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Preface

Electrical Networks is one of the core subjects for students of Electrical Engineering, Electronics Engineering,

Electronics and Telecommunication Engineering, Instrumentation Engineering, Biomedical Engineering and

related branches of Engineering in the third/fourth semester course of almost all universities in India. This

subject is also one of the important topics of competitive examinations such as IAS, IES, etc., and examinations

conducted by various public-sector undertakings in this field. As per the course requirement, five major

topics that are mandatory to be covered by any book on this subject are dc and ac circuits, transient analysis,

network functions, two-port networks and network synthesis.

Generally, numerical problems are expected in university examinations in this subject. The weightage

given to problems is more than 70%–80% in examinations. This book attempts to cover almost all the topics

and solved problems on these important topics. Objective-type questions from various papers of competitive

examinations are included in each chapter. This will help the students in sharpening their knowledge about

core concepts. This text attempts to provide a simple explanation about the concepts of Electrical Networks

with brief theory and a large number of problems. Numerous examples and exercise problems have been

included to help the reader develop an intuitive grasp of the contents. It covers both analysis and synthesis of

networks.

The salient features of the book are

• Complete coverage of dc circuits with dependent and independent sources covered

• Chapter on graph theory included

• Over 500 solved examples

• Hundreds of additional practice problems with answers

• Network analysis as well as synthesis covered

 The first chapter of the book covers basic circuit elements and basic laws pertaining to networks. Next, dc

network theorems are covered in chapters 2 and 3. Chapter 4 deals with the analysis of ac circuits. Chapter

5 covers ac network theorems. Three-phase circuits are covered in Chapter 6. Chapter 7 deals with graph

theory which is useful for solving complex network problems. Chapters 8 and 9 discuss transient analysis in

time domain and frequency domain respectively. Chapters 10 and 11 cover network functions and two-port

networks. Network synthesis is covered in the last chapter.

Appendices on Fourier Series, Network Filters, Bode Plots and Attenuators can be accessed at http://

www.mhhe.com/ravish/en.

I would like to express my gratitude to my colleagues Ameya Kadam, Sanjeev Ghosh, Payel Saha, Kalawati

Patil, Aradhana Manekar, Vipul Gohil, Archana Deshpande and Deepak Jain in Thakur College of Engineering

and Technology for helping me in proofreading. I would also like to thank my staff Sanjay Rawat in preparing

the manuscript. I am grateful to the following reviewers who took out time to review the manuscript and gave

me noteworthy suggestions.



xii Contents

T L Singal Chitkara Institute of Engineering and Technology, Rajpura, Punjab

Manoj Kumar DAV Engineering College, Jalandhar, Punjab

P Purkait Haldia Institute of Technology, Haldia, West Bengal

Anirudha Mukherjee Hooghly Engineering College and Technology, Hooghly, West Bengal

A B Nanda Institute of Technical Education and Research, Bhubaneswar, Orissa

Sonali Sawant Excelsior Education Society’s K C College of Engineering, Thane,

Maharashtra

Ujwal Chaudhari M H Saboo Siddik College of Engineering, Mumbai, Maharashtra

Sanjay Singh Thakur Don Bosco Institute of Technology, Mumbai , Maharashtra

K Manivanan Pondicherry Engineering College, Pondicherry

P Murugan Kalasalingam University, Madurai, Tamil Nadu

Divya Prabha Sri Siddhartha Institute of Technology, Tumkur, Karnataka

Gopal Rao R V College of Engineering, Bangalore, Karnataka

My sincere thanks are due to my friend Mukul Bhatt for always inspiring and encouraging me in this

project. I would also like to thank all the staff at McGraw-Hill Education India, especially Suman Sen, Sagar

Divekar, Sohini Mukherjee and P L Pandita for coordinating with me during the editorial, copyediting and

production stages of this book. Finally, I thank my wife, Nitu; son, Aman; and daughter, Aditri, for supporting

me throughout the preparation of this project.

 Any suggestions for the improvement of the book are welcome. Please feel free to write to me at

ravishrsingh@yahoo.com.

 RAVISH R SINGH



Walkthrough

Chapter introduction gives
the concept of the topic that
will be discussed in the chapter.

Definitions along with

illustrations are used
exhaustively to provide an
understanding of the points.



Preliminary discussions
following definitions consist
of derivations or methods

which provide a systematic
approach to problem solving.

Solved numericals are
used exhaustively to
illustrate the concepts and
methods described.

Problem-solving approach

from simpler to complex
ones gives the reader an in-
depth understanding of the
topics.

xiv Walkthrough



Exercises will help readers
review their understanding
 of the concepts discussed
 in the chapter.

Answers have been
 provided along with
each unsolved numerical.

Walkthrough xv



Objective-type questions

provided at the end of each

chapter enable the reader to
prepare for competitive
examinations.

Answers to the objective
questions are provided for
verification.

xvi Walkthrough



Basic Circuit

Concepts
1

1.1 INTRODUCTION

We know that like charges repel each other whereas unlike charges attract each other. To overcome this force

of attraction, an electromagnetic force (EMF) must be applied. When the charges are separated, it is said that

a potential difference exists and the work or energy per unit charge utilized in this process is known as voltage

or potential difference. When W joules of energy are supplied to Q coulombs of charge, the voltage is given

by

V =
W

Q
volts (V)

 The phenomenon of transfer of charge from one point to another is termed current. Current (I) is defined

as the rate of flow of electrons in a conductor. It is measured by the number of electrons that flow in unit time.

I =
Q

t
 amperes (A)

Energy is the total work done in the electric circuit. The rate at which the work is done in an electric circuit

is called electic power.

Power =
Energy

Time

W

t
=

We can also write

P =
W Q

Q t
⋅

= V . I watts (W)

Energy is measured in joules (J) and power in watts (W).
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1.2 RESISTANCE

Resistance is the property of a substance due to which it opposes the flow of electric current through it.

Certain substances offer very little opposition to the flow of electric current and are called conductors, e.g.,

metals, acids and salt solutions. Certain substances offer very high resistance to the flow of electric current

and are called insulators, e.g., mica, glass, rubber, bakelite, etc.

The practical unit of resistance is ohm and is represented by the symbol Ω. A conductor is said to have

resistance of one ohm if a potential difference of one volt across its terminals causes a current of one ampere

to flow through it.

The resistance of a conductor depends on the following factors.

(i) It is directly proportional to its length.

(ii) It is inversely proportional to the area of cross section of the conductor.

(iii) It depends on the nature of the material.

(iv) It also depends on the temperature of the conductor.

Hence we can say that

R ∝
l

A

R = r 
l

A

where l is length of the conductor, A is the cross-sectional area and r is a constant known as specific resistance

or resistivity of the material.

Power dissipated in a resistor We know that v = R . i

When current flows through any resistor, power is absorbed by the resistor which is given by

p = v . i

The power dissipated in the resistor is converted to heat which is given by

W =
0

t

∫ v . i dt

=
0

t

∫ R . i . i dt

= i2 R t

1.3 INDUCTANCE

Inductance is the property of a coil that opposes any change in the amount of current flowing through it. If the

current in the coil is increasing, the self-induced emf is set up in such a direction so as to oppose the rise of

current. Similarly, if the current in the coil is decreasing, the self-induced emf will be in the same direction as

the applied voltage.

Inductance is defined as the ratio of flux linkage to the current flowing through the coil. The practical unit

of inductance is henry and is represented by the symbol H. A coil is said to have an inductance of one henry

if a current of one ampere when flowing through it produces flux linkages of one weber-turn in it.
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The inductance of an inductor depends on the following factors.

(i) It is directly proportional to the square of the number of turns.

(ii) It is directly proportional to the area of cross section.

(iii) It is inversely proportional to the length.

(iv) It depends on the absolute permeability of the magnetic material.

Hence we can say that

L ∝
2

N A

l

L = m 
2

N A

l

where l is the mean length, A is the cross-sectional area and m is the absolute permeability of the magnetic

material.

Current�voltage relationships in an inductor We know that

v = L 
d

d

i

t

Expressing inductor current as a fuction of voltage,

di =
1

L
v dt

Integrating both the sides,

( )

(0)

i t

i∫ di =
0

1 t

L ∫ v dt

i(t) =
0

1 t

L ∫ v dt + i(0)

The quantity i(0) denotes the initial current through the inductor. When there is no initial current through

the inductor,

i(t) =
0

1 t

L ∫ v dt

Energy stored in an inductor Consider a coil of inductance L carrying a changing current I. When the

current is changed from zero to a maximum value I, every change is opposed by the self-induced emf produced.

To overcome this opposition, some energy is needed and this energy is stored in the magnetic field. The

voltage v is given by

v = L 
d

d

i

t

Energy supplied to the inductor during interval dt is given by

dW = v . i . dt

= L
d

d

i

t
 . i . dt

= L . i . di
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Hence, total energy supplied to the inductor when current is increased from 0 to I amperes is

E =
0

I

∫ L . i di = 
1

2
L I2

1.4 CAPACITANCE

Capacitance is the property of a capacitor to store an electric charge when its plates are at different potentials.

If Q coulombs of charge is given to one of the plates of a capacitor and if a potential difference of V volts is

applied between the two plates then its capacitance is given by

C =
Q

V

The practical unit of capacitance is farad and is represented by the symbol F. A capacitor is said to have

capacitance of one farad if a charge of one coulomb is required to establish a potential difference of one volt

between its plates.

The capacitance of a capacitor depends on the following factors.

(i) It is directly proportional to the area of the plates.

(ii) It is inversely proportional to the distance between two plates.

(iii) It depends on the absolute permittivity of the medium between the plates.

Hence we can say that

C ∝
A

d

C = e 
A

d

where d is the distance between two plates, A is the cross-sectional area of the plates and e is absolute permittivity

of the medium between the plates.

Current�voltage relationships in a capacitor The charge on a capacitor is given by

q = C v

where q denotes the charge and v is the potential difference across the plates at any instant.

We know that

i =
d d

d d d

q d v
Cv C

t t t
= =

Expressing capacitor voltage as a function of current,

dv =
1

C
i dt

Integrating both the sides,

( )

(0)

v t

v∫ dv =
0

1 t

C ∫ i dt

v(t) =
0

1 t

C ∫ i dt + v (0)

The quantity v (0) denotes the initial voltage across the capacitor. When there is no initial voltage on the

capacitor,
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v(t) =
0

1 t

C ∫ i dt

Energy stored in a capacitor Let a capacitor of capacitance C farads be charged from a source of V

volts. Then current i is given by

i = C 
d

d

v

t

Energy supplied to the capacitor during interval dt is given by

dW = v . i . dt

= v . C 
d

d

v

t
. dt

Hence, total energy supplied to the capacitor when potential difference is increased from 0 to V volts is

E =
0

V

∫ C . v dv

=
1

2
CV2

1.5 SOURCES

Source is a basic network element which supplies energy to the networks. There are two classes of sources,

namely,

(1) Independent sources

(2) Dependent sources

1.5.1 Independent Sources

Output characteristics of an independent source are not dependent on any network variable such as a current

or voltage. Its characteristics, however, may be time-varying. There are two types of independent sources:

(1) Independent voltage source

(2) Independent current source

Independent voltage source An independent voltage source is a two-

terminal network element that establishes a specified voltage across its

terminals. The value of this voltage at any instant is independent of the value

or direction of the current that flows through it. The symbols for such voltage

sources are shown in Fig. 1.1.

The terminal voltage may be a constant, or it may be some specified function

of time.

Independent current source An independent current source is a two-

terminal network element which produces a specified current. The value and

direction of this current at any instant is independent of the value or direction of the voltage that appears

across the terminals of the source. The symbols for such current sources are shown in Fig. 1.2.

 The output current may be a constant or it may be a function of time.

Fig. 1.1



1.6 Electrical Networks

1.5.2 Dependent Sources

If the voltage or current of a source depends in turn upon some other

voltage or current, it is called as dependent or controlled source. The

dependent sources are of four kinds, depending on whether the control

variable is voltage or current and the controlled source is a voltage source

or current source.

Voltage-controlled voltage source (VCVS) A voltage-controlled

voltage source is a four-terminal network component that establishes a

voltage vcd between two points c and d in the circuit that is proportional to

a voltage vab between two points a and b.

The symbol for such a source is shown in Fig. 1.3.

Fig. 1.3

The (+) and (–) sign inside the diamond of the component symbol identifies the component as a voltage source.

vcd = m vab

The voltage vcd depends upon the control voltage vab and the constant m, a dimensionless constant called

voltage gain.

Voltage-controlled current source (VCCS) A voltage-controlled current source is a four-terminal

network component that establishes a current icd in a branch of the circuit that is proportional to the voltage vab

between two points a and b.

The symbol for such a source is shown in Fig. 1.4.

Fig. 1.4

The arrow inside the diamond of the component symbol identifies the component as a current source.

icd = gm vab

The current icd depends only on the control voltage vab and the constant gm, called the transconductance or

mutual conductance. The constant gm has dimension of ampere per volt or siemens (S).

Fig. 1.2
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Current-controlled voltage source (CCVS) A current-controlled voltage source is a four-terminal

network component that establishes a voltage vcd between two points c and d in the circuit that is proportional

to the current iab in some branch of the circuit.

The symbol for such a source is shown in Fig. 1.5.

Fig. 1.5

vcd = r iab

The voltage vcd depends only on the control current iab and the constant r called the transresistance or

mutual resistance. The constant r has dimension of volt per ampere or ohm (Ω).

Current-controlled current source (CCCS) A current-controlled current source is a four-terminal

network component that establishes a current icd in one branch of a circuit that is proportional to the current iab

in some branch of the network.

The symbol for such a source is shown in Fig. 1.6.

Fig. 1.6

icd = b iab

The current icd depends only on the control current iab and the dimensionless constant b, called the current

gain.

1.6 SOME DEFINITIONS

1. Network and circuit The interconnection of two or more circuit elements (viz., voltage sources,

resistors, inductors and capacitors) is called an electric network. If the network contains at least one closed

path, it is called an electric circuit. Every circuit is a network, but all networks are not circuits. Figure 1.7(a)

shows a network which is not a circuit and Fig. 1.7(b) shows a network which is a circuit.
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Fig. 1.7

2. Linear and non-linear elements If the resistance, inductance

or capacitance offered by an element does not change linearly with

the change in applied voltage or circuit current, the element is termed

as linear element. Such an element shows a linear relation between

voltage and current as shown in Fig. 1.8. Ordinary resistors, capacitors

and inductors are examples of linear elements.

A non-linear circuit element is one in which the current does not

change linearly with the change in applied voltage. A semiconductor

diode operating in the curved region of characteristics as shown in

Fig. 1.8 is common example of non-linear element.

Other examples of non-linear elements are voltage-dependent

resistor (VDR), voltage-dependent capacitor (varactor), temperature-

dependent resistor (thermistor), light-dependent resistor (LDR), etc.

Linear elements obey Ohm’s law whereas non-linear elements do not obey Ohm’s law.

3. Active and passive elements An element which is a source of electrical signal or which is capable

of increasing the level of signal energy is termed as active element. Batteries, BJTs, FETs or OP-AMPs are

treated as active elements because these can be used for the amplification or generation of signals. All other

circuit elements, such as resistors, capacitors, inductors, VDR, LDR, thermistors, etc., are termed passive

elements. The behaviour of active elements cannot be described by Ohm’s law.

4. Unilateral and bilateral elements If the magnitude of current flowing through a circuit element is

affected when the polarity of the applied voltage is changed, the element is termed unilateral element. Consider

the example of a semiconductor diode. Current flows through the diode only in one direction. Hence, it is

called an unilateral element. Next, consider the example of a resistor. When the voltage is applied, current

starts to flow. If we change the polarity of the applied voltage, the direction of the current is changed but its

magnitude is not affected. Such an element is called a bilateral element.

5. Active and passive networks A network which contains at least one active element such as an

independent voltage or current source is an active network. A network which does not contain any active

element is a passive network.

1.7 KIRCHHOFF�S LAWS

The entire electric circuit analysis is based on Kirchhoff’s laws only. But before discussing this, it is essential

to familiarise ourselves with the following terms:

(a) Node A node is a junction where two or more circuit elements are connected together.

(b) Branch An element or number of elements connected between two nodes constitutes a branch.

Fig. 1.8
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(c) Loop A loop is any closed part of the circuit.

(d) Mesh A mesh is the most elementary form of a loop and cannot be further divided into other loops. All

the meshes are loops but all the loops are not meshes.

1. Kirchhoff�s current law (KCL) The algebraic sum of currents meeting at a

junction or node in an electric circuit is zero.

Consider five conductors, carrying currents I1, I2, I3, I4 and I5 meeting at a point O

as shown in Fig. 1.9. Assuming the incoming currents to be positive and outgoing

currents negative, we have

I1 + (–I2) + I3 + (–I4) + I5 = 0

I1 – I2 + I3 – I4 + I5 = 0

I1 + I3 + I5 = I2 + I4

Thus, above law can also be stated as the sum of currents flowing towards any junction in an electric circuit

is equal to the sum of the currents flowing away from that junction.

2. Kirchhoff�s voltage law (KVL) The algebraic sum of all the voltages in any closed circuit or mesh or

loop is zero.

If we start from any point in a closed circuit and go back to that point, after going round the circuit, there

is no increase or decrease in potential at that point. This means that the sum of emfs and the sum of voltage

drops or rises meeting on the way is zero.

Determination of sign A rise in potential can be assumed to be positive while a fall in potential can be

considered negative. The reverse is also possible and both conventions will give the same result.

(a) If we go from the positive terminal of the battery or source to the negative terminal, there is a fall in

potential and so the emf should be assigned a negative sign. If we go from the negative terminal of the battery

or source to the positive terminal, there is a rise in potential and so the emf should be given a positive sign.

Fig. 1.10

(b) When current flows through a resistor, there is a voltage drop across it. If we go through the resistance

in the same direction as the current, there is a fall in the potential and so the sign of this voltage drop is

negative. If we go opposite to the direction of the current flow, there is a rise in potential and hence, this

voltage drop should be given a positive sign.

Fig. 1.11

Example 1.1 The voltage drop across the 15-W resistance is 30 V, having the polarity indicated. Find the

value of R.

Fig. 1.9
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Fig. 1.12

Solution Current through the 15-Ω resistor is given by

I =
30

15
 = 2 A

Current through the 5-Ω resistor is given by

= 5 + 2 = 7 A

Applying KVL to the closed path,

–5 (7) – R(I) + 100 – 30 = 0

–35 – 2R + 100 – 30 = 0

R = 17.5 Ω

Example 1.2 Determine the currents I1, I2 and I3.

Fig. 1.13

Solution Assigning currents to all the branches,

Fig. 1.14

From Fig. 1.14,

I1 = I1 – I2 + 9 + I3 + 4

I2 – I3 = 13 ...(i)
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Also, –12I1 – 8(I1 – I2) = 0

–20I1 + 8I2 = 0 ...(ii)

Also, –12I1 – 16I3 = 0 ...(iii)

Solving Eqs (i), (ii) and (iii),

I1 = 4 A

I2 = 10 A

I3 = –3 A

Example 1.3 Find currents in all the branches of the network shown.

Fig. 1.15

Solution Let

IAF = x

then IFE = x – 30

IED = x + 40

IDC = x – 80

ICB = x – 20

 IBA = x – 80

Applying KVL to the closed path AFEDCBA,

–0.02 x – 0.01 (x – 30) – 0.01 (x + 40) – 0.03 (x – 80)

–0.01 (x – 20) – 0.02 (x – 80) = 0

x = 41

IAF = 41 A

IBA = 41 – 80 = –39 A

IAB = 39 A

ICB = 41 – 20 = 21 A

IDC = 41 – 80 = –39 A

ICD = 39 A

IED = 41 + 40 = 81 A

IFE = 41 – 30 = 11 A

Fig. 1.16
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Example 1.4 Find currents in all the branches of the network shown.

Fig. 1.17

Solution Assigning currents to all the branches,

Applying KVL to the closed path OBAO,

–2(1 – x) – 3y + x = 0

3x – 3y = 2 ...(i)

Applying KVL to the closed path ABCA,

3y – 4(1 – x – y) + 5(x + y) = 0

9x + 12y = 4 ...(ii)

Solving Eqs (i) and (ii),

x = 0.57 A

y = –0.095 A

IOA = 0.57 A

IOB = 1 – 0.57 = 0.43 A

IAB = 0.095 A

IAC = 0.57 – 0.095 = 0.475 A

IBC = 1 – 0.57 + 0.095 = 0.525 A

Example 1.5 What is the p.d. between points x and y in the network shown?

Fig. 1.19

Solution

I1 =
2

5
 = 0.4 A

I2 =
4

8
 = 0.5 A

Potential difference between points x and y = Vxy = Vx – Vy

Fig. 1.18
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Writing KVL equation for the path x to y,

Vx + 3I1 + 4 – 3I2 – Vy = 0

Vx + 3(0.4) + 4 – 3(0.5) – Vy = 0

Vx – Vy = –3.7

Vxy = –3.7 V

Example 1.6 In the network shown, find the voltage between points A and B.

Fig. 1.20

Solution

I1 =
20

15
 = 1.33 A

I2 =
15

10
 = 1.5 A

Voltage between points A and B = VAB = VA – VB

Writing KVL equation for the path A to B,

VA – 5I1 – 5 – 15 + 6I2 – VB = 0

VA – 5(1.33) – 5 – 15 + 6(1.5) – VB = 0

VA – VB = 17.65

VAB = 17.65 V

Example 1.7 Determine the potential difference VAB for the given network.

Fig. 1.22

Solution The resistance of 3 Ω is connected across a short circuit. Hence, it gets shorted.

I1 =
5

2
 = 2.5 A

I2 = 2 A

Fig. 1.21
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Fig. 1.23

Potential difference VAB = VA – VB

Writing KVL equation for the path A to B,

VA – 2I1 + 8 – 5I2 – VB = 0

VA – 2(2.5) + 8 – 5(2) – VB = 0

VA – VB = 7

VAB = 7 V

Example 1.8 Find the voltage of the point A w.r.t. B.

Fig. 1.24

Solution I1 =
10

8
 = 1.25 A

I2 = 5 A

Applying KVL to the path from A to B,

VA – 3I1 – 8 + 3I2 – VB = 0

VA – 3(1.25) – 8 + 3(5) – VB = 0

VA – VB = –3.25

VAB = –3.25 V

1.8 SOURCE TRANSFORMATION

A voltage source with a series resistance can be converted into an equivalent current source with a parallel

resistance. Conversely, a current source with a parallel resistance can be converted into voltage source with a

series resistance.
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Fig. 1.25

Source transformation can be applied to controlled sources as well. The controlling variable, however,

must not be tampered with any way since the operation of the controlled source depends on it.

Example 1.9 Replace the circuit between A and B with voltage source in series with a single resistor.

Fig. 1.26

Solution Converting the series combination of voltage source of 20 V and a resistance of 5 Ω into equivalent

parallel combination of current source and resistance, we have

Fig. 1.27

Adding the two current sources and By source conversion,

simplifying the circuit,

Fig. 1.28 Fig. 1.29
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Example 1.10 Replace the given network with a single current source and a resistor.

Fig. 1.30

Solution Since the resistance of 5 Ω is connected in parallel with the voltage

source of 20 V, it becomes redundant. Converting parallel combination of current

source and resistor into equivalent voltage source and resistor, we have

By source conversion,

Fig. 1.32

Example 1.11 Reduce network shown into a single source and a single resistor between terminals A

and B.

Fig. 1.33

Fig. 1.31



Basic Circuit Concepts 1.17

Solution Converting all voltage sources into equivalent current sources,

Fig. 1.34 Fig. 1.35

Converting the current sources into equivalent voltage sources,

Fig. 1.36

Example 1.12 Find the power delivered by the 50-V source in the circuit.

Fig. 1.37

Solution Converting the series combination of voltage source of 10 V and resistor of 3 Ω into equivalent

current source and resistor, we have

Fig. 1.38
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Fig. 1.39

By source conversion,

Fig. 1.40

Applying KVL to the circuit,

50 – 5I – 1.2I – 16 = 0

I = 5.48 A

Power delivered by the 50-V source = 50 × 5.48

= 274 W

Example 1.13 Find the current in the 4-W resistor.

Fig. 1.41

Solution Converting the parallel combination of the current source of 5 A and the resistor of 2 Ω into an

equivalent series combination of voltage source and resistor, we have

Fig. 1.42 Fig. 1.43
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Again by source conversion,

Fig. 1.44 Fig. 1.45

By current-division formula,

I4Ω = 4 × 
2

2 4+
 = 1.33 A

Example 1.14 Find the voltage at Node 2.

Fig. 1.46

Solution We cannot change the network between nodes 1 and 2 since the controlling current I, for the

controlled source, is in the resistor between these nodes. Applying source transformation to series combination

of controlled source and the 100-Ω resistor, we get

Fig. 1.47
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Applying KVL to the mesh,

15 – 50I – 50I – 5I = 0

I =
15

105
 = 0.143 A

Voltage at Node 2 = 15 – 50I

= 15 – 50 × 0.143 = 7.86 V

1.9 SOURCE SHIFTING

Source shifting is the simplification technique used when there is no resistor in series with a voltage source or

a resistor in parallel with a current source.

Example 1.15 Calculate the voltage across the 6-W resistor using source-shifting technique.

Fig. 1.48

Solution Adding a voltage source of 18 V to the network and connecting to Node 2, we have

Fig. 1.49

Since nodes 1 and 2 are maintained at the same voltage by the sources, the connection between nodes 1 and

2 is removed. Now the two voltage sources have resistors in series and source transformation can be applied.
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Fig. 1.50

The steps are shown in Fig. 1.51 to simplify the network.

Fig. 1.51

Applying KCL at the node,

18 5.985

3 2.33 6

a a aV V V− −
+ + = 0

Solving the equation, we get,

Va = 9.23 V
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Exercises

KIRCHHOFF�S LAWS

1. Replace the network of sources shown below with (i) Vaa′, and (ii) Ibb′.

(i)

Fig. 1.52

[– 4 V]

(ii)

Fig. 1.53

[8 A]

2. For the network shown, find V1/Vo and V2/Vo.

Fig. 1.54

[0.3, 0.4]
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3. What is the value of RAB in the circuit shown? Each side of the cube is R ohms.

5

6
R

é ù
Wê úë û

Fig. 1.55

SOURCE TRANSFORMATION

4. Replace the given network with single voltage source and a resistor.

Fig. 1.56

[8.6 V, 0.43 Ω]

5. Use source transformation to simplify the network until two elements remain to the left of terminals a

and b.

Fig. 1.57

[88.42 V, 7.92 kΩ]
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6. Determine the voltage Vx by source-shifting technique.

Fig. 1.58

[1.129 V]

Objective-Type Questions

1. A network contains linear resistors and ideal voltage sources. If values of all the resistors are doubled

then the voltage across each resistor is

(a) halved (b) doubled

(c) increased by four times (d) not changed

2. The current I4 in the circuit of Fig. 1.59 is equal to

(a) 12 A (b) –12 A (c) 4 A (d) none of the above

Fig. 1.59

3. The voltage V in Fig. 1.60 is equal to

(a) 3 V (b) –3 V (c) 5 V (d) none of the above

Fig. 1.60
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4. The voltage V in Fig. 1.61 is equal to

(a) 9 V (b) 5 V (c) 1 V (d) none of the above

Fig. 1.61

5. The voltage V in Fig. 1.62 is

(a) 10 V (b) 15 V (c) 5 V (d) none of the above

Fig. 1.62

6. In the circuit of Fig. 1.63, the value of the voltage source E is

 (a) –16 V (b) 4 V (c) –6 V (d) 16 V

Fig. 1.63

7. The voltage V0 in Fig. 1.64 is

(a) 2 V (b)
4

3
 V (c) 4 V (d) 8 V

Fig. 1.64
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8. If R1 = R2 = R4 = R and R3 = 1.1 R in the bridge circuit shown in Fig. 1.65, then the reading in the ideal

voltmeter connected between a and b is

(a) 0.238 V (b) 0.138 V (c) – 0.238 V (d) 1 V

Fig. 1.65

9. A 10 V battery with an internal resistance of 1 Ω is connected across a nonlinear load whose V-I

characteristic is given by 7 I = V 2 + 2 V. The current delivered by the battery is

(a) 0 (b) 10 A (c) 5 A (d) 8 A

10. If the length of a wire of resistance R is uniformly stretched to n times its original value, its new

resistance is

(a) nR (b)
R

n
(c) n2R (d)

2

R

n
11. All the resistances in Fig. 1.66 are 1 Ω each. The value of I will be

(a)
1

15
 A (b)

2

15
 A (c)

4

15
 A (d)

8

15
 A

Fig. 1.66

12. The current waveform in a pure resistor at 10 Ω is shown in Fig. 1.67. Power dissipated in the resistor

is

(a) 7.29 W (b) 52.4 W (c) 135 W (d) 270 W

Fig. 1.67
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13. Two wires A and B of the same material and length L and 2L have radius r and 2r respectively. The

ratio of their specific resistance will be

(a) 1 : 1 (b) 1 : 2 (c) 1 : 4 (d) 1 : 8

Answers to Objective-Type Questions

1.(d)2.(b)3.(a)4.(d)5.(a)6.(a)

7.(c)8.(c)9.(c)10.(c)11.(d)12.(d)

13.(b)



Network Theorems-I 2.1

Network

Theorems-I
2

2.1 INTRODUCTION

In Chapter 1, we have studied basic circuit concepts. In network analysis, we have to find currents and

voltages in various parts of the circuit. In this chapter, we will study elementary network theorems like star-

delta transformation, mesh analysis and node analysis. These methods are applicable to all types of circuits.

The first step in analysing circuits by mesh analysis and node analysis is to apply Ohm’s law and Kirchoff’s

laws. The second step is the solving of these equations by mathematical tools.

2.2 STAR�DELTA TRANSFORMATION

When a circuit cannot be simplified by normal series–parallel reduction technique, the star-delta transformation

can be used.

Figure 2.1(a) shows three resistances RA, RB and RC connected in delta.

Figure 2.1(b) shows three resistances R1, R2 and R3 connected in star.

Fig. 2.1

These two networks will be electrically equivalent if the resistance as measured between any pair of terminals

is the same in both the arrangements.
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2.2.1 Delta to Star Transformation

Referring to delta network shown in Fig. 2.1(a),

The resistance between terminals 1 and 2 = RC | | (RA + RB)

=
( )C A B

A B C

R R R

R R R

+
+ +

...(2.1)

Referring to the star network shown in Fig. 2.1(b),

The resistance between terminals 1 and 2 = R1 + R2 ...(2.2)

Since the two networks are electrically equivalent,

R1 + R2 =
( )C A B

A B C

R R R

R R R

+
+ +

...(2.3)

Similarly, R2 + R3 =
( )A B C

A B C

R R R

R R R

+
+ +

...(2.4)

and R3 + R1 =
( )B A C

A B C

R R R

R R R

+
+ +

...(2.5)

Subtracting Eq. (2.4) from Eq. (2.3),

R1 – R3 = B C A B

A B C

R R R R

R R R

−
+ +

...(2.6)

Adding Eq. (2.6) and Eq. (2.5),

R1 = B C

A B C

R R

R R R+ +
...(2.7)

Similarly, R2 = A C

A B C

R R

R R R+ +
...(2.8)

R3 = A B

A B C

R R

R R R+ +
...(2.9)

Thus, star resistance connected to terminal is equal to the product of the two delta resistances connected to

the same terminal divided by the sum of the delta resistances.

2.2.2 Star to Delta Transformation

Multiplying the above equations,

R1 R2 =
2

2
( )

A B C

A B C

R R R

R R R+ +
...(2.10)

R2 R3 =
2

2
( )

A B C

A B C

R R R

R R R+ +
...(2.11)

R3 R1 =
2

2
( )

A B C

A B C

R R R

R R R+ +
...(2.12)
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Adding Eqs (2.10), (2.11) and (2.12),

R1 R2 + R2 R3 + R3 R1 =
2

( )

( )

A B C A B C

A B C

R R R R R R

R R R

+ +

+ +

= A B C

A B C

R R R

R R R+ +
 = RA R1

= RB R2

= RC R3

Hence RA = 1 2 2 3 3 1

1

R R R R R R

R

+ +

= R2 + R3 + 2 3

1

R R

R

RB = 1 2 2 3 3 1

2

R R R R R R

R

+ +

= R1 + R3 + 3 1

2

R R

R

RC = 1 2 2 3 3 1

3

R R R R R R

R

+ +

= R1 + R2 + 1 2

3

R R

R

Thus, delta resistance between the two terminals is the sum of two star resistances connected to the same

terminals plus the product of the two resistances divided by the remaining third star resistance.

Note: When three equal resistances are connected in delta, the equivalent star resistance is given by

Fig. 2.2

RY =
3

R R R

R R R

∆ ∆ ∆

∆ ∆ ∆
=

+ +

or R∆ = 3RY



2.4 Electrical Networks

Example 2.1 Find an equivalent resistance between A and B.

Fig. 2.3

Solution Converting the two delta networks formed by resistors 4.5 Ω, 3 Ω and 7.5 Ω into equivalent star

networks, we have

Fig. 2.4

R1 = R6 = 
4.5 7.5

4.5 7.5 3

×
+ +

 = 2.25 Ω

R2 = R5 = 
7.5 3

4.5 7.5 3

×
+ +

 = 1.5 Ω

R3 = R4 = 
4.5 3

4.5 7.5 3

×
+ +

 = 0.9 Ω

The simplified network is shown in Fig. 2.5.

Fig. 2.5
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The network can be simplified as follows:

Fig. 2.6

RAB = 7.45 Ω

Example 2.2 Find an equivalent resistance between A and B.

Fig. 2.7

Solution Redrawing the network, we have

Fig. 2.8
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Converting the delta formed by three resistors of 10 Ω into an equivalent star network,

Fig. 2.9

R1 = R2 = R3 = 
10 10 10

10 10 10 3

×
=

+ +
 Ω

Fig. 2.10

The network can be simplified as follows:

Fig. 2.11

RAB = 10 Ω
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Example 2.3 Find an equivalent resistance between A and B.

Fig. 2.12

Solution Converting the star network formed by resistors 3 Ω, 4 Ω and 6 Ω into an equivalent delta network,

Fig. 2.13

R1 = 6 + 4 + 
6 4

3

×
 = 18 Ω

R2 = 6 + 3 + 
6 3

4

×
 = 13.5 Ω

R3 = 4 + 3 + 
4 3

6

×
 = 9 Ω

The network can be simplified as shown in Fig. 2.15.

RAB = 6 | | (1.35 + 0.9)

= 6 | | 2.25

= 1.64 Ω

Fig. 2.14

Fig. 2.15
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Example 2.4 Find an equivalent resistance between A and B.

Fig. 2.16

Solution The resistances of 2 Ω and 4 Ω and the resistances of 4 Ω and 11 Ω are in series.

Fig. 2.17

Converting the two outer delta networks into equivalent star networks,

Fig. 2.18

The network can be further simplified as follows:

Fig. 2.19

RAB = 23 Ω
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Example 2.5 Find an equivalent resistance between A and B.

Fig. 2.20

Solution Drawing the resistance of 30 Ω from outside,

Fig. 2.21

Converting the delta network formed by resistors 20 Ω, 25 Ω and 35 Ω into equivalent star network,

Fig. 2.22

R1 =
20 35

20 35 25

×
+ +

 = 8.75 Ω

R2 =
20 25

20 35 25

×
+ +

 = 6.25 Ω

R3 =
35 25

20 35 25

×
+ +

 = 10.94 Ω
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The network can be redrawn as follows:

Fig. 2.23

By series–parallel reduction technique,

Fig. 2.24

RAB = 32.36 Ω
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Example 2.6 Find the equivalent resistance between A and B.

Fig. 2.25

Solution The resistances of 5 Ω and 25 Ω and the resistances of 10 Ω and 5 Ω are in series.

Fig. 2.26

Converting the delta network formed by resistance of 20 Ω, 5 Ω and 15 Ω into equivalent star network,

Fig. 2.27

R1 =
20 5

20 5 15

×
+ +

 = 2.5 Ω

R2 =
20 15

20 5 15

×
+ +

 = 7.5 Ω

R3 =
5 15

20 5 15

×
+ +

 = 1.875 Ω
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The network can be redrawn as follows:

Fig. 2.28

Converting the delta network formed by resistance of 3.875 Ω, 37.5 Ω and 30 Ω into equivalent star

network, we have

Fig. 2.29

R4 =
3.875 37.5

3.875 37.5 30

×
+ +

 = 2.04 Ω

R5 =
3.875 30

3.875 37.5 30

×
+ +

 = 1.63 Ω

R6 =
37.5 30

3.875 37.5 30

×
+ +

 = 15.76 Ω
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The network can be simplified as follows:

Fig. 2.30

RAB = 23.52 Ω

Example 2.7 Find an equivalent resistance between A and B.

Fig. 2.31

Solution Converting the star network formed by resistances

of 3 Ω, 5 Ω and 8 Ω into an equivalent delta network,

R1 = 3 + 5 + 
3 5

8

×

= 9.875 Ω

R2 = 3 + 8 + 
3 8

5

×

= 15.8 Ω Fig. 2.32
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R3 = 5 + 8 + 
5 8

3

×

= 26.33 Ω
The network can be redrawn as follows:

Fig. 2.33

The resistances of 15.8 Ω and 5 Ω and resistances of 26.33 Ω and 4 Ω are in parallel.

Fig. 2.34

Converting the delta network into star network,

R4 =
3.8 9.875

3.8 9.875 3.47

×
+ +

= 2.19 Ω

R5 =
3.8 3.47

3.8 9.875 3.47

×
+ +

= 0.77 Ω

R6 =
3.47 9.875

3.8 9.875 3.47

×
+ +

= 2 Ω

Fig. 2.35
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Fig. 2.36

The network can be simplified as follows:

Fig. 2.37

RAB = 4.23 Ω

Example 2.8 Find an equivalent resistance between A and B.

Fig. 2.38
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Solution Converting the star network formed by resistors of 3 Ω, 4 Ω and 5 Ω into equivalent delta network,

Fig. 2.39

R1 = 5 + 4 + 
5 4

3

×
 = 15.67 Ω

R2 = 3 + 4 + 
3 4

5

×
 = 9.4 Ω

R3 = 5 + 3 + 
5 3

4

×
 = 11.75 Ω

Similarly, converting the star network formed by resistors of 4 Ω, 6 Ω and 8 Ω into equivalent delta

network,

Fig. 2.40

R4 = 6 + 8 + 
6 8

4

×
 = 26 Ω

R5 = 4 + 8 + 
4 8

6

×
 = 17.33 Ω

R6 = 6 + 4 + 
6 4

8

×
 = 13 Ω

These two delta networks are connected in parallel between points A and B.

Fig. 2.41

The resistances of 9.4 Ω and 17.33 Ω are in parallel with a short. Hence, equivalent resistance of this

combination becomes zero. Simplifying the parallel networks, we get
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Fig. 2.42

RAB = 6.17 | | 9.78 = 3.78 Ω

2.3 MESH ANALYSIS

A mesh is defined as a loop which does not contain any other loops within it. Mesh analysis is applicable only

for planar networks. A network is said to be planar if it can be drawn on a plane surface without crossovers.

In this method, the currents in different meshes are assigned continuous paths so that they do not split at a

junction into branch currents. If a network has a large number of voltage sources, it is useful to use mesh

analysis. Basically, this analysis consists of writing mesh equations by Kirchoff’s voltage law in terms of

unknown mesh currents.

2.3.1 Steps to be followed in Mesh Analysis

1. Identify the mesh, assign a direction to it and assign an unknown current in each mesh.

2. Assign the polarities for voltage across the branches.

3. Apply KVL around the mesh and use Ohm’s law to express the branch voltages in terms of unknown

mesh currents and the resistance.

4. Solve the simultaneous equations for unknown mesh currents.

Consider the network shown in Fig. 2.43 which has three meshes. Let the mesh currents for the three

meshes be I1, I2 and I3 and all the three mesh currents may be assumed to flow in the clockwise direction. The

choice of direction for any mesh current is arbitrary.

Applying KVL to Mesh 1,

V1 – R1 (I1 – I2) – R2 (I1 – I3) = 0

(R1 + R2) I1 – R1 I2 – R2 I3 = V1 ...(2.13)

Applying KVL to Mesh 2,

V2 – R3 I2 – R4 (I2 – I3) – R1 (I2 – I1) = 0

–R1 I1 + (R1 + R3 + R4) I2 – R4 I3 = V2 ...(2.14)

Applying KVL to Mesh 3,

–R2 (I3 – I1) – R4 (I3 – I2) – R5 I3 + V3 = 0

–R2 I1 – R4 I2 + (R2 + R4 + R5) I3 = V3 ...(2.15)

Writing Eqs (2.13), (2.14) and (2.15) in matrix form,

1 2 1 2 1 1

1 1 3 4 4 2 2

2 4 2 4 5 3 3

R R R R I V

R R R R R I V

R R R R R I V

+ − −     
     

− + + − =     
     − − + +     

In general,

11 12 13 1

21 22 23 2

31 32 33 3

R R R I

R R R I

R R R I

   
   
   
   
   

=

1

2

3

V

V

V

 
 
 
 
 

Fig. 2.43
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where, R11 = Self-resistance or sum of all the resistances of Mesh 1

R12 = R21 = Mutual resistance or sum of all the resistances common to

Meshes 1 and 2

R13 = R31 = Mutual resistance or sum of all the resistances common to

Meshes 1 and 3

R22 = Self-resistance or sum of all the resistances of Mesh 2

R23 = R32 = Mutual resistance or sum of all the resistances common to

Meshes 2 and 3

R33 = Self-resistance or sum of all the resistances of Mesh 3

If the directions of the currents passing through the common resistance are the same, the mutual resistance

will have a positive sign, and if the direction of the currents passing through common resistance are opposite

then the mutual resistance will have a negative sign. If each mesh currents are assumed to flow in the clockwise

direction then all self-resistances will be always positive and all mutual resistances will always be negative.

The voltages V1, V2 and V3 represent the algebraic sum of all the voltages in meshes 1, 2 and 3 respectively.

While going along the current, if we go from negative terminal of the battery to the positive terminal then its

emf is taken as positive. Otherwise, it is taken as negative.

Example 2.9 Find the current through the 5-W resistor.

Fig. 2.44

Solution Assigning clockwise currents in three meshes,

Applying KVL to Mesh 1,

10 – I1 – 3(I1 – I2) – 6(I1 – I3) = 0

10I1 – 3I2 – 6I3 = 10 ...(i)

Applying KVL to Mesh 2,

–3 (I2 – I1) – 2I2 – 5I2 – 5 = 0

–3I1 + 10I2 = –5 ...(ii)

Applying KVL to Mesh 3,

–6 (I3 – I1) + 5 – 4I3 + 20 = 0

–6I1 + 10I3 = 25 ...(iii)

Writing equations in matrix form,

1

2

3

10 3 6

3 10 0

6 0 10

I

I

I

− −   
   −   
   −   

 = 

10

5

25

 
 − 
  

Fig. 2.45
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We can write matrix equation directly from Fig. 2.44.

11 12 13 1

21 22 23 2

31 32 33 3

R R R I

R R R I

R R R I

   
   
   
      

=

1

2

3

V

V

V

 
 
 
  

where R11 = Self-resistance of Mesh 1 = 1 + 3 + 6 = 10 Ω
R12 = Mutual resistance common to Meshes 1 and 2 = –3 Ω

Here, negative sign indicates that the currents through common resistance are in opposite direction.

R13 = Mutual resistance common to Meshes 1 and 3 = –6 Ω
Similarly,

R21 = –3 Ω
R22 = 3 + 2 + 5 = 10 Ω
R23 = 0

R31 = – 6 Ω
R32 = 0

R33 = 6 + 4 = 10 Ω
For voltage matrix,

V1 = 10 V

V2 = –5 V

V3 = algebraic sum of all the voltages in Mesh 3 = 5 + 20 = 25 V

Solving equations (i), (ii) and (iii),

I1 = 4.27 A

I2 = 0.78 A

I3 = 5.06 A

I5Ω = 0.78 A

Example 2.10 Find the current through the 2-W resistor.

Fig. 2.46

Solution Assigning clockwise currents in three meshes,

Fig. 2.47
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Applying KVL to Mesh 1,

10 – 6I1 – 1(I1 – I2) = 0

7I1 – I2 = 10 ...(i)

Applying KVL to Mesh 2,

– (I2 – I1) – 2I2 – 3(I2 – I3) = 0

–I1 + 6I2 – 3I3 = 0 ...(ii)

Applying KVL to Mesh 3,

–3 (I3 – I2) – 10I3 – 20 = 0

–3I2 + 13I3 = –20 ...(iii)

Writing equations in matrix form,

1

2

3

7 1 0

1 6 3

0 3 13

I

I

I

−   
   − −   
   −   

=

10

0

20

 
 
 
 − 

Solving equations (i), (ii) and (iii),

I1 = 1.34 A

I2 = –0.62 A

I3 = –1.68 A

I2 Ω = –0.62 A

Example 2.11 Determine the current through the 5-W resistor.

Fig. 2.48

Solution Assigning clockwise currents in three meshes,

Applying KVL to Mesh 1,

8 – 1(I1 – I2) – 2(I1 – I3) = 0

3I1 – I2 – 2I3 = 8 ...(i)

Applying KVL to Mesh 2,

10 – 4I2 – 3(I2 – I3) – 1(I2 – I1) = 0

– I1 + 8I2 – 3I3 = 10 ...(ii)

Applying KVL to Mesh 3,

–2 (I3 – I1) – 3(I3 – I2) – 5I3 + 12 = 0

–2I1 – 3I2 + 10I3 = 12 ...(iii)
Fig. 2.49



Network Theorems-I 2.21

Writing equations in matrix form,

1

2

3

3 1 2

1 8 3

2 3 10

I

I

I

− −   
   − −   
   − −   

=

8

10

12

 
 
 
  

Solving equations (i), (ii) and (iii),

I1 = 6.01 A

I2 = 3.27 A

I3 = 3.38 A

I5 Ω = 3.38 A

Example 2.12 Find the current supplied by the battery.

Fig. 2.50

Solution Applying KVL to Mesh 1,

4 – 3I1 – 1(I1 – I2) – 4(I1 – I3) = 0

8I1 – I2 – 4I3 = 4 ...(i)

Applying KVL to Mesh 2,

–2I2 – 5(I2 – I3) – 1(I2 – I1) = 0

– I1 + 8I2 – 5I3 = 0 ...(ii)

Applying KVL to Mesh 3,

–6I3 – 4 (I3 – I1) – 5(I3 – I2) = 0

–4I1 – 5I2 + 15I3 = 0 ...(iii)

Writing equations in matrix form,

1

2

3

8 1 4

1 8 5

4 5 15

I

I

I

− −   
   − −   
   − −   

=

4

0

0

 
 
 
  

Solving equations (i), (ii) and (iii),

I1 = 0.66 A

I2 = 0.24 A

I3 = 0.26 A

Current supplied by the battery = 0.66 A.
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Example 2.13 Determine the voltage V which causes the current I1 to be zero.

Fig. 2.51

Solution Applying KVL to Mesh 1,

20 – 6I1 – 2(I1 – I2) – 5(I1 – I3) – V = 0

V + 13I1 – 2I2 – 5I3 = 20 ...(i)

Applying KVL to Mesh 2,

–2(I2 – I1) – 3I2 – 1(I2 – I3) = 0

2I1 – 6I2 + I3 = 0 ...(ii)

Applying KVL to Mesh 3,

–1(I3 – I2) – 4I3 + V – 5(I3 – I1) = 0

V + 5I1 + I2 – 10I3 = 0 ...(iii)

Putting I1 = 0 in equations (i), (ii) and (iii),

V – 2I2 – 5I3 = 20

–6I2 + I3 = 0

V + I2 – 10I3 = 0

Writing equations in matrix form,

2

3

1 2 5

0 6 1

1 1 10

V

I

I

− −   
   −   
   −   

=

20

0

0

 
 
 
  

Solving equations (i), (ii) and (iii),

V = 43.7 V

Example 2.14 Find the current through the 2-W resistor.

Fig. 2.52

Solution Mesh 1 contains a current source of 6 A. Hence, we cannot write KVL equation for Mesh 1. Since

direction of current source and mesh current I1 are same,



Network Theorems-I 2.23

I1 = 6 A ...(i)

Applying KVL to Mesh 2,

36 – 12(I2 – I1) – 6(I2 – I3) = 0

36 – 12(I2 – 6) – 6I2 + 6I3 = 0

18I2 – 6I3 = 108 ...(ii)

Applying KVL to Mesh 3,

–6 (I3 – I2) – 3I3 – 2I3 – 9 = 0

6I2 – 11I3 = 9 ...(iii)

Solving equations (ii) and (iii),

I3 = 3 A

I2Ω = 3 A

Example 2.15 Obtain the branch currents.

Fig. 2.53

Solution Assigning clockwise currents in two meshes,

From the figure,

IA = I1 …(i)

IB = I2 …(ii)

Applying KVL to Mesh 1,

5 – 5I1 – 10IB – 10(I1 – I2) – 5IA = 0

5 – 5I1 – 10I2 – 10I1 + 10I2 – 5I1 = 0

–20I1 = –5

I1 =
1

4
 = 0.25 A …(iii)

Applying KVL to Mesh 2,

5IA – 10(I2 – I1) – 5I2 – 10 = 0

5I1 – 10I2 + 10I1 – 5I2 = 10

15I1 – 15I2 = 10 …(iv)

Putting I1 = 0.25 A in equation (iv),

15(0.25) – 15I2 =  10

3.75 – 15I2 = 10

–6.25 = 15I2

I2 = –0.416 A

Fig. 2.54
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Example 2.16 Find currents in the three meshes.

Fig. 2.55

Solution Assigning clockwise currents in three meshes,

From the figure,

Ix = I1

Iy = I2 – I3

But I3 = 1 A

Iy = I2 + 1

Applying KVL to Mesh 1,

5 – I1 – Iy – (I1 – I2) = 0

5 – I1 – (I2 + 1) – (I1 – I2) = 0

– I1 – I2 – I1 + I2 = –5 + 1

–2I1 = – 4

I1 = 2 A

Applying KVL to Mesh 2,

– (I2 – I1) + Iy – I2 – Ix – (I2 – I3) = 0

– I2 + I1 + (I2 + 1) – I2 – I1 – I2 + I3 = 0

–2I2 + 1 – 1 = 0

I2 = 0

Example 2.17 Find the mesh currents in the network shown.

Fig. 2.57

Fig. 2.56
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Solution Assigning clockwise currents in two meshes,

From the figure,

V1 = –5I1 …(i)

V2 = 2I2 …(ii)

Applying KVL to Mesh 1,

–5 – 5I1 – 2V2 – 4I1 – (I1 – I2) + 2V1 = 0

–5 – 5I1 – 2(2I2) – 4I1 – I1 + I2 + 2(–5I1) = 0

20I1 + 3I2 = –5 …(iii)

Applying KVL to Mesh 2,

–2V1 – (I2 – I1) – 2I2 – 10 = 0

–2 (–5I1) – I2 + I1 – 2I2 = 10

11I1 – 3I2 = 10 …(iv)

Solving equations (iii) and (iv),

I1 = 0.161 A

I2 = –2.742 A

Example 2.18 Find currents Ix and Iy .

Fig. 2.59

Solution Assigning clockwise currents in two meshes,

From the figure,

Iy = I1 …(i)

Ix = I1 – I2 …(ii)

Applying KVL to Mesh 1,

– 5 – 5I1 – 2Ix – 4I1 – (I1 – I2) + 2Iy = 0

– 5 – 5I1 – 2 (I1 – I2) – 4I1 – I1 + I2 + 2I1 = 0

– 5 – 5I1 – 2I1 + 2I2 – 4I1 – I1 + I2 + 2I1 = 0

– 10I1 + 3I2 = 5 …(iii)

Applying KVL to Mesh 2,

– 2Iy – (I2 – I1) – 2I2 – 10 = 0

– 2I1 – I2 + I1 – 2I2 = 10

– I1 – 3I2 = 10 …(iv)

Solving equations (iii) and (iv),

I1 = –
15

11
 = –1.364 A

I2 = –2.878 A

Iy = –1.364 A

Ix = I1 – I2

= –1.364 + 2.878 = 1.514 A

Fig. 2.58

Fig. 2.60
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2.4 SUPERMESH ANALYSIS

Meshes that share a current source with other meshes, none of which contains a current source in the outer

loop, form a supermesh. A path around a supermesh doesn’t pass through a current source. A path around

each mesh contained within a supermesh passes through a current source. The total number of equations

required for a supermesh is equal to the number of meshes contained in the supermesh. A supermesh requires

one mesh current equation, that is, a KVL equation. The remaining mesh current equations are KCL equations.

Example 2.19 Find the current through the 10-W resistor.

Fig. 2.61

Solution Applying KVL to Mesh 1,

2 – I1 – 10 (I1 – I2) = 0

11I1 – 10I2 = 2 ...(i)

Since meshes 2 and 3 contain a current source of 4 A, these two meshes will form a supermesh. A supermesh

is formed by two adjacent meshes that have a common current source. The direction of the current source of

4 A and current (I3 – I2) will be same, i.e., in the upward direction.

Writing current equation to supermesh,

I3 – I2 = 4 ...(ii)

Applying KVL to outer path of supermesh,

–10(I2 – I1) – 5I2 – 15I3 = 0

10I1 – 15I2 – 15I3 = 0

2I1 – 3I2 – 3I3 = 0 ...(iii)

Solving equations (i), (ii) and (iii),

I1 = –2.35 A

I2 = –2.78 A

I3 = 1.22 A

Current through the 10-Ω resistor = I1 – I2

= –(2.35) – (–2.78) = 0.43 A

Example 2.20 Find the current in the 3-W resistor.

Fig. 2.62
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Solution Meshes 1 and 3 will form a supermesh.

Writing current equation for supermesh,

I1 – I3 = 7 ...(i)

Applying KVL to the outer path of the supermesh,

7 – 1(I1 – I2) – 3(I3 – I2) – I3 = 0

–I1 + 4I2 – 4I3 = –7 ...(ii)

Applying KVL to Mesh 2,

–1(I2 – I1) – 2I2 – 3(I2 – I3) = 0

I1 – 6I2 + 3I3 = 0 ...(iii)

Solving equations (i), (ii) and (iii),

I1 = 9 A

I2 = 2.5 A

I3 = 2 A

Current through the 3-Ω resistor = I2 – I3

= 2.5 – 2 = 0.5 A

Example 2.21 Find the current in the 5-W resistor.

Fig. 2.63

Solution Applying KVL to Mesh 1,

50 – 10 (I1 – I2) – 5 (I1 – I3) = 0

15I1 – 10I2 – 5I3 = 50 ...(i)

Meshes 2 and 3 will form a supermesh as these two meshes share a common current source of 2 A.

Writing current equation for the supermesh,

I2 – I3 = 2 A ...(ii)

Applying KVL to the outer path of the supermesh,

–10 (I2 – I1) – 2I2 – I3 – 5 (I3 – I1) = 0

–15I1 + 12I2 + 6I3 = 0 ...(iii)

Solving equations (i), (ii) and (iii),

I1 = 20 A

I2 = 17.33 A

I3 = 15.33 A

Current through the 5-Ω resistor = I1 – I3

= 20 – 15.33 = 4.67 A
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Example 2.22 Find currents I1, I2, I3 and I4.

Fig. 2.64

Solution From the figure,

I4 = 40 A … (i)

Meshes 2 and 3 form a supermesh. Writing current equation for supermesh,

I3 – I2 = 5Vx

But Vx = 2 1

1
( )

5
I I−

I3 = 2I2 – I1 … (ii)

Applying KVL to supermesh,

2 1 2 3

1 1 1 1
( )

5 20 15 2
I I I I− − − − −  (I3 – I4) = 0 … (iii)

Applying KVL to Mesh 1,

1 1 2 1 4

1 1 1
6 ( ) ( )

10 5 6
I I I I I− − − − − − = 0 … (iv)

Solving Eqs (i), (ii), (iii) and (iv), we get

I1 = 10 A

I2 = 20 A

I3 = 2 (20) – 10 = 30 A

I4 = 40 A

Example 2.23 Find the currents I1 and I2 .

Fig. 2.65
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Solution Meshes 2 and 3 form a supermesh.

Writing current equation for supermesh,

I3 – I2 = 0.5 V1

But V1 = 2(I1 – I2)

I3 – I2 = 0.5 × 2(I1 – I2)

= I1 – I2

I3 = I1

Applying KVL to supermesh,

–2(I2 – I1) – 10I3 – 6I2 = 0

–2I2 + 2I1 – 10I1 – 6I2 = 0

I1 = – I2

Applying KVL to Mesh 1,

110 – 14I1 – 4I1 – 2(I1 – I2) = 0

110 – 20I1 + 2I2 = 0

110 + 20I2 + 2I2 = 0

I2 = –5 A

I1 = – I2 = 5 A

2.5 NODAL ANALYSIS

 Nodal analysis is based on Kirchhoff’s current law which states that the algebraic sum of currents meeting at

a point is zero. Every junction where two or more branches meet is regarded as a node. One of the nodes in the

network is taken as reference node or datum node. If there are n nodes in any network, the number of

simultaneous equations to be solved will be (n – 1).

2.5.1 Steps to be followed in Nodal Analysis

1. Assuming that a network has n nodes, assign a reference node and the reference directions, and assign

a current and a voltage name for each branch and node respectively.

2. Apply KCL at each node except for the reference node and apply Ohm’s law to the branch currents.

3. Solve the simultaneous equations for the unknown node voltages.

4. Using these voltages, find any branch currents required.

Example 2.24 Find voltage at nodes 1 and 2.

Fig. 2.66

Solution Assigning voltages V1 and V2 at nodes 1 and 2 respectively,

Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

1 = 1 1 2

2 2

V V V−
+

2V1 – V2 = 2 ...(i)
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Applying KCL at Node 2,

2 = 2 2 1

1 2

V V V−
+

3V2 – V1 = 4 ...(ii)

Solving Eqs (i) and (ii),

V1 = 2 V

V2 = 2 V

Example 2.25 Find VA and VB.

Fig. 2.68

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node A,

10

2 10 5

A A A BV V V V− −
+ + = 0

5 50 2 2

10

A A A BV V V V− + + −
= 0

8VA – 2VB = 50 ...(i)

Applying KCL at Node B,

181

5 15 3 3

B A B BV V V V− −
+ + + = 0

3 3 5 5 90

15

B A B BV V V V− + + + −
= 0

–3VA + 9VB = 85 ...(ii)

Solving Eqs (i) and (ii),

VA = 9.39 V

VB = 12.58 V

Example 2.26 Calculate the current through the 5-W resistor.

Fig. 2.69

Fig. 2.67
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Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

1 1 24
2 3

V V V−
+ + = 0

1 1 224 3 2 2

6

V V V+ + −
= 0

5V1 – 2V2 = –24 ...(i)

Applying KCL at Node 2,

2 32 1 2 ( 20)

3 2 5

V VV V V −− − −
+ + = 0

2 1 2 2 310 10 15 300 6 6

30

V V V V V− + + + −
= 0

10V1 – 31V2 + 6V3 = 300 ...(ii)

Applying KCL at Node 3,

3 2 3

5 4

V V V−
+ = 8

4V3 – 4V2 + 5V3 = 160

–4V2 + 9V3 = 160 ...(iii)

Solving Eqs (i), (ii) and (iii),

V1 = –8.77 V

V2 = –9.92 V

V3 = 13.37 V

Current through the 5-Ω resistor= 
3 2

5

V V−

=
13.37 ( 9.92)

5

− −
 = 4.66 A

Example 2.27 Find the current in the 100-W resistor.

Fig. 2.70

Solution Assume that the currents are moving away from the nodes.
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Applying KCL at Node 1,

1 1 260

20 30

V V V− −
+ = 1

1 1 230 1800 20 20

600

V V V− + −
= 1

50V1 – 20V2 = 2400 ...(i)

Applying KCL at Node 2,

2 1 2 240

30 50 100

V V V V− −
+ + = 0

2 1 2 210 10 6 240 3

300

V V V V− + − +
= 0

–10V1 + 19V2 = 240 ...(ii)

Solving Eqs (i) and (ii),

V1 = 67.2 V

V2 = 48 V

Current through the 100-Ω resistor =
2 48

100 100

V
=  = 0.48 A

Example 2.28 Find VA and VB.

Fig. 2.71

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node A,

2 =
1

2 2 1

A A A BV V V V− −
+ +

2 =
1 2 2

2

A A A BV V V V+ − + −

4VA – 2VB = 5 ...(i)

Applying KCL at Node B,

2

1 2

B A BV V V− −
+ = 1
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2 2 2

2

B A BV V V− + −
= 1

–2VA + 3VB = 4 ...(ii)

Solving Eqs (i) and (ii),

VA = 2.88 V

VB = 3.25 V

Example 2.29 Find the voltage across the 5-W resistor.

Fig. 2.72

Solution Assume that the currents are moving away from the node.

Applying KCL at Node 1,

1 31 1 212

4 2 4

V VV V V −− −
+ +  + 9 = 0

1 1 2 1 312 2 2 36

4

V V V V V− + − + − +
= 0

4V1 – 2V2 – V3 = –24 ...(i)

Applying KCL at Node 2,

2 32 1 2

2 100 5

V VV V V −−
+ + = 0

2 1 2 2 350 50 20 20

100

V V V V V− + + −
= 0

–50V1 + 71V2 – 20V3 = 0 ...(ii)

Applying KCL at Node 3,

3 2 3 3 1

5 20 4

V V V V V− −
+ + = 9

3 2 3 3 14 4 5 5

20

V V V V V− + + −
= 9

–5V1 – 4V2 + 10V3 = 180 ...(iii)
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Solving Eqs (i), (ii) and (iii),

V1 = 6.35 V

V2 = 11.76 V

V3 = 25.88 V

Voltage across the 5-Ω resistor = V3 – V2

= 25.88 – 11.76 = 14.12 V

Example 2.30 Find currents I1, I2 and I3.

Fig. 2.73

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

1 1 1 225

2 5 10

V V V V− −
+ + = 0

1 1 1 25 2 50

10

V V V V+ − + −
= 0

8V1 – V2 = 50 ...(i)

Applying KCL at Node 2,

2 1 2 2 ( 50)

10 4 2

V V V V− − −
+ + = 0

2 1 2 22 2 5 10 500

20

V V V V− + + +
= 0

–2V1 + 17V2 = –500 ...(ii)

Solving Eqs (i) and (ii),

V1 = 2.61 V

V2 = –29.1 V

I1 = – 1 2.61

2 2

V −
=  = –1.31 A

I2 =
1 2 2.61 ( 29.1)

10 10

V V− − −
=  = 3.17 A

I3 = 2 50 29.1 50

2 2

V + − +
=  = 10.45 A
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Example 2.31 Find currents I1, I2 and I3 and voltages Va and Vb.

Fig. 2.74

Applying KCL at Node a,

I1 = 30 + I2

120

0.2

aV−
= 30 + 

0.3

a bV V−

36 – 0.3Va = 1.8 + 0.2Va – 0.2Vb

0.5Va – 0.2Vb = 34.2 ...(i)

Applying KCL at Node b,

I2 + I3 = 20

110

0.3 0.1

a b bV V V− −
+ = 20

0.1 0.1 33 0.3

0.03

a b bV V V− + −
= 20

0.1Va – 0.4Vb = –32.4 ...(ii)

Solving Eqs (i) and (ii),

Va = 112 V

Vb = 109 V

I1 =
120 120 112

0.2 0.2

aV− −
=  = 40 A

I2 =
112 109

0.3 0.3

a bV V− −
=  = 10 A

I3 =
110 110 109

0.1 0.1

bV− −
=  = 10 A

Example 2.32 Find the current in the 10-W resistor.

Fig. 2.75
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Solution Node 1 is directly connected to a voltage source of 50 V. Hence, we cannot write KCL equation at

Node 1.

At Node 1,

V1 = 50 ...(i)

Assume that the current are moving away from the node.

Applying KCL at Node 2,

2 1 2 210

50 20 10

V V V V− −
+ + = 0

2 1 2 22 2 5 50 10

100

V V V V− + − +
= 0

–2V1 + 17V2 = 50 ...(ii)

Solving Eqs (i) and (ii),

V1 = 50 V

V2 = 8.82 V

Current in the 10-Ω resistor =
2

10

V

=
8.82

10
 = 0.88 A

Example 2.33 Find V1 and V2.

Fig. 2.76

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node a,

80

50 10

a a bV V V− −
+  + 2 = 0

80 5 5 100

50

a a bV V V− + − +
= 0

6Va – 5Vb = –20 ...(i)



Network Theorems-I 2.37

Applying KCL at Node b,

10 50 20

b a b b cV V V V V− −
+ + = 0

10 10 2 5 5

100

b a b b cV V V V V− + + −
= 0

–10Va + 17Vb – 5Vc = 0 ...(ii)

Node c is directly connected to a voltage source of 20 V. Hence, we cannot write KCL equation at Node c,

At Node c,

Vc = 20 ...(iii)

Solving Eqs (i), (ii) and (iii),

Va = 3.08 V

Vb = 7.69 V

V1 = Va – Vb = 3.08 – 7.69 = –4.61 V

V2 = Vb – Vc = 7.69 – 20 = –12.31 V

Example 2.34 Find the voltage across the 100-W resistor.

Fig. 2.77

Solution Node A is directly connected to a voltage source of 20 V. Hence, we cannot write KCL equation at

Node A.

At Node A,

VA = 60 ...(i)

Assume that the currents are moving away from the nodes.

Applying KCL at Node B,

20 20 20

B CB A BV VV V V−−
+ + = 0.6

–VA + 3VB – VC = 12 ...(ii)

Applying KCL at Node C,

12

50 20 50 100

C A C B C CV V V V V V− − −
+ + + = 0
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2VC – 2VA + 5VC – 5VB + 2VC – 24 + VC = 0

–2VA – 5VB + 10VC = 24 ...(iii)

Solving equations (i), (ii) and (iii),

VC = 31.68 V

Voltage across the 100-Ω resistor = 31.68 V

Example 2.35 Find voltages V1 and V2.

Fig. 2.78

Solution From the figure,

I1 = 1 2

2

V V−
… (i)

Assume that the currents are moving away from the node.

Applying KCL at Node 1,

5 = 1 1 2

1 2

V V V−
+  + V1

2.5V1 – 0.5V2 =  5 … (ii)

Applying KCL at Node 2,

1 2

2

V V−
 + V1 + 2I1 = 2

1

V

1 2

2

V V−
 + V1 + 2 1 2

2

V V− 
 
 

= V2

1 2

2 2

V V
−  + V1 + V1 – V2 – V2 = 0

2.5V1 – 2.5V2 = 0

V1 = V2 … (iii)

Solving Eqs (ii) and (iii),

V1 = 2.5 V

V2 = 2.5 V
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Example 2.36 Find the voltage across the 5-W resistor.

Fig. 2.79

Solution From the figure,

I1 =
1 150 50

20 10 30

V V− −
=

+
… (i)

Assume that the currents are moving away from the node.

Applying KCL at Node 1,

2 =
1 1 1 130 50

5 10 30

V V I V+ −
+ +

2 =

1
1

1 1

50
30

5030

5 10 30

V
V

V V

− +   − + +

2 =
1 1 12 50 50

5 10 30

V V V− −
+ + … (ii)

Solving Eq. (ii),

V1 = 20 V

Voltage across the 5-Ω resistor = 20 V

Example 2.37 Find the nodal voltages V1 and V2 .

Fig. 2.80
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Solution From the figure,

I1 =
2

10

V
… (i)

I2 =
1

10

V
… (ii)

Assume that the currents are moving away from the node.

Applying KCL at Node 1,

2I1 =
1 1 2

10 10

V V V−
+  + 2V2

2 2

10

V 
 
 

=
1 1 2

10 10 10

V V V
+ −  + 2V2

2V1 + 17V2 = 0 … (iii)

Applying KCL at Node 2,

2I2 + 2V2 =
2 1 2

10 10

V V V−
+

2 1

10

V 
 
 

 + 2V2 =
2 1 2

10 10 10

V V V
− +

3V1 + 18V2 = 0

V1 + 6V2 = 0 … (iv)

Solving Eqs (iii) and (iv),

V1 = V2 = 0

Example 2.38 Find voltages Va, Vb and Vc.

Fig. 2.81

Solution From the figure,

I1 =
2

a cV V−

Assume that the currents are moving away from the node.

Applying KCL at Node a,

4 =
2

1 2 2

a a c a bV V V V V− − −
+ + …(i)
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Applying KCL at Node b,

2

2 3

b a b cV V V V+ − −
+ = 2I1

2

2 3

b a b cV V V V+ − −
+ = 2

2

a cV V− 
 
 

…(ii)

Applying KCL at Node c,

3 5

c b cV V V−
+ = I1

3 5

c b cV V V−
+ =

2

a cV V−
…(iii)

Solving Eqs (i), (ii) and (iii),

Va = 4.303 V

 Vb = 3.87 V

Vc = 3.33 V

2.6 SUPERNODE ANALYSIS

Nodes that are connected to each other by voltage sources, but not to the reference node by a path of voltage

sources, form a supernode. A supernode requires one node voltage equation, that is, a KCL equation. The

remaining node voltage equations are KVL equations.

Example 2.39 Find the nodal voltages in the circuit.

Fig. 2.82

Solution From the figure,

V4 = 40 V … (i)

Nodes 2 and 3 form a supernode.

V3 = 5ix + V2 = 5 2 1

5

V V −  
  
  

 + V2 = 2V2 – V1 … (ii)

Applying KCL at Node 1,

6 + 
1 1 2 1 4

10 5 6

V V V V V− −
+ + = 0
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6 + 
1 1 2 1 40

10 5 6

V V V V− −
+ + = 0

1 2

7 1

15 5
V V− =

2

3
… (iii)

Applying KCL for the supernode,

3 3 42 1 2

5 20 15 2

V V VV V V −−
+ + + = 0

2 1 2 2 1 2 1(2 ) (2 ) 40

5 20 15 2

V V V V V V V− − − −
+ + + = 0

1 2

23 83

30 60
V V− + = 20 … (iv)

Solving Eqs (iii) and (iv),

V1 = 10 V

V2 = 20 V

V3 = 2V2 – V1 = 40 – 10 = 30 V

Example 2.40 Find the nodal voltages in the circuit.

Fig. 2.83

Solution Selecting the central node as reference node,

V1 = –12 V …(i)

Applying KCL at Node 2,

2 32 1

0.5 2

V VV V −−
+ = 14

–2V1 + 2.5V2 – 0.5V3 = 14 …(ii)
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Nodes 3 and 4 form a supernode,

V3 – V4 = 0.2Vy = 0.2(V4 – V1)

0.2V1 + V3 – 1.2V4 = 0 … (iii)

Applying KCL to the supernode,

3 2 4 4 10.5
2 1 2.5

x

V V V V V
V

− −
− + + = 0

3 2

2

V V−
 – 0.5 (V2 – V1) + V4 + 

4 1

2.5

V V−
= 0

0.1V1 – V2 + 0.5V3 + 1.4V4 = 0 … (iv)

Solving Eqs (i), (ii), (iii) and (iv),

V1 = – 12 V

V2 = – 4 V

V3 = 0

V4 = –2 V

Exercises

STAR�DELTA TRANSFORMATION

1. Find an equivalent resistance between A and B.

Fig. 2.84
[5 Ω]

2. Find an equivalent resistance between A and B.

Fig. 2.85
[25 Ω]
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3. Find an equivalent resistance between A and B.

Fig. 2.86
[4/7 R]

4. Find an equivalent resistance between A and B.

Fig. 2.87
[17 Ω]

5. Find RAB by solving the outer delta (X–B–Y) only.

Fig. 2.88

[1.41 Ω]

6. Find an equivalent resistance between A and B.

Fig. 2.89

[4.59 Ω]
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7. Find the voltage between terminals A and B.

Fig. 2.90

[0.559 V]

8. Determine the power supplied to the network.

Fig. 2.91

[4705.88 Ω]

9. Find the current I.

Fig. 2.92

[9.465 A]



2.46 Electrical Networks

10. Determine the current through the 10-Ω resistor.

Fig. 2.93
[3.843 A]

MESH ANALYSIS

11. Find the current through the 1-Ω resistor.

Fig. 2.94
[0.95 A]

12. Find the current through the 4-Ω resistor.

Fig. 2.95

[1.33 A]

13. Find the potential across the 3-Ω resistor. 

Fig. 2.96
[3.3 V]
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14. Find the current I1.

Fig. 2.97

[0.41 A]

15. Find currents Ix and Iy.

Fig. 2.98

(0.5 A, 0.1 A)

16. Use mesh analysis to find V3 if element A is a

(a) short circuit

(b) 5-Ω resistor

(c) 20 V independent voltage source, positive reference

on the right

(d) dependent voltage source of 1.5i1, with positive

reference on the right

(e) dependent current source 5i1, arrow directed to the

right

(69.4 V, 72.38 V, 73.68 V, 70.71 V, 97.39 V)

17. Find I1 if the dependent voltage is labelled (i) 2V2 , and (ii) 1.5V3.

Fig. 2.100

(–1 A, 1 A)

Fig. 2.99
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18. Find currents I1, I2 and I3.

Fig. 2.101

(15 A, 11 A, 17 A)

19. Find the current Ix.

Fig. 2.102

(8.33 A)

20. Find the current I1.

Fig. 2.103

(–12 A)

NODAL ANALYSIS

21. Determine the current through the 5-Ω resistor.

Fig. 2.104

[3.11 A]
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22. Find the current through the 4-Ω resistor.

Fig. 2.105

[1 A]

23. Find the voltage Vx.

Fig. 2.106

(–4.31 V)

24. Find the voltage Vx.

Fig. 2.107

(2.09 V)

25. Find the voltage Vx.

Fig. 2.108
(6.2 V)
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26. Determine V1.

Fig. 2.109
(140 V)

27. Find the voltage Vy.

Fig. 2.110
(–10 V)

28. Find the voltage V2.

Fig. 2.111

(25.9 V)

Objective-Type Questions

1. Two electrical sub-networks N1 and N2 are

connected through three resistors as shown in

Fig. 2.112. The voltages across the 5-Ω
resistor and 1-Ω resistor are given to be 10 V

and 5 V respectively. Then the voltage across

the 15-Ω resistor is

(a) –105 V (b) 105 V

(c) –15 V (d) 15 V

Fig. 2.112
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2. The nodal method of circuit analysis is based on

(a) KVL and Ohm’s law (b) KCL and Ohm’s law

(c) KCL and KVL (d) KCL, KVL and Ohm’s law

3. The voltage across terminals a and b in Fig. 2.113 is

(a) 0.5 V (b) 3 V (c) 3.5 V (d) 4 V

Fig. 2.113

4. A delta-connected network with its wye-

equivalent is shown in Fig. 2.114. The resistances

R1, R2 and R3 (in ohms) are respectively

(a) 1.5, 3 and 9

(b) 3, 9 and 1.5

(c) 9, 3 and 1.5

(d) 3, 1.5 and 9

5. If each branch of a delta circuit has resistance 3 R, then

each branch of the equivatent wye circuit has resistance

(a)
3

R
(b) 3R (c) 3 3 R (d)

3

R

6. The voltage Vo in Fig. 2.115 is

(a) 48 V (b) 24 V

(c) 36 V (d) 28 V

7. The dependent current source shown in Fig. 2.116.

(a) delivers 80 W

(b) absorbs 80 W

(c) delivers 40 W

(d) absorbs 40 W

Fig. 2.114

Fig. 2.115

Fig. 2.116
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8. If V = 4 in Fig. 2.117, the value of IS is given by

(a) 6 A

(b) 2.5 A

(c) 12 A

(d) none of these

9. The value of Vx, Vy and Vz in Fig. 2.118 shown are

(a) –6, 3, –3

(b) –6, –3, 1

(c) 6, 3, 3

(d) 6, 1, 3

10. Viewed from the terminal AB, the following

circuit can be reduced to an equivalent circuit of

a single voltage source in series with a single

resistor with the following parameters

(a) 5-Volt source in series with a 10-Ω resistor

(b) 1-Volt source in series with a 2.4-Ω resistor

(c) 15-Volt source in series with a 2.4-Ω resistor

(d) 1-Volt source in series with a 10-Ω resistor

11. The circuit shown in Fig. 2.120 is equivalent to a load of

(a)
4

3
 Ω (b)

8

3
 Ω

(c) 4 Ω (d) 2 Ω

12. In the network shown in Fig. 2.121 the effective

resistance faced by the voltage source is

(a) 4 Ω (b) 3 Ω

(c) 2 Ω (d) 1 Ω

13. A network contains only an independent current source and resistors. If the values of all resistors are

doubled, the value of the node voltages will

(a) become half (b) remain unchanged (c) become double (d) none of these

Fig. 2.117

Fig. 2.118

Fig. 2.119

Fig. 2.120

Fig. 2.121
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14. Consider the star network shown in Fig. 2.122. The

resistance between terminals A and B with C open is 6 Ω,

between terminals B and C with A open is 11 Ω and

between terminals C and A with B open is

(a) RA = 4 Ω, RB = 2 Ω, RC = 5 Ω
(b) RA = 2 Ω, RB = 4 Ω, RC = 7 Ω
(c) RA = 3 Ω, RB = 3 Ω, RC = 4 Ω
(d) RA = 5 Ω, RB = 1 Ω, RC = 10 Ω

Fig. 2.122

Answers to Objective-Type Questions

1.(a)2.(b)3.(c)4.(d)5.(a)6.(d)

7.(a)8.(a)9.(d)10.(b)11.(b)12.(b)

13.(c)14.(b)



Network Theorems-II 3.1

Network

Theorems-II
3

3.1 INTRODUCTION

In Chapter 2, we have studied elementary network theorems like star–delta transformation, mesh analysis and

node analysis. There are some other methods also to analyse circuits. In this chapter, we will study superposition

theorem, Thevenin’s theorem, Norton’s theorem and maximum power transfer theorem. We can find currents

and voltages in various parts of the circuits with these methods.

3.2 SUPERPOSITION THEOREM

It states that ‘In a linear network containing more than one independent sources and dependent sources, the

resultant current in any element is the algebraic sum of the currents that would be produced by each independent

source acting alone, all the other independent sources being represented meanwhile by their respective internal

resistances.’

The independent voltage sources are represented by their internal resistance if given or simply with zero

resistance, i.e., short circuits if internal resistances are not mentioned. The independent current sources are

represented by infinite resistance, i.e., open circuits.

The dependent sources are not sources but dissipative components—hence they are active at all the times.

A dependent source has zero value only when its control voltage or current is zero.

A linear network is one whose parameters are constant, i.e., they do not change with voltage and current.

Explanation Consider the circuit shown in Fig. 3.1.

Fig. 3.1
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Steps to be followed in superposition theorem
1. The current flowing through R4 due to constant

voltage source V is found to be say I4′ (with proper

direction), representing constant current source with

infinite resistance, i.e., open circuit.

2. The current flowing through R4 due to constant

current source of I amp is found to be say I4′′ (with

proper direction), representing the constant voltage

source with zero resistance or short circuit.

3. The resultant current I4 through R4 is found by

superposition theorem.

I4 = I4′ + I4′′

Example 3.1 Determine the current in the 10-W resistor.

Fig. 3.3

Solution
Step I: When the 10-V source is acting alone

Fig. 3.4

By source transformation,

Fig. 3.5

Since we have to find current through the 10-Ω resistor, the parallel combination of resistances of 1 Ω and

7 Ω is combined into an equivalent resistance of 0.875 Ω.

Fig. 3.6

Fig. 3.2
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By current-division formula,

I′ = 10 × 
0.875

10 0.875+
 = 0.8 A (↓)

Step II: When the 4-A source is acting alone

Fig. 3.7

By source transformation,

Fig. 3.8

Again by source transformation,

Fig. 3.9

By current-division formula,

I′′ = 2.86 × 
0.875

10 0.875+
 = 0.23 A (↓)

Step III: By superposition theorem,

I = I′ + I′′
= 0.8 + 0.23 = 1.03 A (↓)

Example 3.2 Find the current through the 6-W resistor.

Fig. 3.10



3.4 Electrical Networks

Solution
Step I: When the 4-A source is acting alone

Fig. 3.11

By source transformation,

Fig. 3.12

Again by source transformation,

Fig. 3.13

By series–parallel reduction technique,

Fig. 3.14

By current-division formula,

I′ = 3.33 × 
3.53

6 3.53+
 = 1.23 A (↓)

Step II: When the 10-V source is acting alone

Fig. 3.15
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By source transformation,

Fig. 3.16

By current-division formula,

I′′ = 0.833 × 
3.53

6 3.53+
= 0.31 A (↑) = –0.31 A (↓)

Step III: When the 3-A source is acting alone

Fig. 3.17

By series–parallel reduction technique to the left of the 3-A source,

Fig. 3.18

I′′′ = 3 × 
3.53

6 3.53+
 = 1.11 A (↓)

Step IV: By superposition theorem,

I = I′ + I′′ + I′′′
= 1.23 – 0.31 + 1.11 = 2.03 A (↓)

Example 3.3 Find the current in the 1-W resistor.

Fig. 3.19
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Step I: When the 4-V source is acting alone

Fig. 3.20

I′ =
4

2 1+
 = 1.33 A (↓)

Step II: When the 3-A source is acting alone

Fig. 3.21

By current-division formula,

I′′ = 3 × 
2

1 2+
 = 2 A (↓)

Step III: When the 1-A source is acting alone

Fig. 3.22

The circuit can be redrawn as shown:

Fig. 3.23

By current-division formula,

I′′′ = 1 × 
2

2 1+
 = 0.66 A (↓)

Step IV: By superposition theorem,

I = I′ + I′′ + I′′′
= 1.33 + 2 + 0.66 = 4 A (↓)
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Example 3.4 Find the voltage VAB.

Fig. 3.24

Step I: When the 6-V source is acting alone

Fig. 3.25

From Fig. 3.25,

VAB′ = 6 V

Step II: When the 10-V source is acting alone

Fig. 3.26

Since the resistor of 5 Ω is shorted, the voltage across it is zero.

VAB′′ = 10 V

Step III: When the 5-A source is acting alone

Due to short circuit in both the parts,

VAB′′′ = 0 V

Step IV: By superposition theorem,

VAB = VAB′   + VAB′′   + VAB′′′
= 6 + 10 + 0 = 16 V

Example 3.5 Find the current through the 4-W resistor.

Fig. 3.28

Step I: When the 5-A source is acting alone

By current-division formula,

I ′ = 5 × 
2

2 4+
 = 1.67 A (↓)

Fig. 3.27

Fig. 3.29
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Step II: When the 2-A source is acting alone

By current-division formula,

I′′ = 2 × 
2

2 4+
 = 0.67 A (↓)

Step III: When the 6-V source is acting alone

Applying KVL to the mesh,

–2I′′′ – 6 – 4I′′′ = 0

I′′′ = –1 A (↓)

Step IV: By superposition theorem,

I = I′ + I′′ + I′′′
= 1.67 + 0.67 – 1 = 1.34 A (↓)

Example 3.6 Find the current through the 6-W resistor.

Fig. 3.32

Step I: When the 15-V source is acting alone

From the figure,

I ′ =
115

6

V−

V1 = 15 – 6I ′
Applying KCL at Node 1,

I′ + 3I′ =
1 15 6

8 8

V I ′−
=

32I′ = 15 – 6I′
38I′ = 15

I′ =
15

38
A (→)

Step II: When the 10-V source is acting alone

Fig. 3.34

Fig. 3.30

Fig. 3.31

Fig. 3.33
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From the figure,

I′′ = – 
1

6

V

Applying KCL at Node 1,

I′′ + 3I′′ =
1 10

8

V +

8 (4I′′) = –6I′′ + 10

38I′′ = 10

I′′ =
10

38
A (→)

Step III: By superposition theorem,

I = I′ + I′′

=
15 10 25

38 38 38
+ =  A (→)

Example 3.7 Find the current Ix.

Fig. 3.35

Step I: When the 30-A source is acting alone

From the figure,

Ix′ = – 
1

5

V

Applying KCL at Node 1,

Ix′ = 30 + 1 4

1

xV I ′−

Ix′ = 30 + V1 – 4Ix′
Ix′ + 4Ix′ = 30 – 5Ix′

10Ix′ = 30

Ix′ = 3 A (→)

Step II: When the 20-V source is acting alone

Applying KVL to the mesh,

20 – 5Ix′′ – 1Ix′′ – 4Ix′′ = 0

20 = 10Ix′′
Ix′′ = 2 A (→)

Step III: By superposition theorem,

Ix = Ix′ + Ix′′
= 3 + 2 = 5 A (→)

Fig. 3.36

Fig. 3.37
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Example 3.8 Find the current I1.

Fig. 3.38

Step I: When the 5-V source is acting alone

From the figure,

Vx = 5 – 10I1′
Applying KVL to the mesh,

5 – 10I1′ – 4Vx – 2I1′ = 0

5 – 10I1′ – 4 (5 – 10I1′) – 2I1′ = 0

5 – 10I1′ – 20 + 40I1′ – 2I1′ = 0

28I1′ = 15

I1′ =
15

28
 = 0.535 A (↑)

Step II: When the 2-A source is acting alone

From the figure,

I1′′ = – 
10

xV

Applying KCL at Node x,

10

xV
−  + 2 =

4

2

x xV V−

3

10 2

x xV V
− + = –2

14Vx = –20

Vx =
20 10

14 7
− = −  V

I1′′ =
1

10 7

xV
− =  = 0.1428 A (↑)

Step III: By superposition theorem,

I1 = I1′ + I1′′
= 0.535 + 0.1428 = 0.678 A (↑)

Example 3.9 Determine the current through the 10-W resistor.

Fig. 3.41

Fig. 3.39

Fig. 3.40
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Step I: When the 100-V source is acting alone

From the figure,

Vx = 5I′
Applying KVL to the mesh,

100 – 10I′ + 10Vx – 5I′ = 0

100 – 10I′ + 10(5I′) – 5I′ = 0

I′ = – 
100 20

35 7
= −  A (→) = 

20

7
 A (←)

Step II: When the 10-A source is acting alone

From the figure,

I′′ =
10

10

x xV V−

Applying KCL at Node 1,

10 =
5

xV
 + I′′

10 =
10 2 9

5 10 10 10

x x x x xV V V V V−
+ = −

10 =
7

10

xV
−

100 = –7Vx

Vx = –
100

7
 V

I′′ = – 
9 9 100

10 10 7

xV  = − × − 
 

=
90

7
A (←)

Step III: By superposition theorem

I =  I′ + I′′

=
20 90

7 7
+

=
110

7
A (←)

Example 3.10 Find the current I in the circuit.

Fig. 3.44

Fig. 3.42

Fig. 3.43
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Step I: When the 17-V source is acting alone

From the figure,

Vx = –2I′
Applying KVL to the mesh,

–2I′ – 17 – 3I′ – 5Vx = 0

–2I′ – 17 – 3I′ – 5(–2I′) = 0

 5I′ = 17

I′ =
17

5
A (→)

Step II: When the 1-A source is acting alone

Applying KCL at Node x,

5

2 3

x x xV V V−
+ = 1

4

2 3

x xV V
− = 1

5

6

xV
− =  1

Vx =
6

5
−

I′′ =
4

3

xV
−

=
4 6 8

3 5 5

 − × − = 
 

 A (→)

Step III: By superposition theorem

I = I′ + I′′

=
17 8 25

5 5 5
+ =  = 5 A (→)

Example 3.11 Find the voltage V1.

Fig. 3.47

Step I: When the 5-A source is acting alone

From the figure,

I = 1

4

V ′

Applying KCL at Node 1,

1 14

1 4

V I V′ ′−
+ = 5

Fig. 3.45

Fig. 3.46

Fig. 3.48
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1 1
1 4

4 4

V V
V

′ ′
′ − × + = 5

1

4

V ′
= 5

V1′ = 20 V

Step II: When the 20-V source is acting alone

Applying KVL to the mesh,

4I – I – 4I – 20 = 0

I = –20 A

V1′′ = 4I – 1(I ) = 3I

= 3 (–20) = –60 V

Step III: By superposition theorem,

V1 = V1′ + V1′′
= 20 – 60 = –40 V

Example 3.12 Find the current in the 6-W resistor.

Fig. 3.50

Step I: When the 18-V source is acting alone

From Fig. 3.51,

Vx = – I′
Applying KVL to the mesh,

18 + Vx + 2Vx – 6I′ = 0

18 – I′ – 2I′ – 6I′ = 0

I′ = 2 A (↓)

Step II: When the 3-A source is acting alone

Fig. 3.52
Applying KCL at Node 1,

3 =
2

1 6

x x xV V V+
+

Vx = 2 V

I′′ =
2

6

x xV V+

Fig. 3.49

Fig. 3.51
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=
2 4

6

+
 = 1 A (↓)

Step III: By superposition theorem,

I6 Ω = I′ + I′′
= 2 + 1 = 3 A (↓)

Example 3.13 Find the current Iy.

Fig. 3.53

Step I: When the 120-V source is acting alone

Applying KVL to the mesh,

120 – 4Iy′ – 10Iy′ – 8Iy′ = 0

120 = 22Iy′

Iy′ = 5.45 A (→)

Step II: When the 12-A source is acting alone

From the figure,

Iy′′ = – 1

4

V

Applying KCL at Node 1,

Iy′′ + 12 =
1 10

8

yV I ′′−

Iy′′ + 12 =
4 10

8

y yI I′′ ′′− −

Iy′′ =
12

2.75
−  = –4.36 A (→)

Step III: When the 40-V source is acting alone

Applying KVL to the mesh,

–4 Iy′′′ – 10Iy′′′ – 8Iy′′′ – 40 = 0

–22Iy′′′ = 40

Iy′′′ = – 
40

22
= –1.82 A (→)

Step IV: By the superposition theorem,

Iy = Iy′ + Iy′′ + Iy′′′
= 5.45 – 4.36 – 1.82

= –0.73 A (→)

Fig. 3.54

Fig. 3.55

Fig. 3.56
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Example 3.14 Find the voltage Vx.

Fig. 3.57

Step I: When the 18-V source is acting alone

From the figure,

Vx′ = 3I

Applying KVL to the mesh,

18 – 3I – 6I – 3Vx′ = 0

18 – 3I – 6I – 3 (3I) = 0

18 = 18I

I = 1 A

Vx′ = 3 V

Step II: When the 5-A source is acting alone

From the figure,

V1 = – Vx′′
Applying KCL at Node 1,

11 3

3 6

xV VV ′′−
+ = 5

1 1 13

3 6

V V V+
+ = 5

1 14

3 6

V V
+ = 5

V1 = 5 V

Vx′′ = –5 V

Step III: When the 36-V source is acting alone,

From the figure,

Vx′′′ = –3I

Applying KVL to the mesh,

36 + 3Vx′′′ – 6I – 3I = 0

36 + 3Vx′′′ – 6
3

xV ′′′− 
 
 

 – 3
3

xV ′′′− 
 
 

= 0

36 + 3Vx′′′ + 2Vx′′′ + Vx′′′ = 0

36 = –6Vx′′′
Vx′′′ = –6 V

Step IV: By superposition theorem,

Vx = Vx′ + Vx′′ + Vx′′′
= 3 – 5 – 6 = –8 V

Fig. 3.58

Fig. 3.59

Fig. 3.60
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3.3 THEVENIN�S THEOREM

It states that ‘Any two terminals of a network can be replaced by an equivalent voltage source and an equivalent

series resistance. The voltage source is the voltage across the two terminals with load, if any, removed. The

series resistance is the resistance of the network measured between two terminals with load removed and

constant voltage source being replaced by its internal resistance (or if it is not given with zero resistance, i.e.,

short circuit) and constant current source replaced by infinite resistance, i.e., open circuit.’

Fig. 3.61

Explanation The above method of determining the load current through a given load resistance can be

explained with the help of following circuit.

Fig. 3.62

Steps to be followed in Thevenin�s theorem
1. Remove the load resistance RL.

2. Find the open circuit voltage VTh across points A and B.

3. Find the resistance RTh as seen from points A and B with the voltage source V replaced by a short

circuit.

4. Replace the network by a voltage source VTh in series with resistance RTh.

5. Find the current through RL using Ohm’s law.

IL = Th

Th L

V

R R+

Example 3.15 Find the current through the 10-W resistor.

Fig. 3.63
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Step I: Calculation of VTh

Removing the 10-Ω resistor from the circuit,

For Mesh 1,

I1 = 10 A

Applying KVL to Mesh 2,

100 – 30I2 – 20I2 = 0

I2 = 2 A

Writing VTh equation,

5I1 – VTh – 20I2 = 0

VTh = 5I1 – 20I2

= 5(10) – 20(2) = 10 V

Step II: Calculation of RTh

Replacing the current source of 10 A with an open circuit and the voltage source of 100 V with a short circuit,

Fig. 3.65

RTh = 5 + (20 | | 30) = 17 Ω
Step III: Calculation of IL

Fig. 3.66

IL =
10

17 10+
 = 0.37 A

Example 3.16 Determine the current through the 24-Ω resistor.

Fig. 3.67

Step I: Calculation of VTh

Removing the 24-Ω resistor from the network,

I1 =
220

30 50+
 = 2.75 A

Fig. 3.64
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I2 =
220

20 5+
 = 8.8 A

Writing VTh equation,

VTh + 30I1 – 20I2 = 0

VTh = 20I2 – 30I1

= 20 (8.8) – 30(2.75) = 93.5 V

Step II: Calculation of RTh

Replacing the 220-V source with short circuit,

Fig. 3.69

The circuit can be redrawn as shown:

Fig. 3.70

RTh = (30 | | 50) + (20 | | 5) = 22.75 Ω
Step III: Calculation of IL

Fig. 3.71

IL =
93.5

22.75 24+
 = 2 A

Example 3.17 Find the current through the 3-W resistor.

Fig. 3.68

Fig. 3.72
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Step I: Calculation of VTh

Removing the 3-Ω resistor from the network,

Applying KVL to Mesh 1,

50 – 2I1 – 1(I1 – I2) – 8(I1 – I2) = 0

11I1 – 9I2 = 50 ...(1)

Applying KVL to Mesh 2,

–4I2 – 5I2 – 8(I2 – I1) – (I2 – I1) = 0

–9I1 + 18I2 = 0 ...(2)

Solving Eqs (1) and (2),

I1 = 7.69 A

I2 = 3.85 A

Writing VTh equation,

VTh – 5I2 – 8(I2 – I1) = 0

VTh = 5I2 + 8 (I2 – I1)

= 5(3.85) + 8(3.85 – 7.69) = –11.47 V

= 11.47 V (the terminal B is positive w.r.t. A)

Step II: Calculation of RTh

Replacing the voltage source of 50 V with a short circuit,

Fig. 3.74

The circuit can be redrawn as follows:

Fig. 3.75

Fig. 3.73
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Converting the upper delta into equivalent star network,

R1 =
4 2

4 2 5

×
+ +

 = 0.73 Ω

R2 =
4 5

4 2 5

×
+ +

 = 1.82 Ω

R3 =
5 2

4 2 5

×
+ +

 = 0.91 Ω

Fig. 3.77

The simplified network is drawn as follows:

Fig. 3.78

RTh = 1.82 + (1.73 | | 8.91) = 3.27 Ω
Step III: Calculation of IL

Fig. 3.79

IL =
11.47

3.27 3+
 = 1.83 A (↑)

Fig. 3.76
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Example 3.18 Find the current through the 20-W resistor.

Fig. 3.80

Step I: Calculation of VTh

Removing the 20-Ω resistor from the network,
Applying KVL to Mesh 1,

45 – 120 – 15I1 – 5(I1 – I2) – 10(I1 – I2) = 0
30I1 – 15I2 = –75 ...(1)

Applying KVL to Mesh 2,
20 – 5I2 – 10(I2 – I1) – 5(I2 – I1) = 0

–15I1 + 20I2 = 20 ...(2)
Solving equations (1) and (2),

I1 = –3.2 A
I2 = –1.4 A

Writing VTh equation,
45 – VTh – 10 (I1 – I2) = 0

VTh = 45 – 10 (I1 – I2)
= 45 – 10 [–3.2 – (–1.4)] = 63 V

Step II: Calculation of RTh

Replacing all voltage sources with short circuit,

Fig. 3.82

Converting the delta formed by resistances of 10 Ω, 5 Ω and

5 Ω into equivalent star network,

R1 =
10 5

20

×
 = 2.5 Ω

R2 =
10 5

20

×
 = 2.5 Ω

R3 =
5 5

20

×
 = 1.25 Ω

Fig. 3.81

Fig. 3.83
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Fig. 3.84

The circuit can be simplified as follows:

Fig. 3.85

RTh = (16.25 | | 2.5) + 2.5 = 4.67 Ω
Step III: Calculation of IL

Fig. 3.86

IL =
63

4.67 20+
 = 2.55 A

Example 3.19 Find the current through the 3-W resistor.

Fig. 3.87

Step I: Calculation of VTh

Removing the 3-Ω resistor from the network,

Writing equation for Mesh 1,
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I1 = 6 ...(1)

Applying KVL to Mesh 2,

42 – 12(I2 – I1) – 6 I2 = 0

–12 I1 + 18 I2 = 42 ...(2)

Substituting value of I1 in Eq. (2),

I2 = 6.33 A

Writing VTh equation,

VTh = 6 I2 = 38 V

Step II: Calculation of RTh

Replacing voltage source by short circuit and current source by open circuit,

Fig. 3.89

RTh = 6 || 12 = 4 Ω
Step III: Calculation of IL

Fig. 3.90

IL =
38

4 3+
 = 5.43 A

Example 3.20 Find the current through the 30-W resistor.

Fig. 3.91

Step I: Calculation of VTh

Removing the 30-Ω resistor from the network,

Fig. 3.92

Fig. 3.88
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Meshes 1 and 2 form a supermesh.

Writing current equation for supermesh,

I2 – I1 = 13 ...(1)

Writing voltage equation for supermesh,

150 – 15I1 – 60I2 – 40I2 = 0

15I1 + 100I2 = 150 ...(2)

Solving Eqs (1) and (2),

I1 = –10 A

I2 = 3 A

Writing VTh equation,

40I2 – VTh – 50 = 0

VTh = 40I2 – 50 = 40(3) – 50 = 70 V

Step II: Calculation of RTh

Replacing the voltage sources by short circuits and the current source by an open circuit,

Fig. 3.93

RTh = 75 || 40 = 26.09 Ω
Step III: Calculation of IL

Fig. 3.94

IL =
70

26.09 30+
 = 1.25 A

Example 3.21 Find the current through the 20-W resistor.

Fig. 3.95

Step I: Calculation of VTh

Removing the 20-Ω resistor from the network,
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Fig. 3.96

From Fig. 3.96

VTh = 100 V

Step II: Calculation of RTh

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 3.97

RTh = 0

Step III: Calculation of IL

IL =
100

20
 = 5 A

Example 3.22 Find the current through the 10-W resistor.

Fig. 3.99

Fig. 3.98
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Step I: Calculation of VTh

Removing the 10-Ω resistor from the network,

Fig. 3.100

Applying KVL to Mesh 1,

–15 – 2I1 – 1 (I1 – I2) – 10 – 1I1 = 0

4I1 – I2 = –25 ...(1)

Applying KVL to Mesh 2,

10 – (I2 – I1) – 2I2 – I2 = 0

–I1 + 4I2 = 10 ...(2)

Solving Eqs (1) and (2),

I1 = –6 A

I2 = 1 A

Writing VTh equation,

–VTh + 2I2 + 2I1 = 0

VTh = 2I1 + 2I2

= 2(–6) + 2 (1) = –10 V

= 10 V (the terminal B is positive w.r.t. A)

Step II: Calculation of RTh

Replacing voltage sources by a short circuit,

Fig. 3.101
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Converting the star network formed by resistances of 2 Ω,

2 Ω and 1 Ω into an equivalent delta network.

R1 = 2 + 2 + 
2 2

1

×
 = 8 Ω

R2 = 2 + 1 + 
2 1

2

×
 = 4 Ω

R3 = 2 + 1 + 
2 1

2

×
 = 4 Ω

Fig. 3.103

Step III: Calculation of IL

Fig. 3.104

IL =
10

1.33 10+
 = 0.88 A (↑)

Fig. 3.102



3.28 Electrical Networks

Example 3.23 Find the current through the 1-W resistor.

Fig. 3.105

Step I: Calculation of VTh

Removing the 1-Ω resistor from the network,

Writing the current equation for Meshes 1 and 2,

I1 = –3 A

I2 = 1 A

Writing VTh equation,

4 – 2 (I1 – I2) – VTh = 0

VTh = 4 – 2(–3 – 1)

= 4 – 2(–4) = 12 V

Step II: Calculation of RTh

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 3.107

RTh = 2 Ω
Step III: Calculation of IL

Fig. 3.108

IL =
12

2 1+
 = 4 A

Fig. 3.106
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3.4 NORTON�S THEOREM

It states that ‘Any two terminals of a network can be replaced by an equivalent current source and an equivalent

parallel resistance.’ The constant current is equal to the current which would flow in a short circuit placed

across the terminals. The parallel resistance is the resistance of the network when viewed from these open-

circuited terminals after all voltage and current sources have been removed and replaced by internal resistances.

Fig. 3.109

Explanation: The method of determining the load current through a given load resistance can be explained

with the help of the following circuit.

Fig. 3.110

Steps to be followed in Norton�s theorem

1. Remove the load resistance RL and put a short circuit across the terminals.

2. Find the short-circuit current ISC or IN.

3. Find the resistance RN as seen from points A and B by replacing the voltage source by a short circuit.

4. Replace the network by a current source ISC in parallel with resistance RN.

5. Find current through RL by current–division formula.

IL = SC N

N L

I R

R R+

Example 3.24 Find the current through the 10-W resistor.

Fig. 3.111



3.30 Electrical Networks

Step I: Calculation of ISC

Applying KVL to Mesh 1,

2 – I1 = 0 ...(1)

I1 = 2

Meshes 2 and 3 will form a supermesh.

Writing current equation for the supermesh,

I3 – I2 = 4 ...(2)

Applying KVL to the supermesh,

–5I2 – 15I3 = 0 ...(3)

Solving Eqs (1), (2) and (3),

I1 = 2 A

I2 = –3 A

I3 = 1 A

ISC = I1 – I2 = 2 – (–3) = 5 A

Step II: Calculation of RN

Replacing the voltage source by a short circuit and current source by an open circuit,

Fig. 3.113

RN = 1 || (5 + 15) = 0.95 Ω
Step III: Calculation of IL

Fig. 3.114

IL = 5 × 
0.95

10 0.95+
 = 0.43 A

Example 3.25 Find the current through the 10-W resistor.

Fig. 3.115

Fig. 3.112
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Step I: Calculation of ISC

Applying KVL to Mesh 1,

–5I1 + 20 – 2(I1 – I2) = 0

7I1 – 2I2 = 20 ...(1)

Applying KVL to Mesh 2,

–2(I2 – I1) – 8I2 – 12 = 0

–2I1 + 10I2 = –12 ...(2)

Solving Eqs (1) and (2),

I2 = –0.67 A

ISC = I2 = –0.67 A

Step II: Calculation of RN

Replacing voltage sources with short circuits,

Fig. 3.117

RN = (5 | | 2) + 8 = 9.43 Ω
Step III: Calculation of IL

Fig. 3.118

IL = 0.67 × 
9.43

9.43 10+
= 0.33 A (↑)

Example 3.26 Find the current through the 10-W

resistor in Fig. 3.119.

Step I: Calculation of ISC

Fig. 3.120

Fig. 3.116

Fig. 3.119
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Applying KVL to Mesh 1,

10 – 6I1 – 1 (I1 – I2) = 0

7I1 – I2 = 10 ...(1)

Applying KVL to Mesh 2,

–1 (I2 – I1) – 2I2 – 3(I2 – I3) = 0

–I1 + 6I2 – 3I3 = 0 ...(2)

Applying KVL to Mesh 3,

–3 (I3 – I2) – 20 = 0

3I2 – 3I3 = 20 ...(3)

Solving Eqs (1), (2) and (3),

I3 = –13.17 A

ISC = I3 = –13.17 A

Step II: Calculation of RN

Replacing voltage sources with short circuits,

Fig. 3.121

RN = [(6 || 1) + 2] || 3 = 1.46 Ω
Step III: Calculation of ISC

Fig. 3.122

IL = 13.17 × 
1.46

1.46 10+
 = 1.68 A (↑)

Example 3.27 Find the current through the 10-W resistor.

Fig. 3.123
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Step I: Calculation of ISC

Applying KVL to Mesh 1,

50 – 20 (I1 – I2) – 40 = 0

20I1 – 20I2 = 10 ...(1)

Applying KVL to Mesh 2,

40 – 20 (I2 – I1) – 20I2 – 20 (I2 – I3) = 0

–20I1 + 60I2 – 20I3 = 40 ...(2)

Applying KVL to Mesh 3,

–20 (I3 – I2) – 30I3 – 100 = 0

–20I2 + 50I3 = –100 ...(3)

Solving Eqs (1), (2) and (3),

I1 = 0.81 A

ISC = I1 = 0.81 A

Step II: Calculation of RN

Replacing all voltage sources by  short circuits,

Fig. 3.125

RN = [(20 || 30) + 20] || 20 = 12.3 Ω

Step III: Calculation of IL

IL = 0.81 × 
12.3

12.3 10+
 = 0.45 A

Example 3.28 Obtain Norton’s equivalent network as seen by RL.

Fig. 3.127

Step I: Calculation of ISC

Applying KVL to Mesh 1,

120 – 30I1 – 60 (I1 – I2) = 0

90I1 – 60I2 = 120 ...(1)

Applying KVL to Mesh 2,

–60 (I2 – I1) + 40 – 10I2 – 30 (I2 – I3) = 0

–60I1 + 100I2 – 30I3 = 40 ...(2)

Applying KVL to Mesh 3,

–30 (I3 – I2) + 10 = 0

30I2 – 30I3 = –10 ...(3)

Fig. 3.124

Fig. 3.126

Fig. 3.128
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Solving Eqs (1), (2) and (3),

I3 = 4.67 A

ISC = I3 = 4.67 A

Step II: Calculation of RN

Replacing voltage sources by short circuits,

Fig. 3.129

RN = [(30 || 60) + 10] || 30 = 15 Ω
Step III: Norton’s equivalent Network

Fig. 3.130

Example 3.29 Find the current through the 8-W resistor.

Fig. 3.131

Step I: Calculation of ISC

Fig. 3.132

The resistor of the 4-Ω source gets shorted as it is in parallel with the short circuit. Simplifying the network

by source transformation,

Fig. 3.133
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Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I2 – I1 = 2 ...(1)

Applying KVL to the supermesh,

60 – 12I1 – 5 = 0

12I1 = 55 ...(2)

Solving Eqs (1) and (2),

I1 = 4.58 A

I2 = 6.58 A

ISC = I2 = 6.58 A

Step II: Calculation of RN

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 3.134

RN = 12 || 4 = 3 Ω
Step III: Calculation of IL

Fig. 3.135

IL = 6.58 × 
3

3 8+
 = 1.79 A

Example 3.30 Find current through the 1-W resistor.

Fig. 3.136
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Step I: Calculation of ISC

Fig. 3.137

By source transformation,

Applying KVL to Mesh 1,

–3 – 3I1 – 2(I1 – I3) + 1 = 0

5I1 – 2I3 = –2 ...(1)

Applying KVL to Mesh 2,

–1 – 2 (I2 – I3) – 2 I2 = 0

4I2 – 2I3 = –1 ...(2)

Applying KVL to Mesh 3,

–2 (I3 – I1) – 2 (I3 – I2) = 0

–2I1 – 2I2 + 4I3 = 0 ...(3)

Solving Eqs (1), (2) and (3),

I1 = –0.64 A

I2 = –0.55 A

I3 = –0.59 A

ISC = I3 = –0.59 A

Step II: Calculation of RN

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 3.139

RN = 2.2 Ω

Fig. 3.138
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Step III: Calculation of IL

Fig. 3.140

IL = 0.59 × 
2.2

2.2 1+
 = 0.41 A

3.5 THEVENIN�S AND NORTON�S THEOREM WITH DEPENDENT SOURCES

In a resistive circuit containing dependent and independent sources, we shall often find it more convenient to

determine either the Thevenin or Norton equivalent by finding both the open-circuit voltage and short-circuit

current and then determining the value of RTh as,

RTh = Th

SC

V

I

Dependent sources are active at all the times. These have zero value only when its control voltage or

current is zero. RTh may be negative in some cases which indicates negative resistance region of the device,

i.e., as voltage increases, current decreases in this region.

Thevenin’s theorem and Norton’s theorem are the dual of each other. If we apply source transformation to

one network, we will obtain the other network. For example, if we transform the Norton equivalent network,

we obtain a voltage source RTh ISC in series with resistance RTh. This gives the Thevenin equivalent network.

VTh = RTh ISC

Example 3.31 Obtain the Thevenin equivalent network for the given network at terminals A and B.

Fig. 3.141

Step I: Calculation of VTh

From the figure,

I1 =
8

4

AV−

Applying KCL at Node A,

I1 + 2I1 = 0

3I1 = 0

3
8

4

AV− 
 
 

= 0

VA = 8 V Fig. 3.142
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Writing VTh equation,

VTh = VA = 8 V

Step II: Calculation of ISC

From the figure,

I1 =
8

4

AV−

Applying KCL at Node A,

I1 + 2I1 = ISC

ISC = 3I1

= 3
8

4

AV− 
 
 

 = 6 A (... VA = 0)

Step III: Calculation of RTh

RTh = Th

SC

V

I

=
8

6
 = 1.33 Ω

Example 3.32 Obtain the Thevenin equivalent network for the load RL in the network.

Fig. 3.144

Step I: Calculation of VTh

Applying KCL at Node x,

2

2

xV −
= 2

Vx – 2 = 4

Vx = 6 V

Writing VTh equation,

VTh = Vx + 4Vx

= 5Vx

= 5 × 6 = 30 V

Step II: Calculation of ISC

Applying KCL at Node x,

2 4

2 1

x x xV V V− +
+ = 2

2

xV
 – 1 + 5Vx = 2

5.5Vx = 3

Vx = 0.545 V

ISC =
5 5 0.545

1 1

xV ×
=  = 2.73 A

Fig. 3.143

Fig. 3.145

Fig. 3.146
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Step III: Calculation of RTh

RTh =
30

2.73

Th

SC

V

I
=  = 10.98 Ω

Example 3.33 Find the Thevenin equivalent network for the terminals A and B.

Fig. 3.147

Step I: Calculation of VTh

Applying KVL to the Mesh,
5 – 10I1 – 10I1 = 0

I1 =
5

20
 = 0.25 A

Writing VTh equation,
VTh = 10I1 + 8I1

= 18I1

= 18 × 0.25 = 4.5 V
Step II: Calculation of ISC

Applying KVL to Mesh 1,
5 = 10I1 + 10(I1 – I2)
5 = 20I1 – 10I2

1 = 4I1 – 2I2 …(1)
Applying KVL to Mesh 2,

8I1 – I2 – 10(I2 – I1) = 0
 18I1 = 11I2

I2 = 1.61I1

I1 = 0.611I2 …(2)
Solving Eqs (1) and (2),

I2 = 2.25 A
ISC = 2.25 A

Step III: Calculation of RTh

RTh =
4.5

2.25

Th

SC

V

I
=  = 2 Ω

Example 3.34 Find RTh and VTh between A and B.

Fig. 3.150

Fig. 3.148

Fig. 3.149
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Step I: Calculation of VTh

Ix = 0

The dependent source 2Ix depends on the controlling variable Ix. When Ix = 0 , the dependent source vanishes,

i.e., 2Ix = 0

Fig. 3.151

VTh = 12 × 
1

1 1+
 = 6 V

Step II: Calculation of ISC

From the figure,

Ix = ISC

Applying KCL at Node 1,

1 1 112

1 1 2

V V V−
+ + = 2Ix

V1 + V1 + 1

2

V
 – 12 = 2 1

2

V 
 
 

1.5V1 = 12

V1 = 8 V

ISC =  1 8

2 2

V
=  = 4 A

Step III: Calculation of RTh

RTh = Th

SC

V

I

=
6

4
 = 1.5 Ω

Example 3.35 Find the current in the 9-W resistor.

Fig. 3.153

Step I: Calculation of VTh

Applying KVL to the Mesh,

20 – 4Ix + 6Ix – 6Ix = 0

20 = 4Ix

Ix = 5 A

 VTh = 6Ix

= 6 × 5 = 30 V

Fig. 3.152

Fig. 3.154
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Step II: Calculation of ISC

Fig. 3.155

From the figure,

Ix = 0

The dependent source 6Ix depends on the controlling variable Ix. When Ix = 0, the dependent source vanishes,

i.e., 6Ix = 0

Fig. 3.156

ISC =
20

4
 = 5 A

Step III: Calculation of RTh

RTh =
30

5

Th

SC

V

I
=  = 6 Ω

Step IV: Calculation of IL

Fig. 3.157

 IL =
30

6 9+
 = 2 A

Example 3.36 Find the current in the 10-W resistor .

Fig. 3.158
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Step I: Calculation of VTh

Fig. 3.159

From the figure,

Vx = 10 × 5 = 50 V

VA = 100 V

VB = – 10Vx + Vx

= – 9Vx

= – 9 × 50 = – 450 V

Writing VTh equation,

 VTh = VA – VB

= 100 – (– 450)

= 550 V

Step II: Calculation of ISC

Fig. 3.160

100 + 10Vx – Vx = 0

Vx =
100

9
−  V

Also, Vx = 5(ISC + 10)

100

9
− = 5ISC + 50

ISC =
550

45
−  A

Step III: Calculation of RTh

RTh =
550

550

45
−

 = –45 Ω

Step IV: Calculation of IL

IL =
550

45 10− +

= – 
550 110

35 7
= −  A

Fig. 3.161
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Example 3.37 Determine the current in the 16-W resistor .

Fig. 3.162

Step I: Calculation of VTh

Fig. 3.163

From the figure,

Ix = 0

The dependent source 0.8Ix depends on the controlling variable Ix. When Ix = 0, the dependent source

vanishes,

i.e., 0.8Ix = 0

VTh = 40 V

Step II: Calculation of ISC

From the figure,

Ix =
1

6

V

Applying KCL at Node 1,

1 40

10

V −
 + 0.8Ix + Ix = 0

1

10

V
 – 4 + 1.8Ix = 0

1

10

V
 + 1.8

1

6

V
= 4

0.1V1 + 0.3V1 = 4

V1 =
4

0.4
 = 10 V

ISC = Ix = 
1 10

6 6

V
=  A

Step III: Calculation of RTh

RTh =
40

10

6

Th

SC

V

I
=  = 24 Ω

Fig. 3.164
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Step IV: Calculation of IL

Fig. 3.165

IL =
40

16 24+
 = 1 A

Example 3.38 Find the current in the 6-W resistor.

Fig. 3.166

Step I: Calculation of VTh

Applying KCL at Node 1,

1 18

1

V −
= 3

V1 = 21

Writing VTh equation,

VTh = V1 + 2Vx

= V1 + 2 (V1 – 18)

= V1 + 2V1 – 36 = 3V1 – 36

= 63 – 36 = 27 V

Step II: Calculation of ISC

From the figure,

I2 = ISC

Vx = –1 (I1)

I1 = –Vx

I2 – I1 = 3

ISC + Vx = 3

ISC = 3 – Vx

Also 18 + Vx + 2Vx = 0

18 + 3Vx = 0

Vx = – 6 V

ISC = 3 – (–6) = 9 A

Step III: Calculation of RTh

RTh =
27

9

Th

SC

V

I
=  = 3 Ω

Fig. 3.167

Fig. 3.168



Network Theorems-II 3.45

Step IV: Calculation of IL

Fig. 3.169

IL =
27

3 6+
 = 3 A

Example 3.39 Obtain the Thevenin equivalent network for the given network at terminals a and b.

Fig. 3.170

Step I: Calculation of VTh

Applying KCL at Node x,

2 =
2

xV

Vx = 4 V

Writing VTh equation,

VTh = Vx – 5Vx = –4Vx

= –16 V

(the terminal a is negative w.r.t. b)

Step II: Calculation of ISC

Applying KCL at Node x,

2 =
5

2 4

x x xV V V−
+

2 =
2 2

x x
x

V V
V− = −

Vx = –4 V

ISC =
5

4

x xV V−

= – Vx = – 4 (ISC is flowing towards Node x)

Step II: Calculation of RTh

RTh = Th

SC

V

I

=
16

4−
= – 4 Ω

Fig. 3.171

Fig. 3.172
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Example 3.40 Obtain the Thevenin equivalent network for the given network.

Fig. 3.173

Step I: Calculation of VTh

Applying KCL at the node,

1
150

3

10 15

x x
x

V V
V

− −
+  + 5 = 0

Vx = 75 V

From the figure,

Vx = VTh

VTh = 75 V

Step II: Calculation of ISC

Applying KCL at Node x,

1
150

35
30 15 10

x x
x x

V V
V V

− −
+ + + = 0

30 15 10 30

x x x xV V V V
+ + − = 15 – 5

 5Vx = 300

Vx = 60 V

ISC =
60

30 30

xV
=  = 2 A

Step III: Calculation of RTh

 RTh =
75

2

Th

SC

V

I
=  Ω

3.6 MAXIMUM POWER TRANSFER THEOREM

It states that the maximum power is delivered from a

source to a load when the load resistance is equal to the

source resistance.

I =
S L

V

R R+

Power delivered to the load RL = P = I2 RL = 

2

2
( )

L

S L

V R

R R+

Fig. 3.174

Fig. 3.175

Fig. 3.176
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To determine the value of RL for maximum power to be transferred to the load,

L

dP

dR
= 0

L

dP

dR
=

2

2
( )L S L

d V

dR R R+
 RL

=

2 2

4

[( ) (2 )( )]

( )

S L L S L

S L

V R R R R R

R R

+ − +

+
(RS + RL)2 – 2 RL (RS + RL) = 0

RS
2 + RL

2 + 2RS RL – 2RL RS – 2RL
2 = 0

RS = RL

Hence, the maximum power will be transferred to the load when load resistance is equal to the source

resistance.

Steps to be followed in maximum power transfer theorem
1. Remove the variable load resistor RL.

2. Find the open circuit voltage VTh across points A and B.

3. Find the resistance RTh as seen from points A and B with voltage source and current source replaced by

internal resistance.

4. Find the resistance RL for maximum power transfer.

RL = RTh

5. Find the maximum power.

IL =
2

Th Th

Th L Th

V V

R R R
=

+

Pmax = IL
2 RL

=

2 2

2
44

Th Th
Th

ThTh

V V
R

RR
× =

Example 3.41 For the circuit shown, find value of resistance RL for maximum power and calculate

maximum power.

Fig. 3.178

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

I2 – I1 = 4 ...(1)

Applying KVL to the outer path,

8 – I1 – 5I1 – 5I2 – 10 = 0

–6I1 – 5I2 = 2 ...(2)

Fig. 3.177

Fig. 3.179
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Solving Eqs (1) and (2),

I1 = –2 A

I2 = 2 A

Writing VTh equation,

8 – 1(I1) – VTh = 0

VTh = 8 – I1 = 8 – (–2) = 10 V

Step II: Calculation of RTh

Replacing the voltage sources by short circuits and

current source by an open circuit,

RTh = 10 Ω || 1 Ω = 0.91 Ω

Step III: Value of RL

For maximum power transfer,

RL = RTh = 0.91 Ω

Step IV: Calculation of Pmax

Pmax =
2

4

Th

Th

V

R

=

2
(10)

4 0.91×
 = 27.47 W

Example 3.42 For the circuit shown, find the value of the resistance RL  for maximum power and calculate

the maximum power.

Fig. 3.182

Step I: Calculation of VTh

Removing the variable resistor RL from the circuit,

For Mesh 1,

I1 = 50 A

Applying KVL to Mesh 2,

–5 (I2 – I1) – 2I2 – 3I2 = 0

5I1 – 10I2 = 0

I1 = 2I2

I2 = 25 A

VTh = 3I2 = 3(25) = 75 V

Step II: Calculation of RTh

Replacing the current source of 50 A with an open circuit,

Fig. 3.180

Fig. 3.181

Fig. 3.183
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Fig. 3.184

RTh = 7 | | 3 = 2.1 Ω
Step III: Value of RL

For maximum power transfer,

RL = RTh = 2.1 Ω
Step IV: Calculation of Pmax

Fig. 3.185

Pmax =
2 2

(75)

4 4 2.1

Th

Th

V

R
=

×
 = 669.64 W

Example 3.43 For the circuit shown, find value of resistance RL for maximum power and calculate

maximum power.

Fig. 3.186

Step I: Calculation of VTh

Removing the variable resistor RL from the circuit,

Writing the current equation for the supermesh,

I2 – I1 = 6 ...(1)

Applying KVL to the supermesh,

10 – 5I1 – 2I2 = 0

5I1 + 2I2 = 10 ...(2)

Solving equations (1) and (2),

I1 = –0.29 A

I2 = 5.71 A

Writing VTh equation,

VTh = 2I2 = 11.42 V Fig. 3.187
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Step II: Calculation of RTh

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 3.188

RTh = (5 | | 2) + 3 + 4 = 8.43 Ω
Step III: Calculation of RL

For maximum power transfer

RL = RTh = 8.43 Ω
Step IV: Calculation of Pmax

Fig. 3.189

Pmax =

2 2
(11.42)

4 4 8.43

Th

Th

V

R
=

×
 = 3.87 W

Example 3.44 For the circuit shown, find the value of the resistance RL  for maximum power and calculate

the maximum power.

Fig. 3.190

Step I: Calculation of VTh

Removing the variable resistor RL from the circuit,

Applying KVL to Mesh 1,

120 – 10I1 – 5(I1 – I2) = 0

15I1 – 5I2 = 120 ...(1)

Writing current equation for Mesh 2,

I2 = –6 A ...(2)

Solving Eqs (1) and (2),

I1 = 6 A
Fig. 3.191
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Writing VTh equation,

120 – 10I1 – VTh = 0

VTh = 120 – 10 (6)

= 60 V

Step II: Calculation of RTh

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 3.192

RTh = 10 | | 5 = 3.33 Ω
Step III: Calculation of RL

For maximum power transfer

RL = RTh = 3.33 Ω
Step IV: Calculation of Pmax

Fig. 3.193

Pmax =
2 2

(60)

4 4 3.33

Th

Th

V

R
=

×
 = 270.27 W

Example 3.45 For the circuit shown, find the value of the resistance RL for maximum power and calculate

the maximum power.

Fig. 3.194

Step I: Calculation of VTh

Removing the variable resistor RL from the circuit,

I1 = 3 A ...(1)

Applying KVL to Mesh 2,

–25(I2 – I1) – 10I2 – 6I2 = 0

–25I1 + 41I2 = 0 ...(2)

Solving Eqs (1) and (2),

I2 = 1.83 A Fig. 3.195
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Writing VTh equation,

20 + VTh – 10I2 – 6I2 = 0

VTh = –20 + 10 (1.83) + 6 (1.83) = 9.28 V

Step II: Calculation of RTh

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 3.196

RTh = 25 | | 16 = 9.76 Ω
Step III: Calculation of RL

For maximum power transfer

RL = RTh = 9.76 Ω
Step IV: Calculation of Pmax

Fig. 3.197

Pmax =
2 2

(9.28)

4 4 9.76

Th

Th

V

R
=

×
 = 2.21 W

Example 3.46 For the circuit shown, find the value of the resistance RL  for maximum power and calculate

the maximum power.

Fig. 3.198

Step I: Calculation of VTh

Removing the variable resistor RL from the circuit,

I2 – I1 = 2 ...(1)

I2 = –3 A ...(2)

Solving Eqs (1) and (2),

I1 = –5 A

Writing VTh equation,

8 – 2I1 – I2 – VTh – 6 = 0

VTh = 8 – 2 (–5) – (–3) – 6 = 15 V

Fig. 3.199
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Step II: Calculation of RTh

Replacing the voltage source by a short

circuit and the current source by an open

circuit,

RTh = 5 Ω
Step III: Calculation of RL

For maximum power transfer

RL= RTh = 5 Ω
Step IV: Calculation of Pmax

Fig. 3.201

Pmax =
2 2

(15)

4 4 5

Th

Th

V

R
=

×
 = 11.25 W

Example 3.47 For the circuit shown, find the value of resistance the RL  for maximum power and calculate

the maximum power.

Fig. 3.202

Step I: Calculation of VTh

Removing the variable resistor RL from the circuit,

Fig. 3.203

Fig. 3.200
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By star–delta transformation,

I =
100

5 5 20 9 9+ + + +
 = 2.08 A

Writing VTh equation,

100 – 5I – VTh – 9I = 0

VTh = 100 – 14I

= 100 – 14(2.08) = 70.88 V

Step II: Calculation of RTh

Replacing the voltage source by a short circuit,

Fig. 3.205

RTh = 23.92 Ω
Step III: Calculation of RL

For maximum power transfer,

RL = RTh = 23.92 Ω

Fig. 3.204
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Step IV: Calculation of Pmax

Fig. 3.206

Pmax =
2 2

(70.88)

4 4 23.92

Th

Th

V

R
=

×
 = 52.51 W

Example 3.48 For the circuit shown, find the value of the resistance RL  for maximum power and calculate

the maximum power.

Fig. 3.207

Step I: Calculation of VTh

Removing the variable resistor RL from the circuit,

Applying KVL to Mesh 1,

80 – 5I1 – 10(I1 – I2) – 20(I1 – I2) – 20 = 0

35I1 – 30I2 = 60 ...(1)

Writing the current equation for Mesh 2,

I2 = 2 ...(2)

Solving Eqs (1) and (2),

I1 = 3.43 A

Writing VTh equation,

VTh – 20 (I1 – I2) – 20 = 0

VTh = 20(3.43 – 2) + 20 = 48.6 V

Step II: Calculation of RTh

Replacing the voltage sources by  short circuits and the current source by an open circuit,

Fig. 3.209

Fig. 3.208
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RTh = 15 | | 20 = 8.57 Ω
Step III: Calculation of RL

For maximum power transfer,

RL = RTh = 8.57 Ω

Step IV: Calculation of Pmax

Pmax =
2 2

(48.6)

4 4 8.57

Th

Th

V

R
=

×
 = 68.9 W

Example 3.49 For the circuit shown, find the value of the resistance RL  for maximum power and calculate

the maximum power.

Fig. 3.211

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

I1 =
100

10 30+
 = 2.5 A

I2 =
100

20 40+
 = 1.66 A

Writing VTh equation,

VTh + 10I1 – 20I2 = 0

VTh = 20I2 – 10I1

= 20(1.66) – 10(2.5) = 8.2 V

Step II: Calculation of RTh

Replacing the voltage source of 100 V with short circuits,

Fig. 3.213

Fig. 3.212

Fig. 3.210
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The above circuit can be redrawn as shown:

Fig. 3.214

RTh = (10 | | 30) + (20 | | 40) = 20.83 Ω
Step III: Value of RL

For maximum power transfer,

RL = RTh = 20.83 Ω
Step IV: Calculation of Pmax

Pmax =
2 2

(8.2)

4 4 20.83

Th

Th

V

R
=

×
 = 0.81 W

Example 3.50 For the circuit shown, find the value of the resistance RL  for maximum power and calculate

the maximum power.

Fig. 3.216

Step I: Calculation of VTh

Removing the variable resistor RL from the circuit,

Applying KVL to Mesh 1,

72 – 6I1 – 3 (I1 – I2) = 0

9I1 – 3I2 = 72 ...(1)

Applying KVL to Mesh 2,

–3 (I2 – I1) – 2I2 – 4I2 = 0

–3I1 + 9I2 = 0 ...(2)

Solving equations (1) and (2),

I1 = 9 A

I2 = 3 A

Writing VTh equation

VTh – 6I1 – 2I2 = 0

VTh = 6I1 + 2I2

= 6 (9) + 2 (3) = 60 V

Fig. 3.215

Fig. 3.217
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Step II: Calculation of RTh

Fig. 3.218

RTh = {(6 | | 3) + 2} | | 4 = 2 Ω
Step III: Calculation of RL

For maximum power transfer

RL = RTh = 2 Ω
Step IV: Calculation of Pmax

Pmax =
2

4

Th

Th

V

R

=
2

(60)

4 2×
 = 450 W

Example 3.51 What will be the value of RL to get maximum power delivered to it? What is the value of

this power?

Fig. 3.220

Fig. 3.219
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Step I: Calculation of VTh

Fig. 3.221

By source transformation,

From the figure,

VTh = 4I

Applying KVL to the mesh,

12 – 4I + 0.5VTh – 4I = 0

12 – VTh + 0.5VTh – VTh = 0

VTh = 8 V

Step II: Calculation of ISC

Fig. 3.223

If two terminals A and B are shorted, the 4-Ω resistor gets shorted.

V = 0

Dependent source 0.5 V depends on the controlling variable V .

When V = 0, the dependent source vanishes.

ISC =
12

4
 = 3 A

Step III: Calculation of RTh

RTh =
8

3

Th

SC

V

I
=  = 2.667 Ω.

Step IV: Calculation of RL

For maximum power transfer

RL = RTh = 2.667 Ω.

Step V: Calculation of Pmax

IL =
8

2.667 2.667+
 = 1.5 A

 Pmax = (1.5)2 × 2.667 = 6 W

Fig. 3.222

Fig. 3.224

Fig. 3.225
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Exercises

SUPERPOSITION THEOREM

1. Find the current through the 10-Ω resistor.

Fig. 3.226
[0.37 A]

2. Find the current through the 8-Ω resistor.

Fig. 3.227
[16.2 A]

3. Find the potential across the 3-Ω resistor.

Fig. 3.228
[3.3 V]

4. Calculate the current through the 10-Ω resistor.

Fig. 3.229
[1.62A]
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5. Find the current through the 1-Ω resistor.

Fig. 3.230
[0.41 A]

6. Find the current through the 4-Ω resistor.

Fig. 3.231
[1.33 A]

7. Find the current Ix.

Fig. 3.232
[–1.143 A]

8. Find the voltage Vx.

Fig. 3.233
[–38.5 V]

9. Determine the voltages V1 and V2.

Fig. 3.234
[6 V, 12 V]
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10. Find the voltage Vx.

Fig. 3.235

[82.5 V]

THEVENIN�S THEOREM

11. Find the current through the 5-Ω resistor.

Fig. 3.236

[3.87 A]

12. Find the current through the 6-Ω resistor.

Fig. 3.237

[1.26 A]

13. Find the current through the 6-Ω resistor.

Fig. 3.238

[2.04A]
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14. Find the current through the 2-Ω resistor connected between terminals A and B.

Fig. 3.239
[1.26A]

15. Find the current through the 5-Ω resistor.

Fig. 3.240
[4.67A]

16. Find the current through the 20-Ω resistor.

Fig. 3.241
[1.54 A]

17. Calculate the current through the 10-Ω resistor.

Fig. 3.242
[1.62 A]
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NORTON�S THEOREM

18. Find the current through the 10-Ω resistor.

Fig. 3.243
[0.68 A]

19. Find the current through the 20-Ω resistor.

Fig. 3.244
[0.61 A]

20. Find the current through the 2-Ω resistor.

Fig. 3.245
[5 A]

21. Find the current through the 5-Ω resistor.

Fig. 3.246 [4.13 A]

22. Find Norton’s equivalent circuit for the

portion of network shown in Fig. 3.247

to the left of ab. Hence obtain the current

in the 10-Ω resistor.

Fig. 3.247 [0.053 A]
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THEVENIN�S AND NORTON�S THEOREMS WITH DEPENDENT SOURCES

23. Determine Thevenin’s equivalent network for figures shown below.

(a)

Fig. 3.248

[–58 V, 12 Ω]
(b)

Fig. 3.249

[9.09 V, 9.09 Ω]
(c)

Fig. 3.250

[8 V, 2.66 Ω]
(d)

Fig. 3.251

[150 V, 20 Ω]
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(e)

Fig. 3.252
[–20 V, –10 Ω]

24. Find Norton’s equivalent network and hence find the current in the 10-Ω resistor.

Fig. 3.253
[0.25 A]

25. Find the current Ix.

Fig. 3.254
[4 A]

26. Find the current in the 24-Ω resistor.

Fig. 3.255
[0.225 A]

27. Find Norton’s equivalent network.

Fig. 3.256
[0.533 A, 31 Ω]
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MAXIMUM POWER TRANSFER THEOREM

28. Find the value of the resistance RL for maximum power transfer and calculate the maximum power.

Fig. 3.257

[1.75 Ω, 1.29 W]

29. Find the value of the resistance RL for maximum power transfer and calculate the maximum power.

Fig. 3.258

[2.36 Ω, 940 W]

30. Find the value of the resistance RL for maximum power transfer and calculate the maximum power.

Fig. 3.259

[2.18 Ω, 29.35 W]

31. Find the value of the resistance RL for maximum power transfer and calculate the maximum power.

Fig. 3.260
[3 Ω, 2.52 W]
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32. Find the value of the resistance RL for maximum power transfer and calculate the maximum power.

Fig. 3.261

[1.76 Ω, 490.187 W]

Objective-Type Questions

1. The value of the resistance R connected across the terminals

A and B, which will absorb the maximum power is

(a) 4 kΩ (b) 4.11 kΩ
(c) 8 kΩ (d) 9 k Ω

2. Superposition theorem is not applicable to networks containing

(a) nonlinear elements (b) dependent voltage source

(c) dependent current source (d) transformers

3. The value of R required for maximum power

transfer in the network shown in Fig. 3.263 is

(a) 2 Ω (b) 4 Ω
(c) 8 Ω (d) 16 Ω

4. In the network of Fig. 3.264 the maximum power

is delivered to RL if its value is

(a) 16 Ω (b)
40

3
 Ω

(c) 60 Ω (d) 20 Ω

5. The maximum power that can be transferred to the load

RL from the voltage source in Fig. 3.265 is

(a) 1 W (b) 10 W

(c) 0.25 W (d) 0.5 W

Fig. 3.262

Fig. 3.263

Fig. 3.264

Fig. 3.265
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Fig. 3.266

6. For the circuit shown in Fig. 3.266. Thevenin’s

voltage and Thevenin’s equivalent resistance at

terminals a-b is

(a) 5 V and 2 Ω (b) 7.5 V and 2.5 Ω
(c) 4 V and 2 Ω (d) 3 V and 2.5 Ω

7. The value of RL for maximum power transfer is

(a) 3 Ω (b) 1.125 Ω
(c) 4.1785 Ω (d) none of these

Fig. 3.267

Answers to Objective-Type Questions

1.(a)2.(a)3.(c)4.(a)5.(c)6.(b)

7.(a)



AC Circuits4

4.1 INTRODUCTION

An alternating waveform changes its magnitude and

direction periodically. Figure 4.1 shows various ac

waveforms.

Many times alternating voltages and currents are

represented by a sinusoidal waveform.

A sinusoidal voltage can be represented as

v = Vm sin q

= Vm sin w t

= Vm sin 2pft

= Vm sin 
2

T

π
t

4.2 TERMS RELATED WITH ALTERNATING QUANTITY

1. Waveform A waveform is a graph in which the instantaneous value of any quantity is plotted against

time. Figure 4.1 shows few waveforms.

2. Cycle One complete set of positive and negative values of an alternating quantity is termed as cycle.

3. Frequency The number of cycles per second of an alternating quantity is known as frequency. It is

denoted by f and is expressed in hertz (Hz) or cycles per second (c/s).

4. Time period The time taken by an alternating quantity to complete one cycle is called time period. It is

denoted by T and is expressed in seconds.

Fig. 4.1
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T =
1

f

5. Amplitude The maximum positive or negative value of an alternating quantity is called the amplitude.

6. Phase The phase of an alternating quantity is the time that has elapsed since the quantity has last passed

through zero point of reference.

7. Phase difference This term is used to compare the phases of two alternating quantities. Two alternating

quantities are said to be in phase when they reach their maximum and zero values at the same time. Their

maximum value may be different in magnitude.

A leading alternating quantity is one which reaches its maximum or zero value earlier as compared to the

other quantity.

A lagging alternating quantity is one which attains its

maximum or zero value later than the other quantity.

A plus (+) sign when used in connection with the phase

difference denotes ‘lead’ whereas a minus (–) sign denotes ‘lag’.

vA = Vm sin wt

vB = Vm sin (wt + f)

Here, quantity B leads A by a phase angle f.

4.3 ROOT MEAN SQUARE (RMS) OR EFFECTIVE VALUE

Normally, the current is measured by the amount of work it will do or the amount of heat it will produce.

Hence, rms or effective value of alternating current is defined as that value of steady current (direct current)

which will do the same amount of work in the same time or would

produce the same heating effect as when the alternating current is

applied for the same time.

Figure 4.3 shows the positive half cycle of a non-sinusoidal

alternating current waveform. The waveform is divided in m equal

intervals with the instantaneous currents, these intervals being

i1, i2, ..., im. This waveform is applied to a circuit consisting of a

resistance of R ohms. Then work done in different intervals will be

2 2 2
1 2, , ..., m

t t t
i R i R i R

m m m

     × × ×     
     

joules.

Thus, the total work done in t seconds on applying alternating current waveform to a resistance

R = 

2 2 2
1 2 mi i i

m

+ + …+
×  Rt joules

Let I be the value of the direct current that while flowing through the same resistance does the same

amount of work in the same time t. Then

I2Rt =

2 2 2
1 2 mi i i

Rt
m

+ + …+
×

I2 =

2 2 2
1 2 mi i i

m

+ + …+

Fig. 4.2

Fig. 4.3
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Hence, rms value of alternating current is given by

Irms =
2 2 2

21 2 Mean value of ( )mi i i
i

m

+ +…+
=

RMS value of any current i (t) over the specified interval t1 and t2 is expressed mathematically as

Irms =
2

1

2

2 1

1
( )d

t

t

i t t
t t− ∫

The rms value of an alternating current is of considerable importance in practice because the ammeters and

voltmeters record the rms value of alternating current and voltage respectively.

4.3.1 RMS Value of Sinusoidal Waveform

v = Vm sin q 0 < q < 2p

Vrms =

2
2

0

1
( )d

2
v

π

θ θ
π ∫

=

2 22
2 2 2

0 0

1
sin d sin d

2 2

m
m

V
V

π π

θ θ θ θ
π π

=∫ ∫

=

22 2

0

2
1 cos 2 sin 2

d
2 2 2 2 4

0

m mV V
π π

θ θ θ
θ

π π
−   = −      ∫

= 
2

2
0 0 0

2 2

mV π
π
 − − +  

= 
2

2 2

m mV V
=  = 0.707 Vm

Crest or peak or amplitude factor It is defined as the ratio of maximum value to rms value of the

given quantity.

Peak factor (kp) =
Maximum value

RMS value

4.4 AVERAGE VALUE

The average value of an alternating quantity is defined as the arithmetic mean of all the values over one

complete cycle.

In case of symmetrical alternating waveform (whether sinusoidal or non-sinusoidal), the average value

over a complete cycle is zero. Hence, in such a case, the average value is obtained over half the cycle only.

Referring to Fig. 4.3, the average value of the current is given by

Iavg =
1 2 mi i i

m

+ +…+

Fig. 4.4
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The average value of any current i (t) over the specified interval t1 and t2 is expressed mathematically as

Iavg =
2

1
2 1

1
( )d

t

t

i t t
t t− ∫

4.4.1 Average Value of Sinusoidal Waveform

v = Vm sin q 0 < q < 2p

Since this is a symmetrical waveform, the average value is calculated over half the cycle.

Vavg =
0 0

1 1
( )d sin dmv V

π π

θ θ θ θ
π π

=∫ ∫

= [ ]
0

0

sin d cosm mV V
π

πθ θ θ
π π

= −∫

=
2

[1 1]m mV V

π π
+ =  = 0.637 Vm

Form factor It is defined as the ratio of rms value to the average value of the given quantity.

Form factor (kf) =
RMS value

Average value
.

Example 4.1 An alternating current takes 3.375 ms to reach 15 A for the first time after becoming

instantaneously zero. The frequency of the current is 40 Hz. Find the maximum value of the alternating current.

Solution

 Data i = 15 A t = 3.375 ms f = 40 Hz

i = Im sin 2pft

15 = Im sin (2p ¥ 40 ¥ 3.375 ¥ 10–3)

15 = Im ¥ 0.75

Im = 20 A

Example 4.2 An alternating current of frequency 50 c/s has a maximum value of 100 A. (a) Calculate

 its value 
1

600
second and after the instant the current is zero. (b) In how many seconds after the zero value

will the current attain the value of 86.6 A?

Solution

 Data f = 50 c/s Im = 100 A

(a) i = Im sin 2pft = 100 sin 
1

2 50
600

π × × 
 

= 100 sin (30o) = 50 A

(b) i = Im sin 2pft

86.6 = 100 sin (2p ¥ 50 ¥ t)

sin (100 pt) = 0.866

100 pt = 60o

t =
60 1

100 180 300
=

×
  second

Fig. 4.5
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Example 4.3 An alternating current varying sinusoidally with a frequency of 50 c/s has an rms value of

20 A. Write down the equation for the instantaneous value and find this value at (a) 0.0025 s (b) 0.0125 s after

passing through zero and increasing positively. (c) At what time, measured from zero, will the value of the

instantaneous current be 14.14 A?

Solution
 Data f = 50 c/s

I = 20 A

Im = I × 2  = 20 2  = 28.28 A

Equation of current, i = Im sin 2pft

= 28.28 sin (2p × 50 × t) = 28.28 sin 100pt

(a) At t = 0.0025 second

i = 28.28 sin (100p × 0.0025)

= 28.28 sin (45o) = 20 A

(b) At t = 0.0125 second

i = 28.28 sin (100p × 0.0125)

= 28.28 sin (225o) = –20 A

(c) i = 28.28 sin 100pt

14.14 = 28.28 sin 100pt

sin 100pt = 0.5

100p t = 30o

t = 1.66 × 10–3 second

Example 4.4 Find the following parameters of a voltage v = 200 sin 314 t:

(i) frequency, (ii) form factor, and (iii) crest factor.

Solution
 Data v = 200 sin 314 t

v = Vm sin 2pft

2p f = 314

f =
314

2π
 = 50 Hz

For a sinusoidal waveform,

Vavg =
2 mV

π

Vrms =
2

mV

Form factor = rms

avg

2

2

m

m

V

V

VV

π

=  = 1.11

Crest factor =
rms

2

m m

m

V V

VV
=  = 1.414
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Example 4.5 A non-sinusoidal voltage is having a form factor of 1.2 and peak factor of 1.5. If the

average value of the voltage is 10 V, calculate (i) rms value, and (ii) maximum value.

Solution
 Data kf = 1.2

kp = 1.5

Vavg = 10

Form factor  kf = rms

avg

V

V

1.2 =
rms

10

V

Vrms = 12 V

Peak factor  kp =
rms

mV

V

1.5 =
12

mV

Vm = 18 V

Example 4.6 Find the average value and rms value of the waveform shown in Fig. 4.6.

Fig. 4.6

Solution v = Vm sin q 0 < q < p

Vavg =
0 0

1 1
( ) d sin dmv V

π π

θ θ θ θ
π π

=∫ ∫

= [ ]
0

cos [1 1]m mV Vπθ
π π

− = +

=
2 mV

π
 = 0.637 Vm

Vrms = 2

0

1
( ) dv

π

θ θ
π ∫

=
2

2 2 2

0 0

1
sin d sin dm

m

V
V

π π

θ θ θ θ
π π

=∫ ∫

=
2 2

00

1 cos 2 sin 2
d

2 2 4

m mV V
ππ θ θ θ

θ
π π

−   = −      ∫
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=
2 2

sin 2 sin 0
0

2 4 4 2

m mV Vπ π
π

 − − + =  

=
2

mV
 = 0.707 Vm

Example 4.7 Find the average and rms value of the waveform shown in Fig. 4.7.

Solution
v = Vm sin q 0 < q < p

= 0 p < q < 2p

Vavg =

2

0

1

2

π

π ∫ v (q) dq

= 

2

0

1
sin d 0d

2
mV

π π

π

θ θ θ
π

 
+ 

  
∫ ∫

= 
0

1
sin d

2
mV

π

θ θ
π ∫

= [ ]
0

cos
2

mV πθ
π

−

= [1 1]
2

m mV V

π π
+ =  = 0.318 Vm

Vrms =

2
2

0

1
( ) d

2
v

π

θ θ
π ∫

=

2
2 2

0

1
sin d 0d

2
mV

π π

π

θ θ θ
π

 
+ 

  
∫ ∫

=
2

2 2 2

0 0

1
sin d sin d

2 2

m
m

V
V

π π

θ θ θ θ
π π

=∫ ∫

=
2 2

00

1 cos 2 sin 2
d

2 2 2 2 4

m mV V
ππ θ θ θ

θ
π π

−   = −      ∫

= 
2

sin 2 sin 0
0

2 2 4 4

mV π π
π

 − − +  

= 
2

4 2

m mV V
=  = 0.5 Vm

Fig. 4.7
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Example 4.8 Find the average value and rms value of the waveform shown in Fig. 4.8.

Solution v = 0 0 < q < p/4

= Vm sin q p/4 < q < p

= 0 p < q < 2p

Vavg =

2

0

1

2

π

π ∫ v (q) dq = 

4

1

2

π

ππ ∫ Vm sin q dq

= [ ]
4

cos
2 2

m mV Vπ
πθ

π π
− = = [1 + 0.707] = 0.272 Vm

Vrms =

2
2

0

1
( ) d

2
v

π

θ θ
π ∫

=
2

2 2 2

4 4

1
sin d sin d

2 2

m
m

V
V

π π

π π

θ θ θ θ
π π

=∫ ∫

=
2 2

44

1 cos 2 sin 2
d

2 2 2 2 4

m mV V
ππ

ππ

θ θ θ
θ

π π
−   = −      ∫

=
2

sin 2 sin 2

2 2 4 8 4

mV π π π π
π

 − − +  

= 2
0.227 mV

= 0.476 Vm

Example 4.9 A full-wave rectified wave is clipped at 70.7% of its maximum value as shown in Fig. 4.9.

Find its average and rms value.

Solution v = Vm sin q 0 < q < p/4

= 0.707 Vm p/4 < q < 3p/4

= Vm sin q 3p/4 < q < p

Vavg =
0

1
π

π ∫ v (q) dq

= 

4 3 4

0 4 3 4

1
sin d 0.707 d sin dm m mV V V

π π π

π π

θ θ θ θ θ
π

 
 + +
  
∫ ∫ ∫

= [ ] [ ]{ }4 3 4

40 3 4
cos 0.707[ ] cosmV π ππ

π πθ θ θ
π

− + + −

= (0.293 1.11 0.293)mV

π
+ +  = 0.54 Vm

Fig. 4.8

Fig. 4.9
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Vrms = 2

0

1
( ) dv

π

θ θ
π ∫

=

4 3 4
2 2 2 2 2

0 / 4 3 4

1
sin d (0.707 ) d sin dm m mV V V

π π π

π π

θ θ θ θ θ
π

 
 + +
  

∫ ∫ ∫

=

42
3 4

4
0 3 4

sin 2 sin 2
0.499[ ]

2 4 2 4

mV
π π

π
π

π

θ θ θ θ
θ

π

     − + + −         

= 2
0.341 mV  = 0.584 Vm

Example 4.10 Find the rms value of the waveform shown in Fig. 4.10.

Fig. 4.10

Solution The equation of the waveform is given by

v = Vm sin (q + f) where f is the phase difference.

When q = 0, v = 0.866 Vm.

0.866 Vm = Vm sin (0 + f)

f = sin–1 (0.866) = 
3

π

v = Vm sin 
3

π
θ + 

 
The time period of a complete sine wave is always 2p. Since some part of the waveform is chopped from

both the sides,

time period = 2p – 
4

3 3 3

π π π
− =

Vrms =

4 3
2 2

0

1
sin d

4 3 3
mV

π π
θ θ

π
 + 
 ∫

=

4 3
2 2

0

3
sin d

4 3
mV

π π
θ θ

π
 + 
 ∫

=

4 32

0

3 1 cos 2( 3)
d

4 2

mV
π θ π

θ
π

− + 
  ∫
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=

4 32

0

3 sin 2( 3)

4 2 4

mV
πθ θ π

π
+ −  

= 2
0.6031 mV  = 0.776 Vm

Example 4.11 Find the rms and average value of the waveform shown in Fig. 4.11.

Solution v = Vm 0 < t < T/2

= 0 T/2 < t < T

Vavg =
0

1
( )d

T

v t t
T ∫

=

2

0 2

1
d 0d

T T

m

T

V t t
T

 
 +
  
∫ ∫ = 

2

0

1
d

T

mV t
T ∫

= [ ] 2

0 2

Tm mV V T
t

T T
= ⋅  = 0.5 Vm

Vrms =

2
2 2

0 0

1 1
( )d d

TT

mv t t V t
T T

=∫ ∫

=
2 2

2
0[ ]

2

Tm mV V T
t

T T
= .

=
2

2

mV
 = 0.707 Vm

Example 4.12 Find the rms and average value of the waveform shown in Fig. 4.12.

Solution v = mV

T
t 0 < t < T

Vavg =
0 0

1 1
( )d d

T T
mV

v t t t t
T T T

=∫ ∫

=
2 2

2 2

0
2 2

T

m mV Vt T

T T

 
= ⋅ 

 
 = 0.5 Vm

Vrms = 2

0

1
( ) d

T

v t t
T ∫

=
2 2 3

2

2 3
0 0

1
d

3

TT
m mV V t

t t
T T T

 
. =  

 
∫

=

2 23

3 3 3

m mV VT

T

 
= 

 
 = 0.577 Vm

Fig. 4.11

Fig. 4.12
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Example 4.13 Find the rms and average value of the waveform shown in Fig. 4.13.

Solution v = t 0 < t < 1

= 1 1 < t < 2

Vavg =

1 2

0 0 1

1 1
( )d d 1d

2

T

v t t t t t
T

 
= + 

  
∫ ∫ ∫

=

1
2

2
1

0

1
[ ]

2 2

t
t

   +  
   

=
1 1 3

0 2 1
2 2 4

 − + − =  
 = 0.75 V

Vrms = 2

0

1
( ) d

T

v t t
T ∫

=

11 2 3
2 2 2

1

0 1 0

1 1
d (1) d [ ]

2 2 3

t
t t t t

     + = +    
       
∫ ∫

=
1 1 4

0 2 1
2 3 6

 − + − =  
 = 0.816 V

Example 4.14 Find the rms and average value of the waveform shown in Fig. 4.14.

Fig. 4.14

Solution Vavg =
0 40 60 80 100 80 60 40

8

+ + + + + + +
 = 57.5 V

Vrms =
2 2 2 2 2 2 2 2

0 (40) (60) (80) (100) (80) (60) (40)

8

+ + + + + + +
 = 64.42 V

Example 4.15 Find the rms and average value of the waveform shown in Fig. 4.15.

Fig. 4.15

Fig. 4.13
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Solution Vavg =
0 10 20

3

+ +
 = 10 V

Vrms =
2 2 2

0 (10) (20)

3

+ +
 = 12.9 V

Example 4.16 Find the effective value of the resultant current which carries simultaneously a direct

current of 10 A and a sinusoidally alternating current with a peak value of 10 A.

Fig. 4.16

Solution  i = 10 + 10 sin q

Ieff = Irms =

2
2

0

1
( )d

2
i

π

θ θ
π ∫

=

2 2
2 2

0 0

1 1
(10 10sin ) d (100 200sin 100sin )d

2 2

π π

θ θ θ θ θ
π π

+ = + +∫ ∫

=

2
2

0

100
(1 2sin sin )d

2

π

θ θ θ
π

+ +∫

=

2

0

100 1 cos 2
1 2sin d

2 2

π θ
θ θ

π
 −  + +     

∫

=

2

0

100 sin 2
2cos

2 2 4

πθ θ
θ θ

π
 − + −  

=
100 2 sin 4 sin 0

2 2cos 2 0 2cos0 0
2 2 4 4

π π
π π

π
 − + − − + − +  

=
100 2 100

2 2 2 3
2 2 2

π
π π

π π
 − + + = ×  

= 150  = 12.25 A
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Example 4.17 Find the relative heating effects of two current waves of equal peak value, one sinusoidal

and the other, rectangular in shape.

Solution RMS value of the rectangular wave = Im

RMS value of sinusoidal current wave =
2

mI

Heating effect due to rectangular current wave = (Im)2 RT

Heating effect due to sinusoidal current wave =

2 2
( )

22

m mI I
RT

 
= 

 
 RT

Relative heating effects =

2
( )

2

mI
RT : (Im)2 RT

=
1

2
 : 1 = 1 : 2

4.5 PHASOR REPRESENTATION OF ALTERNATING QUANTITIES

The alternating quantities are represented by phasors. A phasor is a line of definite length rotating in an

anticlockwise direction at a constant angular velocity w. The length of a phasor is equal to the maximum value

of the alternating quantity and the angular velocity is equal to the angular velocity of alternating quantity.

As shown in Fig. 4.18(a), consider a phasor OP = Im,

where Im is the maximum value of the alternating current.

Let this phasor rotate in an anticlockwise direction at a

uniform angular velocity of w rad/second. The projection

of the phasor OP on the Y-axis at any instant gives the

instantaneous value of that alternating current.

OM = OP sin wt

= Im sin wt = i

Thus, if we plot the projections of the phasor on the Y-axis versus its angular position point by point, a

sinusoidal alternating current waveform is obtained.

Phasor diagram using rms values A sinusoidal alternating current and voltages can be represented by

phasors. The electrical measuring instruments like ammeter and voltmeter are calibrated to read the rms value

of ac quantities. Hence, instead of using maximum value, it is more convenient to draw phasor diagrams using

rms values of alternating quantities. However, such a phasor diagram will not generate a sine wave of proper

amplitude unless the length of the phasor is multiplied by 2 .

4.6 MATHEMATICAL REPRESENTATION OF PHASORS

A phasor can be represented in four forms.

(i) Rectangular form

V = X ± jY

Magnitude of phasor, V = 2 2
X Y+

Phase angle f = tan–1 
Y

X

 
 
 

Fig. 4.17

Fig. 4.18
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(ii) Trigonometric form

V = V (cos f ± j sin f)
(iii) Exponential form

V = V e±jf

(iv) Polar form
V = V ∠ ± f

Significance of operator j The operator j is used in rectangular form. It is used to indicate anticlockwise

rotation of a phasor through 90°. Mathematically,

j = 1−
Whenever a phasor is multiplied by j, the phasor is rotated once in anticlockwise direction through 90°.

The power of j represents the number of times the phasor should be rotated through 90° in anticlockwise

direction.

Example 4.18 Two sinusoidal currents are given as

i1 = 10 2  sin w t, i2 = 20 2  sin (w t + 60°).
Find the expression for the sum of these currents.

Solution
Data i1 = 10 2  sin w t

i2 = 20 2  sin (w t + 60°)

Writing currents i1 and i2 in the phasor form,

1I =
10 2

2
∠0° = 10∠0°

2I =
20 2

2
∠60° = 20∠60°

I = 1 2I I+
= 10∠0° + 20∠60° = 26.46 ∠40.89°

i = 26.46 2 sin (w t + 40.89°) = 37.42 sin (w t + 40.89°)

Example 4.19 The following three sinusoidal currents flow into the junction i1 = 3 2 sin w t,

i2 = 5 2 sin (w t + 30°) and i3 = 6 2 sin (w t – 120°). Find the expression for the resultant current which

leaves the junction.

Solution
 Data i1 = 3 2 sin w t

i2 = 5 2 sin (w t + 30°)

i3 = 6 2 sin (w t – 120°)

Writing currents i1, i2 and i3 in the phasor form,

1I =
3 2

2
∠0° = 3∠0°

2I =
5 2

2
∠30° = 5∠30°
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3I =
6 2

2
∠–120° = 6∠–120°

The resultant current which leaves the junction is given by

I = 1 2 3I I I+ +  = 3∠0° + 5∠30° + 6∠–120°

= 5.1 ∠–31.9°

i = 5.1 2 sin (w t – 31.9°) = 7.21 sin (w t – 31.9°)

Example 4.20 In a circuit, four currents are meeting at a point. Find the resultant current.

i1 = 5 sin w t, i2 = 10 sin (w t – 30°)

i3 = 5 cos (w t – 30°) i4 = –10 sin (w t + 45°)

Solution
Data i1 = 5 sin w t

i2 = 10 sin (w t – 30°)

i3 = 5 cos (w t – 30°) = 5 sin (w t + 60°)

i4 = –10 sin (w t + 45°) = 10 sin (w t + 225°)

Writing currents i1, i2, i3 and i4 in the phasor form,

1I =
5

2
∠0° = 3.54∠0°

2I =
10

2
∠–30° = 7.07∠–30°

3I =
5

2
∠60° = 3.54∠60°

4I =
10

2
∠225° = 7.07∠225°

Resultant current = 1 2 3 4I I I I+ + +
= 3.54∠0° + 7.07∠–30° + 3.54∠60° + 7.07∠225° = 8.44∠–40.36°

i = 8.44 2 sin (w t – 40.36°) = 11.94 sin (w t – 40.36°)

Example 4.21 Find the resultant voltage and its equation for the given voltages.

e1 = 20 sin w t, e2 = 30 sin t
4

π
ω − 

 
, e3 = 40 cos t

6

π
ω + 

 
Solution

Data e1 = 20 sin w t

e2 = 30 sin
4

t
π

ω − 
 

 = 30 sin (w t – 45°)

e3 = 40 cos
6

t
π

ω + 
 

 = 40 sin (w t + 120°)

Writing voltages e1, e2 and e3 in the phasor form,

1E =
20

2
∠0° = 14.14∠0°

2E =
30

2
∠–45° = 21.21∠–45°



4.16 Electrical Networks

3E =
40

2
∠120° = 28.28∠120°

Resultant voltage E = 1 2 3E E E+ +
= 14.14∠0° + 21.21∠–45° + 28.28∠120° = 17.75∠32.33°

e = 17.75 2 sin (w t + 32.33°) = 25.1 sin (w t + 32.33°)

Example 4.22 Obtain the sum of the three voltages.

v1 = 147.3 cos (w t + 98.1°)

v2 = 294.6 cos (w t – 45°)

v3 = 88.4 sin (w t + 135°)

Solution
 Data v1 = 147.3 cos (w t + 98.1°) = 147.3 sin (w t + 188.1°)

v2 = 294.6 cos (w t – 45°) = 294.6 sin (w t + 45°)

v3 = 88.4 sin (w t + 135°)

Writing the voltages v1, v2 and v3 in the phasor form,

1V =
147.3

2
∠188.1° = 104.16∠188.1°

2V =
294.6

2
∠45° = 208.31∠45°

3V =
88.4

2
∠135° = 62.51∠135°

Resultant voltage V = 1 2 3V V V+ +
= 104.16∠188.1° + 208.31∠45° + 62.51∠135° = 176.82∠90°

v = 176.82 2 sin (w t + 90°) = 250.06 sin (w t + 90°)

Example 4.23 Find vectorially the resultant of the following four voltages.

e1 = 25 sin w t, e2 = 30 sin t
6

π
ω + 

 
,

e3 = 30 cos w t, e4 = 20 sin t
6

π
ω − 

 
,

Obtain the answer in similar form.

Solution
 Data e1 = 25 sin w t

e2 = 30 sin 
6

t
π

ω + 
 

= 30 sin (w t + 30°)

e3 = 30 cos w t = 30 sin (w t + 90°)

e4 = 20 sin
6

t
π

ω − 
 

 = 20 sin (w t – 30°)

Writing voltages e1, e2, e3 and e4 in the phasor form,

1E =
25

2
∠0° = 17.68∠0°
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2E =
30

2
∠30° = 21.21∠30°

3E =
30

2
∠90° = 21.21∠90°

4E =
20

2
∠–30° = 14.14∠–30°

Resultant voltage E = 1 2 3 4E E E E+ + +
= 17.68∠0° + 21.21∠30° + 21.21∠90° + 14.14∠–30° = 54.26∠27.13°

e = 54.26 2 sin (w t + 27.13°) = 76.74 sin (w t + 27.13°)

Example 4.24 Two currents are represented by i1 = 15 sin t
3

π
ω + 

 
 and i2 = 25 sin t

4

π
ω + 

 
. These

currents are fed into a common conductor. Find the total current in the form i = Im sin (w t + f). If the

conductor has a resistance of 10 Ω, what will be the energy loss in 24 hours?

Solution

 Data i1 = 15 sin 
3

t
π

ω + 
 

i2 = 25 sin 
4

t
π

ω + 
 

R = 10 Ω
t = 24 hours = 86400 seconds

Writing currents i1 and i2 in phasor form,

1I =
15

2
∠60° = 10.61∠60°

2I =
25

2
∠45° = 17.68∠45°

Total current I = 1 2I I+  = 10.61∠60° + 17.68∠45° = 28.06 ∠50.62°

i = 28.06 2 sin (w t + 50.62°) = 39.68 sin (w t + 50.62°)

Energy loss in 24 hours, E = I2Rt where I is rms value of current

E = (28.06)2 × 10 × 86400 = 6.8 × 108 J

Example 4.25 The voltage drops across four series connected impedances are given:

v1 = 60 sin t
6

π
ω + 

 
v2 = 75 sin 

5
t

6

π
ω − 

 
,

v3 = 100 cos t
4

π
ω + 

 
, v4 = V4m sin (w t + f4)

Calculate the values of V4m and f4 if the voltage applied across the series circuit is 140 sin 
3

t
5

π
ω + 

 
.
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Solution

 Data v1 = 60 sin
6

t
π

ω + 
 

 = 60 sin (w t + 30°)

v2 = 75 sin
5

6
t

π
ω − 

 
 = 75 sin (w t – 150°)

v3 = 100 cos
4

t
π

ω + 
 

 = 100 sin (w t + 135°)

v = 140 sin
3

5
t

π
ω + 

 
 = 140 sin (w t + 108°)

Writing voltages v1, v2, v3 and v in the phasor form,

1V =
60

2
∠30° = 42.43∠30°

2V =
75

2
∠–150° = 53.03∠–150°

3V =
100

2
∠135° = 70.71∠135°

V =
140

2
∠108° = 98.99∠108°

For series-connected impedances,

V = 1 2 3 4V V V V+ + +

4V = 1 2 3V V V V− − −
= 98.99∠108° – 42.43∠30° – 53.03∠–150° – 70.71∠135° = 57.13 ∠59.96°

v4 = 57.13 2 sin (w t + 59.96°) = 80.79 sin (w t + 59.96°)

V4m = 80.79 V

f4 = 59.96°

Example 4.26 Two voltages having rms values of 50 V and 75 V have a phase difference of 60°. Find the

resultant sum of these two voltages.

Solution
 Data V1 = 50 V

V2 = 75 V

f = 60°

Let 1V = 50 ∠0° V

2V = 75 ∠–60° V

Resultant voltage V = 1 2V V+
= 50∠0° + 75∠–60° = 108.97 ∠–36.58° V

Example 4.27 Two single-phase alternators supply 300 A and 400 A respectively at a phase difference of

20° to a common load. Find the resultant current and its phase relation to its component.
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Solution
 Data I1 = 300 A

I2 = 400 A

f = 20°

Let 1I = 300 ∠0° A

2I = 400 ∠–20° A

Resultant current I = 1 2I I+
= 300∠0° + 400∠–20° = 689.59 ∠–11.44° A

Example 4.28 Two voltage sources have equal emfs and a phase difference a. When they are connected

in series, the voltage is 200 V. When one source is reversed, the voltage is 15 V. Find their emfs and phase

angle a.

Solution

 Data 1E = E ∠0°

2E = E ∠a°

E1 = E2 = E

When two sources are connected in series,

2 2
1 2 1 22 cosE E E E α+ + = 200

2 2 2
2 cosE E E α+ + = 200

2E2 + 2E2 cos a = 40000 ...(i)

When one source is reversed,

2 2
1 2 1 22 cosE E E E α+ − = 15

2 2 2
2 cosE E E α+ − = 15

2E2 – 2E2 cos a = 225 ...(ii)

Adding Eqs (i) and (ii),

4E2 = 40225

E2 = 10056.25

E = 100.28 V

2E2 + 2E2 cos a = 40000

20112.5 + 20112.5 cos a = 40000

cos a = 0.988

a = 8.58°

Example 4.29 Two sinusoidal sources of emf have rms values E1 and E2 and a phase difference a. When

connected in series, the resultant voltage is 41.1 V. When one of the sources is reversed, the resultant emf is

17.52 V. When phase displacement is made zero, the resultant emf is 42.5 V. Calculate E1, E2 and a.

Solution

 Data 1E = E1 ∠0°

Fig. 4.19
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2E = E2 ∠a°

Fig. 4.20

When two sources are connected in series,

2 2
1 2 1 22 cosE E E E α+ + = 41.1

E1
2 + E2

2 + 2E1E2 cos a = 1689.21 ...(i)

When one of the source is reversed,

2 2
1 2 1 22 cosE E E E α+ − = 17.52

E1
2 + E2

2  – 2E1E2 cos a = 306.95 ...(ii)

When phase displacement is made zero,

2 2
1 1 1 22 cos 0E E E E+ + ° = 42.5

E1 + E2 = 42.5 ...(iii)

Adding Eqs (i) and (ii),

2(E1
2 + E2

2 ) = 1996.16

E1
2 + E2

2 = 998.08

(42.5 – E2)
2 + E2

2 = 998.08

1806.25 – 85E2 + E2
2  + E2

2 = 998.08

E2
2  – 42.5E2 + 404.09 = 0 ...(iv)

Solving Eq. (iv),

E2 = 28.14 V or E2 = 14.36 V

E1 = 14.36 V or E1 = 28.14 V

Subtracting Eq. (ii) from Eq. (i),

4E1E2 cos a = 1382.26

4 × 14.37 × 28.14 cos a = 1382.26

cos a = 0.855

a = 31.24°

4.7 BEHAVIOUR OF A PURE RESISTOR IN AN AC CIRCUIT

Consider a pure resistor R connected across an alternating voltage

source v as shown in Fig. 4.21. Let the alternating voltage

v = Vm sin w t.

The alternating current i is given by

i = mVv

R R
=  = sin w t = Im sin w t ... 

m
m

V
I

R

 = 
 

where Im is the maximum value of the alternating current. From

the voltage and current equation, it is clear that the current is in

phase with the voltage in a pure resistive circuit.

Fig. 4.21
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Waveforms

Fig. 4.22

Phasor diagram

Impedance It is the resistance offered to the flow of current

in an ac circuit. In a pure resistive circuit,

Z =
/

m m

m m

V VV

I I V R
= =  = R

Phase difference Since the voltage and current are in phase with each other, the phase difference is zero.

f = 0°

Power factor It is defined as the cosine of the angle between voltage and current phasor.

Power factor = cos f = cos (0°) = 1

Power Instantaneous power p = vi

= Vm sin w t . Im sin w t = Vm Im sin2 w t

= (1 cos 2 )
2

m mV I
tω−

=
2 2

m m m mV I V I
−  cos 2w t

The power consists of a constant part 
2

m mV I
 and a fluctuating part 

2

m mV I
 cos 2w t. The frequency of the

fluctuating power is twice the applied voltage frequency and its average value over one complete cycle is zero.

Average power P =
2 2 2

m m m mV I V I
= ⋅  = VI

Thus, power in a pure resistive circuit is equal to the product of rms values of voltage and current.

4.8 BEHAVIOUR OF A PURE INDUCTOR IN AN AC CIRCUIT

Consider a pure inductor L connected across an alternating voltage v as shown in Fig. 4.24. Let the alternating

voltage v = Vm sin w t.

The voltage across the inductor is given by

v = L 
di

dt

i =
1

L ∫ v dt = 
1

L ∫ Vm sin w t dt

= ( cos )mV
t

L
ω

ω
−  = –

mV

Lω
 cos w t

= sin sin
2 2

m
m

V
t I t

L

π π
ω ω

ω
   − = −   
   

 ...
m

m

V
I

Lω
 = 
 

Fig. 4.23

Fig. 4.24
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where Im is the maximum value of the alternating current. From the voltage and current equation, it is clear

that the current lags behind the voltage by 90° in a pure inductive circuit.

Waveform

Fig. 4.25

Phasor diagram

Fig. 4.26

Impedance Z = m m

m m

V VV

I I V Lω
= =  = w L

The quantity wL is called inductive reactance, is denoted by XL and is expressed in ohms.

For a dc supply, f = 0 \ XL = 0

Thus, an inductor acts as a short circuit for a dc supply.

Phase difference It is the angle between the voltage and current phasor.

f = 90°

Power factor It is defined as the cosine of the angle between the voltage and current phasor.

pf = cos f = cos (90°) = 0

Power Instantaneous power,

p = vi

= Vm sin w t . Im sin 
2

t
π

ω − 
 

= –VmIm sin w t cos w t

= – 
2

m mV I
sin 2w t

The average power for one complete cycle, P = 0.

Hence, power consumed by a pure inductive circuit is zero.

4.9 BEHAVIOUR OF A PURE CAPACITOR IN AN AC CIRCUIT

Consider a pure capacitor C connected across an alternating voltage v as shown in Fig. 4.27. Let the alternating

voltage v = Vm sin w t.

The current through capacitor is given by,

i = C 
d

d

v

t
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= C ( sin )m

d
V t

dt
ω

= wC Vm cos w t

= wC Vm sin (w t + 90°)

= Im sin (w t + 90°) ...(Im = wC Vm)

where Im is the maximum value of the alternating current. From the voltage

and current equation, it is clear that current leads voltage by 90° in pure

capacitive circuit.

Waveform

Fig. 4.28

Phasor diagram

Fig. 4.29

Impedance Z =
1m m

m m

V VV

I I CV Cω ω
= = =

The quantity 
1

Cω
is called capacitive reactance and is denoted by XC and is expressed in ohms.

For a dc supply,  f = 0 \ XC = •

Thus, the capacitor acts as an open circuit for dc supply.

Phase difference
f = 90°

Power factor
pf = cos f = cos (90°) = 0

Power Instantaneous power,

p = vi

= Vm sin wt . Im sin (wt + 90°)

= VmIm sin wt cos wt

=
2

m mV I
sin 2wt

The average power for one complete cycle, P = 0.

Hence, power consumed by a pure capacitive circuit is zero.

Fig. 4.27
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4.10 SERIES R-L CIRCUIT

Figure 4.30 shows a pure resistor R connected in series with a

pure inductor L across an alternating voltage v.

Let V and I be the rms values of applied voltage and current.

Potential difference across the resistor = VR = R . I

Potential difference across the inductor = VL = XL . I

The voltage RV  is in phase with current I whereas voltage

LV  leads current I  by 90°.

Fig. 4.31

Impedance

V = R L LV V RI jX I+ = +

= (R + jXL) I
V

I
= R + jXL = Z

Z = Z ∠f

Z = 2 2 2 2 2
LR X R Lω+ = +

f = tan–1 
1

tanLX L

R R

ω−   =   
  

The quantity Z is called complex impedance of the R-L circuit.

Impedance triangle

Current From the phasor diagram, it is clear that the current I lags

behind voltage V by an angle f. If the applied voltage is given by

v = Vm sin wt, then the current equation will be

i = Im sin (w t – f)

where Im = mV

Z

and f = tan–1 
L

R

ω 
 
 

Waveforms

Fig. 4.33

Fig. 4.30

Fig. 4.32
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Power Instantaneous power

p = v . i

= Vm sin w t . Im sin (w t – f)

= VmIm sin w t . sin (w t – f)

= VmIm 
cos cos (2 )

2

tφ ω φ− − 
  

=
2

m mV I
cos f – 

2

m mV I
cos (2w t – f)

Thus, power consists of a constant part 
2

m mV I
cos f and a fluctuating part 

2

m mV I
cos (2w t – f). The

frequency of the fluctuating part is twice the applied voltage frequency and its average value over one complete

cycle is zero.

Average power P =
2

m mV I
cos f = 

2 2

m mV I
cos f = VI cos f

Thus, power is dependent upon the in-phase component of the current. The average power is also called

active power and is measured in watts.

We know that pure a inductor and capacitor consume no power because all the power received from the

source in a half cycle is returned to the source in the next half cycle. This circulating power is called reactive

power. It is a product of the voltage and reactive component of the current, i.e., I sin f and is measured in VAR

(volt–ampere-reactive).

Reactive power Q = VI sin f.

The product of voltage and current is known as apparent power (S) and is measured in volt–ampere (VA).

S = 2 2
P Q+

Power triangle In terms of circuit components,

cos f =
R

Z
and V = Z . I

P = VI cos f = Z . I . I 
R

Z
 = I2R (W)

Q = VI sin f = Z . I . I LX

Z
 = I2XL (VAR)

S = VI = Z . I . I = I2Z (VA)

Power factor It is defined as the cosine of the angle between the voltage and current phasor.

pf = cos f

From voltage triangle, pf =
RV

V

From impedance triangle, pf =
R

Z

From power triangle, pf =
P

S

In case of R-L series circuit, the power factor is lagging in nature.

Fig. 4.34
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Example 4.30 An alternating voltage of 80 + j60 V is applied to a circuit and the current flowing is

4 – j2 A. Find the (a) impedance, (b) power consumed, (c) phase angle, and (d) power factor.

Solution

 Data V = 80 + j60 V

I = 4 – j2 A

Z =
80 60 100 36.87

4 2 4.47 26.56

V j

I j

+ ∠ °
= =

− ∠− °
 = 22.37 ∠63.43° Ω

Impedance Z = 22.37 Ω
Phase angle f = 63.43°

Power factor pf = cos f = cos (63.43°) = 0.447 (lagging)

Power consumed P = VI cos f

= 100 × 4.47 × 0.447 = 199.81 W

Example 4.31 The voltage and current in a circuit are given by V = 150 ∠30° V and I  = 2 ∠–15° A. If

the circuit works on a 50-Hz supply, determine the power factor, power loss, impedance, resistance, and

reactance considering the circuit as a simple series circuit.

Solution

 Data V = 150 ∠30° V

I = 2∠-15° A

f = 50 Hz

Z =
150 30

2 15

V

I

∠ °
=

∠− °

= 75 ∠45° Ω = 53.03 + j53.03 Ω
Impedance Z = 75 Ω
Resistance R = 53.03 Ω
Reactance X = 53.03 Ω
Power factor pf = cos f = cos (45°) = 0.707 (lagging)

Power loss P = VI cos f

= 150 × 2 × 0.707 = 212.1 W

Example 4.32 An rms voltage of 100 ∠0° V is applied to a series combination of Z1 and Z2 when

Z1 = 20 ∠30° W. The effective voltage drop across Z1 is known to be 40 ∠–30° V. Find the reactive component

of Z2.

Solution

 Data V = 100 ∠0° V

1Z = 20 ∠30° Ω

1V = 40 ∠–30° V

I =
o

1

o
1

40 30

20 30

V

Z

∠−
=

∠
= 2 ∠–60° A
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Total impedance

Z =
100 0

2 60

V

I

∠ °
=

∠− °
= 50 ∠60° = 25 + j43.3 Ω

1Z = 20 ∠30° = 17.32 + j10 Ω

Z = 1 2Z Z+

2 = 1Z Z-
= 25 + j43.3 – 17.32 – j10 = 7.68 + j33.3 Ω

Reactive component of 2Z = 33.3 Ω

Example 4.33 A voltage v (t) = 177 sin (314t + 10°) is applied to a circuit. It causes a steady state

current to flow, which is described by i (t) = 14.14 sin (314t – 20°). Determine the power factor an average

power delivered to the circuit.

Solution
 Data v (t) = 177 sin (314t + 10°)

i (t) = 14.14 sin (314t – 20°)

Current i (t) lags behind voltage v (t) by 30°.

f = 30°

Power factor pf = cos (30°) = 0.866 (lagging)

Power consumed P = VI cos f

=
177 14.14

2 2
×  × 0.866 = 1083.7 W

Example 4.34 When a sinusoidal voltage 120 V (rms) is applied to a series R-L circuit, it is found that

there occurs a power dissipation of 1200 W and a current flow given by i (t) = 28.3 sin (314 t – f). Find the

circuit resistance and inductance.

Solution
 Data V = 120 V

i (t) = 28.3 sin (314t – f)

P = 1200 W

I =
28.3

2
 = 20.01 A

P = VI cos f

1200 = 120 × 20.01 × cos f

cos f = 0.499

f = 60.02°

Z =
120

20.01

V

I
=  = 6 Ω

Z = Z ∠f = 6 ∠60.02° = 3 + j5.2 Ω
Resistance R = 3 Ω
Reactance XL = 5.2 Ω

XL = w L

5.195 = 314 × L

Inductance L = 0.0165 H
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Example 4.35 In a series circuit containing resistance and inductance, the current and voltage are

expressed as i(t) = 5 sin
2

314t
3

π + 
 

 and v(t) = 20 sin
5

314t
6

π + 
 

. (a) What is the impedance of the

circuit? (b) What are the values of resistance, inductance and power factor? (c) What is the average power

drawn by the circuit?

Solution

 Data i (t) = 5 sin 
2

314
3

t
π + 

 

v (t) = 20 sin 
5

314
6

t
π + 

 

I =
5

2
V = 

20

2

Impedance Z =
20 2

5 2

V

I
=  = 4 Ω

Current i(t) lags behind voltage v (t) by an angle f = 150° – 120° = 30°

Power factor pf = cos f = cos (30°) = 0.866 (lagging)

Z = 4 ∠30° = 3.464 + j2 Ω
Resistance R = 3.464 Ω
Reactance XL = 2

XL = w L

2 = 314 × L

Inductance L = 6.37 mH

Average power P = VI cos f

= 
20 5

2 2
×  × 0.866 = 43.3 W

Example 4.36 A series circuit consists of non-inductive resistance of 6 Ω and an inductive reactance of

10 Ω. When connected to a single phase ac supply, it draws a current i (t) = 27.89 sin (628t – 45°). Calculate

(i) the voltage applied to the series circuit in the form Vm sin (w t ± f), (ii) inductance, and (iii) power drawn

by the circuit.

Solution
Data R = 6 Ω

XL = 10 Ω
i (t) = 27.89 sin (628t – 45°)

Z = R + jXL = 6 + j10 = 11.66 ∠59.04° Ω

I =
27.89

2
∠–45° = 19.72 ∠–45° A

V = Z  . I  = (11.66 ∠59.04°) (19.72 ∠–45°) = 229.95 ∠14.04° V

v = 229.95 2 sin (wt + 14.04°) = 325.2 sin (w t + 14.04°)

XL = w L
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10 = 628 × L

Inductance L = 0.0159 H = 15.9 mH

Power P = VI cos f

= 229.95 × 19.72 × cos (59.04°)

= 2332.78 W

Example 4.37 A choke coil is connected in series with

a fixed resistor. A 240-V, 50-Hz supply is applied and current

of 2.5 A flows. If the voltage drop across the coil and fixed

resistor are 140 V and 160 V respectively, calculate the

resistance and inductance of the coil, and the value of the

fixed resistor and power drawn by the coil.

Solution

 Resistance of fixed resistor R =
160

2.5
 = 64 Ω

Impedance of choke coil Zcoil =
140

2.5
 = 56 Ω

Zcoil = 2 2
Lr X+  = 56

r2 + XL
2 = 3136 ...(i)

Total impedance Z =
240

2.5
 = 96 Ω

Z = (R + r) + jXL

Z = 2 2
( ) LR r X+ +

96 = 2 2
( 64) Lr X+ +

(r + 64)2 + XL
2 = 9216 ...(ii)

Subtracting Eq. (ii) from (i),

(r + 64)2 – r2 = 6080

r2 + 128 r + 4096 – r2 = 6080

128 r = 1984

r = 15.5 Ω
Resistance of coil r = 15.5 Ω

Substituting the value of r in the Eq. (i),

(15.5)2 + XL
2 = 3136

XL
2 = 2895.75

XL = 53.81 Ω
XL = 2p f L

53.81 = 2p × 50 × L

Inductance of coil L = 0.17 H

Power drawn by the coil = I2r

= (2.5)2 × 15.5 = 96.875 W

Fig. 4.35
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Example 4.38 A 100-W resistance is connected in series

with a choke coil. When a 400-V, 50-Hz supply is applied to this

combination, the voltage across the resistance and the choke

coil are 200 V and 300 V respectively. Find the power consumed

by the choke coil. Also, calculate the power factor of the choke

coil and the power factor of the circuit.

Solution

Current I =
200

100
 = 2 A

Impedance of choke coil Zcoil =
300

2
 = 150 Ω

2 2
Lr X+ = 150

r2 + XL
2 = 22500 ...(i)

Total impedance Z =
400

2
 = 200 Ω

Z = (R + r) + jXL

Z = 2 2
( ) LR r X+ +  = 200

(100 + r)2 + XL
2 = 40000 ...(ii)

Subtracting the Eq. (i) from (ii),

(100 + r)2 – r2 = 17500

10000 + 200r + r2 – r2 = 17500

200r = 7500

r = 37.5 Ω
Substituting the value of r in the Eq. (i),

(37.5)2 + XL
2 = 22500

XL
2 = 21093.75

XL = 145.24 Ω
Power consumed by choke coil = I2r

= (2)2 × 37.5 = 150 W

Power factor of choke coil =
coil

37.5

150

r

Z
=  = 0.25 (lagging)

Power factor of circuit =
100 37.5

200

R r

Z

+ +
=  = 0.6875 (lagging)

Example 4.39 A resistance of 25 Ω is connected in series

with a choke coil. The series combination when connected

across a 250-V, 50-Hz supply, draws a current of 4-A which

lags behind the voltage by 65°. Calculate (i) total power, (ii)

power consumed by resistance, (iii) power consumed by choke

coil, and (iv) resistance and inductance of the coil.

Fig. 4.36

Fig. 4.37
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Solution

 Total impedance Z =
250

4
 = 62.5 Ω

Z = Z ∠f = 62.5 ∠65° = 26.41 + j56.64 Ω

But Z = (R + r) + jXL

XL = 56.64 Ω
R + r = 26.41

Resistance of coil r = 26.41 – 25 = 1.41 Ω
Total power P = I2 (R + r) = (4)2 × 26.41 = 422.56 W

Power consumed by resistance PR = I2R = (4)2 × 25 = 400 W

Power consumed by choke coil Pcoil = I2r = (4)2 × 1.41 = 22.56 W

XL = 2p f L

56.64 = 2p × 50 × L

Inductance of coil L = 0.18 H

Example 4.40 When a resistor and a coil in series

are connected to a 240-V supply, a current of 3-A flows,

lagging 37° behind the supply voltage. The voltage across

the coil is 171 volts. Find the resistance of the resistor and

the resistance and reactance of the coil.

Solution

 Impedance of the coil Zcoil =
171

3
 = 57 Ω

2 2
Lr X+ = 57

r2 + XL
2 = 3249

Total impedance Z =
240

3
 = 80 Ω

Z = Z∠f = 80 ∠37° = 63.89 + j48.15

But Z = (R + r) + jXL

Reactance of coil XL = 48.15 Ω
r2 + XL

2 = 3249

r2 + (48.145)2 = 3249

r2 = 931.04

Resistance of coil r = 30.51

(R + r) = 63.89

R + 30.51 = 63.89

Resistance of resistor R = 33.38 Ω

Example 4.41 A choke coil and a resistor are connected in series across a 230-V, 50-Hz ac supply. The

circuit draws a current of 2 A at 0.866 lagging pf. The voltage drop across the resistor is 100 V. Calculate the

power factor of the choke coil.

Fig. 4.38
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Fig. 4.39

Solution

 Resistance R =
100

2
 = 50 Ω

Total impedance Z =
230

2
 = 115 Ω

pf = 0.866 (lagging)

f = cos–1 (0.866) = 30°

Z = Z ∠f = 115 ∠30° = 99.59 + j57.5 Ω
R + r = 99.59

50 + r = 99.59

r = 49.59 Ω
XL = 57.5 Ω

Impedance of choke coil Zcoil = 2 2
Lr X+

=
2 2

(49.59) (57.5)+  = 75.93 Ω

Power factor of choke coil =
coil

49.59

75.93

r

Z
=  = 0.653 (lagging)

Example 4.42 A circuit consists of a pure resistance and

coil in series. Power dissipated in the resistance and in the

coil are 1000 W and 250 W respectively. The voltage drops

across the resistance and the coil are 200 V and 300 V

respectively. Determine (i) value of pure resistance, (ii)

resistance and reactance of the coil, (iii) coil impedance, (iv)

combined resistance of the circuit, (v) combined impedance,

and (vi) supply voltage.

Solution
 PR = 1000 W VR = 200 V

Pcoil = 250 W Vcoil = 300 V

PR =
2

RV

R

Fig. 4.40
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1000 =
2

(200)

R
R = 40 Ω

VR = RI

200 = 40I

I = 5 A

Pcoil = I2r

250 = (5)2 × r

Resistance of coil r = 10 Ω

Impedance of coil Zcoil =
coil 300

5

V

I
=  = 60 Ω

Reactance of coil XL = 2 2
coilZ r−

=
2 2

(60) (10)− = 59.2 Ω
Combined resistance RT = R + r = 40 + 10 = 50 Ω

Combined impedance ZT = 2 2
( ) LR r X+ +

=
2 2

(50) (59.2)+  = 77.5 Ω
Supply voltage V = ZT . I = 77.5 × 5 = 387.5 V

Example 4.43 A coil A takes 2 A at a

power factor of 0.8 lagging with an applied

p.d. of 10 V. A second coil B takes 2 A with a

power factor of 0.7 lagging with an applied

voltage of 5 V. What voltage will be required

to produce a total current of 2 A with coils A

and B in series? Find the power factor in this

case.

Solution
 For coil A,

fA = cos–1 (0.8) = 36.87°

ZA =
10

2
 = 5 Ω

AZ = 5 ∠36.87°

= 4 + j3 Ω
rA = 4 Ω
XA = 3 Ω

For coil B,

fB = cos–1 (0.7) = 45.57°

ZB =
5

2
 = 2.5 Ω

BZ = 2.5 ∠45.57°

Fig. 4.41
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BZ = 1.75 + j1.78 Ω
rB = 1.75 Ω
XB = 1.78 Ω

When coils A and B are connected in series,

Z = rA + jXA + rB + jXB = 4 + j3 + 1.75 + j1.78

= 5.75 + j4.78 = 7.48 ∠39.74° Ω
Z = 7.48 Ω
f = 39.74°

V = Z . I = 7.48 × 2 = 14.96 V

pf = cos f = cos (39.74°) = 0.77 (lagging)

Example 4.44 When a voltage of 100 V

is applied to a coil A, the current taken is 8 A

and the power is 120 W. When applied to a

coil B, the current is 10 A and the power is

500 W. What current and power will be taken

when 100 V is applied to the two coils

connected in series?

Solution
 For the coil A,

ZA =
100

8
 = 12.5 Ω

PA = IA
2 rA

120 = (8)2 × rA

rA = 1.875 Ω

XA = 2 2 2 2
(12.5) (1.875)A AZ r− = −  = 12.36 Ω

For the coil B,

ZB =
100

10
 = 10 Ω

PB = IB
2 rB

500 = (10)2 × rB

rB = 5 Ω

XB = 2 2 2 2
(10) (5)B BZ r− = −   = 8.66 Ω

When coils A and B are connected in series,

Z = rA + jXA + rB + jXB

= 1.875 + j12.36 + 5 + j8.66

= 6.875 + j21.02

= 22.11 ∠71.89° Ω
Z = 22.11 Ω
f = 71.89°

Fig. 4.42

Fig. 4.43

Fig. 4.44
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I =
100

22.11

V

Z
=  = 4.52 A

P = I2 (rA + rB) = (4.52)2 × (6.875) = 140.64 W

Example 4.45 In a particular circuit a voltage of 10 V at 25 Hz produces 100 mA, while the same voltage

at 75 Hz produces 60 mA. Find the values of components of the circuit.

Solution
Data V1 = 10 V, f1 = 25 Hz, I1 = 10 mA

V2 = 10 V, f2 = 75 Hz, I2 = 60 mA

Case (i) V1 = 10 V, f1 = 25 Hz, I1 = 100 mA

Z1 = 1

3
1

10

100 10

V

I −
=

×
 = 100 Ω

Case (ii) V2 = 10 V, f1 = 75 Hz, I2 = 60 mA

Z2 = 2

3
2

10

60 10

V

I −
=

×
 = 166.67 Ω

As frequency increases, impedance of the circuit increases. In a series R-L circuit, inductive reactance XL

increases with frequency. Hence impedance increases.

Hence, circuit consists of a resistance R and inductance L.

Z1 =
1

2 2 2 2
(2 25 )LR X R Lπ+ = + × × = 100

R2 + (50pL)2 = 10000 ...(i)

Z2 =
2

2 2 2 2
(2 75 )LR X R Lπ+ = + × × = 166.67

R2 + (150pL)2 = 27778.89 ...(ii)

Solving Eqs (i) and (ii),

R = 88.1 Ω
L = 0.3 H

Example 4.46 When 1 A is passed through three coils A, B and C in series, the voltage across them are

6 V, 3 V and 8 V respectively on a dc supply and 7 V, 5 V and 10 V respectively on an ac supply. Find the power

factor and the power dissipated in each coil and the power factor of the whole circuit.

Solution
Data I = 1 A

On dc supply, VA = 6 V, VB = 3 V, VC = 8 V

On ac supply, VA = 7 V, VB = 5 V, VC = 10 V

For dc supply,  f = 0

XL = 2p fL = 0

The coil behaves as a pure resistor.

RA =
6

1
 = 6 Ω RB =

3

1
 = 3 Ω RC =

8

1
 = 8 Ω

For ac supply,

ZA =
7

1
 = 7 Ω ZB =

5

1
 = 5 Ω ZC =

10

1
 = 10 Ω

XA = 2 2 2 2
(7) (6)A AZ R− = −  = 3.6 Ω
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XB = 2 2 2 2
(5) (3)B BZ R− = −  = 4 Ω

XC = 2 2 2 2
(10) (8)C CZ R− = −  = 6 Ω

Power factor of coil A =
6

7

A

A

R

Z
=  = 0.857 (lagging)

Power factor of coil B =
3

5

B

B

R

Z
=  = 0.6 (lagging)

Power factor of coil C =
8

10

C

C

R

Z
=  = 0.8 (lagging)

Power dissipated in coil A = I2RA = (1)2 × 6 = 6 W

Power dissipated in coil B = I2RB = (1)2 × 3 = 3 W

Power dissipated in coil C = I2RC = (1)2 × 8 = 8 W

Total impedance Z = RA + jXA + RB + jXB + RC + jXC

= 6 + j3.6 + 3 + j4 + 8 + j6

= 17 + j13.6 = 21.77 ∠38.68° Ω
Power factor of the whole circuit = cos (38.68°) = 0.78 (lagging)

Example 4.47 An air-cored coil takes 5 A current and consumes 600 W power when connected across a

200-V, 50-Hz ac supply. Calculate the value of the current drawn by the coil if the supply frequency increases

to 60 Hz.

Solution
 Data I = 5 A

V = 200 V

P = 600 W

For f = 50 Hz,

Z =
200

5

V

I
=  = 40 Ω

P = I2r

600 = (5)2 × r

r = 24 Ω

XL =
2 2

Z r−

=
2 2

(40) (24)−  = 32 Ω
XL = 2p f L

32 = 2p × 50 × L

L = 0.1019 H

For f = 60 Hz

XL = 2p  × 60 × 0.1019 = 38.4 Ω
r = 24 Ω

Z = 2 2 2 2
(24) (38.4)Lr X+ = +  = 45.28 Ω

I =
200

45.28

V

Z
=  = 4.417 A
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Example 4.48 When an iron-cored choking coil is connected to a 12-V dc supply, it draws a current of

2.5 A and when it is connected to a 230-V, 50-Hz supply, it draws a 2-A current and consumes 50 W of power.

Determine for this value of current (i) power loss in the iron core, (ii) inductance of the coil, (iii) power factor,

and the (iv) value of the series resistance which is equivalent to the effect of iron loss.

Solution
Data For dc V = 12 V, I = 2.5 A

For ac V = 230 V, I = 2 A, P = 50 W

In an iron-cored coil, there are two types of losses.

(i) Losses in core known as core or iron loss

(ii) Losses in winding known as copper loss

P = I2R + Pi

2

P

I
= R + 

2

Pi

I

RT = R + 
2

Pi

I

where R is the resistance of the coil and 
2

Pi

I
 is the resistance which is equivalent to the effect of iron loss.

For dc supply, f = 0

XL = 0

R =
12

2.5
 = 4.8 Ω

For ac supply,

Z =
230

2
 = 115 Ω

Iron loss Pi = P – I2R = 50 – (2)2 × 4.8 = 30.8 W

RT =
2 2

50

(2)

P

I
=  = 12.5 Ω

XL = 2 2 2 2
(115) (12.5)TZ R− = −  = 114.3 Ω

XL = 2p f L

114.3 = 2p × 50 × L

Inductance L = 0.363 H

Power factor =
12.5

115

TR

Z
=  = 0.108 (lagging)

The series resistance equivalent to the effect of iron loss = 
2 2

30.8

(2)

Pi

I
=  = 7.7 Ω

Example 4.49 An iron-cored coil takes 4 A at a power factor of 0.5 when connected to a 200-V,

50-Hz supply. When the iron core is removed and the voltage is reduced to 40 V, the current rises to 5 A at a

pf of 0.8. Find the iron loss in the core and inductance in each case.

Solution
Data With iron core I = 4 A, pf = 0.5, V = 200 V

Without iron core I = 5 A, pf = 0.8, V = 40 V

When the iron core is removed,
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Z =
40

5

V

I
=  = 8 Ω

pf =
R

Z

0.8 =
8

R

R = 6.4 Ω

XL =
2 2 2 2

(8) (6.4)Z R− = −  = 4.8 Ω
XL = 2p f L

4.8 = 2p × 50 × L

Inductance L = 0.0153 H

With iron core,

Z =
200

4
 = 50 Ω

pf = TR

Z

0.5 =
50

TR

RT = 25 Ω

XL = 2 2
TZ R− = 

2 2
(50) – (25)  = 43.30 Ω

XL = 2p f L

43.3 = 2p × 50 × L

Inductance L = 0.1378 H

Iron loss Pi = P – I2R

= VI cos f – I2R

= 200 × 4 × 0.5 – (4)2 × 6.4 = 297.6 W

4.11 SERIES R-C CIRCUIT

Figure 4.45 shows a pure resistor R connected in series with a pure capacitor

C across an alternating voltage v.

Let V and I be the rms values of applied voltage and current.

Potential difference across the resistor = VR = R . I

Potential difference across the capacitor = VC = XC . I

The voltage RV  is in phase with current I whereas voltage CV lags behind current I  by 90°.

Applied voltage V = R CV V+

Phasor diagram Since the same current flows through R and C, current I is taken as reference phasor.

Fig. 4.45
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Fig. 4.46

Impedance

V = R CV V+
= R I  – jXC I

= (R – jXC) I

V

I
= R – jXC = Z

Z = Z ∠– f

Z =  2 2
CR X+ = 

2

2 2

1
R

C
+
w

f = tan–1 CX

R

 
 
 

 =  tan–1 
1

RCω
 
 
 

The quantity Z is called complex impedance of the R-C circuit.

Impedance triangle

Current From the phasor diagram, it is clear that the current

I leads voltage V by an angle f. If the applied voltage is given by

v = Vm sin w t then the current equation will be

i =  Im sin (w t + f)

where Im =
mV

Z

and f =  tan–1 CX

R

æ ö
ç ÷è ø  = tan–1 

1

RCw

æ ö
ç ÷è ø

Waveforms

Fig. 4.48

Power
Active power P = VI cos f = I2R

Reactive power Q = VI sin f = I2XC

Apparent power S = VI = I2Z

Fig. 4.47
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Power triangle

Fig. 4.49

Power factor It is defined as the cosine of the angle between voltage and current phasor.

pf = cos f

From voltage triangle, pf =
RV

V

From impedance triangle, pf =  
R

Z

From power triangle, pf =
P

S
In case of an R-C series circuit, the power factor is leading in nature.

Example 4.50  The voltage applied to a circuit is e = 100 sin (w t + 30°) and the current flowing in the

circuit is i = 15 sin (w t + 60°). Determine impedance, resistance, reactance, power and power factor.

Solution
 Data e = 100 sin (w t + 30°)

i = 15 sin (w t + 60°)

E =
100

2
 ∠30° V

I =
15

2
∠60° A

Z =
E

I
 = 

100
30

2

15
60

2

Ð °

Ð °
 = 6.67 ∠–30° = 5.77 – j3.33 Ω

Impedance Z = 6.67 Ω
Resistance R = 5.77 Ω
Reactance XC = 3.33 Ω
Power factor = cos f  = cos (30°) = 0.866 (leading)

Power P = VI cos f = 
100

2
 × 

15
 

2
 ×  0.866 =  649.5 W

Example 4.51 A series circuit consumes 2000 W at 0.5 leading power factor, when connected to

230 V, 50 Hz ac supply. Calculate (i) kVA, (ii) kVAR, and (iii) current.

Solution
 Data P = 2000 W

pf = 0.5 (leading)
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V = 230 V

P = VI cos f

2000 = 230 × I × 0.5

I = 17.39 A

S = VI = 
cos

P

f
 = 

2000

0.5
 = 4000 VA = 4 kVA

f = cos–1 (0.5) = 60°

Q = VI sin f = 230 × 17.39 × sin (60°) = 3.464 kVAR

Example 4.52 A resistor R in series with a capacitance C is connected to a 240-V, 50-Hz ac supply. Find

the value of C so that R absorbs 300 W at 100 V. Find also the maximum charge and maximum stored energy

in C.

Solution
 Data V = 240 V VR = 100 V

P = 300 W f = 50 Hz

P =

2
RV

R

300 =

2
(100)

R
R = 33.33 Ω
P = I2R

300 = I2 × 33.33

I = 3 A

Z =
V

I
 = 

240

3
 = 80 Ω

XC = 2 2
Z R-  = 2 2

(80) (33.33)-   = 72.72 Ω

XC =
1

2 fCp

72.72 =
1

2 50 C´ ´p

C = 43.77 µF

Voltage across capacitor VC = 2 2
RV V-  = 2 2

(240) (100)-  = 218.17 V

Maximum value of VC = 218.17 × 2  = 308.54 V

Maximum charge Qmax = CVCmax = 43.77 × 10–6 × 308.54 = 0.0135 C

Maximum stored energy Emax =
1

2
 C (VCmax)

2

=
1

2
 × 43.77 × 10–6 × (308.54)2 = 2.08 J
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Example 4.53 A capacitor of 35 µF is connected in series with a variable resistor. The circuit is connected

across 50-Hz mains. Find the value of the resistor for a condition when the voltage across the capacitor is half

the supply voltage.

Solution
Data C = 35 µF f = 50 Hz

VC =
1

2
V

XC =
1

2 fCp
 = 6

1

2 50 35 10-´ ´ ´p
 = 90.946 Ω

VC =
1

2
V

XC . I =
1

2
 Z . I

XC =
1

2
 Z

Z = 2XC

Z = 2 2
CR X+

(2XC)2 = R2 + XC
2

3XC
2 = R2

R2 = 3 × (90.946)2 = 24813.35

R = 157.5 Ω

Example 4.54 A voltage of 125 V at 50 Hz is applied across a non-inductive resistor connected in series

with a capacitor. The current is 2.2 A. The power loss in the resistor is 96.8 W. Calculate the resistance and

capacitance.

Solution
Data V = 125 V P = 96.8 W

I = 2.2 A f = 50 Hz

Z =
V

I
 = 

125

2.2
= 56.82 A

P = I2R

96.8 = (2.2)2 × R

R = 20 Ω

XC = 2 2 2 2
(56.82) (20)Z R- = -  = 53.18 Ω

XC =
1

2 fCp

53.18 =
1

2 50 C´ ´p

C = 59.85 µF
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Example 4.55 A resistor and a capacitor are connected across a 250-V supply. When the supply frequency

is 50 Hz, the current drawn is 5 A. When the frequency is increased to 60 Hz, it draws 5.8 A. Find the value of

R and C and power drawn in the second case.

Solution
Data V = 250 V

f1 = 50 Hz, I1 = 5 A

f2 = 60 Hz, I2 = 5.8 A

For f1 = 50 Hz,

Z1 =  
250

5
= 50 = 

2

2

1

1

2
R

f C

æ ö
+ ç ÷è øp

 = 

2
2 1

100
R

C

æ ö+ ç ÷è øp

R2 + 

2
1

100 C

æ ö
ç ÷è øp

= 2500 ... (i)

For f2 = 60 Hz,

Z2 =
250

5.8
 = 43.1 Ω

Z2 =

2

2

2

1

2
R

f C

æ ö
+ ç ÷è øp

 = 

2
2 1

120
R

C

æ ö+ ç ÷è øp

R2 +

2
1

120 C

æ ö
ç ÷è øp

 = 1857.9 Ω ...(ii)

Solving Eqs (i) and (ii),

R = 19.96 Ω
C = 69.4 µF

Power drawn in the second case= I2R = (5.8)2 × 19.96 = 671.45 W

4.12 SERIES R-L-C CIRCUIT

Figure 4.50 shows a pure resistor R, pure inductor L and pure capacitor

C connected in series across an alternating voltage v.

Let V and I be the rms values of applied voltage and current.

Potential difference across the resistor = VR = R . I

Potential difference across the inductor = VL = XL . I

Potential difference across the capacitor = VC = XC . I

The voltage RV  is in phase with current I , voltage LV leads current

I  by 90° and voltage CV lags behind current I  by 90°.

Applied voltage V = R L CV V V+ +

Phasor diagram Since the same current flows through R, L and C, current I is taken as reference phasor.

Case (i) XL > XC

The reactance X will be inductive in nature and circuit will behave like an R-L circuit.

Fig. 4.50
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Fig. 4.51

Case (ii)  XC > XL

The reactance X will be capacitive in nature and the circuit will behave like an R-C circuit.

Fig. 4.52

Impedance
—
V = R L CV V V+ +  = R I  + jXLI –jXC I  = [R + j (XL – XC)] I

V

I
= R + j (XL – XC) = Z

Z = Z ∠f

Z = 2 2
( )L CR X X+ -

f = tan–1 
L CX X

R

-æ ö
ç ÷è ø

Impedance triangle

Case (i) XL > XC

Fig. 4.53

Case (ii) XC > XL

Fig. 4.54
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Current equation If the applied voltage is given by v = Vm sin w t then current equation will be

i = Im sin (w t ± f)

‘–’ sign is used when XL > XC

‘+’ sign is used when XC > XL

Waveforms

Case (i) XL > XC Case (ii) XC > XL

Fig. 4.55 Fig. 4.56

Power

Average power P = VI cos f = I2R

Reactive power Q = VI sin f = I2X

Apparent power S = VI = I2Z

Power triangle

Case (i) XL > XC Case (ii) XC > XL

Fig. 4.57 Fig. 4.58

Power factor It is defined as the cosine of the angle between voltage and current phasor.

pf =  cos f

pf =
RV

V
 = 

R

Z
 =

P

S

Example 4.56 Two impedances Z1 and Z2 having the same numerical value are connected in series. If Z1

is having a pf of 0.866 lagging and Z2 is having a pf of 0.8 leading, calculate the pf of the series combination.

Solution

Data pf1 = 0.866 (lagging)

pf2 = 0.8 (leading)

Z1 = Z2 = Z

f1 = cos–1 (0.866) = 30°

f2 = cos–1 (0.8) = 36.87°
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1Z = Z ∠f1 = Z ∠30° = 0.866 Z + j0.5 Z

2Z = Z ∠–f2 = Z ∠–36.87° = 0.8 Z – j0.6 Z

For a series combination,

Z  = 1 2Z Z+ = 0.866 Z + j0.5 Z + 0.8 Z – j0.6 Z

= 1.6666 Z – j0.1 Z = Z (1.666 – j0.1) = 1.668 Z ∠–3.43°

pf = cos (3.43°) = 0.9982 (leading)

Example 4.57 A coil of resistance 3 W and an

inductance of  0.22 H is connected in series with an imperfect

capacitor. When such a series circuit is connected across a

200-V, 50-Hz supply, it has been observed that their

combined impedance is (3.8 + j6.4) W. Calculate the

resistance and capacitance of imperfect capacitor.

Solution

Data Z = 3.8 + j6.4 Ω
XL = 2p fL = 2p × 50 × 0.22 = 69.12 Ω

Total impedance Z = 3 + j69.12 + R – jXC

= (3 + R) + j (69.12 – XC)

3 + R = 3.8

R = 0.8 Ω
69.12 – XC = 6.4

XC = 62.72 Ω

XC =
1

2 fCp

62.72 =
1

2 50 Cπ × ×
C = 50.75 µF

Example 4.58 An R-L-C series circuit has a current which lags the applied voltage by 45°. The voltage

across the inductance has maximum value equal to twice the maximum value of voltage across the capacitor.

Voltage across the inductance is 300 sin (1000t) and R = 20 W. Find the value of inductance and capacitance.

Solution
Data vL = 300 sin (1000t)

R = 20 Ω
f = 45°

VL(max) = 2VC(max)

2 VL = 2 2 VC

I × XL = 2I × XC

XL = 2XC

cos f =
R

Z

Fig. 4.59
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cos (45°) =
20

Z

Z = 28.28 Ω
For a series R-L-C circuit,

Z = 2 2
( )L CR X X+ -

(28.28)2 = (20)2 + (2XC – XC)2

799.76 = 400 + X2
C

XC = 20 Ω
XL = 2XC = 40 Ω
XL = w L

40 = 1000 × L

L =
40

1000
 = 0.04 H

XC =
1

Cw

20 =
1

1000 C´
C = 50 µF

Example 4.59 A coil having a power factor of 0.5 is in series with a 79.57 µF capacitor and when

connected across  a 50-Hz supply, the p.d. across the coil is equal to the p.d. across the capacitor. Find the

resistance and inductance of the coil.

Solution
Data pf = 0.5

C = 79.57 µF

f = 50 Hz

Vcoil = VC

XC =
1

2 fCp
 = 

6

1

2 50 79.57 10-´ ´ ´p
 = 40 Ω

Vcoil = VC

I . Zcoil = I . XC

Zcoil = XC = 40 Ω

pf of coil = cos f = 
coil

R

Z

0.5 =
40

R

Resistance of coil R = 20 Ω

XL = 2 2
coilZ R- = 2 2

(40) (20)-  = 34.64 Ω

XL = 2p f L

34.64 = 2p  × 50 × L

Inductance of coil = 0.11 H
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Example 4.60 A 250-V, 50-Hz voltage is applied to a coil having resistance of 5 W and an inductance of

9.55 H in series with a capacitor C. If the voltage across the coil is 300 V, find the value of C.

Solution
 Data V = 250 V

R = 5 Ω
L = 9.55 H

Vcoil = 300 V

XL = 2p f L = 2p × 50 × 9.55 = 3000 Ω

Zcoil = 2 2 2 2
(5) (3000)LR X+ = +  = 3000 Ω

I =
coil

coil

300

3000

V

Z
=  = 0.1 A

Total impedance Z =
250

= 
0.1

V

I
 = 2500 Ω

When XL > XC,

Z = 2 2
( )L CR X X+ -

(2500)2 = (5)2 + (3000 – XC)2

(3000 – XC) = 2500

XC = 500

C =
1 1

= 
2 2 50 500CfX ´ ´p p

 = 6.37 µF

When XC > XL,

Z = 2 2
( )C LR X X+ -

(2500)2 = (5)2 + (XC – 3000)2

2500 = XC – 3000

XC = 5500

C =
1

2 50 5500´ ´p
 = 0.58 µF.

Example 4.61 Draw the phasor diagram for the series circuit shown in Fig. 4.60 when the current in the

circuit is 2 A. Find the values of V1 and V2 and show these voltages on the phasor diagram.

Fig. 4.60

Solution

1Z =  j3 + 6 – j8 = 6 – j5 = 7.81 ∠–39.8° Ω

2Z = 5 + j3 + 6 – j8 + 4 = 15 – j5 = 15.81 ∠–18.43° Ω
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I = 2 A

Let I = 2 ∠0° A

1V = 1Z I×  = (7.81 ∠–39.8°) (2 ∠0°)

= 15.62 ∠–39.8° V

2V = 2Z I×  = (15.81 ∠–18.43°) (2 ∠0°)

= 31.62 ∠–18.43°V

Phasor diagram

Fig. 4.61

Example 4.62 Draw a vector diagram for the circuit shown in Fig. 4.62 indicating terminal voltages

V1 and V2 and the current. Find the value of (a) current, (b) V1 and V2 , and (c) power factor.

Fig. 4.62

Solution
1LX = 2p fL = 2p × 50 × 0.05 = 15.71 Ω

2LX = 2p fL = 2p × 50 × 0.1 = 31.42 Ω

XC = 6

1 1
= 

2 2 50 50 10f Cp p
-´ ´ ´

 = 63.66 Ω

Total impedance Z = 10 + j15.71 + 20 + j31.42 – j63.66

= 30 – j16.53 = 34.25 ∠–28.85° Ω

I =
200

= 
34.25

V

Z
 = 5.84 A

Let I = 5.84 ∠0° A

1Z = 10 + j15.71 = 18.62 ∠57.52 Ω

1V = 1Z I× = (18.62 ∠57.52°) (5.84 ∠0°) = 108.74 ∠57.52° V

2Z = 20 + j31.42 – j63.66

= 20 – j32.24 = 37.94 ∠–58.19° Ω

2V = 2Z I×  = (37.94 ∠–58.19°) (5.84 ∠0°) = 221.57 ∠–58.19° V

pf = cos f = cos (28.85°) = 0.875 (leading)
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Vector diagram

Fig. 4.63

Example 4.63 Find the values of R and C so that Vx = 3Vy. Vx and Vy are in quadrature.

Fig. 4.64

Solution
XL = 2pfL = 2p × 50 × 0.0255 = 8 Ω

xZ = 6 + j8 = 10 ∠53.13° Ω
Vx = 3Vy

I × Zx = 3 × I × Zy

Zx = 3Zy

Vx and Vy are in quadrature, i.e., phase angle between Vx and Vy is 90°. Hence, the angle between Zx and Zy

will be 90°. The impedance Zy is capacitive in nature.

yZ = Zy ∠–f

yZ =
10

3
∠(53.13 – 90)° = 3.33 ∠–36.87° = 2.66 – j2 Ω

R = 2.66 Ω
XC = 2 Ω

XC =
1

2 fCp

C =
1

2 50 2´ ´p
 = 1.59 mF

4.13 ADMITTANCE AND ITS COMPONENTS

The admittance Y of a circuit is defined as a reciprocal of impedance. The impedance Z can be written as

Z = R + jX

The real part of impedance is called resistance and the imaginary part is called reactance. Similarly,

admittance also can be expressed in terms of real part and imaginary part.
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1

Z
= 

2 2

1
= = 

( )( )

R jX R jX

R jX R jX R jX R X

- -
+ + - +

Y =
2 2 2 2

R X
j

R X R X
-

+ +
The real part of admittance is called conductance and the imaginary part is called susceptance and are

measured in mho (J) or siemens (S).

In general,

Y = G ± jB

If Z = R + jXL Y =
1

Z
 = G – jBL

If Z = R – jXC Y =
1

Z
 = G + jBC

Example 4.64 Two circuits, the impedances of which are given

by Z1 = (6 + j8) W and Z2 = (8 – j6) W are connected in parallel. If

the applied voltage to the combination is 100 V, find (i) current and

pf of each branch, (ii) overall current and pf of the combination,

and (iii) power consumed by each impedance.

Solution

 Data 1Z = 6 + j8 Ω 2Z = 8 – j6 Ω
V = 100 V

V = 100 ∠0° V

1I =
1

100 0
= 

6 8

V

Z j

Ð °
+

= 10 ∠–53.13° A

2I =
1

100 0
= 

8 6

V

Z j

Ð °
-

 = 10 ∠36.9° A

cos f1 = cos (53.13°) = 0.6 (lagging)

cos f2 = cos (36.9°) = 0.8 (leading)

I = 1 2I I+  = 10 ∠–53.13° + 10 ∠36.9°

= 14.14 ∠–8.13° A

pf = cos f = cos (8.13°) = 0.989 (lagging)

P1 = I1
2 R1 = (10)2 × (6) = 600 W

P2 = I2R2 = (10)2 × (8) = 800 W

Example 4.65 An impedance of (7 + j5) W is connected in parallel

with another impedance of (10 – j8) W across a 230-V, 50-Hz supply.

Calculate (i) admittance, conductance and susceptance of the combined

circuit, and (ii) total current and power factor.

Solution

Data 1Z = (7 + j5) Ω

Fig. 4.65

Fig. 4.66
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2Z = (10 – j8) Ω
V = 230 V

1Y = 
1

1 1
= 

7 5jZ +
 = 0.12∠–35.54° J

2Y =
2

1 1
= 

10 8Z j−
 = 0.08∠38.66° J

Y = 1 2Y Y+
= 0.12∠–35.54° + 0.08∠38.66°

= 0.16 ∠–7.04° J

= 0.16 – j0.02 J

Admittance Y = 0.16 J

Conductance G = 0.16 J

Susceptance B = 0.02 J

I = V Y⋅
= (230 ∠0°) (0.16 ∠–7.04°) = 36.8 ∠–7.04° A

I = 36.8 A

pf = cos f = cos (7.04°) = 0.99 (lagging)

Example 4.66 Two impedances Z1 and Z2 are connected in parallel across a 200-V, 50-Hz ac supply. The

current drawn by impedance Z1 is 4 A at 0.8 lagging pf. The total current drawn from the supply is 5 A at unity

pf. Calculate the impedance Z2.

Solution
 Data V = 200 V

I1 = 4 A at 0.8 lagging pf

I = 5 A at unity pf

1I = 4 ∠–cos–1 (0.8) = 4 ∠–36.87° A

I = 5 ∠cos–1 (1) = 5 ∠0° A

I = 1 2I I+

2I = 1I I−  = 5∠0° – 4 ∠–36.87° = 3 ∠53.13° A

2Z =
2

200 0

3 53.13

V

I

∠ °
=

∠ °  = 66.67 ∠–53.13° Ω

Example 4.67 Compute Zeq and Yeq for the given circuit.

Fig. 4.67
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Solution
 Data

1Z = j5 Ω

2Z = 5 + j8.66 Ω

3Z = 15 Ω

4Z = –j10 Ω

eqY = 1 2 2 4Y Y Y Y+ + +

= —

1

1

Z
 + —

2

1

Z
 +  —

3

1

Z
 + —

4

1

Z

=
1 1 1 1

+ + + 
5 5 8.66 15 10j j j+ -

= 0.22 ∠–57.99° J

eqZ = eq

1

0.22 57.99
Y =

∠− °
 = 4.54 ∠57.99° Ω

Example 4.68 Find currents I1 and I2.

Solution
 Data

1

—
Z = 3 – j4 Ω

2

—
Z = 10 Ω

By current–division formula,

1I =
2

— —

1 2

—
Z

I

Z Z

⋅
+

 = (25 ∠90°) . 
10

3 4 10j- +  = 18.38 ∠107.1° A

2I = 1I I−  = 25 ∠90° – 18.38 ∠107.1° = 9.19 ∠54° A

Example 4.69 Three impedances of 25 ∠53.1° Ω, 5 ∠–53.1° Ω and 10 ∠36.9° Ω are connected in

parallel. The combination is in series with another impedance of 14.14 ∠45° Ω. Calculate the equivalent

impedance of the circuit.

Solution

 Data 1Z = 25 ∠53.1° Ω

2Z = 5 ∠–53.1° Ω

3Z = 10 ∠36.9° Ω

4Z = 14.14 ∠45° Ω

Y = —

1

Z
 = —

1

1

Z
 + —

2

1

Z
 + —

3

1

Z

Fig. 4.68
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= 
1 1 1

+ + 
25 53.1 5 53.1 10 36.9Ð ° Ð- ° Ð °

 = 0.23 ∠16.86° J

Z = 4.27 ∠–16.86° Ω

eqZ = Z  +  4Z

= 4.27 ∠–16.86° + 14.14 ∠45° = 16.58 ∠31.87° Ω

Example 4.70 A voltage of 200 ∠25° V is applied to a circuit composed of two parallel branches. If the

branch currents are 10 ∠40° A and 20 ∠–30° A, determine the kVA, kVAR, kW in each branch. Also, calculate

the pf of the combined load.

Solution

 Data 1I = 10 ∠40° A 2I = 20 ∠–30° A

V = 200 ∠25° V

Phase difference between V and I1, f1 = 40° – 25° = 15°

Phase difference between V and I2, f2 = 25° – (–30°) = 55°

cos f1 = cos (15°) = 0.97 (leading)

cos f2 = cos (55°) = 0.57 (lagging)

For the branch current of 10 ∠40° A,

P1 = VI1 cos f1 = 200 × 10 × 0.97 = 1.94 kW

Q1 = VI1 sin f1 = 200 × 10 × sin (15°) = 0.52 kVAR

S1 = VI1 = 200 × 10 = 2 kVA

For the branch current of 20 ∠–30° A,

P2 = VI2 cos f2 = 200 × 20 × 0.57 = 2.28 kW

Q2 = VI2 sin f2 = 200 × 20 × sin (55°) = 3.28 kVAR

S2 = VI2 = 200 × 20 = 4 kVA

For the combined load,

1I = 10 ∠40° A

2I = 20 ∠–30° A

I = 1I  + 2I

= 10 ∠40° + 20 ∠–30° = 25.24 ∠–8.14° A

Phase difference = 25° – (–8.14°)

= 33.14°

pf = cos (33.13°) = 0.84 (lagging)

Example 4.71 Two circuits have the same numerical value of impedance. The pf of one is 0.8 and that

of the other is 0.6. What is the pf of combination if they are connected in parallel?

Solution
 Data pf1 = 0.8

pf2 = 0.6

1Z = Z ∠cos–1 (0.8) = Z ∠36.87° Ω

2Z = Z ∠cos–1 (0.6) = Z ∠53.13° Ω
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For parallel combination,

—
Z =

1 2

1 2

( 36.87 )( 53.13 )

36.87 53.13

Z Z Z Z

Z ZZ Z

⋅ ∠ ° ∠ °
=

∠ ° + ∠ °+

=

2
90

(1.4 1.4)

Z

Z j

Ð °
+

=

2
90

1.98 45

Z

Z

∠ °
∠ °

 = 0.505 Z ∠45°

pf = cos (45°) = 0.707

Example 4.72 When a 240-V, 50-Hz supply is fed to a 15-Ω
resistor in parallel with an inductor, the total current is 22.1 A. What

value must the frequency have for the total current to be 34 A?

Solution
 Data V = 240 V

R = 15 Ω
I = 22.1 A

1I =
240 0

15 0

Ð °
Ð °

16 ∠0° = 16 A

2I =
240 0

90LX

Ð °
Ð  = 

240

LX
∠–90° = – j 

240

LX
A

I = 16 – j 
240

LX

2

2 240
(16)

LX

æ ö
+ ç ÷è ø

= 22.1

256 + 2

57600

LX
= 488.41

XL = 15.74 Ω
XL = 2p f L

15.74 = 2p × 50 × L

L = 0.05 H

Let the new frequency be f. Then

2

2 240
(16)

2 0.05f

æ ö
+ ç ÷è ´ øp

= 34

256 + 2

57600

0.0987 f
= 1156

f = 25.47 Hz

Fig. 4.69
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Example 4.73 Determine the current in the circuit of Fig. 4.70. Also, find the power consumed as well

as pf.

Fig. 4.70

Solution

1LX = 2p × 50 × 0.01 = 3.14 Ω

2LX = 2p × 50 × 0.02 = 6.28 Ω

XC = 6

1

2 50 200 10-´ ´ ´p
 = 15.92 Ω

1Z = 6 + j3.14 Ω

2Z = 4 + j6.28 Ω

3Z = 2 – j15.92 Ω

Z = 1Z + 
2 3

2 3

.Z Z

Z Z+

= (6 + j3.14) + 
(4 6.28)(2 15.92)

(4 6.28) (2 15.92)

j j

j j

+ -
+ + -  = 17.27 ∠30.75° Ω

I =

—

—

V

Z
 = 

100 0

17.27 30.75

Ð °
Ð °

 = 5.79 ∠–30.75° A

P = VI cos f = 100 × 5.79 × cos (30.75°)

= 497.94 W

pf = cos f = cos (30.75°) = 0.86 (lagging)

Example 4.74 Find the applied voltage VAB so that 10 A current may flow through the capacitor.

Fig. 4.71
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Solution

1LX = 2p × 50 × 0.0191 = 6 Ω

2LX = 2p × 50 × 0.0318 = 10 Ω

XC = 6

1

2 50 398 10-´ ´ ´p
 = 8 Ω

1Z = 2 + j6 = 6.32 ∠71.56° Ω

2

—
Z = 7 – j8 = 10.63 ∠–48.8° Ω

3

—
Z = 8 + j10 = 12.8 ∠51.34° Ω

Z = 1 2

1 2

Z Z

Z Z+
+ 3

—
Z

=
(2 6)(7 8)

(2 6 7 8)

j j

j j

+ -
+ + - + (8 + j10) = 19.91 ∠45.53° Ω

Let 2I = 10 ∠0° A

2V = 2Z . 2I  = (10.63 ∠–48.8°) (10 ∠0°) = 106.3 ∠–48.8° V

1V = 2V  = 106.3 ∠–48.8° V

1I = 1

1

V

Z
 = 

106.3 48.8

6.32 71.56

Ð - °
Ð °

 = 16.82 ∠–120.36° A

I = 1I  + 2I  = 16.82 ∠–120.36° – 10∠0° = 14.58 ∠–84.09° A

—
ABV = Z . I  = (19.91 ∠45.53°) (14.58 ∠–84.09°)

= 290.28 ∠–38.56° V

Example 4.75 If a voltage of 150 V applied between

terminals A and B produces a current of 32 A for the circuit

shown in Fig. 4.72, calculate the value of resistance R

and pf of the circuit.

Solution
Data V = 150 V

I = 32 A

Z =
150

32
 = 4.687 Ω

Z =
(5)( 4)

5 4

j

j+ + R = 
(5)(4 90 )

64 38.66

Ð °
Ð °

+ R

= 3.125 ∠51.34° + R = 1.95 + j2.44 + R

2 2
(1.95 ) (2.44)R+ + = 4.687

(1.95 + R)2 + (2.44)2 = (4.687)2

(1.95 + R)2 =  (4.687)2 – (2.44)2

1.95 + R = 4

R = 2.05 Ω

Fig. 4.72
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pf =
Total resistance

Total impedance
 = 

1.95 2.05

4.687

+
 = 0.853 (lagging)

Example 4.76 An impedance of R + jX ohm

is connected in parallel with another impedance

of –j5 ohm. The combination is then connected in

series with a pure resistance of 2 W. When

connected across a 100-V, 50-Hz ac supply, the

total current drawn by the circuit is 20 A and the

total power consumed by the circuit is 2 kW.

Calculate (i) R and L, and (ii) currents through

parallel branches.

Solution
 Data P = 2 kW

V = 100 V

I = 20 A

P = VI cos f

2000 = 100 × 20 × cos f

cos f = 1

f = 0

V = 100 ∠0° V

I = 20 ∠0° A

RV = 2 × 20° ∠0° = 40 ∠0° V

PV = V  – 
RV

= 100 ∠0° – 40 ∠0° = 60 ∠0° V

CI =
P

C

V

Z
 = 

60 0

5 90

Ð °
Ð - °

 = 12 ∠90° A

XI = I – 
CI

= 20 ∠0° – 12 ∠90° =  23.32 ∠–30.96° A

XZ =
60 0

23.32 30.96

Ð °
Ð - °

 = 2.57 ∠30.96° Ω = 2.2 + j1.32 Ω

R = 2.2 Ω
XL = 1.32 Ω
XL = 2p f L

1.32 = 2p × 50 × L

L = 4.2 mH

Example 4.77 The circuit of Fig. 4.74 takes 12 A at a lagging power factor and dissipates

1800 W. The reading of the voltmeter is 200 V. Find R1, X1 and X2.

Fig. 4.73
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Fig. 4.74

Solution
 Data I = 12 A

P = 1800 W

Let I = 12 ∠0° A

Z2 =
200

12
 = 16.667 Ω

Z2 =  2 2
2 2R X+

16.67 = 2 2
2(10) X+

(16.67)2 = 102 + 2
2X

277.88 = 100 + 2
2X

X2 = 13.33 Ω

2V = (12 ∠0°) (10 + j13.33)

= (12 ∠0°) (16.666 ∠53.13°) = 200 ∠53.13° V

P = VI cos f

1800 = 200 × 12 × cos f

cos f = 0.75

f = 41.41°

Applied voltage reqV = 200 ∠41.41° V

Voltage across parallel branches = 200 ∠41.41° – 200 ∠53.13° = 40.84 ∠–42.73° V

Current through capacitor =
40.84 42.73

20 90

Ð - °
Ð - °

 = 2.04 ∠47.27° A

Current through R1 and X1 = 12 ∠0° – 2.04∠47.27° = 10.72∠–8.03° A

1Z =
40.84 42.73

10.72 8.03

Ð - °
Ð - °

= 3.81 ∠–34.7° Ω = 3.13 –j2.17 Ω
R1 = 3.13 Ω
X1 = 2.17 Ω

Example 4.78 For the circuit shown, calculate (i) total admittance, total conductance and total

susceptance, (ii) total current and total pf, and (iii) value of pure capacitance to be connected in parallel with

the above combination to make the total pf unity.
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Fig. 4.75

Solution

 (i) 1Z = 6 + j8 = 10 ∠53.13° Ω

2Z = 8 – j6 = 10 ∠–36.87° Ω

1Y =
1

1 1

10 53.13Z
=

∠ °
 = 0.1 ∠–53.13° J

2Y =
2

1 1

10 36.87Z
=

∠− °
= 0.1 ∠36.87° J

Y = 1 2Y Y+
= 0.1 ∠–53.13° + 0.1 ∠36.87°

= 0.14 – j0.02 J = 0.14 ∠–8.13° J

Total admittance Y = 0.14 J

Total conductance G = 0.14 J

Total susceptance B = 0.02 J

Let V = 200 ∠0° V

(ii) I =  V .Y
= (200 ∠0°) (0.14 ∠–8.13°) = 28 ∠–8.13° A

Total pf = cos (8.13°) = 0.989 (lagging)

(iii) Since the current lags behind voltage, the circuit is inductive in nature. In order to make the total pf

unity, a pure capacitor is connected in parallel so that pf becomes unity and imaginary part of  reqY

becomes zero.

reqY = 0.14 – j0.02 + j0.02 = 0.14

1

CX
= 0.02

XC = 50 Ω

C =
1

2 50 50´ ´p
 = 63.66 µF

4.14 SERIES RESONANCE
A circuit containing reactance is said to be in resonance if the

voltage across the circuit is in phase with the current through

it. At resonance, the circuit thus behaves as a pure resistance

and the net reactance is zero.

 Consider the series R-L-C circuit as shown in Fig. 4.76.

The impedance of the circuit is
Fig. 4.76
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Z = R + jXL – jXC

= R + jwL – 
j

Cw

= R + j 
1

–L
C

æ ö
ç ÷è ø
w

w

(i) At resonance, Z must be resistive. Therefore the condition for resonance is

wL – 
1

Cw
=  0

w = w0 =
1

LC

f = f0 =
1

2 LCp

where f0 is called the resonant frequency of the circuit.

(ii) Power factor

Power factor = cos f  =  
R

Z
 = 

2
2 1

R

R L
C

æ ö+ -ç ÷è ø
w

w

But at resonance w L =
1

Cw

Power factor =
R

R
= 1

(iii) Current Since impedance is minimum, the current is maximum at resonance. Thus, the circuit accepts

more current and as such, an R-L-C circuit under resonance is called an acceptor circuit.

I0 =
V

Z
 = 

V

R

(iv) Voltage At resonance,

w0L =
0

1

Cw

w0L I0 =
0

1

Cw
 I0

0LV =
0CV

Thus, potential difference across inductance equal to potential difference across capacitance being equal

and opposite cancel each other. Also, since I0 is maximum, 
0LV and 

0CV will also be maximum. Thus, voltage

magnification takes place during resonance. Hence, it is also referred to as voltage magnification circuit.
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(v) Phasor diagram

Fig. 4.77

(vi) Behaviour of R, L and C with change in frequency
Resistance remains constant with the change in frequencies. Inductive

reactance XL is directly proportional to frequency f. It can be drawn as

a straight line passing through the origin. Capacitive reactance XC is

inversely proportional to the frequency f. It can be drawn as a

rectangular hyperbola in the fourth quadrant.

Total impedance

Z = R + j (XL – XC)

Fig. 4.79

(a) When f < f0, impedance is capacitive and decreases up to f0. The power factor is leading in nature.

(b) At f = f0, impedance is resistive. Power factor is unity.

(c) When f > f0, impedance is inductive and goes on increasing beyond f0. Power factor is lagging in

nature.

(vii) Bandwidth
For the series R-L-C circuit, bandwidth is defined as the range

of frequencies for which the power delivered to R is greater

than or equal to 
0

2

P
 where P0 is the power delivered to R at

resonance. From the shape of the resonance curve, it is clear

that there are two frequencies for which the power delivered

to R is half the power at resonance. For this reason, these

frequencies are referred as those corresponding to the half-

power points. The magnitude of the current at each half-power

point is the same.

Fig. 4.78

Fig. 4.80
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Hence 2
1I R = 

1

2

2
0I R = 2

2I R

where the subscript 1 denotes the lower half point and the subscript 2, the higher half point. It follows then that

I1 = I2 = 0

2

I
 = 0.707I0

Accordingly, the bandwidth may be identified on the resonance curve as the range of frequencies over

which the magnitude of the current is equal to or greater than 0.707 of the current at resonance. In Fig. 4.80,

the bandwidth is w2 – w1.

Expression for the bandwidth Generally, at any frequency w,

I =
V

Z
= 

2 2 2
2( – ) 1

–
L C

V V

R X X
R L

C

=
+ æ ö+ ç ÷è ø

w
w

... (4.1)

At half-power points,

I = 0

2

I

But I0 =
V

R

I =
2

V

R
... (4.2)

From Eqs (4.1) and (4.2), we get

2
2 1

V

R L
C

æ ö+ -ç ÷è ø
w

w

=
2

V

R

2
2

1

1
R L

C

æ ö+ -ç ÷è ø
w

w

=
1

2R

Squaring both sides we get,

R2 + 

2
1

L
C

æ ö-ç ÷è ø
w

w
=  2R2

2
1

L
C

æ ö-ç ÷è ø
w

w
= R2

wL – 
1

Cw
± R = 0

w2 ± 
1

2
w –

1

LC
= 0

w = ± 
2

2

1

2 4

R R

L LCL
± +

For low values of R, the term 
2

2
4

R

L

 
  
 

 can be neglected in comparison with the term 
1

LC
.

Then w is given by, w =
1 1

=
2 2

R R

L LC L LC
± ± ± ±
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The resonant frequency for this circuit is given by

f0 =
1

2 LCp

w0 =
1

LC

w = 0 
2

R

L
w± + (considering only +ve sign of w0)

w1 =  w0 – 
2

R

L

and w2 = w0 + 
2

R

L

Bandwidth = w2 – w1 = 
R

L
rad/s

or Bandwidth = f2 – f1 = c/s

(viii) Quality factor Q0 of the R-L-C circuit It is the ratio of the resonant frequency to the bandwidth.

It is a measure of the selectivity or sharpness of tuning of the series R-L-C circuit.

Q0 = 0

Bandwidth

w

Q0 = 0 0 0

0

1
= = =

ù

LXL

R L R R RC

w w

Q0 =
1 1

= 
LC L

R L R C

Q0 =
0 0L CV V

V V
=

where VL0 
and VC0

 are both measured at resonance. Hence, Q0 is also called voltage magnification factor.

Example 4.79 A series R-L-C circuit has the following parameter values: R = 10 W, L = 0.01 H,

C = 100 µF. Compute the resonant frequency, quality factor of the circuit, bandwidth, and lower and upper

frequency of the bandwidth.

Solution
Data R = 10 Ω

L = 0.01 H

C = 100 µF

Resonant frequency f0 =
6

1 1
= 

2 2 0.01 100 10LC -´ ´p p
 = 159.15 Hz

Bandwidth BW =
10

= = 159.15 Hz
2 2 0.01

R

L ´p p

Lower frequency of bandwidth f1 = f0 – 
2

BW

= 159.15 – 
159.15

2
 = 79.58 Hz

Higher frequency of bandwidth  f2  =  f0 + 
2

BW
 = 159.15 + 

159.15

2
 = 238.73 Hz
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Example 4.80  An R-L-C series circuit with a resistance of 10 W, inductance of 0.2 H and a capacitance of

40 µF is supplied with a 100-V supply at variable frequency. Find the following w.r.t. series resonant circuit:

(i) the frequency at which resonance takes place

(ii) at resonance, find the current

(iii) power

(iv) power factor

(v) voltage across R-L-C at that time

(vi) quality factor

(vii) half-power points

(viii) resonance and phasor diagram.

Solution
 Data R =  10 Ω

L = 0.2 H

C = 40 µF

V = 100 V

(i) Resonant frequency f0 =
1

2 LCp
= 

6

1

2 0.2 40 10
-´ ´p

 = 56.3 Hz

(ii) Current I0 = 
V

R
= 

100

10
 = 10 A

(iii) Power P0 = 2
0I R = (10)2 ¥ 10 = 1000 W

(iv) Power factor pf = 1

(v) Voltage across R = R . I = 10 × 10 = 100 V
 Voltage across L  = XL . I = 2p × 56.3 × 0.2 × 10 = 707.5 V

 Voltage across C =  XC . I = 
6

1

2 56.3 40 10-´ ´ ´p
× 10 = 707.5 V

(vi) Quality factor Q = 
1

R
 × 

L

C
 = 6

1 0.2

10 40 10
-´

= 7.07

(vii) Half-power points

f1 = f0 – 
10

= 56.3
4 4 (0.2)

R

L
-

p p
 = 52.32 Hz

f2 = f0 + 
10

56.3
4 4 (0.2)

R

Lp p
= +  = 60.3 Hz

(viii) Resonance and phasor diagram

(a) (b)

Fig. 4.81
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Example 4.81 A series R-L-C circuit is connected to a 200-V ac supply. The current drawn by the circuit

at resonance is 20 A. The voltage drop across the capacitor is 5000 V at series resonance. Calculate resistance

and inductance if capacitance is 4 µF. Also, calculate the resonant frequency.

Solution
 Data V = 200 V I0 = 20 A

VC = 5000 V C = 4 mF

Resistance R =
0

V

I
= 

200

20
= 10 Ω

0CX =
0

0

5000
= 

20

CV

I
 = 250 Ω

0CX =
0

1

2 f Cp

f0 =
6

0

1 1
=  

2 2 250 4 10CX C -´ ´ ´p p
= 159.15 Hz

At resonance
0CX = 

0LX

0LX = 250 Ω

0LX = 2p f0 L

250 = 2p ¥ 159.15 ¥ L

Inductance L = 0.25 H

Example 4.82 A resistor and a capacitor are connected in series with a variable inductor. When the

circuit is connected to a 230-V, 50-Hz supply, the maximum current obtained by varying the inductance is 2 A.

The voltage across the capacitor is 500 V. Calculate the resistance, inductance and capacitance of the circuit.

Solution
Data V = 230 V

f0 = 50 Hz

I0 = 2 A

0CV = 500 V

Resistance R =
0

230
= 

2

V

I
 = 115 Ω

XC0
= 0

0

500
= 

2

CV

I
 = 250 Ω

XC0
=

0

1

2 f Cp

250 =
1

2 50 C´ ´p

Capacitance C = 12.73 mF

At resonance XC0
= XL0

0LX = 250 Ω

0LX = 2p f0 L

250 = 2p ¥ 50 ¥ L

Inductance L = 0.795 H
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Example 4.83 A coil of 2 W resistance and 0.01-H inductance is connected in series with a capacitor

across 200-V mains. What must be the capacitance in order that maximum current occurs at a frequency of

50 Hz? Find also the current and voltage across the capacitor.

Solution
 Data R = 2 Ω

L = 0.01 H

V = 200 V

f0 = 50 Hz

f0 =
1

2 LCp

50 =
1

2 0.01 C´p
Capacitance C = 1013.2 mF

Current I0 =
V

R
 = 

200

2
 = 100 A

Voltage across capacitor VC0
= I0 0CX

= 100 × 6

1

2 50 1013.2 10-´ ´ ´p
 = 314.16 V

Example 4.84 A voltage v(t) = 10 sin wt is applied to a series R-L-C circuit. At the resonant frequency of

the circuit, the voltage across the capacitor is found to be 500 V. The bandwidth of the circuit is known to be

400 rad/s and the impedance of the circuit at resonance is 100 W. Determine resonant frequency, upper and

lower cut-off frequencies, inductance and capacitance.

Solution
Data v(t) = 10 sin w t VC0

= 5000 V

BW = 400 rad/s R = 100 Ω

V =
10

2
 = 7.07 V

I0 =
V

R
 = 

7.07

100
 = 0.0707 A

BW =
R

L

400 =
100

L
L = 0.25 H

Q0 =
0CV

V
 = 

500

7.07
 = 70.72

Q0 =
1 L

R C

70.72 =
1 0.25

100 C
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C = 4.99 × 10–9 F

f0 =
9

1 1

2 2 0.25 4.99 10LCp p -
=

´ ´ ´
 = 4506.09 Hz

Lower cut-off frequency f1 = f0 – 
4

R

Lp
 = 4506.09 – 

100

4 0.25´p
 = 4474.26 Hz

Upper cut-off frequency f2 = f0 + 
4

R

Lp
  = 4506.09 + 

100

4 0.25´p
 = 4537.92 Hz

Example 4.85  A series resonant circuit has impedance of 500 W at resonant frequency. Cut-off frequencies

are 10 kHz and 100 Hz. Determine (i) resonant frequency, (ii) value of R-L-C, and (iii) quality factor at

resonant frequency.

Solution
Data R = 500 Ω

f1 = 100 Hz

f2 = 10 kHz

BW = f2 – f1 = 10 × 103 – 100 = 9900 Hz

f2 = f0 – 
2

BW
...(i)

f2 = f0 + 
2

BW
...(ii)

Adding Eqs (i) and (ii),

f1 + f2 = 2f0

f0 = 1 2 10000 100
= 

2 2

f f+ +
 = 5050 Hz

BW =
2

R

Lp

9900 =
500

2 Lp

L = 8.038 mH

0LX =  2p f0 L = 2p × 5050 × 8.038 × 10–3 = 255.05 Ω

At resonance
0LX =

0CX
 = 255.05 Ω

0CX = 
0

1

2 f Cp

255.05 =
1

2 5050 C´ ´p

C = 0.12 µF

Q0 =
3

6

1 1 8.038 10

500 0.12 10

L

R C

-

-

´
=

´
 = 0.5176

Example 4.86  Impedance of a circuit is observed to be capacitive and decreasing from 1 Hz to 100 Hz.

Beyond 100 Hz, the impedance starts increasing. Find the values of circuit elements if the power drawn by

this circuit is 100 W at 100 Hz, when the current is 1 A. The power factor of the circuit at 70 Hz is 0.707.
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Solution
Data f0 = 100 Hz P0 = 100 W

I0 = 1 A (pf)70 Hz = 0.707

The impedance of the circuit is capacitive and decreasing from 1 Hz to 100 Hz. Beyond 100 Hz, the

impedance starts increasing.

f0 = 100 Hz

P0 = 2
0I R

100 = (1)2 × R

R = 100 Ω

f0 =
1

2 LCp

100 =
1

2 LCp
LC = 2.53 × 10–6 ... (i)

Power factor at 70 Hz is 0.707.

R

Z
= 0.707

Z =
100

0.707
 = 141.44

Impedance at 70 Hz = 2 2
( )C LR X X+ -

141.44 =  

2
2 1

(100) 2 70
2 70

L
C

p
p

æ ö+ - ´ ´ç ÷è ø´ ´
3

2.27 10

C

-´
 – 439.82 L = 100.02 ... (ii)

Solving Eqs (i) and (ii),

L = 0.2187 H

C = 11.58 mF

Example 4.87 A constant voltage at a frequency of 1 MHz is applied to an inductor in series with a

variable capacitor. When the capacitor is set to 500 pF, the current has its maximum value while it is reduced

to one-half when the capacitance is 600 pF. Find resistance, inductance and Q-factor of inductor.

Solution
 Data f0 = 1 MHz

C1 = 500 pF

C2 = 600 pF

At resonance C = 500 pF = 500 × 10–12 F

f0 =
1

2 LCp

106 =
12

1

2 500 10L
-´ ´p

L = 0.05 mH

XL = 2p f0 L = 2p × 106 × 0.05 × 10–3 = 314.16 Ω
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When capacitance is 600 pF, the current reduces to one-half of the current at resonance,

XC =
1

2 fCp

= 6 12

1

2 10 600 10-´ ´ ´p
 = 265.26 Ω

I =
1

2
 I0

V

Z
=

1

2

V

R
Z = 2R

2 2
( )L CR X X+ - = 2R

R2 + (314.16 – 265.26)2 = 4R2

3R2 = 2391.21

Resistance of inductor, R = 28.23 Ω

Quality factor Q0 =
1 L

R C

=

3

12

1 0.05 10

28.23 500 10

-

-

´
´

 = 11.2

4.15 PARALLEL RESONANCE

Consider a parallel circuit consisting of a coil and a capacitor as shown in Fig. 4.82. The impedance of two

branches are

1Z = R + jXL

2Z = –jXC

1Y = 
1

1

Z
 = 

1

LR jX+

= 2 2

L

L

R jX

R X

-
+

2Y =
2

1 1
= 

C C

j

Z jX X
=

-

Admittance of the circuit Y = 1Y  + 2Y

=
2 2

1
+ L

CL

R jX
j

XR X

-
+

=
2 2 2 2

1L

CL L

XR
j

XR X R X

æ ö
- -ç ÷+ +è ø

At resonance, the circuit is purely resistive. Therefore the condition for resonance is

2 2

1L

CL

X

XR X
-

+
= 0

Fig. 4.82
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2 2

L

L

X

R X+
=

1

CX

XL . XC =  R2 + 2
LX

w0L . 
0

1

Cw
= R2 + 

2
0w L2

2
0w L2 =

L

C
– R2

2
0w =

2
2

2 2

1 1
= 

L R
R

C LCL L

æ ö- -ç ÷è ø

w0 =

2

2

1 R

LC L
-

f0 =

2

2

1 1

2

R

LC L
-

p

where f0 is called the resonant frequency of the circuit.

If R is very small as compared to L, then

f0 =
1

2 LCp

Dynamic Impedance of Parallel Circuit At resonance, the circuit is purely resistive. The real part of

admittance is 2 2
L

R

R X´
. Hence, the dynamic impedance at resonance is given by

Z =

2 2
LR X

R

+

At resonance,

R2 + 2
LX = XL . XC  = 

L

C

Z =
L

CR

Table 4.1 Comparison of Series and Parallel Resonant Circuits

Parameter Series Circuit Parallel Circuit

Current at resonance I = 
V

R
and is maximum I = 

( / )

V

L CR
 and is minimum

Impedance at resonance Z = R and is minimum Z = 
L

CR
 and is maximum

Power factor at resonance Unity Unity

Resonant frequency f0  = 
1

2 LCπ
f0 = 

2

2

1 1

2

R

LC Lπ
−

Q-factor Q = 
2 fL

R

π
Q = 

2 fL

R

π

It magnifies Voltage across L and C Current through L and C
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Example 4.88 A coil of 20-W resistance has an inductance of 0.2 H and is connected in parallel with a

condenser of 100 µF capacitance. Calculate the frequency at which this circuit will behave as a non-inductive

resistance. Find also the value of dynamic resistance.

Solution
 Data R = 20 Ω L =  0.2 H

C = 100 mF

f0 =
2

2

1 1

2

R

LC L
-

p

= 

2

6

1 1 20

2 0.20.2 100 10
-

æ ö- ç ÷è ø´ ´p
 = 31.83 Hz

Dynamic resistance =
L

CR

=
6

0.2

100 10 20-´ ´
 = 100 Ω

Example 4.89 A coil having a resistance of 20 W

and an inductance of 200 µH is connected in parallel

with a variable capacitor. This parallel combination is

connected in series with a resistance of 8000 W. A

voltage of 230 V at a frequency of 106 Hz is applied

across the circuit. Calculate (a) the value of capacitance

at resosnance, (b) Q factor of the circuit, (c) dynamic

impedance of the cirucit, and (d) total circuit current.

Solution
 Data R = 20 Ω L =  200 mH

f = 106 Hz V = 230 V

RS = 8000 Ω
XL = 2pfL = 2 × p  × 106 × 200 × 10–6 = 1256.6 Ω

f0 =

2

2

1 1

2

R

LC L
-

p

106 =

2

6 6 2

1 1 (20)

2 200 10 (200 10 )C
- --

´ ´ ´p

C = 126.65 × 10–12 F = 126.65 pF

Quality Factor Q0 =
2 fL

R

p

= 

6 6
2 10 200 10

20

-´ ´ ´p
 = 62.83

Dynamic Impedance Z =
L

CR

= 

6

12

200 10

126.65 10 20

-

-

´
´ ´

 = 78958 Ω

Fig. 4.83
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Total equivalent impedance of the circuit at resonance

= 78958 + 8000 = 86958 Ω

Total circuit current =
230

86958

= 2.645 × 10–3 A

= 2.65 mA

Exercises

1. Find the average value and rms value of the following waveforms:

(i)

Fig. 4.84
[0.543 Vm, 0.674 Vm]

(ii)

Fig. 4.85
[0.67 Vm, 0.745 Vm]

(iii)

Fig. 4.86
[0.622 Vm, 0.687 Vm]

(iv)

Fig. 4.87
[7.5 V, 8.66 V]
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2. Find the rms value of resultant current in a circuit which simultaneously carries a direct current of 5 A

and a sinusoidal alternating current with a peak value of 10 A. [8.66 A]

3. Find the resultant of the following:

e1 = 25 sin wt

e2 = 10 sin (wt + p/6)

e3 = 30 cos w t

e4 = 20 sin (w t – p/4)

Draw all phasors. [52.14 sin (wt + 23.57°)]

4. A current of 5 A flows through a non-inductive resistance in series with a choking coil when supplied

at 250 V, 50 Hz. If the voltage drop across the coil and fixed resistor are 200 V and 125 V respectively,

calculate the resistance and inductance of the coil, value of fixed resistor and power drawn by the coil.

Draw the phasor diagram. [5.5 Ω, 0.126 H, 25 Ω, 137.5 W]

5. For Fig. 4.88 shown, find R and L.

Fig. 4.88
[4.928 Ω, 0.0266 H]

6. Two coils A and B are connected in series across a 200-V, 50-Hz ac supply. The power input to the

circuit is 2 kW and 1.15 kVAR. If the resistance and reactance of the coil A are 5 Ω and 8 Ω  respectively,

calculate the resistance and reactance of the coil B. Also, calculate the power consumed by coils A and B.

[10.03 Ω, 0.64 Ω, 665.3 W, 1334.7 W]

7. Two impedances 10 ∠30° Ω and 20 ∠–45° Ω are connected in series. Calculate the power factor of the

series combination. [0.9281 (lagging)]

8. A capacitive load takes 10 kVA and 5 kVAR, when connected to 200 V, 50 Hz ac supply. Calculate

(i) resistance, (ii) capacitance, (iii) active power, and (iv) pf.

[3.464 Ω, 1.59 × 10–3 F, 8.66 kW, 0.866 (leading)]

9. Two impedances Z1 and Z2 are connected in series across a 230-V, 50-Hz ac supply. The total current

drawn by a series combination is 2.3 A. The pf of Z1 is 0.8 lagging. The voltage drop across Z1 is twice

the voltage drop across Z2 and it is 90° out of phase with it. Determine the value of Z2. [44.719 Ω]

10. In Fig 4.89., find the applied voltage, the frequency and loss in the iron-cored inductor L.

Fig. 4.89
[34.2 ∠–26.76° V, 50 Hz, 1.9 W]

11. A non-inductive 10-ohm resistor is in series with a coil of 1.3-ohm resistance and 0.018-H inductance.

If a voltage of maximum value of 100 V at a frequency of 100 Hz is applied to this circuit, what will be

the voltage across the resistor? [62.54 V]

12. A load consisting of a capacitor in series with a resistor has an impedance of 50 Ω and a pf of 0.707

leading. The load is connected in series with a 40-Ω resistor across ac supply and the resulting current

is 3 A. Determine the supply voltage and the overall phase angle. [249.69 V, 25.13°]
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13. Two impedances 1Z  = 10 – j15 ohms and 2Z  = 4 + j8 ohms are connected in parallel. The supply

voltage is 100 V, 25 Hz. Calculate (i) the admittance, conductance and susceptance of the combined

circuit, and (ii) total current drawn and pf. [0.097 J, 0.081 J, 0.054 J, 9.7 A, 0.83 (lagging)]

14. A voltage of 200 ∠53.13° V is applied across two impedances in parallel. The values of the impedances

are (12 + j16) Ω and (10 – j20) Ω. Determine kVA, kVAR and kW in each branch and pf of whole

circuit. [2 kVA, 1.2 kW, 1.6 kVAR, 1.788 kVA, 0.8 kW, 1.6 kVAR, unity pf]

15. For the circuit shown, evaluate the current through and voltage across each element.

Fig. 4.90

[ 1I  = 5∠–30° A, 2I  = 8.66∠60° A, 1V  = 100∠–30° V, 2V  = 100∠–30° V, V = 100∠30° V]

16. Two impedances Z1 and Z2 are connected in parallel. The first branch takes a leading current of 16 A

and has a resistance of 5 Ω, while the second branch takes a lagging current at pf 0.8. The total power

supplied is 5 kW, the applied voltage being (100 + j200) V. Determine branch currents and total current.

[16 ∠132.46° A, 20.8 ∠26.57° A, 22.49 A]

17. For the parallel branch shown, find the value of R2 when the overall power factor is 0.92 lag.

Fig. 4.91
[1.35 Ω]

18. In a series–parallel circuit, two parallel branches A and B are in series with C. The impedances are

ZA = (10 + j8) Ω, ZB = (9 – j6) Ω and ZC = (3 + j2) Ω. If the voltage across ZC is 100 ∠0° V, determine

the values IA and IB. [15.7 ∠–73.39° A, 18.59 ∠–1.04° A]

19. Find the total impedance, supply current and pf of the entire circuit.

Fig. 4.92

[10.06 ∠36.68° Ω, 19.88 ∠–36.68° A, 0.801 lagging]
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20. The power dissipated in the coil A is 300 W and in the coil B, is 400 W. Each coil takes a current of 5 A

when connected to a 110-V, 50-Hz supply. Find the current drawn when the coils are connected in

parallel. [9.93 ∠–50.11° A]

21. A capacitor is placed in parallel with two inductive loads. The current through the first inductor is 20 A

at 30° lag and the current through the second is 40 A at 60° lag. What must be the current in the

capacitor so that the currnet in the external circuit is of unity power factor. [44.64 ∠90° A]

22. A circuit of resistance 15 Ω and inductive reactance 12 Ω is connected in parallel with another circuit

consisting of a resistor of 25 Ω in series with a capacitive reactance of 17 Ω. This combination is

energised from a 200-V, 40-Hz mains. Find the branch currents, total current and power factor of the

circuit. It is desired to raise the power factor of this circuit to unity by connecting a capacitor in parallel.

Determine the value of the capacitance of the capacitor.

[10.42 ∠–38.56° A, 6.61 ∠34.21° A, 13.95 ∠–11.56° A, 0.98 lagging 54.9 mF]

23. A resistor of 30 Ω and a capacitor of unknown value are connected in parallel across a 110-V, 50-Hz

supply. The combination draws a current of 5 A from the supply. Find the value of the unknown

capacitance of the capacitor. This combination is again connected across a 110-V supply of unknown

frequency. It is observed that total current drawn from the mains falls to 4 A. Determine the frequency

of the supply. [98.58 mF, 23.68 Hz]

24. Two reactive circuits have an impedance of 20 Ω each. One of them has a lagging power factor of 0.8

and other has a leading power factor of 0.6. Find (a) voltage necessary to send a current of 10 A through

the two in series, and (b) current drawn  from 200 V supply if the two are connected in parallel. Draw

the phasor diagram in each case. [282.8 V, 14.14 A]

25. Inductive loads of 0.8 kW and 1.2 kW at lagging power factors of 0.8 and 0.6 respectively are connected

across a 200-V, 50-Hz supply. Find the total current, power factor and the value of capacitor to be put in

parallel to both to raise the overall power factor of 0.9 lagging. [14.87 A, 0.673 lagging, 98 mF]

Objective-Type Questions

1. In a series R-L-C high Q circuit, the current peaks at a frequency

(a) equal to the resonant frequency (b) greater than the resonant frequency

(c) less than the resonant frequency (d) none of the above

2. In Fig. 4.93 A1, A2 and A3 are ideal ammeters. If A1

reads 5 A, A2 reads 12 A, then A3 should read

(a) 7 A (b) 12 A

(c) 13 A (d) 17 A

3. A series R-L-C circuit consisting of R = 10 Ω, XL = 20 Ω and XC = 20 Ω is connected across an ac supply

of 200 V rms. The rms voltage across the capacitor is

(a) 200 ∠–90° V (b) 200 ∠90° V (c) 400 ∠–90° V (d) 400 ∠90° V

Fig. 4.93
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4. The current i(t) through a 10-Ω resistor in series with an inductance is given by

i(t) = 3 + 4 sin (100t + 45°) + 4 sin (300t + 60°)

The rms value of the current and the power dissipated in the circuit are

(a) 41  A1, 410 W (b) 35 A, 350 W (c) 5 A, 250 W (d) 11 A, 1210 W

5. A series R-L-C circuit has a Q of 100 and an impedance of (100 + j0) Ω at its resonant angular frequency

of 107 rad/sec. The values of R and L are

(a) 100 Ω, 103 H (b) 100 Ω, 10–3 H (c) 10 Ω, 10 H (d) 10 Ω, 0.1 H

6. The parallel R-L-C circuit shown in Fig. 4.94 is

in resonance. In this circuit

(a) | IR | < 1 mA (b) | IR + IL | > 1 mA

(c) | IR + IC | < 1 mA (d) | IR + IC | > 1 mA

7. A series R-L-C circuit has a resonance frequency of 1 kHz and a qualify factor Q of 100. If each of R, L

and C is doubled from its original value, the new Q of the circuit is

(a) 25 (b) 50 (c) 100 (d) 200

8. An input voltage v (t) = 10 2  cos(t + 10°) + 10 3  cos(2t + 10°) is applied to a series combination of

R = 1 Ω and L = 1 H. The resulting steady state current i(t) in ampere is

(a) 10 cos (t + 55°) + 10 cos (2t + 10° + tan–1 2) (b) 10 cos (t + 55°) + 
3

10
2

 cos (2t + 55°)

(c) 10 cos (t – 35°) + 10 cos (2t + 10° – tan–1 2) (d) 10 cos (t – 35°) + 
3

10
2

 cos (2t – 35°)

9. The circuit shown in Fig. 4.95 with R = 1

3
W ,

L = 
1

H
4

, C = 3 F has input voltage v (t) = sin 2 t.

The resulting current i(t) is

(a) 5 sin (2t + 53.1°) (b) 5 sin (2t – 53.1°)

(c) 25 sin (2t + 53.1°) (d) 25 sin (2t – 53.1°)

10. In a series R-L-C circuit, R = 2 kΩ, L = 1 H, C = 
1

F
400

m . The resonant frequency is

(a) 2 × 104 Hz (b)
1

p
 × 104 Hz (c) 104 Hz (d) 2p × 104 Hz

11. For a series resonant circuit at low frequency, circuit impedance is __________ and at high frequency

circuit impedance is __________ .

(a) capacitive, inductive (b) inductive, capacitive

(c) resistive, inductive (d) capacitive, resistive

Fig. 4.94

Fig. 4.95
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12. In Fig. 4.96, A1, A2 and A3 are ideal ammeters. If A1

and A3 read 5 A and 13 A respectively, the reading of

A2 will be

(a) 8 A (b) 12 A

(c) 18 A (d) 10 A

13. In Fig. 4.97 i(t) under steady state is

(a) zero (b) 5

(c) 7.07 sin t (d) 7.07 sin (t – 45°)

14. The following circuit in Fig. 4.98 resonates at

(a) all frequencies (b) 0.5 rad/s

(b) 0.5 rad/s (d) 1 rad/s

15. At resonance, the parallel circuit shown in Fig. 4.99 behaves like

(a) an open circuit

(b) a short circuit

(c) a pure resistor of value R

(d) a pure resistor of value much higher than R

16. A circuit with a resistor, inductor and capacitor in series is resonant of fo Hz. If all the component values

are now doubled, the new resonant frequency is

(a) 2fo (b) fo (c) fo/4 (d) fo/2

17. In a series R-L-C circuit at resonance, the magnitude of the voltage developed across the capacitor

(a) is always zero.

(b) can never be greater than the input voltage.

(c) can be greater than the input voltage, however it is 90° out of phase with the input voltage.

(d) can be greater than the input voltage and is in phase with the input voltage.

18. A 240-V, single-phase ac source is connected to a load with an impedance of  10∠ 60° Ω. A capacitor

is connected in parallel with the load. If the capacitor supplies 1250 VAR, the real power supplied by

the source is

(a) 3600 W (b) 2880 W (c) 2400 W (d) 1200 W

Fig. 4.96

Fig. 4.97

Fig. 4.98

Fig. 4.99



AC Circuits 4.79

19. The power in a series R-L-C circuit will be half of that at resonance when the magnitude of the current

is equal to

(a)
2

V

R
(b)

3

V

R
(c)

2

V

R
(d)

2 V

R

20. If a network has an impedance of (1 – j) at a specific frequency, the circuit would consists of series

1. R and C 2. R and  L 3. R, L and C

Which of these statements are correct?

(a) 1 and 2 (b) 1 and 3 (c) 1, 2 and 3 (d) 2 and 3

Answers to Objective-Type Questions

1.(a)2.(c)3.(c)4.(c)5.(b)6.(c)

7.(b)8.(c)9.(a)10.(b)11.(a)12.(b)

13.(d)14.(b)15.(d)16.(d)17.(c)18.(b)

19.(c)20.(b)



Steady-State AC
Analysis

5

5.1 INTRODUCTION

We have discussed the network theorems with reference to resistive load and dc sources. Now, all the theorems

will be discussed when a network consists of ac sources, resistors, inductors and capacitors. All the theorems

are also valid for ac sources.

5.2 MESH ANALYSIS

Mesh analysis is useful if a network has a large number of voltage sources. In this method, currents are

assigned in each mesh. We can write mesh equations by Kirchhoff’s voltage law in terms of unknown mesh

currents,

Example 5.1 Find mesh currents I1 and I2 in the network of Fig. 5.1.

Fig. 5.1

Solution Applying KVL to Mesh 1,

100 ∠45° – (3 + j4) I1 – j10(I1 – I2) = 0

(3 + j14) I1 –  j10I2 = 100 ∠45° …(i)
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Applying KVL to Mesh 2,

–j10(I2 – I1) + j10(I2) = 0

j10I1 = 0 …(ii)

I1 = 0

Substituting I1 in Eq. (i), we get

–j10I2 = 100 ∠45°

I2 =  
100 45

10j

Ð °
-

=
100 45

10 90

Ð °
Ð - °

= 10 ∠135° A

Example 5.2 Find mesh current I1, I2 and I3 in the network of Fig. 5.2.

Fig. 5.2

Solution Applying KVL to Mesh 1,

10 ∠30° – (5 – j2) I1 – 3 (I1 – I2) = 0

(8 – j2) I1 – 3I2 = 10 ∠30° … (i)

Applying KVL to Mesh 2,

–3(I2 – I1) – j5I2 – 5(I2 – I3) = 0

–3I1 + (8 + j5)I2 – 5I3 = 0 … (ii)

Applying KVL to Mesh 3,

–5(I3 – I2) – (2 – j2) I3 = 0

–5I2 + (7 – j2) I3 = 0 … (iii)

Writing these equations in matrix form,

1

2

3

8 2 3 0

3 8 5 5

0 5 7 2

j I

j I

j I

- - é ùé ù
ê úê ú- + - ê úê ú
ê úê ú- -ë û ë û

=

10 30

0

0

∠ ° 
 
 
  

By Cramer’s rule,

I1 =

10 30 3 0

3 8 5 5

0 5 7 2

8 2 3 0

3 8 5 5

0 5 7 2

j

j

j

j

j

∠ ° −

− + −

− −

− −

− + −

− −

= 1.43 ∠38.7° A
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I2 =

8 2 10 30 0

3 0 5

0 0 7 2

8 2 3 0

3 8 5 5

0 5 7 2

j

j

j

j

j

− ∠ °

− −

−

− −

− + −

− −

= 0.693 ∠–2.2° A

I3 =

8 2 3 10 30

3 8 5 0

0 5 0

8 2 3 0

3 8 5 5

0 5 7 2

j

j

j

j

j

− − ∠ °

− +

−

− −

− + −

− −

= 0.476 ∠13.8° A

Example 5.3 In the network of Fig. 5.3, find the value of V2 so that the current through (2 + j3) ohm

impedance is zero.

Fig. 5.3

Solution Applying KVL to Mesh 1,

30 ∠0° – 5I1 – j5(I1 – I2) = 0

(5 + j5) I1 – j5I2 = 30 ∠0° …(i)

Applying KVL to Mesh 2,

–j5(I2 – I1) – (2 + j3) I2 – 6(I2 – I3) = 0

–j5I1 + (8 + j8) I2 – 6I3 = 0 …(ii)

Applying KVL to Mesh 3,

–6(I3 – I2) – 4I3 – V2 = 0

–6I2 + 10I3 = – V2 …(iii)

Writing equations in matrix form,

1

2

3

5 5 5 0

5 8 8 6

0 6 10

j j I

j j I

I

+ −   
   − + −   
   −   

=

2

30 0

0

V

∠ ° 
 
 
 − 

By Cramer’s rule,

I2 = 
2

5 5 30 0 0

5 0 6

0 10

5 5 5 0

5 8 8 6

0 6 10

j

j

V

j j

j j

+ ∠ °

− −

−

+ −

− + −

−

= 0
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(5 + j5) (–6V2) – (30) (–j50) = 0

V2 =
1500

30 30

j

j+ = 35.36 ∠45° V

Example 5.4 Find the value of the current I3 in the network shown in Fig. 5.4.

Fig. 5.4

Solution Applying KVL to Mesh 1,

20 ∠0° – (4 – j4) I1 – j10 (I1 – I2) – 10 (I1 – I3) = 0

(14 + j6) I1 – j10 I2 – 10I3 = 20 ∠0° … (i)

Applying KVL to Mesh 2,

–j10 (I2 – I1) – 10 ∠30° – 20I2 – (4 – j4) (I2 – I3) = 0

–j10I1 + (24 + j6) i2 – (4 – j4) I3 = –10 ∠30° … (ii)

Applying KVL to Mesh 3,

–10(I3 – I1) – (4 – j4) (I3 – I2) – 20I3 = 0

–10I1 – (4 – j4) I2 + (34 – j4) I3 = 0 … (iii)

Writing equations in matrix form,

1

2

3

14 6 10 10

10 24 6 (4 4)

10 (4 4) (34 4)

j j I

j j j I

j j I

+ − −   
   − + − −   
   − − − −   

= 

20 0

10 30

0

∠ ° 
 − ∠ ° 
  

By Cramer’s rule,

I3 =  

14 6 10 20 0

10 24 6 10 30

10 (4 4) 0

14 6 10 10

10 24 6 (4 4)

10 (4 4) 34 4

j j

j j

j

j

j j j

j j

+ − ∠ °

− + − ∠ °

− − −

+ − −

− + − −

− − − −

= 0.44 ∠–14° A
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Example 5.5 Find voltage VAB in the network of Fig. 5.5.

Fig. 5.5

Solution Applying KVL to Mesh 1,

– 96I1 – (100 + 4 + j200) (I1 – I2) + 10 ∠0° = 0

(200 + j200) I1 – (104 + j200) I2 = 10 ∠0° …(i)

Applying KVL to Mesh 2,

– (1 – j50 – 100) I2 – (100 + 4 + j200) (I2 – I1) = 0

– (104 + j200) I1 + (205 + j150) I2 = 0 …(ii)

Writing equations in matrix form,

1

2

200 200 (104 200)

(104 200) 205 150

Ij j

Ij j

+ − +   
  − + +   

=  
10 0

0

∠ ° 
 
 

By Cramer’s rule,

I1 =

10 0 (104 200)

0 205 150

200 200 (104 200)

(104 200) 205 150

j

j

j j

j j

∠ ° − +

+

+ − +

− + +

= 5.05 × 10–2 ∠–0.074° A

I2 =

200 200 10 0

(104 200) 0

200 200 (104 200)

(104 200) 205 150

j

j

j j

j j

+ ∠ °

− +

+ − +

− + +

= 4.48 × 10–2 ∠25.6° A

 VAB = 100I2 – (4 + j200) (I1 – I2)

= 100 (4.48 × 10–2 ∠25.6°) – (4 + j200) (5.05 × 10–2 ∠0.074° – 4.48 × 10–2 ∠25.6°) = 0

5.3 NODAL ANALYSIS

Nodal analysis uses Kirchhoff’s current law for finding currents and voltage in a network. For ac networks,

Kirchhoff’s current law states that the phasor sum of currents meeting at a point is equal to zero.
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Example 5.6 In the network shown, determine Va and Vb.

Fig. 5.6

Solution Applying KCL at Node a,

10 0
+ +

6 6 3

a a a bV V V V

j j

- Ð ° -
-

= 0

1 1 1

6 6 3j j

æ ö
- +ç ÷è ø Va – 

1

3
Vb =

10 0

6j

Ð °

0.33 Va – 0.33 Vb = 1.67 ∠–90° …(i)

Applying KCL at Node b,

+ +
3 4 1

b a b bV V V V

j j

-
= 0

– 
1

3
 Va + 

1 1 1

3 4 1j j

æ ö
+ +ç ÷è ø

Vb = 0

–0.33Va + (0.33 – j1.25) Vb = 0 …(ii)

Adding Eqs (i) and (ii), we get

 – j1.25 Vb = 1.67 ∠–90°

 Vb =
1.67 90

1.25j

Ð - °
-

= 1.34 ∠0° V

Substituting Vb in Eq. (i), we get

0.33Va – 0.33 (1.34 ∠0°) = 1.67 ∠–90°

Va =
1.73 75.17

0.33

Ð - °

= 5.24 ∠–75.17° V

Example 5.7 For the network shown, find voltages V1 and V2.

Fig. 5.7
Applying KCL to Node 1,

1 1 1 250 0
+ +

5 2 4

V V V V

j

- Ð ° -
= 0

1 1 1

5 2 4j

æ ö
+ +ç ÷è ø

 V1 – 
1

4
V2 = 10 ∠0°

(0.45 – j0.5) V1 – 0.25 V2 = 10 ∠ 0° …(i)
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Applying KCL at Node 2,

 2 1 2 2 50 90
 +  + 

4 2 2

V V V V

j

- - Ð °
-

= 0

– 
1

4
V1 + 

1 1 1

4 2 2j

æ ö
+ +ç ÷è - ø

V2 = 25 ∠90°

–0.25 V1 + (0.75 + j0.5) V2 = 25 ∠90° …(ii)

Writing Eqs (i) and (ii) in matrix form,

1

2

0.45 0.5 0.25

0.25 0.75 0.5

j V

j V

- - é ùé ù
ê úê ú
ê úê ú

- +ë û ë û

=

10 0

25 90

Ð °é ù
ê ú
ê ú

Ð °ë û
By Cramer’s rule,

V1 =

10 0 0.25

25 0.75 0.5

0.45 0.5 0.25

0.25 0.75 0.5

j j

j

j

∠ ° −

+

− −

− +

= 
13.5 56.3

0.55 15.95

Ð °
Ð - °

 = 24.7 ∠72.25° V

V2 =

0.45 0.5 10 0

0.25 25 90

0.45 0.5 0.25

0.25 0.75 0.5

j

j

j

− ∠ °

− ∠ °

− −

− +

= 
18.75 36.87

0.55 15.95

Ð °
Ð - °

 = 34.34 ∠52.82° V

Example 5.8  Find the voltage VAB in the network of Fig. 5.8.

Fig. 5.8

Solution Applying KCL at Node 1,

10 ∠0° =
1 2 1+

2 3 4

V V V

j

-
+

1 1

2 3 4j

æ ö
+ç ÷è + ø

 V1 – 
1

2
 V2 = 10 ∠0°

(0.62 – j0.16) V1 – 0.5V2 = 10 ∠0° …(i)

Applying KCL at Node 2,

2 1 2 2+ + 
2 5 10

V V V V

j j

-
= 0

– 
1

2
 V1 + 

1 1 1

2 5 10j j

æ ö
+ +ç ÷è ø

V2 = 0

–0.5V1 + (0.5 – j0.3) V2 = 0 …(ii)
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Writing Eqs (i) and (ii) in matrix form,

1

2

0.62 0.16 0.5

0.5 0.5 0.3

Vj

Vj

− −   
  − −   

= 
10 0

0

∠ ° 
 
 

By Cramer’s rule,

V1 =

10 0 0.5

0 0.5 0.3

0.62 0.16 0.5

0.5 0.5 0.3

j

j

j

∠ ° −

−

− −

− −

= 
5.83 31

0.267 87.42

Ð - °
Ð - °

 = 21.8 ∠56.42° V

V2 =

0.62 0.16 10 0

0.5 0

0.62 0.16 0.5

0.5 0.5 0.3

j

j

j

− ∠ °

−

− −

− −

= 
5 0

0.267 87.42

Ð °
Ð - °

= 18.7 ∠87.42° V

VA = V2

VB =
1 ( 4)

3 4

V
j

j+

= 
21.8 56.42

( 4)
(3 4)

j
j

Ð °
+  = 17.45 ∠93.32° V

 VAB = VA – VB

= (18.7 ∠87.42°) – (17.45 ∠93.32°) = 2.23 ∠34.1° V

5.4 SUPERPOSITION THEOREM

The superposition theorem can be used to analyse an ac network containing more than one source. The

superposition theorem states that in a network containing more than one voltage source or current source, the

total current or voltage in any branch of the network is the phasor sum of currents or voltages produced in

that branch by each source acting separately. As each source is considered, all of the other sources are

replaced by their internal impedances. This theorem is valid only for linear systems.

Example 5.9 Find current through the 3 + j4 ohm impedance.

Fig. 5.9

Solution

Step I When the 50 –90° V source is acting alone

ZT = 5 + 
(3 4)( 5)

3 9

j j

j

+
+

= 5.83 + j2.5 = 6.35 ∠ 23.2° Ω
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IT =
50 90

6.35 23.2

Ð °
Ð °

 = 7.87 ∠66.8° A

I′ = (7.87 ∠66.8°) 
5

3 9

j

j

æ ö
ç ÷è + ø

 = 4.15 ∠85.3° A (↓)

Step II When the 50 –0° V source is acting alone

ZT = j5 + 
5(3 4)

8 4

j

j

+
+

= 2.5 + j6.25 = 6.74 ∠68.2° Ω

IT =
50 0

6.74 68.2

Ð °
Ð °

 = 7.42 ∠– 68.2° A

I′′ = (7.42 ∠–68.2°) 
5

8 4j

æ ö
ç ÷è + ø

= 4.15 ∠–94.77° (↑) = 4.15 ∠85.3°A (↓)

Step III By superposition theorem

I = I′ + I′′
= 4.15 ∠85.3° + 4.15 ∠85.3° = 8.31 ∠85.3° A

Example 5.10 Determine the voltage across the (2 + j5) ohm impedance for the network shown in

Fig. 5.12.

Fig. 5.12

Solution

Step I When the 50 –0° source is acting alone

I =  
50 0

2 4 5j j

Ð °
+ +

 = 
50 0

2 9j

Ð °
+

=
50 0

9.22 77.47

Ð °
Ð °

 = 5.42 ∠ – 77.47° A

Voltage cross (2 + j5) Ω impedance

V ′ = (5.42 ∠ – 77.47°) (2 + j5)

= 29.16 ∠ – 9.28° V

Step II When the 20 –30° A source is acting alone

I = (20 ∠30°) 
4

2 9

j

j

æ ö
ç ÷è + ø

Fig. 5.10

Fig. 5.11

Fig. 5.13
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=
20 30 4 90

9.22 77.47

Ð ° ´ Ð °
Ð °

 = 8.68 ∠42.53° A

Voltage across (2 + j5) Ω impedance

V ′′ = (8.68 ∠42.53°) (2+ j5) = 46.69 ∠110.72° V

Step III By superposition theorem

V = V ′ + V ′′

= 29.16 ∠–9.28° + 46.69 ∠110.72°

= 28.78 – j4.7 – 16.52 + j43.67

= 12.26 + j38.97 = 40.85 ∠ 72.53° V

Example 5.11  Determine voltage VAB for the network shown in Fig. 5.15.

Fig. 5.15

Solution

Step I When the 50 –0° V source is acting alone

Fig. 5.16

 VAB′ = 50 ∠0° V

Step II When the 4 –0° A source is acting alone

Fig. 5.17

VAB′′ = 0

Fig. 5.14
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Step III By superposition theorem

 VAB = VAB′  + VAB′′
= 50 ∠0° + 0 = 50 ∠0° V

Example 5.12 Find the current I in the network shown in Fig. 5.18.

Fig. 5.18

Solution

Step I When the 13 –25° V source is acting alone

Fig. 5.19

I′ =
13 25 13 25

= 
6 2 6.32 18.43j

Ð ° Ð °
- Ð - °

 = 2.057 ∠43.43° (→)

Step II When the 20 ––30° V source is acting alone

Fig. 5.20

I′′ =
20 30 V 20 30

= 
6 2 6.32 18.43j

Ð - ° Ð - °
- Ð - °

= 3.16∠–11.57° A (←)

= 3.16 ∠168.43° A (→)

Step III When the 3 –50° A source is acting alone

Fig. 5.21
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I ′′′ = 3 ∠50° × 
2 5

6 2

j

j

-
-

= 3 ∠50° × 
5.39 68.2

6.32 18.43

Ð - °
Ð - °

 = 2.56 ∠0.23° A (←)

= 2.56 ∠ –179.77° A (→)
Step IV By superposition theorem

I = I′ + I′′ + I′′′
= 2.057 ∠43.13° + 3.16 ∠168.43° + 2.56 ∠–179.77° A

= 4.62 ∠153.99° A (→)

5.5 THEVENIN�S AND NORTON�S THEOREMS

Thevenin’s and Norton’s theorems give us a method for simplifying a network. In Thevenin’s theorem, any

linear network can be replaced by a voltage source VTh in series with an impedance ZTh. In Norton’s theorem,

any linear network can be replaced by a current source ISC in parallel with an impedance ZN where ISC is the

current flowing through short-circuited path placed across the terminals.

Example 5.13 Obtain Thevenin’s equivalent network for the terminals A and B in Fig. 5.22.

Fig. 5.22

Solution

Step I Calculation of VTh

Applying KVL to the Mesh,

50 ∠0° – (3 – j4) I – (4 + j6) I = 0

I =
50 0

(3 4) (4 6)j j

Ð °
- + +

=
50 0 50 0

= 
7 2 7.28 15.95j

Ð ° Ð °
+ Ð °

 = 6.87 ∠–15.95° A

 VTh = (4 + j6) I

= (4 + j6) (6.87 ∠–15.95°)

= (7.21 ∠56.3°) (6.87 ∠–15.95°) = 49.5 ∠40.35° V

Step II Calculation of ZTh

Replacing the voltage source by a short circuit,

The impedance seen from terminals A and B is

 ZTh = (j5 – j4) + 
(3 4)(4 6)

(3 4) (4 6)

j j

j j

- +
- + +

= j1 + 
5 53.13 7.21 56.3

7.28 15.95

Ð - ° ´ Ð °
Ð °

= j1 + 4.95 ∠–12.78° = j1 + 4.83 – j1.095

= 4.83 – j0.095 = 4.83 ∠–1.13° Ω
Fig. 5.23
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Thevenin’s equivalent network is shown in Fig. 5.24.

Fig. 5.24

Example 5.14 Find Thevenin’s equivalent network for Fig. 5.25 shown.

Fig. 5.25

Solution

Step I Calculation of VTh

Applying KVL to Mesh 1,

10 ∠30° – (5 – j2) I1 – 3(I1 – I2) = 0

(8 – j2) I1 – 3I2 = 10 ∠30° …(i)

Applying KVL to Mesh 2,

–3 (I2 – I1) – j5I2 – 5I2 = 0

–3I1 + (8 + j5) I2 = 0 …(ii)

Solving Eqs (i) and (ii) by Cramer’s rule,

I2 =

8 2 10 30

3 0

8 2 3

3 8 5

j

j

j

− ∠ °

−

− −

− +

= 
30 30

69.25 20.3

Ð °
Ð °

 = 0.433 ∠9.7° A

 VTh = VAB = 5I2

= 5 (0.433 ∠9.7°) = 2.16 ∠ 9.7° V

Step II Calculation of ZTh

The impedance seen from terminals A and B with short-

circuiting voltage source is

ZTh =
(5 2)3

5
5 2 3

j
j

j

é ùì ü-
+í ýê ú- +î þë û

 | | 5

= [1.94 – j0.265 + j5] | | 5 = (1.94 + j4.735) | | 5

=
(1.94 4.735)5

6.94 4.735

j

j

+
+

 = 3.04 ∠ 33.4° Ω
Fig. 5.26
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Thevenin’s equivalent network is shown in Fig. 5.27.

Fig. 5.27

Example 5.15 Obtain Thevenin’s equivalent network for Fig. 5.28 shown.

Fig. 5.28

Solution

Step I Calculation of VTh

I =
5 90

2 2j

Ð °
+

=
5 90

2.83 45

Ð °
Ð °  = 1.77 ∠45° A

 VTh = (–j4) I + 5 ∠90° – 10 ∠ 0°

= (4 ∠–90°) (1.77 ∠45°) + 5 ∠90° – 10 ∠0°

= –15 + j10 = 18 ∠146.31° V

Step II Calculation of ZTh

The impedance seen from terminals A and B, when voltage sources are replaced by short circuits, is

 ZTh = 4 + 
(2 6)( 4)

2 2

j j

j

+ -
+

= 4 + 
6.32 71.56 4 90

2.83 45

Ð ° ´ Ð - °
Ð °

= 4 + 8.93 ∠ – 63.44° = 4 + 4 – j7.98

= 8 – j7.98 = 11.3 ∠ – 44.93° Ω
Thevenin’s equivalent network is shown in Fig. 5.29.

Fig. 5.29
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Example 5.16 Obtain Thevenin’s equivalent network for Fig. 5.30 shown.

Fig. 5.30

Solution

Step I Calculation of VTh

By current-division formula,

I =
(10 0 )( 15)

5 5 15

j

j j

Ð °
- +

=
150 90 150 90

= 
5 10 11.18 63.43j

Ð ° Ð °
+ Ð °

= 13.42 ∠26.57° A

 VTh = VAB = (– j5) I

= (5 ∠–90°) (13.42 ∠26.57°) = 67.08 ∠ –63.43° V

Step II Calculation of ZTh

The impedance seen from terminals A and B, with current source open circuited is,

 ZTh =
( 5)(5 15)

5 5 15

j j

j j

- +
- + +

 = 7.07 ∠– 81.86° Ω

Thevenin’s equivalent network is shown in Fig. 5.31.

Fig. 5.31

Example 5.17 Obtain Thevenin’s equivalent network for Fig. 5.32 shown.

Fig. 5.32
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Solution

Step I Calculation of VTh

I1 =
20 0

21 12 24j

Ð °
+ +

=
20 0

33 24j

Ð °
+  = 

20 0

40.8 36.02

Ð °
Ð °

= 0.49 ∠ – 36.02° A

I2 =
20 0

80 60j

Ð °
+

= 
20 0

100 36.86

Ð °
Ð °

 = 0.2 ∠ –36.86° A

 VTh = VAB = (12 + j24) I1 – (30 + j60) I2

= (26.83 ∠63.43°) (0.49 ∠ –36.02°) – (67.08 ∠63.43°) (0.2 ∠–36.86°)

= 0.33 ∠171.12° V

Step II Calculation of ZTh

The impedance seen from terminals A and B with short-circuiting voltage source is shown below:

Fig. 5.33

 ZTh =
21(12 24) 50(30 60)

+ 
33 24 80 60

j j

j j

+ +
+ +

 = 47.4 ∠26.8° Ω

Thevenin’s equivalent network is shown in Fig. 5.34

Fig. 5.34

Example 5.18 Obtain Norton’s equivalent network between terminals A and B as shown in

Fig. 5.35.

Fig. 5.35
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Solution

Step I Calculation of ISC

Fig. 5.36

ISC =
25 0 25 0

= 
3 4 5 53.13j

Ð ° Ð °
+ Ð °

= 5 ∠–53.13° A

Step II Calculation of ZN

The impedance seen from terminals A and B is, when valtage source is short circuited, is

ZN =
(3 4)(4 5)

3 4 4 5

j j

j j

+ -
+ + -

= 
5 53.13 6.4 51.34

7.07 8.13

Ð ° ´ Ð - °
Ð - °

 = 4.53 ∠9.92° Ω

Norton’s equivalent network is shown in Fig. 5.37.

Fig. 5.37

5.6 MAXIMUM POWER TRANSFER THEOREM

The maximum power transfer theorem states that the maximum power is delivered from a source to the load

when the load resistance is equal to the source resistance. This theorem can be applied to complex impedance

circuits. If the source impedance is complex then the maximum power transfer occurs when the load impedance

is the complex conjugate of the source impedance.

Example 5.19 Find the impedance ZL so that maximum power can be transferred to it in the network of

Fig. 5.38. Find maximum power.

Fig. 5.38
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Solution

Step I Calculation of Veq

 Zeq = 3 + 
3(3 3)

3 3 3

j j

j j

-
+ -

= 3 + 
9 9

3

j+
 = 3 + 3 + j3

= 6 + j3 = 6.71 ∠26.57° Ω

IT =
5 0

6.71 26.57

Ð °
Ð °

 = 0.75 ∠–26.57° A

I = 0.75 ∠–26.57° × 
3

3 3 3

j

j j+ -  = 0.75 ∠63.43° A

 VTh = (–j3) (0.75 ∠63.43°)

= 2.24 ∠ –26.57° V

Step II Calculation of ZTh

The impedance seen from the open terminal after the short-circuiting voltage source is shown below:

Fig. 5.40

ZTh = [(3 | | j3) + 3] | | (–j3)

= 3 ∠–53.12° Ω = 1.8 – j2.4 Ω
Step III Calculation of ZL

For maximum power transfer, the load impedance should be a complex conjugate of the source impedance.

ZL = 1.8 + j2.4 Ω
Step IV Calculation of Pmax

Fig. 5.41

IL =
2.24 26.57

1.8 2.4 1.8 2.4j j

Ð - °
- + +  = 0.621 ∠–26.57° A

 Pmax = IL
2RL

= (0.621)2 × 1.8 = 0.694 W

Fig. 5.39
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Example 5.20 Find the value of ZL  for maximum power transfer in the network shown and find maximum

power.

Fig. 5.42

Solution

Step I Calculation of VTh

I1 =
100 0 100 0

=
5 10 11.18 63.43j

Ð ° Ð °
+ Ð °

 = 8.94 ∠ –63.43° A

I2 =
100 0 100 0

=
7 20 21.19 70.7j

Ð ° Ð °
- Ð - °

 = 4.72 ∠70.7° A

 VTh = VA – VB = (8.94 ∠ –63.43°) (j10) – (4.72 ∠70.7°) (– j20)

= 89.4 ∠26.57° – 94.4 ∠–19.3°

= 79.96 + j39.98 – 89.09 + j31.2 = –9.13 + j71.18 = 71.76 ∠97.3° V

Step II Calculation of ZTh

The impedance seen from the terminals A and B with

short-circuiting voltage source is shown below:

 ZTh =
5( 10) 7( 20)

+ 
5 10 7 20

j j

j j

-
+ -

=
50 90 140 90

+ 
11.18 63.43 21.19 70.7

Ð ° Ð- °
Ð ° Ð- °

= 4.47 ∠26.57° + 6.6 ∠–19.3°

= 4 + j2 + 6.23 – j2.18 = 10.23 – j0.18 Ω
Step III For maximum power transfer, the load impedance should be complex conjugate of the source

impedance.

ZL = 10.23 + j0.18 Ω
Step IV Calculation of Pmax

IL =
71.76 97.3

10.23 0.18 10.23 0.18j j

Ð °
- + +

= 
71.76 97.3

20.46

Ð °
 = 3.51 ∠97.3° A

Pmax = 2
LI RL

= (3.51)2 × 10.23 = 125.91 W

Fig. 5.43

Fig. 5.44

Fig. 5.45
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Example 5.21 Find the value of load impedance ZL so that maximum power can be transferred to it in

the network of Fig. 5.46. Find maximum power.

Fig. 5.46

Solution

Step I Calculation of VTh

I =
50 45

3 2 10j

Ð °
+ +  = 

50 45

5 10j

Ð °
+

=
50 45

11.18 63.43

Ð °
Ð °

 = 4.47 ∠ –18.43° A

 VTh = (2 + j10) (4.47 ∠–18.43°)

= (10 ∠78.69°) (4.47 ∠ –18.43°) = 45.6 ∠60.26° V

Step II Calculation of ZTh

Fig. 5.48

ZTh =
3(2 10)

3 2 10

j

j

+
+ +

= (2.64 + j0.72) Ω

Step III Calculation of ZL

For maximum power transfer, the load impedance should be complex conjugate of the source impedance.

ZL = 2.64 – j0.72 Ω
Step IV Calculation of Pmax

IL =
45.6 60.26

2.64 0.72 2.64 0.72j j

Ð °
+ + -

= 
45.6 60.26

5.28

Ð °
 = 8.64 ∠60.26° A

Pmax =
2
L LI R

= (8.64)2 × 2.64 = 197.07 W

Fig. 5.47

Fig. 5.49



Steady-State AC Analysis 5.21

Example 5.22 Determine the load ZL required to be connected in the network of Fig. 5.50 for maximum

power transfer. Determine the maximum power drawn.

Fig. 5.50

Solution

Step I Calculation of VTh

I2 = 4 ∠0° × 

2

6 1j+
 = 

8 0

6 1j

Ð °

+

=
8 0

6.08 9.46

Ð °

Ð
= 1.315 ∠ – 9.46° A

 VTh =  VAB  = 4I2 = 4(1.315 ∠ –9.46°) = 5.26 ∠ –9.46° V

Step II Calculation of ZTh

The impedance ZTh seen from the terminals A and B , when current source is open circuited, is

 ZTh =
4(2 1)

4 2 1

j

j

+

+ +

=
8 4 8.94 26.56

= 
6 1 6.08 9.46

j

j

+ Ð °

+ Ð °

= 1.47 ∠17.1° = 1.41 + j0.43 Ω

Step III Calculation of ZL

For maximum power transfer, the load impedance should be the complex conjugate of the source impedance.

ZL = 1.41 – j0.43 Ω

Step IV Calculation of Pmax

IL =
5.26 9.46

1.41 0.43 1.41 0.43j j

Ð - °

+ + -

=
5.26 9.46

2.82

Ð - °

IL = 1.86 ∠ – 9.46° A

 Pmax = 2
LI RL

= (1.86)2 × 1.41 = 4.88 W

5.7 COUPLED CIRCUITS

Consider two coils located physically close to one another as shown in Fig. 5.53.

When current I1 flows in the first coil and I2 = 0 in the second coil, flux f1 is produced in the coil. A

fraction of this flux also links the second coil and induces a voltage in this coil. The voltage V1 induced in the

first coil is then,

Fig. 5.51

Fig. 5.52
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V1 = L1 
2

1

0

d

d I

I

t =

The voltage V2 induced in the second coil is

V2 = M 
2

1

0

d

d I

I

t =

The polarity of the voltage induced in the second coil depends on the way the coils are wound and it is

usually indicated by dots. The dots signify that the induced voltages in the two coils (due to single current)

have the same polarities at the dotted ends of the coils. Thus, due to I1, the induced voltage V1 must be positive

at the dotted end of Coil 1. The voltage V2 is also positive at the dotted end in Coil 2.

The same reasoning applies if a current I2 flows in Coil 2 and I1 = 0 in Coil 1. The induced voltages V2 and

V1 are

 V2 = L2 
1

2

0

d

d I

I

t =

and  V1 = M 
1

2

0

d

d I

I

t =

The polarities of V1 and V2 follow the dot convention. The voltage polarity is positive at the doted end of

inductor L2 when the current direction for I2 is as shown in Fig. 5.53. Therefore, the voltage induced in Coil

1 must be positive at the dotted end also.

Now if both currents I1 and I2 are present, by using superposition principle, we can write

V1 = L1 
1 2d d

d d

I I
M

t t
+

V2 = M 
1 2

2

d d

d d

I I
L

t t
+

This can be represented in terms of dependent sources, as shown in Fig. 5.54.

Fig. 5.54

Now consider the case when the dots are placed at the opposite ends in the two coils, as shown in Fig. 5.55.

Fig. 5.55

Fig. 5.53
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Due to I1, with I2 = 0, the dotted end in Coil 1 is positive, so the induced voltage in Coil 2 is positive at the

dot, which is the reverse of the designated polarity for V2. Similarly, due to I2, with I1 = 0, the dotted ends have

negative polarities for the induced voltages. The mutually induced voltages in both cases have polarities that

are the reverse of terminal voltages and the equations are

V1 = L1 
1 2d d

–
d d

I I
M

t t

V2 = –M 
1 2

2

d d

d d

I I
L

t t
+

This can be repressed in terms of dependent sources as shown in Fig. 5.56.

Fig. 5.56

Hence various cases can be summarised as follows:

Fig. 5.57

Fig. 5.58

Fig. 5.59
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Fig. 5.60

Example 5.23 Find voltage across the 5-Ω resistor using mesh analysis.

Fig. 5.61

Solution For a magnetically coupled circuit,

M = K 5(10)

 Xm = K 
1 2L LX X

= 0.8 5(10) = 5.66 Ω

The equivalent circuit in terms of dependent sources can be drawn as

Fig. 5.62

Applying KVL to Mesh 1,

50 ∠0° – j5I1 – 3 (I1 – I2) + j4 (I1 – I2) + j5.66I2 = 0

50 ∠0° = (3 + j1) I1 – (3 + j1.66) I2

(3 + j1) I2 + (–3 – j1.66) I2 = 50 ∠0° …(i)

Applying KVL to Mesh 2,

j4 (I2 – I1) – 3 (I2 – I1) – j10I2 + j5.66I1 – 5I2 = 0

j4 I2 – j4I1 – 3I2 + 3I1 – j10I2 + j5.66I1 – 5I2 = 0

–j4 I2 + j4I1 + 3I2 – 3I1 + j10I2 – j5.66I1 + 5I2 = 0

(–3 – j1.66) I1 + (8 + j6) I2 = 0 …(ii)
By Cramer’s rule,

I2 = 

3 1 50 0

3 1.66 0

3 1 3 1.66

3 1.66 8 6

j

j

j j

j j

+ Ð °

- -

+ - -

- - +

= 8.62 ∠–24.79° A

V = 5I2 = 5 (8.62 ∠–24.79°) = 43.1 ∠–24.79° V
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Example 5.24 Find the voltage across the 5-W resistor using mesh analysis.

Fig. 5.63

Solution The equivalent circuit in terms of dependent sources can be drawn as shown below:

Fig. 5.64

Applying KVL to Mesh 1,

50 ∠0° – j5I1 – 3 (I1 – I2) + j4 (I1 – I2) – j5.66I2 = 0

50 ∠0° = (3 + j1) I1 – (3 – j9.66) I2

(3 + j1) I2 + (–3 + j9.66) I2 = 50 ∠0° … (1)

Applying KVL to Mesh 2,

j4 (I2 – I1) – 3 (I2 – I1) – j10I2 – j5.66I1 – 5I2 = 0

j4 I2 – j4 I1 – 3I2 + 3I1 – j10I2 – j5.66I1 – 5I2 = 0

–j4 I2 + j4 I1 + 3I2 – 3I1 + j10I2 + j5.66 I1 + 5I2 = 0

(–3 + j9.66) I1 + (8 + j6) I2 = 0 … (2)

By Cramer’s rule,

I2 =

3 1 50 0

3 9.66 0

3 1 3 9.66

3 9.66 8 6

j

j

j j

j j

+ Ð °
- +
+ - +

- + +

 = 3.82 ∠–112.14° A

V = 5I2 = 5 (3.82 ∠–112.14°) = 19.1 ∠–112.14 V

Example 5.25 Find the current I2 using mesh analysis.

Fig. 5.65
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Solution The equivalent circuit in terms of dependent sources can be drawn as shown,

Fig. 5.66

Applying KVL to Mesh 1,

50 ∠45° – 3I1 – j4I1 – j3 (I1 – I2) – j3 I1 – j5 (I1 – I2) = 0

50 ∠45° = (3 + j4 + j5 + j3 + j3) I1 – ( j5 + j3) I2 = (3 + j15) I1 – j8I2

Applying KVL to Mesh 2,

j3I1 – j5 (I2 – I1) + j8I2 = 0

( j3 + j5) I1 + ( j8 – j5) I2 = 0

By Cramer’s rule,

I1 =

50 45 8

0 3

3 15 8

8 3

j

j

j j

j j

Ð ° -

+ -
= 

150 135

109 175.33

Ð °

Ð °
 = 1.37 ∠–40.33° A

I2 =

3 15 50 45

8 0

3 15 8

8 3

j

j

j j

j j

+ Ð °

+ -
 = 

400 135

109 175.33

Ð - °

Ð °
 = 3.66 ∠–310.33 A

Exercises

MESH ANALYSIS

1. Find the current through the 3 + j4 Ω impedance.

Fig. 5.67

[0]
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2. In the network of Fig. 5.68, find V0.

Fig. 5.68
[1.56 ∠128.7° V]

3. Find the current I3 in the network of Fig. 5.69.

Fig. 5.69 [11.6 ∠113.2° A]

4. In the network of Fig. 5.70, find V2 which results in zero current through the 4-Ω resistor.

Fig. 5.70
[26.3 ∠113.2° V]

NODAL ANALYSIS

5. For the network shown in Fig. 5.71, find the voltage VAB.

Fig. 5.71
[75.4 ∠55.2° V]

6. Find the voltages at nodes 1 and 2 in the network of Fig. 5.72.

Fig. 5.72 [15.95 ∠49.94° V, 12.9 ∠55.5° V]
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7. In the network of Fig. 5.73, find the current in the 10 ∠30° V source.

Fig. 5.73

[1.44 ∠38.8° A]

SUPERPOSITION THEOREM

8. For the network shown, find the current in the 10-Ω resistor.

Fig. 5.74

[73.4 ∠–21.84° A]
9. In the network of Fig. 5.75, find the current through capacitance.

Fig. 5.75

[4.86 ∠80.8° A]

THEVENIN�S AND NORTON�S THEOREM

10. Obtain Thevenin’s equivalent network.

Fig. 5.76

[0.192 ∠–43.4° V, 88.7 ∠11.55° Ω]
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11. Obtain Thevenin’s equivalent network for Fig. 5.77 shown.

Fig. 5.77

[11.17 ∠–63.4° V, 10.6 ∠45° Ω]

12. Find Norton’s equivalent network for Fig. 5.78 shown.

Fig. 5.78

[2.77 ∠–33.7° A, 2.5 + j12.5 Ω]

13. Find the current through the 3 + j4 Ω impedance.

Fig. 5.79

[8.3 ∠85.2° A]

MAXIMUM POWER TRANSFER THEOREM

 14. Determine the maximum power delivered to the load in the network shown in Fig. 5.80.

Fig. 5.80
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[1032.35 W]

15. For the network shown, find the value of ZL that will receive the maximum power. Determine also this

power.

Fig. 5.81

[3.82 – j1.03 Ω, 54.5 W]

Objective-Type Questions

1. In the Fig. 5.82 shown, the equivalent impedance seen

across terminals a, b, is

(a)
16

3
 Ω (b)

8

3
 Ω

(c)
8

12
3

j
æ ö+ç ÷è ø  Ω (d) none of the above

2. The Thevenin equivalent voltage VTh appearing

between the terminals A and B of the network

shown in Fig. 5.83 is given by

(a) j16(3 – j4) (b) j16(3 + j4)

(c) 16(3 + j4) (d) 16 (3 – j4)

3. A source of angular frequency of 1 rad/s has a source impedance consisting of a 1-Ω resistance in series

with a 1-H inductance. The load that will obtain the maximum power fransfer is

(a) 1-Ω resistance

(b) 1-Ω resistance in parallel with 1-H inductance

(c) 1-Ω resistance in series with 1-F capacitance

(d) 1-Ω resistance in parallel with 1-F capacitance

4. The equivalent inductance measured between the

terminals 1 and 2 for circuit shown in Fig. 5.84 is

(a) L1 + L2 + M (b) L1 + L2 – M

(c) L1 + L2 + 2M (d) L1 + L2 – 2M

Fig. 5.82

Fig. 5.83

Fig. 5.84
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5. For the circut shown, the instantaneous current i(t) is

(a)
10 3

2
 ∠90° A

(b)
10 3

2
 ∠–90° A

(c) 5 ∠60° A

(d) 5∠–60° A

6. Impedance Z as shown in given Fig. 5.86 is

(a) j29 Ω (b) j9 Ω
(c) j19 Ω (d) j39 Ω

7. In the circuit shown in the Fig. 5.87 the current supplied

by the sinusoidal current source I is

(a) 28 A (b) 4 A

(c) 20 A (d) cannot be determined

8. In the circuit of Fig. 5.88 the magnitudes of VL

and VC are twice that of VR. The inductance of the

coil is

(a) 2.14 mH (b) 5.3 H

(c) 31.8 mH (d) 1.32 H

9. Phase angle of the current I with respect to the

voltage V1 in the circuit shown in Fig. 5.89 is

(a) 0° (b) 45°

(c) –45° (d) –90°

Fig. 5.85

Fig. 5.86

Fig. 5.87

Fig. 5.88

Fig. 5.89

Answers to Objective-Type Questions

1.(b)2.(d)3.(c)4.(d)5.(a)6.(b)

7.(c)8.(c)9.(d)
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Circuits
6

6.1 INTRODUCTION

A system which generates a single alternating voltage and current is termed a single-phase system. It utilizes

only one winding. A polyphase system utilizes more than one winding. It will produce as many induced

voltages as the number of windings.

A three-phase system consists of three separate but

identical windings that are displaced by 120 electrical

degrees from each other. When these three windings are

rotated in an anticlockwise direction with constant angular

velocity in a uniform magnetic field, the emfs are induced

in each winding which have the same magnitude and

frequency but displaced 120° from one another.

The instantaneous values of generated voltage in

windings RR1, YY1 and BB1 are given by

eR = Em sin q

eY = Em sin (q – 120°)

eB = Em sin (q – 240°)

where Em is the maximum value of the induced voltage

in each winding. The waveforms of these three voltages

are shown in Fig. 6.2.

Figure 6.3 shows the phasor diagram of these three

induced voltages.

Fig. 6.1

Fig. 6.2
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Fig. 6.3

6.2 ADVANTAGES OF A THREE-PHASE SYSTEM

1. In a single-phase system, the instantaneous power is fluctuating in nature. However, in a three-phase

system, it is constant at all times.

2. The output of a three-phase system is greater than that of a single-phase system.

3. Transmission and distribution of a three-phase system is cheaper than that of a single-phase system.

4. Three-phase motors are more efficient and have higher power factor than single-phase motors of the

same frequency.

5. Three-phase motors are self-starting whereas single-phase motors are not self-starting.

6.3 SOME DEFINITIONS

1. Phase Sequence  The sequence in which the voltages in the three phases reach maximum positive value

is called the phase sequence or phase order. From the phasor diagram of a three-phase system, it is clear that

the voltage in the coil R attains maximum positive value first, next in the coil Y and then in the coil B. Hence,

the phase sequence is R-Y-B.

2. Phase Voltage The voltage induced in each winding is called the phase voltage.

3. Phase Current The current flowing through each winding is called the phase current.

4. Line Voltage The voltage available between any pair of terminals or lines is called the line voltage.

5. Line Current The current flowing through each line is called the line current.

6. Balanced System A three-phase system is said to be balanced if the

(a) voltages in the three phases are equal in magnitude and differ in phase from one another by 120°

(b) currents in the three phases are equal in magnitude and differ in phase from one another by 120°

(c) loads connected across the three phases are identical, i.e., all the loads have the same magnitude and

power factor

6.4 INTERCONNECTION OF THREE PHASES

In a three-phase system, there are three windings. Each winding has two terminals, viz., ‘start’ and ‘finish’. If

a separate load is connected across each winding as shown in Fig. 6.4, six conductors are required to transmit

and distribute power. This will make the system complicated and expensive.
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Fig. 6.4

In order to reduce the number of conductors, the three windings are connected in the following two ways :

1. Star or Wye Connection

2. Delta or Mesh Connection.

6.5 STAR OR WYE CONNECTION

In this method, similar terminals (start or finish) of the three windings are joined together as shown in Fig. 6.5.

The common point is called star or neutral point.

 Fig. 6.5

Figure 6.6 shows a three-phase system in star connection.

Fig. 6.6
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This system is called a three-phase, four-wire

system. If three identical loads are connected to

each phase, the current flowing through the

neutral wire is the sum of the three currents IR,

IY and IB. Since the impedances are identical,

the three currents are equal in magnitude but

differ in phase from one another by 120°.

iR = Im sin q

iY = Im sin (q – 120°)

iB = Im sin (q – 240°)

iR + iY + iB = Im sin q + Im sin (q – 120°) + Im sin (q – 240°) = 0

Therefore, the neutral wire can be removed without any way affecting the voltages or currents in the circuit

as shown in Fig. 6.7. This constitutes a three-phase, three-wire system. If the load is not balanced, the neutral

wire carries some current.

6.6 DELTA OR MESH CONNECTION

In this method, dissimilar terminals of the three windings are joined together,

i.e., the ‘finish’ terminal of one winding is connected to the ‘start’ terminal of

the other winding, and so on, as shown in Fig. 6.8. This system is also called

three-phase, three-wire system.

For a balanced system, the sum of the three phase voltages round the closed

mesh is zero. The three emfs are equal in magnitude but differ in phase from

one another by 120°.

eR = Em sin q

eY = Em sin (q – 120°)

eB = Em sin (q – 240°)

eR + eY + eB = Em sin q + Em sin (q – 120°) + Em sin (q – 240°) = 0

6.7 VOLTAGE, CURRENT AND POWER RELATIONS IN A BALANCED

STAR-CONNECTED LOAD

6.7.1 Relation Between Line Voltage and

Phase Voltage

Since the system is balanced, the three-phase voltages VRN,

VYN and VBN are equal in magnitude and differ in phase

from one another by 120°.

Let VRN = VYN = VBN = Vph

where Vph indicates the rms value of phase voltage.

RNV = Vph ∠0°

YNV = Vph ∠–120°

BNV = Vph ∠–240°

Let VRY = VYB = VBR = VL

where VL indicates the rms value of line voltage.

Fig. 6.7

Fig. 6.8

Fig. 6.9
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Applying Kirchhoff’s voltage law,

RYV =
RNV  + 

NYV  = 
RNV  – 

NYV

= Vph ∠0° � Vph ∠�120°

= Vph + j0 + 0.5 Vph + j0.866 Vph

= 1.5 Vph + j0.866 Vph

= 3 Vph ∠30°
Similarly,

YBV = 3YN NBV V+ =  Vph ∠30°

BRV = 3BN NRV V+ = Vph ∠30°

Thus in a star-connected, three-phase system, VL = 3 Vph and line voltages lead respective phase voltages

by 30°.

6.7.2 Phasor Diagram

(Lagging power factor)

Fig. 6.10

6.7.3 Relation Between Line Current and Phase Current

From Fig. 6.9, it is clear that line current is equal to the phase current.

IL = Iph

6.7.4 Power

The total power in a three-phase system is the sum of powers in the three phases. For a balanced load, the

power consumed in each load phase is the same.

Total power P = 3 × power in each phase = 3 Vph Iph cos f

In a star-connected, three-phase system,

 Vph =
3

LV

Iph = IL

 P = 3 × 
3

LV
 × IL cos f = 3 VL IL cos f

where f is the phase difference between phase voltage and corresponding phase current.
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Similarly, total reactive power Q = 3 Vph Iph sin f

= 3 VL IL sin f

Total apparent power S = 3 Vph Iph= 3 VL IL

6.8 VOLTAGE, CURRENT AND POWER RELATIONS IN A BALANCED

DELTA-CONNECTED LOAD

6.8.1 Relation Between Line Voltage and Phase Voltage

From Fig. 6.11, it is clear that line voltage is equal to phase voltage.

VL = Vph

Fig. 6.11

6.8.2 Relation Between Line Current and Phase Current

Since the system is balanced, the three-phase currents IRY, IYB and IBR are equal in magnitude but differ in

phase from one another by 120°.

Let IRY = IYB = IBR = Iph

where Iph indicates rms value of the phase current.

RYI = Iph ∠0°

YBI =  Iph ∠ –120°

BRI = Iph ∠–240°

Let IR = IY = IB = IL

where IL indicates rms value of the line current.

Applying Kirchhoff’s current law,

RI  + BRI = RYI

RI = RYI – BRI  = Iph ∠0° – Iph ∠ – 240°

= Iph + j0 + 0.5 Iph – j0.866 Iph

= 3  Iph ∠–30°
Similarly,

YI =
YBI  – 

RYI  = 3 Iph ∠ – 30°

BI =
BRI  – 

YBI  = 3 Iph ∠ – 30°

Thus in a delta-connected, three-phase system, IL = 3 Iph and line currents are 30° behind the respective

phase currents.
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6.8.3 Phasor Diagram

(Lagging power factor)

Fig. 6.12

6.8.4 Power

Total power P = 3 Vph Iph cos f

In a delta-connected, three-phase system,

 Vph = VL

Iph =
3

LI

 P = 3 × VL × 
3

LI
 cos f = 3 VL IL cos f

Total reactive power Q = 3 Vph Iph sin f = 3 VL IL sin f

Total apparent power S =  3 Vph Iph = 3 VL IL

6.9 BALANCED Y/∆∆∆∆∆ AND ∆∆∆∆∆ /Y CONVERSIONS

Any balanced star-connected system can be completely converted into the equivalent delta-connected system

and vice versa.

For a balanced star-connected load,

Line voltage = VL

Line current = IL

Impedance/phase = ZY

Vph =
3

LV

Iph = IL

ZY =
ph

ph

V

I
 = 

3

L

L

V

I

For an equivalent delta-connected system, the line voltages and currents must have the same values as in

the star-connected system, i.e.,

Line voltage = VL
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Line current = IL

Impedance/phase = Z∆

Vph = VL

Iph =
3

LI

Z∆ =
ph

ph

V

I
 = 3

3

L L

L L

V V

I I
= = 3 ZY

ZY =
3

Z∆

6.10 RELATION BETWEEN POWER IN DELTA AND STAR SYSTEM

Let a balanced load be connected in star having impedance per phase as Zph.

For a star-connected load,

 Vph =
3

LV

Iph =
ph

ph

V

Z
 = 

3

L

ph

V

Z

 IL = Iph = 
3

L

ph

V

Z

Now PY = 3 VL IL cos f

= 3  × VL × 
3

L

ph

V

Z
 cos f = 

2
L

ph

V

Z
 cos f

For a delta-connected load,
 Vph = VL

Iph =
ph L

ph ph

V V

Z Z
=

 IL = 3 Iph = 3 L

ph

V

Z

Now PD = 3 VL IL cos f

= 3  × VL × 3  
L

ph

V

Z
cos f

= 3

2

L

ph

V

Z
 cos f = 3PY

Thus, power consumed by a balanced, star-connected load is one-third of that in the case of a delta-

connected load.



Three-Phase Circuits 6.9

Example 6.1 Three equal impedances, each of 8 + j10 ohms are connected in star. This is further connected

to a 440-V, 50-Hz, three-phase supply. Calculate the active and reactive power and line and phase currents.

Solution

Data phZ = 8 + j10 Ω

 VL = 440 V

 f = 50 Hz

For a star-connected load,

 Vph =
3

LV
 = 

440

3
 = 254.03 V

phZ =  8 + j10 = 12.81 ∠51.34° Ω

Zph = 12.81 Ω
f = 51.34°

 Iph =
ph

ph

V

Z
 = 

254.03

12.81
 = 19.83 A

 IL = Iph = 19.83 A

 P = 3 VL IL cos f = 3  × 440 × 19.83 × cos (51.34°) = 9.44 kW

Q = 3  VL IL sin f = 3  × 440 × 19.83 × sin (51.34°) = 11.81 kVAR.

Example 6.2 A balanced delta-connected load of impedance (8 – j6) ohm per phase is connected to a

three-phase, 230-V, 50-Hz supply. Calculate (i) line current, (ii) power factor, and (iii) reactive power.

Solution

Data phZ = 8 – j6 Ω

 VL = 230 V

 f = 50 Hz

For delta-connected load,

Vph = VL = 230 V

6.11 COMPARISON BETWEEN STAR AND DELTA CONNECTION

             Star Connection                 Delta Connection

1. VL = 3 Vph 1. VL = Vph

2. IL = Iph 2. IL = 3 Iph

3. Line voltage leads the respective phase voltage by 3. Line current lags behind the respective phase current

30o. by 30o.

4. Power in star connection is one-third of 4. Power in delta connection is 3 times of the power in

power in delta connection. star connection.

5. Three-phase, three-wire and three-phase, 5. Only three-phase, three-wire system is possible.

four-wire systems are possible.

6. The phasor sum of all the phase currents is zero. 6. The phasor sum of all the phase voltages is zero.
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phZ = 8 – j6 = 10 ∠ –36.87° Ω

 Zph = 10 Ω
 f = 36.87°

Power factor = cos (36.87°) =  0.8 (leading)

Iph =
ph

ph

V

Z
= 

230

10
 = 23 A

IL = 3 Iph = 3  × 23 = 39.84 A

Q = 3  VL IL sin f = 3  × 230 × 39.84 × sin (36.87°) = 9.52 kVAR

Example 6.3 Three coils, each having resistance and inductance of 8-W and 0.02-H respectively, are

connected in star across a three-phase, 230-V, 50-Hz supply. Find the line current, power factor, power,

reactive voltamperes and total voltamperes.

Solution
Data R = 8 Ω

 L = 0.02 H

 VL = 230 V

 f = 50 Hz

For a star-connected load,

Vph =
3

LV
 = 

230

3
 = 132.79 V

 XL = 2p fL = 2p × 50 × 0.02 = 6.28 Ω

phZ = R + jXL

= 8 + j6.28 = 10.17 ∠38.13° Ω
 Zph = 10.17 Ω

 f = 38.13°

Power factor = cos (38.13°) = 0.786 (lagging)

 Iph =
ph

ph

V

Z
= 

132.79

10.17
 = 13.05 A

 IL = Iph = 13.05 A

 P = 3  VL IL cos f = 3  × 230 × 13.05 × 0.786 = 4.088 kW

 Q = 3  VL IL sin f

= 3  × 230 × 13.05 × sin (38.13°) = 3.21 kVAR

 S = 3 VL IL

= 3  × 230 × 13.05 = 5.198 kVA

Example 6.4 Three coils each having a resistance of 8-W and inductance of 0.02-H are connected in

delta to a three-phase, 400-V, 50-Hz supply. Calculate the line current and power absorbed.

Solution
Data R = 8 Ω

 L = 0.02 H

 VL = 400 V

 f = 50 Hz
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For a delta-connected load,

 VL = Vph = 400 V

 XL = 2pfL = 2p × 50 × 0.02 = 6.28 Ω

phZ = R + jXL = 8 + j6.28 = 10.17 ∠38.13° Ω

 Zph = 10.17 Ω
 f = 38.13°

 Iph =
ph

ph

V

Z
 = 

400

10.17
 = 39.33 A

 IL = 3  Iph = 3  × 39.33 = 68.12 A

 P = 3  VL IL cos f

= 3  × 400 × 68.12 × cos (38.13°) = 37.12 kW

Example 6.5 Three similar coils A, B, and C are available. Each coil has a 9-W resistance and a

12-W reactance. They are connected in delta to a three-phase, 440-V, 50-Hz supply. Calculate for this load the

(i) phase current, (ii) line current, (iii) power factor, (iv) total kVA, (v) active power, and (vi) reactive power.

If these coils are connected in star across the same supply, calculate all the above quantities.

Solution
Data  R = 9 Ω f = 50 Hz

 XL = 12 Ω VL = 440 V

For a delta-connected load,

VL = Vph = 440 V

phZ = 9 + j12 = 15 ∠53.13° Ω

 Zph = 15 Ω
f = 53.13°

 Iph =
ph

ph

V

Z
 = 

440

15
 = 29.33 A

 IL = 3  Iph = 3  × 29.33 = 50.8 A

Power factor = cos f = cos (53.13°) = 0.6 (lagging)

 S = 3  VL IL

= 3  × 440 × 50.8 = 38.71 kVA

 P = 3  VL IL cos f

= 3  × 440 × 50.8 × 0.6 = 23.23 kW

 Q = 3  VL IL sin f

= 3  × 440 × 50.8 × sin (53.13°) = 30.97 kVAR

If these coils are connected in star across the same supply,

Vph =
3

LV
= 

440

3
 = 254.03 V

 Zph = 15 Ω
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 Iph =
ph

ph

V

Z
 = 

254.03

15
= 16.94 A

IL = Iph = 16.94 A

Power factor = 0.6 (lagging)

 S = 3  VL IL = 3  × 440 × 16.94 = 12.91 kVA

 P = 3  VL IL cos f = 3 × 440 × 16.94 × 0.6 = 7.74 kW

 Q = 3  VL IL sin f

= 3 × 440 × 16.94 × 0.8 = 12.33 kVAR

Example 6.6 A 415-V, 50-Hz, three-phase voltage is applied to three star-connected identical impedances.

Each impedance consists of a resistance of 15 W, a capacitance of  177 µF and an inductance of 0.1 henry in

series. Find the (i) phase current, (ii) line current, (iii) power factor, (iv) active power, (v) reactive power, and

(vi) total VA. Draw a neat phasor diagram. If the same impedances are connected in delta, find the (i) line

current, and (ii) power consumed.

Solution
Data  VL = 415 Ω f = 50 Hz

 R = 15 Ω C = 177 µF

L = 0.1 H

For a star-connected load,

Vph =
3

LV
 = 

415

3
 = 239.6 V

 XL = 2pfL = 2p × 50 × 0.1 = 31.42 Ω

 XC =
1

2 fCp
 = 

6

1

2 50 177 10-p ´ ´ ´
 = 17.98 Ω

phZ = R + jXL – jXC = 15 + j31.42 – j17.98

= 15 + j13.44 = 20.14 ∠41.86° Ω

 Zph = 20.14 Ω

 f = 41.86°

Power factor = cos f = cos (41.86°) = 0.744 (lagging)

 Iph =  
ph

ph

V

Z
= 

239.6

20.14
 = 11.9 A

IL = Iph = 11.9 A

P = 3  VL IL cos f

= 3 × 415 × 11.9 × 0.744 = 6.36 kW

Q =  3 VL IL sin f

= 3  × 415 × 11.9 × sin (41.86°) = 5.71 kVAR

S = 3  VL IL

= 3  × 415 × 11.9 = 8.55 kVA
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Phasor Diagram

Fig. 6.13

If the same impedances are connected in delta,

 VL = Vph = 415 V

 Zph = 20.14 Ω

 Iph =
ph

ph

V

Z
 = 

415

20.14
 = 20.61 A

 IL = 3  Iph = 3  × 20.61 = 35.69 A

 P = 3  VL IL cos f

= 3  × 415 × 35.69 × 0.744 = 19.09 kW

Example 6.7 Each phase of a delta-connected load consists of a 50-mH inductor in series with a parallel

combination of a 50-W resistor and a 50-µF capacitor. The load is connected to a three-phase, 550-V,

800-rad/s ac supply. Find the (i) phase current, (ii) line current , (iii) power drawn, (iv) power factor,

(v) reactive power, and (vi) kVA rating of the load.

Solution
Data  L = 50 mH

 R = 50 Ω
 C = 50 µF

 VL = 550 V

 w = 800 rad/s

For a delta-connected load,

 VL = Vph = 550 V

 XL = wL = 800 × 50 × 10–3 = 40 Ω
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 XC =
1

Cw
= 6

1

800 50 10-´ ´
 = 25 Ω

phZ = jXL + 
( )C

C

R jX

R jX

-
-

= j40 + 
50( 25)

50 25

j

j

-
-

= 10 + j20 = 22.36 ∠63.43° Ω

 Zph = 22.36 Ω

f = 63.43°

Iph =
ph

ph

V

Z
= 

550

22.36
 = 24.6 A

 IL = 3 Iph = 3  × 24.6 = 42.61 A

Power factor = cos f

= cos (63.43°) = 0.447 (lagging)

 P = 3  VL IL cos f

= 3  × 550 × 42.61 × 0.447 = 18.14 kW

Q = 3  VL IL sin f

= 3  × 550 × 42.61 × sin (63.43°) = 36.3 kVAR

S = 3  VL IL

= 3  × 550 × 42.61 = 40.59 kVA

Example 6.8 Three identical coils connected in delta to a 440-V, three-phase supply take a total power of

50 kW and a line current of 90 A. Find the (i) phase current, (ii) power factor, and (iii) total apparent power

taken by the coils.

Solution
Data  VL = 440 V

 P = 50 kW

 IL = 90 A

For a delta-connected load,

 VL = Vph = 440 V

Iph =
90

= 
3 3

LI
 = 51.96 A

P = 3 VL IL cos f

50 × 103 = 3 × 440 × 90 × cos f

 cos f = 0.73 (lagging)

 S = 3 VL IL = 3  × 440 × 90 = 68.59 kVA
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Example 6.9 Three similar choke coils are connected in star to a three-phase supply. If the line current

is 15 A, the total power consumed is 11 kW and the volt-ampere input is 15 kVA, find the line and phase

voltages, the VAR input and the reactance and resistance of each coil. If these coils are now connected in delta

to the same supply, calculate phase and line currents, active and reactive power.

Solution
Data  IL = 15 A  P = 11 kW

 S = 15 kVA

For a star-connected load,

 S = 3  VL IL

15 × 103 = 3  × VL × 15

VL = 577.35 V

Vph =
577.35

= 
3 3

LV
 = 333.33 V

cos f =
3

3

11 10
= 

15 10

P

S

´
´

 = 0.733

 f = 42.86°

 Q = 3  VL IL sin f  = 3  × 577.35 × 15 × sin (42.86°) = 10.2 kVAR

 Iph = IL = 15 A

 Zph =
333.33

= 
15

ph

ph

V

I
= 22.22 Ω

 R = Zph cos f = 22.22 × 0.733 = 16.29 Ω

 XL = Zph sin f

= 22.22 × sin (42.86°) = 15.11 Ω
If these coils are now connected in delta,

 Vph = VL = 577.35 V

 Zph = 22.22 Ω

 Iph =
577.35

= 
22.22

ph

ph

V

Z
 = 25.98 A

 IL = 3 Iph

= 3  × 25.98 = 45 A

 P = 3  VL IL cos f

= 3  × 577.35 × 45 × 0.733 = 32.98 kW

 Q = 3 VL IL sin f

= 3  × 577.35 × 45 × sin (42.86°) = 30.61 kVAR

Example 6.10 A three-phase, star-connected source feeds 1500 kW at 0.85 power factor lag to a balanced

mesh-connected load. Calculate the current, its active and reactive components in each phase of the source

and the load. The line voltage is 2.2 kV.
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Solution
Data  P = 1500 kW pf = 0.85 (lagging)

 VL = 2.2 kV

For a delta-connected load,

 P = 3  VL IL cos f

1500 × 103 = 3  × 2.2 × 103 × IL × 0.85

 IL = 463.12 A

 Iph =
463.12

= 
3 3

LI
 = 267.38 A

Active component in each phase of the load = Iph cos f

= 267.38 × 0.85 = 227.27 A

Reactive component in each phase of the load = Iph sin f

= 267.38 × sin (cos–1 0.85)

= 267.38 × 0.526 = 140.85 A

For a star-connected source, the phase current in the source will be the same as the line current drawn by

the load.

Active component of this current in each phase of the source

= 463.12 × 0.85 = 393.65 A

Reactive component of this current in each phase of the source

= 463.12 × 0.526 = 243.6 A

Example 6.11 A three-phase, 208-volt generator supplies a total of 1800 W at a line current of

10 A when three identical impedances are arranged in a Wye connection across the line terminals of the

generator. Compute the resistive and reactive components of each phase impedance.

Solution
Data  VL = 208 V P = 1800 W

 IL = 10 A

For a Wye-connected load,

Vph =
208

= 
3 3

LV
 = 120.09 V

 Iph = IL = 10 A

 Zph =
120.09

= 
10

ph

ph

V

I
 = 12.09 Ω

 P = 3  VL IL cos f

1800 = 3  × 208 × 10 × cos f

 cos f = 0.5

 f = 60°

Rph = Zph cos f

= 12.09 × 0.5 = 6.05 Ω
Xph = Zph sin f

= 12.09 × sin (60°) = 10.47 Ω
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Example 6.12 A balanced, three-phase, star-connected load of 100 kW takes a leading current of 80 A,

when connected across a three-phase, 1100-V, 50-Hz supply. Find the circuit constants of the load per phase.

Solution
Data  P = 100 kW

 IL = 80 A

 VL = 1100 V

 f = 50 Hz
For a star-connected load,

Vph =
1100

= 
3 3

LV
 = 635.08 V

 Iph = IL = 80 A

 Zph =
635.08

= 
80

ph

ph

V

I
 = 7.94 Ω

 P = 3 VL IL cos f

100 × 103 = 3  × 1100 × 80 × cos f
cos f = 0.656 (leading)

f = 49°

Rph = Zph cos f

= 7.94 × 0.656 = 5.21 Ω
Xph = Zph sin f

= 7.94 × sin (49°) = 6 Ω
This reactance will be capacitive in nature as the current is leading.

 XC =
1

2 fCp
 = 6

 C =
1

2 CfXp

=
1

2 50 6π × ×
 = 530.52 µF

Example 6.13 Three identical impedances are connected in delta to a three-phase supply of 400 V. The

line current is 34.65 A, and the total power taken from the supply is 14.4 kW. Calculate the resistance and

reactance values of each impedance.

Solution
Data  VL = 400 V

 IL = 34.65 A
 P = 14.4 kW

For a delta-connected load,
 VL = Vph = 400 V

 Iph =
34.65

= 
3 3

LI
 = 20 A

 Zph =
400

= 
20

ph

ph

V

I
 = 20 Ω

 P = 3  VL IL cos f

14.4 × 103 = 3  × 400 × 34.65 × cos f
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cos f = 0.6

 f = 53.13°

Rph = Zph cos f

= 20 × 0.6 = 12 Ω
Xph = Zph sin f

= 20 × sin (53.13°) = 16 Ω

Example 4.14 A balanced, three-phase load connected in delta draws a power of 10.44 kW at 200 V at

a power factor of 0.5 lead. Find the values of the circuit elements and the reactive voltamperes drawn.

Solution
Data P = 10.44 kW VL = 200 V

pf = 0.5 (leading)

For a delta-connected load,

 VL = Vph = 200 V

 P = 3 VL IL cos f

10.44 × 103 = 3  × 200 × IL × 0.5

 IL = 60.28 A

 Iph =
60.28

= 
3 3

LI
 = 34.8 A

 Zph =
200

= 
34.8

ph

ph

V

I
 = 5.75 Ω

Rph = Zph cos f = 5.75 × 0.5 = 2.875 Ω

Xph = Zph sin f = 5.75 × sin (cos–1 0.5)

= 5.747 × 0.866 = 4.98 Ω
 Q = 3  VL IL sin f

= 3 × 200 × 60.28 × 0.866 = 18.08 kVAR

Example 6.15 For a balanced, three-phase Wye-connected load, the phase voltage VR is

100 ∠–45° V and it draws a line current Iy of 5 ∠180°A. (i) Find the complex impedance per phase. (ii) Draw
a power triangle and identify all its sides with magnitudes and appropriate units. Assume phase sequence
R-Y-B.

Solution
Data  VR = Vph = 100 ∠– 45° V

 Iy = 5 ∠180° A

For a Wye-connected load,

RV = 100 ∠– 45° V

The current IR leads current Iy by angle 120°.

RI = 5 ∠–60° A

phZ =
R

R

V

I
 = 

100 45

5 60

Ð - °
Ð - °

= 20 ∠15° Ω = 19.32 + j5.18 Ω
Active power P = 3 Vph Iph cos f

= 3 × 100 × 5 × cos (15°) = 1.45 kW
Fig. 6.14
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Reactive power Q = 3 Vph Iph sin f

= 3 × 100 × 5 ×  sin (15°) = 0.39 kVAR

Apparent power S = 3 Vph Iph

= 3 × 100 × 5 = 1.5 kVA

Power Triangle

Fig. 6.15

Example 6.16 Each leg of a balanced, delta-connected load consists of a 7-W resistance in series with a

4-W inductive reactance. The line-to-line voltages are

Eab = 2360 ∠0° V

Ebc = 2360 ∠– 120° V

Eca = 2360 ∠120° V

Determine (i) phase current Iab, Ibc and Ica (both magnitude and phase),

(ii) each line current and its associated phase angle,

(iii) the load power factor, and

(iv) find the impedance per phase that draws the same power at the same power factor.

Solution
Data  R = 7 Ω

 XL = 4 Ω
 VL = 2360 V

For a delta-connected load,

Vph = VL = 2360 V

phZ = 7 + j4 = 8.06 ∠29.74° Ω

Phase current abI = ab

ph

E

Z

=
2360 0

8.06 29.74

Ð °
Ð °

 = 292.8 ∠– 29.74° A

bcI =
2360 120

8.06 29.74

Ð - °
Ð °

 = 292.8 ∠– 149.71° A

caI = 
2360 120

8.06 29.74

Ð °
Ð °

 = 292.8 ∠90.26° A

In a delta-connected, three-phase system, line currents lag behind respective phase currents by 30°.

IL = 3 Iph

= 3  × 292.8 = 507.14 A
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 ILa = 507.14 ∠– 59.71° A

 ILb = 507.14 ∠– 179.71° A

 ILc = 507.14 ∠60.26° A

Load power factor = cos (29.74°) = 0.868 (lagging)

Assuming that impedances are now connected in star, the power per phase and power factor remains the

same.

For a delta-connected load,

Power per phase = Vph Iph cos f = 2360 × 292.8 × 0.868 = 599.79 kW

For a star-connected load,

Vph =
2360

= 
3 3

LV
 = 1362.55 V

Power per phase = Vph Iph cos f

 599.79 × 103 = 1362.55 × Iph × 0.868

Iph = 507.14 A

Zph =
1362.55

= 
507.14

ph

ph

V

I
 = 2.69 Ω

Example 6.17 A three-phase, 200-kW, 50-Hz, delta-connected induction motor is supplied from a three-

phase, 440-V, 50-Hz supply system. The efficiency and power factor of the three-phase induction motor are

91% and 0.86  respectively. Calculate (i) line currents, (ii) currents in each phase of the motor, and (iii) active

and reactive components of phase current.

Solution
Data Po = 200 kW

 f = 50 Hz

 VL = 440 V

 h = 91%

 pf = 0.86

For a delta-connected load (induction motor),

Vph = VL = 440 V

Efficiency h =
Output power

Input power

0.91 =

3
200 10

Input power

´

Input power Pi = 219.78 kW

Pi = 3 VL IL cos f

219.78 × 103 = 3 × 440 × IL × 0.86

 IL = 335.3 A

Iph =
335.3

= 
3 3

LI
 = 193.6 A

Active component of phase current = Iph cos f = 193.6 × 0.86 = 166.5 A

Reactive component of phase current = Iph sin f

= 193.6 × 0.51 = 98.7 A
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Example 6.18 A three-phase, 400-V, star-connected alternator supplies a three-phase, 112-kW, mesh-

connected induction motor of efficiency and power factor 0.88 and 0.86 respectively. Find the (i) current in

each motor phase, (ii) current in each alternator phase, and (iii) active and reactive components of current in

each case.

Solution
Data  VL = 400 V

 Po = 112 kW

 pf = 0.86

 h = 0.88

For a mesh-connected load (induction motor),

Vph = VL = 400 V

 h =
Output power

Input power

0.88 =
3112 10

Input power

´

Input power Pi = 127.27 kW

 Pi = 3 VL IL cos f

127.27 × 103 = 3  × 400 × IL × 0.86
 IL = 213.6 A

Iph =
213.6

= 
3 3

LI
 = 123.32 A

Current in a star-connected alternator phase will be same as the line current drawn by the motor.

Therefore, current in each alternator phase = 213.6 A

Active component of current in each phase of motor

= Iph cos f

= 123.32 × 0.86 = 105.06 A

Reactive component of current in each phase of the motor

= Iph sin f

= 123.32 × 0.51 = 62.89 A

Active component of current in each alternator phase

= 213.6 × 0.86 = 183.7 A

Reactive component of current in each alternator phase

= 213.6 × 0.51 = 108.94 A

Example 6.19 Three similar resistors are connected in star across 400-V, three-phase lines. The line

current is 5 A. Calculate the value of each resistor. To what value should the line voltage be changed to obtain

the same line current with the resistors connected in delta?

Solution
Data VL = 400 V

IL = 5 A
For a star-connected load,

Vph =
400

= 
3 3

LV
 = 230.94 V

Iph = IL = 5 A
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Zph = Rph = 
230.94

= 
5

ph

ph

V

I
 = 46.19 Ω

For a delta-connected load,

IL = 5 A

Rph = 46.19 Ω

Iph =
5

= 
3 3

LI
 A

Vph = Iph Rph

=
5

3
× 46.19 = 133.33 V

Voltage needed is one-third of the star value.

Example 6.20 Three 100-W, non-inductive resistances are connected in (a) star, and (b) delta across a

400-V, 50-Hz, three-phase supply. Calculate the power taken from the supply in each case. If one of the

resistances is open circuited, what would be the value of total power taken from the mains in each of the two

cases?

Solution
Data VL = 400 V

Zph = 100 Ω
For a star-connected load,

Vph =
400

= 
3 3

LV
 = 230.94 V

Iph =
230.94

= 
100

ph

ph

V

Z
 = 2.31 A

IL = Iph = 2.31 A

cos f = 1

P = 3 VL IL cos f

= 3  × 400 × 2.31 × 1 = 1600.41 W

For a delta-connected load,

Vph = VL = 400 V

Iph =
400

= 
100

ph

ph

V

Z
 = 4 A

IL = 3  Iph

= 3  × 4 = 6.93 A

P = 3  VL IL cos f

= 3  × 400 × 6.93 × 1 = 4801.24 W
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When one of the resistors is open circuited

(i) Star connection

The circuit consists of two 100-Ω resistors in series

across a 400-V supply.

Currents in lines A and C =
400

200
 = 2 A

Power taken from the mains = 400 × 2 = 800 W

Hence, when one resistor is open circuited, the power

consumption is reduced by half.

(ii) Delta connection

In this case, currents in A and C remain as usual 120° out of

phase with each other.

Current in each phase =
400

100
= 4 A

Power taken from the mains = 2 × 4 × 400 = 3200 W

Hence when one resistor is open circuited, the power

consumption is reduced by one-third.?

Example 6.21 Three identical impedances of 10 ∠30° Ω each are connected star and another set of

three identical impedances of 18 ∠60° Ω are connected in delta. If both the sets of impedances are connected

across a balanced, three-phase 400 V supply, find the line current, total voltamperes, active power and reactive

power.

Solution

Data YZ = 10 ∠30° Ω

Ä
Z = 18 ∠60° Ω

VL = 400 V

Three identical delta impedances can be converted into equivalent star impedances.

YZ ¢ = Ä

3

Z 18 60
= 

3

Ð °
 = 6 ∠60° Ω

Now two star-connected impedances 10 ∠30° Ω and 6 ∠60° Ω are in parallel across a three-phase supply.

eqZ =
(10 30 )(6 60 )

10 30 6 60

∠ ° ∠ °

∠ ° + ∠ °
 = 3.87 ∠48.83° Ω

For a star-connected load,

Vph =
400

= 
3 3

LV
 = 230.94 V

Iph =
230.94

= = 
3.87

ph ph

ph eq

V V

Z Z
= 59.67 A

IL = Iph = 59.67 A

S = 3 VL IL = 3  × 400 × 59.67 = 41.34 kVA

P = 3  VL IL cos f = 3  × 400 × 59.67 × cos (48.83°) = 27.21 kW

Q = 3  VL IL sin f = 3 × 400 × 59.67 × sin (48.83°) = 31.12 kVAR

Fig. 6.16

Fig. 6.17
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Example 6.22 Three star-connected impedances ZY = (20 + j37.7) W per phase are connected in parallel

with three delta-connected impedances ZD = (30 – j159.3) W per phase. The line voltage is 398 V. Find the line

current, pf, active and reactive power taken by the combination.

Solution

Data YZ = 20 + j37.7 = 42.68 ∠62.05° Ω

Ä
Z = 30 – j159.3 = 162.1 ∠–79.33° Ω

VL = 398 V

Three identical delta-connected impedances can be converted by an equivalent star impedances.

YZ ¢ =
162.1 79.3

3

Ð - °
= 54.03 ∠–79.3° Ω

Now two star-connected impedances of 42.68 ∠62.05° Ω and 54.03 ∠–79.3° Ω are in parallel across the

three-phase supply.

eqZ
(42.68 62.05 )(54.03 79.3 )

42.68 62.05 54.03 79.3

Ð ° Ð - °
Ð ° + Ð - °

= 68.33 ∠9.88° Ω

For a star-connected load,

Vph =
398

= 
3 3

LV
 = 229.79 V

Iph =
eq

= 
ph ph

ph

V V

Z Z

=
229.79

68.33
= 3.36 A

IL = Iph = 3.36 A

pf = cos f = cos (9.88°) = 0.99 (lagging)

P = 3 VL IL cos f = 3 × 398 × 3.36 × 0.99 = 2.29 kW

Q = 3 VL IL sin f = 3 × 398 × 3.36 × sin (9.88°) = 397.43 VAR

Example 6.23 A balanced, delta-connected load having an impedance ZL = (300 + j210) ohm in each

phase is supplied from a 400-V, three-phase supply through a three-phase line having an impedance of

ZS = (4 + j8) ohm in each phase. Find current and voltage in each phase of the load.

Solution

Data LZ = 300 + j210 Ω

SZ = 4 + j8 Ω

VL = 400 V

Three identical delta impedances can be converted into equivalent star impedances.

LZ ¢ =
300 210

= 
3 3

LZ j+
= 100 + j70 Ω
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The circuit can be drawn as

Fig. 6.18

ANZ = SZ + LZ ¢
= 4 + j8 + 100 + j70

= 104 + j78 Ω = 130 ∠36.87° Ω
For a star-connected load,

VAN =
400

3
 = 230.94 V

ANI =
230.94 0

130 36.87

Ð °
Ð °

= 1.78 ∠– 36.87° A

Voltage across SZ = ANI . SZ

= (1.78 ∠–36.87°) × (4 + j8) = 15.92 ∠26.56° V

Voltage across ZL′ = 230.94 ∠0° – 15.92 ∠26.56°

= 216.82 ∠– 1.88° V

Voltage in each phase of the load = 216.82 V

Current in each phase of the load = 1.78 A

Example 6.24 Three coils each having a resistance of 20 W and a reactance of 15 W are connected in

star to a 400-V, three-phase, 50-Hz supply. Calculate (i) line current, (ii) power supplied, and (iii) power

factor. If three capacitors, each of same capacitance, are connected in delta to the same supply so as to form

parallel circuit with the above coils, calculate the capacitance of each capacitor to obtain a resultant power

factor of 0.95 lagging.

Solution
Data Rph = 20 Ω

Xph = 15 Ω

VL = 400 V

For a star-connected load,

phZ = Rph + jXph

= 20 + j15 = 25 ∠36.87° Ω

Vph =
400

= 
3 3

LV
 = 230.94 V
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Iph =
230.94

= 
25

ph

ph

V

Z
 = 9.24 A

IL = Iph = 9.24 A

P1 = 3 VL IL cos f1

= 3 × 400 × 9.24 × cos (36.87°) = 5.12 kW

pf = cos (36.87°) = 0.8 (lagging)

Ql = 3  VL IL sin f1

= 3  × 400 × 9.24 × sin (36.87°) = 3.84 kVAR

When capacitors are connected in delta to the same supply.

pf = 0.95

f2 = cos–1 (0.95) = 18.19°

tan f2 = tan (18.19°) = 0.33

Since capacitors do not absorb any power, power remains the same even when capacitors are connected.

But reactive power changes.

P2 = 5.12 kW

Q2 = P2 tan f2

= 5.12 × 0.33 = 1.69 kVAR

Difference in reactive power is supplied by three capacitors.

Q = Q1 – Q2

= 3.84 – 1.69 = 2.15 kVAR

Q = 3  V L IL sin f

2.15 × 103 = 3  × 400 × IL × sin (90°)

IL = 3.1 A

Iph =
3

LI
 = 1.79 A

Iph =
ph

C

V

X
= Vph × 2pf C

C =
1.79

= 
2 400 2 50

ph

ph

I

V f´ p ´ p ´
 = 14.24 µF

6.12 MEASUREMENT OF THREE-PHASE POWER

In a three-phase system, total power is the sum of powers in three phases. The power is measured by wattmeter.

It consists of two coils. (i) current coil, and (ii) voltage coil. The current coil is connected in series with the

load and it senses current. Voltage coil is connected across supply terminals and it senses voltages.

6.12.1 Two-Wattmeter Method

This method is used for balanced as well as unbalanced load. The current coils of the two wattmeters are

inserted in any two lines and the voltage coil of each wattmeter is joined to a third line. The load may be star

or delta connected. The sum of the two wattmeter readings gives three-phase power.

Fig. 6.19
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 (a)

(b)

Fig. 6.20

Total power  P = W1 + W2

Measurement of power Figure 6.20 shows a balanced, star-connected load, the load may be assumed to

be inductive. Let VRN, VYN and VBN be the three phase voltages. IR, IY and IB be the phase currents. The phase

currents will lag behind their respective phase voltages by angle f.

Fig. 6.21
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Current through current coil of W1 = IR

Voltage across voltage coil of W1 = VRB = VRN + VNB = VRN – VBN

From phasor diagram, it is clear that the phase angle between VRB and IR is (30° – f)

W1 =  VRB IR cos (30° – f)

Current through current coil of W2 = IY

Voltage across voltage coil of W2 = VYB = VYN + VNB = VYN  – VBN

From phasor diagram it is clear that phase angle between VYB and IY is (30° + f)

W2 = VYB IY cos (30° + f)

But IR = IY = IL

VRB = VYB = VL

W1 = VL IL cos (30° – f)

W2 = VL IL cos (30° + f)

W1 + W2 = VL IL [cos (30° + f) + cos (30° – f)]

= VL IL (2 cos 30° cos f) = 3 VL IL cos f

Thus, the sum of two wattmeter readings gives three-phase power.

Measurement of power factor

(i) Lagging power factor

W1 = VL IL cos (30° – f)

W2 = VL IL cos (30° + f)

W1 + W2 = 3  VL IL cos f

W1 − W2 = VL IL [cos (30° – f) – cos (30° + f)] = VL IL sin f

1 2

1 2

W W

W W

-
+

= 
sin

3 cos

L L

L L

V I

V I

f

f

tan f = 3
1 2

1 2

W W

W W

-
+

f = tan–1 1 2

1 2

3
W W

W W

æ ö-
ç ÷+è ø

pf = cos f = cos 1 1 2

1 2

tan 3
W W

W W

-ì üæ ö-ï ï
í ýç ÷+è øï ïî þ

(ii) Leading power factor

Phasor Diagram

W1 = VL IL cos (30° + f)

W2 = VL IL cos (30°− f)

W1 + W2 = 3 VL IL cos f

W1 − W2 = –VL IL sin f

tan f = – 1 2

1 2

( )
3

( )

W W

W W

-
+

f = tan–1 1 2

1 2

( )
3

( )

W W

W W

ì ü--í ý+î þ Fig. 6.22
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pf = cos f = cos 1 1 2

1 2

tan 3
W W

W W

-ì üæ ö-ï ï-í ýç ÷+è øï ïî þ

Example 6.25 Three coils each with a resistance of 10 W and reactance of 10 W are connected in star

across a three phase, 50-Hz, 400-V supply. Calculate (i) line current, and (ii) readings on the two wattmeters

connected to measure the power.

Solution
Data  R = 10 Ω XL = 10 Ω

 VL = 400 V

For a star-connected load,

Vph =
400

= 
3 3

LV
 = 230.94 V

phZ = R + jXL = 10 + j10 = 14.14 ∠45° Ω

 Zph = 14.14 Ω
 f = 45°

Power factor = cos f

= cos (45°) = 0.707 (lagging)

 Iph =
230.94

= 
14.14

ph

ph

V

Z
 = 16.33 A

 IL = Iph = 16.33 A

 P = 3 VL IL cos f

= 3  × 400 × 16.33 × 0.707 = 7998.83 W

 W1 + W2 = 7998.83 W ...(i)

Also, tan f = 1 2

1 2

3
W W

W W

-
+

tan 45° = 1 23
7998.83

W W-

W1 – W2 = 4618.13 W ...(ii)

Solving Eqs (i) and (ii),

W1 = 6308.48 W

W2 = 1690.35 W

Example 6.26 Three coils each having a resistance of 20 W and reactance of 15 W are connected in (i)

star, and (ii) delta, across a three-phase, 400-V, 50-Hz supply. Calculate in each case, the readings on two

wattmeters connected to measure the power input.

Solution
Data  R = 20 Ω XL = 15 Ω VL = 400 V

(i) For a star-connected load,

 Vph =
400

= 
3 3

LV
 = 230.94 V

phZ = 20 + j15 = 25 ∠36.87° Ω

 Zph = 25 Ω
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 f = 36.87°

 Iph =
230.94

= 
25

ph

ph

V

Z
 = 9.24 A

 IL = Iph = 9.24 A

 W1 = VL IL cos (30° – f)

= 400 × 9.24 × cos (30° – 36.87°) = 3669.46 W

 W2 = VL IL cos (30° + f)

= 400 × 9.24 × cos (30° + 36.87°)

= 1451.86 W

(ii) For a delta-connected load,

Vph = VL = 400 V

 Zph = 25 Ω
f = 36.87°

 Iph =
400

= 
25

ph

ph

V

Z
 = 16 A

 IL = 3  Iph = 3  × 16 = 27.72 A

 W1 = VL IL cos (30° – f)

= 400 × 27.72 × cos (30° – 36.87°) = 11008.39 W

 W2 = VL IL cos (30° + f)

= 400 × 27.72 × cos (30° + 36.87°) = 4355.57 W

Example 6.27 Two wattmeters connected to measure the input to a balanced, three-phase circuit indicate

2000 W and 500 W respectively. Find the power factor of the circuit (i) when both readings are positive and

(ii) when the latter is obtained after reversing the connection to the current coil of one instrument.

Solution
Data  W1 = 2000 W

 W2 = 500 W

(i) When both readings are positive,

W1 = 2000 W

W2 = 500 W

tan f =
1 2

1 2

3
W W

W W

-
+  = 

(2000 500)
3

(2000 500)

-
+  = 1.039

 f = 46.102°

Power factor = cos f = cos (46.102°) = 0.693

(ii) When the latter reading is obtained after reversing the connection to the current coil of one instrument,

W1 = 2000 W

W2 = –500 W

tan f= 
1 2

1 2

3
W W

W W

-
+

=
(2000 500)

3
(2000 500)

+
-

 =  2.887

 f = 70.89°
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Power factor = cos f

= cos (70.89°) = 0.33

Example 6.28 Find the power and power factor of the balanced circuit in which the wattmeter readings

are 5 kW and 0.5 kW, the latter being obtained after the reversal of the current coil terminals of the wattmeter.

Solution
Data  W1 =  5 kW

 W2 = 0.5 kW

When the latter readings are obtained after the reversal of the current coil terminals of the wattmeter,

W1 = 5 kW

W2 = –0.5 kW

Power =  W1 + W2

= 5 + (–0.5) = 4.5 kW

tan f = 1 2

1 2

(5 0.5)
3 3

(5 0.5)

W W

W W

- +
=

+ -
= 2.12

f = 64.72°

Power factor = cos f

= cos (64.72°) = 0.43

Example 6.29 A three-phase, 10-kVA load has a power factor of 0.342. The power is measured by the

two-wattmeter method. Find the reading of each wattmeter when the (i) power factor is leading, and the (ii)

power factor is lagging.

Solution
Data  S = 10 kVA pf = 0.342

 S = 3 VL IL

 10 × 103 = 3 VL IL

 VL IL = 5.77 kVA

 cos f = 0.342

 f = 72°

(i) When the power factor is leading,

W1 = VL IL cos (30° + f)

= 5.77 cos (30° + 70°) = –1 kW

W2 = VL IL cos (30° – f)

= 5.77 cos (30° – 70°) = 4.42 kW

(ii)  When the power factor is lagging

W1 = VL IL cos (30° – f) = 4.42 kW

W2 = VLIL cos (30° + f) = –1 kW

Example 6.30 The power input to a 2000-V, 50-Hz, three-phase motor running on full load at an efficiency

of 90% is measured by two wattmeters which indicate 300 kW and 100 kW respectively. Calculate the (i) input

power, (ii) power factor, and (iii) line current.

Solution
Data  VL = 2000 V

 h = 0.9
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W1 = 300 kW

W2 = 100 kW

Input power  P = W1 + W2 = 300 + 100 = 400 kW

 tan f = 1 2

1 2

(300 100)
3 = 3

(300 100)

W W

W W

- -
+ +

 = 0.866

 f = 40.89°

Power factor = cos f = cos (40.89°) = 0.76

 P = 3 VL IL cos f

400 × 103 = 3  × 2000 × IL × 0.76

IL = 151.93 A

Example 6.31 A three-phase, 220-V, 50-Hz, 11.2-kW induction motor has a full load efficiency of

88 per cent and draws a line current of 38 A under full load, when connected to a three-phase, 220-V supply.

Find the reading on two wattmeters connected in the circuit to measure the input to the motor. Determine

power factor at which the motor is operating.

Solution
Data  VL = 220 V

 Po = 11.2 kW

 h = 88%

 IL = 38 A

 h = o

i

P

P

0.88 =
3

11.2 10

iP

´

 Pi = 12.73 kW

But Pi = 3  VL IL cos f

12.73 × 103 = 3  × 220 × 38 × cos f

cos f = 0.88 lagging

f = 28.36°

W1 = VL IL cos (30° – f) = 220 × 38 × cos (30° – 28.36°)

= 8356.58 W

W2 = VL IL cos (30° + f) = 220 × 38 × cos (30° + 28.36°)

= 4385.49 W

Example 6.32 What will be the relation between readings on the wattmeter connected to measure power in

a three-phase balanced circuit with (i) unity power factor, (ii) zero power factor, and (iii) power factor = 0.5.

Solution
Data (i) pf = 1 (ii) pf = 0 (iii) pf = 0.5

(i) Power factor = 1

cos f = 1

f = 0

tan f = tan 0° = 0
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tan f = 1 2

1 2

3
W W

W W

-
+

0= 1 2

1 2

3
W W

W W

-
+

W1 = W2

(ii) Power factor = 0

cos f = 0

f = 90°

tan f = tan 90° = ∞

tan f = 1 2

1 2

3
W W

W W

-
+

W1 + W2 = 0

W1 = –W2

(iii) Power factor = 0.5

cos f = 60°

tan f = tan 60° = 1.732

tan f = 1 2

1 2

3
W W

W W

-
+

1.732 = 1 2

1 2

3
W W

W W

-
+

W1 – W2 = W1 + W2

W2 = 0

Example 6.33 Two wattmeters are used to measure power in a three-phase balanced load. Find the

power factor if (i) two readings are equal, and (ii) two readings are equal and opposite.

Solution
Data (i) W1 = W2

 (ii) W1 = –W2

(i) If two readings are equal,

W1 = W2

tan f = 1 2

1 2

3
W W

W W

-
+

tan f = 3 (0) = 0
f = 0°

Power factor = cos f

= cos 0° = 1

(ii) If two readings are equal and opposite,

W1 = –W2

tan f = 1 2

1 2

3
W W

W W

-
+

= ∞

f = 90°
Power factor = cos f = cos (90°) = 0
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Exercises

1. Three inductors each with a resistance of 5 Ω and an inductive resistance of 6 Ω are connected in closed

delta and supplied from a 440-V, three-phase system. Calculate the line and phase currents, the power

factor of the system and the intake in watts. [97.58 A, 56.33 A, 0.64 lagging, 47.61 kW]

2. Three coils each having a resistance of 10 Ω and an inductance of 0.02 H are connected (i) in star,

(ii) in delta to a three-phase, 50-Hz supply, the line voltage being 500 volts. Calculate for each case the

line current and the total power taken from the supply.

[(i) Star: 24.46 A, 17.94 kW, (ii) Delta: 73.39 A, 53.83 kW]

3. A balanced, three-phase, star-connected load of 150 kW takes a leading current of 100 A with a line

voltage of 1100 V, 50 Hz. Find the circuit constant of the load per phase. [5 Ω, 813 µF]

4. Three pure elements connected in star draw x kVAR. What will be the value of elements that will draw

the same kVAR, when connected in delta across the same supply? [Z
∆
 = 3ZY]

5. Three coils each having an impedance of (4 + j3) ohm are connected in star to a 440-V, three-phase,

50-Hz balanced supply. Calculate the line current and active power. Now, if three pure capacitors each

of C farads connected in delta, are connected across the same supply, it is found that the total power

factor of the circuit becomes 0.96 lag. Find the value of C. Also find the total line current.

[50.8 A, 30.976 kW, 77.75 µF, 42.34 A]

6. A three-phase, 500-V motor load has a power factor of 0.4. Two wattmeters connected to measure

power show the input to be 30 kW. Find the reading on each instrument. [35 kW, –5 kW]

7. The power in a three-phase circuit is measured by two wattmeters. If the total power is 100 kW and the

power factor is 0.66 leading, what will be the reading of each wattmeter. [17.26 kW, 82.74 kW]

8. Two wattmeters are connected to measure the input to a 400 V, three-phase connected motor outputting

24.4 kW at a power factor of 0.4 lag and 80% efficiency. Calculate the (i) resistance and reactance of

motor per phase, and the (ii) reading of each wattmeter. [2.55 Ω, 5.58 Ω, 34915 W, –4850 W]

9. In a balanced, three-phase, 400-V circuit, the line current is 115.5 A. When the power is measured by

two-wattmeter method, one meter reads 40 kW and the other, zero. What is the power factor of the

load? If the power factor were unity and the line current the same, what would be the reading of each

wattmeter? [0.5, 40 kW, 40 kW]

10. A 440-V, three-phase, delta-connected induction motor has an output of 14.92 kW at pf of 0.82 and

efficiency of 85%. Calculate the readings on each of the two wattmeters connected to measure the

input. If another star-connected load of 10 kW at 0.85 pf lagging is added in parallel to the motor, what

will be the current drawn from the line and the power taken from the line?

[12.35 kW, 5.26 kW, 43.56 A, 27.6 kW]

Objective-Type Questions

1. If the 3-phase balanced source in Fig. 6.23 delivers 1500 W at a leading power factor of 0.844, then the

value of ZL (in ohm) is approximately

(a) 90 ∠32.44° (b) 80 ∠32.44° (c) 80 ∠–32.44° (d) 90 ∠–32.44°
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Fig. 6.23

2. vRN, vYN and vBN are the instantaneous line to neutral voltages and iR, iY and iB are instantaneous line

currents in a balanced three phase circuit, the computation vRN (iY – iB) – (vYN – vBN) iR will yield a

quantity proportional to

(a) active power (b) power factor (c) reactive power (d) complex power

3. In a 3-phase system, YNV  = 100 ∠–120°V and BNV  = 100 ∠120°V. Then YBV  will be

(a) 170 < 90° (b) 173 < – 90° V (c) 200 < 60° (d) none of the above

4. A 3 phase load is balanced if all the three phases have the same.

(a) impedance (b) power factor

(c) impedance and power factor (d) none of the above

5. The power consumed in the star connected load shown in

Fig. 6.24 is 690 W. The line current is

(a) 2.5 A (b) 1 A

(c) 1.725 A (d) none of the above

6. Three identical resistances connected in star carry a line current of 12A. If the same resistances are

connected in delta across the same supply, the line current will be

(a) 12 A (b) 4 A (c) 8 A (d) 36 A

7. Three delta-connected resistors absorb 60 kW when connected to a 3-phase line. If the resistors are

connected in star, the power absorbed is

(a) 60 kW (b) 20 kW (c) 40 kW (d) 180 kW

8. If one of the resistors in Fig. 6.25 is open circuited, power consumed in the circuit is

(a) 8000 W (b) 4000 W (c) 16000 W (d) none of the above

Fig. 6.25

Fig. 6.24
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9. If a balanced delta load has an impedance of (6 + j9) ohms per phase, then the impedance of each phase

if equivalent star load is

(a) (6 + j9) ohms (b) (2 + j3) ohms (c) 12 + j8) ohms (d) (3 + j4.5) ohms

10. In two wattmeter method of measurement, if one of the wattmeters reads zero, then power factor will be

(a) zero (b) unity (c) 0.5 (d) 0.866

Answers to Objective-Type Questions

1.(d)2.(c)3.(d)4.(c)5.(b)6.(d)

7.(b)8.(a)9.(b)10.(c)
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7.1 INTRODUCTION

The purpose of network analysis is to find voltage across and currents through all the elements. When the

network is complicated and having a large number of nodes and closed paths, network analysis can be done

conveniently by using ‘Graph Theory’. This theory does not make any distinction between different types of

physical elements of the network but makes the study based on a geometric pattern of the network. The basic

elements of this theory are branches, nodes, loops and meshes.

Node It is defined as a point at which two or more elements have a common connection.

Branch It is a line connecting a pair of nodes, the line representing a single element.

Loop Whenever there is more than one path between two nodes, there is a circuit or loop.

Mesh It is a loop which does not contain any other loops within it.

7.2 GRAPH OF A NETWORK

A linear graph is a collection of nodes and branches. The nodes are joined together by branches.

The graph of a network is drawn by first marking the nodes and then joining these nodes by lines which

correspond to the network elements of each branch. All the voltage and current sources are replaced by their

internal impedances. The voltage sources are replaced by short circuits as their internal impedances are zero

whereas current sources are replaced by open circuits as their internal impedances are infinite. Nodes and

branches are numbered. Figure 7.1 shows a network and its associated graphs.

Each branch of a graph may be given an orientation or a direction with the help of an arrow head which repre-

sents the assigned reference direction for current. Such a graph is then referred to as a directed or oriented graph.

Branches whose ends fall on a node are said to be incident at that node. Branches 2, 3 and 4 are incident at

node 2 in Fig. 7.1(c).
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Fig. 7.1

7.3 DEFINITIONS ASSOCIATED WITH A GRAPH

1. Planar graph A graph drawn on a two-dimensional plane is said to be planar if two branches do not

intersect or cross at a point which is other than a node. Figure 7.2 shows such graphs.

Fig. 7.2 Planar graphs

2. Non-planar graph  A graph

drawn on a two-dimensional plane is

said to be non-planar if there is

intersection of two or more branches

at another point which is not a node.

Figure 7.3 shows non-planar graphs.

3. Sub-graph It is a subset of

branches and nodes of a graph. It is a

proper sub-graph if it contains branches and nodes less than those on a graph. A sub-graph can be just a node

or only one branch of the graph. Figure 7.4 shows a graph and its proper sub-graph.

(a) Graph  (b) Proper sub-graph

Fig. 7.4

Fig. 7.3 Non-planar graphs
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4. Path  It is an improper sub-graph having the following properties:

(a) At two of its nodes called terminal nodes, there is incident only one branch

of sub-graph.

(b) At all remaining nodes called internal nodes, there are incident two branches

of a graph.

In Fig. 7.5, branches 2, 5 and 6 together with all the four nodes, constitute a

path.

5. Connected graph A graph is said to be connected if there exists a path

between any pair of nodes. Otherwise, the graph is disconnected.

6. Rank of a graph If there are n nodes in a graph, the rank of the graph is (n – 1).

7. Loop or circuit A loop is a connected sub-graph of a connected graph at each node of which are

incident exactly two branches. If two terminals of a path are made to coincide, it will result in a loop or circuit.

Loops: {1, 2, 3, 4} {1, 2}
Fig. 7.6

Loops of a graph have the following properties:

(1) There are at least two branches in a loop.

(2) There are exactly two paths between any pair of nodes in a circuit.

(3) The maximum number of possible branches is equal to the number of nodes.

8. Tree A tree is a set of branches with every node connected to every other node in such a way that

removal of any branch destroys this property.

Alternately, a tree is defined as a connected sub-graph of a connected graph containing all the nodes of the

graph but not containing any loops.

Branches of a tree are called twigs. A tree contains (n – 1) twigs where n is the number of nodes in the

graph.

 Twigs: {1, 4, 5} {2, 3, 5}

Fig. 7.7

Fig. 7.5
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9. Co-tree Branches which are not on a tree are called links or chords. All links of a tree together constitute

the compliment of the corresponding tree and is called the co-tree.

A co-tree contains b – (n – 1) links where b is the number of branches of the graph.

In Fig. 7.7(b) and (c) the links are {2, 3, 6} and {1, 4, 6} respectively.

Trees have the following properties:

(1) There exists only one path between any pair of nodes in a tree.

(2) A tree contains all nodes of the graph.

(3) If n is the number of nodes of the graph, there are (n – 1) branches in the tree.

(4) Trees do not contain any loops.

(5) Every connected graph has at least one tree.

(6) The minimum terminal nodes in a tree are two.

7.4 INCIDENCE MATRIX

A linear graph is made up of nodes and branches. When a graph is given, it is possible to tell which branches

are incident at which nodes and what are its orientations relative to the nodes.

7.4.1 Complete Incidence Matrix (Aa)

For a graph with n nodes and b branches, the complete incidence matrix is a rectangular matrix of order

n × b.

Elements of this matrix have the following values:

aij = 1, if branch j is incident at node i and is oriented away from node i.

= –1, if branch j is incident at node i and is oriented towards node i.

= 0, if branch j is not incident at node i.

For a graph shown in Fig. 7.8, the complete incidence matrix is as given below:

Nodes Branches →

↓ 1 2 3 4 5 6

1 1 1 0 0 0 1

2 0 –1 1 –1 0 0

3 0 0 0 1 1 –1

4 –1 0 –1 0 –1 0

Aa  =

1 1 0 0 0 1

0 1 1 1 0 0

0 0 0 1 1 1

–1 0 1 0 1 0

é ù
ê ú- -
ê ú

-ê ú
ê ú- -ë û

It is seen from the matrix Aa that the sum of the elements in any column is zero. Hence, any one row of the

complete incidence matrix can be obtained by the algebraic manipulation of other rows.

 Fig. 7.8
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7.4.2 Reduced Incidence Matrix (A)

The reduced incidence matrix A is obtained from the complete incidence matrix Aa by eliminating one of the

rows. It is also called incidence matrix. It is of order (n – 1) × b.

Eliminating the third row of matrix Aa, we get

A =

1 1 0 0 0 1

0 1 1 1 0 0

1 0 1 0 1 0

é ù
ê ú- -
ê ú
- - -ë û

When a tree is selected for the graph as shown in

Fig. 7.9, the incidence matrix is obtained by arranging

a column such that the first (n – 1) column corresponds

to twigs of the tree and the last b – (n – 1) branches

corresponds to the links of the selected tree.

A =

Twigs Links

2 3 4 1 5 6

1 0 0 1 0 1

–1 1 –1 0 0 0

0 –1 0 –1 –1 0

é ù
ê ú
ê ú
ë û

The matrix A can be subdivided into submatrices At and Al.

A = [At : Al]

where At the is twig matrix whereas Al is the link matrix.

7.4.3 Number of Possible Trees of a Graph

Let the transpose of the reduced incidence matrix A be AT. It can be shown that the number of possible trees of

a graph will be given by

Number of possible trees = T
AA

For the graphs shown in Fig. 7.8, the reduced incidence matrix is given by

A =

1 1 0 0 0 1

0 1 1 1 0 0

1 0 1 0 1 0

é ù
ê ú- -
ê ú
- - -ë û

Then transpose of this matrix will be

AT =

1 0 –1

1 –1 0

0 1 –1

0 –1 0

0 0 –1

1 0 0

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

Fig. 7.9

Twigs: {2, 3, 4}

Links: {1, 5, 6}
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Hence, number of all possible trees of the graph

 AAT =  

1 1 0 0 0 1

0 –1 1 –1 0 0

–1 0 –1 0 –1 0

é ù
ê ú
ê ú
ë û

1 0 –1

1 –1 0

0 1 –1

0 –1 0

0 0 –1

1 0 0

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

 =  

3 –1 –1

–1 3 –1

–1 –1 3

é ù
ê ú
ê ú
ë û

T
AA =  

3 –1 –1

–1 3 –1

–1 –1 3

 = 3 (9 – 1) + (1) (–3 – 1) – 1 (1 + 3) = 16

Thus, 16 different trees can be drawn.

7.5 LOOP MATRIX OR CIRCUIT MATRIX

When a graph is given, it is possible to tell which branches constitute which loop or circuit. Alternately, if a

loop matrix or circuit matrix is given, we can reconstruct the graph.

For a graph having n nodes and b branches, the loop matrix Ba is a rectangular matrix of order b columns

and as many rows as there are loops.

Its elements have the following values:

bij =  1, if branch j is in loop i and their orientations coincide.

= –1, if branch j is in loop i and their orientations do not coincide.

= 0, if branch j is not in loop i.

A graph and its loops are shown in Fig. 7.10.

Fig. 7.10

 All the loop currents are assumed to be flowing in a clockwise direction.

BranchesLoops

1 2 3 4 5 6

1 –1 1 1 0 0 0

2 0 0 –1 –1 1 0

3 0 –1 0 1 0 1

4 –1 1 0 –1 1 0

5 –1 0 0 0 1 1

6 0 –1 –1 0 1 1

7 –1 0 1 1 0 1

®

¯

Loop 1: {1, 2, 3}

Loop 2: {3, 4, 5}

Loop 3: {2, 4, 6}

Loop 4: {1, 2, 4, 5}

Loop 5: {1, 5, 6}

Loop 6: {2, 3, 5, 6}

Loop 7: {1, 3, 4, 6}
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Ba =

1 1 1 0 0 0

0 0 1 1 1 0

0 1 0 1 0 1

1 1 0 1 1 0

1 0 0 0 1 1

0 1 1 0 1 1

1 0 1 1 0 1

-é ù
ê ú- -
ê ú

-ê ú
ê ú- -
ê ú-
ê ú

- -ê ú
ê ú-ë û

7.5.1 Fundamental Circuit (Tieset) and Fundamental Circuit Matrix

When a graph is given, first select a tree and remove all the links. When a link is replaced, a closed loop or

circuit is formed. Circuits formed in this way are called fundamental circuits or f-circuits or tiesets.

Orientation of an f-circuit is given by the orientation of the connecting link. The number of f-circuits is

same as the number of links for a graph. In a graph having b branches and n nodes, the number of f-circuits or

tiesets will be (b – n + 1). Figure 7.11 shows a tree and f-circuits (tiesets) for the graph shown in Fig. 7.10.

Fig. 7.11

Here, b = 6 and n = 4.

Number of tiesets = b – n + 1

= 6 – 4 + 1 = 3

f-circuits are shown in Fig. 7.11. The orientation of each f-circuit is given by the orientation of the corresponding

connecting link. Writing the tieset, with the link as the first entry and other branches in sequence, we have

tieset 1: {1, 2, 3}

tieset 5: {5, 3, 4}

tieset 6: {6, 2, 4}

Then, the tieset schedule will be written as

BranchesTiesets

1 2 3 4 5 6

1 1 –1 –1 0 0 0

5 0 0 –1 1 1 0

6 0 1 0 1 0 1

®

¯

-
-

Hence, an f-circuit matrix or tieset matrix will be given as

B =

1 –1 –1 0 0 0

0 0 –1 –1 1 0

0 –1 0 1 0 1

é ù
ê ú
ê ú
ë û
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Usually, the f-circuit matrix B is rearranged so that the first (n – 1) columns correspond to the twigs and

b – (n – 1) columns to the links of the selected tree.

B =

Twigs Links

2 3 4 1 5 6

1 –1 0 1 0 0

0 –1 –1 0 1 0

1 0 1 0 0 1

-é ù
ê ú
ê ú
-ë û

The matrix B can be partitioned into two matrices Bt and Bl.

B = [ Bt : Bl ]

= [ Bt : U ]

where Bt is the twig matrix, Bl is the link matrix and U is the unit matrix.

7.5.2 Orthogonal Relationship between Matrix A and Matrix B

For a linear graph, if the columns of the two matrices Aa and Ba are arranged in the same order, it can be shown

that

Aa Ba
T = 0

or Ba Aa
T = 0

The above equations describe the orthogonal relationship between the matrices Aa and Ba.

If the reduced incidence matrix A and the f-circuit matrix B are written for the same tree, it can be shown

that

A BT = 0

or B AT = 0

These two equations show the orthogonal relationship between matrices A and B.

7.6 CUTSET MATRIX

Consider a linear graph. By removing a set of branches without affecting the nodes, two connected sub-

graphs are obtained and the original graph becomes unconnected. The removal of

this set of branches which results in cutting the graph into two parts are known as a

cutset. The cutset separates the nodes of the graph into two groups, each being in one

of the two groups.

Figure 7.12 shows a graph.

Branches 1, 3 and 4 will form a cutset. This set of branches separates the graph

into two parts. One having an isolated Node 4 and other part having branches 2 and

5 and nodes 1, 2 and 3.

Similarly, branches 1 and 2 will form a cutset. Each branch of the cutset has one of its terminals incident at

a node in one part and its other end incident at other nodes in the other parts. The orientation of a cutset is

made to coincide with orientation of defining branch.

For a graph having n nodes and b branches, the cutset matrix Qa is a rectangular matrix of order b columns

and as many rows as there are cutsets. Its elements have the following values:

qij = 1, if branch j is in the cutset i and the orientations coincide.

= –1, if branch j is in the cutset i and the orientations do not coincide.

= 0, if branch j is not in the cutset i.

Figure 7.13 shows a directed graph and its cutsets.

Fig. 7.12
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BranchesCutsets

1 2 3 4 5 6

1 1 1 0 0 0 1

2 0 1 –1 1 0 0

3 1 0 1 0 1 0

4 0 0 0 1 1 –1

5 0 –1 1 0 1 –1

6 1 0 1 –1 0 1

®

¯

For the cutset 2, which cuts the branches 2, 3 and 4 and is shown by a dotted circle, the entry in the cutset

schedule for the branch (2) is 1, since the orientation of this cutset is given by the orientation of the branch 2

and hence it coincides. The entry for branch 3 is –1 as orientation of branch 3 is opposite to that of cutset 2 i.e.

branch 2 goes into cutset while branch 3 goes out of cutset. The entry for the branch 4 is 1 as the branch 2 and

the branch 4 go into the cutset. Thus their orientations coincide.

Hence, the cutset matrix Qa will be given as

Qa =

1 1 0 0 0 1

0 1 –1 1 0 0

1 0 1 0 1 0

0 0 0 1 1 –1

0 –1 1 0 1 –1

1 0 1 –1 0 1

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

7.6.1 Fundamental Cutset and Fundamental Cutset Matrix

When a graph is given, first select a tree and note down its twigs. When a twig is removed from the tree, it

separates a tree into two parts (one of the separated part may be an isolated node). Now, all the branches

connecting one part of the disconnected tree to the other along with the twig removed constitutes a cutset.

This set of branches is called a fundamental cutset or f-cutset. A matrix formed by these f-cutsets is called an

f-cutset matrix. The orientation of the f-cutset is made to coincide with the orientation of the defining branch,

i.e., twig. The number of f-cutsets is the same as the number of twigs for a graph.

Figure 7.14 shows a graph, selected tree and f-cutsets corresponding to the selected tree.

Fig. 7.14

Cutset 1: {1, 2, 6}

Cutset 2: {2, 3, 4}

Cutset 3: {3, 1, 5}

Cutset 4: {4, 5, 6}

Cutset 5: {5, 2, 3, 6}

Cutset 6: {6, 1, 3, 4}

Fig. 7.13
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f-cutset 2: {2, 1, 6}

f-cutset 3: {3, 1, 5}

f-cutset 4: {4, 5, 6}

The cutset schedule is written as below:

Branches-cutsets

1 2 3 4 5 6

2 1 1 0 0 0 1

3 1 0 1 0 1 0

4 0 0 0 1 1 –1

f ®

¯

Hence, the f-cutset matrix Q is given by

Q =

1 1 0 0 0 1

1 0 1 0 1 0

0 0 0 1 1 –1

é ù
ê ú
ê ú
ë û

The f-cutset matrix Q is rearranged so that the first (n – 1) columns correspond to twigs and b – (n – 1)

columns to links of the selected tree.

Q =

Twigs Links
2 3 4 1 5 6

1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1

é ù
ê ú
ê ú

-ë û
The matrix Q can be subdivided into matrices Qt and Ql.

Q = [ Qt : Ql ]

= [ U : Ql ]

where Qt is the twig matrix, Ql is the link matrix and U is the unit matrix.

7.6.2 Orthogonal Relationship between Matrix B and Matrix Q

For a linear graph, if the columns of two matrices Ba and Qa are arranged in the same order, it can be shown that

Qa Ba
T = 0

or Ba Qa
T = 0

If the f-circuit matrix B and the f-cutset matrix Q are written for the same selected tree, it can be shown that

B QT = 0

or Q BT = 0

These two equations show the orthogonal relationship between matrices A and B.

7.7 RELATIONSHIP AMONG SUBMATRICES OF A, B AND Q

Arranging the columns of matrices A, B and Q with twigs for a given tree first and then the links, we get the

partitioned forms as

A = [ At : Al ]

B = [ Bt : Bl ] = [ Bt : U]

Q = [ Qt : Ql ] = [ U : Ql ]

From the orthogonal relation, ABT = 0, we get
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ABT = [ At : Al ] 

T
t

T
l

B

B

é ù
ê ú
ê úë û

At Bt
T + Al Bl

T = 0

At Bt
T = – Al Bl

T

Since At is non-singular, i.e., | A | ≠ 0,

At
–1 exists

Premultiplying with At
–1, we get

 Bt
T = – At

–1 Al Bl
T

Bt = – Bl (At
–1 ⋅ Al)

T

Since Bl is a unit matrix

Bt = – (At
–1 ⋅ Al)

T

Hence, matrix B is written as

B = [– (At
–1 ⋅ Al)

T : U] …(7.1)

We know that ABT = 0

Al Bl
T = – At Bt

T

Postmultiplying with (Bl
T)–1

Al = – At Bt
T (Bl

T)–1

= – At Bt
T (Bl

–1)T = – At (Bl
–1 ⋅ Bt)

T

Hence matrix A can be written as

A = [ At : – At (Bl
–1 ⋅ Bt)

T ]

= At [ U : – (Bl
–1 ⋅ Bt)

T ] …(7.2)

Similarly we can prove that

Q = [ U : – (Bl
–1 ⋅ Bt)

T ] …(7.3)

From Eqs (7.2) and (7.3), we can write

A = At Q …(7.4)

Q = At
–1 A …(7.5)

= At
–1 [ At : Al ]

= [ U : At
–1 Al ] …(7.6)

We have shown that Bt = – (At
–1 ⋅ Al)

T

Bt
T = – (At

–1 ⋅ Al)

Hence Q can be written as

Q = [ U : –Bt
T ]

Ql = –Bt
T …(7.7)

Example 7.1 For the circuit shown in Fig. 7.15, draw the oriented graph and write the (i) incidence

matrix, (ii) f-cutset matrix, and (iii) tieset matrix.

Fig. 7.15
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 Solution For drawing the oriented graph,

(1) replace all resistors, inductors and capacitors by line segments,

(2) replace the voltage source by short circuit and the current source by an

open circuit,

(3) assume the directions of branch currents arbitrarily, and

(4) number all the nodes and branches.

Complete Incidence Matrix (Aa)

Nodes Branches

1 2 3 4

1 –1 0 –1 1

2 0 1 1 –1

3 1 –1 0 0

®

¯

Aa =

–1 0 –1 1

0 1 1 –1

1 –1 0 0

é ù
ê ú
ê ú
ë û

Eliminating the third row from the matrix Aa, we get the incidence matrix A.

A =
–1 0 –1 1

0 1 1 –1

é ù
ê úë û

Tieset Matrix (B)

B =

1 2 3 4

3 –1 –1 1 0

1 1 0 14

é ù
ê úë û

f-cutset Matrix (Q)

Fig. 7.18

Q =

1 2 3 4

1 1 0 1 –1

0 1 1 –12

é ù
ê úë û

Example 7.2 For the network shown in Fig. 7.19, draw the oriented graph and write the

(i) incidence matrix, (ii) tieset matrix, and (iii) f-cutset matrix.

Fig. 7.16

Fig. 7.17

Twigs: {1, 2}

Links: {3, 4}

Tieset 3:{3, 1, 2}

Tieset 4:{4, 1, 2}

f-cutset 1: {1, 3, 4}

f-cutset 2: {2, 3, 4}
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Fig. 7.19

Solution For drawing the oriented graph,

(1) replace all resistors, inductors and capacitors by line segments,

(2) replace all voltage sources by short circuits and current source by an

open circuit,

(3) assume directions of branch currents arbitrarily, and

(4) number all the nodes and branches.

Complete Incidence Matrix (Aa)

BranchesNodes

1 2 3 4 5 6 7

1 1 0 0 1 0 1 0

2 –1 –1 1 0 0 0 0

3 0 1 0 0 1 0 1

4 0 0 –1 –1 –1 0 0

5 0 0 0 0 0 –1 –1

®

¯

Aa =

1 0 0 1 0 1 0

–1 –1 1 0 0 0 0

0 1 0 0 1 0 1

0 0 –1 –1 –1 0 0

0 0 0 0 0 –1 –1

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ë û

Eliminating the last row from the matrix Aa, we get the incidence matrix A.

A =

1 0 0 1 0 1 0

–1 –1 1 0 0 0 0

0 1 0 0 1 0 1

0 0 –1 –1 –1 0 0

é ù
ê ú
ê ú
ê ú
ê úë û

Tieset Matrix (B)

B =

1 2 3 4 5 6 7

2 0 1 1 0 –1 0 0

4 –1 0 –1 1 0 0 0

1 0 1 0 –1 –1 17

é ù
ê ú
ê ú
ë û

Fig. 7.20

Fig. 7.21

Twigs: {1, 3, 5, 6}

Links: {2, 4, 7}

Tieset 2: {2, 3, 5}

Tieset 4: {4, 1, 3}

Tieset 7: {7, 6, 1, 3, 5}
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f-cutset Matrix (Q)

Q =

1 2 3 4 5 6 7

1 1 0 0 1 0 0 –1

0 –1 1 1 0 0 –13

0 1 0 0 1 0 15

6 0 0 0 0 0 1 1

é ù
ê ú
ê ú
ê ú
ê úë û

Example 7.3 For the circuit shown in Fig. 7.23, (i) draw its graph, (ii) draw its tree, and (iii) write the

fundamental cutset matrix.

Fig. 7.23

 Solution For drawing the oriented graph,

(1) replace all resistors, inductors and capacitors by line segments,

(2) replace the current source by an open circuit,

(3) assume directions of branch currents, and

(4) number all the nodes and branches.

Fundamental Cutset Matrix (Q)

Fig. 7.25

Q =

1 2 3 4 5 6

1 1 1 0 0 02

4 0 0 –1 1 0 1

5 1 0 0 0 1 1

é ù
ê ú
ê ú
ë û

 Fig. 7.22

f-cutset 1: {1, 4, 7}

f-cutset 3: {3, 4, 7, 2}

f-cutset 5: {5, 2, 7}

f-cutset 6: {6, 7}

Fig. 7.24

Twigs: {2, 4, 5}

Links: {1, 3, 6}

f-cutset 2: {2, 1, 3}

f-cutset 4: {4, 3, 6}

f-cutset 5: {5, 1, 6}
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Example 7.4 For the circuit shown in Fig. 7.26, draw the oriented graph and write (i) incidence matrix,

(ii) tieset matrix, and (iii) cutset matrix.

Fig. 7.26

 Solution For drawing the oriented graph,

(1) replace all resistors, inductors and capacitors by line segments,

(2) replace voltage source by short circuit and current source by an open

circuit,

(3) assume directions of branch currents arbitrarily, and

(4) number the nodes and branches.

Complete Incidence Matrix (Aa)

Nodes Branches

1 2 3 4

1 –1 1 0 –1

2 0 0 1 1

3 1 –1 –1 0

®

¯

Aa =

–1 1 0 –1

0 0 1 1

1 –1 –1 0

é ù
ê ú
ê ú
ë û

Eliminating the third row from the matrix Aa, we get the incidence matrix A.

A =
–1 1 0 –1

0 0 1 1

é ù
ê úë û

Tieset Matrix (B)

Fig. 7.28

B =

1 2 3 4

1 1 1 0 0

3 0 –1 1 –1

é ù
ê úë û

Fig. 7.27

Twigs: {2, 4}

Links: {1, 3}

Tieset 1: {1, 2}

Tieset 3: {3, 2, 4}
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f-cutset Matrix (Q)

Fig. 7.29

Q =

1 2 3 4

2 –1 1 1 0

4 0 0 1 1

é ù
ê úë û

Example 7.5  The graph of a network is shown in Fig. 7.30. Write the (i) incidence matrix, (ii) f-cutset

matrix,  and (iii) f-circuit matrix.

Fig. 7.30

Solution

Complete Incidence Matrix (Aa)

Aa=

1 2 3 4 5 6

–1 1 0 1 0 01
0 0 0 –1 1 12

0 –1 1 0 –1 03

4 1 0 –1 0 0 –1

é ù
ê ú
ê ú
ê ú
ê úë û

The incidence matrix A is obtained by eliminating any row from the matrix Aa.

A =  

–1 1 0 1 0 0

0 0 0 –1 1 1

0 –1 1 0 –1 0

é ù
ê ú
ê ú
ë û

Tieset Matrix (B)

B =

1 2 3 4 5 6

1 1 0 0 1 0 1

2 0 1 0 –1 –1 0

0 0 1 0 1 –13

é ù
ê ú
ê ú
ë û

Fig. 7.31

Twigs: {4, 5, 6}

Links: {1, 2, 3}

Tieset 1: {1, 4, 6}

Tieset 2: {2, 4, 5}

Tieset 3: {3, 5, 6}

f-cutset 2: {2, 1, 3}

f-cutset 4: {4, 3}
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f-cutset Matrix (Q)

Q =

1 2 3 4 5 6

1 1 0 1 0 04

0 1 1 0 1 05

1 0 1 0 0 16

-é ù
ê ú-
ê ú
-ë û

Example 7.6 For the graph shown, write the incidence matrix, tieset matrix and f-cutset matrix.

Fig. 7.33

Solution

Complete Incidence Matrix (Aa)

Aa =

1 2 3 4 5 6 7

1 1 1 0 0 0 0 0

2 0 –1 1 0 1 0 0

3 0 0 –1 1 0 0 0

4 0 0 0 –1 –1 1 –1

–1 0 0 0 0 –1 15

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ë û

The incidence matrix A is obtained by eliminating any row from the matrix Aa.

A =

1 1 0 0 0 0 0

0 –1 1 0 1 0 0

0 0 –1 1 0 0 0

0 0 0 –1 –1 1 –1

é ù
ê ú
ê ú
ê ú
ê úë û

Tieset Matrix (B)

Twigs: {1, 2, 3, 4}

Links: {5, 6, 7}

Tieset 5: {5, 3, 4}

Tieset 6: {6, 1, 2, 3, 4}

Tieset 7: {7, 1, 2, 3, 4}

B =

1 2 3 4 5 6 7

5 0 0 –1 –1 1 0 0

6 –1 1 1 1 0 1 0

7 1 –1 –1 –1 0 0 1

é ù
ê ú
ê ú
ë û

Fig. 7.32

f-cutset 4: {4, 1, 2}

f-cutset 5: {5, 2, 3}

f-cutset 6: {6, 1, 3}
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f-cutset Matrix (Q)

Fig. 7.34

Q =

1 2 3 4 5 6 7

1 0 0 0 0 1 –11

0 1 0 0 0 –1 12

3 0 0 1 0 1 –1 1

4 0 0 0 1 1 –1 1

é ù
ê ú
ê ú
ê ú
ê úë û

Example 7.7 For the graph shown, write the incidence matrix,tieset matrix and f-cutset matrix.

Fig. 7.35

Solution

Complete Incidence Matrix (Aa)

Aa =

1 2 3 4 5 6 7 8

1 1 0 0 –1 1 0 0 0

2 –1 1 0 0 0 1 0 0

3 0 –1 1 0 0 0 1 0

4 0 0 –1 1 0 0 0 1

5 0 0 0 0 –1 –1 –1 –1

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ë û

The incidence matrix is obtained by eliminating any one row.

A =

1 0 0 –1 1 0 0 0

–1 1 0 0 0 1 0 0

0 –1 1 0 0 0 1 0

0 0 –1 1 0 0 0 1

é ù
ê ú
ê ú
ê ú
ê úë û

f-cutset 1: {1, 6, 7}

f-cutset 2: {2, 6, 7}

f-cutset 3: {3, 5, 6, 7}

f-cutset 4: {3, 5, 6, 7}
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Tieset Matrix (B)

Twigs: {1, 3, 5, 7}

Links: {2, 4, 6, 8}

Tieset 2: {2, 7, 5, 1}

Tieset 4: {4, 5, 7, 3}

Tieset 6: {6, 5, 1}

Tieset 8: {8, 7, 3}

f-cutset Matrix (Q)

Fig. 7.36

Q =

1 2 3 4 5 6 7 8

1 1 –1 0 0 0 –1 0 0

0 0 1 –1 0 0 0 –13

0 1 0 –1 1 1 0 05

7 0 –1 0 1 0 0 1 1

é ù
ê ú
ê ú
ê ú
ê úë û

Example 7.8  How many trees are possible for the graph of the network of Fig. 7.37?

Fig. 7.37

Solution To draw the graph,

(1) replace all resistors, inductors and capacitors by line segments,

(2) replace voltage source by short circuit and current source by an open

circuit,

(3) assume directions of branch currents arbitrarily, and

(4) number all the nodes and branches.

Fig. 7.38

f-cutset 1: {1, 6, 2}

f-cutset 3: {3, 4, 8}

f-cutset 5: {5, 4, 6, 2}

f-cutset 7: {7, 2, 8, 4}

B =

1 2 3 4 5 6 7 8

1 1 0 0 –1 0 1 02

0 0 1 1 1 0 –1 04

1 0 0 0 –1 1 0 06

8 0 0 1 0 0 0 –1 1

é ù
ê ú
ê ú
ê ú
ê úë û
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Complete Incidence Matrix (Aa)

Aa =

1 2 3 4

1 1 0 –1 1

2 –1 1 0 0

3 0 –1 1 –1

é ù
ê ú
ê ú
ë û

The reduced incidence matrix A is obtained by eliminating the last row from matrix Aa.

A =
1 0 –1 1

–1 1 0 0

é ù
ê úë û

The number of possible trees = T
AA .

 AAT =

1 –1

1 0 –1 1 0 1 3 –1

–1 1 0 0 –1 0 –1 2

1 0

é ù
ê úé ù é ù

=ê úê ú ê úë û ë ûê ú
ê úë û

T
AA =

3 –1

–1 2
 = 6 – 1 = 5.

Example 7.9 Draw the oriented graph from the complete incidence matrix given below:

BranchesNodes

1 2 3 4 5 6 7 8

1 1 0 0 0 1 0 0 1

2 0 1 0 0 –1 1 0 0

3 0 0 1 0 0 –1 1 –1

4 0 0 0 1 0 0 –1 0

5 –1 –1 –1 –1 0 0 0 0

®

¯

Solution First, note down the nodes 1, 2, 3, 4, 5 as shown in

Fig. 7.39. From the complete incidence matrix, it is clear that the

branch number 1 is between nodes 1 and 5 and it is going away

from Node 1 and towards Node 5 as the entry against Node 1 is 1

and that against 5 is –1. Hence, connect the nodes 1 and 5 by a line,

point the arrow towards 5 and call it Branch 1 as shown in Fig.

7.39. Similarly, draw the other oriented branches.

Example 7.10 The reduced incidence matrix of an oriented

graph is given below. Draw the graph.

A =

0 –1 1 1 0

0 0 –1 –1 –1

–1 0 0 0 1

é ù
ê ú
ê ú
ë û

Solution First, writing the complete incidence matrix from the matrix A such that the sum of all entries in

each column of Aa will be zero,we have

Fig. 7.39
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Aa =

1 2 3 4 5

1 0 –1 1 1 0

0 0 –1 –1 –12

3 –1 0 0 0 1

4 1 1 0 0 0

é ù
ê ú
ê ú
ê ú
ê úë û

Now, the oriented graph can be drawn with matrix Aa.

Example 7.11 The reduced incidence matrix of an oriented graph is

A= 

0 –1 1 0 0

0 0 –1 –1 –1

–1 0 0 0 1

é ù
ê ú
ê ú
ë û

(i) Draw the graph. (ii) How many trees are possible for this graph?  (iii) Write the tieset and cutset

matrices.

Solution First, writing the complete incidence matrix Aa such that the sum of all the entries in each column

of Aa is zero, we have

Aa =

1 2 3 4 5

0 –1 1 0 01

2 0 0 –1 –1 –1

–1 0 0 0 13

4 1 1 0 1 0

é ù
ê ú
ê ú
ê ú
ê úë û

Now, the oriented graph can be drawn with the matrix Aa.

The number of possible trees = T
AA

 AAT =

0 0 –1

0 –1 1 0 0 –1 0 0 2 –1 0

0 0 –1 –1 –1 1 –1 0 –1 3 –1

–1 0 0 0 1 0 –1 0 0 –1 2

0 –1 1

é ù
ê úé ù é ù
ê úê ú ê ú=ê úê ú ê ú
ê úë û ë û
ê ú
ë û

T
AA =

2 –1 0

–1 3 –1

0 –1 2

 = 2 (6 – 1) + 1 (–2) = 8

The number of possible trees = 8.

Tieset Matrix (B)

B =

1 2 3 4 5

1 1 0 0 –1 1

0 1 1 –1 02

é ù
ê úë û

Fig. 7.40

Fig. 7.41

Fig. 7.42

Twigs: {3, 4, 5}

Links: {1, 2}

Tieset 1: {1, 4, 5}

Tieset 2: {2, 3, 4}
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f-cutset Matrix (Q)

Q =

1 2 3 4 5

3 0 –1 1 0 0

4 1 1 0 1 0

–1 0 0 0 15

é ù
ê ú
ê ú
ë û

Example 7.12 The fundamental cutset matrix of a network is given as follows:

     Twigs          Links

1 0 0 1 0 1

0 1 0 0 1 1

0 0 1 1 1 1

a c e b d f

Draw the oriented graph.

Solution

No. of links l = b – n + 1

No. of nodes n = b – l + 1

= 6 – 3 + 1 = 4

f-cutsets are written as,

f-cutset a: {a, b, f}

f-cutset c: {c, d, f}

f-cutset e: {e, b, d, f}

The oriented graph is drawn as

Example 7.13 Draw the oriented graph of a network with the f-cutset matrix as shown below:

1 2 3 4 5 6 7

1 0 0 0 –1 0 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 0 1 0

Twigs Links

Solution

 No. of links l = b – n + 1

  No. of nodes n = b – l + 1 = 7 – 3 + 1 = 5

f-cutsets are written as

f-cutset 1: {1, 5}

f-cutset 2: {2, 5, 7}

f-cutset 3: {3, 6, 7}

f-cutset 4: {4, 6}

Then oriented graph can be drawn as

Fig. 7.43

Fig. 7.44

Fig. 7.45

f-cutset 3: {3, 2}

f-cutset 4: {4, 2, 1}

f-cutset 5: {5, 1}

Twigs: {a, c, e}

Links: {b, d, f}

Twigs: {1, 2, 3, 4}

Links: {5, 6, 7}



Graph Theory 7.23

7.8 KIRCHHOFF�S VOLTAGE LAW

KVL states that if vk is the voltage drop across the kth branch, then

Σ vk = 0 …(7.8)

the sum being taken over all the branches in a given loop. If l is the number of loops or f-circuits, then there

will be l number of KVL equations, one for each loop. The KVL equation for the f-circuit or loop ‘i’ can be

written as

1

b

ik k

k

b v
=
å = 0 (h = 1, 2, …, l)

where bik is the elements of the tieset matrix B, b being the number of branches. The set of l KVL equations

can be written in matrix form.

B Vb = 0 …(7.9)

where Vb =

1

2

b

v

v

v

M

é ù
ê ú
ê ú
ê ú
ê úë û

 is a column vector of branch voltages.

and B is the fundamental circuit matrix.

7.9 KIRCHHOFF�S CURRENT LAW

KCL states that if ik is the current in the kth branch then at a given node

Σik = 0 …(7.10)

the sum being taken over all the branches incident at a given node. If there are ‘n’ nodes, there will ‘n’ such

equations, one for each nodes

1

b

ik k

k

a i
=
å = 0 (h = 1, 2, …, n)

so that set of n equations can be written in matrix form.

Aa Ib = 0 …(7.11)

where Ib =

1

2

b

i

i

i

M

é ù
ê ú
ê ú
ê ú
ê úë û

 is a column vector of branch currents.

and Aa is the complete incidence matrix.

If one node is taken as reference node or datum node, we can write the equation (7.11) as,

A Ib = 0 …(7.12)

where A is the incidence matrix of order (n – 1) × b.

We know that A = At Q

Equation (7.12) can be written as

At Q
 ⋅ Ib = 0

Premultiplying with At
–1, we get

At
–1 At Q Ib = At

–1 ⋅ 0

I Q Ib = 0

Q Ib = 0 …(7.13)

where Q is the f-cutset matrix.
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7.10 RELATION BETWEEN BRANCH VOLTAGE MATRIX Vb, TWIG

VOLTAGE MATRIX Vt AND NODE VOLTAGE MATRIX Vn

We know that B Vb = 0

[ Bt : Bl ] 
t

l

V

V

é ù
ê ú
ê ú
ê úë û

L  = 0

Bt Vt + Bl Vl = 0

Bl Vl = – Bt Vt

Premultiplying with Bl
–1.

Vl = – Bl
–1 Bt Vt

= – (Bl
–1 Bt) Vt …(7.14)

Now Vb =
t

l

V

V

é ù
ê ú
ê ú
ê úë û

L

=

( ) ( )
–1 –1

................ ..............

– –

t

l t l tt

UV

B B V B B

é ù é ù
ê ú ê ú

=ê ú ê ú
ê ú ê ú
ê ú ê úë û ë û

 ⋅ Vt

Vb = QT Vt …(7.15)

Also, Q = At
–1 A

QT = AT (At
–1)T

= AT (At
T)–1

Hence the Eq. (7.15) can be written as

Vb = AT (At
T)–1 Vt

= AT {(At
T)–1 Vt}

= AT Vn …(7.16)

where Vn = (At
T)–1 Vn is node voltage matrix.

7.11 RELATION BETWEEN BRANCH CURRENT MATRIX Ib AND

LOOP CURRENT MATRIX Il
We know that, A Ib = 0

[ At : Al ] 
t

l

I

I

é ù
ê ú
ê ú
ê úë û

L = 0

At It + Al Il = 0

At It = – Al Il

Premultiplying with At
–1.

It =  – At
–1 Al Il

= – (At
–1 Al) Il …(7.17)

 Now Ib =
t

l

I

I

é ù
ê ú
ê ú
ê úë û

L
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=

–1 –1
– ( ) – ( )

.................. ..................
t l l t l

l

A A I A A

I U

é ù é ù
ê ú ê ú=ê ú ê ú
ê ú ê úë û ë û

 ⋅ Il

Ib = BT Il …(7.18)

7.12 NETWORK EQUILIBRIUM EQUATION

7.12.1 KVL Equation

(1) If there is a voltage source vsk in the branch k having impedance

zk and carrying current ik then

vk = zk ik – vsk (k = 1, 2, …, b) …(7.19)

In matrix form,

Vb = Zb Ib – Vs …(7.20)

where Zb is the branch impedance matrix, Ib is the column vector of

branch currents and Vs is the column vector of source voltages. Hence, KVL equation can be written as

B Vb = 0

B (Zb Ib – Vs) = 0

B Zb Ib = BVs

Also, Ib = BT Il

B Zb B
T Il = B Vs …(7.21)

Z Il = E

where E = B Vs

and Z = B Zb B
T

The matrix Z is called loop impedance matrix.

(2) If there is a voltage source in series with an impedance and a current source in parallel with the

combination as shown in Fig. 7.47,

ik =
( )k skv v

zk

+
 – isk

vk = zk ik + zk isk – vsk …(7.22)

In matrix form, we can write,

Vb = Zb Ib + Zb Is – Vs …(7.23)

KVL equation is  B Vb = 0

BVb = B (Zb Ib + Zb Is – Vs) = 0

B Zb Ib = B Vs – B Zb Is

Now Ib = BT Il

B Zb B
T Il = B Vs – B Zb Is …(7.24)

Z Il = B Vs – B Zb Is

where Z = B Zb B
T is the loop impedance matrix. This is the generalised KVL equation.

7.12.2 KCL Equation

(1) If the branch k contains an input current source isk and an admittance yk, then

ik = yk vk – isk (k = 1, 2, …, b) …(7.25)

In the matrix form,

Ib = Yb Vb – Is …(7.26)

Fig. 7.46

Fig. 7.47
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where Yb is the branch admittance matrix.

Hence KCL equation is given by,

 A Ib = 0

A (Yb Vb – Is) = 0

A Yb Vb = A Is

Also Vb = AT Vn

A Yb A
T Vn = A Is …(7.27)

Y Vn = I

where Y = A Yb A
T

and I = A Is

The matrix Y is called admittance matrix. This is the KCL equation in matrix form.

In terms of f-cutset matrix, the KCL equation can be written as

Q Ib = 0

Q (Yb Vb – Vs) = 0

Q Yb Vb = Q Is

Also Vb = QT Vt

Q Yb Q
T Vt = Q Is …(7.28)

Y Vt = I

where Y = Q Yb Q
T

and I = Q Is

This is the KCL equation in matrix form.

(2) If there is a voltage source in series with an impedance and a current source in parallel with the

combination as shown in Fig. 7.49,

yk =
1

kz

ik = yk vk + yk vsk - isk …(7.29)

In matrix form,

Ib = Yb Vb + Yb Vs – Is …(7.30)

KCL equation will be given by,

A Ib = 0

A (Yb Ib + Yb Vs – Is) = 0

A Yb Vb = A Is – A Yb Vs

Also Vb = AT Vn

A Yb A
T Vn = A Is – A Yb Vs …(7.31)

Y Vn = A Is – A Vb Vs

where Y = A Yb A
T is the node admittance matrix. This is a generalised KCL equation.

In terms of f-cutset matrix, the KCL equation can be written as

Q Ib = 0

Q (Yb Vb + Yb Vs – Is) = 0

Q Yb Vb = Q Is – Q Yb Vs

Also Vb = QT Vt

Q Yb Q
T Vt = Q Is – Q Yb Vs

Y Vt = Q Is – Q Yb Vs …(7.32)

This is a generalised KCL equation.

Fig. 7.48

Fig. 7.49
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Example 7.14 For the network shown in Fig. 7.50, write down the tieset matrix and obtain the network

equilibrium equation in matrix form using KVL. Calculate the loop currents and branch currents.

Fig. 7.50

Solution The oriented graph and one of its trees are shown in Fig. 7.51.

Fig. 7.51
Tieset Matrix (B)

B =

1 2 3 4 5 6

1 0 0 1 1 01

2 0 1 0 –1 0 –1

0 0 1 0 –1 13

é ù
ê ú
ê ú
ë û

The KVL equation in matrix form is given by

 B Zb B
T Il = B Vs – B Zb Is

Here, Is = 0,

B Zb B
T Il = B Vs

Zb =

1 0 0 0 0 0 1 0 0 2

0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0

0 0 0 2 0 0 1 –1 0 0

0 0 0 0 2 0 1 0 –1 0

0 0 0 0 0 2 0 –1 1 0

T
sB V

é ù é ù é ù
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú= =
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û

 B Zb =  

1 0 0 0 0 0

0 1 0 0 0 0
1 0 0 1 1 0 1 0 0 2 2 0

0 0 1 0 0 0
0 1 0 1 0 1 0 1 0 –2 0 –2

0 0 0 2 0 0
0 0 1 0 1 1 0 0 1 0 –2 2

0 0 0 0 2 0

0 0 0 0 0 2

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú- - =
ê úê ú ê ú

-ë û ë ûê ú
ê ú
ê úë û

Tieset1: {1, 4, 5}

Tieset2: {2, 4, 6}

Tieset3: {3, 5, 6}
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 B Zb B
T =

1 0 0

0 1 0
1 0 0 2 2 0 5 –2 –2

0 0 1
0 1 0 –2 0 –2 –2 5 –2

1 –1 0
0 0 1 0 –2 2 –2 –2 5

1 0 –1

0 –1 1

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú=
ê úê ú ê ú

ë û ë ûê ú
ê ú
ê úë û

B Vs =

2

0
1 0 0 1 1 0 2

0
0 1 0 1 0 1 0

0
0 0 1 0 1 1 0

0

0

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú- - =
ê úê ú ê ú

-ë û ë ûê ú
ê ú
ê úë û

The KVL equation in matrix form is given by

1

2

3

5 –2 –2

–2 5 –2

–2 –2 5

l

l

l

I

I

I

é ùé ù ê úê ú ê úê ú ê úë û ë û

=

2

0

0

é ù
ê ú
ê ú
ë û

Solving this matrix equation, we get

1l
I =

6

7
 A

2l
I =

4

7
 A

3l
I =

4

7
 A

The branch currents are given by

Ib = BT Il

1

2

3

4

5

6

i

i

i

i

i

i

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

= 

1 0 0 6 / 7

0 1 0 4 / 7
6 / 7

0 0 1 4 / 7
4 / 7

1 –1 0 2 / 7
4 / 7

1 0 –1 2 / 7

0 –1 1 0

é ù é ù
ê ú ê ú
ê ú ê úé ù
ê ú ê úê ú =
ê ú ê úê ú

ë ûê ú ê ú
ê ú ê ú
ê ú ê úë û ë û

Example 7.15 For the network shown in Fig. 7.52, write down the tieset matrix and obtain the network

equilibrium equation in matrix form using KVL. Calculate loop currents.

Fig. 7.52
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Solution The oriented graph and its selected tree are shown in Fig. 7.53.

Fig. 7.53

Tieset Matrix (B)

B =

1 2 3 4 5 6

1 0 0 1 0 11

2 0 1 0 0 1 –1

3 0 0 1 –1 –1 0

é ù
ê ú
ê ú
ë û

The KVL equation in matrix form is given by

 B Zb B
T Il = B Vs – B Zb Is

 Here, Is = 0,

 B Zb B
T Il = B Vs

Zb =

6 0 0 0 0 0

0 4 0 0 0 0

0 0 2 0 0 0

0 0 0 4 0 0

0 0 0 0 6 0

0 0 0 0 0 2

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

BT  = 

1 0 0

0 1 0

0 0 1

1 0 –1

0 1 –1

1 –1 0

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

Vs = 

12

–6

8

0

0

0

é ù
ê ú
ê ú
-ê ú

ê ú
ê ú
ê ú
ê úë û

B Zb =

6 0 0 0 0 0

0 4 0 0 0 0
1 0 0 1 0 1 6 0 0 4 0 2

0 0 2 0 0 0
0 1 0 0 1 –1 0 4 0 0 6 –2

0 0 0 4 0 0
0 0 1 –1 –1 0 0 0 2 –4 –6 0

0 0 0 0 6 0

0 0 0 0 0 2

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú=
ê úê ú ê ú

ë û ë ûê ú
ê ú
ê úë û

 B Zb B
T =

1 0 0

0 1 0
6 0 0 4 0 2 12 –2 –4

0 0 1
0 4 0 0 6 –2 –2 12 –6

1 0 –1
0 0 2 –4 –6 0 –4 –6 12

0 1 –1

1 –1 0

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú=
ê úê ú ê ú

ë û ë ûê ú
ê ú
ê úë û

Tieset1: {1, 4, 6}

Tieset2: {2, 5, 6}

Tieset3: {3, 5, 4}
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B Vs =

12

–6
1 0 0 1 0 1 12

–8
0 1 0 0 1 –1 –6

0
0 0 1 –1 –1 0 –8

0

0

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú=
ê úê ú ê ú

ë û ë ûê ú
ê ú
ê úë û

Hence, the KVL equation in matrix form is given by

1

2

3

12 –2 –4

–2 12 –6

–4 –6 12

l

l

l

I

I

I

é ùé ù ê úê ú ê úê ú ê úë û ë û

=

12

–6

–8

é ù
ê ú
ê ú
ë û

Solving this matrix equation, we get

Il1
= 0.55 A

Il2
= –0.866 A

Il3
= –0.916 A

Example 7.16 For the network shown in Fig. 7.54, write down the tieset matrix and obtain the network

equilibrium equation in matrix form using KVL.

Fig. 7.54

Solution The oriented graph and its selected tree are shown in Fig. 7.55.

Fig. 7.55

Tieset 1: {1, 4, 6}

Tieset 2: {2, 5, 6}

Tieset 3: {3, 5, 4}
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Tieset Matrix (B)

B =

1 2 3 4 5 6

1 1 0 0 1 0 1

2 0 1 0 0 1 –1

3 0 0 1 –1 –1 0

é ù
ê ú
ê ú
ë û

The KVL equation in matrix form is given by

B Zb B
T Il = B Vs – B Zb Is

Zb =

2 0 0 0 0 0

0 2 0 0 0 0

0 0 5 0 0 0

0 0 0 5 0 0

0 0 0 0 5 0

0 0 0 0 0 – 4

j

j

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

BT = 

1 0 0

0 1 0

0 0 1

1 0 –1

0 1 –1

1 –1 0

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

Vs = 

10

0

0

0

0

0

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

Is = 

0

0

–2

0

0

0

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

B Zb= 

1 0 0 1 0 1

0 1 0 0 1 –1

0 0 1 –1 –1 0

é ù
ê ú
ê ú
ë û

2 0 0 0 0 0

0 2 0 0 0 0

0 0 5 0 0 0

0 0 0 5 0 0

0 0 0 0 5 0

0 0 0 0 0 4

j

j

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

-ê úë û

 = 

2 0 0 5 0 – 4

0 2 0 0 5 4

0 0 5 –5 – 5 0

j

j j

j

é ù
ê ú
ê ú
ë û

B Zb B
T =

1 0 0

0 1 0
2 0 0 5 0 – 4 7 – 4 4 –5

0 0 1
0 2 0 0 5 4 4 2 1 – 5

1 0 –1
0 0 5 –5 – 5 0 –5 – 5 10 5

0 1 –1

1 –1 0

j j j

j j j j j

j j j

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú= +
ê úê ú ê ú

+ë û ë ûê ú
ê ú
ê úë û

B Vs  =

10

0
1 0 0 1 0 1 10

0
0 1 0 0 1 –1 0

0
0 0 1 –1 –1 0 0

0

0

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú=
ê úê ú ê ú

ë û ë ûê ú
ê ú
ê úë û

 B Zb Is =

0

0
2 0 0 5 0 – 4 0

–2
0 2 0 0 5 4 0

0
0 0 5 –5 – 5 0 –10

0

0

j

j j

j

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú=
ê úê ú ê ú

ë û ë ûê ú
ê ú
ê úë û
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Hence, the KCL equation in matrix form is given by

B Zb B
T Il = B Vs – B Zb Is

1

2

3

7 4 4 5

4 2 1 5

5 5 10 5

l

l

l

Ij j

j j j I

j j I

é ù- -é ù ê úê ú+ - ê úê ú ê ú- - +ë û ë û
=

10 0 10

0 0 0

0 10 10

é ù é ù é ù
ê ú ê ú ê ú- =
ê ú ê ú ê ú

-ë û ë û ë û

Example 7.17 For the network shown in Fig. 7.56, write down the tieset matrix and obtain the network

equilibrium equation in matrix form using KVL.

Fig. 7.56

Solution The branch currents are so chosen that

they assume the direction out of the dotted

terminals. Because of this choice of current

direction, the mutual inductance is positive. The

oriented graph and its selected tree are shown in

Fig. 7.57.

Tieset Matrix (B)

B =

1 2 3

1 1 0

0 –1 1

é ù
ê úë û

The KVL equation in matrix form is given by

B Zb B
T Il = B Vs – B Zb Is

 Here Is = 0,

B Zb B
T Il = B Vs

 Zb =  

5 0 5.66 1 0 50 0

0 3 4 0 1 –1 0

5.66 0 5 10 0 1 0

T
s

j j

j B V

j j

Ð °é ù é ù é ù
ê ú ê ú ê ú- = =
ê ú ê ú ê ú

+ë û ë û ë û

B Zb =

5 0 5.66
1 1 0 5 3 4 5.66

0 3 4 0
0 –1 1 5.66 3 4 5 10

5.66 0 5 10

j j
j j j

j
j j j

j j

é ù
-é ù é ùê ú- =ê ú ê ú- + +ê úë û ë û+ë û

 B Zb B
T =

1 0
5 3 4 5.66 3 1 3 9.66

1 –1
5.66 3 4 5 10 3 9.66 8 6

0 1

j j j j j

j j j j j

é ù
- + - +é ù é ùê ú= =ê ú ê ú- + + - + +ê úë û ë û

ë û

 B Vs =

50 0
1 1 0 50 0

0
0 –1 1 0

0

Ð °é ù
Ð °é ù é ùê ú

ê ú ê úê úë û ë û
ë û

Fig. 7.57

Links: {1, 3}

Tieset 1: {1, 2}

Tieset 3: {3, 2}
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Hence, the KVL equation in matrix form is given by

1

2

3 1 3 9.66 50 0

3 9.66 8 6 0

l

l

Ij j

j j I

é ù+ - + Ð °é ù é ù
=ê úê ú ê ú- + +ë û ë ûë û

Example 7.18 For the network shown in Fig. 7.58, write down the tieset matrix and obtain network

equilibrium equation in matrix form using KVL.

 Fig. 7.58

Solution  The branch currents are so chosen that

they assume the direction out of the dotted

terminals. Because of this choice of current

direction, the mutual inductance is positive. The

oriented graph and its selected tree are shown in

Fig. 7.59.

Tieset Matrix (B)

B =

1 2 3

1 1 0

0 –1 1

é ù
ê úë û

The KVL equation in matrix form is given by

B Zb B
T Il = B Vs – B Zb Is

 Here Is = 0,

 B Zb B
T Il =  B Vs

 Zb =

3 4 3 0 1 0

3 5 0 1 –1

0 0 – 8 0 1

T

j j

j j B

j

+é ù é ù
ê ú ê ú=
ê ú ê ú
ë û ë û

Vs  = 

50 45

0

0

Ð °é ù
ê ú
ê ú
ë û

B Zb =

3 4 3 0
1 1 0 3 7 8 0

3 5 0
0 –1 1 – 3 – 5 – 8

0 0 – 8

j j
j j

j j
j j j

j

+é ù
+é ù é ùê ú =ê ú ê úê úë û ë û

ë û

 B Zb B
T =

1 0
3 7 8 0 3 15 – 8

1 –1
– 3 – 5 – 8 – 8 – 3

0 1

j j j j

j j j j j

é ù
+ +é ù é ùê ú =ê ú ê úê úë û ë û

ë û

 B Vs =

50 45
1 1 0 50 45

0
0 –1 1 0

0

Ð °é ù
Ð °é ù é ùê ú

ê ú ê úê úë û ë û
ë û

Hence the KVL equation in matrix form is given by,

1

3

3 15 – 8

– 8 – 3

l

l

Ij j

Ij j

é ù+é ù
ê úê úë û ë û

=
50 45

0

Ð °é ù
ê úë û

Fig. 7.59

Links: {1, 3}

Tieset 1: {1, 2}

Tieset 3: {3, 2}
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Example 7.19 For the network shown in Fig. 7.60 ,obtain equilibrium equation on node basis.

Fig. 7.60

Solution The oriented graph and one tree are

shown in Fig. 7.61.

Q =

1 2 3 4

1 –1 0 01

3 0 –1 1 1

é ù
ê úë û

The KCL equation in matrix form is given by

Q Yb Q
T Vt = Q Is – Q Yb Vs

 Here, Vs = 0

QYb Q
T Vt = QIs

 Current entering into the node is taken as negative.

Yb =

5 0 0 0

0 5 0 0

0 0 5 0

0 0 0 10

é ù
ê ú
ê ú
ê ú
ê úë û

QT = 

1 0

–1 –1

0 1

0 1

é ù
ê ú
ê ú
ê ú
ê úë û

Is = 

–10

0

0

0

é ù
ê ú
ê ú
ê ú
ê úë û

QYb =

5 0 0 0

1 –1 0 0 0 5 0 0

0 –1 1 1 0 0 5 0

0 0 0 10

é ù
ê úé ù
ê úê úë û ê ú
ê úë û

= 
5 –5 0 0

0 –5 5 10

é ù
ê úë û

QYb Q
T =

1 0

5 –5 0 0 –1 –1 10 5

0 –5 5 10 0 1 5 20

0 1

é ù
ê úé ù é ù

=ê úê ú ê úë û ë ûê ú
ê úë û

QIs =

–10

1 –1 0 0 0 –10

0 –1 1 1 0 0

0

é ù
ê úé ù é ù

=ê úê ú ê úë û ë ûê ú
ê úë û

Hence, KCL equation will be written as

1

3

10 5

5 20

t

t

v

v

é ùé ù
ê úê úë û ë û

=
–10

0

é ù
ê úë û

 Fig. 7.61
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Solving this matrix equation, we get

vt1
= –

8

7
 V

vt3
=  

2

7
V

Example 7.20 Calculate the twig voltages using KCL equation for the network shown in Fig. 7.62.

Fig. 7.62

Solution The oriented graph and one of

the trees are shown in Fig. 7.63.

f-cutset 1: {1, 4, 5, 6}

f-cutset 2: {2, 4, 5}

f-cutset 3: {3, 4, 6}

Q =

1 2 3 4 5 6

1 1 0 0 –1 –1 1

2 0 1 0 –1 –1 0

3 0 0 1 –1 0 1

é ù
ê ú
ê ú
ë û

The network equilibrium equation on

node basis can be written as

QYb Q
T Vt = QIs – QYb Vs

 Yb =

0.2 0 0 0 0 0

0 0.2 0 0 0 0

0 0 0.2 0 0 0

0 0 0 0.1 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.1

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

Is = 

0 910

0 0

0 0

0 0

0 0

0 0

sV

é ù é ù
ê ú ê ú
ê ú ê ú
ê ú ê ú=
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úë û ë û

 QYb =

0.2 0 0 0 0 0

0 0.2 0 0 0 0
1 0 0 –1 –1 1

0 0 0.2 0 0 0
0 1 0 –1 –1 0

0 0 0 0.1 0 0
0 0 1 –1 0 1

0 0 0 0 0.5 0

0 0 0 0 0 0.1

é ù
ê ú
ê úé ù
ê úê ú
ê úê ú

ë û ê ú
ê ú
ê úë û

Fig. 7.63

f-cutset 1: {1, 4, 5, 6}

f-cutset 2: {2, 4, 5}

f-cutset 3: {3, 4, 6}
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 QYb Q
T =

1 0 0

0 1 0
0.2 0 0 –0.1 –0.5 0.1 0.9 0.6 0.2

0 0 1
0 0.2 0 –0.1 –0.5 0 0.6 0.8 0.1

–1 –1 –1
0 0 0.2 –0.1 0 0.1 0.2 0.1 0.3

–1 –1 0

1 0 1

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú=
ê úê ú ê ú

ë û ë ûê ú
ê ú
ê úë û

QIs =

0

0
1 0 0 –1 –1 1 0

0
0 1 0 –1 –1 0 0

0
0 0 1 –1 0 1 0

0

0

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú=
ê úê ú ê ú

ë û ë ûê ú
ê ú
ê úë û

QYb Vs =

910

0
0.2 0 0 –0.1 –0.5 0.1 182

0
0 0.2 0 –0.1 –0.5 0 0

0
0 0 0.2 –0.1 0 0.1 0

0

0

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú=
ê úê ú ê ú

ë û ë ûê ú
ê ú
ê úë û

QIs – QYbVs =

–182

0

0

é ù
ê ú
ê ú
ë û

Hence, KCL equation can be written as,

QYb Q
T Vt = QIs – QYb Vs

1

2

3

0.9 0.6 0.2

0.6 0.8 0.1

0.2 0.1 0.3

t

t

t

v

v

v

é ùé ù ê úê ú ê úê ú ê úë û ë û

=

–182

0

0

é ù
ê ú
ê ú
ë û

Solving this matrix equation, we get

vt1
= –460 V

vt2
= 320 V

vt3
= 200 V

Example 7.21 For the network shown in Fig. 7.64, write down the f-cutset matrix and obtain the network

equilibrium equation in matrix form using KCL and calculate v.

Fig. 7.64
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Solution The oriented graph and its

selected tree are shown in Fig. 7.65.

Since voltage v is to be determined,

branch 2 is chosen as twig.

Q =

1 2 3 4

–1 1 1 0

0 0 –1 1

é ù
ê úë û

The KCL equation in matrix form is given by

 Q Yb Q
T Vt = Q Is – Q Yb Vs

Yb =

0.5 0 0 0 –1 0 0 2

0 0.5 0 0 1 0 0 0

0 0 0.5 0 1 –1 0 0

0 0 0 0.5 0 1 –2 0

T
s sQ I V

v

é ù é ù é ù é ù
ê ú ê ú ê ú ê ú

= = =ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê úë û ë û ë û ë û

QYb =

0.5 0 0 0

1 1 1 0 0 0.5 0 0 0.5 0.5 0.5 0

0 0 1 1 0 0 0.5 0 0 0 0.5 0.5

0 0 0 0.5

é ù
ê ú- -é ù é ù

=ê úê ú ê ú- -ë û ë ûê ú
ê úë û

QYb Q
T =

1 0

0.5 0.5 0.5 0 1 0 1.5 0.5

0 0 –0.5 0.5 1 1 0.5 1

0 1

-é ù
ê ú- -é ù é ù

=ê úê ú ê ú- -ë û ë ûê ú
ê úë û

QIs =

0

–1 1 1 0 0 0

0 0 –1 1 0 –2

–2

v

v

é ù
ê úé ù é ù

=ê úê ú ê úë û ë ûê ú
ê úë û

QYb Vs =

2

–0.5 0.5 0.5 0 0 –1

0 0 –0.5 0.5 0 0

0

é ù
ê úé ù é ù

=ê úê ú ê úë û ë ûê ú
ê úë û

QIs – QYbVs =
1

–2v

é ù
ê úë û

Hence, the KCL equation can be written as

QYb Q
T Vt = QIs – QYb Vs

2

4

1.5 –0.5

–0.5 1

t

t

v

v

é ùé ù
ê úê úë û ë û

=
1

–2v

é ù
ê úë û

From the figure, 
2t

v = v

Fig. 7.65

Twigs: {2, 4}

f-cutset 2: {2, 1, 3}

f-cutset 3: {4, 3}
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Solving this matrix equation, we get

2t
v = 0.44 V

4t
v = 0.66 V

v =
2t

v  = 0.44 V

Example 7.22 For the network shown in Fig. 7.66, write down the f-cutset matrix and obtain the network

equilibrium equation in matrix form using KCL and calculate v.

Fig. 7.66

Solution  The voltage and current sources are converted into accompanied sources by source-shifting method.

Fig. 7.67

The oriented graph and its selected tree are

shown in Fig. 7.68.

 Q =

1 2 3 4

1 0 0 –1

0 1 –1 0

é ù
ê úë û

The KCL equation in the matrix form is

given by

 QYb Q
TVt = QIs – QYbVs

Yb =

0.25 0 0 0

0 0.5 0 0

0 0 0.25 0

0 0 0 0.5

é ù
ê ú
ê ú
ê ú
ê úë û

QT =

1 0 0 1

0 1 0 1

0 –1 0.5 0

1 0 –0.5 0

s sI V

é ù é ù é ù
ê ú ê ú ê ú

= =ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û

Fig. 7.68

Twigs: {1, 2}

f-cutset 1: {1, 4}

f-cutset 2: {2, 3}
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QYb =

0.25 0 0 0

1 0 0 –1 0 0.5 0 0 0.25 0 0 –0.5

0 1 –1 0 0 0 0.25 0 0 0.5 –0.25 0

0 0 0 0.5

é ù
ê úé ù é ù

=ê úê ú ê ú
ë û ë ûê ú

ê úë û

 QYb Q
T =

1 0

0.25 0 0 –0.5 0 1 0.75 0

0 0.5 –0.25 0 0 –1 0 0.75

1 0

é ù
ê úé ù é ù

=ê úê ú ê úë û ë ûê ú
ê úë û

QIs =

0

1 0 0 –1 0 0.5

0 1 –1 0 0.5 –0.5

–0.5

é ù
ê úé ù é ù

=ê úê ú ê úë û ë ûê ú
ê úë û

QYb Vs =

1

0.25 0 0 –0.5 1 0.25

0 0.5 –0.25 0 0 0.5

0

é ù
ê úé ù é ù

=ê úê ú ê úë û ë ûê ú
ê úë û

QIs – QYbVs =
0.25

–1

é ù
ê úë û

Hence, the KCL equation can be written as

QYb Q
T Vt = QIs – QYb Vs

1

2

0.75 0

0 0.75

t

t

v

v

é ùé ù
ê úê ú

ë û ë û
= 

0.25

–1

é ù
ê úë û

Solving this matrix equation, we get

1t
v = 0.33 V

2t
v = –1.33 V

From the figure, v = 1 + 2t
v = – 0.33 V

7.13 DUALITY

Two networks are said to be the dual of each other when the mesh equations of one network are the same as

the node equations of the other. Kirchhoff’s voltage law and current law are same, word for word, with

voltage substituted for current, independent loop for independent node pair, etc. Similarly, two graphs are

said to be the dual of each other if the incidence matrix of any one of them is equal to the circuit matrix of the

other. Only planar networks have duals.

Table 7.1 Conversion for Dual Electrical Circuits

Loop basis Node basis

Current Voltage

Resistance Conductance

Inductance Capacitance

Branch current Branch voltage

Mesh Node

Short circuit Open circuit

Parallel path Series path
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The following steps are involved in constructing the dual of a network:

(1) Place a node inside each mesh of the given network. These internal nodes correspond to the independent

nodes in the dual network.

(2) Place a node outside the given network. The external node corresponds to the datum node in the dual

network.

(3) Connect all internal nodes in the adjacent mesh by dashed lines crossing the common branches.

Elements which are the duals of the common branches will form the branches connecting the

corresponding independent node in the dual network.

(4) Connect all internal nodes to the external node by dashed lines corresponding to all external branches.

Duals of these external branches will form the branches connecting independent nodes and the datum

node.

(5) A clockwise current in a mesh corresponds to a positive polarity (with respect to the datum node) at

the dual independent node.

(6) A voltage rise in the direction of a clockwise mesh current corresponds to a current flowing towards

the dual independent node.

Example 7.23 Draw the dual of the network shown in Fig. 7.69.

Fig. 7.69

Solution

(a) Place a node inside each mesh.

(b) Place a node outside the mesh which will correspond to the datum node.

(c) Connect two internal nodes through a dashed line. The element which is dual of the common branch (here

capacitance) will form the branch connecting the corresponding independent node in the dual network.

(d) Connect all internal nodes to the external node by dashed lines crossing all the branches. The dual of

these branches will form the branches connecting the independent node and datum.

Fig. 7.70
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Dual network

Fig. 7.71

Example 7.24 Draw the dual of the network of Fig. 7.72.

Fig. 7.72

Solution For drawing the dual network, proceed in the same way as in Example 7.23.

Fig. 7.73

Fig. 7.74
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Example 7.25 Draw the dual of the network shown in Fig. 7.75.

Fig. 7.75

Solution For drawing the dual network, proceed in the same way as in Example 7.23.

 Fig. 7.76

 Fig. 7.77
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Exercises

1. For the networks shown, write the incidence matrix, tieset matrix and f-cutset matrix.

(i)

Fig. 7.78
(ii)

Fig. 7.79
(iii)

Fig. 7.80
(iv)

Fig. 7.81

2. For the graph shown, write the incidence

matrix, tieset matrix and f-cutset matrix.

Fig. 7.82
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3. The incidence matrix is given as follows:
Branches →

1 2 3 4 5 6 7 8

1 1 0 0 0 0 1 0

0 1 1 0 1 0 0 0

0 0 1 1 0 1 0 0

1 0 0 1 0 0 0 1

- -

- -

Draw oriented graph and write tieset matrix.

4. The incidence matrix is given below:
                  Branches →

A =

1 2 3 4 5 6 7 8 9 10

0 0 1 1 1 1 0 1 0 0

0 –1 –1 0 0 0 –1 0 0 –1

–1 1 0 0 0 0 0 –1 –1 1

1 0 0 0 –1 –1 1 0 0 0

Draw the oriented graph.

5. For the network shown in Fig. 7.83, draw the oriented graph and obtain the tieset matrix. Use this

matrix to calculate the current.

Fig. 7.83

6. Draw the dual networks for the circuits shown:

(i)

Fig. 7.84

(ii)

Fig. 7.85
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(iii)

Fig. 7.86

(iv)

Fig. 7.87

(v)

Fig. 7.88

7. Using the principles of network topology, write the loop/node equation in matrix form for the network

shown in Fig. 7.89.

Fig. 7.89
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Objective-Type Questions

1. The number of independent loops for a network with n nodes and b branches is

(a) n – 1 (b) b – n

(c) b – n + 1 (d) independent of the number of nodes

2. A network has 7 nodes and 5 independent loops. The number of branched in the network is

(a) 13 (b) 12 (c) 11 (d) 10

3. Identify which of the following is NOT a tree of

the graph shown in Fig. 7.90.

(a) begh (b) defg

(c) adfg (d) aegh

4. The minimum number of equations required to

analyze the circuit shown in Fig. 7.91 is

(a) 3 (b) 4

(c) 6 (d) 7

5. Consider the network graph shown in Fig. 7.92.

Fig. 7.92

Which one of the following is NOT a tree of this graph?

(a) (b) (c) (d)

Fig. 7.90

Fig. 7.91
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6. Figure below shows a network and its graph is drawn aside. A proper tree chosen for analysing the

network will contain the edges.

(a) ab, bc, ad (b) ab, bc, ca (c) ab, bd, cd (d) ac, bd, ad

Fig. 7.93

7. The graph of an electrical network has n nodes  and b branches. The number of links with respect to the

choice of a tree is given by

(a) b – n + 1 (b) b + n (c) n – b + 1 (d) n – 2b – 1

8. In the graph shown in Fig. 7.94, one possible tree

is formed by the branches 4, 5, 6, 7. Then one

possible fundamental cut set is

(a) 1, 2, 3, 8 (b) 1, 2, 5, 6

(c) 1, 5, 6, 8 (d) 1, 2, 3, 7, 8

9. Which one of the following represents the total

number of trees in the graph given in Fig. 7.95?

(a) 4 (b) C

(c) 5 (d) 8

10. Which one of the following is a cutset of the

graph shown in the Fig. 7.96?

(a) 1, 2, 3 and 4 (b) 2, 3, 4 and 6

(c) 1, 4, 5 and 6 (d) 1, 2, 4 and 5

Fig. 7.94

Fig. 7.95

Fig. 7.96

Answers to Objective-Type Questions

1.(c)2.(c)3.(c)4.(b)5.(b)6.(d)

7.(a)8.(d)9.(d)10.(d)
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8

8.1 INTRODUCTION

Whenever a network containing energy storage elements such as inductor or capacitor is switched from one

condition to another, either by change in applied source or change in network elements, the response current

and voltage change from one state to the other state. The time taken to change from an initial steady state to

the final steady state is known as the transient period. This response is known as transient response or

transients. The response of the network after it attains a final steady value is independent of time and is called

the steady-state response. The complete response of the network is determined with the help of a differential

equation.

8.2 NETWORK EQUATIONS

A circuit contains resistors, inductors, capacitors and energy sources. We must first write network equations

for current and voltage relationship of each circuit element in the time domain.

(1) Resistor For the resistor shown in Fig. 8.1, the v–i relationship in time domain is

v (t) = R i (t)

Fig. 8.1

(2) Inductor For the inductor shown in Fig. 8.2, the v–i relationships in the time domain are

v (t) = L 
d

d

i

t
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i (t) =
1

L
0

( )

t

v tò dt + i (0)

where i (0) is the initial current passing through the inductor.

Fig. 8.2

(3) Capacitor For the capacitor shown in Fig. 8.3, the v–i relationships in the time domain are

i (t) = C 
d ( )

d

v t

t

v (t) =
1

C
0

( )

t

i tò dt + v (0)

where v(0) is the initial voltage on the capacitor.

Fig. 8.3

8.3 INITIAL CONDITIONS

In solving the differential equations in the network, we get some arbitary constant. Initial conditions are used

to determine these arbitrary constants. It helps us to know the behaviour of elements at the instant of switching.

To differentiate between the time immediately before and immediately after the switching, the signs ‘–’

and ‘+’ are used. The conditions existing just before switching are denoted as i (0–), v (0–), etc. Conditions just

after switching are denoted as i (0+), v (0+).

Sometimes conditions at t = ∞ are used in the evaluation of arbitrary constants. These are known as final

conditions.
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In solving the problems for initial conditions in the network, we divide the time period in following ways:

(1) Just before switching (from t = –∞ to t = 0–)

(2) Just after switching (at t = 0+)

(3) After switching (for t > 0)

If the network remains in one condition for a long time without any switching action, it is said to be under

steady-state condition.

(1) Initial conditions for the resistor For a resistor, current and voltage are related by v(t) = Ri(t). The

current through a resistor will change instantaneously if the voltage changes instantaneously. Similarly, the

voltage will change instantaneously if the current changes instantaneously.

(2) Initial conditions for the inductor Voltage across the inductor is proportional to the rate of change

of current. It is impossible to change the current through an inductor by a finite amount in zero time. This

requires an infinite voltage across the inductor. An inductor does not allow an abrupt change in the current

through it.

If there is no current flowing through the inductor at t = 0–, the inductor will act as an open circuit at t = 0+.

If a current of value I0 flows through the inductor at t = 0–, the inductor can be regarded as a current source of

I0 ampere at t = 0+.

(3) Initial conditions for the capacitor Current through a capacitor is proportional to the rate of change

of voltage. It is impossible to change the voltage across a capacitor by a finite amount in zero time. This requires

an infinite current through the capacitor. A capacitor does not allow an abrupt change in voltage across it.

If there is no voltage across the capacitor at t = 0–, the capacitor will act as a short circuit at t = 0+. If the

capacitor is charged to a voltage V0 at t = 0–, it can be regarded as a voltage source of V0 volt at t = 0+. These

conditions are summarized in Fig. 8.4.

Fig. 8.4

Similarly, we can draw the chart for final conditions as shown in Fig. 8.5.
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Fig. 8.5

8.4 PROCEDURE FOR EVALUATING INITIAL CONDITIONS

(1) Draw the equivalent network at t = 0–. Before switching action takes place, i.e., for t = –∞ to t = 0–,

the network is under steady-state conditions. Hence, find the current flowing through the inductors

iL (0–) and voltage across the capacitor vC(0–).

(2) Draw the equivalent network at t = 0+, i.e., immediately after switching. Replace all the inductors

with open circuits or with current sources iL(0+) and replace all capacitors by short circuits or voltage

sources vC (0+). Resistors are kept as it is in the network.

(3) Initial voltages or currents in the network are determined from the equivalent network at t = 0+.

(4) Initial conditions, i.e., 
2 2

2 2

d d d d
(0 ), (0 ), (0 ), (0 )

d d d d

i v i v

t t t t

+ + + +  are determined by writing integro-

differential equations for the network for t > 0, i.e., after the switching action by making use of initial
condition.

Example 8.1 In the network of Fig. 8.6, the switch is closed at t = 0. With the capacitor uncharged, find

value for 

2

2

di d i
i, and

dt dt
 at t = 0+.

Fig. 8.6

Solution

At t = 0–, the capacitor is uncharged.

vC (0–) = 0

i (0–) = 0
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At t = 0+, the capacitor acts as a short circuit.

 i(0+) =
100

1000
 = 0.1 A

Writing KVL equation for t > 0,

100 – 1000i – 
–6

0

1
d

1 10

t

i t
´ ò = 0 …(i)

Differentiating the Eq. (i), we get

–1000 
d

d

i

t
 – 106 i = 0

d

d

i

t
= – 

6
10

1000
 i …(ii)

At t = 0+

d

d

i

t
(0+) = –

6
10

1000
 i (0+)

= –103 × 0.1 = –100 A/s

Differentiating the Eq. (ii), we get
2

2

d

d

i

t
= – 

6
10 d

1000 d

i

t
At t = 0+

2

2

d

d

i

t
(0+) = – 

6
10 d

1000 d

i

t
(0+)

= – 

6
10

1000
 (–100) = 105 A/s2

Example 8.2 In the given network of Fig. 8.9, the switch is closed at t = 0. With zero current in the

inductor, find i, 
di

dt
 and 

2

2

d i

dt
 at t = 0+.

Fig. 8.9

Solution

At t = 0–, no current flows through the inductor.

i (0–) = 0

At t = 0+, the inductor acts as an open circuit.

 i (0+) = 0

Writing KVL equation for t > 0,

100 – 10i – 1
d

d

i

t
= 0 …(i)

Fig. 8.8

Fig. 8.7

Fig. 8.10
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d

d

i

t
= 100 – 10i …(ii)

At t = 0+

d

d

i

t
(0+) = 100 – 10i (0+)

= 100 – 10 (0) = 100 A/s

Differentiating the Eq. (ii), we get

2

2

d

d

i

t
=  –10 

d

d

i

t

At t = 0+

2

2

d

d

i

t
(0+) = –10 

d

d

i

t
(0+)

= –10 (100) = –1000 A/s2

Example 8.3 In the network shown in Fig. 8.12, the switch is closed. Assuming all initial conditions as

zero, find i, 
di

dt
 and 

2

2

d i

dt
 at t = 0+.

Fig. 8.12

Solution

At t = 0–,

i (0–) = 0

 vC (0–) = 0

At t = 0+, the inductor acts as an open circuit and the

capacitor acts as a short circuit.

i (0+) = 0

 vC (0+) = 0

Writing KVL equation for t > 0,

10 – 10i – 1 
d

d

i

t
 – 

–6
0

1
d

10 10

t

i t
´ ò  =  0

 10 =  10i + 
d

d

i

t
 + 

–6
0

1
d

10 10

t

i t
´ ò …(i)

Fig. 8.11

Fig. 8.13

Fig. 8.14



Transient Analysis 8.7

At t = 0+

10 = 10i (0+) + 
d

(0 ) 0
d

i

t

+ +

d

d

i

t
(0+) = 10 A/s

Differentiating the Eq. (i), we get

 0 = 10 
d

d

i

t
 + 

2

2

d

d

i

t
 + 

–6

1

10 10´
 i

At t = 0+

 0 = 10
d

d

i

t
(0+) + 

2

2

d

d

i

t
(0+) + 

–5

1

10
i(0+)

2

2

d

d

i

t
 (0+) = –10 × 10 = –100 A/s2

Example 8.4 In the network shown in Fig. 8.15, at t = 0, the switch is opened. Calculate v, 

2

2

dv d v
and

dt dt
at t = 0+.

Fig. 8.15

Solution At t = 0–, the switch is closed. Hence, no

current flows through the inductor.

 iL (0–) = 0

At t = 0+, the inductor acts as an open circuit.

iL (0+) = 0

v (0+) = 100 × 1 = 100 V

Writing KCL equation for t > 0,

100

v
 + 

0

1
d

1

t

v tò = 1 …(i)

Differentiating the Eq. (i), we get

1

100
 
d

d

v

t
+ v = 0 …(ii)

At t = 0+

d
(0 )

d

v

t

+ = –100v (0+)

= –100 × 100 = –10000 V/s

Fig. 8.16

Fig. 8.17
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Differentiating the Eq. (ii), we get

 
2

2

1 d d

100 dd

v v

tt
+ = 0

At t = 0+

2

2

d
(0 )

d

v

t

+
= –100 

d

d

v

t
(0+)

= –100 × (–104) = 106 V/s2

Example 8.5 In the given network of Fig. 8.18, the switch is opened at t = 0. Solve for v,

dv

dt
 and 

2

2

d v

dt
 at t = 0+.

Fig. 8.18

Solution At t = 0–, switch is closed. Hence, the voltage across

the capacitor is zero.

v (0–) = vC (0–) = 0

At t = 0+, the capacitor acts as a short circuit.

v (0+) = 0

Writing KCL equation for t > 0,

1000

v
 + 10–6 

d

d

v

t = 10 …(i)

At t = 0+

(0 )

1000

v
+

 + 10–6 
d

(0 )
d

v

t

+
= 10

d
(0 )

d

v

t

+
= –6

10

10
 = 10 × 106 V/s

Differentiating the Eq. (i),

 
1 d

1000 d

v

t
 + 10–6 

2

2

d

d

v

t
= 0

At t = 0+

1 d

1000 d

v

t
(0+) + 10–6 

2

2

d

d

v

t
(0+) = 0

2

2

d

d

v

t
(0+) = – 

–6

1

1000 10´
 × 10 × 106 = –10 × 109 V/s2

Fig. 8.19

Fig. 8.20
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Example 8.6 For the network shown in Fig. 8.21, switch is closed at t = 0, determine v, 
dv

dt
 and 

2

2

d v

dt
 at

t = 0+.

Fig. 8.21

Solution At t = 0–, no current flows through the inductor and there is no voltage across the capacitor.

iL (0–) = 0

 v (0–) = vC (0–) = 0

At t = 0+, the inductor acts as an open circuit and the capacitor acts as a short circuit.

Fig. 8.22

iL (0+) = 0

 v (0+) = vc (0
+) = 0

For t > 0,

Fig. 8.23

Writing KCL equation for t > 0,

10 =
–6

0

1 d
d 0.5 10

2 1 d

t
v v

v t
t

+ + ×∫ …(i)

At t = 0+

10 =
(0 )

2

v
+

+ 0 + 0.5 × 10–6 
d

(0 )
d

v

t

+

d

d

v

t
 (0+) = 20 × 106 V/s

Differentiating the Eq. (i), we get

0 =
1 d

2 d

v

t
 + v + 0.5 × 10–6 

2

2

d

d

v

t
At t = 0+

0 =
2

–6

2

1 d d
(0 ) (0 ) 0.5 10 (0 )

2 d d

v v
v

t t

+ + ++ + ´
2

2

d

d

v

t
(0+) = –20 × 1012 V/s2
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Example 8.7 In the network shown in Fig. 8.24, the switch is changed from the position 1 to the position

2 at t = 0, steady condition having reached before switching. Find the values of i, 

2

2

di d i
and

dt dt
 at t = 0+.

Fig. 8.24

Solution At t = 0–, the network attains steady-state condition.

Hence, the capacitor acts as an open circuit.

vC (0–) = 30 V

 i (0–) = 0

At t = 0+, the capacitor acts as a voltage source of 30 V.

 i (0+) = – 
30

30
 = –1 A

Writing KVL equation for t > 0,

–10i –20i –  
–6

0

1

1 10

t

i
´ ò  dt – 30 = 0 …(i)

Differentating the equation (i), we get

–30
d

d

i

t
 – 106i = 0 …(ii)

At t = 0+

–30
d

(0 )
d

i

t

+
 – 106i (0+) = 0

6
d 10 (–1)

(0 ) –
d 30

i

t

+ = = 0.33 × 105 A/s

Differentiating the Eq. (ii), we get

–30

2

2

d

d

i

t
 − 106

d

d

i

t
= 0

At t = 0+

–30 

2

2

d

d

i

t
(0+) − 106 

d

d

i

t
(0+) = 0

2

3

d
(0 )

d

i

t

+ =
6 5

10 0.33 10

30

´ ´-  = – 1.1× 109 A/s2

Fig. 8.25

Fig. 8.26

Fig. 8.27
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Example 8.8 In the network shown in Fig. 8.28, the switch is changed from the position 1 to the position

2 at t = 0, steady condition having reached before switching. Find the values of i, 

2

2

di d i
and

dt dt
 at t = 0+.

Fig. 8.28

Solution At t = 0–, the network attains steady-state

condition. Hence, the inductor acts as a short circuit.

 i (0–) =
20

10
 = 2 A

At t = 0+, the inductor acts as a current source of 2 A.

i (0+) = 2 A

Writing KVL equation for t > 0,

–30i – 1
d

d

i

t
= 0 …(i)

At t = 0+

–30 i (0+) – 
d

(0 )
d

i

t

+ = 0

d
(0 )

d

i

t

+  = –30 × 2 = –60 A/s

Differentiating the Eq. (i), we get

–30 
d

d

i

t
– 

2

2

d

d

i

t
= 0

At t = 0+

–30 
2

2

d d
(0 ) – (0 )

d d

i i

t t

+ +
= 0

2

2

d
(0 )

d

i

t

+ = 1800 A/s2

Fig. 8.29

Fig. 8.30

Fig. 8.31
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Example 8.9 In the network shown in Fig. 8.32, the switch is changed from the position 1 to the position

2 at t = 0, steady condition having reached before switching. Find the values of i, 

2

2

di d i
and

dt dt
 at t = 0+.

Fig. 8.32

Solution At t = 0–, the network attains steady state. Hence,

the capacitor acts as an open circuit.

vC (0–) = 40 V

 i (0–) = 0

At t = 0+, the capacitor acts as a voltage source of 40 V

and the inductor acts as an open circuit.

vC (0+) = 40 V

 i (0+) = 0

Writing KVL equation for t > 0,

–1
d

d

i

t
– 20i –

–6
0

1
d – 40

1 10

t

i t
´ ò  = 0 …(i)

At t = 0+

– 
d

d

i

t
(0+) – 20i (0+) – 0 – 40 = 0

d

d

i

t
(0+) = – 40 A/s

Differentiating the equation (i), we get

–
2

2

d d
20

dd

i i

tt
-  – 106 i – 0 = 0

At t = 0+

–
2

2

d d
(0 ) 20

dd

i i

tt

+ - (0+) – 106 i (0+) = 0

2

2

d
(0 )

d

i

t

+
= 800 A/s2

Example 8.10 In the network of Fig. 8.36, the switch is changed from the position ‘a’ to ‘b’ at

t = 0. Solve for i, 

2

2

di d i
and

dt dt
 at t = 0+.

Fig. 8.33

Fig. 8.34

Fig. 8.35
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Fig. 8.36

Solution At t = 0–, the network attains steady condition. Hence,

the inductor acts as a short circuit.

i (0–) =
100

1000
 = 0.1 A

At t = 0+, the inductor acts as a current source of

0.1 A and the capacitor acts as a short circuit.

 i(0+) = 0.1 A

Writing KVL equation for t > 0,

–6
0

1
– d

0.1 10

t

i t
´ ò – 1000 i – 1 

d

d

i

t
 = 0 …(i)

At t = 0+

–0 – 1000 i(0+) –
d

d

i

t
(0+) = 0

d

d

i

t
(0+) = –1000 i (0+)

= –1000 × 0.1 = –100 A/s

Differentiating the Eq. (i), we get

2

–7 2

1 d d
– 1000

d10 d

i i
i

t t
- - = 0

At t = 0+

–107 i (0+) – 1000
d

d

i

t
(0+) – 

2

2

d
(0 )

d

i

t

+  = 0

2

2

d
(0 )

d

i

t

+
= –107 (0.1) – 1000 (–100) = –9 × 105 A/s2

Fig. 8.38

Fig. 8.39

Fig. 8.37
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Example 8.11 In the network shown in Fig. 8.40, assuming all initial conditions as zero, find

i1 (0
+), i2 (0

+), 
2 2

1 2 1 2

2 2

di di d i d i
(0 ) , (0 ) , (0 ) and (0 )

dt dt dt dt

+ + + +
 .

Fig. 8.40

Solution At t = 0–, all initial conditions are zero.

vC (0–) = 0

i1 (0
–) = 0

i2 (0
–) = 0

At t = 0+, the inductor acts as an open circuit and the

capacitor acts as a short circuit.

i1 (0
+) =

1

V

R
i2 (0

+) = 0

 vC (0+) = 0

Writing KVL equations for two meshes for t > 0,

R1i1 + 1 2

0

1
( – )d

t

i i t
C ò = V …(i)

 and R2 i2 + L 
2d

d

i

t
+ 2 1

0

1
( – )d

t

i i t
C ò = 0 …(ii)

From the equation (ii), at t = 0+

R2 i2 (0
+) + L 

0

2
2 1

0

d 1
(0 ) ( – )

d

i
i i

t C

+

+ + ò dt = 0

2d
(0 )

d

i

t

+
= 0

Differentiating the equation (i), we get

R1
1

1 2

d 1
( – )

d

i
i i

t C
+ = 0 …(iii)

At t = 0+

R1 
1

1 2

d 1 1
(0 ) (0 ) – (0 )

d

i
i i

t C C

+ + ++ = 0

R1 
1

1

d 1
(0 )

d

i V

t C R

+ + = 0

1d
(0 )

d

i

t

+
=

2
1

–
V

R C

Fig. 8.42

Fig. 8.41



Transient Analysis 8.15

Differentiating the equation (iii), we get

R1

2
1 1 2

2

d d d1 1
–

d dd

i i i

C t C tt
+ = 0

At t = 0+

2
1 1 2

1 2

d d d1 1
(0 ) (0 ) – (0 )

d dd

i i i
R

C t C tt

+ + ++ = 0

2
1

2

d
(0 )

d

i

t

+ =
3 2

1

V

R C

Differentiating the Eq. (ii), we get

2
2 2

2 2 12

d d 1
( – )

d d

i i
R L i i

t Ct
+ + = 0

At t = 0+

2
2

2

d
(0 )

d

i

t

+
= – 2 2

2 1

d 1
(0 ) [ (0 ) – (0 )]

d

R i
i i

L t LC

+ + +- = 
1

V

R LC

Example 8.12 In the network shown in Fig. 8.43, assuming all initial conditions as zero, find

2 2

2 2
1 2 1 2

1 2

di di d i d i
i , i , , , and at

dt dt dt dt
 t = 0+.

Fig. 8.43

Solution At t = 0–, all initial conditions are zero.

vC (0–) = 0

 i1 (0
–) = 0

i2 (0
–) = 0

At t = 0+, the capacitor acts as a short circuit and the

inductor acts as an open circuit.

i1(0
+) =

1

V

R
i2(0

+) = 0

 vC(0+) = 0

Writing KVL equation for t > 0,

1

0

1
d

t

i t
C ò + R1 (i1 – i2) = V …(i)

 and R1 (i2 – i1) + R2 i2 + L
2d

d

i

t
= 0 …(ii)

Fig. 8.44

Fig. 8.45
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From the Eq. (ii),

2d

d

i

t
=

1

L
[R1 i1 – (R1 + R2) i2] …(iii)

At t = 0+

2d

d

i

t
(0+) =

1

L
[R1 i1 (0

+) – (R1 + R2) i2 (0
+)]

=
1

L
 

1 1 2
1

– ( ) 0
V

R R R
R

é ù
+ê ú

ë û
=  

V

L

Differentiating the Eq. (i), we get

1 1 2
1 1

d d
–

d d

i i i
R R

C t t
+ = 0

1d

d

i

t
= 2 1

1

d

d

i i

t R C
- …(iv)

At t = 0+

1d
(0 )

d

i

t

+ = 2 1

1

d (0 )
(0 )

d

i i

t R C

+
+ -

=
2

1

V V

L R C
-

Differentiating the Eq. (iii), we get

2
2

2

d

d

i

t
= 1 2

1 1 2

d d1
– ( )

d d

i i
R R R

L t t

é ù+ê úë û
At t = 0+

2
2

2

d

d

i

t
(0+) = – V 

2

2
1

1 R

R LC L

æ ö
+ç ÷è ø

Differentiating the Eq. (iv), we get

2
1

2

d

d

i

t
=

2
2 1

2
1

d d1

dd

i i

R C tt
-

At t = 0+

2
1

2

d
(0 )

d

i

t

+ =

2
2 1

2
1

d d1
(0 ) (0 )

dd

i i

R C tt

+ +-

= – 2

2 2
1 1 1

1
–

VRV V V

R LC R C LL R C

æ ö
- -ç ÷è ø

= 2

3 22
11

2
–

VRV V

R LC LR C
-

Example 8.13 In the network shown in Fig. 8.46, a steady state is reached with the switch open. At t = 0,

the switch is closed. For the element values given, determine the value of va (0–), vb (0–), va (0+) and

vb (0
+).
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Fig. 8.46

Solution At t = 0–, the network attains steady-state condition. Hence, the inductor acts as a short circuit.

iL (0–) =
5

(10 || 30)
 = 

5

7.5
 = 

2

3
A

vb (0
–) = 0

va (0
–) = 5 × 

20

30
 = 3.33 V

At t = 0+, the inductor acts as a current source of 
2

3
A.

Writing KCL equations at t = 0+,

(0 ) – 5 (0 ) (0 ) (0 )

10 10 20

a a a bv v v v
+ + + +-

+ + = 0

 and
(0 ) – (0 ) (0 ) 5 2

20 10 3

b a bv v v
+ + + -

+ + = 0

Fig. 8.48

Solving these two equations, we get

va (0
+) = 1.9 V

vb (0
+) = – 0.477 V

Example 8.14 In the accompanying Fig. 8.49 is shown a network in which a steady state is reached with

switch open. At t = 0, switch is closed. Determine va (0
–), va (0

+), vb(0
–) and vb (0

+).

Fig. 8.47
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Fig. 8.49

Solution At t = 0–, the network attains steady-

state condition. Hence, the capacitor acts as an

open circuit.

va (0
–) = 5 V

vb (0
–) = 5 V

At t = 0+, the capacitor acts as a voltage source

of 5 V.

vb (0
+) = 5 V

Writing KCL equation at t = 0+,

(0 ) – 5 (0 ) (0 ) 5

10 10 20

a a av v v
+ + + -

+ + = 0

0.25 va (0
+) = 0.75

va (0
+) = 3 V

Example 8.15 The network shown in the Fig. 8.52 has two independent node pairs. If the switch is

opened at t = 0. Find v1, v2, 
1 2dv dv

and
dt dt

at t = 0+.

Fig. 8.52

Fig. 8.51

Fig. 8.50
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Solution At t = 0–, no current flows through the

inductor and there is no voltage across the capacitor.

iL (0–) = 0

vC (0–) = v2 (0
–) = 0

At t = 0+, the inductor acts as an open circuit and the

capacitor acts as a short circuit.

 iL (0+) = 0

v1 (0
+) = R1 i (0

+)

v2 (0
+) = 0

Writing KCL equation at Node 1 for t > 0,

 i (t) = 1
1 2

1 0

1
( – )d

t
v

v v t
R L

+ ò …(i)

Differentiating the Eq. (i), we get

d

d

i

t
=

1
1 2

1

d1 1
( – )

d

v
v v

R t L
+

At t = 0+

1d

d

v

t
 (0+) = 1 1

d 1
(0 ) – (0 )

d

i
R R i

t L

+ +é ù
ê úë û

Writing KCL equation at Node 2 for t > 0

2 1

0

1
( – ) d

t

v v t
L ò +

2 2

2

d

d

v v
C

R t
+ = 0 …(ii)

At t = 0+,

2

2

(0 )
0

v

R

+
+ + 2d

(0 )
d

v
C

t

+  = 0

2d
(0 )

d

v

t

+ = 0

Example 8.16 In the network shown in Fig. 8.55, the switch is closed at t = 0, with zero capacitor voltage

and zero inductor current. Solve for v1, v2, , 

2
1 2 2

2

dv dv d v
, and

dt dt dt
 at t = 0+.

Fig. 8.55

Fig. 8.53

Fig. 8.54
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Solution At t = 0–, no current flows through the inductor and there is no voltage across the capacitor.

vC (0–) = 0

 v1 (0
–) = 0

 v2 (0
–) = 0

 iL (0–) = 0

 iC (0–) = 0

At t = 0+, the inductor acts as an open circuit and the

capacitor acts as a short circuit.

 vC (0+) = 0

 v1 (0
+) = 0

 v2 (0
+) = 0

iL (0+) = 0

iC (0+) =  
1

V

R
Writing KVL equation for t > 0,

 vC (t) = v1 (t) + v2 (t) …(i)

Differentiating the Eq. (i), we get

d

d

Cv

t
= 1 2d d

d d

v v

t t
+ …(ii)

Now, vC =

0

1
d

t

Ci t
C ò …(iii)

d

d

Cv

t
=

Ci

C

At t = 0+

d
(0 )

d

Cv

t

+ =
1

(0 )Ci V

C R C

+
=  V/s

Also v1 = L 
d

d

Li

t
…(iv)

d

d

Li

t
=

1v

L
…(v)

At t = 0+

d
(0 )

d

Li

t

+ =
1(0 )

0
v

L

+
=

Also, v2 = R2 iL … (vi)

2d

d

v

t
= R2 

d

d

Li

t
… (vii)

At t = 0+

2d
(0 )

d

v

t

+
= 2

d
(0 ) 0

d

LiR
t

+ =

d
(0 )

d

Cv

t

+
=

1 2d d
(0 ) (0 )

d d

v v

t t

+ ++

Fig. 8.56
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1d
(0 )

d

v

t

+
=

1

V

R C
 V/s

Differentiating the Eq. (vii), we get

2
2

2

d

d

v

t
= R2 

2

2

d

d

Li

t

At t = 0+

2
2

2

d
(0 )

d

v

t

+
= R2

2
d

(0 )
d

Li

t

+

Differentiating the Eq. (v), we get

2

2

d

d

Li

t
=

1d1

d

v

L t

At t = 0+

2

2

d
(0 )

d

Li

t

+ = 1

1

d1 1
(0 )

d

v V

L t L R C

+ =

2
2

2

d
(0 )

d

v

t

+ = 2

1

R V

R LC
V/s2

Example 8.17 In the network shown in Fig. 8.57, a steady state is reached with switch open. At

t = 0, switch is closed. Find the three loop currents at t = 0+.

Fig. 8.57

Solution At t = 0–, the network attains steady-state

condition. Hence, the inductor act as a short circuit and

the capacitors act as open circuits.

 i4Ω(0–) = i1 (0
–) = 

6

6
= 1 A

 i2 (0
–) = 0

i3 (0
–) = 0

v1 (0
–) + v2 (0

–) = 6 × 
4

6
= 4 V

Fig. 8.58
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Since the charges on capacitors are equal when connected in series,

 Q1 = Q2

 C1 v1 = C2 v2

–
1

–
2

(0 )

(0 )

v

v
=

2

1

1

0.5

C

C
=  = 2

v1 (0
–) =

8

3
V

 and v2 (0
–) =

4

3
V

At t = 0+, the inductor is replaced by a current source of 1 A and the capacitors are replaced by a voltage

source of 
8

3
V and 

4

3
V respectively.

v1 (0
+) =

8

3
V

v2 (0
+) =

4

3
V

At t = 0+

6 – 2i1 (0
+) 

8 4
– –

3 3
= 0

i1 (0
+) = 1 A

Now, i1 (0
+) – i3 (0

+) = 1

i3 (0
+) = 0

Writing the KVL equation for Mesh 2,

–4 [i2 (0
+) – i1 (0

+)] – 
8

3
= 0

–4i2 (0
+) + 4 – 

8

3
= 0

 4 i2 (0
+) =

4

3

i2 (0
+) =

1

3
A

Example 8.18 In the network shown in Fig. 8.60, a steady state is reached with the switch open. At t = 0,

the switch is closed. Determine vC (0–), i1 (0
+), i2 (0

+),
+ +1 2di di

(0 ) and (0 )
dt dt

.

Fig. 8.60

Fig. 8.59
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Solution At t = 0–, the network is in steady-state.

Hence, the inductor acts as a short circuit and the

capacitor acts as an open circuit.

vC (0–) =
20

100
20 + 10

´  = 66.67 V

i1 (0
–) =  

66.67

20
 = 3.33 A

i2 (0
–) = 0

At t = 0+, the inductor acts as a current source of

3.33 A and the capacitor acts as a voltage source of

66.67 V.

vC (0+) = 66.67 V

i1 (0
+) = 3.33 A

i2 (0
+) =

100 – 66.67

20
 = 1.67 A

For t > 0,

Fig. 8.63

Writing KVL equations for t > 0,

1 1d

d

i

t
+ 20 i1 = 100 …(i)

 and 20 i2 + 106 2

0

t

i∫ dt = 100 – 66.67 = 33.33 …(ii)

At t = 0+

1d
(0 )

d

i

t

+ = 100 – 20 i1 (0
+)

= 100 – 20 (3.33) = 33.3 A/s

Differentiating the Eq. (ii), we get

20 2d

d

i

t
+ 106 i2 = 0

At t = 0+

20 2d

d

i

t
(0+) = –106 i2 (0

+)

= – 
6

10

20
 × 1.67 = –83500 A/s2

8.5 RESISTOR�INDUCTOR CIRCUIT

Consider a series R-L circuit as shown in Fig. 8.64. The switch is closed at time t = 0. The inductor in the

circuit is initially un-energised.

Fig. 8.61

Fig. 8.62
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Applying Kirchhoff’s voltage law to the circuit for t > 0,

 V = Ri + L 
d

d

i

t
This is a linear differential equation of first order. It

can be solved if the variables can be separated.

(V – Ri) dt = L di

d

–

L i

V Ri
= dt

Integrating both the sides, we get

 –
L

R
ln (V – Ri) = t + K

where ln designates that the logarithm is of base e and K is an arbitrary constant. K can be evaluated from the

initial condition. In the circuit shown, the switch is closed at t = 0, i.e., just before closing the switch, the

current in the inductor is zero. Since the inductor does not allow sudden change in current, at t = 0+, just after

the switch is closed, the current remains zero.

Setting i = 0 at t = 0, we get

 –
L

R
 ln V = K

– 
L

R
 ln (V – Ri) = t – 

L

R
 ln V

– 
L

R
 [ln (V – Ri) – ln V] = t

–V Ri

V
=

–
R

t
Le

 i =
–

–

R
t

L
V V

e
R R

for t > 0

The complete response is composed of two parts, the steady-state response or forced response or zero state

response 
V

R
 and transient response or natural response or zero input response 

V

R

–
R

t
Le .

The natural response is a characteristic of the circuit. Its form

may be found by considering the source-free circuit. The forced

response has the characteristics of forcing function, i.e., applied

voltage. Thus, when the switch is closed, response reaches the

steady-state value after some time interval as shown in Fig. 8.65.

Here, the transient period is defined as the time taken for the

current to reach its final or steady state value from its initial value.

The term 
L

R
is called time constant and is denoted by T.

 T =
L

R

At one time constant, the current reaches 63.2 per cent of its final value 
V

R
.

 i (T) =
V

R
– 

1
– t

T
V

e
R

 = 
V

R
– –1

– 0.368 0.632
V V V V

e
R R R R

= =

Fig. 8.65

Fig. 8.64
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Similarly,

 i (2T) =
–2

– – 0.135 0.865
V V V V V

e
R R R R R

= =

 i (3T) =
–3

– – 0.0498 0.950
V V V V V

e
R R R R R

= =

 i (5T) =
–5

– – 0.0067 0.993
V V V V V

e
R R R R R

= =

After 5 time constants, the current reaches 99.33 per cent of its final value.

The voltage across resistor is

 vR = Ri = R × 
V

R

–

1 –

R
t

Le
æ ö
ç ÷
è ø

=
–

1 –

R
t

LV e
æ ö
ç ÷
è ø

 for t > 0

Similarly, voltage across inductor is

 vL =
–d d

1 –
d d

R
t

Li V
L e

t R t

æ ö
= ç ÷

è ø

= V 
–

R
t

Le for t > 0

8.6 RESISTOR�CAPACITOR CIRCUIT

Consider a series R-C circuit as shown in Fig. 8.67. The switch is closed at time t = 0. The capacitor is initially

uncharged.

Applying Kirchhoff’s voltage law to the circuit for t > 0,

 V = Ri +
1

C
 

0

t

i∫  dt

Differentiating the above equation, we get

 0 =
d

d

i i
R

t C
+

d 1

d

i

t RC
+  i = 0

This is a linear differential equation of first order. The variables may be separated to solve the equation.

di

i
= – 

dt

RC
Integrating both the sides, we get

 ln i = –
1

RC
t + K

The constant K can be evaluated from initial condition. In the circuit shown, the switch is closed at t = 0.

Since the capacitor never allows sudden change in voltage, it will act as short circuit at t = 0+. Therefore

current in the circuit at t = 0+ is 
V

R
.

Fig. 8.67

Fig. 8.66



8.26 Electrical Networks

Setting i =
V

R
at t = 0, we get

ln
V

R
= K

 lni = – 
1

n

V
t l

RC R
+

ln i – ln
V

R
= –

1

RC
 t

 ln
i

V

R

æ ö
ç ÷è ø

= – 
1

RC
t

i

V R
=

1
– t

RC
e

 i =

1
– t

RCV
e

R
for t > 0

When the switch is closed, the response decays with time as

shown in Fig. 8.68.

The term RC is called time constant and is denoted by T.

T = RC

After 5 time constants, the current drops to 99 per cent of its

initial value.

The voltage across the resistor is

 vR = Ri = R 

1
t

RCV
e

R

-

=

1
– t

RC
Ve for t > 0

Similarly, the voltage across the capacitor is

vC =
0

1
t

i
C ò  dt

=
1

C

1
–

0

t t
RCV

e
Rò

= – V

1
– t

RCe  + K

At t = 0, vC (0) = 0

K = V

Hence, vC =  V

1
–

1 –
t

RCe
æ ö
ç ÷
è ø

for t > 0

Fig. 8.69

Fig. 8.68
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8.7 RESISTOR�INDUCTOR�CAPACITOR CIRCUIT

Consider a series R-L-C circuit as shown in Fig. 8.70. The switch is closed at time t = 0. The capacitor and

inductor are initially uncharged.

Applying Kirchhoff’s voltage law to the circuit for t > 0,

V = Ri + L
d

d

i

t
 + 

0

1
t

i
C ò dt

Differentiating the above equation, we get

0 = R
d

d

i

t
 + L 

2

2

d

d

i

t
 + 

1

C
i

2

2

d d 1
+ + 

dd

i R i

L t LCt
i = 0

This is a second-order differential equation. The auxiliary equation or characteristic equation will be given

by,

s2 + 
R

L

æ ö
ç ÷è ø   s + 

1

LC

æ ö
ç ÷è ø = 0

Let s1 and s2 be the roots of the equation,

s1 =

2
1

 + 
2 2

R R

L L LC

æ ö- -ç ÷è ø

= – 2
2

 + 
o

-a a w

= – a + b

 s2 = –

2
1

2 2

R R

L L LC

æ ö- -ç ÷è ø

= 2 2
  oa a w- - -  = − a - b

where a =
2

R

L

 wo =
1

LC

and  b = 2 2
oa w-

The solution of the above second-order differential equation will be given by

 i (t) = A1
1s t

e  + A2
2s t

e

where A1 and A2 are constants to be determined and s1 and s2 are the roots of the equation.

Now depending upon the values of a and wo, we have 3 cases of the response.

Fig. 8.70
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Case I When a > wo

i.e.,
2

R

L
>

1

LC

The roots are real and unequal and it gives an overdamped response.

In this case, the solution is given by

i = e–at (A1 e
b t + A2 e

–b t)

or  i = A1 e 1s t + A2 e 2s t for t > 0

The current curve for an overdamped case is shown in Fig. 8.71.

Case II  When a = wo

i.e.,
2

R

L
=

1

LC

The roots are real and equal and it gives a critically damped response.

In this case the solution is given by

 i = e–a t (A1 + A2 t) for t > 0

The current curve for critically damped case is shown in Fig. 8.72.

Case III When a < wo

i.e.,
2

R

L
<

1

LC

The roots are complex conjugate and it gives an underdamped response.

In this case, the solution is given by

 i (t) = 1 2
1 2

s t s t
A e A e+

where s1, 2 = 2 2
   oa a w- ± -

 Let 2 2
oa w- = 2 2

1 ow a- -
= j wd

where j = 1-

and wd = 2
2

o
-w a

 Hence i (t) = e–a t (A1 e
jw dt + A2 e

–jw dt)

= e–a t 1 2 1 2( ) ( )
2 2

d d d dj t j t j t j t
e e e e

A A j A A
j

- -ì üé ù é ù+ -ï ï+ + -ê ú ê úí ý
ê ú ê úï ïë û ë ûî þ

w w w w

= e–a t [(A1 + A2) cos wdt + j (A1 – A2) sin ωdt]

= e–a t (B1 cos wdt + B2 sin wdt) for t > 0

The current curve for an underdamped case is shown in Fig. 8.73.

Fig. 8.73

Fig. 8.71

Fig. 8.72
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Note:

(1) Consider a homogeneous equation,

d

d

i

t
+ Pi = 0 where P is a constant.

The solution of this equation will be,

i (t) = K e–Pt

The value of K is obtained by putting t = 0 in the equation for i (t).

(2) Consider a non-homogeneous equation,

d

d

i

t
+ Pi = Q

where P is a constant and Q may be a function of the independent variable t or a constant.

The solution of this equation will be

i(t) = e–Pt ∫ Q ePt dt + K e–Pt = 
Q

P
 + K e–Pt = iss + it

Here, iss is the steady-state part (at t = ∞) and it is the transient part of the solution. The value of K can

be obtained as follows:

i(t) = i(∞) + K e–Pt

At t = 0,

i(0) = i(∞) + K  ∴ K = i (0) – i (∞)

Hence i(t) = i(∞) + [i(0) – i(∞)] e–Pt

Example 8.19 In the network of Fig. 8.74, the switch is initially at the position 1. On the steady state

having reached, the switch is changed to the position 2. Find current i (t).

Fig. 8.74

Solution At t = 0–, the network has attained steady-state condition. Hence, the inductor acts as a short circuit.

i (0–) =
1

V

R

Since the inductor does not allow sudden change in current,

i (0+) =  
1

V

R
Writing KVL equation for t > 0,

(R1 + R2) i + L
d

d

i

t
= 0

1 2( )d
+ 

d

R Ri

t L

+
i = 0

Fig. 8.75
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The solution of this differential equation is given by

i (t) =

1 2

 

R R
t

LKe

+æ ö- ç ÷è ø

At t = 0, i (0) = 
1

V

R

1

V

R
= K e0 = K

i (t) =

1 2

1

R R
t

LV
e

R

+æ ö-ç ÷è ø
for t > 0

Example 8.20 In the network shown in Fig. 8.77, the switch is closed at t = 0, a steady state having

previously been attained. Find the current i (t).

Fig. 8.77

Solution At t = 0–, the network has attained steady-

state condition. Hence, the inductor acts as a short circuit.

 i (0–) =
1 2

V

R R+
Since the current through the inductor cannot change

instantaneously,

i (0+) =  
1 2

V

R R+

Writing KVL equation for t > 0,

 V = L 
d

d

i

t
+ R1 i

 
1d

 + 
d

Ri
i

t L
= 

V

L

The solution of this differential equation is given by

 i (t) =
Q

P
+ Ke–Pt

=
1

V

R
 + 

1R
t

LKe
-

At t = 0, i (0) = 
1 2

V

R R+

1 2

V

R R+
=

1

V

R
+ K

Fig. 8.76

Fig. 8.78

Fig. 8.79
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 K = – 2

1 1 2( )

VR

R R R+

i (t) = 2

1 1 1 2( )

VRV

R R R R
-

+

1R
t

Le
-

= 
1

2

1 1 2

1

R
t

L
RV

e
R R R

-æ ö
-ç ÷

+è ø
for t > 0

Example 8.21 The network of Fig. 8.80 is under steady state with switch at the position 1. At

t = 0, switch is moved to position 2. Find i (t).

Fig. 8.80

Solution At t = 0–, the network has attained steady-state

condition. Hence, the inductor acts as a short circuit.

i (0–) =
50

40
 = 1.25 A

Since current through the inductor cannot change instantaneously,

i (0+) = 1.25 A

Writing KVL equation for t > 0,

20 × 10–3
d

d

i

t
 + 40 i = 10

d

d

i

t
 + 2 × 103 i = 500

Solution of this differential equation is given by

i (t) =
Q

P
 + Ke–Pt

=
500

2000
 + K e–2000 t

= 0.25 + K e–2000 t

At t = 0, i (0) = 1.25

1.25 = 0.25 + K

 K = 1

i (t) = 0.25 + e–2000 t for t > 0

Fig. 8.81

Fig. 8.82
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Fig. 8.87

Example 8.22 The switch in the circuit of Fig. 8.83 is moved from the position 1 to 2 at t = 0. Find

vC (t).

Fig. 8.83

Solution At t = 0–, the network has attained steady-state condition. Hence, the capacitor acts as an open circuit.

vC (0–) = 100 V

Since the voltage across the capacitor cannot change instantaneously,

 vC (0+) = 100 V

Writing KCL equation for t > 0,

1 × 10–6 
d 50

+ 
d 5000

C Cv v

t

+
= 0

d

d

Cv

t
+ 200 vC = 104

The solution of this differential equation is given by

 vC (t) =
Q

P
 + K e–Pt

= –50 + K e–200t

At t = 0, vC (0) = 100

100 = –50 + K

K = 150

vC (t) = –50 + 150 e–200t for t > 0

Example 8.23 In the network of Fig. 8.86, the switch is moved from 1 to 2 at t = 0. Determine i(t).

Fig. 8.86

Solution At t = 0–, the network has attained steady-

state condition. Hence, the inductor acts as a short circuit.

i (0–) =
20

5
 = 4 A

Since the current through the inductor cannot change instantaneously,

i (0+) = 4 A

Fig. 8.84

Fig. 8.85
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Writing KVL equation for t > 0,

0.5 
d

d

i

t
+ 2i = 40

d

d

i

t
+ 4i = 80

Solution of this differential equation is given by

i (t) =
Q

P
 + K e–Pt

=
80

4
+ K e–4t = 20 + K e–4t

At t = 0, i (0) = 4

4 = 20 + K

K = –16

i (t) = 20 – 16 e–4t for t > 0

Example 8.24 For the network shown in Fig. 8.89, steady state is reached with the switch closed. The

switch is opened at t = 0. Obtain expressions for iL (t) and vL (t).

Fig. 8.89

Solution At t = 0–, the network has attained steady-state

condition. Hence, the inductor acts as a short circuit.

iL (0–) =
15

100
= 0.15 A

Since current through the inductor cannot change instantaneously,

iL (0+) = 0.15 A

For t > 0,

Writing KVL equation for t > 0,

90 × 10–3 
d

d

Li

t
 + 3000 iL = 0

d

d

Li

t
+ 33.33 × 103 iL = 0

The solution of this differential equation is given by

 iL (t) = K e–33.33 × 103 t

At t = 0, iL (0) = 0.15

0.15 = K

iL (t) = 0.15 e–33.33 × 103 t for t > 0

Fig. 8.88

Fig. 8.90

Fig. 8.91
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Fig. 8.94

Also, vL (t) = L 
d

d

Li

t

= 90 × 10–3 ( )
333.33 10

0.15
d

td
e

t

- ´

= – 90 × 10–3 × 0.15 × 33.33 × 103 × e–33.33 × 103 t

= – 450 e–33.33 × 103 t for t > 0

Example 8.25 In the network of Fig. 8.92, the switch is open for a long time and it closes at t = 0.

Find i (t).

Fig. 8.92

Solution At t = 0–, the network has attained steady-

state condition. Hence, the inductor acts as a short circuit.

 i(0–) =
50

10 10+
 = 2.5 A

Since current through the inductor cannot change instantaneously,

i(0+) = 2.5 A

For t > 0, representing the network to the left of the inductor

by Thevenin’s equivalent network,

 Veq = 50 × 
10

10 10+
 = 25 V

Req = (10 || 10) + 10 = 15 Ω
Writing KVL equation for t > 0,

0.1 
d

d

i

t
+ 15i = 25

d

d

i

t
+ 150i = 250

Solution of this differential equation is given by

 i (t) =
Q

P
+ Ke–Pt

=
250

150
 + K e–150 t

= 1.667 + K e–150 t

At t = 0, i(0) = 2.5

2.5 = 1.667 + K

K = 0.833

i (t) = 1.667 + 0.833 e–150 t for t > 0

Fig. 8.93
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Example 8.26 In the network shown in Fig. 8.95, the switch closes at t = 0. The capacitor is initially

uncharged. Find vC (t) and iC (t).

Fig. 8.95

Solution At t = 0–, the capacitor is uncharged. Hence,

it acts as a short circuit.

vC (0–) = 0

iC (0–) = 0

 Since voltage across the capacitor cannot change

instantaneously,

vC(0+) = 0

 At t = 0+

iT(0+) =
10 10

 
9 k (4 k || 1k) 9.8 k

é ù
=ê ú+ë û

 = 1.02 mA

iC(0+) = 1.02 m × 
1k

1k 4 k+  = 0.204 mA

For t > 0, representing the network to the left of the capacitor by Thevenin’s equivalent network,

 Veq = 10 × 
1k

9 k 1k+  = 1 V

 Req = (9 k || 1 k) + 4 k = 4.9 kΩ
Writing KCL equation for t > 0,

3 × 10–6 
3

d 1
+

d 4.9 10

C Cv v

t

-
´

= 0

d

d

Cv

t
+ 68.02 vC = 68.02

The solution of this differential equation is given by

 vC (t) =
Q

P
+ Ke–Pt

= 1 + K e–68.02 t

At t = 0, vC (0) = 0

 0 = 1 + K

 K = –1

vC (t) = 1 – e–68.02 t for t > 0

 iC (t) = C 
d

d

Cv

t

Fig. 8.96

Fig. 8.97
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Fig. 8.100

= 3 × 10–6 
68.02

(1 )
d

td
e

t

--

= 3 × 10–6 × 68.02 e–68.02 t

= 204.06 × 10–6 e–68.02 t for t > 0

Example 8.27 For the network shown in Fig. 8.98, the switch is open for a long time and closes at

t = 0. Determine vC (t).

Fig. 8.98

Solution At t = 0–, the network has attained steady-state

condition. Hence, the capacitor acts as an open circuit.

vC (0–) = 1200 V

Since the voltage across the capacitor cannot change

instantaneously,

vC (0+) = 1200 V

Writing KCL equation for t > 0,

50 × 10–6 
d 1200

+ + 
d 300 100

C C Cv v v

t

-
= 0

d

d

Cv

t
 +  266.67 vC = 0.24 × 106

Solution of this differential equation is given by

 vC(t) =
Q

P
 + Ke–Pt

=
6

0.24 10

266.67

´
 + Ke–266.67 t

= 900 + Ke–266.67 t

At t = 0, vC (0) = 1200

1200 = 900 + K

 K = 300

vC(t) = 900 + 300 e–266.67 t for t > 0

Fig. 8.99
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Example 8.28 In Fig. 8.101, the switch is closed at t = 0. Find i (t) for t > 0.

Fig. 8.101

Solution At t = 0–,

i (0 –) = 0

Since current through inductor cannot change instantaneously,

 i (0+) = 0

Simplifying the network by source-transformation technique,

Fig. 8.102 Fig. 8.103

Writing KVL equation for t > 0,

6.67 – 2.67 i – 
d

d

i

t
= 0

d

d

i

t
 + 2.67 i = 6.67

The solution of this differential equation is given by

 i (t) =
Q

P
 + Ke–Pt

=
6.67

2.67
 + Ke–2.67t = 2.5 + Ke–2.67t

At t = 0, i (0) = 0

0 = 2.5 + K

K = –2.5

 i (t) = 2.5 – 2.5 e–2.67t

= 2.5 (1 – e–2.67 t) for t > 0
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Fig. 8.108 Fig. 8.109

Example 8.29 Find current i (t) for t > 0.

Fig. 8.104

Solution At t = 0–, the inductor acts as a short circuit. Simplifying the network,

Fig. 8.105 Fig. 8.106

i (0–) = 25 × 
140

140 60+
 = 17.5 A

Since current through the inductor cannot change instantaneously,

i (0+) = 17.5 A

For t > 0,

Fig. 8.107

Writing KVL equation for t > 0,

–15 i – 0.3 
d

d

i

t
= 0
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d

d

i

t
+ 50 i = 0

Solution of this differential equation is given by,

i (t) = Ke–50 t

At t = 0, i (0) = 17.5

K = 17.5

i (t) = 17.5 e–50 t for t > 0

Example 8.30 In Fig. 8.110, the switch is closed at t = 0. Find vC (t) for t > 0.

Fig. 8.110

Solution At t = 0–

vC (0–) = 0

Since the voltage across the capacitor cannot change instantaneously,

vC (0+) = 0

Since the resistor of 2 Ω is connected in parallel

with the voltage source of 5 V, it becomes redundant.

Writing KCL equation for t > 0,

5 d
+ 1

100 d

C Cv v

t

-
= 0

100 
d

d

Cv

t
 + vC = 5

d

d

Cv

t
+ 0.01 vC = 0.05

The solution of this differential equation is given by

vC (t) =
Q

P
 + Ke–Pt

=
Q

P
 + Ke–0.01 t

=
0.05

0.01
 + Ke–0.01 t = 5 + Ke–0.01 t

At t = 0, vC (0) = 0

0 = 5 + K

K = –5

vC (t) = 5 – 5e–0.01 t = 5 (1 – e–0.01 t) for t > 0

Fig. 8.111

Fig. 8.112
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Example 8.31 In the network shown, the switch is shifted to position b at t = 0. Find v (t) for t > 0.

Fig. 8.113

Solution At t = 0–, the network has attained steady-

state condition. Hence, the capacitor acts as an open

circuit.

vC (0–) = 5 V

v (0–) = 0

At t = 0+, the capacitor acts as a voltage source of 5 V.

i (0+) = – 
5

4
 = –1.25 A

v (0+) = –1.25 × 2 = –2.5 V

Writing KVL equation for t > 0,

–2i – 5 – 

0

1

1 / 4

t

iò dt – 2i = 0 …(1)

Differentiating the Eq. (i), we get

–4 
d

d

i

t
 – 4i = 0

d

d

i

t
 + i  = 0

The solution of this equation is given by

 i (t) = Ke–t

At t = 0, i (0) = –1.25

K = –1.25

 i (t) = –1.25 e–t for t > 0

 v (t) =  2 i (t)

= –2.5 e–t   for t > 0

Fig. 8.114

Fig. 8.115

Fig. 8.116
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Example 8.32 In the network of Fig. 8.117, the switch is open for a long time and at t = 0, it is closed.

Determine v2 (t).

Fig. 8.117

Solution At  t = 0–, the switch is open.

v2 (0
–) = 0

At t = 0+,

v2 (0
+) = 0

Writing KCL equation for t > 0,

2 2 2d 6
+ 0.3 + 

1 / 2 d 0.25

v v v

t

-
= 0

2d

d

v

t
 + 20v2 = 80

The solution of this differential equation is given by,

 v2 (t) =
Q

P
 + Ke–Pt

=
80

20
 + Ke–20 t

 v2(t) = 4 + K e–20 t

At t = 0, v2 (0) = 0

 0 = 4 + K

K = – 4

 v2 (t) = 4 – 4e–20 t

= 4 (1 – e–20 t) for t > 0

Example 8.33 In the network of Fig. 8.118, the switch is in position ‘a’ for a long time. At t = 0, the

switch is moved from a to b. Find v2 (t). Assume that the initial current in the 2-H inductor is zero.

Fig. 8.118

Solution At t = 0–, the switch is in the position a. The network has attained steady-state condition. Hence,

the inductor acts as a short circuit.

Current through the 1-H inductor is given by

i (0–) =
1

1
= 1 A
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 v2 (0
–) = 0

Since current through the inductor cannot change instantaneously,

i (0+) = 1 A

v2 (0
+) = –1 × 

1

2
 = –0.5 V

Writing KCL equation for t > 0,

1

1

2
2 2

0 0

1
d (0 ) d 0

1 / 2 2

t t
v

v t i v t
++ + + =ò ò

...(i)

Differentiating the Eq. (i), we get

v2 + 2d
2

d

v

t
 + 

1

2
v2 = 0

2d 3
+ 

d 4

v

t
v2 = 0

The solution of this differential equation is given by

 v2 (t) = K e–(3/4) t

At t = 0, v2 (0) = –0.5

– 0.5 = K eo

 K = –0.5

v2 (t) = –0.5 e–(3/4) t for t > 0

Example 8.34 In the network shown in Fig. 8.119, a steady state condition is achieved with switch open.

At t = 0 switch is closed. Find va (t).

Fig. 8.119

Solution At t = 0–, the network has attained steady-state condition.

va (0
–) =

5
3

10 5
´

+
 = 1 V

At t = 0+

va (0
+) = 1 V

Writing KCL equation for t > 0,

0

1

0.5

t

avò  dt + 
5

av
 +

3

10

av -
= 0 ...(i)

Differentiating the Eq. (i), we get

2va + 0.2 
d

d

av

t
 + 0.1

d

d

av

t
= 0

d 20
+

d 3

av

t
va = 0
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The solution of this differential equation is given by

 va (t) = K e–(20/3) t

At t = 0, va (0) = 1

 1 = K

 va (t) = e–(20/3) t for t > 0

Example 8.35 The switch is moved from the position a to b at t = 0, having been in the position a for a

long time before t = 0. The capacitor C2 is uncharged at t = 0. Find i (t) and v2 (t) for t > 0.

Fig. 8.120

Solution At t = 0–, the network has attained steady-state condition. Hence, the capacitor acts as an open

circuit and it will charge to V0 volt.

 v (0–) = V0

Since the voltage across the capacitor cannot change instantaneously,

v (0+) = V0

 i (0+) =
0

1

V

R

Writing KVL equation for t > 0,

– 0 1
1 20 0

1 1
d – – d

t t

i t V R i i t
C C

+ò ò = 0 ...(i)

Differentiating the Eq. (i), we get

1
1 2

d
  

d

i i i
R

C t C
- - - = 0

1 2

1 1 2

d 1
+ 

d

C Ci

t R C C

æ ö+
ç ÷è ø

 i = 0

The solution of this differential equation is given by

 i (t) =

1 2

1 1 2

1 C C
t

R C C
Ke

æ ö+
- ç ÷è ø

At t = 0, i (0) = 
0

1

V

R

K =
0

1

V

R

 i (t) =

1 2

1 1 2

1

0

1

C C
t

R C CV
e

R

æ ö+
- ç ÷è ø

Fig. 8.121
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= 1

1

0

1

t
R CV

e
R

-

where, C = 
1 2

1 2

C C

C C+

 v2 (t) =
2 0

1
d

t

i t
C ò

= 10

2 10

1
tt

R CV
e

C R

-

ò dt

= 1

1
0

1
1 2

1
t

R C
V

R C
eR C

-
æ ö
ç ÷-ç ÷è ø

= 1
0

2
1

t
t

R C
V

C eC

-
æ ö
ç ÷-ç ÷è ø

for t > 0

Example 8.36  In the network of Fig. 8.122, determine currents i1 (t) and i2 (t) when the switch is closed

at t = 0.

Fig. 8.122

Solution At t = 0–

i1 (0
–) = i2 (0

–) = 0

At t = 0+,

i1 (0
+) = 0

i2 (0
+) =

100

15
 = 6.67 A

Writing KVL equations for t > 0,

10 (i1 + i2) + 5i1 + 0.01 1d

d

i

t
= 100 …(i)

10(i1 + i2) + 5i2 = 100 …(ii)

From the Eq. (ii), we get

 i2 = 1100 10

15

i-

Substituting in the Eq. (i), we get

1d

d

i

t
 + 833 i1 = 3333
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The solution of this differential equation is given by

i1 (t) =
Q

P
+ Ke–Pt

= 
3333

833
 + K e–833t = 4 + K e–833t

At t = 0, i1 (0) = 0

0 = 4 + K

K = – 4

i1 (t) = 4 – 4e–833 t

= 4 ( )833
1 for 0

t
e t
-- >

i2 (t) =
1100 10

15

i-

= 
( )833

100 10 4 4

15

t
e
-- -

= 4 + 2.67 e–833 t for t > 0

Example 8.37 The switch in the network of Fig. 8.123 is opened at t = 0. Find i (t) for t > 0 if,

(i) L = 
1

2
H  and  C = 1 F

(ii) L = 1 H  and  C = 1 F

(iii) L = 5 H  and  C = 1 F

Fig. 8.123

Solution At t = 0–, the network has attained steady-state condition. Hence, the inductor acts as a short

circuit and the capacitor acts as an open circuit.

vC (0
–) =

2
4

2 2
×

+
= 2 V

i (0–) = 0

Since current through the inductor and voltage across the capacitor cannot change instantaneously,

vC (0+) = 2 V

i (0+) = 0

Case I When R = 2 Ω, L = 
1

2
H, C = 1 F

a =  
2

= 
12

2
2

R

L ´
 = 2
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w0 =
1 1 1

= = 
1 0.5

1
2

LC
´

 = 1.414

a > w0

This indicates an overdamped case.

i(t) = A1
1 2

2
s t s t

e A e-

where, s1 = –a – 2 2
oa w-

= –2 – 4 2-  = –2 – 2  = –3.414

and s2 = –a + 2 2
oa w-  = –2 + 2  = –0.586

 i(t) = A1 e
–3.414 t + A2 e

–0.586 t

At t = 0, i (0) = 0

 A1 + A2 = 0 …(i)

Also vL(0+) + vC(0+) + vR(0+) = 0

vL(0+) = –vR(0+) – vC (0+)

= –2i(0+) – vC (0+)

= –2 V  …(ii)

vL (0+) = L
d

(0 )
d

i

t

+

d
(0 )

d

i

t

+
=

(0 ) 2
=

0.5

Lv

L

+
-  = –4 A/s

Differentiating the equation of i (t) and putting the condition at t = 0, we get,

– 3.414 A1 – 0.586 A2 = – 4 …(iii)

Solving Eqs (i) and (iii), we get

A1 = 1.414 and A2 = – 1.414

 i(t) = 1.414(e–3.414t – e–0.586 t) for t > 0

Case II When R = 2 W, L = 1 H, C = 1 F

a =
2

= 
2 2 1

R

L ´
 =

2

2
 = 1

w0 =
1 1

= 
1LC

 = 1

a = w0

This indicates a critically damped case.

i(t) = e–a t (A1 + A2 t)

= e– t (A1 + A2 t)

At t = 0, i(0) = 0

A1 = 0

Also, vL(0+) = L 
d

d

i

t
(0+)

d
(0 )

d

i

t

+
=

(0 ) 2
=

1

Lv

L

+
-  = –2 A/s
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Differentiating the equation of i(t) and putting the condition at t = 0, we get

0

d

d t

i

t =
= –A1 + A2 = –2

 A2 = –2

 i (t) = –2 t e–t for t > 0

Case III When R = 2 W, L = 5 H, C = 1 F

a =
2

= 
2 10

R

L
 = 0.2

w0 =
1 1

= 
5LC

 = 0.447

a <  w0

This indicates an underdamped case.

 i (t) = e–a t (B1 cos wd t + B2 sin wd t)

where, wd =
2 2
ow a-

= 
2 2

(0.447) (0.2)-  = 0.4

s1,2 = – a ± j wd

= – 0.2 ± j 0.4

 i(t) = e–0.2 t (B1 cos 0.4 t + B2 sin 0.4 t)

Applying the initial conditions,

i(0+) = 0

and
d

(0 )
d

i

t

+
= – 

(0 ) 2

5

Lv

L

+
= -

B1 = i (0) = 0

 B2 = –1

i(t) = –e–0.2 t sin 0.4 t for t > 0

Exercises

1. The switch in Fig. 8.124 is moved from the position a to b at t = 0, the network having been in steady

state in the position a. Determine i1 (0
+), i2 (0

+), i3 (0
+) 

32 dd
(0 ) and (0 )

d d

ii

t t

+ +
.

Fig. 8.124

[1.66 A, 5 A, –3.33 A, –3.33 A/s, 2.22 A/s]
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2. In the network shown in Fig. 8.125, switch is closed at t = 0. Obtain the current i2 (t).

Fig. 8.125

[i2(t) = 5 e–100000 t]

3. The network shown in Fig. 8.126 is under steady-state when the switch is closed. At t = 0, it is opened.

Obtain an expression for i (t).

Fig. 8.126

[i (t) = 2.857 e–2 × 106 t]

4. The switch in Fig. 8.127 is open for a long time and closes at t = 0. Determine i (t) for t > 0.

Fig. 8.127

[i(t) = 25(1 – e–4t)]

5. In the network shown, the steady state is reached with the switch open. At t = 0, the switch is closed.

Find vC (t) for t > 0.

Fig. 8.128

[vC(t) = 5e–20t]

6. The circuit shown has acquired steady state before switching at t = 0.

(i) Obtain vC (0+), vC (0–), i (0+) and i (0–).

(ii) Obtain time constant for t > 0.

(iii) Find current i (t) for t > 0.
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Fig. 8.129

[(i) 5 V, 5 V, 1 mA, 0, (ii) 0.01 s, (iii) e–100 t mA]

7. In the network shown, the switch is initially at the position 1 for a long time. At t = 0, the switch is

changed to the position 2. Find current i (t) for t > 0.

Fig. 8.130
[i (t) = 2e–30 t]

8. In the network shown, the switch is closed at t = 0. Find v (t) for t > 0.

Fig. 8.131
[v(t) = e–t]

9. In the network shown, the switch is in the position 1 for a long time and at t = 0, the switch is moved to

the position 2. Find v (t) for t > 0.

Fig. 8.132
[v (t) = –0.5 e–(3/4) t]

10. In Fig. 8.133, the switch is open until time t =

100 seconds and is closed for all times thereafter.

Find v (t) for all times greater than 100 if

v (100) = –3.

[v (t) = 5 – 8 e–(t – 100)/160 V]

Fig. 8.133
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11. A series R-L circuit has a constant voltage V applied at t = 0. At what time does vR = vL.

Fig. 8.134

[0.0693 s]

12. In the circuit shown, at time t = 0, the voltage across the capacitor is zero and the switch is moved to the

position y. The switch is kept at position y for 20 seconds and then moved to position z and kept in that

position thereafter. Find the voltage across the capacitor at t = 30 seconds.

Fig. 8.135

[0]

13. Determine whether RLC series circuit shown in Fig 8.136 is underdamped, overdamped or critically

damped. Also, find vL (0+), (0 )
di

dt

+  and i (∞).

Fig. 8.136

[critically damped, 200 V, 2000 A/s, 0]
14. Determine whether RLC circuit of Fig 8.137 is underdamped, overdamped or critically damped. Also

find vL (0+), 
2

2
(0 ), (0 )

di d v

dt dt

+ +  if v (t) = u (t).

Fig. 8.137

[underdamped 1 V, 1 A/s, 2 V/s2]
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Objective-Type Questions

1. The voltages vC1
, vC2

 and vC3
 across the

capacitors in the circuit in Fig. 8.138

under steady state are respectively

(a) 80 V, 32 V, 48 V

(b) 80 V, 48 V, 32 V

(c) 20 V, 8 V, 12 V

(d) 20 V, 12 V, 8 V

2. In the circuit of Fig. 8.139, the voltage v(t) is

(a) eat – ebt (b) eat + ebt (c) aedt – bebt (d) aeat + bebt

Fig. 8.139

3. The differential equation for the current i(t) in the circuit of Fig. 8.140 is

(a) 
2

2

d d
2 2

dd

i i

tt
+ + i(t) = sin t

(b)
2

2

d d
2

dd

i i

tt
+ + 2i(t) = cos t

(c) 
2

2

d d
2 2

dd

i i

tt
+ + i(t) = cos t

(d)
2

2

d d
2

dd

i i

tt
+ + 2i(t) = sin t

4. At t = 0+, the current i1 is

(a) 
2

V

R
- (b)

V

R
-

(c)
4

V

R
- (d) zero

5. For the circuit shown in Fig. 8.142, the time constant RC = 1 ms. The input voltage is vi(t) = 2  sin 103 t.

The output voltage v0(t) is equal to

(a) sin (103 – 45°) (b) sin (103 t + 45°) (c) sin (103 t – 53°) (d) sin (103 t + 53°)

Fig. 8.138

Fig. 8.140

Fig. 8.141
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Fig. 8.142

6. For the R-L circuit shown in Fig. 8.143, the input voltage vi(t) = u(t). The current i(t) is

Fig. 8.143

(a)   (b)   

(c)   (d)

Fig. 8.144

7. The condition on R, L and C such that the step response

v(t) in Fig. 8.145 has no oscillations is

(a) R 
1

2

L

C
³ (b) R 

L

C
³

(c) R 2
L

C
³ (d) R = 

1

LC
8. The switch S in Fig. 8.146 closed at t = 0. If v2 (0) = 10 V

and vg(0) = 0 respectively, the voltages across capacitors

in steady state will be

(a) v2 (∞) = v1 (∞) = 0

(b) v2(∞) = 2 V, v1 (∞) = 8 V

(c) v2 (∞) = v1 (∞) = 8 V

(d) v2(∞) = 8 V, v1 (∞) = 2 V

Fig. 8.145

Fig. 8.146
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9. The time constant of the network shown in Fig. 8.147 is

(a) 2 RC (b) 3 RC

(c) 1 2  RC (d)
2

3
 RC

10. In the series RC circuit shown in Fig. 8.148, the voltage

across C starts increasing when the dc source is switched

on. The rate of increase of voltage across C at the instant

just after the switch is closed i.e., at t = 0+ will be

(a) zero (b) infinity

(c) RC (d)
1

RC

11. The v – i characteristic as seen from the

terminal pair (A – B) of the network of

Fig. 8.149(a) is shown in Fig. 8.149(b).

If an inductance of value 6 mH is

connected across the terminal pair, the

time constant of the system will be

(a) 3 µs

(b) 12 s

(c) 32 s

(d) unknown, unless actual network is specified

12. In the network shown in Fig. 8.150, the circuit was initially

in the steady-state condition with the switch K closed. At

the instant when the switch is opened, the rate of decay of

current through inductance will be

(a) zero (b) 0.5 A/s

(c) 1 A/s (d) 2 A/s

13. A step function voltage is applied to an RLC series circuit having R = 2 Ω, L = 1 H and C = 1 F. The

transient current response of the circuit would be

(a) over damped (b) critically damped (c) under damped (d) none of these

Fig. 8.147

Fig. 8.148

Fig. 8.149

Fig. 8.150

Answers to Objective-Type Questions

1.(b)2.(d)3.(c)4.(d)5.(a)6.(b)

7.(c)8.(d)9.(d)10.(d)11.(a)12.(d)

13.(b)



Graph
Theory

9.1 INTRODUCTION

Time-domain analysis is the conventional method of analysing a network. For a simple network with first-

order differential equation of network variable, this method is very useful. But as the order of network variable

equation increases, this method of analysis becomes very tedious. For such applications, frequency domain

analysis using Laplace transform is very convenient. Time-domain analysis, also known as classical method,

is difficult to apply to a differential equation with excitation functions which contain derivatives. Laplace

transform methods prove to be superior. The Laplace transform method has the following advantages:

(1) Solution of differential equations is a systematic procedure.

(2) Initial conditions are automatically incorporated.

(3) It gives the complete solution, i.e., both complementary and particular solution in one step.

9.2 LAPLACE TRANSFORMATION

The Laplace transform of a function f (t) is defined as

 F(s) = £ [ f (t)] = 
–

–

0

( ) dst
f t e t

¥

ò …(9.1)

where s is the complex frequency variable

        s = s + jw …(9.2)

Here, the lower limit of integration is t = 0– instead of t = 0+.

The function f (t) must satisfy the following condition to possess a Laplace transform,

–0

| ( ) |f t

¥

ò  e–st dt < • …(9.3)

Laplace Transform and
Its Application

9
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where s is real and positive.

The inverse Laplace transform £–1 [F(s)] is

f (t) =
1

( )
2

j

j

F s
j

s

s

+ ¥

- ¥
òπ

est ds …(9.4)

9.3 LAPLACE TRANSFORM OF SOME IMPORTANT FUNCTIONS

9.3.1 Unit Step Function

The unit step function is defined by the equation,

u(t) = 1 t > 0

= 0 t < 0

The Laplace transform of unit step function is,

£ [u (t)] =
–0

( )u t

¥

ò e–st dt

=
–

–

0

1 dst
e t

¥
×ò   =  

–

–

0

–
ste

s

¥
é ù
ê ú
ë û

 = 
1

s
…(9.5)

9.3.2 Delayed or Shifted Unit Step Function

The delayed or shifted unit step function is defined by the equation

    u (t – a) = 1 t > a

= 0 t < a

The Laplace transform of u (t – a) is

£ [u (t – a)] = 1.

a

¥

ò e–st dt

=
–

–
st

a

e

s

¥
é ù
ê ú
ë û

 = 

–as
e

s
…(9.6)

9.3.3 Unit Ramp Function

The unit ramp function is defined by the equation

r(t) = t t > 0

= 0  t < 0

The Laplace transform of the unit ramp function is

£ [r (t)] =
–0

( )r t

¥

ò e–st dt

=
–0

t

¥

ò e–st dt = 
2

1

s
…(9.7)

Fig. 9.1

Fig. 9.2

Fig. 9.3
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9.3.4 Delayed Unit Ramp Function

The delayed unit ramp function is defined by the equation

    r (t – a) = t  t > a

= 0 t < a

The Laplace transform of r (t – a) is

  £ [r (t – a)] =
–

–

2
d

as
st

a

e
t e t

s

¥
=ò …(9.8)

9.3.5 Unit Impulse Function

The unit impulse function is defined by the equation

d (t) = 0 t π 0

and  ( ) dt td

¥

- ¥
ò = 1 t = 0

The Laplace transform of the unit impulse function is

£ [d (t)] =
–0

( ) dst
t e td

¥
-ò  = 1 …(9.9)

9.3.6 Exponential Function (eat)

The Laplace transform of the exponential function is

£ [eat] =
0

d
at st

e e t
-

¥
-ò

=

( )
( )

00

d  =
s a t

s a t e
e t

s a --

¥¥ - -
- - é ù

-ê ú
-ë û

ò

=
1

–s a
…(9.10)

9.3.7 Sine Function

We know that sin w t = 
1

2 j
[ejwt – e–jw t].

The Laplace transform of sine function is

£ [sin w t] = L
1

( )
2

j t j te e
j

-é ù
-ê ú

ë û
w w

= { }
1 1 1 1

[ ] [ ] =  
2 2

j t j te e
j j s j s j

w w

w w

- é ù
- -ê ú- +ë û

£ £

= 2 2
s +
w

w
…(9.11)

Fig. 9.4

Fig. 9.5
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9.3.8 Cosine Function

We know that cos wt = 
1

2
[e jw t + e–jw t].

 The Laplace transform of cosine function is

£ [cos w t] = £ 
1

( )
2

j t j t
e e
w w-é ù+ê úë û

=
1

2
{£ [ejwt] + £ [e–jwt]} = 

1 1 1

2 s j s jw w

é ù
+ê ú- +ë û

=
2 2

s

s w+
…(9.12)

9.3.9 Exponentially Damped Function

Laplace transform of an exponentially damped function e–at f (t) is

£ [e–at f (t) dt] =
–0

( )f t

¥

ò e–at e–st dt = 
–0

( )f t

¥

ò e– (s + a) t dt

= F (s + a) …(9.13)

Thus, the transform of the function e–at f (t) is obtained by putting (s + a) in place of s in the transform of f (t).

£ [e–at sin wt] =
2 2

( )s a+ +
w

w
…(9.14)

£ [e–at cos wt] = 2 2
( )

s a

s a

+
+ +w …(9.15)

Table 9.1 Laplace Transformation

Sr. No.     f (t)              F(s)

1 f (t) F(s) = 

0

( )f t
-

¥

ò e–st dt

2 a f1(t) + b f2(t) a F1(s) + bF2(s)

3 f (t – a) u (t – a) e–as F(s)

4 e–at f (t) F(s + a)

5
d

d

t
f (t) sF(s) – f (0–)

6

0

( )

t

f t
-
ò dt

1

s
F(s)

7 t 2

1

s

8 t n
1

!
n

n

s +
(Contd)
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Sr. No.     f (t)              F(s)

9 t f (t) –
d

d

s
F(s)

10
1

t
f (t) ( )

s

F s

¥

ò ds

11 f (at)
1

 
s

F
a a

æ ö
ç ÷è ø

12 u (t)
1

s

13 u (t – a)

as
e

s

-

14 r (t)
2

1

s

15 r (t – a) 2

as
e

s

-

16 d (t) 1

17 d (t – a) e–as

18 eat
1

s a-

19 sin w t 2 2s +
w

w

20 cos w t 2 2

s

s +w

21 e–at sin w t 2 2
( )s a+ +

w

w

22 e–at cos w t 2 2( )

s a

s a

+
+ +w

9.4 THE TRANSFORMED CIRCUIT

Voltage–current relationships of network elements can also be represented in the frequency domain.

Resistor For the resistor, the v–i relationship in time domain is

   v (t) = R i (t) …(9.16)

The corresponding frequency–domain relation will be given as

  V (s) = RI (s) …(9.17)

Fig. 9.6  Resistor
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Inductor For the inductor, the v–i relationships in time domain are

v(t) = L 
d

d

i

t
…(9.18)

i(t) =

0

1
t

v
L -
ò (t) dt + i(0–) …(9.19)

Transforming both the equations, we get

  V (s) = Ls I (s) – L i(0–) …(9.20)

I (s) =
1 (0 )

( ) + 
i

V s
Ls s

-
…(9.21)

Fig. 9.7 Inductor

Capacitor For capacitor, the v–i relationships in time domain are

v (t) =
0

1
( )d (0 )

t

i t t v
C -

-+ò …(9.22)

i (t) = C 
d

d

v

t
…(9.23)

The corresponding frequency–domain relations are given as

V (s) =
1 (0 )

( )  
v

I s
Cs s

-
+ …(9.24)

I (s) = Cs V (s) – Cv (0–) …(9.25)

Fig. 9.8 Capacitor
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9.5 RESISTOR�INDUCTOR CIRCUIT

Consider a series R-L circuit as shown in Fig. 9.9. The switch is closed at time t = 0.

Fig. 9.9

For t > 0, the transformed network is shown in Fig. 9.10

Applying KVL to the Mesh,

RI(s) + LsI(s) =
V

s

I(s) =

V

L
R

s s
L

æ ö+ç ÷è ø

…(9.26)

By partial-fraction expansion,

   I (s) = + 
A B

Rs
s

L
+

 A =
0

( )
s

s I s = =

0S

V

Ls
R

s s
L =

´
æ ö+ç ÷è ø

 = 
V

R

B =
/

( )

s R L

R
s I s

L =-

æ ö+ç ÷è ø  =

/s R L

V

R L
s

L R
s s

L =-

æ ö+ ´ç ÷è ø æ ö+ç ÷è ø

= –
V

R

   I (s) =

VV

RR
Rs

s
L

é ùæ ö-ç ÷ê úè øê ú+
ê ú+ê úë û

 Taking the inverse Laplace transform,

i (t) = ( / ) R L tV V
e

R R

--

=
( / )

1
R L tV

e
R

-é ù-ë û for t > 0 …(9.27)

9.6 RESISTOR�CAPACITOR CIRCUIT
Consider a series R-C circuit as shown in Fig. 9.11. The switch is closed at time t = 0.

Fig. 9.11

Fig. 9.10
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For t > 0, the transformed network is shown in Fig. 9.12

Applying KVL to the Mesh,

R I (s) + 
1

Cs
 I (s) =

V

s

   I (s) = 1

V

R

s
RC

+

Taking the inverse Laplace transform,

    i (t) =
V

R
 e–(1/RC)t for t > 0 …(9.28)

9.7 RESISTOR�INDUCTOR�CAPACITOR CIRCUIT

Consider a series R-L-C circuit shown in Fig. 9.13. The switch is closed at time t = 0.

Fig. 9.13

For t > 0, the transformed network is shown in Fig. 9.14

Applying KVL to the Mesh,

RI (s) + Ls I(s) + 
1

Cs
 I(s) =

V

s

   I(s) =
2 1

V

L
R

s s
L LC

+ +

=
1 2( )( )

V

L

s s s s- -
…(9.29)

where s1 and s2 are the roots of the equation s2 + 
1

 + 
R

s
L LC

æ ö æ ö
ç ÷ ç ÷è ø è ø

 =  0.

 s1 = –

2
1

+
2 2

R R

L L LC

æ ö -ç ÷è ø

= – 
2 2+ oa a w-  = – a + b

s2 = –
2

R

L
 – 

2
1

2

R

L LC

æ ö -ç ÷è ø

= – a – 
2 2

oa w-  = – a – b

Fig. 9.12

Fig. 9.14
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where a =
2

R

L

wo =
1

LC

and              b =
2 2

oa w-

By partial-fraction expansion, of  I(s),

I(s) =
1 2

+
A B

s s s s- -

A = (s – s1) 
1

( )
s s

I s =

=
1 2

V

L

s s-

       B = (s – s2)
2

( )
s s

I s =

=
2 1 1 2

–

V V

L L

s s s s
=

- -

    I(s) =
1 2 1 2

1 1

( )

V

L s s s s s s

é ù
-ê ú- - -ë û

Taking the inverse Laplace transform,

i(t) =
1 2

1 2( )

s t s tV
e e

L s s
é ù-ë û- …(9.30)

=  A1 
1s t

e + A2 
2s t

e

where A1 and A2 are constants to be determined and s1 and s2 are the roots of the equation.

Now depending upon the values of s1 and s2, we have 3 cases of the response.

Case I When the roots are  real and unequal, it gives an overdamped response.

2

R

L
>

1

LC

                a > wo

In this case, the solution is given by

        i(t) = e–a t (A1 e
b t + A2 e

–b t)

or         i(t) = A1 
1s t

e  + A2 2s t
e for  t > 0

Case II When the roots are real and equal, it gives a critically damped response.

2

R

L
=

1

LC

a = wo

In this case, the solution is given by

        i(t) = e–a t (A1 + A2 t) for  t > 0

Case III When the roots are complex conjugate, it gives an underdamped response.

2

R

L
<

1

LC
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a < wo

In this case, the solution is given by

    i(t) = A1 1s t
e  + A2 2s t

e

where s1, 2 = – a ± 2 2
oa w-

 Let 2 2
oa w- = 2 2

1 oω α− −

= j wd

where j = 1-

and      wd = 2 2
o

ω α−

Hence  i(t) = e–a t (A1 e dj tω  + A2 e
– dj tω )

=  e–a t 1 2 1 2( ) ( )
2 2

d d d dj t j t j t j t
e e e e

A A j A A
j

ω ω ω ω− −    + −   + + −    
        

=  e–a t [(A1 + A2) cos wdt + j (A1 – A2) sin wdt]

=  e–a t (B1 cos wdt + B2 sin wdt) for  t > 0

Example 9.1 In the network of Fig. 9.15, the  switch is moved from a to b at t = 0. Determine i (t) and vc (t).

Fig. 9.15

Solution At t = 0–, the network has attained steady-state

condition. Hence, the capacitor of 6 F acts as an open circuit.

v6 F (0
–) = 10 V

i (0
–) = 0

v3 F (0
–) = 0

Since voltage across the capacitor cannot change

instantaneously,

v6 F (0
+) = 10 V

v3 F (0
+) = 0

For t > 0, the transformed network is shown in Fig. 9.17.

Applying KVL to the Mesh for t > 0,

10 1

6s s
−  I(s) – I (s) – 

1

3s
I(s) = 0

1

6s
I(s) + I(s) + 

1

3s
I(s) =

10

s

Fig. 9.16

Fig. 9.17
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 I(s) =
10

1 1
1

6 3
s

s s

æ ö+ +ç ÷è ø

=
60

6 3s +
 = 

10

0.5s +
Taking the inverse Laplace transform,

 i(t) = 10e–0.5t for t > 0

Voltage across the 3-F capacitor is given by

Vc(s) =
1

3s
I(s) = 

( )
10

3 0.5s s +
By partial-fraction expansion,

Vc (s) = + 
0.5

A B

s s +

 A = 0( )c ssV s =

 = 
0

10

3( 0.5) ss =+
= 

20

3

B = 0.5( 0.5) ( )c ss V s =−+

 = 
0.5

10

3 ss =− = – 
20

3

Vc (s) =

20 20

3 3

0.5s s
-

+
Taking the inverse Laplace transform,

 vc (t) = 0.520 20

3 3

t
e
--

= 0.520
(1 )

3

t
e
-- for t > 0

Example 9.2 The switch in the network shown in Fig. 9.18 is closed at t = 0. Determine the voltage

across the capacitor.

Fig. 9.18
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Solution At t = 0–, the capacitor is uncharged.

vc(0
–) = 0

Since the voltage across the capacitor cannot change instantaneously,

vc(0
+) = 0

For t > 0, the transformed network is shown in Fig. 9.19.

Applying KCL at Node for t > 0,

10
( )

( ) ( )
+  +  

110 10

2

c
c c

V s
V s V ss

s

-
= 0

2s Vc (s) + 0.2 Vc (s) =
1

s

Vc (s) =
1 0.5

=  
(2 0.2) ( 0.1)s s s s+ +

By partial-fraction expansion,

Vc (s) = +
0.1

A B

s s +

A = sVc (s)|s =0 =
0

0.5

0.1 ss =+  = 
0.5

0.1
 = 5

B = (s + 0.1)Vc(s)|s =– 0.1 

0.1

0.5 0.5
5

0.1
s

s
=-

= - = -

Vc (s) =
5 5

0.1s s
-

+
Taking inverse Laplace transform,

vc (t) = 5 – 5 e–0.1 t for t > 0

Example 9.3 In the network of Fig. 9.20, the switch is moved from the position 1 to 2 at t = 0, steady-state

conditions having been established in the position 1. Determine i (t) for t > 0.

Fig. 9.20

Solution At t = 0–, the network has attained steady-state

condition. Hence, the inductor acts as a short circuit.

 i (0–) =
10

1
 = 10 A

Since the current through the inductor cannot change instantaneously,

i (0+) = 10 A

Fig. 9.19

Fig. 9.21
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For t > 0, the transformed network is shown in Fig. 9.22.

Applying KVL to the Mesh for t > 0,

– I(s) – I (s) – sI(s) + 10 = 0

 I(s) (s + 2) = 10

 I (s) =
10

2s +
Taking inverse Laplace transform,

i (t) = 10e–2t for t > 0

Example 9.4 The network of Fig. 9.23 was initially in the steady state with the switch in the position a. At

t = 0, the switch goes from a to b. Find an expression for voltage v (t) for t > 0.

Fig. 9.23

Solution At t = 0–, the network has attained steady-state condition.

Hence, the inductor acts as a short circuit.

i (0–) =
2

2
 = 1 A

Since current through the inductor cannot change instantaneously,

i (0+) = 1 A

For t > 0, the transformed network is shown in Fig. 9.25.

Applying KCL at Node for t > 0

( ) 2 ( ) ( )
+ + 

2 1

V s V s V s

s s

+
= 0

V (s)
3

1
2s

æ ö+ç ÷è ø = – 
1

s

 V (s) =
2 1

= 
2 3 1.5s s

-
+ +

Taking the inverse Laplace transform,

 v (t) = – e–1.5 t for t > 0

Example 9.5 The switch in Fig. 9.26 is opened at time t = 0. Determine the voltage v(t) for t > 0.

Fig. 9.26

Fig. 9.22

Fig. 9.24

Fig. 9.25
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Solution At t = 0–, the network has

attained steady-state condition. Hence, the

inductor acts as a short circuit and the

capacitor acts as an open circuit.

 iL(0–) = 0

 v(0–) = 0

Since current through the inductor and

voltage across the capacitor cannot change

instantaneously,

iL(0+) = 0

v(0+) = 0

For t > 0, the transformed network is shown in

Fig. 9.28.

Applying KCL at Node for t > 0,

( ) ( ) ( )
+ + 

10.5 0.5

0.5

V s V s V s

s

s

=
2
s

2V (s) + 
2

s
V (s) + 0.5s V (s) =

2

s

V (s) =

2

2
0.5 2

s

s
s
+ +

= 2

4

4 4s s+ +
 =  

2

4

( 2)s +
Taking inverse Laplace transform,

v (t) = 4 t e–2t for t > 0

Example 9.6 In the network of Fig. 9.29, the switch is closed and steady-state is attained. At t = 0, switch

is opened. Determine the current through the inductor.

Fig. 9.29

Solution At t = 0–, the switch is closed and steady-

state condition is attained. Hence, the inductor acts as a

short circuit and the capacitor acts as an open circuit.

Current through inductor is same as the current

through the resistor.

Fig. 9.27

Fig. 9.28

Fig. 9.30
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 iL (0–) =
5

2.5
 = 2 A

Voltage across the capacitor is zero as it is connected in parallel with a short.

vc (0
–) = 0

Since voltage across the capacitor and current

through the inductor cannot change instantaneously,

iL (0+) = 2 A

vc (0
+) = 0

For t > 0, the transformed network is shown in Fig. 9.31.

Applying KVL to the Mesh for t > 0,

– 
6

1

200 10 s
-´

 I(s) – 0.5s I(s) + 1 = 0

0.5s I(s) – 1 + 5000
( )I s

s
= 0

 I (s) =
1

5000
0.5s

s
+

 = 
2

2

10000

s

s +

Taking inverse Laplace transform,

 i(t) = 2 cos 100 t for t > 0

Example 9.7 In the network of Fig. 9.32, the switch is closed for a long time and at t = 0, the switch is

opened. Determine the current through the capacitor.

Fig. 9.32

Solution At t = 0–, the switch is closed and steady-

state condition is reached.

vc (0
–) = 0

Since voltage across the capacitor cannot change

instantaneously,

vc (0
+) = 0

For t > 0, the transformed network is shown in

Fig. 9.34.

Applying KVL to two parallel branches,

2

s
  I1(s)+ I1(s) = I2(s)

 Applying KCL at Node for t > 0,

2

s
= I1(s) + I2(s)

Fig. 9.31

Fig. 9.33

Fig. 9.34
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2

s
I1(s) + I1(s) =

2

s
 – I1(s)

2

s
I1(s) + 2 I1(s) =

2

s

I1 (s) =

2

1
= 

2 1
2

s

s

s

++

Taking the inverse Laplace transform,

 i1 (t) = e–t for t > 0

Example 9.8 In the network of Fig. 9.35, the switch is moved from a to b, at t = 0. Find v(t).

Fig. 9.35

Solution At t = 0–, steady-state condition is reached. Hence, the capacitor acts as an open circuit.

v (0–) = 6 × 2

4 2+
 = 2 V

Since voltage across the capacitor cannot change

instantaneously,

v (0+) = 2 V

For t > 0, the transformed network is shown in

Fig. 9.37.

Applying KCL at Node for t > 0,

2
( )

( )
+ + 

16

V s
V s s

s

-
( )

2

V s
= 0

V (s)
2

3
s

é ù+ê úë û = 2

 V (s) =
2

2

3
s +

Taking the inverse Laplace transform,

 v (t) = 2 e–(2/3) t for t > 0

Fig. 9.36

Fig. 9.37
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Example 9.9 In the network of Fig. 9.38, the switch is opened at t = 0. Find i(t).

Fig. 9.38

Solution At t = 0–, the switch is closed and steady-

state condition is reached. Hence, the inductor acts as a

short circuit.

iT (0
–) = 

( )
36 36

= 
10 3 || 6 10 2+ +

= 3 A

iL (0
–) = 3 × 

6

6 3+
 = 2 A

Since current through the inductor cannot change instantaneously,

iL(0+) = 2 A

For t > 0, the transformed network is shown in Fig. 9.40.

Applying KVL to Mesh for t > 0,

–0.2 – 0.1s I(s) – 3I(s) – 6I(s)= 0

0.1sI(s) + 9I(s) = 0.2

I(s) =
0.2

0.1 9s +
 = 

2

90s +
Taking inverse Laplace transform,

 i(t) = 2 e–90 t for t > 0

Example 9.10 The network shown in Fig. 9.41 has acquired steady-state with the switch closed for

t < 0. At t = 0, the switch is opened. Obtain i (t) for t > 0.

Fig. 9.41

Solution At t = 0–, the switch is closed and the network has acquired steady-state. Hence, the inductor acts

as a short circuit.

iT (0 – ) = 
( )
36

10 4 || 4+

Fig. 9.39

Fig. 9.40
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=
36

10 2+
 = 3 A

 i(0–) = 3 × 
4

4 4+
 = 1.5 A

Since current through the inductor cannot change

instantaneously,

i(0+) = 1.5 A

For t > 0, the transformed network is shown in Fig. 9.43.

Applying KVL to the Mesh for t > 0,

– 4I(s) – 4I(s) – 2sI(s) + 3 = 0

8I(s) + 2sI(s) = 3

I(s) =
3

2 8s +
 = 

1.5

4s +
Taking the inverse Laplace transform,

 i(t) = 1.5 e–4 t for t > 0

Example 9.11 The network shown in Fig. 9.44 has acquired steady-state at t < 0 with the switch open.

The switch is closed at t = 0. Determine v (t).

Fig. 9.44

Solution At t = 0–, steady-state condition is reached.

Hence, the capacitor of 1 F acts as an open circuit.

v(0–) = 4 × 
2

2 2+
 = 2 V

Since voltage across the capacitor cannot change

instantaneously,

v(0+) = 2 V

For t > 0, the transformed network is shown in Fig. 9.46.

Applying KCL at the Node for t > 0,

4 2
( ) ( )

( ) ( )
+ + + 

1 12 2

V s V s
V s V ss s

s s

- -
= 0

2s V (s) + V (s) =
2

s
 + 2

Fig. 9.42

Fig. 9.43

Fig. 9.45

Fig. 9.46
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V (s) =

2
2

2 1

s

s

+

+

=
2 2

(2 1)

s

s s

+
+  = 

2 2

2 1s s
-

+
 = 

2 1

0.5s s
-

+
Taking the inverse Laplace transform,

 v(t) = 2 – e–0.5 t for t > 0

Example 9.12 In the network shown in Fig. 9.47, the switch is opened at t = 0. Steady-state condition is

achieved before t = 0. Find i (t).

Fig. 9.47

Solution At t = 0–, the switch is closed and steady-

state condition is achieved. Hence, the capacitor acts

as an open circuit and the inductor acts as a short circuit.

 vc (0
–) = 1 V

 i (0–) = 1 A

Since current through the inductor and voltage across

the capacitor cannot change instantaneously,

vc(0
+) = 1 V

i(0+) = 1 A

For t > 0, the transformed network is shown in Fig. 9.49.

Applying KVL to the Mesh for t > 0,

1 1
–

s s
 I(s) – 0.5s I(s) + 0.5 – I(s) = 0

 0.5 +
1

s
=

1

s
I(s) + 0.5 s I(s) + I(s)

I (s)
1

1 0.5s
s

é ù+ +ê úë û
= 0.5 + 

1

s

I (s) =
2 2

2 ( 1) 1
=

2 2 ( 1) 1

s s

s s s

+ + +
+ + + +

=
2 2

1 1
+

( 1) 1 ( 1) 1

s

s s

+
+ + + +

Taking the inverse Laplace transform,

 i (t) = e–t cos t + e–t sin t for t > 0

Fig. 9.48

Fig. 9.49
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Example 9.13 In the network shown in Fig. 9.50, the switch is closed at t = 0, the steady-state being

reached before t = 0. Determine current through inductor of 3 H.

Fig. 9.50

Solution At t = 0–, steady-state condition is reached. Hence, the inductor of 2 H acts as a short circuit.

 i1 (0
–) =

1

2
A

i2 (0
–) = 0

Since current through the inductor cannot change instantaneously,

i1 (0
+) =

1

2
A

i2 (0
+) = 0

For t > 0, the transformed network is shown in Fig. 9.52.

Applying KVL to Mesh 1,

1

s
 – 2s I1 (s) + 1 – 2 [I1 (s) – I2 (s)] = 0

(2 + 2s) I1 (s) – 2I2 (s) = 1 + 
1

s
Applying KVL to Mesh 2,

–2 [I2(s) – I1(s)] – 2I2(s) – 3s I2 (s) = 0

–2I1(s) + (4 + 3s) I2(s) = 0

By Cramer’s Rule,

I2 (s) = 

2 2 1 1/

2 0

2 2 2

2 4 3

s s

s

s

+ +
-
+ -
- +

 = 

2
( 1)

(2 2)(4 3 ) 4

s
s

s s

+

+ + -

= 
2

1

(3 7 2)

s

s s s

+
+ +

= 
1

1
3 ( 2)

3

s

s s s

+
æ ö+ +ç ÷è ø

 = 

1
( 1)

3
1

( 2) ( )
3

s

s s s

+

+ +

By partial-fraction expansion,

 I2 (s) =
12

3

A B C

s s
s

+ +
+ +

Fig. 9.51

Fig. 9.52
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 A =

0

1
( 1)

3
1

( 2)
3

s

s

s s
=

+

æ ö+ +ç ÷è ø

= 
1

2

 B =

2

1
( 1)

3

1

3 s

s

s s
=-

+

æ ö+ç ÷è ø

= 
1

10
-

 C =

1 / 3

1
( 1)

3

( 2)

s

s

s s

=-

+

+
= 

2

5
-

 I2 (s) = 
1 1 2

12 10( 2)
5

3

s s
s

- -
+ æ ö+ç ÷è ø

Taking inverse Laplace transform,

 i2 (t) =
1 1

2 10
-  e–2t – 

2

5
 e–(1/3) t for t > 0

9.8 TRANSIENT AND STEADY STATE RESPONSE OF R-L CIRCUIT TO

VARIOUS FUNCTIONS

Consider a series R-L circuit shown in Fig. 9.53.

Fig. 9.53

For t > 0, the transformed network is shown in Fig. 9.54.

Applying KVL to the Mesh,

R I(s) + Ls I(s) = V(s)

 I(s) =
( )V s

R Ls+

 I(s) =
1 ( )V s

RL
s

L
+

…(9.32)

Fig. 9.54
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(i) When the unit step signal is applied,

i.e., v (t) = u (t) …(9.33)

Taking Laplace transform,

 V (s) =
1

s
…(9.34)

 I (s) = 

1

1 s
RL

s
L

+

= 
1 1

RL
s s

L

æ ö+ç ÷è ø

By partial-fraction expansion,

 I (s) =
1 A B

RL s
s

L

æ ö
ç ÷+ç ÷

+ç ÷è ø

A = s I (s)|s=0 = 

0

1
= 

s

L

R R
s

L =
+

B = /

/

1
 ( ) | =   s R L

s R L

R L
s I s

L s R
= -

= -

æ ö+ = -ç ÷è ø

 I (s) =
1 1 1L L

RL R s R
s

L

æ ö
ç ÷´ - ´ç ÷

+ç ÷è ø

=
1 1 1

RR s
s

L

æ ö
ç ÷-ç ÷

+ç ÷è ø
Taking inverse Laplace transform,

 i (t) = ( / )1
[1 ]

R L t
e

R

-- for t > 0 …(9.35)

(ii) When unit ramp signal is applied,

v (t) = r (t) = t for t > 0 …(9.36)
 Taking Laplace transform,

V (s) =
2

1

s
…(9.37)
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 I (s) =
2

1 1

RL
s s

L

´
æ ö+ç ÷è ø

 By partial-fraction expansion,

 
2

1 1

RL
s s

L

´
æ ö+ç ÷è ø

=
2

A B C

Rs s s
L

+ +
+

1

L
=

2
+ + 

R R
As s B s Cs

L L

æ ö æ ö+ +ç ÷ ç ÷è ø è ø
 Putting s = 0, we get

B =
1

R

 Putting s = –R/L, we get

C = 2

L

R

 Comparing coefficients of s2,

A + C = 0

A = – C = – 2

L

R

 I (s) = – 
2 2 2

1 1 1 1
 

L L

Rs RR s R s
L

+ +
+

Taking inverse Laplace transform,

i (t) = – ( / )

2 2

1
+    +  R L tL L

t e
RR R

-

= ( / )

2

1
[1 ]R L tL

t e
R R

-- - for t > 0 …(9.38)

(iii) When unit impulse signal is applied.

 v (t) = d (t) …(9.39)

Taking Laplace transform,

 V (s) = 1 …(9.40)

I (s) =
1 1

RL
s

L
+

Taking inverse Laplace transform,

 i (t) =
1

L
e–(R/L)t for t > 0 …(9.41)
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9.9 TRANSIENT AND STEADY-STATE RESPONSE OF R�C CIRCUIT TO

VARIOUS FUNCTIONS

Consider a series R-C circuit as shown in Fig. 9.55.

Fig. 9.55

For t > 0, the transformed network is shown in Fig. 9.56.

Applying KVL to the Mesh,

1

Cs
I (s) + R I (s) = V (s)

I (s) =
( ) ( )

= 
1 1

V s sV s

R R s
Cs RC

æ ö+ +ç ÷è ø

…(9.42)

(i) When unit step signal is applied.

 v (t) = u (t)

Taking Laplace transform,

 V(s) =
1

s

 I(s) = 

1

1
=  

1 1

s
s

R s R s
RC RC

´

æ ö æ ö+ +ç ÷ ç ÷è ø è ø
Taking inverse Laplace transform,

i(t) =
1

R
e–(1/RC) t for t > 0 …(9.43)

(ii) When unit ramp signal is applied,

v(t) = r (t) = t

Taking Laplace transform,

V(s) = 2

1

s

 I (s) =
2

1

1
=  

1 1

s
s

R s Rs s
RC RC

´

æ ö æ ö+ +ç ÷ ç ÷è ø è ø
By partial-fraction expansion,

 I (s) = + 
1

A B

s
s

RC
+

Fig. 9.56
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A = s I (s) |s = 0

=

0

1

1

s

R s
RC =

æ ö+ç ÷è ø

= C

B =
1 /

1
( )

s RC

s I s
RC =-

æ ö+ç ÷è ø

=
–1 /

1

s RCRs =
= – C

I (s) =
C

s
– 

1

C

s
RC

+

Taking inverse Laplace transform,

 i(t) = C – C e– (1/RC)t for t > 0 …(9.44)

(iii) When unit inpulse signal is applied.

 v(t) = d (t)

Taking Laplace transform,

V(s) = 1

I (s) =
1

s

R s
RC

æ ö+ç ÷è ø

=

1 1

1

s
RC RC

R s
RC

+ -

æ ö+ç ÷è ø

 = 

1

1
1

1
RC

R
s

RC

æ ö
ç ÷-ç ÷
ç ÷+è ø

Taking inverse Laplace transform,

 i(t) =
(1 / )1 1

( )
RC t

t e
R RC
d

-é ù-ê úë û
for t > 0 …(9.45)

Example 9.14 At t = 0, unit pulse voltage of unit width is applied to a series RL circuit as shown in

Fig. 9.57. Obtain an expression for i(t).

Fig. 9.57

Solution v(t) = u (t) – u (t – 1)

V(s) =
1 1s s

e e

s s s

- --- =
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For t > 0, the transformed network is shown in Fig. 9.58.

Applying KVL to the Mesh,

 V (s) = I (s) + s I (s) = 
1 s

e

s

--

 I (s) =
1

( 1)

se

s s

--
+

=
1

( 1) ( 1)

s
e

s s s s

-

-
+ +

=
1 1

+ 
1 1

s s
e e

s s s s

- -
- -

+ +
Taking inverse Laplace transform,

 i(t) = u(t) – e–t u(t) – u(t – 1) + e– (t – 1) u(t – 1)

= (1 – e–t) u(t) – [1 – e– (t – 1)] u(t – 1) for t > 0

Example 9.15 A rectangular voltage pulse of unit height and T-seconds duration is applied to a series

R-C network at t = 0. Obtain the expression for the current i (t). Assume the capacitor to be initially uncharged.

Fig. 9.59

Solution v(t) = u(t) – u(t – T)

V (s) =
1 1sT sT

e e

s s s

- --- =

The transformed network is shown in Fig. 9.60.

Applying KVL to the Mesh for t > 0,

V (s) = R I(s) + 
1 1

( ) 
sT

e
I s

Cs s

−−
=

I (s)
1 1

=  (1 )sT
R e

Cs s

-é ù+ -ê úë û

I (s) =
1 1 1

=  
1 11

sT sT
e e

R
s sR s

RC RCRC

- -
é ù
ê ú-

-ê ú
æ ö ê ú+ ++ç ÷ ê úè ø ë û

Taking inverse Laplace transform,

i (t) = (1 / ) (1 / )( )1
( ) ( )

RC t RC t T
e u t e u t T

R

- - -é ù- -ë û for t > 0

Fig. 9.58

Fig. 9.60
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Example 9.16 For the network shown, determine the current i (t) when the switch is closed at t = 0 with

zero initial conditions.

Fig. 9.61

 Solution The transformed network is shown in Fig. 9.62.

Applying KVL to the Mesh for t > 0,

2

5
s

e

s

-

– 5I(s) – s I(s) –
6

s
I(s) = 0

5I(s) + s I(s) + 
6

s
I(s) =

2

5
s

e

s

-

I(s) = 2

5 5
= 

( 3)( 2)( 5 6)

s s
e e

s s ss s s

- -

+ ++ +
By partial-fraction expansion,

1

( 3)( 2)s s s+ + =  + + 
3 2

A B C

s s s+ +

A =
0

1

( 3)( 2)
s

s s =+ +
=

1

6

B =  
3

1 1
=

( 2) 3
s

s s = -+

C =

–2

1 1

( 3) 2
s

s s =
= -

+

I (s) = 5e–s 
1 1 1

6 3( 3) 2( 2)s s s

é ù
+ -ê ú+ +ë û

=
5 5 5

+
6 3 3 2 2

s s s
e e e

s s s

- - -
-

+ +
Taking inverse Laplace transform,

i(t) =
5

6
u(t – 1) + 

5

3
e–3 (t – 1) u(t – 1) –

5

2
 e–2 (t – 1) u(t – 1) for t > 0

Example 9.17 For the network shown in Fig. 9.63, determine the current i (t) when the switch is closed

at t = 0. Assume that initial current in the inductor is zero.

Fig. 9.62



9.28 Electrical Networks

Fig. 9.63

Solution The transformed network is shown in Fig. 9.64.

Applying KVL to Mesh for t > 0,

2e–3s – 2I(s) –  s I(s) = 0

2I(s) + s I(s) = 2e–3s

I(s) =
3

2

2

s
e

s

-

+
Taking inverse Laplace transform,

i(t) = 2e–2 (t – 3) u(t – 3) for t > 0

Example 9.18 Find impulse response of the current i (t) in the network shown in Fig. 9.65.

Fig. 9.65

Solution The transformed network is shown in Fig. 9.66.

Total impedance Z (s) =  
1(2 1)

2 1 1

s

s

+
+ +

 = 
2 1

2 2

s

s

+
+

 I1 (s) =
( )

( )

V s

Z s

=
1

2 1

2 2

s

s

+
+

 = 
2 2

2 1

s

s

+
+

By current-division formula,

 I(s) = 1

1
( )

2 2
I s

s
´

+

=
2 2 1

2 1 2 2

s

s s

+
´

+ +
 = 

1 1 1
=

2 1 2 0.5s s+ +
Taking inverse Laplace transform,

 i(t) =
1

2
e–0.5 t u(t) for t > 0

Fig. 9.64

Fig. 9.66
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Example 9.19 Find the impulse response of the voltage across the capacitor in the network shown in

Fig. 9.67. Also determine response vc (t) for step input.

Fig. 9.67

Solution The transformed network is shown in Fig. 9.68.

By voltage division formula,

Vc(s) = V(s)

1

1
2

s

s
s

´
+ +

=
2

( )

2 1

V s

s s+ +
 = 

2

( )

( 1)

V s

s +
(i) For impulse input,

 V(s) = 1

 Vc(s) =
2

1

( 1)s +
Taking inverse Laplace transform,

Impulse response vc(t) = t e–t u(t) for t > 0

(ii) For step input,

 V(s) =
1

s

Vc(s) =
2

1

( 1)s s +
By partial-fraction expansion,

Vc(s) =
21 ( 1)

A B C

s s s
+ +

+ +
1 = A(s + 1)2 + Bs(s + 1) + Cs

= A(s2 + 2s + 1) + B(s2 + s) + Cs

= s2(A + B) + s(2A + B + C) + A

Comparing coefficient of s2, s1 and s0, we have

 A = 1

 A + B = 0

 B = –A = –1

2A + B + C = 0

 C = –2A – B = –2 + 1 = –1

Fig. 9.68



9.30 Electrical Networks

 Vc (s) = 2

1 1 1

1 ( 1)s s s
- -

+ +
Taking inverse Laplace transform,

 vc(t) = u(t) – e–t u(t) – te–t u(t)

= (1 – e–t – t e–t) u(t) for t > 0

Example 9.20 Determine the expression for vL (t) in the network shown in Fig. 9.69. Find vL (t) when

(i) vs(t) = d (t), and (ii) vs(t) = e–t u(t).

Fig. 9.69

Solution The transformed network is shown in Fig. 9.70.

By voltage-division formula,

 VL(s) = Vs(s) 2

5
2

s

s
´

+
= 

10

s

s +
Vs(s)

(i) For impulse input,

 Vs(s) = 1

 VL(s) =
10

s

s +

=
10 10

10

s

s

+ -
+

 = 1 – 
10

10s +
Taking inverse Laplace transform,

VL(t) = d (t) – 10 e–10t u(t) for t > 0

(ii) For vs(t) = e–t u(t),

Vs(s) =
1

1s +

VL(s) =
1

 
1 10

s

s s+ +
= 

( 10)( 1)

s

s s+ +
By partial-fraction expansion,

 VL(s) = + 
10 1

A B

s s+ +

A =
101 s

s

s = -+ = 
10

9

B =
110 s

s

s = -+ = 
1

–
9

Fig. 9.70
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 VL(s) =
10 1 1 1

9 10 9 1s s
-

+ +
Taking inverse Laplace transform,

 vL(t) =
10

9
e–10 t u(t) – 

1

9
 e–t u(t)

=
1010 1

9 9

t t
e e
- -æ ö-ç ÷è ø u(t) for t > 0

Example 9.21 For the network shown in Fig. 9.71, find the response v0 (t).

Fig. 9.71

Solution The transformed network is shown in Fig. 9.72.

 Vs (s) =
2

1

2 1

s

s +
By voltage-division formula,

Vo(s) = Vs (s)

4

4
2

s

s

´
+

=
2 ( )

2

sV s

s +
 = 2

( 1)( 2)

s

s s+ +
By partial-fraction expansion,

Vo(s) = 2
+

21

As B C

ss

+
++

 s = (As + B) (s + 2) + c(s2 + 1)

 s = s2(A + C) + s(2A + B) + (2B + C)

Comparing coefficient of s2, s and s0, we have

A + C = 0

2A + B = 1

2B + C = 0

Solving the equations,we get

A = 0.4

B = 0.2

 C = –0.4

 Vo(s) =
2 2 2

0.4 0.2 0.4 0.4 0.2 0.4
= + 

2 21 1 1

s s

s ss s s

+
- -

+ ++ + +

Fig. 9.72
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Taking the inverse Laplace transform,

 i(t) = 0.4 cos t + 0.2 sin t – 0.4 e–2 t for t > 0

Example 9.22 Determine the current i (t) in the network shown in Fig. 9.73, when the switch s is closed

at t = 0.

Fig. 9.73

Solution The transformed network is shown in Fig. 9.74.

Applying KVL to the Mesh for t > 0,

2

1250

625s +
= 10 I(s) + 5s I(s)

I(s) =
2

250

( 625)( 2)s s+ +
 By partial-fraction expansion,

I(s ) =
2

+
2625

As B C

ss

+
++

 250 = (As + B) (s + 2) +C(s2 + 625)

= s2(A + C) + s(2A + B) + (2B + 625C)

Comparing coefficients, we have

 A + C = 0

2A + B = 0

2B + 625C = 250

Solving the equations,we get
A = –0.397
B = 0.795
C = 0.397

 I(s) =
2 2 2

0.397 0.795 0.397 0.397 0.795 0.397
=  + +

2 2625 625 625

s s

s ss s s

- +
+ -

+ ++ + +
Taking the inverse Laplace transform,

 i(t) = –0.397 cos 25t + 0.032 sin 25t + 0.397 e–2t for t > 0

Example 9.23 The network shown in Fig. 9.75 is at rest for t < 0. If the voltage v (t) = u (t) cos t + A d (t)

is applied to the network, determine the value of A so that there is no transient term in the current response i (t).

Fig. 9.75

Fig. 9.74
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v(t) = u(t) cost +Ad (t)

V(s) =
2 1

s
A

s
+

+
Solution The transformed network is shown in Fig. 9.76.

Applying KVL to the Mesh for t > 0,

V(s) = 2s I (s) + I (s) = 2 1

s

s +
 + A

 I(s) =

2
2 31

2
2

( 1)
= + 

11 1
2 ( 1)

22

K s KKs A s

sss s

++ +
æ ö +++ +ç ÷è ø

The transient part of the response is given by the first

term. Hence, for the transient term to vanish, K1 = 0.

K1 =
1

2
s

 + 
 

 I (s)|s = –
1

2

 = 

1 5

2 4

5
2

4

A
- æ ö+ ç ÷è ø

æ ö
ç ÷è øWhen K1 = 0

5

4
 A =

1

2

A =
2

5
 = 0.4

Example 9.24 The network shown has zero initial conditions. A voltage vi(t) = d (t) applied to two terminal

network produces voltage v0(t) = [e–2 t + e–3 t] u(t). What should be vi(t) to give vo(t) = t e–2 t u(t)?

Fig. 9.77

Solution For vi(t) = d (t),

 Vi(s) = 1

 vo(t) = [e–2 t  + e–3 t ]u(t)

Vo(s) =
1 1

+ 
2 3s s+ +

Hence system function H(s) =
( )

( )

o

i

V s

V s

=
1 1 2 5

+ =
2 3 ( 2)( 3)

s

s s s s

+
+ + + +

…(i)

 For  vo(t) = t e–2 t u(t),

Vo(s) =
2

1

( 2)s +
From the Eq. (i),

Vi (s) = 
( )

( )

oV s

H s
=

2

1 ( 2)( 3)

2 5( 2)

s s

ss

+ +
´

++
= 

( 3)

2( 2.5)( 2)

s

s s

+
+ +

Fig. 9.76
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 By partial-fraction expansion,

Vi(s) = + 
2 2.5

A B

s s+ +
A = 1

B = –0.5

Vi (s) =
1 0.5

2 2.5s s
-

+ +
Taking inverse Laplace transform,

vi (t) = e–2 t – 0.5e–2.5 t for t > 0

Example 9.25 A unit impulse applied to two terminal black box produces a voltage v0(t) = 2e–t –e–3 t.

Determine the terminal voltage when a current pulse of 1 A height and a duration of 2 seconds is applied at

the terminal.

Fig. 9.78

Solution
v0(t) = 2e–t– e–3t

V0(s) =
2 1

1 3s s
−

+ +
When  is(t) = d (t),

Is(s) = 1

V0(s) = Z(s)  Is(s) …(i)

 Z(s) = 0 ( )

( )s

V s

I s
 = 

2 1

1 3s s
−

+ +

When is (t) is a pulse of 1-A height and a duration of 2 seconds then,

 is(t) = u(t) – u(t – 2)

 Is(s) =
2

1
s

e

s s

-
-

From the Eq. (i),

V0(s) =  

2
2 1 1

1 3

s
e

s s s s

-é ùé ù- -ê úê ú+ +ë û ë û

=
2 2

2 1 2
  + 

( 1) ( 3) ( 1) ( 3)

s s
e e

s s s s s s s s

- -

- -
+ + + +

= 2

2
21 1 1 1 1 1 1 1 1

  2   
1 3 3 1 3 3

s
s e

e
s s s s s s s s

-
-é ù é ù é ù é ù- - - - - + -ê ú ê ú ê ú ê ú+ + + +ë û ë û ë û ë û

Taking the inverse Laplace transform,

v(t) = 2[u(t) – e–t u(t)] – 
1

3
 [u(t) – e–3 t u(t)] – 2[u(t – 2) – e– (t – 2) u(t – 2)] + 

1

3
[u(t – 2) – e–3 (t – 2) u(t – 2)]

 for t > 0.

Fig. 9.79
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Exercises

1. For the network shown, the switch is closed at t = 0. Find the current i1(t) for t > 0.

Fig. 9.80

[i1(t) = 3 – e–25 t]

2. Determine the current i(t) in the network of Fig. 9.81, when the switch is closed at t = 0. The inductor is

initially unenergized.

Fig. 9.81
[i(t) = 4(1 – e–6t)]

3. In the network of Fig. 9.82, after the switch has been in the open position for a long time, it is closed at

t = 0. Find the voltage across the capacitor.

Fig. 9.82
[v(t) = 1 + 4 e–10t]

4. The circuit of Fig. 9.83, has been in the condition shown for a long time. At t = 0, switch is closed. Find

v(t) for t > 0.

Fig. 9.83
[v(t) = 7.5 + 12.5 e–(4/15) t ]
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5. Figure 9.84 shows a circuit which is in the steady-state with the switch open. At t = 0, the switch is

closed. Determine the current i (t). Find its value at t = 0.114 µ seconds.

Fig. 9.84

[i(t) = 0.00857 + 0.01143 e–8.75 × 106
t, 0.013 A]

6. Find i (t) for the network shown in Fig. 9.85.

Fig. 9.85

[i(t) = 0.125 e
–0.308t + 3.875 e–0.052 t]

7. Determine v(t) where i
L
(0–) = 15 A and v

c
(0–) = 5 V.

Fig. 9.86

[v(t) = 10 – 10e
–t + 5e

–2t]

8. The network shown has acquired steady state with the switch at position 1 for t < 0. At t = 0, the switch

is thrown to the position 2. Find v(t) for t > 0.

Fig. 9.87

[v(t) = 4e
–t – 2 e–2t ]
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9. In the network shown in Fig. 9.88, the switch is closed at t = 0. Find current i1(t) for t > 0.

Fig. 9.88

[i1(t) = 5 + 5e–2t – 10e–3t]

10. In the network shown in Fig. 9.89, the switch is closed at t = 0. Find the current through the 30-Ω resistor.

Fig. 9.89

[i(t) = 0.1818 – 0.265 e–13.14 t + 0.083 e–41.86 t ]

11. The network shown in Fig. 9.90 is in steady state with s1 closed and s2 open. At t = 0, s1 is opened and

s2 is closed. Find the current through the capacitor.

Fig. 9.90

[i(t) = 5 cos (0.577 × 103 t) ]

12. In the network shown in Fig. 9.91, find currents i1 (t) and i2 (t) for t > 0.

Fig. 9.91

[i1(t) = 5 e–0.625 t, i2 (t) = 1 – e–0.625 t ]
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13. For the network shown in Fig. 9.92, find currents i1(t) and i2(t) for t > 0.

Fig. 9.92

100.5 9949.5
1

100.5 9949.5
2

( ) 0.101 10.05

( ) 5 5.05 0.05

t t

t t

i t e e

i t e e

− −

− −

 = +
 

= − +  
14. In the network shown in Fig. 9.93, the switch is opened at t = 0, the steady state having been established

previously. Find i (t) for t > 0.

Fig. 9.93

[i(t) = 1.5124e–2.22t + 3.049e–2.5t]

15. Find the current i (t), if the switch is closed at t = 0. Assume initial conditions to be zero.

Fig. 9.94
[i(t) = 3 + 0.57e–7.14 t]

16. In the network shown in Fig. 9.95, find the voltage v(t) for t > 0.

Fig. 9.95

66 9 3 21
( ) cos 2 sin 2

5 10 10 10

t t
v t e e t t

− − = − + + +  
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17. For the network shown, determine v(t) when the input is

(i) an impulse function [e–t] u(t)

(ii) a unit step function  [1 – e–t] u(t)

(iii) i(t) = 4e–t u(t) [4t e–t] u(t)

Fig. 9.96

18. For a unit ramp input, find the response vc(t) for t > 0.

Fig. 9.97

[vc(t) = –100 u(t) + 100e–0.01t u(t) + tu(t)]

Objective-Type Questions

1. If the Laplace transform of the voltage across a capacitor of value 
1

F
2

 is

Vc (s) = 
2

1

1s +
the value of the current through the capacitor at t = 0+ is

(a) 0 (b) 2 A (c)
1

2
 A (d) 1 A

2. The response of an initially relaxed linear constant parameter network to a unit impulse applied at t = 0

is 4e–2t u(t). The response of this network to a unit step function will be

(a) 2[1 – e – 2t] u(t) (b) 4[e–t – e–2t] u(t) (c) sin 2t (d) (1 – 4 e–4t) u(t)

3. The Laplace transform of a unit ramp function starting at t = a is

(a) 
2

1

( )s a+
(b)

2
( )

as
e

s a

-

+
(c)

2

as
e

s

-

(d)
2

a

s

4. The Laplace transform of eat cos α t is equal to

(a)
2 2

( )

s

s

α
α α

−
− +

(b)
2 2

( )

s

s

α
α α

+
− +

(c)
2

1

( )s α−
(d) none of the above
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5. The circuit shown in Fig. 9.98 has initial current i(0–) = 1 A

through the inductor and an initial voltage vc(0
–) = –1 V across

the capacitor. For input v(t) = u(t), the Laplace transform of

the current i(t) for t ≥ 0 is

(a)
2 1

s

s s+ +
(b)

2

2

1

s

s s

+
+ +

(c)
2

2

1

s

s s

−
+ +

(d)
2

2

1

s

s s

−
+ +

6. A square pulse of 3 volts amplitude is applied to an R-C circuit shown in Fig. 9.99. The capacitor is

initially uncharged. The output voltage v0 at time t = 2 seconds is

(a) 3 V (b) –3 V (c) 4 V (d) –4 V

Fig. 9.99

7. A 2-mH inductor with some initial current can be

represented as shown. The value of the initial current is

(a) 0.5 A (b) 2 A

(c) 1 A (d) 0

8. A current impulse 5 d (t) is forced through a capacitor C. The voltage vc(t) across the capacitor is given by

(a) 5 t (b) 5 u(t) – C (c)
5

t
C

(d)
5 ( )u t

C

9. In the circuit shown in Fig. 9.101, it is desired to have a

constant direct current i(t) through the ideal inductor L.

The nature of the voltage source v(t) must be

(a) a constant voltage

(b) a linearly increasing voltage

(c) an ideal impulse

(d) as exponential increasing voltage

10. When a unit impulse voltage is applied to an inductor of 1 H, the energy supplied by the source is

(a) ∞ (b) 1 J (c)
1

J
2

(d) 0

Fig. 9.98

Fig. 9.100

Fig. 9.101

Answers to Objective-Type Questions

1.(c)2.(a)3.(c)4.(a)5.(b)6.(b)

7.(a)8.(d)9.(c)10.(c)
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10.1 INTRODUCTION

A network function gives the relation between currents or voltages at different parts of the network. It is

broadly classified as driving point and transfer function. It is associated with terminals and ports.

Any network may be represented schematically by a rectangular box. Terminals are needed to connect any

network to any other network or for taking some measurements. Two such associated terminals are called

terminal pair or port. If there is only one pair of terminals in the network, it is called a one-port network. If

there are two pairs of terminals, it is called a two-port network. The port to which energy source is connected

is called the input port. The port to which load is connected is known as the output port. One such network

having only one pair of terminals (1 – 1′) is shown in Fig. 10.1 (a) and is called one-port network. Figure

10.1(b) shows a two port network with two pairs of terminals. The terminals 1 – 1′ together constitute a port.

Similarly the terminals 2 – 2′ constitute another port.

(a) (b)

Fig. 10.1

A voltage and current are assigned to each of the two ports. V1 and I1 are assigned to the input port whereas

V2 and I2 are assigned to the output port. It is also assumed that currents I1 and I2 are entering into the network

at the upper terminals 1 and 2 respectively.

10.2 DRIVING-POINT FUNCTIONS

If excitation and response are measured at the same ports, the network function is known as the driving-point

function. For a one-port network of Fig. 10.1 (a), only one voltage and current are specified and hence only

one network function (and its reciprocal) can be defined.

Network
Functions

10
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(i) Driving-point impedance function It is defined as the ratio of the voltage transform at one port to

the current transform at the same port. It is denoted by Z (s).

Z (s) =
( )

( )

V s

I s
…(10.1)

(ii) Driving-point admittance function It is defined as the ratio of the current transform at one port to

the voltage transform at the same port. It is denoted by Y (s).

Y (s) =
( )

( )

I s

V s
…(10.2)

For a two-port network, the driving-point impedance function and driving-point admittance function at

Port 1 are

Z11 (s) =
1

1

( )

( )

V s

I s
…(10.3)

Y11 (s) =
1

1

( )

( )

I s

V s
…(10.4)

Similarly, at Port 2, we have

Z22 (s) =
2

2

( )

( )

V s

I s
…(10.5)

Y22 (s) =
2

2

( )

( )

I s

V s
…(10.6)

10.3 TRANSFER FUNCTION

The transfer function is used to describe networks which have at least two ports. It relates a voltage or current

at one port to the voltage or current at another port. These functions are also defined as the ratio of a response

transform to an excitation transform. Thus, there are four possible forms of transfer functions.

(1) Voltage transfer function It is defined as the ratio of the voltage transform at one port to the voltage

transform at another port. It is denoted by G (s).

G12 (s) =
2

1

( )

( )

V s

V s

G21 (s) =
1

2

( )

( )

V s

V s
…(10.7)

(2) Current transfer function It is defined as the ratio of the current transform at one port to the current

transform at another port. It is denoted by a (s).

a12 (s) =
2

1

( )

( )

I s

I s
…(10.8)

a21 (s) =
1

2

( )

( )

I s

I s

(3) Transfer impedance function It is defined as the ratio of voltage transform at one port to the current

transform at another port. It is denoted by Z (s).
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Z12 (s) =
2

1

( )

( )

V s

I s

Z21 (s) =
1

2

( )

( )

V s

I s
…(10.9)

(4) Transfer admittance function It is defined as the ratio of current transform at one port to the

voltage transform at another port. It denoted by Y (s).

Y12 (s) =
2

1

( )

( )

I s

V s

Y21 (s) =
1

2

( )

( )

I s

V s
…(10.10)

Example 10.1 Determine the driving-point impedance function of a one-port network shown in

Fig. 10.2.

Fig. 10.2

Solution The transformed network is shown in Fig. 10.3.

Z (s) =

1
( )

1
( )

R Ls
Cs

R Ls
Cs

+

+ +

=
2

1

R Ls

LCs RCs

+
+ +

= 
2

1

1

R
s

L
RC

s s
L LC

+

+ +

Example 10.2 Find voltage transfer function of the two-port network shown in Fig. 10.4.

Fig. 10.4

Fig. 10.3
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Solution By voltage division formula,

V2 (s) = V1 (s) 

1

1
Cs

R
Cs

´
+

Voltage transfer function
2

1

( )

( )

V s

V s
=

1

1
Cs

R
Cs

+
= 

1

1
RC

s
RC

+

Example 10.3 Determine the driving-point impedance of the network shown in Fig. 10.5.

Fig. 10.5

Solution Z (s) = 2s + 

1 1
2

2 2

1 1
2

2 2

s
s s

s
s s

æ ö+ç ÷è ø

+ +

= 2s + 
2 2

1 1 1
2 2

2 2 2
=  2  + 

2 4 2 4

2

s s
s s s

s
s s

s

æ ö æ ö+ +ç ÷ ç ÷è ø è ø
+ +

=

3

2

1
4 8 2

2

2 4

s s s
s

s

+ + +

+
 = 

4 2

3

16 12 1

8 4

s s

s s

+ +
+

Example 10.4 Determine the driving-point impedance of the network shown in Fig. 10.6.

Fig. 10.6

Solution Z (s) =

1

1
+ 

1

s s
s

s
s s

s

æ ö+ç ÷è ø

+ +
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=
2 3

2 2

1 (1 ) 1
+ = + 

2 1 2 1

s s s s

s ss s

+ +
+ +

=

4 2

3

3 1

2

s s

s s

+ +
+

Example 10.5  Find the driving-point admittance function of the network shown in Fig. 10.7.

Fig. 10.7

Solution Z (s) =

1

1 2
3  + + 

15

2

s
s

s
s

s
s

æ ö
ç ÷è ø

+
= 

2

1
3  + + 

5 2 1

s
s

s s +

=

4 2 2 2

2

30 15 2 1 5

5 (2 1)

s s s s

s s

+ + + +
+ =

4 2

2

30 22 1

5 (2 1)

s s

s s

+ +
+

Y (s) =

2

4 2

1 5 (2 1)
=

( ) 30 22 1

s s

Z s s s

+
+ +

10.4 ANALYSIS OF LADDER NETWORKS

The network functions of a ladder network can be

obtained by a simple method. This method depends

upon the relationships that exist between the branch

currents and node voltages of the ladder network.

Consider the network shown in Fig. 10.8 where all the

impedances are connected in series branches and all

the admittances are connected in parallel branches.

Analysis is done by writing the set of equations. In writing these equations, we begin at the port 2 of the

ladder and work towards the Port 1.

Vb = V2

Ib = Y4 V2

Va = Z3 Ib + V2 = (1 + Z3 Y4) V2

I1 = Y2 Va + Ib

= [Y2 (1 + Z3 Y4) + Y4] V2

V1 = Z1 I1 + Va

= [Z1 {Y2 (1 + Z3 Y4) + Y4} + (1 + Z3 Y4)] V2 … (10.11)

Thus, each succeeding equation takes into account one new impedance or admittance. We observe that,

except the first two equations, each subsequent equation is obtained by multiplying the equation just preceding

it by imittance (either impedance or admittance) that is next down the line and then adding to this product the

equation twice preceding it. After writing these equations, we can obtain any network function.

Fig. 10.8
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Example 10.6 Find the network functions 1 2

1 1

V V
,

I V
 and 2

1

V

I
 for the network shown in Fig. 10.9.

Fig. 10.9

Solution The transformed network is shown in Fig. 10.10.

Vb = V2

Ib = 2

1

V

s

= s V2

Va = s Ib + V2

= s (s V2) + V2 = (s2 + 1) V2

I1 =
1
aV

s

 + Ib = s Va + Ib

= s (s2 + 1) V2 + s V2 = (s3 + 2s) V2

V1 = s I1 + Va

= s (s3 + 2s) V2 + (s2 + 1) V2

= (s4 + 2s2 + s2 + 1) V2

= (s4 + 3s2 + 1) V2

Hence, 1

1

V

I
=

4 2
2

3
2

( 3 1)

( 2 )

s s V

s s V

+ +

+

 = 

4 2

3

3 1

2

s s

s s

+ +

+

2

1

V

V
=

2

4 2
2( 3 1)

V

s s V+ +

 = 4 2

1

3 1s s+ +

2

1

V

I
=

2

3
2( 2 )

V

s s V+

  = 3

1

2s s+

 = 2

1

( 2)s s +

Example 10.7 Find the network functions 2 1

1 1

V V
,

V I
and 2

1

V

I
 for the network in Fig. 10.11.

Fig. 10.11

Solution The transformed network is shown in Fig. 10.12.

Vb = V2

Fig. 10.10
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Ib = 2

1

2

V

s

= 2s V2

Va = 3s Ib + V2

= 3s (2sV2) + V2

= (6s2 + 1) V2

I1 =

2

aV

s
 + Ib

=
22

(6 1)s
s

+ V2 + 2s V2  = 

2
14 2s

s

æ ö+
ç ÷è ø

 V2

V1 =
4

s
I1 + Va

=

2
4 14 2

 
s

s s

æ ö+
ç ÷è ø

V2 + (6s2 + 1) V2 = 

4 2

2

6 57 8s s

s

æ ö+ +
ç ÷è ø

 V2

Hence,
1

1

V

I
=

4 2

3

6 57 8

14 2

s s

s s

+ +
+

2

1

V

V
=

2

4 2
6 57 8

s

s s+ +
2

1

V

I
= 214 2

s

s +

Example 10.8 For the network shown in Fig. 10.13, determine transfer function 2

1

V

V
.

Fig. 10.13

Solution The transformed network is shown in Fig. 10.14.

Vb = V2

Ib =
2

1

V

s

= s V2

Va = 1 Ib + V2 = s V2 + V2 = (s + 1) V2

I1 =
1
aV

s

+ Ib

= s Va + Ib = s (s + 1) V2 + s V2 = (s2 + 2s) V2

V1 = 1 I1 + Va = (s2 + 2s) V2 + (s + 1) V2

= (s2 + 3s + 1) V2

Fig. 10.12

Fig. 10.14
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Hence,
2

1

V

V
=

2

2
2( 3 1)

V

s s V+ +  = 2

1

3 1s s+ +

Example 10.9 For the network shown in Fig. 10.15, determine the voltage transfer function 2

1

V

V
.

Fig. 10.15

Solution Vb = V2

Ib =
2

1

V
 = V2

Va = s Ib + V2 = s V2 + V2 = (s + 1) V2

I1 =
1

aV
 + Ib

= (s + 1) V2 + V2 = (s + 2) V2

V1 = s I1 + Va

= s (s + 2) V2 + (s + 1) V2 = (s2 + 3s + 1) V2

Hence,
2

1

V

V
=

2

2
2( 3 1)

V

s s V+ +
 = 2

1

3 1s s+ +

Example 10.10 For the ladder network of Fig. 10.16, find the driving point-impedance at the 1–1'

terminal with 2–2' open.

Fig. 10.16

Solution The transformed network is shown in Fig. 10.17.

Fig. 10.17

Vc = V2

Ib =
2

1

V

s

= s V2
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Vb = (s + 1) Ib + V2 = (s + 1) s V2 + V2 = (s2 + s + 1) V2

Ia = 1
bV

s

+ Ib

= s Vb + Ib = s (s2 + s + 1) V2 + s V2 = (s3 + s2 + 2s) V2

Va = (s + 1) Ia + Vb

= (s + 1) (s3 + s2 + 2s) V2 + (s2 + s + 1) V2 = (s4 + 2s3 + 4s2 + 3s + 1) V2

I1 =
1
aV

s

+ Ia = s Va + Ia

= s (s4 + 2s3 + 4s2 + 3s + 1) V2 + (s3 + s2 + 2s) V2 = (s5 + 2s4 + 5s3 + 4s2 + 3s) V2

V1 = (s + 1) I1 + Va

= (s + 1) (s5 + 2s4 + 5s3 + 4s2 + 3s) V2 + (s4 + 2s3 + 4s2 + 3s + 1) V2

= (s6 + 3s5 + 8s4 + 11s3 + 11s2 + 6s + 1) V2

Hence, Z11 =
1

1

V

I
 = 

6 5 4 3 2

5 4 3 2

3 8 11 11 6 1

2 5 4 3

s s s s s s

s s s s s

+ + + + + +
+ + + +

Example 10.11 Determine the voltage transfer function 2

1

V

V
 for the network shown in Fig. 10.18.

Fig. 10.18

Solution The transformed network is shown in Fig. 10.19.

Vc = Vb = V2

Ia = Ib + Ic

=
2 2+ 

1 1

V V

s

 = s V2 + V2

= (s + 1) V2

Va = 2s Ia + V2

= 2s (s + 1) V2 + V2

= (2s2 + 2s + 1) V2

I1 =
1
aV

s

 + Ia = s Va + Ia

= s (2s2 + 2s + 1) V2 + (s + 1) V2 = (2s3 + 2s2 + 2s + 1) V2

V1 = 1I1 + Va

= (2s3 + 2s2 + 2s + 1) V2 + (2s2 + 2s + 1) V2 = (2s3 + 4s2 + 4s + 2) V2

Fig. 10.19
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Hence,
2

1

V

V
= 3 2

1

2 4 4 2s s s+ + +

Example 10.12 For the network shown in Fig. 10.20, determine the transfer function 2

1

I

V
.

Fig. 10.20

Solution The transformed network is shown in Fig. 10.21.

Va = Vb = V2

I1 = Ia + Ib

=
2 2+

1 1

2 6

V V

s

 = 2s V2 + 6V2

= (2s + 6) V2

V1 =

3 3

2 2 1
3 3

2 2

s

s

é ù´ê ú
+ê ú

ê ú+ê úë û

I1 + V2

=
9

1
6 6s

æ ö+ç ÷è ø+
I1 + V2 = 

(6 15)
(2 6)

6 6

s
s

s

+
+

+
V2 + V2

= 2

(2 5)( 3) (2 5)( 3) ( 1)
1  = 

( 1) 1

s s s s s
V

s s

é ù+ + + + + +é ù+ê ú ê ú+ +ë ûë û
 V2

=
2

2 6 5 15 1

1

s s s s

s

æ ö+ + + + +
ç ÷+è ø

V2

=

2
2 12 16

1

s s

s

æ ö+ +
ç ÷+è ø

V2 = 
2

2( 6 8)

1

s s

s

+ +
+

 V2 = 
2( 4)( 2)

1

s s

s

+ +
+

 V2

Also, I2 = – Ib = – 6V2

2

1

I

V
= 2

2

6

2( 4)( 2)

1

V

s s
V

s

-
+ +
+

 = 
3( 1)

( 4)( 2)

s

s s

- +
+ +

Example 10.13 For the network shown in Fig. 10.22, compute a12 (s) =
2 2

12
1 1

I (s) V (s)
and Z (s) =

I (s) I (s)
.

Fig. 10.21
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Fig. 10.22

Solution The transformed network is as shown in Fig. 10.23.

Va = V2

I2 =
2

1

V

s

 = sV2

V1 = 1 I2 + Va

= sV2 + V2 = (s + 1) V2

I1 =
1

1

V

s

 + I2

= sV1 + I2 = s (s + 1) V2 + sV2

= (s2 + 2s) V2

Hence, a12 (s)  =
2

1

1
= 

2

I

I s +

and Z12 (s) =
2

2
1

1
= 

2

V

I s s+

Example 10.14 Determine the voltage ratio 2

1

V

V
, current ratio 2

1

I

I
, transfer impedance 2

1

V

I
 and driving-

point impedance 
1

1

V

I
 for the network shown in Fig. 10.24.

Fig. 10.24

Solution Transformed network is shown in Fig. 10.25.

Vc = Vb = V2

I2 =
2

1

V
 = V2

Ia = Ib + I2

Fig. 10.23
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= 2 2+ 
2 1

2

V V

s
+

=
2 2

s

s +
 V2 + V2 = 

3 2

2 2

s

s

+æ ö
ç ÷è ø+

 = V2

Va = 3s Ia + V2

= 
3 (3 2)

2 2

s s

s

+
+

 V2 + V2 = 

2
9 8 2

2 2

s s

s

æ ö+ +
ç ÷+è ø

 V2

I1 =
1
aV

s

 + Ia

= s Va + Ia = 

2

2

(9 8 2) 3 2
 + 

2 2 2 2

s s s s
V

s s

+ + +æ ö
ç ÷è ø+ +  V2

=

3 2
9 8 5 2

2 2

s s s

s

æ ö+ + +
ç ÷+è ø

 V2

V1 =

3
3

3
3

s

s

é ù´ê ú
ê ú
ê ú+ê úë û

I1 + Va  = 
3

1s

æ ö
ç ÷è ø+  I1 + Va

=
3 2 2

2

3 9 8 5 2 9 8 2
 + 

1 2 2 2 2

s s s s s
V

s s s

æ ö æ ö+ + + + +æ ö
ç ÷ ç ÷ ç ÷è ø+ + +è ø è ø

 V2

=

3 2 3 2 2
27 24 15 6 9 8 2 9 8 2

( 1)(2 2)

s s s s s s s s

s s

é ù+ + + + + + + + +
ê ú+ +ë û

V2

=

3 2
(36 41 25 8)

( 1)(2 2)

s s s

s s

+ + +
+ + V2 = 

3 2

2

36 41 25 8

2 4 2

s s s

s s

æ ö+ + +
ç ÷+ +è ø

 V2

Hence,
2

1

V

V
=

2

3 2

2 4 2

36 41 25 8

s s

s s s

+ +
+ + +

2

1

I

I
= 

3 2

2 2

9 8 5 2

s

s s s

+
+ + +

2

1

V

I
= 3 2

2 2

9 8 5 2

s

s s s

+
+ + +

1

1

V

I
=

3 2

3 2

36 41 25 8

( 1)(9 8 5 2)

s s s

s s s s

+ + +
+ + + +

 = 

3 2

4 3 2

36 41 25 8

9 17 13 7 2

s s s

s s s s

+ + +
+ + + +

10.5 ANALYSIS OF NON-LADDER NETWORK

The above method is applicable for ladder networks. There are other network configurations to which the

technique described is not applicable.

Fig. 10.25
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Fig. 10.26

For such a type of network, it is necessary to express the network functions as a quotient of determinants,

formulated on KVL and KCL basis.

Example 10.15 For the network shown in Fig. 10.27, determine Z11 (s), G12 (s) and Z12 (s).

Fig. 10.27

Solution The transformed network is shown in Fig. 10.28.

Applying KVL to Mesh 1,

V1 =
1

1
s

æ ö+ç ÷è ø I1 – I3 …(i)

Applying KVL to Mesh 2,

V2 =
1

s
 I1 + I3 …(ii)

Applying KVL to Mesh 3,

I1 – 
1

2
s

æ ö+ç ÷è ø  I3 = 0

I3 =
2 1

s

s

æ ö
ç ÷è ø+  I1 …(iii)

Substituting the Eq. (iii) in Eqs (i) and (ii),

V1 = 1

1
1

2 1

s
I

s s

æ ö æ ö+ -ç ÷ ç ÷è ø è ø+  I1

=
1

2 1

s s

s s

+æ ö-ç ÷è ø+
 I1 = 

2
3 1

(2 1)

s s

s s

é ù+ +
ê ú

+ë û
I1

V2 = 1

1
I  + 

2 1

s

s s +
I1 = 

2
2 1

(2 1)

s s

s s

é ù+ +
ê ú+ë û

 I1

Fig. 10.28
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Hence, Z11 (s) =

2
1

1

3 1
= 

(2 1)

V s s

I s s

+ +
+

Z12 (s) =

2
2

1

2 1
=

(2 1)

V s s

I s s

+ +
+

G12 (s) =

2
2

2
1

2 1
=

3 1

V s s

V s s

+ +
+ +

Example 10.16 For the network shown in Fig. 10.29, find the driving-point admittance Y11 and transfer

admittance Y12.

Fig. 10.29

Solution The transformed network is shown in Fig. 10.30.

Applying KVL to Mesh 1,

V1 =
1

1
s

æ ö+ç ÷è ø  I1 + I2 – 
1
s  I3 …(i)

Applying KVL to Mesh 2,

0 = I1 + 
1

2
s

æ ö+ç ÷è ø
 I2 + 

1
s

I3 …(ii)

Applying KVL to Mesh 3,

0 = – 
1
s I1 + 

1
s

I2 + 
2

1
s

æ ö+ç ÷è ø  I3 …(iii)

Writing these equations in matrix form,

1

0

0

Vé ù
ê ú
ê ú
ë û

=

1 –1
1 1

1 1
1 2

–1 1 2
1

s s

s s

s s s

é ù+ê ú
ê ú
ê ú+
ê ú
ê ú

+ê úê úë û

 

1

2

3

I

I

I

é ù
ê ú
ê ú
ê úë û

I1 = 1D
D

Fig. 10.30
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∆ =

1 –1
1 1

1 1
1 2

–1 1 2
1

s s

s s

s s s

+

+

+

= 2 2

1 1 2 1 2 1
1 2 1  1 (1) 1

s s s ss s

é ù é ùæ ö æ ö æ ö æ ö+ + + - - + +ç ÷ ç ÷ ç ÷ ç ÷ê ú ê úè ø è ø è ø è øë û ë û

–
1 1 1 1

(1) 2
s s s s

é ùæ ö æ ö æ ö+ +ç ÷ ç ÷ ç ÷ê úè ø è ø è øë û

= 

2

2

5 2s s

s

+ +

∆1 =

1

1
1

1 1
0 2

1 2
0 1

V
s

ss

ss

-

+

+

= V1 2

1 2 1
2 1

s s s

é ùæ ö æ ö+ + -ç ÷ ç ÷ê úè ø è øë û
 = V1

2

2

2 5 1s s

s

æ ö+ +
ç ÷è ø

I1 =
2

1 2

2 5 1

5 2

s s
V

s s

æ ö+ +
ç ÷+ +è ø

Driving-point admittance Y11 =
2

1

2
1

2 5 1

5 2

I s s

V s s

+ +=
+ +

I2 =
2D
D

∆2 =

1

1 –1
1

1
1 0

–1 2
0 1

V
s s

s

s s

+

+

=
2

1 12 2

2 1 2 1
 1 =  

s s
V V

s s s

æ ö+ +é ù- + + - ç ÷ê úë û è ø

I2 =

2

1 2

2 1
 

5 2

s s
V

s s

æ ö+ +
- ç ÷+ +è ø

Transfer admittance Y12 =

2
2

2
1

2 1
= 

5 2

I s s

V s s

+ +-
+ +
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10.6 POLES AND ZEROS OF NETWORK FUNCTIONS

The network function F (s) can be written as ratio of two polynomials.

 F (s) =
1

0 1 1

1
0 1 1

( )
= 

( )

n n
n n

m m
m m

a s a s a s aN s

D s b s b s b s b

-
-

-
-

+ +¼¼+ +

+ +¼¼+ +

where a0, a1, ……, an and b0, b1, ……, bm are the coefficients of the polynomials N(s) and

D (s). These are real and positive for networks of passive elements. Let N (s) = 0 have n roots as z1, z2, ……,

zn and D (s) = 0 have m roots as p1, p2, ……, pm. Then F (s) can be written as

 F (s) = H 
1 2

1 2

( )( ) ( )

( )( ) ( )

n

m

s z s z s z

s p s p s p

- - ¼¼ -
- - ¼¼ -

where H = a0/b0 is a constant called scale factor and z1, z2, ……, zn, p1, p2, ……, pm are complex frequencies.

When the variable s has the values z1, z2, …, zn, the network function becomes zero; such complex frequencies

are known as the zeros of the network function. When the variable s has values p1, p2, ……, pm, the network

function becomes infinite; such complex frequencies are known as the poles of the network function. A

network function is completely specified by its poles, zeros and the scale factor.

If the poles or zeros are not repeated, then the function is said to be having simple poles or simple zeros. If

the poles or zeros are repeated, then the function is said to be having multiple poles or multiple zeros. When

n > m, then (n – m) zeros are at s = ∞, and for m > n, (m – n) poles are at s = ∞.

The total number of zeros is equal to the total number of poles. For any

network function, poles and zeros at zero and infinity are taken into account in

addition to finite poles and zeros.

Poles and zeros are critical frequencies. The network function becomes

infinite at poles, while the network function becomes zero at zeros. The network

function has a finite, non-zero value at other frequencies.

Poles and zeros provide a representation of a network function as shown in

Fig. 10.31. The zeros are shown by circles and the poles by crosses. This diagram

is referred to as pole-zero plot.

10.7 RESTRICTIONS ON POLE AND ZERO LOCATIONS FOR

DRIVING- POINT FUNCTIONS [COMMON FACTORS IN

N(s) AND D(s) CANCELLED]

(1) The coefficients in the polynomials N(s) and D(s) must be real and positive.

(2) The poles and zeros, if complex or imaginary, must occur in conjugate pairs.

(3) The real part of all poles and zeros, must be negative or zero, i.e., the poles and zeros must lie in left

half of s plane.

(4) If the real part of pole or zero is zero, then that pole or zero must be simple.

(5) The polynomials N(s) and D(s) may not have missing terms between those of highest and lowest

degree, unless all even or all odd terms are missing.

(6) The degree of N(s) and D(s) may differ by either zero or one only. This condition prevents multiple

poles and zeros at s = ∞.

(7) The terms of lowest degree in N(s) and D(s) may differ in degree by one at most. This condition

prevents multiple poles and zeros at s = 0.

Fig. 10.31 Pole-zero plot
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10.8 RESTRICTIONS ON POLE AND ZERO LOCATIONS FOR TRANSFER

FUNCTIONS [COMMON FACTORS IN N (s) AND D (s) CANCELLED]

(1) The coefficients in the polynomials N(s) and D(s) must be real, and those for D(s) must be positive.

(2) The poles and zeros if complex or imaginary must occur in conjugate pairs.

(3) The real part of poles must be negative or zero. If the real part is zero then that pole must be simple.

(4) The polynomial D(s) may not have any missing terms between that of highest and lowest degree,

unless all even or all odd terms are missing.

(5) The polynomial N(s) may have terms missing between the terms of lowest and highest degree, and

some of the coefficients may be negative.

(6) The degree of N(s) may be as small as zero, independent of the degree of D(s).

(7) For voltage and current transfer functions, the maximum degree of N(s) is the degree of D(s).

(8) For transfer impedance and admittance functions, the maximum degree of N(s) is the degree of D(s)

plus one.

Example 10.17 Test whether the following represent driving-point immittances.

(a) 

4 2

3

5 3 2 1

6 20

s s s

s s

+ - +
+ +

Solution The numerator and denominator polynomials have a missing term between those of highest and

lowest degree and one of the coefficient is negative in numerator polynomial. Hence, the function does not

represent driving-point immittance.

(b)

3 2

4 3 2

5 2

6 9

s s s

s s s

+ + +
+ +

Solution The term of lowest degree in numerator and denominator polynomials differ in degree by two

which is not permitted. Hence, the function does not represent driving-point immittance.

(c)

2

2

3 2

6 2

s s

s s

+ +
+ +

Solution The function satisfies all the necessary conditions. Hence, it represents driving-point immittance.

Example 10.18 Obtain the pole-zero plot of the following functions.

(i) F(s) =
2

s(s + 2)

s + 2s + 2

Solution     F(s) = 
( 2)

( 1 1)( 1 1)

s s

s j s j

+
+ + + -

The function F (s) has zeros at s = 0 and s = – 2 and

poles at s = –1 – j1 and s = –1 + j1.

The pole-zero plot is shown in Fig. 10.32.

Fig. 10.32
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(ii) F (s) =
s(s + 2)

(s + 1)(s + 3)

Solution The function F(s) has zeros at s = 0 and s = – 2 and poles at s = – 1 and s = – 3.

The poles-zero plot is shown in Fig. 10.33.

Fig. 10.33

(iii) F(s) =
2

s(s + 1)

(s + 2) (s + 3)

Solution The function F(s) has zeros at s = 0 and s = –1 and poles at s = –2, –2 and s = –3.

The pole-zero plot is shown in Fig. 10.34.

Fig. 10.34

(iv) F (s) =
2

(s + 1) (s + 5)

(s + 2)(s + 3 + j2)(s + 3 – j2)

Solution The function F (s) has zeros at s = –1, –1 and s = –5 and poles at s = –2, s = –3 ± j2.

The pole-zero plot is shown in Fig. 10.35.

Fig. 10.35

(v) F (s) =

2

2

4

( 2) 9)

s +

s + (s +

Solution The function F (s) has zeros at s = j2 and s = – j2 and poles at s = –2, s = j3 and s = – j3.

The pole-zero plot is shown in Fig. 10.36.
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Fig. 10.36

Example 10.19 Find poles and zeros of the impedance of the following network and plot them on the

s-plane.

Fig. 10.37

Solution The transformed network is shown in Fig. 10.38.

 Z (s) =

2
1 2+ 

2
2

s

ss

´

+
 = 

1 2
+

4

s

s s +  

=

22 4

( 4)

s s

s s

+ +
+  = 

2
2( 0.5 2)

( 4)

s s

s s

+ +
+

=
2( 0.25 1.4)( 0.25 1.4)

( 4)

s j s j

s s

+ + + -
+

Thus, Z (s) has zeros at s = –0.25 ± j1.4 and poles at s = 0 and s = –4 as shown in Fig. 10.39.

Fig. 10.39

Example 10.20 Determine the poles and zeros of the impedance function Z (s) in the network shown in

Fig. 10.40.

Fig. 10.38
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Fig. 10.40

Solution The transformed network is shown in Fig. 10.41.

 Z (s) =

1 1

1 4 6+ 
1 12

4 6

s

s

´

+

=
1 1

+
2 4 6s +

= 
4 8

2(4 6)

s

s

+
+

=
2

2 3

s

s

+
+

 = 
0.5 ( 2)

1.5

s

s

+
+

The function Z(s) has zero at s = –2 and pole at s = –1.5.

Example 10.21 Determine Z(s) in the network shown in Fig. 10.42. Find out poles and zeros of

Z (s) and plot them on s-plane.

Fig. 10.42

Solution The transformed network is shown in Fig. 10.43.

 Z (s) = s +  

20
4

20
4

s

s

´

+

= s + 
80 20

=  + 
4 20 5

s
s s+ +

=

2
( 5) 20 5 20

= 
5 5

s s s s

s s

+ + + +
+ +

=
( 2.5 3.71)( 2.5 3.71)

5

s j s j

s

+ + + -
+

The function Z(s) has zeros at s = –2.5 + j3.71 and s = –2.5 – j3.71 and pole at s = –5.

The pole-zero diagram is shown in Fig. 10.44.

Fig. 10.41

Fig. 10.43
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Fig. 10.44

Example 10.22 For the network shown, plot poles and zeros of function 0

i

I

I
.

Fig. 10.45

Solution The transformed network is shown in Fig. 10.46.

By current-division formula,

I0 = Ii

4 2

2
4 2

s

s
s

æ ö
+ç ÷

ç ÷
ç ÷+ +è ø

0

i

I

I
= 2

(4 2 )

4 2 2

s s

s s

+
+ +

= 2

( 2) ( 2)
=  

( 1)( 1)2 1

s s s s

s ss s

+ +
+ ++ +

The function has double poles at s = –1 and zeros at s = 0 and s = –2.

The pole-zero diagram is shown in Fig. 10.47.

Fig. 10.47

Fig. 10.46
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Example 10.23 Draw the pole-zero diagram of 2

1

I

I
for the network shown.

Fig. 10.48

Solution The transformed network is shown in Fig. 10.49.

By current-division formula,

I2 = I1 
6

6

1

250 10
1

10 200
250 10

s

s
s

-

-

´

+ +
´

2

1

I

I
= 2

400

20 400s s+ +
The function has no zero and poles at s = –10 ± j17.32.

The pole-zero diagram is shown in Fig.10.50.

Fig. 10.50

Example 10.24 Obtain the impedance function Z(s) for which pole-zero diagram is shown in

Fig. 10.51.

Fig. 10.51

Solution The function Z(s) has poles at s = –1 and s = –3 and zeros at s = 0 and s = –2.

 Z(s) = H 
( 2)

( 1)( 3)

s s

s s

+
+ +  = H  

2

2

2
1

1 3
1 1

s
s

s
s s

æ ö+ç ÷è ø
æ ö æ ö+ +ç ÷ ç ÷è ø è ø

Fig. 10.49
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For s = ∞,

 Z (∞) = H 
1

(1)(1)
 = H

 When Z (∞) = 1, we have

 H = 1

 Z (s) =
( 2)

( 1)( 3)

s s

s s

+
+ +

Example 10.25 Obtain the admittance function Y(s) for which the pole-zero diagram is shown in

Fig. 10.52.

Fig. 10.52

Solution The function Y(s) has poles at s = –1 ± j1 and zeros at s = 0 and s = –2.

 Y (s) = H  
2 2

( 2) ( 2)

( 1 1)( 1 1) ( 1) 1

s s s s
H

s j s j s

+ +
=

+ + + - + +

= H

2

2
2

2

2
1

( 2)

2 32 2
1

s
s s s

H
s s

s
s s

æ ö+ç ÷è ø+
=

æ ö+ + + +ç ÷è ø
 For s = ∞ ,

 Y (∞) = H 
(1)

(1)
 = H

 When Y (∞) = 1, we have

 H = 1

 Y (s) = 2

( 2)

2 2

s s

s s

+
+ +

Example 10.26 A network and its pole-zero configuration are shown in Fig. 10.53. Determine the values

of R, L and C if Z (j0) = 1.

Fig. 10.53
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Solution Z (s) =

1
( )

1
( )

Ls R
Cs

Ls R
Cs

+

+ +
= 

2 1

Ls R

LCs RCs

+
+ +

=
2

1

1

R
s

C L

R
s s

L LC

æ ö+ç ÷è ø

+ +
…(i)

From the pole-zero diagram, zero is at s = –3 and poles are at s = –1.5 ± j 
111

2
.

 Z (s) = H  
3

111 111
1.5 1.5

2 2

s

s j s j

+
æ ö æ ö
+ + + -ç ÷ ç ÷è ø è ø

 Z (s) = H 
22

3

3 111

2 2

s

s

+

æ öæ ö+ +ç ÷ ç ÷è ø è ø

= H 
2

3

3 30

s

s s

+
+ +

When Z (j0) = 1, we have

 1 = H 
3

30

æ ö
ç ÷è ø

 H = 10

Z (s) =
2

10( 3)

3 30

s

s s

+
+ +

…(ii)

Comparing the Eq. (ii) with the Eq. (i), we get

R

L
= 3

1

C
= 10

1

LC
= 30

Solving the above equations, we get

C =
1

10
F

L =
1

3
H

R = 1 Ω

Example 10.27 A network is shown in Fig. 10.54. The poles and zeros of the driving-point function Z(s)

of this network are at the following places:

Poles at –
3

2

1
j

2
±
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Zero at –1

If Z (j0) = 1, determine the values of R, L and C.

Fig. 10.54

Solution Z(s) =

1
( )

1

Ls R
Cs

Ls R
Cs

+

+ +

= 2 1

Ls R

LCs RCs

+
+ +

 = 
2

1

1

R
s

C L

R
s s

L LC

æ ö+ç ÷è ø

+ +
...(i)

 The poles are at –
1 3

 
2 2

 j±  and zero is at –1.

 Z (s) = H 
1

1 3 1 3

2 2 2 2

s

s j s j

+
æ ö æ ö
+ + + -ç ÷ ç ÷è ø è ø

= H 
2 22

1 1

11 3

2 2

s s
H

s s
s

+ +
=

+ +æ öæ ö+ +ç ÷ ç ÷è ø è ø
When, Z (j0) = 1, we have

 1 = H × 
1

1
 H = 1

 Z (s) =
2

1

1

s

s s

+
+ +

…(ii)

Comparing the Eq. (ii) with the Eq. (i), we get

 C = 1

R

L
= 1

1

LC
= 1

Solving the above equations, we get

 C = 1 F

 L = 1 H

 R = 1 Ω
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Example 10.28 The pole-zero diagram of the driving-point impedance function of the network of Fig. 10.55

is shown below. At dc, the input impedance is resistive and equal to 2 Ω. Determine the values of R, L and C.

Fig. 10.55

Solution Z(s) =

1
( )

1

Ls R
Cs

Ls R
Cs

+

+ +

= 2 1

Ls R

LCs RCs

+
+ +

 = 
2

1

1

R
s

C L

R
s s

L LC

æ ö+ç ÷è ø

+ +
…(i)

From the pole-zero diagram, zero is at s = –2 and poles are at s = –1 + j4 and s = –1 – j4

 Z (s) = H 
2

( 1 4)( 1 4)

s

s j s j

+
+ + + -

= H 2 2

2

( 1) (4)

s

s

+
+ +

 = H 2

2

2 17

s

s s

+
+ +

At dc i.e., w  = 0, Z (j0) = 2

 2 = H 
2

17
 H = 17

Z (s) = 17 
2

2

2 17

s

s s

+
+ +

… (ii)

Comparing the Eq. (ii) with the Eq. (i), we get

1

C
= 17

R

L
= 2

1

LC
= 17

Solving the above equations, we get

 C =
1

17
F

 L = 1 H

 R = 2 Ω
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Example 10.29 The network shown in Fig. 10.56 has the driving-point admittance Y (s) of the form

 Y (s) = H 1 2

3

(s – s )(s – s )

(s – s )

(a) Express s1, s2, s3 in terms of R, L and C.

(b) When s1 = –10 + j104, s2 = –10 – j104 and Y (j0) = 10 –1 mho, find the values of R, L and C and

determine the value of s3.

Fig. 10.56

Solution

(a) Y (s) =
1

 + Cs
Ls R+

=

2
( ) 1 1

= 
Ls R Cs LCs RCs

Ls R Ls R

+ + + +
+ +

=

2 1R
C s s

L LC

R
s

L

æ ö+ +ç ÷è ø

+
…(i)

But Y (s) =
1 2

3

( )( )

( )

H s s s s

s s

- -
-

where s1, s2 =

2
4

2

R R

L L LC

æ ö- ± -ç ÷è ø

=

2
1

  
2 2

R R

L L LC

æ ö- ± -ç ÷è ø

 s3 = –
R

L
(b) When s1 = – 10 + j104

s2 = – 10 – j104

 Y (s) = H 
4 4

3

( 10 10 )( 10 10 )s j s j

s s

+ - + +
-

= H
2 8

3

20 10s s

s s

+ +
-

… (ii)

Comparing the Eq. (ii) with the Eq. (i), we get

R

L
= 20

 s3 = – 20
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 Y (s) = H 

2 8
( 20 10 )

( 20)

s s

s

+ +
+

At s = j0

 Y (j0) = H 

8
(10 )

20
 = 10–1

 H = 0.02 × 10–6

Y (s) = 0.02 × 10–6 

2 8
( 20 10 )

( 20)

s s

s

+ +
+ … (iii)

Comparing the Eq. (iii) with Eq. (i), we get

 C = 0.02 × 10–6 F = 0.02 µF

1

LC
= 108

 L =
1

2
H

R

L
= 20

 R = 10 Ω

Example 10.30 A network and pole-zero diagram for driving-point impedance Z (s) are shown in

Fig. 10.57. Calculate the values of the parameters R, L, G and C if Z (j0) = 1.

Fig. 10.57

Solution It is easier to calculate Y (s) and then invert it to obtain Z (s).

 Y (s) = G + Cs + 
1

Ls R+

=

2
( )( ) 1 ( ) 1G Cs Ls R LCs GL RC s GR

Ls R Ls R

+ + + + + + +=
+ +

 Z (s) =
2

1
=

( ) ( ) 1

Ls R

Y s LCs GL RC s GR

+
+ + + +

=
2

1

1

R
s

C L

G R GR
s s

C L LC

æ ö+ç ÷è ø
+æ ö æ ö+ + +ç ÷ ç ÷è ø è ø

…(i)
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From the pole-zero diagram, zero is at s = – 2 and poles are at s = – 3 ± j3.

 Z (s) = H 
( 2)

( 3 3)( 3 3)

s

s j s j

+
+ - + +

= H 
2 2

( 2) 2

( 3) 9 6 18

s s
H

s s s

+ +
=

+ + + +
When Z (j0) = 1, we have

 1 = H 
2

18
 H = 9

 Z (s) =
2

9( 2)

( 6 18)

s

s s

+
+ +

… (ii)

Comparing the Eq. (ii) with the Eq. (i), we get

1

C
= 9

R

L
= 2

+ 
G R

C L
= 6

1 GR

LC

+
= 18

Solving the above equations, we get

 C =
1

9
F

 L =
9

10
H

 G =
4

9
J

 R =
9

5
Ω

Example 10.31 A series R-L-C circuit has its driving-point admittance and pole-zero diagram as shown

in Fig. 10.58. Find the values of R, L and C.

Fig. 10.58
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Solution The function Y (s) has poles at s = –1 + j25 and s = –1 – j25 and zero at s = 0.

Y (s) = H 
( 1 25)( 1 25)

s

s j s j+ + + -

= H 2 2
( 1) (25)

s

s + +
 = H 2 2 626

s

s s+ +
Scale factor H = 1

Y (s) =
2

2 626

s

s s+ +
… (i)

For a series R-L-C circuit,

Z (s) = R + Ls + 
1

Cs

=

2
2

1

1

R
L s s

LCs RCs L LC

Cs s

æ ö+ +ç ÷è ø+ + =

Y (s) =
2

1
= 

1( )

s

RZ s
L s s

L LC

æ ö+ +ç ÷è ø

… (ii)

Comparing the Eqs (i) and (ii), we get

 L = 1 H

1

LC
= 626

 C =
1

626
 F

R

L
= 2

 R = 2 Ω

10.9 TIME-DOMAIN BEHAVIOUR FROM THE POLE-ZERO PLOT

The time-domain behaviour of a system can be determined from the pole-zero plot. Consider a network

function

 F(s) = H 
1 2

1 2

( )( ) ( )

( )( ) ( )

n

m

s z s z s z

s p s p s p

- - ¼¼ -
- - ¼¼ -

The poles of this function determine the time-domain behaviour of f(t).The function f(t) can be determined

from the knowledge of the poles, the zeros and the scale factor H. Figure 10.59 shows some pole locations

and the corresponding time-domain response.

(i) When pole is at origin i.e. at s = 0, the function f(t) represents steady-state response of the circuit i.e. dc value.

Fig. 10.59
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(ii) When pole lies in the left half of the s-plane, the response decreases exponentially.

Fig. 10.60

(iii)  When pole lies in the right half of the s-plane, the response increases exponentially. A pole in the right-

half plane gives rise to unbounded response and unstable system.

Fig. 10.61

(iv) For s = 0 + jwn, the response becomes f (t) = nj t
Ae

ω±
 = A(cos wnt ± j sin wnt).The exponential response

nj t
e

w±  may be interpreted as a rotating phasor

of unit length. A positive sign of exponential
nj t

e
ω

 indicates counterclockwise rotation,

while a negative sign nj t
e

ω−
 indicates

clockwise rotation. The variation of

exponential function nj t
e
ω

 with time is thus

sinusoidal and hence constitutes the case of

sinusoidal steady state.

(v) For s = sn + jwn, the response becomes f (t) = A est = 
( )n nj t

Ae
σ ω+

= n nt j t
Ae e

σ ω
. The resonse nt

e
σ

 is an

exponentially increasing or decreasing function. The response 
nj t

e
ω

 is a sinusoidal function. Hence,

the response of the product of these responses will be overdamped sinusoids or underdamped sinusoids.

Fig. 10.63

Fig. 10.62



10.32 Electrical Networks

(vi) The real part s of the pole is the displacement of the pole from the imaginary axis. Since s is also the

damping factor, a greater value of s (i.e., a greater displacement of the pole from the imaginary axis)

means that response decays more rapidly with time. The poles with greater displacement from the real

axis correspond to higher frequency of oscillation.

Fig. 10.64

10.10 GRAPHICAL METHOD FOR DETERMINATION OF RESIDUE

Consider a network function,

 F(s) = H 
1 2

1 2

( )( ) ( )

( )( ) ( )

n

m

s z s z s z

s p s p s p

- - ¼¼ -
- - ¼¼ -

By partial fraction expansion,

F(s) =
1 2

1 2

+ + ......... + 
( ) ( ) ( )

m

m

KK K

s p s p s p- - -
The residue Ki is given by

 Ki = (s – pi) F (s) |s→ ip

= H 1 2

1 2

( )( ) ( )

( )( ) ( )

i i i n

i i i m

p z p z p z

p p p p p p

- - ¼¼ -
- - ¼¼ -
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Each term (pi – zi) represents a phasor drawn from zero zi to pole pi.

Each term (pi – pk), i ≠ k, represents a phasor drawn from other poles to the pole pi.

 Ki = H 
Product of phasors (polar form) from each zero to

Product of phasors (polar form) from other poles to

i

i

p

p

The residues can be obtained by graphical method in the following way:

 (1) Draw the pole-zero diagram for the given network function.

 (2) Measure the distance from each of the other poles to a given pole.

 (3) Measure the distance from each of the other zeros to a given pole.

 (4) Measure the angle from each of the other poles to a given pole.

 (5) Measure the angle from each of the other zeros to a given pole.

 (6) Substitute these values in the required residue equation.

The graphical method can be used if poles are simple and complex. But it cannot be used when there are

multiple poles.

Example 10.32 The current I(s) in a network is given by I(s) = 
2s

(s + 1)(s + 2)

Plot the pole-zero pattern in the s-plane and hence obtain i(t).

Solution Poles are at s = –1 and s = –2 and zero is at

s = 0. The pole-zero plot is shown in Fig. 10.65.

By partial-fraction expansion,

 I (s) =
1 2+
1 2

K K

s s+ +
The coefficients K1 and K2, often referred as residues,

can be evaluated from the pole-zero diagram.

 K1 = H 
Phasor from zero at origin to pole at

Phasor from pole at to pole at

A

B A

= 2
1 180

1 0

Ð °
Ð °

= 2 ∠180° = –2

 K2 = H 
Phasor from zero at origin to pole at

Phasor from pole at to pole at

B

A B

= 2 
2 180

1 180

Ð °
Ð °

 = 4

 I (s) =
2 4

+
1 2s s

-
+ +

Taking inverse Laplace transform,

 i (t) = –2e–t + 4e–2t

Example 10.33 The voltage V(s) of a network is given by

 V(s) =
2

3s

(s + 2)(s + 2s + 2)

Plot its pole-zero diagram and hence obtain v (t).

Fig. 10.65

Fig. 10.66 Evaluation of K1

Fig. 10.67 Evaluation of K2
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Solution V (s) =  2

3

( 2)( 2 2)

s

s s s+ + +

= 
3

( 2)( 1 1)( 1 1)

s

s s j s j+ + + + -
Poles are at s = –2, s = –1 ± j1 and zero is at s = 0 as shown in Fig. 10.68.

By partial-fraction expansion,

 V (s) =

*
1 2 2+ + 
2 1 1 1 1

K K K

s s j s j+ + - + +

The coefficients K1, K2 and K*
2 can be evaluated from the pole-zero diagram.

 K1 =
( )

( ) ( )
3 OA

BA CA

uuur

uuur uuur = 
( ) ( )

2 180
3 

2 135 2 135

Ð °

Ð - ° Ð °

= 3 180°  = –3

 K2 =
( )

( ) ( )
3 OB

AB CB

uuur

uuur uuur = 3
( )

( )
2 135 3

= 
22 45 (2 90 )

o

o o

Ð

Ð Ð

*
2K =

3

2

 V (s) =

3 3

3 2 2+  +  
( 2) ( 1 1) ( 1 1)s s j s j

-
+ + - + +

Taking inverse Laplace transform,

 v (t) = –3e–2t + ( 1 1) ( 1 1)3

2

j t j t
e e
- + - -é ù+ë û

= –3e–2t + 2 × 
3

2
e–t 

1 1

2

j j
e e

-æ ö+
ç ÷è ø

= –3e–2t + 3e–t cos t

Example 10.34 Find the function v(t) using the pole-zero plot of following function:

 V(s) =
(s + 2)(s + 6)

(s + 1)(s + 5)

Solution If the degree of the numerator is greater or equal to the degree of the denominator, we can divide

the numerator by the denominator such that the remainder can be expanded more easily into partial fractions.

 V (s) =

2

2

8 12

6 5

s s

s s

+ +
+ +

 = 1 + 
2

2 7

6 5

s

s s

+
+ +

 = 1 + 
2( 3.5)

( 1)( 5)

s

s s

+
+ +

By partial fraction expansion,

 V (s) = 1+ 1 2+ 
1 5

K K

s s+ +
K1 and K2 can be evaluated from the pole-zero diagram shown in Fig. 10.71 and Fig. 10.72.

 K1 = 2 
2.5 0 5

= 
4 0 4

Ð °
Ð °

Fig. 10.68

Fig. 10.69 Evaluation of K1

Fig. 10.70 Evaluation of K2
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 K2 = 2 
1.5 180 3

=
4 180 4

Ð °
Ð °

 V (s)= 1 + 
5 3

+
4( 1) 4( 5)s s+ +

Taking inverse Laplace transform,

 v (t) = d (t) + 
5

4
e–t + 

3

4
e–5t

Example 10.35 Evaluate amplitude and phase of the network function F(s) = 
2

4s

s + 2s + 2
 from the

pole- zero plot at s = j2.

Solution F(s) =
2

4 4

( 1 1)( 1 1)2 2

s s

s j s js s
=

+ + + -+ +
The pole-zero plot is shown in Fig. 10.73.

At  s = j2, we have

|F (j2) | =
Product of phasor magnitudes from all zeros to 2

Product of phasor magnitudes from all poles to 2

j

j

=
( ) ( )

2

2 10
 = 0.447

 f (w) =
1 1 12 3 1

tan tan tan
0 1 1

- - -æ ö æ ö æ ö- -ç ÷ ç ÷ ç ÷è ø è ø è ø  = 90o – 71.56° – 45° = –26.56°

Example 10.36 Using the pole-zero plot, find magnitude and phase of the function

F(s) =
(s + 1)(s + 3)

s(s + 2)
 at s = j4.

Solution F(s) =
( 1)( 3)

( 2)

s s

s s

+ +
+

The pole-zero plot is shown in Fig. 10.74.

At s = j4, we have

 |F (j4) | =
Product of vector magnitudes from all zeros to 4

Product of vector magnitudes from all poles to 4

j

j

= 
( )

( )

(5) 17

20 (4)
 = 1.15

Fig. 10.72 Evaluation of K2

Fig. 10.73

Fig. 10.74

Fig. 10.71 Evaluation of K1
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 f (w) =
1 1 1 14 4 4 4

tan + tan tan tan
1 3 0 2

- - -æ ö æ ö æ ö æ ö- -ç ÷ ç ÷ ç ÷ ç ÷è ø è ø è ø è ø
= 75.96° + 53.13° – 90° – 63.43° = –24.34°

Example 10.37 Plot amplitude and phase response for

 F(s) =
10

s

s +
Solution Amplitude response

F(jw) =
10

j

j +
w

w

|F(jw) | =  
2

100

w

w +

| ( ) |

0 0

10 0.707

100 0.995

1000 1

F jw w

Fig. 10.75

Phase response

 f (w) = tan–1 
0

æ ö
ç ÷è ø
w

– tan–1 
10

æ ö
ç ÷è ø
w

 = 90o – tan–1 
10

æ ö
ç ÷è ø
w

( )

0 90

10 45

100 5.7

1000 0

°
°
°
°

w f w

Fig. 10.76

Example 10.38 Sketch amplitude and phase response for

 F (s) =
s + 10

s – 10
Solution Amplitude response

 F (jw) =
10

10

j

j

+
-

w

w

 |F (jw)| =

2

2

100

100

+

+

w

w
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For all w, magnitude is unity.

Fig. 10.77

Phase response

 f (w) = tan–1

10

æ ö
ç ÷è ø
w

  – tan–1 –
10

æ ö
ç ÷è ø

w
= 2 tan–1 

10

æ ö
ç ÷è ø
w

( )

0 0

10 90

100 168.6

1000 178.9

°
°
°
°

w f w

Fig. 10.78

Exercises

1. Draw the pole-zero diagram of the following network functions:

(i) F(s) = 

2

2

4

6 4

s

s s

+
+ +

(ii) F(s) = 2

5 12

4 13

s

s s

-
+ +

(iii) F(s) = 2 2

1

( 2 2)

s

s s

+
+ +

(iv) F(s) = 

2

4 2

( 5)

2 1

s s

s s

+
+ +

(v) F(s) = 

2

4 3 2

2

5 6

s s

s s s

+ +
+ +

(vi) F(s) = 

2

3 2
2 2

s s

s s s

-
+ - -

(vii) F(s) = 

2

2

3 2

3

s s

s s

+ +
+

(viii) F(s) = 

2

2 2

( 4)( 1)

( 1)( 2 5)

s s

s s s

+ +
+ + +

2. For the network shown in Fig. 10.79, draw the pole-zero plot of the impedance function Z(s).

Fig. 10.79

( 2.5 1.94)( 2.5 1.94)
( )

5

s j s j
Z s

s

+ - + +é ù=ê ú+ë û
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3. For the network shown in Fig. 10.80, draw the pole-zero plot of driving-point impedance function Z(s).

Fig. 10.80

5( 0.01)( 0.04)
( )

( 0.03)

s s
Z s

s s

é ù+ +
=ê ú+ë û

4. Find the driving-point impedance of the network shown in Fig. 10.81. Also, find poles and zeros.

Fig. 10.81

2

2 2

1.5 ( 0.33)
( )

( 1.707)( 0.293)

s s
Z s

s s

é ù+
=ê ú

+ +ë û

5. For the network shown in Fig. 10.82, determine 2

g

V

I
. Plot the pole-zero diagram of 2

g

V

I
.

Fig. 10.82

2

3 2

1

2 3 2g

V

I s s s

é ù
=ê ú

+ + +ê úë û

6. Determine the driving-point impedance 1

1

V

I
, transfer impedance 2

1

V

I
 and voltage transfer ratio 2

1

V

V
for

the network shown in Fig. 10.83.
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Fig. 10.83

2
1 2 2

2 2 2
1 1 1

7 7 5 2 2
; ;

1 1 7 7 5

V V Vs s s s

I I Vs s s s s s

é ù+ +
= = =ê ú

+ + + + + +ë û

7. For the network shown in Fig. 10.84, determine 2

1

V

V
and 2

1

V

I
.

Fig. 10.84

2 2
2 2

2 2
1 1

1 2 2
;

2 1 (3 2)

V Vs s

V Is s s

é ù+ +
= =ê ú

+ +ë û
8. Find the open-circuit transfer impedance Z21 and open-circuit voltage ratio G21 for the ladder network

shown in Fig. 10.85.

Fig. 10.85

21 213 4 2

1 1
,

2 3 4 7 1
Z G

s s s s

é ù= =ê ú+ + +ë û
9. For the two-port network shown in Fig. 10.86, determine Z11, Z21 and voltage transfer ratio G21(s).

Fig. 10.86
3 2

2 2 3 2

2 4 3 2
, ,

2 1 2 1 2 4 3 2

s s s s s

s s s s s s s

é ù+ + +
ê ú

+ + + + + + +ë û
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10. Find network functions 2

1

V

V
and 1

1

V

I
for the circuit shown in Fig. 10.87 and plot poles and zeros of

2

1

( )
.

( )

V s

V s
 Find V2 (s) when V1 (s) = 1 ∠0° as a function of w.

Fig. 10.87

3 2
2 1

3 2 3 2
1 1

1 2( 2 2 1)
, ,

2( 2 2 1) 2 2 2 1

V V s s s

V Is s s s s s

+ + +
= =

+ + + + + +

3
1

22 2 3 2

1 4 2
tan

2 4(2 4 ) (4 2 )

w w

ww w w

- ùæ ö-
úç ÷-è ø ú- + - û

11. For the network shown in Fig. 10.88, determine 
1

1

V

I
 and 

2

1

V

I
. Plot the poles and zeros of 2

1

V

I
 and

determine magnitude and phase of V2 (s), given V1 (s) = 1 ∠0° as a function of w.

Fig. 10.88

4 2
1 2 2

3 3 4 2 4 2
1 1 1

2 5 2 2 2 2
, , , 0

2 3 2 3 2 5 2 2 5 2

V V Vs s

I I Vs s s s s s w w

é ù+ +
= = = Ð °ê ú

+ + + + - +ë û

12. For the network shown in Fig. 10.89, determine 1

1

V

I
and 2

1

V

V
. Plot the pole and zeros for V2 and determine

magnitude and phase of V2 (s), given V1 (s) = 1 ∠0° as a function of w.

Fig. 10.89

4 2 4 4
1 2

3 4 2 4 2
1 1

3 1
, , 0

2 3 1 3 1

V Vs s s

I Vs s s s

w

w w

é ù+ +
= = Ð °ê ú

+ + + - +ë û
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13. For the network shown in Fig. 10.90, plot the poles and zeros of transfer impedance and determine

magnitude and phase of V2 (s), given V1 (s) = 2 ∠0° as a function of w. Also, find the driving-point

impedance.

Fig. 10.90

12 2

2 22 2
1 1

1 1 2 3
, , tan

2 3 1 1(1 ) (3 )

V V

I s V s s

w

ww w

-
é ù
ê ú= =

+ê ú+ + -- +ë û

14. For the network shown in Fig. 10.91, determine 1

1

V

I
and 2

1

V

V
. Plot the poles and zeros of transfer impedance

and determine magnitude and phase of V2 (s), given V1 (s) = 1 ∠0° as a function of w.

Fig. 10.91

4 2
1 2 2

3 3 4 2 4 2
1 1 1

16 10 1 1 1 1
, , , 0

8 3 8 3 16 10 1 16 10 1

V V Vs s

I I Vs s s s s s w w

é ù+ +
= = = Ð °ê ú

+ + + + - +ë û

15. For the given network function, draw the pole-zero diagram and hence obtain the time domain voltage.

Verify the result analytically.

V (s) =
5( 5)

( 2)( 7)

s

s s

+

+ + [v (t) = 3e–2t + 2e–7t]

16. Obtain the impedance function for which the pole-zero diagram is shown in Fig. 10.92,

Fig. 10.92

2

2( 1)
( )

2 2

s
Z s

s s

+é ù
=ê ú+ +ë û
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17. For the network shown in Fig. 10.93, poles and zeros of driving point function Z(s) are,

Poles : (–1 ± j4) ; zero : –2

If Z (j0) = 1, find the values of R, L and C.

Fig. 10.93
2

1 , 0.5 H, F
17

é ùWê úë û
18. For the two-port network shown in Fig. 10.94, find R1, R2 and C.

2

2
1

0.2
=

3 2

V

V s s+ +

Fig. 10.94

3 1
, , 0.5 F

5 15

é ùW Wê úë û

Objective-Type Questions

1. Of the four networks N1, N2, N3 and N4 of Fig. 10.95 the networks having identical driving-point func-

tions are

(a) N1 and N2 (b) N2 and N4 (c) N1 and N3 (d) N1 and N4

Fig. 10.95
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2. The driving-point impedance Z(s) of a network has the pole-zero locations as shown in Fig. 10.96. If

Z(0) = 3, then Z(s) is

Fig. 10.96

(a)
2

3( 3)

2 3

s

s s

+
+ +

(b)
2

2( 3)

2 2

s

s s

+
+ +

(c)
2

3( 3)

2 2

s

s s

-
- -

(d)
2

2( 3)

2 3

s

s s

-
- -

3. For the circuit shown in Fig. 10.97 the initial conditions are zero. Its transfer function H(s) = 
( )

( )
o

i

V s

V s
is

Fig. 10.97

(a)
2 6 6

1

10 10s s+ +
(b)

6

2 3 6

10

10 10s s+ +
(c)

3

2 3 6

10

10 10s s+ +
(d)

6

2 6 6

10

10 10s s+ +

4. In Fig. 10.98 shown, assume that all the capacitors are initially uncharged. If vi(t) = 10 u(t), then v0(t) is

given by

Fig. 10.98

(a) 8 e –0.004 t (b) 8(1– e – 0.004 t) (c) 8 u(t) (d) 8

5. A system is represented by the transfer function 
10

( 1)( 2)s s+ +
. The dc gain of this system is

(a) 1 (b) 2 (c) 5 (d) 10
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6. Which one of the following is the ratio 24

13

V

V
 of the network shown in Fig. 10.99.

Fig. 10.99

(a)
1

3
(b)

2

3
(c)

3

4
(d)

4

3
7. A network has response with time as shown in Fig. 10.100. Which one of the following diagrams

represents the location of the poles of this network?

Fig. 10.100

8. The transfer function of a low-pass RC network is

(a) (RCs) (1 + RCs) (b)
1

1 RCs+
(c)

1

RCs

RCs+ (d)
1

s

RCs+
9. The driving-point admittance function of the network shown in Fig. 10.101 has a

Fig. 10.101

(a) pole at s = 0 and zero at s = ∞ (b) pole at s = 0 and pole at s = ∞
(c) pole at s = ∞ and zero at s = 0 (d) pole at s = ∞ and zero at s = ∞
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10. The transfer function Y12(s) = 2

1

( )

( )

I s

V s
 for the network shown in Fig. 10.102 is

Fig. 10.102

(a)
2

2
1

s

s s+ +
(b)

1

s

s + (c)
1

1s + (d)
2

1

1

s

s

+
+

11. As the poles of a network shift away from the x axis, the response

(a) remains constant (b) becomes less oscillating

(c) becomes more oscillating (d) none of these

Answers to Objective-Type Questions

1.(c)2.(b)3.(d)4.(c)5.(c)6.(a)

7.(d)8.(b)9.(a)10.(a)11.(c)



Graph
Theory

11.1 INTRODUCTION

A two-port network has two pairs of terminals, one

pair at the input known as input port and one pair at

the output known as output port. There are four

variables V1, V2, I1 and I2 associated with a two-port

network. Two of these variables can be expressed in

terms of the other two variables. Thus, there will be two dependent variables and two independent variables.

The number of possible combinations generated by four variables taken two at a time is 4C2, i.e., six. There

are six possible sets of equations describing a two-port network.

Table 11.1 Two-Port Parameters

Parameter Variables Equation

Express In terms of

Open-Circuit Impedance V1, V2 I1, I2 V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

Short-Circuit Admittance I1, I2 V1, V2 I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

Transmission V1, I1 V2, I2 V1 = AV2 – BI2

I1 = CV2 – DI2

Inverse Transmission V2, I2 V1, I1 V2 = A′ V1 – B′ I1

I2 = C′ V1 – D′ I1

Hybrid V1, I2 I1, V2 V1 = h11 I1 + h12 V2

I2 = h21 I1 + h22 V2

Inverse Hybrid I1, V2 V1, I2 I1 = g11 V1 + g12 I2

V2 = g21 V1 + g22 I2

Two-Port
Networks

11

Fig. 11.1
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11.2 OPEN-CIRCUIT IMPEDANCE PARAMETERS (Z PARAMETERS)

The Z parameters of a two-port network may be defined by expressing two-port voltages V1 and V2 in terms

of two-port currents I1 and I2.

 (V1, V2) = ƒ(I1, I2) …(11.1)

 V1 = Z11 I1 + Z12 I2 …(11.2)

 V2 = Z21 I1 + Z22 I2 …(11.3)

In matrix form, we can write

1

2

V

V
é ù
ê úë û

= 11 12 1

221 22

Z Z I

IZ Z

é ù é ù
ê ú ê úë ûë û

[V] = [Z] [I] …(11.4)

The individual Z parameters for a given network can be defined by setting each of the port currents equal

to zero.

Case 1 When the output port is open circuited,

i.e.  I2 = 0

Z11 =
2

1

1 0I

V

I =
…(11.5)

where Z11 is the driving-point impedance with the output port open circuited. It is also called  open circuit

input impedance.

Similarly,

Z21 =
2

2

1 0I

V

I =
…(11.6)

where Z21 is the transfer impedance with the output port open circuited. It is also called open circuit forward

transfer impedance.

Case 2 When input port is open circuited,

i.e.  I1 = 0

Z12 =
1

1

2 0I

V

I =
…(11.7)

where Z12 is the transfer impedance with the input port open circuited. It is also called  open circuit reverse

transfer impedance.

Similarly,

Z22 =
1

2

2 0I

V

I =
…(11.8)

where Z22 is the open circuit driving-point impedance

with the input port open circuited. It is also called open

circuit output impedance.

As these impedance parameters are measured with

either the input or output port open circuited, these are

called  open circuit impedance parameters.

The equivalent circuit of the two-port network in

terms of Z parameters is as shown in Fig. 11.2. Fig. 11.2



Two-Port Networks 11.3

11.2.1 Condition for Reciprocity

A network is said to be reciprocal if the ratio of excitation at one port to response at the other port is same if

excitation and response are interchanged.

(a) As shown in Fig. 11.3, voltage Vs is applied at the input port with the output port short circuited.

i.e.  V1 =  Vs

 V2 = 0

 I2 = –I2′
From the Z-parameter equations,

 Vs = Z11 I1 – Z12 I2′
 0 = Z21 I1 – Z22 I2′

 I1 =
22

21

Z

Z
 I2′

 Vs = Z11 
22

21

Z

Z
 I2′ – Z12 I2′

2

sV

I ¢
= 11 22 12 21

21

Z Z Z Z

Z

-

(b) Now, when voltage Vs is applied at the output port with input port short circuited.

i.e.,  V2 = Vs

 V1 = 0

 I1 = –I1′
From the Z-parameter equations,

 0 = –Z11 I1′ + Z12 I2

 Vs = –Z21 I1′ + Z22 I2

 I2 =
11

12

Z

Z
 I1′

 Vs = –Z21 I1′ + Z22 
11

12

Z

Z
 I1′

1

sV

I ¢
= 11 22 12 21

12

Z Z Z Z

Z

-

Hence, for the network to be reciprocal,

1

sV

I ¢
=

2

sV

I ¢
i.e. Z12 = Z21 …(11.9)

11.2.2 Condition for Symmetry

For a network to be symmetrical, the voltage-to-current ratio at one port should be the same as the voltage-to-

current ratio at the other port with one of the ports open circuited.

(a) When the output port is open circuited, i.e., I2 = 0

From the Z-parameter equation,

 Vs = Z11 I1

1

sV

I
= Z11

Fig. 11.3

Fig. 11.4
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(b) When the input port is open circuited, i.e., I1 = 0

From the Z-parameter equation,

 Vs = Z22 I2

2

sV

I
= Z22

Hence, for the network to be symmetrical,

1

sV

I
=

2

sV

I

i.e., Z11 = Z22 …(11.10)

11.3 SHORT-CIRCUIT ADMITTANCE PARAMETERS (Y PARAMETERS)

The Y parameters of a two-port network may be defined by expressing the two-port currents I1 and I2 in terms

of the two-port voltages V1 and V2.

(I1, I2) = ƒ (V1, V2) …(11.11)

 I1 = Y11 V1 + Y12 V2 …(11.12)

 I2 = Y21 V1 + Y22 V2 …(11.13)

In matrix form, we can write

1

2

I

I
é ù
ê úë û

= 11 12 1

221 22

Y Y V

VY Y

é ù é ù
ê ú ê úë ûë û

[I] = [Y] [V] …(11.14)

The individual Y parameters for a given network can be defined by setting each of the port voltages equal

to zero.

Case 1 When the output port is short circuited,

i.e.,  V2 = 0

Y11 =

2

1

1 0V

I

V =
…(11.15)

where Y11 is the driving-point admittance with the output port short circuited. It is also called  short-circuit

input admittance.

Similarly,

Y21 =
2

2

1 0V

I

V =
…(11.16)

where Y21 is the transfer admittance with the output port short circuited. It is also called short-circuit forward

transfer admittance.

Case 2 When the input port is short circuited,

i.e.,  V1 = 0

Y12 =

1

1

2 0V

I

V =
…(11.17)

where Y12 is the transfer admittance with the input port short circuited. It is also called short-circuit reverse

transfer admittance.
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Similarly,

Y22 =

1

2

2 0V

I

V =
…(11.18)

where Y22 is the short circuit driving-point admittance with the input port short circuited. It is also  called the

short circuit output admittance.

As these admittance parameters are measured with either input or output port short circuited, these are

called short circuit admittance parameters.

The equivalent circuit of the two-port network in terms of Y parameters is as shown in Fig. 11.5.

Fig. 11.5

11.3.1 Condition for Reciprocity

(a) As shown in Fig. 11.6, voltage Vs is applied at input port with the output port short circuited.

i.e. V1 = Vs

V2 = 0

 I2 = –I2′
From the Y-parameter equation,

 –I2′ = Y21 Vs

2

s

I

V

¢
= –Y21

(b) Now, when the voltage Vs is applied at output port with the input port short circuited.

i.e. V2 = Vs

V1 = 0

 I1 = –I1′
From the Y-parameter equation,

 –I1′ = Y12 Vs

1

s

I

V

¢
= –Y12

Hence, for the network to be reciprocal,

2

s

I

V

¢
=  1

s

I

V

¢

i.e., Y12 = Y21 …(11.19)

11.3.2 Condition for Symmetry
(a) When the output port is short circuited, i.e., V2 = 0.

From the Y-parameter equation

I1 = Y11 Vs

1

sV

I
=

11

1

Y

Fig. 11.6

Fig. 11.7
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(b) When the input port is short circuited, i.e., V1 = 0.

From the Y-parameter equation,

I2 = Y22 Vs

2

sV

I
=

22

1

Y

Hence, for the network to be symmetrical,

1

sV

I
=

2

sV

I

i.e., Y11 = Y22 …(11.20)

11.4 TRANSMISSION PARAMETERS (ABCD PARAMETERS)

The transmission parameters or chain parameters or ABCD parameters serve to relate the voltage and current

at the input port to voltage and current at the outport port. In equation form,

(V1, I1) = ƒ (V2, – I2) …(11.21)

 V1 = AV2 – BI2 …(11.22)

 I1 = CV2 – DI2 …(11.23)

Here, the negative sign is used with I2 and not for

parameters B and D. The reason the current I2 carries

a negative sign is that in transmission field, the

output current is assumed to be coming out of the

output port instead of going into the port.

In matrix form, we can write

1

1

V

I
é ù
ê úë û

= 2

2

VA B

IC D

é ùé ù
ê úê ú -ë û ë û

…(11.24)

where matrix 
A B

C D

é ù
ê úë û

 is called transmission matrix.

For a given network, these parameters are determined as follows:

Case 1 When the output port is open circuited,

i.e.,  I2 = 0

A =

2

1

2 0I

V

V =
…(11.25)

where A is the reverse voltage gain with the output port open circuited.

Similarly, C =

2

1

2 0I

I

V =
…(11.26)

where C is the transfer admittance with the output port open circuited.

Case 2 When output port is short circuited,

i.e., V2 = 0

 B = – 

2

1

2 0V

V

I =
…(11.27)

where B is the transfer impedance with the output port short circuited.

Fig. 11.8
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 Similarly, D = – 

2

1

2 0V

I

I =
…(11.28)

where D is the reverse current gain with the output port short circuited.

11.4.1 Condition for Reciprocity

(a) When the voltage Vs is applied at the input port with the output port short circuited.

Fig. 11.9

i.e., V1 = Vs

 V2 = 0

 I2′ = –I2

From the transmission parameter equation,

 Vs = B I2′

2

sV

I ¢
= B

(b) Now, when voltage Vs is applied at the output port with the input port short circuited.

i.e.,  V2 = Vs

 V1 = 0

 I1′ = –I1

From the transmission parameter equations,

 0 = AVs – BI2

–I1′ = CVs – DI2

I2 =
A

B
 Vs

–I1′ = CVs – 
AD

B
 Vs

1

sV

I ¢
=

B

AD BC-

Hence, for the network to be reciprocal,

2

sV

I ¢
=

1

sV

I ¢

i.e.,  B =
B

AD BC-
i.e., AD – BC = 1 …(11.29)

11.4.2 Condition for Symmetry

(a) When the output port is open circuited, i.e., I2 = 0.

From the transmission-parameter equations,

 Vs = AV2

Fig. 11.10
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 I1 = CV2

1

sV

I
=

A

C

(b) When the input port is open circuited, i.e., I1 = 0

From the transmission parameter equation,

 CVs = DI2

2

sV

I
=

D

C

Hence, for network to be symmetrical,

1

sV

I
=  

2

sV

I

i.e., A = D …(11.30)

11.5 INVERSE TRANSMISSION PARAMETERS (A′B′C′D′ PARAMETERS)

The inverse transmission parameters serve to relate the voltage and current at the outport port to the voltage

and current at the input port. In equation form,

(V2, I2) = ƒ(V1, – I1) …(11.31)

 V2 = A′ V1 – B′ I1 …(11.32)

 I2 = C′ V1 – D′ I1 …(11.33)

In matrix form, we can write

2

2

V

I
é ù
ê úë û

 = 
1

1

VA B

IC D

¢ ¢ é ùé ù
ê úê ú -¢ ¢ë û ë û

…(11.34)

where matrix 
A B

C D

¢ ¢é ù
ê ú¢ ¢ë û

 is called the inverse transmission matrix.

For a given network, these parameters are determined as follows:

Case 1 When the input port is open circuited,

i.e.,  I1 = 0

 A′ =

1

2

1 0I

V

V =
…(11.35)

where A′ is the forward voltage gain with the input port open circuited.

Similarly, C′ =

1

2

1 0I

I

V =
…(11.36)

where C′ is the transfer admittance with the input port open circuited.

Case 2 When the input port is short circuited,

i.e., V1 = 0

 B′ =

1

2

1 0V

V

I =

- …(11.37)

where B′ is the transfer impedance with the input port short circuited.

Fig. 11.11
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Similarly, D′ =

1

2

1 0V

I

I =

- …(11.38)

where D′ is the forward current gain with the input port short circuited.

11.5.1 Condition for Reciprocity

(a) When a voltage Vs is applied at input port with the output port short circuited.

Fig. 11.12

i.e.,  V1 = Vs

 V2 = 0

 I2 = – I2′
From the inverse transmission parameter equations,

0 = A′ Vs – B′ I1

 – I2′ = C′ Vs – D′ I1

2

s

I

V

¢
=

A D B C

B

-¢ ¢ ¢ ¢
¢

(b) Now, when voltage Vs is applied at the output port with the input port short circuited.

Fig. 11.13

i.e.,  V2 = Vs

 V1 = 0

 I1 = – I1′
From the inverse transmission parameter equations,

Vs = B′ I1′

I2 =
A

B

¢
¢

 Vs

1

s

I

V

¢
 = 

1

B¢
Hence, for the network to be reciprocal,

2

s

I

V

¢
=

1

s

I

V

¢

i.e., A′ D′ – B′C′ = 1 …(11.39)
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11.5.2 Condition for Symmetry

The condition for symmetry is obtained from the Z-parameters.

Z11 =

2

1

1 0I

V

I =
 = 

D

C

¢
¢

Similarly,

Z22 =

1

2

2 0I

V

I =
 = 

A

C

¢
¢

For symmetrical network Z11 = Z22,

 A′ = C′ …(11.40)

11.6 HYBRID PARAMETERS (h PARAMETERS)

The hybrid parameters of a two-port network may be defined by expressing the voltage of input port V1 and

current of output port I2 in terms of current of input port I1 and voltage of output port V2.

(V1, I2) = ƒ(I1, V2) …(11.41)

 V1 = h11 I1 + h12 V2 …(11.42)

 I2 = h21 I1 + h22 V2 …(11.43)

In matrix form, we can write

1

2

V

I
é ù
ê úë û

=
11 12 1

221 22

h h I

Vh h

é ù é ù
ê ú ê úë ûë û

…(11.44)

The individual h parameters can be defined by setting I1 = 0 and V2 = 0.

Case 1 When the output port is short circuited,

i.e.,  V2 = 0

h11 =

2

1

1 0V

V

I =
…(11.45)

where h11 is the short-circuit input impedance.

 h21 =

2

2

1 0V

I

I =
…(11.46)

where h21 is the short circuit forward current gain.

Case 2 When the input port is open circuited,

i.e.,  I1 = 0

h12 =
1

1

2 0I

V

V =
…(11.47)

where h12 is the open-circuit reverse voltage gain.

h22 =

1

2

2 0I

I

V =
…(11.48)

where h22 is the open-circuit output admittance.

Since h parameters represent dimensionally an impedance, an admittance, a voltage gain and a current

gain, these are called hybrid parameters.
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The equivalent circuit of a two-port network in terms of hybrid parameters is as shown in Fig. 11.14.

Fig. 11.14

11.6.1 Condition for Reciprocity

(a) When voltage Vs is applied at the input port and the output port is short circuited.

i.e.,  V1 = Vs

 V2 = 0

 I2′ = –I2

From the h-parameter equations,

 Vs = h11 I1

 –I2′ = h21 I1

2

sV

I ¢
=

11

21

h

h

-

(b) Now, when a voltage Vs is applied at the output port with the input port short circuited.

i.e.,  V1 = 0

 V2 = Vs

 I1 = –I1′
From the h-parameter equations,

 0 = h11 I1 + h12 Vs

 h12 Vs = –h11 I1 = h11 I1′

1

sV

I ¢
=

11

12

h

h

Hence, for the network to be reciprocal,

2

sV

I ¢
=

1

sV

I ¢

i.e., h21 = –h12 …(11.49)

11.6.2 Condition for Symmetry

The condition for symmetry is obtained from the Z-parameters.

Z11 =

2 2

1 11 1 12 2

1 10 0

= 

I I

V h I h V

I I= =

+

= 2
11 12

1

V
h h

I
+

Fig. 11.15

Fig. 11.16
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But with I2 = 0, we have

 0 = h21 I1 + h22 V2

2

1

V

I
=

21

22

h

h

-

Z11 = 12 21
11

22

h h
h

h
-  = 11 22 12 21

22 22

Ä
= 

h h h h h

h h

-

where  ∆h = h11 h22 – h12 h21

Similarly,

Z22 =
1

2

2 0I

V

I =

With I1 = 0, we have

 I2 = h22 V2

Z22 =

1

2

2 220

1
=  

I

V

I h=

For a symmetrical network Z11 = Z22

i.e.,
22

1

h
=

22

Äh

h

i.e.,  ∆h = 1

i.e., h11 h22 – h12 h21 = 1 …(11.50)

11.7 INVERSE HYBRID PARAMETERS (g PARAMETERS)

The inverse hybrid parameters of a two-port network may be defined by expressing the current of the input

port I1 and voltage of the output port V2 in terms of the voltage of the input port V1 and the current of the

output port I2.

(I1, V2) = ƒ (V1, I2) …(11.51)

 I1 = g11 V1 + g12 I2 …(11.52)

 V2 = g21 V1 + g22 I2 …(11.53)

In matrix form, we can write

1

2

I

V
é ù
ê úë û

= 11 12 1

221 22

g g V

Ig g

é ù é ù
ê ú ê úë ûë û

…(11.54)

The individual g parameters can be defined by setting V1 = 0 and I2 = 0.

Case 1 When the output port is open circuited,

i.e.,  I2 = 0

 g11 =

2

1

1 0I

I

V =
…(11.55)

where g11 is the open-circuit input admittance.

 g21 =
2

2

1 0I

V

V =
…(11.56)

where g21 is the open-circuit forward voltage gain.
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Case 2 When the input port is short circuited,

i.e.,  V1 = 0

g12 =

1

1

2 0V

I

I =
…(11.57)

where g12 is the short-circuit reverse current gain.

g22 =

1

2

2 0V

V

I =
…(11.58)

where g22 is the short-circuit output impedance.

The equivalent circuit of a two-port network in terms of inverse hybrid parameters is as shown in Fig. 11.17.

Fig. 11.17

11.7.1 Condition for Reciprocity

(a) When a voltage Vs is applied at the input port and the output port is short circuited,

i.e.,  V1 = Vs

 V2 = 0

 I2′ = –I2

From the g-parameter equation,

 g21Vs = g22 I2′

2

sV

I ¢
= 22

21

g

g

(b) Now, when the voltage Vs is applied at the output port with the input port short circuited,

i.e.,  V1 = 0

 V2 = Vs

 I1 = –I1′
From the g-parameter equations,

 –I1′ = g12 I2

 Vs = g22 I2

1

sV

I ¢
 = 

22

12

g

g

-

Hence, for the network to be reciprocal,

2

sV

I ¢
=

1

sV

I ¢

i.e. , g21 = –g12 …(11.59)

Fig. 11.18

Fig. 11.19
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11.7.2 Condition for Symmetry

The condition for symmetry is obtained from the Z-parameters.

Z11 =

2

1

1 0I

V

I =
 = 

11

1

g

Similarly,

Z22 =

1

2

2 0I

V

I =

0 = g11 V1 + g12 I2

V1 =
12

11

g

g

-
 I2

V2 =  g21 
12

11

g

g

æ ö-
ç ÷è ø

 I2 + g22 I2

 Z22 =

1

2

2 0I

V

I =

= 
11 22 12 21

11

g g g g

g

-

For a symmetrical network, Z11 = Z22.

i.e.,
11

1

g
= 11 22 12 21

11

g g g g

g

-

i.e.,  g11 g22 – g12 g21 = 1 …(11.60)

Table 11.2 Conditions for Reciprocity and Symmetry

Parameter Condition for Reciprocity  Condition for Symmetry

Z Z12 = Z21 Z11 = Z22

Y Y12 = Y21 Y11 = Y22

T AD – BC = 1 A = D

T ′ A′D′ – B′C′ = 1 A′ = D′
h h12 = –h21 h11 h22 – h12 h21 = 1

g g12 = –g21 g11 g22 – g12 g21 = 1

Notes:

(1) To find Z-parameters of a 2-port network, apply KVL to the network.

(2) To find Y-parameters, apply KCL to the network.

(3) To find h-parameters and ABCD parameters, apply KVL or KCL to the given network. Convert the equations

into the standard form of Z-parameters or Y-parameters respectively and then rearrange the equations to get the

standard form of h-parameters and ABCD-parameter equations.

Example 11.1 Test results for a two-port network are (a)  I1 = 0.1 ∠ 0° A, V1 = 5.2 ∠50° V, V2 = 4.1

∠–25° V with Port 2 open circuited (b)  I2 = 0.1 ∠0°A, V1 = 3.1 ∠–80° V, V2 = 4.2 ∠60° V, with Port 1 open

circuited. Find Z parameters.
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Solution

Z11 =

2

1

1 0I

V

I =
 = 

5.2 50

0.1 0

Ð °
Ð °

 = 52 ∠50° Ω

 Z21 =  

2

2

1 0I

V

I =
= 

4.1 25

0.1 0

Ð - °
Ð °

 = 41 ∠–25° Ω

Z22 =  

1

2

2 0I

V

I =
= 

4.2 60

0.1 0

Ð °
Ð °

 = 42 ∠60° Ω

 Z12 =  

1

1

2 0I

V

I =
= 

3.1 80

0.1 0

Ð - °
Ð °

 = 31 ∠–80° Ω

Hence, the Z-parameters are

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=
52 50 31 80

41 25 42 60

Ð ° Ð- °é ù
ê úÐ- ° Ð °ë û

Example 11.2 Find the Z parameters for the network shown in Fig. 11.20.

Fig. 11.20

Solution
First Method

Case 1 When the output port is open circuited, i.e., I2 = 0.

Applying KVL to Mesh 1,

 V1 = (Z1 + Z2) I1

 Z11 =

2

1

1 0I

V

I =
= Z1 + Z2

Also  V2 = Z2 I1

 Z21 =

2

2

1 0I

V

I =
 = Z2

Case 2 When the input port is open circuited, i.e., I1 = 0.

Applying KVL to Mesh 2,

 V2 = (Z2 + Z3) I2

 Z22 =
1

2

2 0I

V

I =
 = Z2 + Z3
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Also  V1 = Z2 I2

 Z12 =

1

1

2 0I

V

I =
 = Z2

Hence, the Z-parameters are

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=
21 2

2 32

ZZ Z

Z ZZ

+ 
 

+ 
Second Method

Fig. 11.21

Applying KVL to Mesh 1,

 V1 = Z1 I1 + Z2 (I1 + I2)

= (Z1 + Z2) I1 + Z2 I2 …(i)

Applying KVL to Mesh 2,

 V2 = Z3 I2 + Z2 (I1 + I2)

= Z2 I1 + (Z2 + Z3) I2 …(ii)

Comparing Eqs (i) and (ii) with Z-parameter equations, we get

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=
21 2

2 32

ZZ Z

Z ZZ

+ 
 

+ 

Example 11.3 Find Z-parameters for the network shown in Fig. 11.22.

Fig. 11.22

Solution
Applying KVL to Mesh 1,

 V1 = 3I1 – 2I3 …(i)

Applying KVL to Mesh 2,

 V2 = 2I2 + 2I3 …(ii)

Applying KVL to Mesh 3,

–2I1 + 2I2 + 5I3 = 0

 I3 = 1

2 2

5 5
I -  I2 …(iii)

Fig. 11.23
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Substituting the Eq. (iii) in the Eq. (i),

 V1 = 1 1 2

4 4
3   

5 5
I I I- +

= 1 2

11 4
  

5 5
I I+ …(iv)

Substituting the Eq. (iii) in the Eq. (ii),

 V2 = 2 1 2

4 4
2

5 5
I I I+ -

= 1 2

4 6

5 5
I I+ …(v)

Comparing equations (iv) and (v) with Z-parameter equations, we get

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=
11 5 4 5

4 5 6 5

é ù
ê úë û

Example 11.4 Find the Z-parameters for the network shown in Fig. 11.24.

Fig. 11.24

Solution The transformed network is shown in Fig. 11.25.

Applying KVL to Mesh 1,

 V1 = (s + 1) I1 – sI3 …(i)

Applying KVL to Mesh 2,

 V2 = sI2 + sI3 …(ii)

Applying KVL to Mesh 3,

–sI1
 + sI2

 + (2s + 1) I3 = 0

 I3 = 1 2
2 1 2 1

s s
I I

s s
-

+ +
…(iii)

Substituting the Eq. (iii) in the Eq. (i),

 V1 = 1 1 2( 1) 
2 1 2 1

s s
s I s I I

s s

æ ö+ - -ç ÷è ø+ +

=

2 2

1

3 1
 + 

2 1 2 1

s s s
I

s s

æ ö æ ö+ +
ç ÷ ç ÷+ +è ø è ø

 I2 …(iv)

Substituting the Eq. (iii) in the Eq. (ii),

 V2 = sI2 + s 1 2
2 1 2 1

s s
I I

s s

æ ö-ç ÷è ø+ +

=
2 2

1 2 + 
2 1 2 1

s s s
I I

s s

æ ö æ ö+
ç ÷ ç ÷+ +è ø è ø

…(v)

Fig. 11.25
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Comparing the Eqs (iv) and (v) with Z-parameter equations, we get

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=

2 2

2 2

3 1

2 1 2 1

2 1 2 1

s s s

s s

s s s

s s

é ù+ +
ê ú

+ +ê ú
ê ú+
ê ú+ +ë û

Example 11.5 Find the open-circuit impedance parameters for the network shown in Fig. 11.26.

Fig. 11.26

Solution
Applying KVL to Mesh 1,

 V1 – (I1 – I3) – 2 (I1 + I2) = 0

 V1 = 3I1 + 2I2 – I3 …(i)

Applying KVL to Mesh 2,

 V2 – 3 (I2 + I3) – 2 (I1 + I2) = 0

 V2 = 2I1 + 5I2 + 3I3 …(ii)

Applying KVL to Mesh 3,

 4I3 + 3 (I2 + I3) + (I3 – I1) = 0

 –I1 + 3I2 + 8I3 = 0

 I3 = –1 2

1 3

8 8
I I …(iii)

Substituting the Eq. (iii) in the Eq. (i),

 V1 = 3I1 + 2I2 – 1 2

1 3

8 8
I I

æ ö-ç ÷è ø

= 1 2

23 19

8 8
I I+ …(iv)

Substituting the Eq. (iii) in the Eq. (ii),

 V2 = 2I1 + 5I2 + 3 1 2

1 3

8 8
I I

 − 
 

=
19

8
I1 + 

31

8
I2 …(v)

Comparing Eqs (iv) and (v) with Z-parameter equations, we get

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=

23 19

8 8
19 31

8 8

é ù
ê ú
ê ú
ê ú
ê úë û

Fig. 11.27
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Example 11.6 Test results for a two-port network are

(a) Port 2 short circuited : V1 = 50 ∠0° V, I1 = 2.1 ∠–30° A, I2 = –1.1 ∠–20° A

(b) Port 1 short circuited : V2 = 50 ∠0° V, I2 = 3 ∠–15° A, I1 = –1.1 ∠–20° A.

Find Y-parameters.

Solution

Y11 =  

2

1

1 0V

I

V =
 = 

2.1 30

50 0

Ð - °
Ð °

 = 0.042 ∠–30° J

 Y21 =  

2

2

1 0V

I

V =
 = 

1.1 20

50 0

- Ð - °
Ð °

 = –0.022 ∠–20° J

 Y12 =  

1

1

2 0V

I

V =
 = 

1.1 20

50 0

- Ð - °
Ð °

 = –0.022 ∠–20° J

 Y22 =  

1

2

2 0V

I

V =
 = 

3 15

50 0

Ð - °
Ð °

 = 0.06 ∠–15° 
J

Hence, the Y-parameters are

11 12

21 22

Y Y

Y Y

 
 
 

=

0.042 30 0.022 20

0.022 20 0.06 15

∠ − ° − ∠ − ° 
 
− ∠ − ° ∠ − ° 

Example 11.7 Find Y-parameters for the network shown in Fig. 11.28.

Fig. 11.28

Solution
First Method

Case 1 When the output port is short circuited, i.e., V2 = 0.

Req = 1 + 
2 3

2 3

´
+

= 1 + 
6

5
 = 

11

5
 Ω

Now  V1 =
11

5
 I1

Y11 =

2

1

1 0

5
=

11
V

I

V =
J

Also  I2 = 1 1

2 2 5 2
( ) =  ×  = 

5 5 11 11
I V

- -
- V1

Fig. 11.29
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 Y21 =

2

2

1 0

2
= 

11
V

I

V
J

=

-

Case 2 When the input port is short circuited, i.e., V1 = 0.

Req = 3 + 
1 2

1 2

´
+

= 3 + 
2

3
 = 

11

3
Ω

Now  V2 =
11

3
 I2

 Y22 =
1

2

2 0

3
=  

11
V

I

V =
 J

Also  I1 = 2 2 2

2 2 3 2
( )

3 3 11 11
I V V

− −
− = × =

 Y12 =

1

1

2 0

2
= 

11
V

I

V =

-
 J

Hence, the Y-parameters are

11 12

21 22

Y Y

Y Y

 
 
 

=

5 2

11 11
2 3

11 11

-é ù
ê ú
ê ú-ê ú
ê úë û

Second Method  (Refer Fig. 11.28)

 I1 =
1 3

1

V V-
 = V1 – V3 …(i)

 I2 =
2 3

3

V V-

=
32

3 3

VV
- …(ii)

Applying KCL at Node 3,

I1 + I2 =
3

2

V
…(iii)

Substituting  Eqs (i) and (ii) in the Eq. (iii),

 V1 – V3 + 
32

3 3

VV
- =

3

2

V

V1 + 
2

3

V
= V3 

1 1
1

2 3

æ ö+ +ç ÷è ø  = 3

11

6
V

 V3 = 1 2

6 2
 + 

11 11
V V …(iv)

Substituting the Eq. (iv) in the Eq. (i),

 I1 = 1 1 2

6 2
 
11 11

V V V- -

= 1 2

5 2
 

11 11
V V- …(v)

Fig. 11.30
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Substituting the Eq. (iv) in Eq. (ii),

 I2=  
2

1 2

1 6 2

3 3 11 11

V
V V

æ ö- +ç ÷è ø

= 1 2

2 3

11 11
V V

-
+ …(vi)

Comparing Eqs (v) and (vi) with Y-parameter equations, we get

11 12

21 22

Y Y

Y Y

 
 
 

=

5 2

11 11
2 3

11 11

-é ù
ê ú
ê ú-ê ú
ê úë û

Example 11.8 Determine Y-parameters for the network shown in Fig. 11.31.

Fig. 11.31

Solution From Fig. 11.31,

 I1 =
1 3

1

V V-
 = V1 – V3 …(i)

Applying KCL at Node 3,

 I1 =
3 3 2+ 

2 2

V V V-
 = V3 – 2

2

V
…(ii)

Applying KCL at Node 2,

 I2 =
2 32 + 

4 2

V VV -
  = 

3
 2

3
V

4 2

V
- …(iii)

Substituting the Eq. (i) in the Eq. (ii),

V1 – V3 = V3 – 
2

2

V

 V3 =
1 2+ 
2 4

V V
…(iv)

Substituting the Eq. (iv) in the Eq. (ii),

 I1 =
1 2 2+ 
2 4 2

V V V
-  = 

1 2

2 4

V V
- …(v)

Substituting the Eq. (iv) in the Eq. (iii),

 I2 =
1 2

2

3 1

4 2 2 4

V V
V

æ ö- +ç ÷è ø  = 
1 25

4 8

V V-
+ …(vi)

Comparing Eqs (v) and (vi) with Y-parameter equations, we get

11 12

21 22

Y Y

Y Y

 
 
 

=

1 1

2 4
1 5

4 8

-é ù
ê ú
ê ú-ê ú
ê úë û
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Example 11.9 Determine the short-circuit admittance parameters for the network shown in Fig. 11.32.

Fig. 11.32

Solution The transformed network is shown in Fig. 11.33.

From Fig. 11.33,

 I1 = 1 3

1

V V-
 = V1 – V3 …(i)

Applying KCL at Node 3,

 I1 =
3 3 2( )

+ 
1 1

V V V

s

-

= (s + 1) V3 – V2 …(ii)

Applying KCL at Node 2,

I2 =
2 32 ( )

+ 
1 1

V VV

s

-

= (s + 1) V2 – V3 …(iii)

Substituting the Eq. (i) in the Eq. (ii),

V1 – V3 = (s + 1) V3 – V2

 (s + 2) V3 = V1 + V2

 V3 = 1 2

1 1
 + 

2 2
V V

s s+ +
…(iv)

Substituting the Eq. (iv) in the Eq. (ii),

 I1 = (s + 1) 1 2

1 1

2 2
V V

s s

æ ö+ç ÷è ø+ +
– V2

= 1 2

1 1

2 2

s
V V

s s

+
-

+ +
…(v)

Substituting the Eq. (iv) in the Eq. (iii),

 I2 = 2 1 2

1 1
( 1) 

2 2
s V V V

s s

æ ö+ - +ç ÷è ø+ +

=
2

1 2

1 3 1
 + 

2 2

s s
V V

s s

- + +
+ +

…(vi)

Comparing Eqs (v) and (vi) with Y-parameter equations, we get

11 12

21 22

Y Y

Y Y

 
 
 

= 2

1 1

2 2

1 3 1

2 2

s

s s

s s

s s

+ -é ù
ê ú+ +ê ú
- + +ê ú

ê ú+ +ë û

Fig. 11.33
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Example 11.10 Determine Y-parameters for the network shown in Fig. 11.34.

Fig. 11.34

Solution The transformed network is as shown in Fig. 11.35.

From Fig. 11.35,

 I1 = 
1 3

2

V V

s

-
 = 1 3 

2 2

s s
V V- …(i)

Applying KCL at Node 3,

1 3( )
2

s
V V- =

3
3 2+ ( )

2

V s
V V

s
-

3 3 3

1
 +  + 

2 2

s s
V V V

s
=  1 2 + 

2 2

s s
V V

 V3 =

2 2

1 22 2
 + 

2( 1) 2( 1)

s s
V V

s s+ +
…(ii)

Substituting the Eq. (ii) in the Eq. (i),

 I1 =

2 2

1 1 22 22 2 2( 1) 2( 1)

s s s s
V V V

s s

é ù
- +ê ú

+ +ë û

=

3 3

1 22 2
 

2 4( 1) 4( 1)

s s s
V V

s s

é ù
- -ê ú

+ +ë û

=

3 3

 1 22 2

2

4( 1) 4( 1)

s s s
V V

s s
-

+
+ + …(iii)

Applying KCL at Node 2,

 I2 =
2

2 3+ ( )
2

V s
V V

s
-

=

2

2 3

2

2 2

s s
V V

s

+ - …(iv)

Substituting the Eq. (ii) in the Eq. (iv),

 I2 =

2 2 2

2 1 22 2

2

2 2 2( 1) 2( 1)

s s s s
V V V

s s s

é ù+
- +ê ú

+ +ë û

=

3 2 3

1 22 2

2
 +  

24( 1) 4( 1)

s s s
V V

ss s

é ù- +
-ê ú

+ +ë û

=

3 4 2

1 22 2

6 4
 + 

4( 1) 4 ( 1)

s s s
V V

s s s

- + +
+ +

…(v)

Fig. 11.35
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Comparing the Eqs (iii) and (v) with Y-parameter equation, we get

11 12

21 22

Y Y

Y Y

 
 
 

=

3 3

2 2

3 4 2

2 2

2

4( 1) 4( 1)

6 4

4( 1) 4 ( 1)

s s s

s s

s s s

s s s

é ù+ -
ê ú

+ +ê ú
ê ú- + +
ê ú

+ +ê úë û

Example 11.11 Obtain Y-parameters of the network shown in Fig. 11.36.

Fig. 11.36

Solution Applying KCL at Node 1,

 I1 = 1 3 1 2+ 
11

V V V V

s

- -
 = (s + 1) V1 – s V2 – V3 …(i)

Applying KCL at Node 2,

 I2 = 2 3 2 1+ 
11

V V V V

s

- -
 = (s + 1) V2 – s V1 – V3 …(ii)

Applying KCL at Node 3,

3 3 1 3 2+ + 
1 1 1

V V V V V

s

- -
= 0

(s + 2) V3 – V1 – V2 = 0

 V3 = 1 2

1 1
 + 

2 2
V V

s s+ +
…(iii)

Substituting the equation (iii) in the equation (i),

 I1 = (s + 1) V1 – s V2 – 1 2

1 1

2 2
V V

s s

æ ö+ç ÷è ø+ +

= 1

( 1)( 2) 1 ( 2) 1

( 2) ( 2)

s s s s
V

s s

é ù é ù+ + - + +
-ê ú ê ú+ +ë û ë û

 V2

=

2 2

1

3 1 2 1

2 2

s s s s
V

s s

æ ö æ ö+ + + +
-ç ÷ ç ÷+ +è ø è ø

 V2 …(iv)
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Substituting the Eq. (iii) in the Eq. (ii),

 I2 = (s + 1) V2 – s V1 – 1 2

1 1

2 2
V V

s s

æ ö+ç ÷è ø+ +

= – 1

( 2) 1 ( 1)( 2) 1
 + 

( 2) ( 2)

s s s s
V

s s

é ù é ù+ + + + -
ê ú ê ú+ +ë û ë û

V2

= – 

2 2

1

2 1 3 1
 + 

2 2

s s s s
V

s s

æ ö æ ö+ + + +
ç ÷ ç ÷+ +è ø è ø

 V2 …(v)

Comparing Eqs (iv) and (v) with Y-parameter equations, we get

11 12

21 22

Y Y

Y Y

 
 
 

=

2 2

2 2

3 1 ( 2 1)

2 2

( 2 1) 3 1

2 2

s s s s

s s

s s s s

s s

é ù+ + - + +
ê ú

+ +ê ú
ê ú- + + + +
ê ú+ +ë û

Example 11.12 Find the transmission parameters for the network shown in Fig. 11.37.

Fig. 11.37

Solution
First Method

Case 1 When the output port is open circuited, i.e., I2 = 0.

V1 = 6I1

and  V2 = 5I1

 A =

2

1 1

2 10

6 6
=  = 

5 5
I

V I

V I=

 C =
2

1

2 0

1
=  

5
I

I

V =
 J

Case 2 When the output port is short circuited, i.e., V2 = 0.

Req = 1 + 
5 2 10 17

=  1 + =  
5 2 7 7

´
+

 Ω

Now  V1 =
17

7
 I1

and  I2 = 1 1

5 5
( )

7 7
I I

-
- =

Fig. 11.38
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 B =

2

1
1

2 0
1

17

177= = 
5 5

7
V

I
V

I
I=

- -
-

 Ω

 D =

2

1

2 0

7
= 

5
V

I

I =

-

Hence, the transmission parameters are

A B

C D

é ù
ê úë û

=

6 17

5 5
1 7

5 5

é ù
ê ú
ê ú
ê ú
ê úë û

Second Method  (Refer Fig. 11.37)

Applying KVL to Mesh 1,

 V1 = I1 + 5 (I1 + I2) = 6I1 + 5I2 …(i)

Applying KVL to Mesh 2,

 V2 = 2I2 + 5 (I1 + I2) = 5I1 + 7I2 …(ii)

Hence,  5I1 = V2 – 7I2

 I1 = 2

1 7

5 5
V -  I2 …(iii)

Substituting the Eq. (iii) in the Eq. (i),

 V1 = 6 2 2

1 7

5 5
V I

æ ö-ç ÷è ø  + 5I2

= 
6

5
 V2 – 

17

5
 I2 …(iv)

Comparing Eqs (iii) and (iv) with transmission parameter equations, we get

A B

C D

é ù
ê úë û =

6 17

5 5
1 7

5 5

é ù
ê ú
ê ú
ê ú
ê úë û

Example 11.13 Obtain ABCD parameters for the network shown in Fig. 11.39.

Fig. 11.39

Solution Applying KVL to Mesh 1,

 V1 = I1 + 2 (I1 – I3) = 3I1 – 2I3 …(i)

Applying KVL to Mesh 2,

 V2 = 2 (I2 + I3) = 2I2 + 2I3 …(ii)
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Applying KVL to Mesh 3,

2(I3 – I1) + I3 + 2(I3 + I2) = 0

 5I3 = 2I1 – 2I2

 I3 =
2

5
I1 – 

2

5
I2 …(iii)

Substituting the Eq. (iii) in the Eq. (i),

 V1 = 3I1 – 2 1 2

2 2

5 5
I I

æ ö-ç ÷è ø

=
11

5
 I1 + 

4

5
 I2 …(iv)

Substituting the Eq. (iii) in the Eq. (ii),

 V2 = 2I2 + 2 1 2

2 2

5 5
I I

æ ö-ç ÷è ø  = 
1

4 6
 + 

5 5
I  I2

4

5
 I1 = V2 – 

6

5
 I2

I1 =
5

4
 V2 – 

3

2
 I2 …(v)

Substituting the Eq. (v) in the Eq. (iv),

 V1 = 2 2

11 5 3 4
+ 

5 4 2 5
V I

æ ö-ç ÷è ø  I2 = 
11

4
 V2 – 

5

2
 I2 …(vi)

Comparing Eqs (v) and (vi) with ABCD parameter equations, we get

A B

C D

é ù
ê úë û =

11 5

4 2
5 3

4 2

é ù
ê ú
ê ú
ê ú
ê úë û

Example 11.14 Determine the transmission parameters for the network shown in Fig. 11.41.

Fig. 11.41

Solution Applying KCL at Node 1,

 I1 =
1V

s
 + (V1 – V2) = 

1s

s

+
 V1 – V2 …(i)

Applying KCL at Node 2,

 I2 = 2

1

V

s

 + (V2 – V1)

 I2 = (s + 1) V2 – V1

 V1 = (s + 1) V2 – I2 …(ii)

Fig. 11.40
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Substituting the Eq. (ii) in the Eq. (i),

 I1 =
1s

s

+
 [(s + 1) V2 – I2] – V2

=

2

2

( 1) 1
1

s s
V

s s

é ù+ +
- -ê ú

ë û
 I2

=
2

2

1 1s s s
V

s s

æ ö+ + +æ ö- ç ÷ç ÷ è øè ø
 I2 …(iii)

Comparing Eqs (ii) and (iii) with ABCD parameter equations, we get

A B

C D

é ù
ê úë û

= 2

1 1

1 1

s

s s s

s s

+ -é ù
ê ú+ + +ê ú
ê úë û

Example 11.15 Find transmission parameters for the two-port network shown in Fig. 11.42.

Fig. 11.42

Solution Applying KVL to Mesh 1,

 V1 = 10I1 + 25(I1 – I3) = 35I1 – 25I3 …(i)

Applying KVL to Mesh 2,

 V2 = 20(I2 + I3) = 20I2 + 20I3 …(ii)

Applying KVL to Mesh 3,

25(I3 – I1) – 1.5V1 + 20(I2 + I3) = 0

25I3 – 25I1 – 1.5 (35I1 – 25I3) + 20I2 + 20I3 = 0

25I3 – 25I1 – 52.5I1 + 37.5I3 + 20I2 + 20I3 = 0

 82.5I3 = 77.5I1 – 20I2

 I3 = 0.94I1 – 0.24I2 …(iii)

Substituting the Eq. (iii) in Eq. (i),

 V1 = 35I1 – 25(0.94I1 – 0.24I2) = 11.5I1 + 6.1I2 …(iv)

Substituting  the Eq. (iii) in the Eq. (ii),

 V2 = 20I2 + 20 (0.94I1 – 0.24I2) = 18.8I1 + 15.2I2 …(v)

From the Eq. (v),

I1 = 0.053V2 – 0.81I2 …(vi)

Substituting the Eq. (vi) in the Eq. (iv),

 V1 = 11.5 (0.053V2 – 0.81I2) + 6.1I2 = 0.61V2 + 3.22I2 …(vii)

Comparing Eqs (vi) and (vii) with ABCD parameter equations, we get

A B

C D

é ù
ê úë û

=
0.61 3.22

0.053 0.81
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Example 11.16 In the two-port network shown in Fig. 11.43, compute h-parameters from the following

data:

(a) With the output port short-circuited : V1 = 25 V, I1 = 1 A, I2 = 2 A

(b) With the input port open-circuited : V1 = 10 V, V2 = 50 V, I2 = 2 A

Fig. 11.43

Solution h11 =  

2

1

1 0

25
=  

1
V

V

I =
 = 25 Ω

h21 =  

2

2

1 0

2
=  

1
V

I

I =
 = 2

h12 =  

1

1

2 0

10
=  

50
I

V

V =
 = 0.2

h22 =  

1

2

2 0

2
=  

50
I

I

V =
 = 0.04 J

Hence, the h-parameters are

11 12

21 22

h h

h h

é ù
ê úë û

=
25 0.2

2 0.04

é ù
ê úë û

Example 11.17 Determine hybrid parameters for the network of Fig. 11.44.

Fig. 11.44

Solution
First Method

Case 1 When port 2 is short circuited, i.e., V2 = 0.

Req = 1 + 
2 2

2 2

´
+

 = 2 Ω

Now,  V1 = 2I1

h11 =

2

1

1 0V

V

I =
 = 2 Ω

Fig. 11.45
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Also,  I2 = –I1 × 12
= 

2 2 2

I-
+

h21 =

2

2

1 0

1
=  

2
V

I

I =

-

Case 2 When Port 1 is open circuited, i.e., I1 = 0.

Req =
(2 2) 4

2 2 4

+ ´
+ +

 = 2 Ω

 V1 = 2Iy

 Iy = 2

2

I

 V2 = 4Ix

 Ix = 2

2

I

h12 =

1

2

1

22 0

22 12=  = = 
4 2

4
2

y

xI

I
IV

IV I=

´

´

h22 =

1

2

2 0

2 1
= =  

4 2

x

xI

II

V I
J

=
Hence, the h-parameters are

11 12

21 22

h h

h h

é ù
ê úë û

=

1
2

2
–1 1

2 2

é ù
ê ú
ê ú
ê ú
ê úë û

Second Method  Refer Fig. 11.44.

Applying KVL to Mesh 1,

 V1 = 3I1 – 2I3 …(i)

Applying KVL to Mesh 2,

 V2 = 4I2 + 4I3 …(ii)

Applying KVL to Mesh 3,

2 (I3 – I1) + 2I3 + 4 (I3 + I2) = 0

 8I3 = 2I1 – 4I2

 I3 =
1 2

4 2

I I
- …(iii)

Substituting the Eq. (iii) in the Eq. (i),

 V1 = 3I1 – 2 
1 2

4 2

I Iæ ö-ç ÷è ø  = 
5

2
 I1 + I2 …(iv)

Substituting the Eq. (iii) in the Eq. (ii),

 V2 = 4I2 + 4 
1 2

4 2

I Iæ ö-ç ÷è ø
= 4I2 + I1 – 2I2 = I1 + 2I2

Fig. 11.46
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 I2 = – 
1

2
 I1 + 

1

2
 V2 …(v)

Substituting the Eq. (v) in the Eq. (iv),

 V1 =
5

2
I1 – 

1

2
 I1 + 

1

2
 V2 = 2I1 + 

1

2
 V2 …(vi)

Comparing Eqs (v) and (vi) with h-parameter equations, we get

11 12

21 22

h h

h h

é ù
ê úë û

=

1
2

2
–1 1

2 2

é ù
ê ú
ê ú
ê ú
ê úë û

Example 11.18 Find h-parameters for the network shown in Fig. 11.47.

Fig. 11.47

Solution As solved in Example 11.10, derive the equations for I1 and I2 in terms of V1 and V2.

 I1 =

3 3

12 2

2

4( 1) 4( 1)

s s s
V

s s

+ -
+ +

 V2 …(i)

 I2 =

3 4 2

12 2

6 4
 + 

4( 1) 4 ( 1)

s s s
V

s s s

- + +
+ +

 V2 …(ii)

From the Eq. (i),

 V1 =

2 2

12 2

4( 1)
 + 

( 2) 2

s s
I

s s s

+
+ +  V2 …(iii)

Substituting the Eq. (iii) in the Eq. (ii),

 I2 =

3 2 2 4 2

1 22 2 2 2

4( 1) 6 4
+ 

4( 1) ( 2) 2 4 ( 1)

s s s s s
I V

s s s s s s

é ù- + + +
+ê ú

+ + + +ë û
 V2

=

2 2

12 2

2( 1)
 + 

2 ( 2)

s s
I

s s s

- +
+ +  V2 …(iv)

Comparing the Eqs (iii) and (iv) with h-parameter equations, we get

11 12

21 22

h h

h h

é ù
ê úë û

=

2 2

2 2

2 2

2 2

4( 1)

( 2) 2

2( 1)

2 ( 2)

s s

s s s

s s

s s s

é ù+
ê ú

+ +ê ú
ê ú- +
ê ú

+ +ê úë û
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11.8 INTERRELATIONSHIPS BETWEEN THE PARAMETERS

When it is required to find out two or more parameters of a particular network  then finding each parameter

will be tedious. But if we find a particular parameter then the other parameters can be found if the

interrelationship between them is known.

11.8.1 Z-parameters in Terms of Other Parameters

(i) Z-parameters in terms of Y-parameters We know that

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

By Cramer’s rule,

V1 =  

1 12

2 22 22 1 12 2

11 12 11 22 12 21

21 22

 =  

I Y

I Y Y I Y I

Y Y Y Y Y Y

Y Y

-
-

=
22 12

1
Ä Ä

Y Y
I

Y Y
-  I2

where ∆Y = Y11Y22 – Y12Y21

Comparing with V1 = Z11 I1 + Z12 I2, we get

Z11 =  
22

Ä

Y

Y
…(11.61)

 Z12 =  
12

Ä

Y

Y

-
…(11.62)

Also,  V2 =  

11 1

21 2 11 21
2 = 

Ä Ä Ä

Y I

Y I Y Y
I

Y Y Y
- I1

 Comparing with V2 = Z21 I1 + Z22 I2, we get

Z22 =
11

Ä

Y

Y
…(11.63)

Z21 =
21

Ä

Y

Y

-
…(11.64)

(ii) Z-parameters in terms of ABCD parameters We know that

 V1 = AV2 – BI2

 I1 = CV2 – DI2

Rewriting the second equation,

 V2 = 1

1
 + 

D
I

C C
 I2

Comparing with V2 = Z21 I1 + Z22 I2, we get

Z21 =
1

C
…(11.65)

Z22 =
D

C
…(11.66)
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Also,  V1 = A 1 2

1 D
I I

C C

é ù+ê úë û  – BI2

= 1

A AD
I B

C C

é ù+ -ê úë û  I2

= 1

A AD BC
I

C C

-é ù+ ê úë û
 I2

Comparing with V1 = Z11 I1 + Z12 I2, we get

Z11 =
A

C
…(11.67)

 Z12 =
AD BC

C

-
…(11.68)

(iii) Z-parameters in terms of A′B′C′D′ parameters We know that

V2 = A′ V1 – B′ I1

 I2 = C′ V1 – D′ I1

Rewriting the second equation,

 V1 = 1

1D
I

C C

¢
+

¢ ¢
 I2

Comparing with V1 =  Z11 I1 + Z12 I2, we get

Z11 =
D

C

¢
¢

…(11.69)

Z12 =
1

C ¢
…(11.70)

Also,  V2 = A′ 1 2

1D
I I

C C

¢é ù+ê ú¢ ¢ë û
 – B′I1 = 1  + 

A D B C A
I

C C

-¢ ¢ ¢ ¢ ¢é ù
ê ú¢ ¢ë û

 I2

Comparing with V2 = Z21 I1 + Z22 I2, we get

Z21 =
Ä

= 
A D B C T

C C

-¢ ¢ ¢ ¢ ¢
¢ ¢

…(11.71)

Z22 =
A

C

¢
¢

 …(11.72)

(iv) Z-parameters in terms of hybrid parameters We know that

 V1 = h11 I1 + h12 V2

 I2 = h21 I1 + h22 V2

Rewriting the second equation

 V2 = 21
1

22 22

1h
I

h h

-
+  I2

Comparing with V2 = Z21 I1 + Z22 I2, we get

Z21 = 21

22

h

h

-
…(11.73)

Z22 =
22

1

h
…(11.74)
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Also,  V1 = h11 I1 + h12 
21

1 2
22 22

1h
I I

h h

é ù-
+ê ú

ë û

= h11 I1 + 
12 12 21

2
22 22

h h h
I

h h
-  I1

=
11 22 12 21 12

1
22 22

 + 
h h h h h

I
h h

é ù-
ê ú
ë û

 I2

Comparing with V1 = Z11 I1 + Z12 I2, we get

Z11 = 11 22 12 21

22

h h h h

h

-
 = 

22

h

h

D
…(11.75)

Z12 =
12

22

h

h
…(11.76)

(v) Z-parameters in terms of inverse hybrid parameters We know that

 I1 = g11 V1 + g12 I2

 V2 = g21 V1 + g22 I2

Rewriting first equation,

 V1 =
11g
1

I1 – 
12

11

g

g  I2

Comparing with V1 = Z11 I1 + Z12 I2, we get

Z11 =
11g

1
…(11.77)

Z12 =
12

11

g

g

-
…(11.78)

Also  V2 = g21 
12

1 2
11 11

g
I I

g g

é ù1 -ê ú
ë û

+ g22 I2

= 21

11

g

g
I1 + 

11 22 12 21

11

g g g g

g

é ù-
ê ú
ë û

 I2

Comparing with V2 = Z21 I1 + Z22 I2, we get

Z21 = 21

11

g

g
…(11.79)

Z22 =
11 22 12 21

11 11

Ä
= 

g g g g g

g g

-
…(11.80)

11.8.2 Y-parameters in Terms of Other Parameters

(i) Y-parameters in terms of Z-parameters We know that

 V1 = Z11 I1 + Z12 I2

 V2 = Z21 I1 + Z22 I2
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By Cramer’s rule,

 I1 =

1 12

2 22

11 12

21 22

V Z

V Z

Z Z

Z Z

 = 22 1 12 2

11 22 12 21

Z V Z V

Z Z Z Z

-
-

=
22 12

1
Ä Ä

Z Z
V

Z Z
-  V2

where ∆Z = Z11 Z22 – Z12 Z21

Comparing with I1 = Y11 V1 + Y12 V2, we get

Y11 =
22

Ä

Z

Z
…(11.81)

Y12 =
12

Ä

Z

Z

-
…(11.82)

Also,  I2 =

11 1

21 2

Ä

Z V

Z V

Z

 =
11 2 21 1

Ä

Z V Z V

Z

-
 = 

21 11
1  + 

Ä Ä

Z Z
V

Z Z

-
 V2

Comparing with I2 = Y21 V1 + Y22 V2, we get

Y21 =
21

Ä

Z

Z

-
…(11.83)

Y22 =
11

Ä

Z

Z
…(11.84)

(ii) Y-parameters in terms of ABCD parameters We know that

 V1 = AV2 – BI2

 I1 = CV2 – DI2

Rewriting the first equation,

 I2 = – 1

1
 + 

A
V

B B
 V2

Comparing with I2 = Y21 V1 + Y22 V2, we get

Y21 =
1

B

-
…(11.85)

Y22 =
A

B
…(11.86)

Also, I1 = CV2 – D 2 1

1A
V V

B B

é ù-ê úë û

= 1 + 
D BC AD

V
B B

-é ù
ê úë û  V2

Comparing with I1 = Y11 V1 + Y12 V2, we get

Y11 =
D

B
…(11.87)
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Y12 =
BC AD

B

-
 = –

AD BC

B

-
 = 

T

B

D
- …(11.88)

(iii) Y-parameters in terms of A′B′C′D′ parameters We know that

V2 = A′ V1 – B′ I1

 I2 = C′ V1 – D′ I1

Rewriting first equation,

I1 = 1

1A
V

B B

¢
-

¢ ¢
 V2

Comparing with I1 = Y11 V1 + Y12 V2 , we get

Y11 =
A

B

¢
¢

…(11.89)

Y12 = – 
1

B¢
…(11.90)

Also,  I2 = C′ V1– D′ 1 2

1A
V V

B B

¢é ù-ê ú¢ ¢ë û

= – 
A D B C

B

-¢ ¢ ¢ ¢é ù
ê ú¢ë û

 V1 + 
D

B

′
′

V2

Comparing with I2 = Y21 V1 + Y22 V2, we get

Y21 = – 
Ä

=
A D B C T

B B

-¢ ¢ ¢ ¢ ¢é ù -ê ú¢ ¢ë û
…(11.91)

and Y22 =
D

B

¢
¢

…(11.92)

(iv) Y-parameters in terms of hybrid parameters We know that

V1 = h11 I1 + h12 V2

 I2 = h21 I1 + h22 V2

Rewriting the first equation,

 I1 = 12
1

11 11

1 h
V

h h
-  V2

Comparing with I1 = Y11 V1 + Y12 V2, we get

Y11 =
11

1

h
…(11.93)

Y12 =
12

11

h

h

-
…(11.94)

Also  I2 = h22 V2 + h21 
12

1 2
11 11

1 h
V V

h h

é ù
-ê ú

ë û
 = 21

11

h

h
V1 + 11 22 12 21

11

h h h h

h

é ù-
ê ú
ë û

 V2

Comparing with I2 = Y21 V1 + Y22 V2, we get

Y21 =
21

11

h

h
…(11.95)

Y22 =
11

Äh

h
…(11.96)
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(v) Y-parameters in terms of inverse hybrid parameters We know that

 I1 = g11 V1 + g12 I2

 V2 = g21 V1 + g22 I2

Rewriting the second equation,

I2 = – 21
1

22 22

1
+

g
V

g g
 V2

Comparing with I2 = Y21 V1 + Y22 V2, we get

Y21 = – 21

22

g

g
…(11.97)

Y22 =
22

1

g
…(11.98)

Also, I1 = g11 V1 + g12 
21

1 2
22 22

1g
V V

g g

é ù
- +ê ú
ë û

 = 11 22 12 21

22

g g g g

g

é ù-
ê ú
ë û

 V1 + 12

22

g

g
V2

Comparing with I1= Y11 V1 + Y12 V2, we get

Y11 =
22

Äg

g
…(11.99)

Y12 =
12

22

g

g
…(11.100)

11.8.3 ABCD Parameters in Terms of Other Parameters

(i) ABCD parameters in terms of Z-parameters We know that

 V1 = Z11 I1 + Z12 I2

 V2 = Z21 I1 + Z22 I2

Rewriting the second equation,

 I1 =
22

2
21 21

1 Z
V

Z Z
-  I2

Comparing with I1 = CV2 – DI2, we get

 C =
21

1

Z
…(11.101)

 D =
22

21

Z

Z
…(11.102)

Also,  V1 = Z12 I2 + Z11 
22

2 2
21 21

1 Z
V I

Z Z

é ù
-ê ú

ë û

= Z12 I2 + 11 22 11
2

21 21

Z Z Z
V

Z Z
-  I2



11.38 Electrical Networks

= 11 11 22 12 21
2

21 21

Z Z Z Z Z
V

Z Z

é ù-
- ê ú
ë û

 I2

Comparing with V1 = AV2 – BI2, we get

 A =
11

21

Z

Z
…(11.103)

 B = 11 22 12 21

21 21

Z Z Z Z Z

Z Z

- D
= …(11.104)

(ii) ABCD parameters in terms of Y-parameters We know that

 I1 = Y11 V1 + Y12 V2

 I2 = Y21 V1 + Y22 V2

Rewriting the second equation,

 V1 =
22

2
21 21

1
 + 

Y
V

Y Y

-
 I2

Comparing with V1 = AV2 – BI2, we get

 A =
22

21

Y

Y

-
…(11.105)

 B =
21

1

Y

-
…(11.106)

Also,  I1 = Y12 V2 + Y11 
22

2 2
21 21

1Y
V I

Y Y

é ù-
+ê ú

ë û

=
12 21 11 22 11

2 2
21 21

 + 
Y Y Y Y Y

V I
Y Y

é ù-
ê ú
ë û

Comparing with I1 = CV2 – DI2, we get

 C = 12 21 11 22

21 21

Ä
= 

Y Y Y Y Y

Y Y

- -
…(11.107)

 D =
11

21

Y

Y

-
…(11.108)

(iii) ABCD parameters in terms of A′B′C′D′ parameters We know that

V2 = A′ V1 – B′ I1

 I2 = C′ V1 – D′ I1

By Cramer’s rule,

V1 =

2

2

V B

I D

A B

C D

¢
¢

¢ ¢
¢ ¢

= 2 2
Ä Ä

D B
V I

T T

¢ ¢
-

¢ ¢
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where ∆T ′ = A′ D′ – B′ C′
Comparing with V1 = AV2 – BI2, we get

 A =
Ä

D

T

¢
¢

…(11.109)

B =
Ä

B

T

¢
¢

…(11.110)

 – I1 =

2

2

Ä

A V

C I

T

¢
¢
¢

 = – 
Ä

C

T

¢
¢

  V2 + 
Ä

A

T

¢
¢

 I2

 I1 =  
Ä

C

T

¢
¢

 V2 – 
Ä

A

T

¢
¢

 I2

Comparing with I1 = CV2 – DI2, we get

C =
Ä

C

T

¢
¢

…(11.111)

D =
Ä

A

T

¢
¢

…(11.112)

(iv) ABCD parameters in terms of hybrid parameters We know that

V1 = h11 I1 + h12 V2

 I2 = h21 I1 + h22 V2

Rewriting the second equation,

I1 =
22

2
21 21

1
 + 

h
V

h h

-
 I2

Comparing with I1 = CV2 – DI2

 D =
21

1

h

-
…(11.113)

 C =
22

21

h

h

-
…(11.114)

Also,  V1 = h12 V2 + h11 
22

2 2
21 21

1 h
I V

h h

é ù
-ê ú

ë û

=
12 21 11 22

21

h h h h

h

é ù-
ê ú
ë û

 V2 + 11

21

h

h
I2

Comparing with V1 = AV2 – BI2, we get

 A =
21

Äh

h

-
…(11.115)

 B =
11

21

h

h

-
…(11.116)
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(v) ABCD parameters in terms of inverse hybrid parameters We know that

 I1 = g11 V1 + g12 I2

 V2 = g21 V1 + g22 I2

Rewriting the second equation,

 V1 =
22

2
21 21

1 g
V

g g
-  I2

Comparing with V1 = AV2 – BI2

 A =
21

1

g
…(11.117)

 B = 22

21

g

g
…(11.118)

Also,  I1 = g11 
22

2 2
21 21

1 g
V I

g g

é ù
-ê ú

ë û
 + g12 I2

= 
11 11 22 12 21

2
21 21

g g g g g
V

g g

é ù-
- ê ú
ë û

 I2

Comparing with I1 = CV2 – DI2, we get

 C =
11

21

g

g
…(11.119)

 D =
21

Äg

g
…(11.120)

11.8.4 A′B′C′D′ Parameters in Terms of Other Parameters

(i) A′B′C′D′ parameters in terms of Z-parameters We know that,

 V1 = Z11 I1 + Z12 I2

 V2 = Z21 I1 + Z22 I2

Rewriting the first equation,

 I2 =
11

1
12 12

1 Z
V

Z Z
-  I1

Comparing with  I2 = C′ V1 – D′ I1, we get

 C′ =
12

1

Z
…(11.121)

 D′ = 11

12

Z

Z
…(11.122)

Also,  V2 = Z21 I1 + Z22 
11

1 1
12 12

1 Z
V I

Z Z

é ù
-ê ú

ë û

= Z12 I1 + 
22 22 11

1
12 12

 
Z Z Z

V
Z Z

-  I1

= 22 11 22 12 21
1

12 12

Z Z Z Z Z
V

Z Z

é ù-- ê ú
ë û

 I1
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Comparing with  V2 = A′ V1 – B′ I1, we get

 A′ =
22

12

Z

Z
…(11.123)

 B′ = 11 22 12 21

12 12

Ä
= 

Z Z Z Z Z

Z Z

-
…(11.124)

(ii) A′B′C′D′ parameters in terms of Y-parameters We know that

 I1 = Y11 V1 + Y12 V2

 I2 = Y21 V1 + Y22 V2

Rewriting the first equation,

 V2 = 11
1

12 12

1
 + 

Y
V

Y Y

-
 I1

Comparing with  V2 = A′ V1 – B′ I1, we get

 A′ = 11

12

Y

Y

-
…(11.125)

 B′ =
12

1

Y

-
…(11.126)

Also,  I2 = Y21 V1 + Y22 
11

1 1
12 12

1Y
V I

Y Y

é ù-
+ê ú

ë û

=
12 21 11 22

12

Y Y Y Y

Y

é ù-
ê ú
ë û

 V1 + 
22

12

Y

Y
 I1

Comparing with  I2 = C′ V1 – D′ I1, we get

 C′ =
12 21 11 22

12 12

Ä
= 

Y Y Y Y Y

Y Y

- -
…(11.127)

 D′ =
22

12

Y

Y

-
…(11.128)

(iii) A′B′C′D′ parameters in terms of ABCD parameters We know that

 V1 = AV2 – BI2

 I1 = CV2 – DI2

By Cramer’s rule,

V2 =

1

1

V B

I D

A B

C D

 = 2
Ä Ä

D B
V

T T
-  I2

where ∆T = AD – BC

Comparing with V2 = A′ V1 – B′ I1, we get

 A′ =
D

TD
…(11.129)
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B′ =
Ä

B

T
…(11.130)

– I2 =

1

1

Ä

A V

C I

T

= – 1  + 
Ä Ä

C A
V

T T
 I1

I2 =  1 
Ä Ä

C A
V

T T
-  I1

Comparing with I2 = C′ V1 – D′ I1, we get

C ′ =
Ä

C

T
…(11.131)

D′ =
Ä

A

T
…(11.132)

(iv) A′B′C′D′ parameters in terms of hybrid parameters We know that

 V1 = h11 I1 + h12 V2

 I2 = h21 I1 + h22 V2

Rewriting the first equation,

 V2 = 11
1

12 12

 
h

V
h h

1
-   I1

Comparing with  V2 = A′ V1 – B′ I1

 A′ =
12h

1
…(11.133)

 B′ = 11

12

h

h
…(11.134)

Also,  I2 = h21 I1 + h22 
11

1 1
12 12

1 h
V I

h h

é ù
-ê ú

ë û

= 22

12

h

h
V1 + 

11 22 12 21

12

h h h h

h

é ù-
ê ú
ë û

 I1

Comparing with  I2 = C′ V1 – D′ I1, we get

 C′ = 22

12

h

h
…(11.135)

 D′ =
11 22 12 21

12 12

Ä
= 

h h h h h

h h

é ù-
ê ú
ë û

…(11.136)

(v) A′B′C′D′ parameters in terms of inverse hybrid parameters We know that

 I1 = g11 V1 + g12 I2

 V2 = g21 V1 + g22 I2
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Rewriting the first equation,

 I2 = – 11
1 

12 12

1
+ 

g
V

g g
 I1

Comparing with I2 = C′ V1 – D′ I1

C =  – 
11

12

g

g
…(11.137)

 D′ = – 
12

1

g
…(11.138)

Also,  V2 = g21 V1 + g22 
11

1 1
12 12

1g
V I

g g

é ù-
+ê ú

ë û

= – 11 22 12 21 22
2 

12 12

 +
g g g g g

V
g g

é ù-
ê ú
ë û

 I1

Comparing with V2 = A′ V1 – B′ I1, we get

 A′ = – 
12

Äg

g
…(11.139)

 B′ =
22

12

g

g
…(11.140)

11.8.5 Hybrid Parameters in Terms of Other Parameters

(i) Hybrid parameters in terms of Z-parameters We know that

 V1 = Z11 I1 + Z12 I2

 V2 = Z21 I1 + Z22 I2

Rewriting the second equation,

 I2 = 21
1

22 22

1
+

Z
I

Z Z

-
 V2

Comparing with I2 = h21 I1 + h22 V2, we get

 h21 = 21

22

Z

Z

-
…(11.141)

 h22 =
22

1

Z
…(11.142)

Also,  V1 = Z11 I1 + Z12 

21
2 1

22 22

1 Z
V I

Z Z

é ù
-ê ú

ë û

= 11 22 12 21 12
1

22 22

 +  
Z Z Z Z Z

I
Z Z

é ù-
ê ú
ë û

 V2

Comparing with V1 = h11 I1 + h12 V2, we get

 h11 =
22

Z

Z

D
…(11.143)

 h12 = 12

22

Z

Z
…(11.144)
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(ii) Hybrid parameters in terms of Y-parameters We know that

 I1 = Y11 V1 + Y12 V2

 I2 = Y21 V1 + Y22 V2

Rewriting the first equation,

 V1 =
12

1
11 11

1
 

Y
I

Y Y
-  V2

Comparing with V1 = h11 I1 + h12 V2, we get

 h11 =
11

1

Y
…(11.145)

 h12 = 12

11

Y

Y

-
…(11.146)

Also,  I2 = Y22 V2 + Y21 
12

1 2
11 11

1 Y
I V

Y Y

é ù
-ê ú

ë û

= 11 22 12 21 21
2

11 11

 +  
Y Y Y Y Y

V
Y Y

é ù-
ê ú
ë û

I1

Comparing with I2 = h21 I1 + h22 V2, we get

h21 = 22

11

Y

Y
…(11.147)

 h22 =
11

Y

Y

D
…(11.148)

(iii) Hybrid parameters in terms of ABCD parameters We know that

V1 = AV2 – BI2

 I1 = CV2 – DI2

Rewriting the second equation,

 I2 = 1

1
 +  

C
I

D D

-
 V2

Comparing with I2 = h21 I1 + h22 V2, we get

 h21 =
1

D

-
…(11.149)

 h22 =
C

D
…(11.150)

Also,  V1 = AV2 – B 1 2

1 C
I V

D D

-é ù+ê úë û

= 1 + 
B AD BC

I
D D

-é ù
ê úë û

 V2

Comparing with V1 =  h11 I1 + h12 V2, we get

h11 =
B

D
…(11.151)

 h12 =
AD BC

D

-
 = 

T

D

D
…(11.152)
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(iv) Hybrid parameters in terms of A′B′C′D′ parameters We know that

V2 = A′ V1 – B′ I1

 I2 = C′ V1 – D′ I1

Rewriting the first equation,

 V1 = 1

1
+

B
I

A A

¢
¢ ¢

 V2

Comparing with V1 = h11 I1 + h12 V2, we get

 h11 =
B

A

¢
¢

…(11.153)

 h12 =
1

A¢
…(11.154)

Also,  I2 = C′ 1 2

1B
I V

A A

¢é ù+ê ú¢ ¢ë û  – D′I1

= –  1  + 
A D B C C

I
A A

-¢ ¢ ¢ ¢ ¢é ù
ê ú¢ ¢ë û

 V2

Comparing with I2 = h21 I1 + h22 V2, we get

 h21 = – =
A D B C T

A A

- D¢ ¢ ¢ ¢ ¢é ù -ê ú¢ ¢ë û
…(11.155)

 h22 =
C

A

¢
¢

…(11.156)

(v) Hybrid parameters in terms of inverse hybrid parameters We know that

 I1 = g11 V1 + g12 I2

 V2 = g21 V1 + g22 I2

By Cramer’s rule,

V1 =

1 12

2 22

11 12

21 22

I g

V g

g g

g g

= 22 12
1

g g
I

g g
-

D D
 V2

where ∆g = g11 g22 – g12 g21

Comparing with  V1 = h11 I1 + h12 V2, we get

 h11  = 22g

gD
…(11.157)

h12 = – 12g

gD
…(11.158)

 I2 =

11 1

21 2

g I

g V

gD  = – 
21 11

1  + 
g g

I
g gD D

 V2
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Comparing with I2 = h21 I1 + h22 V2, we get

h21 = 21–
g

gD
…(11.159)

h22 =
11g

gD …(11.160)

11.8.6 Inverse Hybrid Parameters in Terms of Other Parameters

(i) Inverse hybrid parameters in terms of Z-parameters We know that

 V1 = Z11 I1 + Z12 I2

 V2 = Z21 I1 + Z22 I2

Rewriting the first equation,

 I1= 
12

1
11 11

1 Z
V

Z Z
-  I2

Comparing with I1 = g11 V1 + g12 I2, we get

g11 =
11

1

Z
…(11.161)

g12 = 12

11

Z

Z

-
…(11.162)

Also,  V2 = Z21 

12
1 2

11 11

1 Z
V I

Z Z

é ù
-ê ú

ë û
 + Z22 I2

= 21 11 22 12 21
1

11 11

 +  
Z Z Z Z Z

V
Z Z

é ù-
ê ú
ë û

 I2

Comparing with V2 = g21 V1 + g22 I2, we get

 g21 =
21

11

Z

Z
…(11.163)

 g22 =
11

Z

Z

D
…(11.164)

(ii) Inverse hybrid parameters in terms of Y-parameters We know that

 I1 = Y11 V1 + Y12 V2

 I2 = Y21 V1 + Y22 V2

Rewriting the second equation,

 V2 =
21

1
22 22

1
 +  

Y
V

Y Y

-
 I2

Comparing with V2 = g21 V1 + g22 I2, we get

 g21 =
21

22

Y

Y

-
…(11.165)

 g22 =
22

1

Y
…(11.166)
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Also,  I1 = Y11 V1 + Y12 
21

1 2
22 22

1Y
V I

Y Y

é ù-
+ê ú

ë û

= 11 22 12 21 12
1

22 22

 +  
Y Y Y Y Y

V
Y Y

é ù-
ê ú
ë û

 I2

Comparing with I1 = g11 V1 + g12 I2, we get

 g11 =
22

Y

Y

D
…(11.167)

 g12 =
12

22

Y

Y
…(11.168)

(iii) Inverse hybrid parameters in terms of ABCD parameters We know that

 V1 = AV2 – BI2

 I1 = CV2 – DI2

Rewriting  the first equation,

 V2 = 1

1
 + 

B
V

A A
 I2

Comparing with V2 = g21 V1 + g22 I2, we get

 g21 =
1

A
…(11.169)

 g22 =
B

A
…(11.170)

Also,  I1 = C 1 2

1 B
V I

A A

é ù+ê úë û  – D I2

= 1

C AD BC
I

A A

-é ù- ê úë û
 I2

Comparing with I1 = g11 V1 + g12 I2, we get

 g11 =
C

A
…(11.171)

 g12 = =
AD BC T

A A

- Dé ù- -ê úë û
…(11.172)

(iv) Inverse hybrid parameters in terms of A′B′C′D′ parameters  We know that

V2 = A′ V1 – B′ I1

I2 = C′ V1 – D′ I1

Rewriting the second equation,

 I1 = 1

1C
V

D D

¢
-

¢ ¢
 I2

Comparing with I1 = g11 V1 + g12 I2, we get

g11 =
C

D

¢
¢

…(11.173)

g12 = – 
1

D¢
…(11.174)
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Also,  V2 = A′V1 – B′ 1 2

1C
V I

D D

¢é ù-ê ú¢ ¢ë û

= 1+
A D B C B

V
D D

-¢ ¢ ¢ ¢ ¢é ù
ê ú¢ ¢ë û

 I2

Comparing with V2 = g21 V1 + g22 I2, we get

 g21 = =  
A D B C T

D D

- D¢ ¢ ¢ ¢ ¢é ù
ê ú¢ ¢ë û

…(11.175)

 g22 =
B

D

¢
¢

…(11.176)

(v) Inverse hybrid parameters in terms of hybrid parameters We know that

 V1 = h11 I1 + h12 V2

I2 = h21 I1 + h22 V2

By Cramer’s rule,

I1 =

1 12

2 22

11 12

21 22

V h

I h

h h

h h

=
22 12

1

h h
V

h h
-

D D
 I2

where ∆h = h11 h22 – h12 h21

Comparing with  I1 = g11 V1 + g12 I2, we get

 g11 =
22h

hD
…(11.177)

 g12 = 12h

h
-
D

…(11.178)

V2 =

11 1

21 2

h V

h I

hD

= – 21 11
1  + 

h h
V

h hD D
 I2

Comparing with V2 = g21 V1 + g22 I2, we get

g21 = – 
21h

hD
…(11.179)

g22 =
11h

hD
…(11.180)



Two-Port Networks 11.49

Table 11.3 Inter-relationship between Parameters

∆X = X11 X22 � X12 X21

In terms of

[Z] [Y] [T] [T¢] [h] [g]

[Z]

Z11  Z12
22Y

YD
12Y

Y

-
D

A

C

T

C

D D

C

¢
¢

1

C ¢ 22

h

h

D 12

22

h

h 11g

1 12

11

g

g

-

Z21 Z22
21Y

Y

-
D

11Y

YD
1

C

D

C

T

C

D ¢
¢

A

C

¢
¢

21

22

h

h

-

22

1

h

21

11

g

g 11

g

g

D

[Y]

22Z

ZD
12Z

Z

-
D Y11 Y12

D

B

T

B

-D A

B

¢
¢

–
1

B¢ 11

1

h

12

11

h

h

-

22

g

g

D 12

22

g

g

21Z

Z

-
D

11Z

ZD Y21 Y22
1

B

- A

B

T

B

D ¢
¢

D

B

¢
¢

21

11

h

h 11

h

h

D 21

22

g

g

-

22g

1

[T]

11

21

Z

Z 21

Z

Z

D 22

21

Y

Y

-

21

1

Y

-
A B

D

T

¢
D ¢

B

T

¢
D ¢ 21

h

h

-D 11

21

h

h

-

21g

1 22

21

g

g

21

1

Z

22

21

Z

Z 21

Y

Y

-D 11

21

Y

Y

-
C D

C

T

¢
D ¢

A

T

¢
D ¢

22

21

h

h

-

21

1

h

- 11

21

g

g 21

g

g

D

[T ′]

22

12

Z

Z 12

Z

Z

D 11

12

Y

Y

-

12

1

Y

- D

TD
B

TD A′ B′
12

1

h

11

12

h

h 12

g

g

-D 22

12

g

g

-

12

1

Z

11

12

Z

Z 12

Y

Y

-D 22

12

Y

Y

- C

TD
A

TD C′ D′
22

12

h

h 12

h

h

D 11

12

g

g

-

12g

-1

[h]
22

Z

Z

D 12

22

Z

Z 11

1

Y

12

11

Y

Y

- B

D

T

D

D B

A

¢
¢

1

A¢
h11 h12

22g

gD     –
12g

gD

21

22

Z

Z

-

22

1

Z

21

11

Y

Y 11

Y

Y

D 1

D

- C

D

T

A

-D ¢
¢

C

A

¢
¢

h21 h22
21–

g

gD
11g

gD

[g]
11

1

Z

12

11

Z

Z

-

22

Y

Y

D 12

22

Y

Y

C

A
– 

T

A

D C

D

¢
¢

   –    
1

D¢
22h

hD   –  
12h

hD g11 g12

21

11

Z

Z 11

Z

Z

D 21

22

Y

Y

-

22

1

Y

1

A

B

A

T

D

D ¢
¢

B

D

¢
¢

21–
h

hD
11h

hD
g21 g22

Example 11.19 The Z parameters of a two-port network are Z11 = 20 W, Z22 = 30 W, Z12 = Z21 =

10 W. Find Y and ABCD parameters.

Solution
∆Z = Z11Z22 – Z12Z21

= (20) (30) – (10) (10) = 500

Y-parameters

 Y11 =
22 30 3

=  =   
500 50

Z

ZD
J
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Y12 =
12 10 1

=  =  
500 50

Z

Z

- - -
D

J

 Y21 =
21 10 1

=  =   
500 50

Z

Z

- - -
D

J

 Y22 =
11 20 2

=  =  
500 50

Z

ZD
J

Hence, the  Y-parameters are

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=

3 1

50 50
1 2

50 50

-é ù
ê ú
ê ú-ê ú
ê úë û

ABCD parameters

A =
11

21

20
= 

10

Z

Z
 = 2

B =
21

500
= 

10

Z

Z

D
 = 50

C =
21

1 1
= 

10Z
 = 0.1

D =
22

21

30
= 

10

Z

Z
 = 3

Hence, the  ABCD parameters are

A B

C D

é ù
ê úë û =

2 50

0.1 3

é ù
ê úë û

Example 11.20 Currents I1 and I2 entering at Port 1 and Port 2 respectively of a two-port network  are

given by the following equations:

I1 = 0.5 V1 – 0.2 V2

I2 = –0.2 V1 + V2

Find Y, Z and ABCD parameters for the network.

Solution

Y11 =

2

1

1 0V

I

V =
 = 0.5 J

Y21 =

2

2

1 0V

I

V =
 = –0.2 J

Y12 =

1

1

2 0V

I

V =
 = –0.2 J

Y22 =

1

2

2 0V

I

V =
 = 1 J

Hence, the Y-parameters are

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=
0.5 –0.2

–0.2 1

é ù
ê úë û
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Z-parameters

∆Y = Y11 Y22 – Y12 Y21

= (0.5) (1) – (–0.2) (–0.2) = 0.46

Z11 =
22 1

= 
0.46

Y

YD
 = 2.174 Ω

Z12 = 12 ( 0.2)

0.46

Y

Y

- - -
=

D
 = 0.434 Ω

Z21 = 21 ( 0.2)

0.46

Y

Y

- - -
=

D
 = 0.434 Ω

Z22 = 11 0.5

0.46

Y

Y
=

D
 = 1.087 Ω

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=
2.174 0.434

0.434 1.087

é ù
ê úë û

ABCD parameters

A =
22

21

1
= 

0.2

Y

Y

- -
-  = 5

B =
21

1 1
= 

0.2Y

-
-

-
 = 5

C = – 
21

0.46
= 

0.2

Y

Y

D -
-

 = 2.3

D = 11

21

0.5

0.2

Y

Y

- -
=
-

 =  2.5

Hence, the ABCD parameters are

A B

C D

é ù
ê úë û =

5 5

2.3 2.5

é ù
ê úë û

Example 11.21 Using the relation Y = Z–1, show that  |Z | = 
22 11

11 22

Z Z1
+

2 Y Y

æ ö
ç ÷è ø .

Solution We know that

Y = Z–1

i.e.,
11 12

21 22

Y Y

Y Y

é ù
ê úë û

=

22 12

21 11

Z Z

Z Z
Z Z

Z Z

-é ù
ê úD Dê ú-ê ú
ê úD Dë û

| Z | = Z11 Z22 – Z12 Z21

22 11

11 22

1

2

Z Z

Y Y

æ ö
+ç ÷è ø = 22 11

22 11

1

2

Z Z

Z Z

Z Z

æ ö
ç ÷+ç ÷
ç ÷è øD D

=
1 1

( ) = (2 )
2 2

Z Z ZD + D D  = ∆Z = Z11Z12 – Z12Z21
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Z =
22 11

11 22

1

2

Z Z

Y Y

æ ö
+ç ÷è ø

Example 11.22 For the network shown in Fig. 11.48, find Z and Y-parameters.

Fig. 11.48

Solution By source transformation technique,

Fig. 11.49

Applying KVL to Mesh 1,

 V1 = I1 – I3 …(i)

Applying KVL to Mesh 2,

 V2 = 2 (I2 + I3) – 6I2 = –4I2 + 2I3 …(ii)

Applying KVL to Mesh 3,

(I3 – I1) + 2I3 + 2 (I2 + I3) – 6I2 = 0

5I3 = I1 + 4I2

 I3 =
1

1 4
 + 

5 5
I I2 …(iii)

Substituting the Eq. (iii) in the Eq. (i),

 V1 = I1 – 
1

5
I1 – 

4

5
I2 = 

4

5
 I1 – 

4

5
 I2 …(iv)

Substituting the Eq. (iii) in the Eq. (ii),

 V2 = –4I2 + 2 1 2

1 4

5 5
I I

æ ö+ç ÷è ø

= 1 2

2 12

5 5
I I- …(v)

Comparing Eqs (iv) and (v) with Z-parameter equations, we get

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=

4 4

5 5
2 12

5 5

-é ù
ê ú
ê ú-ê ú
ê úë û
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Y-parameters

 ∆Z = Z11 Z22 – Z12 Z21

=
4 12 4 2

5 5 5 5

- -æ ö æ ö æ ö æ ö-ç ÷ ç ÷ ç ÷ ç ÷è ø è ø è ø è ø  = 
40 8

= 
25 5

- -

Y11 =
22

12

35
= = 

8 2

5

Z

Z
J

-æ ö
ç ÷è ø
-D æ ö

ç ÷è ø

Y12 =
12

4

15
=  =   

8 2

5

Z

Z

-æ ö- ç ÷è ø- -
-D æ ö

ç ÷è ø

J

Y21 =
21

2

15
=  =   

8 4

5

Z

Z

æ ö- ç ÷è ø-
-D æ ö

ç ÷è ø

J

Y22 =
11

4

15
=  =  

8 2

5

Z

Z
J

æ ö
ç ÷è ø -
-D æ ö

ç ÷è ø
Hence, the Y-parameters are

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=

3 –1

2 2
1 –1

4 2

é ù
ê ú
ê ú
ê ú
ê úë û

Example 11.23 Find Z and h-parameters for the network shown in Fig. 11.50.

Fig. 11.50

Solution Applying KVL to Mesh 1,

 V1 = 2I1 + 2 (I1 – I3)

= 4I1 – 2I3 …(i)

Applying KVL to Mesh 2,

 V2 = 2I2 + 2 (I2 + I3)

= 4I2 + 2I3 …(ii)
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Applying KVL to Mesh 3,

 2 (I3 – I1) + 4I1 + 2 (I3 + I2) = 0

 I1 + I2 = –2I3 …(iii)

Substituting the Eq. (iii) in the Eq. (i),

 V1 = 4I1 + I1 + I2

= 5I1 + I2 …(iv)

Substituting the Eq. (iii) in the Eq. (ii),

 V2 = 4I2 – I1 – I2

= –I1 + 3I2 …(v)

Comparing Eqs (iv) and (v) with Z-parameter equations, we get

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=
5 1

–1 3

é ù
ê úë û

h-parameters

 ∆Z = Z11 Z22 – Z12 Z21

= (5) (3) – (1) (–1) = 15 + 1 = 16

h11 =
22

16
= 

3

Z

Z

D
W

h12 = 12

22

1
= 

3

Z

Z

h21 = 21

22

1
= 

3

Z

Z

-

h22 =
22

1 1
= 

3Z
J

Hence, the h-parameters are

11 12

22 22

h h

h h

é ù
ê úë û

=

16 1

3 3
1 1

3 3

é ù
ê ú
ê ú
ê ú
ê úë û

Example 11.24 Find Y and Z-parameters for the network shown in Fig. 11.51.

Fig. 11.51

Solution Applying KCL at Node 3,

 2 (V1 – V3) = 2V1 + (V3 – V2)

 V3 =
2

3

V
…(i)
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Now,  I1 = 2V1 + (V3 – V2)

= 2V1 + 
2

3

V
 – V2

= 2V1 – 
2

3
 V2 …(ii)

 I2 = 2V2 + (V2 – V3)

= 3V2 – 
2

3

V
 = 

8

3
 V2 …(iii)

Comparing the Eqs (ii) and (iii) with Y-parameter equations, we get

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=

–2
2

3
8

0
3

é ù
ê ú
ê ú
ê ú
ê úë û

Z-parameters

∆Y = Y11 Y22 – Y12 Y21 = 
8 16

(2) 0  = 
3 3

æ ö -ç ÷è ø

 Z11 = 22

8

13=  =  
16 2

3

Y

Y
W

D

 Z12 = 12

2

13
=  =  

16 8

3

Y

Y

-æ ö- ç ÷è ø-
W

D

 Z21 =
21 0

= =  0
16

3

Y

Y

-
D

 Z22 = 11 2
= 

16

3

Y

YD
 = 

3

8
W

Hence, the Z-parameters are

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=

1 1

2 8
3

0
8

é ù
ê ú
ê ú
ê ú
ê úë û

Example 11.25 For the network shown in Fig. 11.52, find Y and Z-parameters.

Fig. 11.52
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Solution Applying KCL at Node 1,

 I1 =
1 1 1 23

+ 
2 1

V V V V- -
 = 

3

2

-
 V1 – V2 …(i)

Applying KCL at Node 2,

 I2 =
2 2 1 13

+ 
1 1

V V V V+ -

= 2V1 + 2V2 …(ii)

Comparing Eqs (i) and (ii) with Y-parameter equations, we get

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=

3
–1

2
2 2

-é ù
ê ú
ê ú
ë û

Z-parameters

∆Y = Y11 Y22 – Y12 Y21

=
3

(2)
2

-æ ö
ç ÷è ø  –  (–1) (2) = –3 + 2 = –1

 Z11 =
22 2

= = 2 
( 1)

Y

Y
- W

D -

 Z12 =
12 ( 1)

= = 1 
( 1)

Y

Y

- -- - W
D -

Z21 =
21 2

= =  2 
( 1)

Y

Y

- - W
D -

 Z22 = 11

3

32
= =  

( 1) 2

Y

Y

æ ö-ç ÷è ø
W

D -
Hence, the Z-parameters are

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=

–2 –1

3
2

2

é ù
ê ú
ê ú
ë û

Example 11.26 Find Z-parameters for the network shown in Fig. 11.53. Hence, find Y and h-parameters.

Fig. 11.53

Solution By source transformation technique,

Applying KVL to Mesh 1,

 V1 = 2I1 + I2 …(i)
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Fig. 11.54

Applying KVL to Mesh 2,

 V2 = 9I1 + 10I2 + (I1 + I2)

= 10I1 + 11I2 …(ii)

Comparing Eqs (i) and (ii) with Z-parameter equations, we get

11 12

21 22

Z Z

Z Z

é ù
ê úë û

= 
2 1

10 11

é ù
ê úë û

Y-parameters

 ∆Z = Z11 Z22 – Z12 Z21

= (2) (11) – (1) (10) = 22 – 10 = 12

Y11 =
22 11

=   
12

Z

ZD
J

Y21 =
21 10 5

=  =   
12 6

Z

Z

- - -
D

J

Y12 =
12 1

=   
12

Z

Z

- -
D

J

Y22 =
11 2 1

=  =  
12 6

Z

ZD
J

Hence, the Y-parameters are

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=

11 –1

12 12
–5 1

6 6

é ù
ê ú
ê ú
ê ú
ê úë û

h-parameters

h11 =
22

12
=  

11

Z

Z

D
W

h21 =
21

22

10
= 

11

Z

Z

- -

h12 =
12

22

1
= 

11

Z

Z

h22 =
22

1 1
=   

11Z
J

Hence, h-parameters are

11 12

21 22

h h

h h

é ù
ê úë û

=

12 1

11 11
–10 1

11 11

é ù
ê ú
ê ú
ê ú
ê úë û
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Example 11.27 Find Y and Z-parameters of the network shown in Fig. 11.55.

Fig. 11.55

Solution Applying KCL at Node 1,

 I1 + 2V2 =
1 1 23

+ 
1 1

V V V-

 I1 = 4V1 – 3V2 …(i)

Applying KCL at Node 2,

 I2 =
2 2 1 12

+ 
2 1

V V V V- -

 I2 = – 3V1 + 1.5V2 …(ii)

Comparing Eqs (i) and (ii) with Y-parameter equations, we get

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=
4 –3

–3 1.5

é ù
ê úë û

Z-parameters

∆Y = Y11Y22 – Y12Y21

= (4) (1.5) – (–3) (–3) = – 3

 Z11 =
22 1.5

= 
3

Y

YD -
 = –0.5 Ω

 Z12 =
12 ( 3)

= 
3

Y

Y

- - -
D -

 = –1 Ω

 Z21 =
21 ( 3)

= 
3

Y

Y

- - -
D -

 = –1 Ω

 Z22 =
11 4

= 
3

Y

YD -
 = 

4

3

-
W

Hence, the Z-parameters are

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=

–0.5 –1

–4
–1

3

é ù
ê ú
ê ú
ë û

Example 11.28 Determine Y and Z-parameters for the network shown in Fig. 11.56.

Fig. 11.56
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Solution Applying KCL at Node 1,

 I1 =
1 1 2+ 

1 2

V V V-

 I1 = 1.5V1 – 0.5V2 …(i)

Applying KCL at Node 2,

 I2 =
2 2 1

1+ 3  + 
2 2

V V V
I

-

I2 =
2 2 1+ 

2 2

V V V-
 + 3 (1.5V1 – 0.5V2)

= 0.5V2 + 0.5V2 – 0.5V1 + 4.5V1 – 1.5V2

= 4V1 – 0.5V2 …(ii)

Comparing Eqs (i) and (ii) with the Y-parameter equation, we get

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=
1.5 –0.5

4 –0.5

é ù
ê úë û

Z-parameters

∆Y = Y11Y22 – Y12Y21

= (1.5) (–0.5) – (–0.5) (4) = 1.25

 Z11 =
22 0.5

= 
1.25

Y

Y

-
D

 = –0.4 Ω

 Z12 =
12 0.5

= 
1.25

Y

Y

-
D

 = 0.4 Ω

 Z21 =
21 4

= 
1.25

Y

Y

- -
D

 = –3.2 Ω

 Z22 =
11 1.5

= 
1.25

Y

YD
 = 1.2 Ω

Hence, the Z-parameters are

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=
–0.4 0.4

–3.2 1.2

é ù
ê úë û

Example 11.29 Determine the Y and Z-parameters for the network shown in Fig. 11.57.

Fig. 11.57

Solution Applying KCL at Node 1,

 I1 =
1 31 + 

1 0.5

V VV -

 I1 = 3V1 – 2V3 …(i)

Applying KCL at Node 2,

 I2 =
2 32 + 

0.5 1

V VV -
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 I2 = 3V2 – V3 …(ii)

Applying KCL at Node 3,

3 1 3 2
1 + 2  + 

0.5 1

V V V V
V

- -
= 0

 V3 =
1

3
V2 …(iii)

Substituting the Eq. (iii) in the Eqs (i) and (ii), we get

 I1 = 3V1 –
2

3
 V2 …(iv)

 I2 = 0V1 + 
8

3
 V2 …(v)

Comparing Eqs (iv) and (v) with Y-parameter equations, we get

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=  

–2
3

3
8

0
3

é ù
ê ú
ê ú
ê ú
ê úë û

Z-parameters

∆Y = Y11Y22 – Y12Y21

= (3)
8

3

æ ö
ç ÷è ø  – 0 = 8

 Z11 = 22

8

13=  
8 3

Y

Y
= W

D

 Z12 =
12

2

13

8 12

Y

Y

- = = W
D

 

 Z21 =
12Y

Y

-
D

 Z22 =
11 3

= 
8

Y

YD
 Ω

Hence, the  Z-parameters are

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=

1 1

3 12
3

0
8

é ù
ê ú
ê ú
ê ú
ê úë û

Example 11.30 Determine Z and Y-parameters of the network shown in Fig. 11.58.

Fig. 11.58
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Solution Applying KVL to Mesh 1,

V1 – 4I1 – 0.05 I2 = 0

 V1 = 4I1 + 0.05I2 …(i)

Applying KVL to Mesh 2,

V2 – 2I2 + 10V1 = 0

V2 = 2I2 – 10V1 …(ii)

Substituting the Eq. (i) in the Eq. (ii),

 V2 = 2I2 – 40I1 – 0.5I2

= –40I1 + 1.5I2  …(iii)

Comparing Eqs (i) and (iii) with Z-parameter equations, we get

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=
4 0.05

–40 1.5

é ù
ê úë û

Y-parameters

∆Z = Z11Z22 – Z12Z21

= (4) (1.5) – (0.05) (–40) = 6 + 2 = 8

Y11 =
22 1.5

=   
8

Z

ZD
J

Y12 =
12 0.05

=   
8

Z

Z

- -
D

J

Y21 =
21 ( 40) 40

= =  
8 8

Z

Z

- - -
D

J

Y22 =
11 4

=   
8

Z

ZD
J

Hence, the Y-parameters are

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=

1.5 0.05

8 8
40 4

8 8

-é ù
ê ú
ê ú
ê ú
ê úë û

Example 11.31 Determine Z and Y-parameters of the network shown in Fig. 11.59.

Fig. 11.59

Solution Applying KVL to Mesh 1,

V1 – I1 – 3I2 – 2(I1 + I2) = 0

 V1 = 3I1 + 5I2 …(i)
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Applying KVL to Mesh 2,

V2 – 2(I2 – I3) – 2(I1 + I2) = 0

V2 – 2I2 + 2I3 – 2I1 – 2I2 = 0

V2 = 2I1 + 4I2 – 2I3 …(ii)

Writing equation for Mesh 3,

I3 = 2V3 …(iii)

From Fig. 11.59,

V3 = 2 (I1 + I2)

I3 = 2V3 = 4I1 + 4I2 …(iv)

Substituting the Eq. (iv) in the Eq. (ii),

 V2 = –6I1 – 4I2 …(v)

Comparing Eqs (i) and (v) with Z-parameter equations, we get

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=
3 5

6 4

é ù
ê ú- -ë û

Y-parameters

∆Z = Z11Z22 – Z12Z21

= (3) (–4) – (5) (–6) = 18

Y11 =
22 4 2

= =  
18 9

Z

Z

- -
D

J

Y21 =
21 ( 6) 1

= =  
18 3

Z

Z

- - -
D

J

Y12 =
12 5

=  
18

Z

Z

- -
D

J

Y22 =
11 3

=  
18

Z

ZD
J

Hence, Y-parameters are

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=

2 5

9 18
1 3

3 18

- -é ù
ê ú
ê ú
ê ú
ê úë û

11.9 INTERCONNECTION OF TWO-PORT NETWORKS

We shall now discuss the various types of interconnections of two-port networks, namely, cascade, parallel,

series, series–parallel and parallel-series. We shall derive the relation between the input and output quantities

of the combined two-port networks.

11.9.1 Cascade Connection

(a) Transmission parameter representation Figure 11.60 shows two-port networks connected in

cascade. In the cascade connection, the output port of the first network becomes the input port of the second

network. Since it is assumed that input and output currents are positive when they enter the network, we have

I1′ = –I2

Let A1, B1, C1, D1 be the transmission parameters of the network N1 and A2, B2, C2, D2 be the transmission

parameters of the network N2.



Two-Port Networks 11.63

Fig. 11.60

For the network N1,

1

1

V

I

é ù
ê úë û

= 1 1 2

1 1 2

A B V

C D I

é ù é ù
ê ú ê ú-ë û ë û

…(11.181)

For the network N2,

1

1

V

I

é ù¢
ê ú
ê ú¢ë û

=
22 2

2 2
2

VA B

C D
I

é ù¢é ù ê úê ú ê ú¢ë û -ë û
…(11.182)

Since V1′ = V2 and I1′ = –I2, we can write

2

2

V

I

é ù
ê ú-ë û

=
2 2 2

2 2
2

A B V

C D
I

é ù¢é ù ê úê ú ¢ê úë û -ë û
…(11.183)

Combining Eqs (11.181) and (11.183), we get

1

1

V

I

é ù
ê úë û

=  
1 1 2 2 2 2

1 1 2 2
2 2

A B A B V VA B

C D C D C DI I

é ù é ù¢ ¢é ù é ù é ùê ú ê ú=ê ú ê ú ê ú¢ ¢ê ú ê úë ûë û ë û - -ë û ë û
…(11.184)

Hence,
A B

C D

é ù
ê úë û = 

1 1 2 2

1 1 2 2

A B A B

C D C D

é ù é ù
ê ú ê úë û ë û

…(11.185)

Equation (11.185) shows that the resultant ABCD matrix of the cascade connection is the product of the

individual ABCD matrices.

(b) Inverse Transmission parameter representation Figure 11.61 shows two-port networks connected

in cascade. Since it is assumed that input and output currents are positive when they enter the network, we have

 – I1′ = I2

Fig. 11.61

Let A′1, B′1, C′1, D′1 be the transmission parameters of the network N1 and A′2, B′2, C′2, D′2 be the transmission

parameters of the network N2.

For the network N1,

2

2

V

I

é ù
ê úë û

=
1 1 1

1
1 1

A B V

I
C D

é ù¢ ¢ é ùê ú ê ú-ê ú ë û¢ ¢ë û
…(11.186)
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For the network N2,

2

2

V

I

é ù¢
ê ú
ê ú¢ë û

= 22 2

2 2 1

VA B

C D I

é ùé ù ¢¢ ¢
ê úê ú
ê úê ú ¢¢ ¢ -ë û ë û

…(11.187)

Since V1′ = V2 and –I1′ = I2, we can write

2

2

V

I

é ù¢
ê ú
ê ú¢ë û

= 22 2

2
2 2

VA B

IC D

é ù¢ ¢ é ùê ú ê úê ú ë û¢ ¢ë û
…(11.188)

Combining equations (11.186) and (11.188), we get

2

2

V

I

é ù¢
ê ú
ê ú¢ë û

= 1 11 1 2 2

1 1
1 1 2 2

–

V VA B A B A B

I C D IC D C D

é ù é ù¢ ¢ ¢ ¢ ¢ ¢é ù é ùé ùê ú ê ú =ê ú ê úê ú -¢ ¢ê ú ê ú ë ûë û ë û¢ ¢ ¢ ¢ë û ë û
…(11.189)

Hence,
A B

C D

¢ ¢é ù
ê ú¢ ¢ë û = 1 1 2 2

1 1 2 2

A B A B

C D C D

é ù é ù¢ ¢ ¢ ¢
ê ú ê ú
ê ú ê ú¢ ¢ ¢ ¢ë û ë û

…(11.190)

Equation (11.190) shows that the resultant A′B′C′D′ matrix of the cascade connection is the product of the

individual A′BC′D′ matrices.

11.9.2 Parallel Connection

Figure 11.62 shows two-port networks connected in parallel. In the parallel connection, the two networks

have the same input voltages and the same output voltages.

Fig. 11.62

Let Y11′, Y12′, Y21′, Y22′  be the Y-parameters of the network N1 and Y1′′, Y12′′, Y21′′, Y22′′ be the Y-parameters

of the network N2.

For the network N1,

1

2

I

I

é ù¢
ê ú
ê ú¢ë û

=
111 12

2
21 22

VY Y

VY Y

é ù¢ ¢ é ùê ú ê úê ú ë û¢ ¢ë û
…(11.191)

For  the network N2,

1

2

I

I

é ù¢¢
ê ú
ê ú¢¢ë û

=
111 12

2

21 22

VY Y

V
Y Y

é ù
¢ ¢¢ ¢ é ùê ú

ê úê ú ë ûê ú¢ ¢¢ ¢ë û

…(11.192)

For the combined network, I1 = I1′ + I1′′ and I2 = I2′ + I2′′.
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Hence,
1

2

I

I

é ù
ê úë û

=
1 1 11 11 12 12 1

2
21 21 22 222 2

I I Y Y Y Y V

V
Y Y Y YI I

é ù é ù¢¢¢ ¢ ¢¢ ¢ ¢¢+ + + é ùê ú ê ú= ê úê ú¢¢ ê ú ë û¢ ¢¢ ¢ ¢¢¢ + ++ ë ûë û

=
11 12 1

21 22 2

Y Y V

Y Y V

é ù é ù
ê ú ê úë û ë û

…(11.193)

Thus, the resultant Y-parameter matrix for parallel connected networks is the sum of Y matrices of each

individual two-port networks.

11.9.3 Series Connection

Figure 11.63 shows two-port networks connected in series. In a series connection, both the networks carry the

same input current. Their output currents are also equal.

Fig. 11.63

Let Z11′, Z12′, Z21′, Z22′ be the Z-parameters of the network N1 and Z11′′, Z12′′, Z21′′, Z22′′ be the Z-parameters

of the network N2.

For the network N1,

1

2

V

V

é ù¢
ê ú
ê ú¢ë û

=
11 12 1

2
21 22

Z Z I

I
Z Z

é ù¢¢¢ é ùê ú ê úê ú ë û¢¢¢ë û
…(11.194)

For the network N2,

1

2

V

V

é ù¢¢
ê ú
ê ú¢¢ë û

=
11 12 1

2
21 22

Z Z I

I
Z Z

é ù¢¢¢ é ùê ú ê úê ú ë û¢¢¢ë û
…(11.195)

For the combined network V1 = V1′ + V1′′ and V2 = V2′ + V2′′.

Hence,
1

2

V

V

é ù
ê úë û

=
1 1 11 11 12 12 1

2
21 21 22 222 2

V V Z Z Z Z I

I
Z Z Z ZV V

é ù é ù¢ ¢¢ ¢ ¢¢ ¢ ¢¢+ + + é ùê ú ê ú= ê úê ú¢ ê ú ë û¢¢ ¢ ¢¢ ¢ ¢¢+ ++ ë ûë û

=
11 12 1

21 22 2

Z Z I

Z Z I

é ù é ù
ê ú ê úë û ë û

…(11.196)

Thus, the resultant Z-parameter matrix for the series-connected networks is the sum of Z matrices of each

individual two-port network.

11.9.4 Series�Parallel Connection

Figure 11.64 shows two networks connected in series–parallel. Here, the input ports of two networks are

connected in series and the output ports are connected in parallel.
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Fig. 11.64

Let h′11, h′12, h′21, h′22 be the h-parameters of  the network N1 and h′′11, h′′12, h′′21, h′′22 be the h-parameters of

the network N2.

For the network N1,

 
1

2

V

V

é ù¢
ê ú

¢ê úë û
=

11 12 1

2
21 22

h h I

V
h h

é ù¢ ¢ é ùê ú ê úê ú ë û¢ ¢ë û
…(11.197)

For the network N2,

1

2

V

I

é ù¢¢
ê ú

¢¢ê úë û
=

11 12 1

2
21 22

h h I

V
h h

é ù¢¢ ¢¢ é ùê ú ê úê ú ë û¢¢ ¢¢ë û
…(11.198)

For the combined network, V1 = V1′ + V1′′ and I2 = I2′ + I2′′

Hence,
1

2

V

I

é ù
ê úë û

=
1 1 11 11 12 12 1

2
21 21 22 222 2

V V h h h h I

V
h h h hI I

é ù é ù¢ ¢¢ ¢¢ ¢¢¢ ¢+ + + é ùê ú ê ú= ê úê ú¢ ¢¢ ê ú ë û¢¢ ¢¢¢ ¢+ ++ ë ûë û

=
11 12 1

21 22 2

h h I

h h V

é ù é ù
ê ú ê úë û ë û

…(11.199)

Thus, the resultant h-parameter matrix is the sum of h-parameter matrices of each individual two-port

networks.

11.9.5 Parallel�Series Connection

Figure 11.65 shows two networks connected in parallel-series. Here the input ports of two networks are

connected in parallel and the output ports are connected in series.

Fig. 11.65
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Let g11′, g12′, g21′, g22′ be the g-parameters of the network N1 and g11′′, g12′′, g21′′, g22′′ be the g-parameters

of the network N2.

For the network N1,

1

2

I

V

é ù¢
ê ú

¢ê úë û
=

11 12 1

2
21 22

g g V

I
g g

é ù¢¢ é ùê ú ê úê ú ë û¢ ¢ë û
…(11.200)

For the network N2,

1

2

I

V

é ù¢¢
ê ú
ê ú¢¢ë û

=
11 12 1

2
21 22

g g V

I
g g

é ù¢¢ ¢¢ é ùê ú ê úê ú ë û¢¢ ¢¢ë û
…(11.201)

For the combined network, I1 = I1′ + I1′′ and V2 = V2′ + V2′′

Hence,
1

2

I

V

é ù
ê úë û

= 1 1 11 11 12 12 1

2
21 21 22 222 2

I I g g g g V

I
g g g gV V

é ù é ù¢¢ ¢¢ ¢¢ ¢ ¢¢+ + + é ùê ú ê ú= ê úê ú ê ú ë û¢¢¢ ¢ ¢¢ ¢ ¢¢+ ++ ë ûë û

=
11 12 1

21 22 2

g g V

g g I

é ù é ù
ê ú ê úë û ë û

…(11.202)

Thus, the  resultant g-parameter matrix is the sum of the g-parameter matrices of each individual two-port

network.

Example 11.32 Two identical sections of the network shown in Fig. 11.66 are connected in cascade.

Obtain the transmission parameters of the overall connection.

Fig. 11.66

Solution

Applying KVL to Mesh 1,

 V1 = 3I1 – I3 …(i)

Applying KVL to Mesh 2,

 V2 = 2I2 + 2I3 …(ii)

Applying KVL to Mesh 3,

 I1 – 2I2 – 5I3 = 0

 I3 = 1

1 2
–

5 5
I  I2 …(iii)

Substituting the Eq. (iii) in the Eq. (i),

 V1 = 3I1 – 1 2

1 2

5 5
I I

æ ö-ç ÷è ø

=
14

5
 I1 + 

2

5
 I2 …(iv)

Fig. 11.67
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Substituting  the Eq. (iii) in the Eq. (ii),

 V2 =  2I2 +  2 1 2

1 2

5 5
I I

æ ö-ç ÷è ø  = 
2

5
 I1 + 

6

5
 I2

 I1 =
5

2
V2 – 3I2 …(v)

Substituting the Eq. (v) in the Eq. (iv),

 V1 = 2 2 2

14 5 2
3 + 

5 2 5
V I I

æ ö-ç ÷è ø  = 7V2 – 8I2 …(vi)

Comparing the Eqs (vi) and (v) with ABCD parameter equations, we get

1 1

1 1

A B

C D

é ù
ê úë û

=
7 8

2.5 3

é ù
ê úë û

Hence, transmission parameters of the overall cascaded network are

A B

C D

é ù
ê úë û =

7 8 7 8 69 80

2.5 3 2.5 3 25 29

é ù é ù é ù=ê ú ê ú ê úë û ë û ë û

Example 11.33 Determine ABCD parameters for the ladder network shown in Fig. 11.68.

Fig. 11.68

Solution The above network can be considered as a cascade connection of two networks N1 and N2.

For the network N1

Applying KVL to Mesh 1,

 V1 =
1

2
2s

æ ö+ç ÷è ø  I1 + 
1

2s
 I2 …(i)

Applying KVL to Mesh 2,

 V2 =
1

2s
 I1 + 

1
2

2
s

s

æ ö+ç ÷è ø  I2 …(ii)

From the Eq. (ii),

 I1 = 2s V2 – (4s2 + 1)  I2 …(iii)

Substituting the Eq. (iii) in the Eq. (i),

 V1 =
1

2
2s

æ ö+ç ÷è ø  [2s V2 – (4s2 + 1) I2] + 
1

2s
 I2

= (4s + 1) V2 – (8s2 + 2s + 2) I2 …(iv)

Comparing Eqs (iv) and (iii) with ABCD parameter equations, we get

1 1

1 1

A B

C D

é ù
ê úë û

=

2

2

4 1 8 2 2

2 4 1

s s s

s s

é ù+ + +
ê ú

+ë û

Fig. 11.69
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For the network N2

Fig. 11.70

Applying KVL to Mesh 1,

V1′ = 1 2

1 1
 + 

1 1
I I

s s
¢ ¢

+ +
…(i)

Applying KVL to Mesh 2,

V ′2 = 1 2

1 1
 + 

1 1
I I

s s
¢ ¢

+ +
…(ii)

From the Eq. (ii),

 I1′ = (s + 1) V2′ – I2′ …(iii)

Also, V1′ = V2′ …(iv)

Comparing Eqs (iv) and (iii) with ABCD parameter equations, we get

2 2

2 2

A B

C D

é ù
ê úë û

=
1 0

1 1s

é ù
ê ú+ë û

Hence, overall ABCD parameters are

A B

C D

é ù
ê úë û =

2

2

4 1 8 2 2 1 0

1 12 4 1

s s s

ss s

é ù+ + + é ù
ê ú ê ú++ ë ûë û

=

3 2 2

3 2 2

8 10 8 3 8 2 2

4 4 3 1 4 1

s s s s s

s s s s

é ù+ + + + +
ê ú

+ + + +ë û

Example 11.34 Determine Y-parameters for the network shown in Fig. 11.71.

Fig. 11.71

Solution The above network can be considered as a parallel connection of two networks, N1 and N2.
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For the network N
1

Applying KCL at Node 3,

I1′ + I2′ =
3

2

V
…(i)

From Fig. 11.72,

 I1′ =
1 3

2

V V-
…(ii)

 I2′ =
2 3

2

V V-
…(iii)

Substituting Eqs (ii) and (iii) in the Eq (i),

1 3 2 3+ 
2 2

V V V V- -
=

3

2

V

3V3 = V1 + V2

 V3 =
1 2+ 
3 3

V V
…(iv)

Substituting the Eq. (iv) in the Eq. (ii),

 I1′ =
1 1 21

2 2 3 3

V V Væ ö- +ç ÷è ø

= 1

1 1

3 6
V - V2 …(v)

Substituting the Eq. (iv) in the Eq. (iii),

 I2′ =
2 1 21

2 2 3 3

V V Væ ö- +ç ÷è ø

= 1

1 1
 + 

6 3
V-  V2 …(vi)

Comparing Eqs (v) and (vi) with Y-parameter equations, we get

11 12

21 22

Y Y

Y Y

é ù¢ ¢
ê ú
ê ú¢ ¢ë û

=

1 1

3 6
1 1

6 3

-é ù
ê ú
ê ú-ê ú
ê úë û

For the network N
2

I1′′ = – I2′′ 
1 2= 

3

V V-

= 1

1 1

3 3
V -  V2

Hence, the Y-parameters are

11 12

21 22

Y Y

Y Y

¢¢ ¢¢é ù
ê ú¢¢ ¢¢ë û

=

1 1

3 3
1 1

3 3

-é ù
ê ú
ê ú-ê ú
ê úë û

Fig. 11.72

Fig. 11.73
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The overall Y-parameters of the network are

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=
11 11 12 12

21 21 22 22

Y Y Y Y

Y Y Y Y

é ù¢¢ ¢¢¢ ¢+ +ê ú
¢¢ ¢¢ê ú¢ ¢+ +ë û

=

1 1 1 1 2 1

3 3 6 3 3 2
1 1 1 1 1 2

6 3 3 3 2 3

- -é ù é ù+ -ê ú ê ú
=ê ú ê ú- -ê ú ê ú- +ê ú ê úë û ë û

Example 11.35 Find Y-parameters for the network shown in Fig. 11.74.

Fig. 11.74

Solution The above network can be considered as a parallel combination of two networks N1 and N2.

For the network N1

Applying KCL at Node 1,

 I1′ =
1 1 2+ 

1 2

V V V-

= 1

3 1

2 2
V -  V2 …(i)

Applying KCL at Node 2,

 I2′ =
2 2 1+ 

0.5 2

V V V-

= 1

1 5
 + 

2 2
V

-
 V2 …(ii)

Comparing Eqs (i) and (ii) with Y-parameter equation, we get

11 12

21 22

Y Y

Y Y

é ù¢ ¢
ê ú
ê ú¢ ¢ë û

=

3 –1

2 2
–1 5

2 2

é ù
ê ú
ê ú
ê ú
ê úë û

For the network N2

Applying KCL at Node 3,

I1′′ + I2′′ =
3

2

V
                   ...(i) …(i)

where I1′′ =
1 3

0.5

V V-
 = 2V1 – 2V3

 I2′′ =
2 3

0.5

V V-
 = 2V2 – 2V3

Fig. 11.75

Fig. 11.76
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2V1 – 2V3 + 2V2 – 2V3 = 0.5V3

4.5V3 = 2V1 + 2V2

 V3 = 1

4 4
 + 

9 9
V  V2 …(ii)

 I1′′ = 2V1 – 2V3 = 2V1 – 2 1 2

4 4

9 9
V V

æ ö+ç ÷è ø

= 1

10 8

9 9
V -  V2 …(iii)

and I2′′ = 2V2 – 2V3

= 2V2 – 2 1 2

4 4

9 9
V V

æ ö+ç ÷è ø

= 1

8 10
 + 

9 9
V-  V2 …(iv)

Comparing Eqs (iii) and (iv) with Y-parameter equations, we get

11 12

21 22

Y Y

Y Y

é ù¢¢ ¢¢
ê ú
ê ú¢¢ ¢¢ë û

=

10 8

9 9
8 10

9 9

-é ù
ê ú
ê ú-ê ú
ê úë û

Hence, overall Y-parameters of the network are

11 12

21 22

Y Y

Y Y

é ù
ê úë û

=

3 10 1 8 47 25

2 9 2 9 18 18
1 8 5 10 25 65

2 9 2 9 18 18

- -é ù é ù+ -ê ú ê ú
ê ú ê ú- -ê ú ê ú- +ê ú ê úë û ë û

Example 11.36 Find Y-parameters for the network shown in Fig. 11.77.

Fig. 11.77

Solution The above network can be considered as a parallel connection of two networks, N1 and N2.

For the network N1

Fig. 11.78
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Applying KCL at Node 3,

I1′ + I2′ = 2s (V3) …(i)

From Fig. 11.78 I1′ =
1 3

1 3

1 1

2 2 2

V V
V V

-
= - …(ii)

 I2′ =
2 3

2 3

1 1

2 2 2

V V
V V

-
= - …(iii)

Substituting the Eq. (ii) and Eq. (iii), in the Eq. (i)

31 2

2 2 2

VV V
- + - 3

2

V
= (2s) V3

(2s + 1) V3 =
1 2

2 2

V V
+

 V3 = 1 2

1 1
 

2(2 1) 2(2 1)
V V

s s
+

+ + …(iv)

Substituting the Eq. (iv) in the Eq. (ii),

 I1′ =
1

1 2

1 1 1
 

2 2 2(2 1) 2(2 1)

V
V V

s s

é ù
- +ê ú+ +ë û

= 1 2

4 1 1

8 4 8 4

s
V V

s s

+æ ö æ ö-ç ÷ ç ÷è ø è ø+ +
…(v)

Substituting the Eq. (iv) in the Eq. (iii),

 I2′ =
2

1 2

1 1 1
  

2 2 2(2 1) 2(2 1)

V
V V

s s

é ù
- -ê ú+ +ë û

= 1

1 4 1
+

8 4 8 4

s
V

s s

+æ ö æ ö-ç ÷ ç ÷è ø è ø+ +
V2 …(vi)

Comparing Eqs (v) and (vi) with Y-parameter equations, we get

11 12

21 22

Y Y

Y Y

é ù¢ ¢
ê ú
ê ú¢ ¢ë û

= 

4 1 1

8 4 8 4
1 4 1

8 4 8 4

s

s s
s

s s

+ -é ù
ê ú+ +ê ú- +ê ú
ê ú+ +ë û

For the network N2

Fig. 11.79

Applying KCL at Node 3,

I1′′ + I2′′ = V3 …(i)
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From Fig. 11.79,

 I1′′ = 1 3

1

V V

s

-
 = s V1 – s V3 …(ii)

 I2′ = 2 3

1

V V

s

-
 = s V2 – s V3 ...(iii)

Substituting the Eqs (ii) and (iii) in the Eq. (i),

s V1 – s V3 + s V2 – s V3 = V3

(2s + 1) V3 = s V1 + s V2

 V3 = 1  + 
2 1 2 1

s s
V

s s

æ ö æ ö
ç ÷ ç ÷è ø è ø+ +  V2 …(iv)

Substituting the Eq. (iv) in the Eq. (ii),

 I1′′ = s V1 – s 1 2
2 1 (2 1)

s s
V V

s s

é ùæ ö +ç ÷ê úè ø+ +ë û

=

2

1

( 1)

2 1 2 1

s s s
V

s s

æ ö+é ù - ç ÷ê ú+ +ë û è ø
 V2 …(v)

Substituting the Eq. (iv) in the Eq. (iii),

 I′′2 = s V2 – s 1 2
2 1 2 1

s s
V V

s s

é ùæ ö æ ö+ç ÷ ç ÷ê úè ø è ø+ +ë û

=
2

1

( 1)
+

2 1 2 1

s s s
V

s s

æ ö +é ù- ç ÷ ê ú+ +è ø ë û
 V2 …(vi)

Comparing Eqs (v) and (vi) with Y-parameter equations, we get

11 12

21 22

Y Y

Y Y

é ù¢¢ ¢¢
ê ú
ê ú¢¢ ¢¢ë û

=

2

2

( 1)

2 1 2 1

( 1)

2 1 2 1

s s s

s s

s s s

s s

é ùæ ö+
-ê úç ÷+ +è øê ú

ê úæ ö +ê ú- ç ÷ê ú+ +è øë û

Therefore, the overall Y-parameters of the network are

11 12

21 22

Y Y

Y Y

é ù
ê ú¢ê úë û

=
11 11 12 12

21 21 22 22

Y Y Y Y

Y Y Y Y

é ù¢¢ ¢¢¢ ¢+ +ê ú
ê ú¢¢ ¢¢¢ ¢+ +ë û

=

2 2

2 2

4 8 1 (4 1)

4(2 1) 4(2 1)

(4 1) 4 8 1

4(2 1) 4(2 1)

s s s

s s

s s s

s s

é ù+ + - +
ê ú+ +ê ú
ê ú- + + +
ê ú

+ +ê úë û
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Example 11.37 Determine Z-parameters for the network shown in Fig. 11.80.

Fig. 11.80

Solution The above network can be considered as a series connection of two networks, N1 and N2.

For the network N1

Fig. 11.81

Applying KVL to Mesh 1,

V1′ = 1

1 1
 + Ls I

Cs Cs

æ ö æ ö+ç ÷ ç ÷è ø è ø I2 …(i)

Applying KVL to Mesh 2,

V2′ = 1

1 1
 + I Ls

Cs Cs

æ ö æ ö+ç ÷ ç ÷è ø è ø  I2 …(ii)

Comparing Eqs (i) and (ii) with Z-parameter equations, we get

11 12

21 22

Z Z

Z Z

é ù¢ ¢
ê ú
ê ú¢ ¢ë û

=

1 1

1 1

Ls
Cs Cs

Ls
Cs Cs

é ù+ê ú
ê ú
ê ú+ê úë û

For the network N2

Applying KVL to Mesh 1,

V1′′ =
1

Ls
Cs

æ ö+ç ÷è ø  I1 + (Ls) I2  …(i)

Applying KVL to Mesh 2,

V2′′ = (Ls) I1 + 
1

Ls
Cs

æ ö+ç ÷è ø  I2  …(ii)

Comparing Eqs (i) and (ii) with Z-parameter equations, we get

11 12

21 22

Z Z

Z Z

é ù¢¢ ¢¢
ê ú

¢¢ ¢¢ê úë û
=

1

1

Ls Ls
Cs

Ls Ls
Cs

é ù+ê ú
ê ú
ê ú+ê úë û

Fig. 11.82
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Hence, the overall Z-parameters of the network are,

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=
11 11 12 12

21 21 22 22

Z Z Z Z

Z Z Z Z

é ù¢¢ ¢¢¢ ¢+ +ê ú
ê ú¢¢ ¢¢¢ ¢+ +ë û

=

2 1
2

1 2
2

Ls Ls
Cs Cs

Ls Ls
Cs Cs

é ù+ +ê ú
ê ú
ê ú+ +ê úë û

 = 
2 11

1 2
Ls

Cs

é ùæ ö+ç ÷ ê úè ø ë û

Example 11.38 Two identical sections of the network shown in Fig. 11.83 are connected in series. Obtain

Z-parameters of the overall connection.

Fig. 11.83

Solution
Applying KVL to Mesh 1,

 V1 = 3I1 + I2 …(i)

Applying KVL to Mesh 2,

 V2 = I1 + 3I2 …(ii)

Comparing Eqs (i) and (ii) with Z-parameter equations, we get

11 12

21 22

Z Z

Z Z

é ù¢¢ ¢¢
ê ú
ê ú¢¢ ¢¢ë û

=
3 1

1 3

é ù
ê úë û

Hence, Z-parameters of the overall connection are

11 12

21 22

Z Z

Z Z

é ù
ê úë û

=
3 1 3 1 6 2

1 3 1 3 2 6

é ù é ù é ù+ =ê ú ê ú ê úë û ë û ë û

11.10 T-NETWORK

Any two-port network can be represented by an equivalent T network as shown in Fig. 11.84.

Fig. 11.84

The elements of the equivalent T network may be expressed in terms of Z-parameters.
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Fig. 11.85

Applying KVL to Mesh 1,

V1 = ZAI1 + ZC (I1 + I2)

V1 = (ZA + ZC) I1 + ZC I2 …(11.203)

Applying KVL to Mesh 2,

V2 = ZBI2 + ZC (I2 + I1)

V2 = ZCI1 + (ZB + ZC) I2 …(11.204)

Comparing Eqs (11.203) and (11.204) with Z-parameter equations, we get

Z11 = ZA + ZC

Z12 = ZC

Z21 = ZC

Z22 = ZB + ZC

Solving the above equations, we get

ZA = Z11 – Z12 = Z11 – Z21 …(11.205)

ZB = Z22 – Z21 = Z22 – Z12 …(11.206)

ZC = Z12 = Z21 …(11.207)

11.11 PI (p)-NETWORK

Any two-port network can be represented by an equivalent pi (p) network as shown in Fig. 11.86.

Applying KCL at Node 1,

I1 = YAV1 + YB (V1 – V2)

= (YA + YB) V1 – YB V2 …(11.208)

Applying KCL at Node 2,

I2 = YC V2 + YB (V2 – V1)

= –YB V1 + (YB + YC) V2 …(11.209)

Comparing with Y-parameter equations, we get

Y11 = YA + YB

Y12 = –YB

Y21 = –YB

Y22 = YB + YC

Solving the above equations, we get

YA = Y11 + Y12 = Y11 + Y21 …(11.210)

YB = –Y12 = –Y21 …(11.211)

YC = Y22 + Y12 = Y22 + Y21 …(11.212)

11.12 TERMINATED TWO-PORT NETWORKS

11.12.1 Driving-Point Impedance at Input Port

A two-port network is shown in Fig. 11.87. The output port of the network is terminated in load impedance

ZL. The input impedance of this network can be expressed in terms of parameters of two-port network.

Fig. 11.86
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(i) Input impedance in terms of Z-parameters We know that

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

From Fig. 11.87,

V2 = –ZLI2

–I2ZL = Z21 I1 + Z22 I2

I2 = – 21

22 L

Z

Z Z+
 I1

Zin =  1

1

V

I
 = Z11 + Z12 

21

22 L

Z

Z Z

æ ö
-ç ÷+è ø

=
11 22 11 12 21

22

L

L

Z Z Z Z Z Z

Z Z

+ -
+

If the output port is open circuited, i.e., ZL = ∞,

Zin =

11 22 12 21
11

22

lim

1L

L

Z

L

Z Z Z Z
Z

Z

Z

Z

®¥

- +

+
= Z11

If the output port is short circuited, i.e., ZL = 0,

Zin = 11 22 12 21

22

Z Z Z Z

Z

-

(ii) Input impedance in terms of Y-parameters We know that

I1 = Y11V1 + Y12V2

I2 = Y21V1 + Y22V2

From Fig. 11.87,

V2 = –ZLI2

I2 = – 2

L

V

Z
 = –YLV2 where YL = 

1

LZ

–YLV2 = Y21V1 + Y22V2

V2 = 21

22 L

Y

Y Y

-
+

 V1

I1 = Y11V1 + Y12 
21

22 L

Y

Y Y

æ ö
-ç ÷+è ø

 V1

= Y11 V1 – 21 12

22 L

Y Y

Y Y+
 V1

= 11 22 12 21 11

22

L

L

Y Y Y Y Y Y

Y Y

- +
+

 V1

Zin = 1 22

1 11 22 12 21 11

=  L

L

V Y Y

I Y Y Y Y Y Y

+
- +

Fig. 11.87
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When output port is open circuited, i.e., YL = 0

Zin = 22

11 22 12 21

Y

Y Y Y Y-
When output port is short circuited, i.e., YL = ∞

Zin =

22

11 22 12 21 11
11

1
1

lim = 
L

L

Y

L

Y

Y

Y Y Y Y Y
Y

Y

®¥

+

- +

(iii) Input impedance in terms of transmission parameters We know that

V1 = AV2 – BV2

I1 = CV2 – DI2

From Fig. 11.87,

V2 = – ZLI2

I1 = – CZL I2 – DI2 = – (CZL + D) I2

I2 = – 1

L

I

CZ D+

V1 = AZLI2 – B = 
1

1= L

L L

I AZ B
I

CZ D CZ D

æ ö æ ö+
-ç ÷ ç ÷+ +è ø è ø

Zin = 1

1

= L

L

V AZ B

I CZ D

+
+

If the output port is open circuited, i.e., ZL = ∞,

Zin =
A

C
If the output port is short circuited, i.e., ZL = 0,

Zin =
B

D

(iv) Input impedance in terms of hybrid parameters We know that

V1 = h11I1 + h12V2

I2 = h21I1 + h22V2

V2 = –ZLI2

I2 = h21I1 – h22ZL I2

I2 = 21

221 L

h

h Z+
 IL

V2 = – 
21

221

L

L

h Z

h Z+
 I1

Substituting the value of V2 in V1,

V1 = h11I1 + h12 
21

221

L
L

L

h Z
I

h Z

é ù-
ê ú+ë û

=
11 22 12 21 11

22

( )

1

L

L

h h h h Z h

h Z

é ù- +
ê ú+ë û

 I1
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Zin = 1 11 22 12 21 11

1 22

( )
= 

1

L

L

V h h h h Z h

I h Z

- +
+

If the output port is open circuited, i.e., ZL = ∞,

Zin =
11 22 12 21

22

–h h h h

h

If the output port is short circuited, i.e., ZL = 0,

Zin = h11

11.12.2 Driving-Point Impedance at Output Port

Fig. 11.88

(i) Output impedance in terms of Z-parameters We know that

V1 = Z11I1 + Z12I2

V2 = Z21I1 + Z22I2

From Fig. 11.88,

V1 = –ZLI1

 –I1Z1 = Z11I1 + Z12I2

I1 =
12

11L

Z

Z Z

æ ö-
ç ÷+è ø  I2

V2 = Z21 
12

11L

Z

Z Z

æ ö-
ç ÷+è ø

 I2 + Z22I2

= I2 
21 12

22
11L

Z Z
Z

Z Z

é ù
-ê ú+ë û

=
11 22 12 21 22

11

L

L

Z Z Z Z Z Z

Z Z

æ ö- +
ç ÷+è ø  I2

Z0 =
2 11 22 12 21 22

2 11

= L

L

V Z Z Z Z Z Z

I Z Z

- +
+

If the input port is open circuited, i.e., ZL = ∞,

Z0 = Z22

If the input port is short circuited, i.e., ZL = 0,

Z0 = 11 22 12 21

11

Z Z Z Z

Z

-
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(ii) Output impedance in terms of Y-parameters We know that

I1 = Y11V1 + Y12V2

I2 = Y21V1 + Y22V2

From Fig. 11.88,

V1 = –ZLI1

I1 = – 
1

L

V

Z
 = –YLV1

–YLV1 = Y11V1 + Y12V2

V1 =
12

11L

Y

Y Y

æ ö-
ç ÷+è ø  V2

I2 = Y21 
12

11L

Y

Y Y

æ ö-
ç ÷+è ø  V2 + Y22V2 = V2 

21 12
22

11L

Y Y
Y

Y Y

é ù
-ê ú+ë û

= V2 
11 22 12 21 22

11

L

L

Y Y Y Y Y Y

Y Y

é ù- +
ê ú+ë û

Z0 = 2 11

2 11 22 12 21 22

= L

L

V Y Y

I Y Y Y Y Y Y

+
- +

If input port is open circuited, i.e., YL = 0,

Z0 =
11

11 22 12 21

Y

Y Y Y Y-

If input port is short circuited, i.e., YL = ∞,

Z0 =
22

1

Y

(iii) Output impedance in terms of ABCD parameters We know that

V1 = AV2 – BI2

I1 = CV2 – DI2

From Fig. 11.88,

V1 = –ZLI1

1

1

V

I
= –ZL = 

2 2

2 2

AV BI

CV DI

-
-

V2 (CZL + A) = I2 (DZL + B)

Z0 =
2

2

= L

L

V DZ B

I CZ A

+
+

If input port is open circuited, i.e., ZL = ∞,

Z0 =
D

C

If input port is short circuited, i.e., ZL = 0,

Z0 =
B

A
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(iv) Output impedance in term of h-parameters We know that

V1 = h11I1 + h12V12

I2 = h21I1 + h22V2

From Fig. 11.88,

V1 = –ZLI1

 –I1ZL = h11I1 + h22V2

I1 =
12

11 L

h

h Z

æ ö-
ç ÷+è ø  V2

I2 = h21 
12

11 L

h

h Z

æ ö-
ç ÷+è ø  V2 + h22V2

=  V2 
11 22 12 21 22

11

L

L

h h h h h Z

h Z

é ù- +
ê ú+ë û

Z0 =
2

2

V

I

=
11

11 22 12 21 22

L

L

h Z

h h h h h Z

+
- +

If input port is open circuited, i.e., ZL = ∞,

Z0 =
22

1

h

If input port is short circuited i.e., ZL = 0,

Z0 = 11

11 22 12 21

h

h h h h-

Example 11.39 The Z-parameters of a two-port network are: Z11 = 10 W, Z12 = Z21 = 5 W, Z22 = 20 W.

Find the equivalent T-network.

Solution
Applying KVL to Mesh 1,

V1 = (Z1 + Z2) I1 + Z2 I2 …(i)

Applying KVL to Mesh 2,

V2 = Z2 I1 + (Z2 + Z3) I2 …(ii)

Comparing Eqs (i) and (ii) with Z parameter equations, we get

Z11 = Z1 + Z2 = 10

Z12 = Z2 = 5

Z21 = Z2 = 5

Z22 = Z2 + Z3 = 20

Solving the above equations, we get

Z1 = 5 Ω
Z2 = 5 Ω
Z3 = 15 Ω

Fig. 11.89
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Example 11.40 Admittance parameters of a pi network are Y11 = 0.09 J , Y12 = Y21 = –0.05 J  and

Y22 = 0.07 J . Find the values of Ra, Rb and Rc.

Solution
Applying KCL at Node 1,

I1 = 1 1 2+ 
a b

V V V

R R

-

=
1 1

a bR R

æ ö
+ç ÷è ø  V1 –

1

bR
V2 …(i)

Applying KCL at Node 2,

I2 = 2 2 1+ 
c b

V V V

R R

-

= – 1

1 1 1
 + 

b B c

V
R R R

æ ö
+ç ÷è ø

 V2 …(ii)

Comparing Eqs (i) and (ii) with Y-parameter equations, we get

Y11 =
1 1

+ 
a bR R

 = 0.09 J

Y12 = – 
1

bR
 = –0.05 J

Y21 =
1

bR

-
 = –0.05 J

Y22 =
1 1

+
b cR R

 = 0.07 J

Solving the above equations, we get

Ra = 25 Ω
Rb = 20 Ω
Rc = 50 Ω

Example 11.41 Find the parameters YA, YB and YC of the equivalent p network as shown to represent a

two-terminal pair network for which the following measurements were taken:

(a) With Terminal 2 short circuited, a voltage of 10 ∠0° V applied at Terminal pair 1 resulted in

I1 = 2.5 ∠0° A and I2 =  –0.5 ∠0° A.

(b) With Terminal 1 short circuited, the same voltage at Terminal pair 2 resulted in I2 = 1.5 ∠0° A and I1

= –1.1 ∠–20° A.

Fig. 11.91

Fig. 11.90
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Solution Since measurements were taken with either of the terminal pairs short circuited, we have to calculate

Y-parameters first.

Y11 =

2

1

1 0

2.5 0
= =  0.25 

10 0
V

I

V
J

=

Ð °
Ð °

 Y21 =
2

2

1 0

0.5 0
=  = – 0.05 

10 0
V

I

V =

- Ð °
Ð °

J

 Y22 =

1

2

2 0

1.5 0
=  =  0.15 

10 0
V

I

V =

Ð °
Ð °

J

Applying KCL at Node 1,

I1 = YAV1 + YB (V1 – V2)

= (YA + YB) V1 – YBV2 …(i)

Applying KCL at Node 2,

I2 = YCV2 + YB (V2 – V1)

= –YBV1 + (YB + YC) V2 …(ii)

Comparing Eqs (i) and (ii) with the Y-parameter equation, we get

Y11 = YA + YB = 0.25

Y12 = Y21 = –YB = –0.05

Y22 = YB + YC = 0.15

Solving the above equation, we get

YA = 0.20 J

YB = 0.05 J

YC = 0.10 J

Example 11.42 A network has two input terminals (a, b) and two output terminals (c, d). The input

impedance with c and d open circuited is (250 + j100) ohms and with c and d short circuited is (400 + j300)

ohms. The impedance across c and d with a and b open circuited is 200 ohms. Determine the equivalent

T-network parameters.

Fig. 11.92

Solution The input impedance with c and d open circuited is

ZA + ZC = 250 + j100 …(i)

The input impedance with c and  d short circuited is,

ZA + B C

B C

Z Z

Z Z+
= 400 + j300 …(ii)

The impedance across c and  d with a and  b open circuited is

ZB + ZC = 200 …(iii)
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Subtracting the equation (i) from (ii),

B C

B C

Z Z

Z Z+
 – ZC = 150 + j200 …(iv)

From the equation (iii),

ZB = 200 – ZC …(v)

Subtracting the value of ZB in the equation (iv) and simplifying,

ZC = (–100 + j200) Ω …(vi)

From Eqs (i) and (vi),

ZA = (350 – j100) Ω

From Eqs (iii) and (vi),

ZB = (300 – j200) Ω

Example 11.43 Find the equivalent p-network for the T-network shown in Fig. 11.93.

Fig. 11.93

Solution Figure 11.94 shows a T-network and p-network.

Fig. 11.94

For converting a T-network (star network) into an equivalent p-network (delta network), we can use star–

delta transformation technique.

Z1 = ZA + ZC + A C

B

Z Z

Z

= 2 + 5 + 
2 5

2.5

´
 = 11 Ω

Z3 = ZA + ZB + A B

C

Z Z

Z

= 2 + 2.5 + 
2 2.5

5

´
 = 5.5 Ω

Z2 = ZB + ZC + B C

A

Z Z

Z
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= 2.5 + 5 + 
2.5 5

2

´
 = 13.75 Ω

Hence, the equivalent p-network can be shown as

Fig. 11.95

Example 11.44 For the network shown in Fig. 11.96, Find the equivalent T-network.

Fig. 11.96

Solution Applying KVL to Mesh 1,

V1 = 3I1 + 2I2 – I3 …(i)

Applying KVL to Mesh 2,

V2 = 2I1 + 6I2 + 4I3 …(ii)

Applying KVL to Mesh 3,

13I3 – I1 + 4I2 = 0

I3 = 1

1 4

13 13
I -  I2 …(iii)

Substituting the Eq. (iii) in the Eq. (i),

V1 = 3I1 + 2I2 – 1

1 4
 + 

13 13
I  I2

= 1

38 30
 + 

13 13
I  I2 …(iv)

Substituting the Eq. (iii) in the Eq. (ii),

V2 = 2I1 + 6I2 + 4 1 2

1 4

13 13
I I

æ ö-ç ÷è ø

= 1

30 62
 + 

13 13
I  I2 …(v)
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For  the T-network,

Fig. 11.97

Applying KVL to Mesh 1,

V1 = (ZA + ZC) I1 + ZC I2 …(vi)

Applying KVL to Mesh 2,

V2 = ZC I1 + (ZB + ZC) I2 …(vii)

Comparing Eqs (iv) and (v) with Eqs (vi) and (vii), we get

ZA + ZC =
38

13

ZC =
30

13

 ZB + ZC =
62

13
Solving the above equations, we get

ZA =
8

13
Ω

ZB =
32

13
Ω

ZC =
30

13
Ω

Example 11.45 Measurements were made on a two-terminal network shown in Fig. 11.98.

Fig. 11.98

(i) With Terminal pair 2 open, a voltage of 100 –0° V applied to Terminal pair 1 resulted in

I1 = 10 –0° A

V2 = 25 –0° V

(ii) With Terminal pair 1 open, the same voltage applied to Terminal pair 2 resulted in

I2 = 20 –0° A

V1 = 50 –0° V

Write mesh equations for this network. What will be the voltage across a 10-W resistor connected across

Terminal pair 2 if a 100 –0° V is connected across Terminal pair 1?
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Solution Since measurements were done with either of the terminal pairs open circuited, we have to calculate

Z-parameters first.

Z11 =
2

1

1 0

100 0
=  =  10 

10 0
I

V

I =

Ð ° W
Ð °

 Z21 =
2

2

1 0

25 0
=  =  2.5 

10 0
I

V

I =

Ð ° W
Ð °

 Z22 =
1

2

2 0

100 0
=  =  5 

20 0
I

V

I =

Ð ° W
Ð °

 Z12 =

1

1

2 0

50 0
=  =  2.5 

20 0
I

V

I =

Ð ° W
Ð °

Putting these values in Z-parameter equations, we get

V1 = 10I1 + 2.5I2 …(i)

V2 = 2.5I1 + 5I2 …(ii)

When a 10-Ω resistor is connected across Terminal pair 1,

V1 = 100 ∠0° V

V2 = –RLI2 = –10I2

Substituting values of V1 and V2 in Eqs (i) and (ii),

100 = 10I1 + 2.5I2

and –10I2 = 2.5I1 + 5I2

 2.5I1 = –15I2

I1 = –6I2

100 = –60I2 + 2.5I2

I2 = – 
100

57.5
 = – 1.74 A

Voltage across the resistor = –I2RL = –10 (–1.74) = 17.4 V

Example 11.46 The following equations give the voltages V1 and V2 at the two ports of a two-port

network:

V1 = 5I1 + 2I2

V2 = 2I1 + I2

A load resistor of 3 W is connected across Port 2. Calculate the input impedance.

Fig. 11.99

Solution From Fig.11.99,

V2 = –3I2 …(i)

Substituting the Eq. (i) in the given equation,

 –3I2 = 2I1 + I2
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 I2 = – 1

2

I
…(ii)

Substituting the Eq. (ii) in the given equation.

V1 = 5I1 – I1 = 4I1

Input impedance Zi =
1

1

V

I
 = 4 Ω

Example 11.47 The following equation gives the voltage and current at the input port of a two-port

network

V1 = 5V2 – 3I2

I1 = 6V2 –2I2

A load resistance of 5 W is connected across the output port. Calculate the input impedance.

Fig. 11.100

Solution From Fig. 11.100,

V2 = –5I2

Substituting the value of V2 in the given equations,

V1 = 5(–5I2) – 3I2 = –28I2

I1 = 6 (–5I2) – 2I2 = –32I2

Input impedance Zi = 1

1

V

I

= 2

2

28

32

I

I

-
-

 = 
7

8
Ω

Exercises

1. Determine Z-parameters for the network shown in Fig. 11.101

Fig.  11.101

Z = 

13 2

7 7
2 3

7 7

é ù
ê ú
ê ú
ê ú
ê úë û
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2. Find Z-parameters for the network in Fig. 11.102.

Fig. 11.102

Z = 

4 2 3

3 2

3 3

2 2

4 6 1 4

4 4 1

4 4 2

4 1 4 1

s s s

s s s

s s s

s s

é ù+ +
ê ú

+ +ê ú
ê ú+
ê ú

+ +ë û

3. Find Y-parameters of the network shown in Fig.11.103.

Fig. 11.103

Y = 
0.36 0.033

0.033 0.36

-é ù
ê ú- -ë û

4. Find Y-parameters for the network shown in Fig.11.104.

Fig. 11.104

Y = 

2

2

10 13 2 2

5 6 5 6

2 5 6 5

5 6 5 6

s s

s s

s s

s s

é ù+ + -
ê ú

+ +ê ú
ê ú- + +
ê ú+ +ë û



Two-Port Networks 11.91

5. Find Y-parameters for the network shown in Fig.11.105.

Fig. 11.105

Y = 2

7 6

12 4

4 2

4 4

s s

s s s

s

+ -é ù
ê ú
ê ú
- + +ê ú

ê úë û

6. Find Y-parameters for the network shown in Fig.11.106.

Fig. 11.106

Y =

3 1

20 20
1 1

4 4

-é ù
ê ú
ê ú-ê ú
ê úë û

7. Show the ABCD parameters of the network shown in Fig.11.107.

Fig. 11.107

A B

C D

é ù
ê úë û  = 

2 2

2 3

2

2

1 1 2

1 1

s s

s s

s

s s

é ù+ +
ê ú
ê ú
ê ú+
ê ú
ë û
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8. Find ABCD parameters for the network shown in Fig.11.108

Fig. 11.108

A B

C D

é ù
ê úë û  = 

27 206

11
42

2

é ù
ê ú
ê ú
ë û

9. For the network shown in Fig.11.109, determine parameter h21.

Fig. 11.109

h21 = 
(2 )

1

s

s

- +
+

10. Determine Y and Z-parameters for the network shown in Fig. 11.110.

Fig. 11.110




Y11 = 1 J , Y12 = – 0.5 J , Y21 = 1.5 J , Y22 = 0.5 J

11 12 21 22

2 2 6 4
, , ,

5 5 5 5
Z Z Z Z= W = W = - W = W
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11. For the bridged T, R-C network determine Y-parameters using interconnections of two-port networks.

Fig. 11.111

Y = 

2 2

2 2

8 8 ( 6 8)

2( 6) 2( 6)

( 6 8) 10 8

2( 6) 2( 6)

s s s s

s s

s s s s

s s

é ù+ + - + +
ê ú+ +ê ú
ê ú- + + + +
ê ú

+ +ê úë û

12. For the network of Fig.11.112, find Y-parameters using interconnection of two-port networks.

Fig. 11.112

Y = 

3 1

4 4
1 3

4 4

-é ù
ê ú
ê ú-ê ú
ê úë û

13. Two identical sections of the network shown in Fig.11.113 are connected in parallel. Obtain Y-parameters

of the connection.

Fig. 11.113

Y = 

1
1

2
1 5

2 4

-é ù
ê ú
ê ú-ê ú
ê úë û
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14. Determine Y-parameters using interconnection of two-port networks for the network shown in Fig.11.114.

Fig. 11.114

Y =
3.1 0.9

0.9 3.1

-é ù
ê ú-ë û

15. If a two-port network has Y11 = 1 J, Y12 = Y21 = –2 J, Y22 = 3 J, find the equivalent pi (p) network.

Objective-Type Questions

1. The open-circuit impedance matrix of the two-

port network shown in Fig. 11.115 is

(a) 
2 1
8 3
-é ù
-ê úë û

(b)
2 8

1 3

- -é ù
ê úë û

(c)
0 1
1 0
é ù
ê úë û

(d)
2 1

1 3

-é ù
ê ú-ë û

2. Two two-port networks are connected in cascade. The combination is to be represented as a single two-

port network. The parameters are obtained by multiplying the individual

(a) z-parameter matrix (b) h-parameter matrix

(c) y-parameter matrix (d) ABCD parameter matrix

3. For a two-part network to be reciprocal

(a) z11 = z22 (b) y21 = y12 (c) h21 = –h12 (d) AD – BC = 0

4. The short circuit admittance matrix of a two-port network is 
0 1 2

1 2 0
-é ù

ê úë û
. The two-port network is

(a) non-reciprocal and passive (b) non-reciprocal and active

(c) reciprocal and passive (d) reciprocal and active

5. A two-port network is shown in Fig. 11.116. The

parameter h21 for this network can be given by

(a) –1/2 (b) 1/2

(c) –3/2 (d) 3/2

Fig. 11.115

Fig. 11.116
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6. The admittance parameter Y12 in the two-port

network in Fig. 11.117 is

(a) –0.2 mho (b) 0.1 mho

(c) –0.05 mho (d) 0.05 mho

7. The Z-parameters Z11 and Z21 for the two-port

network in Fig. 11.118 are,

(a)
6

11

- W ,
16

11
W (b)

6 4
,

11 11
W W

(c)
6 16

,
11 11

-W W (d)
4 4

,
11 11
W W

8. The impedance parameters Z11 and Z12 of

a two-port network in Fig. 11.119 are

(a) 2.75 Ω, 0.25 Ω (b) 3 Ω, 0.5 Ω

(c) 3 Ω, 0.25 Ω (d) 2.25 Ω, 0.5 Ω

9. The h parameters of the circuit shown in

Fig. 11.120 are

(a)
0.1 0.1
0.1 0.3

é ù
-ê úë û

(b)
10 1

1 0.05
-é ù

ê úë û

(c)
30 20
20 20
é ù
ê úë û

(d)
10 1

1 0.05
é ù
-ê úë û

10. A two-port network is represented by ABCD parameters given by 1 2

1 2

V VA B
I C D I
é ù é ùé ù= -ê ú ê úê úë ûë û ë û

. If port 2 is

terminated by RL, then the input impedance seen at port 1 is given by

(a) L

L

A BR

C DR

+
+ (b) L

L

AR C

BR D

+
+ (c) L

L

DR A

BR C

+
+ (d) L

L

B AR

D CR

+
+

11. In the two-port network shown in Fig. 11.121,

Z12 and Z21 are respectively

(a) re and bro (b) 0 and –bro

(c) 0 and bro (d) re and –bro

Fig. 11.117

Fig. 11.118

Fig. 11.119

Fig. 11.120

Fig. 11.121



11.96 Electrical Networks

Fig. 11.122

12. If a two-port network is passive, then we have, with the usual notation, the following relationship for

symmetrical network

(a) h12 = h21 (b) h12 = – h21

(c) h11 = h22 (d) h11h22 – h12h21 = 1

13. A two-port network is defined by the following pair of equations I1 = 2V1 + V2 and I2 = V1 + V2. Its

impedance parameters (Z11, Z12, Z21, Z22) are given by

(a) 2, 1, 1, 1 (b) 1, – 1, – 1, 2 (c) 1, 1, 1, 2 (d) 2, – 1, – 1, 1

14. A two-port network has transmission parameters 
A B
C D
é ù
ê úë û

. The input impedance of the network at

port 1 will be

(a)
A

C
(b)

AD

BC
(c)

AB

DC
(d)

D

C

15. A two-port network is symmetrical if

(a) Z11 Z22 – Z12 Z21 = 1 (b) AD – BC = 1

(c) h11 h22 – h12 h21 = 1 (d) Y11 Y22 – Y12 Y21 = 1

16. For the network shown in Fig. 11.122, the

admittance parameters are Y11 = 8 mho, Y12 = Y21

= – 6 mho and Y22 = 6 mho. The value of YA, YB

and YC (in mho) will be respectively

(a) 2, 6, – 6 (b) 2, 6, 0

(c) 2, 0, 6 (d) 2, 6, 8

17. The impedance matrices of two two-port networks are given by 
3 2 15 5

and
2 3 5 25
é ù é ù
ê ú ê úë û ë û

. If these two

networks are connected in series, the impedance matrix of the resulting two-port network will be

(a)
3 5
2 25
é ù
ê úë û

(b)
18 7
7 28

é ù
ê úë û

(c)
15 2
5 3

é ù
ê úë û

(d) inderminate

18. If the p network and T network are equivalent, then the values of R1, R2 and R3 will be respectively

(a) 6, 6, 6 (b) 6, 6, 9 (c) 9, 6, 9 (d) 6, 9, 6

Fig. 11.123

19. For a two-port symmetrical bilateral network, if A = 3 and B = 1, the value of the parameter C will be
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(a) 4 (b) 6 (c) 8 (d) 16

20. The impedance matrix for the network shown is Fig. 11.124 is

(a)
2 1 2

3
2 2

s s

s s
s

+é ù
ê ú

+ê úë û
(b)

2 1 2
3

2 2

s s

s s
s

+ -é ù
ê ú
- +ê úë û

(c)
2 1 2

3
2 2

s s

s s
s

+é ù
ê ú
- +ê úë û

(d)

3
2 2

2
3

2 2

s s

s s
s

é ù+ -ê ú
ê ú

+ê úë û

21. With the usual notations, a two-port resistive network satisfies the conditions

A = D = 
3 4

2 3
B C= . The Z11 of the network is

(a)
5

3
(b)

4

3
(c)

2

3
(d)

1

3

Fig. 11.124

Answers to Objective-Type Questions

1.(a)2.(d)3.(b) & (c)4.(b)5.(a)6.(c)

7.(c)8.(a)9.(d)10.(d)11.(b)12.(d)

13.(b)14.(a)15.(c)16.(c)17.(b)18.(a)

19.(c)20.(a)21.(b)
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12.1 INTRODUCTION

In the study of electrical networks, broadly there are two topics: ‘Network Analysis’ and ‘Network Synthesis’.

Any network consists of excitation, response and network function. In network analysis, network and excitation

are given, whereas the response has to be determined. In network synthesis, excitation and response are

given, and the network has to be determined. Thus, in network synthesis we are concerned with the realization

of a network for a given excitation-response characteristic. Also, there is one major difference between analysis

and synthesis. In analysis, there is a unique solution to the problem. But in synthesis, the solution is not unique

and many networks can be realized.

12.2 HURWITZ POLYNOMIALS

A polynomial P(s) is said to be Hurwitz if the following conditions are satisfied:

(a) P(s) is real when s is real.

(b) The roots of P(s) have real parts which are zero or negative.

12.3 PROPERTIES OF HURWITZ POLYNOMIALS

(1) All the coefficients in the polynomial

 P(s) = an s
n + an – 1 s

n – 1 + …… + a1s + a0

are positive. A polynomial may not have any missing terms between the highest and the lowest order

unless all even or all odd terms are missing.

(2) The roots of odd and even parts of the polynomial P(s) lie on the jw-axis only.

(3) If the polynomial P(s) is either even or odd, the roots of polynomial P(s) lie on the jw-axis only.

(4) All the quotients are positive in the continued fraction expansion of the ratio of odd to even parts or

even to odd parts of the polynomial P(s).

Graph
Theory

Network
Synthesis

12
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(5) If the polynomial P(s) is expressed as W(s) P1(s), then P(s) is Hurwitz if W(s) and P1(s) are Hurwitz.

(6) If the ratio of the polynomial P(s) and its derivative P′(s) gives a continued fraction expansion with

all positive coefficients then the polynomial P(s) is Hurwitz.

This property helps in checking a polynomial for Hurwitz if the polynomial is an even or odd function

because in such a case, it is not possible to obtain the continued fraction expansion.

Example 12.1 State for each case, whether the polynomial is Hurwitz or not. Give reasons in each case.

(i)  s4 + 4s3 + 3s + 2

(ii) s6 + 5s5 + 4s4 – 3s3 + 2s2 + s + 3

Solution (i) In the given polynomial, the term s2 is missing and it is neither an even nor an odd polynomial.

Hence, it is not Hurwitz.

(ii) Polynomial s6 + 5s5 + 4s4 – 3s3 + 2s2 + s + 3 is not Hurwitz as it has a term (–3s3) which has a negative

coefficient.

Example 12.2 Test whether the polynomial P(s) = s4 + s3 + 5s2 + 3s + 4 is Hurwitz.

Solution Even part of P(s) = m(s) = s4 + 5s2 + 4

Odd part of P(s) = n(s) = s3 + 3s

Q(s) =
( )

( )

m s

n s

By continued fraction expansion, we have

3 4 2

4 2

3 ) 5 4 (

3

s s s s s

s s

+ + +
+     ________________________

) (2 3

3

1
2 4 3

2

2

s s s s

s s

+ +

+         _______________

     ) (2

2

2 4 2

2

s s s

s

+

         

) (4
4

0

s
s

s

Since all the quotient terms are positive, P (s) is Hurwitz.

Example 12.3 Test whether the polynomial P(s) = s3 + 4s2 + 5s + 2 is Hurwitz.

Solution Even part of P(s) = m(s) = 4s2 + 2

Odd part of P(s) n(s) = s3 + 5s

The continued fraction expansion can be obtained by dividing n(s) by m(s) as n(s) is of higher order than m(s).

Q(s) =
( )

( )

n s

m s
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4s2 + )2  s3 + 5s  (
4

s

s3 +
2

4

s

)
9

2

s
     4s

2

+ 2 (
8

9

s

4s
2

     )2  
9

2

s
 (

9

4

s

            
9

2

s

        0

Since all the quotient terms are positive, P(s) is Hurwitz.

Example 12.4 Test whether the polynomial P(s) = s4 + s3 + 3s2 + 2s + 12 is Hurwitz.

Solution Even part of P(s) = m(s) = s4 + 3s2 + 12

Odd part of P(s) = n(s) = s3 + 2s

 Q(s) =
( )

( )

m s

n s

By continued fraction expansion, we have

s3 + 2s ) s4 + 3s2 + 12  (s

s4 + 2s2

–––––––––––––––––––––––––––––––
         s2 + 12 )  s3 +   2s (s

          s3 + 12s

)– 10s s2 + 12 ( –
10

s

s2

       )12 – 10s  (
10

–
12

 s

– 10s

    0

Since two quotient terms are negative, P(s) is not Hurwitz.

Example 12.5 Prove that polynomial P(s) = s4 + s3 + 2s2 + 3s + 2 is not Hurwitz.

Solution Even part of P(s) = m(s) = s4 + 2s2 + 2

Odd part of P(s) = n(s) = s3 + 3s

Q (s) =
( )

( )

m s

n s
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By continued fraction expansion, we have

S
3  + 3S ) S4 + 2S

2 + 2   ( S

s4 + 3s2__________________

        – s2 + 2 ) s3 + 3s  (–s

   s3 – 2s

    )5s –s2 + 2    ( –
5

s

–s2

            )2  5s  (
5

2
 s

       5s

     0

Since two quotient terms are negative, P(s) is not Hurwitz.

Example 12.6 Prove that polynomial P(s) = 2s4 + 5s3 + 6s2 + 3s + 1 is Hurwitz.

Solution Even part of P(s) = m(s) = 2s4 + 6s2 + 1

Odd part of P(s) = n(s) = 5s3 + 3s

Q(s) =
( )

( )

m s

n s
By continued fraction expansion, we have

5s3 + 3s ) 2s4 + 6s2 + 1  (
2

5
s

2s4 +
6

5
s2

_____________________________

    
24

5
s2 + )1  5s3 +  3s  (

25

24
 s

                     5s3 + 
25

24
s

            ___________________________

          )
47

24
s   

24

5
s2  + 1 (

576

235
 s

                       
24

5
s2

                    ______________________

            )1   
47

24
s  (

24

47
s

47

24
s

           _______

   0

Since all the quotient terms are positive, the polynomial P(s) is Hurwitz.

Example 12.7 Test whether the polynomial P(s) = s4 + 7s3 + 6s2 + 21s + 8 is Hurwitz.

Solution Even part of P(s) = m(s) = s4 + 6s2 + 8

Odd part of P(s) = n(s) = 7s3 + 21s

Q(s) =
( )

( )

m s

n s
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By continued fraction expansion, we have

7s3 + 21 )s  s4 + 6s2 + 8 (
7

s

s4 + 3s2

3s2 + )8  7s3 + 21s (
7

3
 s

   7s3 + 
56

3
s

             
7

3
)s  3s2 + 8 (

9

7
s

      3s2                  __________________

         )8  
7

3
s  (

7

24
 s

  
7

3
s

             ________

              0

Since all the quotient terms are positive, the polynomial P(s) is Hurwitz.

Example 12.8 Check whether P(s) = s4 + 5s3 + 5s2 + 4s + 10 is Hurwitz.

Solution Even part of P(s) = m(s) = s4 + 5s2 + 10

Odd part of P(s) = n(s) = 5s3 + 4s

Q (s) =
( )

( )

m s

n s
By continued fraction expansion, we have

5s3 + 4s )s  s4  +  5s2 + 10 (
5

s

s4  +
4

5
s2

       ______________________________

21

5
s2 + )10  5s3 + 4s (

25

21
s

5s3 + 
250

21
s

                    ______________________________

      – 
166

21
)s  

21

5
s2 + 10 ( –

441

830
 s

 
21

5
s2

              __________________________

 )10   –
166

21
 s 

166

210

 −


s

          – 
166

21
s

 0

 Since last two quotient terms are negative, the polynomial P(s) is not Hurwitz.
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Example 12.9 Test whether the polynomial s5 + 3s3 + 2s is Hurwitz.

Solution Since the given polynomial contains odd functions only, it is not possible to perform a continued

fraction expansion.

 P′(s) =
d

ds
P(s) = 5s4 + 9s2 + 2

 Q(s) =
( )

( )

P s

P s¢
By continued fraction expansion, we have

5s4 + 9s2 + )2  s5 + 3s3 + 2s (
5

s

s5 +
9

5
s3 + 

2

5
s

      ________________________________

6

5
s3 + 

8

5
)s  5s4 + 9s2 + 2    (

25

6
s

     5s4 + 
20

3
s2

               _____________________________

            
7

3
 s2 + )2  

6

5
s3  + 

8

5
s (

18

35
 s

  
6

5
s3  +  

36

35
s

                __________________________

    
20

35
)s  

7

3
s2 + 2 (

49

12
 s

              
7

3
s2

               __________________

         )2  
20

35
s (

10

35
s

  
20

35
s

    0

Since all the quotient terms are positive, the polynomial P(s) is Hurwitz.

Example 12.10 Test whether the polynomial P(s) is Hurwitz.

 P(s) = s5 + s3 + s

Solution Since the given polynomial contains odd functions only, it is not possible to perform continued

fraction expansion.

 P′(s) =
d

ds
P(s) = 5s4 + 3s2 + 1

 Q(s) =
( )

( )

P s

P s¢
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By continued fraction expansion, we have

5s4 + 3s2 + )1  s5 +     s3  + s (
5

s

s5 +
3

5
s3 + 

5

s

                     ________________________________
2

5
s3 + 

4

5
 )s  5s4 +   3s2 + 1 (

25

2
s

         5s4 + 10s2
       __________________

 –   7s2 + )1  
2

5
 s3 + 

4

5
s (

2
–

35
s

       
2

5
s3  – 

2

35
s

   _______________________________

    
26

35
)s  –7s2 + 1 (

245
–

26
 s

  –7s2               ______________________

   )1   
26

35
s   (

26

35
s

          
26

35
s

 _          ____
            0

Since the third and fourth quotient terms are negative, P(s) is not Hurwitz.

Example 12.11 Test the polynomial P(s) for Hurwitz property.

 P(s) = s6 + 3s5 + 8s4 + 15s3 + 17s2 + 12s + 4

Solution Even part of P(s) = m(s) = s6 + 8s4 + 17s2 + 4

Odd part of P(s) = n(s) = 3s5 + 15s3 + 12s

 Q(s) =
( )

( )

m s

n s
By continued fraction expansion, we have

3s5 + 15s3 + 12 )s  s6 + 8s4 + 17s2 + 4  ( 1

3
s

s6 + 5s4 +   4s2
    _________________________

 3s4 + 13s2 + )4  3s5 + 15s3 + 12s  ( s

  3s5 + 13s3 +   4s            ___________________

            2s3 +   8 )s  3s4 + 13s2 + 4  ( 3

2
s

   3s4 + 12s2
                __________________________

  s2 + )4   2s3 + 8s ( 2 s

   2s3 + 8s _______

        0

The division has terminated abruptly (i.e., the number of partial quotients (that is four) is not equal to the

order of polynomial (that is six) with a common factor (s2 + 4).

P(s) = s6 + 3s5 + 8s4 + 15s3 + 17s2 + 12s + 4 = (s2 + 4) (s4 + 3s3 + 4s2 + 3s + 1)

If both the factors are Hurwitz, P (s) will be Hurwitz.
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Let P1(s) = s2 + 4

Since it contains only even functions, we have to find the continued fraction expansion of 1

1

( )

( )

P s

P s¢
.

P′1(s) = 2s

1

1

( )

( )

P s

P s¢
=

2 2
4 4 1

= + =  +
2 2 2 2 / 2

s s s

s s s s

+

Since all the quotient terms are positive, P1(s) is Hurwitz.

Now, let P2(s) = s4 + 3s3 + 4s2 + 3s + 1

m2(s) = s4 + 4s2 + 1

n2(s) = 3s3 + 3s

By continued fraction expansion, we have

3s3 + 3 )s   s4 + 4s2 + 1 (
1

3
 s

s4 +   s2
          _____________________

  3s2 + )1  3s3 + 3s ( s

  3s3 +   s_____________________

   2 )s 3s2 + 1 (
3

2
s

3s2
                                                                        _______________

)1  2s ( 2s

        2s

         0

Since all the quotient terms are positive, P2(s) is Hurwitz.

Therefore P(s) = (s2 + 4) (s4 + 3s3 + 4s2 + 3s + 1) is Hurwitz.

Example 12.12 Test whether the polynomial P(s) = s7 + 2s6 + 2s5 + s4 + 4s3 + 8s2 + 8s + 4 is Hurwitz.

Solution Even part of P(s) = m(s) = 2s6 + s4 + 8s2 + 4

Odd part of P(s) = n(s) = s7 + 2s5 + 4s3 + 8s

 Q(s) =
( )

( )

n s

m s
 By continued fraction expansion, we have

2s6 + s4 + 8s2 + )4  s7 + 2s5   + 4s3 + 8s (
2

s

  s7 + 
51

2
s  + 4s3 + 2s

_______________________

3

2
s5     + 6 )s   2s6 + s4 + 8s2 + 4 (

4

3
s

  2s6        + 8s2

               _____________________________

     s4 + )4  
3

2
s5 + 6s (

3

2
 s

     
3

2
s5 + 6s

   _________

                         0
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Since the division has terminated abruptly it indicates a common factor s4 + 4. The polynomial can be
written as

P(s) = (s4 + 4) (s3 + 2s2 + 2s + 1)

If both the factors are Hurwitz, P(s) will be Hurwitz.

In the polynomial (s4 + 4), the terms s3, s2 and s are missing. Hence, it is not Hurwitz.

Therefore P(s) is not Hurwitz.

Example 12.13 Test whether the polynomial 2s6 + s5 + 13s4 + 6s3 + 56s2 + 25s + 25 is Hurwitz.

Solution Even part of P(s) = m(s) = 2s6 + 13s4 + 56s2 + 25

Odd part of P(s) = n(s) = s5 + 6s3 + 25s

Q(s) =
( )

( )

m s

n s
By continued fraction expansion, we have

s5 + 6s3 + 25s ) 2s6 + 13s4 + 56s2 + 25 ( 2s

2s6 + 12s4 + 50s2
   _________________________________

  s4 +   6s2 + 25 ) s5 + 6s3 + 25s (s

        s5 + 6s3 + 25s___________

       0

The division has terminated abruptly.

 P(s) = 2s6 + s5 + 13s4 + 6s3 + 56s2 + 25s + 25

= (s4 + 6s2 + 25) (2s2 + s + 1)

Let P1(s) = s4 + 6s2 + 25

Since P1(s) contains only even functions, we have to find the continued fraction expansion of  1

1

( )

( )

P s

P s¢
.

P′1(s) = 4s3 + 12s

By continued fraction expansion, we have

4s3 + 12 )s  s4 + 6s2 + 25  (
4

s

s4 + 3s2
        _________________________

 3s2 + )25  4s3 + 12s (
4

3
s

4s3 + 
100

3
s

 ___________________________

 –  
64

3
)s  3s2 + 25 ( 9

–
64

s

3s2                     _____________________

        )25  – 
64

3
s ( 64

–
75

s

  – 
64

3
s

_______
       0

Since two of the quotient terms are negative, P1(s) is not Hurwitz.
We need not test the other factor (2s2 + s + 1) for being Hurwitz.
Hence P(s) is not Hurwitz.
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There is another method to test a Hurwitz polynomial. In this method, we construct the Routh–Hurwitz

array for the required polynomial.

Let P(s) = an s
n + an – 1 s

n – 1 + an – 2 s
n – 2 + …… + a1s + a0

The Routh–Hurwitz array is given by,

sn an an – 2 an – 4 ……

sn – 1 an – 1 an – 3 an – 5 ……

sn – 2 bn bn – 1 bn – 2 ……

sn – 3 cn cn – 1 ……

. .

. .

. .

. .

s1 .

s0 .

The coefficients of sn and sn – 1 rows are directly written from the given equation.

where bn = 1 2 3

1

n n n n

n

a a a a

a

- - -

-

-

bn – 1 = 1 4 5

1

n n n n

n

a a a a

a

- - -

-

-

bn – 2 = 1 6 7

1

n n n n

n

a a a a

a

- - -

-

-

cn = 3 1 1n n n n

n

b a a b

b

- - --

cn – 1 = 5 1 2n n n n

n

b a a b

b

- - --

Hence, for polynomial P(s) to be Hurwitz, there should not be any sign change in the first column of the array.

Example 12.14 Test whether P(s) = s4 + 7s3 + 6s2 + 21s + 8 is Hurwitz.

Solution The Routh array is given by

s4 1 6 8

s3 7 21

s2 3 8

s1
7

3
0

s0  8

As all the elements in the first column are positive, the polynomial P(s) is Hurwitz.

Example 12.15 Determine whether P(s) = s4 + s3 + 2s2 + 3s + 2 is Hurwitz.

Solution The Routh array is given by

s4 1 2 2

s3 1 3

s2 –1 2

s1 5 0

s0 2

Since there is a sign change in the first column of the array, the polynomial P(s) is not Hurwitz.
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Example 12.16 Test whether P(s) = s5 + 2s4 + 4s3 + 6s2 + 2s + 5 is Hurwitz.

Solution The Routh array is given by

s5 1 4 2

s4 2 6 5

s3 1 –0.5

s2 7 5

s1 –1.21

s0 5

Since there is a sign change in the first column of the array, the polynomial is not Hurwitz.

Example 12.17 Test whether the polynomial P(s) = s5 + s3 + s is Hurwitz.

Solution The given polynomial contains odd functions only.

P′(s) = 5s4 + 3s2 + 1

The Routh array is given by

s5 1 1 1

s4 5 3 1

s3 0.4 0.8

s2 –7 1

s1 0.86

s0 1

Since there is a sign change in the first column of the array, the polynomial is not Hurwitz.

Example 12.18 Test whether the polynomial P(s) = s8 + 5s6 + 2s4 + 3s2 + 1 is Hurwitz.

Solution The given polynomial contains even functions only.

P′(s) = 8s7 + 30s5 + 8s3 + 6s

The Routh array is given by

s8 1 5 2 3 1

s7 8 30 8 6 0

s6 1.25 1 2.25 1

s5 23.6 –6.4 –0.4 0

s4 1.33 2.27 1

s3 – 46.6 –18.14 0

s2 1.75 1

s1 8.49

s0 1

Since there is a sign change in the first column of the array, the polynomial is not Hurwitz.
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Example 12.19 Test whether P(s) = s5 + 12s4 + 45s3 + 60s2 + 44s + 48 is Hurwitz.

Solution The Routh array is given by

s5 1 45 44

s4 12 60 48

s3 40 40

s2 48 48

s1 0 0

s0

Notes: When all the elements in any one row is zero, the following steps are followed :

(i) Write an auxiliary equation with the help of the coefficients of the row just above the row of zeros.

(ii) Differentiate the auxiliary equation and replace its coefficient in the row of zeros.

(iii) Proceed for the Routh test.

Auxiliary equation,

A (s) = 48s2 + 48

A′(s) = 96s

s5  1 45 44

s4 12 60 48

s3 40 40

s2 48 48

s1 96  0

s0 48

Since there is no sign change in the first column of the array, the polynomial P(s) is Hurwitz.

Example 12.20 Check whether P(s) = 2s6 + s5 + 13s4 + 6s3 + 56s2 + 25s + 25 is Hurwitz.

Solution The Routh array is given by

s6 2 13 56 25

s5 1  6 25

s4 1  6 25

s3 0  0  0

s2

s1

s0

A(s) = s4 + 6s2 + 25

A′(s) = 4s3 + 12s

Now, the Routh array will be given by

s6 2 13 56 25

s5 1 6 25

s4 1 6 25

s3 4 12

s2 3 25

s1 –21.3

s0 25

Since there is a sign change in the first column of the array, the polynomial P(s) is not Hurwitz.
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Example 12.21 Determine the range of values of ‘a’ so that P(s) = s4 + s3 + as2 + 2s + 3 is Hurwitz.

Solution The Routh array is given by

s4 1 a 3

s3 1 2

s2 a – 2 3

s1
2 7

2

a

a

−
−

s0 3

For the polynomial to be Hurwitz, all the terms in the first column of the array should be positive,

i.e., a – 2 > 0

a >  2

and
2 7

2

a

a

−
−

> 0

a > 
7

2

Hence, P(s) will be Hurwitz when a >
7

2
 .

Example 12.22 Determine the range of values of K so that the polynomial P(s) = s3 + 3s2 + 2s + K is

Hurwitz.

 Solution The Routh array is given by

s3 1 2

s2 3 K

s1
6

3

K−
0

s0 K

For the polynomial to be Hurwitz, all the terms in the first column of the array should be positive,

i.e.,
6

3

K−
> 0

6 – K > 0

i.e., K < 6 and K > 0

Hence, P(s) will be Hurwitz for 0 < K < 6.

12.4 POSITIVE REAL FUNCTIONS

A function F(s) is positive real if the following conditions are satisfied:

(1) F(s) is real for real s.

(2) The real part of F(s) is greater than or equal to zero when the real part of s is greater than or equal to

zero i.e.

Re F(s) ≥ 0 for Re(s) ≥ 0
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12.4.1 Properties of Positive Real Functions

(1) If F(s) is positive real then  
1

( )F s
 is also positive real.

(2) The sum of two positive real functions is positive real.

(3) The poles and zeros of a positive real function cannot have positive real parts, i.e., they cannot be in

the right half of the s plane.

(4) Only simple poles with real positive residues can exist on the jw-axis.

(5) The poles and zeros of a positive real function are real or occur in conjugate pairs.

(6) The highest powers of the numerator and denominator polynomials may differ at most by unity. This

condition prevents the possibility of multiple poles and zeros at s = ∞.

(7) The lowest powers of the denominator and numerator polynomials may differ by at most unity. Hence,

a positive real function has neither multiple poles nor zeros at the origin.

12.4.2 Necessary and Sufficient Conditions for Positive Real Functions

The necessary and sufficient conditions for a function with real coefficients F(s) to be positive real are the

following:

(1) F(s) must have no poles and zeros in the right half of the s-plane.

(2) The poles of F(s) on the jw-axis must be simple and the residues evaluated at these poles must be real

and positive.

(3) Re F ( jw) ≥ 0 for all w.

Testing of the above conditions Condition (1) requires that we test the numerator and denominator of

F(s) for roots in the right half of the s-plane, i.e., we must determine whether the numerator and denominator

of F(s) are Hurwitz. This is done through a continued fraction expansion of the odd to even or even to odd

parts of the numerator and denominator.

Condition (2) is tested by making a partial-fraction expansion of F(s) and checking whether the residues of

the poles on the jw-axis are positive and real. Thus, if F(s) has a pair of poles at s = ± jwo, a partial-fraction

expansion gives terms of the form

1

o

K

s jω−
+ 

*
1

o

K

s jω+
Since residues of complex conjugate poles are themselves conjugate, K1 = K1

* and should be positive and real.

Condition (3) requires that Re F( jω) must be positive and real for all w.

Now, to compute Re F( jω) from F(s), the numerator and denominator polynomials are separated into even

and odd parts.

 F(s) =
1 1 1 1

2 2 2 2

( ) ( )
=  

( ) ( )

m s n s m n

m s n s m n

+ +
+ +

Multiplying N(s) and D(s) by m2 – n2, we have

 F(s) =
1 1 2 2

2 2 2 2

m n m n

m n m n

+ −
+ −

 = 1 2 1 2 2 1 1 2

2 2 2 2
2 2 2 2

+  
m m n n m n m n

m n m n

− −

− −
But since the product of two even functions or odd functions is itself an even function, while the product

of an even and odd function is odd, we have

 Ev F(s) =
1 2 1 2

2 2
2 2

m m n n

m n

−

−

 = 
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 Od F(s) =
2 1 1 2

2 2
2 2

m n m n

m n

−

−
Now, substituting s = jw in the even polynomial gives the real part of F(s) and substituting

s = jw into the odd polynomial gives imaginary part of F(s).

 Ev F (s) |s = jw = Re F( jw)

 Od F(s) |s = jw = j Im F( jw)

We have to test Re F( jw) ≥ 0 for all w.

The denominator of Re F( jw) is always a positive quantity because

2 2
2 2

s j
m n

ω=
− ≥ 0

Hence, the condition that Ev F( jw) should be positive requires

m1m2 – n1n2 |s = jw = A(w2)

should be positive and real for all w ≥ 0.

Example 12.23 Test whether F(s) = 
s + 3

s +1
 is a positive real function.

Solution

(i) F(s) =
( ) 3

( ) 1

N s s

D s s

+
=

+
The function F(s) has pole at s = –1 and zero at s = –3.

Thus, pole and zero are in the left half of the s-plane

(ii) There is no pole on the jw axis. Hence, the residue test is not carried out.

(iii) Even part of N(s) = m1 = 3

Odd part of N(s) = n1 = s

Even part of D(s) = m2 = 1

Odd part of D(s) = n2 = s

A(w2) = m1m2 – n1n2 |s = jw

= (3) (1) – (s) (s) |s = jw

= 3 – s2 | s = jw = 3 + ω2

A(w2) is positive for all w ≥ 0

Since all the three conditions are satisfied, the function is positive real.

Example 12.24 Test whether F(s) = 

2

2

s +6s + 5

s + 9s +14
 is positive real function.

Solution

(i) F(s) =

2

2

( ) 6 5 ( 5)( 1)
= = 

( ) ( 7)( 2)9 14

N s s s s s

D s s ss s

+ + + +
+ ++ +

The function F (s) has poles at s = –7 and s = –2 and zeros at s = –5 and s = –1.

Fig. 12.2

 = 

Fig. 12.1
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Thus, all the poles and zeros are in the left half of the s plane.

(ii) Since there is no pole on the jw axis, the residue test is not carried out.

(iii) Even part of N(s) = m1 = s2 + 5

Odd part of N(s) = n1 = 6s

Even part of D(s) = m2 = s2 + 14

Odd part of D(s) = n2 = 9s

A(w2) = m1m2 – n1n2 |s = jw

= (s2 + 5) (s2 + 14) – (6s) (9s) |s = jw

= s4 – 35s2 + 70 |s = jw = w4 + 35w
2 + 70

A(w2) is positive for all w ≥ 0

Since all the three conditions are satisfied, the function is positive real.

Example 12.25 Test whether F(s) = 
s(s + 3)(s + 5)

(s +1)(s + 4)
 is positive real function.

Solution

(i) F(s) =
( )

( )

N s

D s

=

3 2

2

( 3)( 5) 8 15
 = 

( 1)( 4) 5 4

s s s s s s

s s s s

+ + + +
+ + + +

The function F(s) has poles at s = –1 and s = –4 and zeros at s = 0, s = –3 and s = –5.

Fig. 12.3

Thus, all the poles and zeros are in the left half of the s plane.

(ii) There is no pole on the jw axis, hence the residue test is not carried out.

(iii) Even part of N(s) = m1 = 8s2

Odd part of N(s) = n1 = s3 + 15s

Even part of D(s) = m2 = s2 + 4

Odd part of D(s) = n2 = 5s

A(w2) = m1m2 – n1n2 |s = jw

= (8s2) (s2 + 4) – (s3 + 15s) (5s) |s = jw

= 3s4 – 43s2 |s = jw = 3w
4 + 43w

2

A(w2) is positive for all w ≥ 0

Since all the three conditions are satisfied, the function is positive real.

Example 12.26 Test whether F(s) = 
2

3

s +1

s + 4s
 is positive real function.

Solution

(i) F(s) =

2

3

( ) 1 ( 1)( 1)
=  =  

( ) ( 2)( 2)4

N s s s j s j

D s s s j s js s

+ + −
+ −+
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The function F(s) has poles at s = 0, s = –j2 and s = j2 and zeros at s = –j1 and s = j1.

Thus, all the poles and zeros are on the jw axis.

(ii) The poles on the jw axis are simple. Hence, residue test is carried out.

F(s) =
2

3

1

4

s

s s

+
+

 = 

2

2

1

( 4)

s

s s

+
+

By partial-fraction expansion, we have

F(s) =
*

1 2 2+ + 
2 2

K K K

s s j s j+ −

The constants K1, K2 and K2* are called residues.

 K1 = s F(s) |s = 0

= 
2

2

0

1

4
s

s

s =

+
+

 = 
1

4

 K2 = (s + j2) F(s) |s = –j2

=
2

2

1

( 2)
s j

s

s s j
=−

+
−

=
4 1

( 2)( 2 2)j j j

− +
− − −

 = 
3

8

 K2
* = K2 

3
=  

8
Thus, residues are real and positive.

(iii) Even part of N(s) = m1 = s2 + 1

 Odd part of N(s) = n1 = 0

 Even part of D(s) = m2 = 0

 Odd part of D(s) = n2 = s3 + 4s

A(w2) = m1m2 – n1n2 |s = jw

= (s2 + 1) (0) – (0) (s3 + 4s) | s = jw = 0

A(w2) is zero for all w ≥ 0

Since all the three conditions are satisfied, the function is positive real.

Example 12.27  Test whether F(s) = 

3 2

2

2s + 2s + 3s + 2

s +1
 is positive real function.

Solution

(i) F(s) =

3 2 3 2

2

( ) 2 2 3 2 2 2 3 2
= 

( ) ( 1) ( 1)1

N s s s s s s s

D s s j s js

+ + + + + +
=

+ −+

Since numerator polynomial cannot be easily factorized, we will prove whether N(s) is Hurwitz.

Even part of N(s) = m(s) = 2s2 + 2

Odd part of N(s) = n(s) = 2s3 + 3s

Fig. 12.4
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By continued fraction expansion, we have

2s2 + )2  2s3 + 3s ( s

2s3 + 2s             _________________

 )s  2s2 + 2 (2s

 2s2
             ______________

  )2 s (
2

s

s       _________

0

Since all the quotient terms are positive, N(s) is Hurwitz. This indicates that zeros are in the left half of the

s plane.

The function F(s) has poles at s = –j1 and s = j1.

Thus, all the poles and zeros are in the left half of the s plane.

(ii) The poles on the jw axis are simple. Hence, residue test is carried out.

 F(s) =

3 2

2

2 2 3 2

1

s s s

s

+ + +
+

As the degree of the numerator is greater than that of the denominator, division is first carried out before

partial-fraction expansion.

s2 + )1  2s3 + 2s2 + 3s + 2 ( 2s + 2

2s3 + 2s____________

          2s2 +   s  + 2

          2s2          + 2   ____________

            s

 F(s) = 2s + 2 + 2 1

s

s +
By partial-fraction expansion, we have

 F(s) = 2s + 2 + 

*
1 1

1 1

K K

s j s j
+

+ −

 K1 = (s + j1) F(s) | s = –j1 = 
1 1

= 
1 1 2

j

j j

−
− −

 K1
* = K1 = 

1

2
Thus, residues are real and positive.

(iii) Even part of N(s) = m1 = 2s2 + 2

Odd part of N(s) = n1 = 2s3 + 3s

Even part of D(s) = m2 = s2 + 1

Odd part of D(s) = n2 = 0

A(w2) = m1m2 – n1n2 |s = jw

= (2s2 + 2) (s2 + 1) – (2s3 + 3s) (0) |s = jw

= 2s4 + 4s2 + 2 |s = jw

= 2(w4 – 2w
2 + 1) = 2(w2 – 1)2

A(w2) ≥ 0 for all w ≥ 0

Since all the three conditions are satisfied, the function is positive real.
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Example 12.28 Test whether F(s) =  
3 2

2

s +6s +7s + 3

s + 2s +1
is positive real function.

Solution (i) F(s) = 

3 2 3 2

2

( ) 6 7 3 6 7 3
= = 

( ) ( 1)( 1)2 1

N s s s s s s s

D s s ss s

+ + + + + +
+ ++ +

Since a numerator polynomial cannot be easily factorized, we will test whether N(s) is Hurwitz.

Even part of N(s) = m(s) = 6s2 + 3

Odd part of N(s) = n(s) = s3 + 7s

By continued fraction expansion, we have

6s2 + )3  s3 + 7s   (
6

s

s3 + 0.5s      ________________________

6.5 )s  6s2 + 3 ( 0 .92s

      6s2
            ___________________

   )3  6.5s ( 2 .17s

   6.5s    _______
   0

Since all the quotient terms are positive, N(s) is Hurwitz. This indicates that the zeros are in the left half of

the s plane.

The function F(s) has a double pole at s = –1

Thus, all the poles and zeros are in the left half of the s plane.

(ii)  There is no pole on the jw axis. Hence, the residue test is not carried out.

(iii) Even part of N(s) = m1 = 6s2 + 3

Odd part of N(s) = n1 = s3 + 7s

Even part of D(s) = m2 = s2 + 1

Odd part of D(s) = n2 = 2s

A(w2) = m1m2 – n1n2 |s = jw

= (6s2 + 3) (s2 + 1) – (s3 + 7s) (2s) |s = jw

= 4s4 – 5s2 + 3 |s = jw = 4w
4 + 5w

2 + 3

A(w2) is positive for all w ≥ 0

Since all the three conditions are satisfied, the function is positive real.

Example 12.29 Test whether F(s) = 
2

2

s + s +6

s + s +1
 is a positive real function.

Solution

(i)  F(s) =

2

2

( ) 6
= 

( ) 1

N s s s

D s s s

+ +

+ +

= 

1 23 1 23

2 2 2 2

1 3 1 3

2 2 2 2

s j s j

s j s j

  
+ + + −    

  
  

+ + + −    
  

The function F(s) has zeros at s = – 
1 23

  
2 2

j±  and poles at s = – 
1 3

  
2 2

j±
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(ii) There is no pole on the jw axis. Hence, the residue test is not carried out.

(iii) Even part of N(s) = m1 = s2 + 6

Odd part of N(s) = n1 = s

Even part of D(s) = m2 = s2 + 1

Odd part of D(s) = n2 = s

A(w2) = m1m2 – n1n2 |s = jw

= (s2 + 6) (s2 + 1) – (s) (s) |s = jw

= s4 + 6s2 + 6 |s = jw = w4 – 6w
2 + 6

For w = 2, A(w2) = 16 – 24 + 6 = –2

This condition is not satisfied.

Hence, the function F(s) is not positive real.

Example 12.30 Test whether F(s) = 
2

3 2

s + 4

s + 3s + 3s +1
 is positive real function.

 Solution

(i)  F(s) =

2

3 2

( ) 4
= 

( ) 3 3 1

N s s

D s s s s

+
+ + +

= 
3

( 2)( 2)

( 1)

s j s j

s

+ −
+

The function F(s) has two zeros at s = ± j2 and three poles at s = –1.

Thus, all the poles and zeros are in the left half of the s plane.

(ii) There is no pole on the jw axis. Hence, the residue test is not carried out.

(iii) Even part of N(s) = m1 = s2 + 4

Odd part of N(s) = n1 = 0

Even part of D(s) = m2 = 3s2 + 1

Odd part of D(s) = n2 = s3 + 3s

A(w2) = m1m2 – n1n2 |s = jw = (s2 + 4) (3s2 + 1) – (0) (s3 + 3s) |s = jw

= 3s4 + 13s2 + 4 |s = jw = 3w
4 – 13w

2 + 4

For w = 1, A(w)2 = 3 – 13 + 4 = –6

This condition is not satisfied.

Hence, the function F(s) is not positive real.

Example 12.31 Test whether F(s) = 
3

4 2

s + 5s

s + 2s +1
  is positive real function.

Solution

(i)  F(s) =

3

4 2

( ) 5

( ) 2 1

N s s s

D s s s

+
=

+ +

= 

2

2 2

( 5)

( 1)

s s

s

+

+
 = 

( 5)( 5)

( 1)( 1)

s s j s j

s j s j

+ −
± ±

The function F(s) has zeros at s = 0, s = ± j 5  and two poles at s = j1 and two poles at s = –j1.

Thus, poles on the jw axis are not simple.

Hence, the function F (s) not positive real.

Example 12.32 Test whether F(s) = 
4 3 2

3 2

s + 3s + s + s + 2

s + s + s +1
is positive real function.
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Solution

F(s) =

4 3 2

3 2

( ) 3 2
= 

( ) 1

N s s s s s

D s s s s

+ + + +
+ + +

Here, it is easier to prove that N(s) and D(s) are Hurwitz.

By Routh array,

s4 1 1 2

s3 3 1

s2
2

3
2

s1 –8

s0 2

Since there is a sign change in the first column of the array, N(s) is not Hurwitz. Thus, all the zeros are not

in the left half of the s plane. The remaining two tests need not be carried out.

Hence, the function F(s) is not positive real.

12.5 ELEMENTARY SYNTHESIS CONCEPTS

We know that impedances and admittances of passive networks are positive real functions. Hence, addition of

impedances of the two passive networks gives a function which is also a positive real function.

Thus, Z(s) = Z1(s) + Z2(s) is a positive real function, if Z1(s) and Z2(s) are positive real functions.

Similarly, Y(s) = Y1(s) + Y2(s) is a positive real function, if Y1(s) and Y2(s) are positive real functions.

There is a special terminology for synthesis procedure. We have,

 Z(s) = Z1(s) + Z2(s)

 Z2(s) = Z(s) – Z1(s)

Here, Z1(s) is said to have been removed from

Z(s) in forming the new function Z2(s). If the

removed network is associated with the pole or zero

of the original network impedance then that pole or

zero is also said to have been removed.

There are four important removal operations.

12.5.1 Removal of a Pole at Infinity

Consider an impedance function Z(s) having a pole at infinity which means that the numerator polynomial is

one degree greater than the degree of the denominator polynomial.

 Z(s) =

1
1 1

1
1 1

n n
n n o

n n
n n o

a s a s a s a

b s b s b s b

+
+

−
−

+ + …+ +

+ + …+ +

= Hs + 

1
1 1

1
1 1

n n
n n o

n n
n n o

c s c s c s c

b s b s b s b

−
−

−
−

+ + …+ +

+ + …+ +

where H =
1n

n

a

b

+

Let Z1(s) = Hs

and Z2(s) =

1
1 1

1
1 1

n n
n n o

n n
n n o

c s c s c s c

b s b s b s b

−
−

−
−

+ + …+ +

+ + …+ +
 = Z(s) – Hs

Fig. 12.5
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Z1(s) = Hs represents impedance of an inductor of value H. Hence, the removal of a pole at infinity

corresponds to the removal of an inductor from the network of Fig. 12.6(a).

If the given function is an admittance function Y(s), then Y1(s) = Hs represents the admittance of a capacitor

YC(s) = Cs. The network for Y1(s) is a capacitor of value C = H as shown in Fig. 12.6(b).

Fig. 12.6 Network interpretation of the removal of a pole at infinity

12.5.2 Removal of a Pole at Origin

If Z(s) has a pole at the origin then it may be written as

 Z(s) =

1
1 1

2
1 2

n n
o n n

m
m

a a s a s a s

b s b s b s

−
−+ + …+ +

+ + …+

=

1
1 2

1
1 2

+ 
n

o n

m
m

K d d s d s

s b b s b s

−

−

+ + …+

+ + …+
 = Z1(s) + Z2(s)

where Ko =  
1

oa

b

 Z1(s) = 
oK

s
 represents the impedance of a capacitor of value 

1

oK
.

If the given function is an admittance function Y(s) then removal of Y1(s) = 
oK

s
 corresponds to an inductor

of value 
1

oK
.

Fig. 12.7 Network interpretation of the removal of a pole at origin

Thus, removal of a pole from the impedance function Z (s) at the origin corresponds to the removal of a

capacitor, and from admittance function Y (s) corresponds to removal of an inductor.

12.5.3 Removal of Conjugate Imaginary Poles

If Z(s) contains poles on the imaginary axis, i.e., at s = ± jw1 then Z(s) will have factors (s + jw1) (s – jw1)

= s2 + w1
2 in the denominator polynomial

 Z(s) = ( )2 2
1 1

( )

( )

p s

s q sω+
By partial-fraction expansion,

 Z(s) =
*

1 1

1 1

+
K K

s j s jω ω+ −
+ Z2(s)

For a positive real function, jw axis poles must themselves be conjugate and must have equal, positive and

real residues.
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K1 = K
*
1

Hence, Z (s) =
1

2 2
1

2K s

s ω+
 + Z2(s)

Thus, Z1 (s) =
1

2 2
1

2K s

s ω+
 = 

2
1

1 1

1 1
= 

2 2

a bY Ys

K K s

ω +
+

where Ya= 
12

s

K
 is the admittance of a capacitor with C = 

1

1

2K

and Yb = 

2
1

12K s

ω
 is the admittance of an inductor with L = 

1

2
1

2K

ω
If the given function is an admittance function Y (s), then

Y1 (s) = 1

2 2 2
1 1

1 1

2 1 1
= = 

2 2

a b

K s

Z Zs s

K K s

ω ω++
+

where Za = 
12

s

K
 is the impedance of an inductor with L = 

1

1

2K
 and Zb = 

2
1

12K s

ω
 is the impedance of a

capacitor with C = 
1

2
1

2K

ω .

Thus, removal of conjugate imaginary poles

from impedance function Z(s) corresponds to the

removal of the parallel combination of L – C and

from admittance function Y(s) corresponds to

removal of series combination of L – C.

12.5.4 Removal of a Constant

If a real number R1 is subtracted from Z (s) such that

 Z2(s) = Z(s) – R1

 Z(s) = R1 + Z2(s)

then R1 represents a resistor.

If the given function is an admittance function Y(s), then removal of Y1(s) = R1 represents a conductance of

value R1.

Thus, removal of a constant from impedance function Z(s) corresponds to the removal of a resistance, and

from admittance function Y(s) corresponds to removal of a conductance.

12.6 PROPERTIES OF LC FUNCTIONS

(1) It is the ratio of odd to even or even to odd polynomials.

(2) The poles and zeros are simple and lie on the jw -axis.

(3) The poles and zeros interlace on the jw -axis.

(4) There must be either a zero or a pole at the origin and infinity.

(5) The difference between any two successive powers of numerator and denominator polynomials is at

most two. There cannot be any missing terms.

Fig. 12.8
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(6) The highest powers of numerator and denominator polynomials must differ by unity; the lowest

powers also differ by unity.

12.7 REALIZATION OF LC FUNCTIONS

There are a number of methods of realizing an LC function. But we will study only four basic forms—

Foster I, Foster II, Cauer I and Cauer II forms. The Foster forms are obtained by partial-fraction expansion of

F(s), and the Cauer forms are obtained by continued fraction expansion of F(s).

12.7.1 Foster Realization

Consider a general LC function F(s) given by

 F(s) =
2 2 2 2

1 3

2 2 2 2
2 4

( ) ( )...

( ) ( )...

H s s

s s s

ω ω
ω ω

+ +

+ +
where 0 ≤ w1

2 < w2
2 < w3

2… and H is positive.

By partial-fraction expansion of F(s), we have

 F(s) =
0 2 2

2 2

+ +
K K K

s s j s jω ω+ −
 + … + K∞ s

Combining terms with conjugate poles,

 F(s) =
0 2

2 2
2

2
+

K K s

s s ω+
 … + K∞ s

where K0, Ki and K∞ are the residues of F(s) at the origin, at jwi and at infinity respectively.

These residues are given by

 K0 = s F(s) |s = 0

 Ki =
2 2

2 2
( ) ( )

2
i

i

s

s F s

s
ω

ω

=−

+

 K∞ =
( )

s

F s

s →∞

(1) Foster I Form If F(s) represents an impedance function, it gives a series connection of impedances.

 F(s) = Z(s) = 
0 2

2 2
2

2
+

K K s

s s ω+
 … + K∞ s = Z1(s) + Z2(s) + … + Zn(s)

The first term 
0K

s
 represents the impedance of a capacitor of 

0

1

K
 farad.

The last term K∞ s represents the impedance of an inductor of K∞ henry.

The remaining terms, i.e., 
2 2

2 i

i

K s

s ω+
 represent the impedance of a parallel combination of capacitor Ci and

inductor Li. For parallel combination of Li and Ci,

Z(s) =
1

1
i

i

C s
L s

+
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= 
2

1

1

i

i i

s
C

s
L C

 
 
 

+
 = 

2 2

2 i

i

K s

s ω+

Ci =
2

21
and  =  

2

i
i

i i

K
L

K ω

Table 12.1

Impedance function Element

0K

s
 = 

0

1

C s

Co = 
1

oK

2 2

2 i

i

K s

s ω+
 = 

2

1

1
i

i i

s
C

s
L C

 
 
 

+
       Li = 2

2 i

i

K

ω

          Ci = 
1

2 iK

K∞ s = Ls

L∞ = K∞

The network corresponding to Foster I form is shown in Fig. 12.9.

Fig. 12.9

If Z(s) has no pole at the origin then capacitor C0 is not present in the network. Similarly, if there is no pole

at ∝, inductor L∞ is not present in the network.

Foster II Form If F(s) represents an admittance function, it gives the parallel combination of admittances.

 F(s) = Y(s) = 
0 2

2 2
2

2
+ 

K K s

s s ω+
 + … + K∞ s

= Y1(s) + Y2(s) + … Yn(s)
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The first term 0K

s
 represents the admittance of an inductor of 

0

1

K
 henry.

The last term K∞ s represents the admittance of a capacitor of K∞ farad.

The remaining terms, i.e., 
2 2

2 i

i

K s

s ω+
  represent the admittance of a series combination of an inductor Li and

a capacitor Ci. For series combination of Li and Ci,

Y(s) =
2 2

2

1

21
= = 

1 1

i i

i
i

i i i

s
L K s

sL s s
C s L C

ω

 
 
 

++ +

 Li =
2

21
and  

2

i
i

i i

K
C

K ω
=

Table 12.2

Admittance function              Element

0K

s
 = 

0

1

L s

2 2

2 i

i

K s

s ω+
 = 

2

1

1
i

i i

s
L

s
L C

 
 
 

+

K∞ s = Cs

The network corresponding to the Foster II form is

shown in Fig. 12.10.

If Y (s) has no pole at the origin then inductor L0 is

not present. Similarly, if there is no pole at infinity,

capacitor C∞ is not present.

12.7.2 Cauer Realization or Ladder Realization

(1) Cauer I Form Since the numerator and denominator polynomials of an LC function always differ in

degrees by unity, there is always a zero or a pole at s = ∞. The Cauer I Form is obtained by successive removal

of a pole or a zero at infinity from the function.

Consider an impedance function Z(s) having a pole at infinity.

By removing the pole at infinity, we get

 Z2(s) = Z(s) – L1s

Now, Z2(s) has a zero at s = ∞. If we invert Z2(s), Y2(s) will have a pole at s = ∞

Fig. 12.10
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By removing this pole,we get

 Y3(s) = Y2(s) – C2 s

Now Y3(s) has a zero at s = ∞, which we can invert and remove. This process continues until the remainder

is zero. Each time we remove a pole, we remove an inductor or a capacitor depending on whether the function

is an impedance or an admittance. The impedance Z(s) can be written as a continued fraction expansion.

Z(s) = L1s + 

2

3
4

1

1

1
C s

L s
C s

+
+

+ …

Thus, the final structure is a ladder network whose series arms are inductors and shunt arms are capacitors.

The Cauer I network is as shown in Fig. 12.11.

Fig. 12.11 Cauer I Network

If the impedance function has zero at infinity, i.e., if degree of numerator is less than that of its denominator

by unity, the function is first inverted and continued fraction expansion proceeds as usual. In this case, the

first element is a capacitor as shown in Fig. 12.12.

Fig. 12.12

(2) Cauer II Form Since the lowest degrees of numerator and denominator polynomials of LC function

must differ by unity, there is always a zero or a pole at s = 0. The Cauer II form is obtained by successive

removal of a pole or a zero at s = 0 from the function.

In this method, continued fraction expansion of Z(s) is carried out in terms of poles at the origin by removal

of the pole at the origin, inverting the resultant function to create a pole at the origin which is removed and this

process is continued until the remainder is zero. To do this, we arrange both numerator and denominator

polynomials in ascending order and divide the lowest power of the denominator into the lowest power of the

numerator. Then we invert the remainder and divide again. The impedance Z (s) can be written as a continued

fraction expansion.

 Z(s) =
1

2

3

4

1 1
+ 

1 1

1 1

1

C s

L s

C s

L s

+
+

+ …
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Thus, the final structure is a ladder network whose first

element is a series capacitor and second element is a shunt

inductor as shown in Fig. 12.13.

If the impedance function has a zero at the origin then the

first element is a shunt inductor and the second element is a

series capacitor as shown in Fig. 12.14.

Thus, the LC function F(s) can be realized in four different

forms. All these forms have the same number of elements and

the number is equal to the number of poles and zeros of F(s)

including any at infinity.

Example 12.33 Realize the Foster and Cauer forms of the following impedance function

 Z(s) =

2 2

2

4(s +1)(s + 9)

s(s + 4)

 Solution The function Z(s) has poles at s = 0 and

s = ± j2 and zeros at s = ± j1 and s = ± j3.

From the pole-zero diagram, it is clear that poles

and zeros are simple and lie on the jw axis. Poles and

zeros are interlaced. Hence, the given function is an

LC function.

(i) Foster I Form The Foster I form is obtained by

partial-fraction expansion of the impedance function

Z(s). But degree of numerator is greater than degree of

denominator. Hence, division is first carried out.

 Z(s) =

2 2 4 2

2 3

4( 1)( 9) 4 40 36
= 

( 4) 4

s s s s

s s s s

+ + + +
+ +

s3 + 4s) 4s4 + 40s2 + 36  (4s

4s4 + 16s2
_____________________________

24s2 + 36

Z(s) = 4s + 

2 2

3 2

24 36 24 36
4

4 ( 4)

s s
s

s s s s

+ +
= +

+ +
By partial-fraction expansion, we have

 Z(s) = 4s + 

*
0 1 1+ + 

2 2

K K K

s s j s j+ −

= 4s + 0 1

2

2

4

K K s

s s
+

+

Fig. 12.13

Fig. 12.14

Fig. 12.15
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where K0 = s Z(s) |s = 0 
= 

4(1)(9)

4
 = 9

K1 =
2

2

4

( 4) ( ) 4( 4 1)( 4 9) 15
=  = 

2 2( 4) 2
s

s Z s

s
=−

+ − + − +
−

Z(s) = 4s + 
2

9 15

4

s

s s
+

+
The first term represents the impedance of an inductor of 4 henry. The second term represents the impedance

of a capacitor of 
1

9
 farad. The third term represents the impedance of a parallel LC network.

For a parallel LC network,

 ZLC(s) =
2

1

1

s
C

s
LC

 
 
 

+

By direct comparison,

C =
1

15
 F

L =
15

4
 H

The network is shown in Fig. 12.16.

(ii) Foster II Form The Foster II form is obtained by

partial-fraction expansion of the admittance function Y (s).

 Y(s) =

2

2 2

( 4)

4( 1)( 9)

s s

s s

+
+ +

By partial-fraction expansion, we have

 Y (s) =

* *
1 1 2 2+ + + 

1 1 3 3

K K K K

s j s j s j s j+ − + −

= 
1 2

2 2

2 2
+ 

1 9

K s K s

s s+ +

where K1 =
2

2

1

( 1) ( 1 4) 3
( ) =  = 

2 8( 1 9) 64
s

s
Y s

s
=−

+ − +
− +

 K2 =
2

2

9

( 9) ( 9 4) 5
( ) =  =  

2 8( 9 1) 64
s

s
Y s

s
=−

+ − +
− +

 Y(s) = 2 2

(3 / 32) (5 / 32)
+ 

1 9

s s

s s+ +
These two terms represent admittance of a series LC network. For a series LC network,

Fig. 12.16
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 YLC(s) =
2

1

1

s
L

s
LC

 
 
 

+
By direct comparison,

 L1 =
32

3
 H  C1 =

3

32
F

 L2 =
32

5
 H  C2 =

5

288
 F

The network is shown in Fig. 12.17.

(iii) Cauer I Form The Cauer I form is obtained from continued fraction expansion about the pole at

infinity.

 Z(s) =

4 2

3

4 40 36

4

s s

s s

+ +
+

Since the degree of the numerator is greater than the degree of the denominator by one, it indicates the

presence of a pole at infinity.

By continued fraction expansion of Z(s), we have

 s3 + 4s ) 4s4 + 40s2 + 36 ( 4s ← Z

4s4 + 16s2
               ____________________________

24s2 + )36  s3 + 4s ( 1

24
 s ← Y

     s3 + 
3

2
s

          _________________________

 
5

2
)s  24s2 + 36 ( 48

5
s ← Z

  24s2
____________________________

        )36  
5

2
s  ( 5

72
 s ← Y

          
5

2
s

              ______

           0

The impedances are connected in series branches

whereas the admittances are connected in  parallel branches

in a Cauer or ladder realisation.

The network is shown in Fig. 12.18.

(iv) Cauer II Form The Cauer II form is obtained from

partial-fraction expansion about pole at origin.

 Z(s) = 

2 2 4 2

2 3

4( 1)( 9) 4 40 36
 =  

( 4) 4

s s s s

s s s s

+ + + +
+ +

The function Z (s) has a pole at origin. Arranging the numerator and denominator polynomials in ascending

order of s, we have

 Z(s) =

2 4

3

36 40 4

4

s s

s s

+ +
+

Fig. 12.17

Fig. 12.18
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By continued fraction expansion of Z(s), we have

 4s + )3
s 36 + 40s2 + 4s4 ( 9

s
← Z

36 +   9s2
               _______________________________

        31s2 + )4
4s  4s +  s3 ( 4

31s
← Y

        4s + 
16

31
s3

                   ____________________________

 
15

31
)3

s   31s2 + 4s4 ( 961

15s
 ← Z

31s2
            _______________________

          )4
4 s  

15

31
 s3 ( 15

124s
 ← Y

      
15

31
s3

    ______

         0

The impedances are connected in series branches

whereas the admittances are connected in parallel

branches in a Cauer or ladder realisation.

The network is shown in Fig. 12.19.

Example 12.34 Realize Foster forms of the LC impedance function

 Z(s) =

2 2

2

(s +1)(s + 3)

s(s + 2)

Solution

(i) Foster I Form The Foster I form is obtained by partial-fraction expansion of the impedance function Z(s).

Since the degree of the numerator is greater than the degree of the denominator, division is first carried out.

 Z(s) =

2 2 4 2

2 3

( 1)( 3) 4 3
=  

( 2) 2

s s s s

s s s s

+ + + +
+ +

s3 + 2s ) s4 + 4s2 + 3 ( s

s4 + 2s2

2s2 + 3

Z(s) = s + 

2

3

2 3

2

s

s s

+
+

 =  s + 

2

2

2 3

( 2)

s

s s

+
+

By partial-fraction expansion, we have

Z(s) = s +

*
0 1 1+ + 

2 2

K K K

s s j s j+ −

= s + 
0 1

2

2
+ 

2

K K s

s s +

Fig. 12.19
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where K0 = s Z (s) |s = 0 = 
(1)(3) 3

= 
2 2

 K1 =
2

2

2

( 2) ( 2 1)( 2 3) 1
( ) =  = 

2 2( 2) 4
s

s
Z s

s
=−

+ − + − +
−

 Z(s) = s + 
2

(3 / 2) (1/ 2)
+ 

2

s

s s +
The first term represents the impedance of an inductor of 1 henry. The second term represents the impedance

of a capacitor of 
2

3
 farad. The third term represents the impedance of a parallel LC network.

For a parallel LC network,

 ZLC (s) =
2

1

1

s
C

s
LC

 
 
 

+

By direct comparison,

 C = 2 F

 L =
1

4
H

The network is shown in Fig. 12.20.

(ii) Foster II Form The Foster II form is obtained by partial-fraction expansion of the admittance function

Y(s).

 Y(s) =

2

2 2

( 2)

( 1)( 3)

s s

s s

+
+ +

By partial-fraction expansion, we have

 Y(s) =

* *
1 1 2 2+  +  +  

1 1 3 3

K K K K

s j s j s j s j+ − + −
= 

1 2

2 2

2 2
+ 

1 3

K s K s

s s+ +

where K1 =
2

2

1

( 1) ( 1 2) 1
( ) =  =  

2 2( 1 3) 4
s

s
Y s

s
=−

+ − +
− +

 K2 =
2

2

3

( 3) 3 2 1
( )

2 2( 3 1) 4
s

s
Y s

s
=−

+ − +
= =

− +

 Y(s) =
2 2

(1/ 2) (1/ 2)
+ 

1 3

s s

s s+ +
These two terms represent admittance of a series LC network. For a series LC network,

 YLC(s) =
2

1

1

s
L

s
LC

 
 
 

+

Fig. 12.20
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By direct comparison,

 L1 = 2 H

 C1 =
1

2
F

 L2 = 2 H

 C2 =
1

6
 F

The network is shown in Fig. 12.21.

Example 12.35 Realize Foster forms of the following LC impedance function

Z(s) =

2 2

2 2

(s +1)(s + 3)

s(s + 2)(s + 4)

Solution

(i) Foster I Form The Foster I form is obtained by partial-fraction expansion of the impedance function Z (s).

By partial-fraction expansion, we have

 Z(s) =

* *
0 1 1 2 2+ + + + 

2 22 2

K K K K K

s s j s js j s j + −+ −

=
0 1 2

2 2

2 2
+ + 

2 4

K K s K s

s s s+ +

where K0 = s Z(s)|s = 0 = 
(1)(3) 3

= 
(2)(4) 8

K1 =
2

2

2

( 2) ( 2 1)( 2 3) 1
( ) =  = 

2 2( 2)( 2 4) 8
s

s
Z s

s
=−

+ − + − +
− − +

 K2 =
2

2

4

( 4) ( 4 1)( 4 3) 3
( ) =  = 

2 2( 4)( 4 2) 16
s

s
Z s

s
=−

+ − + − +
− − +

 Z(s) = 2 2

3 / 8 (1/ 4) (3 / 8)
+  +  

2 4

s s

s s s+ +

The first term represents the impedance of a capacitor of 
8

3
 farad. The other two terms represent the

impedance of a parallel LC network.

For a parallel LC network,

 ZLC (s) =
2

1

1

s
C

s
LC

 
 
 

+

By direct comparison,

 C1 = 4 F

 L1 =
1

8
H

Fig. 12.21
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 C2 =
8

3
F

 L2 =
3

32
H

The network is shown in Fig. 12.22.

(ii) Foster II Form The Foster II form is obtained by

partial-fraction expansion of the admittance function Y(s).

Y(s) =

2 2 5 3

2 2 4 2

( 2)( 4) 6 8
= 

( 1)( 3) 4 3

s s s s s s

s s s s

+ + + +
+ + + +

Since the degree of the numerator is greater than the degree of the denominator, division is first carried out.

s4 + 4s2 + 3 ) s5 + 6s3 + 8s ( s

s5 + 4s3 + 3s
___________________

2s3 + 5s

 Y(s) = s + 

3

4 2

2 5

4 3

s s

s s

+
+ +

 = s + 

3

2 2

2 5

( 1)( 3)

s s

s s

+

+ +
By partial-fraction expansion, we have

 Y(s) = s + 

* *
1 1 2 2+ + + 

1 1 3 3

K K K K

s j s j s j s j+ − + −

= s + 
1 2

2 2

2 2
+ 

1 3

K s K s

s s+ +

where K1 =
2

2

1

( 1) ( 1 2)( 1 4) 3
( )

2 2( 1 3) 4
s

s
Y s

s
=−

+ − + − +
= =

− +

 K2 =
2

2

3

( 3) ( 3 2)( 3 4) 1
( )

2 2( 3 1) 4
s

s
Y s

s
=−

+ − + − +
= =

− +

 Y(s) = s + 2 2

(3 / 2) (1/ 2)
+ 

1 3

s s

s s+ +
The first term represents the admittance of capacitor of 1 F. The other two terms represent admittance of a

series LC network. For a series LC network,

 YLC(s) =
2

1

1

s
L

s
LC

 
 
 

+

By direct comparison,

 L1 =
2

3
 H

 C1 =
3

2
 F

 L2 = 2 H

 C2 =
1

6
 F

Fig. 12.22
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The network is shown in Fig. 12.23.

Fig. 12.23

Example 12.36 Realize Cauer forms of following LC impedance function

 Z(s) =
4 2

3

10s +12s +1

2s + 2s

Solution

(i) Cauer I Form The Cauer I form is obtained from continued fraction expansion about the pole at infinity.

 Z(s) =

4 2

3

10 12 1

2 2

s s

s s

+ +
+

Since the degree of the numerator is greater than the degree of the denominator by one, it indicates the

presence of a pole at infinity.

By continued fraction expansion of Z (s), we have

2s3 + 2s) 10s4 + 12s2+ 1  (5s ← Z

10s4  +  10s2
______________________________

2s2 + )1  2s3 +  2s ( s ← Y

                2s3 +   s               __________________________

)s  2s2  +  1 ( 2s ← Z

        2s2
     ___________________

        )1   s  ( s ← Y

   s_____

   0

The impedances are connected in series branches

whereas the admittances are connected in parallel branches

in a Cauer or ladder realisation.

The network is shown in Fig. 12.24.

(ii) Cauer II Form The Cauer II form is obtained from continued fraction expansion about the pole at the

origin.

 Z(s) =

4 2

3

10 12 1

2 2

s s

s s

+ +
+

The function Z(s) has a pole at the origin. Arranging the numerator and denominator polynomials in

ascending order of s, we have

 Z(s) =

2 4

3

1 12 10

2 2

s s

s s

+ +
+

Fig. 12.24
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By continued fraction expansion of Z(s), we have

2s + )3
2s  1 + 12s2 + 10s4  ( 1

2s
 ← Z

1 +     s2
              _________________________________

   11s2 + )4
10 s  2s + 2s3 ( 2

11s
 ← Y

                          2s + 
20

11
 s3

                          ____________________________

 
2

11 )3
s  11s2 + 10s4 ( 121

2s
← Z

         11s2
             ___________________________

    )4
10s  

2

11
 s3 ( 2

110s
 ← Y

  
2

11
s3

             _______

    0

The impedances are connected in series branches whereas the admittances are connected in parallel branches in

Cauer or ladder realisation.

The network is shown in Fig. 12.25.

Fig. 12.25

Example 12.37 Realize the following network function in Cauer I form

 Z(s) =

4 2

5 3

6s + 42s + 48

s +18s + 48s

Solution The Cauer I form is obtained by continued fraction expansion of Z(s) about the pole at infinity. In

the above function, the degree of the numerator is less than the degree of the denominator which indicates the

presence of a zero at infinity. The admittance function Y(s) has a pole at infinity. Hence, the continued fraction

expansion of Y(s) is carried out.

Y(s) =

5 3

4 2

18 48

6 42 48

s s s

s s

+ +
+ +
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By continued fraction expansion, we have

6s4 + 42s2 + )2
s s5 + 18s3 + 48s (

6

s
← Y

s5 +   7s3 +   8s                          ____________________________________

       11s3 + )40s  6s4 + 42s2 + 48 ( 6

11
s ← Z

     6s4 + 
240

11
 s2

            _____________________________________

              
222

11
s2 + )30  11s3 + 40s ( 121

222
 s ← Y

                 11s3 + 
5808

222
s

___________________________

             
3072

222
)s  

222

11 s2 + 48 ( 49284

33792
 s ← Z

              
222

11
s2

             ___________________________

             )48
3072

222
s ( 128

444
s←Y

       
3072

222
s

    _______

          0

The impedances are connected in series branches whereas the admittances are connected in parallel branches

in a Cauer or ladder realisation.

The network is shown in Fig. 12.26.

 Fig. 12.26

Example 12.38 Realize Cauer II form of the function

 ZLC (s) =
4 2

4 2

s(s + 3s +1)

3s + 4s +1

Solution The Cauer II form is obtained by continued fraction expansion about the pole at the origin. The

given function has a zero at the origin. The admittance function Y(s) has a pole at origin. Hence, the continued

fraction expansion of Y(s) is carried out.Arranging the polynomials in ascending order of s, we have
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 YLC (s) =

4 2 2 4

5 3 3 5

3 4 1 1 4 3
= 

3 3

s s s s

s s s s s s

+ + + +
+ + + +

By continued fraction expansion of Y(s), we have

s + 3s3 + )5
s  1 + 4s2 + 3s4  ( 1

s
 ← Y

1 + 3s2 + s4

        _______________________________

     s2 + )4
2s  s + 3s3 + s5 ( 1

s
 ← Z

    s + 2s3

      ___________________________

           s3 + )5
s  s2 + 2s4 ( 1

s
 ← Y

       s2 +   s4
______________________

    )4
s  s3 + s5 ( 1

s
← Z

    s3
__________________

        )5
s  s4 ( 1

s
 ← Y

    s4

 ______

      0

The impedances are connected in series branches whereas the admittances are connected in parallel branches

in a Cauer or ladder realisation.

The network is shown in Fig. 12.27.

Fig. 12.27

Example 12.39 Obtain the Cauer I form of realization for the function

 ZLC(s) =
5 3

4 2

s +7s +10s

s + 5s + 4

Solution The Cauer I form is obtained by continued fraction expansion of ZLC (s) about pole at infinity.
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s4 + 5s2 + 4 ) s5 + 7s3 + 10s (s ← Z

s5 + 5s3 +   4s
________________________________

2s3 + )6s  s4 + 5s2 + 4 (
2

s
 ← Y

s4 + 3s2
_______________________

       2s2 + 4 ) 2s3 + 6s (s ← Z

      2s3 + 4s      ____________________

 2s ) 2s2 + 4 (s ← Y

        2s2

      ______________

   )4  2s (
2

s
 ← Z

          2s
  __________

           0

The impedances are connected in series branches whereas the admittances are connected in parallel branches

in a Cauer or ladder realisation.

The network is shown in Fig. 12.28.

Fig. 12.28

Example 12.40 Synthesize following LC impedance function in Cauer II form

 Z(s) =
3

4 2

s + 2s

s + 4s + 3

Solution The Cauer II form is obtained by continued fraction expansion about the pole at the origin.

 Z(s) =  

2

2 2

( 2)

( 3)( 1)

s s

s s

+

+ +

But Z(s) has a zero at the origin. Hence, the continued fraction expansion of Y (s) is carried out. Arranging

the polynomials in ascending order of s, we have

 Y(s) =
2 4

3

3 4

2

s s

s s

+ +
+
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By continued fraction expansion of Y (s), we have

2s + )3
s  3 + 4s2 + s4 ( 3

2s
 ← Y

  3 + 
3

2
s2

_____________________________

         
5

2
s2 + )4

s  2s + s3  ( 4

5s
 ← Z

              2s + 
4

5
s3

         __________________________

       )
3

5

s
 

5

2
s2  +  s4   ( 25

2s
 ← Y

                
5

2
s2

              _______________________

              )4
s  

3

5

s
 ( 1

5s
 ← Z

        

3

5

s

                    ______

          0

The impedances are connected in series branches

whereas the admittances are connected in parallel

branches in a Cauer or ladder realisation.

The network is shown in Fig. 12.29.

12.8 PROPERTIES OF RC FUNCTIONS

(1) The poles and zeros are simple and are located on the negative real axis of the s plane.

(2) The poles and zeros are interlaced.

(3) The lowest critical frequency nearest to the origin is a pole.

(4) The highest critical frequency farthest to the origin is a zero.

(5) Residues evaluated at the poles of ZRC (s) are real and positive.

(6) The slope RC

d
Z

dσ
is negative.

(7) ZRC (∞) < ZRC (0).

12.9 REALIZATION OF RC FUNCTIONS

RC functions can also be realized in four different ways. The impedance function of RC networks is given by

 Z(s) =
1 3

2

( )( )

( )

H s s

s s

σ σ
σ

+ + …
+ …

12.9.1 Foster Realization

(i) Foster I Form The Foster I form is obtained by partial-fraction expansion of Z(s).

Fig. 12.29
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 Z(s) =
0 1 2

1 2

+ + 
K K K

s s sσ σ+ +
 + ... +K∞

where K0, K1, K2, … K∞ are residues of Z(s).

 Ko = s Z(s) | s = 0

 Ki = (s + si) Z(s) | s = –s i

 K∞ =
( )

s

Z s

s →∞

The first term 
0K

s
 represents the impedance of a capacitor of 

1

oK
 farads.

The last term K∞ represents the impedance of a resistor of K∞ ohms.

The remaining terms, i.e., 
i

i

K

s σ+
 represent the impedance of the parallel combination of resistor Ri and

capacitor Ci. For parallel combination of Ri and Ci,

Z(s) =

1

 = 
1

i
i i

i
i

i

R
C s K

s
R

C s

σ

 
 
 

++

Ri =
1

and   = i
i

i i

K
C

Kσ

Table 12.3

Impedance function Element

0

0

1
= 

K

s C s

1
( )

= 
1

i
ii

i
i

i

R
C sK

s
R

C s

σ

 
 
 

+ +

K∞ = R∞

The network corresponding to the Foster I form is shown in Fig. 12.30.

Fig. 12.30



12.42 Electrical Networks

(ii) Foster II Form The Foster II form is obtained by partial fraction expansion of Y(s). Since Y(s) = 
1

( )Z s

has negative residue at its pole, Foster II form is obtained by expanding 
( )Y s

s
 .

( )Y s

s
=

1 ( )

n
o i

ii

K K
K

s s σ ∞
=

+ +
+∑

Multiplying this equation by s,

 Y(s) = Ko + 
1 ( )

n
i

ii

K s

s σ= +∑ + K∞ s

The first term Ko represents the conductance of a resistor of 
1

oK
 ohms.

The last term K∞ s represents the admittance of a capacitor of K∞ farads.

The remaining terms, i.e., 
i

i

K s

s σ+  represent the admittance of series combination of resistor Ri and capacitor

Ci with Ri = 
1

iK
 ohms and Ci = 

i

i

K

σ  farads.

Table 12.4

Admittance function Element

K0 = 
0

1

R

1

=  
1

ii

i

i i

s
RK

s
s

R C

ω

 
 
 

+ +

K∞ s = C∞ s

The network corresponding to the Foster II form is shown in Fig. 12.31.

Fig. 12.31

12.9.2 Cauer Realization

(i) Cauer I Form The Cauer I form is obtained by removal of the pole from the impedance function Z(s) at

s = ∞. This is the same as a continued fraction expansion of the impedance function about infinity. The

impedance Z(s) can be written as a continued fraction expansion.
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Z (s) = R1 + 

2

3
4

1

1

1
C s

R
C s

+
+

+ …
The network is shown in Fig. 12.32.

In the network shown in Fig. 12.32, if Z(s) has a zero at

s = ∞, the first element is the capacitor C1. If Z(s) is a constant

at s = ∞, the first element is R1. If Z(s) has a pole at s = 0, the

last element is Cn. If Z(s) is a constant at s = 0, the last

element is Rn.

(ii) Cauer II Form The Cauer II form is obtained by removal of the pole from the impedance function at

the origin. This is the same as a continued fraction expansion of an impedance function about the origin.

If the given impedance function has a pole at the origin, it is removed as a capacitor C1. The reciprocal of

the remainder function has a minimum value at s = 0 which is removed as a constant of resistor R2. If the

original impedance has no pole at the origin, then the first capacitor is absent and the process is repeated with

the removal of the constant corresponding to the resistor R2.

The impedance Z(s) can be written as a continued fraction expansion.

 Z(s) =
1

2

3

4

1 1
+ 

1 1

1 1

1

C s

R

C s

R

+
+

+ …

The network is shown in Fig. 12.33.

In the network shown in Fig. 12.33, if Z (s) has a

pole at s = 0, the first element is C1. If Z (s) is a

constant at s = 0, the first element is R2. If Z (s) has

a zero at s = ∞, the last element is Cn. If Z (s) is

constant at s = ∞, the last element is Rn.

Example 12.41 Realize the Foster and Cauer forms of the following impedance function

 Z(s) =
(s + 1)(s + 3)

s(s + 2)

Solution The function Z(s) has poles at s = 0 and s = –2 and zeros at s = –1 and s = –3.

From the pole-zero diagram, it is clear that poles and zeros

are simple and lie on the negative real axis. The poles and

zeros are interlaced and the lowest critical frequency nearest

to the origin is a pole. Hence, the function Z(s) is an R-C

function.

(1) Foster I Form The Foster I form is obtained by partial

fraction expansion of impedance function Z(s). Since the

degree of the numerator is greater than the degree of the

denominator, division is first carried out

Z(s) =

2

2

4 3

2

s s

s s

+ +
+

Fig. 12.32

Fig. 12.33

Fig. 12.34
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 s2 + 2s ) s2 +  4s + 3 ( 1

s2 +  2s__________________

 2s + 3

Z(s) = 1 + 2

2 3 2 3
 =  1 +  

( 2)2

s s

s ss s

+ +
++

By partial-fraction expansion, we have

Z(s) = 1 + 
1 2+ 

2

K K

s s +

where K1 = s Z(s) | s = 0 = 
(1)(3)

2
 = 

3

2

 K2 = (s + 2) Z (s) | s = –2 = 
(–2 1)(–2 3)

–2

+ +
=

1

2

 Z(s) = 1 + 
3/ 2 1/ 2

+ 
2s s +

The first term represents the impedance of a resistor of 1 Ω. The second term represents the impedance of

a capacitor of 
2

3
F. The third term represents the impedance of parallel RC circuit for which

 ZRC(s) =

1

1
i

i i

C

s
R C

+

By direct comparison,

R =
1

4
Ω

C = 2 F

The network is shown in Fig. 12.35.

(2) Foster II Form The Foster II form is obtained by the partial-fraction expansion of admittance function

( )Y s

s
.

 Y(s) =
1 ( 2)

( ) ( 1)( 3)

s s

Z s s s

+
=

+ +
( )Y s

s
=

2

( 1)( 3)

s

s s

+
+ +

By partial-fraction expansion, we have

( )Y s

s
= 1 2+ 

1 3

K K

s s+ +

where K1 =
–1

( )
( 1)

s

Y s
s

s =
+  = 

( 1 2) 1
= 

( 1 3) 2

− +
− +

 K2 =
–3

( ) ( 3 2) 1
( 3)

( 3 1) 2s

Y s
s

s =

− +
+ = =

− +

( )Y s

s
=

1/ 2 1/ 2

1 3s s
+

+ +

 Y(s) =

1 1

2 2+
1 3

s s

s s+ +

Fig. 12.35
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These two terms represent the admittance of a series RC circuit. For a series RC circuit.

 YRC (s) =

1

1

i

i i

s
R

s
R C

 
 
 

+

By direct comparison,
 R1 = 2 Ω

 C1 =
1

2
F

 R2 = 2 Ω

 C2 =
1

6
F

The network is shown in Fig. 12.36.

(3) Cauer I Form The Cauer I form is obtained by continued fraction expansion about the pole at infinity.

 Z(s) =
2

2

4 3

2

s s

s s

+ +
+

  s2 + 2s )  s2 + 4s + 3 ( 1 ← Z

               s2 + 2s               _________________________

      2s + )3  s2 + 2s (
2

s ← Y

           s2 + 
3

2

s

         _____________________

    )
2

s
 2s + 3 ( 4  ← Z

            2s          ___________________

     )3  
2

s ( 
6

s
 ← Y

            
2

s

         _____

            0

The impedances are connected in series branches whereas admittances are connected in parallel branches.

The network is shown in Fig. 12.37.

Fig. 12.37

(4) Cauer II Form The Cauer II form is obtained from continued fraction expansion about the pole at the

origin. Arranging the numerator and denominator polynomials of Z(s) in ascending order of s, we have

 Z(s) =
2

2

3 4

2

s s

s s

+ +
+

Fig. 12.36
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2s + )2
s 3 + 4s + s2  ( 3

2s
 ← Z

3 + 
3

2

s

             __________________________

5

2

s
 + )2

s  2s + s2 ( 4

5
 ← Y

                         2s + 
2

4

5

s

        _________________________

            )
2

5

s
 

5

2

s
 + s2 ( 25

2s
 ← Z

          
5

2

s

          _____________________

       )2
s   

2

5

s
 ( 1

5
 ← Y

  
2

5

s

             ______

                                0

The impedances are connected in series branches whereas

admittances are connected in parallel branches.  The network

is shown in Fig. 12.38.

Example 12.42 Determine the Foster form of realization of the RC impedance function.

 Z(s) =
(s + 1)(s + 3)

s(s + 2)(s + 4)
Solution

(1) Foster I Form The Foster I form is obtained by the partial-fraction expansion of the impedance function

Z(s).

By partial-fraction expansion, we have

 Z(s) =
0 1 2+ + 

2 4

K K K

s s s+ +

where K0 = s Z(s) |s = 0 = 
(1)(3) 3

 =  
(2)(4) 8

 K1 = (s + 2) Z(s) | s = –2 = 
( 2 1)( 2 3)

( 2)( 2 4)

− + − +
− − + = 

( 1)(1) 1
=  

( 2)(2) 4

−
−

 K2 = (s + 4) Z (s)|s = –4

=
( 4 1)( 4 3)

( 4)( 4 2)

− + − +
− − +  = 

( 3)( 1) 3
=  

( 4)( 2) 8

− −
− −

 Z(s) =

3 31

8 84+  +  
2 4s s s+ +

The first term represents the impedance of a capacitor of 
8

3
F. The remaining terms represent the impedance

of a parallel RC circuit for which

Fig. 12.38
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 ZRC(s) =

1

1
i

i i

C

s
R C

+

By direct comparison,

 R1 =
1

8
Ω

 C1 = 4 F

 R2 =
3

32
Ω

 C2 =
8

3
 F

The network is shown in Fig. 12.39.

(2) Foster II Form The Foster II form is obtained by partial-fraction expansion of admittance function
( )Y s

s
.

 Y(s) =
( 2)( 4)

( 1)( 3)

s s s

s s

+ +
+ +

( )Y s

s
= 

2

2

( 2)( 4) 6 8
=  

( 1)( 3) 4 3

s s s s

s s s s

+ + + +
+ + + +

Since the degree of the numerator is equal to the degree of the denominator, division is carried out first.

         s2 + 4s + 3 ) 2

2

6 8 (1

4 3

2 5

s s

s s

s

+ +

+ +
+

( )Y s

s
= 1 + 2

2 5

4 3

s

s s

+
+ +

= 1 + 
2 5

( 1)( 3)

s

s s

+
+ +

By partial-fraction expansion, we have

( )Y s

s
= 1 + 

1 2+ 
1 3

K K

s s+ +

where  K1 =  (s + 1)
1

( )

s

Y s

s = −

=
( 1 2)( 1 4)

( 1 3)

− + − +
− +  = 

(1)(3) 3

2 2
=

K2 = (s + 3) 
3

( )

s

Y s

s =−

=
( 3 2)( 3 4) ( 1)(1) 1

( 3 1) ( 2) 2

− + − + −
= =

− + −

( )Y s

s
= 1 

3 1

2 2+  +  
1 3s s+ +

Fig. 12.39
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 Y(s) = s + 

3 1

2 2+ 
1 3

s s

s s+ +
The first term represents the admittance of a capacitor of 1 F. The other two terms represent the admittance

of a series RC circuit. For a series RC circuit

 YRC(s) =

1

1

i

i i

s
R

s
R C

 
 
 

+

By direct comparison,

 R1 =
2

3
 Ω

 C1 =
3

2
 F

 R2 = 2 Ω

 C2 =
1

6
 F

The network is shown in Fig. 12.40.

Example 12.43 Realize Foster forms of the following RC impedance function

 Z(s) =
2(s + 2)(s + 4)

(s + 1)(s + 3)

Solution

(1) Foster I Form The Foster I form is obtained by the partial-fraction expansion of the impedance function

Z(s). Since the degree of the numerator is equal to the degree of the denominator, division is carried out first.

 Z(s) =

2

2

2 12 16

4 3

s s

s s

+ +
+ +

s2 + 4s + 3 ) 2s2 + 12s + 16 ( 2

2s2 +   8s + 6
_____________________

    4s + 10

 Z(s) = 2 + 
2

4 10

4 3

s

s s

+
+ +

 = 2 + 
4 10

( 1)( 3)

s

s s

+
+ +

By partial-fraction expansion, we have

 Z(s) = 2 + 
1 2+  
1 3

K K

s s+ +

 K1 = (s + 1) Z(s) | s = –1 = 
2(–1 2)(–1 4)

(–1 3)

+ +
+

= 3

 K2 = (s + 3) Z(s) | s = –3 = 
2(–3 2)(–3 4)

(–3 1)

+ +
+

= 1

 Z(s) = 2 + 
3 1

+ 
1 3s s+ +

Fig. 12.40
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The first term represents the impedance of a resistor of 2 Ω. The remaining terms represent the impedance

of a parallel RC circuit for which

 ZRC(s) =

1

1
i

i i

C

s
R C

+
By direct comparison,

 R1 = 3 Ω

 C1 =
1

3
 F

 R2 =
1

3
Ω

 C2 = 1 F

The network is shown in Fig. 12.41.

(2) Foster II Form The Foster II form is obtained by partial-fraction expansion of admittance function
( )Y s

s
.

Y (s) =
( 1)( 3)

2( 2)( 4)

s s

s s

+ +
+ +

( )Y s

s
=  

( 1)( 3)

2 ( 2)( 4)

s s

s s s

+ +
+ +

By partial-fraction expansion, we have

( )Y s

s
=

0 1 2+ + 
2 4

K K K

s s s+ +

where K0 = s 
( )Y s

s
| s = 0

=
(1)(3)

(2)(2)(4)
 = 

3

16

 K1 = (s + 2) 
2

( )

s

Y s

s = -

=
( 2 1)( 2 3) ( 1)(1) 1

=  
2( 2)( 2 4) 2( 2)(2) 8

− + − + −
=

− − + −

 K2 = (s + 4) 
4

( )

s

Y s

s =−

=
( 4 1)( 4 3) ( 3)( 1) 3

=  
2( 4)( 4 2) 2( 4)( 2) 16

− + − + − −
=

− − + − −

( )Y s

s
=

3 1 3

16 8 16+ + 
2 4s s s+ +

 Y (s) =

1 3

3 8 16+ + 
16 2 4

s s

s s+ +

Fig. 12.41
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The first term represents the admittance of a resistor of 
16

3
Ω. The other two terms represent the admittance

of a series RC circuit. For a series RC circuit.

 YRC(s) =

1

1

i

i i

s
R

s
R C

æ ö
ç ÷è ø

+
By direct comparison,

 R1 = 8 Ω

 C1 =
1

16
F

 R2 =
16

3
Ω

 C2 =
3

64
F

The network is shown in Fig. 12.42.

Example 12.44 Obtain the Cauer forms of the following RC impedance function

Z(s) =
(s + 2)(s + 6)

2(s + 1)(s + 3)

Solution

(1) Cauer I Form The Cauer I form is obtained by continued fraction expansion about the pole at infinity.

 Z(s) =

2

2

8 12

2 8 6

s s

s s

+ +
+ +

By continued fraction expansion, we have

2s2 + 8s + )6  s2 + 8s + 12 (
1

2
 ← Z

 s2 + 4s +   3     ____________________________

4s + )9  2s2 + 8s + 6 (
2

s
 ← Y

     2s2 + 
9

2
 s

           ____________________________

        
7

2
 s + )6  4s + 9 (

8

7
 ← Z

                   4s + 
48

7                         __________________________

     )
15

7
 
7

2
s + 6 (

49

30
 s ← Y

               
7

2
s

                          __________________

        )6  
15

7
 (

5

14
 ← Z

  
15

7_____

    0

Fig. 12.42
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The impedances are connected in series branches whereas

the admittances are connected in parallel branches.  The

network is shown in Fig. 12.43.

(2) Cauer II Form The Cauer II form is obtained by continued

fraction expansion about the pole at the origin. Arranging the

polynomials in ascending order of s, we have

 Z(s) =

2

2

12 8

6 8 2

s s

s s

+ +
+ +

By continued fraction expansion, we have

6 + 8s + 2s2 ) 12 +   8s +   s2 ( 2

12 + 16s + 4s2
   _______________

                                                –   8s – 3s2

Since negative term results, continued fraction expansion of Y(s) is carried out.

Y(s) =

2

2

6 8 2

12 8

s s

s s

+ +
+ +

By continued fraction expansion, we have

12 + 8s + )2
s  6 + 8s + 2s2 (

1

2
 ← Y

 6 + 4s + 
1

2
 s2

  _______________________________

  4s + 
3

2
 )2
s  12 + 8s + s2 (

3

s
 ← Z

           12 + 
9

2
s

_________________________________

             
7

2
 s + )2

s  4s + 
3

2
 + s2 (

8

7
 ← Y

                        4s + 
8

7
 s2

                ___________________________

     
5

14
)2

s  
7

2
 s + s2 (

49

5s
 ← Z

           
7

2
s

         ________________________

                           )2
s    

5

14
s2  (

5

14
 ← Y

  
5

14
s

            ________

     0

The impedances are connected in series branches, whereas

the admittances are connected in parallel branches. The

network is shown in Fig. 12.44.

Fig. 12.43

Fig. 12.44
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Example 12.45 Realize the R-C impedance in Cauer I and Foster I forms

 Z(s) =
s + 4

(s + 2)(s + 6)
Solution

(1) Cauer I Form The Cauer I form is obtained by continued fraction expansion of Z(s) about the pole at

infinity. In the above function, the degree of the numerator is less than the degree of the denominator which

indicates presence of a zero at infinity. Hence, the admittance function Y(s) has a pole at infinity.

 Y(s) =

2
8 12

4

s s

s

+ +
+

By continued fraction expansion, we have

s + 4 ) s2 + 8s + 12 ( s ← Y

s2 + 4s     _____________________

4s + )12  s + 4 (
1

4
 ← Z

       s + 3       ________________________

 )1  4s + 12 ( 4s ← Y

        4s      ___________________

)12 1 (
1

12
 ← Z

1         _______
0

The impedances are connected in series branches,

whereas the admittances are connected in parallel

branches.  The network is shown in Fig. 12.45.

(2) Foster I Form The Foster I form is obtained by partial fraction expansion of Z(s).

 Z(s) =
4

( 2)( 6)

s

s s

+
+ +

By partial-fraction expansion, we have

 Z(s) =
1 2+ 
2 6

K K

s s+ +
where K1 = (s + 2) Z(s)| s =

 
–2

=
( 2 4)

( 2 6)

- +
- +  = 

1

2
 K2 = (s + 6) Z (s)| s = –6

=
( 6 4)

( 6 2)

- +
- +  = 

1

2

 Z(s) =
1 / 2 1 / 2

+ 
2 6s s+ +

These two terms represent the impedance of a parallel RC circuit for which

 ZRC (s) =

1

1
i

i i

C

s
R C

+

Fig. 12.45
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By direct comparison,

 R1 =
1

4
 Ω

 C1 = 2 F

 R2 =  
1

12
Ω

 C2 = 2 F

The network is shown in Fig. 12.46.

Example 12.46 The RC driving-point impedance function is given as

 Z(s) = H 
(s + 1)(s + 4)

s(s + 3)

Realize the impedance function in the ladder form, given

Z(–2) = 1

Solution Putting s = – 2

Z(–2) = H 
( 2 1)( 2 4)

( 2)( 2 3)

- + - +
- - +

= H

 H = 1

Z(s) =
( 1)( 4)

( 3)

s s

s s

+ +
+

 (1) Cauer I Form The Cauer I form is obtained by continued fraction expansion of Z(s) about the pole at

infinity.

By continued fraction expansion of Z(s), we have

s2 + )3s  s2 + 5s + 4 ( 1  ← Z

s2 + 3s     __________________________

2s + )4    s2 + 3s  (
2

s
 ← Y

s2 + 2s           _____________________

        )s  2s + 4 ( 2 ← Z

  2s             ____________________

         )4  s (
4

s
 ← Y

 s___

  0

The impedances are connected in series branches

whereas admittances are connected in parallel branches.

The network is shown in Fig. 12.47.

(2) Cauer II Form The Cauer II form is obtained by

continued fraction expansion about the pole at the origin.

Arranging the polynomials in ascending order of s, we have

Z(s) =

2

2

4 5

3

s s

s s

+ +
+

Fig. 12.46

Fig. 12.47
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By continued fraction expansion, we have

3s + )2
s 4 +  5s    +  s2 (

4

3s
 ←  Z

4 + 
4

3

s

       _____________________________

      
11

3

s
 + )2

s   3s +      s2 (
9

11
 ← Y

              3s + 
9

11
s2

     _____________________________

  
2

11
)2

s   
11

3
s + s2 (

121

6s
 ← Z

   
11

3
s

              _______________________

       )2
s  

2
2

11

s
 (

2

11
 ← Y

        

2
2

11

s

                          _______

           0

The network is shown in Fig. 12.48.

Fig. 12.48

Example 12.47 An impedance function has the pole-zero diagram as shown. Find the impedance  function

such that Z(–4) 
3

= 
4

 and realize in Cauer I and Foster II forms.

Fig. 12.49

Solution The function Z(s) has poles at s = 0 and s = –2 and zeros at s = –1 and s = –3.

 Z(s) = H 
( 1)( 3)

( 2)

s s

s s

+ +

+
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Putting s = – 4

Z(– 4) = H 
( 4 1)( 4 3)

( 4)( 4 2)

- + - +
- - +  = H 

( 3)( 1) 3
= 

( 4)( 2) 8

- -
- - H

3

4
=

3

8
H

 H = 2

 Z(s) =

2

2

2( 1)( 3) 2 8 6

( 2) 2

s s s s

s s s s

+ + + +
=

+ +
(1) Cauer I Form The Cauer I form is obtained by continued fraction expansion of Z(s) about the pole at infinity.

By continued fraction expansion of Z(s), we have

s2 + 2 )s  2s2 + 8s + 6 ( 2 ← Z

2s2 + 4s   ______________________

4s + )6   s2 + 2s (
4

s
 ← Y

      s2 + 
3

2
s

     _______________________

)1

2
s  4s + 6 ( 8  ← Z

  4s        _____________________

         )6  
1

2
s  (

12

s
  ← Y

    
1

2
s

_____

    0

The impedances are connected in series branches whereas

admittances are connected in parallel branches.  The network is

shown in Fig. 12.50.

(2) Foster II Form The Foster II form is obtained by partial

fraction expansion of 
( )Y s

s
.

( )Y s

s
=

2

2( 1)( 3)

s

s s

+
+ +

( )Y s

s
= 1 2+ 

1 3

K K

s s+ +

where K1 = (s + 1) 
1

( )

s

Y s

s = -
= 

( 1 2) 1
= 

2( 1 3) 4

- +
- +

 K2 = (s + 3) 
3

( )

s

Y s

s = -

=
( 3 2) 1

2( 3 1) 2( 2)

- + -=
- + -

 = 
1

4

( )Y s

s
=

1 1

4 4+  
1 3s s+ +

Fig. 12.50
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 Y(s) =

1 1

4 4+ 
1 3

s s

s s+ +
Two terms represent the admittance of a series RC circuit. For a series RC circuit,

 YRC(s) =

1

1

i

i i

s
R

s
R C

æ ö
ç ÷è ø

+

By direct comparison,

 R1 = 4 Ω

 C1 =
1

4
F

 R2 = 4Ω

 C2 =
1

12
F

The network is shown in Fig. 12.51.

12.10 PROPERTIES OF RL FUNCTIONS

The admittance of an inductor is similar to the impedance of a capacitor. Hence, we can conclude that the

properties of an RL admittance are identical to those of an RC impedance and vice-versa, i.e.,

 ZRC(s) = YRL(s)

 ZRL(s) = YRC(s)

An RL admittance can be considered as the dual of an RC impedance and vice-versa.

12.10.1 Properties of RL Impedance Functions

(1) The poles and zeros are simple and are located on the negative real axis of the s plane.

(2) The poles and zeros are interlaced.

(3) The lowest critical frequency is a zero which may be at s = 0.

(4) The highest critical frequency is a pole which may be at infinity.

(5) Residues evaluated at the poles of ZRL(s) are real and negative while that of  
( )RLZ s

s
 are real and

positive.

(6) The slope RL

d
Z

ds
is positive.

(7) ZRL (0) < ZRL (∞).

Example 12.48 Indicate which of the following functions are either RL, RC or LC impedance functions.

(i) Z(s) = 
4(s + 1)(s + 3)

s(s + 2)
(ii) Z(s) = 

s(s + 4)(s + 8)

(s + 1)(s + 6)

(iii) Z(s) = 
(s + 1)(s + 4)

s(s + 2)
(iv) Z(s) = 

2(s + 1)(s + 3)

(s + 2)(s + 16)

Fig. 12.51
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Solution (i) Z(s) =
4( 1)( 3)

( 2)

s s

s s

+ +
+

This is an RC impedance function since (i) poles and zeros are on the negative real axis, (ii) they are

interlaced, and (iii) critical frequency nearest to the origin is a pole.

(ii) Z(s) =
( 4)( 8)

( 1)( 6)

s s s

s s

+ +
+ +

This is an RL impedance function as (i) poles and zeros are on the negative real axis, (ii) they are interlaced,

and (iii) critical frequency nearest to the origin is a zero.

(iii) Z(s) =  
( 1)( 4)

( 2)

s s

s s

+ +
+

This is an RC impedance function since (i) poles and zeros are on the negative real axis, (ii) they are

interlaced, and (iii) critical frequency nearest to the origin is a pole.

(iv) Z(s) =
2( 1)( 3)

( 2)( 6)

s s

s s

+ +
+ +

This is an RL impedance function as (i) poles and zeros are on the negative real axis, (ii) they are interlaced,

and (iii) critical frequency nearest to the origin is a zero.

Example 12.49 Synthesize following RL impedance function in Foster-I and Foster-II form.

 Z(s) =
2(s + 1)(s + 3)

(s + 2)(s + 6)

Solution

(1) Foster I Form The Foster I form is obtained by partial-fraction expansion of the impedance function Z(s).

By partial-fraction expansion, we have

 Z(s) =
1 2+
2 6

K K

s s+ +
where K1 = (s + 2) Z (s) |s = –2

=
2( 2 1)( 2 3)

( 2 6)

- + - +
- +  = 

1
 

2
-

 K2 = (s + 6) Z (s) | s = –6

=
2( 6 1)( 6 3)

( 6 2)

- + - +
- +

 = – 
15

2

Since residues of Z (s) are negative, partial fraction expansion of 
( )Z s

s
 is carried out.

( )Z s

s
= 

2( 1)( 3)

( 2)( 6)

s s

s s s

+ +
+ +

By partial fraction expansion, we have

( )Z s

s
=

0 1 2+ + 
2 6

K K K

s s s+ +
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where K0 = s 

0

( )

s

Z s

s =

 = 
2(1)(3) 1

= 
(2)(6) 2

 K1 = (s + 2) 

2

( )

s

Z s

s = -

=
2( 2 1)( 2 3) 1

=  
(2)( 2 6) 4

- + - +
- +

 K2 = (s + 6) 

6

( )

s

Z s

s = -

=
2( 6 1)( 6 3) 5

= 
( 6)( 6 2) 4

- + - +
- - +

( )Z s

s
=

1 1 5

2 4 4

2 6s s s
+ +
+ +

 Z(s) =

1 5

1 4 4

2 2 6

s s

s s
+ +

+ +

The first term represents the impedance of the resistor of 
1

2
Ω. The other two terms represent the impedance

of the parallel RL circuit for which

 ZRL(s) =
i

i

i

R s

R
s

L
+

By direct comparison,

R1 =
1

4
Ω

L1 =
1

8
H

R2 =
5

4
Ω

L2 =
5

24
H

The network is shown in Fig. 12.52.

(2) Foster II Form The Foster II form is obtained by partial fraction expansion of Y (s). Since the degree

of the numerator is equal to the degree of the denominator, division is first carried out.

Y(s) =

2

2

( 2)( 6) 8 12
= 

2( 1)( 3) 2 8 6

s s s s

s s s s

+ + + +
+ + + +

Fig. 12.52
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2s2 + 8s + )6  s2 + 8s + 12 (
1

2

s2 + 4s +   3                                   _____________

 4s +   9

 Y(s) = 2

1 4 9
+ 

2 2 8 6

s

s s

+
+ +

=
1 4 9

+ 
2 2( 1)( 3)

s

s s

+
+ +

By partial-fraction expansion, we have

 Y1(s) =
0 14 9

 =  + 
2( 1)( 3) 1 3

K Ks

s s s s

+
+ + + +

where  K0 =  (s + 1) Y1 (s)|s = –1 = 
( 4 9) 5

= 
2( 1 3) 4

- +
- +

 K1 = (s + 3) Y1 (s)|s = –3 = 
( 12 9)

2( 3 1)

- +
- +  = 

3

4

 Y(s) =

5 3

1 4 4+  + 
2 1 3s s+ +

The first term represents the admittance of a resistor of 2 Ω. The other two terms represent the admittance

of a series RL circuit. For a series RL circuit,

 YRL(s) =

1

i

i

i

L

R
s

L
+

By direct comparison,

 R1 =
4

5
Ω

 L1 =
4

5
 H

 R2 = 4 Ω

 L2 =
4

3
H

The network is shown in Fig. 12.53.

Example 12.50 Find the Foster forms of the following RL impedance function

 Z(s) =
(s + 1)(s + 4)

(s + 5)(s + 3)

Solution

(1) Foster I Form The Foster I form is obtained by partial-fraction expansion of impedance function
( )Z s

s
.

( )Z s

s
= 

( 1)( 4)

( 5)( 3)

s s

s s s

+ +
+ +

Fig. 12.53
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By partial-fraction expansion, we have

( )Z s

s
=

0 1 2+  +  
3 5

K K K

s s s+ +

where K0 = s 
0

( )

s

Z s

s =
= 

(1)(4) 4
= 

(5)(3) 15

 K1 = (s + 3) 

3

( )

s

Z s

s = -
 = 

( 3 1)( 3 4) (–2)(1) 1
= 

( 3)( 3 5) (–3)(2) 3

- + - + =
- - +

 K2 = (s + 5) 

5

( )

s

Z s

s = -

=
( 5 1)( 5 4) ( 4)( 1) 2

= = 
( 5)( 5 3) ( 5)( 2) 5

- + - + - -
- - + - -

( )Z s

s
=

4 1 2

15 3 5

3 5s s s
+ +
+ +

 Z(s) =

1 2

4 3 5+ + 
15 3 5

s s

s s+ +
The first term represents the impedance of the resistor of 

4

15
Ω. The other two terms represent the impedance

of a parallel RL circuit for which

 ZRL(s) =
i

i

i

R s

R
s

L
+

By direct comparison,

R1 =
1

3
Ω

L1 =
1

9
H

R2 =
2

5
Ω

L2 =
2

25
H

The network is shown in Fig. 12.54.

(2) Foster II Form The Foster II form is obtained by partial fraction expansion of Y (s). Since the degree

of the numerator is equal to the degree of the denominator, division is first carried out.

 Y(s) =

2

2

( 5)( 3) 8 15
= 

( 1)( 4) 5 4

s s s s

s s s s

+ + + +
+ + + +

s2 + 5s + 4 ) s2 + 8s + 15 ( 1

s2 + 5s +   4
     __________

3s + 11

Fig. 12.54
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 Y(s) = 1 + 
3 11

( 1)( 4)

s

s s

+
+ +

By partial-fraction expansion, we have

 Y1(s) =
0 1+ 
1 4

K K

s s+ +

where K0 = (s + 1) Y1(s)| s = –1 = 
( 3 11) 8

= 
( 1 4) 3

- +
- +

 K1 = (s + 4) Y1 (s)| s = –4 = 
( 12 11) 1

= 
( 4 1) 3

- +
- +

Y1(s) =

8 1

3 3+  
1 4s s+ +

 Y(s) = 1 + 

8 1

3 3+ 
1 4s s+ +

The first term represents the admittance of a resistor of 1 Ω. The other two terms represent the admittance

of a series RL circuit. For a series RL circuit,

 YRL(s) =

1

i

i

i

L

R
s

L
+

By direct comparison,

 R1 =
3

8
 Ω

 L1 =
3

8
H

 R2 = 12 Ω
 L2 = 3 H

The network is shown in Fig. 12.55.

Example 12.51 Find the Cauer forms of the RL impedance function.

 Z(s) =
2( 1)( 3)

( 2)( 6)

s s

s s

+ +
+ +

Solution

(1) Cauer I Form The Cauer I form is obtained by a continued fraction expansion of Z(s) about the pole at

infinity.

 Z(s) =
2

2

2( 1)( 3) 2 8 6
= 

( 2)( 6) 8 12

s s s s

s s s s

+ + + +
+ + + +

By continued fraction expansion, we have

s2 + 8s + 12 ) 2s2 +   8s +   6 ( 2 ← Z

2s2 + 16s + 24   ________________

 –    8s – 18

Fig. 12.55
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Since a negative term results, continued fraction expansion of Y (s) is carried out.

 Y(s) =

2

2

8 12

2 8 6

s s

s s

+ +
+ +

2s2 + 8s + )6  s2 + 8s + 12 (
1

2
 ← Y

s2 + 4s +   3     ______________________________

4s  +  )9  2s2 + 8s + 6 (
1

2
s ← Z

2s2 + 
9

2
s

             ___________________________

    
7

2
s + )6  4s + 9 (

8

7
 ← Y

     4s + 
48

7         __________________________

    )
15

7
 
7

2
s + 6 (

49

30
 s ← Z

         
7

2
s

            _____________________

       )6  
15

7
 (

15

42
 ← Y

 
15

7____

   0

The impedances are connected in series branches whereas

the admittances are connected in parallel branches. The network

is shown in Fig. 12.56.

(2) Cauer II Form The Cauer II form is obtained from a

continued fraction expansion about the pole at the origin.

Arranging the numerator and denominator polynomials of Z(s)

in ascending order of s, we have

 Z(s) =

2

2

6 8 2

12 8

s s

s s

+ +
+ +

12 + 8s + )2
s  6 + 8s +   2s2 (

1

2
 ← Z

6 + 4s + 
1

2
s2

    ________________________________

4s + 
3

2
 )2
s  12 + 8s + s2 (

3

s
 ← Y

 12 + 
9

2
s

_______________________________

             
7

2
s + )2

s  4s + 
3

2
 s2 (

8

7
 ← Z

               4s + 
8

7
s2

             _________________

Fig. 12.56
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5

14
)2

s  
7

2
s + s2 (

98

10s
 ← Y

7

2
s

        ________________________

)2
s  

5

14
 s2  (

5

14
 ← Z

   
5

14
 s2

           _____

     0

The impedances are connected in series branches, whereas

the admittances are connected in parallel branches. The network

is shown in Fig. 12.57.

Example 12.52 Obtain the Foster I and Cauer I forms of the following RL impedance function .

 Z(s) =
s(s + 4)(s + 8)

(s + 1)(s + 6)
Solution

(1) Foster I Form The Foster I form is obtained by partial fraction expansion of 
( )Z s

s
.

( )Z s

s
= 

( 4)( 8)

( 1)( 6)

s s

s s

+ +
+ +

Since the degree of the numerator is equal to the degree of the denominator, division is first carried out.

s2 + 7s + 6 ) s2 + 12s + 32  ( 1

s2 + 17s  + 16                     ______________

        5s + 26

( )Z s

s
= 1 + 

2

5 26

7 6

s

s s

+
+ +

= 1 + 
5 26

( 1)( 6)

s

s s

+
+ +

By partial-fraction expansion, we have

( )Z s

s
= 1 + 

0 1+ 
1 6

K K

s s+ +

where K0 =
1

5 26

6 s

s

s = -

+
+

=
5 26 21

1 6 5

- +
=

- +

K1 =
6

5 26

1 s

s

s = -

+
+

=
30 26 4

6 1 5

- +
=

- +

( )Z s

s
= 1 + 

21 4

5 5+ 
1 6s s+ +

Fig. 12.57
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Z(s) = s + 

21 4

5 5+  
1 6

s s

s s+ +
The first term represents the impedance of the inductor of 1 H. The other two terms represent the impedance

of a parallel RL circuit for which

 ZRL(s) =
i

i

i

R s

R
s

L
+

By direct comparison,

 R1= 
21

5
Ω

 L1 =
21

5
H

 R2 =
4

5
Ω

 L2 =
4

30
H

The network is shown in Fig. 12.58.

(2) Cauer I Form The Cauer I form is obtained by continued fraction expansion of Z(s) about the pole at

infinity.

 Z(s) =

3 2

2

12 32

7 6

s s s

s s

+ +
+ +

By continued fraction expansion, we have

s2 + 7s + )6  s3 + 12s2 + 32s ( s  ←  Z

 s3 +   7s2 +   6s              _______________________________

   5s2 + 26 )s s2 + 7s + 6 (
1

5
 ← Y

s2 + 
26

5
 s

       ______________________________

 
9

5
 s + )6  5s2 + 26s (

25

9
s ← Z

     5s2 + 
50

3
s

  ___________________________

      
28

3
)s  

9

5
s + 6 (

27

140
 ← Y

    
9

5
s

         ______________________

      )6  
28

3
s (

28

18
s ← Z

      
28

3
s

          
________

 0

Fig. 12.58
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The impedances are connected in series branches, whereas the admittances are connected in parallel branches.

The network is shown in Fig. 12.59.

Fig. 12.59

Exercises

1. Test the following polynomials for Hurwitz property:

(i) s3 + s2 + 2s + 2 (ii) s4 + s2 + s + 1

(iii) s3 + 4s2 + 5s + 2 (iv) s4 + 7s3 + 6s2 + 21s + 8

(v) s4 + s3 + s + 1 (vi) s7 + 3s6 + 8s5 + 15s4 + 17s3 + 12s2 + 4s

(vii) s7 + 2s6 + 2s5 + s4 + 4s3 + 8s2 + 8s + 4 (viii) s7 + 3s5 + 2s3 + s

(ix) s5 + 2s3 + s (x) s3 + 2s2 + 4s + 2

(xi) s4 + s3 + 4s2 + 2s + 3 (xii) s5 + 8s4 + 24s3 + 28s2 + 23s + 6

(xiii) s7 – 2s6 + 2s5 + 9s2 + 8s + 4 (xiv) s7 + 3s5 + 2s3 + 3

(xv) s5 + s3 + s (xvi) s6 + 7s4 + 5s3 + s2 + s

(xvii) s4 + s3 + 2s2 + 3s + 2

2. Determine whether the following functions are positive real:

(i)
3

4 2

5

2 1

s s

s s

+
+ +

(ii)
( 3)( 5)

( 1)( 4)

s s s

s s

+ +
+ +

(iii)
2

3 2

2 2 1

2 2

s s

s s s

+ +
+ + +

(iv)
4 3 2

3 2

3 2

1

s s s s

s s s

+ + + +
+ + +

(v)
3 2

2

2 2 3 2

1

s s s

s

+ + +
+

(vi)
2

2

2 1

4 4

s s

s s

+ +
+ +

(vii)
3 2

3 2

2 3 1

2 2

s s s

s s s

+ + +
+ + +

(viii)
3 2

2

2 1

1

s s s

s s

+ + +
+ +

(ix) 2

4

2 1

s

s s

+
+ +

(x)
2

2

4 3

6 8

s s

s s

+ +
+ +

(xi)
2

3

1

4

s

s s

+
+

(xii)
4 3 2

4 3 2

2 3 1

3 2 1

s s s

s s s s

+ + +
+ + + +

(xiii)
2

2 4

( 1)( 3)

s s

s s

+ +
+ +

(xiv)
2 4

5

s

s

+
+

(xv)
2

2

2

1

s s

s

+
+

(xvi)
2

3 2

4

3 3 1

s

s s s

+
+ + +

.

3. Determine whether the following functions are LC, RC or RL function:

(i) F(s) = 
2( 1)( 3)

( 2)( 6)

s s

s s

+ +
+ +

(ii) Z(s) = 
3( 2)( 4)

( 3)

s s

s s

+ +
+

(iii) Z(s) = 
( 1)( 8)

( 2)( 4)

s s

s s

+ +
+ +
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(iv) Z(s) = 
2

2 2

( 4)

( 1)( 3)

Ks s

s s

+
+ +

(v) Z(s) = 
2 2

2

2( 1)( 9)

( 2)

s s

s s

+ +
+

(vi) Z(s) = 
4( 1)( 3)

( 2)

s s

s s

+ +
+

(vii) Z(s) = 
2 2

2

( 1)( 3)

( 2)

s s

s s

+ +
+

(viii) F(s) = 
( 1)( 2)

( 3)

s s

s s

+ +
+

(ix) Z(s) = 
( 1)( 3)

( 2)( 4)

s s

s s

+ +
+ +

(x) Z(s) = 
( 2)( 4)

( 1)

s s

s

+ +
+

(xi) Y(s) = 
4( 3)

( 1)( 5)

s

s s

+
+ +

(xii) Y(s) = 
2( 1)( 3)

( 2)( 6)

s s

s s

+ +
+ +

(xiii) Z(s) = 
2 2

2 2

( 4)( 16)

( 9)( 25)

s s s

s s

+ +
+ +

(xiv) Z(s) = 
2 2

2

( 1)( 8)

( 4)

s s

s s

+ +
+

.

4. Realise the following functions in Foster I form:

(i) Z(s) = 
3( 2)( 4)

( 3)

s s

s s

+ +
+ (ii) Z(s) = 

2 2

2

2( 1)( 9)

( 4)

s s

s s

+ +
+ (iii) F(s) = 

4( 1)( 3)

( 2)( 6)

s s

s s

+ +
+ +

(iv) Z(s) = 
4

( 2)( 6)

s

s s

+
+ + (v) Z(s) = 

( 1)( 4)

( 2)

s s

s s

+ +
+ (vi) Y(s) = 

( 2)( 5)

( 4)( 6)

s s

s s s

+ +
+ +

(vii) Z(s) = 

2

2

2 2

1

s s

s s

+ +
+ +

5. Realise the following functions in Foster II form:

(i) Z(s) = 
3( 2)( 4)

( 3)

s s

s s

+ +
+

(ii) Z(s) = 

2 2

2

2( 1)( 9)

( 4)

s s

s s

+ +
+

(iii) Z(s) = 
4( 1)( 3)

( 2)( 6)

s s

s s

+ +
+ +

(iv) Y(s) = 

2 2

2

4( 4)( 25)

( 16)

s s

s s

+ +
+

(v) Z(s) = 
( 2)( 5)

( 4)( 6)

s s

s s s

+ +
+ +

6. Realise the following functions in Cauer I form:

(i) F(s) = 
2( 1)( 3)

( 2)( 6)

s s

s s

+ +
+ +

(ii) Z(s) = 

2 2

2

( 1)( 3)

( 2)

s s

s s

+ +
+

(iii) Z(s) = 
( 1)( 3)

( 2)( 4)

s s

s s

+ +
+ +

(iv) Z(s) = 

2 2

2

2( 1)( 9)

( 4)

s s

s s

+ +
+

(v) F(s) = 
( 1)( 3)

( 2)

s s

s s

+ +
+

(vi) Z(s) = 
4

( 2)( 6)

s

s s

+
+ +

(vii) Z(s) = 
6( 2)( 4)

( 3)

s s

s s

+ +
+ (viii) Z(s) = 

3

4 2

2

4 3

s s

s s

+
+ +

(ix) Z(s) = 

2 2

2 2

( 2)( 5)

( 1)( 3)

s s s

s s

+ +
+ +

(x) Z(s) = 

2

2

2 2

1

s s

s s

+ +
+ +

7. Realise the following function in Cauer II form:

(i) F(s) = 

2 2

2

( 1)( 3)

( 2)

s s

s s

+ +
+

(ii) Z(s) = 
( 1)( 3)

( 2)( 4)

s s

s s

+ +
+ + (iii) Z(s) = 

2 2

2

2( 1)( 9)

( 4)

s s

s s

+ +
+

(iv) Z(s) = 
( 1)( 3)

( 2)

s s

s s

+ +
+

(v) F(s) = 

3 2

2

12 32

7 6

s s s

s s

+ +
+ +

(vi) Z(s) = 
2( 1)( 3)

( 2)( 6)

s s

s s

+ +
+ +

(vii) Z(s) = 

2 2

2 2

( 2)( 5)

( 1)( 3)

s s s

s s

+ +
+ +

(viii) Z(s) = 

2

2

2 2

1

s s

s s

+ +
+ +
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8. An impedance function has the pole-zero diagram as shown in Fig. 12.60 below. If Z (–2) = 3, synthesize

the impedance function in Foster and Cauer forms.

Fig. 12.60

9. An impedance function has the pole-zero diagram as shown. Find the impedance function such that

Z(–4) = 
8

3
 and realise in Cauer form.

Fig. 12.61

10. For the realization of a given function F(s).

F(s) = 

( )
0

2 2
1

+
n

i

i i

K sK

s s w= +
å  + sK∞

where Ko, Ki (i = 1, 2, 3, … n) and K∞ are constants.

(i) Mention the type of function (RC, RL or LC)

(ii) Given that Ko = 6, K1 = 8, w1 = 4, K2 = 10, w2 = 8, K∞ = 5, find the component values of realized

network for F(s) = Z(s) and F(s) = Y(s). Draw neat diagrams.

Objective-Type Questions

 1. The necessary and sufficient condition for a rational function F(s) to be the driving-point impedance of

an RC network is that all poles and zeros should be

(a) simple and lie on the negative real axis in the s-plane

(b) complex and lie in the left half of s-plane

(c) complex and lie in the right-half of s-plane

(d) simple and lie on the positive real axis of the s-plane

2. The number of roots of s3 + 5s2 + 7s + 3 = 0 in the left half of s-plane is

(a) zero (b) one (c) two (d) three

3. The first and the last critical frequencies of a driving-point impedance function of a passive network

having two kinds of elements, are a pole and a zero respectively. The above property will be satisfied by

(a) RL network only (b) RC network only

(c) LC network only (d) RC as well as RL network

4. The pole-zero pattern of a particular network is shown in Fig. 12.62. It is that of an

(a) LC network (b) RC network (c) RL network (d) none of these
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Fig. 12.62

5. The first critical frequency nearest to the origin of the complex frequency plane for an R–L driving-

point impedance function will be

(a) a zero in the left-half plane

(b) a zero in the right-half plane

(c) a pole in the left-half plane

(d) a pole in the right-half plane

6. Consider the following polynomials:

P1 = s8 + 2s6 + 4s4

P2 = s6 – 3s2 + 2s2 + 1

P3 = s4 + 3s3 + 3s2 + 2s + 1

P4 = s7 + 2s6 + 2s4 + 4s3 + 8s2 + 8s + 4

which one of these polymials is not Hurwitz?

(a) P1 (b) P2 (c) P3 (d) P4

7. For very high frequencies, the driving-point admittance function, Y(s) = 
4( 1)( 3)

( 2)( 4)

s s

s s s

+ +
+ +

 behaves as

(a) a resistance of 
3

2
Ω (b) a capacitance of 4 F

(c) an inductance of 
1

4
 H (d) an inductance of 4 H

8. The driving-point impedance Z(s) = 
3

4

s

s

+
+

 behaves as

(a) a resistance of 0.75 Ω at low frequencies

(b) a resistance of 1 Ω at high frequencies

(c) both (a) and (b) above

(d) none of the above

9. An RC driving-point impedance function has zeros at s = – 2 and s = – 5. The admissible poles for the

functions would be

(a) s = 0, s = – 6 (b) s = – 1, s = – 3 (c) s = 0, s = – 1 (d) s =  – 3, s = – 4

10. Consider the following from the point of view of possible realisation as driving-point impedances using

passive elements:

1.
1

( 5)s s +
2.

2

3

( 5)

s

s s

+
+

3.
2

2 2

3

( 5)

s

s s

+
+

4.
5

( 5)

s

s s

+
+

Of these, the realisable are

(a) 1, 2 and 4 (b) 1, 2 and 3 (c) 3 and 4 (d) none of these
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11. The poles and zeros of a driving-point function of a network are simple and interlace on the negative

real axis with a pole closest to the origin. It can be realised

(a) by an LC network

(b) as an RC driving point impedance

(c) as an RC driving point admittance

(d) only by an RLC network

12. If F1(s) and F2(s) are two positive real functions then the function which is always positive real, is

(a) F1(s) F2(s) (b) 1

2

( )

( )

F s

F s
(c) 1 2

1 2

( ) ( )

( ) ( )

F s F s

F s F s+ (d) F1(s) – F2(s)

13. The circuit shown in Fig. 12.63 is

(a) Cauer I form (b) Foster I form (c) Cauer II form (d) Foster II form

Fig. 12.63

14. For an RC driving-point impedance function, the poles and zeros

(a) should alternate on the real axis

(b) should alternate only on the negative real axis

(c) should alternate on the imaginary axis

(d) can lie anywhere on the left half-plane

Answers to Objective-Type Questions

1.(a)2.(a)3.(b)4.(a)5.(a)6.(b)

7.(c)8.(c)9.(b)10.(a)11.(b)12.(c)

13.(b)14.(b)
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Appendix 1

UNITS USED IN ELECTRICITY AND MAGNETISM

Quantity Quantity Unit Unit

Symbol Symbol

Admittance Y siemens S

Angular velocity w radian per second rad/s

Capacitance C farad F

Charge q Coulomb C

Conductance G siemens S

Conductivity s siemens per metre S/m

Current-Steady or

rms value I ampere A

Instantaneous value i ampere A

Maximum value Im microampere µA

Potential Difference V volt V

Instantaneous value v volt V

Frequency f hertz Hz

Impedance Z ohm Ω

Inductance, self L henry H

Inductance, mutual M henry H

Permeability of free space

or magnetic constant µ0 henry per metre H/m

(Contd)
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Quantity Quantity Unit Unit

Symbol Symbol

Permeability, relative µr henry per metre H/m

Permittivity of free

space or electric

constant e0 farad per metre F/m

Permittivity, relative er farad per metre F/m

Permittivity, absolute e farad per metre F/m

Power P watt W

Reactance X ohm Ω

Resistance R ohm Ω

Resistivity r ohm metre Ωm

Susceptance B siemens S
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Appendix 2

ABBREVIATIONS IN MULTIPLES AND SUB-MULTIPLES

Symbol Prefix Multiplying Factor

T tera 1012

G giga 109

M mega 106

k kilo 103

d deci 10–1

c centi 10–2

m milli 10–3

µ micro 10–6

n nano 10–9

p pico 10–12
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Index

A

a′b′c′d′ Parameters 11.40

ABCD Parameters 11.37

active element 1.8

active network 1.8

active power 4.25

Admittance 4.50

Advantages of a Three-Phase System 6.2

alternating waveform 4.1

Amplitude 4.2

apparent power 4.25

Average power 4.25

Average Value of Sinusoidal Waveform 4.4

Average Value 4.3

B

Balanced System 6.2

Balanced Y/∆ and ∆ /Y conversions 6.7

Bandwidth 4.62

Behaviour of A Pure capacitor in AN AC Circuit 4.22

Behaviour of A Pure Inductor in AN AC Circuit 4.21

Behaviour of A pure resistor in AN ac circuit 4.20

bilateral element 1.8

Branch 1.8, 7.1

C

Capacitance 1.4

Capacitor 8.2, 9.6

Cascade Connection 11.62

Cauer I Form 12.26, 12.42

Cauer II Form 12.27, 12.43

Cauer Realization or Ladder Realization 12.26

Cauer Realization 12.42

chain parameters 11.6

circuit 1.7

classical method 9.1

Comparison between Star and Delta Connection 6.9

Complete Incidence Matrix (Aa) 7.4

complex frequencies 10.16

Condition for Reciprocity 11.3, 11.5, 11.7, 11.9, 11.11,

11.13

Condition for Symmetry 11.3, 11.5, 11.7, 11.10, 11.11,

11.14

conductance 4.51

Connected graph 7.3

Cosine Function 9.4

Co-tree 7.4

Coupled circuits 5.21

Crest or peak or amplitude factor 4.3

critically damped response 8.28, 9.9

Current transfer function 10.2

Current 1.1



I1.2 Index

Current-controlled current source (CCCS) 1.7

Current-controlled voltage source (CCVS) 1.7

Cutset Matrix 7.8

Cycle 4.1

D

Delayed or Shifted Unit Step Function 9.2

Delayed Unit Ramp Function 9.3

Delta or Mesh Connection 6.4

Delta to Star Transformation 2.2

dependent Sources 1.6

dependent variables 11.1

directed graph 7.1

driving point 10.1

Driving-point admittance function 10.2

Driving-Point Functions 10.1

Driving-Point Impedance at Input Port 11.77

Driving-Point Impedance at Output Port 11.80

Driving-point impedance function 10.2

Duality 7.39

Dynamic Impedance of Parallel Circuit 4.74

E

Elementary synthesis concepts 12.21

energy storage elements 8.1

Energy stored in a capacitor 1.5

Energy stored in an inductor 1.3

Energy 1.1

Exponential form 4.14

Exponential Function (eat) 9.3

Exponentially Damped Function 9.4

F

farad 1.4

f-cutset 7.9

forced response 8.24

Form factor 4.4

forward voltage gain 11.8

Foster I Form 12.24, 12.40

Foster II Form 12.25, 12.42

Foster Realization 12.24, 12.40

Frequency 4.1

Fundamental Circuit (Tieset) and Fundamental Circu

Matrix 7.7

Fundamental Cutset and Fundamental Cutset

Matrix 7.9

G

Graph Theory 7.1

Graph 7.1

Graphical Method for Determination of Residue 10.32

H

half-power points 4.62

henry 1.2

Hurwitz Polynomials 12.1

Hybrid 11.1

Hybrid parameters (h parameters) 11.10

Hybrid Parameters in Terms of Other Parameters 11.43

hybrid parameters 11.10

I

Impedance triangle 4.24

Impedance 4.21

Incidence Matrix 7.4

Independent current source 1.5

Independent Sources 1.5

independent variables 11.1

Independent voltage source 1.5

Inductance 1.2

Inductor 8.1, 9.6

Initial conditions for the capacitor 8.3

Initial conditions for the inductor 8.3

Initial conditions for the resistor 8.3

Initial Conditions 8.2

input port 10.1, 11.1

Interconnection of Two-Port Networks 11.62

Interrelationships between the Parameters 11.32

inverse Hybrid parameters (g parameters) 11.12

Inverse Hybrid Parameters in Terms of Other

Parametrs 11.46

Inverse Hybrid 11.1

inverse Laplace transform 9.2

inverse transmission matrix 11.8

Inverse Transmission parameter representation 11.63

inverse Transmission parameters 11.8

Inverse Transmission 11.1

J

j 10.24



Index I1.3

K

Kirchhoff’s current law (KCL) 1.9, 7.23

Kirchhoff’s Laws 1.8

Kirchhoff’s voltage law (KVL) 1.9, 7.23

L

Ladder Networks 10.5

lagging alternating quantity 4.2

laplace transformation 9.1

LC functions 12.24

leading alternating quantity 4.2

Line Current 6.2

Line Voltage 6.2

linear element 1.8

links 7.4

Loop Matrix or Circuit Matrix 7.6

Loop or circuit 7.3

Loop 1.9, 7.1

M

Mathematical Representation of Phasors 4.13

Maximum Power Transfer Theorem 3.46

Maximum power transfer theorem 5.17

Measurement of Three-Phase Power 6.26

Mesh 1.9, 7.1

Mesh Analysis 2.17, 5.1

N

natural response 8.24

Necessary and Sufficient Conditions for Positive

R 12.14

Network Analysis 12.1

Network Equilibrium Equation 7.25

Network Synthesis 12.1

Network 1.7

neutral point 6.3

Nodal Analysis 2.29, 5.5

Node 1.8, 7.1

non-linear elements 1.8

Non-planar graph 7.2

Norton’s Theorem 3.29

Number of Possible Trees of a Graph 7.5

O

odd and even parts of the polynomial 12.1

ohm 1.2

one-port network 10.1

open circuit forward transfer impedance 11.2

open circuit impedance parameters 11.2

open circuit input impedance 11.2

open circuit output impedance 11.2

open circuit reverse transfer impedance 11.2

Open-circuit impedance parameters (Z

parameters) 11.2

Open-Circuit Impedance 11.1

oriented graph 7.1

output port 10.1, 11.1

overdamped response 8.28, 9.9

overdamped sinusoids or underdamped sinusoids 10.31

P

Parallel Connection 11.64

Parallel Resonance 4.70

Parallel–Series Connection 11.66

passive elements 1.8

passive network 1.8

Path 7.3

Phase Current 6.2

Phase difference 4.2, 4.21

Phase Sequence 6.2

Phase Voltage 6.2

Phase 4.2

Phasor Representation of Alternating Quantities 4.13

phasor 4.13

pi (π)-network 11.77

Planar graph 7.2

planar networks 2.17

Polar form 4.14

Poles and zeros 10.16

Pole-zero plot 10.16

polyphase system 6.1

port 10.1

positive real functions 12.13

Power dissipated in a resistor 1.2

Power factor 4.21

power 1.1

Properties of Hurwitz polynomials 12.1

Properties of LC functions 12.23

Properties of Positive Real Functions 12.14

Properties of RC Functions 12.40

Properties of RL functions 12.56

Properties of RL Impedance Functions 12.56

Q

Quality factor Q0 4.64



I1.4 Index

R

Rank of a graph 7.3

RC Functions 12.40

Reactive power 4.25

reciprocal 11.3

Rectangular form 4.13

Reduced Incidence Matrix (A) 7.5

Relation between branch current matrix Ib and lo 7.24

Relation between Branch Voltage Matrix Vb, twig 7.24

Relation between power in delta and Star System 6.8

Relationship Among Submatrices of A, B and Q 7.10

Removal of a Constant 12.23

Removal of a Pole at Infinity 12.21

Removal of a Pole at Origin 12.22

Removal of Conjugate Imaginary Poles 12.22

residue Ki 10.32

Resistance 1.2

Resistor 8.1, 9.5

Resistor–capacitor circuit 8.25, 9.7

resistor–inductor circuit 8.23

Resistor–Inductor circuit 9.7

Resistor–Inductor–capacitor circuit 8.27, 9.8

resonance 4.60

response 8.24

restrictions on pole and zero locations for drivi 10.16

Restrictions on pole and zero locations for transf 10.17

reverse current gain 11.7

reverse voltage gain with the output port open cir 11.6

RMS Value of Sinusoidal Waveform 4.3

Root Mean Square (RMS) or Effective Value 4.2

Routh–Hurwitz array for 12.10

S

scale factor 10.16

Series Connection 11.65

Series R-C Circuit 4.38

Series Resonance 4.60

Series R-L Circuit 4.24

Series R-L-C Circuit 4.43

Series–Parallel Connection 11.65

short circuit admittance parameters 11.5

short circuit forward transfer admittance 11.4

short circuit input admittance 11.4

short circuit output admittance 11.5

short circuit reverse transfer admittance 11.4

Short-circuit ADMITTANCE parameters

(y parameters) 11.4

Short-Circuit Admittance 11.1

Significance of operator j 4.14

Sine Function 9.3

sinusoidal steady state 10.31

Source Transformation 1.14

Star or Wye Connection 6.3

Star to Delta Transformation 2.2

Star–Delta Transformation 2.1

steady-state response 8.1

Sub-graph 7.2

Supermesh Analysis 2.26

supermesh 2.26

Supernode Analysis 2.41

supernode 2.41

Superposition Theorem 3.1

Superposition theorem 5.8

susceptance 4.51

symmetrical 11.3

T

terminal pair 10.1

terminals 10.1

Terminated two-port networks 11.77

the open-circuit forward voltage gain 11.12

the open-circuit input admittance 11.12

the open-circuit output admittance 11.10

the open-circuit reverse voltage gain 11.10

the short circuit forward current gain 11.10

the short-circuit input impedance 11.10

the short-circuit output impedance 11.13

the short-circuit reverse current gain 11.13

Thevenin’s and Norton’s theorems 5.12

Thevenin’s Theorem 3.16

three-phase system 6.1

three-phase, four-wire system 6.4

three-phase, three-wire system 6.4

tiesets 7.7

time constant 8.24, 8.26

Time period 4.1

Time-domain analysis 9.1

Time-domain behaviour from the pole-zero plot 10.30

T-network 11.76

Transfer admittance function 10.3

transfer admittance with the output port open circ 11.6

transfer admittance 11.8

Transfer Function 10.2

Transfer impedance function 10.2

transfer impedance 11.6

transient and steady state response of r-L circuit 9.21

Transient and steady-state response of R-C circuit 9.24

transient period 8.1

transient response 8.1



Index I1.5

transients 8.1

transmission matrix 11.6

Transmission parameter representation 11.62

Transmission parameters (abcd parameters) 11.6

Transmission 11.1

Tree 7.3

Trigonometric form 4.14

twigs 7.3

Two Wattmeter Method 6.26

two-port network 10.1, 11.1

Two-Port Parameters 11.1

U

underdamped response 8.28, 9.9

unilateral element 1.8

Unit Impulse Function 9.3

unit impulse signal 9.23

unit inpulse signal 9.25

Unit Ramp Function 9.2

unit ramp signal 9.22, 9.24

Unit Step Function 9.2

unit step signal 9.22, 9.24

V

voltage or potential difference 1.1

Voltage transfer function 10.2

Voltage, Current and Power Relations in a

balanced 6.4, 6.6

Voltage-controlled current source (VCCS) 1.6

Voltage-controlled voltage source (VCVS) 1.6

W

wattmeter 6.26

Waveform 4.1

Y

Y-parameters in Terms of Other Parameters 11.34

Z

zero input response 8.24

zero state 8.24

Z-parameters in Terms of Other Parameters 11.32
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