
Embedded Realtime

Systems Programming



Embedded Realtime
Systems Programming

Tata McGraw-Hill Publishing Company Limited
New Delhi

McGraw-Hill Offices

New Delhi   New York   St Louis   San Francisco   Auckland   Bogotá

Caracas   Kuala Lumpur   Lisbon   London   Madrid   Mexico City    Milan

Montreal    San Juan    Santiago    Singapore    Sydney    Tokyo    Toronto

Sriram V Iyer

Pankaj Gupta

Philips Semiconductors Design 
Competence Centre, Bangalore



Information contained in this work has been obtained by Tata

McGraw-Hill, from sources believed to be reliable. However,

neither Tata McGraw-Hill nor its authors guarantee the accuracy or

completeness of any information published herein, and neither Tata

McGraw-Hill nor its authors shall be responsible for any errors,

omissions, or damages arising out of use of this information. This

work is published with the understanding that Tata McGraw-Hill

and its authors are supplying information but are not attempting to

render engineering or other professional services. If such services

are required, the assistance of an appropriate professional should 

be sought.

Tata McGraw-Hill

© 2003, Tata McGraw-Hill Publishing Company Limited

No part of this publication can be reproduced in any form or by

any means without prior written permission of the publishers

This edition can be exported from India only by the publishers, 

Tata McGraw-Hill Company Limited

ISBN 0-07-048284-5

Published by Tata McGraw-Hill Company Limited,

7 West Patel Nagar, New Delhi 110 008, typeset by Devendra M Sharma,

#5/5, 1st Cross, Gowdanapalya Main Road, Bangalore–560 061 and printed at XXXXXX,

Address……………………………………….........................

The MMccGGrraaww--HHiillll Companies



To my parents, Venkateswaran R & Lalitha V 
my sister, Harini Deepak

–Sriram V Iyer

To my parents, PremChand & Omwati 
my brothers Deepak & Vijay and my wife, Purnima

–Pankaj Gupta

And to the Philips ‘ family’—as our CEO 
Dr Bob Hoekstra rightly calls our organisation



PPrreeffaaccee

As we think of writing the preface, we are filled with thoughts on this book, which took over 20
months to reach this shape.

Embedded industry is now in its adolescent phase—Too young to be called mature and too
mature to be called nascent. It is currently experiencing the ‘growing pains’. The industry once
restricted to a very small community is beginning to embrace more and more architects and
developers into its fold.

When we started out in this industry after our college, a sense of mystery took over. We were
familiar with programming in the colleges. We did do a course on programming (typically
C/C++/Java), data structures/algorithms etc as a part of our curriculum. Programming in an
embedded-realtime scenario gave a feeling of deja vu of our previous programming experiences
though new experiences were definitely different. 

As we patiently took notes, conversed wit senior colleagues and by sifting through a mam-
moth amount of information in the web, things started becoming clear. Finally, we could com-
prehend the rules that differentiate embedded programming from normal desktop/applications
programming. It by no way means we have reached nirvana of embedded-realtime program-
ming. We have just crossed the first few basic steps that we would like to share it with you. 

This time, we were asked by Mr. K.M. Jayanth, the Department Manager of the department
we work for, to compile our thoughts, experiences and information we had gathered and create
a primer on embedded-realtime software for our department. We ventured into this activity
without knowing what we were stepping into. As we started we saw that the project was indeed
huge. After numerous sleepless nights, gallons of caffeine and countless pizzas we could finally
constrain ourselves to writing a 100 odd pages for that primer. We clearly felt that we were “hun-
gry” for a lot more but had to restrict the content to this level for it to remain a ‘primer ’.

At the same time, we got a mail from Deepa (Manager, Professional Publishing, TMH) if a
book on C++ could be written on seeing some C++ articles* in ITspace.com. We decided that
a book on programming embedded-realtime systems would be more appropriate for us, than a
book on C++.

This book is our collective wisdom distilled over hours of design, development, integration
and debugging experiences. The contents were also developed with interaction with many of

*Sriram V Iyer was the community guide/moderator for the C++ section in ITspace.com



our colleagues and intelligent conversations during the series of a seminar on embedded-real-
time systems that we conduct in our department. 

AAuuddiieennccee

The audience of the book could range from a novice developer who is curious to know more
about embedded systems. It could be of immense use to a practicing embedded engineer to
know more about the covered topics. It could also be used as an undergraduate text for CS, EE
and courses in Embedded-Realtime systems. 

The book is not intended to replace courses in microprocessors, algorithms, programming
but can definitely complement this courses. 

Though this book talks a lot about software interactions with hardware, the focus of the book
is restricted only to software. Though some insights are provided in some chapters, this book
definitely does not address the issue of embedded hardware design.

OOrrggaanniissaattiioonn  ooff  tthhee  BBooookk

The Section 1 “Introduction” is an introduction to the theory behind embedded-realtime systems.
It discusses the fundamental differences between programming in desktop and embedded sys-
tems. It describes various attributes of these systems along with some of their limitations that
make programming these systems interesting!

The Section 2 “Embedded nitty-gritty ” delves into the details of embedded systems program-
ming. Chapter 2 describes the elements of the build process with emphasis on features unique
to embedded systems. Details of various steps like pre-processing, compiling, linking, locating
etc are covered in length. Chapter 3 describes various types of memories. The knowledge of
these types of memory and how they work is essential for any embedded engineer when design-
ing his system. Chapter 4 delves into various techniques to handle the memory that is so pre-
cious for any embedded system. Internal details of various memory allocation schemes are
described. It also lists some interesting bugs and their solutions. The Chapter 5 on Interrupts and
ISRs covers in great depth the concept of interrupts. Various types of interrupts, ISRs are cov-
ered. The chapter ends with general guidelines for writing efficient ISRs and some interesting
debugging tips. 

Section 3 “Correctness is not enough ” focuses on the ‘realtime’ aspect. Chapter 6 describes the
mathematics of scheduling theory and covers the famous Rate Monotonic Analysis (RMA). This
chapter should be interesting for engineers to know the basics of realtime theory and hopefully
inspire them to go further. The Chapter 7 on RTOS is no doubt one of the most famous topics
among the embedded community. The RTOS chapter describes various RTOS concepts like
tasks, queues, events, timers and race-conditions, priority inversion etc. It also has interesting
discussions on priority inversion & Mars Rover mission, history on nomenclature in sema-
phores, etc. 

Section 4, aptly named “But I know this already!” discusses various Software Engineering
aspects of designing embedded-realtime systems. Many of the books on embedded-realtime
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theory do not include content on software engineering aspects of embedded system design
though many of the principles remain the same across various software domains. Chapter 8
describes in detail the “Requirements Engineering” principles that need to be followed to cre-
ate a system as intended by the customer/end-user. Following sound requirements engineering
concepts will help us avoid nasty surprises during the delivery of the system. Chapter 9
“Architecture and Design of Embedded Systems” covers the high-level software architecture and
design aspects of embedded systems. The topic of software architecture and design is huge and
many independent books are available to address the topic. The chapter focuses on some of the
issues including some “Architecture Patterns” that are relevant to embedded-realtime systems.
The Chapter 10 “Implementation Aspects in Embedded Systems” discusses a plethora of tech-
niques that can be applied in embedded systems ranging from bit-fields to endianness, callback
systems to state machines. Chapter 11 “Embedded Software Estimation Modelling ” describes
some of the techniques in software estimation in embedded systems. Estimation, as its name
indicates is still considered more as an art and a result of experience rather than an engineering
discipline. This chapter helps in making estimation of software in embedded systems more accu-
rate. The Chapter 12 “Debugging and Validation of Embedded Systems” discusses one of the
most dreaded times of any embedded engineer—debugging. This chapter throws light on some
of the concepts on debugging and various tools available for the same.

The book ends with a detailed bibliography and an appendix on “C++ for Embedded/
Realtime Systems”, a paper presented by Sriram V Iyer and Manoj Kamath (Philips Semi-
conductors, Philips Software Centre) in Philips TechSym 2001, a technology symposium con-
ducted in Philips Innovation Campus. 

AAcckknnoowwlleeddggeemmeennttss

The authors would like to express their heart-felt gratitude to Philips for providing a congenial
and nurturing environment for our thoughts on the subject. We especially owe a lot to Jayanth,
Department Manager DSS for providing constant support and feedback during the entire dura-
tion of this big exercise. We also thank Dr Antonio, Director PS DCC-B, Philips for finding time
out of his busy schedule to review the manuscript and write the beautiful preface of the book.
The writers would like to say, “thanks buddies” to our teams in Philips who constantly pulled
our legs and created perfect atmosphere for this creative endeavor.☺

Sriram V Iyer

Pankaj Gupta
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FFoorreewwoorrdd

In times when the pace of change was slow, the variety of products and services was small, the

channels of communication and distribution less explosive, and the consumer needs less sophis-

ticated, engineering could enjoy prolonged periods of relative stability. The times when the

customer can be held almost constant and the optimisation of other variables could have been

optimised are over. These times have long gone.

Now, human beings live in times of choice. They are continuously bombarded with pur-

chasing alternatives in every aspect of their lives. They demand more and more from their

purchases and their suppliers. The markets are fragmented and their products can be tailored by

design, programmability, service and variety. In the world of high technology such as

Semiconductors, there is an analogy that can explain this process: behind the proliferation of

electronic components, infiltrating our communication systems, entertainment centers, trans-

port, homes, there are thousands of integrated circuits that are produced in high volume up to

the last layer, which in turn is designed by the customer to add the final touch of personality

needed for their specific products. Radical customization dramatically has shortened time-to-

market and time-to-money. This exemplifies the remaking of our means of production to accom-

modate our ever-changing social and personal needs.

Programming embedded and realtime systems is not an exception to the rule— this also ben-

efits from the flexibility the topic has to offer. It emphasizes the best-practice approach but allows

the necessary customisation to shorten the time-to-market deliverables.

One of the functions of this book, and perhaps the most important one, is to open up the logic

of applying the appropriate fundamentals on embedded software and realtime systems, so that

everyone in the software industry can participate in the understanding of best practices. If pru-

dence rather than brilliance is to be our guiding principle, then many fundamentals are far bet-

ter than a series of sophisticated but isolated experiences. If embedded software is going to be

the semiconductors driving force, and most of the semiconductor organisations are debating and

insist this is their actual goal, then its fundamentals must be accessible to all players, and not as

is sometimes the case, be reserved to an elect few who think that software engineering is just a

part of the system approach.

Finally, I would like to make you think that this work is going to remain the basics of engi-

neering despite the fast-paced, ever changing competitive world. This book will continue mak-

ing you think about engineering basics and the way you think about engineering. But it will also

make you think about fundamentals of software engineering.

I am confident the reader will enjoy and find Embedded-Realtime Systems Programming a

useful experience.

Dr. Antonio M. Alvarez-Tinoco

Director, Philips Semiconductors 

Design Competence Centre –Bangalore
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SECTION 

ONE

Introduction

MMaaiinn  EEnnttrryy::  eemm··  bbeedd··  ddeedd
PPrroonnuunncciiaattiioonn::  iimm--bbee--ddeedd
TTyyppee::  aaddjjeeccttiivvee
::  bbeeiinngg  aa  ccoonnssttiittuueenntt  wwiitthhiinn  aa  ssiimmiillaarr  ssuurrrroouunnddiinngg..

HHaarrddllyy  ccoonnvviinncciinngg  iissnn''tt  iitt!!  TThhaatt  iiss  wwhhyy,,  wwee  wweerree  mmoottiivvaatteedd  ttoo  wwrriittee  tthhiiss  bbooookk..  EEmmbbeeddddeedd  ssyyss--

tteemmss  sseeeemm  ttoo  ttoouucchh  oouurr  lliivveess  eevveerryyddaayy  aallmmoosstt  wwhheerreevveerr  wwee  ggoo..  HHoowweevveerr,,  tthheeyy  ssttiillll  rreemmaaiinn

ppuuddddlleedd  iinnssiiddee  aa  sshhrroouudd  ooff  mmyysstteerryy,,  ffaarr  ffrroomm  tthhee  nnoorrmmaall  wwoorrlldd,,  bbeeiinngg  aabbllee  ttoo  bbee  uunnrraavveelleedd

oonnllyy  bbyy  eellddeerrllyy  pprrooffeessssoorrss  wwiitthh  fflloowwiinngg  bbeeaarrddss  ☺☺..  

NNoo,,  eemmbbeeddddeedd  ssyysstteemmss  aarree  nnoott    ccoonnffiinneedd  ttoo  tthheessee  hhaall--

lloowweedd  ppllaacceess  aalloonnee..  TThhiiss  sseeccttiioonn  sshhaallll  eennddeeaavvoorr  ttoo  iinnttrroo--

dduuccee  tthhee  rreeaaddeerr  ttoo  tthhee  ccoommmmoonn  wwoorrlldd  aapppplliiccaattiioonnss  ooff

eemmbbeeddddeedd  ssyysstteemmss..  AAnndd  iitt  iiss  oouurr  aatttteemmpptt  ttoo  ttrraannssffoorrmm  tthhee

rreeaaddeerr''ss  kknnoowwlleeddggee  ttoo  aann  eexxtteenntt  tthhaatt  ((ss))hhee  llooookkss  aatt  oorrddii--

nnaarryy  aapppplliiaanncceess  aatt  hhoommee  oorr  aatt  wwoorrkk  iinn  aa  ttoottaallllyy  ddiiffffeerreenntt

lliigghhtt..  YYeess,,  wwee  aarree  ttaallkkiinngg  ooff  rreeaallllyy  oorrddiinnaarryy  aapppplliiaanncceess  tthhaatt

hhaavvee  eemmbbeeddddeedd  ssyysstteemmss  iinnssiiddee  tthheemm  iinn  ssoommee  ffoorrmm  oorr  tthhee

ootthheerr..  WWee  wwiillll  tthheenn  llooookk  aatt  tthhee  uunniiqquuee  cchhaalllleennggeess  tthhaatt  lliiee

iinn  tthhee  ppaatthh  ooff  eennggiinneeeerrss  wwhhoo  ccrreeaattee  ssuucchh  ssyysstteemmss  aanndd

hhooww  iitt  iiss  ddiiffffeerreenntt  ffrroomm  nnoorrmmaall  ssyysstteemmss..  SSoo,,  ffaasstteenn  yyoouurr

sseeaatt  bbeellttss,,  hheerree  wwee  mmaakkee  aa  ttaakkee--ooffff!!



These are the days when the terms like embedded, ubiquitous and pervasive comput-

ing are increasingly becoming more and more popular in the world of programming.

Embedded realtime programming was once looked upon as a niche skill that many

programmers can keep themselves away from—but not any more. The focus is now on

many smart and intelligent devices. The personal computer (PC)/workstation is mov-

ing away from the focal point of the computing/programming industry.

We are f looded with embedded systems that seem to be everywhere (ubiquitous) and

inconspicuous. These systems should ideally communicate with each other (distributed)

to achieve a feel of a complete system.

Before we delve further, we can define what an embedded system actually is. An

embedded system is defined as “A microprocessor based system that does not look like

a computer”.*

If we look around, we will realise that there are a lot of devices with limited intelli-

gence. Let us consider the good old washing machine. The main purpose of a washing

machine is to wash clothes. But the modern world has extended it to include extra func-

tions and give more control thereby optimising the actual process of washing clothes.

Present day washing machines come complete with sensors, which maintain optimum

water temperature, cloth dependent spin-speed, number of spins, etc. They take care of

filling water, heating it to a particular temperature, mixing the optimum amount of

detergent, soaking the clothes in water for just the right time, the soft tumble for

Chapter
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extracting dirt, the aggressive tumble for removing stains, and excessive detergent from

clothes, and finally the spin-dry. All this happens with minimum user intervention. The

user may just have to select what kind of clothes are being put inside the machine and

possibly how dirty they are!

This is not magic. All this is possible because somebody hit upon a brilliant idea that

we can use a small microprocessor to automate a lot of the dreary process of washing.

Since microprocessor cannot function in isolation, it needs inputs from sensors and

other controlling devices so as to feel what is going around and then “decide” what

actions need to be performed, which parts of the system have to run and in what order.

The sensors detect that the quantity of water inside the machine is at a certain level and

indicate this to the processor. The processor computes the required quantity of water

that is necessary for the number of clothes and based on user settings. It then generates

a control signal to stop the f low of water inside the machine and switch on the heater.

The temperature detector keeps giving indications about the current temperature inside

the washing machine compartment. At the optimum temperature for the kind of clothes

to be washed, the processor generates a control signal to stop the heater. Then it gives

a signal to start the soft tumble action to soak the clothes properly in water and mix the

detergent. The processor will keep a watch on the amount of time the soft tumble action

is going on. At the optimum time, it will stop the soft tumble action and start the aggres-

sive tumble action to fight the stains. So, we can see that washing machine is an

example of an embedded system. As illustrated, the seemingly simple task of washing

clothes is a big exercise for the processor!

As embedded systems started progressing, they started becoming more and more

complex. Additionally, new attributes that got added to these systems were smart and

intelligent. Not only were the embedded devices able to do their jobs but also were able

to do them smartly. What exactly do we mean by intelligence? Intelligence is one of the

terms that cannot still be defined in a single concrete way (If it was indeed definable,

we would have a laptop typing these pages on its own!). We can define a smart device

as a device with the following attributes:

❑ CCoommppuuttaattiioonnaall  PPoowweerr All these devices have some amount of computing power.

This could be provided by a very simple 8-bit controller or a high-end 64-bit

microprocessor. 

❑ MMeemmoorryy The next requirement is memory. These devices possess some amount

of memory that can be used by the processor and also some to remember user

data and preferences.

4 Embedded Realtime Systems Programming



❑ RReeaallttiimmee All the devices have to respond to user/environmental inputs within

a specified period of time.

❑ CCoommmmuunniiccaattiioonn The device must be able to receive inputs given by other

devices in the environment, process it and provide some tangible output to the

other devices or users. 

❑ DDyynnaammiicc  ddeecciissiioonnss The system should be able to change its next course of activ-

ity based on the change of input from its sensors or surroundings.

11..11 CCHHAALLLLEENNGGEESS  FFOORR  EEMMBBEEDDDDEEDD  SSYYSSTTEEMMSS

Each of the attributes mentioned above is undergoing a series of transformations. The

embedded processors are getting more and more powerful. It is not uncommon to find

powerful 32-bit processors in high-end embedded systems like mobile (GSM/GPRS/

3G) handsets, high-speed routers, bridges and even in seemingly small applications like

a network interface card (NIC). Some applications like 802.11a (a faster version of

normal Wireless LAN) require more million instructions per second (MIPS) than that

can be provided by the advanced processors like the P4 2GHz processor.

Memory is getting cheaper and better. This is evident from the amount of memory

being used in the small hand-held devices available today for wireless communication.

In the times to come, wireless communication standards like Wireless LAN (802.11),

Bluetooth, GPRS/3G will all help in providing inexpensive, untethered communica-

tion among devices.

Programming for these devices offers unique challenges not found in PC/workstation

based applications. Some of these are listed below:

❑ LLiimmiitteedd  ooppeerraattiinngg  ssyysstteemm  ((OOSS))  ssuuppppoorrtt  ffoorr  pprrooggrraammmmiinngg Application programs for

PCs/workstations are launched from the operating system. The tasks like schedul-

ing, memory management, hardware abstractions and input/output from/ to

peripherals are delegated to the OS. In embedded systems, the OS is part of appli-

cation code and it closely co-ordinates with the OS to support a majority of the

features that a desktop OS may provide.

❑ LLiimmiitteedd  sseeccoonnddaarryy  mmeemmoorryy Many embedded systems do not boot from a hard

disk. (A cell-phone with a hard disk? ☺). They depend on other types of non-

volatile memory like read only memory (ROMs) and “FLASH memory” instead

of secondary memory devices like the f loppy disks or hard disks. Since we do not
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talk about giga-bytes of f lash (systems with 16 MB f lash are considered premium),

our code and data sizes must be small.

❑ LLiimmiitteedd  rraannddoomm  aacccceessss  mmeemmoorryy  ((RRAAMM)) Since embedded systems inherently

operate with restrictions on resources, we do not usually have concepts of swap-

ping, virtual memory, etc. in typical embedded systems. And, while programming

for embedded systems, we must be very careful about memory leaks because,

these programs tend to run forever. For example, a television goes to standby

mode when it is switched off (unless the power is switched off). Some components

take rest, while the program still runs anticipating commands from the remote

commander. If the program ends when the television goes to standby mode, the

television cannot be switched on again because there is no entity on television

listening to the remote commander. These programs that run in embedded sys-

tems tend to run forever, and even a single byte leak in some path of execution

will definitely bring the system to a grinding halt at a later point of time.

❑ LLiimmiitteedd  pprroocceessssiinngg  ppoowweerr We cannot afford to have a P4 2 GHz processor to

power a microwave oven because of obvious cost considerations. We might have

to work with microprocessors that clock 10–100 MHz or even with some micro-

controllers with less powerful configurations. So, the code written must be effi-

cient. We have to choose appropriate algorithms and cannot choose an algorithm

with high computing requirement unnecessarily.

❑ IInntteerraaccttiioonn  wwiitthh  hhaarrddwwaarree This is the caveat. This factor singularly differentiates

a normal application programming from embedded programming. An application

programmer using the most modern OS can develop software blissfully unaware

of the underlying hardware. Actually this is one of the underlying design princi-

ples and objectives of modern operating systems. But, an embedded programmer

usually cannot afford this level of hardware independence since his code directly

interacts with the underlying hardware. Embedded programmers usually have to

work with realtime operating systems (RTOSes) that generally cannot provide

such a high level of abstraction over hardware due to space and time restrictions

and mind-boggling variety of hardware.

❑ AAbbsseennccee  ooff  ssttaannddaarrdd  IInnppuutt//OOuuttppuutt  ((II//OO))  ddeevviicceess A PC has standard I/O devices

like keyboard, mouse and a display that can be used to peek into what’s happening

inside our program. But many of the embedded devices do not have such I/O

devices. So, a programmer has no direct way of knowing what is happening within

the system. 
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This seriously limits the amount of debugging possible on an embedded system

working in the field.

11..22 FFUUNNDDAAMMEENNTTAALL  CCOOMMPPOONNEENNTTSS  OOFF  EEMMBBEEDDDDEEDD  SSYYSSTTEEMMSS

Usually all embedded systems have a lot in common in terms of their components and

their requirements. The following subsections introduce some of these requirements

and components.

11..22..11 CCoommppuuttaattiioonnaall//PPrroocceessssiinngg  ppoowweerr

This is one of the primary requirements of an embedded system. All systems take input

from the user or the environment. The processing, however, can be done using micro-

processors or a hydraulic circuit or a simple electrical/electronic circuit. The scope of

this book is limited to systems that use a microprocessor with required hardware.

This processing power is required to translate the request from the user/changes in

the environment to the output as desired by the end user (Fig. 1.1).

FFiigg..  11..11 Processing Power

This processing logic that used to be “hardwired” in a chip or other electrical circuits

grew up exponentially and is so complex nowadays that many functionalities are sim-

ply unimaginable without software. The usual practice is to hardwire ‘mature’ features

in hardware and use software to implement evolving features.

An embedded system can also take inputs from its environment. For example, con-

sider a music system with preset options such as theatre, hall, rock, etc. A user can

change the acoustic effect based on his requirements. In this case input is received from

the user (Fig. 1.2).
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FFiigg..  11..22 Input from the User of an embedded system

For example, a refrigerator or an air-conditioner is more than just a compressor

regulated by a thermostat. They have a control system that implements various

functions like defrost, air circulation, apart from the seemingly dumb function of temp-

erature control. Most of these systems come loaded with various settings. Some

advanced refrigerators may have sensors to deodorize and detect inactivity. These

control systems are usually implemented as software. They respond to environment

apart from the user. For example, an air-conditioner will try to run the compressor for

a longer duration if the ambient temperature is higher than the required level and based

on the user preferences/presets he chooses.

To compute and regulate the various parameters a system may require various levels

of computing power. The microcontroller can be chosen based on the required level of

computing power.

11..22..22 MMeemmoorryy

Memory is a very precious resource and is always found wanting in many embedded

systems (including human systems ☺).

It is indeed true that memory is becoming cheaper nowadays. But, in these days 

of intense price wars, every resource must be handled with extreme care. And, in 

many systems, some space has to be allocated for future expansions. Also, we cannot 

afford expansion slots as in PC for embedded systems due to cost constraints,
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embedded-hardware design constraints and form-factor* restrictions. So, memory

should be handled very carefully.

These constraints on memory will become self evident by looking at good embed-

ded system designs and its software. Algorithms that use a huge amount of memory or

copying of huge data structures are ignored unless it is an absolute necessity. 

Much of embedded system software is such that it directly uses memory instead of

high-level abstractions. Many RTOSes, however do provide routines that hide the com-

plexity of memory management. 

Many embedded systems do not carry hard disk or f loppy disk drives with them.

The usage of secondary storage is not possible in most embedded systems. So, these sys-

tems usually have some ROM and nonvolatile RAM where the code and user prefer-

ences are stored. (Various memories that are used and the programming techniques to

handle memory efficiently are discussed separately in Chapter 4).

We have to remember that most of the programs do not terminate (when was the last

time you “rebooted” your refrigerator?) and tend to run forever. In case of mission-criti-

cal systems, when emergency strikes or when some irrecoverable error occurs, embed-

ded systems implement what are called watchdog timers which just reset the system.

11..22..33 RReeaallttiimmee

We can define a system as a collection of subsystems or components that respond to the

inputs from the user or the environment or from itself (e.g. timers). Typically, there is a

time lapse between the time at which the input is given and the time at which the system

responds. In any system, it is quite natural to expect some response within a specific

time interval. But, there are systems where, very strict (not necessarily short) deadlines

have to be met. These systems are called realtime systems. These systems are charac-

terised by the well-known one-liner: 

Realtime systems can be classified in general as 

■ Hard Realtime Systems

■ Soft Realtime Systems

9Introduction

*The size/form and shape of the appliance (or device). People will not buy a cell phone as big as a
dumbbell just because it can be enhanced with more features in the future owing to its expansion slots.

“A late answer is a wrong answer”.
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❑ HHaarrdd  rreeaallttiimmee  ssyysstteemmss A realtime system where missing a deadline could cause

drastic results that could lead to loss of life and/or property is called a hard real-

time system.

Examples are aircrafts, biomedical instruments (like pacemakers), nuclear reac-

tors, etc.

For example, fighter jets have to respond to the air force pilot immediately. 

❑ SSoofftt  rreeaallttiimmee  ssyysstteemmss A realtime system where a few missed deadlines may not

cause any significant inconvenience to the user is known as a soft realtime system.

Examples are televisions, multimedia streaming over Internet (where loss of some

packets can be afforded). 

There is widespread confusion about ‘hard and fast’ realtime systems and soft and

slow realtime systems.

The realtime systems can also be classified as fast and slow systems based on the time

deadlines they operate with. Again, this is a very subjective definition. Typically, any

system that works with subsecond response times can be classified as a ‘fast’ realtime

system. The other systems that can take a second or more time to respond can be clas-

sified as ‘slow’ realtime systems.

Soft realtime systems can be fast. A few packets can be lost without loss to life and

limb across a high-speed router that works with nanosecond deadlines. Similarly, hard

realtime systems can also be slow— the cadmium rods inside a nuclear reactor need not

be pulled out at lightening speed.

Closely associated with the concept of realtime is the concept of determinism. This is

also a very important concept that differentiates realtime programming from normal

application programming. 

We have seen that a realtime system is one that behaves predictably— it responds

within a particular amount of time. The time interval between the instant at 

which the input occurred to the time instance at which output occurs should 

be ‘deterministic’ or predictable. This does not necessarily require that the systems must

be fast. It only requires that the system should always respond within a known period

of time.

For e.g., Java though is highly acclaimed as portable that makes it ideal for embedded

software systems that runs on various types of platforms, was found not ideally suited

for realtime systems because, some of the calls are not deterministic.
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Java implements the concept of automatic garbage collection.* This means that the pro-

grammer need not remember to free any of his memory. The logic for collection of

unused memory is built into the runtime. But this could cause problems. 

Whenever memory for the objects are allocated from the heap, if there is not suffi-

cient memory, then the garbage collection algorithm is executed till all the memory is

reclaimed. This could stop our program from execution for an unknown period of time.

As we will see later, this is a major issue in realtime systems wherever every function

call must be deterministic.

11..22..44 CCoommmmuunniiccaattiioonn  eelleemmeennttss

Embedded devices and appliances can no longer remain as islands of information stor-

age. They need to communicate with each other to perform any operation that is

desired by the user. We simply cannot ask the user to carry a cable (rope?) to tether the

device to an ethernet socket. These communications should typically occur using

wireless networking protocols like Bluetooth™, Wireless LAN (WLAN), HiperLAN for

short distances and 2.5G (GPRS), 3G (CDMA/WCDMA), 4G protocols over long dis-

tance. The communication element adds ‘intelligence’ to a simple embedded realtime

system.

The other important ‘soft’ parameters that define an embedded system (and its

software) are

❑ CCoosstt Cost is often the major driving factor behind many embedded systems.

This requires the designer to be extremely conscious about memory, peripherals,

etc. This factor plays a key role in high volume products. But, some highly specif-

ic applications like avionics can be chosen to be expensive. 

❑ RReelliiaabbiilliittyy Some products require a 99.999% uptime. Typical examples are

routers, bridges, power systems, etc. But some may not require this kind of

reliability (It is OK if your bread gets a bit overdone once in a while in 
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*Garbage collection is an oft-misused term. In many languages, the programmer has to take care of
his/her ‘garbage’, i.e. the memory she/he no longer uses. She/he has to remember to free the memory
manually. In some languages like Java, there is an option of the language-runtime (Java Virtual
Machine—JVM) taking care of freeing unused memory. This is called ‘automatic garbage collection’.
We have to remember that garbage collection must be done—either manually by the programmer or
automatically by the language runtime.



your microwave). Reliability may require the designer to opt for some level of

redundancy.* This could make the system more expensive. 

❑ LLiiffeettiimmee Products that have a longer lifetime must be built with robust and

proven components. 

❑ PPoowweerr  ccoonnssuummppttiioonn This is becoming an important area of research in itself.

With growing number of mobile instruments, power consumption has become a

major concern. The problem was first encountered while designing laptops. The

laptop seemed to siphon off the power in no time. Similarly, many of today’s

devices are mobile— like the cellular phone, PDA, to quote a popular few. The

design of these devices is such that the power consumption is reduced to the min-

imum. Some of the popular tactics used include shutting down those peripherals

which are not immediately required. These tactics are highly dependent on soft-

ware. This factor has reached new dimensions with new processors being designed

such that some of their parts can be shut down whenever not required. This

requires a shift to a new era of programming with more dimensions being added

to embedded software programming. The programmer for mobile devices is

becoming increasingly aware of the power-saving features in his programming

platform (peripherals and processors). 

These are some of the soft factors that drive design of embedded systems and its

software. 

11..33 EEXXAAMMPPLLEESS  OOFF  EEMMBBEEDDDDEEDD  SSYYSSTTEEMMSS

Let us see some of the typical embedded systems that surround us.

11..33..11 MMuussiicc  ssyysstteemmss

Today’s advanced music systems are very complex embedded devices. They contain a

multitude of features such as the ability to play various types of media like the magnetic

tape (cassettes), audio/video CDs, DVDs, etc. They also have support features for many

kinds of presets for different types of music like jazz, rock, classical, vocal, etc. and the
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*Having some duplicate peripherals that can be used when the main peripheral fails is called redun-
dancy. This duplicate peripheral is not in use always. It is used only when the main device fails.
There could be any level of redundancy. In highly critical systems more levels of redundancy can be
provided. If the swapping between the failed main device and the redundant device can occur 
without a power-down or restart, then the device is said to be ‘hot-swappable’. It is called 
‘cold-swappable’ otherwise.



environment (hall, theatre, open-air, etc). These features are not hardwired in chips but

are usually taken care of by the software that goes with these systems. The processors

are typically 8-bit microprocessors for handling user inputs and display. Additionally,

they have a high-end DSP 16-bit/32-bit microprocessor and/or MPEG2, MPEG4

decoders for decoding the input stream for various supported media. The RAM for

these kinds of systems can vary a lot from 64KB to a few MB depending on how com-

plex the system is. 

On the realtime front, the media should be read, decoded and the stream must be

sent to the speakers/video output at a predefined rate. Based on the media the require-

ments for this data throughput may vary. Imagine a Bluetooth™ network that takes care

of playing your favourite music as you enter the house (by contacting your PDA). This

system needs to interact with its components as well as other devices in realtime so that

the desired functionality (playing of favourite music) is achieved.

11..33..22 CCaarrdd  rreeaaddeerr

This is one of the systems that is often encountered in buildings that incorporate a secu-

rity system. A person who wants to gain entry to the systems must f lash his/her mag-

netic card in front of the reader. The reader then validates the card and may provide or

deny access based on the privileges given to the card. The system does not have a very

complex software. 

On f lashing of the card as detected by the magnetic sensor, the card identifier is looked

upon in the access control list. If the card does have the access permit then the LEDs

on the unit f lashes and the door is unlocked for entry. Or, the system can emit a sound

or display that the access is not permitted. The unit should just look up the access table

and respond to the user. 

However, this should happen sufficiently fast— typically in less than a second. We can-

not allow even a few seconds lapse because, the user may assume that his access was

not permitted or that the system is dysfunctional. The lists can be stored in a central

server where the look up can be done. In this case, the authentication unit may not

require storing of all the lists in its memory. Or, it can store the list only for the location

for which it controls the access. 

This is left entirely to the discretion of the designer of the system. The memory required

for this system will depend on the method opted for its design. These units are

connected with each other, usually using some kind of Ethernet connection.
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11..44 LLAANNGGUUAAGGEESS  FFOORR  PPRROOGGRRAAMMMMIINNGG  EEMMBBEEDDDDEEDD  SSYYSSTTEEMMSS

Assembly language was the lingua franca for programming embedded systems till

recently. Nowadays there are many languages to program them—C,C++, Ada, Forth

and … Java together with its new avatar J2ME. Embedded software is coming of age

and it is fast catching up with application software. The presence of tools to model the

software in UML, SDL is sufficient to indicate the maturity of embedded software

programming.

But, the majority of software for embedded systems is still done in C. Recent survey

indicates that approximately 45% of the embedded software is still being done in C.

C++ is also increasing its presence in embedded systems. C++ is based on C, and helps

the programmer to pace his transition to OO methodology and reap the benefits of

such an approach. 

C is very close to assembly programming and it allows very easy access to underly-

ing hardware. A huge number of high quality compilers and debugging tools are avail-

able for C. Though C++ is theoretically as efficient as C, some of its compilers are

buggy due to the huge size of the language. These compilers may create a buggy exe-

cutable in some situations. C can definitely claim to have more mature compilers than

C++. And in C++, some of the features do cause a lot of code to bloat. Actually there

is an ongoing effort to identify a subset of C++ that can be used in embedded systems.

This subset is called the Embedded C++.*

In this book, we concentrate on C and we use C++ wherever applicable. The myths

that surround C++ and implications of using it in embedded systems are discussed in

Appendix A.

11..55 OORRGGAANNIISSAATTIIOONN  OOFF  TTHHEE  BBOOOOKK

In this book, we will explore what an embedded system is, various types of embedded

systems, techniques to program them, and major concepts that are required to be mas-

tered for efficient design and implementation of embedded system software. We will

also take a peek into the process of developing efficient embedded software and its

potential pitfalls.

*For more information look into the site for Embedded C++ - http://www.caravan.net/ec2plus/.
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However, the book is NOT

■ An ASIC developer’s guide

■ Guide for board design/board layout

■ Detailed guide to semiconductor/digital techniques

■ User guide to any embedded programming language

This book aims to explore the basic concepts that underline an embedded system

and its software.

This book has been divided into following sections

■ Introduction to Embedded Systems

■ Embedded System and Microprocessor concepts relevant to building software 

for embedded systems

■ Software Engineering practices: requirements, design, implementation, 

estimation and testing aspects

In Part I, the basic functionalities of an embedded system are defined. This part shall

be the springboard for the rest of the book, by giving useful insights into the importance

and organisation of rest of the sections.

A microprocessor or a microcontroller has loads of features. In Part II, we discuss

concepts like interrupts, hardware timers, memory types and its management.

Embedded software has a lot of components that can be found in many systems. For

example, state machines/state charts are used in many communication protocols. Task-

based design is also one of the ubiquitous programming practice. In part III some of

the common design paradigms that a programmer can immediately benefit from are

described. 

Software is complete only with its corresponding engineering practices. Some of the

software engineering issues are dealt with in Part IV. Estimation, requirements gather-

ing, architecture definition, design, implementation and testing of embedded systems

should be familiar to embedded programmers. This helps in improving over-all quali-

ty of the system. All the case studies and examples discussed in the chapters above are

used to create a complete case study to help a programmer understand the complete

Software Development Lifecycle (SDLC).
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The content of the book in all the chapters is based on the Learning Pyramid™ as

indicated in ancient Indian texts (Vedas) (Fig. 1.3).

FFiigg..  11..33 The Learning pyramid

Learning is usually completed in four steps that are described below: 

The first stage is knowledge—This consists of the definitions and the theory that go

along. Knowledge as information is the foundation of learning cycle. At the beginning

of any learning cycle, knowledge is not usually exhaustive.

The next stage is comprehension—This consists of explanation of the theory and how

the things happen the way they happen. At this stage, the learner is able to generalise

information.

16 Embedded Realtime Systems Programming

WWaattcchhddoogg  TTiimmeerrss::  Watchdog timer is a mechanism to monitor the activity (rather inactivity) in a sys-
tem. A watchdog timer periodically checks for a predefined activity. (It could be looking for a specific
value to be updated periodically in a particular memory location). If the watchdog senses that the value
has been updated as expected, then, it concludes that the system is an irrecoverable state (either the code
is stuck in a loop, or it has crashed, etc.) and resets the system.
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The third stage is assimilation—This consists of insights and examples to get deep

understanding of the system and interrelation between various information groups.

The final stage is application—This stage includes real case studies that would help

the reader exercise all that he has assimilated. This involves use of knowledge, after

comprehension and assimilation, production of an experience by using it to solve a

problem in real life.

Thus the Learning Pyramid™ helps in complete coverage of any subject, and specif-

ically here “Embedded realtime systems” and its software.

TTaabbllee  11..11:: Characteristics of Embedded systems

11..66 LLEESSSSOONNSS  LLEEAARRNNTT

In this chapter, we learnt about typical characteristics and features of embedded sys-

tems. Embedded systems can be found all around us— in washing machines, in music

systems, remote controls and the like. Embedded systems have been increasing in com-

plexity and intelligence constantly. It is a challenge to balance the strict restriction on

memory and size of embedded systems with more computational power. In addition,

programming for embedded devices has its own problems such as limited OS support,

lack of standard I/O devices, limited memory and interaction with hardware devices in

realtime. C replaced Assembly as the most commonly used language for programming

embedded systems as of today because of ease of programming and its compact code

generation. Other languages such as C++ and Java are picking up too.

17Introduction

Knowledge Definitions, theory

Comprehension Explanation of definitions and theory

Assimilation Tips, warnings, examples

Application Case studies, exercises

LLeeaarrnniinngg  sstteepp MMeecchhaanniissmm  uusseedd  iinn  tthhiiss  bbooookk



11..77 RREEVVIIEEWW  QQUUEESSTTIIOONNSS

■ What is meant by a smart device? What are its usual attributes?

■ What are the typical challenges of programming for embedded systems?

■ What is meant by realtime? What are the different categories of realtime?

■ What is meant by determinism?

■ Why is power consumption a serious issue in embedded systems?

■ What is meant by garbage collection? Why does it render Java (in its normal 

version) in its current form nonsuitable as a language to implement embedded 

systems?

QQ
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SECTION 

TWO

CChhaapptteerr  22  ggiivveess  aann  iinnssiigghhtt  iinnttoo  tthhee  bbuuiilldd  pprroocceessss

aassssoocciiaatteedd  wwiitthh  eemmbbeeddddeedd  ssyysstteemmss,,  aanndd  wwee  uunnddeerr--

ssttaanndd  wwhhyy  aanndd  hhooww  iitt  iiss  ddiiffffeerreenntt  ffrroomm  aa  ttrraaddiittiioonnaall

ccoommppiillaattiioonn  pprroocceessss..  MMeemmoorryy  iiss  oonnee  ooff  tthhee  mmoosstt

iimmppoorrttaanntt  ppaarrttss  ooff  aann  eemmbbeeddddeedd  ssyysstteemm..  SSoo  iitt  

aallwwaayyss  ppaayyss  ffoorr  aann  eemmbbeeddddeedd  pprrooggrraammmmeerr  ttoo  kknnooww

ssoommeetthhiinngg  aabboouutt  iittss  oorrggaanniissaattiioonn,,  aacccceessss  mmeetthhooddss

aanndd  tthhee  aassssoocciiaatteedd  cciirrccuuiittrryy  iinn  oorrddeerr  ttoo  ggeett  aa  ffeeeell  ooff

tthhiinnggss..  WWee  ttaakkee  aa  llooookk  aatt  tthheemm  iinn  CChhaapptteerrss  33  aanndd  44..

AAllssoo,,  mmoosstt  eemmbbeeddddeedd  ssyysstteemmss  iinntteerraacctt  wwiitthh  tthhee

eexxtteerrnnaall  wwoorrlldd  uussiinngg  tthhee  ‘‘iinntteerrrruupptt''  mmeecchhaanniissmm..

Embedded nitty-gritty



The process of translating the code that is written by humans to the code that is under-

standable by the microprocessor is called the build process (Fig. 2.1).

FFiigg..  22..11 The Build Process

An embedded programmer must understand build process deeper than an applica-

tion developer. This chapter describes the build process in detail. The process in

embedded systems is almost the same as PC based development, but for some subtle

changes that will be indicated when appropriate. 

Some of the topics discussed here may not be specific to embedded systems per se.

But, the discussions common to both embedded and applications (nonembedded) 

are added in this chapter to make the chapter complete and the book, a stand alone

entity. 

For C/C++ programs, the initiation of the build process varies from using a simple

command from the command line (mostly in case of trivial programs) to huge make-

files and sophisticated build tools.

Chapter

The Build Process for

Embedded Systems
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The steps that are involved in transforming the source code (the code created by the

programmer) to the final executable format are listed below:

i. Preprocessing

ii. Compiling

iii. Linking 

iv. Locating

Let us consider development of a program, say— foo.c

To build the corresponding executable, we give a command (in Unix) like 

$ cc foo.c

Or, in Windows command line

E:\> bcc32 foo.c

to invoke the Borland compiler. If you are using an integrated development environ-

ment (IDE), then you could start building by pressing some special keys directly from

the IDE editor. 

If everything goes well, then we can execute the program by 

$ ./a.out (or)

E:\> foo

There are various steps involved in translation of foo.c to a.out (or foo.exe). Each of

the steps is described below in the following sections.

22..11 PPRREEPPRROOCCEESSSSIINNGG

This is the first step in the build process. The whole of the build process is accomplished

by a set of executables (not just cc/bcc32). Preprocessing is accomplished using an exe-

cutable usually called the cpp (C Pre-Processor) in the case of Unix* and cpp32.exe/

cpp.exe in the case of Windows™ machines. 

The pre-processor is automatically invoked by ‘cc’ (or cl or bcc32 or gcc, etc.) and its

output is a temporary file, which is deleted at the end of the compilation process.

*When we mean Unix it is usually *nix (The ‘*’ symbol is to represent a wild card and not to swear at
Unix). Unix in this book, is Unix and its clones (HP-UX, Solaris, Linux and our favourite–AIX).

22 Embedded Realtime Systems Programming



The preprocessor does the following jobs:

i. Strips the comments

ii. Expands include files

iii. Expands MACROs and replaces symbolic constants (simply put, the 

#defines ☺)

Including files is a great mechanism to maintain code modularity thought upon years

before. Though other mechanisms have evolved, they are based on similar concepts

and we still cannot do away with including files. Let us see a sample header file and see

what is done while including header files. 

23The Build Process for Embedded System

// foo.h

#ifndef MY_FOO_H
#define MY_FOO_H

/* 
Preprocessor does not bother typedefs. typedef is a 
compiler feature. So, note the semicolon in the end.

*/

typedef int MY_INT;

/* 
PI is a symbolic constant. We can use PI wherever we
can use 3.14159

*/

#define PI 3.14159

/*
SQR is a macro. Though preprocessor is a text replacement
program, macros can be used effectively to improve our 
coding. (though they have a tendency to introduce bugs.)

*/

#define SQR(x) (x)*(x)

void myFoo ( MY_INT );

#endif

LLiissttiinngg  22..11:: foo.h

Can we include .c (source) files?

PP22PP



LLiissttiinngg  22..22:: foo.c

Now, let us look at foo.c after it has been preprocessed. (Please note that during the

normal compilation process, this file is not generated. This file is a temporary file that

gets deleted after the compiler uses it. However, preprocessors can be used directly and

have options to dump the preprocessed file in the screen or be redirected to a file. We

can use the corresponding preprocessor available in our platform to generate the pre-

processed file). We used the preprocessor cpp32.exe freely available Borland C/C++

compiler provided by Borland™ Inc. The comments are inserted by the preprocessor

to improve our readability and will not be present in the actual output given to the com-

piler (i.e. in the temporary file created and given to the compiler).

// foo.c

#include “foo.h”

int main (void)
{

int i = SQR(2);
float r = 1.0,

area = PI * SQR(r);

myFoo(i);

return 0;
}

void myFoo (int i)
{
}

To create this preprocessed output, we used the C Preprocessor (cpp32.exe) provided by Borland
free command line tools. 
cpp32  -Ic:\Borland\bcc55\Include foo.c

This produced the following file (foo.i)

NNoottee
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After preprocessing foo.c will look like above. Note that the header file foo.h is

expanded (foo.c lines are in bold). Look at the lines foo.c #5 and foo.c #9 respectively.

The preprocessor has expanded the macros SQR and replaced PI. 

It should be noted that the compiler sees the .c file only after preprocessing. So, the

compiler cannot see if we had manually typed in 3.14159 or the preprocessor replaced

/* foo.c 1: */

/* foo.c 2: */

/* foo.c 3: */

/* foo.h 1: */

/* foo.h 2: */

/* foo.h 3: */

/* foo.h 4: */

/* foo.h 5: */

/* foo.h 6: */

/* foo.h 7: */

/* foo.h 8: */

/* foo.h 9: */

/* foo.h 10: */

/* foo.h 11: */typedef int 
MY_INT;

/* foo.h 12: */

/* foo.h 13: */

/* foo.h 14: */

/* foo.h 15: */

/* foo.h 16: */

/* foo.h 17: */

/* foo.h 18: */

/* foo.h 19: */

/* foo.h 20: */

/* foo.h 21: */

/* foo.h 22: */

/* foo.h 23: */

/* foo.h 24: */

/* foo.h 25: */

/* foo.h 26: */

/* foo.h 27: */void myFoo (

int );

/* foo.h 28: */

/* foo.h 29: */

/* foo.h 30: */

/* foo.h 31: */

/* foo.h 32: */

/* foo.c 4: */

/* foo.c 5: */int main (void)

/* foo.c 6: */{

/* foo.c 7: */int i = (2)*(2);

/* foo.c 8: */float r = 1.0,

/* foo.c 9: */area = 3.14159 *

(r)*(r);

/* foo.c 10: */

/* foo.c 11: */myFoo(i);

/* foo.c 12: */

/* foo.c 13: */return 0;

/* foo.c 14: */}

/* foo.c 15: */

/* foo.c 16: */void myFoo

(MY_INT i)

/* foo.c 17: */{

/* foo.c 18: */}

/* foo.c 19: */

/* foo.c 20: */
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PI with 3.14159. The compiler/linker usually create entries in the final executable to

add debugging information. Since the compiler cannot identify preprocessor symbols

(because they have been removed already when it comes to the compiler), it cannot add

any debug information about preprocessor symbols in the executable. So, debugging

preprocessor macros is extremely difficult (if not impossible).

22..22 CCOOMMPPIILLIINNGG

This is one of the most important steps in the build process where the object code is

created from the source code. The name for this step has become synonymous with the

entire build process. 

In the compiling parlance, the code that the user creates is called the source code and

the output of the compiler is called object code.

In this step, the code written by the user is converted to machine understandable

code. The steps involved in compilation process can be split as

i. Parsing

ii. Object code generation

In the parsing step, the compiler parses the source file to validate the use of variables

and checks that the language grammar/semantics are not violated. The parsing step also

makes a note of the external variables that are used from other modules and the vari-

ables exported to other modules.

In the next step, the object code is generated from the corresponding high-level lan-

guage statements. Some compilers choose to create an intermediate assembly file and

invoke the assembler to create object code from the assembly listing produced. 

The object code created cannot be executed yet. One of the important points to be

observed is that the compiler works on a single source file at a time. In compiler

parlance, each source file is called a ‘translation unit ’ (TU). An object file (.o or .obj) is

created for every translation unit. A TU is typically the preprocessed file produced by

the preprocessor. 

Can a .obj file be created for a .h file?

PP22PP
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There exists a one to one relation between every source file and object file (At least,

for every compiler that we know of replace a .c extension with a .o/.obj extension for

the object file name).

22..33 CCRROOSSSS  CCOOMMPPIILLIINNGG

Cross compiling is a term unique to embedded environments. To really understand

what it is, let us look at a typical application build/execute process in a workstation. 

The user types in the code in an editor (or in some sophisticated integrated develop-

ment environment (IDE)). Then he invokes the compiler. We should note that the

compiler is also an executable program that runs on the workstation. The compiler

compiles the source code written by the programmer into machine language code

‘understandable ’ by the processor in the workstation. 

If the build is successful, the developer can execute the program in his workstation. 

Now, let us carefully observe the following points:

i. The compiler itself is a program that runs in the (processor of the) workstation.

ii. The compiler creates object code that is understandable by the processor in 

the workstation.

If we look at the second point, it is really not necessary for a compiler to produce

object code that is executable in the same workstation it runs. Both are logically inde-

pendent. A compiler can also produce object code that can be executed on a different

processor. (The catch here is that the build code cannot be executed immediately in the

same workstation in the absence of emulators)

Before venturing into the details of cross compiling, we have to know brief ly, how

software development is carried out for embedded systems.

The embedded software is finally executed on boards like the one shown in Fig. 2.2.

A board has a processor (ARM/MIPS/x86), some RAM, ROM, Flash and some

interconnect devices like Ethernet, UARTs etc. They usually don’t have any display or

keyboard attached. So, it is not possible to do any development of software for the

board on the board. If you have worked on an 8085 board, then you would remember

that the programs used to be typed in directly using a small numeric keyboard directly

in machine language.
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FFiigg..  22..22  Typical development platform

So, wouldn’t it be nice if we can build the code for the board in the comfort of devel-

opment environment in a PC/workstation, but execute the code in the target? A cross

compiler helps us do exactly this. Though a cross compiler is run on the host like a

Unix/Windows workstation, the object code cannot usually be executed in the same

workstation.

Analysis:

CCoommppiilleerr The cross compiler is also a compiler because it converts the source

code to object code.

PPrroocceessssoorr  iinn  tthhee  ttaarrggeett The targets are usually boards/platforms that do not have a

display and keyboard. So, the compilation is done on a PC/Unix workstation. But

the object code produced by the cross compiler executes in the target and not on

the host. 

*Not to mention that both the host and target processors can be same in which case the executable can
be run on the host also.

A cross compiler is defined as a compiler that produces object code for the processor in the

target rather than the host in which the compiler is executing.*

DDeeffiinniittiioonn
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22..44 LLIINNKKIINNGG

The process of compilation ends after creating object files for every source file (trans-

lation unit). We still do not have a single executable. The object files though in machine

understandable format, are incomplete. Some of the incomplete parts could be:

aa.. RReeffeerreenncceess  ttoo  eexxtteerrnnaall  vvaarriiaabblleess:: Consider the case when a project consists of two

files. The t2.c declares a global variable foo that is an integer and t1.c refers to it

by an external reference. Since the compiler works only on a single translation

unit at a time, while compiling t1.c, the compiler can only assume about the

existence of foo and does not know about exact location of foo. In the case of t1.c,

the compiler adds the name of foo to the list of ‘imported’ symbols when it 

adds it to list of ‘exported’ symbols while compiling t2.c. It is the duty of the linker

to resolve these external symbols (now does the linker error ‘unresolved exter-

nal XXXX’ mean more to you?). This is not limited to variables. The linker 

also links the references to functions that are defined in other source files and

libraries. 

FFiigg..  22..33 Extern references

bb.. NNoo  bbiinnddiinngg  ttoo  rreeaall  aaddddrreessss:: Again, due to the nature of the compiler (working

with one file at a time), the addresses of different variables in different files will be

assigned relative to the particular file. When all the object files are linked togeth-

er to a single executable file, the address assigned to all these variables must be

unique. The linker takes care of assigning correct addresses to these variables.

Code in a file may also refer to a function in some other file. The linker fills these

addresses of the functions. Then, the code for a particular function may be in a

library. The linker will search the library and link appropriate code with the

application. 

29The Build Process for Embedded System

//t1.c

extern int foo;

// ...

//t2.c

int foo;

// ...



22..55 LLOOCCAATTIINNGG

The output of the linker is a single executable. The linker would have resolved all the

external references among the object files, linked up the code from library, etc. Still, the

executable is not ready to run on the target! 

The final step (at last) that should be done is called ‘locating’. This step is unheard of

among developers who work with abstraction levels of COM, .net, etc. Though this is

done for every executable, this step is of high importance to embedded systems

because, this step requires a lot of input from the programmer.

This step finally adds the target specific information into the executable. This was not

required in the case of application programs because the OS takes care of most of the

locating issues. Typically, the locating is done at load time in many operating systems.

This is not the case in embedded systems, where locating must be done because devel-

opment is done on hardware platforms unique to each project.

A dedicated OS on the target that loads the executable to the memory is unheard of

in embedded systems. The programmer must explicitly provide the hardware specific

information of location of ROM, RAM, etc. and their sizes. 

This information can be provided either as a command line option or inside linker

scripts. The linker (ld) in GNU GCC compiler collection has a sophisticated linker

script language that can be used to finely control the final executable. ARM linker

provided with the ARM developer suite (ADS 2.2) also has a good support for 

these scripts. 

The locator may be available as a separate program or be bundled together with the

linker. Please refer to the toolset documentation on specific information for controlling

the linker/locator. 

22..66 CCOOMMPPIILLEERR  DDRRIIVVEERR

By this time we are fairly comfortable with the various steps in the build process. The

entire build process is not done by a single huge monolithic executable. It is instead

accomplished by a set of executables. For instance, we saw that the preprocessing in our

case was done by cpp32.exe. But, who takes care of invoking the right component at

the right time? 

The answer to question is: The compiler driver. 
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The compiler driver is one of the least known terms among the developer commu-

nity. We usually think all the work of building is done by cc / bcc32/cl. But, this is not

true. cc is simply a compiler driver that takes care of invoking the right component at

the right time and passing the correct inputs to them.

The functions of a compiler driver can be listed as below:

■ Determine the type of the file and invoke the appropriate component: In an

embedded application we typically have a list of C and assembly language files 

(.c and .asm). In some cases, we might need to build an application using a mix of

C++/C and assembly language files. The compiler driver takes care of invoking

the C compiler or C++ compiler or the assembler based on the extension of the

appropriate file. 

■ Sequence the build process: The compiler driver not only takes care of calling

the right component, but also at the right time. The entire build process is

sequenced as preprocessing, compiling, assembling, linking, etc. by the compiler

driver. 

■ Pass the arguments: The user can pass command line arguments and parame-

ters to various modules using the compiler driver. The driver takes care of passing

the arguments to the appropriate module. (For example, linker commands to ld

and compiler command to cc (in the case of Unix)).

■ Pass default arguments: It could be too cumbersome to pass every default argu-

ment of the compiler and linker. So, the compiler driver relieves the burden of

passing the default options to the various components.

22..77 LLIINNKKEERR  MMAAPP  FFIILLEESS

So far, we were only talking about providing various inputs to the linker/compiler, etc.

At the same time, we can request the linker to provide some output too (other than the

executable, obviously ☺).

At this stage, before continuing, the reader may require a small deviation to look at

section 2.10 in order to understand the concept of segments. At this stage of build pro-

cess, we do not know the exact location /address of (initialised) global variables, various

functions, etc. We also do not know the size of each function (in bytes), the amount of

debug information, etc. These are decided by the linker and known only to the linker.

To know these details, we can request the linker to generate MAP files.
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The generated MAP file is huge but some of the contents are showed in Fig. 2.4 for

explanatory purposes. (The map file was generated using Microsoft cl compiler (32-bit

C/C++ Standard Compiler Version 13.00.9466 for 80x86)).

FFiigg..  22..44 Sample MAP file excerpt

From the excerpt above, we can see that the .text segment (containing the executable

code) has segment number ‘0001’. The data segments (the initialised and un-initialised

data) belong to segment 3 (0003). The C pro-

gram has 3 symbols described in the map file.

The first two are functions (foo and main) that

belong to the text segment. (indicated by

symbol ‘f ’ in the MAP file)

We had two global variables. As indicated

above, only the initialised variable is assigned

an address in the map file. The symbol for 

uninitialised variable myvar_un_init is not present since it has been moved to bss

section. 

22..77..11 SSttaarrttuupp  ccooddee  aanndd  bbooaarrdd  ssuuppppoorrtt  ppaacckkaaggeess  ((BBSSPPss))

We have always been taught that main() is the first function to be executed in C.

Surprise! This is not true. There is some startup code that gets executed before the

execution reaches function main(). The steps are usually standard across platforms

(obviously, their implementation will vary). So, the compiler vendors usually provide

appropriate startup code with their compiler toolset for the particular platform. This

     Start         Length     Name                   Class  

 0001:00000000   000050faH    .text                   CODE  

 ... 

 0003:00000030   00000590H    .data                   DATA  

 0003:000005c0   00000594H    .bss                    DATA  

 

0001:00000000       _main                      00401000 f   foo.obj  

0001:0000002b       _myFoo                     0040102b f   foo.obj  

 

0003:00000030       _myvar_init                00408030     foo.obj  

MAP file can be generated using the –M
option provided for the Borland compiler. 

bcc32 –Ic:\Borland\bcc55\Include
–Lc:\Borland\bcc55\Lib -M foo .c

NNoottee
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startup code gets executed before the main() is reached. A typical f lowchart for the

startup code is given in Fig. 2.5.

FFiigg..  22..55 Startup code— steps
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We know very well that all global/static variables are initialised to zero. If in doubt,

execute the following program and check it out!)

LLiissttiinngg  22..33:: glob_val.c

The output of the program when compiled and run in our PC was:

The 575 is a garbage value and can change based on the memory location the

variable finds itself. The point to be taken is that the variables a, c are initialised to 

zero even before main is entered. This is done during the initialisation of the bss

segment. This is sufficient proof that main() is not the first function that gets 

executed. 

22..88 LLIINNKKEERR  SSCCRRIIPPTTSS  AANNDD  SSCCAATTTTEERR  LLOOAADDIINNGG

Now, embedded systems are becoming complex and have various types of RAM.

Designers can choose to load different parts of program to different types of RAM (say

SRAM, SDRAM) during the execution of the program to meet performance and cost

requirements. 

For this we need to instruct the linker to place various modules in various locations

in the memory. So, we need to create linker scripts. 

#include <stdio.h>

int a;

int main(void)
{

int b; 
static int c;

printf ("%d\t%d\t%d\n", a, b, c);

return 0;
}

0     575     0

34 Embedded Realtime Systems Programming



A sample linker script is given below:

ROM 0x08000000 0x2000 ; “Region” “Base Address” “Maximum Size” 
{
ROM 0x08000000 ; “Region” “Base Address 
{

foo.o (+RO) 
}
RAM 0x0600000 ; “Region” “Base Address”
{

foo.o ( +RW )
foo.o ( +ZI )

}
}

Here, we are placing the read-only content (.text section in ROM and the rest in

RAM) during execution. RO, RW are Read Only and Read Write respectively. The ZI

is called the Zero Init section, which corresponds to BSS.

In the startup script, the memory for ZI section must be allocated and the contents

must be zeroed. 

The syntax of these files are linker specific. The format given above is based on

ARM™ linker (provided with ARM developer suite). ‘ld’ of the GNU GCC compiler

collection also supports linker scripts. 

22..99 LLOOAADDIINNGG  OONN  TTHHEE  TTAARRGGEETT

In order to finish the discussion related to compilation, let us brief ly touch upon how

this code is executed. We will take this process further when we describe memory types

and we will explain available tools in Chapter 11. 

As we mentioned before, the typical process of code development for embedded

systems happens on a host machine. This host machine may have an integrated

development environment and a cross compiler in order to produce machine code

understandable by the embedded hardware. Figure 2.6 illustrates this concept. The

developer works on the host system and “loads” the machine code on the target hard-

ware memory (usually Flash or some kind of ROM—we will discuss this in Chapter 3)

using a serial link or Ethernet connection. 

Why are host and target called so?

PP22PP
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As we will see in Chapter 11, Fig. 2.6 is a simplified version of the actual setup; usu-

ally there are more tools available to help the developer.

FFiigg..  22..66 Development of embedded platforms

22..1100 PPRROOGGRRAAMM  SSEEGGMMEENNTTSS

In compiling parlance, a segment is usually a collection of related /similar data. 

When we ask a programmer to define a program, the usual reply is that a program

is a collection of code and data. So, based on this, every program has the following seg-

ments: (some of the segments can be empty based on the nature of the program)

i. data

ii. bss/zeroinit

iii. stack

iv. text/code

The above four are common segments found in most of the programs. Though oth-

ers (e.g. TLS— thread local storage) also exist, we will be restricting our discussion to

the above four only. 

22..1100..11 TTeexxtt//CCooddee  sseeggmmeenntt

Consider the following program:

Host Target 

Serial Link / 

Ethernet 

Flash/ROM 
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LLiissttiinngg  22..44:: Program segments

The above program does nothing useful, but is taken for demonstration of various

program segments. This program exists in the text segment. The program has some

data (the variables) and some code (the for loop) that operates on the data.

The data can be classified as:

i. Global Variables

■ Initialised

■ Uninitialised

ii. Local Variables

int i = 1; // Initialized global integer variable
int j;     // Un-initialized global integer variable

int a[100];// Un-Initialized global integer array
int b[10] = { 0, 1, 2 }; // Partially initialize array

int main (void)
{

int x;          // local variable
int y[50];      // same 

static int z;   // static variable with local scope

for (i = 0; i < 50; i++)
y[i] = i;

return 0;
}

Global variables, global variables with file scope (global variables defined with static qualifier) and
static variables defined inside a function scope are variables that are supposed to have a static linkage.
Usually programmers get carried over by this static linkage notation. All the above three kinds of
variables have space allocated at the compile / link time. So, their addresses are a constant, i.e. static
throughout the lifetime of the program. This is unlike local variables that get created on the stack and
have varying addresses for every invocation. (In fact, to enable recursion, we require each instance of 
the local variable of the same function to have different addresses).

NNoottee
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22..1100..22 DDaattaa  sseeggmmeenntt

This consists of global* variables that have been initialised to some value. The space 

for these initialised variables is assigned at compile time. So, having more initialised

global variables leads to an increase in size of the final executable. This is not usually

desirable. 

We all know that if we have an array (global or local) with initialisers less than that

of the size of the array, then the rest of the elements are initialised to zero. For e.g.,

consider 

int a[100] = {0, 1, 2}; 

This means that a[0] = 0, a[1] = 1, a[2] = 2 and the rest a[3] to a[99]

are initialised to 0.

But, the danger of above initialisation is that, for the sake of initialising 3 members

of the array, we have added the space needed for 100 integers to the size of the final

executable. If the integer size in your machine is 4 bytes, then, the code size increases

by 400 bytes. That is quite a lot of memory in embedded systems. 

Sometimes, global variables are initialised to zero for the sake of clarity. 

LLiissttiinngg  22..55:: Global variables initialised to zero

But, this initialisation to zero is superf luous and is not required. But, as a result of ini-

tialisation, the final code size will increase by a few bytes. Uninitialised global variables

are automatically initialised to zero. But, the main objective of this section is to bring

home the point that initialised global variables are part of the data segment (that take

space in the final executable).

int i = 0;
int j = 0;

int main(void)
{

// . . .
}

*Henceforth, in this chapter, whenever a reference is made to global variables, it is also applicable to
static variables unless explicitly mentioned otherwise.
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22..1100..33 BBSSSS  sseeggmmeenntt

This is the place for uninitialised global variables. Adding uninitialised global variables

does not increase the code size. A note of the size of the bss segment is kept in the exe-

cutable. During the loading of the executable, the size for the bss segment is allocated

at runtime. Then, the memory allocated for the BSS segment is zeroed. (Now we know

how global variables are initialised to zero).

Consider the following code listings and their corresponding sizes:

In our system, when we compiled the above programs with the Borland compiler,

we got the following output:

If you have global integer/array variables initialized to zero, then, you may very well remove the

initializers to save object code size.

TTiippss

// bssarray.c
#include <stdio.h>

int a[100]; // This aray will be placed in BSS

int main (void)
{
printf ("This program has a global array in bss segment\n");
return 0;

}

//dataarray.c
#include <stdio.h>

int a[100] = {0, 1, 2}; // This aray will be placed in data
segment

int main (void)
{
printf ("This program has a global array in bss segment\n");
return 0;

}
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FFiigg..  22..77:: Size of object codes (Borland)

We can see that the size varies approximately by 400 bytes (size of 100 integers in

our machine). (The same code when compiled with Microsoft cl compiler produced the

following output. Here, the difference is exactly 400 bytes as expected. This is not a

benchmark test to compare two compilers. We just want to show that different compil-

ers could produce different outputs and that around 400 bytes get added to the code

size when we try to have an initialised array instead of uninitialised one).

FFiigg..  22..88:: Size of object codes (Microsoft)

The standards (C(C9X) and C++ (ISO 14882)) say that the BSS segments be filled

with zeroes. But, the numbers may not have a logical value zero and can have their own

representation. (For e.g., for a global f loating point number, if all its bytes are initialised

to zero, then it can take a value decided by the compiler implementers. But, in most

cases, we can assume that the value is zero)

22..1100..44 SSttaacckk  sseeggmmeenntt  

The stack segment provides the space for data when the program is executing. So, the

stack segment does not add space to the size of the executable. 

The stack segment is required only when the program is running. The stack is used

to implement function-calling mechanism in C/C++ (and a lot other languages too). 
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When a function is called, the basic steps that can be observed are:

i. The function call is made and the arguments are passed to the called function.

ii. The function uses the variables local to the function to perform its desired 

operation.

iii. The function returns (with or without a return value) to the function caller.

It should be observed that the function may in turn call other functions or may call

itself .* If we observe carefully, memory is required for all the three cases:

TTaabbllee  22..11:: Memory requirements for a function call

These steps are explained below.

FFuunnccttiioonn  ccaallll

Usually a function is called with some arguments. The function performs some opera-

tion based on the arguments and may return a value to the function that called it. The

arguments that need to be passed to the function occupy memory.

Function call Space for arguments

Computation Local variables

Return Save the context of the caller function and 

returned values.

SStteepp MMeemmoorryy  rreeqquuiirreedd  ffoorr

The class of functions that do not take any argument, but return a value are called ‘generators’ or
‘sources’. E.g. rand() in math library that returns a random value. The classes of functions that take
input but do not return any value are known as ‘sinks’. Sinks are not to be confused with procedures
that used to perform a specific operation based on its arguments.
While designing systems we must be careful in avoiding sources and sinks, since they are not natural 
in systems.

NNoottee

*In which case it is called ‘recursive’.
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CCoommppuuttaattiioonn

A function typically uses local variables to store intermediate values. These local vari-

ables are created during runtime and require memory.

RReettuurrnn  ttoo  tthhee  ccaalllleerr

In order to return to the caller, the original context must have been saved. Simply put,

we must know where to return after the function completes.*1 And, if the function is to

return a value to the caller, memory will be required for this also. 

22..1111 UUNNDDEERR  TTHHEE  HHOOOODD —— FFUUNNCCTTIIOONN  CCAALLLLIINNGG  MMEECCHHAANNIISSMM

The mechanism that takes care of these dynamic data structures used to implement

these stack structure actually form part of C-Runtime.*2 The data structure that is used

to handle the above memory requirements is called a stack frame.

Consider the following code:

LLiissttiinngg  22..66:: Function invocation

The main() calls foo()which in turn calls foobar(). Considering that no other functions

are called in between, the stack would look like this:

*1 Discussed elaborately in the Interrupts chapter.

*2 This is another huge topic that deserves a lot of detail. Beyond scope of this book.

// ...
int main()
{

foo(a)
// ...

}

int foo (long i)
{

// ...
foobar();

}
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FFiigg..  22..99 Stack frames when a program is running

A schematic representation of a single stack frame in the above diagram could be as

in the following figure.

FFiigg..  22..1100 A typical stack frame
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We can now see that both passing of arguments and the return value take space. So,

whenever a big structure needs to be passed to a function, it is advisable to pass the

pointer to the function rather than the structure itself directly because, it takes a lot of

space in the stack. Moreover, time is also spent in copying the big structure into the

memory allocated for the local variable. Similarly, while returning a structure, it is

preferable to pass back a pointer rather than the entire structure. We just have to make

sure that we don’t pass the pointer of structure created in local memory (since that will

create a dangling pointer). 

The order in which the arguments are pushed into the stack gives rise to an interesting

situation. Consider the following function call:

foo(a, b, c); // Let a, b, c be 3 integers – 4 bytes each

Assembly language code for pushing the arguments into the stack can be:

push a into stack
push b into stack
push c into stack

So, at the called side (i.e. inside foo), the arguments are got back as

pop c from stack
pop b from stack
pop a from stack

Note that these are in reverse order of the arguments that are pushed because stack

is a LIFO (last in first out) structure. 

Whenever you pass a structure/class as an argument or return a structure from a function, it is always

preferable to pass their pointers (or references (in C++)) rather than the actual structures themselves.

This will save a lot of stack space.

TTiippss

NNoottee

This is just a sample representation of stack frame. For the exact structure (in Unix), we can refer to
frame.h file.

NNoottee
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So far, it seems good. But now, we can question ourselves, “Why push ‘a ’ in the stack

first? Why not c? ” 

The answer is: either way is OK so long as both the caller and callee agree to the con-

vention. The two types of conventions are called ‘Pascal’ calling convention and ‘C’

calling convention, respectively. 

In the pascal calling convention, the leftmost argument is pushed first (in this case, a)

and the rightmost last (c, in this case). So, c is the first argument popped by the callee. 

In C, the rightmost argument is pushed first and the leftmost (i.e., the first argument)

last into the stack. This enables C to handle function with variable number of arguments

(The classic example being printf). 

The first argument can provide data on the arguments that follow it. In the case of

classic printf, the first argument tells about the size of the arguments that follow (%d =>

integer – 4 bytes (in 32 bit machines), %c => character etc – 1 byte).

Consider 

printf (“%d %c”, a, c);
printf (“%c %c %c %c %c”, x, y, z, t);

In both cases, 5 bytes are pushed into the stack. These five bytes can be seen as 

5 characters, an integer and a character, two short integers and a character and so on.

To identify the exact arguments passed, the printf takes help from the first argument

which is standardized as a string. For e.g., in the format string, if printf sees a %d, it

infers that the data in the byte stream is an integer and pops 4 bytes. If it sees a %c, it

infers that the byte in the stack is a character and pops only one byte. This is possible

because, the first argument— format string is pushed last. So, functions with C calling

conventions can have variable number of arguments while those with pascal calling

conventions cannot. 

Usually, it is possible for the programmer to control the way the arguments are

pushed by using compiler specific options.

int __cdecl foo(int a, float b);
int pascal foobar (char a, int b);

Windows programmers would have been familiar with int pascal WinMain(). In Intel

architectures, it was found that functions that use pascal conventions took less space. So,

windows programmers use the PASCAL prefix to function that do not use variable

number of arguments.
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FFiigg..  22..1111 Build process overview

AAnnsswweerrss  ttoo  PP22PP  QQuueessttiioonnss

11.. CCaann  wwee  iinncclluuddee  ..cc  ((ssoouurrccee))  ffiilleess??

Ans. For the preprocessor it makes no difference if the file to be included is a C file, 

or a CPP file or a header file or even a fortran source file. But, it is a bad practice to

include .c files. This is because, if the resulting file (after inclusion of the .c file) is

compiled and linked in a project that also includes the original included file, then link

errors will occur because, the global variables and the functions will be defined multi-

ply. To avoid these errors, it is always better not to include C source files. But, the

answer to this question is “Yes. You can include C source files”. However, it is not the

proper mechanism to build a project using multiple files. The preprocessor must be

used only to include header files. 

22.. CCaann  aann  oobbjjeecctt  ffiillee  bbee  ccrreeaatteedd  ffoorr  aa  hheeaaddeerr  ffiillee??

Ans. Yes and no. Some compiler drivers will not let you compile a header file. But it is

possible to compile them using some compilers. But, even if an object file is created, it

46 Embedded Realtime Systems Programming



will not contain any data. Let us see some components of a header file and see if we

can generate any code for them:

❑ SSyymmbboolliicc  CCoonnssttaannttss These are #defines. The symbolic constants are replaced in

the code wherever they are found. But, their actual definition does not cause the

compiler to generate code.

❑ PPrreepprroocceessssoorr  MMaaccrrooss These are #define macros like “#define SQR(x)

(x)*(x)”. Again, these are expanded only in the places where they are called

and hence, these are simply replacement texts. So, these too do not generate code. 

❑ TTyyppeeddeeffss Typedefs are compiler’s way to know about a new user defined type.

For e.g., we can have a typedef like “typedef unsigned long ULONG”.

These are used by the compiler to know about the type of variables used. These

do not cause any computation overload. So, these too, do not generate code.

❑ IInnlliinnee  ffuunnccttiioonnss Inline functions are a feature provided by C and C++ that helps

us avoid preprocessor macros, providing us the same level of performance benefits

with much higher type and call safety. Usually on seeing functions, we will expect

that these will lead to generation of code. But, inline functions are expanded direct-

ly at the place of their call. So, unless called, inline functions cannot generate code.

However, making a function inline is just a request to the compiler. The compiler

is free to ignore the request if the function is huge or if the function has loops, etc.

So, if the function is not treated inline, the function may generate some code. But,

beware! This will cause the same problems indicated in including .c files.

❑ EExxtteerrnn  vvaarriiaabblleess A header file may also contain extern references to the global

variables used by a .c file, defined in other modules. These are instructions to the

compiler not to produce “variable not defined” errors.

33.. WWhhyy  aarree  hhoosstt  aanndd  ttaarrggeett  ccaalllleedd  ssoo??

Ans. Host is called so because it provides the facility to develop, store and manage the

source code usually in a high level language. Target is called so because it is the final

platform on which the (cross!) compiled code executes.

22..1122 LLEESSSSOONNSS  LLEEAARRNNTT

The build process converts a human understandable code to a machine executable for-

mat. The build process consists of preprocessing, compiling, linking and locating.

Preprocessor strips comments, expands include files and macros. Compilation parses
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the pre-processed code and generates object code for a particular file. Embedded

systems usually use a special type of compilation called cross compilation since the code

is supposed to execute on a target platform different from the host. After compilation,

the linker is called to resolve external references and perform binding to real address-

es. The final step in the build process is locating, which means giving details of posi-

tioning and size of RAM/ROM and segments. The steps of build process are taken care

of by a compiler driver that resolves all arguments and ensures invoking of the right

component at the right time.

A program consists of four segments: data, bss, stack and text. Data segment stores

initialised global variables. Bss segment stores uninitialised global variables. The stack

segment stores parameters and data while the program is executing. Its most important

job is to keep track of arguments, local variables and return addresses when functions

are called. Text segment stores the actual code.

22..1133 RREEVVIIEEWW  QQUUEESSTTIIOONNSS

■ What role does a preprocessor play in the build process for an embedded 

system?

■ What is meant by a compiler driver? What are its functions?

■ If a compiler generates object code already, why do we need to call the 

linker?

■ What portion of build process is different in embedded systems and 

applications? In what way?

■ Is it a good practice to initialise all global variables? Why? Why not?

■ Where and how are the local variables of a function stored?

■ What is meant by a target in the context of an embedded system?

■ What is a board support package? What are the typical steps inside a 

startup code?

■ What is a cross compiler?

■ Why do we need ‘extern’ references in a file?

■ What is a TU?

■ What are the two basic actions taken in the linking step?

QQ
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■ Why do we need board support packages?

■ Write a linker script with the following features:

There are four object files:

a. main.o

b. isrs.o

c. rtos.o

d. bsp.o

There are two RAM locations. One at 0×1000000 and another at 0×2000000.

All the read write data must be present in 0×2000000. All the code except the 

one in main.o must also be present in 0×2000000. The rest must be located

in 0×1000000.

■ What problem can occur if we have:

a. Large partially initialised global array

b. Large arrays as local variables

■ What could be the problems in using recursion?

■ What are the typical contents of a stack frame?

■ What are the two famous function calling conventions?
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Chapter

Types of Memory

3

Most embedded systems use memories in various ways. Memory is required inside

embedded systems for a variety of reasons: to store the executable code, to load the

instructions to be executed as well as the associated data, to save important information

that can be changed by the user during sessions. We will introduce these causes of

memory usage inside embedded systems in this section. Then we will deal with the

techniques used to satisfy these requirements inside embedded systems. 

Let us begin this chapter by giving an introduction to the types of memory used by

embedded systems. As embedded system engineers, it is always advantageous to peek

into this domain so that we can appreciate the usage of different types of memory. We

can understand the type of memory, which should be used for a specific activity. Also,

this gives us an understanding of the capabilities of these memories and the pros and

cons in using a specific type of memory. We will discuss about ROM and its kinds,

RAM and its types, as well as the FLASH memory. We will necessarily keep this dis-

cussion short. The interested reader is advised to consult the exhaustive literature avail-

able for memory.

Basically embedded systems require memory to store the following classes of data:

DDaattaa  rreellaatteedd  ttoo  eexxeeccuuttaabbllee  ccooddee  iinn  mmaacchhiinnee  iinnssttrruuccttiioonn  ffoorrmmaatt:: This is usually burnt*

while the device is being manufactured. This kind of data is typically not changed dur-

ing the lifetime of the device. This kind of data requires a write-protected or read only

memory— that is, once filled, this memory will not be changed during the lifetime of

the product.

*We will soon see how it is ‘‘burnt’’.



DDaattaa  ssttoorriinngg  tthhee  ccuurrrreenntt  ccoonntteexxtt  ooff  eexxeeccuuttiioonn:: This data is usually the variables being

used by programs and their stacks. This memory is very volatile. Since the variables

and stacks make sense only when a program is executing, it is expected that the con-

tents of this memory can be lost when power is turned off. However, it is also expect-

ed that this kind of memory is fast to access for reading as well as writing because the

realtime behaviour of a device will also be governed by this factor. This type of mem-

ory should be fast, erasable and volatile—or in technical jargon, random access mem-

ory. We will see later that this name is a misnomer by the way. Embedded systems use

different types of random access memory based on amount of data used, cost of device

and requirements on speed.

CCoonnffiigguurraattiioonn  ddaattaa:: This data relates to configuration of the device. For example, in

DECT* phones we can store the phonebook in the form of name-telephone number

pairs. Now this phonebook is expected to remain intact if the phone is switched off and

back on again. However, it is also expected that entries can be added, deleted and

changed over and over again. This kind of memory should be capable of being altered.

It should not be volatile so that the data is not lost at switch off. It is a sort of mixed type

of the earlier memories. This memory does not have very stringent requirements on

speed though. So this memory should be non-volatile and changeable.

33..11 MMEEMMOORRYY  AACCCCEESSSS  PPRROOCCEEDDUURREE

A memory access is the procedure used to read and write into memory. This procedure

used to control each access to memory involves the memory controller to generate cor-

rect signals to specify which memory location needs to be accessed. This is done based

on the access of data by the program. The data shows up on the data bus connected to

the processor or any other device that requested it. 

Memory chips are organised as rows and columns of data. For example, a 16MB chip

can be accessed as a 4M×4 block. This means that there are 4M (4,194,304) addresses

with 4 bit each; so there are 4,194,304 different memory locations—sometimes called

cells—each of which contains 4 bits of data. 4,194,304 is equal to 2^22, which means

22 bits are required to uniquely address that number of memory locations. Thus, in

theory 22 address lines are required. 

*DECT—Digitally Enhanced Cordless Telephone.

Does access to RAM need to be deterministic?

PP22PP
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However, in practice, memory chips do not have these many address lines. They 

are instead logically organised as a “square” of rows and columns—sometimes called

bitlines and wordlines respectively. The low-order 11 bits are considered the “row” 

and the high-order 11 bits the “column”. First the row address is sent to the chip, 

and then the column address. For example, let’s suppose that we want to access

memory location 3,780,514 in this chip. This corresponds to a binary address of

“1110011010111110100010”. First, “11110100010” would be sent to select the “row”, and

then “11100110101” would be sent to select the column. This combination selects the

unique location of memory address 3,780,514. The active row and column then sends

its data out over the data bus by the data interface.

Figure 3.1 shows at a conceptual level, an example of memory access with an 8*8 row

and column grid. Note that the grid does not have to be square, and in fact in real life

it’s usually a rectangle where the number of rows is less than the number of columns.
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What is the advantage of using a rectangular address grid?

PP22PP
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This is analogous to how a particular cell on a spreadsheet is selected and set: row #34,

say, and then look at column “J” to find cell “J34”. Similarly, for example, how do chess

connoisseurs track the moves made by Vishwanathan Anand yesterday in New York?

Elementary, my dear Watson, just label the chessboard by rows 1 to 8, and column a to

g. Now, all moves can be represented by a series of digit-alphabet combinations.

Let us now get back to the world of memory chips ☺. If we apply common sense to

this theory, we can argue that designing memory chips in this manner is both more

complex and slower than just putting one address pin on the chip for each address line

required to uniquely address the chip—why not just put 22 address pins on the chip?

The answer may not surprise many people: it is all about cost finally. Especially when

so many embedded systems do not have hard real time constraints, we can still live by

with a few memory-access delays if it makes the system simpler and cheaper. By using

the row/column method, it is possible to greatly reduce the number of pins on the

DRAM chip (We will explain how this “D” came before RAM very soon ☺). Here, 11

address pins are required instead of 22. However it should be noted that additional

signaling is required so that the memory chip and the accessing device are always syn-

chronised about what they are expecting. This signaling pin is usually called probe or

chip select. One thing is for sure: everything else remaining constant, having to send

the address in two “chunks” slows down the addressing process, but by keeping the chip

smaller and with fewer inputs we gain in terms of power consumption and space

(because of reduction in number of pins). The reduction in power consumption further

leads to an increase in the speed of the chip, partially offsetting the loss in access speed.

Figure 3.2 shows a typical memory chip with 8 address lines and two data lines.

FFiigg..  33..22 A memory chip
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Let us try to understand the different parts of this memory chip with the aid of 

Table 3.1. 

TTaabbllee  33..11:: Explanation of Fig. 3.2

The functions of various pins are described as following:

❑ VVcccc This is the pin through which the chip receives power for functioning.

❑ GGNNDD This is the Ground pin required for any electric circuit.

❑ WWEE Write Enable. When this pin is asserted, this means that the chip has been

selected for writing. This also means that the data will be sent through the Din pin

and pins A0 to A7 specify the location of this data. When the WE pin is low, this

means that the chip has been selected for reading.* In this case, the location of the

data is again specified through address pins A0 to A7. The data f lows out through

the Dout pin.

❑ RRAASS  aanndd  CCAASS As we noted before, the rows and columns inside the memory

area are addressed one at a time. Hence there must be a way of telling the chip

that at this moment, the address lines specify a row number or a column number.

When RAS is set high, a row address is specified, otherwise a column address is

assumed. As we mentioned before, these are the additional pins required for

synchronisation in order to reduce the number of pins for address bus.

1 to 5 A0 to A4 Address lines

6 WE Write Enable

7 CS Chip Select

8 Dout DATA Out

9 GND Ground

10 Din DATA IN

11 Vcc Power Source

12 RAS Row Address Select

13 CAS Column Address Select

14 to 16 A5 to A7 Address lines

PPiinn  nnuummbbeerr NNaammee DDeessccrriippttiioonn

*This is not entirely true though. Some chips have other mechanisms to distinguish between a read
and a write operation. However for simplicity reasons, and to make the concept clear, let us reuse the
same pin for our illustration.
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With the aid of Figs. 3.3 and 3.4 respectively, let us trace the steps for read and write

operations through this chip.

FFiigg..  33..33 Write operation in a memory chip

FFoorr  wwrriittiinngg::

i. The address of the cell to be written to is placed on the address pins via the

address bus: This is done by first setting the RAS and putting appropriate row 

number followed by setting the CAS and putting appropriate column number 

on the address bus.

ii. Set the Write Enable pin: The bit that needs to be stored in the chip is sent on

the Data In pin via the data bus. 

iii. Chip select is activated to select the memory chip: When all these operations

are performed simultaneously, a bit on Din pin is written inside the chip at the 

address specified by the address bus.

FFiigg..  33..44 Read operation in a memory chip
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For reading:

i. The address of the bit to be read is put on the address pins via the address bus.

RAS and CAS pins are used appropriately.

ii. Chip select is turned high to select the memory chip.

iii. Write Enable pin is turned low so that the chip knows it’s being read from.

iv. When all these conditions are active simultaneously, data appears on the Dout 

pin from the address specified by the address bus.

In actual practice, memory is accessed at least a byte at a time, and not a bit at a time.

This is accomplished by stacking each such chip into blocks of eight and combining the

bit-data streams from these eight chips. When these chips need to be addressed, the

Chip select is enabled on all of them, and the same address is specified on all address

lines. Depending on the capacity of the data bus, each such block can again be stacked

to make mega-blocks that can service data in multiples of a byte.

Access time is normally measured in nanoseconds (ns). Memory available today nor-

mally has access time ranging from 5 to 70 nanoseconds.

33..22 TTYYPPEESS  OOFF  MMEEMMOORRYY

Figure 3.5 identifies the different types of memory. Let us look at each below.

33..22..11 RRAAMM

Random access memory (RAM) is a read-write memory. RAM is considered “ran-

dom access” because any memory location can be accessed directly instead of a sequen-

tial operation from the beginning of the memory. Being random access does not define

this kind of memory completely. It is sufficient to distinguish it from its opposite, serial

access memory (SAM). SAM stores data as a series of memory cells that can only be

accessed sequentially (like a cassette tape). Data is searched from the beginning of the

memory until it is found or end-of-memory is reached. SAM works very well for

memory buffers, where the data is normally stored in the order in which it will be used

(a good example is the texture buffer memory on a video card). A random access
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The amount of time that it takes for the memory to produce the data required, from the start of

the access until when the valid data is available for use, is called the memory’s access time,

abbreviated tAC (See Fig. 3.4).

DDeeffiinniittiioonn



memory on the other hand can directly address particular portions of memory. This

makes it fast and expensive as compared to SAM.

RAM is the place in embedded systems where usually, the program, its stack and

data in current use are kept so that the processor can quickly reach it. At the beginning

of execution (switch on of the system), these initial values are loaded inside RAM. RAM

is used since it is much faster to read from and write to than its distant cousin: the ROM.

However, the data in RAM is volatile and stays there only as long as the system is pow-

ered up. When the system is turned off, RAM loses its data. When the system is

switched on again, the binary image is again loaded from ROM and all stack and data

is again initialised. 

FFiigg..  33..55 Types of memory
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Who loads this program and data inside RAM? It is the job of your program to know the amount of

data and its required space inside RAM.
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DDRRAAMM

DRAM or the Dynamic RAM is a very volatile memory. It is not able to store infor-

mation even for a few milliseconds even if power is available to the chip. The storage

medium keeps on forgetting the data stored on it. It periodically requires a refresh

circuit in order to prevent loss of data. Here we need to address two questions:

WWhhyy  uussee  aa  mmeemmoorryy  tthhaatt  iiss  nnoott  aabbllee  ttoo  mmeemmoorriizzee??  ☺☺ aanndd;;
HHooww  ddoo  wwee  mmaakkee  ssuurree  tthhaatt  tthhee  DDRRAAMM  iinnddeeeedd  ssttoorreess  tthhee  ddaattaa  ccoorrrreeccttllyy??  

The answer to the first question is ‘cost’. DRAM is one of the cheapest forms of mem-

ory. Typically, it completely forgets any stored data in 5 or 6 hundredths of a second if

a mechanism does not exist to retain it. 

The answer to the second question is a subtler one. To understand it, we need to

introduce a little bit of techniques about electric charge and capacitors.

DRAM is implemented in the form of a series of microcapacitor-transistor pairs that

store charge inside them in order to ‘remember’ the data stored. The capacitor holds

one bit of information— either 1 or 0. The transistor is meant to manage the operation

of the capacitor— reading, writing, changing state, etc. 

Now, capacitors have a curious property that they cannot store charge for a long

time. They tend to get discharged over time unless refreshed by a source of power. In

that sense, a capacitor is a sort of leaky bucket with a certain rate of outf low of charge

while storing the data. Therefore, we need a source of power and a ‘refresh circuit’ that

keeps on feeding energy in order to prevent the capacitor from discharging. The refresh

circuit simply restores a full charge to those bits that were remembering to be 1s. Hence

typically several hundred times per second, the capacitors require reminding in order

to keep the memory intact.

This reminding process is called ‘refreshing ’ the memory, and DRAMs use a wide

variety of sophisticated refresh circuits which do nothing but cruise through the vast

DRAM memory array polling each bit for its content before it fully forgets, and re-

telling the memory what it is supposed to remember. The disadvantage of this type of

ephemeral memory is offset by its very tiny size and simple structure. Having a mem-

ory cell so small allows us to put more of them on any given device, thus reducing cost

considerably.

Figure 3.6 shows a block diagram containing the actual memory array and the asso-

ciated circuitry to perform the refresh operation. The left part of the figure is the

DRAM controller. Now, Reading from or writing to a DRAM cell refreshes its charge,
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so the DRAM controller just keeps on reading periodically from each cell. For that rea-

son there is a refresh timer inside the figure. The DRAM controller takes care of

scheduling the refreshes and making sure that they don’t interfere with regular reads

and writes generated by the processor or some other device. DRAM controller period-

ically sweeps through all of the rows by cycling RAS repeatedly and placing a series of

row addresses on the address bus. The upside of a DRAM is that since it is so simple,

it is small in size and less expensive. The downside is that all this refreshing takes time

and slows down the memory, particularly as compared to its sister— the SRAM.

FFiigg..  33..66 Block diagram for DRAM

As DRAMs became more sophisticated, it became common to put this refresh cir-

cuit from the system board directly onto the DRAM chip itself. When this is done, from

the outside, it appears that the memory is behaving statically since it does not require

any refresh circuit from outside. In reality, however, it is still a DRAM since each mem-

ory cell is being constantly refreshed on the chip; only the position of the source of

refresh operation has changed. When the refresh circuit is integrated with the DRAM

chip, the device is called a Pseudostatic DRAM. 
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Earlier in the chapter, we had pointed out that a DRAM chip is usually in the form of a rectangle
instead of being a square. Now is the time to explain this fact. Since DRAM uses RAS to periodically
sweep through the entire RAM area, this operation will be faster if the number of rows is less because
the fewer rows the chip has, the less time it takes to refresh all the rows. Consequently, DRAM makers
design DRAMs with fewer rows than columns thus resulting in a rectangular layout.

NNoottee



DRAM is of two kinds: asynchronous and synchronous. An asynchronous DRAM

has the freedom to start its operations irrespective of the clock. However, this requires

some time for co-ordination between the different pins in order to judge the change of

configurations on the pins. SDRAM or the synchronous dynamic RAM is called so

because this memory marches in step with the system clock instead of allowing itself the

asynchronous freedom to respond at its own pace and on its own schedule. SDRAM

“locks” (synchronises) the memory access to the CPU clock. This way we get faster data

transfer. While one portion of data is transported to the CPU another may be being pre-

pared for transfer. Additionally, it stays on the row containing the requested bit and

moves rapidly through the columns, reading each bit as it goes. The idea is that most

of the time, the data asked for from the device will be in consecutive locations inside

memory. To understand why, let us take a look at Fig. 3.7, where we show an asyn-

chronous operation of reading two bits. 

FFiigg..  33..77:: Operation of asynchronous DRAM

For each operation, synchronisation has to be maintained between RAS, CAS, etc.

In Fig. 3.8, a corresponding operation for SDRAM has been illustrated. Data starts to

be read from contiguous memory locations after the bitline and wordline have been

specified. Each clock tick initiates a read operation from the next wordline.

FFiigg..  33..88:: Read operation in SDRAM
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SDRAM typically has an access time of only 6–12 ns. Another variant of SDRAM is

called DDR RAM or a double density RAM. It is a new technology and is a clock-

doubled version of SDRAM, which is replacing SDRAM nowadays.

SSRRAAMM

SRAM or static RAM is so called because it retains any information stored in it, as long

as power is maintained. The data just sits there, calmly awaiting retrieval by the system

command. Upon receiving an order to over-write the data or to provide some data

being retained, the SRAM is very fast to respond. That’s one of its endearing qualities. 

SRAM uses a completely different mechanism for storage of information. An SRAM

cell is usually made up of a f lip-f lop gate which further comprises of about 4 to 6 tran-

sistors, arranged in a configuration that traps either a binary 1 or a binary 0 in between

them until that value is either written over with a new value or the power goes out. This

configuration never needs refreshing unless power is switched off. This makes SRAM

much faster in response time than DRAM and very power efficient. SRAM can be

made with a rise time as short as 4 ns. However, because it has more cells, each cell of

the SRAM takes more space as compared to a DRAM cell. This means that a chip can-

not hold as many cells as that of DRAM. This makes SRAM more expensive as com-

pared to DRAM. SRAM is normally used in places that require a very quick response

time, like for example cache.

33..22..22 RROOMM

ROM, or the read only memory, as the name suggests is a memory in which we can

only read from. This means that ROM cannot be written again and again. This memo-

ry will retain its contents even when the power is switched off. Hence this memory is

used to store anything that needs to be used after the system has been switched off and

on again. What kind of information can this be? This is usually the actual program that

will be executed on the embedded system. Since this memory does not get erased at

switch-off, it is also called nonvolatile memory.*

Because of the way it stores information (as we will see soon), ROM is much slower

compared to RAM, typically having double the access time of RAM or more. However,

*One term that often confuses people is that RAM is the “opposite” of ROM because RAM is read-
write and ROM is read-only memory. Hence, since RAM stands for “random access memory”, ROM is
not random access. This is not true. ROM is also a random access memory. Inside ROM, any location
can be read in any order, it is just not writeable. RAM gets its name because primitive read-write mem-
ories introduced in the beginning were sequential, and did not allow random access. The name stays
with RAM even though it is no longer relevant. ☺
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it is expected that ROM need not be accessed as frequently as RAM, so this limitation

can be lived with. This, combined with the fact that ROM is considerably cheaper as

compared to RAM per byte, definitely has its own advantage.

While the purpose of a ROM is that its contents cannot be changed, there are times

when being able to change the contents can be very useful. Sometimes it is desirable

that the memory remains read-only for all normal circumstances and it should be

possible to over-write it by specially defined processes. For example, in a mobile phone,

it will be worthwhile to store a specific type of ringer tone into such memory that cannot

be erased when the phone is switched off. However, it should also be possible to update

this tone from time to time. 

Similarly, the user settings inside a washing machine need to be nonvolatile from the

switch off point of view. However, it should be possible to set different setting for dif-

ferent clothes (cotton, wool…) and mode of operation (spin dry, double wash…).

Hence, there exist a lot of ROM variants that can be changed under certain circum-

stances; these can be thought of as “writeable nonvolatile memory”. The following

sections describe the different types of ROMs with a description of their relative

modifiability.

RReegguullaarr  RROOMM

A regular ROM is constructed from hardwired logic, encoded in the silicon itself, much

the way that a processor is. It is designed to perform a specific function and cannot be

changed. This is inf lexible and so regular ROMs are generally used only for programs

that are static (not changing often) and mass-produced. ROM is analogous to a com-

mercial software CD-ROM that can be purchased in a store. 

While RAM uses a transistor and capacitor combination to store data, ROM uses an

electric diode at the junction of row-column to determine whether a 1 or a 0 has been

stored at the location. When the ROM chips are “burned”, the cells where a 1 has to

be stored have a connected diode. The cells where a 0 has to be stored have an uncon-

nected electric circuit. The diodes in these intersections allow the f low of current in

only one direction. Like all diodes, a voltage above the break over voltage (of the order

of 600 mVolts) is needed so that the diode passes current. To determine whether a cell
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RAM is often used to shadow parameters stored in EEPROM (RAM is mapped to ROM’s

memory space) to improve performance. This technique is called ‘ROM shadowing’.
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has a 0 or a 1, a voltage above 600 mV is applied to a column while keeping the row

grounded. If the diode is connected, the current will be conducted to the ground. Using

this method, the status of each cell can be read.

Obviously, since there is physical presence of a diode to indicate a 1 in a cell, this

kind of memory cannot be changed and reused. Once the ROM is manufactured, it can

only be read. And if there are some bugs in the values, well, unfortunately, the whole

chip has to be thrown. This makes the chip design process long and cumbersome. On

the upside, ROM chips are very cheap for mass-production, have high reliability over

a long duration and they consume very less power.

PPrrooggrraammmmaabbllee  RROOMM  ((PPRROOMM))

The limitation of a regular ROM is that it can be burned only once. PROM is a type

of ROM that can be programmed using special equipment; it can be written to, but only

once. This is useful for companies that make their own ROMs from software they write,

because when they change their code they can create new PROMs without requiring

expensive equipment. This is similar to the way a CD-ROM recorder works by

‘burning’ programs onto blanks once and then providing the facility to read from them

many times. 

Just like regular ROM, a PROM chip has a grid of rows and columns. In order to

make it changeable once, each cell has a small fuse in it, (logically the same as we 

have in our homes for checking electric malfunction). In normal circumstance when 

the PROM chip is created, all cells have a value of 1. An electric charge can pass

through the fuse. To change the value of a cell to 0, a high voltage is sent to the cell 

thus breaking the fuse. The electric circuit is left open and a 0 gets created at this

position.

This process makes it possible to change the PROM chip, but only once. PROM

chips are very fragile but cheap. As discussed above, they are generally used for

prototyping data for a regular ROM before committing to the costly fabrication of

ROM chip.

EErraassaabbllee  pprrooggrraammmmaabbllee  RROOMM  ((EEPPRROOMM))

As the name suggests this kind of ROM is nonvolatile but erasable by a special process.

Once again, it is a mesh of rows and columns and this time inside each cell there are

two transistors technically called the control gate and f loating gate. The two transistors

are separated by a thin oxide layer. At an erased state, electricity can pass through the
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oxide layer and link the two transistors (thus linking the row and column) and a value

of 1 is indicated. A process called Fowler-Nordheim tunneling is used to program a value

of 0 inside the cell. An electric charge, usually 10 to 13 volts, is applied to the f loating

gate. This high voltage causes the f loating gate to act like an electron gun and the

electrons are pushed through the oxide layer where they get trapped. At this time, the

two gates are insulated from each other and when the voltage is removed, electric cir-

cuit becomes open and a value of 0 is indicated. A cell censor detects the level of charge

passing through the f loating gate, based on which it indicates a 0 or a 1.

The erasing procedure takes care of returning the electrons back to the f loating gate.

The erasing process for this kind of ROM is also interesting and worth mentioning. To

erase the EPROM, a UV light source of wavelength 253.7 nanometre is shown through

a quartz window on top of the EPROM chip. The light source is kept about an inch

from the chip resulting in erasing of all cells in the chip. This process is strictly speci-

fied in terms of intensity of UV light, duration of the process and positioning of light

source, any deviations may result in inappropriate erasing.

EElleeccttrriiccaallllyy  eerraassaabbllee  pprrooggrraammmmaabbllee  RROOMM  ((EEEEPPRROOMM))

The next level of erasability is the EEPROM, which can be erased under software con-

trol. This is one of the most f lexible types of ROM, and is now commonly used for hold-

ing configuration and status data meant to be retained across sessions of the embedded

device. Here we are blurring the line a bit between what “read-only” really means, but

it should be kept in mind that this rewriting is done maybe once a day or so, compared

to real read-write memory (RAM) where rewriting is done often many times per second! 

EEPROM uses the same setup as EPROM. However, in EEPROM, it is possible to

erase only a portion of the chip or all at once and it is possible to perform this opera-

tion by software control. UV light is not required for this process. EEPROM uses elec-

tric charge to return the trapped electrons to their original state. No special equipment

is required and the chip need not be removed. This electric charge can be targeted at

any data point at any time. Operationally, EEPROM chips change data one byte at a

time, which makes them versatile but slow. 

33..22..33 FFllaasshh

Flash memory is similar to EEPROM in design. The difference is that it can be erased

and reprogrammed in blocks instead of one byte at a time. In-circuit wiring is used 

to apply electric charge to an entire chip or to specific sections called blocks, each

usually of size 512 bytes. Being light, compact and energy-efficient, typical uses of
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FLASH are in CompactFlash, SmartMedia, Memory Stick (most often found in digital

cameras), PCMCIA type I and type II memory cards (used as solid-state disks in

laptops). The original intended usage of FLASH memory was to replace mass storage

devices like disk drives and tapes. Flash memory in the form of a card or stick is very

versatile and can be used across devices if a standard file system is used to represent

data inside it. This is the concept of so-called linear f lash.

There is another kind of FLASH called the ATA f lash. An ATA f lash memory mod-

ule interfaces with the rest of the system using the de facto “AT Attachment” standard.

The FLASH gives the illusion that it is made up of sectors like on a hard disk and the

same APIs can be used as for accessing a disk drive. The main advantages of ATA f lash,

from the embedded system developer’s perspective, are f lexibility and interchange-

ability with hard disks. While linear f lash modules aren’t 100% interchangeable

between devices, ATA f lash overcomes this limitation by using a standard AT interface

for accessing it. ATA f lash can be accessed using an operating system’s standard disk

access code and the same file system APIs. This aids in cross compatibility.

For example, a memory card inside a digital camera, equipped with f lash memory

uses a format to store data that is compatible with the way PC Card stores it. Hence, the

card can just be inserted into a PC card slot and can be read directly by the computer.

Not only does this promote cross compatibility, it aids in debugging as well since the lim-

itation of an embedded system (lack of screen and input device) are easily surmounted.

There are additional advantages. The built-in file system is robust enough to perform

some housekeeping tasks. For example, it can detect areas of memory that are defective.

It can then forbid access to these regions for read-write purposes. It can have a

mechanism by which it can create virtual sectors which point to physical sectors in

memory in such a way that read and write accesses to these sectors is evenly spread on

the chip thus preventing heavy usage and associated wear of a particular portion of 

the chip. As expected, everything in this world comes with a price ☺. ATA Flash has so

many advantages, but all these features make it more expensive and power-hungry.

Because of speed limitations, f lash memories incorporate built-in SRAM buffers, dupli-

cating the contents of a block of memory from the f lash array for fast access. 

33..33 LLEESSSSOONNSS  LLEEAARRNNTT

Memory is used inside embedded systems in order to store executable code, to load the

instructions to be executed together with their data, to store information that can

change between sessions (for example user preferences). This gives rise to different
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types of memory inside embedded systems. Memory chips are usually arranged in the

form of rectangles as rows and columns of data. Typically, memory chips use the same

address lines for row and column address and reduce the number of lines significantly.

The data is read or written based on the RAS and CAS pins. 

There are various classes of memory based on their usage. The random access mem-

ory has the ability to be accessed in a non-serial way and loses its contents if the power

supply is disconnected. It is of two types: the dynamic RAM needs constant charging

typically many times a second to prevent it from forgetting its data. The static RAM

does not need constant charging for storing its contents. The Read-Only memory is a

form of ‘not-easily-erasable’ memory. The regular ROM can be used only once and its

contents cannot be changed after burning it once. The programmable ROM is capable

of being recharged once through electric current. The EPROM uses the Fowler-

Nordheim technique to erase its contents any number of times. EEPROM is similar to

EPROM in operation except that its contents can be erased through software control

through electric charge. Flash is a type of EEPROM that can be reprogrammed in

blocks instead of one byte at a time. Flash memory has enhanced cross-compatibility of

memory across embedded devices through the usage of a standard AT interface.

33..44 RREEVVIIEEWW  QQUUEESSTTIIOONNSS

■ What are the different types of memory inside embedded systems? What are 

they used for?

■ Describe the memory access procedure. What is the use of chip select 

function?

■ Why are memory chips usually arranged as rectangles and not squares?

■ How is DRAM different from SRAM? 

■ What are the advantages and disadvantages of FLASH over other memories?

■ In order to store user preferences, which memory would you use and why?

■ What is meant by an asynchronous RAM?
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Chapter

Memory Management in
Embedded Realtime Systems

4

Memory is a very precious resource in embedded systems. As we have seen in the chap-

ter ‘Introduction to embedded/realtime systems’, price is one of the critical factors in

designing embedded systems especially while targeting high volume products. We have

seen the rapid fall in prices of memory in the desktop systems, we have seen that cur-

rent desktop configurations have 256 to 512 MB RAM as minimum configuration. But,

in embedded systems, even 8Mbit Flash and few MB RAM can be considered a pre-

mium. Desktop systems also have the luxury of having huge hard disks, which can be

used as supplementary virtual memory. Few embedded systems have hard disks. So, the

concept of virtual memory is absent in most of the embedded systems. Since memory

is scarce, it should be managed properly.

44..11 MMEEMMOORRYY  MMAANNAAGGEEMMEENNTT  MMEETTHHOODDSS

Before jumping into memory management schemes for embedded systems, let us see

how memory was managed before. 

44..11..11 MMaacchhiinnee  llaanngguuaaggee

In the good old days processors like 8085 were state of art and there was no MMU

(Memory Management Unit). Programming was done using machine language, and

there was no concept of variables (as we have now). For e.g., if we wanted to store a

value, then, we would manually allocate a memory location—say, 0×8000 for it. And

whenever that value in that location was required to be changed, then it could be done

directly by referencing its memory location. There were no compilers. So machine lan-

guage translation was done by hand using two pages of lookup tables for assembly of



machine language translations. (Gurus were those people who knew the op-codes for

50–60 assembly instructions)

When variables were absent, there is no point talking about arrays. An array by def-

inition is a “finite set of homogenous data stored in contiguous memory locations, each location

accessed by the array variable and its index /indices”.

With this definition in mind, we used to allocate contiguous memory locations on

paper in our memory map and then calculate array locations. 

44..11..22 AAsssseemmbbllyy  llaanngguuaaggee  aanndd  hhiigghh  lleevveell  llaanngguuaaggeess

Assemblers alleviated some of the pains when compared to machine languages. Then

came BASIC and FORTRAN. BASIC was an interpreted language. Initially, BASIC had

procedure calls (I remember an instruction called GOSUB. But, it was nowhere similar

to a function call. It was similar to a jump statement. But, the address from where the

GOSUB call was made need not be remembered). And, in BASIC, there was no need to

declare variables and all the code was a single module. However some versions of BASIC

supported some level of multi-file programming by a command known as ‘CHAIN’. We

forcefully abstain ourselves from describing how it worked. (And its merits (?)).

FORTRAN was better and it was a compiler-based language. That is, unlike BASIC,

there was no need to carry a BASIC interpreter along to execute a BASIC program.

FOTRAN (II) did allow procedure calls and functions, but had no notion of stacks. So,

addresses of every local variable and arrays (local to functions) were required to be

resolved during the compile/link time. Sizes of arrays were fixed to the maximum value

that could be expected at runtime. And because of the absence of stacks, there could be

no recursion. If a function would call itself, its return address was lost (since it was

returned in the function’s return link register). With these disadvantages, it would now

seem that it could not have been possible to program with FORTRAN. But, later ver-

sions of FORTRAN (77) were highly successful and were used to create large number

of mathematical applications. 

Then, Ritchie and Kernighan in Bell Labs developed C as a language for program-

ming UNIX. Little did they know that this language with a cryptic name would revo-

lutionise the programming world. Every modern language would have some syntax or

concept based on this language. C was followed by modern languages like C++, Java,

C#, etc. In the rest of the chapter, we will discuss memory management as relevant in

C since it is the most widely used language for programming embedded systems. Some

pointers to C++ are also given where relevant.
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In C (and C++), there are 3 kinds of allocation of memory to variables as described

below.

SSttaattiicc  aallllooccaattiioonn

This consists of global variables and the variables are defined with the ‘static’ qualifier.

The address or the memory from these locations are provided at compile/link time and

do not vary when the program is executing.*1

AAuuttoommaattiicc  aallllooccaattiioonn

This kind of allocation is done at runtime for variables defined in every function (or

scope). This allocation of memory for local variables is done automatically during the

execution of the program (by C runtime*2). Hence it is christened as ‘automatic’ alloca-

tion. This is the reason for existence of a keyword called ‘auto’ (ever heard of it?) in C

that is never used.

Keyword ‘auto’ is a qualifier for a variable defined in a scope local to a function. 

In the listing below, memory for the variables a, b and c have been allocated as auto-

matic. In the listing below, the keyword auto is used to explicitly qualify variable c for

automatic allocation. Memory for all the variables are allocated on the runtime stack (as

explained in the chapter “build process for embedded systems”. 

DDyynnaammiicc  aallllooccaattiioonn

The third way to allocate memory for variables is to demand some amount of memory

from a component called the heap. In the earlier two cases, the compiler is responsible

for allocating memory for the variables and, so it is its duty to take care of de-allocating

the memory. 

void foo ( int a)
{

int b;
auto int c;

// . . . 
}

*1Refer to the discussion on .bss, .data in Chapter 2.

*2The term C runtime conjures up images of complex runtimes like the ones of Java, .net etc. C run-
time is fairly simple and will be present in a file called crt.s (assembly) and linked with our program.
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The user can use variables that are statically or automatically allocated without both-

ering much about memory leaks. He should bother if he uses a large number of

initialised static variables since it will cause the code size to increase.

The first two methods of allocation are explained in Chapter 2. This chapter deals

with third kind of allocation (dynamic allocation) and the runtime data structures. 

C Programmers will be familiar with good old malloc and free (and the C++

counterparts with new and delete). However, there is a huge variety of heap man-

agement functions available especially for the embedded/realtime space. These heap

management functions can be classified as 

■ Variable Buffer size routines

■ Fixed buffer size routines

Before going deep into these functions, we need to know the typical implementations

of these memory allocation functions and their effects on the realtime behaviour of our

program.

Hopefully, the discussions below on the various heap management implementations

should clear the myths. 

We all know about the widely used idiom* for memory allocation in C:

T* p = (T*) malloc ( sizeof(T) );

Here, T can be any type (A predefined type such as int or user defined type like a

struct).

*Programming idioms are constructs (like the one described here) that have been used repeatedly that
programmers use them even without consciously thinking about them.

Some of the popular myths in the common programming community are listed below:

i. The size of memory allocated by malloc is exactly equal to the size requested

ii. There is no harm in freeing a memory twice

iii. Malloc/Free request and return memory from the OS

iv. Malloc/Free do not take much time (i.e. they are pretty fast)

NNoottee
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Novice programmers generally feel that malloc allocates space exactly equal to the

size of type T. To understand why this doesn’t happen mostly, we must understand how

malloc works. 

Malloc (and other allocation functions) request a block of memory during the pro-

gram startup. This memory can be used by malloc to provide memory to its callers.

This memory is organised by malloc and is termed as ‘heap ’. 

We should understand that the entire memory of the heap is not available to the pro-

gram. Some part of the total memory is required to maintain the heap. So, the total

memory of the heap can be divided as 

■ The memory required to maintain the heap

■ The memory available for the program

Why do we need memory to maintain the heap? To answer the question let us

remind ourselves of how malloc and free are used.

T* p = (T*) malloc ( sizeof(T) );
free ( p );

We see that we pass the amount of memory required to malloc, but not to free the

memory. This information is stored somewhere else in the heap. This space for storage

of the size of pointer is said to be used for maintenance of the heap.

The entire available memory with the heap cannot be looked upon in units of one

but as chunks of blocks with unit sizes of 16, 32, etc. (usually in powers of 2). 

The concepts discussed above are illustrated in the example below:

Consider we have 2K (2 * 1024 = 2048 bytes) of memory and we analyse two 

cases where the memory is split as 16 and 32 byte blocks. (We should remind ourselves

that the entire 2K memory may not be available for the program. But for the sake of

making this discussion simpler, we are considering entire memory as available to

programs). 

Memory can be acquired or released only in the units in which the memory is divid-

ed (i.e. 16 or 32) as shown in Fig. 4.1.
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FFiigg..  44..11 Memory divided as blocks

Say, a request for 70 bytes is made, then:

In the case where unit size is 32,

Number of blocks required = = 3. 

(Where is the ceiling operator, that indicates the smallest integer y that is

greater than or equal to x)

So, total memory allocated = 3 * 32 = 96 bytes.

FFiigg..  44..22 96 bytes allocated for 70-byte request (32-byte blocks)

 

2K Memory 
Divided as 
16/32 byte 

block 

16/32 byte block 

70 32/ 

y x=  

3 * 32 bytes 
allocated for 70 
bytes (32 byte 

blocks) 
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In the case where the unit size is 16,

Number of blocks required = .

So, total memory allocated = 5 * 16 = 80 bytes.

FFiigg..  44..33 80 bytes allocated for 70-byte request (16-byte blocks)

Here we can see that for a 70-byte request, the memory allocated is 96 and 80 respec-

tively for the cases where the unit sizes are 32 and 16. We can infer that by reducing the

unit size we can reduce the wastage of memory, the ideal case being unit size = 1. To

see why this is not done, we can look up some implementations of heap. In some

RTOSes, the beginning few blocks of a memory chunk is reserved for maintaining the

data regarding allocation of blocks (Fig. 4.4). 

The amount of memory required to maintain the data is inversely proportional to the

unit size. If, the unit size is small, then the number of units (total memory/unit size) will

be high and hence the memory needed to maintain the data regarding those units

becomes high (thus reducing total available memory). 

Thus, by decreasing the unit size, we may actually waste more memory than what we

may think we are saving. This can be considered as a classical maxima/minima prob-

lem in calculus.

Usually in desktop implementation of heap managers usually the problem of deter-

mining and assigning unit sizes for heaps does not arise. But, in RTOS, the burden of

determining unit sizes rests with the programmer. 

70 16 5/  =

5 * 16 bytes 
allocated for 70 
bytes (16 byte 

blocks) 
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FFiigg..  44..44 Memory required for maintenance

Now I know that you’ll swear that malloc will not give you the exact number of

bytes you had requested for. But still, before we move to clear the next myth, let us see

how memory allocation works. 

Usually the heap management keeps a list called the “free list” which is a list of blocks

containing memory that is free. These free blocks can be arranged in various orders:

■ Decreasing sizes of memory (largest free block first)

■ Increasing sizes of memory (Smallest free block first)

■ Memory Location (Physically adjacent blocks)

Total

Memory

Memory Required 

for Maintenance 

Available

Memory

If you need to determine the unit size for the heap, then don’t make random guesses to suit the situation.
Instead, study and prepare a table of all the structures that are used in the program and that require
dynamic memory management. Then choose a unit size based on the table, I know this is tough. 
But, who said embedded programming was easy? ☺

NNoottee
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In the first case, malloc will work real fast. If memory is requested, it is checked if

the request can be satisfied with the memory available in the first block. If available,

the requested memory is allocated. Else, there is no point traversing the list because,

later blocks will only be smaller. This is called the first fit mechanism. 

In the second case, where the smallest block is the first bloc, the heap manager will

traverse the list until a block that is large enough to satisfy the request is found. This is

called the ‘best fit’ allocation. It is definitely slower than the first fit approach. 

The advantage of the third arrangement (where the blocks are arranged in an order

that is physically adjacent) is that adjacent free blocks can be easily identified and

merged (or in memory management parlance, ‘coalesced ’). 

Now, we can tackle the next myth: “There is no harm in freeing a memory twice ”. Freeing

a memory twice can happen if multiple copies of the pointer are stored in different

places. This can happen when the pointer is saved in lists or when passed to functions.

Sometimes, it could happen that a pointer is freed in multiple places. 

This usually results in unpredictable behaviour. Heap functions have the right to val-

idate the pointer being freed. They have the right to raise software exceptions. This usu-

ally happens in desktop applications. 

A more dangerous thing can happen in the case where a pointer freed could be allo-

cated for some other purpose. Freeing the memory by an invalid previous reference will

free the memory allocated to newly allocated pointer. In this case, the behaviour of the

system will be inexplicable. So, freeing a pointer twice is definitely not safe. 

In Chapter 2, we discussed about the startup code that gets linked up with the main

application. One of the tasks of the startup code is to initialise the heap so that the appli-

cation can start using the heap as soon as it comes up. In desktop based applications,

during the startup, a chunk of memory is requested during the startup by the heap man-

ager. Any requests by the application to allocate and free memory is handled by the

heap manager using the memory chunk requested during the startup. So, the OS has

no role to play in heap management during the execution of the program. (Except in

cases where the heap size may be extended by the OS then heap space runs out). This

information should clear the third myth— “Malloc/ Free request and return memory 

to the OS ”. 

The fourth myth— “Malloc/ Free do not take much time (i.e. they are real fast) ” is a myth

that could affect realtime programmers. We have seen that heap is organised as lists and

some search occurs whenever memory is requested or even freed (to merge adjacent
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blocks). The duration of this search is unpredictable. The problem with this delay is that

they make the system non-deterministic. Non-determinism is the greatest enemy in

determining realtime responses of a system. 

To really understand the realtime issues and why they arise, we have to appreciate

two processes that are associated with any heap:

■ Heap Fragmentation

■ Heap Compaction

HHeeaapp  ffrraaggmmeennttaattiioonn:: As the name indicates, heap fragmentation is a condition where the

available memory is scattered throughout the heap in such a way that it is not possible

to service a request for memory even if the collectively available memory (scattered

throughout the heap) is more than the memory requested. The condition is illustrated

in Fig. 4.6.

In the hypothetical condition described above, if a request for 35 K is made, then, it

cannot be serviced (even if total available memory is 45K) because the heap is

fragmented and no single block that can satisfy the request is available. 

Fragmentation can be classified as:

i. Internal fragmentation

ii. External fragmentation

Obviously, both of them lead to wastage of memory.

Internal fragmentation occurs if a huge block of memory is given for even a small

request. The two figures (Figs. 4.5 and 4.6) indicate how a request for 40 bytes is satis-

fied in cases where unit sizes of a heap are 16 and 32 respectively. 

In the first case, 2 blocks are required and 64 bytes are allocated and hence 24 bytes

are wasted. In the second case, 3 blocks are allocated. So, 8 bytes are wasted (48–40).

This memory is not available for use and is wasted. This is called internal

fragmentation.
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FFiigg..  44..55 Internal fragmentation

FFiigg..  44..66  External heap fragmentation

Memory
Divided as 

Blocks

Utilized
Memory

An allocated block

10K Byte 
Block

5K Byte 
Block

30K Byte 
Block
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External fragmentation occurs when the available memory is distributed throughout

the heap. In this case, memory blocks are not available continuously; we may not be

able to service a request for memory greater than the largest available block. Consider

Fig. 4.6. In this instance, though 45K bytes are available, it will not be able to service

even a 35 K byte request. 

HHeeaapp  ccoommppaaccttiioonn:: We have read before that the heap can be arranged/structured in var-

ious ways. One popular approach is that the heap manager maintains a list of available

memory locations (known as free list). 

If a request is made, and no sufficient memory is available, then a process known 

as heap compaction is carried out. In this case, the entire list of free locations is 

scanned and adjacent ones are merged (coalesced) to see if we can still service the

request. 

The problem, which occurs here, is that the compaction can take an unknown peri-

od of time based on the fragmentation level of the heap. This will make the system non-

deterministic. Long compaction times can wreak havoc while considering the fact that

realtime deadlines have to be met. For e.g. think of a case of a f light controller task that

started executing heap compaction for 20 seconds during the landing of a f light. 

There are various ways of working around this problem. The heap manager can be

made to run as a separate thread carrying out problems in installments. This still intro-

duces some level of non-determinism into the system. 

Another alternative case is that, compaction can be done whenever a pointer is freed.

But, again this could cause a condition where the adjacent blocks again need to be

merged and the list restored. This again introduces nondeterminism. 

It should now be appreciated as to why we dwelt so long on this concept. The rea-

sons are unique to embedded realtime systems:

i. Realtime

ii. Run for ever

RReeaallttiimmee:: In realtime applications, systems not meeting the deadlines can cause results

ranging from minor discomfort to huge loss of life and property. In the case of desktop

applications, users are usually tolerant when the system appears to have crashed 

or ‘hang’. These embedded realtime systems can be used by people who have no

introduction to computing (e.g. your vegetable vendor). If consumers finds that their
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mobile phone is not responding in a way that they want it to, then they will return it

back—and no amount of explaining that it was a rare case of realtime deadline miss

will help. 

So, timeliness is a very important criterion for realtime systems. A designer/devel-

oper targeting realtime systems must know that these issues exist and tackle them. 

RRuunn  ffoorreevveerr:: Unlike desktop applications that exit after sometime*, embedded systems

tend to run forever. (When did you last “reboot” your television/mobile phone?).

Memory is a finite resource and the leakage of even a single byte will bring the system

to a grinding halt though it may have giga bytes of memory available. So, memory

issues must be tacked carefully in embedded systems. 

SSoolluuttiioonn  ooff  ddyynnaammiicc  mmeemmoorryy  pprroobblleemmss:: It might now seem to you that with so many per-

ils lurking around, it is safer not to use dynamic memory management at all and sim-

ply allocate all memory statically or in stacks (local variables) during runtime. These

approaches are not without their disadvantages:

Statically allocating memory for all the variables may increase the code size and

hence the RAM size in the final system.

Lot of memory in the system will be wasted if all the local variables are statically allo-

cated. It will lead to a condition where a lot of memory is badly utilised. That is, some

variables require storage only for a small period of time but they occupy memory per-

manently. 

It is not always possible to predict memory requirement that may occur during run-

time. Since, memory is really expensive, we cannot have oversized arrays eating up

expensive memory. So, we have to live with dynamic memory management. 

But, there are some schemes that offer deterministic or even constant time operations

for allocation and freeing of memory. 

Pools can force realtime behaviour inside the system because they do not take time

to allocate and free memory. This is because, memory is not actually allocated and

freed. Only the pointers no longer point to the memory segments. They still remain

allocated from the system point of view.

*Daemons and services that execute in servers are exception to this. But they are not usually realtime.
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The pools divide the available memory space into linked lists of memory segments.

Hence, dirty mini-fragments as we discussed above are not created. And, no

complicated algorithms to optimise the memory space are required. A first fit algorithm

is all that is required at allocation time. And memory freed is not fragmented further.

So it is instantly available for next allocation.

On the downside, pools have the following disadvantages:

■ At startup time, a lot of effort and time is spent in initialising the pool and allo-

cating chunks of memory of different sizes and making linked lists. 

However, a real time system usually requires the least real time behaviour at

start up time. If it is not really time-bound like a mobile phone, which is expected

to respond to an incoming call 30 seconds after startup. 

■ A prudent decision has to be made to define the size of memory chunks inside

the pool. Usually, as we discussed earlier, more than one lists of different sizes are

available. 

The size of chunks inside these lists is usually configurable inside all RTOSes.

The sizes should be decided based on typical memory usage characteristics of the

system. 

■ All said and done, pools may still introduce fragmentation and wastage of mem-

ory. If we have 20 byte chunks available and our application requires 10 bytes, I

will still be given a pointer to point a 20 byte chunk and 10 bytes will be wasted

in this chunk. 

But this does not make the memory space dirty and it is a small price to pay for

the elegance and simplicity of the approach.

Some of the most common problems associated with dynamic memory usage are

memory leak and dangling pointers. This section will address memory leaks, its causes

and possible solutions. The next section will take a look at dangling pointers.

WWhhaatt  aarree  mmeemmoorryy  lleeaakkss:: Memory leak easily seems to be one of the most famous and

destructive forms of problems related to dynamic memory usage. How can a part of

memory become inaccessible to the system? And what is the significance of the term

“memory leak”? Take a look at Listing 4.1. We will use the malloc and free function calls

in order to illustrate the concept. The same problem exists for a pool-based system too.

Memory leak is an amount of memory that has been rendered useless and inaccessible to the

system.

DDeeffiinniittiioonn
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LLiissttiinngg  44..11::  A memory leak

Listing 4.1 shows an obvious memory leak.

What we see in Listing 4.2 is that some memory is allocated by pointer 

lp_pointer in the form of a linked list. The final block of the linked list has been

terminated with a NULL. Now, after the usage, only the memory pointed to by

lp_pointer has been freed. This however frees only the block pointed to by the

pointer. The rest of the blocks pointed to by the next pointer have not been freed. And,

now it is not possible to access the memory of the next blocks. There is no means to

free this memory now and it practically becomes inaccessible for the rest of the system.

This situation is akin to a small hole in the petrol tank of your car. As you are driving

the car, some of it is leaking. The leak is not big enough to be noticed immediately, but

it is consuming more petrol than it should have done in an ordinary situation. Now, 

if you had planned to go on a long drive and estimated that the car normally takes 

#include <malloc.h>
#include <stdio.h>
/* 
This program will allocate some memory. Then the memory will
not be freed by the program. Hence the memory will remain
allocated but it will be not be used by the program. The rest
of the system will not be able to use the memory anyway. This
condition is called memory leak because the total amount of
memory available in the system decreases.
*/

int main( void )
{

int i = 0;
int* p;

for (i = 0; i < 10; i++) {
p = (int*) malloc(sizeof( int ));
*p = 10;

}

return 0;
}
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20 litres of petrol to get to the destination, this time around, there are chances that you 

will become stranded mid-way with no clue as to why your car did not cover the

appropriate number of kilometres. This is because the petrol tank of the car had a leak.

Similar is the situation in software. 

#include <malloc.h>

/*
This program will allocate some memory. Then the memory
will not be freed by the program. Hence the memory will
remain allocated but it will be not be used by the program.
The rest of the system will not be able to use the memory
anyway. This condition is called memory leak because the
total amount of memory available in the system decreases.

*/

/* Following is the structure defined as an example */

typedef struct
{

u8 ld;             // u8, u16 are user define types
u16 number;
t_MyStruct* next;

} t_MyStruct;

int main( void )
{

/* Defined pointers to t_MyStruct */
t_MyStruct* lp_pointer;
t_MyStruct* lp_temp_pointer;
u8          i;
/* . . . . */

while(1) {
if(eventlist.handleDeviceA) { // some condition

for(i = 0; i <= MAX_NUM_DATA; i++) {

/* Allocate memory */
lp_temp_pointer = malloc(sizeof(t_MyStruct));
if (lp_temp_pointer == NULL) {

WRITE_ERROR(“Memory not available. Exiting…”);
return(FAILURE);

} //if

if(i == 0)
pl_pointer = lp_temp_pointer;
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LLiissttiinngg  44..22::  A memory leak

Since a portion of the code keeps on taking a chunk of memory and never return it,

at some point in time, memory will not be enough to conduct the normal business. Even

though tools are available in the market to detect and fix them, it is not easy to detect

memory leaks. Thus due to the nature of the problem, the bug is mysterious and usu-

ally difficult to trace. You may get statements like the following from the customer:

■ System was running fine in the field, though it appeared it was becoming

slower. Finally on the 53rd day, all of a sudden it crashed.

■ When the user tried to browse a 10 MB file, the system crashed midway.

■ To our pleasant surprise, this time, the system did not crash on the 53rd day. It

crashed only on the 62nd day.

All this usually points to the same direction. It will be futile to look at the millions of

lines of trace statements of the last 52 days because the problem will not be visible

there. The problem is that in some corner of the software, somebody is allocating mem-

ory and it is somehow not getting freed. Hence over a period of time, the system

becomes helpless. A question that comes to the mind here is as to why the system took

more than 53 days to crash. Well, we know that embedded systems are event-driven

machines. An embedded system probably will not do much unless some external or

internal event happens and introduces some activity inside the system. And, if the leak

/* 
Code that does some manipulation and computation

*/

fillData(lp_temp_pointer);
lp_temp_pointer = lp_temp_pointer-> next;

} // for
} // if

free(lp_pointer);

return(SUCCESS);

/*
A memory leak has been created here since all blocks of
data pointed to by next have not been freed.
*/

} // while
} // main

85Memory Management in Embedded Realtime Systems



is inside a particular portion of software that gets executed whenever event E happens,

it entirely depends on the number of times the event E happens, in order for the sys-

tem to stop functioning properly. Second point to be mentioned in this regard is that

the memory leak may go on undetected for some time inside the system. In our previ-

ous listing, for example, if the program keeps on inadvertently accessing the next blocks

via the lp_pointer->next pointer, there may be no problem till the point of time that the

block pointed to by lp_pointer is reassigned to some other part of the system. 

TTyyppiiccaall  ccaauusseess  ooff  mmeemmoorryy  lleeaakkss  iinnssiiddee  rreeaallttiimmee  ssyysstteemmss:: Memory leaks arise since the pro-

grammers are usually unaware about sections of code—whether a particular pointer to

a memory block can be freed as it is not clearly known whether it is required any

longer. 

Following are some of the typical problems:

■ Usually in realtime systems, messages are framed by the sender process by

allocating memory from the heap. It is the job of the receiving task to free the

memory when it is no longer required. As long as we make this sure, we have

plugged all memory leaks between tasks related to intertask communication. Here,

a guideline may be required to ensure that all data inside the message is copied

into local variables and then the dynamic memory is freed in the first function

called inside the receiving task.

■ Most of the time, especially in large teams, typical situations happen in which

pointers to memory are moved in such a way that the memory is no longer acces-

sible. This happens particularly when a pointer is to be reused for some other loca-

tion and the memory pointed to by this pointer is not freed beforehand since it is

still required.

■ Lack of sound programming principles may create leaks. If a memory is allo-

cated inside a function and a local variable is used to access it, its scope will no

longer be valid when the function returns. If the memory has not been freed, it will

create a leak. Refer Listing 4.1 and 4.2.

■ As we saw in the above example, the allocation and freeing routines should be

robust. Usually, it is possible to catch such memory leaks by doing effective code

reviews. Testing may not be a quick solution to detect leaks.

■ If we buy and integrate software from outside, there are chances that memory

leaks creep in. This code may be in the form of a module or it may be a library.
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The author of this software does not have full knowledge of how it is going to be

used. For example, a library may allow the application code to allocate memory

in some way, but the library may not be able to free the item since the library can-

not know when the application has finished using the memory block. One option

is for the library to provide a free routine to be used to free the memory. This does

not solve the problem since the application anyway has to remember to free the

memory. The second solution is for the library to use static allocation instead of

dynamic so that this issue of freeing of memory does not arise in the first place.

However, a static allocation works fine for application. It can wreak havoc for a

library since it no longer guarantee reentrancy of the calling function. (We will

delve on this issue in Chapter 7.) So, the only solution for the application is to free

the memory allocated by the library. However, in this case, the developer of the

library needs to mention this explicitly in the interface specification.

Even though clear guidelines are formed in order to identify who owns the dynamic

memory and who has to free it, the solution is not always easy. For example, imagine

that one task is receiving messages from a communications channel. It allocates space

for the message and that space will not be freed until the message is completely

processed. Since the messages may not be processed in the order in which they were

received, some may live longer than others. All pending messages live on a list whose

length varies according to the number of messages being processed at any given time.

Let’s say that this embedded system must forward the messages to another device, and

the message cannot be deleted until delivery is confirmed. Since the messages are going

to many different destinations, and some destinations may have some down-time, caus-

ing retries, it would not be feasible to process the messages in a first-in-first-out manner. 

In problem areas such as these, dynamic memory management enables more effi-

cient use of the available RAM than a predefined number of buffers. When the mem-

ory is not being used by one message queue, it can be used by another queue, or by a

completely different part of the program. 

DDaanngglliinngg  ppooiinntteerrss:: The problem of dangling pointers often arises when there is more 

than one pointer to a specific block. If the first entity owns the memory and wants to

free it, then it must first consider whether any other pointers point at that location. If

any do, and the first entity frees the memory, those other pointers become dangling

pointers —pointers that point to space that is no longer valid. When the dangling

pointer is used, you may happen to get the correct data, but eventually the memory will

be reused (via another call to malloc()) leading to unpleasant interactions between the
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dangling pointer and the new owner of that piece of memory. Consider the following

code listing for a demonstration of dangling pointer.

LLiissttiinngg  44..33:: Creation of Dangling Pointer

In this listing, lp_data and vl_index are local variables inside the function. Since

lp_data does not point to the heap its scope is limited to the stack of the function

createMem. When the function returns its value, the memory location pointed to by

lp_data is no longer valid. If this value is assigned to another pointer in the calling func-

tion, that pointer will become a dangling pointer.

Memory leaks and dangling pointers are similar to race conditions in a number of

ways. The misbehaviour they cause may occur far from where the bug was caused. As

a result, these problems are difficult to resolve by stepping through the code with a

debugger. For both memory leaks and race conditions, code inspections sometimes

catch these problems more quickly than any technical solution. 

Adding debug code to generate output is often a better alternative than a source code

debugger, but in the case of race conditions, it could alter the behaviour enough to

disguise the problem. With memory leaks, adding debug code can change the shape of 

the memory layout, which means that dangling pointer bugs may exhibit different

#include <malloc.h>

u8 * createMem(void)
{

u8 * lp_data ;
u8  vl_index ;

lp_data = & vl_index ;
/* do some operation with vl_index and lp_data */
return lp_data ;

}

A leak occurs when you fail to free something; a dangling pointer occurs when you free something

that was not yet ready to be freed.

TTiippss
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behaviour. Another drawback is that if the debugging code consumes memory, you

may run out of RAM sooner in the debug version than you would in the production

version. Still, a leak is a leak and should remain detectable regardless of these side

effects of the debug code. 

44..22 GGEENNEERRAALL  OOBBSSEERRVVAATTIIOONNSS  OONN  PPOOIINNTTEERR--RREELLAATTEEDD  BBUUGGSS

This section tries to document some of the most common pointer-related bugs observed

by us during our tryst with embedded systems. Through this section, we can arrive at

some general guidelines in order to troubleshoot pointer-related bugs. However, the

bottom line is: better safe than sorry. ☺

44..22..11 SSyymmppttoommss  ooff  ppooiinntteerr  bbuuggss

Embedded systems provide no control checks on the values of pointers and memory

inside the system. So, it can lead to a situation where pointers can become a run-away

horse. If proper care is not taken, it can lead to corruption of executable code or system

stack. Memory related bugs are difficult to debug. And, if some trace statements are put

and the program compiled again, the source of bug may shift location because of the

change in memory layout of the program.

■ The program starts to crash inside a well-tested function or inside a library function: 

Cause: A pointer may have become corrupted and written into this function

code space. This makes the execution to crash at this place. 

Solution: No direct solution exists without a debugger. Try to put watchpoint

on the memory area of the function to monitor when the memory is “written”.

This will lead us to the code that is doing the illegal memory write.

■ The program sometimes works and sometimes crashes. 

Cause: An uninitialised variable pointer is potentially used inside the program

and is being used to write to the memory. Since this pointer contains a random

value, it may be corrupting different portions of the memory at different times.

Hence this intermittent crash of the program at different places.

Solution: Make sure that all pointers are used properly, that is, they are point-

ing to proper memory addresses.
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44..22..22 HHooww  ttoo  FFiinndd  aanndd  FFiixx  ppooiinntteerr--rreellaatteedd  bbuuggss

Fixing pointer-related bugs is a two-step process. First, all the observable quantities are

studied and a pattern is created. Then the source of the bug is traced through these con-

sistent observations. Here are some guidelines:

■ While debugging, it helps to document everything inside the program: all argu-

ments passed, environment variables, etc. In this way, reliable logs can be gener-

ated and tracked based on these standard values. 

Many times, we can make two and two together by looking at a list of such

parameter value-output pairs. The best way to do it is to maintain a testing report

log and running tests from a batch file that contains enough comments to map the

values of the input and erroneous output values.

■ During implementation, it is advisable to introduce probing of the trace state-

ments inside the code. It generally helps if a trace statement is present at the top

of each function and inside each impossible switch statement. 

These trace statements can help significantly during debugging process since

they can pick the trail of the program like Sherlock Holmes! We just need to back-

track from the final executed statement in order to hook the bug. 

■ Debuggers are very helpful in solving pointer-related problems. They provide

tools to watch the values of memory pointed by these pointers. Certain values

should immediately raise suspicion. 

For example, if you see a pointer with a small negative value (e.g., FFFFFE

hex), it is possible that the pointer has either been corrupted or was never

initialised in the program. 

44..33 LLEESSSSOONNSS  LLEEAARRNNTT

Memory is a very precious resource in embedded systems. The memory management

in early embedded systems used to be hard-wired. The advent of high level languages

brought in their memory management procedures. C and C++ provide three kinds of

allocation of memory: static, automatic and dynamic. Static and automatic variables

occupy memory throughout the duration of the program. Hence, dynamic memory is

sometimes needed in order to reuse heap at different times. Heap management can be

done through variable sized or fixed sized buffers. In both methods there are trade-offs

and invariably some memory is wasted inside the buffer, and in order to maintain the

heap. 
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Heap fragmentation is a big problem if efficient heap management routines are not

in place. This problem can render the embedded system nonrealtime. Usage of pools

solves this problem at the cost of wasting some memory. 

However, as long as dynamic memory is used, there is always a possibility to intro-

duce two kind of pointer-related bugs: memory leaks and dangling pointers. It is very

difficult to catch such bugs because of their inconsistent occurrence.

44..44 RREEVVIIEEWW  QQUUEESSTTIIOONNSS

■ Which are the different ways of memory allocation in C?

■ How does size of allocation block affect the effectiveness of memory 

allocation?

■ What is heap management? What are the different ways of heap 

management?

■ What is heap fragmentation? Why does it happen? What are the ways to 

prevent it?

■ How does heap fragmentation reduce the realtime behaviour of an embedded 

system?

■ What is memory leak? How can it be prevented and debugged?

■ What is dangling pointer? How is it different from memory leak?
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Interrupts are to embedded systems what pointers are to C/C++ programmers. Most

embedded programmers shudder when they hear about interrupts. The interrupts are

inarguably one of those components of embedded system programming that are tough-

est to comprehend. This is because interrupts form the boundary between hardware

and software. The inputs from the external world enter the software realm usually by

interrupts. This chapter explains the basic concepts around interrupts and the ways to

program them. 

55..11 WWHHAATT  IISS  AANN  IINNTTEERRRRUUPPTT??

Every embedded system typically takes input from its environment or its user. The

interrupt mechanism is one of the common ways to interact with the user. 

Consider a situation in which the microprocessor has to process inputs from three

peripheral devices: 

FFiigg..  55..11 A Microprocessor interacting with three devices

µP

D1

D2

D3

Chapter

Interrupts and ISRs
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One way to accomplish servicing of the three devices is by polling (technically

sounding synonym for ‘asking’) each device for input. The algorithm for this could be:

LLiissttiinngg  55..11 Algorithm for three polled devices

This keeps the microprocessor always busy. It is either polling for input or process-

ing a polled input. This method has more cons than pros with one definite drawback of

appearing wicked to the microprocessor for forcing it to work forever. 

The other mechanism is the interrupting mechanism. In this mechanism, the device

informs, i.e. interrupts the microprocessor whenever it has some input for the processor.

The clear advantage of this method over the polling method is that the processor is free

to do other work(running other applications ☺) when there is no input from these

devices. 

AAnnaallyyssiiss::

Asynchronous: Because, the interrupt might come from another device that may not be

clocked by the system clock. The interrupt might arrive independent of the micropro-

cessor clock. (However, the interrupts are presented to microprocessor only synchro-

nously— the processing is synchronous to the system clock)

Request: Interrupts (except the one called non maskable interrupt (NMI)) are requests.

The processor is free to defer servicing the interrupt when it is working on a higher

priority code (could be the service routine for a higher priority interrupt). 

Perform Desired Service: Nobody likes to be interrupted for fun (especially for others’) and

this applies to microprocessors too. A device interrupts the microprocessor to request it

to perform a defined service or to pass on some data to the processor.

while the program is running {
1. Poll Device D1 for input
2. If input is present, ProcessInputFromD1
3. Poll Device D2 for input
4. If input is present, ProcessInputFromD2
5. Poll Device D3 for input
6. If input is present, ProcessInputFromD3

}
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55..22 PPOOLLLLIINNGG  VVss IINNTTEERRRRUUPPTTSS

One evident disadvantage of polling is that it consumes a lot of processing power. And,

since all the devices are polled in a sequential manner, there is no explicit priority

mechanism in the polling method. Let us consider the loop described in Listing 5.2.

LLiissttiinngg  55..22:: Code for a polled loop

Consider that D1 and D3 have inputs for the microprocessor (i.e. they require the

service of the processor and the processor has begun work on input from D1). So, input

from the D3 has to wait for the processor to finish its work with D1, and query D2

before it can start to work with input from D3. Even if device D3 has a high priority,

the processor cannot be made to process D3 before it finishes its work with D1 and its

query with D2. 

What if D3 is an input port and its buffer could overf low if not attended for a spe-

cific time? We may be able to finetune the loop (and the functions that service D1 and

D2) in such a way that D3 will be attended before it overf lows.

A simple way is to change the main loop is described in Listing 5.3.

LLiissttiinngg  55..33:: A tuned loop

while (1) {
if (input_from_D1)

Process_D1();
if (input_from_D2)

Process_D2();
if (input_from_D3)

Process_D3();
}

while (1) {
if (input_from_D1)

Process_D1();
if (input_from_D3)

Process_D3();
if (input_from_D2)

Process_D2();
if (input_from_D3)

Process_D3();
}
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In this case, if processing of D1 and D2 are within the overf low time of D3, device

D3 is safe. Sometime, we may be required to finely tune /optimise the functions that

process inputs from D1 and D2 such that the input from D3 does not overf low.

So far so good. It may now seem to work without any problem. But, what if another

device is added or due to change in requirements (the only requirements that do not

change are that of dead software), priority of a device changes, then the situation

becomes very awkward. All the fine-tuning is lost and we have to embark on another

attempt to adjust the code and the priorities. The coding for this case reduces to mere

jugglery. Even after a second tuning, we might have to anxiously wait for next change

in requirements with crossed fingers. Simply put, this solution is not elegant.

55..33 TTHHEE  JJAARRGGOONN  SSOOUUPP::  TTYYPPEESS  OOFF  IINNTTEERRRRUUPPTTSS

The area of interrupts and servicing them is filled with many terms. This jargon soup is

explained below.

There are many types of interrupts. The general nomenclature observed is

■ Hardware interrupts

■ Software interrupts

FFiigg..  55..22 Interrupt nomenclature

The interrupts can be classified on the basis of the source of the interrupt. 

Hardware interrupt: If the microprocessor is interrupted by external device/hardware,

then the interrupt can be classified as hardware interrupt.

Interrupts

Hardware Software

ExceptionNormal interrupt
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Software interrupt: Surprise! All interrupts need not be raised by external hardware.

They can be raised by executing some software instructions (depending on the specific

microprocessor). These interrupts are known as software interrupts.*1

The software interrupts can be further classified as either interrupts or exceptions. If

an interrupt is planned (or occurs deterministically or is anticipated or is raised inten-

tionally), then it can be classified as a ‘software interrupt’. If it is unplanned, then it is

classified as an ‘exception’.*2

There is yet another way of classifying interrupts based on their periodicity:

■ Periodic interrupts: If the interrupts occur at fixed intervals in timeline, then

the interrupts can be termed as periodic.

■ Aperiodic interrupts: If the interrupts can occur at any point of time, then

they are called aperiodic interrupts. (for e.g. anticipating a key press from user)

The interrupts can also be classified based on their temporal relationship with the

system clock of the processor:

■ Synchronous interrupts: If the source of the interrupt is aligned exactly in

phase with the system clock (the clock used by the microprocessor), then the inter-

rupt source is said to be synchronous (Fig. 5.3). E.g., a timer service that uses the

system clock. 

■ Asynchronous interrupts: If the interrupt source is not in phase with the sys-

tem clock it is termed as asynchronous (Fig. 5.4).

This might seem contradicting the definition of interrupt stated in the beginning of

the chapter, but the definition covers the hardware interrupts that arise from the

external devices. The synchronous interrupts occur because of software interrupts or

devices that are driven by the system clock and typically form a small subset of

interrupts arising from external devices in a typical embedded system.

*1Programmers who worked in DOS age would immediately remember the famous INT33H and INT
21H that are some of the oft-used software interrupts—for mouse and other general purposes. 

*2C++/Java programmers should not to confuse this with the exception handling mechanism available
with these languages.
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FFiigg..  55..33 An example of a synchronous interrupt

FFiigg..  55..44 An example of an asynchronous interrupt

55..44 IINNTTEERRRRUUPPTT  LLAATTEENNCCYY

Interrupt latency is defined as the time that elapses from the instant the interrupt was

raised to the first instruction of the interrupt service routine being executed. 

Greater the latency, greater is the response time. So, the user will feel that the system

is not responsive enough. We will use this term in the context of interrupt handlers very

soon.

55..55 RREE--EENNTTRRAANNCCYY

Re-entrancy is a very important concept to be understood while studying concurrent

systems. To explain what re-entrant code is, we must first learn to appreciate the con-

currency present in the system that runs several jobs simultaneously. 

In the context of a realtime system, these jobs are called tasks, which are similar to

processes in general operating systems. These tasks execute concurrently and share

resources including global variables.*

System Clock 

Interrupt

System Clock 

Interrupt

*The concept of tasks is covered in detail in RealTime Operating system chapter.
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The concurrency of tasks implies that a particular piece of code (could be a function)

may be used by many tasks at the same time.

Consider the case where two tasks are using a common code — say, a function call.

To put it simpler, consider that the two tasks are concurrently executing for the same

function. Then, the code that is executed is common to both the tasks.

FFiigg..  55..55 Two tasks calling a function simultaneously

In Fig. 5.5, foo() is executed in the context of A and B separately, i.e. in their own

stacks. This means that the local variables defined by the function foo() and the

arguments passed to function foo() are allocated in the stacks of respective tasks. This is

illustrated in Fig. 5.6.

FFiigg..  55..66 Stack utilization of Tasks after calling foo

Task A Task B 
foo() {
   // … 
   return; 
}

foo
arguments

foo local 
variables

Stack used by 
Task A 

foo
arguments

foo local 
variables

Stack used by 
Task B 
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Say, the function foo() has a local variable a.

LLiissttiinngg  55..44:: Sample foo

The typical layout in memory is illustrated in the Fig. 5.7. From this picture it should

be clear that changing of local variable ‘a’ of foo() called in the context of task A does

NOT affect local variable ‘a’ of foo called in the context of task B. (since they are in dif-

ferent memory locations independent of each other).

FFiigg..  55..77 Memory layout of stacks of tasks A and B

int foo( int b )
{

int a;
/* Rest of processing */

}

Local variable ‘a’ allocated in 
the stack allocated to Task A 

Local variable ‘a’ allocated in the 
stack allocated to Task B 

‘Task A’ Stack

‘Task B’ Stack

Global variables 
are allocated in 
this area 

The stack grows 
downwards 
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We can see that the local variable ‘a’ of foo() when called by tasks A and B gets allo-

cated in the stack of tasks A and B respectively. So, any changes to local variable ‘a’ in

the context of task A does not affect the instance of ‘a’ in the context of task B. 

However, this is not the case with global variables. If a variable has been defined as

in following listing, this variable can be accessed by any other task in the system.

LLiissttiinngg  55..55:: Global variable in a task

In other words, when foo() accesses global/static data,*1 clashes can occur between

instances of foo() called by the two tasks. 

The Peterson’s solution for mutual exclusion between two tasks that share a common

resource is given below: (Don’t worry if you don’t even recognise it. This algorithm is

in the scope of theory of operating systems. This is given just to explain re-entrancy.)

LLiissttiinngg  55..66:: Peterson’s Solution

The comparison of turn = = pid in the above code may seem unnecessary because

the variable turn is not changed before the comparison (or turn never becomes lvalue

of any expression). 

The comparison may sound irrelevant in a von-Neumann*2 model of computing

which is a sequential execution model. 

int a;
int foo( int b )
{
a = 1;
/* Rest of processing */

}

// ... 
turn = pid;  // process id 
while ( turn == pid && require[other] == true ) 

;

*1Static variables declared within a function is IDENTICAL to a global variable in terms of storage
except that the access is limited to function that defines it. Otherwise it gets stored along with other
global variables.

*2Von Neumann can be considered the father of existing computing model that is widely used in
which the CPU executes the instructions of a program sequentially. If you can pardon us for adding to
the confusion, many concurrent programs are abstractions over the von Neumann model where the OS
provides virtual concurrency over a single processor that executes instructions sequentially.
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But we should note that in this solution, turn is a global variable. The task that runs

the above code might have been pre-empted after executing the statement turn = pid.

The higher priority task may now change the value of turn. So, when the execution

returns to the first task, the value of turn would have changed. Now the validation 

turn = = pid immediately after the assignment turn = pid makes sense.

The use of shared global variables amidst multiple tasks without any synchronisation

may lead to race conditions.*1

So, we can conclude that if a function uses only its local variables and does not use

any variable with static storage (includes global variables and variables that have a stat-

ic storage specification) are safe to call any number of times. This kind of code is called

‘re-entrant ’ code.*2 It should be observed that any set of code (not necessarily a function)

could be classified as re-entrant.

Summarising, a code can be called re-entrant if and only if:

■ It uses only local variables (i.e. the variables allocated on the stack)

■ It does not use any variable that has static storage (global variables and local

variables that are specified with static storage)

■ It calls only functions that are re-entrant. (i.e. these three rules must be applied

to all the function that the code calls)

■ If global/static variables are used, they should be accessed in a mutually exclu-

sive way. The mechanism to create a mutually exclusive access to such variables

is described in the chapter— realtime operating systems.

*1Explained in the RTOS chapter.

*2There is another camp that likes to define a reentrant function as a function that returns the same
value independent of the time it is called.
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Interrupt Latencies
After fixing some major fixes, once we decided to analyze the performance of the system. We attached the
logic analyzer to measure the interrupt latencies. To our astonishment, we found that the latencies were
much larger than we had even anticipated. This was heavily affecting the throughput of the system. So,
we decided to analyze what the problem was. We found that we had two sets of memories one that was

NNoottee



55..66 IINNTTEERRRRUUPPTT  PPRRIIOORRIITTYY  AANNDD  PPRROOGGRRAAMMMMAABBLLEE  IINNTTEERRRRUUPPTT
CCOONNTTRROOLLLLEERRSS

Microprocessors and microcontrollers usually have only a few interrupt pins.* This

number is typically two to four (with one allocated for NMI (nonmaskable interrupt)).

This number is normally smaller than the number of devices that the processor must

interface. 

So, in a situation where multiple devices need to interrupt the microprocessor, a

hardware called “programmable interrupt controller” is used. 

FFiigg..  55..88 Multiple devices connected to a sing INTR using an interrupt controller

Interrupt controller

Microprocessor
D2

D1

D3

Dn

INTR

*This is a typical situation. Chips designed with specific applications may have a number of interrupt
pins.

internal to the processor and one that was external. When the code was built and loaded (we had used
the scatter loading technique described in Chapter 2) we had designed that some code be loaded in the
internal RAM and some in the external. During the path in which the interrupt was serviced, some of
the code was in internal and some in external. We noticed that the jump between these locations caused
the most of the performance penalty. So, we changed the loader file to put all the code needed by the ISR
in internal RAM to avoid expensive jumps. After this the latency was reduced to a desired value.
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The diagram above describes the position of the interrupt controller. Some people

tend to imagine that the controller is a highly intelligent* hardware. (Look ma! This

device arbitrates the interrupts raised by many devices). In its simplest avatar, this con-

troller can be as dumb as an 8-3 encoder.

A case of this simple 8-3 encoder used to map multiple addresses is given below.

(Old-timers will be reminded of their happy times with 8085)

FFiigg..  55..99 An 8-3 encoder used to connect 8 devices to a microprocessor with 3 interrupt pins

An interrupt controller is usually equipped with much more sophisticated features.

But, only a subset of these features is needed for most of the common operations. I

always compare these features to features in a DVD/TV remote control. (I never use

anything other than PLAY and STOP).

The interrupt controller can be used to assign different priorities to different inter-

rupts. The device also takes care of providing information to vector the interrupt to its

service routine. 

55..66..11 MMaasskkiinngg  ooff  iinntteerrrruuppttss

Applying a mask to an interrupt source does not endow an interrupt with superpowers

and make it strong, f lexible and agile (except for Jim Carey interrupt if one exists)— it

disables it! When the microprocessor is working on a very high priority interrupt, the

least we can do is to disturb it with a low priority interrupt (a microprocessor has its

*Students in Indian engineering colleges like to associate a word ‘fundoo’.
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right to spend its time in a responsible manner). This can be compared to us program-

mers switching the phone to ‘Don’t disturb mode’ when we are doing some very impor-

tant work.*

So, when the microprocessor is working on a higher priority interrupt, lower priori-

ty interrupts are masked.

55..66..22 IInntteerrrruupptt  sseerrvviiccee  rroouuttiinneess

So far, we have always talked about microprocessors doing some work on being inter-

rupted. The code that gets executed on raising an interrupt is called an interrupt service

routine (ISR) of the corresponding interrupt. ISR is a very important word in the

parlance of embedded programming.

Now there are a few questions to be answered:

■ How do we know which interrupt occurred?

■ How does the processor know which ISR to execute for the interrupt that was

raised?

■ How do we pass an argument to the ISR?

These will be clear in the following sections.

55..77 TTYYPPEESS  OOFF  IISSRRss

We should remember that the interrupts do not occur in a controlled environment.

They can come in any order at any rate and in any sequence. Our software must be

able to handle all of them in a way that the system meets its requirements. The ISRs

can be classified simply as:

■ Non-nested handlers: When this interrupt service routine is executing, it can-

not be pre-empted by another interrupt.

■ Nested handlers: This handler can be pre-empted by ISR of another interrupt.

So, this kind of interrupt handler should be coded with special care to avoid race

conditions. 
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55..77..11 NNoonn--nneesstteedd  hhaannddlleerrss

These are the simplest types of handlers. When an interrupt is being serviced, all the

other interrupts are blocked. So, all the interrupts that were raised during the execution

of this ISR will be pending till the completion of the ISR that is executing. 

The sequence of events that occur after the interrupt is raised is illustrated using the

f lowchart in Fig. 5.10.

The f lowchart is explained as follows:

1. The interrupt source*1 raises the interrupt. This interrupt could also be raised

by an exceptional software condition such as Data Abort.

2. Usually the processors (e.g. ARM cores) disable the interrupts. The interrupts 

remain disabled till the ISR re-enables it. 

3. Based on the information provided by the device, the processor jumps to the 

corresponding ISR indicated in the interrupt vector table (IVT ) explained

later in Section 5.8.2. 

4. The ISR saves the context (explained later)

5. The ISR now gets executed.

6. The ISR re-enables interrupts.

7. The context is restored.

8. On return from the ISR, the control of execution is transferred to the task that 

was being executed when the interrupt was raised.*2

Sometimes it might seem that the system does not respond after the execution of some interrupt service

routines. In case of processors we can check if the interrupts are re-enabled in the ISR. If not the inter-

rupts will be permanently disabled and the system would appear non-responsive. The system would be

up once we re-enable the interrupts in the ISR.

DDeebbuugg  TTiippss
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*1It could be an external device connected to the microprocessor or could be a device integrated with-
in the microprocessor as in case of SoCs (System on Chips).

*2It is strictly not necessary that execution returns to the same task that was executing when the inter-
rupt was raised. This scenario is explained more in the RTOS chapter.



These are the generic steps that are executed while processing an interrupt. These

steps are not rigid. For e.g. steps (vi) and (vii) can be interchanged. And, the process of

handling interrupts is highly processor specific. In some processors (8085) we have to

explicitly disable interrupts in an ISR. But in case of some processors, the interrupts are

disabled once an interrupt is raised.

SSaavviinngg  ooff  ccoonntteexxtt

We have seen that an interrupt can be raised when a task is executing. The processor 

now jumps to the corresponding interrupt service routine and returns back to the task

Interrupt
raised

Save context

Restore context

Processor jumps to the 
corresponding ISR in interrupt 

vector table (IVT) 

Execute the service for 
the interrupt 

Re-enable interrupt

Disable interrupts

Stop

FFiigg..  55..1100 Flowchart for simple non-nested interrupts
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once it is finished. In a single processor system (i.e. a system with a single CPU/micro-

processor), the path of the instruction pointer (or PC — program counter) is given by

the following diagram:

FFiigg..  55..1111 An ISR interrupting a task

We all know that many calculations (and variables) are stored in registers. For e.g.

8085 has eight registers and all additions can be performed only with the register A

(accumulator). Say, for e.g. the task that was being executed before the interrupt was

raised (indicated by ‘Task #n’ in the figure) stored some value in the accumulator (or as

a matter of fact in any register). Now, the interrupt occurred and the ISR is executed.

The ISR may need some registers for its computational purposes. So, if it uses the reg-

ister A for some adding purposes, the previous value stored in register A will be lost.

So, when the Task #n resumes, the data it would have stored in its registers would have

been corrupted. This is not acceptable. 

So, before the ISR uses any of the registers, the ISR usually saves the entire set of

registers in the system stack. So, on completion of the ISR, the context that was saved

is restored. Now, the Task #n can continue without its data being corrupted. Usually

microprocessors provide a single instruction using which the entire context can be

saved/restored instead of saving /restoring all the register contents one after another.
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CCoonntteexxtt  ssaavviinngg  iinn  mmooddeerrnn  pprroocceessssoorrss

Many modern processors (RISC and CISC processors) have register banks. This means

that there are few sets of registers. The processor operates in a few modes (say Normal,

Supervisor, etc.). And each mode has a register bank, i.e. its own set of registers. So a

task that operates in a normal mode can use its set of registers. When it is interrupted,

the processor switches to another mode that has its own set of registers. Because of this

there is no corruption of registers since the general task and ISR operate on their own

set of registers. 

The visible advantage of this method is that the time taken to save and restore the

context is saved. This increases the speed at which the interrupt is processed. 

The disadvantage is that the microprocessor requires a set of registers for each mode. 

The transition from single tasked environment model (like DOS) to multitasked envi-

ronment is complicated because, it takes time for a programmer to get used to the

effects of concurrency in the system. The effects are still worsened in a system where

interrupts are enabled.

For e.g., in an 8085 system, we could write a delay routine based on the number of

clock cycles required by an instruction (typically NOP) and looping a particular num-

ber of times.

In the delay routine above, we know the number of cycles required by the loop 

(the NOP, DCR A and JNZ instructions). We also know the clock speed at which 

A microprocessor may choose to bank only a subset of registers instead of the entire set of registers. In

this case we can speed up programming by using only the registers that are banked. A good optimising

compiler can assign variables to registers that are banked in a particular mode.

TTiippss

;Delay Routine
MOV A, 0xD4 ;Some number based on the delay required

LOOP: NOP
DCR A ;decrement register A
JNZ LOOP ;check if loop one
RET ;return
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the microprocessor executes. So, we can determine delay based on the required 

delay value.

Loop value = (Required delay time)/(Time for one loop)

This worked fine in single threaded applications as in 8085.* But, this will not work

in any multi-tasked environment or in an environment that supports interrupts. This is

because, these delay routines work with the assumption that the CPU time is always

available to them. 

FFiigg..  55..1122 Tasks deprived of CPU time because of preemption by other tasks

As illustrated in the above figure, we can see that no task can have all the CPU time

for itself. It could be pre-empted by other tasks. So, carefully calculated loops like the

one shown above will not work. We will typically need help from the hardware and the

OS. Many OS (and RTOSes) provide APIs to start and stop timers without bothering

about these issues of pre-emption by other tasks /processes.

We can see that the advantage of the simple non-nested interrupt handler lies in its

simplicity of implementation. It is also very easy to debug, since it cannot be pre-empt-

ed by other interrupts.

But this simplicity comes with a cost—High Interrupt Latency. If we give another care-

ful look at Fig. 5.12, then we will notice that during the execution of a simple non-nested

ISR, the interrupts are disabled till the completion of the ISR. During this period, the
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*We should remember this could work only when interrupts were disabled.
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microprocessor will be effectively isolated from the environment. So, the system does

not respond to any other interrupt during this period. This implies that disabling

interrupts for a particular period of time will increase interrupt latency of other inter-

rupts (including another instance of the same interrupt) for the same amount of time.

This kind of addition to already existing system latency may not be acceptable in all

cases.

In many cases (as we will see later) disabling the interrupts for such a long period is

not required at all. 

The comfort of coding and debugging a non-nested ISR comes with a heavy price

tag — increase in latency of interrupts. As indicated earlier, increase in latency of inter-

rupts beyond a certain threshold value may not be acceptable (i.e. will not satisfy the

system requirements).

55..77..22 NNeesstteedd  iinntteerrrruupptt  hhaannddlleerrss

We saw in Section 5.5 that re-entrant code can be executed any number of times to give

the same result. So, the trick is to write to an ISR that separates its code into two parts:

■ Non re-entrant code

■ Re-entrant code

The f low chart for a nested interrupt handler is given in Fig. 5.13.

So, in this case the interrupts do not remain disabled for the entire duration of the

ISR, but only for the period for which the non re-entrant code executes. This reduces

the interrupt latency. 

If you find that most of the code in an ISR is non re-entrant and this technique does not save much

time (especially when the ISR is long), still we have a problem. This means that the system uses many

global/static variables. We should try to redesign the system in such a way that we minimise the

number of global variables.

WWaarrnniinngg
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55..88 LLOOOOKKIINNGG  UUNNDDEERR  TTHHEE  HHOOOODD  OONN  HHOOWW  IINNTTEERRRRUUPPTTSS  WWOORRKK

The first question that pops up in the minds of novice embedded programmers is how

the processor knows that the interrupt occurred? Surprise! The answer to this question

is that the processor polls for it. But, in this case the processor polls the interrupt pins

during every system cycle for a fraction of the cycle. This is different from the device

polling that we discussed earlier. In this case, reading of memory is not required and it

does not involve reading from the registers of these interrupts.*1

55..88..11 TThhee  ccaassee  ooff  mmiissssiinngg  aanndd  eexxttrraa  
iinntteerrrruuppttss  

This is an extension of the debug tip given on

page 106. Interrupts can still be missed even if

interrupts are re-enabled in the ISR*2. A worse

problem is spurious interrupts because of signal

noise. To solve these problems, we have to first

note which problem occurs the most. Usually in

the case of level sensitive interrupts, the interrupt

pin must be asserted for a minimum duration for

the processor to detect the interrupt. So, if the pin is not asserted for this minimum peri-

od, the interrupt will be missed. Similarly, if the interrupt pin is configured as edge sen-

sitive, it is possible that any spurious signal may interrupt the processor. The choice of

configuring as edge sensitive or level sensitive must be done bearing in mind the above

discussed criteria and as mandated by the device and microprocessor requirements.

In the case of device polling, the processor
typically executes some instructions to
find out if the device requires service. In
the case of interrupts, the processor polls
its interrupt pins for input during a
fraction of its (every) system cycle.

NNoottee

If the Interrupt Vector Table (IVT) can hold ten entries and of which only four are used, then usually peo-

ple do not fill the rest of the entries or fill it with NULL. This doesn't solve the problem. And, could

actually worsen it. The program will crash once it gets a spurious interrupt and we will not be able to

track the problem. (Unless we use some kind of realtime trace program or a trace program like Introspect

of gdb of GNU/GCC compiler collection). To make things simpler we can have a single handler for all

spurious interrupts, say, UnexpectedInterruptHandler and have a breakpoint on this handler. The

execution would stop when a spurious interrupt is detected and we would know where it occurred.

PPrrooggrraammmmiinngg  TTiippss

*1This is just a sample case. Internal implementation may vary.
*2From these tips, we get a feeling that there are more ways to miss an interrupt than to trap one
correctly. Sadly this is true.
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Nowadays, the processors can be configured in such a way that the interrupt is

edge/level sensitive. 

So, by watching the INTR pins, the microprocessor knows if an interrupt occurred.

The next question is “How does the processor know which ISR to execute when the

interrupt is raised?”. The answer depends on the processor. 

If the controller is a simple controller such as a 8051 controller, the address to which

the jump is to be made is hardwired.

55..88..22 VVeeccttoorriinngg

A more prevalent and widely used scheme is called ‘vectoring ’. In the case of vectoring,

the device/interrupt controller asserts the interrupt (INTR) pin of the microprocessor

and waits for the ‘interrupt acknowledgement’ (INTA). On receiving the INTA, the

device places a 8-bit or 16-bit data in the data bus of the processor. Each device (inter-

rupt source) is assigned a unique number. This data is used to branch to an appropriate

ISR. This array/vector of interrupt handlers is known as the ‘interrupt vector table’

(IVT)

The steps can be summarised as follows:

i. The device or the interrupt controller asserts the interrupt pin (INTR).

ii. The processor detects the interrupt and acknowledges it (INTA).

iii. The device places 8/16 bit data in the data bus.

iv. The CPU sends EOI (end of interrupt) to the device/interrupt controller.

v. The CPU branches to the ISR corresponding to the data.

Then, based on the ISR type (non-nested /nested), the f low continues as described

in Fig. 5.10 or Fig. 5.13 respectively. 

55..88..33 HHooww  ttoo  ppaassss  aann  aarrgguummeenntt  ttoo  aann  IISSRR??

This final question remains unanswered so far. The answer should be pretty clear from

the above discussions… there is no direct way!☺

When devices communicate with the microprocessor, they can share data in many

ways. One way is to use a shared memory concept. In this case, both the device and the

microprocessor can see a common address space. This does not mean the memory as

seen by the processor and the device is identical. This only means an area in memory
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can be seen both by the processor and device that may map to different addresses. The

device can write the data in a predefined and previously agreed format and raise an

interrupt. On receiving the interrupt, the ISR can read from the shared memory and

process it. 

Another way could be using a DMA (direct memory access). And, the device and

processor can have a non-overlapping address space. In this case, a device such as a

DMA can be used to write the shared data into the address space of the processor. The

ISR can be invoked on the ‘DMA Transfer Complete’ interrupt. 
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The keyword volatile is used to instruct the compiler not to 'aggressively' optimise the code regarding

a particular variable. For any compiler (C++, C, FORTRAN etc.) , the optimiser plays a very important

role in final object code generation. 

The optimiser in a compiler usually does many things such as
■ Removing invariant code from a loop such as Listing 8-1 

// Listing 8-1

for ( int i = 0; i < 10; i++ ) {

doSomething(); 

a = 2; // invariant code - This can be removed from the

//loop and  be brought 'outside'. Time is saved while

// iterating

doSomethingElse(); 

}
■ inlining small functions, to save on jumping to a function and returning from it 

■ moving frequently used variables to registers. (In old compilers, keyword register was used to

request a particular variable to be put on one of the microprocessor's internal register to aid fre-

quent access. It was a request and compilers could ignore it. Only problem was that you could not

access the address of a register variable) 

■ removing multiple assignments, where a single variable is initialised at two or more places and

so on. 

These are just a hint of some of the optimisations that usually a compiler does. There is a lot more

to it. (Probably some compiler writer can send in an article on object code optimisations. It would

be very interesting!) 

Sometimes, in certain situations it is desirable not to have optimisations. In such cases, where vari-

ables should not be optimised, keyword volatile is used. Some of the applications of this keyword

are in 

KKeeyywwoorrdd––VVoollaattiillee



■ Multithreading / Multitasking 

■ Hardware related programs such as memory mapped input /output each of which are explained 

below. 

MMuullttiitthhrreeaaddiinngg//MMuullttiittaasskkiinngg:: If we use a shared global variable technique to share data or synchro-

nise between threads, and if compiler optimises based on that shared variable, then we could be run-

ning into serious problem. For e.g. we might have a part of a code like Listing 8-2. (which is used in

Peterson's solution for mutual exclusion of a resource among two processes. Here turn is a variable

global to the processes)

// Listing 8-2

// ...

turn = pid;  // process id

while ( turn == pid && require[other] == true )

;

Here, we use turn = pid and immediately check if turn == pid, because a context switch (the

OS may schedule another process) might have occurred after turn = pid, and some other process that

shares the variable turn might have changed the value of turn. But compiler might see this validation

of variable turn as redundant and may evaluate the condition to be true always. In this case the solu-

tion fails. So, we instruct the compiler not to optimise code based on variable turn. For this, we

declare turn as 

volatile int turn; 

This will make the compiler wary of turn and will not perform optimisations based on turn. 

MMeemmoorryy  mmaappppeedd  iinnppuutt//oouuttppuutt:: In memory mapped input/output (i/o) we could map a device to a

particular memory location. Then writing into and reading from that memory location become

synonymous to sending input and obtaining output from the device. For example, de-referencing a

pointer can mean reading a byte (or word of predefined size) from the device (or port). In Listing 8-3,

// Listing 8-3 

/* read first byte/word : equivalent

of char c = *((char*) (0xFF4E321A)) in C */ 

char c = * ( reinterpret_cast(0xFF4E321A) ); 

/* read second byte/word - compiler may feel

this is redundant */ 

c = *(reinterpret_cast (0xFF4E321A)); 

if ( c == 0x4C ) { /* if second byte/word equals 0x4C */ 

doSomething(); 

} 

the compiler may feel that the second line is redundant and may remove that code. So, the if state-

ment will actually compare the first byte with a predefined value and not the second byte. Again, to

turn off the optimisations, we declare c as 
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55..99 GGUUIIDDEELLIINNEESS  FFOORR  WWRRIITTIINNGG  IISSRRss

55..99..11 KKeeeepp  iitt  sshhoorrtt

This is the one of the key factors while writing an ISR. Typical rule of thumb is that it

should not exceed 25–40 lines. If you have a longer ISR, you have a problem tagging

along.

ISRs are meant for executing and not for debugging. Moreover debugging ISRs is

not always possible (more in Debugging ISRs section). A longer ISR usually also means

a higher latency (though not always). So, do away with long ISRs. The best way to

avoid long ISRs is to make ISRs to spawn off a new task that will take care of non-time

critical stuff. This is where a commercial RTOS would come helpful. It can take care of

bookkeeping information that is required to create and maintain a task, while we can

concentrate on problem logic.

The ISR should perform only and only the time-critical stuff and nothing else. This

will reduce the interrupt latency.

Once, our team was in charge of a (now very famous) wireless networking protocol.

We found that the system could not get data at higher rates because it took some time

to get the data from hardware into the software. To solve the problem we had two

options:

■ Go for a faster processor

■ Rewrite the ISRs

The first one was difficult, since the higher end processor was more expensive (obvi-

ously) and did not fit into our budget. So, it was decided that we should check all the

ISRs that were causing the problems.

volatile char c; 

So that no optimisations are carried out on c. 

There was another interesting incident when the use of volatile turned out to be useful. When one of

my friends (a beginner) was using an IDE, he ran into problems while debugging —the 'watch' window

displayed something like —'Unable to display optimised variable'. I asked him to recompile using

DEBUG switch on. But he could not immediately identify location of that option in his IDE. I then

asked him to put volatile before the variables he wanted to 'watch' and it worked fine! So, some

keywords find some applications the language designers would not have even thought of!
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Fortunately we could identify the problem soon. The problem was not in the trans-

mission part as one would immediately expect but on the reception side. 

One of the main tasks for reception expected a packet in a specific format. But, the

format of the packet received from the air was different (since it was just raw informa-

tion). The ISR tried to format the received data into the required format before passing*

it on to the task responsible for reception. This took valuable time during a packet burst. 

FFiigg..  55..1144 Lower Interface of Initial Rx Task

The initial Receive ISR pseudocode is as follows:

LLiissttiinngg  55..77:: Pseudocode for Receive ISR
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Rx task

Task expected data 
in a particular format

Queue

Rx_ISR()
{
retrieve pointer from register;
enable hardware to get the next

packet;

format data to queue it to task;
post the data top the task;

}

*To pass the data from ISR to the task IPC (Inter Process Communication) mechanisms were used.
These are covered in detail in the RTOS (RealTime Operating Systems) chapter.



Of these, the first two and the last step were very small. The third step took the longest

time since it had to peek into some of the fields of the header to format the received data. 

Actually, it was a mistake that the ISR was designed this way. Any way it is always

better to be late than never, and we changed the lower interface of the reception task

in such a way that it could accept raw information. The ISR would just receive the data

and pass on the pointer to the task. 

The lower of the interface of the receive task now look like the illustration below:

Now, the ISR just received the data and posted it to the task and the system could

handle the bursts easily.

This is again the appropriate time to discuss the difference between normal desktop

programming and realtime programs. In the above example we saw that the program

was logically correct. It performed the operation that was logically correct. Still, the nec-

essary functionality was not achieved because, we have to add one more dimension—

time, for correctness of realtime programs. This makes the life of a realtime program-

mer really interesting.

The pseudocode of the new ISR is given below:

LLiissttiinngg  55..88:: Pseudocode for Changed Receive ISR
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Rx_ISR()
{
retrieve pointer from register;
enable hardware to get the next packet;

post the data top the task;
}

Data in raw format
(i.e. no data
processing by the ISR)

Queue

Rx task



Note that the step that was used to format the data is removed (and the functionality

is added to the receive task).

55..99..22 KKeeeepp  iitt  ssiimmppllee

Evaluation of complex trigonometric equations and integral calculus expressions are a

big NO in ISRs. Avoid nested ifs, complex switch within switch statements. Also avoid

long iterations. 

This rule is again an offshoot of the ‘debuggability’ of ISRs. Since debugging ISRs is

extremely complex and perhaps impossible in many cases, we cannot write an ISR that

embodies complex logic. We may not have a chance to step through the ISR. So, as

much as possible design a system that has ISRs that do truly simple tasks like copying

from a shared memory, updating global variables, etc. Never let it perform complex

mathematics and statistics. 

55..99..33 PPrrootteecctt  tthhee  ccrriittiiccaall  sseeccttiioonn  ffrroomm  iinntteerrrruuppttss

The critical section of the code should be executed when the interrupts are disabled to

avoid data corruption problems. The critical section means that the part of the code

accesses global variables, i.e. the non re-entrant part of the code. 

Beware of operations that might seemingly look simple enough needing no protec-

tion. Microsoft compiler produces the following code when we try to increment a vari-

able i using statement i++:

mov eax, DWORD PTR _i$[ebp]

add eax, 1

mov DWORD PTR _i$[ebp], eax

This is not a single instruction ☺, as seen from the assembly, i.e. this is NOT an atom-

ic operation. If i is a global variable, and if the code gets pre-empted after one or two

of the above instructions, it may produce unexpected results.
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This solves the latency problem. But there exists more problems in this area. One of the important top-

ics not discussed above is the problem of the size of buffers. The question that arises in one
,
s mind is

“How much memory should I reserve to buffer the packets before they get processed completely?”

Since the packets will be processed by the task and the ISR queues the packets rapidly during the

burst, the calculation of buffer required at the receiving side must be carefully calculated. This is a

classic example of application of “queuing theory”.

PP22PP



55..99..44 RRee--eennaabbllee  iinntteerrrruuppttss  aass  ssoooonn  aass  ppoossssiibbllee

As discussed in the “nested interrupt handlers”, interrupts need not be enabled only at

the end of the ISR. They can be enabled after all the work in the critical section is over.

So, care should be taken such that the critical section code is not distributed through-

out the ISR. (If it is possible), the ISR should be designed in such a away that all the

critical section code is bundled together in the beginning of the ISR. This will help us

re-enable interrupts at the earliest. 

55..1100 DDEEBBUUGGGGIINNGG  IISSRRss

There could be many issues while dealing with interrupts. This section describes

various scenarios that could arise due to incorrect handling of interrupts and ways to

identify and solve the issues.

A golden rule of debugging ISRs is that, “Don’t write complex ISRs that need to be

debugged”. ISRs are asynchronous so, we may never know when they occur during the

execution of the program. Another problem regarding debugging of ISRs is they can-

not usually be debugged by using break points. In case of networks, we might get the

next packet when we step through the code and the program will fail. In some cases in

systems using robots and huge servomotors, we can cause damage to the machinery if

we stop them abruptly. So, the best way to write ISRs is to keep them as simple 

as possible. 

55..1100..11 SSyysstteemm  ddooeess  nnoott  rreessppoonndd  aafftteerr  ssoommee  ttiimmee  

As indicated earlier, in most systems, interrupts are the only way by which a system can

interact with the external environment. So, if the system does not respond to the inputs

from the external environment, it usually means that the interrupts are not enabled. In

An atomic operation is one that should be done without being preempted. The above example describes
that even a simple operation like i++ need not be atomic. So never assume anything about the output
produced by the compiler. Either make sure that the operation is indeed atomic by checking the assembly
output. Or protect them by disabling interrupts. While disabling interrupts, we must remember that it
increases the latency of the system.

NNoottee
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case of some processors, the interrupts are disabled at power-up. In these cases,

interrupts must be explicitly enabled in the startup code (or boot-loader) of the system

to receive interrupts. 

So, we must check the processor/board documentation on enabling interrupts and

make sure that interrupts are enabled when the software begins executing. 

The other reason could be that one (or more) ISR has some bug. Interrupts are dis-

abled when an ISR begins execution. The ISR should enable interrupts explicitly

before it returns. If not, the interrupts that occur later will not be serviced. (These kinds

of errors can easily be identified in the code review sessions. If not, these kinds of bugs

take much more time in debugging efforts later).

This situation can also occur because of configuration of the interrupt

controller/interrupt pin. In the beginning of the chapter, various kinds of interrupts

were discussed. One of the types were “Edge/Level Sensitive” ones. Nowadays, all

these pins are configurable. But still, we need to configure them right. 

Let us consider the following situation: If, the interrupt pin is configured as level sen-

sitive and if the INTR line is low,

FFiigg..  55..1155 Level sensitive interrupt being asserted for ‘ t’

When an interrupt is raised, it should be high for sufficiently long period for the

microprocessor to recognise the interrupt. If this time period ‘t’ for which the interrupt

signal is asserted is less than the time required for the processor to recognise the inter-

rupt, then the processor will not service it.

Another extreme is that the interrupt is configured as edge sensitive and the proces-

sor recognises spurious interrupts that are caused by even mild electrical disturbances.

The usual practice among novice programmers is to fill only the IVT entries that cor-

respond to the interrupts that are used by the system. The rest are left unfilled. This

would cause the processor to jump to undefined locations when a spurious interrupt
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occurs. Another practice that is equally dangerous is filling of all the unused IVT entries

as NULL (0). This would cause unexplained behaviour when a spurious interrupt

arrives. So, during the development period (before release), we should ideally write a

handler for unexpected interrupt and place a breakpoint over it. This will help us

identify a spurious interrupt when it occurs. 

A typical handler is given in Listing 5.9.

If the code is to be shifted for field-testing, it is advisable to add a print statement that

will write in f lash* (or some other nonvolatile memory). We can use this trace to

identify occurrences of these interrupts. 

55..1100..22 TThhee  ssyysstteemm  ssttaarrttss  bbeehhaavviinngg  uunnpprreeddiiccttaabbllyy  aafftteerr  ssoommee  ttiimmee

There are many reasons why this behaviour could occur. The discussion here is limit-

ed to interrupts. 

In some processors, there are two kinds of return statements—one to return from

functions/subroutines and another to return from the ISR. If proper return statement is

not used, then the context will not be restored properly and the system will behave in

an unexpected manner.

Sometimes people wonder why different return statements are needed since they

both are utilised to return from a single function. In many cases, when an ISR is exe-

cuted, the processor might change its state. Say, in ATM7, it changes from USER to

SUPERVISOR mode. So, returning from the ISR may need to switch back the mode

and not just restore the context. This could be the reason for different return statements. 
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void UnexpectedInterruptHandler (void)
{

#ifdef DEBUG
DB_PRINT("Unexpected Interrupt");

#endif
}

LLiissttiinngg  55..99:: A sample handler for unexpected interrupts

*More in “Type of Memories” chapter.



For e.g., the following is a listing (pseudocode) for a normal procedure:

LLiissttiinngg  55..1100::  Pseudocode for returning from a procedure/function

Assembly listing for an ISR would be:

LLiissttiinngg  55..1111:: Pseudocode for returning from an ISR

In all but extremely small systems, C can be used to code the ISRs. Many compilers

especially those targeted at embedded systems usually provide a keyword (like INTER-

RUPT, __interrupt etc.) to specify if a function is an ISR. Then the compiler will take

care of inserting the correct return statement. Nowadays, the C compilers optimise so

much that in all but very small systems (where no C compiler is available) it is always

preferable to use C compiler to generate code instead of assembly.

55..1100..33 VVaalluuee  ooff  vvaarriiaabblleess  cchhaannggee  uunnpprreeddiiccttaabbllee

Whenever something similar happens first make sure that no ghosts (especially those

that are computer literate) are around. And either way (whether you found a ghost or

not), start a prayer since this is one problem that is very difficult to solve.

One hopes that you would have checked if your memory (RAM, f lash etc.) works

fine before jumping into further diagnosis. This could be caused by spurious interrupts

(if not handled properly as discussed earlier) explained in detail* in point #2. It could

also be caused by dangling pointers.

; Save Context
;

; Restore Context
RET ; return from procedure

; Save Context
;

; Restore Context
IRET ; return from ISR
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(If you don’t follow the instructions given above after lengthy warnings, you may

very well deserve the bug ☺. So make sure that all the handlers for the spurious

interrupts are filled).

The problem could be in ‘memory writes ’ that are triggered by the interrupts. Check

all the writes that happen in the period during which the variable changes

unpredictably. 

We remember a nightmare of a debugging experience during the development of a

wireless networking protocol. We always received a packet that would not be accepted

by the system because it failed in some validation. What was puzzling was that the pack-

et sent was a valid packet and the same packet was received (i.e. No transmission/recep-

tion errors — in wireless protocols there could be errors here also).

And the validation routine was checked again and was found to be perfect. After

some time, we narrowed down to the area where the validation was failing. It was in

the length of a particular field. 

The length of a particular field received was compared to value stored in a global

variable. It was here that the validation kept failing. We found that the length against

which the received length was validated kept changing mysteriously. Once we found

this, we put break points in all locations where this length could be changed (i.e. wher-

ever gu16CorrectLength was on the left hand side of any expression (lvalue)). But it was

of no use since the value was not changed in the breakpoints.

Now we removed all the breakpoints and set up a ‘watchpoint ’. A watchpoint also

breaks the execution of a program not when the execution reaches a particular line, but

when a condition becomes true. We can use watchpoint to stop the execution when a

write occurs at a memory location. We set a watchpoint to break when a write occurs

on gu16CorrectLength. And finally, the program stopped during a memcpy (memory

copy) in the Receive ISR. The problem was finally solved.

The receive ISR was given a pointer where it could write the received data. 

The ISR was supposed to receive a small packet (ACK) after receiving the packet.

The transmitter had correctly transmitted the packet, but had transmitted the ACK

packet in an incorrect format. The ACK packet was longer. It so overshot its length and
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wrote over the global variable space. (One should remember that RTOS’ are not

UNIX. They don’t dump the core whenever an illegal memory write occurs. We can

usually write anywhere we want. Actually some other variables had changed too, but

they were not observed because they were not in use in the receive path. 

So, when we had checked the received packet it was fine. But before the received

packet could be processed, the ACK was received and it had corrupted the global vari-

able space. So, once the length of the ACK was corrected, the problem vanished. And,

the person in-charge of the board was extremely happy because he was afraid that the

board was dysfunctional. 

55..1111 LLEESSSSOONNSS  LLEEAARRNNTT

In order to access and process peripheral devices, polling and interrupts are the two

most common methods. Polling in a sequential way is not an effective way of handling

these devices. Instead, interrupts can be used effectively by the processor while still per-

forming other jobs when the devices are not ready.

Interrupts can be classified in a variety of ways: hardware and software interrupts, peri-

odic and aperiodic, synchronous and asynchronous. When a lot of interrupts are

expected, it is wise to use an interrupt controller. 

FFiigg..  55..1166  Bug in receive ISR

20 bytes 

Pointer used by 
Receive ISR 

Location of global 
ariables
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Interrupt Service Routines are executed when an interrupt is executed. They can be

nested as well as non-nested. When an interrupt is raised, the current context of the task

needs to be saved and the control needs to be given to the ISR. 

Non-nested interrupts tend to have higher interrupt latency if proper care is not taken

to design them. ISRs should be designed with care so that they are short, simple, effi-

cient and re-entrant. Re-entrancy can be achieved by using only local variables, guard-

ing global variables through mutual exclusion and calling re-entrant functions.

55..1122 RREEVVIIEEWW  QQUUEESSTTIIOONNSS

■ How are interrupts different from polling? Under what conditions polling is 

better than interrupts?

■ What is an interrupt controller? Design an interrupt controller to connect 16 

devices to a microprocessor with 4 interrupt-pins.

■ What is re-entrancy? How can we ensure re-entrancy while writing ISRs?

■ What steps are taken when ISRs are called during the execution of a task? How 

are nested and non-nested ISRs different in this regard?

■ What is interrupt vector table? What is its relevance in embedded systems?

■ In what context can we use the volatile construct?

■ What are the two general ways that can be used to interface a system to the 

external world?

■ What is an interrupt?

■ How can the interrupts be classified?

■ How can a code be made re-entrant?

■ What are priority interrupt controllers?

■ When and why do you mask an interrupt?

■ What is saving of context? What is the need? When is it done?

■ What are the advantages of using register banks? What are the drawbacks?

■ What are the requirements to write a nested interrupt handler?

■ What are the guidelines to be followed while writing an ISR?

■ How do we handle spurious interrupts?
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SECTION 

THREE

MMoosstt  eemmbbeeddddeedd  ssyysstteemmss  aarree  rreeaallttiimmee..  IInn  tthhiiss  wwaayy,,

eemmbbeeddddeedd  ssyysstteemmss  ddiiffffeerr  ffrroomm  ttrraaddiittiioonnaall  ssyysstteemmss..

CChhaapptteerr  66,,  iinnttrroodduucceess  rreeaallttiimmee  tthheeoorryy  tthhaatt  ccaann  bbee  uusseedd  ttoo

aannaallyyzzee  tthhee  rreeaallttiimmee  bbeehhaavviioorr  ooff  ssyysstteemmss..  ((nnoott  nneecceessssaarriillyy

eemmbbeeddddeedd))..  TThhiiss  sseeccttiioonn  ddeessccrriibbeess  ''RRaattee  MMoonnoottoonniicc

SScchheedduulliinngg''  aallggoorriitthhmm,,  ppooppuullaarrllyy  kknnoowwnn  aass  RRMMSS..  TThhee

RRTTOOSS  cchhaapptteerr  ddeessccrriibbeess  tthhee  ffuunnddaammeennttaallss  ooff  vvaarriioouuss

ccoommppoonneennttss  ooff  aann  RRTTOOSS  lliikkee  ttaasskkss,,  qquueeuueess,,  sseemmaapphhoorreess

eettcc..  IItt  aallssoo  pprroovviiddeess  ssoommee  iinntteerreessttiinngg  ddeessiiggnn  iinnssiigghhttss  bbyy

ddiissccuussssiinngg  ssoommee  rreeaall--lliiffee  aapppplliiccaattiioonn  ddeessiiggnn  pprroobblleemmss

iinnvvoollvviinngg  RRTTOOSSeess..

Correctness is not enough



Chapter

Introduction to 

Realtime Theory

6

This chapter is one of the prime motivating factors behind the writing of this book.

Books on embedded programming shy away from realtime theory at best describing

APIs of some RTOS. Books on realtime theory revel in mathematics without thought

on practical applications much to the agony of an average engineer/programmer. We

honestly believe programming is fun only when the theory behind it is clear. The chap-

ter introduces some aspects of realtime theory (the topic deserves an entire book). After

this the reader is encouraged to study other material, which we hope will be easier to

comprehend with this introduction.

As described in the introduction of the book, in realtime systems, providing the result

within a deadline is as important as providing the correct answer. An oft-quoted saying

in realtime theory is, “A late answer is a wrong answer.” This can be compared to a quiz

program. A late answer is usually not accepted (and your chance may have been passed

on to your competitor). Sometimes the deadlines are very small, i.e. the system must

respond rapidly. But, there could be instances when the response can be slow, but dead-

lines are critical. So, based on these characteristics, a realtime system can be classified

as illustrated in next page.

This is a very important classification since it is common to find people interpreting

a fast realtime system as a hard realtime system. 

A hard realtime system is one where missing of a deadline can cause a great loss to

life and property. Aeroplane/Space navigation systems and nuclear power plants are

some examples of this kind of system.

A soft realtime system is one where the system is resilient to missing a few deadlines.



Examples are DVD players and music systems. The user usually tolerates an occasion-

al glitch. 

If we carefully observe the two definitions of hard and soft realtime systems, they do

not include a notion of the speed with which the system must respond to. They simply

describe the criticality of meeting the deadlines. If the system has to meet the deadline

in a few microseconds (to few milliseconds), then the system is categorised as a fast real-

time system. 

If you are watching video on a broadband network, most probably your system is

receiving data at a few mbps. So, this is a fast realtime system. But, this is not a hard

realtime system because a rare miss in audio/video is tolerated and does not make you

lose your life or property (unless you were watching world cup soccer ☺). Similarly

hard realtime systems need not be fast.

It is this timeliness factor which distinguishes realtime software from normal appli-

cation software targeted at desktop computers. In realtime software, we might have to

ascertain that all the deadlines are met before deploying the software. In desktop soft-

ware, usually ensuring correctness is sufficient, but not in the case of realtime systems.

So, while developing realtime software, we should do ‘Performance Analysis ’ during the

design phase. 

66..11 SSCCHHEEDDUULLIINNGG  TTHHEEOORRYY

The scheduling theory deals with schedulability of concurrent tasks with deadlines and

priorities.

DDeeffiinniittiioonn

Slow Fast Speed

Soft 

Hard

Criticality 

Nuclear
reactors

Flight 
controllers

PDAs VoIP
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Analysis:

Schedulability: The processing power of a given CPU is fixed. So, if various tasks are

present in the system, in the worst case, can all tasks be scheduled in such a way that

all the deadlines are met? This is called schedulability.

Concurrent tasks: Because, if the tasks are sequential, (it is known as batch processing),

there is no need for complex performance analysis. Since, in sequential processing, a

task can begin only after all its predecessors have completed. So, scheduling theory

here, deals with scheduling of concurrent tasks. 

Deadlines: All (concurrent) tasks have a deadline to meet. 

Priority: Different tasks, though they run concurrently are differentiated based on

their priorities. 

The theory of scheduling is vast and has been around for a long time (1960s, 1970s).

It has matured over years. The only sad part of the story is that its application is usual-

ly limited to academic interests. Mostly, they are outside the scope of a common engi-

neer. But, the theory has wide practical implications and is immensely useful in mathe-

matical validation of systems. ‘Rate Monotonic Scheduling ’ is chosen for discussion in this

chapter because of its popularity and wide variety of applications.

66..22 RRAATTEE  MMOONNOOTTOONNIICC  SSCCHHEEDDUULLIINNGG

As indicated earlier, this is one of the most popular and widely used scheduling mech-

anisms. This method has also been implemented in Ada* 9X. This theory began its

rapid growth from a paper on rate monotonic scheduling published by Liu and Layland

in 1973 in ACM.

We would have studied about monotonic sequences, i.e. a sequence of numbers that

are either arranged in an increasing or decreasing manner.

So, the numbers

2, 5, 12, 27, 99

form a monotonic sequence but the following series does not.

3, 5, 8, 6, 10, 9

*Ada is a programming language that has inbuilt support for tasks and scheduling of tasks.
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66..22..11 DDeeffiinniittiioonn

The rate monotonic scheduling is a way of scheduling in which increasing priorities are

assigned to tasks in decreasing order of their periods.

i.e. the tasks are arranged in monotonic series of their periods, e.g. if we have 

4 tasks:

Now the tasks are arranged in increasing order of their periods and priority is

assigned. 

80, 100, 150, 250

Task#4 Task#1 Task#3 Task#2

1 2 3 4

Here Task #4 has the highest priority and Task #2 the lowest. 

Before proceeding to intricacies of RMS, let us make some assumptions:

66..22..22 AAssssuummppttiioonnss

Let Ti be the period of the periodic task. 

Let Ci be the time the processor would be required by the task

Let Di be the deadline of the task. Initially, the Di is assumed to be equal to Ti (i.e.

the task should complete before its period).

Now, let us define a useful term called the utilization ratio (Ui )

1 100 2

2 250 4

3 150 3

4 80 1

TTaasskk PPeerriioodd PPrriioorriittyy

U C Ti i i= /
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Ui is defined as the ratio of the execution time of task i to its period Ti . Obviously

the acceptable limit of Ui is 1.

66..22..33 NNeecceessssaarryy  ccoonnddiittiioonnss

The following describe the necessary conditions required for a given set of tasks to be

schedulable. They are necessary but are not sufficient conditions for schedulability.

IInnddiivviidduuaall  uuttiilliissaattiioonn

This is the first necessary condition. If a periodic task takes more time to complete than

its own period it cannot be scheduled (even if it is the only task in the system). If this is

the case, then the processing power of the processor can be increased to reduce Ci . Or,

the algorithm can be improved or changed, or some part of the task can be moved to

hardware. 

TToottaall  uuttiilliissaattiioonn

This rule states that the sum of all utilisation ratios cannot exceed 1. The previous result

said that individual utilisations couldn’t exceed 1. This is because if , then it

means that CPU is 100% time loaded. It cannot do any extra task. So, the sum of all

utilisation ratios must be less than or equal to 1. Again, this is a necessary test and not

a sufficiency test. 

Now, let us discuss one more important concept—Deadlines—before discussing the

next conditions. Deadlines are points in time from the arrival of event to that a task

needs to complete its work. But, now let us assume that the deadline of a task is equal

to its period, i.e. a task can complete its work before its next period

FFiigg..  66..11 Period and deadline

∀ ≤i T C Ti i i: :

( / )C Ti i
i

n

=
∑ ≤

1

1

Ui =∑ 1

t

T 4T3T2Tt = 0

D
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In the above picture, we see that an event occurs periodically with period T. The

deadline is the time within which the response must be given, in our case the task must

be accomplished. The deadline and the period of a task are two independent entities.

For the sake of the following discussion, let us assume that the Deadline = Period. 

Consider the set of following tasks:

We have to make sure that tasks are listed in the order (as above) of their Rate

Monotonic Priority. Let us draw a diagram that depicts the state of the system when all

the tasks are started at the same instant (t = 0).

In a pre-emptive system, the ready task with the highest priority will be active at any

point of time. (There are other kinds of systems where like time-sharing and fairness

scheduling policies are adopted*).

1 50 10 0.20 1 0.20

2 100 20 0.20 2 0.40

3 200 50 0.25 3 0.65

RRMMPP**==  RRaattee  MMoonnoottoonniicc  PPrriioorriittyy

TTaasskk## PPeerriioodd CCii UUii RRMMPP** CCii ((ccuumm))

50 100 150 200

Task1

Task2

Task3

Time

*More later in this chapter.
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Let us see how these 3 different tasks are scheduled in the system. Since RMS uses a

strictly pre-emptive scheduling, only the task with highest priority is executed by the

system at any time instant. 

We also assume the worst case situation that all the tasks are started simultaneously

(at t = 0). Since the task #1, (with T = 50) has the highest RMS priority, it is always exe-

cuted whenever its period occurs. 

When task #1 finishes at T = 10, task #2 begins its execution. Now, in a pre-emptive

system, only the highest priority task will be executed. Let us see how these three dif-

ferent tasks are getting scheduled. RMS uses a strictly pre-emptive scheduling scheme.

From the diagram we see that task #1, gets scheduled exactly at t = 50, 100 etc. Task #1

takes a period of 10 from the CPU. 

Though all the tasks are ready to execute at t = 0, only the highest priority task is exe-

cuted. After this completes, the task with next higher priority is executed (task #2 with

T—100. This executes from time 10–30 in the timeline. 

Now, after task #2 completes, task #3 can execute. Task #3 requires a time of 30

units to finish its job. It starts at t = 30 and should complete by 80 if it is uninterrupted.

But at t = 50, the highest priority task— task #1 gets ready to execute. So, task #3 gets

pre-empted at t = 50. This is called a scheduling point. Now, task #1 completes at t = 60.

Since task #2 is not ready to execute now, task #3 can continue. Task #3 completes by

t = 90. So, all the three tasks get scheduled.

Therefore, for any task, Task #j to complete its execution, all the higher priority tasks

within the period Tj cannot take time more than Cj. 

Please take some breath and read the above conclusion before going to the explana-

tion below. Any task Tj takes Cj time to complete. So, the time it can spare* to higher

priority tasks is Tj – Cj.

Cj

0

TCj

Tj

P
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Consider a task with period Tj. The task takes time Cj to execute. The period of exe-

cution of task j may not coincide with beginning of the period unless it is the highest

priority task. So, there will be a phase delay P before a task starts executing.

For task j to complete, the phase delay can be utmost Tj —Cj. Otherwise it cannot

complete before its next period starts. 

Similarly, even if the phase delay P is less than (Tj—Cj ), if higher priority tasks pre-

empt the task j for a period more than Tj – Cj , then task j cannot complete. 

Consider two tasks i , j, Ti > Tj. Hence, priority of task j is greater than task i. Task 

j will pre-empt task i (maximum) Ti / Tj times. (In our previous example, during the

period of task #3, task #1 is scheduled 200/50 = 4 times).

So, time taken by task j from task i is,

(Because Task #j takes Cj times to execute)

Therefore, for a task #i , all the higher priority tasks pre-empt for 

To explain this, consider the previous diagram. Let us consider task T3 . (Period =

200). T1 pre-empts it times during the period of task T3. So, the time

taken by task T1 during the period of T3 is:

Similarly for task T2 , time taken by it during the period of task T3 is 

So, out of 200 units for T3 , 40 + 40 = 80 units have already been taken by higher

priority tasks. So, the time left for T3 = 200 – 80 = 120. 

The time needed for T3 is 50 units, which can be comfortably accommodated in the

available 120 units. So, the set of tasks T1 , T2 and T3 are schedulable. 

( / )*T T Ci j j

200 50 10 40/ *  =

200 100 20 40/ *  =

( / )* ( )T T C T Ci j j i i
j

i

≤ −
=

−

∑
1

1

200 50 4/  =
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This is the third sufficient, but not a necessary condition for schedulability. 

After these three conditions are passed, we can move to the next test, which is also a

pessimistic test. The theorem on which the test is based is called the “Utilisation Bound

Theorem”. 

66..33 UUTTIILLIIZZAATTIIOONN  BBOOUUNNDD  TTHHEEOORREEMM

Independent —Because for RMS, we assume that the tasks do not interact (neither syn-

chronisation nor communication) with each other. 

Periodic —The tasks are periodic, i.e. they have a certain frequency. They are not

sporadic or event triggered. 

Schedulable —All the tasks can meet their deadlines. 

Since the proof is not as simple as the ones described before, it is beyond the scope

of this book.* 

The expression in the RHS of the equation above may look pretty complicated. On

the first look, people feel that evaluation of these expressions can be time consuming.

This is a pessimistic test because we take the ceiling operator (e.g. ) while doing this calcu-
lation. It must be noted that a higher priority task, in this case, T1 may not pre-empt T3 four times as
indicated in the calculations. In the example, T1 pre-empts T3 only once. This test does not consider the
execution time of T3. It only takes into consideration the period of T3. So, this is a pessimistic test.

NNoottee

3 2 2/  =

*We feel that the engineers need to remember the basic theory behind any topic and most importantly
remember the results than spending huge efforts in proving them. We are not suggesting that we
should be dumb to only apply the results, but we shouldn’t be too engrossed only in the academics.
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Consider a set of n independent periodic tasks. They are schedulable (under the priority assign-

ment of RMS) if

DDeeffiinniittiioonn

C T ni i
i

n
n/ ( )/

=
∑ ≤ −

1

12 1



If we carefully look at the expression, we can see that it is a constant for various values

of n . 

So, we can make a lookup table for various values of n. 

So, whenever we are required to do performance analysis, we can create a table like

the one below:

The data we have at the start is usually Ci and Ti only. The fourth column is Ui which

defines the utilisation ratio of the task to the available CPU time. Ui (cum) as the name

suggests is the cumulative utilisation of the tasks so far. For e.g., if we consider only the

two tasks, the total utilisation is 0.667. Ui (cum) should not exceed the limit set by UB the-

orem. In this case, we see that by addition of the third task, Ui (cum) becomes greater

than UB(i). So, these three tasks are not schedulable according to UB theorem.

We should remember that UBT is also a pessimistic test. (Actually, the set of three

tasks are indeed schedulable). We may have to perform more tests (like the Response

Time test) to ascertain if the set of tasks is schedulable. Readers are encouraged to delve

deeper into realtime theory. (Some recommended books are given in the Bibliography

section in the end).

66..44 LLEESSSSOONNSS  LLEEAARRNNTT

Real time systems can be classified in two ways. First based on their speed (fast and

slow). Second, based on the criticality of their deadlines (hard and soft). There can even

1 1.000

2 0.828

3 0.779

4 0.756

∞ 0.690

NNuummbbeerr  ooff  TTaasskkss UU((nn))

1 100 40 0.400 0.400 1.000

2 150 40 0.267 0.667 0.828

3 350 100 0.286 0.953 0.779

ii CCii TTii UUii ==CCii //TTii UUii ((ccuumm)) UUBB((ii ))
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be an overlap between these two classifications. Real time theory deals with assessing

the schedulability of more than one concurrent tasks with given deadlines and priorities

in such a way that all deadlines are strictly met. In this chapter, we used a simplified

version of Rate Monotonic Analysis in order to arrive at a mathematical formula for

their schedulability. The utilisation bound theorem in its simplest form, gives a formu-

la of schedulability for independent periodic tasks.

66..55 RREEVVIIEEWW  QQUUEESSTTIIOONNSS

■ How do we classify a system as hard-real time and fast-real time? Can both of 

them be true for a system at the same time?

■ What is the definition of Rate Monotonic scheduling theorem? What are its 

basic assumptions?

■ The example in the chapter assumes that Ci of task1 as 10. If we increase it 

to 40, will tasks still remain schedulable? Prove this using Rate Monotonic 

scheduling.

■ What is scheduling theory?

■ What is rate monotonic scheduling?

■ According to Rate Monotonic Scheduling, which takes higher priority-Tasks 

with higher importance or higher rate?

■ What are the three necessary conditions for a set of tasks to be schedulable?

■ What is Utilisation Bound Theorem?

QQ
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Chapter

Realtime Operating Systems

7

77..11 IINNTTRROODDUUCCTTIIOONN

The term realtime operating system (RTOS) usually triggers an image of a highly

complicated OS in the minds of a programmer who is new to embedded systems. It is

usually felt that only the experts can program with RTOS. This is totally untrue. In real-

ity, an RTOS is not usually such a complex piece of software (in comparison to some

of the mammoth size OSes’ currently available). Though current RTOSes provide a

huge variety of features, a basic RTOS is just small enough to provide some scheduling,

memory management and a decent level of hardware abstraction. 

77..22 DDEESSKKTTOOPP  OOSS  vvss RRTTOOSS

An RTOS should not be compared to a desktop OS.* A desktop OS is usually huge in

size. It is not uncommon to see these OS’ using 300–500 MB just for their installation.

But, in embedded systems, even 8–16MB of memory is considered to be luxury. A

desktop OS usually has huge libraries for UI management, support for numerous net-

working/interconnectivity protocols and fancy features like Plug ’n’ Play. They also

implement complex policies for network communication (like Microsoft NDIS) and

facilities for binary reusability (DLLs, Shared Objects, COM/DCOM, .net, etc.).

An RTOS may not provide these features. But simply, every RTOS will provide at

least the following features:
■ Task Creation/Management
■ Scheduling

*Nowadays, the embedded (not necessarily realtime) OSes are as big and complex as their desktop
counterparts. For example, Windows XP is available as an ‘embedded’ version.



■ Intertask communication/synchronisation

■ Memory Management

■ Timers

■ Support for ISRs

Many good RTOSes also provide support for protocols like TCP/IP and some appli-

cations like telnet, tftp etc.

In a desktop development environment, a programmer opens his IDE/favourite

editor*1 and types in his code. Then, he builds it using his compiler and then executes

his program. The point to be noted is that the OS is already running and it ‘loads’ the

executable program. The program then makes uses of the OS services. The OS takes

care of scheduling it (sometimes hanging in the process ☺). When the program com-

pletes, it exits. The OS can run other programs even while our program is running*2.

The important point to observe is that programs have a definite exit point and pro-

grams that contain infinite loops are considered bad. The following diagram (Fig. 7.1)

describes the steps during the lifetime of a desktop OS:

FFiigg..  77..11 Operation of a desktop OS

*1Some Unix guys still will swear by vi/vim. 

*2Long ago, there was an OS called MS DOS that could run only one program.
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But, this is not the case in most of the embedded systems.* Usually, there will be no

dedicated OS already running on the target to load our program.

In an embedded system the software written by us, the RTOS (usually in the form of

some library) and a special component called the BSP is bundled into a single exe-

cutable file. This executable is burnt into a Boot-ROM or Flash. 

FFiigg..  77..22 Operation in an RTOS Environment

It is not necessary that a boot-ROM/Flash should always be present in the system.

There could be cases where the code is obtained over a network on being powered up.

This is because, usually embedded systems cannot afford the luxury of having hard

disks. In the above f lowchart, the decompression step is optional.

*With even Windows XP getting embedded, the barriers are slowly decreasing.
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In this case, we can see that there is no OS during the startup. There is only a single

executable that contains:

1. OS Code 

2. Board Support Package (BSP)

3. Application code

BSP is a part of OS code in the sense that it is used by the OS to talk to different

hardware in the board. We should remember that the software that we write is run on

the target board. 

FFiigg..  77..33 A Typical development environment on the target

The OS vendor has no idea of how the board is organised. He does not know the

components of the board in most cases. (For e.g. what is the Ethernet controller? UART

controller? etc.)

In some cases, the software is developed over some standard boards that can be

bought off the shelf. If the board is quite common, then the OS vendors may provide

BSP for those boards. But, if the board is custom built, we have to write a BSP for the

board.

77..33 NNEEEEDD  FFOORR  BBSSPP  IINN  EEMMBBEEDDDDEEDD  SSYYSSTTEEMMSS

The OS needs to interact with the hardware on the board. For e.g. if we have a TCP/IP

stack (provided by an OS vendor) integrated with our software, it should finally talk to

the Ethernet controller on our board to finally put the data in the networking medium.

The TCP/IP package has no clue about the Ethernet controller (say 3Com, Intel) and the

location of the Ethernet controller and ways to program it. Similarly, if there is a debug

agent that runs as a component in the OS that may want to use the serial port, then we

should provide the details and the driver for the UART* controller used in our board. 

*Universal Asynchronous Receiver/Transmitter.
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We should understand that the BSP is highly

specific to both the board and the RTOS for

which the BSP is written.

The BSP/startup code will be the first to be

executed at the start of the system. The BSP

code usually does the following:

■ Initialisation of processor (Usually processors

can operate in various modes. BSP code initialises the mode of operation of the

processor. Then, it sets various parameters required by the processor.)

■ Memory initialisation

■ Clock setup

■ Setting up of various components such as cache

Usually BSP can be classified into two parts:

■ The first part does real low-level stuff like the one specified above. This is usu-

ally done in assembly language.

■ The next part usually consists of drivers that are required by the RTOS to use

some peripherals. (E.g. Ethernet driver, video, etc., UART).

Coding BSP is considered as ‘real’ embedded work since it requires mastery of both

hardware and software. A BSP engineer must be able to code real optimised programs

and he must be extremely capable with the hardware. 

The BSP gets bundled with the software that gets written and hence, any increase in

BSP code size will lead to increase in the size of the total software. (We should remem-

ber that in embedded systems there is only a single executable that includes the code

written by the programmers, the RTOS and the BSP code). So, the BSP must be writ-

ten in a way such that it provides all the required abstractions but nothing more.

BSP is a component that is used to
provide board/hardware specific details
to the OS, for the OS to provide hard-
ware abstractions to the tasks that use its
services.

NNoottee

BSP engineers usually assume that the hardware is correct. But, these days when hardware as well as
the pressures on the engineers gets complex by the day, the hardware too gets as buggy as software. (We
are not beaming with pride when we say this. Some day we’ll be able to produce cleaner implementa-
tion of hardware and software). So, it is a good idea to search for errata/ known bugs section in hard-
ware documentation rather than to waste inappropriate time in searching for the bug )

NNoottee
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Now, let us see the various components of an RTOS and how these functionalities

are achieved.

77..44 TTAASSKK  MMAANNAAGGEEMMEENNTT

Task management in an RTOS consists of the following:

❑ Task creation

❑ Task scheduling

❑ Task deletion

77..44..11 TTaasskkss

The concept of a task is fundamental to understanding an RTOS. 

AAnnaallyyssiiss

‘Atomic Unit’ —A task is considered as an atomic unit because, any other entity small-

er than a task cannot compete for system resources.

‘Scheduled’ —In a system, there could be many tasks competing for system resources.

But, the duty of the RTOS is to schedule tasks such that requirements of tasks are met

in such a way that the system objectives are met.*

‘System Resources’ — All tasks compete for resources like CPU, memory, input /output

devices etc.

A task first needs to be ‘created ’. A task is usually characterised by the following

parameters: (sample parameters are given in brackets)

1. A task name (“TxTask”)

2. Priority (100)

3. Stack size (0×4000)

4. OS specific options 

A task is the atomic unit of execution that can be scheduled
by an RTOS to use the system resources.

*What this means is that, some task can be blocked for a long period of time and another can use the
same resource for a long time. There is no question of fairness as long as the system objective is met.
In an aeroplane, a task that controls the air-conditioning system is less important than a task that con-
trols the flight.
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These parameters are used to create a task. A typical call might look like as in 

Listing 7.1.

LLiissttiinngg  77..11:: Task creation

Now, the task can be considered to be in an embryonic state (Dormant). It still does

not have the code to execute. But by now, a task control block (TCB) would have been

allocated by the RTOS.

77..44..22 CCoonncceepptt  ooff  ccoonnttrrooll  bblloocckkss

The use of control blocks is not limited to a task. During the course of this chapter, we

would see various control blocks for memory, synchronisation, etc. The control blocks

are internal to RTOS. There is absolutely no need for a programmer to access these

blocks. In many cases, the access to these structures is restricted to the programmer.

But, to comprehend the working of an RTOS, we need to know how these control

blocks are used by the RTOS.

The RTOS usually reserves a portion of available memory for itself during startup.

This chunk of memory is used to maintain structures such as the TCB. The TCB will

usually consist of the state of the task, i.e. the value of registers when the task was pre-

empted earlier, its priority and its RTOS specific parameters (say scheduling policy).

When a task is blocked, the value of the registers is saved in its context in TCB. When

a task is scheduled again, the system registers are restored with these saved values, so

that the task will not know even if it was pre-empted. An RTOS uses the TCB of a task

to store all the relevant information regarding the task.

77..44..33 TTaasskk  ssttaatteess

At any point of time, a task can be in one of the following states:

1. Dormant

2. Ready

result = task_create ( "TxTask", // Task name
100,
0x4000,
OS_PREEMPTABLE);

if (result == OS_SUCCESS) {
// task successfully created…

}
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3. Running

4. Blocked

❑ DDoorrmmaanntt When the task is created, but not yet added to RTOS for scheduling.

❑ RReeaaddyy The task is ready to run. But, cannot do so currently because, a higher 

priority task is being executed.

❑ RRuunnnniinngg The task is currently using the CPU

❑ BBlloocckkeedd The task is waiting for some resource/input.

FFiigg..  77..44 Task State Transition Diagram

The stages of a task and its transitions are illustrated in Fig. 7.4.

i. When a task is created, it is in a ‘Dormant’ state

ii. When it is added to the RTOS for scheduling, it usually arrives in the ready 

state. But, if it is the highest priority task, it could begin executing right away. 

iii. When a task is running and if another higher priority task becomes ready, the 

task that is running is pre-empted and the highest priority task is scheduled for 

execution.

iv. During the course of execution of a task, it may require a resource or input. In 

this case, if the resource/input is not immediately available, the task gets blocked.

Dormant

Running

Blocked

Ready
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OOtthheerr  ttrraannssiittiioonnss

There are transition stages in the execution of the tasks. Some of them are as follows:

■ Ready to running : For a particular task, if all the higher priority tasks are blocked,

then the task is scheduled for execution. It then changes its state from ready to

running.

■ Blocked to ready : When a higher priority task releases a resource required by a

lower priority task, then the lower priority task cannot begin execution. The high-

er priority task will continue to run. But, the state of the lower priority task will

change from ‘blocked’ to ‘ready’.

■ Blocked to running : Sometimes, it could happen that a higher priority task is

blocked on some resource/input. When that resource is available again, then the

task begins execution, pre-empting the lower priority task that was executing.

77..44..44 TThhee  IIDDLLEE  ttaasskk

So far we have seen how a task pre-empts another. But what if no task is ready to run

and all of them are blocked? The RTOS will be in deep trouble. So, an RTOS will usu-

ally execute a task called idle * task. An idle task does nothing. A sample idle task code

could look like:

What happens if a lower priority task starts a higher priority task? It gets pre-empted immediately. So,
the root task that creates all the tasks should typically have the highest priority and if it has any task
higher than its own priority, it should be started last.

NNoottee

Impossible transition: Of the transitions considered above, the transition “Ready to Blocked” is not

possible. A task can block itself only when it is running. So, this transition is not possible.

PP22PP

*Nomenclature may vary across RTOS’.
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LLiissttiinngg  77..22:: Idle task

You can see that it has no system calls… in fact no code except an infinite loop. The

idle task in an RTOS is the task with the lowest priority. And, many RTOS’ reserve a

few lowest and highest priority tasks for themselves. For e.g., if an RTOS can provide

256 tasks, it may reserve the lowest 10 and the highest 10, leaving the user with 226

tasks of priorities in the range (10 –246).

CCPPUU  llooaaddiinngg

Though an idle task does nothing, we can use it to determine the CPU loading — the

average utilisation ratio of the CPU. This can be done by making the idle task writing

the system clock in some memory location whenever it gets scheduled. So, an idle task

need not be ‘idle ’ after all.

77..44..55 TTaasskk  sscchheedduulliinngg

Task scheduling is one of the primary reasons for choosing an RTOS. The programmer

can assign priorities to various tasks and rest assured that the RTOS would do the need-

ed scheduling.

There are a huge variety of scheduling policies available. Some of the most used ones

are described below:

SSttrriiccttllyy  pprree--eemmppttiivvee  sscchheedduulliinngg  

This is one of the most widely used scheduling policies in an RTOS. However, we

should know that this is not a preferred scheme in a desktop OS. In this policy, at any

instance of time, only the highest priority task that is ready to run executes. If a task Ti

runs, it means that all tasks Tj with priorities lesser than Ti are blocked.

Is an ISR also a task?

The answer is no. A task is a standalone executable entity. An ISR is a routine that is called by system

in response to an interrupt event. (However some newer RTOSes model ISRs as high priority threads

are schedulable by the OS kernel).

PP22PP

void IdleTask (void)
{

while(1);
}
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This scheduling policy makes sure that important*1 tasks are handled first and the

less important later. For e.g., in an aircraft cruise control system, the f light controller

task will have more priority than a task that controls the air-conditioning system.

PPrrooss::

Once the priorities are set properly, we can rest assured that only the important things

are handled first.

CCoonnss::

It is possible that one or more of the lower priority tasks do not get to execute at all. So,

to avoid this, a proper analysis should be done in the design phase.

TTiimmee  sslliicciinngg  

In this kind of scheduling policy, the CPU time is shared between all the tasks. Each

task gets a fraction of CPU time. There is no notion of priority here. This scheduling is

also known as round robin scheduling. The scheduling is not used in its original form. 

However, this can be used in conjunction with pre-emptive scheduling. In a pre-

emptive system, if two or more tasks have same priority,*2 we can make the scheduler

use time slicing for those tasks with the same priority.

PPrrooss::

i. No need for complex analysis of system

ii. This kind of kernel is relatively easily to implement

iii. The pre-emption time of a task is deterministic i.e. if a task is pre-empted, we 

will know exactly the time after which the task will be scheduled (if the 

number of tasks in the system do not vary with time)

*1i.e. higher priority.

*2Some RTOSes will not allow two tasks to have same priority while using a pre-emptive kernel.

There could be a slight deviation in the implementation of this scheduling algorithm. In almost all sys-
tems, ISRs will have highest priority irrespective of the priorities assigned to the tasks. This is usually
necessary too. So, this deviation from the normal behaviour is acceptable.

NNoottee
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CCoonnss::

This is a very rigid scheduling policy (and exactly that is what it is meant to be — there

is no notion of priority).

FFaaiirrnneessss  sscchheedduulliinngg

In this kind of scheduling, every task is given an opportunity to execute. Unlike pre-

emptive scheduling, in which a lower priority task may not get an opportunity to exe-

cute, in this case, every task will be given a ‘fair ’ chance to execute. Though some kind

of priority mechanism could be incorporated here, it is not strict. Priority of a task,

which has not executed for some period will gradually be increased by the RTOS and

will finally get a chance to execute.

This scheduling policy is complex (how to vary priority of tasks in such a way as to

achieve fairness?). And, it does not fit right in realtime systems. 

This kind of scheduling is widely available in desktop OS’. (We still listen to music

while compiling our programs).

PPrrooss::

i. Every task will get an opportunity to execute

CCoonnss::

i. Introduces nondeterminism into the system

77..44..66 TTaasskk  ssyynncchhrroonniissaattiioonn

We have so far talked about many tasks executing in the RTOS. In all but trivial

systems, these tasks need to interact with each other— i.e. they must synchronise and

communicate with each other. 

We can illustrate this using an oft-used road example.

When the tasks are independent— i.e. there is no communication between the tasks,

they do not share any resources* between them. This can be compared to two roads

that run parallel to each other and hence, do not meet.

Vehicles can ply on these roads safely without colliding with ones in the parallel 

road. But the case becomes different when we have two intersecting roads. (Refer 

Fig. 7.6). 

*Except the CPU of course!
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In this case, we need an explicit mechanism like a traffic signal to make sure that the

vehicles ply without getting into any mishaps. 

FFiigg..  77..55 Two roads that run parallel to each other

This situation is different because, there is a shared region between the roads. So,

traffic on the two roads need explicit synchronisation. Another point to be observed is

that traffic signal is required only at the region of intersection. There is no need for this

synchronisation either before or after this region.

FFiigg..  77..66 Two intersecting roads

You’ll be surprised by how this example translates perfectly to inter-task

communication. 
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There are two ways of achieving synchronisation with the tasks:

■ Task synchronisation using mutexes

■ Task synchronisation using semaphores

Both the methods are discussed in detail below.

TTaasskk  ssyynncchhrroonniissaattiioonn  uussiinngg  mmuutteexxeess

In continuation of the discussion above, we can summarise the situation in the following

points:

i. Problems occur only when a resource is shared among tasks.

ii. Synchronisation needs to be done only during resource acquisition and 

release.

For e.g., consider that two tasks want to share a printer. Let task A want to print the

following sequence:

1 2 3 

And, let task B want to print

A B C

If these tasks are scheduled in a round robin (time slicing) method, then the printout

appearing on paper could be

1 2 A B 3 C (or any other junk)

It is also possible that the output is perfect because, the two tasks had sufficient time

to queue their requests.

But, since such an error situation could arise, and can cause undesirable output from

the system, this problem should be addressed. The immediate solution that occurs to

mind is that one of the tasks can acquire the printer resource, use it and then release it.

To implement this solution, we need to use a mutex—a short and very common

name for “Mutual Exclusion”. 

As the name indicates, it is a mechanism to exclude other tasks to use a resource

when a specific task has acquired it.
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For e.g., task A can be coded as:

LLiissttiinngg  77..33:: Task A Code

Similarly, task B can be coded as

LLiissttiinngg  77..44:: Task B Code

At any point of time if both the tasks want to use the printer, they first try to acquire

the mutex. Since, we are considering only a single processor model, the task, which

makes the first attempt will acquire it.

Let us consider a case where task A has acquired the printer_mutex. (Refer

Listing 7.5.)

LLiissttiinngg  77..55:: Task A pre-emption

Let us now consider that the task B has a higher priority and it gets scheduled after

print( 1 ). And now, let task B also want to print something. It will now try to acquire

the printer_mutex. But it cannot, since task A has already acquired the mutex.

// Task A code
// . . . 
mutex_acquire( printer_mutex );
print( 1 );
print( 2 );
print( 3 );
mutex_release( printer_mutex );

// Task B code
// . . . 
mutex_acquire( printer_mutex );
print( 'A' );
print( 'B' );
print( 'C' );
mutex_release( printer_mutex );

// Task A code
// . . . 
mutex_acquire( printer_mutex );
print( 1 );
print( 2 ); Pre-empted here
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LLiissttiinngg  77..66:: Task B pre-emption

The task B will now be blocked. (It is not necessary that the task B be blocked. We

say B is blocked on resource.)

Since task B is blocked, task A gets to resume again and completes its printing. It then

releases the mutex. Now, task B can resume and continue with its printing. 

FFiigg..  77..77 Task dynamics

We should remember that since task B is a higher priority task, the execution would

shift to task B immediately after task A releases the mutex.

// Task B code
// . . . 
mutex_acquire( printer_mutex );
print( 'A' );
print( 'B' );

Blocked here

Task B

Task A

t

t

Task B releases 
the mutex 

Task B
acquires the 
mutex 

Task B gets 
preempted 
here 

Task A
blocks on 
the mutex 

Task A resumes 
again. 
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Consider the following code of task A:

LLiissttiinngg  77..77:: Mutex release by task A

In a truly pre-emptive system, the execution will be transferred to task ‘B’ immedi-

ately after execution of mutex_release. Statement my_foo will be executed only

after task A is scheduled again.

FFiigg..  77..88 Transfer of execution between Task A and Task B

The above figure describes how execution is transferred between tasks A and B dur-

ing a sample run. The shaded boxes indicate the code that gets executed. 

Pseudocode for the entire program is given in Listing 7.8.

// . . . 
print ( 3 );
mutex_release ( printer_mutex );
my_foo(); // some other function called from task A
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Task B Task A

mutex_acquire
// . . .

print ( 3 );
mutex_release

myFoo();

// . . .
mutex_acquire // (gets blocked)

print (‘A’);
// . . .
mutex_release
// . . .



LLiissttiinngg  77..88:: Source file for Task A and B with mutex sharing

77..55 RRAACCEE  CCOONNDDIITTIIOONNSS

Mutexes are also required when two tasks share data using global variables. 

Let us consider a case where two tasks are writing into contiguous memory locations

and another task uses these values produced by the two tasks. In concurrent program-

ming parlance, the first two tasks that generate the values are called ‘producers ’ and the

#include <my_os.h>

// The printer mutex is a global variable so that both the
tasks
// can access it.
mutex printer_mutex;

int main()
{

// . . . 
task_create ( TaskA );
task_create ( TaskB );
// . . . 

}

void TaskA ( Params )
{
}

void TaskB ( Params )
{
}

P1

P2

ptr

C

FFiigg..  77..99 Two producers and a customer
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one that uses these values is called the ‘consumer ’.*1 (Actually, a task can be a producer

and a consumer at the same time.)

Here, we see that the consumer task C reads and uses the values in list L. The pointer

ptr is used to write into the list. To write, we can use *ptr = 8;

ptr is a global variable and both the tasks P1 and P2 can access it. Let us hypothet-

ically assume that ptr points to memory location 0 4000.*2 Consider the follow-

ing situation:

P1 reads the value of ptr. After P1 reads the value of ptr from the memory, it 

gets pre-empted by P2 that writes say ptr = 12; Now, the contents of memory loca-

tion 0×4000 will be changed to 12. Before P2 increments the pointer, task P1 is sch-

eduled again. Now, the contents of P2 are lost when P1 writes 8 into the same memory

location. 

We’ll observe the behaviour as consumer task will not produce the output corre-

sponding to the pointer value = 12. We should also note that this can occur only when

the tasks are scheduled in the sequence described above. So, the problem will manifest

itself only rarely, and most important, inconsistently.

This condition, where data consistency is lost because of lack of synchronisation of

the component tasks of a system is called a ‘race condition ’. 

And, this belongs to one of the worst categories of bugs—nonrepeatable bugs. Even

if the customer reports the problem, we cannot easily reproduce the problem in the lab. 

*1This can be roughly correlated to concepts of ‘source’ and ‘sink’.

*2The number 4000 is used as a simple address rather than something like 0x4BC45D20, which would
make our life horrible when writing it every time. ☺

*3This is quoted ‘as is’ from a listing in www.joke-archive.net

A complaint was received by the Pontiac Division of General Motors: 

“This is the second time I have written you, and I don't blame you for not answering me, because I

kind of sounded crazy, but it is a fact that we have a tradition in our family of ice cream for dessert

after dinner each night. But the kind of ice-cream varies so, every night, after we've eaten, the whole

family votes on which kind of ice-cream we should have and I drive down to the store to get it. It's

also a fact that I recently purchased a new Pontiac and since then my trips to the store have created a

problem.”

IIccee--ccrreeaamm  aanndd  llooggiicc**33
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To avoid this problem, shared global variables must be used only with

synchronisation. 

There is another interesting solution called the Peterson’s solution described in the

sidebar on keyword volatile.

77..66 PPRRIIOORRIITTYY  IINNVVEERRSSIIOONN

Priority inversion is one of the issues that must be addressed during the analysis and

design of realtime systems.

We discussed that, in a pre-emptive system, at any point of time, only the task with

the highest priority executes. But, due to some reasons, if a higher priority task is

“You see, every time I buy vanilla ice-cream, when I start back from the store my car won't start. If I

get any other kind of ice-cream, the car starts just fine. I want you to know I'm serious about this ques-

tion, no matter how silly it sounds: 'What is there about a Pontiac that makes it not start when I get

vanilla ice-cream, and easy to start whenever I get any other kind?'”

The Pontiac President was understandably skeptical about the letter, but sent an engineer to check it

out anyway. The latter was surprised to be greeted by a successful, obviously well-educated man in a

fine neighbourhood. He had arranged to meet the man just after dinner time, so the two hopped into

the car and drove to the ice-cream store. It was vanilla ice-cream that night and, sure enough, after

they came back to the car, it wouldn't start.

The engineer returned for three more nights. The first night, the man got chocolate. The car started.

The second night, he got strawberry. The car started. The third night he ordered vanilla. The car failed

to start.

Now the engineer, being a logical man, refused to believe that this man's car was allergic to vanilla

ice-cream. He arranged, therefore, to continue his visits for as long as it took to solve the problem.

And toward this end he began to take notes: he jotted down all sorts of data, time of day, type of gas

used, time to drive back and forth, etc.

In a short time, he had a clue: the man took less time to buy vanilla than any other flavour. Why? The

answer was in the layout of the store.

Vanilla, being the most popular flavour, was in a separate case at the front of the store for quick pick-

up. All the other flavours were kept in the back of the store at a different counter where it took consid-

erably longer to find the flavour and get checked out.

Now the question for the engineer was why the car wouldn't start when it took less time. Once time

became the problem — not the vanilla ice-cream — the engineer quickly came up with the answer:

vapour lock. It was happening every night, but the extra time taken to get the other flavours allowed

the engine to cool down sufficiently to start. When the man got vanilla, the engine was still too hot for

the vapour lock to dissipate.

Moral of the story: Even insane-looking problems are sometimes real.
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blocked because of some lower priority task, then a ‘Priority Inversion ’ is said to have

occurred.

It can happen in two ways:

❑ Bounded priority inversion

❑ Unbounded priority inversion

Let us discuss them one-by-one.

77..66..11 BBoouunnddeedd  pprriioorriittyy  iinnvveerrssiioonn

Let us consider a system with two tasks A (TA) and B (TB ). Let priority of TA be high-

er than that of TB .

FFiigg..  77..1100 Bounded priority inversion

Initially, let TA be executing and after sometime, TA gets blocked and TB scheduled.

Now, let TB acquire a mutex corresponding to a resource shared between TA and TB.

After sometime, before TB gets to finish its critical section code, TA gets scheduled (since

TA’s priority is higher).

After sometime, TA tries to acquire the mutex for the resource shared between TA and

TB. But, it cannot acquire the mutex because, it has already been acquired by TB .
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Because of this TA is blocked. Now, TB runs till it completes its critical section code and

releases the mutex. Once the mutex is released, TA begins execution.

Here, we see that TA gets blocked for a period, because of lower priority than task TB

in acquiring a shared resource. So, in this case priority inversion is said to have

occurred. 

Now, let us look at the question, “How long is TA blocked?” The answer is, in worst

case, TA will be blocked for the period equal to the critical section of TB (i.e. if TB is pre-

empted immediately after acquiring the mutex)

FFiigg..  77..1111 Task B pre-emption—worst case

Here we see that the period for which the priority inversion occurs is ‘bounded ’. The

worst case is that the priority inversion occurs for the period equal to complete TB

critical section. So, this is called ‘bounded priority inversion’.

In summary, a ‘bounded priority inversion’ is said to occur when a higher priority

task is blocked for a deterministic period of time within a limit (bound). 

77..66..22 UUnnbboouunnddeedd  pprriioorriittyy  iinnvveerrssiioonn

More dreaded than bounded priority inversion is the ‘Unbounded Priority Inversion’.

As the name suggests, it is a case when the time for which priority inversion is

unbounded— i.e. we cannot fix how long the priority inversion will occur as we did in

the previous case. This should be a serious cause of concern for system designers since

the higher priority task will not be able to provide its services for a unknown period of

time. This could cause failure of the entire system. A famous example is its occurrence

during the Mars Rover exploration of Mars by NASA. (Explained later in the chapter).

To illustrate unbounded priority inversion, let us consider a system with three tasks.* 

// Task B Code 

mutex_acquire( my_mutex ); 

// Critical Section code 

mutex_release( my_mutex );

TB is pre-empted 

here

*A system with any number of tasks > 2 can be used. To make the illustration of unbounded priority
inversion easier, a system with 3 tasks is considered.
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Let the three tasks in the system be Ta , Tb , Tc in decreasing order of priority (Ta has

highest priority)

FFiigg..  77..1122 Unbounded priority inversion

Initially, let us assume that the highest priority task (Ta ) is running and gets blocked

(Refer Figure 7.12). Now Tc starts running. (Assuming Tb is also blocked because of some

reason). The task Tc acquires the mutex for the resource shared between Ta and Tc and

enters the critical region. 

Now, it gets pre-empted by Tb , which gets pre-empted again by task Ta . 

After sometime, Ta tries to acquire the mutex for the shared resource. But, Tc had

already taken the mutex. Once Ta gets blocked, Tb starts running. Now, Tc is still

blocked and cannot release the mutex required. 

Unlike the previous case, we cannot say how long it will be before the lower priori-

ty task releases the resource needed by higher priority task. 

We’ll have to wait for the intermediate priority task(s) to complete before the lower

priority task will release the resource. So, this is called and ‘unbounded priority

inversion’. 

P
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Time

Tc acquires
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Ta blocks on 
the mutex 
acquired by Tc

Tb gets 
scheduled

Tc releases
mutex

Ta continues by 
acquiring mutex 
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*It is not necessary that the range of priorities must be 1–1 0. Usually, it is not desired because, we
cannot introduce a new task without affecting the priority of other tasks.

77..66..33 PPrreevveennttiinngg  pprriioorriittyy  iinnvveerrssiioonn

To avoid occurrence of priority inversion, some schemes have been developed. The

schemes aim at reducing the unbounded priority inversion to a bounded one. Two

prominent schemes are:

i. Priority Inheritance Protocol (PIP)

ii. Priority Ceiling Protocol (PCP)

PPrriioorriittyy  IInnhheerriittaannccee  PPrroottooccooll  ((PPIIPP))

In this protocol, the priority of a task using a shared resource shall be made equal to the

priority of the highest priority task that is blocked for the resource at the current instant.

This is done so that the priority of a lower priority task is boosted in such a way that the

priority inversion gets bounded. 

Illustration: Consider an RTOS where 1 is the highest priority. Let 10 tasks, with pri-

orities 1–10* execute in the system. Let us consider that the tasks with priority 2 and 7

share a resource R. 

Let T7 (lower priority) acquire the shared resource R and get pre-empted by task T5

before releasing it. Later, let T2 get scheduled and get blocked for the resource R.

Immediately priority of T7 is boosted to 2. Now, T7 with boosted priority will be able

to complete its critical section and release the mutex. Once the mutex is released, its

previous priority is restored so that the actual high priority task can continue its execu-

tion and enter its critical section.

As we can see, the priority inheritance protocol requires the support of the RTOS to

be implemented.

PPrriioorriittyy  CCeeiilliinngg  PPrroottooccooll  ((PPCCPP))

Here, we associate a priority with the resource during design time. During runtime, any

task, which wants to use the resource will acquire the priority associated with the

resource. The priority associated with the resource is the priority of the highest priori-

ty task associated with the resource. 

Illustration: Let us assume that the system has three tasks and two resources that are

shared. Like the above example, let us assume 1 is the highest priority in the system.

Let tasks T1 , T2 , T3 have priorities 1, 2 and 3 respectively.

Then we can form a table mapping resources to the tasks.
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TTaabbllee  77..11:: Priority ceiling protocol— sample table

Any task that wants to use R1 , then it has to do the following 

LLiissttiinngg  77..99:: PCP without OS support

Say, if T3 wants to use R1 , it sets its priority to 1 and then access the resource. Now,

task T1 cannot pre-empt T3 because its priority has increased to 1. After using the

resource, the task restores its own priority.

The advantage of this system is that it does not require any explicit support from the

RTOS. Another significant change is that there is no mutex /semaphore is required. We

just use the priority changing mechanism provided by the RTOS.

However, many RTOS’ help by adding support for PCP in the mutexes. Whenever

a mutex is created, it is associated with a corresponding priority. Any task that takes the

mutex will take up the priority associated with the mutex. The greatest advantage of this

is that the boosting and restoring of priority is automated. 

This method has the following disadvantages:

i. This method is manual i.e. the priority is associated with the resource 

manually. So, in case of large systems, maintaining priorities associated with 

resources can be error prone.

ii. Manual set /reset of priorities: In its original form (i.e. without mutexes), after 

using the resource, if tasks do not reset their priority, it could cause havoc. In 

R1 T1
, T2

, T3 1

R2 T2 , T3 2

**PPrriioorriittyy  aassssoocciiaatteedd  wwiitthh  tthhee  rreessoouurrccee

RReessoouurrccee SShhaarriinngg  ttaasskkss PPrriioorriittyy**

oldPriority = task_getPriority(); 
// This call returns the priority 

// of the current task

newPriority = R1_PRIORITY;
task_setPriority ( newPriority );
// Now, use the resource

task_setPriority ( oldPriority );

167Realtime Operating Systems



this aspect, using PCP provided by RTOS with mutexes is a preferable way of 

using PCP.

iii. Time-slicing not allowed: While using PCP, we have to adopt only a strict 

pre-emptive scheduling policy. PCP will fail if we mix pre-emptive and 

time-slicing.

It is now up to the designers to use either or none or both of the protocols appropri-

ately for their system after weighing the benefits of all the schemes. 

MMaarrss  RRoovveerr  

The concepts like priority inversion and preventive measures described earlier are not

limited to academic research. They can and should be applied to solve practical issues.

Importance of these analysis, once believed to be a cosmetic addition to analysis of sys-

tems, came to light during the Mars Rover failure. Mars Rover was a project by NASA

to explore the surface of MARS. It consisted of two major blocks— landing software

and land mission software. Landing software was very critical because, any fault in this

part would make the rover crash on the mars surface. The land mission software was

used by the controller to analyse the environment in Mars, collect data and transmit

them back to earth.

The landing of the Rover was perfect. But, later, during the execution of the land mis-

sion software, the system started resetting itself mysteriously. So, data could not be col-

lected and sent to earth. 

Usually, there are two versions of any software— the debug and release versions. The

debug versions are used during the test phases of the software. The executable in this

case is usually big because, it contains debug information also. After testing and the soft-

ware is declared bug-free (!), a release version is made. This version is much leaner than

the debug version, but contains no information for the programmer if the system fails.

Fortunately, the land mission software in the Rover was the debug version. The

RTOS used was VxWorks™, which offered features like saving the collection of events

till the system was reset. After a long analysis the bug was found. (Actually, it seems that

it was not possible to reproduce the bug on earth. Engineers had left for the day and

one engineer had stayed back and he could reproduce the problem). 

There was an information bus, which was to be used by a high priority task. Another

low priority task also required the bus. (The bus was a shared resource). Hence, a mutex

was used to implement task synchronisation. Whenever the reset occurred, the lower
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priority task had acquired the mutex and was later pre-empted by the higher priority

task. But, it could not use the bus because, the mutex was acquired by the lower prior-

ity task. In between, an intermediate priority task used to run pre-empting the lower pri-

ority task. So, the higher priority task could not get the mutex.

Meantime, the system had a watchdog timer. As indicated before, a watchdog timer

is used to reset a system if ‘hangs ’ for sometime. Here, the watchdog timer noticed that

the high priority task could not access the bus for a long time and hence reset the entire

system. 

Mutexes, when being created were created as ‘plain vanilla ’ mutexes. So, it was decid-

ed to enable PCP feature of the mutex. Then, remotely, using one of the debug support

feature of VxWorks, the mutexes when being created, the PCP f lag was set to true

instead of false, and the problem never happened again. 

So, realtime theory finds practical uses too.

77..66..44 TTaasskk  ssyynncchhrroonniizzaattiioonn  uussiinngg  sseemmaapphhoorreess

Semaphores are another mechanism similar to mutexes that can be used to achieve syn-

chronisation of tasks and resources.

The concept of semaphores was invented by Edgar Dijkstra (1930–2002). This is

explained in his paper (http://www.cs.utexas.edu/users/EWD/welcome.html). Un-

fortunately, the document is in Dutch. 

A semaphore can be used where there is more than one resource of the same type.

(Say there are 4 pumps in a reservoir). 

FFiigg..  77..1133 A Reservoir with 4 Pumps

When a semaphore is created, it is associated with a specific number of tokens. (In

the pump example above, a semaphore with 4 token needs to be created). Once a

semaphore is created, tasks can request a specific number of tokens (less than the

Water reservoir
Pipe P1

Pipe P2 

Pipe P3 Pipe P4
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maximum number of tokens) from the semaphore. When the requested number of

tokens are available, the number of tokens in the semaphore is decremented, and given

to the task. If the number of tokens exceed the number of available tokens, the task

blocks. (Some RTOS’ can provide the options of blocking, non-blocking or blocking

with a timeout). Once some other task releases the tokens, the blocking task is released. 

Types of Semaphores: If more tasks are blocking on a semaphore, and some tokens are

released, which task must acquire the tokens? The answer is that the RTOS usually pro-

vides options to configure this. 

There could be a FIFO (First In First Out) arrangement where the task that first

blocked on the semaphore is given the tokens. If the semaphore is created with priority

options set, the tokens are acquired by the blocking task with the highest priority.

Illustration: Consider a system with 3 tasks. Let us also assume it is the system which

tries to control the 4 pumps in the reservoir. Let a task then acquire 3 pumps (tokens). 

semaphore_acquire( pump_semaphore, 3 ); // Task B

If some other task requires 2 tokens, it will try to acquire it by 

semaphore_acquire( pump_semaphore, 2 ); // Task C

But, since the required number of tokens is not available, the task will block. (As

indicated with mutexes, a task can also choose not to block or to block with a timeout).

Let us assume task A also requires 3 tokens.

semaphore_acquire( pump_semaphore, 2 ); // Task A

Let task B execute, complete its critical section and release its three tokens. 

semaphore_release( pump_semaphore, 2 ); // Task C

Now, if the pump semaphore was a FIFO semaphore, then, task C will acquire the

two tokens since it had blocked first on the semaphore. But, if the pump semaphore was

a priority semaphore, then, task A would have acquired its 3 tokens, since it has a pri-

ority higher than that of C .

Binary Semaphores: We know that a semaphore can take on any positive integral value

(including 0) at any point of time. If a semaphore is created with maximum value = 1,

then its value will toggle between 0 and 1. 

Hence, such a semaphore is called a binary semaphore. A binary semaphore has

properties identical to mutex. Such a semaphore can be used where no explicit mutex

feature is provided by the RTOS. 
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TThhee  ssttoorryy  ooff  sseemmaapphhoorreess

Dijkstra was once thinking hard about task synchronisation—about tasks synchronising

before entering their critical sections.* There was a railway station in front of his house,

where he could see lots of trains waiting for their signals.

FFiigg..  77..1144 Railway Station

(Obviously there were more trains than there were platforms). He saw that signals

were used to control the movement of trains.

FFiigg..  77..1155 Train can proceed FFiigg..  77..1166 Train should wait

171Realtime Operating Systems

*With a little dramatisation. ☺



Now, Dijkstra could see that the station/platforms were similar to shared resources

and the trains were similar to tasks. The trains wanted to use the platforms as the tasks

wanted to use the shared resources. The one thing missing in RTOS was the signal pole.

So, he added it to the software system. He first used the term ‘seinpaal ’ (signal-pole in

Dutch). When applied specifically in parlance of trains, it becomes’ ‘semafoor’* in

Dutch.

Nowadays we use terms like acquiring and releasing semaphores

(semaphore_acquire, semaphore_release), older documentation (even some

newer ones) will have APIs like semaphore_p, semaphore_v (or P(s), V(s)).

Almost every OS book will define P and V operations on a semaphore. The letter ‘p’

is taken from Dutch word ‘proberen’ which means ‘try to’ (acquire the semaphore). The

letter ‘v’ is taken from the Dutch word ‘vrijgeven’, which means ‘release’ (the

semaphore). 

We guess that the complex Dutch words were reduced to one-letter acronyms by dis-

traught non-Dutch programmers to avoid typing complete Dutch words. 

77..77 RRTTOOSS —— UUNNDDEERR  TTHHEE  HHOOOODD

We hope you are not surprised to suddenly come across theory on how RTOS work,

midway through the chapter. We had earlier discussed the differences between a desk-

top OS and an RTOS. There is no separate OS running that can be used to load and

execute programs. Also, there is only a single executable file that includes both the

application code and OS code. 

The working of RTOS is a mystery for novice programmers. In this section we dis-

cuss how scheduling works in an RTOS.

As discussed in the ‘Build Process’ chapter, any program can be split into two com-

ponents:

i. Code

ii. Data

Code is non-modifiable, i.e. contents of the text section do not change and the con-

tents of the data section of the program keep changing as the system is running. Initially,

the entire application is stored in the ROM/Flash. 

*Truly, no prizes will be given for guessing semaphore is derived from semafoor. 
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After a program is setup and is executing, the lower memory sections are usually

required by the RTOS/hardware for board specific software and interrupt vector table

entries. It is followed by the code section. Since the code is non-modifiable, we can

choose to keep it in ROM (if not compressed and slow access time of ROM is not a

problem). 

Each task then requires a stack to create its local variables and store the arguments

passed to functions. Each task is associated with its own stack of memory. 

FFiigg..  77..1177 Stack grows downwards

Note that the stack grows downwards. In basic RTOS’, there will be no memory

protections. Unix programmers will be familiar with core dumps whenever there is an

illegal memory access. But, an RTOS does not have such features.* In some cases, stack

of a task can grow beyond its limits. For e.g., if stack size of T1 is insufficient, the stack

may overf low into T2 stack area. This will corrupt the values stored by task T2 in its

stack. We’ll never know that this had happened until the system does something inter-

estingly out of the normal. ☺

So far, we saw how tasks come to life and execute. The next part is to know how the

OS works. First, let us consider a strictly pre-emptive system. (And, let us restrict 

the discussion only to a uniprocessor system). Let us also consider that some task is

running. 

T1 Stack

T2 Stack

*Statutory Warning: In computing parlance it is true that ‘If it works, it is obsolete’. We recently saw a
demo of an RTOS will all these features. So, this statement can become antiquated. (We are bored of
telling, ‘usually does not have’, and ‘typically does not happen’ to avoid prying eyes of our critics.
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OS is scheduled only when a task executes a system call. System calls are the 

RTOS API that get linked with the application for task creation, semaphore/mutex

operations, etc.

In a strictly pre-emptive system, a task can change its state (running, ready, blocked)

only after executing a system call. The only way a running task can block itself is by

executing a system call typically of a semaphore/mutex operation. 

For e.g., if a task is requesting a semaphore or a mutex that is not available, then a

task could block. If a low priority task releases a semaphore on which a higher priority

task is blocked, then, the lower priority task will be blocked. 

Conceptually, a semaphore release implementation could be

FFiigg..  77..1188:: RTOS Scheduler invoked from a System Call

The invoke scheduler function should conceptually be a part of every system call.

This call should check if any task needs to be scheduled by updating and checking the

state of all tasks. If say, some other task needs to be scheduled, then the scheduler will

save the context (registers) of the task to its TCB, restores the context of the task that

needs to be scheduled from its corresponding TCB and schedules the new task.

77..88 IISSRRss AANNDD  SSCCHHEEDDUULLIINNGG

Another way scheduling a task is by raising an interrupt when the corresponding ISR

executes a system call. For e.g. if some data arrives in the system and the ISR posts the

data (using system calls) to a higher priority task, then, after the ISR completes, the

higher priority task will be scheduled.

semaphore_release( int semaphore_id, int tokens )
{

// get corresponding semaphore control block
semphore_control_block* scb = sm_list[semaphore_id];

// increment available number of tokens
scb->tokens += tokens;

release_tokens_if_someoneelse_is_blocking();

invoke_scheduler();
}
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The important points to be noted are as follows:

■ Task switching does not happen immediately after the ISR executes a system

call. It happens only after the ISR completes.

■ Once the ISR completes, it need not return to the task that was running when

the ISR was triggered.

FFiigg..  77..1199 Interrupts and Scheduling

Another way of scheduling is time slicing. Here, the OS initialises an ISR called the

‘tick ’ ISR that gets executed whenever a tick (a fixed period of time) occurs. The sched-

uler could be invoked in the tick ISR. Usually any RTOS will initialise a tick routine for

implementing RTOS timers. This tick ISR can also be used for scheduling. 

TA

TB

Tasks

t

A system call is 
executed in the ISR that 
invokes the scheduler 

An Interrupt is triggered 
here

Scheduler is invoked in ISR and
hence the execution is shifted to
TB after completion of ISR. 
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77..99 IINNTTEERR--TTAASSKK  CCOOMMMMUUNNIICCAATTIIOONN

So far, we have seen how different tasks synchronise to access shared resources. This

section describes how these tasks communicate. Two mechanisms that are provided by

various RTOS’ are 

❑ Message Queues

❑ Signals/Events

In addition, we will discuss the following mechanisms that can be used in specific sit-

uations (not recommended normally!):

❑ Function calls

❑ Accessing of variables

Message queues are used to pass data, while signals /events are used to signal 

other tasks.

77..99..11 MMeessssaaggee  QQuueeuueess

Message queues are FIFO structures.

FFiigg..  77..2200 Queue—A FIFO structure

These act as buffers between two tasks. A task need not consume data passed by

another immediately— i.e. the processing need not be synchronous. (Whenever a syn-

chronous processing is required, it is better to use a function call mechanism).
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To use a message queue, the first step is to create one. Creation of a queue returns a

queue ID. So, if any task wants to post some message to a task, it should use its queue

ID. 

qid = queue_create ( “MyQueue”, // Some queue name
QUEUE_OPTIONS ); // OS Specific Options

Each queue can usually be configured as fixed size/variable size. Most RTOS will

provide at the least, fixed size entries.

Though the queue post operation varies in methods across RTOS’, the idea is usual-

ly to pass a pointer to some data. This pointer will point to a structure previously agreed

between the tasks that use the queue.

Say there are two tasks that try to communicate using queues. The transmit task want

to send a message my_message to the receiving task.

LLiissttiinngg  77..1100:: Declarations to be common between transmitter and the sender

The above declarations are common to both the transmitting and receiving task. So,

these are put in a common header file to be included in both files implementing both

the tasks.

typedef struct queue_message {
int msg_id;
void* pMessage;

} queue_message;

typedef struct return my_message {
int  a;
char c;

} my_message;

// Sender side

queue_message* qmsg;
my_message * rmsg;

qmsg = (queue_message*) malloc(queue_message );
rmsg = (my_message *) malloc(my_message);

rmsg->a = 2;
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LLiissttiinngg  77..1111::  Code for the sending (transmitting) task

LLiissttiinngg  77..1122:: Code for the receiving side

On the transmitting side, we can see that, the transmitting task allocates memory for

the queue message and the message to be transmitted. It then passes the pointer to

my_message in the pMessage field of the queue message structure. 

On the receiving side, the queue message pointer is passed and the receiver extracts

the message from the pMessage field based on the message ID. It should be noted that

there could be many messages passed between two tasks and message ID is one of the

common ways to distinguish between the messages.

The usual programming practice is to use structures to pass data between two tasks

even if it is a single character. Because, in future, if we want to pass more data, we can

add them on to the structure and the interface (i.e. pointer to the structure) will remain

the same. 

FFIIFFOO//PPrriioorriittyy  qquueeuueess

We learnt that queues are FIFO. But these FIFO or priority queue options can be used

if multiple tasks are blocking on a single queue and a message is posted in the queue.

// Receiver side

queue_message* qmsg;
my_message * rmsg;

queue_receive (qid, qmsg); // block here for message

if(qmsg->msg_id == RX_MESSAGE)
rmsg = (my_message *) qmsg->pMessage;

// . . . 

free( qmsg );
free( rmsg );

rmsg->c = 'r';

qmsg->msg_id = RX_MESSAGE;
qmsg->pMessage = (void*) rmsg;

queue_send (qid, qmsg);
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The queue could be configured to deliver the task that blocked the queue first or the

task that has the highest priority. In the former case, it is called a FIFO queue and a pri-

ority queue in the latter.

Some RTOS’ also provide some operations to add messages to the queue in the order

of priority.

FFiigg..  77..2211:: Addition of messages to a priority based queue

Some provide operations to insert some (say, an important) message to the top of the

queue.

UUssiinngg  qquueeuueess

It is a good practice to associate a queue with a task. This queue can then be addressed

through its unique mailbox id. This is illustrated in the following diagram:

FFiigg..  77..2222 Each task associated with a queue

3

10

3

10

4
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Whenever a message needs to be posted to a task, it should be posted to the corre-

sponding queue (say QT1 for T1). When we create multiple queues for the same task,

we might end up blocking inappropriately. 

For e.g., consider a case where there are two queues, Q1 and Q 2 associated with a

task TA.

// Task A code
queue_receive (qid_1, pMessage1);
queue_receive (qid_2, pMessage2);

Let us assume Q1 is empty and TA blocks on it. Meanwhile if some message is posted

to Q 2, it will remain unattended till some message is posted in Q1. Unix programmers

usually have features like select call for a process that blocks multiple tasks. There are

no such mechanisms in most RTOSes. So, it is best to avoid these kinds of constructs. 

We burnt our fingers once during one of our early projects…

We were to design and implement a task as a part of a networking protocol subsys-

tem. This task that was supposed to receive packets from a lower layer (let’s call it LL)

and pass it to Upper layer (UL) after some processing. We could also receive some

packets to be transmitted to lower layer.

FFiigg..  77..2233 Model of two input queues per task
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We created two queues such that the messages from UL would go to Q UL and the

messages from LL would go to Q LL. (Refer Fig. 7.23) We were then struck by the prob-

lem described above. When the task was blocking on Q LL, messages posted to Q UL

could not be attended to.

So, we removed one of the queues and redesigned in such a way that both the tasks

posted messages to the same queue (Refer Fig. 7.24). The differentiation between the

messages was achieved using the message ID mechanism described earlier. 

FFiigg..  77..2244 Model of one input queue per task

But, ideally speaking, the design could have been such that, there are two tasks that

do the interfacing between the two layers. It is better to assign different actions that

could be concurrent to different tasks. However, it is up to the discretion of the system

designer, based on the system and software constraints.

77..99..22 EEvveennttss

Events, as mentioned earlier, are also known as signals. These cannot be used to pass

data between tasks, but can be used to signal occurrence of some activity to another

task. Events are supported by many RTOS’. An event is encoded as an integer. Let us

see how events can be used. Consider a machine where an integer is 32 bits long.

Events can only be used between tasks that have mutually agreed upon using events.

Otherwise, miscommunication could occur. 

FFiigg..  77..2255 A sample event flag
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The last 6 bits of an event f lag is given in the above diagram. (Fig. 7.25) 

Let us consider two tasks T1 and T2 that want to communicate using events. The first

step is that they have to agree upon the events that they’ll use to communicate. The

events are integers with only one of their bits set to 1.

The values of numbers that can be used as events are numbers that can be 

expressed in (or more as restricted by the machine word size). Let one

of the tasks be a producer task that signals that data has arrived and let the consumer

task indicate that it has completed its processing. So, the two events that can be agreed

upon can be 

#define MY_PROJECT_DATA_READY   (0x01 << 0)
#define MY_PROJECT_PROCESSING_COMPLETE (0x01 << 1)

Moreover, if the consumer is overloaded, it can ask the producer to wait before it

produces more data. And, the consumer can indicate that it has sent all the data it wants

to send:

#define MY_PROJECT_WAIT (0x01 << 2)
#define MY_PROJECT_DATA_COMPLETE (0x01 << 2)

The values assigned to the above three symbolic constants are 1, 2 and 4 respectively.

Now, the consumer task has to wait for the event

event_receive( MY_PROJECT_DATA_READY | MY_PROJECT_DATA_COMPLETE,
ANY_EVENT, // Some OS specific flag
&received_events);     

In the above example, the first argument is the events that the consumer task must

wait on. In this case, it waits for signal DATA_READY and DATA_COMPLETE. The

second argument is an OS specific f lag. In some OS’ it is possible to block the occur-

rence of any event or occurrence of all events. The third argument is that the events

have arrived in a bit encoded form. The third argument is used to find out which event

has occurred. Typical usage will be

if (received_events & MY_PROJECT_DATA_READY) {
// Means data is ready. So, process the data

}
else if (received_events & MY_PROJECT_DATA_COMPLETE)

// Data reception is complete. Cleanup or do something else
}

Note the use of bitwise ORing (| operator) for combining events and bitwise ANDing

(& operator) for checking of individual events.*

2 0n n where =

*Check Chapter 10 for implementation aspects in embedded systems.
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Similarly, some RTOS’ also give an option to block with time-outs to avoid condi-

tions where the system hangs if the necessary event does not occur. The time-out is

passed as an argument to the event_receive call.

To send an event, the event or the events to be sent and the task ID to be sent are

required:

event_send (MY_PROJECT_DATA_READY, consumer_task_id);

We should note that unlike queues, where messages stack up, in the case of events, it

does not happen. If an event is sent to task and before it processes it, if the same event

is sent again, the second signal can be considered ‘lost’, because the OS will not remem-

ber that the event is sent twice. 

EEvveennttss::  LLooookkiinngg  uunnddeerr  tthhee  hhoooodd

The events are implemented using bitwise integer operations. The event f lags for a task

are stored in event control block. If an event occurs, the value of the event is ORed bit-

wise with the event control block. Needless to say, on startup, the value of the f lag will

be initialised to zero. Once, a task consumes an event by event_receive, the corre-

sponding bit is cleared.

Initial value of event f lag for consumer task = 0×0000

For e.g., consider that the producer task sends MY_PROJECT_DATA_READY to

the consumer task. The value of the event is 0×0001. This value is ORed with the event

f lag for the task

Event Flag = 0×0000 | 0×0001

= 0×0001

Now, if the consumer task blocks the event MY_PROJECT_DATA_READY, then

the OS checks if the bit is already set. In our case, it will already be set and the con-

sumer task can begin processing the data. And, now, the event is ‘consumed ’, i.e., the

f lag value is reset.

Event Flag = 0×0001 & !(0×0001)

= 0×0000

If some other f lag is set, the above operation will not clear those f lags. From this 

we can understand the case of missing signals. If MY_PROJECT_DATA_READY

event is already set, sending the same event does not alter the value of the event f lag

for the task.
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Event Flag = 0×0001 | 0×0001

= 0×0001

So sending the same event to a task before it uses the previous signals will result in

loss of signals. 

77..99..33 EEvveennttss  VVss  QQuueeuueess

i. The obvious difference, (from the discussions above) is that queues can buffer

messages while the events cannot.

ii. Events cannot carry data. 

iii. A task can wait on multiple events, while the tasks wait only on a message 

from a single queue. (This is discussed in detail in the queues section).

iv. The communication takes place directly between the involved tasks. There is 

no component (like queues) in-between component.

So, the general rule is that if a task has to block multiple events, then, it is preferable

to use events. Else, queues are a better option since they have a buffering mechanism.

Another point to be remembered is that sending events can cause scheduling to

occur. So, if a lower priority task sends an event to a higher priority task that is block-

ing on that event, then the lower priority task may be pre-empted and the higher

priority task will resume execution.

77..99..44 FFuunnccttiioonn  ccaallllss  aanndd  aacccceessssiinngg  gglloobbaall  vvaarriiaabblleess  aaccrroossss  ttaasskkss

The mechanism of function call involves a task A to call a function from task B direct-

ly. So, this function executes in the context of task A. If during the execution of the func-

tion, task B gets scheduled and starts execution of the same function, the stack of task B

shall create its own context for this function. 

This means that the function is safe as long as it accesses only local variables or it

establishes any of the mechanisms of protecting critical section of memory accessible

by other tasks. 

However, by our personal experience, we have seen that such an inter-task

communication leads to a clumsy implementation, so such mechanisms should be

handled with care, and avoided if possible. Calling functions directly across tasks and

accessing global variables defined in another task directly may be difficult to trace,

reproduce and debug.
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77..1100 TTIIMMEERRSS

Almost every RTOS will provide features to use a timer. We have already seen that we

cannot use delay loops to implement timers in an environment that supports preemp-

tive multitasking. So, we have to use either some of the hardware timers that could be

available or use the abstractions of timers provided by the RTOS. 

Various RTOSes provide various kinds of APIs to use timers. But some of the con-

cepts remain the same irrespective of the OS:

■ Tick ISR—This is an ISR that gets executed at every tick of the clock. The res-

olution of timers that an RTOS can provide is decided by the clock that is used for

the ticks and the tick ISR. 

■ Starting of Timer —There is usually an API provided to start a timer. The

arguments are usually the duration of the timer (may be in micro/milli seconds or

in counts of ticks of the system clock) and the function to be called at the expiry

of the timer. For e.g.

tLED = timer_start ( 1000, // 1000 milliseconds
ToggleLED ); // Call a function to toggle 

// ON/OFF an LED
// (void ToggleLED(void); )

Usually, APIs that are used to start timer usually return an ID to the timer that can

be used to either cancel or query the current status of the timer.

The above call will call the function ToggleLED() after expiry of 1000 milliseconds.

The RTOS that you may be using may provide a different interface. Some may post an

event or a message in the queue after the expiry of a timer.

Cancelling (Stopping) a Timer: There are usually APIs that can be used to stop a

timer before the timer expires. This can be done in cases when we are waiting for an

input but we do not want to be stuck in the case when input does not arrive or is lost.

In those cases, we start a timer before we request input and we cancel the timer on

arrival of input. If the input does not arrive, then in the timer expiry function we han-

dle the situation. A timer ID (like tLED in the code above) is required to cancel a timer. 

This is one of the common patterns that is used when we interact with the external

environment for inputs/synchronisation.

timer_cancel ( tLED ); // Stop/Cancel the LED timer
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77..1111 LLEESSSSOONNSS  LLEEAARRNNTT

A realtime operating system is different in many ways from a conventional desktop

operating system. In a RTOS environment, the typical steps, which take place on

startup are bootloading, initialisation of hardware, BSP and RTOS. The most important

job of an RTOS is management of tasks, which includes creation, scheduling and

deletion. Tasks can be in different states throughout their existence — dormant, ready,

running and blocked. Each task has a TCB associated with it in order to store its status

and associated data. 

Tasks in a realtime system can be scheduled using different schemes. Most popular

schemes include time slicing, strictly pre-emptive, or combinations of these. During the

execution of tasks, they may need to synchronise with other tasks. Mutexes and sema-

phores are popular methods for synchronisation. The designer should be aware of the

problems of race condition and priority inversion associated with task synchronisation. 

Tasks need to communicate with each other in order to share information. Message

queues and events are important methods used for inter-task communication. 

Strange situations can occur in cases when the input occurs and at the same time the timer also

expires. So, we might need to handle these kinds of issues also. I ran into a similar situation recently.

Positive Acknowledgement Scheme is a technique in wireless networks, where we assume that the

packet transmitted over the medium is considered successful only if the acknowledgment for the trans-

mitted packet is received. If the acknowledgment (ACK) is not received, we may have to indicate that

the packet was not transmitted successfully. I had a system in which results of both successful and

unsuccessful transmissions were communicated to a higher level entity. I suddenly realised that I was

getting more results (either successful/unsuccessful) than the packets I actually had to transmit. I then

realised that due to some complex processing in the ISR, even after the ACK was received, the timer

that started to stop waiting for the ACK was not immediately cancelled. So, the timeout indicated an

unsuccessful transmission and the receive ISR indicated a successful transmission for the same packet.

(The receive ISR cancelled the timer AFTER it had expired and the result of the cancellation unfortu-

nately, was not checked). So, I was getting more results than the packets and hence the transmit state

machine was going awry! The problem was solved by increasing the timeout and optimising the

reception ISR.

WWaarrnniinngg
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77..1122 RREEVVIIEEWW  QQUUEESSTTIIOONNSS

■ What are the most important jobs of an RTOS in an embedded device?

■ Describe the boot-up sequence with RTOS in an embedded device.

■ What is a task? How is it started, scheduled and deleted? What is the 

significance of the idle task?

■ What are the different scheduling methods?

■ How does priority inversion occur? How can we solve it?

■ What are the various intertask communication mechanisms in real time 

systems?

■ What is BSP? Why it is needed?

■ What does the BSP code usually do?

■ What is a Control Block?

■ What are the states that a task can be in?

■ What is the state transition that is not possible in a task?

■ What is ‘CPU loading’?

■ When do we need task synchronisation?

■ What is a ‘Race Condition’?

■ What are two kinds of priority inversion? Which is more dangerous?

■ What are the techniques that are available to tackle the problem

of unbounded priority inversion?

■ What is a semaphore? How are they used?

■ Is it strictly necessary that after an ISR is executed, execution is returned to 

the task that was executing when the ISR was raised? Why?

■ What are mechanisms available to pass data between tasks?

■ What are events? How are they different from message queues?

QQ
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SECTION 

FOUR

TTyyppiiccaall  SSooffttwwaarree  DDeevveellooppmmeenntt  PPrroocceessss

AA  ttyyppiiccaall  ssooffttwwaarree  ddeevveellooppmmeenntt  pprroocceessss  ccoonnssiissttss  ooff  tthhee  ffoolllloowwiinngg  sstteeppss::

11.. RReeqquuiirreemmeennttss  ccoolllleeccttiioonn//aannaallyyssiiss

22.. AArrcchhiitteeccttuurree

33.. DDeessiiggnn

44.. IImmpplleemmeennttaattiioonn

55.. TTeessttiinngg

TThhee  sstteeppss  ddeessccrriibbeedd  aabboovvee  aarree  jjuusstt  ffoorr  gguuiiddaannccee  aanndd  mmaayy  nnoott  bbee  ffoolllloowweedd  ssttrriiccttllyy  iinn  tthhee

aabboovvee  oorrddeerr..  SSooffttwwaarree  eennggiinneeeerriinngg  iiss  eevvoollvviinngg  ffaasstt

ttoo  ttaacckkllee  ccuurrrreenntt  iissssuueess  iinn  ssooffttwwaarree..  SSoo,,  wwiitthh

aaddvveenntt  ooff  ‘‘TTeesstt--FFiirrsstt''  mmeetthhooddoollooggiieess,,  wwee  mmaayy  aaccttuu--

aallllyy  bbeeggiinn  wwrriittiinngg  tteesstt  ccooddee  eevveenn  bbeeffoorree  wwee  wwrriittee

tthhee  aaccttuuaall  iimmpplleemmeennttaattiioonn  ccooddee!!

TThhiiss  sseeccttiioonn  ttrriieess  ttoo  ggiivvee  aa  bbrriieeff  oovveerrvviieeww  ooff  tthhee

ggeenneerraall  ddeevveellooppmmeenntt  pprroocceessss..  EEaacchh  ooff  tthhee  sstteepp  iiss

eexxppllaaiinneedd  iinn  ddeettaaiill  iinn  tthhee  ffoolllloowwiinngg  cchhaapptteerrss..  TThhee

pprroocceessss  ssttaarrttss  wwiitthh  ccrreeaattiioonn  ooff  aa  rreeqquuiirreemmeennttss  ddoocc--

uummeenntt  tthhaatt  ddeessccrriibbeess  tthhee  nnaattuurree  aanndd  ffuunnccttiioonnaalliittiieess

ooff  tthhee  ssooffttwwaarree  tthhaatt  nneeeeddss  ttoo  bbee  ddeevveellooppeedd..  OOnnccee

tthhee  rreeqquuiirreemmeennttss  aarree  ccoommpplleetteedd,,  tthheenn  tthhee  hhiigghh

But, I know this already!



lleevveell  aarrcchhiitteeccttuurree  aanndd  ddeessiiggnn  ooff  tthhee  ssyysstteemm  aarree  ccrreeaatteedd..  TThheenn  tthhee  ccooddee  iiss  wwrriitttteenn  bbaasseedd  oonn  tthhee

ddeessiiggnn..  TThhee  ssooffttwwaarree  iiss  tthheenn  tteesstteedd  aanndd  ddeelliivveerreedd..  ((II  oonnllyy  wwiisshh  ssooffttwwaarree  ddeevveellooppmmeenntt  ccaann  bbee  aass

eeaassyy  aass  ddeessccrriibbeedd  iinn  tthhiiss  ppaarraaggrraapphh……))

IItt  ccoouulldd  hhaappppeenn  tthhaatt  eeaacchh  ooff  tthhee  sstteeppss  iiss  ccoommpplleetteedd  iinn  iitteerraattiioonnss..  OOrr,,  iitt  ccoouulldd  bbee  tthhaatt  ssoommee

ooff  tthhee  sstteeppss  aarree  cchhaannggeedd  ttoo  ssuuiitt  tthhee  ddeevveellooppmmeenntt  eennvviirroonnmmeenntt..  

IInn  aa  rreeaallttiimmee  eennvviirroonnmmeenntt,,  tthhiiss  iiss  nnoott  ssuuffffiicciieenntt..  WWee  uussuuaallllyy  ddeessccrriibbee  rreeaallttiimmee aass  ““WWhheenn  ccoorr--

rreeccttnneessss  iinn  nnoott  eennoouugghh””..  EEvveenn  tthhoouugghh  tthhee  sstteeppss  aabboovvee  wwiillll  ttrryy  ttoo  eennssuurree  tthhaatt  tthhee  ccoorrrreeccttnneessss  ooff

ssooffttwwaarree  iiss  aacchhiieevveedd,,  wwee  ccaann  nnoottiiccee  tthhaatt  tthheerree  iiss  nnoo  sstteepp  ttoo  eennssuurree  ttiimmeelliinneessss  ooff  tthhee  ssooffttwwaarree..

SSoo,,  wwee  mmuusstt  iinnttrroodduuccee  aannootthheerr  sstteepp ——‘‘PPeerrffoorrmmaannccee  AAnnaallyyssiiss ''  ttoo  eennssuurree  rreeaallttiimmee  bbeehhaavviioouurr  ooff

tthhee  ssyysstteemm..  ““SSoo,,  iinn  tthhee  ccaassee  ooff  rreeaallttiimmee  ssyysstteemmss  ddeevveellooppmmeenntt,,  tthhee  aaddddiittiioonnaall  sstteepp  ooff  tteemmppoorraall

——ppeerrffoorrmmaannccee  aannaallyyssiiss  iiss  rreeqquuiirreedd..””

11.. RReeqquuiirreemmeennttss  ccoolllleeccttiioonn // aannaallyyssiiss

22.. AArrcchhiitteeccttuurree

33.. DDeessiiggnn

44.. PPeerrffoorrmmaannccee  AAnnaallyyssiiss

55.. IImmpplleemmeennttaattiioonn

66.. TTeessttiinngg

TThhee  ttooppiicc  ooff  ppeerrffoorrmmaannccee  aannaallyyssiiss  hhaass  bbeeeenn  ccoovveerreedd  bbrriieeffllyy  iinn  tthhee  ““IInnttrroodduuccttiioonn  ttoo  RReeaallttiimmee

TThheeoorryy””  CChhaapptteerr..
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88..11 IINNTTRROODDUUCCTTIIOONN

In a typical development process, the sequence of events is as follows:

i. A statement of need arising out of predevelopment process

ii. Requirements gathering and specification

iii. Architecture definition

iv. Design

v. Implementation

vi. Testing

The first two activities trigger the rest of the events. For example, it is perfectly fine

to embark on testing activity after a requirements document has been created. This

chapter will look brief ly at the activities and issues related to gathering and specifica-

tion of requirements.

88..22 RREEQQUUIIRREEMMEENNTTSS  OOFF  AANN  EEMMBBEEDDDDEEDD  SSYYSSTTEEMM

The development of requirements of an embedded system starts with the availability of

a statement of need. Based on this initial statement, the requirements engineering pro-

cess is used to define and describe what a system should do to satisfy the informal

requirements specified by the statement of need.



88..22..11 WWhhyy  sshhoouulldd  wwee  ssppeenndd  ttiimmee  oonn  rreeqquuiirreemmeennttss??

One of the classic doubts that arise among novices in software industry is whether we

should ‘waste’ time in documentation. They believe, since embedded systems are usu-

ally small, and have common constraints such as memory, processing speed etc. it is not

worth the effort and time to prepare detailed specifications and design for an embed-

ded system. It should suffice to read some requirements for a similar system and then

tailor them for our system. 

It is true that all embedded systems have a lot in common. They usually have com-

mon constraints. They are bound by realtime limitations. So an experienced developer

in the embedded domain will understand another system very quickly. However,

understanding a system and designing a new system are totally different things. The

world is not altruistic. Some of the common factors that necessitate a formal require-

ment specification are:

❑ There may be communication gaps when requirements are outlined in the

beginning.

❑ Requirements may change during the development. 

❑ It may not be possible to remember all the minute details that are discussed and

decided in the meeting with the customers. It is hard to remember one’s own code

after a few weeks, let alone something as big and complex as the entire specifica-

tion and behaviour of the system.

❑ Though the embedded systems are small, they are usually very complicated.

For example, embedded systems related to communication typically have to take

care of many data ports simultaneously, process them with realtime limitations,

use variables and memory in an effective way and usually some other systems in

the neighbourhood are waiting desperately for an output from the embedded

system!

Hence the basic steps of requirements, architecture and design deserve a lot of effort

before jumping into the world of coding. As a matter of fact, the standard of embedded

industry is that the complete product development of an embedded system is 40%

design, 40% testing and only 20% coding. Secondly, it is advisable to catch bugs

creeping into the system as early as possible. Data shows that bugs caught in the

specifications phase are the cheapest to solve. They become more and more expensive

and effort sensitive as the product goes through the later stages of its lifecycle. It is advis-

able to spend some time in the beginning of product development to understand and
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document the requirements and design of the system before embarking on the imple-

mentation of the product. Implementation has its own issues and they are not in any

way trivial. However, if we do not follow this school of thought, we will burden the

implementation stage with issues that could easily have been solved at requirements

and design stages. In later sections, we will analyse the issues that affect different stages

of the development lifecycle and the cost of such issues. One thing, however, has been

observed over a long period of time: 

Figure 8.1 illustrates the increase in the complexity and cost of bugs in different stages

of the development.

FFiigg..  88..11  Increase in cost of bugs vs time

88..33 CCOONNCCEEPPTTUUAALLIISSAATTIIOONN  OOFF  AA  PPRROODDUUCCTT

As we saw in the previous section, the statement of need is the first stage of conceptu-

alisation. This may include, at a very high level, the functions the product is expected

to perform, the stimulus-behaviour sets of some actions from the system in plain

English. Sometimes, this document is also referred to as the ‘feature list’. Alternatively,
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the requirement document can be written by a senior member of the implementation

team, or by a system architect, in conjunction with the customer. The definition of the

customer is rather vague in this context. 

The customer can be the marketing department inside the same organisation. They

may have done research on the current trends in the market and come out with a pro-

posal about the kind of product the company should develop to remain competitive in

the market. The definition of this product might be very hazy at this stage, since nobody

has visualised it at a technical level. Secondly, the specification of the document might

just be a culmination of different kind of features with tags like ‘necessary’, ‘good to

have’ and ‘desirable’. This specification generally will not give a clue to the technical

aspects of the system, such as amount of memory required, or any estimates associated

with development of the system. The specification of expected behaviour of the system

may undergo huge changes while the system is being developed as the system is better

understood and the desirable features change. In many cases these specifications are

known to take a complete 180 degrees shift too. 

A customer might be another department inside the same organisation who wants to

implement a huge system. However, they may want a small portion of the system to be

implemented from outside because of lack of resources or expertise. 

A customer can also be another organisation that gives a sort of ‘contract’ to this

organisation for the amount of job done. In this case, the specifications are provided

with a much higher degree of detail (since the actual design of the complete system has

already been done and a small component of the system has to be developed from out-

side). The external interfaces of the small subsystem being developed usually would

have been defined to a great detail. In other words, the specification for this component

is fairly complete and frozen.

As we can see in the previous paragraph, there is an entire gamut of specifications

potentially available that range in the amount of detail and completeness as well as

propensity to change. Hence the embedded system being so designed has to take into

account the factors associated with the applicable scenario before choosing a design and

implementation methodology. The statement of need is an informal specification of the

deliverable, and is usually written by somebody not directly involved in the develop-

ment of that product. So, in most cases, this statement of need would not be expected

to contain the nitty-gritty of internals of product behaviour.

Thus jumpeth into the fray the requirements gatherer! (S)he is the catalyst who con-

verts the vague and incomplete statement of need into a blueprint for the development
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of the product, commonly called the requirement specification in computer science par-

lance. The requirement specification is expected to contain a description of principal

features of the product, its attributes and behaviour. The requirement definition con-

tains a precise, complete and clear description of:

■ What the product is expected to perform?

■ Why it is to be done?

■ What should not be done by the product?

■ What are the constraints and expectations?

The inputs for the requirement definition in addition to customers, may be provided

by system level definitions, other competing products in the market, well recognised

standards such as those produced by IEEE, etc.

Consider an example of the bar code reader described in Chapter 1. It is expected

to send its output signal on a serial line to a printer. This may be the core requirement

of an embedded device. However, the display of the actual cost on a screen may be an

add-on feature for the product. The customer and architect come out with the various

scenarios after looking into the different uses, the product will potentially be put into.

It is usually not possible to envisage exhaustively all the inputs the system will receive

during its real life usage. However, to a fair degree of accuracy, each small scenario can

be broken down into multiple cases to detail the situations the product will find itself

into. This step may mistakenly be taken as a design step. However, this is still a step

into understanding the expected behaviour of the system. Since the embedded systems

typically work because of external events, usually this behaviour is shown or under-

stood through what are known as use-case diagrams. The use case diagrams illustrate a

system as a black box, and the user of the system (may be human or another system)

together with the kind of interaction possible. 

88..44 RREEQQUUIIRREEMMEENNTT  EENNGGIINNEEEERRIINNGG  PPRROOCCEESSSS

The requirements engineering process consists of following steps:

■ Requirements development

■ Requirements management

Requirement development implies arriving at conclusive requirements as described

in previous paragraph.
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Requirement management implies managing change in requirements, impact analy-

sis on the current development.

88..44..11 RReeqquuiirreemmeennttss  ddeevveellooppmmeenntt

Requirement development involves the following steps:

■ Elicitation

■ Analysis

■ Specification

■ Inspection

Let us discuss these steps one by one. 

RReeqquuiirreemmeenntt  eelliicciittaattiioonn

Elicitation means gathering of requirements from the customer (the customer is defined

in Section 8.3). This means, listening to the customer, sending appropriate stimuli to the

customer so that accurate responses are received, understanding the needs of the customer

other than the ones being stated, asking meaningful questions in order to arrive at better

details, summarising the points under discussion from time to time in order to erase any

misconceptions or communication gaps, etc. In that sense of the word, requirement elic-

itation procedure is more of an art than a science since it goes into the realm of non-

technical aspects of engineering. 

The most popular methods of requirement elicitation are interviews, brainstorming

sessions, questionnaires and use cases. Many rounds of these and combination of these

methods are usually used to elicit requirements.

RReeqquuiirreemmeenntt  aannaallyyssiiss

Requirement analysis involves estimation of the cost based on requirement elicitation

process and classifying them into categories like: mandatory, optional and good to

have. The visualised solution during the requirement elicitation process may then be

scaled down into a workable solution, based on real life constraints. 

Requirement analysis may identify dependencies among requirements, assumptions

to be made during development and any reuse possible from an existing product. Based

on real life problems associated with insufficient resources, insufficient time, change in

requirements, imperfect communication and lack of proper financial support, a work-

able solution is then arrived at. (See Fig. 8.2).
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FFiigg..  88..22 Steps in requirement analysis

RReeqquuiirreemmeenntt  ssppeecciiffiiccaattiioonn

Now comes the time when the requirements are written in black and white based on

the elicitation and analysis phase of requirement gathering. If the previous two steps

have been followed properly, chances are that all requirements have at least been cap-

tured. The step of converting these requirements into a human readable and under-

standable form remains.

An ideal requirement specification is:

Correct : A requirement is correct if it helps to satisfy the needs of all the persons/par-

ties affected by the outcome of the system development.

Unambiguous : A requirement is unambiguous if it has only one interpretation.

Models, pictures and brief, precise statements with good grammar help in making

unambiguous specification.

Complete : A requirement is complete if all the needs of the persons/parties affected

by the outcome of the system development are satisfied. Definitions of responses by the

system for all realisable inputs, in all realisable situations are specified.

Consistent : Requirements should not contradict each other and all inputs for the

requirements are coherent.

Verifiable : A requirement is said to be verifiable if:

There exists some finite cost effective process with which a person or a machine

can check that the software product meets the requirement, to a degree sufficient

to convince all the persons/parties affected by the outcome of the product

development. 

Modifiable : A requirement specification is

modifiable if it is easy to make changes to it.

Usually, this is possible if the specification is

organised in a modular way, sections and sen-

tences are not too much burdened with many

specifications, and care is taken to avoid what is called over-specification.

Problem 
Visualised 

solution (All 
features) 

Visualised solution 

(Selected features) 
Working 
solution 

Ambiguity implies non-verif iability

NNoottee
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Traceable : A requirement document should be forward and backward traceable. It is

backward traceable if all requirements can be traced back to the statement of need

or/and other input document. The requirement specification is forward traceable if

each requirement can be uniquely referenced from all documents spawned by the

requirement specification. 

Effective traceability can be achieved through:

❑ Unique numbers/identifiers/labels

❑ Logical organisation in presentation

❑ Traceability matrix between statement of need, specification, design and test

documents.

The IEEE 830–1993 provides a description of good requirement definition. By and

large, a requirement definition needs to take care of following issues:

Function : The actual function of the product in the form of stimuli-response pairs or

use cases. For example, when a mobile station is paged by the network, it shall respond with a

paging response message : is a function in the requirement definition of a mobile phone.

Such requirements may be provided by standard bodies and/or business requirements

of the product and organisation. Business requirements may define the product strate-

gy based on its vision and scope and may explain where the product fits in the market.

Interfaces : All the external interfaces and environment in which the product is expect-

ed to perform. The interfaces and environment may include software, hardware and

human beings. The mobile phone shall provide the CLEAR key to the user in order to kill an

editor or cancel an outgoing call: is an interface requirement for the mobile phone.

Performance : The realtime characteristics and timing constraints of the product. The

mobile phone after getting switched on, shall be capable of responding to a paging within 30 sec-

onds, under ideal radio conditions : is a realtime requirement for a mobile phone.

Non-functional requirements : These requirements are not associated directly with the

product behaviour, but more with the overall characteristics such as maintainability,

scalability, availability, portability, testability, size, security, etc. The ROM size shall not

exceed 5MB : is a quantitative nonfunctional requirement.

Quality requirements : These are related to aspects of product development, such as,

development environment (use of structured language vs object oriented design), avail-

able budget and resources, etc.
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RReeqquuiirreemmeenntt  iinnssppeeccttiioonn

After the requirements are ready, it is time to inspect them for verification of all com-

ponents listed in the specification. A body constituted by affected parties and neutral

third persons should carry out inspection. The purpose of inspection is to check that—

❑ Requirement definition is complete

❑ It is error free and clear

❑ It is understood well and agreeable to all parties affected by it

Usually, it is not possible to create a complete requirement specification in the begin-

ning. The iterative process of specification, modelling, refinement, discussion with cus-

tomer, change in specification, change in modelling…, goes on till the requirements

have been frozen to the satisfaction of the developers and the customer. 

88..44..22 RReeqquuiirreemmeenntt  mmaannaaggeemmeenntt

One of the major complicated issues in the embedded (as in any software) industry is

the near-constant change of requirements of the product. So, at the time of requirement

definition, the author should plan and prepare for it. If the requirement definition has

all the good qualities described earlier, it is easy to manage such changes. 

Requirement definition may also change based on errors noticed by its users on the

field. Such errors are easier to fix since they are related usually to specific section or

statement, and the correction can be made satisfactorily.

However, because of a change in requirement, or a new requirement for the product,

complications can arise. The first step in this stage is to perform an impact analysis. A

good and up-to-date traceability document comes handy in this situation. For example,

if it is possible to find out all changes in the design, test and requirement specification

from the statement-of-need document, any change can also be traced easily. The impact

of a new requirement can be gauged from the same traceability matrix. Another prac-

tice followed in combination with a traceability matrix is to base-line a requirement

specification document once a certain level of clarity, maturity and stability has been

achieved. A base lined requirement definition provides a clear launching pad for devel-

oping more activities like design and testing, besides providing a base for comparison

of future changes.

To conclude, requirement specification process is iterative in nature. The require-

ments phase is referred to more than once during the project life cycle.
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88..55 CCOOMMMMOONN  PPRROOBBLLEEMMSS  IINN  RREEQQUUIIRREEMMEENNTT  EENNGGIINNEEEERRIINNGG

Common problems experienced by authors during requirement engineering can be list-

ed as follows.

Incomplete information : Usually when requirement specifications are written, many

details may not be available to the authors, possibly because the information does not

exist or they may not have access to the information. So they need to make assumptions

and go on. Bad assumptions may create damage in some aspects of the system. Now,

this situation may not be entirely avoidable since requirements are not usually clear in

the beginning. The best we can do in such a situation is to highlight all assumptions

made at the beginning of the specification document, together with their impacts.

Mixing design with Requirement : Being engineers by heart, authors of requirement

specification tend to get carried away and start specifying how the system is imple-

mented instead of what the system is supposed to do! To avoid this, the author should

ask why the requirement is needed. If this takes the author back to a real need statement,

then a requirement is being specified.

Proper usage of words : Appropriate syntax should be followed so that the readers

understand the statements well. 

For statements that relate to requirements, the normal syntax used is SHALL.

For statements of fact, usually WILL is used.

Consistent usage of these terms will make sure that the specification is not open to

multiple interpretations.

Quantitative statements : Quantitative statements should be provided as far as possible.

This is because they are easy to test and verify. Examples of testable specifications

The software shall compute aircraft position within the following accuracies: 

■ + or − 50 ft in the horizontal plane 

■ + or − 20 ft in the vertical plane 

The system shall respond to: 

■ Type A queries in <= 2 sec 

■ Type B queries in <= 10 sec 

■ Type C queries in <= 2 min 

Where Type A, B, and C queries are defined in the specification.
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Incorrect syntax or bad grammar : creates problems in interpretation and understanding

the intent.

Ambiguous statements like minimise, maximise, fast, easy, sufficient, adequate, small,

etc. are an absolute no-no in requirement definition.

Missing requirements : Authors may miss some aspects of requirement definition such

as quality. This can be solved by using a standard template for requirement definition.

Over specification leads to wastage of resource. It creates unnecessary requirements

that are difficult to follow. 

88..66 RREEQQUUIIRREEMMEENNTTSS  OOFF  CCAARRDD  VVEERRIIFFIIEERR

Let us take an example of a card verifier that controls the access of the visitor of a build-

ing through his card. This system will have a small sensor to detect the card and read

the bar code to identify the card. Then the system will search the code inside a list of

codes that are authorised and have the access inside the building. If the code matches,

it will generate a signal to release the lock for the gate. Otherwise it will show possibly

a red light on the front monitor and a user-friendly message such as “Card not autho-

rised”. If an unauthorised card is put inside the slot for a maximum number of times,

the system will generate an alarm. Figure 8.3 shows an illustration of such a system.

FFiigg..  88..33 A card verification system
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The system has three external interfaces. One interface is with the card that is

entered inside the slot. The other one is the lock of the gate. The third is the user inter-

face that displays a message.

The previous two paragraphs can be taken as statement of need from the customer.

As usually is the case, this statement of need is vague and very general from an engi-

neering point of view. It does not give insight into a lot of specifics that may be very

important for the engineering community. It is silent about the non-functional require-

ments of the system— its reliability, testability, ease of future development, etc.

FFiigg..  88..44 Top level use case for card verification system

As shown in Fig. 8.4, this system has a very simple use case diagram. The users of

the system are the human users or more specifically the card that is inserted into the

system. Input to the system is a card-in event and a card-out event. The card-in event

causes the system to read the barcode number of the card. The card-out event is an indi-

cation that another card can potentially be inserted very soon so that the system should

get ready for the next input. The output of this system is unlocking of the gate, a user-

friendly message or a small alarm and red light.
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This system is a realtime system, since the output of the system, door lock release and

red light have to be generated in a ‘reasonable’ amount of time. The amount of time

that is reasonable is anybody’s guess and is not generally specified. It is measured in

few milliseconds accuracy. Hence, this system is not a hard realtime system. And, it is

a soft realtime system since a few milliseconds delay will not cause damage to life and

limb. The specifications for this system will finally give an approximate best and worst

time behaviour of this system. The timing issues of the system can then be derived from

the functional requirements given by the customer and these best and worst case sce-

narios.

Once, the use-case diagrams identify the external behaviour of the system on a high-

er level and list the kind of interactions between the system and the external world, it

is time to judge the different events in terms of their time relationship. One of the most

commonly used tools for this job is a message sequence chart (MSC). As the name

suggests, message sequence charts are basically a representation of components of the

system as a whole, a stimulus, and the representation of other events and message

exchange in time domain. MSCs give a feeling about the impact of different events on

a system, as also on the state of the system. 

For example, MSCs can be made for situations related to an authorised card, that has

not been inserted properly and which has been left inside the reader, etc. These three

situations will possibly elicit similar responses as a whole but may be associated with

additional actions as well. The additional action may be a beep sound to indicate that

the visitor has left the card inside the machine. 

MSCs operate in the realm of the system design, and within the specifications. They

usually throw light into the different ways in which a system can be broken and devel-

oped. However, a requirement definition in terms of its use-case and the MSC defining

its break up are closely linked and drive each other in the beginning of the project. The

requirement definition drives the MSC generation. In turn, any missing requirements

can easily be detected based on additional insight received with the help of MSCs and

realtime behaviour modelling of its components. We will describe the MSCs for this

system in the next chapter. However, a basic introduction in this chapter would not be

out of place. 

Detailing requirements at this stage facilitates verification and change without

impacting the development cycle. In the initial stages of development, only the top

level of the system is aware about the services it is expected to deliver. When we write

MSCs, we force ourselves to think about components of the system and also to
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brainstorm into all the possible events the system may have to manage. This effective-

ly presents new requirements for the system that previously the customer may not have

thought of. Thus a greater degree of control over the development cycle is achieved

since the customer requirements are met by the efforts of implementation team. Any

communication gaps left because of insufficient specification at the early stage of con-

ceptualisation of the system are filled here.

88..77 PPOOIINNTTSS  TTOO  RREEMMEEMMBBEERR

While do my requirement specification, the following point deserve to be remembered.

88..77..11 FFooccuuss  oonn  rreeqquuiirreemmeenntt  oonnllyy

Care should be maintained so as not to involve design issues at this stage since they can

easily bias the specification process. Secondly, since the idea is in its infancy, any steps in

the direction of implementation may prove futile if the concept may have been

misunderstood. At this stage, we need to look at the system from the point of view of the

user and understand the components. It should be our endeavour to enlist and identify

all possible stimuli to the system and their impacts on different parts of the system. For

some stimulus, it is possible that the system may not have any impact other than doing

some household chores or starting/stopping of some timers. Some stimulus may result in

a lot of actions based on the timing and kind of stimulus. Since the system to be devel-

oped is embedded, a realtime constraint is usually inherent. As we have seen in previous

chapters, the most important constraint in making a system realtime is the simultaneous

execution of a lot of code because of external or internal events happening together rather

than in a serial way. When we make MSCs identifying the different actions the embed-

ded system will perform based on the different stimulus, we are trying to nail down and

quantify the system behaviour. It becomes possible to identify the best and worst case

behaviour of the system if an exhaustive list of MSCs have been prepared.

88..77..22 CChhaannggee  iiss  tthhee  oonnllyy  ccoonnssttaanntt!!

The next thing to be kept in mind is the potential change in specifications of the system.

Though people are usually uncomfortable whenever the requirements change, we

should remember that the only software, whose requirements do not change, is the

software that is not used ☺. The amount of change may vary from system to system but

since the embedded world is very dynamic, we should be prepared to undergo a few

changes in the specification itself before the product sees the light of the day. When 

the specifications change, the complete development cycle has to be repeated. Here

MSCs and use-case diagrams help in a big way since they are the tools that help to
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quantify the system. Any change in specifications of the system will finally be gauged

from the amount of change it has on the output of the system based on a stimulus. 

New MSCs or use-cases may have to be added to take care of additional requirements

and the existing ones may need to be changed to understand the effect of change in

current requirements. It is very important to keep the specifications document up to

date and make it a ‘running’ document since it is the very basis of all activity in the

development of the product. Specifications are the corner stone of final product

delivery. 

88..77..33 FFooccuuss  oonn  eeaarrllyy  tteessttiinngg

Another offshoot from requirements is the test procedure. Since the requirements doc-

ument gives an insight into what the system is expected to do under different stimulii,

the test document has almost a one-to-one mapping with the requirement. The test pro-

cedure should be able to perform testing of all requirements listed in the requirement

document. There is no other qualitative test of the system. This test procedure will be

able to catch a lot of bugs on the host machine by simulation of external environment

of the system. Every bug caught from the host machine is an investment in saving time,

energy and cost in the field.

88..88 RREEQQUUIIRREEMMEENNTTSS  CCHHEECCKKLLIISSTT

The following list defines the components of a good requirement document for embed-

ded systems. 

❑ AAuutthhoorr  ((lliisstt)):: This comprises of the author(s) of the document. One author should

be identified as the owner of the document. (S)he updates the document and main-

tains it throughout the duration of the project.

❑ TTeecchhnniiccaall  ccoonnttrrooll  oorr  rreevviieeww  tteeaamm:: This identifies the architects who review the

document for the sole intention of checking the technical suitability of the

document.

❑ DDiissttrriibbuuttiioonn  lliisstt:: This is a list of teams or people who get affected by the require-

ment document.

❑ SSttaattuuss  ooff  tthhee  ddooccuummeenntt:: Status refers to whether the document is a draft, or under

review, or released.

❑ PPrroojjeecctt  NNaammee:: The name identifies the collection of activities for a particular

goal.
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❑ DDaattee:: The date mentions the last time the document was changed.

❑ VVeerrssiioonn:: It identifies the evolution.

❑ HHiissttoorryy:: It lists the changes that happened in the past with an overview of their

impact and the author of these changes.

❑ AAbbbbrreevviiaattiioonn  lliisstt:: It lists the abbreviations used in the document. It may give a

reference to another document.

❑ DDeeffiinniittiioonnss:: It gives an introduction to the terms used in the document. They

may be standard or particular to the document.

❑ RReeffeerreenncceess:: Any related information can be found in the list of references.

❑ PPeerrssppeeccttiivvee  ooff  tthhee  ssyysstteemm:: Defines the external interfaces of the system and the

kind of inputs that are expected in the system.

❑ FFuunnccttiioonnaall  rreeqquuiirreemmeennttss:: Defines what the system is expected to do based on the

different inputs or change of internal conditions.

❑ PPeerrffoorrmmaannccee  rreeqquuiirreemmeennttss:: If the system is expected to respond in a particular

time or if it has timing constraints for some processing, they are identified here.

❑ UUssee--ccaasseess:: This is becoming an increasingly popular way to capture require-

ments. 

❑ MMSSCCss:: To relate the system with the external world in the time domain.

❑ OOtthheerr  iissssuueess:: related to testing, future maintenance, change control, constraints

with the environment, etc. to keep track of future activities.

Notice in the requirement document that the system has been seen from a black box

perspective. The requirements document has tried to create stimulus-behaviour pairs in

different situations only. No attempt has been made to think in terms of how (or

whether) it is possible to implement this specific kind of behaviour. When requirements

change, they have an impact on this relationship between this input-output system. This

specific change in input-output pair results in change in only specific portions of design.

The bottom line of this approach is to quantify the system in terms of stimulus and

actions. It is also possible to create specifications for parts of the system such as card

reader and database search, if being developed by different teams. In that case, a spec-

ification will exist for each such part or component of the system.
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88..99 CCHHAARRAACCTTEERRIISSTTIICCSS  OOFF  AA  GGOOOODD  RREEQQUUIIRREEMMEENNTT  DDOOCCUUMMEENNTT

To summarise, a good requirement document for an embedded system should have the

following characteristics.

88..99..11 OOppttiimmuumm  ddeettaaiill

It should be detailed enough so as to identify all possible scenarios that affect the sys-

tem behaviour. These scenarios will list external events as well as internal events such

as timers or indications about failure in some parts of system.

The specifications should not be too detailed so as to cloud the understandability of

the document from a top view. The software development lifecycle uses three views:

conceptual view, during requirements analysis phase, specification view during the

design phase and implementation view during coding phase.

88..99..22 CCrroossss--rreeffeerreenncceess  aanndd  cchhaannggee  hhiissttoorryy

It should have appropriate cross-references to the original feature list or functional

requirements document that was the basis of the current requirement document.

It should have a change history and version control identifying the changes in the

document and the reason for the change. If some requirements have to be undone at a

later stage of time, it should be possible to just extract the document from some version

control system instead of re-inventing the wheel.

88..99..33 CCoonnddiittiioonnaall  rreeqquuiirreemmeennttss

It is possible that the same product is being made for several customers with minor

modifications. In this case, it is possible and advisable to write requirements document

for everybody on a broad level and then define conditional requirements for different

customers. This can ease the task of design and implementation since they have to

relate to only one source of requirements, and since only one requirements document

is being maintained, the extra overhead of keeping all requirements in order, becomes

simpler. It also avoids the overhead of maintaining synchronisation between two copies

of slightly different requirements.

88..99..44 MMeennttiioonn  ccoonnssttrraaiinnttss  aanndd  aassssuummppttiioonnss

Besides specifying the behaviour of the system, the requirements document should

identify the constraints on the system related to speed, memory or power. For example,

a bar code reader may have a constraint on the battery power consumption. This
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constraint may not have been explicitly stated in the functional requirement document

since it may have been assumed as ‘understood’. On the other hand, a card verification

system may have a constraint on the available memory since it has to store a huge

number of authorised card codes for comparison. It is possible that these constraints are

not quantifiable. However, they can be told in relative terms. For example, for the card

verification system, the system is expected to complete its processing of the card in the

time that the current card is taken out and the next card is inserted inside the slot. Since

only humans are expected to interact with the system, and there are physical limitations

on the speed with which this procedure can be performed, this constraint gives a fairly

good idea about the processing speed required for each request.

If the system has a bearing on the behaviour of other embedded systems it interacts

with, or if it assumes a particular interface with some systems, the requirements docu-

ment is the best place to identify and detail them.

88..99..55 KKeeeepp  iitt  ccoorrrreecctt,,  ccoommpplleettee  aanndd  uupp  ttoo  ddaattee

Requirements document forms the input based on which the product is finally rolled

out for delivery. A detailed, complete, correct and up to date requirements document

is necessary for the healthy delivery of a product because of the following factors.

Requirements document is a statement from the customer about the product that

needs to be delivered. The document may be written by someone from the implemen-

tation team or the customer himself. The requirements document is the first statement

about the product that is seen and accepted by both parties involved. The requirements

document forms the basis for judging the quality of the product since it should satisfy

all requirements identified in this document. 

Requirements document forms the basis for all subsequent changes in the product.

This is the starting point for judging the impact of change.

Requirements document gives rise to the design of the product. If the requirements

document is vague and does not identify the scenarios that the product is likely to go

through, the design for the product will be weak, incomplete and incorrect. It will be

prone to changes since the behaviour may not have been understood in the same way

as originally intended by the customer.

Requirements document defines the testability of the product. As mentioned before,

the quality of the product is gauged from the number of requirements it is able to satisfy.

These requirements are tested through some means to judge the quality of the system.
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88..1100 LLEESSSSOONNSS  LLEEAARRNNTT

Requirements engineering is a very important stage of an embedded development

activity. Requirements specification process should be done properly and a lot of time

should be spent on it since it formally states all the things the system is expected to

perform. Hence, requirements should be detailed yet specific. Requirements engineer-

ing consists of two steps: development and management. Development of requirements

concerns with all the steps needed to produce a concise, specific, unambiguous set of

requirements. Management process relates to performing impact analysis of change in

design based on changed requirements. 

There are some universal guidelines about what constitutes a good requirement spec-

ification. And, based on the experience collected over a long period of time, a lot of

do’s and don’ts regarding requirement specification process exist. It is worthwhile to get

familiar with these.

88..1111 RREEVVIIEEWW  QQUUEESSTTIIOONNSS

■ Why do you think requirement specification is a very important stage of 

embedded development?

■ Which are the steps involved in developing requirement specification?

■ What are the qualities of a good requirement document?

■ Why is it necessary to keep a requirement document up to date?

■ What impact does ambiguous requirements such as those below may have on:

i. Design

ii. Testing

❍ The embedded system should be fast.

❍ The TV should switch itself on within reasonable amount of time after

the button is pressed in the remote.

❍ We do not have limitation of ROM. However, it should be reasonable.

Write good requirements corresponding to these.

QQ
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Chapter

Architecture and Design of 

an Embedded System

9

When specifications are available, it is time to define the architecture and design of the

system. The architecture of a system identifies its components, the interfaces between

them in a static and dynamic way. Each component will have a design potentially in 

a hierarchical way. The design will determine factors such as what data structures to 

use, how to distribute functionality according to their priority and their order of 

calling, whether to use messages or mailboxes for communication, any imported or

exported APIs, etc. 

99..11 GGEENNEERRAALL

An embedded system is usually divided into two parts:

❑ A hardware system which consists of processor RAM, ROM, peripherals and

actual circuitry of the system and takes control of external events, fetching and

execution of instructions from memory. 

❑ A software system that ‘drives’ this hardware based on timing of events, user

actions, and other requirements of the system.

From an architectural point of view, a lot of thought has to be given so as to find the

right balance of jobs done in hardware as well as in software. 

The process of developing hardware and software simultaneously by delegating issues between

hardware and software, frequently, is called ccoo--ddeessiiggnn.
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The following factors play a pivotal role in deciding the overall architecture of 

the system.

Cost of developing the hardware : It typically takes more money to develop a part of

hardware dedicated to a specific task. And, it is more difficult later on to change that

hardware owing to a request for change in behaviour of the system. However, once

hardware has been developed, it is usually free from bugs and less prone to introduce

problems in the rest of the system.* And anything being executed in hardware is more

efficient and saves a lot of memory space that can be used by software applications.

When the embedded system is being budgeted, the cost of developing different hard-

ware plays a key role in defining the break-up of functions in software and hardware.

Change in behaviour or requirements of system : In a system that is expected to change fre-

quently, implementation inside hardware may not be a prudent choice. This is because

of two factors:

■ Firstly, hardware typically takes more time to develop. 

■ Secondly, facilities to develop specific pieces of hardware may not be available

at all places. So, it involves additional delays. 

When software and hardware teams sit at different physical locations, significant

delays in hardware can retard the overall integration of hardware and software.

Complexity of the hardware : The architect has to take into account the complexity of

the existing hardware and the cost of maintaining it in the future. In the embedded

world, usually, complexity is avoided at all costs since it makes future changes very dif-

ficult. Usually, hardware is kept for only those jobs, which are very expensive (in terms

of time or complexity) to be performed in software.

Timing constraints : In a lot of embedded systems, there are specific timing constraints.

For example, mobile phones have to listen to information broadcast over the air peri-

odically. This period is measured in microseconds. For example, every 577 microsec-

onds, a mobile station may have to tune to a particular frequency and time slot, send

62 bits of data to a particular base station, and then do some other tasks. Now, this accu-

racy of 577 microseconds cannot usually be guaranteed by software. These timing con-

straints require that some hardware circuitry is working in close co-ordination with the
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clock of the system and ensuring that the timing requirement of execution of such

actions are met. This also gives rise to a requirement that this strict timing constraint is

an important activity in the system and other jobs being executed inside the system may

be pre-empted when this situation arises.

Specific requirements of the system : Sometimes systems have specific requirements that

require some actions to be performed in hardware. For example, a mobile phone need-

ing to perform access for the establishment of a call, needs to use the “slotted Aloha”*

mechanism for channel access. This requires generation of a random number. If the first

attempt is not successful because of a collision, another random number should be

generated after a random duration. All these random numbers should be completely

independent from one another. Now, implementation of such a series of random num-

bers in such close proximity is very difficult (to say the least) in software. It would be

much easier to implement it in hardware (e.g. by using the random noise being received

by the receiver of the mobile phone) and it will also guarantee that the numbers so

generated are indeed random in value, unlike software which can produce only pseudo-

random values.

Synchronisation needs with the external world : An embedded system needs to interact

with the external world. The system and the external entity need to follow the same

clock so that they are able to understand each other all the time. So, before any trans-

mission takes place, both the systems decide who is the master for the communication

happening between them. Then the slave has to synchronise its clock with that of the

master. Usually, such kinds of requirements exist for embedded systems being used for

communication protocols. For example, when a wireless device is switched on, it needs

to synchronise itself to the beacon of a base station in order to get information about

timing and synchronisation. Different beacons may have different clocks.

Change of configuration : Any system having the ability and requirement to change the

configuration parameters should have some software to interact with external environ-

ment to use it and possibly store it. This change of configuration usually introduces a

different path of execution inside the software. This configuration implementation is

best done in software. As we saw, earlier, these parameters may exist in EEPROM or

FLASH.

*Slotted Aloha is a contention-based protocol used when a single channel for communication exists
and there are many data sources. Any data source transmits some information and waits for a reply. In
case of a clash from another data source, a random delay is introduced before the next transmission
and this process continues till contention is resolved.
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99..22 AARRCCHHIITTEECCTTUURREE  SSTTYYLLEESS

All the above mentioned requirements are fairly common across the embedded system

domain, what differs is the relative importance of each driving factor behind it. So, it is

advisable to look at the architecture styles prevalent among the software engineering

community and compare them with respect to their focus and area of usage. This will

give us a feeling of identifying our system with that of some tested systems. We can take

the advantages of a lot of architecture styles and build a composite architecture for the

unique mix of driving factors for our system. This section together with the next section

shall provide us with a lot of information gathered from the varied experience of

embedded system architects.

There exist basically four broad architecture styles:

❑ Data f low

❑ Data centric

❑ Virtual machine

❑ Call and Return

99..22..11 DDaattaa  FFllooww  aarrcchhiitteeccttuurree  ssttyyllee

The data f low architecture looks at the system as a series of transformations on succes-

sive pieces of input data. Data enters the system and f lows through the components one

at a time until they are assigned to a final destination in or outside the system. Like the

Unix pipes and filters, this architectural style may be used in DSP applications where

a complete stream of input data needs to be processed in many steps. This architecture

pattern is modular, easy to change and can be reused easily. Figure 9.1 gives an exam-

ple of such an architecture style.

FFiigg..  99..11 Example of data flow architecture style

Decode Validate Sort Display 

Store 
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99..22..22 DDaattaa  cceenntteerreedd  aarrcchhiitteeccttuurree  ssttyyllee

The data centered architectural style creates all the data of the system as the core and

lets the components of the system access this data. In its easiest manifestation, all data

may be created as global and functions access it. This data needs to be created as a

critical section if the situation demands. The advantages offered by the data centered

approach are easy integration of all components since all data is integrated anyway. The

components are relatively independent of one another, and the common data does not

depend on how the components have been designed internally. New components can

be easily added without affecting the existing components. Many embedded systems

built from legacy components use this approach in order to reduce time for integration

and because this style provides scalability in a very simple way.

The database of the data centered architecture can be implemented as an active or

passive database. An active database is able to identify any changes in the contents of

data and can notify the components affected by this change. Depending on implemen-

tation, an active database may not be required since it may add a lot of overhead of data

update mechanisms, and if all updates are not used by components, it wastes energy of

the embedded device. In that case, the database can be implanted as a passive reposito-

ry. The repository updates data but the components are expected to contact the database

in case they require the data. This may need the mechanism of critical section described

in previous chapters. Figure 9.2 gives an example of data centered architectural style.

FFiigg..  99..22 Example of data centered architecture style

99..22..33 VViirrttuuaall  mmaacchhiinnee  aarrcchhiitteeccttuurree  ssttyyllee

Virtual machines are used when a given component should be made independent of

the underlying software or hardware. In common parlance, it is also called a ‘wrapper

module’. The objective of this style of architecture is to minimise the cost of change in

software if the underlying infrastructure changes. Second need of such an architecture

arises when the underlying infrastructure is not available and the wrapper module is
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then used to simulate it in order to develop or test the other components. As is evident,

this style can provide portability easily. In embedded systems parlance, this architecture

style is especially useful since in many cases the underlying hardware is either not avail-

able or it is simpler or cheaper to develop and test software with a simulated version.

Usually, the software for embedded systems is tested on a host to find all the major

problems of implementation. In such a case, a virtual machine architecture is useful in

providing the relevant abstraction for development and testing environment.

99..22..44 CCaallll  aanndd  RReettuurrnn  aarrcchhiitteeccttuurree  ssttyyllee

Call and return architectures are the most widely used style in some form or the other.

The two most common forms of call and return architectures are procedure calls and

layered architectures. Procedure call style involves decomposition of the system into

procedures that are called from a main module. Control is present in the main module

first and then handed over to the procedure called by it and so on. Each procedure can

potentially call another procedure. This architecture style aids modification of the sys-

tem. A subtype in this architecture style has emerged based on distributed program-

ming: Remote procedure calls are procedures that are not necessarily executed on the

same processor as the calling procedure. Figure 9.3 shows an example of a procedure

call architecture style.

FFiigg..  99..33 Procedure call architecture style
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Layered architecture decomposes the system into independent components that

communicate with each other in a specific way. Usually, the components are defined as

layers and each layer can then talk to its adjacent layer only. This architecture style is

prevalent especially in embedded systems that implement communication protocols. In

such systems, the lowest layers implements hardware specific functionality, each high-

er layer uses the services of the layer below and provides service to the layer above it.

This style aids maintainability, scalability and portability. An astute reader shall recog-

nise that the layered architecture is similar to virtual machine style in many ways. In

fact, the underlying principle is the same in the two architecture styles, that is, commu-

nication control between components. The most common example of a layered archi-

tecture is the seven layered ISO OSI stack.

99..22..55 IInnddeeppeennddeenntt  ccoommppoonneennttss

Components can also be implemented using an independent architecture style. This

means that the components are not aware of adjacent components or even the recipi-

ent of messages sent by them. A registry process or a message manager is implement-

ed that notes down all components and their desired inputs. When a component sends

a message, the message manager sends it to all components desirous of receiving it. This

style aids portability, scalability and independent development of components.

For example, many communication-related embedded systems decompose the

system into layers, and the layers are implemented as call-and-return or further decom-

posed into virtual machines. The idea is to borrow the best features of all architecture

styles and create a judicious mix of advantages.

99..33 AARRCCHHIITTEECCTTUURREE  PPAATTTTEERRNNSS

In order to arrive at suitable architectures, the designers can use the experience and

expertise of architectures developed previously in similar situations. This existing well-

proven experience in software development can be used to create a software with

specific properties. In fact, while designing a system, very often than not, most design-

ers try to relate the properties of the new system with some system designed by them
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in the past and then reuse or tailor it so that it can be applied in the current context.

This is basically true and advisable for two reasons. One, a working system designed

earlier for a similar problem gives more confidence that the new design will work.

Second, it saves time if an idea, model or implementation can be reused. 

Such an idea is an architecture pattern. An intuitive definition for architecture pat-

terns can be given as follows:

By no means, an architecture pattern can be just lifted and copied into the current

system. This may be possible if the systems are very similar and they have to deal with

similar driving forces, but generally, an architecture pattern is associated with a context,

for example, a distributed system or interactive system or embedded system or a com-

bination of some of these. Second, the architecture pattern provides a way of solving a

common recurring problem in this context. For example, CORBA is an architecture

pattern for distributed object based systems.

This section shall describe some patterns available for embedded systems. These pat-

terns are discussed below together with their context.

99..33..11 LLaayyeerreedd  ppaatttteerrnnss

Layered patterns decompose a system into components and define mechanisms and

rules for communication among these components. Two most common among them

are:

■ Router pattern

■ Microkernel

RRoouutteerr  ppaatttteerrnn

Router pattern creates independent components such that the communication among

them is transparent to the sender and the receiver. There is a dynamic binding of des-

tination component for each message inside the router component. So, all components

indicate the messages they want to receive to the router, henceforth, the component
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sends all messages to the router. The router then sends the message to the destination

component. If the message was a request primitive, the router takes care to send the cor-

responding confirm or reject primitive back to the sender component when the request

has reached the destination. This pattern is especially useful if, the components have to

be independent of each other, and when, components have instances. When compo-

nents have instances, each instance can communicate with its corresponding instance

on another component in a simple way, based on the routing table maintained by the

router. When instances get destroyed, the router is updated. 

An example of this pattern inside dual mode 3G phones shall be useful here. Dual

mode 3G phones should be capable of connecting to a 3G network, as well as, the older

2.5G GPRS networks, depending on their availability. So, a link layer can be developed

for both technologies, and a router decides which layer is active based on the registra-

tion performed by that component. The higher layer components become independent

of which process and component they need to send their messages to.

MMiiccrrookkeerrnneell  ppaatttteerrnn

Microkernel pattern is used to create a basic set of essential services and a mechanism

to develop additional applications and extensions in an independent way based on the

kernel core. In a way, this pattern is very similar to the Unix kernel mechanism. The

shell hides the applications from the kernel specifics and vice-versa. The kernel is

generic and need not be modified for any application. Applications receive a standard

interface from the shell and use the services of the shell to perform their jobs. This

results in architectures where slightly different applications based on a core set of oper-

ations need to be developed, or in cases where the life span of applications is not large

and need to be enhanced without touching the core of the kernel. 

FFiigg..  99..44 Micro-kernel architecture pattern
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99..33..22 DDiissttrriibbuutteedd  aarrcchhiitteeccttuurree  ppaatttteerrnnss

Distributed systems consist of independent (possibly heterogeneous) components exe-

cuting on different processors separated physically, performing a job that involves some

level of interaction between them. Embedded industry is rapidly embracing the dis-

tributed system approach because of its numerous advantages in terms of efficiency,

portability and implementation independence. There are numerous architecture pat-

terns for distributed systems; we will discuss three of them here:

■ Client-server

■ Proxy

■ Broker

CClliieenntt--sseerrvveerr  ppaatttteerrnn

The client-server pattern is used in cases where one component needs to access service

from another component. Usually, these components exist on physically separate

nodes; however, conceptually they may co-exist as well. The server provides a

particular service and starts listening for requests coming from clients. In this way, the

implementation of service becomes independent of the request. The server and client

only need to establish the protocol with which they communicate. The client must

know the physical address of the server in order to connect to the destination. Also, the

server and the client should use common protocol mechanism in order to understand

each other, and, they should implement recovery and acknowledgement procedures

possibly. The sequence of events in case of a client server pattern happens as follows:

■ Server starts its service and waits for a request in a predefined format on a well-

known logical location such as port.

■ The client sends a request to the server using its physical address and port num-

ber known before hand.

■ The request is routed to the server.

■ Server sends a response to this request back to the client using the physical

address of the client mentioned in the request message.

■ The client may send more requests or the server may send more data.

The client and server are independent of each other, so this pattern aids in imple-

mentation-independence, portability and scalability. However, there are two serious

drawbacks. First, the client should know before the communication, the physical
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address of the server. If the server changes its location or there is another server pro-

viding the same service, some changes are required on the client side to make alternate

arrangements. 

FFiigg..  99..55 Client-server architecture pattern

Second, the client and server should use a mutually agreed protocol. This means that

if a client wants to connect to servers A and B, that use different protocols for commu-

nication, the client needs to implement both these protocols in order to use their ser-

vices.

TThhee  PPrrooxxyy  ppaatttteerrnn  

The proxy pattern solves the first problem of the client server pattern. The proxy pat-

tern provides a standard physical address to all clients such that it creates a new pseu-

do server that takes requests from all clients destined to the original servers and then

routes them appropriately. The advantages of this approach are two-fold: in case mul-

tiple servers are present for a service, the proxy server can perform load balancing.

Second, the clients need not know the physical location of server, they only need to

know the service being requested, and then the proxy takes care of mapping it to a

server address and communicating with it. However, proxy servers are not configurable

at run time, and the clients and servers are not completely de-coupled, client and server

need to still use the same protocol. Proxies act as passive servers.

Client

Server2

2.2.2.2

Request:2.2.2.2

Response

Server1

1.1.1.1Request:1.1.1.1
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FFiigg..  99..66 Proxy architecture pattern

TThhee  bbrrookkeerr  ppaatttteerrnn  

The broker pattern removes the disadvantages of the proxy pattern as well. This pat-

tern creates an active server called a broker. The server sends configuration data to bro-

kers in order to advertise their services. Brokers create a run-time mapping of servers

and their services, possibly together with some routing information. Clients request for

services from the broker. Broker decides the best server and the best possible path to

reach the server. So, client and server are completely de-coupled. They need not follow

the same protocol as long as they follow the standard protocol understood by the

broker. Broker pattern has been a hit among the multiprocessing architecture using

symmetric multiprocessing since this pattern eases the job of the OS in scheduling jobs

on different processors.

99..44 AARRCCHHIITTEECCTTUURREE  OOFF  CCAARRDD  VVEERRIIFFIICCAATTIIOONN  SSYYSSTTEEMM

The card verification system introduced in the previous chapter can be understood first

by drawing MSCs that relate the components of the system and their interaction. The

system has basically four physical components: card slot, door lock, card verifier and

screen.

The MSC in Fig. 9.7 introduces a correct path of execution in which the card is

authorised and is inserted into the slot properly.

This case is known as the ‘Happy Path’, i.e. a situation where nothing unanticipated

has happened. This is the path that is supposed to be executed very often. But, a robust

software design must also anticipate some error conditions. Two of such conditions that

can be thought of are

i. Insertion of an unauthorised card

ii. Removing the card too quickly

Client

Server2

2.2.2.2

Request:2.2.2.2

Response

Server1

1.1.1.1
Request:1.1.1.1

Proxy
Request:Service
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In each of these cases, the user is alerted of the error.

Fig. 9.7 MSC for correct case of card insertion

The following MSC (Fig. 9.8) describes the situation where an unauthorised card was

inserted.

This MSC (in Fig. 9.9) takes a look at a scenario where the card has not been insert-

ed into the slot for the minimum duration.

Card Slot Card Verifier Door Lock ScreenUser

CARD_IN( )

CardInserted( ) 

Is Card 
Authorized( ) 

Open Lock( )

DisplayWelcome( ) 

CardRemoved( ) 
CloseLock( )

ClearDisplay( )
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FFiigg..  99..88 Unauthorised card inserted

FFiigg..  99..99 Card not read

User

CardVerifier ScreenCardSlot

CardInserted( ) 
CARD_IN( ) 

IsCardAuthorized( ) 

DisplayAuthenticationFailure( ) 

User

CardSlot Screen

CardInserted( )

CardRemoved( )
DisplayCardNot Read( ) 
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In order to arrive at an architecture, the card verification system can be divided into

a number of components:

❑ The Read Card task reads the code on the card and then generates an inter-

rupt. It sends an interrupt when a card is taken out. The system can then have a

task dedicated to this input. 

❑ The Manage Door task keeps track of opening the door. It may have a sensor

to gauge if the door has not been closed for a long time. This may raise a small

alarm. 

❑ The Comp Card task handles comparison of input card code with the list of

authorised codes stored in the system. 

❑ There should also be some mechanism to update this list. Most customers will

prefer this activity to be done through some software, which has the option of dele-

tion, addition and alteration of codes in the database. This software should have

the capability to check the super-user card so that this option is not given to every-

body. So the CompCard task compares super-user card number with the card

code received from ReadCard and performs updating functions if they match.

FFiigg..  99..1100 Stages of development of card reader

Figure 9.10 illustrates how the various stages of development of this system are con-

nected to one another. Figure 9.11 gives a possible architecture of this system.

As we can see in this diagram, the interfaces have been identified from the point of

view of implementation. Once, this arbitration is achieved, each of these tasks can be
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designed independently and in parallel and integrated after implementation. The figure

shows some of the major types of interface prevalent in embedded systems: interrupt,

message, function-call and callback.

FFiigg..  99..1111 Architecture of card verifier system

An architectural diagram shows potentially the top to down decomposition of a large

project. Each element inside this architectural diagram is presented in the form of an

architecture document and a detailed design document. These architecture and detailed

design documents may, in turn, be further divided into subelements. These are then

presented in the same way in a hierarchical fashion. 

99..55 PPRRAACCTTIICCEESS  FFOOLLLLOOWWEEDD  IINN  DDEESSIIGGNN

99..55..11 DDeessiiggnn  aapppprrooaacchh

The architecture and design of a system can be done in two approaches. The data ori-

ented approach focuses on the data structures of the entire system and their manage-

ment. The process-based approach decomposes the system into units and processes,

List of authorized 
cards

ReadCard
CompCard

ManageDoor

CardDriver
software

DoorDriver

Process

Functional interface 

Interrupt interface 

Message interface 

Driver callback interface 
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and identifies the relationship and interfaces between them. These components may

further be divided the same way. It is seen that the combination of both approaches

results in a good design of the system. 

99..55..22 DDoonn''tt  bbee  ccoommppllaacceenntt

A very common mistake seen among embedded designers is the tendency to throw all

caution to winds if a fast processor or more memory is available. This is probably

because these things are items of luxury for normal embedded systems and any excess

is basically removing the restriction of the system being too “embedded”. However, the

architecture and design should be optimised from the word-go. It would take much

more manpower and cost to optimise the system once it starts operating and we identi-

fy that the system is crashing at sporadic times because of memory overrun or if the

performance of the system is not adequate. This is especially true if there are any

chances of porting the embedded system to another processor. An advice in this direc-

tion would be to start developing architecture and design over a slow processor and

small amount of memory, make the design optimised and then try to extract the bene-

fits of fast processing speed over this design. Otherwise, embedded programmers have

a tendency to be lazy when luxuries are available!

99..55..33 AAnnaallyyssiiss  ooff  tthhee  wwoorrsstt  ccaasseess

The design should take into account the worst and best case timing of all the scenarios

identified in the requirements phase. This will have an impact on the way we are break-

ing up the system. Some tasks may be made high priority if they are required for an

urgent response and are prevented from running because some other processes hog the

processor time. 

99..55..44 PPrroocceessssiinngg  ooff  ddaattaa

The design of an embedded system takes a look at the data of the system. The data may

be received from outside. This is true typically in communication related protocols run-

ning on embedded systems where the majority of data the system has to work on is

received from outside. For example, a mobile phone is expected to periodically read

information through its receiver from the network on the air interface*1 and act on this

information to decide about its area of service,*2 among other things. Other systems

may have majority of data in-built. For example, the card verification system has most

*1A mobile phone accesses the network over the air. For this it needs to get synchronised to the base
station in time so that the information being broadcast is accessible and readable.

*2The coverage area of the base station to which the mobile station is listening governs an area of service.
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of its data related to authorised cards built-in. This data is not expected to change 

while the system is being accessed. This data has its own limitation that it is potentially

huge and secondly, what matters is the time in which a new card number is searched 

in this list since, that is what governs the availability of the card verification system 

for the next user. In case of mobile phone, the limitation is to read the data completely

and correctly as it occurs on the air interface, and then take actions based on this 

data in a realtime manner before the processor time is allocated to other. Therefore the

module that is receiving this data needs to be given high priority so that the data can

be read at proper times and no other trivial actions halt this operation. Then the

modules that act on this data need to run uninterrupted (for example by application

modules).

99..55..55 DDeeccoommppoossiittiioonn

A typical embedded system is first divided into layers and/or tasks. Sometimes these

layers are defined in the system by governing standard bodies. This is in case the

embedded system is supposed to interwork with other systems from other vendors.

Bluetooth, Wireless LAN and other wireless mobile phones are examples of such stan-

dard systems. These layers are present to perform specific actions and are usually based

on the ISO OSI mechanism for defining a protocol stack (See Fig. 9.12). 

FFiigg..  99..1122 OSI layered architecture
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One layer provides services to the layer above it and receives service from the layer

below. One or more layers are implemented in one task inside the system. These tasks

are then given priority based on the criticality and realtime behaviour of the actions

performed by them. 

Typically, lower layers are implemented in hardware, however, that may depend on

the factors listed in the beginning of this chapter. These layers perform the very basic

hardware functions related to electrical characteristics of data bits, checksum, error

detection, etc. Basically, they are responsible for providing a transport mechanism to

the upper layers that then implement a hand shaking mechanism and other f low con-

trol algorithms to take care of application data. 

99..55..66 HHeeaarrtt--bbeeaatt  iinn  ddiissttrriibbuutteedd  ssyysstteemmss

Since communication systems have to deal with the outside world that is not in direct

contact with the system, the lower layers typically employ some heart-beat mechanism

to indicate to the adjacent node about the fact that the system is running smoothly. An

example in this approach is the use of FISU* messages in SS7 MTP layer. These mes-

sages are sent to the adjacent nodes whenever there is nothing else to send so that the

other node gets to know about the health of this node.

Similarly, many times the system itself is divided into parts that run physically apart

from each other, the heart-beat mechanism is required to keep track of health of the

complete system. 

For example, in Fig. 9.13, the system is divided into three parts: node A, node B and

node C. If node B crashes down because of overload or other factors, there is no way

that the other parts will come to know about it on their own. They will keep on

pumping data to that part unnecessarily. This will introduce undesirable behaviour into

the system. Instead, if all three nodes are designed in such a way that they send some

data on all interfaces at a given minimum rate, the overall health of the system is avail-

able everywhere. The parts may also give some other statistics to each other like system

load that may be used to perform f low control to avoid a potential congestion condi-

tion. These same messages can be piggybacked with acknowledgements of received

packets. Another advantage of using heart-beat mechanism is utilised inside switching

networks in telecommunication (SS7 for example). In such switching networks, there is

a high degree of redundancy with respect to routing of packets. For example, node B

*FISU: Fill-In Signalling Unit messages. In SS7, this heartbeat mechanism is used at MTP layer level. All nodes
send this empty message to each other whenever nothing else is present to be sent.
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and node C are providing two routes to the same destination node D. So at any given

time, node A can decide that the health of node B is not particularly good, and hence

can change the routing to node C and help the node B in recovering from congestion. 

In wireless system, the mechanism of heart-beat is used for a different purpose. Since

the resources on the air are very precious, they cannot be allocated to all users all the

time. The air interface, however, is particularly prone to bad radio conditions and

potential drop in quality of channel. Hence if heart-beat is not received from a

particular user, the resources assigned to that user are released and then they can be

potentially allocated to other users. The heart-beat and associated procedures are

typically a part of lower layers inside the protocol stack. Once the quality of link is

guaranteed, the higher protocol layers use more sophisticated methods to deal with

selective retransmissions, or retransmissions after a particular number of packets inside

a huge stream of data (including ARQ and selective repeats).

FFiigg..  99..1133 A typical network

99..55..77 AAssssiiggnnmmeenntt  ooff  pprriioorriittiieess

Once the system has been broken down into tasks, these tasks are then assigned system

priorities so that the RTOS understands the relative importance of each task. Each task

is assigned a stack space for its internal use. How much stack space should be assigned

is just about anybody’s guess☺. It takes the combination of experience and intelligence

to assign some space to a task. However, it should be kept in mind that there are some

factors that result in a lot of stack space. For example, if recursion is being used, there

are chances that the space may be a little under strain. In embedded systems, it is usu-

ally a bad practice to have recursion since it can easily become a runaway horse out of
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control. Many RTOS keep a limit on the number of messages that can be placed in the

mail-box of a task. Many RTOS also keep a maximum limit on the number of tasks in

the system. This limit however, is usually very large. 

99..55..88 IImmppaacctt  ooff  ssooffttwwaarree  ddeevveellooppmmeenntt  mmeetthhoodd  oonn  ddeessiiggnn

The design methodology depends on the kind of software development model. One is

called the waterfall model and the other is the iterative approach. 

WWaatteerrffaallll  mmooddeell

The waterfall model is a stage-based approach to implementing a system. First a

requirement is taken, and then a design is provided for this requirement, following

which it is reviewed and finally the implementation begins, followed by testing of the

module. Figure 9.14 gives these different stages of a waterfall model.

FFiigg..  99..1144  Waterfall model of development

IItteerraattiivvee  aapppprrooaacchh

In the iterative approach, on the other hand, the module is looked at from all perspec-

tives in the beginning itself. So we have use-cases that specify requirements and archi-

tecture. The class diagrams throw light on the design, etc. In this way, it is possible to

analyse the system at a much greater level in the beginning itself. Since most of the

problems in the field occur due to unforeseen errors during design and unfortunate

crossover of events, the UML approach seems to be better in countering this threat.

However, the proponents of waterfall model argue that UML based design sometimes

becomes too detailed in the beginning itself. As usually is the case, the combination of

both approaches should generate better results. The waterfall model should be used

while keeping the advantages of UML related to thinking in terms of use-cases, class

diagrams, etc. to visualise and represent parts of the system.

Requirement

Design

Coding, unit 
testing

Integration

Testing
Correspondence

Correspondence
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99..55..99 WWhhaatt  iiss  tthhee  bbeesstt  aarrcchhiitteeccttuurree??

One case in the point while designing a system is the tendency on the part of designers

to jump at the first reasonably well designed architecture and start implementing it

head-on. While this approach is good since the system may work reasonably well, it is

advised that alternate architecture be thought of and compared. This gives an idea

about the benefits and drawbacks of each approach. Then, looking at the factors that

govern the design alternate approaches can be weighed and compared. Essentially,

most of the approaches will work. However, they may vary on merit on a scale of the

relative importance of factors, which govern the design and architecture. We will con-

sider an example. Consider a communication system requiring a task that needs to take

care of some link management while no communication is running. Additionally there

are some tasks related to receipt and discharge of data during communication and some

jobs related to making checks related to quality of service link and sending these reports

to the other node. Here we can potentially have a lot of architecture ideas. We may have

the factors that govern the design and their relative importance as high, medium and

low, according to a given implementation. Table 9.1 may be one such example.

TTaabbllee  99..11:: Weighted factors for architecture evaluation

What constitutes a good architecture is rather debatable. Each architecture may be

good or bad depending on what combination of its driving factors are satisfied and what

trade-offs have been used. The driving factors such as the ones above decide the suit-

ability of a proposed architecture. The weights attached to each factor weighs the archi-

tecture propositions and identifies the trade offs involved.

Now we can look at three different ways of breaking the tasks of the system.

❑ Approach 1, in which we have a separate task for everything. That means three 

tasks, one for housekeeping during idle mode, one for data transfer during the 
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connection, and one for measuring quality of service, and then initiating the 

connection process for sending a report to the other node.

❑ Approach 2, in which there is only one task handling everything.

❑ Approach 3, in which there is one task for handling quality of service issues, and 

one more task, which takes care of everything else.

All these approaches may be appropriate in the light of the factors listed above. 

99..55..1100 BBeetttteerr  ssaaffee  tthhaann  ssoorrrryy!!

When the state machines are being developed for each task of the system, the designer

should identify spurious messages or events in each state. Since we are dealing with an

asynchronous system, the task may have changed its state before another input meant

for the previous state arrives. This input may not be valid for the current state. For

example, in a mobile phone system, it is possible that the network starts paging a

mobile phone and at a slightly later instance, the user of the phone initiates a call. In

this case, since the phone is already “occupied” while processing information and per-

forming activities related to receiving the incoming call, the request for an outgoing call

is not valid and hence trashed at this particular moment. The same request was per-

fectly valid when the incoming call was not received. This is not a problem with state

machine. This is not a problem with the embedded system. This is not a problem with

RTOS. This is just a case of unfortunate crossover of messages. At the design stage itself,

such crossover cases and spurious inputs possible in different states of the system should

be identified and some proper processing should be performed. In the case of the

mobile phone for example, it may suffice to just give an indication to the user that the

phone is busy or an outgoing call is not possible at this time. This error handling is

required and recommended at all levels of design and implementation. The system

should be capable of handling interrupts at uncertain and uneasy times. The system

should take into account, corrupted data bytes received, especially when the sender of

information is physically removed from the destination. A lot of effort is especially

reserved in wireless systems for this since they are particularly prone to corruption on

the air. However, this applies to any two systems separated by a distance. The LAPD

protocol used in ISDN lines is another case in point. 

99..55..1111 WWaattcchh  tthhee  mmeemmoorryy  uussaaggee

At the beginning of testing of an embedded system, the norm is to keep a close watch

on the memory being used by the system. This memory can easily become a pain in

the neck if at some creepy corner of the code, it is going out of bounds. In this case,
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some modules may have to be optimised with regards to their usage of memory. This

is also required to judge the optimum allocation of stack space to different tasks. When

the RTOS starts execution, all stack space is initialised to some constant number say,

0×55. During its execution, the realtime system uses varying amount of stack space.

After a lot of trials, the unused space that still contains 0×55 is freed for some other use.

99..55..1122 PPoolllliinngg  oorr  iinntteerrrruupptt??

We looked at this question in Chapter 7 as well. A major decision at the firmware and

hardware level is to use either the interrupt mechanism or polling to identify when

some data has arrived. The choice stems from two different approaches based on the

kind of system we are dealing with. In the card verification system, the system is doing

the job of reading a card, searching for it in the database, displaying a message for a

given amount of time, or unlocking the door lock. And it is expected that the next user

has to wait till any of these actions are in progress since the device has only one slot.

Hence it would suffice to keep a polling mechanism in this system. The system runs in

almost a serial order, once a loop of action has been finished it checks for the polling

bit set. If so, it performs another cycle of the loop. If not, it waits for the bit again. 

Alternatively, the system can be implemented such that it expects to be interrupted

when something arrives. In that case, the system continues its execution and then waits

for something to happen; in this case, it is the interrupt. In systems which expect a lot

of inputs from a lot of channels, it would make sense to make them interrupt driven if

the data coming in can potentially be overwritten by more data. 

Once the system has been broken into tasks having fairly independent jobs, it is time

to start designing the task itself. Each task is made up of executable code that deter-

mines how a system will behave on the occurrence of external events. Usually tasks in

realtime systems are implemented as state machines because most embedded systems

are inherently of the following kind:

❑ Expect an internal or external event in the form of an interrupt, message or

timer

❑ Perform an action

❑ Generate an event for the same or some other part of the system

❑ Again wait for another event. 

Also the subset of events that the system is waiting for is not the same during its entire

execution. So the different tasks are generally organised in a series of states expecting

specific inputs, and ignoring the rest. 
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99..66 DDEESSIIGGNN  CCHHEECCKKLLIISSTT

A good design document contains the following:

❑ AAuutthhoorr  ((lliisstt)):: Author(s) of the document. As for requirements, one author should

be identified as the owner of the document. S/he updates the document and main-

tains it throughout the duration of the project.

❑ TTeecchhnniiccaall  ccoonnttrrooll  oorr  rreevviieeww  tteeaamm:: Identifies the team, which reviews the docu-

ment for the sole intention of checking the technical suitability of the document.

This review takes special focus on effect of external interfaces on the module.

❑ DDiissttrriibbuuttiioonn  lliisstt:: List of teams or people who get affected by the design docu-

ment. These possibly will be other modules that have interface with this module.

❑ SSttaattuuss  ooff  tthhee  ddooccuummeenntt:: Whether it is a draft, or under review, or released.

❑ PPrroojjeecctt  NNaammee:: This identifies the collection of activities for a particular goal.

❑ DDaattee:: mentions the last time the document was changed.

❑ VVeerrssiioonn:: identifies the evolution.

❑ HHiissttoorryy:: lists the changes that happened in the past with an overview of their

impact and the author of these changes.

❑ AAbbbbrreevviiaattiioonn  lliisstt:: lists the abbreviations used in the document. It may give a ref-

erence to another document. This may give a reference to architecture document

or requirements document.

❑ DDeeffiinniittiioonnss:: Introduction to the terms used in the document. They may be stan-

dard or particular to the document. This may give reference to requirement doc-

ument or architecture document.

❑ RReeffeerreenncceess:: Any related information can be found in the list of references.

❑ PPeerrssppeeccttiivvee  ooff  tthhee  ssyysstteemm:: Defines the external interfaces of the system and the

kind of inputs that are expected in the system.

❑ DDaattaa  ssttrruuccttuurreess:: Based on the interface and expected behaviour of the system,

the set of data structures are defined. These data structures are the core of infor-

mation processing for the module. It is advised to provide this section with

attributes like initial values of variables, their scope, conditions under which they

will change, etc.

❑ SSttaattee  ddiiaaggrraamm:: The high level state diagram of the system identifies the static de-

sign of the system. This gives all pairs of stimulus-response expected in the system.
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❑ SSDDLL:: The dynamic behaviour is provided by the representation of the system as

current state->stimulus->action->response->final state mapping. The output mes-

sages may be to other modules inside the system or to the same module.

❑ TTiimmeerrss,,  bbuuffffeerrss:: The design document lists the timers used by the module, the

conditions under which they are set, reset and when they expire. This document

gives the values of buffer lengths and constants used inside the module.

❑ PPsseeuuddoo  ccooddee:: A detailed design will usually contain pseudo code, which is a

semi-English series of statements and comments to explain the f low of execution

of control of the module.

❑ EExxppoorrtteedd  aanndd  iimmppoorrtteedd  pprroocceedduurreess//iinntteerrffaaccee:: The module may be using proce-

dures defined in other modules. These should be documented here. In addition,

some procedures from this module may be used by other modules. All such inter-

face to the external world should be documented so that the user of the interface

gets it from one place.

❑ CCaallllbbaacckkss,,  AAPPIIss:: If the module uses or provides callback functions and APIs,

design document should identify them.

❑ EErrrroorr  HHaannddlliinngg:: Most embedded systems have the peculiarity of being ‘always-

on’. This may give rise to stringent needs related to unforeseen errors. Also, as we

saw in the last chapter, special cross-over cases may give rise to race conditions.

Such cases should be carefully thought of and documented inside the design doc-

ument.

❑ CCrroossss--rreeffeerreennccee:: Finally, all requirements inside the requirements document

need to be implemented. To track this, the design documents usually contain a sec-

tion, which relates the sections of requirement document being addressed by sec-

tions of design document. Alternatively, a separate cross-reference document can

be made which gives the relation between requirements, design, implementation

and testing.

99..77 LLEESSSSOONNSS  LLEEAARRNNTT

Architecture of a system is like a blueprint of the system. It concerns itself with identi-

fying the components of the system, interactions between them and managing trade-offs

based on priorities. Each of the components can then be individually designed (possi-

bly) independent of each other. A lot of architecture styles are available, each focusing

on some priorities over others. While architecture has evolved over the years, the archi-

tect community has documented architectural patterns that have been known to solve
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some typical problems that occur in architecture definition. The design of the system

heavily depends on its priorities. This chapter gave examples of different choices avail-

able to the designer based on the kind of system being developed. In the end, the design

document should be traced from the requirements and should clearly define static and

dynamic behaviour of the system through SDLs /UMLs and handle possible

erroneous /cross-over cases.

99..88 RREEVVIIEEWW  QQUUEESSTTIIOONNSS

■ Compare the architecture styles based on their ability to create portable 

software.

■ What is an architecture pattern? How is it different from architecture style?

■ Heart-beat is a common mechanism used in distributed systems. Can it be 

used for non-distributed systems as well? If so, how?

■ How do we arrive at the best architecture for a system? How do we justify it?

■ How does UML-approach differ from traditional design approach?

QQ
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Chapter

Implementation Aspects 

in Embedded Systems

1100..11 IINNTTRROODDUUCCTTIIOONN

Now this is one topic that all embedded engineers love. The smell of wires and sound of

data inside them makes many a heart flutter with joy ☺. Implementation has its own his-

tory. In the not so old world, assembly language used to rule the roost in embedded sys-

tems. With the advent of efficient compilers in C, it became possible to get the same

power of assembly language while retaining the ease of coding and understanding of a

high level language. C came like a boon for the programmers especially in the embedded

world and has since its introduction remained as the queen (or is king?☺) of the embed-

ded world. Object oriented methods and languages are making heavy inroads into the

world of embedded world of late, however, even today most programmers feel comfort-

able and secure with this language. Hence, this chapter has been written with C in mind

even though most of the things are valid for any other similar high-level language.

Ideally speaking, implementation deserves a complete book by itself. However, it

would not be out of place to document some tips about implementation aspects in

embedded systems in this chapter. These implementation tips are usually encountered

during the daily life of an embedded engineer. This chapter should be read from the

perspective of good and bad practices during implementation. Like the proverbial stitch

in time, good programming habits save lot of time later.

1100..22 RREEAADDAABBIILLIITTYY

The code written by an engineer should be readable and understandable by the rest of

the community. In this direction, the following are helpful.

10



1100..22..11 PPrrooppeerr  iinnddeennttaattiioonn  

Indentation is done to identify the flow of a program properly. Indentation helps to see

the depth of a statement. Only spaces should be used for indentation. Tabs should not

be used. When code is ported from one system to another, the tab settings of the sec-

ond environment will most likely be incompatible with the tab settings used from the

first environment (according to Murphy’s laws). This turns source code into an inden-

tation nightmare. Indenting should be used on a line which is not blank after an open

brace and control statement (case, for, if, else, while). Usually four blanks are used as

an indent. 

For example:

for (var = 0 ; var < MAX ; var ++)

{

do_something ;

if (check_a_condition)

{

this_condition_is_satisfied;

}

else

{

this_is_unfortunate;

}

}

continue_working;

exit_from_program;

1100..22..22 CCoommmmeennttss

Comments are very useful for readability of code. The comments should be given in

sentence form, with correct spelling, grammar, and punctuation (although the termi-

nating period is not extremely important). Good code comments should strive to tell

the reader why , as opposed to what the code is doing.

Bad comment example: 

/* Assign the value of 4 to the variable x. */

x = 4; 
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Good comment example:

/* Loop four times: once for each corner of the rectangle. */

x = 4;

Here is another example with clear, simple and useful comments.

/*

All ports except the MAX_PORT port are initialised 

since the last port is reserved for use by the debugger.

*/

for (i = 0; i < MAX_PORTS – 1; i++) {

/* Set baud rate, parity, data bits */

InitialisePort ( i );

}

1100..22..33 PPaarraapphhrraassiinngg  ooff  ffuunnccttiioonnaalliittyy  

It is advisable to paraphrase the purpose of a group of lines usually contained within

braces. This paraphrasing should be done in the beginning of the block. This serves two

purposes. First, the purpose of the block is shown at a glance. Secondly, it serves as a

micro-review of the C statements following the comments. Since the behaviour of state-

ments should match the comments. So this helps as an early warning system for any

inconsistencies in the code. This is shown in the following example:

}   /* lv_len_var > LEN */
}   /* lv_brdth_var > BRDTH  */
else
{

/* Here lv_brdth_var < BRDTH. Calculate the area of all
rectangles and store them in global variables for 
later use. If an area is less than MIN_AREA, don’t 
store it.

*/

int lv_index ;
for(lv_index = 0; lv_index < NUM_RECTANGLES; lv_index ++)
{

ga_Areas[lv_index] = CalculateArea( );
}

}      /* else lv_brdth > BRDTH */
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Now, because of the block comment in the beginning of else block, it becomes imme-

diately clear what this block as a whole is supposed to do. And, it becomes clear that

the author has missed out the condition to check the MIN_AREA. 

These block comments should be written in the beginning of the development of

code so that only the conditional statements and block comments are written. This

skeleton is then later filled. This helps in organising the code better and there are few

loopholes in the code.

1100..22..44 MMaaggiicc  nnuummbbeerrss  

Magic numbers inside code should be avoided. They should be replaced by meaning-

ful symbolic constants. This is because, in any subsequent change in value, the macro

needs to be changed at one place thus eliminating probability of human error.

Secondly, the C statements become more understandable since the macro name will

identify some meaning to the value. Additionally, the same value may be referring to

different logical entities. For example, 10 may be the maximum number of ports and

also the maximum sockets that can be opened.

for (i=0; i < MAX_VAL; i++)

{

if (gv_length > MIN_LENGTH)

{

SendErrorMessage(MIN_LENGTH);

PutBuffer(MAX_VAL);

break;

}

PutBuffer(i) ;

}

1100..22..55 PPoossiittiivvee  bboooolleeaannss

We should use booleans with positive names. Usually the name of a boolean variable

or symbol denotes some condition that is on/off, enabled/disabled, etc. Code is easier

to understand if the name of a boolean variable or symbol denotes a positive condition—

such as “mode enabled”—versus a negative—such as “mode disabled”. If you are test-

ing for the boolean being FALSE, then a negative meaning causes a double negative,

which is more difficult to understand. For example:
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Suppose we have a boolean variable TempNotGreater, which has the following

meanings: 

TempNotGreater == TRUE, implies temperature is less than a threshold. 

TempNotGreater == FALSE, implies temperature is more than a threshold. 

To execute code that uses this variable, we would write the following fragment:

if ( ! TempNotGreater ) 

{ 

/* Temp > threshold code here  */

}

The predicate inside the if statement is hard to understand. We have to say to our-

selves, “OK. Since TempNotGreater is false means negative of negative of this condition means

temperature is higher ”. Instead, it’s clearer to name the boolean ‘TempLesser’, with these

meanings: 

if ( TempLesser ) 

{ 

/* Temp < threshold code here */

}

Even the contrary test is easy to understand: 

if ( ! TempLesser ) 

{ 

/* Temp > threshold */

}

1100..22..66 EExxpplliicciitt  ccoommppuuttaattiioonn  ooff  mmaaccrrooss  

Let us consider the following definition: 

#define TWO_PI 6.283185306

There is no reason to calculate this value by hand when the compiler can calculate

possibly more accurately than us. Instead let us see this definition: 

#define PI 3.141592653 

#define TWO_PI (2.0*PI)
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It is easier to understand the intent and be more accurate. Let us say we are defining

the center of a rectangle, consider these two possible definitions: 

#define RECT_LEFT 100 

#define RECT_RIGHT 200 

#define RECT_MIDDLE 150 

Instead, if it is defined as:

#define RECT_LEFT 100 

#define RECT_RIGHT 200 

#define RECT_MIDDLE ((RECT_LEFT+RECT_RIGHT)/2)

The latter definition helps us understand the meaning of RECT_MIDDLE. Also, the

latter definition enables us to change RECT_LEFT and RECT_RIGHT without explicit-

ly recalculating RECT_MIDDLE.

1100..22..77 DDooccuummeennttaattiioonn  ooff  bbuuggss

There could be compiler bugs that could have been overcome by some way. For e.g.

some compilers provide __int64 as an implementation for a 64-bit integer. (To use

such compiler provided features or not could be a separate discussion). In some com-

pilers, ++, += operator does not work with them.

It is always advisable to comment on such bugs so that some other programmer does

not change it back. (After a few months even we may forget why we did that!)

__int64 timer_register_value = 0;

/* timer_register_value++ does not work ! Compiler bug!
*/

timer_register_value = timer_register_value + 1;

1100..33 FFUUTTUURREE  MMAAIINNTTEENNAANNCCEE

In order to aid future maintenance of the code, some points are noteworthy.

1100..33..11 GGlloobbaall  vvaarriiaabblleess  

While designing and implementing a system, it is advisable to minimise the use of

global variables. Global variables are difficult to manage because of their scope in the

system. It is difficult to limit the usage of global variables in the system thus exposing

the system to more possible errors. Even if global variables are used, any usage and
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change of the variables in a function should be documented at the beginning of the

function inside the function header. 

1100..33..22 UUssee  aanndd  mmiissuussee  ooff  mmaaccrrooss

The classical debate while writing the code is the relative merit of using macros and

functions for particular tasks. While functions are slower than macros, the macros are

difficult to debug and understand. Hence, it is advisable to create macros with small

functionality inside them. The macros should not change global variables in general.

They should not be used for doing actions. They should typically be used for returning

a value based on some conditions. Macros are suited ideally for making small calcula-

tions the results of which can be assigned to some variables from the place where the

macro is called. For anything extra, it should be kept in mind that macros are difficult

to debug and hence can possibly wreak havoc with the system. 

We should enclose macros in parentheses. Also, inside each macro, we should

enclose parameters in parentheses. Unless our macro is EXTREMELY simple, we

should put parentheses around the body of the entire macro. (Or braces “{}” if the

macro is a statement.) The only exceptions are strings that are numeric, character, or

string constants. If we don’t use parentheses, operator precedence may cause the macro

to produce unexpected results. For example, refer to the following macro definition: 

/* perimeter of a rectangle */ 

#define MYCAL(var1, var2)       3*var1 + 2*var2

There is a problem in the definition of this macro. If we call this macro as

MYCAL(v1, v2)/2 or as MYCAL(v1+v2, 30), operator precedence will create different

result than expected.

The best way of expressing the macro above is the following: 

/* perimeter of a rectangle */ 

#define RECTPERIM(width, height) (2*(width) + 2*(height))

1100..33..33 VVaarriiaabbllee  rreedduuccttiioonn

In the embedded world, memory is at a premium. Consider the following function: 

int Mycompare1( char * testarray )
{

int return_status = 0;

if( strcmp(testarray, “TEST” ) == 0 )
return_status = 1;
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return return_status;
}

The result of the expression enclosed within an if statement must be either true or

false. Thus the code can be simplified: 

int Mycompare2( char * testarray )

{

int return_status = (strcmp(testarray, “TEST” ) == 0);

return return_status;

}

One more simplification can be done as below:

int Mycompare3( char * testarray )

{

return (strcmp(testarray, “TEST” ) == 0);

}

This looks more like an embedded function ☺.

1100..44 PPEERRFFOORRMMAANNCCEE

Though compilers perform a lot of optimisation, the way we write code can also affect

the performance of code.

1100..44..11 UUssee  ooff  bbiitt--sshhiiffttiinngg

Let us look at the following code: 

for( index = 0; index < MAX_PORT; index += 5 )

{

x = index * 8;

y = index * 11;

}

The above code can execute much faster using the bitshift operator, as follows: 

for( index = 0; index < MAX_PORT; index += 5 )

{

/* x = (index * 8); y = (index * 11) */

/* multiplication by 11 = multiplication by 8

plus multiplcation by 2 plus x

*/

246 Embedded Realtime Systems Programming



x = index << 3;

y = (index << 3) + (index << 1) + index;

}

Division can be implemented using the right shift operator and modulus by a power

of two can be obtained by performing the binary and operation (&) by the same num-

ber, less one, as follows:

for(index = MIN; index < MAX; index += INCREMENT)

{

/* x = (index % 8) */

/* Y = (index % 32) */

x = index & 7;

y = index & 31;

}

Usually bitshifting is faster than multiplication, division and modulus. The comments

inside the code are useful to describe the result to fellow developers. 

1100..55 MMIISSCCEELLLLAANNEEOOUUSS  TTIIPPSS

1100..55..11 BByyttee  ssttuuffffiinngg

Generally compilers store data in alignment with even byte boundaries. Any extra

bytes in between are allocated and remain unused. This process is called byte stuffing.

This is done because it is quicker to address data on even address boundaries. Consider

the following definition.

typedef struct my_struct

{

char first_char;

int  first_int;

int  second_int;

char second_char;

}

If char is one byte and int is two bytes, a total of 8 bytes will be allocated for this

structure, one extra byte after first_char and one more at the end of second_char. This

structure could have been optimised in the following way.
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typedef struct my_struct

{

char first_char;

char second_char;

int  first_int;

int  second_int;

}

In this way, the byte stuffing is avoided and only 6 bytes are allocated for the

structure. It is advisable to look at the documentation of the compiler to optimise RAM

further.

1100..55..22 BBiitt  ffiieellddss

Since embedded systems are forever short of RAM, we can make use of the facility of

bit fields provided in C to optimum use. A lot of flags and variables do not take the

maximum values for which static allocation is provided for them. So, only specific

number of bits can be allocated for these flags thus saving valuable RAM. The

optimisation is tremendous if these flags are a part of an array. Consider the following

example.

typedef struct bit_field_struct

{

u8 one;

u8 two;

u8 three;

u8 four;

u8 five;

u8 six;

u8 seven;

u8 eight;

}

bit_field_struct wasted_array[MAX_NUM];

If the flags above are used to store some status values or similar operations, we can

save seven (because of byte stuffing) bytes by creating them using a bit each. We can

use more bits for flags that have more possible values too. Since we are wasting mem-

ory in structure definition itself, any array like wasted_array above created through

bit_field_struct will replicate this wastage. Consider the following code instead.
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typedef struct bit_field_struct

{

u8 one:1;

u8 two:1;

u8 three:1;

u8 four:1;

u8 five:1;

u8 six:1;

u8 seven:1;

u8 eight:1;

}

bit_field_struct wasted_array[MAX_NUM];

In this way, we allocate a total of MAX_NUM bytes instead of 8 * MAX_NUM in the

previous listing.

1100..55..33 OOppttiimmuumm  ssttaacckk  ssiizzeess

Stack sizes must be calculated and validated. In many cases, to meet tight schedules, the

stack size required per task/process is not put in sufficient scrutiny. So, to be on the

‘safer ’ (!) side a large buffer is added to the stack sizes so that the program does not crash

in realtime. 

Since memory is expensive, the stack sizes MUST be calculated approximately even

in the worst case. Though theoretical calculations are preferred sometimes to get accu-

rate theoretical calculations might be extremely tough or even unnecessary. We can use

some techniques that are more on the practical side:

❑ UUssee  PPrroocceessssoorr  OOppttiioonnss:: Some processors come with the option of software stack

size checking. Set stack sizes to minimum expectation. Whenever stack overflow

exception occurs, increase task stack size by say 1K and repeat the experiment.

This method should take a day or two depending on the complexity of the system

and the number of tasks in the system. This method should be used only when the

software is stable and when not much of the coding is required.

❑ WWaattcchh  ppooiinnttss:: Watch points are features provided by the debugger that will stop

execution of the program whenever a variable or content of a memory location

changes. (Though this could be used as a valuable debugging technique, we’ll see

how it can be used to determine stack sizes).
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The MAP file provided by the linker (or some tools provided by the RTOS ven-

dors (e.g. pSOS Awareness)) can be used to find out the location where the stack

of a particular task begins. We must remember that the stack grows downwards.

FFiigg..  1100..11 System stack

We can have watch points where the task stack ends. (For e.g. 0×0601 in the above

picture). The program execution will stop whenever stack grows to its limit. 

❑ Another way is to fill the entire stack area with a pattern e.g. 0×DEAD or sim-

ilar. Now let the program run for some time. Now if we examine the memory we

can see how much the stack was unused by seeing the memory dump of stack

region. Based on this the stack size can be either increased or decreased.

The best way is to use a combination of all the three methods.

1100..55..44 EEnnddiiaannnneessss

Endianness refers to the representation of multibyte variables inside embedded system

as low-order first (called little endian), or high-order first (called big endian). 

Care should be taken to maintain the endianness throughout. An endianness differ-

ence can cause problems if the processor tries to read binary data written in the oppo-

site format from a shared memory location or file. 
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Consider the following example of a little endian processor:

short x = 1 ;

short z = 0 ;

short y = 0×FE;

In case of a little endian architecture the memory location will look like the

following:

Memory address Contents

0×1000 01 00 00 00

0×1004 FE 00 00 00 

Notice that the value is stored contrary to how humans tend to read the two bytes.

So, the programmer should be a little careful when accessing the contents of this mem-

ory directly through a pointer since it may result in an erroneous interpretation of mem-

ory.

1100..55..55 CCoommppiilleerr--ooppttiimmiisseerr

Compilation is followed by an optimisation step in which redundant and useless code

is removed. Normally, it works in the benefit of the programmer. For example, consid-

er the code in Listing 10.1.

LLiissttiinngg  1100..11:: Redundant code

Here “a” has been defined and assigned a value of MAX_VAL. The program com-

pares the same value again in the next statement. This is a perfect candidate for opti-

misation and most optimisers will remove the comparison statement a == MAX_VAL.

Makes sense. The problem comes if “a” is a shared variable and can be potentially

changed by another task. So after “a” is assigned a value of MAX_VAL above, an unfor-

tunate task switch happens and the other task changes its value. Now, we want to call
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{
int a = MAX_VAL ;

if( (a == MAX_VAL) && (status == TRUE))
{

do_something_please( );
}
// … Continue doing something



the function do_something_please( ) only if a is equal to MAX_VAL, however, the

desired action fails here. Optimiser had good intentions but could not be out pal here.

LLiissttiinngg  1100..22:: Use of volatile keyword

In such cases, we can use the volatile keywork (see Listing 10.2). This keyword tells

the optimiser that the variable associated with this keyword should not be optimised at

any cost since it is “volatile” to optimisation and can create undesired results.

Another place where we should disable the optimiser is when we are reading from

say a memory where data is changing, (for example a memory-mapped I/O). So we will

be constantly accessing the same memory location through a pointer possibly in a loop.

Most optimisers will disable reading the memory again and return the contents read for

the first time. Making the pointer volatile solves this problem.

1100..55..66 DDiiffffeerreenntt  iimmpplleemmeennttaattiioonn  cchhooiicceess

Embedded systems have been implemented in a lot of ways. It depends on various fac-

tors like ROM requirements, efficiency, modularity, source code transparency, up-gra-

dation needs in the future, etc. Since embedded systems are usually message based,

they qualify for being Mealy machines. The implementation depends on the where

messages are handled and what actions are required based on the messages. 

CCaallllbbaacckk  ssyysstteemmss

Callback systems are the forefathers of today’s application frameworks. They work on

the principle of “inversion of control ” i.e. “we will call you, don’t call us ”. 

In this kind of system, we implement a few functions as specified by the callback system

and these functions are called whenever required. A classic example to callback (not call back

system) is the comparison function we pass to quicksort (qsort()) routine. (quicksort what?)

One real world example could be when you implement a Network Interface Card

(NIC). The NIC usually implements the MAC (Media Access Control) of Data Link
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{
volatile int a = MAX_VAL ;

if( (a == MAX_VAL) && (status == TRUE))
{

do_something_please( );
}
// … Continue doing something



layer and PHY (Physical) layers of OSI stack. This should integrate with the LLC

(Logical Link Control) already available in the host. 

For e.g., if the host wants to transmit a packet using the NIC, what does it do? The

NIC MAC layer can implement a callback exported by the LLC. And LLC would call

this function whenever it wants to transmit a packet. This makes the software in the

driver independent of the actual conditions under which the function will be called by

the application. It is important to note that even if we implement the callback function,

we don’t call it directly. It is called as and when required by the systems (or the appli-

cation framework). 

SSttaattee  mmaacchhiinneess

State machines seem to be ubiquitous today and their applications are wide and varied.

It might seem strange that these state machines are not an old concept in computer

science! State machines are spin-offs from finite state automata theory. 

This theory has revolutionised the field of compilers. It should be interesting to

observe that, the earlier compilers did not allow nesting of expressions more than a cer-

tain level because they could not parse those expressions. The compilers grew tremen-

dously powerful after the introduction of automata theory.

State machines rule the protocol world. Almost every protocol in tele-

communications and networking fields uses state machines. The extensive use of state

machines has led to creation of a language called SDL (specification and description

language). SDL extends the functionality of state machines and provides a lot of addi-

tional features. 

In some operating systems there is direct support for implementing state machines.

This is OS specific. But for other RTOS’ we have to implement our own state machines.

In this section we will explore ways of implementing them. 

Simply put, state machines can be considered to be a collection of:

i. States

ii. Transitions

iii. Actions

Consider a networking protocol where two models of networking are possible, 

say peer to peer (P2P) and client server (CS). And at any instance only one mode oper-

ation is allowed. 
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We can represent this using the following state diagram:

FFiigg..  1100..22 Sample state machine

At any point of time, the protocol could be in any of the following states:

i. NOT_CONNECTED

ii. CONNECTED_P2P

iii. CONNECTED_CS

The state transitions occur due to events that could be triggered by the environment

or could be triggered internally. (e.g. timeouts)

State transitions could also occur because of setting/resetting of a flag. This is illus-

trated by the following example.

FFiigg..  1100..33 State machine transition based on conditions
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The above state transition (that could be part of temperature controller in a house) is

caused when the condition current_room_temp == set_temp evaluates to true.

But, in most of the cases, the transitions are caused by events or by signals as explained

before.

Each signal is associated with a signal handler that performs the action to be done on

receipt of a signal. A signal may or may not cause a transition.

It is very important to note that the transition (internal or external) occurs only

AFTER performing the action. The temporal sequence is as follows:

i. Event occurs

ii. Action is performed

iii. Transition occurs (internal or external)

This is explicitly noted here because, many people either associate the action with

the transition or assume that it happens after transition. This ambiguity can be removed

by thinking of transition as the final step of action.

Now, we will explore two ways of implementing state machines. The two ways

described here are:

i. Using switch-case construct

ii. Using function pointers

IImmpplleemmeennttiinngg  ssttaattee  mmaacchhiinneess  uussiinngg  tthhee  sswwiittcchh--ccaassee  ccoonnssttrruucctt:: Here, we create various states

and signals using enum or #define and use a switch case construct to implement a

state machine.

Let us consider the case of networking protocol illustrated in Fig. 10.2.

The three states can be defined in a header file (StateMachine.h) as:

typedef enum ProtocolState_ {

PS_NOT_CONNECTED,

PS_CONNECTED_P2P,

PS_CONNECTED_CS

} ProtocolState;

PS_ prefix is added as the acronym for ProtocolState. This can be replaced by 

the project name. 
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The signals are also defined in the same header file:

typedef enum Signals_ {

P2P_CONNECT,

CS_CONNECT,

DISCONNECT

} Signals;

Let us assume that these signals are appropriately defined in StateMachine.h after

sufficient precautions for multiple inclusion.

There are two ways of looking at this state machine implementation:

i. In every state, various signals are handled

ii. Each signal behaves differently in different states

We will choose the first option that is widely used because of many reasons like

extensibility and reusability.

/* static global variable that stores the current state 

of the state machine */

static UINT16 u16State = PS_NOT_CONNECTED

void StateMachine ( int SIGNAL, void* pvMessage )

{

/* Somehow we get the message (signal) and the data 
associated with it. (Usually a pointer to a struct) */

switch (u16State) 

{

case PS_NOT_CONNECTED: 

{

switch ( signal ) 

{

case P2P_CONNECT: 

{

/* take appropriate action … */
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}

break;

case CS_CONNECT: 

{

/* take appropriate action … */

}

break;

} /* end of switch(signal) */

} /* end case PS_NOT_CONNECTED */

case DISCONNECT: 

{

/* … */

}

break;

case PS_CONNECTED_P2P: 

{

/* … */

}

break;

default: 

{

DB_PRINT (“Unknown State”);

}

break;

} /* end of switch (state) */

} /* end of state machine code */

Thus we can implement sate machines using the switch-case construct.
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PPrrooss::

Very simple to implement.

CCoonnss::

If each case becomes big, the handler must be made into a separate function.

Otherwise, its readability goes down drastically.

IImmpplleemmeennttiinngg  ssttaattee  mmaacchhiinneess  uussiinngg  ffuunnccttiioonn  ppooiinntteerrss:: Another way of implementing state

machines is by using function pointers and state/signal matrix.

The state signal matrix for the above protocol example can look like:

A typical function name could be:

It is important to note that all the signals are not handled in all the states. It is better

to fill in a common error function in all unexpected signals in all the states rather than

leaving them undefined. Then, we’ll never know if a spurious signal occurred. Our

code will crash unexpectedly.

PPrrooss::

This system is easy to debug. 

CCoonnss::

As the states and the signals grow, the matrix may become sparse and may occu-

py much more space than necessary.

The designers/implementers should weigh the pros and cons of both the methods

before choosing one over the other.
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Signal State

OnTxRequestinConnectedP2P ( );



1100..66 LLEESSSSOONNSS  LLEEAARRNNTT

Sound programming practices are like the proverbial stitch in time. Coding guidelines

are helpful in creating consistent quality code across the team. Proper care should be

taken to make the code readable, robust, maintainable and efficient. Macros are very

helpful in creating well-written code, however, the programmer should use them prop-

erly, else, they have the potential to introduce bugs. 

Based on the qualities of real time systems, usually they are implemented using state

machines.  

1100..77 RREEVVIIEEWW  QQUUEESSTTIIOONNSS

■ What is the pitfall while using magic numbers in code?

■ Which are the ways of calculating appropriate stack sizes for tasks?

■ What are far pointers? Where are they used?

■ Explain the implementation of a state machine using function pointers.

■ Why should there be a need to document bugs in software?

■ What is meant by little endian and big endian notation?

QQ
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Chapter

Estimation Modelling in

Embedded System

11

1111..11 IINNTTRROODDUUCCTTIIOONN

An embedded project is usually executed by a team. This team will have a goal (in

terms of fulfilling the functional requirements from the customer). So, it becomes inher-

ently important to take stock before beginning the project and try to create a picture of

cost and time required.

The first step in this direction is to try to calculate the amount of effort required to

convert the set of functional requirements into working code, unit test it and integrate

it. This procedure is called ef fort estimation. This chapter provides an introduction to this

procedure. We try to focus on the factors that make estimation inherently difficult and

inaccurate. We will highlight the reasons for keeping the estimations recursive and up

to date. 

Though this chapter introduces estimation as an integral activity of software

development, the information in this chapter is far from being exhaustive. The

discussion in this chapter has been intentionally kept brief and introductory. The reader

is advised to look at references given at appropriate places inside the chapter for more

information.

1111..22 WWHHAATT  IISS  EESSTTIIMMAATTIIOONN??

Suppose you are invited to your friend’s place for a dinner party. Your friend gives you

a map of the part of town he resides in, writes down his postal address and telephone

number and leaves. You are supposed to be there at 8 PM. It is a nice evening. You take



a good bath, wear cologne and set off— cool breeze in the hair and not a worry in the

world. Not a worry till you realise that you do not know what time to start in order to

reach there at 8. 

If you are in a situation like this, what thoughts will come to your mind? You may

start thinking, “well, let me make a smart guess based on the facts I have at hand”. You

may take into account the traffic patterns in that part of the city at this time of the day,

you may ask other people or your friend to give you a feeling of the time it takes to

reach there. You may like to consider the status of your car before applying some

alteration on the duration given by your friend. If you own a Porsche, you may want to

change the duration he has specified (for example ☺). This complete process of time

duration arrived at by you based on historical data and expert advice, to use the jargon,

is called estimation. By its very definition, estimation is not accurate. This is because

we have not taken into consideration what is actually happening on ground for arriving

at this estimate, or what events will have to be considered in future to arrive at an

accurate figure. We have taken only past experience into account. And past experience

is based on past events, which may not be valid now. So, if you are not Nostradamus,

it will be difficult for you to predict future events and take them into account ☺.

1111..33 EESSTTIIMMAATTIIOONN  IISS  NNOOTT  SSIIMMPPLLEE

It is theoretically impossible to arrive at an accurate estimate before the beginning of an

activity. On the other hand, an inaccurate estimate leads to problems later. If the esti-

mate is very optimistic, most probably, you will reach late to your friend’s place. Your

hosts may have been waiting for you, for quite sometime. If you make this habit, you

will start enjoying quite a reputation in your social circles ☺. The estimate may have

been optimistic because it did not take into account some risks or factors arising out of

extraordinary situations. You did not anticipate a traffic jam, or the fact that you are new

to the area so there is a possibility to miss a turn or two. Such factors may lead to an

unrealistic estimate. An optimistic estimate may create frustration and loss of motiva-

tion. On the other hand, a pessimistic estimate leads to wastage of energy and time (in

management jargon, wastage of resources ☺). You may consider the fact that there is

some probability of a car breakdown, so you are prepared for the worst. This situation

may never occur and you land at your friend’s place at 6 p.m. itself, while they are still

sweating it out in the kitchen ☺. To conclude, estimation is necessary before embarking

on even such a mundane activity like searching a new route to a friend’s place, what to

talk of an embedded project involving possibly millions! However, it is wrought with
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uncertainty and lots of dynamically changing factors. On the other hand, it should be

accurate enough for proper planning. Seems like the proverbial Catch 22 isn’t it? ☺

1111..44 EESSTTIIMMAATTIIOONN  IINN  SSOOFFTTWWAARREE

What we saw in the last section applies perfectly to software. Suppose your customer

comes out with a project and a set of requirements. You need to estimate these require-

ments based on three factors, namely:

❑ how much effort is required for it, i.e. man days,

❑ how many people and resources are required for its execution, i.e. cost; 

❑ what will be the basis of acceptance of the project by the customer, i.e. quality.

1111..44..11 EEssttiimmaattiioonn  iiss  nnoott  aaccccuurraattee

Inherently, as we saw earlier, the process of estimation is not accurate. Estimation of

effort for the project depends on an accurate definition of the project itself to begin with,

and it will not take any dynamically changing factors into consideration. Usually, the

liberty of an accurate project definition is not available, especially in these difficult days

of marketing. On the other hand, it is quintessential to estimate size and effort before

the beginning of the project, since it will be taken as a guiding factor for getting

resources for the project. Herein lies the trap. If the estimate is overly optimistic,

deadlines will be missed, customer will not be happy and team will be frustrated. If the

estimate is very pessimistic, then Parkinson’s law— that work expands to fill the avail-

able time—comes into play. The project will still take as long as estimated even if the

project could have been finished early. This will lead to wastage of resources and

money. The team may not like to be underutilised. It will also lead to blocking of

resources for the next project.

1111..44..22 OOvveerrllyy  iinnccoorrrreecctt  eessttiimmaattiioonn  iiss  ccoossttllyy

Available industry data illustrates that the cost of incorrect estimation is enormous.

However, due to the complex, unpredictable nature of software development, software

estimation (how long, how much code, how much testing, etc.) is a very challenging

task. It is a skill that requires a great deal of experience. Estimation can never be fully

accurate. The hard part is that the first estimate is drawn up in the beginning of the pro-

ject when the requirements are not particularly frozen or understood. And this estimate

is very crucial since resource plan and scheduling depends on it.
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Secondly, clients often ask for an estimate without giving an accurate description of what

they want. (E.g. “I would like a vending machine program. How much will that cost?”)

This drastically undermines the ability to determine how long a task will take. Usually,

most programmers heavily underestimate the time required, sometimes in order to get the

job and sometimes from inexperience. And, as we all know, in the programmer’s world,

everything can be done in a few weeks ☺. Secondly, usually in practical situations, if I am

in competition with other contractors bidding for the same project and the client is look-

ing for the best bargain, I am bound to lose the bid if our estimate is larger than others’. It

is a trade-off between high cost being expensive and low cost being risky.

1111..44..33 EEssttiimmaattiioonnss  bbeeccoommee  bbeetttteerr  oovveerr  ttiimmee

Software development is a process of gradual refinement. The development team

begins with an unclear picture of requirements and tries to build a system based on

them. As requirements become clearer, so does the implementation maturity. Because

the requirements of the software are unclear in the beginning, the estimate of the time

and effort needed for the job cannot be better either. As the project progresses, the

estimates for the job iteratively become better. Estimations done in the beginning of a

project are usually not correct and difficult to bank on.

However, it is essential for a project manager to know the effort, schedule and func-

tionality of a project before embarking on the actual development. This knowledge is

essential in order to plan and organise the resources for the rest of the project activity.

If a project manager knows at the beginning that there is not enough time to complete

it by a given due date, or if there is not enough money or resources in order to execute

it, or if the time is too short in order to arrive at a proper quality for the product, the

project may not be started at all. This can save a lot of money and time. To reiterate,

this is the eternal paradox of software development— lack of accurate estimate in the

beginning versus the essential dependency of project planning over it.

1111..44..44 EExxtteerrnnaall  ffaaccttoorrss

In the real world, there are additional factors. Requirements keep on changing contin-

uously. Since the software industry is very dynamic, the current requirements are valid

only for a short time, and if the product is not available in that time window, these

requirements have to be altered in order to cater to the changed market. Requirements

and other product factors change during the duration of the project, and they may

change a lot. The worse thing is that one can seldom predict how they will change, yet

we need to know all these before we start! (Where is Nostradamus?☺)
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1111..44..55 CCoonncclluussiioonn

This is the reason why we estimate software projects. There is no mathematical way to

calculate the exact effort in advance and it would be naïve to expect the initial values

to be correct and accurate. However, this does not render the process of estimation use-

less. On the contrary, this is an indication that we need to develop better estimation

techniques, which give accurate results early enough in the software project life cycle

and are useful in proper planning of projects.

It is a complex process with a lot of factors

and dependencies. Software estimation is neither

accurate nor constant. Being not constant has

implications over two forms:

If I ask for an estimate from two experts about

the size of a deliverable, they will most probably

give different answers, and they will have reasons to prove their estimates. Second, if I

ask the same experts later in the project life cycle for estimation, the new estimates may

be different from the previous ones.

Even with these constraints, estimation activity is not entirely useless. Estimates usu-

ally lead to a lot of insight into the resources needed later on— the pre-condition being

that the estimation is done properly, by taking a lot of factors into account. An estimate

done by intuition may not work out as an advantage and should be avoided as far as

possible.

This is the typical statement of the project

manager because of the ever changing condi-

tions of the project (requirements, attrition,

money, risks etc.). It is very normal for the initial

project estimates to be way off the final figures

and become better as the project progresses.

Industry data shows that in the early stages of a

project, feasibility study, the size of a project, etc. may be underestimated or overesti-

mated by as much as 4 times its final size. 

During the duration of the project, there is a gradual convergence of the estimation

figures and the width of uncertainty reduces a lot. Also see Fig. 11.1 for a graphic rep-

resentation of the above. 

Software estimation is the technique

of predicting the duration and cost of

a project.

DDeeffiinniittiioonn

The estimation process does not finish
until the project finishes.
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FFiigg..  1111..11 Uncertainty in estimates through a project’s lifetime

1111..55 FFAACCTTOORRSS  AAFFFFEECCTTIINNGG  EESSTTIIMMAATTIIOONN

When a project is being estimated, usually the required information is not completely

available and a lot of ambiguities exist. 

1111..55..11 WWhhaatt  iiss  tthhee  ddeeffiinniittiioonn  ooff  ccoommpplleexxiittyy??

First, the system has to be classified based on complexity. Or, may be parts of the

system have to be classified. The problem at hand is how to measure and quantify the

complexity of software. Other than the opinion of an expert, there are no concrete ways

of measurement. We can take into account the kind of cohesion in the parts of the sys-

tem. This will give us an idea about how well the different parts of the system interact

with each other. Inside a software component, we can have other methods of classify-

ing the complexity of a system. For example, we can measure the number of unique

paths in the software. This will give us an idea of how difficult this software is to test

and maintain, thus giving a measure of complexity. We can draw the flowchart of the

system and evaluate the number of different conditions (or diamond boxes). This gives

us a feeling of how difficult it will be to code the software. This kind of complexity of

the software is denoted as “cyclomatic” complexity. We can look at the number of paths

inside the flowchart for reaching a particular node from the top node. This gives an idea

of the complexity of algorithm. We can also have a measure of nesting levels based on

loops or function calls. This nesting level may indicate stack boundaries and difficulty

R
e
q
u
ir
e
m
e
n
ts

D
e
si
g
n

C
o
d
e

D
e
li
ve
ry

4x

0.25x

Feasibility

266 Embedded Realtime Systems Programming



in coding. All these factors give us a feeling about the complexity of the code being writ-

ten. However, no method gives us a complete view of complexity of the software. All

these methods need to be combined in order to arrive at a better conclusion. Also, at

the beginning of the project, it is difficult to make flowcharts of the system. An avid

architect may well have a tentative block diagram and high level interactions between

these blocks. So, one can look at cohesion as a criterion which identifies complexity of

software based on the number and complexity of interactions between its component

blocks.

1111..55..22 FFeeaattuurree  ccrreeeepp

The task of estimation definitely gets affected by a number of external factors, such as

feature creep, which means addition of new requirements while the project is being exe-

cuted. In fact, this factor has so much impact on the execution of a software project and

is widely prevalent in the industry that new software development life cycles have been

proposed and practiced in order to counter the ill effects of this feature. For example,

the classic waterfall model of software development, which was very appropriate for the

software development activity of late 80s, has not proved effective against this problem.

Hence new models such as incremental model and clean-room engineering have been

developed which try to mitigate the effects of change of requirements. 

1111..66 TTHHEE  BBAASSIICC  SSTTEEPPSS  OOFF  EESSTTIIMMAATTIIOONN

Estimation is performed in a number of steps. At any point of time, the estimator has

to perform these steps in order to arrive at the final estimate for the deliverable. This

section will provide an introduction to these steps. The next sections will describe how

to perform these steps.

1111..66..11 SStteepp  11::  EEssttiimmaattiioonn  ooff  ssiizzee

The first step is the estimation of the size of the software in measurable units. The two

most popular measures of size of software are SLOC (Source Lines of Code) and FP

(Function Point). The basis of arriving at the size of the deliverable in the beginning is

derived from a formal specification such as the customer’s requirement document, func-

tional requirement document, system specification, etc. Even when such a formal

document is not available, as we saw earlier, an initial estimate is always needed, and

is useful for planning. 

Estimates are governed by two factors: accuracy and precision. 
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Accuracy means how close the estimate is to the actual figure. For example, if the

final effort is 100 staff hours, an estimate of 90 hours is more accurate than 80 hours.

Precision defines the level of uncertainty for that estimate. For example, 90 plus or

minus 40 is less precise than 80 plus or minus 20.

As we saw in Fig. 11.1, the uncertainty cone is very wide at the beginning of 

the project. Hence the accuracy and precision are not very high at this time, and so

cannot be relied upon heavily. The estimation of size should invariably be refined

(made precise and more accurate) during the entire duration of the project, periodically,

or in different stages (requirements to design to implementation, etc.), or at the 

update of requirements, etc. It is often easier for an estimator to propose an estimate 

in SLOC. This is because the final product will be measured in this unit and 

also, because of experience of working with C by embedded engineers. The unit 

of measurement may be convenient; however, it is very difficult to predict a size 

in terms of lines of code when not a single line has been written. First, it heavily

depends on coding styles of individuals. Second, it depends on the language being used

for implementation. FORTRAN is known to use less SLOC for mathematical

operations as compared to C++, but fails utterly when it comes to performing file

operations!

Hence, if the organisation has very strict programming guidelines as proposed in

previous chapters and they are followed religiously this basic inconsistency may be

nullified. Otherwise, these factors may bring an inherent inaccuracy in the estimation

process.

1111..66..22 SStteepp  22::  CCoonnvveerrssiioonn  iinnttoo  eeffffoorrtt

Once the size of the product has been estimated, it needs to be converted into an effort

in man days. This conversion from total software size to total project effort is again intu-

itive. At best, we can get an empirical formula based on past projects data from the soft-

ware industry. This conversion depends heavily on the maturity of software develop-

ment process (involving requirements, design, implementation, testing and integration)

of the organisation. A software development project involves far more than simply cod-

ing the software. In fact, coding is often the smallest part of overall effort. Writing and

reviewing documentation, implementing prototypes, designing deliverables, reviewing

and testing code take up the larger portion of overall project effort. The project effort

estimate requires the estimator to identify and estimate all the activities that must be

performed to build a product of the estimated size. The total effort should remain the

same irrespective of whether the size has been specified in SLOC or FP. 
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1111..66..33 SStteepp  33::  EEssttiimmaattee  tthhee  sscchheedduullee

The third step in estimating a software development project is to determine the project

schedule from the effort estimate. This generally involves estimating the number of

people who will work on the project, their assignments, availability, how much holi-

days, travel, and training, besides other risks. Once we have this information, we need

to lay it out into a calendar schedule. Now, there are no specific tools or methods avail-

able for doing this since a schedule is highly specific to a project. At best some tools

exist to help the estimator organise these ideas. Past data available with the organisa-

tion is the most useful guide to work out the number of people appropriate for a given

size and complexity of a project.

1111..66..44 SStteepp  44::  EEssttiimmaattee  tthhee  ccoosstt

The final step is to estimate the cost of the project. A project usually has a lot of

expenditure other than the salaries of people ☺. Cost includes expenses on infrastruc-

ture, tools, training to employees, travel, telephone bills, equipment for testing, office

space, etc. This is also highly specific to projects and hence no standard formula can be

given in order to generate the final cost based on a schedule and effort. Figure 11.2

explains these steps.

FFiigg..  1111..22 Steps in a project estimation process
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The estimator should keep the availability of staff in mind and the level of expertise

available in executing similar projects in the past. The amount of code reuse possible

also has a bearing on total estimated effort. The size of code that has to be written for

adapting the code for reuse definitely brings in overheads. In addition, organisational

factors like attrition, holiday, etc. and effort for risk management create an impact on

the estimated schedule. All these little estimates are themselves inaccurate and they

tend to add on to the inherent inaccuracy of an estimation process.

1111..77 HHOOWW  TTOO  PPEERRFFOORRMM  EESSTTIIMMAATTIIOONN

1111..77..11 EEssttiimmaattiioonn  ooff  ssiizzee

There are several methods to estimate size.

EExxppeerrtt  ooppiinniioonn

One of the first methods that comes to mind in case of estimation of a particular

software is to get the expert’s opinion. The expert would have experienced a similar sys-

tem in the past and would have come across similar code. He or she is best equipped

to perform an extrapolation from the past and apply it to the new estimation. However,

this needs to be taken with a pinch of salt. First, usually such an estimate does not have

a quantitative analysis. Hence it is difficult to review it in a quantitative way. Second,

the estimate so done may differ from expert to expert in the perception of complexity

of the problem, the foreseen problems and risks are based on different possible

implementations. Hence it is very difficult to come to a conclusion based on tentative

subjective analysis. Third, no two experiences are the same. If an expert has an

experience in developing a project in the past, it is near to impossible that the new soft-

ware will be the same. In fact, very few parts of the code will be similar to the old one.

Hence, the estimate will be mostly based on the factors affecting the current project.

When a lot of money and resources are involved, we would certainly like to use some-

thing more than just intuition! Please note that this estimation can be done in any unit

be it SLOC, FP or something else: it does not really affect the estimation process and

the associated difficulty of accuracy and precision.

SSttrreennggtthhss  ooff  tthhiiss  mmeetthhoodd::

❑ The domain expert is the best person to estimate.

WWeeaakknneesssseess  ooff  tthhiiss  mmeetthhoodd::

❑ Generally it is qualitative.

❑ Unavailability of previous data to bank on since no two projects are the same.

270 Embedded Realtime Systems Programming



❑ Usually the factors affecting estimation in previous projects get diluted over 

time, or the same factors may not be valid in the new project and the expert is 

unable to apply the same in subsequent projects.

❑ Depends heavily on expert’s judgement and objectivity and is qualitative to a 

very large extent.

HHiissttoorriiccaall  ddaattaa

Another way of doing it is to use historical data of similar projects and apply it to the

current activity. This will give close results if historical data is available in the organisa-

tion in the first place. Secondly, this data should correspond to the kind of system being

developed. An embedded system is doomed for disaster if data from a GUI system is

taken for estimation. Thirdly, factors under which the previous system was developed

should be taken into consideration. 

SSttrreennggtthhss  ooff  tthhiiss  mmeetthhoodd::

❑ Useful when a systematic database exists that captures estimates and actual 

effort for previous similar projects.

❑ The actual experience on similar projects can be averaged for better estimation.

❑ Quantitative, repeatable and self-generating. The accurate numbers can then be 

used to perform better estimations in the future.

WWeeaakknneesssseess  ooff  tthhiiss  mmeetthhoodd::

❑ Qualitative arguments are needed to understand the differences between the 

factors of the previous project and the current one.

❑ Historical data can never be complete in identifying all constraints, techniques, 

personnel, and activities of the new project.

❑ The historical data needs to be accurate so that it helps in yielding accurate 

estimations in the current activity.

DDeellpphhii  tteecchhnniiqquuee

In order to arrive at an analysis, certain parametric or algorithmic models can 

be used. The most famous among these models is the Delphi technique. This

technique uses a group of experts who are asked to estimate the software individually

and in isolation. The coordinator without a group discussion then averages the 
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experts’ opinion. A variation to this technique called the wide band Delphi works as

follows:

i. Co-ordinator provides each expert with an estimation sheet. 

ii. Each expert fills out the form individually.

iii. Co-ordinator collates all estimates and marks the points where the estimates 

differ widely.

iv. Co-ordinator calls a group meeting; where the experts discuss these points and 

understand from one another the basis of arriving at the estimation figures. 

v. Based on the discussion, experts review and submit the estimates again.

vi. The co-ordinator and the experts go through iterations in order to arrive at a 

consensus.

SSttrreennggtthhss  ooff  tthhiiss  aapppprrooaacchh::

❑ The “judgment” factor present in earlier approaches gets averaged out.

❑ Experts can resolve qualitative estimates based on insufficient recall and bias 

through the iterative review and negotiation process.

WWeeaakknneesssseess::  

❑ Since experts do the estimates based on their experience, there is no way to 

judge the accuracy of an estimate.

❑ Estimate arrived at group consensus may be more accurate, however, it may 

involve a lot of time. A quick estimate from an expert may be quick but not 

quantifiable. 

❑ The estimate is not always exactly repeatable.

❑ Arriving at a consensus of different estimates may be difficult. There is no 

clarity on whether to find the average or median of these different estimates.

There are two ways to refine this approach. If a person is asked to provide an esti-

mate about the card verification system, he will most probably reply, “Mm, may be

2000 SLOC”. This is possible because, usually while giving estimates from the top of

the mind, the system is viewed in its entirety and many times the complexity involved

in the interfaces among the components are not taken into account. This is called the

top-down method of estimation.
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The estimation can be arrived at in a different way if the expert tries to break the sys-

tem into its components to get a feel of the internal behaviour of the system. The expert

bases this on the knowledge and experience of working for similar system. This is called

the bottom-up method of estimation.

The expert can then provide an estimate based on the two approaches. Conceptually

both top-down and bottom-up approaches usually arrive at the same results. It depends

on the ease of use for the expert.

TToopp  ddoowwnn  aapppprrooaacchh

In this technique, the overall cost estimate for the project is derived from the global and

common properties of the software project. Estimates are made on the whole system

taking the external interfaces of the system into account. Additional factors such as the

overall system integration and configuration management are also taken into account.

SSttrreennggtthhss::  

❑ System level focus.

❑ Takes care of overall internal and external factors like system integration into 

account.

❑ Puts emphasis on the coupling or interaction among the system constituents.

WWeeaakknneesssseess::

❑ Can be less accurate because of lack of detail at the level of constituent blocks.

❑ No focus on the complexities of individual components of the system. So their 

estimation may not prove to be accurate. 

BBoottttoomm  uupp  eessttiimmaattiinngg

In this technique, the cost of each software component is estimated and these costs are

then added to arrive at an estimated cost for the overall product. As can be seen easily,

this approach provides the estimator with what the top-down approach fails in— the

detail about individual components.

SSttrreennggtthhss::

❑ All components are individually estimated, so there is a better estimation 

basis.

❑ Interaction between the components can be better estimated once the 

individual components are understood well.
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WWeeaakknneesssseess::

❑ May overlook overall common effort related to system integration, 

configuration management associated with software development. 

1111..77..22 EEssttiimmaattiioonn  ooff  eeffffoorrtt  aanndd  sscchheedduullee

Estimation of effort and schedule based on the estimation of size, too, is highly intuitive

and empirical. Examples of methods to perform effort estimations are:

COCOMO in its versions [1] and Function Point Analysis [5].

1111..88 DDOO''ss AANNDD  DDOONN''TTss OOFF  EESSTTIIMMAATTIIOONN

Based on the experience of the software industry, there are some lessons to be learned

regarding estimation and the associated planning.

CChhaannggee  aanndd  aaddddiittiioonn  iinn  rreeqquuiirreemmeennttss:: The possibility of new requirements during the

development of software and the associated changes need to be kept in mind while

doing estimation. COCOMOII [1] manages this fact well while doing estimation.

EEssttiimmaattiioonn  iinnaaccccuurraaccyy:: By its very definition, estimation is inaccurate. It needs to be

refined at each stage of development. 

MMaannaaggeemmeenntt  ooff  tthhee  pprroojjeecctt:: Even with accurate estimation, a mismanaged project can

lend itself into trouble with respect to effort and schedule. Hence, wastage should be

eliminated at all costs.

DDoonn ''tt  oovveerr--pprroommiissee:: Human limits should never be reached while planning. When all

estimates are pointing otherwise, it is better not to over-promise. It finally boils down

to the basics of doing too many things wrong or doing few things right.

BBeewwaarree  ooff  eexxcceessssiivvee  mmuullttiittaasskkiinngg:: Humans cannot perform a lot of jobs at the same

time. While performing the planning for a project, it is vital to look at this tendency on

the part of software engineers. When the number of jobs performed simultaneously by

a software engineer increases, the quality of deliverable invariably suffers.

PPrreecciissiioonn  iiss  nnoott  ppoossssiibbllee:: As we saw early in the chapter, estimation should be done

in ranges owing to the inherent lack of precision in estimation. These ranges become

narrower and narrower as the project proceeds until at delivery time when they con-

verge on the actual delivered size of the product.

UUssee  sseevveerraall  mmeetthhooddss  iinn  ppaarraalllleell:: It is advisable to use a lot of techniques for estimation

in parallel thus verifying the final figure against each other.
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PPrrooppeerr  ppllaannnniinngg:: While making a schedule, it is imperative to consider that people

work x days a week and for y weeks in a year. They are not evenly spread across the

whole year. People take holidays. There are other distractions such as travel, recreation

and organisational indulgences. So the schedule needs to take these factors into account.

PPrrooppeerr  rreevviieeww:: It is advisable not to be in a hurry while doing estimation. It is always

good to sit down and review the estimates made in the first round. People are known

to be overly optimistic when they want to make estimates. Hence, some time should

definitely be spent in revising the analysis and factors affecting the estimations.

WWhhoo  sshhoouulldd  ddoo  tthhee  eessttiimmaattiioonn?? Two sets of people are indispensable for doing esti-

mates. First, veterans of estimation, these people have battled hard and know the gen-

eral issues affecting the project. The other people are the developers themselves.

Developers usually have strong focus in technical details and it helps in highlighting

problems in implementation. 

AAsskk  aass  mmaannyy  qquueessttiioonnss  aass  ppoossssiibbllee:: When doing

estimates, we should feel free to ask questions.

These questions will narrow down the assump-

tions we have made and hence lead us towards a

more focused and less hazy analysis.

SSttoorree  pprroojjeecctt  ddaattaa:: Organisations that keep

database of projects they completed in the past

can reuse this knowledge when planning for the next projects. This is true even when

the projects of the past were different or involved different factors, or were performed

under different conditions. Past records give us a hint of achievable targets and a basis

can be arrived regarding the new project. It may vary slightly depending on the extent

of changes; however, data collected over a period of time can be really accurate.

1111..99 LLEESSSSOONNSS  LLEEAARRNNTT

In this chapter, we learned that estimation is a necessity for proper planning of an

embedded project in terms of cost, resources and time. However, by the very defini-

tion, estimation is not an accurate and precise activity. Usually, in the beginning of a

project, estimates are wide off the mark with respect to the actual figures. Hence, it is

necessary to review the estimate during different stages of a project, or when there are

changes in requirements. 

Involvement of developers during

estimation brings in a feeling of

ownership that garners commitment 

to the project.

PP22PP
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Estimation of size, effort and schedule are the prerequisites for a good project plan.

Estimation of size can be done on the basis of complexity of the code and other factors

such as coupling between components, and can be expressed as SLOC or Function

points. This size can be converted into effort based on the empirical formulae available

for different projects from a study conducted by Boehm.

All said and done, estimation is a team activity, and all members of a team need to

be involved during initial estimation, review and planning.

1111..1100 RREEVVIIEEWW  QQUUEESSTTIIOONNSS

■ Give your arguments on why estimation is an important activity during 

embedded project execution.

■ What are the steps involved in estimation?

■ “Estimation is a continuous process and does not finish until project closure.” 

If so, then estimation should not serve any purpose. Do you agree with this 

statement? Justify.

■ How does bottom-up approach of estimation differ from top-down approach? 

What are their strengths and weaknesses?

■ Why is it difficult to estimate the size of a product at the beginning of the 

project?

QQ
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Chapter

Validation and Debugging 

of Embedded Systems

12

1122..11 IINNTTRROODDUUCCTTIIOONN

As is true with all systems, embedded systems need to be validated before they are
shipped for delivery. Testing of embedded systems is done at various levels: first the
developers perform unit testing of lowest level code, module level testing to test a group
of units forming a logical entity, and finally system testing to validate the entire system.
Another way of looking at testing is the kind of errors being looked for, that is, the scope
of testing. It is interesting to note how embedded system validation differs from
validation of applications. Also, the kind of challenges that exist in validating software
written for embedded systems are quite interesting. This chapter begins with this
discussion followed by a brief introduction of the different kinds of testing performed
on embedded systems, validation tools available, testing strategies and tactics, some
troubleshooting tips and finally, we will look into some of the most famous embedded
system faults in the human history together with the reasons behind them.

1122..22 WWHHYY  IISS  SSOOFFTTWWAARREE  TTEESSTTIINNGG  DDIIFFFFIICCUULLTT??

In general, any software needs to be tested using the following three basic steps:

i. Create an input for the software in some form.

ii. Receive an output and compare it with the expected output.

iii. Repeat it till it can be safely concluded that the major paths of execution and 
decision have been tested.



We need to keep in mind, that for a reasonably big software, whether it is application
or embedded, it is highly difficult, if not impossible to test each and every part of it.
That is why the last item in the above list states that the test should be concluded after
all major paths have been checked. The definition of what the major path constitutes,
need to be defined before the test execution.

Let us then list out what makes testing of software so very difficult.

❑ SSeennssiittiivviittyy  ttoo  eerrrroorrss:: Software is inherently sensitive to errors. A near correct
value is no better than a completely wrong value. The percentage of software exe-
cuted in the correct way does not matter if the output is not correct. The only
difference is the amount of time that needs to be spent in debugging may vary
based on how easily the error can be tracked. Even then, mostly, a completely
wrong answer is easier to track than an error that does not occur all the time or the
one that gives a slightly wrong answer, because both of these conditions will
generally get executed in some obscure portion of the code.

❑ CCoommpplleexxiittyy:: All said and done, software is complex. If we take the instruction
set of a language, there are seemingly infinite ways in which they can be combined
in order to arrive at a code. 

❑ TTeessttiinngg  iissssuueess:: Even a simple program cannot be tested completely based on all
combination of possible inputs and comparing against all possible outputs. Testing
all execution paths and decision statements with all possible values is a really hard
job. This, together with the real life constraints of aggressive schedules and limit-
ed resources, makes it a real losing battle. So, at the end of the day, what is impor-
tant is to realize that software shipped for delivery can never be claimed for zero
defects. We can only give a feeling of the quality of software based on defects
found, and how the number of defects has gone down over a period of time. And
most importantly:

❑ RReeggrreessssiioonn:: Software is a unique field in that, the concept of regression, or reap-
pearance of a previous bug in a subsequent change of code, is unheard of in any
other discipline. This makes the job of the developer harder by another few
degrees. In typical embedded projects, software is not written from scratch, but
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handed down from a legacy system, which is then enhanced according to new
requirements. The introduction of regression in a legacy system is even simpler!
This means that the software testing should be such that it not only tries to find
new bugs introduced on the system, but also keep an eye on the previous ones
resurfacing because of an inappropriate patch.*

❑ SSiimmuullaattiioonn  ooff  aaccttuuaall  eennvviirroonnmmeenntt:: The most challenging job for the tester of the
software is to think of all possible uses the software shall be put into during its life-
time. This is as difficult as writing a blank cheque to a stranger! You never know
what happens next ☺. What happens if the user presses the key of remote control
too fast? What happens if the user presses a particular combination of keys on a
mobile phone to launch an application while an incoming call is detected? What
happens if the sensor is operated in an unusual temperature or while driving at an
unusual speed? Many embedded systems are used in safety critical systems or 
in systems where the simulation of this atmosphere may be expensive or
dangerous. The bottom line is that limitation of the validation of software needs to
be accepted.

Keeping this basic mechanism of testing in mind, we can arrive at the differences
between testing an application software and embedded software.
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HHaarrddwwaarree  ccoouulldd  bbee  wwrroonngg……
It is normal for software engineers to assume hardware is perfect and break their heads over solving

some bug. We learnt this the hard way. We were working on the first set of chips that had arrived

recently from the fab. After a few days, when we were testing some functionality, we realised that the

system was not performing as expected. So, the only thing we began doubting was the software. After

two days of frantic debugging, we were still nowhere. Then we were helped by a senior architect who

sat with us to identify the problem. Then we realised that the problem occurred when the software /

hardware worked in a way to provide a time-critical response. We always saw a wrong response and

hence were trying to debug how the software produced the wrong result. But the problem was that

even if the software provided the correct response, it got corrupted in the hardware transmission

engine. We changed the chip in the board and voila! The problem vanished. The project would have

been in serious trouble if this problem was not identified. So, nowadays it makes perfect sense to sus-

pect bugs in the hardware and not just software.

WWaarrnniinngg

*Patch is a change made in an existing system to solve a bug.



1122..33 DDIIFFFFEERREENNCCEESS  BBEETTWWEEEENN  AAPPPPLLIICCAATTIIOONN  AANNDD  EEMMBBEEDDDDEEDD  TTEESSTTIINNGG

❑ EEmmbbeeddddeeddnneessss:: Most embedded software are, well embedded. So they do not
generally have a keyboard, hard disk and monitor attached to them. In that case,
special mechanism needs to be created to validate the software and the complete
system before actual usage.

❑ RReeaallttiimmee  bbeehhaavviioouurr:: Most embedded systems are realtime. It is important that
the output received from the system needs to be correct and also that it arrives
within a specific time. A late response is a wrong response.

❑ DDiiffffiiccuulltt  ttoo  ssiimmuullaattee:: Due to the conditions under which embedded systems are
used, the simulation of its actual environment may be expensive, difficult or dan-
gerous. A simple embedded device such as an electric or smoke detector creates
problems since the validation system needs to circumvent the actual sensor and
send a signal directly to the software executed because of this signal.

❑ DDiiffffiiccuullttyy  iinn  sseeeeiinngg  oouuttppuuttss:: Since embedded systems are usually connected to
devices, their generated outputs are not in the form of a message on the screen,
but may be a command to handle a device or write something in memory. So the
test suite needs to explore the internal parts of the embedded system in order to
verify if the desired operation was performed.

Most consumers do not seem to mind an occasional glitch in the execution of
application software. However, there may be a great price to pay, if even the
simplest of embedded systems such as a bar code reader crashes during operation
or worse, gives a wrong output, or if a washing machine gets programmed in a
different mode than desired.

❑ NNoo  ddoowwnnttiimmee:: Unlike application software, many embedded systems are
expected to run continuously. This poses its own problems, and they are very dif-
ficult to detect during validation. Problems such as memory leaks, recovery from
incorrect states, hardware malfunction, etc. usually are difficult to simulate.

There are numerous similarities. However, the extent of differences between
the two makes testing deserve a second look by the embedded software developer.
And as is evident, the realm of testing embedded systems spans across many
frontiers.
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1122..44 VVAALLIIDDAATTIIOONN  TTYYPPEESS  AANNDD  MMEETTHHOODDSS

Armed with this background of Section 12.3, it would now be worthwhile to know 
how best all these problems can be minimised. On a broad level, testing of 
embedded systems can be divided into two categories based on their platform.
Embedded are one of the very few kinds of systems that are developed on one 
kind of platform (generally Unix, however, Windows too), but need to be cross-
compiled. The first platform is called the host and the second platform is called the
target. Host is used for development because of limitations of editing and compiling
code on the target system. So, testing needs to be performed on both the host 
and target level.

1122..44..11 TTaarrggeett  tteessttiinngg

This testing is performed on the actual embedded systems as a whole under either actu-
al conditions or a very similar replica of these conditions under realtime. This means,
for example, that a TV remote control is tested by actually connecting it to a radio and
performing sanity check through the remote control.

1122..44..22 HHoosstt  tteessttiinngg

As the name implies, the software of embedded system is detached from its surround-
ings and it can be tested in a limited way on a host machine by simulation of all
neighbouring environment.

1122..44..33 TTaarrggeett  tteessttiinngg  iiss  ggoooodd  bbuutt  ddiiffffiiccuulltt

Obviously, target testing is the more comprehensive testing method. Since it is per-
formed under near to real conditions, it can detect errors quickly and in possibly larg-
er numbers. On the other hand it is relatively more difficult to actually perform target
testing throughout the development period due to the following restrictions.

IInnccoommpplleettee  ssooffttwwaarree

Testing on target hardware means that the complete software should be available for
validation. This means that the target testing can be performed only after the entire
development has finished. This is a major limitation since target testing cannot check
the quality and validity of individual components of embedded software. So, it is more
expensive since for each small bug in a piece of software (that may not actually relate
to being called “realtime”), the complete software needs to be executed, and the long
race of chasing of the mysterious bug begins. It is much more cost effective and time
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saving to perform sanity checks of individual components of the software before
approaching a target station.

IInnccoommpplleettee  hhaarrddwwaarree

Not only does the software need to be complete, but also the hardware should be up and
running before the actual target testing is done. Now, it is a project planning issue, but in
most cases, both the hardware and software cannot be delivered on exactly the same day.
This means that at least one of the teams has to wait. While hardware is getting ready, it
makes more sense to perform testing on the software in a limited way on the host.

RReeggrreessssiioonn

Due to realtime and actual usage of the complete environment, it is much harder to sim-
ulate a bug again in target platform later in order to check for regression. Once a bug
has been detected, it can be simulated easily on a host and can be effectively used later
as part of standard test suite to contain regression.

IInnccoommpplleettee  tteessttiinngg

Target testing cannot test all portions of the code. The reason is simple. A good part of
embedded systems code relates to catching exceptions triggered by rare failures. The
rest of it deals with realtime characteristics of input signals and depends on what “state”
of processing the system was at that time. So, it is not possible to claim that all code has
been tested. It is much easier to simulate such situations on the host and test code.

LLaacckk  ooff  ggoooodd  ttrraacckkiinngg  mmeetthhooddss

Due to the inherent nature of realtime embedded systems, many a time, a bug detected
once may not appear again. So, at each cycle of test, it is essential to capture all status
values in a trace dump. However, embedded systems usually are devoid of any storage
mechanism. This makes the target platform useless for tracking purpose unless some
other mechanism is found to circumvent the problem. For this need, special hardware
and software is needed.

1122..44..44 LLiimmiittaattiioonnss  ooff  hhoosstt  tteessttiinngg

However, there are some problems that can be found only in target testing.

NNoo  rreeaallttiimmee

All problems that relate to the realtime behaviour of the system are very difficult to test
on the host. Even though simulators are used, they can help only to a limited extent
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since they perform some kind of overlay over the existing software, thus changing the
real time behaviour of the code.

AAcccceessss  ooff  ppeerriipphheerraallss  aanndd  mmeemmoorryy

Shared data problems cannot be detected on the host because in realtime systems, they
may occur because of an interrupt. Problems related to accessing of peripherals, actual
field conditions like an increase in the temperature of the chip, spurious interrupts can
be detected on the target much easily.

Watchdogs can be tested easily and conclusively on the target. Watchdog is a mod-
ule that regularly receives the status and health-check signals from all parts of the
system. It waits for a certain predefined interval. If such signal(s) is(are) not received, it
just resets the processor.

1122..44..55 HHoosstt--bbaasseedd  tteessttiinngg  sseettuupp

The concept of host-based testing involves a simulation of the complete environment of
the system under test (SUT). Since the hardware dependent portions of the code can-
not be tested effectively on host, they need to be simulated as well. Figures 12.1 and 12.2
illustrates the above fact.

FFiigg..  1122..11 Host test setup
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FFiigg..  1122..22 The organisation of target system

There is a part of code inside the system that is completely hardware independent,
and a piece of code that depends on the hardware. The idea is to replace this hardware
dependent code with a test setup that simulates this environment. The simulation test
code needs to be written for ISRs, timing interrupts, direct access to memory and
devices, other modules, etc. Usually, such test code is called a “stub”.

1122..44..66 MMaannuuaall  vveerrssuuss  aauuttoommaatteedd  tteessttiinngg

A very interesting debate that goes on in embedded systems testing fraternity is whether
manual testing or automatic testing is more effective. Well, we cannot say which one is
more powerful and hence eliminate the other one. It is just that, a combination of both
can yield strong gains.

Test automation can improve embedded development by obtaining better test cov-
erage through repeatable tests, performed consistently, by automating the test and ver-
ification process. Automated testing can provide faster, more complete product verifi-
cation faster, once effort has been made to create the automated testing environment.
In many instances, an automated environment can perform testing that manual testing
could not accomplish or would take too long to perform. Another significant benefit of
performing test automation is the accumulation of tests over time. These tests can be
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used to check regression and to keep an eye over the overall quality of the system. As
systems get developed, they become more and more complicated. With each cycle of
development, the effort required for manual testing may grow exponentially. Lastly, in
cases where embedded systems need to take certificate of quality from some standard
organisations (for example communication devices), the logs generated by automated
test tools are a must.

Advantages of automated testing include reduced test time and reduced staff effort in
executing the tests. The time thus saved, can then be used for development of more
tests. This in turn, results in increased test coverage quality and earlier defect detection
and correction because of more extensive testing by running a greater number of test
cases. In a nutshell, it augments the overall quality of the product.

There are important and significant differences between manual and automated test-
ing. Manual testing of embedded systems is most useful in situations where the results
of a specific and limited set of test cases are needed relatively quickly. Automated test-
ing, on the other hand, requires a greater initial effort to plan, organise, and produce
the tests. One of the reasons manual testing is performed, is because of the relatively
quick feedback it produces. Automation requires an initial investment of time.
However, it produces repeatable tests that can be run possibly in a batch and the results
are logged and compared automatically. 

Let us take a typical example. Let us assume that we are developing a target system
that takes n different types of input values: 1 to n and generates an encryption key based
on these values. The ideal way to test such a function would be to create inputs that
span across the entire gamut. So, if input can range from say, 1 to 100.

This means: values of 0, 1, 2, 100/2, 100-1, 100 and 100+1.

For the case of n equal to 4, this means 7*7*7*7 = 2401 combinations.  

It would be hard to opt for a manual testing of all these combinations.

Even if we do, in the best of conditions, we estimate that each manual input takes one
minute. In that case, this manual testing needs more than 40 hours to finish. Not to
mention the human error associated with such a scheme. Even though the probability
of finding a lot of bugs in this function is less, we still need to spend time in testing it in
order to make sure. If the project goes through three build cycles for a release, we have
spent more than 15 man days on a single test!

Let us now automate this test. The execution time of each test drops from 40 hours
to a far lower value. After some initial setup, the tester is free to spend the rest of the
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time performing manual testing over and above the well-defined tests in automated test-
ing. Chances are that the manual testing also unearths bugs. So, the automated testing
didn’t replace the manual testing, the advantages of manual and automated testing cre-
ated a synergy and made the testing process much more effective.

Let us look at it in a different way. Let us assume that the project has planned for 20
days of testing effort. If 80% of the test plan can be automated, only 4 days are spent on
the automated testing, and at the end of it, the result is the same as that had been
achieved by performing manual testing for 20 days. If manual testing is continued in
the rest of 16 days, any other bug found could not have been found if the automated
testing had not been available.

To conclude: 

1122..44..77 RReeggrreessssiioonn  tteessttiinngg

Regression testing is used to test previously observed bugs in the code. This testing is
best performed in an automated manner whenever a new baseline for the software is
created or after a bug has been fixed. The purpose of regression testing is twofold:

❑ SSaanniittyy  cchheecckk:: Regression testing performs effective sanity checks for the system.
After going through a regression testing phase, the minimum quality of the software
is guaranteed such that basic minimum paths and operations have been tested.

❑ OOlldd  gghhoossttss:: It is common for software developers to introduce new bugs while
fixing a problem, or to fix the problem partially in the first place. Regression test-
ing makes it possible to detect any old ghosts returning. ☺

As is evident, regression test is more to control re-occurrence of past defects. Hence,
they can be created only after faults have been detected in the system. Alternatively, all
tests created for a system in the beginning can renegade to the status of being regres-
sion tests later in the next versions.

Usually, regressions tests are written on the basis of reports from the field, or from a
past error. So, the regression tester can run his imagination wild and try to execute
similar conditions and improve overall quality of software. Unless, a very remote and
complicated path of software has been found to be faulty, software bugs usually exist in
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We usually cannot find new bugs by performing automated test-

ing but we can reduce testing effort tremendously, while still

ensuring quality of the product by performing a judicious mix of

manual and automated testing.



groups. If a portion of software has been found to be faulty, chances are that more
problems can be unearthed by changing the parameters slightly and checking other
border conditions. 

1122..44..88 WWhhiittee  bbooxx  tteessttiinngg

White box testing is performed at a system or module level by a team in order to exer-
cise the most important paths of the source code. This necessitates that the tester knows
about the organisation and functionality of the code. Usually, white box testing is per-
formed after developers have done unit testing. This testing can be performed on the host
or target. White box testing tests the coverage of the code. It tests the software from the
code point of view. This means that no efforts are made to verify if the code matches the
requirements, or if the requirements are complete and correct in the first place. The focus
of white box testing is to see if the way code has been written matches its expectations.
White box testing is unlikely to detect missing code faults, and particularly in embedded
systems, some parts of the code may be unreachable through this testing.

As is evident, white box testing lays its entire focus on the source code being tested.
This means that it is heavily dependent on the way the code has been written. In case
of slight change in code, because of change in requirements, design or fixing of a major
bug, all such tests that depend on the changed code get affected as well. 

Secondly, this testing is more difficult to perform in isolation from the development
team since the current code needs to be understood and a heuristic needs to be found
about what are the most important places in the code that need evaluation. In this task,
testers need to interact heavily with the developers so that useful insight can be given. 

White box testing is also inadequate in testing for systems issues such as systems
timing requirements, hardware interfaces, and load or stress testing.

1122..44..99 FFuunnccttiioonnaall  tteessttiinngg

Functional testing or black box testing looks at the system from a requirements point of
view. It checks to see if the system is able to satisfy all the requirements expected out of
it. There is no focus on code coverage or past regression— just the current requirements
and whether the system satisfies these requirements. 

As is evident, functional testing is completely independent of the way the system 
has been designed and implemented. This is the greatest strength of functional 
testing. Functional testing and development teams perform their jobs independent 
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of each other. The test suites can be developed as soon as the requirements for a 
system are ready and much of the work can be done parallel to development of source
code. And because functional testing looks at the system from a requirement point 
of view, it is best suited for testing of nonfunctional requirements as well. These 
features allow it to find problems that are not detectable by regression testing or 
code-based testing.

However, functional testing is heavily dependent on the quality of requirements. If
the specification for the software is not good, or the specification changes rapidly, the
functional testing needs to keep pace with it, thus limiting its effectiveness. 

Because the primary focus of functional testing is requirements, it can never 
be expected to perform analysis of code coverage. Once a requirement needs to be
coded, it gets blown up by the multitude of subtle conditions that must be 
considered. And it is much more cost-effective to perform code coverage analysis
through white box testing. This is why functional testing is not a good substitute for
code-based testing. 

1122..44..1100 CCoonncclluussiioonn  ooff  tteessttiinngg  mmeetthhooddss

All testing methods discussed above compliment each other in some way. Hence, an
embedded project can get the maximum benefit by judiciously performing all methods
in a suitable way. Since the focus of each kind of testing is different, they unearth dif-
ferent level of bugs. Usually, the pattern followed in test execution is, unit testing of
individual units, followed by white box testing of modules, later performing functional
testing of the complete system. And, topped by regression testing after each update in
the system code.

1122..55 TTAARRGGEETT  TTEESSTTIINNGG

Once host testing is finished target testing can commence. As we have noticed before,
it is a bit more difficult to test on the target platform because of the limited visibility of
what goes on inside the target, in realtime.

1122..55..11 PPRROOMM  pprrooggrraammmmeerr

Usually, it is not advisable to directly burn the software image into a ROM and then
start testing it on the target. Any small modifications in the software shall render the
ROM useless and a new one needs to be burned. It is expensive and more time
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consuming. As we saw in Chapter 3, PROMs are a useful alternative for ROMs when
the software is not stable. It is simple to create the image inside the PROM using a
PROM programmer. This software loads the image inside the PROM. If the software
needs to be changed, there are two options. If PROM is E-PROM, then the PROM can
be put inside an eraser, and then reprogrammed. If it is not erasable, then the PROM
needs to be thrown and a new PROM programmed and inserted inside the target. The
main hurdle to be crossed here is to create a compatible version of the image created
by the locator that can be understood by the (E) PROM. This usually needs to be done
in an adhoc way.

1122..55..22 RROOMM  eemmuullaattoorr

A slightly better way to handle the frequent programming of PROM is to use a ROM
emulator instead of a PROM. (See Fig. 12.3: Setup for ROM emulator). ROM emula-
tor is an electronic circuit having two external interfaces to connect to the host and the
target systems. The cross-compiled image is loaded on the ROM-emulator, and the
emulator connects to the target system through a bus and gets plugged inside the
memory socket of the target system. In this way, the emulator replaces the ROM
completely. Now, any changes in the code can be managed much easily since the new
code needs to be just compiled and loaded to the emulator.

FFiigg..  1122..33 Setup for ROM emulator
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1122..55..33 SSoouurrccee--lleevveell  ddeebbuuggggeerr

Source-level debugger is one of the most fundamental tools available on the target sys-
tem for debugging. The concept of a source level debugger (or debug monitor as it is
called) is to connect a host machine with the actual target machine. The part of debug-
ger running on the host is similar to a standard debugger and provides user-interaction
and display facilities. The part of software on the target performs the job of loading the
image to RAM and executing it. (See Fig. 12.4).

FFiigg..  1122..44 Setup of source-level debugger

As is evident, the source program needs to be cross-compiled together with the small
debugger software and then loaded on the target. 

Advantages of this approach are: 

■ Source level debuggers are cheaper as compared to other advanced tools like
emulators discussed later in this chapter.

■ The testing and debugging can be performed in a more realtime way as com-
pared to host based testing. This is because the software is running on the actual
target. We have been able to use the same debugger we used previously on host,
on the target as well.

■ Many debuggers provide the facility to create breakpoints, single step, stop,
watch registers and memory locations.
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Among the disadvantages:

■ This is only a software simulation. The only benefit is that the user can set soft-
ware break points at instruction fetch time in the target. So, debugging can be tri-
fle more realtime as compared to host debugging. Usually, the debugger on the
target does not have access to anything internal to the processor. So more rigorous
break points and tracing is not usually possible. 

■ The code of the debugger inserted in the target is not the code to be shipped
with delivery. So, after getting satisfied with the quality of the product, this code
needs to be stripped off and the software then needs to be tested on the target with-
out a debugger.

■ The debug monitor and the serial line driver code needs to be ported to the tar-
get system before they can be used for debugging.

1122..55..44 LLooggiicc  AAnnaallyysseerrss  

They are used to check the logical level of input pins in realtime. Usually it is possible
to connect a number of inputs pins for smart analysis by programming the logical anal-
yser: Start tracing pins C and D when the inputs on pins A and B are 1. Usually, logic
analysers are used to debug hardware circuits in conjunction with other methods
described in this section. Logic analysers in a sense are a smarter version of oscillo-
scopes with a flexible event system. They also have displays showing different data
values observed on different pins as programmed by the user. The logic analysers are
actually specialised oscilloscopes for embedded systems, but unlike oscilloscopes, can
measure and report voltages as either logical high or low, nothing in between. This lim-
itation, however, suits most embedded systems perfectly since they anyway measure
voltages in that way.

1122..55..55 JJTTAAGG  

JTAG is a hardware tool that can control and observe boundary pins of a device for
verification of their operation via software control. The reason that a special tool had to
be created for this purpose is because of the proliferation of number of pins in a given
area on a chip. A JTAG ( Joint Test Action Group) consortium exists that caters to the
requirements and standardisation of this testing procedure. IEEE 1149.1 standard,
known as IEEE Standard Test Access and Boundary Scan Architecture provides
complete detail of this procedure.
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For a boundary scan to be possible, the device should be compliant to JTAG, which
means that processor provides what is known as a JTAG port. A cable connects the host
to the JTAG port on the target system and software on the host controls the target
microprocessor through it.

1122..55..66 IInncciirrccuuiitt  eemmuullaattoorr

One of the most extensive tools used while performing testing of embedded systems is
the use of Incircuit emulator (popularly called ICE). ICE is a piece of electronic test
equipment that replaces the actual target processor of your system. A debugger runs on
the host system and the ICE runs on the target, with a bus using UART connecting the
two in order to exchange information. The debugger usually has a graphical user inter-
face and shows the current state of execution, messages in a trace, status of registers, etc.
ICE is a very powerful tool in order to test and debug the system at the basic realtime
level. The ICE is capable of setting hardware break points or setting of conditions that
are normally very difficult to check by using source-level debuggers. 

Conditions like:

(if my_var == 1 AND contents of certain memory location equal 0×5555) then
stop.

A certain address is accessed but only if a data value of 0×1111 is written

When some data is accessed, and register value is 1.

When code fetch is performed with specific data patterns can be checked easily
with an ICE setup. 

After the break point is reached, the ICE gives access to the contents of memory and
registers for analysis. The code can then be single stepped.

ICE supports tracing in a realtime environment. Since ICE runs the actual system on
its processor, it has the capacity to trace all information about processor cycles and tim-
ing information together with message flows and their contents. This information can
be transmitted by the special bus connected between the host and the target and can be
read by a debugger or trace window for simple analysis. Some emulators provide the
capability of selective tracing as well.

Many in-circuit emulators nowadays contain overlay memory too. This creates a big
advantage because then, the ICE becomes a ROM emulator too. All the powerful fea-
turess of ICE are combined with the simplicity of loading software patches directly on
the overlay ROM. 
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The Trace32-ICE provided by Lauterbach Cop. is a state of the art emulator that sup-
ports 8 to 32 bit microprocessors and possesses 16 MB emulation memory.

1122..66 TTHHEE  LLAASSTT  WWOORRDD  AABBOOUUTT  SSOOUURRCCEE  CCOODDEE

Validation activity is necessary in order to find out problems in the software. However,
as we will see some guidelines about programming in the later chapters, here are some
tips about programming embedded systems:

❑ KKIISSSS:: Write simple code that can be easily understood and changed by a third
person if required. Efficiency is a major factor in embedded systems. But it brings
in complicated optimised code. A balance needs to be maintained between the
two. In other words, Keep It Short and Simple.

❑ BBuuiilldd  ttrraacciinngg  mmeecchhaanniissmmss  in the code early enough such that a compile switch
or a similar method can enable them. Traces can vary from knowing the execution
flow of functions down to the values of variables.

❑ DDooccuummeenntt  yyoouurr  iinntteerrffaacceess  ccaarreeffuullllyy:: Any interface used by your module should be
well documented. Any assumptions in this regard can prove detrimental.

❑ DDoo  nnoott  aassssuummee  aannyytthhiinngg  aabboouutt  rreeaallttiimmee  bbeehhaavviioouurr:: While designing the system, it
is advisable not to make any assumptions like:

This message will always be received in this state since it normally takes 5 msec
for response to travel from task B to task A.

After sending a request to task B , task A has sufficient time to process internal
conditions. So, this function need not be optimised.
Such assumptions can prove costly.

❑ CCrreeaattee  ccoonnttiinnggeennccyy  ppllaann:: The software should be designed with significant dis-
tance from deadlines. If the software has been found to be working perilously near
to its deadlines while validation, Murphy’s law is bound to haunt you in the field.

1122..77 AA  FFEEWW  WWEELLLL--KKNNOOWWNN  EERRRROORRSS  AANNDD  TTHHEEIIRR  CCAAUUSSEESS

This section provides case studies of some famous faults in embedded systems togeth-
er with an analysis of the causes behind these failures.

❑ TThheerraacc--2255:: Therac-25 was a medical linear accelerator. It overdosed six radia-
tion therapy patients over a two year period leading to deaths of three of them.
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The cause that was found related to a total lack of formal software product life
cycle, insufficient time allocated for testing, little documentation and an adhoc
approach to implementation and testing of software.

❑ AArriiaannee--55:: Ariane-5 was a $500 million rocket designed to launch satellites in
1996. This rocket flew for a little more than 40 seconds before self-destructing.

The cause was found to be a software error, tracking launch data that was not
even relevant to the execution of flight when the error occurred. It triggered a
chain of events resulting in finally a self-destruct.

An improper software reuse from Ariane-4, an unnecessary 64-bit floating point
datum, a horizontal launch velocity vector, was forcefully converted into a 16-bit
signed integer causing an overflow. Incidentally, this data was relevant to the sys-
tem only when it was on the launch platform and was misleading 30 seconds after
the launch. The system decided to self-destruct.

❑ MMaarrss  MMiissssiioonn  iinn  11999988:: Mars orbiter was supposed to orbit around Mars as the
first interplanetary weather satellite. However, it lost communication with NASA
due to either entering orbit too sharply and getting destroyed, or with a small orbit. 

Cause: Failure to approach orbit at the right angle because of an inconsistency
in the units of measure used by two separate modules developed by separate soft-
ware groups. 

❑ MMaarrss  LLaannddeerr  11999999:: Mars Lander was supposed to land on the surface of the plan-
et and perform experiments for 90 days. Communication was lost after entering
into the atmosphere.

Cause: Spurious signals generated when the lander’s legs were deployed during
descent, giving an indication that it had landed even before it had actually done
so, thus crashing it into the surface of Mars.
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WWaattcchhddoogg  aanndd  vveerryy  lloonngg  lleeaasshh!!
As we saw earlier, watchdogs are used to monitor the proper functioning of tasks inside a system. This

reminds us of a problem we faced while we were designing the task structure for the software inside

an embedded system. 

There was a collection of tasks that used to take few milliseconds in the worst case, and they used

to be called based on asynchronous events and periodic timer events. There was a watchdog imple-

mented as the last instruction inside the main loop such that it used to get executed if no other task

was running. 

WWaarrnniinngg



The watchdog value had been set as one second and everything was working according to plan.

When we were developing a new feature inside our embedded system, we needed to include a task

(code purchased from a third party) that used to take several seconds to execute. And this time was not

deterministic since it also depended on the quality of signals received on the air interface. Its execution

time used to range from 1 second to 60 seconds on our processor. So, the problem arose: how should

we include this task such that the watchdog gets a chance to reset its counter before 1 second. The

leash of the watchdog became really long ☺.

First the reader should agree that we should put this task (called AGPS) as the lowest priority inside

the system otherwise the normal operation of other tasks will no longer remain real-time.

Second problem is that of resetting the watchdog. Various options were discussed. We can reset the

watchdog inside the new task as well as inside the mail loop. In this way, if the new task is running,

we still take care of resetting it. However, this is not a good design since the control of watchdog is at

various places inside the system. Secondly, this solution is not foolproof since if we need to add anoth-

er similar task in the future, our code will become messy. Second option is to create a watchdog task

whose priority is kept the lowest except for the new task. In this way, the normal behaviour of the sys-

tem shall be kept. For taking care of the low priority task, it needs to register with the watchdog task,

giving an estimation of the total duration of its execution. The watchdog task collaborates with the

scheduler whenever this low priority task is scheduled out and keeps a count of time. If results are not

available by the end of the estimated time of execution of the low priority task, watchdog shall re-ini-

tialise this task. There are two problems to this approach: first it is very difficult to accurately estimate

the duration of a job. Second, if there is a problem inside the low-priority task, it will not be detected

inside the watchdog task until the end of the time estimated by the low priority task—this time may be

several seconds! So we hit upon an idea to do it the other way. We implemented it using a heart-beat

mechanism. We still created a watchdog task but the lower priority task now was supposed to provide

periodic heart-beats to the watchdog task. In this way, the problem of estimation was avoided and any

fatal loops inside the lower priority task could be detected within the duration of one heart-beat. Voila!
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1122..88 LLEESSSSOONNSS  LLEEAARRNNTT

Testing of embedded systems involves unique challenges. Since development is done
on the host and execution performed on target, it usually pays to test on host to capture
non-realtime bugs. Target system should be used to capture bugs related to peripheral
devices, crossover events because the target hardware simulates near-to-field condi-
tions. Testing can be done manually, however, it usually pays to create automated tests
and also perform manual testing. Automated tests can then be used for regression test-
ing after each upgrade in the software. White box testing involves active participation
from the developer in order to test major paths in the software. Functional testing
verifies if all requirements have been satisfied. 

A host of tools are available in the market in order to perform efficient testing on the
target. PROM programmer burns the code in ROM. ROM emulator is a better way of
executing source code and it usually comes complete with a source level debugger too.
Logical analyser is used to check the logical level of input in the pins in real time. JTAG
can be used for verification of pins through software control. ICE replaces the actual
target processor of the embedded system and has powerful features such as setting hard-
ware breakpoints, access to contents of memory and registers.

1122..99 RREEVVIIEEWW  QQUUEESSTTIIOONNSS

■ What is the difference in testing for application and embedded systems?

■ What are the benefits of doing white box testing?

■ If target testing is powerful, why should we spend time on host testing?

■ Describe a typical target testing setup for embedded systems. What tools will 
you use to perform testing?

■ What is the motivation to automate our tests?

■ What is the best way to check if any regression has been introduced during a 
new baseline?

QQ
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Embedded/Realtime Systems—

Benefits of Using Object 

Oriented Design and C++

Appendix-A

1155..11 IINNTTRROODDUUCCTTIIOONN

C++ has always been thought of as a ‘big’ and ‘lavish’ language loaded with tones of

features, consuming space and slowing down the execution. This led to the perception

that, C++ cannot fit in ‘small’ systems. This idea was seconded by the older compilers

producing 2MB executables for a small ‘Hello world’ program. But the language is now

much mature and a large number of very good compilers are available. It is time to give

a serious thought about C++ for powering Embedded/Realtime Systems.

This paper is divided into 4 parts as following

i. The Myths regarding C++.

ii. C++, OO, Component Based Development, ORBs, …

iii. A perspective on Embedded C++.

iv. Transition to C++.

1155..22 PPUURRPPOOSSEE

C++ was mainly thought of as a language that was ‘distant’ from embedded systems.

The paper challenges that notion by showing the effectiveness of the language.

1155..33 TTHHEE  MMYYTTHHSS  RREEGGAARRDDIINNGG  CC++++

Myths regarding C++ exist because of the lack of knowledge of “what happens under

the hood”. The basic constraints of any language are code size and speed of execution.

This paper was presented in Philips Technical Symposium, 2001 by Sriram V Iyer and Manoj Kamath



There are many facts contributing to these constraints. In C++ point of view, the

general misconceptions and their reasons are described in this section.

1155..33..11 CC++++  iiss  bbiigg

This perception arose mainly because of earlier C++ compilers. Some of the older com-

pilers produced huge (and highly non-optimised) object codes. We should note that, the

size of object code entirely depends on the compiler used to produce the code. The lan-

guage as such does not impose any overheads. Also, because C++ is superset of C, the

C code fragment compiled using a C++ compiler will produce exactly same amount of

code as a C compiler produces. 

As we analyse internals of the C++ compilers, it is clear that, most features of C++

are strictly Compile-Time provisions, with least effect in Code generation. A good

example is the use of keywords like const, private, protected and public. No code-

wise difference exists between class members of these types. Function Name Overload-

ing is based on another powerful compile-time mechanism, known as: Name Mangling

or Name Decoration. The function overloading mechanism, as implemented in C++

and as in C are described in code snippets below. 
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// C++ Function Overloading
void myFn()
{ …….
}
void myFn(char* s)
{ ……
}
void main(void)
{ myFn();

myFn("Hello World")
}

// Implementation of Function Overloading in C
void myFn_void()
{ …….
}
void myFn_string(char* s)
{ ……
}
void main(void)
{ myFn_void ();

myFn_string ("Hello World")
}

LLiissttiinngg  1155..11:: Function overloading in C and C++



From this, it is quite clear that, in C++, name Mangling constructs are available, but

in C, it is the responsibility of the programmer. Note that, there is no size difference. 

Another argument will be the size of class. Note that, except the protection and scop-

ing, C++ class is almost the same as a C struct in size perspective. The member func-

tions are equivalent to functions taking pointer to the struct as an argument except that

this is done transparent to the user. This is illustrated using equivalent pieces of both

C++ and C code. Note that here also code size is the same.

LLiissttiinngg  1155..22:: Equivalence of class in C and C++

The inline functions of C++ is another powerful concept, which is always blamed

because of misuse, accounting to code bloat. Inline functions provide understandabil-

ity and safety of normal functions. Appropriate use of inline functions will improve

both size and speed.

Now the inheritance mechanism of C++, is nothing but “Struct-inside-Struct” in

C. But in C, as we need to manually implement this, will cause introduction of more

and more functions. 

1155..33..22 CC++++  wwaass  NNOOTT  ddeessiiggnneedd  ffoorr  ssyysstteemm  pprrooggrraammmmiinngg

This is another popular myth. Even though C++ is lingua franca for programming com-

plex database systems and mammoth applications, for its ability to scale beautifully,
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// C++ Class Example
class myClass {
private:

int i;
public:

void setVal(int j)
} ;
void myClass:: setVal(int j)
{
i = j;

}

// C Equivalent of above Class Example
struct myClass_c
{
int i;

} ;
void setVal(struct myClass_c *myCls, int j)
{ myCls �i = j;
}



C++ was originally conceived as a system programming language as a superior

alternative to C. That is why C++ inherited most of the features of C, to support the

legacy code available. Also through the Object Oriented Concept, it is really easy to

communicate with devices and provide synchronisation easily.

1155..33..33 CC++++  iiss  ssllooww

This concept spread because of the ‘Code Bloat ’ myth. The C++ objects ‘arrive’ in a pre-

defined state; that is they are already initialised as they come into existence. This takes

time, but gives the programmer more control over the code, with less leakage of

resources. The C variables are (mostly) uninitialised and it is done by a separate func-

tion, which the programmer should remember to call. An example code snippet is

given below. 
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// C++ Class Constructor/Destructor Example
class myClass {
private:

int *i;
public:

myClass()
{ i = new int[MAX_CLS]; }

~myClass()
{ delete [] i; }

} ;
void fn(int j)
{ myClass cls;
……

// as this scope is exited, the destructor is called 
//automatically and memory will be freed
}

// C Equivalent of above Example
struct myStruct
{ int *i;
} ;

void fn(int j)
{
struct myStruct mySt;
mySt.i = (int *)malloc(MAX_CLS *sizeof (int));
…..

free(mySt.i); /* usually programmers fail to do*/
}

LLiissttiinngg  1155..33:: Constructors and destructors



The constructors and destructors in C++ automate the process of acquiring and

releasing resources (not just memory). The technique of having a constructor acquire a

resource and a destructor release can be phrased as ‘resource acquisition is initialisation ’.

1155..33..44 CC++++,,  OOOO,,  ccoommppoonneenntt  bbaasseedd  ddeevveellooppmmeenntt,,  eemmbbeeddddeedd  OORRBBss,,  ……

Another term that is grossly misunderstood in conjunction with C++ is that it ‘is ’ an

‘object oriented’ language. The fact is that C++ greatly aids OO based software devel-

opment. This only means that the language provides constructs to write software based

on the OO paradigm. Period.

This does not mean that all software written in C++ is object oriented or that only

good OO software can be written in C++. (Horribly bad OO implementations that are

available stand to prove this claim)

Objects/classes, abstraction, encapsulation, inheritance are some of the fundamental

concepts of object-oriented technology. C++ provides language constructs to imple-

ment the above. 

OO aims in making software more

❑ Understandable

❑ Changeable

❑ Reusable

C++ when used effectively can be used to achieve the above goals.

Let us really see some code to find how C++ helps in achieving some these goals.

1155..33..55 44..11  CCooddee  ssiizzee  rreedduuccttiioonn,,  iimmpprroovveemmeenntt  iinn  rreeaaddaabbiilliittyy

Consider a case for a network protocol, where two kinds of packets say 

■ Data Packets: Sent from higher layers for transmission

■ Control Packets: Used for link establishment, timing synchronisation, etc.

Let them have two kinds of headers, HeaderData, HeaderCtrl. And say, we have a

function that processes header of the packet received at some buffer. 

In C, we could have to write two functions like this: ProcessHeaderData and

ProcessHeaderCtrl. 

Let us see how we can do this in C++.
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LLiissttiinngg  1155..44:: Classes arranged hierchically to use polymorphism

Here we create an abstract base class (‘interface ’) specifying general ‘behaviour ’ of a

packet header. HeaderMgmt and HeaderData ‘are ’ headers.  They both ‘implement ’

common behaviour of a packet header. Our C++ implementation of the ProcessHeader

can be like this:

class Header {
public:

virtual int length ( void ) = 0;
// …

};

class HeaderData : public Header {
public:

virtual int length ( ) {
return DATA_HEADER_LENGTH; // return Header length of

// packet 'Data'
}
// …

private:
char* szBuf;
// …

};

class HeaderCtrl : public Header {
public:

virtual int length ( ) {
return CTRL_HEADER_LENGTH; // return Header length of

// packet 'Control'
}
// …

private:
char* szBuf;
// …

};
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LLiissttiinngg  1155..55:: Using polymorphism

More than just elegance, simplicity and improvement in readability, this causes

considerable reduction in code size by 1/n where n is the number of types of packets (in

this case).

1155..33..66 MMaaiinnttaaiinnaabbiilliittyy

Our vProcessHeader will work even if a new class of packets with a new type of head-

er is introduced.

LLiissttiinngg  1155..66:: Ease of addition of new class of packets

1155..33..77 RReeuussaabbiilliittyy

Reusability was achieved in C using libraries (using the Structured Analysis and Design

paradigm). These approaches though quite suitable for smaller projects, they cannot be

used to construct large software systems. Any change in their interface broke the build.

They were the main cause of increase in fragility of large systems built this way.

Let us consider a code that could be used to write on a display terminal in C. This

can be called vDisplayOnScreen (char* szText );

Now if we wanted to add a background colour, we need to rewrite

vDisplayOnScreen (char* szText) as vDisplayOnScreen (char* szText, enColor color ).

void vProcessHeader ( Header* pHeader ) 
{

// …
memcpy ( szTargetBuffer, pHeader->data(), 
pHeader->length() );
// pHeader->length( ) returns appropriate length for 
// packets

}

class HeaderNew : public Header {
public:

virtual int length ( ) {
return NEW_HEADER_LENGTH;

}
//…
};
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This obviously breaks the build. This causes ripples to be caused throughout the pro-

ject and obviously the code has to be recompiled. Let us see how we can do this in

C++.

LLiissttiinngg  1155..77:: Reusability in C++ - 1

A function that uses a DisplayWriter object to write to display can be

Say, now we want to add a background color, we can write a class such as

BGDisplayWriter.

Here in the ‘display’ function of BGDisplayWriter, reuses the code in DisplayWriter.

And, an object of BGDisplayWriter can be passed to vDisplayOnScreen without break-

ing the build. (This principle of being able to use a derived class instead of base class is

called ‘Liskov’s Substitution Principle’)
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class DisplayWriter {
public:

virtual void display ( );
// …

private:
string text;

};

void  vDisplayOnScreen ( DisplayWriter& dw )
{

dw.display ( );
}

class BGDisplayWriter : public DisplayWriter {
public:

virtual void display ( ) {
DisplayWriter::display ( ); // reuse existing- 

// DisplayWriter code
fillBackGround ( color );

}
// …

private:
enColor color;

};



Thus we also see that C++ really helps in writing reusable code. Some of the most

reused code in the PC world is written in C++. (Heard MFC?)

Now, as the software in embedded systems get only larger (and exponentially), we

move towards embedded ORBs. (Companies like ObjectTime™ already market

embedded ORBs). Thus to derive major objectives like faster time to market, more

code reuse etc., shifting to C++ becomes imperative. 

1155..44 AA  PPEERRSSPPEECCTTIIVVEE  OONN  EEMMBBEEDDDDEEDD  CC++++  ((EECC++++))

Embedded C++ specification is a subset of C++ that aims to reduce code size and

improve speed of C++ code by excluding certain features of C++ that cause code and

time overheads.

Zero overhead rule in design of C++: What you don’t use, you don’t pay for it. This sim-

ply means that the language features that you do not use do not cause overheads, run-

time or code size. Most of the good compilers go a long way in implementing this. But

RTTI, exception handling, etc. inevitably cause some increase in code size. But most

compilers give you an option of disabling these features when you don’t use them. 

What is embedded C++?: Embedded C++ is a scaled down version of ANSI C++,

with the following features removed:

❑ Multiple Inheritance/Virtual base classes

❑ Run Time Type Identification (RTTI)

❑ Templates

❑ Exception Handling

❑ Namespaces

❑ New style casts (static_cast, dynamic_cast, const_cast, reinterpret_cast )

Exception and RTTI are some of the major features that cause quite some code bloat

without the user being aware of it. In theory, a good implementation of templates by the

compiler causes no code bloat. The ‘standard template library ’ (STL) is one great reason

to shift to C++. But, by removing templates, this advantage is nullified. Nowadays, good

C++ compilers also give an option of EC++ with templates. (For e.g. Green Hills™ C++

compiler comes with a dialect called ETC++ which is EC++ with template support).

Even though, namespaces and new type casts do not cause any increase in code size they

were not included in EC++ because those were relatively new features then. 
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Using EC++ causes quite some reduction in object code produced from C++, espe-

cially in large software systems. As compilers mature, the overheads also will reduce

considerably. The EC++ standardisation was done by http://www.caravan.net/ec2plus.

1155..55 TTRRAANNSSIITTIIOONN  TTOO  CC++++

The language constructs are so that, their appropriate usage will provide good space

and time saving measures, but careless usage may cause problems. So, the following

facts should be taken into account during migration to C++.

1155..55..11 VViirrttuuaall  ffuunnccttiioonnss

Virtual functions provide the base for ‘Polymorphism’ in C++, with a little, but a justi-

fied cost. Virtual functions are implemented by array of pointers called vTable for each

class with virtual functions. Each object of such class will contain a pointer to the class’s

vTable , which is put by the compiler and is used by the generated code. This makes the

objects slightly bigger (typically 4 bytes per virtual function), because every object of a

class with virtual functions will contain vTable Pointer. Another cost is the vTable lookup

for a function call, rather then direct call. But note that, this is typically less than

providing another parameter to the function for the purpose to implement similar

functionality in C. 

1155..55..22 TTeemmppllaatteess  

A class template is rather like macro expanding to an entire class. Older compilers had

expanded the templates to classes every time it is encountered which was having dev-

astating effect on the code size. But the newer compilers and linkers find duplicates and

produce at most, one expansion of a given template for a given parameter class. 

1155..55..33 EExxcceeppttiioonnss

Exceptions are abnormal condition handlers, which will really help the programmer to

handle such conditions, also facilitating prevention of resource leakage. Support for

exception results in small performance penalty for each function call. This is to record

information to ensure that, destructor calls are made when an exception is thrown. But

usage wise, the exceptions are worth this cost, if used properly.

1155..55..44 RRuunnttiimmee  ttyyppee  iinnffoorrmmaattiioonn

For keeping this information, a little space is used for each Class. But for type

identification, RTTI exploits the vTable pointer in an object [if it is present] or provides

306 Embedded Realtime Systems Programming



sensible default values. Compiler options can be used to disable Run Time Type

Information storage, to avoid the cost. Though useful, exception and RTTI do not jus-

tify their cost in embedded systems in near future.

1155..66 CCOONNCCLLUUSSIIOONN

We see that C++ has come a long way since the first Cfront compiler was written for

C++ by Bjarne Stroustrup in AT&T Bell (then) Labs. The compilers do a fantastic job

in producing code with very little overheads. It took 20 years for C to enter embedded

systems because it was thought to be a language that was huge for embedded systems.

Now C is the most widely used language for programming embedded systems. Through

this paper we state the facts regarding using C++ in embedded/realtime systems. We

see that the benefits clearly overweigh the defects. Let us not delay the usage of C++

in embedded systems for next 20 years. The language is mature enough now and it is

the right time to shift to C++ to reap the benefits of OO-based software development. 
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Exercises

The card verification system was introduced in Chapter 1. The requirements of the
system have been defined in Chapter 8. 

Create a requirements document for the system.

Design all components shown in Figure 8.3

Write the pseudocode for these components and simulate this device.

I want to automate my house in the following way: My mobile phone sends a mes-
sage to my PC at home that controls all household devices. So, when I leave my
place of work in the evening, I just send a message to my PC. My PC then switch-
es on my geyser so that I have hot water ready for a bath. My coffee maker starts
preparing coffee and the music system plays the kind of music I like when I enter
my house. Also, the refrigerator detects if any groceries are missing and sends me
a message via the PC.

Create a simulation of this intelligent network that satisfies the above require-
ments. Make suitable assumptions wherever required while giving appropriate
explanations.

11

22



Assuming the following code is run on a system that allocates two bytes for an
unsigned int and one byte for unsigned char. Calculate the data segment of the fol-
lowing code:

The following code uses a function called GetBits that performs the following
function:

Takes argument an offset byte off_byte, offset bit off_bit and number of bits num
Operates on a global array buff of length 24 bytes.
Returns a long int by filling least significant bits of buff with num bits from the 
Position off_byte & off_bit.

The code takes an input buffer stream and starts decoding bits and fills the struc-
ture global_struct based on the values of some parameters. What different prob-
lems/bugs can you spot in the code? Imagine char occupies 1 byte and unsigned
long 4 bytes.
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#define TRUE 1
#define FALSE 0
unsigned int my_int;
unsigned int another_int=0;
unsigned int third_int=1;
int main(void)
{
unsigned int local_int=3;
unsigned char local_char;
int i; 

my_int = local_int;

for(i=0, i<third_int; i++) {
if(third_int == FALSE) third_int=TRUE;

}
return 0;

}

typedef struct 
{

char ncc;
char bcc;
char power;

33

44



In the previous question, is it possible to optimize the usage of RAM? What about
ROM? For achieving the same functionality, how is it possible to write more effi-
cient code?

As we saw inside the chapter, memory pools are an efficient way of removing the
non-real-time effects of dynamic memory allocation. The total amount of memo-
ry that can be allocated inside a system is 20 KB. It is desired to create memory

char chn;
char c1;
char beacon;

} global_struct ;

int decode_struct( )
{

off_byte = 4 ;
off_bit = 2 ;

if(GetBits(off_byte, off_bit, 1) == 1)
{

off_byte += 21 ;
off_bit = 0 ;

}
else
{

off_bit ++;
}
if(GetBits(off_byte, off_bit, 3) == 0x2)
{
off_bit += 3 ;
global_struct.ncc = GetBits(off_byte, off_bit, 3);
global_struct.bcc = GetBits(off_byte, off_bit, 4);
global_struct.power = GetBits(off_byte, off_bit, 6);

}
else if(GetBits(off_byte, off_bit, 3) == 0x1)
{
global_struct.chn = GetBits(off_byte, off_bit, 3);
global_struct.c1 = GetBits(off_byte, off_bit, 4);
global_struct.beacon = GetBits(off_byte, off_bit, 9);

}
}

44

55

66
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pools of sizes 100 bytes, 1K and 2K. Create a best-fit pool allocation and de-allo-
cation mechanism taking care of any external interrupts entering the system.

Write a driver to take care of a DMA channel of size 1024 bytes. The DMA chan-
nel generates an interrupt when the buffer is half full as well as when it is full. The
data should be stored in a circular buffer and pointers should be used to keep track
of new and old data.

My system is connected to the following devices:

Battery
Clock
Keyboard
Display unit

Battery gives periodic indications about the remaining charge that needs to be dis-
played on the display unit, which is memory mapped. Clock gives periodic one-
second ticks to update the time on the display unit. Keyboard is pressed by the
user and can trigger events based on the following combination of digits:

*123#
+123*
$123+

Any other combination shall lead to the display of an error message in the display
unit. Write source code for such a system. Make appropriate assumptions where
appropriate.

Hint: This system shall need to implement ISRs for battery, clock and keyboard.
It should provide a minimal editor that displays the keys entered by the user
together with usage of keys to undo some actions.

Two devices A and B are connected by a UART that can support 9.6 baud. Device
A takes input from a user or a stored file and starts transmission of data. The speed
of this transmission may be more than 9.6 baud. Design a protocol between these
devices such that data is not lost mid-way.
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Many operating systems now provide “plug-and-play” functionality. For example,
it is possible to plug another device to a running system. The same functionality is
also found in ad-hoc networks of small devices such as WirelessLANs and
BluetoothTM. How do these devices detect each other? Would polling be suitable
here?

Design a queuing mailbox mechanism between two tasks inside a system. It should
provide the following features:

a. Two levels of priority of messages based on different function calls
b. Ability to look inside the queue to check for a particular message
c. Save a message instead of consuming it, which means that the message 

goes to the end of the queue
d. Sending messages to multiple recipients

In previous question, we also want to implement an automatic garbage collection
of messages. The RTOS should create the lowest priority task and de-allocate the
memory used by messages. The messages are allocated using the pool mechanism.
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