 27(12)�
15, 31(16)*

27, 31(4)*

00000

00001

01000

10000

00011

01001

10001

11000

01101

01110

10011

11001

01111

11011

11111

0�
1�
8�
16�
3�
9�
17�
24�
13�
14�
19�
25�
15�
27�
31�

The prime implicants are marked with * mark.Note

0, 1, 8, 9(1, 8)�
0, 1, 16, 17(1, 16)�
0, 8, 16, 24(8, 16)�
1, 3, 17, 19(2, 16)*

1, 9, 17, 25(8, 16)�
8, 9, 24, 25(1, 16)�
16, 17, 24, 25(1, 8)�
17, 19, 25, 27(2, 8)
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Note

Minimum f(a, b, c, d) = 0(1, 8, 16) + 1(2, 16) + 14(1) + 13(2) + 27(4) (or)

0(1, 8, 16) + 1(2, 16) + 14(1) + 9(4) + 27(4)

= 00000 + 00001 + 01110 + 01101 + 11011 (or)

00000 + 00001 + 01110 + 01001 + 11011

= c�d� + b�c�e + a�bcd + a�bce + abde (or)

c�d� + b�c�e + a�bcd + a�bd�e + abde

Example 5.40 Minimise f(a, b, c, d) = � (2, 3, 7, 9, 11, 13) +  (1, 10,

15), by using Quine-Mc Cluskey’s method.

While finding the prime implicants, the -terms are also included along with

the required terms.

Col. 1 Col. 2 Col. 3 Col. 4

0001 1� 1, 3(2)� 1, 3, 9, 11(2, 8)*

0010 2� 1, 9(8)� 2, 3, 10, 11(1, 8)*

0011 3� 2, 3(1)�
1001 9� 2, 10(8)� 3, 7, 11, 15(4, 8)*

1010 10� 3, 7(4)� 9, 11, 13, 15(2, 4)*

0111 7� 3, 11(8)�
1011 11� 9, 11(2)�
1101 13� 9, 13(4)�
1111 15� 10, 11(1)�

7, 15(8)�
11, 15(4)�
13, 15(2)�

While forming prime implicant chart, the -terms should not be included as the

column headings.

Prime Implicant Chart

P.I.’s 2 3 7 9 11 13

1, 3, 9, 11(2, 8) � � �
2, 3, 10, 11(1, 8) � � �
3, 7, 11, 15(4, 8) � � �
9, 11, 13, 15(2, 4) � � �

Minimum f (a, b, c, d) = 2(1, 8) + 3(4, 8) + 9(2, 4)

= 0010(1, 8) + 0011(4, 8) + 1001(2, 4)

= 001 0  + 0 011 + 1 0 01

= b�c + cd + ad.
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EXERCISE 5(C)

Part A: (Short answer questions)

1. Define a lattice and give an example of a lattice.

2. State the principle of duality with respect to lattices.

3. State the four basic properties of a lattice.

4. Write the dual of each of the following statements in a lattice:

(a) (a � b) � c = (b � c) � (c � a) (b) (a � b) � a = a � (b � a).

5. Draw the Hasse diagram of all lattices with 5 elements.

6. State the isotonic property of a lattice.

7. Write down the distributive inequalities of a lattice.

8. State the modular inequality of a lattice.

9. Define a lattice as an algebraic system.

10. Define sublattice.

11. Define lattice homomorphism and lattice isomorphism.

12. When is a lattice said to be (a) bounded, (b) distributive?

13. Define complement of an element of a lattice and complemented lattice.

14. Draw the Hasse diagram of a lattice one of whose elements has no

complement; more than one complement.

15. Define Boolean algebra as a lattice.

16. State the axioms of Boolean algebra.

17. Define a Boolean variable.

18. State the idempotent and dominance laws of Boolean algebra.

19. State the absorption and De Morgan’s laws of Boolean algebra.

20. State the principle of duality with respect to Boolean algebra.

21. Define sub Boolean algebra.

22. Define Boolean homomorphism and isomorphism.

23. Prove the following Boolean identities:

(a) a + a� � b = a + b (b) a � (a� + b) = a � b

(c) a � b + a � b� = a (d) a � b � c + a � b = a � b

(e) (a + b) � (a� + b) = b

24. Simplify the following Boolean expressions:

(a) (a � b)� + (a + b)� (b) (1 � a) + (0 � a�)
(c) a � c + c + [(b + b�) + c] (d) (a + b) � (a� + c)

25. Find the dual of the following Boolean expressions:

(a) a� bc� + a� b�c (b) a(b�c� + bc)

26. Find the complement of the following Boolean expressions:

(a) ab� + ac + b�c (b) a(bc + b�c�)
27. What is meant by Boolean function degree n?

28. Define minterm and maxterm with examples.

29. Define disjunctive normal form and conjuctive normal form of a Boolean

function.

30. What do you mean by canonical form of a Boolean function?
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31. What is a logic gate? Give 3 basic types of gates used in combinational

circuits.

32. Write down the truth table for the half adder.

33. Draw the combinational circuit for the half adder.

34. Write down the truth table for a full adder.

35. Name the methods commonly used to simplify Boolean expressions.

36. What do you mean by “don’t care terms” in a Boolean function?

Part B

37. Determine whether the posets represented by the Hasse diagrams given

in Fig. 5.59 are lattices.

Fig. 5.59

38. Determine whether the posets represented by the Hasse diagrams given

in Fig. 5.60 are lattices.

Fig. 5.60

39. If Z+ is the set of all positive integers and D denotes the relation of

‘division’ in Z+ such that for any a, b � Z+, a D b if and only if a divides

b, show that {Z+, D} is a lattice.

40. Determine whether the following posets are lattices:

(a) {(1, 3, 6, 9, 12), D}

(b) {(1, 5, 25, 125), D}

If a poset is not a lattice, given reasons.

41. Draw the Hasse diagram of the poset {S30, D}. Hence or otherwise

prove that it is a lattice.
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42. If the sets S0, S1, …, S7 are given by S0 = {a}, S1 = {a, b}, S2 = {a, c},

S3 = {a, b, c}, S4 = {a, b, c, e}, S5 = {a, b, c, d, e}, S6 = {a, b, c, e, f} and

S7 = {a, b, c, d, e, f}, find whether {L, �} is a lattice, where L = {S0, S1,

…, S7} by drawing the Hasse diagram or otherwise.

43. Show that the lattice of divisors of any positive integer n, viz., {Sn, D} is

a sublattice of {Z+, D}.

44. Show the poset represented by the Hasse diagram in Fig. 5.61(a) is a

lattice. Find if it is a sublattice of the lattice represented by the Hasse

diagram in Fig. 5.61(b).

Fig. 5.61

45. Which of the following subsets of the lattice L

represented by the Hasse diagram in Fig. 5.61(a)

are sublattices of L?

L1 = {0, a, b, 1}, L2 = {0, a, e, 1}, L3 = {a, c,

d, 1}, L4 = {0, c, d, 1}.

46. Which of the following subsets of L1 represented

by the Hasse diagram given in Fig. 5.62 are

sublattices of L?

L1 = {0, a, b, 1}, L2 = {0, a, e, 1}, L3 = {a, c,

d, 1}.

47. Find all the 4 element sublattices of the lattice

{S30, D}.

48. Show that with an example that the union of

two sublattices may not be a sublattice.

49. Find all the 5 element sublattices of the lattice

with the Hasse diagram in Fig. 5.63.

50. Find whether the lattices represented by the

Hasse diagrams in (a) Fig. 5.63 and (b) Fig.

5.64 are distributive.

51. Find the complements of 2 and 10 in the lattice {S60, D}.

52. Find the complements of the elements a, b, c in the lattices represented

by (a) Fig. 5.44 and (b) Fig. 5.64.

53. Show that the lattice represented by the Hasse diagram in Fig. 5.65 is

complemented but not distributive.

Fig. 5.62

Fig. 5.63
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54. Show that the lattice represented by the Hasse diagram in Fig. 5.66 is

distributive but not complemented.

Fig. 5.64 Fig. 5.65

Fig. 5.66

55. If P(U) is the power set of a universal set U, prove that {P(U), �, �, �, ,

U} is a Boolean algebra, where A� is the complement of the set A.

56. If a, b � S70, the divisors of 70 and a + b = LCM(a, b), a � b = GCD(a, b)

and a� = 
70

a
, show that {S70, +, �, �, 1, 70} is a Boolean algebra.

57. If a, b � S18, the divisors of 18 and a + b = LCM(a, b), a � b = GCD(a, b)

and a� = 
18

a
, show that {S18, +, �, �, 1, 18} is not a Boolean algebra.

58. Prove that D110, viz., {S110, D} is a Boolean algebra and find all its

subalgebras. Find also the number of sublattices with 4 elements.

59. In any Boolean algebra, prove that a � b� + a� � b = b, if and only if a = 0.

60. In any Boolean algebra, prove that

(a) a � b� + a� � b = (a + b) � (a� + b�)
(b) (a + b) � (a� + c) = ac + a�b + bc = ac + a�b.

(c) a � b� + b � c + c � a� = a� � b + b� � c + c� � a

61. Simplify the following Boolean expressions using Boolean algebra

identities.

(a) a� � b � (a� + c) + a � b� � (b� + c)

(b) (a + b + ab) � (a + c)

(c) a � (a + b) � (a + ab)

(d) a � b� + c + (a� + b) � c�
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62. Find the outputs of the networks given in Figs 5.67, 5.68 and 5.69 and

design a simpler network having the same outputs:

Fig. 5.67

63.

Fig. 5.68

Fig. 5.69

65. Find the disjunctive normal forms of the following Boolean expressions

using (a) truth table method and (b) algebraic method:

(a) f(x, y, z) = xy� + z

(b) f(x, y, z, w) = w + x�y + y�z
(c) f(x, y, z) = (x�y)� (x + y)

66. Find the conjunctive normal forms of the following Boolean expressions

using (a) truth table method and (b) algebraic method:

(i) f(x, y, z) = xy�
(ii) f(x, y, z) = (x + y) (x� + z) (y + z�)
(iii) f(x, y, z) = xz + x�y + yz

64.
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67. Use Karnaugh map method to find the minimum of the following Boolean

functions:

(a) f(a, b, c) = abc� + ab�c + ab�c� + a�bc + a�b�c
(b) f(a, b, c) = � (0, 1, 2, 3, 5, 7)

(c) f(a, b, c) = � (0, 2, 3, 7)

(d) f(a, b, c, d) = abcd + abc�d + abc�d� + ab�cd� + ab�c�d.

(e) f(a, b, c, d) = abcd + abcd� + abc�d + ab�c�d + ab�c�d� + a�bc�d +

a�b�cd� + a�b�c�d.

(f) f(a, b, c, d) = � (0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 15)

(g) f(a, b, c, d) = � (1, 2, 4, 5, 6, 11, 12, 13, 14, 15)

(h) f(a, b, c, d) = � (2, 5, 6, 9, 13, 14) + �  (0, 7, 8, 10, 15)

(i) f(a, b, c, d) = � (1, 4, 6, 8, 11, 12) + �  (2, 5, 13, 15)

(j) f(a, b, c, d) = � �  (2, 7, 8, 13)

(k) f(a, b, c, d) = 

(l) f(a, b, c, d) =  (0, 1, 2, 4, 7, 9, 10, 12, 15)

68. Use Quine-McCluskey’s method to minimise the following Boolean

functions:

(a) f(a, b, c) = abc + ab�c + ab�c� + a�bc + a�bc� + a�b�c�.
(b) f(a, b, c) = � (0, 1, 4, 6)

(c) f(a, b, c, d) = abcd� + abc�d + ab�cd + a�bc�d + a�b�cd� + a�b�c�d.

(d) f(a, b, c, d) = abcd + abcd� + abc�d + ab�cd + ab�cd� + a�bcd + a�b�cd

+ a�b�cd�+ a�b�c�d.

(e) f(a, b, c, d) = � (0, 2, 6, 7, 8, 9, 13, 15)

(f) f(a, b, c, d) = � (1, 2, 3, 4, 5, 6, 8, 10, 12)

(g) f(a, b, c, d, e) = � (9, 20, 21, 29, 30, 31)

(h) f(a, b, c, d) = � (4, 10, 11, 13) + �  (0, 2, 5, 15)

ANSWERS

Exercise 5(A)

15. (a) {1, 2, 3, 5} (b) {1, 2, 3, 4, 5}

(c) {1, 3, 4, 5, 6, 7, 8, 9, 10} (d) {9, 10}

(g) (h) {2, 4, 8}

(i) {1, 3, 4, 5, 8} (j) {1, 3, 5, 7}

(k) {3, 4, 5} (l) {1, 2, 3, 4, 5, 7, 8}

18. (a) False: A = {1}; B = {2}; C = {3} (b) True

(c) False: A = {1, 2}; B = {1}; C = {2} (d) True

(e) False: A = {1, 2}; B = {1}; C = {2} (f) True

(g) False: A = {1, 2}; B = {1}; C = {2} (h) True

(i) True

(j) False: A = {1, 2}; B = {2}; C = {3, 4}; D = {4}

(k) True (l) True
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19. (a) (b) B (c) A

20. (a) (A � B) � (A � U) = A

(b) A � B = (A � B) � (A � B ) � ( A � B)

(c) ( ) ( ) ( ).A B C A C A B� � � � � �

Exercise 5(B)

3. {(1, 3), (1, 5), (3, 3), (3, 5)}; Dom(R) = {1, 3}; Ran(R) = {3, 5}

5. R–1 = {(4, 1), (4, 2), (5, 1), (5, 3)}; R  = {(2, 5), (3, 4)}

6. {(1, 2), (1, 3), (1, 4), (2, 2), (3, 3)}

9. {(1, 1), (2, 2)} on {1, 2}

10. {(1, 3), (3, 1), (2, 3)}

11. {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)} on {1, 2, 3}

12. {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} on {1, 2, 3, 4}.

13. {(1, 1), (2, 2), (1, 3), (3, 1)} on {1, 2, 3}

19. [1] = [2] = {1, 2}; [3] = {3}

22.

0 0

1 0

1 1

� �
� �
� �
� �� �

23. {(1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 4), (4, 1), (4, 3)}

24. MR�S = 

1 1 1

1 0 1

0 1 0

� �
� �
� �
� �� �

; MR�S = 

0 0 1

1 0 0

0 1 0

� �
� �
� �
� �� �

25. 26. 27.

31. [ ; {1, 1}; {1, 2}; {2, 1}; {2, 2}; ({1, 1}, {1, 2}); ({1, 1}, {2, 1}); ({1,

1}), {2, 2}); ({1, 2}, (2, 1)}); ({1, 2}, {2, 2}); ({2, 1}, {2, 2}); ({1, 1},

{1, 2}, {2, 1}); ({1, 1}, {1, 2}, {2, 2}); ({1, 1}, {2, 1}, {2, 2}); ({1, 2},

{2, 1}, {2, 2}); ({1, 1}, {1, 2}, {2, 1}, {2, 2})]

32. (a) ({1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 3});

(b) {(2, 1), (3, 1), (3, 2)};

(c) {(1, 1), (2, 2), (3, 3)};

(d) {(2, 1), (3, 2};

(e) {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}

33. (a) {(1, 1), (1, 4), (2, 2), (2, 5), (3, 3)}

(b) {(1, 5), (2, 4), (3, 3, (4, 2), (5, 1)}
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(c) {(1, 1), (1, 3), (1, 5), (2, 4), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4), (5, 1),

(5, 3), (5, 5)}

(d) {(1,1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5)}

(e) {(1, 1), (2, 4)}

34. (a) R = R–1 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3),

(2,4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1)}

(b) R  = {(2, 5), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5), (5, 2), (5, 3), (5, 4),
(5, 5)]

(c) dom(R) = ran(R) = dom(R–1) = ran(R–1) = {1, 2, 3, 4, 5} dom( R ) =

ran(R ) = {2, 3, 4, 5).

35. (a) R1 � R2 = R2 (b) R1 � R2 = R1

(c) R1 – R2 = 

(d) R2 – R1 = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}

(e) R1 � R2 = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}

36. (a) R � S = {(0, 0), (1, 1), (1, 2), (2, 4), (3, 6), (3, 9), (4, 8), (4, 1)}

(b) R � S = {(0, 0), (2, 4)}.

(c) R – S = {(1, 1), (3, 9), (4, 16), …}

(d) S – R = {(1, 2), (3, 6), (4, 8), …}

(e) R � S = {(1, 1), (1, 2), (3, 6), (3, 9), (4, 8), (4, 16), …}

37. (a) R1 � R2 = {(1, 1), (2, 2), (3, 3), …, (1, 2), (2, 1), (1, 3), (3, 1) …,

(2, 4), (4, 2), (2, 6), (6, 2), …}

(b) R1 � R2 = {(1, 1), (2, 2), (3, 3), …}

(c) R1 – R2 = {(1, 2), (1, 3), (1, 4), …, (2, 4), (2, 6), (2, 8), …}

(d) R2 – R1 = {(2, 1), (3, 1), (4, 1), …, (4, 2), (6, 2), (8, 2), …}

(e) R1 � R2

38. (a) R5; (b) R2; (c) ; (d) R3; (e) R3

(2, 2)}; S � S = {(1, 1), (3, 3), (4, 5)}; R � (S � R) = (3, 2) = (R � S) � R;

R � R � R = {(1, 2), (2, 2)}

40. (a) R � T = {(0, 3), (1, 3), (2, 3), (3, 3)}

(b) T � R = {(0, 0), (1, 0), (2, 0), (3, 0)}

(c) S � S = {(0, 0), (0, 3), (1, 1), (2, 2), (3, 0), (3, 3)}

41. R1; R1; R2; R2; R1; R2, R2; R3

42. (a) symmetric; (b) reflexive, symmetric and transitive;

(c) reflexive, symmetric and transitive; (d) none;

(e) reflexive and symmetric; (f) symmetric;

(g) reflexive and transitive; (h) symmetric.

43. (a) reflexive, antisymmetric and transitive; (b) transitive;

(c) symmetric; (d) reflexive, symmetric and transitive;

(e) symmetric

44. (a) transitive; (b) reflexive, symmetric and transitive;

(c) reflexive, symmetric and transitive; (d) symmetric;

(e) reflexive and symmetric.
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45. (a) neither reflexive not transitive;

(b) equivalence relation (also partial ordering);

(c) neither reflexive nor symmetric;

(d) equivalence relation;

(e) lacks all the three properties.

51. (a) [{0, 4}, {1, 3}, {2}]; (b) [{1, 5}, {2, 3, 6}, {4}]

52. [{1, 4, 7}, {2, 5}, {3, 6}]

53. [{0}, {–1, 1}, {–2, 2}, …]

54. (a) [{a, b}, {c}, {d, e}]

(b) [{a}, {b}, {c}, {d, e}]

55. (a) R = [{0, 0}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {3, 3}, {3, 4}, {3, 5},

{4, 3}, {4, 4}, {4, 5}, {5, 3}, {5, 4}, {5, 5}]

(b) S = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), (4, 7), (5, 4),

(5, 5), (5, 7), (7, 4), (7, 5), (7, 7), (6, 6)}

56. R–1 = 

0 1 1

1 1 0

1 0 1

� �
� �
� �
� �� �

 = {(1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3)}

R = 

1 0 0

0 0 1

0 1 0

� �
� �
� �
� �� �

 = {(1, 1), (2, 3), (3, 2)}

R2 = 

1 1 1

1 1 1

1 1 1

� �
� �
� �
� �� �

 = A � A

57. (a) MR�S = 

1 1 1

1 1 0

0 0 1

� �
� �
� �
� �� �

; (b) MR�S = 

0 0 1

0 1 0

0 0 0

� �
� �
� �
� �� �

;

(c) MR�S = 

0 1 1

1 1 0

0 0 0

� �
� �
� �
� �� �

; (d) MS�R = 

0 1 0

1 1 1

0 0 0

� �
� �
� �
� �� �

;

(e) MS�R = 

1 1 0

1 0 0

0 0 1

� �
� �
� �
� �� �

58. (a) No; (b) Yes

59. (a) Equivalent relation (b) Not an equivalent relation



Set Theory 369

60. (a)

(b)

64.  UB{a, b, c} = e, f, j, h; LB{a, b, c} = a;

    UB{j, h}  = nil; LB{j, h} = a, b, c, d, e, f ;

UB(a, c, d, f}= f, h, j; LB{a, c, d, f} = a;

LUB{b, d, g} = g; GLB{b, d, g} = b

65. (a) (24, 25) and (3, 5) (b) No; No

(c) (15, 45) and 15; (d) (15, 5, 3) and 15

Exercise 5(C)

4. (a) (a � b) � c = (b � c) � (c � a) (b) (a � b) � a = a � (b � a)

5.

61. 62.

63.
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14. Figs 5.28 (a) and 5.28 (b)

24. (a) a� + b�; (b) a; (c) c; (d) bc

25. (a) (a� + b + c�) � (a� + b� + c) (b) a + (b� + c�) � (b + c)

26. (a) (a� + b) � (a� + c�) � (b + c�) (b) a� + (b� + c�) � (b + c)

37. (a) Yes; (b) No; (c) Yes

38. (a) No; (b) Yes; (c) Yes; (d) No

40. (a) No, since LUB(6, 9) and LUB(9, 12) do not belong to the poset;

(b) Yes

42. Yes

44. No

45. L2 and L3 are sublattices; L1 and L4 are not.

46. L2 and L3 are sublattices; L1 is not.

47.

48. L = {(1, 2, 3, 4, 6, 12), D}; L1 = {(1, 2), D}; L2 = {(1, 3), D}, but L1 � L2

= {1, 2, 3), D} is not a sublattice of L.

49. {0, a, b, d, 1}; {0, a, c, d, 1}; {0, a, c, e, 1}; {0, a, d, e, 1}; {0, b, c, e, 1};

{0, c, d, e, 1}

50. (a) No; (b) No.

51. 2� does not exist; 10� = 3.

52. (a) Complements of a are b and c; complement of b = a and that of c = a

(b) Complements of a are b and c; those of b are c and a; those of c are

a and b.

58. {1, 110}, {1, 2, 55, 110}, (1, 5, 22, 110} and {1, 10, 11, 110}; 15

sublattices

61. (a) a � b� + a� � b; (b) a + b � c; (c) a; (d) 1.

62. x�yz(x + y� + z�)
63. {(a + a�) (bb)}�
64. abc.

65. (a) f = xy�z + xy�z� + xyz + x�yz + x�yz�.
(b) f = xyzw + x�yzw + xy�zw + x�y�zw + xyz�w + x�yz�w + xy�z�w + x�y�z�w

+ xy�zw� + x�y�zw� + x�yzw� + x�yz�w�.
(c) f = xyz + xyz� + xy�z + xy�z� + x�y�z.

66. (a) f = (x + y + z) (x + y + z�) (x + y� + z) (x + y� + z�) (x� + y� + z)

(x� + y� + z�).
(b) f = (x + y + z) (x + y + z�) (x� + y + z) (x� + y� + z) (x� + y + z�).
(c) f = (x + y + z) (x + y + z�) (x� + y + z) (x� + y� + z).

67. (a) f = ab� + ac� + a�c.

(b) f = a� + c.

(c) f = a�c� + bc.

(d) f = abd + abc� + ac�d + ab�cd�.
(e) f = c�d + abd + ab�c� + a�b�cd�.
(f) f = a�d� + b�c� + cd.

(g) f = bc� + ab + a�c�d + a�cd� + acd (or)

bd� + ab + a�c�d + a�cd� + acd
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(h) f = bd + cd� + ac�d.

(i) f = bc� + bd� + a�c�d + ac�d� + ab�cd.

(j) f = ac� + bd + ab�d� + b�c�d�.
(k) f = (a + c + d) (a� + b� + d�).
(l) f = (a + b + d) (b� + c + d) (b + c + d�) (a� + c� + d) � (a + b� + c� + d�).

68. (a) f = ac + a�b + b�c�.
(b) f = a�b� + ac�.
(c) f = a�c�d + bc�d + abcd� + ab�cd + a�b�cd�.
(d) f = ac + cd + b�c + abd + a�b�d.

(e) f = a�b�d� + ab�c� + abd + a�bc.

(f) f = a�b�c + a�c�d + a�bd� + ab�d� + bc�d�.
(g) f = a�bc�d�e + ab�cd� + abce + abcd.

(h) f = a�bc� + abd + ab�c.
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