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Foreword

It gives me great pleasure to introduce Electrical Circuit Analysis by Dr A.

Sudhakar and Dr S. Shyammohan Palli, publication of which heralds the

completion of a book that caters completely and effectively to the students of

JNTU.

The need for a good textbook for this subject can be easily understood.

Numerous books are available to the students for the subject, but almost none

of them have the right combination of simplicity, rigour, pedagogy and syllabus

compatibility. These books usually do not address one or more of the specific

problems faced by students of this subject in JNTU. There has always been a

need for a good book relevant to the requirements of the students and dealing

with all aspects of the course. I am sure that the present book will be able to fill

this void.

The book has been organized and executed with lot of care and dedication.

The authors have been outstanding teachers with vast experience and expertise

in their chosen fields of interest. A conscious attempt has been made to simplify

concepts to facilitate better understanding of the subject.

Dr Sudhakar and Dr Shyammohan deserve our praise and thanks for

accomplishing this trying task. McGraw-Hill Education, a prestigious publishing

house, also deserves a pat on the back for doing an excellent job.

DR K. RAJAGOPAL

Vice-Chancellor

Jawarharlal Nehru Technological University

Hyderabad



Preface

This book is exclusively designed for use as a text for the course on Electrical

Circuit Analysis offered to first year undergraduate engineering students of

Jawaharlal Nehru Technological University (JNTU), Hyderabad. The primary

goal of this text is to establish a firm understanding of the basic laws of electric

circuits which develop a working knowledge of the methods of analysis used

most frequently in further topics of electrical engineering. This book also

provides a comprehensive insight into the principal techniques available for

characterizing circuits and networks theoretically.

Illustrative examples are interspersed throughout the book at their natural

locations. These have been selected carefully from the university question papers.

With so many years of teaching, we have found that such illustrations permit a

level of understanding otherwise unattainable. As an aid to both, the instructor and

the student, objective questions and the tutorial problems provided at the end of

each chapter progress from simple to complex. Answers to selected problems

have been given to instill confidence in the reader. Due care is taken to see that the

reader can easily start learning circuit analysis without prior knowledge of

mathematics. As such, a student of first year B.Tech/B.E will be able to follow the

book without any difficulty.

All the elements with definitions, basic laws and different configurations of

the resistive circuits have been introduced in the first chapter. Analyses of the

D.C. resistive circuits have been discussed in Chapter 2. Graph theory has been

written in an easy to understand manner. Network theorems on resistive circuits

have been presented in Chapter 3. A.C. fundamentals have been introduced in

Chapters 4 and 5 which include voltage–current relation of elements, complex

impedance. Power and power factor concept is discussed in Chapter 6. Due

emphasis has been laid on finding out the average and rms values of different

waveforms in Chapter 4. The steady state analysis of A.C. circuits including

network theorems have been discussed in Chapter 7. Problems, tutorials and

objective questions on dependent sources have been included in Chapters 1 to 7.

Resonance phenomena in series and parallel circuits and locus diagrams are

presented in Chapter 8. A comprehensive study of polyphase systems and power

measurement in both balanced and unbalanced circuits is presented in Chapter 9.

A brief study of coupled and tuned circuits is introduced in Chapter 10. Magnetic

circuits are also discussed in this chapter.

A brief discussion of differential equations is included in Chapter 11. The

necessary mathematical background for transient analysis, the transient
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behavior of A.C and D.C circuits and their response has been discussed in

Chapter 12. Laplace transforms and their application is presented in Chapter

13. Network functions and stability criteria have been discussed in Chapter 14.

The parameters of two-port network and their inter-relations have been

discussed in Chapter 15. The book also includes brief topics of Fourier series,

Fourier Transforms and operator j in appendices. Twelve Model Question

Papers, Solved May/June 2006, Apr\May 2007 Question Papers and Apr/May 2008

Question Paper (12 Sets) are provided at the end of the book.
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Road Map to the Syllabus
(Effective from August 2007)

Jawaharlal Nehru Technological University, Hyderabad
Electrical Circuit Analysis

Objective :

This course introduces the basic concepts of circuit analysis which is the

foundation for all subjects of the Electrical Engineering discipline. The

emphasis of this course is laid on the basic analysis of circuits which includes

Single phase circuits, magnetic circuits, theorems, transient analysis and

network topology.

UNIT – I INTRODUCTION TO ELECTRICAL CIRCUITS

Circuit Concept – R-L-C parameters – Voltage and Current sources – Independent

and dependent sources –Source transformation – Voltage – Current relationship

for passive elements – Kirchhoff’s laws – network reduction techniques –

series, parallel, series parallel, star-to-delta or delta-to-star transformation.

Chapter 1 æææææ  Circuit Elements and Kirchhoff’s Laws

Chapter 3  æææææ  Useful Theorems in Circuit Analysis

UNIT – II MAGNETIC CIRCUITS

Magnetic Circuits – Faraday’s laws of electromagnetic induction – concept of

self and mutual inductance – dot convention – coefficient of coupling –

composite magnetic circuit – Analysis of series and parallel magnetic circuits.

Chapter 10 æææææ Coupled Circuits

UNIT – III SINGLE PHASE A.C CIRCUITS

R.M.S and Average values and form factor for different periodic wave forms, Steady
state analysis of R, L and C (in series, parallel and series parallel combinations) with
sinusoidal excitation � Concept of Reactance, Impedance, Susceptance and
Admittance � Phase and Phase difference � concept of power factor, Real and

Go To

Go To
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Reactive powers � J-notation, Complex and Polar forms of representation, Complex
power � Locus diagrams � series R-L, R-C, R-L-C and parallel combination with
variation of various parameters � Resonance � series, parallel circuits, concept of
band width and Q factor.

Chapter 4 æææææ  Introduction to Alternating Currents and Voltages

Chapter 5 æææææ  Complex Impedance

Chapter 6 æææææ  Power & Power Factor

Chapter 8 æææææ  Resonance

UNIT – IV THREE PHASE CIRCUITS

Three phase circuits: Phase sequence – Star and delta connection – Relation

between line and phase voltages and currents in balanced systems – Analysis of

balanced and Unbalanced 3 phase circuits – Measurement of active and reactive

power.

Go To Chapter 9 æææææ Polyphase Circuits

UNIT – V NETWORK TOPOLOGY

Definitions – Graph – Tree, Basic cutset and Basic Tieset matrices for planar

networks – Loop and Nodal methods of analysis of Networks with independent

voltage and current sources – Duality & Dual networks.

Chapter 2 æææææ  Methods of Analysing Circuits

Chapter 3 æææææ  Useful Theorems in Circuit Analysis

UNIT – VI NETWORK THEOREMS (WITHOUT PROOFS)

Tellegen’s, Superposition, Reciprocity, Thevenin’s, Norton’s, Maximum

Power Transfer, Millman’s and Compensation theorems for d.c. and a.c.

excitations.

Chapter 3 æææææ  Useful Theorems in Circuit Analysis

Chapter 7 æææææ  Steady State AC Analysis

UNIT – VII TRANSIENT ANALYSIS

Transient response of R-L, R-C, R-L-C circuits (Series combinations only) for

d.c. and sinusoidal excitations – Initial conditions – Solution using differential

equation approach and Laplace transform methods of solutions.

Go To

Go To

Go To
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Chapter 12 Transients

Chapter 13 Laplace Transforms

UNIT – VIII NETWORK PARAMETERS

Two port network parameters – Z, Y, ABCD and hybrid parameters and their

relations – concept of transformed network – 2-port network parameters using

transformed variables.

Chapter 15 Two Port NetworksGo To

Go ToGo To



1.1 VOLTAGE

According to the structure of an atom, we know that there are two types of
charges: positive and negative. A force of attraction exists between these
positive and negative charges. A certain amount of energy (work) is required to
overcome the force and move the charges through a specific distance. All
opposite charges possess a certain amount of potential energy because of the
separation between them. The difference in potential energy of the charges is
called the potential difference.

Potential difference in electrical terminology is known as voltage, and is
denoted either by V or v. It is expressed in terms of energy (W) per unit charge
(Q); i.e.

V =
W

Q
or v = 

d w

d q

dw is the small change in energy, and
dq is the small change in charge.

where energy (W ) is expressed in joules (J), charge (Q ) in coulombs (C), and
voltage (V) in volts (V). One volt is the potential difference between two points
when one joule of energy is used to pass one coulomb of charge from one point
to the other.

Example 1.1 If 70 J of energy is available for every 30 C of charge, what is the
voltage?

Solution V = 
W

Q
=

70

30
 = 2.33 V
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1.2 Electrical Circuit Analysis

1.2 CURRENT

There are free electrons available in all semiconductive and conductive
materials. These free electrons move at random in all directions within the
structure in the absence of external pressure or voltage. If a certain amount of
voltage is applied across the material, all the free electrons move in one
direction depending on the polarity of the applied voltage, as shown in Fig. 1.1.

V

Fig. 1.1

This movement of electrons from one end of the material to the other end
constitutes an electric current, denoted by either I or i. The conventional direction
of current flow is opposite to the flow of – ve charges, i.e. the electrons.

Current is defined as the rate of flow of electrons in a conductive or
semiconductive material. It is measured by the number of electrons that flow
past a point in unit time. Expressed mathematically,

I =
Q

t
where I is the current, Q is the charge of electrons, and t is the time, or

i =
d q

d t

where dq is the small change in charge, and dt is the small change in time.
In practice, the unit ampere is used to measure current, denoted by A. One

ampere is equal to one coulomb per second. One coulomb is the charge carried

by 6.25 ¥ 10
18

 electrons. For example, an ordinary 80 W domestic ceiling fan on
230 V supply takes a current of approximately 0.35 A. This means that electricity
is passing through the fan at the rate of 0.35 coulomb every second, i.e. 2.187 ¥
10

18
 electrons are passing through the fan in every second; or simply, the current

is 0.35 A.

Example 1.2 Five coulombs of charge flow past a given point in a wire in 2 s.
How many amperes of current is flowing?

Solution I = 
Q

t
=

5

2
 = 2.5 A

1.3 POWER AND ENERGY

Energy is the capacity for doing work, i.e. energy is nothing but stored work.
Energy may exist in many forms such as mechanical, chemical, electrical and
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so on. Power is the rate of change of energy, and is denoted by either P or p. If
certain amount of energy is used over a certain length of time, then

Power (P) = 
energy

time
=

W

t
, or

p =
d w

d t

where dw is the change in energy and dt is the change in time.

We can also write p =
d w

d t

d w

d q

d q

d t
= ¥

= v ¥ i = vi W

Energy is measured in joules (J), time in seconds (s), and power in watts (W).
By definition, one watt is the amount of power generated when on joule of

energy is consumed in one second. Thus, the number of joules consumed in one
second is always equal to the number of watts. Amounts of power less than one
watt are usually expressed in fraction of watts in the field of electronics; viz.
milliwatts (mW) and microwatts (mW). In the electrical field, kilowatts (kW)
and megawatts (MW) are common units. Radio and television stations also use
large amounts of power to transmit signals.

Example 1.3 What is the power in watts if energy equal to 50 J is used in
2.5 s?

Solution P = 
energy

time
=

50

2 5.
 = 20 W

1.4 THE CIRCUIT

An electric circuit consists of three parts: (1) energy source, such as battery or
generator, (2) the load or sink, such as lamp or motor, and (3) connecting wires
as shown in Fig. 1.2. This arrangement represents a simple circuit. A battery is
connected to a lamp with two wires. The purpose of the circuit is to transfer
energy from source (battery) to the load (lamp). And this is accomplished by
the passage of electrons through wires around the circuit.

The current flows through the filament of the lamp, causing it to emit visible
light. The current flows through the battery
by chemical action. A closed circuit is
defined as a circuit in which the current has
a complete path to flow. When the current
path is broken so that current cannot flow,
the circuit is called an open circuit.

More specifically, interconnection of two
or more simple circuit elements (viz. voltage
sources, resistors, inductors and capacitors)
is called an electric network. If a network

Battery

Lamp

Wire

+

Fig. 1.2
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contains at least one closed path, it is called an electric circuit. By definition, a
simple circuit element is the mathematical model of two terminal electrical
devices, and it can be completely characterised by its voltage and current.
Evidently then, a physical circuit must provide means for the transfer of energy.

Broadly, network elements may be classified into four groups, viz.

1. Active or passive
2. Unilateral or bilateral
3. Linear or nonlinear
4. Lumped or distributed

1.4.1 Active and Passive

Energy sources (voltage or current sources) are active elements, capable of
delivering power to some external device. Passive elements are those which are
capable only of receiving power. Some passive elements like inductors and
capacitors are capable of storing a finite amount of energy, and return it later to
an external element. More specifically, an active element is capable of delivering
an average power greater than zero to some external device over an infinite
time interval. For example, ideal sources are active elements. A passive element
is defined as one that cannot supply average power that is greater than zero over
an infinite time interval. Resistors, capacitors and inductors fall into this category.

1.4.2 Bilateral and Unilateral

In the bilateral element, the voltage-current relation is the same for current
flowing in either direction. In contrast, a unilateral element has different relations
between voltage and current for the two possible directions of current. Examples
of bilateral elements are elements made of high conductivity materials in general.
Vacuum diodes, silicon diodes, and metal rectifiers are examples of unilateral
elements.

1.4.3 Linear and Nonlinear Elements

An element is said to be linear, if its voltage-current characteristic is at all times
a straight line through the origin. For example, the current passing through a
resistor is proportional to the voltage applied through it, and the relation is
expressed as V µ I or V = IR. A linear element or network is one which satisfies
the principle of superposition, i.e. the principle of homogeneity and additivity.
An element which does not satisfy the above principle is called a nonlinear
element.

1.4.4 Lumped and Distributed

Lumped elements are those elements which are very small in size and in which
simultaneous actions takes place for any given cause at the same instant of time.
Typical lumped elements are capacitors, resistors, inductors and transformers.
Generally the elements are considered as lumped when their size is very small
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compared to the wave length of the applied signal. Distributed elements, on the
other hand, are those which are not electrically separable for analytical
purposes. For example, a transmission line which has distributed resistance,
inductance and capacitance along its length may extend for hundreds of miles.

1.5 RESISTANCE PARAMETER

When a current flows in a material, the free electrons move through the material
and collide with other atoms. These collisions cause the electrons to lose some of
their energy. This loss of energy per unit charge is the drop in potential across
the material. The amount of energy lost by the electrons is related to the physical
property of the material. These collisions restrict
the movement of electrons. The property of a
material to restrict the flow of electrons is called
resistance, denoted by R. The symbol for the
resistor is shown in Fig. 1.3.

The unit of resistance is ohm (W). Ohm is defined as the resistance offered
by the material when a current of one ampere flows between two terminals with
one volt applied across it.

According to Ohm’s law, the current is directly proportional to the voltage
and inversely proportional to the total resistance of the circuit, i.e.

I =
V

R

or i =
v

R

We can write the above equation in terms of charge as follows.

V = R
d q

d t
, or i = 

v

R
 = Gv

where G is the conductance of a conductor. The units of resistance and
conductance are ohm (W ) and mho (

W

) respectively.
When current flows through any resistive material, heat is generated by the

collision of electrons with other atomic particles. The power absorbed by the
resistor is converted to heat. The power absorbed by the resistor is given by

P = vi = (iR)i = i2 R

where i is the current in the resistor in amps, and v is the voltage across the
resistor in volts. Energy lost in a resistance in time t is given by

W =

0

t

z pdt = pt = i2Rt = 
v

2

R
t

where v is the volts
R is in ohms
t is in seconds and
W is in joules

R

Fig. 1.3
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Example 1.4 A 10 W resistor is connected across a 12 V battery. How much
current flows through the resistor?

Solution V = IR

I = 
V

R
=

12

10
= 1.2 A

1.6 INDUCTANCE PARAMETER

A wire of certain length, when twisted into a coil becomes a basic inductor. If
current is made to pass through an inductor, an electromagnetic field is formed.
A change in the magnitude of the current changes the electromagnetic field.
Increase in current expands the fields, and decrease in current reduces it.
Therefore, a change in current produces change in the electromagnetic field,
which induces a voltage across the coil according to Faraday’s law of
electromagnetic induction.

The unit of inductance is henry, denoted by
H. By definition, the inductance is one henry
when current through the coil, changing at
the rate of one ampere per second, induces
one volt across the coil. The symbol for
inductance is shown in Fig. 1.4.

The current-voltage relation is given by

v = L
di

d t

where v is the voltage across inductor in volts, and i is the current through
inductor in amps. We can rewrite the above equations as

di =
1

L
vdt

Integrating both sides, we get

0

t

z di =
1

0
L

t

z vdt

i (t) – i (0) = 
1

0
L

t

z vdt

i (t) = 
1

0
L

t

z vdt + i (0)

From the above equation we note that the current in an inductor is dependent
upon the integral of the voltage across its terminals and the initial current in the
coil, i (0).

L

Fig. 1.4
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The power absorbed by inductor is

P = v i = Li
di

d t
 watts

The energy stored by the inductor is

W =

0

t

z pdt

= Li
d i

dt
dt

Li
t

0

2

2z =

From the above discussion, we can conclude the following.

1. The induced voltage across an inductor is zero if the current through it is
constant. That means an inductor acts as short circuit to dc.

2. A small change in current within zero time through an inductor gives an
infinite voltage across the inductor, which is physically impossible. In a
fixed inductor the current cannot change abruptly.

3. The inductor can store finite amount of energy, even if the voltage across
the inductor is zero, and

4. A pure inductor never dissipates energy, only stores it. That is why it is
also called a non-dissipative passive element. However, physical induc-
tors dissipate power due to internal resistance.

Example 1.5 The current in a 2 H inductor varies at a rate of 2 A/s. Find the
voltage across the inductor and the energy stored in the magnetic field after 2 s.

Solution v = L
di

d t

= 2 ¥ 4 = 8 V

W = 
1

2
Li 2

= 
1

2
 ¥ 2 ¥ (4)2 = 16 J

1.7 CAPACITANCE PARAMETER

Any two conducting surfaces separated by an insulating medium exhibit the
property of a capacitor. The conducting surfaces are called electrodes, and the
insulating medium is called dielectric. A capacitor stores energy in the form of
an electric field that is established by the opposite charges on the two
electrodes. The electric field is represented by lines of force between the
positive and negative charges, and is concentrated within the dielectric. The
amount of charge per unit voltage that is capacitor can store is its capacitance,
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denoted by C. The unit of capacitance is Farad

denoted by F. By definition, one Farad is the
amount of capacitance when one coulomb of charge
is stored with one volt across the plates. The symbol
for capacitance is shown in Fig. 1.5.

A capacitor is said to have greater capacitance if it can store more charge per
unit voltage and the capacitance is given by

C =
Q

V
, or C = 

q

v

(lower case letters stress instantaneous values)

We can write the above equation in terms of current as

i = C
d

d t

v
∵ i

dq

dt
=

F
HG

I
KJ

where v is the voltage across capacitor, i is the current through it

dv =
1

C
idt

Integrating both sides, we have

0

t

z dv =
1

0
C

t

z idt

v (t) – v(0) = 
1

0
C

t

z idt

v(t) = 
1

0
C

t

z idt + v(0)

where v(0) indicates the initial voltage across the capacitor.

From the above equation, the voltage in a capacitor is dependent upon the
integral of the current through it, and the initial voltage across it.

The power absorbed by the capacitor is given by

p = vi = vC
d

d t

v

The energy stored by the capacitor is

W =

0

t

z pdt = 

0

t

z vC
d

d t

v
dt

W =
1

2
Cv2

C

Fig. 1.5
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From the above discussion we can conclude the following

1. The current in a capacitor is zero if the voltage across it is constant; that
means, the capacitor acts as an open circuit to dc.

2. A small change in voltage across a capacitance within zero time gives an
infinite current through the capacitor, which is physically impossible. In
a fixed capacitance the voltage cannot change abruptly.

3. The capacitor can store a finite amount of energy, even if the current
through it is zero, and

4. A pure capacitor never dissipates energy, but only stores it; that is why it
is called non-dissipative passive element. However, physical capacitors
dissipate power due to internal resistance.

Example 1.6 A capacitor having a capacitance 2 mF is charged to a voltage of
1000 V. Calculate the stored energy in joules.

Solution W = 
1

2
 Cv

2 = 
1

2
 ¥ 2 ¥ 10–6 ¥ (1000)2 = 1 J.

1.8 ENERGY SOURCES

According to their terminal voltage-current characteristics, electrical energy
sources are categorised into ideal voltage sources and ideal current sources.
Further they can be divided into independent and dependent sources.

An ideal voltage source is a two-terminal element in which the voltage v
s
 is

completely independent of the current i
s
 through its terminals. The

representation of ideal constant voltage source is shown in Fig. 1.6(a).

Fig. 1.6

If we observe the v – i characteristics for an ideal voltage source as shown in
Fig. 1.6(c) at any time, the value of the terminal voltage v

s
 is constant with

respect to the value of current i
s
. Whenever v

s
 = 0, the voltage source is the

same as that of a short circuit. Voltage sources need not have constant
magnitude; in many cases the specified voltage may be time-dependent like a
sinusoidal waveform. This may be represented as shown in Fig. 1.6(b). In many
practical voltage sources, the internal resistance is represented in series with
the source as shown in Fig. 1.7(a). In this, the voltage across the terminals falls
as the current through it increases, as shown in Fig. 1.7 (b).
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Fig. 1.7

The terminal voltage v
t
 depends on the source current as shown in Fig.

1.7(b), where v
t
 = v

s
– i

s
R.

An ideal constant current source is a two-terminal element in which the
current i

s
 completely independent of the voltage v

s
 across its terminals. Like

voltage sources we can have current sources of constant magnitude i
s
 or sources

whose  current varies with time i
s
(t). The representation of an ideal current

source is shown in Fig. 1.8(a).

Vs

is
i1

(b)(a)

is (is ( ) or ( )t i t Vs

+

Fig. 1.8

If we observe the v – i characteristics for an ideal current source as shown in
Fig. 1.8(b), at any time the value of the current i

s
 is constant with respect to the

voltage across it. In many practical current sources, the resistance is in parallel
with a source as shown in Fig. 1.9(a). In this the magnitude of the current falls
as the voltage across its terminals increases. Its terminal v – i characteristics is
shown in Fig. 1.9(b). The terminal current is given by i

t
 = i

s
– (v

s
/R), where R is

the internal resistance of the ideal current source.

it

it

vs

is R

(a) (b)

Vs

Fig. 1.9

The two types of ideal sources we have discussed are independent sources
for which voltage and current are independent and are not affected by other
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parts of the circuit. In the case of dependent sources, the source voltage or
current is not fixed, but is dependent on the voltage or current existing at some
other location in the circuit.

Dependent or controlled sources are of the following types

(i) voltage controlled voltage source (VCVS)
(ii) current controlled voltage source (CCVS)

(iii) voltage controlled current source (VCCS)
(iv) current controlled current source (CCCS)

These are represented in a circuit diagram by the symbol shown in Fig. 1.10.
These types of sources mainly occur in the analysis of equivalent circuits of
transistors.

Fig. 1.10

1.9 KIRCHHOFF’S VOLTAGE LAW

Kirchhoff’s voltage law states that the algebraic sum of all branch voltages
around any closed path in a circuit is always zero at all instants of time. When
the current passes through a resistor, there is a loss of energy and, therefore, a
voltage drop. In any element, the current always flows from higher potential to
lower potential. Consider the circuit in Fig. 1.11. It is customary to take the
direction of current I as indicated in the figure, i.e. it leaves the positive terminal
of the voltage source and enters into the negative terminal.

a c eb d f
R1 R2 R3

V1

Vs

V2

I

V3

Fig. 1.11

As the current passes through the circuit, the sum of the voltage drop around
the loop is equal to the total voltage in that loop. Here the polarities are attributed
to the resistors to indicate that the voltages at points a, c and e are more than the
voltages at b, d and f, respectively, as the current passes from a to f.
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\ Vs = V1 + V2 + V3

Consider the problem of finding out the current supplied by the source V in
the circuit shown in Fig. 1.12.

Our first step is to assume the reference current direction and to indicate the
polarities for different elements. (See Fig. 1.13).

Fig. 1.12 Fig. 1.13

By using Ohm’s law, we find the voltage across each resistor as follows.

VR1 = IR1, VR2 = IR2, VR3 = IR3

where V
R1

, V
R2

 and V
R3

 are the voltages across R
1
, R

2
 and R

3
, respectively.

Finally, by applying Kirchhoff’s law, we can form the equation

V = VR1 + VR2 + VR3

V = IR1 + IR2 + IR3

From the above equation the current delivered by the source is given by

I =
V

R R R1 2 3+ +

Example 1.7 For the circuit shown in Fig. 1.14, determine the unknown voltage
drop V

1
.

Fig. 1.14

Solution According to Kirchhoff’s voltage law, the sum of the potential drops is
equal to the sum of the potential rises;

Therefore, 30 = 2 + 1 + V1 + 3 + 5

or V1 = 30 – 11 = 19 V
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Example 1.8 What is the current in the circuit
shown in Fig. 1.15? Determine the voltage across
each resistor.
Solution We assume current I in the clockwise
direction and indicate polarities (Fig. 1.16). By
using Ohm’s law, we find the voltage drops across
each resistor.

VIM = I, V3.1M = 3.1I

V500K = 0.5I, V400K = 0.4I

Now, by applying Kirchhoff’s voltage law, we
form the equation.

10 = I + 3.1 I + 0.5 I + 0.4 I

or 5 I = 10

or I = 2 mA

\ Voltage across each resistor is as follows

V1M = 1 ¥ 2 = 2.0 V

V3.1M = 3.1 ¥ 2 = 6.2 V

V400K = 0.4 ¥ 2 = 0.8 V

V500K = 0.5 ¥ 2 = 1.0 V

Example 1.9 In the circuit given in Fig. 1.17, find (a) the current I, and (b) the
voltage across 30 W.

Fig. 1.17

Solution We redraw the circuit as shown in Fig. 1.18 and assume current
direction and indicate the assumed polarities of resistors

Fig. 1.18

Fig. 1.15

1 M1 MW

3.1 MW

400 k400 kW

500 k500 kW

10 V10 V

Fig. 1.16

1 MW 3.1 M3.1 MW

400 k400 kW

500 k500 kW

10 V
I
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By using Ohm’s law, we determine the voltage across each resistor as

V8 = 8I, V30 = 30I, V2 = 2I

By applying Kirchhoff’s law, we get

100 = 8I + 40 + 30I + 2I

40 I = 60 or I = 
60

40
 = 1.5 A

\ Voltage drop across 30 W = V
30

 = 30 ¥ 1.5 = 45 V

1.10 VOLTAGE DIVISION

The series circuit acts as a voltage divider. Since the same current flows through
each resistor, the voltage drops are proportional to the values of resistors. Using
this principle, different voltages can be obtained from a single source, called a
voltage divider. For example, the voltage across a 40 W resistor is twice that of
20 W in a series circuit shown in Fig. 1.19.

In general, if the circuit consists of a number of series resistors, the total
current is given by the total voltage divided by equivalent resistance. This is
shown in Fig. 1.20.

Fig. 1.19 Fig. 1.20

The current in the circuit is given by I = V
s
/(R

1
 + R

2
 + … + R

m
). The voltage

across any resistor is nothing but the current passing through it, multiplied by
that particular resistor.

Therefore, VR1 = IR1

VR2 = IR2

VR3 = IR3

 

VRm = IRm

or VRm =
V R

R R R

s m

m

( )

1 2+ + +…

From the above equation, we can say that the voltage drop across any
resistor, or a combination of resistors, in a series circuit is equal to the ratio of
that resistance value to the total resistance, multiplied by the source voltage, i.e.

Vm =
R

R
Vm

T
s
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where V
m
 is the voltage across mth resistor,

R
m
 is the resistance across which the voltage is to be determined and R

T
 is the

total series resistance.

Example 1.10 What is the voltage across the 10 W resistor in Fig. 1.21.

Fig. 1.21

Solution Voltage across 10 W = V
10

 = 50 ¥ 
10

10 5

500

15+
= = 33.3 V

Example 1.11 Find the voltage between A and B in a voltage divider network
shown in Fig. 1.22.

1 k1 kW

5 k5 kW

4 k4 kW

100 V100 V
A

B

Fig. 1.22

Solution Voltage across 9 kW = V
9
 = V

AB
 = 100 ¥ 

9

10
 = 90 V

1.11 POWER IN SERIES CIRCUIT

The total power supplied by the source in any series resistive circuit is equal to
the sum of the powers in each resistor in series, i.e.

PS = P1 + P2 + P3 + … + Pm

where m is the number of resistors in series, P
S
 is the total power supplied by

source and P
m
 is the power in the last resistor in series. The total power in the

series circuit is the total voltage applied to a circuit, multiplied by the total
current. Expressed mathematically,

PS = Vs I = I2RT = 
V

R

s

T

2

where V
s
 is the total voltage applied, R

T
 is the total resistance, and I is the total

current.
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Example 1.12 Determine the total amount of power in the series circuit in
Fig. 1.23.

Fig. 1.23

Solution Total resistance = 5 + 2 + 1 + 2 = 10 W

We know PS =
V

R

s

T

2 250

10
=

( )
 = 250 W

Check We find the power absorbed by each resistor

Current = 
50

10
 = 5 A

P5 = (5)2 ¥ 5 = 125 W

P2 = (5)2 ¥ 2 = 50 W

P1 = (5)2
¥ 1 = 25 W

P2 = (5)2 ¥ 2 = 50 W

The sum of these powers gives the total power supplied by the source P
S
 =

250 W.

1.12 KIRCHHOFF’S CURRENT LAW

Kirchhoff’s current law states that the sum of the currents entering into any
node is equal to the sum of the currents leaving that node. The node may be an
interconnection of two or more branches. In any parallel circuit, the node is a
junction point of two or more branches. The total current entering into a node is
equal to the current leaving that node. For example, consider the circuit shown
in Fig. 1.24, which contains two nodes A and B. The total current I

T
 entering

node A is divided into I
1
, I

2
 and I

3
. These currents flow out of node A.

According to Kirchhoff’s current law,
the current into node A is equal to the
total current out of node A: that is,
I

T
 = I

1
 + I

2
 + I

3
. If we consider node B,

all three currents I
1
, I

2
, I

3
 are entering B,

and the total current I
T
 is leaving node B,

Kirchhoff’s current law formula at this
node is therefore the same as at node A.

I1 + I2 + I3 = IT
Fig. 1.24

I1 I2

IT

IT

A

B

I3

Vs
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In general, sum of the currents entering any
point or node or junction equal to sum of the
currents leaving from that point or node or
junction as shown in Fig. 1.25.

I1 + I2 + I4 + I7 = I3 + I5 + I6

If all of the terms on the right side are brought
over to the left side, their signs change to
negative and a zero is left on the right side, i.e.

I1 + I2 + I4 + I7 – I3 – I5 – I6 = 0

This means that the algebraic sum of all the currents meeting at a junction is
equal to zero.

Example 1.13 Determine the current in all resistors in the circuit shown in
Fig. 1.26.

Fig. 1.26

Solution The above circuit contains a single node ‘A’ with reference node ‘B’.
Our first step is to assume the voltage V at node A. In a parallel circuit the same
voltage is applied across each element. According to Ohm’s law, the currents passing
through each element are I

1
 = V/2, I

2
 = V/1, I

3
 = V/5.

By applying Kirchhoff’s current law, we have

I = I1 + I2 + I3

I = 
V V V

2 1 5
+ +

50 = V
1

2

1

1

1

5
+ +

L
NM

O
QP
 = V [0.5 + 1 + 0.2]

V = 
50

1 7

500

17.
=  = 29.41 V

Once we know the voltage V at node A, we can find the current in any element by
using Ohm’s law.
The current in the 2 W resistor is I

1
 = 29.41/2 = 14.705 A.

Similarly I2 = 
V

R

V

2 1
=  = 29.41 A

Fig. 1.25
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I3 = 
29 41

5

.
 = 5.882 A

\ I1 = 14.7 A, I2 = 29.4 A, and I3 = 5.88 A

Example 1.14 For the circuit shown in Fig. 1.27, find the voltage across the
10 W resistor and the current passing through it.

Fig. 1.27

Solution The circuit shown above is a parallel circuit, and consists of a single
node A. By assuming voltage V at the node A w.r.t. B, we can find out the current in
the 10 W branch. (See Fig. 1.28)

Fig. 1.28

According to Kirchhoff’s current law,
I1 + I2 + I3 + I4 + 5 = 10

By using Ohm’s law we have

I1 = 
V

5
; I2 = 

V

10
, I3 = 

V

2
, I4 = 

V

1

V

5
 + 

V

10
 + 

V

2
 + V + 5 = 10

V
1

5

1

10

1

2
1+ + +

L
NM

O
QP

 = 5

V [0.2 + 0.1 + 0.5 + 1] = 5

V = 
5

1 8.
 = 2.78 V

\ The voltage across the 10 W resistor is 2.78 V and the current passing through
it is
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I2 = 
V

10

2 78

10
=

.
 = 0.278 A

Example 1.15 Determine the current through resistance R
3
 in the circuit shown

in Fig. 1.29.

Fig. 1.29

Solution According to Kirchhoff’s current law,

IT = I1 + I2 + I3

where I
T
 is the total current and I

1
, I

2
 and I

3
 are the currents in resistances R

1
, R

2
 and

R
3
 respectively.

\ 50 = 30 + 10 + I3

or I3 = 10 mA

1.13 PARALLEL RESISTANCE

When the circuit is connected in parallel, the total resistance of the circuit
decreases as the number of resistors connected in parallel increases. If we
consider m parallel branches in a circuit as shown in Fig. 1.30, the current
equation is

IT = I1 + I2 + … + Im

R1Vs R2 R3 Rm

I1 I2

IT

I3 Im

Fig. 1.30

The same voltage is applied across each resistor. By applying Ohm’s law, the
current in each branch is given by

I1 =
V

R

s

1

, I2 = 
V

R

s

2

, … Im = 
V

R

s

m
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According to Kirchhoff’s current law,

IT = I1 + I2 + I3 + … + Im

V

R

s

T

=
V

R

V

R

V

R

V

R

s s s s

m1 2 3

+ + + +…

From the above equation, we have

1

RT

=
1 1 1

1 2R R Rm

+ + +…

Example 1.16 Determine the parallel resistance between points A and B of the
circuit shown in Fig. 1.31.

Fig. 1.31

Solution
1

RT

= 
1 1 1 1

1 2 3 4R R R R
+ + +

1

RT

= 
1

10

1

20

1

30

1

40
+ + +

= 0.1 + 0.05 + 0.033 + 0.025 = 0.208

or  RT = 4.8 W

1.14 CURRENT DIVISION

In a parallel circuit, the current divides in all branches. Thus, a parallel circuit
acts as a current divider. The total current entering into the parallel branches
is divided into the branches currents
according to the resistance values. The
branch having higher resistance allows
lesser current, and the branch with lower
resistance allows more current. Let us find
the current division in the parallel circuit
shown in Fig. 1.32.

The voltage applied across each
resistor is V

s
. The current passing

through each resistor is given by

I1 =
V

R

s

1

, I2 = 
V

R

s

2

Fig. 1.32
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If R
T
 is the total resistance, which is given by R

1
R

2
/(R

1
 + R

2
),

Total current IT =
V

R

V

R R

s

T

s=
1 2

 (R1 + R2)

or IT =
I R

R R

1 1

1 2

(R1 + R2) since Vs = I1R1

I1 = IT ◊
R

R R

2

1 2+

Similarly, I2 = IT ◊
R

R R

1

1 2+

From the above equations, we can conclude that the current in any branch is
equal to the ratio of the opposite branch resistance to the total resistance value,
multiplied by the total current in the circuit. In general, if the circuit consists of
m branches, the current in any branch can be determined by

Ii =
R

R R
IT

i T
T

+

where I
i
 represents the current in the ith branch

R
i
 is the resistance in the ith branch

R
T
 is the total parallel resistance to the ith branch and

I
T
 is the total current entering the circuit.

Example 1.17 Determine the current through each resistor in the circuit shown
in Fig. 1.33.

Fig. 1.33

Solution I1 = IT ¥ 
R

R R

T

T( )1 +

where RT = 
R R

R R

2 3

2 3+
 = 2 W

\ R1 = 4 W

IT = 12 A

I1 = 12 ¥ 
2

2 4+
 = 4 A

Similarly, I2 = 12 ¥ 
2

2 4+
 = 4 A
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and I3 = 12 ¥ 2

2 4+
 = 4 A

Since all parallel branches have equal values of resistance, they share current
equally.

1.15 POWER IN PARALLEL CIRCUIT

The total power supplied by the source in any parallel resistive circuit is equal
to the sum of the powers in each resistor in parallel, i.e.

PS = P1 + P2 + P3 + … + Pm

where m is the number of resistors in parallel, P
S
 is the total power and P

m
 is the

power in the last resistor.

ADDITIONAL SOLVED PROBLEMS

Problem 1.1 A resistor with a current of 3 A through it converts 500 J of
electrical energy to heat energy in 12 s. What is the voltage across the resistor?

Solution V =
W

Q

Q = I ¥ t

= 3 ¥ 12 = 36 C

V =
500

36
 = 13.88 V

Problem 1.2 A 5 W resistor has a voltage rating of 100 V. What is its power
rating?

Solution P = VI

I = V/R

P =
V

R

2 2100

5
=

( )
 = 2000 W = 2 kW

Problem 1.3 Find the inductance of a coil through which flows a current of
0.2 A with an energy of 0.15 J.

Solution W =
1

2
LI2

L =
2 2 0 15

0 22 2

¥
=

¥W

I

.

( . )
 = 7.5 H

Problem 1.4 Find the inductance of a coil in which a current increases
linearly from 0 to 0.2 A in 0.3 s, producing a voltage of 15 V.

Solution v = L
di

dt

Current in 1 s = 
0 2

0 3

.

.
 = 0.66 A
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The current changes at a rate of 0.66 A/s,

\ L =
v

di

d t

F
HG

I
KJ

L =
15

0 66

V

A/s.
 = 22.73 H

Problem 1.5 When a dc voltage is applied to a capacitor, the voltage across

its terminals is found to build up in accordance with v
C
 = 50(1 – e

–100 t
). After a

lapse of 0.01 s, the current flow is equal to 2 mA.
(a) Find the value of capacitance in microfarads
(b) How much energy is stored in the electric field at this time?

Solution

(a) i = C
d

d t

C 

where vC = 50(1 – e
–100t)

i = C
d

d t
 50(1 – e–100t)

= C ¥ 50 ¥ 100e–100 t

At t = 0.01 s, i = 2 mA

C =
2 10

50 100

3

100 0 01

¥

¥ ¥

-

- ¥
e

.  = 1.089 mF

(b) W =
1

2
Cv2

C

At t = 0.01 s, vC = 50 (1 – e
–100 ¥ 0.01) = 31.6 V

W =
1

2
¥ 1.089 ¥ 10–6 ¥ (31.6)2

= 0.000543 J

Problem 1.6 Determine the total current in the circuit shown in Fig. 1.34.

R2

VS

R1 R3

R4

4 W

5 W

2 W

4 W

30 V30 V
+
_

Fig. 1.34
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Solution Resistances R
2
, R

3
 and R

4
 are in parallel

\ Equivalent resistance R
5

= R
2
 || R

3
 || R

4

=
1

1 1 12 3 4/ / /R R R+ +

\ R5 = 1 W

R
1
 and R

5
 are in series,

\ Equivalent resistance R
T
 = R

1
 + R

5
 = 5 + 1 = 6 W

And the total current I
T
 = 

V

R

s

T

=
30

6
 = 5 A

Problem 1.7 Find the current in the 10 W resistance, V
1
, and source voltage

V
s
 in the circuit shown in Fig. 1.35.

I5 I6

V1

5 W

10 W

6 W

30 V 4 A

1 A1 A

+

_

A
C

D
B

VS

Fig. 1.35

Solution Assume voltage at node C = V

By applying Kirchhoff’s current law, we get the current in the 10 W resistance

I10 = I5 + I6

= 4 + 1 = 5 A

The voltage across the 6 W resistor is V
6
 = 24 V

\ Voltage at node C is VC = – 24 V.

The voltage across branch CD is the same as the voltage at node C.

Voltage across 10 W only = 10 ¥ 5 = 50 V

So VC = V10 – V1

– 24 = 50 – V1

\ V1 = 74 V

Now, consider the loop CABD shown in
Fig. 1.36

If we apply Kirchhoff’s voltage law we get

Vs = 5 – 30 – 24 = – 49 V
Fig. 1.36

5 V 30 V

24 VVC
VS

+

+
+

+–

–
–

–

A C

B D
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Problem 1.8 What is the voltage across A and B in the circuit shown in
Fig. 1.37?

A

B

6 V6 V 12 V
12 V

10 W4 W4 W

6 W

Fig. 1.37

Solution The above circuit can be redrawn as shown in Fig. 1.38.

I1

I26 V6 V

12 V12 V

A B

12 V12 V

6 W

4 W
4 W 10 W

Fig. 1.38

Assume loop currents I
1
 and I

2
 as shown in Fig. 1.38.

I1 =
6

10
 = 0.6 A

I2 =
12

14
 = 0.86 A

VA = Voltage drop across 4 W resistor = 0.6 ¥ 4 = 2.4 V
VB = Voltage drop  across 4 W resistor = 0.86 ¥ 4 = 3.44 V

The voltage between points A and B is the sum of voltages as shown in Fig. 1.39.

2.4 V2.4 V

A B

4 W 4 W

3.44 V3.44 V12 V

Fig. 1.39

\ VAB = – 2.4 + 12 + 3.44 = 13.04 V

Problem 1.9 Determine the current delivered by the source in the circuit
shown in Fig. 1.40.

Fig. 1.40
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Solution The circuit can be modified as shown in Fig. 1.41, where R
10

 is the
series combination of R

2
 and R

3
.

\ R10 = R2 + R3 = 4 W

Fig. 1.41

R
11

 is the series combination of R
4
 and R

5

\ R11 = R4 + R5 = 3 W

Further simplification of the circuit leads to Fig 1.42 where R
12

 is the parallel
combination of R

10
 and R

9
.

\ R12 = (R10 || R9) = (4 || 4) = 2 W

Similarly, R
13

 is the parallel combination of R
11

 and R
8

\ R13 = (R11 || R8) = (3 || 2) = 1.2 W

In Fig. 1.42 as shown, R
12

 and R
13

 are in series, which is in parallel with R
7

forming R
14

. This is shown in Fig. 1.43.

Fig. 1.42 Fig. 1.43

\ R14 = [(R12 + R13)//R7]

= [(2 + 1.2)//2] = 1.23 W

Further, the resistances R
14

 and R
6
 are in series, which is in parallel with R

1
 and

gives the total resistance

RT = [(R14 + R6)//R1]

= [(1 + 1.23)//(2)] = 1.05 W

The current delivered by the source = 30/1.05 = 28.57 A

Problem 1.10 Determine the current in the 10 W resistance and find V
s
 in the

circuit shown in Fig. 1.44.
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Fig. 1.44

Solution The current in 10 W resistance

I10 = total current ¥ (RT)/(RT + R10)

where R
T
 is the total parallel resistance.

I10 = 4 ¥
7

17
 = 1.65 A

Similarly, the current in resistance R
5
 is

I5 = 4 ¥
10

10 7+
 = 2.35 A

or 4 – 1.65 = 2.35 A

The same current flows through the 2 W resistance.

\ Voltage across 2 W resistance, V
s
= I

5
¥ 2

= 2.35 ¥ 2 = 4.7 V

Problem 1.11 Determine the value of resistance R and current in each branch
when the total current taken by the circuit shown in Fig. 1.45 is 6 A.

Solution The current in branch ADB

I
30

 = 50/(25 + 5) = 1.66 A

The current in branch ACB I
10 + R

 = 50/(10 + R).

According to Kirchhoff’s current law

IT = I30 + I (10 + R)

6A = 1.66 A + I10 + R

\ I10 + R = 6 – 1.66 = 4.34 A

\
50

10 + R
= 4.34

10 + R =
50

4 34.
 = 11.52

R = 1.52 W

Problem 1.12 Find the power delivered by the source in the circuit shown in
Fig. 1.46.

Fig. 1.45
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Solution Between points C(E) and D,
resistances R

3
 and R

4
 are in parallel, which

gives R
8
 = (R

3
//R

4
) = 2.5 W

Between points B and C(E), resistances R
2

and R
7
 are in parallel, which gives

R9 = (R2 || R7) = 1.5 W

Between points C(E) and D, resistances R
6

and R
8
 are in parallel and gives

R10 = (R6 || R8) = 1.25 W

The series combination of R
1
 and R

9
 gives

R11 = R1 + R9 = 3 + 1.5 = 4.5 W

Similarly, the series combination of R
5
 and R

10
 gives

R12 = R5 + R10 = 5.25 W

The resistances R
11

 and R
12

 are in parallel, which gives

Total resistance = (R
11

 || R
12

) = 2.42 ohms

These reductions are shown in Figs. 1.47 (a), (b), (c) and (d).

Current delivered by the source = 
10

2 42.
 = 4.13 A

Power delivered by the source = VI

= 10 ¥ 4.13 = 41.3 W

Fig. 1.47 (a, b, c and d)

Problem 1.13 Determine the voltage drop across the 10 W resistance in the
circuit as shown in Fig. 1.48.

Fig. 1.46
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Solution The circuit is redrawn as shown in Fig. 1.49.

Fig. 1.48 Fig. 1.49

This is a single node pair circuit. Assume voltage V
A
 at node A. By applying

Kirchhoff’s current law at node A, we have

V V VA A A

20 10 5
+ +  = 10 + 15

VA

1

20

1

10

1

5
+ +

L
NM

O
QP

 = 25 A

VA [0.05 + 0.1 + 0.2) = 25 A

VA = 
25

0 35.
 = 71.42 V

The voltage across 10 W is nothing but the voltage at node A.

\ V10 = VA = 71.42 V

Problem 1.14 In the circuit shown in Fig. 1.50 what are the values of R
1
 and

R
2
, when the current flowing through R

1
 is 1 A and R

2
 is 5 A? What is the value

of R
2
 when the current flowing through R

1
 is zero?

R1

R2

I1

I5
I2

5 W

50 V50 V

100 V100 V

30 V

A B

Fig. 1.50

Solution The current in the 5 W resistance

I5 = I1 + I2 = 1 + 5 = 6 A
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Voltage across resistance 5 W is V
5
 = 5 ¥ 6 = 30 V

The voltage at node A, V
A
 = 100 – 30 = 70 V

\ I2 =
V

R R

A -
=

-30 70 30

2 2

R2 =
70 30 40

52

-
=

I
 = 8 W

Similarly, R1 =
70 50 20

11

-
=

I
 = 20 W

When V
A
 = 50 V, the current I

1
 in resistance R

1
 becomes zero.

\ I2 =
50 30

2

-

R

where I
2
 becomes the total current

\ I2 =
100

5

100 50

5

-
=

-VA  = 10 A

\ R2 =
20 20

102I
=  = 2 W

Problem 1.15 Determine the output voltage V
out

 in the circuit shown in Fig. 1.51.

10 A10 A

5 A

10 W 2 W

R4

R6

R1

R5

3 W

5 W

1 W

2 W

R1
R3

Vout

Fig. 1.51

Solution The circuit shown in Fig. 1.51 can be redrawn as shown in Fig. 1.52.
In Fig. 1.52, R

2
 and R

3
 are in parallel, R

4
 and R

5
 are in parallel. The complete

circuit is a single node pair circuit. Assuming voltage V
A
 at node A and applying

Kirchhoff’s current law in the circuit, we have

10A –
VA

4 43.
– 5A –

VA

2 67.
 = 0

\ VA

1

4 43

1

2 67. .
+

L

N
M

O

Q
P  = 5 A

VA [0.225 + 0.375] = 5
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R1

A

A

R2 R3

R4

R6

R5

10 A 5 A Vout

2 W

3 W

10 W

2 W

1 W
5 W

Fig. 1.52

\ VA = 
5

0 6.
 = 8.33 V

Vout = VA = 8.33 V

Problem 1.16 Determine the voltage V
AB

 in the circuit shown in Fig. 1.53.

R1

R2

R6

R5 R7

R3

R4
R8

10 W 2 W

3 W

6 W

3 W

4 W5 W

6 W

100 V100 V

A

B

Fig. 1.53

Solution The circuit in Fig. 1.53 can be redrawn as shown in Fig. 1.54 (a).

R1

R2

R4

R5R7

I4 I5

I10

I3

R6

R3

R8

10 W

2 W

3 W

3 W
6 W 6 W

4 W

5 W

100 V100 V

AB 3 1 2

Fig. 1.54 (a)

At node 3, the series combination of R
7
 and R

8
 are in parallel with R

6
, which

gives R
9
 = [(R

7
 + R

8
)//R

6
] = 3 W.

At node 2, the series combination of R
3
 and R

4
 are in parallel with R

2
, which

gives R
10

 = [(R
3
 + R

4
)//R

2
] = 3 W.
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It is further reduced and is shown in Fig. 1.54 (b).
R1

R5

R9 R103 W

5 W

3 W

10 W

100 V

3 1 2

Fig. 1.54 (b) Fig. 1.54 (c)

Simplifying further we draw it as shown in Fig. 1.54 (c).

Total current delivered by the source= 
100

RT

=
100

13 8( // )
 = 20.2 A

Current in the 8 W resistor is I
8
 = 20.2 ¥

13

13 8+
 = 12.5 A

Current in the 13 W resistor is I
13

 = 20.2 ¥
8

13 8+
 = 7.69 A

So I
5
 = 12.5 A, and I

10
 = 7.69 A

Current in the 4 W resistance I
4
 = 3.845 A

Current in the 3 W resistance I
3
 = 6.25 A

VAB = VA – VB

where VA = I3 ¥ 3 W = 6.25 ¥ 3 = 18.75 V

VB = I4 ¥ 4 W = 3.845 ¥ 4 = 15.38 V

\ VAB = 18.75 – 15.38 = 3.37 V

Problem 1.17 Determine the value of R in the circuit shown in Fig. 1.55,
when the current is zero in the branch CD.

Fig. 1.55

Solution The current in the branch CD is zero, if the potential difference
across CD is zero.

That means, voltage at point C = voltage at point D.
Since no current is flowing, the branch CD is open circuited. So the same

voltage is applied across ACB and ADB
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V10 = VA ¥
10

15

VR = VA ¥
R

R20 +

\ V10  = VR

and VA ¥
10

15
= VA ¥

R

R20 +

\ R = 40 W

Problem 1.18 Find the power absorbed by each element in the circuit shown
in Fig. 1.56.

R1

R2

2 A

24 V24 V

14 V10 V10 V

ix
ix1

7 A7 A
7
V

Fig. 1.56

Solution Power absorbed by any element = VI

where V is the voltage across the element and I is the current passing through
that element
Here potential rises are taken as (–) sign.
Power absorbed by 10 V source = – 10 ¥ 2 = – 20 W
Power absorbed by resistor R

1
 = 24 ¥ 2= 48 W

Power absorbed by resistor R
2
 = 14 ¥ 7 = 98 W

Power absorbed by resistor R
3
 = – 7 ¥ 9 = – 63 W

Power absorbed by dependent voltage source = (1 ¥ – 7) ¥ 9 = – 63 W

Problem 1.19 Show that the algebraic sum of the five absorbed power values
in Fig. 1.57 is zero.

4 V
4 V 2 V2 A 7 A

2 V2ix

ix

1 A

3 A

–

2 V2 V

Fig. 1.57
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Solution Power absorbed by 2 A current source = (– 4) ¥ 2 = – 8 W

Power absorbed by 4 V voltage source = (– 4) ¥ 10 = – 4 W

Power absorbed by 2 V voltage source = (2) ¥ 3 = 6 W

Power absorbed by 7 A current source = (7) ¥ 2 = 14 W

Power absorbed by 2 i
x
 dependent current source = (– 2) ¥ 2 ¥ 2 = – 8 W

Hence, the algebraic sum of the five absorbed power values is zero.

Problem 1.20 For the circuit shown in Fig. 1.58, find the power absorbed by
each of the elements.

12 V12 V

1 W

4 W

3 W

2 v1

v1

Fig. 1.58

Solution The above circuit can be redrawn as shown in Fig. 1.59.

1 W

4 W 3 W

v

12 V12 V 2 v1
I

Fig. 1.59

Assume loop current I as shown in Fig. 1.59.

If we apply Kirchhoff’s voltage law, we get

– 12 + I – 2v1 + v1 + 4I = 0

The voltage across 3 W resistor is v
1
 = 3I

Substituting v
1
 in the loop equation, we get I = 6 A

Power absorbed by the 12 V source = (– 12) ¥ 6 = – 72 W

Power absorbed by the 1 W resistor = 6 ¥ 6 = 36 W

Power absorbed by 2v
1
 dependent voltage source

= (2v
1
)I = 2 ¥ 3 ¥ 6 ¥ 6 = – 216 W

Power absorbed by 3 W resistor = v
1
¥ I = 18 ¥ 6 = 108 W

Power absorbed by 4 W resistor = 4 ¥ 6 ¥ 6 = 144 W
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Problem 1.21 For the circuit shown in Fig. 1.60, find the power absorbed by
each element.

Fig. 1.60

Solution The circuit shown in Fig. 1.60 is a parallel circuit and consists of a
single node A. By assuming voltage V at node A, we can find the current in each
element.

According to Kirchhoff’s current law

i3 – 12 – 2i2 – i2 = 0

By using Ohm’s law, we have

i3 = 
V

3
, i2 = 

-V

2

V
1

3
1

1

2
+ +

L
NM

O
QP
 = 12

\ V = 
12

183.
 = 6.56

i3 = 
6 56

3

.
 = 2.187A; i2 = 

- 6 56

2

.
 = – 3.28 A

Power absorbed by the 3 W resistor = (+ 6.56) (2.187) = 14.35 W
Power absorbed by 12 A current source = (– 6.56) 12 = – 78.72 W
Power absorbed by 2i

2
 dependent current source

= (– 6.56) ¥ 2 ¥ (– 3.28) = 43.03 W
Power absorbed by 2 W resistor = (– 6.52) (– 3.28) = 21.51 W

PRACTICE PROBLEMS

1.1 (i) Determine the current in each of the following cases
(a) 75 C in 1 s (b) 10 C in 0.5 s
(c) 5 C in 2 s

(ii) How long does it take 10 C to flow past a point if the current is 5 A?
1.2 A resistor of 30 W has a voltage rating of 500 V; what is its power rating?
1.3 A resistor with a current of 2 A through it converts 1000 J of electrical

energy to heat energy in 15 s. What is the voltage across the resistor?
1.4 The filament of a light bulb in the circuit has a certain amount of resis-

tance. If the bulb operates with 120 V and 0.8 A of current, what is the
resistance of its filament?
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1.5 Find the capacitance of a circuit in which an applied voltage of 20 V
gives an energy store of 0.3 J.

1.6 A 6.8 kW resistor has burned out in a circuit. It has to be replaced with
another resistor with the same ohmic value. If the resistor carries 10 mA,
what should be its power rating?

1.7 If you wish to increase the amount of current in a resistor from 100 mA to
150 mA by changing the 20 V source, by how many volts should you
change the source? To what new value should you set it?

1.8 A 12 V source is connected to a 10 W resistor.
(a) How much energy is used in two minutes?
(b) If the resistor is disconnected after one minute, does the power ab-

sorbed in resistor increase or decrease?
1.9 A capacitor is charged to 50 mC. The voltage across the capacitor is

150 V. It is then connected to another capacitor four times the capaci-
tance of the first capacitor. Find the loss of energy.

1.10 The voltage across two parallel capacitors 5 mF and 3 mF changes uni-
formly from 30 to 75 V in 10 ms. Calculate the rate of change of voltage
for (i) each capacitor, and (ii) the combination.

1.11 The following voltage drops are measured across each of three resistors
in series: 5.5 V, 7.2 V and 12.3 V. What is the value of the source voltage
to which these resistors are connected? If a fourth resistor is added to the
circuit with a source voltage of 30 V. What should be the drop across the
fourth resistor?

1.12 What is the voltage VAB across the resistor shown in Fig. 1.61?

Fig. 1.61 (a) Fig. 1.61 (b)

1.13 The source voltage in the circuit shown in Fig. 1.62 is 100 V. How much
voltage does each metre read?

Fig. 1.62
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1.14 Using the current divider formula, determine the current in each branch
of the circuit shown in Fig. 1.63.

1 k1 kW
2.2 k2.2 kW

3.3 kW

5.6 k5.6 kW

10 mA10 mA

Fig. 1.63

1.15 Six light bulbs are connected in parallel across 110 V. Each bulb is rated
at 75 W. How much current flows through each bulb, and what is the
total current?

1.16 For the circuit shown in Fig. 1.64, find the total resistance between termi-
nals A and B; the total current drawn from a 6 V source connected from A
to B; and the current through 4.7 kW; voltage across 3 kW.

Fig. 1.64

1.17 For the circuit shown in Fig. 1.65, find the total resistance.

Fig. 1.65

1.18 The current in the 5 W resistance of the circuit shown in Fig. 1.66 is 5 A.
Find the current in the 10 W resistor. Calculate the power consumed by
the 5 W resistor.
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20 W

30 W

5 W 10 W

5 A5 A

V

Fig. 1.66

1.19 A battery of unknown emf is connected across resistances as shown in
Fig. 1.67. The voltage drop across the 8 W resistor is 20 V. What will be
the current reading in the ammeter? What is the emf of the battery.

8 W 11 W

11 W

13 W

15 W

V

A

V

Fig. 1.67

1.20 An electric circuit has three terminals A, B, C. Between A and B is con-
nected a 2 W resistor, between B and C are connected a 7 W resistor and 5
W resistor in parallel and between A and C is connected a 1 W resistor. A
battery of 10 V is then connected between terminals A and C. Calculate

(a) total current drawn from the battery (b) voltage across the 2 W resistor (c)
current passing through the 5 W resistor.

1.21 Use Ohm’s law and Kirchhoff’s laws on the circuit given in Fig. 1.68,
find Vin, Vs and power provided by the dependent source.

Vin

Vs

i4

4i4

4 W 2 W

3 W

30 V

2 A2 A

6 A6 A

Fig. 1.68

1.22 Use Ohm’s law and Kirchhoff’s laws on the circuit given in Fig. 1.69,
find all the voltages and currents.
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v1 v2

v3

vs
v4

i2

i2

i3

i1
i4 i5

5 W

20 W60 V
35

3

V2

12

Fig. 1.69

1.23 Find the power absorbed by each element and show that the algebraic
sum of powers is zero in the circuit shown in Fig. 1.70.

Fig. 1.70

1.24 Find the power absorbed by each element in the circuit shown in Fig. 1.71.

Fig. 1.71

OBJECTIVE-TYPE QUESTIONS

1.1 How many coulombs of charge do 50 ¥ 1031 electrons possess?
(a) 80 ¥ 1012 C (b) 50 ¥ 1031 C
(c) 0.02 ¥ 10–31 C (d) 1/80 ¥ 1012 C

1.2 Determine the voltage of 100 J/25 C.
(a) 100 V (b) 25 V
(c) 4 V (d) 0.25 V

1.3 What is the voltage of a battery that uses 800 J of energy to move 40 C of
charge through a resistor?
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(a) 800 V (b) 40 V
(c) 25 V (d) 20 V

1.4 Determine the current if a 10 coulomb charge passes a point in 0.5 seconds.
(a) 10 A (b) 20 A
(c) 0.5 A (d) 2 A

1.5 If a resistor has 5.5 V across it and 3 mA flowing through it, what is the power?
(a) 16.5 mW (b) 15 mW
(c) 1.83 mW (d) 16.5 W

1.6 Identify the passive element among the following
(a) Voltage source (b) Current source
(c) Inductor (d) Transistor

1.7 If a resistor is to carry 1 A of current and handle 100 W of power, how
many ohms must it be? Assume that voltage can be adjusted to any re-
quired value.

(a) 50 W (b) 100 W
(c) 1 W (d) 10 W

1.8 A 100 W resistor is connected across the terminals of a 2.5 V battery.
What is the power dissipation in the resistor?

(a) 25 W (b) 100 W
(c) 0.4 W (d) 6.25 W

1.9 Determine total inductance of a parallel combination of 100 mH, 50 mH
and 10 mH.

(a) 7.69 mH (b) 160 mH
(c) 60 mH (d) 110 mH

1.10 How much energy is stored by a 100 mH inductance with a current of 1 A?
(a) 100 J (b) 1 J
(c) 0.05 J (d) 0.01 J

1.11 Five inductors are connected in series. The lowest value is 5 mH. If the
value of each inductor is twice that of the preceding one, and if the inductors
are connected in order ascending values. What is the total inductance?

(a) 155 mH (b) 155 H
(c) 155 mH (d) 25 mH

1.12 Determine the charge when C = 0.001 mF and v = 1 KV.
(a) 0.001 C (b) 1 mC
(c) 1 C (d) 0.001 C

1.13 If the voltage across a given capacitor is increased, does the amount of
stored charge

(a) increase (b) decrease
(c) remain constant (d) is exactly doubled

1.14 A 1 mF, a 2.2 mF and a 0.05 mF capacitors are connected in series. The
total capacitance is less than

(a) 0.07 (b) 3.25
(c) 0.05 (d) 3.2

1.15 How much energy is stored by a 0.05 mF capacitor with a voltage of 100 V?

(a) 0.025 J (b) 0.05 J
(c) 5 J (d) 100 J
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1.16 Which one of the following is an ideal voltage source?
(a) voltage independent of current (b) current independent of voltage
(c) both (a) and (b) (d) none of the above

1.17 The following voltage drops are measured across each of three resistors
in series: 5.2 V, 8.5 V and 12.3 V. What is the value of the source voltage
to which these resistors are connected?

(a) 8.2 V (b) 12.3 V
(c) 5.2 V (d) 26 V

1.18 A certain series circuit has a 100 W, a 270 W, and a 330 W resistor in
series. If the 270 W resistor is removed, the current

(a) increases (b) becomes zero
(c) decrease (d) remain constant

1.19 A series circuit consists of a 4.7 kW, 5.6 kW, 9 kW and 10 kW resistor.
Which resistor has the most voltage across it?

(a) 4.7 kW (b) 5.6 kW
(c) 9 kW (d) 10 kW

1.20 The total power in a series circuit is 10 W. There are five equal value
resistors in the circuit. How much power does each resistor dissipate?

(a) 10 W (b) 5 W
(c) 2 W (d) 1 W

1.21 When a 1.2 kW resistor, 100 W resistor, 1 kW resistor and 50 W resistor
are in parallel, the total resistance is less than

(a) 100 W (b) 50 W
(c) 1 kW (d) 1.2 kW

1.22 If a 10 V battery is connected across the parallel resistors of 3 W, 5 W,
10 W and 20 W, how much voltage is there across 5 W resistor?

(a) 10 V (b) 3 V
(c) 5 V (d) 20 V

1.23 If one of the resistors in a parallel circuit is removed, what happens to the
total resistance?

(a) decreases (b) increases
(c) remain constant (d) exactly doubles

1.24 The power dissipation in each of three parallel branches is 1 W. What is
the total power dissipation of the circuit?

(a) 1 W (b) 4 W
(c) 3 W (d) zero

1.25 In a four branch parallel circuit, 10 mA of current flows in each branch.
If one of the branch opens, the current in each of the other branches

(a) increases (b) decreases
(c) remains unaffected (d) doubles

1.26 Four equal value resistors are connected in parallel. Five volts are ap-
plied across the parallel circuit, and 2.5 mA are measured from the
source. What is the value of each resistor?

(a) 4 W (b) 8 W
(c) 2.5 W (d) 5 W
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1.27 Six light bulbs are connected in parallel across 110 V. Each bulb is re-
lated at 75 W. How much current flows through each bulb?

(a) 0.682 A (b) 0.7 A
(c) 75 A (d) 110 A

1.28 A 330 W resistor is in series with the parallel combination of four 1 kW
resistors. A 100 V source is connected to the circuit. Which resistor has
the most current through it.

(a) 330 W resistor
(b) parallel combination of three 1 kW resistors
(c) parallel combination of two 1 kW resistors
(d) 1 kW resistor

1.29 The current i4 in the circuit shown in Fig. 1.72 is equal to

(a) 12 A (b) – 12 A
(c) 4 A (d) None of the above

Fig. 1.72

1.30 The voltage V in Fig. 1.73 is equal to
(a) 3 V (b) – 3 V
(c) 5 V (d) None of the above

i2

5 i22 W

3 W

4 V

V

5 V

4 V

–

Fig. 1.73

1.31 The voltage V in Fig. 1.74 is always equal to
(a) 9 V (b) 5 V
(c) 1 V (d) None of the above

Fig. 1.74
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1.32 The voltage V in Fig. 1.75 is
(a) 10 V (b) 15 V
(c) 5 V (d) None of the above.

Fig. 1.75



2.1 INTRODUCTION

A division of mathematics called topology or graph theory deals with graphs of

networks and provides information that helps in the formulation of network

equations. In circuit analysis, all the elements in a network must satisfy Kirchhoff’s

laws, besides their own characteristics. Based on these laws, we can form a number

of equations. These equations can be easily written by converting the network into a

graph. Certain aspects of network behaviour are brought into better perspective if

a graph of the network is drawn. If each element or a branch of a network is

represented on a diagram by a line irrespective of the characteristics of the

elements, we get a graph. Hence, network topology is network geometry. A network

is an interconnection of elements in various branches at different nodes as shown

in Fig. 2.1. The corresponding graph is shown in Fig. 2.2 (a).

Chapter

2
METHODS OF
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CIRCUITS

Fig. 2.1 Fig. 2.2 (a)
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The graphs shown in Figs 2.2 (b) and (c) are also graphs of the network in

Fig. 2.1.

It is interesting to note that the graphs shown in Fig. 2.2 (a), (b) and (c) may

appear to be different but they are topologically equivalent. A branch is

represented by a line segment connecting a pair of nodes in the graph of a

network. A node is a terminal of a branch, which is represented by a point. Nodes

are the end points of branches. All these graphs have identical relationships

between branches and nodes.

The three graphs in Fig. 2.2 have six branches and four nodes. These graphs

are also called undirected. If every branch of a graph has a direction as shown

in Fig. 2.3, then the graph is called a directed graph.

A node and a branch are incident if the node is

a terminal of the branch. Nodes can be incident to

one or more elements. The number of branches

incident at a node of a graph indicates the degree

of the node. For example, in Fig. 2.3 the degree of

node 1 is three. Similarly, the degree of node 2 is

three. If each element of the connected graph is

assigned a direction as shown in Fig. 2.3 it is then

said to be oriented. A graph is connected if and

only if there is a path between every pair of nodes.

A path is said to exist between any two nodes, for

example 1 and 4 of the graph in Fig. 2.3, if it is

possible to reach node 4 from node 1 by traversing

along any of the branches of the graph. A graph can be drawn if there exists a

path between any pair of nodes. A loop exists, if there is more than one path

between two nodes.

Planar and Non-Planar Graphs

A graph is said to be planar if it can be drawn on a plane surface such that no
two branches cross each other as shown in Fig. 2.2. On the other hand in a

Fig. 2.2(b) Fig. 2.2(c)

1 3
4

f

a b

c d

e

2

1 3

4

2

a b

c

e

f

d

Fig. 2.3
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nonplanar graph there will be branches which are
not in the same plane as others, i.e. a non-planar
graph cannot be drawn on a plane surface without
a crossover. Figure 2.4 illustrates a non-planar
graph.

2.2 TREE AND CO-TREE

A tree is a connected subgraph of a network which

consists of all the nodes of the original graph but

no closed paths. The graph of a network may have

a number of trees. The number of nodes in a graph

is equal to the number nodes in the tree. The

number of branches in a tree is less than the number

of branches in a graph. A graph is a tree if there is a

unique path between any pair of nodes. Consider a

graph with four branches and three nodes as shown

in Fig. 2.5.

Five open-ended graphs based on  Fig. 2.5 are

represented by Figs 2.6 (a) to (e). Since each of these

open-ended graphs satisfies all the requirements of

a tree, each graph in Fig. 2.6 is a tree corresponding

to Fig. 2.5.

In Fig. 2.6, there is no closed path or loop; the number of nodes n = 3 is the

same for the graph and its tree, where as the number of branches in the tree is

only two. In general, if a tree contains n nodes, then it has (n – 1) branches.

Fig. 2.4

Fig. 2.5

Fig. 2.6
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In forming a tree for a given graph, certain branches are removed or opened.

The branches thus opened are called links or link branches. The links for

Fig. 2.6 (a) for example are a and d and for 2.6 (b) are b and c. The set of all

links of a given tree is called the co-tree of the graph. Obviously, the branches

a, d are a co-tree for Fig. 2.6 (a) and b, c are the co-tree. Similarly, for the tree

in Fig. 2.6 (b), the branches b, c are the co-tree. Thus the link branches and the

tree branches combine to form the graph of the entire network.

Example 2.1 For the given graph shown in Fig. 2.7 draw the number of possible

trees.

1 3

4

2

a b

c

e

d

f

Fig. 2.7

Solution The number of possible trees for Fig. 2.7 are represented by Figs 2.8

(a) – (g).

Fig. 2.8

2.3 TWIGS AND LINKS

The branches of a tree are called its ‘twigs’. For a given graph, the complementary

set of branches of the tree is called the co-tree of the graph. The branches of a

co-tree are called links, i.e. those elements of the connected graph that are not

included in the tree links and form a subgraph. For example, the set of branches

(b, d, f) represented by dotted lines in Fig. 2.11 form a co-tree of the graph in

Fig. 2.9 with respect to the tree in Fig. 2.10.
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U
V
|

W|

Fig. 2.9 Fig. 2.10

The branches a, c and e are the twigs while

the branches b, d and f are the links of this tree.

It can be seen that for a network with b branches

and n nodes, the number of twigs for a selected

tree is (n – 1) and the number of links I with

respect to this tree is (b – n + 1). The number

of twigs (n – 1) is known as the tree value of

the graph. It is also called the rank of the tree.

If a link is added to the tree, the resulting graph

contains one closed path, called a loop. The

addition of each subsequent link forms one or

more additional loops. Loops which contain

only one link are independent and are called

basic loops.

2.4 INCIDENCE MATRIX (A)

The incidence of elements to nodes in a connected graph is shown by the

element node incidence matrix (A). Arrows indicated in the branches of a graph

result in an oriented or a directed graph. These arrows are the indication for the

current flow or voltage rise in the network. It can be easily identified from an

oriented graph regarding the incidence of branches to nodes. It is possible to

have an analytical description of an oriented-graph in a matrix form. The

dimensions of the matrix A is n ¥ b where n is the number of nodes and b is

number of branches. For a graph having n nodes and b branches, the complete

incidence matrix A is a rectangular matrix of order n ¥ b.

In matrix A with n rows and b columns an entry a
ij
 in the i

th
 row and j

th

column has the following values.

a
ij
 = 1, if the j

th
 branch is incident to and oriented away from the i

th
 node.

a
ij
 = – 1, if the j

th
 branch is incident to and oriented towards the i

th
 node. (2.1)

a
ij
 = 0, if the j

th
 branch is not incident to the i

th
 node.

Figure 2.12 shows a directed graph.

Fig. 2.11

2
3

4

1
a

b

c

d

f

e



2.6 Electrical Circuit Analysis

Following the above convention its incidence matrix

A is given by

A =

Notes Branches

1 0 1 0 0 11

–1 –1 0 –1 0 02

0 1 0 0 1 –13

0 0 –1 1 –1 04

a b c d e f

Æ

Ø
È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

The entries in the first row indicates that three

branches a, c and f are incident to node 1 and they are

oriented away from node 1 and therefore the entries

a
11

; a
13

 and a
16

 are + 1. Other entries in the 1
st
 row are zero as they are not

connected to node 1. Likewise, we can complete the incidence matrix for the

remaining nodes 2, 3 and 4.

2.5 PROPERTIES OF INCIDENCE MATRIX A

Following properties are some of the simple conclusions from incidence

matrix A.

1. Each column representing a branch contains two non-zero entries + 1

and – 1; the rest being zero. The unit entries in a column identify the

nodes of the branch between which it is connected.

2. The unit entries in a row identify the branches incident at a node. Their

number is called the degree of the node.

3. A degree of 1 for a row means that there is one branch incident at the

node. This is commonly possible in a tree.

4. If the degree of a node is two, then it indicates that two branches are

incident at the node and these are in series.

5. Columns of A with unit entries in two identical rows correspond to two

branches with same end nodes and hence they are in parallel.

6. Given the incidence matrix A the corresponding graph can be easily con-

structed since A is a complete mathematical replica of the graph.

7. If one row of A is deleted the resulting (n – 1) ¥ b matrix is called the

reduced incidence matrix A1. Given A1, A is easily obtained by using the

first property.

It is possible to find the exact number of trees that can be generated from a

given graph if the reduced incidence matrix A
1
 is known and the number of

possible trees is given by Det (A
1
A

1

T
) where A

1

T
 is the transpose of the matrix A

1
.

Example 2.2 Draw the graph corresponding to the given incidence matrix.

A =

- + +

- - +

- - - -

- +

- + + +

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

1 0 0 0 1 0 1 0

0 1 0 0 0 0 1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1
2

3
a b

c d
e

f

4

Fig. 2.12
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Solution There are five rows and eight columns which indicate that there are five

nodes and eight branches. Let us number the columns from a to h and rows as 1 to 5.

A = 

A b c d e f g h
1

2

3

4

5

1 0 0 0 1 0 1 0

0 1 0 0 0 0 1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0

-

- -

- - - -

-

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

Mark the nodes corresponding to the rows 1, 2, 3, 4 and 5 as dots as shown in Fig.

2.13 (a). Examine each column of A and connect the nodes (unit entries) by a branch;

label it after marking an arrow.

For example, examine the first column of A. There are two unit entries one in the

first row and 2
nd

 in the last row, hence connect branch a between node 1 and 5. The

entry of A
11

 is – ve and that of A
51

 is + ve. Hence the orientation of the branch is away

from node 5 and towards node 1 as per the convention. Proceeding in this manner we

can complete the entire graph as shown in Fig. 2.13 (b).

From the incidence matrix A, it can be verified that branches c and d are in parallel

(property 5) and branches e and f are in series (property 4).

Example 2.3 Obtain the incidence matrix A from the following reduced

incidence matrix A
1
 and draw its graph.

[A
1
] = 

-

-

-

-

- -

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

1 1 0 0 0 0 0

0 1 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 1 0 0 1 1

Solution There are five rows and seven columns in the given reduced incidence

matrix [A
1
]. Therefore, the number of rows in the complete incidence matrix A will

Fig. 2.13(a) Fig. 2.13(b)
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be 5 + 1 = 6. There will be six nodes and seven branches in the graph. The

dimensions of matrix A is 6 ¥ 7. The last row in A, i.e. 6
th
 row for the matrix A can be

obtained by using the first property of the incidence matrix. It is seen that the first

column of [A
1
] has a single non-zero element – 1. Hence, the first element in the 6

th

row will be + 1 (– 1 + 1 = 0). Second column of A
1
 has two non-zero elements + 1

and – 1, hence the 2
nd

 element in the 6
th
 row will be 0. Proceeding in this manner we

can obtain the 6
th
 row. The complete incidence matrix can therefore be written as

[A] = 

a

b

c

d

e

f

-

-

-

-

- -

-

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

1 1 0 0 0 0 0

0 1 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 1 0 0 1 1

1 0 0 0 0 0 1

We have seen that any one of the rows of a complete incidence matrix can be

obtained from the remaining rows. Thus it is possible to delete any one row from A

without loosing any information in A
1
. Now the oriented graph can be constructed

from the matrix A. The nodes may be placed arbitrarily. The number of nodes to be

marked will be six. Taking node 6 as reference node the graph is drawn as shown in

Fig. 2.14.

Fig. 2.14

2.6 INCIDENCE MATRIX AND KCL

Kirchhoff’s current law (KCL) of a graph can be expressed in terms of the

reduced incidence matrix as A
1

I = 0.

A
1
, I is the matrix representation of KCL,

where I represents branch current vectors I
1
,

I
2
, � I

6
.

Consider the graph shown in Fig. 2.15. It

has four nodes a, b, c and d.

Let node d be taken as the reference node.

The positive reference direction of the branch

currents corresponds to the orientation of the

graph branches. Let the branch currents be

i
1
, i

2
, � i

6
. Applying KCL at nodes a, b and c.

Fig. 2.15
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– i1 + i4 = 0

– i2 – i4 + i5 = 0

– i3 = i5 – i6 = 0

These equations can be written in the matrix form as follows

-

- -

- - -

L

N

M
M
M

O

Q

P
P
P

1 0 0 1 0 0

0 1 0 1 1 0

0 0 1 0 1 1

I

I

I

I

I

I

1

2

3

4

5

6

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

 = 

0

0

0

L

N

M
M
M

O

Q

P
P
P

A1 Ib = 0 (2.2)
Here, I

b
 represents column matrix or a vector of branch currents.

Ib =

i

i

ib

1

2

�

L

N

M
M
M
M

O

Q

P
P
P
P

A
1
 is the reduced incidence matrix of a graph with n nodes and b branches.

And it is a (n – 1) ¥ b matrix obtained from the complete incidence matrix of A

deleting one of its rows. The node corresponding to the deleted row is called

the reference node or datum node. It is to be noted that A
1

I
b
 = 0 gives a set of n

– 1 linearly independent equations in branch currents I
1
, I

2
, � I

6
. Here n = 4.

Hence, there are three linearly independent equations.

2.7 LINK CURRENTS: TIE-SET MATRIX

For a given tree of a graph, addition of each link between any two nodes forms

a loop called the fundamental loop. In a loop there exists a closed path and a

circulating current, which is called the link current. The current in any branch

of a graph can be found by using link currents.

The fundamental loop formed by one link has a unique path in the tree

joining the two nodes of the link. This loop is also called f-loop or a tie-set.

Fig. 2.16
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Consider a connected graph shown in Fig. 2.16 (a). It has four nodes and six

branches. One of its trees is arbitrarily chosen and is shown in Fig. 2.16 (b). The

twigs of this tree are branches 4, 5 and 6. The links corresponding to this tree

are branches 1, 2 and 3. Every link defines a fundamental loop of the network.

No. of nodes n = 4

No. of branches b = 6

No. of tree branches or twigs = n – 1 = 3

No. of link branches I = b – (n – 1) = 3

Let i
1
, i

2
, � i

6
 be the branch currents with directions as shown in Fig. 2.16

(a). Let us add a link in its proper place to the tree as shown in 2.16 (c). It is seen

that a loop I
1
 is formed by the branches 1, 5 and 6. There is a formation of link

current, let this current be I
1
. This current passes through the branches 1, 5 and

6. By convention a fundamental loop is given the same orientation as its

defining link, i.e. the link current I
1
 coincides with the branch current direction

i
1
 in ab. A tie set can also be defined as the set of branches that forms a closed

loop in which the link current flows. By adding the other link branches 2 and 3,

we can form two more fundamental loops or f-loops with link currents I
2
 and I

3

respectively as shown in Figs 2.16 (d) and (e).

1 1 2

6
6

6

5 4

3
13

5
5

12

4 4

11

b b

b

(c) (d)

(e)

d d

d

a a

a

c c

c

Fig. 2.16

2.7.1 Tie-Set Matrix

Kirchhoff’s voltage law can be applied

to the f-loops to get a set of linearly

independent equations. Consider

Fig. 2.17.

Fig. 2.17
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There are three fundamental loops I
1
, I

2
 and I

3
 corresponding to the link

branches 1, 2 and 3 respectively. If V
1
, V

2
, � V

6
 are the branch voltages the

KVL equations for the three f-loops can be written as

V1 + V5 – V6 = 0

V2 + V4 – V5 = 0

U

V
|

W
|

(2.3)

V3 – V4 = 0

In order to apply KVL to each fundamental loop, we take the reference

direction of the loop which coincides with the reference direction of the link

defining the loop.

The above equation can be written in matrix form as

loop branchesÆ 3 ¥ 6 ¥ 6

Ø 1 2 3 4 5 6

I
1 L

N

M
M

 1 0 0 0 1 – 1 O

Q

P
P

V
1

I
2

0 1 0 1 – 1 0

L

N

M
M
M
M
M
M
M

 V
2

O

Q

P
P
P
P
P
P
P

0

I
3

0 0 1 – 1 0 0 V
3

= 0

V
4

0

V
5

V
6

B Vb = 0 (2.4)

where B is an I ¥ b matrix called the tie-set matrix or fundamental loop matrix

and V
b
 is a column vector of branch voltages.

The tie set matrix B is written in a compact form as B [b
ij
] (2.5)

The element b
ij
 of B is defined as

b
ij

= 1 when branch b
j
 is in the f-loop I

i
(loop current) and their reference

directions coincide.

b
ij
 = -1 when branch b

j
 is in the f-loop I

i
(loop current) and their reference

directions are opposite.

b
ij

= 0 when branch b
j
 is not in the f-loop I

i
.

2.7.2 Tie-set Matrix and Branch Currents

It is possible to express branch currents as a linear combination of link current

using matrix B.

If I
B
 and I

I
 represents the branch current matrix and loop current matrix

respectively and B is the tie-set matrix, then

[Ib] = [BT ] [IL ] (2.6)

where [B
T
] is the transpose of the matrix [B]. Equation (6) is known as link

current transformation equation.

Consider the tie-set matrix of Fig. 2.17

B =

1 0 0 0 1 1

0 1 0 1 1 0

0 0 1 1 0 0

-

-

-

L

N

M
M
M

O

Q

P
P
P
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BT =

1 0 0

0 1 0

0 0 1

0 1 1

1 1 0

1 0 0

-

-

-

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

The branch current vector [I
b
] is a column vector.

[Ib] =

i

i

i

i

i

i

1

2

3

4

5

6

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

The loop current vector [I
L
] is a column vector

[IL] =

I

I

I

1

2

3

L

N

M
M
M

O

Q

P
P
P

Therefore the link current transformation equation is given by [I
b
] = [B

T
] [I

L
]

i

i

i

i

i

i

1

2

3

4

5

6

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

 =

1 0 0

0 1 0

0 0 1

0 1 1

1 1 0

1 0 0

1

2

3

-

-

-

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

L

N

M
M
M

O

Q

P
P
P

I

I

I

The branch currents are

i1 = I1

i2 = I2

i3 = I3

i4 = I2 – I3

i5 = I1 – I2

i6 = – I1

Example 2.4 For the electrical network shown in Fig. 2.18 (a) draw its

topological graph and write its incidence matrix, tie-set matrix, link current

transformation equation and branch currents.
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100 W

5 W 25 W10 mH10 mH

15 mH
15 V

A B C D E

FGHIJ

5 A2 Fm

5 Fm

Fig. 2.18 (a)

Solution
Voltage source is short circuited, current source is open circuited, the points which

are electrically at same potential are combined to form a single node. The graph is

shown in Fig. 2.18 (b).

Combining the simple nodes and arbitrarily selecting the branch current

directions the oriented graph is shown in Fig. 2.18 (c). The simplified consists of

three nodes. Let them be x, y and z and five branches 1, 2, 3, 4 and 5. The complete

incidence matrix is given by

A =

Nodes branches Æ

B
-

-

- - -

L

N

M
M
M

O

Q

P
P
P

1 2 3 4 5

1 0 1 0 1

1 1 0 1 0

0 1 1 1 1

x

y

z

Let us choose node z as the reference or datum node for writing the reduced

incidence matrix A
1
 or we can obtain A

1
 by deleting the last row elements in A.

A1 =

nodes branches

B
-

-
L
NM

O
QP

1 2 3 4 5

1 0 1 0 1

1 1 0 1 0

x

y

For writing the tie-set matrix, consider the tree in the graph in Fig. 2.18 (c).

b c, dc, d

a, j, i, h, ga, j, i, h, g

e

f

Fig. 2.18 (b) Fig. 2.18 (c)

x y

z

3

5

1

4 2
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No. of nodes n = 3

No. of branches = 5

No. of tree branches or twigs

 = n – 1 = 2

No. of link branches

I = b – (n – 1)

= 5 – (3 – 1) = 3

The tree shown in Fig. 2.18 (d)

consists of two branches 4 and 5

shown with solid lines and the link

branches of the tree are 1, 2 and 3 shown with dashed lines. The tie-set matrix or

fundamental loop matrix is given by

B =

loop branches Æ

B

-

L

N

M
M
M

O

Q

P
P
P

1 2 3 4 5

1 0 0 1 1

0 1 0 1 0

0 0 1 0 1

1

2

3

I

I

I

To obtain the link current transformation equation and thereby branch currents

the transpose of B should be calculated.

B
T
 =

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

-

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

The equation [Ib] = [BT] [IL]

i

i

i

i

i

1

2

3

4

5

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

 =

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

1

2

3-

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

L

N

M
M
M

O

Q

P
P
P

I

I

I

The branch currents are given by

i1 = I1

i2 = I2

i3 = I3

i4 = I1 – I2

i5 = I1 + I3

2.8 CUT-SET AND TREE BRANCH VOLTAGES

A cut-set is a minimal set of branches of a connected graph such that the

removal of these branches causes the graph to be cut into exactly two parts. The

Fig. 2.18 (d)
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important property of a cut-set is that by restoring anyone of the branches of the

cut-set the graph should become connected. A cut-set consists of one and only

one branch of the network tree, together with any links which must be cut to

divide the network into two parts.

Consider the graph shown in Fig. 2.19 (a). If the branches 3, 5 and 8 are

removed from the graph, we see that the connected graph of Fig. 2.19 (a) is

separated into two distinct parts, each of which is connected as shown in Fig.

2.19 (b). One of the parts is just an isolated node. Now suppose the removed

branch 3 is replaced, all others still removed. Figure 2.19 (c) shows the resultant

graph. The graph is now connected. Likewise replacing the removed branches

5 and 8 of the set {3, 5, 8} one at a time, all other ones remaining removed, we

obtain the resulting graphs as shown in Figs 2.19 (d) and (e). The set formed by the

branches 3, 5 and 8 is called the cut-set of the connected graph of Fig. 2.19 (a).

2.8.1 Cut-Set Orientation

A cut-set is oriented by arbitrarily selecting the

direction. A cut-set divides a graph into two

parts. In the graph shown in Fig. 2.20, the cut-

set is {2, 3}. It is represented by a dashed line

passing through branches 2 and 3. This cut-set
separates the graph into two parts shown as part-1

and part-2. We may take the orientation either
from part-1 to part-2 or from part-2 to part-1.

(a) (b)

(c)

Fig. 2.19

b

a c

d

e
1

2

3

8

6

7

5
4

b

a

d

c
e1
2

7

6 4
5

b

a

d

c
e

1

2
7 8

46

(e)

Fig. 2.20
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The orientation of some branches of the cut-set may coincide with the

orientation of the cut-set while some branches of the cut-set may not coincide.

Suppose we choose the orientation of the cut-set {2, 3} from part-1 to part-2 as

indicated in Fig. 2.20, then the orientation of branch 2 coincides with the cut-

set, whereas the orientation of the branch 3 is opposite.

2.8.2 Cut-Set Matrix and KCL for Cut-Sets

KCL is also applicable to a cut-set of a network. For any lumped electrical

network, the algebraic sum of all the cut-set branch currents is equal to zero.

While writing the KCL equation for a cut-

set, we assign positive sign for the current

in a branch if its direction coincides with

the orientation of the cut-set and a negative

sign to the current in a branch whose

direction is opposite to the orientation of

the cut-set. Consider the graph shown in

Fig. 2.21. It has five branches and four

nodes. The branches have been numbered 1 through 5 and their orientations are

also marked. The following six cut-sets are possible as shown in Fig. 2.22 (a)-(f).

Cut-set C
1
 : {1, 4}; cut-set C

2
 : {4, 2, 3}

Cut-set C
3
 : {3, 5}; cut-set C

4
 : {1, 2, 5}

Cut-set C
5
 : {4, 2, 5} ; cut-set C

6
 : {1, 2, 3}

5

5 5 5

5

(a)

(d)

(b)

(e)

(c)

(f)

5

4

4 4 4

4 4

3

3
3 3

3
31

1 1 1

1 12

2 2 2

2
2

b

b b b

b
ba

a a a

a a

d

d d d

d dc

c c c

c c

c1

c4

c5

c6

c2

c3

Fig. 2.22 (a to f)

Applying KCL for each of the cut-set we obtain the following equations. Let

i
1
, i

2
� i

6
 be the branch currents.

C1 : i1 – i4 = 0

C2 : – i2 + i3 + i4 = 0

C3 : – i3 + i5 = 0

U

V

|
|
|

W

|
|
|

C4 : i1 – i2 + i5 = 0 (2.7)

C5 : – i2 + i4 + i5 = 0

C6 : i1 – i2 + i3 = 0

Fig. 2.21
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These equation can be put into matrix form as

1 0 0 1 0 0

0 1 1 1 0 0

0 0 1 0 1 0

1 1 0 0 1 0

0 1 0 1 1 0

1 1 1 0 0 0

1

2

3

4

5

6

-

-

-

-

-

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

i

i

i

i

i

i

 = 

0

0

0

0

0

0

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

or
QIb = 0 (2.8)

where the matrix Q is called augmented cut-set matrix of the graph or all cut-set

matrix of the graph. The matrix I
b
 is the branch-current vector.

The all cut-set matrix can be written as Q = [q
ij
].

where q
ij
 is the element in the i

th
 row and j

th
 column. The order of Q is number

of cut-sets ¥ number of branch as in the graph.

q
ij
 = 1, if branch j in the cut-set i and the orientation

coincides with each other

q
ij
 = – 1, if branch j is in the cut-set i and the orientation

U

V

|
||

W

|
|
|

(2.9)

is opposite.

q
ij
 = 0, if branch j is not present in cut-set i.

Example 2.5 For the network-graph shown in Fig. 2.23 (a) with given orientation

obtain the all cut-set (augmented cut-set) matrix.

Solution The graph has four nodes and eight branches. There are in all 12

possible cut-sets as shown with dashed lines in Figs 2.23 (b) and (c). The orientation

of the cut-sets has been marked arbitrarily. The cut-sets are

C
1
 : {1, 46}; C

2
 {1, 2, 3}; C

3
: {2, 5, 8}

C
4
 : {6, 7, 8}; C

5
 {1, 3, 5, 8}; C

6
: {1, 4, 7, 8}

C
7
 : {2, 5, 6, 7}; C

8
 : {2, 3, 4, 6} C

9
 : {1, 4, 7, 5, 2}

C
10

 : {2, 3, 4, 7, 8} ; C
11

 : {6, 4, 3, 5, 8}; C
12

: {1, 3, 5, 7, 6}

Fig. 2.23 (a) Fig. 2.23 (b)

1

2

3

2

4

6 8

5

7

e
a

b

d

c2

c5

c7

c4

c6c1

c8 c3
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1

2
3

4

6 8

7

5e
a

b

d

c9

c10

c10

c1

c11

c12

Fig. 2.23 (c)

Eight cut-sets C
1
 to C

8
 are shown if Fig. 2.23(b) and four cut-sets C

9
 to C

11
 are

shown in Fig. 2.23(c) for clarity.

As explained in section 2.8.2 with the help of equations 2.9, the all cut-set

matrix Q is given by

Cut-sets Branches Æ

Ø 1 2 3 4 5 6 7 8

C
1

– 1 0 0 1 0 – 1 0 0

C
2

1 – 1 – 1 0 0 0 0 0

C
3

0 1 0 0 1 0 0 – 1

C
4

0 0 0 0 0 1 1 1

C
5

1 0 – 1 0 1 0 0 – 1

Q = C
6

L

N

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

– 1 0 0 1 0 0 1 1

O

Q

P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

(2.10)

C
7

0 1 0 0 1 1 1 0

C
8

0 – 1 – 1 1 0 – 1 0 0

C
9

1 – 1 0 – 1 – 1 0 – 1 0

C
10

0 1 1 – 1 0 0 – 1 – 1

C
11

0 0 1 – 1 – 1 1 0 1

C
12

– 1 0 1 0 – 1 – 1 – 1 0

Matrix Q is a 12 ¥ 8 matrix since there are 12 cut-sets and eight branches in the

graph.

2.8.3 Fundamental Cut-Sets

Observe the set of equation 2.7 in Section 2.8.2 with respect to the graph in Fig.

2.22. Only first three equations are linearly independent, remaining equations can

be obtained as a linear combination of the first three. The concept of fundamental

cut-set (f-cut-set) can be used to obtain a set of linearly independent equations

in branch current variables. The f-cut-sets are defined for a given tree of the

graph. From a connected graph, first a tree is selected, and then a twig is

selected. Removing this twig from the tree separates the tree into two parts. All
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the links which go from one part of the disconnected tree to the other, together

with the twig of the selected tree will constitute a cut-set. This cut-set is called

a fundamental cut-set or f-cut-set or the graph. Thus a fundamental cut-set of a

graph with respect to a tree is a cut-set that is formed by one twig and a unique

set of links. For each branch of the tree, i.e. for each twig, there will be a f-cut-

set. So, for a connected graph having n nodes, there will be (n – 1) twigs in a

tree, the number of f-cut-sets is also equal to (n – 1).

Fundamental cut-set matrix Q
f
 is one in which each row represents a cut-set

with respect to a given tree of the graph. The rows of Q
1
 correspond to the

fundamental cut-sets and the columns correspond to the branches of the graph.

The procedure for obtaining a fundamental cut-set matrix is illustrated in

Example 2.6.

Example 2.6 Obtain the fundamental cut-set matrix Qf for the network graph

shown in Fig. 2.23 (a).

Solution A selected tree of the graph is shown in Fig. 2.24 (a).

The twigs of the tree are {3, 4, 5, 7}. The remaining branches 1, 2, 6 and 8 are the

links, corresponding to the selected tree. Let us consider twig 3. The minimum

number of links that must be added to twig 3 to form a cut-set C
1
 is {1, 2}. This set

is unique for C
1
. Thus corresponding to twig 3. The f-cut-set C

1
 is {1, 2, 3}. This is

shown in Fig. 2.24 (b). As a convention the orientation of a cut-set is chosen to

coincide with that of its defining twig. Similarly, corresponding to twig 4, the f-cut-

set C
2
 is {1, 4, 6} corresponding to twig 5, the f-cut-set C

3
 is {2, 5, 8} and

corresponding to twig 7, the f-cut-set is {6, 7, 8}. Thus the f-cut-set matrix is given

by

f-cut-sets branches

Qf =

C

C

C

C

1

2

3

4

1 1 1 0 0 0 0 0

1 0 0 1 0 1 0 0

0 1 0 0 1 0 0 1

0 0 0 0 0 1 1 1

-

- -

+ -

L

N

M
M
M
M

O

Q

P
P
P
P

(2.11)

(a) (b)
Fig. 2.24

b

d

a

3

7

4 5
c

e
54

3

1

2

7

6 8

e
a

d

b

c1

c3

C
c2

c4
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2.8.4 Tree Branch Voltages and f-Cut-Set Matrix

From the cut-set matrix the branch voltages can be expressed in terms of tree

branch voltages. Since all tree branches are connected to all the nodes in the

graph, it is possible to trace a path from one node to any other node by

traversing through the tree-branches.

Let us consider Example 2.6, there are eight branches. Let the branch

voltages be V
1
, V

2
, � V

8
. There are, four twigs, let the twig voltages be V

t3
, V

t4
,

V
t5
 and V

t7
 for twigs 3, 4, 5 and 7 respectively.

We can express each branch voltage in terms of twig voltages as follows.

V1 = – V3 – V4 = – Vt3 – Vt4

V2 = + V3 + V5 = + Vt3 + Vt5

V3 = Vt3

V4 = Vt4

V5 = Vt5

V6 = V7 – V4 = Vt7 – Vt4

V7 = Vt7

V8 = V7 – V5 = Vt7 – Vt5

The above equations can be written in matrix form as

V

V

V

V

V

V

V

V

1

2

3

4

5

6

7

8

L

N

M
M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P
P

=

- -

+ +

-

-

L

N

M
M
M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P
P
P

L

N

M
M
M
M

O

Q

P
P
P
P

1 1 0 0

1 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

0 0 0 1

0 0 1 1

3

4

5

7

V

V

V

V

t

t

t

t

(2.12)

The first matrix on the right hand side of Eq. 2.12 is the transpose of the f-

cut-set matrix Q
f
 given in Eq. 2.11 in Ex. 2.6. Hence, Eq. 2.12 can be written as

V
b
 = Q

T

f
V

t
. (2.13)

Where V
b
 is the column matrix of branch-voltages V

t
 is the column matrix of

twig voltages corresponding to the selected tree and Q
T

f
 in the transpose of f-cut-

set matrix.

Equation 2.13 shows that each branch voltage can be expressed as a linear

combination of the tree-branch voltages. For this purpose fundamental cut-set

(f-cut-set) matrix can be used without writing loop equations.

2.9 MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding

solutions for a network. The suitability of either mesh or nodal analysis to a
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particular problem depends mainly on the number of voltage sources or current

sources. If a network has a large number of voltage sources, it is useful to use

mesh analysis; as this analysis requires that all the sources in a circuit be voltage

sources. Therefore, if there are any current sources in a circuit they are to be

converted into equivalent voltage sources, if, on the other hand, the network

has more current sources, nodal analysis is more useful.

Mesh analysis is applicable only for planar networks. For non-planar circuits

mesh analysis is not applicable. A circuit is said to be planar, if it can be drawn

on a plane surface without crossovers. A non-planar circuit cannot be drawn on

a plane surface without a crossover.

Figure 2.25 (a) is a planar circuit. Figure 2.25 (b) is a non-planar circuit and

Fig. 2.25 (c) is a planar circuit which looks like a non-planar circuit. It has

already been discussed that a loop is a closed path. A mesh is defined as a loop

which does not contain any other loops within it. To apply mesh analysis, our

first step is to check whether the circuit is planar or not and the second is to

select mesh currents. Finally, writing Kirchhoff’s voltage law equations in

terms of unknowns and solving them leads to the final solution.

Fig. 2.25

Observation of the Fig. 2.26 indicates that

there are two loops abefa, and bcdeb in the

network. Let us assume loop currents I
1
 and

I
2
 with directions as indicated in the figure.

Considering the loop abefa alone, we observe

that current I
1
 is passing through R

1
, and (I

1
– I

2
)

is passing through R
2
. By applying Kirchhoff’s

voltage law, we can write

Vs = I1R1 + R2(I1 – I2)

Similarly, if we consider the second mesh

bcdeb, the current I
2
 is passing through R

3
 and R

4
, and (I

2
– I

1
) is passing through

R
2
. By applying Kirchhoff’s voltage law around the second mesh, we have

R2 (I2 – I1) + R3 I2 + R4 I2 = 0

By rearranging the above equations, the corresponding mesh current

equations are
I1(R1 + R2) – I2 R2 = Vs

– I1 R2 + (R2 + R3 + R4)I2 = 0

Fig. 2.26
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By solving the above equations, we can find the currents I
1
 and I

2
. If we

observe Fig. 2.26, the circuit consists of five branches and four nodes, including

the reference node. The number of mesh currents is equal to the number of

mesh equations.

And the number of equations = branches – (nodes – 1). In Fig. 2.26, the

required number of mesh currents would be 5 – (4 – 1) = 2.

In general, if we have B number of branches and N number of nodes

including the reference node then the number of linearly independent mesh

equations M = B – (N – 1).

Example 2.7 Write the mesh current equations in the circuit shown in Fig. 2.27,

and determine the currents.

Solution Assume two mesh currents in the direction as indicated in Fig. 2.28.

The mesh current equations are

5I
1
 + 2(I

1
– I

2
) = 10

10I
2
 + 2(I

2
– I

1
) + 50 = 0

We can rearrange the above equations as

7I
1

– 2I
2

= 10

– 2I
1
 + 12I

2
= – 50

By solving the above equations, we have

I
1
 = 0.25 A, and I

2
= – 4.125 A

Here the current in the second mesh, I
2
, is negative; that is the actual current I

2

flows opposite to the assumed direction of current in the circuit of Fig. 2.28.

Example 2.8 Determine the mesh current I
1
 in the circuit shown in Fig. 2.29.

50 V50 V

10 V10 V

5 V

I1

I2

I3

10 W 2 W

5 W

3 W

1 W

Fig. 2.29

Fig. 2.27 Fig. 2.28

+

+

50 V50 V

10 V10 V

5 W

2 W
10 W

+

+

50 V

10 V I1 I2

5 W

2 W
10 W
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Solution From the circuit, we can form the following three mesh equations

10I
1
 + 5(I

1
 + I

2
) + 3(I

1
– I

3
) = 50

2I
2
 + 5(I

2
 + I

1
) + 1(I

2
 + I

3
) = 10

3(I
3

– I
1
) + 1(I

3
 + I

2
) = – 5

Rearranging the above equations we get

18I
1
 + 5I

2
– 3I

3
= 50

5I
1
 + 8I

2
 + I

3
= 10

– 3I
1
 + I

2
 + 4I

3
= – 5

According to Cramer’s rule

I
1
 =

50 5 3

10 8 1

5 1 4

18 5 3

5 8 1

3 1 4

1175

356

-

-

-

-

=

or I
1
 = 3.3 A

Similarly,

I
2
 =

18 50 3

5 10 1

3 5 4

18 5 3

5 8 1

3 1 4

355

356

-

- -

-

-

=
-

or I
2

= – 0.997 A

I
3

=

18 5 50

5 8 10

3 1 5

18 5 3

5 8 1

3 1 4

525

356

- -

-

-

=

or I
3
 = 1.47 A

\ I
1
 = 3.3 A, I

2
 = – 0.997 A, I

3
 = 1.47 A
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2.10 MESH EQUATIONS BY INSPECTION METHOD

The mesh equations for a general planar network can be written by inspection

without going through the detailed steps. Consider a three mesh networks as

shown in Fig. 2.30.

Fig. 2.30

The loop equations are

I1R1 + R2(I1 – I2) = V1 (2.14)

R2(I2 – I1) + I2R3 = – V2 (2.15)

R4I3 + R5I3 = V2 (2.16)

Reordering the above equations, we have

(R1 + R2)I1 – R2I2 = V1 (2.17)

– R2I1 + (R2 + R3)I2 = – V2 (2.18)

(R4 + R5)I3 = V2 (2.19)

The general mesh equations for three mesh resistive network can be written as

R11I1 ± R12I2 ± R13I3 = Va (2.20)

± R21I1 + R22I2 ± R23I3 = Vb (2.21)

± R31I1 ± R32I2 + R33I3 = Vc (2.22)

By comparing the Eqs 2.17, 2.18 and 2.19 with Eqs 2.20, 2.21, and 2.22

respectively, the following observations can be taken into account.

1. The self resistance in each mesh.

2. The mutual resistances between all pairs of meshes and

3. The algebraic sum of the voltages in each mesh.

The self resistance of loop 1, R
11

 = R
1
 + R

2
, is the sum of the resistances

through which I
1
 passes.

The mutual resistance of loop 1, R
12

 = – R
2
, is the sum of the resistances

common to loop currents I
1
 and I

2
. If the directions of the currents passing

through the common resistance are the same, the mutual resistance will have a

positive sign; and if the directions of the currents passing through the common

resistance are opposite then the mutual resistance will have a negative sign.

V
a
 = V

1
 is the voltage which drives loop one. Here, the positive sign is used if

the direction of the current is the same as the direction of the source. If the
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current direction is opposite to the direction of the source, then the negative

sign is used.

Similarly, R
22

= (R
2
 + R

3
) and R

33
 = R

4
 + R

5
 are the self resistances of loops

two and three, respectively. The mutual resistances R
13

 = 0, R
21

 = – R
2
, R

23
 = 0,

R
31

 = 0, R
32

 = 0 are the sums of the resistances common to the mesh currents

indicated in their subscripts.

V
b
 = – V

2
, V

c
 = V

2
 are the sum of the voltages driving their respective loops.

Example 2.9 Write the mesh equations for the circuit shown in Fig. 2.31.

10 V

20 V

5 V

I1

I2

I3

2 W1 W

3 W 5 W

4 W6 W

Fig.  2.31

Solution The general equations for three mesh network are

R
11

I
1

± R
12

I
2

± R
13

I
3

= V
a

(2.23)

± R
21

I
1
 + R

22
I

2
± R

23
I

3
= V

b
(2.24)

± R
31

I
1

± R
32

I
2
 + R

33
I

3
= V

c
(2.25)

Consider Eq. 2.23

R
11

 = self resistance of loop 1 = (1 W + 3 W + 6 W) = 10 W

R
12

 = the mutual resistance common to loop 1 and loop 2 = – 3 W

Here, the negative sign indicates that the currents are in opposite direction

R
13

 = the mutual resistance common to loop 1 and 3 = – 6 W

V
a
 = + 10 V, the voltage driving the loop 1.

Here, the positive sign indicates the loop current I
1
 is in the same direction as the

source element.

Therefore, Eq. (2.23) can be written as

10I
1

– 3I
2

– 6I
3
 = 10 V (2.26)

Consider Eq. (2.24)

R
21

 = mutual resistance common to loop 1 and loop 2 = – 3 W

R
22

 = self resistance of loop 2 = (3 W + 2 W + 5 W) = 10 W

R
23

 = 0, there is no common resistance between loop 2 and loop 3.

V
b

= – 5 V, the voltage driving the loop 2.

Therefore, Eq. (2.24) can be written as

– 3I
1
 + 10I

2
= – 5 V (2.27)
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Consider Eq. (2.25)

R
31

= mutual resistance common to loop 3 and loop 1 = – 6 W

R
32

= mutual resistance common to loop 3 and loop 2 = 0

R
33

= self resistance of loop 3 = (6 W + 4 W) = 10 W

V
c

= the algebraic sum of the voltages driving loop 3

= (5 V + 20 V ) = 25 V

Therefore, Eq. (2.25) can be written as

– 6I
1
 + 10I

3
= 25 V (2.28)

The three mesh equation are

10I
1

– 3I
2

– 6I
3

= 10 V

– 3I
1
 + 10I

2
= – 5 V

– 6I
1
 + 10I

3
= 25 V

2.11 SUPERMESH ANALYSIS

Suppose any of the branches in the network has a current source, then it is

slightly difficult to apply mesh analysis straight forward because first we should

assume an unknown voltage across the current source, writing mesh equations

as before, and then relate the source current to the assigned mesh currents. This

is generally a difficult approach. One way to overcome this difficulty is by applying

the supermesh technique. Here we have to choose the kind of supermesh. A

supermesh is constituted by two adjacent loops that have a common current

source. As an example, consider the network shown in Fig. 2.32.

Here, the current source I is in the common boundary for the two meshes 1

and 2. This current source creates a supermesh, which is nothing but a

combination of meshes 1 and 2.

R1

V

R2

R3 R4I1 I2

I

I3

1 2 3

Fig. 2.32

R1I1 + R3(I2 – I3) = V

or R1I1 + R3I2 – R3I3 = V

Considering mesh 3, we have

R3(I3 – I2) + R3I3 = 0
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Finally, the current I from current source is equal to the difference between

two mesh currents, i.e.

I1 – I2 = I

We have, thus, formed three mesh equations which we can solve for the

three unknown currents in the network.

Example 2.10 Determine the current in the 5 W resistor in the network given in

Fig. 2.33.

I II

III

a b

c

e

f

d

50 V I1

I2

I3

10 W

3 W

2 W

1 W5 W

2 A

Fig. 2.33

Solution From the first mesh, i.e. abcda, we have

50 = 10(I
1

– I
2
) + 5(I

1
– I

3
)

or 15I
1

– 10I
2
– 5I

3
 = 50 (2.29)

From the second and third meshes, we can form a supermesh

10(I
2

– I
1
) + 2I

2
 + I

3
 + 5(I

3
– I

1
) = 0

or – 15I
1
 + 12I

2
 + 6I

3
= 0 (2.30)

The current source is equal to the difference between II and III mesh currents, i.e.

I
2

– I
3

= 2A (2.31)

Solving 2.29, 2.30 and 2.31, we have

I
1
 = 19.99 A, I

2
 = 17.33 A, and I

3
 = 15.33 A

The current in the 5 W resistor = I
1

– I
3

= 19.99 – 15.33 = 4.66 A

\ The current in the 5 W resistor is 4.66 A.

Example 2.11 Write the mesh equations for the circuit shown in Fig. 2.34 and

determine the currents, I
1
, I

2
 and I

3
.

I II III

10 A10 A

10 V
I1

I2 I3

3 W

2 W

1 W

Fig. 2.34
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Solution In Fig. 2.34, the current source lies on the perimeter of the circuit, and

the first mesh is ignored. Kirchhoff’s voltage law is applied only for second and

third meshes.

From the second mesh, we have

3(I
2

– I
1
) + 2(I

2
– I

3
) + 10 = 0

or – 3I
1
 + 5I

2
– 2I

3
= – 10 (2.32)

From the third mesh, we have

I
3
 + 2(I

3
– I

2
) = 10

or – 2I
2
 + 3I

2
= 10 (2.33)

From the first mesh,

I
1
 = 10 A (2.34)

From the above three equations, we get

I
1
 = 10 A, I

2
 = 7.27 A, I

3
 = 8.18 A

2.12 NODAL ANALYSIS

In the Chapter 1 we discussed simple circuits containing only two nodes,

including the reference node. In general, in a N node circuit, one of the nodes is

choosen as reference or datum node, then it is possible to write N – 1 nodal

equations by assuming N – 1 node voltages. For example, a 10 node circuit

requires nine unknown voltages and nine equations. Each node in a circuit can

be assigned a number or a letter. The node voltage is the voltage of a given node

with respect to one particular node, called the reference node, which we assume

at zero potential. In the circuit shown in Fig. 2.35, node 3 is assumed as the

reference node. The voltage at node 1 is the voltage at that node with respect to

node 3. Similarly, the voltage at node 2 is the voltage at that node with respect

to node 3. Applying Kirchhoff’s current law at node 1; the current entering is

equal to the current leaving. (See Fig. 2.36).

I1 =
V

R

V V

R

1

1

1 2

2

+
-

where V
1
 and V

2
 are the voltages at node 1 and 2, respectively. Similarly, at node

2, the current entering is equal to the current leaving as shown in Fig. 2.37.

Fig. 2.36Fig. 2.35
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V V

R

V

R

V

R R

2 1

2

2

3

2

4 5

-
+ +

+
 = 0

Rearranging the above equations, we have

V
R R

V
R

1
1 2

2
2

1 1 1+
L

N
M

O

Q
P -

L

N
M

O

Q
P = I1

-
L

N
M

O

Q
P + + +

+
L

N
M

O

Q
PV

R
V

R R R R
1

2
2

2 3 4 5

1 1 1 1
 = 0

From the above equations, we can find the voltages at each node.

Example 2.12 Write the node voltage equations and determine the currents in

each branch for the network shown in Fig. 2.38.

5 A 10 V10 W

3 W 1 W

5 W

Fig. 2.38

Solution The first step is to assign voltages at each node as shown in Fig. 2.39.

Fig. 2.39

Applying Kirchhoff’s current law at node 1,

we have 5 =
V V V1 1 2

10 3
+

-

or V V1 2

1

10

1

3

1

3
+L

NM
O
QP

- L
NM

O
QP
 = 5 (2.35)

Applying Kirchhoff’s current law at node 2,

we have
V V V V2 1 2 2

3 5

10

1

-
+ +

-
= 0

or - L
NM

O
QP

+ + +L
NM

O
QP

V V1 2

1

3

1

3

1

5
1 = 10 (2.36)

Fig. 2.37
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From Eqs 2.35 and 2.36, we can solve for V
1
 and V

2
 to get

V
1

= 19.85 V, V
2
 = 10.9 V

I
10

=
V1

10
 = 1.985 A, I

3
 = 

V V1 2

3

19 85 10 9

3

-
=

-. .
 = 2.98 A

I
5

=
V2

5

10 9

5
=

.
 = 2.18 A, I

1
 = 

V2 10

1

-
 = 0. 9 A

Example 2.13 Determine the voltages at each node for the circuit shown in

Fig. 2.40.

5 A5 A10 V10 V 5 W

10 W 3 W 2 W

3 W

1 W
6 W

V1 V2 V3

1 2 3

Fig. 2.40

Solution At node 1, assuming that all currents are leaving, we have

V V V V V V1 1 2 1 1 210

10 3 5 3

-
+

-
+ +

-
= 0

or V V1 2

1

10

1

3

1

5

1

3

1

3

1

3
+ + +L

NM
O
QP

- +L
NM

O
QP

= 1

0.96V
1

– 0.66V
2

= 1 (2.37)

At node 2, assuming that all currents are leaving except the current from current

source, we have

V V V V V V2 1 2 1 2 3

3 3 2

-
+

-
+

-
= 5

- L
NM

O
QP

+ + +L
NM

O
QP

- L
NM

O
QP

V V V1 2 3

2

3

1

3

1

3

1

2

1

2
= 5

– 0.66 V
1
 + 1.16 V

2
– 0.5V

3
= 5 (2.38)

At node 3, assuming all currents are leaving, we have

V V V V3 2 3 3

2 1 6

-
+ + = 0

– 0.5 V
2
 + 1.66 V

3
= 0 (2.39)
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Applying Cramer’s rule, we get

V
1
 =

1 0 66 0

5 1 16 0 5

0 0 5 1 66

0 96 0 66 0

0 66 1 16 0 5

0 0 5 1 66

7 154

0 887

-

-

-

-

- -

-

=

.

. .

. .

. .

. . .

. .

.

.
 = 8.06 V

Similarly,

V
2
 =

0 96 1 0

0 66 5 0 5

0 0 1 66

0 96 0 66 0

0 66 1 16 0 5

0 0 5 1 66

9 06

0 887

.

. .

.

. .

. . .

. .

.

.

- -

-

- -

-

=  = 10.2 V

V
3
 =

0 96 0 66 1

0 66 1 16 5

0 0 5 0

0 96 0 66 0

0 66 1 16 0 5

0 0 5 1 66

2 73

0 887

. .

. .

.

. .

. . .

. .

.

.

-

-

-

-

- -

-

=  = 3.07 V

2.13 NODAL EQUATIONS BY INSPECTION

METHOD

The nodal equations for a general planar network can also be written by

inspection, without going through the detailed steps. Consider a three node

resistive network, including the reference node, as shown in Fig. 2.41.

Fig. 2.41

In Fig. 2.41, the points a and b are the actual nodes and c is the reference

node.
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Now consider the nodes a and b separately as shown in Figs. 2.42 (a) and (b).

Fig. 2.42

In Fig. 2.42 (a), according to Kirchhoff’s current law, we have

I1 + I2 + I3 = 0

\
V V

R

V

R

V V

R

a a a b-
+ +

-1

1 2 3

= 0 (2.40)

In Fig. 2.42 (b), if we apply Kirchhoff’s current law, we get

I4 + I5 = I3

\
V V

R

V

R

V V

R

b a b b-
+ +

-

3 4

2

5

= 0 (2.41)

Rearranging the above equations, we get

1 1 1 1

1 2 3 3R R R
V

R
Va b+ +

F

HG
I

KJ
-

F

HG
I

KJ
 =

1

1R

F

HG
I

KJ
V1 (2.42)

-
F

HG
I

KJ
+ + +

F

HG
I

KJ
1 1 1 1

3 3 4 5R
V

R R R
Va b  =

V

R

2

5

(2.43)

In general, the above equations can be written as

Gaa Va + Gab Vb = I1 (2.44)

Gba Va + Gbb Vb = I2 (2.45)

By comparing Eqs 2.42, 2.43 and Eqs 2.44, 2.45 we have the self

conductance at node a, G
aa

 = (1/R
1
 + 1/R

2
 + 1/R

3
) is the sum of the conductances

connected to node a. Similarly, G
bb

 = (1/R
3
 + 1/R

4
 + 1/R

5
), is the sum of the

conductances connected to node b. G
ab

 = (– 1/R
3
), is the sum of the mutual

conductances connected to node a and node b. Here all the mutual conductances

have negative signs. Similarly, G
ba

 = (– 1/R
3
) is also a mutual conductance

connected between nodes b and a. I
1
 and I

2
 are the sum of the source currents at

node a and node b, respectively. The current which drives into the node has positive

sign, while the current that drives away from the node has negative sign.
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Example 2.14 For the circuit shown in Fig. 2.43, write the node equations by the

inspection method.

1 W 3 W 2 W

5 W 4 W

2 W
10 V10 V

2 V 5 V5 V

a b

Fig. 2.43

Solution The general equations are

G
aa

V
a
 + G

ab
V

b
= I

1
(2.46)

G
ba

V
a
 + G

bb
V

b
= I

2
(2.47)

Consider Eq. 2.46

G
aa

 = (1 + 1/2 + 1/3) mho, the self conductance at node a is the sum of the

conductances connected to node a.

G
bb

 = (1/6 + 1/5 + 1/3) mho the self conductance at node b is the sum of the

conductances connected to node b.

G
ab

 = – (1/3) mho, the mutual conductance between nodes a and b is the sum of

the conductances connected between nodes a and b.

Similarly, G
ba

 = – (1/3), the sum of the mutual conductances between nodes b and a.

I
1
 =

10

1
 = 10 A, the source current at node a,

I
2
 =

2

5

5

6
+F

HG
I
KJ

 = 1.23 A, the source current at node b.

Therefore, the nodal equations are

1.83 V
a

– 0.33 V
b

= 10 (2.48)

– 0.33 V
a
 + 0.7 V

b
= 1.23 (2.49)

2.14 SUPERNODE ANALYSIS

Suppose any of the branches in the network has a voltage source, then it is

slightly difficult to apply nodal analysis. One way to overcome this difficulty is

to apply the supernode technique. In this method, the two adjacent nodes that

are connected by a voltage source are reduced to a single node and then the

equations are formed by applying Kirchhoff’s current law as usual. This is

explained with the help of Fig. 2.44.
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R1I

R2

R3

VX

V1 V2 V3

Vy

R4

R5

1 2 3

4

Fig. 2.44

It is clear from Fig. 2.44, that node 4 is the reference node. Applying Kirchhoff’s

current law at node 1, we get

I =
V

R

V V

R

1

1

1 2

2

+
-

Due to the presence of voltage source V
x
 in between nodes 2 and 3, it is

slightly difficult to find out the current. The supernode technique can be

conveniently applied in this case.

Accordingly, we can write the combined equation for nodes 2 and 3 as under.

V V

R

V

R

V V

R

V

R

y2 1

2

2

3

3

4

3

5

-
+ +

-
+  = 0

The other equation is

V2 – V3 = Vx

From the above three equations, we can find the three unknown voltages.

Example 2.15 Determine the current in the 5 W resistor for the circuit shown in

Fig. 2.45.

Fig. 2.45

Solution At node 1

10 = 
V V V1 1 2

3 2
+

-

or V
V

1
21

3

1

2 2
10+L

NM
O
QP

- - = 0

0.83 V
1

– 0.5 V
2

– 10 = 0 (2.50)
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At node 2 and 3, the supernode equation is

V V V V V2 1 2 3 3

2 1

10

5 2

-
+ +

-
+ = 0

or
-

+ +L
NM

O
QP

+ +L
NM

O
QP

V
V V1

2 3
2

1

2
1

1

5

1

2
= 2

– 0.5 V
1
 + 1.5 V

2
 + 0.7 V

3
– 2 = 0 (2.51)

The voltage between nodes 2 and 3 is given by

V
2

– V
3

= 20 (2.52)

The current in the 5 W resistor I
5
 = 

V3 10

5

-

Solving Eqs 2.50, 2.51 and 2.52, we obtain

V
3
 = – 8.42 V

\ Current I
5
 = 

- -8 42 10

5

.
 = – 3.68 A (current towards node 3) i.e. the current flows

towards node 3.

2.15 SOURCE TRANSFORMATION TECHNIQUE

In solving networks to find solutions one may have to deal with energy sources.

It has already been discussed in Chapter 1 that basically, energy sources are

either voltage sources or current sources. Sometimes it is necessary to convert a

voltage source to a current source and vice-versa. Any practical voltage source

consists of an ideal voltage source in series with an internal resistance. Similarly,

a practical current source consists of an ideal current source in parallel with an

internal resistance as shown in Fig. 2.46. R
v
 and R

i
 represent the internal

resistances of the voltage source V
s
, and current source I

s
, respectively.

Any source, be it a current source or a voltage source, drives current through

its load resistance, and the magnitude of the current depends on the value of the

load resistance. Figure 2.47 represents a practical voltage source and a practical

current source connected to the same load resistance R
L
.

Fig. 2.46
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Fig. 2.47

From Fig. 2.47 (a), the load voltage can be calculated by using Kirchhoff’s

voltage law as

Vab = Vs – IL Rv

The open circuit voltage V
OC

 = V
s

The short circuit current I
SC

 = 
V

R

s

v

From Fig. 2.47 (b)

IL = IS – I = IS –
V

R

ab

I

The open circuit voltage V
ac

 = I
S
 R

I

The short circuit current I
SC

 = I
S

The above two sources are said to be equal, if they produce equal amounts of

current and voltage when they are connected to identical load resistances.

Therefore, by equating the open circuit voltages and short circuit currents of the

above two sources we obtain

Vac = Is RI = VS

ISC = IS = 
V

R

s

v

It follows that R
1
 = R

V
 = R

s
\ V

s
 = I

S
 R

S

where R
S
 is the internal resistance of the voltage or current source. Therefore,

any practical voltage source, having an ideal voltage V
S
 and internal series

resistance R
S
 can be replaced by a current source I

S
 = V

S
/R

S
in parallel with an

internal resistance R
S
. The reverse transformation is also possible. Thus, a

practical current source in parallel with an internal resistance R
S
 can be replaced

by a voltage source V
S
 = I

s
R

s
 in series with an internal resistance R

S
.

Example 2.16 Determine the equivalent voltage source for the current source

shown in Fig. 2.48.
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Fig. 2.48

Solution The voltage across terminals A and B is equal to 25 V. Since the internal

resistance for the current source is 5 W, the internal resistance of the voltage source

is also 5 W. The equivalent voltage source is shown in Fig. 2.49.

Fig. 2.49

Example 2.17 Determine the equivalent current source for the voltage source

shown in Fig. 2.50.

Solution The short circuit current at terminals A and B is equal to

I =
50

30
 = 1.66 A

Since the internal resistance for the voltage source is 30 W, the internal resistance

of the current source is also 30 W. The equivalent current source is shown in

Fig. 2.51.

Fig. 2.50 Fig. 2.51

30 W1.66 A

A

B
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ADDITIONAL SOLVED PROBLEMS

Problem 2.1 Determine the power dissipation in the 4 W resistor of the

circuit shown in Fig. 2.52 by using mesh analysis.

Fig. 2.52

Solution Power dissipated in the 4 W resistor is P
4
 = 4(I

2
 – I

3
)

2

By using mesh analysis, we can find the currents I
2
 and I

3
.

From Fig. 2.52, we can form three equations.

From the given circuit in Fig. 2.52, we can obtain three mesh equations in

terms of I
1
, I

2
 and I

3

8I1 + 3I2 = 50

3I1 + 9I2 – 4I3 = 0

– 4I2 + 10I3 = 10

By solving the above equations we can find I
1
, I

2
 and I

3
.

I2 =

8 50 0

3 0 4

0 10 10

8 3 0

3 9 4

0 4 10

-

+

-

-

 = 
-1180

502
 = – 2.35 A

I3 =

8 3 50

3 9 0

0 4 10

8 3 0

3 9 4

0 4 10

-

-

-

 = 
30

502
 = 0.06 A

The current in the 4 W resistor = (I
2

– I
3
)

=  (– 2.35 – 0.06 )A = – 2.41 A

Therefore, the power dissipated in the 4 W resistor, P
4
 = (2.41)

2
¥ 4 = 23.23 W.
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Problem 2.2 Using mesh analysis, determine the voltage V
S

which gives a

voltage of 50 V across the 10 W resistor as shown in Fig. 2.53.

I1
VSI2

I3

I4

3 W

1 W

5 W

2 W

4 W

10 W

50 V50 V

50 V

60 V

Fig. 2.53

Solution Since the voltage across the 10 W resistor is 50 V, the current

passing through it is I
4
 = 50/10 = 5 A.

From Fig. 2.53, we can form four equations in terms of the currents I
1
, I

2
, I

3

and I
4
, as

4I1 – I2 = 60

– I1 + 8I2 – 2I3 + 5I4 = 0

– 2I2 + 6I3 = 50

5I2 + 15I4 = VS

Solving the above equations, using Cramer’s rule, we get

I4 =

4 1 0 60

1 8 2 0

0 2 6 50

0 5 0

4 1 0 0

1 8 2 5

0 2 6 0

0 5 0 15

-

- -

-

-

- -

-

VS

D = 4

8 2 5

2 6 0

5 0 15

1

1 2 5

0 6 0

0 0 15

-

- +

- -

= 4{8(90) + 2(– 30) + 5(– 30)} + 1{– 1(90)}

D = 1950.
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D4 = 4

8 2 0

2 6 50

5 0

1

1 2 0

0 6 50

0 0

60

1 8 2

0 2 6

0 5 0

-

- +

- -

-

- -

-

V VS S

= 4{8(6 VS) + 2(– 2VS – 250)} + 1{– 1(6VS)} – 60 {– 1 (– 30)}

= 170 VS – 3800

I4 = 
170 3800

1950

VS -

\ VS = 
1950 3800

170

4¥ +I
 = 79.7 V

Problem 2.3 Determine the voltage V which causes the current I
1
 to be zero

for the circuit shown in Fig. 2.54. Use Mesh analysis.

Fig. 2.54

Solution From Fig. 2.54 we can form three loop equations in terms of I
1
, I

2
, I

3

and V, as follows
13I1 – 2I2 – 5I3 = 20 – V

– 2I1 + 6I2 – I3 = 0

– 5I1 – I2 + 10I3 = V

Using Cramer’s rule, we get

I1 =

20 2 5

0 6 1

1 10

13 2 5

2 6 1

5 1 10

- - -

-

- +

- -

- + -

- - +

V

V

D1 = (20 – V) (+ 60 – 1) + 2(V) – 5(– 6V)

= 1180 – 27 V

we have D = 557

I1 =
D1

557

\ D1 = 0
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– 27 V + 1180 = 0

\ V = 43.7 V

Problem 2.4 Determine the loop currents for the circuit shown in Fig. 2.55

by using mesh analysis.

I1 I2

I3
I4

10 W

16 W 8 W2
0
W

1 W 4 W

A

B
E

D

C

5 A5 A

10 A10 A

20 V20 V10 V10 V

15 A15 A 30 V30 V

Fig. 2.55

Solution The branches AE, DE and BC consists of current sources. Here we

have to apply supermesh analysis.

The combined supermesh equation is

10(I1 – I3) + I1 – 10 + 4I2 – 20

+ 8I4 – 30 + 20 (I4 – I3) = 0

or 11I1 + 4I2 – 30I3 + 28I4 = 60

In branch AE, I2 – I1 = 5 A

In branch BC, I3 = 15 A

In branch DE, I2 – I4 = 10 A

Solving the above four equations, we can get the four currents I
1
, I

2
, I

3
 and I

4
 as

I1 = 14.65 A

I2 = 19.65 A, I3 = 15 A, and I4 = 9.65 A

Problem 2.5 Determine the power delivered by the voltage source and the

current in the 10 W resistor for the circuit shown in Fig. 2.56.

I1

I2

I3

3 W 2 W

1 W

10 W
5 W

50 V50 V

10 A10 A

3 A

A B

D

C

Fig. 2.56
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Solution Since branches AC and BD consist of current sources, we have to

use the supermesh technique.

The combined supermesh equation is

– 50 + 5I1 + 3I2 + 2I2 + 10(I2 – I3) + 1(I1 – I3) = 0

or 6I1 + 15I2 – 11I3 = 50

or I1 – I2 = 3 A or I3 = 10 A

From the above equations we can solve for I
1
, I

2
 and I

3
 follows

I1 = 9.76 A, I2 = 6.76 A, I3 = 10 A

Problem 2.6 Determine the voltage ratio V
out

/V
in
 for the circuit shown in

Fig. 2.57 by using nodal analysis.

Fig.  2.57

Solution I10 + I3 + I11 = 0

I10 =
V VA - in

10

I3 =
VA

3

I11 =
V VA

11 6
, or out

V V V VA A A-
+ +

in

10 3 11
 = 0

Also
VA

11
 =

Vout

6

\ VA = Vout ¥ 1.83

From the above equations V
out

/V
in
 = 1/9.53 = 0.105

Problem 2.7 Find the voltages V in the circuit shown in Fig. 2.58 which

makes the current in the 10 W resistor zero by using nodal analysis.
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3 W

2 W 5 W

10 W 7 W

V

V1
V2

50 V

1 2

Fig. 2.58

Solution In the circuit shown, assume voltages V
1
 and V

2
 at nodes 1 and 2.

At node 1, the current equation in Fig. 2.59 (a) is

Fig. 2.59 (a)

V V V V V1 1 1 2

3 2 10

-
+ +

-
 = 0

or 0.93 V1 – 0.1 V2 = V/3

At node 2, the current equation in Fig. 2.59 (b) is

5 W

10 W

7 W

50 V

1 2

Fig. 2.59 (b)

V V V V2 1 2 2

10 5

50

7

-
+ +

-
 = 0

or – 0.1 V1 + 0.443 V2 = 7.143

Since the current in 10 W resistor is zero, the voltage at node 1 is equal to the

voltage at node 2.
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\ V1 – V2 = 0

From the above three equations, we can solve for V

V1 = 20.83 Volts and V2 = 20.83 volts

\ V = 51.87 V

Problem 2.8 Use nodal analysis to find the power dissipated in the 6 W

resistor for the circuit shown in Fig. 2.60.

3 W

5 W

1 W

6 W

2 W

20 V20 V

1

2 3

5 A5 A

Fig. 2.60

Solution Assume voltage V
1
, V

2
 and V

3
 at nodes 1, 2 and 3 as shown in

Fig. 2.60.

By applying current law at node 1, we have

V V V V V1 1 2 1 320

3 1 2

-
+

-
+

-
 = 0

or 1.83V1 – V2 – 0.5V3 = 6.67 (2.53)

At node 2

V V V V2 1 2 3

1 6

-
+

-
 = 5 A

or – V1 – 1.167V2 – 0.167V3 = 5 (2.54)

At node 3,

V V V V V3 1 3 2 3

2 6 5

-
+

-
+  = 0

or – 0.5 V1 – 0.167 V2 + 0.867 V3 = 0 (2.55)

Applying Cramer’s rule to Eqs 2.53, 2.54 and 2.55, we have

V2 =
D

D

2

where D =

1 83 1 0 5

1 1 167 0 167

0 5 0 167 0 867

. .

. .

. . .

- -

- - -

- -

 = – 2.64
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D2 =

1 83 6 67 0 5

1 5 0 167

0 5 0 0 867

. . .

.

. .

-

- -

-

 = 13.02

\ V2 =
13 02

2 64

.

.-
 = – 4.93 V

Similarly,

V3 =
D

D

3

D3 =

1 83 1 6 67

1 1 167 5

0 5 0 167 0

. .

.

. .

-

- -

- -

 = 1.25

\ V3 =
1 25

2 64

.

.-
 = – 0.47 V

The current in the 6 W resistor is

I6 =
V V2 3

6

-

=
- +4 93 0 47

6

. .
 = – 0.74 A

The power absorbed or dissipated = I
2

6
R

6

= (0.74)2
¥ 6

= 3.29 W

Problem 2.9 Determine the power dissipated by 5 W resistor in the circuit

shown in Fig. 2.61.

6 W

3 W 5 W

4 W

40 V

3 A

5 A

1 2 3

20 V

Fig. 2.61
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Solution In Fig. 2.61, assume voltages V
1
, V

2
 and V

3
 at nodes 1, 2 and 3. At

node 1, the current law gives

V V V V1 3 1 240

4 6

- -
+

-
– 3 – 5 = 0

or 0.42 V1 – 0.167 V2 – 0.25 V3 = 18

Applying the supernode technique between nodes 2 and 3, the combined

equation at node 2 and 3 is

V V V V V V2 1 2 3 3 1

6
5

3 5

40

4

-
+ + + +

+ -
 = 0

or – 0.42 V1 + 0.5 V2 + 0.45 V3 = – 15

Also V3 – V2 = 20 V

Solving the above three equations, we get

V1 = 52.89 V, V2 = – 1.89 V and

V3 = 18.11 V

\ The current in the 5 W resistor I
5
 = 

V3

5

=
18 11

5

.
 = 3.62 A

The power absorbed by the 5 W resistor P
5
 = I

2

5
R

5

= (3.62)2
¥ 5

= 65.52 W

Problem 2.10 Find the power delivered by the 5 A current source in the

circuit shown in Fig. 2.62 by using the nodal method.

3 W

5 W

1 W

2 W

2 A

10 V

1
2

3
5 A

Fig. 2.62

Solution Assume the voltages V
1
, V

2
 and V

3
 at nodes 1, 2, and 3, respectively.

Here, the 10 V source is common between nodes 1 and 2. So applying the

supernode technique, the combined equation at node 1 and 2 is
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V V V V V1 3 2 3 2

3
2

1
5

5

-
+ +

-
- +  = 0

or 0.34 V1 + 1.2 V2 – 1.34 V3 = 3

At node 3,
V V V V V3 1 3 2 3

3 1 2

-
+

-
+  = 0

or – 0.34 V1 – V2 + 1.83 V3 = 0

Also V1 – V2 = 10

Solving the above equations, we get

V1 = 13.72 V; V2 = 3.72 V

V3 = 4.567 V

Hence the power delivered by the source (5 A) = V
2
¥ 5

= 3.72 ¥ 5 = 18.6 W

Problem 2.11 Using source transformation, find the power delivered by the

50 V voltage source in the circuit shown in Fig. 2.63.

Fig. 2.63

Solution The current source in the circuit in Fig. 2.63 can be replaced by a

voltage source as shown in Fig. 2.64.

V

A

5 W 2 W 3 W

50 V50 V 20 V20 V 10 V10 V

Fig. 2.64
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V V V-
+

-
+

-50

5

20

2

10

3
 = 0

V [0.2 + 0.5 + 0.33] = 23.33

or V =
23 33

1 03

.

.
 = 22.65 V

\ The current delivered by the 50 V voltage source is (50 – V)/5

=
50 22 65

5

- .
 = 5.47 A

Hence, the power delivered by the 50 V voltage source = 50 ¥ 5.47 = 273.5 W

Problem 2.12 By using source transformation, source combination and

resistance combination convert the circuit shown in Fig. 2.65 into a single

voltage source and single resistance.

Fig. 2.65

Solution The voltage source in the circuit of Fig. 2.65 can be replaced by a

current source as shown in Fig. 2.66 (a).

Fig. 2.66 (a)

Here the current sources can be combined into a single source. Similarly, all the

resistances can be combined into a single resistance, as shown in Fig. 2.66 (b).

Figure 2.66 (b) can be replaced by single voltage source and a series

resistance as shown in Fig. 2.66 (c).
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Fig. 2.66 (b)

Fig. 2.66 (c)

Problem 2.13 For the circuit shown in Fig. 2.67 find the voltage across the

4 W resistor by using nodal analysis.

V1
V2

4Vx

Vx
5 V

5 A5 A

4 W

2 W

1 W3 W

Fig. 2.67

Solution In the circuit shown, assume voltages V
1
 and V

2
 at nodes 1 and 2. At

node 1, the current equation is

5 + 
V V V V V1 1 2 1 2

3

5

4 2
+

+ -
+

-
 = 0

or 1.08 V1 – 0.75 V2 = – 6.25 (2.56)

At node 2, the current equation is

V V V V
V

V
x

2 1 2 1 25

4 2
4

1

- -
+

-
- +  = 0

Vx = V1 + 5 – V2
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or – 4.75 V1 + 5.75 V2 = 21.25 (2.57)

Applying Cramer’s rule to Eqs 2.56 and 2.57, we have

V2 =
D

D

2

where D =
1 08 0 75

4 75 5 75

. .

. .

-

-
 = 2.65

D2 =
1 08 6 25

4 75 21 25

. .

. .

-

-
 = – 6.74

\ V2 =
D

D

2 6 74

2 65
=
- .

.
 = – 2.54 V

Similarly, V1 =
D

D

1

D1 =
- -6 25 0 75

21 25 5 75

. .

. .
 = – 20

V1 =
D

D

1 20

2 65
=
-

.
 = – 7.55 V

The voltage across the 4 W resistor is

Vx = V1 + 5 – V2

= – .755 + 5 – (– 2.54)

Vx = 0.01 volts

Problem 2.14 For the circuit shown in Fig. 2.68, find the current passing through

the 5 W resistor by using the nodal method.

6I1

I1

30 V30 V

1

2 A 36 V

6 W

5 W

Fig. 2.68

Solution In the circuit shown, assume the voltage V at node 1.

At node 1, the current equation is
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V V I-
- +

- -30

5
2

36 6

6

1  = 0

where I1 =
V - 30

5

From the above equation

V = 48 V

The current in 5 W resistor is

I1 =
V - 30

5
 = 3.6 A

Problem 2.15 In the circuit shown in Fig. 2.69, find the power delivered by

4 V source using mesh analysis and voltage across the 2 W resistor.

I1

I2 I3

V2

V2

2

2 W

5 W
1 W

4 W
5 A5 A

C
D

A

B

4 V4 V

6 W

Fig. 2.69

Solution Since branches BC and DE consists of current sources, we use the

supermesh technique.

The combined supermesh equation is

2I
1
 + 6I

1
 + 4(I

1
– I

3
) – 4 + 5I

2
 + I

2
– I

3
 + 4(I

3
– I

1
) + I

3
– I

2
 = 0

or
8I1 + 5I2 = 4

In branch BC, I2 – I1 = 5

In branch DE, I3 =
V2

2

Solving the above equations

I1 = – 1.62A; I2 = 3.38 A

The voltage across the 2 W resistor V
2
 = 2I

1
 = – 3.24 V

Power delivered by 4 V source P
4
= 4I

2
 = 4(3.38) = 13.52 W

Problem 2.16 For the circuit shown in Fig. 2.70, find the current through the

10 W resistor by using mesh analysis.
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I2

I1

2I1 I3

5 W10 W 4 W

2 A15 V15 V

20 V20 V

40 V40 V

Fig. 2.70

Solution The parallel branches consist of current sources. Here we use

supermesh analysis. The combined supermesh equation is.

or – 15 + 10I1 + 20 + 5I2 + 4I3 – 40 = 0

and 10I1 + 5I2 + 4I3 = 35

I1 – I2 = 2

I3 – I2 = 2I1

Solving the above equations, we get

I1 = 1.96 A

The current in the 10 W resistor is I
1
 = 1.96 A

PRACTICE PROBLEMS

2.1 In the circuit shown in Fig. 2.71, use mesh analysis to find out the power

delivered to the 4 W resistor. To what voltage should the 100 V battery be

changed so that no power is delivered to the 4 W resistor?

Fig. 2.71

2.2 Find the voltage between A and B of the circuit shown in Fig. 2.72 by

mesh analysis.
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4 W

4 W

1 W

5 W 4 W

10 A10 A

10 V10 V

20 V

A

B

Fig. 2.72

2.3 In the circuit shown in Fig. 2.73, use nodal analysis to find out the volt-

age across 40 W and the power supplied by the 5 A source.

5 A5 A

60 V
4 A

100 V

25 W

20 W

40 W

Fig. 2.73

2.4 In the network shown in Fig. 2.74, the resistance R is variable from zero

to infinity. The current I through R can be expressed as I = a + bV, where

V is the voltage across R as shown in the figure, and a and b are con-

stants. Determine a and b.

Fig. 2.74

2.5 Determine the currents in bridge circuit by using mesh analysis in

Fig. 2.75.
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Fig. 2.75

2.6 Use nodal analysis in the circuit shown in Fig. 2.76 and determine what

value of V will cause V10 = 0.

2 W 3 W

10 W

20 V

2 A 2 A

5 V5 V

V

Fig. 2.76

2.7 For the circuit shown in Fig. 2.77, use mesh analysis to find the values of

all mesh currents.

1 W

1 W

1 W

1 W1 W

1 W

1 V1 V

1 A1 A

3 A3 A

3 V3 V

2 A2 A
5 V5 V

I1 I2

I3 I4

–

–

– +

+

+

Fig. 2.77
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2.8 For the circuit shown in Fig. 2.78, use node analysis to find the current

delivered by the 24 V source.

20 W

5 W 10 W

36 V36 V24 V

2 A

+
–

Fig. 2.78

2.9 Using mesh analysis, determine the voltage across the 10 kW resistor at

terminals A and B of the circuit shown in Fig. 2.79.

Fig. 2.79

2.10 Determine the current I in the circuit by using loop analysis in Fig. 2.80.

2 W

10 W 1.5 W 8 W

2 W

1 W

6 W
30 A30 A

20 A20 A
I

Fig. 2.80

2.11 Write nodal equations for the circuit shown in Fig. 2.81, and find the

power supplied by the 10 V source.

V3

4 V3

4 W

2 W

2 W

1 W

10V

10 A

Fig. 2.81
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2.12 Use nodal analysis to find V2 in the circuit shown in Fig. 2.82.

V2

4V2

3 W

2 W

4 W

5 W

6 V10 V10 V

Fig. 2.82

2.13 Use mesh analysis to find Vx in the circuit shown in Fig. 2.83.

Vx

2Vx
25 W

16.67 W 33.33 W

0.45 A

30 V30 V

10 V10 V

Fig. 2.83

2.14 For the circuit shown in Fig. 2.84, find the value of V2 that will cause the

voltage across 20 W to be zero by using mesh analysis.

V2
V20

5 W10 W

20 W

2 A 0.1V

20

3 A

24 V

Fig. 2.84

OBJECTIVE-TYPE QUESTIONS

1. A tree has

(a) a closed path (b) no closed paths

(c) none

2. The number of branches in a tree is  the number of branches

in a graph.

(a) less than (b) more than

(c) equal to
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3. The tie-set schedule gives the relation between

(a) branch currents and link currents

(b) branch voltages and link currents

(c) branch currents and link voltages

(d) none of the above

4. The cut-set schedule gives the relation between

(a) branch currents and link currents

(b) branch voltages and tree branch voltages

(c) branch voltages and link voltages

(d) branch current and tree currents

5. Mesh analysis is based on

(a) Kirchhoff’s current law (b) Kirchhoff’s voltage law

(c) Both (d) None

6. If a network contains B branches, and N nodes, then the number of mesh

current equations would be

(a) B – (N – 1) (b) N – (B – 1)

(c) B – N – 1 (d) (B + N) – 1

7. A network has 10 nodes and 17 branches. The number of different node

pair voltages would be

(a) 7 (b) 9

(c) 45 (d) 10

8. A practical voltage source consists of

(a) an ideal voltage source in series with an internal resistance

(b) an ideal voltage source in parallel with an internal resistance

(c) both (a) and (b) are correct

(d) none of the above

9. A practical current source consists of

(a) an ideal current source in series with an impedance

(b) an ideal current source in parallel with an impedance

(c) both are correct

(d) none of the above

10. A circuit consists of two resistances, R1 and R2, in parallel. The total

current passing through the circuit is IT. The current passing through R1

is

(a)
I R

R R

T 1

1 2+
(b)

I R R

R

T 1 2

1

+a f

(c)
I R

R R

T 2

1 2+
(d)

I R R

R

T 1 2

2

+

11. A network has seven nodes and five independent loops. The number of

branches in the network is

(a) 13 (b) 12

(c) 11 (d) 10

12. The nodal method of circuit analysis is based on

(a) KVL and Ohm’s law (b) KCL and Ohm’s law

(c) KCL and KVL (d) KCL, KVL and Ohm’s law
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13. The number of independent loops for a network with n nodes and b

branches is

(a) n – 1 (b) b – n

(c) b – n + 1

(d) independent of the number of nodes

14. The two electrical sub networks N1 and N2 are connected through three

resistors as shown in Fig. 2.85. The voltage across the 5 W resistor and

the 1 W resistor are given to be 10 V and 5 V respectively. The voltage

across the 15 W resistor is

(a) – 105 V (b) + 105 V

(c) – 15 V (d) + 15 V

Fig. 2.85

15. Relative to a given fixed tree of a network

(a) link currents form an independent set

(b) branch currents form an independent set

(c) link voltages form an independent set

(d) branch voltages form an independent set



3.1 STAR-DELTA TRANSFORMATION

In the preceding chapter, a simple technique called the source transformation

technique has been discussed. The star delta transformation is another technique
useful in solving complex networks. Basically, any three circuit elements, i.e.
resistive, inductive or capacitive, may be connected in two different ways. One
way of connecting these elements is called the star connection, or the Y connection.
The other way of connecting these elements is called the delta (D) connection.
The circuit is said to be in star connection, if three elements are connected as
shown in Fig. 3.1(a), when it appears like a star (Y ). Similarly, the circuit is said
to be in delta connection, if three elements are connected as shown in Fig. 3.1(b),
when it appears like a delta (D).

Fig. 3.1
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The above two circuits are equal if their respective resistances from the
terminals AB, BC and CA are equal. Consider the star connected circuit in
Fig. 3.1(a); the resistance from the terminals AB, BC and CA respectively are

RAB(Y ) = RA + RB

RBC(Y) = RB + RC

RCA(Y) = RC + RA

Similarly, in the delta connected network in Fig. 3.1(b), the resistances seen
from the terminals AB, BC and CA, respectively, are

RAB(D) = R1 || (R2 + R3) =
R R R

R R R

1 2 3

1 2 3

( )+

+ +

RBC(D) = R3 || (R1 + R2) =
R R R

R R R

3 1 2

1 2 3

( )+

+ +

RCA (D) = R2 || (R1 + R3) =
R R R

R R R

2 1 3

1 2 3

( )+

+ +

Now, if we equate the resistances of star and delta circuits, we get

RA + RB =
R R R

R R R

1 2 3

1 2 3

( )+

+ +
(3.1)

RB + RC =
R R R

R R R

3 1 2

1 2 3

( )+

+ +
(3.2)

RC + RA =
R R R

R R R

2 1 3

1 2 3

( )+

+ +
(3.3)

Subtracting Eq. 3.2 from Eq. 3.1, and adding Eq. 3.3 to the resultant, we have

RA =
R R

R R R

1 2

1 2 3+ +
(3.4)

Similarly, RB =
R R

R R R

1 3

1 2 3+ +
(3.5)

and RC =
R R

R R R

2 3

1 2 3+ +
(3.6)

Thus, a delta connection of R
1
, R

2
 and R

3
 may be replaced by a star connection

of R
A
, R

B
 and R

C
 as determined from Eqs 3.4, 3.5 and 3.6. Now if we multiply the

Eqs 3.4 and 3.5, 3.5 and 3.6, 3.6 and 3.4, and add the three, we get the final
equation as under:

RA RB + RB RC + RC RA =
R R R R R R R R R

R R R

1
2

2 3 3
2

1 2 2
2

1 3

1 2 3
2

+ +

+ +( )
(3.7)

In Eq. 3.7 dividing the LHS by R
A
, gives R

3
; dividing it by R

B
 gives R

2
, and

doing the same with R
C
, gives R

1
.
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Thus R1 =
R R R R R R

R

A B B C C A

C

+ +

R2 =
R R R R R R

R

A B B C C A

B

+ +

and R3 =
R R R R R R

R

A B B C C A

A

+ +

From the above results, we can say that a star connected circuit can be
transformed into a delta connected circuit and vice-versa.

From Fig. 3.2 and the above results,
we can conclude that any resistance of
the delta circuit is equal to the sum of
the products of all possible pairs of star
resistances divided by the opposite
resistance of the star circuit. Similarly,
any resistance of the star circuit is
equal to the product of two adjacent
resistances in the delta connected
circuit divided by the sum of all
resistances in delta connected circuit.

Example 3.1 Obtain the star connected equivalent for the delta connected
circuit shown in Fig. 3.3.

Fig. 3.3

Solution The above circuit can be replaced by a star connected circuit as shown
in Fig. 3.4 (a).

Fig. 3.2

Fig. 3.4
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Performing the D to Y transformation, we obtain

R1 =
13 12

14 13 12

¥

+ +
, R2 = 

13 14

14 13 12

¥

+ +

and R3 =
14 12

14 13 12

¥

+ +

\ R1 = 4 W, R2 = 4.66 W, R3 = 4.31 W

The star-connected equivalent is shown in Fig. 3.4 (b).

Example 3.2 Obtain the delta-connected equivalent for the star-connected
circuit shown in Fig. 3.5.

Fig. 3.5

Solution The above circuit can be replaced by a delta-connected circuit as shown
in Fig. 3.6 (a).

Performing the Y to D transformation, we get from the Fig. 3.6 (a)

R1 =
20 10 20 5 10 5

20

¥ + ¥ + ¥
 = 17.5 W

Fig. 3.6
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R2 =
20 10 20 5 10 5

10

¥ + ¥ + ¥
 = 35 W

and R3 =
20 10 20 5 10 5

5

¥ + ¥ + ¥
 = 70 W

The equivalent delta circuit is shown in Fig. 3.6 (b).

3.2 SUPERPOSITION THEOREM

The superposition theorem states that in any linear network containing two or
more sources, the response in any element is equal to the algebraic sum of the
responses caused by individual sources acting alone, while the other sources are
non-operative; that is, while considering the effect of individual sources, other
ideal voltage sources and ideal current sources in the network are replaced by
short circuit and open circuit across their terminals. This theorem is valid only
for linear systems. This theorem can be better understood with a numerical
example.

Consider the circuit which contains two sources as shown in Fig. 3.7.
Now let us find the current passing through the 3 W resistor in the circuit.

According to superposition theorem, the current I
2
 due to the 20 V voltage source

with 5 A source open circuited = 20/(5 + 3) = 2.5 A. (See Fig. 3.8)

Fig. 3.7 Fig. 3.8

The current I
5
 due to 5 A source with 20 V source short circuited is

I5 = 5 ¥
5

3 5( )+
 = 3.125 A

The total current passing through the 3 W resistor is

(2.5 + 3.125) = 5.625 A

Let us verify the above result by applying nodal analysis.
The current passing in the 3 W resistor due to both sources should be 5.625 A.
Applying nodal analysis to Fig. 3.10, we have

V V-
+

20

5 3
= 5

V
1

5

1

3
+

L
NM

O
QP

= 5 + 4
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V = 9 ¥
15

8
 = 16.875 V

The current passing through the 3 W resistor is equal to V/3

i.e. I = 
16 875

3

.
= 5.625 A

So the superposition theorem is verified.
Let us now examine the power responses.
Power dissipated in the 3 W resistor due to voltage source acting alone

P20 = (I20)2
R = (2.5)2 3 = 18.75 W

Power dissipated in the 3 W resistor due to current source acting alone

P5 = (I5)2
R = (3.125)2 3 = 29.29 W

Power dissipated in the 3 W resistor when both the sources are acting
simultaneously is given by

P = (5.625)2
¥ 3 = 94.92 W

From the above results, the superposition of P
20

 and P
5
 gives

P20 + P5 = 48.04 W

which is not equal to P = 94.92 W
We can, therefore, state that the superposition theorem is not valid for power

responses. It is applicable only for computing voltage and current responses.

Example 3.3 Find the voltage across the 2 W resistor in Fig. 3.11 by using the
super-position theorem.

Fig. 3.11

Solution Let us find the voltage across the 2 W resistor due to individual sources.
The algebraic sum of these voltages gives the total voltage across the 2 W resistor.

Fig. 3.9 Fig. 3.10
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Our first step is to find the voltage across the 2 W resistor due to the 10 V source,
while other sources are set equal to zero.

The circuit is redrawn as shown in Fig. 3.12 (a).
2 W

20 W 5 W

10 W

10 V10 V

A

(a) (b)

2 W

20 W

20 V20 V

5 W

10 W

A

Fig. 3.12

Assuming a voltage V at node ‘A’ as shown in Fig. 3.12 (a), the current equation is

V V V-
+ +

10

10 20 7
 = 0

V [0.1 + 0.05 + 0.143] = 1

or V = 3.41 V

The voltage across the 2 W resistor due to the 10 V source is

V2 = 
V

7
¥ 2 = 0.97 V

Our second step is to find out the voltage across the 2 W resistor due to the 20 V
source, while the other sources are set equal to zero. The circuit is redrawn as
shown in Fig. 3.12 (b).
Assuming voltage V at node A as shown in Fig. 3.12 (b), the current equation is

V V V-
+ +

20

7 20 10
 = 0

V [0.143 + 0.05 + 0.1] = 2.86

or V = 
2 86

0 293

.

.
 = 9.76 V

The voltage across the 2 W resistor due to the 20 V source is

V2 = 
V -F

HG
I
KJ

20

7
¥ 2 = – 2.92 V

The last step is to find the voltage across the 2 W resistor due to the 2 A current
source, while the other sources are set equal to zero. The circuit is redrawn as
shown in Fig. 3.12 (c).

Fig. 3.12
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The current in the 2 W resistor = 2 ¥
5

5 8 67+ .

=
10

13 67.
 = 0.73 A

The voltage across the 2 W resistor = 0.73 ¥ 2 = 1.46 V
The algebraic sum of these voltages gives the total voltage across the 2 W resistor

in the network

V = 0.97 – 2.92 – 1.46 = – 3.41 V

The negative sign of the voltage indicates that the voltage at ‘A’ is negative.

3.3 THEVENIN’S THEOREM

In many practical applications, it is always not necessary to analyse the complete
circuit; it requires that the voltage, current, or power in only one resistance of a
circuit be found. The use of this theorem provides a simple, equivalent circuit
which can be substituted for the original network. Thevenin’s theorem states that
any two terminal linear network having a number of voltage current sources and
resistances can be replaced by a simple equivalent circuit consisting of a single
voltage source in series with a resistance, where the value of the voltage source is
equal to the open circuit voltage across
the two terminals of the network, and
resistance is equal to the equivalent
resistance measured between the
terminals with all the energy sources
are replaced by their internal
resistances. According to Thevenin’s
theorem, an equivalent circuit can be
found to replace the circuit in Fig. 3.13.

In the circuit, if the load resistance 24 W is connected to Thevenin’s equivalent
circuit, it will have the same current through it and the same voltage across its
terminals as it experienced in the original circuit. To verify this, let us find the
current passing through the 24 W resistance due to the original circuit.

I24 = IT ¥
12

12 24+

where IT =
10

2 12 24

10

10+
=

( || )
 = 1 A

\ I24 = 1 ¥
12

12 24+
 = 0.33 A

The voltage across the 24 W resistor = 0.33 ¥ 24 = 7.92 V. Now let us find
Thevenin’s equivalent circuit.

Fig. 3.13
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The Thevenin voltage is equal to the open circuit voltage across the terminals
‘AB’, i.e. the voltage across the 12 W resistor. When the load resistance is
disconnected from the circuit, the Thevenin voltage

VTh = 10 ¥
12

14
 = 8.57 V

The resistance into the open circuit
terminals is equal to the Thevenin
resistance

RTh =
12 2

14

¥
 = 1.71 W

Thevenin’s equivalent circuit is shown in Fig. 3.14.
Now let us find the current passing through the 24 W resistance and voltage

across it due to Thevenin’s equivalent circuit.

I24 =
8 57

24 1 71

.

.+
 = 0.33 A

The voltage across the 24 W resistance is equal to 7.92 V. Thus, it is proved
that R

L
 (= 24 W) has the same values of current and voltage in both the original

circuit and Thevenin’s equivalent circuit.

Example 3.4 Determine the Thevenin’s equivalent circuit across ‘AB’ for the
given circuit shown in Fig. 3.15.

25 V25 V
A

B

10 W 5 W

50 V50 V

Fig. 3.15

Solution The complete circuit can be replaced by a voltage source in series with
a resistance as shown in Fig. 3.16 (a)

where V
Th

 is the voltage across terminals AB and

R
Th

 is the resistance seen into the terminals AB.

To solve for V
Th

, we have to find the voltage drops around the closed path as
shown in Fig. 3.16 (b).

We have 50 – 25 = 10I + 5I

or 15I = 25

\ I =
25

15
 = 1.67 A

Fig. 3.14
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Voltage across 10 W = 16.7 V
Voltage drop across 5 W = 8.35 V

or VTh = VAB = 50 – V10

= 50 – 16.7 = 33.3 V

To find R
Th

, the two voltage sources are
removed and replaced with short circuit.
The resistance at terminals AB then is the
parallel combination of the 10 W resistor
and 5 W resistor; or

RTh =
10 5

15

¥
 = 3.33 W

Thevenin’s equivalent circuit is shown
in Fig. 3.16 (c).

3.4 NORTON’S THEOREM

Another method of analysing the circuit is given by Norton’s theorem, which
states that any two terminal linear network with current sources, voltage sources
and resistances can be replaced by an equivalent circuit consisting of a current
source in parallel with a resistance. The value of the current source is the short
circuit current between the two terminals of the network and the resistance is the
equivalent resistance measured between the terminals of the network with all the
energy sources are replaced by their internal resistance.

According to Norton’s theorem, an equivalent circuit can be found to replace
the circuit in Fig. 3.17.

Fig. 3.17

A

B

VTh

RTh

(a)

A
I

B

10 W 5 W

50 V 25 V

(b)

Fig. 3.16

Fig. 3.16
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In the circuit if the load resistance 6 W is connected to Norton’s equivalent
circuit, it will have the same current through it and the same voltage across its
terminals as it experiences in the original circuit. To verify this, let us find the
current passing through the 6 W resistor due to the original circuit.

I6 = IT ¥
10

10 6+

where IT =
20

5 10 6+ ( || )
= 2.285 A

\ I6 = 2.285 ¥
10

16
= 1.43 A

i.e. the voltage across the 6 W resistor is 8.58 V. Now let us find Norton’s
equivalent circuit. The magnitude of the current in the Norton’s equivalent circuit
is equal to the current passing through short circuited terminals as shown in
Fig. 3.18.

Fig. 3.18 Fig. 3.19

Here IN =
20

5
= 4 A

Norton’s resistance is equal to the parallel combination of both the 5 W and
10 W resistors

RN =
5 10

15

¥
= 3.33 W

The Norton’s equivalent source is shown in Fig. 3.19.
Now let us find the current passing through the 6 W resistor and the voltage

across it due to Norton’s equivalent circuit.

I6 = 4 ¥
3 33

6 3 33

.

.+
= 1.43 A

The voltage across the 6 W resistor = 1.43 ¥ 6 = 8.58 V
Thus, it is proved that R

L
 (= 6 W) has the same values of current and voltage in

both the original circuit and Norton’s equivalent circuit.

Example 3.5 Determine Norton’s equivalent circuit at terminals AB for the
circuit shown in Fig. 3.20.
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Fig. 3.20

Solution The complete circuit can be replaced
by a current source in parallel with a single
resistor as shown in Fig. 3.21 (a), where I

N
 is the

current passing through the short circuited
output terminals AB and R

N
 is the resistance as

seen into the output terminals.
To solve for I

N
, we have to find the current

passing through the terminals AB as shown in
Fig. 3.21 (b).

From Fig. 3.21 (b), the current passing through the terminals AB is 4 A. The
resistance at terminals AB is the parallel combination of the 10 W resistor and the
5 W resistor,

or RN =
10 5

10 5

¥

+
 = 3.33 W

Norton’s equivalent circuit is shown in Fig. 3.21 (c).

Fig. 3.21

3.5 RECIPROCITY THEOREM

In any linear bilateral network, if a single voltage source V
a
 in branch ‘a’

produces a current I
b
 in branch ‘b’, then if the voltage source V

a
 is removed and

inserted in branch ‘b’ will produce a current I
b
 in branch ‘a’. The ratio of

response to excitation is same for the two conditions mentioned above. This is
called the reciprocity theorem.

Consider the network shown in Fig. 3.22. AA¢ denotes input terminals and BB¢

denotes output terminals.

Fig. 3.21
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A¢ A¢

A

A

(a) (b)

V VI I

B

B¢
B¢

B

N.W N.W

Fig. 3.22

The application of voltage V across AA¢ produces current I at BB ¢. Now if the
positions of the source and responses are interchanged, by connecting the voltage
source across BB¢, the resultant current I will be at terminals AA¢. According to
the reciprocity theorem, the ratio of response to excitation is the same in both cases.

Example 3.6 Verify the reciprocity theorem for the network shown in Fig. 3.23.

Fig. 3.23

Solution Total resistance in the circuit = 2 + [3 || (2 + 2 || 2)] = 3.5 W.
The current drawn by the circuit (See Fig. 3.24 (a))

IT =
20

3 5.
 = 5.71 W

Fig. 3.24

The current in the 2 W branch cd is I = 1.43 A.
Applying the reciprocity theorem, by interchanging the source and response we

get (See Fig. 3.24 (b)).

Fig. 3.24
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Total resistance in the circuit = 3.23 W.

Total current drawn by the circuit = 
20

3 23.
 = 6.19 A

The current in the branch ab is I = 1.43 A
If we compare the results in both cases, the ratio of input to response is the

same, i.e. (20/1.43) = 13.99.

3.6 COMPENSATION THEOREM

The compensation theorem states that any element in the linear, bilateral
network, may be replaced by a voltage source of magnitude equal to the current
passing through the element multiplied by the value of the element, provided the
currents and voltages in other parts of the circuit remain unaltered. Consider the
circuit shown in Fig. 3.25 (a). The element R can be replaced by voltage source
V, which is equal to the current I passing through R multiplied by R as shown in
Fig. 3.25 (b).

Fig. 3.25

This theorem is useful in finding the changes in current or voltage when the
value of resistance is changed in the circuit. Consider the network containing a
resistance R shown in Fig. 3.26 (a). A small change in resistance R, that is
(R + DR), as shown in Fig. 3.26 (b) causes a change in current in all  branches.
This current increment in other branches is equal to the current produced by the
voltage source of voltage I. DR which is placed in series with altered resistance
as shown in Fig. 3.26 (c).

I I

R

(a) (b) (c)

R

R

DR

DR

I. RD

N W◊ N W◊ N W◊

Fig. 3.26
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Example 3.7 Determine the current
flowing in the ammeter having 1W

internal resistance connected in series
with a 3 W resistor as shown in Fig. 3.27.

Solution The current flowing through
the 3 W branch is I

3
 = 1.11 A. If we

connect the ammeter having 1 W  resis-
tance to the 3 W branch, there is a
change in resistance. The changes in
currents in other branches then result
as if a voltage source of voltage I

3
DR

= 1.11 ¥ 1 = 1.11 V is inserted in the
3 W branch as shown in Fig. 3.28.

Current due to this 1.11 V source is
calculated as follows.

Current I ¢3 = 0.17 A

This current is opposite to the
current I

3
 in the 3 W branch.

Hence the ammeter reading = (1.11 – 0.17) = 0.94 A.

3.7 MAXIMUM POWER TRANSFER

THEOREM

Many circuits basically consist of sources, supplying voltage, current, or power
to the load; for example, a radio speaker system, or a microphone supplying the
input signals to voltage pre-amplifiers.
Sometimes it is necessary to transfer
maximum voltage, current or power from
the source to the load. In the simple
resistive circuit shown in Fig. 3.29, R

s

is the source resistance. Our aim is to
find the necessary conditions so that
the power delivered by the source to the
load is maximum.

It is a fact that more voltage is delivered to the load when the load resistance is
high as compared to the resistance of the source. On the other hand, maximum
current is transferred to the load when the load resistance is small compared to
the source resistance.

For many applications, an important consideration is the maximum power
transfer to the load; for example, maximum power transfer is desirable from the
output amplifier to the speaker of an audio sound system. The maximum Power
Transfer Theorem states that maximum power is delivered from a source to a
load when the load resistance is equal to the source resistance. In Fig. 3.29,
assume that the load resistance is variable.

Fig. 3.27

Fig. 3.28

Fig. 3.29
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Current in the circuit is I = V
S
/(R

S
 + R

L
)

Power delivered to the load R
L
 is P = I

2
R

L
 = V

2

S
R

L
/(R

S
 + R

L
)

2

To determine the value of R
L
 for maximum power to be transferred to the load,

we have to set the first derivative of the above equation with respect to R
L
, i.e.

when
dP

dRL

 equals zero.

d P

dRL

=
d

dR

V

R R
R

L

S

S L

L

2

2( )+

L
N
M
M

O
Q
P
P

=
V R R R R R

R R

S S L L S L

S L

2 2

4

2( ) ( ) ( )

( )

+ - +

+

o t

\ (RS + RL)2 – 2RL (RS + RL) = 0

R2
S + R2

L + 2RS RL – 2R2
L – 2RS RL = 0

\ RS = RL

So, maximum power will be transferred to the load when load resistance is
equal to the source resistance.

Example 3.8 In the circuit shown in Fig. 3.30 determine the value of load
resistance when the load resistance draws maximum power. Also find the value of
the maximum power.

Fig. 3.30

Solution In Fig. 3.30, the source delivers the maximum power when load resistance
is equal to the source resistance.

RL = 25 W

The current I = 50/(25 + R
L
) = 50/50 = 1 A

The maximum power delivered to the load P = I
2
R

L

= 1 ¥ 25 = 25 W

3.8 DUALS AND DUALITY

In an electrical circuit itself there are pairs of terms which can be interchanged to
get new circuits. Such pair of dual terms are given below.
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Current — Voltage
Open — Short

L — C
R — G

Series — Parallel
Voltage source — Current source

KCL — KVL

Consider a network containing R—L—C elements connected in series, and
excited by a voltage source as shown in Fig. 3.31.

V

R L

C
I

V

LCG

Fig. 3.31 Fig. 3.32

The integrodifferential equation for the above network is

R i + L
di

d t C
idt+ z1

= V

Similarly, consider a network containing R—L—C elements connected in
parallel and driven by a current source as shown in Fig. 3.32.

The integrodifferential equation for the network in Fig. 3.32 is

i = Gv + C
d

dt L

v
vdt+ z1

If we observe both the equations, the solutions of these two equations are the
same. These two networks are called duals.

To draw the dual of any network, the following steps are to be followed.

1. In each loop of a network place a node; and place an extra node, called the
reference node, outside the network.

2. Draw the lines connecting adjacent nodes passing through each element,
and also to the reference node, by placing the dual of each element in the
line passing through original elements.

For example, consider the network shown in Fig. 3.33.

I

L

C R2

R1

Fig. 3.33
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Our first step is to place the nodes in each loop and a reference node outside
the network.

Drawing the lines connecting the nodes passing through each element, and
placing the dual of each element as shown in Fig. 3.34 (a) we get a new circuit as
shown in Fig. 3.34 (b).

R2C C

V

R1

I

L
2

3

1

G1

G2

L

(a)

G1 G2V

L1 2

3

C

(b)

Fig. 3.34

Example 9.9 Draw the dual network for the given network shown in Fig. 3.35.

Fig. 3.35

Solution Place nodes in each loop and one reference node outside the circuit.
Joining the nodes through each element, and placing the dual of each element in
the line, we get the dual circuit as shown in Fig. 3.36 (a).

10 V10 V

10 A10 A

5 H

5 H

5 F5 F

5 F

2 W

2 1 W

1

2

3

1

W

W

Fig. 3.36 (a)
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The dual circuit is redrawn as shown in Fig. 3.36 (b)

Fig. 3.36 (b)

3.9 TELLEGEN’S THEOREM

Tellegen’s theorem is valid for any lumped network which may be linear or non-
linear, passive or active, time-varying or time-invarient. This theorem states that
in an arbitrary lumped network, the algebraic sum of the powers in all branches
at any instant is zero. All branch currents and voltages in that network must
satisfy Kirchhoff’s laws. Otherwise, in a given network, the algebraic sum of the
powers delivered by all sources is equal to the algebraic sum of the powers
absorbed by all elements. This theorem is based on Kirchhoff’s two laws, but not
on the type of circuit elements.

Consider two networks N
1
 and N

2
, having the same graph with different types

of elements between the corresponding nodes.

Then
K

b

=

Â
1

v1K i2K = 0

and
K

b

=

Â
1

v2K i1K = 0

To verify Tellegen’s theorem, consider two circuits having same graphs as
shown in Fig. 3.37.

Fig. 3.37

In Fig. 3.37 (a)

i1 = i2 = 2 A; i3 = 2 A

and v1 = – 2 V, v2 = – 8 V, v3 = 10 V
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In Fig. 3.37 (b)

i1
1 = i2

1 = 4 A; i1
3 = 4 A

and v
1
1 = – 20 V; v2

1 = 0 V; v3
1 = 20 V

Now
K =

Â
1

3

vK i1
K = v1 i1

1 + v2 i1
2 + v3 i1

3

= (– 2) (4) + (– 8) (4) + (10) (4) = 0

and
K =

Â
1

3

v
1
K iK = v1

1 i1 + v2
1 i2 + v1

3 i3

= (– 20) (2) + (0) (2) + (20) (2) = 0

Similarly,

K =

Â
1

3

vK iK = v1i1 + v2i2 + v3i3

= (– 2) (2) + (– 8) (2) + (10) (2) = 0

and
K =

Â
1

3

v
1
K i 1

K = (– 20) (4) + (0) (4) + (20) (4) = 0

This verifies Tellegen’s theorem.

3.10 MILLMAN’S THEOREM

Millman’s Theorem states that in any network, if the voltage sources V
1
, V

2
,�

V
n
 in series with internal resistances R

1
, R

2
,� R

n
, respectively, are in parallel,

then these sources may be replaced by a single voltage source V¢ in series with R¢

as shown in Fig. 3.38.

R1 R¢

V1 V¢

V2 Vn

R2 Rn

fi

Fig. 3.38

where V =
V G V G V G

G G G

n n

n

1 1 2 2

1 2

+ +

+ + +

�

�

Here G
n
 is the conductance of the nth branch,

and R ¢ =
1

1 2G G Gn+ + +�
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A similar theorem can be stated for n current sources having internal
conductances which can be replaced by a single current source I ¢ in parallel with
an equivalent conductance.

I1

G1 G2 Gn

I2 In I¢

G¢

fi

Fig. 3.39

where I ¢ =
I R I R I R

R R R

n n

n

1 1 2 2

1 2

+ +

+ + +

�

�

and G¢ =
1

1 2R R Rn+ + +�

Example 3.10 Calculate the current I shown in Fig. 3.40 using Millman’s
Theorem.

Fig. 3.40

Solution According to Millman’s Theorem, the two voltage sources can be
replaced by a single voltage source in series with resistance as shown in Fig. 3.41.

We have V ¢ =
V G V G

G G

1 1 2 2

1 2

+

+

=
10 1 2 20 1 5

1 2 1 5

( / ) ( / )

/ /

+

+
 = 12.86 V

and R ¢ =
1 1

1 2 1 51 2G G+
=

+/ /
 = 1.43 W

Therefore, the current passing through the 3 W resistor is

I =
12 86

3 1 43

.

.+
 = 2.9 A

Fig. 3.41
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ADDITIONAL SOLVED PROBLEMS

Problem 3.1 Determine the current drawn by the circuit shown in Fig. 3.42.

Fig. 3.42

Solution To simplify the network, the star circuit in Fig. 3.42 is converted into
a delta circuit as shown under.

Fig. 3.43

R1 =
4 3 4 2 3 2

2

¥ + ¥ + ¥
= 13 W

R2 =
4 3 4 2 3 2

4

¥ + ¥ + ¥
= 6.5 W

R3 =
4 3 4 2 3 2

3

¥ + ¥ + ¥
= 8.7 W

The original circuit is redrawn as shown in Fig. 3.43 (b).

Fig. 3.43
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It is further simplified as shown in Fig. 3.43 (c). Here the resistors 5 W and 13
W are in parallel, 6 W and 6.5 W are in parallel, and 8.7 W and 2 W are in parallel.

50 V

A

B
(c)

3 W 3.6 W

3.1 W 1.6 W 6 W

Fig. 3.43

In the above circuit the resistors 6 W and 1.6 W are in parallel, the resultant of

which is in series with 3.6 W resistor and is equal to 3 6
6 1 6

7 6
.

.

.
+

¥L
N
M

O
Q
P  = 4.9 W as

shown in Fig. 3.43 (d).

50 V

3 W

3 .13 .1 W 4.9 W

(d)

Fig. 3.43

In the above circuit 4.9 W and 3.1 W resistors are in parallel, the resultant of
which is in series with 3 W resistor.

Therefore, the total resistance R
T
 = 3 + 

3 1 4 9

8

. .¥
 = 4.9 W

The current drawn by the circuit I
T
 = 50/4.9 = 10.2 A (See Fig. 3.43 (e)).

Problem 3.2 In Fig. 3.44 determine the equivalent resistance by using star-
delta transformation.

Fig. 3.44
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Solution In Fig. 3.44, we have two star circuits, one consisting of 5 W, 3 W and
4 W resistors, and the other consisting of 6 W, 4 W and 8 W resistors. We convert
the star circuits into delta circuits, so that the two delta circuits are in parallel.

In Fig. 3.45 (a)

R1 =
5 3 4 3 5 4

4

¥ + ¥ + ¥
 = 11.75 W

R2 =
5 3 4 3 5 4

3

¥ + ¥ + ¥
 = 15.67 W

R3  = 
5 3 4 3 5 4

5

¥ + ¥ + ¥
 = 9.4 W

Similarly, in Fig. 3.45 (b)

R1 =
6 4 4 8 8 6

8

¥ + ¥ + ¥
= 13 W

R2 =
6 4 4 8 8 6

4

¥ + ¥ + ¥
= 26 W

R3 =
6 4 4 8 8 6

6

¥ + ¥ + ¥
= 17.3 W

Fig. 3.45

The simplified circuit is shown in Fig. 3.45 (c)

Fig. 3.45
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Fig. 3.45

In the above circuit, the three resistors 10 W, 9.4 W and 17.3 W are in parallel.
Equivalent resistance = (10 || 9.4 || 17.3) = 3.78 W

Resistors 13 W and 11.75 W are in parallel
Equivalent resistance = (13 || 11.75) = 6.17 W

Resistors 26 W and 15.67 W are in parallel

Equivalent resistance = (26 || 15.67) = 9.78 W

The simplified circuit is shown in Fig. 3.45 (d)

Fig. 3.45

From the above circuit, the equivalent resistance is given by

R eq = (9.78) || (6.17 + 3.78)

= (9.87) || (9.95) = 4.93 W

Problem 3.3 For the resistive network shown in Fig. 3.46, find the current in
each resistor, using the superposition principle.

Fig. 3.46
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Solution The current due to the 50 V source can be found in the circuit shown
in Fig. 3.47 (a).

3 W¢

10 W 5 W

25VV 2

++ +

–– –

l ¢10 l 3¢ l 5¢

(b)(b)

Fig. 3.47

Total resistance R
T
 = 10 + 

5 3

8

¥
 = 11.9 W

Current in the 10 W resistor I
10

 = 
50

11 9.
 = 4.2 A

Current in the 3 W resistor I
3
 = 4.2 ¥

5

8
 = 2.63 A

Current in the 5 W resistor I
5
 = 4.2 ¥

3

8
 = 1.58 A

The current due to the 25 V source can be found from the circuit shown in
Fig. 3.47 (b).

Total resistance R
T
 = 5 + 

10 3

13

¥
 = 7.31 W

Current in the 5 W resistor I ¢
5
 = 

25

7 31.
 = 3.42 A

Current in the 3 W resistor I ¢
3
 = 3.42 ¥

10

13
 = 2.63 A

Current in the 10 W resistor I ¢
10

 = 3.42 ¥
3

13
 = 0.79 A

According to superposition principle

Current in the 10 W resistor = I
10

-I ¢
10

 = 4.2 – 0.79 = 3.41 A

Current in the 3 W resistor = I
3
 + I ¢

3
 = 2.63 + 2.63 = 5.26 A

Current in the 5 W resistor = I ¢
5

– I
5
 = 3.42 – 1.58 = 1.84 A

When both sources are operative, the directions of the currents are shown in
Fig. 3.47 (c).

3 W

5 W10 W

25 V50V

+ +

– –

3.41 A3.41 A
3.26 A

1.84 A1.84 A

(c)

Fig. 3.47
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Problem 3.4 Determine the voltage across the terminals AB in the circuit
shown in Fig. 3.48.

Fig. 3.48

Solution Voltage across AB is V
AB

 = V
10

 + V
5
.

To find the voltage across the 5 W resistor, we have to use the superposition
theorem.

Voltage across the 5 W resistor V
5
 due to the 6 V source, when other sources

are set equal to zero, is calculated using Fig. 3.49 (a).

Fig. 3.49

V 5 = 6 V

Voltage across the 5 W resistor V ¢
5
 due to the 10 V sources, when other sources

are set equal to zero, is calculated using Fig. 3.49 (b).

V ¢5 = 0

Voltage across the 5 W resistor V ¢¢¢
5
 due

to the 5 A source only, is calculated using
Fig. 3.49 (c).

V ¢¢¢5 = 0

According to the superposition
theorem,

Total voltage across the 5 W resistor

= 6 + 0 + 0 = 6 V.

So the voltage across terminals AB is

VAB = 10 + 6 = 16 V

Fig. 3.49
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Problem 3.5 Use Thevenin’s theorem to find the current in 3 W resistor in
Fig. 3.50.

Solution Current in the 3 W resistor can be found by using Thevenin’s theorem.

3 W10 W

5 W 2 W

50 V

+

–

Fig. 3.50

In circuit shown in Fig. 3.51 (a) can be replaced by a single voltage source in
series with a resistor as shown in Fig. 3.51 (b).

Fig. 3.51

VTh = V
AB

 = 
50

15
¥ 10 = 33.3 V

R
Th

 = R
AB

, the resistance seen into the terminals AB

RAB = 2 +
5 10

15

¥
= 5.33 W

The 3 W resistor is connected to the Thevenin equivalent circuit as shown in
Fig. 3.51 (c).
Current passing through the 3 W resistor

I3 =
33 3

5 33 3

.

. +
= 4.00 A

Fig. 3.51
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Problem 3.6 Use Thevenin’s theorem to find the current through the 5 W
resistor in Fig. 3.52.

Fig. 3.52

Solution Thevenin’s equivalent circuit can be formed by obtaining the voltage
across terminals AB as shown in Fig. 3.53 (a).

Fig. 3.53

Current in the 6 W resistor I
6
 = 

100

16
 = 6.25 A

Voltage across the 6 W resistor V
6
 = 6 ¥ 6.25 = 37.5 V

Current in the 8 W resistor I
8
 = 

100

23
 = 4.35 A

Voltage across the 8 W resistor is V
8
 = 4.35 ¥ 8 = 34.8 V

Voltage across the terminals AB is V
AB

 = 37.5 – 34.8 = 2.7 V

The resistance as seen into the terminals R
AB

=
6 10

6 10

8 15

8 15

¥

+
+

¥

+

= 3.75 + 5.22 = 8.97 W

Thevenin’s equivalent circuit is shown in Fig. 3.53 (b).

Current in the 5 W resistor I
5
 = 

2 7

5 8 97

.

.+
 = 0.193 A
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Problem 3.7 Find Thevenin’s equivalent circuit for the circuit shown in
Fig. 3.54.

10 W 3 W

6 W

A

B

+

+
–

–

50 V

10 V10 V

Fig. 3.54

Solution Thevenin’s voltage is equal to the voltage across the terminals AB.

\ VAB = V3 + V6 + 10

Here the current passing through the 3 W resistor is zero.

Hence V3 = 0

By applying Kirchhoff’s law we have

Fig. 3.55

50 – 10 = 10I + 6I

I =
40

16
 = 2.5 A

The voltage across 6 W is V
6
 with polarity as shown in Fig. 3.55 (a), and is

given by

V6 = 6 ¥ 2.5 = 15 V

The voltage across terminals AB is V
AB

 = 0 + 15 + 10 = 25 V.
The resistance as seen into the terminals AB

RAB = 3 +
10 6

10 6

¥

+
= 6.75 W

Thevenin’s equivalent circuit is shown in Fig. 3.55 (b).

Problem 3.8 Determine the Thevenin’s equivalent circuit across terminals AB

for the circuit in Fig. 3.56.
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Fig. 3.56

Solution The given circuit is redrawn as shown in Fig. 3.57 (a).

Voltage V
AB

 = V2 + V1

Applying Kirchhoff’s voltage law to loop 1 and loop 2, we have the following

Voltage across the 2 W resistor V
2
 = 2 ¥

10

7
 = 2.85 V

Voltage across the 1 W resistor V
1
 = 1 ¥

5

5
 = 1 V

\ V
AB

= V2 + V1

= 2.85 – 1 = 1.85 V

The resistance seen into the
terminals AB

R
AB

= (5 || 2) + (4 || 1)

=
5 2

5 2

4 1

4 1

¥

+
+

¥

+

= 1.43 + 0.8 = 2.23 W

Thevenins’s equivalent circuit is shown
in Fig. 3.57 (b).

Problem 3.9 Determine Norton’s equivalent circuit for the circuit shown in
Fig. 3.58.

4 W

3 W

50 V

+

–

A

B

Fig. 3.58

4 W

5 W

2 W 1 W

+ + +

+

– – – –
10 V10 V 5 Vl1 l2V2 V1

(a)

A B

Fig. 3.57

2.23 W

A

B

1.85 V1.85 V +
–

(b)
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Solution Norton’s equivalent circuit is given by Fig. 3.59 (a).

where I
N

= Short circuit current at terminals AB

R
N

= Open circuit resistance at terminals AB

The current I
N
 can be found as shown in Fig. 3.59 (b).

I
N

=
50

3
 = 16.7 A

Norton’s resistance can be found from Fig. 3.59 (c)

R
N

= R
AB

 =
3 4

3 4

¥

+
= 1.71 W

Norton’s equivalent circuit for the given circuit is shown in Fig. 3.59 (d).

Fig. 3.59

Problem 3.10 Determine Norton’s equivalent circuit for the given circuit
shown in Fig. 3.60.

5 W

4 W3 W

5 W2 W

A

B

25 A25 A

Fig. 3.60

Solution The short circuit current at terminals AB can be found from
Fig. 3.61 (a) and Norton’s resistance can be found from Fig. 3.61 (b).

Fig. 3.61
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The current I
N
 is same as the current in the 3 W resistor or 4 W resistor.

IN = I3 = 25 ¥
2

7 2+
= 5.55 A

The resistance as seen into the
terminals AB is

RAB = 5 || (4 + 3 + 2)

=
5 9

5 9

¥

+
= 3.21 W

Norton’s equivalent circuit is shown in Fig. 3.61 (c).

Problem 3.11 Determine the current flowing through the 5 W resistor in the
circuit shown in Fig. 3.62 by using Norton’s theorem.

Fig. 3.62

Solution The short circuit current at terminals AB can be found from
the circuit as shown in Fig. 3.63 (a). Norton’s resistance can be found from
Fig. 3.63 (b).

Fig. 3.63

In Fig. 3.63 (a), the current I
N
 = 30 A.

The resistance in Fig. 3.68 (b)

RAB = 5 || 2
1 1

2
+

¥F
HG

I
KJ

= 5 || (2.5) =
5 2 5

7 5

¥ .

.
= 1.67 W

Norton’s equivalent circuit is shown in Fig. 3.63 (c)

Fig. 3.61

Fig. 3.63
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.\ The current in the 5 W resistor

I5 = 30 ¥
1 67

6 67

.

.
= 7.51 A

Problem 3.12 Replace the given network shown in Fig 3.64 by a single current
source in parallel with a resistance.

Fig. 3.64

Solution Here, using superposition technique and Norton’s theorem, we can
convert the given network.

We have to find a short circuit current at terminals AB in Fig. 3.65 (a) as
shown

The current I ¢
N
 is due to the 10 A source. I ¢

N
 = 10 A

The current I ¢¢
N
 is due to the 20 V source (See Figs 3.65 (b) and (c))

I ¢¢N =
20

6
= 3.33 A

The current I
N
 is due to both the sources

(c)

3 W

6 W

20 V20 V

–

+
l N¢¢

Fig. 3.65

I
N

= I ¢
N
 + I¢ ¢

N

= 10 + 3.33 = 13.33 A
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The resistance as seen from terminals AB

R
AB

= 6 W (from the Fig. 3.65 (d))

Hence, the required circuit is as shown in Fig. 3.65 (e).

Fig. 3.65

Problem 3.13 Using the compensation theorem, determine the ammeter
reading where it is connected to the 6 W resistor as shown in Fig. 3.66. The
internal resistance of the ammeter is 2 W.

Solution The current flowing through the 5 W branch

I5 = 20 ¥
3

3 6 5+ .
= 6.315 A

5 W

3 W 2 W

6 W

6 W

20 A

A

Fig. 3.66

So the current in the 6 W branch

I6 = 6.315 ¥
2

6 2+
 = 1.58 A

If we connect the ammeter having 2 W internal resistance to the 6 W branch,
there is a change in resistance. The changes in currents in other branches results
if a voltage source of voltage I

6
DR = 1.58 ¥ 2 = 3.16 V is inserted in the 6 W

branch as shown in Fig. 3.67.

5 W6 W

3 W 2 W2 W

6 W

+

–

3.16 V3.16 V

Fig. 3.67
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The current due to this 3.16 V source is calculated.
The total impedance in the circuit

RT = {[(6 || 3) + 5] || [2]} + {6 + 2}

= 9.56 W

The current due to 3.16 V source

I¢6 =
316

9 56

.

.
= 0.33 A

This current is opposite to the current I
6
 in the 6 W branch.

Hence, the ammeter reading = (1.58 – 0.33)

= 1.25 A

Problem 3.14 Verify the reciprocity theorem for the given circuit shown in
Fig. 3.68.

Fig. 3.68

Solution In Fig. 3.68, the current in the 5 W resistor is

I5 = I2 ¥
4

8 4+
= 2.14 ¥

4

12
 = 0.71 A

where I2 =
10

RT

and R
T

= 4.67

\ I2 =
10

4 67.
 = 2.14 A

We interchange the source and response as shown in Fig. 3.69.

Fig. 3.69
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In Fig. 3.69, the current in 2 W resistor is

I2 = I3 ¥
4

4 2+

where I3 =
10

RT

and R
T

= 9.33 W

\ I3 =
10

9 33.
 = 1.07 A

I2 = 1.07 ¥
4

6
= 0.71 A

In both cases, the ratio of voltage to current is 
10

0 71.
 = 14.08.

Hence the reciprocity theorem is verified.

Problem 3.15 Verify the reciprocity theorem in the circuit shown in
Fig. 3.70.

Fig. 3.70

Solution The voltage V across the 3 W resistor is

V = I3 ¥ R

where I3 = 10 ¥
2

2 3+
 = 4 A

\ V = 4 ¥ 3 = 12 V

We interchange the current source and response as shown in Fig. 3.71.

Fig. 3.71
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To find the response, we have to find the voltage across the 2 W resistor

V = I2 ¥ R

where I2 = 10 ¥
3

5
 = 6 A

\ V = 6 ¥ 2 = 12 V

In both cases, the ratio of current to voltage is the same, i.e. it is equal to
0.833. Hence the reciprocity theorem is verified.

Problem 3.16 Determine the maximum power delivered to the load in the
circuit shown in Fig. 3.72.

Fig. 3.72

Solution For the given circuit, let us find out the Thevenin’s equivalent circuit
across AB as shown in Fig. 3.73 (a).

The total resistance is

RT = [{(3 + 2) || 5} + 10]

= [2.5 + 10] = 12.5 W

Total current drawn by the circuit is

IT =
50

12 5.
 = 4 A

The current in the 3 W resistor is

I3 = I
T
¥

5

5 5

4 5

10+
=

¥
 = 2 A

Thevenin’s voltage V
AB

 = V
3
 = 3 ¥ 2 = 6 V

Thevenin’s resistance R
Th

 = R
AB

 = [((10 || 5) + 2) || 3] W = 1.92 W
Thevenin’s equivalent circuit is shown in Fig. 3.73 (b).

10 W

3 W

2 W

5 W50 V50 V

+

–

A

B

1.92 W

6 V6 V

+

–

RL

(a) (b)

Fig. 3.73
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From Fig. 3.73 (b), and maximum power transfer theorem

RL = 1.92 W

\ Current drawn by load resistance R
L

I
L

=
6

1 92 1 92. .+
 = 1.56 A

Power delivered to the load = I
2

L
R

L

= (1.56)2
¥ 1.92 = 4.67 W

Problem 3.17 Determine the load resistance to receive maximum power from
the source; also find the maximum power delivered to the load in the circuit
shown in Fig. 3.74.

Fig. 3.74

Solution For the given circuit, we find out the Thevenin’s equivalent circuit.
Thevenin’s voltage across terminals A and B

V
AB

= V
A

– V
B

Fig. 3.75

Voltage at point A is V
A
 = 100 ¥

30

30 10+
 = 75 V

Voltage at point B is V
B
 = 100 ¥

40

40 20+
 = 66.67 V

\ V
AB

= 75 – 66.67 = 8.33 V

To find Thevenin’s resistance the circuit in Fig. 3.75 (a) can be redrawn as
shown in Fig. 3.75 (b).
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Fig. 3.75

From Fig. 3.75 (b), Thevenin’s resistance

R
AB

= [(30 || 10) + (20 || 40)]

= [7.5 + 13.33] = 20.83 W

Thevenin’s equivalent circuit is shown in Fig. 3.75 (c).

Fig. 3.75

According to maximum power transfer theorem

RL = 20.83 W

Current drawn by the load resistance

IL =
8 33

20 83 20 83

.

. .+
 = 0.2 A

\ Maximum power delivered to load = I
2

L
R

L

= (0.2)2 (20.83) = 0.833 W

Problem 3.18 Draw the dual circuit for the given circuit shown in Fig. 3.76.

Fig. 3.76

Solution Our first step is to place nodes in each loop, and a reference node
outside the circuit.
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Join the nodes with lines passing through each element and connect these lines
with dual of each element as shown in Fig. 3.77 (a).

The dual circuit of the given circuit is shown in Fig. 3.77 (b).

(a)

Fig. 3.77

Problem 3.19 Draw the dual circuit of the Fig. 3.78 given below.

Fig. 3.78

Solution Our first step is to mark nodes in each of the loop and a reference
node outside the circuit.

Join the nodes with lines passing through each element and connect these lines
with dual of each element as shown in Fig. 3.79 (a).

The dual circuit of given circuit is shown in Fig. 3.79 (b).
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Fig. 3.79

Problem 3.20 For the circuit shown in Fig. 3.80, find the current i
4
 using the

superposition principle.

+

+

–

–

i4

2i4

4 W 2 W

5 A5 A
20 V20 V

Fig. 3.80

Solution The circuit can be redrawn as shown in Fig. 3.81 (a).

The current i ¢
4
 due to the 20 V source can be found using the circuit shown in

Fig. 3.81 (b).
Applying Kirchhoff’s voltage law

– 20 + 4i ¢4 + 2i ¢4 + 2i ¢4 = 0

i ¢4 = 2.5 A
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Fig. 3.81

The current i ¢¢
4
 due to the 5 A source can be found using the circuit shown in

Fig. 3.81 (c).
By assuming V ¢¢ at node shown in Fig. 3.81 (c) and applying Kirchhoff’s

current law

¢¢
- +

¢¢ - ¢¢V V i

4
5

2

2
4 = 0

I¢4 = 
- ¢¢V

4

From the above equations

i¢¢4 = – 1.25 A

\ Total current i
4
 = i¢

4
 + i¢¢

4
 = 1.25 A

Problem 3.21 Determine the current through the 2 W resistor as shown in the
Fig 3.82 by using the superposition theorem.

Fig. 3.82

Solution The current I ¢ due to the 5 V source can be found using the circuit
shown in Fig. 3.83 (a).

+

–

2 W

3 W 3 W

+

–

V 3¢

+ –
5 V

4V¢3

I¢

+

–

4 A

4 W

2 W

+

–

V 3¢¢

V 3¢¢

4V¢¢3

I¢¢

(a) (b)

Fig. 3.83

Fig. 3.81

2i4¢¢
+
–

5 A4 W

2 W
i4¢¢

V ¢¢

(c)
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By applying Kirchhoff’s voltage law, we have

3I ¢ + 5 + 2I¢ – 4V¢3 = 0

we know V ¢3 = – 3I ¢

From the above equations

I ¢ = – 0.294 A

The current I ¢¢ due to the 4 A source can be found using the circuit shown in
Fig. 3.83 (b).

By assuming node voltage V ¢¢
3
, we find

I¢ = 
¢¢+ ¢¢V V3 34

2

By applying Kirchhoff’s current law at node we have

¢¢
- +

¢¢+ ¢¢V V V3 3 3

3
4

4

2
 = 0

V ¢¢3 = 1.55 V

\ I ¢¢ = 
¢¢+ ¢¢V V3 34

2
 = 3.875 A

Total current in the 2 W resistor I = I ¢ + I ¢¢ = – 0.294 + 3.875

\ I = 3.581 A

Problem 3.22 For the circuit shown in Fig. 3.84, obtain Thevenin’s equivalent
circuit.

Fig. 3.84

Solution The circuit consists of a dependent source. In the presence of
dependent source R

Th
 can be determined by finding v

OC
 and i

SC

\ RTh =
vOC

SCi

Open circuit voltage can be found from the circuit shown in Fig. 3.85 (a)
Since the output terminals are open, current passes through the 2 W branch only.

vx = 2 ¥ 0.1 vx + 4

vx =
4

0 8.
 = 5 V

Short circuit current can be calculated from the circuit shown in Fig. 3.85 (b).
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Fig. 3.85

Since v
x
 = 0, dependent current source is opened.

The current i
SC

=
4

2 3+
 = 0.8 A

\ RTh =
v

OC

SCi
=

5

0 8.
 = 6.25 W

The Thevenin’s equivalent circuit is
shown in Fig. 3.85 (c).

Problem 3.24 For the circuit shown in Fig. 3.86, find the current i
2
 in the 2 W

resistor by using Thevenin’s theorem.

+

–
4Vi

2 W

2 W

+
–

I2

a

b

Vi

5 V

Fig. 3.86

Solution From the circuit, there is open voltage at terminals ab which is

V
OC

= – 4 V
i

where V
i
= – 4V

i
– 5

\ V
i
= – 1

Thevenin’s voltage V
OC

 = 4 V

From the circuit, short circuit current is determined by shorting terminals a and b.

Applying Kirchhoff’s voltage law, we have

4V
i
 + 2i

SC
= 0

We know V
i
= – 5

Substituting V
i
 in the above equation,

we get
i
SC

= 10 A

\ RTh =
V

i

OC

SC

=
4

10
 = 0.4 W

The Thevenin’s equivalent circuit is as shown in Fig. 3.87.

Fig. 3.85

Fig. 3.87
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The current in the 2 W resistor i
2
 = 

4

2 4.
 = 1.67 A

Problem 3.25 For the circuit shown in Fig. 3.88, find Norton’s equivalent
circuit.

Fig. 3.88

Solution In the case of circuit having only dependent sources (without
independent sources), both V

OC
 and i

SC
 are zero. We apply a 1 A source externally

and determine the resultant voltage across it, and then find R
Th

 = 
V

1
 or we can

also apply the 1 V source externally and determine the current through it and then
we find R

Th
 = 1/i.

By applying the 1 A source externally as shown in Fig. 3.89 (a).

Fig. 3.89

and application of Kirchhoff’s current law, we have

V V Vx x x

5

4

2
+

+
 = 1

Vx = 0.37 V

The current in the 4 W branch is

V Vx -

4
 = – 1

Substituting V
x
 in the above equation, we get

V = 4.37 V

\ RTh =
V

1
 = 4.37 W
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If we short circuit the terminals a and b we have

V Vx x- 4

2
= 0

V
x

= 0

I
SC

=
Vx

4
 = 0

Therefore, Norton’s equivalent circuit is as shown in Fig. 3.89 (b).

PRACTICE PROBLEMS

3.1 For the bridge network shown in Fig. 3.90, determine the total resistance
seen from terminals AB by using star-delta transformation.

3.2 Calculate the voltage across AB in the network shown in Fig. 3.91 and
indicate the polarity of the voltage using star-delta transformation.

Fig. 3.90 Fig. 3.91

3.3 Find the current I in the circuit shown in Fig. 3.92 by using the superposi-
tion theorem.

Fig. 3.92

3.4 Determine the current I in the circuit shown in Fig. 3.93 using the superpo-
sition theorem.
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Fig. 3.93

3.5 Calculate the new current in the circuit shown in Fig. 3.94 when the resis-
tor R3 is increased by 30%.

Fig. 3.94

3.6 Find the Thevenin’s and Norton’s equivalents for the circuit shown in
Fig. 3.95 with respect to terminals ab.

Fig. 3.95

3.7 Determine the Thevenin and Norton’s equivalent circuits with respect to
terminals ab for the circuit shown in Fig. 3.96.

Fig. 3.96

3.8 By using source transformation or any other technique, replace the circuit
shown in Fig. 3.97 between terminals ab with the voltage source in series
with a single resistor.
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Fig. 3.97

3.9 For the circuit shown in Fig. 3.98, what will be the value of R
L
 to get the

maximum power? What is the maximum power delivered to the load?
What is the maximum voltage across the load? What is the maximum cur-
rent in it?

Fig. 3.98

3.10 For the circuit shown in Fig. 3.99 determine the value of R
L
 to get the

maximum power. Also find the maximum power transferred to the load.
3.11 The circuit shown in Fig. 3.100 consists of dependent source. Use the su-

perposition theorem to find the current I in the 3 W resistor.

Fig. 3.99 Fig. 3.100

3.12 Obtain the current passing through 2 W resistor in the circuit shown in
Fig. 3.101 by using the superposition theorem.

2i2

2 W

1 W

i2

+
–

3 A10 V
+

–

Fig. 3.101
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3.13 Determine the current passing through 2 W resistor by using Thevenin’s
theorem in the circuit shown in Fig. 3.102.

3.14 Find Thevenin’s equivalent circuit for the network shown in Fig. 3.103
and hence find the current passing through the 10 W resistor.

40 W20 W

2 W10 I1

I1

–

+
50 V

+
–

Fig. 3.102 Fig. 3.103

3.15 Obtain Norton’s equivalent circuit of the network shown in Fig. 3.104.

Fig. 3.104

OBJECTIVE-TYPE QUESTIONS

1. Three equal resistance of 3 W are connected in star. What is the resistance
in one of the arms in an equivalent delta circuit?

(a) 10 W (b) 3 W
(c) 9 W (d) 27 W

2. Three equal resistances of 5 W are connected in delta. What is the resis-
tance in one of the arms of the equivalent star circuit?

(a) 5 W (b) 1.33 W
(c) 15 W (d) 10 W

3. Superposition theorem is valid only for
(a) linear circuits
(b) non-linear circuits
(c) both linear and non-linear
(d) neither of the two

4. Superposition theorem is not valid for
(a) voltage responses (b) current responses
(c) power responses (d) all the three
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5. Determine the current I in the circuit shown in Fig. 3.105. It is

Fig. 3.105

(a) 2.5 A (b) 1 A
(c) 3.5 A (d) 4.5 A

6. Reduce the circuit shown in Fig. 3.106 to its Thevenin equivalent circuit
as viewed from terminal A and B.

(a) The circuit consists of 15 V
battery in series with 100 kW

(b) The circuit consists of 15 V
battery in series with 22 kW

(c) The circuit consists of 15 V
battery in series with paral-
lel combination of 100 kW
and 22 kW

(d) None of the above
7. Norton’s equivalent circuit consists of

(a) voltage source in parallel with impedance
(b) voltage source in series with impedance
(c) current source in series with impedance
(d) current source in parallel with impedance

8. The reciprocity theorem is applicable to
(a) linear networks only (b) bilateral networks only
(c) linear/bilateral networks (d) neither of the two

9. Compensation theorem is applicable to
(a) linear networks only (b) non-linear networks only
(c) linear and non-linear networks (d) neither of the two

10. Maximum power is transferred when load impedance is
(a) equal to source impedance
(b) equal to half of the source impedance
(c) equal to zero
(d) none of the above

11. In the circuit shown in Fig. 3.107,
what is the maximum power
transferred to the load

(a) 5 W (b) 2.5 W
(c) 10 W (d) 25 W

Fig. 3.106

Fig. 3.107
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12. Indicate the dual of series network consists of voltage source, capacitance,
inductance in

(a) parallel combination of resistance, capacitance and inductance
(b) series combination of current source, capacitance and inductance.
(c) parallel combination of current source, inductance and capacitance
(d) none of the above

13. When the superposition theorem is applied to any circuit, the dependent
voltage source in that circuit is always

(a) opened (b) shorted
(c) active (d) none of the above

14. Superposition theorem is not applicable to networks containing.
(a) non-linear elements
(b) dependent voltage sources
(c) dependent current sources
(d) transformers

15. Thevenins voltage in the circuit
shown in Fig. 3.108 is

(a) 3 V
(b) 2.5 V
(c) 2 V
(d) 0.1 V

16. Norton’s current in the circuit
shown in Fig. 3.109 is

(a)
2

5

i

(b) zero
(c) infinite
(d) None

17. A dc circuit shown in Fig. 3.110 has a voltage V, a current source I and
several resistors. A particular resistor R dissipates a power of 4 W when V
alone is active. The same resistor dissipates a power of 9 W when I alone
is active. The power dissipated by R when both sources are active will be

+
–

V R

I

Resistive
Network

Fig. 3.110

(a) 1 W (b) 5 W
(c) 13 W (d) 25 W

2 W 3 W

0.1 Vx2 V

+

–

Vx
+
–

Fig. 3.108

Fig. 3.109



4.1  THE SINE WAVE

Many a time, alternating voltages and currents are represented by a sinusoidal

wave, or simply a sinusoid. It is a very common type of alternating current (ac)

and alternating voltage. The sinusoidal wave is generally referred to as a sine

wave. Basically an alternating voltage (current) waveform is defined as the

voltage (current) that fluctuates with time periodically, with change in polarity

and direction. In general, the sine wave is more useful than other waveforms,

like pulse, sawtooth, square, etc. There are a number of reasons for this. One of

the reasons is that if we take any second order system, the response of this

system is a sinusoid. Secondly, any periodic waveform can be written in terms

of sinusoidal function according to Fourier theorem. Another reason is that its

derivatives and integrals are also sinusoids. A sinusoidal function is easy to

analyse. Lastly, the sinusoidal function is easy to generate, and it is more useful in

the power industry. The shape of a

sinusoidal waveform is shown in Fig. 4.1.

The waveform may be either a current

waveform, or a voltage waveform. As

seen from the Fig. 4.1, the wave

changes its magnitude and direction

with time. If we start at time t = 0, the

wave goes to a maximum value and

returns to zero, and then decreases to a

negative maximum value before

returning to zero. The sine wave changes

with time in an orderly manner. During

the positive portion of voltage, the

ChapterChapterChapter

4
INTRODUCTION
TO ALTERNATING
CURRENTS AND
VOLTAGES

+

–

0

Voltage ( )
OR

Current ( )

V

I

time (sec)t

T

Fig. 4.1
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current flows in one direction; and during the negative portion of voltage, the

current flows in the opposite direction. The complete positive and negative

portion of the wave is one cycle of the sine wave. Time is designated by t. The

time taken for any wave to complete one full cycle is called the period (T). In

general, any periodic wave constitutes a number of such cycles. For example,

one cycle of a sine wave repeats a number of times as shown in Fig. 4.2.

Mathematically it can be represented as f (t) = f (t + T) for any t.

Fig. 4.2

The period can be measured in the following different ways (See Fig. 4.3).

1. From zero crossing of one

cycle to zero crossing of the

next cycle.

2. From positive peak of one

cycle to positive peak of the

next cycle, and

3. From negative peak of one

cycle to negative peak of

the next cycle.

The frequency of a wave is defined

as the number of cycles that a

wave completes in one second.

In Fig. 4.4 the sine wave completes three cycles in one second. Frequency is

measured in hertz. One hertz is equivalent to one cycle per second, 60 hertz is

60 cycles per second and so on. In Fig. 4.4, the frequency denoted by f is 3 Hz,

that is three cycles per second. The relation between time period and frequency

is given by

t (sec)
Zero to Zero

Peak to Peak

Peak to PeakV (volts)

Fig. 4.3

t (sec)

1 sec

V (volts)

Fig. 4.4
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f =
1

T
A sine wave with a longer period consists of fewer cycles than one with a

shorter period.

Example 4.1 What is the period of sine wave shown in Fig. 4.5?

6 (sec)4 (sec)2 (sec) t (sec)

V (volts)

Fig. 4.5

Solution From Fig. 4.5, it can be seen the sine wave takes two seconds to

complete one period in each cycle

T = 2 s

Example 4.2 The period of a sine wave is 20 milliseconds. What is the

frequency.

Solution f = 

1

T

= 

1

20 ms
 = 50 Hz

Example 4.3 The frequency of a sine wave is 30 Hz. What is its period.

Solution T = 

1

f

=
1

30
 = 0.03333 s

= 33.33 ms

4.2 ANGULAR RELATION OF A SINE WAVE

A sine wave can be measured along the X-axis on a time base which is

frequency-dependent. A sine wave can also be expressed in terms of an angular

measurement. This angular measurement is expressed in degrees or radians. A

radian is defined as the angular distance measured along the circumference of a

circle which is equal to the radius of the circle. One radian is equal to 57.3°. In

a 360° revolution, there are 2p radians. The angular measurement of a sine

wave is based on 360° or 2p radians for a complete cycle as shown in Figs. 4.6

(a) and (b).
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Fig. 4.6

A sine wave completes a half cycle in 180° or p radians; a quarter cycle in

90° or p /2 radians, and so on.

Phase of a Sine Wave

The phase of a sine wave is an angular measurement that specifies the position

of the sine wave relative to a reference. The wave shown in Fig. 4.7 is taken as

the reference wave.

When the sine wave is shifted left or

right with reference to the wave shown

in Fig. 4.7, there occurs a phase shift.

Figure 4.8 shows the phase shifts of a

sine wave.

In Fig. 4.8(a), the sine wave is shifted

to the right by 90° (p /2 rad) shown by

the dotted lines. There is a phase angle of

90° between A and B. Here the waveform B is lagging behind waveform A by

90°. In other words, the sine wave A is leading the waveform B by 90°. In Fig.

4.8(b) the sine wave A is lagging behind the waveform B by 90°. In both cases,

the phase difference is 90°.

V
(volts)

V
(volts)

A

A

B

B

90°

– 90°

q (degrees)

q (degrees)

(a)

(b)

Fig. 4.8

Fig. 4.7
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Example 4.4 What are the phase angles between the two sine waves shown in

Figs. 4.9(a) and (b)?

Solution In Fig. 4.9(a), sine wave A is in phase with the reference wave; sine

wave B is out of phase, which lags behind the reference wave by 45°. So we say that

sine wave B lags behind sine wave A by 45°.

In Fig. 4.9(b), sine wave A leads the reference wave by 90°; sine wave B lags

behind the reference wave by 30°. So the phase difference between A and B is 120°,

which means that sine wave B lags behind sine wave A by 120°. In other words, sine

wave A leads sine wave B by 120°.

V
(volts)

V
(volts)

A
A

B B

90°45°
– 90° 30°

q (degrees)
q (degrees)

(a) (b)

Fig. 4.9

4.3 THE SINE WAVE EQUATION

A sine wave is graphically represented as shown in Fig. 4.10(a). The amplitude

of a sine wave is represented on vertical axis. The angular measurement (in

degrees or radians) is represented on horizontal axis. Amplitude A is the

maximum value of the voltage or current on the Y-axis.

In general, the sine wave is represented by the equation

v(t) = Vm sin w t

The above equation states that any point on the sine wave represented by an

instantaneous value v(t) is equal to the maximum value times the sine of the

angular frequency at that point. For example, if a certain sine wave voltage has

peak value of 20 V, the instantaneous voltage at a point p /4 radians along the

horizontal axis can be calculated as

v(t) = Vm sin w t

= 20 sin 
p

4

F
H

I
K  = 20 ¥ 0.707 = 14.14 V

When a sine wave is shifted to the left of the reference wave by a certain

angle f, as shown in Fig. 4.10 (b), the general expression can be written as

v(t) = Vm sin (w t + f)

When a sine wave is shifted to the right of the reference wave by a certain

angle f, as shown in Fig. 4.10(c), the general expression is

v(t) = Vm sin (w t - f)
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v t

i t

( )
or
( )

f or tw wt

(a) (b)

A

0

v t( )

f

v t( )

0
0 wt

(c)

f

Fig. 4.10

Example 4.5 Determine the instantaneous value at the 90° point on the X-axis

for each sine wave shown in Fig. 4.11.

Solution From Fig. 4.11, the equation

for the sine wave A

v(t) = 10 sin w t

The value at p /2 in this wave is

v(t) = 10 sin 

p

2
 = 10 V

The equation for the sine wave B

v(t) = 8 sin (wt – p /4)

At w t = p /2

v(t) = 8 sin 

p p

2 4
-

F
HG

I
KJ

= 8 sin 45° = 8 (0.707) = 5.66 V

4.4 VOLTAGE AND CURRENT VALUES OF

 A SINE WAVE

As the magnitude of the waveform is not constant, the waveform can be

measured in different ways. These are instantaneous, peak, peak to peak, root

mean square (rms) and average values.

Fig. 4.11
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4.4.1 Instantaneous Value

Consider the sine wave shown in Fig. 4.12. At any given time, it has some

instantaneous value. This value is different at different points along the

waveform.

In Fig. 4.12 during the positive cycle,

the instantaneous values are positive and

during the negative cycle, the instantane-

ous values are negative. In Fig. 4.12

shown at time 1 ms, the value is 4.2 V; the

value is 10 V at 2.5 ms, – 2 V at 6 ms and

– 10 V at 7.5 and so on.

4.4.2 Peak Value

The peak value of the sine wave is the

maximum value of the wave during positive

half cycle, or maximum value of wave

during negative half cycle. Since the value

of these two are equal in magnitude, a sine

wave is characterised by a single peak

value. The peak value of the sine wave is

shown in Fig. 4.13; here the peak value of

the sine wave is 4 V.

4.4.3 Peak to Peak Value

The peak to peak value of a sine wave is

the value from the positive to the negative

peak as shown in Fig. 4.14. Here the peak

to peak value is 8 V.

4.4.4 Average Value

In general, the average value of any function v(t), with period T is given by

vav =
1

0
T

T

z v(t) dt

That means that the average value of a curve in the X-Y plane is the total area

under the complete curve divided by the distance of the curve. The average

value of a sine wave over one complete cycle is always zero. So the average

value of a sine wave is defined over a half-cycle, and not a full cycle period.

The average value of the sine wave is the total area under the half-cycle

curve divided by the distance of the curve.

The average value of the sine wave

v(t) = VP sin w t is given by

t (ms)

2.1

– 2– 2

– 8

– 10

4.2

10

1 16

6

107.525

V t( ) volts( ) volts

Fig. 4.12

t (ms)

V t
V

( )
+ 4Vp

– 4V

Fig. 4.13

t (ms)

V t( )
+ 4V

– 4V

Fig. 4.14
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vav =
1

0
p

p

z VP sin w t d (w t)

=
1

p
[- VP cos w t]

p
0

=
2VP

p
= 0.637 VP

The average value of a sine wave is shown by the dotted line in Fig. 4.15.

Example 4.6 Find the average value of a cosine wave f (t) = cos w t shown in

Fig. 4.16.

Solution The average value of a cosine wave

v(t) = VP cos w t

Vav = 

1

2

3 2

p
p

p

/

/

z  VP cos wt d (w t)

= 

1

p
 VP (– sin wt )

3p/2

p/2

= 

-VP

p
 [– 1 – 1] = 

2VP

p
 = 0.637 VP

4.4.5 Root Mean Square Value or Effective Value

The root mean square (rms) value of a sine wave is a measure of the heating

effect of the wave. When a resistor is connected across a dc voltage source as

shown in Fig. 4.17(a), a certain amount of heat is produced in the resistor in a

given time. A similar resistor is connected across an ac voltage source for the

same time as shown in Fig. 4.17(b). The value of the ac voltage is adjusted such

that the same amount of heat is produced in the resistor as in the case of the dc

source. This value is called the rms value.

+

–
V R Rv t( )

(a) (b)

Fig. 4.17

That means the rms value of a sine wave is equal to the dc voltage that

produces the same heating effect. In general, the rms value of any function with

period T has an effective value given by

wt (rad)

V t( )
volts VP

VPVav = 0.637

p 2p

Fig. 4.15

v t( )

Vp

–p

2
0 p/2 p 3 /2p 2p wt

Fig. 4.16
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Vrms =
1 2

0
T

t dt

T

v( )z
Consider a function v (t) = VP sin w t

The rms value, Vrms =
1 2

0
T

V t d tP

T

( sin ) ( )w wz

=
1 1 2

2

2

0

2

T
V

t
d tP

p
w

wz
-L

NM
O
QP

cos
( )

=
VP

2
= 0.707 VP

If the function consists of a number of sinusoidal terms, that is

v(t) = V0 + (Vc1 cos w t + Vc2 cos 2 w t + �)

+ (Vs1 sin w t + Vs2 sin 2 w t + �)

The rms, or effective value is given by

Vrms = V V V V Vc c s s0
2

1
2

2
2

1
2

2
21

2

1

2
+ + + + + +( ) ( )� �

Example 4.7 A wire is carrying a direct current of 20 A and a sinusoidal

alternating current of peak value 20 A. Find the rms value of the resultant current in

the wire.

Solution The rms value of the combined wave

= 20
20

2

2
2

+

= 400 200 600+ =  = 24.5 A

4.4.6 Peak Factor

The peak factor of any waveform is defined as the ratio of the peak value of the

wave to the rms value of the wave.

Peak factor = 
V

V

P

rms

Peak factor of the sinusoidal waveform = 
V

V

P

P / 2
2=  = 1.414

4.4.7 Form Factor

Form factor of a waveform is defined as the ratio of rms value to the average

value of the wave.
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Form factor = 
V

V

rms

av

Form factor of a sinusoidal waveform can be found from the above relation.

For the sinusoidal wave, the form factor = 
V

V

P

P

/

.

2

0 637
 = 1.11

4.5 PHASE RELATION IN PURE RESISTOR

When a sinusoidal voltage of certain magnitude is applied to a resistor, a certain

amount of sine wave current passes through it. We know the relation between

v (t) and i (t) in the case of a resistor. The voltage/current relation in case of a

resistor is linear,

i.e. v (t) = i (t) R

Consider the function

i(t) = Im sin w t = IM [Im e
jw t

] or Im –0°

If we substitute this in the above equation, we have

v(t) = Im R sin w t = Vm sin wt

= IM [Vm e
jw t

] or Vm –0°

where Vm = Im R

If we draw the waveform for both voltage and current as shown in Fig. 4.18,

there is no phase difference between these two waveforms. The amplitudes of

the waveform may differ according to the value of resistance.

As a result, in pure resistive circuits, the

voltages and currents are said to be in

phase. Here the term impedance is defined

as the ratio of voltage to current function.

With ac voltage applied to elements, the ratio

of exponential voltage to the corresponding

current (impedance) consists of magnitude

and phase angles. Since the phase

difference is zero in case of a resistor, the

phase angle is zero. The impedance in case

of resistor consists only of magnitude, i.e.

Z = 
V

I

m

m

– ∞

– ∞

0

0
 = R

4.6 PHASE RELATION IN A PURE INDUCTOR

As discussed earlier in Chapter 1, the voltage current relation in the case of an

inductor is given by

wt

Vm

Im

v t( )

i t( )

Fig. 4.18
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v(t ) = L
di

dt

Consider the function i(t) = I
m
 sin w t = IM [I

m
e

jw t
] or I

m
–0°

v(t) = L
d

dt
 (Im sin wt)

= Lw Im cos w t = wL Im cos wt

v(t) = Vm cos w t, or Vm sin (w t + 90°)

= IM [Vm e
j (wt + 90°)

] or Vm –90°

where Vm = wL Im = XL Im

and e j90° = j = 1 –90°

If we draw the waveforms for both, voltage and

current, as shown in Fig. 4.19, we can observe

the phase difference between these two

waveforms.

As a result, in a pure inductor the voltage

and current are out of phase. The current lags

behind the voltage by 90° in a pure inductor as

shown in Fig. 4.20.
The impedance which is the ratio of

exponential voltage to the corresponding current, is

given by

Z =
V t

I t

m

m

sin ( )

sin

w

w

+ ∞90

where Vm = wLIm

=
I L t

I t

L I

I

m

m

m

m

w w

w

wsin ( )

sin

+ ∞
=

– ∞

– ∞

90 90

0

\ Z = jwL = jXL

where X
L
 = wL and is called the inductive reactance.

Hence, a pure inductor has an impedance whose value is wL.

4.7 PHASE RELATION IN PURE CAPACITOR

As discussed in Chapter 1, the relation between voltage and current is given by

v (t) = 
1

C z i (t) dt

Consider the function i (t) = I
m
 sin wt = IM [I

m
e

jw t
] or I

m
–0°

v(t) = 
1

C z Im sin wt d(t)

=
1

wC
Im [– cos wt]

wt

Vm

im

p
2p

v t( )

i t( )

p/2

Fig. 4.19

v t( )

XLi t( )

Fig. 4.20
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=
I

C

m

w
 sin (w t – 90°)

\ v(t) = Vm sin (wt – 90°)

= IM [Im e j(wt – 90°)] or Vm – -90°

where Vm =
I

C

m

w

\
V

I

m

m

– - ∞

– ∞

90

0
= Z = 

- j

Cw

Hence, the impedance is Z = 
- j

Cw
 = – jX

C

where X
C
 = 

1

wC
 and is called the capacitive reactance.

If we draw the waveform for both, voltage

and current, as shown in Fig. 4.21, there is a

phase difference between these two  wave-

forms.

As a result, in a pure capacitor, the current

leads the voltage by 90°. The impedance

value of a pure capacitor

XC =
1

wC

ADDITIONAL SOLVED PROBLEMS

Problem 4.1 Calculate the frequency for each of the following values of time

period.

(a) 2 ms (b) 100 ms (c) 5 ms (d) 5 s

Solution The relation between frequency and period is given by

f =
1

T
 Hz

(a) Frequency f = 
1

20 10 3¥ -
 = 50 Hz

(b) Frequency f = 
1

100 10 3¥ -
 = 10 Hz

(c) Frequency f = 
1

5 10 6¥ -
 = 200 KHz

(d) Frequency f = 
1

5
 = 0.2 Hz

wt– /2p 0 p 2p

v t( )

i t( )

Fig. 4.21
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Problem 4.2 Calculate the period for each of the following values of

frequency.

(a) 50 Hz (b) 100 KHz (c) 1 Hz (d) 2 MHz

Solution The relation between frequency and period is given by

f =
1

T
 Hz

(a) Time period T = 
1 1

50f
=  = 0.02 s

(b) Time period T = 
1 1

100 103f
=

¥
 = 10 ms

(c) Time period T = 
1 1

1f
=  = 1 s

(d) Time period T = 
1 1

2 106f
=

¥
 = 0.5 ms

Problem 4.3 A sine wave has a frequency of 50 kHz. How many cycles does

it complete in 20 ms?

Solution The frequency of sine wave is 50 kHz.

That means in 1 second, a sine wave goes through 50 ¥ 10
3
 cycles.

In 20 ms the number of cycles = 20 ¥ 10
–3
¥ 50 ¥ 10

3

= 1 kHz

That means in 20 ms the sine wave goes through 10
3
 cycles.

Problem 4.4 A sine wave has a peak value of 25 V. Determine the following

values.

(a) rms (b) peak to peak (c) average

Solution (a) rms value of the sine wave

Vrms = 0.707 VP

= 0.707 ¥ 25 = 17.68 V

(b) peak to peak value of the sine wave VPP = 2VP

VPP = 2 ¥ 25 = 50 V

(c) average value of the sine wave

Vav = 0.637 VP

= (0.637)25 = 15.93 V

Problem 4.5 A sine wave has a peak value of 12 V. Determine the following

values

(a) rms (b) average (c) crest factor (d) form factor

Solution (a) rms value of the given sine wave

= (0.707)12 = 8.48 V
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(b) average value of the sine wave = (0.637)12 = 7.64 V

(c) crest factor of the sine wave = 
Peak value

rms value

=
12

8.48
 = 1.415

(d) Form factor = 
rms value

average value
=

8 48

7 64

.

.
 = 1.11

Problem 4.6 Sine wave ‘A’ has a positive going zero crossing at 45°. Sine

wave ‘B’ has a positive going zero crossing at 60°. Determine the phase angle

between the signals. Which of the signal lags

behind the other?

Solution The two signals drawn are shown

in Fig. 4.22.

From Fig. 4.22, the signal B lags behind

signal A by 15°. In other words, signal A leads

signal B by 15°.

Problem 4.7 One sine wave has a positive

peak at 75°, and another has a positive peak

at 100°. How much is each sine wave shifted

in phase from the 0° reference? What is the

phase angle between them?

Solution The two signals are drawn as

shown in Fig. 4.23.

The signal A leads the reference signal by 15°

The signal B lags behind the reference

signal by 10°

The phase angle between these two signals

is 25°

Problem 4.8 A sinusoidal voltage is applied to the resistive circuit shown in

Fig. 4.24. Determine the following values.

(a) Irms (b) Iav (c) IP (d) IPP

Solution The function given to the circuit shown is

v (t) = VP sin w t = 20 sin w t

The current passing through the resistor

i (t) = 
v ( )t

R

i (t) = 
20

2 103¥
 sin w t

= 10 ¥ 10–3 sin w t

IP = 10 ¥ 10–3 A

w qt ( )
45° 60°

v t( )
A

B

Fig. 4.22

q0° 75°75° 90° 100°

v t( )( )

signal A
reference signalreference signal

signal B

Fig. 4.23

2 kW

VP = 20 V

Fig. 4.24
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The peak value I
P
 = 10 mA

Peak to peak value I
PP

 = 20 mA

rms value Irms = 0.707 IP

= 0.707 ¥ 10 mA = 7.07 mA

Average value I
av

= (0.637) I
P

= 0.637 ¥ 10 mA = 6.37 mA

Problem 4.9 A sinusoidal voltage is applied to a capacitor as shown in

Fig. 4.25. The frequency of the sine wave is 2 KHz. Determine the capacitive

reactance.

Solution XC =
1

2p f C

=
1

2 2 10 0 01 103 6p ¥ ¥ ¥ ¥ -.

= 7.96 kW

Problem 4.10 Determine the rms current in the circuit

shown in Fig. 4.26.

Solution XC =
1

2p f C

=
1

2 5 10 0 01 103 6p ¥ ¥ ¥ ¥ -.

= 3.18 kW

Irms =
V

XC

rms

K
=

5

3 18.
 = 1.57 mA

Problem 4.11 A sinusoidal voltage is applied to the circuit shown in

Fig. 4.27. The frequency is 3 KHz. Determine the inductive reactance.

Solution XL = 2p fL

= 2p ¥ 3 ¥ 103 ¥ 2 ¥ 10–3

= 37.69 W

Problem 4.12 Determine the rms current in the

circuit shown in Fig. 4.28.

Solution XL = 2p fL

= 2p ¥ 10 ¥ 103 ¥ 50 ¥ 10–3

XL = 3.141 kW

Irms =
V

XL

rms

=
10

3141 103. ¥
 = 3.18 mA

0.01 Fm

VS

Fig. 4.25

0.01 Fm

Vrms

f
= 5 V

= 5 KHz

Fig. 4.26

VS

2 mH

Fig. 4.27

VS

2 mH

Fig. 4.28
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Problem 4.13 Find the form factor of the half-wave rectified sine wave

shown in Fig. 4.29.

Fig. 4.29

Solution v = Vm sin wt, for 0 < wt < p

= 0, for p < wt < 2p

the period is 2p.

Average value Vav =
1

2
0

2

0
p

w w w

p

pp

V t d t d tm sin ( ) ( )+
R
S
T

U
V
W

zz
= 0.318 Vm

V2
rms =

1

2
0

p

p

z (Vm sin w t)2 d (w t)

=
1

4
V 2

m

Vrms =
1

2
Vm

Form factor = 
V

V

V

V

m

m

rms

av

=
0 5

0 318

.

.
 = 1.572

Problem 4.14 Find the average and effective values of the saw tooth wave-

form shown in Fig. 4.30 below.

Solution From Fig. 4.30 shown, the period is T.

Vav =
1

0
T

V

T

m
T

z t dt

=
1

0
T

V

T

m
T

z t dt

=
V

T

t Vm m
2

2

2 2
=

Effective value Vrms =
1 2

0
T

dt

T

vz
Fig. 4.30
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=
1

2

0
T

V

T
t dtm

T

L
NM

O
QPz

=
Vm

3

Problem 4.15 Find the average

and rms value of the full wave

rectified sine wave shown in

Fig. 4.31.

Solution Average value V
av

 = 
1

0
p

p

z  5 sin w t  d (w t)

= 3.185

Effective value or rms value = 
1

5 2

0
p

w w

p

( sin ) ( )t d tz

=
25

2
 = 3.54

Problem 4.16 The full wave rectified sine wave shown in Fig. 4.32 has a

delay angle of 60°. Calculate V
av

 and V
rms

.

v

10 V

0 p 2p

w t

3p w t60∞

Fig. 4.32

Solution Average value Vav =
1

0
p

p

z 10 sin (w t) d (w t)

=
1

60
p

p

∞

z 10 sin w t d (w t)

Vav =
10

p
 (– cos wt)p60 = 4.78

Effective value Vrms =
1

10 2

0
p

w w

p

( sin ) ( )t d tz

v

5V

0 p 2p 3p wt

Fig. 4.31
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= 100 1 2

2
0

p

w
w

p
-F

H
I
Kz

cos
( )

t
d t

= 6.33

Problem 4.17 Find the form factor of the square wave as shown in Fig. 4.33.

Solution v = 20 for 0 < t < 0.01

= 0 for 0.01 < t < 0.03

The period is 0.03 sec.

Average value V
av

 = 
1

0 03
0

0 01

.

.

z  20 dt

=
20 0 01

0 03

( . )

.
 = 6.66

Effective value V
eff

 = 
1

0 03
20 2

0

0 01

.
( )

.

dtz  = 66.6 = 0.816

Form factor = 
0 816

6 66

.

.
 = 0.123

PRACTICE PROBLEMS

4.1 Calculate the frequency of the following values of period.

(a) 0.2 s (b) 50 ms

(c) 500 ms (d) 10 ms

4.2 Calculate the period for each of the values of frequency.

(a) 60 Hz (b) 500 Hz

(c) 1 KHz (d) 200 kHz

(e) 5 MHz

4.3 A certain sine wave has a positive going zero crossing at 0° and an rms

value of 20 V. Calculate its instantaneous value at each of the following

angles.

(a) 33° (b) 110°

(c) 145° (d) 325°

4.4 For a particular 0° reference sinusoidal current, the peak value is 200

mA; determine the instantaneous values at each of the following.

(a) 35° (b) 190°

(c) 200° (d) 360°

4.5 Sine wave A lags sine wave B by 30°. Both have peak values of 15 V.

Sine wave A is the reference with a positive going crossing at 0°. Deter-

mine the instantaneous value of sine wave B at 30°, 90°, 45°, 180° and 300°.

Fig. 4.33
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4.6 Find the average values of the

voltages across R1 and R2. In

Fig. 4.34 values shown are

rms.

4.7 A sinusoidal voltage is ap-

plied to the circuit shown in

Fig. 4.35, determine rms cur-

rent, average current, peak

current, and peak to peak cur-

rent.

4.8 A sinusoidal voltage of v (t) =

50 sin (500t) applied to a ca-

pacitive circuit. Determine

the capacitive reactance, and

the current in the circuit.

4.9 A sinusoidal voltage source in series with a dc source as shown in

Fig. 4.36.

+

–
200 V

RL 100 W
150 V

or
– 150 V

Fig. 4.36

Sketch the voltage across RL. Determine the maximum current through

RL and the average voltage across RL.

4.10 Find the effective value of the resultant current in a wire which carries a

direct current of 10 A and a sinusoidal current with a peak value of 15 A.

4.11 An alternating current varying sinusoidally, with a frequency of 50 Hz,

has an rms value of 20 A. Write down the equation for the instantaneous

value and find this value at  (a) 0.0025 s  (b) 0.0125 s after passing

through a positive maximum value. At what time, measured from a posi-

tive maximum value, will the instantaneous current be 14.14 A?

4.12 Determine the rms value of the voltage defined by

v = 5 + 5 sin (314t + p /6).

4.13 Find the effective value of the function v = 100 + 50 sin w t.

4.14 A full wave rectified sine wave is clipped at 0.707 of its maximum value

as shown in Fig. 4.37. Find the average and effective values of the function.
v

20V

0 pp
4

2p 3p 4p wt3p
4

Fig. 4.37

5 W

2 W

20 V

100 V 50 V

R1 R2

Fig. 4.34

1 kW

Vp 10 V

Fig. 4.35
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4.15 Find the rms value of the function shown in Fig. 4.38 and described as

follows
0 < t < 0.1 v = 40 (1 – e–100t )

0.1 < t < 0.2 v = 40 e–50(t – 0.1)

v

40V

0 0.1 0.2 0.3 0.4 0.5 t (sec)

Fig. 4.38

4.16 Calculate average and effective values of the waveform shown in Fig.

4.39 and hence find from factor.

v

50V

–10V 1 2 3 4 t (sec)

Fig. 4.39

4.17 A full wave rectified sine wave is clipped such that the effective value is

0.5 Vm as shown in Fig. 4.40. Determine the angle at which the wave

form is clipped.

v

0 p 2p 3p 4p

Vm

– Vm

Fig. 4.40

OBJECTIVE-TYPE QUESTIONS

1. One sine wave has a period of 2 ms, another has a period of 5 ms, and

other has a period of 10 ms. Which sine wave is changing at a faster rate?

(a) sine wave with period 2 ms (b) sine wave with period of 5 ms

(c) all are at the same rate (d) sine wave with period of 10 ms

2. How many cycles does a sine wave go through in 10 s when its frequency

is 60 Hz?

(a) 10 cycles (b) 60 cycles

(c) 600 cycles (d) 6 cycles
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3. If the peak value of a certain sine wave voltage is 10 V, what is the peak

to peak value?

(a) 20 V (b) 10 V

(c) 5 V (d) 7.07 V

4. If the peak value of a certain sine wave voltage is 5 V, what is the rms

value?

(a) 0.707 V (b) 3.535 V

(c) 5 V (d) 1.17 V

5. What is the average value of a sine wave over a full cycle?

(a) Vm (b)
Vm

2

(c) zero (d) 2 Vm

6. A sinusoidal current has peak value of 12 A. What is its average value?

(a) 7.64 A (b) 24 A

(c) 8.48 A (d) 12 A

7. Sine wave A has a positive going zero crossing at 30°. Sine wave B has a

positive going zero crossing at 45°. What is the phase angle between two

signals?

(a) 30° (b) 45°

(c) 75° (d) 15°

8. A sine wave has a positive going zero crossing at 0° and an rms value of

20 V. What is its instantaneous value at 145°.

(a) 7.32 V (b) 16.22 V

(c) 26.57 V (d) 21.66 V

9. In a pure resistor, the voltage and current are

(a) out of phase (b) in phase

(c) 90° out of phase (d) 45° out of phase

10. The rms current through a 10 kW resistor is 5 mA. What is the rms volt-

age drop across the resistor?

(a) 10 V (b) 5 V

(c) 50 V (d) zero

11. In a pure capacitor, the voltage

(a) is in phase with the current (b) is out of phase with the current

(c) lags behind the current by 90° (d) leads the current by 90°

12. A sine wave voltage is applied across a capacitor; when the frequency of

the voltage is increased, the current

(a) increases (b) decreases

(c) remains the same (d) is zero

13. The current in a pure inductor

(a) lags behind the voltage by 90° (b) leads the voltage by 90°

(c) is in phase with the voltage (d) lags behind the voltage by 45°

14. A sine wave voltage is applied across an inductor; when the frequency of

voltage is increased, the current

(a) increases (b) decreases

(c) remains the same (d) is zero
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15. The rms value of the voltage for a voltage function

v = 10 + 5 cos (628 t + 30°) volts through a circuit is

(a) 5 V (b) 10 V

(c) 10.6 V (d) 15 V

16. For the same peak value, which is of the following wave will have the

highest rms value

(a) sine wave (b) square wave

(c) triangular wave (d) half wave rectified sine wave

17. For 100 volts rms value triangular wave, the peak voltage will be

(a) 100 V (b) 111 V

(c) 141 V (d) 173 V

18. The form factor of dc voltage is

(a) zero (b) infinite

(c) unity (d) 0.5

19. For the half wave rectified sine wave shown in Fig. 4.41, the peak factor is

v

Vm

0 p 2p 3p 4p w t

Fig. 4.41

(a) 1.41 (b) 2.0

(c) 2.82 (d) infinite

20. For the square wave shown in Fig. 4.42, the form factor is

Fig. 4.42

(a) 2.0 (b) 1.0

(c) 0.5 (d) zero

21. The power consumed in a circuit element will be least when the phase

difference between the current and voltage is

(a) 0° (b) 30°

(c) 90° (d) 180°

22. The voltage wave consists of two components: a 50 V dc component and

a sinusoidal component with a maximum value of 50 volts. The average

value of the resultant will be

(a) zero (b) 86.6 V

(c) 50 (d) none of the above



5.1 IMPEDANCE DIAGRAM

So far our discussion has been confined to resistive circuits. Resistance restricts
the flow of current by opposing free electron movement. Each element has some
resistance; for example, an inductor has some resistance; a capacitance also has
some resistance. In the resistive element, there is no phase difference between
the voltage and the current. In the case of pure inductance, the current lags
behind the voltage by 90 degrees, whereas in the case of pure capacitance, the
current leads the voltage by 90 degrees. Almost all electric circuits offer
impedance to the flow of current. Impedance is a complex quantity having real
and imaginary parts; where the real part is the resistance and the imaginary part
is the reactance of the circuit.

Consider the RL series circuit shown in Fig. 5.1.
If we apply the real function V

m
 cos w t to the

circuit, the response may be I
m
 cos w t. Similarly, if

we apply the imaginary function jV
m
 sin w t to the

same circuit, the response is jI
m
 sin w t. If we apply

a complex function, which is a combination of real
and imaginary functions, we will get a complex
response.
This complex function is V

m
e

jw t
 = V

m
 (cos w t + j sin wt).

Applying Kirchhoff’s law to the circuit shown in Fig. 5.1,

we get Vm e jw t = Ri(t) + L
di t

dt

( )

The solution of this differential equation is

i(t) = Im e
jw t

Chapter

5
COMPLEX
IMPEDANCE

R L

i t( )

V em
j tw

Fig. 5.1
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By substituting i(t) in the above equation, we get

Vm e jw t = R Im e jw t + L
d

dt
 (Im e jw t)

Vm e
jw t = RIm e

jw t + LIm jw e
jw t

Vm = (R + jwL) Im

Impedance is defined as the ratio of the voltage to current function

Z =
j t

m

j tm

V e

V
e

R j L

w

w

w+

 = R + jwL

Complex impedance is the total opposition offered by the circuit elements to ac

current, and can be displayed on the complex plane. The impedance is denoted
by Z. Here the resistance R is the real part of the impedance, and the reactance
X

L
 is the imaginary part of the impedance. The resistance R is located on the

real axis. The inductive reactance X
L
 is located on the positive j axis. The

resultant of R and X
L
 is called the complex impedance.

Figure 5.2 is called the impedance diagram
for the RL circuit. From Fig. 5.2, the impedance

Z = R L2 2+ ( )w , and angle q = tan
–1
wL/R.

Here, the impedance is the vector sum of the
resistance and inductive reactance. The angle
between impedance and resistance is the phase
angle between the current and voltage applied
to the circuit.

Similarly, if we consider the RC series
circuit, and apply the complex function V

m
e

jw t

to the circuit in Fig. 5.3, we get a complex
response as follows.

Applying Kirchhoff’s law to the above
circuit, we get

Vm e jw t = Ri(t) + 
1

C z i (t) dt

Solving this equation we get,

i(t) = Im e jw t

Vm e jw t = R Im e jw t + 
1 1

mI
C jw

Ê ˆ+
Á ˜Ë ¯

 e jw t

=
1

–m mRI I
Cw

È ˘
Í ˙Î ˚

e
jw t

Vm = R
j

C
Im-F

HG
I
KJw

Fig. 5.2

Fig. 5.3
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The impedance

Z =
V e

V R j C e

m
j t

m
j t

w

ww/ /-

= [R – ( j/wC)]

Here impedance Z consists of resistance (R), which
is the real part, and capacitive reactance (X

C
 = 1/

wC ), which is the imaginary part of the
impedance. The resistance, R, is located on the real
axis, and the capacitive reactance X

C
 is located on

the negative j axis in the impedance diagram
in Fig. 5.4.

Form Fig. 5.4, impedance Z = R XC
2 2+  or R C2 21+ ( / )w  and angle q =

tan
–1

 (1/wCR). Here, the impedance, Z, is the vector sum of resistance and
capacitive reactance.The angle between resistance and impedance is the phase
angle between the applied voltage and current in the circuit.

5.2 PHASOR DIAGRAM

A phasor diagram can be used to represent a sine wave in terms of its magnitude
and angular position. Examples of phasor diagrams are shown in Fig. 5.5.

Fig. 5.5

In Fig. 5.5(a), the length of the arrow represents the magnitude of the sine
wave; angle q represents the angular position of the sine wave. In Fig. 5.5(b),
the magnitude of the sine wave is one and the phase angle is 30°. In Fig. 5.5(c)

Fig. 5.4
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and (d), the magnitudes are four and three, and phase angles are 135° and 225°,
respectively. The position of a phasor at any instant can be expressed as a
positive or negative angle. Positive angles are measured counterclockwise from
0°, whereas negative angles are measured clockwise from 0°. For a given
positive angle q, the corresponding negative angle is q – 360°. This is shown in
Fig. 5.6(a). In Fig. 5.6(b), the positive angle 135° of vector A can be represented
by a negative angle – 225°, (135° – 360°).

Fig. 5.6

A phasor diagram can be used to represent the relation between two or more
sine waves of the same frequency. For example, the sine waves shown in Fig.
5.7(a) can be represented by the phasor diagram shown in Fig. 5.7(b).

Fig. 5.7

In the above figure, sine wave B lags behind sine wave A by 45°; sine wave
C leads sine wave A by 30°. The length of the phasors can be used to represent
peak, rms, or average values.

Example 5.1 Draw the phasor diagram to represent the two sine waves shown in
Fig. 5.8.

Solution The phasor diagram representing the sine waves is shown in Fig. 5.9.
The length of the each phasor represents the peak value of the sine wave.
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Fig. 5.8 Fig. 5.9

5.3 SERIES CIRCUITS

The impedance diagram is a useful tool for analysing series ac circuits.
Basically we can divide the series circuits as RL, RC and RLC circuits. In the
analysis of series ac circuits, one must draw the impedance diagram. Although
the impedance diagram usually is not drawn to scale, it does represent a clear
picture of the phase relationships.

5.3.1 Series RL Circuit

If we apply a sinusoidal input to an RL circuit, the current in the circuit and all
voltages across the elements are sinusoidal. In the analysis of the RL series
circuit, we can find the impedance, current, phase angle and voltage drops. In
Fig. 5.10 (a) the resistor voltage (V

R
) and current (I ) are in phase with each

other, but lag behind the source voltage (V
S
). The inductor voltage (V

L
) leads

the source voltage (V
S
). The phase angle between current and voltage in a pure

inductor is always 90°. The amplitudes of voltages and currents in the circuit
are completely dependent on the values of elements (i.e. the resistance and
inductive reactance). In the circuit shown, the phase angle is somewhere
between zero and 90° because of the series combination of resistance with
inductive reactance, which depends on the relative values of R and X

L
.

Fig. 5.10(a)
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The phase relation between current and voltages in a series RL circuit is
shown in Fig. 5.10(b).

Fig. 5.10(b)

Here V
R
 and I are in phase. The amplitudes are arbitrarily chosen. From

Kirchhoff’s voltage law, the sum of the voltage drops must equal the applied
voltage. Therefore, the source voltage V

S
 is the phasor sum of V

R
 and V

L
.

\ VS = V VR L
2 2+

The phase angle between resistor voltage and
source voltage is

q = tan–1 (VL /VR)

where q is also the phase angle between the source
voltage and the current. The phasor diagram for
the series RL circuit that represents the waveforms
in Fig. 5.10(c).

Example 5.2 To the circuit shown in Fig. 5.11, consisting a 1 kW resistor
connected in series with a 50 mH coil, a 10 V rms, 10 kHz signal is applied. Find
impedance Z, current I, phase angle q, voltage across resistance V

R
, and the voltage

across inductance V
L
.

Fig. 5.11

Solution Inductive reactance X
L
 = wL

= 2p fL = (6.28) (104) (50 ¥ 10–3) = 3140 W
In rectangular form,

Total impedance Z = (1000 + j 3140) W

Fig. 5.10(c)



Complex Impedance 5.7

=
2 2

LR X+

=
2 2(1000) (3140)+  = 3295.4 W

Current I = V
S
/Z = 10/3295.4 = 3.03 mA

Phase angle q = tan
–1

 (X
L
/R) = tan

–1
 (3140/1000) = 72.33°

Therefore, in polar form total impedance Z = 3295.4 –72.33°

Voltage across resistance V
R
 = IR

= 3.03 ¥ 10–3 ¥ 1000 = 3.03 V

Voltage across inductive reactance V
L
 = IX

L

= 3.03 ¥ 10–3 ¥ 3140 = 9.51 V

Example 5.3 Determine the source voltage and the phase angle, if voltage across
the resistance is 70 V and voltage across the inductive reactance is 20 V as shown in
Fig. 5.12.

Solution In Fig. 5.12, the source voltage is
given by

VS =
2 2

R LV V+

=
2 2(70) (20)+  = 72.8 V

The angle between current and source voltage is

q = tan–1 (VL /VR) = tan–1 (20/70) = 15.94°

5.3.2 Series RC Circuit

When a sinusoidal voltage is applied to an RC series circuit, the current in the
circuit and voltages across each of the elements are sinusoidal. The series RC
circuit is shown in Fig. 5.13 (a).

Here the resistor voltage and
current are in phase with each other.
The capacitor voltage lags behind the
source voltage. The phase angle
between the current and the capacitor
voltage is always 90°. The amplitudes
and the phase relations between the
voltages and current depend on the
ohmic values of the resistance and the capacitive reactance. The circuit is a
series combination of both resistance and capacitance; and the phase angle
between the applied voltage and the total current is somewhere between zero
and 90°, depending on the relative values of the resistance and reactance. In a
series RC circuit, the current is the same through the resistor and the capacitor.
Thus, the resistor voltage is in phase with the current, and the capacitor voltage lags
behind the current by 90° as shown in Fig. 5.13(b).

Fig. 5.12

Fig. 5.13(a)



5.8 Electrical Circuit Analysis

Fig. 5.13 (b)

Here, I leads V
C
 by 90°. V

R
 and I are in phase. From Kirchhoff’s voltage law, the

sum of the voltage drops must be equal to the applied voltage. Therefore, the
source voltage is given by

VS =
2 2

R CV V+

The phase angle between the resistor voltage and the source voltage is

q = tan–1 (VC /VR)

Since the resistor voltage and the current are in phase, q also represents the
phase angle between the source voltage and current. The voltage phasor
diagram for the series RC circuit, voltage and current phasor diagrams
represented by the waveforms in Fig. 5.13(b) are shown in Fig. 5.13(c).

Fig. 5.13 (c)

Example 5.4 A sine wave generator supplies a 500 Hz, 10 V rms signal to a
2 kW resistor in series with a 0.1 mF capacitor as shown in Fig. 5.14. Determine the
total impedance Z, current I, phase angle m , capacitive voltage V

C
, and resistive

voltage V
R
.

Fig. 5.14
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Solution To find the impedance Z, we first solve for X
C

XC =
6

1 1

2 6.28 500 0.1 10f Cp -=
¥ ¥ ¥

= 3184.7 W

In rectangular form,

Total impedance Z = (2000 – j 3184.7) W

Z = 2 2(2000) (3184.7)+

= 3760.6 W

Phase angle q = tan
–1

 (– X
C
/R ) = tan

–1
(– 3184.7/2000) = – 57.87°

Current I = V
S
/Z = 10/3760.6 = 2.66 mA

Capacitive voltage V
C
 = IX

C

= 2.66 ¥ 10–3 ¥ 3184.7 = 8.47 V

Resistive voltage V
R
 = IR

= 2.66 ¥ 10–3 ¥ 2000 = 5.32 V

The arithmetic sum of V
C
 and V

R
 does not give the applied voltage of 10 volts. In

fact, the total applied voltage is a complex quantity. In rectangular form,

Total applied voltage V
S
 = 5.32 – j 8.47 V

In polar form

VS = 10 –– 57.87° V

The applied voltage is complex, since it has a phase angle relative to the resistive
current.

Example 5.5 Determine the source voltage and phase angle when the voltage
across the resistor is 20 V and the capacitor is 30 V as shown in Fig. 5.15.

Solution Since V
R
 and V

C
 are 90° out of phase,

they cannot be added directly. The source voltage
is the phasor sum of V

R
 and V

C
.

\ VS = 2 2 2 2(20) (30)R CV V+ = +  = 36 V

The angle between the current and source s
voltage is

q = tan–1 (VC /VR) = tan–1 (30/20) = 56.3°

5.3.3 Series R-L-C Circuit

A series RLC circuit is the series combination of resistance, inductance and
capacitance. If we observe the impedance diagrams of series RL and series RC
circuits as shown in Figs. 5.16(a) and (b), the inductive reactance, X

L
, is

displayed on the + j axis and the capacitive reactance, X
C
, is displayed on the –

j axis. These reactance are 180° apart and tend to cancel each other.

Fig. 5.15
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–q

q
Z

Z

–jXC

jXL

–j–j

R

R

+j
+j

(a) (b)

Fig. 5.16

The magnitude and type of reactance in a series RLC circuit is the difference
of the two reactance. The impedance for an RLC series circuit is given by Z =

R X XL C
2 2+ -( ) . Similarly, the phase angle for an RLC circuit is

q = tan–1 L CX X

R

-Ê ˆ
Á ˜Ë ¯

Example 5.6 In the circuit shown in Fig. 5.17, determine the total impedance,
current I, phase angle q, and the voltage across each element.
Solution To find impedance Z, we first solve for X

C
 and X

L

Fig. 5.17

XC = 

1

2

1

6 28 50 10 10 6p f C
=

¥ ¥ ¥ -.

= 318.5 W

XL = 2pf L = 6.28 ¥ 0.5 ¥ 50 = 157 W

Total impedance in rectangular form

Z = (10 + j 157 – j 318.5) W

= 10 + j (157 – 318.5) W = 10 – j161.5 W

Here, the capacitive reactance dominates the inductive reactance.

Z = 2 2(10) (161.5)+

= 100 26082 2◊+  = 161.8 W
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Current I = VS /Z = 
50

161.8
 = 0.3 A

Phase angle q = tan
–1

 [(X
L

– X
C
)/R] = tan

–1
 (– 161.5/10) = – 86.45°

Voltage across the resistor V
R
 = IR = 0.3 ¥ 10 = 3 V

Voltage across the capacitive reactance = IX
C
 = 0.3 ¥ 318.5 = 95.55 V

Voltage across the inductive reactance = IX
L
 = 0.3 ¥ 157 = 47.1 V

5.4 PARALLEL CIRCUITS

The complex number system simplifies the analysis of parallel ac circuits. In
series circuits, the current is the same in all parts of the series circuit. In parallel
ac circuits, the voltage is the same across each element.

5.4.1 Parallel RC Circuits

The voltages for an RC series circuit can be expressed using complex numbers,
where the resistive voltage is the real part of the complex voltage and the
capacitive voltage is the imaginary part. For parallel RC circuits, the voltage is
the same across each component. Here the total current can be represented by a
complex number. The real part of the complex current expression is the resistive
current; the capacitive branch current is the imaginary part.

Example 5.7 A signal generator supplies a sine wave of 20 V, 5 kHz to the circuit
shown in Fig. 5.18. Determine the total current I

T
, the phase angle and total

impedance in the circuit.

100 W

0.2 Fm

20 V, 5 kHz

Fig. 5.18

Solution Capacitive reactance

XC = 
3 6

1 1

2 6.28 5 10 0.2 10f Cp -=
¥ ¥ ¥ ¥

 = 159.2 W

Since the voltage across each element is the same as the applied voltage, we can
solve for the two branch currents.
\ Current in the resistance branch

IR = 

20

100
SV

R
=  = 0.2 A
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and current in the capacitive branch

IC =
20

159.2
S

C

V

X
= = 0.126 A

The total current is the vector sum of the two branch currents.

\ Total current I
T

= (I
R
 + jI

C
) A = (0.2 + j 0.13) A

In polar form I
T
 = 0.24 –33°

So the phase angle q between applied voltage and total current is 33°. It indicates
that the total line current is 0.24 A and leads the voltage by 33°. Solving for
impedance, we get

Z =
20 0

0.24 33
S

T

V

I

– ∞
=

– ∞
 = 83.3 –– 33° W

5.4.2 Parallel RL Circuits

In a parallel RL circuit, the inductive current is imaginary and lies on the – j

axis. The current angle is negative when the impedance angle is positive. Here
also the total current can be represented by a complex number. The real part of
the complex current expression is the resistive current; and inductive branch
current is the imaginary part.

Example 5.8 A 50 W resistor is connected in parallel with an inductive reactance
of 30 W. A 20 V signal is applied to the circuit. Find the total impedance and line
current in the circuit shown in Fig. 5.19.

Fig. 5.19

Solution Since the voltage across each element is the same as the applied voltage,
current in the resistive branch,

IR =
20 0

50 0
SV

R

– ∞
=

– ∞
 = 0.4 A

current in the inductive branch

IL =
20 0

30 90
S

L

V

X

– ∞
=

– ∞
 = 0.66 –– 90°
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Total current is IT = 0.4 – j 0.66

In polar form, IT = 0.77 –– 58.8°

Here the current lags behind the voltage by 58.8°

Total impedance Z = S

T

V

I

=
20 0

0.77 58.8

– ∞
– - ∞

 = 25.97 –58.8° W

5.5 COMPOUND CIRCUITS

In many cases, ac circuits to be analysed consist of a combination of series and
parallel impedances. Circuits of this type are known as series-parallel, or
compound circuits. Compound circuits can be simplified in the same manner as
a series-parallel dc circuit consisting of pure resistances.

Example 5.9 Determine the equivalent impedance of Fig. 5.20.

Solution In the circuit, Z
1
 is in series

with the parallel combination of Z
2

and Z
3
.

where Z1  = (5 + j10) W,

Z2 = (2 – j 4) W,

Z3 = (1 + j 3) W
The total impedance

ZT = Z1 + 2 3

2 3

Z Z

Z Z+

= (5 + j10) + 
(2 4) (1 3)

(2 4) (1 3)

j j

j j

- +
- + +

= (5 + j10) + 
4.47 63.4 3.16 71.5

3 1j

– - ∞ ¥ – + ∞
-

= (5 + j10) + 
14.12 81

3 1j

– ∞
-

= (5 + j10 + 
14.12 8.1

3.16 18

– ∞
– - ∞

= 5 + j10 + 4.46 –26.1°
= 5 + j10 + 4 + j1.96
= 9 + j11.96

The equivalent circuit for the compound circuit shown in Fig. 5.20 is a series circuit
containing 9 W of resistance and 11.96 W of inductive reactance. In polar form,

Z = 14.96 – 53.03°

Fig. 5.20
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The phase angle between current and applied voltage is
q = 53.03°

Example 5.10 In the circuit of Fig. 5.21, determine the values of the following
(a) Z

T
  (b) I

T
 (c) q.

Fig. 5.21

Solution First, the inductive reactance is calculated.

XL = 2pf L

= 2p ¥ 50 ¥ 0.1 = 31.42 W

Fig. 5.22

In Fig. 5.22, the 10 W resistance is in series with the parallel combination of 20 W
and j 31.42 W

\ ZT = 10 + 
(20) ( 31.42)

(20 31.42)

j

j+

= 10 + 
628.4 90

37.24 57.52

– ∞
– ∞

 = 10 + 16.87 –32.48°

= 10 + 14.23 + j 9.06 = 24.23 + j 9.06

In polar form, Z
T
 = 25.87 – 20.5°

Here the current lags behind the applied voltage by 20.5°

Total current IT = S

T

V

Z

=
20

25.87 20.5– ∞
 = 0.77 –– 20.5°

The phase angle between voltage and current is

q = 20.5°
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ADDITIONAL SOLVED PROBLEMS

Problem 5.1 A signal generator supplies a 30 V, 100 Hz signal to a series
circuit shown in Fig. 5.23. Determine the impedance, the line current and phase
angle in the given circuit.

Fig. 5.23

Solution In Fig. 5.24, the resistances and inductive reactances can be
combined.

Fig. 5.24

First, we find the inductive reactance

XL = 2p f L

= 2p ¥ 100 ¥ 70 ¥ 10–3 = 43.98 W

In rectangular form, the total impedance is

ZT = (40 + j43.98) W

Current I =
30 0

40 43.98
S

T

V

Z j

– ∞
=

+

Here we are taking source voltage as the reference voltage

\ I =
30 0

59 45 47 7

– ∞
–+ ∞. .

 = 0.5 –– 47.7° A

The current lags behind the applied voltage by 47.7°
Hence, the phase angle between voltage and current

q = 47.7°

q= 20.5°
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Problem 5.2 For the circuit shown in Fig. 5.25, find the effective voltages
across resistance and inductance, and also determine the phase angle.

Fig. 5.25

Solution In rectangular form,
Total impedance ZT = R + j XL

where XL = 2p f L

= 2p ¥ 100 ¥ 50 ¥ 10–3 = 31.42 W
\ ZT = (100 + j31.42) W

Current I = 
10 0 10 0

(100 31.42) 104.8 17.44
S

T

V

Z j

∠ ° ∠ °
= =

+ ∠ °
= 0.095 ––17.44°

Therefore, the phase angle between voltage and current
q = 17.44°

Voltage across resistance is V
R
 = IR
= 0.095 ¥ 100 = 9.5 V

Voltage across inductive reactance is V
L
 = IX

L

= 0.095 ¥ 31.42 = 2.98 V

Problem 5.3 For the circuit shown in Fig. 5.26, determine the value of
impedance when a voltage of (30 + j50) V is applied to the circuit and the
current flowing is (– 5 + j15) A. Also determine the phase angle.

Fig. 5.26

Solution Impedance Z =
30 50

5 15
SV j

I j

+
=
− +

=
58.31 59

15.81 108.43

∠ °

∠ °
= 3.69 ––49.43°
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In rectangular form, the impedance Z = 2.4 – j2.8
Therefore, the circuit has a resistance of 2.4 W in series with capacitive

reactance 2.8 W.
Phase angle between voltage and current is q = 49.43°. Here, the current

leads the voltage by 49.43°.

Problem 5.4 A resistor of 100 W is
connected in series with a 50 mF capacitor.
Find the effective voltage applied to the
circuit at a frequency of 50 Hz. The
effective voltage across the resistor is 170
V. Also determine voltage across the
capacitor and phase angle. (See Fig. 5.27)

Solution  Capacitive reactance XC = 
1

2 fCπ

=
6

1

2 50 50 10π
−

× × ×

 = 63.66 W

Total impedance Z
T
 = (100 – j63.66) W

Voltage across 100 W resistor is V
R
 = 170 V

Current in resistor, I = 
170

100
 = 1.7 A

Since the same current passes through capacitive reactance, the effective
voltage across the capacitive reactance is

VC = IXC

= 1.7 ¥ 63.66 = 108.22 V

The effective applied voltage to the circuit

VS = V VR C
2 2+

= ( ) ( . )170 108 222 2+  = 201.5 V

Total impedance in polar form
ZT = 118.54 –– 32.48°

Therefore, the current leads the applied voltage by 32.48°.

Problem 5.5 For the circuit shown in Fig. 5.28, determine the total current,
impedance Z and phase angle.

Fig. 5.28

Fig. 5.27

100 W 50 Fm

VS
'
50 Hz
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Solution Here, the voltage across each element is the same as the applied
voltage.

Current in resistive branch I
R
 =

50

100
SV

R
= = 0.5 A

Inductive reactance XL = 2p fL

= 2p ¥ 50 ¥ 0.5 = 157.06 W

Current in inductive branch

IL =
50

157. 06
S

L

V

X
=  = 0.318 A

Total current IT = I IR L
2 2+

or (0.5 – j0.318)A = 0.59 ––32.5°

For parallel RL circuits, the inductive susceptance is

BL =
1 1

157 06XL

=
.

= 0.0064 S

Conductance G = 
1

100
= 0.01 S

\ Admittance = G BL
2 2 2 20 01 0 0064+ = +( . ) ( . )

= 0.0118 S

Converting to impedance, we get

Z =
1 1

0 012Y
=

.
 = 83.33 W

Phase angle q = tan
–1 R

XL

F
HG

I
KJ

 = tan
–1 100

157 06.

F
HG

I
KJ

 = 32.48°

Problem 5.6 Determine the impedance and phase angle in the circuit shown
in Fig. 5.29.

Fig. 5.29

Solution Capacitive reactance XC =
1

2p fC

=
1

2 50 100 10 6p ¥ ¥ ¥ - = 31.83 W
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Capacitive susceptance B
C

=
1

XC

=
1

31 83.
 = 0.031 S

Conductance G = 
1 1

50R
=  = 0.02 S

Total admittance Y = G BC
2 2+

= ( . ) ( . )0 02 0 0312 2+
= 0.037 S

Total impedance Z = 
1 1

0 037Y
=

.
 = 27.02 W

Phase angle q = tan–1 R

XC

F
HG

I
KJ

= tan–1 50

31 83.

F
HG

I
KJ

q = 57.52°

Problem 5.7 For the parallel circuit in Fig. 5.30, find the magnitude of
current in each branch and the total current. What is the phase angle between
the applied voltage and total current?

Fig. 5.30

Solution First let us find the capacitive reactances.

XC1 =
1

2 1p fC

=
1

2 50 100 10 6p ¥ ¥ ¥ -  = 31.83 W

XC2 =
1

2

1

2 50 300 102
6p pfC

=
¥ ¥ ¥ -

= 10.61 W
Here the voltage across each element is the same as the applied voltage.
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Current in the 100 mF capacitor IC = 
V

X

S

C1

=
10 0

31 83 90

– ∞
– - ∞.

 = 0.31 –90° A

Current in the 300 mF capacitor IC2
 = 

V

X

S

C2

=
10 0

10 61 90

– ∞
– - ∞.

 = 0.94 –90° A

Current in the 100 W resistor is IR1
 = 

V

R

S

1

10

100
=  = 0.1 A

Current in the 200 W resistor is IR2
 = 

V

R

S

2

10

200
=  = 0.05 A

Total current IT = IR1
 + IR2

 + j(IC1
 + IC2

)

= 0.1 + 0.05 + j(0.31 + 0.94) = 1.26 –83.2° A

The circuit shown in Fig. 5.30 can be simplified into a single parallel RC circuit
as shown in Fig. 5.31.

Fig. 5.31

In Fig. 5.30, the two resistances are in parallel and can be combined into a
single resistance. Similarly, the two capacitive reactances are in parallel and
can be combined into a single capacitive reactance.

R =
R R

R R

1 2

1 2+
 = 66.67 W

XC =
X X

X X

C C

C C

1 2

1 2
+

 = 7.96 W

Phase angle q between voltage and current is

q = tan–1 R

XC

F
HG

I
KJ

 = tan–1 66 67

7 96

.

.

F
HG

I
KJ

 = 83.19°

Here the current leads the applied voltage by 83.19°.

Problem 5.8 For the circuit shown in Fig. 5.32, determine the total
impedance, total current and phase angle.
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Fig. 5.32

Solution First, we calculate the magnitudes of the capacitive reactances.

XC1
=

1

2 50 100 10 6p ¥ ¥ ¥ -  = 31.83 W

XC2
=

1

2 50 300 10 6p ¥ ¥ ¥ -  = 10.61 W

We find the impedance of the parallel portion by finding the admittance.

G2 =
1 1

502R
=  = 0.02 S

BC2
=

1 1

10 61
2

XC

=
.

 = 0.094 S

Y2 = G BC2
2 2 2 2

2
0 02 0 094+ = +( . ) ( . )  = 0.096 S

Z2 =
1 1

0 0962Y
=

.
 = 10.42 W

The phase angle associated with the parallel portion of the circuit

qP = tan–1 (R2/XC2
) = tan–1(50/10.61) = 78.02°

The series equivalent values for the parallel portion are

Req = Z2 cos qP = 10.42 cos (78.02°) = 2.16 W
 XC(eq) = Z2 sin qP = 10.42 sin (78.02°) = 10.19 W

The total resistance

RT = R1 + Req

= (10 + 2.16) = 12.16 W

XCT
= XC1

 + XC (eq)

= (31.83 + 10.19) = 42.02 W
Total impedance

ZT = R XT CT

2 2+

= ( . ) ( . )12 16 42 022 2+  = 43.74 W
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We can also find the total current by using Ohm’s law

IT =
V

Z

S

T

= 100

43 74.
 = 2.29 A

The phase angle

q = tan–1
X

R

C

T

T
F

HG
I

KJ

= tan–1 42 02

12 16

.

.

F
HG

I
KJ

 = 73.86°

Problem 5.9 Determine the voltage across each element of the circuit shown
in Fig. 5.33 and draw the voltage phasor diagram.

Fig. 5.33

Solution First we calculate X
L1

 and X
L2

XL1
= 2p f L1 = 2p ¥ 50 ¥ 0.5 = 157.08 W

XL2
= 2p f L2 = 2p ¥ 50 ¥ 1.0 = 314.16 W

Now we determine the impedance of each branch

Z1 = R XL1
2 2 2 2

1
100 157 08+ = +( ) ( . )  = 186.2 W

Z2 = R XL2
2 2 2 2

2
330 314 16+ = +( ) ( . )  = 455.63 W

The current in each branch

I1 =
V

Z

S

1

100

186 2
=

.
 = 0.537 A

and I2 =
V

Z

S

2

100

455 63
=

.
 = 0.219 A

The voltage across each element

VR1
= I1R1 = 0.537 ¥ 100 = 53.7 V

VL1
= I1XL1

 = 0.537 ¥ 157.08 = 84.35 V

VR2
= I2 R2 = 0.219 ¥ 330 = 72.27 V

VL2
= I2XL2

 = 0.219 ¥ 314.16 = 68.8 V

The angles associated with each parallel branch are now determined.
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q1 = tan–1
X

R

L1

1

F
HG

I
KJ

 = tan–1 157 08

100

.F
H

I
K  = 57.52°

q2 = tan–1
X

R

L2

2

F
HG

I
KJ

 = tan–1 314 16

330

.F
H

I
K  = 43.59°

i.e. I
1
 lags behind V

S
 by 57.52° and I

2
 lags behind V

S
 by 43.59°

Here, V
R1

 and I
1
 are in phase and therefore, lag behind V

S
 by 57.52°

V
R2

 and I
2
 are in phase, and therefore lag behind V

S
 by 43.59°

V
L1

 leads I
1
 by 90°, so its angle is 90° – 57.52° = 32.48°

V
L2

 leads I
2
 by 90°, so its angle is 90° – 43.59° = 46.41°

The phase relations are shown in Fig. 5.34.

Fig. 5.34

Problem 5.10 In the series parallel circuit shown in Fig. 5.35, the effective
value of voltage across the parallel parts of the circuits is 50 V. Determine the
corresponding magnitude of V.

Fig. 5.35

Solution Here we can determine the current in each branch of the parallel
part.

Current in the  j3 W branch, I
1
 = 

50

3
 = 16.67 A

Current in (10 + j30) W branch, I
2
 = 

50

31 62.
 = 1.58 A

Total current I
T
 = 16.67 + 1.58 = 18.25 A
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Total impedance ZT = 8.5 –30° + 
3 90 10 30

10 30 3 90

– ∞ ¥ +
+ + – ∞

( )

( )

j

j

= 8.5 –30° + 
3 90 31 62 71 57

10 33

– ∞ ¥ – ∞
+

. .

j

= 7.36 + j4.25 + 
94 86 161 57

34 48 73 14

. .

. .

– ∞
– ∞

= 7.36 + j4.25 + 2.75 –88.43°

= 7.36 + j4.25 + 0.075 + j2.75

= (7.435 + j7) W

= 10.21 –43.27°

In polar form, total impedance is Z
T
 = 10.21 –43.27°

The magnitude of applied voltage V = I ¥ Z
T
 = 18.25 ¥ 10.21 = 186.33 V.

Problem 5.11 For the series parallel circuit shown in Fig. 5.36, determine
(a) the total impedance between the terminals a, b and state if it is inductive or
capacitive (b) the voltage across in the parallel branch, and (c) the phase angle.

Fig. 5.36

Solution Here the parallel branch can be combined into a single branch

ZP = (3 + j4) || (3 + j4) = (1.5 + j2) W

Total impedance ZT = 1 + j2 + 1.5 + j2 = (2.5 + j4) W

Hence the total impedance in the circuit is inductive

Total current in the circuit

IT =
V

Z

j

j

S

T

= +
+

10 20

2 5 4.

=
22 36 63 43

4 72 57 99

. .

. .

– ∞
– ∞

\ IT = 4.74 –5.44° A

i.e. the current lags behind the voltage by 57.99°
Phase angle q = 57.99°
Voltage across in the parallel branch

VP = (1.5 + j2) 4.74 –5.44°
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= 2.5 ¥ 4.74 –(5.44° + 53.13°)

= 11.85 –58.57° V

Problem 5.12 In the series parallel circuit shown in Fig. 5.37, the two
parallel branches A and B are in series with C. The impedances are Z

A
 = 10 + j8,

Z
B
 = 9 – j6, Z

C
 = 3 + j2 and the voltage across the circuit is (100 + j0) V. Find the

currents I
A
, I

B
 and the phase angle between them.

Fig. 5.37

Solution Total parallel branch impedance,

ZP =
Z Z

Z Z

A B

A B+

=
( ) ( )10 8 9 6

19 2

+ -
+

j j

j

=
12 8 38 66 10 82 33 7

19 1 6

. . . .

.

– ∞ ¥ – -
– ∞

= 7.25 –– 1.04°

In rectangular form,
Total parallel impedance Z

P
 = 7.25 – j0.13

This parallel impedance is in series with Z
C

Total impedance in the circuit

ZT = ZP + ZC = 7.25 - j0.13 + 3 + j2 = (10.25 + j1.87) W

Total current IT =
V

Z

S

T

=
( )

( . . ) . .

100 0

10 25 1 87

100 0

10 42 10 34

+
+

=
– ∞

– ∞
j

j

= 9.6 ––10.34°

The current lags behind the applied voltage by 10.34°
Current in branch A is

IA = IT

Z

Z Z

B

A B+

= 9.6 –– 10.34° ¥
( )9 6

19 2

-
+

j

j
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=
9 6 10 34 10 82 33 7

19 1 6

. . . .

.

– - ∞ ¥ – - ∞
– ∞

= 5.44 –– 50.04° A

Current in branch B is I
B

IB = IT ¥
Z

Z Z

A

A B+

= 9.6 –– 10.34° ¥
10 8

19 2

+
+

j

j

=
9 6 10 34 12 8 38 66

19 1 6

. . . .

.

– - ∞ ¥ – ∞
– ∞

= 6.43 –22.32° A

The angle between I
A
 and I

B
,

q = (50.04° + 22.32°) = 72.36°

Problem 5.13 A series circuit of two pure elements has the following applied
voltage and resulting current.

V = 15 cos (200 t – 30°) volts

I = 8.5 cos (200 t + 15) volts

Find the elements comprising the circuit.

Solution By inspection, the current leads the voltage by 30° + 15° = 45°.
Hence the circuit must contain resistance and capacitance.

tan 45 = 
1

wCR

1 = 
1

wCR
, \ 1

wC
 = R

V

I

m

m

= R
C

R R R2
2

2 21
2+ F

HG
I
KJ

= + =
w

\ R =
15

8 5 2. ¥
 = 1.248 W

1

wC
= 1.248 W

and C =
1

200 1 248¥ .
 = 4 ¥ 10–3 F

Problem 5.14 A resistor having a resistance of R = 10 W and an unknown
capacitor are in series. The voltage across the resistor is V

R
 = 50 sin (1000 t + 45°)

volts. If the current leads the applied voltage by 60° what is the unknown
capacitance C?
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Solution Here, the current leads the applied voltage by 60°.

tan 60° =
1

wCR

Since R = 10 W

w = 1000 radians

tan 60° =
1

wCR

C =
1

60 1000 10tan ¥ ¥  = 57.7 mF

Problem 5.15 A series circuit consists of two pure elements has the
following current and voltage.

v = 100 sin (2000 t + 50°) V

i = 20 cos (2000 t + 20°) A

Find the elements in the circuit.

Solution We can write i = 20 sin (2000 t + 20° + 90°)

Since cos q = sin (q + 90°)

Current i = 20 sin (2000 t + 110°) A

The current leads the voltage by 110° – 50° = 60°

and the circuit must consist of resistance and capacitance.

tan q =
1

wCR

1

wC
= R tan 60° = 1.73 R

V

I

m

m

= R
C

2
2

1 100

20
+ F

HG
I
KJ

=
w

R 1 1 73)2+ ( . =
100

20

R (1.99) = 5

R = 2.5 W

and C =
1

1 73w ( . )R
 = 115.6 mF

Problem 5.16 A two branch parallel circuit with one branch of R = 100 W
and a single unknown element in the other branch has the following applied
voltage and total current.

v = 2000 cos (1000 t + 45°) V

IT = 45 sin (1000 t + 135°) A



5.28 Electrical Circuit Analysis

Find the unknown element.

Solution Here, the voltage applied is same for both elements.

Current passing through resistor is i
R
 = 

v

R

\ iR = 20 cos (1000 t + 45°)

Total current i
T
 = i

R
 + i

X

Where I
X
 is the current in unknown element.

IX = iT – iR

= 45 sin (1000 t + 135°) – 20 cos (1000 t + 45°)

= 45 sin (1000 t + 135°) – 20 sin (1000 t + 135°)

Current passing through the unknown element.

IX = 25 sin (1000 t + 135°)

Since the current and voltage are in phase, the element is a resistor.
And the value of resistor

R =
v

iX

= 2000

25
 = 80 W

Problem 5.17 Find the total current to the parallel circuit with L = 0.05 H
and C = 0.667 mF with an applied voltage of v = 200 sin 5000 t V.

Solution Current in the inductor iL = 
1

L z vdt

\ iL =
1

0 05. z 200 sin 5000 t

=
-

¥
200 5000

0 05 5000

cos

.

t

iL = – 0.8 cos 5000 t

Current in the capacitor iC = C
d

dt

v

\ iC = 0.667 ¥ 10–6 d

dt
(200 sin 5000 t)

iC = 0.667 cos 500 t

Total current iT = iL + iC

= 0.667 cos 5000 t – 0.8 cos 5000 t

= – 0.133 cos (5000 t)

Total current iT = 0.133 sin (5000 t – 90°) A



Complex Impedance 5.29

PRACTICE PROBLEMS

5.1 For the circuit shown in Fig. 5.38, determine the impedance, phase angle
and total current.

Fig. 5.38

5.2 Calculate the total current in the circuit in Fig. 5.39, and determine the
voltage across resistor VR, and across capacitor VC.

Fig. 5.39

5.3 Determine the impedance and phase angle in the circuit shown in Fig.
5.40.

Fig. 5.40

5.4 Calculate the impedance at each of the following frequencies; also deter-
mine the current at each frequency in the circuit shown in Fig. 5.41.

(a) 100 Hz (b) 3 kHz
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Fig. 5.41

5.5 A signal generator supplies a sine wave of 10 V, 10 kHz, to the circuit
shown in Fig. 5.42. Calculate the total current in the circuit. Determine
the phase angle q for the circuit. If the total inductance in the circuit is
doubled, does q increase or decrease, and by how many degrees?

100 W

5 mH10 V, 10 kHz 2 mH

Fig. 5.42

5.6 For the circuit shown in Fig. 5.43, determine the voltage across each ele-
ment. Is the circuit predominantly resistive or inductive? Find the current
in each branch and the total current.

100 W

3 mH30 V, 50 kHz

1 mH

500 W

Fig. 5.43

5.7 Determine the total impedance ZT, the total current IT, phase angle q,
voltage across inductor L, and voltage across resistor R3 in the circuit
shown in Fig. 5.44.
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1 kW 2.5 kW

3 kW1.5 kW
50 V, 50 kHz

R1

R2 R4

R3

L 5 mH

Fig. 5.44

5.8 For the circuit shown in Fig. 5.45, determine the value of frequency of
supply voltage when a 100 V, 50 A current is supplied to the circuit.

Fig. 5.45

5.9 A sine wave generator supplies a signal of 100 V, 50 Hz to the circuit
shown in Fig. 5.46. Find the current in each branch, and total current.
Determine the voltage across each element and draw the voltage phasor
diagram.

5 W

10 W
3 W

100 V, 50 kHz

I1 I2 I3

0.5 H

0.1 H 100 Fm
500 Fm

Fig. 5.46

5.10 Determine the voltage across each element in the circuit shown in
Fig. 5.47. Convert the circuit into an equivalent series form. Draw the
voltage phasor diagram.

0.3 Fm

0.05 Fm

500 W

200 W

0.1 Fm

100 V, 50 kHz

Fig. 5.47
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5.11 For the circuit shown in Fig. 5.48, determine the total current IT, phase
angle q and voltage across each element.

Fig. 5.48

5.12 For the circuit shown in Fig. 5.49, the applied voltage v = Vm cos w t.
Determine the current in each branch and obtain the total current in terms
of the cosine function.

Fig. 5.49

5.13 For the circuit shown in Fig. 5.50, the voltage across the inductor is vL =
15 sin 200 t. Find the total voltage and the angle by which the current lags
the total voltage.

vT

R

L

iT

v = sin t15 200L

Fig. 5.50

5.14 In a parallel circuit having a resistance R = 5 W and L = 0.02 H, the
applied voltage is v = 100 sin (1000 t + 50°) volts. Find the total current
and the angle by which the current lags the applied voltage.

5.15 In the parallel circuit shown in Fig. 5.51, the current in the inductor is
five times greater than the current in the capacitor. Find the element values.
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Fig. 5.51

5.16 In the parallel circuit shown in Fig. 5.52, the applied voltage is v = 100
sin 5000 t V. Find the currents in each branch and also the total current in
the circuit.

Fig. 5.52

5.17 For the circuit shown in Fig. 5.53, find the total current and the magni-
tude of the impedance.

Fig. 5.53

OBJECTIVE-TYPE QUESTIONS

1. A 1 kHz sinusoidal voltage is applied to an RL circuit, what is the fre-
quency of the resulting current?

(a) 1 kHz (b) 0.1 kHz
(c) 100 kHz (d) 2 kHz

2. A series RL circuit has a resistance of 33 kW, and an inductive reactance
of 50 kW. What is its impedance and phase angle?

(a) 56.58 W, 59.9° (b) 59.9 kW, 56.58°
(c) 59.9 W, 56.58° (d) 5.99 W, 56.58°
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3. In a certain RL circuit, VR = 2 V and VL = 3 V. What is the magnitude of
the total voltage?

(a) 2 V (b) 3 V
(c) 5 V (d) 3.61 V

4. When the frequency of applied voltage in a series RL circuit is increased
what happens to the inductive reactance?

(a) decreases (b) remains the same
(c) increases (d) becomes zero

5. In a certain parallel RL circuit, R = 50 W, and XL = 75 W. What is the
admittance?

(a) 0.024 S (b) 75 S
(c) 50 S (d) 1.5 S

6. What is the phase angle between the inductor current and the applied
voltage in a parallel RL circuit?

(a) 0° (b) 45°
(c) 90° (d) 30°

7. When the resistance in an RC circuit is greater than the capacitive reac-
tance, the phase angle between the applied voltage and the total current is
closer to

(a) 90° (b) 0°
(c) 45° (d) 120°

8. A series RC circuit has a resistance of 33 kW, and a capacitive reactance
of 50 kW. What is the value of the impedance.

(a) 50 kW (b) 33 kW
(c) 20 kW (d) 59.91 W

9. In a certain series RC circuit, VR = 4 V and VC = 6 V. What is the magni-
tude of the total voltage?

(a) 7.2 V (b) 4 V
(c) 6 V (d) 52 V

10. When the frequency of the applied voltage in a series RC circuit is in-
creased what happens to the capacitive reactance?

(a) it increases (b) it decreases
(c) it is zero (d) remains the same

11. In a certain parallel RC circuit, R = 50 W and XC = 75 W. What is Y ?
(a) 0.01 S (b) 0.02 S
(c) 50 S (d) 75 S

12. The admittance of an RC circuit is 0.0035 S, and the applied voltage is
6 V. What is the total current?

(a) 6 mA (b) 20 mA
(c) 21 mA (d) 5 mA

13. What is the phase angle between the capacitor current and the applied
voltage in a parallel RC circuit?

(a) 90° (b) 0°
(c) 45° (d) 180°
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14. In a given series RLC circuit, XC is 150 W, and XL is 80 W, what is the
total reactance? What is the type of reactance?

(a) 70 W, inductive (b) 70 W, capacitive
(c) 70 W, resistive (d) 150 W, capacitive

15. In a certain series RLC circuit VR = 24 V, VL = 15 V, and VC = 45 V.
What is the source voltage.

(a) 38.42 V (b) 45 V
(c) 15 V (d) 24 V

16. When R = 10 W, XC = 18 W and XL = 12 W, the current
(a) leads the applied voltage
(b) lags behind the applied voltage
(c) is in phase with the voltage
(d) is none of the above

17. A current i = A sin 500 t A passes through the circuit shown in Fig. 5.54.
The total voltage applied will be

v

R L

i

Fig. 5.54

(a) B sin 500 t (b) B sin (500 t – q°)
(c) B sin (500 t + q°) (d) B cos (200 t + q °)

18. A current of 100 mA through an inductive reactance of 100 W produces a
voltage drop of

(a) 1 V (b) 6.28 V
(c) 10 V (d) 100 V

19. When a voltage v = 100 sin 5000 t volts is applied to a series circuit of
L = 0.05 H and unknown capacitance, the resulting current is i = 2 sin
(5000 t + 90°) amperes. The value of capacitance is

(a) 66.7 pF (b) 6.67 pF
(c) 0.667 mF (d) 6.67 mF

20. A series circuit consists of two elements has the following current and
applied voltage.

i = 4 cos (2000 t + 11.32°) A

v = 200 sin (2000 t + 50°) V

The circuit elements are
(a) resistance and capacitance (b) capacitance and inductance
(c) inductance and resistance (d) both resistances



5.36 Electrical Circuit Analysis

21. A pure capacitor of C = 35 mF is in parallel with another signal circuit
element. The applied voltage and resulting current are

v = 150 sin 300 t V

i = 16.5 sin (3000 t + 72.4°) A

The other element is
(a) capacitor of 30 mF (b) inductor of 30 mH
(c) resistor of 30 W (d) none of the above



6.1 INSTANTANEOUS POWER

In a purely resistive circuit, all the energy delivered by the source is dissipated
in the form of heat by the resistance. In a purely reactive (inductive or
capacitive) circuit, all the energy delivered by the source is stored by the
inductor or capacitor in its magnetic or electric field during a portion of the
voltage cycle, and then is returned to the source during another portion of the
cycle, so that no net energy is transferred. When there is complex impedance in
a circuit, part of the energy is alternately stored and returned by the reactive
part, and part of it is dissipated by the resistance. The amount of energy
dissipated is determined by the relative values of resistance and reactance.

Consider a circuit having complex impedance. Let v (t) = V
m
 cos w t be the

voltage applied to the circuit and let i (t) = I
m
 cos (w t + q ) be the corresponding

current flowing through the circuit. Then the power at any instant of time is

P(t) = v (t) i(t)

= Vm cos wt Im cos (w t + q) (6.1)

From Eq. 6.1, we get

P(t) = 
2

m mV I
 [cos (2w t + q) + cos q] (6.2)

Equation 6.2 represents instantaneous power. It consists of two parts. One is a
fixed part, and the other is time-varying which has a frequency twice that of the
voltage or current waveforms. The voltage, current and power waveforms are
shown in Figs 6.1 and 6.2.

Here, the negative portion (hatched) of the power cycle represents the power
returned to the source. Figure 6.2 shows that the instantaneous power is negative

Chapter

POWER AND
POWER FACTOR 6
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Fig. 6.1

Fig. 6.2

whenever the voltage and current are of opposite sign. In Fig. 6.2, the positive
portion of the power is greater than the negative portion of the power; hence the
average power is always positive, which is almost equal to the constant part of
the instantaneous power (Eq. 6.2). The positive portion of the power cycle
varies with the phase angle between the voltage and current waveforms. If the
circuit is pure resistive, the phase angle between voltage and current is zero;
then there is no negative cycle in the P(t) curve. Hence, all the power delivered
by the source is completely dissipated in the resistance.

If q becomes zero in Eq. 6.1, we get

P(t) = v(t) i(t)

= Vm Im cos2 wt

=
V Im m

2
 (1 + cos 2w t) (6.3)

The waveform for Eq. 6.3, is shown in Fig. 6.3, where the power wave has a
frequency twice that of the voltage or current. Here the average value of power
is V

m
I

m
/2.

When phase angle q is increased, the negative portion of the power cycle
increases and lesser power is dissipated.When q becomes p /2, the positive and
negative portions of the power cycle are equal. At this instant, the power
dissipated in the circuit is zero, i.e. the power delivered to the load is returned to
the source.
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Fig. 6.3

6.2 AVERAGE POWER

To find the average value of any power function, we have to take a particular
time interval from t

1
 to t

2
; by integrating the function from t

1
 to t

2
 and dividing

the result by the time interval t
2
 – t

1
, we get the average power.

Average power P =
2

1
2 1

1
t

t
t t- Ú P(t) dt (6.4)

In general, the average value over one cycle is

Pav =

0

1
T

T ∫ P(t) dt (6.5)

By integrating the instantaneous power P(t) in Eq. 6.5 over one cycle, we
get average power

Pav = [ ]
0

1
cos (2 ) cos

2

T

m mV I
t dt

T
w q q

Ï ¸
+ +Ì ˝

Ó ˛Ú

=

0

1

2

T

m mV I

T Ú [cos (2w t + q )] dt + 

0

1

2

T

m mV I

T ∫ cos q dt (6.6)

In Eq. 6.6, the first term becomes zero, and the second term remains. The
average power is therefore

Pav =
2

m mV I
cos q W (6.7)
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We can write Eq. 6.7 as

Pav =
2 2

m mV IÊ ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

cos q (6.8)

In Eq. 6.8, V
m

/ 2  and I
m

/ 2  are the effective values of both voltage and
current.

\ Pav = Veff Ieff cos q

To get average power, we have to take the product of the effective values of
both voltage and current multiplied by cosine of the phase angle between
voltage and the current.

If we consider a purely resistive circuit, the phase angle between voltage and
current is zero. Hence, the average power is

Pav =
1

2
Vm Im = 

1

2
I2

m R

If we consider a purely reactive circuit (i.e. purely capacitive or purely
inductive), the phase angle between voltage and current is 90°. Hence, the
average power is zero or P

av
 = 0.

If the circuit contains complex impedance, the average power is the power
dissipated in the resistive part only.

Example 6.1 A voltage of v(t ) = 100 sin wt is applied to a circuit. The current
flowing through the circuit is i(t ) = 15 sin (w t – 30°). Determine the average power
delivered to the circuit.

Solution The phase angle between voltage and current is 30°.

Effective value of the voltage V
eff

 = 
100

2

Effective value of the current I
eff

 = 
15

2
Average power Pav = Veff Ieff cos q

=
100 15

2 2
×  cos 30°

=
100 15

2

× ¥ 0.866 = 649.5 W

Example 6.2 Determine the average power delivered to the circuit consisting of an
impedance Z = 5 + j8 when the current flowing through the circuit is
I = 5–30°.

Solution The average power is the power dissipated in the resistive part only.

or Pav =
2

2
mI

R

Current Im = 5 A

\ Pav =
25

2
¥ 5 = 62.5 W
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6.3 APPARENT POWER AND POWER FACTOR

The power factor is useful in determining useful power (true power) transferred
to a load. The highest power factor is 1, which indicates that the current to a
load is in phase with the voltage across it (i.e. in the case of resistive load).
When the power factor is 0, the current to a load is 90° out of phase with the
voltage (i.e. in case of reactive load).

Consider the following equation

Pav =
2

m mV I
cos q W (6.9)

In terms of effective values

Pav =
2 2

m mV I
 cos q

= Veff Ieff cos q W (6.10)

The average power is expressed in watts. It means the useful power transferred
from the source to the load, which is also called true power. If we consider a dc
source applied to the network, true power is given by the product of the voltage
and the current. In case of sinusoidal voltage applied to the circuit, the product of
voltage and current is not the true power or average power. This product is called
apparent power. The apparent power is expressed in volt amperes, or simply VA.

\ Apparent power = Veff Ieff

In Eq. 6.10, the average power depends on the value of cos q; this is called the
power factor of the circuit.

\ Power factor (pf) = cos q = av

eff eff

P

V I

Therefore, power factor is defined as the ratio of average power to the
apparent power, whereas apparent power is the product of the effective values
of the current and the voltage. Power factor is also defined as the factor with
which the volt amperes are to be multiplied to get true power in the circuit.

In the case of sinusoidal sources, the power factor is the cosine of the phase
angle between voltage and current

pf = cos q

As the phase angle between voltage and total current increases, the power factor
decreases. The smaller the power factor, the smaller the power dissipation. The
power factor varies from 0 to 1. For purely resistive circuits, the phase angle
between voltage and current is zero, and hence the power factor is unity. For
purely reactive circuits, the phase angle between voltage and current is 90°, and
hence the power factor is zero. In an RC circuit, the power factor is referred to
as leading power factor because the current leads the voltage. In an RL circuit,
the power factor is referred to as lagging power factor because the current lags
behind the voltage.
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Example 6.3 A sinusoidal voltage v = 50 sin w t is applied to a series RL circuit.
The current in the circuit is given by i = 25 sin (wt – 53°). Determine (a) apparent
power (b) power factor and (c) average power.

Solution (a) Apparent power P = Veff Ieff

=
2 2

m mV I
×

=
50 25

2

×
 = 625 VA

(b) Power factor = cos q
where q is the angle between voltage and current

q = 53°
\ Power factor = cos q = cos 53° = 0.6

(c) Average Power Pav = Veff Ieff cos q

= 625 ¥ 0.6 = 375 W

6.4 REACTIVE POWER

We know that the average power dissipated is

Pav = Veff [Ieff cos q] (6.11)

From the impedance triangle shown in Fig. 6.4

cos q =
| |

R

Z
(6.12)

and Veff = Ieff Z (6.13)

If we substitute Eqs. (6.12) and (6.13) in
Eq. (6.11), we get

Pav = Ieff Z eff

R
I

Z

 
  

= I
2
eff R watts (6.14)

This gives the average power dissipated in a resistive circuit.

If we consider a circuit consisting of a pure inductor, the power in the inductor

Pr = ivL (6.15)

=
d i

iL
d t

Consider i = Im sin (wt + q )

Then Pr = I 2
m sin (wt + q ) Lw cos (wt + q)

= (wL) sin 2 (wt + q)

\ Pr = I
2
eff (wL) sin 2(wt + q ) (6.16)

q

jXL

Z

R

X

=

+2

2
2

R

Fig. 6.4
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From the above equation, we can say that the average power delivered to the
circuit is zero. This is called reactive power. It is expressed in volt-amperes
reactive (VAR).

Pr = I 2
eff XL VAR (6.17)

From Fig. 6.4, we have

XL = Z sin q (6.18)

Substituting Eq. 6.18 in Eq. 6.17, we get

Pr = I2
eff Z sin q

= (Ieff Z)Ieff sin q

= Veff Ieff sin q VAR

6.5 THE POWER TRIANGLE

A generalised impedance phase diagram is shown in Fig. 6.5. A phasor relation
for power can also be represented by a similar diagram because of the fact that
true power P

av
 and reactive power P

r
 differ from R and X by a factor I

2

eff
, as

shown in Fig. 6.5.

The resultant power phasor I
2

eff
Z, represents the apparent power P

a
.

At any instant in time, P
a
 is the total power that appears to be transferred

between the source and reactive circuit. Part of the apparent power is true power
and part of it is reactive power.

\ Pa = I
2
eff Z

The power triangle is shown in Fig. 6.6.

Fig. 6.5 Fig. 6.6

From Fig. 6.6, we can write

Ptrue = Pa cos q

or average power P
av

 = P
a
 cos q

and reactive power P
r
 = P

a
 sin q
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ADDITIONAL SOLVED PROBLEMS

Problem 6.1 In the circuit shown in Fig. 6.7, a voltage of v (t) = 50 sin
(w t + 30°) is applied. Determine the true power, reactive power and power factor.

Solution The voltage applied to the circuit is

v(t) = 50 sin (w t + 30°)

The current in the circuit is

I =
50 30 50 30

10 30 31.6 71.56

V

Z j

∠ ° ∠ °
= =

+ ∠ °

= 1.58 –– 41.56° A
The phasor diagram is shown in Fig. 6.8.
The phase angle between voltage and current q = 71.56°
Power factor = cos q = cos 71.56° = 0.32
True power or average power

Pav = Veff Ieff cos q

=
50 1.58

2 2

×

×
 cos 71.56°

= 12.49 W

Reactive power = Veff Ieff sin q

=
50 1.58

2 2

×

×
 sin 71.56°

= 37.47 VAR

Problem 6.2 Determine the circuit constants in the circuit shown in Fig. 6.9,
if the applied voltage to the circuit v (t) = 100 sin (50t + 20°). The true power in
the circuit is 200 W and the power factor is 0.707 lagging.

Solution Power factor = cos q = 0.707
\ The phase angle between voltage and current

q = cos–1 0.707 = 45°

Here the current lags behind the voltage by 45°.
Hence, the current equation is i(t) = I

m
 sin (50t – 25°)

True power = V
eff

I
eff

 cos q = 200 W

Ieff =
eff

200

cosV θ

=
200

(100/ 2) 0.707×
 = 4 A

Im = 4 ¥ 2  = 5.66 A

Fig. 6.8

Fig. 6.7

Fig. 6.9
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\ The current equation is i (t) = 5.66 sin (50t – 25°)
The impedance of the circuit

Z =
(100/ 2) 20

(5.66/ 2) 25

V

I

∠ °
=

∠− °

\ Z = 17.67 –45° = 12.5 + j12.5

Since Z = R + jXL = 12.5 + j12.5

\ R = 12.5 ohms, XL = 12.5 ohms

XL = wL = 12.5

L =
12.5

50
 = 0.25 H

Problem 6.3 A voltage v(t) = 150 sin 250t is applied to the circuit shown in
Fig. 6.10. Find the power delivered to the circuit and the value of inductance in
Henrys.

Solution Z = 10 + j15 W

The impedance Z = 18 –56.3°

The impedance of the circuit Z = 
V

I

18 –56.3° =
(150/ 2 ) 0

I

∠ °

\ Phasor current I =
150/ 2

18 56.3∠ °
 = 5.89 –– 56.3°

The current equation is i(t) = 5.89 2  sin (250t – 56.3°)

= 8.33 sin (250t – 56.3°)

The phase angle between the current and the voltage

q = 56.3°

The power delivered to the circuit

Pav = VI cos q

=
150 8.33

2 2
× cos 56.3°

= 346.6 W

The inductive impedance X
L
 = 15 W

\ wL = 15

\ L =
15

250
 = 0.06 H

Fig. 6.10
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Problem 6.4 Determine the power factor, true power, reactive power and
apparent power in the circuit in Fig. 6.11.

Fig. 6.11

Solution The impedance of the circuit

Z =
2 2

CR X+

=
2 2(100) (200)+  = 223.6 W

The current I =
50

223.6
SV

Z
=  = 0.224 A

The phase angle

q = tan–1 CX

R

− 
 
 

= tan–1 200

100

− 
 
 

 = – 63.4°

\ The power factor pf = cos q = cos (63.4°) = 0.448
The true power P

av
= VI cos q

= 50 ¥ 0.224 ¥ 0.448 = 5.01 W

The reactive power P
v

= I
2
X

C

= (0.224)2 ¥ 200 = 10.03 VAR
The apparent power

P
a

= I
2
Z = (0.224)

2 ¥ 223.6 = 11.21 VA

Problem 6.5 In a certain RC circuit, the true power is 300 W and the reactive
power is 1000 W. What is the apparent power?

Solution The true power P
true

 or P
av

= VI cos q

= 300 W

The reactive power P
r

= VI sin q

 = 1000 W

From the above results

tan q =
1000

300
 = 3.33

The phase angle between voltage and current, q = tan
–1

 3.33 = 73.3°

The apparent power P
a
 = VI = 

300

cos 73.3°
 = 1043.9 VA
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Problem 6.6 A sine wave of v (t) = 200 sin 50t is applied to a 10 W resistor in
series with a coil. The reading of a voltmeter across the resistor is 120 V and
across the coil, 75 V. Calculate the power and reactive volt-amperes in the coil
and the power factor of the circuit.

Solution The rms value of the sine wave

V =
200

2
 = 141.4 V

Voltage across the resistor, V
R

= 120 V

Voltage across the coil, V
L

= 75 V

\ IR = 120 V

The current in resistor, I =
120

10
 = 12 A

Since IXL = 75 V

\ XL =
75

12
 = 6.25 W

Power factor, pf = cos q = 
R

Z

where Z = 10 + j6.25 = 11.8 –32°

\ cos q =
10

11.8

R

Z
=  = 0.85

True power P
true

= I
2
R = (12)

2 ¥ 10 = 1440 W

Reactive power P
r

= I
2
X

L
 = (12)

2 ¥ 6.25 = 900 VAR

Problem 6.7 For the circuit shown in Fig. 6.12, determine the true power,
reactive power and apparent power in each branch. What is the power factor of
the total circuit?

Fig. 6.12

Solution In the circuit shown in Fig. 6.12, we can calculate Z
1
 and Z

2
.

Impedance Z1 =
100 15

50 10

– ∞
– ∞

 = 2 –5° = (1.99 + j0.174) W

Impedance Z2 =
100 15

20 30

∠ °
∠ °

 = 5 ––15° = (4.83 – j1.29) W

True power in branch Z
1
 is P

t1
= I

2

1
R = (50)

2 ¥ 1.99 = 4975 W
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Reactive power in branch Z
1
, P

r1
= I

2

1
X

L

= (50)2 ¥ 0.174 = 435 VAR

Apparent power in branch Z
1
, P

a1
= I

2

1
Z

= (50)2 ¥ 2

= 2500 ¥ 2 = 5000 VA

True power in branch Z
2
, P

t2
= I

2

2
R

= (20)2 ¥ 4.83 = 1932 W

Reactive power in branch Z
2
, P

r2
= I

2

2
X

C

= (20)2 ¥ 1.29 = 516 VAR

Apparent power in branch Z
2
, P

a2
= I

2

2
Z

= (20)2 ¥ 5 = 2000 VA

Total impedance of the circuit, Z = 1 2

1 2

Z Z

Z Z+

=
2 5 5 15

1.99 0.174 4.83 1.29j j

∠ ° × ×∠− °
+ + −

=
10 10

6.82 1.116j

∠− °
−

=
10 10

6.9 9.29

∠− °
∠− °

 = 1.45 –– 0.71°

The phase angle between voltage and current, q = 0.71°

\ Power factor pf = cos q

= cos 0.71° = 0.99 leading

Problem 6.8 A voltage of v(t) = 141.4 sin w t is applied to the circuit shown
in Fig. 6.13. The circuit dissipates 450 W at a lagging power factor, when the
voltmeter and ammeter readings are 100 V and 6 A, respectively. Calculate the
circuit constants.

A

V t( ) = 141.4 sin( ) = 141.4 sin w t

6 A
– 20j W

10 W

jx2

V 100 V

R1 X1

Fig. 6.13
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Solution The magnitude of the current passing through (10 + jX
2
) W is

I = 6 A
The magnitude of the voltage across the (10 + jX

2
) ohms, V = 100 V. The magnitude

of impedance (10 + jX
2
) is V/I.

Hence 2 2
2

100
10

6
X+ =  = 16.67 W

\ X2 =
2 2(16.67) (10)−  = 13.33 W

Total power dissipated in the circuit = VI cos q = 450 W

\ V =
141.4

2
 = 100 V

I = 6 A

100 ¥ 6 ¥ cos q = 450

The power factor pf = cos q =
450

600
 = 0.75

q = 41.4°

The current lags behind the voltage by 41.4°

The current passing through the circuit, I = 6 –– 41.4°

The voltage across (10 + j13.33) W, V = 6 –– 41.4° ¥ 16.66 –53.1°

= 100 –11.7°

The voltage across parallel branch,  V
1

= 100 –0° – 100 –11.7°

= 100 – 97.9 – j20.27

= (2.1 – j20.27)V = 20.38 –– 84.08°

The current in (– j20) branch, I
2
 = 

20.38 84.08

20 90

∠− °
∠− °

 = 1.02 –+ 5.92°

The current in (R
1

– jX
1
) branch, I

1

= 6 –– 41.4° – 1.02 –5.92° = 4.5 – j3.97 – 1.01 – j0.1

= 3.49 – j4.07 = 5.36 –– 49.39°

The impedance Z1 = 1

1

20.38 84.08

5.36 49.39

V

I

∠− °
=

∠− °

= 3.8 –– 34.69° = (3.12 – j2.16) W
Since  R1 – jX1 = (3.12 – j2.16) W

R1 = 3.12 W
X1 = 2.16 W

Problem 6.9 Determine the value of the voltage source and power factor in
the following network if it delivers a power of 100 W to the circuit shown in
Fig. 6.14. Find also the reactive power drawn from the source.
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V – 0∞

5 W

– j 5 W

j 2 W

2 W

Fig. 6.14

Solution Total impedance in the circuit,

Zeq = 5 + 
(2 2) ( 5)

2 2 5

j j

j j

+ -
+ -

= 5 + 
10 10

2 3

j

j

−
−

 = 5 + 
14.14 45

3.6 56.3

∠− °
∠− °

 = 5 + 3.93 –11.3°

= 5 + 3.85 + j0.77 = 8.85 + j0.77 = 8.88 –4.97°

Power delivered to the circuit, P
T
 = I

2
R

T
 = 100 W

\ I
2 ¥ 8.85 = 100

Current in the circuit, I = 
100

8.85
 = 3.36 A

Power factor pf = cos q = 
R

Z

=
8.85

8.88
 = 0.99

Since VI cos q = 100 W

V ¥ 3.36 ¥ 0.99 = 100

\ V =
100

3 36 0 99. .¥
 = 30.06 V

The value of the voltage source, V = 30.06 V

Reactive power Pr = VI sin q

= 30.06 ¥ 3.36 ¥ sin (4.97°)

= 30.06 ¥ 3.36 ¥ 0.087 = 8.8 VAR

Problem 6.10 For the circuit shown in Fig. 6.15, determine the circuit
constants when a voltage of 100 V is applied to the circuit, and the total power
absorbed is 600 W. The circuit constants are adjusted such that the currents in
the parallel branches are equal and the voltage across the inductance is equal
and in quadrature with the voltage across the parallel branch.



Power and Power Factor 6.15

R1

R2

I/2

I

I/2

jx1

V 90°90°– V 0°0°–

100 V

Fig. 6.15

Solution Since the voltages across the parallel branch and the inductance are in
quadrature, the total voltage becomes 100–45° as shown in Fig. 6.16.

Total voltage is 100 –45° = V + j0 + 0 + jV

From the above result, 70.7 + j70.7 = V + jV

\ V = 70.7

If we take current as the reference, then
current passing through the circuit is
I –0°. Total power absorbed by the circuit
= VI cos q = 600 W

or 100 ¥ I ¥ cos 45° = 600 W
\ I = 8.48 A

Hence, the inductance, X
1
 = 

90 70.7 90

0 8.48

V

I

∠ ° ∠ °
=

∠ °
 = 8.33 –90°

\   X1 = 8.33 W
Current through the parallel branch, R

1
 is I/2 = 4.24 A

Resistance, R
1
 = 

0 70.7

/2 0 4.24

V

I

∠
=

∠
 = 16.67 W

Current through parallel branch R
2
 is I/2 = 4.24 A

Resistance is R
2
 = 

70.7

4.24
 = 16.67 W

Problem 6.11 Determine the average power delivered by the 500 –0°
voltage source in Fig. 6.17 and also dependent source.

+
–

+ –
v4

3v4
I

4 W 7 W

500 cos 40500 cos 40t

+

–

Fig. 6.17

Fig. 6.16
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Solution The current I can be determined by using Kirchhoff’s voltage law.

I = 4500 0 3v

7 4

∠ ° −
+

where v4 = 4I

I =
500 0 12

11 11

I∠ °
−

I = 21.73 –0°

Power delivered by the 500 –0° voltage source = 
500 21.73

2

×
 = 5.432 kW

Power delivered by the dependent voltage source = 43v 3 4

2 2

I I I¥ ¥ ¥
=  = 2.833 kW

Problem 6.12 Find the average power delivered by the dependent voltage
source in the circuit shown in Fig. 6.18.

Fig. 6.18

Solution The circuit is redrawn as shown in Fig. 6.19.

Fig. 6.19

Assume current I
1
 flowing in the circuit.

The current I
1
 can be determined by using Kirchhoff’s voltage law.

I1 = 1100 20 10 5

5 4

I

j

∠ ° + ×
+

I1 – 150 100 20

5 4 5 4

I

j j

∠ °
=

+ +

I1 = 2.213 –– 154.9°

Average power delivered by the dependent source



Power and Power Factor 6.17

=
2

m mV I
 cos q

= 5 110

2

V I
 cos q

=
250 (2.213)

2

×
 = 122.43 W

Problem 6.13 For the circuit shown in Fig. 6.20, find the average power
delivered by the voltage source.

+

–

–
50 vx

vx

2 W

1 W+
+

–

100 cos
50 t

- Wj4

j 3 W

V

Fig. 6.20

Solution Applying Kirchhoff’s current law at node

50100 0

2 1 3 4
xV VV V

j j

−− ∠ °
+ +

+ −
 = 0

Vx =
1 3

V

j+
 volts

Substituting in the above equation, we get

100 0 50V

2 1 3 4 (1 3) ( 4)

V V V

j j j j

− ∠ °
+ + −

+ − + −
 = 0

V = 14.705 –157.5°

I =
100 0 14.705 157.5 100 0

2 2

V − ∠ ° ∠ ° − ∠ °
=

= 56.865 –177.18°

Power delivered by the source = 
100 56.865 cos177.18

2

× °

= 2.834 kW

Problem 6.14 For the circuit shown in Fig. 6.21, find the average power
delivered by the dependent current source.

10 W

20 W
+

+

–

–

20 cos20 cos
50 t 0.5 V1

V

V1

Fig. 6.21
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Solution Applying Kirchhoff’s current law at node

20 0

10

V − ∠ °
– 0.5V1 + 

20

V
 = 0

where V1 = 20 –0° – V

Substituting V
1
 in the above equation, we get

V = 18.46 –0°

V1 = 1.54 –0°

Average power delivered by the dependent source

cos 18.46 0.5 1.54

2 2
m mV I θ × ×

=  = 7.107 W

PRACTICE PROBLEMS

6.1 For the circuit shown in Fig. 6.22, a voltage of 250 sin w t is applied.
Determine the power factor of the circuit, if the voltmeter readings are V1
= 100 V, V2 = 125 V, V3 = 150 V and the ammeter reading is 5 A.

Fig. 6.22

6.2 For the circuit shown in Fig. 6.23, a voltage v(t) is applied and the result-
ing current in the circuit i(t) = 15 sin (w t + 30°) amperes. Determine the
active power, reactive power, power factor, and the apparent power.

Fig. 6.23

6.3 A series RL circuit draws a current of i(t) = 8 sin (50t + 45°) from the
source. Determine the circuit constants, if the power delivered by the
source is 100 W and there is a lagging power factor of 0.707.



Power and Power Factor 6.19

6.4 Two impedances, Z1 = 10 –– 60° W and Z2 = 16 –70° W are in series and
pass an effective current of 5 A. Determine the active power, reactive
power, apparent power and power factor.

6.5 For the circuit shown in Fig. 6.24, determine the value of the impedance
if the source delivers a power of 200 W and there is a lagging power
factor of 0.707. Also find the apparent power.

Fig. 6.24

6.6 A voltage of v(t) = 100 sin 500 t is applied across a series R-L-C circuit
where R = 10 W, L = 0.05 H and C = 20 mf. Determine the power supplied
by the source, the reactive power supplied by the source, the reactive
power of the capacitor, the reactive power of the inductor, and the power
factor of the circuit.

6.7 For the circuit shown in Fig. 6.25 determine the power dissipated and the
power factor of the circuit.

3 W j 4 W

j 4 W – 10j WV t t( ) = 200 sin 1000( ) = 200 sin 1000

Fig. 6.25

6.8 For the circuit shown in Fig. 6.26, determine the power factor and the
power dissipated in the circuit.

Fig. 6.26
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6.9 For the circuit shown in Fig. 6.27, determine the power factor, active
power, reactive power and apparent power.

Fig. 6.27

6.10 In the parallel circuit shown in Fig. 6.28, the power in the 5 W resistor is
600 W and the total circuit takes 3000 VA at a leading power factor of
0.707. Find the value of impedance Z.

Z

5 W j 5 W

V 0–

Fig. 6.28

6.11 For the parallel circuit shown in Fig. 6.29, the total power dissipated is
1000 W. Determine the apparent power, the reactive power, and the
power factor.

2 W

5 W

j 1 W

j 3 W

V 0°0°–

Fig. 6.29

6.12 A voltage source v(t) = 150 sin wt in series with 5 W resistance is supply-
ing two loads in parallel, ZA = 60 –30°, and ZB = 50 ––25°. Find the
average power delivered to ZA, the average power delivered to ZB, the
average power dissipated in the circuit, and the power factor of the circuit.
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6.13 For the circuit shown in Fig. 6.30, determine the true power, reactive
power and apparent power in each branch. What is the power factor of
the total circuit?

Z1 Z2

I1 = 30 25°– I2 = 50 °–10

200 °–30

Fig. 6.30

6.14 Determine the value of the voltage source, and the power factor in the
network shown in Fig. 6.31 if it delivers a power of 500 W to the circuit
shown in Fig. 6.31. Also find the reactive power drawn from the source.

3 W

– 5j W

5 W

j 10 WV °–0 j 4 W

Fig. 6.31

6.15 Find the average power dissipated by the 500 W resistor shown in
Fig. 6.32.

+ –
500 W

1 k1 kW
50 mH50 mH1 Fm

v1
v1/2

+

–

10 cos
10

-3

4 t

+

–

Fig. 6.32

6.16 Find the power dissipated by the voltage source shown in Fig. 6.33.

Fig. 6.33
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6.17 Find the power delivered by current source shown in Fig. 6.34.

1 0– ∞A 0.25 Ic

Ic

- j 2

j 1
+
–

Fig. 6.34

6.18 For the circuit shown in Fig. 6.35, determine the power factor, active
power, reactive power and apparent power.

100 0– ∞ 0.1
+

+

– – vx

vc

20 W

- j3W j 2W

Fig. 6.35

OBJECTIVE-TYPE QUESTIONS

1. The phasor combination of resistive power and reactive power is called
(a) true power (b) apparent power
(c) reactive power (d) average power

2. Apparent power is expressed in
(a) volt-amperes (b) watts
(c) volt-amperes or watts (d) VAR

3. A power factor of ‘1’ indicates
(a) purely resistive circuit, (b) purely reactive circuit
(c) combination of both, (a) and (b) (d) none of these

4. A power factor of 0 indicates
(a) purely resistive element (b) purely reactive element
(c) combination of both (a) and (b) (d) none of the above

5. For a certain load, the true power is 100 W and the reactive power is 100
VAR. What is the apparent power?

(a) 200 VA (b) 100 VA
(c) 141.4 VA (d) 120 VA

6. If a load is purely resistive and the true power is 5 W, what is the appar-
ent power?
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(a) 10 VA (b) 5 VA

(c) 25 VA (d) 50  VA
7. True power is defined as

(a) VI cos q (b) VI

(c) VI sin q (d) none of these
8. In a certain series RC circuit, the true power is 2 W, and the reactive

power is 3.5 VAR. What is the apparent power?
(a) 3.5 VA (b) 2 VA
(c) 4.03 VA (d) 3 VA

9. If the phase angle q is 45°, what is the power factor?
(a) cos 45° (b) sin 45°
(c) tan 45° (d) none of these

10. To which component in an RC circuit is the power dissipation due?
(a) capacitance (b) resistance
(c) both (d) none

11. A two element series circuit with an instantaneous current I = 4.24 sin
(5000 t + 45°) A has a power of 180 watts and a power factor of
0.8 lagging. The inductance of the circuit must have the value.

(a) 3 H (b) 0.3 H
(c) 3 mH (c) 0.3 mH

12. In the circuit shown in Fig. 6.36, if branch A takes 8 KVAR, the power of
the circuit will be

Fig. 6.36

(a) 2 kW (b) 4 kW
(c) 6 kW (d) 8 kW

13. In the circuit shown in Fig. 6.37, the voltage across 30 W resistor is
45 volts. The reading of the ammeter A will be

j3 W 30 W

10 W 10/7 W

V

A

Fig. 6.37
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(a) 10 A (b) 19.4 A
(c) 22.4 A (d) 28 A

14. In the circuit shown in Fig. 6.38, V1 and V2 are two identical sources of
10 –90°. The power supplied by V1 is

Fig. 6.38

(a) 6 W (b) 8.8 W
(c) 11 W (d) 16 W



7.1 MESH ANALYSIS

We have earlier discussed mesh analysis but have applied it only to resistive
circuits. Some of the ac circuits presented in this chapter can also be solved by
using mesh analysis. In Chapter 2, the two basic techniques for writing network
equations for mesh analysis and node analysis were presented. These concepts
can also be used for sinusoidal steady-state condition. In the sinusoidal steady-
state analysis, we use voltage phasors, current phasors, impedances and
admittances to write branch equations, KVL and KCL equations. For ac
circuits, the method of writing loop equations is modified slightly. The voltages
and currents in ac circuits change polarity at regular intervals. At a given time,
the instantaneous voltages are
driving in either the positive or
negative direction. If the impedances
are complex, the sum of their
voltages is found by vector addition.
We shall illustrate the method of
writing network mesh equations
with the following example.

Consider the circuit shown in
Fig. 7.1, containing a voltage source
and impedances.

The current in impedance Z
1
 is I

1
, and the current in Z

2
, (assuming a positive

direction downwards through the impedance) is I
1
 – I

2
. Similarly, the current in

impedance Z
3
 is I

2
. By applying Kirchhoff’s voltage law for each loop, we can

get two equations. The voltage across any element is the product of the phasor
current in the element and the complex impedance.

Chapter

STEADY STATE
AC ANALYSIS 7

Fig. 7.1
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Equation for loop 1 is

I1Z1 + (I1 – I2)Z2 = V1 (7.1)

Equation for loop 2, which contains no source is

Z2(I2 – I1) + Z3I2 = 0 (7.2)

By rearranging the above equations, the corresponding mesh current
equations are

I1(Z1 + Z2) – I2Z2 = V1 (7.3)

– I1Z2 + I2(Z2 + Z3) = 0 (7.4)

By solving the above equations, we can find out currents I
1
 and I

2
. In general, if

we have M meshes, B branches and N nodes including the reference node, we
assume M branch currents and write M independent equations; then the number
of mesh currents is given by M = B – (N – 1).

Example 7.1 Write the mesh current equations in the circuit shown in Fig. 7.2,
and determine the currents.

I1 I2

j 4 W j 3 W

2 W6 W5–0∞ V

Fig. 7.2

Solution The equation for loop 1 is

I1( j 4) + 6(I1 – I2) = 5 –0° (7.5)

The equation for loop 2 is

6(I2 – I1) + ( j3)I2 + (2)I2 = 0 (7.6)

By rearranging the above equations, the corresponding mesh current equations are

I1(6 + j4) – 6I2 = 5 –0° (7.7)

– 6I1 + (8 + j 3)I2 = 0 (7.8)

Solving the above equations, we have

I1 =
( )8 3

6
2

+L
NM

O
QP

j
I

( ) ( )8 3 6 4

6

+ +L
NM

O
QP

j j
I2 – 6I2 = 5 –0°

I
j j

2

8 3 6 4

6
6

( ) ( )+ +
-

L
NM

O
QP

 = 5 –0°

I2 [10.26 –54.2° – 6 –0°] = 5 –0°
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I2 [(6 + j 8.32) – 6] = 5 –0°

I2 =
5 0

8 32 90

– ∞

– ∞.
 = 0.6 –– 90°

I1 =
8 54 20 5

6

. .– ∞
¥ 0.6 –– 90°

I1 = 0.855 –– 69.5°

Current in loop 1, I
1

= 0.855 = –– 69.5°
Current in loop 2, I

2
= 0.6 –– 90°

7.2 MESH EQUATIONS BY INSPECTION

In general, mesh equations can be written by observing any network. Consider
the three mesh network shown in Fig. 7.3.

Fig. 7.3

The loop equations are

I1 Z1 + Z2(I1 – I2) = V1 (7.9)

Z2 (I2 – I1) + Z3 I2 + Z4 (I2 – I3) = 0 (7.10)

Z4 (I3 – I2) + Z5 I3 = – V2 (7.11)

By rearranging the above equations, we have

(Z1 + Z2)I1 – Z2 I2 = V1 (7.12)

– Z2 I1 + (Z2 + Z3 + Z4)I2 – Z4I3 = 0 (7.13)

– Z4 I2 + (Z4 + Z5) I3 = – V2 (7.14)

In general, the above equations can be written as

Z11 I1 ± Z12  I2 + Z13 I3 = Va (7.15)

± Z21 I1 + Z22 I2 ± Z23 I3 = Vb (7.16)

± Z31 I1 ± Z32 I2 + Z33 I3 = Vc (7.17)

If we compare the general equations with the circuit equations, we get the
self impedance of loop 1

Z11 = Z1 + Z2

i.e. the sum of the impedances through which I
1
 passes. Similarly, Z

22
 = (Z

2
 + Z

3

+ Z
4
), and Z

33
 = (Z

4
 + Z

5
) are the self impedances of loops 2 and 3. This is equal

to the sum of the impedances in their respective loops, through which I
2
 and I

3

passes, respectively.
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Z
12

 is the sum of the impedances common to loop currents I
1
 and I

2
. Similarly

Z
21

 is the sum of the impedances common to loop currents I
2
 and I

1
. In the

circuit shown in Fig. 7.3, Z
12

 = – Z
2
, and Z

21
 = – Z

2
. Here, the positive sign is

used if both currents passing through the common impedance are in the same
direction; and the negative sign is used if the currents are in opposite directions.
Similarly, Z

13
, Z

23
, Z

31
, Z

32
 are the sums of the impedances common to the mesh

currents indicated in their subscripts. V
a
, V

b
 and V

c
 are sums of the voltages

driving their respective loops. Positive sign is used, if the direction of the loop
current is the same as the direction of the source current. In Fig. 7.3, V

b
 = 0

because no source is driving loop 2. Since the source, V
2
 drives against the loop

current I
3
, V

c
 = – V

2
.

Example 7.2 For the circuit shown in Fig. 7.4, write the mesh equations using the
inspection method.

5  W3  W

4  W

–j 4 W

–j 6 W

j 5 W

I1 I2

I3

20 º50–

10–30º

Fig. 7.4

Solution The general equations are

Z11 I1 ± Z12 I2 ± Z13 I3 = Va (7.18)

± Z21 I1 + Z22 I2 ± Z23 I3 = Vb (7.19)

± Z31 I1 ± Z32 I2 + Z33 I3 = Vc (7.20)

Consider Eq. 7.18

Z
11

= the self impedance of loop 1 = (5 + 3 – j4) W

Z
12

= the impedance common to both loop 1 and loop 2 = – 5 W

The negative sign is used because the currents are in opposite directions.

Z
13

= 0, because there is no common impedance between loop 1 and loop 3.

V
a

= 0, because no source is driving loop 1.

\ Equation 7.18 can be written as

(8 – j4)I1 – 5I2 = 0 (7.21)

Now, consider Eq. 7.19

Z
21

= – 5, the impedance common to loop 1 and loop 2.

Z
22

= (5 + j 5 – j 6), the self impedance of loop 2.

Z
23

= – (– j 6), the impedance common to loop 2 and loop 3.

V
b

= – 10 –30°, the source driving loop 2.
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The negative sign indicates that the source is driving against the loop current, I
2
.

Hence, Eq. 7.19 can be written as

– 5I1 + (5 – j1)I2 + ( j 6)I3 = – 10 –30° (7.22)

Consider Eq. 7.20

Z
31

= 0, there is no common impedance between loop 3 and loop 1

Z
32

= – (– j 6), the impedance common to loop 2 and loop 3

Z
33

= (4 – j 6), the self impedance of loop 3

V
b

= 20 –50°, the source driving loop 3

The positive sign is used because the source is driving in the same direction as the
loop current 3. Hence, the equation can be written as

( j 6)I2 + (4 – j 6)I3 = 20 –50° (7.23)

The three mesh equations are

(8 – j4)I1 – 5I2 = 0

– 5I1 + (5 – j1)I2 + ( j 6)I3 = – 10 –30°

( j 6)I2 + (4 – j 6)I3 = 20 –50°

7.3 NODAL ANALYSIS

The node voltage method can also be used with networks containing complex
impedances and excited by sinusoidal voltage sources. In general, in an N node
network, we can choose any node as the reference or datum node. In many
circuits, this reference is most conveniently choosen as the common terminal or
ground terminal. Then it is possible to write (N – 1) nodal equations using KCL.
We shall illustrate nodal analysis with the following example.

Consider the circuit shown in Fig.7.5.

Fig. 7.5

Let us take a and b as nodes, and c as reference node. V
a
 is the voltage

between nodes a and c. V
b
 is the voltage between nodes b and c. Applying

Kirchhoff’s current law at each node, the unknowns V
a
 and V

b
 are obtained.

In Fig. 7.6, node a is redrawn with all its branches, assuming that all currents
are leaving the node a.
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Fig. 7.6

In Fig. 7.6, the sum of the currents leaving node a is zero.

\ I1 + I2 + I3 = 0 (7.24)

where I1 = 
V V

Z

a - 1

1

, I2 = 
V

Z

a

2

, I3 = 
V V

Z

a b−

3

Substituting I
1
, I

2
 and I

3
 in Eq. 1, we get

V V

Z

V

Z

V V

Z

a a a b−
+ +

−1

1 2 3

 = 0 (7.25)

Similarly, in Fig. 7.7, node b is redrawn with all its branches, assuming that
all currents are leaving the node b.

In Fig. 7.7, the sum of the currents leaving the node b is zero.

\ I3 + I4 + I5 = 0 (7.26)

where I3 = 
V V

Z

b a−

3

, I4 = 
V

Z

b

4

, I5 = 
V

Z Z

b

5 6+

Substituting I
3
, I

4
 and I

5
 in Eq. 7.26

Fig. 7.7

we get
V V

Z

V

Z

V

Z Z

b a b b−
+ +

+3 4 5 6

 = 0 (7.27)

Rearranging Eqs. 7.25 and 7.27, we get

1 1 1 1 1

1 2 3 3 1
1

Z Z Z
V

Z
V

Z
Va b+ +

F

HG
I

KJ
-
F

HG
I

KJ
=
F

HG
I

KJ
(7.28)



Steady State AC Analysis 7.7

−
F

HG
I

KJ
+ + +

+

F

HG
I

KJ
1 1 1 1

3 3 4 5 6Z
V

Z Z Z Z
Va b  = 0 (7.29)

From Eqs 7.28 and 7.29, we can find the unknown voltages V
a
 and V

b
.

Example 7.3 In the network shown in Fig. 7.8, determine V
a
 and V

b
.

Va Vb

– 6j W

j 6 W
3 W

j 4 W

j 5 W

–j 4 W10–0º

Fig. 7.8

Solution To obtain the voltage V
a
 at a, consider the branch currents leaving the

node a as shown in Fig. 7.9 (a).

In Fig. 7.9(a), I1 = 
V

j

a − ∠ °10 0

6
, I2 = 

V

j

a

− 6
, I3 = 

V Va b−

3

Fig. 7.9(a)

Since the sum of the currents leaving the node a is zero,

I1 + I2 + I3 = 0

V

j

V

j

V Va a a b- – ∞
+

-
+

-10 0

6 6 3
 = 0 (7.30)

1

6

1

6

1

3

1

3

10 0

6j j
V V

j
a b− +

F
HG

I
KJ

− =
∠ °

\
1

3

1

3

10 0

6
V V

j
a b- =

– ∞
(7.31)

To obtain the voltage V
b
 at b, consider the branch currents leaving node b as

shown in Fig. 7.9 (b).

In Fig. 7.9(b), I3 = 
V Vb a-

3
, I4 = 

V

j

b

4
, I5 = 

V

j j

b

( )5 4-
Since the sum of the currents leaving node b is zero

I3 + I4 + I5 = 0
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Fig. 7.9(b)

V V V

j

V

j

b a b b-
+ +

3 4 1
 = 0 (7.32)

- + + +
F
HG

I
KJ

1

3

1

3

1

4

1

1
V

j j
Va b  = 0 (7.33)

From Eqs 7.31 and 7.33, we can solve for V
a
 and V

b
.

0.33Va – 0.33Vb = 1.67 –– 90° (7.34)

– 0.33Va + (0.33 – 0.25j – j)Vb = 0 (7.35)

Adding Eqs 7.34 and 7.35 we get (– 1.25j )V
b
 = 1.67 –– 90°

– 1.25 –90° Vb = 1.67 –– 90°

Vb =
1 67 90

1 25 90

.

.

– - ∞

- – ∞

= – 1.34 –– 180°

Substituting V
b
 in Eq. (7.34), we get

0.33Va – (0.33) (– 1.34 – –180°) = 1.67 – –90°

Va =
1 67 90

0 33

.

.

– - ∞
 = – 1.31 V

Va = 5.22 ––104.5° V

Voltages Va and Vb are 5.22 ––104.5° V and – 1.34 ––180° V respectively.

7.4 NODAL EQUATIONS BY INSPECTION

In general, nodal equations can also be written by observing the network.
Consider a four node network including a reference node as shown in Fig. 7.10.

Va Vb Vc

Z1
I3 I3

V1 V2

I2

I5
I4

I5 I7
I6

Z2

Z3 Z5 Z7

Z4
Z6

I1

Fig. 7.10
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Consider nodes a, b and c separately as shown in Figs 7.11(a), (b) and (c).

Z5

V2Z6I6

I5
I7

Z7VcVb

(c)

10 0– º

Fig. 7.11

Assuming that all the currents are leaving the nodes, the nodal equations at
a, b and c are

I1 + I2 + I3 = 0

I3 + I4 + I5 = 0

I5 + I6 + I7 = 0

V V

Z

V

Z

V V

Z

a a a b-
+ +

-1

1 2 3

 = 0 (7.36)

V V

Z

V

Z

V V

Z

b a b b c-
+ +

-

3 4 5

 = 0 (7.37)

V V

Z

V

Z

V V

Z

c b c c-
+ +

-

5 6

2

7

 = 0 (7.38)

Rearranging the above equations, we get

1 1 1 1 1

1 2 3 3 1
1

Z Z Z
V

Z
V

Z
Va a+ +

F

HG
I

KJ
-
F

HG
I

KJ
=
F

HG
I

KJ
(7.39)

-F

HG
I

KJ
+ + +
F

HG
I

KJ
-
F

HG
I

KJ
1 1 1 1 1

3 3 4 5 5Z
V

Z Z Z
V

Z
Va b c = 0 (7.40)

-F

HG
I

KJ
+ + +
F

HG
I

KJ
=
F

HG
I

KJ
1 1 1 1 1

5 5 6 7 7
2

Z
V

Z Z Z
V

Z
Vb c (7.41)
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In general, the above equations can be written as

YaaVa + YabVb + YacVc = I1

YbaVa + YbbVb + YbcVc = I2

YcaVa + YcbVb + YccVc = I3

If we compare the general equations with the circuit equations, the self
admittance at node a is

Yaa = 
1 1 1

1 2 3Z Z Z
+ +

which is the sum of the admittances connected to node a.

Similarly, Ybb =
1 1 1

3 4 5Z Z Z
+ + , and Ycc = 

1 1 1

5 6 7Z Z Z
+ +

are the self admittances at node b and node c, respectively. Y
ab

 is the mutual
admittance between nodes a and b, i.e. it is the sum of all the admittances
connecting nodes a and b. Y

ab
 = – 1/Z

3
 has a negative sign. All the mutual

admittances have negative signs. Similarly, Y
ac

, Y
ba

, Y
bc

, Y
ca

 and Y
cb

 are also
mutual admittances. These are equal to the sums of the admittances connecting
to nodes indicated in their subscripts. I

1
 is the sum of all the source currents at

node a. The current which drives into the node has a positive sign, while the
current driving away from the node has a negative sign.

Example 7.4 For the circuit shown in Fig. 7.12, write the node equations by the
inspection method.

10 0– º

10 30º–

j 5 W–j 6 W

j 4 W

5 W

3 W a b

Fig. 7.12

Solution The general equations are

Yaa Va + Yab Vb = I1 (7.42)

Yba Va + Ybb Vb = I2 (7.43)
Consider Eq. 7.42

Yaa = 
1

3

1

4

1

6
+ +

-j j

The self admittance at node a is the sum of admittances connected to node a.

Ybb = 
1

6

1

5

1

5-
+ +

j j
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The self admittance at node b is the sum of admittances connected to node b.

Yab = -
-

F
HG

I
KJ

1

6j

The mutual admittance between nodes a and b is the sum of admittances
connected between nodes a and b. Similarly, Y

ba
 = – (– 1/j 6), the mutual admittance

between nodes b and a is the sum of the admittances connected between nodes b and a.

I1 = 
10 0

3

– ∞

The source current at node a

I2 = 
- – ∞10 30

5

the source current leaving at node b.
Therefore, the nodal equations are

1

3

1

4

1

6

1

6

10 0

3
+ -

F
HG

I
KJ

-
-F

HG
I
KJ

=
– ∞

j j
V

j
Va b (7.44)

-
-F

HG
I
KJ

+ + -
F
HG

I
KJ

=
- – ∞1

6

1

5

1

5

1

6

10 30

5j
V

j j
Va b (7.45)

7.5 SUPERPOSITION THEOREM

The superposition theorem also can be used to analyse ac circuits containing
more than one source. The superposition theorem states that the response in any
element in a circuit is the vector sum of the responses that can be expected to
flow if each source acts independently of other sources. As each source is
considered, all of the other sources are replaced by their internal impedances,
which are mostly short circuits in the case of a voltage source, and open circuits
in the case of a current source. This theorem is valid only for linear systems. In
a network containing complex impedance, all quantities must be treated as
complex numbers.

Consider a circuit which contains two sources as shown in Fig. 7.13.

Z1 Z3

Z2
V 0º– Ia 0º–

I

Fig. 7.13



7.12 Electrical Circuit Analysis

Now let us find the current I passing through the impedance Z
2
 in the

circuit. According to the superposition theorem, the current due to voltage
source V –0° V is I

1
 with current source I

a
–0° A open circuited.

I1 =
V

Z Z

– ∞

+

0

1 2

The current due to I
a

–0° A is I
2
 with voltage source V –0° short circuited.

I1

Z3Z1

Z2V 0º–

Z1 Z3

I2

Z2 Ia 0º A–

Fig. 7.14 Fig. 7.15

\ I2 = Ia –0° ¥
Z

Z Z

1

1 2+

The total current passing through the impedance Z
2
 is

I = I1 + I2

Example 7.5 Determine the voltage across (2 + j5) W impedance as shown in
Fig. 7.16 by using the superposition theorem.

50 0º– 20 30 Aº–

j 4 W – j3 W

2 W

j 5 W

Fig. 7.16

Solution According to the superposition theorem, the current due to the 50 –0°
V voltage source is I

1
 as shown in Fig. 7.17 with current source 20 –30° A open

circuited.

Current I1 =
50 0

2 4 5

50 0

2 9

– ∞

+ +
=

– ∞

+j j j( )

=
50 0

9 22 77 47

– ∞

– ∞. .
 = 5.42 – – 77.47° A
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50 0º–

j 4 W –j 3 W

2 W

j5 W

I1

20 30 Aº–

j 4 W –j 3 W

2 W

j 5W

I2

Fig. 7.17 Fig. 7.18

Voltage across (2 + j 5) W due to current I
1
 is

V1 = 5.42 –– 77.47° (2 + j 5)

= (5.38) (5.42) –– 77.47° + 68.19°

= 29.16 –– 9.28°

The current due to 20 –30° A current source is I
2
 as shown in Fig. 7.18, with

voltage source 50 –0° V short circuited.

Current I2 = 20 –30° ¥
( )

( )

j

j

4

2 9

W

W+

=
20 30 4 90

9 22 77 47

– ∞ ¥ – ∞

– ∞. .

\ I2 = 8.68 –120° – 77.47° = 8.68 –42.53°

Voltage across (2 + j5) W due to current I
2
 is

V2 = 8.68 –42.53° (2 + j 5)

= (8.68) (5.38) –42.53° + 68.19°

= 46.69 –110.72°

Voltage across (2 + j5) W due to both sources is

V = V1 + V2

= 29.16 –– 9.28° + 46.69 –110.72°

= 28.78 – j4.7 – 16.52 + j 43.67

= (12.26 + j38.97) V

Voltage across (2 + j5) W is V = 40.85 –72.53°.

7.6 THEVENIN’S THEOREM

Thevenin’s theorem gives us a method for simplifying a given circuit. The
Thevenin equivalent form of any complex impedance circuit consists of an
equivalent voltage source V

Th
, and an equivalent impedance Z

Th
, arranged as

shown in Fig. 7.19. The values of equivalent voltage and impedance depend on
the values in the original circuit.
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ZTh

VTh

Fig. 7.19 Fig. 7.20

Though the Thevenin equivalent circuit is not the same as its original circuit,
the output voltage and output current are the same in both cases. Here, the
Thevenin voltage is equal to the open circuit voltage across the output
terminals, and impedance is equal to the impedance seen into the network
across the output terminals.

Consider the circuit shown in Fig. 7.20.

Thevenin equivalent for the circuit shown in Fig. 7.20 between points A and
B is found as follows.

The voltage across points A and B is the Thevenin equivalent voltage. In the
circuit shown in Fig. 7.20, the voltage across A and B is the same as the voltage
across Z

2
 because there is no current through Z

3
.

\ VTh = V
Z

Z Z

2

1 2+

F

HG
I

KJ

The impedance between points A

and B with the source replaced by short
circuit is the Thevenin equivalent
impedance. In Fig. 7.20, the impedance
from A to B is Z

3
 in series with the

parallel combination of Z
1
 and Z

2
.

\ ZTh = Z3 +
Z Z

Z Z

1 2

1 2+

The Thevenin equivalent circuit is shown in Fig. 7.21.

Example 7.6 For the circuit shown in Fig. 7.22, determine Thevenin’s equivalent
between the output terminals.

A

B

50 0º–

3 W

4 W

–j 4 W –j 4 Wj 5 W

j 6 W
 

Fig. 7.22 Fig. 7.23

ZTh

VTh

A

B

Fig. 7.21
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Solution The Thevenin voltage, V
Th

, is equal to the voltage across the (4 + j6) W
impedance. The voltage across (4 + j6) W is

V = 50 –0° ¥
( )

( ) ( )

4 6

4 6 3 4

+

+ + -

j

j j

= 50 –0° ¥
4 6

7 2

+

+

j

j

= 50 –0° ¥
7 21 56 3

7 28 15 95

. .

. .

– ∞

– ∞

= 50 –0° ¥ 0.99 –40.35°

= 49.5 –40.35° V

The impedance seen from terminals A and B is

ZTh = ( j 5 – j 4) + 
( ) ( )

( ) ( )

3 4 4 6

3 4 4 6

+ +

- +

j j

j j

= j1 + 
5 5313 7 21 56 3

7 28 15 95

– ∞ ¥ – ∞

– ∞

. . .

. .

= j1 + 4.95 –– 12.78° = j1 + 4.83 – j1.095

= 4.83 – j0.095

\ ZTh = 4.83 – –1.13° W

The Thevenin equivalent circuit is shown in Fig. 7.23.

7.7 NORTON’S THEOREM

Another method of analysing a complex impedance circuit is given by Norton’s
theorem. The Norton equivalent form of any complex impedance circuit consists
of an equivalent current source I

N
 and an

equivalent impedance Z
N
, arranged as shown

in Fig. 7.24. The values of equivalent current
and impedance depend on the values in the
original circuit.

Though Norton’s equivalent circuit is not
the same as its original circuit, the output
voltage and current are the same in both cases;
Norton’s current is equal to the current
passing through the short circuited output terminals and the value of impedance
is equal to the impedance seen into the network across the output terminals.

Consider the circuit shown in Fig. 7.25.

Norton’s equivalent for the circuit shown in Fig. 7.25 between points A and
B is found as follows. The current passing through points A and B when it is
short-circuited is the Norton’s equivalent current, as shown in Fig. 7.26.

A

B

V zN
IN

Fig. 7.24
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A

B

V Z2

Z1

Fig. 7.25 Fig. 7.26

Norton’s current I
N
 = V/Z

1

The impedance between points A and B, with the source replaced by a short
circuit, is Norton’s equivalent impedance.
In Fig. 7.25, the impedance from A to B,
Z

2
 is in parallel with Z

1
.

\ ZN = 
Z Z

Z Z

1 2

1 2+

Norton’s equivalent circuit is shown in
Fig. 7.27

Example 7.7 For the circuit shown in Fig. 7.28, determine Norton’s equivalent
circuit between the output terminals, AB.

Fig. 7.28

Solution Norton’s current I
N
 is equal to the current passing through the short

circuited terminals AB as shown in Fig. 7.29.

A

B

25 0º–

3 W

4 W

j 4 W

–j 5 W

IN

A

B

5 –53.13º– 4.53 9.92º–

Fig. 7.29 Fig. 7.30

A

B

ZN
IN

Fig. 7.27
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The current through terminals AB is

IN =
25 0

3 4

25 0

5 53 13

– ∞

+
=

– ∞

– ∞j .
 = 5 ––53.13°

The impedance seen from terminals AB is

ZN =
( ) ( )

( ) ( )

3 4 4 5

3 4 4 5

+ -

+ + -

j j

j j

=
5 5313 6 4 51 34

7 07 8 13

– ∞ ¥ – - ∞

– - ∞

. . .

. .
 = 4.53 –9.92°

Norton’s equivalent circuit is shown in Fig. 7.30.

7.8 MAXIMUM POWER TRANSFER THEOREM

In Chapter 3, the maximum power transfer theorem has been discussed for
resistive loads. The maximum power transfer theorem states that the maximum
power is delivered from a source to its load when the load resistance is equal to
the source resistance. It is for this reason that the ability to obtain impedance
matching between circuits is so important. For example, the audio output
transformer must match the high impedance of the audio power amplifier output
to the low input impedance of the speaker. Maximum power transfer is not
always desirable, since the transfer occurs at a 50 per cent efficiency. In many
situations, a maximum voltage transfer is desired which means that unmatched
impedances are necessary. If maximum power transfer is required, the load
resistance should equal the given source resistance. The maximum power transfer
theorem can be applied to complex impedance circuits. If the source impedance
is complex, then the maximum power transfer occurs when the load impedance
is the complex conjugate of the source impedance.

Consider the circuit shown in Fig. 7.31, consisting of a source impedance
delivering power to a complex load.

Fig. 7.31

Current passing through the circuit shown

I =
V

R j X R j X

s

s s L L( ) ( )+ + +

Magnitude of current I = | I | = 
V

R R X X

s

s L s L( ) ( )+ + +2 2



7.18 Electrical Circuit Analysis

Power delivered to the circuit is

P = I2 RL =
V R

R R X X

s L

s L s L

2

2 2( ) ( )+ + +

In the above equation, if R
L
 is fixed, the value of P is maximum when

Xs = – XL

Then the power P =
V R

R R

s L

s L

2

2( )+

Let us assume that R
L
 is variable. In this case, the maximum power is

transferred when the load resistance is equal to the source resistance (already
discussed in Chapter 3). If R

L
 = R

s
 and X

L
 = – X

s
, then Z

L
 = Z

*

s
. This means that

the maximum power transfer occurs when the load impedance is equal to the
complex conjugate of source impedance Z

s
.

Example 7.8 For the circuit shown in Fig. 7.32, find the value of load impedance
for which the source delivers maximum power. Calculate the value of the maximum
power.

Fig. 7.32

Solution In the circuit shown in Fig. 7.32, the maximum power transfer occurs
when the load impedance is complex conjugate of the source impedance

\ ZL = Zs = 15 – j20

When Z
L
 = 15 – j20, the current passing through circuit is

I = 
V

R R j j

s

s L+
=

– ∞

+ + -
=

– ∞50 0

15 20 15 20

50 0

30
 = 1.66 –0°

The maximum power delivered to the load is

P = I
2
RL = (1.66)2 ¥ 15 = 41.33 W

ADDITIONAL SOLVED PROBLEMS

Problem 7.1 Using mesh analysis, determine the voltage V
s
 which gives a

voltage of 30 –0° V across the 30 W resistor shown in Fig. 7.33.
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5 W

4 W j8 W

30 W

3 W

j4 W – j5 W
l1

l3

l2 l4

Vs

50 0°–

60 30– ∞

Fig. 7.33

Solution By the inspection method, we can have four equations from four loops.

(5 + j4)I1 – ( j4)I2 = 60 –30° (7.46)

(– j4)I1 + (3 – j1)I2 – 3I3 + ( j5)I4 = 0 (7.47)

– 3I2 + (7 + j8)I3 = 50 –0° (7.48)

( j5)I2 + (30 – j5)I4 = – Vs (7.49)

Solving the above equations using Cramer’s rule, we get

I4 =

( ) ( )

( ) ( )

( )

( )

( ) ( )

( ) ( )

( )

( )

5 4 4 0 60 30

4 3 1 3 0

0 3 7 8 50 0

0 5 0

5 4 4 0 0

4 3 1 3 5

0 3 7 8 0

0 5 0 30 5

+ - – ∞

- - -

- + – ∞

-

+ -

- - -

- +

-

j j

j j

j

j V

j j

j j J

j

j J

s

b g

b g

D = (5 + j 4)

( ) ( )

( )

( ) ( )

3 1 3 5

3 7 8 0

5 0 30 5

- -

- +

-

j j

j

j j

+ ( j4)

( ) ( )

( )

( )

- -

+

-

j j

j

j

4 3 5

0 7 8 0

0 0 30 5

= (5 + j4) {(3 – j1) (7 + j8) (30 – j5) + 3 [(– 3) (30 – j5)]

+ j5 [(– j5) (7 + j8)]} + ( j4) {(– j4) (7 + j8) (30 – j5)}

= (5 + j4) {[3.16 –– 18.4° ¥ 10.6 –48.8° ¥ 30.4 –– 9.46°]

– 9 ¥ 30.4 –– 9.46° + 25 (10.6 –48.8°)}

+ ( j4) {4 –– 90° ¥ 10.6 –48.8° ¥ 30.4 –– 9.46°}
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= (5 + j4) {1018.27 –20.94° – 273.6 –– 9.46° + 265 –48.8°}

+ j4 {1288.96 –– 50.66°}

= (5 + j4) {951 + j363.9 – 269.8 + j44.97 + 174.55 + j199.38}

+ 4 –90° {1288.96 –– 50.66°}

= (5 + j4) {855.75 + j608.25} + 4 –90° {1288.96 –– 50.66°}

= 6.4 –38.6° ¥ 1049.9 –35.4° + 4 –90° ¥ 1288.96 –– 50.66°

= 6719.36 –74° + 5155.84 –39.34°

= 1852.1 + j6459 + 3987.5 + j3268.3

= 5839.6 + j9727.3

= 11345.5 –59°

D4 = (5 + j 4)

( )

( )

( )

3 1 3 0

3 7 8 50 0

5 0

- -

- + – ∞

-

j

j

j Vs

+ j4

- -

+ – ∞

-

j

j

Vs

4 3 0

0 7 8 50 0

0 0

( ) – 60 –30°

( ) ( )

( )

- - -

- +

j j

j

j

4 3 1 3

0 3 7 8

0 5 0

= (5 + j4) {[(3 – j1) (7 + j8) (– Vs)] + 3[(3Vs ) – ( j5) 50 –0°]}

+ ( j4) {( – j4) (7 + j8) (– Vs)} – 60 –30° {(– j4) (– j5) (7 + j8)}

= 6.4 –38.6° {[3.16 –– 18.4° ¥ 10.6 –48.8° (– Vs)]

+ [9Vs – (15j) 50 –0°]}

+ 4 –90° {4 –– 90° ¥ 10.6 –48.8°) (– Vs)}

– 60 –30° {4 –– 90° ¥ 5 –– 90° ¥ 10.6 –48.8°}

= 6.4 –38.6° {– 33.49 –30.4° Vs} + 6.4 –38.6° ¥ 9Vs

+ 4 –90° {– 42.4 –– 41.2° Vs} – 60 –30° {212 –– 131.2°}

– 6.4 –38.6° {+ 750 –90°}

= Vs {– 214.33 –69° + 57.6 –38.6° – 169.6 –48.8°}

– {12720 –– 101.2° + 4800 –128.6°}

= Vs {– 76.8 – j200 + 45 + j35.93 – 111.7 – j127.6}

– {– 2470.6 – j12477.75 – 2994.6 + j3751.2}

= Vs {– 143.5 – j291.67} – {– 5465.2 – j8726.55}

\ I4 =
( . . ) ( . . )

.

- - + +

– ∞

143 5 291 67 5465 2 8726 5

11345 5 59

j V js

Since voltage across the 30 W resistor is 30 –0° V. Current passing through
it is I

4
 = 1 –0° A
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\ 1 –0° =
( . . ) ( . . )

.

- - + +

– ∞

143 5 291 67 5465 2 8726 5

11345 5 59

j V js

11345.5 –59° = 325 –– 116.19° Vs + 5465.2 + j8726.5

Vs =
- - + +

– - ∞

5465 2 8726 5 5843 36 9724 99

325 116 19

. . . .

.

j j

=
37816 998 49

325 116 19

1067 7 69 26

325 116 19

. .

.

. .

.

+

– - ∞
=

+ ∞

– - ∞

j j

Vs = 3.29 –185.45°.

Problem 7.2 For the circuits shown in Fig. 7.34, determine the line currents
I

R
, I

Y
 and I

B
 using mesh analysis.

5 10– ∞
5 10– ∞

5 – 10∞

IR

IB

IY

I3I1

I2

Z3Z1

Z2100 120– - ∞

B

Y

R

100 – 120∞

100 °– 0

Fig. 7.34

Solution From Fig. 7.34, the three line currents are

IR = I1 – I3

IY = I2 – I1

IB = I3 – I2

Using the inspection method, the three loop equations are

5 –10° I1 = 100 –0°

5 –10° I2 = 100 –120°

5 –10° I3 = 100 –– 120°

\ I1 =
100 0

5 10

– ∞

– ∞
 = 20 –– 10°

I2 =
100 120

5 10

– ∞

– ∞
 = 20 –+ 110°

I3 =
100 120

5 10

– - ∞

– ∞
 = 20 –– 130°

The line currents are
IR = I1 – I3 = 20 –– 10° – 20 –– 130°

= 19.69 – j3.47 + 12.85 + j15.32

= 32.54 + j11.85 = 34.63 –20°
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IY = I2 – I1 = 20 –110° – 20 – – 10°

= – 6.84 + j18.79 – 19.69 + j3.47

= – 26.53 + j22.26 = 34.63 –140°

IB = I3 – I2 = 20 –– 130° – 20 –110°

= – 12.85 – j15.32 + 6.84 – j18.79

= – 6.01 – j34.11 = 34.63 –– 100°

Problem 7.3 For the circuit shown in Fig. 7.35, determine the value of V
2

such that the current (3 + j4) W impedance is zero.

Fig. 7.35

Solution The three loop equations are

(4 + j3) I1 – ( j3)I2 = 20 –0°

(– j3)I1 + (3 + j2)I2 + j5I3 = 0

( j5)I2 + (5 – j5)I3 = – V2

Since the current I
2
 in (3 + j4) W is zero

I2 =
D

D
2  = 0

\ D2 = 0

where D2 =

( )

( )

( )

4 3 20 0 0

3 0 5

0 5 52

+ – ∞

-

- -

j

j j

V j

 = 0

 (4 + j3) V2 ( j5) – 20 –0° {(– j3) (5 – j5)} = 0

V2 =
20 0 3 5 5

5 4 3

– ∞ - -

+

( ) ( )

( ) ( )

j j

j j

l q

= 20 –0°
- -

- +

15 15

15 20

j

j

l q
= 20 –0° ¥

21 21 135

25 126 86

.

.

– - ∞

– ∞

V2 = 16.97 –– 261.85° V

Problem 7.4 For the circuit shown in Fig. 7.36, write the nodal equations
using the inspection method and express them in matrix form.

Solution The number of nodes and reference node are selected as shown in
Fig. 7.36, by assuming that all currents are leaving at each node.
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At node a,
1

4

1

1

1

1 1

1

1

1

1 1

50 0

1 1
+

-
+

+

F

HG
I

KJ
-

-

F

HG
I

KJ
-

+

F

HG
I

KJ
=

- – ∞

+j j
V

j
V

j
V

j
a b c

At node b, -
-

F
HG

I
KJ

+ +
-

+
F
HG

I
KJ

-
F
HG

I
KJ

=
– ∞1

1

1

3

1

1

1

3

1

3

20 30

3j
V

j j
V

j
V

j
a b c

4 W

1 W

2 W
j 3 W

– 5j W

– 2j W

j3 W

j4 W
3 W 20 30°–

50 °– 0

ca

b

Fig. 7.36

At node c, -
+

F
HG

I
KJ

-
F
HG

I
KJ

+ + +
+

F
HG

I
KJ

=
– ∞

+
-

– ∞1

1 1

1

3

1

2

1

3

1

1 1

50 0

1 1

20 30

3j
V

j
V

j j
V

j j
a b c

In matrix form, the nodal equations are

1

4

1

1 1

1

1

1

1

1

1 1
1

1

1

3

1

1

1

3

1

3
1

1 1

1

3

1

2

1

3

1

1 1

+
+

- + -
+

- + -

-
+

- + +
+

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

( ) ( )

( ) ( )

j j j j

j j j j

j j j j

V

V

V

a

b

c

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

=

- – ∞

+
– ∞

– ∞

+
-

– ∞F
HG

I
KJ

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

50 0

1 1
20 30

3

50 0

1 1

20 30

3

( )j

j

j j

Problem 7.5 For the circuit shown in Fig. 7.37, determine the voltage V
AB

, if
the load resistance R

L
 is infinite. Use node analysis.

Solution If the load resistance is infinite, no current passes through R
L
. Hence R

L

acts as an open circuit. If we consider A as a node and B as the reference node

V V

j

A A- – ∞

+
+

- – ∞

+

20 0

3 2

20 90

4 3
 = 0
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V V

j j

A A

5 3 4

20 0

5

20 90

3 4
+

+
=

– ∞
+

– ∞

+( ) ( )

V
j

A

1

5

1

3 4
4 0

20 90

5 5313
+

+

L

N
M

O

Q
P = – ∞ +

– ∞

– ∞.

3 W

2 W 3 W

j4 W

20 °– 0 20 °– 90RL

B

A

Fig. 7.37

= 4 –0° + 4 –36.87° = 4 + 3.19 + j2.4 = 7.19 + j2.4

VA [0.2 + 0.12 – j0.16] = 7.19 + j2.4

VA = 
7 19 2 4

0 32 0 16

7 58 18 46

0 35 26 56

. .

. .

. .

. .

+

-
=

– ∞

– - ∞

j

j

Voltage across AB is V
AB

 = V
A
 = 21.66 –45.02° V

Problem 7.6 For the circuit shown in Fig. 7.38, determine the power output
of the source and the power in each resistor of the circuit.

3 W 2 W

j5 W–j4 W20 – ∞30

A

Fig. 7.38

Solution Assume that the voltage at node A is V
A

By applying nodal analysis, we have

V V

j

V

j

A A A- – ∞
+

-
+

+

20 30

3 4 2 5
 = 0

V
j j

A

1

3

1

2 5

1

4

20 30

3
+

+
-

L

N
M

O

Q
P =

– ∞

VA [0.33 + 0.068 + j0.078] = 6.67 –30°
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\ VA = 
6 67 30

0 41 11 09

.

. .

– ∞

– ∞
 = 16.27 –18.91°

Current in the 2 W resistor

I2 =
V

j

A

2 5

16 27 18 91

5 38 68 19+
=

– ∞

– ∞

. .

. .

\ I2 = 3.02 –– 49.28°

Power dissipated in the 2 W resistor

P2 = I 2
2
R = (3.02)2 ¥ 2 = 18.24 W

Current in the 3 W resistor

I3 =
- – ∞ + – ∞20 30 16 27 18 91

3

. .

= – 6.67 –30° + 5.42 –18.91°

= – 5.78 – j3.34 + 5.13 + j1.76 = – 0.65 – j1.58

I3 = 1.71 –– 112°

Power dissipated in the 3 W resistor

= (1.71)2 ¥ 3 = 8.77 W

Total power delivered by the source

= VI cos f = 20 ¥ 1.71 cos 142° = 26.95 W

Problem 7.7 For the circuit shown in Fig. 7.39, determine the voltage V
AB

 using
the superposition theorem.

5 W

5 j

A

B

– 2 j 4 0° A–

50 0° V–

Fig. 7.39

Solution Let source 50 –0° V act on the circuit and set the source 4 –0° A equal
to zero. If the current source is zero, it becomes open-circuited. Then the voltage
across AB is V

AB
 = 50 –0°.

Now set the voltage source 50 –0° V is zero, and is short circuited, or the voltage
drop across AB is zero.

The total voltage is the sum of the two voltages.

\ VT = 50 –0°

Problem 7.8 For the circuit shown in Fig. 7.40, determine the current in
(2 + j3) W by using the superposition theorem.
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4 W

2 W

j 3 W

– 4j W

50 0 V– ∞ 20 9 A– 0∞

Fig. 7.40

Solution The current in (2 + j3) W, when the voltage source 50 –0° acting alone is

I1 =
50 0

6 3

50 0

6 7 26 56

– ∞

+
=

– ∞

– ∞( ) . .j

\ I1 = 7.46 –– 26.56° A

Current in (2 + j3) W, when the current source 20 –90° A acting alone is

I2 = 20 –90° ¥
4

6 3( )+ j

=
80 90

6 7 26 56

– ∞

– ∞. .
 = 11.94 –63.44° A

Total current in (2 + j3) W due to both sources is

I = I1 + I2

= 7.46 –– 26.56° + 11.94 –63.44°

= 6.67 – j3.33 + 5.34 + j10.68

= 12.01 + j7.35 = 14.08 –31.46°

Total current in (2 + j3) W is I = 14.08 –31.46°.

Problem 7.9 For the circuit shown in Fig. 7.41, determine the load current
by applying Thevenin’s theorem.

j 4 W

j 3 W

j 5 W

j 5 W
100 0– ∞

IL

Fig. 7.41

Solution Let us find the Thevenin equivalent circuit for the circuit shown in
Fig. 7.42(a).
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j 4 W

j 3 W

j 5 W j 6.71 W

100 0– ∞ 42.86–0∞

A A

B B
(a) (b)

Fig. 7.42

Voltage across AB is the voltage across ( j3) W

\ VAB = 100 –0° ¥
( )

( ) ( )

j

j j

3

3 4+

= 100 –0°
( )j

j

3

7
 = 42.86 –0°

Impedance seen from terminals AB

ZAB = ( j5) + 
( ) ( )j j

j

4 3

7

= j5 + j1.71 = j6.71 W

Thevenin’s equivalent circuit is shown in Fig. 7.42(b).
If we connect a load to Fig. 7.42(b), the current passing through ( j5) W impedance is

IL =
42 86 0

6 71 5

42 86 0

11 71 90

.

( . )

.

.

– ∞

+
=

– ∞

– ∞j j
 = 3.66 –– 90°

Problem 7.10 For the circuit shown in Fig. 7.43, determine Thevenin’s
equivalent circuit.

4 W

j 6 W – j 4 W

2 W

10 – 0∞

5 90– ∞

I

+ –
A

B

Fig. 7.43

Solution Voltage across (– j4) W is

V–j4 =
5 90

2 2

– ∞

+( )j
 (– j4)

=
20 0

2 83 45

– ∞

– ∞.
 = 7.07 –– 45°
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Voltage across AB is V
AB

= –V
10

 + V
5

– V
– j4

= – 10 –0° + 5 –90° – 7.07 –– 45°

= j5 – 10 – 4.99 + j4.99

= – 14.99 + j 9.99

VAB = 18 –146.31°

The impedance seen from terminals AB, when all voltage sources are short
circuited is

ZAB = 4 + 
( ) ( )2 6 4

2 2

+ -

+

j j

j

= 4 + 
6 32 71 56 4 90

2 83 45

. .

.

– ∞ ¥ – - ∞

– ∞

= 4 + 8.93 –– 63.44°

= 4 + 4 – j 7.98 = (8 – j7.98) W

Thevenin’s equivalent circuit is shown in
Fig. 7.44.

Problem 7.11 For the circuit shown in Fig. 7.11, determine the load current
I

L
 by using Norton’s theorem.

j 3 W

5 W

–j 2 W

10 V–0∞ 5 V– 90∞

IL

A

B

Fig. 7.45

Solution Norton’s impedance seen from terminals AB is

ZAB =
( ) ( )

( ) ( )

j j

j j j

3 2

3 2

6

1

-

-
=

\ ZAB = 6 –– 90°

Current passing through AB, when it is shorted

IN =
10 0

3 90

5 90

2 90

– ∞

– ∞
+

– ∞

– - ∞

\ IN = 3.33 –– 90° + 2.5 –180°

= – j3.33 – 2.5

IN = 4.16 –– 126.8°

Norton’s equivalent circuit is shown in Fig. 7.46

Fig. 7.44

4.16– – 126.8°A

5 W

IL

6 – 90∞–

Fig. 7.46
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Load current is IL = IN ¥
–- ∞

+ – - ∞

6 90

5 6 90

= 4.16 – – 126.8° ¥
6 90

5 6

–- ∞

- j

=
4 16 6 216 8

7 81 50 19

. .

. .

¥ – - ∞

– - ∞

= 3.19 –– 166.61°

Problem 7.12 For the circuit shown in Fig. 7.47, determine Norton’s
equivalent circuit.

10 W

5 W

j 6 W

30 A– ∞30

A

B

30– 30°A (5 + 6j ) W

A

B

Fig. 7.47 Fig. 7.48

Solution The impedance seen from the terminals when the source is reduced to
zero

ZAB = (5 + j6) W

Current passing through the short circuited terminals, A and B, is
IN = 30 –30° A

Norton’s equivalent circuit is shown in Fig. 7.48.

Problem 7.13 Convert the active network shown in Fig. 7.49 by a single
voltage source in series with impedance.

3 W

j 4 W

5 ° A–0

10 ° A–90 20 ° V–0

A

B

Fig. 7.49

Solution Using the superposition theorem, we can find Thevenin’s equivalent
circuit. The voltage across AB, with 20 –0° V source acting alone, is V ¢

AB
, and can be

calculated from Fig. 7.50(a).
Since no current is passing through the (3 + j4) W impedance, the voltage

V ¢AB = 20 –0°

The voltage across AB, with 5 –0° A source acting alone, is V ¢
AB

, and can be
calculated from Fig. 7.50(b).
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3 W

3 W

j 4 W

j 4 W

A A

B B

20 0° V–

5 0° A–

I

(a) (b)

Fig. 7.50

V ¢¢AB = 5 –0° (3 + j4) = 5 –0° ¥ 5 –53.13° = 25 –53.13° V

The voltage across AB, with 10 –90° A source acting alone, is V ¢¢¢
AB

, and can be
calculated from Fig. 7.50 (c).

V¢¢¢AB = 0

3 W

(3 + 4)j W

j 4 W
A

A

B B

10 90° A–

(c) (d)

40.3 29.73° V–

Fig. 7.50

According to the superposition theorem, the voltage across AB due to all sources is

VAB = V ¢AB  + V ¢¢AB  + V ¢¢¢AB

\ VAB = 20 –0° + 25 –53.13° = 20 + 15 + j19.99

= (35 + j19.99) V = 40.3 –29.73° V

The impedance seen from terminals AB

ZTh = ZAB = (3 + j4) W

\ The required Thevenin circuit is shown in Fig. 7.50(d).

Problem 7.14 For the circuit shown in Fig. 7.51, find the value of Z that will
receive maximum power; also determine this power.

Solution The equivalent impedance at terminals
AB with the source set equal to zero is

ZAB =
5 10

5 10

7 20

7 20

( ) ( )

( )

j

j

j

j+
+

-

-

=
50 90

1118 63 43

140 90

2119 70 7

– ∞

– ∞
+

– - ∞

– - ∞. . . .
= 4.47 –26.57° + 6.6 –– 19.3°

= 3.99 + j1.99 + 6.23 – j2.18

= 10.22 – j0.19

A

B

Z

– 20j W

j10 W5 W

7 W
100 0°–

Fig. 7.51
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The Thevenin equivalent circuit is shown in Fig. 7.52(a).
The circuit in Fig. 7.52(a) is redrawn as shown in Fig. 7.52(b).

Current I1 =
100 0

5 10

– ∞

+ j

=
100 0

1118 63 43

– ∞

– ∞. .
 = 8.94 –– 63.43° A

VTh Z

(10.22 – 0.19)j W

5 W

j10 W

7 W

100 0°–
A B

– 20j W

I2I1

(a) (b)

Fig. 7.52

Current I2 =
100 0

7 20

100 0

2119 70 7

– ∞

-
=

– ∞

– - ∞j . .
 = 4.72 –70.7°

Voltage at A, V
A
 = 8.94 –– 63.43° ¥ j10 = 89.4 –26.57°

Voltage at B, V
B
 = 4.72 –70.7° ¥ – j20 = 94.4 –– 19.3°

Voltage across terminals AB

VAB = VA – VB

= 89.4 –26.57° – 94.4 –– 19.3°

= 79.96 + j39.98 – 89.09 + j31.2

= – 9.13 + j71.18

VTh = VAB = 71.76 –97.3° V

To get maximum power, the load must be the complex conjugate of the source
impedance.
\ Load Z = 10.22 + j0.19

Current passing through the load Z

I =
V

Z Z

Th

Th +
=

– ∞71 76 97 3

20 44

. .

.
 = 3.51 –97.3°

Maximum power delivered to the load is

= (3.51)2 ¥ 10.22 = 125.91 W

Problem 7.15 For the circuit shown in Fig. 7.53, the resistance R
s
 is variable from 2

W to 50 W. What value of R
s
 results in maximum power transfer across the terminals AB?

Solution In the circuit shown the resistance R
L
 is fixed. Here, the maximum

power transfer theorem does not apply. Maximum current flows in the circuit when
R

s
 is minimum. For the maximum current

Rs = 2
But ZT = Rs – j5 + RL = 2 – j5 + 20 = (22 – j5) = 22.56 –– 12.8°
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RS

RL

– 5j W

20 W
50 0°–

A

B

Fig. 7.53

\ I = 
V

Z

s

T

= -
– ∞

– - ∞

50 0

22 56 12 8. .
 = 2.22 –12.8°

Maximum power P = I
2
R = (2.22)

2
¥ 20 = 98.6 W

Problem 7.16 Determine the voltage V which results in a zero current
through the 2 + j3 W impedance in the circuit shown in Fig. 7.54.

5 W 2 W 4 Wj3 W

j 5 W+ ++
– ––30 0°– I1

I2

I32v4

+v4

V

Fig. 7.54

Solution Choosing mesh currents as shown in Fig. 7.54, the three loop equations are

(5 + j5) I1 – j5 I2 = 30 –0°

– j5 I1 + (2 + j8) I2 = – 2V4

– 2V4 + V4 + V = 0

V4 = V

Since the current in (2 + j3) W is zero

I2 = 
D

D
2  = 0

Where D2 = 
5 5 30 0

5 2

+ – ∞

- -

j

j V
 = 0

(5 + j5) (– 2V) + ( j5) 30 –0° = 0

V = 
30 0 5

2 5 5

150 90

14 14 45

– ∞

+
=

– ∞

– ∞

( )

( ) .

j

j

V = 10.608 –45° volts
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Problem 7.17 Find the value of voltage V which results in V
0
 = 5 –0° V in

the circuit shown in Fig. 7.55.

3 W

2 W
j5 W– 2j W

– 2j W

5 W

+
– 2v5

v5 1 2+ –

V0V

Fig. 7.55

Solution Assuming all currents are leaving the nodes, the nodal equations are

V
j j

V
j

V

j
1 2

1

5 2

1

3

1

5

1

5 5 2-
+ +

L

N
M

O

Q
P -

L

N
M

O

Q
P =

-

-
L

N
M

O

Q
P + +

-

L

N
M

O

Q
P =V

j
V

j j
V1 2 5

1

5

1

5

1

2 2
2

where V5 = 
V V

j

1

5

5 2

-

-

F

HG
I

KJ

The second equation becomes

V
j j

V
j j

V

j
1 2

1

5

10

5 2

1

5

1

2 2

10

5 2

-
-

-

L

N
M

O

Q
P + +

-

L

N
M

O

Q
P =

-

-

V0 = V2 = 
D

D
2  = 5 –0°

1

5 2

1

3

1

5 5 2
1

5

10

5 2

10

5 2

1

5 2

1

3

1

5

1

5
1

5

10

5 2

1

5

1

2 2

-
+ +

-
-

-
-

-

-

-
+ +

-

-
-

-
+

-

j j

V

j

j j

V

j

j j j

j j j j

 = 5 –0°

The source voltage V = 2.428 –– 88.74° volts.

Problem 7.18 For the circuit shown in Fig. 7.56, find the current in the
j5 W inductance by using Thevenin’s theorem.
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j 2 W

– 10j W

+

–

+– a

9vi–
+

100 0°–

vi

Fig. 7.56

Solution From the circuit shown in Fig. 7.56 the open circuit voltage at terminals
a and b is

Voc = – 9 Vi

where Vi = – 9Vi – 100 –0°

10Vi = – 100 –0°

Vi = – 10 –0°

Thevenin’s voltage V
oc

 = 90 –0°

From the circuit, short circuit current is determined by shorting terminals a and b.
Applying Kirchhoff’s voltage law, we have

9Vi – j10 isc = 0

isc = 90 –90°

\ ZTh =
V

I

oc

sc

=
– ∞

– ∞

90 0

9 90

= 1 –– 90°

ZTh = – j1

The Thevenin’s equivalent circuit is shown in Fig. 7.57

The current in the j2 W inductor is = 
90 0

1

– ∞

j

= 90 ––90°

Problem 7.19 For the circuit shown in Fig. 7.58, find the value of Z that will
receive maximum power; also determine this power.

Fig. 7.58

Solution The equivalent impedance can be obtained by finding V
oc

 and i
sc
 at

terminals a b. Assume that current i is passing in the circuit.

Fig. 7.57
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i =
100 0 5

4 10
4– ∞ -

+

V

j

=
100 0

4 10

5 4

4 10

– ∞

+
-

¥

+j

i

j

i = 3.85 –– 22.62°

Voc = 100 –0° – 4 ¥ 3.85 –– 22.62°

= 86 –3.94°

isc =
100 0

4

– ∞
 = 25 –0°

Thevenin’s equivalent impedance

ZTh =
V

i

oc

sc

 = 3.44 –3.94°

= 3.43 + j0.24

The circuit is drawn as shown in Fig. 7.59.
To get maximum power, the load must be the complex conjugate of the source

impedance.

\ Load Z = 3.43 – j0.24

Current passing through load Z

I =
V

Z Z

Th

Th +
=

– ∞8 6 3 94

6 86

. .

.
 = 1.25 –3.94°

Maximum power delivered to the load is (1.25)
2

¥ 3.43 = 5.36 W.

PRACTICE PROBLEMS

7.1 For the circuit shown in Fig. 7.60, determine the value of current Ix in the
impedance Z = 4 + j5 between nodes a and b.

4 W5 W j6 W j5 W

– 5j W 5 W50 0°–

a b
Ix

Fig. 7.60

7.2 Determine (i) the equivalent voltage generator and (ii) the equivalent
current generator which may be used to represent the given network in
Fig. 7.61 at the terminals AB.

Fig. 7.59
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Fig. 7.61

7.3 For the circuit shown in Fig. 7.62, find the value of Z that will receive the
maximum power. Also determine this power.

2 W

4 W

j5 W

– 3j W

Z
50 0°V–

Fig. 7.62

7.4 Determine the voltage Vab and Vbc in the network shown in Fig. 7.63 by

loop analysis, where source voltage e(t) = 2 ¥ 100 cos (314 t + 45°).

Fig. 7.63

7.5 Find the current in the 15 W resistor in the network shown in Fig. 7.64 by
Thevenin’s theorem.

4 W 4 W 2 W

2 W4 W

2 W

15 W4 W

– 5j W

– 3j W

– 3j W

– 3j W

j8 W

j8 W

j8 W

100 0°–

Fig. 7.64
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7.6 Determine the power output of the voltage source by loop analysis for the
network shown in Fig. 7.65. Also determine the power extended in the
resistors.

Fig. 7.65

7.7 In the circuit shown in Fig. 7.66, determine the power in the impedance
(2 + j5) W connected between A and B using Norton’s theorem.

2 W3 W j5 W j5 W

– 5j W 4 W10 0°–

A B

Fig. 7.66

7.8 Determine the value of source currents by loop analysis for the circuit
shown in Fig. 7.67 and verify the results by using node analysis.

100 0º V– 50 0º V–9

3 W j 4 W

4 W

– 8j W

Fig. 7.67

7.9 Convert the active network shown in Fig. 7.68 by a single voltage source
in series with an impedance, and also by a single current source in paral-
lel with the impedance.

2 W

j 3 W

–j 4 W

5 ° A–0

3 ° A–20 10 °–0

A

B

Fig. 7.68
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7.10 Determine the power out of the source in the circuit shown in Fig. 7.69
by nodal analysis and verify the results by using loop analysis.

–j10 W

j5 W

3 W

2 W

10 °–0

Fig. 7.69

7.11 For the circuit shown in Fig. 7.70, find the current in each resistor using
the superposition theorem.

100 0º–

50 30º–

10 W 5 W

3 W

j 4 W

– 5j W

Fig. 7.70

7.12 Use Thevenin’s theorem to find the current through the (5 + j4) W imped-
ance in Fig. 7.71. Verify the results using Norton’s theorem.

Fig. 7.71

7.13 Determine Thevenin’s and Norton’s equivalent circuits across terminals
AB, in Fig. 7.72.

j2 W
–j W

5 W

4 W

10 0° V– 5 0° V–

A

B

Fig. 7.72

7.14 Determine Norton’s and Thevenin’s equivalent circuits for the circuit
shown in Fig. 7.73.
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Fig. 7.73

7.15 Determine the maximum power delivered to the load in the circuit shown
in Fig. 7.74.

– 10j W

j4 W

10 W 5 Wj15 W –j 6 W

3 W

50 °– A0 ZL

Fig. 7.74

7.16 For the circuit shown in Fig. 7.75, find the voltage across the dependent
source branch by using mesh analysis.

Fig. 7.75

7.17 Find Thevenin’s equivalent for the network shown in Fig. 7.76.

– 30j W

100 Wa

b

Vab Vab
166.7

–90°

+

–

Fig. 7.76
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7.18 For the circuit shown in Fig. 7.77, obtain the voltage across 500 W
resistor.

1 kW

500 kW

1 mF

+ –+ –
v1

0.5v1

50 mHcos 10000 t

1000

Fig. 7.77

7.19 For the circuit shown in Fig. 7.78, obtain the Thevenin’s equivalent cir-
cuit at terminals ab.

+ –

j1 W
– 2j W

I/4

1 0°– A

a

b

I

Fig. 7.78

OBJECTIVE-TYPE QUESTIONS

1. The superposition theorem is valid
(a) only for ac circuits
(b) only for dc circuits
(c) For both, ac and dc circuits
(d) neither of the two

2. When applying the superposition theorem to any circuit
(a) the voltage source is shorted, the current source is opened
(b) the voltage source is opened, the current source is shorted
(c) both are opened
(d) both are shorted

3. While applying Thevenin’s theorem, the Thevenin’s voltage is equal to
(a) short circuit voltage at the terminals
(b) open circuit voltage at the terminals
(c) voltage of the source
(d) total voltage available in the circuit

4. Thevenin impedance ZTh is found
(a) by short-circuiting the given two terminals
(b) between any two open terminals
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(c) by removing voltage sources along with the internal resistances
(d) between same open terminals as for VTh

5. Thevenin impedance of the circuit at its terminals A and B in Fig. 7.79 is

5 H/m

2 W
20 30°–

A

B

Fig. 7.79

(a) 5 H (b) 2 W
(c) 1.4 W (d) 7 H

6. Norton’s equivalent form in any complex impedance circuit consists of
(a) an equivalent current source in parallel with an equivalent resistance.
(b) an equivalent voltage source in series with an equivalent conductance.
(c) an equivalent current source in parallel with an equivalent impedance.
(d) None of the above.

7. The maximum power transfer theorem can be applied

(a) only to dc circuits (b) only to ac circuits
(c) to both dc and ac circuits (d) neither of the two

8. In a complex impedance circuit, the maximum power transfer occurs
when the load impedance is equal to

(a) complex conjugate of source impedance
(b) source impedance
(c) source resistance
(d) none of the above

9. Maximum power transfer occurs at a

(a) 100% efficiency (b) 50% efficiency
(c) 25% efficiency (d) 75% efficiency

10. In the circuit shown in Fig. 7.80, the power supplied by the 10 V source is

Fig. 7.80

(a) 6.6 W (b) 21.7 W
(c) 30 W (d) 36.7 W
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11. The Thevenin equivalent impedance of the circuit in Fig. 7.81 is

j 4 W I

j 5 W
3 W 5 W

10 ° V–0

A

B

Fig. 7.81

(a) (1 + j5) W (b) (2.5 + j25) W
(c) (6.25 + j6.25) W (d) (2.5 + j6.25) W

12. A source has an emf of 10 V and an impedance of 500 + j100 W. The
amount of maximum power transferred to the load will be

(a) 0.5 mW (b) 0.05 mW
(c) 0.05 W (d) 0.5 W

13. For the circuit shown in Fig. 7.82, find the voltage across the dependent
source.

10 0°– 4 V

+

+
+

–
–

–
V

j 2 W

Fig. 7.82

(a) 8 –0° (b) 4 –0°
(c) 4 –90° (d) 8 –– 90°



8.1 SERIES RESONANCE

In many electrical circuits, resonance is a very important phenomenon. The
study of resonance is very useful, particularly in the area of communications.
For example, the ability of a radio receiver to select a certain frequency,
transmitted by a station and to eliminate frequencies from other stations is based
on the principle of resonance. In a series RLC circuit, the current lags behind,
or leads the applied voltage depending upon the values of X

L
and X

C
. X

L
 causes

the total current to lag behind the applied voltage, while X
C
 causes the total

current to lead the applied voltage. When X
L
 > X

C
, the circuit is predominantly

inductive, and when X
C
 > X

L
, the

circuit is predominantly capacitive.
However, if one of the parameters
of the series RLC circuit is varied
in such a way that the current in the
circuit is in phase with the applied
voltage, then the circuit is said to
be in resonance.

Consider the series RLC circuit
shown in Fig. 8.1.

The total impedance for the series RLC circuit is

Z = R + j(XL – XC) = R + j w
w

L
C

-
F

HG
I

KJ
1

It is clear from the circuit that the current I = V
S
/Z

The circuit is said to be in resonance if the current is in phase with the applied
voltage. In a series RLC circuit, series resonance occurs when X

L
 = X

C
. The

frequency at which the resonance occurs is called the resonant frequency.

R

I

L C

VS

VR VL VC

Fig. 8.1

Chapter

8RESONANCE



8.2 Electrical Circuit Analysis

Since X
L
 = X

C
, the impedance in a series RLC circuit is purely resistive. At

the resonant frequency, f
r
, the voltages across capacitance and inductance are

equal in magnitude. Since they are 180° out of phase with each other, they
cancel each other and, hence zero voltage appears across the LC combination.

At resonance

XL = XC i.e. wL = 
1

wC

Solving for resonant frequency, we get

2p fr L =
1

2p f Cr

fr
2 =

1

4 2p LC

\ fr =
1

2p LC

In a series RLC circuit, resonance may be produced by varying the frequency,
keeping L and C constant; otherwise, resonance may be produced by varying
either L or C for a fixed frequency.

Example 8.1 For the circuit shown in Fig. 8.2, determine the value of capacitive
reactance and impedance at resonance.

VS

50 W + 25j - j Xc

Fig. 8.2

Solution At resonance

XL = XC

Since XL = 25 W

XC = 25 W \
1

wC
 = 25

The value of impedance at resonance is

Z = R

\ Z = 50 W

Example 8.2 Determine the resonant frequency for the circuit shown in
Fig. 8.3.
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VS

10 W 0.5 mH 10 Fm

Fig. 8.3

Solution The resonant frequency is

fr =
1

2p LC

=
1

2 10 10 0 5 106 3
p ¥ ¥ ¥

- -.

fr = 2.25 kHz

8.2 IMPEDANCE AND PHASE ANGLE OF A

SERIES RESONANT CIRCUIT

The impedance of a series RLC circuit is

|Z| = R L
C

2

2
1

+ -
F

HG
I

KJ
w

w

The variation of X
C
 and X

L
 with frequency is shown in Fig. 8.4.

XL
X LL=w

XC

R

Z

ff = fr

X
C

c = 1-
w

Fig. 8.4
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At zero frequency, both X
C
 and Z are infinitely large, and X

L
 is zero because

at zero frequency the capacitor acts as an open circuit and the inductor acts as a
short circuit. As the frequency increases, X

C
 decreases and X

L
 increases. Since

X
C
 is larger than X

L
, at frequencies below the resonant frequency f

r
, Z decreases

along with X
C
. At resonant frequency f

r
, X

C
 = X

L
, and Z = R. At frequencies

above the resonant frequency f
r
, X

L
 is larger than X

C
, causing Z to increase. The

phase angle as a function of frequency is shown in Fig. 8.5.

ffr

q

90º
I Vlags s

0º

–90º capacitive
leadsI VsleadsI Vs

Inductive
lagsI Vs

Fig. 8.5

At a frequency below the resonant frequency, current leads the source
voltage because the capacitive reactance is greater than the inductive reactance.
The phase angle decreases as the frequency approaches the resonant value, and
is 0° at resonance. At frequencies above resonance, the current lags behind the
source voltage, because the inductive reactance is greater than capacitive
reactance. As the frequency goes higher, the phase angle approaches 90°.

Example 8.3 For the circuit shown in Fig. 8.6, determine the impedance at
resonant frequency, 10 Hz above resonant frequency, and 10 Hz below resonant
frequency.

VS

10 W 0.1 H 10 Fm

Fig. 8.6
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Solution Resonant frequency fr =
1

2p LC

=
1

2 0 1 10 10
6

p . ¥ ¥
-

 = 159.2 Hz

At 10 Hz below f
r
 = 159.2 – 10 = 149.2 Hz

At 10 Hz above f
r
 = 159.2 + 10 = 169.2 Hz

Impedance at resonance is equal to R

\ Z = 10 W

Capacitive reactance at 149.2 Hz is

XC1
=

1 1

2 149 2 10 101
6w pC

=
¥ ¥ ¥-.

\ XC1
= 106.6 W

Capacitive reactance at 169.2 Hz is

XC2
=

1 1

2 169 2 10 102
6w pC

=
¥ ¥ ¥ -.

\ XC2
= 94.06 W

Inductive reactance at 149.2 Hz is

XL1
= w2L = 2p ¥ 149.2 ¥ 0.1 = 93.75 W

Inductive reactance at 169.2 Hz is

XL2
= w2L = 2p ¥ 169.2 ¥ 0.1 = 106.31 W

Impedance at 149.2 Hz is

|Z | = R X XL C

2 2

1 1
+ -( )

= ( ) ( . . )10 93 75 106 62 2+ -  = 16.28 W

Here X
C1

 is greater than X
L1

, so Z is capacitive.
Impedance at 169.2 Hz is

|Z| = R X XL C

2 2

2 2
+ -( )

= ( ) ( . . )10 106 31 94 062 2+ -  = 15.81 W

Here X
L1

 is greater than X
C1

, so Z is inductive.

8.3 VOLTAGES AND CURRENTS IN A

SERIES RESONANT CIRCUIT

The variation of impedance and current with frequency is shown in Fig. 8.7.
At resonant frequency, the capacitive reactance is equal to inductive reactance,

and hence the impedance is minimum. Because of minimum impedance, maximum
current flows through the circuit. The current variation with frequency is plotted.
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The voltage drop across resistance, inductance and capacitance also varies
with frequency. At f = 0, the capacitor acts as an open circuit and blocks current.
The complete source voltage appears across the capacitor. As the frequency
increases, X

C
 decreases and X

L
 increases, causing total reactance X

C
– X

L
 to

decrease. As a result, the impedance decreases and the current increases. As the
current increases, V

R
 also increases, and both V

C
 and V

L
 increase.

When the frequency reaches its resonant value f
r
, the impedance is equal to

R, and hence, the current reaches its maximum value, and V
R
 is at its maximum

value.
As the frequency is increased above resonance, X

L
 continues to increase and

X
C
 continues to decrease, causing the total reactance, X

L
– X

C
 to increase. As a

result there is an increase in impedance and a decrease in current. As the current
decreases, V

R
 also decreases, and both V

C
 and V

L
 decrease. As the frequency

becomes very high, the current approaches zero, both V
R
 and V

C
 approach zero,

and V
L
 approaches V

s
.

The response of different voltages with frequency is shown in Fig. 8.8.
The drop across the resistance reaches its maximum when f = f

r
. The

maximum voltage across the capacitor occurs at f = f
c
. Similarly, the maximum

voltage across the inductor occurs at f = f
L
.

The voltage drop across the inductor is

VL = IXL

where I =
V

Z

\ VL =
w

w
w

LV

R L
C

2
2

1
+ -

F
HG

I
KJ

Fig. 8.7
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To obtain the condition for maximum voltage across the inductor, we have to
take the derivative of the above equation with respect to frequency, and make it
equal to zero.

\
dV

d

L

w
= 0

If we solve for w, we obtain the value of w when V
L
 is maximum.

dV

d

d

d
LV R L

C

L

w w
w w

w
= + -

F
HG

I
KJ

L

N
M

O

Q
P

R
S
|

T|

U
V
|

W|

-

2
2 1 2

1
/

LV R L
L

C C

LV
R L

L

C C
L

C

R L
L

C C

2 2 2
2 2

1 2

2 2 2
2 2

2
3 2

2 2 2
2 2

2 1

2

2 1
2

2

2 1

+ - +F
H

I
K

- + - +
F
HG

I
KJ

-
F
HG

I
KJ

+ - +

-

w
w

w
w

w
w

w

w
w

/

 = 0

From this

R2 –
2L

C
+ 2/w2

C
2 = 0

\ wL =
2

2

1 2

2
2 2 2LC R C LC R C

L

-
=

-

fL =
1

2

1

1
2

2p LC R C

L
-

Fig. 8.8
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Similarly, the voltage across the capacitor is

VC = IXC = 
I

Cw

\ VC =
V

R L
C

C
2

2
1

1

+ -
F
HG

I
KJ

¥

w
w

w

To get maximum value 
dV

d

C

w
 = 0

If we solve for w, we obtain the value of w when V
C
 is maximum.

dV

d
C R L

C
L

C
L

C

C

w
w w

w
w

w w
= + -

F
HG

I
KJ

L

N
M

O

Q
P -

F
HG

I
KJ

+
F
HG

I
KJ

L

NM
O

QP

-

1

2

1
2

1 12
2 1 2

2

/

+ + -
F
HG

I
KJ

=R L
C

C2
2

1
0w

w

From this

w2
C =

1

2

2

LC

R

L
-

wC =
1

2

2

LC

R

L
-

\ f C =
1

2

1

2

2

p LC

R

L
-

The maximum voltage across the capacitor occurs below the resonant
frequency; and the maximum voltage across the inductor occurs above the
resonant frequency.

Example 8.4 A series circuit with R = 10 W, L = 0.1 H and C = 50 m F has an
applied voltage V = 50 –0° with a variable frequency. Find the resonant frequency,
the value of frequency at which maximum voltage occurs across the inductor and the
value of frequency at which maximum voltage occurs across the capacitor.

Solution The frequency at which maximum voltage occurs across the inductor is

fL = 
1

2

1

1
2

2p LC R C

L
-

F

HG
I

KJ

= 
1

2 0 1 50 10

1

1
10 50 10

2 0 1

6 2 6
p . ( )

.

¥ ¥
-

¥ ¥

¥

F

HG
I

KJ
- -

= 72.08 Hz
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Similarly, fC =
1

2

1

2

2

p LC

R

L
-

= 
1

2

1

0 1 50 10

10

2 0 16

2

p .

( )

.¥ ¥
-

¥-

= 
1

2
200000 500

p
-

= 71.08 Hz

Resonant frequency f
r
 = 

1

2

1

2 0 1 50 10 6p pLC
=

¥ ¥
-.

 = 71.18 Hz

It is clear that the maximum voltage across the capacitor occurs below the resonant
frequency and the maximum inductor voltage occurs above the resonant frequency.

8.4 BANDWIDTH OF AN RLC CIRCUIT

The bandwidth of any system is the range of frequencies for which the current
or output voltage is equal to 70.7% of its value at the resonant frequency, and it
is denoted by BW. Figure 8.9 shows the response of a series RLC circuit.

Here the frequency f
1
 is the frequency at which the current is 0.707 times the

current at resonant value, and it is called the lower cut-off frequency. The
frequency f

2
 is the frequency at which the current is 0.707 times the current at

resonant value (i.e. maximum value), and is called the upper cut-off frequency.
The bandwidth, or BW, is defind as the frequency difference between f

2
 and f

1
.

V lor

l

0.707
P

1

P

P2

ff
2
= f

L
f
r

f
1
= f

c

Fig. 8.9

\ BW = f2 – f1

The unit of BW is hertz (Hz).
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If the current at P
1
 is 0.707I

max
, the impedance of the circuit at this point is

2 R, and hence
1

1w C
– w1L = R (8.1)

Similarly, w2L –
1

2w C
= R (8.2)

If we equate both the above equations, we get

1

1w C
– w1L = w2L –

1

2w C

L (w1 + w2) = 
1 1 2

1 2C

w w

w w

+F
HG

I
KJ

(8.3)

From Eq. 8.3, we get

w1w2 =
1

LC

we have w2
r =

1

LC

\ w2
r = w1w2 (8.4)

If we add Eqs 8.1 and 8.2, we get

1

1w C
– w1L + w2L –

1

2w C
= 2R

(w2 – w1)L + 
1 1 2

1 2C

w w

w w

+F
HG

I
KJ

 = 2R (8.5)

Since C = 
1
2w r L

and w1w2 = w2
r

(w2 – w1)L + 
w w w

w

r

r

L
2

2 1
2

( )-
 = 2R (8.6)

From Eq. 8.6, we have

w2 – w1 =
R

L
(8.7)

\ f2 – f1 =
R

L2p
(8.8)

or BW =
R

L2p
From Eq. 8.8, we have

f2 – f1 =
R

L2p

\ fr – f1 =
R

L4p
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f2 – fr =
R

L4p

The lower frequency limit f1 = fr –
R

L4p
(8.9)

The upper frequency limit f2 = fr +
R

L4p
(8.10)

If we divide the equation on both sides by f
r
, we get

f f

f

R

f Lr r

2 1

2

-
=

p
(8.11)

Here an important property of a coil is defined. It is the ratio of the reactance
of the coil to its resistance. This ratio is defined as the Q of the coil. Q is known
as a figure of merit, it is also called quality factor and is an indication of the
quality of a coil.

Q = 
X

R

f L

R

L r=
2p

(8.12)

If we substitute Eq. (8.11) in Eq. (8.12), we get

f f

f Qr

2 1 1-
= (8.13)

The upper and lower cut-off frequencies are sometimes called the half-power

frequencies. At these frequencies the power from the source is half of the power
delivered at the resonant frequency.

At resonant frequency, the power is

Pmax = I 2
max R

At frequency f
1
, the power is P

1
 = 

I
R

I Rmax max

2 2

2 2
F
H

I
K =

Similarly, at frequency f
2
, the power is

P2 =
Imax

2

2
F
H

I
K R

=
I Rmax

2

2

The response curve in Fig. 8.9 is also called the selectivity curve of the
circuit. Selectivity indicates how well a resonant circuit responds to a certain
frequency and eliminates all other frequencies. The narrower the bandwidth,
the greater the selectivity.

Example 8.5 Determine the quality factor of a coil for the series circuit
consisting of R = 10 W, L = 0.1 H and C = 10 m F.

Solution Quality factor Q = 
f

BW

r

fr = 
1

2

1

2 0 1 10 10 6p pLC
=

¥ ¥ -.
 = 159.2 Hz
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At lower half power frequency, X
C
 > X

L

1

2 1p f C
 – 2pf1L = R

From which f1 = 
- + +R R L C

L

2 4

4

/

p

At upper half power frequency X
L
 > X

C

2p f2L � 
1

2 2p f C
 = R

From which f2 = 
+ + +R R L C

L

2 4

4

/

p

Bandwidth BW = f2 – f1 = 
R

L2p

Hence Q0 = 
f

BW

f L

R

r r= =
¥ ¥ ¥2 2 159 2 0 1

10

p p . .

Q0 = 
f

BW

r  = 10

8.5 THE QUALITY FACTOR (Q) AND ITS

EFFECT ON BANDWIDTH

The quality factor, Q, is the ratio of the reactive power in the inductor or
capacitor to the true power in the resistance in series with the coil or capacitor.

The quality factor

Q = 2p ¥
maximum energy stored

energy dissipated per cycle

In an inductor, the max energy stored is given by 
LI 2

2

Energy dissipated per cycle = 
I

2

2
F
HG

I
KJ

R ¥ T =
I RT2

2

\ Quality factor of the coil Q = 2p ¥

1

2

2

1

2

2

LI

I R

f
¥

=
2p wf L

R

L

R
=
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Similarly, in a capacitor, the max energy stored is given by 
CV 2

2

The energy dissipated per cycle = (I/ 2 )
2

R ¥ T

The quality factor of the capacitance circuit

Q = 

2
1

2

2

1

2

2

p
w

C
I

C

I
R

f

F
HG

I
KJ

¥

 = 
1

w CR

In series circuits, the quality factor Q = 
w

w

L

R CR
=

1

We have already discussed the relation between bandwidth and quality

factor, which is Q = 
f

BW

r .

A higher value of circuit Q results in a smaller bandwidth. A lower value of
Q causes a larger bandwidth.

Example 8.6 For the circuit shown in Fig. 8.10, determine the value of Q at
resonance and bandwidth of the circuit.

10 V

10 W

5 H

100 Fm90 W

Fig. 8.10

Solution The resonant frequency,

fr = 
1

2p LC

= 
1

2 5 100 10 6
p ¥ ¥

-

= 7.12 Hz

Quality factor Q = XL/R = 2p fr L/R

= 
2 7 12 5

100

p ¥ ¥.
 = 2.24

Bandwidth of the circuit is BW = 
f

Q

r =
7 12

2 24

.

.
 = 3.178 Hz
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8.6 MAGNIFICATION IN RESONANCE

If we assume that the voltage applied to the series RLC circuit is V, and the
current at resonance is I, then the voltage across L is V

L
 = IX

L
 = (V/R) w

r
L

Similarly, the voltage across C

VC = IXC = 
V

R Crw

Since Q = 1/wrCR = wr L/R

where w
r
 is the frequency at resonance.

Therefore VL = VQ

VC = VQ

The ratio of voltage across either L or C to the voltage applied at resonance
can be defined as magnification.
\ Magnification = Q = V

L
/V or V

C
/V

8.7 PARALLEL RESONANCE

Basically, parallel resonance occurs when X
C
 = X

L
. The frequency at which

resonance occurs is called the resonant frequency. When X
C
 = X

L
, the two

branch currents are equal in magnitude and 180° out of phase with each other.
Therefore, the two currents cancel
each other out, and the total current
is zero. Consider the circuit shown in
Fig. 8.11. The condition for resonance
occurs when X

L
 = X

C
.

In Fig. 8.11, the total admittance

Y =
1 1

R j L R j CL C+
+

-w w( / )

=
R j L

R L

R j C

R
C

L

L

C

C

-

+
+

+

+

w

w

w

w

2 2 2 2
2 2
1

( / )

=
R

R L

R

R
C

j
C

R
C

L

R L

L

L

C

C C
L

2 2 2 2
2 2

2
2 2

2 2 21
1

1+
+

+
+

+

L

N

M
M
M

O

Q

P
P
P

-
+

L

N
M

O

Q
P

R

S
|

T
|

U

V
|

W
|w

w

w

w

w

w

/
(8.14)

At resonance the susceptance part becomes zero

\
w

w

r

L r

L

R L
2 2 2+

=

1

12
2 2

w

w

r

C
r

C

R
C

+
(8.15)

Rc Xc

RL XLV

Fig. 8.11
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wr L R
C

C

r

2
2 2

1
+

L

N
M

O

Q
P

w
=

1

w rC
 [RL

2 + wr
2 L2]

w 2
r R

C
C

r

2
2 2

1
+

L

N
M

O

Q
P

w
=

1

LC
 [RL

2 + w 2
r L2]

w 2
r RC

2 –
w r L

C

2

=
1 12

2LC
R

C
L -

w 2
r R

L

C
C
2 -L

NM
O
QP

=
1 2

LC
R

L

CL -

wr =
1

2

2LC

R L C

R L C

L

C

-

-

( / )

( / )
(8.16)

The condition for resonant frequency is given by Eq. 8.16. As a special case,
if R

L
 = R

C
, then Eq. 8.16 becomes

wr =
1

LC

Therefore fr =
1

2p LC

Example 8.7 Find the resonant frequency in the ideal parallel LC circuit shown
in Fig. 8.12.

Fig. 8.12

Solution fr =
1

2

1

2 50 10 0 01 10
3 6p pLC

=
¥ ¥ ¥- -.

 = 7117.6 Hz

8.8 RESONANT FREQUENCY FOR A TANK CIRCUIT

The parallel resonant circuit is generally
called a tank circuit because of the fact that
the circuit stores energy in the magnetic
field of the coil and in the electric field of
the capacitor. The stored energy is
transferred back and forth between the
capacitor and coil and vice-versa. The tank
circuit is shown in Fig. 8.13. The circuit
is said to be in resonant condition when the
suscep-tance part of admittance is zero. Fig. 8.13
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The total admittance is Y = 
1 1

R jX jXL L C+
+

-
(8.17)

Simplifying Eq. 8.17, we have

Y =
R jX

R X

j

X

L L

L L C

-

+
+

2 2

=
R

R X
j

X

X

R X

L

L L C

L

L L
2 2 2 2

1

+
+ -

+

L

N
M

O

Q
P

To satisfy the condition for resonance, the susceptance part is zero.

\
1

XC

=
X

R XL L
2 2+

(8.18)

w C =
w

w

L

R LL
2 2 2+

(8.19)

From Eq. 8.19, we get

RL
2 + w2L2 =

L

C

w
2
L

2 =
L

C
– RL

2

w2 =
1

2

2LC

R

L

L-

\ w =
1

2

2LC

R

L

L- (8.20)

The resonant frequency for the tank circuit is

fr =
1

2

1
2

2p LC

R

L

L- (8.21)

Example 8.8 For the tank circuit shown in Fig. 8.14, find the resonant frequency.

Fig. 8.14

Solution The resonant frequency

fr = 
1

2

1 2

2p LC

R

L

L-
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= 
1

2

1

0 1 10 10

10

0 16

2

2p .

( )

( . )¥ ¥
-

-

= 
1

2
10 10

1

2
6 2

p p
( ) ( )- =  (994.98) = 158.35 Hz

8.9 VARIATION OF IMPEDANCE WITH

FREQUENCY

The impedance of a parallel resonant circuit is maximum at the resonant
frequency and decreases at lower and higher frequencies as shown in Fig. 8.15.

At very low frequencies, X
L
 is very

small and X
C
 is very large, so the total

impedance is essentially inductive. As
the frequency increases, the impedance
also increases, and the inductive reactance
dominates until the resonant frequency is
reached. At this point X

L
 = X

C
 and the

impedance is at its maximum. As the
frequency goes above resonance,
capacitive reactance dominates and the
impedance decreases.

8.10 Q FACTOR OF PARALLEL RESONANCE

Consider the parallel RLC circuit shown in Fig. 8.16.

Fig. 8.16

In the circuit shown, the condition for resonance occurs when the susceptance
part is zero.

Admittance Y = G + jB (8.22)

=
1

R
 + jwC + 

1

j Lw

=
1 1

R
j C

L
+ -

F
HG

I
KJ

w
w

(8.23)

Fig. 8.15
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The frequency at which resonance occurs is

wrC –
1

w r L
= 0 (8.24)

wr =
1

LC
(8.25)

The voltage and current variation with frequency is shown in Fig. 8.17. At
resonant frequency, the current is minimum.

Fig. 8.17

The bandwidth, BW = f2 – f1

For parallel circuit, to obtain the lower half power frequency,

w1C –
1 1

1w L R
= - (8.26)

From Eq. 8.26, we have

w2
1 + 

w1 1

RC LC
-  = 0 (8.27)

If we simplify Eq. 8.27, we get

w1 = 
-

+ F
H

I
K +

1

2

1

2

12

RC RC LC
(8.28)

Similarly, to obtain the upper half power frequency

w2C –
1 1

2w L R
= (8.29)

From Eq. 8.29, we have

w2 = 
1

2

1

2

12

RC RC LC
+ F

H
I
K + (8.30)
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Bandwidth BW = w2 – w1 = 
1

RC

The quality factor is defined as Qr = 
w

w w

r

2 1-

Qr = 
w r

RC1/
 = wr RC

In other words,

Q = 2p ¥
maximum energy stored

Energy dissipated/cycle

In the case of an inductor,

The maximum energy stored = 
1

2
LI

2

Energy dissipated per cycle = 
I

2

2
F
H

I
K ¥ R ¥ T

The quality factor Q = 2p ¥
1 2

2

1

2

2

/ ( )LI

I
R

f
¥

\ Q = 2p ¥

1

2

2

1

2

2

L
V

L
R

V

f

w

F
HG

I
KJ

¥

=
2

2 2

p

w w

f LR

L

R

L
=

For a capacitor, maximum energy stored = 1/2 (CV
2
)

Energy dissipated per cycle = P ¥ T = 
V

R f

2

2

1

¥
¥

The quality factor Q = 2p ¥
1 2

2

1

2

2

/ ( )CV

V

R f
¥

= 2p fCR = w CR

8.11 MAGNIFICATION

Current magnification occurs in a parallel resonant circuit. The voltage applied
to the parallel circuit, V = IR

Since IL =
V

L

IR

Lr rw w
=  = IQr
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For the capacitor, IC =
V

Cr1/w
 = IRwrC = IQr

Therefore, the quality factor Q
r
 = I

L
/I or I

C
/I

8.12 REACTANCE CURVES IN PARALLEL

RESONANCE

The effect of variation of frequency on the reactance of the parallel circuit is
shown in Fig. 8.18.

Fig. 8.18

The effect of inductive susceptance,

BL =
-1

2p f L

Inductive susceptance is inversely proportional to the frequency or w. Hence
it is represented by a rectangular hyperbola, MN. It is drawn in fourth quadrant,
since B

L
 is negative. Capacitive susceptance, B

C
 = 2pf C. It is directly

proportional to the frequency f or w. Hence it is represented by OP, passing
through the origin. Net susceptance B = B

C
– B

L
. It is represented by the curve

JK, which is a hyperbola. At point w
r
, the total susceptance is zero, and

resonance takes place. The variation of the admittance Y and the current I is
represented by curve VW. The current will be minimum at resonant frequency.

8.13 LOCUS DIAGRAMS

A phasor diagram may be drawn and is expanded to develop a curve; known as
a locus. Locus diagrams are useful in determining the behaviour or response of
an RLC circuit when one of its parameters is varied while the frequency and
voltage kept constant. The magnitude and phase of the current vector in the
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circuit depends upon the values of R, L, and C and frequency at the fixed source
voltage. The path traced by the terminus of the current vector when the
parameters R, L or C are varied while f and v are kept constant is called the
current locus.

The term circle diagram identifies locus plots that are either circular or semi-
circular loci of the terminus (the tip of the arrow) of a current phasor or voltage
phasor. Circle diagrams are often employed as aids in analysing the operating
characteristics of circuits like equivalent circuit of transmission lines and some
types of AC machines.

Locus diagrams can be also drawn for reactance, impedance, susceptance
and admittance when frequency is variable. Loci of these parameters furnish
important information for use in circuit analysis. Such plots are particularly
useful in the design of electric wave filters.

8.13.1 Series Circuits

To discuss the basis of representing a series circuit by means of a circle diagram
consider the circuit shown in Fig. 8.19(a). The analytical procedure is greatly
simplified by assuming that inductance elements have no resistance and that
capacitors have no leakage current.

V

IY
IL

IX

I

0

R = • R = 0

q

V/XL

Fig. 8.19(a) Fig. 8.19(b)

The circuit under consideration has constant reactance but variable
resistance. The applied voltage will be assumed with constant rms voltage V.

The power factor angle is designated by q. If R = 0, I
L
 is obviously equal to 

V

XL

and has maximum value. Also I lags V by 90°. This is shown in Fig. 8.19(b). If

R is increased from zero value, the magnitude of I becomes less than 
V

XL

 and q

becomes less than 90° and finally when the limit is reached, i.e. when R equals
to infinity, I equals to zero and q equals to zero. It is observed that the tip of the
current vector represents a semicircle as indicated in Fig. 8.19(b).

In general

IL =
V

Z
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sin q =
X

Z

or Z =
XL

sin q

I =
V

XL

 sin q (8.31)

For constant V and X, Eq. 8.31 is the polar equation of a circle with diameter

V

XL

. Figure 8.19(b) shows the plot of Eq. 8.31 with respect to V as reference.

The active component of the current I
L
 in Fig. 8.19(b) is OI

L
 cos q which is

proportional to the power consumed in the RL circuit. In a similar way we can
draw the loci of current if the inductive reactance is replaced by a capacitive
reactance as shown in Fig. 8.19(c). The current semicircle for the RC circuit
with variable R will be on the left-hand side of the voltage vector OV with

diameter
V

XL

 as shown in Fig. 8.19(d). The current vector OI
C
 leads V by q°.

The active component of the current I
C
X in Fig. 8.19(d) is OI

C
 cos q which is

proportional to the power consumed in the RC circuit.

Fig. 8.19(c) Fig. 8.19(d)

Circle Equations for an RL Circuit (a) Fixed reactance and variable resistance.
The X-co-ordinate and Y-co-ordinate of I

L
 in Fig. 8.19(b) respectively are I

X
 =

I
L
 sin q; I

y
 = I

L
cos q.

Where IL =
V

Z
; sin q = 

X

Z

L ; cos q = 
R

Z
; Z = R XL

2 2+

\ IX =
V

Z

X

Z
V

X

Z

L L◊ = ◊
2

(8.32)

IY =
V

Z

R

Z
V

R

Z
◊ = ◊

2 (8.33)

Squaring and adding Eqs. 8.32 and 8.33, we obtain

I
2
X + I2

Y =
V

R XL

2

2 2+
(8.34)
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From Eq. 8.32

Z2 = R2 + X2
L = V

X

I

L

X

◊

\ Equation 8.34 can be written as I
2

X
 + I

2

Y
 = 

V

X
I

L
X◊

or I2
X + I2

Y –
V

X
I

L
X◊  = 0

Adding
V

XL2

2
F
HG

I
KJ

 to both sides the above equation can be written as

I
V

X
I

V

X
X

L
Y

L

-
F
HG

I
KJ

+ =
F
HG

I
KJ2 2

2
2

2

(8.35)

Equation 8.35 represents a circle whose radius is 
V

XL2
 and the co-ordinates

of the centre are 
V

XL2
, 0.

In a similar way we can prove that for a series RC circuit as in Fig. 8.19(c),
with variable R, the locus of the tip of the current vector is a semi-circle and is
given by

I
V

X
I

V

X
X

C
Y

C

+
F
HG

I
KJ

+ =
2 4

2
2

2

2 (8.36)

The centre has co-ordinates of –
V

XL2
, 0 and radius as 

V

XL2
.

(b) Fixed resistance, variable reactance Consider the series RL circuit with
constant resistance R but variable reactance X

L
 as shown in Fig. 8.20(a).

IL

XL= 0

X =L •

IY

IX

V/R

q

0

V

Fig. 8.20(a) Fig. 8.20(b)



8.24 Electrical Circuit Analysis

When X
L
 = 0; I

L
 assumes maximum value of 

V

R
 and q = 0, the power factor

of the circuit becomes unity; as the value X
L
 is increased from zero, I

L
 is reduced

and finally when X
L
 is a, current becomes zero and q will be lagging behind the

voltage by 90° as shown in Fig. 8.20(b). The current vector describes a

semicircle with diameter 
V

R
 and lies in the right-hand side of voltage vector

OV. The active component of the current OI
L
 cos q is proportional to the power

consumed in the RL circuit.

Equation of circle

Consider Eq. 8.34 I2
X + I2

Y = 
V

R XL

2

2 2+

From Eq. 8.33 Z
2 = R2 + X2

L = 
VR

IY

(8.37)

Substituting Eq. 8.37 in Eq. 8.34

I2
X + I 2

Y = 
V

R
IY (8.38)

I2
X + I 2

Y –
V

R
IY = 0

Adding
V

R2

2
F
H

I
K  to both sides the above equation can be written as

I
2
X + I

V

R

V

R
Y -F

H
I
K = F

H
I
K2 2

2 2

(8.39)

Equation 8.39 represents a circle whose radius is 
V

R2
 and the co-ordinates

of the centre are 0; 
V

R2
.

Let the inductive reactance in Fig. 8.20(a) be replaced
by a capacitive reactance as shown in Fig. 8.21(a).

Fig. 8.21(a) Fig. 8.21(b)

Ic

X =L 0

XL= •

IY

IX

q

0

V

V/R
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The current semicircle of a RC circuit with variable X
C
 will be on the left-

hand side of the voltage vector OV with diameter 
V

R
. The current vector OI

C

leads V by q°. As before, it may be proved that the equation of the circle shown
in Fig. 8.21(b) is

I
2
X + I

V

R

V

R
Y -F

H
I
K = F

H
I
K2 2

2 2

Example 8.9 For the circuit shown in Fig. 8.22(a) plot the locus of the current,
mark the range of I for maximum and minimum values of R, and the maximum power
consumed in the circuit. Assume X

L
 = 25 W and R = 50 W. The voltage is 200 V;

50 Hz.

j 25 W

50 W

200 V
50 Hz

A

B

V

8 Imax

27.76º

Imin

Fig. 8.22(a) Fig. 8.22(b)

Solution

Maximum value of current I
max

 = 
200

25
 = 8 A; q = 90°

Minimum value of current I
min

 = 
200

50 252 2( ) ( )+
 = 3.777 A; q = 27.76°

The locus of the current is shown in Fig. 8.22(b).
Power consumed in the circuit is proportional to I cos q for constant V. The

maximum ordinate possible in the semicircle (AB in Fig. 8.22(b)) represents the
maximum power consumed in the circuit. This is possible when q = 45°, under the

condition power factor cos q = cos 45° = 
1

2
.

Hence, the maximum power consumed in the circuit = V ¥ AB = V ¥
I

L

max

Imax =
V

X L

 = 84 A

Pmax = 
V

X L

2

2
 = 

200

2 25

2
b g

¥
 = 800 W
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Example 8.10 For the circuit shown in Fig. 8.22(a), if the reactance is variable,
plot the range of I for maximum and minimum values of X

L
 and maximum power

consumed in the circuit.

Solution

Maximum value of current I
max

 = 
200

50
 = 4 A; q = 0

Minimum value of current I
min

 = 
200

50 252 2( ) ( )+

= 3.777 A; q = 27.76°
The locus of current is shown in Fig. 8.23.
Maximum power will be when I = 4 A
Hence P

max
 = 4 ¥ 200 = 800 W

Example 8.11 For the circuit shown in Fig. 8.24(a) draw the locus of the current.
Mark the range of I for maximum and minimum values. Assume X

C
 = 50 W; R = 10

W; V = 400 V.

V
XC

R

Fig. 8.24(a) 8.24(b)

Solution Imax = 
400

10
 = 40 A; q = 0°

Imin = 
400

50 102 2( ) ( )+
 = 7.716 A. q = tan–1 5 = 77.8°

The locus of the current is shown in Fig. 8.24(b).

8.13.2 Parallel Circuits

Variable X
L

Locus plots are drawn for parallel
branches containing RLC elements in a similar
way as for series circuits. Here we have more
than one current locus. Consider the parallel
circuit shown in Fig. 8.25(a). The quantities
that may be varied are X

L
, X

C
, R

L
 and R

C
 for a

given voltage and frequency.

Imax

Imin27.76º4 A

0

Fig. 8.23

V

XC
XL

I

RL
RC

IL IC

Fig. 8.25(a)
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Let us consider the variation of X
L
 from zero to •. Let OV shown in

Fig. 8.25(b), be the voltage vector, taken as reference. A current, I
C
, will flow in

the condenser branch whose parameters are held constant and leads V by an

angle q
C
 = tan

–1 X

R

C

C

F
HG

I
KJ

, when X
L
 = 0, the current I

L
, through the inductive

branch is maximum and is given by 
V

RL

 and it is in phase with the applied

voltage. When X
L
 is increased from zero, the current through the inductive

branch I
L
 decreases and lags V by q

L
 = tan

–1 X

R

L

L

 as shown in Fig. 8.25(b). For

any value of I
L
, the I

L
R

L
 drop and I

L
X

L
 drop must add at right angles to give the

applied voltage. These drops are shown as OA and AV respectively. The locus
of I

L
 is a semicircle, and the locus of I

L
R

L
 drop is also a semicircle. When X

L
 = 0,

i.e. I
L
 is maximum, I

L
 coincides with the diameter of its semicircle and I

L
R

L
 drop

also coincides with the diameter of its semi-circle as shown in the figure; both
these semicircles are shown with dotted circles as OI

L
B and OAV respectively.

Since the total current is I
C
 + I

L
. For example, a particular value of I

C
and I

L

the total current is represented by OC on the total current semicircle. As X
L
 is

varied, the locus of the resultant current is therefore, the circle I
C

CB as shown
with thick line in the Fig. 8.25(b).

V R/ L
B

V/RLqC

qL

A

B

IL

IL
IL RL

XL

IC

C

I Circle

IL Circle

I

0 V

Fig. 8.25(b)

(b) Variable X
C

A similar procedure can be adopted as outlined above to
draw the locus plots of I

l
 and I when X

C
 is varying while R

L
, R

C
, X

L
, V and f are

held constant. The curves are shown in Fig. 8.25(c).
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qL

qC

IC

IC
IC

IC

IL

RC

XC

A

B

B

0

V

C

V/RL

V/RL

Fig. 8.25(c)

OV presents the voltage vector, OB is the maximum current through RC

branch when X
L
 = 0; OI

L
 is the current through the R

L
 branch lagging OV by an

angle q
L
 = tan

–1 C

R

L

L

. As X
C
 is increased from zero, the current through the

capacitive branch I
C
 decreases and leads V by q

C
 = tan

–1 X

R

C

C

. For a particular I
C
,

the resultant current I = I
L
 + I

C
 and is given by OC. The dotted semicircle OI

C
B

is the locus of the I
C
, thick circle I

L
CB is the locus of the resultant current.

(c) Variable R
L

The locus of current for the variation of R
L
 in Fig. 8.26(a) is

shown in Fig. 8.26(b). OV represents the reference voltage, OI
L
 B represents the

locus of I
L
 and I

C
CB represents the resultant current locus. Maximum I

L
 = 

V

XL

is represented by OB.

(d) Variable R
C

The locus of currents for the variation of R
C
 in Fig. 8.27(a) is

plotted in Fig. 8.27(b) where OV is the source voltage and semicircle OAB

represents the locus of I
C
. The resultant current locus is given by BCI

L
.
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Example 8.12 For the parallel circuit shown in Fig. 8.28(a), draw the locus of I
1

and I. Mark the range of values for R
1
 between 10 W and 100 W. Assume X

L
 =

25 W and R
2
 = 25 W. The supply voltage is 200 V and frequency is 50 Hz, both held

constant.

Solution

Let us take voltage as reference; on the positive X-axis. I
2
 is given by I

2
 = 

200

25
= 8A and is in phase with V.

V

XC

XL

I

RL
RC

IL IC

IC

qL

qL

qC V

C

I XL L

I RL L

IL

A

B

B

I =V X=V XL / L

Fig. 8.26(a) Fig. 8.26(b)

V

Xc
XL

I

RL
Rc

IL Ic

B

BA

V

C

IL

O

qL

qL

I XC C

I RC C

Fig. 8.27(a) Fig. 8.27(b)
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When R
1
 = 10 W I

1
=

200

100 625( )+
 = 7.42 A; q

1
 = tan

–1 25

10
 = 68.19°

when R
2
 = 100 W I

1
=

200

10000 625( )+
 = 1.94 A; q

2
 = tan

–1 25

100
 = 14.0°

The variation of I
1
 and I are shown in Fig. 8.28(b).

Example 8.13 Draw the locus of I
2
 and I for the parallel circuit shown in

Fig. 8.29(a).

V f;

I2

I1

R2

R1

XC2

XC1

I

Fig. 8.29(a)

Fig. 8.28(b)

Fig. 8.28(a)

I1 R1

IL

I

RL

XL

V
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Solution

I
1
 leads the voltage by a fixed angle q

1
 given by tan

–1 X

R

C

1

I
2
 varies according to the value of X

C2

I
2
 is maximum when X

C2
 = 0 and is in phase with V

I
2
 is zero when X

C2
 = • as shown in Fig. 8.29(b).

IL

I2 Locus

q1

XC2= •
XC2=0

V

II1

Fig. 8.29(b)

Example 8.14 For a parallel circuit shown in Fig. 8.30(a) plot the locus of
currents.

 

I3

I1

I2

q1

XL= • XL=0

I

B

CA

V0

Fig. 8.30(a) Fig. 8.30(b)

Current I
1
 leads the voltage by a fixed angle q

1
 given by tan

–1 X

R

C

1

, current I
2
 leads

the voltage by 90°. I
3
 varies according to the value of X

L
, when X

L
 = 0, I

3
 is maximum

and is given by 
V

R
L

; is in phase with V; when X
L
 = •, I

3
 is zero. Both these

extremities are shown in Fig. 8.30(b). For a particular value of I
3
 the total current I is

given by I
1
 + I

2
 + I

3
 = OA + AB + BC.
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ADDITIONAL SOLVED PROBLEMS

Problem 8.1 For the circuit shown in
Fig. 8.31, determine the frequency at
which the circuit resonates. Also find
the voltage across the inductor at
resonance and the Q factor of the circuit.

Solution The frequency of resonance
occurs when X

L
 = X

C

wL =
1

wC

\ w =
1

LC
 radians/sec

=
1

0 1 50 10 6. ¥ ¥ -
 = 447.2 rad/sec

fr =
1

2p
 (447.2) = 71.17 Hz

The current passing through the circuit at resonance,

I =
V

R
=

100

10
 = 10A

The voltage drop across the inductor

VL = IXL = IwL

= 10 ¥ 447.2 ¥ 0.1 = 447.2 V

The quality factor Q =
w L

R
=

¥447 2 0 1

10

. .
 = 4.47

Problem 8.2 A series RLC circuit has a quality factor of 5 at 50 rad/sec. The
current flowing through the circuit at resonance is 10 A and the supply voltage
is 100 V. The total impedance of the circuit is 20 W. Find the circuit constants.

Solution The quality factor Q = 5
At resonance the impedance becomes resistance.

The current at resonance is I =
V

R

10 = 
100

R

\ R = 10 W

Q =
w L

R

Since Q = 5, R = 10

100 rmsV

10 W 0.1 H 50 Fm

Fig. 8.31
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w L = 50

\ L =
50

w
 = 1 H

Total impedance is Q =
1

wCR

\ C =
1

Q Rw

=
1

5 50 10¥ ¥

C = 400 mF

Problem 8.3 A voltage v(t) = 10 sin w t is applied to a series RLC circuit. At
the resonant frequency of the circuit, the maximum voltage across the capacitor
is found to be 500 V. Moreover, the bandwidth is known to be 400 rad/sec and
the impedance at resonance is 100 W. Find the resonant frequency. Also find
the values of L and C of the circuit.

Solution The applied voltage to the circuit is

Vmax = 10 V

Vrms =
10

2
 = 7.07 V

The voltage across capacitor V
C
 = 500 V

The magnification factor Q = 
V

V

C =
500

7 07.
 = 70.7

The bandwidth BW = 400 rad/sec

w2 – w1 = 400 rad/sec

The impedance at resonance Z = R = 100 W

Since Q = 
w

w w

r

2 1-

wr = Q (w2 – w1) = 28280 rad/sec

fr =
28280

2p
 = 4499 Hz

The bandwidth w2 – w1 =
R

L

\ L =
R

w w2 1

100

400-
=  = 0.25 H
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Since fr =
1

2p LC

C =
1

2

1

2 4499 0 252 2( ) ( ) .p pf Lr ¥
=

¥ ¥
 = 5 nF

Problem 8.4 Find the value of L at which
the circuit resonates at a frequency of 1000
rad/sec in the circuit shown in Fig. 8.32.

Solution Y =
1

10 12

1

5-
+

+j jXL

Y =
10 12

10 12

5

252 2 2

+

+
+

-

+

j jX

X

L

L

=
10

10 12

5

25

12

10 12 252 2 2 2 2 2+
+

+
+

+
-

+

L

N
M

O

Q
P

X
j

X

XL

L

L

At resonance the susceptance becomes zero.

Then
X

X

L

L25

12

10 122 2 2+
=

+

12XL
2 – 244 XL + 300 = 0

From the above equation

XL
2 – 20.3 XL + 25 = 0

XL =
+ ± - ¥20 3 20 3) 4 25

2

2. ( .

=
20 3 412 100

2

. + -
 or 

20 3 412 100

2

. - -

= 18.98 W or 1.32 W

\ XL = wL = 18.98 or 1.32 W

L =
18 98

1000

.
 or 

1 32

1000

.

L = 18.98 mH or 1.32 mH

Problem 8.5 Two impedances Z
1
 = 20 + j10 and Z

2
 = 10 – j30 are connected

in parallel and this combination is connected in series with Z
3
 = 30 + jX. Find

the value of X which will produce resonance.

Solution Total impedance is

Z = Z3 + (Z1 || Z2)

= (30 + jX) + 
( ) ( )20 10 10 30

20 10 10 30

+ -

+ + -

R
S
T

U
V
W

j j

j j

= (30 + jX ) + 
200 600 100 300

30 20

- + +

-

j j

j

5 W 10 W

- Wj12L

Fig. 8.32
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= 30 + jX + 
500 500

30 20

-

-

F
HG

I
KJ

j

j

= 30 + jX + 
500 1 30 20

30 202 2

( ) ( )

( ) ( )

- +

+

L
NM

O
QP

j j

= (30 + jX ) + 
500 30 20 30 20

900 400

( )+ - +

+

L
NM

O
QP

j j

= 30 + jX + 
5

13
 (50 – j10)

= 30
5

13
50

5

13
10+ ¥F

H
I
K + - ¥F

H
I
Kj X

At resonance, the imaginary part is zero

\ X –
50

13
= 0

X =
50

13
 = 3.85 W

Problem 8.6 A 50 W resistor is connected in series with an inductor having
internal resistance, a capacitor and 100 V variable frequency supply as shown
in Fig. 8.33. At a frequency of 200 Hz, a maximum current of 0.7 A flows
through the circuit and voltage across the capacitor is 200 V. Determine the
circuit constants.

Solution At resonance, current in the circuit is maximum

I = 0.7 A

Voltage across capacitor is V
C
 = IX

C

Since VC = 200, I = 0.7

XC =
1

wC

wC =
0 7

200

.

\ C =
0 7

200 2 200

.

¥ ¥p
 = 2.785 mF

At resonance

XL – XC = 0

\ XL = XC

Since XC =
1 200

0 7wC
=

.
 = 285.7 W

XL = wL = 285.7 W

Fig. 8.33
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\ L =
285 7

2 200

.

p ¥
 = 0.23 H

At resonance, the total impedance

Z = R + 50

\ R + 50 = 
V

I
=

100

0 7.

R + 50 = 142.86 W

\ R = 92.86 W

Problem 8.7 In the circuit shown in Fig. 8.34, a maximum current of 0.1A
flows through the circuit when the capacitor is at 5 mF with a fixed frequency
and a voltage of 5 V. Determine the frequency at which the circuit resonates,
the bandwidth, the quality factor Q and the value of resistance at resonant
frequency.

Solution At resonance, the current is maximum in the circuits

I =
V

R

\ R =
V

I
=

5

0 1.
 = 50 W

The resonant frequency is

wr =
1

LC

=
1

0 1 5 10 6. ¥ ¥ -
 = 1414.2 rad/sec

fr =
1414 2

2

.

p
 = 225 Hz

The quality factor is Q = 
w L

R
=

¥1414 2 0 1

50

. .
= 28

Since
f

BW

r = Q

The bandwidth BW = 
f

Q

r =
225

2 8.
 = 80.36 Hz

Problem 8.8 In the circuit shown in Fig. 8.35, determine the circuit constants
when the circuit draws a maximum current at 10 mF with a 10 V, 100 Hz supply.
When the capacitance is changed to 12 mF, the current that flows through the
circuit becomes 0.707 times its maximum value. Determine Q of the coil at 900
rad/sec. Also find the maximum current that flows through the circuit.

Fig. 8.34
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Fig. 8.35

Solution At resonant frequency, the circuit draws maximum current. So, the
resonant frequency f

r
 = 100 Hz

fr =
1

2p LC

L =
1

2 2C fr¥ ( )p

=
1

10 10 2 1006 2¥ ¥- ( )p
 = 0.25 H

We have wL –
1

wC
 = R

900 ¥ 0.25 –
1

900 12 10 6¥ ¥ -
 = R

\ R = 132.4 W

The quality factor Q = 
w L

R
=

¥900 0 25

132 4

.

.
 = 1.69

The maximum current in the circuit is I = 
10

132 4.
 = 0.075 A

Problem 8.9 In the circuit shown in Fig. 8.36, the current is at its maximum
value with capacitor value C = 20 mF and 0.707 times its maximum value with
C = 30 mF. Find the value of Q at w = 500 rad/sec, and circuit constants.

Fig. 8.36

Solution The voltage applied to the circuit is V = 20 V. At resonance, the
current in the circuit is maximum. The resonant frequency w

r
 = 500 rad/sec.
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Since w r =
1

LC

\ L =
1 1

500 20 102 2 6w r C
=

¥ ¥ -( )
 = 0.2 H

Since we have

w L –
1

w C
 = R

500 ¥ 0.2 –
1

500 30 10 6¥ ¥ -
 = R

\ R = 100 – 66.6 = 33.4

The quality factor is Q = 
w L

R
=

¥500 0 2

33 4

.

.
 = 2.99

Problem 8.10 In the circuit shown in Fig. 8.37, an inductance of 0.1 H
having a Q of 5 is in parallel with a capacitor. Determine the value of
capacitance and coil resistance at resonant
frequency of 500 rad/sec.

Solution The quality factor Q = 
w r L

R

Since L = 0.1 H, Q = 5 and

wr = 500 rad/sec

Q =
500 0 1¥ .

R

\ R =
500 0 1

5

¥ .
 = 10 W

Since w2
r =

1

LC

(500)2 =
1

0 1. ¥ C

\ The capacitance value C = 
1

0 1 500 2. ( )¥
 = 40 mF

Problem 8.11 A series RLC circuit consists of a 50 W resistance, 0.2 H
inductance and 10 mF capacitor with an applied voltage of 20 V. Determine the
resonant frequency. Find the Q factor of the circuit. Compute the lower and
upper frequency limits and also find the bandwidth of the circuit.

Solution Resonant frequency

fr = 
1

2

1

2 0 2 10 10 6p pLC
=

¥ ¥ -.
 = 112.5 Hz

Fig. 8.37
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Quality factor Q = 
w pL

R
=

¥ ¥2 112 5 0 2

50

. .
 = 2.83

Lower frequency limit

f1 = fr –
R

L4p
 = 112.5 –

50

4 0 2¥ ¥p .
 = 92.6 Hz

Upper frequency limit

f2 = fr + 
R

L4p
 = 112.5 + 

50

4 0 2p ¥ .
 = 112.5 + 19.89 = 132.39 Hz

Bandwidth of the circuit
BW = f2 – f1 = 132.39 – 92.6 = 39.79 Hz

PRACTICE PROBLEMS

8.1  For the circuit shown in Fig. 8.38, determine the frequency at which the
circuit resonates. Also find the voltage across the capacitor at resonance,
and the Q factor of the circuit.

Fig. 8.38

8.2 A series RLC circuit has a quality factor of 10 at 200 rad/sec. The current
flowing through the circuit at resonance is 0.5 A and the supply voltage
is 10 V. The total impedance of the circuit is 40 W. Find the circuit constants.

8.3 The impedance Z1 = (5 + j3) W and Z2 = (10 – j30) W are connected in
parallel as shown in Fig. 8.39. Find the value of X3 which will produce
resonance at the terminals a and b.

R – jX3 3

(5 + 3)j W (10 30)- j W

a

b

Fig. 8.39
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8.4 A RLC series circuit is to be chosen to produce a magnification of 10 at
100 rad/sec. The source can supply a maximum current of 10 A and the
supply voltage is 100 V. The power frequency impedance of the circuit
should not be more than 14.14 W. Find the values of R, L and C.

8.5 A voltage v (t) = 50 sin w t is applied to a series RLC circuit. At the
resonant frequency of the circuit, the maximum voltage across the ca-
pacitor is found to be 400 V. The bandwidth is known to be 500 rad/sec
and the impedance at resonance is 100 W. Find the resonant frequency,
and compute the upper and lower limits of the bandwidth. Determine the
values of L and C of the circuit.

8.6 A current source is applied to the parallel arrangement of R, L and C

where R = 12 W, L = 2 H and C = 3 mF. Compute the resonant frequency
in rad/sec. Find the quality factor. Calculate the value of bandwidth.
Compute the lower and upper frequency of the bandwidth. Compute the
voltage appearing across the parallel elements when the input signal is
i(t) = 10 sin 1800 t.

8.7 For the circuit shown in Fig. 8.40, determine the value of RC for which
the given circuit resonates.

3 W

j12 W - Wj12.5

Rc

Fig. 8.40

8.8 For the circuit shown in Fig. 8.41, the applied voltage v (t) = 15 sin 1800t.
Determine the resonant frequency. Calculate the quality factor and band-
width. Compute the lower and upper limits of the bandwidth.

Fig. 8.41

8.9 In the circuit shown in Fig. 8.42, the current is at its maximum value with
inductor value L = 0.5 H, and 0.707 times of its maximum value with L =
0.2 H. Find the value of Q at w = 200 rad/sec and circuit constants.
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Fig. 8.42

8.10 The voltage applied to the series RLC circuit is 5 V. The Q of the coil is
25 and the value of the capacitor is 200 PF. The resonant frequency of the
circuit is 200 KHz. Find the value of inductance, the circuit current and
the voltage across the capacitor.

OBJECTIVE-TYPE QUESTIONS

1. What is the total reactance of a series RLC circuit at resonance?
(a) equal to XL (b) equal to XC

(c) equal to R (d) zero
2. What is the phase angle of a series RLC circuit at resonance?

(a) zero (b) 90°
(c) 45° (d) 30°

3. In a series circuit of L = 15 mH and C = 0.015 mF and R = 80 W, what is
the impedance at the resonant frequency?

(a) (15 mH) w (b) (0.015 F) w
(c) 80 W (d) 1/(w ¥ (0.015))

4. In a series RLC circuit operating below the resonant frequency, the cur-
rent

(a) I leads VS (b) I lags behind VS

(c) I is in phase with VS

5. In a series RLC circuit, if C is increased, what happens to the resonant
frequency?

(a) It increases (b) It decreases
(c) It remains the same (d) It is zero

6. In a certain series resonant circuit, VC = 150 V, VL = 150 V and VR = 50
V. What is the value of the source voltage?

(a) zero (b) 50 V
(c) 150 V (d) 200 V

7. A certain series resonant circuit has a bandwidth of 1000 Hz. If the exist-
ing coil is replaced by a coil with a lower Q, what happens to the band-
width?

(a) It increases (b) It decreases
(c) It is zero (d) It remains the same
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8. In a parallel resonance circuit, why does the current lag behind the source
voltage at frequencies below resonance?

(a) because the circuit is predominantly resistive
(b) because the circuit is predominantly inductive
(c) because the circuit is predominantly capacitive
(d) none of the above

9. In order to tune a parallel resonant circuit to a lower frequency, the ca-
pacitance must

(a) be increased (b) be decreased
(c) be zero (d) remain the same

10. What is the impedance of an ideal parallel resonant circuit without resis-
tance in either branch?

(a) zero (b) inductive
(c) capacitive (d) infinite

11. If the lower cut-off frequency is 2400 Hz and the upper cut-off frequency
is 2800 Hz, what is the bandwidth?

(a) 400 Hz (b) 2800 Hz
(c) 2400 Hz (d) 5200 Hz

12. What values of L and C should be used in a tank circuit to obtain a reso-
nant frequency of 8 KHz? The bandwidth must be 800 Hz. The winding
resistance of the coil is 10 W.

(a) 2 mH, 1 mF (b) 10 H, 0.2 mF
(c) 1.99 mH, 0.2 mF (d) 1.99 mH, 10 mF



9.1 POLYPHASE SYSTEM

In an ac system it is possible to connect two or more number of individual
circuits to a common polyphase source. Though it is possible to have any
number of sources in a polyphase system, the increase in the available power is
not significant beyond the three-phase system. The power generated by the
same machine increases 41.4 per cent from single phase to two-phase, and the
increase in the power is 50 per cent from single phase to three-phase. Beyond
three-phase, the maximum possible increase is only seven per cent, but the
complications are many. So, an increase beyond three-phase does not justify
the extra complications. In view of this, it is only in exceptional cases where
more than three phases are used. Circuits supplied by six, twelve and more
phases are used in high power radio transmitter stations. Two-phase systems
are used to supply two-phase servo motors in feedback control systems.

In general, a three-phase system of voltages (currents) is merely a
combination of three single phase systems of voltages (currents) of which the

Chapter
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three voltages (currents) differ in phase by 120 electrical degrees from each
other in a particular sequence. One such three-phase system of sinusoidal
voltages is shown in Fig. 9.1.

9.2 ADVANTAGES OF THREE-PHASE SYSTEM

It is observed that the polyphase, especially three-phase, system has many
advantages over the single phase system, both from the utility point of view as
well as from the consumer point of view. Some of the advantages are as under.

1. The power in a single phase circuit is pulsating. When the power factor
of the circuit is unity, the power becomes zero 100 times in a second in a
50 Hz supply. Therefore, single phase motors have a pulsating torque.
Although the power supplied by each phase is pulsating, the total three-
phase power supplied to a balanced three-phase circuit is constant at ev-
ery instant of time. Because of this, three-phase motors have an abso-
lutely uniform torque.

2. To transmit a given amount of power over a given length, a three-phase
transmission circuit requires less conductor material than a single-phase
circuit.

3. In a given frame size, a three-phase motor or a three-phase generator
produces more output than its single phase counterpart.

4. Three-phase motors are more easily started than single phase motors.
Single phase motors are not self starting, whereas three-phase motors are.

In general, we can conclude that the operating characteristics of a three-
phase apparatus are superior than those of a similar single phase apparatus. All
three-phase machines are superior in performance. Their control equipments
are smaller, cheaper, lighter in weight and more efficient. Therefore, the study
of three phase circuits is of great importance.

9.3 GENERATION OF THREE-PHASE VOLTAGES

Three-phase voltages can be generated in a stationary armature with a rotating
field structure, or in a rotating armature with a stationary field as shown in
Figs. 9.2 (a and b).

R

Y¢

Y¢

Y

Y

B

B
R¢

R¢

R

B¢

B¢

N

N

S

S

(a) STATIONARY ARMATURE (b) STATIONARY FIELD

Fig. 9.2
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Single phase voltages and currents are generated by single phase generators
as shown in Fig. 9.2(a). The armature (here a stationary armature) of such a
generator has only one winding, or one set of coils. In a two-phase generator the
armature has two distinct windings, or two sets of coils that are displaced 90°
(electrical degrees) apart, so that the generated voltages in the two phases have
90 degrees phase displacement as shown in Fig. 9.3(b). Similarly, three-phase
voltages are generated in three separate but identical sets of windings or coils
that are displaced by 120 electrical degrees in the armature, so that the voltages
generated in them are 120° apart in time phase. This arrangement is shown in
Fig. 9.3(c). Here RR ¢ constitutes one coil (R-phase); YY ¢ another coil (Y-phase),
and BB¢ constitutes the third phase (B-phase). The field magnets are assumed in
clockwise rotation.

Fig. 9.3
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The voltages generated by a three-phase alternator is shown in Fig. 9.3(d).
The three voltages are of the same magnitude and frequency, but are displaced
from one another by 120°. Assuming the voltages to be sinusoidal, we can write
the equations for the instantaneous values of the voltages of the three phases.
Counting the time from the instant when the voltage in phase R is zero. The
equations are

vRR ¢ = Vm sin wt

vYY ¢ = Vm sin (wt – 120°)

vBB¢ = Vm sin (w t – 240°)

At any given instant, the algebraic sum of the three voltages must be zero.

9.4 PHASE SEQUENCE

Here the sequence of voltages in the three phases are in the order v
RR¢

– v
YY ¢

– v
BB ¢

, and they undergo changes one after the other in the above mentioned
order. This is called the phase sequence. It can be observed that this sequence
depends on the rotation of the field. If the field system is rotated in the
anticlockwise direction, then the sequence of the voltages in the three-phases
are in the order v

RR ¢
– v

BB ¢
– v

YY ¢
; briefly we say that the sequence is RBY. Now

the equations can be written as

vRR¢ = Vm sin wt

vBB¢ = Vm sin (wt – 120)

vYY¢ = Vm sin (wt – 240)

Example 9.1 What is the phase sequence of the voltages induced in the three
coils of an alternator shown in Fig. 9.4? Write the equations for the three voltages.

N

S

B¢

R¢

B

Y¢

Y

R

Fig. 9.4

Solution Here the field system is stationary and the three coils, RR ¢, YY ¢ and BB¢,
are rotating in the anticlockwise direction, so the sequence of voltages is RBY, and
the induced voltages are as shown in Fig. 9.4.
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uRR¢
uBB¢ uYY¢

u

wt

Fig. 9.5

vRR ¢ = Vm sin wt

vBB ¢ = Vm sin (wt – 120°)

vYY ¢ = Vm sin (wt – 240°) or Vm sin (wt + 120°)

Example 9.2 What is the possible number of phase sequences in Fig. 9.4. What
are they?

Solution There are only two possible phase sequences; they are RBY, and RYB.

9.5 INTER-CONNECTION OF THREE-PHASE

SOURCES AND LOADS

9.5.1 Inter-connection of Three-phase Sources

In a three-phase alternator, there are three independent phase windings or coils.
Each phase or coil has two terminals, viz. start and finish. The end connections
of the three sets of the coils may be brought out of the machine, to form three
separate single phase sources to feed three individual circuits as shown in
Figs. 9.6 (a and b).

R

R¢
R¢

R

Y

Y¢ Y¢

Y

B

B¢
B¢

B

(a) (b)

Fig. 9.6

The coils are inter-connected to form a wye (Y ) or delta (D) connected three-
phase system to achieve economy and to reduce the number of conductors, and
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thereby, the complexity in the circuit. The three-phase sources so obtained serve
all the functions of the three separate single phase sources.

9.5.2 Wye or Star-Connection

In this connection, similar ends (start or finish) of the three phases are joined
together within the alternator as shown in Fig. 9.7. The common terminal so
formed is referred to as the neutral point (N), or neutral terminal. Three lines
are run from the other free ends (R, Y, B) to feed power to the three-phase load.

Figure 9.7 represents a three-phase, four-wire, star-connected system. The
terminals R, Y and B are called the line terminals of the source. The voltage
between any line and the neutral point is called the phase voltage (V

RN
, V

YN
 and

V
BN

), while the voltage between any two lines is called the line voltage (V
RY

, V
YB

and V
BR

). The currents flowing through the phases are called the phase currents,
while those flowing in the lines are called the line currents. If the neutral wire is
not available for external connection, the system is called a three-phase, three-
wire, star-connected system. The system so formed will supply equal line
voltages displaced 120° from one another and acting simultaneously in the
circuit like three independent single phase sources in the same frame of a three-
phase alternator.

R

R¢

R

VRN

VYN

VBN

B

B

B¢

Y ¢

Y y

N(Neutral terminal)

Fig. 9.7

Example 9.3 Figure 9.8 represents three phases of
an alternator. Arrange the possible number of three-
phase star connections and indicate phase voltages and
line voltages in each case. (V

RR ¢
 = V

YY ¢
 = V

BB ¢
)

Solution There are two possible star-connections
and they can be arranged as shown in Fig. 9.9(a).

The phase voltages are

VRN, VYN, VBN and VR ¢N, VY ¢N, VB ¢N

R

R¢

Y

Y¢

B

B¢

Fig. 9.8
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The line voltages are

VRY, VYB, VBR and VR ¢Y ¢, VY ¢B ¢, VB ¢R ¢

Note The phases can also be arranged as shown in Fig. 9.9(b), in which case they
do not look like a star; so the name star or wye-connection is only a convention.

R

R¢

R¢

N N

Y

Y¢ Y

Y¢

B

B¢

B¢

B

R

(a)

R R¢

R

Y Y¢

Y

B
B¢

B
N

N
B¢Y¢R¢

 (b)

Fig. 9.9

9.5.3 Delta or Mesh-connection

In this method of connection the dissimilar ends of the windings are joined
together, i.e. R¢ is connected to Y, Y ¢ to B and B¢ to R as shown in Fig. 9.10.

The three line conductors are taken from the three junctions of the mesh or
delta connection to feed the three-phase load. This constitutes a three-phase,
three-wire, delta-connected system. Here there is no common terminal; only
three line voltages V

RY
, V

YB
 and V

BR
 are available.

These line voltages are also referred to as phase voltages in the delta-
connected system. When the sources are connected in delta, loads can be
connected only across the three line terminals, R, Y and B. In general, a three-
phase source, star or delta, can be either balanced or unbalanced. A balanced
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three-phase source is one in which the three individual sources have equal
magnitude, with 120° phase difference as shown in Fig. 9.3(d).

Example 9.4 Figure 9.11 represents three phases of an alternator. Arrange the
possible number of three-phase, delta connections and indicate phase voltages and
line voltages in each case (Note V

RR ¢
 = V

YY ¢
 = V

BB ¢
).

R

R¢

Y

Y¢

B

B¢

Fig. 9.11

Solution There are two possible delta connections which are shown as follows.

Vphase = Vline

The line voltages are
From Fig. 9.12(a) V

RY
, V

YB
 and V

BR
 and V

RB
, V

BY
 and V

YR
 from Fig. 9.12(b).

VRY

VBR

VYB

R

R¢
B

B¢

YY¢

(a)

VRB

VYR

VBY

R¢

R

B¢ B

Y¢

Y

(b)

Fig. 9.12

Fig. 9.10

VRY

VBR

VYB

R

R¢
B

B¢

YY¢
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9.5.4 Inter-connection of Loads

The primary question in a star or delta-connected three-phase supply is how to
apply the load to the three-phase supply. An impedance, or load, connected
across any two terminals of an active network (source) will draw power from
the source, and is called a single phase load. Like alternator phase windings,
load can also be connected across any two terminals, or between line and
neutral terminal (if the source is star-connected). Usually the three-phase load
impedances are connected in star or delta formation, and then connected to the
three-phase source as shown in Fig. 9.13.

Fig. 9.13

Figure 9.13(a) represents the typical inter-connections of loads and sources
in a three-phase star system, and is of a three-phase four wire system. A three-
phase star connected load is connected to a three-phase star-connected source,
terminal to terminal, and both the neutrals are joined with a fourth wire. Figure
9.13(b) is a three-phase, three-wire system. A three-phase, delta-connected load
is connected to a three-phase star-connected source, terminal to terminal, as
shown in Fig. 9.13(b). When either source or load, or both are connected in
delta, only three wires will suffice to connect the load to source.

Just as in the case of a three-phase source, a three-phase load can be either
balanced or unbalanced. A balanced three-phase load is one in which all the
branches have identical impedances, i.e. each impedance has the same
magnitude and phase angle. The resistive and reactive components of each
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phase are equal. Any load which does not satisfy the above requirements is said
to be an unbalanced load.

Example 9.5 Draw the inter-connection between a three-phase, delta-connected
source and a star-connected load.

Solution When either source or load, or both are connected in delta, only three
wires are required to connect, the load to source, and the system is said to be a three-
phase, three-wire system. The connection diagram is shown in Fig. 9.14.

VYB

ZRZR

ZBZB

BB YY

RR

ZYZY

VBRVBR
VRYVRY

LOAD

SOURCE

Fig. 9.14

The three line voltages are V
RY

, V
YB

 and V
BR

.

Example 9.6 Draw the inter-connection between a three-phase, delta-connected
source and delta-connected load.

Solution Since the source and load are connected in delta, it is a three-wire
system. The connection diagram is shown in Fig. 9.15.

VRY

Y

R

B

R

ZR

ZY

ZB

B

VYB

VBR

Y

Fig. 9.15

9.6 STAR TO DELTA AND DELTA TO STAR

TRANSFORMATION

While dealing with currents and voltages in loads, it is often necessary to
convert a star load to delta load, and vice-versa. It has already been shown in
Chapter 3 that delta (D) connection of resistances can be replaced by an
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equivalent star (Y) connection and vice-versa. Similar methods can be applied
in the case of networks containing general impedances in complex form. So
also with ac, where the same formulae hold good, except that resistances are
replaced by the impedances. These formulae can be applied even if the loads
are unbalanced. Thus, considering Fig. 9.16(a), star load can be replaced by an
equivalent delta-load with branch impedances as shown.

B
Y

B Y

R

ZBR

(a) (a)

ZYB

ZRYZR

ZY

N

R

ZB

Fig. 9.16

Delta impedances, in terms of star impedances, are

ZRY =
Z Z Z Z Z Z

Z
R Y Y B B R

B

+ +

ZYB =
Z Z Z Z Z Z

Z
R Y Y B B R

R

+ +

and ZBR =
Z Z Z Z Z Z

Z
R Y Y B B R

Y

+ +

The converted network is shown in Fig. 9.16(b). Similarly, we can replace
the delta load of Fig. 9.16(b) by an equivalent star load with branch impedances
as

ZR =
Z Z

Z Z Z
RY BR

RY YB BR+ +

ZY =
Z Z

Z Z Z
RY YB

RY YB BR+ +

and ZB =
Z Z

Z Z Z
BR YB

RY YB BR+ +

It should be noted that all impedances are to be expressed in their complex
form.

Example 9.7 A symmetrical three-phase, three-wire 440 V supply is connected
to a star-connected load as shown in Fig. 9.17(a). The impedances in each branch
are Z

R
 = (2 + J3) W, Z

Y
 = (1 – J2) W and Z

B
 = (3 + J4) W. Find its equivalent delta-

connected load. The phase sequence is RYB.
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Fig. 9.17

Solution The equivalent delta network is shown in Fig. 9.17(b). From Section
9.6, we can write the equations to find Z

RY
, Z

YB
 and Z

BR
. We have

ZRY =
Z Z Z Z Z Z

Z
R Y Y B B R

B

+ +

ZR = 2 + j3 = 3.61 –56.3°

ZY = 1 – j2 = 2.23 –– 63.4°

ZB = 3 + j4 = 5 –53.13°

ZRZY + ZY ZB + ZB ZR = (3.61 –56.3°) (2.23 –– 63.4°)

+ (2.23–– 63.4°) (5–53.13°) + (5–53.13°) (3.61–56.3°)

= 8.05 –– 7.1° + 11.15 –– 10.27° + 18.05 –109.43°

= 12.95 + j14.04 = 19.10 –47.3°

ZRY =
19 10 47 3

5 5313

. .

.

– ∞

– ∞
 = 3.82 –– 5.83° = 3.8 – j0.38

ZYB =
Z Z Z Z Z Z

Z
R Y Y B B R

R

+ +

=
19 10 47 3

3 61 56 3

. .

. .

– ∞

– ∞
 = 5.29 –– 9° = 5.22 – j0.82

ZBR =
Z Z Z Z Z Z

Z
R Y Y B B R

Y

+ +

=
19 10 47 3

2 23 63 4

. .

. .

– ∞

–- ∞
 = 8.56 –110.7° = – 3.02 + j8
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The equivalent delta impedances are

ZRY = (3.8 – j0.38) W

ZYB = (5.22 – j0.82) W

ZBR = (– 3.02 + j8) W

Example 9.8 A symmetrical three-phase, three-wire 400 V, supply is connected
to a delta-connected load as shown in Fig. 9.18(a). Impedances in each branch are
Z

RY
 = 10 –30° W; Z

YB
 = 10 –– 45∞ W and Z

BR
 = 2.5 –60∞ W. Find its equivalent star-

connected load; the phase sequence is RYB.

400 V

2.5 60º– 10 30º–

10 – 45º–

ZBR
ZRY

ZR

ZB
ZY

ZYB

B

R

Y
Y

(a) (b)

Fig. 9.18

Solution The equivalent star network is shown in Fig. 9.18(b). From Section 9.6,
we can write the equations to find Z

R
, Z

Y
 and Z

B
as

ZR =
Z Z

Z Z Z
RY BR

RY YB BR+ +

ZRY + ZYB + ZBR = 10 –30∞ + 10 –– 45∞ + 2.5 –60∞

= (8.66 + j5) + (7.07 – j7.07) + (1.25 + j2.17)

= 16.98 + j0.1 = 16.98 –0.33∞ W

ZR =
10 30 2 5 60

16 98 0 33

– ∞ – ∞

– ∞

b g b g.

. .
 = 1.47 –89.67∞

= (0.008 + j1.47) W

ZY =
Z Z

Z Z Z
RY YB

RY YB BR+ +

=
10 30 10 45

16 98 0 33

– ∞ –- ∞

– ∞

b g b g
. .

 = 5.89 –– 15.33∞ W

ZB =
Z Z

Z Z Z
BR YB

RY YB BR+ +
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=
2 5 60 10 45

16 98 0 33

.

. .

– ∞ –- ∞

– ∞

b g b g
 = 1.47 –14.67∞ W

The equivalent star impedances are

ZR = 1.47 –89.67∞ W, ZY = 5.89 –– 15.33∞ W and ZB = 1.47 –14.67∞ W

9.6.1 Balanced Star-Delta and Delta-Star Conversion

If the three-phase load is balanced, then the conversion formulae in Section 9.6
get simplified. Consider a balanced star-connected load having an impedance
Z

1
 in each phase as shown in Fig. 9.19(a).

Fig. 9.19

Let the equivalent delta-connected load have an impedance of Z
2
 in each

phase as shown in Fig. 9.19(b). Applying the conversion formulae from Section
9.6 for delta impedances in terms of star impedances, we have

Z2 = 3Z1

Similarly, we can express star impedances in terms of delta Z
1
 = Z

2
/3.

Example 9.9 Three identical impedances are connected in delta as shown in Fig.
9.20(a). Find an equivalent star network such that the line current is the same when
connected to the same supply.

Solution The equivalent star network is shown in Fig. 9.20(b). From Section
9.6.1, we can write the equation to find Z

1
 = Z

2
/3

Z2 = 3 + j4 = 5 –53.13∞ W

\ Z1 =
5

3
–53.13∞ = 1.66 –53.15∞ = (1.0 + j1.33) W
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Fig. 9.20

9.7 VOLTAGE, CURRENT AND POWER IN A

STAR CONNECTED SYSTEM

9.7.1 Star-Connected System

Figure 9.21 shows a balanced three-phase, Y-connected system. The voltage
induced in each winding is called the phase voltage (V

Ph
). Likewise V

RN
, V

YN
 and

V
BN

 represent the rms values of the induced voltages in each phase. The voltage
available between any pair of terminals is called the line voltage (V

L
). Likewise

V
RY

, V
YB

 and V
BR

 are known as line voltages. The double subscript notation is
purposefully used to represent voltages and currents in polyphase circuits.
Thus, V

RY
 indicates a voltage V between points R and Y, with R being positive

with respect to point Y during its positive half cycle.

R

VRN

VYN

VBN

B Y

VRY

VBR

VYB

Fig. 9.21

Similarly, V
YB

 means that Y is positive with respect to point B during its
positive half cycle; it also means that V

RY
 = – V

YR
.
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9.7.2 Voltage Relation

The phasors corresponding to the phase voltages constituting a three-phase
system can be represented by a phasor diagram as shown in Fig. 9.22.

VBR
VBN

–VRN

–VBN

–VYN
VRY

VYN

VYB

60° 30°

120°120°
VRN

Fig. 9.22

From Fig. 9.22, considering the lines R, Y and B, the line voltage V
RY

 is equal
to the phasor sum of V

RN
 and V

NY
 which is also equal to the phasor difference of

V
RN

 and V
YN

 (V
NY

 = – V
YN

). Hence, V
RY

 is found by compounding V
RN

 and V
YN

reversed. To subtract V
YN

 from V
RN

, we reverse the phasor V
YN

 and find its phasor
sum with V

RN
 as shown in Fig. 9.22. The two phasors, V

RN
 and – V

YN
, are equal in

length and are 60∞ apart.

|VRN | = – | VYN |  = VPh

\ VRY = 2VPh cos 60/2 = 3 VPh

Similarly, the line voltage V
YB

 is equal to the phasor difference of V
YN

 and

V
BN

, and is equal to 3 V
Ph

. The line voltage V
BR

 is equal to the phasor

difference of V
BN

 and V
RN

, and is equal to 3 V
Ph

. Hence, in a balanced star-
connected system

(i) Line voltage = 3 VPh

(ii) All line voltages are equal in magnitude and are displaced by 120∞, and
(iii) All line voltages are 30∞ ahead of their respective phase voltages (from

Fig. 9.22).
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Example 9.10 A symmetrical star-connected system is shown in Fig. 9.23(a).
Calculate the three line voltages, given V

RN
 = 230 –0∞. The phase sequence is RYB.

(a) (b)

Fig. 9.23

Solution Since the system is a balanced system, all the phase voltages are equal
in magnitude, but displaced by 120∞ as shown in Fig. 9.23(b).

\ VRN = 230 –0∞ V

VYN = 230 –– 120∞  V

VBN = 230 –– 240∞ V

Corresponding line voltages are equal to 3  times the phase voltages, and are
30∞ ahead of the respective phase voltages.

\ VRY = 3 ¥ 230 –0 + 30∞ V = 398.37 –30∞ V

VYB = 3 ¥ 230 –– 120∞ + 30∞ V = 398.37 –– 90∞ V

VBR = 3 ¥ 230 –– 240∞ + 30∞ V = 398.37 –– 210∞ V

9.7.3 Current Relations

Figure 9.24(a) shows a balanced three-phase, wye-connected system indicating
phase currents and line currents. The arrows placed alongside the currents I

R
, I

Y

and I
B

flowing in the three phases indicate the directions of currents when they
are assumed to be positive and not the directions at that particular instant. The
phasor diagram for phase currents with respect to their phase voltages is shown
in Fig. 9.24(b). All the phase currents are displaced by 120∞ with respect to each
other, ‘f’ is the phase angle between phase voltage and phase current (lagging load
is assumed). For a balanced load, all the phase currents are equal in magnitude.
It can be observed from Fig. 9.24(a) that each line conductor is connected in series
with its individual phase winding. Therefore, the current in a line conductor is
the same as that in the phase to which the line conductor is connected.

\ IL = IPh = IR = IY = IB
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It can be observed from Fig. 9.24(b) that the angle between the line (phase)
current and the corresponding line voltage is (30 + f)∞ for a lagging load.
Consequently, if the load is leading, then the angle between the line (phase)
current and corresponding line voltage will be (30 – f)∞.

(a) (b)

Fig. 9.24

Example 9.11 In Fig. 9.24(a), the value of the current in phase R is I
R
 = 10 –20∞

A. Calculate the values of the three line currents. Assume an RYB phase sequence.

Solution In a balanced star-connected system I
L
 = I

Ph
, and is displaced by 120∞.

Therefore the three line currents are

IR = 10 –20∞ A

IY = 10 –20∞ – 120∞ A = 10 –– 100∞ A

IB = 10 –20∞ – 240∞ A = 10 –– 220∞ A

9.7.4 Power in the Star-Connected Network

The total active power or true power in the three-phase load is the sum of the
powers in the three phases. For a balanced load, the power in each load is the
same; hence total power = 3 ¥ power in each phase

or P = 3 ¥ VPh ¥ IPh cos f

It is the usual practice to express the three-phase power in terms of line
quantities as follows.

VL = 3 VPh, IL = IPh

P = 3 VLIL cos f W

or 3 V
L
I

L
 cos f is the active power in the circuit.

Total reactive power is given by

Q = 3 VLIL sin f VAR
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Total apparent power or volt-amperes

= 3 VLIL VA

9.7.5 N-Phase Star System

It is to be noted that star and mesh are general terms applicable to any number
of phases; but wye and delta are special cases of star and mesh when the system
is a three-phase system. Consider an n-phase balanced star system with two adjacent
phases as shown in Fig. 9.25(a). Its vector diagram is shown in Fig. 9.25(b).

(a) (b)

Fig. 9.25

The angle of phase difference between adjacent phase voltages is 360∞/n.
Let E

Ph
be the voltage of each phase. The line voltage, i.e. the voltage between

A and B is equal to E
AB

= E
L
 = E

AO
 + E

OB
. The vector addition is shown in Fig.

9.25 (c). It is evident that the line current and phase current are same.
EOA =EPh

CEOE = EPh

EAP =EL

EAO =EPh

360/n

q

B

O

A

(c)

Fig. 9.25

EOA

EOB

360/n
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EAB = EAO + EOB

Consider the parallelogram OABC.

OB = OC OA OA OC2 2 2+ + ¥ ¥ ¥ cos q

= E E E
n

ph ph ph
2 2 22 180

360
+ + ∞ -

∞F
HG

I
KJ

cos

= 2 2
3602 2E E

n
ph ph-

∞
cos

= 2 1 2
180

E
n

ph -
∞F

HG
I
KJ

L

N
M

O

Q
Pcos

= 2 2
1802E

n
ph sin

∞F
HG

I
KJ

EL = 2Eph sin 
180∞

n

The above equation is a general equation for line voltage, for example, for a

three-phase system, n = 3 E
L
 = 2 E

ph
 sin 60∞ = 3 E

ph
.

Example 9.12 A balanced star-connected load of (4 + J3) W per phase is
connected to a balanced 3-phase 400 V supply. The phase current is 12 A. Find (i)
the total active power (ii) reactive power and (iii) total apparent power.

Solution The voltage given in the data is always the rms value of the line voltage
unless otherwise specified.

\ ZPh = 4 32 2+  = 5 W

PF = cos f = 
R

Z
Ph

Ph

 = 
4

5
 = 0.8

sin f = 0.6

(i) Active power = 3 VLIL cos f W

= 3 ¥ 400 ¥ 12 ¥ 0.8 = 6651 W

(ii) Reactive power = 3 VL IL sin f VAR

= 3 ¥ 400 ¥ 12 ¥ 0.6 = 4988.36 VAR

(iii) Apparent power = 3 VLIL

= 3 ¥ 400 ¥ 12 = 8313.84 VA
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9.8 VOLTAGE, CURRENT AND POWER IN A

DELTA CONNECTED SYSTEM

9.8.1 Delta-Connected System

Figure 9.26 shows a balanced three-phase, three-wire, delta-connected system.
This arrangement is referred to as mesh connection because it forms a closed
circuit. It is also known as delta connection because the three branches in the
circuit can also be arranged in the shape of delta (D).

VRY

VRY

VBR

VBR

VYBVYB

R

B
Y

Fig. 9.26

From the manner of interconnection of the three phases in the circuit, it may
appear that the three phases are short-circuited among themselves. However,
this is not the case. Since the system is balanced, the sum of the three voltages
round the closed mesh is zero; consequently, no current can flow around the
mesh when the terminals are open.

The arrows placed alongside the voltages, V
RY

, V
YB

 and V
BR

, of the three
phases indicate that the terminals R, Y and B are positive with respect to Y, B
and R, respectively, during their respective positive half cycles.

9.8.2 Voltage Relation

From Fig. 9.27, we notice that only one phase is connected between any two
lines. Hence, the voltage between any two lines (V

L
) is equal to the phase

voltage (V
Ph

).
\ VRY = VL = VPh

VRY

VBR VYB

120º 120º

120º

Fig. 9.27



9.22 Electrical Circuit Analysis

Since the system is balanced, all the phase voltages are equal, but displaced
by 120∞ from one another as shown in the phasor diagram in Fig. 9.27. The
phase sequence RYB is assumed.

\ |VRY| = |VYB| = |VBR| = VL = VPh

Example 9.13 In Fig. 9.27, the voltage across the terminals R and Y is 400 –0∞.
Calculate the values of the three line voltages. Assume RYB phase sequence.

Solution In a balanced delta-connected system, |V
L
| = |V

Ph
|, and is displaced by

120∞; therefore the three line voltages are

VRY = 400 –0∞ V

VYB = 400 –– 120∞ V

VBR = 400 – – 240∞ V

9.8.3 Current Relation

In Fig. 9.28 we notice that, since the system is balanced, the three phase currents
(I

Ph
), i.e. I

R
, I

Y
, I

B
 are equal in magnitude but displaced by 120∞ from one another

as shown in Fig. 9.28(b). I
1
, I

2
 and I

3
 are the line currents (I

L
), i.e. I

1
 is the line

current in line 1 connected to the common point of R. Similarly, I
2
 and I

3
 are the

line currents in lines 2 and 3, connected to common points Y and B, respectively.
Though here all the line currents are directed outwards, at no instant will all the
three line currents flow in the same direction, either outwards or inwards.
Because the three line currents are displaced 120∞ from one another, when one
is positive, the other two might both be negative, or one positive and one
negative. Also it is to be noted that arrows placed alongside phase currents in
Fig. 9.28(a), indicate the direction of currents when they are assumed to be
positive and not their actual direction at a particular instant. We can easily
determine the line currents in Fig. 9.28(a), I

1
, I

2
 and I

3
 by applying KCL at the

three terminals R, Y and B, respectively. Thus, the current in line 1, I
1
 = I

R
– I

B
;

i.e. the current in any line is equal to the phasor difference of the currents in the
two phases attached to that line. Similarly, the current in line 2, I

2
 = I

Y
– I

R
, and

the current in line 3, I
3
 = I

B
– I

Y
.

The phasor addition of these currents is shown in Fig. 9.28(b). From the
figure,

I1 = IR – IB

I1 = I I I IR B R B
2 2 2 60+ + ∞cos

I1 = 3 IPh, since IR = IB = IPh

Similarly, the remaining two line currents, I
2
 and I

3
, are also equal to 3

times the phase currents; i.e. I
L
 = 3 I

Ph
.

As can be seen from Fig. 9.28(b), all the line currents are equal in magnitude
but displaced by 120∞ from one another; and the line currents are 30∞ behind the
respective phase currents.
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IR
IB

IY

R

B
Y

1

2

3

I = I – I1 R B

I = I= I – I2 Y R

I = I – I3 B Y

(a)

I I – I3 =
B Y

I I – I– I2 = Y R
I I – I= B1 R

IB

–IR
IR

IY

–IB

–IY

60º60º

3
0
º

3
0
º

120º120º

Fig. 9.28

Example 9.14 Three identical loads are connected in delta to a three-phase
supply of 440 –0∞ V as shown in Fig. 9.29(a). If the phase current I

R
 is 15 –0∞ A,

calculate the three line currents.
R

l1

l2

l3

lB
lR

lYB
Y

1

3

2

440 0º–

(a)
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(b)

Fig. 9.29

Solution All the line currents are equal and 30∞ behind their respective phase

currents, and 3  times their phase values, displaced by 120∞ from one another,
assuming RYB phase sequence.

Let the line currents in line 1, 2 and 3 be I
1
, I

2
 and I

3
, respectively.

I1 = 3 ¥ IR –(f – 30∞)

= 3 ¥ 15 –– 30∞ = 25.98 –– 30∞ A

I2 = 3 ¥ 15 –(– 30 – 120)∞ = 25.98 –– 150∞ A

I3 = 3 ¥ 15 –(– 30 – 240)∞ = 25.98 –– 270∞ A

The phasor diagram is shown in Fig. 9.29(b).

9.8.4 Power in the Delta-Connected System

Obviously the total power in the delta circuit is the sum of the powers in the
three phases. Since the load is balanced, the power consumed in each phase is
the same. Total power is equal to three times the power in each phase.

Power per phase = VPh IPh cos f

where f is the phase angle between phase voltage and phase current.

Total power P = 3 ¥ VPh IPh cos f

In terms of line quantities

P = 3 VL IL cos f W
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Since VPh = VL and IPh = 
I L

3

for a balanced system, whether star or delta, the expression for the total power
is the same.

Example 9.15 A balanced delta-connected load of (2 + j3) W per phase is
connected to a balanced three-phase 440 V supply. The phase current is 10 A. Find
the (i) total active power (ii) reactive power and (iii) apparent power in the circuit.

Solution ZPh = 2 3
2 2a f a f+  = 3.6 –56.3∞ W

cos f =
R

Z

Ph

Ph

=
2

3 6.
 = 0.55

So, sin f = 0.83

IL = 3 ¥ IPh = 3 ¥ 10 = 17.32 A

(i) Active power = 3 VLIL cos f

= 3 ¥ 440 ¥ 17.32 ¥ 0.55 = 7259.78 W

(ii) Reactive power = 3 VLIL sin f

= 3 ¥ 440 ¥ 17.32 ¥ 0.83 = 10955.67 VAR

(iii) Apparent power = 3 VLIL

= 3 ¥ 440 ¥ 17.32 = 13199.61 VA

9.8.5 N-Phase Mesh System

Figure 9.30(a) shows part of an n-phase balanced mesh system. Its vector
diagram is shown in Fig. 9.30(b).

Fig. 9.30(a) Fig. 9.30(b)
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Let the current in line BB¢ be I
L
. This is same in all the remaining lines of the

n-phase system. I
AB

, I
BC

 are the phase currents in AB and BC phases respectively.
The vector addition of the line current is shown in Fig. 9.30(c). It is evident
from the Fig. 9.30(b) that the line and phase voltages are equal.

C
B

O
A

I = IBB L¢

I = I
AB Ph

I = IBC Ph

ICB

360/n

Fig. 9.30(c)

IBB = IL = IAB + ICB

= IAB – IBC

Consider the parallelogram OABC.

OB = OA OC OA OC
n

2 2 2 180
360

+ + × × × −
F
H

I
Kcos

= I I I
n

Ph Ph Ph
2 2 22

360
+ − cos

= 2 1 2
180

I
n

Ph −
F
H

I
Kcos

= 2 2
1802I

n
Ph sin

IL = 2Iph sin 
180

n

The above equation is a general equation for the line current in a balanced
n-phase mesh system.

9.9 THREE-PHASE BALANCED CIRCUITS

The analysis of three-phase balanced systems is presented in this section. It is
no way different from the analysis of AC systems in general. The relation
between voltages, currents and power in delta-connected and star-connected
systems has already been discussed in the previous sections. We can make use
of those relations and expressions while solving the circuits.

9.9.1 Balanced Three-Phase System-Delta Load

Figure 9.31(a) shows a three-phase, three-wire, balanced system supplying
power to a balanced three-phase delta load. The phase sequence is RYB. We are
required to find out the currents in all branches and lines.
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Let us assume the line voltage V
RY

 = V –0∞ as the reference phasor. Then the
three source voltages are given by

VRY = V –0∞ V

VYB = V – – 120∞ V

VBR = V –– 240∞ V

These voltages are represented by phasors in Fig. 9.31(b). Since the load is
delta-connected, the line voltage of the source is equal to the phase voltage of
the load. The current in phase RY, I

R
 will lag (lead) behind (ahead of) the phase

voltage V
RY

 by an angle f as dictated by the nature of the load impedance. The
angle of lag of I

Y
 with respect to V

YB
, as well as the angle of lag of I

B
 with respect

to V
BR

 will be f as the load is balanced. All these quantities are represented in
Fig. 9.31(b).

Fig. 9.31(a)

Fig. 9.31(b)

If the load impedance is Z –f, the current flowing in the three load
impedances are then

IR =
V

Z
RY – ∞

–

0

f
 = 

V

Z
–– f
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IY =
V

Z
YB –- ∞

–

120

f
 = 

V

Z
–– 120∞ – f

IB =
V

Z
BR ∠− °

∠

240

f
 = 

V

Z
–– 240∞ – f

The line currents are 3  times the phase currents, and are 30∞ behind their
respective phase currents.
\ Current in line 1 is given by

I1 = 3
V

Z
–(– f – 30∞), or IR – IB (phasor difference)

Similarly, the current in line 2

I2 = 3
V

Z
–(– 120 – f – 30∞),

or I
Y

– I
R
 (phasor diference) = 3

V

Z
–(– f – 150)∞, and

I3 = 3
V

Z
–(–240 – f – 30)∞, or IB – IY (phasor difference)

= 3 270
V

Z
∠ − − °fa f

To draw all these quantities vectorially, V
RY

= V–0∞ is taken as the reference
vector.

Example 9.16 A three-phase, balanced delta-connected load of (4 + j8) W is
connected across a 400 V, 3 – f balanced supply. Determine the phase currents and
line currents. Assume the phase sequence to be RYB. Also calculate the power drawn
by the load.

Solution Refering to Fig. 9.31(a), taking the line voltage V
RY

 = V–0∞ as reference
V

RY
 = 400 –0∞ V; V

YB
 = 400 –– 120∞ V, V

BR
 = 400 –– 240∞ V

Impedance per phase = (4 + j8) W = 8.94 –63.4∞ W

Phase currents are: I
R
 = 

400 0

8 94 63 4

– ∞

– ∞. .
 = 44.74 –– 63.4∞ A

IY =
400 120

8 94 63 4

–- ∞

– ∞. .
 = 44.74 –– 183.4∞ A

IB =
400 240

8 94 63 4

–- ∞

– ∞. .
 = 44.74 –– 303.4∞ A

The three line currents are

I1 = IR – IB = (44.74 –– 63.4∞ – 44.74 –– 303.4∞)

= (20.03 – j40) – (24.62 + j37.35) = (– 4.59 – j77.35) A

= 77.49 –266.6∞ A
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Or the line current I
1
 is equal to the 3  times the phase current and 30∞ behind

its respective phase current

I1 = 3 ¥ 44.74 –– 63.4∞ – 30∞ = 77.49 –– 93.4∞

or      = 77.49 –266.6∞ A

Similarly, I2 = IY – IR

= 3 ¥ 44.74 –– 183.4∞ – 30∞ = 77.49 –– 213.4∞ A = 77.49 –146.6∞ A

I3 = IB – IY

= 3 ¥ 44.74 –– 303.4∞ – 30∞ = 77.49 –– 333.4∞ A = 77.49 –26.6∞ A

Power drawn by the load is P = 3VPh IPh cos f

or 3 ¥ VL ¥ IL cos 63.4∞ = 24.039 kW

9.9.2 Balanced Three Phase System-Star

Connected Load

Figure 9.32(a) shows a three-phase, three wire system supplying power to a
balanced three phase star connected load. The phase sequence RYB is assumed.

Y

VRY

VBR

VYN

VRN

VBN

IR

IR

IB

IY

IB

IY

R

N

B

VYB

Z–f

Z–f

Z–f

(a)

Fig. 9.32

In star connection, whatever current is flowing in the phase is also flowing in
the line. The three line (phase) currents are I

R
, I

Y
 and I

B
.

V
RN

, V
YN

 and V
BN

 represent three phase voltages of the network, i.e. the
voltage between any line and neutral. Let us assume the voltage V

RN
 = V–0∞ as

the reference phasor. Consequently, the phase voltage

VRN = V –0∞

VYN = V –– 120∞

VBN = V –– 240∞
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Hence IR =
V

Z

RN

–f
 = 

V

Z

– ∞

–

0

f
 = 

V

Z
–– f

IY =
V

Z

YN

–f
 = 

V

Z

–- ∞

–

120

f
=

V

Z
–– 120∞ – f

IB =
V

Z

BN

–f
 = 

V

Z

–- ∞

–

240

f
 = 

V

Z
–– 240∞ – f

As seen from the above expressions, the currents, I
R
, I

Y
 and I

B
, are equal in

magnitude and have a 120∞ phase difference. The disposition of these vectors is

shown in Fig. 9.32(b). Sometimes, a 4th wire, called neutral wire is run from

the neutral point, if the source is also star-connected. This gives three-phase,

four-wire star-connected system. However, if the three line currents are

balanced, the current in the fourth wire is zero; removing this connecting wire

between the source neutral and load neutral is, therefore, not going to make any

change in the condition of the system. The availability of the neutral wire makes

it possible to use all the three phase voltages, as well as the three line voltages.

Usually, the neutral is grounded for safety and for the design of insulation.

(b)

Fig. 9.32

It makes no difference to the current flowing in the load phases, as well as to

the line currents, whether the sources have been connected in star or in delta,

provided the voltage across each phase of the delta connected source is 3
times the voltage across each phase of the star-connected source.

Example 9.17 A balanced star-connected load having an impedance (15 + j20) W

per phase is connected to a three-phase, 440 V; 50 Hz supply. Find the line currents

and the power absorbed by the load. Assume RYB phase sequence.



Polyphase Circuits 9.31

Solution Referring to Fig. 9.32 (a), taking V
RN

 as the reference voltage we have

VRN =
440 0

3

– ∞
 = 254 –0∞

VYN = 254 –– 120∞

VBN = 254 –– 240∞

Impedance per phase, Z
Ph

 = 15 + j 20 = 25 –53.13∞ W

The phase currents are I
R
 = 

V

Z

RN

Ph

 = 
254 0

25 53 13

– ∞

– ∞.
 = 10.16 –– 53.13∞ A

IY =
V

Z

YN

Ph

 = 
254 120

25 5313

–- ∞

– ∞.
 = 10.16 –– 173.13∞ A

IB =
V

Z

BN

Ph

 = 
254 240

25 53 13

–- ∞

– ∞.
 = 10.16 –– 293.13∞ A

The three phase currents are equal in magnitude and displaced by 120∞ from one

another. Since the load is star-connected, these currents also represents line currents.

The power absorbed by the load (P)

= 3 ¥ VPh ¥ IPh cos f

or = 3 ¥ VL ¥ IL cos f

= 3 ¥ 440 ¥ 10.16 ¥ cos 53.13∞ = 4645.78 W

9.10 THREE-PHASE UNBALANCED CIRCUITS

9.10.1 Types of Unbalanced Loads

An unbalance exists in a circuit when the impedances in one or more phases

differ from the impedances of the other phases. In such a case, line or phase

currents are different and are displaced from one another by unequal angles. So

far, we have considered balanced loads connected to balanced systems. It is

enough to solve problems, considering one phase only on balanced loads; the

conditions on other two phases being similar. Problems on unbalanced three-

phase loads are difficult to handle because conditions in the three phases are

different. However, the source voltages are assumed to be balanced. If the

system is a three-wire system, the currents flowing towards the load in the three

lines must add to zero at any given instant. If the system is a four-wire system,

the sum of the three outgoing line currents is equal to the return current in the

neutral wire. We will now consider different methods to handle unbalanced

star-connected and delta-connected loads. In practice, we may come across the

following unbalanced loads:

(i) Unbalanced delta-connected load

(ii) Unbalanced three-wire star-connected load, and

(iii) Unbalanced four-wire star-connected load.
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9.10.2 Unbalanced Delta-connected Load

Figure 9.33 shows an unbalanced delta-load connected to a balanced three-

phase supply.
R

l1

l2

l3

lB
lR

lY

B

Y

Z1 – f1

Z3 – f3

Z2 – f2

Fig. 9.33

The unbalanced delta-connected load supplied from a balanced three-phase

supply does not present any new problems because the voltage across the load

phase is fixed. It is independent of the nature of the load and is equal to the line

voltage of the supply. The current in each load phase is equal to the line voltage

divided by the impedance of that phase. The line current will be the phasor

difference of the corresponding phase currents, taking V
RY

 as the reference

phasor.

Assuming RYB phase sequence, we have

VRY = V –0∞ V, VYB = V –– 120∞ V, VBR = V –– 240∞ V

Phase currents are

IR =
V

Z

RY

1 ∠f
 = 

V

Z

∠ °

∠

0

1 1f
 = 

V

Z1

–– f1 A

IY =
V

Z

YB

2 2∠f
 = 

V

Z

∠− °

∠

120

2 2f
 = 

V

Z2

–– 120∞ – f2 A

IB =
V

Z

BR

3 3∠f
 = 

V

Z

∠− °

∠

240

3 3f
 =

V

Z3

–– 240∞ – f3 A

The three line currents are

I1 = IR – IB phasor difference

I2 = IY – IR phasor difference

I3 = IB – IY phasor difference

Example 9.18 Three impedances Z
1
 = 20 –30∞ W, Z

2
 = 40 –60∞ W and Z

3
 = 10

–– 90∞ W are delta-connected to a 400 V, 3 – f system as shown in Fig. 9.34.

Determine the (i) phase currents (ii) line currents, and (iii) total power consumed by

the load.
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Z2

Z3 Z1

IB

I1

I3

I2

IR

IY

R

B

Y

10 90- ∞– W

40 60∞– W

20 30∞– W

Fig. 9.34

Solution The three phase currents are I
R
, I

Y
 and I

B
, and the three line currents are

I
1
, I

2
 and I

3
. Taking V

RY
 = V –0∞ V as reference phasor, and assuming RYB phase

sequence, we have

VRY = 400 –0∞ V, VYB = 400 –– 120∞ V,

VBR = 400 –– 240∞ V

Z1 = 20 –30∞ W = (17.32 + j10) W;

Z2 = 40 –60∞ W = (20 + j34.64) W;

Z3 = 10 –– 90∞ W = (0 – j10) W

IR =
V

Z

RY

1 1–f
 = 

400 0

20 30

– ∞

– ∞
 A = 20 –– 30∞ A

= (17.32 – j10) A

IY =
V

Z

YB

2 2–f
 =

400 120

40 60

–- ∞

– ∞
 A = 10 –– 180∞ A

= (– 10 + j0) A

IB =
V

Z

BR

3 3–f
 = 

400 240

10 90

–- ∞

–- ∞
A = 40 – – 150∞ A

= (– 34.64 – j 20) A

Now the three line currents are

I1 = IR – IB = [(17.32 – j 10) – (– 34.64 – j 20)]

= (51.96 + j 10) A = 52.91 –10.89∞ A

I2 = IY – IR = [(– 10 + j0) – (17.32 – j10)]

= (– 27.32 + j10) A = 29.09 –159.89∞ A

I3 = IB – IY = [(– 34.64 – j20) – (– 10 + j 0)]

= (– 24.64 – j 20) A = 31.73 –– 140.94∞ A
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(iii) To calculate the total power, first the powers in the individual phases are to be

calculated, then they are added up to get the total power in the unbalanced

load.

Power in R phase = I 2
R ¥ RR = (20)2

¥ 17.32 = 6928 W

Power in Y phase = I
2
Y ¥ RY = (10)

2
¥ 20 = 2000 W

Power in B phase = I 2
B ¥ RB = (40)2

¥ 0 = 0

\ Total power in the load = 6928 + 2000 = 8928 W

9.10.3 Unbalanced Four Wire Star-Connected Load

Figure 9.35 shows an unbalanced star load connected to a balanced 3-phase,

4-wire supply.

VYN

VRN

VBN

IR

IB

IY

R

NLNS

B

Z1–f1

Z3–f3

Z2–f2

Balanced 3-phase
supply

I = I + I + IN R Y B)- (

Neutral wire

Fig. 9.35

The star point, N
L
, of the load is connected to the star point, N

S
 of the supply.

It is the simplest case of an unbalanced load because of the presence of the

neutral wire; the star points of the supply N
S
 (generator) and the load N

L
 are at

the same potential. It means that the voltage across each load impedance is

equal to the phase voltage of the supply (generator), i.e. the voltages across the

three load impedances are equalised even though load impedances are unequal.

However, the current in each phase (or line) will be different. Obviously, the

vector sum of the currents in the three lines is not zero, but is equal to neutral

current. Phase currents can be calculated in similar way as that followed in an

unbalanced delta-connected load.

Taking the phase voltage V
RN

= V–0∞ V as reference, and assuming RYB

phase sequences, we have the three phase voltages as follows

VRN = V –0∞ V, VYN = V –– 120∞ V, VBN = V –– 240∞ V

The phase currents are

IR =
V

Z

RN

1

 = 
V

Z

∠ °

∠

0

1 1f
A = 

V

Z1

–– f1A
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IY =
V

Z

YN

2

 = 
V

Z

∠− °

∠

120

2 2f
A = 

V

Z2

–– 120∞ – f2A

IB =
V

Z

BN

3

 = 
V

Z

∠− °

∠

240

3 3f
A = 

V

Z3

–– 240∞ – f3A

Incidentally, I
R
, I

Y 
and I

B
 are also the line currents; the current in the neutral

wire is the vector sum of the three line currents.

Example 9.19 An unbalanced four-wire, star-connected load has a balanced

voltage of 400 V, the loads are

Z1 = (4 + j8) W; Z2 = (3 + j4) W; Z3 = (15 + j20) W

Calculate the (i) line currents (ii) current in the neutral wire and (iii) the total

power.

Solution Z
1

= (4 + j8) W; Z
2
 = (3 + j4) W; Z

3
 = (15 + j20) W

Z1 = 8.94 –63.40∞ W; Z2 = 5 –53.1∞ W; Z3 = 25 –53.13∞ W

Let us assume RYB phase sequence.

The phase voltage V
RN

 = 
400

3
 = 230.94 V.

Taking V
RN

 as the reference phasor, we have

VRN = 230.94 –0∞ V, VYN = 230.94 –– 120∞ V

VBN = 230.94 –– 240∞ V

The three line currents are

(i) IR = 
V

Z

RN

1

230 94 0

8 94 63 4
=

– ∞

– ∞

.

. .
 A = 25.83 –– 63.4∞ A

IY =
V

Z

YN

2

230 94 120

5 531
=

– - ∞

– ∞

.

.
 A = 46.188 –– 173.1∞ A

IB =
V

Z

BN

3

230 94 240

25 5313
=

– - ∞

– ∞

.

.
 A = 9.23 –– 293.13∞ A

(ii) To find the neutral current, we must add the three line currents. The neutral

current must then be equal and opposite to this sum.

Thus, IN = – (IR + IY + IB)

= – (25.83 –– 63.4∞ + 46.188 –– 173.1∞ + 9.23 –– 293.13∞) A

IN = – [(11.56 – j23.09) + (– 45.85 – j5.54) + (3.62 + j8.48)] A.

IN = – [(– 30.67 – j20.15)] A = (30.67 + j20.15) A

IN = 36.69 –33.30 ∞ A

Its phase with respect to V
RN

 is 33.3∞, the disposition of all the currents is shown

in Fig. 9.36.
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Fig. 9.36

(iii) Power in R phase = I 2
R ¥ RR = (25.83)2

¥ 4 = 2668.75 W

Power in Y phase = I
2

Y
¥ R

Y
 = (46.18)

2
¥ 3 = 6397.77 W

Power in B phase = I
2

B
¥ R

B
 = (9.23)

2
¥ 15 = 1277.89 W

Total power absorbed by the load

= 2668.75 + 6397.77 + 1277.89 = 10344.41 W

9.10.4 Unbalanced Three Wire Star-Connected Load

In a three-phase, four-wire system if the connection between supply neutral and

load neutral is broken, it would result in an unbalanced three-wire star-load. This

type of load is rarely found in practice, because all the three wire star loads are

balanced. Such as system is shown in Fig. 9.37. Note that the supply star point

(N
S
) is isolated from the load star point (N

L
). The potential of the load star point

is different from that of the supply star point. The result is that the load phase

voltages is not equal to the supply phase voltage; and they are not only unequal

in magnitude, but also subtend angles other than 120∞ with one another. The

magnitude of each phase voltage depends upon the individual phase loads. The

potential of the load neutral point changes according to changes in the

impedances of the phases, that is why sometimes the load neutral is also called a

floating neutral point. All star-connected, unbalanced loads supplied from

polyphase systems without a neutral wire have floating neutral point. The phasor

sum of the three unbalanced line currents is zero. The phase voltage of the load is

not 1/ 3  of the line voltage. The unbalanced three-wire star load is difficult to

deal with. It is because load phase voltages cannot be determined directly from

the given supply line voltages. There are many methods to solve such unbalanced

Y-connected loads. Two frequently used methods are presented here. They are

(i) Star-delta conversion method, and

(ii) The application of Millman’s theorem
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Fig. 9.37

9.10.5 Star-Delta Method to Solve Unbalanced Load

Figure 9.38(a) shows an unbalanced wye-connected load. It has already been

shown in Section 9.6 that a three phase star-connected load can be replaced by

an equivalent delta-connected load. Thus, the star load of Fig. 9.38(a) can be

replaced by equivalent delta as shown in Fig. 9.38(b), where the impedances in

each phase is given by

ZRY =
Z Z Z Z Z Z

Z

R Y Y B B R

B

+ +

ZYB =
Z Z Z Z Z Z

Z

R Y Y B B R

R

+ +

ZBR =
Z Z Z Z Z Z

Z

R Y Y B B R

Y

+ +

The problem is then solved as an unbalanced delta-connected system. The

line currents so calculated are equal in magnitude and phase to those taken by

the original unbalanced wye (Y) connected load.

Fig. 9.38
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Example 9.20 A 400 V, three-phase supply feeds an unbalanced three-wire, star-

connected load. The branch impedances of the load are Z
R
 = (4 + j 8) W;

Z
y
 = (3 + j4) W and Z

B
 = (15 + j 20) W. Find the line currents and voltage across each

phase impedance. Assume RYB phase sequence.

Solution The unbalanced star load and its equivalent delta (D) is shown in

Fig. 9.39(a) and (b) respectively.

ZBR
ZRY

I1

I1

I3

I3
Iy

IB

IR

I2
I2

ZYB

R

(a)
(b)

4 W

3 W15 W

j 8 W

j 4 Wj 20 W Y
B

Fig. 9.39

ZR = (4 + j8) W = 8.944 –63.4∞ W

ZY = (3 + j4) W = 5 –53.1∞ W

ZB = (15 + j20) W = 25 –53.1 W

Using the expression in Section 9.10.5, we can calculate Z
RY

, Z
YB

 and Z
BR

ZRZY + ZY ZB + ZBZR

= (8.94 – 63.4∞) (5 – 53.1∞) + (5 –53.1∞) (25 –53.1∞)

+ (25 –53.1∞) (8.94 –63.4∞)

= 391.80 – 113.23∞

ZRY =
Z Z Z Z Z Z

Z

R Y Y B B R

B

+ +
 = 

39180 113 23

25 531

. .

.

– ∞

– ∞
 = 15.67 – 60.13∞

ZYB =
Z Z Z Z Z Z

Z

R Y Y B B R

R

+ +
=

– ∞

– ∞

39180 113 23

8 94 63 4

. .

. .
 = 43.83 –49.83∞

ZBR =
Z Z Z Z Z Z

Z

R Y Y B B R

Y

+ +
=

– ∞

– ∞

39180 113 23

5 531

. .

.
 = 78.36 – 60.13∞

Taking V
RY

 as reference, V
RY

 = 400 –0

VYB = 400 –– 120º; VBR = 400 –– 240∞

IR =
V

Z

RY

RY

=
–

– ∞

400 0

15 67 60 13. .
 = 25.52 –– 60.13∞
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IY =
V

Z

YB

YB

=
–- ∞

– ∞

400 120

43 83 49 83. .
 = 9.12 –– 169.83∞

IB =
V

Z

BR

BR

=
–- ∞

– ∞

400 240

78 36 60 13. .
 = 5.10 –– 300.13∞

The various line currents in the delta load are

I1 = IR – IB = 25.52 –– 60.13∞ – 5.1 –– 300.13∞

= 28.41 –– 69.07∞ A

I2 = IY – IR = 9.12 –– 169.83∞ – 25.52 –– 60.13∞

= 29.85 –136.58∞ A

I3 = IB – IY = 5.1 –– 300.13∞ – 9.12 –– 169.83∞

= 13 –27.60∞ A

These line currents are also equal to the line (phase) currents of the original star-

connected load. The voltage drop across each star-connected load will be as follows.

Voltage drop across Z
R
 = I

1
Z

R

= (28.41 –– 69.070∞) (8.94 – 63.4∞) = 253.89 –– 5.67∞ V

Voltage drop across Z
Y
 = I

2
Z

Y

= (29.85 –136.58∞) (5 –53.1∞) = 149.2 –189.68∞ V

Voltage drop across Z
B
 = I

3
Z

B

= (13 –27.60∞) (25 –53.1∞) = 325 –80.70∞ V

9.10.6 Millman’s Method of Solving Unbalanced Load

One method of solving an unbalanced three-wire star-connected load by star-

delta conversion is described in Section 9.10.5. But this method is laborious

and involves lengthy calculations. By using Millman’s theorem, we can solve

this type of problems in a much easier way. Consider an unbalanced wye (Y)

load connected to a balanced three-phase supply as shown in Fig. 9.40(a). V
RO

,

V
YO

 and V
BO

 are the phase voltages of the supply. They are equal in magnitude,

but displaced by 120∞ from one another. V
RO¢

, V
YO¢

 and V
BO¢

 are the load phase

voltages; they are unequal in magnitude as well as differ in phase by unequal

angles. Z
R
, Z

Y
 and Z

B
 are the impedances of the branches of the unbalanced wye

(Y) connected load. Figure 9.40(b) shows the triangular phasor diagram of the

complete system. Distances RY, YB and BR represent the line voltages of the

supply as well as load. They are equal in magnitude, but displaced by 120∞.

Here O is the star-point of the supply and is located at the centre of the

equilateral triangle RYB. O¢ is the load star point. The star point of the supply

which is at the zero potential is different from that of the star point at the load,

due to the load being unbalanced. O¢ has some potential with respect to O and is

shifted away from the centre of the triangle. Distance O¢O represents the voltage

of the load star point with respect to the star point of the supply Vo¢o.
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VRO – 0º

VYO – 120∞–

(a)

VBO 240°– -

IR

IY

IB

R R

B
Y

YB

O

O¢

ZB –f
1

ZY –f
2ZB –f

3

Fig. 9.40

V
o¢o

 is calculated using Millman’s theorem. If V
o¢o

 is known, the load phase

voltages and corresponding currents in the unbalanced wye load can be easily

determined.

Fig. 9.40

According to Millman’s theorem, V
o¢o

 is given by

Vo¢o =
V Y V Y V Y

Y Y Y

Ro R Yo Y Bo B

R Y B

+ +

+ +

where the parameters Y
R
, Y

Y
 and Y

B
 are the admittances of the branches of the

unbalanced wye connected load. From Fig. 9.40(a), we can write the equation

VRo = VRo¢ + Vo¢o

or the load phase voltage

VRo¢ = VRo – Vo¢o

Similarly, V
Yo¢

 = V
Yo

– V
o¢o

 and V
Bo¢

 = V
Bo

– V
o¢o

 can be calculated. The line

currents in the load are

IR =
V

Z

Ro

R

¢  = (VRo – Vo¢o) YR
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IY =
V

Z

Yo

Y

′  = (VYo – Vo¢o) YY

IB =
V

Z

Bo

B

′  = (VBo – Vo¢o) YB

The unbalanced three-wire star-connected loads can also be determined by

using Kirchhoff’s laws, and Maxwells mesh or loop equation. In general, any

method which gives quick results in a particular case should be used.

Example 9.21 To illustrate the application of Millmans method to unbalanced

loads, let us take the problem in example given in Section 9.10.5.

Solution The circuit diagram is shown in Fig. 9.41.

VRO

VBO

VYO

R R

4 W

3 W15 W

j 8 W

j 4W
j 20 W

B

B

Y

Y

O O¢

Fig. 9.41

Taking V
RY

 as reference line voltage = 400 –0∞, phase voltages lag 30∞ behind

their respective line voltages. Therefore, the three phase voltages are

VRo =
400

3
–– 30∞ V

VYo =
400

3
–– 150∞ V

VBo =
400

3
–– 270∞ V

The admittances of the branches of the wye load are

YR =
1 1

8 94 63 4ZR

=
– ∞. .

 = 0.11 –– 63.40∞

W

YY =
1 1

5 531ZY

=
– ∞.

 = 0.2 –– 53.1∞

W

YB =
1 1

25 531ZB

=
– ∞.

 = 0.04 –– 53.1∞

W
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V
Ro

Y
R
 + V

Yo
Y

Y
 + V

Bo
Y

B
 = (230.94 –– 30°) (0.11 –– 63.40°)

+ (230.94 –– 150°) (0.2 –– 53.1°) + (230.94 –– 270°) (0.04 –– 53.1°)

= 36.68 –182.66∞

Y
R

+ Y
Y
 + Y

B
 = 0.11 –– 63.4∞ + 0.2 –– 53.1∞ + 0.04 –– 53.1∞

= 0.35 –– 56.2∞

W

Substituting the above values in the Millmans theorem, we have

Vo¢o =
V Y V Y V Y

Y Y Y

Ro R Yo Y Bo B

R Y B

+ +

+ +

=
36 68 182 66

0 35 56 2

. .

. .

– ∞

–- ∞
 = 104.8 –238.86∞

The three load phase voltages are

VRo¢ = VRo – Vo¢o

= 230.94 –– 30∞ – 104.8 –238.86∞ = 253.89 –– 5.67∞ V

VYo¢ = VYo – Vo¢o

= 230.94 –– 150∞ – 104.8 –238.86∞ = 149.2 –189.68∞ V

VBo¢ = VBo – Vo¢o

= 230.94 –– 270∞ – 104.8 –238.86∞ = 325 –80.7∞ V

9.11 POWER MEASUREMENT IN THREE-PHASE

CIRCUITS

9.11.1 Power Measurement in a Single Phase Circuit

by Wattmeter

Wattmeters are generally used to measure power in the circuits. A wattmeter

principally consists of two coils, one coil is called the current coil, and the other

the pressure or voltage coil. A diagramatric representation of a wattmeter

connected to measure power in a single phase circuit is shown in Fig. 9.42.

Fig. 9.42
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The coil represented with less number of turns between M and L is the

current coil, which carries the current in the load and has very low impedance.

The coil with more number of turns between the common terminal (comn) and

V is the pressure coil, which is connected across the load and has high

impedance. The load voltage is impressed across the pressure coil. The terminal

M denotes the mains side, L denotes load side, common denotes the common

point of current coil and pressure coil, and V denotes the second terminal of the

pressure coil, usually selected as per the range of the load voltage in the circuit.

From the figure, it is clear that a wattmeter has four terminals, two for current

coil and two for potential coil. When the current flow through the two coils,

they set up magnetic fields in space. An electromagnetic torque is produced by

the interaction of the two magnetic fields. Under the influence of the torque,

one of the coils (which is movable) moves on a calibrated scale against the

action of a spring. The instantaneous torque produced by electromagnetic

action is proportional to the product of the instantaneous values of the currents

in the two coils. The small current in the pressure coil is equal to the input

voltage divided by the impedance of the pressure coil. The inertia of the moving

system does not permit it to follow the instantaneous fluctuations in torque. The

wattmeter deflection is therefore, proportional to the average power (VI cos f)

delivered to the circuit. Sometimes, a wattmeter connected in the circuit to

measure power gives downscale reading or backward deflection. This is due to

improper connection of the current coil and pressure coil.

To obtain up scale reading, the terminal marked as ‘Comn’ of the pressure

coil is connected to one of the terminals of the current coil as shown in Fig.

9.43. Note that the connection between the current coil terminal and pressure

coil terminal is not inherent, but has to be made externally. Even with proper

connections, sometimes the wattmeter will give downscale reading whenever

the phase angle between the voltage across the pressure coil and the current

Fig. 9.43
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through the current coil is more than 90∞. In such a case, connection of either

the current coil or the pressure coil must be reversed.

9.11.2 Power in Three-Phase Circuits

Measurement of power by a wattmeter in a single phase circuit can be extended

to measure power in a three-phase circuit. From Section 9.11.1, it is clear that

we require three wattmeters, one in each phase to measure the power consumed

in a three-phase system. Obviously, the total power is the algebraic sum of the

readings of the three wattmeters. In this way we can measure power in balanced

and unbalanced loads. In a balanced case it would be necessary to measure

power only in one phase and the reading is multiplied by three to get the total

power in all the three phases. This is true in principle, but presents a few

difficulties in practice. To verify this fact let us examine the circuit diagram in

Figs. 9.44(a) and (b).

Observation of Figs 9.44(a) and (b) reveals that for a star-connected load,

the neutral must be available for connecting the pressure coil terminals. The

current coils must be inserted in each phase for a delta-connected load. Such

connections sometimes may not be practicable, because the neutral terminal is

not available all the time in a star-connected load, and the phases of the delta-

connected load are not accessible for connecting the current coils of the

wattmeter. In most of the commercially available practical three-phase loads,

only three line terminals are available. We, therefore, require a method where

we can measure power in the three-phases with an access to the three lines

connecting the source to the load. Two such methods are discussed here.

W1

IR

IB

IY

W2

W3

R

B

Y

Z1 –f
1

Z2 –
2

f
Z3 – 3f

Line 1

Line 3

Line 2

N(Neutral)

(a)

Fig. 9.44
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W1

I1

I3

I2

W2

W3

R
R

B

(b)

B Y

Y

Z1 –f1

Z2 –f2

Z3 –f3

Fig. 9.44

9.11.3 Three Wattmeter and Two Wattmeter Method

In this method, the three wattmeters are connected in the three lines as shown in

Fig. 9.45, i.e. the current coils of the three wattmeters are introduced in the

three lines, and one terminal of each potential coil is connected to one terminal

of the corresponding current coil, the other three being connected to some

common point which forms an effective neutral n.

WR
IR

IB

IY

WY

WB

R

N

R

B
B

Y

Y

Z1 –f1

Z2 –f2

Z3 –f3

Line 1

Line 3

Line 2

Supply

n

Fig. 9.45

The load may be either star-connected or delta-connected. Let us assume a

star-connected load, and let the neutral of this load be denoted by N. Now the

reading on the wattmeter W
R
 will correspond to the average value of the product
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of the instantaneous value of the current I
R
 flowing in line 1, with the voltage

drop V
Rn

, where V
Rn

 is the voltage between points R and n. This can be written

as V
Rn

 = V
RN

 + V
Nn

, where V
RN

 is the load phase voltage and V
Nn

 is the voltage

between load neutral, N, and the common point, n. Similarly, V
Yn

 = V
YN

 + V
Nn

,

and V
Bn

 = V
BN

 + V
Nn

. Therefore, the average power, W
R
 indicated by the

wattmeter is given by

WR =
1

T
o

T

z VRn IR dt

where T is the time period of the voltage wave

WR =
1

T
o

T

z  (VRN + VNn)IR dt

Similarly, WY =
1

T
o

T

z VYn IY dt

=
1

T
o

T

z  (VYN + VNn)IY dt

and WB =
1

T
o

T

z VBn IB dt

=
1

T
o

T

z  (VBN + VNn)IB dt

Total average power = WR + WY + WB

=
1

T
o

T

z  (VRN IR + VYN IY + VBN IB) dt + 
1

T
o

T

z VNn (IR + IY + IB) dt

Since the system in the problem is a three-wire system, the sum of the three

currents I
R
, I

Y
 and I

B
 at any given instant is zero. Hence, the power read by the

three wattmeters is given by

WR + WY + WB =
1

T
o

T

z  (VRN IR + VYN IY + VBN IB) dt

If the system has a fourth wire, i.e. if the neutral wire is available, then the

common point, n is to be connected to the system neutral, N. In that case, V
Nn

would be zero, and the above equation for power would still be valid. In other

words, whatever be the value of V
Nn

, the algebraic sum of the three currents I
R
,

I
Y
 and I

B
 is zero. Hence, the term V

Nn
(I

R
 + I

Y
 + I

B
) would be zero. Keeping this

advantage in mind, suppose the common point, n, in Fig. 9.45 is connected to

line B. In such case, V
Nn

 = V
NB

; then the voltage across the potential coil of
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wattmeter W
B
 will be zero and this wattmeter will read zero. Hence, this can be

removed from the circuit. The total power is read by the remaining two

wattmeters, W
R
 and W

Y
.

\ Total power = WR + WY

Let us verify this fact from Fig. 9.46.

The average power indicated by wattmeter W
R
 is

WR =
1

T
o

T

z VRB IR dt

and that by WY =
1

T
o

T

z VYB ◊ IY dt

Also VRB = VRN + VNB

VYB = VYN + VNB

WR
IR

IB

IY

WY

R

N

R

B
B

Y

Z1 –f1

Z2 –f2
Z3 –f3

Line 1

Line 3

Line 2

Fig. 9.46

WR + WY =
1

T
o

T

z  (VRB ◊ IR + VYB ◊ IY) dt

=
1

T
o

T

z  {(VRN + VNB) IR + (VYN + VNB) IY} dt

=
1

T
o

T

z  {(VRN IR + VYN IY) + (IR + IY) VNB} dt

We know that I
R
 + I

Y
 + I

B
 = 0

IR + IY = – IB
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Substituting this value in the above equation, we get

WR + WY =
1

T
o

T

z  {(VRN IR + VYN IY) + (– IB) VNB} dt

VNB = – VBN

WR + WY =
1

T
o

T

z  {(VRN IR + VYN ◊ IY + VBN ◊ IB)} dt

which indicates the total power in the load.

From the above discussion it is clear that the power in a three-phase load,

whether balanced or unbalanced, star-connected or delta-connected, three-wire

or four wire, can be measured with only two wattmeters as shown in Fig. 9.46.

In fact, the two wattmeter method of measuring power in three-phase loads has

become a universal method. If neutral wire is available in this method it should

not carry any current, or the neutral of the load should be isolated from the

neutral of the source.

The current flowing through the current coil of each wattmeter is the line

current, and the voltage across the pressure coil is the line voltage. In case the

phase angle between line voltage and current is greater than 90∞, the

corresponding wattmeter would indicate downscale reading. To obtain upscale

reading, the connections of either the current coil, or the pressure coil has to be

interchanged. Reading obtained after reversal of coil connection should be

taken as negative. Then, the algebraic sum of the two wattmeter readings gives

the total power.

9.11.4 Power Factor by Two Wattmeter Method

When we talk about the power factor in three-phase circuits, it applies only to

balanced circuits, since the power factor in a balanced load is the power factor

of any phase. We cannot strictly define the power factor in three-phase unbalanced

circuits, as every phase has a separate power factor. The two wattmeter method,

when applied to measure power in a three-phase balanced circuits, provides

information that help us to calculate the power factor of the load.

Figure 9.47 shows the vector diagram of the circuit shown in Fig. 9.46. Since

the load is assumed to be balanced, we can take Z
1

–f
1
 = Z

2
–f

2
 = Z

3
–f

3
 = Z

–f for the star-connected load. Assuming RYB phase sequence, the three rms

load phase voltages are V
RN

, V
YN

 and V
BN

◊ I
R
, I

Y
 and I

B
 are the rms line (phase)

currents. These currents will lag behind their respective phase voltages by an

angle f. (An inductive load is considered).

Now consider the readings of the two wattmeters in Fig. 9.46. W
R
 measures

the product of effective value of the current through its current coil I
R
, effective

value of the voltage across its pressure coil V
RB

 and the cosine of the angle

between the phasors I
R
 and V

RB
. The voltage across the pressure coil of W

R
 is

given as follows.
VRB = VRN – VBN phasor difference
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IB

IR

VBN

VRN

VRB–VBN
VYN

VYB

IY
IY

30º

30º

f

f

f

Fig. 9.47

It is clear from the phasor diagram that the phase angle between

VRB and IR is (30∞ – f)

\ WR = VRB ◊ IR cos (30 – f)

Similarly, W
Y
 measures the product of effective value of the current through

its current coil I
Y
, the effective value of the voltage across its pressure coil, V

YB

and the cosine of the angle between the phasors V
YB

 and I
Y
.

VYB = VYN – VBN

From Fig. 9.47, it is clear that the phase angle between V
YB

 and I
Y
 is (30∞ + f).

\ WY = VYB ◊ IY cos (30∞ + f)

Since the load is balanced, the line voltage V
RB

 = V
YB

 = V
L
 and the line current

I
R
 = I

Y
 = I

L

WR = VL ◊ IL cos (30∞ – f)

WY = VLIL cos (30∞ + f)

Adding W
R
 and W

Y
 gives total power in the circuit, thus

WR + WY = 3 VLIL cos f

From the two wattmeter readings, it is clear that for the same load angle f,

wattmeter W
R
 registers more power when the load is inductive. It is also

connected in the leading phase as the phase sequence is RYB. Therefore, W
R
 is

higher reading wattmeter in the circuit of Fig. 9.46. In other words, if the load is

capacitive, the wattmeter connected in the leading phase reads less for the same

load angle. So, if we know the nature of the load, we can easily identify the

phase sequence of the system. The higher reading wattmeter always reads

positive. By proper manipulation of two wattmeter readings, we can obtain the

power factor of the load.
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WR = VLIL cos (30∞ – f) (Higher reading)

WY = VLIL cos (30∞ + f) (Lower reading)

WR + WY = 3 VLIL cos f

WR – WY = VLIL sin f

Taking the ratio of the above two values, we get

W W

W W

R Y

R Y

−

+
=

tan f

3

or tan f = 3
W W

W W

R Y

R Y

−

+

L

N
M

O

Q
P

f = tan–1 3
W W

W W

R Y

R Y

−

+

L

N
M

O

Q
P

Thereafter, we can find cos f

Example 9.22 The two wattmeter method is used to measure power in a three-

phase load. The wattmeter readings are 400 W and – 35 W. Calculate (i) total active

power (ii) power factor, and (iii) reactive power.

Solution From the given data, the two wattmeter readings W
R
 = 400 W (Higher

reading wattmeter) W
Y
 = – 35 W (Lower reading wattmeter).

(i) Total active power = W1 + W2

= 400 + (– 35) = 365 W

(ii) tan f = 3
W W

W W

R Y

R Y

−

+
 = 3

400 35

400 35
3

435

365

- -

+ -
= ¥

b g

b g
 = 2.064

f = tan–1 2.064 = 64.15∞; P.F = 0.43

(iii) Reactive power = 3 VLIL sin f

We know that W
R

– W
Y
 = V

L
I

L
sin f

\ WR – WY = 400 – (– 35) = 435

Reactive power = 3 ¥ 435 = 753.44 VAR

Example 9.23 The input power to a three-phase load is 10 kW at 0.8 Pf. Two

wattmeters are connected to measure the power, find the individual readings of the

wattmeters.

Solution Let W
R
 be the higher reading wattmeter and W

Y
 the lower reading

wattmeter

WR + WY = 10 kW (9.1)

f = cos
–1

 0.8 = 36.8∞

tan f = 0.75 = 3
W W

W W

R Y

R Y

-

+
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or WR – WY =
0 75

3

.b g
 (WR + WY) = 

0 75

3

.
¥ 10 kW

= 4.33 kW (9.2)

From Eqs (9.1) and (9.2) we get

WR + WY = 10 kW

W W

W

R Y

R

- =

=

4 33

2 14 33

.

.

kW

kW

or WR = 7.165 kW

WY = 2.835 kW

9.11.5 Variation in Wattmeter Readings with Load

Power Factor

It is useful to study the effect of the power factor on the readings of the

wattmeter. In Section 9.11.4, we have proved that the readings of the two

wattmeters depend on the load power factor angle f, such that

WR = VLIL cos (30 – f)∞

WY = VLIL cos (30 + f)∞

We can, therefore, make the following deductions

(i) When f is zero, i.e. power factor is unity, from the above expressions we

can conclude that the two wattmeters indicate equal and positive values.

(ii) When f rises from 0 to 60∞, i.e. upto power factor 0.5, wattmeter WR

reads positive (since it is connected in the leading phase); whereas watt-

meter WY reads positive, but less than WR. When f = 60∞, WY = 0 and the

total power is being measured only by wattmeter WR.

(iii) If the power factor is further reduced from 0.5, i.e. when f is greater than

60∞, WR indicates positive value, whereas WY reads down scale reading in

such case. As already explained in Section 9.11.3 the connections of ei-

ther the current coil, or the pressure coil of the corresponding wattmeter

have to be interchanged to obtain an upscale reading, and the reading

thus obtained must be given a negative sign. Then the total power in the

circuit would be WR + (– WY) = WR – WY. Wattmeter WY reads downscale

for the phase angle between 60∞ and 90∞. When the power factor is zero

(i.e. f = 90∞), the two wattmeters will read equal and opposite values.

i.e. WR = VLIL cos (30 – 90)∞ = 0.5 VLIL

WY = VLIL cos (30 + 90)∞ = – 0.5 VLIL

9.11.6 Leading Power Factor Load

The above observations are made considering the lagging power factor.

Suppose the load in Fig. 9.46(a) is capacitive, the wattmeter connected in the

leading phase would read less value. In that case, W
R
 will be the lower reading
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wattmeter, and W
Y
 will be the higher reading wattmeter. Figure 9.48 shows the

phasor diagram for the leading power factor.

IB

IR

VBN

VRN

VRB
VYN

VYB

IY

30º

3
0
º

f

f

f

Fig. 9.48

As the power factor is leading, the phase currents, I
R
, I

Y
 and I

B
 are leading

their respective phase voltage by an angle f. From Fig. 9.48, the reading of the

wattmeter connected in the leading phase is given by

WR = VRB ◊ IR cos (30 + f)∞

= VLIL cos (30 + f)∞ (lower reading wattmeter)

Similarly, the reading of the wattmeter connected in the lagging phase is

given by

WY = VYB IY cos (30 – f)∞

= VLIL cos (30 – f)∞ (higher reading wattmeter)

Again the total power is given by

WR + WY = 3 VLIL cos f

WY – WR = VLIL sin f

Hence tan f = 3
W W

W W

Y R

Y R

−

+

A comparison of this expression with that of lagging power factor reveals

the fact that the two wattmeter readings are interchanged, i.e. for lagging power

factor, W
R
 is the higher reading wattmeter, and W

Y
 is the lower reading

wattmeter; where as for leading power factor, W
R

is the lower reading wattmeter

and W
Y
 is the higher reading wattmeter. While using the expression for power

factor, whatever may be the nature of the load, the lower reading is to be

subtracted from the higher reading in the numerator. The variation in the

wattmeter reading with the capacitive load follows the same sequence as in

inductive load, with a change in the roles of wattmeters.
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Example 9.24 The readings of the two wattmeters used to measure power in a

capacitive load are – 3000 W and 8000 W, respectively. Calculate (i) the input

power, and (ii) the power factor at the load. Assume RYB sequence.

Solution

(i) Total power = WR + WY = – 3000 + 8000 = 5000 W

(ii) As the load is capacitive, the wattmeter connected in the leading phase gives

less value.

\ WR = – 3000

Consequently WY = 8000

tan f = 3
W W

W W

Y R

Y R

-

+
 = 3

8000 3000

5000

- -b gc h
 = 3.81

\ f = 75.29∞ (lead); cos f = 0.25

9.11.7 Reactive Power with Wattmeter

We have already seen in the preceding section that the difference between

higher reading wattmeter and lower reading wattmeter yields V
L
I

L
 sin f. So, the

total reactive power = 3 V
L
I

L
 sin f. Reactive power in a balanced three-phase

load can also be calculated by using a single wattmeter.

As shown in Fig. 9.49(a), the current coil of the wattmeters is connected in

any one line (R in this case), and the pressure coil across the other two lines

(between Y and B in this case). Assuming phase sequence RYB and an inductive

load of angle f, the phasor diagram for the circuit in Fig. 9.49(a) is shown in

Fig. 9.49(b).

R R

B

BY
Y

W

IR

Z –f

Z –f

Z –f

(a)

Fig. 9.49

From Fig. 9.49(a), it is clear that the wattmeter power is proportional to the

product of current through its current coil, I
R
, voltage across its pressure coil,

V
YB

, and cosine of the angle between V
YB

 and I
R
.



9.54 Electrical Circuit Analysis

or VYB = VYN – VBN = VL

IB

IR

VBN

VRN

–VBNVYN

VYB

30º

f

f

f

(b)

Fig. 9.49

From the vector diagram the angle between V
YB

 and I
R
 is (90 – f)°

\ Wattmeter reading= V
YB

I
R
 cos (90 – f )°

= V
L

I
L
 sin f VAR

If the above expression is multiplied by 3 , we get the total reactive power

in the load.

Example 9.25 A single wattmeter is connected to measure reactive power of a

three-phase, three-wire balanced load as shown in Fig. 9.49(a). The line current is

17 A and the line voltage is 440 V. Calculate the power factor of the load if the

reading of the wattmeter is 4488 VAR.

Solution We know that wattmeter reading is equal to V
L
I

L
 sin f

\ 4488 = 440 ¥ 17 sin f

sin f = 0.6

Power factor = cos f = 0.8

9.12 EFFECTS OF HARMONICS

The relationship between line and phase quantities for wye and delta

connections as derived earlier are strictly valid only if the source voltage is

purely sinusoidal. Such a waveform is an ideal one. Modern alternations are

designed to give a terminal voltage which is almost sinusoidal. But it is nearly

impossible to realise an ideal waveform in practice. All sinusoidally varying

alternating waveforms deviate to a greater or lesser degree, from an ideal

sinusoidal shape. Due to non-uniform distribution of the field flux and armature
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reaction in a.c. machines, the current and voltage waves may get distorted. Such

waveforms are referred to as non-sinusoidal or complex waveforms. In modern

machines this distortion is relatively small. All non-sinusoidal waves can be

broken up into a series of sinusoidal waves whose frequencies are integral

multiples of the frequency of the fundamental wave. The sinusoidal components

of a complex wave are called harmonics. It is therefore necessary to consider

the effect of certain harmonics on currents and voltages in the phase of three-

phase wye and delta systems in effecting the line and phase quantities.

The fundamental wave is called the basic wave or first harmonic. The second

harmonic has a frequency of twice the fundamental, the third harmonic

frequency is three times the fundamental frequency and so on. Each harmonic

is a pure sinusoid. Waves having 2f, 4f, 6f, etc. are called even harmonics and

those having frequencies 3f, 5f, 7f, etc. are called odd harmonics. Since the

negative half of the wave is a reproduction of the positive half, the even

harmonics are absent. Therefore, a complex wave can be represented as a sum

of fundamental and odd harmonics.

9.12.1 Harmonic Effect in Wye

Let us consider a wye connected generator winding, whose arrangement is

shown diagrammatically in Fig. 9.50. The voltage induced in phase a of the

three-phase symmetrical system, including odd harmonics is given by

n

B

AC

Fig. 9.50

Vna = Em1
 sin (w t + q1) + Em3

 sin (3w t + q3) + Em5
 sin (5w t + q5) +  (9.3)

Where E
m1

, E
m3

, E
m5

, etc. are the peak values of the fundamental and other

harmonics and q
1
, q

3
, q

5
, etc. are phase angles. Assuming abc phase sequence.

The voltage in phase b will be

nnb = Em1
 sin (wt + q1 – 120°) + Em3

 sin (3wt – 360° + q3)

+ Em5
 sin (5wt – 600° + q5)
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= Em1
 sin (wt + q1 – 120°) + Em3

 sin (3wt + q3)

+ Em3
 sin (5w t + q5 – 240°) (9.4)

The voltage in phase c will be

nnc = Em1
 sin (w t + q1 – 240°) + Em3

 sin (3wt + q3 – 720°)

+ Em5
 sin (5w t + q5 – 1200°)

= Em1
 sin (w t + q1 – 240°) + Em3

 sin (3wt + q3)

+ Em5
 sin (5wt + q5 – 120°) (9.5)

Equations 9.3, 9.4, and 9.5 show that all third harmonics are in time phase

with each other in all the three phases as shown in Fig. 9.51(a). The same

applies to the, ninth, fifteenth, twenty first… harmonics, i.e. all odd multiples

of 3. Other than odd multiples of 3, the fifth, seventh, eleventh… and all other

harmonics are displaced 120° in time phase mutually with either the same phase

sequence or opposite phase sequence compared with that of the fundamentals.

Fifth harmonics and seventh harmonic sequences are shown in Figs. 9.5(c) and

9.5(d) respectively.

Em a3 Em b3 Em c3
Em b5 Em a5

Em c5

(a)

(b)

(c)

Em a7Em c7

Em b7

Fig. 9.51

Summarising the above facts, the fundamental and all those harmonics

obtained by adding a multiple of 6, i.e. 1, 7, 13, 19… etc. will have the same

sequence. Similarly, the fifths and all harmonics obtained by adding a multiple of

6, i.e. 5, 11, 17, 23… etc. will have sequence opposite to that of the fundamental.

Voltage Relations The voltage between lines ab in the wye connected

winding in Fig. 9.50 may be written as

eab = ean + enb

Adding of each harmonic separately is shown in Fig. 9.52.
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Em1 Em1

Em1

enc1

enc1

ena1

ena7

eab = 0 ena3

enb3

enc3
Em3

ean

ean

Ean

enb1

enb7

enb5

enc5

ena5

Em7Em7

Em7
Em5

Em5

Em5

eab Em= 3 1÷

E Emab= 3 7÷

e Eab m= 3÷ 5

120º120º

120º120º

120º120º

120º120º

120º120º

120º120º
120º120º

120º120º

120º120º

30º30º

(a) Fundamental components(a) Fundamental components

(b) Third harmonic(b) Third harmonic components

(d) Seventh harmonic(d) Seventh harmonic components(c) Fifth harmonic components(c) Fifth harmonic components

30º30º

30º30º

Fig. 9.52

It is seen from the vector diagrams of Fig. 9.52 that there is no third harmonic

component in the line voltage. Hence, the rms value of the line voltage is given

by

Eab = 3
2

1 5 7

2 2 2E E Em m m+ + +…
(9.6)

From equation (1) the rms value of the phase voltage is

Ena =
E E E Em m m m1 3 5 7

2 2 2 2

2

+ + + +…
(9.7)

It is seen from the above equations that in a wye connected system, the line

voltage is not equal to 3  times the phase voltage if harmonics are present.

This is true only when the third harmonics are absent.

Current Relations Similar to the complex voltage wave, the instantaneous

value of the complex current wave can be written

i = Im1
 sin (w t + f1) + Im3

 sin (3w t + f3) + Im5
 sin (5w t + f5) (9.8)
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where I
m1

, I
m3

, I
m5

, etc. are the peak values of fundamental and other harmonics;

(f
1

– f
1
) is the phase difference between fundamental component of the

harmonic voltage and current and (f
3

– f
3
) is the phase difference between 3rd

harmonics and so on. Applying KCL for the three phase wye connected winding

in Fig. 9.50.

Ina + inb + inc = 0 (9.9)

The equations for i
na

, i
nb

 and i
nc

 can be obtained by replacing currents in the

place of voltages in equations 9.3, 94 and 9.5 under balanced conditions the

sum of the three currents is equal to zero, only when they have equal

magnitudes and displaced by 120° apart in time phase in the three phases. All

harmonics fulfil the above condition except the third harmonics and their odd

multiples as they are in the same phase as shown in Fig. 9.51(a) or 9.52(b).

Hence, the resultant of i
na

 + i
nb

 + i
nc

 consists of the arithmetic sum of the third

harmonics in the three phases. Hence, there must be a neutral wire or fourth

wire to provide a return path for the third harmonic. We can summarise the

above facts as follows. In a balanced three-wire wye connection, all harmonics

are present except third and its odd multiples. In a four-wire wye connection,

i.e. with a neutral wire, all harmonics will exist.

9.12.2 Harmonic Effect in Delta

Let the three windings of the generator be delta-connected as shown in Fig.

9.53. Let v
na

, v
nb

 and v
nc

 be the phase emfs and v
na

, v
nb

 and v
nc

 be the terminal

voltages of the three phases a, b and c respectively. According to KVL the

algebraic sum of the three terminal voltages in the closed loop is given by

vna + vnb + vnc = vca + vab + vbc = 0 (9.10)

There will be a circulating current in the closed loop due to the resultant

third harmonic and their multiple induced emfs. This resultant emf is dropped

in the closed loop impedance. Hence, the third harmonic voltage does not

appear across the terminals of the delta. Hence, the terminal voltages in delta

connection v
ca

, v
ab

 and v
bc

 are given by equations 1, 2 and 3 respectively without

third harmonic terms.

Current Relations The three phase windings in Fig. 9.53, carry all the

harmonics internally and are given by

ina = ica = Im1
 sin (w t + q1) + Im2

 sin (3wt + q3)

+ Im5
 sin (5w t + q5) + … 9.11)

inb = iab = Im1
 sin (w t + q1 – 120°) + Im3

 sin (3wt + q3 – 360°)

+ Im5
 sin (5w t + q5 – 600°) + …

= Im1
 sin (wt + q1 – 120°) + Im3

 sin (3w t + q3)

+ Im5
 sin (5w t + q5 – 240°)… (9.12)

inc = ibc = Im1
 sin (w t + q1 – 240°) + Im3

 sin (3w t + q3 – 720°)
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+ Im5
 sin (5wt + q5 – 1200°)

= Im1 sin (wt + q1 – 240
3_

) + Im3
 sin (3wt + q3)

+ Im5
 sin (5w t + q5 – 120°) (9.13)

n

a
c

bm

IAa

ICc

IBb

B

A

C

Fig. 9.53

Equations 9.11, 9.12 and 9.13 represent the phase currents in the delta

connection. The line currents I
Aa

I
Bb

 and I
Cc

 can be obtained by applying KCL at

the three junctions of the delta in Fig. 9.53. The current vector diagrams are

similar to the voltage vector diagrams shown in Fig. 9.52 except that the

voltages are to be replaced with currents. The line currents can be obtained in

terms of phase currents by applying KCL at three junctions as follows

IAa = iab – iCa

= Im1
 sin (w t + q1 – 120°) + Im5

 sin (5w t + q5 – 240°)

– Im1
 sin (w t + q1) – Im5

 sin (5wt + q5) (9.14)

iBb = ibc – iab

= Im1 sin (wt + q1 – 240°) + Im5
 sin (5wt + q5 – 120°)

– Im1 sin (w t + q1 – 120°) – Im5
 sin (5w t + q5 – 240°) (9.15)

iCc = ica – ibc

= Im1 sin (w t + q1) + Im5
 sin (5wt + q5) – Im1 sin (w t + q1 – 240°)

– Im5
 sin (5w t + q5 – 120°) (9.16)

Equations 9.14, 9.15 and 9.16 indicate that no third harmonic currents can

exist in the line currents of a delta connection.

The rms value of the line current from the above equation is

IL = 3
2

1 5

2 2I Im m+ +…
(9.17)

The rms value of the phase current from Equations 9.11, 9.12 and 9.13 is

given by

Iph =
I I Im m m1 3 5

2 2 2

2

+ + +…
(9.18)
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It is seen from Equations 9.17 and 9.18, that in a delta-connected system the

line current is not equal to 3  times the phase current. It is only true when there

are no third harmonic currents in the system.

9.13 EFFECTS OF PHASE-SEQUENCE

The effects of phase sequence of the source voltages are not of considerable

importance for applications like lighting, heating, etc. but in case of a three-

phase induction motor, reversal of sequence results in the reversal of its

direction. In the case of an unbalanced polyphase system, a reversal of the

voltage phase sequence will, in general, cause certain branch currents to change

in magnitude as well as in phase position. Even though the system is balanced,

the readings of the two wattmeters in the two wattmeter method of measuring

power interchange when subjected to a reversal of phase sequence when two or

more three phase generators are running parallel to supply a common load,

reversing the phase sequence of any one machine cause severe damage to the

entire system. Hence, when working on such systems, it is very important to

consider the phase sequence of the system. Unless otherwise stated, the term

“phase sequence” refers to voltage phase sequence. The line currents and phase

currents follow the same sequence as the system voltage. The phase sequence

of a given system, is a small meter with three long connecting leads in side
which it has a circular disc. The rotation of which previously been checked

against a known phase sequence. In three-phase systems, only two different

phase sequences are possible. The three leads are connected to the three lines

whose sequence is to be determined, the rotation of the disc can be used as an

indicator of phase sequence.

9.14 POWER FACTOR OF AN UNBALANCED

SYSTEM

The concept of power factor in three-phase balanced circuits has been discussed

in Section 9.11.4. It is the ratio of the phase watts to the phase volt-amperes of

any one of the three phases. We cannot strictly define the power factor in three-

phase unbalanced circuits, as each phase has a separate power factor. Generally

for three-phase unbalanced loads, the ratio of total watts ( 3 V
L

I
L
 cos q) to

total volt-amperes ( 3 V
L
I

L
) is a good general indication of the power factor.

Another recognised definition for an unbalanced polyphase system is called

the vector power factor, given by

Power factor =
VI

VI

cosqÂ
Â

Where VIÂ  cos q is the algebraic sum of the active powers of all individual

phases given by
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VIÂ  cos q = Va Ia cos qa + Vb Ib cos qb + Vc Ic cos qc + …

and VIÂ = VI VIÂ Â+cos sinq qb g b g
2 2

VIÂ  sin q is the algebraic sum of the individual phase reactive volt-

amperes. The following example illustrates the application of vector power

factor for unbalanced loads.

Consider Example 9.19 where the phase voltage and currents have been

already calculated. Here V
RN

 = 230.94 –0° V, V
YN

 = 230.94 ––120°V,

V
BN

 = 230.94 –– 240°V

I
R
 = 24.83 –– 63.4° A; I

Y
 = 46.188 –– 173.1° A; I

B
 = 9.23 –– 293.13° A.

Active power of phase R = 230.94 ¥ 25.83 ¥ cos 63.4° = 2.6709 kW

Active power of phase Y = 230.94 ¥ 46.188 ¥ cos 53.1° = 6.4044 kW

Active power of phase B = 230.94 ¥ 9.23 ¥ cos 53.13° = 1.2789 kW

10.3542 kW

VIÂ  cos q = 10.3542 kW

Reactive power of phase R = 230.94 ¥ 25.83 ¥ sin 63.4° = 5.3197 KVAR

Reactive power of phase Y = 230.94 ¥ 46.188 ¥ sin 53.1° = 8.5299 KVAR

Reactive power of phase B = 230.94 ¥ 9.23 ¥ sin 53.13° = 1.7052 KVAR

15.5548 KVAR

VIÂ  sin q = 15.5548 KVAR

Power factor =
10 3542

15 5548 10 35422 2

.

( . ) ( . )+
 = 0.5541

ADDITIONAL SOLVED PROBLEMS

Problem 9.1 The phase voltage of a star-connected three-phase ac generator

is 230 V. Calculate the (i) line voltage (ii) active power output if the line current

of the system is 15 A at a power factor of 0.7 and (iii) active and reactive

components of the phase currents.

Solution The supply voltage (generator) is always assumed to be balanced

\ VPh = 230 V; IL = IPh = 15 A, cos f = 0.7, sin f = 0.71

(i) In a star-connected system V
L
 = 3 V

Ph
 = 398.37 V

(ii) Power output = 3 V
L

I
L
 cos f

= 3 ¥ 398.37 ¥ 15 ¥ 0.7 = 7244.96 W

(iii) Active component of the current = I
Ph

 cos f

= 15 ¥ 0.7 = 10.5 A
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Reactive component of the current= I
Ph

 sin f

= 15 ¥ 0.71 = 10.65 A

Problem 9.2 A three-phase delta-connected RYB system with an effective

voltage of 400 V, has a balanced load with impedances 3 + j4 W. Calculate the

(i) phase currents (ii) line currents and (iii) power in each phase.

Solution

j4 W

j4 W

j4 W

3 W

3 W

3 W
R

R

B
B

Y

Y

IB
Iy

IR

I1

I3

I4

Fig. 9.54

VL = VPh = 400 V

Assuming RYB phase sequence, we have

VRY = 400 –0°; VYB = 400 ––120°; VBR = 400 –– 240°

Z = 3 + j4 = 5 –53.1°

The three phase currents

IR =
V

Z

RY =
– ∞

– ∞
400 0

5 53 1.
 = 80 –– 53.1°

IY =
V

Z

YB =
– - ∞
– ∞

400 120

5 531.
 = 80 –– 173.1°

IB =
V

Z

YB =
– - ∞
– ∞

400 240

5 531.
 = 80 –– 293.1°

IR = 80 –– 53.1° = 48.03 – j63.97

IY = 80 –– 173.1° = – 79.42 – j9.61

IB = 80 –– 293.1° = 31.38 + j73.58

The three line currents are

I1 = IR – IB = 138.55 –– 83.09°

I2 = IY – IR = 138.55 –156.9°

I3 = IB – IY = 138.55 –36.89°

cos f =
R

Z

Ph

Ph

= 3

5
 = 0.6

(iii) Power consumed in each phase = VPh IPh cos f

= 400 ¥ 80 ¥ 0.6 = 19200 W

Total power = 3 ¥ 19200 = 57600 W
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Problem 9.3 The load in Problem 9.2 is connected in star with the same

phase sequence across the same system. Calculate (i) the phase and line currents

(ii) the total power in the circuit, and (iii) phasor sum of the three line currents.

Solution The circuit is shown in Fig. 9.55.

3 W

3 W

3 W

R

B

Y

j 4 W

j 4 W

j 4 W
400 V400 V

Fig. 9.55

Assuming RYB phase sequence, since

VL = 400 V

VPh =
400

3
 = 230.94 V

Taking V
RN

 as reference, the three phase voltages are V
RN

 = 230.94 –0°;

V
YN

 = 230.94 –– 120°; and V
BN

 = 230.9 –– 240°.

The three line voltages, V
RY

, V
YB

 and V
BR

 are 30° ahead of their respective

phase voltages.

IPh = IL; ZPh = 3 + j4 = 5 –53.1°

The three phase currents are

IR =
V

Z

RN

Ph

=
– ∞

– ∞
230 94 0

5 531

.

.
 = 46.18 –– 53.1°

IY =
V

Z

YN

Ph

=
– - ∞

– ∞
230 09 120

5 531

.

.
 = 46.18 –– 173.1°

IB =
V

Z

BN

Ph

=
– - ∞

– ∞
230 09 240

5 53 1

.

.
 = 46.18 –– 293.1°

(ii) Total power = 3 VL IL cos f

= 3 ¥ 400 ¥ 46.18 ¥ 0.6 = 19196.6 W

Thus, it can be observed that the power consumed in a delta load will be

three times more than that in the star connection
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(iii) Phasor sum of the three line currents

= IR + IY + IB

= 46.18 –– 53.1° + 46.18 –– 173.1° + 46.18 –– 293.1° = 0.

Problem 9.4 A three-phase balanced delta-connected load with line voltage

of 200 V, has line currents as I
1
 = 10 –90°; I

2
 = 10 –– 150° and I

3
 = 10 –– 30°.

(i) What is the phase sequence? (ii) What are the impedances?

Solution Figure 9.56(a) represents all the three line currents in the phasor

diagram.

l1

l2 l3

Fig. 9.56(a)

(i) It can be observed from Figs 9.56 (a) and (b) that the current flowing in

line B, i.e. I3 lags behind I1 by 120°, and the current flowing in line Y, i.e.

I2 lags behind i3 by 120°. \ The phase sequence is RBY.

R
l1

l2

l3

B

Y

Z – f Z – f

Z – f

Fig. 9.56(b)

(ii) VPh = VL = 200

IPh =
IL

3

10

3
=

ZPh =
V

I

Ph

Ph

= 200 3

10
 = 34.64 W
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Problem 9.5 Three equal inductors connected in star take 5 kW at 0.7 Pf

when connected to a 400 V, 50 Hz three-phase, three-wire supply. Calculate the

line currents (i) if one of the inductors is disconnected, and (ii) If one of the

inductors is short circuited.

Solution

R

B

Y

N

Fig. 9.57(a)

Total power when they are connected to 400 V supply

P = 3 VL IL cos f = 5000 W

IPh = IL = 
5000

3 400 0 7¥ ¥ .
 = 10.31 A

Impedance/phase =
V

I

Ph

Ph

=
¥
400

3 10 31.
 = 22.4 W

RPh = ZPh cos f = 22.4 ¥ 0.7 = 15.68 W

XPh = ZPh sin f = 22.4 ¥ 0.714 = 16 W

(i) If phase Y is disconnected from the circuit, the other two inductors are

connected in series across the line voltage of 400 V as shown in

Fig. 9.57(a).

IR = IB = 
400

2 ¥ ZPh

 = 8.928 A

IY = 0

(ii) If phase Y and N are short circuited as shown in Fig. 9.57(b), the phase

voltages VRN and VBN will be equal to the line voltage 400 V.

R

B

Y

N

Fig. 9.57(b)
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IPh = IR = IB = 
400 400

22 4ZPh

=
.

 = 17.85 A

The current in the Y phase is equal to the phasor sum of the R and B.

\ IY = 2 ¥ IPh cos 
60

2
F
H

I
K  = 30.91 A

Problem 9.6 For the circuit shown in Fig. 9.58, calculate the line current, the

power and the power factor. The value of R, L and C in each phase are 10 ohms,

1 H and 100 m F, respectively.

Solution Let us assume RYB sequence.

VRN = 
400

3
0– ∞  = 231 –0°; VYN = 231 –– 120°; VBN = 231 –– 240°

Admittance of each phase Y
Ph

 = 
1 1

R j L
+

w
+ jwC

=
1

10

1

314
+

j
 + j314 ¥ 100 ¥ 10

–6

YPh = 0.1 + j28.22 ¥ 10–3

= 0.103 –15.75°

W

IPh = VPh YPh

= (231 –0°) (0.103 –15.75°)

= 23.8 –15.75° A

Power = 3 VL IL cos f

= 3 ¥ 400 ¥ 23.8 cos 15.75°

= 15869.57 W

Power factor = cos 15.75° = 0.96 leading

400 V400 V; 50 Hz; 50 Hz

R

B

Y

I1

I3

I2

Fig. 9.58

Problem 9.7 For the circuit shown in Fig. 9.59, an impedance is connected

across YB, and a coil of resistance 3 W and inductive reactance of 4 W is

connected across RY. Find the value of R and X of the impedance across YB

such that I
2
 = 0. Assume a balanced three-phase supply with RYB sequence.
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R

l1

l2

l3

lB

lR

lY
B

Y

3 + 4j

Fig. 9.59

Solution As usual I
R
, I

Y
 and I

B
 are phase currents, and I

1
, I

2
 and I

3
 are line

currents.

Applying KCL at node Y, we have

I2 = IY – IR

Since I2 = 0

IY = IR

\ IR =
V

j

RY

3 4+
, IY = 

V

Z

YB

YB

VRY = V –0°, VYB = V –– 120°

V

j

– ∞
+

0

3 4
=

V

ZYB

– - ∞120

ZYB =
V

V

– - ∞
– ∞

120

0
 (3 + j4)

= 1.96 – j4.6

\ R = 1.96 W; X = 4.6 W (capacitive reactance)

Problem 9.8 A symmetrical three-phase 440 V system supplies a balanced

delta-connected load. The branch current is 10 A at a phase angle of 30°,

lagging. Find (i) the line current (ii) the total active power, and (iii) the total

reactive power. Draw the phasor diagram.

Solution (i) In a balanced delta-connected system

IL = 3 IPh = 3 ¥ 10 = 17.32 A

(ii) Total active power

= 3 VL IL cos f

= 3 ¥ 440 ¥ 17.32 ¥ cos 30° = 11.431 kW

(iii) Total reactive power

= 3 VL IL sin f
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= 3 ¥ 440 ¥ 17.32 ¥ sin 30° = 6.5998 KVAR

The phasor diagram is as under

30º30º
30º30º

30º30º

30º30º

30º30º
30º30º

VB

VR

IB

IY

VY

IR

IB - YI

IY - IR 440 0º0º–

440 240º240º–-

440 120º120º–-
IR - I B

Fig. 9.60

V
R
, V

Y
 and V

B
 are phase voltages, and are equal to the line values. I

R
, I

Y
 and I

B

are the phase currents, and lag behind their respective phase voltages by 30°.

Line currents (I
R

– I
B
), (I

Y
– I

R
) and (I

B
– I

Y
) lag behind their respective phase

currents by 30°.

Problem 9.9 Find the line currents and the total power consumed by the

unbalanced delta-connected load shown in Fig. 9.61.

R

l1

l2

l3

lB

lR

lY
B

Y
5 A at 0.7 Lead5 A at 0.7 Lead

10 A at 0.8 Lag10 A at 0.8 Lag
7 A at UPF7 A at UPF

440 V440 V

Fig. 9.61

Solution Assuming RYB phase sequence, from the given data

IR = 10 –– 36.88°; IY = 5 –45.57°; IB = 7 –0°

Line currents are

I1 = IR – IB = 6.08 –– 80°

I2 = IY – IR = 10.57 –11.518°

I3 = IB – IY = 5 –– 45.56°
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Total power is the sum of the powers consumed in all the three phases.

\ Power in RY = VRY ¥ IR ¥ 0.8

= 400 ¥ 10 ¥ 0.8 = 3200 W

Power in YB = VYB ¥ IY ¥ 0.7

= 400 ¥ 5 ¥ 0.7 = 1400 W

Power in BY = VBR ¥ IB ¥ 1

= 400 ¥ 7 ¥ 1 = 2800 W

Total power = 3200 + 1400 + 2800 = 7400 W

Problem 9.10 A delta-connected three-phase load has 10 W between R and

Y, 6.36 mH between Y and B, and 636 mF between B and R. The supply voltage

is 400 V, 50 Hz. Calculate the line currents for RBY phase sequence.

Solution

ZRY = 10 + j0 = 10 –0°; ZYB = 0 + jXL = 0 + jXL

= 0 + j2p f L = 2 –90°

ZBR = 0 – jXC = 0 –
j

f C2p
 = 5 –– 90°

Since the phase sequence is RBY, taking V
RY

 as reference voltage, we have

VRY = 400 –0°; VBR = 400 –– 120°; VYB = 400 –– 240°

IR =
VRY

10 0

400 0

10 0– ∞
=

– - ∞
– ∞

 = 40 –0°

R

l1

l2

l3

lB lR

lY

B
Y

5 90º90º–-

2 90º90º–

10 0º–

Fig. 9.62

IY =
VYB

2 90

400 240

2 90– ∞
=

– - ∞

– ∞
 = 200 –– 330°

IB =
VBR

5 90

400 120

5 90– - ∞
=

– - ∞
– - ∞

 = 80 –– 30°
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The three line currents are

I1 = IR – IB = 40 –0° – 80 –– 30° = 49.57 –126.2°

I2 = IY – IR = 200 –– 300° – – 40 –0° = 166.56 –36.89°

I3 = IB – IY = 80 –– 30° – 200 –– 330° = 174.35 –233.41°

Problem 9.11 The power consumed in a three phase balanced star-connected

load is 2 kW at a power factor of 0.8 lagging. The supply voltage is 400 V,

50 Hz. Calculate the resistance and reactance of each phase.

Solution Phase voltage = 
400

3

Power consumed = 2000 W = 3 V
L
I

L
 cos f

Phase current or line current I
L
 = 

2000

3 400 0 8¥ ¥ .
 = 3.6 A

Impedance of each phase

ZPh =
V

I

Ph

Ph

=
¥

400

3 3 6.
 = 64.15 A

Since the power-factor of the load is lagging, the reactance is inductive

reactance. From the impedance triangle shown in Fig. 9.63, we have

R

Z

XL

f

Fig. 9.63

Resistance of each phase R
Ph

= Z
Ph

 cos f

= 64.15 ¥ 0.8 = 51.32 W
Reactance of each phase X

Ph
= Z

Ph
 sin f

= 64.15 ¥ 0.6 = 38.5 W

Problem 9.12 A symmetrical three-phase 100 V; three-wire supply feeds an

unbalanced star-connected load, with impedances of the load as Z
R
 = 5 –0° W,

Z
Y
 = 2 –90° W and Z

B
 = 4 –– 90° W. Find the (i) line currents, (ii) voltage across

the impedances and (iii) the displacement neutral voltage.

Solution As explained earlier, this type of unbalanced Y-connected three-

wire load can be solved either by star-delta conversion method or by applying

Millman’s theorem.

(a) Star-Delta Conversion Method

The unbalanced star-connected load and its equivalent delta load are

shown in Figs. 9.64 (a) and (b).
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I1

IY

I1

IB

IR

I3 I3

I2
I2

ZB
ZY

ZR

ZBR

ZRY

ZYB

R R

B
B

Y
Y

j 2 W

(a) (b)

5 W

– j– j 4 W

Fig. 9.64

ZR ZY + ZY ZB + ZB ZR = (5 –0°) (2 –90°) + (2 –90°) (4 –– 90°)

+ (4 –– 90°) (5 –0°) = 8 – j10 = 12.8 –– 51.34°

ZRY =
Z Z Z Z Z Z

Z

R Y Y B B R

B

+ +
=

– - ∞
– - ∞

12 8 51 34

4 90

. .
 = 3.2 –38.66°

ZYB =
Z Z Z Z Z Z

Z

R Y Y B B R

R

+ +
=

– - ∞
– ∞

12 8 51 34

5 0

. .
 = 2.56 –– 51.34°

ZBR =
Z Z Z Z Z Z

Z

R Y Y B B R

Y

+ +
=

– - ∞
– ∞

12 8 51 34

2 90

. .
 = 6.4 –– 141.34°

Taking V
RY

 as the reference, we have

VRY = 100 –0°, VYB = 100 –– 120°; VBR = 100 –– 240°

The three phase currents in the equivalent delta load are

IR =
V

Z

RY

RY

=
– ∞

– ∞
100 0

3 2 38 66. .
 = 31.25 –– 38.66°

IY =
V

Z

YB

YB

=
– - ∞
– - ∞

100 120

2 56 51 34. .
 = 39.06 –– 68.66°

IB =
V

Z

BR

BR

=
– - ∞

– - ∞
100 240

6 4 141 34. .
 = 15.62 –– 98.66°

The line currents are

I1 = IR – IB = 31.25 –– 38.66° – 15.62 –– 98.66°

= (24.4 – j19.52) – (– 2.35 + j15.44) = (26.75 – j4.08)

= 27.06 –– 8.671°

I2 = IY – IR = 39.06 –– 68.66° – 31.25 –– 38.66°

= (14.21 – j36.38) – (24.4 – j19.52) = (– 10.19 – j16.86)
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= 19.7 –238.85°

I3 = IB – IY = 15.62 –– 98.66° – 39.06 –– 98.66°

= (– 2.35 – j15.44) – (14.21 – j36.38) = (– 16.56 + j20.94)

= 26.7 –128.33°

These line currents are also equal to the line (phase) currents of the original

star connected load.

(ii) Voltage drop across each star-connected load will be as under.

Voltage across ZR = I1 ¥ ZR

= (27.06 –– 8.671°) (5 –0°) = 135.3 –– 8.67°

Voltage across ZY = I2 ¥ ZY

= (19.7 –238.85°) (2 –90°) = 39.4 –328.85°

Voltage across ZB = I3 ¥ ZB

= (26.7 –128.33°) (4 –– 90°) = 106.8° –38.33°

(b) BY Applying Millman’s Theorem

Consider Fig. 9.64(c), taking VRY as reference line voltage = 100 –0°.

VRO

VYO

VBO

R R

5 W

j 2 W– 4j W

B

B

Y

Y

O

O¢

Fig. 9.64 (c)

Phase voltages log 30° behind their respective line voltages. Therefore, the

three phase voltages are

VRO =
100

3
–– 30°

VYO =
100

3
–– 150°

VBO =
100

3
–– 270°

YR =
1 1

5 0ZR

=
– ∞

 = 0.2 –0°
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YY =
1 1

2 90ZY

=
– ∞

 = 0.5 –– 90°

YB =
1 1

4 90ZB

=
– - ∞

 = 0.25 –90°

VROYR + VYOYY + YBOYB = (57.73 –– 30°) (0.2 –0°)

+ (57.73 –– 150°) (0.5 –– 90°)

+ (57.73 –– 270°) (0.25 –90°)

= 11.54 –– 30° + 28.86 –– 240° + 14.43 –– 180°

= (10 – j5.77) + (– 14.43 + j25) + (– 14.43 + j0)

= – 18.86 + j19.23 = 26.93 –134.44°

YR + YY + YB = 0.2 + 0.5 –– 90° + 0.25 –90°

= 0.32 –– 51.34°

VO ¢O =
V Y V Y V Y

Y Y Y

RO R YO Y BO B

R Y B

+ +

+ +
 = 

26 93 134 44

0 32 51 34

. .

. .

– ∞
– - ∞

= 84.15 –185.78°

The three load phase voltages are

VRO¢ = VRO – VO¢O

= 57.73 –– 30° – 84.15 –185.78°

= (50 – j28.86) – (– 83.72 – j8.47)

= (133.72 – j20.4) = 135.26 –– 8.67°

VYO ¢ = VYO – VO¢O

= 57.73 –– 150° – 84.15 –185.78°

= (– 50 – j28.86) – (– 83.72 – j8.47)

= 33.72 – j20.4 = 39.4 –– 31.17° or 39.4 –328.8°

VBO¢ = VBO – VO¢O

= 57.73 –– 270° – 84.15 –185.78°

= 0 + j57.73 + 83.72 + j8.47

= 83.72 + j66.2 = 106.73 –38.33°

IR =
135 26 8 67

5 0

. .– - ∞
– ∞

 = 20.06 –– 8.67°

IY =
39 4 328 80

2 90

. .– ∞
– ∞

 = 19.7 –238.8°

IB =
106 73 38 33

4 90

. .– ∞
– - ∞

= 26.68 –128.33°

Problem 9.13 A three phase three-wire unbalanced load is star-connected.

The phase voltages of two of the arms are

VR = 100 –– 10°; VY = 150 –100°

Calculate voltage between star point of the load and the supply neutral.
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Solution As shown in Fig. 9.65

VRO = VRO ¢ + VO ¢O

or VO ¢O = VRO – VRO ¢ (9.19)

Similarly, VO ¢OL = VYO – VYO ¢ (9.20)

Let VRO = V –0°

Assuming RYB phase sequence

VYO = V –– 120°

Substituting in Eqs 9.19 and 9.20, we have

VO ¢O = V –0° – 100 –– 10° (9.21)

VO ¢O = V –– 120° – 150 –100° (9.22)

VRO

VYO

VBO

R R

B BY
Y

O

100 –10º V–10º V–

150 100º V100º V–

O´O´

Fig. 9.65

Subtracting Eq. (9.24) from Eq. (9.21), we get

O = [(V + jO) – (98.48 – j17.36)] – [(0.5V + j0.866V)

– (–26.04 + j147.72)]

O = 1.5V – j0.8666V – 124.52 + j165.08

= V (1.5 – j0.866) = 124.52 – j165.08

V =
124 52 165 08

1 5 0 866

206 77 52 97

1 732 30

. .

. .

. .

.

- ∞
-

=
– - ∞
– - ∞

j

j

V = 119.38 –– 22.97°

Voltage between O ¢O = V
RO

– V
RO¢

VO ¢O = 119.38 –– 22.97° – 100 –– 10°

= 109.91 – j46.58 – 98.48 + j17.36

= 11.43 – j29.22 = 31.37 –– 68.63°

Problem 9.14 Find the reading of a wattmeter in the circuit shown in

Fig. 9.66(a). Assume a symmetrical 400 V supply with RYB phase sequence

and draw the vector diagram.
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M L

C V

I1

IB

IR

R

B

Y

– 50j W

j 40 W

30 W

Fig. 9.66(a)

Solution The reading in the wattmeter is equal to the product of the current

through the current coil I
1
 voltage across its pressure coil V

YB
 and cos of the

angle between the V
YB

 and I
1
.

IR =
V

j

RY

-
=

– ∞
– - ∞50

400 0

50 90
 = 8 –90°

IB =
V

j

BR

30 40

400 240

50 5313+
=

– - ∞
– ∞.

 = 8 –– 293.13° or 8 –66.87°

Line current

I1 = IR – IB

= 8–90° – 8 –– 293.13°

= 0 + j8 – 3.14 – j7.35 = – 3.14 + j0.65 = 3.2 –168.3°

VBR

VRY

VYB

IB

I1

IR

168.3º

71.7º

Fig. 9.66(b)
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From the vector diagram in Fig. 9.66(b), it is clear that the angle between V
YB

and I
1
 is 71.7°.

\ Wattmeter reading is equal to V
YB

¥ I
1
 cos 71.7°

= 400 ¥ 3.2 ¥ cos 71.7 = 402 W

Problem 9.15 Calculate the total power input and readings of the two

wattmeters connected to measure power in a three-phase balanced load, if the

reactive power input is 15 KVAR, and the load pf is 0.8.

Solution Let W
1
 be the lower reading wattmeter and W

2
 the higher reading

wattmeter

cos f = 0.8

f = 36.86°

tan f =
Reactive power

Active power

or = 3
W W

W W

2 1

2 1

-
+

Reactive power = 3 (W2 – W1) = 15000

= W2 – W1 = 8660.508 W (9.23)

\ 0.75 = 3
15000

2 1W W+

or Total power input W
2
 + W

1
 = 34641.01 W (9.24)

From Eqs. (9.23) and (9.24) we get

W2 = 21650.76 W

W1 = 12990.24 W

Problem 9.16 Two wattmeters are connected to measure power in a three-

phase circuit. The reading of the one of the meter is 5 kW when the load power

factor is unity. If the power factor of the load is changed to 0.707 lagging,

without changing the total input power, calculate the readings of the two

wattmeters.

Solution Both wattmeters indicate equal values when the power factor is

unity

\ W1 + W2 = 10 kW (Total power input) (9.25)

Let W
2
 be the higher reading wattmeter

Then W
1
 is the lower reading wattmeter

cos f = 0.707 \ f = 45°

tan f = 3
W W

W W

2 1

2 1

-
+

 1 = 3
W W2 1

10

-

\ W2 – W1 =
10

3
 = 5.773 kW (9.26)
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From Eqs. (9.25) and (9.26),

W2 = 7.886 kW

W1 = 2.113 kW

Problem 9.17 The line currents in a balanced six-phase mesh connected

generator are 35.35 A. What is the magnitude of the phase current?

Solution From Section 9.8.5

IL = 2IPh sin 
180∞

n

IPh =
35 35

2
180

6

.

sin
 = 35.35

Problem 9.18 Find the voltage between the adjacent lines of a balanced six-

phase star-connected system with a phase voltage of 132.8 volts.

Solution From Section 9.7.5 E
L
 = 2E

Ph
 sin 

180∞
n

EL = 2 ¥ 132.8 ¥ sin 
180

6

∞
 = 132.8 V

Problem 9.19 In the wye connected system shown in Fig. 9.67, it is assumed

that only fundamental and third harmonic voltages are present when the

voltages are measured with a voltmeter between na and ba. They are given by

230 and 340 volts respectively. Calculate the magnitude of the third harmonic

voltages in the system.

n

B

A
C

Fig. 9.67

Solution Only phase voltage V
na

 of the system shown in Fig. 9.67 contains

3rd harmonic whereas line voltage V
ba

 contains only 1st harmonic. Hence,

Fundamental component of the phase = 
340

3
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Third harmonic component = 220
340

3

2
2

- F
H

I
K  = 99.33 V

Problem 9.20 Illustrate the effect of reversal of voltage sequence up on the

magnitudes of the currents in the system shown in Example 9.20.

Solution The line currents for RYB sequence have already been calculated.

I
1
 = 28.41 –– 69.07°, I

2
 = 29.85 –136.58° and I

3
 = 13 –27.60° A.

If the phase sequence is reversed by RBY then

IR =
V

Z

RY

RY

=
– ∞

– ∞
400 0

15 67 60 13. .
 = 25.52 –– 60.13° A

IY =
V

Z

YB

YB

=
– - ∞
– ∞

400 240

43 83 49 83. .
 = 9.12 –– 289.83° A

IB =
V

Z

BR

BR

=
– - ∞
– ∞

400 120

78 36 60 13. .
 = 5.1 –– 180.13° A

Various line currents are given by

I1 = IR – IB = 25.52 –– 60.13° – 5.1 –– 180.13° = 28.41 –– 51.189° A

I2 = IY – IR = 9.12 –– 289.83° – 25.52 –– 60.13° = 32.175 –107.37° A

I3 = IB – IY = 5.1 –– 180.13° – 9.12 –– 289.83° = 11.85 –46.26° A

From the above calculations, it can be verified that the magnitudes of the line

currents are not same when the phase sequence is changed.

PRACTICE PROBLEMS

9.1 Three non-reactive resistors of 5, 10 and 15 W are star-connected to R, Y

and B phase of a 440 V symmetrical system. Determine the current and

power in each resistor and the voltage between star point and neutral;

assume the phase sequence RYB.

9.2 A three-phase, three-wire symmetrical 440 V source is supplying power

to an unbalanced, delta-connected load in which ZRY = 20 –30° W, ZYB

= 20 –0° W and ZBR = 20 –– 30° W. If the phase sequence is RYB,

calculate the line currents.

9.3 Three equal resistances connected in star across a three-phase balanced

supply consume 1000 W. If the same three resistors were reconnected in

delta across the same supply, determine the power consumed.

9.4 The currents in RY, YB and BR branches of a mesh connected system with

symmetrical voltages are 20 A at 0.7 lagging power factor, 20 A at 0.8

leading power factor, and 10 A at UPF respectively. Determine the cur-

rent in each line. Phase sequence is RYB. Draw a phasor diagram.
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9.5 A three-phase, four-wire symmetrical 440 V; RYB system supplies a star-

connected load in which ZR = 10 –0° W, ZY = 10 –26.8° W and ZB = 10

–– 26.8° W. Find the line currents, the neutral current and the load power.

9.6 A balanced three-phase, star-connected voltage source has VRN = 230

–60° W Vrms with RYB phase sequence, and it supplies a balanced delta-

connected three-phase load. The total power drawn by the load is 15 kW

at 0.8 lagging power factor. Find the line currents, load and phase cur-

rents.

9.7 Three identical impedances 10 –30° W in a delta-connection, and three

identical impedances 5 –35° W in a star-connection are on the same

three-phase, three-wire 173 V system. Find the line currents and the total

power.

9.8 Three impedances of (7 + j4) W; (3 + j2) W and (9 + j2) W are connected

between neutral and the red, yellow and blue phases, respectively of a

three-phase, four-wire system; the line voltage is 440 V. Calculate (i) the

current in each line, and (ii) the current in the neutral wire.

9.9 Three capacitors, each of 100 mF are connected in delta to a 440 V, three-

phase, 50 Hz supply. What will be the capacitance of each of the three

capacitors if the same three capacitors are connected in star across the

same supply to draw the same line current.

9.10 A 400 V, three-phase supply feeds an unbalanced three-wire, star-con-

nected load, consisting of impedances ZR = 7 –10° W, ZY = 8 –30° W and

ZB = 8 –50° W. The phase sequence is RYB. Determine the line currents

and total power taken by the load.

9.11 The power taken by a 440 V, 50 Hz, three-phase induction motor on full

load is measured by two wattmeters, which indicate 250 W and 1000 W,

respectively. Calculate (i) the input (ii) the power factor (iii) the current,

and (iv) the motor output, if the efficiency is 80%.

9.12 In the two wattmeter method of power measurement, the power regis-

tered by one wattmeter is 3500 W, while the other reads down scale.

After reversing the later, it reads 300 W. Determine the total power in the

circuit and the power factor.

9.13 Three non-inductive resistances of 25 W, 10 W and 15 W are connected in

star to a 400 V symmetrical supply. Calculate the line currents and the

voltage across the each load phase.

9.14 Three impedances, ZR = (3 + j2) W; ZY = j9 W and ZB = 3 W are connected

in star across a 400 V, 3-wire system. Find the loads on the equivalent

delta-connected system phase-sequence RYB.

OBJECTIVE-TYPE QUESTIONS

1. The resultant voltage in a closed balanced delta circuit is given by

(a) three times the phase voltage
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(b) 3  times the phase voltage
(c) zero

2. Three coils A, B, C, displaced by 120° from each other are mounted on

the same axis and rotated in a uniform magnetic field in clockwise direc-

tion. If the instantaneous value of emf in coil A is Emax sin w t, the instan-

taneous value of emf in B and C coils will be

(a) Emax sin w
p

t -F
H

I
K

2

3
; Emax sin w

p
t -F

H
I
K

4

3

(b) Emax sin w
p

t +F
H

I
K

2

3
; Emax sin w

p
t +F

H
I
K

4

3

(c) Emax sin w
p

t -F
H

I
K

2

3
; Emax sin w

p
t +F

H
I
K

4

3

3. The current in the neutral wire of a balanced three-phase, four-wire star

connected load is given by

(a) zero

(b) 3  times the current in each phase
(c) 3 times the current in each phase

4. In a three-phase system, the volt ampere rating is given by

(a) 3VL IL

(b) 3 VL IL

(c) VL IL

5. In a three-phase balanced star connected system, the phase relation be-

tween the line voltages and their respective phase voltage is given as

under

(a) the line voltages lead their respective phase voltages by 30°.

(b) the phase voltages lead their respective line voltage by 30°.

(c) the line voltages and their respective phase voltages are in phase.

6. In a three-phase balanced delta connected system, the phase relation be-

tween the line currents and their respective phase currents is given by

(a) the line currents lag behind their respective phase currents by 30°.

(b) the phase currents lag behind their respective line currents by 30°.

(c) the line currents and their respective phase currents are in phase.

7. In a three-phase unbalanced, four-wire star-connected system, the cur-

rent in the neutral wire is given by

(a) zero

(b) three times the current in individual phases

(c) the vector sum of the currents in the three lines

8. In a three-phase unbalanced star-connected system, the vector sum of the

currents in the three lines is

(a) zero

(b) not zero

(c) three times the current in the each phase
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9. Wattmeter deflection in ac circuit is proportional to the

(a) maximum power in the circuit

(b) instantaneous power in the circuit

(c) average power in the circuit

10. Three wattmeter method of power measurement can be used to measure

power in

(a) balanced circuits

(b) unbalanced circuits

(c) both balanced and unbalanced circuits

11. Two wattmeter method of power measurement can be used to measure

power in

(a) balanced circuits

(b) unbalanced circuits

(c) both balanced and unbalanced circuits

12. In two wattmeter methods of power measurements, when the pf is 0.5

(a) the readings of the two wattmeters are equal and positive

(b) the readings of the two wattmeters are equal and opposite

(c) the total power is measured by only one wattmeter

13. The reading of the wattmeter connected to measure the reactive power in

a three phase circuit is given by zero, the line voltage is 400 V and line

current 15 A; then the pf of the circuit is

(a) zero

(b) unity

(c) 0.8



10.1 INTRODUCTION

Two circuits are said to be ‘coupled’ when energy transfer takes place from one
circuit to the other when one of the circuits is energised. There are many types of
couplings like conductive coupling as shown by the potential divider in
Fig.10.1(a), inductive or magnetic coupling as shown by a two winding transformer
in Fig. 10.1(b) or conductive and inductive coupling as shown by an auto
transformer in Fig. 10.1(c). A majority of the electrical circuits in practice are
conductively or electromagnetically coupled. Certain coupled elements are
frequently used in network analysis and synthesis. Transformer, transistor and
electronic pots, etc. are some among these circuits. Each of these elements may
be represented as a two port network as shown in Fig. 10.1(d).

V

V1 V2

11 21

1 2

(a)

(d)

(b) (c)

R1

RL

V
V

Fig. 10.1

Chapter

COUPLED CIRCUITS10
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10.2 CONDUCTIVITY COUPLED CIRCUIT

AND MUTUAL IMPEDANCE

A conductively coupled circuit which does not involve magnetic coupling is
shown in Fig. 10.2(a).

In the circuit shown the impedance Z
12

 or Z
21

 common to loop 1 and loop 2 is
called mutual impedance. It may consists of a pure resistance, a pure
inductance, a pure capacitance or a combination of any of these elements. Mesh
analysis, nodal analysis or Kirchhoff’s laws can be used to solve these type of
circuits as described in Chapter 7.

The general definition of mutual impedance is explained with the help of
Fig. 10.2 (b).

Fig. 10.2 (a) Fig. 10.2 (b)

The network in the box may be of any configuration of circuit elements with
two ports having two pairs of terminals 1-1' and 2-2' available for measurement.
The mutual impedance between port 1 and 2 can be measured at 1-1' or 2-2'. If
it is measured at 2-2'. It can be defined as the voltage developed (V

2
) at 2–2' per

unit current (I
1
) at port 1-1'. If the box contains linear bilateral elements, then

the mutual impedance measured at 2-2' is same as the impedance measured at 1-
1' and is defined as the voltage developed (V

1
) at 1-1' per unit current (I

2
) at

port 2-2¢.

Example 10.1 Find the mutual impedance for the circuit shown in Fig. 10.3.

Solution Mutual impedance is given by

V

I

V

I

2

1

1

2

or

V2 =
3

2
1

2

1

I
V

I
or  = 1.5 W

or V1 = 5 ¥ I
V

I
2

2

2

3

10
¥ or  = 1.5 W

10.3 MUTUAL INDUCTANCE

The property of inductance of a coil was introduced in Section 1.6. A voltage is
induced in a coil when there is a time rate of change of current through it. The

V1 V2

I2I1

2111

21 2 W

3 W5 W

Fig. 10.3
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inductance parameter L, is defined in terms of the voltage across it and the time

rate of change of current through it v (t) = L
di t

dt

( )
, where v (t) is the voltage

across the coil, I (t) is the current through the coil and L is the inductance of the
coil. Strictly speaking, this definition is of self-inductance and this is considered
as a circuit element with a pair of terminals. Whereas a circuit element “mutual
inductor” does not exist. Mutual inductance is a property associated with two or
more coils or inductors which are in close proximity and the presence of
common magnetic flux which links the coils. A transformer is such a device
whose operation is based on mutual inductance.

Let us consider two coils, L
1
 and L

2
 as shown in Fig. 10.4(a), which are

sufficiently close together, so that the flux produced by i
1
 in coil L

1
 also link

coil L
2
. We assume that the coils do not move with respect to one another, and

the medium in which the flux is established has a constant permeability. The
two coils may be also arranged on a common magnetic core, as shown in Fig.
10.4(b). The two coils are said to be magnetically coupled, but act as a separate
circuits. It is possible to relate the voltage induced in one coil to the time rate of
change of current in the other coil. When a voltage v

1
 is applied across L

1
, a

current i
1
 will start flowing in this coil, and produce a flux f. This flux also

links coil L
2
. If i

1
 were to change with respect to time, the flux ‘f’ would also

change with respect to time. The time-varying flux surrounding the second coil,
L

2
 induces an emf, or voltage, across the terminals of L

2
; this voltage is

proportional to the time rate of change of current flowing through the first coil
L

1
. The two coils, or circuits, are said to be inductively coupled, because of this

property they are called coupled elements or coupled circuits and the induced
voltage, or emf is called the voltage/emf of mutual induction and is given by

v
2
(t) = M

di t

dt
1

1 ( )
 volts, where v

2
 is the voltage induced in coil L

2
 and M

1
 is the

coefficient of proportionality, and is called the coefficient of mutual inductance,
or simple mutual inductance.

Fig. 10.4

If current i
2
 is made to pass through coil L

2
 as shown in Fig. 10.4(c) with coil L

1

open, a change of i
2
 would cause a voltage v

1
 in coil L

1
, given by v

1
(t) = M

di t

dt
2

2 ( )
.



10.4 Electrical Circuit Analysis

V2

i2

L1

L2

f

V1

M

Fig. 10.4 (c)

In the above equation, another coefficient of proportionality M
2
 is involved.

Though it appears that two mutual inductances are involved in determining the
mutually induced voltages in the two coils, it can be shown from energy
considerations that the two coefficients are equal and, therefore, need not be
represented by two different letters. Thus M

1
 = M

2
 = M.

\ v2 (t ) = M
di t

dt

1( )
 Volts

v1(t ) = M
di t

dt

2 ( )
 Volts

In general, in a pair of linear time invariant coupled coils or inductors, a non-zero
current in each of the two coils produces a mutual voltage in each coil due to the
flow of current in the other coil. This mutual voltage is present independently
of, and in addition to, the voltage due to self induction. Mutual inductance is also

measured in Henrys and is positive, but the mutually induced voltage, M
di

dt
 may

be either positive or negative, depending on the physical construction of the coil
and reference directions. To determine the polarity of the mutually induced voltage
(i.e. the sign to be used for the mutual inductance), the dot convention is used.

10.4 DOT CONVENTION

Dot convention is used to establish the choice of correct sign for the mutually
induced voltages in coupled circuits.

Circular dot marks and/or special symbols are placed at one end of each of
two coils which are mutually coupled to simplify the diagrammatic representation
of the windings around its core.

Let us consider Fig. 10.5, which shows a pair of
linear, time invariant, coupled inductors with self
inductances L

1
 and L

2
 and a mutual inductance M. If

these inductions form a portion of a network,
currents i

1
 and i

2
 are shown, each arbitrarily assumed

entering at the dotted terminals, and voltages v
1
 and v

2

are developed across the inductors. The voltage across
L

1
 is, thus composed of two parts and is given by

Fig. 10.5
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v1(t) = L
di t

dt
M

di t

dt
1

1 2( ) ( )
±

The first term on the RHS of the above equation is the self induced voltage due
to i

1
, and the second term represents the mutually induced voltage due to i

2
.

Similarly, v2 (t ) = L
di t

dt
M

di t

dt
2

2 1( ) ( )
±

Although the self-induced voltages are designated with positive sign,
mutually induced voltages can be either positive or negative depending on the
direction of the winding of the coil and can be decided by the presence of the
dots placed at one end of each of the two coils. The convention is as follows.

If two terminals belonging to different coils in a coupled circuit are marked
identically with dots then for the same direction of current relative to like
terminals, the magnetic flux of self and mutual induction in each coil add
together. The physical basis of the dot convention can be verified by examining
Fig. 10.6. Two coils ab and cd are shown wound on a common iron core.

a c

d

f

f

+

– –

+

X Y

i1 i2L2L1
b

Fig. 10.6

It is evident from Fig.10.6 that the direction of the winding of the coil ab is
clock-wise around the core as viewed at X, and that of cd is anti-clockwise as
viewed at Y. Let the direction of current i

1
 in the first coil be from a to b, and

increasing with time. The flux produced by i
1
 in the core has a direction which

may be found by right hand rule, and which is downwards in the left limb of the
core. The flux also increases with time in the direction shown at X. Now
suppose that the current i

2
 in the second coil is from c to d, and increasing with

time. The application of the right hand rule
indicates that the flux produced by i

2
 in the

core has an upward direction in the right limb
of the core. The flux also increases with time
in the direction shown at Y. The assumed
currents i

1
 and i

2
 produce flux in the core that

are additive. The terminals a and c of the two
coils attain similar polarities simultaneously.
The two simultaneously positive terminals are
identified by two dots by the side of the
terminals as shown in Fig. 10.7. Fig. 10.7
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The other possible location of the dots is the other ends of the coil to get
additive fluxes in the core, i.e. at b and d. It can be concluded that the mutually
induced voltage is positive when currents i

1
 and i

2
 both enter (or leave) the

windings by the dotted terminals. If the current in one winding enters at the dot-
marked terminals and the current in the other winding leaves at the dot-marked
terminal, the voltages due to self and mutual induction in any coil have opposite
signs.

Example 10.2 Using dot convention, write voltage equations for the coils shown
in Fig. 10.8.

Fig. 10.8

Solution Since the currents are entering at the dot marked terminals the mutually
induced voltages or the sign of the mutual inductance is positive; using the sign
convention for the self inductance, the equations for the voltages are

v1 = L
di

dt
M

di

dt
1

1 2+

v2 = L
di

dt
M

di

dt
2

2 1+

Example 10.3 Write the equation for voltage v0 for the circuits shown in

Fig. 10.9.

Solution v
0
 is assumed positive with respect to terminal C and the equation is

given by

(Contd.)
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Fig. 10.9

(a) v0 = M
di

dt
(b) v0 = - M

di

dt

(c) v0 = - M
di

dt
(d) v0 = M

di

dt

10.5 COEFFICIENT OF COUPLING

The amount of coupling between the inductively coupled coils is expressed in

terms of the coefficient of coupling, which is defined as K = M/ L L1 2

where M = mutual inductance between the coils

L1 = self inductance of the first coil, and

L2 = self inductance of the second coil

Coefficient of coupling is always less than unity, and has a maximum value of 1
(or 100%). This case, for which K = 1, is called perfect coupling, when the
entire flux of one coil links the other. The greater the coefficient of coupling
between the two coils, the greater the mutual inductance between them, and
vice-versa. It can be expressed as the fraction of the magnetic flux produced by
the current in one coil that links the other coil.

For a pair of mutually coupled circuits shown in Fig. 10.10, let us assume
initially that i

1
, i

2
 are zero at t = 0.

Fig. 10.10
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then v1(t) = L
di t

dt
M

di t

dt
1

1 2( ) ( )
+

and v2(t) = L
di t

dt
M

di t

dt
2

2 1( ) ( )
+

Initial energy in the coupled circuit at t = 0 is also zero. The net energy input
to the system shown in Fig. 10.10 at time t is given by

W (t ) = 

0

t

z [v1(t) i1(t) + v2(t) i2(t)] dt

Substituting the values of v
1
(t) and v

2
(t) in the above equation yields

W(t) = 

0

1 1
1

2 2
2

t

L i t
di t

dt
L i t

di t

dtz +
L

N
M ( )

( )
( )

( )

+ M i t
di t

dt
i t

di t

dt
( ( ))

( )
( )

( )
1

2
2

1+
O

Q
P dt

From which we get

W(t) = 
1

2
L1[i1(t)]2 + 

1

2
L2[i2(t)]2 + M [i1(t )i2(t)]

If one current enters a dot-marked terminal while the other leaves a dot
marked terminal, the above equation becomes

W(t) = 
1

2
L1[i1(t)]2 + 

1

2
L2[i2(t)]

2 – M [i1(t)i2(t)]

According to the definition of passivity, the net electrical energy input to the
system is non-negative. W (t) represents the energy stored within a passive net-
work, it cannot be negative.

\ W (t) ≥ 0 for all values of i1, i2; L1, L2 or M

The statement can be proved in the following way. If i
1
 and i

2
 are both

positive or negative, W(t) is positive. The other condition where the energy
equation could be negative is

W(t) = 
1

2
L1[i1(t)]2 + 

1

2
L2[i2(t)]

2 – M [i1(t)i2(t)]

The above equation can be rearranged as

W(t) = 
1

2

1

2
1 1

1
2

2

2

2

1
2
2L i

M

L
i L

M

L
i-

F

H
G

I

K
J + -

F

HG
I

KJ

The first term in the parenthesis of the right side of the above equation is
positive for all values of i

1
 and i

2
, and, thus, the last term cannot be negative; hence

L2 –
M

L

2

1

≥ 0
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L L M

L

1 2
2

1

-
≥ 0

L1L2 – M 2 ≥ 0

L L1 2 ≥ M

M £ L L1 2

Obviously the maximum value of the mutual inductance is L L1 2 . Thus, we

define the coefficient of coupling for the coupled circuit as

K =
M

L L1 2

The coefficient, K, is a non negative number and is independent of the
reference directions of the currents in the coils. If the two coils are a great
distance apart in space, the mutual inductance is very small, and K is also very
small. For iron-core coupled circuits, the value of K may be as high as 0.99, for
air-core coupled circuits, K varies between 0.4 to 0.8.

Example 10.4 Two inductively coupled coils have self inductances L
1
 = 50 mH

and L
2
 = 200 mH. If the coefficient of coupling is 0.5 (i), find the value of mutual

inductance between the coils, and (ii) what is the maximum possible mutual
inductance?

Solution (i) M = K L L1 2

= 0.5 50 10 200 103 3¥ ¥ ¥- -
 = 50 ¥ 10–3 H

(ii) Maximum value of the inductance when K = 1,

M = L L1 2  = 100 mH

10.6 IDEAL TRANSFORMER

Transfer of energy from one circuit to another circuit through mutual induction
is widely utilised in power systems. This purpose is served by transformers.
Most often, they transform energy at one voltage (or current) into energy at
some other voltage (or current).

A transformer is a static piece of apparatus, having two or more windings or
coils arranged on a common magnetic core. The transformer winding to which
the supply source is connected is called the primary, while the winding
connected to load is called the secondary. Accordingly, the voltage across the
primary is called the primary voltage, and that across the secondary, the
secondary voltage. Correspondingly i

1
 and i

2
 are the currents in the primary and

secondary windings. One such transformer is shown in Fig. 10.11(a). In circuit
diagrams, ideal transformers are represented by Fig. 10.11(b). The vertical lines
between the coils represent the iron core; the currents are assumed such that the
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mutual inductance is positive. An ideal transformer is characterised by
assuming (i) zero power dissipation in the primary and secondary windings, i.e.
resistances in the coils are assumed to be zero, (ii) the self inductances of the
primary and secondary are extremely large in comparison with the load
impedance, and (iii) the coefficient of coupling is equal to unity, i.e. the coils
are tightly coupled without having any leakage flux. If the flux produced by the
current flowing in a coil links all the turns, the self inductance of either the
primary or secondary coil is proportional to the square of the number of turns of
the coil. This can be verified from the following results.

Fig. 10.11

The magnitude of the self induced emf is given by

v = L
di

dt

If the flux linkages of the coil with N turns and current are known, then the
self induced emf can be expressed as

v = N
d

dt

f

L
di

dt
= N

d

dt

f

L = N
d

di

f

But f =
Ni

reluctance

\ L = N
d

di

Ni

reluctance

F
H

I
K

L =
N 2

reluctance
La N2

From the above relation it follows that

L

L

2

1

=
N

N

2
2

1
2 = a2
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where a = N
2
/N

1
 is called the turns ratio of the transformer. The turns ratio, a,

can also be expressed in terms of primary and secondary voltages. If the
magnetic permeability of the core is infinitely large then the flux would be
confined to the core. If f is the flux through a single turn coil on the core and
N

1
, N

2
 are the number of turns of the primary and secondary, respectively, then

the total flux through windings 1 and 2, respectively, are

f1 = N1 f ; f2 = N2 f

Also we have v
1

=
d

dt

f1 , and v
2
 =

d

dt

f 2

so that
v

v

2

1

=

N
d

dt

N
d

dt

N

N

2

1

2

1

f

f
=

Figure 10.12 shows an ideal transformer
to which the secondary is connected to a

load impedance Z
L
. The turns ratio 

N

N

2

1

= a.

The ideal transformer is a very useful
model for circuit calculations, because
with few additional elements like R, L and
C, the actual behaviour of the physical
transformer can be accurately represented.
Let us analyse this transformer with
sinusoidal excitations. When the excitations are sinusoidal voltages or currents,
the steady state response will also be sinusoidal. We can use phasors for
representing these voltages and currents. The input impedance of the
transformer can be determined by writing mesh equations for the circuit shown
in Fig. 10.12.

V1 = jwL1I1 – jwMI2 (10.1)

0 = – jwMI1 + (ZL + jwL2)I2 (10.2)

where V
1
, V

2
 are the voltage phasors, and I

1
, I

2
 are the current phasors in the two

windings. jwL
1
 and jwL

2
 are the impedances of the self inductances and jw M is

the impedance of the mutual inductance, w is the angular frequency.

from Eq. 10.2 I2 =
j M I

Z j LL

w

w
1

2( )+

Substituting in Eq. 10.1, we have

V1 = I1 jw L1 + 
I M

Z j LL

1
2 2

2

w

w+

Fig. 10.12

M

i1

k = 1

i2

++

––

v1 v2ZLL2L1
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The input impedance Z
in
 = 

V

I

1

1

\ Zin = jwL1 + 
w

w

2 2

2

M

Z j LL( )+

When the coefficient of coupling is assumed to be equal to unity,

M = L L1 2

\ Zin = jwL1 +
w

w

2
1 2

2

L L

Z j LL( )+

We have already established that 
L

L

2

1

= a
2

where a is the turns ratio N
2
/N

1

\ Zin = jwL1 + 
w

w

2
1
2 2

2

L a

Z j LL( )+

Further simplication leads to

Zin =
( )

( )

Z j L j L L a

Z j L

L

L

+ +

+

w w w

w
2 1

2
1
2 2

2

Zin =
j L Z

Z j L

L

L

w

w
1

2( )+

As L
2
 is assumed to be infinitely large compared to Z

L

Zin =
j L Z

j a L

Z

a

N

N
ZL L

L

w

w
1
2

1
2

1

2

2

= =
F

HG
I

KJ

The above result has an interesting interpretation, that is the ideal  trans-
formers change the impedance of a load, and can be used to match circuits with
different impedances in order to achieve
maximum power transfer. For example,
the input impedance of a loudspeaker is
usually very small, say 3 to 12 W, for
connecting directly to an amplifier. The
transformer with proper turns ratio can
be placed between the output of the
amplifier and the input of the loudspeaker
to match the impedances as shown in
Fig. 10.13.

Example 10.5 An ideal transformer has N
1
 = 10 turns, and N

2
 = 100 turns. What

is the value of the impedance referred to as the primary, if a 1000 W resistor is placed
across the secondary?

Fig. 10.13
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Solution The turns ratio a =
100

10
 = 10

Zin =
Z

a

L
2

1000

100
=  = 10 W

The primary and secondary currents can also be expressed in terms of turns ratio.
From Eq. 10.2, we have

I1 jwM = I2(ZL + jwL2)

I

I

1

2

=
Z j L

j M

L + w

w
2

When L
2
 is very large compared to Z

L
,

I

I

1

2

=
j L

j M

L

M

w

w
2 2=

Substituting the value of M = L L1 2  in the above equation 
I

I

L

M

1

2

2=

I

I

1

2

=
L

L L

L

L

2

1 2

2

1

=

I

I

1

2

=
L

L
a

N

N

2

1

2

1

= =

Example 10.6 An amplifier with an output impedance of 1936 W is to feed a
loudspeaker with an impedance of 4 W.

(a) Calculate the desired turns ratio for an ideal transformer to connect the two
systems.

(b) An rms current of 20 mA at 500 Hz is flowing in the primary. Calculate the
rms value of current in the secondary at 500 Hz.

(c) What is the power delivered to the load?

Solution (a) To have maximum power transfer the output impedance of the

amplifier = 
Load impedance

a2

\ 1936 = 
4
2a

\ a =
4

1936

1

22
=

or
N

N

2

1

=
1

22
(b) I1 = 20 mA

We have 
I

I

1

2

 = a



10.14 Electrical Circuit Analysis

RMS value of the current in the secondary winding

=
I

a

1
320 10

1 22
=

¥ -

/
 = 0.44 A

(c) The power delivered to the load (speaker)

= (0.44)2 ¥ 4 = 0.774 W

The impedance changing properties of an ideal transformer may be utilised to
simplify circuits. Using this property, we can transfer all the parameters of the
primary side of the transformer to the secondary side, and vice-versa. Consider the
coupled circuit shown in Fig. 10.14 (a).

Fig. 10.14

To transfer the secondary side load and voltage to the primary side, the secondary

voltage is to be divided by the ratio, a, and the load impedance is to be divided by a
2
.

The simplified equivalent circuits is shown in Fig. 10.14 (b).

Example 10.7 For the circuit shown in Fig. 10.15 with turns ratio, a = 5, draw
the equivalent circuit referring (a) to primary and (b) secondary. Take source
resistance as 10 W.

10 W 1: 51: 5

1000 WVs

100 V
rmsms

V1 V2

I1 I1

+

+ +

Fig. 10.15

Solution (a) Equivalent circuit referred to primary is as shown in Fig. 10.16(a).
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Vs

100 V100 V

I1

10 W 40 W 1 : 11 : 1

V = 80 V= 80 V1

v V¢1 = a 1

= 400 V400 V

V = 400 V400 V2

Fig. 10.16 (a)

(b) Equivalent circuit referred to secondary is as shown in Fig. 10.16(b)

I2

I = 0.4 A0.4 A2 V = 400 V2

250 W

1000 W

1 : 11 : 1

500 V

V2

Fig. 10.16 (b)

10.7 ANALYSIS OF MULTI-WINDING

COUPLED CIRCUITS

Inductively coupled multi-mesh circuits can be analysed using Kirchhoff’s laws
and by loop current methods. Consider Fig. 10.17, where three coils are
inductively coupled. For such a system of inductors we can define a inductance
matrix L as

L =

L L L

L L L

L L L

11 12 13

21 22 23

31 32 33

L

N

M
M
M

O

Q

P
P
P

where L
11

, L
22

 and L
33

 are self inductances of the coupled circuits, and L
12

 = L
21

;
L

23
 = L

32
 and L

13
 = L

31
 are mutual inductances. More precisely, L

12
 is the mutual

inductance between coils 1 and 2, L
13

 is the mutual inductance between coils 1
and 3, and L

23
 is the mutual inductance between coils 2 and 3. The inductance

matrix has its order equal to the number of inductors and is symmetric. In terms
of voltages across the coils, we have a voltage vector related to i by
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Fig. 10.17

[v] = L
di

dt

L

N
M

O

Q
P

where v and i are the vectors of the branch voltages and currents, respectively.
Thus, the branch volt-ampere relationships of the three inductors are given by

v

v

v

1

2

3

L

N

M
M
M

O

Q

P
P
P

=

L L L

L L L

L L L

11 12 13

21 22 23

31 32 33

L

N

M
M
M

O

Q

P
P
P

di dt

di dt

di dt

1

2

3

/

/

/

L

N

M
M
M

O

Q

P
P
P

Using KVL and KCL, the effective inductances can be calculated. The polarity
for the inductances can be determined by using passivity criteria, whereas the
signs of the mutual inductances can be determined by using the dot convention.

Example 10.8 For the circuit shown in Fig. 10.18, write the inductance matrix.

Solution Let L
1
, L

2
 and L

3
 be the self inductances, and L

12
 = L

21
, L

23
 = L

32
 and L

13

= L
31

 be the mutual inductances between coils, 1, 2, 2, 3 and 1, 3, respectively.

L
12

 = L
21

 is positive, as both the currents are entering at dot marked terminals,
whereas L

13
 = L

31
 and L

23
 = L

32
 are negative.

\ The inductance matrix is L = 

L L L

L L L

L L L

11 12 13

21 22 23

31 32 33

L

N

M
M
M

O

Q

P
P
P
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Fig. 10.18

10.8 SERIES CONNECTION OF COUPLED

INDUCTORS

Let there be two inductors connected in series, with self inductances L
1
 and L

2

and mutual inductance of M. Two kinds of series connections are possible;
series aiding as in Fig. 10.19(a), and series opposition as in Fig. 10.19(b).

Fig. 10.19

In the case of series aiding connection, the currents in both inductors at any
instant of time are in the same direction relative to like terminals as shown in
Fig. 10.19(a). For this reason, the magnetic fluxes of self induction and of
mutual induction linking with each element add together.

In the case of series opposition connection, the currents in the two inductors
at any instant of time are in opposite direction relative to like terminals as shown
in Fig. 10.19(b). The inductance of an element is given by L = f/i, where f is
the flux produced by the inductor.

\ f = Li
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For the series aiding circuit, if f
1
 and f

2
 are the flux produced by the coils 1 and

2, respectively, then the total flux

f = f1 + f2

where f1 = L1i1 + Mi2
f2 = L2i2 + Mi1

\ f = Li = L1i1 + Mi2 + L2i2 + Mi1
Since i1 = i2 = i

L = L1 + L2 + 2M

Similarly, for the series opposition
f = f1 + f2

where f1 = L1i1 – Mi2
f2 = L2i2 – Mi1
f = Li = L1i1 – Mi2 + L2i2 – Mi1

Since i1 = i2 = i

L = L1 + L2 – 2M

In general, the inductance of two inductively coupled elements in series is
given by L = L

1
 + L

2
 ± 2M.

Positive sign is applied to the series aiding connection, and negative sign to
the series opposition connection.

Example 10.9 Two coils connected in series have an equivalent inductance of
0.4 H when connected in aiding, and an equivalent inductance 0.2 H when the
connection is opposing. Calculate the mutual inductance of the coils.

Solution When the coils are arranged in aiding connection, the inductance of the
combination is L

1
 + L

2
 + 2M = 0.4; and for opposing connection, it is L

1
 + L

2
– 2M

= 0.2. Solving the two equations, we get

4M = 0.2 H

M = 0.05 H

10.9 PARALLEL CONNECTION OF COUPLED COILS

Consider two inductors with self inductances L
1
 and L

2
 connected parallel

which are mutually coupled with mutual inductance M as shown in Fig. 10.20.

Fig. 10.20
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Let us consider Fig. 10.20(a) where the self induced emf in each coil assists
the mutually induced emf as shown by the dot convention.

i = i1 + i2

di

dt
=

di

dt

di

dt

1 2+ (10.3)

The voltage across the parallel branch is given by

v = L1
di

dt
M

di

dt

1 2+  or L
di

dt
M

di

dt
2

2 1+

also L
di

dt
M

di

dt
L

di

dt
M

di

dt
1

1 2
2

2 1+ = +

di

dt

1  (L1 – M) = 
di

dt

2  (L2 – M )

\
di

dt

1  = 
di

dt

L M

L M

2 2

1

( )

( )

-

-
(10.4)

Substituting Eq. 10.4 in Eq. 10.3, we get

di

dt
=

di

dt

L M

L M

di

dt

di

dt

L M

L M

2 2

1

2 2 2

1

1
( )

( )

( )-

-
+ =

-

-
+

L

N
M

O

Q
P (10.5)

If L
eq

 is the equivalent inductance of the parallel circuit in Fig. 10.20 (a) then
v is given by

v = L
di

dt
eq

L
di

dt
eq = L

di

dt
M

di

dt
1

1 2+

di

dt
=

1 1 2

L
L

di

dt
M

di

dteq
1 +

L

N
M

O

Q
P

Substituting Eq. 10.4 in the above equation we get

di

dt
=

1 2 2

2

2

L
L

di L M

dt L M
M

di

dteq
1

( )

( )

-

-
+

L

N
M

O

Q
P

=
1 2

1

2

L
L

L M

L M
M

di

dteq
1

( )

( )

-

-
+

L

N
M

O

Q
P (10.6)

Equating Eq. 10.6 and Eq. 10.5, we get

L M

L M

2

2

1
-

-
+ =

1
1

2

1L
L

L M

L M
M

eq

-

-

F

HG
I

KJ
+

L

N
M
M

O

Q
P
P
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Rearranging and simplifying the above equation results in

Leq =
L L M

L L M

1 2
2

1 2 2

-

+ -

If the voltage induced due to mutual inductance oppose the self induced emf in
each coil as shown by the dot convention in Fig. 10.20(b), the equivalent
inductance is given by

Leq =
L L M

L L M

1 2
2

1 2 2

-

+ +

10.10 TUNED CIRCUITS

Tuned circuits are, in general, single tuned and double tuned. Double tuned
circuits are used in radio receivers to produce uniform response to modulated
signals over a specified bandwidth; double tuned circuits are very useful in
communication system.

10.10.1 Single Tuned Circuit

Consider the circuit in Fig. 10.21. A tank circuit (i.e. a parallel resonant circuit)
on the secondary side is inductively coupled to coil (1) which is excited by a
source, v

i
. Let R

s
 be the source resistance and R

1
, R

2
 be the resistances of coils,

1 and 2, respectively. Also let L
1
, L

2
 be the self inductances of the coils, 1 and 2,

respectively.

Let Rs + R1 + jw L1 = Rs

with the assumption that R
s
 >> R

1
 >> jw L

1

The mesh equations for the circuit shown
in Fig. 10.21 are

R1

Rs

L1 L2

1 2

+

–

vi

M

i1 i2
+

–

v2

R2

Fig. 10.21

i1Rs – jwMi2 = vi

– jwMi1 + R j L
j

C
2 2+ -

F
HG

I
KJ

w
w

i2 = 0
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i2 =
R

j M

R j M

j M R j L
j

C

s i
s

v

-

-

- + -
F

HG
I

KJ
w

w

w w
w

0 2 2

( )

( )

or i2 =
j M

R R j L
j

C
M

i

s

� w

w
w

w2 2
2 2+ -

F
HG

I
KJ

+

The output voltage v
o
 = i

j C
2

1
◊

w

vo =
j M

j C R R j L
C

M

i

s

� w

w w
w

w2 2
2 21

+ -
F
HG

I
KJ

L

N
M

O

Q
P +

R
S
|

T|

U
V
|

W|
The voltage transfer function, or voltage amplification, is given by

v

v

o

i

= A =
M

C R R j L
C

Ms 2 2
2 21

+ -
F
HG

I
KJ

L

N
M

O

Q
P +

R
S
|

T|

U
V
|

W|
w

w
w

When the secondary side is tuned, i.e. when the value of the frequency w is such
that wL

2
 = 1/w C, or at resonance frequency w

r
, the amplification is given by

A =
v

v

o

i

 = 
M

C R R Ms r2
2 2+ w

the current i
2
 at resonance i

2
 = 

j M

R R M

i r

s r

� w

w2
2 2+

Thus, it can be observed that the output voltage, current and amplification
depends on the mutual inductance M at resonance frequency, when M =

K L L1 2 . The maximum output voltage or the maximum amplification depends

on M. To get the condition for maximum output voltage, make dv
o
/dM = 0.

d

d M

ov =
d

dM

M

C R R M

i

s r

v

2
2 2+

L

N

M
M

O

Q

P
Pw

= 1 – 2M 2 w2
r [RsR2 + w2

r M 2]–1 = 0

From which, Rs R2 = w 2
r M 2

or M =
R Rs

r

2

w

From the above value of M, we can calculate the maximum output voltage.
Thus

voM =
vi

r sC R R2 2w
,
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or the maximum amplification is given by

Am =
1

2 2w r sC R R
 and i2 = 

j

R R

i

s

v

2 2

The variation of the amplification factor or output voltage with the
coefficient of coupling is shown in Fig. 10.22.

Fig. 10.22

Example 10.10 Consider the single tuned circuit shown in Fig. 10.23 and
determine (i) the resonant frequency (ii) the output voltage at resonance (iii) and the
maximum output voltage. Assume R

s
 >> w

r
L

1
, and K = 0.9.

1 Hm 100 Hm
0.1 Fm

L1 L2

10 W 10 W

15 V

M

v0

Fig. 10.23

Solution M = K L L1 2

= 0 9 1 10 100 106 6◊ ¥ ¥ ¥- -

= 9 mH

(i) Resonance frequency

wr =
1 1

100 10 0 1 102
6 6L C

=
¥ ¥ ¥- -.
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=
10

10

6

 rad/sec.

or fr = 50.292 KHz

The value of wr L1 =
10

10

6

1 ¥ 10–6 = 0.316

Thus the assumption that w
r
L

1
 << R

1
 is justified.

(ii) Output voltage

vo =
M

C R R M

i

s r

v

2
2+ w

=
9 10 15

0 1 10 10 10
10

10
9 10

6

6
6 2

6

¥ ¥

¥ ¥ +
F

HG
I

KJ
¥ ¥

L

N
M
M

O

Q
P
P

-

- -.

= 1.5 mV

(iii) Maximum value of output voltage

voM =
vi

r sC R R2 2w

=
15

2
10

10
0 1 10 100

6
6¥ ¥ ¥ -.

voM = 23.7 V

10.10.2 Double Tuned Coupled Circuits

Figure 10.24 shows a double tuned transformer circuit involving two series
resonant circuits.

Fig. 10.24

For the circuit shown in the figure, a special case where the primary and
secondary resonate at the same frequency w

r
, is considered here,
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i.e w2
r =

1 1

1 1 2 2L C L C
=

The two mesh equations for the circuit are

vin = i R R j L
j

C
s1 1 1

1

+ + -
F

HG
I

KJ
w

w
– i2 jwM

0 = – jw Mi1 + i2 R j L
j

C
2 2

2

+ -
F

HG
I

KJ
w

w

From which

i2 = 
vin j M

R R j L
C

R j L
C

Ms

w

w
w

w
w

w( )+ + -
F

HG
I

KJ
L

N
M
M

O

Q
P
P

+ -
F

HG
I

KJ
L

N
M
M

O

Q
P
P

+1 1
1

2 2
2

2 21 1

also wr = 
1 1

1 1 2 2L C L C
=  at resonance

vo =
vin M

C R R R Ms r2 1 2
2 2( )+ + w

or vo = Avin

where A is the amplification factor given by

A =
M

C R R R Ms r2 1 2
2 2( )+ + w

The maximum amplification or the maximum output voltage can be obtained
by taking the first derivative of v

o
 with respect to M, and equating it to zero.

\
d

d M

ov = 0, or
d A

dM
= 0

d A

dM
= (R1 + Rs)R2 + w2

r M
2 – 2M

2w 2
r = 0

w2
r M2 = R2(R1 + Rs)

Mc =
R R Rs

r

2 1( )+

w

where M
c
 is the critical value of mutual inductance. Substituting the value of M

c

in the equation of v
o
, we obtain the maximum output voltage as

|vo| = 
v vin in

22 2
2 2 2 1w wr c r sC M C R R R

=
+( )

and | i2| = 
v vin in

2 2 2 1w r c sM R R R
=

+( )
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By definition, M = K L L1 2 , the coefficient of coupling, K at M = M
c
 is called

the critical coefficient of coupling, and is given by K
c
 = M

c
/ L L2 1 .

The critical coupling causes the secondary current to have the maximum
possible value. At resonance, the maximum value of amplification is obtained
by changing M, or by changing the coupling coefficient for a given value of L

1

and L
2
. The variation of output voltage with frequency for different coupling

coefficients is shown in Fig. 10.25.

k1

K K>2 1

K K<3 1

k3

k2

K = K= K critical1

vo

Fig. 10.25

10.11 ANALYSIS OF MAGNETIC CIRCUITS

The presence of charges in space or in a medium creates an electric field,
similarly the flow of current in a conductor sets up a magnetic field. Electric
field is represented by electric flux lines, magnetic flux lines are used to
describe the magnetic field. The path of the magnetic flux lines is called the
magnetic circuit. Just as a flow of current in the electric circuit requires the
presence of an electromotive force, so the production of magnetic flux requires
the presence of magneto-motive force (mmf). We now discuss some properties
related to magnetic flux.

(i) Flux density (B) The magnetic flux lines start and end in such a way that
they form closed loops. Weber (Wb) is the unit of magnetic flux (f). Flux
density (B) is the flux per unit area. Tesla (T) or Wb/m

2
 is the unit of flux

density.

B =
F

A
 Wb/m2 or Tesla

where B is a quantity called magnetic flux density in teslas, f is the total flux in
webers and A is the area perpendicular to the lines in m

2
.

(ii) Magneto-motive force MMF (J) A measure of the ability of a coil to
produce a flux is called the magneto-motive force. It may be considered as a
magnetic pressure, just as emf is considered as an electric pressure. A coil with
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N turns which is carrying a current of I amperes constitutes a magnetic circuit
and produces an mmf of NI ampere turns. The source of flux (f) in the magnetic
circuit is the mmf. The flux produced in the circuit depends on mmf and the
length of the circuit.

(iii) Magnetic field strength (H) The magnetic field strength of a circuit is
given by the mmf per unit length.

H =
¡

=
l

NI

l
 AT/m

The magnetic flux density (B) and its intensity (field strength) in a medium can
be related by the following equation

B = mH

where m = m0 mr is the permeability of the medium in Henrys/metre (H/m),
m0 = absolute permeability of free space and is equal to 4p ¥ 10–7 H/m

and m r = relative permeability of the medium.

Relative permeability is a non-dimensional numeric which indicates the
degree to which the medium is a better conductor of magnetic flux as compared
to free space. The value of m

r
 = 1 for air and non-magnetic materials. It varies

from 1,000 to 10,000 for some types of ferro-magnetic materials.

(iv) Reluctance (¬) It is the property of the medium which opposes the
passage of magnetic flux. The magnetic reluctance is analogous to resistance in
the electric circuit. Its unit is AT/Wb. Air has a much higher reluctance than
does iron or steel. For this reason, magnetic circuits used in electrical machines
are designed with very small air gaps.

According to definition, reluctance = 
mmf

flux
The reciprocal of reluctance is known as permeance 

1

¬
=

¡

f

Thus reluctance is a measure of the opposition offered by a magnetic circuit to

the setting up of the flux. The reluctance of the magnetic circuit is given by

¬ = 
1

m

l

a
.

where I is the length, a is the cross-sectional area of the magnetic circuit and m
is the permeability of the medium.

From the above equations

1

m
◊
l

a
=

¡

f

or
¡

1
=

1

m

f
◊
a

NI

l
 = 

1

m
◊ B

H =
1

m
◊B

or B = mH
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10.12 SERIES MAGNETIC CIRCUIT

A series magnetic circuit is analogous to a series electric circuit. Kirchhoff’s
laws are applicable to magnetic circuits also. Consider a ring specimen having
a magnetic path of l meters, area of cross-section (A)m

2
 with a mean radius of R

meters having a coil of N turns carrying I amperes wound uniformly as shown
in Fig. 10.26. MMF is responsible for the establishment of flux in the magnetic
medium. This mmf acts along the magnetic lines of force. The flux produced by
the circuit is given by

f =
MMF

Reluctance

I

I

R

N turns

Fig. 10.26

The magnetic field intensity of the ring is given by H = 
mmf

l

NI

l
= = AT/m

Where l is the mean length of the magnetic path and is given by 2pR.

Flux density B = m
o
m

r
H = m

o
m

r

NI

l
 Wb/m

2

Flux f = mHA Webers

= m0 mr

NI

l
¥ A Wb

f =
NI

l Ar/m m0

 Wb

NI is the mmf of the magnetic circuit, which is analogous to emf in electric
circuit. l/m

0
m

r
A is the reluctance of the magnetic circuit which is analogous to

resistance in electric circuit.

10.13 COMPARISON OF ELECTRIC AND

MAGNETIC CIRCUITS

A series electric and magnetic circuits are shown in Figs. 10.27(a) and (b)
respectively.



10.28 Electrical Circuit Analysis

V2

R2

R1 EI

(a) (b)

N

R3

V3 1 2

3

f

V1

Fig. 10.27

Figure 10.27(a) represents an electric circuit with three resistances
connected in series, the dc source E drives the current I through all the three
resistances whose voltage drops are V

1
, V

2
 and V

3
. Hence, E = V

1
 + V

2
 + V

3
, also

E = I (R
1
 + R

2
 + R

3
). We also know that R = 

rl

a
, where r is the specific resistance

of the material, l is the length of the wire of the resistive material and a is the
area of cross-section of the wire.

The drop across each resistor V = RI = rl
I

a

or
V

l

I

a
= r

Voltage drop per unit length = specific resistance ¥ current density.

Let us consider the magnetic circuit in Fig. 10.27(b). The MMF of the circuit
is given by ¡ = NI, drives the flux f around the three parts of the circuit which

are in series. Each part has a reluctance ¬ = 
1

m
◊

l

a
, where l is the length and a is

the area of cross-section of each arm. The mmf of the magnetic circuit is given
by ¡ = ¡

1
 + ¡

2
 + ¡

3
. ¡ = f (¬

1
 + ¬

2
 + ¬

3
) where ¬

1
¬

2
 and ¬

3
 are the reluctances

of the portion 1, 2 and 3 respectively.

Also ¡ =
1

m
f◊ ◊

l

a

¡

l
=

1

m

f
◊
a

H =
1

m
◊B .

1

m
 can be termed as reluctance of a cubic metre of magnetic material from

which, the above equation gives the mmf per unit length (intensity) which is
analogous to the voltage per unit length. Parallels between electric-circuit and
magnetic-circuit quantities are shown in Table 10.1.
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Table 10.1 Analogy between magnetic and electric circuit

Electric circuit Magnetic circuit

Exciting force = emf in volts mmf in AT
Response = current in amps flux in webers
Voltage drop = VI volts mmf drop = ¬f AT

Electric field density = 
V

l
 volt/m Magnetic field Intensity = 

¡

1
 AT/m

Current(I) = 
E

R
 A Flux (f) = 

¡

R
 Web

Current density(J ) = 
I

a
 Amp/m2 Flux density (B) = 

f

A
 Web/m2

Resistance (R) = 
r l

a
 ohm Reluctance (¬) = 

1

m
◊
l

a
 AT/Web

Conductance (G) = 
1

R
 Mho Permeance = 

1

¬
= ◊

m

m

a l

a
 Web/AT

Thus, it is seen that the magnetic reluctance is analogous to resistance, mmf
is analogous to emf and flux is analogous to current. These analogies are useful
in magnetic circuit calculations. Though we can draw many parallels between
the two circuits, the following differences do exists.

The electric current is a true flow but there is no flow in a magnetic flux. For
a given temperature, r is independent of the strength of the current, but m is not
independent of the flux.

In an electric circuit energy is expended so long as the current flows, but in a
magnetic circuit energy is expended only in creating the flux, and not in
maintaining it. Parallels between the quantities are shown in Table 10.1.

10.14 MAGNETIC LEAKAGE AND FRINGING

Figure 10.28 shows a magnetised iron ring with a narrow air gap, and the flux
which crosses the gap can be regarded as useful flux. Some of the total flux
produced by the ring does not cross the air gap, but instead takes a shorter route
as shown in Fig. 10.28 and is known as leakage flux. The flux while crossing
the air gap bulges outwards due to variation in reluctance. This is known as
fringing. This is because the lines of force repel each other when passing
through the air as a result the flux density in the air gap decreases. For the
purpose of calculation it is assumed that the iron carries the whole of the total
flux throughout its length. The ratio of total flux to useful flux is called the
leakage coefficient or leakage factor.
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Useful flux

(A)

(B)Leakage fluxLeakage flux

Fig. 10.28

Leakage factor = Total flux/useful flux.

Example 10.11 A coil of 100 turns is wound uniformly over a insulator ring with
a mean circumference of 2 m and a uniform sectional area of 0.025 cm

2
. If the coil is

carrying a current of 2 A. Calculate (a) the mmf of the circuit, (b) magnetic field
intensity (c) flux density (d) the total flux.

Solution

(a) mmf = NI = 100 ¥ 2 = 2000 AT

(b) H = 
mmf

l
 = 

2000

2
 = 1000 AT/m

(c) B = m0H = 4p ¥ 10–7 ¥ 1000 = 1.2565 mWb/m2.

(d) f = B ¥ A = 1.2565 ¥ 10–3 ¥ 0.025 ¥ 10–4 = 0.00314 ¥ 10–6 Wb

Example 10.12 Calculate the mmf required to produce a flux of 5 mWb across
an air gap of 2.5 mm of length having an effective area of 100 cm

2
 of a cast steel ring

of mean iron path of 0.5 m and cross-sectional area of 150 cm
2
 as shown in Fig.

10.29. The relative permeability of the cast steel is 800. Neglect leakage flux.

Solution
Area of the gap = 100 ¥ 10

–4
 m

2

Flux density of the gap = 
5 10 10

100

3 4¥ ¥-

 = 0.5 T

H of the gap = 
B

m p0
7

0 5

4 10
=

¥ -

.

= 0.39 ¥ 106 A/m

Length of the gap = 2.5 ¥ 10
–3

 m
mmf required for the gap = 0.39 ¥ 10

6
¥ 2.5 ¥ 10

–3
 = 975 AT

Flux density in the cast steel ring is = 
f

Area

=
5 10 10

100

3 4¥ ¥-

= 0.333 T

\ H =
B

rm m p0
7

0 333

4 10 800
=

¥-

.
 = 332 A T/m

I

Fig. 10.29
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Length of the cast steel path = 0.5 m
The required mmf for the cast steel to produce the necessary flux = 0.5 ¥

332 = 166 AT
Therefore total mmf = 975 + 166 = 1141 AT

10.15 COMPOSITE SERIES CIRCUIT

Consider a toroid composed of three different magnetic materials of different
permeabilities, areas and lengths excited by a coil of N turns.

Fig. 10.30

With a current of I amperes as shown in Fig. 10.30. The lengths of sections
AB, BC and CA are I

1
, I

2
 and I

3
 respectively. Each section will have its own

reluctance and permeability. Since all of them are joined in series, the total
reluctance of the combined magnetic circuit is given by

¬Total =
1

mA

=
l

A

l

A

l

A

1

1 1

2

2 2

3

3 3m m m
+ +

The flux produced in the circuit is given by f = 
mmf

Total reluctance
 Wb

\ f =
NI

l

A

l

A

l

A

1

1 1

2

2 2

3

3 3m m m
+ +

L

N

M
M
M
M

O

Q

P
P
P
P

 Wb

10.16 PARALLEL MAGNETIC CIRCUIT

We have seen that a series magnetic circuit carries the same flux and the total
mmf required to produce a given quantity of flux is the sum of the mmf’s for the
separate parts. In a parallel magnetic circuit, different parts of the circuit are in
parallel. For such circuits the Kirchhoff’s laws, in their analogous magnetic
form can be applied for the analysis. Consider an iron core having three limbs
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A, B and C as shown in Fig. 10.31(a). A Coil with N turns is arranged around
limb A which carries a current I amperes. The flux produced by the coil in limb
A. f

A
 is divided between limbs B and C and each equal to f

A
/2. The reluctance

offered by the two parallel paths is equal to the half the reluctance of each path
(Assuming equal lengths and cross sectional areas). Similar to Kirchhoff’s
current law in an electric circuit, the total magnetic flux directed towards a
junction in a magnetic circuit is equal to the sum of the magnetic fluxes directed
away from that junction. Accordingly f

A
 = f

B
+ f

C
 or f

A
– f

B
– f

C
 = 0. The

electrical equivalent of the above circuit is shown in Fig. 10.31(b). Similar to
Kirchhoff’s second law, in a closed magnetic circuit, the resultant mmf is equal
to the algebraic sum of the products of field strength and the length of each part
in the closed path. Thus applying the law to the first loop in Fig. 10.31(a), we get

NI = HA lA + HB lB

or NI = fA ¬A + fB ¬B

The mmf across the two parallel paths is identical.
Therefore NI is also equal to

NI = fA ¬A + fC ¬C

IA

A
A

N

fA

1 2

V

B

B
C

(b)(a)

C

IA IC

I

fB

fC

Fig. 10.31

ADDITIONAL SOLVED PROBLEMS

Problem 10.1 In the circuit shown in Fig. 10.32, write the equation for the
voltages across the coils ab and cd; also mention the polarities of the terminals.

Fig. 10.32
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Solution Current i
1
 is only flowing in coil ab, whereas coil cd is open.

Therefore, there is no current in coil cd. The emf due to self induction is zero on
coil cd.

\ v2(t) = M
di t

dt

1( )
 with C being positive

Similarly the emf due to mutual induction in coil ab is zero.

\ v1(t) = L
di t

dt

1( )

Problem 10.2 In the circuit shown in Fig. 10.33, write the equation for the
voltages v

1
 and v

2
. L

1
 and L

2
 are the coefficients of self inductances of coils 1

and 2, respectively, and M is the mutual inductance.

Fig. 10.33

Solution In the figure, a and d are like terminals.
Currents i

1
 and i

2
 are entering at dot marked terminals.

v1 = L
di t

dt

M di t

dt
1

1 2( ) ( )
+

v2 = L
di t

dt

M di t

dt
2

2 1( ) ( )
+

Problem 10.3 In Fig. 10.34, L
1
 = 4 H; L

2
 = 9 H, K = 0.5, i

1
 = 5 cos (50t – 30°)

A, i
2
 = 2 cos (50t – 30°) A. Find the values of (a) v

1
; (b) v

2
, and (c) the total

energy stored in the system at t = 0.

Fig. 10.34

Solution Since the current in coil ab is entering at the dot marked terminal,
whereas in coil cd the current is leaving, we can write the equations as
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v1 = L
di

dt
M

di

dt
1

1 2-

v2 = - +M
di

dt
L

di

dt

1
2

2

M = K L L1 2 0 5 36= .  = 3

(a) v1 = 4 
d

dt
 [5 cos (50t – 30°) – 3

d

dt
 [2 cos (50t – 30°)]

v1 = 20 [– sin (50t – 30°) ¥ 50]– 6 [– sin (50t – 30°) 50]

at t = 0

v1 = 500 – 150 = 350 V

(b) v2 = –3
d

dt
 [5 cos (50t – 30°)] + 9

d

dt
 [2 cos (50t – 30°)]

= – 15 [– sin (50t – 30°) ¥ 50] + 18 [– sin (50t – 30°) 50]

at t = 0

v2 = – 375 + 450 = 75 V

(c) The total energy stored in the system

W (t) =
1

2
L1[i1(t)]2 + 

1

2
L2[i2(t)]2 – M[i1(t)i2(t)]

=
1

2
¥ 4[5 cos (50t – 30°)]2 + 

1

2
¥ 9[2 cos (50t – 30°)]2

– 3 [5 cos (50t – 30°) ¥ 2 cos (50t – 30°)]

at t = 0 W(t) = 28.5 j

Problem 10.4 For the circuit shown in Fig. 10.35, write the mesh equations.

Solution There exists mutual coupling between coil 1 and 3, and 2 and 3.
Assuming branch currents i

1
, i

2
 and i

3
 in coils 1, 2 and 3, respectively, the equation

for mesh 1 is

Fig. 10.35
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v = v1 + v2

v = i1 j2 – i3 j4 + i2 j4 – i3 j6 (10.7)

j
4
i
3
 is the mutual inductance drop between coils (1) and (3), and is considered

negative according to dot convention and i
3
j
6
 is the mutual inductance drop between

coils 2 and 3.

For the 2nd mesh 0 = – v2 + v3

= – ( j4i2 – j6i3) + j3i3 – j6i2 – j4i1 (10.8)

= – j4i1 – j10i2 + j9i3 (10.9)

i1 = i3 + i2

Problem 10.5 Calculate the effective inductance of the circuit shown in
Fig. 10.36 across terminals a and b.

8 H8 H

a

b

10 H10 H

6 H

+

–

v v2
5 H

4 H

Fig. 10.36

Solution Let the current in the circuit be i

v = 8 4 10 4 5 6 5
di

dt

di

dt

di

dt

di

dt

di

dt

di

dt

di

dt
- + - + + +

or
di

dt

di

dt
34 8 26- =  = v

Let L be the effective inductance of the circuit across ab. Then the voltage across

ab = v = L
di

dt

di

dt
= 26 .

Hence, the equivalent inductance of the circuit is given by 26 H.

Problem 10.6 For the circuit shown in Fig. 10.37, find the ratio of output
voltage to the source voltage.

Fig. 10.37
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Solution Let us consider i
1
 and i

2
 as mesh currents in the primary and secondary

windings.
As the current i

1
 is entering at the dot marked terminal, and current i

2
 is leaving

the dot marked terminal, the sign of the mutual inductance is to be negative. Using
Kirchhoff’s voltage law, the voltage equation for the first mesh is

i1(R1 + jwL1) – i2 jw M = v1

i1(10 + j500) – i2 j250 = 10 (10.10)

Similarly, for the 2nd mesh

i2(R2 + jw L2) – i1 jw M = 0

i2(400 + j5000) – i1 j250 = 0 (10.11)

i2 =

( )

( )

(

10 500 10

250 0

10 500 250

250 400 5000

+

-

+ -

- +

j

j

j j

j j

i2 = 0.00102 –– 84.13°

v2 = i2 ¥ R2

= 0.00102 –– 84.13° ¥ 400

= 0.408 –– 84.13°

v

v

2

1

=
0 408

10

.
–– 84.13°

v

v

2

1

= 40.8 ¥ 10–3 –– 84.13°

Problem 10.7 Calculate the effective inductance of the circuit shown in
Fig. 10.38 across AB.

Fig. 10.38

Solution The inductance matrix is

L L L

L L L

L L L

11 12 13

21 22 23

31 32 33

L

N

M
M
M

O

Q

P
P
P

 = 

5 0 2

0 6 3

2 3 17

-

-

- -

L

N

M
M
M

O

Q

P
P
P
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From KVL v = v1 + v2 (10.12)

and v2 = v3 (10.13)

From KCL i1 = i2 + i3 (10.14)

v

v

v

1

2

3

L

N

M
M
M

O

Q

P
P
P

=

5 0 2

0 6 3

2 3 17

-

-

- -

L

N

M
M
M

O

Q

P
P
P

di dt

di dt

di dt

1

2

3

/

/

/

L

N

M
M
M

O

Q

P
P
P

v1 = 5 21 3di

dt

di

dt
- (10.15)

and v2 = 6 32 3di

dt

di

dt
- (10.16)

v3 = - - +2 3 171 2 3di

dt

di

dt

di

dt
(10.17)

From Eq. 10.12, we have

v = v1 + v2

= 5 2 6 31 3 2 3di

dt

di

dt

di

dt

di

dt
- + -

v = 5 6 51 2 3di

dt

di

dt

di

dt
+ - (10.18)

From Eq. 10.14,

di

dt

1 =
di

dt

di

dt

2 3+ (10.19)

Substituting Eq. 10.19 in Eq. 10.17, we have

v3 = - +
L

N
M

O

Q
P -

L

N
M

O

Q
P +

L

N
M

O

Q
P2 3 172 3 2 3di

dt

di

dt

di

dt

di

dt

or - +5 152 3di

dt

di

dt
 = v3 (10.20)

Multiplying Eq. 10.16 by 5, we get

30 152 3di

dt

di

dt
-  = 5v2 (10.21)

Adding Eqs. (10.20) and (10.21), we get

25 2di

dt
= v3 + 5v2

25 2di

dt
= 6v2

= 6v3, since v2 = v3

or v2 =
25

6
2di

dt
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From Eq. 10.16

25

6
2di

dt
= 6 32 3di

dt

di

dt
-

from which
di

dt

2 =
18

11
3di

dt

From Eq. 10.19

di

dt

1 =
di

dt

di

dt

di

dt

2 2 211

18

29

18
+ =

Substituting the values of 
di

dt

2  and 
di

dt

3  in Eq. 10.18 yields

v = 5 6
18

29
5

11

18
1 1 2di

dt

di

dt

di

dt
+ -

= 5
108

29

55

18

18

29
1 1 1di

dt

di

dt

di

dt
+ -

v =
198

29
1di

dt
 = 6.827 

di

dt

1

\ equivalent inductance across AB = 6.827 H

Problem 10.8 Write the mesh equations for the network shown in Fig. 10.39.

v1

i1

(1)

i2 i3

3 W

5 W

(2)j3

– j2

j4 j5

Fig. 10.39

Solution The circuit contains three meshes. Let us assume three loop currents i
1
,

i
2
 and i

3
.

For the first mesh

5i1 + j3(i1 – i2) + j4(i3 – i2) = v1 (10.22)

The drop due to self inductance is j3(i
1

– i
2
) is written by considering the current

(i
1

– i
2
) entering at dot marked terminal in the first coil, j4(i

3
– i

2
) is the mutually

induced voltage in coil 1 due to current (i
3
– i

2
) entering at dot marked terminal of coil 2.

Similarly, for the 2nd mesh,

j3(i2 – i1) + j5(i2 – i3) – j2 i2 + j4(i2 – i3) + j4(i2 – i1) = 0 (10.23)
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j4(i
2
– i

1
) is the mutually induced voltage in coil 2 due to the current in coil 1, and

j4(i
2

– i
3
) is the mutually induced voltage in coil 1 due to the current in coil 2.

For the third mesh,
3i3 + j5(i3 – i2) + j4(i1 – i2) = 0 (10.24)

Further simplification of Eqs. 10.22, 10.23 and 10.24 leads to

(5 + j3)i1 – j7i2 + j4i3 = v1 (10.25)

– j7i1 + j14i2 – j9i3 = 0 (10.26)

j4i1 – j9i2 + (3 + j5)i3 = 0 (10.27)

Problem 10.9 The inductance matrix for the circuit of three series connected
coupled coils is given in Fig. 10.40. Find the inductances, and indicate the dots
for the coils.

Fig. 10.40

L =

4 4 1

4 2 3

1 3 6

-

- -

-

L

N

M
M
M

O

Q

P
P
P

All elements are in henrys

Solution The diagonal elements (4, 2, 6) in the matrix represent the self inductances
of the three coils 1, 2 and 3, respectively. The second element in the 1st row (– 4) is
the mutual inductance between coil 1 and 2, the negative sign indicates that the
current in the first coil enters the dotted terminal, and the current in the second coil
enters at the undotted terminal. Similarly, the remaining elements are fixed. The
values of inductances and the dot convention is shown in Fig. 10.41.

A B

4 H

1 2 3

2 H 6 H6 H

3 H

4 H
1 H

Fig. 10.41

Problem 10.10 Find the voltage across the 10 W resistor for the network
shown in Fig. 10.42.
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10 W

10 0º–

v1

j4 j2

j3

i
1

i
2

– j15 v2

Fig. 10.42

Solution From Fig. 10.42, it is clear that

v2 = i2 10 (10.28)
Mesh equation for the first mesh is

j4i1 – j15 (i1 – i2) + j3i2 = 10 –0°

– j11i1 + j18i2 = 10 –0° (10.29)

Mesh equation for the 2nd mesh is

j2i2 + 10i2 – j15(i2 – i1) + j3i1 = 0

j18i1 – j13i2 + 10i2 = 0

j18i1 + i2(10 – j13) = 0 (10.30)

Solving for i
2
 from Eqs. 10.29 and 10.30, we get

i2 =
- – ∞L

N
M

O

Q
P

-

-

L

N
M

O

Q
P

j

j

j j

j j

11 10 0

18 0

11 18

18 10 3

=
- – ∞

-

180 90

291 110j

=
- – ∞

– ∞

180 90

311 20 70.
 = – 0.578 –110.7°

\ v2 = i2 10 = – 5.78 –110.7°

|v2| = 5.78

Problem 10.11 The resonant frequency of the tuned circuit shown in
Fig. 10.43 is 1000 rad/sec. Calculate the self inductances of the two coils and
the optimum value of the mutual inductance.

Fig. 10.43
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Solution From Section 10.7, we know that

w 2
r =

1 1

1 1 2 2L C L C
=

L1 =
1 1

1000 1 102
1

2 6w r C
=

¥ -( )
 = 1 H

L2 =
1 1

1000 2 102
2

2 6w r C
=

¥ ¥ -( )
 = 0.5 H

Optimum value of the mutual inductance is given by

Moptimum =
R R

r

1 2

w

where R
1
 and R

2
 are the resistances of the primary and secondary coils

M =
15

1000
 = 3.87 mH

R1
R2

C2

C1

2 V

104 rad/sec

M

Fig. 10.44

Problem 10.12 The tuned frequency of a double tuned circuit shown in
Fig. 10.44 is 10

4
 rad/sec. If the source voltage is 2 V and has a resistance of

0.1 W, calculate the maximum output voltage at resonance if R
1
 = 0.01 W, L

1
 =

2 mH; R
2
 = 0.1 W, and L

2
 = 25 mH.

Solution

The maximum output voltage v
0
 = 

vi

r cC M2 2
2w

where M
c
 is the critical value of the mutual inductance given by

Mc =
R R Rs

r

2 1( )+

w

Mc =
0 1 0 01 0 1

104

. ( . . )+
 = 10.48 mH
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At resonance w 2
r =

1

2 2L C

C2 =
1 1

10 25 102
2

4 2 6w r L
=

¥ ¥ -( )
 = 0.4 ¥ 10–3 F

v0 =
2

2 10 0 4 10 10 48 104 2 3 6( ) . .¥ ¥ ¥ ¥- -

= 2.385 V

Problem 10.13 An iron ring 10 cm dia and 15 cm
2
 in cross-section is wound

with 250 turns of wire for a flux density of 1.5 Web/m
2
 and permeability 500.

Find the exciting current, the inductance and stored energy. Find corresponding
quantities when there is a 2 mm air gap.

Solution

(a) Without air gap

Length of the flux path = pD = p ¥ 10 = 31.41 cm

= 0.3141 m

Area of flux path = 15 cm2 = 15 ¥ 10–4 m2

mmf = A.T

A =
mmf

T

H =
B

rm m0

 = 
1 5

4 10 5007

.

p ¥ ¥-
 = 2387

mmf = H ¥ l = 2387 ¥ 0.3141 = 750 AT

Exciting current = 
mmf

T
=

750

250
 = 3 A

Reluctance = 
l

Arm m p0
7 4

0 3141

4 10 500 15 10
=

¥ ¥ ¥- -

.

= 333270

Self Inductance = 
N 2 2250

333270Reluctance
=

( )
 = 0.1875 H

Energy = 
1

2
LI2 = 

1

2
¥ 0.1875 ¥ (3)2

= 0.843 Joules

(b) With air gap

Reluctance of the gap = 
l

Am p0

3

7 4

2 10

4 10 15 10
=

¥

¥ ¥ ¥

-

- -

= 1.06 ¥ 106 A/Wb

Total reluctance = (0.333 + 1.06) 106 = 1.393 ¥ 106 A/Wb

mmf = f ¥ reluctance



Coupled Circuits 10.43

= 1.5 ¥ 15 ¥ 10–4 ¥ 1.393 ¥ 106

= 3134 AT

Exciting current = 
3134

250
 = 12.536 A

L =
N 2 2

6

250

1 393 10¬
=

¥

( )

.
 = 44.8 mH

Energy = 
1

2
2LI

=
1

2
¥ 44.8 ¥ 10–3 ¥ (12.536)2

= 3.52 Joules

Problem 10.14 A 700 turn coil is wound on the central limb of the cast steel
frame as shown in Fig. 10.45. A total flux of 1.8 m Wb is required in the gap. What
is the current required? Assume that the gap density is uniform and that all lines
pass straight across the gap. All dimensions are in centimeters. Assume m

r
 as 600.

24

Fig. 10.45

Solution Each of the side limbs carry half the total flux as their reluctances are
equal.

Total mmf required is equal to the sum of the mmf required for gap, central limb
and side limb.

Reluctance of gap and central limb are in series and they carry the same flux.

Air gap

fg = 1.8 ¥ 10–3 Wb

Ag = 4 ¥ 4 ¥ 10–4 m2

Bg =
1 8 10

16 10

3

4

. ¥

¥

-

-  = 1.125 Wb/m2

Hg =
Bg

m p0
7

1125

4 10
=

¥ -

.
 = 8.95 ¥ 105 AT/m

Required mmf for the gap = H
g
l
g

= 8.95 ¥ 105 ¥ 0.001 = 895 AT



10.44 Electrical Circuit Analysis

Central Limb

fc = 1.8 ¥ 10–3 Wb

Ac = 4 ¥ 4 ¥ 10–4 m2

Bc = 1.125 Wb/m2

Hc =
Bc

rm m p0
7

1125

4 10 600
=

¥ ¥-

.
 = 1492 AT/m

Required mmf for central limb = H
c
l
c

= 1492 ¥ 0.24 = 358 AT

Side Limb:

fs =
1

2
¥ flux in central limb

=
1

2
¥ 1.8 ¥ 10–3 = 0.9 ¥ 10–3 Wb

Bs =
0 9 10

16 10

3

4

. ¥

¥

-

-  = 0.5625 Wb/m2

Hs =
Bs

rm m p0
7

0 5625

4 10 600
=

¥ ¥-

.
 = 746 AT/m

Required mmf for side limb = H
s
l
s

= 746 ¥ 0.6 = 447.6 @  448

Total mmf = 895 + 358 + 448 = 1701 AT

Required current = 
1701

700
 = 2.43 A

PRACTICE PROBLEMS

10.1 Using the dot convention, write the voltage equations for the coils shown
in Fig. 10.46.

Fig. 10.46

10.2 Two inductively coupled coils have self inductances L1 = 40 mH and L2 = 150
mH. If the coefficient of coupling is 0.7, (i) find the value of mutual induc-
tance between the coils, and (ii) the maximum possible mutual inductance.
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10.3 For the circuit shown in Fig. 10.47 write the inductance matrix.

Fig. 10.47

10.4 Two coils connected in series have an equivalent inductance of 0.8 H
when connected in aiding, and an equivalent inductance of 0.5 H when
the connection is opposing. Calculate the mutual inductance of the coils.

10.5 In Fig. 10.48, L1 = 2 H; L2 = 6 H; K = 0.5; i1 = 4 sin (40t – 30°) A; i2 = 2
sin (40t – 30°) A. Find the values of (i) v1 and (ii) v2.

Fig. 10.48

10.6 For the circuit shown in Fig. 10.49, write the mesh equations.

j2

j2j1

j6

j3

v1

10 0º–

j3

j5
j4

j3

D

D

Fig. 10.49
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10.7 Calculate the effective inductance of the circuit shown in Fig. 10.50
across XY.

Fig. 10.50

10.8 For the circuit shown in Fig. 10.51, find the ratio of output voltage to the
input voltage.

Fig. 10.51

10.9 Calculate the effective inductance of the circuit shown in Fig. 10.52.

Fig. 10.52
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10.10 Write the mesh equations for the network shown in Fig. 10.53.

Fig. 10.53

10.11 Find the source voltage if the voltage across the 100 ohms is 50 V for the
network in the Fig. 10.54.

Fig. 10.54

10.12 The inductance matrix for the circuit of a three series connected coupled
coils is given below. Find the inductances and indicate the dots for the
coils.

L =

8 2 1

2 4 6

1 6 6

-

- -

-

L

N

M
M
M

O

Q

P
P
P

OBJECTIVE-TYPE -QUESTIONS

1. Mutual inductance is a property associated with
(a) only one coil
(b) two or more coils
(c) two or more coils with magnetic coupling

2. Dot convention in coupled circuits is used
(a) to measure the mutual inductance
(b) to determine the polarity of the mutually induced voltage in coils
(c) to determine the polarity of the self induced voltage in coils
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3. Mutually induced voltage is present independently of, and in addition to,
the voltage due to self induction.

(a) true (b) false
4. Two terminals belonging to different coils are marked identically with

dots, if for the different direction of current relative to like terminals the
magnetic flux of self and mutual induction in each circuit add together.

(a) true (b) false
5. The maximum value of the coefficient of coupling is

(a) 100% (b) more than 100%
(c) 90%

6. The case for which the coefficient of coupling K = 1 is called perfect
coupling

(a) true (b) false
7. The maximum possible mutual inductance of two inductively coupled

coils with self inductances L1 = 25 mH and L2 = 100 mH is given by
(a) 125 mH (b) 75 mH
(c) 50 mH

8. The value of the coefficient of coupling is more for aircored coupled
circuits compared to the iron core coupled circuits.

(a) true (b) false
9. Two inductors are connected as shown in Fig. 10.55. What is the value of

the effective inductance of the combination.

3 Hi

5 H5 H

2 H

Fig. 10.55

(a) 8 H (b) 10 H
(c) 4 H

10. Two coils connected in series have an equivalent inductance of 3 H when
connected in aiding. If the self inductance of the first coil is 1 H, what is
the self inductance of the second coil (Assume M = 0.5 H)

(a) 1 H (b) 2 H
(c) 3 H
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11. For Fig. 10.56 shown below, the inductance matrix is given by

Fig. 10.56

(a)

2 3 1

3 1 2

1 2 3

L

N

M
M
M

O

Q

P
P
P

(b)

2 3 1

3 1 2

1 2 3

-

- -

-

L

N

M
M
M

O

Q

P
P
P

(c)

2 3 1

3 1 2

1 2 3

-

-

L

N

M
M
M

O

Q

P
P
P



11.1 BASIC CONCEPTS

Differential equations which denote rates of change, occur in various branches

of science and engineering. We make use of differential equations, for example,

to determine the motion of a rocket or a satellite, to determine the charge or

current in an electric circuit, or to determine the vibrations of a wire or

membrane. The mathematical formulation of the above problems gives rise to

differential equations.

A differential equation is one which involves derivatives of one or more

dependent variables with respect to one or more independent variables.

Differential equations are classified according to the variables and derivatives

involved in them. Ordinary differential equations are those which involve

ordinary derivatives of one or more dependent variables with respect to a single

independent variable. For example,

dy = sin x dx (11.1)

d x

dt

d x

dt

3

4

2

2
3+  + 5x = cos t (11.2)

In Eq. 11.1, x is an independent variable, and y is a dependent variable. In

Eq. 11.2, variable t is an independent variable and x is a dependent variable.

Partial differential equations are those which involve partial derivatives of one

or more dependent variables with respect to more than one independent

variables. For example,

∂

∂
+

∂

∂

v v

u t
= v (11.3)

Chapter

11
DIFFERENTIAL
EQUATIONS
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∂

∂
+

∂

∂
+

∂

∂

2

2

2

2

2

2

v v v

x y z
= 0 (11.4)

In Eq. 11.3, variables u and t are independent, and v is a dependent variable.

In Eq. 11.4, variables x, y, and z are independent, whereas v is a dependent

variable.

The order of differential equation is the order of the highest derivative in it.

Equation 11.1 is a first order differential equation, since the highest derivative

involved is the first order. Similarly, Eq. 11.2 is of the 3rd order. Equations

11.3 and 11.4 are of the first and second order, respectively.

The degree of a differential equation is the degree of the derivative of the

highest order; for example,

d x

dt

d x

dt

2

2

2 1 2

1= +
F
HG

I
KJ

L

N
M

O

Q
P

/

(11.5)

Equation 11.5 is of the second degree, since when the radical is removed, it

becomes

d x

dt

d x

dt

2

2

2 2

1
F
HG

I
KJ

= +
F
HG

I
KJ

L

N
M

O

Q
P (11.6)

Differential equations are further classified as linear and non-linear.

A linear ordinary differential equation of the order n, in the dependent

variable x and the independent variable t, is given in the form

a t
d x

dt
a t

d x

dt
a t

d x

dt
a t x

n

n

n

n n n0 1

1

1 1( ) ( ) ( ) ( )+ + + +
-

- -…  = c(t) (11.7)

where a
0
 is not identically zero. The order of the equation is n. The term c(t) is

the forcing function and is independent of x(t). When c (t) is zero, the equation is

said to homogeneous; otherwise, it is non-homogeneous. A differential equation

is said to be linear, when the dependent variable x and its derivatives occur in the

first degree only, and no products of x and its derivatives are present in the equation.

For example,

d x

dt

d x

dt
x

2

2
10 5+ +  = 0 (11.8)

In Eq. 11.8, the dependent variable, x, and its derivatives are of the first

degree only. A non-linear ordinary differential equation is defined as an

equation which is not linear.

For example,

d x

dt

d x

dt
x

2

2
210 5+ +  = 0 (11.9)

d x

dt

d x

dt
x

2

2

2

5 7+
F
HG

I
KJ

+  = 0 (11.10)
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In Eq. 11.7, if a
0
(t), a

1
(t) … a

n
(t) are constants, the equation is said to be

linear with constant coefficients; otherwise, the equation is said to be linear

with variable coefficients.

11.2 HOMOGENEOUS LINEAR DIFFERENTIAL

EQUATIONS

Consider an nth order homogeneous linear differential equation with constant

coefficients,

a
d x

dt
a

d x

dt
a

d x

dt
a x

n n

n n n0 1

1

1 1+ + + +
-

- -…  = 0 (11.11)

where a
0
, a

1
… a

n
 are real constants.

Now we shall find the solution of Eq. 11.11 of the form x = e
mt

. By assuming

that x = e
mt

 is a solution for certain m, we have

d x

dt
= me

mt

d x

dt

2

2
= m2emt

 

d x

dt

n

n
= mnemt

Substituting in Eq. 11.11, we get

a0m
n
e

mt
 + a1m

n – 1
e

mt
 + … + ane

mt
 = 0

or e
mt

(a0m
n
 + a1m

n – 1
 + … + an) = 0

where a0m
n
 + a1m

n – 1
 + … + an = 0 (11.12)

This is called the auxiliary, or the characteristic equation of the given

differential equation. Three cases might occur in the auxiliary equation which

are, subject to the roots of Eq. 11.12 being real and distinct, real and repeated,

or complex.

Case 1 Distinct real roots

If the roots of the Eq. 11.12, m
1
, m

2
… m

n
 are real and distinct, the general

solution of Eq. 11.11 is

x = k1em1t + k2em2t + … + kne
mnt

where k
1
, k

2
… k

n
 are arbitrary constants.

k
1
, k

2
… k

n
 values can be determined by using initial conditions.

Example 11.1 Find the solution for the following equation

d x

d t

d x

d t

d x

d t

3

3

2

2
2+ -  � 2x = 0



11.4 Electrical Circuit Analysis

given the initial conditions

x¢¢(0) = 0, x ¢(0) = 2, x(0) = 1

Solution The characteristic equation is

m3 + 2m2 – m – 2 = 0

By taking factors, we have

(m + 1) (m
2
 + m – 2) = 0

or (m + 1) (m – 1) (m + 2) = 0

Thus, the roots are distinct, real numbers

m1 = 1, m2 = – 1, m3 = – 2

The general solution is

x = k1 e
– t

 + k2e
t
 + k3e

–2t

At t = 0, k1 + k2 + k3 = 1 (11.13)

x ¢ = – k1 e
–t

 + k2e
t
– 2k3 e

–2t

At t = 0, – k1 + k2 – 2k3 = 2 (11.14)

x ¢¢ = k1e
–t

 + k2e
t
 + 4k3 e

–2t

At t = 0, k1 + k2 + 4k3 = 0 (11.15)

Solving Eqs. 11.13, 11.14 and 11.15 we get

k3 = -
1

3

k2 = 
4

3
 and k1 = 0

The solution for the differential equation is therefore

x = 
4

3

1

3

2e et t
-

-

Case 2 Roots are real and repeated

If the roots of Eq. 11.12 are the double real root m, and (n – 2) distinct real

roots.

m1, m2 … mn – 2

then the linearly independent solutions of Eq. 11.11 are

e
mt

, te
mt

, e
m1t

, e
m2t

… e
mn – 2t

And the general solution may be written as

x = k1e
mt

 + k2te
mt

 + k3e
m1t

 + k4e
m2t

 + … + kne
mn – 2t

Similarly, if Eq. 11.12 has a triple real root m, the general solution is

(c
1
 + c

2
t + c

3
t

2
) e

mt
.

Example 11.2 Find the general solution for the differential equation

d x

d t

d x

d t

d x

d t
x

3

3

2

2
11 35 25+ + +  = 0
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Solution The auxiliary equation is

m3 + 11m2 + 35m + 25 = 0

By taking factors, we have

(m + 1) (m + 5)2 = 0

or (m + 1) (m + 5) (m + 5) = 0

\ The general solution is

x(t) = (k1 + k2t ) e–5t + k3e– t

Case 3 Roots are Complex Conjugate

Consider the auxiliary equation which has the complex number a + jb as a non-

repeated root. The corresponding part of the general solution is p
1
e

(a + jb) t
 +

p
2
e

(a – jb)t
, where p

1
 and p

2
 are arbitrary constants.

p1e(a + jb)t + p2e(a – jb)t = p1eat e jbt + p2eat e– jbt

= eat [ p1e jbt + p2e
– jbt]

= eat [p1(cos bt + j sin bt) + p2 (cos bt – j sin bt)]

= e
at

 [( p1 + p2) cos bt + j( p1 – p2) sin bt]

= e
at

[k1 sin bt + k2 cos bt]

where k1 = j(p1 – p2) and k2 = ( p1 + p2)

are the new arbitrary constants.

If however, (a + jb) and (a – jb) are each n roots of the auxiliary equation, the

corresponding general solution may be written as

x = eat [(k1 + k2t + k3t2 + … + kntn – 1) sin bt

+ (kn + 1 + kn+2 t + kn+3t2 + … + k2nt n–1) cos bt]

Example 11.3 Find the general solution of

d x

d t

d x

d t
x

2

2
5 20- +  = 0

Solution The auxiliary equation is

m2 – 5m + 20 = 0

The roots are  m =
5 25 80

2

± -

m = 2.5 ± j3.7

Here the roots are conjugate complex numbers a + jb

where a = 2.5, b = 3.7

The general solution may be written as

x = e
2.5t

 (c1 sin 3.7t + c2 cos 3.7t)
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11.3 NON-HOMOGENEOUS DIFFERENTIAL

EQUATIONS

Now let us consider the following non-homogeneous differential equation,

a
d x

dt
a

d x

dt
a

d x

dt
a x

n

n

n

n n n0 1

1

1 1+ + + +
-

- -…  = f(t)

where the coefficients a
0
, a

1
, …, a

n
 are constants, and f(t) is a function of time.

The general solution may be written

x = xc + xp

where x
c
 is the complementary function, and x

p
 is the particular integral. Since

x
c
 is the general solution of the corresponding homogeneous equation with f(t)

replaced by zero, we have to find out the particular integral x
p
. The particular

integral can be calculated by the method of undetermined coefficients. This

method is useful to equations

a
d x

dt
a

d x

dt
a x

n

n

n

n n0 1

1

1
+ + +

-

-
…  = c(t)

when c(t) is such that the form of a particular solution x
p
 of the above equation

may be guessed. For example, c(t) may be a single power of t, a polynomial, an

exponential, a sinusoidal function, or a sum of such functions. The method

consists in assuming for x
p
 an expression similar to that of c(t), containing

unknown coefficients which are to be determined by inserting x
p
 and its

derivatives in the original equation.

Example 11.4 Find the particular integral for the differential equation

d x

d t

d x

d t
x

2

2
10 5- +  = 10e

–3t

Solution By assuming x
p
 = ke

–3t
, and

substituting x ¢¢
p
, x ¢

p
, and x

p
 into the differential equation

9ke
–3t

 + 30ke
–3t

 + 5ke
–3t

= 10e
–3t

\ 9k + 30k + 5k = 10

or k = 
10

44
= 0.23

Therefore, the particular integral is x
p
 = 0.23e

–3t

Example 11.5 Find the particular integral for the differential equation

d x

d t

2

2
 + 2x = 5t2

Solution If the driving function is the power of t, then we have to assume the

particular solution as

xp = k1t
2 + k2t + k3
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Then x ¢¢p = 2k1

Substituting x ¢¢
p
 and x

p
 in the given differential equation, we have

2k1 + 2k1t
2
 + 2k2t + 2k3 = 5t

2

Comparing the coefficients

2k1 = 5 and 2k2 = 0, 2k1 + 2k3 = 0

k1 = 2.5 and k3 = – 2.5, k2 = 0

\ The particular integral

xp = 2.5t2 – 2.5

Example 11.6 Find the particular integral for the differential equation

d x

d t

d x

d t
x

2

2
3+ +  = 20 sin t

Solution If the driving function is sine or cosine function, the particular solution

is to be assumed as

xp = k1 cos t + k2 sin t

Then x ¢p = – k1 sin t + k2 cos t

x ¢¢p = – k1 cos t – k2 sin t

– k1 cos t – k2 sin t – k1 sin t + k2 cos t + 3k1 cos t + 3k2 sin t = 20 sin t

Comparing the cosine terms and sine terms in the above equation, we have

2k1 + k2 = 0

– k1 + 2k2 = 20

From which k1 = – 4, k2 = 8

Substituting the values of k
1
 and k

2
 in particular integral

\ xp = – 4 cos t + 8 sin t

This method of undetermined coefficients may be applied to forcing functions of

the following.

1. c(t ) = A

2. c(t ) = A(k1t
n
 + k2t

n – 1
 + k3t

n – 3
 + … + kn)

3. c(t ) = e
mt

; m is real or complex

4. Any function formed by multiplying terms of type 1, 2, or 3.

11.4 APPLICATIONS TO ELECTRICAL

CIRCUITS

In this section, we consider the application of differential equations to circuits

containing a source, resistors, inductors and capacitors. Before discussing the

formation of differential equation for the circuits, let us discuss the v-i

relationships for basic network elements.
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Resistor The resistor shown in Fig. 11.1(a) has the following relation between

voltage and current.

vc (0)

Fig. 11.1

v (t) = Ri(t)

where R is given in ohms.

Capacitor For the capacitor shown in Fig. 11.1(b), the v–i relationships are

i(t) = C
d t

dt

v( )

or v (t) = 
1

0
C

t

z i(t) dt + vC (0)

where v
C
(0) is the initial voltage across the capacitor. The capacitor can be

represented as shown in Fig. 11.1(c).

Inductor For the inductor shown in Fig. 11.2(a), the v–i relationships are

i (t) = 
1

0
L

t

z v (t)dt + iL(0)

or v (t) = L
di

dt

where i
L
(0) is the initial current passing through the circuit. The inductor can be

represented as shown in Fig. 11.2(b).

Fig. 11.2
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We now consider the circuit shown in Fig. 11.3

Fig. 11.3

By applying Kirchhoff’s law to the circuit in Fig. 11.3, we have

v = Ri + L
di

d t C
i d t

t

C+ +z
1

0

0

v ( )

If the capacitor has no initial charge, the above equation becomes

Ri L
di

d t C
+ + z

1
i dt = v

Differentiating the above equation, we get

L
d i

d t
R

di

d t

i

C

d

d t

2

2
+ + =

v

This is a second order linear differential equation in the single dependent

variable, i.

Example 11.7 The circuit shown in Fig. 11.4 consists of series R, L elements

which are 5 W and 0.1 H, respectively. If the initial current is zero, find the current at

time t > 0.

Fig. 11.4

Solution By applying Kirchhoff’s laws, we have

1

10

di

d t
+ 5i = 50 sin 20t

or
d i

d t
 + 50i = 500 sin 20t
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(D + 50)i = 500 sin 20t

i = ic + ip

ic = ce
– 50t

and ip = A cos 20t + B sin 20t

i ¢p = – 20 A sin 20t + 20B cos 20t

Substituting in the differential equation, we get

– 20A sin 20t + 20B cos 20t + 50A cos 20t + 50B sin 20t = 500 sin 20t

Comparing the coefficients, we have

– 20A + 50B = 500

50A + 20B = 0

From which, A = – 3.45 and B = 8.62

\ ip = – 3.45 cos 20t + 8.62 sin 20t

The complete solution is

i = ic + ip

= ce
–50t

– 3.45 cos 20t + 8.62 sin 20t

Applying the condition i = 0 when t = 0, we find

c = 3.45

Thus the solution is

i = 3.45 e–50t – 3.45 cos 20t + 8.62 sin 20t

Example 11.8 The circuit shown in Fig. 11.5 has series R, L, C elements which

are 2
1

10
W, H  and

1

260
F  respectively. If the initial current and initial charge on the

capacitor are both zero, find the charge on the capacitor at any time t > 0.

Fig. 11.5

Solution By applying Kirchhoff’s laws, we have

1

10
2 260

di

d t
i+ + z idt = 100 sin 60t

Since i = 
d q

d t
, this reduces to
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1

10
2 260

2

2

d q

d t

d q

d t
q+ + = 100 sin 60t

or
d q

d t

d q

d t
q

2

2
20 2600+ + = 1000 sin 60t

Since the charge on the capacitor is zero,

q (0) = 0

Since the initial current is zero and i = 
d q

dt

q ¢(0) = 0

The complete solution is q = q
c
 + q

p

The roots of characteristic equation are – 10 ± j50

\ The complementary function becomes

qc = e –10t(c1 sin 50t + c2 cos 50t)

By assuming a particular integral, we have

qp = A sin 60t + B cos 60t

Differentiating and substituting in the differential equation, we get

A = 
- 25

61
 and B = 

- 30

61

The general solution is

q = e –10t (c1 sin 50t + c2 cos 50t) – 
25

61
 sin 60t 

- 30

61
 cos 60t

Differentiating once, and substituting initial conditions, we get

c1 = 
36

61
 and c2 = 

30

61

\ The complete solution is

q = e t t t tt-
+

F
HG

I
KJ
- -

10 36

61
50

30

61
50

25

61
60

30

61
60sin cos sin cos

ADDITIONAL SOLVED PROBLEMS

Problem 11.1 Determine the general solution for the differential equation.

d x

dt

d x

dt

d x

dt
x

3

3

2

2
3 3- - +  = 0

given the initial conditions

x¢¢(0) = 3; x ¢(0) = 1, x (0) = 0
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Solution The auxiliary equation is

m3 – 3m2 – m + 3 = 0

By taking factors, we have

 (m + 1) (m2 – 4m + 3) = 0

or (m + 1) (m – 1) (m – 3) = 0

Thus, the roots are distinct and real numbers

m1 = – 1, m2 = 1, m3 = 3

The general solution is

x = k1e
– t

 + k2e
t
 + k3e

3t

At t = 0, k1 + k2 + k3 = 0 (11.16)

x¢ = – k1e–t + k2et + 3k3e
3t

At t = 0, – k1 + k2 + 3k3 = 1 (11.17)

x¢¢ = k1e
– t

 + k2e
t
 + 9k3e

3t

At t = 0 k1 + k2 + 9k3 = 3 (11.18)

Solving Eqs 11.16, 11.17 and 11.18, we get

k1 = 
-1

8
, k2 = 

-1

4
, k3 = 

3

8

Thus, the solution for the differential equation is

x = 
-

- +
-1

8

1

4

3

8

3e e e
t t t

Problem 11.2 Find the general solution for the differential equation

d x

dt

d x

dt
x

3

3

2

2
6 32- +  = 0

Solution The auxiliary equation is

m3 – 6m2 + 32 = 0

By taking factors, we have

(m + 2) (m – 4)2 = 0

or (m + 2) (m – 4) (m – 4) = 0

Thus, the roots are real and repeated

m1 = – 2, m2 = 4, m3 = 4

The general solution is

x(t) = (k1 + k2t)e
+4t + k3e–2t

Problem 11.3 Find the general solution for the differential equation

d x

dt

d x

dt

d x

dt

d x

dt
x

4

4

3

3

2

2
4 14 20 25- + - +  = 0
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Solution The auxiliary equation is

m4 – 4m3 + 14m2 – 20m + 25 = 0

The roots of the characteristic equation are

(1 + j2), (1 – j2), (1 + j2) (1 – j2)

Since each pair of conjugate complex roots is double, the general solution is

x(t) = et [(k1 + k2t) sin 2t + (k3 + k4t) cos 2t]

or x (t) = k1et sin 2t + k2t et sin 2t + k3et cos 2t + k4t et cos 2t

Problem 11.4 Determine the general solution for the differential equation

d x

dt

d x

dt
x

2

2
6 25- + = 0

x(0) = 0, x¢(0) = – 1

Solution The auxiliary equation is

m
2

– 6m + 25 = 0

The roots are m =
6 36 100

2

± -
 = 3 ± j4

Here the roots are the conjugate complex numbers.

The general solution of the differential equations

x(t) = e3t(k1 sin 4t + k2 cos 4t) (11.19)

Differentiating once, we get

x¢(t) = e3t [(3k1 – 4k2) sin 4t + (4k1 + 3k2) cos 4t] (11.20)

At t = 0, x(0) = 0

Substituting in Eq. 11.19, we get

(k1 sin 0 + k2 cos 0) e
0

= 0

k2 = 0 (11.21)

Similarly, at t = 0 x¢(0) = – 1

Substituting in Eq. 11.20, we get

e0 [4k1 + 3k2] = – 1 (11.22)

Solving Eqs 11.21 and 11.22, we get

4k1 = – 1 i.e., k1 = -
1

4

The solution for the differential equation is

x(t) = -
1

4
e3t sin 4t

Problem 11.5 Find the general solution for the differential equation

d x

dt

d x

dt
x

2

2
2 3- -  = 20et – 50 cos t
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Solution The corresponding homogeneous equation is

d x

dt

d x

dt
x

2

2
2 3- -  = 0

The complementary function is

xc = k1e
–t + k2e3t

If the driving function is 20e
t
– 50 cos t, then we assume

xp = Aet + B sin t + C cos t

as a particular solution, or

x¢p = Aet + B cos t – C sin t

x¢¢p = Aet – B sin t – C cos t

Substituting the above in differential equation, we get

(Aet – B sin t – C cos t) – 2(Aet + B cos t – C sin t)

– 3(Aet + B sin t + C cos t) = 20 et – 50 cos t

Comparing exponential, sine and cosine terms on both sides

A – 2A – 3A = 20 (11.23)

– B + 2C – 3B = 0 (11.24)

– C – 2B – 3C = – 50 (11.25)

From the above equations, we get

A = – 5, B = 5, C = 10

Thus, the particular solution is

xp = – 5et + 5 sin t + 10 cos t

Therefore, the complete solution is

x = xc + xp

= k1e– t + k2e3t – 5et + 5 sin t + 10 cos t

Problem 11.6 Find the general solution of the differential equation,

d x

dt

d x

dt
x

2

2
6- -  = 2t

2
 + e

t
 + 2te

t
 + 4e

3t

Solution The corresponding homogeneous equation is

d x

dt

d x

dt
x

2

2
6- -  = 0

The auxiliary equation is

(m2 – m – 6) = 0

The roots of the equation are

(m – 3) (m + 2) = 0

Thus, the complementary function is

xc = k1e
3t + k2e–2t
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To find the particular solution, we assume

xp = p1t2 + p2t + p3 + p4e3t + p5t2et + p6tet

From this, we have

x ¢p = 2tp1 + p2 + 3p4e3t + 2p5te
t + p5t2et + p6tet + p6e

t

x ¢¢p = 2p1 + 9p4e3t + 2p5et + 2p5tet + p5t2et + 2p5tet

+ p6te
t
 + p6e

t
 + p6e

t

Substituting x
p
, x ¢

p
 and x ¢¢

p
 into differential equation and equating coefficients

of like terms, we get

p1 = 1, p2 = 3, p3 = 3.5, p4 = 2, p5 = – 1, p6 = – 3

Thus, the particular integral is

xp = t2 + 3t + 3.5 + 2e3t – t2et – 3tet

Therefore, the general solution is

x = xc + xp = k1e
3t + k2e–2t + t2 + 3t + 3.5 + 2e3t – t2et – 3tet

Problem 11.7 Find the general solution of differential equation

d x

dt

d x

dt
x

2

2
2 35- -  = t sin t

where x(0) = 5; x ¢(0) = 3

Solution The corresponding homogeneous equation is

d x

dt

d x

dt
x

2

2
2 35+ - = 0

The auxiliary equation is

(m2 + 2m – 35) = 0

The roots of the equation are

(m + 7) (m – 5) = 0

Thus the complementary function is

xc = k1e–7t + k2e+5t

x ¢c = – 7k1e –7t + 5k2e+5t

At t = 0, xc(0) = 5

k1 + k2 = 5

At t = 0, x¢c(0) = 3

– 7k1 + 5k2 = 3

Solving the above equations, we get

k1 = 1.83, k2 = 3.17

Therefore, the complementary function is

xc = 1.83 e–7t + 3.17 e–5t
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To find the particular solution, we assume

xp = p1t sin t + p2t cos t + p3 sin t + p4 cos t

Then x ¢p = p1 sin t + p1t cos t + p2 cos t – p2 t sin t + p3 cos t – p4 sin t

x¢¢p = p1 cos t – p1t sin t + p1 cos t – p2 sin t – p2 sin t

– p2t cos t – p3 sin t – p4 cos t

Substituting x
p
, x¢

p
 and x¢¢

p
 into differential equation and equating coefficients

of like terms, we get

p1 = 1.01; p2 = 0.056; p3 = 0.05; p4 = 0.062

Thus the particular integral is

xp = 1.01t sin t + 0.056t cos t + 0.05 sin t + 0.062 cos t

Therefore, the complete solution is

x = xc + xp = 1.83e–7t + 3.17e–5t + 1.01t sin t + 0.056t cos t

+ 0.05 sin t + 0.062 cos t

Problem 11.8 For the series RL circuit shown in Fig. 11.6, find the current at

time t > 0. The switch is closed at t = 0. Assume the initial current in the circuit

is zero.

i

10 W

20 V 0.5 H0.5 H

s

Fig. 11.6

Solution By applying Kirchhoff’s law to the circuit, we have

0 5.
di

dt
 + 10i = 20

or
di

dt
 + 20i = 40

The auxiliary equation is

(m + 20) = 0

Therefore, the complementary function

ic = k1e
–20t

The particular integral is

ip = 20e
–20t z e

20t
dt = 

20

20
 = 1
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Therefore, the complete solution is

i = ic + ip = k1e
–20t + 1

At t = 0, i(0) = 0

\ k1 = – 1

The complete solution is

i = (1 – e–20t) A

Problem 11.9 For the circuit shown in Fig. 11.7, find the current at t > 0. The

switch is closed at t = 0. Assume no initial charge on the capacitor.

i

10 W

50 V50 V 2 10 F10 F¥ –4

s

Fig. 11.7

Solution By applying Kirchhoff’s law to the circuit, we have

10
1

2 10 4
i +

¥
-

idt = 50

Differentiating the above equation, we get

10
2 10 4

di

dt

i
+

¥
-

= 0

di

dt
 + 0.5 ¥ 10

3
i = 0

The auxiliary equation is

(m + 500) = 0

Since, the equation is a linear homogeneous one, there is no particular

integral.

Therefore, the complementary function is

i = k1e–500t

At t = 0, the current passing through the circuit is i
V

R
= =

50

10
 = 5A

\ i (0) = 5

At t = 0, k1 = 5

The current equation becomes

i = 5e–500t
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Problem 11.10 For the circuit shown in Fig. 11.8, determine the current at

any time t > 0. The switch is closed at t = 0. Assume that initial current and

initial charge on the capacitor are zero.

i

30 W

100 V100 V

s

0.2 H

40 Fm

Fig. 11.8

Solution By applying Kirchhoff’s law, we have

30i + 0 2
1

40 10 6
.

di

dt
+

¥
- z idt = 100

Differentiating the above equation, we have

d i

dt

di

dt
i

2

2 6
150

1

8 10
+ +

¥
-

 = 0

The roots of the auxiliary equation are

m1 = – 75 + j345.5

m2 = – 75 – j345.5

Hence, the current is

i = e–75t(c1 cos 345.5t + c2 sin 345.5t)A

At t = 0, i(0) = 0

\ c1 = 0

i¢ = c2{e–75t(345.5) cos 345.5t + e–75t (– 75) sin 345.5t}

At t = 0, the complete voltage appears across inductor

0 2.
di

dt
= 100

\
di

dt
= 500

\ At t = 0, i¢ (0) = 500

500 = c2 (345.5)

c2 = 1.45

Thus the required current is

i = 1.45e–75t sin 345.5t A
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PRACTICE PROBLEMS

11.1 Find the general solution of each of the following differential equations.

(a) 4
d x

dt

d x

dt
x

2

2
12 5- +  = 0

(b) 4
2

2

d x

dt
x+  = 0

11.2 Find the general solution of each of the following differential equations.

(a)
d x

dt

d x

dt

d x

dt

5

5

4

4

3

3
2- +  = 0

(b)
d x

dt

d x

dt

d x

dt

d x

dt
x

4

4

3

3

2

2
6 15 20 12+ + + +  = 0

(c)
d x

dt

4

4
 = 0

11.3 Find the general solution of each of the following differential equations.

(a)
d x

dt

d x

dt
x

2

2
6 8- +  = 0

where x(0) = 2 x¢(0) = 4

(b) 9 6
2

2

d x

dt

d x

dt
x- +  = 0

x (0) = 4; x ¢(0) = – 1

(c) 4 4 37
2

2

d x

dt

d x

dt
x+ +  = 0

where x (0) = 3, x¢(0) = – 2

(d)
d x

dt

d x

dt

d x

dt
x

3

3

2

2
5 9 5- + -  = 0

x (0) = 0, x¢(0) = 1, x¢(0) = 3

11.4 Solve the following differential equations

(a)
d x

dt

2

2
 + 

dx

dt
 + x = sin 2t

(b)
d x

dt

3

3
+ 3

d x

dt

dx

dt
x

2

2
3+ +  = e

–t

(c)
d x

dt

d x

dt

dx

dt
x

3

3

2

2
3 4 2- + -  = e

t
 + cos t
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(d)
d x

dt

d x

dt
x

2

2
4 4- +  = 3t2 e2t sin 2t

(e)
d x

dt

d x

dt

4

4

2

2
2+  + x = t2 cos2 t

11.5 Solve the following differential equations

(a)
d x

dt

dx

dt
x

2

2
4 3− +  = 4te

–3t

x(0) = 6x¢(0) = 3

(b)
d x

dt

2

2
 + 4x = 3tet + 2et – sin t

x(0) = 1, x¢(0) = 0, x¢(0) = 2

(c)
d x

dt

dx

dt
x

2

2
6 9− +  = 8t2 + 3 – 6e2t

x¢¢(0) = 3, x¢(0) = 0, x(0) = 3

(d)
d x

dt

d x

dt

dx

dt
x

3

3

2

2
6 9 4- + -  = 2te2t + 6et

x(0) = 1, x¢(0) = 0

11.6 For the circuit shown in Fig. 11.9, determine the current at any time t > 0.

The switch is closed at t = 0. Assume no initial charge on the capacitor.

i

10 W

100 V100 V

s

1 F

Fig. 11.9

11.7 For the circuit shown in Fig. 11.10, determine the current at any time t > 0.

The switch is closed at t = 0. Assume no initial current in the circuit.

i

10 W

50 V50 V

s

1 H1 H

Fig. 11.10
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11.8 For the circuit shown in Fig. 11.11, determine the current at any time t > 0.

The switch is closed at t = 0. Assume no initial charge on the capacitor.

i

10 W

100 V100 V

s

0.2 H0.2 H

20 Fm

Fig. 11.11

11.9 For the circuit shown in Fig. 11.12, determine the current at any time t > 0.

The switch is closed at t = 0.

Fig. 11.12

11.10 For the circuit shown in Fig. 11.13, determine the current at any time t > 0.

The switch is closed at t = 0. Assume no initial charge on the capacitor.

Fig. 11.13

OBJECTIVE-TYPE QUESTIONS

1. The degree of the differential equation 1
2 3 2

+
F
H

I
K

L

N
M

O

Q
P

dy

dx

/

 = 5
2

2

d y

dx
 is

(a) two (b) three

(c) one (d) four
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2. The particular integral of the equation 
d y

dx
y

4

4
4+  = x4 will be

(a)
1

4
 (x4 – 6) (b)

1

4
 (x6 – 6)

(c)
1

4
 (x6 + 6) (d)

1

4
 (x + 6)

3. The differential equation 
d y

dx

a

x

dy

dx
k y

2

2

2
+ +  = 0, where a is any con-

stant, can be expressed as y(x) = xn[c1Jn(kx) + c2J–n(kx)] where n is

(a) an odd integer (b) an integer

(c) an even integer (d) a fraction

4. The Bessal’s differential equation xy≤ + xy¢ + xy = 0 is a

(a) linear non-homogeneous equation

(b) non-linear equation

(c) non-linear homogeneous equation with constant coefficients

(d) linear homogeneous with variable coefficients

5. The general solution of (D2 + 4)y = 0 is

(a) y = A cos (2x + B) (b) y = Ae
2x

 + Be
–2x

(c) y = A cos 2x + B sin 2x (d) y = e2x (A – Bx)

6. The complementary function of (D
2
 + 9)y = 1 is

(a)
1

9
(b)

− 1

9
(c) c1e3x + c2e–3x (d) c1 sin 3x + c2 cos 3x

7. The solution of the differential equation

y≤(t) – 2y¢(t) + y(t) = 1 is

(a) y(t) = c1e
t + c2e–t + 1 (b) y(t) = (c1 + c2t)e

t + 1

(c) y(t) = (c1 + c2t)e–t + 1 (d) y(t) = (c1 + c2)tet – 1

8. The differential equation of an electric current containing resistance R

and a capacitor C in series with the voltage source V is

(a)
dV

dt
 = Ri

C
idt+ z 1

(b)
dV

dt
 = R

di

dt C
idt+ z 1

(c)
dV

dt
 = R

di

dt

i

C
+ (d) V = R

di

dt

i

C
+

9. The particular integral of differential equation

3 2
2

2
x

d y

dx
x

dy

dx
y+ +  = x is
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(a) x (b)
x

2

(c)
x

3
(d) x4

10. The differential equation of an electric current containing resistance R

and an inductor L in series with a constant voltage source V is

(a) V = R z idt + Li (b) V = Ri + L
di

dt
dtF

H
I
Kz

(c) V = Ri + L z idt (d)
d i

dt

R

L

di

dt

2

2
+  = 0



12.1 STEADY STATE AND TRANSIENT REPONSE

A circuit having constant sources is said to be in steady state if the currents and

voltages do not change with time. Thus, circuits with currents and voltages

having constant amplitude and constant frequency sinusoidal functions are also

considered to be in a steady state. That means that the amplitude or frequency

of a sinusoid never changes in a steady state circuit.

In a network containing energy storage elements, with change in excitation,

the currents and voltages change from one state to other state. The behaviour of

the voltage or current when it is changed from one state to another is called the

transient state. The time taken for the circuit to change from one steady state to

another steady state is called the transient time. The application of KVL and

KCL to circuits containing energy storage elements results in differential, rather

than algebraic, equations. When we consider a circuit containing storage

elements which are independent of the sources, the response depends upon the

nature of the circuit and is called the natural response. Storage elements deliver

their energy to the resistances. Hence the response changes with time, gets

saturated after some time, and is referred to as the transient response. When we

consider sources acting on a circuit, the response depends on the nature of the

source or sources. This response is called forced response. In other words, the

complete response of a circuit consists of two parts: the forced response and the

transient response. When we consider a differential equation, the complete

solution consists of two parts: the complementary function and the particular

solution. The complementary function dies out after short interval, and is

referred to as the transient response or source free response. The particular

solution is the steady state response, or the forced response. The first step in

Chapter

12TRANSIENTS
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finding the complete solution of a circuit is to form a differential equation for

the circuit. By obtaining the differential equation, several methods can be used

to find out the complete solution.

12.2 DC RESPONSE OF AN R-L CIRCUIT

Consider a circuit consisting of a resistance and inductance as shown in

Fig. 12.1. The inductor in the circuit is initially uncharged and is in series with

the resistor. When the switch S is closed, we can find the complete solution for

the current. Application of Kirchhoff’s voltage law to the circuit results in the

following differential equation.

V i

s R

L
+
–

Fig. 12.1

V = Ri + L
di

dt
(12.1)

or
di

dt

R

L
i+ =

V

L
(12.2)

In the above equation, the current i is the solution to be found and V is the

applied constant voltage. The voltage V is applied to the circuit only when the

switch S is closed. The above equation is a linear differential equation of first

order. Comparing it with a non-homogeneous differential equation

dx

dt
 + Px = K (12.3)

whose solution is

x = e
–pt z Ke

+Pt
dt + ce

–Pt
(12.4)

where c is an arbitrary constant. In a similar way, we can write the current

equation as

i = ce–(R/L)t + e–(R/L)t V

Lz e(R/L)t dt

\ i = ce–(R/L)t + 
V

R
(12.5)

To determine the value of c in Eq. 12.5, we use the initial conditions. In the

circuit shown in Fig. 12.1, the switch S is closed at t = 0. At t = 0
–
, i.e. just

before closing the switch S, the current in the inductor is zero. Since the

inductor does not allow sudden changes in currents, at t = 0
+
 just after the switch

is closed, the current remains zero.
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Thus at t = 0, i = 0

Substituting the above condition in Eq. 12.5, we have

0 = c + 
V

R

Hence c = -
V

R

Substituting the value of c in Eq. 5, we get

i =
V

R

V

R

R

L
t- -

F
H

I
Kexp

i =
V

R

R

L
t1 - -

F
H

I
K

F
HG

I
KJexp (12.6)

Equation 12.6 consists of two parts, the steady state part V/R, and the

transient part (V/R)e
–(R/L)t

. When switch S is closed, the response reaches a

steady state value after a time interval as shown in Fig. 12.2.

Here the transition period is defined

as the time taken for the current to reach

its final or steady state value from its

initial value. In the transient part of the

solution, the quantity L/R is important

in describing the curve since L/R is the

time required for the current to reach

from its initial value of zero to the final

value V/R. The time constant of a

function
V

R
e
- R

L
td i  is the time at which

the exponent of e is unity, where e is the base of the natural logarithms. The

term L/R is called the time constant and is denoted by t

\ t = 
L

R
 sec

\ The transient part of the solution is

i = - -
F
H

I
K

V

R

R

L
texp  = - -V

R
e t /t

At one TC, i.e. at one time constant, the transient term reaches 36.8 percent

of its initial value.

i(t) = - -V

R
e t /t  = - -V

R
e 1 = - 0 368.

V

R

Similarly,

i(2t) = - -V

R
e 2 = – 0.135 

V

R

Fig. 12.2
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i(3t) = - -V

R
e 3  = – 0.0498 

V

R

i(5t) = - -V

R
e 5  = – 0.0067 

V

R

After 5 TC, the transient part reaches more than 99 percent of its final value.

In Fig. 12.1, we can find out the voltages and powers across each element by

using the current.

Voltage across the resistor is

vR = Ri = R
V

R

R

L
t¥ - -

F
H

I
K

L
NM

O
QP

1 exp

\ vR = V
R

L
t1 - -

F
H

I
K

L
NM

O
QP

exp

Similarly, the voltage across the inductance is

vL = L
di

dt

= L
V

R

R

L

R

L
t V

R

L
t¥ -

F
H

I
K = -

F
H

I
Kexp exp

The response are shown in Fig. 12.3

Power in the resistor is

pR = vR i = V
R

L
t1 - -

F
H

I
K

F
HG

I
KJ

exp 1 - -
F
H

I
K

F
HG

I
KJ

exp
R

L
t

V

R

=
V

R

R

L
t

R

L
t

2

1 2
2

- -
F
H

I
K + -

F
H

I
K

F
HG

I
KJ

exp exp

Power in the inductor is

pL = vL i = V exp -
F
H

I
K ¥ - -

F
H

I
K

F
HG

I
KJ

R

L
t

V

R

R

L
t1 exp

=
V

R

R

L
t

R

L
t

2 2
exp exp-FH

I
K - -FH

I
K

F
H

I
K

The responses are shown in Fig. 12.4.

Fig. 12.3 Fig. 12.4
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Example 12.1 A series RL circuit with R = 30 W and L = 15 H has a constant

voltage V = 60 V applied at t = 0 as shown in Fig. 12.5. Determine the current i, the

voltage across resistor and the voltage across the inductor.

Fig. 12.5

Solution By applying Kirchhoff’s voltage law, we get

15
di

dt
 + 30i = 60

\
di

dt
 + 2i = 4

The general solution for a linear differential equation is

i = ce
–Pt

 + e
–Pt z Ke

Pt
dt

where P = 2, K = 4

\ i = ce–2t + e–2t z  4e2t dt

\ i = ce–2t + 2

At t = 0, the switch S is closed.

Since the inductor never allows sudden changes in currents. At t = 0
+
 the current

in the circuit is zero.

Therefore at t = 0
+
, i = 0

\ 0 = c + 2

\ c = – 2

Substituting the value of c in the current equation, we have

i = 2(1 – e–2t) A

Voltage across resistor v
R
 = iR

= 2(1 – e–2t ) ¥ 30 = 60 (1 – e–2t ) V

Voltage across inductor v
L
 = L

di

dt

= 15 ¥
d

dt
 2(1 – e–2t ) = 30 ¥ 2e–2t = 60e–2t V

12.3 DC RESPONSE OF AN R-C CIRCUIT

Consider a circuit consisting of resistance and capacitance as shown in Fig.

12.6. The capacitor in the circuit is initially uncharged, and is in series with a
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resistor. When the switch S is closed at t =

0, we can determine the complete solution

for the current. Application of the

Kirchhoff’s voltage law to the circuit

results in the following differential

equation.

V = Ri + 
1

C
z i dt (12.7)

By differentiating the above equation, we get

0 = R
d i

dt

i

C
+ (12.8)

or
di

dt RC
i+

1
= 0 (12.9)

Equation 12.9 is a linear differential equation with only the complementary

function. The particular solution for the above equation is zero. The solution

for this type of differential equation is

i = ce
-t/RC

(12.10)

Here, to find the value of c, we use the initial conditions.

In the circuit shown in Fig. 12.6, switch S is closed at t = 0. Since the

capacitor never allows sudden changes in voltage, it will act as a short circuit at

t = 0
+
. So, the current in the circuit at t = 0

+
 is V/R

\ At t = 0, the current i = 
V

R

Substituting this current in Eq. 12.10, we get

V

R
 = c

\ The current equation becomes

i = 
V

R
e t RC- / (12.11)

When switch S is closed, the response

decays with time as shown in Fig. 12.7.

In the solution, the quantity RC is the

time constant, and is denoted by t,

where t = RC sec

After 5 TC, the curve reaches 99 per

cent of its final value. In Fig. 12.6, we

can find out the voltage across each

element by using the current equation.

Fig. 12.6

Fig. 12.7
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Voltage across the resistor is

vR = Ri = R ¥
V

R
e
-(1/RC)t

; vR = V e

t

RC
-

Similarly, voltage across the capacitor is

vC =
1

C z i dt

=
1

C z V

R
e
-t/RC

dt

= - ¥
F
H

I
K

-V

RC
RC e t RC/

 + c = - Ve
-t/RC

 + c

At t = 0, voltage across capacitor is zero

\ c = V

\ vC = V(1 - e-t/RC)

The responses are shown in Fig. 12.8.

Power in the resistor

pR = vRi = Ve
-t/RC ¥

V

R
e

V

R
e

t RC t RC- -=/ /
2

2

Power in the capacitor

pC = vCi = V(1 - e-t/RC)
V

R
e t RC- /

=
V

R

2

 (e-t/RC - e-2t/RC)

The responses are shown in Fig. 12.9.

Fig. 12.8 Fig. 12.9

Example 12.2 A series RC circuit consists of resistor of 10 W and capacitor of

0.1 F as shown in Fig. 12.10. A constant voltage of 20 V is applied to the circuit at

t = 0. Obtain the current equation. Determine the voltages across the resistor and the

capacitor.

i

s 10 W

0.1 F0.1 F20 V20 V i

s 10 W

Fig. 12.10
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Solution BY applying Kirchhoff’s law, we get

10
1

0 1
i i dt+ z.

 = 20

Differentiating with respect to t we get

10
0 1

di

dt

i
+

.
= 0

\
di

dt
i+ = 0

The solution for the above equation is i = ce
–t

At t = 0, switch S is closed. Since the capacitor does not allow sudden changes in

voltage, the current in the circuit is i = V/R = 20/10 = 2 A.

At t = 0, i = 2 A.

\ The current equation i = 2e
–t

Voltage across the resistor is v
R
 = i ¥ R = 2e

– t
¥ 10 = 20e

– t
 V

Voltage across the capacitor is v
C
 = V e

t

RC1 -
F

H
G

I

K
J

-

= 20 (1 – e– t ) V

12.4 DC RESPONSE OF AN R-L-C CIRCUIT

Consider a circuit consisting of resistance,

inductance and capacitance as shown in Fig.

12.11. The capacitor and inductor are

initially uncharged, and are in series with a

resistor. When switch S is closed at t = 0, we

can determine the complete solution for the

current. Application of Kirchhoff’s voltage

law to the circuit results in the following

differential equation.

V = Ri L
di

dt C
idt+ + z1

(12.12)

By differentiating the above equation, we have

0 = R
di

dt
L

d i

dt C
i+ +

2

2

1
(12.13)

or
d i

dt

R

L

di

dt LC
i

2

2

1
+ + = 0 (12.14)

The above equation is a second order linear differential equation, with only

complementary function. The particular solution for the above equation is zero.

Characteristic equation for the above differential equation is

D
R

L
D

LC

2 1
+ +

F
H

I
K  = 0 (12.15)

Fig. 12.11
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The roots of Eq. 12.15 are

D1, D2 = - ±
F
H

I
K -

R

L

R

L LC2 2

1
2

By assuming K1 = -
R

L2
 and K2 = 

R

L LC2

1
2F

H
I
K -

D
1

= K
1
 + K

2
 and D

2
 = K

1
- K

2

Here K
2
 may be positive, negative or zero.

K
2
 is positive, when

R

L2

2F
H

I
K  > 1/LC

The roots are real and unequal, and give the over damped response as shown

in Fig. 12.12. Then Eq. 12.14 becomes

[D – (K1 + K2)] [D – (K1 – K2)] i = 0

The solution for the above equation is

i = c1e(K1 + K2) t + c2 e(K1 – K2)t

The current curve for the overdamped

case is shown in Fig. 12.12.

K
2
 is negative, when (R/2L)

2
 < 1/LC

The roots are complex conjugate, and

give the underdamped response as shown

in Fig. 12.13. Then Eq. 12.14 becomes

[D – (K1 + jK2)] [D – (K1 – jK2)]i = 0

The solution for the above equation is

i = eK1t [c1 cos K2t + c2 sin K2t]

The current curve for the underdamped case is shown in Fig. 12.13.

K
2

is zero, when (R/2L)
2
 = 1/LC

The roots are equal, and give the

critically damped response as shown in

Fig. 12.14. Then Eq. 12.14 becomes

(D – K1) (D – K1)i = 0

The solution for the above equation is

i = e
K1t

 (c1 + c2t)

The current curve for the critically damped case is shown in Fig. 12.14.

Fig. 12.14

Fig. 12.12

Fig. 12.13
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Example 12.3 The circuit shown in Fig. 12.15 consists of resistance, inductance

and capacitance in series with a 100 V constant source when the switch is closed at

t = 0. Find the current transient.

Solution At t = 0, switch S is closed when the 100 V source is applied to the

circuit and results in the following differential equation.

100 = 20i + 0.05 
di

dt
idt+

¥ - z1

20 10
6

(12.16)

i

s R

20 W

C

L 0.05 H

20 Fm

100 V

Fig. 12.15

Differentiating the Eq. 12.16, we get

0 05 20
1

20 10

2

2 6
.

d i

dt

di

dt
i+ +

¥ -
= 0

d i

dt

di

dt
i

2

2

6
400 10+ + = 0

\ (D2 + 400D + 106)i = 0

D1, D2 = - ±
F
HG

I
KJ -

400

2

400

2
10

2
6

= – 200 ± -200 10
2 6b g

D1 = – 200 + j 979.8

D2 = – 200 – j 979.8

Therefore the current

i = e+k1 t [c1 cos K2t + c2 sin K2t)]

i = e
–200t

 [c1 cos 979.8t + c2 sin 979.8t)] A

At t = 0, the current flowing through the circuit is zero

i = 0 = (1) [c1 cos 0 + c2 sin 0]

\ c1 = 0

\ i = e–200t c2 sin 979.8t A

Differentiating, we have

di

dt
 = c2 [e–200t 979.8 cos 979.8t + e–200t (– 200) sin 979.8t)]
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At t = 0, the voltage across inductor is 100 V

\ L
di

dt
= 100

or
di

dt
= 2000

At t = 0
di

dt
= 2000 = c2 979.8 cos 0

\ c2 =
2000

979 8.
 = 2.04

The current equation is

i = e–200t (2.04 sin 979.8t) A

12.5 SINUSOIDAL RESPONSE OF R-L CIRCUIT

Consider a circuit consisting of resistance and inductance as shown in Fig.

12.16. The switch, S, is closed at t = 0. At t = 0, a sinusoidal voltage V cos

(w t + q) is applied to the series R-L

circuit, where V is the amplitude of

the wave and q is the phase angle.

Application of Kirchhoff’s voltage

law to the circuit results in the

following differential equation.

V cos (w t + q) = Ri + L
di

dt
(12.17)

\
di

dt

R

L
i+ =

V

L
 cos (w t + q )

The corresponding characteristic equation is

D
R

L
i+F

H
I
K  = 

V

L
 cos (wt + q ) (12.18)

For the above equation, the solution consists of two parts, viz.

complementary function and particular integral.

The complementary function of the solution i is

ic = ce–t(R/L) (12.19)

The particular solution can be obtained by using undetermined co-efficients.

By assuming ip = A cos (w t + q) + B sin (w t + q ) (12.20)

i¢p = – Aw sin (w t + q ) + Bw cos (w t + q ) (12.21)

Substituting Eqs 12.20 and 12.21 in Eq. 12.18, we have

{– Aw sin (w t + q) + Bw cos (w t + q) + 
R

L
 {A cos (w t + q)

Fig. 12.16
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+ B sin (w t + q )} = 
V

L
 cos (w t + q)

or - +F
H

I
KA

BR

L
w  sin (w t + q) + B

AR

L
w +F

H
I
K  cos (w t + q) = 

V

L
 cos (wt + q)

Comparing cosine terms and sine terms, we get

– Aw + 
BR

L
= 0

Bw + 
AR

L
=

V

L
From the above equations, we have

A = V
R

R L2 2+ ( )w

B = V
L

R L

w

w2 2+ ( )

Substituting the values of A and B in Eq. 12.20, we get

ip = V
R

R L2 2+ ( )w
 cos (w t + q) + V

L

R L

w

w2 2+ ( )
 sin (w t + q) (12.22)

Putting M cos f =
VR

R L
2 2+ ( )w

and M sin f = V
L

R L

w

w2 2+ ( )
,

to find M and f, we divide one equation by the other

M

M

sin

cos

f

f
 = tan f = 

wL

R

Squaring both equations and adding, we get

M2 cos2 f + M 2 sin2 f =
V

R L

2

2 2+ ( )w

or M =
V

R L2 2+ ( )w

\ The particular current becomes

ip = 
V

R L
t

L

R2 2

1

+
+ -F

H
I
K

( )

-

w
w q

w
cos tan (12.23)

The complete solution for the current i = i
c
 + i

p

i = ce
–t(R/L)

 + 
V

R L
t

L

R2 2

1

+
+ -F

H
I
K

( )

-

w
w q

w
cos tan
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Since the inductor does not allow sudden changes in currents, at t = 0, i = 0

\ c = –
V

R L

L

R2 2

1

+
-F

H
I
K

( )

-

w
q

w
cos tan

The complete solution for the current is

i = e
–(R/L) t -

+
-F

H
I
K

L

N
M
M

O

Q
P
P( )

-V

R L

L

R2 2

1

w
q

w
cos tan

+
V

R L
t

L

R2 2

1

+
+ -F

H
I
K

( )

-

w
w q

w
cos tan

Example 12.4 In the circuit shown in Fig. 12.17, determine the complete solution

for the current, when switch S is closed at t = 0. Applied voltage is v(t) = 100 cos

(10
3
t + p/2). Resistance R = 20 W and inductance L = 0.1 H.

Fig. 12.17

Solution By applying Kirchhoff’s voltage law to the circuit, we have

20i + 0.1 
di

dt
= 100 cos (103 t + p/2)

di

dt
 + 200i = 1000 cos (1000t + p/2)

(D = 200)i = 1000 cos (1000t + p/2)

The complementary function i
c
 = ce

–200t

By assuming particular integral as

ip = A cos (w t + q) + B sin (w t + q)

we get

ip =
V

R L

t
L

R2 2

1

+

+ -
F
HG

I
KJ

-

w

w q
w

b g
cos tan

where w = 1000 rad/sec V = 100 V

q = p/2

L = 0.1 H, R = 20 W

Substituting the values in the above equation, we get

ip = 
100

20 1000 0 1

1000
2

100

202 2

1

b g b g+ ¥

+ -
F
HG

I
KJ

-

.

cos tant
p
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=
100

101 9
1000

2
78 6

.
cos .t + - ∞

F
HG

I
KJ

p

= 0.98 cos 1000
2

78 6t + - ∞
F
HG

I
KJ

p
.

The complete solution is

i = ce
–200t

 + 0.98 cos 1000
2

78 6t + - ∞
F
HG

I
KJ

p
.

At t = 0, the current flowing through the circuit is zero, i.e. i = 0

\ c = – 0.98 cos 
p

2
78 6- ∞

F
HG

I
KJ.

\ The complete solution is

i = - - ∞
F
HG

I
KJ

L
N
M

O
Q
P0 98

2
78 6. cos .

p
e–200t + 0.98 cos 1000

2
78 6t + - ∞

F
HG

I
KJ

p
.

12.6 SINUSOIDAL RESPONSE OF R-C CIRCUIT

Consider a circuit consisting of resistance and capacitance in series as shown in

Fig. 12.18. The switch, S, is closed at t = 0. At t = 0, a sinusoidal voltage V cos

(w t + q) is applied to the R-C

circuit, where V is the amplitude of

the wave and q is the phase angle.

Applying Kirchhoff’s voltage law

to the circuit results in the following

differential equation.

V cos (w t + q ) = Ri
C

idt+ z1
(12.24)

R
di

dt

i

C
+ = – Vw sin (w t + q)

D
RC

i+F
H

I
K

1
= –

V

R

w
 sin (w t + q) (12.25)

The complementary function i
C
 = ce

–t/RC
(12.26)

The particular solution can be obtained by using undetermined coefficients.

ip = A cos (w t + q) + B sin (w t + q ) (12.27)

i ¢P = – Aw sin (w t + q) + Bw cos (w t + q) (12.28)

Substituting Eqs 12.27 and 12.28 in Eq. 12.25, we get

{ – Aw sin (w t + q) + Bw cos (w t + q)}

+
1

RC
 {A cos (w t + q) + B sin (w t + q)}

i

s R

CV tcos ( + )w q

Fig. 12.18
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= –
V

R

w
 sin (w t + q)

Comparing both sides, - +A
B

RC
w  = –

V

R

w

Bw + 
A

RC
 = 0

From which,

A =
VR

R
c

2
2

1
+ F

H
I
Kw

and B =
-

+
F
HG

I
KJ

L

N
M

O

Q
P

V

C R
c

w
w

2

2
1

Substituting the values of A and B in Eq. 12.27, we have

ip =
VR

R
c

2
2

1
+ F

H
I
Kw

 cos (w t + q) + 
-

+ F
H

I
K

L
NM

O
QP

V

C R
C

w
w

2
2

1
 sin (w t + q)

Putting M cos f =
VR

R
C

2
2

1
+ F

H
I
K

L
NM

O
QPw

and M sin f =
V

C R
C

w
w

2
2

1
+ F

H
I
K

L
NM

O
QP

To find M and f, we divide one equation by the other,

M

M

sin

cos

f

f
 = tan f = 

1

wCR

Squaring both equations and adding, we get

M 2 cos2 f + M2 sin2 f =
V

R
C

2

2
2

1
+ F

H
I
K

L
NM

O
QPw

\ M =
V

R
C

2
2

1
+ F

H
I
Kw

The particular current becomes

ip = 
V

R
C

t
CR

2
2

1

1

1

+ F
H

I
K

+ +
F
HG

I
KJ

-

w

w q
w

cos tan (12.29)



12.16 Electrical Circuit Analysis

The complete solution for the current i = i
c
 + i

p

\ i = ce–(t/RC) + 
V

R
C

t
CR

2
2

1

1

1

+ F
H

I
K

+ +
F
HG

I
KJ

-

w

w q
w

cos tan (12.30)

Since the capacitor does not allow sudden changes in voltages at t = 0, i = 
V

R

cos q

\
V

R
cos q = c

V

R
C

CR
+

+
F
HG

I
KJ

+
F
HG

I
KJ

-

2

2

1

1

1

w

q
w

cos tan

c =
V

R

V

R
C

CR
cos cos tanq

w

q
w

-

+
F
HG

I
KJ

+
F
HG

I
KJ

-

2

2

1

1

1

The complete solution for the current is

i = e–(t/RC) V

R

V

R
C

CR
cos cos tanq

w

q
w

-

+
F
HG

I
KJ

+
F
HG

I
KJ

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

-

2

2

1

1

1

+
V

R
C

t
CR

2

2

1

1

1

+
F
HG

I
KJ

+ +
F
HG

I
KJ

-

w

w q
w

cos tan (12.31)

Example 12.5 In the circuit shown in Fig. 12.19, determine the complete

solution for the current when switch S is closed at t = 0.  Applied voltage is

v(t) = 50 cos 10
4

2 t +
F
HG

I
KJ

p
. Resistance R = 10 W and capacitance C = 1 m F.

i (t)

s 10 W

1 Fm50 cos (100 + /4)t p

Fig. 12.19

Solution By applying Kirchhoff’s voltage law to the circuit, we have

10
1

1 10
6

i idt+
¥ - z = 50 cos 100

4
t +

F
HG

I
KJ

p
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10
1 10

6

di

dt

i
+

¥ -
= – 5(10)3 sin 100

4
t +

F
HG

I
KJ

p

di

dt

i
+

-
10

5
= – 500 sin 100

4
t +

F
HG

I
KJ

p

D +
F
HG

I
KJ-

1

10 5
i = – 500 sin 100

4
t +

F
HG

I
KJ

p

The complementary function is i
C
 = ce

–t/10–5

. By assuming particular integral as

i
p
 = A cos (w t + q) + B sin (w t + q),

we get ip =
V

R
C

t
CR

2

2

1

1

1

+
F
HG

I
KJ

+ +
F
HG

I
KJ

-

w

w q
w

cos tan

where w = 100 rad/sec q = p/4

C = 1m F R = 10 W

Substituting the values in the above equation, we have

ip = 
50

10
1

100 10

4

1

100 10 10
2

6

2

1

6

b g +
¥

F
HG

I
KJ

+ +
¥ ¥

F
HG

I
KJ

-

-

-
cos tanw

p
t

ip = 4.99 ¥ 10
–3

 cos 100
4

89 94t + + ∞
F
HG

I
KJ

p
.

At t = 0, the current flowing through the circuit is

V

R
 cos q =

50

10
 cos p/4 = 3.53 A

i =
V

R
 cos q = 3.53 A

\ i = ce–t/10–5

 + 4.99 ¥ 10–3 cos 100
4

89 94t + + ∞
F
HG

I
KJ

p
.

At t = 0

c = 3.53 – 4.99 ¥ 10
–3

 cos 
p

4
89 94+ ∞

F
HG

I
KJ.

Hence the complete solution is

i = 3 53 4 99 10
4

89 943. . cos .- ¥ + ∞
F
HG

I
KJ

L
N
M

O
Q
P- p

e
–(t/10–5)

+ 4.99 ¥ 10–3 cos 100
4

89 94t + + ∞
F
HG

I
KJ

p
.
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12.7 SINUSOIDAL RESPONSE OF R-L-C CIRCUIT

Consider a circuit consisting of resistance, inductance and capacitance in series

as shown in Fig. 12.20. Switch S is closed at t = 0. At t = 0, a sinusoidal voltage

V cos (w t + q) is applied to the

RLC series circuit, where V is the

amplitude of the wave and q is the

phase angle. Application of

Kirchhoff’s voltage law to the

circuit results in the following

differential equation.

V cos (w t + q) = Ri + L
di

dt C
idt+ z1

(12.32)

Differentiating the above equation, we get

R
di

dt
L

d i

dt
i C+ +

2

2
/ = – V w sin (w t + q)

D
R

L
D

LC
i2 1

+ +
F
HG

I
KJ = –

V

L

w
 sin (w t + q) (12.33)

The particular solution can be obtained by using undetermined coefficients.

By assuming

ip = A cos (w t + q) + B sin (w t + q) (12.34)

i¢p = – Aw sin (wt + q) + Bw cos (w t + q) (12.35)

i¢¢p = – Aw
2
 cos (w t + q) – Bw

2
 sin (w t + q) (12.36)

Substituting ip, i¢
p
 and i¢¢

p
 in Eq. 12.33, we have

{– Aw2 cos (w t + q) – Bw2 sin (w t + q)}

+
R

L
 {– Aw sin (wt + q) + Bw cos (w t + q)}

+
1

LC
 {A cos (w t + q) + B sin (w t + q)} = –

V

L

w
 sin (w t + q) (12.37)

Comparing both sides, we have

Sine coefficients.

– Bw
2

– A
R

L

B

LC

w
+ = -

V

L

w

A
R

L
B

LC

w
wF

H
I
K + -F

H
I
K

2 1
=

V

L

w
(12.38)

Cosine coefficients

– Aw2 + B
R

L

A

LC

w
+ = 0

A
LC

B
R

L
w

w2 1
-F

H
I
K -

F
H

I
K = 0 (12.39)
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Solving Eqs 12.38 and 12.39, we get
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Substituting the values of A and B in Eq. 12.34, we get

ip = 

V
R

L

R

L LC

w

w
w

2

2

2
2

2
1F

H
I
K - -F

H
I
K

L
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 sin (w t + q) (12.40)

Putting M cos f =
V

R

L

R
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w

w
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To find M and f we divide one equation by the other

or
M

M

sin

cos

f

f
= tan f = 

w
w

L
C

R

-
F
HG

I
KJ

1

f = tan–1 w
w

L
C

R-
F
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I
KJ

L
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O
QP

1

Squaring both equations and adding, we get

M
2
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2
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2
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2
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R
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F
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The particular current becomes

ip = 
V

R
C

L

t
C

L

R
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F
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KJ

+ +
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The complementary function is similar to that of DC series RLC circuit.

To find out the complementary function, we have the characteristic equation

D
R

L
D

LC

2 1
+ +F

H
I
K  = 0 (12.42)

The roots of Eq. 12.42, are

D1, D2 =
-

± F
H

I
K -

R

L

R

L LC2 2

1
2

By assuming K1 = -
R

L2
 and K2 = 

R

L LC2

1
2F

H
I
K -

\ D1 = K1 + K2 and D2 = K1 – K2

K
2
 becomes positive, when (R/2L)

2
 > 1/LC

The roots are real and unequal, which gives an overdamped response. Then

Eq. 12.42 becomes

[D – (K1 + K2)] [D – (K1 – K2)]i = 0

The complementary function for the above equation is

ic = c1e
(K1 + K2)t

 + c2e
(K1 – K2) t

Therefore, the complete solution is

i = ic + ip

= c1e(K1 + K2) t + c2e(K1 – K2)t

+
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K
2
 becomes negative, when 

R

L LC2

1
2F

H
I
K <

Then the roots are complex conjugate, which gives an underdamped

response. Equation 12.42 becomes

[D – (K1 + jK2)] [D – (K1 – jK2)]i = 0

The solution for the above equation is

ic = eK1t [c1 cos K2t + c2 sin K2t]

Therefore, the complete solution is

i = ic + ip
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\ i = eK1t [c1 cos K2t + c2 sin K2t]

+
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2
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R

L
LC

2
1

2F
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I
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Then the roots are equal which gives critically damped response. Then,

Eq. 12.42 becomes (D – K
1
) (D – K

1
)i = 0.

The complementary function for the above equation is

ic = eK1t (c1 + c2t)

Therefore, the complete solution is i = i
c
 + i

p

\ i = eK1t [c1 + c2t]

+
V

R
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L

t
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Example 12.6 In the circuit shown in Fig. 12.21, determine the complete solution

for the current, when the switch is closed at t = 0. Applied voltage is v(t) = 400 cos

500
4

t +
F
HG

I
KJ

p
. Resistance R = 15 W, inductance L = 0.2 H and capacitance C = 3mF.

Fig. 12.21

Solution By applying Kirchhoff’s voltage law to the circuit,

15 0 2
1

3 10 6
i t

di t

dt
b g

b g
+ +

¥ - z. i(t)dt = 400 cos 500
4

t +F
H

I
K

p

Differentiating the above equation once, we get

15 0 2
3 10

2

6

di

dt

d i

dt

i
+ +

¥ -
.  = – 2 ¥ 105 sin 500

4
t +

F
HG

I
KJ

p

(D 2 + 75D + 16.7 ¥ 105)i = 
- ¥2 10

0 2

5

.
 sin 500

4
t +

F
HG

I
KJ

p

The roots of the characteristic equation are

D1 = – 37.5 + j1290 and D2 = – 37.5 – j1290
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The complementary current

ic = e–37.5t (c1 cos 1290t + c2 sin 1290t)

Particular solution is

ip =
V

R
C

L

t
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R
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\ ip = 0.71 cos 500
4

88 5t + + ∞
F
HG

I
KJ

p
.

The complete solution is

i = e
–37.5t

 (c1 cos 1290t + c2 sin 1290t) + 0.71 cos (500t + 45° + 88.5°)

At t = 0, i0 = 0

\ c1 = – 0.71 cos (133.5°) = + 0.49

Differentiating the current equation, we have

di

dt
 = e–37.5t (– 1290c1 sin 1290t + c2 1290 cos 1290t)

– 37.5e–37.5t (c1 cos 1290t + c2 sin 1290t)

– 0.71 ¥ 500 sin (500t + 45° + 88.5°)

At t = 0, 
di

dt
 = 1414

\ 1414 = 1290c2 – 37.5 ¥ 0.49 – 0.71 ¥ 500 sin (133.5°)

1414 = 1290c2 – 18.38 – 257.5

\ c2 = 1.31

The complete solution is

i = e
–37.5t

 (0.49 cos 1290t + 1.31 sin 1290t) + 0.71 cos (500t + 133.5°)

ADDITIONAL SOLVED PROBLEMS

Problem 12.1 For the circuit shown in Fig. 12.22, find the current equation

when the switch is changed from position 1 to position 2 at t = 0.

20 W

2

1 30 W

0.2 H100 V

Fig. 12.22
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Solution When the switch is at position 2, the current equation can be written

by using Kirchhoff’s voltage law as

30i(t) + 0.2 
di t

dt

( )
= 0

D i+
F
HG

I
KJ

30

0 2.
= 0

(D + 150)i = 0

\ i = c1e–150t

At t = 0, the switch is changed to position 2, i.e. i(0) = c
1
.

At t = 0, the initial current passing through the circuit is the same as the

current passing through the circuit when the switch is at position 1. At t = 0
–
,

the switch is at position 1, and the current passing through the circuit i = 100/50

= 2 A.

At t = 0
+
, the switch is at position 2. Since the inductor does not allow sudden

changes in current, the same current passes through the circuit. Hence the initial

current passing through the circuit, when the switch is at position 2 is i (0
+
) =

2A.

\ c1 = 2 A

Therefore the currenti = 2e
–150t

Problem 12.2 For the circuit shown in Fig. 12.23, find the current equation

when the switch is opened at t = 0.

Fig. 12.23

Solution At t = 0, switch S is opened. By using Kirchhoff’s voltage law, the

current equation can be written as

20i + 20i + 2 
di

dt
= 0

40i + 2 
di

dt
= 0

\ D + 20i = 0

The solution for the above equation is

i = c1 e
–20t

When the switch has been closed for a time, since the inductor acts as short

circuit for dc voltages, the current passing through the inductor is 2.5 A.
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That means, just before the switch is opened, the current passing through the

inductor is 2.5 A. Since the current in the inductor cannot change

instantaneously, i(0
+
) is also equal to 2.5 A.

At t = 0 c
1
 = i(0

+
) = 2.5

Therefore, the final solution is i(t) = 2.5e
–20t

Problem 12.3 For the circuit shown in Fig. 12.24, find the current equation

when the switch is opened at t = 0.

50 W5 Fm200 V200 V

s

i t( )( )

Fig. 12.24

Solution By using Kirchhoff’s voltage law, the current equation is given by

1

5 10 6¥ - z idt + 50i = 0

Differentiating the above equation once, we get

50
1

5 10 6

di

dt
+

¥ -
i = 0

\ D i+
¥

F
HG

I
KJ-

1

250 10 6
= 0

\ i = c1 exp 
-

¥

F
HG

I
KJ-

1

250 10 6
t (12.43)

At t = 0
–
, just before the switch S is opened, the voltage across the capacitor

is 200 V. Since the voltage across the capacitor cannot change instantly, it

remains equal to 200 V at t = 0
+
. At that instant, the current through the resistor is

i(0
+
) = 

200

50
 = 4A

In Eq. 12.43, the current is i(0
+
) at t = 0

\ c1 = 4 A

Therefore, the current equation is

i = 4 exp 
-

¥

F
HG

I
KJ-

1

250 10 6
t A

Problem 12.4 For the circuit shown in Fig. 12.25, find the current equation

when the switch S is opened at t = 0.
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10 W

5 W

10 W

50 V50 V

2 Fm

s

i t( )( )

Fig. 12.25

Solution By using Kirchhoff’s voltage law, the current equation is given by

1

2 10 6¥ - z idt + 5i + 10i = 0

Differentiating the above equation, we have

15
2 10 6

di

dt

i
+

¥ -
 = 0

D i+
¥

F
HG

I
KJ-

1

30 10 6
 = 0

\ i = c1 exp 
-

¥

F
HG

I
KJ-

1

30 10 6
t

At t = 0
–
, just before switch S is opened, the current through 10 ohms resistor

is 2.5 A. The same current passes through 10 W at t = 0
+

\ i(0+) = 2.5 A

At t = 0 i(0
+
) = 2.5 A

\ c1 = 2.5

The complete solution is i = 2.5 exp 
-

¥

F
HG

I
KJ-

1

30 10 6
t

Problem 12.5 For the circuit shown in Fig. 12.26, find the complete

expression for the current when the switch is closed at t = 0.

Solution By using Kirchhoff’s law, the differential equation when the switch

is closed at t = 0 is given by

20i + 0.1 
di

dt
= 100

(D + 200)i = 1000
s

30 W20 W

0.1 H100 V100 V

Fig. 12.26
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i = c1e–200t + e–200t z 1000e200t dt

\ i = c1 e–200t + 5

At t = 0
–
, the current passing through the circuit is i(0

–
) = 

100

50
 = 2 A. Since,

the inductor does not allow sudden changes in currents, at t = 0
+
, the same

current passes through circuit.

\ i(0+) = 2 A

At t = 0 i(0+) = 2

\ c1 = – 3

The complete solution is i = – 3e
–200t

 + 5 A

Problem 12.6 The circuit shown in Fig. 12.27, consists of series RL elements

with R = 150 W and L = 0.5 H. The switch is closed when f = 30°. Determine

the resultant current when voltage V = 50 cos (100t + f) is applied to the circuit

at f = 30°.

Fig. 12.27

Solution By using Kirchhoff’s laws, the differential equation, when the

switch is closed at f = 30° is

150i + 0.5 
di

dt
= 50 cos (100t + f)

0.5Di + 150i = 50 cos (100t + 30°)

(D + 300)i = 100 cos (100t + 30°)

The complementary current i
c
 = ce

–300t

To determine the particular current, first we assume a particular current

ip = A cos (100t + 30°) + B sin (100t + 30°)

Then i¢p = – 100 A sin (100t + 30°) + 100 B cos (100t + 30°)

Substituting i
p
 and i¢

p
 in the differential equation and equating the

coefficients, we get

– 100 A sin (100t + 30°) + 100B cos (100t + 30°) + 300 A cos

(100t + 30°) + 300B sin (100t + 30°) = 100 cos (100t + 30°)

–100 A + 300 B = 0

300 A + 100 B = 100
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From the above equation, we get

A = 0.3 and B = 0.1

The particular current is

ip = 0.3 cos (100t + 30°) + 0.1 sin (100t + 30°)

\ ip = 0.316 cos (100t + 11.57°) A

The complete equation for the current is i = i
p
 + i

c

\ i = ce–300t + 0.316 cos (100t + 11.57°)

At t = 0, the current i0 = 0

\ c = – 0.316 cos (11.57°) = – 0.309

Therefore, the complete solution for the current is

i = – 0.309e–300t + 0.316 cos (100t + 11.57°) A

Problem 12.7 The circuit shown in Fig. 12.28, consists of series RC elements

with R = 15 W and C = 100 m F. A sinusoidal voltage v = 100 sin (500t + f) volts

is applied to the circuit at time corresponding to f = 45°. Obtain the current

transient.

Solution By using Kirchhoff’s laws, the differential equation is

15
1

100 10 6
i +

¥ - z idt = 100 sin (500t + f)

Fig. 12.28

Differentiating once, we have

15
1

100 10 6

di

dt
i+

¥ -
= (100) (500) cos (500t + f)

D i+
¥

F
HG

I
KJ-

1

1500 10 6
= 3333.3 cos (500t + f)

(D + 666.67)i = 3333.3 cos (500t + f)

The complementary function i
c
 = ce

–666.67t

To determine the particular current, first we assume a particular current

ip = A cos (500t + 45°) + B sin (500t + 45°)

i¢p = – 500 A sin (500t + 45°) + 500 B cos (500t + 45°)

Substituting i
p
 and i¢

p
 in the differential equation, we get

– 500 A sin (500t + 45°) + 500 B cos (500t + 45°)
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+ 666.67A cos (500t + 45°) + 666.67B sin (500t + 45°)

= 3333.3 cos (500t + f)

By equating coefficients, we get

500 B + 666.67 A = 3333.3

666.67B – 500 A = 0

From which, the coefficients

A = 3.2; B = 2.4

Therefore, the particular current is

ip = 3.2 cos (500t + 45°) + 2.4 sin (500t + 45°)

ip = 4 sin (500t + 98.13°)

The complete equation for the current is

i = ic + ip

i = ce–666.67t + 4 sin (500t + 98.13°)

At t = 0, the differential equation becomes

15i = 100 sin 45°

i =
100

15
 sin 45° = 4.71 A

\ At t = 0

4.71 = c + 4 sin (98.13°)

\ c = 0.75

The complete current is

i = 0.75 e–666.67t + 4 sin (500t + 98.13°)

Problem 12.8 The circuit shown in Fig. 12.29 consisting of series RLC

elements with R = 10 W, L = 0.5 H and C = 200 mF has a sinusoidal voltage v =

150 sin (200t + f). If the switch is closed when f = 30°, determine the current

equation.

s 10 W

200 Fm

150 sin (200150 sin (200 + )t f i t( )
0.5 H0.5 H

Fig. 12.29

Solution By using Kirchhoff’s laws, the differential equation is

10 0 5
1

200 10 6
i

di

dt
idt+ +

¥ - z.  = 150 sin (200t + f)

Differentiating once, we have

(D
2
 + 20D + 10

4
)i = 60000 cos (200t + f)
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The roots of the characteristics equation are

D1 = – 10 + j99.49 and D2 = – 10 – j99.49

The complementary function is

ic = e–10t (c1 cos 99.49t + c2 sin 99.49)

We can find the particular current by using the undetermined coefficient

method.

Let us assume

ip = A cos (200t + 30°) + B sin (200t + 30°)

i¢p = – 200 A sin (200t + 30°) + 200 B cos (200t + 30°)

i¢¢p = – (200)2 A cos (200t + 30°) – (200)2 B sin (220t + 30°)

Substituting these values in the equation, and equating the coefficients, we

get

A = 0.1 B = 0.067

Therefore, the particular current is

ip = 1.98 cos (200t – 52.4°) A

The complete current is

i = e–10t (c1 cos 99.49t + c2 sin 99.49t) + 1.98 cos (200t – 52.4°) A

From the differential equation at t = 0, i
0
 = 0 and 

di

dt
 = 300

\ At t = 0

c1 = – 1.98 cos (– 52.4°) = – 1.21

Differentiating the current equation, we have

di

dt
 = e–10t (– 99.49c1 sin 99.49t + 99.49c2 cos 99.49t)

– 200 (1.98) sin (200t – 52.4°) – 10e–10t (c1 cos 99.49t + c2 sin 99.49t)

At t = 0, 
di

dt
 = 300 and c

1
 = – 1.21

300 = 99.49 c2 – 396 sin (– 52.4°) – 10 (– 1.21)

300 = 99.49 c2 + 313.7 + 12.1

c2 = – 25.8

Therefore, the complete current equation is

i = e
–10t

 (0.07 cos 99.49t – 25.8 sin 99.49t) + 1.98 cos (200t – 52.4°) A

Problem 12.9 For the circuit shown in Fig. 12.30, determine the transient

current when the switch is moved from position 1 to position 2 at t = 0. The

circuit is in steady state with the switch in position 1. The voltage applied to the

circuit is v = 150 cos (200t + 30°) V.
s

1 2 200 W

150 cos (200150 cos (200 + 30º)t
0.5 H

Fig. 12.30
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Solution When the switch is at position 2, by applying Kirchhoff’s law, the

differential equation is

200i + 0 5.
di

dt
= 0

(D + 400)i = 0

\ The transient current is

i = ce
–400t

At t = 0, the switch is moved from position 1 to position 2. Hence the current

passing through the circuit is the same as the steady state current passing

through the circuit when the switch is in position 1.

When the switch is in position 1, the current passing through the circuit is

i =
v

z R j L
=

– ∞

+

150 30

w

=
150 30

200 200 0 5

150 30

223 6 26 56

– ∞

+ ( )
=

– ∞

– ∞( )j . . .
 = 0.67 –3.44°

Therefore, the steady state current passing through the circuit when the

switch is in position 1 is

i = 0.67 cos (200t + 3.44°)

Now substituting this equation in transient current equation, we get

0.67 cos (200t + 3.44°) = ce–400t

At t = 0; c = 0.67 cos (3.44°) = 0.66

Therefore, the current equation is i = 0.66e
–400t

Problem 12.10 In the circuit shown in Fig. 12.31, determine the current

equations for i
1
 and i

2
 when the switch is closed at t = 0.

Fig. 12.31

Solution By applying Kirchhoff’s laws, we get two equations

35i1 + 20i2 = 100 (12.44)

20i1 + 20i2 + 0.5 
di

dt

2 = 100 (12.45)

From Eq. 12.44, we have

35i1 = 100 – 20i2

i1 =
100

35

20

35
2- i
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Substituting i
1
 in Eq. 12.45, we get

20
100

35

20

35
2-F

H
I
Ki  + 20i2 + 0.5 

di

dt

2  = 100 (12.46)

57.14 – 11.43i2 + 20i2 + 0.5 
di

dt

2  = 100

(D + 17.14)i2 = 85.72

From the above equation,

i2 = ce–17.14t + 5

Loop current i
2
 passes through inductor and must be zero at t = 0

At t = 0, i2 = 0

\ c = – 5

\ i2 = 5(1 – e–17.14t) A

and the current i
1
 = 2.86 – {0.57 ¥ 5(1 – e

–17.14t
)}

= (0.01 + 2.85 e–17.14t) A

Problem 12.11 For the circuit shown in Fig. 12.32, find the current equation

when the switch is changed from position 1 to position 2 at t = 0.

500 V500 V 10 i 0.4 H0.4 H

40 W 60 W

2 i

+
–

Fig. 12.32

Solution By using Kirchhoff’s voltage law, the current equation is given by

60i + 0.4 
di

dt
 = 10i

At t = 0
–
, the switch is at position 1, the current passing through the circuit is

i(0–) = 
500

100
 = 5 A

0.4
di

dt
 + 50i = 0

D +
F
HG

I
KJ

50

0 4.
i = 0

i = ce
–125t

At t = 0, the initial current passing through the circuit is same as the current

passing through the circuit when the switch is at position 1.

At t = 0, i(0) = i(0–) = 5 A

At t = 0, c = 5 A

\ The current I = 5e–125t
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Problem 12.12 For the circuit shown in Fig. 12.33, find the current equation

when the switch S is opened at t = 0.

100 V
5 i

4 Fm

10 W

S

10 W

i

+
–

Fig. 12.33

Solution When the switch is closed for a long time,

At t = 0–, the current i(0–) = 
100

20
 = 5 A

When the switch is opened at t = 0, the current equation by using Kirchhoff’s

voltage law is given by

1

4 10 6¥ - z i dt + 10i = 5i

1

4 10 6¥ - z i dt + 5i = 0

Differentiating the above equation

5
1

4 10 6

di

dt
i+

¥ -
= 0

D i+
¥

F
HG

I
KJ-

1

20 10 6
= 0

\ i = ce
t

-

¥ -

1

20 10 6

At t = 0
–
, just before switch S is opened, the current passing through the 10 W

resistor is 5 A. The same current passes through 10 W at t = 0.

\ At t = 0, i(0) = 5 A

At t = 0, c1 = 5 A

The current equation is i = 5 20 10 6

e

t-

¥ -

Problem 12.13 For the circuit shown in Fig. 12.34, find the current in the

20 W when the switch is opened at t = 0.

50 V

10 i

i (t)2i (t)1

20 W
30 W

i

+
– 2 H

Fig. 12.34



Transients 12.33

Solution When the switch is closed, the loop current i
1
 and i

2
 are flowing in

the circuit.

The loop equations are 30(i
1

– i
2
) + 10i

2
 = 50

    30(i2 – i1) + 20i2 = 10i2

From the above equations, the current in the 20 W resistor i
2
 = 2.5 A.

The same initial current is flowing when the switch is opened at t = 0.

When the switch is opened the current equations

30i + 20i + 2 
di

dt
= 10i

40i + 
2di

dt
= 0

(D + 20)i = 0

i = ce–20t

At t = 0, the current i(0) = 2.5 A

\ At t = 0, c = 2.5

The current in the 20 W resistor is i = 2.5 e
–20t

.

Problem 12.14 For the circuit shown in Fig. 12.35, find the current equation

when the switch is opened at t = 0.

100 V

20 i

10 W

10 W

20 W
i

+
– 2 Fm

Fig. 12.35

Solution When the switch is closed, the current in the 20 W resistor i can be

obtained using Kirchhoff’s voltage law.

10i + 20i + 20i = 100

50i = 100, \ i = 2 A

The same initial current passes through the 20 W resistor when the switch is

opened at t = 0.

The current equation is

20i + 10i + 
1

2 10 6¥ - z idt = 20i

10i + 
1

2 10 6¥ - z idt = 0

Differentiating the above equation, we get

10
1

2 10 6

di

dt
i+

¥ -
= 0

D i+
¥

F
HG

I
KJ-

1

20 10 6
= 0
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The solution for the above equation is

i = ce
t

-

¥ -

1

20 10 6

At t = 0, i(0) = i(0
–
) = 2 A

\ At t = 0, c = 2 A

The current equation is

i = 2

1

20 10 6

e
t

-

¥ -

PRACTICE PROBLEMS

12.1 (a) What do you understand by transient and steady state parts of re-

sponse? How can they be identified in a general solution?

(b) Obtain an expression for the current i(t) from the differential equation

d i t

dt

di t

dt
i t

2

2
10 25

( ) ( )
( )+ +  = 0

with initial conditions

i(0+) = 2
0di

dt

+c h
 = 0

12.2 A series circuit shown in Fig. 12.36, comprising of resistance 10 W and

inductance 0.5 H, is connected to a 100 V source at t = 0. Determine the

complete expression for the current i(t).
10 W

100 V

s

0.5 H

Fig. 12.36

12.3 In the network shown in Fig. 12.37, the capacitor c1 is charged to a volt-

age of 100 V and the switch S is closed at t = 0. Determine the current

expression i1 and i2.
2 k2 kW

1 Fm 1 Fm

s

C1 C2

i1 i2
1 k1 kW

Fig. 12.37
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12.4 A series RLC circuit shown in Fig. 12.38, comprising R = 10 W, L = 0.5

H and C = 1 m F, is excited by a constant voltage source of 100 V. Obtain

the expression for the current. Assume that the circuit is relaxed initially.

10 W

100 V 1 Fm

s

i t( )

0.5 H

Fig. 12.38

12.5 In the circuit shown in Fig. 12.39, the initial current in the inductance is 2

A and its direction is as shown in the figure. The initial charge on the

capacitor is 200 C with polarity as shown when the switch is closed.

Determine the current expression in the inductance.

10 W

10 W50 V

s 2 H

2 F

200 C

I = 20 A

Fig. 12.39

12.6 In the circuit shown in Fig. 12.40, the switch is closed at t = 0 with zero

capacitor voltage and zero inductor current. Determine V1 and V2 at t = 0+.

10 W

10 W

100 V

s

V1

V2

0.1 H
1 Fm

Fig. 12.40

12.7 In the network shown in Fig. 12.41, the switch is moved from position 1

to position 2 at t = 0. The switch is in position 1 for a long time. Deter-

mine the current expression i(t).
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i t( )

R

20 V 50 V

10 W

2 H

3 F

1
2

Fig. 12.41

12.8 In the network shown in Fig. 12.42, determine the current expression for

i1(t) and i2(t) when the switch is closed at t = 0. The network has no initial

energy.

i1
i2

s

3 H

10 W

10 W

1 Fm

100 V

Fig. 12.42

12.9 In the network shown in Fig. 12.43, the switch is closed at t = 0 and there is

no initial charge on either of the capacitances. Find the resulting current i(t).

s
20 W

10 W10 W

100 V

0.5 F 0.25 F

Fig. 12.43

12.10 In the RC circuit shown in Fig. 12.44, the capacitor has an initial charge

q0 = 25 ¥ 10–6 C with polarity as shown. A sinusoidal voltage v = 100 sin

(200t + f) is applied to the circuit at a time corresponding to f = 30°.

Determine the expression for the current i(t).

i t( )

250 W

100 sin (200 + )t f

s

0.5 Fm

Fig. 12.44
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12.11 In the network shown in Fig. 12.45, the switch is moved from position 1

to position 2 at t = 0. The switch is in position 1 for a long time. Initial

charge on the capacitor is 7 ¥ 10–4 coulombs. Determine the current ex-

pression i(t).

50 W

50 W

20 Fm

s
2

100 sin ( + 30º)w t

1

Fig. 12.45

12.12 In the network shown in Fig. 12.46, the switch is moved from position 1

to position 2 at t = 0. Determine the current expression.

100 W

50 Fm

s
2

200 V

1

0.1 H

Fig. 12.46

12.13 In the network shown in Fig. 12.47, find i2(t) for t > 0, if i1(0) = 5 A.

Fig. 12.47

12.14 For the circuit shown in Fig. 12.48, find v5, if the switch is opened for

t > 0.

5 W50 V v5

2 W 4 W

0.2 F 0.1v5

Fig. 12.48
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12.15 Calculate the voltage v1(t) across the inductance for t > 0 in the circuit

shown in Fig. 12.49.

12 V

1 W 2 W1 W

10 F–4

v1( )( )t10 H10 H

t = 0= 0

Fig. 12.49

12.16 The network shown in Fig. 12.50 is initially under steady state condition

with the switch in position 1. The switch is moved from position 1 to

position 2 at t π 0. Calculate the current i(t) through R1 after switching.

10 V

R 2= 5 W

R1= 5 W

L= 2 H

1

2 i t( )

Fig. 12.50

OBJECTIVE-TYPE QUESTIONS

1. Transient behaviour occurs in any circuit when

(a) there are sudden changes of applied voltage.

(b) the voltage source is shorted.

(c) the circuit is connected or disconnected from the supply.

(d) all of the above happen.

2. The transient response occurs

(a) only in resistive circuits (b) only in inductive circuits

(c) only in capacitive circuits (d) both in (b) and (c).

3. Inductor does not allow sudden changes

(a) in currents (b) in voltages

(c) in both (a) and (b) (d) in none of the above

4. When a series RL circuit is connected to a voltage V at t = 0, the current

passing through the inductor L at t = 0+ is

(a)
V

R
(b) infinite

(c) zero (d)
V

L
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5. The time constant of a series RL circuit is

(a) LR (b)
L

R

(c)
R

L
(d) e–R/L

6. A capacitor does not allow sudden changes

(a) in currents (b) in voltages

(c) in both currents and voltages (d) in neither of the two

7. When a series RC circuit is connected to a constant voltage at t = 0, the

current passing through the circuit at t = 0+ is

(a) infinite (b) zero

(c)
V

R
(d)

V

Cw
8. The time constant of a series RC circuit is

(a)
1

RC
(b)

R

C
(c) RC (d) e–RC

9. The transient current in a loss-free LC circuit when excited from an ac

source is an  sine wave

(a) undamped (b) overdamped

(c) under damped (d) critically damped.

10. Transient current in an RLC circuit is oscillatory when

(a) R = 2 L C/ (b) R = 0

(c) R > 2 L C/ (d) R < 2 L C/
11. The initial current in the circuit shown in Fig. 12.51 when the switch is

opened for t > 0 is
10 W

0.2 H0.2 H

2 ii

20 V20 V

Fig. 12.51

(a) 1.67 A (b) 3 A

(c) 0 A (d) 2 A

12. The initial current in the circuit shown in Fig. 12.52 below when the

switch is opened for t > 0 is
5 W

2 Fm

10 ii

100 V

Fig. 12.52
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(a) 1.5 A (b) 0 A

(c) 2 A (d) 10 A

13. For the circuit shown in Fig. 12.53 the current in the 10 W resistor when

the switch is changed from 1 to 2 is

10 W
50 V

0.5 H

i2

20 i

1

Fig. 12.53

(a) 5 e+20t (b) 5 e–20t

(c) 20 e+5t (d) 20e–5t

14. For the circuit shown in Fig. 12.54, the current in the 5 W resistor when

the switch is changed from 1 to 2 is

20 W
50 V

2 Fm

i2

10 i

1

Fig. 12.54

(a) 2 5

1

2 10 6

. e ¥ -

(b) 0

(c) 2.5 e–10t (d) 5e–5t



13.1 DEFINITION OF LAPLACE TRANSFORM

The Laplace transform is used to solve differential equations and corresponding
initial and final value problems. Laplace transforms are widely used in engineering,
particularly when the driving function has discontinuties and appears for a short
period only.

In circuit analysis, the input and output functions do not exist forever in
time. For casual functions, the function can be defined as f (t) u(t). The integral
for the Laplace transform is taken with the lower limit at t = 0 in order to include
the effect of any discontinuity at t = 0.

Consider a function f (t) which is to be continuous and defined for values of
t ≥ 0. The Laplace transform is then

L [f (t)] = F(s) = 
- •

•

z e–st f (t) u(t ) dt = 
0

•

z f (t) e–st dt

f (t) is a continuous function for t ≥ 0 multiplied by e
–st

 which is integrated
with respect to t between the limits 0 and •. The resultant function of the
variable s is called Laplace transform of f(t). Laplace transform is a function of
independent variable s corresponding to the complex variable in the exponent
of e

–st
. The complex variable s is, in general, of the form s = s + jw and s and w

being the real and imaginary parts, respectively. For a function to have a

Laplace transform, it must satisfy the condition 
0

•

z f (t) e
–st

 dt < •. Laplace

transform changes the time domain function f(t) to the frequency domain
function F(s). Similarly, inverse Laplace transformation converts frequency
domain function F(s) to the time domain function f (t) as shown below.

Chapter

13
LAPLACE
TRANSFORMS
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L
–1[F(s)] = f (t) = 

1

2p j
j

j

-

+

z F(s) est ds

Here, the inverse transform involves a complex integration. f (t) can be
represented as a weighted integral of complex exponentials. We will denote the
transform relationship between f (t) and F(s) as

f(t) L¨ Ææ F(s)

13.2 PROPERTIES OF LAPLACE TRANSFORMS

Laplace transforms have the following properties.
(a) Superposition Property The Laplace transform of the sum of the two or

more functions is equal to the sum of transforms of the individual func-
tion,

i.e. if f1(t) L¨ Ææ F1(s) and

f2(t) L¨ Ææ F2(s), then

L[f1(t) ± f2(t)] = F1(s) ± F2(s)

Consider two functions f
1
(t) and f

2
(t). The Laplace transform of the sum or

difference of these two functions is given by

L{f1(t) ± f2(t)} =
0

•

z {f1(t) ± f2(t)}e–st dt

=
0

•

z f1(t)e–st dt ± 

0

•

z f2(t)e–st dt

= F1(s) ± F2(s)

\ L{f1(t) ± f2(t)} = F1(s) ± F2(s)

(b) Linearity property If K is a constant, then

L [Kf (t)] = K L [f (t)] = K F(s)

Consider a function f (t) multiplied by a constant K. The Laplace transform
of this function is given by

L[Kf(t)] =
0

•

z Kf(t)e–st dt

= K

0

•

z f (t)e–st
dt = KF(s)

If we can use these two properties jointly, we have

L [K1 f1(t) + K2 f2(t)] = K1 L[f1(t )] + K2 L [f2(t)]

= K1F1(s) + K2F2(s)
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13.3 LAPLACE TRANSFORM OF SOME

USEFUL FUNCTIONS

(i) The unit step function f (t) = u(t)

where u(t) = 1 for t > 0

= 0 for t < 0

L [f (t)] =
0

•

z u (t)e–st dt

=
0

•

z 1e–st dt = 
-

=- •1 1
0s

e
s

st

L [u(t)] =
1

s

(ii) Exponential function f (t) = e–at

L (e–at) =
0

•

z e–at e–st dt

=
0

•

z e–(s+a)t =
-

+

- +( ) •1
0s a

e s a t

=
1

s a+

\ L [e–at] =
1

s a+

(iii) The cosine function: cos w t

L (cos wt) =
0

•

z cos w t e–st dt

=
0

2

•
-

-

z +L
NM

O
QP

e
e e

dtst
j t j tw w

=
1

2
0 0

•
- -( )

•
- +( )z z+

L
N
M

O
Q
Pe dt e dts j t s j tw w

=
1

2

1

20 0

-
-

L
NM

O
QP

+ -
+

L
NM

O
QP

- -( ) • - +( ) •
e

s j

e

s j

s j t s j tw w

w w

=
1

2

1 1
2 2s j s j

s

s-
+

+

L
NM

O
QP

=
+w w w

\ L (cos w t) =
s

s2 2+ w
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(iv) The sine function: sin w t

L (sin w t) =
0

•

z sin w t e
–st

dt

=
0

1

2

•
-z e

j

st  [e jwt – e– jw t]dt

=
1

2
0 0

j
e dt e dts j t s j t

•
- -( )

•
- +( )z z-

L
N
M

O
Q
Pw w

=
1

2 0 0j

e

s j

e

s j

s j t s j t

-
-( )

L
NM

O
QP

+
+( )

L
NM

O
QP

R
S
T

U
V
W

- -( ) • - +( ) •w w

w w

=
1

2

1 1
2 2j s j s j s-

-
+

L
NM

O
QP

=
+w w

w

w

\ L (sin w t) =
w

ws2 2+

(v) The function tn, where n is a positive integer

L (tn) =
0

•
-z t e dtn st

=
t e

s

e

s
nt dt

n s t s t
n

- • • -
-

-

L
NM

O
QP

-
-

z
0 0

1

=
n

s
0

•

z e
–st

t
n–1

dt

=
n

s
L (tn–1)

Similarly, L (t n–1) =
n

s

- 1
L (t n–2)

By taking Laplace transformations of t
n–2

, t
n–3

,.... and substituting in the above
equation, we get

L (tn) =
n

s

n

s

n

s s s
t

n n- - -1 2 2 1
� L c h

=
–

=
–

¥ =
–

+

n

s
t

n

s s

n

sn n n
L

0
1

1c h
\ L(t) = 1/s2

(vi) The hyperbolic sine and cosine function

L(cos h at) =
0

•

z cos h at e–st dt
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=
0

2

• -
-z +L

NM
O
QP

e e
e dt

at at
s t

=
1

2
0

•

z e–(s–a)t dt + 
1

2
0

•

z e–(s+a) t dt

=
1

2

1 1

2

1
2 2s a s a

s

s a-( )
+

+( )
=

-

Similarly,

L (sin h at) =
0

•

z sin h (at)e– st dt

=
0

2

• -
-z -L

NM
O
QP

e e
e dt

at at
s t

=
1

2

1

2 2 2s a s a

a

s a-( )
-

+( )
=

-

Example 13.1 Find the Laplace transform of the function

f(t) = 4t
3
 + t

2
– 6t + 7

Solution

L (4t
3
 + t

2
– 6t + 7) = 4 L (t

3
) + L (t

2
) – 6L (t) + 7L (1)

= 4 ¥
–

+
–

-
–

+
3 2

6
1

7
1

4 3 2s s s s

=
24 2 6 7

4 3 2s s s s
+ - +

Example 13.2 Find the Laplace transform of the function f (t) = cos
2

t

Solution L (cos
2

t) = L 
1 2

2

+F
HG

I
KJ

cos t

= L L
1

2

2

2

1

2

F
HG

I
KJ +

F
HG

I
KJ =

cos t
 [L (1) + L (cos 2t)]

=
1

2 2 4

2 4

2 42

2

2s

s

s

s

s s
+

+
=

+

+e j e j
Example 13.3 Find the Laplace transform of the function

f(t) = 3t
4

– 2t
3
 + 4e

–3t
– 2 sin 5t + 3 cos 2t

Solution L (3t
4

– 2t
3
 + 4e

–3t
– 2 sin 5t + 3 cos 2t)
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= 3L (t
4
) – 2L (t

3
) + 4L (e

–3t
) – 2L (sin 5t) + 3L (cos 2t)

= 3 
–

-
–

+
+

- ¥
+

+ ¥
+

4
2

3
4

1

3
2

5

25
3

45 4 2 2
s s s s

s

s

=
72 12 4

3

10

25

3

45 4 2 2
s s s s

s

s
- +

+
-

+
+

+

13.4 LAPLACE TRANSFORM THEOREMS

(a) Differentiation Theorem If a function f (t) is piecewise continuous, then

the Laplace transform of its derivative 
d

dt
 [f (t)] is given by

L [f ¢(t)] = sF(s) – f (0)

Proof By definition,

L [ f ¢(t)] =
0

•

z f ¢(t)e–st
dt

=
0

•

z e
–st

d{f (t)}

Integrating by parts, we get

= e f tst- •
•

( ) + z0
0

se
–st

f (t) dt

= – f (0) + s
0

•

z e
–st

f (t) dt

= – f (0) + sF(s)

Hence we have

L [ f ¢(t)] = sF(s) – f (0)

This is applicable to higher order derivatives also. The Laplace transform of
second derivative of f (t) is

L [ f ¢¢(t)] = L 
d

dt
f t¢( )L

NM
O
QP( )

= s L [f ¢(t)] – f ¢(0) = s{sF(s) – f (0)} – f ¢(0)

= s
2
F(s) – sf (0) – f ¢(0)

where f ¢(0) is initial value of first derivative of f (t)
Similarly,

L [ f ¢¢¢(t)] = s
3

F(s) – s
2

f (0) – sf ¢(0) – f ¢¢(0)
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In general, the nth order derivative is given by

L ( f n(t)] = snF(s) – sn–1f (0) – sn–2 f ¢(0)� – f n–1 (0)

Example 13.4 Using the formula for Laplace transform of derivatives, obtain the
Laplace transform of (a) sin 3t, (b)t

3

Solution (a) Let f(t) = sin 3t

Then f¢ (t) = 3 cos 3t,f¢¢ (t) = – 9 sin 3t

L [f¢¢ (t)] = s
2
[L f(t)] – sf(0) – f¢ (0) (13.1)

f(0) = 0, f¢ (0) = 3

L [f¢¢(t)] = L [– 9 sin 3t]

Substituting in Eq. 13.1, we get

L [– 9 sin 3t] = s
2

L [f(t)] – 3

L [– 9 sin 3t] – s
2
 [L (sin 3t)] = – 3

L [(s
2
 + 9) sin 3t] = 3

\ L (sin 3t) = 
3

9
2

s +

(b) Let f (t) = t
3

Differentiating successively, we get

f ¢(t) = 3t
2
, f¢¢ (t) = 6t, f ¢¢¢(t) = 6

By using differentiation theorem, we get

L [f ¢¢¢(t)] = s
3

L [f (t )] – s
2

f (0) – sf ¢(0) – f ¢¢(0)

Substituting all initial conditions, we get

L [f ¢¢¢(t)] = s
3

L [f(t)]

L  [6] = s
3

L [f (t)]

\
6

s
 = s

3
L [f (t)]

F(s) = L [f (t)] = 
6
4

s

(b) Integration Theorem If a function f(t) is continuous, then the Laplace

transform of its integral z f(t)dt is given by

L

0

1
t

f t dt
s

F sz ( ) ( )
L
N
M

O
Q
P =

Proof By definition

L

0 0 0

t t
st

f t dt f t dt e dtz z z( ) ( )
L
N
M

O
Q
P =

L
N
M

O
Q
P

•
-
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Integrating by parts, we get

=
e

s
f t dt

s
e f t dt

st t
st

-
• •

-

-

L
N
M

O
Q
P +z z( ) ( )

0 0 0

1

Since, the first term is zero, we have

L L

0

1
t

f t dt
s

f t
F s

s
z ( ) ( )

( )L
N
M

O
Q
P = =

Example 13.5 Find the Laplace transform of ramp function r(t) = t.

Solution We know that 

0

t

z u(t) = r (t) = t

Integration of unit step function gives the ramp function.

L [r (t)] = L 

0

t

u t dtz
L

N
M
M

O

Q
P
Pb g

Using the integration theorem, we get

L 

0

t

u t dtz
L

N
M
M

O

Q
P
Pb g   =

1 1
2s

u t
s

L b g =

since L [u(t)] =
1

s

(c) Differentiation of Transforms If the Laplace transform of the function f (t)
exists, then the derivative of the corresponding transform with respect to s in
the frequency domain is equal to its multiplication by t in the time domain.

i.e. L [tf(t)] =
- d

ds
F(s)

Proof By definition,

d

ds
F(s) =

d

ds
0

•

z f (t) e
–st

dt

Since s and t are independent of variables, and the limits 0, • are constants
not depending on s, we can differentiate partially with respect to s within the
integration and then integrate the function obtained with respect to t.

d

ds
F(s) =

d

ds
0

•

z [f(t) e
–st] dt
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=
0

•

z f(t) [–te–st]dt = –
0

•

z {tf(t)}e–st dt = – L [tf (t)]

Hence L [tf(t)] = –
d

ds
F(s)

Example 13.6 Find the Laplace transform of function

f (t) = t sin 2t

Solution Let f
1
(t) = sin 2t

L [f
1
(t)] = L [sin 2t] = F

1
(s)

where F
1
(s) =

2

42
s +

L (tf
1
(t)) = L (t sin 2t ) = 

-

+

L
N
M
M

O
Q
P
P

= +

+

d

ds s

s

s

2

4

4

4
2 2 2

e j
(d) Integration of transforms If the Laplace transform of the function f (t)

exists, then the integral of corresponding transform with respect to s in the
complex frequency domain is equal to its division by t in the time domain.

i.e. L
f t

t
s

( )L
NM

O
QP =

•

z F(s)ds

Proof If f(t) ´ F(s)

F(s) = L [f(t)] = 
0

•

z f(t)e
–st

dt

Integrating both sides from s to •

s

•

z F(s)ds =
s

st
f t e dt

• •
-z z ( )

L
N
M

O
Q
P

0

ds

By changing the order of integration, we get

=
0

•

z f(t)
s

st
e ds

•
-zLNM

O
Q
P  dt

=
0

•

z f(t)
e

t

st-F
HG

I
KJ  dt

=
0

•
-z ( ) ( )L

NM
O
QP = L

NM
O
QP

f t

t
e dt

f t

t

st
L

\

0

•

z F(s)ds = L
f t

t

( )L
NM

O
QP
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Example 13.7 Find the Laplace transform of the function

f(t) =
2 2- -e

t

t

Solution Let f
1
(t) = 2 – 2e

–2t
 then

L [f
1
(t)] = L (2 – 2e

–2t
) = L (2) – L (2e

–2t
) = 

2 2

2s s
-

+

=
2 4 2

2

4

2

s s

s s s s

+ -

+
=

+b g b g

Hence  L 
2 2 2-L

N
M
M

O
Q
P
P

-e

t

t

 =
s

•

z F
1
(s) ds

=

s
s s

•

z +

4

2b g
 ds

By taking partial fraction expansion,

we get
4

2s s +b g  =
A

s

B

s s s
+

+
= -

+2

2 2

2

\ L 
2 2-L

N
M
M

O
Q
P
P

-e

t

t

 =

s

t

s s

e ds
s

ds
s

ds

•

-

• •

z z z- = -
+

L 2 2
2 2

2
2

= 2 2 2log logs s
s

- +
•b g

= 2
1

1 2
log

/+

L
N
M

O
Q
P

•

s
s

 = – 2 log 
s

s +

F
HG

I
KJ2

L 
2 2 2-F

HG
I
KJ

-e

t

t

 = 2 log 
s

s

+F
HG

I
KJ

2

(e) First Shifting Theorem If the function f(t) has the transform F(s), then the
Laplace transform of e

–at
f(t) is F(s + a)

Proof By definition, F(s) = 
0

•

z f (t) e
–st

dt

and, therefore,

F(s + a) =
0

•

z f (t)e
–(s + a)t

dt
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=
0

•

z e
–at

f (t)e
–st

dt = L [e
–at

f (t)]

\ F(s + a) = L [e
–at

f (t)]

Similarly, we have

L{e
at

f (t)} = F(s – a)

Example 13.8 Find the Laplace transform of e
at
 sin bt

Solution Let f(t) = sin bt

L [f(t)] = L [sin bt ] = 
b

s b2 2+

since L [e
at

f (t)] = F(s – a)

L [e
at
 sin bt] =

b

s a b- +b g2 2

Example 13.9 Find the Laplace transform of (t + 2)
2

e
t

Solution Let f (t) = (t + 2)
2
 = t

2
 + 2t + 4

L [f (t)] = L [t
2
 + 2t + 4] = 

2 2 4
3 2s s s

+ +

since L [e
at

f (t)] = F(s – a)

L [e
t
f (t)] =

2

1

2

1

4

13 2
s s s-

+
-

+
-b g b g

(f) Second Shifting Theorem If the function f (t) has the transform F(s), then
the Laplace transform of f (t – a)u (t – a) is e–as

F(s).
Proof By definition,

L [ f (t – a) u(t – a)]

=
0

•

z [ f (t – a) u(t – a)]e
–st

dt

Since f (t – a) u(t – a) = 0 for t < a

= f (t – a) for t > a

\ L [ f (t – a) u(t – a)] =
0

•

z f(t – a)e
–st

dt

Put t – a = t then t + a = t

dt = dt
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Therefore, the above becomes

L [ f(t – a) u(t – a)] =
0

•

z f(t)e
–s(t+a)

dt

= e
–as

0

•

z f (t)e
–st

dt = e
–as

F(s)

\ L [f(t – a) u(t – a)] = e
–as

F(s)

Example 13.10 If u (t) = 1, for t ≥ 0 and u(t) = 0 for t < 0, determine the Laplace
transform of [u(t) – u(t – a)].

Solution The function f (t) = u (t) – u(t – a) is shown in Fig. 13.1.

L [f(t)] = L [u(t) – u(t – a)]

= L [u(t)] – L [u(t – a)]

=
1

s
– e

–as 1

s
 = 

1

s
 (1 – e

–as
)

L [f(t)] =
1

s
(1 – e

–as
)

(g) Initial Value Theorem If the function f(t) and its derivative f ¢(t) are

Laplace transformable then Lt
t Æ 0

 f (t) = Lt
s Æ •

sF(s)

Proof We know that

L [f ¢(t)] = s[L (f (t))] – f (0)

By taking the limit s Æ • on both sides

Lt
s Æ •

L [f ¢(t)] = Lt
s Æ •

[sF(s) – f (0)]

Lt
s Æ •

•

z
0

f ¢ (t)e
–st

dt = Lt
s Æ •

[sF(s) – f (0)]

At s Æ • the integration of LHS becomes zero

i.e.
0

•

Æ •
z Lt

s
[f ¢(t) e

–st
] dt = 0

0 = Lt
s Æ •

sF(s) – f (0)

\ Lt
s Æ •

sF(s) = f (0) = Lt
t Æ 0

f(t)

Example 13.11 Verify the initial value theorem for the following functions

(i) 5e
–4t (ii) 2 – e

5t

Fig. 13.1



Laplace Transforms 13.13

Solution (i) Let f (t) = 5e
–4t

F(s) =
5

4s +

sF(s) =
5

4

s

s +

Lt
s Æ •

sF(s) = Lt
s sÆ • +

5

1 4/
 = 5

Lt
t Æ 0

f (t) = Lt
t Æ 0

 5e
–4t

 = 5

Hence the theorem is proved.
(ii) Let f(t) = 2 – e5t

F(s) = L (2 – e
5t
) = L (2) – L [e

5t
]

=
2 1

5

10

5s s

s

s s
-

-
=

-

-b g

sF(s) =
s

s

-

-

10

5

Lt
s Æ •

sF(s) = Lt
s Æ •

1 10

1 5

-

-

F
HG

I
KJ

/

/

s

s
 = 1

Lt
t Æ 0

(2 – e
5t

) = 1

Hence initial value theorem is proved.

(h) Final Value Thorem If f (t) and f ¢(t) are Laplace transformable, then Lt
t Æ •

f (t) = Lt
s Æ 0

sF(s)

Proof We know that

L [f ¢(t)] = sF(s) – f (0)

By taking the limit s Æ 0 on both sides, we have

Lt
s Æ 0

L [f ¢(t)] = Lt
s Æ 0

 [sF(s) – f (0)]

Lt
s

st
f t e dt

Æ

•
-z ¢( )

0
0

 = Lt
s Æ 0

 [sF(s) – f(0)]

\

0

•

z f ¢(t)dt = Lt
s Æ 0

[sF(s) – f (0)]
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f t( ) •
0  = Lt

t Æ •
f (t) – Lt

t Æ 0
f (t) = Lt

s Æ 0

sF(s) – f (0)

Since f (0) is not a function of s, it gets cancelled from both sides.

\ Lt
t Æ •

f (t) = Lt
s Æ 0

sF(s)

Example 13.12 Verify the final value theorem for the following functions.

(i) 2 + e–3t cos 2t (ii) 6(1 – e–t)

Solution (i) Let f(t) = 2 + e
–3t

 cos 2t

F(s) =
2 3

3 4
2s

s

s
+

+

+ +

b g
b g

sF(s) = 2 + 
s

s

s

s

2

2 2 2 23 4

3

3 4+ +
+

+ +b g b g

Lt
s Æ 0

sF(s) = Lt
s

s s

sÆ
+

+

+ +

L

N
M
M

O

Q
P
P0 2 2

2
3

3 4

b g
b g

 = 2

Lt
t Æ •

f(t) = Lt
t Æ •

 (2 + e
–3t

 cos 2t) = 2

Hence the final value theorem is proved.

(ii) Let f(t) = 6(1 – e–t)

F(s) =
6 6

1

6

1s s s s
-

+
=

+b g

sF(s) =
6

1s +

Lt
s Æ 0

 sF(s) = 6

Lt
t Æ •

f(t) = Lt
t Æ •

 6(1 – e
–t

) = 6

Hence the final value theorem is proved.

13.5 THE INVERSE TRANSFORMATION

So far, we have discussed Laplace transforms of a functions f (t). If the function
in frequency domain F(s) is given, the inverse Laplace transform can be
determined by taking the partial fraction expansion which will be recognisable
as the transform of known functions.
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Example 13.13 If F(s) = 
2

1 5s s+ +b g b g , find the function f(t).

Solution First we divide the given function into partial fractions

F(s) =
2

1 5s s+ +b g b g

2

1 5s s+ +b g b g  =
A

s

B

s+
+

+1 5

2 = A(s + 5) + B(s + 1)

Comparing both sides

A + B = 0

5A + B = 2

From which A =
1

2
, B = –

1

2

Hence
2

1 5s s+ +b g b g  =
1

2 1

1

2 5s s+
+

-

+b g b g

L 
–1 2

1 5s s+ +

L
N
M
M

O
Q
P
Pb g b g = L L

- -

+

L
N
M
M

O
Q
P
P

-
+

L
N
M
M

O
Q
P
P

1 11

2 1

1

2 5s sb g b g

We know that L
-

+

F
HG

I
KJ

1 1

1s
 = e

–t

and L
-

+

F
HG

I
KJ

1 1

5s
 = e

–5t

\ L
–1

[F(s)] = f(t) = 
1

2
e

–t
–

1

2
e

–5t

13.6 LAPLACE TRANSFORM OF PERIODIC

FUNCTIONS

Periodic functions appear in many practical problems. Let function f(t) be a
periodic function which satisfies the condition f (t) = f(t + T ) for all t > 0 where
T is period of the function.

L[ f(t)] =
0

T

z f (t) e–st dt + 
T

T2

z f(t)e–st dt + � + 
nT

n T+( )

z
1

f(t)e–st dt +�
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=
0

T

z f (t) e–st dt + 
0

T

z f (t) e–st e–sT dt + � + 
0

T

z f (t) e–st e–nsT dt +�

= (1 + e–sT + e–2sT +� + e–nsT +�)
0

T

z f (t) e
–st

dt

=
1

1 - -e sT

0

T

z f (t)e–st dt

Example 13.14 Find the transform of the waveform shown in Fig. 13.2.

Fig. 13.2

Solution Here the period is 2T

\ L [f(t)] =
1

1 2

0

2

-

L

N
M
M

O

Q
P
P-

-ze
f t e dt

sT

T

stb g

=
1

1 2

0

2

-
+ -

L

N
M
M

O

Q
P
P-

- -z ze
Ae dt A e dt

sT

T

st

T

T

stb g

=
1

1 2
0

2

-

- I
KJ +

I
KJ

L

N
M
M

O

Q
P
P-

- -

e

A

s
e

A

s
e

sT

st

T

st

T

T

=
1

1
1

2

2

-
- - + -

L
NM

O
QP-

- - -

e

A

s
e

A

s
e e

sT

sT sT sTe j e j

=
1

1
1

1

12

2

-
-

L
NM

O
QP

=
-

+

F
HG

I
KJ-

-
-

-e

A

s
e

A

s

e

e
sT

sT
sT

sTe j

\ L [f (t) =
A

s

e

e

sT

sT

1

1

-

+

F
HG

I
KJ

-

-

13.7 THE CONVOLUTION INTEGRAL

If F(s) and G(s) are the Laplace transforms of f(t) and g(t), then the product of
F(s) G(s) = H(s), where H(s) is the Laplace transform of h(t) given by f (t) * g(t)
and defined by
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h(t) = f (t) * g(t)  = 
0

t

z f(t) g(t – t)dt

Proof Let
0

t

z f (t) g(t – t) dt = h(t)

By definition

L [h(t)] =
0

•

z e–st h(t) dt

=
0 0

•
-z ze s t

t

f (t) g(t – t) dt dt

=
0 0

•

z z
t

e
–st

f (t) g(t – t) dt dt

By changing the order of integration of the above equation, we have

L [h(t)] =
0

• •

z z
t

e–st f (t) g(t – t) dt dt

=
0

•

z f (t)
t

t t
•

-z -( )
L
N
M

O
Q
Pe g t dt ds t

Put t – t = y, and we get

L [h(t)] =
0

•

z f(t)
0

•
- +( )z ( )

L
N
M

O
Q
Pe g y dy ds y t t

=
0

•

z f (t) e–st[G(s)] dt

= G(s) ◊ F(s)

Therefore, L [h(t)] = H(s) = G(s) ◊ F(s)

h(t) = 
0

t

z f (t) g(t – t)dt defines the convolution of functions f (t) and g(t) and

is expressed symbolically as

h(t) = f (t) * g(t)

This theorem is very useful in frequency domain analysis.

Example 13.15 By using the convolution theorem, determine the inverse
Laplace transform of the following functions.

(i)
1

2 2 2s s a-e j
(ii)

1

12s s +b g
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Solution (i) Let H(s) = 
1

2 2 2s s a-e j
 and

let F(s) =
1
2s

 and G(s) = 
1

2 2
s a-

We know f(t) = L 
–1

[F(s)] = L 
–1 1

2s

F
HG

I
KJ  = t

g(t) = L 
–1

[G(s)] = L 
–1

1
2 2s a-

F
HG

I
KJ  = 

1

a
 sin h (at)

Hence L
–1 1

2 2 2s s a-

L

N
M
M

O

Q
P
Pe j

 =
0

t

z g(t) f(t – t)dt

=
1

0
a

t

z (t – t) sin h (a t)dt

1
1

0 0
a

t h a d h a d

t t

- - -
L

N
M
M

O

Q
P
Pz z zt t t t tb g b g b g b gsin sin

=
1

0 0
a

t
ha

a

ha

a
d

t t

-
I
KJ +

L

N
M
M

O

Q
P
Pzt

t t
tb g cos cos

=
1

0a

t

a

ha

a

t
-

+
I
KJ

L

N
M
M

O

Q
P
P

sin t

=
1
2a

 [sin h at – t]

(ii) Let H(s) = 
1

12s s +b g
 and F(s) = 

1
2s

G(s) = 
1

1s +

We know that f(t) = L 
–1

 [F(s)] = t

g(t) = L 
–1

 [G(s)] = e
–t

h(t) = L 
–1

[H(s)] = 
0

t

z g(t) f(t – t) dt
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=
0

t

z e
–t

 (t – t) dt

= (t – t) (–e
–t

)
t

0
–

0

t

z (–1) (– e
–t 

)dt

= t –
0

t

z e
–t

dt

= t – (–e
–t

)
t

0
 = t + e

–t
– 1

13.8 PARTIAL FRACTIONS

Most transform methods depend on the partial fraction of a given transform
function. Given any solution of the form N(s) = P(s)/Q(s), the inverse Laplace
transform can be determined by expanding it into partial fractions. The partial
fractions depend on the type of factor. It is to be assumed that P(s) and Q(s)
have real coefficients and contain no common factors. The degree of P(s) is
lower than that of Q(s).

Case 1 When roots are real and simple

In this case N(s) = P(s)/Q(s)

where Q(s) = (s – a)(s – b)(s – c)

Expanding N(s) into partial fractions, we get

N(s) =
A

s a

B

s b

C

s c-( )
+

-( )
+

-( )
(13.2)

To obtain the constant A, multiplying Eq. 13.2 with (s – a) and putting s = a,
we get

N (s)(s – a) |s = a = A

Similarly, we can get the other constants

B = (s – b)N(s) |s = b

C = (s – c)N(s) |s = c

Example 13.16 Determine the partial fraction expansion for N(s) =
s s

s s s

2 1

5 3

+ +

+ +b gb g .

Solution N(s) =
s s

s s s

2 1

5 3

+ +

+ +b gb g

s s

s s s

2 1

5 3

+ +

+ +b gb g
 =

A

s

B

s

C

s
+

+
+

+5 3
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A = sN(s)|
s = 0

 = 
s s

s s
s

2

0

1

5 3

+ +

+ +
=

b gb g
= 

1

15

B = (s + 5) N(s) |
s = –5

=
s s

s s
s

2

5

1

3

+ +

+
= -

b g

=
25 5 1

5 5 3

21

10

b g b g
b gb g

+ - +

- - +
=  = 2.1

C = (s + 3) N(s)|
s = –3

=
s s

s s
s

2

3

1

5

+ +

+
= -

b g

=
9 3 1

3 3 5

7

6

- +

- - +
=

-b gb g
 = – 1.17

Case 2 When roots are real and multiple

In this case N(s) = P(s)/Q(s)

where Q(s) = (s – a)n Q1(s)

The partial fraction expansion of N(s) is

N(s) =
A

s a

A

s a

A

s a

P s

Q sn n

n0 1
1

1 1

1-( )
+

-( )
+ +

-( )
+

-

- ( )

( )
� (13.3)

where
P s

Q s

1

1

( )

( )
 = R(s) represents the remainder terms of expansion. To obtain the

constant A
0
, A

1
, ..., A

n–1
, let us multiply both sides of Eq. 13.3 by (s – a)

n

Thus

(s – a)n
N(s) = N1(s) = A0 + A1(s – a)

+ A2(s – a)2 + ... + An–1 (s – a)n–1 + R(s) (s – a)n (13.4)

where R(s) indicates the remainder terms.
Putting s = a, we get

A0 = (s – a)n N(s)|s = a

Differentiating Eq. 13.4 with respect to s, and putting s = a, we get

A1 =
d

ds
N s

s a
1 ( )

=

Similarly, A2 =
1

2

2

2 1
!

d

ds
N s

s a

( )

=

In general, An =
1 1

n

d N s

ds

n

n
s a

!

( )

=
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Example 13.17 Determine the partial fraction expansion for

N(s) =
s

s s

-

+

5

2
2b g

Solution

N(s) =
s

s s

-

+

5

2
2b g

N(s) =
s

s s

A

s

B

s

B

s

-

+
= +

+
+

+

5

2 2 22
0

2
1

b g b g

A = N(s)s |
s = 0

 = 
s

s
s

-

+
=

-

=

5

2

5

42

0
b g

 = – 1.25

N
1
(s) = (s + 2)

2
N(s) = 

s - 5

2

B
0
 = N(s) (s + 2)

2
|
s = –2

 = 
s

s

-

= -

5

2 2

=
-

-

7

2
 = 3.5

B
1
 =

d

ds
N s

s

1
2

b g
= -

=
d

ds s
s

1
5

2

-
F
HG

I
KJ

= -

= + =

= -

5 5

42
2

s
s

 = 1.25

Case 3 When roots are complex

Consider a function N (s) = 
P s

Q s s j s j

( )

( ) - +( ) - -( )1 a b a b

The partial fraction expansion of N(s) is

N(s) =
A

s j

b

s j

P s

Q s- -
+

- +
+

( )

( )a b a b
1

1

(13.5)

where P
1
(s)/Q

1
(s) is the remainder term.

Multiplying Eq. 13.5 by (s – a – jb) and putting s = a + jb, we get
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A =
P j

Q j j

a b

a b b

+( )

+( ) +( )1 2

Similarly, B =
P j

j Q j

a b

b a b

-( )

-( ) -( )2 1

In general, B = A* where A* is complex conjugate of A.
If we denote the inverse transform of the complex conjugate terms as f (t)

f (t) = L
–1 A

s j

B

s j- -
+

- +

L
NM

O
QPa b a b

= L
–1 A

s j

A

s j- -
+

- +

L
NM

O
QPa b a b

*

where A and A* are conjugate terms.
If we denote A = C + jD, then

B = C – jD = A*

\ f (t) = eat (Ae jb t + A* e– jb t)

Example 13.18 Find the inverse transform of the function

F(s) =
s

s s s

+

+ +

5

2 52e j

Solution F(s) =
s

s s s

+

+ +

5

2 52e j
By taking partial fractions, we have

F(s) =
s

s s s

+

+ +

5

2 52e j
  = 

A

s

B

s j

B

s j
+

+ -
+

+ +1 2 1 2

*

A = F(s)s|
s = 0

 = 
s

s s

+

+ +

5

2 52e j
 = 1

B = F(s)(s + 1 – j 2) |
s = –1+j2

 = 
s

s s j
s j

+

+ +
= - +

5

1 2
1 2

b g

=
4 2

1 2 4

+

- +

j

j jb g

=
2

2 1 2

2

2 4

1

2

+

- +
=

+

- -
=

-j

j j

j

jb g
B* = F(s)(s + 1 + j 2) |

s = –1– j2
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=
s

s s j
s j

+

+ -
= - -

5

1 2
1 2

b g

=
- - +

- - - - + -

1 2 5

1 2 1 2 1 2

j

j j jb gb g

=
4 2

1 2 4

4 2

4 8

2 2

4 2

1

2

-

+ +
=

-

-
=

-

- -
=

-j

j j

j

j

j

jb gb g
b g
b g

\ F(s) =
1 1

2 1 2

1

2 1 2s s j s j
-

+ -
-

+ +b g b g
The inverse transform of F(s) is f(t)

f(t) = L
–1

 [F(s)] = L
–1 1 1

2 1 2

1

2 1 2s s j s j
-

+ -
-

+ +

L
N
M
M

O
Q
P
Pb g b g

= L L L
- - -L

NM
O
QP

-
+ -

L
N
M
M

O
Q
P
P

-
+ +

L
N
M

O
Q
P1 1 11 1

2

1

1 2

1

2

1

1 2s s j s jb g

= 1 –
1

2
e

(–1+j2)t
–

1

2
e

(–1–j2)t

13.9 APPLICATIONS OF LAPLACE TRANSFORMS

Laplace transform methods are used to find out transient currents in circuits
containing energy storage elements. To find these currents, first the differential
equations are formed by applying Kirchhoff’s laws to the circuit, then these
differential equations can be easily solved by using Laplace transformation
methods.

Consider a series RL circuit shown in
Fig. 13.3.

When the switch is closed at t = 0, the
voltage V is applied to the circuit.

By applying Kirchhoff’s laws, we get

Ri(t) + L
di

dt
 = V (13.6)

Now, application of Laplace transform to each term gives,

RI(s) + L[sI(s) – i(0)] = 
V

s

RI(s) + sL I(s) – Li(0) = 
V

s
(13.7)

Fig. 13.3
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i(0) is the current passing through the circuit just before the switch is closed.
When i(0) = 0, Eq. 13.7, becomes

RI(s) + sLI(s) = 
V

s

I(s) = 
V L

s s
R

L

/

+F
H

I
K

The current i(t) can be determined by taking inverse Laplace transform.

i(t) = L
–1 [I(s)] = 

V

L s s R L
L

-

+( )

L
NM

O
QP

1 1

/

To find the constants, let

1

s s R L+( )/
 =

A

s

B

s R L
+

+ /

A =
1

0s s R L
s

L

Rs+( )
¥ =

=/

B =
1

s s R L
s

R

L

L

Rs R L+( )
¥ +F

H
I
K =

-

= -/ /

\ i(t) = L
–1[I(s)] = 

V

L

L

Rs

L

R s R L
L

- -
+( )

L
NM

O
QP

1

/

=
V

L

L

R

L

R
e

R L t¥ -L
NM

O
QP( ) - ( )1 /

=
V

L

L

R
¥  [1 – e–(R/L)t]

Current i(t) =
V

L
 [1 – e–(R/L)t]

Example 13.19 In the circuit shown in Fig. 13.4, determine the current i (t) when
the switch is changed from position 1 to 2. The switch is moved from position 1 to 2
at time t = 0.

Fig. 13.4

Solution When the switch is at position 2, application of Kirchhoff’s law gives

10i(t) + 0.5 
di

dt
= 50 (13.8)
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Taking Laplace transforms on both sides

10I(s) + 0.5[sI(s) – i(0)] = 
50

s
(13.9)

Where i (0) is the current passing through RL circuit when switch is at
position 1.

Therefore, the initial current is 10/10 = 1 A

i (0) = 1 A

Then Eq. 13.9, becomes

10I(s) + 0.5[sI(s) – 1] = 
50

s

I(s)[10 + 0.5s] – 0.5 = 
50

s

I(s) = 
50 0 5

10 0 5

0 5 100

0 5 20

/ .

.

.

.

s

s s

s

s

+

+
=

+

+

b g
b g

=
s

s s

+

+

100

20b g

i(t) = L  
–1

 [I(s)] = L  
–1 s

s s

+

+

L

N
M
M

O

Q
P
P

100

20b g

s

s s

+

+

100

20b g
=

A

s

B

s
+

+ 20

A + B = 1

20A = 100

A = 5, B = – 4

i(t) = L L
- -L

NM
O
QP

+
-

+

L

N
M

O

Q
P

1 15

8

4

20s

i(t) = 5 – 4e
–20t

Example 13.20 In the circuit shown in Fig. 13.5, obtain the equations for i
1
(t)

and i
2
(t) when the switch is closed at t = 0.

s

i2i150 V 20 W

10 W

1 H

Fig. 13.5
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Solution When the switch is closed, 50 V source is applied to the circuit. By
applying Kirchhoff’s law, we have

20 i
1
(t) – 20 i

2
(t) = 50 (13.10)

30i
2
(t) + 1 

di

dt

2 – 20i
1
(t) = 0 (13.11)

Taking Laplace transform on both sides, we get

20I
1
(s) – 20I

2
(s) = 

50

s

– 20I
1
(s) + (30 + s) I

2
(s) =  i

2
(0)

Since the current passing through the inductance just after the switch closed is
zero, i

2
(0) = 0

20 20

20 30
1

2

-

- +

L

N
M

O

Q
P
L

N
M

O

Q
P

s

I s

I sb g
b g
b g

 = 
50

0
s

L

N
M
M

O

Q
P
P

I
1
(s) =

50
20

0 30

20 20

20 30

s
s

s

-

+

-

- +

b g
 = 

50 30

20 10

/s s

s

+

+

b g
b g

=
2 5 30

10

. s

s s

+

+

b g
b g

I
2
(s) =

20
50

20 0

20 20

20 30

s

s

-

-

- +

 = 

50
20

20 10
s

s

¥

+b g

=
50

10s s +b g

Taking partial fractions, we get

I
1
(s) =  

2 5 30

10 10

. s

s s

A

s

B

s

+

+
= +

+

b g
b g

=
+

-
+

7 5 5

10

.

s s
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Taking inverse transform, we get

i
1
(t) = L [I

1
(s)] = L 

�1 +L
NM

O
QP

7 5.

s
� L 

�1 5

10s +

L

N
M

O

Q
P

i
1
(t) = + 7.5 – 5e

–10t

Similarly, I
2
(s) =

50

10 10s s

A

s

B

s+
= +

+b g

I
2
(s) =

+
-

+

5 5

10s s

Taking inverse transform, we have

i
2
(t) =  L 

�1

 [I
2
(s)] = L 

�1 +F
HG

I
KJ

5

s
 � L 

�1 5

10s +

F
HG

I
KJ

i
2
(t) = + 5 – 5e

–10t

ADDITIONAL SOLVED PROBLEMS

Problem 13.1 For the waveform shown in Fig. 13.6, find the Laplace
transform.

Solution The function for the waveform shown in Fig. 13.6 is

f (t) = A sin t for 0 < t < p
= 0 t > p

By definition, we have

L [f (t)] =
0

•

z f (t)e–st dt

=
0

p

z f (t) e–st dt + 
p

•

z f (t) e–st dt

Since f (t) = 0 for t > p, the second term becomes zero

\ L [f (t)] =
0

p

z f (t)e–st
dt

=
0

p

z A sin t e–st dt

= A
e

s

st-

+2 1c h
 [– s sin t – cos t]p

0

= 2A
e

s

s- -

+

p 1

12c h

A

f t( )( )

t0 p

Fig. 13.6
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Problem 13.2 Find the Laplace transform of

f (t) = t for 0 < t < 1

= 0 for t > 1

Solution By definition,

L [f(t)] =
0

•

z e–st f (t)dt

=
0

1

z f (t)e–st
dt + 

1

•

z f (t) e
–st

dt

Since f (t) = 0 for t > 1, the second term becomes zero

L [f (t)] = 
0

1

z f (t)e–st dt

=
0

1

z te
–st

 dt

= t

0

1

z e
–st

dt –
0

1

z
-

-

e

s

st

 dt

= t
e

s

e

s

st st- -

-

I
KJ

-
I
KJ

0

1

2
0

1

=
e

s

e

s s

s s- -

-
- +

2 2

1

=
1
2s

– e–s 1 1
2s s

+L
NM

O
QP

Problem 13.3 Verify the initial and final value theorems for the function

f (t) = e–t (sin 3t + cos 5t).

Solution f (t) = e
–t
 (sin 3t + cos 5t)

F(s) = L [f (t)] = L [e–t (sin 3t + cos 5t)]

Since L (e–t sin 3t) =
3

1 32 2s +( ) +

and L (e–t cos 5t) =
s

s

+

+( ) +

1

1 52 2

\ F(s) = L [f (t)] = 
3

1 32 2s +( ) +
 + 

s

s

+

+( ) +

1

1 52 2

According to the initial value theorem,

Lt
t Æ 0

f (t) = Lt
s Æ •

sF(s)

t

1

1

f t( )( )

0

Fig. 13.7
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F(s) =
3

2 10

1

2 262 2s s

s

s s+ +
+

+

+ +

sF(s) =
3

1
2 10

1
2 262

2

2

2
2

s

s
s s

s s

s
s s

+ +F
H

I
K

+
+

+ +F
H

I
K

=
3

1
2 10

1

1
2 26

1

1
2 26

2 2 2
s

s s s s
s

s s
+ +F

H
I
K

+
+ +

+

+ +F
H

I
K

Lt
s Æ •

sF(s) = 1

f (t) = e–t (sin 3t + cos 5t)

Lt
t Æ 0

f (t) = 1

Hence the initial value theorem is proved. According to the final value
theorem,

Lt
t Æ •

f (t) = Lt
s Æ 0

sF(s)

Lt
s Æ 0

 sF(s) = 0

Lt
t Æ •

f (t) = 0

Hence the final value theorem is proved.

Problem 13.4 Determine the inverse Laplace transform of the function

F(s) =
s

s s

-

+ +

3

4 132

Solution F(s) =
s

s s

s

s

s

s

-

+ +
=

-

+( ) +
=

+( ) -

+( ) +

3

4 13

3

2 9

2 5

2 92 2 2

We can write the above equation as

s

s s

+

+( ) +
-

+( ) +

2

2 9

5

2 92 2

By taking the inverse Laplace transforms, we get

L
–1F(s) = L

–1 s

s

+

+( ) +

L
NM

O
QP

2

2 92
– L

–1
5

2 92s +( ) +

L
NM

O
QP

= e–2t cos 3t –
5

3
e–2t sin 3t = 

e t- 2

3
 [3 cos 3t – 5 sin 3t]

Problem 13.5 Find the inverse transform of the following

(a) log 
s

s

+

+

F
HG

I
KJ

5

6

(b)
1

52 2 2
s +c h
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Solution (a) Let F(s) = log 
s

s

+

+

F
HG

I
KJ

5

6

Then
d

ds
 [F(s)] =

d

ds

s

s s s
log

+

+

F
HG

I
KJ

L
NM

O
QP

=
+

-
+

5

6

1

5

1

6

We know that L
–1 d

ds
F s( )L

NM
O
QP
 = – t f (t)

\ L
–1 d

ds
F s( )L

NM
O
QP
 = L

–1 1

5

1

6s s+
-

+

L
NM

O
QP

 = e
–5t – e

–6t

Hence – t f (t) = e–5t – e–6t

f (t) =
e e

t

t t- --6 5

(b) Let F(s) =
1

52 2 2
s +c h

1

52 2 2
s +c h

 =
1

52 2 2s

s

s +c h

Therefore L
–1 1

52 2 2
s +

L

N
M
M

O

Q
P
Pc h

 = L
–1 1

52 2 2s

s

s +

L

N
M
M

O

Q
P
Pc h

According to the integration theorem,

L
–1 1

52 2 2s

s

s +

L

N
M
M

O

Q
P
Pc h

 =
0

1

2 2 2
5

t
s

s
z -

+

L

N
M
M

O

Q
P
P

L

c h
dt

If L [f (t)] = F(s), then L  
f t

t

( )L
NM

O
QP
 = 

s

•

z F(s) ds

Here
s

s

s
ds

•

z
+2 2 2

5c h
 =

-

+

L
NM

O
QP

=
+

•
1

2

1

5

1

2

1

52 2 2 2s ss

Therefore
f t

t

( )
 = L

–1 1

2

1

5

1

102 2
◊

+

F
HG

I
KJ

=
s

 sin 5t

\ f (t) =
t tsin 5

10

or L
-

+

L

N
M
M

O

Q
P
P

1

2 2 2

1

5s

s

sc h
 =

0

5

10

t
t t

dtz
sin

=
1

10

5

5

5

25 0
t

t t t-F
H

I
K +L

NM
O
QP

cos sin

=
1

250
 [sin 5t – 5t cos 5t]
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Problem 13.6 Find the Laplace transform of the full wave rectified output as
shown in Fig. 13.8.

Solution We have

f (t) = 10 sin wt  for 0 < t < 
p

w

Hence L [f (t)] = 0

1

p w

p w

/

/

z -

-

( )

-

e f t dt

e

st

s

c h

= 0

10

1

p w

p w

w
/

/

sinz -

--

e t dt

e

st

s

c h

=
10

1 2 2
0- +

- -( )
L
NM

O
QP-

-

e

e

s
s t t

s

st

p w

p w

w
w w w/

/

sin cos

=
10

1 2 2- +-e s
sp w w/c h c h

 [w e–sp/w + w]

=
10 1

12 2

w

w

p w

p ws

e

e

s

s+

+

-

-

-

/

/

c h
c h

=
10

2 2

2 2

2 2

w

w

p w p w

p w p ws

e e

e e

s s

s s+

+

-

-

-

/ /

/ /

=
10

22 2

w

w

p

ws
h

s

+
F
H

I
Kcos

Problem 13.7 Find the Laplace trans-
form of the square wave shown in
Fig. 13.9.

Solution We have

f (t) = A 0 < t < a
= – A a < t < 2a

L[f (t)] =
1

1 2
0

2

-
+ -( )

L

N
M

O

Q
P-

- -z z
e

Ae dt A e dt
as

a
st

a

a
st

=
A

s

e e

e

as as

as

1 2

1

2

2

- +

-

- -

-

c h

=
A

s

e

e e

A

s

as
as

as as

1

1 1 2

2
-

+ -
= F

H
I
K

-

- -

c h
c h c h

tanh

t

10

p w/ 2 /p w 3 /p w

f t( )( )

Fig. 13.8

Fig. 13.9
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Problem 13.8 Obtain the inverse transform of F(s) = 
1

2s s +( )
 by using the

convolution integral.

Solution Let F
1
(s) =

1

s
 and F

2
(s) = 

1

2s +

We have f1(t) = L
–1 [F1(s)] = L –1 1

s

F
H

I
K  = 1

Similarly, f2(t) = L
–1 [F2(s)] = L –1 1

2s +

F
HG

I
KJ

 = e–2t

According to the convolution integral,

f1(t)* f2(t) =
0

t

z f1(t – t ) f2(t)dt

Since f1(t – t) = 1 and f2(t) = e–2t

\ f1(t)* f2(t) =
0

t

z 1 ◊ e–2t dt

=
e e

t t- -

-

I
KJ

=
-

+ =
2

0

2

2 2

1

2

1

2

t

 [1 – e
–2t]

\ L
–1 1

2s s +( )

L
NM

O
QP

 =
1

2
 [1 – e–2t]

Problem 13.9 Determine the convolution integral when f
1
(t) = e

–2t
 and f

2
(t)

= 2t.

Solution We have

f1(t) * f2(t) =
0

t

z f1(t ) f2(t – t)dt

Then f1(t) * f2(t) =
0

t

z 2t e–2(t–t) dt = e–2t

0

t

z 2t e2t dt

= 2e–2t t t
t te e

d

t2 2

02
1

2
- ◊

L
NM

O
QPz

= 2e–2t te et t2 2

2 4

1

4
- +

L
NM

O
QP

= t
e

t

- +
L
NM

O
QP

-1

2 2

2
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Problem 13.10 The circuit shown in Fig. 13.10 consists of series R-L
elements. The sine wave is applied to the circuit when the switch s is closed at
t = 0. Determine the current i(t).

Fig. 13.10

Solution In the circuit, the current i(t) can be determined by using Kirchhoff’s law.

5
di

dt
 + 10i = 50 sin 25t

Applying Laplace transform on both sides

5[sI(s) – i(0)] + 10I(s) = 50 ¥
25

252 2s + ( )

where i(0) is the initial current passing through the circuit. Since the inductor
does not allow sudden changes in currents, the current i(0) = 0.

\ 5sI(s) + 10I(s) =
50 25

252 2

¥

+ ( )s

I(s) =
1250

625 5 10

250

625 22 2s s s s+ +( )
=

+ +( )c h c h
By taking partial fractions, we have

I(s) =
250

2 25 25s s j s j+( ) +( ) -( )

I(s) =
A

s

B

s j

C

s j+
+

+
+

-( )

L
NM

O
QP2 25 25

where A = (s + 2) I(s) |
s = –2

= (s + 2) 
250

2 252 2

2
s s

s
+( ) + ( )

= -

=
250

629
 = 0.397

B = (s + j25) I(s) |s= – j25

= (s + j25)
250

2 25 25 25s s j s j s j+( ) +( ) -( ) = -

=
250

2 25 50

5

25 2-( ) -( )
=

-

+( )j j j

C = (s – j25) I(s)|s = j25
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= (s – j25)
250

2 25 25 25s s j s j s j+( ) +( ) -( ) =

=
250

2 25 50

5

25 2+( ) ( )
=

-( )j j j

Substituting the values of A, B, C in I(s), we get

I(s) =
0 397

2

5

25 2 25

5

25 2 25

.

s j s j j s j+
-

+ +
+

- -b g b g b g b g
By taking the inverse transform on both sides, we get

i(t) = 0.397 e–2t –
5

25 2+( )j
 e– j25t + 

5

25 2-( )j
 e j25t

Problem 13.11 For the circuit shown in Fig. 13.11, determine the current i(t)
when the switch is at position 2. The switch s is moved from position 1 to
position 2 at time t = 0. The switch has been in position 1 for a long time.

Solution When the switch s is at position 2, by applying Kirchhoff’s voltage
law, we get

2
di

dt
 + 50i = 0

di

dt
 + 25i = 0

Taking Laplace transform on both sides

s I(s) – i(0) + 25 I(s) = 0

where i(0) is the initial current passing through circuit just after the switch is at
position 2. Since the inductor does not allow sudden changes in currents, i(0) is
the same as the steady state current when the switch is at position 1.

\ i(0) = 
50

50
 = 1A

Hence s I(s) – 1 + 25 I(s) = 0

\ I(s) =
1

25s +

By taking inverse transform of the above equation, we have the current
i(t) = e–25t

Problem 13.12 For the circuit shown in Fig. 13.12, find the voltage across
the 0.5 W resistor when the switch, s, is opened at t = 0. Assume there is no
charge on the capacitor and no current in the inductor before switching.

s
5 A 0.5 W 1 H1 H 1 F

Fig. 13.12

Fig. 13.11
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Solution By applying Kirchhoff’s current law to the circuit, we have

2v + 1 
- •

z
t

vdt + 
d

dt

v
 = 5

2v + 1 
- •

z
0

vdt + 1 
0

t

z vdt + 
d

dt

v
 = 5

Taking Laplace transforms on both sides, we get

2V(s) + L
- •

z
L

N
M
M

O

Q
P
P

+
( )

0

vdt
V s

s
 + [sV(s) – v (0)] = 

5

s

Since the initial voltage across the capacitor and the initial current in the
inductor is zero, the above equation becomes

2V(s) + 
V s

s

( )
 + sV(s) =

5

s
V(s) [2s + s2 + 1] = 5

V(s) =
5

2 12s s+ +

\ V(s) =
5

1 2s +( )

Taking inverse transforms on both sides, we have

v(t) = + 5te– t

Problem 13.13 For the circuit shown in Fig. 13.13, determine the current in
the 10 W resistor when the switch is closed at t = 0. Assume initial current
through the inductor is zero.

Fig. 13.13

Solution By taking mesh currents when the switch is closed at t = 0, we have
20 = 5i1(t) – 5i2(t)

and – 5i1(t) + 15i2(t) + 2 
di

dt

2  = 0

Taking Laplace transforms on both sides, we have

5I1(s) – 5I2(s) =
20

s

– 5I1(s) + 15I2(s) + 2[sI2(s) – i(0)] = 0
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Since the initial current through the inductor is zero i(0) = 0

\
5 5

5 2 15

20

0

1

2

-

- +( )

L
NM

O
QP
L
NM

O
QP

=
L
NM

O
QP

( )

( )s

I s

I s

s/

\ I2(s) =

5 20

5 0

5 5

5 2 15

/s

s

-

-

- +( )

 = 
20 5

5 2 15 25

/s

s

¥

+( ) -

I2(s) =
100

5 2 10s s +

Taking partial fractions, we get

10

5s s +( )
 =

A

s

B

s
+

+ 5

Solving for the constants

A =
10

5 0s s
s

s+( ) =

 = 2

B =
10

5
5

5s s
s

s+( )
+( )

= -

 = – 2

\ I2(s) =
2 2

5s s
-

+

Taking inverse transform on both sides, we have

i2(t) = 2 – 2e–5t

Therefore, the current passing through the 10 W resistor is (2 – 2e
–5t

) A

Problem 13.14 For the circuit shown in Fig. 13.14, determine the current
when the switch is moved from position 1 to position 2 at t = 0. The switch has
been in position 1 for a long time to get steady state values.

Fig. 13.14

Solution When the switch is at position 2, by applying Kirchhoff’s law, the
current equation is

0.1
di

dt
 + 2i = 20
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Taking Laplace transform on both sides, we get

0.1[sI(s) – i(0)] + 2I(s) = 
20

s

i(0) is the current passing through the circuit just after the switch is at
position 2. Since the inductor does not allow sudden changes in currents, this
current is equal to the steady state current when the switch was at position 1.

Therefore i(0) = 
10

2
= 5 A

Substituting i(0), in the equation, we get

0.1[sI(s) – 5] + 2 I(s) = 
20

s

I(s)[0.1s + 2] = 
20

s
 + 0.5

I(s) = 
5 40

20

s

s s

+( )

+( )

By taking partial fractions, we have

5 40

20

s

s s

+( )

+( )
=

A

s

B

s
+

+ 20

A =
5 40

20 0

s

s s
s

s

+( )

+( )
¥

=

 = 10

B =
5 40

20
20

20

s

s s
s

s

+( )

+( )
¥ +( )

= -

 = – 5

\ I(s) =
10 5

20s s
-

+

Taking inverse transforms on both sides, we have

i(t) = 10 – 5e–20t A

Problem 13.15 For the circuit shown in Fig. 13.15, determine the current
when the switch is closed at a time corresponding to f = 0. Assume initial
charge on the capacitor is q

0
 = 2 coulombs with polarity shown.

i t( ) qo

s 1 W

1 F
+
–50 cos (5050 cos (50 t + f)

Fig. 13.15

Solution By applying Kirchhoff’s voltage law, we have
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i(t) + 
1

1
- •

z
t

idt = 50 cos (50t)

i(t) + 
- •

z
0

dq

dt
dt + 

0

t

z idt = 50 cos (50t)

Taking Laplace transforms on both sides, we have

I(s) + 
I s

s

q

s

s

s

( )
+ =

+

0
2 2

50

50

I(s) 1
1 2 50

502 2
+L

NM
O
QP

+ =
+s s

s

s

I(s) =
50

50

2

12 2

s

s s

s

s+
-

L
NM

O
QP +

=
50 2 2 50

50 1

2 2 2

2 2

s s

s s

- -

+ +

( )

( )

=
48 2 50

50 1

2 2

2 2

s

s s

-

+ +

( )

( )

By taking partial fractions, we have

I(s) =
A

s j

B

s j

C

s+( )
+

-( )
+

+50 50 1

A = I(s) (s + j50)|s = –j50

=
48 2 50

50 1

2 2

50

s

s j s s j

-

-( ) +( )

( )

= -

=
1250

50j +( )

Similarly, B = I(s) (s – j50) |
s = j50

=
48 2 50

50 1

2 2

50

s

s j s s j

-

+( ) +( )

( )

=

 = 
1250

50 - j

and C = I(s)(s + 1)|s = –1

=
48 2 50

50

2 2

2 2
1

s

s s

-

+

( )

( )
= -

 = – 1.98

Substituting the values of A, B, C, we get

I(s) =
1250

50 50

1250

50 50

1 98

1+( ) +( )
+

-( ) -( )
-

+j s j j s j s

.
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Taking inverse transforms

i(t) =
1250

50

1250

50
1 9850 50

+( )
+

-
-

L
NM

O
QP

- + -

j
e

j
e e

j t j t t.  A

Problem 13.16 For the circuit shown in Fig. 13.16, determine the current in
the circuit when the switch is closed at t = 0. Assume that there is no initial
charge on the capacitor or current in the inductor.

Solution When the switch is closed, by applying Kirchhoff’s voltage law, we
have

2i(t) + 
di

dt
 + 1 z idt = 100

i (t)i (t)

2 W

100 V100 V

s

1 F1 F

1 H

Fig. 13.16

Taking Laplace transforms on both sides

2I(s) + [sI(s) – i(0)] + 
I s

s

q

s s

( )
+ =0 100

Since the initial current in the inductor and initial charge on the capacitor is
zero, the above equation reduces to

2I(s) + sI(s) + 
I s

s s

( )
=

100

I(s) 2
1 100

+ +L
NM

O
QP

=s
s s

I(s) = 
100

2 12s s+ +

\ I(s) = 
100

1 2s +( )

Taking inverse transforms on both sides, we get

i(t) = 100 te–t A

Problem 13.17 For the circuit shown in Fig. 13.17, determine the total
current delivered by the source when the switch is closed at t = 0. Assume no
initial charge on the capacitor.
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Fig. 13.17

Solution By applying Kirchhoff’s law, the two mesh equations are

5i1 + 
1

1
- •

z
t

i1 dt + 5i2 = 10e–t

5i1 + 5i2 + 10i2 = 10e–t

Taking Laplace transforms on both sides, we get

5I1(s) + 
I s

s

q

s

1 0( )
+  + 5I2(s) =

10

1s +

Since the initial charge on the capacitor is zero, the equation becomes

5I1(s) + 
I s

s

1 ( )
 + 5I2(s) =

10

1s +

Similarly, 5I
1
(s) + 15I

2
(s) = 

10

1s +

By forming a matrix, we have

5 1 5

5 15

10

1
10

1

1

2

+( )L
NM

O
QP

L
NM

O
QP

=
+

+

L

N

M
M
M

O

Q

P
P
P

( )

( )

/s I s

I s

s

s

I1(s) =

10

1
5

10

1
15

5
1

5

5 15

s

s

s

+

+

+
 = 

150

1

50

1

15 5
1

25

s s

s

+
-

+

F
HG

I
KJ

+F
H

I
K -

I1(s) =
100 1

50 0 3

2

0 3 1

/

. .

s s

s

s

s s

+( )

+( )
=

+( ) +( )

By taking partial fractions, we have

I1(s) =
A

s

B

s+
+

+0 3 1.



Laplace Transforms 13.41

To get A = I1(s)(s + 0.3)|s = –0.3

=
2

1

0 6

0 70 3

s

s s+
=

-( )

= - .

.

.
 = – 0.86

Similarly, B = I1(s) (s + 1)|s = –1

=
2

0 3

2

0 71

s

s s+
=

-

-( )= -. .
 = 2.86

\ I1(s) =
-

+
+

+

0 86

0 3

2 86

1

.

.

.

s s

Taking inverse transforms on both sides, we have

i1(t) = (2.86 e–t – 0.86 e–0.3t)A

Similarly I2(s) =

5
1 10

1

5
10

1

5
1

5

5 15

+F
H

I
K +

+

+F
H

I
K

s s

s

s

 = 
0 2

1 0 3

.

.s s+( ) +( )

By taking partial fractions, we have

I2(s) =
A

s

B

s+
+

+0 3 1.

To get A = I2(s) (s + 0.3)|s = –0.3 = 
0 2

1 0 3

.

.s s+ = -

A = 0.286

B = I2(s) (s + 1)|s = –1

=
0 2

0 3

0 2

0 71

.

.

.

.s s+
=

-= -

 = – 0.286

\ I2(s) =
0 286

0 3

0 286

1

.

.

.

s s+
-

+

By taking inverse transforms, we have

i2(t) = (0.286e
–0.3t – 0.286 e–t)A

Hence, the total current delivered by the source

i(t) = i1(t) + i2(t)

\ i(t) = 2.574e– t – 0.574e–0.3t)A

Problem 13.18 For the circuit shown in Fig. 13.18, determine the current
delivered by the source when the switch is closed at t = 0. Assume that there is
no initial charge on the capacitor and no initial current through the inductor.
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Fig. 13.18

Solution The circuit is redrawn in the s domain in impedance form as shown
in Fig. 13.19.

Fig. 13.19

The equivalent impedance in the s domain

Z(s) =

2
1

2
1

2 0 5

2 12

+F
H

I
K

+ +F
H

I
K

=
+( )

+ +

s
s

s
s

s s

s s

.

The current I(s) =
V s

Z s

( )

( )

=

20
2 1

2 0 5

10 2 1

0 5

2
2

2
s

s s

s s

s s

s s

+ +

+( )
=

+ +

+( )

c h c h
. .

By taking partial fractions, we have

I(s) =
A

s

A

s

B

s2 0 5
+

¢
+

+ .

The constant B for the simple root at s = – 0.5 is
B = (s + 0.5) I(s)| s = – 0.5 = 10

To obtain the constants of multiple roots, we first find I
1
(s).

I1(s) = s2I(s) = 
10 2 1

0 5

2s s

s

+ +

+( )

c h
.

Using the general formula for multiple root expansion, we get

A =
1

0

10 2 1

0 5

0

0

2

0
! .

d

ds

s s

s
s

+ +

+

L

N
M

O

Q
P

=

c h
 = 20
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A¢ =
1

1

10 2 1

0 5

2

0
! .

¢

¢

+ +

+

L

N
M

O

Q
P

=

d

ds

s s

s
s

c h
 = 0

Therefore, I(s) =
20 10

0 52s s
+

+ .

By taking inverse transform on both sides, we have

i(t) = (20t + 10 e–0.5t) A

Problem 13.19 Find the value of i(0
+
) using the initial value theorem for the

Laplace transform given below.

I(s) =
2 3

1 3

s

s s

+

+( ) +( )

Verify the result by solving it for i(t).

Solution The initial value theorem is given by

Lt
t

i t
Æ

( )
0

 = Lt
s

SI s
Æ •

( )

= Lt
s

s s

s sÆ •

+( )

+( ) +( )

2 3

1 3

Bringing s in the denominator and putting s = •, we get

Lt
s

s
s

s
s s

Æ •

+F
H

I
K

+F
H

I
K +F

H
I
K

2

2

2
3

1
1

1
3

 = 2

To verify the result, we solve for i(t) and put t Æ •.
Taking partial fractions

I(s) =
A

s

B

s+
+

+1 3

where, A = (s + 1) 
2 3

1 3

1

21

s

s s s

+

+( ) +( )
=

= -

B = (s + 3) 
2 3

1 3

3

23

s

s s s

+

+( ) +( )
=

= -

Taking inverse transform, we get

i(t) =
1

2
e

–t + 
3

2
e

–3t

By putting t = 0, we have i(0) = 2. The result is verified.

Problem 13.20 Find L
–1

 {F
1
(s)F

2
(s)} by using the convolution of the

following functions.

F1(s) =
1

1s +
 and F2(s) = 

1

2s +
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Solution Taking inverse transforms

f1(t) = 5 e–t

f2(t) = e–2t

Convolution theorem is given by

f1(t) * f2(t) =
0

t

z f1(t – t)f2 (t) dt

=
0

t

z 5e
–(t–t)

e
–2t

dt

= 5e
–t

0

t

z e
t ◊ e

–2t
dt

= 5e–t

0

t

z e–t dt

= 5e–t [1 – e–t]

Problem 13.21 In the circuit shown in Fig. 13.20, determined the voltage
v (t). The capacitor and inductor are initially de-energised.

1 W

1 W1F

4 H
v( )( )t

i t2( )( )
i t1( )( )e(t) =e(t) = (t)d

Fig. 13.20

Solution The transform of the given circuit will be as shown in Fig. 13.21.

Fig. 13.21

Applying Kirchhoff’s voltage law, we get

1 = I1(s)
1

s
 + {I1(s) – I2(s)]1
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and O = I2(s) (1 + 4s) + [I2(s) – I1(s)] ¥ 1

or 1 = I1(s)
1

1
s

+F
H

I
K – I2(s)

and O = 2 I2(s) (1 + 2s) – I1(s)

Solving the above equations for I
1
(s) and I

2
(s), we get

I2(s) =
s

s s+( ) -F
H

I
K1

1

2

I1(s) = 2 –
2

1

2
s -

Taking inverse transform, we get

i2(t) =
2

3
e

–t + 
1

3

1

2e
t

i1(t) = 2d(t) – 2e
1/2t

\ v(t) = [i1(t) – i2(t)] ¥ 1

= 2d(t) –
2

3
e–t + 

7

3

7

2e
t

Problem 13.22 Find the current in the circuit shown in Fig. 13.22 at an
instant t, after opening the switch if a current of 1 A had been passing through
the circuit at the instant of opening.

Fig. 13.22

Solution Applying Kirchhoff’s voltage law in the circuit, we get

6i(t) + 5 
di t

dt

( )
 = 12 + 24

Taking Laplace transform both sides

6I(s) + 5[sI(s) – i(0)] = 
36

s

where, i(0) = 1 A

I(s) [6 + 5s] =
36

s
 + 5

I(s) =
36 5

6 5

+

+( )

s

s s
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Taking partial fractions

I(s) =
6

8

5
6

5

-
+s

Taking inverse transform, we have

i(t) = 6 – 5

6

5e
t-

PRACTICE PROBLEMS

13.1 Find the Laplace transforms of the following functions.
(a) t3 + at2 + bt + 3 (b) sin2 5t

(c) e5t+6 (d) cos h2 3t

13.2 Find the inverse transforms of the following functions

(a)
1

92s +
(b)

2p

ps +

(c)
8

3 5s s+( ) +( )
(d)

5

92s +

(e)
k

s

k

s

k

s

1 2
2

3
3

+ +

13.3 Find the inverse transforms of the following functions.

(a)
5 4

1 2 52

s

s s s

+

-( ) + +c h
(b)

4 2

2 52

s

s s

+

+ +

(c)
s

s s2 2 5- +
(d)

s s

s s

+( )

+ +

1

4 52

13.4 Find the transforms of the following functions.

(a) te–2t sin 2t + 
cos 2t

t
(b) log 

s

s s

2 1

1

-

+( )

L
NM

O
QP

(c) (1 + 2t e–5t)3 (d)
s

s s

+

+ +

4

5 122 2
c h

13.5 Using the convolution theorem, determine the inverse transform of the
following functions.

(a)
5

22 2s s +( )
(b)

s

s2 2
25+c h

(c)
s

s s2 29 25+ +c h c h
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13.6 Find the Laplace transform of the periodic square wave shown in
Fig. 13.23.

T 2T 3T t

A

0

–A

i t( )( )

Fig. 13.23

13.7 Find the Laplace transform of a sawtooth waveform f (t) which is peri-
odic, with period equal to unity, and is given by f (t) = a t for 0 < t < 1.

13.8 Find the Laplace transform of the periodic wave form shown in Fig.
13.24.

0

i t( )( )

2

tp/w 2p w/ 3p w/ 4p w/

Fig. 13.24

13.9 For the circuit shown in Fig. 13.25, determine the current when the switch
is closed at t = 0. Assume zero charge on the capacitor initially.

i(t)

s

10 W

5 F5 F

10 sin 50 t

Fig. 13.25

13.10 For the circuit shown in Fig. 13.26 , determine the current when the
switch is closed at t = 0.
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s

10 W

5 W

5 W

1 H1 H

50 V50 V

Fig. 13.26

13.11 For the circuit shown in Fig. 13.27 determine the total current when the
switch S is closed at t = 0.

Fig. 13.27

13.12 For the circuit shown in Fig. 13.28, determine the voltage across the out-
put terminals when the input is unit step function. Assume no initial
charge on the capacitor.

Fig. 13.28

13.13 For the circuit shown in Fig. 13.29, determine the current through the
circuit, when the switch is moved from position 1 to position 2.

s

1 W

1 H1 H

50 V

21

50 sin 5050 sin 50 t

Fig. 13.29
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13.14 For the circuit shown in Fig. 13.30, determine the current through the
resistor when the switch is moved from position 1 to position 2. Assume
that initial charge on the capacitor is 5 C.

s

5 W

5 H100 V

21

2 F

Fig. 13.30

13.15 For the circuit shown in Fig. 13.31, determine the current when the switch
is closed at t = 0.

Fig. 13.31

13.16 For the given function f (t) = 3u(t) + 2e
–t, find its final value f(•) using

final value theorem.
13.17 An exponential voltage v(t) = 10e

–t is suddenly applied at t = 0 to the
circuit shown in Fig. 13.32 obtain the particular solution for current i(t)
through the circuit.

7 W

5 H5 HLv( ) 10t = e–t

R

K

Fig. 13.32
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13.18 For the circuit shown in Fig. 13.33, the switch is closed at t = 0. Deter-
mine i1(t) and i2(t). The initial currents i1(0) = 1 A and i2(0) = 2 A.

6 W3 H3 H 6 H

t = 0

i1 i2

Fig. 13.33

13.19 In the circuit shown in Fig. 13.34, the switch is changed from position 1
to 2 at t = 0. A steady state position is existing in position 1 before t = 0.
Determine the current i(t) using Laplace transform method.

i t( )

LC

2

V

R 1

Fig. 13.34

OBJECTIVE-TYPE QUESTIONS

1. Laplace transform analysis gives
(a) time domain response only
(b) frequency domain response only
(c) both (a) and (b)
(d) none

2. The Laplace transform of a unit step function is

(a)
1

s
(b) 1

(c)
1
2s

(d)
1

s a+
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3. The Laplace transform of the first derivative of a function f (t) is
(a) F(s)/s (b) sF(s) – f (0)
(c) F(s) – f (0) (d) f (0)

4. The Laplace transform of the integral of function f (t) is

(a)
1

s
 F(s) (b) sF(s) – f (0)

(c) F(s) – f (0) (d) f ¢ (0)
5. The Laplace transform of e5t f (t) is

(a) F(s) (b) F(s – 1)

(c) F
s

5
F
H

I
K (d) F(s – 5)

6. The initial value of 20 – 10t – e
25t is

(a) 20 (b) 19
(c) 10 (d) 25

7. The final value of 
2 1

8 164 3 2

s

s s s s

+

+ + +
 is

(a) 2 (b) infinite
(c) zero (d) 1

8. The inverse Laplace transform of 
1

s
 (1 – e–as) is

(a) u(t) – u(t – a) (b) u(t)
(c) u(t – a) (d) zero

9. The inverse transform of 
6
4s

 is

(a) 3 (b) t2

(c) t3 (d) 3t

10. The inverse transform of 2 log 
s

s

+F
H

I
K

2
 is

(a)
2 2- -e

t

t

(b)
e

t

t- 2

(c)
2

t
(d)

2 2+ -e

t

t

11. The Laplace transform of a square wave with amplitude of peak value A
and period T is

(a)
1

1

+

-

-

-

e

e

sT

sT
(b)

A

s

e

e

sT

sT

1

1

-

+

F
HG

I
KJ

-

-

(c)
A

s

e

e

sT

sT

1

1

+

-

F
HG

I
KJ

(d)
A

s

e

e

sT

sT

1

1

-

+

F
HG

I
KJ

+
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12. The convolution of f (t)* g(t) is

(a)
0

•

z f (t) g(t – t) dt (b)
0

t

z f (t) g(t – t) dt

(c)
0

t

z f (t – t) g(t) dt (d)
0

t

z f (t) g(t – t)dt

13. The inverse Laplace transform of the function 
s

s s

+

+( ) +( )

5

1 3
 is

(a) 2et– e–3t (b) 2e–t + e–3t

(c) e–t – 2e–3t (d) e–t + 2e–3t

14. If L[f (t)] = 
2 1

2 52

s

s s

+( )

+ +
, then f (0+) and f (•) are given by

(a) 0, 2 respectively (b) 2, 0 respectively
(c) 0, 1 respectively (d) 2/5, 0 respectively

15. The final value theorem is used to find the
(a) steady state value of the system output
(b) initial value of the system output
(c) transient behaviour of the system output
(d) none of these

16. The Lapalce transform of a unit ramp function at t = a is

(a)
1

2s a+( )
(b)

e

s a

as-

+( )2

(c)
e

s

as-

2
(d)

a

s2

17. A ramp voltage, v(t) = 100 volts, is applied to an RC series circuit with
R = 5 kW and C = 4mF. The maximum output voltage across capacitor is

(a) 0.2 volt (b) 2.0 volts

(c) 10.0 volts (d) 50.0 volts



14.1 SINGULARITY FUNCTIONS

So far we have discussed the response of networks to simple waveforms, such
as dc, exponential or sinusoidal. Another class of signals is defined by
singularity functions. These are step, ramp and impulse functions. These
functions are divided into the following two groups.

1. Non-recurring type These functions appear for a particular time inter-
val and become zero for all other times, and

2. Recurring type These functions appear for all time, that is, the wave-
form exists for t > 0.

Singularity functions are continuous time functions, and their derivatives,
except one, are also continuous. Singularity functions can be obtained from one
another by successive differentiation or integration. Our analysis of general
networks can be enhanced by the utilisation of singularity functions.

14.2 UNIT FUNCTIONS

(a) Unit step function This function has already been discussed in the
preceding chapter. It is defined as one that has magnitude of one for time greater
than zero, and has zero magnitude for time less than zero.

A unit step function is defined mathematically as

u(t) = 0 for t < 0

= 1 for t > 0

The function is represented as shown in Fig. 14.1

Chapter

14NETWORK
FUNCTIONS
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The Laplace transform of the unit step function is

L [ f (t)] = L [u (t)] = 

0

•

z u (t)e–st
dt

Fig. 14.1

=

0

•

z 1e–stdt

= -
L

N
M

O

Q
P =

-
•

e

s s

st

0

1

(b) Unit ramp function If the unit step function is integrated with respect to
time t, then the unit ramp function results. It is symbolised by r(t). A unit ramp
function increases linearly with time. A unit ramp function may be defined
mathematically as

r (t ) = 

-•

z
t

u(t ) dt

=

-•

z
0

u(t) + 

0

t

z u(t) dt

= 0 + 

0

t

z u(t) dt = t

\ r (t) = 0 for t < 0

= t for t > 0
The function is represented as shown in Fig. 14.2.

Fig. 14.2
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The Laplace transform of the unit ramp function is

L [ f(t)] = L [r(t)] = L u t dt

t

( )

0

z
L

N
M
M

O

Q
P
P

=

0

•

z te–st dt

L [r(t)] = 
1
2s

(c) Unit impulse function If a unit step function u(t) is differentiated with
respect to t, the derivative is zero for time t greater than zero, and is infinite for
time t equal to zero. Mathematically, the function is defined as

d (t) = 0 for t π 0

and

-•

•

z d (t) dt = 1

where the symbol d (t) (delta) is used to represent the unit impulse. An impulse
of unity amplitude occurring at t = 0 gives that it has an area ‘d ’ equal to unity.
The unit impulse function is represented as shown in Fig. 14.3.

f t( )

d ( )t

0 t

Fig. 14.3

The Laplace transform of the unit impulse function is

L [ f(t)] = L [d (t)] = L
d

dt
u t( )

L

N
M

O

Q
P  = s L [u(t)] = s ¥

1

s
 = 1

Therefore L [d (t)] = 1

(d) Unit doublet function If a unit impulse function d (t) is differentiated
with respect to t, we get

d ¢(t) = 
d

dt
[d(t)] = + • and – • for t = 0

= 0 for t π 0

This function is called unit doublet, where d ¢(t) is the symbol used to
represent the unit doublet.

The unit doublet is shown in Fig. 14.4.

The Laplace transform of the unit doublet is
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L [d ¢(t)] = L
d

dt
td ( )

L

N
M

O

Q
P

where d (t) is a unit impulse occurring at t = 0.

f t( )

0 t

+ •

– •

Fig. 14.4

L
d

dt
td ( )

L

N
M

O

Q
P = s{L [d (t)]}

= s ¥ 1 = s

\ L [d ¢(t)] = s

14.3 SHIFTER FUNCTIONS

Consider unit functions such as unit step, ramp and impulse functions as
discussed in Section 14.2. If these functions are displaced by ‘a’ second or
delayed by ‘a’ second then these functions are said to be delayed functions.
These are represented as shown in Fig. 14.5.

Fig. 14.5

The delayed unit step function shown in Fig. 14.5(a) is defined as

u (t – a) = 0 for t < a

= 1 for t > a

The delayed unit ramp function shown in Fig. 14.5(b) is defined as

r (t – a) = 0 for t < a
= t for t > a

The delayed unit impulse function is defined as

d (t – a) = 0 for t π a
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and
- •

•

z d (t – a) dt = 1

14.4 GATE FUNCTION

By the use of step functions, any pulse of unit height can be realised. The pulse
of width a can be generated by combining unit step function u(t) and delayed
inverted unit step function by a time interval a as shown in Fig. 14.6.

Fig. 14.6

In Fig. 14.6(a), the unit step function u(t) combined with – u(t – a), the
inverted unit step function, delayed by a results in the waveform shown in
Fig. 14.6(c).

G (T) = u (t) – u(t – a)

The gate function is only for 0 < t < a.
A periodic pulse train with pulse width a and pulse repetition period T

1
 may

be generated by combining a sequence of positive unit step functions u(t),
u(t – T

1
), u(t – 2T

1
)..., with negative unit step functions u(t – a), u(t – T

1
– a),

u(t – 2T
1

– a)..., as shown in Fig. 14.7.

f t( )

f t( )

u t( ) u t – Tt – T( )1

u t – at – a( ) u t –Tt –T –a( )1 u t –Tt –T –a( )2 u t –Tt –T –a( )3

u t – Tt – T( )2 u t – Tt – T( )3

T1 T2 T3 t

a a a a

T1 T2 T3 t

Fig. 14.7

Therefore, the periodic pulses may be defined as,

f (t) = u(t) – u(t – a) + u(t – T1) – u(t – T1 – a) + ...
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14.5 NETWORK FUNCTIONS

Network functions give the relation between the transform of the excitation to
the transform of the response. Consider the network shown in Fig. 14.8.

Fig. 14.8

For the network shown in Fig. 14.8(a), only one voltage and one current
exist and only one network function is defined. It constitutes of one pair of
terminals called a port. Generally, a driving source is connected to the pair of
terminals. For the two terminal pair network shown in Fig. 14.8(b), two currents
and two voltages must exist. Normally in Fig. 14.8(b), 1–1¢ and 2–2¢ are called
ports. Hence, it is called two-port network. If the driving source is connected
across 1–1¢, the load is connected across 2–2¢. Otherwise, if the source is
connected across 2–2¢, the output is taken across 1–1¢.

14.6 TRANSFER FUNCTIONS OF TWO-PORT

NETWORK

For a one-port network, the driving point impedance or impedance of the
network is defined as

Z (s) = 
V s

I s

( )

( )

The reciprocal of the impedance function is the driving point admittance
function, and is denoted by Y(s).

For the two-port network without internal sources, the driving point
impedance function at port 1–1¢ is the ratio of the transform voltage at port 1–1¢

to the transform current at the same port.

\ Z11(s) = 
V s

I s

1

1

( )

( )

Similarly, the driving point impedance at port 2–2¢ is the ratio of transform
voltage at port 2–2¢ to the transform current at the same port.

Z22(s) = 
V s

I s

2

2

( )

( )

For the two-port network, the driving point admittance is defined as the ratio
of the transform current at any port to the transform voltage at the same port.
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Therefore Y11(s) = 
I s

V s

1

1

( )

( )

or Y
22

(s) = 
I s

V s

2

2

( )

( )
, which is the driving point admittance.

The four other network functions are called transfer functions. These
functions give the relation between voltage or current at one port to the voltage
or current at the other port as shown hereunder.

(i) Voltage transfer ratio This is the ratio of voltage transform at one
port to the voltage transform at the other port, and is denoted by G(s)

G21(s) = 
V s

V s

2

1

( )

( )

and G12(s) = 
V s

V s

1

2

( )

( )

(ii) Current transfer ratio This is the ratio of current transform at one
port to current transform at other port, and is denoted by a (s)

a12(s) = 
I s

I s

1

2

( )

( )

and a21(s) = 
I s

I s

2

1

( )

( )

(iii) Transfer impedance It is defined as the ratio of voltage transform at
one port to the current transform at the other port, and is denoted by Z (s).

\ Z21(s) = 
V s

I s

2

1

( )

( )

and Z12(s) = 
V s

I s

1

2

( )

( )

(iv) Transfer admittance It is defined as the ratio of current transform at
one port to the current transform at the other port, and is denoted by Y(s).

Y21(s) = 
I s

V s

2

1

( )

( )

and Y12(s) = 
I s

V s

1

2

( )

( )

The above network functions are found by forming the system of equations
using node or mesh analysis, and taking the transforms of equations by setting
the initial conditions to zero and solving for ratio of the response to excitation.
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14.7 POLES AND ZEROS

In general, the network function N(s) may be written as

N (s) = 
P s

Q s

a s a s a s a

b s b s b s b

n n
n n

m m
m m

( )

( )
=

+ + + +

+ + + +

-

-

-

-

0 1
1

1

0 1
1

1

…

…

where a
0
, a

1
,..., a

n
 and b

0
, b

1
, ..., b

m
 are the coefficients of the polynomials P(s)

and Q(s); they are real and positive for a passive network. If the numerator and
denominator of polynomial N(s) are factorised, the network function can be
written as

N(s) = 
P s

Q s

a s z s z s z

b s p s p s p

n

m

( )

( )

( ) ( ) ( )

( ) ( ) ( )
=

- - -

- - -

0 1 2

0 1 2

…

…

where z
1
, z

2
, ..., z

n
 are the n roots for P(s) = 0

and p
1
, p

2
, ..., P

m
 are the m roots for Q(s) = 0

and a
0
/b

0
 = H is a constant called the scale factor.

z
1
, z

2
,..., z

n
 in the transfer function are called zeros, and are denoted by 0.

Similarly, p
1
, p

2
,..., p

m
 are called poles, and are denoted by ¥. The network

function N (s) becomes zero when s is equal to anyone of the zeros. N(s)
becomes infinite when s is equal to any one of the poles. The network function
is completely defined by its poles and zeros. If the poles or zeros are not
repeated, then the function is said to be having simple poles or simple zeros. If
the poles or zeros are repeated, then the function is said to be having multiple
poles multiple zeros. When n > m, then (n – m) zeros are at s = •, and for m >
n, (m – n) poles are at s = •.

Consider, the network function

N (s) = 
( ) ( )

( ) ( ) ( )

s s

s s j s j

+ +

+ + + + -

1 5

2 3 2 3 2

2

that has double zeros at s = – 1 and a
zero at s = – 5; and three finite poles at
s = – 2, s = – 3 + j2, and s = – 3 – j2 as
shown in Fig. 14.9.

The network function is said to be
stable when the real parts of the poles
and zeros are negative. Otherwise, the
poles and zeros must lie within the left
half of the s-plane.

14.8 NECESSARY CONDITIONS FOR DRIVING

POINT FUNCTION

The restrictions on pole and zero locations in the driving point function with
common factors in P(s) and Q (s) cancelled are listed below.

1. The coefficients in the polynomials P(s) and Q (s) of network function
N (s) = P(s)/Q (s) must be real and positive.

jw

s

– 3 +– 3 + 2j

– 3– 3 2j–

x

x

x

– 5 – 4 – 3 – 2 – 1

Fig. 14.9
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2. Complex or imaginary poles and zeros must occur in conjugate pairs.

3. (a) The real parts of all poles and zeros must be zero, or negative.

(b) If the real part is zero, then the pole and zero must be simple.

4. The polynomials P(s) and Q(s) may not have any missing terms between the
highest and the lowest degrees, unless all even or all odd terms are missing.

5. The degree of P(s) and Q (s) may differ by zero, or one only.

6. The lowest degree in P(s) and Q(s) may differ in degree by at the most one.

14.9 NECESSARY CONDITIONS FOR TRANSFER

FUNCTIONS

The restrictions on pole and zero location in transfer functions with common
factors in P(s) and Q (s) cancelled are listed below.

1. (a) The coefficients in the polynomials P(s) and Q(s) of N (s) = P(s)/
Q(s) must be real.

(b) The coefficients in Q(s) must be positive, but some of the coeffi-
cients in P(s) may be negative.

2. Complex or imaginary poles and zeros must occur in conjugate pairs.
3. The real part of poles must be negative, or zero. If the real part is zero,

then the pole must be simple.
4. The polynomial Q (s) may not have any missing terms between the high-

est and the lowest degree, unless all even or all odd terms are missing.
5. The polynomial P(s) may have missing terms between the lowest and the

highest degree.
6. The degree of P(s) may be as small as zero, independent of the degree of Q(s).
7. (a) For the voltage transfer ratio and the current transfer ratio, the maxi-

mum degree of P(s) must equal the degree of Q (s).
(b) For transfer impedance and transfer admittance, the maximum de-

gree of P(s) must equal the degree of Q (s) plus one.

14.10 TIME DOMAIN RESPONSE FROM POLE

ZERO PLOT

For the given network function, a pole zero plot can be drawn which gives
useful information regarding the critical frequencies. The time domain response
can also be obtained from pole zero plot of a network function. Consider an
array of poles shown in Fig. 14.10.

jw

s

¥

¥

¥

¥

¥

¥ S3

S4
S2

S*3
S*1

Fig. 14.10
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In Fig. 14.10 s
1
 and s

3
 are complex conjugate poles, whereas s

2
 and s

4
 are real

poles. If the poles are real, the quadratic function is

s
2 + 2dwns + w2

n for d > 1

where d is the damping ratio and w
n
 is the undamped natural frequency.

The roots of the equation are

s2, s4 = – dwn ± wn
d 2 1- ; d > 1

For these poles, the time domain response is given by

i(t) = k2e
s2 t + k4e

s4 t

The response due to pole s
4
 dies faster compared to that of s

2
 as shown in Fig. 14.11.

Fig. 14.11

s
1
 and s

3
 constitute complex conjugate poles. If the poles are complex

conjugate, then the quadratic function is

s2 + 2dwn s + w 2
n for d < 1

The roots are s
1
, s

1

*
 = – dw

n
 ± jw

n
1 2

- d  for d < 1

For these poles, the time domain response is given by

i(t) = k1e–dwn t + j tnw d1 2
-F

H
I
K  + k1

*e–dwn t – j t
n

w d1 2
-F

H
I
K

= ke
–dwn t sin w dn t1 2

-F
H

I
K

From the above equation, we can conclude that the response for the
conjugate poles is damped sinusoid. Similarly, s

3
, s

3

*
 are also a complex

conjugate pair. Here the response due to s
3
 dies down faster than that due to s

1

as shown in Fig. 14.12.
Consider a network having transfer admittance Y(s). If the input voltage V(s)

is applied to the network, the corresponding current is given by

I (s) = V(s) Y(s) = 
P s

Q s

( )

( )

Fig. 14.12
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This may be taken as

I(s) = H
( ) ( ) ( )

( ) ( ) ( )

s s s s s s

s s s s s s

a b n

m

- - -

- - -

…

…1 2

where H is the scale factor.

By taking the partial fractions, we get

I(s) = 
k

s s

k

s s

k

s s

m

m

1

1

2

2-
+

-
+ +

-
…

The time domain response can be obtained by taking the inverse transform

i(t) = L
-

-
+

-
+ +

-

L

N
M

O

Q
P

1 1

1

2

2

k

s s

k

s s

k

s s

m

m

…

Any of the above coefficients can be obtained by using Heavisides method.
To find the coefficient k

l

kl = H
( ) ( ) ( )

( ) ( ) ( )
( )

s s s s s s

s s s s s s
s sa b n

m
l

s s
l

- - -

- - -

L

N
M

O

Q
P -

=

…

…1 2

Here s
l
, s

m
, s

n
 are all complex numbers, the difference of (s

l
– s

n
) is also a

complex number.
\ (sl – sn) = Mln e jf ln

Hence k
l
 = H

M M M

M M M

la lb ln

l l lm

…

…1 2

¥ e
j (fla + f lb + … + fln) – (fl1 + fl2 + … + flm)

Similarly, all coefficients k
1
, k

2
, …, k

m
 may be obtained, which constitute the

magnitude and phase angle.

The residues may also be obtained by pole zero plot in the following way.

1. Obtain the pole zero plot for the given network function.

2. Measure the distances Mla, Mlb, …, Mln of a given pole from each of the
other zeros.

3. Measure the distances Ml1, Ml2, …, Mlm of a given pole from each of the
other poles.

4. Measure the angle fla, flb, ..., fln of the line joining that pole to each of
the other zeros.

5. Measure the angle fl1, fl2, ..., flm of the line joining that pole to each of
the other poles.

6. Substitute these values in required residue equation.

14.11 AMPLITUDE AND PHASE RESPONSE

FROM POLE ZERO PLOT

The steady state response can be obtained from the pole zero plot, and it is
given by

N( jw) = M (w)e jf (w)
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where M(w) is the amplitude

f (w) is the phase

These amplitude and phase responses are useful in the design and analysis of
network functions. For different values of w, corresponding values of M(w)
and f(w) can be obtained and these are plotted to get amplitude and phase
response of the given network.

14.12 STABILITY CRITERION FOR ACTIVE

NETWORK

Passive networks are said to be stable only when all the poles lie in the left half
of the s-plane. Active networks (containing controlled sources) are not always
stable. Consider transformed active network shown in Fig. 14.13.

Fig. 14.13

By applying Millman Theorem, we get

V2(s) = 
V s k V s

s s

1 2

6 5

( ) ( )

/

+

+ +

=
s V s k V s

s s

[ ( ) ( )]1 2
2 6 5

+

+ +

V2(s) [s2 + 6s + 5] – ksV2(s) = sV1(s)

V2(s) [s2 + (6 – k)s + 5] = sV1(s)

\
V s

V s

s

s k s

2

1
2 6 5

( )

( ) ( )
=

+ - +

From the above transformed equation, the poles are dependent upon the
value of k.

The roots of the equation are

s = 
- - ± - - ¥( ) ( )6 6 4 5

2

2k k

For k = 0, the poles are at – 1, – 5, which lie on the left half of the s-plane. As
k increases, the poles move towards each other and meet at a point

( )6 202
- -k  = 0, when k = 1.53 or 10.47. The root locus plot is shown in

Fig. 14.14.
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Fig. 14.14

The root locus is obtained from the characteristic equation s
2
 + (6 – k)s + 5=

0. As the value of k increases beyond 1.53, the locus of root is a circle. The
poles are located on the imaginary axis at ±j2.24 for k = 6. At – 2.24, poles are
coincident for k = 1.53 while at + 2.24, poles are coincident for k = 10.47.
When k > 10.47, the poles again lie on the real axis but remain on the right half
of the s-plane, one pole moving towards the origin and the other moving
towards infinity. From this we can conclude, as long as k is less than 6, the
poles lie on the left half of the s-plane and the system is said to be stable. For k
= 6, the poles lie on the imaginary axis and the system is oscillatory in nature.
For values of k greater than 6, the poles lie on the right half of the s-plane. Then
the system is said to be unstable.

14.13 ROUTH CRITERIA

The locations of the poles gives us an idea about stability of the active network.
Consider the denominator polynomial

Q(s) = b0 s m + b1s
m – 1 + … + bm (14.1)

To get a stable system, all the roots must have negative real parts. There
should not be any positive or zero real parts. This condition is not sufficient.

Let us consider the polynomial

s
3 + 4s

2 + 15s + 100 = (s + 5) (s2 – s + 20)

In the above polynomial, though the coefficients are positive and real, the
two roots have positive real parts. From this we conclude that the coefficients
of Q(s) being positive and real is not a sufficient condition to get a stable
system. Therefore, we have to seek the condition for stability which is necessary
and sufficient.

Consider the polynomial Q (s) = 0. After factorisation, we get

b0 (s – s1) (s – s2) … (s – sm) = 0 (14.2)
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On multiplication of these factors, we get

Q(s) = b0s
m – b0(s1 + s2 + … + sm)sm – 1

+ b0 (s1s2 + s2s3 + … ) sm – 2

+ b0 (–1)m (s1s2 … sm) = 0 (14.3)

Equating the coefficients of Eqs 14.1 and 14.3, we have

b

b

1

0

= – (s1 + s2 + … + sm) (14.4)

= – sum of the roots

b

b

2

0

= 1(s1s2 + s2s3 +…) (14.5)

= sum of the products of the roots taken two at a time

b

b

3

0

= – (s1 s2 s3 + s2 s3 s4 +…) (14.6)

= – sum of the products of the roots taken three at a time.

(– 1)m b

b

m

0

= (s1 s2 s3 … sm) = product of the roots (14.7)

If all the roots have negative real parts, then from the above equations it is
clear that all the coefficients must have the same sign. This condition is not
sufficient due to the fact that the zero value of a coefficient involves
cancellation, which requires some root to have positive real parts.

The Routh criterion for stability is discussed below. Consider a polynomial

Q(s) = b0sm + b1s m – 1 + b2s
m – 2 + … + bm

Taking first row coefficients and second row coefficients separately, we have

b0 b2 b4 …

b1 b3 b5 …

Now we complete the Routh array as follows.

For m = 5
s

5
b0 b2 b4

s4 b1 b3 b5

s3 c1 c2

s
2

d1 d2

s1 e1

s
0

f1

where c
1
, c

2
, d

1
, d

2
, e

l
, f

1
are determined by the algorithm given below.

b0 b2

c1 =
b b

b

b b b b

b

1 3

1

1 2 0 3

1

=
-
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b0 b4

c2 =
b b

b

b b b b

b

1 5

1

1 4 0 5

1

=
-

b1 b3

d1 =
c c

c

c b b c

c

1 2

1

1 3 1 2

1

=
-

b1 b5

d2 =
c

c

b c

c

1

1

5 1

1

0 0
=

-

c1 c2

e1 =
d d

d

c d c d

d

1 2

1

2 1 1 2

1

=
-

d1 d2

f1 =
e

e

d e

e

1

1

2 1

1

0 0
=

-

In order to find out the element in kth row and jth column, it is required to
know the four elements. These elements in the row (k – 1) and row (k – 2) just
above the elements are in column 1 of the array and (J + 1) column of the array.
The product of the elements joined by a line with positive slope has positive
sign while the product of elements joined with a line with negative slope has a
negative sign. The difference of these products is divided by the element of
column 1 and row (k – 1). The above process is repeated till m + 1 rows are
found in the Routh array.

According to the Routh-Hurwitz theorem, the number of changes in the sign
of the first column to the right of the vertical line in an array moving from top to
bottom is equal to the number of roots of Q (s) = 0 with positive real parts. To
get a stable system, the roots must have negative real parts.

According to the Routh-Hurwitz criterion, the system is stable, if and only if,
there are no changes in signs of the first column of the array. This requirement
is, both the necessary and sufficient condition for stability.

ADDITIONAL SOLVED PROBLEMS

Problem 14.1 For the circuit shown in Fig. 14.15, determine the curent i(t)
when the switch is closed at t = 0. Assume that the initial current in the inductor
is zero.
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Fig. 14.15

Solution By applying Kirchhoff’s laws to the circuit

2i(t) + 1 
di

dt
 = 2d (t – 3)

Taking Laplace transform on both sides, we get

2I(s) + 1[sI(s) – i(0)] = 2e–3s

Since the initial current through inductor is zero,

i(0) = 0

The equation becomes

2I(s) + 2I(s) = 2e
–3s

I(s) [s + 2] = 2e–3s

\ I(s) = 
2

2

3
e

s

s-

+

Taking inverse transform, we get

i (t) = 2e
–2(t – 3)

u(t – 3)

Problem 14.2 For the circuit shown in Fig. 14.16, determine the current i(t)
when the switch is closed at t = 0. Assume that the initial charge on the capacitor
is zero.

Fig. 14.16

Solution By applying Kirchhoff’s law to the circuit, we have

5i(t) + 1
di

dt
 + 6 z idt = 5r (t – 1)
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Taking Laplace transforms on both sides, we get

5I(s) + 1[sI (s) – i (0)] + 6 
I s

s

q

s

e

s

s( ) ( )
+

L
NM

O
QP

=

-0 5
2

Since the initial current in the inductor and initial charge on the capacitor is zero

i (0) = 0, q(0) = 0

Therefore, the above equation becomes

I(s) s
s

e

s

s

+ +
L
NM

O
QP

=

-

5
6 5

2

I(s) = 
5

5 6

5

3 22

e

s s s

e

s s s

s s- -

+ +
=

+ +( ) ( ) ( )

By taking partial fraction, we have

1

3 2 3 2s s s

A

s

B

s

C

s( ) ( )+ +
= +

+
+

+

Applying Heavyside rule, we get the coefficients

\ I(s) = 5e–s 1

6

1

3 3

1

2 2s s s
+

+
-

+

L

N
M

O

Q
P

( ) ( )

I(s) = 5 
e

s

e

s

e

s

s s s- - -

+
+

-
+

L

N
M

O

Q
P

6 3 3 2 2( ) ( )

Taking inverse transform on both sides, we have

i(t) =
5

6
1

5

3
1

5

2
13 1 2 1u t e u t e u t At t( ) ( ) ( )( ) ( )

- + - - -
L
NM

O
QP

- - - -

Problem 14.3 A rectangular voltage pulse of unit height and T seconds
duration is applied to a series R-C combination at t = 0, as shown in Fig. 14.11.
Determine the current in the capacitor as a function of time. Assume the
capacitor to be initially uncharged.

i t( )( )

s R

CV t( )( )

V t( )( )

T
t

(a) (b)

Fig. 14.17

Solution The input voltage can be written as a combination of two steps, i.e.

v (t) = u(t) – u (t – T )
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Applying Kirchhoff’s law to the circuit, we get

Ri (t) + 
1

C z i(t) dt = [u(t) – u(t – T )]

Taking Laplace transforms on both sides, we get

RI(s) + 
1 0 1

C

I s

s

q

s s

( ) ( )
+

L
NM

O
QP

=  (1 – e–sT)

Since the initial charge on the capacitor is zero

q(0) = 0

Therefore, I(s) R
Cs

+
L
NM

O
QP

1
=

1
1

s
e sT( )-

-

or I(s) = 
1

1

-

+
F
H

I
K

-e

R s
RC

sT

=
1 1

1 1R s RC

e

s RC

sT

+
-

+

L

N
M

O

Q
P

-

/ /

Taking inverse transform on both sides, we get

i(t) = 
1

R
{u(t)e–t/RC – u(t – T) e– (1/RC)(t – T) }

Problem 14.4 For the network shown in Fig. 14.18, determine the transform
impedance Z(s).

Fig. 14.18

Solution The transform network for the network shown in Fig. 14.18 is shown in
Fig. 14.19.

Fig. 14.19
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From Fig. 14.19, the equivalent impedance at port 1–1¢ is

Z (s) = 10 2 20
1

5
+ +

F
H

I
K

L

NM
O

QP
R
S
T

U
V
W

s
s

||

= 10 + 
2 20 1 5

2 20 1 5

s s

s s

( / )

/

+

+ +

=
20 200 2 40 2 5

10 100 1

5

2

s s s

s s

s

+ + + +

+ +

/ /

=
100 1000 10 200 2

10 100 1

2 2

2

s s s s

s s

+ + + +

+ +

Therefore, the network transform impedance is

Z(s) = 
300 1002 10

10 100 1

2

2

s s

s s

+ +

+ +

Problem 14.5 For the two port network shown in Fig. 14.20, determine the
driving point impedance Z

11
(s) and the driving point admittance Y

11
(s). Also

find the transfer impedance Z
21

(s).

Fig. 14.20

Solution By applying Kirchhoff’s law to the circuit, we have

V1(s) = 10I1(s) + 2s I1(s) (14.8)

The voltage across port 2–2¢ is

V2(s) = I1(s) ¥ (2s) (14.9)

From Eq. 14.8, the driving point impedance is

Z11(s) = 
V s

I s

1

1

( )

( )
 = (2s + 10)

Similarly, the driving point admittance is

Y11(s) = 
I s

V s s

1

1

1

2 10

( )

( )
=

+

From Eq. 14.9, the transfer impedance is

Z21(s) = 
V s

I s

2

1

( )

( )
 = 2s
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Problem 14.6 For the network shown in Fig. 14.21, determine the transfer
functions G

21
(s) and Z

21
(s) and the driving point admittance Y

11
(s).

Fig. 14.21

Solution By applying Kirchhoff’s voltage law at the ports, we get

V1(s) = I1(s) 5
1

2
s

s
+

L
NM

O
QP

V2(s) = 
1

2s
I1(s)

Therefore, the voltage transfer ratio

G21(s) = 
V s

V s s s s

2

1

1

2 5 1 2

( )

( ) ( / )
=

+

G21(s) = 
1

10 12
s +

The transform impedance is

Z21(s) = 
V s

I s s

2

1

1

2

( )

( )
=

The driving point admittance is

Y11(s) = 
I s

V s s s

2

1

1

5 1 2

( )

( ) /
=

+

\ Y11(s) = 
2

10 12

s

s( )+

Problem 14.7 For the network shown in Fig. 14.22, determine the transfer
functions G

21
(s) and Z

21
(s). Also find the driving point impedance Z

11
(s).

V s1 ( )

I s1 ( ) I s2 ( )

V s2 ( )20 W

10 W

1/2s

Fig. 14.22
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Solution From Fig. 14.23, by application of Kirchhoff’s laws, we get the
following equations

The driving point impedance

Z11(s) = 
V s

I s

1

1

( )

( )
 = [20 || (10 + 1/2s)] = 

20 10 1 2

20 10 1 2

¥ +

+ +

( / )

/

s

s

Z11(s) = 
20 10 1 2

30 1 2

( / )

/

+

+

s

s

Z11(s) = 
400 20

60 1

s

s

+

+

V s1 ( )

I s1 ( ) I s2 ( )

V s2 ( )20 W

10 W

1/2s

I s1( ) I s3( ) I s2( )

Fig. 14.23

From the above figure, by application of Kirchhoff’s laws, we get

V1(s) = 20I1(s) – 20I3(s) (14.10)

10I3(s) + 20[I3(s) – I1(s)] + 
1

2s
[I3(s) + I2(s)] = 0 (14.11)

V2(s) = [I2(s) + I3(s)]
1

2s
(14.12)

From Eq. 14.11, we get

30
1

2
+

F
H

I
Ks

I3(s) – 20 I1(s) = 0

I3(s) = 
40

60 1

s

s +
I1(s) (14.13)

From Eq. 14.12, since I2 = 0 we get

V2(s) = + I3(s)
1

2s

F
H

I
K

(14.14)

The transfer impedance at port 2 is

Z21(s) = 
V s

I s

s

s s s

2

1

40

60 1

1

2

20

60 1

( )

( ) ( ) ( )
=

+
¥ =

+

The voltage transfer ratio

G21(s) = 
V s

V s

I s s

I s I s

s

s s

s

s

2

1

3

1 3

1 2

20 20

1 2
60 1 40

2

1

20 1

( )

( )

( ) ( / )

( ) ( )

( / )
=

-
=

+ -
=

+
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Problem 14.8 Draw the pole zero diagram for the given network function I(s)
and hence obtain i(t).

I(s) = 
20

5 2

s

s s( ) ( )+ +

Solution In the network function

P(s) = 20s

and Q(s) = (s + 2)(s + 5) = 0

By taking partial fractions, I(s) can be written as

I(s) = 
k

s

k

s

1 2

2 5+
+

+

Therefore, the time domain response is

i(t) = k1e
–2t + k2e

–5t

Here, the coefficients k
1
 and k

2
 are determined by using the pole zero plot as

shown in Fig. 14.24.

Fig. 14.24

Consider a pole at – 2

The distance between zero to pole at – 2 is

M02 = 2

The angle between the line joining to the pole at – 2 to the zero is

f02 = 180°

Similarly, the distance between pole at – 5 to pole at – 2 is

M52 = 3

The angle between the line joining the pole at – 2 to the pole at – 5 is

f52 = 0°

Hence k1 = H
M e

M e

j

j
02

52

02

52

f

f

= 20 ¥
2

3

180

0

e

e

j

j
 = 13.33 e j180 = – 13.33
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Similarly, k2 = H
M e

M e

j

j
05

25

05

25

f

f

where M05 = 5, f05 = 180°

M25 = 3, f25 = 180°

Hence k2 =
20 5

3

¥
e j(180 – 180)

=
100

3
 = 33.3

Substituting these values, we get

i(t) = (– 13.33e–2t + 33.3 e–5t) A

Problem 14.9 Draw the pole zero diagram for the given network function
and hence obtain v(t)

V(s) = 
4 2

1 3

( )

( ) ( )

s s

s s

+

+ +

Solution In the network function

p(s) = 4s(s + 2)

and Q(s) = (s + 1) (s + 3) = 0

By taking partial fractions, we have

V(s) = 
k

s

k

s

1 2

1 3+
+

+

The time domain response can be obtained by taking the inverse transform

v(t) = k1 e–t + k2 e–3t

Here, the coefficients k
1
 and k

2
 may be determined by using the pole zero plot as

shown in Fig. 14.25.

To determine k
1
, we have to find out the distances and phase angles from other

zeros and poles to that particular pole.

Fig. 14.25

Hence k1 = H
M M e

M e

j

j
01 21

31

01 21

31

( )

( )

f f

f

+
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where M
01

 and M
21

 are the distances between the zeros at 0 and – 2 to the pole at – 1,
f

01
, f

21
 are the phase angle between the corresponding zeros to the pole.

Similarly, M
31

 and f
31

 are the distance and phase angle, respectively, from pole at
– 3 to pole at – 1.

\ M01 = 1; f01 = 180°

M21 = 1; f21 = 0

M31 = 2; f31 = 0°

\ k1 = 4 ¥
1 1

2

¥
e j(180°)

k1 = – 2

Similarly,

k2 = H
M M

M

03 23

13

e+ j(f03 + f23 – f13)

where M03 = 3, f03 = 180°

M23 = 1, f23 = 180°

M13 = 2, f13 = 180°

\ k2 =
4 3 1

2

¥ ¥
e j(180 + 180 – 180)

k2 = – 6

Substituting the values, we get

v(t) = (– 2e
– t – 6e

–3t )V

Problem 14.10 For the given network function, draw the pole zero diagram
and hence obtain the time domain response i(t).

I(s) = 
5

1 4 82

s

s s s( ) ( )+ + +

Solution In the network function

P(s) = 5s

Q(s) = (s + 1) (s2 + 4s + 8) = 0

By taking the partial fraction expansion of I(s), we get

I(s) = 
k

s

k

s j

k

s j

1 2 3

1 2 2 2 2+
+

+ +
+

+ -( ) ( )
(14.15)

The time domain response can be obtained by taking the inverse transform as
under,

i(t) = k1e
– t + k2 e

– (2 +  j2)t + k2 e
–(2 – j2)t (14.16)

To find the value of k
1
, we have to find out the distances, and phase angles from

other zeros and poles to that particular pole as shown in Fig. 14.26.
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Hence k1 =
H M e

M M e

j

p p

j p p

01

11 21

01

11 21

( )f

f f+

M01 = 1; f01 = 180°

Mp11 = 5 ; fp11 = – 63.44°

Mp21 = 5 ; fp21 = 63.44°

jw

s
x

x

x

–2 –1–3

P1

P2

Fig. 14.26

\ k1 =
5 1

5 5

180

63 44 63 44

¥

¥

∞

- ∞ + ∞

e

e

j

j ( . . )

k1 = – 1

Similarly k2 =
H M e

M M e

p

j

p p p

j

p

p p p

0

1

1

0 1

1 2 1

1 1 2 1

f

f f( )+

M0p1
= 8 ; f0p1

 = 135°

M1p1
= 5 ; f1p1

 = 116.56°

Mp1 p2
= 4;fp2 p1

 = 90°

Hence k2 =
5 8

5 4

¥

¥
e j(135° – 116.56° – 90°)

= 1.58 e–j(71.56°)

k2
* =

H M e

M M e

p

j

p p p

j

p

p p p

0

1

2

0 2

2 1 2

1 2 1 2

f

f f( )+

=
5 8

5 4

135

116 56 90

¥

¥

- ∞

- ∞ - ∞

e

e

j

j

( )

( . )

= 1.58e j71.56°

If we substitute the values in Eq. 14.16, we get

i(t) = [– 1e–t + 1.58 e–j(71.56°) e– (2 + j2)t

+ 1.58e j (71.56°) e –(2 – j2)t]A
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Problem 14.11 For the given denominator polynomial of a network function,
verify the stability of the network by using the Routh criterion.

Q(s) = s3 + 2s2 + 8s + 10

Solution Routh array for this polynomial is given below

s3 1 8

s
2 2 10

s1 3

s0 10

There is no change in sign in the first column of the array. Hence, there are no
roots with positive real parts. Therefore, the network is stable.

Problem 14.12 For the given denominator polynomial of a network function,
verify the stability of the network using the Routh criterion.

Q (s) = s3 + s2 + 3s + 8

Solution Routh array for this polynomial is given below.

s3 1 3

s2 1 8

s
1 – 5

s0 + 8

There are two changes in sign of the first column, one from 1 to – 5 and the other
from – 5 to + 8. Therefore, the two roots have positive real parts. Hence the network
is not stable.

Problem 14.13 For the given denominator polynomial of a network function,
determine the value of k for which the network to stable.

Q (s) = s3 + 2s2 + 4s + k

Solution Routh array for the given polynomial is given below.

s3 1 4

s2 2 k

s1 8

2

- k

s
0

k

When k < 8, all the terms in the first column are positive. Therefore, there is no
sign change in the first column. Hence, the network is stable. When k > 8, the 8 – k/
2 is negative. Therefore, there are two sign changes in the first column. There are
two roots which have positive real parts. Hence, the network is unstable.

When k = 8, the Routh array becomes
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s3 1 4

s2 2 8

s
1 a

s0 8

The element in the first column and third row is zero. But we can take it as a small
number. In this case there are no changes in the sign of the first column. Hence, the
network is stable.

Problem 14.14 Apply Routh criterion to the given polynomial and determine
the number of roots (i) with positive real parts (ii) with zero real parts (iii) with
negative real parts.

Q(s) = s4 + 4s3 + 8s2 + 12s + 15

Solution The Routh array for the polynomial is

s4 1 8 15

s
3 4 12

s2 5 15

s1 0 0

s
0 ? ?

In this case, all the elements in the 4th row have become zero and the array cannot
be completed.

The given equation is reduced by taking the new polynomial from the 3rd row

5s2 + 15 = 0

5(s2 + 3) = 0

Hence the other polynomial

Q2(s) = 
s s s s

s

4 3 2

2

4 8 12 15

5 3

+ + + +

+( )
The equation reduces to the following polynomial

(s2 + 3) (s2 + 4s + 5) = 0

The roots of the equation s
2
 + 3 = 0 are s = ± j 3

There two roots have zero real parts.
Again forming Routh array for the polynomial

s2 + 4s + 5 = 0

s
2 1  5

s1 4 0

s0 5

There are no changes in the sign of the first column. Hence, all the two roots have
negative real parts. Therefore, out of four roots, two roots have negative real parts
and two roots have zero real parts.
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PRACTICE PROBLEMS

14.1 For the circuit shown in Fig. 14.27, determine the current i (t), when the
switch is closed at t = 0. Assume that there is no initial charge on the
capacitor.

Fig. 14.27

14.2 For the circuit shown in Fig. 14.28, determine the voltage across capaci-
tor, when the switch is closed at t = 0. Assume that there is no initial
charge on the capacitor.

i t( )( )

5 W

5 ( – 2)( – 2)r t

s

2 H2 H

1/5 F1/5 F
V t( )( )

Fig. 14.28

14.3 For the circuit shown in Fig. 14.29(b), determine the current when the
switch is closed at t = 0. The waveform shown in Fig. 14.29(a) is applied
to the circuit. Assume that there is no initial charge on the capacitor.

Fig. 14.29

14.4 The waveform shown in Fig. 14.30(a) is applied to the circuit in Fig.
14.30(b) when the switch is closed at t = 0. Assume no initial current in
the circuit. Determine the current i(t) in the circuit.
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i t( )

5 Ws

5V

V t( )

V t( )

3

(a) (b)

t2

2 H2 H

Fig. 14.30

14.5 For the two-port network shown in Fig. 14.31, determine the driving
point impedance Z11(s), the transfer impedance Z21(s) and the voltage
transfer ratio G21(s).

V s1 ( )

I s1 ( ) I s2 ( )

V s2 ( )

2 W

2 H2 H

5 W

1/2 F1/2 F

1 2

1¢ 2¢

Fig. 14.31

14.6 For the network shown in Fig. 14.32, determine the following transfer
functions. (a) G21 (s), (b) Y21 (s) and (c) a21(s).

V s1 ( )

I s1 ( ) I s2 ( )

V s2 ( )1 F1 F

2 W2 H2 H

1

1¢

1 H1 H

Fig. 14.32

14.7 For the network shown in Fig. 14.33, determine the following transfer
functions (a) G21(s), (b) Z21(s).

Fig. 14.33
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14.8 For the network shown in Fig. 14.34, determine the following functions
(a) Z11(s), (b) Y11(s), (c) G21(s) and (d) a21(s).

Fig. 14.34

14.9 For the network shown in Fig. 14.35, determine transfer impedance Z21(s)
and Y21(s). Also find the transfer voltage ratio G21(s) and the transfer
current ratio a21(s).

V s1 ( ) V s2 ( )5 H 1/5 F

1 2

1¢ 2¢

Fig. 14.35

14.10 For the given network function, draw the pole zero diagram and hence
obtain the time domain response. Verify the result analytically.

V(s) = 
5 5

2 7

( )

( ) ( )

s

s s

+

+ +

14.11 For the given network function draw the pole zero diagram and hence
obtain the time domain response. Verify this result analytically.

I (s) = 
3

1 3

s

s s( ) ( )+ +

14.12 For the given network function, draw the pole zero diagram and hence
obtain the time domain response. Verify the result analytically.

I (s) = 
5

3 2 22

s

s s s( ) ( )+ + +

14.13 For the given denominator polynomial of a network function, verify the
stability of the network using Routh criteria.

Q(s) = s5 + 3s
4 + 4s

3 + 5s
2 + 6s + 1

14.14 For the given denominator polynomial of a network function, verify the
stability of the network using Routh criteria.
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Q (s) = s4 + s3 + 2s2 + 2s + 12

14.15 Apply Routh criterion to the following equations and determine the num-
ber of roots (i) with positive real parts (ii) with zero real parts (iii) with
negative real parts

(a) 6s3 + 2s2 + 5s + 2 = 0

(b) s
6 + 5s

5 + 13s
4 + 21s

3 + 20s
2 + 16s + 8 = 0

(c) s6 – s5 – 2s4 + 4s3 – 5s2 + 21s + 30 = 0

OBJECTIVE-TYPE QUESTIONS

1. The function is said to be non-recurring when it

(a) appears for a particular time interval
(b) appears for all time
(c) both a and b
(d) neither of the two

2. The inverse transform of 1/S is

(a) d (t) (b) u (t)
(c) u (t – a) (d) t

3. The Laplace transform of a ramp function is

(a) 1 (b) 1/s
(c) 1/s2 (d) 1/s3

4. The inverse transform of S is

(a) impulse (b) ramp
(c) step (d) unit doublet

5. The driving point impedance is defined as

(a) the ratio of transform voltage to transform current at the same port
(b) the ratio of transform voltage at one port to the transform current at

the other port
(c) both (a) and (b)
(d) none of the above

6. The transfer impedance is defined as

(a) the ratio of transform voltage to transform current at the same port
(b) the ratio of transform voltage at one port to the current transform at

the other port
(c) both (a) and (b)
(d) none of the above

7. The function is said to be having simple poles and zeros and only if

(a) the poles are not repeated
(b) the zeros are not repeated
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(c) both poles and zeros are not repeated
(d) none of the above

8. The necessary condition for a driving point function is

(a) the real part of all poles and zeros must not be zero or negative
(b) the polynomials P(s) and Q(s) may not have any missing terms be-

tween the highest and lowest degree unless all even or all odd terms
are missing.

(c) the degree of P(s) and Q(s) may differ by more than one
(d) the lowest degree in P(s) and Q(s) may differ in degree by more

than two.

9. The necessary condition for the transfer functions is that

(a) the coefficients in the polynomials P(s) and Q (s) must be real
(b) coefficients in Q (s) may be negative
(c) complex or imaginary poles and zeros may not conjugate
(d) if the real part of pole is zero, then that pole must be multiple

10. The system is said to be stable, if and only if

(a) all the poles lie on right half of the s-plane
(b) some poles lie on the right half of the s-plane
(c) all the poles does not lie on the right half of the s-plane
(d) none of the above.



15.1 TWO-PORT NETWORK

Generally any network may be represented schematically by a rectangular box.
A network may be used for representing either source or load, or for a variety of
purposes. A pair of terminals at which a signal may enter or leave a network is
called a port. A port is defined as any pair of terminals into which energy is
supplied, or from which energy is withdrawn, or where the network variables
may be measured. One such network having only one pair of terminals (1–1¢ ) is
shown in Fig. 15.1.

Fig. 15.1

A two-port network is simply a network inside a black box, and the network
has only two pairs of accessible terminals; usually one pair represents the input
and the other represents the output. Such a building block is very common in
electronic systems, communication systems, transmission and distribution
systems. Figure 15.1 (b) shows a two-port network, or two terminal pair
network, in which the four terminals have been paired into ports 1–1¢  and 2–2¢ .
The terminals 1–1¢  together constitute a port. Similarly, the terminals 2–2¢

Chapter

15
TWO-PORT
NETWORKS
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constitute another port. Two ports containing no sources in their branches are
called passive ports; among them are power transmission lines and
transformers. Two ports containing sources in their branches are called active

ports. A voltage and current assigned to each of the two ports. The voltage and
current at the input terminals are V

1
 and I

1
; whereas V

2
 and I

2
 are specified at the

output port. It is also assumed that the currents I
1
 and I

2
 are entering into the

network at the upper terminals 1 and 2, respectively. The variables of the two-
port network are V

1
, V

2
, and I

1
, I

2
. Two of these are dependent variables, the

other two are independent variables. The number of possible combinations
generated by the four variables, taken two at a time, is six. Thus, there are six
possible sets of equations describing a two-port network.

15.2 OPEN CIRCUIT IMPEDANCE (Z) PARAMETERS

A general linear two-port network defined in Section 15.1 which does not
contain any independent sources is shown in Fig. 15.2.

Fig. 15.2

The Z parameters of a two-port for the positive directions of voltages and
currents may be defined by expressing the port voltages V

1
 and V

2
 in terms of

the currents I
1
 and I

2
. Here V

1
 and V

2
 are dependent variables, and I

1
, I

2
 are

independent variables. The voltage at port 1–1¢  is the response produced by the
two currents I

1
 and I

2
. Thus

V1 = Z11 I1 + Z12 I2 (15.1)

Similarly, V2 = Z21 I1 + Z22 I2 (15.2)

Z
11

, Z
12

, Z
21

 and Z
22

 are the network functions, and are called impedance (Z)
parameters, and are defined by Eqs. 15.1 and 15.2. These parameters can be
represented by matrices.

We may write the matrix equation [V] = [Z] [I]

where V is the column matrix =
V

V

1

2

L

N
M

O

Q
P

Z is the square matrix = 
Z Z

Z Z

11 12

21 22

L
NM

O
QP

and we may write |I | in the column matrix =
I

I

1

2

L
NM

O
QP
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Thus,
V

V

1

2

L
NM

O
QP
 =

Z Z

Z Z

11 12

21 22

L
NM

O
QP

I

I

1

2

L
NM

O
QP

The individual Z parameters for a given network can be defined by setting
each of the port currents equal to zero. Suppose port 2–2¢ is left open-circuited,
then I

2
 = 0

Thus Z11 =
V

I
I

1

1 02 =

where Z
11

is the driving-point impedance at port 1–1¢ with port 2–2¢ open
circuited. It is called the open circuit input impedance

Similarly, Z21 =
V

I
I

2

1 02 =

where Z
21

 is the transfer impedance at port 1–1¢ with port 2–2¢ open circuited. It
is also called the open circuit forward transfer impedance. Suppose port 1–1¢ is
left open circuited, then I

1
 = 0

Thus, Z12 =
V

I I

1

2 01 =

where Z
12

 is the transfer impedance at port 2–2¢, with port 1–1¢ open circuited.
It is also called the open circuit reverse transfer impedance.

Z22 =
V

I
I

2

2 01 =

where Z
22

 is the open circuit driving point impedance at port 2–2¢ with port 1–1¢

open circuited. It is also called the open circuit output impedance. The
equivalent circuit of the two-port networks governed by the Eqs. 15.1 and 15.2,
i.e. open circuit impedance parameters is shown in Fig. 15.3.

1

2¢1¢

I1 I2
2

V1

Z11 Z22

Z I12 2 Z I21 1

V2

Fig. 15.3

If the network under study is reciprocal or bilateral, then in accordance with
the reciprocity principle

V

I I

2

1 02 =

 =
V

I I

1

2 01 =

or Z21 = Z12
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It is observed that all the parameters have the dimensions of impedance.
Moreover, individual parameters are specified only when the current in one of
the ports is zero. This corresponds to one of the ports being open circuited from
which the Z parameters also derive the name open circuit impedance parameters.

Example 15.1 Find the Z parameters for the circuit shown in Fig. 15.4.

b¢

+ b

a¢

I1 I2Za Zc

Zb
V2V1

a +

Fig. 15.4

Solution The circuit in the problem is a T network. From Eqs. 15.1 and 15.2 we
have

V
1
 = Z

11
I

1
 + Z

12
I

2

V
2
 = Z

21
I

1
 + Z

22
I

2

When port b-b¢ is open circuited, Z
11

 = 
V

I

1

1

where V
1
 = I

1
(Z

a
 + Z

b
)

\ Z
11

 = (Z
a
 + Z

b
)

Z
21

 =
V

I
I

2

1 02 =

where V
2
 = I

1
Z

b

\ Z
21

 = Z
b

When port a-a¢ is open circuited, I
1
 = 0

Z
22

 =
V

I
I

2

2 01 =

where V
2
 = I

2
(Z

b
 + Z

c
)

\ Z
22

 = (Z
b
 + Z

c
)

Z
12

 =
V

I
I

1

2 01 =
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where V
1
 = I

2
Z

b

\ Z
12

 = Z
b

It can be observed that Z
12

 = Z
21

, so the network is a bilateral network which
satisfies the principle of reciprocity.

15.3 SHORT CIRCUIT ADMITTANCE (Y)

PARAMETERS

A general two-port network which is considered in Section 15.2 is shown in
Fig. 15.5.

1

2¢
1¢

I1

V2V1

I2
2

Linear
network

Fig. 15.5

The Y parameters of a two-port for the positive directions of voltages and
currents may be defined by expressing the port currents I

1
 and I

2
 in terms of the

voltages V
1
 and V

2
. Here I

1
, I

2
 are dependent variables and V

1
 and V

2
 are

independent variables. I
1
 may be considered to be the superposition of two

components, one caused by V
1
 and the other by V

2
. Thus,

Thus,

I1 = Y11 V1 + Y12 V2 (15.3)

Similarly, I2 = Y21 V1 + Y22 V2 (15.4)

Y
11

, Y
12

, Y
21

 and Y
22

 are the network functions and are also called the
admittance (Y ) parameters. They are defined by Eqs 15.3 and 15.4. These
parameters can be represented by matrices as follows

[I ] = [Y ] [V ]

where I =
I

I

1

2

L
NM

O
QP

; Y =
Y Y

Y Y

11 12

21 22

L
NM

O
QP

and V =
V

V

1

2

L
NM

O
QP

Thus,
I

I

1

2

L
NM

O
QP

 =
Y Y

Y Y

11 12

21 22

L
NM

O
QP

V

V

1

2

L
NM

O
QP

The individual Y parameters for a given network can be defined by setting
each port voltage to zero. If we let V

2
 be zero by short circuiting port 2–2¢, then
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Y11 =
I

V
V

1

1 02 =

Y
11

 is the driving point admittance at port 1–1¢, with port 2–2¢ short circuited.
It is also called the short circuit input admittance.

Y21 =
I

V V

2

1 02 =

Y
21

 is the transfer admittance at port 1–1 with port 2–2¢ short circuited. It is
also called short circuited forward transfer admittance. If we let V

1
 be zero by

short circuiting port 1–1¢, then

Y12 =
I

V V

1

2 01 =

Y
12

 is the transfer admittance at port 2–2¢ with port 1–1¢ short circuited. It is
also called the short circuit reverse transfer admittance.

Y22 =
I

V V

2

2 01 =

Y
22

 is the short circuit driving point admittance at port 2–2¢ with port 1–1¢

short circuited. It is also called the short circuit output admittance. The
equivalent circuit of the network governed by Eqs. 15.3 and 15.4 is shown in
Fig. 15.6.

1

2¢1¢

I1 I2
2

V1 Y V12 2 Y22Y V21 1Y11 V2

Fig. 15.6

If the network under study is reciprocal, or bilateral, then

I

V
V

1

2 01 =

 =
I

V
V

2

1 02 =

or Y12 = Y21

It is observed that all the parameters have the dimensions of admittance
which are obtained by short circuiting either the output or the input port from
which the parameters also derive their name, i.e. the short circuit admittance

parameters.

Example 15.2 Find the Y parameters for the network shown in Fig. 15.7.
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V1 V2

I2I1

2 W

2 W
1 W

4 W

a¢ b¢

ba

Fig. 15.7

Solution Y
11

 =
I

V
V

1

1 02 =

When b-b ¢ is short circuited, V
2
 = 0 and the network looks as shown in

Fig. 15.8(a)

V1

I2I1

Zeq V2 = 02 W

2 W
1 W

a¢ b¢

ba

Fig. 15.8(a)

V
1
 = I

1
Z

eq

Z
eq

 = 2 W

\ V
1
 = I

1
 2

Y
11

 =
I

V

1

1

1

2
=  

W

Y
21

 =
I

V
V

2

2 02 =

With port b-b ¢ short circuited, – I
2
 = I

1
 ¥ 

2

4 2
1

=
I

\ – I
2
 =

V1

4

Y
21

 =
I

V
V

2

1 02

1

4
=

= -  

W
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Similarly, when port a-a ¢ is short circuited, V
1
 = 0 and the network looks as

shown in Fig. 15.8(b).

V2V1 = 0 Zeq

I2I1

2 W 4 W

2 W
1 W

a¢ b¢

ba

Fig. 15.8(b)

Y
22

 =
I

V
V

2

2 01 =

V
2
 = I

2
Z

eq

where Z
eq

 is the equivalent impedance as viewed from b-b ¢.

Z
eq

 =
8

5
 W

V
2
 = I

2
¥

8

5

Y
22

 =
I

V
V

2

2 01 =

 = 
5

8
 

W

Y
12

 =
I

V
V

1

2 01 =

With a-a ¢ short circuited, – I
1
 = 

2

5
 I

2

Since I
2
 =

5

8
2V

– I
1
 =

2

5

5

8 4
2

2
¥ =V

V

\ Y
12

 =
I

V

1

2

1

4
= -  

W

The describing equations in terms of the admittance parameters are

I
1
 = 0.5 V

1
– 0.25 V

2

I
2
 = – 0.25 V

1
 + 0.625 V

2
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15.4 TRANSMISSION (ABCD) PARAMETERS

Transmission parameters, or ABCD parameters, are widely used in transmission
line theory and cascade networks. In describing the transmission parameters,
the input variables V

1
 and I

1
 at port 1-1¢, usually called the sending end, are

expressed in terms of the output variables V
2
 and I

2
 at port 2-2 ¢, called the

receiving end. The transmission parameters provide a direct relationship
between input and output. Transmission parameters are also called general
circuit parameters, or chain parameters. They are defined by

V1 = AV2 – BI2 (15.5)
I1 = CV2 – DI2 (15.6)

The negative sign is used with I
2
, and not for the parameter B and D. Both the

port currents I
1
 and – I

2
 are directed to the right, i.e. with a negative sign in Eqs

15.5 and 15.6 the current at port 2-2 ¢ which leaves the port is designated as
positive. The parameters A, B, C and D are called the transmission parameters.
In the matrix form, Eqs 15.5 and 15.6 are expressed as

V

I

1

1

L
NM

O
QP

 =
A B

C D

V

I

L
NM

O
QP -

L
NM

O
QP

2

2

The matrix 
A B

C D

L
NM

O
QP

 is called the transmission matrix.

Fig. 15.9

For a given network, these parameters can be determined as follows. With port
2-2¢ open, i.e. I

2
 = 0; applying a voltage V

1
 at the port 1-1¢, using Eq. 15.5, we have

A =
V

V
I

1

2 02 =

 and C = 
I

V
I

1

2 02 =

1

A
 =

V

V
g

I I

2

1 0
21

02 2= =

=

1/A is called the open circuit voltage gain, a dimensionless parameter. And

1

C
 = 

V

I
I

2

1 02 =

 = Z
21

, which is the open circuit transfer impedance. With port

2-2 ¢ short circuited, i.e. with V
2
 = 0, applying voltage V

1
 at port 1-1¢, from Eq.

15.6, we have
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– B =
V

I
V

1

2 02 =

and – D = 
I

I
V

1

2 02 =

- =

=

1 2

1 02
B

I

V
V

 = Y
21

, which is the short circuit transfer admittance

- = =

=

=

1 2

1 0
21 0

2

2D

I

I
V

V
a , which is the short circuit current gain, a

dimensionless parameter.

15.4.1 Cascade Connection

The main use of the transmission matrix is in dealing with a cascade connection
of two-port networks as shown in Fig. 15.10.

1

2¢

1¢

I1

V2x

Ax
AyBx By

DyCx

Nx Ny

CyDx

I2x

2

3¢

I1y

V2y
V1y

I2y

3

V1 V2

X Y

Fig. 15.10

Let us consider two two-port networks N
x
 and N

y
 connected in cascade with

port voltages and currents as indicated in Fig. 15.10. The matrix representation
of ABCD parameters for the network X is as under.

V

I

A B

C D

V

I

x x

x x

x

x

1

1

2

2

L
NM

O
QP

=
L
NM

O
QP -

L
NM

O
QP

And for the network Y, the matrix representation is

V

I

A B

C D

V

I

y

y

y y

y y

y

y

1

1

2

2

L

N
M

O

Q
P =

L

N
M

O

Q
P -

L

N
M

O

Q
P

It can also be observed that at for 2–2 ¢

V2x = V1y and I2x = – I1y.

Combining the results, we have

V

I

1

1

L
NM

O
QP
 =

A B

C D

A B

C D

V

I

x x

x x

y y

y y

L
NM

O
QP

L

N
M

O

Q
P

-

L
NM

O
QP

2

1

V

I

1

1

L
NM

O
QP
 =

A B

C D

V

I

L
NM

O
QP -

L
NM

O
QP

2

2
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where
A B

C D

L
NM

O
QP

 is the transmission parameters matrix for the overall network.

Thus, the transmission matrix of a cascade of a two-port networks is the
product of transmission matrices of the individual two-port networks. This property
is used in the design of telephone systems, microwave networks, radars, etc.

Example 15.3 Find the transmission or general circuit parameters for the circuit
shown in Fig. 15.11.

Fig. 15.11

Solution From Eqs 15.5 and 15.6 in Section 15.4, we have

V
1
 = AV

2
– BI

2

I
1
 = CV

2
– DI

2

When b-b ¢ is open, I
2
 = 0; A = 

V

V
I

1

2 02 =

where V
1
 = 6I

1
 and V

2
 = 5I

1

\ A =
6

5

C =
I

V
I

1

2 02

1

5
=

=  

W

When b-b ¢ is short circuited; V
2
 = 0 (See Fig. 15.12)

Fig. 15.12
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B =
-

=

V

I
V

�

�

�

; D = 
-

=

I

I
V

�

�

�

In the circuit, – I
2
 =

5

17
 V

1

\ B =
17

5
 W

Similarly, I
1
 =

7

17
1V  and – I

2
 = 

5

17
1V

\ D =
7

5

15.5 INVERSE TRANSMISSION (A¢¢¢¢¢ B¢¢¢¢¢ C ¢¢¢¢¢ D¢¢¢¢¢ )

PARAMETERS

In the preceding section, the input port voltage and current are expressed in
terms of output port voltage and current to describe the transmission
parameters. While defining the transmission parameters, it is customary to
designate the input port as the sending end and output port as receiving end.
The voltage and current at the receiving end can also be expressed in terms of
the sending end voltage and current. If the voltage and current at port 2-2 ¢ is
expressed in terms of voltage and current at port 1-1¢, we may write the
following equations.

V2 = A¢V1 – B ¢I1 (15.7)

I2 = C ¢V1 – D ¢I1 (15.8)

The coefficients A¢, B ¢, C ¢ and
D ¢ in the above equations are
called inverse transmission
parameters. Because of the
similarities of Eqs. 15.7 and 15.8
with Eqs. 15.5 and 15.6 in Section
15.4, the A ¢, B ¢, C ¢, D ¢

parameters have properties similar
to ABCD parameters. Thus when
port 1-1¢ is open, I

1
 = 0.

A¢ =
V

V
I

2

1 01 =

; C ¢ = 
I

V
I

2

1 01 =

If port 1-1¢ is short circuited, V
1
 = 0

B ¢ =
-

=

V

I V

2

1 01

; D = 
-

=

I

I V

2

1 01

Fig. 15.13
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15.6 HYBRID (h) PARAMETERS

Hybrid parameters, or h parameters find extensive use in transistor circuits.
They are well suited to transistor circuits as these parameters can be most
conveniently measured. The hybrid matrices describe a two-port, when the
voltage of one port and the current of other port are taken as the independent
variables. Consider the network in Fig. 15.14.

Fig. 15.14

If the voltage at port 1-1¢ and current at port 2-2 ¢ are taken as dependent
variables, we can express them in terms of I

1
 and V

2
.

V1 = h11 I1 + h12 V2 (15.9)

I2 = h21 I1 + h22 V2 (15.10)

The coefficients in the above equations are called hybrid parameters. In
matrix notation

V

I

1

2

L
NM

O
QP

 =
h h

h h

I

V

11 12

21 22

1

2

L
NM

O
QP
L
NM

O
QP

From Eqs. 15.9 and 15.10, the individual h parameters may be defined by letting
I

1
 = 0 and V

2
 = 0.

When V
2
 = 0, the port 2-2 ¢ is short circuited.

Then h
11

=
V

I
V

1

1 02 =

 Short circuit input impedance 
1

11Y

F
HG

I
KJ

h
21

 = 
I

I
V

2

1 02 =

 Short circuit forward current gain 
Y

Y

21

11

F
HG

I
KJ

Similarly, by letting port 1-1¢ open, I
1
 = 0

h
12

 = 
V

V
I

1

2 01 =

 Open circuit reverse voltage gain 
Z

Z

12

22

F
HG

I
KJ

h
22

 = 
I

V
I

2

2 01 =

 Open circuit output admittance 
1

22Z

F
HG

I
KJ

Since the h parameters represent dimensionally an impedance, an admittance,
a voltage gain and a current gain, these are called hybrid parameters. An
equivalent circuit of a two-port network in terms of hybrid parameters is shown
in Fig. 15.15.
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I1 I2

V1

h V12 2

h I21 1
h22

h11

V2

+
–

Fig. 15.15

Example 15.4 Find the h parameters of the network shown in Fig. 15.16.

V1 V2

I2I1

2 W

2 W
1 W

4 W

a¢ b¢

ba

Fig. 15.16

Solution From Eqs. 15.9 and 15.10, we have

h
11

 = 
V

I
V

1

1 02 =

; h
21

 = 
I

I
V

2

1 02 =

; h
12

 = 
V

V
I

1

2 01 =

; h
22

 = 
I

V
I

2

2 01 =

If port b-b ¢ is short circuited, V
2
 = 0. The circuit is shown in Fig. 15.17(a).

V1

I2I1

Zeq

V2 = 02 W 4 W

2 W
1 W

a¢ b¢

ba

Fig. 15.17(a)

h11 =
V

I
V

1

1 02 =

; V1 = I1 Zeq

Z
eq

 the equivalent impedance as viewed from the port a-a ¢ is 2 W

\ V
1
 = I

1
2V
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h
11

 =
V

I

1

1

 = 2 W

h
21

 =
I

I
V

2

1 02 =

 when V
2
 = 0; – I

2
 = 

I1

2

\ h
21

 = -
1

2
If port a-a¢ is let open, I

1
 = 0. The circuit is shown in Fig. 15.17(b). Then

h
12

 =
V

V
I

1

2 01 =

I2

Ix

Iy

I1 = 0

2 W 4 W

2 W
1 W

V2V1

Fig. 15.17(b)

V
1
 = I

Y
 2; I

Y
 = 

I2

2

V
2
 = I

X
4; I

X
 = 

I2

2

\ h
12

 =
V

V
I

1

2 01

1

2
=

=

h
22

 =
I

V
I

2

2 01

1

2
=

=  

W

15.7 INVERSE HYBRID (g) PARAMETERS

Another set of hybrid matrix parameters can be defined in a similar way as was
done in Section 15.6. This time the current at the input port I

1
 and the voltage at

the output port V
2
 can be expressed in terms of I

2
 and V

1
. The equations are as

follows.
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I1 = g11 V1 + g12 I2 (15.11)

V2 = g21 V1 + g22 I2 (15.12)

The coefficients in the above equations are called the inverse hybrid
parameters. In matrix notation

I

V

1

2

L
NM

O
QP
 =

g g

g g

V

I

11 12

21 22

1

2

L
NM

O
QP

L
NM

O
QP

It can be verified that 
h h

h h

11 12

21 22

1
L
NM

O
QP

-

 = 
g g

g g

11 12

21 22

L
NM

O
QP

The individual g parameters may be defined by letting I
2
 = 0 and V

1
 = 0 in

Eqs 15.11 and 15.12.
Thus, when I

2
 = 0

g
11

 = 
I

V I

1

1 02 =

 = Open circuit input admittance 
1

11Z

F
HG

I
KJ

g
21

 = 
V

V I

2

1 02 =

 = Open circuit voltage gain

When V
1
 = 0

g
12

 = 
I

I V

1

2 01 =

 = Short circuit reverse current gain

g
22

 = 
V

I
V

2

2 01 =

 = Short circuit output impedance 
1

22Y

F
HG

I
KJ

15.8 INTER RELATIONSHIPS OF DIFFERENT

PARAMETERS

15.8.1 Expression of Z-parameters in Terms of Y-parameters

and Vice-versa

From Eqs 15.1, 15.2, 15.3 and 15.4, it is easy to derive the relation between the
open circuit impedance parameters and the short circuit admittance parameters
by means of two matrix equations of the respective parameters. By solving
Eqs 15.1 and 15.2 for I

1
 and I

2
, we get

I1 =
V Z

V Z
z

1 12

2 22

D ; and I2 = 
Z V

V V
z

11 1

21 2

D

where D
z
 is the determinant of Z matrix

Dz =
Z Z

Z Z

11 12

21 22

L
NM

O
QP
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I1 =
Z

V
Z

V
z z

22
1

12
2

D D
- (15.13)

I2 =
-

+
Z

V
Z

V
z z

21
1

11
2

D D
(15.14)

Comparing Eqs. 15.13 and 15.14 with Eqs. 15.3 and 15.4 we have

Y11 =
Z

z

22

D
; Y12 = 

- Z

z

12

D

Y21 =
Z

z

21

D
; Y22 = 

Z

z

11

D

In a similar manner, the Z parameters may be expressed in terms of the
admittance parameters by solving Eqs. 15.3 and 15.4 for V

1
 and V

2

V1 =
I Y

I Y
y

1 12

2 22

D  and V2 = 
Y I

Y I
y

11 1

21 2

D

where D
y
 is the determinant of the Y matrix

Dy =
Y Y

Y Y

11 12

21 22

V1 =
Y

I
Y

I
y y

22
1

12
2

D D
- (15.15)

V2 =
-

+
Y

I
Y

I
y y

21
1

11
2

D D
(15.16)

Comparing Eqs. 15.15 and 15.16 with Eqs. 15.1 and 15.2, we obtain

Z11 =
Y

y

22

D
; Z12 = 

- Y

y

12

D

Z21 =
- Y

y

21

D
; Z22 =

Y

y

11

D

Example 15.5 For a given, Z
11

 = 3 W, Z
12

 = 1 W; Z
21

 = 2 W and Z
22

 = 1 W, find the
admittance matrix, and the product of D

y
 and D

z
.

Solution The admittance matrix = 
Y Y

Y Y

Z Z

Z Z

z z

z z

11 12

21 22

22 12

21 11

L
NM

O
QP

=

-

-

L

N

M
M
M
M

O

Q

P
P
P
P

D D

D D

given Z = 
3 1

2 1

L
NM

O
QP

\ D
z
 = 3 – 2 = 1

\ D
y
 = 

- -

-

L
NM

O
QP

1 1

2 3
 = 1

(D
y
) (D

z
) = 1
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15.8.2 General Circuit Parameters or ABCD Parameters in

Terms of Z Parameters and Y Parameters

We know that
V1 = AV2 – BI2; V1 = Z11 I1 + Z12 I2; I1 = Y11 V1 + Y12 V2

I1 = CV2 – DI2; V2 = Z21 I1 + Z22 I2; I2 = Y21 V1 + Y22 V2

A = 
V

V
I

1

2 02 =

; C = 
I

V
I

1

2 02 =

; B = 
-

=

V

I
V

1

2 02

; D = 
-

=

I

I
V

1

2 02

Substituting the condition I
2
 = 0 in Eqs 15.1 and 15.2 we get

V

V
I

1

2 02 =

 = 
Z

Z

11

21

 = A

Substituting the condition I
2
 = 0 in Eq. 15.4 we get,

V

V
I

1

2 02 =

 = 
- Y

Y

22

21

 = A

Substituting the condition I
2
 = 0 in Eq. 15.2

we get
I

V
I

1

2 02 =

=
1

21Z
 = C

Substituting the condition I
2
 = 0 in Eqs 15.3 and 15.4, and solving for V

2

gives
- I Y

y

1 21

D

where Dy is the determinant of the admittance matrix

I

V I

1

2 02 =

 = 
- Dy

Y21

 = C

Substituting the condition V
2
 = 0 in Eq. 15.4, we get

V

I YV

1

2 0 212

1

=

= -  = B

Substituting the condition V
2
 = 0 in Eqs. 15.1 and 15.2 and solving for

I
2
 = 

- V Z

z

1 21

D

–
V

I ZV

z1

2 0 212 =

=
D

 = B

where D
z
 is the determinant of the impedance matrix.

Substituting V
2
 = 0 in Eq. 15.2

we get –
I

I

Z

Z
V

1

2 0

22

212 =

=  = D

Substituting V
2
 = 0 in Eqs. 15.3 and 15.4, we get

-
=

-

=

I

I

Y

Y
V

1

2 0

11

212

 = D
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The determinant of the transmission matrix is given by

– AD + BC

Substituting the impedance parameters in A, B, C and D, we have

BC – AD =
Dz

Z Z

Z

Z

Z

Z21 21

11

21

22

21

1
-

=
Dz

Z

Z Z

Z21
2

11 22

21
2a f a f

-

BC – AD =
- Z

Z

12

21

For a bilateral network, Z
12

 = Z
21

\ BC – AD = – 1

or AD – BC = 1

Therefore, in a two-port bilateral network, if three transmission parameters
are known, the fourth may be found from equation AD – BC = 1.

In a similar manner the h parameters may be expressed in terms of the admittance
parameters, impedance parameters or transmission parameters. Transformations
of this nature are possible between any of the various parameters. Each parameters
has its own utility. However, we often find that it is necessary to convert from
one set of parameters to another. Transformations between different parameters, and
the condition under which the two-port network is reciprocal are given in Table 15.1.

Example 15.6 The impedance parameters of a two port network are Z
11

 = 6 W;
Z

22
 = 4 W; Z

12
 = Z

21
 = 3 W. Compute the Y parameters and ABCD parameters and

write the describing equations.

Solution ABCD parameters are given by

A =
Z

Z

11

21

6

3
=  = 2; B = 

Z Z Z Z

Z

11 22 12 21

21

-
 = 5 W

C =
1 1

321Z
=  

W

; D = 
Z

Z

22

21

4

3
=

Y parameters are given by

Y
11

 =
Z

Z Z Z Z

22

11 22 12 21

4

15-
=  

W

; Y
12

 = 
-

-
=

-Z

Z Z Z Z

12

11 22 12 21

1

5
 

W

Y
21

 = Y
12

 = 
-

=
-Z

z

12 1

5D
 

W

; Y
22

 = 
Z

Z Z Z Z

11

11 22 12 21

2

5-
=  

W

The equations,  using Z parameters are

V1 = 6I1 + 3I2

V2 = 3I1 +4I2
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Using Y Parameters.

I1 =
4

15

1

5
1 2V V-

I2 =
-

+
1

5

2

5
1 2V V

Table 15.1

Z Y ABCD A¢B ¢C ¢D¢ h g

Z11 Z12

Y Y

y y

22 12

D D

- A

C C

TD ¢

¢ ¢

D

C C

1 D h

h

h

h22

22

22

1

11

12

11g

g

g

-

Z

Z21 Z22

- Y Y

y y

21 11

D D

1

C

D

C

D
¢

¢

¢

¢

T

C

A

C

- h

h h

21

22 22

1 g

g g

g21

11 11

D

Z Z

z z

22 12

D D

-
Y11 Y12

D

B B

T- D ¢

¢

-

¢

A

B B

1 1

11

12

11h

h

h

- D g

g

g

g22

12

22
Y

- Z

z

Z

z

21 11

D D
Y21 Y22

-1

B

A

B

-

¢

¢

¢

¢
DT

B

D

B

h

h h

h21

11 11

D -g

g g

21

22 22

1

AB
Z

Z

z

Z

11

21 21

D - -Y

Y Y

22

21 21

1
A B

¢ ¢

¢ ¢

D B

T TD D

D h

h

h

h21

11

21

1

21

22

21g

g

g

CD
1

21

22

21Z

Z

Z

DY

Y

Y

Y21

11

21

-
C D

¢ ¢

¢ ¢

C A

T TD D

- -h

h h

22

21 21

1 g

g g

g11

21 21

D

A ¢ B ¢
Z

Z

z

Z

22

12 12

D - -Y

Y Y

11

12 12

1 D B

T TD D
A¢ B ¢

1

12

11

12h

h

h

- -D g

g

g

g12

22

12

C ¢ D ¢
1

12

11

12Z

Z

Z

- -DY

Y

Y

Y12

22

12

C A

T TD D
C ¢ D ¢

h

h h

h22

12 12

D - -g

g g

11

12 12

1

D z

Z

Z

Z22

12

22

1

11

12

11Y

Y

Y

- B

D D

TD ¢

¢ ¢

B

A A

1
h11 h12

g g

g g

22 12

D D

-

h

- Z

Z Z

21

22 22

1 Y

Y Y

Y21

11 11

D -1

D

C

D

D
¢

¢

¢

¢

T

A

C

A
h21 h22

- g g

g g

21 11

D D

1

11

12

11Z

Z

Z

- DY

Y

Y

Y22

12

22

C

A A

T- D ¢

¢

-

¢

C

D D

1 h h

h h

22 12

D D

-
g11 g12

g

Z

Z Z

Z21

11 11

D - Y

Y Y

21

22 22

1 1

A

B

A

D
¢

¢

¢

¢

T

D

B

D

- h h

h h

21 11

D D
g21 g22

The Z12 = Z21 Y12 = Y21 The deter- The deter- h12 = – h21 g12 = – g21

two minant minant
port of the of the
is trans- inverse
reci- mission trans-
procal matrix = 1 mission
If (D T = 1) matrix = 1
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Using ABCD parameters

V1 = 2V2 – 5I2

I1 =
1

3

4

3
2 2V I-

15.9 INTER-CONNECTION OF TWO-PORT

NETWORKS

15.9.1 Series Connection of Two-port Network

It has already been shown in Section 15.4.1 that when two-port networks are
connected in cascade, the parameters of the interconnected network can be
conveniently expressed with the help of ABCD parameters. In a similar way,
the Z-parameters can be used to describe the parameters of series connected
two-port networks; and Y parameters can be used to describe parameters of
parallel connected two-port networks. A series connection of two-port networks
is shown in Fig. 15.18.

I2

I2I1

I2

I1 I1x

V1x V2x

I2x

I2yI1y

V1y V2y

I1

V2V1

X

Y

+ +

– –

Fig. 15.18

Let us consider two two-port networks, connected in series as shown. If each
port has a common reference node for its input and output, and if these
references are connected together then the equations of the networks X and Y in
terms of Z parameters are

V1X = Z11X I1X + Z12X I2X

V2X = Z21X I1X + Z22X I2X

V1Y = Z11Y I1Y + Z12Y I2Y

V2Y = Z21Y I1Y + Z22Y I2Y

From the inter-connection of the networks, it is clear that
I1 = I1X = I1Y; I2 = I2X = I2Y

and V1 = V1X + V1Y; V2 = V2X + V2Y

\ V1 = Z11X I1 +Z12X I2 + Z11Y I1 + Z12Y I2



15.22 Electrical Circuit Analysis

= (Z11X + Z11Y)I1 + (Z12X + Z12Y) I2

V2 = Z21X I1 + Z22X I2 + Z21Y I1 + Z22Y I2

= (Z21X + X21Y)I1 + (Z22X + Z22Y)I2

The describing equations for the series connected two-port network are

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

where Z11 = Z11X + Z11Y; Z12 = Z12X + Z12Y

Z21 = Z21X + Z21Y; Z22 = Z22X + Z22Y

Thus, we see that each Z parameter of the series network is given as the sum
of the corresponding parameters of the individual networks.

15.9.2 Parallel Connection of Two Two-port Networks

Let us consider two two-port networks connected in parallel as shown in
Fig. 15.19. If each two-port has a reference node that is common to its input and
output port, and if the two ports are connected so that they have a common
reference node, then the equations of the networks X and Y in terms of Y

parameters are given by

I2I1

I1x

V1x V2x

I2x

V2V1

+ +

++

–

––

–

I1y I2y

V2yV1y

x

y

Fig. 15.19

I1X = Y11X V1X + Y12X V2X

I2X = Y21X V1X + Y22X V2X

I1Y = Y11Y V1Y + Y12Y V2Y

I2Y = Y21Y V1Y + Y22Y V2Y

From the interconnection of the networks, it is clear that

V1 = V1X = V1Y; V2 = V2X = V2Y

and I1 = I1X + I1Y; I2 = I2X + I2Y

\ I1 = Y11X V1 + Y12X V2 + Y11Y V1 + Y12Y V2

= (Y11X + Y11Y) V1 + (Y12X + Y12Y) V2

I2 = Y21X V1 + Y22X V2 + Y21Y V1 + Y22Y V2

= (Y21X + Y21Y) V1 + (Y22X + Y22Y) V2



Two-Port Networks 15.23

The describing equations for the parallel connected two-port networks are

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

where Y11 = Y11X + Y11Y; Y12 = Y12X + Y12Y

Y21 = Y21X + Y21Y; Y22 = Y22X + Y22Y

Thus we see that each Y parameter of the parallel network is given as the sum
of the corresponding parameters of the individual networks.

Example 15.7 Two networks shown in Figs. 15.20(a) and (b) are connected in
series. Obtain the Z parameters of the combination. Also verify by direct calculation.

2 W 5 W

1 W 20 W1 W 10 W

X1
Y1X2 Y2

X¢2 Y¢2X¢1 Y¢1

(a) (b)

Fig. 15.20

Solution The Z parameters of the network in Fig. 15.20(a) are

Z
11X

 = 3 W Z
12X

 = Z
21X

 = 2 W Z
22X

 = 3 W

The Z parameters of the network in Fig. 15.20 (b) are

Z
11Y

 = 15 W Z
21Y

 = 5 W Z
22Y

 = 25 W Z
12Y

= 5 W

The Z parameters of the combined network are

Z
11

 = Z
11X

 + Z
11Y

 = 18 W

Z
12

 = Z
12X

 + Z
12Y

 = 7 W

Z
21

 = Z
21X

 + Z
21Y

 = 7 W

Z
22

 = Z
22X

 + Z
22Y

 = 28 W

Check If the two networks are connected in series as shown in Fig. 15.20(c), the Z
parameters are

Fig. 15.20(c)
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Z
11

 =
V

I
I

1

1 02 =

 = 18 W

Z
21

 =
V

I
I

2

1 02 =

 = 7 W

Z
22

 =
V

I
I

2

2 01 =

 = 28 W

Z
12

 =
V

I
I

1

2 01 =

 = 7 W

Example 15.8 Two identical sections of the network shown in Fig. 15.21 are
connected in parallel. Obtain the Y parameters of the combination.

V1

I2I1

2 W 4 W

2 W
1 W

V2

++

Fig. 15.21

Solution The Y parameters of the network in Fig. 15.21 are (See Ex. 15.2).

Y
11

 =
1

2
 

W

Y
21

 = 
-1

4
 

W

Y
22

 = 
5

8
 

W

Y
12

 = 
-1

4
 

W

If two such networks are connected in parallel then the Y parameters of the
combined network are

Y
11

 =
1

2

1

2
+  = 1 

W

Y
21

 = 
-

¥ =
-1

4
2

1

2

W

Y
22

 =
5

8
2

5

4
¥ =  

W

Y
12

 = 
-

¥ =
-1

4
2

1

2

W
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15.10 T AND PPPPP REPRESENTATION

A two-port network with any number of
elements may be converted into a two-port
three-element network. Thus, a two-port
network may be represented by an equivalent
T network, i.e. three impedances are
connected together in the form of a T as
shown in Fig. 15.22.

It is possible to express the elements of
the T-network in terms of Z parameters, or
ABCD parameters as explained below.
Z parameters of the network

Z11 =
V

I
I

1

1 02 =

 = Za + Zc

Z21 =
V

I
I

2

1 02 =

 = Zc

Z22 =
V

I I

2

2 01 =

 = Zb + Zc

Z12 =
V

I I

1

2 01 =

 = Zc

From the above relations, it is clear that

Za = Z11 – Z21

Zb = Z22 – Z12

Zc = Z12 = Z21

ABCD parameters of the network

A =
V

V

Z Z

ZI

a c

c

1

2 02 =

=
+

B =
-

=

V

I
V

1

2 02

When 2-2 ¢ is short circuited

– I2 =
V Z

Z Z Z Z Z

c

b c a b c

1

+ +a f

B = (Za + Zb) + 
Z Z

Z

a b

c

C =
I

V ZI c

1

2 02

1

=

=

I1 Za Zb

ZcV1 V2

I2

+ +

– –

1 2

1¢ 2¢

Fig. 15.22
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D =
-

=

I

I
V

1

2 02

When 2-2¢ is short circuited

– I2 = I1

Z

Z Z

c

b c+

D =
Z Z

Z

b c

c

+

From the above relations we can obtain

Za =
A

C

- 1
; Zb = 

D

C

- 1
; Zc = 

1

C

Example 15.9 The Z parameters of a two-port network are Z
11

 = 10 W; Z
22

 = 15
W; Z

12
 = Z

21
 = 5 W. Find the equivalent T network and ABCD parameters.

Solution The equivalent T network is shown in Fig. 15.23,

where Z
a
 = Z

11
– Z

21
 = 5 W

Z
b
 = Z

22
– Z

12
 = 10 W

and Z
c
 = 5 W

The ABCD parameters of the network are

A =
Z

Z

a

c

 + 1 = 2; B = (Z
a
 + Z

b
) + 

Z Z

Z

a b

c
 = 25 W

C =
1

Zc

 = 0.2 

W

D = 1 + 
Z

Z

b

c

 = 3

In a similar way, a two-port network may
be represented by an equivalent p-network,
i.e. three impedances or admittances are
connected together in the form of p as shown
in Fig. 15.24.

It is possible to express the elements of
the p-network in terms of Y parameters or
ABCD parameters as explained below.
Y parameters of the network

Y
11

 =
I

V
V

1

1 02 =

 = Y
1
 + Y

2

Y
21

 =
I

V
V

2

1 02 =

 = – Y
2

Fig. 15.23

Fig. 15.24
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Y
22

 =
I

V
V

2

2 01 =

 = Y
3
 + Y

2

Y
12

 =
I

V
V

1

2 01 =

 = – Y
2

From the above relations, it is clear that

Y
1
 = Y

11
 + Y

21

Y
2
 = – Y

12

Y
3
 = Y

22
 + Y

21

Writing ABCD parameters in terms of Y parameters yields the following results.

A =
-

=
+Y

Y

Y Y

Y

22

21

3 2

2

B =
-

=
1 1

21 2Y Y

C =
- D y

Y21

 = Y
1
 + Y

3
 + 

Y Y

Y

1 3

2

D =
-

=
+Y

Y

Y Y

Y

11

21

1 2

2

From the above results, we can obtain

Y
1
 =

D

B

- 1

Y
2
 =

1

B

Y
3
 =

A

B

- 1

Example 15.10 The port currents of a two-port network are given by

I
1
 = 2.5V

1
– V

2

I
2
 = – V

1
 + 5V

2

Find the equivalent p-network.

Solution Let us first find the Y parameters of the network

Y
11

 =
I

V
V

1

1 02 =

 = 2.5 

W

; Y
21

 = 
I

V
V

2

1 02 =

 = – 1 

W
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Y
12

 =
I

V
V

1

2 01 =

 = – 1 

W

; Y
22

 = 
I

V
V

2

2 01 =

 = 5 

W

The equivalent p-network is shown

in Fig. 15.25.

where Y
1
 = Y

11
+ Y

21
 = 1.5 

W

;

Y
2
 = – Y

12
 = – 1 

W

and Y
3
 = Y

22
 + Y

12
 = 4 

W

15.11 TERMINATED TWO-PORT NETWORK

15.11.1 Driving Point Impedance at the Input

Port of a Load Terminated Network

Figure 15.26 shows a two-port network connected to an ideal generator at the

input port and to a load impedance at the output port. The input impedance of

this network can be expressed in terms of parameters of the two port network.

I2I1

ZL

Z11

1¢ 2¢

2¢1

V1 V2

Fig. 15.26

(i) In Terms of Z Parameters The load at the output port 2-2 ¢ impose the

following constraint on the port voltage and current,

i.e., V2 = – ZL I2

Recalling Eqs 15.1 and 15.2, we have

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

Substituting the value of V
2
 in Eq. 15.2, we have

– ZL I2 = Z21 I1 + Z22 I2

from which I2 =
-

+

I Z

Z ZL

1 21

22

Fig. 15.25
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Substituting the value of I
2
 in Eq. 15.1 gives

V1 = Z11 I1 –
Z Z I

Z ZL

12 21 1

22+

V1 = I Z
Z Z

Z ZL
1 11

12 21

22

-
+

F
HG

I
KJ

Hence the driving point impedance at 1-1¢ is

V

I

1

1

 = Z11 –
Z Z

Z ZL

12 21

22+

If the output port is open, i.e. Z
L
Æ •, the input impedance is given by

V
1
/I

1
 = Z

11

If the output port is short circuited, i.e. Z
L
Æ 0,

The short circuit driving point impedance is given by

Z Z Z Z

Z

11 22 12 21

22

-
 = 

1

11Y

(ii) In Terms of Y Parameters If a load admittance Y
L
 is connected across

the output port. The constraint imposed on the output port voltage and current is

– I2 = V2 YL, where YL = 
1

ZL

Recalling Eqs 15.3 and 15.4 we have

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

Substituting the value of I
2
 in Eq. 15.4, we have

– V2 YL = Y21 V1 + Y22 V2

V2 = –
Y

Y YL

21

22+

F
HG

I
KJ

V1

Substituting V
2
 value in Eq. 15.3, we have

I1 = Y11 V1 –
Y Y V

Y YL

12 21 1

22+

From which
I

V

1

1

 = Y11 –
Y Y

Y YL

12 21

22+

Hence the driving point impedance is given by

V

I

1

1

 =
Y Y

Y Y Y Y Y

L22

11 1 22 12 21

+

+ -a f
If the output port is open, i.e., Y

L
Æ 0

V

I

1

1

  =
Y

y

22

D
 = Z11
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If the output port is short circuited, i.e. Y
L
Æ •

Then Yin = Y11

In a similar way, the input impedance of the load terminated two port

network may be expressed in terms of other parameters by simple mathematical

manipulations. The results are given in Table 15.2.

15.11.2 Driving Point Impedance at the Output Port

with Source Impedance at the Input Port

Let us consider a two-port network connected to a generator at input port with a

source impedance Z
s
 as shown in Fig. 15.27. The output impedance, or the

driving point impedance, at the output port can be evaluated in terms of the

parameters of two-port network.

I2I1

Vs

Zs

1¢ 2¢

2f1

V1
V2

Fig. 15.27

(i) In terms of Z parameters
If I

1
 is the current due to V

s
 at port 1-1¢

From Eqs. 15.1 and 15.2, we have

V2 = Z21I1 + Z22I2

V1 = Vs – I1Zs

= Z11 I1 + Z12I2 – (I1) (Zs + Z11) = Z12I2 – Vs

– I1 =
Z I V

Z Z

s

s

12 2

11

-

+

Substituting I
1
 in Eq. 15.2, we get

V2 = – Z21

Z I V

Z Z

s

s

12 2

11

-

+

a f
 + Z22 I2

With no source voltage at port 1-1¢, i.e. if the source V
s
 is short circuited

V2 =
-

+

Z Z

Z Zs

21 12

11

I2 + Z22I2

Hence the driving point impedance at port 2-2¢ = 
V

I

2

2
V

I

2

2

 =
Z Z Z Z Z Z

Z Z

s

s

22 22 11 21 12

11

+ -

+
 or 

D z s

s

Z Z

Z Z

+

+

22

11
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If the input port is open, i.e. Z
s
Æ •

Then
V

I

2

2

 =

DZ

s

s Z

Z
Z

Z

Z
s

+

+

L

N

M
M
M
M

O

Q

P
P
P
P

= •

22

111

 = Z22

If the source impedance is zero with a short circuited input port, the driving

point impedance at output port is given by

V

I

2

2

 =
D Z

Z Y11 22

1
=

(ii) In terms of Y parameters Let us consider a two-port network connected

to a current source at input port with a source admittance Y
s
 as shown in

Fig. 15.28.

I2I1

Is

Ys

1¢ 2¢

2
1

V1
V2

Fig. 15.28

At port 1-1¢ I1 = Is – V1 Ys

Recalling Eqs. 15.3 and 15.4, we have

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

Substituting I
1
 in Eq. 15.3, we get

Is – V1Ys = Y11V1 + Y12V2

– V1(Ys + Y11) = Y12 V2 – Is

– V1 =
Y V I

Y Y

s

s

12 2

11

-

+

Substituting V
1
 in Eq. 15.4, we get

I2 = – Y21

Y V I

Y Y

s

s

12 2

11

-

+

F
HG

I
KJ

 + Y22 V2

With no source current at 1-1¢, i.e. if the current source is open circuited

I2 =
-

+

Y Y V

Y Ys

21 12 2

11

 + Y22 V2
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Table 15.2

In terms of

Driving point Z parameters Y parameters ABCD A¢B ¢C ¢D ¢ h parameter g parameter

impedance at input

port, or input impedance

V

I

1

1

F
HG

I
KJ

D z L

L

Z Z

Z Z

+

+

11

22

Y Y

Y Y

L

y L

22

11

+

+D

AZ B

CZ D

L

L

+

+

¢ - ¢

¢ - ¢

B D Z

C Z A

L

L

D h L

L

Z h

h Z

+

+

11

221

1 22

11

+

+

g Y

g

L

gYLD

Driving point

impedance at output

port, or output impedance

V

I

2

2

F
HG

I
KJ

D z sZ Z

Z Z

+

+

22

1 11

Y Y

Y Y

s

y s

11

22

+

+D

DZ B

CZ A

s

s

+

+

¢ + ¢

¢ + ¢

A Z B

C Z D

s

s

h Z

h Z

s

h s

11

22

+

+D

g

g Z

s

s

22

111

+

+

D

Note The above relations are obtained, when V
s
 = 0 and I

s
= 0 at the input port.

E
C

A
_
C

h
a
p
_
1
5
a
{A

n
v
i_

IIn
d
 P

ro
o
f}.p

6
5

7
/1

3
/0

8
, 1

2
:4

9
 P

M
3
2
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Hence the driving point admittance at the output port is given by

I

V

2

2

 =  
Y Y Y Y Y Y

Y Y

s

s

22 22 11 21 12

11

+ -

+
 or 

D y s

s

Y Y

Y Y

+

+

22

11

If the source admittance is zero, with an open circuited input port, the driving

point admittance at the output port is given by

I

V

2

2

 =
D y

Y Z11 22

1
= = Y22

In a similar way, the output impedance may be expressed in terms of the

other two port parameters by simple mathematical manipulations. The results

are given in Table 15.2.

Example 15.11 Calculate the input impedance of the network shown in

Fig. 15.29.

I2I1

Vs 2 W 4 W 4 W

2 W
1 W

1¢ 2¢

1

2

V1

Fig. 15.29

Solution Let us calculate the input impedance in terms of Z parameters. The Z

parameters of the given network (see Solved Problem 15.1) are Z
11

 = 2.5 W; Z
21

 =

1 W; Z
22

 = 2 W; Z
12

 = 1 W

From Section 15.11.1 we have the relation

V

I

1

1

 = Z
11

–
Z Z

Z ZL

12 21

22+

where Z
L
 is the load impedance = 2 W

V

I

1

1

 = 2.5 –
1

2 2+
 = 2.25 W

The source resistance is 1 W

\ Z
in
 = 1 + 2.25 = 3.25 W

Example 15.12 Calculate the output impedance of the network shown in

Fig. 15.30 with a source admittance of 1 

W

 at the input port.
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I2I1

Is 2 W 4 W

2 W
1 W

1
W

2¢

2

V1 V2

Fig. 15.30

Solution Let us calculate the output impedance in terms of Y parameters. The Y

parameters of the given network (see Ex. 15.2) are

Y
11

 =
1

2
 

W

; Y
22

 = 
5

8
 

W

, Y
21

 = Y
12

 = 
-1

4
 

W

From Section 15.11.2, we have the relation

I

V

2

2

 =
Y Y Y Y Y Y

Y Y

s

s

22 22 11 21 12

11

+ -

+

where Y
s
 is the source admittance = 1 mho

Y
22

 =
I

V

2

2

 = 

5

8
1

5

8

1

2

1

16

1
1

2

7

12

¥ + ¥ -

+

=  

W

or Z
22

 =
12

7
 

W

15.12 LATTICE NETWORKS

One of the common four-terminal two-port network is the lattice, or bridge

network shown in Fig. 15.31(a). Lattice networks are used in filter sections and

are also used as attenuaters. Lattice structures are sometimes used in preference

to ladder structures in some special applications. Z
a
 and Z

d
 are called series

arms, Z
b
 and Z

c
 are called the diagonal arms. It can be observed that, if Z

d
 is

zero, the lattice structure becomes a p-section. The lattice network is redrawn

as a bridge network as shown in Fig. 15.31(b).

Za

ZaZc
Zc

Zb
Zb

Zd

Zd

V1 V1

I1

V2

2

2

1
1

2¢

2¢

1¢

1¢

++

––

V2

(a) (b)

Fig. 15.31
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Z Parameters

Z11 =
V

I
I

1

1 02 =

When I2 = 0; V1 = I
Z Z Z Z

Z Z Z Z

a b d c

a b c d
1

+ +

+ + +

a fa f
(15.17)

\ Z11 =
Z Z Z Z

Z Z Z Z

a b d c

a b c d

+ +

+ + +

a fa f

If the network is symmetric, then Z
a
 = Z

d
 and Z

b
 = Z

c

\ Z11 =
Z Za b+

2

Z21 =
V

I I

2

1 02 =

When I
2
 = 0, V

2
 is the voltage across 2–2 ¢

V2 = V
Z

Z Z

Z

Z Z

b

a b

d

c d
1

+
-

+

L
NM

O
QP

Substituting the value of V
1
 from Eq. 15.17, we have

V2 =
I Z Z Z Z

Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z

a b d c

a b c d

b c d d a b

a b c d

1 + +

+ + +

L
NM

O
QP

+ - +

+ +

L
NM

O
QP

a fa f a f a f
a fa f

V

I

2

1

 =
Z Z Z Z Z Z

Z Z Z Z

Z Z Z Z

Z Z Z Z

b c d d a b

a b c d

b c a d

a b c d

+ - +

+ + +
=

-

+ + +

a f a f

\ Z21 =
Z Z Z Z

Z Z Z Z

b c a d

a b c d

-

+ + +

If the network is symmetric, Z
a
 = Z

d
, Z

b
 = Z

c

Z21 =
Z Zb a-

2
When the input port is open, I

1
 = 0

Z12 =
V

I I

1

2 01 =

The network can be redrawn as shown in Fig. 15.31(c).

Zb

Zd

V1

I2
2

1

2¢

1¢

+

–

Za

Zc

V1

I1

Fig. 15.31(c)
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V1 = V
Z

Z Z

Z

Z Z

c

a c

d

b d
2

+
-

+

L
NM

O
QP

(15.18)

V2 = I
Z Z Z Z

Z Z Z Z

a c d b

a b c d
2

+ +

+ + +

L
NM

O
QP

a fa f
(15.19)

Substituting the value of V
2
 in Eq. 15.18, we get

V1 = I
Z Z Z Z Z Z

Z Z Z Z

c b d d a c

a b c d
2

+ - +

+ + +

L
NM

O
QP

a f a f

V

I

1

2

 =
Z Z Z Z

Z Z Z Z

c b a d

a b c d

-

+ + +

If the network is symmetric, Z
a
 = Z

d
; Z

b
 = Z

c

V

I

1

2

 =
Z Z

Z Z

b a

a b

2 2

2

-

+a f

\ Z12 =
Z Zb a-

2

Z22 =
V

I
I

2

2 02 =

From Eq. 15.19, we have

V

I

2

2

 =
Z Z Z Z

Z Z Z Z

a c d b

a b c d

+ +

+ + +

a fa f

If the network is symmetric,

Za = Zd; Zb = Zc

Z22 =
Z Za b+

2
 = Z11

From the above equations, Z
11

 = Z
22

 = 
Z Za b+

2

and Z12 = Z21 = 
Z Zb a-

2

\ Zb = Z11 + Z12

Za = Z11 – Z12.

Example 15.13 Obtain the lattice equivalent of a symmetrical T network shown

in Fig. 15.32.
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2 W

1 W 1 W

1 2

1¢ 2¢

Fig. 15.32

Solution A two two-port network can be realised as a symmetric lattice if it is

reciprocal and symmetric. The Z parameters of the network are (see Ex. 15.1). Z
11

 =

3 W; Z
12

= Z
21

 = 2 W; Z
22

 = 3 W .

Since Z
11

 = Z
22

; Z
12

 = Z
21

, the given network is symmetrical and reciprocal

\ The parameters of the lattice network are

Z
a
 = Z

11
– Z

12
 = 1 W

Z
b
 = Z

11
 + Z

12
 = 5 W

The lattice network is shown in Fig. 15.33.

Fig. 15.33

Example 15.14 Obtain the lattice equivalent of a symmetric p-network shown in

Fig. 15.34.

Solution The Z parameters of the given network are

Z
11

 = 6 W = Z
22

; Z
12

 = Z
21

 = 4 W

Hence the parameters of the lattice network are

Z
a
 = Z

11
– Z

12
 = 2 W

Z
b
 = Z

11
 + Z

12
 = 10 W

The lattice network is shown in Fig.15.35
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15.13 IMAGE PARAMETERS

The image impedance Z
I 1

 and Z
I 2

 of a two-port network shown in Fig. 15.36 are

two values of impedance such that, if port 1–1¢ of the network is terminated in

Z
I 1

, the input impedance of port 2-2 ¢ is Z
I 2

; and if port 2-2 ¢ is terminated in Z
I 2

,

the input impedance at port 1-1¢ is Z
I 1

.

V1

I2
I1

V2

21

2¢1¢

ZI1 ZI2

Fig. 15.36

Then, Z
I 1

 and Z
I 2

 are called image impedances of the two port network shown

in Fig. 15.36. These parameters can be obtained in terms of two-port

parameters. Recalling Eqs 15.5 and 15.6 in Section 15.4, we have

V1 = AV2 – BI2

I1 = CV2 – DI 2

If the network is terminated in Z
I 2

 at 2-2¢ as shown in Fig. 15.37.

V1

I2
I1

V2

2

2¢
1¢

1

ZI2

ZI1

Fig. 15.37

5 W

10 W 10 W

1 2

1¢ 2¢

21

2¢1¢

2 W

2 W

10 W

10 W

Fig. 15.34 Fig. 15.35
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V2 = – I2 ZI 2

V

I

1

1

 =
AV BI

CV DI

2 2

2 2

-

-
 = ZI 1

ZI 1 =
- -

- -

AI Z BI

CI Z DI

I

I

2 2 2

2 2 2

ZI 1 =
- -

- -

AZ B

CZ D

I

I

2

2

or ZI 1 =
AZ B

CZ D

I

I

2

2

+

+

Similarly, if the network is terminated in Z
I 1

 at port 1-1¢ as shown in

Fig. 15.38, then

V1

I2I1

V2 ZI2

2

2¢
1¢

1

ZI1

Fig. 15.38

V1 = – I1ZI 1

V

I

2

2

 = ZI 2

\ –ZI1 =
V

I

AV BI

CV DI

1

1

2 2

2 2

=
-

-

– ZI 1 =
AI Z BI

CI Z DI

I

I

2 2 2

2 2 2

-

-

– ZI 1 =
AZ B

CZ D

I

I

2

2

-

-

From which ZI 2 =
DZ B

CZ A

I

I

1

1

+

+

Substituting the value of Z
I 1

 in the above equation

ZI 2 C
AZ B

CZ D
AI

I

- +

-
+

L
NM

O
QP

2

2

a f
a f

 = D
- +

-

L
NM

O
QP
+

AZ B

CZ D
BI

I

2

2

From which Z
I2

 = 
BD

AC
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Similarly, we can find Z
I 1

 = 
AB

CD

If the network is symmetrical, then A = D

\ ZI 1 = ZI2 = 
B

C

If the network is symmetrical, the image impedances Z
I 1

 and Z
I 2

 are equal to

each other; the image impedance is then called the characteristic impedance, or

the iterative impedance, i.e. if a symmetrical network is terminated in Z
L
, its

input impedance will also be Z
L
, or its impedance transformation ratio is unity.

Since a reciprocal symmetric network can be described by two independent

parameters, the image parameters Z
I 1

 and Z
I 2

 are sufficient to characterise

reciprocal symmetric networks. Z
I 1

 and Z
I 2

 the two image parameters do not

completely define a network. A third parameter called image transfer constant

f is also used to describe reciprocal networks. This parameter may be obtained

from the voltage and current ratios.

If the image impedance Z
I 2

 is connected across port 2-2 ¢, then

V1 = AV2 – BI2 (15.20)

V2 = – I2 ZI 2 (15.21)

\ V1 = A
B

Z
V

I

+
L
NM

O
QP2

2 (15.22)

I1 = CV2 – DI 2 (15.23)

I1 = – [CZI 2 + D]I2 (15.24)

From Eq. 15.22

V

V

1

2

 = A
B

ZI

+
L
NM

O
QP2

 = A + B
AC

BD

V

V

1

2

 = A + 
ABCD

D
(15.25)

From Eq. 15.24

- I

I

1

2

 = [CZI 2 + D] = D + C
BD

AC

- I

I

1

2

 = D + 
ABCD

A
(15.26)

Multiplying Eqs. 15.25 and 15.26 we have

-
¥

V

V

I

I

1

2

1

2

 =
AD ABCD

D

AD ABCD

A

+F
HG

I
KJ

+F
HG

I
KJ

-
¥

V

V

I

I

1

2

1

2

 = AD BC+c h
2
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or AD BC+  =
-

¥
V

V

I

I

1

2

1

2

AD AD+ - 1  =
-

¥
V

V

I

I

1

2

1

2

(∵ AD – BC = 1)

Let cos h f = AD ; sin h f = AD - 1

tan h f =
AD

AD

BC

AD

-
=

1

\ f = tan h–1 BC

AD

Also ef = cos h f + sin h f = -
V I

V I

1 1

2 2

f = log loge e

V I

V I

V

V

I

I
-

F
HG

I
KJ
=

F
HG

I
KJ

1 1

2 2

1

2

1

2

1

2

Since V1 = ZI 1 I1; V2 = – I2 ZI 2

f =
1

2

1

2

1

2

log loge
I

I

Z

Z

I

I

L
NM

O
QP
+

L
NM

O
QP

For symmetrical reciprocal networks, Z
I 1

 = Z
I2

f = loge

I

I

1

2

L
NM

O
QP
= g

where g is called the propagation constant.

Example 15.15 Determine the image parameters of the T network shown in

Fig.15.39.

Fig. 15.39

Solution The ABCD parameters of the network are

A =
6

5
; B = 

17

5
; C = 

1

5
; D = 

7

5
 (See Ex. 15.3)

Since the network is not symmetrical, f, Z
I1

 and Z
I2

 are to be evaluated to describe

the network.
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Z
I1

 =
AB

CD
=

¥

¥

6

5

17

5
1

5

7

5

 = 3.817 W

Z
I2

 =
BC

AC
=

¥

¥

17

5

7

5
6

5

1

5

 = 4.453 W

f = tan h
–1 BC

AD
 = tan h

–1 17

42

or f = In AD AD+ - 1

f = 0.75

ADDITIONAL SOLVED PROBLEMS

Problem 15.1 Find the Z parameters for the circuit shown in Fig. 15.40.

V1

I2I1

2 W 4 W

2 W
1 W

V2

a b

a¢ b¢

Fig. 15.40

Solution Z
11

 =
V

I
I

1

1 02 =

When I
2
 = 0; V

1
 can be expressed in terms of I

1
 and the equivalent impedance of

the circuit looking from the terminal a-a ¢ as shown in Fig. 15.41(a).

2 W 4 W

2 W1 W

V1Zeq

Fig. 15.41(a)
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Zeq = 1 + 
6 2

6 2

¥

+
 = 2.5 W

V1 = I1 Zeq = I1 2.5

Z11 =
V

I I

1

1 02 =

 = 2.5 W

Z21 =
V

I I

2

1 02 =

V
2
 is the voltage across the 4 W impedance as shown in Fig. 15.41(b).

V1

I2 = 0I1
Ix

2 W 4 W

2 W
1 W

V2

Fig. 15.41(b)

Let the current in the 4 W impedance be I
x

Ix = I1 ¥
2

8 4

1=
I

V2 = Ix4 = 
I1

4
¥ 4 = I1

Z21 =
V

I I

2

2 02 =

 = 1 W

Z22 =
V

I I

2

2 01 =

When port a-a ¢ is open circuited the voltage at port b-b¢ can be expressed in

terms of I
2
, and the equivalent impedance of the circuit viewed from b-b¢ as

shown in Fig. 15.41(c).

V1

I2I1 = 0

2 W 4 W

2 W
1 W

V2 Zeq

Fig. 15.41(c)
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V2 = I2 ¥ 2

\ Z22 =
V

I
I

2

2 01 =

 = 2 W

Z12 =
V

I I

1

2 01 =

V
1
 is the voltage across the 2 W (parallel) impedance, let the current in the 2 W

impedance is I
Y
 as shown in Fig. 15.41(d).

V1

I2IyI1 = 0

2 W 4 W

2 W
1 W

V2

Fig. 15.41(d)

IY =
I2

2
V1 = 2 IY

V1 = 2 
I2

2

\ Z12 =
V

I I

1

2 01 =

 = 1 W

Here Z
12

 = Z
21

, which indicates the bilateral property of the network. The

describing equations for this two-port network in terms of impedance

parameters are
V1 = 2.5I1 + I2

V2 = I1 + 2I2

Problem 15.2 Find the short circuit admittance parameters for the circuit

shown in Fig. 15.42.

I2I1

V2V1 YA

YB

YC

++
a b

a¢ b¢

Fig. 15.42
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Solution The elements in the branches of the given two-port network are

admittances. The admittance parameters can be determined by short circuiting

the two-ports.

When port b-b ¢ is short circuited, V
2
 = 0. This circuit is shown in

Fig. 15.43(a).

YA

YB

I1 I2

a b

a¢ b¢

Fig. 15.43(a)

V1 = I1 Zeq

where Z
eq

 is the equivalent impedance as viewed from a-a ¢.

Zeq =
1

Yeq

Yeq = YA + YB

V1 =
I

Y YA B

1

+

Y11 =
I

V V

1

1 02 =

 = (YA + YB)

With port b-b¢ short circuited, the nodal equation at node 1 gives

– I2 = V1 YB

\ Y21 =
I

V V

2

1 02 =

 = – YB

when port a-a ¢ is short circuited; V
1
 = 0 this circuit is shown in Fig. 15.43(b).

YC

YB

I1 I2

b

b¢

V2V1 = 0

Fig. 15.43(b)

V2 = I2 Zeq
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where Z
eq

 is the equivalent impedance as viewed from b-b¢

Zeq =
1

Yeq

Yeq = Yb + Yc

\ V2 =
I

Y YB C

2

+

Y22 =
I

V V

2

2 01 =

 = (YB + YC)

With port a-a ¢ short circuited, the nodal equation at node 2 gives

– I1 = V2 YB

Y12 =
I

V
V

1

2 01 =

 = – YB

The describing equations in terms of the admittance parameters are

I1 = (YA + YB)V1 – YBV2

I2 = – YBV1 + (YC + YB)V2

Problem 15.3 Find the Z parameters of the RC ladder network shown in

Fig. 15.44.

I S1 ( ) I S2 ( )
a b

a¢ b¢

1/s 1/s

V S2 ( )V S1 ( ) 11

Fig. 15.44

Solution With port b-b ¢ open circuited and assuming mesh currents with

V
1
(S) as the voltage at a-a ¢, the corresponding network is shown in Fig.

15.45(a).

The KVL equations are as follows

V2(S) = I3(S) (15.27)

I3(S) ¥ 2
1

+F
H

I
KS

 = I1(S) (15.28)

1
1

+F
H

I
KS

I1(S) – I3(S) = V1(S) (15.29)
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Fig. 15.45(a)

From Eq. 15.28, I3(S) = I1(S)
S

S1 2+

F
HG

I
KJ

From Eq. 15.29
S

S

+F
H

I
K

1
I1(S) – I1(S)

S

S1 2+
 = V1(S)

I1(S)
1

1 2

+
-

+

F
HG

I
KJ

S

S

S

S
 = V1(S)

I1(S)
S S

S S

2 3 1

1 2

+ +

+( )

F
HG

I
KJ

 = V1(S)

Z11 =
V S

I S

S S

S SI

1

1 0

2

2

3 1

1 2

( )

( )
=

=
+ +

+( )

c h

Also V2(S) = I3(S) = I1(S)
S

S1 2+

Z21 =
V S

I S

S

SI

2

1 02
1 2

( )

( )
=

=
+

With port a-a ¢ open circuited and assuming mesh currents with V
2
(S) as the

voltage as b-b¢, the corresponding network is shown in Fig. 15.45(b).

I S1 ( ) = 0

I S3 ( )

I S2 ( )1/s 1/s

V S2 ( )V S1 ( ) 11

+ +

Fig. 15.45(b)

The KVL equations are as follows

V1(S) = I3(S) (15.30)
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2
1

+F
H

I
KS

I3(S) = I2(S) (15.31)

V2(S) = I2(S) – I3(S) (15.32)

From Eq. 15.31 I3(S) = I2(S)
S

S2 1+

F
HG

I
KJ

From Eq. 15.32 V2(S) = I2(S) – I2(S)
S

S2 1+

F
HG

I
KJ

V2(S) = I2(S) 1
2 1

-
+

F
HG

I
KJ

S

S

Z22 =
V S

I S

S

SI S

2

2 01

1

2 1

( )

( )
( ) =

=
+

+

Also V1(S) = I3(S) = I2(S)
S

S2 1+

F
HG

I
KJ

Z12 =
V S

I S

S

S
I S

1

2 01
2 1

( )

( )
( ) =

=
+

F
HG

I
KJ

The describing equations are

V1(S) =
S S

S
I

S

S
I

2

1 2

3 1

3 2 1 2 1

+ +

+( )

L
NM

O
QP

+
+

L
NM

O
QP

V2(S) =
S

S
I

S

S
I

2 1

1

2 1
1 2

+

L
NM

O
QP

+
+

+

L
NM

O
QP

Problem 15.4 Find the transmission parameters for the circuit shown in

Fig. 15.46.

I2I1

V2V1

++
a b

a¢ b¢

2 W

2 W 2 W

Fig. 15.46

Solution Recalling Eqs 15.5 and 15.6, we have

V1 = AV2 – BI2

I1 = CV2 – DI2



Two-Port Networks 15.49

When port b-b¢ is short circuited with V
1
 across a-a ¢, V

2
 = 0 B = 

-V

I

1

2

 and the

circuit is as shown in Fig. 15.47(a)

I2I1

V2 = 0
V1

+
a b

a¢ b¢

2 W

2 W 2 W

Fig. 15.47(a)

– I2 =
V1

2
I1 = V1

\ B = 2 W

D =
- I

I

1

2

 = 2

When port b-b¢ is open with V
1
 across a-a ¢, I

2
 = 0

A = V
1
/V

2
 and the circuit is as shown in Fig. 15.47(b), where V

1
 is the voltage

across the 2 W resistor across port a-a ¢ and V
2
 is the voltage across the 2 W

resistor across port b-b¢ when I
2
 = 0.

I2 = 0I1

Ix Iy

V1 V2

+
a b

a¢ b¢

2 W

2 W 2 W

Fig. 15.47(b)

From Fig. 15.47(b), IY =
V1

4

V2 = 2 ¥ IY = 
V1

2
A = 2

From Fig. 15.47(b) Ix =
V1

2

C =
I

V

1

2
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where I1 =
3

4

1V

Therefore C =
3

2

W

Problem 15.5 Find h parameters for the network in Fig. 15.48.

I2
I1

V1 V2

2 W

4 W

Fig. 15.48

Solution When V
2
 = 0 the network is as shown in Fig. 15.49.

I1

V1
V2

2 W
+

Fig. 15.49

h11 =
V

I
V

1

1 02 =

 = 2 W

h21 =
I

I V

2

1 02 =

; I2 = – I1

\ h21 = – 1

When I1 = 0; h12 = 
V

V
I

1

2 01 =

; h22 = 
I

V
I

2

2 01 =

V1 = I2 4, V2 = I2 4

\ h12 = 1 h22 = 
1

4

W

Problem 15.6 For the hybrid equivalent circuit shown in Fig. 15.50,

(a) determine the current gain, and (b) determine the voltage gain.
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25I1

V1

I1

V2Vs Z1

I2

1500 W

500 W

0
.0
5
x
1
0
6
W

2

2¢

2
x
1
0

V
2
x
1
0

V
–
4

2

1

1

Fig. 15.50

Solution From port 2-2 ¢ we can find

I2 =
25 0 05 10

1500 0 05 10

1
6

6

Ia fc h
c h

.

.

¥

+ ¥

(a) current gain 
I

I

2

1

 = 
1 25 10

0 0515 10

6

6

.

.

¥

¥
 = 24.3

(b) applying KVL at port 1-1¢

V1 = 500 I1 + 2 ¥ 10
–4

V2

I1 =
V V1

4
22 10

500

- ¥ -

(15.33)

Applying KCL at port 2-2¢

I2 = 25I1 + 
V2

0 05.
¥ 10–6

also I2 =
-V2

1500
-V2

1500
 = 25I1 + 

V2

0 05.
¥ 10–6

Substituting the value of I
1
 from Eq. 15.33, in the above equation, we get

-V2

1500
 = 25

2 10

500 0 05
101

4
2 2 6V V V- ¥F

HG
I
KJ
+ ¥

-
-

.

– 6.6 ¥ 10
–4

V2 = 0.05V1 – 0.1 ¥ 10
–4

V2 + 0.2 ¥ 10
–4

V2

\
V

V

2

1

 = – 73.89

The negative sign indicates that there is a 180° phase shift between input and

output voltage.

Problem 15.7 The hybrid parameters of a two-port network shown in

Fig. 15.51 are h
11

 = 1 K; h
12

 = 0.003; h
21

 = 100; h
22

 = 50 m

W

. Find V
2
 and Z

parameters of the network.
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V1

I2I1

V2

2

2¢
1¢

2 K

1

500 W

10 0º x 10 V– –3

Fig. 15.51

Solution V
1
 = h

11
I

1
 + h

12
V

2
(15.34)

I2 = h21 I1 + h22 V2 (15.35)

At port 2-2¢ V2 = – I2 2000

Substituting in Eq. 15.35, we have

I2 = h21I1 – h22I2 2000

I2 (1 + h22 2000) = h21 I1

I2(1 + 50 ¥ 10–6 ¥ 2000) = 100 I1

I2 =
100

1 1

1I

.
Substituting the value of V

2
 in Eq. 15.34, we have

V1 = h11 I1 – h12 I2 2000

Also at port 1-1¢, V1 = VS – I1 500

\ VS – I1 500 = h11 I1 – h12

100

1 1

1I

.
¥ 2000

(10 ¥ 10–3) – 500 I1 = 1000 I1 – 0.003 ¥
100

1 1
1

.
I ¥ 2000

954.54I1 = 10 ¥ 10
–3

I1 = 10.05 ¥ 10–6 A

V1 = VS – I1 ¥ 500

= 10 ¥ 10
–3

– 10.5 ¥ 10
–6 ¥ 500 = 4.75 ¥ 10

–3
 V

V2 =
V h I

h

1 11 1

12

-

V2 =
4 75 10 1000 10 5 10

0 003

3 6. .

.

¥ - ¥ ¥- -

 = – 1.916 V

(b) Z parameters of the network can be found from Table 15.1.

Z11 =
D h

h

h h h h

h22

11 22 21 12

22

=
-

 = 
1 10 50 10 100 0 003

50 10

3 6

6

¥ ¥ ¥ - ¥

¥

-

-

.
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= – 5000 W

Z12 =
h

h

12

22
6

0 003

50 10
=

¥ -

.
 = 60 W

Z21 =
-

=
-

¥ -

h

h

21

22
6

100

50 10
 = – 2 ¥ 106 W

Z22 =
1

22h
 = 20 ¥ 103 W

Problem 15.8 The Z parameters of a two port network shown in Fig. 15.52

are Z
11

 = Z
22

 = 10 W; Z
21

 = Z
12

 = 4 W. If the source voltage is 20 V, determine I
1
,

V
2
, I

2
 and input impedance.

V1

I2I1

V2VS

2

2¢
1¢

1

20 W

Fig. 15.52

Solution Given V
1
 = V

S
 = 20 V

From Section 15.11.1, V1 = I Z
Z Z

Z ZL
1 11

12 21

22

-
+

F
HG

I
KJ

where ZL = 20 W

\ 20 = I1 10
4 4

20 10
-

¥

+

F
HG

I
KJ

I1 = 2.11 A

I2 = – I1

Z

Z ZL

21

22+
 = – 2.11 ¥

4

20 10+
 = – 0.281 A

At port 2-2 ¢
V2 = – I2 ¥ 20 = 0.281 ¥ 20 = 5.626 V

Input impedance =
V

I

1

1

20

2 11
=

.
 = 9.478 W

Problem 15.9 The Y parameters of the two-port network shown in Fig. 15.53

are Y
11

 = Y
22

 = 6 

W

; Y
12

 = Y
21

 = 4 

W

(a) determine the driving point admittance at port 2-2¢ if the source voltage

is 100 V and has an impedance of 1 ohm.
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V1

I2
I1

V2VS

2

2¢1¢

1

1 W

Fig. 15.53

Solution From Section 15.11.2,

I

V

2

2

 =
Y Y Y Y Y Y

Y Y

S

S

22 22 11 21 12

11

+ -

+

where Y
S
 is the source admittance = 1 

W

\ The driving point admittance = 
6 1 6 6 4 4

1 6

¥ + ¥ - ¥

+
 = 3.714 

W

Or the driving point impedance at port 2-2¢ = 
1

3 714.
W

Problem 15.10 Obtain the Z parameters for the two-port unsymmetrical

lattice network shown in Fig. 15.54.

V1 V2

2

2¢1¢

1

1 W

3 W

2 W

5 W

Fig. 15.54

Solution From Section 15.12, we have

Z11 =
Z Z Z Z

Z Z Z Z

a b d c

a b c d

+ +

+ + +
=

+( ) +( )

+ + +

a fa f 1 3 2 5

1 3 5 2
 = 2.545 W

Z21 =
Z Z Z Z

Z Z Z Z

b c a d

a b c d

-

+ + +
=

¥ - ¥3 5 1 2

11
 = 1.181 W

Z21 = Z12
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Z22 =
Z Z Z Z

Z Z Z Z

a c d b

a b c d

+ +

+ + +
=

+( ) +( )
=

a fa f 1 5 2 3

11
2 727. W

Problem 15.11 For the ladder two-port network shown in Fig. 15.55, find

the open circuit driving point impedance at port 1-2.

A

1 W 1 W 1 W1 H1 H 1 H1 H 1 H

V1 V2

I1 I2

1 F 1 F1 F 1 F

++

––

1

2

3

4

Fig. 15.55

Solution The Laplace transform of the given network is shown in Fig. 15.56.

A

V1 V2

I1

Z1 Z2

Y1 Y2 Y3

Z3

I2

++

––

1

2

3

4

S+1 S+1 S+1

S S S

+

–

Fig. 15.56

Then the open circuit driving point impedance at port 1-2 is given by

Z s

s

s

s
s

s

11 1
1

1

1
1

1

1
1

= +( ) +
+

+( ) +

+
+( ) +

=
s s s s s s

s s s s s

6 5 4 3 2

5 4 3 2

3 8 11 11 6 1

2 5 4 3

+ + + + + +

+ + + +

Problem 15.12 For the bridged T network shown in Fig. 15.57, find the

driving point admittance y
11

 and transfer admittance y
21

 with a 2 W load resistor

connected across port 2.
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V2V1

2

2 W

1 W 1 W

1F

1F

1

1¢
2¢

Fig. 15.57

Solution The corresponding Laplace transform network is shown in

Fig. 15.58.

V1 I2

I3

I1

+

–

2

1 1

1

1

s

s

V2

Fig. 15.58

The loop equations are

I
s

I
s

I1 2 31
1 1

+F
H

I
K + F

H
I
K -  = V1

I
s

I
s

I1 2 3

1
1

1F
H

I
K + +F

H
I
K +  = 0

I1 (–1) + I2 + I3 2
1

+F
H

I
Ks

 = 0

Therefore,

D =

1
1 1

1

1
1

1
1

1 1 2
1

2
2

+F
H

I
K -

+

- +

=
+

s s

s s

s

s

s
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Similarly, D11 =

1
1 1

1 2
1

3 12

2

+F
H

I
K

+F
H

I
K

=
+ +s s

s

s s

s

and D12 =

1
1

1 2
1

2 12

2
s

s

s s

s

+

+ +F
H

I
K

=
+ +

Hence, y11 =
D

D

11
2 3 1

2
=

+ +

+

s s

s

and y21 =
D

D

12

2 2 1

2
=

- + +

+

s s

s

c h

Problem 15.13 For the two port network shown in Fig. 15.59, determine the

h-parameters. Using these parameters calculate the output (Port 2) voltage, V
2
,

when the output port is terminated in a 3 W resistance and a 1V (dc) is applied at

the input port (V
1
 = 1 V).

I1

V1 V2

+

– –

1 W

2 W 2ix

3ix

++ –

Fig. 15.59

Solution The h parameters are defined as

V

I

1

2

L
NM

O
QP
 =

h h

h h

I

V

11 12

21 22

1

2

L
NM

O
QP
L
NM

O
QP

For V
2
 = 0, the circuit is redrawn as shown in Fig. 15.60(a)

V1

1 W

2 W
2ix

3ix

+ –
i = ix 1 I2

Fig. 15.60(a)
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h11 =
V

I

i i

i
V

1

1 0

1 1

12

1 3

=

=
¥ +

 = 4

h21 =
I

I

i

i

i i

i
V

2

1 0

2

1

1 1

12

2

=

= =
-

 = 1

For I
1
 = 0, the circuit is redrawn as shown in Fig. 15.60(b).

V1 V2

1 W

2 W

3ix = 0

+ –
I2

i i1= 0 = x

Fig. 15.60(b)

h12 =
V

V

1

2

 = 1; h22 = 
I

V

2

2

1

2
=  = 0.5

Hence, h =
4 1

1 0 5.

L
NM

O
QP

V1 = 1 V

V1 = 4I1 + V2

I2 = I1 + 0.5 V2

Eliminating I
1
 from the above equations and putting

V1 = 1 and I2 = 
-V2

3
 we get, V2 = 

-3

7
 V

Problem 15.14 Find the current transfer ratio 
I

I

2

1

 for the network shown in

Fig. 15.61.

1 W1 W 1 W

2 W

I1

I3
I2

I1

2 I3

2

+ –

Fig. 15.61
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Solution By transforming the current source into voltage source, the given

circuit can be redrawn as shown in Fig. 15.62.

1 W

1 W 1 W

2 W

I + 2I1 3
I1

I3
I2

V1 V2

2

Fig. 15.62

Applying Kirchhoff’s nodal analysis

V I I V V V1 1 3 1 1 22

1 1 2

- +
+ +

-a f
 = 0

and
V V I

I2 1 1
2

2 2

-
- -  = 0

Putting V
1
 = – I

3
 and V

2
 = – I

2

The above equations become

– I3 – I1 – 2I3 – I3 + 
I I2 3

2

-
 = 0

and
I I I2 3 1

2 2

-
- – I2 = 0

or I1 0.5I2 – 4.5 I3 = 0

and – 0.5 I1 – 1.5I2 + 0.5I3 = 0

By eliminating I
3
, we get

I

I

2

1

 =
- 5 5

13

.
 = – 0.42

PRACTICE PROBLEMS

15.1 Find the Z parameters of the network shown in Fig. 15.63.

YA YB

YC

Fig. 15.63
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15.2 Find the transmission parameters for the R–C network shown in Fig.

15.64.

2 W

2 F 2 F

Fig. 15.64

15.3 Find the inverse transmission parameters for the network in Fig. 15.65.

1 W

2 W

1 W

Fig. 15.65

15.4 Calculate the overall transmission parameters for the cascaded network

shown in Fig. 15.66.

1 W 2 W 2 W 4 W

10 W5 W

Fig. 15.66

15.5 For the two-port network shown in Fig. 15.67, find the h parameters and

the inverse h parameters.

4 W

2 W

V2V1

+ +

– –

Fig. 15.67
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15.6 Determine the impedance parameters for the T network shown in

Fig. 15.68 and draw the Z parameter equivalent circuit.

2 W j 5 W

– j 3W

Fig. 15.68

15.7 Determine the admittance parameters for the p-network shown in

Fig. 15.69 and draw the Y parameter equivalent circuit.

+ +

BL = 0.2 x 10
–3

G = 0.5 x 10–3 Bc = 0.22 x 10
–3

Fig. 15.69

15.8 Determine the impedance parameters and the transmission parameters

for the network in Fig. 15.70.

2 W 2 W

3 W

4 W

Fig. 15.70

15.9 For the hybrid equivalent circuit shown in Fig. 15.71, determine (a) the

input impedance (b) the output impedance.
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40 I1

I1 I21.5 K

30 kW
1 kW0.003V2

Fig. 15.71

15.10 Determine the input and output impedances for the Z parameter equiva-

lent circuit shown in Fig. 15.72

600I1

I1 I2

V2

500 W

500 W

500 W

4 K

3000 90º– I2

Fig. 15.72

15.11 The hybrid parameters of a two-port network shown in Fig. 15.73 are h11

= 1.5 K; h12 = 2 ¥ 10–3; h21 = 250; h22 = 150 ¥ 10–6 W

 (a) Find V2 (b).

Draw the Z parameter equivalent circuit.

V1

I2
I1

V2

2

2¢
1¢

1

2.5 KVS

1000 W

100 0º m.v–

Fig. 15.73

15.12 The Z parameters of a two-port network shown in Fig. 15.74 are Z11 = 5

W; Z12 = 4 W; Z22 = 10 W; Z21 = 5 W. If the source voltage is 25 V,

determine I1, V2 I2, and the driving point impedance at the input port.
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V1
VS

I2
I1

V2

2

2¢
1¢

1

15 W
+

+ +

–

Fig. 15.74

15.13 Obtain the image parameters of the symmetric lattice network given in

Fig. 15.75.

2

2¢1¢

1

4 W

5 W

5 W

4 W

Fig. 15.75

15.14 Determine the Z parameters and image parameters of a symmetric lattice

network whose series arm impedance is 10 W and diagonal arm imped-

ance is 20 W.

15.15 For the network shown in Fig. 15.76, determine all four open circuit im-

pedance parameters.

V1 V2V2
6 W

20 W

20 W

27

90

+ +

– –

Fig. 15.76
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15.16 For the network shown in Fig. 15.77, determine y12 and y21

V20.1I1
V2

100 W

5 W

100 W

100

+

–

+
–

40 W 40 W

I1

Fig. 15.77

15.17 For the network shown in Fig.15.78, determine h parameters at w = 108

rad/sec.

+

–

V2
V1

V1 2 kW 2 kW
4 PF

2 PF

100

Fig. 15.78

15.18 For the network shown in Fig. 15.79, determine y parameters.

+

+

–
–

V2V1

V2

I1

I1

I2

5 W

5

+
–

2
520 W

Fig. 15.79

OBJECTIVE-TYPE QUESTIONS

1. A two-port network is simply a network inside a black box, and the net-

work has only
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(a) two terminals

(b) two pairs of accessible terminals

(c) two pairs of ports

2. The number of possible combinations generated by four variables taken

two at a time in a two-port network is

(a) four (b) two (c) six

3. What is the driving-point impedance at port one with port two open cir-

cuited for the network in Fig. 15.80?

3 W

1 W 2 W

1 2

1¢ 2¢

Fig. 15.80

(a) 4 W (b) 5 W (c) 3 W
4. What is the transfer impedance of the two-port network shown in

Fig. 15.80?

(a) 1 W (b) 2 W (c) 3 W
5. If the two-port network in Fig. 15.80 is reciprocal or bilateral then

(a) Z11 = Z22 (b) Z12 = Z21 (c) Z11 = Z12

6. What is the transfer admittance of the network shown in Fig. 15.81.

2 3

4

W W

W
1 2

1¢ 2¢

Fig. 15.81

(a) – 2 

W

(b) – 3 

W

(c) – 4 

W

7. If the two-port network in Fig. 15.81 is reciprocal then

(a) Y11 = Y22 (b) Y12 = Y22 (c) Y12 = Y11

8. In describing the transmission parameters

(a) the input voltage and current are expressed in terms of output volt-

age and current

(b) the input voltage and output voltage are expressed in terms of out-

put current and input current.
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(c) the input voltage and output current are expressed in terms of input

current and output voltage.

9. If Z11 = 2 W; Z12 = 1 W; Z21 = 1 W and Z22 = 3 W, what is the determinant

of admittance matrix.

(a) 5 (b) 1/5 (c) 1

10. For a two-port bilateral network, the three transmission parameters are

given by A = 
6

5
; B = 

17

5
 and C = 

1

5
, what is the value of D?

(a) 1 (b)
1

5
(c)

7

5

11. The impedance matrices of two, two-port networks are given by 
3 2

2 3

L
NM

O
QP

and
15 5

5 25

L
NM

O
QP
. If the two networks are connected in series. What is the

impedance matrix of the combination?

(a)
3 5

2 25

L
NM

O
QP

(b)
18 7

7 28

L
NM

O
QP

(c)
15 2

5 3

L
NM

O
QP

12. The admittance matrices of two two-port networks are given by

1 2 1 4

1 4 5 8

/ /

/ /

-

-

L
NM

O
QP

 and 
1 1 2

1 2 5 4

-

-

L
NM

O
QP

/

/ /
. If the two networks are connected in

parallel, what is the admittance matrix of the combination?

(a)
1 1 2

1 2 5 4

-

-

L
NM

O
QP

/

/ /
(b)

2 1

1 5 2

-

-

L
NM

O
QP/

(c)
3 2 3 4

3 4 15 8

/ /

/ /

-

-

L
NM

O
QP

13. If the Z parameters of a two-port network are Z11 = 5 W Z22 = 7 W; Z12 =

Z21 = 3 W then the A, B, C, D parameters are respectively given by

(a)
5

3

26

3

1

3

7

3
; ; ; (b)

10

3

52

3

2

3

14

3
; ; ; (c)

15

3

78

3

3

3

21

3
; ; ;

14. For a symmetric lattice network the value of the series impedance is 3 W
and that of the diagonal impedance is 5 W, then the Z parameters of the

network are given by

(a) Z11 = Z22 = 2 W
Z12 = Z21 = 1/2 W

(b) Z11 = Z22 = 4 W
Z12 = Z21 = 1 W

(c) Z11 = Z22 = 8 W
Z12 = Z21 = 2 W

15. For a two-port network to be reciprocal.

(a) Z11 = Z22 (b) y21 = y22

(c) h21 = – h12 (d) AD – BC = 0
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16. Two-port networks are connected in cascade. The combination is to be

represented as a single two port network. The parameters of the network

are obtained by adding the individual

(a) Z parameter matrix (b) h parameter matrix

(c) A1 B1 C 1 D1 matrix (d) ABCD parameter matrix

17. The h parameters h11 and h12 are obtained

(a) By shorting output terminals (b) By opening input terminals

(c) By shorting input terminals (d) By opening output terminals

18. Which parameters are widely used in transmission line theory

(a) Z parameters (b) Y parameters

(c) ABCD parameters (d) h parameters



A.1 INTRODUCTION

In most of the cases, the response of linear circuits to sinusoidal excitations can

be found easily. A function f (t) is said to be periodic, if the process repeats

itself every T sec, so that we have

f (t + T ) = f (t)

If a periodic function f (t) is to have a Fourier series, it must satisfy the

following Dirichlet conditions.

(i) f (t) must be bounded and possess a finite number of discontinuities.

(ii) f (t) must have a finite number of maxima and minima, and

(iii) f (t) must have a finite average value.

The function f (t) can be represented over a complete period from t = – • to

t = + •, except at the discontinuities, by a series of simple harmonic functions,

the frequencies of which are integral multiples of the fundamental frequency. A

series in this form is called a Fourier Series.

A.2 DEFINITIONS AND DERIVATIONS

A periodic function f (t) can be expressed in the complex form

f (t) = a0 + a1 e
jw t

+ a2 e
2 jw t

+� + an e
njw t

 + �

+ a–1 e
–jw t

 + a–2 e
–2jw t

 + � + a–n e
–njw t

 + �

or f (t) =
n = -•

•

Â an e
jnw t

(1)

Appendix

AFOURIER SERIES
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where w =
2p

T

To determine a
0
, integrating both sides of Eq. 1 over one complete period, we get

0

2p w/

z f (t)dt =

0

2p w

w

/

z Â
= -•

•F

HG
I

KJn

n
jn t

a e dt

=
n

na
= -•

•

Â z
0

2p w/

ejnw t dt (2)

0

2p w/

z f (t)dt =

0

2p w/

z a0 dt = a0

2p

w

 = a0T (3)

or a0 =
1

0
T

T

z f (t) dt (4)

To determine the other term, a
n
, we multiply both sides of Eq. 1 by e

–jnw t
, and

integrate from 0 to 2p /w to obtain

0

T

z f (t) e
–jnwt

dt = an T (5)

an =
1

0
T

T

z f (t) e
–jnw t

dt (6)

Similarly, we have from Eq. 6, the relation

a–n =
1

0
T

T

z f (t) ejnw t dt (7)

Then Eq. 1 may be written in the form,

f (t) = a0 + 
n =

•

Â
1

(an ejnw t + a–n e–jnw t) (8)

By using Euler’s relation, the function f (t) may be written in the form

f (t) = a0 + 
n =

•

Â
1

(an + a–n) cos nw t + 
n =

•

Â
1

j(an – a–n) sin nw t (9)

Now let

An = an + a–n ; Bn = j(an – a–n) ;
A0

2
 = a0

We get

f (t) =
A0

2
 + 

n =

•

Â
1

 An cos nw t + 
n =

•

Â
1

Bn sin nw t (10)
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Therefore, we have

An = an + a–n = 
1

0
T

T

z f (t) (ejnw t + e–jnw t) dt

=
2

0
T

T

z f (t) cos nw t dt (11)

Bn = j(an – a–n)

=
1

0
T

T

z f (t) j (ejnw t – e–jnw t) dt

=
2

0
T

T

z f (t) sin nw t dt (12)

Example of Fourier Series

To determine the Fourier series for the square wave shown in Fig. A.1.

Fig. A.1

The function f (t) is represented as

f (t) = 20, 0 < w t < p

= – 20, p < w t < 2p

Since the average value of the wave is zero, the term A
0
/2 = 0

The cosine coefficients are obtained as follows.

an =
1

20 20

0

2

p

w w w w

p

p

p

z z( ) + -( ) ( )
R
S
T

cos cosn t d t n t d t

=
20 1 1

0

2

p

w w

p

p

p

n
n t

n
n tsin sinL

NM
O
QP

- L
NM

O
QP

R
S
T

U
V
W

 = 0 for all n

Thus, the series contains no cosine terms.
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To determine the sine terms

bn =
1

20 20

0

2

p

w w w w

p

p

p

z z( ) + -( ) ( )
R
S
T

cos cosn t d t n t d t

=
20 1 1

0

2

p

w w

p

p

p-L
NM

O
QP

+ L
NM

O
QP

R
S
T

U
V
Wn

n t
n

n tcos cos

=
20

pn
 [– cos np + cos 0 + cos n2p – cos np] = 

40

pn
 (1 – cos np)

Then

bn =
80

pn
 for n = 1, 3, 5, �

= 0 for n = 2, 4, 6, �

The series for the square wave is

f (t) =
80

p

 sin w t + 
80

3p
 sin 3w t + 

80

5
 sin 5w t + �

The Fourier series contains only odd harmonic sine terms.



B.1 FOURIER INTEGRAL

In this section, the limiting form of the Fourier series as the period T is made to

approach infinity. Then the resulting function is called the Fourier integral

representation, or simply, the Fourier integral of f (t).

Consider the complex Fourier-series expansion of the periodic function f (t);

f (t) =
n = -•

•

Â an e
jnw t

T = 
2p

w

(1)

where an =
1

0
T

T

z f (x) e
–jnw x

dx

or an =
1

2

2

T
T

T

-

z
/

/

f (x) e–jnwx dx, w = 
2p

T
(2)

Substituting this into Eq. 1, we get

f (t) =
n T

T
jn x

T
f x e d x

= -•

•

-

-Â z
L

N
M
M

O

Q
P
P

1

2

2

/

/

a f w

e
jnw t

=
n T

T

T
f x

n j

T
t x d x

= -•

•

-

Â z ( ) F
H

I
K -( )L

NM
O
QP

L

N
M
M

O

Q
P
P

1 2

2

2

/

/

exp
p

(3)

Let 1/T = Ds
Then

f (t) =
n = -•

•

Â  Ds

-

z
T

T

/

/

2

2

f (x) e2p n j(t – x)Ds dx (4)
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Now the definite integral 

0

•

z t (s) ds may be defined as the limit, as Ds

approaches zero, of the sum.

n =

•

Â
0

t (n Ds) Ds (5)

Also we have

-•

•

z t (s) ds =

-•

z
0

t (s) ds + 

0

•

z t (s) ds

= Lim
s 0D Æ

= -•

•

Â
n

t (n Ds) Ds (6)

From this it follows that as T grows beyond all bounds, the expression in

Eq. 4 passes over into the Fourier integral, or

f (t) =

-•

•

z ds

-•

•

z f (x) e2p js (t – x) dx

=

-•

•

z e2p jst ds

-•

•

z f (x) e–2p jsx dx (7)

This is the general Fourier integral representation. Another form of the

Fourier integral may be obtained from Eq. 7 by using Euler’s relation on the

complex exponentials. We thus obtain the real form of the Fourier integral.

f (t) = 2 

0

•

z ds

-•

•

z f (x) cos 2p s (t – x) dx (8)

B.2 FOURIER TRANSFORMS

Equation 7 can be written in slightly different form. Let us introduce another

variable
w = 2p s

In terms of the variable w, Eq. 7 is transformed to

f (t) =
1

2p
-•

•

z e
jw t

dw

-•

•

z f (x) e
–jw x

d x (1)

If we write

g(w) =
1

2p
-•

•

z f (x) e
–jw x

dx (2)

Then Eq. 1 can be written as

f (t) =

-•

•

z g(w) ejw t dw (3)

The relations in Eqs. 2 and 3 are known as Fourier transforms. The expression

g(w) in Eq. 2 is usually called the Fourier transform of the function f (t).



C.1 DEFINITION OF j FACTOR

j is used in all electrical circuits to denote imaginary numbers. Alternate symbol

for j is -1 , and is known as j factor or j operator.

Thus

-1  = -( ) ( )1 1  = j(1)

-2  = -( )1 2  = j 2

- 4  = -( )1 4  = j2

-5  = -( )1 5  = j 5

Since j is defined as -1 , it follows that ( j ) ( j) = j
2
 = - -1 1c h c h  = – 1

\ ( j3) (j3) = j232

Since j2 = – 1

( j3) (j3) = – 9

(i.e.) the square root of – 9 is j3

Therefore j3 is a square root of – 9

The use of j factor provides a solution to an equation of the form x
2
 = – 4

Thus x = - = -( )4 1 4

x = -1c h2

With j = -1 , x = j2

The real number 9 when multiplied three times by j becomes – j9.

( j) ( j) ( j) = ( j)
2

j = (– 1)j = – j

Appendix

C
THE J FACTOR
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Finally when real number 10 is multiplied four times by j, it becomes 10

j = + j

j2 = ( j) ( j) = – 1

j3 = ( j2) ( j) = (– 1)j = – j

j4 = (j 2) ( j)2 = (– 1) (– 1) = + 1

Example C.1 Express the following imaginary numbers using the j factor

(a) -13 (b) -9 (c) - 29 (d) - 49

Solution

(a) - = - =13 1 13 13b g b g j

(b) - = -9 1 9b g  = j3

(c) - = - =29 1 29 29b g j

(d) - = -49 1 49b g b g  = j 7

C.2 RECTANGULAR AND POLAR FORMS

A complex number (a + jb) can be represented by a point whose coordinates are

(a, b). Thus, the complex number 3 + j4 is located on the complex plane at a

point having rectangular coordinates (3, 4).

Fig. C.1

This method of representing complex numbers is known as the rectangular

form. In ac analysis, impedances, currents and voltages are commonly

represented by complex numbers that may be either in the rectangular form or

in the polar form. In Fig. C.1 the complex number in the polar form is

represented. Here R is the magnitude of the complex number and f is the angle

of the complex number. Thus, the polar form of the complex number is R –f. If

the rectangular coordinates (a, b) are known, they can be converted into polar
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form. Similarly, if the polar coordinates (R, f) are known, they can be converted

into rectangular form.

In Fig. C.1, a and b are the horizontal and vertical components of the vector

R, respectively. From Fig. C.1, R can be found as R = a b2 2+ .

Also from Fig. C.1,

sin f =
b

R

cos f =
a

R

tan f =
b

a

f = tan–1 b

a

R = a b2 2+

Example C.2 Express 10 –53.1°  in rectangular form.

Solution

a + jb = R (cos f + j sin f)

R = 10 –f = 53.1°

a + jb = R cos f + jR sin f

R cos f = 10 cos 53.1° = 6

R sin f = 10 sin 53.1° = 8

a + jb = 6 + j 8

Example C.3 Express 3 + j4 in polar form

Solution

R cos f = 3 (1)

R sin f = 4 (2)

Squaring and adding the above equations, we get

R
2
 = 3

2
 + 4

2

R = 3 42 2+  = 5

From (1) and (2), tan f = 4/3

f = tan
–1 4

3
 = 53.13°

Hence the polar form is 5 –53.13°
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C.3 OPERATIONS WITH COMPLEX NUMBERS

The basic operations such as addition, subtraction, multiplication and division

can be performed using complex numbers.

Addition It is very easy to add two complex numbers in the rectangular form.

The real parts of the two complex numbers are added and the imaginary parts of

the two complex numbers are added. For example,

(3 + j4) + (4 + j5) = (3 + 4) + j(4 + 5)

= 7 + j9

Subtraction Subtraction can also be performed by using the rectangular

form. To subtract, the sign of the subtrahand is changed and the components are

added. For example, subtract 5 + j3 from 10 + j6:

10 + j6 – 5 – j3 = 5 + j3

Multiplication To multiply two complex numbers, it is easy to operate in

polar form. Here we multiply the magnitudes of the two numbers and add the

angles algebraically. For example, when we multiply 3 –30° with 4 –20°, it

becomes (3) (4) –30° + 20° = 12 –50°.

Division To divide two complex numbers, it is easy to operate in polar form.

Here we divide the magnitudes of the two numbers and subtract the angles. For

example, the division of

9 –50° by 3 –15° = 
9 50

3 15

– ∞

– ∞
 = 3 –50° – 15° = 3 –35°



ANSWERS TO OBJECTIVE-TYPE QUESTIONS

Chapter 1

1. (a) 2. (c) 3. (d) 4. (b) 5. (a)

6. (c) 7. (b) 8. (d) 9. (a) 10. (c)

11. (a) 12. (b) 13. (a) 14. (c) 15. (a)

16. (a) 17. (d) 18. (a) 19. (d) 20. (c)

21. (b) 22. (a) 23. (b) 24. (c) 25. (c)

26. (b) 27. (a) 28. (a) 29. (b) 30. (a)

31. (d) 32. (a)

Chapter 2

1. (b) 2. (a) 3. (a) 4. (b) 5. (b)

6. (a) 7.  (c) 8. (a) 9. (b) 10. (c)

11. (c) 12. (b) 13. (c) 14. (a) 15. (a), (d)

Chapter 3

1.  (c) 2. (b) 3. (a) 4. (c) 5. (c)

6. (a) 7. (d) 8. (c) 9. (c) 10. (a)

11. (c) 12. (c) 13. (c) 14. (a) 15. (b)

16. (a) 17. (d)

Chapter 4

1. (a) 2. (c) 3. (a) 4. (b) 5. (c)

6. (a) 7. (d) 8. (b) 9. (b) 10. (c)
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11. (c) 12. (a) 13. (a) 14. (b) 15. (c)

16. (d) 17. (d) 18. (c) 19. (c) 20. (b)

21. (c) 22. (c)

Chapter 5

1. (a) 2. (b) 3. (d) 4. (c) 5. (a)

6. (c) 7. (b) 8. (d) 9. (a) 10. (b)

11. (a) 12. (c) 13. (a) 14. (b) 15. (a)

16. (a) 17. (c) 18. (c) 19. (c) 20. (d)

21. (c)

Chapter 6

1. (b) 2. (a) 3. (a) 4. (b) 5. (c)

6. (b) 7. (a) 8. (c) 9. (a) 10. (b)

11. (c) 12. (d) 13. (b) 14. (c)

Chapter 7

1. (c) 2. (a) 3. (b) 4. (d) 5. (b)

6. (c) 7. (c) 8. (a) 9. (b) 10. (d)

11. (d) 12. (c) 13. (a)

Chapter 8

1. (d) 2. (a) 3. (c) 4. (a) 5. (b)

6. (b) 7. (a) 8. (b) 9. (a) 10. (d)

11. (a) 12. (c)

Chapter 9

1. (c) 2. (b) 3. (a) 4. (c) 5. (a)

6. (a) 7. (c) 8. (b) 9. (c) 10. (c)

11. (c) 12. (c) 13. (b)

Chapter 10

1. (c) 2. (b) 3. (a) 4. (b) 5. (a)

6. (a) 7. (c) 8. (b) 9. (c) 10. (a)

11. (b)

Chapter 11

1. (a) 2. (b) 3. (b) 4. (a) 5. (c)

6. (d) 7. (b) 8. (c) 9. (b) 10. (d)
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Chapter 12

1. (d) 2. (d) 3. (a) 4. (c) 5. (b)

6. (b) 7. (c) 8. (a) 9. (a) 10. (d)

11. (a) 12. (b) 13. (a) 14. (a)

Chapter 13

1. (c) 2. (a) 3. (b) 4. (a) 5. (d)

6. (b) 7. (d) 8. (c) 9. (c) 10. (a)

11. (b) 12. (b) 13. (a) 14. (b) 15. (a)

16. (c) 17. (b)

Chapter 14

1. (a) 2. (b) 3. (c) 4. (d) 5. (a)

6. (b) 7. (c) 8. (b) 9. (a) 10. (c)

Chapter 15

1. (b) 2. (c) 3. (a) 4. (c) 5. (b)

6. (c) 7. (b) 8. (a) 9. (c) 10. (c)

11. (b) 12. (c) 13. (a) 14. (b) 15. (c)

16. (a) 17. (a) 18. (c)

ANSWERS TO SELECTED PRACTICE PROBLEMS

Chapter 1

1.1 (a) 75 A (b) 20 A (c) 2.5 A; 2 S

1.3 3.33 V

1.5 1.5 mF

1.7 10 V; 30 V

1.9 0.3 ¥ 10–2 J

1.11 25 V; 5 V

1.13 V1 = V2 = V3 = 100 V

1.15 0.682 A; 4.092 A

1.17 150 W

1.19 0.7 A; 67.3 V

1.21 – 4 V, 12 V, 192 W

1.23 P0.2 = – 148.8 W, P20 = – 1090.9 W, P4 = 743.8 W, P6 = 495.9 V

Chapter 2

2.1 2580 W; – 32 V



D.4 Electrical Circuit Analysis

2.3 – 60.9 V; 195.7 W

2.5 I2 = I4 = 6.25 A; I3 = 0; I1 = I5 = 1.25 A; I = 7.5 A

2.9 1.2 A; 4.2 A; 2 A; 3.2 A

2.9 2.65 V

2.11 1.25 V1 – 0.72 V2 = – 12.5

– 0.75 V1 + 1.75 V2 = – 2.5 + 4 V3

36.8 W

2.13 18.5 V

Chapter 3

3.1 1.182 W

3.3 0.82 A

3.5 I1 = 4.6 a; I2 = 2.6 A; I3 = 2 A

3.7 32 V, 4 W, 8 A

3.9 12 W, 0.75 W, 6 V, 0.5 A

3.11 4 A

3.13 0.5 A

3.15

Chapter 4

4.1 5 Hz; 20 Hz; 2 KHz; 100 KHz

4.3 15.4 V; 26.57 V; 16.22 V; – 16.22 V

4.5 12.99 V; 12.99 V; 14.49 V; – 7.5 V; – 7.5 V

4.7 7.07 mA; 6.37 mA; 10 mA; 20 mA

4.9 VRL is 300 V peak to peak sine wave riding on a 200 V dc level.

Imax = 3.5 A, Vav = 200 V

4.11 2.82 cos 100 p t; 20 A; – 20 A; 1/300 sec

4.13 106.06

4.15 27.57

4.17 55.25°

Chapter 5

5.1 157.4 – – 17.6°; 17.6° lead, 0.635 A

5.3 55.85 – – 57.5°; 57.5°
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5.5 0.074 A; 41.9°; increases by 19°

5.7 944.2 W; 0.053 A; 3.67°; 16.3 V; 30.7 V

5.9 (0.3 – j3.15) A; (0.48 + j3.1) A; (0.044 – j0.66) A

V3 = 9.5 V; V5 = 15.7 V; V10 = 6.61 V; V0.1H = 99.35 V;

V100 mF = 99.8 V; V0.5H = 103.93 V V500 mF = 4.21 V

I2

I1I3

81.2º

84.5º86.2º V

Fig. 5.9

5.11 1.44 A; 7.05°; V100 mF = 22.9 V; V10 W = 14.4 V

V30 W = 38.93 V; V0.1H = 38.93 V

5.13 VT = R L l t
L

R
m

2 2 1+ +F
H

I
K( ) -w w

w
sin tan

q = tan-1 wL

R
, where w = 200 rad/sec

5.15 L = 6.67 mH; C = 3.33 mF

5.17 iT = 1.74 sin (100t + 67.4°) A

q = 67.4°; Z = 115 W

Chapter 6

6.1 0.97

6.3 3.12 W, 9.93 H

6.5 (0.28 + j0.78) W; 282.7 VA

6.7 486.5; 0.27

6.9 0.891; 1587.7 W; 806.2 VAR; 1781.9 VA

6.11 1136.36 VA; 529.6 VAR; 0.88

6.13 15.396 kW; 3944 VAR; 15.87 KVA; 0.97

6.15 0.0812 mW

6.17 – 0.114 W

Chapter 7

7.1 3.39 – – 97.3°

7.3 (3.82 – j1.03) W; 15.11 W
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7.5 4.37 A

7.7 2.69 W

7.9 (20 – j5) V in series with (2 – j) W

(8.99 + j2) A in parallel with (2 – j) W

7.11 I10 = 7.34 – – 21.84°; I5 = 1.65 – 33.69°; I3 = 8.39 – – 12.5°

7.13 (1.1 + j4.7) V in series with (0.93 + j0.75) W

(3.2 + j2.4) A in parallel with (0.93 + j0.75) W

7.15 1874.9 W

7.17 (– 0.18 – j0.6)V1 volts in series with (100 – j30) W

7.19 0.894 – – 63.4° in series with (0.4 + j1.25) W

Chapter 8

8.1 50.3 Hz; 63.2 V; 3 (approx.)

8.3 2.07 W

8.5 875.35 Hz; 914.42 Hz; 836.28 Hz; 0.2H; 0.165 mF

8.7 1.77

8.9 Q = 1; R = 60 W; C = 50 mF

Chapter 9

9.1 iR = 50.8 –0°; iY = 25.4 – – 120°; iB = 16.936 – 120°

PR = 12903.2 W; PY = 6451.6 W; PB = 4302.4 W

(Taking R-phase voltage reference)

9.3 3000 W

9.5 Taking VR N reference

iR = 25.4 –0°; iY = 25.4 –– 146.8°; iB = 25.4 –146.8°

iN = 17.1 –0°; Power = 17967.7 W

9.7 iR = 50 –– 62°; iY = 50 –– 182°; iB = 50 – 58°; Power = 12705 W

9.9 173 mF

9.11 1250 W; 0.693; 2.36 A; 1000 W

9.13 Taking VRY reference

iR = 11.25 – – 23.42°; iY = 18.06 – 218.25°; iB = 16.12 –76°

281.32 –– 23.42°; 180.6 –218.25°; 241.8 –76°

Chapter 10

10.1 v1 = L1

di

dt
M

di

dt

1 2+ ; v2 = L2

di

dt
M

di

dt

2 1+
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10.3

2 5 2

5 4 0

2 0 6

-

-

L

N

M
M
M

O

Q

P
P
P

10.5 v1 = 181.44 cos (40t – 30°)

v2 = 202.88 cos (40t – 30°)

10.7 L = 13 H

10.9 L = 
2

3
 M

10.11 1 –– 90 V

Chapter 12

12.1 i(t) = (2 + 10t)e–5t

12.3 i1(t) = 9.99 – 8.49 e–5 ¥ 104 t; i2(t) = 5e–5 ¥ 104 t

12.5 i(t) = 101.2 + 30.9 e–0.1t – 52.11 e–4.94t

12.7 i(t) = 5.06 [e–0.033t – e–4.966t]

12.9 i(t) = 3.8 + e–0.05t + 0.12 e–0.31t

12.11 i(t) = – 0.35 e–500t

12.13 5e–5.71t

12.15 V1(t) = – 4e–0.4t + 4e–4999.8t

Chapter 13

13.1 (a) 
6 2 32 2

4

+ + +as bs s

s

(b)
100

2 1002s s +c h

(c)
e

s

6

5-

(d)
s

s s s

2 18

6 6

-

-( ) +( )

13.3 (a) 
9

8

9

8
2

11

8
2e e t e tt t t- -- -cos sin

(b) e–t [4 cos 2t + sin 2t]

(c)
et

2
 [2 cos 2t + sin 2t]
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(d) d (t) + e–t [sin t – 3 cos t]

13.5 (a) 
1

4
 [te–2t + e–2t + t – 1]

(b)
1

100
 [10 t sin 5t + cos 5t – cos 5t cos 10t – sin 5t in 10t]

(c)
1

16
 [cos 3t – cos 5t]

13.7
a

1

1
2 2-

- -
L
NM

O
QP-

- -

e s

e

s

e

ss

s s

13.9 sin 50t –
cos /50

2500

1

2500

50t
e

t- -

13.11
1

5

2

3

2

12

4te e et t t- - -+ - /

13.13 51e–t – cos 50t + 
1

50
 sin 50t

13.15 i1(t) = 0.08e–10/3t + 0.013 sin 20t = 0.08 cos 20t

i2(t) = 0.24e–10/3t + 0.04 sin 20t – 0.24 cos 20t

13.17 i(t) = – 20e–2t + 20e–t

13.19 i(t) = 
V

R

t

LC
cosF

H
I
K

Chapter 14

14.1 i(t) = e–2.5(t – 5) [cos h 2.46 (t – 5) – 1.01 sin h 2.46 (t – 5)]

14.2 1
1

3

2

15

3

1

3 5- +-

-

- -( )e et t/ /

14.5 Z11(s) = 
7 7 5

1

2

2

s s

s s

+ +

+ +
; Z12(s) = 

2

12

s

s s+ +
;

G21(s) = 
2

7 7 52

s

s s+ +

14.7 G12(s) = 
s

s

2

2

1

2 1

+

+
; Z12(s) = 

s

s s

2

2

1

3 1

+

+c h

14.9 Z12(s) = 
5

12

s

s +
; Y12(s) = 

s

s

2 1

5

+
; G12(s) = G12(s) = 1
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14.11 i(t) = 4.5e–3t – 1.5e–t

14.13 Unstable

14.15 (a) 2, 0, 1 (b) 0, 2, 4 (c) 2, 2, 2

Chapter 15

15.1 Z11 = 
Y Y

Y

B C+

D
; Z12 = Z21 = 

Y

Y

C

D
; Z22 = 

Y Y

Y

A C+

D

DY = YA YB + YB YC + YCYA

15.3 A¢ = 3; B ¢ = 2; C ¢ = 4; D ¢ = 3

15.5 h11 = 
4

3
; h21 = 

-2

3
; h22 = 

1

6
; h12 = 

2

3

g11 = 
1

4
; g12 = – 1; g21 = 1; g22 = 2

15.7 Y11 = (0.5 – j0.2)10
–3

; Y12 = Y21 = (j0.2 ¥ 10
–3

)

Y22 = j(0.02 ¥ 10–3)

I1 I2

V1 y11

V2

V1

Y12

y21
y22 V2

Fig. 15.7

15.9 Zi = 1.5 k W; Z0 = 0.033 ¥ 10–3 W

15.15
5 71 4 29

2 14 2 14

. .

. .

-L
NM

O
QP

15.17
0 857 31 0 17 59

8 58 32 1 1 89 61 1

. .

. . . .

– - ∞ – ∞

– - ∞ – ∞

L
NM

O
QP

k

m

W
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PAPER 1

1. (a) Obtain the response of R-L-C series circuit for impulse excitations.

(b) Define reluctance of a magnetic circuit and derive an expression

for reluctance.

Solution Refer section 10.11 in the textbook.

2. In an electrical circuit R, L and C are connected in parallel. R = 10 W,

L = 0.1H, C=100 mF. The circuit is energized with a supply at 230 V,

50 Hz. Calculate

(a) Impedance

(b) Current taken from supply

(c) p.f. of the circuit

(d) Power consumed by the circuit

Solution The circuit is as shown in figure.

Appendix

EMODEL QUESTION

PAPERS
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The impedance of 3 branches are

Z1 = 10 W

Z2 = j2 p f L= 2 ¥ 50 ¥ 0.1 = j31.41 W

Z
j

fc

j
j3 2 2 50 100
31 84=

-
=

-
¥ ¥

= -
p m

. W

(a) Impedance of circuit Z
Z Z Z

j j

= + +L
NM

O
QP

= + +
-

L
NM

O
QP

ª

-

-

1 1 1

1

10

1

31 41

1

31 84

10

1 2 3

1

1

. .

W

(b) Current taken from supply I
V

Z
A= =

– ∞
= – ∞

230 0

10
23 23 0. i.e. A

(c) p.f. of the circuit = cos q = 1

(d) Power consumed by the circuit

Real power consumed = I 2R = 232 ¥ 10 = 5.3 kW

Reactive power consumed = 0 KVAR

3. A constant voltage at a frequency of 1 MHz is applied to an inductor in

series with a variable capacitor when the capacitor is set to 500 PF, the

current has the max. value, while it is reduced to one half when capaci-

tance (i) 600 PF, find (i) resistance (ii) inductance (iii) Q factor of induc-

tor.

Solution Given f = 1 MHz

Let the max. current be Imax.

Given at 1 MHz, for C = 500 Pf

I = Imax

\ Imaginary part of impedance is

zero, i.e. XL = XC

2
1

2
p

p
fL

fc
=

6.283 ¥ 10
6 ¥ L = 318.31

L = 50.66 mH

Now also given I
I

= max

2
 at C = 600 PF

I
I V

R j L
= =

+ ¥ -
max

.283 .252 6 10 2656c h (1)

∵X
fcC = =

¥ ¥ ¥
=F

H
I
K-

1

2

1

2 10 600 10
265

6 12p p
.25
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and I
V

Rmax = (2)

Dividing Equation (2) by Equation (1)

Z
R j L

R
=

+ ¥ -6 10 2656.283 .25c h

fi 2R = R + j (6.283 ¥ 106 L – 265.25)

R = j (318.31 – 265.25)

R = 53.06 W
\ (i) R = 53.06 W

(ii) L = 50.66 mH

(iii) G
L

R
= = ª
w

5 6.999

4. For the given graph and tree shown in the figure, write the tie-set matrix

and obtain the relation between branch currents and link currents.

Solution Number of link branches = b – (n – 1)

Where b is number of branches and n is number of nodes

\ Link branches = 4 – (3 – 1) = 2

The link branches are a and b.

Let the branch currents are ia, ib, ic and id
The two link currents are i1 and i2 as shown in the figure.

There are two fundamental loops corresponding to the link branches a

and b. If Va and Vb are branch voltages, the KVL equations for the two f-

loops can be written as
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Va + Vd – Vc = 0

Vb + Vd – Vc = 0

The above equation can be written in matrix form as

Loop branches

Currents

Ø Æ
i

i

1

2

a b c d

1 0 1 1

0 1 1 1

-

- +
L
NM

O
QP

V

V

V

V

a

b

c

d

L

N

M
M
M
M

O

Q

P
P
P
P

= 0

5. Find the equivalent resistance between AB in the circuit shown in the

figure. All resistances are equal to R.

Solution Converting the Y point C

into D

Æ The equivalent circuit now is
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The equivalent circuit for this is as shown below.

\ Resistance between AB is R R R= =
10

15
0 666.

6. Find the Thevenins equivalent for the circuit in figure

Solution The Thevenins equivalent resistance is calculated assuming all

voltage sources shorted and as seen from AB, the circuit will be

as shown below:

RTh = [{(5//6) – 7}//8] + 5

30

11
7 8 5

107

11
8

107

11
8

5 4 389 5 9 389+ + =
¥

+

L

N
M
M
M

O

Q
P
P
P
+ = + ={ }/ / . . W

Let us assure voltages at nodes (1) and (2) be V1 and V2.

Now writing node equations.

V V V1 1 28

8 7
0

-
+

-
=

7V1 – 56 + 8V1 – 8V2 = 0 fi 15 V1 – 8V2 = 56 (1)

V V V V
V V2 2 1 2

1 26 7

5

5
0 30 107 210+

-
+

-
= fi - + = (2)

on solving equations (1) and (2) we get

V1 = 5.6 V fi VOC = 5.6
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\ Thevenins equivalent circuit is

7. The switch in the circuit shown in figure is in position (1) for two time

constants and then charged to position (2) find transient response.

Solution When the switch is in position (1)

Convert equation in laplace transform is given as

I S
V S

R LS

S

S S
( )

( ) /

.
=

+
=

+
=

+( )

5

5 0 001

5000

5000 3

Assuming initial conditions be zero.

I S
S S

( ) = -
+

1 1

5000
Taking inverse Laplace transform

i(t ) = 1 – e
–5000t

the switch is cosed for two time constants

\ i (t) after two time constants i

i = 1 – e–2 = 0.864 A

Now when switch is moved to posi-

tion (2) the mesh equation is given by

L
di

dt
Ri t+ =( ) 0

fi i (t) = C1 e–5000t

initially i (o) = 0.864 A

C1 = 0.864 A

\ i(t) = 0.864 e–5000t

The response can be plotted as

8. Derive phase and line voltage, current relations in a balanced star and

delta connected loads.

Solution Refer Sections 9.7.1, 9.7.2, 9.7.3, and 9.8.1, 9.8.2, and 9.8.3.
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PAPER 10

1. (a) What are passive and active circuit elements? Explain the voltage-
current relationships of passive elements with examples.

Solution:

Refer Sections 1.4.1; 1.5,
1.6 and 1.7

(b) Reduce the network of
figure below into an
equivalent network across

terminals A and B with

(i) one equivalent volt-
age source

(ii) one equivalent cur-

rent source

Solution:

Using the source transformation, we get the N/W

2 W

2 W 2 W2 W 2 W

0.75 W
3 W 2 W1 A

4 V 4 V

2 A

2 V 2 V

B B

A A

2 A 5 A fi
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1 W2 W 2 W 1 A2 A

2 A

1 A

0.75 W0.75 W 2 A

BB

AA

fi

By again converting current source, into voltage source

0.15 W

1 W

1.75 W

1.5 V

0.5 V

A A

B B

1 V

fi

\ One equivalent voltage source is
1.75 W

0.5 V

A

B

1.75 W0.28 A

A

B

One equivalent current source is
2. (a) A cast steal iron core has a square

cross section of side 3 cm. Assuming
the permeability of steel to be 800,
find the mmf required to produce a
flux f = 0.2 mwb 105 the right
limb as shown in the figure.

Solution: f = 0.2 mwb

m r = 800

Hg = 3 ¥ 3 ¥ 10–4 m2

f = 0.2 ¥ 10–3 wb

20

1

6
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B =
f

A
=

¥

¥

-

-

0 2 10

9 10

3

4

.
 = 0.22 wb/m2

H =
B

o rm m p
=

¥ ¥
-

0 22

4 10 8007

.
 = 221.04 AT/m

mmf required is given by Hl = 60 ¥ 10–2
¥ 221.04

\ (f = NI = Hl) = 132.62 AT

\ mmf required to produce 0.2 mwb in right limb is 132.62 AT

(b) Define self and mutual inductances. Establish the polarity of two
mutually coupled coils on a single magnetic core.

Solution:

Refer Section 10.3

3. (c) Find the equivalent inductance of
the following circuit figure.

Solution: V1 = Leq

di

dt

1 (1)

but by applying mesh analysis

V1 = L
di

dt
M

di

dt
1

1 2
+

O = L
di

dt
M

di

dt
1

2 1
+

\
di

dt

2 =
-M

L

di

dt2

1

\ V1 = L
di

dt
M

M

L

di

dt
1

1

2

1
+

-L

N
M

O

Q
P

fi L
di

dt
1

1
-

M

L

di

dt

2

2

1
fi L

M

t

di

dt
1

2

2

1
-

F

HG
I

KJ
(2)

Compare Eq. (1) with Eq. (2)

L L
M

L
eq = -1

2

2

\ Leq for the magnetic circuit is obtained.

I1 I2Leq
V1 L1

M

L2
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3. (a) Explain about active, reactive and apparent powers. Give expression
for the above. Draw the power triangle.

Solution:

Refer Sections 6.3; 6.4 and 6.5

(b) Given i = 50 sin (wt + 60)

V = 200 sin (wt + 30) find the elements of the network with
their values active, reactive and apparent power.

Solution: i = 50 sin (wt + 60)

V = 200 sin (wt + 30)

Here the current leads the voltage by 30°
\ the elements of the network are resistance and capacitance.
and the power factor of the network is, cos 30° = 0.866 (leading)
Active Power:

Pactive = Veff Ieff cos q

=
V Im m

2 2
◊  cos q

=
50

2

200

2
◊  cos 30 = 4330.12 W

Reactive Power,
Preactive = Veff Ieff sin q

=
V Im m

2 2
◊  sin q

= - ◊
50

2

200

2
 sin 30 = –2500 VAR

Apparent Power
Papparent P = ~Veff Ieff

=
V Im m

2 2

50

2

200

2
= ◊  = 5000 VA

Component in n.w. R.c.

\ Active Power = 433012 W z =
V

I
=

–

–

200 30

50 60

Reactive Power = –2500 VAR = 3.464 – 2i

Apparent Power = 5000 VA q = 3 464. W

R = 3.464 W; C =
1

2w
C

c
J= = +

1

2

11
2

w w
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4. (a) Obtain the expression for frequency at which the voltage across the
inductance becomes a maximum in a series RLC circuit. Explain what
is meant by voltage magnification factor.

Solution:

Refer Sections 8.3; 8.6

(b) Obtain the transmission parameters for the following figure || circuit.
Verify your result for reciprocity condition.

I1 I26j5 3

3

– 4j

1 2

1¢ 2¢

V1 V2

V1 = AV2 – BI2

I1 = CV2 – DI2

When I2 = 0

V1 = I1 (8 + 2 j)

and V2 = I1 (3 – 4 j)

A =
V

V

I j

I j

j

j

1

2

1

1

8 2

3 4

8 2

3 4
=

+

-
=
+

-

( )

( )
 = 0.64 + 1.52 j

C =
I

V

I

I j j

1

2

1

1 3 4

1

3 4
=

-
=
-( )

 = 0.12 + 0.16 j J

I1

I2

6j5

3 W

3 W
– 4j

V1

When V2 = 0

B =
-V

I

1

2

–I2 =
I j

j

1 3 4

6 4

( )-

-

I1 6j5

3

– 4j

V1 V2
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–I2 = + I1 (0.65 – 0.23 j)

V1 = I1 [(5 + 6j) + [(3 – 4j) || 3]

= I1 [6.96 + 5.3 j]

B = -
V

I

1

2

 = 
I j

I j

1

1

6 96 5 3

0 65 0 23

( . . )

( . . )

+

-
 = 6.95 + 10.61 j

\ B = 6.95 + 10.61j W

D = - =
-

I

I

I

I j

1

2

1

1 0 65 0 23( . . )
 = 1.367 + 0.48j

\ A = 0.64 + 1.52j

B = 6.95 + 10.61j W

C = 0.12 + 0.16j J

D = 1.367 + 0.48j

Reciprocity condition:

AD – BC = 1

(0.64 + 1.52j) (1.367 + 0.48j) – (6.95 + 10.61j) (0.12 + 0.16 j)

= 1.00 – 1.6 ¥ 10–4j

= 1.008 ––0.009 ª 1

\ Reciprocity condition is satisfied.

5. (a) Derive the relationship between line and phase voltages in a balanced
three phase delta connected load

Solution:

Refer Sections 9.8.1; 9.8.2 and 9.8.3
(b) A 3 phase 400 V, 4 wire system has a star connected load with zA =

(10 + j0) W, zB = (15 + j10) W, zC = (0 + 5j) W. Find the line currents
and current through neutral conductor. Draw the phasor diagram.

Solution:

3-phase
supply

IA

IC

IB

IN

A

C
B

Z jA = 10 + 0

Z jB = 15 + 10

Z iC = 0 + 5
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VPh =
VL

3

400

3
=  = 230.94

VAN = 230.94 –0 V

VBN = 230.94 ––120 V

VCN = 230.94 ––240 V

IA =
V

Z j

AN

A

=
–

+

230 94 0

10 0

.

( )

= 23.09 + 0 j A

IB =
V

Z j

BN

B

=
– -

+

230 94 120

15 10

.

( )

= –11.48 – 5.67j A

IC =
V

Z j

CN

C

=
–-

+

230 94 240

0 5

.

( )

= 39.99 + 23.094 j A

IN = –(IA + IB + IC)

= – [23.094 – 11.48 – 5.67 j + 39.99 + 23.094 j]

= – [51.604 + 17.424 j]

= 54.46 ––161.34 A

IN phase with respect to VAN is –161.34 phasor diagram is

VCN

IC

IN
IA

IB

VBN

VAN

6. (a) What is duality? Explain the procedure for obtaining the dual of the
given planar network shown below figure below.
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+

R4

R1

R2

R3

G1

G3

G2

L

L

C

V2 I2

C

I1

I

+

V1

V

Solution:

Redrawing the N/W. I2

I2

I1V

L G4 G1

G2
C

G3

+–

(b) Construct the incidence matrix for the graph shown in figure below.

Solution:

Nodes
Branches Æ

B
- -

-

-

L

N

M
M

O

Q

P
P

1 2 3 4
1
2
3

1 0 1 1
1 1 0 0
0 1 1 1

 = [Ai]

\ Incidence matrix for the given graph is constructed.

(c) Use nodal analysis, to determine the voltages V1 and V2 in the circuit
shown in figure below.

1

1

2
32

3

4
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5 V

2 W

1 W 1 W1 A

V1 V2
2 W

+

–

Apply nodal analysis,

V1 5

2

-
+

V V V1 1 2

1 2
+
-

 = 0 (1)

V V2 1

2

-
+

V2

1
 = 1 (2)

fi V1 – 5 + 2V1 + V1 – V2 = 5

4V1 – V2 = 5 (3)

V2 – V1 + 2V1 = 2

3V2 – V1 = 2 (4)

Solving equations (3) and (4) we get

V1 = 1.545 V

V2 = 1.181 V

\ V1 = 1.545 V and V2 = 1.181 V

7. (a) State and explain the Reciprocity theorem? Is this theorem valid for
N/W with two sources? Subtantiate your answers.

100 0– 5 W 10 W

j4

I

–5j

3

Solution:

Refer Section 3.5

(b) Verify the reciprocity theorem
using the N/W given below.
The N/W can be reduce to

zeq = 2.5 + 0j

IT =
100 0

25

–
 = 40–0

100 0– 2.5 + 0i
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By using the current division the value of I can be obtained.

\ I1 =
IT

2

40

2
=  = 20 A

100 0– 5 W 5 + 0j

I1

then I =
-

-
=
-

-

5

10 5

5 20

10 5
1j I

j

j

j( )

( )

( )
 = 4 – 8 i

Response to excitation is 
V

I i
=
-

100

4 8
 = 5 + 10 j

the N/W can be reduced

100 0–

10 W

4j

I

–5j

3

100 0–

10 W

7.5 – 2.5j

IT =
I j

j j

j j

j

T ( )

( )

( . . ) ( )

( )

-

+ -
=

+ -

-

5

3 4 5

5 6 0 8 5

3
 = 5.6 + 0.8j

By using the current division,

I =
I j

j j

j j

j

T ( )

( )

( . . )( )

( )

-

+ -
=

+ -

-

5

3 4 5

56 08 5

3
 = 4 – 8 j

Response to excitation is 
V

I j
=
-

100

4 8
 = 5 + 10j

\ Reciprocity theorem is verified.
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8. (a) Compare the classical and Laplace transform method of solution of
the network.

Solution:

Refer Chapter 13

(b) Draw the network in Laplace domain and find i1(t) and i2(t) the fol-
lowing figure.

5 W 4 W

10 W

2 H

2 F
100 V

t = 0

I1 I2

By applying mesh analysis,

100 = 15i1(t) + 2 
di

dt

1 – 10i2(t) –
2 2di

dt
(1)

0 = 14i2(t) + 
2 1

2
2di

dt
+ i2dt – 10i1(t) –

2 1di

dt
(2)

Applying Laplace transform on both sides, for the two equations

15I1(s) + 2SI1(s) – 2SI2(s) – 10I2(s) = 
100

s

–10I1(s) – 2SI1(s) + 14I2(s) + 2SI2(s) + 
I s

s

2

2

( )
 = 0

\ I2(s) 14 2
1

2
+ +

L
NM

O
QP

s
s

 = I1[10 + 2s] (1)

and I1(s) [15 + 2s] – I2(s) [10 + 2s] = 
100

s
(2)

I1(s) [15 + 2s] – I1(s)
( )10 2

14 2
1

2

1002
+

+ +
F
HG

I
KJ
=

s

s
s

s

I1(s)
38 111

14 2
1

2

s

s
s

+

+ +

L

N

M
M
M

O

Q

P
P
P

 = 
100

s
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I1(s) = 
50 28 4 1

38 1112

2

s

s s

s

( )

( )

+ +

+

=
50 0 038 6 96

38 1112

( . ) ( . )

( )

s s

s s

+ +

+

Taking the partial fractions

( )

( )

28 4 1

38 111

2

2

s s

s s

+ +

+
=

A

s

B

s

c

s
+ +

+
2 38 111

28s + 4s2 + 1 = As (38s + 111) + B (38s + 111) + cs2

Compare co-efficients of s2, s, s°

38A + C = 4

111A + 38B = 28

B111 = 1

Solving these three equation:

A = 0.249

B = 0.009

C = –5.468

\ I1(s) = 
50 0 249 50 0 009 50 5 468

38 1112

( . ) ( . ) ( . )

s s s
+ -

+

I1(s) = 
12 45 0 45 273 4

383 1112

. . .

s s
+ -

+

Applying inverse. Laplace transform

I1(t) = 12.45 + 0.45t –
2734

38

111

38
.

e
t-

= 12.45 + 0.45t – 7.19 e–2.92t

|| ly I2(s) = I1(s)
10 2

14 2
1

2

+

+ +

s

s
s

=
50 28 4 1

38 111

10 2

14 2
1

2

2

2

s

s s

s

s

s
s

( )

( )

( )+ +

+

+

+ +
F
H

I
K

=
2

2

50 (10 2 ) (28 4

(38 111)

s s s

ss

+ +
◊

+ 2

1)

(28 4s s

+

+ 1)

2s

+

=
100 10 2

38 111s

s

s

( )

( )

+

+



E.100 Electrical Circuit Analysis

Taking partial fractions.

( )

( )

10 2

38 111

+

+

s

s s
=

A

s

B

s
+

+38 111

10 + 2s = A(38s + 111) + Bs

38A + B = 2 fi A = 0.09

A111 = 10 B = –1.423

\ I2(s) = 
100 0 09 100 1 423

38 111

( . ) ( . )

s s
-

+

=
9

8

142 3

38
111

38

-

+
L
NM

O
QP

.

s

take inverse Laplace transform

i2(t) = 9 – 3.744 e–2.92t

\ i1(t) = 12.45 + 0.45t – 7.19 e–2.92t

i2(t) = 9 – 3.744 e–2.92t
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PAPER 11

1. (a) Find the equivalent resistance between terminals y and z in the
figure shown below.

10 W
y

z

9
W

6 W

5 W

Solution: The above circuit can be represented as

10
W

9
W

5
W 6

W

10 W

5 W

9 W

6 W

y

y

y

y

z

z

z

3.33 3.66

6.66

Req

z

(b) In the network shown in figure below, determine ix.

4 A –3 A10 W

20 W

3Ix

Solution: Apply source transformation for the current source (4A) is 3Ix

current source.
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4 A fi

fi

10 W

10 W

20 W

–3 A

10 W

20 W

5 W

40 V

40 V

60ix

3Ix

ix

60ix

In the above circuit voltage sources in series can be added and Eqn resis-
tance is place.

–3 A

30 W

5 W

(60 + 40)ix

ix

x

Apply nodal analysis at note x.

( )vx - 0

5W
+

v ix x- +
+ =

( )60 40

30
3 0

W
But vx = 59x

replacing vx by 5ix

ix +
5 60 40

30

i ix x- -
 + 3 = 0

30ix + 5ix – 60ix – 40 + 90 = 0

– 25ix + 50 = 0

ix =
50

25
 = 2A

\ The current ix = 2A
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2. (a) Define mmf, for x and reluctance of w magnetic circuit:

Solution:

Refer Section 10.11

(b) An iron ring has a mean diameter of 25
cms, and a cross-sectional area of 4 cms2. It
is wound with a coil of 1200 turns. An air
gap of 1.0 mm width is cut in the ring. De-
termine the current required in the coil to
produce a flux of 0.48 mwb in the air gap.
The relative permeability of iron under the
condition is 800. Neglect Leakage.

Solution: Given data:

Mean diameter = 25 cms = D = 0.25 mb

Cross-sectional area, A = 4 cm2 = 4 ¥ 10–4 M2

No. of turns = N = 1200

Relative permeability of iron = 800

f = 0.48 mwb

Air gap reluctance Rlg =
l

A

g

Cm0

 = 
1 5 10

10 10

3

7 4

. ¥

¥ ¥ ¥

-

- -

mt

4p m

= 108 ¥ 0.02981

= 2.9841 ¥ 106 AT/wb

Iron core reluctance

RLC =
l

A

C

r Cm m0

 = 
( )p

p

D lg-

¥ ¥ ¥ ¥- -4 10 800 4 107 4

=
( .25 .5 )p

p

¥ - ¥

¥ ¥

-

-

0 1 10

16 8 10

3

9

= 1.949 ¥ 10+6 AT/wb.

Total reluctance = Rlg + Rlc

= 4.933 ¥ 106 AT/wb

mmf = flux ¥ reluctance

NI = f ◊ Rl

1200 ¥ i = 0.48 ¥ 10–3 ¥ 4.9331 ¥ 106

i =
0 48 10 4 9331 10

1200

3 6. .¥ ¥ ¥-

\ current required = 1.973 Amp

3. (a) Get the expression for complex power and sign of the active power.

Solution:

Refer Chapter 6.

+

1.5 mm

25 cm
–



E.104 Electrical Circuit Analysis

(b) Find I1, I2, I3 and I find also the power consumed. Draw the phasor
diagram (Fig. 19)

200 V

I1

I2 I2

I3

10 W

5 Wj10

5 – 5j

Solution: Equivalent Impedance

= 5 + 10W || j10 || 5 – j5

= 5 + 
10 10

10

j¥

10 j+
 || 5 – j5

=

5
10

1
5 5

10

1
5 5

+
+

¥ -

+
+ -

j

j
j

j

j
j

( )
 = 

(1 )
5

j+
+

50

1 j+

10
5 5

1

j
j

j
+ -

+

= 5 + 
50 1

10 1 1 5

( )

( )( )

+

+ - +

j

j j j

= 5 + 
50 1

10 10

( )+

+

j

j
 = 5 + 

5 1

1

( )

( )

+

+

j

j

Zeq = 10 W

\ I =
200

10
 = 20 –0

\ Voltage across parallel IMD

200 – I ¥ 5

= 200 – 20 ¥ 5

= 100V

I1 I2 I3

10 W 5 W

5 W

j10

200 V

100 V 0–
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I1 = 100V 0

10

–  = 10 Amp

I2 =
100V

10j
 = – j10 A = 10 – – 90º

I3 =
100

5 5

V

- j
 = 

20

2
 (1 + j ) = 10 + j10

4. (a) Obtain the Y parameters for the following figure and network in
Laplace transform variable.

1 W

1 W

2 F

V1 V2

I1 I2

2 F

Solution:
Y parameter Equations

1
W

1
W

I1

I2

2F

2F

V2

V1

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

Y11 =
I

V
V

1

1 02 =

Y1 = I1 ¥ 2 
1 1 2

1 1 2

¥

+

F
HG

I
KJ

/

/

s

s

V1 =
2

2 1
1I

s +
Zeq = 2

1
1

2

1
1

2

¥

¥
F
H

I
K

+
F
H

I
K

s

s

45°

90° I1

I

I3

I2

V
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Y11 =
I

V

1

1

 = 
( )2 1

2

s +

Y21 =
I

V

2

1

I1 =
V s1 2 1

2

( )+

IL = Iw – Ib

Iw =
I

s

1 1

1
1

2

¥

+
 = 

2

1 2
1sJ

s+

Ib =
I s

s

1 1 2

1 1 2

¥

+

/

/
 = 

I

s

1

1 2+

Iw – Ib = I2 = 
I

s

1

1 2+
 (2s – 1)

=
(2 1)

(1 2 )

s

s

-

+
(2 1)s

1
¥ +
2

1V

I2 =
2 1

2

s -F
H

I
K

V1

\
V

V
VL

2

1 0=

=
( )2 1

2

s -

V22 =
I

V
V

2

2 01=

 = 0

V2 = I2 ¥
2

2 1s +

I

V

2

2

=
( )2 1

2

s +
 = Y22

and Y12 =
I

V
V

1

2 01=

From figure I1 = Iw – Ib

Iw =
I

s

2 1

1 1 2

¥

+ /
 = 

2

1 2

sI

s

L

+

Ib =
I s

s

2 1 2

1 1 2

¥

+

/

/
 = 

I

s

L

1 2+

1
W

1
W

I b

I b

I2

Ia

Iq

V1

Y s/2

Y/2s

1

1

I b

1/2s

V1

I2

1/2s
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I1 =
( )2 1

1 2

s I

s

L-

+
 = 

(2 1)

(1 2 )

s

s

-

+

(2 1)s +
¥

2

2

V

I1 =
2 1

2
2

s
V

-

I

V

1

2

=
2 1

2

s -
 = 1/12

\ Y matrix

Y =

2 1

2

2 1

2
2 1

2

2 1

2

s s

s s

+ -

- +

L

N

M
M
M

O

Q

P
P
P

(b) A tuned circuit consists of a coil
having an inductance of 200 mH and
a resistance of 15 W in parallel with
a series combination of a variable
capacitance and resistor of 80 W. It
is supplied by a 60 V source. If the
supply frequency is 1 MHz what is
the value of C to give resonance.

Solution: Total admittance, Y = 
1 1

R j L R j CL C+
+

-w w( / )

Y =
R j L

R L

R j C

R
C

L

L

C

C

-

+
+

+

+

w

w

w

w

2 2 2
2

2 2

1
/

=
R

R L

L

L
2 2 2+w

 + 
R

R
C

C

C
2

2 2

1
+
w

+ j
C

R
C

L

R L
C

L

1
12
2 2

2 2 2

/w

w

w

w+

-
+

L

N
M
M

O

Q
P
P

at resonance, susceptance part becomes zero

w

w

r

L r

L

R L2 2 2+
=

1

12
2 2

w

w

r

C

r

C

R
C

+

wrL R
C

C

r

2
2 2

1
+

L

N
M

O

Q
P

w
=

1

w rC
 [RL

2 + w 2
r L2]

60V

L R

RC C

80W

15 W

1 MHz

200 Hm
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w 2
r R

C
C

r

2
2 2

1
+

L

N
M

O

Q
P

w
=

1

LC
 [R2

L + w2
r L2]

wr =
1 4

4

2

2LC

R C

R C

L

C

-

-
wr = 

1

LC
 (RL = RC)

1

LC

L
NM

=
1 4

4

2

2
LC

R C

R C

L

L

-

-
resonant frequency

R2
C –

L

C
= R2

L –
L

C

RC = RL
O
QP

(15 + j1256) 80
1

2 106
-

¥

F
HG

I
KJ

j
Cp

Imaginary part = 0 at resonance

1256 ¥ 80 = 
15

2 106
pC ¥

C = 23.76 pF
5. (a) Show that a balanced star connected load can be transformed in to an

equivalent delta connected load and vice-versa.

Solution:

Refer Section 3.1

(b) 3f, 3 wire, 208 V, CBA, has Y

load
ZA = 5–0, ZB = 5 –30°, ZC = 10 –
– 68W, find true current voltage on
across each Load Impedance.

By converter Y N W into D form

ZBC =
Z Z Z Z Z Z

Z

A B B C C A

A

+ +

=
105 85 31 81

5 0

. .– -

–
= 21.17 – – 31.81º W

ZCA =
Z Z Z Z Z Z

Z

A B B C C A

B

+ +

=
105 85 31 81

5 30

. .

º

–-

–
= 21.17 – – 61.81º W

ZBA =
Z Z Z Z Z Z

Z

A B B C C A

C

+ +
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=
105 85 31 81

10 60

. .

º

– -

– -

= 10.58 –28.19

∵ Phase sequence h CBA

VCB = 208 –0º, VAC

VBA = 208 – – 120º

VAC = 208 – – 240º

IC =
V

Z

CB

BC

 = 
208 0

2117 31 81

–

– -. .
 = 9.82 –31.81 A

IB =
V

Z

BA

AB

 = 
208 120

10 58 28 19

– -

–

º

. .
 = 19.65 – – 148.19º

IA =
V

Z

AC

AC

 = 
208 240

2117 61 81

– -

– -. .
 = 9.825 – – 179.19º

Line currents are

I1 = Ic – Ia = 9.82 –31.81 – 9.825 – – 179.19º

I1 = ICL = 18.93 –16.30

I2 = Ib – IC = 19.65 – – 148.19 – 9.82 –31.81

I2 = IBL = 29.47 – – 148.19

I3 = Ia – IB = 9.825 – – 179.19 – 19.65 – – 148.19

I3 = IAL = 12.31 –56.06

Voltage across each load Impedance are

VZC = (ICL)ZC = (18.93 –16.30) (10 – – 60º)

VZC = 189.3 – – 43.7º

VZB = (IBL
) (ZB) = (29.47 – – 148.19) (5 –30º)

VZB = 147.35 – – 118.19º

VZA = IAL ZA = I (12.31 –56.06) (5 –0º)

VZA = 61.55 –56.06

Phasor diagram

6. (a) What is duality? Explain the procedure for obtaining the dual of the
given planar network shown below in the figure.

Solution:

Refer 3.8

VZA

IBL

VZB

IZC

IAL

ICL
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R4

R1 L
R2

V2I

V1

Rs

+

+

C

(b) Construct the incidence matrix for the
graph shown in the figure.

Solution: Let i1, i2, i3, i4 be the current in
the branches 1, 2, 3, 4.

– i1 + i2 = 0

– i4 – i3 + i1 = 0

– i2 + i3 + i4 = 0

The incidence matrix is

[Ai] = 

Nodes branches
1

2

3

1 0 1 1

1 1 0 0

0 1 1 1

- -

-

-

L

N

M
M
M

O

Q

P
P
P

(c) Use nodal analysis, to determine the voltage V1 ¨ VL in the circuit shown
in figure below.

+
5 V

2 W

1 W1 W

2V1

1 A

V2

–

Solution:
( )V V V V1 1 1 25

2

0

1 2
0

-
+

-
+

-
=

4V1 – V2 – 5 = 0 (1)

1 + 
V V V1 2 2

2 1

-
+
-

 = 0

V1 – 3V2 + 2 = 0 (2)

Solving (1) and (2) V1 = 1.545 V

VL = – 1.18 V

1

1

2
32

3

4
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7. (a) State and Explain the superposition theorem.

Solution:

Refer Section 3.2

(b) Is superposition valied for power? Substantiate your answer.

Solution:

Refer section 3.2

(c) Using superposition theorem find Vab volts shown in figure below

4 WA B2 W

6 W
4 V

2 V

–

–

+

+

2 A

Solution: 2A current source alive.

4 WA B2 W

2 W

6 W

4 W

6 W

2 A

fi

Current through 2W

4

8 4
2

+
¥ =

2

3
A

and current through 4 W

8

8 4+
¥ 2 = 

4

3
A

Va1
+

4

3
¥ 4 – 2 ¥

2

3
 = Vb1

Va1
– Vb1

= Vab1
 = 

4

3

16

3

12

3
- =

-
 = – 4V

Within 4V voltage source alone.
Current

2 = 
4V

6 + 4 + 2
 = 

4

12

1

3
= A

VA2
+ 4 ¥

1

3
 + 2 ¥

1

3
 = VB2

4 2

A B

–+
2 V

6 W

4 WA B2 W

6 W +–

4 V
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VA2
– VB2

= -
6

3
 = – 2V

Within 2V voltage source alone.

Current 2 = 
2

6 4 2+ +
 = 

2

12
 = 

1

6
A

VA3
 + (4 + 2) ¥

1

6
 = VB3

fi VA3
– VB3

= Vab3
 = – 1V

\ By superposition Vab = Vab1
 + Vab2

 + Vab3

= – 4 + – 2 + – 1

Vab = – 7V

8. (a) For the ckt shown below find the inerted condition of q1, p2,
di

dt

1 ,

dq

dt

2  and voltage across capacitor the ckt was in steady state before

t = 0.
t = 0

100 V

20 W

10 W

2 Fm
2 H

6 W

I1 I2

Solution: t = 0–

i =
100

10 6+
 = 6.25A

VC(0–) = 
6 100

16

¥
 = 37.5 V i1(0–) = i2(0–) = 6.25A

at t = 0, i2(0–) = 6.25 A, i1(0–) = 6.25A

100 = (i1 – i2) 20 
1

2mF
 (i1 – i2) dt (1)

100 = 6i2(t) + 2
di

dt

2 (2)

i1 = i2 = 6.25

from Eq. (2) 100 = 6(6.25) + 2 
di

dt

2

di

dt

2 0( )+

= 31.25 A sec

10 W

6 W 6 W

P

100 V
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Taking derivative eq. (1)

0 = 
di

dt

di

dt

1 2-F
H

I
K 20 + 

1

2 10 6¥ -
 (i1 – i2)

i1 = i2 = 0

di

dt

1 0( )+

=
di

dt

2 0( )+

 = 31.25 A

(b) Switch is opened at t = 0 find the current i(t) for t ≥ 0 in the following
figure.

at t = 0–

i =
40

20
 = 2A

iL (0) = 2A

\ iL(0+) = 2A

at t = 0+

By applying K.V.L to loop

30 W

20 W

10 i

i

40 V

So 10i(t) = 30i(t) + 20i(t) + 
2di t

dt

( )

2di t

dt

( )
+ 40i(t) = 0

(D + 20) i(t) = 0

i(t) = ke–20t

at t = 0 i(t) = 2A

\ k = 2

\ i(t) = 2e–20t A

30 W 20 W

10 i

i

2 H

40 V

t = 0

30 W 20 W

2 H I0 = 2A10 i

i (+)
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PAPER 12

1. (a) Find the equivalent resistance between terminals. y and z in the

figure given below.

Solution:

20 W

4 W

6 W

5 W

20 W

9
W

7.6 W

9 W

3.6 W

5 W 6 W

y

y

y

z

y

z

z

z

(b) In the network shown in the following, determine ix.

Solution: At node (b)

V V V1 1 2

10 20
+

-
 + 3ix = 4

At node (a)

4 A 10 W

20 W

5 W –3 A

3ix

ix

V1 V2b a

V V V1 1 2

10 20
+

-
 = 3ix – 3

and ix = 
V2

5
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V V V V1 1 2 2

10 20
3

5
+

-
+

F
H

I
K

 = 4 Solving A and B

V1

1

10

1

20

1

20

3

5
2+

F
HG

I
KJ
+

-
+

L
NM

O
QP

v  = 4 (1) V1 = –10 V

V V V V2 1 2 2

20 5
3

5

-
+ =

L
NM

O
QP

– 3 V2 = 10 V

-
+ + -

-L
NM

O
QP

V
V1

2
20

1

20

1

5

3

5
 = –3 (2) \ ix =

V2

5

0.15V1 + 0.55 V2 = 4 (A) = 2A

–0.05V1 – 0.35 V2 = –3 (B)

(a) State and explain Faradays law of Electromagnetic induction. What

are statically and dynamically induced EMFs.

Solution:

Refer Section 1.6

(b) An iron ring 15 cms in diameter and 10 cm2 in area cross section. A

wand with a coil of 800 kms. Determine the current in the coil to

establish a fix density of 1 wb/m2 of rela-

tive permeable w 500. In case if an air gap

of 2 mm is cut in the ring what is the cur-

rent in the coil to establish the same feet

density.

Solution: Given data:

b = 1 wb/m2

Diameter = 150 cm = 0.15 m

Core area AC = 10 cm2 = 10 ¥ 10–4 m2

lc = pD = p (0.15) mb

B, magnetic flux density = 
IN ◊m m0 v

cl

l = 
I ¥ ¥ / ¥ ¥

/ ¥

-
200 4 10 500

015

7p

p .

100 015

4

¥ .
= I Æ I = 3.75 Amp.

B =
mm

reluctance area

NI

reluctance area

f

¥
=

¥

I



E.116 Electrical Circuit Analysis

If 2 mm is cut the reluctance will be sum of reluctance of air gap of

core.

e.g. (air gap flux) =
l

AC

g

m 0

=
2 10

4 10 10 10

3

7 4

¥

¥ ¥ ¥

-

- -p

= 0.159 ¥ 107

= 1.59 ¥ 106 AT/wb

Rlc (reluctance of core) =
l

AC

c

rm m0

=
( )p

p

D lg-

¥ ¥ ¥ ¥- -4 10 500 10 107 4

=
( . )

.

p

p

¥ - ¥

¥ ¥

-

-

015 2 10

4 10 05

3

7

= 0.746 ¥ 10
6

Rlc + Rg = 2.336 ¥ 106 AT/wb

B = 1 = 
200 1

2 336 10 10 10
6 4

¥

¥ ¥ ¥
=

¥-
.

NI

Rl AC

I = 11.684 Amp

3. (a) Explain the significance of J-operator? What are the different forms

of expressing the sinusoidal quarter in complex form?

Solution:

Refer Appendix C

(b) Find the components of Z such that the current drawn quantity by the

circuit same at all frequencies the following figure.

RL = RC = 5 W

RL = RC = 
L

C

5 = 
0 05.

C

C =
0 05

25

.
 = 2 ¥ 10–3 F = 2 mF

5 W

z

0.05 H
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Solution: (c) The condition is that RL = RC = 
L

C
.

\ RL = RC = 5W

from which 5 = 
0 05.

C

C = 2 ¥ 10–3 F

The components of Z are shown in

figure.

4. (a) Define the following terms

(i) Bandwidth

(ii) Q-factor

(iii) half power frequencies

Solution:

Refer Sections 8.4, 8.5

(b) Obtain a p-equivalent circuit for the

following figure of 2 port network.

Solution:

–V1 + I1R1 + (I1 + I2) RL = 0

(R1 + R2)I1 + R2I2 = V1 (1)

RL(I2 + I1) + R3(I2 – 0.2 I1) – V1 = 0

(R2 – 0.2 R3) I1 + (R3 + R2)I2 = V2 (2)

w.r.t. V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

So Z11 = R1 + R2

Z12 = R2

Z21 = R2 – 0.2 R3

Z22 = R3 + R2

D t =
Z Z

Z Z

R R R

R R R R
11 12

21 22

1 2 2

2 3 3 20 2
=

+

- +.

Y11 =
Z

Z

R R

Z

22 3 2

D D
= -

Y12 =
-

= -
Z

Z

R

Z

12 2

D D

Y21 =
-

=
-Z

t

R R

Z

21 2 30 2

D D

.

Y22 =
Z

t

R R

Z

11 1 2

D D
=

+

V1

I1 I2R1 R3

R2
V2

0.2I1

+ +

– –

5 W5 W

2 ¥ 10 F–3
0.05 H
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Y1 = Y11 + Y21

=
R R R R

Z

3 2 2 30 2+ + - .

D

=
2 0 82 3R R

Z

- .

D

Y2 = –Y12 = 
-R

Z

2

D

Y3 = Y22 + Y12

= 1 2 2R R R

Z

+ -

D

=
R

Z

1

D

5. (a) Derive the relationship between and phase quantities in a balanced

star connected system.

Solution:

Refer Sections 9.7.1, 9.7.2 and 9.7.3

(b) A 3 phase 4-wire CBA system of phase sequence, with effective line

voltage of 100 V has a star-connected impedance given by

ZA = 3.0 –0° W, ZB = 4.5 –56.31° W

ZC = 2.24 ––26.57° W, obtain the line currents and the current in

neutral wire draw the phasor diagram.

Solution:

Vph =
100

3
 = 57.735 V

VCN = 57.735 –0°

VBN = 57.735 ––120°

VAN = 57.735 ––240°

IC =
VCN

ZC

=
– - ∞

57 735

2 24 26 57

.

. .
 = 25.77 –26.57° = 23.048 + 11.52 j

IB =
V

Z

BN

B

=
– - ∞

– ∞

57 735 120

4 5 56 31

.

. .
 = 12.83 ––176.31° = –12.8 – 0.825j

IA =
V

Z

AN

A

=
– - ∞

∞

57 735 240

3

.
 = 19.245 ––240° = –9.62 + 16.66 j

INeutral = –(IA + IB + IC) = – (0.628 + 27.355 j)

V1 V2Y1

Y2

Y3

+ +

– –
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120°

120°

26.57°

240°

120°

VAN

IC

VCN

VBN

IB

IA

6. (a) For the circuit shown below in

Fig. 31. Find the currents of

voltages in all the branches of

circuit. Use node voltage method.

Solution: Let V1 be the voltage as

shown in figure

At V1

8

1
5

3

2 1-
+ +

-V V V
 = 0

39 – 4V1 + V2 = 0 (1)

At V2

V V V2 2 18

2 3

-
+

-
 + 4V2 = 0

–2V1 + 29V2 – 24 = 0 (2)

From Eq. (1) and Eq. (2) V1 = 10.13; V2 = 1.52

Current in 2W = 
8 152

2

- .
 = 3.24 A from A to C

Current in 1W = 
8 1013

1

- .
 = –2.13 A from A to B

Current in 3W = 
1013 152

3

. .-
 = 2.87 A from B to C

Current in 4J = 1.52 ¥ 4 = 6.08 A downwards

(b) Draw the dual of the network shown in the following figure. Explain

the procedure employed.

+

–

8 V 5 A

V1
V21 W 3 W

2 W

4 W

A
B

C
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Solution: For procedure refer Section 3.8

L2

C1

C2

C1

R1

R2

G2

L1

L1

L2

R2

G1

3

2

1

V

I

+

–

Ref

C1
2

Ref

31

L1

L2
I G2

G1

C2

(c) Obtain the Expression for characteristic impedance of symmetrical T

network.

Solution:

Refer Section 15.13.

7. (a) State and explain superposition theorem.

Solution:

Refer Section 3.2

(b) Using superposition theorem find the current in 2 W resistor. Verify

the result by any other method in following figure.

Solution:

Consider source (1) current source on line.

1 W 4 W

3 A

6 W 6 W6 W 6 W

1
6
V

3 W

2 W

24 A 4 A
+

–
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Current through 2W = 0

as two point ends are shorted.

Consider voltage source alive.

4

3

6

10 V

6

1
0
V

2 W

6 W

4 W

3 W

2 W

6 W
+

– +
–

Current through 2W resistor = 
10

2

V
 = 5A

by superposition current = 0 + 5 = 5A

Verification: Consider the entire network.

1
0
V

2 W

3 W

4 W

6 W6 W4 A
+

–

By source transfer

6 W

6 W

24 V

4 A

6
V 2 W

4 W

6 W

6 W

3 W

24
+

–
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Current through 2W=
V

2

=
-10

2
 = –54 Downward

I = 54 upward. Hence proved.

8. (a) What are the Initial conditions? How do you need them?

Solution:

Refer Chapters 12 and 13

(b) Explain why the current in a pure Inductance cannot change in zero

time?

Solution:

Refer Section 1.6

(c) Switch is closed at t = 0. Find initial conditions at t(0+) for i, i2, VC

di

dt

di

dt

d i

dt

d i

dt

1 2
2

1

2

2
1

2
, , and  in the following figure.

t = 0 2 HF

VC

60 V 20 W

10 W

2 H

+ –

Solution:

At t = 0– the circuit in un energised so all initial condition are zero.

at t = 0+

i1(0+) = 
60

20
 = 3A, i2(0+) = 0A

60 V

i1 i2

10 W

20 W 60 V

2 Fm

2 H

i1 i2

10 W

20 W

By writing KVL to loops

60 = 
1

2 10 6 1
¥ - z i (t) + 20[i1(t) – i2(t)] (1)

20 (i2(t) – i1(t)) + 10i2(t) + 
2 2di t

dt

( )
 = 0 (2)



Appendix E E.123

By substituting Initial Coils (2)

20(0 – 3) + 30 + 2
02di

dt

( )+
 = 0

di

dt

2 0
30

( )+
=

Differentiate (1)

0 = 
1

2 10 6¥ -
i1(t) + 20 

di t

dt

di t

dt

1 2( ) ( )
-

F
HG

I
KJ

(3)

di

dt

1 30-
F
HG

I
KJ

= –
3

40
¥ 106

di

dt

1 = 30 –
3

40
¥ 10

5
 = –74.97 ¥ 10

3

di

dt

1 30
74 97 10

( )
.

+

= - ¥

Differentiate (2)

20
di t

dt

di

dt

di

dt

d i

dt

v

v
2 1 2 210 2
( )

-
F
H

I
K
+ +

20 (30 + 74.97 ¥ 103) + 10 ¥ 30 + 2
d i

dt

v

v

2  = 0

d i

dt

v

v

2 0( )+
= –760.15 ¥ 103

Differentiate Eq. (3)

0 = 
1

2 10
20

6
1 2

¥
+ -

F

HG
I

KJ-

di

dt

d i

dt

d i

dt

v

v

v

v

0 = 
1

2 10 6¥ -
 (–74.97 ¥ 103) + 20 

d i

dt

v

v
+ ¥

F

HG
I

KJ
75015 103.

i1(0
+
) = 3A

i2(0
+
) = 0A

d i

dt

v
i

v
 (0

+
) = 1.873 ¥ 10°

di

dt

1  (0+) = –74.97 ¥ 103 d i

dt

v

v

2 0( )+
= –750.15 ¥ 103

di

dt

2  (0+) = 30
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PAPER 2

1. (a) Discuss Kirchhoff’s Laws.

Solution Refer Sections 1.9 and 1.12.

(b) Derive the expression for self, mutual inductance and coefficient of

coupling.

Solution Refer Sections 10.3. and 10.5.

(c) Explain source transformation with example.

Solution Refer Section 2.15.

2. (a) What is the use of operator j ?

Solution Refer Appendix C.

(b) For the circuit shown in figure, find the current I drawn from the

source.

The impedance as seen by the source is

Z = (10 + j20) // (8 – j15)

=
380 10

18 5
19 742 4

+

+
= -

j

j
j. .928

\ Current drawn from source I
V

Z j
= =

-

100

19 742 4. .928

= 4.768 + j1.19

= 4.914 14.01°

or I1 =
100

10 20
2 4

+
= -

j
j

I2 =
100

8 15
2 768 5 1903

-
= +

j
j. .

I = I1 + I2 = 4.768 + j1.19

= 4.914 14.01°

3. (a) A series RLC circuit with Q = 250 is resonant at 1.5 MHZ. Find the
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frequencies at half power points and also bandwidth.

Solution Given Q = 250

Q =
w o L

R

250 =
2 2 1 10

250
37 7 10

6
3p p¥ ¥

fi =
¥ ¥

= ¥
f L

R

R

L
o .5

.

Lower half power frequency f f
R

Lr1 4
= -

p

= 1 10
37 7 106

3

.5
.

¥ -
¥

Dp

= 1.5 ¥ 10
6

– 3 ¥ 10
3

= 1.496 MHz

Upper half power frequency f f
R

Lr2 4
= +

p

= 1 10
37 7 10

4
6

3

.5
.

¥ +
¥

p

= 1.5M + 3k = 1.53 MHz

Bandwidth = f2 – f1 = 1.53 M – 1.496 M = 6 kHz

(b) Distinguish between the average value and rms value of an alternat-

ing current.

Solution Refer Section 4.4.

4. Write and solve the equation for Mesh Current in the network shown.

Solution By source transformation technique transform 5A and 4A cur-
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rent sources into voltage sources.

5A current source in parallel with 3 W can be transformed to

15V in series with 3 W and 4A current source in parallel with 3

W can be transformed to 12 volts in series with 3 W. The equiva-

lent circuit is as shown below:

The mesh equations are

5I1 + 1(I1 – I2) = 15

1(I2 – I1) + 4I2 = 41

fi – I1 + 5I2 = 41 (1)

6I1 – I2 = 15 (2)

on solving equations (1) and (2) we get

I1 = 4 Amps

I2 = 9 Amps

5. Determine the line currents for the unbalanced delta connected load of

the figure given. Assume phase sequence RYB.

Solution The phaser diagram

will be as shown:

VRY = 200 0°

VYB = 200 120− °

VBR = 200 240− °
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IRY =
200 0

30 40j

°

+
53.13− °

IYB =
200 120

22.36 93.43
8 4j

− °
= − °

+

IBR =
200 240

10.41 278.65
15 12j

− °
= − °

+

The line currents are IR = IBR – IRY

IY = IRY – IYB

IB = IYB – IBR

6. The circuit shown in the figure below has resistance R which absorbs

maximum power. Compute the value of R and maximum power.

Solution According to maximum power transfer theorem, maximum

power can be transferred when load resistance is equal to the

interval resistance of the source which can be calculated as the

resistance seen from AB with source open.

\ =

= =

Rth 3 7

21

10
2 1

/ /

. W

Now the circuit can be drawn as
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According to current dividing rule

I1 =
20 5

5 3
12 14

¥

+
=

( ).235
. A

I2 =
I1 3

5 1

12 14 3

5
7 14

¥
=

¥
=

.

.
. A

So the maximum power that can be delivered to resistor R is

I
2
R = (7.14)

2
¥ 2.1 = 107 watts.

7. In the figure shown below v(t) = 10 V, find i2(t). Assume all initial con-

ditions to be zero. Use Laplace transform technique.

Solution Writing mesh equation

10
0 1

2

0
2

2 0

1 1 1 2

2 1 2

S
S I s I s

s
I s I s

S
I s I s I s

= + + -

= - + =

. ( ) ( ) ( ) ( )

( ) ( ) ( )

a f

a f
2

0 1 1
2 10

1 2s
s I s

s
I s

s
+ + - =. ( ) ( )e j (1)

- + + =
2 2

2 01 2s
I s

s
I s( ) ( )e j (2)

on solving equations (1) and (2) we get

I s
s s s

2 2

100

11 60
( )

( )
=

+ +

1

11 60 11 602 2S S S

AS B

S S

C

S( )+ +
=

+

+ +
+

A B C=
-

=
-

=
1

60

11

60

1

60
; ;
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\
+ +

L
N
M

O
Q
P= -

+ +
-

+ +

L
NM

O
QP

- -L
S S S

L
S

S

S S S S

1
2

1
2 2

1

11 60

1

60

1 1

60 11 60

11

60

1

11 60c h
.

= -
+

+ +
F
HG

I
KJ

+

+ +
F
HG

I
KJ

L

N

M
M
M
M

O

Q

P
P
P
P

-1

60

1
11

2

11

2

199

2

319

11

2

119

2

1

2 2 2 2
L

S

S

S S

e j

e j e j

\ = - - ¥
L
NM

O
QP

i t e t e t
t t

2

11

2

11

2100

60
1

119

2
319

2

119

119

2
( ) cos .sin

\ = - -
-i t e t e t

t t
2

5 5 5 51 667 1 667 5 45 97 47 5 45( ) . . cos . . sin .. .

8. (a) In a two-port bilateral network show that AD – BC = 1.

Solution Refer Section 15.8.2.

(b) Derive an expression for DC response in an RC circuit.

Solution Refer Section 12.3.
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PAPER 3

1. (a) State the voltage current relationships for (i) resistance

(ii) inductance and (iii) capacitance.

Solution Refer Sections 1.5, 1.6 and 1.7.

(b) Two coupled coils with self inductances L1=0.8H and L2=0.2H

have a coupling coefficient of 0.6 has 500 turns. If the current in

coil 1 is I1(t) = 10 sin 200t; determine the voltage at coil 2 and the

maximum flux set up by the coil 1.
Solution

M K L L=

= ¥
=

1 2

0 6 0 8 0

240

. . .2

mH

The voltage across the coil 2 v2
1( )
( )

t M
di t

dt
= ±

v

v

2

2

10 200

2000 200

( ) sin

( )

t
d

dt
t

t t

= ( )

= C is volts

(c) A torroid is made of steel rod of 2 cm diameter. The mean radius of

torroid is 20 cm relative permeability of steel is 2000. Compute the

current required to produce 1 m web of flux and 1000 turns in the

torroid.

Solution Length of the flux path = pD = p ¥ 20 = 62.83 cm = 0.6283 m

Area of flux path = = =( )p p

4 4
2 3 1412 2d . cm2

Magnetic field intensity H
B

o r

=
m m

B

H

= =
¥

=
¥ ¥

=

-

-

-

f

p

Area
web / m

AT / m

210

3141 10
3 1

3 1

4 10 2000
1233 45

3

4

7

.
.

.
.

mmf = H ¥ l = 1233.45 ¥ 0.6283

= 775 A.T.
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Exciting current =
mmf

T

=
775

1000
0 775= . A

2. (a) If I1=10 0° , I2 = 20 60°  and I3 = 12 30− °  find I1 + I2 + I3.

Solution I1 + I2 + I3 = 10 0°  + 20 60°  + 12 30− °

= 30.392 + j11.32

= 32.432 20.429

(b) Prove that the form factor for a sinusoidal current wave form is

1.11.

Solution Refer Section 4.4.7.

3. (a) Derive an expression for resonance frequency of a series R-L-C cir-

cuit.

Solution Refer Section 8.1.

(a) A coil of resistance 10l and an inductance of 0.1 H is connected in

series with a capacitor of capacitance 150 mF a cross at 200V, 50Hz

supply. Calculate (i) Impedance (ii) Current (iii) Power and power

factor of the circuit

Solution (i) Total impedance

Z = R j L
j

c
+ -w

w

= 10 + j31.45 – j21.22

= 10 + j10.194

= 14.279 45.55

(ii) Current 

200 0

14.279 45.55

14 45.55

V
I

Z
=

°
=

°

= − °
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(iii) Power factor = cos (45.55o)

= 0.7 lagging

Real power = VI cos f

= 200 ¥ 14 ¥ 0.7

= 1.9 kW

Reactive power = VI sin f

= 200 ¥ 14 ¥ sin (– 45.55)

= –1.998 KVAR

“–1” Sign indicates that it absorbs the reactive power.

4. (a) Define cut set and tie set

Solution Refer Sections 2.7 and 2.8.

(b) Determine the current in the 10 W resistor in the circuit shown in

the  figure below.

Solution Apply nodal analysis at point (1), we get

50 0 50 30
0

4 5 10 5 5

V VV

j j

− ° − °
+ + =

− +

50 0 50 301 1 1

4 5 10 5 5 4 5 5 5
V

j j j j

° ° 
+ + = + − + − + 

V [0.297 + j0.0219] = 11.708 + j4.267

[ ]0.298 4.219 12.46 20.02V ° = °

fi V = 41.812 15.801°

Current through the 10 W resistor I
V

R10 =

=
41.812 15.801

10

°

= 4.1812 15.80°  Amp
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5. (a) Draw the dual network for the given network as in the following

figure.

Solution

Dual network

(b) A balanced star connected load of 8 + 6j W/phase is connected to a

3f 230V, 50Hz supply. Find the line current, power factor, total

Active and Reactive powers.

Solution VRY = 230 0°

VYB = 230 120− °

VBR = 230 240− °
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3

230

3 10 36.86

10.623 36.86

RY
R

V
I

Z
=

×

=
× °

= − °

230 120

3 10 36.86

10.623 156.86

YI
− °

=
× °

= − °

230 240

3 10 36.86

10.623 276.86

BI
− °

=
× °

= °

P.f. = cos f = cos (36.86o) = 0.8 (lagging)

Active power = 3I
2
R

= 3(10.623)2 8

= 2.708 kW

Reactive power = 3VI sin f

= 3(320) (10.623) sin (–36.86)

= 4.396 KVAR

6. (a) Obtain the Norton’s equivalent circuit at the terminals A, B for the

following figure.

For finding the Nortons resistance, replace the voltage sources by

the short circuit.

Req = {[(1ΩΩ10)+2]ΩΩ10}



E.18 Electrical Circuit Analysis

= 2.253 W
For finding the IN short the terminals A and B and find current IN. Apply

superposition

(i) with 100 V source

 Z = + =[( ) ] .2 10 1 2 67

Total current I
Z

=

= =

100

100

2 67
37 45

.
. A

(ii) With 20 V source

ISN 2
20

2
6 872= =

.91
. A

\ = +I I ISN SN SN1 2

= 31.21 + 6.872

= 38.08 A

\ Nortons equivalent circuit is given by
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(b)

For the 2 port network, find h-parameters.

Solution We know that

V1= h11I1 + h12V2

I2 = h21I1 + h22V2

h11 =
V

I V

1

1 02 =

h21 =
I

I V

2

1 02 =

\ h11 =
1 33

1 331

1

.
.

I

I
= W

h21 = - = -4

6
0 661

1

I

I
. V1 = (2ΩΩ4)I1

= 1.33 I1

I2 = - ¥I1
4

6

h12 =
V

V I

1

2 01=

h12 =
I

V I

21

2 01=
If I1 = 0

h22 =
I

I
2

26

= 0 166. v

V1 = 4I2

h12 =
4

6
2

2

I

I
V2 = 6I2

= 0.66

7. A series RLC circuit with R = 5 W, L = 0.1H and C = 500 mF has a D.C.

voltage of 100V applied at t = 0 through a switch. Find the resulting

current transient.
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Solution 5 0 1
1

500 10
100

6
i t

di t

dt
i t dt( ) .

( )
( )+ +

¥
=- zL

d i

dt

di

dt

2

2
50 2000 0+ + =

D2 + 50D + 2000 = 0

D = –25 ± j37.08

\i (t) = e
–25t

 [K1cos 37.08t + K2 sin 37.08t] (1)

1st initial condition is that current through the inductor cannot change

instantaneously.

Also voltage drop across capacitor cannot change instantaneously

Hence at t = 0+

di

dt

V

L
o( )

.
0

100

0 1
1000+ = = =

Substituting initial conditions i (0+) = 0

\ 0 = K3

On differentiating equation (1), we get

di

dt
e K t Kt= - +-25

1 237 08 37 08 37 08 37 08. sin . . cos .

- +-25 37 08 37 0825
1 2e K t Kt cos . sin .a f

= - - + --e t K K t K Kt25
1 2 2 137 08 37 08 25 37 08 37 08 25sin . . cos . .a f a f

di

dt
K K( ) .0 37 08 252 1

+ = -

fi = =K2
1000

37 08
26

.
.96

\ i(t) = e
–25t

 (26.96 sin 37.08t)

8. (a) Explain Dot convention.

Solution Refer Section 10.4.

8. (b) Explain briefly about the locus diagrams.

Solution Refer Section 8.13.
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PAPER 4

1. (a) Explain about dot convention.

Solution Refer Section 10.4.

(b) An iron ring of mean length 50 cm has an air gap of 1 mm and a

winding of 200 turns. If the permeability of iron is 400 when a cur-

rent of 1.25 A flows through the coil. Find the flux density.

Solution AT1 required for iron path in the ring = H l
B

li i
o r

i¥ = ¥
m m

=
¥ ¥

¥-
B

4 10 400
0

7p
.5

AT2 required for air gap of 1 mm = H l
B

lg g
o

g= ¥
m

=
¥

¥ ¥-
-B

4 10
1 10

7
3

p

Total ampere turns = AT1 + AT2

200 1
0

4 10 400 4 10
10

7 7
3¥ = ¥

¥ ¥
+

¥
¥L

NM
O
QP- -

-.25
.5B B

p p

250
4 10

1 10 10
7

3 3=
¥

¥ +-
- -B

p
.25

B = 0.314 web/m2.

2. Derive the expressions for half power frequencies, Q factor f Bandwidth

of a series resonant circuit.

Solution Refer Sections 8.4. and 8.5.

3. (a) For the parallel network shown below, determine the value of R at

10 W resonance.

Solution Z = (10 + j10) ΩΩ(R – j2)

=
10 10 2

10 10 2

+( ) -( )
+ + -

j R j

j R j
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=
10 20 10 4

10 8

R j j R

R j

- + +
+ +

=
10 4 10 20

10 8

R j R

R j

+ + -
+ +

( )

=
10 4 10 20 10 8

10 642

R j R R j

R

+ + - + -
+ +

( ) ( )

( )

= [(10R + 4)(10 + R) + 8 (10R – 20) – j8(10R + 4) +j (10 + R)

(10R –20)]
1

10 642( )+ +R

At resonance imaginary part = 0

fi 8 (10R + 4) – (10 + R) (10R – 20)

fi 100R – 200 + 10R2 – 20R = 80R + 32

10R2 = 232

R = 4.8166 W
(b) Define average value, rms value and form factor in a circuit.

Solution Refer Section 4.4.

4. Determine the current in all branches of the following network and the

voltage across for resistor using loop method.

Solution Applying mesh equation to the loops (1), (2) and (3)

We get
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5(I1 – I3) + 7(I1 – I2) = 5

12I1 – 7I2 – 5I3 = 5 (1)

7(I2 – I1) + 6 (I2 – I3) + 5I2 = –25

–7I1 + 18I2 – 6I3 = –25 (2)

10I3 + 5(I3 – I1) + 6(I3 – I2) = 0

–5I1 – 6I2 + 21I3 = 0 (3)

By solving above 3 equations, we get

I1 = –1.231 A

I2 = –2.172 A

I3 = –0.9138 A

Current in 5 W resistor is –0.3172 A

7 W resistor is –1.231 A

6 W resistor is –1.2882 A

10 W resistor is –0.9138 A

5 W resistor is –2.172 A

5. A 440V, 3f, 3-wire system is connected to an unbalanced star connected

load shown in the figure. Determine the line currents and power I/P to

the network.

VRY = 440

IR =
440

3 10
25 4

¥
= . A

IY =
440 120

3 15

− °

×

 = 16.93 120 A− °

IB =
440 240

3 20

− °

×

= 12.7 240 A− °

P = IR
2 RR + IY

2 RY + IB
2 RB

= 13.976 kW

6. (a) Verify reciprocity theorem in circuit shown in the following figure.
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Solution Let us find current in 3 W resistor.

I3 = 10
2

2 3
¥

+
= 4 A

Vab = 3 ¥ 4 = 12

According to reciprocity theorem the voltage across ab Vab = 12

Now connect the current source across ab and find the voltage across m

and n.

I2 10
3

5
6= ¥ = A

The voltage across mn = 2 ¥ 6 = 12 volts, same as Vab. Hence, the reci-

procity theorem is proved.

(b) State and explain compensation theorem.

Solution Refer Section 3.6.

7. Find transfer function 
V S

V S
o

i

( )

( )
 for the circuit shown in the following

figure.

Also
V V

V S
V VA i

A
A O-

+ +
-

=
1 2

0

V S V
V

A i
o( .5 )1

2
+ = +

V
V

V

SA

i
o

=
+

+
2

1.5
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Also V
V

o

A

=
¥

+

2

5

2
2

5

=
+

V

S
A

1

V
V V

S So
i o=
+

+ +( )( )

2

2 3 1

V
S S

V

S So
i1

1

2 3 1

2

2 3 1
-

+ +
L
NM

O
QP
=

+ +( )( ) ( )( )

V S S Vo i2 3 1 1 2+ + - =( )( )

V

V S S

o

i

=
+ +
2

2 5 22

8. (a) In the circuit shown find the expression for transient current.

Solution 5 3 100i t
di t

dt
( )

( )+ =

5 3 0
100

I S SI S i
S

( ) ( ) ( )+ - =

i(0) = – 6

100 5 3 1 0= + + ∞I
di

dt
( )

100
5 3 18

S
S I S= + +( ) ( )

I S
S

S S

S S

( )
( )

= -
+

= -
+

100 18

3 5

20 78

3 5

= -
+

20 26
5

3
S S

i(t) = 20 – 26 e5/3t

8. (b) Obtain the lattice equivalent of a symmetrical T-network.

Solution Refer Example 15.13.
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PAPER 5

1. (a) Obtain the expressions for star-delta equivalence of resistive net-

works.

Solution
Refer Section 3.1 (Chapter 3).

(b) Determine the voltage appearing across terminals y–z, if a d.c. volt-

age of 100V is applied across x–y terminals in the figure below.

Solution Converting delta network to star network

Current, i =
100

1 3 846 0 77 2+ + +. .
 = 

100

7 616.
 = 13.13A

Voltage across y Vz
N

z,  = –13.13 ¥ (2 + 0.77)

 = –36.37 V

2. (a) State and explain Faraday’s law of electromagnetic induction. What

are statically and dynamically induced emfs.

Solution
Refer Section 1.6 (Chapter 1).

First law : It states that whenever the magnetic flux linked

with a circuit changes an emf is always induced in

it.

Second law : It states that the magnitude of the induced emf is

equal to the rate of change of flux linkage.

Explanation : Suppose a coil with 100 turns undergoes a change

of flux from zero refers to 2 mwb in one millisec ond.
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Initial flux linkages = 0

Final flux linkages = 100 ¥ 2 ¥ 10–3 wb.T

Induced emf = 
100 2 10 0

1 10

3

3

¥ ¥ -

¥

-

-
 = 2000 V

Induced emf can be expressed as e = 
d

d t
 (NQ) = N

dQ

dt
v

Generally, a minus sign is associated with the N
dQ

dt
 to signify the

fact that the induced emf sets up current in a such a direction that

the magnetic effect produced by it opposes the very cause produc-

ing it. It is called Lenz’s law

\ e = – N
dQ

dt

Statically induced EMF

EMF induced in a coil due to the change of its own flux linked with

it or emf induced in one coil by the influence of the other coil is

known as statically induced emf.

Dynamically Induced EMF:
When a coil with certain number of turns or a conductor is rotated

in a magnetic filed (as in d.c. generator’s), an emf is induced in it

which is known as dynamically induced emf.

2. (b) An iron ring 15 cms in diameter and 10 cm2 in area of cross section

is wound with a coil of 200 turns. Determine the current in the coil

to establish a flux density of  1 wb/m2 if the relative permeability of

iron is 500. In case if an air gap of 2 mm is cut in the ring, what is the

current in the coil to establish the same flux density.

Solution
Refer Example 10.12, Chapter 10: Refer Problem 10.13 Chapter 10

(i) Without air gap

Diameter of Iron ring = 15 (cm) = 15 ¥ 10
–2

 m

Area of Iron ring = 10 cm
2
 = 10 ¥ 10

–4
 m

2

Number of turns (N) = 200

Reluctance of Iron ring (¬i) =
l

A

i

rm m0 .

Length of Iron path (li) = p.d

= p ¥ 15 ¥ 10–2 m

¬i =
15 10

4 10 500 10 10

2

7 4

p

p

¥

¥ ¥ ¥ ¥

-

- -
 = 7.5 ¥ 105 AT/Wb

mmf = Flux ¥ reluctance

I ¥ 200 = B.A. ¬i

1
5
c
m

2m.n
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I =
1 10 10 7 5 10

200

4 5
¥ ¥ ¥ ¥

- .
 = 3.75 A

(ii) With 2 mm air gap cut in the iron ring reluctance of air gap

(¬g) =
2 10

4 10 10 10

3

7 4

¥

¥ ¥ ¥

-

- -
p

= 15.915 ¥ 105 AT/Wb

With 2 mm air gap the length of the Iron path is reduced by 2 mm.

\ li = 15p ¥ 10–2 – 2 ¥ 10–3

But this is negligibly small.

\ Total reluctance = ¬i + ¬g = 23.415 ¥ 105 AT/Wb

\ I =
f .¬

N
 = 

B A

N

. .¬

=
1 10 10 23 415 10

200

4 5
¥ ¥ ¥ ¥

- .

Required current (I) = 11.707A

If the gap length is taken into consideration:

Total emf =
B l B l

i i

r

i g

m m m0 0

+

=
1 15 10 2 10

4 10 500

1 2 10

4 10

2 3

7

3

7

( )p

p p

¥ ¥ - ¥

¥ ¥
+

¥ ¥

¥

- -

-

-

-
 2338.35 AT

\ I =
2338 35

200

.
 = 11.691A

3. (a) Find the form factor for the following waveform.

Solution

Refer Section 4.4.7 (Chapter 4)

Form factor =
R.M.S. value

Average value

Average value of the triangular waveform 0 to 2 sec
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Vav =
1

2
V t d t V t d t. ( )

0

1

1

2

2z z+ - -

L

N
M
M

O

Q
P
P

=
1

2 2 2
2

2

0

1 2

1

2

1

2
V

t
V

t
V t+ - +

L

N
M
M

O

Q
P
P

.

=
1

2 2

3

2
2

V
V V- +

L
NM

O
QP

 = V/2

R.M.S. value, (Vr.m.s.) =
1

2
22 2

0

1

2 2

1

2
1 2

V t dt V t dtz z+ -
R
S
|

T|

L

N

M
M

O

Q

P
P

( )

/

=
1

2 3 3
4 4

2

2
3

0

1

2
3

1

2

2

1

2 2
2

1

2
1 2

V
t

V
t

V t V
t

+ + -
R
S
|

T|

U
V
|

W|

L

N
M
M

O

Q
P
P

/

=
1

2 3

7

3
2

2 2
2

1 2

V V
V+ -

R
S
T

U
V
W

L

N
M
M

O

Q
P
P

/

=
1

2

8 6

3

2 2
1 2

V V-R
S
T

U
V
W

L

N
M
M

O

Q
P
P

/

=
V

3

Form factor = V/ 3 /V/2 = 
2

3
 = 1.155

3. (b) Find the branch currents, total current and the total power in the

circuit shown below:

Solution

Branch currents I1 =
100 0

5 5

+

-

j

j
 = 10 + j10

I2 =
100 0

4 3

+

-

j

j
 = 16 – j12
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I3 =
100 0

10

+ j
 = 10 + j0

Total current (I) = I1 + I2 + I3

= 36 – J2

= 36.055 3.179− °

Total power = VI ¥ cos Q

= 100 ¥ 36.055 ¥ cos 3.179°

= 3599.95 watts.

4. (a) Obtain the expression for the frequency at which maximum voltage

occurs across the capacitance in series resonance circuit in terms of

the Q-factor and resonance frequency.

Solution
Refer Section 8.3 (Chapter 8)

From Section 8.3 we know that

The frequency at which Vc is maximum is given by

fc =
1

2

1

2

2

2p LC

R

L
-

fc =
1

2

1
1

2

2

p LC

R C

L
-

L

N
M

O

Q
P

L

N
M
M

O

Q
P
P

=
1

2

1

2

2

2p

R

LC R

C

L
-

F
HG

I
KJ

L

N
M
M

O

Q
P
P

=
1

2

1

22p

R

LC R

C

L
-

L

N
M

O

Q
P

=
1

2

1

2
2

p

R

LC

C

L

L

CR
-

L
NM

O
QP

L

N
M
M

O

Q
P
P

=
1

2

1

22

1 2

p LC
R

C

L

L

CR
◊ -

L
NM

O
QP

/

fo =
1

2p LC
; Q = 

1

R

L

C
fi

1

Q
R

C

L
=

\ fc =
f

Q

L

CR

o
2

1 2
1

2
-

L
NM

O
QP

/

4. (b) In a series RLC circuit if the applied voltage is 10V, and resonance

frequency is 1 kHz, and Q factor is 10, what is the maximum voltage

across the inductance.
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Solution

Resonance freq (fr) =
1

2p LC
 = 1000 (1)

Quality factor (Q) =
1

R

L

C
 = 10 (2)

LC  =
1

2 1000p ¥
 = 6283.18

LC = 39.47 ¥ 106

From 1,
1

2p
 = LC  1000 (3)

From 2,
1

R
 =

C

L
 10 (4)

From 3 and 4

1

2p R
 = 10

4 LC
C

L

1

2p RC
 = 10000

RC = 1.59154 ¥ 10
–5

 1.6 ¥ 10
–5

◊

The maximum voltage across the inductance occurs at frequency

greater than the resonance frequency which is given by

fL =
1

2
2

2

p LC
RC

-
( )

fL =
1

2 39 47 10
1 6 10

2

6
5 2

p .
( . )

¥ -
¥

-
 = 1002.5

It can be observed that, the above frequency is approximately equal

to resonance frequency,

fr =
1

2p LC
 = 

1

2 39 47 106p . ¥

Hence we can take the voltage across the inductor

= Q ¥ V

= 10 ¥ 10

= 100 volts

(c) In a parallel resonance circuit shown in figure find the resonance

frequency, dynamic resistance and bandwidth.
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Solution
The circuit shown in the above figure is the most common form of

parallel resonant circuit in practical use and is also called the tank

circuit.

The admittance of the circuit is

Y =
1 1 1

z z ZC L

= +

Y =
1 1

-
+

+j X R j XC L

= jwC + 
1

R j L+ w

= jwC + 
R j L

R L

-

+

w

w
2 2 2

=
R

R L2 2 2
+ w

 + jw C
L

R L
-

+

F
HG

I
KJ2 2 2

w

At resonance the susceptance part is zero.

Hence at w = wr, C = 
L

R Lr
2 2 2

+ w
 = 0

R2 + wr
2 L2 =

L

C

wr
2

L
2
 =

L

C
– R

2
fi wr = 

1 2

2LC

R

L
- (1)

Resonance frequency, fr = 
1

2

1 2

2p LC

R

L
- (2)

\

fr =
1

2

1 2

2
p LC

R

L
-  = 

1

2

2

p L

L

C
R-

=
1

2 1 10

1 10

10 10
4

3

3

6p ¥ ¥

¥

¥
-

-

-

-

= 1559.4 Hz
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Dynamic impedance:

The input admittance at resonance is given by

Yr =
R

R Lr
2 2 2

+ w

The impedance at resonance is

Zr =
1

yr

 = 
R L

R

r
2 2 2

+ w
 = R + 

w r L

R

2 2

Substituting wr2L2 from Eq. 1 gives,

Zr = R + 

L

C
R

R

-
2

 = R + 
L

CR
– R

Zr = 
L

CR
 which is called dynamic impedance.

This is a pure resistance because it is independent of the frequency.

Here, dynamic resistance =
1 10

10 10 2

3

6

¥

¥ ¥

-

-

= 50 W

Bandwidth of the parallel resonance circuit = 
w r

Q

wr =
1 2

L

L

C
R-

= 9797.95

Qo =
woL

R
 = 

9797 95 1 10

2

3
. ¥ ¥

-

 = 4.898

Bandwidth =
1559 4

4 898

.

.
 = 318.311 + Z

5. (a) A symmetrical 440V, 3 phase system supplies a star connected load

with the following branch impedances: Zr = 10W Zy=j5W ZB=j5W.

Calculate voltage drop across each branch and the potential differ-

ence between neutral and star point. The phase sequence is RYB.

Draw phasor diagram.

Solution
Refer Problem 9.12 (Chapter 9)

Applying KVL for the two loops

VRY = 440–0 V

VYB = 440 ––120V
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10I1 – J5I2 = 440–0 (1)

j5I2 + (I1 + I2) (–J5) = 440 ––120°

– j5I1 + ( j5 – j5)I2 = –220 – J 381.05 (2)

I1 =
- -

-

220 381 05

5

j

j

.

I1 = (76.21 – j44)

Substituting the value of I1 in Eq.1

10 [76.21 – j44] – j5 I2 = 440

–j5 I2 = –322.1 + j440

I2 =
- +

-

322 1 440

5

. j

j

I2 = [–88 – j64.42]

Drop in the R-phase = 10 [76.21 – j44]

VRO¢ = 880 ––30°

Drop in the Y-phase = j5 [–88 – j64.42]

VYO¢ = 545.3 ––53.7°

Drop in the B-Phase = j5[I1 + I2]

= j5 (–11.79 – J108.42]

= 542.1 – J58.98

VBO¢ = 545.3 –-6.2
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Neutral shift can be found by Millman’s theorem

Taking VRY as reference,

VRY = 440–0

VRO =
440

30
––30° = 254 ––30°

VYO = 254––150°; VBO = 254–90°

YR =
1

ZR

 = 
1

10 0–
 = 0.1–0°,

YY =
1

ZY

 = 
1

5j
 = 0.2 ––90°

YB =
1

ZB

 = 
1

5- j
 = 0.2 –90°.

Neutral to star point voltage Vo¢o = 
V Y V Y V Y

Y Y Y

RO R YO y BO B

R Y B

+ +

+ +

Vo¢o = 254 
0 1 30 0 2 240 0 2 180

0 1 0 0 2 90 0 2 90

. . .

. . .

– - ∞ + – - ∞ + – ∞

– ∞ + – - ∞ + – ∞

= 625.8 –150°

Vo¢o = 625.8 –150°.

The phasor diagram follows

Phasor Diagram
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5. (b) A balanced star connected load is supplied from a symmetrical

3 phase, 440V, 50Hz supply. The current in each phase is 20A and

lags behind its phase voltage by an angle of 40°. Calculate (i) load

parameters (ii) total power and (iii) readings of two wattmeters con-

nected in the load circuit to measure total power.

(i) Let the phase sequence be RYB.

The line voltage, VRY = 440–0° V

Phase voltage, VR =
440 0

3

–
 = 254–0°

ZR =  
254 0

20 40

–

– -
= 12.7–4°

= (9.72 + j8.16) W

Load parameters are R = 9.72 W

xL = 8.16; f = 50 H; L = 
8 16

2 50

.

¥ ¥p
 = 25.9 mH

(ii) Total active power = 3 VL IL cosf

= 3 ¥ 440 ¥ 20 ¥ cos 40°

= 11676.08 watts

(iii) Reading of first watt meter W1 = VL IL cos (30 + f)

= 440 ¥ 20 cos (30 + 40) = 3009.777 W

Reading of second watt meter, Wz = VL ILcos (30 – f)

= 440 ¥ 20 cos (30 – 40) = 8666.308 W

Total power, w1 + w2 = 11676.08 watts

(a) Define the following

(i) Oriented graph

(ii) Tree of a graph

(iii) Cut set and basic cut set

(iv) Tie set and Basic Tie set

Solution
Refer Sections 2.1, 2.2, 2.7 and 2.8 (Chapter 2)

6. (b) For the topological graph shown in figure, obtain the fundamental

Tie set matrix choosing the tree containing two elements 5 and 6.

A B

C

1

2

3

4

5

6
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Solution
Refer Section 2.7 (Chapter 2)

The tree of the graph is shown with solid lines (5 and 6) and the

links are shown with dashed lines (1, 2, 3, 4).

For a given tree of a graph, addition of each link between any two

nodes forms a loop called the fundamental loop. In a loop there

exists a closed path and a circulating current, which is called the

link current.

The fundamental loop formed by one link at a time, has a unique

path in the tree rolling the two nodes of the link. This loop is also

called f-loop or a tie-set. Every link defines a fundamental loop of

the network.

No. of nodes in the graph n = 3 = (A, B, C)

No. of branches, b = 6 = (1, 2, 3, 4, 5, 6)

No. of tree branches or twigs = n – 1 = 2 = (5, 6)

No. of link branches, l = b – (n – 1) = 4 (1, 2, 3, 4)

The following are the figures of the Tie-sets.

Tie set Matrix can be formed by considering the four fundamental

loops. Corresponding to the link branches 1, 2, 3, 4.

If V1, V2, V3, V4, V5 and V6 are the respective branch voltages.

The KVL equations for the three f-loops can be written as
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V1 + V5 + V6 = 0

V2 – V5 = 0

V3 – V6 = 0

V4 + V5 + V6 = 0

In order to apply KVL to each loop, we take the reference direction

of the loop which coincides with the reference direction of the link

defining the loop.

The above equations can be written in matrix form as

[B][Vb] = 0, where B is a 4 ¥ 6 Tie-set matrix.

Therefore, Tie-set Matrix, B = 

1 0 0 0 1 1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1

-

-

L

N

M
M
M
M

O

Q

P
P
P
P

7. (a) State and explain the superposition theorem.

Solution
Refer Section 3.2 (Chapter 3)

7. (b) Is superposition valid for power? Explain.

Solution
Superposition theorem is valid only for linear systems.

Superposition cannot be applied for power because the equation for

power is non linear.

Let us consider a network with a voltage source and current source

as shown below and find the power consumed in 9W resistor by

super position.
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When 14V source is acting the current in 9W is 1A

The power = i2 ¥ 9 = 9 watts

When 14A source is acting the current in 9W is 5A

The power  = i2 ¥ 9 = 225 watts

Total power = 225 + 9 = 234 Watts

When both are acting the KVL for loop 1 and 2

are 14 = 5i1 + 9(i1 + i2)

14i1 = –112

i1 = –8A; i2 = 14A

Current in 9W resistor is i1 + i2 = 6A

Power = (6)2
¥ 9 = 324 watts

Since power is not the same in both the cases, the superposition

theorem does not hold true.

Consider the circuit shown below.

+ +

Va
Ra Rb

RL

Vb

I

When Va is acting.

I1 be the current through RL; and Power = (I)2RL

When Vb is acting I ¢¢ be the current

Ra Rb

RL

Vb

I ¢¢

through BL and Power = (I ¢¢)2RL

Total current through RL by superposition

I = I ¢ + I ¢¢, and power = I2 RL
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(I ¢)2 RL + (I ¢¢)2 RL π I2 RL

because I2 = (I ¢ + I ¢¢)2 = (I¢)2 + (I ¢¢)2 + 2I ¢ I ¢¢

Hence, (I¢ )2 + (I ¢¢)2
π I2 and therefore  superposition theorem is not

valid for power.

7. (c) Using superposition theorem, find VAB.

Solution
When 4V source is acting

When 2 V source is acting.

When 2A source is acting

Voltage across AB = VAB1 + VAB2 + VAB2

= –2 + 1 –4

= –5 volts
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8. (a) Explain why the voltage across capacitor cannot change instanta-

neously?

Solution
Refer Section 1.7 (Chapter 1)

8. (b) What is the significance of time constant for R-L circuit? What are

the difficult ways of defining time constant?

Solution
Refer Section 12.2 (Chapter 12)

8. (c) Switch S is closed at t = 0. Find initial conditions for voltage across

capacitor.

i, i2,
di

d t
1   and 

di

d t
2

Solution

At t = 0 ; i = i1 + i2

Since i2 = 0, i = i1 (0+) = 
V

R R1 2+
 = 

100

15
 = 6.67A

i1(0+) = iL(0–) = iL(0+) = 6.667A

VC(0+) = VC(0+) = 
100

10 5+
¥ 5 = 33.33V

At t = 0
+
;

20i2 + Vc(0
+) = 100
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i2 (0+) =
100 33 33

20

- .

i2(0+) = 3.33A

Applying KVL for the loops at t = 0+

5i1 + 3
di

d t

1  = 100

3
di

d t
1  = 100 – 5i1

di

d t
t

1

0=
+

 =
100 5 0

3

1-
+

i ( )
 = 

100 5 6 667

3

- ¥ .

di

dt

1 (0
+
) = 22.21 A/sec.

20i2 + 
1

C z i2 dt = 100

20
di

d t

i

C

2 2
+  = 0

di

d t
t

2

0= +

 =
−

× ×

+

−

i2
6

0

20 10 10

( )
 = 

−

×
−

3 33

2 10 4

.

di

d t
2  (0

+
) = –16.65 ¥ 10

3
 A/sec.
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PAPER 6

1. (a) Explain  KCL and KVL.
Solution

Refer Sections 1.12 and 1.9 (Chapter 1)
1. (b) A capacitor is charged to 1 volt at t = 0. A resistor of 1 ohm is

connected across its terminals. The current is known to be of the
form i(t) = e–t amperes for t > 0. At a particular time the current
drops to 0.37A at that instant determine.

(i) At what rate is the voltage across the capacitor changing?
(ii) What is the value of the charge on the capacitor?

(iii) What is the voltage across the capacitor?
(iv) How much energy is stored in the electric field of the capacitor?
(v) What is the voltage across the resistor?

Solution

Refer Problem 12.3 (Chapter 12).

The current equation is

given as i(t) = i(0+) e–t|RC; given i(t) = e–t|RC

i(0+) = 1A; RC=1; C=1F

When i(t)=0.37 amperes

i(t) = 0.37 = e–t/1

–t logee = loge 0.37

t = 0.9942 sec

i(t) = C
dV t

d t

( )
fi

dV t

d t

( )
 = 

i t

C

( )
 = 

0 37

1

.
 = 0.37 V/sec

or Vi(t) =
1

0
C

t

z i (t) dt + V0

= − z
1

0
C

t

e–t dt + V0 [\ i(t) = – i(t)]

=
−

−

−1

1 1

e t

( )
 + 1 = e–t
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Vc(t) = e
–t for t > 0

\
dV t

d t

C ( )
 = –e–t = –e–0.9942 = –0.37 V/sec

(ii) Charge on the capacitor

Q = C Vc = 1.e–t = 0.37 coulombs

(iii) Voltage across the capacitor

VC (t) = e
–t = 0.37 volts

(iv) Energy stored in the capacitor

WC =
1

2
C Vc

2 = 
1

2
1(e–t)2 = 

e
t−2

2
 = 0.06845 joules

(v) Voltage across the resistor at t = 0.9942 sec

VR = i(t).R = e–t = 0.37 V

2. (a) Define Magneto Motive Force (MMF); reluctance, and flux density
in a magnetic circuit. Specify the units of each of the above quanti-
ties.

Solution

Refer Section 10.11 (Chapter 10).
2. (b) Explain “dot convention” for a set of magnetically coupled coils. A

cast steel electromagnet has an air gap of length 2 mm and an iron
path of length 30 cms. Find the MMF needed to produce a flux den-
sity of 0.8T in the air gap. The relative permeability of the steel core
at this flux density is 1000. Neglect leakage and fringing.

Solution

For “dot convention” refer Section 10.4 (Chapter 10).
Refer Example 10.2 (Chapter 10).

Air-gap length lg = 2 mm = 2 ¥ 10–3 m

Iron path length li = 30 cm = 30 ¥ 10–2 m

Flux density B = 0.8T = 0.8 Wb/m2

mr = 1000

Total A.T = mmf = Hili + Hglg

B l B
li

g

g

×
+

µ µ µ0 0

=
0 8 30 10

4 10 1000

0 8 2 10

4 10

2

7

3

7

. .× ×

× ×
+

× ×

×

−

−

−

−π π

= 1464 A.T.

Hence, total MMF required to produce a flux density of 0.8T =
1464 AT.
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3. (a) Find R.M.S. and average value of the following waveform.

Solution

Refer problem 4.13 (Chapter 4)

R.M.S. value, Vr.ms. =
1

2
2 2

0
π

θ θ

π

V dm sinz

=
V

dm
2

0
2

1 2

2π

θ
θ

π
( cos )−

z

=
Vm

2

04

2

2π
θ

θ
π

−
L

NM
O

QP
sin

=
Vm

2

Average value, Vave =
1

2
0

2

π
θ θ

π

V dm sinz  = 
Vm

2 0

2

π
θ

π
− cos

=
Vm

π

3. (b) Find the total current and the power consumed by the circuit.
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Solution

Total impedance of the circuit,

ZT = (5 + j5) || (t – j8) + 10

ZT = 16.15 + j0.769

I =
V

Z
 = 

200 0

16 5 0 769

∠

+ + j .
 = 12.35 – j0.588A

= 12.36 ––2.72°

Power consumed = I2R

= (12.36)2 ¥ 16.15 = 2467W

or VI cosq  = 200 ¥ 12.36 ¥ cos (–2.72)

= 2467 W.

4. (a) For a series RL circuit obtain the locus of current as inductance is
changed from 0 to • when the applied voltage is constant.

Solution

Refer Section 13.1(b) (Chapter 13)
4. (b) Show that for a series resonant circuit f1f2 = fr

2 where f1 and f2 are
half power frequencies and fr is the resonance frequency.

Solution

Refer Section 8.4 (Chapter 8)
4. (c) Obtain the z-parameters of the following two-parts network.

Two-port network

Solution

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

z11 =
V

I
I

1

1 02

6 2

6 2
2 35

=

=
×

+
+ = . Ω

z22 =
V

I
I

2

2 01

6 2

6 2
2 3 5

=

=
×

+
+ = . Ω

z12 =
V

I

I

I
I

1

1 0

2

2
1

2

6 2
2

0 5
=

=

×

+
×

= . Ω
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z21 =
V

I

I

I
I

2

1 0

1

2
2

2

6 2
2

0 5
=

=

×

+
×

= . Ω

The parameters of the network are

z =
Z Z

Z Z

11 12

21 22

L

N
M

O

Q
P  = 

3 5 0 5

0 5 3 5

. .

. .

L

N
M

O

Q
P

5. (a) Derive the relationship between phase quantities and line quantities
in a 3 phase balanced (i) star connected system and (ii) Delta con-
nected system. Draw phasor diagrams showing voltages and cur-
rents.

Solution

Refer Sections 9.7 and 9.8 (Chapter 9).
5. (b) A 3 phase supply with line voltage of 250V, has an unbalanced delta

connected load as shown in figure. Determine the line currents, total
active and reactive powers if the phase sequence is ABC.

Solution

Refer Problem 9.9 (Chapter 9).

IAB =
V

Z

AB

AB

=
∠ °

∠ °
= ∠ − °

250 0

25 90
10 90

IBC =
V

Z

BC

BC

=
∠ − °

∠ °
= ∠ − °

250 120

16 20
15 625 140.

ICA =
V

Z

CA

CA

=
– ∞

– ∞
= – ∞

250 120

20 0
12 5 120.

The line currents are

IA = IAB – ICA = 10––90° – 12.5–120°

IB = IBC – IAB = 15.625 ––140° – 10––90°
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IC = ICA – IBC = 12.5–120° – 15.625 ––140°

ZAB = 0 + j25; ZBC = 15.03 + j5.47; ZCA = 20 + j0

Active Powers PAB = I2
AB RAB = 102 ¥ 0 = 0

PBC = I
2
BC RBC = (15.625)2

¥ 15.03 = 3669.4W

PCA = I2
CA ¥ RCA = (12.5)2 ¥ 20 = 3125W

Total active power = PAB + PBC + PCA = 6795W

Reactive powers

QAB = I
2
AB ¥ cAB = (102) ¥ 25 = 2500 VAR

QBC = I2
BC ¥ cBC = (15.625)2 ¥ 5.47 = 1335 VAR

QCA = I2
CA cCA = (12.5)2 ¥ 0 = 0

Total reactive power = QAB + QBC + QCA = 3835 VAR

Complex power, S = P + jQ

= 6795 + j3835

6. (a) What is duality? Explain the procedure for obtaining the dual of the
given planar network shown below.

Solution

Refer Section 3.8 (Chapter 3)
Rule 1 If a voltage source in the original network produces a c.w

current in the mesh, the corresponding dual element is a
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current source whose direction is towards node represent-
ing the corresponding mesh.

Rule 2 If a current source in the original network produces a cur-
rent in clockwise direction in the mesh, the voltage source
in the dual network will have a polarity such that the node
representing the corresponding mesh is positive.

Dual of the planar circuit given in 6(a).
6. (b) Construct the incident matrix for the graph show in figure.

Solution

Refer Section 2.4 (Chapter 2)
The dimensions of incidence matrix ‘A’ is n ¥ b where n is number
of nodes and b is number of branches, hence the dimensions of the
incidence matrix for the above graph is 3 ¥ 4.
Incidence matrix

n — nodes
b — branches

A = 

n
p 1 2 3 4

1 1 0 1 1

2 1 1 0 0

3 0 1 1 1

− −

−

−
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The incidence matrix is given by

A =

1 0 1 1

1 1 0 0

0 1 1 1

− −

−

−

L

N

M
M
M

O

Q

P
P
P

6. (c) Use nodal analysis, to determine the voltage V1 and V2 in the circuit
shown.

Solution

Refer Section 2.12 (Chapter 2).
The nodal equation for the two nodes are

V V V V1 1 1 25

2 3 2

−
+ +

−
 = 0 ...1

V V V2 1 2

2 1

−
+  = 3 ...2

From 1 1.333 V1 – 0.5 V2 = 2.5
From 2 – 0.5 V1 + 1.5 V2 = 3

Solving the above equations for V1 and V2 yields

V1 = 3 V and V2 = 3 V.

7. (a) State and explain the Thevenin’s theorem? State for what type prob-
lems this theorem is useful.

Solution

Refer Section 3.3 (Chapter 3).
7. (b) Find the current through 10 W resistor using Thevenin’s theorem.
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Solution

Refer Problem 3.6 (Chapter 3).
Let us redraw the circuit by removing 10W.

Applying KCL at V1

V V V1 1 1100

2 10 20

−
+ +  = 0

from which V1 = 76.92 V

Vth = Va – Vb

=
V V1 1

6 4
4

15 5
5

+
× −

+
×  = 11.538 V
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R1 =
6 15 15 2 2 6

2

× + × + ×
 = 66

R2 =
132

15
 = 8.8

R3 =
132

6
 = 22

Rab = Rth = 
66 6 82

72 82

× .

.
 = 6.184 W

Thevenin’s equivalent circuit is given by

where I = 
11538

16 184

.

.
 = 0.7129A

8. (a) For R-L-C series circuit with d.c. excitation discuss the under-
damped, over-damped and critically damped cases.

Solution

Refer Section 12.4 (Chapter 12).
8. (b) Obtain the current i(t) for t ≥ 0 using tune domain approach.
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Solution

Refer Example 12.3 (Chapter 12).
Writing KVL for the above circuit.

100 = 10i + 0.5 
di

d t
i d t+

× − z
1

1 10 6

Differentiating w.r.t. t

0 = 10 0 5 10
2

2
6di

d t

d i

d t
i+ +.

d i

d t

di

d t

2

2
20+  + 2 ¥ 106i = 0

(D2 + 20D + 2 ¥ 10–6)i = 0 where D = 
di

d t

D1, D2 =
− ± − × ×20 400 4 2 10

2

6

D1 = –10 + j1414; D2 = –10 – j1414

The roots are in the form of – K1 ± jK2

Therefore the solution for the current is given by

i(t) = e–k1t [C1 cos k2t + C2 sin k2 t]

i(t) = e
–10t [C1 cos 1414 t + C2 sin 1414 t]

Substitute the initial conditions to find C1 and C2

At t = 0; the current following through the circuit is zero.

i = 0 = 1 [C1 cos 0 + C2 sin 0]

C1 = 0

i(t) = e–10t C2 sin 1414t.

d i t

d t

( )
 = C2 [e–10t 1414 cos 1414 t + e–10t (–10) sin 1414t]

At t = 0, the voltage across the inductor

L
di t

d t

( )
 = 100

di t

d t

( )
 = 200

200 = C2 e–(10 ¥ 0) 1414

C2 = 0.1414

The equation for current is given by

i(t) = e–10t (0.1414 sin 1414 t)
i(t) = 0.1414 e–10t sin 1414t
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PAPER 7

1. (a) Explain how source transformation is achieved.

Solution

Refer Section 2.15 (Chapter 2).

(b) A current of 0.5A is supplied by a source to an inductor of 1H.

Calculate the energy stored in the inductor. What happens to this

energy if the source is short circuited?

Solution

Energy stored 
1

2
 L I2 = 

1

2
 1 ¥ 12 = 0.5 Joules

If the inductor has an internal resistance, the stored energy is dissi-

pated in the resistance after the short circuit as per the time constant

(1/r) of the coil.

If the coil is a perfect inductor, the current would circulate through

the shorted coil continuously.

(c) A current source i = Im sin wt is applied across (i) a 1F capacitor

(ii) 1H inductor. Assume initial conditions to be zero, show the volt-

age waveforms in the above two cases.

Solution

Refer Sections 4.6 and 4.7 (Chapter 4).

Vc(t) =
1

C z i dt = 
1

C z Im sin wt dt

=
1

ω
ω

C
I tm [ cos ]−

[\ initial conditions assumed to be zero]

=
I

C

m

ω
 sin (wt – 90)

v(t) = Vn sin (wt – 90°)

v(t) = IM [Vm e
j(w t – 90°)

] or Vm ––90°.

where Vm = Im/wC.
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The waveform is given by:

VL(t) = L
di t

d t

( )

= L◊
d

d t
 (Im sin wt)

= LW IM cos wt = WL Im cos wt

VL(t) = Vm cos wt or Vm sin (wt + 90°)

= IM [Vmet(w + 90°)] or Vm –90°

where Vm = WLIm

The waveform is shown in the figure above.

2. (a) Define MMF, flux density, magnetising force and permeability

specify the merits for each of the above quantities.

Solution

Refer Section 10.11 (Chapter 10).

2. (b) Two coupled coils have self induction cos L1 = 50 mH and L2 = 200

mH and a coefficient of coupling of 0.7. If coil 2 has 1000 turns and

i1 = 5.0 sin 400t. Determine the voltage across coil 2.

Solution

Refer Problem 10.3 (Chapter 10).

L1= 50 mH, L2 = 200 mH; K = 0.7

M = K L L1 2  = 0.7 50 200×  mH

= 70 mH

V2 = M
di

d t

1  (Voltage induced in coil 2)

= 70 ¥ 10–3 d

dt
 (5 sin 400 t)

= 70 ¥ 10–3 ¥ 2000 cos 400 t

Total voltage induced in coil 2 is = 140 cos 400 t volts.

2. (c) Write the voltage equation for the following circuit shown.
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Solution

Applying KVL around the loop is given by

V(t) = L
di t

d t
M

di t

d t
M

di t

d t
R i tA C1 1

( ) ( ) ( )
( )+ − +

+ L
di t

d t
M

di t

d t
M

di t

d t C
i t d tA B2

1( ) ( ) ( )
( )+ − + z

+ L
di t

dt
M

di t

dt
M

di t

dt
R i tC B3 2

( ) ( ) ( )
( )- - +

v(t) = (L1 + L2 + L3)
di t

d t

( )
 + (R1 + R2) i(t) + 

1

C
i t d t( )z

+ (2MA – 2MB – 2MC)
di t

d t

( )

3. (a) Define rms value, average value, form factor and peak factor.

Solution

Refer Section 4.4 (Chapter 4).

3. (b) Find the value of R1 and X1 when a lagging current in the circuit

gives a power of 2kW.
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Solution

Let us take the voltage across (10 + j13.3W) impedance as reference

and calculate the total current I.

I = 
200 0

10 13 3

∠

+ j .
 = 7.223 – j9.606 = 12.02 ––53.06°A

Let us assume the phase angle between supply voltage and total

current as f which is equal to (q + 53.06°).

Hence, real power in the circuit 2000 = 200 ¥ 12.02 cos (q + 53.06)

Therefore, q = –19.5° and source voltage V = 200 ––19.5°

Voltage across R1 + jX1 = 200 ––195° – 200 –0°

= –11.47 – j66.76

I2 =
− −

−

1147 66 76

20

. .j

j
 = 3.338 – j 0.5 735

I1 = I – I2

= 7.223 – J9.606 – 3.338 + J0.5735

= 9.8325 –– 66.72°

Z1 =
V

I1

 = 
− −

∠ −

11 47 66 76

9 8325 66 72

. .

. .

j

= 5.776 – j3.7543

Thus, R1 = 5.776W and x1 = 3.7543W.

4. (a) For the parallel resonant circuit shown in the figure find the value of

capacitance at which maximum impedance occurs at a given fre-

quency.

Solution

Refer Section 8.8 (Chapter 8)

The parallel resonant circuit shown is generally called a tank circuit.

The impedance of the parallel resonant circuit is maximum at the

resonance frequency.
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4. (b) Determine the admittance parameters of the symmetrical lattice

shown in the figure.

Solution

Refer Section 15.12 (Chapter 15)

The lattice network can be redrawn as a bridge network as shown.

Assume I3 in AD as indicated.

Writing mesh equation ADC 1 ¢1

–4 I3 + 2 (I2 – I3) + V1 = 0

V1 = –2 I2 + 6 I3 (1)

Writing mesh equation BC D2 2¢

–4(I1 – I3 + I2) –2 (I2 – I3) + V2 = 0

V2 = 4I1 + 6I2 – 6I3 (2)

Writing mesh equation ABCDA

–2(I1 – I3) – 4(I1 – I3 + I2) – 2 (I2 – I3) + 4I3 = 0

I3 =
1

2
 (I1 + I2) (3)
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Substituting equation 3 in 1

V1 = –2 I2 + 3 (I1 + I2)

V1 = 3 I1 + I2 (4)

Substituting equation 3 in 2

V2 = 4 I1 + 6 I2 – 3 (I1 + I2)

V2 = I1 + 3 I2 (5)

From equation 4 I2 = V1 – 3I1

Substituting in equation 5

V2 = I1 + 3 (V1 – 3I1)

V2 = –8I1 + 3V1

or I1 =
3

8
V1 –

V2

8
(6)

From equations 4 and 5

V1 – 3V2 = – 8I2

or, I2 = − +
V

V1
2

8

3

8
(7)

Equation 6 and 7 are of the form

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

Therefore, Y11 = Y22 = 
3

8
; y12 = y21 = −

1

8

Also equation 4 and 5 are of the form

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

Therefore Z11 = Z22 = 3; Z12 =Z21 = 1.

5. (a) A balanced delta connected load of 5.0 –30° W and a balanced star

connected load of 5.0 –45° W are supplied by the same balanced

240V, 3 phase ABC system. Obtain line currents IA, IB and IC.

Solution
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The two loads are connected parallel across a 240V 3 phase system.

Let us convert the star connected load into delta and redraw the

circuit is as shown below.

The phase currents are given by

IAB =
V

Z

AB

AB

 = 
240 0

3 77 33 73

∠

∠. .
 = 63.5584 ––33.73

IBC = 63.5584 ––153.73

ICA = 6.35584 ––273.73

The line currents are 3  times the phase currents and lag 30° be-

hind their respective phase currents.

Therefore, IA = 3 ¥ 63.5584 ––33.73–30°

= 110 ––63.73°

Similarly, IB = 110 –183.73° and IC = 110 ––303.73°

5. (b) Derive phase and line relations in a balanced delta connected load.

Solution Refer Sections 9.8.1, 9.8.2 and 9.8.3.

6. (a) For the given network graph shown below, write down the basic Tie

set matrix, taking the tree consisting of edges 2, 4 and 5. Write down

the KVL network equations from the matrix.
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Solution

Refer Section 2.7 and Example 2.4 (Chapter 2)

The twigs of the tree are 2, 4 and 5. The links corresponding to the

tree are 1, 3 and 6 as shown in the figure.

Number of nodes, n = 4

Number of branches, b = 6

Number of tree branches or twigs = n – 1 = 3

Number of link branches l = b – (n – 1) = 3

For writing the tie-set matrix consider the three links one at a time,

the tie-set matrix B or fundamental loop matrix is given by.

B = 

There are three fundamental loops l1, l2 and l3 as shown by the tie sets.
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From the tie-set matrix we can write KVL network equations as

[B][Vb] = 0

where B is an l ¥ b tie-set matrix or fundamental loop matrix and Vb

is a column vector of branch voltages of 1, 2, 3, 4, 5 and 6 respec-

tively.

1 0 0 1 1 0

0 1 1 0 1 0

0 1 0 1 1 1

1

2

3

4

5

6

−L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

V

V

V

V

V

V

 = 0

The KVL network Equation for the Three Tie-sets are

V1 – V4 + V5 = 0 (1)

V2 + V3 + V5 = 0 (2)

V2 + V4 + V5 + V6 = 0 (3)

6. (b) Find the voltage across the 5W resistor for the coupled network

shown in figure.

Solution

Refer Problem 10.10 (Chapter 10)

Applying KVL for loop 1

50–45° = 5i1 + j4i1 + j3 (i1 – i2) + j5(i1 – i2) + j3i1 (1)

Simplifying and rearranging the above equation yields to

50–45° = (5 + j15) i1 – j8i2 (2)

Applying KVL for loop 2

0 = –j8i2 + j5 (i2 – i1) – j3i1 (3)

Simplifying the above equation yields to

j8i1 = –j3i2 or i2 = −
8

3
i1 (4)
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Substituting equation 4 in 2

50–45° = (5 +j15) i1 + j8
8

3

F
HG

I
KJ

i1

From which i1 = 
150 45

15 109

∠ °

+ j
 = 1.363 ––37.165°A

Therefore voltage across 5W resistor is 5i,

= 5 ¥ 1.363 = 6.815 volts

7. (a) State and explain Millman’s theorem.

Solution

Refer Section 3.10 (Chapter 3)

(b) Using Millman’s theorem find the neutral shift voltage VON.

Solution

Refer Example 9.21 (Chapter 9)

Converting load impedances into admittances

YR =
1

10
W; Yy = 

j

10
; YB = 

1

3 4+ j

According to Millmans theorem the neutral shift voltage VON due

to unbalanced load is given by

VON =
V Y V Y V Y

Y Y Y

RN N YN Y BN B

R B Y

+ +

+ +

VON =

100 0
1

10
100 120

10
100 120

1

3 4

1

10 10

1

3 4

∠ °
F
HG

I
KJ
+ ∠ °

F
HG

I
KJ
+ ∠ − °

+

F
HG

I
KJ

+ +
+

j

j

j

j

VON =
10 10 210 19 856 2 392

0 22 0 06

+ ∠ ° − −

−

. .

. .

j

j
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=
− −

−

18 5166 7 3923

0 22 0 06

. .

. .

j

j
 = –69.81 – j52.64

VON = 87.43 ––142.98 V

8. (a) Explain initial value theorem of Laplace transform.

For I(s) =
s

s s

+

+ +

4

2 3( ) ( )
, find I(0)

Solution

Refer Section 13.4(g) (Chapter 13)

From initial value theorem

I(0) = lt
s

s I s
Æ•

( )

I(0) = lt
s

s s

s sÆ•

+

+ +

( )

( ) ( )

4

2 3

= lt
s

s s

s
s s

Æ•

+

+
F
H

I
K +
F
H

I
K

2

2

1 4

1
2

1
3

( / )

I(•) =
( / )

/ ) ( / )

1 4

2 1 3

+ •

+ • + •(1
 = 1

8. (b) Draw the network in Laplace domain and find I(s).

Solution

Refer Problems 13.18 and 13.21 (Chapter 13).

Before the switch is opened, the voltage across the capacitor is =

voltage drop across 3W = 10 ¥
3

3 2+
 = 6V

Therefore, vC(0+) = 6V

Initial current in the inductor before the opening of switch is iL(0+)

=
10

5
 = 2A
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The transformed circuit in <s-domain

Applying KVL for the loop.

10

s
 = 2I(s) + sI(s) – iL(0+) + 

I s

s s

C( ) ( )
+

+
v 0

10

s
 = I(s) s

s
+ +

L
NM

O
QP

1
2 – 2 + 

6

s

I(s) =
2 2

1 2

( )

( )

s

s

+

+
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PAPER 8

1. (a) Differentiate between independent and dependent sources. What is

their circuit representation.

Solution

Refer Section 1.8 (Chapter 1)

1. (b) What is the value of R such that the powers supplied by both the

sources are equal?

Solution

Converting current source into voltage source

Applying KVL for both the meshes

4R = (R + 3) i1 + i2 (1)

50 = i1 + i2 (2)

The power supplied by both the sources are equal

\ 4Ri1 = 50i2

R = 12.5 
i

i
2

1

(3)

From eq 1

4R – i1R – 3i1 – i2 = 0

R(4 – i1) – 3i1 – i2 = 0 (4)

Substituting equation 3 in 4

12.5
i

i
2

1

 (4 – i1) –3 i1 – i2 = 0 (5)

50
i

i
2

1

– 13.5 i2 – 3 i1 = 0 (6)
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From equation 2, i2 = 50 – i1 (7)

Substituting equation 7 in 6

50
50 1

1

−F
HG

I
KJ

i

i
– 13.5(50 – i1) –3i1 = 0 (8)

10.5i1 – 725 i1 + 2500 = 0 (9)

from which i1 = 
725 648 556

21

± .
 = 65.407 or 3.6402 A

If i1 = 65.407A;

from equation 2 i2 = –15.407A

and R = 12.5 
( . )

.

−15 407

65 407
 = –2.945 W

If i1 = 3.6402 A,

i2 = 46.3598A

and R = 12.5 ¥
46 3598

3 6402

.

.
 = 159.194 W

Considering positive value of R = 159.194 W

Power supplied by current source

= 4 ¥ 159.194 ¥ 3.6402 = 2317.99 W

Power supplied by voltage source

= 50 ¥ 46.3598 = 2317.99 W
\ The value of R = 159.194 W

2. (a) State and explain Faraday’s law of electromagnetic induction. Dis-

tinguish between self and mutual induced voltages.

Solution

Refer Section 1.6 (Chapter 1).

2. (b) Explain “Dot convention” and determine  the dotted ends of the set

of coils shown in figure.

Solution

Refer Section 10.4 (Chapter 10).

2. (c) A circular iron ring having a cross section area of 5 cm
2
 and a length

of 4p cm in iron has an air gap of 0.1p cm made as a saw cut. The

relative permeability of iron is 800. The ring is wound with a coil of

2000 turns and carries a current of 100 mA. Determine the air gap

flux. Neglect leakage and fringing.
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Solution

Refer Example 10.12 (Chapter 10)

Cross section area of Iron ring, Ii = 5 ¥ 10–4m2

Length of iron ring, li = 4p ¥ 10–2m

Length of air gap, lg = 0.1p ¥ 10
–2

m

mr = 800

No. of turns, N = 2000

i = 100 mA

Total ampere turns (MMF) = N ¥ i

= 2000 ¥ 100 ¥ 10–3

= 200 AT

Total reluctance R =
l

a

l

a

i

i j

g

gm m m0 0

+
.

=
4 10

5 10 4 10 800

2

4 7

p

p

¥

¥ ¥ ¥ ¥

-

- -

+
0 1 10

5 10 4 10

2

4 7

. π

π

×

× × ×

−

− −

= 5.25 ¥ 106 AT/wb

Air gap flux =
Total MMF

Reluctance
 = 

200

5 25 106. ×

fg = 3dmwb

3. (a) Define power factor, apparent power, active power and reactive

power.

Solution

Refer Sections 6.2 and 6.3 (Chapter 6).

3. (b) Find complex power in the following circuit.

Solution

Taking the source voltage as reference

V = 200 –0V
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I =
200 0

10
6 8 3 4

9 4

∠

+
+ −

+

( ) ( )

( )

i j

j

 = 13.396 + j1.886

= 13.52 –8°

Complex power = V I*

= (200–0)(13.52 ––8°)

S = VI* = 2704 ––8° VA

Complex Power (P + jQ) = 2704 ––80 = (2677.68 – j376.32)

P = 2677.68 W; Q = 376.32 VAR leading.

4. (a) Obtain the y-parameters of the following bridged T-networks.

Solution

Refer Problem 15.12 (Chapter 15).

I1 = y11 V1 + y12 V2

I2 = y21 V1 + y22 V2

Convert delta to star and redraw the circuit.

y11 =
I

V
V

1

1 02 =

 = 
I

I

1

1

3 0 5

3 5
1

¥
+

F
HG

I
KJ

.

.

 = 0.7

y12 =
I

V
V

1

2 01 =

 = 
- ¥

¥
+F

H
I
K

I
I

2

2

3

4
1 0 3

4
0 5

.
.

 = –0.6
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y21 =
I

V
V

2

1 02 =

 = 

− ×

×
+

F
HG

I
KJ

I

I

1

1

3

35

3 0 5

35
1

.

.

.

 = –0.6

y22 =
I

V
V

2

2 01 =

 = 
I

I

2

2

3 1

3 1
0 5

×

+
+

F
HG

I
KJ

.

 = 0.8

y =
y y

y y

11 12

22 21

L

N
M

O

Q
P  = 

0 7 0 6

0 6 0 8

. .

. .

−

−

L

N
M

O

Q
P

4. (b) Obtain the expression for Y-parameter in terms of transmission pa-

rameters.

Solution

Refer Section 15.8.2 (Chapter 15)

4. (c) For a series resonance circuit obtain the expression for bandwidth in

terms of resonance frequency and Q-factor.

Solution

Refer Section 8.4 (Chapter 8)

5. (a) Each phase of a balanced star connected load consists of R = 10 W
and C = 10mF. Calculate  the line currents and total real and reactive

powers when a symmetrical 400V, 50Hz, 3 phase supply is applied

to it. If two wattmeters are employed to measure total power, find

W1 and W2.

Solution

R = 10W; C = 10 mF; f = 50Hz VL = 400V

Z = (R ± jX)

cc =
1

2π f C.
 = 

10

2 50 10

6

π × ×
 = 318.3W

\ Z = 10 – j318.3W = 318.466 ––88.Z°

Power factor = cos(–88.2) = 0.0314 leading.

The line currents which are also equal to phase currents are

IR =

400 0

3

318 466 88 20

–

-. .

= 0.725 –88.2°

Similarly we can write

IY =

400 120

3

318 466 88 2

– - ∞

◊ – - ◊ ∞

= 0.725 ––31.8°
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IB =

400 240

3

318 466 88 2

– - ∞

◊ – - ◊ ∞

= 0.725 ––151.8°

Readings of the two wattmeters

W1 = VL IL cos (30 + f)

= 400 ¥ 0.721 cos (30 + 88.2°)

= –136.28 W

W2 = VL IL cos (30 – f)

= 400 ¥ 0.721 cos (30 – 88.2°)

= 151.97 W

Total active power = W1 + W2

PT = 15.69mw

Total reactive power = 3  (W1– W2)

Q = 3  (–136.28 – 151.97)

= –500 VAR

or Q = 3 VL IL sin f

= 3 ¥ 400 ¥ 0.725 sin (88.2°).

5. (b) A 400V, 50 Hz, 3 phase supply of phase sequence ABC is applied to

a delta connected load consisting of 100 W between lines A & B,

318 mH inductance between lines B&C and 31.8mF capacitance

between lines C&A. Determine phase and line currents.

From the given data

R = 100W, XL = j100W; Xc = –100W

Zab = 100–0; Zbc = j100W; Zca = – j100W

Phase currents

IAB = 400 –0/100–0 = 4–0
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IBC = 400 –120°/100 –90° = 4––210°

ICA = 400 ––240°/100–– 90° = 4––210

Line currents

IA = IAB – ICA = 7.72 –15°A

IB = IBC – IAB = 7.727 –165°A

IC = ICA – IBC = 4 ––90°A

6. (a) In the network shown below find current I using nodal analysis.

Solution

Refer Example 7.3 (Chapter 7).

Writing node equations at node 1 and 2

V V

j

V V1

1

1 250

5 4

−
+ +

−
 = 0 (1)

V V V

j

V2 1 2

1

2

4

50 90

2

−
+ +

− ∠ °
 = 0 (2)

Simplifying equation 1 leads to

(0.45 – j) V1 – 0.25 V2 = 10 (3)

Simplifying equation 2 leads to

–0.25 V1 + (0.75 + j) V2 = 25–90° (4)

Solving equations 3 and 4

V1 = 2.732 + j13.28

V2 = 18.43 + j13.156.

Current I =
V V1 2

4

−

= –3.9245 – J0.056

I = 3.92 ––179.18°

6. (b) Obtain the basic cut-set matrix

for the given oriented graph, taking 1, 2, 3,

4 as tree branches. Write down KCL net-

work equations from the matrix.
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Solution

Refer Section 2.8.2 (Chapter2).

The fundamental cut-set or basic cut-set matrix are defined for a

given tree of the graph. The procedure is to select a tree and then a

twig is selected removing this twig from the tree separates the tree

into two-parts. All the links which go from one part of the discon-

nected tree to the other, together with the twig of the selected tree

will costitute a cut-set. The fundamental cut-set matrix Qf is one in

which each row represents a cut-set with respect to a given tree of

the graph, and the columns correspond to the branches of the graph.

For each twig there will be a basic cut-set therefore for a network

graph with n nodes and b branches, there will be (n – 1) number of

basic cut-sets.

From the given graph the number of nodes are 5. The twigs of the

tree are 1, 2, 3, 4 and the links are 5, 6, 7, 8.

The number of basic cut-sets =

(5 – 1 ) = 4.

The tree is represented by solid

lines.

Consider twig. 3 Corresponding

to twig 3. The f-cut set is {3, 5,6}

which is cut-set C1. Its orienta-

tion coincides with the defining

twig 3.

Corresponding to twig 4, the f-cut

set is {4, 6, 7}

Which is cut-set C2 having the

same orientation as 4.

Corresponding to twig 1 the f-cut set is {1, 6, 7, 8}

Which is cut-set C3. The orientation of C3 is coincident with the

direction of twig 1.

Corresponding to twig 2, the f-cut set is {2, 5, 6, 7, 8} which is cut-

set C4.

The f-cut-set matrix is written as follows:

mQf =

The basic property of the fundamental cut-sets is that they give lin-

early independent KCL equations.
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Applying KCL to the f-cut-sets of the graph,

C1 : i3 – i5 – i6 = 0

C2 : i4 + i6 – i7 = 0

C3 : i1 + i6 – i7 + i8 = 0

C4 : i2 – i5 – i6 + i7 – i8 = 0

In the matrix form

C

C

C

C

i

i

i

i

i

i

i

i

1

2

3

4

1

2

3

4

5

6

7

8

0 0 1 0 1 1 0 0

0 0 0 1 0 1 1 0

1 0 0 0 0 1 1 1

0 1 0 0 1 1 1 1

0

0

0

0

− −

−

−

− − −

L

N

M
M
M
M

O

Q

P
P
P
P

L

N

M
M
M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P
P
P

=

L

N

M
M
M
M

O

Q

P
P
P
P

7. (a) State and explain Millman’s theorem.

Solution

Refer Section 3.10 (Chapter 3).

7. (b) Find the current IL. Use Millman’s theorem.

Solution

Refer Example 3.10 (Chapter 3)

Millman’s theorem states that

V ¢ =
V G V G V G

G G G G

n n

n

1 1 2 2

1 2 3

+ + +

+ + + +

�

�

R¢ =
1

1 2G G Gn+ + +�

\ V¢ =

20
1

5
40

1

4
10

1

2

1

5

1

4

1

2

× + × + − ×
F
HG

I
KJ

+ +

 = 9.47736

R¢ =
1

1

5

1

4

1

2
+ +

 = 1.0526
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IL =
9 4736

1 0526 10

.

. +
 = 0.857A

7. (c) Verify the reciprocity theorem for the network shown.

Solution

Vx = 
10 5

5 4 4

×

+ − j
 (–j4) = 8.24 – j18.556

= 20.3 ––66°

Output/input =
20 3 66

10 0

. – - ∞

– ∞
 = 2.03 ––66°.

Exchanging the excitation and response

Vx =
10 0 4

5 4 4

∠ ° −

+ −

( )j

j
¥ 5 = 20.3 ––66°

Output/input =
20 3 66

10 0

. ∠ − °

∠ °

= 2.03 ––66°

8. (a) Explain the final value theorem of Laplace transform.

Solution

Refer Section 13.4 (h) Chapter 13.
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8. (b) Find V(•) given V(s) = 
S S

S S S S

2

2

2 3

1 2 2

+ +

+ + +( ) ( )
.

Final value V• = Lt
S 0

S
Æ

(V S ) = Lt
S 0

S

Æ

( S
2

2 S+ 3)

S

+

( S 1) ( S+
2

2 S+ 2)+

Therefore, V• =
3

2
 V.
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PAPER 9

1. (a) Write a note on source transformation.

Solution

Refer Section 2.15.

(b) Using KCL and KVL, find the currents in all the sources of the circuit
of the following figure.

Solution:

Using KVL, the loop equations can be written as

5 = 5I1 – I2 (1)

–5 = 7I2 – I1 – 2I3 (2)

5 = 6I3 – 2I2 (3)

Solving Eq.(1), Eq. (2), and Eq. (3), we get

I1 = 0.92 A

I2 = –0.38 A

I3 = 0.706 A

2. (a) Calculate the current to be passed through the coil so that a flux of
1 mwb is produced in the air gap (as shown in the following figure)
the case of square cross section over its entire length and has perme-
ability of 800.

f = 1 mwb

ur = 800
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Assuming no. of turns = 500
Flux produced is given by

f =
mmf

total reluctance

f =
mmf

1

1

l

u A

l

u A

l

u A1

2

1 2

3

3 3

+ +

L

N

M
M

O

Q

P
P

By dividing the given fig. in no. of section

1 ¥ 10–3 = 
I ¥

+

¥ ¥ ¥ ¥
+

+

+ ¥ ¥ ¥

+
¥

¥ ¥ ¥

-

- -

-

- -

-

- -

500

20 20 10

800 4 10 16 10

20 8 10

800 4 10 64 10

1 10

4 10 4 10

2

7 4

2

7 4

3

7 5

( ) ( )

p p

p

1 ¥ 10–3 =
1 500 4 10

0 3125 0 05459 25

7¥ ¥ ¥

+ +

-
p

. .
I = 40.37 A

(b) Define the following terms
(i) Co-efficient of coupling in coupled coils

(ii) Magnetic flux density
(iii) Reluctance of magnetic path
(iv) Permeability

Solution:

Refer Sections 10.5; 10.11

3. (a) A series R-C circuit is excited
by sinusoidal voltage find the expression
for impedance using phasor diagram.
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Solution: Refer Section 5.1

(b) Determine the supply voltage and the power factor in the following
figure network if the total power delivered is 200 W.

Solution:

zeq = 10 + (–5 j||(6 + 2 j)

= 13.33 – 3.33 j

\ zeq = 13.33 – 3.33 j = 13.74 ––14.02

but given that total power delivered is 200 W

\ 200 = I2 (13.33)

I = 3.87A

\ V = IZ = 3.87(13.33 – 3.33 j)

= 51.63 – 12.89 j

= 53.22 ––14.02

\ V = 53.22 ––14.02 V

Power factor =
R

Z
=

1333

1374

.

.
, 0.97

\ Supply voltage is 53.22 ––14.02 V

and power factor is 0.97

4. (a) For a series RL circuit obtain the locus of current as inductance is
changed from 0 to • when the applied voltage is constant.

Solution:

Refer Section 8 :13.1

w = 0 JwL = 0 = I = 
V

R
f = Ta–1 wL

R

F
HG

I
KJ

w = x JwL = a, = I = 0

(b) Show that for a series resonant circuit f1 f2 = fr
2 where f1 and f2 are half

power frequencies and fr is the resonance frequency.

Solution:

Refer Section 8.4
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(c) Obtain the z-parameters of the following two-port Networks.

1

2 W

V1

I1 I2

V22 W 2 W

4 W 2 W

2

1¢ 2¢

Solution: V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

2 W

V1

I1

I3 I4

I2

V22 W 2 W

4 W

when I2 = 0

V1 = I1 (3.5)

\ Z11 =
V

I

1

1

 = 3.5

Z21 =
V

I

2

1

V2 = I42 but I4 = 1 1(2) ( 2

4 2 2
=

+ +

I I )

8
1

4
4

=
I

\ V2 = 1

4

I

2

( 2 1)
2

=
I

Z21 =
V

V

2

1

1

2
=  = 0.5

4 W

V1

I5I6

I2

V22 W2 W

2 W
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when I1 = 0

V2 = I2 (3.5)

\ Z22 =
V

I

2

2

 = 3.5

and

Z12 =
V

I

1

2

but V1 = I6 2 but I6 = 
I I2 22

8 4

( )
=

V1  = 
I I2 2

4
2

2
( ) =

Z12 =
V

I

I1

2 2
=  = 0.5

\ Z-parameters are

Z11 = 3.5 Z12 = 0.5

Z21 = 0.5 Z22 = 3.5

5. (a) Determine the line currents and total power supplied to a delta con-
nected load of zab = 10–60°, zbc = 20–90° and zca = 25–30°. Assume
a 3-phase, 400 V, ABC system.

Solution: VAB = 400–0° Zab = 10 –60° = 5 + 8.66j

VBC = 400 ––120° Zbc = 20–90° = 0 + 20j

VCA = 400 ––240° Zca = 25–30° = 21.65 + 12.5j

z c
a
=
25

30
°

–

zbc = 20 90°–

z
a
b =
10

60°
–

I c

I3
IB

I
A

I1

I2

C

A

B

3-phase
supply

IA =
V

Z

AB

ab

=
– ∞

– ∞

400 0

10 60
 = 20 – 34.64j = 40––60°

IB =
V

Z

BC

bc

=
–-

– ∞

400 120

20 90
 = 20–150°
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IC =
V

Z

CA

CA

=
–-

– ∞

400 240

25 30
 = 16–90°

Line currents

I1 = IA – IC = (40 ––60) – (16 –90) = 54.44 ––68.44 A

I2 = IB – IA = (20 –150) – (40 ––60) = 58.18 –129.89 A

I3 = IC – IB = (16 –90) – (20 –150) = 18.33 –19.10 A
Power

Power in A phase = IA
2 RA = (40)2 (5) = 8000 W

Power in B phase = IB
2 RB = (20)2 (0) = 0

Power in C phase = IC
2 RC = (16)2 (21.65) = 5542.4 W

Total power consumed by load is 8000 + 5542.4 = 13542.4 W

(b) Derive the Relationship between line and phase voltages in a balanced
three phase star connected load.

Solution:

Refer Sections 9.7.1; 9.7.2 and 9.7.3

6. (a) Explain clearly what you understand by a
cutset and tieset. Write down the basic
tieset schedule for the network shown in
the figure by taking 10 W resistor branches
as free branches.

Solution: From the N/w the graph is to be drawn.

Now select 10W-resistor branches as free branches then
tieset matrix.

1

22

1 3

4

6

4
5 3

1

22

1 3

4

6

4
5

I2 I1

I3

3

Tie set (loop) Branches Æ

B
- -

-
L

N

M
M

O

Q

P
P

1 2 3 4 5 6
0 1 1 1 0 0
0 0 0 1 1 1
1 0 1 0 1 0

1

2

3

I

I

I

5 W

5 W

5 W

10 W10
W

10
W

+

V–
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(b) For the N/W shown in figure determine the ratio of I2/I1.

Solution: VA = –I3 ¥ 1 = –I3

VB = I I I1 2 3

3

2
+ +

F
HG

I
KJ
¥ 1

VA – VB = 2I3

fi –I3 – I1 –
3

2
I2 – I3 = 2 I3

fi 4I3 = –I1 –
3

2
I2 (1)

VC = –I2 ¥ 1 = –I2

VC – VA = –I2 + I3 = 
3

2
2I (2)

I3 = 
5

2
I2 = 2.5I2 (3)

From Eqs (1) and (2)

4(2.5I2) = –I1 –
3

2
I2

10
3

2
+

F
HG

I
KJ
I2 = –I1

I

I

2

1

2

23
=
-

7. (a) State the explain the superposition theorem?

Solution:

Refer Section 3.2

(b) Using superposition theorem find the current in 2W. Verify your re-
sult by any other method.
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To know the current in the 2W resistor

(i) Only having voltage source i.e. current source is replaced by a open
circuit.

(6 + 3)||(4 + 6) fi 9 || 10

= 4.736 W

the circuit can be drawn as

IT =
-

=
-12

4 73 2

12

1406( . || ) .

= –8.533

then I2 =
4 73

4 73 2

4 73 8533

4 73 2

.

.

. ( . )

.

IT

+
=

-

+

= –5.997

ª –6.00

(ii) Only current source is present, and voltage source is replaced by short
circuit.
By this short circuit, the current flowing through the 2W resistance is
zero.

\ I = 0 A

4.73 2

I2I1

12 V

+

I

–
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4 W

3 W

6 W

2 W

6 W4 A

\ total current flowing through 2W resistor is

–6 + 0 = –6 Ar

8. (a) Derive the expression for i(t) for R–L series circuit when excited by a
sinusoidal source.

Solution:

Refer Sections 4.5, 4.6 and 5.1

(b) For R-L-C series circuit with R = 10 W, L = 0.2 H, C = 50 mF deter-
mine the current i(t) when the switch is closed at t = 0. Applied volt-
age is V(t) = 100 cos (1000t + 60°)

V(t) = 100 cos (1000t + 60)

Loop equation is

V(t) = 10 i(t) + 0.2 
di t

dt
idt

( )
+

¥ -

1

50 10 6

10i(t) + 0.2 
di

dt
idt

2 6

1

50 10
+

¥ -
= 100 cos (1000 t + 60)

10 0 2
2

di

dt

di

dt
+ .  + 2 ¥ 105 i (t) = –100 sin (1000t + 60) ¥ 1000 (2)

[0.202 + 100 + 20000]i = –105 sin (1000t + 60)
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Characteristic equation

0.2D2 + 10 D + 20000 = 0

D = –25 ± 315.23 j

complementary solution:

ic = e–25t [c1 cos 315.23t + c2 sin 315.23 t]

Assume particular solution

ip = A cos (1000t + 60) + B sin (1000t + 60)

di

dt

p
= – 1000 A sin (1000t + 60) + 1000 cos (1000t + 60)

d ip

dt

2

2
= –(1000)2 A cos (1000t + 60) – (1000)2 sin (1000t + 60)

Substituting these values in Eq. (2)

10[–1000 A sin (1000t + 60) + 1000 cos (1000 t + 60)]

+ 0.2 [–(1000)2 A cos (1000t + 60) – (1000)2 sin (1000t + 60)] + 2 ¥ 105 [A
cos (1000t + 60° + B sin (1000t + 60)] = –100 sin (1000t + 60) 1000

–B(1000)2 –
A B( ) ( )

. . ( )

1000 10

0 2 0 2 50 10 6
+

¥ -
=
-100 1000

0 2

( )

( . )

fi A(50.000) + B[900.000] = 500000 (3)

–A (1000)2 + 
B A( ) ( )

. . ( )

1000 10

0 2 0 2 50 10 6
+

¥ -
= 0

A[–900,000] + B 50000 = 0 (4)

Solving for (3) and (4)

A = 0.03

B = 0.55

ip = 0.03 cos (1000t + 60) + 0.55 sin (1000t + 60)

solution is

i = e–25t [c1 cos 315.23t + c2 sin 315.23t]

+ [0.03 cos (1000t + 60) + 0.55 sin (1000t + 60)]

to evaluate, c1 and c2

i = 0 when t = 0

O = (1) [c1 + 0] + 0.03 cos (60) + 0.56 sin (60)

C1 = –[0.03 cos 60 + 0.55 sin 60] = –0.491

di

dt
= e–25t (–25) [c1 cos 315.23 t + c2 sin 315.23t]
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+ e–25t [–c1 sin 315.23t (315.23) + c2 cos 315.23t (315.23)]

–0.03 sin (1000t + 60) (1000) + 0.55 cos (1000 t + 60) 1000

when t = 0, 
di

dt
 = 250

\ 250 = (–25) [c1] + [c2 (315.23)] – 0.03 ¥ 1000 sin 60

+ 0.55 ¥ 1000 cos (60)

250 = –25 (–0.491) + c2 (315.23) – 0.03 ¥ 1000 sin 60

+ 0.55 ¥ 1000 cos 60

c2 = 0.035

\ Solution is
i(t) = e–25t [–0.491 cos 315.23t + 0.035 sin 315.23 t]

+ 0.03 cos (1000 t + 60) + 0.55 sin (1000t + 60)



SET 1

1. (a) Find the voltage to be applied across AB in order to drive a current of

5A into the circuit by using star-delta transformation. Refer Fig. 1.1.

Fig. 1.1

Solution

Appendix

F
SOLVED QUESTION

PAPERS

MAY/JUNE 2006
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Using star-delta transformer

1. (b) Using Kirchhoff’s current law, find the values of the currents i1 and

i2 in the circuit shown in Fig. 1.2.

Fig. 1.2

Solution

Applying KCL at node V and also i1 = 
3

V

3 2

V V
+  = 2 + 4i1 fi

4
–

3 2 3

V V V
+  = 2

from which V = – 4 volts
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i1 =
4

–
3

, i2 = – 2  A

2. (a) Define the following:

(i) Self Inductance

(ii) Mutual Inductance

(iii) Static Induced e.m.f.

(iv) Dynamically induced e.m.f.

Solution Refer Sections 10.3 and 1.6

2. (b) Derive the relationship between the self, mutual inductances and

coefficient of coupling.

Solution Refer Section 10.5

2. (c) Two similar coils connected in series gave a total inductance

of 600 mH and when one of the coil is reversed, the total induc-

tance is 300 mH. Determine the mutual inductance between the coils

and coefficient of coupling?

Solution  L1 + L2 + 2 M = 600 mH (1)

L1 + L2 – 2 M = 390 mH (2)

(1) – (2) fi 4 M = 300 mH

M = 75 mH

L1 = L2 = L

From Eq. (2) 2L – 2 ¥ 75 = 300

L = 225

K =
1 2

M

L L
 = 

2

75

(225)
 = 

1

3
.

3. (a) Bring out the differences between series and parallel resonance?

Solution Refer Sections 8.1 and 8.7

3. (b) A series RLC circuit consists of resistance R = 20 W, inductance,

L = 0.01H and capacitance, C = 0.04 mF. Calculate the frequency at

resonance. If a 10 Volts of frequency equal to the frequency of reso-

nance is applied to this circuit, calculate the values of VC and VL

across C and L respectively. Find the frequencies at which these

voltages VC and VL are maximum?

3. (b)

Solution   R = 20 W; L = 0.01 H; C = 0.04 mF

fr =
1

2 LCp
 = 

–6

1

2 0.01 0.04 10p ¥ ¥
 = 7.957 kHz

At resonance I =
V

R
 = 

10

20
 = 0.5 A
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Voltage across C; VC = IXC

=
C

I

w
 = 

0.5

2 7957 0.04 1p¥ ¥ ¥ ¥
 = 250 volts

Voltage across L; VL = IXL = IwL = 250 volts

Also refer Example 8.4.

4. (a) Three impedances each of (3-j4) W is connected in delta connection

across a 3-f, 230 V balanced supply. Calculate the line and phase

currents in the D connected load and the power delivered to the

load?

Solution

Phase currents IAB =
230 0

3 – 4j

–
 = 46 53.13– ∞

IBC = 46 ––53.13° – –120° = 46 –– 66.87°

ICA = 46 ––66.87° – –120° = 46 –– 186.87°

Line currents are 3  times the phase values and lags their respective

phase values by 30°.

\ IA = 79.67 –23.13°

IB = 79.67 ––96.87°

IC = 79.67 ––216.87°

4. (b) In power measurement of 3-f load connected by 3-f supply by two

wattmeter method, prove that tan q = 1 2

1 2

3 ( )w w

w w

- -

+
 for leading

power factor loads.

Solution Refer Section 9.11.4

5. (a) For the circuit shown in Fig. 3, draw the graph and indicate tree.

(i) Branch (ii) Node

(iii) Degree of a node (iv) Links

Solution Refer Sections 1.12; 2.1 and 2.3
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5. (b) Using Nodal method, find the current through 5 W resistor, in the

following circuit.

Fig. 1.3

Solution

Equation at V1; 1 3 1 2– –

5 3

V V V V
+  = 5

8V1 – 5V2 – 3V3 = 75 (1)

Equation at super node

3 1 32 1
2

––

3 5 2

V V VV V
V+ + +  = 0

– 16V1 + 40V2 + 21V3 = 0 (2)

V3 – V2 = 2 i

i = V2/1 = V2

V3 – V2 = 2V2 fi V3 = 3V2

Solving for V1, V2 and V3

V1 = 12.87; V2 = 2; V3 = 6 volts

Current through 5 W from V1 to V3 is equal to 1 3–

5

V V
 = 11.67 amps.

6. (a) Explain the steps for solving a network problem using Thevenin’s

theorem.

Solution Refer Section 3.3

6. (b) Find the current I the circuit shown in Fig. 1.4.
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Fig. 1.4

Solution

Applying superposition

Open circuit the current source

I1 =
1

5

Short the voltage source

1 W

1 W

4 W

I2

1 A

I2 =
1 1

1 =
5 5

¥

Total current through 4 W = 
1 1

–
5 5

 = 0

7. Find Jc (t) at t = 0 + while the switching is done from x to y at t = 0 as

shown in Fig. 1.5.
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Fig. 1.5

Solution

2 W

5 W

X

10 V 1 F VC

4VC
Y

– +

–
+

–

+

At t = 0
–

2 W

5 W10 V

4 (0 )–VC

VC(0 )–

– +
+

–
+

KVL gives 10 = 7I – 4VC (0
–
)

Also VC (0+) = – 4VC (0–) + 
10 + 4 (0 )

5
7

CV
+

◊

from which VC (0–) =
50

15
 = 3.333 volts

VC (0
+
) = VC(0

–
) = 3.333 volts.

8. (a) Determine the Z-parameter of the network shown in Fig. 1.6.

Solution

V1 = 5I1 – 4 IX (1)

12 IX – 4 I1 + 5I2 = 0 (2)

V2 = 5I2 + 5IX (3)

IX =
1

12
 (4 I1 – 5 I2) (4)
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Substituting SN4 in 1 and 2

V1 =
11

3
I1 + 

5

3
I2 =  Z11 I1 + Z12 I2

V2 =
5

3
I1 + 

35

12
I2 = Z21 I1 + Z22 I2

11 12

21 22

Z Z

Z Z

È ˘
Í ˙
Î ˚

 =
11/ 3 5 / 3

5 / 3 35 /12

È ˘
Í ˙
Î ˚

8. (b) The y-parameters of a two port network are y11 = 0.6 mho, y22 = 1.2

mho and y12 = - 0.3 mho.

(i) Determine the ABCD Parameters and

(ii) Equivalent P network.

Solution Given Y-parameters Y11 = 0.6 �; Y22 = 1.2 �; Y12 = – 0.3 �

For a reciprocal n.w Y21 = Y12

Equivalent p n.w is shown in figure

Y11 = YA + YC, Y12 = Y21 = – YC; Y22 = YB + YC

\ 0.6 = YA  + 0.3

YA  = 0.3 �; YC = 0.3 �; YB = 0.9 �

ABCD parameters can be expressed in terms of Y-parameters.

A =
22

21

–Y

Y
 = 4; B = 

21

–1

Y
 = 3.33 W

C =
21

– Y

Y

D
; DY = 

11 12

21 22

Y Y

Y Y
 = 0.63 = 2.1

D =
11

21

–Y

Y
 = 2

A B

C D
 =

4 3.33

2.1 2
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SET 2

1. (a) For the circuit shown in Fig. 2.1, find the current through 20W resis-

tor?

Fig. 2.1

Solution

Applying nodal analysis

– 10 15

75 20 50

V V V +
+ +  = 0

V = – 2 volts, I = 
20

V
 = – 0.1 A

1. (b) Reduce the network shown in Fig. 2.2, to a single loop network by

successive source transformation, to obtain the current in the 12 W
resistor.

Fig. 2.2
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Solution

By source transformation

12 W 24 W

2 W

4 W
7.5 A 45 A

30 V

60 A

I = 22.5 ¥ 4.8

16.8
 = 6.428 A.

2. (a) Write short notes on dot convention used in magnetically coupled

coils.

Solution Refer Section 10.4
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2. (b) In the network shown in Fig.2.3, L1 = 1 H, L2 = 2 H, M = 1.2 H.

Assuming the inductance coils to be ideal, find the amount of en-

ergy stored after 0.1 see of the circuit connected to a d.c. source of

10 V.

Fig. 2.3

Solution Refer Chapter 10

3. (a) Explain the concept of

(i) Susceptance and

(ii) Admittance

Solution Refer Problems 5.5 and 5.6

3. (b) An inductive coil takes 10 A and dissipates 1000 watts when con-

nected to a supply of 250 V, 25 Hz. Calculate.

(i) the impedance (ii) the effective resistance

(iii) reactance (iv) the inductance

(v) power factor. Also, draw the vector diagram.

Solution

225 V; 25 Hz

r

I

xL

(i) Z = 
V

I
 = 

250

10
 = 25 W

(ii) i2r = 1000 w fi r = 
1000

100
 = 10 W

(iii) 25 = 
2

100 Lx+  fi xL = 22.9128

(iv) L = 
22.9128

2 25p¥ ¥
 = 0.145 H

(v) cos f = 
R

Z
 = 0.4.
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4. (a) A balanced 3-ph star connected load of 150 KW takes a leading

current of 100 A with a line voltage of 1100 V, 50 Hz. Find the

circuit constants of the load per phase?

Solution P = 150 kw; VL = 110 V; f = 50 Hz; I = 100 A

3 ¥ VL ¥ IL cos f  = 150 ¥ 10
3

cos j  =
3150 10

3 1100 100

¥

¥ ¥
 = 0.7873

ZPh =
Ph

Ph

V

I
 = 

1100

3 100¥
 = 6.35

RPh = ZPh cos j = 6.35 ¥ 0.7873 = 4.9 W
XPh = ZPh sin j = 6.35 ¥ 0.6168 = 3.917 W

4. (b) Three equal star connected inductors takes 8 KW at P.f of 0.8 when

connected to 460 V, 3-f, 3 wire supply. Find the line currents, if one

conductor is short circuited.

Solution

Power = 8000 watts

3 VL IL cos j = 8000

IL = 12.55 A = IPh

ZPh = Ph

Ph

V

I
 = 

460

3 12.55¥
 = 21.16 W

IR = IY = 
460

21.16
 = 21.73 A

IB = 2 ¥ IPh ¥ cos 30 = 37.637 A

5. (a) Define the following and explain by taking an example.

(i) Node (ii) Tree

(iii) Sub graph (iv) Loop

(v) Links (vi) Directed graph.

Solution Refer Sections 1.12; 2.1 and 2.2

5. (b) Find the fundamental tie-set and cut-set matrix for the graph and for

the tree shown in the Fig. 2.4.



Appendix F F.13

(1)

1 3

4

2

(4)

(2)

(3)

(6)

(7)

(5)

Fig. 2.4

Solution

1

4

2

3

6

7
5

There are 5 nodes; n = 5

There are 7 branches = b = 7

No. of twigs or tree branches = n – 1 = 4 (2, 3, 4, 5)

No. of black branches = b – (n – 1) = 3 (1, 6, 7)

The Tie-sets are shown below.

V1 + V2 + V3 + V4 = 0

V2 + V3 – V5 – V6 = 0

V3 – V5 + V7 = 0

Tie set matrix loop; Branches Æ
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1

6

7

i

i

i

Ø 1 2 3 4 5 6 7

1 1 1 1 0 0 0

0 1 1 0 –1 –1 0

0 0 1 0 –1 0 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚

1

2

3

4

5

6

7

V

V

V

V

V

V

V

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

The required Tie-set matrix is given by

B =

1 1 1 1 0 0 0

0 1 1 0 –1 –1 0

0 0 1 0 –1 0 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚

Cut-set

For the given Tree there are four fundamental cut-sets each for one

twig and given by

Twig 2; f-cut-set [1, 2, 6]

Twig 3;  f-cut-set [1, 3, 6, 7]

Twig 4; f-cut-set [1, 4]

Twig 5; f-cut-set [5, 7]

The cut-sets are formed as shown

f-cut set matrix

1

2

3

4

–1 1 0 0 0 1 0

–1 0 1 0 0 1 –1

–1 0 0 1 0 0 0

0 0 0 0 1 0 1

C

C

C

C

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

6. (a) State and explain compensation theorem.

Solution Refer Section 3.6 and Example 3.7

6. (b) In the network shown in Fig. 2.5, find the value of ZL so that the

power transfer from the source is maximum. Also find Pmax.

Fig. 2.5
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Solution

VTH is the voltage across ab = Va – Vb

VTh =
21 50

10 –
(21 12 24) 50 (30 60)j j

Ê ˆ
Á ˜+ + + +Ë ¯

= 0.162 – j0.027

= 0.1644 –– 9.46°

ZTh across ab = [(12 + j24)//21 W] + [(30 + j60)//50]

= 42.9 + j22.38

To transfer maximum power ZL = Z
*
TH

\ ZL = (42.9 – j22.3)

Pmax = (Imax)2 ¥ 42.26

=

2
0.1644

2 42.9

Ê ˆ
Á ˜¥Ë ¯

¥ 42.9

= 0.16 m.w.

7. (a) A dc voltage of 100 V is applied in the circuit shown in Fig. 2.6 and

the switch is kept open. The switch K is closed at t = 0. Find the

complete expression for the current.

Fig.  2.6

Solution
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For an inductor iL(0) = iL(0–) = iL(0+)

=
100

30
 = 3.333 A

iL(µ) =
100

20
 = 5 A

\ iL(t) = iL(µ) + (iLCO) – iL(µ))e
– t/t

t =
L

R
 = 

0.1

20
 = 0.005

\ iL(t ) = 5 + (3.33 – 5)e– t /0.005

= 5 – 1.67e–200t.

7. (b) A dc voltage of 20 V is applied in a RL circuit where R = 5 W
and L = 10 H. Find

(i) The time constant

(ii) The maximum value of stored energy.

Solution Vdc = 20 V; R = 5 W; L = 10 H

t =
L

R
 = 

10

5
 = 2 sec

imax =
V

R
 = 

20

5
 = 4 A

Energy stored =
1

2
Li 2

max

=
1

2
¥ 10 ¥ (4)2

= 80 Joules.

8. (a) Find the Z-parameters for the network shown in Fig. 2.7.

Fig. 2.7

Solution Z-parameters of the given n.w.

Applying KVL for both the loops

V1 = 6 ¥ 10
3

I1 + 15 ¥ 10
3
 (I1 + I2) = 21 ¥ 10

3
I1 + 15 ¥ 10

3
I2

V2 = 4 ¥ 103 I2 + 15 ¥ 103 (I1 + I2) = 15 ¥ 103 I1 + 19 ¥ 103 I2
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On comparison V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

Z11 = 21 kW; Z12 = 16 kW; Z21 = 15 k W; Z22 = 19 kW.

8. (b) For the h parameter equivalent network shown in Fig. 2.8 find the

voltage gain load resistance is RL.

Fig. 2.8

Solution

– I22 = – h21 I1 ¥
22 22

1 1
LR

h h
+  = 

21 1

22

–

1 L

h I

h R

◊
+

V2 = – I22 ¥ RL = 21 1

22

–

1 L

h I

h R

Ê ˆ◊
Á ˜+Ë ¯

 ◊ RL

KVL in L.H.S. loop V1 = h11 I1 + h12 V2

from which I1 =
1 12 2

11

–V h V

h

Substituting in V2 and simplifying we get

V2 (1 + h22 RL)h11 = – h21 RL (V1 – h12 V2)

2

1

V

V
 =

21

11 11 22 12 21

–

( ) –

L

L L

h R

h h h R h h R

◊
+

.
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1. (a) For the circuit shown in Fig. 3.1, find the current through 20 W
resistor.

Fig. 3.1

Solution

– 10 + 75I1 + 20(I1 – I2) = 0

fi 95I1 – 29 I2 = 10

– 15 + 50I2 + 20(I2 – I1) = 0

fi – 20I1 + 70I2 = 15

I1 = 0.16 A I2 = 0.26 A

current through 20 W resistor is

I = I1 – I2 = 0.16 – 0.26 = – 0.1 A.

1. (b) Reduce the network shown in Fig. 3.2 to a single loop network by

successive source transformation, to obtain current in 12 W resistor.

Fig. 3.2
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Solution

2 W

12 W

I

24 W 4 W7.5 A 45 A 15 A

30 V

I =
108

4.8 12+
 = 6.428 A

12 W
4.8 W

I

108 V

–

+

2. (a) Explain

(i) Statically induced emf and

(ii) Dynamically induced emf

Solution Refer Section 1.6

2. (b) The combined inductance of two coils connected in series is 0.6 H

or 0.1 H, depending upon the relative directions of the currents in

the coils. If one of the coils when isolated has a self inductance of



F.20 Electrical Circuit Analysis

0.2 H, Calculate

(i) Mutual inductance, and (ii) The coefficient of coupling.

2. (b) When 2 coils are connected in series,

Leq. = L1 + L2 ± 2M

L1 + L2 + 2M = 0.6 (1)

L1 + L2 – 2M = 0.1 (2)

Substitute (2) in (1)

0.1 + 2M + 2M = 0.6 fi M = 0.125

L1 = 0.2 H

0.2 + L2 + 2(0.125) = 0.6

L2 = 0.15 H

Co-efficient of coupling k =
1 2

M

L L

k =
0.125

0.15 0.2¥

= 0.72

2. (c) Explain the terms

(i) MMF (ii) Reluctance

Solution Refer Section 10:11

3. (a) Draw the current, impedance and admittance loci for an RL series

circuit having fixed resistance but variable reactance.

Solution

V R/

R

V

Iy IL

IXX =L •

X =L 0

XL

3. (b) Figure 3.3 shows a series parallel circuit. Find

(i) admittance of each branch

(ii) admittance between points b and g.

(iii) impedance between points b and g.

(iv) total circuit impedance
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(v) total current and power factor

(vi) currents in each branch.

Fig. 3.3

Solution

4 W

6 W

100 V, 50 Hz supply

1.6 W 7.2 W
c

e

a

d

f

g

3 W

8 W

(i) admittance of ab = 
+
1

1.6 7.2j

=
– ∞

1

7.37 77.47
 = 0.135 ––77.47°

= 0.03 – j0.132�

admittance of cd =
1

4 3j+
 = 

1

5 36.87– ∞

= 0.16 – j0.12�

admittance of ef =
1

6 – 8j
 = 

– ∞
1

10 – 53.13

= 0.1 –53.13° = 0.06 + j0.08�

(ii) admittance between points b and g.

= admittance of (cd + ef )

= 0.16 – j0.12 + 0.06 + j0.08

= 0.22 – j0.04�
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(iii) impedance between points b and g

=
1

0.22 – 0.04j
 = 

1

0.224 –10.3– ∞

= 4.46 –10.3° = 4.38 + j0.79 W

(iv) total circuit impedance

= 1.6 + j7.2 + 4.38 + j0.79

= 5.98 + j7.99 W

(v) total current =
100 0

5.98 7.99j

– ∞
+

=
100 0

9.98 53.19

– ∞
+ – ∞

 = 10.02 ––53.19° A

= 6 – j8 A

Power factor = cos (53.19°)

= 0.599 lagging

(vi) Current in branch ab = 10.02 ––53.19° A

current in branch cd = 10.02 ––53.19° ¥
+4 3

10 – 5

j

j

= 10.02 ––53.19° ¥
– ∞
– ∞

5 53.13

11.18 – 26.56

= 4.48 –26.5° A

Current in branch ef = 10.02 ––53.19° – 4.48 –26.5°

= 6 – j8 – 4 – j1.999

= 2 – j9.999 = 10.19 ––78.69° A

4. (a) Three identical resistances are connected in a star fashion against a

balanced three phase voltage supply. If one of the resistance is re-

moved, how much power is to be reduced?

Solution 1/3rd power

4. (b) A 3-phase load has a resistance of 10 W in each phase and is con-

nected in

(i) star and

(ii) delta against a 400 V, 3-phase supply. Compare the power con-

sumed in both the cases.

Solution

(i) line voltage = 400 V
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phase voltage =
400

3
= 231 V

Power consumed = 3 VL IL cos j

Here cos j = 1, VL = 400 V

IL = IPh = 
231

10
 = 23.1 A

P = 3 ¥ 400 ¥ 23.1 = 16 kW.

(ii)

10 W 10 W

10 W

400 V

line voltage = 400 V

phase voltage = 400 V

power factor = 1

IPh =
400

10
 = 40 A

IL = 3 IPh = 3 ¥ 40 = 69.28 A

Power consumed = 3 VL IL cos j

= 3 ¥ 400 ¥ 69.28 = 48 kW

Power consumed in delta connected case is three times that of in

star connection

PY =
1

3
PD

4. (c) What is the difference between RYB phase sequence with RBY phase

sequence?

Solution Refer Section 9.4 and example 9.1

5. (a) Define the following and explain by taking an example.

(i) Branch (ii) Node

(iii) Path (iv) Sub graph

(v) Tree (vi) Degree of node.

Solution Refer Sections 1.12; 2.1 and 2.2

5. (b) Draw the oriented graph of the network shown in Fig. 3.4 and write

the cut set matrix.

10
W

10 W

10 W

400 V
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Fig. 3.4

Solution The oriented graph of the n.w. is shown in figure an Orbitrary

Tree is selected to form fundamental cut set ( f-cut set) matrix. The tree

branches (Twigs) are shown with thick lines and the line branches are shown

with dashed lines.

C1

C3

C3

7

6

C2

C1
3

4

2

5

C2

1

No. of branches = 7

No. of nodes (n) = 4

Twigs = n – 1 = 3 (2, 3, 6)

No. of links (l) = b – (n – 1) = 4 (1, 4, 5, 7)

For twig 2; f-cut set C1 æÆ (1, 2, 5)

For twig 3:  f-cut set C2 æÆ (1, 3, 4, 5)

For twig 6;  f-cut set C3 æÆ (4, 5, 6, 7)

Fundamental cut-set matrix

f-cut set Branches

È ˘
Í ˙
Í ˙
Í ˙Î ˚

1

2

3

1 2 3 4 5 6 7

–1 1 0 0 1 0 0

–1 0 1 1 1 0 0

0 0 0 –1 –1 1 1

C

C

C

6. (a) State the explain the Millmann’s theorem.

Solution Refer Section 9.10.6 and Example 9.21
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6. (b) Find the current in the 6 W resistor using Superposition theorem as

shown in Fig. 3.5.

Fig. 3.5

Solution

6 Wj6 W

– j8 W

I1

10 60°V–

I1 =
– ∞

+
10 60

6 6 – 8j j
 = 

– ∞10 60

6 – 2j
=

– ∞
– ∞

10 60

6.32 –18.43
 = 1.58 –78.43° A

6 Wj6 W

– j8 W

I3 I2

2 0°–

I2 = 2–0° ¥
+

6

6 6 – 8

j

j j
 = 2–0° ¥

6

6 – 2

j

j

= 1–0° ¥
6

3 – 1

j

j
=

– ∞ ¥ – ∞
– ∞

1 0 6 90

3.16 –18.43
= 1.899 –108.43° A

By superposition theorem, current through

6W = I1 + I2

= 1.58 –78.43° + 1.899 –108.43°

= 0.317 + j1.548 + [– 0.6 + j1.8]

= – 0.283 + j3.348 = 3.36 –94.83° A

7. (a) A dc voltage of 100 V is applied in the circuit shown in Fig. 3.6 and

the switch is kept open. The switch K is closed at t = 0. Find the
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complete expression for the current.

Fig. 3.6

Solution

20i + 0.1 
di

dt
 = 100

(D + 200)i = 1000

i = C1 e
–200t

 + e
–200 t Ú 1000 e

200t
dt

= C1 e
–200t

 + 5

at t = 0
– 1

i(0
–
) = 

+
100

20 10
 = 

100

30
 = 3.33 A

\ at t = 0
+
, i = 3.33 A

i = C1 e
–200(0) + 5 = 3.33

C1 = 3.33 – 5 = – 1.67

The complete solution is

i(t) = – 1.67e
–200t

 + 5

7. (b) A dc voltage of 20 V is applied in a RL circuit where R = 5 W
and L = 10 H. Find

(i) The time constant

(ii) The maximum value of stored energy.

Solution

10 H

5 W

20 V
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time constant =
L

R
 = 

10

5
 = 2 sec

Max. value of stored energy =

1

2
Li2 =

1

2
¥ 10 ¥

2
20

5

Ê ˆ
Á ˜Ë ¯

 =
1

2
¥ 10 ¥ 16 = 80 Joules

8. (a) In a T network shown in Fig. 3.7, Z1 = 2–0°, Z2 = 5–-

90°, Z3 = 3–90°, find the Z parameters.

Fig. 3.7

Solution

+ +

I1 I2Z1

Z3

Z2

V1 V2

– –

Z1 = 2 –0° Z2 = 5 ––90° Z3 = 3 –90°

Z11 = Z1 + Z3

= 2 –0° + 3 –90° = 2 + j3 = 3.6 –56.3°

Z12 = Z3 = 3 –90°

Z21 = Z3 = 3 –90°

Z22 = Z2 + Z3

= 5 ––90° + 3 –90° = – 5 j + 3j = – 2j = + 2––90°

Z =
3.6 56.3 3 90

3 90 2 – 90

– ∞ – ∞È ˘
Í ˙– ∞ – ∞Î ˚

8.  (b) Z-parameters for a two port network are given as Z11 = 25 W,

Z12 = Z21 = 20 W, Z22 = 50 W. Find the equivalent T-network.
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Solution

Z11 = 25 W

Z12 = Z21 = 20 W

Z22 = 50 W

Consider General T-network

V1 = Z1I1 + Z3 (I1 + I2)

V1 = (Z1 + Z3)I1 + Z3I2(1)

V2 = Z2I2 + Z3(I1 + I2)

V2 = Z3I1 + (Z3 + Z2)I2(2)

\ Z11 = Z1 + Z3 fi Z1 + Z3 = 25 W

Z21 = Z12 = Z3 = 20 W

From which we get Z1 = 5 W; Z22 = Z2 + Z3 = 50 W
Z2 = 45 W.
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1. (a) Explain

(i) KCL (ii) KVL

(iii) Practical current source (iv) Practical voltage source.

Solution Refer Sections 1.8; 1.9 and 1.12

1. (b) A 20 V battery with an internal resistance of 5 ohms is connected to

a resistor of x ohms. If an additional resistance of 6 W is connected

across the battery, find the value of x, so that the external power

supplied by the battery remain the same.

Solution

Power supplied to x by battery = 

2
20

5 x

Ê ˆ
Á ˜+Ë ¯

x = P1

I2 =
20

6
5

6

x

x
+

+

 = 
120

30 11x+

Power supplied to x =

2
120

30 11x

Ê ˆ
Á ˜+Ë ¯

x = P2

P1 = P2 fi
20 120

=
5 11 30x x+ +

x = 0

2. (a) Explain the following terms:

(i) Magnetic circuit (ii) Permeability

(iii) Magneto motive force (iv) Reluctance.



F.30 Electrical Circuit Analysis

Solution Refer Section 10.11

2. (b) A cast steel structure is made of a rod of square section 2.5 cm ¥ 2.5

cm as shown in Fig. 4.1. What is the current that should be passed in

a 500 turn coil on the left limb, so that a flux of 2.5 mwb is made to

pass in the right limb. Assume permeability as 750 and neglect leak-

age.

Fig. 4.1

Solution

j = j1 + j2

Also mmf in C = mmf in D

\ j1

25

Am
 = 2.5 ¥ 10–3 40

Am

j1 = 4 mmf

j = j1 + j2 = 6.5 mmf

Total A.T. for the hole circuit is

(i) that required for path E and

(ii) that required for path C or D.

Flux density in E =
–3

2 – 4

6.5 10

(2.5) 10

¥

¥
 = 10.4 web/m

2

A.T. in E =
–7

10.4 0.4

4 10 750p

¥

¥ ¥
 = 4414 A.T.
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Flux density in path D =
–3

2 – 4

2.5 10

(2.5) 10

¥

¥
 = 40 web/m2

A.T. in D =
–7

40 0.4

4 10 750p

¥

¥ ¥
 = 1698 A.T.

Total A.T. = 4414 + 1698 = 6112

Current needed =
6112

500
 = 12.224 A

3. (a) Derive the expression for power in a1-f A.c. circuits.

Solution Refer Sections 6.1 and 6.2

3. (b) In the circuit shown in Fig. 4.2, calculate.

(i) The total impedance

(ii) The total current

(iii) Power factor

(iv) The total S, P and Q

(v) The total admittance. Also, draw vector diagram.

Fig. 4.2

(i)
2 W

1 W
A B

2 W

40 V, 50 Hz, 1– supplyj

j5 W

– j2 W 1 W j1 W



F.32 Electrical Circuit Analysis

Admittance between A and B is

1 1 1

2 5 1 – 2 2j j
+ +

+

=
1 1

5.38 68.2 2.24 – 63.4
+

– ∞ – ∞
 + 0.5

= 0.069 – j0.17 + 0.199 + j0.399 + 0.5

= 0.768 + j0.229 = 0.8 –16.6° �

Impedance between A and B =
1

0.8 16.6– ∞
 = 1.25 ––16.6°

Total impedance = 1 + j1 + 1.198 – j0.36 = 2.29 –16.23° W

(ii) Total current =
40

2.29 16.23– ∞
 = 17.47 ––16.23° A

(iii) Power factor = cos 16.23 = 0.96 lagging

(iv) P = VI cos j

= 40 ¥ 17.47 cos 16.23° = 670.95 W

Q = VI sin j

= 40 ¥ 17.47 sin 16.23° = 195.31 VAR

S = P + jQ = 640.95 + j195.31

= 698.798 –16.23° VA.

(v) Total admittance =
1

2.29 16.23– ∞
 = 0.43 ––16.23° �

4. (a) Two resistors each of 100 W are connected in series. The phases a and

c of a three phase 400 V supply are connected to the two ends and phase

b is connected to the junction of the two resistors. Find the line currents.

Solution

b
c

10
0 W

100 W
400 V

a

Current in phase a

Ia =
400

100
 = 4 A

Current in phase C is also 4 A

Current in phase b = 2 ¥ IP ¥ cos 
60

2
 = 6.928 A
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4. (b) Derive the expressions for wattmeter readings in two wattmeter

method with balanced star connected load. How do you calculate

the power factor of the balanced load from wattmeter readings?

Solution

ia
a

b

c

ie

z–
q z–q

z–q

Sum of the instantaneous powers measured by two wattmeters

W = W1 + W2

= ia (Van – Vbn) + ic (Vcn – Vbn)

= ia Van + ic Vcn – (ia + ic) Vbn

= ia Van + ib Vbn + ic Vcn

W1 = VL IL cos (30 + q)

W2 = VL IL cos (30 – q)

W1 + W2 = VL IL cos (30 + q) + VL IL cos (30 – q)

= VL IL 2 cos 30° cos q

= 3 VL IL cos q = 3VPh IPh cos q

W2 – W1 = 3 VPh IPh sin q
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2 1

1 2

–W W

W W+
 =

3 sin

3 cos

Ph Ph

Ph Ph

V I

V I

q

q
 = 

tan

3

q

Power factor angle, q = tan
–1 2 1

1 2

3 ( – )W W

W W+
Power factor = cos q

5. (a) Define the following and explain by taking an example.

(i) Node (ii) Tree

(iii) Sub graph (iv) Loop

(v) Links (vi) Directed graph.

Solution Refer Sections 1.12; 2.1 and 2.2

5. (b) Find the fundamental tie-set and cut-set matrix for the graph and for

the tree shown in the Fig. 4.3.

Fig. 4.3

Solution

The required Tie set and cut set matrices are given below. The pro-

cedure is illustrated in solution to Question 5 (b) of Set No. 2.

Tie-set

1 1 1 1 0 0 0

0 1 1 0 –1 –1 0

0 0 1 0 –1 0 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚

f-cut set

–1 1 0 0 0 1 0

–1 0 1 0 0 1 –1

–1 0 0 1 0 0 0

È ˘
Í ˙
Í ˙
Í ˙Î ˚
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6. (a) State and explain compensation theorem.

Solution Refer Section 3.6

6. (b) In the network shown in Fig. 4.4, find the value of ZL so that the

power transfer from the source is maximum. Also find Pmax.

10 0°– V

j24 W

j60 W

12 W

30 W

21 W

ZL

50 W

+

Fig. 4.4

Solution

I1 =
10 0

33 24j

– ∞
+

 = 
10 0

40 36.87

– ∞
– ∞

 = 0.85 ––36.02° A

I2 =
10 0

80 60j

– ∞
+

 = 
10 0

100 36.87

– ∞
– ∞

 = 0.1 ––36.87° A

VA = 0.25 ––36.02° ¥ 21 = 5.25 ––36.02° V

VB = 0.1 ––36.87° ¥ 50 = 5 ––36.87° V

VTh = VA – VB = 5.25 ––36.02° – 5 ––36.87°

= 4.246 – j3.08 – 3.99 + j3

= 0.256 – j0.08 = 0.268 ––17.35° V

ZTh =
(30 60)50 (12 24) 21

80 60 33 24

j j

j j

+ +
+

+ +



F.36 Electrical Circuit Analysis

ZT h =
3354.1 63.43 563.489 63.43

100 36.87 40.8 36.03

– ∞ – ∞
+

– ∞ – ∞

= 33.541 –26.56° + 13.81 –27.4°

= 30 + j14.99 + 12.26 + j6.35

= 42.26 + j21.34 = 47.34 + j 26.79

= 47.34 –26.79° W

To get max. power the load must be complex conjugate of source

impedance.

\ load, Z = 42.26 – j21.34 W

47.34 26.79°–

Z0.268 17.35°– –

Current through the load = Th

Th

V

Z Z+

I =
0.268 –17.35

(42.26) 2

– ∞
 = 0.00317 ––17.35° A

Maximum power delivered to the load is

= (0.00317)2 ¥ 42.26 = 0.000425 W = 0.425 mW.

7.In the Fig. 4.5, the switch is close at position 1 at t = 0. At t = 0.5 m sec.

The switch is moved to position 2. Find the expression for the current in

both the conditions and sketch the transient.

Fig. 4.5

Solution

When switch is in position 1

–10 + 50(i) = 0 fi i = 
10

50
 = 0.2 A
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I(0–) = 0.2 A

When switch is moved to position 2

I(0+) = 0.2 A

– 5 + 50 I(5) + 0.5[SI(5) – I(0)] = 0

I(S) [50 + 0.55] = 5 + 0.5 ¥ 0.2 = 5.01

I(5) =
5.01

50 0.55+
 = 

10.02

5 100+

i(t) = 10.02e– 100t

at t = 0.5 ms

i(t) = 10.02e
–100 ¥ 0.5 ¥ 10–3

 = 9.53 A

8.Determine Y-Parameters of the network shown in Fig. 4.6.

Fig. 4.6
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Solution

3 W 3 W

3 W

3I1

+ +

I1

V1 V2

I2

– I1 + 1 1 2–

3 3

V V V
+  = 0

fi 1 2

1 1 1
–

3 3 3
V V

È ˘ È ˘+Í ˙ Í ˙Î ˚ Î ˚
 = I1 (1)

2 1 2–

3 3

V V V
+  + 3I1 – I2 = 0

fi – V1

1

3

È ˘
Í ˙Î ˚

 + V2

1 1

3 3

È ˘+Í ˙Î ˚
 = – 3 I1 + I2 (2)

from (1) 
2

3
V1 –

1

3
V2 = I1

from (2) 
1

–
3

V1 + 
2

3
V2 = – 3I1 + I2

1
–

3
V1 + 

2

3
V2 = I2 – 3 

1 2

2 1
–

3 3
V V

È ˘
Í ˙Î ˚

1
–

3
V1 + 

2

3
V2 = I2 – 2V1 + V2

I2 =
1

–
3

V1 + 2V1 + 
2

3
V2 – V2

=
5

3
V1 –

1

3
V2

1
–

3
V1 + 

2

3
V2 = I2 – 3 I1

=
5

3
V1 –

1

3
V2 – 3I1

3I1 = 2V1 – V2

I1 =
2

3
V1 –

1

3
V2

Y11 =
2

3
, Y12 = –

1

3
, Y21 = 

5

3
, Y22 = –

1

3

Y =
2 / 3 –1/ 3

5 / 3 –1/ 3

È ˘
Í ˙
Î ˚
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SET 1

1. (a) Find the value of current Ii in Fig. 1.1.

+
–

+
–

3 A

5 W
7 W 5 A

I1
10 V 4 V

9 W

Fig. 1.1

Solution Converting current source into equivalent voltage source

+
–

+
–

5 W
7 W

10 V +
–

+ –

15 V
9 W

45 V

4 V
I1

Appendix

G
SOLVED QUESTION
PAPERS APR/MAY
2007
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By applying KVL

10 – 7I1 – 15 – 5I1 – 9I1 + 45 – 4 = 0

36 = 21I1

I1 =
36

21
 = 1.714 A

I1 = 1.714 A

(b) Find the value of E in the network shown in Fig. 1.2

E

2 W 2 W 0.5 W 1 W

2 W 3 W 2 W 1 A

Fig. 1.2

Solution Calculating current through all branches

E

E

2

2 W

1 W

1 W

2

2 W

3

3 W

2

2 W

1A

1A

1.75V

1.75V5.916V

1

I

2.0832

5.04 2.083A

1.5 0.5

0.5 W

+

+

–

0.5A

+

+

–

––

0.583

2 W
2.958

1 V

E = 2 ¥ I + 5.916

E = 2 ¥ 5.04 + 5.916

E = 15.99 V

E = 16 V
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(c) Write short notes on dependent sources.

Solution Refer Section 1.8.

2. (a) What is magnetic coupling? What is its effect? How can you arrange
two coils so that they do not have magnetic coupling?

Solution Refer Section 10.1.

(b) Two coils having 30 and 600 turns are wound side by side on a closed iron
circuit of 100 roman cross section and mean length 150 cm. Calculate:

(i) The self inductance of the two coils and mutual inductance if rela-
tive permeability of iron is 2000. Assume no magnetic leakage.

(ii) 0 to 10 A steadily in 0.01 sec

Solution N1 = 30, a = 100 cm2 = 10 ¥ 10–4 m2, N2 = 600

l = 150 cm = 1.5 m, m r = 2000

Reluctance = 
r r

l

am m ◊

=
–7 –4

1.5

4 10 2000 100 10p ¥ ¥ ¥ ¥

= 0.05968 ¥ 106

L1 =
2
1

Reluctance

N
 = 

( )2

6

30

0.05968 10¥

= 15 mH

L2 =
2
2

Reluctance

N
 = 

( )2

6

600

0.05968 10¥

= 6 H
If there is no magnetic leakage

m = 1 2L L  = –315 10 6¥ ¥  = 0.3 H

(c) Define reluctance. Give its units.

Solution Refer Section 10.11.

3. (a) Explain the phenomenon of acceptor resonance in electrical circuits.

Solution Acceptor resonance is nothing but series resonance. Refer Section 8.1.

(b) Proceeding analytically, sketch the resonance curves for a series reso-
nant circuit with variable frequency and constant R, L and C.

Solution Refer Section 8.2.

(c) A series circuit comprising R, L and C is supplied at 220 V, 50 Hz. At
resonance, the voltage across the capacitor is 550 V. The current at reso-
nance is 1 A. Determine the circuit parameters R, L and C.
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Solution At resonance
XL = XC

Current at resonance = I = 
( )L C

V

R g X X+ -
 = 

V

R
 = 220

1 =
220

R

\ R = 220 W

VC = Io XC

550 = 1 ¥
1

ocw

C =
1

550 2 fp¥
 = 

1

550 2 50p¥ ¥ ¥
C = 5.78 mF

fo =
1

2 LCp

LC =

2
1

2 ofp

Ê ˆ
Á ˜Ë ¯

L =

2
1 1

2 oC fp

Ê ˆ
Á ˜Ë ¯

=
6

1 1

1005.78 10 p-
Ê ˆ
Á ˜Ë ¯¥

 = 1.750 H

\ Circuit elements at resonance are

R = 220 W, L = 1.75 H, C = 5.78 mF

4. (a) For the network shown in Fig. 1.4, calculate the line currents and
power consumed if the phase sequence is ABC.

A IA

100 V13–f

50 Hz supply

B

C
Ic

IBC

(3+14) W

IAB

ICA

(2 2)–j W

5 W

IB

Fig. 1.3
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Solution Vab = 100 0 ; Vbc = 100 120- ∞ ; Vca = 100 240- ∞ .

Iab = ( )
100 0

3 4J+
 = 

100 0

5 53.13∞
 = 20 53.13- ∞

Ibc =
100 120

5

- ∞
 = 20 120- ∞

Ica = ( )
100 –240

2 2J

∞
-

 = 
100 –240

2.828 45

∞
- ∞

 = 35.36 195- ∞

Line currents are

IA = IAB – ICA

= 20 53.13- ∞ – 35.36 195- ∞

= 12 – J16 + 34.155 – j9.15

= 46.155 – J25.15 = 52.56 –28.586∞

IB = IBC – IAB

= 20 0120- ∞ – 20 53.13- ∞

= – 10 – j17.32 – 12 + j16

= – 32 – j1.32 = 32.02° 182.36∞

IC = ICA – IBC

= 35.36 195- ∞ – 20 120- ∞

= – 34.155 + j9.15 + 10 + j17.32

– 24.155 + j26.47 = 55.83 132.38∞

Power consumed in phase AB = 100 ¥ 20 ¥ cos 53.15

= 1200

or I
2
ab ¥ Rab = (20)2 ¥ 3 = 1200

In BC = 100 ¥ 20 ¥ cos 0 = 200

In CA = 100 ¥ 35.36 ¥ cos 45 = 2500

Total power = 5700 watts.

(b) An unbalanced star connected load is connected across a 3–f, 400 V
balanced supply of phase sequence RYB as shown in Fig. 1.3. Two
wattmeters are connected to measure the total power supplied as shown
in the figure. Find the readings of the wattmeters.
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R

W1

IR

Y

B

W2

IB

IB

Z = –jY 15 W
IR

IY

Z –jB = 15 W

ZR = 20 W

IR

Fig. 1.4

Solution Refer Section 9.10.3 and 9.10.4.

R

W1

IR

Y

B

W2

B

IB

IY

(20 +J15) W

20 W

R

IR

O

Y

–J 15 W

IB

Unbalanced star connected three wire loads can be solved by Kirchhoff’s laws,
Millman’s theorem star delta conversion. Here, KVL method is illustrated.

VRY = IR ZR0 + (IR + IB) ZOY

VBY = IB ZB0 + (IB + IR) ZOY

Solve for I
R
 and I

B
 (line or phase currents) and voltage drops across each phase. And

line voltages are specified in data as

VRY = 400 0 ; VYB = 400 120- ∞ ; VBR = 400 240- ∞

Wattmeter W
1
 carries I

R
 and has voltage V

RY
 impressed across the pressure coil.

Power can be found by using V
RY

* – 1RI

The other wattmeter W
2
 carries I

B
 and has voltage V

BY
 (– V

YB
) impressed across the

pressure coil. Power consumed by W
2
 is given by * – 2BV . Real parts of equation 1

and 2 are the wattmeter readings W
1
 and W

2
 respectively.
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5. (a) Explain the procedure for obtaining fundamental tie-set matrix of a
given network.

Solution Refer Section 2.7.

(b) Draw the oriented graph of the network shown in Fig. 1.5 and write the
incidence matrix.

r3

I2

C2

L2IIC1

v1

+

r1

r2 v2

L1

Fig. 1.5

Solution Directions of currents are arbitr arily assumed as shown in the current.

r2

r3

I2

d

L2C1

+

a

L1
v2

b + –

g e

v1

r1

f

1 2 3 4

5

c c2

Ideal voltage sources and current sources do not appear in the graph of a linear
network. Ideal voltage source is represented by short circuit and an ideal current
source is replaced by an open circuit. The nodes that appear in the graph are
numbered (1) (2) (3) (4) and (5); branches as a, b, c, d, e, f and g. The graph is as
shown in the figure.

1 2 3 4

5

b

a
g

c d

e
f

For a graph with n nodes and b branches, the order of the incidence matrix is
(n – 1) ¥ b. Choose node (5) as reference (ordatum) node for writing incidence
matrix. The required incidence matrix is given by

a b c d e f g

A =

1 1 1 0 0 0 0 0

2 0 1 1 0 0 0 1

0 0 1 1 0 1 03

0 0 0 1 1 0 04

-È ˘
Í ˙-Í ˙
Í ˙- -
Í ˙

-Î ˚

○

○

○

○
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6. (a) State and explain compensation theorem.

Solution Refer Section 3.6.

(b) In the network shown in Fig. 1.6, find the value of ZL so that the power
transfer from the source is maximum. Also find Pmax.

+
10 0° V

j24 W 12 W 21 W

ZL

j60 W
30 W 50 W

Fig. 1.6

Solution Let us remove ‘zL’. The Internal impedance of the circuit looking
through x–y is given by

zin =
( )( ) ( )21 12 24 50 30 60

21 12 24 50 30 60

J J

J J

+ +
+

+ + +

=
563.44 63.43 3354.10 63.43

40.8 36 100 36.87

– ∞ – ∞
+

– ∞ – ∞
= 13.81 –27.43° + 33.54 –26.56º

zin = 42.19 + J21.49 W
As per maximum power transfer theorem, z

L
 should be the complex of z

in

zL =
*
inz  = (42.19 – J21.49) W

VO.C = Vxy

Vx =
12 24

12 24 21

J

J

+
+ +

¥ 10 –0°

= 6.577 –27.43° V

Vy =
30 60

30 60 50

J

J

+
+ +

¥ 10 –0° = 6.71 –26.56°

VOC = Vx – Vy = 6.577 –27.43° – 6.71 –26.56°

= – 0.163 + J0.029

VO.C = 0.1657 –170° V

Pmax =
2

4
oc

L

V

R
 = 

( )20.1657

4 42.19¥
 = 0.1627 mW

Pmax = 0.1627 mw
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7. (a) A dc voltage of 100 V is applied in the circuit shown in Fig. 1.7 and
the switch is kept open. The switch K is closed at t = 0. Find the complete
expression for the current.

+
100 V

20 W 10 W

0.1 H

Fig. 1.7

Solution At t = 0+

100 = 20i + 0.1 
di

dt
(P + 200)i = 1000.

The complete solution is given by
i = ic + ip

where ic = Complementary function = ce–200t

ip = Particular function

= e–(R/L) ◊ t ( )R L tV
e dt

L

Ê ˆ
Á ˜Ë ¯Ú

ip =
V

R
 = 

100

20
 = 5A

\ i = ce
–200t + 5

However, below switching operation, the study state current in the circuit is

( )20 10

V

+ W
 = 3.33 A

Due to the presence of inductor

at t = 01 i = 3.33 A

Then i = c + 5 (8) 3.33 = c + 5 Æ c = – 1.67.

Hence complete solution in

i = – 1.67e–200t + 5A

(b) A dc voltage of 20 V is applied in an RL circuit where R = 5 W and
L = 10 H. Find

(i) the time constant

(ii) the maximum value of stored energy
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Solution V = Ri + L
di

dt

i = 1

R
t

LV
e A

R

Ê ˆ-Á ˜Ë ¯
Ê ˆ
Á ˜-Ë ¯

(i) Time constant = t = 
L

R
 =   = 2 sec

(ii) Max value g stored energy = 
1

2
LImax.

=
1

2
 (10) ¥ (4)2 = 80 J

Y22 =
I2100 W

200 W

I1 +

–

V2

Y22 =

1

2

2 0v

I

V
=

 = 0.015 mho

– I1 = 2 200

300

I ¥

I2 = – 1.5 I1

2

2

I

V
 = 1

2

1.5I

V

-
 = 0.015

1

2

I

V
 = – 0.01 mho

Y12 = – 0.01 mho

1 1

–3
2 2

0.015 0.01

9.9 10 0.015

I V

I V

-È ˘È ˘ È ˘
= Í ˙Í ˙ Í ˙

- ¥Í ˙Î ˚ Î ˚Î ˚

8. (a) Find the y-parameters of the network shown in Fig. 1.8.

I1 I2100 W

V1 V2
175 W

200 W

Fig. 1.8

5 W

20 V
+

–
10 H
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Solution Y-parameter of the Network shown in the Figure.

I1 I2100 W

V1 V2
175 W 200 W

+

–

Y-Parameter

Y11 =

2

1

1 0v

I

V
=

Y12 =

1

1

2 0v

I

V
=

Y21 =

2

2

1 0v

I

V
=

Y22 =

1

2

2 0v

I

V
=

(1) Y1F

I1 100 W

175 W

+

–

V1

I2

Y11 = 1

1

I

V
 = 0.0157   (Mho)

Y21 I2 = 1 175

275

I- ◊

I1 = – I2 1.571

1

1

I

V
 = 2

1

1.571I

V

- ¥
 = 0.0157

Y21 = 2

1

I

V
 = – 9.99 ¥ 10–3 (Mho)

(b) Calculate the Z-parameters for the lattice network shown in Fig. 1.9.

I1
I2 = 0

V2

Z1

Z2

Z1

V1
Z2

Fig. 1.9
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Solution The equivalent impedance looking back from the input terminal is

(z1 + z2) || (z1 + z2) = 1 2

2

z z+

V1 = I1
1 2

2

z z+Ê ˆ
Á ˜Ë ¯

z11 =

2

1

1 0I

V

I
=

 = 1 2

2

z z+

V2 = Vc – Vd

= (V1 + I3 z1) – (V1 – I4 z2)

= I4 z2 – I3 z1

I3 = I1 ( )( )
2 1

1 2 2 1

z z

z z z z

+
+ +

 = 1

2

I

also, I4 = 1

2

I

Hence V2 = 1

2

I
¥ z2 – z1 ¥ 1

2

I
 = 2 1

2

z z-
I1

2

1

V

I
 =

2
21 0I
z

=
 = 2 1–

2

z z

Hence

z11 = z22 = 1 2–

2

z z

z12 = z21 = 2 1–

2

z z

+

–

V2

q x

z3 z4

V2c d

z2 z1

z1 z2



Appendix G G.13

SET 2

1. (a) What is the difference between an ideal source and a practical

source? Draw the relevant characteristics of the above sources.

Solution Refer Section 1.8.

(b) Explain the difference between active elements and passive ele-

ments with suitable examples.

Solution Refer Section 1.4.1.

(c) Determine the current through the 6-W resistor and the power sup-

plied by the current source for the circuit shown in Fig. 2.1.

3 W

21 A 2 W 3 W

6 W

Fig. 2.1

Solution Current through 6-W resistor and power supplied by the current

source

3 W

21A
I2

6 W

2 W
I4

3 W

I3I1

I1 + I2 = 21 A

I2 =
21 5

7

¥
 = 15 A

I1 = 6 A

I1 = I3 + I4 = 6 A

I4 =
6 6

9

¥
 = 4 A, I3 = 2 A

Current through 6-W resistor is = I
3
 = 2 A

I3 = 2 A
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Power supplied by the current source.

21A 2 W 6 W 1.428 W21A

Power supplied by current source = Power consumed in the resistor.

= I 2 R = (21)2 ¥ 1.428

P = 629.748 w

2. (a) Solve for the currents I1 and I2 in the circuit shown in Fig. 2.1. Also,

find the ratio of V2/V1.

I1 I2

+

2 W V2

1 H

4 H

1 W 1 W

+

–

V1=10 0°

–
w = 2rad/sec

2 H

Fig. 2.2

Solution w = 2 rad/sec

J ¥ L1 = J2 W
J ¥ L2 = J(4 ¥ 2) = J8

KVL to Loop 1

M = J4

I1 (1 + J2) + (J4)I2 = V1 (1)

KVL to Loop 2

(J4) I1 + (2 + J8) I2 = 0 (2)

So the mesh equations are

(1 + J2)I1 + (J4)I2 = V1 = 10

(J4)I1 + (2 + J8)I2 = 0

1

2

1 2 4

4 2 8

IJ J

IJ J

+ È ˘È ˘
Í ˙Í ˙+Î ˚ Î ˚

 =
10

0

È ˘
Í ˙
Î ˚

I1 = 

10 4

0 2 8

J

J+
D

I2 =

1 2 10

4 0

J

J

+

D
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D =
1 2 4

4 2 8

J J

J J

+
+

 = 2 + 12i

I1 =
20 80

2 12

i

i

+
+

I2 =
– 40

2 12

i

i+

I1 = 6.75 – 0.540i I2 = – 3.243 – 0.540i

V2 = 2I2 I2 = 3.287 ––170.53° A

Ratio
2

1

V

V
 =

( )2 3.287 –170.53

10 0

¥ – ∞
– ∞

2

1

V

V
 = 0.657 ––170.537°

(b) What is magnetic circuit? Compare magnetic circuit with electric circuit

in any four aspects.

Solution Refer Sections 10.11 and 10.13.

3. (a) The voltage of a circuit is V = 200 sin (wt + 30°) and the current is

I = 50 sin (wt + 60°). Calculate

(i) the average power, reactive volt-amperes and apparent power

(ii) the circuit elements if w = 100 p rad/sec

Solution
V = 200 sin (wt + 30°)

i = 50 sin (wt + 60°)

(i) Avg. power = Vm Im cos q

=
200 50

2 2
¥  cos (60 – 30)

Pav = 4330.127 W

Reactive volt ampere = Vm Im sin q

=
200 50

2 2
◊  sin (60 – 30)

Pr = 2500 VAR

Apparent power = 
cos

avP

q
 = 

4330.127

cos 30∞
 = 5000 VA

(ii) The current leads the voltage by 30°. Hence the circuit must con-

tain R and C.

tan q =
1

RCw
fi tan 30° = 

1

100 RCp ¥

30°

I

60°

V

q

Pav

Pa
Pr
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fi RC = 0.0055 fi C = 
0.0055

R

Z =
m

m

V

I
 = 

2

2 1
R

cw

Ê ˆ+ Á ˜Ë ¯

200

50
 =

2
2

100 0.0055

R
R

p

Ê ˆ+ Á ˜¥Ë ¯

4 = 1.155 R fi R = 
4

1.155
 = 3.46 W

and C =
0.0055

3.46
 = 1.59 mF

(i) Voltage V = 200 sin (wt + 30°)

I = 50 sin (wt + 60°)

V =
200

30
2

– ∞

I =
50

60
2

– ∞

V

30

I

60°

f

1. Average power

Pavg = V I cos f

=
200 50

2 2
¥  cos (30°)

Pavg =
8660.25

2

w
 = 4330.12 w

2. Reactive volt amperes

q =
2 2

V I
 sin f

q =
500

2

w
 = 2500 w
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3. Apparent power

= Vrms ¥ Irms = 
200 50

2 2
¥  = 5000 VA

(ii) w = 100 p r/sec

Average power = i2 R

= 4330.12 watts

\ i =
50

2

\ R =
4330.12 2

2500

¥
 = 3.464 W

If the circuit is assumed as a series circuit by inspection of voltage and current

equations, current leads the voltage by 30°. Hence it is an RC circuit.

tan 30° =
1

CRw

\ C =
1

0.5773 100 3.464p¥ ¥ ¥
= 1.59 mH

(b) Find the form factor of the following waveform shown in Fig. 2.3.

V1

0

–V1

p/3 2p/3

p 4 3p/ 5 3p/

2p t

V t( )

Fig. 2.3

Solution From 0 to p/3, V = 13V

p
t

From p/3 to 2p/3, V = V1

From 2p /3 to p, V = 3V1 –
13V

p
t

Form factor = rms

avg

V

V
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V1

0 p /3 2p /3 p

Vavg = ( )
0

1
T

V t dt
T Ú

=

/3 2 /3

1 1
1 1

0 /3 2 /3

3 31
3

V V
t dt V dt V t dt

p p p

p p
p p p

È ˘
Í ˙+ + -
Í ˙
Î ˚
Ú Ú Ú

=
2

21 1
1 1

3 31 1 2 2 1 4
3

3 2 3 3 3 2 9

V V
V V

p p p p p
p p

p p p

È ˘È ˘Ê ˆ Ê ˆ Ê ˆ◊ + - + - - ◊ -Í ˙Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Î ˚Î ˚

= 1 1
1 1

1 5

6 3 6

V V
V Vp p p

p

È ˘
◊ + + ◊ -Í ˙Î ˚

 = 1

2

3
V

Vrms = ( )[ ]21 T

o
V t dt

T Ú

= ( )
2 2

/3 2 /3 21 1
1 1

/3 2 /3

3 31
3

o

V V
t dt V dt V t dt

p p p

p pp p p

È ˘Ê ˆ Ê ˆÍ ˙+ + -Á ˜ Á ˜Ë ¯ Ë ¯Î ˚Ú Ú Ú

=

2 /32 2/3
2 2 2 21 1 1

1 12 2

/3 2 /3

9 9 181
9

o

V V V
t dt V dt V t t dt

p p
p

p p
p pp p

È ˘
Í ˙+ + + -
Í ˙
Î ˚
Ú Ú Ú

=

32
2 21

1 12

91 1 2 2
9

3 3 3 3 3

V
Sqrt V V

p p p p
p

p p

Ï È Ê ˆ Ê ˆ Ê ˆÔ ◊ ◊ + - + -ÍÌ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ÎÔÓ

2 3 2
3 21 1

2

9 181 8 1 4

3 27 2 9

V Vp p
p p

pp

¸˘Ê ˆ Ê ˆ Ô+ ◊ - - ◊ - ˙˝Á ˜ Á ˜Ë ¯ Ë ¯ ˚Ǫ̂

=
2 2 23 3 2

2 21 1 1
1 12 2

9 3 91 1 19 5
9

3 27 3 3 27 9

V V V
V V

p p p p p

p pp p

È ˘
◊ ◊ + ◊ + ◊ + ◊ - ◊Í ˙

Î ˚

=
2 2 2 2 2

1 1 1 1 1

1 19
3 5

9 3 9
V V V V V

p p
p p p

p

È ˘+ + + -Í ˙Î ˚



Appendix G G.19

=
2

1

5

9
V  = 

5

3
V1

from factor = rms

avg

V

V

=
1

1

5

3
2

3

V

V

 = 
5

2
 = 1.12

4. (a) Two wattmeters are used to measure power in a 3-phase three wire

load. Determine the total power, power factor and reactive power, if the

two wattmeters read

(i) 1000 W each, both positive

(ii) 1000 W each, but of opposite sign

Solution Let the wattmeter readings be

P1 = 1000 W

and P2 = 100 W

(i) Total active power = P1 + P2

= 1000 + 1000

= 2000 W

Power factor angle be j

tan j =
1 2

1 2

3
P P

P P

-
+

=
1000 1000

3
1000 100

-
+

= 0

\ cos j = cos 0 = 1

Reactive power = 3  (P
1

– P
2
)

= 3  (1000 – 1000) = 0

(ii) P1 = 100 W P2 = – 1000 W

Total power = P1 + P2

= 1000 – 1000 = 0

tan j =
1 2

1 2

3
P P

P P

-
+

=
1000 1000

3
1000 100

+
-

 = •

j = 90°

Power factor = cos j = cos 90 = 0
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Reactive power = 3  (P
1
– P

2
)

= 3  (1000 + 1000) = 3464.1 VAR

(b) What is phase sequence? Explain its significance.

Solution Refer Section 9.4

(c) What are the advantages of a polyphase system over a single-phase sys-

tem?

Solution Refer Section 9.2.

5. (a) Draw the oriented graph of the network shown in Fig. 2.4.

4

4

7

6

5

1 2 3

2 31

5

Fig. 2.4

Solution The graph represented in Fig. 5(a) itself represents the oriented

graph in which (1)-(5) are nodes and 1-7 are branches.

5
1

4

4

32

2

5

1

7

6

3

Oriental graph

(b) Obtain the fundamental loop and fundamental cut-set matrices for the

graph shown in Fig. 2.5.
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E
+

r2
C1

C2

L

r1

Fig. 2.5

Solution For the given graph, an arbitrary tree is chosen for which the no. of

nodes n = 5

No. of branches b = 7

No. of tree branches or twigs (n – 1) = 4 (2, 5, 6, 7)

No. of link branches l = b – (n – 1)

= 3(1, 3, 4)

5
1

4

4

32

2

5

1

7

6

3

Tree

For a given tree of a graph, addition of each link between any two nodes

towns a loop called the fundamental loop. (f-loop) or a tie-set. By adding

links 1, 3 and 4, we can form three fundamental loops as shown in the figure.

By convention, a fundamental loop is marked with the same orientation as its

defining link current.

5

5
1 1 1

4 4

5

3 3 32 2 2

2 2

6

5 5

4

1

7

3

6

4

Link 1 Link 3 Link 4
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Tie-sets

Tie-set schedule (Fundamental loop matrix)

Branch No

Link no 1 2 3 4 5 6 7

1 1 –1 0 0 –1 0 0

3 0 –1 1 0 0 –1 1

4 0 0 0 1 1 –1 0

Cut-set

Consider the tree of the graph shown in Fig. 2.4 with 5 nodes  1 – 5 and

four tree branches.

6

4

2

7

2

5

3
1

5

The following are the fundamental cut-sets

1

5

2

2

2

1

3

3

5

4

4

35

1

4

3

2 5
6

7
3

1

3
3

1

4

4

4 2 1 5

f-cut set corresponding to twig 2; C1 = {1, 2, 3}

f-cut set corresponding to twig 5; C2 = {1, 4, 5}

f-cut set corresponding to twig 6; C3 = {3, 4, 6}

f-cut set corresponding to twig 7; C4 = {3, 7}

Thus, the f-cut set matrix is given by f-cut sets.

1

2

3

4

1 2 3 4 5 6 7

1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 0 1 1 0 1 0

0 0 –1 0 0 0 1

C

C

C

C

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚



Appendix G G.23

E
r1

r2

C1

C2

L

I

+

By short circuiting voltage source and open circuiting current source, the

oriented graph can be drawn as shown.

d e

b
a c

2
1 3

4

The number of nodes are 4 and branches are five. An arbitrary tree is chosen as

shown, with twig branches as a, c, e and links as d and b.

d e

ba c

4

2
31

Tree

f-loop matrix

Branches

links

0 1 1 0 1

1 0 –1 1 –1

a b c d e

b

d

È ˘
Í ˙
Î ˚

The cut-sets are given by

C1 = {a, d}

C2 = {b, c, d}

C3 = {b, d, e}
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3

3

1

c

a
b

3

4 3 2

d

2

d

4 1

2 e

d

1 4

C1 C2 C3

f-cut set matrix

Branches

1

2

3

1 0 0 –1 0

0 –1 1 1 0

0 –1 0 1 1

a b c d e

C

C

C

È ˘
Í ˙
Í ˙
Í ˙Î ˚

6. (a) State and explain compensation theorem.

Solution Refer Section 3.6.

(b) In the network shown in Fig. 2.6, find the value of ZL so that the

power transfer from the source is maximum. Also find Pmax. [8+8]

+ 10 0° V

J24 W 12 W 21 W

ZL

J60 W
30 W 50 W

Fig. 2.6

Solution Let us remove ‘zL’. The Internal impedence of the circuit looking

through x–y is given by

zin =
( )( ) ( )21 12 24 50 30 60

21 12 24 50 30 60

J J

J J

+ +
+

+ + + +

=
563.44 63.43 3354.10 63.43

40.8 36 100 36.87

– ∞ – ∞
+

– ∞ – ∞
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= 13.81 –27.43° + 33.54 –26.56º

zin = 42.19 + J21.49 W

As per maximum power transfer theorem, z
L
 should be the complex of z

in

zL =
*
inz  = (42.19 – J21.49) W

VO.C = Vxy

Vx =
12 24

12 24 21

J

J

+
+ +

¥ 10 –0°

= 6.577 –27.43° V

Vy =
30 60

30 60 50

J

J

+
+ +

¥ 10 –0° = 6.71 –26.56°

VOC = Vx – Vy = 6.577 –27.43° – 6.71 –26.56°

= – 0.163 + J0.029

VO.C = 0.1657 –170° V

Pmax =

2

4

oc

L

V

R
 = 

( )2
0.1657

4 42.19¥
 = 0.1627 mW

Pmax = 0.1627 mw

7. Find Vc (t) at t = 0 + while the switching is done from x to y at t = 0, as

shown in Fig. 2.7.

x

– +

+
–

y

2 W

4Vc

VcIF
+

–10 V 5 W

Fig. 2.7

Solution The voltage across the capacitor at t > 0 flowing while switching is

done at t = 0 from x to y is given by VC = V0 e
–t/RC

 (t > 0)

VO = VC (0–)

R = equivalent resistance.

To find ‘R’, the capacitance is removed, all independent source are made

equal to zero and a diving point current source is applied at the capacitor

terminal.
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+

–

a

Vc 1A

4Vc

5 W

2 W

b

– +

Nodal analysis

4
1

2 5

C C CV V V+
- +  = 0

4

2 5 5

C C
C

V V
V+ +  = 1

1.5VC = 1

VC =
1

1.5
 = 0.67 V

R =
( )Volts

1

CV

A
 = 0.67 W

R = 0.67 W

So, RC = (0.67 ¥ 1) = 0.67 sec.

To find VC(0–)

Applying KVL

5I – 10 + 2I – 4VC = 0

(Capacitor acts as open circuit. So I
C
 = 0)

7I – 10 – 4VC = 0(1)

Also, – VC – 4VC + 5I = 0

I = VC (2)

From (1) and (2)

7VC – 10 – 4VC = 0

VC = 
10

V
3

 (at t = 0–) = Vo

Thus

VC = VO e–t/RC

VC =
10

3
e

–t/0.67

\ VC =
10

3
e

–1.49t
 V

+ –
a

Vc 5 W

2 W

+

–
1F+

–
+
– 10V

4Vc

I
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8. (a) Determine the ABCD parameters of the network shown in Fig. 2.8.

V1 4 W

2 W 3 W I2

6 W V2

I1

Fig. 2.8

Solution 1

1

V

I

È ˘
Í ˙
Î ˚

 = 
2

2

VA B

IC D

È ˘È ˘
Í ˙Í ˙ -Î ˚ Î ˚

2

1

2

1

2 0I

V
A

V

V
C

V
=

=

=
2

1

2

1

2 0

–

–
V

V
B

I

I
D

I
=

=

=

I2 = 0

I3 = 14

13

I
V1 = 2I1 + 9I3

V1 =
3

13
9

2
I

Ê ˆ+Á ˜Ë ¯

V2 = 6I3 (a) V1 =
31

2
I3 (b)

V2 = 6 ¥
1

4

13
I

2

6

V
 = I3

C =
1

2

I

V
 = 

13

24

12

31

V
 = I3

12

31

V
 = 1

6

V

A =
1

2

V

V
 = 

31

12

When V2 = 0
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2 W 3 W

I1

V1

+

–

I24 W

– I2 = 14

7

I

V1 = 2I1 + 
12

7
I1

D =
1

2–

I

I
 = 

7

4
V1 =

26

7
I1

V1 =
26

7
¥ – I2 ¥ 7

4

B =
1

2–

V

I
 = 

13

2

A =
31

12
B = 

13

2

C =
13

24
D = 

7

4

(b) Determine the ABCD parameters of the network shown in Fig. 2.9.

6 W

3 W 3 W 3 W

6 W 6 W

Fig. 2.9

Solution A = 

2

1

2 0I

V

V
=

B =

2

1

2 0
–

V

V

I
=

C =

2

1

2 0I

I

V
=

D =

2

1

2 0
–

V

I

I
=

I2 = 0
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1

1

V

I
 = 6.14 (1)

I
1
 = I

a
 + I

b

I
a
 = 16

12.6

I

I
a
 = 0.476 I

1
(a)

2aI  =
6

15

aI

2aI  = 0.476 ¥ 6

15
I

1

2aI  = 0.1904 I
1

(b)

V
2
 = 6I

a
2

V
2
 = 6 ¥ 0.1904I

1

V
2
 = 1.14 I

1
(c)

From (a) and (c)

1

2

V

V
 =

6.14

1.14
 = 5.37

A =
1

2

V

V
 = 5.37 C = 

1

2

I

V
 = 0.877

V
2
 = 0

3 W 3 W

V1 6 W 6 W

+

–

3 WI1

I2

Ia

I
a
 = 16

11

I
–I

2
 =

1

6 6

11 9
I¥ ¥

– I
2
 =

6

9

aI ¥
D =

1

2

I

I-
 = 2.75

V
1
 = 5.72 I

1

V
1
 = 5.72 

99

36

Ê ˆ
Á ˜Ë ¯

¥ (– I
2
)
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B =
1

2–

V

I
 = 15.75

A = 5.37 B = 15.75

C = 0.877 D = 2.75
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SET 3

1. (a) Write short notes on source transformation.

Solution Refer Section 2.15.

(b) Find the power supplied by 12 V source as shown in Fig.3.1.

12V
– +2 W6 W

1A 6 W 6 W 4 W 2 W 2 W 2A

Fig. 3.1.

Solution

1A

2A

V1 V2 V3
12V

– +
V4

6 W

6 W

6 W

2 W

4 W 2 W 2 W

The nodal equations are

1 1 21
6 6

V V V+
+ +  = 0 (1)

2 32 2 1

6 6 2

V VV V V --
+ +  = 0 (2)

3 2 3 4 4

2 4 2 2

V V V V V-
+ + +  + 2 = 0 (3)

V4 – V3 = 12 is the supernode equation

(1) fi V1

1

3

È ˘
Í ˙Î ˚

– V2

1

6

È ˘
Í ˙Î ˚

 + 1 = 0

(2) fi V1

1
–

6

È ˘
Í ˙Î ˚

 + V2

5

6

È ˘
Í ˙Î ˚

– V3
1

2

È ˘
Í ˙Î ˚

 = 0
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(3) fi V2

1

2

È ˘-Í ˙Î ˚
 + V3

3

4

È ˘
Í ˙Î ˚

 + V4 [1] + 2 = 0

1

2
- V2 + 

7

4
V3 + 12 + V3 + 2 = 0

1

2
- V2 + 

7

4
V3 + 14 = 0

fi V3 = 
2

4 1
14

7 2
V

È ˘-Í ˙Î ˚
 = 

2

7
V2 – 8 (4)

From (2), 
1

6
- V

1
 + 

5

6
V

2
– 2

1 2
8

2 7
V

È ˘-Í ˙Î ˚
 = 0

1

6
- V1 + 

5

6
V2 –

1

7
V2 + 4 = 0

V1 = 6 
2

29
4

42
V

Ï ¸+Ì ˝
Ó ˛

 = 
29

7
V2 + 24 (5)

1

3
V1 –

1

6
V2 + 1 = 0

Substitute for V
1

2

1 29 1
24

3 7 6
V

È ˘+ -Í ˙Î ˚
V2 + 1 = 0

29

21
V2 + 8 –

1

6
V2 + 1 – 0 fi V2 = 

–126

17
V

V3 = 
2

7
V2 – 8 = 

–172

17
V

V4 = V3 + 12 = 
32

17
 V

Current through 12 V source is

I = 4 4 2
2 2

V V
+ +  = 

66

17
 A

Power V
I
 = 12 ¥ 66

17
 = 

792

17
 W

(c) Draw the volt-current characteristic of practical current source.

Solution Refer Section 1.8.
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2. (a) Define the following:

(i) Self inductance

(ii) Mutual inductance

(iii) Statically induced emf

(iv) Dynamically induced emf

Solution (i) Refer Section 10.3.

(ii) Refer Section 10.3.

(iii) Statically induced emf

Emf induced in a coil due to the change of its own flux linked with it or emf

induced in one coil by the influence of the other coil is known as statically

induced emf.

(iv) Dynamically induced emf

When a conductor or a coil with certain number of turns is rotated with

a uniform speed in a magnetic field (Section 9.3), an emf is induced in

it which is known as dynamically induced emf.

(b) Derive the relationship between the self, mutual inductances and coeffi-

cient of coupling.

Solution Refer Section 10.5. m = 0.075 H; K = 

1 2L L

p
 = 0.1767

(c) Two similar coils connected in series gave a total inductance of 600 mH

and when one of the coils is reversed, the total inductance is 300 mH.

Determine the mutual inductance between the coils and coefficient of

coupling.

Solution Refer Example 10.9.

3. (a) The voltage of a circuit is v = 200 sin (wt + 30°) and the current is

i = 50 sin (wt + 60°). Calculate

(i) the average power, reactive volt-amperes and apparent power

(ii) find the circuit elements if w = 100p rad/sec

Solution
V = 200 sin (wt + 30°)

i = 50 sin (wt + 60°)

(i) Avg. power = Vm Im cos q

=
200 50

2 2
¥  cos (60 – 30)

Pav = 4330.127 W

Reactive volt amperes = Vm Im sin q

=
200 50

2 2
◊  sin (60 – 30)
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Pr = 2500 VAR

Apparent power = 
cos

avP

q
 = 

4330.127

cos 30∞
 = 5000 VA

30°

I

60°

V

q
Pav

Pa
Pr

(ii) The current leads the voltage by 30°. Hence the circuit must contain R

and C.

tan q =
1

RCw
fi tan 30° = 

1

100 RCp ¥

fi RC = 0.0055 fi C = 
0.0055

R

Z = m

m

V

I
 = 

2
2 1

R
cw

Ê ˆ+ Á ˜Ë ¯

200

50
 =

2
2

100 0.0055

R
R

p
Ê ˆ+ Á ˜¥Ë ¯

4 = 1.155 R fi R = 
4

1.155
 = 3.46 W

and C =
0.0055

3.46
 = 1.59 mF

(a) (i) Voltage V = 200 sin (wt + 30°)

I = 50 sin (wt + 60°)

V =
200 30

2

– ∞
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I =
50

60
2

– ∞

V

30

I

60°

f

1. Average power

Pavg = V I cos f

=
200 50

2 2
¥  cos (30°)

Pavg =
8660.25

2

w
 = 4330.12 w

2. Reactive volt amperes

q =
2 2

V I
 sin f

q =
5000

2

w
 = 2500 w

3. Apparent power

= Vrms ¥ Irms = 
200 50

2 2
¥  = 5000 VA

(ii) w = 100 p  r/sec

Average power = i2 R

= 4330.12 watts

\ i =
50

2

\ R =
4330.12 2

2500

¥
 = 3.464 W

If the circuit is assumed as a series circuit by inspection of voltage and current

equations, current leads the voltage by 30°. Hence it is an RC circuit.

tan 30° =
1

CRw
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\ C =
1

0.5773 100 3.464p¥ ¥ ¥

= 1.59 mH

(b) Find the form factor of the following waveform shown in Fig. 3.2.

V1

0

–V1

p/3 2p/3

p 4 3p/ 5 3p/

2p t

V t( )

Fig. 3.2

Solution From 0 to p /3, V = 13V

p
t

From p/3 to 2p /3, V = V1

From 2p /3 to p, V = 3V1 – 13V

p
t

Form factor = rms

avg

V

V

V1

0 p /3 2p /3 p

Vavg = ( )
0

1
T

V t dt
T Ú

=

/3 2 /3

1 1
1 1

0 /3 2 /3

3 31
3

V V
t dt V dt V t dt

p p p

p p
p p p

È ˘
Í ˙+ + -
Í ˙
Î ˚
Ú Ú Ú

=
2

21 1
1 1

3 31 1 2 2 1 4
3

3 2 3 3 3 2 9

V V
V V

p p p p p
p p

p p p

È ˘È ˘Ê ˆ Ê ˆ Ê ˆ◊ + - + - - ◊ -Í ˙Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Î ˚Î ˚
= 1 1

1 1

1 5

6 3 6

V V
V Vp p p

p
È ˘◊ + + ◊ -Í ˙Î ˚

 = 1

2

3
V
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Vrms = ( )[ ]21 T

o
V t dt

T Ú

= ( )
2 2

/3 2 /3
21 1

1 1
/3 2 /3

3 31
3

o

V V
t dt V dt V t dt

p p p

p pp p p

È ˘Ê ˆ Ê ˆÍ ˙+ + -Á ˜ Á ˜Ë ¯ Ë ¯Î ˚Ú Ú Ú

=

2 /32 2/3
2 2 2 21 1 1

1 12 2

/3 2 /3

9 9 181
9

o

V V V
t dt V dt V t t dt

p p
p

p p
p pp p

È ˘
Í ˙+ + + -
Í ˙
Î ˚
Ú Ú Ú

=

32
2 21

1 12

91 1 2 2
9

3 3 3 3 3

V
Sqrt V V

p p p p
p

p p

Ï È Ê ˆ Ê ˆ Ê ˆÔ ◊ ◊ + - + -ÍÌ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ÎÔÓ

2 3 2
3 21 1

2

9 181 8 1 4

3 27 2 9

V Vp p
p p

pp

¸˘Ê ˆ Ê ˆ Ô+ ◊ - - ◊ - ˙˝Á ˜ Á ˜Ë ¯ Ë ¯ ˚Ǫ̂

=
2 2 23 3 2

2 21 1 1
1 12 2

9 3 91 1 19 5
9

3 27 3 3 27 9

V V V
V V

p p p p p
p pp p

È ˘
◊ ◊ + ◊ + ◊ + ◊ - ◊Í ˙

Î ˚

=
2 2 2 2 2

1 1 1 1 1

1 19
3 5

9 3 9
V V V V V

p p
p p p

p
È ˘+ + + -Í ˙Î ˚

=
2

1

5

9
V  = 

5

3
V1

from factor = rms

avg

V

V

=
1

1

5

3
2

3

V

V

 = 
5

2
 = 1.12

4. (a) The power delivered to a balanced delta connected load by a 400 volt

3-phase supply is measured by a two-wattmeter method. If the readings

of the two wattmeters are 2000 and 1500 watts respectively, calculate the

magnitude of the impedance in each arm of the delta load and its resistive

component.

Solution Power consumed = W1 + W2

= 2000 + 1500

= 3500 W

P = 3 VL IL cos j
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tan j = 3 ◊ 1 2

1 2

P P

P P

-
+

= 3  ◊ 
2000 1500

2000 1500

-
+

 = 0.247

cos j = 0.97

P = 3500 = 3 ¥ 400 ¥ IL ¥ 0.97

IL = 5.2 A

Impedance Zph =
ph

ph

V

I
 = 

400

5.2

3

 = 133 W

RPh = Zph cos j = 133 ¥ 0.97 = 129 W

(b) A balanced delta connected load of (2 + j3) W per phase is connected to

a balanced three-phase 440 V supply. The phase current is 10 A. Find

the

[8 + 8]

(i) total active power

(ii) reactive power

(iii) apparent power in the circuit

Solution Z = 2 + j3

z =
2 22 3+  = 3.6 56.3∞ W

cos j =
ph

ph

R

Z
 = 

2

3.6
 = 0.55

sin j = 0.83

IL = 3 Iph = 3 ¥ 10 = 17.32 A

(i) Active power = 3 VL IL cos j

= 3 ¥ 440 ¥ 17.32 ¥ 0.55 = 7259.78 W

(ii) Reactive power = 3  VL IL sin j

= 3 ¥ 440 ¥ 17.32 ¥ 0.83 = 10955.67 VAR

(iii) Apparent power = 3 VL IL

= 3 ¥ 400 ¥ 17.32 = 13199.61 VA
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5. (a) Draw the dual of the network shown in Fig. 3.3.

R2

L2

C1

R1

v1

S

Fig. 3.3

Solution

J1
1 2

R2

C1

R1

L1
V1

+
G1

L1

G2 C1

Dual

(b) Find the current through Z2 in the network shown in Fig. 3.4 using mesh

analysis. [6 + 10]

10 W

j2 W

500∞

ZL = 2 + j4

+
5 W

j2 W

Fig. 3.4

Solution Let the current through ZL be I1 and in the left loop be I2, and in the

right loop be I3.

The mesh equations are

I1(2 + j4) + 10(J1 – I3) + 5(I1 – I2) = 0 (1)

5(I2 – I1) + 50 + j2 (I2) = 0 (2)

10(I3 – I1) + j2 (I3) – 50 = 0 (3)

(1) fi I1(2 + 10 + 5 + j4) – I2(5) – I3(10) = 0 (6)

(2) fi I1(–5) + I2(5 + j2) + 50 = 0

I2 = 
1

5 2j+
 [5I1 – 50] (4)

(3)   fi I1(– 10) + I3(10 + j2) – 50 = 0
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I3 =
1

10 2j+
 [50 + 10 I1] (5)

Substitute (4) and (5) in (6)

I1(17 + j4) –
5

5 2j+
 (5I1 – 50) –

10

10 2j+
 (50 + 10I1) = 0

I1

25 100 250 500
17 4

5 2 10 2 5 2 10 2
j

j j j j

È ˘+ - - + -Í ˙+ + + +Î ˚
 = 0

fi I1 = 1.104 168.79∞  A

Hence the current through ZL is 1.104 A.

6. (a) State and explain reciprocity theorem.

Solution Refer Section 3.5.

(b) Find the current i in the circuit shown in Fig. 3.5 using superposition theo-

rem.

+
–

6 W

10 V
2A

– +

2vx –

+

vx 2 W

i

Fig. 3.5

Solution 6i1 – 2Vx – Vx = 10

i2 = – 2A

Vx = – 2(i1 – i2)

= – 2i1 – 4

2Vx

2 W

+–
6 W

i2

2Ai1
Vx

–

+

6i1 – 3Vx = 0 fi 6i1 – 3(– 2i1 – 4) = 0

6i1 + 6i1 + 12 = 0 fi i1 = – 1 A

– 10 + 6i1 – 2Vx – Vx = 0

Vx = – 2i1
1
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2Vx

2 W

+–
6 W

i1
Vx

–

+
+

–
10V

– 10 + 6i1
1

– 3Vx = 0 fi – 10 + 6i1
1
  + 6i1

1
  = 0 fi i1

1
  = 5/6

i = i1 + i1
1
  = – 1 + 5/6 = – 1/6 A

7. (a) A dc voltage of 100 V is applied in the circuit shown in Fig. 3.6 and

the witch is kept open. The switch K is closed at t = 0. Find the complete

expression for the current.

+
100 V

20 W 10 W

0.1 H

Fig. 3.6

Solution

4.8 W

at t = 0

0.1 H
i

100 V

20 W

The current equation is

0.1
di

dt
 + 20i =100

di

dt
 + 200i = 1000

(D + 200)i = 1000

The solution is

i = C1 e
– 200t

 + e
– 200t Ú 1000 e

200t
dt

= C1 e – 200t + 5

At t = 0
–
 the current is i(0

–
) = 

100

20 10+
 = 3.33 A
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Inductor does not allow sudden changes in current. Hence, i(0+) = 3.33 A

3.33 = C1 e – 200(0) + 5 fi C1 = – 1.67

Hence the complete expression for current is

i = – 1.67 e – 200t + 5 A.

(b) A dc voltage of 20 V is applied in an RL circuit where R = 5 W and L = 10

H. Find [8 + 8]

(i) the time constant

(ii) the maximum value of stored energy

Solution

10 H

5 W

20 V

(i) Time constant = 
L

R

=
10

2
5

s=

(ii) Max. value of stored energy = 
2

2

Li

Inductor acts as short circuit to dc

Hence, i =
20

5
 = 4 A

W =
1

2
Li2 = 

1

2
¥ 10 ¥ 42 = 80 Joules.

8. (a) In a T-network shown in Fig. 3.7, Z1 = 2 0∞ , Z2 = 5 –90∞ , Z3 = 3

90∞ , find the Z-parameters.

I1 I2

V1 V2

Z1

+

Z1 Z2

Z3

+

–

Fig. 3.7
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Solution

I1 I2

V1 V2
Z3

Z1 Z2

Z1 = 2 0∞  = 2 W

Z2 = 5 90- ∞ = – j5 W

Z3 = 3 90∞  = j3 W

The mesh equations are

– V1 + I1 Z1 + Z3(I1 + I2) = 0 (1)

– V2 + I2 Z2 + Z3(I1 + I2) = 0 (2)

(1)  fi V1 = I1(Z1 + Z3) + I2 Z3

(2)  fi V2 = I1 Z3 + I2(Z2 + Z3)

Z11 = Z1 + Z3 = 2 + j3 W

Z12 = Z3 = j3 W

Z21 = Z3 = j3 W

Z22 = Z2 + Z3 = –j5 + j3 = – j2 W

(b) Z-parameters for a two-port network are given as Z11 = 25 W, Z12 =

Z21 = 20 W, Z22 = 50 W. Find the equivalent T-network. [8 + 8]

Solution Given Z11 = 25 W; Z12 = Z21 = 20 W; Z22 = 50 W

The equivalent T-network is shown in the figure.

I2

Zc

Za Zb

Za = Z11 – Z21 = 5 W
Zb = Z22 – Z12 = 30 W
Zc = Z12 – Z21 = 20 W
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SET 4

1. (a) For the circuit shown in Fig. 4.1, find the current through the 20 W
resistor.

L2

– +

15 W

20 W

75 W 15 W

50 W10 W

I

Fig. 4.1

Solution

10 V

75 W

50 W

15 W

II1

20 W

– +

I2

I3

15V

Let I
1

I
2

I
3
 be the currents in the meshes. The mesh equations are

10 = 75 I1 + 20(I1 – I2) (1)

15 = 50 I2 + 20(I2 – I1) (2)

0 = 15 I3 (3)

From (3), current I
3
 = 0

From (2), 20I
1
 – 70 I

2
 + 15 = 0
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fi I2 = 
1

70
 (20 I1 + 15) (4)

From (1) 95I
1
– 20I

2
– 10 = 0 (5)

Substitute (4) in (5)

95 I1 – 20 . 
1

70
 (20 I1 + 15) – 10 = 0

95 I1 –
40

7
I1 –

30

7
– 10 = 0

fi I1 = 0.16 A

I2 = 
1

70
 [20 ¥ 0.16 + 15] = 0.26 A

I = I1 – I2 = 0.16 – 0.26 = – 0.1 A

(b) Reduce the network shown in Fig. 4.2 to a single loop network by suc-
cessive source transformation to obtain the current in the 12-W resistor.

[8 + 8]

+ –

+

–
180 VI

12 W

30 V

4 W45 A

2 W

24 W 15 A

Fig. 4.2

Solution
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15A45A

30V
– +

12 W
4 W

2 W

I

24 W

180 W
–

+

45A

45A

45A

30A

22.5 A

30V
+ –

12 W

12 W

12 W

12 W

12 W

6 W

6 W

2 W

I

I

I

I

I

I

I

I

24 W

24 W

24 W

24 W

24 W

24 W

24 W

4.8 W

180V

180V

180V

180V

–

–

–

–

+

+

+

+

15×4=60V

4 W

+ +

– –

90V

6 W

90

6
=15A

12 W

12 W

12 W

6 W

6 W

(a)

(c)

(e)

(g)

(b)

(d)

(f )

(h)

180

24
=7.5A

30 A

6 W 22.5 A 22.5 A
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I

4.8 W

12 W

(i)

108 V
–

+

The current I in the 12-W resistor is

I =
108

12 4.8+

= 6.428 A

2. (a) Explain Faraday’s Law of electromagnetic induction.

Solution Refer Section 1.6.

First law Whenever the magnetic flux linked with a circuit changes, an 
emf is always induced in it.

Second law The magnitude of the induced emf is equal to the rate of  change
of flux linkage.

(b) A cast steel ring has a circular cross section 3 cm in diameter and a mean
circumference of 80 cm. The ring is uniformly wound with 600 turns.

(i) Estimate the current required to produce a flux of 0.5 mcob in the ring.

(ii) If a 2-mm wide saw cut is made in the ring, find approximately the flux
produced by the current found (i).

(iii) Find the current value which will give the same flux as in (i). Assume the
gap density to be the same as in the iron and neglect fringing.

Solution (i) Length of the flux path = Mean circumference

= 80 ¥ 10–2 m

A = area = 
4

p
 d2 = 

4

p
 (3 ¥ 10–2)2 = 7.068 ¥ 10–4 m2

H =
o r

B

m m
 = 

o rA

f
m m¥

f = flux = 0.5 m Wb

mo = 4p ¥ 10–7

mr = 600 for cast steel iron

H =
–3

4 7

0.5 10

7.068 10 ð 10 60
- -

¥

¥ ¥ ¥ ¥

= 9382.36
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mmf = H ¥ l

= 9382.36 ¥ 80 ¥ 10–2

= 7505.89 AT

N = no. of turns = 600

\ exciting current =
mmf

N

=
7505 . 89

600

= 12.5 A

\ i = 12.5 A1

(ii) Reluctance = 
o r

l

Ap p
 = 

12

17 4

80 10

4 10 600 7.068 10p

-

- -

¥

¥ ¥ ¥ ¥

= 1.500 ¥ 106
A/Wb

Reluctance of air gap = 
1

o Am

=
–3

–7 –4

3 10

4 10 7.068 10p

¥

¥ ¥ ¥

= 2.25 ¥ 106 A/Wb

Total reluctance = (1.5 + 2.25)106

= 3.75 ¥ 106 A/Wb

mmf = j ¥ reluctance

j =
6

7505.89

3.75 10¥
 = 2 mWb

(iii) For j = 0.5 mWb

Total reluctance = 3.75 ¥ 106 A/Wb

mmf = j ¥ reluctance

= 0.5 ¥ 10–3 ¥ 3.75 ¥ 106

= 1.875 ¥ 103

= 1875 AT

Exciting current =
.

mmf

no of turns

no. of turns = 600

\ exciting current =
1875

600
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= 3.125 A.

3. (a) What is the form factor of an alternating quantity? Explain its signifi-
cance.

Solution Refer Section 4.4.6.

It is useful to find the rms values of the alternating quantities from the
average values.

(b) In the circuit shown in Fig. 4.3, what 50-Hz voltage is to be applied
across A B terminals so that a current of 10 A will flow in the capacitor.

5 W 0.0191 F

8 W 0.0318 H

398 Fm7 W

A B

Figure 4.3

Solution

Z1
8 W 0.0318 H

Z3

7 W 398mf

Z2

5 W 0.0191 H

BA

Z1 = 5 + j2p ¥ 50 ¥ 0.0191 = 5 + j6 W

Z2 = 7 + 
1

2 50 398j p m¥ ¥
 = 7 - j8 W

Z3 = 8 + j2p ¥ 50 ¥ 0.0318 = 8 + j10 W

Given that current through the capacitor is 10 A = I
2
. Hence voltage across Z

2
 is

V1 = 10 ¥ Z2

= 10 (7 – j8) = 70 – j80 V

The current through the other branch is

I1 =
1

1

V

z

=
70 80

5 6

j

j

-
+

 = – 2.13 – j13.44 A

Total current in the network is
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I = I1 + I2

= – 2.13 – j13.44 + 10

= 7.87 – j13.44 A

Let V
2
 be the voltage across Z

3
.

V2 = I Z3

= (7.87 – j13.44) (8 + j10)

= 197.38 – j28.85 V

The voltage to be applied across AB terminals so that a current of 10 A will flow in the
capacitor is V = V

1
 + V

2

= 70 – j80 + 197.38 – j28.85

= 267.38 – j108.85

= 288.68 22.15- ∞  V.

4. (a) Two wattmeters are used to measure power in a 3-phase three wire
load. Determine the total power, power factor and reactive power if the
two wattmeters read

(i) 1000 W each, both positive

(ii) 1000 W each, but of opposite sign

Solution Let the wattmeter readings be

P1 = 1000 W
and P2 = 1000 W

(i) Total active power = P1 + P2

= 1000 + 1000
= 2000 W

Power factor angle be j

tan j = 3  ◊ 1 2

1 2

P P

P P

-
+

= 3  ◊
1000 1000

1000 100

-
+

= 0
\ cos j = cos 0 = 1

Reactive power = 3  (P
1

– P
2
)

= 3  (1000 – 1000) = 0

(ii) P1 = 1000 W P2 = – 1000 W

Total power = P1 + P2

=1000 – 1000 = 0
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tan j = 3 ◊ 1 2

1 2

P P

P P

-
+

= 3  ◊ 
1000 1000

1000 100

+
-

 = •

j = 90°
Power factor = cos j = cos 90 = 0

Reactive power = 3  (P
1

– P
2
)

= 3  (1000 + 1000) = 3464.1 VAR

(b) What is phase sequence? Explain its significance.

Solution Refer Section 9.4.

(c) What are the advantages of a polyphase system over a singlephase
system?

Solution Refer Section 9.2.

5.(a) Explain the procedure for obtaining fundamental tie-set matrix of a given
network.

Solution Refer Section 2.7.

(b) Draw the oriented graph of the network shown in Fig. 4.4 and write the
incidence matrix. [6 + 10]

r3

I2

C2

L2I1C1

v1

+

r1

r2 v2

L1

+ –

Fig. 4.4

Solution Directions of currents are arbitrarily assumed as shown in the
circuit.

r2

r3

I2

d

L2C1

+

a

L1
v2

b + –

g e

v1

r1

f

1 2 3 4

5

c e2

Ideal voltage sources and current sources do not appear in the graph of a linear
network. Ideal voltage source is represented by short circuit and an ideal current
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source is replaced by an open circuit. The nodes that appear in the graph are
numbered (1) (2) (3) (4) and (5); branches as a, b, c, d, e, f and g. The graph is as
shown in the figure.

1 2 3 4

5

b

a
g

c d

e
f

For a graph with n nodes and b branches, the order of the incidence matrix is
(n – 1) ¥ b. Choose node (5) as reference (ordatum) node for writing incidence matrix.
The required incidence matrix is given by

a b c d e f g

A

1 1 1 0 0 0 0 0

2 0 1 1 0 0 0 1

0 0 1 1 0 1 03

0 0 0 1 1 0 04

-È ˘
Í ˙-Í ˙
Í ˙- -
Í ˙

-Î ˚

○
○
○
○

6. (a) State and explain compensation theorem.

Solution Refer Section 3.6.

(b) In the network shown in Fig. 4.5, find the value of ZL so that the power
transfer from the source is maximum. Also find Pmax.

+
10 0° V

j24 W 12 W 21 W

ZL

j60 W
30 W 50 W

Fig. 4.5

Solution Let us remove ‘zL’. The Internal impedence of the circuit looking
through x–y is given by
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J24
12 W 21 W

x

J60 W
30 W 50 W

y

zin =
( )( ) ( )21 12 24 50 30 60

21 12 24 50 30 60

J J

J J

+ +
+

+ + + +

=
563.44 63.43 3354.10 63.43

40.8 36 100 36.87

– ∞ – ∞
+

– ∞ – ∞
= 13.81 –27.43° + 33.54 –26.56º

zin = 42.19 + J21.49 W
As per maximum power transfer theorem, z

L
 should be the complex of z

in

zL = *
inz  = (42.19 – J21.49) W

VO.C = Vxy

Vx =
12 24

12 24 21

J

J

+
+ +

¥ 10 –0°

= 6.577 –27.43° V

Vy =
30 60

30 60 50

J

J

+
+ +

¥ 10 –0° = 6.71

–26.56°
VOC = Vx – Vy = 6.577

–27.43° – 6.71 –26.56°

= – 0.163 + J0.029

VO.C = 0.1657 –170° V

Pmax =
2

4
oc

L

V

R
 =

( )2
0.1657

4 42.19¥
 = 0.1627 mW

Pmax = 0.1627 mw

I1 =  
10 0

12 21 24j

∞
+ +

I1 I2

j24 W

12 W

VA

21 W 50 W

30 W

j60 W

ZL

+

–

VB

10 0∞
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= 0.198 – j0.144 A

I2 =
10 0

30 50 60j

∞
+ +

= 0.08 – j0.06 A

VA = 21I1 = 21(0.198 – j0.144) V

VB = 50I2 = 50(0.08 – j0.06) V

VAB = VA – VB = 0.158 – j0.024 V

Rth =
21(12 24)

21 12 24

j

j

+
+

= 42.26 + j21.36 W

For max. power transfer, ZL = 42.26 – j21.36 W

I = AB

th L

V

R Z+
 = 

0.158 0.024

2 42.26

-
¥

j
 = 0.00187 – 0.000284 A

Pmax = I2 R = (0.00187 – j0.000284)2 ¥ 42.26 = 0.14 mW

7. (a) A dc voltage of 100 V is applied in the circuit shown in Fig. 4.6 and the
witch is kept open. The switch K is closed at t = 0. Find the complete
expression for the current.

+
100 V

20 W 10 W

0.1 H

Fig. 4.6

Solution

4.8 W

at t = 0

0.1 H
i

100 V

20 W
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The current equation is

0.1
di

dt
 + 20i =100

di

dt
 + 200i = 1000

(D + 200)i = 1000

The solution is

i = C1 e – 200t + e – 200t Ú 1000 e200t dt

= C1 e – 200t + 5

At t = 0– the current is i(0–) = 
100

20 10+
 = 3.33 A

Inductor does not allow sudden changes in current. Hence, i(0+) = 3.33 A

3.33 = C1 e – 200(0) + 5 fi C1 = – 1.67

Hence the complete expression for current is

i = – 1.67 e – 200t + 5 A.

(b) A dc voltage of 20 V is applied in an RL circuit where R = 5 W and
L = 10 H. Find

(i) the time constant
(ii) the maximum value of stored energy

Solution

10 H

5 W

20 V

(i) Time constant =
L

R

(ii) Max. value of stored energy =
2

2

Li

Inductor acts as short circuit to dc

Hence, i =
20

5
 = 4 A
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W =
1

2
Li2 = 

1

2
¥ 10 ¥ 42 = 80 Joules.

8. (a) Find the y-parameters of the network shown in Fig. 4.7.

I1 I2100 W

V1 V2
175 W

200 W

Fig. 4.7

Solution

V1
175 W

100 W I2

200 W V2

I1

The y-parameters are given by

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

The nodal equations are

I1 = 1

175

V
 + 1 2

100

V V-
(1)

I2 = 2

200

V
 + 2 1

100

V V-
(2)

(1) fi V1

1 1

175 100

È ˘
+Í ˙Î ˚

– V2

1

100

È ˘
Í ˙Î ˚

 = I1

(2) fi V1
1

100

È ˘
-Í ˙Î ˚

 + V2
1 1

200 300

È ˘
+Í ˙Î ˚

 = I2

Hence I1 = 0.0157 V1 - 0.01 V2

I2 = – 0.01 V1 + 0.00833 V2

The y – parameters are

Y11 = 0.0157 Y12 = – 0.01

Y21 = – 0.01 Y22 = 0.00833
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(b) Calculate the Z-parameters for the lattice network shown in Fig. 4.8

I1
I2 = 0

V2

Z1

Z2

Z1

V1 Z2

Fig. 4.8

Solution

8 (b) Redrawing the given circuit, we get

when I2 = 0

Z11 = 1

1I

V

Z21 = 2

1I

V

I1 = 1

1 2 1 2( ) ( )

V

Z Z Z Z+ + 

= V1 . 
1 2 1 2

1 2 1 2( )( )

Z Z Z Z

Z Z Z Z

+ + +
+ +

= V1 .

1 2
2

1 2

2( )

( )

Z Z

Z Z

+

+
 = V1 . 

1 2

2

Z Z+

Z11 = 1

1

V

I
 = 1 2

2

Z Z+

V2 = V1 . 
2

1 2

Z

Z Z+
– V1  . 1

1 2

Z

Z Z+

= V1
2 1

1 2

Z Z

Z Z

È ˘+
Í ˙+Î ˚

= 1 2

2

Z Z+
 . I1 . 2 1

1 2

Z Z

Z Z

-
+

1I2

V2

Z2 Z1

Z1 Z2

1 1
V1

1I1

V1

Z2 Z1

Z1 Z2

2 2
V2
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= 2 1

2

Z Z-
◊ I1

Z21 = 2

1

V

I
 = 2 1

2

Z Z-

When I1 = 0

Z22 = 2

2

V

I

Z12 = 1

2

V

I

V2 = I2 ◊ (Z1 + Z2) || (Z1 + Z2)

= I2 ◊ 1 2 1 2

1 2 1 2

( ) ( )Z Z Z Z

Z Z Z Z

+ +
+ + +

= I2 ◊
2

1 2

1 2

( )

2( )

Z Z

Z Z

+

+

= I2 ◊ 1 2

2

Z Z+

Z22 = 2

2

V

I
 = 1 2

2

Z Z+

V1 = V2
2 1

1 2 1 2

Z Z

Z Z Z Z

È ˘
-Í ˙+ +Î ˚

= V2 . 
2 1

1 2

Z Z

Z Z

-
+

= 1 2

2

Z Z-
 . I2 . 

2 1

1 2

Z Z

Z Z

-
+

= 2 1

2

Z Z-
 .  I2

Z12 = 1

2

V

I
 = 2 1

2

Z Z-

Hence the Z-parameters are

Z11 = 1 2

2

Z Z-
 = Z22

Z12 = 2 1

2

Z Z-
 = Z21
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1. (a) Distinguish between passive and active elements with suitable examples.

(b) Find the voltage and current source equivalent representation of the

following network across AB, as shown in Figure 1b. [6 + 10]

2 W

2 W4 V 2 A

a

b

Figure 1b

2. (a) Derive an expression for the energy stored in an inductor and a capacitor.

(b) Obtain an expression for the co-efficient of coupling. [10 + 6]

3. Obtain the rms value, average value, form factor and peak factor for a

voltage of symmetrical square shape whose amplitude is 10 V and time

period is 40 seconds. [16]

4. (a) Three identical impedances of (3 + j4)W are connected in delta. Find

an equivalent star network such that the line current is the same when

connected to the same supply.

(b) Three impedances of (7 + j4)W, (3 + j2)W and (9 + j2)W are connected

between neutral and the R, Y and B phases. The line voltage is 440 V,

Calculate

i. the line currents, and

ii. the current in the neutral wire.

iii. Find the power consumed in each phase and the total power

drawn by the circuit. [4 + 12]

5. (a) Obtain the cut-set matrix for the network, as shown in Figure 5a.
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1 W

2 W1 V 2 W 1 W

Figure 5a

(b) For the network shown in Figure 5b. Determine the power dissipated in

the 9 W resistor using mesh analysis. [6 + 10]

100 V

10 W 20 W

9 W

90 W 30 W

Figure 5b

6. (a) Using Norton’s theorem, find the current through the load impedance

ZL as shown in Figure 6a.

100 0° V–

R7

5 ohms R

B

j 10 ohms

10 ohms

z jL = 5 + 5 ohms

Figure 6a

(b) State and explain the reciprocity theorem. [10 + 6]

7. Derive an expression for the current response in R-L series circuit with a

sinusoidal source. [16]

8. Find the Y-parameters for the bridged T-network as shown in Figure 8.

[16]

1/3 1/3

1 W

2 W

Figure 8
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SOLUTION

1. (a) Passive elements are those which are capable of only receiving power.

Some passive elements like inductors and capacitors are capable of

storing a finite amount of energy.

An active element is capable of delivering an average power

greater than zero to some external device over an infinite time

interval. Ideal sources are active elements.

(b)
2 W

2 W4 V 2 A

a

b

V1

By Thevenin’s theorem

1 14

2 2

V V-
+ = 2A

V1 = 2 + 2 = 4V

Rth = 2ΩΩ2 = 1 W

1 W

4 V

RCH

Voltage equivalent circuit

By source-transformation method,

1 W
4 A

Current equivalent circuit

2. (a) Inductor

The current–voltage relation is given by

v = L
di

dt
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where V is the voltage across the inductor in volts, and i is the current

through the inductor in amperes. We can rewrite the above equations as

di =
1

L
v dt

Integrating both sides, we get

d

t

o

tÚ =

0

1
d

t

t
L Úv

i(t) – i(0) = 

0

1
d

t

t
L Ú v

i(t) = 

0

1
d

t

t
L Ú v  + i(0).

From the above equation, we note that the current in an inductor is

dependent upon the integral of the voltage across its terminals and the

initial current in the coil, i(0).

The power absorbed by the inductor is

P = vi = Li
d

d

i

t
 watts

The energy stored by the inductor is

W =

0

d

t

tÚP

=
2

0

d
d

d 2

t
i Li

t
t
¥ =Ú Li

Capacitor

The current–voltage relation is

v(t) = 

0

1
d ( )

t

o
C

+Ú i t v

where v(0) indicates the initial voltage across the capacitor from the above

equation. The voltage in a capacitor is dependent upon the integral of the

current through it, and the initial voltage across it.

The power absorbed by the capacitor is given by

P = vi = vc
d

dt

v
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The energy stored by the capacitor is

W =
d

d d
d

t t

o o

P t t
t

=Ú Ú v
vc

W = 21

2
cv

(b) The amount of coupling between the inductively coupled coils is expressed

in terms of the coefficient of coupling, which is defined as K = 
1 2

M

L L

where M = Mutual inductance between the coils

L
1
 = Self-inductance between the first coil

L
2
 = Self-inductance of the second coil

The coefficient of coupling is always less than unity, and has a maximum

value of 1. This case, for which K = 1, is called perfect coupling, when

the entire flux of one coil links the other. The greater the coefficient of

coupling between two coils, the greater the mutual inductance between

them and vice-versa.

For a pair of mutually coupled circuits, let us assume initially that i1, i2
are zero at P = 0.

i1
a

d

L1V1 V1L2

M
i2

f
c

d

Then

v1(t) = 1 2
1

d ( ) d ( )

d d

i t i t
L M

t t
+

and v2(t) = 2 1
2

d ( ) d ( )

d d

i t i t
L M

t t
+

The initial energy in the coupled circuit at t = 0 is also zero. The net

energy input to the system at time ‘t’ is given by

W(t) = 

0

t

Ú [(v1(t) i1(t) + v2(t)i2(t)]dt

substituting the values of v
1
(t) and v

2
(t) in the above equation yields, W(t)

= 1 2 2 1
1 1 2 2 1 2

d ( ) d ( ) d ( ) d ( )
( ( ) ( ) ( ( )) ( ) d

d d d d

t

o

i t i t i t i t
L i t L i t M i t i t t

t t t t

È ˘ È ˘+ + +Í ˙ Í ˙Î ˚ Î ˚Ú



6 Electrical Circuit Analysis

from which we get

W(t) = 
1

2
L1[i1(t)]2 + 

1

2
L2[i2(t)]2 + M[i1(t)i2(t)]

If one current enters a dot-marked terminal while the other leaves a dot-

marked terminal, the above equation becomes

W(t) = 
1

2
L1[i1(t)]2 + 

1

2
L2[i2(t)]2 – M[i1(t)i2(t)].

According to the definition of passivity, the net electrical energy input to

the system is non-negative. W(t) represents the energy stored within a

passive network, and it cannot be negative.

W(t) ≥ 0 for all values of i1, i2, L1, L2 or M.

The statement can be proved in the following way. If i1 and i2 both are

both positive or negative, W(t) is positive. The other condition where the

energy equation could be negative is

W(t) = 
1

2
L1[i1(t)]2 + 

1

2
L2[i2(t)]2 – M[i1(t)i2(t)]

The above equation can be rearranged as

W(t) = 

2
2

2
1 1 2 2 2

11

1 1
– –

2 2

M M
L i i L i

LL

Ê ˆ Ê ˆ
+Á ˜ Á ˜Ë ¯Ë ¯

L2 –
2

1

M

L
≥ 0

2
1 2

1

L L M

L

-
≥ 0

L1L2 – M2 ≥ 0

fi M £ 1 2L L

Coefficient of coupling for the coupled circuit

K =
1 2

M

L L

The coefficient K is a non-negative number.

3. (a) 

10 V

40 seconds

Max voltage, vp = 10 V
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RMS value

Vrms = 21
( ) d

T

o

t t
T Ú v

=

40

21
( ) d

40
o

t tÚ v

=

20 40

2 2

20

1
10 d 10 d

40
o

t t
È ˘
Í ˙+
Í ˙Î ˚
Ú Ú

Vrms =
1

[100 20 100 20]
40

¥ + ¥  = 10V

Average value

Vavg =
1

( )d

T

o

t t
T Ú v

=

20
1 1

10 d 20 10
20 20

o

t = ¥ ¥Ú
Vavg = 10V

Form factor

F = rms

avg

10
1

10

V

V
= =

Peak factor = 
rms

10
1

10

pV

V
= =

4. (a)

Z jR = 3 + 4 3 + 4j = ZY

3 + 4j = ZB

ZRY

ZYBZBR

Z Z ZRY R Y=

Z + Z + ZR Y B

Z Z ZYB Y B=

Z + Z + ZR Y B

Z Z ZBR R B=

Z + Z + ZR Y B

ZRY =
(3 4) (3 4)

3 4 3 4 3 4

j j

j j j

+ +
+ + + + +
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=

2(3 4) 3 4

3(3 4) 3

j j

j

+ +=
+

ZYB = ZBY = 3 4

3

j+

(b)

(7 + 4)j W

(9 + 2)j W(3 + 2)j W

(i) I1 = 
440 0 440 0

54.59 – 29.74amps
7 4 8.06 29.74j

= =
+

 amps = 47.39 – j27.08

I2 = 
440 120 440 120

3 2 3.6 33.69j

∞ ∞=
+ ∞

 = 122.22 86.31∞  amps = 7.86 + j121.96

I3 = 
440 240 440 240

9 2 9.21 12.152j

∞ ∞=
+ ∞

 = 47.77 227.48∞  amps = – 32.28 – j35.2

(ii) The current in the neutral wire is zero.

(iii) P1 = 3 ¥ 54.59 – 29.74∞ ¥ 440

= 41603.16 – 29.74∞  = 36123.41 –j20637.37 watt

P2 = 3 ¥ 122.22 86.31 ¥ 440

= 93144.14 86.31 = 5994.58 + j92951.103 watt

P3 = 3  47.77 227.48∞ ¥ 440

= 36405.62 227.48∞  = – 24604.64 – j26832.45

Total power = P1 + P2 + P3 = 17513.35 + j45480.71

5. (a) A B

C

4

2
1

3
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Cutset, Ca : (1, 4)

Cutset, Cb : (1,2,3)

Cutset, Cc : (1,2,3)

1 W

2 W1 A 2 W 1 W

Ca: i1 + i4 = 0

Cb: i2 + i3 – i4 = 0

Cc: i1 + i2 + i3 = 0

1

2

3

4

1 2 3 4

1 0 0 1

0 1 1 1

1 1 1 0

i

i

i

i

È ˘
È ˘ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙Î ˚

Î ˚

 = 

0

0

0

0

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

(b)

10 W 20 W

90 W 30 W

9 Wi2

i3

i1
100 V

+

–

10 W 20 W

90 W 30 W

9 W

By applying mesh analysis, the equations obtained are

100 = 10(i1 – i2) + 90(i1 – i3)

fi 100i1 – 10i2 – 90i3 = 100 (1)

9i2 – 10i1 – 9i3 = 0 (2)

9i3 – 90i1 – 9i2 = 0 (3)

On solving the three equations

i1 = 3.3 A

i2 = 1.4 A

i3 = 2.4 A
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Power dissipated in the 9-W resistor is

(i2 – i3)2 ¥ R = (2.4 – 1.4)2 ¥ 9 = 9 W

6. (a) 

100 0° V–

5 W

j 10 W

10 W

Z jL = 5 + 5 W

By using Norton’s theorem, for the short-circuit current

100 0° V–

5 W

j 10 W

10 W

Isc

Isc =
100 0

5

∞

= 20 0∞  A

For resistance, R
N
 = 5ΩΩ(10 + j10)

=
5(10 10)

15 10

j

j

+
+

=
5 10 45 2

18 33.69

¥ ∞ ¥
∞

RN = 3.93 11.31∞ W

5 W

j 10 W

10 W

(b) In any linear bilateral network, if a single voltage source Va in branch ‘a’

produces a current Ib in branch ‘b’ then if the voltage source Va is re-
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moved and inserted in branch ‘b’, it will produces a current Ib in branch

‘a’. The ratio of response to excitation is the same for the two conditions.

This is called the reciprocity theorem.

V

A

A¢

N.W. V

B

B¢

A

A¢

B

B¢

I I N.W.

The application of voltage V across A – A’ produces current I at B – B’,

the resultant current I will be at A – A’. According to the reciprocity

theorem, the ratio of response to excitation is same in both the cases.

7.

V tcos ( + )w q

S

R

L

i

Consider a circuit consisting of resistance and inductance as shown in

the figure. The switch S is closed at t = 0. At t = 0, a sinusoidal voltage V

cos (wt + q) is applied to the series R – L circuit, where V is the amplitude

of the wave and q is the phase angle. Application of Kirchhoff’s voltage

law to the circuit results,

V cos (w t + q) = Ri + L
d

d

i

t

\ d

d

i R
i

t L
+ =

V

L
 cos (w t + q)

The characteristic equation is

R
D i

L

Ê ˆ+Á ˜Ë ¯
=

V

L
 cos (w t + q)

The complementary function of the solution is

ic = ce– t(R/L)

Particular solution, i
p
 = A cos (w t + q) + B sin (w t + q)

ip¢ = – Aw  sin (w t + q) + Bw  cos (w t + q)

{– Aw  sin (w t + q) + Bw  cos (w t + q)} + 
R

L
{A cos (w t + q) + B sin

(w t + q)} = 
V

L
 cos (w t + q)
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(or) –
BR

A
L

w
Ê ˆ+Á ˜Ë ¯

sin (wt + q) + 
AR

B
L

w
Ê ˆ+Á ˜Ë ¯

 cos (w t + q) = 
V

L
 cos (wt + q)

Comparing cosine terms and sine terms,

– Aw  + 
BR

L
= 0

Bw  + 
AR

L
=

V

L

On solving,

A = V . 2 2
( )

R

R Lw+

B = V . 2 2
( )

L

R L

w

w+
.

\ ip = V . 2 2
( )

R

R Lw+
 cos (w t + q) + V . 2 2

( )

L

R L

w

w+
 sin

(w t + q)

Putting M cos f = 2 2
( )

VR

R Lw+

M sin f = V . 2 2
( )

L

R L

w

w+

To find M and f,

sin

cos

M

M

f

f
= tan f = 

L

R

w
.

Squaring both sides,

M2 cos2 f + M2 sin2 f =

2

2 2( )

V

R Lw+

fi M =
2 2

( )

V

R Lw+

ip =
2 2

( )

V

R Lw+
 cos –1– tan

L
t

R

w
w q
Ê ˆ+Á ˜Ë ¯

i = ic + ip

i = ce– t (RL) + 
2 2

( )

V

R Lw+
 cos

–1– tan
L

t
R

w
w q
Ê ˆ+Á ˜Ë ¯
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\ The inductor does not allow sudden changes in the current at t = 0, i = 0.

C = –
– 1

2 2
cos tan

( )

V L

RR L

w
q

w

Ê ˆ-Á ˜Ë ¯+
Compete solution is

i = e
–(R/L)t – 1

2 2

–
cos tan

( )

V L

RR L

w
q

w

È ˘Ê ˆÍ ˙-Á ˜Ë ¯Í ˙+Î ˚

– 1

2 2
cos tan .

( )

V L
t

RR L

w
w q

w

Ê ˆÊ ˆ+ - Á ˜Á ˜Ë ¯Ë ¯+
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1. (a) A bridge network ABCD is arranged as follows:

Resistance between terminals AB, BC, CD, DA and BD are 10 ohms,

30 ohms, 15 ohms, 20 ohms and 40 ohms respectively. A 4 V battery

is connected with negligible internal resistance between terminals A

and C. Determine the current through each element in the network

using network reduction techniques.

(b) Three equal resistance are available. Find
i. two ratios of the equivalent resistances when they are connected

in parallel, and
ii. the ratio of the current through each elements when they are con-

nected in parallel. [10 + 6]

2. A non-magnetic ring having a mean diameter of 30 cm and a cross-sec-

tional area of 4 cm2 is uniformly wound with two coils A and B one over

the other. A has 100 turns and B has 250 turns. Calculate the mutual

inductance between the coils. Also, calculate the emf induced in B when

a current of 6 A in A is reversed in 0.02 seconds. Derive the formulae used.

3. Define form factor and peak factor of an alternating quantity. Calculate

the average and rms value, the form factor and peak factor of a periodic

current having the following values for equal time intervals, changing

suddenly from one value to next: 0, 40, 60, 80, 100, 80, 60, 40, 0, – 40,

– 60, – 80 A. [16]

4. (a) Three identical impedances of (3 + j4)W are connected in delta. Find

an equivalent star network such that the line current is the same when

connected to the same supply.

(b) Three impedance of (7 + i4)W, (3 + j2)W and (9 + j2)W are connected

between neutral and the R, Y and B phases. The line voltages is 440 V,

Calculate

i. the line currents, and

ii. the current in the neutral wire.

iii. Find the power consumed in each phase and the total power drawn

by the circuit. [4 + 2]
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5. (a) For the network shown in Figure 5a draw the oriented graph and frame

the cut-set matrix.

5 W

5 W10 A 5 W 10 W

Figure 5a

(b) Compute node voltages for the circuit as shown in Figure 5 b.

[6 + 10]

5

10
25 A

2

V1 V2

5 A

10 V
+

–

6 A

Figure 5b

6. (a) Find the value of RL so that maximum power is delivered to the load

resistance RL as shown in Figure 6a, and find the maximum power.

5 ohms

100 V

10 ohms

5 ohms 20 ohms RL

Figure 6a

(b) State and explain Thevenin’s theorem. [8 + 8]

7. Derive the expression for the transient response of RLC series circuit

with unit step unit. [16]

8. Find the Z and transmission parameters for the resistances n/w shown in

Figure 7. [8 + 8]
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1

2 W

1 W 2 W

2

2¢1¢

Figure 7
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SOLUTION

1. (a)

4 V

20 W 10 W

15 W 30 W

40 W
D B

A

C

4 V

i2

L

i3

20 W 10 W

30 W15 W
40 W

i1

4 V = 35 i1 – 20 i2 – 15 i3
(20 + 10 + 40)i2 – 40 i3 – 20 i1 = 0

(15 + 40 + 30)i3 – 40 i2 = 0

By solving, we get

i1 = 0.22 A

i2 = 0.117 A

i3 = 0.094 A

Current in the 20 W resistor = i1 – i2 = 0.103 A

10 W = i2 = 0.117 A

40 W = i2 – i3 = 0.023 A

15 W = i1 – i3 = 0.126 A

30 W = i3 = 0.094 A

When they are connected in parallel, they have the same resistance value.

So the current is divided in equal amounts.

\ the ratio of current through each element is 1 : 1 : 1

R R R

i

2. (a) M = 1 2 1 2

Reluctance 1/ o r

N N N N

Am m
=

M = 1 2 o rN N A

l

m m
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l = 0.3 Pm mr = 1 m0 = 4P ¥ 10–7

A = 4 ¥ 10–4, N1 =

–7 –4100 250 4 10 4 10

0.3p

¥ ¥ P ¥ ¥
 = 1.34 ¥ 10–6 = 1.34 mH

eB = N2

di

dt
= 250 ¥

6 6

0.2

+
 = 15 kV

Derivation

Let there be two magnetically coupled coils having N
1
 and N

2
 turns res-

pectively. The coefficient of mutual inductance between the two coils is defined

as the Weber turns in one coil due to one ampere current in the other.

Flux produced by coil one j1 = 
1 1

Reluctance

N I

of the path

= 1 1

/ o r

N I

l Am m

Flux/ampere = 1

1I

j
 = 1

1 / o r

N

l Am m

Assuming that whole of this flux is linked with the other coil having N
2
 turns,

M = 2 1 2 1

2 1

.

/ o r

N N N

I l A

j

m m
=

M = 1 2.o r A N N

l

m m
Henry

or M = 1 2

Reluctance

N N

4. (a) 

3 + 4j 3 + 4j

3 + 4j

ZRY

ZYBZBR

ZRY =
(3 4)(3 4)

3 4 3 4 3 4

j j

j j j

+ +
+ + + + +
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=
2

(3 4) 3 4

3(3 4) 3

j j

j

+ +
=

+

ZYB = ZBY = 
3 4

3

j+

(b)

(7 + 4)j W

(9 + 2)j W(3 + 2)j W

(i) I1 = 
440 0

7 4j+
 = 54.59 –29.74∞  = 47.39 – j 27.08 A

I2 = 
440 120

3 2j

∞
+

 = 122.22 86.31° = 7.86 + j 121.96 A

I3 = 
440 240

9 2j

∞
+

 = 47.77 227.48∞  = – 32.28 – j 325.20 A

(ii) The current in the neutral wire is zero.

(iii) P1 = 3 ¥ 54.59 –29.74∞ ¥ 440

= 41603.16 –29.74∞  = 36123.41 – j 20637.37 watts

P2 = 3 ¥ 122.22 86.31∞ ¥  440

= 93144.14 86.31∞  = 5994.58 + j 92951.103 watts

P3 = 3 ¥ 47.77 227.48∞ ¥ 440

= 36405.62 227.48∞  = – 24604.64 – j 26832.45 watts

Total power = P1 + P2 + P3

= 17513.35 + j 45480.71 watts

5. (a) A B

C

4

2
1

3

1 W

2 W1 A 2 W 1 W
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cutset, ca: (1, 4)

cutset, cb: (4, 2, 3)

cutset, cc: (1, 2, 3)

1

2

3

4

1 2 3 4

0
1 0 0 1

0
0 1 1 1

0
1 1 1 0

0

i

i

i

i

È ˘ È ˘
È ˘ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚

Î ˚Î ˚

ca: i1 + i4 = 0

cb: i2 + i3 – i4 = 0

cc: i1 + i2 + i3 = 0

(b)

10 W
25 A

V1 V2

5 A

10 V
+

–

6 A
2 W

5 W

1 1 2–

10 5

V V V
+  + 5 = 25

6 + 2 – 10

2

V
= 1 2–

5

V V
 + 5

fi 1 1 2–
10 5 5

V V V
+ = 20 (1)

2 2 1–
2 5 5

V V V
+ = – 1 (2)

1
2

1 1
–

5 2 5

V
V

Ê ˆ+Á ˜Ë ¯
 = 1

On solving,

V1 = 81.176 V

V2 = 21.764 V
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6. (a)

5 W

100 V RL

10 W

5 W 20 W

5

100 V

10

5 20

5

100 V 5 30

i

100 V

5 W

30 5¥

35
=

30

7
i

i =
100 100 7

30 65
5

7

¥
=

+
 = 10.769 A

5 W

100 V 5 W 30 W

i i2

i1

i2 =
5

35
i ¥  = 1.538 A
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V = 20 ¥ i2

= 20 ¥ 1.538 = 30.769 V

5 W

5 W 20 W

10 W

Req = [(5/15) + 10]//20 = 12.5//20

Req = 7.692 W

30.769 V
+
–

7.692

7.692

i

i2 =
30.769

2(7.692
 = 2 A

Power delivered to the load resistance = i
2
R

= 22 ¥ 7.692 = 30.768 W

(b) Thevenin’s theorem states that any two terminal linear networks having a

number of voltage and current sources and a resistance equal to the

equivalent circuit consisting of a single voltage source in series is a resis-

tance where the value of the voltage source is equal to the open-circuit

voltage across the two terminals of the network and the resistance is equal

to the equivalent resistance measured between the terminals. All the en-

ergy sources are replaced by their internal resistances.

Vth

Rth
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7.
R

S

1 V
+

– i

C

L

The capacitor and inductor are initially unchanged, and are in series with

a resistor. When the switch s is closed at t = 0, we can determine the

complete solution for the current. The difference equation is

1 V = Ri + L
1di

i dt
dt c

+ Ú
On differentiation,

0 = R
2

2

1di d i
L i

dt cdt
+ +

fi
2

2

1d i R di
i

L dt Lcdt
+ +  = 0

The characteristic equation is

2 1R
D D

L LC

Ê ˆ+ +Á ˜Ë ¯
 = 0

Its roots are

D1, D2 =

2
1

–
2 2

R R

L L LC

Ê ˆ± Á ˜Ë ¯

Let K1 =

2

2

– 1
,

2 2

R R
K

L L LC

Ê ˆ= -Á ˜Ë ¯

D1 = K1 + K2 and D2 = K1 – K2

K2 may be +ve, –ve or zero.

(i) K2 is +ve when 

2

2

R

L

Ê ˆ
Á ˜Ë ¯

 > 1/LC

The roots are real and unequal and

give an overdamped response.

[D – (K
1
 + K

2
)] [D – (K

1
– K

2
)]i = 0

Solution for the above equation

i = C
1

1 2( )K K t
e

+
 + C

2

1 2( )K K t
e

-

i

0
t
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(ii) K2 is –ve when 

2
1

2

R

L LC

Ê ˆ <Á ˜Ë ¯
.

The roots are complex conjugate and

give an underdamped response.

[D – (K
1
 + jK

2
)] [D – (K

1
– jK

2
)]i = 0

The solution for the above equation is

i = 1K t
e [C

1
 cos K

2
t + C

2
 sin K

2
t]

(iii) K2 is zero when 

2
1

2

R

L Lc

Ê ˆ =Á ˜Ë ¯

The roots are equal and give a critically

damped response.

(D – K
1
) (D – K

1
)i = 0

The solution of the above equation is

i = 1K t
e (C

1
 + C

2
t)

8. 2 =W Y2

1 W 2 W = Y3Y1 =

1

1¢

2

2¢

Y11 =
2

1

1 0V

I

V
=

V1 = 1

1 2

I

Y Y+
fi Y11 = Y1 + Y2

Y11 = 1 + 2 = 3 W
Y22 = Y2 + Y3 = 2 + 2 = 4 W
I1 = VY1 + (V1)Y2

I2 = – V1Y2 + Y3(0) {when V2 is short-circuited}

\ fi Y21 =
2

1

I

V
 = – Y2

= – 2 W
I1 = – V2Y2

I2 = + V2Y2 + Y3V2 {when V1 is short-circuited}

Y12 = 2

2

I

V
 = – Y2 = – 2 W

i

0 t

i

0
t
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Z-parameters

Z11 = 22 4 1

8 2

Y

Y
= = W

D
, DY

3 – 2

– 2 4
 = 8

Z12 = Z21 =
21 2 1

– –8 4

Y

Y

+
= = W

D

Z22 =
11 3

8

Y

Y
= W

D

Transmission parameters

A = 22

21

– 4

– 2

Y

Y
=  = 2

B = – 1/Y21 = 
–1 1

– 2 2
= W

C =
21

– – 8

– 2

Y

Y

D
=  = 4 �

D = 11

21

– 3 3

– 2 2

Y

Y
= =
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1. (a) A voltage of 60 V d.c. is applied across two capacitors of 100 mF.

Find the voltage sharing between them if they are connected in series.

What is the energy stored in each of the capacitors?

(b) Find the equivalent capacitance between the terminals A and B in the

circuit shown in Figure 1b. [8 + 8]

A

B

10 Fm

10 Fm
5 Fm

5 Fm5 Fm

Figure 1 b

2. The mean diameter of a steel ring is 40 cm and flux density of 0.9 wb/m2

is produced by 3500 ampere turns per meter. If the cross-section of the

ring is 15 cm2 and the number of turns is 440, calculate

(a) the exciting current,

(b) the self-inductance, and

(c) the exciting current and the inductance when an air gap of 2 cm is

cut in the ring, the flux density being the same. Ignore leakage and

fringing. [16]

3. (a) Derive an expression for the current, impedance, average power for a

series RC circuit excited by a sinusoidally alternating voltage and

also find the power factor of the circuit. Draw the phasor diagram.

(b) A series R-L series circuit having a resistance of 4 W and 3 ohms

inductive reactance is fed by a 100 V, 50 Hz, 1 – f supply. Find current,

power drawn by the circuit and power factor. [8 + 8]
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4. (a) Explain how power is measured in a three-phase delta-connected load

using two wattmeters.

(b) A balanced mesh-connected load of (8 + i6)W per phase is connected

to a 3-phase, 50 Hz, 230 V supply. Calculate
i. line current,

ii. power factor,
iii. reactive volt-ampere, and
iv. total volt-ampere [8 + 8]

5. (a) For the network shown in Figure 5a draw the oriented graph and frame

the cut-set matrix.

5 W

5 W10 A 5 W 10 W

Figure 5a

(b) Compute node voltages for the circuit as shown in Figure 5b.

[6 + 10]
5

10
25 A

2

5 A

10 V
+

–

6 A

Figure 5b

6. (a) Find the current through the branch A-B of the network shown in the

Figure 6a using Thevenins theorem.

20 0° V

A10 W

j4 W

5 W
5 W

B

Figure 6a

(b) State and explain compensation theorem. [6 + 10]

7. Derive an expression for the current response in R-L series circuit with a

sinusoidal source. [16]
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8. Find the transformed Z-parameters of the n/w shown in Figure 8. [16]

2

200 W

2¢

j400 W
1

1¢

V1 V2– 300j W

400 W300 W

Figure 8

SOLUTION
1 . (a)

Ans.

100 Fm

60 V

100 Fm

The current in a capacitor is zero. If the voltage across it is zero or constant,

the capacitor acts as an open circuit. So the total voltage appears across

the capacitor as energy stored in a capacitor

w =
1

2
Cv2

=
1

2
¥ 100 ¥ 10– 6 ¥ 602 = 0.18 J

(b) A

B

10 Fm

10 Fm
5 Fm

5 Fm5 Fm 10 Fm
5 Fm

A

B

10 Fm

10 Fm

A

B

10 Fm
5 Fm

5 Fm

10 Fm

A

B

A

B

10 Fm 20 Fm
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2. d = 40 ¥ 10–2 m Flux density (B) = 0.9 wb/m2

AT/M = 3500 Area = 15 ¥ 10–4 m2; N = 440

a. mmf = NI

where I is the exciting current and N is number of turns

Exciting current = 
mmf

N

Length of the flux path = Pd

= P ¥ 40 ¥ 10–2

= 1.2566 m

mmf = 
AT

m l¥
= 3500 ¥ Pd = 4398.22

Exciting current = 
439822

440
 = 10 A

b. Self-inductance = 
N

I

j

j = BA

L =
4. 440 0.9 15 10

10

N B A

I

-¥ ¥ ¥ ¥=

= 59.4 mH

c. mmf of air gap = j X reluctance of the gap

Reluctance of gap = 
o

l

Am

mmf = B ¥ A ¥ 
o

l

Am
 = 

o

B l

m

¥

=

–2

–7

0.9 2 10

4 10

¥ ¥
P ¥

 = 0.1432 ¥ 105

= 14320 AT

Total AT = 14320 + 4398

= 18718 AT

I =
18718

440
 = 425A

L =
– 4440 0.9 15 10

425

N

I

j ¥ ¥ ¥=  = 13.9 mH
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3. (a) Series RC circuit When a sinusoidal voltage is applied to an RC

series circuit, the current in the circuit and voltages across each of the

elements are sinusoidal.

C

Vs

R

Here, the resistor voltage and current are in-phase with each other. The

capacitor voltage lags behind the source voltage. The phase angle between the

current and capacitor voltage is always 90. The amplitudes and phase relations

between the voltages and current depend on the ohmic values of resistance and

capacitor reactance. The circuit is a series combination of both resistance and

capacitance. The phase between the current and applied voltage is in between

zero and 90, depending on the values of R and C.

V VR

I
VC

q

Current I leads V
C
 by 90° and is in phase with V

R
.

\ VS = 2 2
R CV V+

The phase angle between resistor and source voltage

q = tan
–1

(VC/VR)

I =
–

SV

R j C¥
Z = R – j ¥ C

Phasor diagrams

–90°

VR

VC

q
VR

VC
VS

VR

VC

–90°

F
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(b)
4 W 3 W

i

100 V, 50 Hz
1 supplyf

i =
100 0

4 (3)j

∞
+

=
100 0

5 36.87

∞
∞

= 20 – 36.87∞

Power drawn by the circuit = i
2
R

= (20)
2 ¥ 4 = 1.6 kw)

Phase angle q = tan–1 XL

R

Ê ˆ
Á ˜Ë ¯

= tan–1 3

4

Ê ˆ
Á ˜Ë ¯

 = 36.87

Power factor = cos q = 0.8

4 (a)
R

Z1 1f

IR

R

Z2 2fZ3 3f

B Y

B

Y

IB

WY

IY

WR

Total power = WR + WY
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The average power indicated by the watt-meter wp is

WR =

0

1
T

RB RV I dt
T Ú

and that by W
Y
 = 

0

1
T

YB YV I dt
T Ú

VRB = VRN + VNB

VYB = VYN + VNB

W
R
 + W

Y
 = 

0

1
( )

T

RB R YB YV I V I dt
T

+Ú

=

0

1
[( ) ( ) ]

T

RN NB R YN NB YV V I V Y I dt
T

+ + +Ú

=

0

1
[( ) ( ) ]

T

RN R YN Y R Y NBV I V I I I V dt
T

+ + +Ú
IR + IY + IB = 0

IR + IY = – IB.

=

0

1
[ ]

T

RN R YN Y B NBV I V I I V dt
T

+ -Ú
VNB = – VBN

WR + WY =

0

1
{( )}

T

RN R YN Y BN BV I V I V I dt
T

+ +Ú
which indicates total power.

(b) Given phase voltage = 230 V

Impedance Z = [8 + j(6)]W = 10 36.87∞

phase current IR =
230 0

10 36.87

∞
∞

 = 23 –36.87∞

IY = 23 –36.87∞  + 120 = 23 83.13∞

IB = 23 83.13 120∞ +  = 23 203.13∞

Line current = phase current ¥ 3  = 39.84 Amp

(ii) Power factor = cos q = cos (36.87) = 0.8
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(iii) Reactive power = Vph Iph sin f

= 23 ¥ 230 sin 36.87° = 3.174 kw

(iv) Total volt ampere = VPh IPh = 5.29 kw.

5 (a) A B

C

5 W10 A

5 W

5 W 10 W

cutset, ca: (1, 4)

cutset, cb: (4, 2, 3)

cutset, cc: (1, 2, 3)

1

2

3

4

1 2 3 4
0

1 0 0 1
0

0 1 1 1
0

1 1 1 0
0

i

i

i

i

È ˘ È ˘
È ˘ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚

Î ˚Î ˚

ca: i1 + i4 = 0

cb: i2 + i3 – i4 = 0

cc: i1 + i2 + i3 = 0

(b)

10 W
25 A

5 A

10 V
+

–

6 A

5 WV1 V2

2 W

1 1 2–

10 5

V V V+
+  + 5 = 25

6 + 2 – 10

2

V
= 1 2–

5

V V
 + 5

1 1 2

10 5 5

V V V
+ - = 20
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2 2 1

2 5 5

V V V
+ - = – 1

1
2

1 1

5 2 5

V
V

Ê ˆ- +Á ˜Ë ¯
= 1

On solving,

V1 = 81.176 V

V2 = 21.764 V

6. (a) 

20 0°

A10 W

j4 W

5 W

5 W

B

10 W

20 0° 5 + 4j

A

B

By Thevenin’s theorem

Vth =
20 0 5 (4)

10 5 (4)

j

j

¥ +
+ +

 = 
20 0 (5 (4))

15 (4)

j

j

¥ +
+

=
20 0 6.4 38.66

15.52 14.93

¥
∞  = 8.25 23.73∞

Rth = 10ΩΩ(5 + j(4))

=
10 5 (4) 10 6.4 38.66

10 5 (4) 15.5214.93

j

j

¥ + ¥ ∞=
+ +

 = 4.124 23.73∞

i =
8.25 23.73

4.124 23.73 5+

=
8.25 23.73

8.775 (1.66)j+
 = 0.92 13.02



10 Electrical Circuit Analysis

8.25 23.73

z = 4.124 23.73

5 WV th

6. (b) The Compensation theorem states that any element in a linear bilat-

eral network may be replaced by a voltage source of magnitude equal

to the current passing through the element multiplied by the value of

the element, provided the current and voltages in other parts of the

circuit remain unaltered.

N.W N.W V i= R

+

–
R

I

This theorem is useful in finding the changes in current or voltage when

the value of the resistance is changed in the circuit.

7. The switch S is closed at t = 0. At t = 0, a sinusoidal voltage V cos (wt + q)

is applied to the series R-L circuit, where V is the amplitude of the wave

and q is the phase angle.

V tcos ( + )w q

S

R

L

i

Differential equation

V cos (wt + q) = Ri + L
di

dt

di R
i

dt L
+ =

V

L
 cos (wt + q)

Characteristic equation is 
R

D i
L

Ê ˆ+Á ˜Ë ¯
 = 

V

L
 cos (wt + q)

Complementary function is ic = c e–t(R/L)

Particular solution is ip = A cos (wt + q) + B sin (wt + q)

= i
p
¢ = – Aw sin (wt + q) + Bw cos (wt + q)
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Substituting,

{– A sin (wt + q) + B cos (wt + q)} + 
R

L
{ A cos (wt + q) + B sin (wt + q)}

=
V

L
 cos (wt + q)

(or) –
BR

A
L

w
Ê ˆ+Á ˜Ë ¯

 sin (wt + q) + 
AR

B
L

w
Ê ˆ+Á ˜Ë ¯

 cos (wt + q) = 
V

L
 cos (wt + q)

Comparing the sine and cosine terms,

– Aw + 
BR

L
= 0

Bw + 
AR

L
=

V

L

On solving, A = V 2 2
( )

R

R Lw+

B = V 2 2
( )

L

R L

w

w+

\ ip = 2 2
( )

VR

R Lw+
 cos (wt + q) + V 2 2

( )

L

R L

w

w+
 sin (wt + q)

Putting M cos f =
2 2

( )

VR

R Lw+
, M sin f = V 

2 2
( )

L

R L

w

w+

f1

sin

cos

M

M

f

f
= tan f = 

L

R

w

M: M2 cos2 f + M2 sin2 f = 

2

2 2( )

V

R Lw+
fi M = 

2 2
( )

V

R Lw+

\ ip =
2 2

( )

V

R Lw+
 cos – 1– tan

L
t

R

w
w f

Ê ˆ+Á ˜Ë ¯

c.s. i = ic + ip = 
– ( / )t R L

ce  + 
2 2

( )

V

R Lw+
 cos 1– tan

WL
t

R
w q -Ê ˆ+Á ˜Ë ¯

.

At t = 0, i = 0

\ c = –
2 2

–

( )

V

R Lw+
 cos – 1– tan

L

R

w
q

Ê ˆÊ ˆ
Á ˜Á ˜Ë ¯Ë ¯

.
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i = 
– / tR Le – 1

2 2

–
cos tan

( )

V L

RR L

w
q

w

È ˘Ê ˆÍ ˙-Á ˜Ë ¯Í ˙+Î ˚

+ –1

2 2
cos tan

( )

V L
L

RR L

w
w q

w

Ê ˆ+ -Á ˜Ë ¯+

8.

2

200 W

2¢

j400 W
1

1¢

V1 V2– 300j W

400 W300 W

I1 I2

By applying mesh analysis,

V1 = (600 – j(300) I1 + j(300) (– I2)

V2 = (400 + j(100) I2 – j(300) I1

For Z-parameters when I1 = 0

V1 = – j(300)I2 V2 = (400 + j(100))I2

1

2

V

I
= – j(300) 2

2

V

I
= 400 + j(100)

Z12 = – j(300)W Z22 = 400 + j(100)W
when I2 = 0

V1 = (800 – j(300) I1 V2 = – j(300)I1

1

1

V

I
= 800 – j(300) 2

1

V

I
= – j(300)

Z11 = 800 – j(300)W Z21 = – j(300)W
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1. (a) Two resistances when they are in series have an equivalent resistance

of 9 ohms and when connected in parallel have an equivalent resis-

tance of 2 ohms. Find the resistances and the ratio of the voltage and

current sharing between these elements if supply voltage is 50 V.

(b) Find the equivalent resistance between the terminals AB in the network

as shown in Figure 5b, if each has a resistance of R ohms and hence

find the total current, current through each of the element if the total

voltage is 45V. [8 + 8]

A B

D
C

Figure 5b

2. The number of turns in a coil is 250. When a current of 2 A flows in the

coil, the flux in the coil is 0.3 mwb. When the current is reduced to zero

in 2 ms, the voltage induced in a coil lying in the vicinity of the coil is

63.75 V. If the co-efficient of coupling between the coils is 0.75, find

(a) the self-inductance of two coils

(b) mutual inductance

(c) number of turns in the second coil

Derive the formulae used. [16]

3. Why is the rms value of an alternating quantity more important than its

average value. Find the rms value of the resultant current in a conductor

which carries simultaneously sinusoidal alternating current with a maxi-

mum value of 15 A and direct current of 15 A, by deriving necessary

expressions. [16]

4. A symmetrical 3-phase, 3-wire, 440 V supply is connected to a star

connected load. The impedances in each branch are Z1 = (2 + j3)W,
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Z2 = (1 – j2) W, Z3 = (3 + j4) W. Find its equivalent delta-connected load.

Hence, find the phase and line currents and the total power consumed in

the circuits. [16]

5. (a) Write the tie-set schedule for the network shown in Figure 5a

5 W 5 W

10
W

5 W

5 V

+

–

10 W

10 W

Figure 5a

(b) Using mesh analysis, determine the voltage V which gives a voltage

of 50 V across the 10 W resistor shown in Figure 5b. [6 + 10]

3 W 10 W

5 W

1 W 2 W
60 V

V

4 W 50 V

+–

+
–

Figure 5b

6. (a) Obtain Norton’s equivalent across terminals A and B for network

shown in Figure 6a.

I = 10 0°

3 ohms

j15 ohms 2 ohms

A

B

– 5 ohmsj

Figure 6a
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(b) State and explain the maximum power transfer theorem. [10 + 6]

7. In the circuit shown in the Figure 7, the switch is put in position – 1 for 1 m

sec and then thrown to position – 2. Find the transient current in both

intervals. [16]

S

100 V
50 V

25 W

1 mF

1

2

Figure 7

8. (a) Find the Y parameters of the pie shown in Figure 8a.

YC

YA YE

Figure 8a

(b) Find the Z parameters of the T-network shown in Figure 8b. Verify if

the network is reciprocal or not. [4 + 12]

Za ZC

Zb

A

F

V1

B

V2

C

D

I1 I2

E

Figure 8 b

*****
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SOLUTION

1. (a)

Ans. Let R1 and R2 be the two resistances

When they are in series

R1 + R2 = 9 W (1)

When they are connected in parallel

1 2

1 2

R R

R R+
= 2 (2)

From (1) and (2),

R1R2 = 2 ¥ 9 = 18

(R1 – R2)2 = (R1 + R2)2 – 4R1R2

= (9)2 – 4 ¥ 8 = 81 – 72

(R1 – R2)
2 = 

5 18

10

¥
 = 9.0 = 9

R1 – R2 = 3

R1 + R2 = 9

2R1 = 12

R1 = 6 W
R2 = 3 W

i =
50

9

Current in the 6-W resistor = 
50

9
Voltage ratio for 6-W to 3-W resistors = 

50

9
¥ 6 : 

50

9
¥ 3 = 2 : 1

3 W50 V 6 W

Current ratio in the 6-W and 3 W resistors = 
1 1

:
6 3

=

1

6
1

3

 = 1 : 2

6 W

3 W
i

50 V
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(b)

A B

R

R

R

R

R

R/2 R/3R

R

Total equivalent resistance = R + 
2 3

R R+

= R
1 1

1
2 3

È ˘+ +Í ˙Î ˚

= R
5

1
6

È ˘+Í ˙Î ˚
 = 

11

6

R

A B

R

R

R

R

R

R C D

45

Total current = 
45 45 6

11 11

6

V

R R

¥
=

Current in resistor AC(R) = 
45 6

11R

¥

Between C and D(R) = 
45 3

11R

¥

Between D and B(R) = 
45 2

11R

¥

3. The root mean square (rms) value of a sine wave is a measure of the

heating effect of the wave. When a resistor is connected across a dc voltage

source, a certain amount of heat is produced in the resistor in a given

time. If we consider all the values from every time interval, we have
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Vrms = 2

0

1
( ( ))

T

V t dt
T Ú

Consider V(t) = Vp sin wt

Vrms = mV

2

If the function consists of a number of sinusoidal terms, that is,

V(t) = V0 + (VC1
 cos wt + VC

2
 cos2

wt + . . . .) +

(VS1
 sin w t + VS2

 sin2
wt + . . . .)

Vrms =
1 1 22

2 2 2 2 2
0

1 1
( . . . .) ( . . . .)

2 2C
C S SV V V V V+ + + + + +

Given,

maximum value of sinusoidal current = 15 A

Direct current = 15 A

Vrms =
1

2 2
0

1

2 SV V+

Irms = 2 21
15 (15)

2
+  = 

3
15

2
¥

Irms = 18.37 V

4.

ZY

2 + (3)j W

1 – (2)j W 3 + (4)j W

Z1

Z2 Z3

ZR

ZB

ZR = 1 2 2 3 3 1

3

Z Z Z Z Z Z

Z

+ +

=
(2 (3)) (1 (2)) (1 (2)) (3 (4)) (3 (4)) (2 (3))

3 (4)

j j j j j j

j

+ - + - + + + +
+

=
3.61 56.31 2.236 – 63.4 2.36 – 63.4 5 53.13 5 53.13 3.61 56.3.13

5 53.13

¥ + ¥ + ¥
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=
6.708 – 7.09 11.18 10.27 18.05 109.44

5 53.13

+ +

=
6.6567 (0.83) 11 (1.99) ( 6.007) (17.02)

5 53.13

j j j- + + + - +

=
11.65 18.18

5 53.13

j+
 = 

21.592 57.34

5 53.13

= 4.3184 4.21

ZY = 1 2 2 3 3 1

2

Z Z Z Z Z Z

Z

+ +

=
(2 (3)) (1 (2)) (1– (2)) (3 (4)) (3 (4))(2 (3))

1 (2)

j j j j j j

j

+ - + + + + +
-

=
21.592 57.34

 = 9.656 120.77∞

ZB = 1 2 2 3 3 1

1

Z Z Z Z Z Z

Z

+ +

=
21.592 57.34

3.61 56.31
 = 5.98 1.03

IR =
R

V

Z

=
440 0

4.3184 4.21
 = 101.88 – 4.21

IY =
440 0

9.656 120.77
 = 45.567 –120.77

IB =
440 0

5.98 1.03
 = 73.58 –1.03

5. (a) A

B C

I2I1

I3

1 3

6

5

1

4
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V1 + V2 + V4 = 0

V3 + V5 – V2 = 0

– V4 – V5 + V6 = 0

11

22

33

4

5

6

1 2 3 4 5 6

1 1 0 1 0 0 0

0 –1 1 0 1 0 0

0 0 0 –1 –1 –1 0

VI

VI

VI

V

V

V

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙=Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

(b)

5 W

10 W2 W

1 W 2 W

i2

4 W

50 W

50 V Vi1 i3

By applying mesh analysis

50 = 2 i1 + (i1 – i2)

– 5i3 + 8i2 – 2i3 – i1 = 0

8i2 – 7i3 – i1 = 0

7(i3 – i2) + 10i3 + V – 50 + 4i3 = 0

21i3 – 7i2 + V – 50 = 0

Given 10i3 = 50 V

i3 = 5 A

21 ¥ 5 – 50 = 7i2 – V fi 55 (4)

8i2 – i1 = 35

3i1 – i2 = 50

i1 = 18.91 A

i2 = 6.74 A

V = 7 ¥ 6.74 – 55 = – 7.82 V
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6. (a) 

I = 10 0° j15 W 2 W

A

B

– (5)j W3 W

By applying Norton’s theorem, for short-circuit current, short-circuit the

terminals A and B.

I = 10 °0 j (15) 2

A

B

– (5)j3 IS

Current Is =
10 0 (15)

3 2 (15)

j

j

∞¥

+ +

=
10 0 15 90 10 15 90

5 (15) 15.81 71.56j

∞ ¥ ¥
=

+
 = 9.487 18.44

For Norton resistance,

j15 2

A

B

– (5)j3 W

RN = – j(5) ΩΩ (5 + j(15))

=
– (5) (5 (15))

5 (15) (5)

j j

j j

¥ +
+ -
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=
5 – 90 15.81 71.56

11.18 63.43

∞¥

∞

= 7.07 –81.87

(b) Maximum power transfer theorem

Statement The maximum power transfer theorem states that the maximum

power is delivered from a source to a load

when the load resistance is equal to the

source resistance.

Current in the circuit I = VS/RS + RL

Power delivered to load RL is

PL = I
2
RL = 

2

2( )

S L

S L

V R

R R+

To determine value of R – L for maximum power to load

dP

dL
=

2

2( )

S L

L S L

V Rd

dR R R

È ˘
Í ˙

+Í ˙Î ˚
 = 0

=
2 2

4

{( ) 2 ( )}

( )

S S L L S L

S L

V R R R R R

R R

+ - +
+

 = 0

(RS + RL)
2 – 2PL(RS + RL) = 0

RS + RL – 2RL = 0

RS = RL

So maximum power is transferred to the load when the load resistance is

equal to the source resistance.

7.
S

100 V
50 V

25 W

1 mF

1

2

When the switch is at Position 2, the current equation is

50 = 25i + –3

1

1 10
i dt

¥ Ú
Differentiating both sides

0 = 25
di

dt
 + 103 i (1)

Vs RL

RS
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(D(25) + 103)i = 0

(D(25) + 103)i = 0

1000

25
D i

Ê ˆ+Á ˜Ë ¯
= 0

(D + 40)i = 0

i = C1e
–40 t

At t = 0, the switch is changed to the position 2 i(0) = C1

At t = 0, the initial current passing through the circuit is the same as the

current passing through the circuit and is same as position 1.

At t = 0, the switch is at the position 1

i =
100

25
 = 4 A

Hence C1 = 4

Therefore, current i = 4e
– 40t

8. (a) 

YA
V1 V2

I1 I2

YB

YC

When V
2
 = 0,

V1 = I1
(1)

A CY Y+
I2 = YC

1

1

I

V
= YA + YC = Y11

2

1

I

V
= YC

When V1 = 0, Y21 = YC

V2 = I2
(1)

B CY Y+
I1 = YCV2

2

2

I

V
= YB + YC

1

2

I

V
= YC

Y22 = YB + YC Y12 = YC

(b)
Za ZC

Zb
V1 V2

I1 I2

E
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When I2 = 0,

V1 = I1(Za + Zb) V2 = ZbI1,

1

1

V

I
= Za + Zb

2

1

V

I
= Zb

Z11 = Zb + Zb Z21 = Zb

when I
1
 = 0,

V2 = I2(Zb + Zc) V1 = ZbI2

2

2

V

I
= Zb + Zc

1

2

V

I
= Zb

Z22 = – Zb + Zc Z12 = Zb
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