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Chapter 1

Matrices

1.1 INTRODUCTION

In the lower classes, the students have studied a few topics in Elementary Matrix
theory. They are assumed to be familiar with the basic definitions and concepts of
matrix theory as well as the elementary operations on and properties of matrices.
Though the concept of rank of a matrix has been introduced in the lower classes,
we briefly recall the definition of rank and working procedure to find the rank of a
matrix, as it will be of frequent use in testing the consistency of a system of linear
algebraic equations, that will be discussed in the next section.

1.1.1 Rank of a Matrix

Determinant of any square submatrix of a given matrix A4 is called a minor of 4. If the
square submatrix is of order 7, then the minor also is said to be of order r.
Let A be an m x n matrix. The rank of 4 is said to be ‘7, if

(1) there is at least one minor of 4 of order » which does not vanish and
(i1) every minor of 4 of order (» + 1) and higher order vanishes.

In other words, the rank of a matrix is the largest of the orders of all the non-
vanishing minors of that matrix. Rank of a matrix 4 is denoted by R(A4) or p(A).

To find the rank of a matrix 4, we may use the following procedure:

We first consider the highest order minor (or minors) of 4. Let their order be .
If any one of them does not vanish, then p(4) = r. If all of them vanish, we next
consider minors of 4 of next lower order (» — 1) and so on, until we get a non-zero
minor. The order of that non-zero minor is p(A4).

This method involves a lot of computational work and hence requires more time,
as we have to evaluate many determinants. An alternative method to find the rank of
a matrix 4 is given below:

Reduce 4 to any one of the following forms, (called normal forms) by a series of
elementary operations on A and then find the order of the unit matrix contained in
the normal form of 4:

oo
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Here / denotes the unit matrix of order » and O is zero matrix.
By an elementary operation on a matrix (denoted as E-operation) we mean any
one of the following operations or transformations:

(i) Interchange of any two rows (or columns).
(i1) Multiplication of every element of a row (or column) by any non-zero scalar.
(iii) Addition to the elements of any row (or column), the same scalar multiples
of corresponding elements of any other row (or column).

Note @  The alternative method for finding the rank of a matrix is based on the
property that the rank of a matrix is unaltered by elementary operations.

Finally we observe that we need not necessarily reduce a matrix 4 to the normal
form to find its rank. It is enough we reduce 4 to an equivalent matrix, whose rank
can be easily found, by a sequence of elementary operations on 4. The methods are
illustrated in the worked examples that follow.

1.2 VECTORS

A set of n numbers x, x,, . . ., x, written in a particular order (or an ordered set of n
numbers) is called an n-dimensional vector or a vector of order n. The n numbers are
called the components or elements of the vector. A vector is denoted by a single letter
X or Y etc. The components of a vector may be written in a row as X = (x, x,, ..., X,)

Xy

. X .
or in a column as X =| ’|. These are called respectively row vector and

X

n

column vector. We note that a row vector of order » is a 1 X n» matrix and a column
vector of order » is an » X 1 matrix.

1.2.1 Addition of Vectors

The sum of two vectors of the same dimension is obtained by adding the corresponding
components.

ie.,if X=(x,x,..x) and  Y=@,»,...)),
then X+Y=0, +y,x,ty,..x +y).

1.2.2 Scalar Multiplication of a Vector

If kis a scalarand X = (x, , x,, . . ., x,) is a vector, then the scalar multiple £X is defined as
kX = (kx, kx,, . . ., kx ).

1.2.3 Linear Combination of Vectors

If a vector X can be expressed as X = k X, + k£, X, +- - + kX then Xis said to be a
linear combination of the vectors X, X, ..., X,

7
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1.3 LINEAR DEPENDENCE AND LINEAR INDEPENDENCE
OF VECTORS

The vectors X, X,, . . ., X are said to be linearly dependent if we can find scalars k ,
k,, ...k, which are not all zero, such that k X, + k£ X, +-- -+ kX =0.

A set of vectors is said to be linearly independent if it is not linearly dependent,
i.e. the vectors X, X, . . ., X are linearly independent, if the relation k X, + kX +
... kX =0 is satisfied only when k,= k,=---=k =0.

Note @ When the vectors X, X, . . . X are linearly dependent, then
lel + kZX2 et err =0, where at least one of the £’s is not zero. Let km #0.

k k k
Thus Xm:_k_l.Xl_k_ZXz_m__rX"

Thus at least one of the given vectors can be expressed as a linear combination
of the others.

1.4 METHODS OF TESTING LINEAR DEPENDENCE
OR INDEPENDENCE OF A SET OF VECTORS

Method 1 Using the definition directly.

Method 2 We write the given vectors as row vectors and form a matrix. Using
elementary row operations on this matrix, we reduce it to echelon form, i.e. the one
in which all the elements in the #" column below the #" element are zero each. If the
number of non-zero row vectors in the echelon form equals the number of given vectors,
then the vectors are linearly independent. Otherwise they are linearly dependent.

Method 3 1f there are n vectors, each of dimension #, then the matrix formed as in
method (2) will be a square matrix of order 7. If the rank of the matrix equals n, then
the vectors are linearly independent. Otherwise they are linearly dependent.

1.5 CONSISTENCY OF A SYSTEM OF LINEAR
ALGEBRAIC EQUATIONS

Consider the following system of m linear algebraic equations in » unknowns:

allxl + alle Tt alnxn - bl

allxl + a22x2 Tt aann - bZ
amlxl + amZx2 Tt amnxn = bm

This system can be represented in the matrix form as 4AX = B, where

xl bl
all a]2 aln

X, b,

A=lay ay ... @, | K= LB=].
a. a a



I-1.6 Part I: Mathematics 1

The matrix A4 is called the coefficient matrix of the system, X is the matrix of unknowns
and B is the matrix of the constants.

If B= 0, azero matrix, the system is called a system of homogeneous linear equations,
otherwise, the system is called a system of /inear non-homogeneous equations.

The m X (n + 1) matrix, obtained by appending the column vector B to the
coefficient matrix A as the additional last column, is called the augmented matrix of
the system and is denoted by [4, B] or [4 | B].

a, a, ... a,b
L.C [A, B] =|dy Ay aznbz
aml amZ amnbm

1.5.1 Definitions

Aset of values of x , x, . . ., x . which satisfy all the given m equations simultaneously
is called a solution of the system.

When the system of equations has a solution, it is said to be consistent. Otherwise
the system is said to be inconsistent.

A consistent system may have either only one or infinitely many solutions.
When the system has only one solution, it is called the unique solution.

The necessary and sufficient condition for the consistency of a system of linear
non-homogeneous equations is provided by a theorem, called Rouches’s theorem,
which we state below without proof.

1.5.2 Rouche’s Theorem

The system of equations AX = B is consistent, if and only if the coefficient matrix A4
and the augmented matrix [A4, B] are of the same rank.

Thus to discuss the consistency of the equations AX = B (m equations in »
unknowns), the following procedure is adopted:

We first find R(4) and R(A4, B).

(i) If R(A) # R(4, B), the equations are inconsistent
(i) If R(A) = R(4, B) = the number of unknowns #, the equations are consistent
and have a unique solution.
In particular, if 4 is a non-singular (square) matrix, the system AX = B has
a unique solution.
(i) If R(4) = R(A4, B) < the number of unknowns #, the equations are consistent
and have an infinite number of solutions.

1.5.3 System of Homogeneous Linear Equations

Consider the system of homogeneous linear equations AX = O (m equations in »
unknowns)
1e ax tax,+ax =0

a21x1 + a22x2 + + alnxn - 0
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This system is always consistent, as R(4) = R(4, O). If the coefficient matrix 4 is
non-singular, the system has a unique solution, namely, x, =x, =" =x_ = 0. This
unique solution is called the trivial solution, which is not of any importance.

If the coefficient matrix 4 is singular, i.e. if | 4] = 0, the system has an infinite
number of non-zero or non-trivial solutions.

The method of finding the non-zero solution of a system of homogeneous linear
equations is illustrated in the worked examples that follow.

( WORKED EXAMPLE 1(a) ]

Example 1.1 Show that the vectors X, = (1, 1, 2), X, = (1, 2, 5) and X, = (5, 3, 4) are
linearly dependent. Also express each vector as a linear combination of the other two.

Method 1

Let kX + kX, +kX,=0
ie. k(1,1,2) + k(1,2,5) +k(5,3,4)=(0, 0, 0)
’ k, +k,+ 5k, =0 (1)
k, +2k,+3k,=0 )
2k, + 5k, + 4k, =0 3)
(2)—-(1) gives k, — 2k, = 0 or k, =2k, @)
Using (4) in (3), k =—Tk, (5)
Taking k, = 1, we get k, =—7 and k, = 2.
Thus 71X, +2X,+X,=0 (6)
- The vectors X,, X, X, are linearly dependent.
2 1
From (6), we get X, :7X2+7X3,
X, = zX !

) \—=X; and X, =7X -2X,
2 2
Method 2

Writing X, X, X, as row vectors, we get
1 1 2 1 1 2

A=1l1 2 5/~|0 1 3(R2’:R2—R1,R3’:R3—5R1)
5 3 4 |0 -2 -6

112
~10 1 3|(R/=R{+2R))
000

In the echelon form of the matrix, the number of non-zero vectors = 2 (< the number
of given vectors).
-~ X, X,, X, are linearly dependent.



1-1.8 Part I: Mathematics 1

Now 0=R!/=R!+2R!
=(R,—5R)+2(R,—R)
=—7R +2R, + R,

ie. =7X, +2X, + X, =0

As before, X1:%X2+%X3,X2:%Xl—%)(3 and X, =7X -2X.

Method 3
[A/=0 . RMA)#3; R(A)=2
- The vectors X,, X, X, are linearly dependent.
Example 1.2 Show that the vectors X, = (1, -1, -2, 4), X, = (2, 3, -1, 1),

X,=(3,1,3,-2)and X, = (6, 3,0,-7) are linearly dependent. Find also the relationship
among them.

Xl [1 -1 =2 -4 [1 -1 =2 —4
||z 3 -1 -1 jo s 3 7|(Ry =R, — 2R, R{ =
X, |3 1 3 =2 |0 4 9 I10|R —3R,R =R, —6R)
X, |6 3 0 =7/ 0 9 12 17
1 -1 -2 —4
3
o 1 = = 1
- 5 5||R/=C R:R/=R:R/=F]
0 9 10
0 9 12 17
1 -1 —2 —4
o 1 3 1
5 5
" " " " " "
o o B 2:(R3:R3—4R2;R4:R4—9R2)
5 5
0o o 3 22
5 5
1 -1 -2 —4
0 1 g g
- R/II/: R//l _ R///
33 22<4 S k)
0o 0 = =
5 5
0 0 0 0

Number of non-zero vectors in echelon form of the matrix 4 = 3.
. The vectors X, X, X, X, are linearly dependent.
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Now 0=R"=R"—R
= (R} —9RY) — (R} — 4R})
_R-R-R

= (R4 — 6Rl) — (R3 — 3R1) — (R2 — 2R1)
=—R—R,—R,+R,
- The relation among X, X, X, X, is
X -X,-X,+X,=0 or X +X +X -X =0.
Example 1.3 Show that the vectors X
X, = (4, 6,-3) are linearly independent.
Method 1
Let kX +kX, +kX =0
ie k (2,-2,1)+k(1,4,-1)+k (4,6,-3)=(0,0,0)
: 2k +k,+4k,=0

3

—2kl + 4k2 +6k,=0

3

k,—k,~3k,= 0

3

From (1) and (2), k,+2k,=0

From (2) and (3), k,=0

k=0=k =k,
- The vectors X, X, X are linearly independent.
Method 2

-2 I |r 4 -1

6 -3 |4 6 -3

2
A=|X,|=1 4 —1/~]2 =2 1|(R/=R);R}=R)
4

1 4 -1

~l0 —10 3 (RZ":R2/72R1’;R3”:R3’74R1’)
0 —10
1 4 -1

_ 0 710 3 (R3/// =R3// 7R2”
0 0 -2

=2 -2, 1), X, = (I, 4, 1) and

(1
2)
€)
4)
)

Number of non-zero vectors in the echelon form of 4 = number of given vectors,

o X, X,, X, are linearly independent.

Example 1.4 Show that the vectors X, = (1, -1, -1, 3), X, = (2, 1, =2, —1) and

X,=(7,2,-7,4) are linearly independent.

x| [t -1 -1 3] [t -1 -1 3|(R =R, —2R;

A=\X,|=|2 1 -2 —-1{j~j0 3 0 =7

X 17 2 -7 4 o 9 o 17| R =R-TR
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1 -1 -1 3
~10 3 0 —7|R" =R —3R)
0 0 0 4

Number of non-zero vectors in the echelon form of 4 = number of given vectors.
-~ X, X,, X, are linearly independent.

Example 1.5 Test for the consistency of the following system of equations:
X, +2x,+3x, +4x,= 5
6x, +7x,+ 8x,+9x,= 10
Ix, +12x, + 13x, + 14x, =15
L6x, + 17x,+ 18x, + 19x, =20
21x, +22x, + 23x, + 24x, =25
The given equations can be put as

1 2 3 4 5
X

6 7 8 9 10
Xy

1112 13 14| =15

16 17 18 19| |20

21 22 23 24[™) o5
ie. AX = B (say)

Let us find the rank of the augmented matrix [4, B] by reducing it to the normal form

1 2 3 4 5] [1 2 3 4 5
(Ry = Ry — R,
6 7 8 9 10/ |5 5 5 5 5
Ry, — R, — R
[4,B]=[11 12 13 14 15/~|10 10 10 10 00 o g
R
16 17 18 19 20/ |15 15 15 15 15/ ¢ 4 1
R; — Rs — R))
21 22 23 24 25| |20 20 20 20 20

Note @  If two matrices 4 and B are equivalent, i.e. are of the same rank, it is
denoted as 4 ~ B.

123 45 1 1 1
L O
111 11&H%&]

(N B I

12 3 4 5

0 - == _4(R2—>R2—R1,R3—>R3—R1,
S R -R.R — R ~R)
0 —1 —2 —3 —g4 @ 4 = Iy, 1[5 s 1Y
0 -1 -2 -3 —4
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1 0 0 0 0
0 -1 -2 -3 —4

~10 =1 ) 73 4 (CZ _>C2_2C17C3 _>C3 —3C1,
0 -1 -2 -3 -4 Cy = C4— 4G, G — G = 50)
0 -1 -2 -3 —4
1 0000
o1 lc2—>—cz,c3—>c3+(—2),

~f01 1 11
0111 lc4—>c4+(—3),c75—>c5+(—4)]
01 111
1 0000
01 1 11

~lo 00 o 0(R3—>R3—R2,R4—>R4—R2,
0000 o R R)
00000
1 0/0 00

I

0 1'0 00

N (C;—=C3—C,,Cp—Cy — Gy,

I
00100 0 G -GG
0 010 00
I, |0
Now [4, B] has been reduced to the normal form |

The order of the unit matrix present in the normal form = 2.

Hence the rank of [4, B] = 2.

The rank of the coefficient matrix 4 can be found as 2, in a similar manner.
Thus R (4) =R [A4, B] =2

.. The given system of equations is consistent and possesses many solutions.

Example 1.6 Test for the consistency of the following system of equations:
X, = 2x,=3x,=2;3x, — 2x,=—1; =2x, = 3x, = 2; x, + 2x, = 1.
The system can be put as

1 -2 -3 2
X

3 -2 0 —1
X =

0o -2 -3 2
X3

0 1 2 1
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i.e. AX = B (say)

1 =2 =3 2] [1 =2 =3 2
3 -2 0 =1 0o 4 9 —7
(4, B]= ~ (R, = R, —3R))

0 -2 -3 2/ 0 -2 -3 2
o 1 2 110 1 2 1
1 0 0 0

0 4 9 —7

“lo 2 _3 2(C2HC2+2C1,C3HC3+3C1,C4HC472C1)
0o 1 2
1 0 0 0

0 2 1

“lo 2 3 2(R2—>R4, R, —R,)

0 4 9 —7
1 00 0

01 2 1

“lo o 1 4(R3HR3+2R2,R4HR4—4R2)
00 1 —11
1 00 0
010 0

“lo 0 1 4(03—>c3—2c2,c4—>c4—c1)
00 1 —11
1 00
010 0

“lo o 1 4(R4HR47R3)
0 0 0 —15
1 00 0
010 0

“lo 0 1 O(c4—>c4—4c3)
00 0 —15
1 0 0 0
01 00 1

~ Ry ———R,
0010 15
00 01
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.. R[4, B]=4
But R (4) #4, as A is a (4 x 3) matrix.
In fact R (A) = 3, as the value of the minor

3 -2 0
0 —2 —=3/=0
0 1 2

Thus R (A) # R [A4, B]
.. The given system is inconsistent.

Example 1.7 Test for the consistency of the following system of equations and solve
them, if consistent, by matrix inversion.

xX—y+z+1=0;x—-3y+4z+6=0;4x+3y —2z+3=0;
Tx —4y +7z+16=0.

1 -1 1
1 -3 4
A=
4 3 =2
7 —4 7
1 -1 1 =1 [t =1 1 -1 (R, — R, R,
1 -3 4 -6/ |0 -2 3 -5
(4, B]= ~ R, — R, —4R,,
4 3 -2 =310 7 -6
R, —R,—TR))
7 —4 7 —16/ |0 3 0 -9
1 o0 0
0 -2 3 -5
“lo 7 _s 1(C2—>C2+C1,C3—>C3—C1,C4—>C4+C1)
0 3 0 -9
1 0 0
0 1 -6 7
“lo s 3 2 (R2<—>R3 andthenC2<—>C4)
0 -9 3
10 0 0
01 0 0(R3—>R3+5R2,R4—>R4+9R2)
~ and then
0 0 —27 33
0 0 _54 6 (C; = G5 +6C,,Cy — Cy —7C;)




1-1.14 Part I: Mathematics 1

27

S = O O o = O
—_ O O N = O O

——qm———————

C,—C—Gy)

SO © O NN = O O

=)
(=)
(=)

“ R[A, B]=3.AlsoR (4)=3

G — —LC3, C,—

1
—C
33 ¢

(R, — Ry —2R; and then

.. The given system is consistent and has a unique solution.
To solve the system, we take any three, say the first three, of the given equations.

1 —1 1 x —1
i'e' 1 _3 4 y = —6
4 3 2|z -3
i.e. AX:B,say
’ X=A4"B
=1 1 ay  dp
Let A=|1 -3 4| = a,, any
4 3 =2 az;  dxp
Now 4, = co-factor of a, in|4|=-6
A,=184,,=154, =1;4,==6,4,, =7,
A31:_1;A32:_3;A33:_2~
—6 1 —1
Adj(4)=|18 —6 -3
15 =7 =2
|A|:a“A“+a12A12+al3A13
—6
A =L agia= 113
4]
15
Using (2) in (1),
. —6 1 —1j|—1
y:—g 18 —6 —3||—6
z 15 -7 =2||-3

(1)
aps

a3

as3

=9

1 -1
-6 -3
-7 =2

2)



Chapter I: Matrices

I-1.15

1
3 _-
) 3
=——27|=| -3
9
33 72
3
. . 1 11
.. Solution of the system is x = —5, y=-3,z= —?

Example 1.8 Test for the consistency of the following system of equations and solve

them, if consistent:

x+y+z=8,—x+y—-2z=—5x+y+z=6;,-2x+2y—3z=—"1.

Note @  As the solution can be found out by any method, when the system is
consistent, we may prefer the triangularisation method (also known as Gaussian
elimination method) to reduce the augmented matrix [4, B] to an equivalent matrix.
Using the equivalent matrix, we can test the consistency of the system and also
find the solution easily when it exists. In this method, we use only elementary row
operations and convert the elements below the principal diagonal of A as zeros.

31 1 8 11 1 6
-1 1 -2 =5 |-1 1 =2 -5
(4, B|= ~ (R = Ry)
11 1 6 31 1 8
-2 2 =3 -7 |-2 2 -3 -7
1 1 1 6
0 2 -1 1
“lo —2 —2 _10 (R, >R, +R,Ry — Ry —=3R,R, — R, +2R,)
0 4 -1 5
11 1 6
0 2 -1 1
“lo 0 3 o (Ry = Ry +R,, Ry — R, —2R,)
00 1 3
11 1 6
N |V Y L (1)
- N -
00 -3 -9/t "t 377
00 0 O
Now, Determinant of [4, B] = — Determinant of the equivalent matrix = 0. (*.- Two

rows interchanged in the first operation)
R[4, B]<3
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11 1
Now [0 2 —1|=-6=0
0 0 -3

- R[4, B] =R (A) = 3 = the number of unknowns.

.. The system is consistent and has a unique solution.
A system of equations equivalent to the given system is also obtained from the

equivalent matrix in (1).
The equivalent equations are

X+y+z=6, 2y—z=1 and —-3z=-9
Solving them backwards, we get
x=1y=2z=3.

Example 1.9 Examine if the following system of equations is consistent and
find the solution if it exists.

X+ y+z=,2x-2y4+3z=Lx—-y+2z=53x+y+z=2.

o111 11 11
2 =2 3 1 lo -4 _y|(R: = R, — 2R,
A4 Bl= ), si7lo 2 1 4 TR R
3 112 Jo -2 —2 R TR3R)

111

0 -4 1 —1
~lo o 1L 2R3—>R3—1RZ,R4—>R4—lR2
2 2 2 2

0 o0 -2 1L

2 2

1o

0 -4 1 —1

o o1 8RR
2 2
0 0 0 22

It is obvious that det [4, B] = 4 and det [4] =3
: R[A, B]#R [A].

.. The system is inconsistent.

Note @ The last row of the equivalent matrix corresponds to the equation
0-x+0-y+0-z=22, which is absurd. From this also, we can conclude that the

system is inconsistent.
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Example 1.10 Solve the following system of equations, if consistent:
x+ty+z=3,x+y—z=1;3x+3y—-5z=1.

11 13 (11 1 3
[4,B]={1 1 -1 1]~|0 0 -2 —2{(R,—>R,—R,R — R, —3R)
3

33 -51 [0 0 -8 -8
11 1 3

~10 0 —2 —2|(R, — R, —4R,))
00 0 0

.. All the third order determinants vanish
: R[A,B]#3

Consider

21‘ , which is a minor of both 4 and [4, B].

The value of this minor=—2#0

- R (A) = R [A, B] < the number of unknowns.

.. The system is consistent with many solutions.

From the first two rows of the equivalent matrix, we have x + y + z = 3 and

_2Z:_
ie. z=1 and x+y=2

. The system has a one parameter family of solutions, namely x =k, y =2 — £,

z =1, where £ is the parameter.
Giving various values for k, we get infinitely many solutions.

Example 1.11 Solve the following system of equations, if consistent:

X, +2x, —x; —5x, =4, x, +3x, —2x, — Tx, =5;2x, — x, +3x;, =3.

1 2 -1 =5 4
[4,B]=[1 3 -2 -7 5

2 -1 3 03
1 2 -1 =5 4
0 1 -1 -2 1{(R,—R —R,R, —R —2R)
0o -5 5 10 =5
12 -1 -5 4
0 1 -1 =2 1|(R,— R, +5R,))
00 0 00O
. R[A, Bl #3 (" the last row contains only zeros)
Similarly R (4) # 3.

Since ! 2‘ =0, R (4) =R [4, B] =2 < the number of unknowns.
1

.. The given system is consistent with many solutions.
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From the first two rows of the equivalent matrix, we have

X +2x, —x, —5x, =4

(D
and X, —x, —2x, =1 2)
As there are only 2 equations, we can solve for only 2 unknowns.
Hence the other 2 unknowns are to be treated as parameters.
Taking x, = k and x, = k', we get
x,=1+k+2k [from (2)]
and x =4=2(1+k+2k)+k+ 5k [from (1)]

i.e. x =2—k+k

.. The given system possesses a two parameter family of solutions.

Note ™  From the Examples (10) and (11), we note that the number of parameters
in the solution equals the difference between the number of unknowns and the
common rank of 4 and [4, B].

Example 1.12 Find the values of &, for which the equations x + y + z = 1,
x + 2y +3z=kandx + 5y + 9z = k? have a solution. For these values of &, find the
solutions also.

1 1 1 1 1 1 1 1
(Rz_’Rz_Rl’
[4,B]=]1 2 3 kl-[0 1 2 k-1
2 2 R3_’R3_R1)
1 59 k 0 4 8 k*—1
1 1 1 1
01 2 k-1 |(R,— R, —4R) (1
0 0 0 kK*—4k+3
1 1 1
A~10 1 2 R(A):Z
0 00

If the system possesses a solution, R [4, B] must also be 2.
.. The last row of the matrix in (1) must contain only zeros.

R—4k+3=0 ie.k=1or3.

For these values of &, R (4) = R [4, B] = 2 < the number of unknowns.
.. The given system has many solutions.

Case (i) k=1
The first two rows of (1) give the equivalent equations as
and xtytz=1 )

y+2z=0 3)
Puting z = A, the one-parameter family of solutions of the given system is
x=ArAt+t1l,y=-2A and z=A
Case (ii) k=3
The equivalent equations are
x+ty+tz=1 2)
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and y+2z=2 4)
Putting z = g, the one-parameter family of solutions of the given system is
x=u—1,y=2-2uz=pu

Example 1.13 Find the condition satisfied by a, b, ¢, so that the following system of
equations may have a solution:

x+2y—3z=a;3x—y+2z=b;x—5y+8=c

1 2 -3 a
[4,B]=]3 -1 2 b

1 -5 8 c
1 2 -3 a

~l0 =7 11 b-3a|(R, >R, —3R,R,—R,—R)
0 =7 11 c—a
1 2 -3 a

~l0 =7 11 b-3a |(R,—R, —R,) (1)
0 0 0 2a—b+c
1 2 -3

A~{0 =7 11} .. R(4)=2

0 0 0

If the given system possesses a solution, R [4, B] = 2.

.. The last row of (1) should contain only zeros.

. 2a — b + ¢ = 0. Only when this condition is satisfied by a, b, ¢, the system will
have a solution.

Example 1.14 Find the value of & such that the following system of equations has
(1) a unique solution, (ii) many solutions and (iii) no solution.

kx+y+z=Lx+hky+tz=Lx+y+tkz=1

A=

—_ = X

1
k
1

N =

4| =k (kK =1)+ (1= k) + (1 k)
=(k=1)(k* +k-2)
=(k—1) (k+2)

|4| =0, whenk=1ork=-2
Whenk#1 and k#-2,|4/#0 S RA)=3
Then the system will have a unique solution.
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When k = 1, the system reduces to the single equationx +y +z=1.
In this case, R(4) = R[4, B] = 1.

.. The system will have many solutions.

(i.e. a two parameter family of solutions)

When k = — 2,

2 1 11 [1 -2 11
[4,B]=| 1 =2 1 1|~[-2 1 1 1|(R <R)
11 =21 |1 1 =21

12 11
~0 =3 3 3|(R, - R,+2R,R,— R —R)
0 3 =30
1 -2 11
~10 =3 3 3|(R,—R +R)
0 003
Now 1 -2 1
0 -3 3=0 .. R(4)<3
0 00
-0 R(4)=2
0 -3
-2 11
—3 3 3|=aminorof [4, B]=0
003

R[A, B]=3. Thus R(4) # R[A, B].
.. The system has no solution.

Example 1.15 Investigate for what values of A, u, the equations x + y + z = 6,
x+2y+3z=10and x + 2y + Az = x have (i) no solution, (ii) a unique solution,
(ii1) an infinite number of solutions.

11 6/ |1 1 1 6

1
(R, — R, — R,
[4,B]=[1 2 3 10/~]0 1 2 4
Rs_)Rs_Rl)
1 2 A puf |01 A=1 pu—6
1 1 1 6
~0 1 2 4 |(R,—R,—R,)
0 0 A—3 pu—10

2 and |A|:k—3
A—3

b

l
[ R
O = =
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IfA#3,]4|#0 S R(A)=3
. When A # 3 and p takes any value, the system has a unique solution.
1

1

If A =3, ]4] = 0 and a second order minor of 4, i.e. !
0

=0

R (A)=2.
111 6

When A =3, [4.B]~0 1 2 4 (1)
00 0 pu—10

When A =3 and ¢ = 10, the last row of (1) contains only zeros.
R[A, B] # 3 and clearly R[4, B] =2.

Thus, when A =3 and ¢ = 10, R(4) = R[4, B] = 2.

.. The system has an infinite number of solutions.

When A =3 and u # 10, a third order minor of [4, B], i.e.

11 6
1 2 4 |=p—10=0
0 0 p—10
R[A,B]=3
Thus, when A =3 and i # 10, R(4) # R[4, B].
.. The given system has no solution.

Example 1.16 Test whether the following system of equations possess a non-trivial
solution.

x,+tx,+2x, +3x,=0; 3x +4x,+7x, +10x, = 0;
Sx, +7x, + 1lx, +17x,=0; 6x + 8, + 13x, +16x, =0.

The given system is a homogeneous linear system of the form AX = 0.

11 2 3]t 12 3
(R, = R, —3R,
34 7 100 (0 1 1
A= ~ R, — R, —5R,,
57 11 170 |0 2 1
R, — R, —6R)
6 8 13 16/ [0 2 1 -2
11 2 3
o1 1 1
“lo 0 _1 M&H&ﬂ&&ﬁ&—%)
00 —1 —4
11 2 3
01 1 WR R -R)
- LR —
00 —1 o * * 77
00 0 —4

" |4| =4 i.e. 4 is non-singular
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R(A) =R[A4,0]=4
.. The system has a unique solution, namely, the trivial solution.

Example 1.17 Find the non-trivial solution of the equations x + 2y + 3z = 0,
3x+4y+4z=0,7x+ 10y + 11z = 0, if it exists.

1 2 3711 2 3

(R, = R, —3R,
A=|3 4 4|~j0 -2 -5
R, — R, —17R)
7 10 11] |0 —4 —10
1 2 3
~|0 =2 —5|(R, — R, —2R,) (1)
0 0 0
: 12 :
S ]4=0  and =0 S R(A)=2
0 -2

.. The system has non-trivial solution. From the first two rows of (1), we see that the
given equations are equivalent to

x+2y+3z=0 2)
and —-2y—=5z=0 (3)

Putting z = k, we get y = — %k from (3) and x = 2k.

Thus the non-trivial solution is x = 4k, y =5k and z = 2k.
Example 1.18 Find the non-trivial solution of the equations x — y + 2z — 3w =0, 3x +
2y—4z+w=0,5x-3y +2z+6w=0x—-9y + 14z — 2w =0, if it exists.

1 -1 2 =3 -1 2 -3

1
(R2 — R, —3R,
3 2 —4 I {0 5 —10 10
A= ~ R, — R, —5R,
5 -3 2 6/ |0 2 -8 21
R, — R, —Rl)
1 -9 14 -2 |0 =8 12
I -1 2 =3
1 -2 2 1
- R, — - R,
2 -8 21 5

(R, — R, —2R,, R, — R, +8R,)

o o © —~ © o o
\
—
V)
\
(98]
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1 -1 2 -3
0 2 2

1o o0 -4 A&H&fm
0 0 0 0

S ]A|=01e. RA) <4
.. The system has a non-trivial solution.
The system is equivalent to

x—y+2z=3w=0 (1)
y—2z+2w=0 2)
—4z+17Tw=0 3)

Putting w = 4k, we get z = 17k from (3), y = 26k from (2) and x = 4k.
Thus the non-trivial solution is x = 4k, y = 26k, z = 17k and w = 4k.

Example 1.19 Find the values of A for which the equations x +(A +4) y + (4L +2)z =
0,x+2(A+1)y+(Br+4)z=0,2x+3ky + (3L +4) z= 0 have a non-trivial solution.
Also find the solution in each case.

I A+4 4142
A=|1 2A+2 3r+4
2 3A 3+ 4

1 A+4 4142

~l0 A—2 A+2 ;RZ:R&_Z?’) "
0 A—8 —5n " 7 1
For non-trivial solution, |4| =0
ie. “SAA-2)-(A-8)2-M=0
ie. 4\ +16=0
" A=+2
When A = 2, the system is equivalent to
x+6y+10z=0
-6y —10z=0, from (1)

Putting z = 3k, we get y=—Skand x =0
i.e. the solution is x =0, y = =5k and z = 3k.
When A = -2, the system is equivalent to

x+2y—6z=0
—4y+4z=0, from (1)

Putting z = k, we get y = k and x = 4k.
i.e. the solution is x =4k, y=kand z= k.
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Part A

( EXERCISE 1(a) ]

(Short Answer Questions)

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

Define the linear dependence of a set of vectors.

. Define the linear independence of a set of vectors.
. If a set of vectors is linearly dependent, show that at least one member of the

set can be expressed as a linear combination of the other members.

. Show that the vectors X, = (1, 2), X, = (2, 3) and X, = (4, 5) are linearly

dependent.

. Show that the vectors X, = (0, 1, 2), X, = (0, 3, 5) and X, = (0, 2, 5) are linearly

dependent.

. Express X| = (1, 2) as a linear combination of X, = (2, 3) and X, = (4, 5).
. Show that the vectors (1, 1, 1), (1, 2, 3) and (2, 3, 8) are linearly independent.
. Find the value of a if the vectors (2, —1, 0), (4, 1, 1) and (a, —1, 1) are linearly

dependent.

. What do you mean by consistent and inconsistent systems of equations. Give

examples.

State Rouche’s theorem.

State the condition for a system of equations in » unknowns to have (i) one
solution, (ii) many solutions and (iii) no solution.

Give an example of 2 equations in 2 unknowns that are (i) consistent with
only one solution and (ii) inconsistent.

Give an example of 2 equations in 2 unknowns that are consistent with many
solutions.

Find the values of a and b, if the equations 2x — 3y = 5 and ax + by = —10
have many solutions.

Test if the equations x +y +z=a, 2x +y +3z= b, 5x + 2y + z=c have a unique
solution, where a, b, ¢ are not all zero.

Find the value of A, if the equations x + y —z=10,x —y + 2z =20 and Ax —
y + 4z =30 have a unique solution.

If the augmented matrix of a system of equations is equivalent to

1 2 1 2
0 —5 —3 -2}, find the value of A, for which the system has a unique
0 0 0 A

solution.
If the augmented matrix of a system of equations is equivalent to

1 -2 1 3
0o 2 2 —2 |, find the values of A and x for which the system has
0 0 A+1 p-3

only one solution.
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19.

20.

21.

22.

23.

Part B

If the augmented matrix of a system of equations is equivalent to
1 -2 3 4
0 5 4 2 |, find the values of A and u for which the system
0 0 A—2 p-3

has many solutions.

If the augmented matrix of a system of equations is equivalent to
1 1 2 3
0 -3 -1 —2 |, find the values of A and y for which the system
0 0 A-8 p—11

has no solution.

Do the equations x — 3y — 8z =0, 3x + y = 0 and 2x + 5y + 6z = 0 have a non-

trivial solution? Why?

If the equations x + 2y +z=0, 5x + y —z = 0 and x + 5y + Az = 0 have a non-

trivial solution, find the value of A.

Given that the equations x + 2y —z=10,3x +y —z=0 and 2x — y = 0 have
non-trivial solution, find it.

Show that the following sets of vectors are linearly dependent. Find their relationship
in each case:

24.
25.
26.
27.
28. X =
29.

30.
31.
32. X
33. X

34.

X, =(1,2,1),X,=(4,1,2), X, = (6, 5,4), X, = (-3, 8, 1).

X, =3, 1—4)X (2,2,-3), X, = (0,4, 1), X, = (-4, 4, 6)
X, =(1,2,-1,3),X,= (0,2, 1, -1), X, = (2,2, -1, 5)
X:(1043)X 2,1,-1,1), X, = (3,2,-6, 1)

(1,-2,4,1),X,=(1,0,6,-5), X, =(2,-3,9,-1)and X, = (2, =5, 7, 5).
Determine whether the vector Xx; (4 2, 1, 0) is a linear combination of the
set of vectors X, = (6, — 1, 2, 1),)(2 =(1,7,-3,-2),X,=(3,1,0,0) and X, =
(3,3,72,-1).
Show that each of the following sets of vectors is linearly independent.

X =0,1,1)X=(,23);X,=2,-1, 1.

1—(1 -1, 2, 3) X,=(1,0,-1,2); X, =(1,1,-4,0)

1 =(1,2,-1,00X,=(1,3,1,2); X, = (4,2, 1,0); X, = (6, 1,0, 1).

=(1,-2,-3,-2, 1), X,=(3,-2,0,-1,-7); X, = (0, 1, 2, 1, =6); X, = (0,
2,2,1,-5).
Test for the consistency of the following system of equations:

3 4 5 6 7
4 *
x2
5 6 7 8/7=|9
X3
10 11 12 13 14
15 16 17 18/ |19
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Test for the consistency of the following systems of equations and solve, if con-

sistent:
35.

2x =5y +2z=-3; x—3y+3z=-1,x+ty—z=0,—x+y=1

36.3x+5y—2z=1;x—y+4z=T7,—6x—2p+52=9;Tx -3y +z=4.

37.

2x+2y+4z=6;3x +3y + 7z=10; 5x + Ty + 11z =17; 6x + 8y + 13z = 16.

Test for the consistency of the following systems of equations and solve, if
consistent:

38.
39.
40.
41.
42.

43.

x+2y+z=3;2x+3y+2z=5;3x—5y+5z=2;3x + 9y —z=4.

2x+ 6y —3z=18;3x -4y + 7z =31; 5x + 3y + 3z =48; 8x — 3y + 2z = 21.
x+2y+3z=6;5x—3y+2z=4;2x +4y—z=5;3x + 2y + 4z=0.
x+2y=4;,10y+3z=-2;2x -3y —z=5;3x + 3y + 2z = 1.

2, +x, +2x, +x, =6, x, —x,tx, +2x, = 6;4x, + 3x, + 3x, — 3x, = —1;2x +
2x,—x, +x,= 10
2x+y+S5z+w=5x+y+3z—-4w=—-1;3x+ 6y —2z2+w=28; 2x +
2y+2z—3w=2.

Test for the consistency of the following systems of equations and solve, if consistent:

44,
45,
46.
47.
48.
49,
50.
51.
52.

53.

54.

55.

56.

57.

58.

x—3y—8z=-10;3x +y=4z;2x + 5y + 6z = 13.
Sx+3y+7z=4;3x+26y +2z=9;7x +2y + 10z=5.
x—4y—3z+16=0;2x + Ty + 12z=48; 4x —y + 6z=16; 5x — 5y + 3z =0.
X—=2p+3w=1;2x -3y +2z+5w=3;3x— Ty — 2z + 10w =2.
X, +2x,+2x, —x,=3;x, +2x, +3x, +x, = 1; 3x, + 6x, + 8, +x, = 5.
Find the values of , for which the equationsx +y +z=1,x + 2y + 4z =k and
x + 4y + 10z = k* have a solution. For these values of £, find the solutions
also.
Find the values of A, for which the equtions x + 2y +z =4, 2x —y —z =3\ and
4x — Ty — 5z = A? have a solution. For these values of A, find the solutions also.
Find the condition on g, b, ¢, so that the equations x +y +z=a,x +2y +3z=
b, 3x + 5y + 7z = ¢ may have a one-parameter family of solutions.
Find the value of & for which the equations kx —2y +z=1,x —2ky +z=—-2and
x — 2y + kz =1 have (i) no solution, (ii) one solution and (iii) many solutions.
Investigate for what values of A, u the equations x + y + 2z =2, 2x — y +
3z =2 and 5x — y + Az =y have (i) no solution, (ii) a unique solution, (iii) an
infinite number of solutions.
Find the values of a and b for which the equations x + y + 2z =3, 2x —y +
3z =4 and 5x — y + az = b have (i) no solution, (ii) a unique solution, (iii)
many solutions.
Find the non-trivial solution of the equations x + 2y +z=0; 5x + y —z=0 and
x + 5y + 3z =0, if it exists.
Find the non-trivial solution of the equations x +2y +z + 2w =0;x + 3y + 2z
+2w=0;2x +4y + 3z + 6w =0and 3x + 7y + 4z + 6w = 0, if it exists.
Find the values of A for which the equations 3x +y —Az=0,4x — 2y — 3z =
0 and 2Ax + 4y + Az = 0 possess a non-trivial solution. For these values of A,
find the solution also.
Find the values of A for which the equations (11 —A) x —4y — 7z=0, 7x —
(A+2)y—5z=0,10x — 4y — (6 + 1) z = 0 possess a non-trivial solution. For
these values of A, find the solution also.
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1.6 EIGENVALUES AND EIGENVECTORS

1.6.1 Definition

Let4 =[a,] be a square matrix of order ». If there exists a non-zero column vector
X and a scalar A, such that

AX =)\X

then A is called an eigenvalue of the matrix 4 and X is called the eigenvector
corresponding to the eigenvalue A.

To find the eigenvalues and the corresponding eigenvectors of a square matrix 4,
we proceed as follows:

Let A be an eigenvalue of 4 and X be the corresponding eigenvector. Then, by

definition,
AX = )X = AMLX, where [ is the unit matrix of order n.
ie. A-M)X=0 (1
X, 0
a,  ap a,, 10 0
x| |0
Gy Gp oo Gy =MO 1 o o O))=
a, a, a,, 0 0 O 1
x,| |0
i.e. (a“ - l)xl +a,x, +-+a,x, =0
ay %+ (ay = A)xy -+ ay,x, =0 2

—A)x,=0
Equations (2) are a system of homogeneous linear equations in the unknowns x,,

Xyyooos X,

a,x, +a,x, +(a

nn

‘xl
. Xy .
Since X =| | is to be a non-zero vector,

X

n

X, X, .. .,x should not be all zeros. In other words, the solution of the system (2)

should be a non-trivial solution.
The condition for the system (2) to have a non-trivial solution is

a,; — A a, a,
o GpTh o 4y =0 3)
anl anZ a,m - 7\1
i.€. A=21=0 w

The determinant |4 — AJ] is a polynomial of degree » in A and is called the
characteristic polynomial of A.
The equation |4 — A 1] = 0 or the equation (3) is called the characteristic equation of A.
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When we solve the characteristic equation, we get n values for A. These # roots
of the characteristic equation are called the characteristic roots or latent roots or
eigenvalues of A.

Corresponding to each value of A, the equations (2) possess a non-zero (non-
trivial) solution X. X is called the invariant vector or latent vector or eigenvector of
A corresponding to the eigenvalue A.

Notes &

1. Corresponding to an eigenvalue, the non-trivial solution of the system (2) will
be a one-parameter family of solutions. Hence the eigenvector corresponding
to an eigenvalue is not unique.

2. If all the eigenvalues A, A, . . . , A of a matrix 4 are distinct, then the cor-
responding eigenvectors are linearly independent.

3. If two or more eigenvalues are equal, then the eigenvectors may be linearly
independent or linearly dependent.

1.6.2 Properties of Eigenvalues

1. A square matrix 4 and its transpose A” have the same eigenvalues.
LetA=(al.j);i,j= 1,2,...,n
The characteristic polynomial of 4 is

ay — A a; a,,
|A_}‘I|: ay, Ay A ay, )
anl an2 ann - 7\’

ay — A ay a,
4" =u|=| a, ap,-% .. oa, )
aln aZn ann - }\'

Determinant (2) can be obtained by changing rows into columns of determi-

nant (1).

[A—=X1=|A"— )11
.. The characteristic equations of 4 and A" are identical.

.. The eigenvalues of 4 and 4" are the same.

2. The sum of the eigenvalues of a matrix A4 is equal to the sum of the principal
diagonal elements of A. (The sum of the principal diagonal elements is called
the Trace of the matrix.)

The characteristic equation of an »" order matrix A may be written as

A" = DA + DA~ 4 (=1)' D, =0, (1)

where D is the sum of all the 7" order minors of 4 whose principal diagonals
lie along the principal diagonal of 4.
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(Note™ D, =|Al). We shall verify the above result for a third order matrix.
all a12 al}

Let A=la, a, ay
a3l a32 033

The characteristic equation of 4 is given by

ay — A a; ag
ay a, — A ay |=0 (2)
as, as) Q33 — A

Expanding (2), the characteristic equation is

ay 4y

(a“ - 7»){7»2 — (azz + an)?» +

|

a32 a33

a, a a, a
21 Ao 1 dn
—dap _a217\’ + + a; a317\' + =0
as  dsy as  ay
: 3 2
ie. A+ (ay +ay, +ay) A
a, a a, a a,, a
I 12 I 13 n Ay
- T + A+]4=0
ay dy a4y Ay as 0y

ie. M’ =D A+ D, A—D,=0,using the notation given above.
This result holds good for a matrix of order 7.

Note @  This form of the characteristic equation provides an alternative
method for getting the characteristic equation of a matrix.

LetA, A, ..., A be the eigenvalues of 4.

1272

.. They are the roots of equation (1).

—(—D
A, +7u2+~~+7»n_—<1 1):D1
=a,+ay+--+a

= Trace of the matrix 4.

nn

3. The product of the eigenvalues of a matrix 4 is equal to |4|.

If X, A, ..., A arethe eigenvalues of 4, they are the roots of

A — D17Ln7] + Dz}\‘%z — (_1)” D, =0
~1)"-(-1)' D
.. Product of the roots = %

ie. A, A ... A =D =|A4]

1.6.3 Aliter
XAy, ..., A arethe roots of |[4 — M| =0

12772
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SA=M=EED)"A=A)(A—L) ... (A= L), since L.S. is a n™ degree polynomial
in A whose leading term is (—1)" A"

Putting A = 0 in the above identity, we get |4| = (=1)" (=1)) (1) ... (-})
e M. A = A

1.6.4 Corollary

If |[4] = 0, i.e. 4 is a singular matrix, at least one of the eigenvalues of 4 is zero and
conversely.

4. If A, A, ..., A are the eigenvalues of a matrix 4, then

(i) kA, kL, . .. k) are the eigenvalues of the matrix kA, where & is a non-
zero scalar.

(i) A7, AL, ..., A7 are the eigenvalues of the matrix 47, where p is a positive
integer.
(ii1) L’L’L are the eigenvalues of the inverse matrix 47", provided A,
}\‘1 7\'2 n

# 0 i.e. 4 is non-singular.

(i) Let_ be an eigenvalue of 4 and X  the corresponding eigenvector.
Then, by definition,

AX =\ x )
Multiplying both sides of (1) by &,
(kA)X, = (k},) X, 2

From (2), we see that k) _is an eigenvalue of k4 and the corresponding
eigenvector is the same as that of A , namely X .
(i) Premultiplying both sides of (1) by 4,

AX, = A(AX,)
40 x,)
1, (4x))
=\l X,
Similarly 4°X, =AX, and so on.
In general, A”X, =A"X,

From, (3), we see that A” is an eigenvalue of 47 with the corresponding
eigenvector equal to X, which is the same for A .
(iii) Premultiplying both sides of (1) by 47,

AT (AX) =4\ X)
ie. X =% (d'X)

A'X, =—X 4)
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1. . . .
From (4), we see that x—ls an eigenvalue of 47! with the corresponding

eigenvector equal to X I,rwhich is the same for 2,
5. The eigenvalues of a real symmetric matrix (i.e. a symmetric matrix with real
elements) are real.
Let A be an eigenvalue of the real symmetric matrix and X be the corre-
sponding eigenvector.
Then AX =)\ (1)

Premultiplying both sides of (1) by X7 (the transpose of the conjugate of

X), we get _ _
X' AX=AX"X 2)

Taking the complex conjugate on both sides of (2),

X" 4X =k X" X (assuming that A may be complex)
ie. X"AX =L X" X (v A= A, as Aisreal) 3)
Taking transpose on both sides of (3),

X'A'X=AX"X  [+(4B) =B" 4]
ie. XTAX=AX"X [ (A)" = A4, as Ais symmetric] 4)
From (2) and (4), we get
AX" X =AX"X
A—N)XTX=0

i.e.

XT X isan 1 x 1 matrix, i.e. a single element which is positive

A=A =0
i.e. A is real.
Hence all the eigenvalues are real.
6. The eigenvectors corresponding to distinct eigenvalues of a real symmetric
matrix are orthogonal.

X N
X2 2 .

Note ¥ Two column vectors X =| - |andY =|~" |are said to be
x}’l y}’l

orthogonal, if their inner product (x,y, +x,y, + - xy ) =0
ie if XY =0.

Let &, A, be any two distinct eigenvalues of the real symmetric matrix A
and X, X, be the corresponding eigenvectors respectively.
Then AX =0 X, (1)
and AX, =L X, (2)

Premultiplying both sides of (1) by, X7 we get

X! AX, =), X] X,
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Taking the transpose on both sides,
Xl ax, =\ X X, (-A"=4) 3)

Premultiplying both sides of (2) by X{ , we get

X1T AX2:7‘2 X1T X, 4)
From (3) and (4), we have

MY X, =0 XX,

ie. (7"1_7‘2)X1T X, =0
T —

Since A=k, X] X,=0

i.e. the eigenvectors X, and X, are orthogonal.

[ WORKED EXAMPLE 1(b) ]

Example 1.1 Given that 4 — > , verify that the eigenvalues of 4 are the

squares of those of 4.
Verify also that the respective eigenvectors are the same.

The characteristic equation of 4 is 5-h 4 =
1 2—A

ie. (5-2)Q2-2)—-4=0

ie. MN=TAL+6=0

.. The eigenvalues of 4 are A= 1, 6.
The eigenvector corresponding to any A is given by (4 —A ) X =0

X
=0
1 2—A

X,

‘5—% 4

When A = 1, the eigenvector is given by the equations

dx +4x,=0 and

x, +x, = 0, which are one and the same.

Solving, x, = — x,. Takingx, = 1, x, = —1.

.. The eigenvector is
-1
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When A = 6, the eigenvector is given by
—x,+4x,=0
and x,—4x,=0
Solving, x, = 4x,
Taking x,=1,x =4
.. The eigenvector is

N A2—5454—2928
o o2l 2f 78
The characteristic equation of 4% is 29-A 28 =0
7 8—A
ie. 29-»(B8—-1)—-19%=0
ie. M=370+36=0
ie. A—-1DA-36)=0

.. The eigenvalues of 4% are 1 and 36, that are the squares of the eigenvalues of 4,
namely 1 and 6. When A = 1, the eigenvector of 42 is given by

28 28
[ 7 7
Solving, x, = —x,. Taking x, = 1, x, = —1.
When A = 36, the eigenvector of 42 is given by
-7 28
7 28

X

=0. ie. 28x;+28x,=0 and Tx, 4+ 7x, =0
X2

X

= 0 le —7X] + ZSXZ = O and 7x1 — 28XZ = 0

X2

Solving, x, = 4x,. Taking x, = 1, x, = 4.
Thus the eigenvectors of A% are

[ 11 and| |, which are the same as the respective eigenvectors of 4.
Example 1.2 Find the eigenvalues and eigenvectors of the matrix
1 13
A=|1 5 1
311
The characteristic equation of 4 is
-2 1 3
I 5-A 1 (=0
3 I 1-A
ie. (1-0) {M—-61+4} —(1-A-3)+3(1-15+30)=0
ie. A+7M2-36=0 or A-7N2+36=0 (1
e, A +2) (-9 +18)=0 [ A= -2 satisfies (1) ]

ie. A+2)(A-3)(A-6)=0

.. The eigenvalues of 4 are A =-2, 3, 6.
Case (i) A=-2.

The eigenvector is given by
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31 3|[x
1 7 1|x|=0 (2)
31 3||x

ie. x, +7x,+x,=0

3x, +x,+3x,=0
Solving these equations by the rule of cross-multiplication, we have
X1 X2 X3

2.1 3-3 1-21

N _XH_ B 3)
ie. 20 0 =20

Note  Tosolve forx,, x,, x,, we have taken the equations corresponding to the second
and third rows of the matrix in step (2). The proportional values of x , x,, x, obtained
in step (3) are the co-factors of the elements of the first row of the determinant of the

matrix in step (2). This provides an alternative method for finding the eigenvector.

From step (3), x, =k, x,= 0 and x, = —k.
Usually the eigenvector is expressed in terms of the simplest possible numbers,
corresponding to k=1 or — 1.

1
Xi=| 0
-1
Case (ii) A=3.
-2 1 3]Ix
The eigenvector is givenby | 1 2 1||x,|=0.
31 =2|x

Values of x,, x,, x, are proportional to the co-factors of 2, 1, 3 (elements of the
first row i.e. -5, 5, —5.

X _B_XN n_X_ 5

ie.

-5 5 -5 1 -1 1
1
X, =|-1
1
Case (iii) A=6.
-5 1 3][x

The eigenvector is givenby | 1 —1 I|{x,|=0
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M_M_ X%

or 1 2 1
1
X, =2
1

Note @  Since the eigenvalues of A are distinct, the eigenvectors X, X, X, are
linearly independent, as can be seen from the fact that the equation k X, + kX, + kX,
=0 is satisfied only when k, = k, = k, = 0.

Example 1.3 Find the cigenvalues and eigenvectors of the matrix

0 1 1
A=|1 0 1
1 10

The characteristic equation is given by
M —DMN+D)-D, =0, where

D, = the sum of the first order minors of 4 that lie along the main diagonal of 4

=0+0+0
=0
D, = the sum of the second order minors of 4 whose principal diagonals lie along the
principal diagonal of 4.
|01 N 0 1 n 0 1
1o j1 ol 1o
=-3
D,=|4]=2
Thus the characteristic equation of 4 is
M-3L-2=0
ie. A+1)’A-2)=0

.. The eigenvalues of 4 are A =—1, -1, 2.
Case (i) A=-1.
The eigenvector is given by

- 1 1 |[x
1 =& 1 |x|=0
1 I —Allx,

All the three equations reduce to one and the same equation x, +x, +x, = 0. There
is one equation in three unknowns.
-. Two of the unknowns, say, x, and x, are to be treated as free variables (parameters).
Taking x, = 1 and x, = 0, we get x, = —1 and taking x, = 0 and x,= 1, we get x,= -1
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Case (ii) A=2.
The eigenvector is given by

-2 1 1| x
I =2 1jjx,|=0
I 1 =2|lx

Values of x,, x,, x, are proportional to the co-factors of elements in the first row.

ie. a2
3 3 3
or H_H_ %
1 1 1

1

x, =|1

1

Note™  Though two of the eigenvalues are equal, the eigenvectors X, » X, X, are
found to be linearly independent.

Example 1.4 Find the eigenvalues and eigenvectors of the matrix

2 -2 2
A=|1 1 1
1 3 -1

The characteristic equation of 4 is
2—-A =2 2
1 -2 1 |=0
1 3 —1-A

ie. Q-MNN-H+2(-1-A-D+2B-1+1)=0
ie. 2-MDA-2)A+2)=0
.. The eigenvalues of 4 are A =-2, 2, 2.
Case (i) =-2
The eigenvector is given by
4 =2 2||x
I 3 1f|x,|=0
I 3 1|x

. x_18 = x_22 = f—i (by taking the co-factors of elements of the third row)
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ie. B S )
4 -1 7
—4
X, =|-1
Case (i) L =2. 7
The eigenvector is given by
0 -2 2[x
-1 1jx,|=0
I 3 =3ix
Y% X% NN X%
0 4 0 1 1
0
X, =X, =1
1

Note™  Two eigenvalues are equal and the eigenvectors are linearly dependent.

Example 1.5 Find the cigenvalues and eigenvectors of the matrix

11 -4 -7
A=|7 -2 =5
10 —4 —6

Can you guess the nature of 4 from the eigenvalues? Verify your answer.
The characteristic equation of 4 is

-2 -4 -7
7 —2-% =5 |=0
10 4 —6—
ie. (11— A)( W2 + 8L — 8) + 4(8 — TA)-7(10A — 8) = 0
ie. W32+ 20=0

.. The eigenvalues of 4 are A.=0, 1, 2.
Case (i) A=0.

1 —4 =7|x
The eigenvector is givenby | 7 —_2 _5 x,|=0
10 —4 —6||x,
I T

8 -8 -8
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or h_n_ B
1 1 1
X, =1
1
Case (ii) A=1.
10 —4 —7||x
The eigenvector is givenby | 7 -3 —5||x,|=0
10 —4 —7||x,
xl x2 _ x}
-1 1 =2
1
X,=|-1
2
Case (iii) A =2
-4 =Tl|x
The eigenvector is givenby | 7 —4 —5|(x,|=0
10 —4 -=8||x,
xl _ x2 _ x3
2 6 12
XX, X
or 212
2
X, =1
2

Since one of the eigenvalues of 4 is zero, product of the eigenvalues = |4| =0, i.e. 4
is non-singular. It is verified below:

11 —4 -7
7 -2 —5=11(12—20)+ 4(— 42 +50) — 7(~ 28 +20) = 0.
10 -4 —6

Example 1.6 Verify that the sum of the eigenvalues of 4 equals the trace of 4 and
that their product equals |4|, for the matrix

1 0 O
A=|0 3 -1
0 -1 3
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The characteristic equation of 4 is
-2 0 0
0 3—-A -—-1|=0
0 -1 3-A
ie. (1-MA-61L+8)=0
.. The eigenvalues of 4 are A= 1, 2, 4.
Sum of the eigenvalues = 7.
Trace of the matrix=1+3+3=7
Product of the eigenvalues = 8.
[A|=1x©O-1)=28.

Hence the properties verified.

Example 1.7 Verify that the eigenvalues of 4% and 4! are respectively the squares

and reciprocals of the eigenvalues of 4, given that
31 4
A=|0 2 6
0 0 5

The characteristic equation of 4 is
3—A 1 4

0 2—-A 6 |=0
0 0 5-A

ie. B-MDR2-MGB-1=0

.. The eigenvalues of 4 are A =3, 2, 5.
31 413 1 4

Now A=0 2 6/|0 2 6/=|0 4 42
0 0 5(|0 0 5

The characteristic equation of 42 is

9—A 5 38
0 4-A 42 |=0
0 0 25—A

ie. (9 —2)(4-1)(25-1) =0

.. The eigenvalues of A% are 9, 4, 25, which are the squares of the eigenvalues of 4.

31 4 |a, a, a;
Let A=10 2 6|=|a, a, ay

0 0 5 a, a, a,

A,, = Co-factor of a;, = 10;4,=0,4,,=0;
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A21:75;A22:15;‘423:0;‘431:72;‘432:718;’433:6

|[4] =30
. 10 -5 =2
A'=—]0 15 —18
30
0 0 6
1
3 6 15
o L 23
2 5
0 0 1
5
The characteristic equation of 47! is
L, 1 _1
6 15
0o 1oa 3o
2 5
——7»
. 1
——x][—x][—x}
3

.. The eigenvalues of 4! are , which are the reciprocals of the eigenvalues of 4.

1
'5’

UJIr—‘
NI»—‘

Hence the properties verified.

Example 1.8 Find the eigenvalues and eigenvectors of (adj A4), given that the

matrix
-1
A=| 0 2 0
-1 0 2
The characteristic equation of 4 is
2—-2 0 -1
0 2—-2 0 |=0
-1 0 2-A
ie. 2-2)-2-M=0
ie. 2-AD)AW-4r+3)=0

.. The eigenvalues of 4 are A =1, 2, 3.
Case (i) A=1.
1 0 —1f|x
The eigenvector is givenby | 0 1  0f|x,|=0
-1 0 1| x,
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1 0 1
1
X, =10
Case (ii) A=2.
00 —1f|x
The eigenvector is givenby| 0 0  0||x,|=0
-1 0 Oflx

ie.—x,=0 and —x =0
~x, =0,x,=0and x, is arbitrary. Letx, = 1

0
X, =|1
0
Case (iii) A=3.
-1 0 —1j|x
The eigenvector is givenby| 0 —1  Of|x,|=0.
-1 0 —1f|x

H_%_ %

1 0 -1
1

The eigenvalues of A" are 1, l l with the eigenvectors X, X, X..
23

ad_] A _ Ail
|4

Now

i.e.adjA =14 A" =64" (~+|4|=6 for the given matrix 4)

.. The eigenvalues of (adj A) are equal to 6 times those of 47!, namely, 6, 3, 2.
The corresponding eigenvectors are X, X,, X, respectively.

Example 1.9 Verify that the eigenvectors of the real symmetric matrix

3 -1 1
A=|— 5 -1
1 -1 3

are orthogonal in pairs.
The characteristic equation of 4 is
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3-A —1 1
~1 5-%r -—1|=0
1 -1 3-2
ie. G-NN —8h+14)+(h —3+D+(1+1 —5=0
ie. Mo +360 —36=0
ie. A-2)(L-3)(A-6)=0

.. The eigenvalues of 4 are A =2, 3, 6.
Case (i) A=2.

1 -1 1|x
The eigenvector is given by |—1 3 —1||{x,|=0
1 -1 1f|x
N_Hm_%m o MM
2 0 - 1 0 -1
1
X,=|0
Case (ii) A=3.
0 —1 1| x
The eigenvector is givenby |—1 2 —1{|x,|=0
1 =1 0f|x
H_H B
-1 -1 -1
1
X, =1
1
Case (iii) A=6.
-3 -1 1
The eigenvector is given by |[—1 —1 —1||{x,|=0
1 -1 =3||x

A_H 5
2 -4 2
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Now 1
X' x,=1[1 0 —1j1j=0

X, X;=1[1 1]|-2[=0

X;x = -2 1| 0o[=0
-1
Hence the eigenvectors are orthogonal in pairs.

Example 1.10 Verify that the matrix

2 2
A:l—2 1
3
1 -2 2

1
is an orthogonal matrix. Also verify that — is an eigenvalue of 4, if A is an eigenvalue

A

and that the eigenvalues of 4 are of unit modulus.
Note™ A square matrix 4 is said to be orthogonal if 44" = 474 = I.

Now 2 2 1 2 -2 1
N | [V PR R
22 32 2
9 00 [1 0o
1o 9 0/=lo 1 ol=1
%10 0 9| |0 0 1

1
3

Similarly we can prove that 47”4 = I.
Hence 4 is an orthogonal matrix.
The characteristic equation of 34 is

2-0 2 1

2 1-A 2 |=0

1 -2 2-A
ie. Q-2 (VP=3h+6)-202% —4-2)+(@A—-1+21)=0
ie. =502+ 150 —27=0
ie. A =3)N-24+9)=0

.. The eigenvalues of 34 are given by
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24,/4—
A=3  and  A=2EVET0 i

.. The eigenvalues of 4 are

A =1, 7»2:14-12\/5’ k3:1_12\/§

3 3

N 1
ow —=1=)

A

1 3 3(1-i242) 1-in2

7\'3

A 1ti22 (+izv2)(-i2v2) 3

and similarly 1 A,.
3
1
Thus, if A is an eigenvalue of an orthogonal matrix, Y is also an eigenvalue.

Also | = 1] =1.
1 22

~+
3003

— l+§—]
9 9

|7‘2|:

Similarly, [A,| = 1.
Thus the eigenvalues of an orthogonal matrix are of unit modulus.

( EXERCISE 1(b) ]

Part A
(Short Answer Questions)

1. Define eigenvalues and eigenvectors of a matrix.
2. Prove that 4 and A" have the same eigenvalues.

1
3 2

W

. Find the eigenvalues of 242 if A= \

| )
4. Prove that the eigenvalues of (-347") are the same as those of 4 = \2 1}.

1 2 =2
5. Find the sum and product of the eigenvalues of the matrix 4= 1 0 3|
-2 -1 =3
31 4
6. Find the sum of the squares of the eigenvalues of 4=0 2 6|.
0 05
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7. Find the sum of the eigenvalues of 24, if A=|-6 7 —4|
2 -4 3
2 21
8. Two eigenvalues of the matrix 4=|1 3 1| are equal to 1 each. Find the

third eigenvalue. 1 2 2

9. If the sum of two eigenvalues and trace of a 3 x 3 matrix 4 are equal, find the
value of |4].

1 2
10. Find the eigenvectors of 4 = { ]

0 3
300
11. Find the sum of the eigenvalues of the inverse of 4=(8 4 0|
6 2 5
6 -2 2
12. The product of two eigenvalues of the matrix 4=|{—-3 3 —1| is 16. Find
the third eigenvalue. 27 -1 3

Part B
13. Verify that the eigenvalues of A™' are the reciprocals of those of 4 and that the
respective eigenvectors are the same with respect to the matrix

1 -2
A= :
=5 4‘
. . a 1 1
14. Show that the eigenvectors of the matrix 4 = [ b are| |and ]
—b a i —i
Find the eigenvalues and eigenvectors of the following matrices:
2.2 0 -1 2 =2 2 2 =7
15.12 1 1 6. | 1 2 1 17.12 1 2
-7 2 =3 -1 -1 0 0 1 -3
-2 2 -3 2 21 6 -2 2
18. |2 1 -6 19. (1 31 2. |72 3 ~1
-1 -2 0 1 2 2 2 -1 3
3 10 5 2 =2 2 210
21. -2 -3 —4 22,01 1 1 23.10 2 1
3 5 7 1 3 -1 0 0 2
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24.

25.

26.

27.

28.

29.

30.

1.7

52 0 0
22 0 0
00 5 =2
00 -2 2 8 —6 2
Find the eigenvalues and eigenvectors of A =|—6 7 —4/|.
2 -4 3

What can you infer about the matrix 4 from the eigenvalues. Verify your
answer.

—15 4 3
Giventhat A=| 10 —12 6|, verify that the sum and product of the eigen-
20 —4 2

values of 4 are equal to the trace of 4 and |4| respectively.

Verify that the eigenvalues of 4> and 4™ are respectively the squares and

300
reciprocals of the eigenvalues of 4, giventhat 4 =|8 4 0|.
6 25
2 -1 1
Find the eigenvalues and eigenvectors of (adj 4), when 4=|—1 2 —1|.
1 -1 2
2 1 -1
Verify that the eigenvectors of the real symmetric matrix 4 =| 1 1 —-2f.
-1 =2 1
are orthogonal in pairs.
-1 2 =2
Verify that the matrix 4 :l —2 1 2| is orthogonal and that its
2 2 1

eigenvalues are of unit modulus.

CAYLEY-HAMILTON THEOREM

This theorem is an interesting one that provides an alternative method for finding the
inverse of a matrix 4. Also any positive integral power of 4 can be expressed, using
this theorem, as a linear combination of those of lower degree. We give below the
statement of the theorem without proof:

1.7.1 Statement of the Theorem

Every square matrix satisfies its own characteristic equation.
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This means that, if ¢, A" + ¢, """+ - + ¢, L+ c, = 0is the characteristic equation

of a square matrix 4 of order n, then
c,A"+c A"+t A+c I=0 @)
Note:™ When A is replaced by A in the characteristic equation, the constant term
c,should be replaced by c, I to get the result of Cayley-Hamilton theorem, where / is

the unit matrix of order #.
Also 0 in the R.S. of (1) is a null matrix of order .

1.7.2 Corollary

(1) If 4 is non-singular, we can get 4~', using the theorem, as follows:
Multiplying both sides of (1) by 4™ we have

c, A" +e AP+t I+, A'=0
_ 1 _ _
A ‘:—C—(COA” A" o, )

(2) If we multiply both sides of (1) by 4, ¢, 4""' +¢c A"+ - +c A +c A=0

AT = —l(clA" e d" hte, A +an)
€
Thus higher positive integral powers of 4 can be computed, if we know powers
of A of lower degree.

1.7.3 Similar Matrices

Two matrices 4 and B are said to be similar, if there exists a non-singular matrix P
such that B= P! 4P,

When 4 and B are connected by the relation B = P! AP, B is said to be obtained
from A by a similarity transformation.

When B is obtained from A by a similarity transformation, 4 is also obtained from
B by a similarity transformation as explained below:

B=P'4P
Premultiplying both sides by P and postmultiplying by P!, we get
PBP'= PP APP!
=4
Thus A= PBP"!
Now taking P' = Q, we get A = Q' BO.

1.8 PROPERTY

Two similar matrices have the same eigenvalues.
Let 4 and B be two similar matrices.
Then, by definition, B = P! AP
: B-M=P'AP-\I
=P'4P-P'\IP
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=P'A-M)P
|B— M| =|P||4—-M]| |P]
=|4-2| |PP|
=4 - M 1]
=14 - M|
Thus A and B have the same characteristic polynomials and hence the same

characteristic equations.
.. A and B have the same eigenvalues.

1.8.1 Diagonalisation of a Matrix

The process of finding a matrix M such that M AM= D, where D is a diagonal matrix,
is called diagonalisation of the matrix 4. As M"' AM = D is a similarity transformation,
the matrices 4 and D are similar and hence 4 and D have the same eigenvalues.

The eigenvalues of D are its diagonal elements. Thus, if we can find a matrix M
such that M! AM = D, D is not any arbitrary diagonal matrix, but it is a diagonal
matrix whose diagonal elements are the eigenvalues of 4.

The following theorem provides the method of finding M for a given square matrix
whose eigenvectors are distinct and hence whose eigenvectors are linearly independent.

1.8.2 Theorem

If A is a square matrix with distinct eigenvalues and M is the matrix whose columns
are the eigenvectors of 4, then 4 can be diagonalised by the similarity transformation
M' AM = D, where D is the diagonal matrix whose diagonal elements are the
eigenvalues of A4.

Let A, A,, ..., A Dbe the distinct eigenvalues of 4 and X, X,, ..., X be the
corresponding eigenvectors.

Let M=[X,X,, ..., X ], which is an n x n matrix, called the Modal matrix.
S AM=[A4X, AX, ..., AX ] [NOte™ Each AX isa (n x 1) column vector]
Since X is the eigenvector of 4 corresponding to the eigenvalue A,

AX =)X (r=12,...n)
AM=[A X, 0\ X,,..., A X ]

A, 0 0 —— 0
0 x, 0 —— 0
S D |
0 0 0 —— A,
=MD (1)
As X, X, ..., X are linearly independent column vectors, M is a non-singular

matrix Premultiplying both sides of (1) by M, we get M' AM= M"' MD = D.

Note @ For this diagonalisation process, 4 need not necessarily have distinct
eigenvalues. Even if two or more eigenvalues of 4 are equal, the process holds good,
provided the eigenvectors of 4 are linearly independent.



Chapter I: Matrices 1-149

1.9 CALCULATION OF POWERS OF A MATRIX 4

Assuming A4 satisfies the conditions of the previous theorem,

D =M"AM
A=MD M!
A =MD M?"YY(MD M)
= MD(M"' M)DM*
= MD*M!
Similarly, A= MD? M
Extending, A =MD" M
A 00 —— 0
—MO A0 —— OM’I
0O 0 0 —— ij

1.10 DIAGONALISATION BY ORTHOGONAL
TRANSFORMATION OR ORTHOGONAL REDUCTION

If 4 is a real symmetric matrix, then the eigenvectors of 4 will be not only linearly
independent but also pairwise orthogonal. If we normalise each eigenvector X, i.e.
divide each element of X by the square-root of the sum of the squares of all the
elements of X and use the normalised eigenvectors of 4 to form the normalised
modal matrix N, then it can be proved that N is an orthogonal matrix. By a property
of orthogonal matrix, N'! = N".
.. The similarity transformation M' 4 M = D takes the form N” AN = D.
Transforming 4 into D by means of the transformation N” AN = D is known as
orthogonal transformation or orthogonal reduction.

Note: ™ Diagonalisation by orthogonal transformation is possible only for a real
symmetric matrix.

( WORKED EXAMPLE 1(c) ]
1 3 7
Example 1.1 Verify Cayley-Hamilton theorem for the matrix 4=|4 2 3
1 21

and also use it to find 47",
The characteristic equation of 4 is
-2 3 7
4 2-A 3 (=0
1 2 1-A
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ie. A=2)(AM=3r—4)—-34-41-3)+78-2+1)=0
ie. A =422 —200-35=0
Cayley-Hamilton theorem states that

A3 =442 - 204 —351=0 (1)
which is to be verified.

1 3 71 3 7] [20 23 23
Now, A =4 2 3|4 2 3]=[15 22 37
2 11 2 1] {10 9 14

1 3 7][20 23 23] [135 152 232

A =4-42=|4 2 3|15 22 37|=[140 163 208

1 2 1/10 9 14| |60 76 111

Substituting these values in (1), we get,

135 152 232{ (80 92 92| |20 60 140 |35 0 O
L.S.=|140 163 208|—|60 88 148|—(80 40 60|—|0 35 0
60 76 111| |40 36 56| |20 40 20 0 0 35

0 00
=0 0 0
0 00
=R.S.

Thus Cayley-Hamilton theorem is verified. Premultiplying (1) by 47,
A*—44-201-3547"=0

A= %(AZ —4A—201)

20 23 23] |4 12 28] |20 0 O
=—||15 22 37|—|16 8 12|—|0 20 O

35
10 9 14, |4 8 4 0 0 20
e s
-1 -6 25
35
6 1 —10
2 -1 2
Example 1.2 Verify that the matrix 4=|—1 2 —1| satisfies its characteristic
1 -1 2

equation and hence find 4*.
The characteristic equation of 4 is
2—-A -1 2
-1 2-A —-1|=0
1 -1 2-A
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ie. C-MNMN—4r+3)+(A—-2+1D)+201-2+1)=0
ie. M=602+8L—-3=0 (1)
According to Cayley-Hamilton theorem, 4 satisfies (1), i.e.
A= 64> +84—-31=0 2)
which is to be verified.
2 -1 21 2 -1 2 7 —6 9
Now A=-1 2 —1|-1 2 —1|=|-5 6 -6
1 -1 2 1 -1 2 5 =5 7
2 —1 2 7 —6 9 29 —28 38
A=442=-1 2 —1||-5 6 —6|=-22 23 -28
1 -1 2 5 =5 7 22 =22 29
Substituting these values in (2),
29 —-28 38 42 =36 54 16 —8 16 300
LS.=|-22 23 —-28|—|-30 36 —-36|+|—-8 16 —-8|—|0 3 0
22 =22 29 30 -30 42 8 —8 16 0 0 3
0 00
=|0 0 0|=RS.
0 00
Thus 4 satisfies its characteristic equation.
Multiplying both sides of (2) by 4, we have,
A*— 64>+ 84> —-34=0
A*=64°— 84>+ 34 3)
=6(64> — 84 +3 1) — 84*+ 34, using (2)
=284%—454+181 4)
A* can be computed by using either (3) or (4).
From (4),
196 —168 252 90 —45 90 18 0 0
A*=|—-140 168 —168|—|—45 90 —45/+|0 18 0
140 —140 196 45 —45 90 0 0 18
124 —123 162
=[-95 9% —123
95 95 124

Example 1.3 Use Cayley-Hamilton theorem to find the value of the matrix given by

(A8 =547+ TAS — 34° + 84* — 54° + 84> — 24 + I), if the matrix

21
A=10

1
1 0]
11 2
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The characteristic equation of 4 is

2-2 1 1
0 I-A2 0 |=0
1 I 2-A
ie. C-MNMW-3A+2)+A—-1=0
ie. M=52+7-3=0
: A*—54%+74 — 3I=0, by Cayley-Hamilton theorem (1)

Now the given polynomial in 4
=AA - 542 +TA -3+ A4 — 542+ 84— 2D + 1
=0+AA*—54>+TA -3+ A*+ A +I, by (1)
=A? + A +I, again using (1) 2)

2 1 1]2 1 1 5 4 4
Now A=[0 1 0|0 1 0|=|0 1
1 1 2|11 2 4 4

wn O

Substituting in (2), the given polynomial
5 4 4 2 1 1

+10 1 0+
112

[ R
S = O
—_ O O

010
4 45
8§ 5 5
0 30
5 5 8

Example 1.4 Find the eigenvalues of 4 and hence find A" (n is a positive integer),

. 1 2
given that 4 = .
4 3
The characteristic equation of 4 is
I-x 2| 0
43—
ie. M—4r-5=0

.. The eigenvalues of 4 are A=—1, 5
When A7 is divided by (\*> — 4, — 5), let the quotient be Q(X) and the remainder be

(ak + b).

Then M=2—4r—5) Q) + (ak + b) (1)
PutA=-11in(1). —a+b=(1y 2)
Put A =5 1in (D). Sa+b=15" 3)
Solving (2) and (3), we get

a=2= _é_l) and p=2 XD +56(_1)
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Replacing A by the matrix 4 in (1), we have

A" =(A* =44 —51) O(A) + ad + bl
=0x Q(A) + aA + bl (by Cayley-Hamilton theorem)

s |12 N 57 45(=1"][1 0
o 6 4 3 6

0 1
For example, when n = 3,

U R T
6 4 3 6 0 1
21 42 20 0
"84 63 +w 0 20]
41 42
(84 83
2 2 -7
Example 1.5 Diagonalise the matrix 4={2 1 2 | by similarity transforma-
01 -3

tion and hence find 4*.

The characteristic equation of A is

2-0 2 -7
2 1-A 2 |=0
0 1 —3-x
ie. Q-0 (2+2—5)2(-6-2L+7)=0
ie. MW—130+12=0
ie. A-D(-3)A+4)=0

. Eigenvalues of 4 are A =1, 3, —4.
Case (i) A=1.

1 2 —7|x
The eigenvector is given by |2 0 2 ||x,|=0
0 1 —4|x;

Case (ii) A=3.
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—1 2 =T x
The eigenvector is givenby | 2 —2 2{lx =0
0 1 —6||x;
X _ X _ %
10 12 2
5
X, =|6
1
Case (iii) A=—4
6 2 —7]lx
The eigenvector is givenby |2 5  2||x, |=0
0 1 1] x3
A_X %
3 -2 2
3
X;=|-2
2
15 3
Hence the modal matrixis M =|—4 6 -2
-1 1 2

ay dp a3
Let ME 2531 (25)) [20X]

a4y ds
Then the co-factors are given by

A,=14, A4,=10, 4,=2, A,=-1, A4,=5,
A, =28, A4,=-10, A4, =26.
and |M| :anAn + alZAlZ + a13A13 =70.
. 14 -7 —-28
M1'=_—l10 5 —10
70
2 -6 26

The required similarity transformation is
M'AM=D(1,3,-4)
which is verified as follows:
2 2 =7] 15 3
AM =2 1 2|{|-4 6 -2
01 =-3)|-1 1 2
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115 12
=|—4 18 8
-1 3 -8

14 —7 =28][ 1 15 —12
M'AM=—[10 5 —10||—4 18 8
2 -6 26| -1 3 -8

| 70 0 0
=—1 0 210 0
70
0 0 —280
1 0 0
=0 3 0
0 0 —4
A*is given by A*= M D* M 2)
1 0 0 14 —7 -28
D*M'=|0 8 0 x% 10 5 —10
0 0 256 2 -6 26
14 -7 =28

1
=7 810 405 —-810
512 —1536 6656

15 3 ) 14 -7 =28
MD*M'=|-4 6 -2 x% 810 405 -810
-1 1 2 512 —1536 6656

. 5600 —2590 15890
=75 3780 5530 —18060
1820 —2660 12530

80 —-37 227
ie. A*=|54 79 -258
26 —38 179 9
Example 1.6 Find the matrix M that diagonalises the matrix 4=|1 3 1| by
1 22

means of a similarity transformation. Verify your answer. The characteristic equation
of 41is
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1 2 2-)
ie.  (2-A) (A —5h4+4)-2(1-A)+(A-1)=0
ie. A =T +1IL—5=0
ie. (A=1)" (A —=5)=0

.. The eigenvalues of 4 are L =5, 1, 1.
Case (i) A=5.

-3 2  1x
The eigenvector is givenby | 1 —2 I||x,|=0
1 2 =3x

4 4 4
1
X, =\
1
Case (ii) A=1.
1 2 1fx
The eigenvector is given by [1 2 1|jx,|=0
1 2 1x,

All the three equations are one and the same, namely, x, +2x, +x, =0
Two independent solutions are obtained as follows:
Putting x, = ~1 and x, = 0, we getx, =2

Putting x, = 0 and x, = -1, we getx, = 1

2 1
X,=|-1] and X;=| 0O
0 -1

Hence the modal matrix is

M=]1 —1 0|l=l|a, a, ay

L0 =1 [a a, a;

Then the co-factors are given by
A,=1, A,=1, A4,=1, 4,=2, 4,=-2, A4,=2
A,=1, A,=1, A,=-3and

M=a, A, +a. 4, +a =4

1t 12012 1313

32
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1 2 1
M :l 1 -2 1
4
1 2 -3
The required similarity transformation is
M’IAM:D(S,LI) (1
We shall now verify (1).
2 2 11 2 1
AM =1 3 1||1 =2 1
1 2 211 2 -3
5 2 1
=5 =2 1
5 2 =3
1 2 1|5 2 1
M”AM:ll -1  0}|5 -2 1
41 0 —115 2 -3
20 0 0
:l 0 4 0
4
0 0 4
500
=0 1 0
0 0 1
=D(5,11)
2 1 -1
Example 1.7 Diagonalise the matrix 4=| 1 1 —2| by means of an
-1 =2 1

orthogonal transformation. The characteristic equation of 4 is

2-% 1 —1

I 1-1 —2]=0

-1 -2 1-A
ie. =AWV —2h=3)=(-A=1)= (-1 =1)=0
ie. N —4N —L+4=0
ie. (A+1)(A-1)(A—4)=0

.. The eigenvalues of 4 are 1 =—1, 1, 4.
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Case (i) A=-1.

3 I —1j|x
The eigenvector is givenby | 1 2 —2||x,|=0
-1 =2 2||x
H_XH_ N
0o 5 5
0
X, =|1
1
Case (ii) A=1.
1 1 —1f|x
The eigenvector is givenby | 1 0 —2|[x,|=0
-1 =2 0jlx

-4 2 =2
2
X,=|-1
1
Case (iii) A=4.
-2 1 —ljix
The eigenvector is givenby | 1 —3 —2{|x,|=0
-1 -2 =3||x,

5 5 =5
1
X,=| 1
-1
0o 2 1
Hence the modal matrix M =|1 -1 1
1 1 -1

Normalising each column vector of M, i.e. dividing each element of the first column
by 2, that of the second column by V6 and that of the third column by 3 , We

get the normalised modal matrix N.
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o 2 L
Jo o 3
1 1 1
Thus N=l—= —— —
V2 Ve 3
L
V2 Ve 3
The required orthogonal transformation that diagonalises 4 is
N'AN=D(-1,1,4) (1)
which is verified below:
A
2 1) 16 13
AN=| 1 1 2/|= —— —
NEIN NG
-1 -2 1
doo
V2o Ve B
o 2 4
NG
I I .
V2o V6 B
N
V2 V6 B
o L L o, 2z 4
V2o 2 NCEENG)
2 1 1 1 1 4
NCAN=|—- —— —||—— —— —
Jo o Voo el N2 N6 B
oo tpto 4
NV EJNC IVE Y | BENG RN (NG
-1 0 0
=010
0 0 4
= D(~1,1,4).
2 0 4
Example 1.8 Diagonalise the matrix 4=[0 6 0| by means of an orthogonal
4 0 2

transformation.
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The characteristic equation of 4 is
2—A 0 4
0 6-A 0 |=0
4 0 2—-A

ic. (2-1)(6—A)(2—4)—16(6 — 1) =0
ie. (6—A) (A —4r—12)=0
i (6-21)(A—6)(L+2)=0

.. The eigenvalues of 4 are A = —2, 6, 6.
Case (i) A=-2.

4 0 4x
The eigenvector is given by [0 8 0||x,|=0
4 0 4|x
‘xl _ ‘x2 x3
320 32
1
X, =0
-1
Case (ii) A=6.
—4 0 4x
The eigenvector is givenby | 0 0 0O||x,|=0
4 0 —4|x,

We get only one equation,
ie. x,—x,=0 (1)
From this we get, x, = x, and x, is arbitrary.
x, must be so chosen that X, and X, are orthogonal among themselves and also each
is orthogonal with X .

1
Let us choose X, arbitrarily as |0

1
Note™  This assumption of X, satisfies (1) and x, is taken as 0.

a
Let X, =1b
c

X, is orthogonal to X,
a—c=0 2)
X, is orthogonal to X,
atc=0 3)
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Solving (2) and (3), we get @ = ¢ =0 and b is arbitrary.
0

Taking p =1, X, =|1
0

Note @ Had we assumed X, in a different form, we should have got a different
X,.

1 1
For example, if X, =|2|, then X, =|—1

1 1

The modal matrix is M =

—_— O =
[ s R —
S = O

The normalised model matrix is

I
V22
N=| 0 0 1
L1y
V2 2
The required orthogonal transformation that diagonalises 4 is
NT AN =D(-2, 6, 6) (1)
which is verified below:
B
2 0 4] 2 2
AN=|0 6 0| © 0 1
402 1 1 0
2 2
2 6
V2 2
=/ 0 0 6
2 8
V2o 2
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1 1
— 0 —|[ 2 6
= =0
e
N'AN=|-= 0 — || 0 0 6
V2 V2,
01 o= —=0
2 2
2.0 0
=060
00 6
=D(-2,6,6)

Note™  From the above problem, it is clear that diagonalisation of a real symmetric
matrix is possible by orthogonal transformation, even if two or more eigenvalues are
equal.

( EXERCISE 1(c) ]

Part A
(Short Answer Questions)

1. State Cayley-Hamilton theorem.

2. Give two uses of Cayley-Hamilton theorem.

3. When are two matrices said to be similar? Give a property of similar
matrices.

4. What do you mean by diagonalising a matrix?

5. Explain how you will find 4%, using the similarity transformation M™' AM =
D.

6. What is the difference between diagonalisation of a matrix by similarity and
orthogonal transformations?

7. What type of matrices can be diagonalised using (i) similarity transformation
and (ii) orthogonal transformation?

53
8. Verify Cayley-Hamilton theorem for the matrix 4 = \1 3] .

4

9. Use Cayley-Hamilton theorem to find the inverse of 4 = [ ) 6"

-1
10. Use Cayley-Hamilton theorem to find 4, given that 4 = [ ) 4] .
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11. Use Cayley-Hamilton theorem to find (4* — 44° — 54> + A + 2I), when

|12
403
. . a1 . . 53
12. Find the modal matrix that will diagonalise the matrix 4 = Ll
Part B
a
13. Show that the matrix 4 = \ d satisfies its own characteristic equation and
c
h find 471
ence fin 7 9 _3
14. Verify Cayley-Hamilton theorem for the matrix 4A=|—6 —1 2|and
6 2 -1
hence find 4!
1 1 1
15. Verify Cayley-Hamilton theorem for the matrix 4 =|1 2 —3| and hence
2 -1 3
find 47",
1 2 3
16. Verify that the matrix 4=|2 —1 4| satisfies its own characteristic
31 -1
equation and hence find 4*.
1 0 3
17. Verify that the matrix 4={2 1 —1| satisfies its a own characteristic
I -1 1

equation and hence find 4*.

18. Find A", using Cayley-Hamilton theorem, when 4 = E 3 . Hence find 4*.

7 3
19. Find A", using Cayley-Hamilton theorem, when 4 = [ . Hence find A43.

1 0 3
20. Giventhat 4=|2 1 —1|, compute the value of (4° — 54° + 84* — 243 —
I —1 1

94% + 314 — 361), using Caylay-Hamilton theorem.
Diagonalise the following matrices by similarity transformation:

2.2 0
21. 1 2 1 1
-7 2 =3
11
22. 1 0 2 1|;find also the fourth power of this matrix.
-4 4 3
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3 -1 1 1 -3 3 6 -2 2

23. -1 5 -1 24. 13 -5 3 25. -2 3 -1

1 -1 3 6 —6 4 2 -1 3
0 11
26. |1 0 1
1 10

Diagonalise the following matrices by orthogonal transformation:

10 -2 -5 3 -1 0 2 -1 1
27. -2 2 3 28. |-1 2 -1 29. -1 2 -1
-5 3 5 0 -1 3 I -1 2
-2 2 3
30.| 2 I -6
-1 -2 0

1.11 QUADRATIC FORMS

A homogeneous polynomial of the second degree in any number of variables is called
a quadratic form.

For example, x; + 2x; — 3x7 + 5x,x, — 6x,x, + 4x,x, is a quadratic form in three
variables.

The general form of a quadratic form, denoted by Q in » variables is

_ 2
Q =X T CpX X, 0L X X,
2
TG XXy T+ Cp Xy A G0 X,

T O XX T+ Cp XX, e G, XX,

2
+ Cn XXy + CnX, Xy T+ te,X

nn n
n n
1.€. Q: E E ciixixi

j=1 i=1

In general, ¢, + Cp The coefficient of x, x.=c, + C

. 1
Now if we define a; = — (c.. + c..), for all 7 and j, then a. = ¢, a. = a_ and
[ 2 g Jt ii il ij Ji

a.ta.=2a.=c.+c.
7 Jt 7 i Jt

0= le;ay-xix j » where g, = a, and hence the matrix 4 = [a,] is a symmetric
Jj=1i=

matrix. In matrix notation, the quadratic form Q can be represented as Q = X” AX,

where
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»
all alz
. . a, a
The symmetric matrix 4 :[aij]: Az
a, a

nl

the quadratic form Q.

n

is called the matrix of

Note @  To find the symmetric matrix 4 of a quadratic form, the coefficient of

x’ is placed in the a, position and [% X coefficient x, x; is placed in each of the a,

and a . positions.
Jt

For example, (i) if Q = 2x} — 3x,x, + 4x; , then

1 -1 3
then 4 =|—-1 3 é
2
3 é 6
2

Conversely, the quadratic form whose matrix is

3 1 0

2
% 0  6|isQ=3x"—7x] +xx, +12x,x,
0 6 -7

1.11.1 Definitions

If A4 is the matrix of a quadratic form Q, |4| is called the determinant or modulus of Q.
The rank r of the matrix 4 is called the rank of the quadratic form.
If » < n (the order of 4) or |4] = 0 or A4 is singular, the quadratic form is called

singular. Otherwise it is non-singular.
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1.11.2 Linear Transformation of a Quadratic Form

Let O = X" AX be a quadratic form in the # variables x,, x,, . . . , x .
Consider the transformation X' = PY, that transforms the variable set X =[x, x,, . .
., X ]"to anew variable set Y =[y, y,, ...,y ]", where P is a non-singular matrix.
We can easily verify that the transformation X = PY expresses each of the variables
X, X,, . . . , X, as homogeneous linear expressions in y,, y,, . .., y,. Hence X = PYis
called a non-singular linear trans formation.
By this transformation, Q = X" AX is transformed to
0=(PY) 4(PY)
=Y'(P"4P)Y
=Y" BY, where B=P" AP

Now B =(P'AP) =P'A'P
=P'4P ( Ais sysmmetric)
=B
B is also a symmetric matrix.
Hence B is the matrix of the quadratic form Y” BY in the variables y,, y,, . . ., .
Thus Y* B Y is the linear transform of the quadratic form X7 AX under the linear
transformation X = PY, where B = PT AP.

1.11.3 Canonical Form of a Quadratic Form

In the linear transformation X = PY, if P is chosen such that B = PT 4 P is a
diagonal

A 0 - 0
0 A - 0
matrix of the form | |, then the quadratic form Q gets reduced as
0 0 A,
O=Y"BY
A0 0lln
0 A, 01y,
=yl L

0 0 - Ay,

=My MYy et Ay
This form of Q is called the sum of the squares form of Q or the canonical form of Q.
1.11.4 Orthogonal Reduction of a Quadratic

Form to the Canonical Form

If, in the transformation X = PY, P is an orthogonal matrix and if X= PY transforms the
quadratic form Q to the canonical form then Q is said to be reduced to the canonical
form by an orthogonal transformation.
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We recall that if 4 is a real symmetric matrix and N is the normalised modal
matrix of 4, then N is an orthogonal matrix such that N* AN = D, where D is a
diagonal matrix with the eigenvalues of 4 as diagonal elements.

Hence, to reduce a quadratic form Q = X’ AX to the canonical form by an
orthogonal transformation, we may use the linear transformation X = NY, where
N is the normalised modal matrix of 4. By this orthogonal transformation, Q gets
transformed into Y7 DY, where D is the diagonal matrix with the eigenvalues of 4 as
diagonal elements.

1.11.5 Nature of Quadratic Forms

When the quadratic form X" AX is reduced to the canonical form, it will contain only
r terms, if the rank of 4 is r.

The terms in the canonical form may be positive, zero or negative.

The number of positive terms in the canonical form is called the index (p) of the
quadratic form.

The excess of the number of positive terms over the number of negative terms in the
canonical form i.e. p — (r -p) = 2p — r is called the signature(s) of the quadratic form
ie.s=2p—r.

The quadratic form O = X” 4 X in n variables is said to be

(i) positive definite, if » = n and p = n or if all the eigenvalues of 4 are
positive.
(i1) negative definite, if » =n and p = 0 or if all the eigenvalues of 4 are negative.
(iii) positive semidefinite, if » <n and p = r or if all the eigenvalues of 4 > 0 and
at least one eigenvalue is zero.
(iv) negative semidefinite, if » <n and p = 0 or if all the eigenvalues of 4 <0 and
at least one eigenvalue is zero.
(v) indefinite in all other cases or if 4 has positive as well as negative eigen-
values.

( WORKED EXAMPLE 1(d) ]

Example 1.1 Reduce the quadratic form 2x +x; + x7 4+ 2x,x, — 2x,x, —4x,x, to
canonical form by an orthogonal transformation. Also find the rank, index, signature
and nature of the quadratic form.

2 I -1
Matrix of the Q.F.is A=| 1 —1 =2
-1 -2 -1

Refer to the worked example (7) in section 1(c).
The eigenvalues of 4 are —1, 1, 4.
The corresponding eigenvectors are [0, 1, 117 [2, —1, 1]" and [1, 1, —1]” respectively.
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0o 2 1

The modal matrix M =1 —1 1
1 1 -1

[«

Si- - &

The normalised modal matrix N = L —

e

2
1
2
Hence NT AN = D (-1, 1, 4), where D is a diagonal matrix with —1, 1, 4 as the

principal diagonal elements.
.. The orthogonal transformation X = NY will reduce the Q.F. to the canonical form

—yi+y; +4y]

Rank of the Q.F. = 3.

Index =2

Signature = 1
Q.F. is indefinite in nature, as the canonical form contains both positive and negative
terms.

Example 1.2 Reduce the quadratic form 2x’ + 6x; + 2x] + 8x,x, to canonical
form by orthogonal reduction. Find also the nature of the quadratic form.
2 0 4
Matrix of the Q.F.is 4=|0 6 0
4 0 2
Refer to worked example (8) in section 1(c).

The eigenvalues of 4 are —2, 6, 6.
The corresponding eigenvectors are [1, 0,—1]7, [1, 0, 1]" and [0, 1, 0]” respectively.

Note ™  Though two of the eigenvalues are equal, the eigenvectors have been so
chosen that all the three eigenvectors are pairwise orthogonal.

1 10
The modal matrix M =| 0 0 1
-1 10

The normalised modal matrix is given by

S-Sl
k.
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Hence N” AN = Diag (-2, 6, 6)
The orthogonal transformation X = NY

. 1 1
L.e. % :Eyl +$y2
X, =0
Xy =——F7=1Y +Ly
3 \/5 1 \/E 2

will reduce the given Q.F. to the canonical form —2y; + 6y +6y; .

The Q.F. is indefinite in nature, as the canonical form contains both positive and
negative terms.

Example 1.3 Reduce the quadratic form x7 +2x; +x; —2xx, +2x,x, to the
canonical form through an orthogonal transformation and hence show that it is
positive semidefinite. Give also a non-zero set of values (x,, x,, x,) which makes this
quadratic form zero.

17 2’

1 -1 0
Matrix of the Q.F.is 4=|—1 2 1

0 11

I-A -1 0
The characteristic equation of 4is | -1 2—A 1 [=0
0 I 1-A

ie. (1=2){2-1)(1-2)-1}-(1-21)=0
ie. (1-2) (7»2 3%) 0

". The eigenvalues of 4 are A=0, 1, 3.
When A = 0, the elements of the eigenvector are given by x, —x, =0, —x, +2x, +
x,=0andx, +x,=0.
Solving these equations, x, = 1, x, = 1, x, = —1
". The eigenvector corresponding to A =0 is
[L,1,-177
When A = 1, the elements of the eigenvector are given by —x, =0, —x, +x, +x, =
0andx,=0.
Solving these equations, x, = 1, x,=0,x, = 1.
"~ When A = 1, the eigenvector is
[1,0,1]"
When L = 3, the elements of the eigenvector are given by —2x, —x, =0, —x, —x, +
x,=0andx,—2x,=0

Solving these equation, x, = —1,x,=2,x, = 1

. When A = 3, the eigenvector is [—1, 2, 1].
1 1 —1
Now the modal matrixis M=| 1 0 2
-1 1 1
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The normalised modal matrix is

- &= &l
- fl-

Si- 5l 5 -

1
NG

&

Hence NT AN = Diag (0, 1, 3)
". The orthogonal transformation X = NY.

. 1 1 1

1.€. X, = — + — [
I \/gyl /—2yz /—6y3
SRR

1 1 1
X, = _Eyl +Ey2 +%J’3

will reduce the given Q.F. to the canonical form 0-y; + y; +3y; =y +3y;.
As the canonical form contains only two terms, both of which are positive, the

Q.F. is positive semi-definite.
The canonical form of the Q.F. is zero, when y, =0, y, = 0 and y, is arbitrary.

Taking yl :\/g’yzz()andy:’zo, we getxl = 1’x2: 1 andx3:71.

These values of x , x,, x, make the Q.F. zero.

Example 1.4 Determine the nature of the following quadratic forms without reduc-
ing them to canonical forms:

(1) x7 +3x; + 6x7 + 2x,x, + 2x,x; + 4x,x,
(ii) 5x7 +5x; +14x] + 2xx, —16x,x, — 8x, x,
(i) 2x7 + x; —3x; +12x, x, — 8x, x; — 4x, x,.

Note™  We can find the nature of a Q.F. without reducing it to canonical form. The
alternative method uses the principal sub-determinants of the matrix of the Q.F., as

explained below:

Let A =(a)  be the matrix of the Q.F.

U)nxn

Let D =la|=a,, D, =

a, 4, a;
Dy =la, a, ay| etc. and D,,:|A|

ay Ay Ay



Chapter I: Matrices I-1.71

D, D,,D,, ... D, are called the principal sub-determinants or principal minors of 4.

22773
(i) The Q.F. is positive definite, if D, D,, ..., D, are all positive i.e. D > 0 for

all n.

(i) The Q.F. is negative definite, if D, D,, D, ... are all negative and D,, D,, D,
... are all positive i.e. (=1)"D, > 0 for all n.

(iii) The Q.F. is positive semidefinite, if D, >0 and least one D, = 0.

(iv) The Q.F. is negative semidefinite, if (~1)" D, >0 and at least one D, = 0.

(v) The Q.F. is indefinite in all other cases.

(1) O=x +3x; +6x; +2x,x, + 2x,x, + 4x,7x,

1 1 2
Matrix of the Q.F.is 4 =1 3 1
21 6

11
Now D1:|1|:1;D2:1 3:2;

D,=1-(18=1)—-1-(6-2)+2(1—-6)=3.
D,, D,, D, are all positive.
". The Q.F. is positive definite.
(i) Q = 5x + 5x; +14x] + 2x,x, — 16x,x, — 8x,X,.

5 1 —4
A=| 1 5 =8
-4 -8 14
5 1
Now D, =5; Dzz‘ ‘:24;
1 5

Dy =|A4=5-(70—64)—1-(14 —32) — 4- (-8 +20)
=30+18-48=0

D, and D, are >0, but D, =0
. The Q.F. is positive semidefinite.

(i) O = 2x7 + x; —3x7 +12x, x, — 8x, x, — 4x, X,

2 6 -2
A=| 6 1 -4
-2 —4 -3
2 6
Now D =[2|=2; D, = 6 1 =—34;
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D, =|d|=2-(—3—-16)—6-(—18 —8)—2(—24+2)
=—-38+4156+44 =162
. The Q.F. is indefinite.

Example 1.5 Reduce the quadratic forms 6x; +3x; + 14x] + 4xx, + 4x,x,

+18x,x, and 2x] + 5x; + 4x,x, + 2x,x, simultaneously to canonical forms by a
real non-singular transformation.

Note™  We can reduce two quadratic forms X” AX and X” BX to canonical forms
simultaneously by the same linear transformation using the following theorem,
(stated without proof):

If 4 and B are two symmetric matrices such that the roots of |4 —AB|= 0 are all distinct,
then there exists a matrix P such that P" AP and P” BP are both diagonal matrices.

The procedure to reduce two quadratic forms simultaneously to canonical forms
is given below:

(1) Let 4 and B be the matrices of the two given quadratic forms.

(2) Form the characteristic equation |4 — AB| = 0 and solve it. Let the eigenvalues
(roots of this equation) be A, A, ..., A .

(3) Find the eigenvectors X, (i = 1, 2, ..., n) corresponding to the eigenvalues A,
using the equation (4 =, B) X, = 0.

(4) Construct the matrix P whose column vectors are X, X, ..., X . Then X = PY
is the required linear transformation.

(5) Find PT AP and P" BP, which will be diagonal matrices.

(6) The quadratic forms corresponding to these diagonal matrices are the required
canonical forms.

The matrix of the first quadratic form is

6 2 9
A=12 3 2
9 2 14

The matrix of the second quadratic form is

B =

— NN
S L N
S O =

The characteristic equation is |4 —AB| =0

6—2A 2—-2A 9-A

i.e. 2—-2\L 3-35A 2 |=0
9—A 2 14

Simplifying, SE=A=50+1=0

ie. A=DGBA-1D( A+1)=0

1
" 7\ :_L_yl
5
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When A =—1, (4 — AB) X =0 gives the equations.
8x, +4x, +10x, = 0; 4x, + 8x, + 2x, = 0; 10x, + 2x, + 14x, = 0.

Solving these equations, _*1_ _ *2 _ %3
=72 24 48
X =[=312]

When )\ = é,(A — 7»B) X = 0 gives the equations.

28x, + 8x, +44x,=0; 8x +10x,+10x,=0; 44x, + 10x, +70x, = 0.

Solving these equations, N _H_ B
-360 72 216
X, =[-5,1,3]

When A = 1,(4 — AB) X = 0 gives the equations
4, +8x,=0; —2x,+2x,=0; 8x, +2x,+ 14x,=0

X, =[2,-1,-1]"
-3 -5 2
Now P=[X,, X,, X;]=| 1 1 -1
2 3 -1
-3 1 2l6 2 9[-3 -5 2
PrAP=|-5 1 3|2 3 2/ 1 1 -1
Now 2 -1 —1|[9 2 14 2 3 -1
2 1 3[-3 =5 2] [1 00
=|-1 -1 =1 1 1 —1]=0 1 0
1 -1 22 3 =1 |00 1

2

Hence the Q.F. X" AX is reduced to the canonical form y; + y7 + y; .

-3 1 2§22 1|-3 =5 2
Now PPBP=|-5 1 3|2 50/ 1 1 —1
2 -1 —1jj1 0 0| 2 3 -1
-2 -1 =3||-3 =5 2/ |-1 00
=-5-5-=51 1-1= 050
I -1 2 2 3 -1 001

Hence the Q.F. X" B X is reduced to the canonical form —y} + 5] + y; .
Thus the transformation X = PY reduces both the Q.F.’s to canonical forms.

Note™ X = PYis not an orthogonal transformation, but only a linear non-singular
transformation.
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Part A
(Short

( EXERCISE 1(d) ]

answer questions)

1. Define a quadratic form and give an example for the same in three variables:

Part B
11.

12.

13.

14.

15.

16.

17.

18.

. Write down the matrix of the quadratic form 3x; + 5x; + 5x; — 2x,x, + 2x,x,

+ 6x,x,.
2 1 =2

. Write down the quadratic form corresponding to the matrix 1 2 =2|

-2 =2 3

. When is a Q.F. said to be singular? What is its rank then?
. If the Q.F. X" AX gets transformed to Y7 BY under the transformation X = PY,

prove that B is a symmetric matrix.

. What do you mean by canonical form of a quadratic form? State the condition

for X = PY to reduce the Q.F. X" AX into the canonical form.

. How will you find an orthogonal transformation to reduce a Q.F. X7 4X to the

canonical form?

. Define index and signature of a quadratic form.

Find the index and signature of the Q.F. x7 + 2x; — 3x; .

. State the conditions for a Q.F. to be positive definite and positive semidefinite.

Reduce the quadratic form 2x; + 5x; + 3x; + 4x,x, to canonical form by an
orthogonal transformation. Also find the rank, index and signature of the Q.F.
Reduce the Q.F. 3x7 — 3x; — 5x] — 2x,x, — 6x,x; — 6x,X, to canonical form by
an orthogonal transformation. Also find the rank, index and signature of the Q.F.
Reduce the Q.F. 6x7 + 3x; + 3x; — 4x,x, — 2x,x, + 4x,x, to canonical form
by an orthogonal transformation. Also state its nature.

Obtain an orthogonal transformation which will transform the quadratic form
2x] +2x; + 2x] — 2x,x, — 2x,X, + 2x,x, into sum of squares form and find
also the reduced form.

Find an orthogonal transformation which will reduce the quadratic form
2x,x, 4+ 2x,x, 4+ 2x,x, into the canonical form and hence find its nature.
Reduce the quadratic form 8x} + 7x; + 3x; — 12x,x, — 8x,x, + 4x,x, to the
canonical form through an orthogonal transformation and hence show that it
is positive definite. Find also a non-zero set of values for x , x,, x, that will
make the Q.F. zero.

Reduce the quadratic form 10x] + 2x; + 5x; + 6x,x, — 10x,x, —4x,x, to a
canonical form by orthogonal reduction. Find also a set of non-zero values of
x,, X,, x,, which will make the Q.F. zero.

Reduce the quadratic form 5x; + 26x; + 10x; + 6x,x, + 4x,x; + 14x,x, to
a canonical form by orthogonal reduction. Find also a set of non-zero values
of x,, x,, x,, which will make the Q.F. zero.
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19. Determine the nature of the following quadratic forms without reducing them
to canonical forms:

() 6x7 +3x; +14x] + 4x,x, +18x,x, + 4x,x,
(i) x —2xx, + x5 +x;
(i) X +2x) +3x] 4+ 2x,x, + 2x%,x, — 2x,X,
20. Find the value of & so that the quadratic form A(x} + xJ + x;) + 2x,x, — 2x,
x, + 2x,x, may be positive definite.
21. Find real non-singular transformations that reduce the following pairs of qua-
dratic forms simultaneously to the canonical forms.
() 6x7 +2x7 +3x] —4x,x, +8x,x, and 5x7 + x; + 5x] — 2x,x, + 8x,x, -
(i) 3x7 +3x) —3x] +2x,x, — 2x,x, + 2x,x, and 4x,x, + 2x,x, — 2x,¥, .
({ii) 2x7 +2x7 +3x7 + 2x,x, — 4x,x, — 4x,x, and 2x,x, — 2x,X, — X] .

(iv) 3x 4 6x7 + 2x] + 8x,x, — 4x,x, and 5x7 + 5x7 + x; — 8x,x, — 2x,X, -

( ANSWERS ]
Exercise 1(a)
Part A
1 3

(6) Xl :—EXZ +EX3

8) a=8.

(12) x+2y=3and2x—y=1;x+2y=3 and 2x + 4y =>5.

(13) x+2y=3and 2x + 4y =6. (14)a=-4,b=6.

(15) Have a unique solution. (16) L £5.

(17) No unique solution for any value of A.

(18) A #—1 and i = any value. (19)r=2and u=3.

(20) A=8and p # 11. (21) No, as |4] £ 0.

(22) A=3 23)x=k,y=2k, z= 5k
Part B

24) IX + X, + X, +X,=0;

(25) 2X, - X, - X, + X, =0;

(26)2X, + X, — X, = 0;

(27) X,—2X,+ X, =0;

(28) X, - X, +X,—X,=0;

(29) Yes. X.=2X +X —3X +0.X,

(34) R(A4) = R[4, B] =2; Consistent with many solutions.
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(35) R(4)=73 and R[4, B]
(36) R(4)=73 and R[4, B]
(37) R(4)=73 and R[4, B]
(38) Consistent; x=—1,y=1,z=2.  (39) Consistent, x=3,y=15,z=6.

(40) Consistent; x=1,y=1,z=1. (41) Consistent; x=2,y=1,z=—4.

(42) Consistent; x, =2,x,=1,x,=—1,x,=3.
. 1 4
(43) Consistent; x =2,y = 3 z=0,w= 3

(44) Consistent; x =2k—1,y=3 -2k, z=k.
7—-16k  k+3

45) Consistent; x = Ly = ,z=k.

(43) 11 4 11

(46) Consistent; y — le_9 k,y= 16_6 k z=k.
3 5 3 5

(47) Consistent, x =3 —4k—k,y=1-2k+k,z=k,w=Fk.
(48) Consistent; x, = =2k +5k' +7,x, =k, x3=-2k'=2,x,= k'
(49) k=1,2: Whenk=1,x=2A+1,y=-3)Az=A

When k=2, x=2u,y=1-3u,z=p.
(50) A=1,8: Wheni=1,x=k+2,y=1-3k z=>5k

When 7»=8,x=é(k+52), y:—é(3k+16),z:k.

(51) a+2b—c=0.

(52) No solution, when k& = 1; one solution, when &k # 1 and —2; Many solutions,
when k = —2.

(53) No solution when A = 8; and u # 6; unique solution, when A # 8 and u = any
value; many solutions when A = 8 and y = 6.

(54) If a=38, b # 11 no solution, ; If a # 8 and b = any value, unique solution; If
a=8and b = 11, many solutions.

(55) x=k y=-2k z=3k (56)x = -4k, y=2k,z="2k,w=k

(57) A=1,-9; WhenA=1,x=k y=—k,z=2kand when A=-9,x =3k, y =
9k, z = =2k

(58) A=0, 1, 2; When A =0, solution is (k, k, k); When A = 1, solution is (k, —k,
2k); When A = 2, solution is (2%, k, 2k).

Exercise 1(b)

(3) 2, 50. (5) -2, —1.
(6) 38. (7) 36.
3) 5. 9) 0.
1 1
(10) lO and 1‘. (11) %.
(12) 2.

(15) 1,3 -4,(-2,1,4)",(2,1,-2)", (1, -3, 13)"

(16) 1,4/5,—5;(1,0,-1)" ,(\E—l, 1, —1)T ,(\E 1, -1, 1)T.

(17) 1,3, -4, (-1,4,1)",(5,6,1)", (3, =2,2)"
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(18) 5,-3,-3; (1,2, - (2,-1,0)7,(3,0, )"
19) 5,1, 1,; (1, 1, ), (2, -1, 0)%, (1,0, —1)"
(20) 8,2,2; (2, -1, DT, (1,2,0)%, (1,0, —2)T
(21) 3,2,2; (1,1, -2)7, (5,2, =5

(22) —2,2,2;(4,1,-77%, (0, 1, )T

(23) 2,2,2; (1,0, 0)".

(24) 1,1,6,6;(0,0,1,2)", (1, -2,0,0)",(0,0,2, ~1)"and (2, 1, 0, 0)"

(25) 0,3,15;(1,2,2)7, (2, 1, =2)", (2, =2, 1)"; 4 is singular
(26) Eigenvalues are 5, —10, —20; Trace = —25; |4| = 1000
(28) 1,4,4; (1, -1, D)7, (2, -1,0)7, (1,0, = 1)
29) —-1,1,4;(0,1, D). (2, -1, D)7, (1, 1, =D

Exercise 1(¢)

o | 6 —3 0 —19 57
@ %la 7 A0 1 3¢ 76
(11) 32 (12) M= !
4 5 -1
-3 -2
1 d —b e
(13) (14) <
d —bc|— 3
a C C a —6 _2
| 3 -4 -5 248 101
(15) T -9 1 4 (16) |272 109
-5 3 104
7 =30 42
(17) |18 —13 46
-6 —14 17
L (6" =2"1[5 3] (327—6")[1 0] [976 960
(18) A" = : +| == ;
4 1 3 2 0 17320 336
. 19" —4" |7 3| [9.4"—49"|1 0| |463 399
(19) A" = —_— ;
5 2 6 5 0 1[7266 330
000
(20) |0 0 0 (1) D(1,3,—4); M=|-1
000
111 —99 115 65
(22) D(1,2,3); M=| 2 1 1; 4*=|-100 116 65
-2 01 —160 160 81

5

98 204

-2

2 1
1 -3
13
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(24) D(4,-2,-2);

M=

(25) D(8,2,2);

1

(=)

1 -1

1

M=

(26) D(2,—1,-1);

NERERE
-t~ -1s

[\l o o
-5 78 18
I

N

(27) D(0,3,14);

& |2 (8
— LN A n (N

1__J1__J1__J 1_£1_£2_£ 2_£1aﬁ °

ST I TR
R R s e R

N =

(28) D(1,3,4);

~g e |

N

(29) D (4,1,1);

N =

(30) D(5,-3,-3);
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Exercise 1(d)

3 -1 3
@ -1 51
3 15

(3) 2x7 +2x3 +3x5 +2x,x, —4xyx; — 4x3x,.
(4) Singular, when |4| = 0; Rank » < n.

(6) P AP must be a diagonal matrix.

(9) index =2 and signature = 1.

1y 2
NN
2 1 2 2 2
(1) N=|—= 0 —=}0=y +3y, +6y;5;r=3;,p=3;5=3
NN
0 1 0
3 1 1
Jio o 35 14
5 2
12 N=| 0 —7= ﬁ;Q:4y12—y§—8y32;r:3;p:l;s:—1
1 3 3
IO 35 14
2 5 L
J6 V3
11 1 ey .
(13) N=|——= — —|;0=8y +2y, +2y5; 0 is positive definite
Vo V2 B
Ao
Vo V2 B3
L
V32 e
1 1 1
(14) N = B E;Q=4yf+y§+y§
15 2
V3 J6
oo
NERG NG
1 1 1
(15) N=|—= —= ———=|;0=2y —y3 —3;0 is indefinite
NERG NG
R
V3 V5
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r 2 2
303 3
16 N=|2 3 —2Lo=3i+15hx=1y=2x=2
2 2 1
3 3 3
3
Ja2 o 4
an V=l ~  Llo=s2t1atin=1,5=-5x-4
Ja2 o e
4 2
Ja2 o e
6 2 1
N TR G
I s .
(18) N =|- O =14y2 +27y2: x,=16, x,= —1, x,= —11.
m \/ﬁ \/ﬁ 2 3 1 2 3
3
378 14 27

(19) (i) positive definite; (ii) positive semidefinite; (iii) indefinite.

(20) A>2.
1

eH O pP=| 1
~1

1
(i) p—|_1
-2

1

(i) P=|0

1

0

(iv) P=|0

1

1

1,0

1

1,0, =

0

1
1,0, =

-1

W4y +23550, = yi +4y3 + 3

—16y7 +4)2 +8y1; 0, = 4y} —4y? + 4y}

10 =y + 93 +13: 0, = v3 — 3.

207 +4y3 —y30, =30 +4y3 + 3.



Chapter 2

Sequences and Series

2.1 DEFINITIONS

If uy, uy, us,...u,... be an ordered set of quantities formed according to a certain law
(called a sequence), then u; + uy + uy +...u, + ... is called a series. If the number of
terms in a series is limited, then it is called a finite series. If the series consists of an
infinite number of terms, then it is called an infinite series.

For example

are infinite series.
The terms of an infinite series may be constants or variables. The infinite series u,

+uy+ -+ + u,+ -+ to o is denoted by 2 u, orsimply Zun .The sum of its first »

n=1
terms, namely, (u; + u, + --- + u,, ) is called the n™ partial sum and is denoted by S,
If s, tends to a finite limit s as » tends to infinity, then the series Zun is said to
be convergent and s is called the sum to infinity (or simply the sum) of the series. If
5, —> £ oo as n — oo, then the series Zun is said to be divergent.
If s, neither tends to a finite limit nor to & oo as n — oo, then the series Zun is

said to be oscillatory. When 214" oscillates, s, may tend to more than one limit as
n—> oo,
To understand the ideas of convergence, divergence and oscillation of infinite
series, let us consider the familiar geometric series
1

a+ar+ar*+ - +ar’ '+ to oo (1)
For the geometric series, s, is given by.
s,=a+ar+ar +.. +ar"”
a(l—r") a(r" =1)
= or

1-r r—1
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Case (i) Let |r|<1 or—1<r<I.

a _a
S TR
lim(s,) = a ¢ -lim (")
n—>co 1—-r 1—-7 noe
=4 % 50, since Irl<1
1-r 1-r
a . .
= —— = ¢ finite quantity.
1-r

.. The geometric series (1) converges and its sum is

1-r
Case (ii) Letr>1.
a" -1) a a

= =
s r—1 r—1 r—1

lim(s,) = % x lim (") - —%—
n—>eo r— n—seo r—1
a
= X oo
r—1

=1 oo, according as a is positive or negative.
. Series (1) is divergent.

Case (iii) Letr=1.

Then s, =a+a+a+ -+ a(nterms)

=na
lim (s,) = alim(n)
n—oo n—oo

== oo, according as a is positive or negative.

. Series (1) is divergent.

Case (iv) Letr<-1andputr=—k

Then k> 1
a ar”
s, = -
1-r 1-r
a - k)"
= —d
1+k 1+k

n+l gn
a_ D"k
1+k 1+k
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Now lim (k") = oo, since k> 1
n—»oo

lim (s,) =oo, if nis odd and = —oo, if n is even.
n—yoo

i.e. s, oscillates between —eo and oo,
Series (1) is oscillatory, oscillating between —o and eo.

Case (v) Letr =—1
Then s, =a—a+a—a+ ... tonterms

=a or 0, according as » is odd or even.

.. Series (1) oscillates between a and 0.

Thus the geometric series a + ar + ar* + - + ar" !

+ --- is convergent, if |r| <1,
divergent if |r| >1 and oscillatory if |r| <-1.

2.2 GENERAL PROPERTIES OF SERIES

1. If a finite number of terms are added to or deleted from a series, the conver-
gence or divergence or oscillation of the series is unchanged.

2. The convergence or divergence of an infinite series is not affected when each
of its terms is multiplied by a finite quantity.

3. [Ifthetwo series 2 u, and 2 v, areconvergenttosands’, then 2 (w, +v,)

is also convergent and its sum is (s + s”).

Note™  Form the geometric series example, it is clear that, to find the convergence
or divergence of a series, we have to find s, and its limit. In many situations, it may
not be possible to find s, and hence the definition of convergence cannot be applied
directly in such cases. Tests have been devised to determine whether a given series is
convergent or not, without finding s,. Some important tests of convergence of series
of positive terms are described below without proof.

2.2.1 Necessary Condition for Convergence

If a series of positive terms zun is convergent, then lim (u,) = 0.
n—»oco

Since Zun 1s convergent, r}gn (s,) =s,where s, =u, +uy + -+ + u,

Now lim(s,_;) = lim(u +uy +---+u,_;)
n—oco n—oo

= lim (u, +u, +---+u,), puttingm=n—1
m—»eo

lim s,
m—»oo

=S
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lim(u,) = lim(s, —s,_;)
n—o0 n—oo

lim (s,) — lim (s, _;)
n—soo n—soo
=5—5
=0
Note™  The condition is only necessary but not sufficient, i.e. hm (u ) =0 does
not imply that 214 is convergent.

. 1 . 1 . .
For example, if u,, = —, then lim (—) =0, but zun is known to be divergent.
n n

n—oo

2.2.2 A Simple Test for Divergence

If lim (u,) # 0, then Zu,, is not convergent. Since a series of positive terms either
n—oo

converges or diverges, we conclude that Zu,, is divergent, when lim (u,)#0 .
n—yoco

2.2.3 Simplified Notation
When a series is convergent, it is written as Series is (C).

When a series is divergent, it is written as series is (D).

2.2.4 Comparison Test (Form I)
1. If zun and Z\)n are two series of positive terms such that «, <v, for all n

(=1,2,3,...)and if Y,v, is (C), then Y u, is also (C).
2. If ZM,, and zvn are two series of positive terms such that u, > v, for all n

and if 2V, (D), then ¥ u, is also (D).

2.2.5 Comparison Test (Form II or Limit Form)

n—oo

u,

If Z” and zv are two series of positive terms such that lim [ j =/, a finite
v,

number # 0, then Z“n and z v, converge together or diverge together.

Note @  Using comparison test, we can test the convergence of ZM provided

n >
we know another series zvn (known as auxiliary series) whose convergence or
divergence is known beforehand.

In most situations, one of the following series is chosen as the auxiliary series for
the application of comparison test.
1. The geometric series 1 + r + ¥ + ---, which is (C), when lrl<1 and (D), when
r=1.
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-1 1 1
2. The factorial series z T + 20 + BN + -+ which is (C) as discussed
sl 1 !3!
below.
. | 1 1 1 S
3. The p-series Z—: 1+ —+—+—+--- which is (C), when p > 1 and
Zin? 2P 3P 4P

is (D), when p < 1.

2.2.6 Convergence of the Series Z i'

o n!
1 1 1 1 1
Let zun—25—3+5+§+z+“'tow
Consider 2vn:l+i+;+ ! +-- to oo
1 12 1.2:2 1.2:2.2

We note that u; = v, and u, = v,

. 1 .

Since 3! >1:2-2, —<———,1.e.,u; <V,

31 122

Similarly #, < v, and so on.

Thus each term of zun after the second is less then the corresponding term of
S,

1 1
But zvn = 1+5+2—2+2—3+... is a geometric series in which |r|=5<1.

Hence ZVn is (C).
By the comparison test, Zun is also (C).

2.2.7 Convergence of the p-series i ip
n=10

1 1 1
Let zun =1—p+2—p+3—p+...°°

Case (i) Letp > 1.

Zun can be rewritten as

[1) ( 1 1 ) ( 1 1 1 1 j
Z“n =|—|+|—+— |+ —F+—+—+—|+..,
1P 2[’ 31’ 41’ 51’ 61’ 7P

such that the ™ group contains 2"~ ! terms of Zun.
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Consider the auxiliary series

(1) (1 1) (1 11 1)
zvn =l —|+|—+— |+| —F+—+—+— |+
17 P 9P 4P 4P 4P 4P
‘We note that Up =V, Uy = Vo, Uy = Vg, Ug = Vg and so on.
Since p> 1,3’ >2?

i<i, ie. Uy <y

3y 2F

. 1 .
Similarly — < —, i.e. u5 < Vs, ug < Vg, u; < v; and so on.
5P 4°

Hence in the two series Zun and EV,, , u, <v, forall n.

.. By comparison test, Zun is (C), provided Zvn is (C).

1 2 4
Now EVn :1—p+2—p+4—p+---
1 1 1 1
= —+

I
—_
+
(V]
S
+
/N
[\
”3‘,_;
N—
o
+
/N
[\
S
~
W

This series is a geometric series with » =

Since p>1,p—-1>0

277> 1 and so <1

2r!
Yy, is (C).
Hence zu,, is also (C).
Case (i) p =1
1 1 1 L . .
Now Zun =1+ 5 + 3 + 2 + -+ +to oo (This series is called the harmonic series).

zun can be rewritten as

1 1 1 1 1 1 1 1 1 1
Eun:1+—+ —+—|+|=+—F=+—|+| =+ —+ -+ — |+ tOe
2 \3 4 5 6 7 8 9 10 16
Consider the auxiliary series

1 1 1 1 1 1 1
ZV,, =1+5+ —+—[+|{=+t=+—+— |+ - tOoo

4 4) |8 8 8 38
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We note that i, = v, u, = v, Uy = v, Ug = Vg, U} = V| and so on.
. 1 1 .11
Also since —>—, u;y > vy since — > —, ug > vs;
3 4 5 8
Similarly ug > v, 17 > v, and so on.
In the two series Zu,, and 2 Vo, u, 2 v, for all n.

By comparison test, Z”n is (D), provided Z"n is (D).

1 1 1
Now Vv, =1l+—+—4—4:00
z 2 2 2

: -1 +1
Snznthpartlalsumof ZVn =1+ n2 = n2

lim (s,)=o°
n— oo

v, is (D)
zun is also (D)

Case (iii) Let p < 1.

Consider the auxiliary series

ZVH = 1+l+lt0°°
2 3

Since p < 1, #¥ <n (except when n = 1)

1 1
— > —, for all values of n
n’ n

1.e. u, = v,, for all values of n

But, by case (i), YV, is (D).

. By comparison test, Z“n is also (D).

Cauchy’s Root Test

If zun is a series of positive terms such that lim (”i/ ”) =1, then the series ZM,,
n— oo

is (C), when / < 1 and (D) when /> 1. When / = 1, the test fails.
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( WORKED EXAMPLE 2(a) ]

Example 2.1 Test the convergence of the series

2
(11) ZCOS n

n=1

nl1

(i) Let D, =Y !

1+3"

Let Z v, = i

3)‘!

Now 1+43">3"foralln

! <Lf0ralln.
1+3" 3"

ie u,<v,foralln

> u, is (C),if 2, is (C).

r_ .ttt - corios with r = L <1
Now ZV = ——§+3—2+33+ -+ 1s a geometric series wit r—§< .
2V s (O)

Hence zun is also (C).

2
(i) Let Su, =321

2}1

Let ZV = —

Now |cos n| <1 or — 1<cosn<1
cos’n <1 forall n

COS2 n

2Vl
ie. u,<v,foralln
You, is (C), if Y,v, is (C).
1 1 1 . . . .
Now Zv = —:—+—+—+ ---is a geometric series with r =1/2 < 1.
on 2 22 23

> v, is (C)

Hence zun is also (C).

Hence

< Ln for all n,
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Example 2.2 Test the convergence of the following series

L+_ _ oo tO o0
-2 34 56

1-2 3-4 56
32 42 +52-62 +72-82 +

(@)

(i)
2 3
(i) 14—+ 24 >t em
2 3 4
_on
2n-1)-2n

1 1
_Ezzn—l

Let 2 v, = zl
n

(i) The given series is ZM,, = 2

Note®  If the numerator and denominator of u, are expressions of degree p and
P
q in n, then we choose v, = w_ 1
n?  pdp

Then — =l. zl.
v, 2 l 2 2n—1
n
11
2,1
n
1 (—”J = — lim ;1
n— oo vn n— oo 2_7
n
1
=—=%0
4

. By the limit form of comparison test, Zun and zv,, converge or diverge
together.

1
Now Zvn = 2— , which is the harmonic series is (D).
n

s Yu, isalso (D).
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. . L 1-2 3-4
(i1) The given series is Zun +...t0 00

IV
2n-1)(2n)
: u, =
he 2= @2n+1)* 2n+2)°
2
Let Zvn = 22—4 (.. the numerator is degree 2 and the

denominator is of degree 4)
-3~
2

u, _ (2n=1@2n)-n’
v, Qn+1)2n+2)>

(z_.l)z
n
2 2
(2 + 1) (2 + 2)
n n
u 221
lim| | = =—=0
n—)w( v, j 22 .22 4
.. By comparison test, zu,, and Zvn converge or diverge together.

Now v, = zlz is (C) [ ZL,, is (C), when p > 1}
n n
s >, isalso (C).

Then

, o 120 3 -
(iii) The given series is Zun = 2—2 + 3—3 + 4—4 + ... to oo (omitting the first term)

ie. Su =y "

(n +1)n+1

" 1
Let ZV,I :Z#or ZZ

u, n"
Then —=———n
v, (n+1)"

n+1

n+1
_[ n j _ 1
n+1 141
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_ 1 1
1 " 1 + —
(1 + nj "
lim (”—J SR S 1
—>oo n
' Va lim (1 + 1) lim (1 + )
n—eo n n—beo n
1
=—=0.
e
.. By comparison test, Zun and Zvn converge or diverge together.
1.
Now ZVn = Z— is (D)
n

Z”n is also (D).

Note @  Omission of the first term (= 1) of the given series does not alter the
convergence or divergence of the series.

Example 2.3 Examine the convergence of the following series:

) 32 -1 oo n n
N L B R -1 (11)2(3 +4]
n=1 «/311 +2n+5 =1
iy 3 nsin’ (1] @ 3l L]
n=1 n n—l\/; n
2 1)1/3

(i) Su, = Zm

n’ 1
Let Zvn = ZF or znlw

(2”2 - 1)1/3 112

Then _— =
3n® +2n+ 5"

n? =13 34

G2+ 5V

1/3
2n* -1
n2

3 /4
(371 +2n+5)

n2/3

n3
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. By comparison test, Zun and 2"" converge or diverge together.

Now 2 \%

=

L. 1
= zanIS (D) [ Zn—pm (D) when p < 1}

o u, is (D).
-~ 3"+ 4"
un =
) 2 2(4" +5" J
4 n
Let Zvn = Z(EJ
Then U =3n+4n ><i

V, 4" +5" 4"

BE

u 0+1
im | 22| = =120,
HIEIL[VJ 0+1

Zun and ZVn converge or diverge together, by comparison test.

n
. . L 4 .
Now z v, = z (gj is a geometric series with 7= 3 <1 and hence is convergent.

Hence Zu,, is also (C).
(iii) Su, = i nsin’ (%)
Let ZV” = l
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N

Then z

. 1
— = n* sin’ [—
v, n

. u
lim | 2| ={ lim | ——2
n—m(vn) n—>oo (1)
n

1l
—_
.

#0

.. By comparison test, Zun and 2"" converge or diverge together.
v, =Y 1is0),
n
Z”n is also (D).
(iv) Su, = Yt [1)
n=1 \/; n
1
Let zvn = 2}137

Then oo tan (l) x n'?

lim [”—J = lim
n—eo\ v, n—soo (l)

I
—
.



1-2.14 Part I: Mathematics 1

.. By comparison test, Zun and Zvn converge or diverge together.

Zvn = z% is (C) { ZLF is (C), when p > 1}
n n
Hence ZMH is also (C).

Example 2.4 Determine whether the following series are (C) or (D).

(QZN?E?ﬁtﬂ; QDZFE%:E}
Gy 3, ( +1-n): (iv) Z[ N JF]

) 2, = Z(M—\/ﬂ)

_ Z{W + —j:)jﬁjd —1)}

-y 2
\/n4 +1 +\ln4 -1
Let S, = zniz

Then U

_ 2n*
Vn ) \/n4 +1+4/n* =1

2
\/1+14 +\/1—14
n n
lim u—n =L:1;ﬁ0
n—o| v, 1+1

. By comparison test, zun and z v, converge or diverge together.

1,
Zm=2?m©.

Hence zun is also (C).
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(i i = Z[M]

5 LT ) T3]
R0

e v

Let 2 v,

1l
M

a+—
n
o+
R
Then Vn na( 'n+1+\/;)
1

lim [”—j 1o
n—>o0 Vn 2

" Zu,, and 2 v, converge or diverge together.

Tn=X—

. 1 1 .
is (C) when a+—>lora>—, and it is (D) when
a+7 2 2

1 1
o+—<lorox<—.
2 2

zun is (C) when « >% and (D) when o < % .

172
Note™ Keeping u, = “n+ ~n "

,if we choose v, = —= % we will get

lim [u J 0 and so comparison test fails.
v

n—oo
(iii) u, = (@ + D" ="

(n3 +1)— n’ a-p

_ g
@+ D2+ + DB+ @ a’ +ab + b*
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1-2.16
~ 1
n® + 1?2 + 0 + )" + 02
1
Let V, =
n
2
Then u, — n
Vo @+ 40 +D'"7 40’
1

Zun and ZV,, converge or diverge together.
L
n
Hence ZM,, is also (C).
. _ 1
(iv) PR Jitfntl
Let S, = z%

wo___Nn_ 1
ORGSR 1+,[1+l
n
lim [”—”j:lio
n—e| v, 2
Zun and zv,, converge or diverge together.
1 . 1 1
v, = ZWIS(D){.’ In Z—p,p=—<1}
n n 2
zun is also (D).

Example 2.5 Examine the convergence of the following series:

(1) (2 (3Y
(1) (Z)+(7) +(E) +...t0 o
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2 3
(i) l+£x+(§j x2+(i) X +...10 oo}
2 3 4 5

- 2 -3
Lo (272 33 4% 4
(111) I—Z—T + 2—3—5 + 3—4—5 +...t0 o0

@iv) a+b+a2+b2+a3+b3+...t0<>o,givena>0,b>0.
2 3
(i) Given series is l+(£j +[i) +...t0 o0
4 \7 10

u, = n™ term of the given series

“\3n+1

lim ()" = Tim | —
n—>°°( 2 n—>w(3n+1
=lim| ——
" 34—
n
1
=—x<1
3

.. By Cauchy’s root test, ZM,I is (C).

2 (3Y 4y’
(ii) 2“ ="yt (_) X+ (_j x> + ... (omitting the first term)
" 4 5

3
n+1)' n
u, = X
n+2

1+l
im _[n+1 n
Then u, = Y x or >
n+ 142
n
lim (u,)""" = x

n—>o0

. By Cauchy’s root test,
Zun is(C)ifx<1anditis(D)ifx>1

If x = 1, Cauchy’s root test fails.

In this case, lim (4,,) = lim [ n +;j

n—oo n—\ n+
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1 n
~ tim "
n—oo
n

e

1
=— or —#0
e e

i.e. the necessary condition for convergence of z u, is not satisfied.

>, is (D)

-1 -2 -3

(iif) Su, = 2_3) +(i_§J e e,
"l ) 3 3

2l
o :IJ"“—(":IJ}

1
Then lim (u,)"" = (e—=1)"" _—<1
n— oo -1
By Cauchy’s root test, Zun is (C)
(iv) Su, =a+b+a+b +a +b+
n+l
Then u,=4a 2 ,if nodd
=" if nis even
1t
un”” = a? 2 ifnis odd
= bl/z, if n is even

lim /") = Va, ifnis odd
n— oo

= \/Z, if n is even
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. Whether » is odd or even, ZM,, is(C)ifa<landb<1,and (D)ifa>1 and
b > 1, by Cauchy’s root test.

When a = 1 = b, the series becomes

1+1+1 - toeo, whichis (D).

Example 2.6 Test the convergence of the following series:

. n ,,2.
® nzz(log ny’ ) 2[;) ’

(111) 2(1_{_%] : (IV) Z (n+1)x] ! > 0.
n

n+l

@) D, =Y L

(logm)" " (logn)"

hm /™y = llm( ! j
n—e| log n

=0<1

.. By Cauchy’s root test, ZM,, is (C).

(i) >u,

I

VR

3

+ |3

_

N—
=I\>

1 1
)1/}7: :_<1

. 1) e
Iim|1+—
n— o0 n

By Cauchy’s root test, zun is (C).

(iii) Mu, = Z(l+%]

u =(1+Ln and so ul/"— 1+L\/;
’ Jn U

1 LY
Hence lim | ) |= lim (1 + —] =e>1
n— o n— oo n

lim (u,,
n—soo

n3/2
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By Cauchy’s root test, zu,, is (D).

(iv) 2 z [(n + Dx]"

n+1
n+1)x n+1x
N (G2 P T U
n+l n+l
n —
n n
_(n+Dx
nl+1/n

n+l1 X
- n nl/n

hm @) = lim (1+ lj S —
n

n—oco lim (n™)
n— oo
B x
lim (n"'")
n—soo
Now letv=n"" . logv= 1 log n
n

ummwy4mf%ﬂ
n— e n— oo n

lim ( ! ) by L’Hospital’s rule

n—soo

n— oo

ie. log|: lim (v)} =0 or lim v=e"=1
n—>oo
Using (2) in (1), we have
lim (u)") = x
n— oo
.. By Cauchy’s root test, Z"‘n is(C)ifx<1,and (D) ifx>1

(n+1)"

If x = 1, the series becomes u, = z
1

Let ZV,, = Z—
n

u n n n
Then 2z _ M Xn= n_+1 =1+ l
v, nn+1 n n

(1)

2)
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lim [”—J —e#0
n—eo\ v,

. By comparison test, Z”n and Z\/n converge or diverge together.

ZVn is (D). Hence Zun is(D)ifx=1.

( EXERCISE 2(a) ]

Part A
(Short Answer Questions)

. Define convergence of an infinite series with an example.

. Define divergence of an infinite series with an example.

. Show that the series 1 +x + x* + --- to o oscillates when x = —1.

. Show that the series 1 + x + x> + -+~ to o oscillates between —eo and oo, when
x<-1.

5. Give an example to shown that zun is not (C), even though nlgll’ (u,)=0.

AW N =

6. Prove that the series 1+ % + % + % +...to oo is (D).

7. State two forms of comparison test for the convergence of zun.

8. State two forms of comparison test for the divergence of Zun.
9. State Cauchy’s root test.

. 1
10. Test the convergence of the series 1+ —+—+ 7 +...to oo

. . (1
11. Test the convergence of the series Zsm (—)
n

2
12. Test the convergence of the series Ze "

Part B
Examine the convergence of the following series:
oo -2 oo
sin“ n 1
13. 14.
Z{ 3" T 1+4"
. . . 1 2 3
s, 1-2 N 23 N 3-4 . 16. + + e
3.4.5 456 567 1442 1+423 1+3V4
17. L+L+L+-~- 18. ! + ! + ! + e
NN CIN ] 1.2:3 234 345
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1 3 5
+ +

< 2"+ 3"
z_

19. +
123 234 345 S4m s
4 1
; 1
—4n+2 )3 3 —5n? 3
I Elhihats . [ AT
n +2n-3 nw +4n* —n
§a
23. ZSIH -
n
1 tan~' x
tan"' | — | | Hint: li =
24. 2 n tan (nJ{ in xlg})[ . J }
. n 2" -1
Sin
25. 2 (#HJ 26 Xy
(n+1y> (n+1)
217. 28.
znk+(n+2)k 2 n?
. 1 : 1/n
Hint: Ch =—and 1 =1
29. znm/n [ in 00se v, . an nl_>nl,n
30. S (Jfn? +1-n2) 31 Y 1)
n+1—\/;
2. Y o+ 1 n?) 33. Y, ]
n
2 3 2 3
3. L2 +(§j + 35, (A i3] oy
3 5 7 4 5 6
2 3 2 3 x4
36. l+—=+—+—+-(x>0 37. x+—+—+—+-- (x>0
R TRE (x>0) 4 (x>0)
2 3 4 5
38. 1+2(lj+(1) +2(l) +(lj +2(l) + -
3 3 3 3 3

39. 2(1 +%)_n2

D’Alambert’s Ratio Test

. . " . Upir
If Zun is a series of positive terms such that lim
n—oo| Uy

—3/2

o 3]

] =1, then the series 214"

n

is (C) when /< 1 and is (D) when /> 1. When [ = 1, the test fails.
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Raabe’s Test

n— oo u

If Zun is a series of positive terms such that lim {n[ Do 1]] =1/, then the

n+1

series Zun is (C) when /> 1 and is (D) when / < 1. When / = 1, the test fails.

( WORKED EXAMPLE 2(b) ]

Example 2.1 Test the convergence of the following series:

L2 2 2
(1) =+ —+—+-t0 oo
1 2 3
.3 34 345
() =+ —+——+---to oo
4 4.6 4.6-8
() ! + 2 + 3 +---to
111 o
1+3 1432 1+3°
p p p
1+ .
21 31 4!
. 2 2% 2? "
1 U, = —+—+—+--+—+---
® 2 1 2 3 n
2" 2n+1
u,=— and wu,, =
n 1
un+l 2n+1 n 1

ul’l
lim[ +1]=2>1
n—e\ U,

By ratio test, ZM,, is (D).
p YL
"4 46 468
I R P CE )
" 4.6-8...(2n+2)

+ e

(i)

[NOTB ™  There are n factors each in the numerator and denominator of the n™
term. The factors are in A.P.]
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345 (n+2) (n+3)
"1 T 468, (2n+2) 2n+4)

u

1+é

Uyt _ n+3 _ n
u, 2n+4 2+ﬂ
n

u
lim ("—Hj = l<1,
n— oo un 2

By ratio test, zun is (C).

(iif) Su, - 2 &

+ -+ T+
1+3 143 1+3

u, = and u _n—+1
T4y AT
Uy n+1 1+3”
u, 1+3n+l n
1
| —+1
=(1+—j- 31
=13
3}1
u
1 ( n+1]:l<1
n—el U, 3
By ratio test, Z u, is (C).
. P 3P 4P
(iv) Xy =20 30 A
21 31 4!
4 +1p
un:n_ and n+1_(n )
n! (n+1)!

e _ (141" nt
u,  (+D! P

_(n+1) 1
n n+1l

P
n n+l




Chapter 2: Sequences and Series 1-2.25

u
lim ( n+l):O<1.
n—eo |\ U,

By ratio test, 2un is (C).

Example 2.2 Test the convergence of the following series:

0 i(a+l)(2a+1)(3a+1)...(na+1).

;a,b,>0.
1 0+DR2b+1)(3b+1)...(nb+1)

.. 3" n!
(i) Y ——;
n
a" x"
x>0);
(iii) zl+n2( )

(iv) 21:67@ > 0);

. (a+1)Qa+1)...(na+1)
M u, = Z(b+1)(2b+1)...(nb+1)

Uy (a+1)Qa+1)...(na+1)(n+1-a+1) BN @b+1)... (nb+])
u,  (b+1)(2b+1)...mb+1)(n+1-b+1)  (a+1)(2a+1)...(na+1)

+
C(+Da+1l T+l
C (n+Db+1 1

b+
lim | 2L | =4
n—e| U, b

n+1
.. By Ratio test, Zun is (C) if%<1ora<b, and Zun is (D) if%>l ora>b.

If a = b, the ratio test fails.
But in this case, the series becomes 1 + 1 + 1 + --- to oo, which is (D).

Thus Zun is (C) when 0 <a < b, and it is (D) when 0 < b < a.
. 3" n!
(ii) Yu, =Y

nn

3" n! 3 (n+ 1))
un = h and yn+l +Ll)
n" (n+1D"
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Upt _ 3" (a1 "
u, (n+D™ 37!
n 1 n
= 3( " J or 3 -
n+ 1+L

n

u
lim( ”*1)=§>1 ( e=2.71828 --)

n—eo\ U, e

By ratio test, Zun is (D).

(i) Su, = 2

1+ n?

a" x" d a" x
and u,  =——
1+ n* 1+ (m+1)?

<
Il

Uy a™t xm y 1+ n?

u, l+(n+1)?* a"x
1+ n?

)
242n+n

1
-
—%+g+1
n n

+1

. un+l
Iim | — |=ax
n—> oo u

. . . 1
By ratio test, Zun is (C),ifax<lorx> —.
a

. . 1
Zun =is(D),ifax>1orx< —
a

Ratio test fails, when x = l
a

But when x = %, Z”n = 21-1-1712

By choosing zvn = Lz and using comparison test, we can prove that Zun is
(©). "
. 1 1
Thus Y u, is (C) whenx < — and (D) whenx> —.
a a
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(iv) Su, =y~

1+ x%"
n q xn+1
U, = 7, and U, = 22
1+ x 1+ x
un+l xn+1 1+x2n
u, 1+ x2n+2 xn
x+x2n+1
= 14 202

1im(u”+lJ=x, ifx<1 [ lim (x*"*h=0= 11m(x2”+2):|

n—oo un n—>o0
1 1
U, 1 _ x2n+1 X
OO
x2n+2

u
lim( "“J:l, ifx>1
n—o0 u X

n

n—oo l/ln

. un+l
Thus whenx < 1and x> 1, lim [

But when x = 1, the ratio test fails.
In this case, the series becomes

l+l+%+,,, to o0, which is (D).

Example 2.3 Test the convergence of the following series:

o [T e +(

x

D orE M o

x? X’

X
(it + + +...(x>0)
) l+x 1+x° 1+x°

x +...(x>0)

+...(x>0)

. 22x% 333 4% 0
(iv) x+ Y + 3t + 2l +...(x>0)

J<1 and hence zu,, is (C).
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. 1 2, 3 3

U, = [=x+,|=x" +,[—x +...
@ 2 \/; \/; V10

+1
u, = 2n x" and wu,, = ”—2xn+1
n°+1 (n+1)"+1
Up i1 (n+1) n* +1
. > X

u, n (n+1D° +1

1
7~ N\
p—
+
I |~
N—

—_
N+
3
[\S]
[\)
=

. un+l
lim =X.
n—oo un

.. By ratio test, Zun is(C)ifx<1landitis(D)ifx>1.

When x = 1, ratio test fails.
n

In this case, the series becomes zun = 2 T
n-+

Choosing ZV,, and using comparison test, we can prove that zun

is (D).

1

Thus Y u, is (C) whenx <1 and (D) when x> 1.

(if) Su, = L
21 32 43
2n-2 2n
u, = ——— and U,

(n+1D)n
N . (n+1)/n

w, X2 (n+2)fn+1

ey
=

X
- (n+2)\Jn+1
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u
. n+1
lim =x?
n—oo un

By ratio test zu,, is (C) if x* < 1 and (D) if x* > 1.

1

1 1 1
2\/I+3\/5+4\/§+...+—(n+1)\/;.

and using comparison test, we can prove that ZMH is (C).

Whenx*=1, Zu,, = Choosing

|
ZVﬁW

Thus Zun is (C) when x* < 1 and it is (D) when > 1.

(iii) Su, =Y =

n

1+ x"

Uy B xn+] l+xn
u, 14! x"
x+xn+l
= 1+xn+1

u
lim[ n+lj:x,ifx<1 ['.'x"“%Oasn—)oo]

n—e\ U,
X
Mn+l xn-+—l+1
Also _u = 1
8 n+l+1
X
. u, +1
lim | & =1,ifx>1
n—soo u,

.. By ratio test, Zun is (C). If x < 1 and ratio test fails if x > 1.

Also when x = 1, the ratio test fails.

. 1 1 1 ..
In this case, Zun = —+—+—+..., which is (D).
2 2 2
) . 222 N 3% . n'x" .
) D A TR n

un+l : (n+1)n+1xﬂ+1 y n!

u (n+1)! n'x"

(n+1)n ( 1)”
= xor|l+—| -x
n n
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. un+l
lim =e.x
n—oo u

n

1 1
.. By ratio test, zun is(C)ifex<lorx< — anditis(D)ifex>1orx> —.
e e

When x = l, ratio test fails.
e

ol
In this case, Zun = Ee— .

n!

lim (u,) = lim | ~¢2— | %0, = Yu, is (D), whenx= L.
n—>o0 n—e| nl e

Example 2.4 Test the convergence of the following series:

. 1 13 135

D1+=—+—+—

2 24 246

Gy L L5 05,
4% 4787 4%.8%.127

(i) 2+ 2y 4 300

X+ x3+...(x>0)
7 7-10 7-10-13

2 3
(iv) 1+212+’3‘—2+;‘—2+...(x>0).

i Y Ll s 135, (omitting the first t
(1) W, =St ot ae T omitting the first term)

1-3:5...2n -
. 35.@Qn-D)
2:4-6 ..2n

L _135..@n-D@n+D)
LT 2446 ..2n-2n+2)
1
24—
Uy _ 2n+1 or _n

u 2n+2 2+%

n
n
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Hence ratio test fails.
Let us try now Raabe’s test.

fim 4| <1 1 b= tim | ] 22224
n—seo Uy, n—yeo 2n+1
lim "

n—e| 2n+1

lim | —— [=—<1
1m 1 <

—
24—
n

.. By Rabbe’s test Z”n is (D).

1?1252 12.5%2.9?

(11) zun = 4_2+ 42'82 + 72'82'122 +

L 12.52.9% . .(4n - 3)?
" 4%.82.12% ... (4n)?
1257 (4n =3 (4n+1)

and U, | =
U 4282 (4n)? (4n + 4)?

1 2

U1 (4n+1) _(4+n)

u,  (4n+4)>° ( 4)2
4+—

1im(””—”j=1.
noeo\ U,
2
o [ 4, 1}{u1}
7 (4n+1)
{(8%5)-3}
= Py
(4n+1)°

u 8+é
1imn[ < —1]=hm3 —1

n—oo 1

n

3x8 3
= P =—>1.
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By Raabe’s test Zun is (C).

336 , 369 4
- Zx+ + +
(iii) X =Y Yoo

3-6:9..Gm)
7 7.10-13...3n + 4)

3-69..6m)Gn+3)

d -
an Ut T 70013, G+ HGn+ 7)
3
o1 343 0T,
= X = 7 X
u, 3n+7 340
n

. Uyt
Im|——|=x
n—oo| U

n

. By ratio test, Zun is (C)ifx<1and zun is(D)ifx> 1.
When x = 1, ratio test fails.

un+] _3n+3
u 3n+7

n

u, 3n+7 4n
n —-1l|=n -1|=
U, 3n+3 3n+3

tim | o 2 1 ]| = im [ 2
n—eo unJrl n—eo 3+§

In the case,

. By Raabe’s test, Z”n is (C), whenx = 1.

Thus Y u, is (C)ifx < 1 and it is (D) if x> 1.

2 3

. X X .
@iv) Zun = 2—2+3—2+4—2+..- (omitting the first term)
n xn+1
u,=—— and u,, | =—
" (n+1)? " (2
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2
1+l
Uy X" (m+1)? ( n)
= X T T 2 X
u, (n+2) X ( 2)

1+—
lim el | X
n—eo\ U, ’

n
~. By ratio test, D, is (C)ifx<1andis (D) ifx> 1.

Ratio test fails, when x = 1.

Whenx =1, e _ (n+2)2

Uppr  (n+1)

lim | 2| 22— —1]|= lim —”(2’”3)
n—eo Uy 11 n—ee (l’l+1) B
2+—

= lim|—"_

fim | %

1+—
n -

=2>1

. By Raabe’s test, Zun is (C).

Note ™  The convergence of ZM,, can be proved, when x = 1, by comparison
test also.

o D, is (C)ifx < 1andis (D) if x> 1.

Example 2.5 Examine the convergence of the following series:

ca@+)(@+2)..(a+n-1)  ox"
(1)zb(b+1)(b+2)...(b+n—1)’ (“)zn-z"’

(2n)! ,
(iii) z(n!)z X
. a@+)(a+2)...(a+n—-1)
) 2 =Zb(b+1)(b+2)...(b+ﬂ)
un_+1 _a+n

u, b+n
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a
u —+1
li "1 = lim Z =1
noe T =41
n

Ratio test fails

Now n U -1
un+1

I
S
/N
Q>
+ [+
S | S
|
-
N—

_n(b-a or (b-a)
a+n g+1

n
lim [n[ U —1]] =b-a
= Uy 1

. By Raabe’s test, Zun (C)if b—a>lorb>a+1 anditis (D)ifb—a<1or
b<a+1.

If b=a + 1, Raabe’s test fails.

In this case,

B a(@a+D)(a+2)...(a+n-1)
T @) (@+2)@+3)...(a+n—1)a+n)

Let Zvn = zl
n

u, na a

+ a
\Z atn a

n

lim | Yo | =a=0.
n—oeo | v,
. By comparison test, zun and Z\zn converge or diverge together.
1.
DV, = Y —is(D).
n
Zun is also (D).

n

Thus 3,u, is (C)if > (a+ 1)andis (D) if b < (a + 1).
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n—1
.o x
(i) Yy =2
U1 x" n-3"
un (n+1) 3n+1 xn—l
X 1
== ;
3 l1+—
n

. Uy 1 X
lim ==
n—eo u, 3

.. By ratio test, zu,, is (C) if§<lorx>3 and it is (D) if §>lorx>3.
If x = 3, ratio test fails.
1 1 1
Whenx=3, » u,=) — or — ) —is(D
2 231’1 3 2‘n D)

o Xy, is (C)ifx <3 and it is (D), if x > 3.

(iii) Su, =Y CIOL

(n!)?

Upri _ @nAD! ey (al)
w, [+ 2m)!x"
2n+1)(2n+2)
=X
(n+1)°

=

un
lim[ “] = 4x
n—e | U

1 1
.. By ratio test, zun is (C)if4x <1 or x<z and is (D) if4x>1 or x<Z.

1 . .
If x= rE ratio test fails.

When x = 1/4,
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2
Y IS N B (Gt ) M
U, 2n+1)(2n+2)

2n+1 1

24—
lim [n[ n —IH l<1
n—ee Uy 2

. By Raabe’s test, Zu,, is (D).

Thus Zun is (C), if x < 1/4 and is (D) if x > 1/4.

( EXERCISE 2(b) ]

Part A
(Short Answer Questions)

1. State D’ Alembert’s ratio test.
2. State Raabe’s test.

. 1 .
3. For the series Zun = z—, show that both the ratio test and Raabe’s test
n

fail.
1
4. Use Raabe’s test to establish the convergence of 2—2
n

5. Prove that series Z(n +Dx" is(C)if0<x<I.

Part B
Examine the convergence or divergence of the following series:

6 3 32 3
. 2—4+2—5+2—6+ <+ 10 oo,
7. 1+£+—1'2'3+---tooo.
1-3 135
1 2 3
8 IR (O R=)

. + -+ T+
1+2 142 1+2
| | | |
o 11 2t 3t 4

+=+ =+ —+-to oo,
2 4 8 16
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22. —

23.

24.

25.

26.

323 34
—+——+——+--toco
2.2 322 4.2}
in3+k
Sk

n!

0"

4 —n?
Zn e .

—+—+x—+~~-tooo.(x>0)
: 56

2+ix+ix +§x3+-~~tooo.(x>0)
273 4
1+ 22 x+32x2 + 4% % + -+ to oo, (x > 0)

2 4
—)H—ix2+—x3 +---t0 oo (x> 0)
1-3 2-4 3-5

) 2 4 3
x> +i+---tooo.(x>0)

18 27
11 131 1351
——t— = —+---t0oo
24 246 2468
32 32.52 32.52.72

to oo
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4.7..Gn+l)

2:5-8...(3n—1)
28. Z7-10-13...(3n+4)'

2

29. 2{ 3.6-9...3n }
22.42.6% ... (2n)

30. Z{ 3-4.5...2n+2) }

2.3 ALTERNATING SERIES

A series in which the terms are alternately positive and negative is called an alternating
series.
An alternating series is of the form

Uy =ty + 1y — sty + o+ (=), 4= 2(—1)"—1%’1
n=1
where all the u’s are positive.

2.3.1 Leibnitz Test for Convergence of an Alternating Series

. . -1 . .
The alternating series uy —uy + uy —uy+ ==+ (=1)"""u, +---, in which uy, u,, u;, ...
are all positive, is convergent if (i) each term is numerically less than the preceding
term, i.e. u,,,, <u,, for all n and (ii) lim (u,)=0.

n— oo

Note™ 1f lim (u,)#0, then 2(— l)n_lu,, is not convergent, but oscillating.
n— oo

For example, let us consider the series

1 1 1 1
l—— ===+ 4+ (=D)""" =+ to oo,
2 3 4 n
1 1
Here v, = —and u,,; =——
n n+1
. 1
Since n+1>n, <—
n+l n

ie. u,,, <u, forall n.

Also lim (u,) = lim (l) =0
n— oo

n—o\ N

n-1 1 .
.. By Leibnitz test, Z(— ) -—is(C).
n



Chapter 2: Sequences and Series 1-2.39

2.3.2 Absolute and Conditional Convergence

Aseries z u,, inwhich any term is either positive or negative, is said to be absolutely
convergent if the series 2 lu,| is convergent.
A series 2 U, consisting of positive and negative terms is said to be conditionally

convergent, if Zun is (C), but 2|un| is (D). For example, let us consider the
series.

1 1
2” =1- 3 + 2—2 - 2—3 + -+, which is a series of +ve and —ve terms. (In fact,

it is an alternating series).

1 1 . . . . . .
St tols (C), since it is a geometric series with
2

Now

r=1/2<1.
The given series Zun is absolutely (C).

. 1 1 1 o
Let us now consider Zun =1- 5 + 372 + --- By Leibnitz test, we have proved

that D u, is (C).

. is known to be divergent.

" Zun is condltlonally ©).

Note @ 1. We can prove that an absolutely convergent series is (ordinarily)
convergent. The converse of this result is not true i.e. series which is
convergent need not be absolutely convergent, as in the case of the series

1 1 1
l——4+———+:00,
2 3 4

2. To prove the absolute convergence of zu,, , we have to prove the conver-

gence of ZIMn |. Since 2|u,, | is a series of positive terms, we may use any

of the standard tests (comparison, Cauchy’s root, Ratio and Raabie’s tests) to
prove its convergence.

2.3.3 Convergence of the Binomial Series

The series 1+%x+n(n2—71)x2 ot n(n—1) '(n— r+1) ¥ +-.- is called the
! ! r!
Binomial series. The sum to which this series converges is (1 + x)".

Let us now find the values of x for which the binomial series is (C) for any 7.
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Omitting the first term 1 in the binomial series,

_n nn—-1 , nn—-1)...(n—r+1) ,
let Zur—ﬁx+Tx 4ot ” X+
n(n—l)...(n—r+1)x,

The general term u, = '
r!

Note™  As ‘n’is now a given constant occurring in the given series, the " term u,
is taken as the general term.

nn=10)...(n=r+1)(n—-r) s

el (r+1)!
n
Uyl _m—r —;_1-x
u, r+1 141
r
n
| P
lim [~ = lim ]
r—><>o| u, F—>c0 1+l
r
=[-1] - x|
= |x]

~. By ratio test, 3 |u,|is (C)if |x|<1and itis (D)if [x|>1.

Eu, , 1.e. the given binomial series is absolutely convergent and hence (C) if

|x| <1 and not (C) if |x| > 1.
Note™ When |x| = 1, the convergence or divergence of Zur can be established
with further analysis. If x =—1, Zu, is (C) when n > 0 and is (D) when » < 0.

Ifx=1, 24 is(C) when n>—1 and oscillatory when < 1.

2.3.4 Convergence of the Exponential Series

2 n
) X x . . .
The series 1+ —+ BTl L to oo is called the Exponential series. The sum
! n!

to which the series converges is ¢".

x n

. . X
Let us now consider the convergence of the series Z”n =1 + Nl ot

(omitting the first term)
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n+l

Upi X n!
:—'X—n
u, (n+1)! «x
X
n+1
.| Uit . X
lim |——|= lim l:0<1.
n—seo | U, n—e n+1

- By ratio test, 2 |u,|is (C), for all x.

.. The given exponential series zun is absolutely (C) and hence (C) for all
values of x.

2.3.5 Convergence of the Logarithmic Series

2 3

n
The series x — -5 + x? — et (=)™ X 4. iscalled the Logarithmic series. The
n

sum to which the series converges is log (1 + x).

Let us now consider the convergence of the series

2 3 n
X X X
Zun :x——+__...+(_1)” 1 ST
2 3 n
(_l)n_l " (_l)n xn+l
u, = x" and u,  =———
n n+1
Uyl n 1
= —X- = — 1
u, n+1 1+L
n
. 1 . —X
lim |——{ = lim | l =|x|
n—> oo ul’l I’l‘)wl_}_i
n

.. By ratio test, z

uy

is (C) if [x| <1and is (D) if |x|> 1.

.. The logarithmic series zun is absolutely (C) and hence (C) if |x| < 1 and not
(©)if x| > 1.

If x = 1, the series becomes | — % + % 3 + .... It is an alternating series which
has been proved to be (C) by Leibnitz test.

) 1 1 1 S
If x = —1, the series becomes —1 - ——————--- oo, which is (D).

2 3 4
Thus the logarithmic series is (C), if -1 <x < 1.
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( WORKED EXAMPLE 2(c)

)

Example 2.1 Examine the convergence of the series:

1 2 3 L on
i - =t N — ...
@ 2 5 10 =D n* +1
102 4
(1]) ___+§__+..
1 3 5 7
(i) The given series is Y (-1)"" ZLH =Y (-1)""u,, say.
n
1
n n
u,6 = =
2
n° +1 1+L2
n
lim (u,)=0
n—> oo
Now u —u = " ntl

el (1) +1

n{n+1> +1—(n+1) (n* +1)

W +D){n+1)* +1

n(n® +2n+2)—(n+1)(n* +1)

(n* +1) (n* +2n+2)

_ n+n-1
(n* +1) (n* +2n+2)

B nn+1)—1
(n* +1) (n* +2n+2)
= positive, for n > 1

u, + 1 <u, for all n.

By Leibnitz test, 2‘(—1)"_1 u, is (C).

1 2 3 4
ii D G e
(it) DT =135 77

n
u, =
2n—-1
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n _n+l
2n—-1 2n+1

Uy = Upy) =

_nn+)-(n+1)(2n-1)
B Qn-1)(2n+1)

> 0, for all n.

Can’ -1

u,.; <u, forall n.

n+l

1]
j.—
=

5 5
/N
S
e
—_
—

But lim (u,,)
n— oo

Il
g

The given series is not (C). It is oscillating.

Example 2.2 Examine the convergence of the series:

1 1

. 1 B

@ 1 22 +3J§ 44

Gy 2D Jn+1-+n).
n=1

4+ tooo

1

1
. . -1 - n" 1
(pLet  2ED"Tw,=1-mt e 4( M

1
u, =
n n\/;
i =1
nl;fl}q(un) ng[l(n\/_J

1

Now U, — U, | = -
N
+1)Jn+1-
_(n )" n\/_>0foralln>1
n(n+1) \/n(n +1
u,.; <u,, for all n.

The given series is (C) by Leibnitz test.



1-2.44 Part I: Mathematics 1

(Let 20" u, =X D" (fn+1-+n)
1
= =

. , 1
Jim (1) = L‘“{m}
=0
Now U, — U, = ! - !
o \/n+1+\/Z Jn+2+\n+1

W2+ fn+ D) -(fn+1+n)
S (Jntl+n) (24 nt)

a 1/n+2—\/;
= i '—n+l+\/;)( —> ’_n+1) >0, foralln=1.

<u, for all n.

Uyt

.. By Leibnitz test, the given series is (C).
Example 2.3 Examine the convergence of the series:

1 1 1 1

(1) 1_2—2—2+3—2—4—2+ -+ 10 oo;
1 1 1 1
i) = ——+——-——=+--to oo
R T
1 1 1 1
: n—1 _ n—1
(i) Let >.(-1) un—1—2—2—2+3—2—---+(_1) e
1
Z/ln—n—2
1
lim | — | =
fim ] =0
1 1
Also U, — Uy = — —
T2 (n+1)*
_(n+1)2—n2
n* (n+ 1)
=%>O,foralln21
n“(n+1)

s, <u, for all .
. By Leibnitz test, the given series is (C).
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. 1 1 1 1 1
(i1) Let 1! e 3 ) K E———T
Z( ) u, 2 42 72 Gn - 2)?
u —;
" (Bn-2)7
. . 1
lim u, = lim ———=0
n—>eo n=e (3n-2)
1 1
Also U, — U, =

Gn-27° Gn+l1)

_Gn+)’-(3n-2)°
C (3n=2)2 Gn+1)>
~ 3(6n—1)

C Bn-=-2°@n+1)>

>0foralln>1
ie. u,,; <u, forall n.

.. The given series is (C), by Leibnitz test.

Example 2.4 Examine the convergence of the series:

1 1 1 1

O13733%56 787
(i) _ + ! -
1.2.3 2.3.4 3.4.5
1 1 1
i) Let ), = ———
Blet  XED™w =535+ 54
1
U, = ————
(2n—-1)-2n
. . 1
lim (u,) = lim —————=0
n— oo n—e (2n—1)-2n
Also u, — ! !

YT 2n—Dan (Qn+1)(2n+2)
_ (2n+1(2n+2)-2n(2n-1)
T Qn-1)-2n-Q2n+1)(2n+2)
3 8n+2
T Qn-D)2n-Qnil)(2n+2)

>0, foralln=>1

oot <u, for all a.

. By Leibnitz test, the given series is (C).
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_ 1 1 1
i) Let )", = = ¥ e
W )2 1.2:3 234 345

1
" a(n+1)(n+2)

lim (u,) = lim {;}=0
n— e n—e | n(n+1)(n+2)

1 1
Also G E e ) +2) (D +2) (n+3)
(n+3)—n 3

T an D+ 2)(n+3)  a(n+)(n+2)n+3)
u, —u,,; >0, foralln=>1

or u,,, <u,, for all n.

. By Leibnitz test, the given series is (C).

Example 2.5 Examine the convergence of the following series:

L1 23
R TRETAN T
2 3
X x X
(i1) - + —(0<x<]l).
l+x 1+x° 1+x° ( )
_ 1 2 3
. _1nl - _ =2 _ ..
(1) Let 20, 2131 A
n
u. =
To(m+1)!
lim@,) = lim|—wpw0
n—sco naw{l-2-3~--n~(n+l)
. 1
= lim
n%w{l-2-3~-(n—l)(n+l)}
=0
Also u " ntl

w = _
T ) (n+2)!

nn+2)—(n+1)
(n+2)!
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n+n—-1
(n+2)!
_nn+1)-1
T (n+2)!

>0, foralln>1

S, <u,, forall n.
. By Leibnitz test, the given series is (C).

2 3
.. n—1 X X X
(ii) Let D" u, = - + - (0<x<).
Z I+x 1+x* 1+
u, = l
T+ X"
lim (u,) = 1im[ x ]
noe n—ee| 14 x"
1
= lim —
n—> oo 1
(j +1
X
. 1Y 1
=0, since (—) —> o0, as —>1
X X
xn xn+1
Also U, — U, = i
1+x" 14+x"

xl’l (1 +xl’l+1)_xn+1 (1+xl’l)
(I+x") (1+ 2"

3 x"(1-x)
(1+x") 1+ x"h)
ie. u,,, <u, forall n.
. By Leibnitz test, the given series is (C).

>0, for all n, since 0 <x <1

( EXERCISE 2(c) ]

Part A
(Short answer questions)

1. State Leibnitz test for the convergence of an alternating series.

2. Show that the series 2( - 1)"",l is (C).
n
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N kW

Part B

What is meant by absolute convergence?

Give an example for a series which is absolutely convergent.

What do you mean by conditional convergence?

Give an example for a series that is conditionally convergent.

Give the values of x for which the binomial series and the logarithmic series

are convergent.

1 1 1
+

Show that the series - -
log2 log3 log4 log5

+ ... is convergent.

Examine the convergence of the following alternating series.

10.

1. =

12.

13.

15.

16.

17.

18.

19.

1 1 1
l——+———
5 9 13
3 5 7 9
- +=-24+ 2
2 4 8 16
35 7 9
- ———t..
4 7 10 13
V2 B4
2 3 4
2(_1);1—1 (”3+1)
n=1 n +1
L SR SRR S
PP+1 2241 3241 4% +1
1 1 1
___+__
1.3 3.5 5.7
1 1 1
— + —...
3.45 456 5.6.7
1 1 1 1
- + - +
113 235 357 4.7.9
3.5 7
20 41 6! 7

20.

1 1 1
- + — ...
2log2 3log3 4log4
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2.4 SEQUENCES AND SERIES

Definition

If to each positive integer », a quantity a,, is assigned, then the quantities a,, a,, ...,
a,, ... are said to form an infinite sequence or simply sequence, denoted by {a,}. The
individual quantities a, are called the ferms of the sequence.

If the terms of a sequence are real, then it is called a real sequence.

Limit of a Sequence

A sequence {a,} is said to be convergent to the limit ‘7, if there exists an integer N,
such that
|an -1 | < e forall n> N, where € is a positive real quantity, however small it may
be, but not zero.
This is denoted as lim (a,)=/ ora, = [, asn — o
n—oeo

Note™  If a sequence converges, the limit is unique.

Note™  For all n> N ‘in the definition means for infinitely many 7’. A sequence,
that is not convergent, is said to be divergent.

Examples
1. The sequence l E 3 i ..., VIZ., { " } is convergent to the limit 1, as
2°3°4°5° n+1
" -1|= ! <€, Whenn+1>lorn>l—l.
n+1 n+1 € €

We note that n > 99, if we chose €= 0.01.

2. The sequence [ + = 3 ,Vviz., 5, % 3, u 153 .. converges to the limit 2, as
n
2+§—2 =i<6,when n>i
n n 6

It is noted that » > 300, if we choose € = 0.01.

Definitions
1. The sequence {a,} is said to be bounded, if there is a positive number K
unbounded.
2. A real sequence {a,} is said to be monotonic increasing or monotonic

decreasing, according as

aSa,<az<s... o a;2ag,z2az=...
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A sequence that is either monotonic increasing or monotonic decreasing is called
a monotonic sequence.

We give below three theorems regarding convergence of sequences without
proof:

Theorems
1. Asequence {a,} is convergent, if and only if for every position number €, we
can find a number N (which may depend on €) such that
|am —a,,|<€, whenm > Nand n> N

2. Every convergent sequence is bounded. Hence if a sequence is unbounded, it
diverges.

,2,—,3,—,4,... are unbounded and

ENGE

Example The sequences 1, 2, 3, 4,... and % %,

hence diverge.
Note™  Boundedness is not sufficient for convergence.

1 314135 . . ..
Example The sequence —,—,—,—, —, —, ... is bounded since |an| <1, butitis

divergent, since lim(a,)=0or l.
n—a

3. If areal sequence is bounded and monotonic, it is convergent.

Examples
1. Thought the sequence 1, 2, 3, ... is monotonic increasing, it is divergent, as it
is unbounded.
1 23 . .. .
2. The sequence 3 is both monotonic increasing and bounded and

hence it converges to the limit 1.

( EXERCISE 2(d) ]
Test the convergence of the following sequences: If convergent find the limit also.
T i) GRS A R 2 JMFP2l_3,2 3
n 2 3°4 n 3°2
LI U S 4 1224
23 4 23 4°5

5. l,l,l l, 6 1’_25 33 4a

248

1 1/n
7. {—log , ¢.. 8. {n'"}

n e
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9. {a—'}(a <0) 10. a,2d%,3d%,..(al <)

n:

More Tests of Convergence for Series of Positive Terms

1. Cauchy’s Integral Test

o

If 2 u, is a series of decreasing positive terms, so that u(x) is a decreasing function
n=1

of x, for x > 1, then the given series is convergent, if Ju(x) dx exists and divergent
1

if J.u(x) dx does not exists.
1

2. Cauchy’s Condensation Test
If f{(n) is a decreasing positive function of » and ‘a’ is any positive integer > 1, then

the two series D f(n) and Y a". f(a") are both divergent.

3. Logarithmic Test

n—oo

S . " . u .
If z u, is a series of positive terms such that lim [nlog L j: [, then zu,, is
n=1 n+l

convergent if / > 1 and divergent if / < 1.

4. Gauss’s test

If z u, is a series of positive terms such that e 1+ h + Lf) , where A(n) is
n

u n

n=1 n+l

a bounded function of n as n — oo, then the series is convergent if #> 1 and divergent
ifh<1.

5. Kummer’s Test

=)

If z u, is a series of positive terms and {a,} is a sequence of positive terms
n=1

u .
such that (an. ——a, +1J2r>0, for n = m, then Zun is convergent. If
Uyt

o

L . 1. .
(an A a,. ] <0, then Zun is divergent, provided that 2 — is divergent.

Uyt n=1%

Note™  Raabe’s test is a particular case of Kummer’s test corresponding to a,, = n.
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( WORKED EXAMPLE 2(d) ]

Example 2.1 Test the convergence of the p-series 2%, by using the integral
n=1"1

o | - 1
Z—ZZM,, Sulx)=
x

oo 1
Tidx B et _ ( 1 ]“’_ p_l,ifp>1
1 x? -p+l] p—1xr"! |

test.

oo if p<1
o 1
- z — is (¢), when p > 1 and (D), when p < 1, by Cauchy’s integral test.
n=1 np
1
Example 2.2 Test the convergence of the series 2 .
nlogn

Let D ! =Du, oux)=

nlogn xlogx

oo

Now j
1

= oo

dx =[loglog x]

1

xlogx

. By integral test, Zun is (D).

— 1
Example 2.3 Test the convergence of the series Z _
n=2 I’l(lOg n)p

Let ) = n(logn)”?
n n o an 1 = 1 = 1 L
afla’) = a"(loga”)” B (nloga)”? N (loga)? n”

N Z 1 1 1
ow = —
(loga)?.n*  (loga)? = n?

is (C), if p > 1 and (D), if p £ 1, by Cauchy’s condensation test,

. 2
Example 2.4 Test the convergence of the series x + o1 + + + --00,

n_n | n
Uy _nxX° (n+1)! _( n j.l

U, n! (n+1)n+1xn+l
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. u, . 1 1 1
lim = lim ——=—
noe(Uypy ) o= (1+1/n) X ex

.. By Ratio test, Z”n is (C), when x < 1 and (D) when x > 1 .
e e

1 . .
When x = —, the ratio test fails.

Now  lim {nlog Un }:%<1.

n—eo n+1

.. By the Logarithmic test, Z”n is (D).
L.

W
—_
W
(93]

W | —
N
N
khl»—a
[\)
~
[@)}

Example 2.5 Test the convergence of the series +

1
2
N e VI
" 2.46..2n) 2n+1

w, 135.2n-1 1
2-4-6..2n) 2n+1
2:4-6..2n)(2n +2)
1.3:5..2n-1)2n+1)

~ (2n+2)(2n+3)

 @2n+1)?

_ L+ Un)(1+3/2n) ={1+@+(3ﬁ}(1+i)_2
(1+1/2n)? 2 2n

n n
-2
= {1+@+@}{1_i+i}
n

Uy 11

(2n+3)

n® 2n  4n?

(3/2)

| . 1
= 1+ —— + terms containing—-and higher power of —
n n n

= 1+@+0(L)51+ﬁ+0(ij

n nz n n2

h>1 and so Z“n is (C), by Gauss’s test.



1-2.54 Part I: Mathematics 1

[ EXERCISE 2(e)

Test the convergence of the following series:

o

l. > using integral test.

n:11+n

o | L
2. Z —, using integral test.
n=1"1

. 7 > using integral test.
ao1l+n

- 1 L
4. Z ——, using integral test.

- | . .
6. 2 , using condensation test.
n

2x 3% A
7. 1+—+
2! 3! 4!

8. lx+ﬁx2 +—1'3.5 3
2 2-4 2-4-6

12 1232 12.3%2.5?

+ ---c0 using logarithmic test.

X~ 4 ---00  using logarithmic test.

> 2_2+ 22.42 + 2 A2 +---00, using Gauss’s test.
1 1.2 1.2.3 .
10 —+—+ x* +---00, using Gauss’s test.
3 34 345
( ANSWERS ]

Exercise 2(a)

(5) 2% (10) Dgt. (11) Dgt.  (12) Cgt.

(15) Dgt.  (16) Dgt. (17) Dgt.  (18) Cagt.
(1) Cgt. (22) Dgt. (23) Cgt.  (24) Dagt.

(13) Cagt.

(19) Cagt.
(25) Dagt.

(14) Cagt.

(20) Cgt.
(26) Cagt.
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(27) Cgt. if k>4 and dgt. if £ > 4.
(29) Dgt.  (30) Dgt. (31) Cagt.
(35) Cgt. ifx>4 and dgt. ifx = 1.
(37) Cgt.ifx>4 and dgt. ifx > 1.

Exercise 2(b)
(6) Dgt.  (7) Cgt.  (8) Cgt.
(12) Cgt.  (13) Cagt.

(15) Cgt. ifx* <1 and dgt. if x* > 1.

(17) Cgt. ifx <1 and dgt. ifx > 1.
(19) Cgt. ifx <1 and dgt. ifx > 1.
(21) Cgt.  (22) Cagt.

i i
(24) Cgt. ifx< A and dgt. if x > A

(26) Cgt. if x <4 and dgt. if x > 4.

(28) Cgt. (29) Cgt. (30) Cgt.
Exercise 2(c)
1 1 1
(4) 1—2—2+3—2—4—2+
(10) Cgt.  (11) Oscillatory
(15) Cgt. (16) Cgt. (17) Cgt.
Exercise 2(d)

(1) Cgt.to2 (2) Cgt.to 1 (3) Dgt.

(28) Cgt.if p>2and dgt. ifp <2

(32) Cgt.  (33) Cgt.  (34) Cgt.
(36) Cagt.

(38) Cgt.  (39) Cgt.  (40) Cgt.
(9) Dgt.  (10) Dgt.  (11) Cgt.

(14) Cgt.ifx <1 and dgt. ifx > 1.

(16) Cgt.ifx <1 and dgt. if x > 1.
(18) Cgt.ifx <1 and dgt. if x > 1.
(20) Cgt.ifx <1 and dgt. if x > 1.

(23) Cgt. ifx* <1 and dgt. if x* > 1.

(25) Cgt.ifx <2 and dgt. if x > 2.

1 1
(27) Cgt.ifx < 3 and dgt. if x > —.

3
1 1 1
(6) 1_5+§_Z+ (9) Cgt
(12) Cgt.  (13) Cgt. (14) Cgt.
(18) Cgt.  (19) Cgt.  (20) Cgt.
(4) Cgt.to1 (5)Cgt.to0 (6) Dgt.

(7) Cgt.to 0 (8) Cgt.to1 (9) Cgt.to 0 (10) Cgt. to 0, when 0 < 1/2

Exercise 2(e)

(1) Cgt. (2) Dgt.
(5) Cgt.if p>1and dgt, if p < 1.

(7) Cgt., if x< land dgt., ifx>l
e e

(9) Dgt. (10) Cgt.

(3) Cgt.

(4) Cgt.if p>1landdgt. ifp<1
(6) Dgt.

(8) Cgt.,ifx <1 and dgt. If x> 1






Chapter 3

Application of
Differential Calculus

3.1 CURVATURE AND RADIUS OF CURVATURE

Consider the two circles shown in the Fig.
3.1. It is obvious that the ways in which the
two circles bend or ‘curve’ at the point P are
not the same. The smaller circle ‘curves’ or
changes its direction more rapidly than the
bigger circle. In other words the smaller
circle is said to have greater curvature than
the other. This concept of curvature which
holds good for any curve is formally defined

as follows:
3.1.1 Definition of Curvature Fig. 3.1
y
012y
P
A
+A
Fig. 3.2

Let P and Q be any two close points on a plane curve. Let the arcual distances of P
and Q measured from a fixed point 4 on the given curve be s and s + As, so that PO
(the arcual length of PQ) is As. [Refer to Fig. 3.2]



1-3.2 Part I: Mathematics 1

Let the tangents at P and Q to the curve make angles y and y + Ay with a fixed
line in the plane of the curve, say, the x-axis.
Then the angle between the tangents at P and Q = Aw.

Thus for a change of As in the arcual length of the curve, the direction of the
tangent to the curve changes by Ay.

Hence AA_W is the average rate of bending of the curve (or average rate of change

s

of direction of the tangent to the curve in the arcual interval }/?—Q) or average curvature

of the arc PQ.

A
© lim o istherate of bending ofthe curve with respect to arcual distance
As—0\ As ds

at P or the curvature of the curve at the point P. The curvature is denoted by .

For example, let us find the curvature of
a circle of radius at any point on it. [Refer to
Fig. 3.3]

Let the arcual distances of points on the
circle be measured from 4, the lowest point
of the circle and let the tangent at 4 be chosen
as the x-axis. Let AP = s and let the tangent at
P make an angle y with the x-axis.

Thens=aACP Fig. 3.3

=a
v [ the angle between CA4 and CP equals the angle between the

respective perpendiculars AT and PT’]
1
or Y= ;S

Ay 1
Tds " a
Thus the curvature of a circle at any point on it equals the reciprocal of its radius.
Equivalently, the radius of a circle equals the reciprocal of the curvature at any
point on it. It is this property of the circle that has led to the definition of radius of
curvature.
Radius of curvature of a curve at any point on it is defined as the reciprocal of the
curvature of the curve at that point and denoted by p. Thus p = % = %
Note @ To find & or p of a curve at any point on it, we should know the relation
between s and y for that curve, which is not easily derivable in most cases.
Generally curves will be defined by means of their cartesian, parametric or polar
equations. Hence formulas for p in terms of cartesian, parametric or polar co-ordinates
are necessary, which are derived below:
Some Basic Results: Let P (x,y) and O (x + Ax, y + Ay) be any two close points on

a curve y =f(x). [Refer to Fig. 3.4.] Let AP=s and @ =5 + As where 4 is a fixed
point on the curve. Let the chord PO make an angle 6 with the x-axis.
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y
0] X
Fig. 3.4
From APQR, sin § = — RQ ko A , where PQ As (1)
PO As PQ
_Ly as
~ As PO
and cos ) = — PR _PR &5
PO As PO
_Ax As
=~ Ac ()
s PQ

As
When Q approaches P, chord PQ — tangent at P and hence § — w. Also P_Q —1.

d
Thus in the limiting case when Q — P, (1) and (2) become sin y = ay and
dx
cosy = 7=

dy
tan = —.
v dx

3.1.2 Formula for Radius of Curvature in Cartesian
Co-ordinates

Let w be the angle made by the tangent at any point (x, ) on the curve y = f(x).

t = dy

Then ay=qr 1))
Differentiating both sides of (1) w.r.t. x, we get,

5 dy d?y

Y o Tdr?

dy ds d2%y
1 2y =7
ie. sec? Y- 1
i 2,,.1 d?y [ : _ d_x}
ie. sec’y - —-sec ¥ — SCos Y =

VoS = — i
sec y
p= 42
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dp )2 32

y

2 )32 1+(aj
(1+tan2 y )

= , 1).
azy azy o0
dx? dx?
Note @  As curvature (and hence radius of curvature) of a curve at any point is

independent of the choice of x and y-axis, x and y can be interchanged in the formula
for p derived above. Thus p is also given by

2 3/2
H[dX]
dy
x
dy2

p:

This formula will be of use, when % is infinite at a point.

3.1.3 Formula for Radius of Curvature in Parametric
Co-ordinates

Let the parametric equations of the curve be

x=£ft and y=g(?).

. dx . dy
Then i=—= 7't and == = o'(p).
" S(@ =1 g
d_y
dx x
&y d(dy)_dfy) dr
A deldx) delx) dx
_[xy—y'a'é].lxy—y‘x
%2 x %

Now p:[—
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_ (x2 +)—)2)3/2 " )-C3
¥ W — i

(xz +_)>2)3/2

3.1.4 Formula for Radius of Curvature in Polar
Co-ordinates

Students are familiar with the following transformations from cartesian co-ordinates
(x, ) to polar co-ordinates (7, 6):

x=rcosf and y=rsinf (1
We shall make use of (1) and the formula for the radius of curvature in cartesian co-

ordinates, namely, 1372
1+ a
LR (2)

= o
&
and derive the corresponding formula for p at the point (7, #) which lies on the curve

r=f0
A0 dy _dy/dd  rcosf+r'sing

N = =
oW dx  dx/d§ —rsin@+r' cosd
where 7' = ar 3)
do . .
[ ris a function of 6]
dy dy
¢y _all_aldl
d*  dx do do
[(—7sind +r'cos0)(—rsind + 2r'cos O+ r"sin ) —
(rcosf+r'sinf)(—rcosd —2r'sinf+r" cos )]
(—rsinf+r'cos )’
[(#*sin*  —3rr'sinf cos @ — rr’” sin> 6+ 2" *cos® 0+
r'r"sin@ cos ) + ( r*cos*0 4 3rr’ sinf cos § — rr” cos*H +
B 2r' 2sin’0 — r'r"siné cos 6)]
(—rsind+r'cosd)’
2 " /2 2
=" f”ﬂ +/2r 5 ,wherer”:d—’; 4)
(—rsinf+r'cosh) do
2
dyY’ rcosf+r'sind
Al T A R b L
> [dx] [—rsin0+r'c059]
rZ +r/ 2 (5)

- (—rsin@ +r' cosd)’
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Using (4) and (5) in (2), we get
(r2 +r/ 2)3/2

2 ) 2
rr =" 428

3.2 CENTRE AND CIRCLE OF CURVATURE

Let P (x, y) be a point on the curve y = f(x). On the inward drawn normal to the curve
at P, cut off a length PC = radius of curvature of the curve at P (namely p). The point
C is called the centre of curvature at P for the curve. [Refer to Fig. 3.5]

y N\

Q P(x,y)

o T c’ P’

Fig. 3.5

The circle whose centre is C and radius p is called the circle of curvature at P
for the curve.

Let (%, ¥ ) be the co-ordinates of C.

Then ¥=0C'
=OP' - QP
=x—psiny (" angle between CP and CQ = angle between
the respective perpendiculars PT and OP’)
_.__ P
cosec Y
—x—__ P
Y1+ cot?y
Py dx 1)
=x- - ooty =——=—
V147 ( v dy y’
1232 ' d2
:x_(1+y ") . Y (wherey’=ﬂandy”= ;)
y [1+)2 dx dx
/
ie. f:xfy—”(l+y’2)
y
Now y=C'C

=P'P+QC
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=y -+ pcos y

=y+
Y sec y

p

S
JJ1+tan? y

3
2

+(1+y'2> 1

y 1+y'2

(1+y' %)
= B i ———
y v!l

Having found out the co-ordinates of the centre of curvature, the equation of the
circle of curvature is written as (x — )_c)2 +O- )7)2 = pz.

( WORKED EXAMPLE 3(a) ]

Example 3.1 Find the radius of curvature at the point

3_" , 3_" ] on the curve

x4y =3axy.
Differentiating the equation of the curve with respect to x,

dy dy
31x% + 2—]:3a[x——|— ]
Vo R
) d
1.C. z—ax —y:a —xz
O )dx y
2
d_yzaz—x (1)
dx Yy —ax

Again differentiating with respect to x,

(y2 —ax)[aj);—2x]—(ay—x2)[2yji:—a]

d2
ar_ ()
dic2 ()/Z—ax)z
[d_y} —_2 4 _ 1 and
dx ) (3a 3a 9a% 3a?
272 —
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o (a3a)_[_f](3aa)
%)

Note™ 1t is not necessary to express Y a5 a function of x and y from (1) and
dx

2
then evaluate 9 When x = 3761 and y= 3751, % = —1, which may be used in (2).

6a’ 32

ie. =——>—x16=

Example 3.2 Find the radius of curvature at (a, 0) on the curve x)* = &* — x°.
The equation of the curve is

) a —X (1)

Differentiating w.r.t. x,

2yy' = ; = ;
ie. Y= ) )
= 0.
{ [dx]zr/Z
14|
dy
.".The formula = N
O

@’

Now (y') (a,0)

should be used.
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2
From (2), &__ 2y 3)
dy 2x° +a’
Differentiating (3) w.r.t. y,

dx dx
W) N+ v 2ax S et &
(x a)[x y xdy X"y xd

— 2 cd 4
(2)(3—|—a3)2 *

@
dy’

From (3), we get [%] (@0) = 0
dy )

d’x 2x3d’ 2
From(4), we get @0) = To.6

dy_2 9a° 3a
= (1+0)" 3a
2/3a 2

Example 3.3 If p is the radius of curvature at any point (x, y) on the curve

2 2/3 2 2
y = 4xX_ show that [_p] [f] +[Z]_

a—+x a y X
_ax
4 a—+x (1)
Differentiating w.r.t. x,
, ala+x—x) a’
= = 2)

(a+x)  (a+x)

Differentiating again w.r.t. x,

" —24°
S 3)
(a+x)
<1 + 12 )3/2
p= |y | (only the numerical value of p is considered)
"
y
4 3/2
a 3
1+ a+x
2] e
- 2a’
2p {(a + x)4 +d* }3/2
a a (a + x)

[2_P]2/3:(a+x)4+a4:[a+x]2+[ a ]

a a2<a—|—x)2 a a+x
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= [f] + [1] l the point (x, y) lies on the curve
y x

Example 3.4 Show that the measure of curvature of the curve \/E + \/% =1
a

ab

2 (ax + by)%
The equation of the curve is

at any point (x, y) on it is

1 J—
f\/_+ff_1

Differentiating w.r.t. x,

1

1 r__
Natx 2oy

,_ by
YT

Differentiating further w.r.t. x,

2\a x%

147 ) o 3
Now, P:( +yy” ) = bax XZJ;xZ

2 b 3
[ —— 2
ab(ax+ y)

Curvature k = 1 = a—bm
p 2(ax—|—by)

a-+x

(1)

2
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Example 3.5 Find the co-ordinates of the real points on the curve * = 2x (3 — x?), the
tangents at which are parallel to the x-axis. Show that the radius of curvature at each

of these point is 1 .
3

y=2x(3—x% (1)
Differentiating w.r.t. x,
2yy' =2 [3 - 3x7%

ie. w =3(1-x% )
The points at which the tangents are parallel to the x-axis are given by y'= 0.

ie. 3(1-x%) =0, from (2)

Le. x= %1.

Putting x =— 1 in (1), we get )* = negative
i.e. y is imaginary.
*. The real points are given by x = 1.
Puttingx = 1 in (1), we gety*=4. .. y==£2.
. The points, the tangents at which are parallel to the x-axis, are (1, 2) and
1, -2).

_ 2
From(2), y' = M

3(1-x7)

- V243x =¥
3 \V3x—x’ (—2x)—(1—x2)di\Ibc—x3
" X

Y :E 3x—x°

Differentiating w.r.t. x,

y 3 (-2
(y )(1,i2):_'g:_3

272

1+ 12N 3/2
p:( o)

"]
B (1+O)3/2 B 1
(P)yr) = s

Example 3.6 Show that the curves y = ¢ cosh L and x2=2c¢ (¥ — ¢) have the same
¢

curvature at the points where they cross the y-axis.
. . X . .
The point at which the curve y = ¢ cosh — crosses the y-axis is got by solving the
c

equation of the curve with x = 0.
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Thus the point is (0, ¢).

Similarly the point of intersection of the second curve with the y-axis is also found
to be (0, ¢)

. . X
Equation of the first curve is y = ¢ cosh —.

c
Differentiating w.r.t. x twice, we get

. |
y' = csinh 2 —sinh 2t

cc c
Yy = 1 cosh X
c c
X 3/2
1+ sinh” =
:(1+y12)3/2 :[ C]
"
Y 1 cosh =
c c
(p)(O,C) = c’
2
Equation of the second curve is y = ;— +c
c
Differentiating w.r.t. x twice, we get
)//:E and y”:l
c c
2 3/2
(p)(Oc) = =c

Thus (p),,., is the same for both curves.

(k) ., 1s the same [: l] for both curves.
c

Example 3.7 Find the radius of curvature at the point (a cos® 8, a sin® 6) on the curve
x2/3 + y2/3 :a2/3.

The parametric equations of the given curve are x = a cos® 6 and y = a sin® 6.
Differentiating twice w.r.t. 6,

X = b 3acos’ 0(—sin 6); y = Y_ 3a sin” 0(cos 0)
do de
2
i= d_)zc =-3a (cos36 —2cos sin’ 0)
do
. dzy . 2 23
y:W:&J(Z sin 6 cos™ # —sin 0)
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@4y )? (9a® cos* 0 sin® 0 +9a” sin* 0 cos® 0)**
Xy — yx 94° {—cos2 fsin 6 (2 sin 6 cos® 6 —sin® 9) +
sin® 0 cos 0 (cos3 0 —2 cos 0 sin® 0)}
274° sin® 0 cos® 0 (cos2 0 +sin’ 9)3/2

" 94 sin® 0 cos® 0 {—(20052 0 —sin? 9>+(cos2 6 — 2sin’ 0)}

_ 3asinfcos 0
—(cos2 0 + sin® 9)

= —3asin 0 cos 0

|p| =3a sin 6 cos 6 .

Example 3.8 Show that the radius of curvature at the point ‘6’ on the curve x = 3a
cos @ —acos 30,y=3asin @ —asin 360 is 3a sin 6.

x=3acos 8 —acos30;y=23asin §— asin 30.
Differentiating w.r.t. 6,
x =3a sin 30 —3a sin 0; y = 3a cos 6 —3a cos 30,
dy » 3a(cosf — cos30)
dx % 3a(sin30 — sinf)
_ 2sin20-sinf

Now,

=—————=tan2/
2cos20-sinf
2
d—);:i (tan 29)-%
dx®  de dx
=2 sec’ 20- _ ! _
3a (sin 30 —sin 6)
~ 2sec’ 20
6a cos 20 sin 0
 sec’ 20
3asin 0
1 2N\3/2 2 3/2
pe (1+y” ) _ (1—|—tan3 26) asin
y sec” 20
= 3asin 0.

Example 3.9 Find the radius of curvature of the curve r = a (1 + cos 6) at the point

0="=.
2
r=a(l+cosb)
=—asinf and r"'=-—acosl
(r2+r/2)3/2

2 2
r—r" 427
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2 ) 3/2
[a (14cosb) +d’ sin29}

a* (1+cos 9)2 +a* cos (1+ cos )+ 2a” sin® 6
a [2 (1 + cos 9)]3/2
a’ [3 (14 cos 0)]

:&a(H—cos 9)'/2 _4a cos 0

3 3 2
(p) —4—acos£——2\/§a
Ph=3 =73 4 3

Example 3.10 Show that the radius of curvature of the curve " = a” sin nf at

a

the pole is
(n + 1) r'

-
F=a"sinn @ ¢)]
nlogr=nloga+logsinnf.

Differentiating w.r.t. 0,

n
—r'=ncotnb
r

r' =rcot nf 2)
7" = r'cot nf — nr cosec? né.

=r cot’> n) — nr cosec? nf. 3)

B (r2 + 7"/2 )3/2

(P) P
(r2 +7? cot’® n@)m ing (2) and (3)
= , usin an
r? —r? cot® nf+nr? cosec’ nf + 2r* cot® né g

3/2
<r2 coseczne)

s cosec’nf (n+1)

1 cosec nl
n+1

n

_a
(n + l)r"’l

Example 3.11 Find the radius of curvature at the point (r, 8) on the curve
r* cos 20 = a.
r=a*sec 20 @))
2 logr=2loga + logsec286.
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Differentiating w.r.t. 9,

%r’zztan29.
B

ie. ¥ =rtan 20
' =7 tan 20 + 2r sec*>2 0
= r tan® 26 + 2r sec? 20, using (2).
(}"2 + r/ 2 )3/2
P 2
B (> + 7 tan® 20)*
r? —r* tan? 20 — 27 sec® 20 +2r° tan® 20 °

_risec’ 20

—r? sec” 20

3
|p|:rsec29:r—

2
a

2

using (1) and (2),

Example 3.12 Show that at the points of intersection of the curves » = a 6 and

r — 2 their curvatures are in the ratio 3:1.

0
r=ab
and P
0
Solving (1) and (2), af = %
i.e. 0 ==+1.

. The points of intersection of the two curves are given by § == 1.

For curve (1), =a and #"=0.
(a202 + a2)3/2
= a0’ +24°

(202)3/2 B 2\/5

(p1>9:11: 34> - 3 a
For curve (2), r’:_e% and "= 2a
2 3/2
a
z_a2 24’ a’
et

(1
2)
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2a%)?
(pZ)HZiIZ( az) :2\/5

a
pipy,=1:3
. Ratio of their curvatures = 3:1.

Example 3.13 If the centre of curvature

2 2

of the ellipse x_2 + ;;—2 =1 at one end of
a

B (o, b)

the minor axis lies at the other end,
prove that the eccentricity of the ellipse

.1
s —.

2
The centre of curvature of the ellipse at
B(0, b) lies at B" (0, — b). [Refer to Fig. 3.6]

/y_
N

-

B'(0,—-b)

Fig. 3.6

We recall that if the centre of curvature of any curve at a point P is C, then PC

equals the radius of curvature of the curve at P.
.. Radius of curvature of the ellipse at

B=BB'=2b.
x2 y2
— =1
a b
Differentiating w.r.t. x,
X,y
— = 9'=0
a2 b2 y
, b’x
Yy ===
ay

Differentiating again w.r.t. x,

From (2) and (3), we get

b
(y/)(o,b) =0 and (y”)(ob) )
3
Now, . (1 _|_y/z)z
|y
1 a’
(p)(o,b) = b = 7
aZ
2
From (1) % =2bie. a’ =2b

()

)

)

4)
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The eccentricity e of the ellipse is given by

2 2
—b
P=a(1-e) or € _—— "

2
Using (4), we get, €’ _r 1 e:L

2" 2 2

Example 3.14 Find the centre of curvature at § = % on the curve

x=2cost+ cos 2t y=2sint+ sin 2¢.
x=2cost+cos2t; y=2sint+sin 2t
Differentiating w.r.t. £,

)'c:—(2sint—|—2sin21);y:(2cost+2cos2t)

/_—Z(COSZH-cost)
= 2(sin21—|—sint)
2cosgcos£
- _ 2 2
ZSingcosi
2 2
3¢
= —cot —
2
" d , d 3\ dt
= =—|—cot—| - —
y dx(y) dt[ co 2] i
3 2 3 1
= = cosec” —-
2 2 _2<5in21+sint)
_ 3
8Sin3 [Z].COS[Z]

2 2
<x)0:§:_1’<y>9:§:2;(y,)0:g:_COt__l,
(y”) - 3 :_2

=2 8sin® * cos - 2

4 4

/

Now f:x_%(l_;'_ylz)

- (1+1) 4
—_1_ R |
Des 3] "3
2
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<f>0;z+<[1%1]>23§
2

". Required centre of curvature is [é, g] .

Example 3.15 Find the equation of the circle of curvature of the parabola
y*=12x at the point (3, 6).

y=12x
Differentiating w.r.t. x,
2yy'=12 Ly = 6
Differentiating again w.r.t. x, Y
6
y// _ 77 y/
0" ye=1 and (»") -1
(3.6) Yo T g
1+1/2)¥2 2\/5
() (P = = =12V2
] 1
6
!
fzx—%(l—i—y’z)
_ 1
(x) (3’6):37—1 (1+1)=15.
X

fzy—i—%(l%—y’z)

The equation of the circle of curvature is
—\2 —\2
(x=x) +(r-y) =¢’
*. The equation of the circle of curvature at the point (3, 6) is

(x—15)% +(y + 6)* = (12 42)

ie. x*—30x +225+3%+ 12y + 36 =288

ie. x2+y*=30x + 12y —27=0.
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Example 3.16 Find the equation of the circle of curvature of the curve

&+5_&mg§}

NS
Differentiating w.r.t. x ;—F; y'=0
2 2y
B
Jx

. 2Vx
B X
(y’)aa:—l and
[+4
L
" __]_2 2 :i
R I
4
l—l—y'z3/2 :&:i
p:<ﬂ) ey G
a
)_cx)):—l/(ler/z)
5 a1 _3a
(x)[%’%— +[4)(1+1)_4
a
_ 1 _ 1 3
y:y+7(1+y/2);(y)(§,%]:%+—(1+1)=Ta

[ ]
a
The equation of the circle of curvature is

(=% +(y=5) =0’

*. The equation of the circle of curvature at [%, %] is

[ 3a]2 [ 3a]2 a’
X——| +|ly——| =—
4 4 2
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Part A

( EXERCISE 3(a) ]

(Short Answer Questions)

1.
2.
3.

Part B

Define curvature and radius of curvature.

Prove that the radius of curvature of a circle is its radius.

Find the curvature of the curve given by s = ctan y at = 0.

Find the radius of curvature of each of the following curves at the points
indicated:

.y=eatx=0.
. y:eﬁ" atx =0.
. y=log sec x at any point on it.

. y=log sin x at x=21,
8.
9.

10.
11.

12.

13.

14.

xy=c*at(c, ¢).

y*=4dax aty =2a.
x=p£,y=tatt=1.

r = a6 at the pole.

r@ = g at any point on it.

r = a cos 0 at any point on it.
r = ¢’ at any point on it.

Find the radius of curvature of the following curves at the points specified:

15.

16.

17.
18.

19.

20.
21.
22.

23.

X +x—6/=0at(3,3).
day* = (2a — x)3 at [a, g] .
X +y3=(—x)(y— 2x)at (0, 0).
xy*=a* (a — x) at (a, 0)
7 a
4ay* =27 (x —2a)’ at |— a, —
y ( ) [ 3 2]
y=x? (x — 3) at the points where the tangent is parallel to the x-axis.
y=ccosh )EC at the point where it is minimum.
x* = 4ay at the point where the slope of the tangent is tan 6.

2 2

X ¥y .
S +5=1 at (a cos 6, b sin )

Find the radius of curvature of the following curves at the points specified:

24.
25.
26.

x=a(cost+tsinf), y=a(sint—tcost)at‘r.
x=a(@—sinf), y=a(l—cosb)at 6.
x=e'cost,y=¢sintat(l,0).
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27. x=alog [%—f—g],y:asecﬁat‘@’.

28. x =alog [cotg—cosﬁ],y=asin0at‘6’.

29. Find the radius of curvature at any point on the equiangular spiral » =
a eb‘ cot a

30. Find the radius of curvature of the curve r = a(1 — cos 6) at any point on it.

31. Find the radius of curvature of the curve r* = a” cos nf at any point (7, 6).
Hence prove that the radius of curvature of the lemniscate » 2 = a? cos 26 is

2
a

v
32. Find the radius of curvature at any point (r; 8) on the curve Jr COSE o

Ja.

33. Find the radius of curvature at any point ( 8) on the curve r (1 + cos 8) = a.

34. If p, and p, be the radii of curvature at the ends of any chord of the cardioid

16a°

r=a (1 + cos 6), that passes through the pole, prove that pi+py = 9

[Hint: The ends of any chord that passes through the pole are given by 6 =

6,and 0= + 6,. Use the result (p) = 43_11 cos g N

35. Find the centre of curvature of the curve y = x>— 6x? + 3x + 1 at the point
(1, _1) 2 2

36. Find the centre of curvature of the hyperbola x_z — ;;—2 =1 at the point
a

(a sec 0, b tan 0).

37. Show that the line joining any point ‘#’ on the cycloid x = a(¢ + sin #). y =
a(l — cos f) and its centre of curvature is bisected by the line y = 2a.

38. Find the equation of the circle of curvature of the parabola y* = 4ax at the
positive end of the latus rectum.

39. Find the equation of the circle of curvature of the rectangular hyperbola
xy = 12 at the point (3, 4).

40. Find the equation of the circle of curvature of the curve x* + )* = 3axy at the

oint3—a3—a
p 2 )

3.3 EVOLUTES AND ENVELOPES

Let O be the centre of curvature of a given curve C at the point P on it. When P moves
on the curve C and takes different positions, Q will also take different positions and
move on another curve C'. This curve C’ is called the evolute of the curve C. Thus
evolute can be defined as the locus of the centre of curvature.

When C'is the evolute of the curve C, C is called the involute of the curve C'.
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The procedure to find the equation of the evolute of a given curve is given
below:

Let the equation of the given curve be y = f(x) (1
If (X, ¥) is the centre of curvature corresponding to the point (x, y) on (1), then
!/
F=x— L (147) @)
y
_ 1
y:y+7(1+y’2) 3)

By eliminating x and y from (1), (2), (3), we get a relation between x and y, which
is the equation of the evolute.

Note™  1f the parametric co-ordinates of any point on the given curve are assumed,
then we have to eliminate the parameter from Equations (2) and (3), which will
simplify the procedure.

Evolute of a given curve can also be defined in a different manner, using the
concept of envelope of a family of curves, which is discussed below:

Consider the equation f'(x, y, ¢) = 0, where c is a constant. If ¢ takes a particular
value, the equation represents a single curve. If ¢ is an arbitrary constant or parameter
which takes different values, then the equation f'(x, y, ¢) = 0 represents a family of
similar curves.

If we assign two consecutive values for ¢, we get two close curves of the family.
The locus of the limiting positions of the points of intersection of consecutive
members of a family of curves is called the envelope of the family.

It can be proved that the envelope of a family of curves touches every member of
the family of curves.

3.3.1 Method of Finding the Equation of the Envelope
of a Famly of Curves

Let f (x, ¥, ¢) = 0 be the equation of the given family of curves, where c is the
parameter. Two consecutive members of the family (corresponding to two close
values of ¢) are given by

S, y,0)=0 (1
and fx,y,ct+Ac)=0 (2)

The co-ordinates of the points of intersection of (1) and (2) will satisfy (1) and (2)

and hence satisfy f(x.y.c+Ac)— f(x,7.¢) —0

Ac

Hence the co-ordinates of the limiting positions of the points of intersection of (1)
and (2) will satisfy the equation

lim f(x,y,c—l—Ac)—f(x,y,c)}:O

Ac—0 Ac

ie. % (x, v, c) =0 3)
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These limiting points will continue to lie on (1) and satisfy
fx,y,¢)=0
If we eliminate ¢ between (1) and (3), we get the equation of a curve, which is the
locus of the limiting positions of the points of intersection of consecutive members
of the given family, i.e. we get the equation of the envelope.
Thus the equation of the envelope of the family of curves f(x, y, ¢) = 0 (c is the
parameter) is obtained by eliminating ¢ between the equations

fx,y,¢)=0 and g—f(x,y,c):O
c

Equation of the envelope of the family Aa*> + Ba+ C = 0, where o is the parameter
and A, B, C are functions of x and y:

Very often the equation of the family of curves will be a quadratic equation in the
parameter. In such cases, the equation of the envelope may be remembered as a
formula.
Let the equation of the family of curves be
Ao +Ba+C=0 (1)

Differentiating partially w.r.t. o,

3 24a+B =0 )
From (2), « 24
Substituting this values of a in (1), we get the eliminant of a as

A{ B]2+B[_£]+C:O

24 24
2 2

i.e. B__B_+C:O
44 24

i.e. B2 —4A4C = 0, which is the equation of the envelope of the family (1).

3.3.2 Evolute as the Envelope of Normals

The normals to a curve form a family of straight lines. The envelope of this family of
normals is the locus of the limiting position of the point of intersection of consecutive
normals. But the point of intersection of consecutive normals of a curve is the
centre of curvature of the curve. Hence the locus of centre of curvature is the same
as the envelope of normals.

Thus the evolute of a curve is the envelope of the normals of that curve.

( WORKED EXAMPLE 3(b) ]

Example 3.1 Find the evolute of the parabola x> = 4ay.
The parametric co-ordinates of any point on the parabola x* = 4ay are
x=2at and y=af
&

D — . L=t
XxX=2a;y=2 at e %
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d’y d dt 1
LU kit

Let (f, )7) be the centre of curvature at the point ‘7’
/
F=x-2 (145"
y
:2at—;(1+t2)
1
2a
=—2af

fzy—t—%(l—%y'z)

:at2+L(l+t2>:3at2+2a

&

To get the relation between X and y, we have to eliminate 7 from (1) and (2).

From (1), we get £* = —
2a
)

From (2), we get 1 = y—=a
3a

From (3) and (4), we get
3
2a 3a

ie. 27a % =4(7 —2a) .

*. Locus of ()T, y) , i.e. the equation of the evolute is 27a x> = 4(y — 2a)’.

2 2
Example 3.2 Find the evolute of the hyperbola x_z — y_z =1.
a b
The parametric co-ordinates of any point on the hyperbola are
x=asec and y=btand

X=asecftan §; y=hsec’f
)y _bsechd b

¥ atan® asinf

" b de bcosh cos’ 6
y'=——5-c080 —=——— —
asin” 6 dx asin“0 asinf
_ bcos’ g

a’sin’ 6

(1

)

)

4)
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!/
"

f:x—y—(l—&—ylz)

<

b fm%[ b ]
=asecl +

asinf bcos’ a® sin” 6
- coz 9 * acols ’0 <a2 sin” 0 +b2)
_a’cos’O+a’sin’0+b’
acos’
s )
acos’ 6

_ 1
y:y+7(1+y’2)

2 .3 2
:btané—aml}ol zéz
bcos’ 0 a® sin“ 0
__bsind sin 6 2 . 2 2
~ cosf 7bcos39(a .- 0+b)
:%(bz cos’ 0 —d* sinzeszj
2 2
+b
:f—(a ; )tan30 )
From (1), sec39:L_ and
(1) 7D
by
From (2), tan’ 6 = —
() a2+b2

To eliminate #, we use the identity sec? 6 —tan”> § = 1

23
ax B

The locus of (¥, ¥) i.e. the evolute of the hyperbola is

2/3

by
a + b

(ax)2/3 _ (by)2/3 — (a2 +b2)2/3 [ (_by)2/3 — (by)2/3]

Example 3.3 Find the evolute of the curve x*3 + ) = ¢?3,

The parametric co-ordinates of any point on the curve are x = a cos®* § and y = a
sin’® 0
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¥=—3acos’ sinf;  y=3asin® O cosh

y ===—tanf
X

y" = —sec’ 9-%:—5%2 9[
dx

1

3a cos® 0 sin 0
/

X :x—ﬁ(l—ky’z)

, tan 6
=acos” 0+

1

1+ tan’ 6
( )

[3a cos’ 6 sin 0]

in 6
=acos’ 0+ s

cos 0

1

Ccos

-3a cos* 0 sin 0

=acos’ 0 +3a cosf sin® 0

_ 1
y=y+7(1+y”

)

=asin® 6 + sec’ 6-3a cos* 0 sin 6

= asin’® 0 + 3a sin 0 cos®

Now

+y

=l
I

=|

and -y

2/3

xX+y
Now[a]+

—_—
=|

a
=2

ie.  (F+y)HEF-y)=24"

*. The equation of the evolute is

(x+y)2/3 +(x_

Example 3.4 Show that the evolute of the cycloid x = a(f — sin 6), y = a(1-

cos 6) is another cycloid.
Any point on the cycloid is given by
x=a(f—sinb)

)'c:a(lfcosﬂ);

a (cos 0 + sin 0)3

a(cos 6 —sin 0)3

2/3 2/3
) =2a"".

y

and y=a(l —cos 6)

y=asinf

—3a cos* 0 sin 0

|

a(cos3 0 + sin’® 6 + 3 cos® 6 sin O + 3 cos 6 sin’ 0)

(
a (cos3 6 —3 cos® @ sin 6 + 3 cos 0 sin’ 0 — sin’ 9)
(

—\2/3
y] = (cos 0 + sin 9)2 + (cos 6 — sin 0)2

(1)

2)

G3)

4)
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2 sinQ~cos Q
2 2

, a sin 0 6
a (1—cos ) 2 gin2 2
2
y”——l cosec A !
2 2 dx 2 si 2QZasng
2 2
o 1
4asin4g
2

/!

f:x—%(l—i—y’z)

, 0 .0
=a(f—sin 6 +cot —. cosec’ =-4a sin* —
2 2

+2a sin 0

a(f—sin 6

)
a(0 —sin 0)+4a sin Q .cos — 0
2 2
)
=a(f+sind)

y=y+ 1,,(1+y )

= a(1—cos #)— cosec” % -da sin4§
=a(1—cos ) —2a(1—cos 0)
=—a(l—cos 0)

Elimination of 6 from (1) and (2) is not easy.

(1

2)

*. The locus of ()_cj) is given by the parametric equations x = a (6 + sin ) and

y=—a (1 —cos 8), which represent another cycloid.

Example 3.5 Find the equation of the evolute of the curve x =a (cos ¢ + ¢ sin ¢), y =

a(sint—tcosf)
x=a(cost+tsint);y=a(sint—tcosf)

X = a(fsin t+sin ¢+t cos t);j/:a(costfcost+t sin t)

, atsint
= =tant
at cost
1 1
y" =sec’t-— =sec’t- = -
X atcost atcos’ ¢

=a(cost+1sint)—tant-sec’ t-ar cos’ 1
=a(coss+1sint)—atsint

=acost

(1
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_ 1
y=y+—10+y"?)

¥

=a(sint—cost)+sec’ t-at cos’ 1

=asint )

Eliminating ¢ between (1) and (2), we get

J_C2+)_/2:a2

.. The evolute of the given curve is x? + ? = a%

Example 3.6 Prove that the evolute of the curve x= a[cos 0 +log tan g],
y= a sin @ is the catenary y = a cosh X

a

0 .
xX=a cos@—HogtanE ;y=asind.
X=al|—sin 0+ ~seczQ~l

22
tan —
2
. 1
=a|—sin 6 +
2 sin —cos —
2 2
. 1 acos® 6
=a|—sin 0+ — =—
sin 6 sin 6
and y=acosl
in 0
y’:acos&&z:tanﬁ
acos
sinf  sinf

Y= secze-% =sec’d-

acos’d  acos'd

X :x—y—’(l—ky'z)

=da

=da

=alo tang
8y

"

<

acos' 0

cos 0+ log tang]—tan 0-sec’ - —
2 sin 0

cos 6 +log tang]— acosd

(1)
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_ 1 )
= —1 '
¥ y+y,,( +")

4
— asin 6 +sec? 9. L% 0
sin 6
a cos*0
=asin 0 +—
sin 6
-4 (2)
sin 6
a[l + tan? z]
Now )_/ = —0 (3)
2 tan—
2
0 xX/a
and tan 5 =e (4) [from (1)]

From (3) and (4), we get,

_:g 1+62x/a
Y 2 ex/a

ar - - X
:—{e"/“ +e “”}:acosh—
2 a

. x
.. The evolute is y = a cosh—
a

Example 3.7 Find the envelope of the family of straight lines given by

(i) y =mx=+~a’m* —b*, where m is the parameter, (ii) x cos a+ y sin a= a sec a,
where a is the parameter, (iii) the family of parabolas given by y =x tan a

2
__ & ,where a is the parameter.
2u*cos’a
(i) Rewriting the given equation, we have
am*—b*=(y — mx)?
=y? = 2xym + m’x*

i.e. @ =d)m*—2xym+(*+b) =0
This is a quadratic equation in ‘m’. .. The envelope is given by
the equation ‘B*—44C =0’
ie. 4y =4 —a®) P+ b)) =0
ie. X2 = (3 + b —adr - a’b?) =0
ie. b’x* — ay*=a’b?
2 2
ie. x_2 — y_2 =1, which is the standard hyperbola.

Q
S
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Note™  The envelope touches every member of the given family of straight
lines and vice versa. This is, in fact, obvious as the given family represents

the family of tangents to the hyperbola ﬁ _ y_2 -1
a b

(i1) xcos a + ysina = a sec a

Dividing throughout by cos @, we have

X +ytana = asec’ o

i.e.x +yt=a (1l + ), where ¢ = tan « can be treated as the new parameter.

ie. att =yt +(a—x)=0

This is a quadratic equation in ‘7’.

.. The envelope is given by

V'—4da(a—x)=0 ie. y'=—4a(x—a)

&
2u’ cos’ a
Putting 7 = tan o, we get

(iil)) y=xtan a—

%(H—tz)—xt—i-yzo

ie. gx*t — 2uPxt + (g + 2u?y) = 0

If we treat ‘¢’ as the parameter, we see that this equation is a quadratic equation
in the parameter
.. The envelope is given by

4utx* — 4gx* (gx* + 2u” y) =0

ie. a2+ 2utgy —ut =0
) 2u2[ uz]
1.€ X ==y
g 2g

Example 3.8 Find the envelope of the family of straight lines (i) y cos 8 — x sin
6 = a cos 260, 0 being the parameter, (ii) x cos a + y sin a = ¢ sin « cos a, a being
the parameter, (iii) x sec? 6 + y cosec? 8 = ¢, 8 being the parameter.

(i) ycos@—xsinf@=acos2 b (1)

Differentiating (1) partially w.r.t. 6,
—ysinf — x cos 0 = —2a sin 20 2)

(1) x cos @ — (2) x sin O gives
y=a(cos 20 cos 8 + 2 sin 20 sin 6)
= a(cos 0 + sin 20 sin 6) 3)

(1) x sin 8 + (2) x cos 8 gives
x=— a(cos 26 sin 8 —2 sin 26 cos 6)
= — a(— sin # — sin 26 cos 6)
= a(sin 6 + sin 26 cos 6) 4)
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Adding (3) and (4), we get
x +y=a{(sin 8+ cos ) + sin 26 . (sin  + cos )}
= a(sin 6 + cos ) (1 + sin 26)
= a(sin 8 + cos 6) (sin? § + cos? & + 2 sin 6 cos 6)
= a(sin 6 + cos 6) (sin 8 + cos 0)*
= a(sin 8 + cos 0)*

Subtracting (3) from (4), we get
x —y =a{(sin § — cos 6) — sin 26 (sin 6 — cos )}
= a(sin 6 — cos 0)°
From (5) and (6), we get

x+ 2/3
o)
a

2/3

anbd e (sin 6 + cos 0)? + (sin 6 — cos )?

a

.. The envelope is
(x + y)2/3 + ()C — y)2/3 :2a2/3

Note™  This is the evolute of the astroid x** + y** = ¢*?
[Refer to Example (3.3) above].

)

(6)

In this problem, we have found out the envelope of the normals of the

astroid.

(i) x cos a + y sin a = ¢ sin a cos o
Dividing by sin a cos o, we get

x
S A
sina  cosa
Differentiating (1) w.r.t. a,
—— cos a+—=—sina =0
sin” « cos” «

From (2), ¥ cc;s a_y 51? @

sin“a  cos” «
. X
ie. =2 say.

sin> @ cos’ «
. x
sina=2 and cos’a=2
k k

sin? a + cos’a =1

i.e. k2/3 — x2/3 +y2/3

(1)

@)

A3)

“4)
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.. From (3), we have

1/3 1/3
s1na:](17 and cosa:kIT 6)
Using (5) in (1), the equation of the envelope is k 3 (x?? +y23) =¢
: 23 23\2 (23 273
ie. (x +y ) . (x +y ):c , from (4)
3/2
ie. (x2/3 —I—y2/3) =c
ie. PN
(iii) x sec? @ +y cosec® 0 =c (1)

Differentiating (1) partially w.r.t. 8,
2x sec? O tan @ — 2y cosec’ f cot =0

ie. xsin@_ycos@zo )
cos’f  sin’6
From (2), S " say.
cos*d sin*
cos’9=2" and sin*0=2 3)
k k

Using the identity cos? 6 + sin®> § = 1, we have

.
k k
ie. k= x +/y)? (4)
Using (3) and (4) in (1), we get
(Eeb) ()
X- +y
v

=cC

Jx
e (Ve ) =c

ie x -I-\/; =Je , which is the equation of the required envelope.

Example 3.9 Find the envelope of the straight line £+%:1, where a and b are
a
parameters that are connected by the relation a + b = c.

x Y

S 1
25 6]
atb=c 2)

From (2),b=c—a.
Using in (1), £+ Y _1, where a is the only parameter. 3)
a c—a
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Differentiating (3) w.r.t. a, we get

oy
—+———=0 )
a2 (C_a)z

X
From (3) — =

Vi Ay ey

c—a

1_Vxtyy L _xty 5)
a c\/; c—a C\/;

Using (5) in (3), the equation of the envelope is ﬁ(\/; + \/; ) + \/; ( Jx+ \/;): 1
c

C

(Ve ) =c
or x4y =+e.
3.4 ALITER

Without eliminating one of the parameters, we may treat both @ and b as functions
of a third parameter ¢ and proceed as follows:
Differentiating (1) w.r.t. ¢,

_xda_ydb_
a* dt p? dt
1.e. id_a:_ » db 3)
a*dt prdr
Differentiating a + b = c w.r.t. ¢
da db
—_——= 4
dr dr @
Dividing (3) by (4), we have
X )
P
Ve Wy Vray )
a b c
( a+b= c)

Using (5) in (1), we get

%(\/;—l-\/;)—k\/;(\/;—i—\/;):l

C
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ie. (Vr+yy) =e

or \/;‘f' \/;:\/Z .
Example 3.10 Find the envelope of the system of lines ;—kl:l,, where / and
m
m are connected by the relation L+%:l (! and m are the parameters).
a
I | (1)
I m
I m
and —+—=1 2)
a b
Differentiating (1) and (2) w.r.t. 7,
xdl y dm
_x Ay dm_, 3)
1> dr m* dt
1d  1dm
and ——+—-——=0 4
adt b dt @
From (3) and (4), we have
X Y
la m?/b
X Y X
. G5
1.e. R m_ -
L) (m) Lym 1
a b a b
or o _by_,
> m?
I=\ax and m=\lby )

Using (5) in (1), we get the envelope as \/z—i— \/%:1 .
a

2 2
Example 3.11 Find the envelope of the ellipse x—z—i—z—z:l, where a and b
a

are connected by the relation @ + b = ¢?, ¢ being a constant.
x
XY (1)

and @+ b= )
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Eliminating b from (1) and (2), we get

2 2
X Y
St 5=l
a ¢ —a
ie. (2= a)x* + ay* = aX P — %)
ie. at=a(AP+x*—y)+cAxr=0 3)

(3) is a quadratic equation in %, which may be regarded as the parameter.
". The envelope is given by B2 —44C =0

ie. (+x2—y)P?—4cx*=0

ie. [(2+x*—)) +2ex] [+ x*—y*—2cx] =0

ie. x+c)—»"=0; (x—¢c)}—»"=0
: x+tc=xy and x—c==%y

ie. x=—cxy and x=czxy

ie. xty==+c.

Example 3.12 Find the envelope of a system of concentric ellipses with their axes
along the co-ordinate axes and of constant area.
The equation of the system of ellipses is

2 2
X Y
—+==1 (1)
a b

The condition satisfied by a and b is w ab=c¢ 2)

Differentiating (1) and (2) w.r.t. ‘¢,
2x* da 2y* db

ey | 3
a dr pPodr N
Wbd—a —|—7Ta% =0 4)
dt dt
From (3) and (4), we have
2 B 2 2 B 2
PEEr L Y
a ab a b
or lezk, say (5)
a b
From(5), a=> and b=2
k k
Using in (2), W—);y:c or k=Y (6)
k c
Using (5) and (6) in (1), the equation of the envelope is m+m:1
c

c
iLe.2wxy =c.

Example 3.13 Find the evolute of the parabola y* = 4ax, considering it as the
envelope of its normals.
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The normal at any point (a#, 2af) on the parabola y* = 4ax is
y+xt=2at+ af
(1) represents the family of normals, where ¢ is the parameter.

Differentiating (1) w.r.t. ‘¢,

x=2a+ 3af
1

X — 2a]2
3a

From (2), f—

Substituting (3) in (1), we get

3a 3a
3 )3
—(x—2a)2 1 (x—2a)2
w1 e
(3a) (3a)
3
2 (x - 261)E
(3a):
ie. V= 2;% (x —2a)’

.. The evolute of the parabola is
27ay* =4 (x — 2a)’

2 2

(1)

)
G3)

Example 3.14 Find the envelope of the ellipse x_2+;_2:1, treating it as the
a

envelope of its normals.

2 2
The normal at any point (a cos 6, b sin ) on the ellipse x_z + ;—2 =1is
a

@y pp
cosf sind

where 6 is the parameter.
Differentiating (1) w.r.t. ‘6,

bycos

cos” 0 sin? @

1 1
cos 0 = [a_x] 3 and sinf= [— b_y] 3
k k

()

2

)
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Using the identity cos? 6 + sin? 6 = 1, we have
2 2
o -
k k
2 2 2
k3 = (ax)3 + (by)3
1 2 22
ie. k3= {(ax)3 + (by)S} 4)
Using (3) and (4) in (1), we have
2 1
{(ax)S + (by)3 } k3 — Clz _ b2
3
. 2 22
1.€. {(ax)S + (by>3} =a® — b2
2 2 2
ie. (ax)s + (by)s = <a2 _ b2)3
Example 3.15 Find the evolute of the tractrix x=a [cos 0 + log tan g],
y = a sin 0, treating it as the envelope of its normals.
x=a cosG+logtan§], y=asinf,
Differentiating w.r.t. 6,
. 1
Xx=a|—sinf +
tan —-cos” —- —
2 2
. 1 acos’ 0
=a|—sinf + — =—
sin 0 sin 0
and y=acosf
d_y = Z =tan 6.
de X
.. Slope of the normal at ‘6" =— cot §
Now the equation of the normal at ‘6’ is
. 0
y—asinf=—cotfix—a cose—i—logtanz (1)

(1) represents the family of normals of the tractrix, where 6 is the parameter.
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The evolute of the tractrix is the envelope of (1).
Differentiating (1) w.r.t. ‘6,

: 0
—acosf=xcosec’ O +acot o gcosec’ O x cosH—i—logtanE
sin
X acos’ 8 acosf ) 0
=— — — ———— —acosec” 0 xlog tan—
sin” 6 sin” 6 sin” 0 2
= acosf——2 1o tang
sin” @ sin?g 2y
0
x=alog tanz 2)
Rewriting (1), we have
. *0 0
y=asinf —xcotd+a—, +acot9~logtan§ 3)
sin
Using (2) in (3), we get
2
y:asin9+&s0facotc9logtanngacot01ogtan2
sin 2 2
ie __4
4 sin 6
a[lthan2
2 tan —
a 0 1
=—qtan — + ——
2
tan —
2

X

e’ +e ”}, again using (2)

. x S . .
i.e. ¥y =a cosh —, which is the equation of the evolute of the tractrix.
a

( EXERCISE 3(b) ]

Part A
(Short Answer Questions)

1. Define evolute and involute.
2. Explain briefly the procedure to find the evolute of a given curve y = f(x).
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3. Define envelope of a family of curves.
4. Give the working rule to find the equation of the envelope of the family
fix, y, a) = 0, a being the parameter.
5. Obtain the equation of the envelope of the family f,(x, y)a* + f,(x, y)a +
f(x,») = 0, where a is the parameter.
6. Define evolute of a curve as an envelope.
7. If the centre of curvature of a curve at a variable point ‘#’ on it is (2a + 3af,
— 2ar®), find the evolute of the curve.
8. If the centre of curvature of a curve at a variable point ‘¢’ on it is
[E cos’ t, — %sin3 t| , find the evolute of the curve.
a
9. If the centre of curvature of curve at a variable point ‘4’ on it is
[alog cotg, L] , find the evolute of the curve.
2 sinf
10. Find the envelope of the family of lines y = mx + a1+ m>, m being the
parameter. a
11. Find the envelope of the family of lines ¥y = mx +— | m being the parameter.
m
12. Find the envelope of the family of lines y = mx + am?, m being the parameter.
13. Find the envelope of the family of lines y = mx 4+/a’m’ + b*, m being the
parameter.
14. Find the envelope of the family of lines z + yt = 2c, t being the parameter.
t
15. Find the envelope of the lines x cos a + y sin @ = p, a being the parameter.
16. Find the envelope of the lines % cosf +%sin9 =1, 0 being the parameter.
a
17. Find the envelope of the lines fsec@—ztanﬁ =1, 6 being the parameter.
a
18. Find the envelope of the lines x sec § — y tan 6 = a, 6 being the parameter.
19. Find the envelope of the lines x cosec & — y cot 8 = a, 0 being the parameter.
20. Show that the family of circles (x — a)? + )? = a* (a is the parameter) has no
envelope.
Part B
21. Find the evolute of the parabola y* = 4ax.
2 2
22. Find the evolute of the ellipse x_2 + ;)/_2 =1.
a
23. Find the evolute of the rectangular hyperbola xy = ¢
24. Show that the evolute of the cycloid x = a(f + sin ), y = a(l — cos 6) is an-
other cycloid, given by x = a(6 — sin 6), y — 2a = a(1 + cos 0).
25. Find the envelope of the family of lines d +% =1, where the parameters a

a
and b are connected by the relation a® + b* = ¢~
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26.

27.

28.

29.

30.

Find the envelope of the family of lines * + Y _ 1, where the parameters a
a b

and b are connected by the relation ab = 2
2 2

Find the envelope of the family of ellipses x_z + Z_z =1, where the parameters
a

a and b are connected by the relationa + b =c.
2 2

From a point on the ellipse x_2 + y_2 =1, perpendiculars are drawn to the axis

and the feet of these perpendiculars are joined. Find the envelope of the line
thus formed.

Find the evolute of the parabola x*> = 4ay, treating it as the envelope of its
normals. e P

Find the evolute of the hyperbola - 1, treating it as the envelope of
its normals. b’

Exercise 3(a)

®)

(6)

)

(12)

(15)

(18)

e2y)
(23)

(25)

( ANSWERS ]
L 4) 2. ) 8.
c 3
SeC X. (7) 1. (8) 2.
4av2 . (10) i (11) %
a(H—G)Z_ 13) 2. (14) 2 r.

0* 2

545. (16) 125a' (17) %
a 97\/—7 a 1
7 (19) ——— T (20) r
c. (22) 2asec’ 6.
(a2 sin? 0 + b? cos? 9)%/ab. (24) ar.

4a sing. 26) 2. 27) asec?d.
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(28) acot 6. (29) r cosec a. (30) %ﬂ
" 22 (2r)2
3) —4 32 . 33 .
(31) (n 1) (32) 7a (33) 7
2 p? (a1 b
(35) [—36 _EJ (36) Mse& H,Mtanw ,
6 a b

(37) x>+’ —10ax+4ay—3a’> =0

43) 577 (125)
39) |x— 22 _20 =2
( )[x 6]+[y 8] 24]
21a)’ 21a) 94
(40) [x—ﬁ] +[y—?] =5
Exercise 3(b)
(5) f3—4/f,=0. (1) 27ay* = 4(x—2a) .

®) (ax>§+(by)§:c5- 9) y=acosh .
a

(10) xX2+y*=d~ (11) »* = 4ax. (12) ¥* + 4ay = 0.
2 2

(13) x—2+Z—2:1. (14) xy=c2. (15) 2 + 2 =p2.
a
2 2 2 2

(16) %+Z—2:1. (17) 2—2—2—2:1. (18) >~ 32 = 2.

(19) ¥*—y* =da’. 1) 4 (x—2a) =2Ta)*

@2) (ax)f + () = (o =17 )?.
(33) (x4 ) —(x— ) = (4e)s- @5) ¥ 4p>=c.

(26) 4xy =~ 27) x* +y5 =

28) [f]
a

(30) (ax)éf(by) =(a+b)

w I
W

+[%] =1. (29) 27ax’=4(y — 2a)’.

2
3 .



Chapter 4

Differential Calculus
of Several Variables

4.1 INTRODUCTION

The students have studied in the lower classes the concept of partial differentiation
of a function of more than one variable. They were also exposed to Homogeneous
functions of several variables and Euler’s theorem associated with such functions.
In this chapter, we discuss some of the applications of the concept of partial
differentiation, which are frequently required in engineering problems.

4.2 TOTAL DIFFERENTIATION

In partial differentiation of a function of two or more variables, it is assumed that
only one of the independent variables varies at a time. In total differentiation, all
the independent variables concerned are assumed to vary and so to take increments
simultaneously.

Let z = f(x, y), where x and y are continuous functions of another variable .

Let At be a small increment in ¢. Let the corresponding increments in x, y, z be Ax,
Ay and Az respectively.

Then Az = f(x+Ax,y+Ay)— f(x,y)
={/(x+Ax,y+A)— f(x, y+ A} +{f (x, y+Ay)— f(x,»)}

Az _ {f(xmx,ywy)—f(x,ymy)}g

At Ax At
+{f(x,y+Ay)—f(x,y)} Ay (1)
Ay At

We note that Ax and Ay — 0 as At — 0 and hence Az — 0 as At > 0

Taking limits on both sides of (1) as Ar—0, we have & = alg_’_a_fd_y
de ox dr dy dr

(- x, y and z are functions of 7 only and £ is a function of x and y).
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dz azdx+azdy
dr ox dt dy dt

ie.,

[since f(x,y) = z(x, y)]. (2)

dz e dy)
s and also m and o ) s called the total differential coefficient of z.

This name is given to distinguish it from the partial differential coefficients

0z

o
x and y are functions of #) with respect to #, we need not express z as a function of ¢
by substituting for x and y. We can differentiate z with respect to 7 via x and y using
the result (2).

Corollary 1: In the differential form, result (2) can be written as

and B_ Thus to differentiate z, which is directly a function of x and y, (where

dz = L aer & gy 3)
ox dy

dz is called the fotal differential of z.

Corollary 2: If z is directly a function of two variables # and v, which are in turn
functions of two other variables x and y, clearly z is a function of x and y ultimately.

Hence the total differentiation of z is meaningless. We can find only % and g by
v
using the following results which can be derived as result (2) given above.
0z _ 0z du, 0z dv @)
ox OJdu dx 0V Ox
dz _9dz du_ 0z 0v (5)

We note that the partial differentiation of z is performed via the intermediate

0z

variables # and v, which are functions of x and y. Hence % and — are called

. o ) . ox
partial derivatives of a function of two functions. oy

Note @  Results (2), (3), (4) and (5) can be extended to a function z of several
intermediate variables.

4.2.1 Small Errors and Approximations

Since lim (Q) L Ay 2 approximately or Ay = (dy) Ax ()
Ax=0 \ Ax de’ Ax  dx dx

If we assume that dx and dy are approximately equal to Ax and Ay respectively, result
(1) can be derived from the differential relation.
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(e

Though (2) is an exact relation, it can be made use of to get the approximate
relation (1), by replacing dx and dy by Ax and Ay respectively.

Let y = f(x). If we assume that the value of x is obtained by measurement, it is
likely that there is a small error Ax in the measured value of x. This error in the
value of x will contribute a small error Ay in the calculated value of y, as x and y are
functionally related. The small increments Ax and Ay can be assumed to represent
the small errors Ax and Ay. Thus the relation between the errors Ax and Ay can be
taken as

Ay = f'(x) Ax
This concept can be extended to a function of several variables.
If u = u(x, y, z) or f(x, y, z) and if the value of u is calculated on the measured

values of x, y, z, the likely errors Ax, Ay, Az will result in an error Au in the calculated
value of u, given by

Au = a—MAx+a—uAy+a—qu,
ox ay oz

which can be assumed as the approximate version of the total differential relation

du = a—udx+a—udy+a—udz
ox ay oz

Note™  The error Ax in x is called the absolute error in x, while ﬂ is called the

. . X .
relative or proportional error in x and 100AY i called the percentage error in X.
X

4.2.2 Differentiation of Implicit Functions

When x and y are connected by means of a relation of the form f(x, y) = 0, x and y
are said to be implicitly related or y is said to be an implicit function of x. When x
and y are implicitly related, it may not be possible in many cases to express y as a
single valued function of x explicitly. However % can be found out in such cases as

a mixed function of x and y using partial derivatives as explained below:

Since f(x,y)=0,df =0

ie., 31 dx+ ?)l dy = 0, by definition of total differential. Dividing by dx, we have
X vy

ox dy dx
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dy _ _@ (1)
“ )
dy

2 2
If we denote al’a_f, JIf ,B_f and az_f by the letters p, g, r, s, t respectively,
ox’ dy’ ox* ~oxdy 9y’

then

[ )
dx q
2

. dy . .
We can express the second order derivative —)2; in terms of p, g, r, s, f as given
dx

below. Noting that p and ¢ are functions of x and y and differentiating both sides of
(2) with respect to x totally, we have

dp_ dg
&y | T M
dxl q2
dq 9q dy|_ Jop dp dy
p{ax+8y dx} q{8x+3y dx
p{s+t(_p]}—q{r+s(_p)}
q q
q ’
since a_p_azf: .B_p_a_q_ O f — .a_q:azf

= = = =1
ox  ox’ " dy Ox dxdy . dy o’

_ plgs—pt)—q(gr—ps)

3

q
(P't=2pgs+q’r)
= — q3
( WORKED EXAMPLE 4(a) ]
Example 4.1
(1) fu=xy+yz+zx,wherex=¢,y=e¢"and z = 1, find du
t dr
du 3

(ii) Ifu =sin™! (x — y), where x = 3¢ and y = 4£, show that — =

da J1-¢
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(i) u=xy+yz+zx

du Ju dx OJu dy ou dz

- +
dt ox dr dy dr 9z dr

= (y+2)e'+(z+x)(—e )+ (x+ ) ( - tiz)

Il
—_
+
s
| —
Q
|
—_
|

I
Q
|

I
Q

2 sinh #— % coshz.
t t

(if) u=sin"" (x —y)

e
d \/1—(X—y)2 ds \/1—(x—y)2 de
-1 g (1)

Ji- -2

Now 1—(x—y)2 =1- (3t—4t3)2

=1- 97" +24¢* -16¢°

= (1-)(1-8 +16t")

= (1_12)(1_412)2 (2)
Using (2) in (1), we get

du

1
—=—————=x3(1-4)
dt (1—42‘2) ’l—tz
—_— 3 .
1-#
Example 4.2 1f » = /| X, 2 2|, prove that xa_u+y8_u+za_u=0.
y z X ox ay dz

Let = ,5=Zandt=£ (1)
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Sou=f(r,s, t), where r, s, t are functions of x, y, z as assumed in (1)

ou

o

Ju

-

ou

oz

From (2), (3) and (4), we have

xa—u+ au+ a—u
ox 7 dy 0z

Ju ar Ju as Ju ot

Ju ar ou 0Os E)u ot

Ju ar Ju as Ju ot

2)

)

4)

Example 4.3 If z be a function of x and y, where x = ¢ + e and y = ¢™ — ¢, prove

that

dz 0z

du ov
oz

o

0z
En

From (1) and (2), we have

o
Ju ov

az az

ax ay
0z ox 0z dy

_ 0z ox N 0z dy
" 9x ov dy dv
0z , 0z

n ay

= (" +e_v)g—)zc—(e_” —e”)g—;

(1)

2)
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Example 4.4 1f u = f(x, y), where x = r cos O and y = r sin 6, prove that
( du jz Y
—_— + JR—
ox dy
NEAWRYEAY
o >\ 00

ou du dx Jdu dy

o ox or dy or
=cos(9-a—u+sin08—u (1)
ox dy
+
96 ox 96 dy 06

=—rsin0‘a—+rcos(9-a—u
X ay

ie., la—u:—sine—u+0059~a—u )

Squaring both sides of (1) and (2) and adding, we get

(aqu 1(@)2 (au)z ou Y
_ +— — - — +| —
or 72\ 00 ox dy

2
Example 4.5 Find the equivalent of g—u+ g—z in polar co-ordinates.
X~ oy

u =u(x, y), where x =r cos 8 and y =r sin 0

.. u can also be considered as u(r, 6), where

x*+y* and 6 =tan (2)
X

Now we proceed to find B_u and a_u via r and 6.
ox dy

Ju _Ju Jr  Jdu 06

— +
ox or ox 06 ox

Oa_u_smea_u (1)
or r a6
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From (1), we can infer that

iEC d sinf d 2
X o r 020
=)
Now o, ox\ox
( d sinf o j( du sin@ au)
=|cosf —- — || cos@—-— -
or r 26 or r 96
.82 a( au)
ar al" r 69
_sinQ_i(cosea_uJ_i_st d ( ea—”)
PET ) GRS MCIPT] ReT?
ou du
- r and 6 are independent and o and FY are functions of 7 and @ |.
r
ou 1 % 1 du
= cos> Oy—sme cos@[;m—Taej

. 2 . 2
_ 511:0 (cos@ 886 gr —sinOg—z] + 51:120 (sin@% + COSOg_Z] 3)

ou OJu Jr OJu 90

Now 9 or 9y 90 oy

y 1 1)\ ou
eIl e
Tty 1+y—2
X
au Cosea_u (4)

—sing? +
= sin or r 00

From (4) we infer that

u_3(m)
a*  ayloy

:(Sinei_’_coseij( ea_u cosOE)_uj

0 0 N cosf@ o (5)

or r a0 or r 00
o%u 1 o%u 1 ou

.2 .
s 03 Lrsinoc LT L5

r or

2 2
+Cose(sin9;9§r+co Oau] Coie (cos@%—sin@?—ﬁ} (6)
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Adding (3) and (6), we have
9%u 82 82u lou 1 9%
8x2 By ot ror ae?

Example 4.6 Given the transformations « = e* cos y and v = ¢* sin y and that f'is a
function of # and v and also of x and y, prove that

82f o f 0> f 82f
ox’ az_( v)[az v’
Y _Y Y
ox oJu ox OJv oOx

of . of

=e'cosy-—+e'siny-—

Ju oV
g . 9 (1)
Ju ov

aiz 949 2)

2 2 2
g LY S 9
ou’ Juov dvu

of _of du_df dv

dy ou dy v dy

=—e" siny~a—f+e’” cosya—f
ou
LYY 4
L ERL “4)
iE—vi+u— %)
dy ou  Jv

2
If . (-ui . uij(—val , ual)
8y2 Ju v Ju Jv

>’/ A A
_.2YJ “J Y Y J Y
- ”[” oudv " ov ) | " ovou " ou
2
v L ©)
ov?
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Adding (3) and (6), we get
2 2 2 2
a—{+a—{ = (u® +v?%) 8_12’ + 8_]2‘
ox°  dy ou ov

Example 4.7 1f z = f(u,v), where u = cosh x cos y and v = sinh x sin y, prove that

0’z 0 . . 0’z 9
—§+—§ = (smh2 x+sin? y) —§+—§
ox° dy Ju” dv
0z
z,=2z,U,+z,-0,, where z =—etc.
ox

= sinhx-cos y-z, +coshxsiny-z,

Since z is a function of u and v, z, and z, are also functions of u and v.
Hence to differentiate z and z with respect to x or y, we have to do it via u and v.

Z,. =COSy [cosh Xz, +sinh x{zw - sinh xcos y +z,,, cosh x sin y}]

+sin y [sinh X-z,+coshx {ZW -sinh x cos y + z,,, - cosh x sin y}]

_ . . ) 2
z,.=coshxcosy-z, +sinhx-sin y z, +sinh” xcos” y-z,,

ie.,
+2sinh x cosh x sin y cos y-z,, +cosh” xsin® y-z,, (D
z, = —z,-cosh x sin y+z, sinhx cos y
z,, = —coshx[cos y-z, +sin y{z,, -(—coshx sin y)
+2z,, -sinh x-cos y } +sinh x[—sinh y- z,,
+ cos y{~z,, -coshx sin y+z,, -sinhxcos y }]
ie., z,, = —coshxcos y-z, —sinhx-sin y-z,

+cosh? x sin® y-z,, —2sinh x coshx sin y cos y-z,,

+sinh? xcos® y-z,, 2)
Adding (1) and (2), we get
Zyt 2y = (sinh? x cos? y+cosh? x sin? y)(z,, +2,,)
= {sinh? x(1-sin? y)+(1+sinh® x)sin? y}(z,, +2,y)

= (Sinh2 x+sin’ (2 +24)
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Example 4.8 Find 9, when (i) x* + »* = 3ax?y and (i) ¥ + * = c.

dx
(i) f(x, p) =" +)* “3ax’y
p= al =3x> —6axy
Jx
q= al =3y’ —3ax’
dy

d_ p_ _3(x2—2axy) _ x(2ay—x)

2

dx ¢ 3(y'—ax’) Y —ax
(ii) [, y)=x"+y"—c

p= s "+ y logy
ox

_Y x” log x+xy*"
dy

dy P _ '+ y" log x
q x4+ x" logx

&y W —ab
Example 49 If ax’ + 2/xy + by* = 1, show that —% = —— .
dx (hx + by)

Fx,y)=ax®+2hxy + by* — 1

= g—f; = 2(ax+hy); q= 3—§ = 2(hx+by)
2 2 2
r=a]:= a;s=a—f=2h;t=aj:=2b
ox dx dy dy

dy _ p_ (ax+hy)

dx q hx+by

d’y B —(pzt—qus+q2r)

o 7

(Refer to differentiation of implicit functions)

—{8b (ax-i—hy)2 —16h(ax+hy) (hx+by)+80 (hx+by)2}

8(hx+by)’

=th{ahxz+(ab+h2)xy+bhy2}

—{a’bx* +2abhxy + h*by*} — {ah®x* + 2abhxy + ab*y*}]
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= ﬁ[a(hz —ab)x* +2h(h> — ab)xy+b(h* — ab)y’]
X+

(h*=a
W(ax +2hxy+by )

(h 2—ab)-l_ h* —ab )
(hx+by)’ (hx+by)’

Example 4.10 Find % if () u = sin (x> + )?), where a’x> + b*y* = c* (i), u =tan™! (%)

where x?+ y*= @2, by treating u as function of x and y only.

(1) u=sin (x*+)?)

du o ou dy

dv  ox dy dx
d
> (1)

=2xcos(x’ + y* )+ 2ycos(x* +y* | =
( y) y ( y )dx
Now a’x* + b*? = ¢?

Differentiating with respect to x,

2a°x+2b*y— dy =0
dx

dy_ _ax )

or =-=
dx b’y
Using (2) in (1), we get

—2xcos(x2+y )+2ycos(x +y ) (—b(zzx)
y
—2xcos(x2+y )( arz)/b2

(ii) u = tan” (ZJ
X
du_du u dy
dr ox dy dx
1 ( y) 1 (l)dy
- P P
ler—2 * 1+y—2 x) dx
X
y x dy
=T o ot oo 3)
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dy X
—_= —— 4

Using (4) in (3), we get

Example 411 1fu = x*> — )% and v =xy, find the values of% a_x B_y nd ¥
du’ 9v’ du ov

x and y cannot be easily expressed as single valued functions or » and v.

Given X*—y'=u (1)
and Xy="0 2)

Nothing that x and y are functions of # and v and differentiating both sides of (1)
and (2) partially with respect to u, we have

2xa—x—2 ya—y =1 3)
du du
ox dy
P xE o 4
4 Ju i Ju @
Solving (3) and (4), we get
% = al and 8_y = J

3u_2(x2+y2) du _2(x2+y2)

Differentiating both sides of (1) and (2) partially with respect to v, we have

2 = oy D _g (5)
Jv av

PRGCI (6)
Bv Jv

Solving (5) and (6), we get
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Example 4.12 1f x> +)? + 2> — 2xyz = 1, show that & + b + & =0
' g e J-2 (1-y* (f1-2

Let p=x>+y* +2* - 2xyz—1=0 (1)
dg¢=0

ie., a—¢dx+a—¢dy+a—¢dz:0 (2)

dx dy 0z
ie., 2(x—yz)dx+2(y—zx)dy+2(z—xy)dz=0
Now (x—yz)2 =x—2xypz+y’z’

=1-y*—z*+y’z*, from (1)
=(1-y7)(1-=")

X—yz= (l—yz)(l—z2

~—

Similarly, y—zx = (l—zz)(l—xz)
and z—xy = (l—xz)(l—yz)

Using these values in (2), we have

\/(l—yz)(l—zz)dx+\/(l—zz)(l—x2)dy+\/(l—xz)(l—yz)dz =0

Dividing by \/(l—xz)(l—yz)(l—zz), we get

dx + dy N dz _
\/1—x2 \/l—yz \/1—22

0.

Example 4.13 The specific gravity s of a body is given by s = WWI where W,
17 "2

and W, are the weights of the body in air and in water respectively. Show that if there

is an error of 1% in each weighing, s is not affected. But if there is an error of 1% in

v,

W, and 2% in W,, show that the percentage error in s is .
W=,

U4
S =
W=,
logs = log W, —log (W, - W,)
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Taking differentials on both sides,

1 1 1
~ds = —dW,~———(dW¥,~dW,)
sowW W,
.. The relation among the errors is nearly
Tas=Law——1 (aw—am,) (1
s©owm W,

100As _ 100AW, 1
s W, W,

or

(100AW,-100AW,) (2

(i) Given that 100AW, —1and 100AW,

1 2

=1

Using these values in (2), we have

100 As 1
=1- W,~W,)=0
s m—m(‘ )

.. s 1s not affected, viz., there is no error in s.

(i) Given that —IOO;WI =1and 1004,

= 2. Using these values in (2), we have

100 As - 1 (W—2W2)
s W =W,
_m
W,
i.e., % errorin § = W, .
’ Wl_Wz

Example 4.14 The work that must be done to propel a ship of displacement D for a
distance s in time ¢ is proportional to s> D*? + 2. Find approximately the percentage
increase of work necessary when the distance is increased by 1%, the time is
diminished by 1% and the displacement of the ship is diminished by 3%.

Given that W = ks* D¥?/f2, where k is the constant of proportionality.

log = logk+ 210gs+310gD 2logt.

Taking differentials on both sides,
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.. The relation among the percentage errors is approximately,

100AW 100As 3 100AD 100 Az 1
=2x +2. —2x (1)
w Ky 2 D t

Given that 1004s =1, 10?At =—1and
s

100AD
04D _ 3,

Using these values in (1), we have

100AW_ 2><1+%><(—3)—2><(—1)

=-0.5

i.e., percentage decrease of work = 0.5.

Example 415 The period T of a simple pendulum with small oscillations is
given by T =271 /L If T is computed using / = 6 cm and g = 980 cm/sec?, find
g

approximately the error in 7, if the values are / = 5.9 cm and g = 981 cm/sec?. Find

also the percentage error.
T=2r \/z
g

1 |
logT = log 2+10g7r+510gl—510gg

Taking differentials on both sides,

ldT:idz—idg (1)
T 2/ 2g

I |1 1
dT = zn\/g{adl—idg}
I R
- n{ 0159 (_1)}

- X
J5.9x981 9814981

ie., Error in 7= 0.0044 sec.
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% errorin 7 = 10(;dT
- 50{ 4 d—g},bya)
I g
_ sl 01 (51
5.9 981
= 0.8984

Example 4.16 The base diameter and altitude of a right circular cone are measured
as 4 cm and 6 cm respectively. The possible error in each measurement is 0.1 cm.
Find approximately the maximum possible error in the value computed for the
volume and lateral surface.

2
Volume of the right circular cone is given by V' = % - (g) h

dV=%(D2-dh+2Dh-dD)
T
:E{l6x0.1+2x4x6x0.1}

i.e., Errorin V'=1.6755 cm’.

Lateral surface area of the right circular cone is given by

S=7r21
2

- %D,/Dz+4h2

ds =§ D (2DdD+8hdh+D* +4K> dD

2 D* + 41>
b3 4
=2 4X%0-1424%0-1}+./16+144 x0-1
1 \/—{ }

16+144

=1.6889cm?.
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Example 417 The side ¢ of a triangle ABC is calculated by using the measured
values of its sides a, b and the angle C. Show that the error in the side ¢ is given by

Ac = cosB-Aa+cos A-Ab+asin B-AC.
The side c is given by the formula
¢t =a*+b’-2ab cos C
Taking the differentials on both sides of (1),
2¢Ac = 2aAa+2bAb—2{bcosC-Aa

+acosC-Ab—absinC-AC}, nearly
(a—bcosC)Aa+(b—acosC)Ab+absinC-AC

c

ie., Ac =

Now bcosC+ccosB=a

—bcosC
ﬂ:cosB
c

acosC+ccosA=5b

b— C
ﬂ:cosA
c

Also b _ ¢

sinB sinC

bsinC = csin B
absin C
c

=asinB

Using (3), (4) and (5) in (2), we get

Ac = cosB-Aa+cos A-Ab+asin B-AC

(1

2)

3)

4)

)

Example 4.18 The angles of a triangle ABC are calculated from the sides a, b, c. If

small changes da, db, dc are made in the measurement of the sides, show that

04 = i(6a—5bcosC—5ccosB’)
2A

and 0B and oC are given by similar expressions, where A is the area of the triangle.

Verity that 04 + 0B + 0C = 0.
In triangle ABC,

b*+c’—a’
2bc

cos A =

(1)
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Taking differentials on both sides of (1),
-2sinA4-04 = [bc {2b 0b+2coc— 2a5a} - (b2 +t-d° ) (b5c + c5b)} +b??

(bzc—c3 +azc)5b+(bc2 -b’+d’ b)50—2abc5a
b*c?

c(a2 +b? —c2)6b+b(c2 +a? —b2)5c—2abc5a

b*c?

B c(2abcosC)5b+b(2cacosB)56—2ab05a

b
b*c?

by formulas similar to (1)

= i—a(cos C-8b+cos B-6c—ba)
¢

04 = C,l (5a—cosC-5b—cosB-6c)

bcsin
=i(ﬁa—cosC-éb—cosB-ﬁc),since A:lbcsinA 2
2A 2
Similarly,

53=i(5b—cosA-50—cosC-5a) 3)
2A

5C=i(5c—cosB~6a—cosA-6b) 4)

Adding (2), (3) and (4), we get

2A(84+8B+68C) =(a—bcosC—ccos B)Sa

+(b—acosC—ccos A)8b+(c—acos B—bcos A)dc
=(a—a)da+(b—b)Sb+(c—c)dc
( bcosC+ccosB=aetc.)
=0
04+6B+6C =0.

Example 4.19 The area of a triangle 4BC is calculated from the lengths of the sides

a, b, c. If a is diminished and b is increased by the same small amount £, prove that
the consequent change in the area is given by
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SA _ 2a-b)k
A —(a-b)>

The area of triangle ABC is given by

A=\/s(s—a)(s—b)(s—c),where2s=a+b+c

logA = %{logs + log(s — a) + log(s — b) + log(s — ¢)}

Taking differentials on both sides, we get

OA 1]|6s b6s—06a 6s—0b Os—6c
— =+ + + (1)
A 2|s s—a s—b s—c
Since 2s =a+b+c, 20s = ba+6b+6c
ie.; 20s =—k+k+ 0=0, by the given data.
=0 ()

Using (2) in (1), we have

oA _If k k.
A 2\ls—a s—b

=§{ 2 2 }('.'2s=a+b+c)

b+c—a c+a-b
_ EXZ{ (cta-b)—(b+c—a) }
2 [c=(a=b)][c+(a—D)]
_ 2k(a-b)
S —(a—h)>

( EXERCISE 4(a) ]

Part A
(Short Answer Questions)

What is meant by total differential? Why it is called so?

If u = sin(x)?), express the total differential of u in terms of those of x and y.
If u = ¥y, express du in terms of dx and dy.

If u = xy log xy, express du in terms of dx and dy.

If u = a7, express du in terms of dx and dy.

ok w =
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10.

11.

12.
13.
14.
15.
16.
17.
18.
19.

20.

Part B
21.

22.

. Find
dt

. Find d_”, if u=x%?*+x%)?, where x = af?, y = 2at.

dt

. du . , .
. Find o ifu =e”, where x = \Ja’—1*, y =sin’ ¢.
t

du,ifuzlog(x +y+z),wherex=e",y=sint,z=cost.

. Find %, using partial differentiation, if x> + 3x%y + 6x)* +)° = 1.

If x sin (x — y) — (x + y) = 0, use partial differentiation to prove that

dy _ y+x’cos (x—y)
dx  x+x’cos (x—y)

Find %» when u = sin (x? + )?), where x? + 4y =9,

Find %, if u = x*y, where x> + xy + )? =1.

Define absolute, relative and percentage errors.

Using differentials, find the approximate value of V5

Using differentials, find the approximate value of 2x* + 7x* — 8x + 3x + 1
when x = 0.999.

What error in the common logarithm of a number will be produced by an
error of 1% in the number?

The radius of a sphere is found to be 10 cm with a possible error of 0.02 cm.
Find the relative errors in computing the volume and surface area.

Find the percentage error in the area of an ellipse, when an error of 1% is
made in measuring the lengths of its axes.

Find the approximate error in the surface of a rectangular parallelopiped of
sides a, b, ¢ if an error of k is made in measuring each side.

If the measured volume of a right circular cylinder is 2% too large and the
measured length is 1% too small, find the percentage error in the calculated
radius.

Ifu=f(x-y,y—z z—x),prove that 8_u+8_u+8_u =0.
dx dy Oz

If f'is a function of u, v, w, where y = \/;, V= \/;, and w= \/E show
that

f .
Zua—zycax.
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Iff=f(Y =% ’ Z — X, show that xzal+y2al+zzal= 0.
Xy zx ox ay oz

If u =f(x*+ 2yz, * + 2zx), prove that

ad ou 0
(yz—zx)a—z+( yz)$+(z —xy) a: =0.

If f(ex — az, cy — bz) = 0, where z is a function of x and y, prove that

az biz.

ax dy

If h + yand h tht2£—%+%'
z=f(u, v), where u =x + y and v=x — y, show tha o P

If z=f(x,y), where x = > + V*, y = 2uv, prove that

If x=rcos 0,y =rsin 6, prove that the equation g_u+8_u =0 is equivalent
x oy
to a_”+lta E_g du =
or r 4 0

If z = flu, v), where u = x> — 2xy — »* and v = y, show that the equation

0z 0z 0z
x+y)—+(x— = (s equivalent to — = 0-
()t i)y, = Oisea 9v

If z = f(u, v), where u = x* — y* and v = 2xy, prove that

2\ (ozY 2 2 [ oz > (oY
(5] (aj A (a) *(%) |

If z = f(u, v), where u = x? — ? and v = 2xy, show that

822 9’z 9’z 9’z
— =4(x*+y +—
axz dy e ( )(au v’ J
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33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

If z = f(x, y) where x = X cos a — Y'sin ovand y = X'sin ¢t + Y cos ¢, show that
2 2 2 2
ox” dy° dX° 9dY

If z = f(u, v), where u = Ix + my and v = Iy — mx, show that

aZ aZ 5 5 aZ aZ
g2, 9% Py —S+—
a2 a2 - U G o

By changing the independent variables x and # to  and v by means of the trans-
*y 9* 0?
formations u = x — ar and v = x + at, show that @’ a—f——y = 4o -
X

a .
or? Juov

By using the transformations # = x + y and v = x — y, change the independent

2 2
. . . 0
variables x and y in the equation ?—a—j =0 touwand v.
X ay
.0z azz 82
Transform the equation ) +2 FE. 8 = 0 by changing the independent
X xdy dy
variables using # =x —yand v=x + y.
. ,0°z 0’ 9’ .
Transform the equation x° —+2xy = ¥ —f = 0,by changing the
ox dx dy dy
32
independent variables using # =x and U = —.
x
2 2 2
Transform the equation a—f— 5—— 9’z 68— = (0, by changing the indepen-
ox oxdy  dy’

dent variables using # = 2x + y and v=3x +y.

8214 ou

ox* 82

Transform the equation — = 0, by changing the independent variables

using z =x + iy and z* =x — iy, where i = \/ — L.

Use partial differentiation to find %, when (1) ¥ =y~ (i) x™y" =

m+n,

(x+ )" "7 (iii) (cos x)" = (sin y); (iv) (sec x) = (cot y)'; (V) X' = &*

2
Use partial differentiation to find 4y

2

when x* + 3 —3axy = 0.
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43.

44,

45.

46.

47.

48

49.

50.

51.

52.

2
Use partial differentiation to find jx_);’ when x* + y* = 4a’xy.

2 2 2 2
Use partial differentiation to prove that 4 _ abc+2/gh—af” —bg” —ch
dx? (hx+by+ f)’

when ax? + 2hxy + by* + 2gx + 2fy + ¢ = 0.

s

2 2
Use partial differentiation to prove that d—J; = b——ac" when ay? + 2by + ¢
dx (ay+b)’
=x2
If x2 — )2 + u*+ 297 = 1 and x* + ) — u? — V? = 2, prove that a_u:3_x and

ox u
w_ 2w

Y

The deflection at the centre of a rod of length / and diameter d supported at its
ends and loaded at the centre with a weight w is proportional to wl/d*. What
is the percentage increase in the deflection, if the percentage increases in w, /
and d are 3, 2 and 1 respectively.

The torsional rigidity of a length of wire is obtained from the formula

8rll

t2 r4

by 2%, show that the value of N is decreased by 13% approximately.

N =

. If lis decreased by 2%, ¢ is increased by 1.5% and r is increased

The Current C measured by a tangent galvanometer is given by the relation
C =k tan 6, where 6 is the angle of deflection. Show that the relative error in
C due to a given error in 6 is minimum when 6= 45°,

The range R of a projectile projected with velocity v at an elevation €is given
2
by R = Y~ §in26. Find the percentage error in R due to errors of 1% in v and

g
l%in 6, when 0 = z
2 6
The velocity v of a wave is given by v’ = ‘i—l+%, where g and A are
T p

constants and p and T are variables. Prove that, if p is increased by 1% and

T is decreased by 2%, then the percentage decrease in v is approximately
3nT

Apv*
. L I 1 1
The focal length of a mirror is given by the formula — = ———. If equal
V u
errors k are made in the determination of # and v, show that the percentage

error in fis 100k (l-li
u v
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53. A closed rectangular box of dimensions a, b, ¢ has the edges slightly altered
in length by amounts Aa, Ab and Ac respectively, so that both its volume and

Aa A  Ac
a’(b—c) b’(c—a) c*(a-b)
[Hint: Solve the equations dV' =0 and dS = 0 for Aa, Ab, Ac using the method
of cross-multiplication]

surface area remain unaltered. Show that

54. If a triangle ABC is slightly disturbed so as to remain inscribed in the same
circle, prove that

Aa Ab Ac
+ + =
cosd cosB cosC

. . . 1 .
55. The area of a triangle ABC is calculated using the formula A = — bc sin A.
Show that the relative error in A is given by 2

6—A = ﬁ+§+CO'LA§A.
A b ¢

If an error of 5” is made in the measurement of 4 which is taken as 60°, find
the percentage error in A.

56. Prove that the error in the area A of a triangle ABC due to a small error in the
measurement of ¢ is given by

s s—a s—b s—

57. The area of a triangle ABC is determined from the side a and the two angles B
and C. If there are small errors in the values of B and C, show that the result-

ing error in the calculated value of the area A will be %(C2AB +bH°AC).

Hint:A = —

1 &*sin BsinC
2 sin(B+C)

4.2.3 Taylor’s Series Expansion of a Function of Two Variables

Students are familiar with Taylor’s series of a function of one variable viz. f'(x + /) =

2
f(x) +% f(x)+ % f”(x)+---o0,which is an infinite series of powers of 4. This idea

can be extended to expand f(x + 4, y + k) in an infinite series of powers of / and k.
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Statement

If f(x, y) and all its partial derivatives are finite and continuous at all points (x, y), then

fx+hy+k)= f(x,y)+— (hi”( )f+ (l’li-i-k a) f
ox "\ ox dy

3
+l hi+ki [ oo
30 ox dy
Proof:
If we assume y to be a constant, f(x + /, y + k) can be treated as a function of x only.
2 2
Then f(x+h, y+k) = f(x.y+k) + 2 af(xay+k) Z. J <f(g’2y+k)+..- (1)
X ! X

Now treating x as a constant,

kof(xy) K If(xy)

f(x,y+k)=f(x,y)+“ » T2 o 2

Using (2) in (1), we have

_ kofey) 921G,
f<x+h,y+k>—[f(x TR T v ]

kaf(xy) k* o’ Sy
l'a{f( n* C)Y 2! 9’ }

Z.g {f( - kaf(axy) k af(ﬁzcy) }Jr..m
)y 2! dy

_ W 200 o O 2N
= f(x,y)+— ( ax+kay] 2'(h Pl thaxay+k e )

1 J 0
—f(x,y)+ﬁ(h$ +k y]f E(ha k_y) St 3)

Interchanging x and 4 and also y and & in (3) and then putting /# = k = 0, we have

) = f(0,0)+%{x CACTINN (0’0)}%{)& 2/0.0

ox dy ox’

2 2
+2xyaf(090)+ Za f((zao) 4o
ox dy dy

4)
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Series in (4) is the Maclarin’s series of the function f(x, y) in powers of x and y.
Another form of Taylor’s series of f(x, y)

f(x,y) = fla+x—a, b+y—-b)
= f(a+h), (b+k), say

- el {8f(a b) 8f(a,b)}

ox oy
{hz - /;if ) o g;(gyb) L f;(‘z’ b)} s by (3)
= f(a,b)+%{(x—a)%+(y—b)af(a—ay’m}
+%%wwf§%%£LQ@—@@—m HeD - )ag%bq )

(5) is called the Taylor’s series of f(x, y) at or near the point (a, b).
Thus the Taylor’s series of f(x, y) at or near the point (0, 0) is Maclaurins series

of f(x, ).
4.3 JACOBIANS

If u and v are functions of two independent variables x and y, then the determinant

ou Ju
o dy
oV dv
oy

is called the Jacobian or functional determinant of u, v with respect to x and y and
is written as
d(u,v K
(,0) or J [u_)
a(x, ) X,y

Similarly the Jacobian of u, v, w with respect to x, y, z is defined as

Ju Ju Ju
ox oy oz
d(u,v,w) _|[dv Jdv Jv
ox,y,2) e 5 3z
ow Jdw dw
ox Jy oz
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Note

1. To define the Jacobian of n dependent variables, each of these must be a func-
tion of » independent variables.

2. The concept of Jacobians is used when we change the variables in multiple
integrals. (See property 4 given below)

4.3.1 Properties of Jacobians

1. If u and v are functions of x and y, then (u, ) % 9(x, y) -1

Proof:
Let
x=¢(u, v) and y = y(u, V).

Then
Ju Ox
e
Jdu
P
v
=
ou
F

Ju
—_ + R
ou dy
ox du

o o
du dy
dx du
—_— + R
ov  dy

du Ju
ox 9y
dv dJv
B
du Ju
ox 9y
dv dJv
ax
Ju Ox

(aa*

w
ox

u
0
01
=1

d(u,v)
d(x,y)

I(x.y) _
d(u,v)

X

_+_.
ov  dy

ov dy |[ dv ox
— ===+
dy du ) dx Jv

[by (D]

d(x, y) d(u, v)

u=f{x,y)and v=g(x, y). When we solve for x and y, let

dy du
ou ou
dy _ du
v dv
dy _0v
v
y_av_

v v

=1

(1)

1

ox ox
u v
dy dy
du v
ox dy
u u
ox dy
v v

au v\ ax
dy du )l dx dJv

by interchanging the rows
and columns of the

>

second determinant.

ou %
dy dv
9v 9
dy dv
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2. If u and v functions of  and s, where » and s are functions of x and y, then

a(u, v) a(u, v) B(F,s)

Axy)  (rs) " a(xy)

Proof:
ou oul| |Or or
a(u,v) o B(r,s) B 9 s " ox dy
3(rs) ) ~[w 90| *[as as
or ds| |dx dy
Ju Ju| |[dr ds
_|9r 9| dx ox , by rewriting the second determinant.
dv dv| |[dr ds
or ds| |dy dy
[a_”ﬁJra_“ﬁ) Qu or  ou ds
~\or ax  as ox){or dy as oy
_ (R wa)nr e
or ox 0s ox )\ or dy ds dy
o o
| | _ 9w
9V | A(x,y)
ox dy

Note™  The two properties given above hold good for more than two variables too.

3. Ifu, v, w are functionally dependent functions of three independent variables

o(u, v, W) _

x, v,z then
SR RN

Note™  The functions u, v, w are said to be functionally dependent, if each can be
expressed in terms of the others or equivalently f(u, v, w) = 0. Linear dependence of
functions is a particular case of functional dependence.

Proof:

Since u, v, w are functionally dependent, f(u, v, w) =0 (1)

Differentiating (1) partially with respect to x, y and z, we have
S, ou+ fy o0+ f, ow, =0 )
Jucuy + fy 0+ fy oWy, =0 3)
S ou, + fy 0.+ f,ow, =0 4
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Equations (2), (3) and (4) are homogeneous equations in the unknowns f, 1., f .
At least one of f, /. and f is not zero, since if all of them are zero, then f(u, v, w) =
constant, which is meaningless.

Thus the homogeneous equations (2), (3) and (4) possess a non-trivial solution.
.. Matrix of the coefficients of /, 1., /. is singular.

ux vX WX
ie., u, v, w|=0
uZ UZ WZ
. d(u, v, w
1.e., M =0
d(x, y, 2)

Note™  The converse of this property is also true. viz., if u, v, w are functions of
d(u, v, w)

=0 then u, v, w are functionally dependent. i.e., there
a(x, ¥, 2)

X, y, z such that

exists a relationship among them.
4. If the transformations x = x(u, v) and y = y(u, v) are made in the double
integral ” f(x,y)dxdy, then fix, y) = F(u, v) and dxdy = |J |du dv, where
d(u, V)

Proof:
dx dy = Elemental area of a rectangle with vertices (x, y), (x + dx, y), (x + dx, y + dy)
and (x, y +dy)

This elemental area can be regarded as equal to the area of the parallelogram with

vertices (x, y), x+%du,y+a—ydu , x+a—xdu+a—xdv,y+a—ydu+a—ydv and
Ju Ju Ju ov ou Jav

(x + aa—xdv, y+ g—ydvj, since dx and dy are infinitesimals.
v v

Now the area of this parallelogram is equal to 2x area of the triangle with vertices

(an’): (x+a_xdu,y+a_ydu) and x+£dv,y+a_ydv
Ju Ju oV oV

x y 1

dxdy=2><lx+a—xdu y+a—ydu 1
2 Ju ou

a—xdv y+a—ydv 1

”av Jv
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X 1
. 3 g g—xdu a—ydu
= Zdu ZLau of=|% “
du du dx dy
9 ay a—dl) a—dv
—dv —dv 0 v v
v oV
o
ou Jdu
= dudv
o
ov  Jv
ie., dedy = 25 4,4y,
d(u,v)
Since both dx dy and du dv are positive, dxdy = |J|du dv, where J = gEX’ y;
u,v

Similarly, if we make the transformations

x = x(u,v,w), y = y(u,v,w) and z = z(u,v,w)
in the triple integral [[[f(x.y.z)dvdydz, then dvdydz =|J|dudvdw, where

J — a('x)y)Z) .
o(u,v,w)

4.4 DIFFERENTIATION UNDER THE INTEGRAL SIGN

When a function f{x, y) of two variables is integrated with respect to y partially, viz.,

b
treating x as a parameter, between the limits a and b, then Jf (x, y)dy will be a

a

function of x.

Let it be denoted by F(x).
Now to find F'(x), if it exists, we need not find F(x) and then differentiate it with

respect to x. F'(x) can be found out without finding F(x), by using Leibnitz’s rules,
given below:

1. Leibnitz’s rule for constant limits of integration

If f(x, y) and Y (*,) are continuous functions of x and », then
X

d|p £/ (x,y)
a[{f (x, y)dy] = !Tdy, where

a and b are constants independent of x.
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Proof:

Let [ Feedy = Fx).

Then  F(x + Ax) — F(x) = ff(x + Ax, y)dy — ff(x,y)dy
= [+ A% ») = )y

b
:thﬂﬁiiﬁéﬁgﬂ®ao<9<L

Ox
[by Mean Value theorem, viz., f(x + h)— f(x) = hw, 0<6< 1}
b
F(x + Ax) - F(x) of (x + 6-Ax,y)
= d 1
Ax J- ox d M)

a

Taking limits on both sides of (1) as Ax — 0,

Fo= [ 282,
. (i b b E)
1€, a[fa f(x,y)dy} = j % dy

2. Leibnitz’s rule for variable limits of integration

b(x)
If f{x, y) and M are continuous functions of x and y, then —l: J f(x, y)dy:|
ox a(x)

b(x)
= I Mdy + f{x,b(x)}% — f{x’a(x)}d_a’provided a(x) and b(x) possess
ox dx dx

a(x)
continuous first order derivatives.

Proof:
Let J.f(x, y)dy = F(x,y), so that %F(x, v) = f(x,y) (1)
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b(x)

[ feeydy = Fib(o)} = Fix,a(0}

a(x)

b(x)
il | f(x,y)dy] = L Fixb(o) - < Fixato)
x dx

dx
d d
= —F(x,y)] - [—F(x,y)}
|: dx y=b(x) dx y=a(x)

d 0 d
= | S F(ay) + = Flx,p)- =
ox dy x|y

a(x)

0 0 dy
- | =F —F b
[ax (x,») + P (x,») , }

y=a(x)

by differentiation of implicit functions

v =b(x)
= [axF(x,y)] + |:f(x’ Y) dx:ly = b(x)

y=alx)

dy:l
= f(xy)— by (1
[ de y (1)

y=b(x)
) [aiJ /(5.7 dy] + /e b () — flx, a()ia’ ()

v=a(x)

=b(x)
[J ) ] /4 b () — flx, a(x)ba’(x)

y = a(x)

b(x)
J af(a);y)d + fix, b(x)}b'(x) — fix, a(x)}a’(x)

a(x)

( WORKED EXAMPLE 4(b) ]

Example 4.1 Expand e* cos y in powers of x and y as far as the terms of the third
degree.

= f.(x,y)=¢€"cosy;

)
f(x,y) =e"cosy; %
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o)) f,(x,y) = —e"sin y.
dy 7
2 2
a ];(x)isy) = fu(st) = e-" COS)}; aaf‘x(—;;y) — ‘/;,x(x,y) — _ex Siny
2
% = f,,(x,y) =—€" cos y.
Slmllarly fU’x (x,y) = ex Ccos y, 'fny (x’ y) - _ ex Sin y’

S (X, y)=—¢"cosy; f, (x,y) =€ siny
/(0,0) =1; 7.(0,0) = 1; 7,(0,0) = 0;
/.(0,0)=1; £,,(0,0) = 0; /,,(0,0) = —1;
S (0,0) =15 £ (0,0)=0; f,,(0,0)==1; f,,(0,0)=0

Taylor’s series of f'(x, y) in powers of x and y is

F) = 0.0+ 0,0.0 + o, (0,00} +
%{xzfn (0,0) + 207, (0,0) + y*£,, (0.0)} +

1
§{x3fm (0,0) + 3x7y£,,(0,0) + 3x° £,,,(0,0) + ¥ £, (0,0)} + -

1 1
ecosy=1+ ﬁ{x-l + y-0} + E{le +2xy-0 + y* (1)}
1
+ ;{)f A43x7y-0+3xy” (=) + ¥’ -0} +---

_ X 1 2 2 L, 2
_1+1!+2!+(x y)+3!(x 3xy7) +

4.4.1 Verification

X+ iy

e" cos y = Real part of ¢

. . N2 = \3
:R.P.of|:1+X+ly+(x+ly) +(x+ly) +---],
1! 2! 3!

by exponential theorem
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_X122132
—1+1{F2ﬁx ¥y )+3#x 3y7)+

Example 4.2 Expand (x+MY+K) in a series of powers of 4 and k upto the

x+h+y+k
second degree terms.
(x+h)(y+k)
Let +hy+k)=—"=
¢ Sxthyth) x+h+y+k
Sy ==
X+y

Taylor’s series of f(x + h, y + k) in powers of / and £ is

f(x+hy+k)= f(x,y)+l(hal+kal]
I\ ox oy
+l[h282_j;+2hk82_f+k282_j:]+_“ (1)
210 ox ox dy dy
_ JGEy) x|y
e - _y{ (x+y) }' (e y)
ﬁ,=x{0Hj02y}= x22
i (x+) (x+y)
foa 2y - (X+y)2~2y—yi-2(x+y)
(x+y) (x+y)
_ 200yt 2
(x+y)’ (x+y)’
2x*
S =y

Using these values in (1), we have

(x+h)(y+k)  xy + hy2 N foc 3 hzy2
x+h+y+k x+y (x+y)2 ()c+y)2 (x+y)3
2hkxy k*x’

_—+...
(x+y) (x+y)
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Example 4.3 Find the Taylor’s series expansion of X' near the point (1, 1) upto the
second degree terms. |
Taylor’s series of f(x, y) near the point (1, 1) is f(x,y) = f(1,1)+ﬁ

{50 £ 001 £, 00+ {1 £ (1) #2001 1, (1)
(=1 £, (LD (1)

f(xy)=x"; fi(xpy) =" f,(x,p) = x" logx;
S (x, y) = y(y—l) X' S (x, y) = x4+ log x
£,y (x,y) = x”(log x)’

I (l,l) =1 f (1,1) =1 fy(l,l) =0;

fo (l,l) =0; fxy (l,l) =1 fW (l, l) =0

Using these values in (1), we get
=1+ (x=D)+(x=1)(y-1)+--

Example 4.4 Find the Taylor’s series expansion of e* sin y near the point (-L%j

upto the third degree terms.

Taylor’s series of f(x, y) near the point (_L%) is

et )
+2i!{(x+1)2 fxx(—l,§)+2(x+1)(y_%jfxy (—L%)
4ot

f(x,y)=¢€"siny; f. = ¢'siny; J, =€ cosy;
fo=e'siny f =ecosy; [, =—e'siny;
S =€ siny; f =e"cosy; [, =—e siny;
Sy =—€" cosy.

V1 I IR P IR P
- s 5)- e 3o

V1 I oy 1 AT
/s (‘I’Z) Tf( 1’4j‘eﬁ’fyy[ 1’4)‘ o7
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T T

e (_I’Zj B ﬁ; Sy (_I’Z) = ﬁ; Loy (—1,%)
Using these values in (1), we get
o tler5)
)
a4

+%{(x+1)3 +3(x+1)2 (y—%)—3(x+l)(y—%)2 —(y—%)3}+--~

Example 4.5 Find the Taylor’s series expansion of x2)? + 2x2y + 3x)? in powers of
(x +2) and (y — 1) upto the third powers.
Taylor’s series of f(x, v) in powers of (x + 2) and (y — 1) or near (-2, 1) is
1
f(oy) = £ (204 {6 +2) £ (20 +(v=1) £, (-2}

+%{(x+2)2 Su (=21 4+2(x+2)(y-1) £, (-2.1)

(1) 7, (20 ()
f(xy) = x"y +2x°y+ 307 f(-21) =6

£ =2x0"+4xy+3y° fi(-2,1)=-9
f, = 2x°y+2x"+ 6xy f,(=2,1) =

fo =2y +4y fo(-21)=6
Sy = 4xy+4x+6y f,(-21)=-10
f,, = 2x°+6x fo(-21)=—4
S =0 f(2,1)=0
S =4y+4 S (=2.1) =8
Joy = 4x+6 S, (21 =-2
S =0 f(21)= 0
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Using these values in (1), we have
¥y +2x7°y+3x° = 6+%{—9(x+2)+4(y—1)}
+i{6(x+2)2—20(x+2)( ~1)-4(y-1)°}
X y y
- f2a(x42) (y=1)=6(x-+2) (y-1)" -
3 Y Y

Example 4.6 Using Taylor’s series, verify that

3

10g(1+x+y) = (x+y)—%(x+y)2 +§(x+y)

The series given in the R.H.S. is a series of powers of x and y.
So let us expand f (x, y) = log (1 + x + y) as a Taylor’s series near (0, 0) or
Maclaurin’s series.

p— 1 . —_ 1
Y l4x+y’ T l4x+y
1
S =—m=.fxy =/
fum = Lo = L = 1,
(1+x+y)
£(0,0)=0; £,(0,0) = £,(0,0) = ;
frx (0’0) = fx)’ (0’0) = f‘ly (0’0) = _l;
fxxx (0’ 0) = f;‘xy (O’ 0) = fry:v (0’ O) = f_,v,v:v (0’ O) = 2 °

Maclaurin’s series of f(x, y) is given by

flxy)= f(0,0)+%{xfx (0.0)+ 7, (0.0)}

1

+_
21

{1, (0,0)+2xy7,,(0,0)+ £, (0,0)}+- (1)

Using the relevant values in (1), we have

log(l+x+y) = (x+y)+%{—x2 —2xy—y2}+

1
+=12x7 +6x7y+6x)° +2° b+
Al y+6xy” +2y° }
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= ()5 () +5 (e 0) =

Example 4.7 Ifx=rcos 6,y =r sin 6, verify that

x=rcos 8;y=rsin 6

ox Jx
a(x,») 3 or 00 _|cos@  —rsin®
a(r,0) |9y dy| |[sin@ rcos@
o 26

= r(cos2 0+sin’ 0) =r.

Now Pt =x? +y2 and 6 = tan"' 2
X
Zrﬁ =2x % = ! > X_—g/
ox ox vy ox
1+=
X
or _x Y Y
ox r X +yt
Similarly, i =2 Similarly %:%
ay r r
oror
a(r,0) |ox dy
vy |00 0
ox dy
2
I S A
y X r P
P

Example 4.8 If we transform from three dimensional cartesian co-ordinates
(x, y, z) to spherical polar co-ordinates (7, 6, ¢), show that the Jacobian of x, y, z with
respect to 7, 6, ¢ is 72 sin 6.
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The transformation equations are

x = rsin 0 cos ¢, y =rsin 0 sin ¢, z = rcos 6.

ox .

— =sin 6 cos ¢, P =sin 0 sincﬁ,% = cosf
or or or

X rcosh cos ¢, ¥ = rcos 0 sing, 2 =—rsinf
00 00
Ox = —rsin 0 sin ¢, 2 = rsin 0 cos ¢, oz =0.
o¢ o oo
ox dy 32
dar dr dr

Now 2(62:2) |ax oy oz

3 (r,0,6) |06 00 00

Ox 9y dz

d¢ dp I

sinf cos¢ sinf sing cosf
=|rcosfcos¢ rcosfsing —rsinf

—rsinf sing rsinf cos¢ 0

= r*[sinf cos¢(0+sin2 0 cos¢)—sin 0 sin¢g
x(0—sin® @ sin @) +cos O(sin g cosf cos” ¢ +sind cosf sin® )]
= r*[sin’ 0 cos® ¢ +sin’ @ sin® ¢ +sin ) cos’ 0]
= r*(sin’ @ +sinf cos’ 0)
=r*sin.

Example 4.9

Ifu=2xy, v=x*—y* x=rcos Band y = r sin 6, compute a(u,v)'
a(r,0)
By the property of Jacobians,
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2y 2x| |cosf —rsinf
= X

2x —2y| |sind rcosf
=—4(y* +x7)xr(cos’ §+sin* 0)
=—4r.

Example 410 Find the Jacobian of y,, y,, y, with respect to x , x,, x,, if

XX, XX XX,
= s Vo = > V3
X X, X3

W
ox, Ox, Ox,
0V, ¥5,05) _ % % %
o(x,,x,,x,) |0x, Ox, Ox,
dy;  dy; Iy
ox, dx, Ox,
X X3 X
x12 X X
B L RS
X, X X,
ey X NN
X3 X3 x32
Xy X3 X3X XXy
SR TR 4N
X, X, X,
Xy X3 X3% XX,
-1 1 1
EEY I
2,22
X, X5 X, {1 -1
-1 1 1
=0 0 2/=4
02 0

Example 411 Express || [ /xyz(1-x— y—z) dxdy dzin terms of u, v, w given that
x+ty+z=u,y+tz=uvand z=uvw.
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The given transformations are

X+y+z=u (1)
y+z=uv 2)
and z=uuvw 3)

Using (3) in (2), we have y = uv(1 — w)
Using (2) in (1), we have x = u(1 — v)

dx dy dz = IJI du dv dw, where

ox Ox Ox

du v ow
g=9xy2) _|dy oy Oy

Cdu,o,w)  |du Ov  ow

0z 0z Oz
u v Iw
1-v —u 0
=pl-w) u(l-w) —uwo
VW wu uv

= (1-v){u™v A-w)+uow}+ufun® (1-w)+uwo’w}
=u’v (1-v)+u™v’
= u™

drdydz = u* dudvdw 4)

Using (1), (2), (3) and (4) in the given triple integral /, we have

I = [[[{u*v* wd-v)1-w)(1-u) v*vdudvdw
1 1 1
= [[]u"?> 02 W (1=u)2 1-v)2 (1-w)2 dudvdy

Example 4.12 Examine if the following functions are functionally dependent. If
they are, find also the functional relationship.

(i) u= sin”! x+sin”! ;0= x«/l—yz +y~ll—x2

(i) u=y+z;0v= x+2z% w= x—4yz—2y2

(1) u= sin” x+sin”! y; 0 = xyfl—p? +pyf1-x7
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Qu |1 Jou_| 1 |ov_ [TH %
o |\ Je o | fi,? ) o YT
a—v:— V-2
dy l—y2

1 1
Au,v) 1-x° 1-y?

Now

a(x, ) . R
\/I—x2 \/l—y2

\/1—x2

— ——)Cy+1_1+#
Ja=x*)(1-y7) Ja=x?)(1-y%)

=0.
.. u and v are functionally dependent by property (3).
Now sinu = sin (sin_1 x+sin™! ¥)

= sin (sin”' x)cos (sin”! y)+cos (sin”! x)sin (sin”" y)

= x-cos{cosfl(\ll—yz)}+cos{cosfl(\ll—xz)}-y
= x\J1-y? + py1—-x?

=0.

.. The functional relationship between « and v is v = sin .

(1) u=y+z;v= x+2z%; w=x—4yz—2y2

A 0, D —dy—4z
dy dy dy
M IV My,
0z 0z oz
1 1
Now M: 0 4z
d(x,y,2)
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=—{—4y+4y+ 4Z}+4Z=0.

.. u, v and w are functionally dependent
Now V—w =222 +4yz+2y°

= 2(y+z)2 = 2u*

.. The functional relationship among u, v and w is 2u> = v — w.
T

dx T
Example 4.13 Given that J = > b), find
a+bcosx laZ_bZ (a )

T
J' ndJ. cos xdx
0 a+bcosx a+bcosx

V1

J‘ dx _ b4 (1)

0a+bcosx IaZ_b2

Differentiating both sides of (1) with respect to a, we get

V3
Ji(;]dx = 9 L’ since the limits of integration are constants

Oaa a+bcosx da  [2 _p?

a

= wx—12(a? -8 )" 24

ie.,

o'—.él

a+bcosx

dx TTa

ie., (a+bcosx)2 - (a2 _p )3/2

S ——

Differentiating both sides of (1) with respect to b, we get

ji(;)dx:i.L
Oab a+bcosx b |2 _p?

Vg
™ J—ﬁxcosxdx = nx-1/2(d? —1;2)_3/2 (~2b)
0 a+bcosx
. ]T‘ cos X th
ie., -
o ( (a+bcosx)’ (a2_b2)3/2
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(1+
Example 4.14 By differentiating inside the integral, find the value of J'og—xy) dy-
+y
Hence find the value of Jde
I+x
Let j-log 1+xy (1)
o 1+ »?
Differentiating both sides of (1) with respect to x, we have
, d { log(1+xy)
(%)= EJ 1+ 57 dr
0 y
ool o) o
) Ox I+y 1+ x° dx
( by Leibnitz's rule)
¥ log( 1+ x?
| g o204 )
o (1+ xy 1+ y ) I+ x

f N 1 Y+ x d+10g(1+x2)
ol (12 1+xy) e 1y ) | e

by resolving the integrand in the first term into partial fractions

1 11 x log (1+x2)
=|- log(1+xy)+— - log(1+y7 )+ tan” y | +——>
|: 1+ x g( y) 2 1+x7 g( 7 ) x’ y:L 1+x°
_L log (1+x2)+ tan”' x (2)
2 1+x° +x°
Integrating both sides of (2) with respect to x, we have
f(x)=1J.10g(1+x2)d(tan’l x)+_[ tan” xdx+c
2 1+x?

= %[t.@m"1 xlog(l+x2)—Jtan'] X - 1_'2_);

xtan™' x
+f

o dx+c
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L 2
=—tan"' x - log(l+x*)+c¢ 2
2 g( )

Now putting x = 0 in (2), we get
c=f0)=0, by (1)

*1 (1+
og xy = %tan_1 x - log (1+x2) 3)

ol—.

1+y

Putting x = 1 in (3), we get

1
log(1
J.Mdy = %tan_1 (1) - log2

2
7 I+y

T
=—log?2
3 g

Since y is only a dummy variable,

JM“_ T 0g2

1+x°
0

Example 4.15 Show that i j tan ! (i)dx =2atan”! (a)—ll()g (a2 + 1) .
da a 2

a* a’ 2
ij‘tan_1 (f)dx = J.itan’l (f)dx+tan’1 4. i(612),
da ) a , 0a a a ) da

by Leibnitz's rule

. (_—f) dx+2atan' a
a

Il
S — ]
—_

o

2

a

x _

—J. ——dr+2atan”' a
t X +a

2

—%[log (x2 +a2)]: +2atan' a
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1 ‘rad’
= ——10g[a 2a )+2a tan”' a
2 a

= 2atan™ a—%log(a2 +l)

Example 4.16 1f / = jefx ) dx, prove that ;ﬂ = —21. Hence find the value of I.

0 a

r=fe g 1)

7Y . a a

e”  2dy, on putting x =—or y = —
y X

ie., =-2] (2)

dr7

— =—2da

1

Solving, we get log / = log ¢ — 2a

I=ce? 3)

—2 _
When a=0,I=Je dx = “4)

Using (4) in (3), we get ¢ = g
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Hence

Part A

JE

2

I =

( EXERCISE 4(b) ]

(Short Answer Question )

1.

10.

I1.
12.

13.

14.

15.

Part B
16.

17.

NS LW

Write down the Taylor’s series expansion of f(x + 4, y + k) in a series of (i)
powers of 4 and k (ii) power of x and y.

. Write down the Maclaurin’s series expansion of (i) f(x, y), (i) f(x + &, y + k).

Write down the Taylor’s series expansion of f(x, y) near the point (a, b).
Write down the Maclaurin’s series for e *”.
Write down the Maclaurin’s series for sin (x + y).

. Define Jacobian.

State any three properties of Jacobians.

. State the condition for the functional dependence of three functions u(x, y, z),

V(x, y, z) and w(x, y, z).

Prove that [ [ /(x,»)dxdy = ”f(rcose,rsine)- rdrde.

Show that J.J.f(x,y)dxdy = J.J.f{u(l—v), uv} ~ududv.

Ifx=u (1 + v)and y = v(1 + u), find the Jacobian of x, y with respect to u, v.
State the Leibnitz’s rule for differentiation under integral sign, when both the
limits of integration are variables.

b(x)
Write down the Leibnitz’s formula for — | f(x,y)dy, where a is a con-
stant. dr

b
Write down the Leibnitz’s formula for d J f(x,y)dy, where b is a
constant. dx a(x)

d | . . . . .
Evaluate d_J. log(x* + y*)dx, without integrating the given function.
V%

Expand e sin y in a series of powers of x and y as far as the terms of the third
degree.
Find the Taylor’s series expansion of e* cos y in the neighbourhood of the

. T
point (l, Z) upto the second degree terms.
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18. Find the Maclaurin’s series expansion of e* log (1 + y) upto the terms of the
third degree.

19. Find the Taylor’s series expansion of tan™ (X) inpowers of (x—1)and (y— 1)
X

upto the second degree terms.

20. Expand x?*y + 3y — 2 in powers of (x — 1) and (y + 2) upto the third degree
terms.

21. Expand x)? + 2x — 3y in powers of (x + 2) and (y — 1) upto the third degree
terms.

22. Find the Taylor’s series expansion of y* at (1, 1) upto the second degree
terms.

23. Find the Taylor’s series expansion of e® at (1, 1) upto the third degree
terms.

24. Using Taylor’s series, verify that

Gy’ Gt

cos(x+y)=1- Y 2

25. Using Taylor’s series, verify that
1
tan” (x+y) = (x+y)+§(x+y)3 -+- 00

26. If x=u (1 — v), y =uv, verify that

00ey) dww)
du,v)  d(x,y)
27. (1) if x = > — v* and y = 2uv, find the Jacobian of x and y with respect to u

and v.
(i) if u=x*and v=)? find O,V)
a(x,»)
28. If x =a cosh u cos vand y = a sinh « . sin v, show that
2
M = a—(cosh 2u—cos2v).
du,v) 2
29. Ifx=7cos 0,y =rsin 0, z =z, find I(x,y,2)
o(r,0,z)
30 If F=xu+v-y,G=u*+ vy +wand H=zu — v+ vw, compute
Jd(F,G,H)
a(u, U,W) a(u,l), W)
31. fu=xyz, v=xy+yz+zxandw=x+y+z, find ——.
(x,3.2)

+
32. Examine the functional dependence of the functions u = Y and

=y

xy
(x=»)

D=

>+ If they are dependent, find the relation between them.
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33.

34.

35.

36.

37.

38.

39.

40.

Are the functions 4 = **) and v=tan" x + tan"' v functionally dependent?
1-xy

If so, find the relation between them.

Are the functions f,=x +y +z, f, =x* + )* + z and f, = xy + yz + zx function-

ally dependent? If so, find the relation among £, f, and f,.

If J‘le”l(x’y) F(»)dy =A% xe™™, prove that f(x) = Ae~**. [Hint: Differentiate
0

both sides with respect to x].
Use the concept of differentiation under integral sign to evaluate the following:

[ = [HintUsej A 2}
o (x +a’) , X ta

1 1

[ %" (logx)" d |:Hint: Use[ x” dx}
0 0

oo

J-e"xz cos2axdx

0

J.e Slnxdx and hence Jsmxdx
o X y X

1 m—l

j dx, m=>0-.

v logx

4.5 MAXIMA AND MINIMA OF FUNCTIONS OF TWO

VARIABLES

Students are familiar with the concept of maxima and minima of a function of one
variable. Now we shall consider the maxima and minima of a function of two variables.

A function f{(x, y) is said to have a relative maximum (or simply maximum) at
x=aandy=b,if f(a, b) > f(a+ h, b+ k) for all small values of / and k.

A function f{x, y) is said to have a relative maximum (or simply maximum) at
x=aandy=b,if fla, b) <f(a+ h, b+ k) for all small values of / and .

A maximum or a minimum value of a function is called its extreme value. We give
below the working rule to find the extreme values of a function f(x, y):

(1) Find & and & .

ox dy
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(2) Solve the equations gl = 0and gl = O simultaneously. Let the solutions be
X v
(a, b); (¢, d);...
o . of af .
Note ™  The points like (a, b) at which Ew = (0and ™ = 0 are called stationary
X Y

points of the function f(x, y). The values of f(x, y) at the stationary points are called
stationary values of f(x, y).
2 2 2
8]2”’B= af’c=8.]2’
ox dxdy ay

(3) Foreachsolutioninstep (2), find the values of 4 =

and A=AC - B2
(4) (i) If A>0and 4 (or C) < 0 for the solution (a, b) then f(x, y) has a maximum
value at (a, b).
(i) If A>0and A4 (or C) > 0 for the solution (a, b) then f(x, y) has a minimum
value at (a, b).

(iii) If A <0 for the solution (a, b), then f (x, y) has neither a maximum nor a
minimum value at (a, b). In this case, the point (a, b) is called a saddle
point of the function f(x, ).

(iv) If A=0or A4 =0, the case is doubtful and further investigations are required
to decide the nature of the extreme values of the function f{(x, y).

4.5.1 Constrained Maxima and Minima

Sometimes we may require to find the extreme values of a function of three (or more)
variables say f(x, v, z) which are not independent but are connected by some given
relation ¢ (x, y, z) = 0. The extreme values of f(x, y, z) in such a situation are called
constrained extreme values.

In such situations, we use ¢ (x, y, z) = 0 to eliminate one of the variables, say
z from the given function, thus converting the function as a function of only two
variables and then find the unconstrained extreme values of the converted function.
[Refer to examples (4.8), (4.9), (4.10)].

When this procedure is not practicable, we use Lagrange’s method, which is
comparatively simpler.

4.5.2 Lagrange’s Method of Undetermined Multipliers

Let u=f(x,z) (1)

be the function whose extreme values are required to be found subject to the
constraint

q)(x, y,z) =0 )

The necessary conditions for the extreme values of u are E)l = o’al =0 and a_f =0
Jx dy 0z
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o . of . O
—dx+=—dy+-—dz=0 3)
ox " dy - 0z
From (2), we have
a—(bdx+a—¢dy+a—¢dz=0 )
ox dy dz
Now (3) + A X (4), where 4 is an unknown multiplier, called Langrange multiplier,
gives
o 0, (o 9 (Bf a¢] 5)
—+A— |dx+| —+A— |[dy+| =—+A—|=0
(8x+ axj +(ay+ o )Y o T

Equation (5) holds good, if

P22 ©)
ox ox
I L 499 _ 7
8y+ " 0 (7
P22 ®)
oz 0z

Solving the Equations (2), (6), (7) and (8), we get the values of x, y, z, 4, which give
the extreme values of u.

Note o

(1) The Equations (2), (6), (7) and (8) are simply the necessary conditions for
the extremum of the auxiliary function (f'+ A¢), where A is also treated as
a variable.

(2) Lagrange’s method does not specify whether the extreme value found out
is a maximum value or a minimum value. It is decided from the physical
consideration of the problem.

( WORKED EXAMPLE 4(c) ]

Example 4.1 Examine f(x,y) = x> + 3x)* — 15x% — 15)* + 72x for extreme values.
f(x,y)= X +3xp = 15x" =15y + 72x
f.=3x"+3y"=30x+72
S, = 6xy—30y

fxx = 6x— 30’f;y = 6y,f = 6x—30

y
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The stationary points are given by / =0 and f =0
ie., 3(x*+ y* —10x+24) = 0 €))

and 6y(x=5)=0 @)

From (2),x=50ry=0
When x =5, from (1), we get ’ —1=0; .. y==%1
When y =0, from (1), we get x> — 10x +24 =0

x=4,6.

The stationary points are (5, 1), (5, —1), (4, 0) and (6, 0)

At the point (5, 1), 4=/, =0; B :];y =16; C:];y =0

Though AC—B?<0,4=0

.. Nothing can be said about the maxima or minima of f(x, y) at (5, £1).
At the point (4,0),4=-6,B=0,C=—-6

AC-B>=36>0 and A<0

. f(x, y) is maximum at (4, 0) and maximum value of f(x, y) = 112.
At point (6,0),4=6,8=0,C=6

AC—-B>*=36>0and 4 >0.

. f(x, y) is minimum at (6, 0) and the minimum value of f(x, y) = 108.

Example 4.2 Examine the function f(x, y) = x**(12 — x — y) for extreme values.

X :12x3 2_x4 2_x3 3
() Y ooxy =xy
f.o=36x"y" — 4x°y* =3x7)°
f = 24x°y— 2x*y—-3x"y’

=T2x" = 12x°y° —6x)°
o Y y Y

=72x’y— 8x’ y—9x*)*

W y y Y
fo = 24x° — 2x* —6xy

The stationary points are given by f, = 0; fy =0

ie., x*y* (36 —4x—-3y)=0 (1
and xXy(24-2x-3y)=0 2)

Solving (1) and (2), the stationary points are (0, 0), (0, 8), (0, 12), (12, 0), (9, 0)
and (6, 4).

At the first five points, 4C — B> = 0.
.. Further investigation is required to investigate the extremum at these points. At
the point (6, 4), A =-2304, B=-1728, C=-2592 and AC — B*> 0.
Since AC — B> 0 and 4 < 0, f(x, y) has a maximum at the point (6, 4).
Maximum value of f(x, y) = 6912.
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Example 4.3 Discuss the maxima and minima of the function f(x, y) = x* + y* —2x?
+ 4dxy — 2.

f(x,y) = x*+y* =2x* +4xy-2)°.
/= 4(x3—x+y)
[, =40 +x-y)
_ 2_ 1. _ 4 _ 2
fo =4CGx-1); f, =4 f, =4Cy -1

The possible extreme points are given by

J.=0and f, =0

ie., X —x+y=0 (1)
and y3+x—y=0 2
Adding (1) and (2), ¥+y =0sy=—x 3)
Using (3) in (1): xX=2x=0

ie., x(X*=2)=0.. x=0,+v2, -2

and the corresponding values of y are 0, —2,+42.

.. The possible extreme points of f(x, y) are (0, 0), (+42,-+2) and (—/2,32).
At the point (0,0),4 =-4,B=4and C=—-4
AC-B*=0

.. The nature of f(x, y) is undecided at (0, 0). At the points (+ \/5,1\/5), A =20,
B=4,C=20

AC-B*>0

.. f(x, ) is minimum at the points (£ V2,7+/2), and minimum value of f(x, y) = 8.

11
Example 44 Examine the extrema of f(x,y) = x* +xy+)" +—+—.
Xy
) , 11
S y)=x"+xy+y +—+—
x oy
1
fo=2x+y-—
X

1
f,=x+2y——
’ y
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2 2
](xx=2+?;fx,v:1;-fyy:2+7

The possible extreme points are given by /. = 0 and f} =0.

. 1
ie., 2x+y-—=0 (1)
X
1
and x+2y—-—=0 (2)
Y
. 1 1
(1) —(2) gives x—y+—-—=0
v ox
22
ie., x—y+x 5 )2/ 0
Xy
ie., (x=»)(xX*y +x+y)=0
x=y )

Using (3)in (1), 3°~ 1 =0

&)
X = _ =
3 ¥

13 (1)
At the point (5) ,(g) ,A=8,B=1and C=8

AC-B*>0
3 3 4
- f(x, y) is minimum at (—) , (—J and minimum value of f(x,y) = 3°.

Example 4.5 Discuss the extrema of the function f(x, y) = x2— 2xy +)* + x*— )?
+ x* at the origin

f(x,y)=x>=2xy+y* +x =y +x*.
f. =2x=2y+3x" +4x’
/= —2x+2y-3)°

[ = 2+6x+12x2

f,=-2 f,=2-6y
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The origin (0, 0) satisfies the equations /= 0 and fy =0.
.. (0, 0) is a stationary point of f(x, y).
At the origin,4 =2,B=-2and C=2

AC-B*=0

Hence further investigation is required to find the nature of the extrema of f(x, y)
at the origin.

Let us consider the values of f(x, y) at three points close to (0, 0), namely at (%, 0),
(0, k) and (A, h) which lie on the x-axis, the y-axis and the line y = x respectively.
f(h,0)=h +h +h*>0.
f(0,k)=k*—k’ = k*(1-k)>0, when 0< k <1
f(h,h)=h*">0
Thus f(x, y) > f(0, 0) in the neighbourhood of (0, 0).
.. (0, 0) is a minimum point of f(x, y) and minimum value of f(x, y) = 0.
Example 46 Find the maximum and minimum values of
f(x,y)=sinxsin ysin(x+y);0< x,y < 7.
f(x,y)=sinxsin ysin(x+ y)
f, =cosxsin ysin (x+ y)+sinxsin ycos (x+ )

f, =sinxcos ysin(x+y)+sinxsin ycos(x+y)
ie., f. =sinysin(2x+y)

and J, =sinx-sin(x+2y)
S =2sinycos(2x+y)
Sy =sinycos(2x+ y)+cos y-sin(2x+y)
=sin(2x+2y)
S, =2sinxcos(x+2y)

For maximum or minimum values of /(x, ), /=0 and / =0
i.e., sin y sin (2x +y) =0 and sin x - sin (x + 2y) =0

1
ie., %[cos2x—cos(2x+2y)]:0 and 5[0052y—c05(2x+2y)]:0

ie., cos2x—cos (2x+2y) =0 (1
and cos2y—cos (2x+2y) =0 )
From (1) and (2), cos 2x = cos 2y. Hence x = y 3)

Using (3) in (1), cos 2x —cos 4x =0
i.e.,2sinxsin3x=0
~sinx=0 or sin3x=0
T 21

Sox=0,rand3x=0, 7, 2w ie., x = O,E,?
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.. The admissible values of x are 0, 5’2_” .
3°3

Thus the maxima and minima of /(x, y) are given by (0, 0) (% %j and [ZT” , ZTHJ

At the point (0,0),A=B=C=0
: AC-B*=0

Thus the extremum of f'(x, ) at (0, 0) is undecided.

Atthe point (Z,Zj, A=-\3,B= —\f and C = —/3 and 4C-B* = 3—%>0-

T
As AC—B*>0and 4 <0, f(x, y)1smax1mumat(3 3j

NN

Maxi lue of , _———
aximum value of f(x,y) = D) 2

At the point (z?ﬂ s

%Q,A:JQB:%?de=J§mdAC—#:ﬂ—%>0

AsAC-B>0and 4>0, f(x, y) is maximum at (2371- 2;]

33

Minimum value of f(x,y) = —T

Example 4.7 Identify the saddle point and the extremum points of

fxy)=x' =y =2x2+2y"
flny)=xt—y*=2x"+2)7
— 4,3 Lo 3
fo=4x —4x; f, =4y—4y
fo=12w -k £ =0 f, =4-12)%.

The stationary points of f(x, ) are given by f, = 0 and ]j =0

ie., 4(x’-x)=0and 4(y-»')=0

ie., 4x(x*~1)=0and 4y(1-»*) =0

sx=0ortlandy=0or+l.
At the points (0, 0), (£1, £1), AC - B*< 0
*. The points (0, 0), (1, 1), (1, 1), (-1, 1) and (-1, —1) are saddle points of the
function f{(x, y).
At the point (1, 0), AC—B>*>0and 4 >0
. f(x, y) attains its minimum at (+1, 0) and the minimum value is —1.
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At the point (0, 1), AC—B>*>0and 4 <0
. f(x, y) attains its maximum at (0, £1) and the maximum value is + 1.

Example 4.8 Find the minimum value of x> + ) + z%, when x + y + z = 3a.
Here we try to find the conditional minimum of x* + )* + 22, subject to the condition

x+y+z=3a (1)
Using (1), we first express the given function as a function of x and y.
From (1), z=3a—x—y.
Using this in the given function, we get
fup)=x"+y'+(Ba-x-y)’
f. = 2x=2Ba-x-y)
fy = 2y-2Ba—-x—y)
Jo=4 [y =2],=4
The possible extreme points are given by f = 0 and fv =0.
ie., 2x +y=3a 2)
and x+2y=3a (3)

Solving (2) and (3), we get the only extreme point as (a, a)
At the point (a, a), AC—B*>0and 4 >0
. f(x, y) is minimum at (a, a) and the minimum value of f(x, y) = 34°.

Example 4.9 Show that, if the perimeter of a triangle is constant, its area is maxi-
mum when it is equilateral.
Let the sides of the triangle be q, b, c.

Given that a+ b+ c=constant
=2k, say (1)

Area of the triangle is given by

A= s(s—a)(s—b)(s—c) (2)
where s=2 thte

2

Using (1) in (2),

A = Jk(k-a)(k=b)(k—c) 3)

A is a function of three variables a, b , ¢
Again using (1) in (3), we get

A = Jk(k—a)(k-b)(a+b—k)
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A is maximum or minimum, when f(a, b) = A_z =(tk—-—a)(k—=b)a+b-k)is
maximum or minimum. k
Jo = (k=b){(k=a) - 1+(a+b-k) - (=D}
=(k-b)(2k—-2a-b)
f, = (k—a){(k=b) - 1+(a+b—k) - (-1}
=(k—a)(2k—a-2b)
fow =—2(k=b); f,, = =3k+2a+2b;
S =—2(k=a)
The possible extreme points of f(a, b) are given by
J,=0andf, =0
ie., (k—b)(2k—2a-b)=0and (k—a)2k—a—-2b)=0
Sb=kor2at+b=2kanda=kora+2b=2k
Thus the possible extreme points are given by

(a=k b=k, (ii) b=k, a+2b=2k (iii)a=k, 2a + b =2k and (iv) 2a + b = 2k,
a+2b=2k.

(i) gives a=k, b =k and hence ¢ =0.
(i1) gives a=0, b =k and hence ¢ = k.
(ii1) gives a=k, b=0 and hence c = k.

All these lead to meaningless results.
Solving 2a + b = 2k and a + 2b = 2k, we get

2
a=—kandb=%
3 3
vt o (2. )
e poin 303 )

2k k 2k
A=fc.m=_?;B=f;zb=_§;C=ﬁ7h=_?

AC—-B*>0and 4<0

. . 2k 2k
. f(a, b) is maximum at (—, —)
33
. . . 2k 2k
Hence the area of the triangle is maximum when a = 3 and b = 3

When a =25, 5 =25 ¢ = 2h—(a+h) = 2

. . . 2k .
Thus the area of the triangle is maximum, when a=5b=c = 3 i.e., when the

triangle is equilateral.
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Example 410 1n a triangle 4BC, find the maximum value of cos 4 cos B cos C. In
triangle ABC, A +B + C=m.
Using this condition, we express the given function as a function of 4 and B
Thus cos 4 cos B cosC = cos Acos Bcos {r—(A+B)}
= —cos Acos Bcos (A+B)

Let f(A,B) =—cos Acos Bcos(A4+ B)

f, =—cosB{—sin Acos(A+B)—cos 4 sin(4+B)}

= cos Bsin(24+ B)

fz = —cos A{—sin Bcos(A+B)—cos B sin(4+B)}
cos Asin(A+2B)
Sy =2cosBcos(24+B)
S,z =cosBcos(24A+B)—sin Bsin(24+ B)
cos(2A+2B)
2cos Acos(A+2B)

fBB
The possible extreme points are given by
f,=0and f, =0
ie., cos Bsin(24+B) =0 ()

and cos A sin(4+2B)=0

Thus the possible values of 4 and B are given by (i) cos B =0, cos 4 = 0; (ii) cos
B=0,sin (4 +2B)=0; (iii) sin (24 + B) =0, cos A = 0 and (iv) sin (24 + B) =0, sin
(A+2B)=0

e, A=2,B=".)B=", 4=00r x,Gi)4d=2, B=0or 7 and
2 2 2 2
(iv)24+B=rm, A+2B=m or

4= p-r
3 3

The first three sets of values of 4 and B lead to meaningless results.
/4 T .
Hence 4 = 3’ B = 3 give the extreme point.

At this point (%,%j, A=f =-LB=f;= —%; fsp =—land AC = B*>0.
Also4 <0

- f(4, B) is maximum at 4 = B = % and the maximum value

T T 2r
= —COS— - COS*—COS— = —.
3 3 3 8
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Example 4.11 Find the maximum value of x” y" z, whenx + y + z = a.
Letf=x"y"z2zand d=x+y+z—a.
Using the Lagrange multiple A, the auxiliary function is g = (f+ A@).

This stationary points of g = (f+ A¢) are givenby g =0,¢g =0,g =0andg,=0

ie., mx" 7y 2P+ =0 (1)
™y ZP 4 =0 2)

px" Y 2P el =0 3)

x+y+z—a=0 4)

From (1), (2) and (3), we have

A =mx" Y 2P = px™ Y 2P = px™ " 2P
p_m+n+p

. n
1e., —=—
X 'y z x+ty+z

m+n+p
= TEEEL by (4)
a
.. Maximum value of foccurs,

when = " - -_ @

’y - » Z =
m+n+p m+n+p m+n+p

m+n+p

a m"-n"- p”

Thus maximum value of 7 =
(m+n+p)

m+n+p

Example 4.12 A rectangular box, open at the top, is to have a volume of 32 c.c. Find
the dimensions of the box, that requires the least material for its construction.
Let, x, y, z be the length, breadth and height of the respectively.
The material for the construction of the box is least, when the area of surface of the
box is least.
Hence we have to minimise

S =xy+2yz+2zx,

subject to the condition that the volume of the box, i.e., xyz = 32.

Here f=xy + 2yz + 2zx; ¢ =xyz — 32.

The auxiliary function is g = f + A¢, where A is the Lagrange multiplier.
The stationary points of g are given by g =0, g,=0,g.=0 andg, =0

ie., y+2z+Ayz =0 (1
X+2x+Azx =0 )
2x+2y+Axy =0 3)

xyz=32=0 4
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From (1), (2) and (3), we have

l+£=—ﬂ, (5)
z Yy
1.2_5 ©)
z X
2,2_, %)
y X
Solving (5), (6) and (7), we get
4
=——,y=——and z=——
AR T
Using these values in (4), we get
2
—3—3—32=0
ie., A=-1

x=4,y=4z=2.

Thus the dimensions of the box and 4 cm; 4 cm and 2 cm.

Example 4.13 Find the volume of the greatest rectangular parallelopiped inscribed
2 2 2
in the ellipsoid whose equationis ¥ , Y ,Z _
a b '

Let 2x, 2y, 2z be the dimensions of the required rectangular parallelopiped.

By symmetry, the centre of the parallelopiped coincides with that of the ellipsoid,
namely, the origin and its faces are parallel to the co-ordinate planes.

Also one of the vertices of the parallelopiped has co-ordinates (x, y, z), which

satisfy the equation of the ellipsoid.

2 2 2
Thus, we have to maximise V' = 8xyz, subject to the condition x_z + yz n Z_2 —1
b ¢
2 2 2
X z
Here f=8xyzand ¢ = —2+y—2+—2—1
a b ¢

The auxiliary function is g = f+ 1¢, where 4 is the Lagrange multiplier. The stationary
points of g are given by

g, =0,g,=0,g =0andg; =0

. 2
1e., 8yz+@ =0 (1)
a
22
8zx+b—2y =0 )
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2
8xy+i =0
¢
2 2 2
y: oz
_2+b_2+_2 =1
2
Multiplying (1) by x, 2)'; = —8xyz
a
24y*  2AzZ°
Similarly ’lzy = jzz = —8xyz from (2) and (3)
x2 yZ 22
Thus a—zzb_zzc_zzk say

Usingin (4), 3k =1 - k =%

C
and z =

Fx= g f N
8abc

33

.. Maximum volume =

3)

“4)

Example 4.14 Find the shortest and the longest distances from the point (1, 2, —1)

to the sphere x? + )2 + 22 = 24,

Let (x, v, z) be any point on the sphere. Distance of the point (x, y, z) from (1, 2, —1)

is given by d = [(x—1)"+(y—2) +(z+1)".

We have to find the maximum and minimum values of d or equivalently

d* = (x=1) +(y=2)" +(z+1)’,
subject to the constant x? +y? +z2—24 =0

Here f=()c—1)2+(y—2)2+(z+1)2 and
¢ =x"+y +z2-24

The auxiliary function is g = f + A¢, where A is the Lagrange multiplier. The

stationary points of g are given by g =0, g = 0,g=0and g, =0.

ie., ( )

2(y 2)+2/’L y=0

2(z+1)+22z=0
+yi+z7 =24

(1
2
(€)
“4)
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From (1), (2) and (3), we get

1 2 1
X=——0,y=—"7F,z=
1+A 1+A 1+A
Using these values in (4), we get
_odie, (144 =+
(1+2) 4
1
A=—tor-2.
2 2

When A = —% , the point on the sphere is (2, 4, -2)

When A = —% , the point on the sphere is (-2, —4, 2)

When the point is (2, 4, —2), d = 4/(1)2 +(2)"+(-1)" =6
When the point is (-2, —4,2), 4 = (_3)2 +(—6)2 +32 =36

.. Shortest and longest distances are \/E and 36 respectively.

Example 4.15 Find the point on the curve of intersection of the surfaces z=xy + 5
and x + y + z =1 which is nearest to the origin.

Let (x, y, z) be the required point.

It lies on both the given surfaces.

xy—z+5=0 and x+y+z=1

Distance of the point (x, y, z) from the origin is given by d = \/x*+y* +z° -
We have to minimize d or equivalently
d’=x"+y*+z2°,

subject to the constraints xy—z+5=0andx +y +z—1=0.

Note™ Here we have two constraint conditions. To find the extremum of £ (x, y, z)
subject to the conditions ¢, (x, y, z) = 0 and ¢, (x, y, z) = 0, we form the auxiliary
function
g=/f+ A0, + A,0,, where A, and A, are two Lagrange multipliers.

The stationary points of g are givenby g =0,¢ =0,g =0,g,, =0and g,, = 0.

In this problem, f=x*+)*+2°, ¢, =xy—-z+5and ¢, =x +y +z - 1.
The auxiliary function is g = f+ 4,¢, + 4,¢,, where A,, A, are Lagrange multipliers.
The stationary points of g are given by

2x+ A4 y+24, =0 €))
2y+ A x+A4, =0 (2)
2z-A+A, =0 3)
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xy—z+5=0 @)

X+y+z-1=0 (5)

Eliminating A , A, from (1), (2), (3), we have

2x oy 1

2y x 1|=0

2z -1 1
ie., x (x+1)=y (y=2)=(y+=z=) =0
ie., X =y +x-y-z(x-y)=0
ie., (x=y)(x+y-z+1)=0

x=yorx+y—z+1 =0
Using x = y in (4) and (5), we have

z=x*+5 (6)
and z=1-2x 7
From (6) and (7), x* + 2x + 4 = 0, which gives only imaginary values for x.

Hence xX+y—-z+1=0 (8)
Solving (5) and (8), we get x + y =0 9)
and z=1 (10)
Using (10) in (4), we get xy=-4 (11)

Solving (9) and (11), we get x =+ 2 and y =+ 2.

.. The required points are (2, -2, 1) and (-2, 2 ,1) and the shortest distance is 3.

( EXERCISE 4(c) ]

Part A
(Short Answer Questions)
1. Define relative maximum and relative minimum of a function of two variables.
2. State the conditions for the stationary point (a, b) of f(x, y) to be (i) a maxi-
mum point (i) a minimum point and (iii) a saddle point.
3. Define saddle point of a function f{(x, y).
4. Write down the conditions to be satisfied by f(x, y, z) and @(x, y, z), when we
extremise f(x, y, z) subject to the condition @(x, y, z) = 0.
5. Find the minimum point of f(x, y) = x> +? + 6x + 12.
Find the stationary point of f(x, y) = x> —xy +y* - 2x + y.
7. Find the stationary point of f(x, y) = 4x? + 6xy + 9)? — 8x — 24y + 4.

&
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10.

Part B

2 2
. Find the possible extreme point of f(x,y) = Xty +;+;-

Find the nature of the stationary point (1, 1) of the function f'(x, y), if £, =
6x)7, f =9x?y andf =6x7y.

Given f = 6x, f 0 f = 0y, find the nature of the stationary point (1, 2) of
the function f(x, y)

Examine the following functions for extreme values:

I1.
12.
13.
14.
15.

16. x°

17.

18.

19.

20.
21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

X3+ = 3axy

X+ —12x -3y + 20
X+ 2x7y —x?+3)2
Xy-3x*—22-4y-3
x*+ x2 y + y? at the origin
y:(a—x-y)

X}y (12 -3x - 4y)

xy+27(l+lJ
Xy

smx+s1ny+sm(x+y),0£x,y£5.

Identify the saddle points and extreme points of the function xy (3x +2y + 1).
Find the minimum value of x> + )2 + z%, when (i) xyz = ¢® and (ii) xy + yz +
zx =3a’.

Find the minimum value of x* + y* + 2, when ax + by + ¢z = p.

Show that the minimum value of (a® x* + b* * + ¢* z?), when

LIS l, is k* (a+b+c)’.

x y z k

Split 24 into three parts such that the continued product of the first, square of
the second and cube of the third may be minimum.

The temperature at any point (x, y, z) in space is given by 7=k x y z2, where
k is a constant. Find the highest temperature on the surface of the sphere
X+ +z2=dh

Find the dimensions of a rectangular box, without top, of maximum capacity
and surface area 432 square meters.

Show that, of all rectangular parallelopipeds of given volume, the cube has
the least surface.

Show that, of all rectangular parallelopipeds with given surface area, the cube
has the greatest volume.

Prove that the rectangular solid of maximum volume which can be inscribed
in a sphere is a cube.

Find the points on the surface z2 = xy + 1 whose distance from the origin is
minimum.

If the equation 5x* + 6xy + 5)* = 8 represents an ellipse with centre at the
origin, find the lengths of its major and minor axes.
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(Hint: The longest distance of a point on the ellipse from its centre gives the
length of the semi-major axis. The shortest distance of a point on the ellipse
from its centre gives the length of the semi-minor axis).

32. Find the point on the surface z = x* + )7, that is nearest to the point (3, —6, 4).

33. Find the minimum distance from the point (3, 4, 15) to the cone x* + y* =
422,

34. Find the points on the ellipse obtained as the curve of intersection of the
surfaces x + y = 1 and x* + 2y* + z2 = 1, which are nearest to and farthest from
the origin.

35. Find the greatest and least values of z, where (x, y, z) lies on the ellipse formed by
the intersection of the plane x + y + z = 1 and the ellipsoid 16x* + 4)? + z2 = 16.

( ANSWERS ]

Exercise 4(a)
(2) du =cos (x3*) (*dx + 2xy dy)
3) du=x""p*(y+xlogy)dx+xy ! (x+ylogx)dy
4) du=y (1 +logxy)dx+x(1+logxy)dy
(5) du=(yloga)a® dx + (x log a) ¥ dx
6) 8a° (4t+17);
(7) " sin’ t{3 a’ —t*sin’ tcost—tsin’ t/\Ja’ -t }

(8) (cost—e?—sin f)/(e™ + sin t + cos 1)

2 2
(9) _ X +2xy+2y" (11) %xcos (x*+y%)

X’ +4xy+yt
(12) x(xy + 4y* — 2x2)/(x + 2y); (14) 3.875
(15) 4.984 (16) 0.0043
(17) 0.006 cm?; 0.004 cm? (18) 2
(19) 4(a+ b+ )k (20) 1.5
0’z ’z
= 0: 5 = 0
(36) == 0; (7 5
’z 9’z
—=0 =0;
G% 52 (9 Judv
2
u
=0
(40) dz-dz*
@1) () L@=xloegy) (i) ¥
x(x—ylogx) ¥
(iii) ytanx+ logsin y (iv) logcot y—ytanx

log cos x— x cot log sec x+ x sec y cosec
g y g y y
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v X7y
x(1+1logx)
(42) 2a’xy/(ax —y*)? (43) 2a’y Ba* + x5)/(a* — y*)?
(47) 5% (50) 2.3%
(55) 5\3n
324
Exercise 4(b)
1
@) 1+(x +y)+(x+2y) (5) (ry) = (x3) +
1) u+v+1; (15) 2tanl(lJ
x2 3 y
(16) yay+ =22

12 2
(17) \/—{l+(x D- (y_%j+(x 21) _(x—l)(y—%)—%(y—gj +}

13 y+xy—y2+1x2y lxy +1y+
(18) 2 277 27 3

(19) Zod x4 (=D (=P = (=

20) —10-4(x—-1)+4@(p+2)-2x— 1) +2(x - D+ 2)+(x - 1> (y+2)
Q21 =943 @+2)-7-D+2x+2)(y =) =20 = 1)+ (x+2) (y — 1)
22 1+p-H+Ex-DHE-D+--

(23) e|:1+(x—1)+(y—1)+%(x—1)2+2(x—1)(y—1)+(y—1)2+é(x—1)3

3 2 3 ool oy
G =)+ -D(-2) +6(y 2)}

27) (1) 4@+ V)

(i1) 4xy
28) r
30) xppv+1-w)+z—-2uv
G k=) (-2 (z-x)
(32) w*=v+1
(33) utanv
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(34) /1= /f+2f,
(36) L}{tan-' L () l(x +a?))
2a a

1) n!

37 (m+1)"™!

(38) %\/Ee—az
(39) tan™ (lj;l

(40) log (1 + m)
Exercise 4(c)
(5) (=3,0). (6) (1,0). Q) (0, %)
®) (1, ). (9) Saddle point. (10) Minimum point.
(11) Maximum at (, a) if @ < 0 and minimum at (a, a) if @ > 0.

(12) Minimum at (2, 1) and maximum at (-2, —1).

\/51]

(13) Minimum at | +—=, ——
2 4

(14) Maximum at (0, —-1).  (15) Minimum at (0, 0).
(16) Maximum at (ﬁ’ﬂ) (17) maximum at (2, 1). (18) Minimum at (3, 3).
2°3

T T
(19) Maximum at [ © 7 | and minimum at (——, ——j .
3’3 3 3

(20) Saddle point are (0, 0), (_l’ 0) and (0, —%) ; maximum at (_l’ _l) .
3 9 6

@1) 32 32, @) P 24) 4,8, 12.
a’ +b’+c’

4
5) ka_ (26) 12, 12 and 6 metres.
8

(30) (0,0, 1)and (0,0, -1). (31) 4,2. (32) (1,-2,5).

(33) 5V5 . (34) (1,2,0);(1, 0.0 5 5. 8
373 37



Chapter 5
Multiple Integrals

51 INTRODUCTION

When a function f{x) is integrated with respect to x between the limits a and b, we get
b
the difinite integral f f(x)dx .

If the integrand is a funtion f(x,y) and if it is integrated with respect to x and
y repeatedly between the limits x, and x, (for x) and between the limits y, and y,

(for y),

we get a double integral that is denoted by the symbol f f f(x, y)dxdy .

Yo %o
Extending the concept of double integral one step further, we get the triple integral

[ f6e v, ) drdyz

Z0 Yo %o

5.2 EVALUATION OF DOUBLE AND TRIPLE INTEGRALS

To evaluate f f f (x, y)dxdy, we first integrate f'(x, y) with respect to x partially,

Yo Yo

i.e. treating y as a constant temporarily, between x, and x,. The resulting function got
after the inner integration and substitution of limits will be a function of y. Then we
integrate this function of y with respect to y between the limits y, and y, as usual.

The order in which the integrations are performed in the double integral is
illustrated in Fig. 5.1.
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»1 X1
f [/ y) dr dy
Vo X0

Fig. 5.1
Note™  Since the resulting function got after evaluating the inner integral is to be
a function of'y, the limits x, and x, may be either constants or functions of .

The order in which the integrations are performed in a triple integral is illustrated
in Fig. 5.2.

1 Y1 %
f | (/2 dv o | o
Z0 Yo *o

Fig. 5.2

When we first perform the innermost integration with respect to x, we treat y and z
as constants temporarily. The limits x, and x, may be constants or functions of y and
z, so that the resulting function got after the innermost integration may be a function
of y and z. Then we perform the middle integration with respect to y, treating z as a
constant temporarily. The limits y, and y, may be constants or functions of z, so that
the resulting function got after the middle integration may be a function of z only.
Finally we perform the outermost integration with respect to z between the constant
limits z, and z .

yox Ry

Note™  Sometimes f f f(x, y)dx dy is also denoted as f dy f f(x, y)dx and

Yo Yo Yo Xo

ff(x, y,z)dxdy dz is also denoted as fdz fdy ff(x, v, z)dx. If these
Z0 Yo Yo 20 Yo Xo

notations are used to denote the double and triple integrals, the integrations are
performed from right to left in order.

5.3 REGION OF INTEGRATION

d ¢2()

Consider the double integral f f S (x, y)dxdy. As stated above x varies from ¢ ,(y)
¢ 617

to ¢,(y) and y varies from c to d.

Le. () <x< gp,(v)andc<y<d.
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These inequalities determine a region in the xy-plane, whose boundaries are the
curves x = ¢ ,(y), x = ¢ () and the lines y = ¢, y = d and which is shown in Fig. 5.3.
This region ABCD is known as the region of integration of the above double integral.

y D y=d C
x=0¢1 () x=0,(»)
y — B
0] x
Fig. 5.3

b @, (x)

Similarly, for the double integral f f f (x, y)dy dx, the region of integration
a ¢(x)
ABCD, whose boundaries are the curves y = ¢ (x), y = ¢,(x) and the lines x = a, x =
b, is shown in Fig. 5.4.

Yy
y=¢2(x)
x=a x=b
y=¢1(x)
o X
Fig. 5.4

2 V() $(n.2)
For the triple integral j f(x,y,2) dx dy dz, the inequalities ¢ (v,z) <x

21 v 4 (02
< 0,0, 2); v (2) <y < y,(2); z, < z < z, hold good. These inequalities determine a
domain in space whose boundaries are the surfaces x = ¢ (v, z), x = ¢,(y, 2), y =

w,(2), ¥y = y,(2), z =z, and z = z,. This domain is called the domain of integration of
the above triple integral.

( WORKED EXAMPLE 5(a) ]

2 1 1 2
Example 5.1 Verify that ff(x2 +yH)dxdy = ff(x2 + y*)dydx.
1 0 0 1

2

L.s.:f ](ﬁ +y7)dx

1

dy
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2
1

Note™  y is treated a constant during inner integration with respect to x.

3 x=1
%erzx dy

x=0

(1 y y ’ 8
= ||z |d=|=+= | =
[3 y]y 3.3 3
1|2
RS.= " +y*)dy|dx
Y
1 3 y=2
:f Cy+2| dx
3
0 y=1

Note™  x is treated a constant during inner integration with respect to y.

1 3 1
S Y e T

Thus the two double integrals are equal.

Note ¥  From the above problem we note the following fact: If the limits of
integration in adouble integral are constants, then the order of integration is immaterial,
provided the relevant limits are taken for the concerned variable and the integrand is
continuous in the region of integration. This result holds good for a triple integral also.

27 7 a

Example 5.2 Evaluate f f f r*sin ¢ dr dg do.
0 0 O

2

The given integral :f d9fd¢fr4 singdr
0 0

0
2m m r5“
= df | |—| singd
JooJ[] o
0
5 27 g

:%[d&[smd(ﬁ

5 27

:%[(—cos@gdﬂ

:%af’ f/:d@

4_ s

=—Ta
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\ 1+y2
| f dx dy
2 2
, 1+ x"+y
1 NT+? 1
The given integral = ——— dx|dy
f [ A+y)+x

0

o%

Example 5.3 Evaluate

Il
o
q _
<

g\

?

<

-hl:]
N —_

&
<,

I+

mq 1+yﬂ

zglog(l—&-\ﬁ)

1 Jx
Example 5.4 Evaluate f f xy (x + y) dx dy-

0 x
Since the limits for the inner integral are functions ofx, the variable of inner integration

should be y. Effecting this change, the given integral I becomes

1 [Vx
fw@+w@dx

0| x

I=

1 2 3y =
fxzy—+xy— dx
T2 T3

1
:)‘_‘t_l_ixwz__5
8§ 21 6,
_1,2 1.3
8§ 21 6 56
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—z l—y—z
Example 5.5 Evaluate folj: j; ’ xyz dx dy dz .

—z(1-2)* —%z(l —z)* —|—iz(1 —z)*|dz

N | =

11—z 21_} z
X
The given integral = 2| dy dz
e given integra ffy 2]0 ly
1 11—z
=— yz(1—y—z) dydz
)
1 11—z
=3[ [t 202y ave
0 0
L V. A
2
E[z(l—) —2a(l-a) e dz
y=0
/3
0

1

11 2 1
S 1-2)* dz
2[2 3+4][Z( 2)

1 ’
7ﬁ{{17(1fz)}(1fz) dz

:Lwﬁ+a—ﬁ‘
24| =5 6

0
_L[l_l]_L
2415 6/ 720

log2 x x+y

Example 5.6 Evaluate fffe‘”“dxdydz.
0 0

Since the upper limit for the innermost integration is a function ofx, y, the corresponding
variable of integration should be z. Since the upper limit for the middle
integration is a function of x, the corresponding variable of integration should be y.
The variable of integration for the outermost integration is then x. Effecting these
changes, the given triple integral I becomes,

x x+y

f f e T dz dy dx
0

0

X

log 2
=
0
TMIwa”wiz”
2
Ja
0

x

f(e2r+2) _ex+y)dy
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Example 5.7 Evaluate f f xy dx dy , where R is the region bounded by the line
R

x + 2y =2, lying in the first quadrant.

We draw a rough sketch of the boundaries of R and identify R.
The boundaries of R are the lines x = 0, y = 0 and the segment of the line

% + % =1 lying in the first quadrant.

Now R is the region as shown in Fig. 5.5.

y
B C
77777 XY
,,,,,,,,, ;P!
(xp, ») P O,y
R TN
0 P *
Fig. 5.5

Since the limits of the variables of integration are not given in the problem and to
be fixed by us, we can choose the order of integration arbitrarily.
Let us integrate with respect to x first and then with respect to y. Then the

integral I becomes
- f|f e

R

When we perform the inner integration with respect to x, we have to treat y as a
constant temporarily and find the limits for x.

Geometrically, treating y = constant is equivalent to drawing a line parallel to the
x-axis arbitrarily lying within the region of integration R as shown in the figure.

Finding the limits for x (while y is a constant) is equivalent to finding the variation
of the x co-ordinate of any point on the line PQ. We assume that the y co-ordinates
of all points on PQ are y each (since y is constant on PQ) and P = (x,, »)

and Q0 = (x,, ).
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Thus x varies from x, to x,.

Wherever the line PQ has been drawn, the left end P lies on the y-axis and hence
x, = 0 and the right end Q lies on the line x + 2y = 2, and hence x, + 2y = 2 i.e.
x, =2-2y.

Thus the limits for the variable x of inner integration are 0 and 2 — 2y. When we
go to the outer integration, we have to find the limits for y.

Geometrically we have to find the variation of the line PQ, so that the region R is
fully covered. To sweep the entire area of the region R, PQ has to start from the
position OA4 where y = 0, move parallel to itself and go up to the position BC where
y=1

Thus the limits for y are 0 and 1.

1 2-2y

I:f f xy dx dy
0 0

2 2-2y
X
y —_—

5.3.1 Aliter

Let us integrate with respect to y first and then with respect to x.
Then 1= f fxy dy]dx

R
As explained above, to find the limits for y, we draw a line parallal to the y-axis
(x = constant) in the region of integration and note the variation of y on this line

y

O (x,y1)

I
o P (x,y0) A

Fig. 5.6
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P(x, y,) lies on the x-axis. ..y, =0

O(x,y,) liesonthe linex +2y=2. .. y :%(Z—x)

i.e., the limits for y are 0 and %(Z—x) .

To cover the region of integration OA4B, the line PQ has to vary from OB (x = 0)
to AC (x=2)
". The limits for x are 0 and 2.
120

f xydy dx

2

I
o\

1
=— | x(2—x)*dx
/
2 3 4)\?
1[4x_4x_+x_]
8\ 2 3 4 ),
_1
6

,y
Example 5.8 Evaluate f f e—dxdy , by choosing the order of integration suitably,
y
R

given that R is the region bounded by the lines x =0, x =y and y = .

yoo___Qkxo)
y:OO
0,y 4 B(,»)
x=0 R
y=Xx
P (x, x)
o X
Fig. 5.7
e*y
Let I:f —dxdy
R y

Suppose we wish to integrate with respect to y first.
-y

Then I:Tjey dydx
0

X
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We note that the choice of order of integration is wrong, as the inner integration
cannot be performed. Hence we try to integrate with respect to x first.

Then I:ff?dxdy

Note ¥ From this example, we note that the choice of order of integration
sometimes depends on the function to be integrated.

Example 5.9 Evaluate f f xydxdy , where R is the region bounded by the parabola
R

y?=x and the lines y = 0 and x + y = 2, lying in the first quadrant.
R is the region OABCDE shown in Fig. 5.8.

Fig. 5.8

Suppose we wish to integrate with respect to y first. Then we will draw an arbitrary
line parallel to y-axis (x = constant). We note that such a line does not intersect the
region of integration in the same fashion throughout.

If the line is drawn in the region OADE, the upper end of the line will lie on the
parabola y* = x; on the other hand, if it is drawn in the region ABCD, the upper end
of the line will lie on the line x + y = 2.

Hence in order to cover the entire region R, it should be divided into two, namely,
OADE and ABCD and the line P, Q, should move from the y-axis to AD and the line
P, O, should move from 4D to BF.

Accordingly, the given integral I is given by

1 Jx 2 2-x
I:ffxydydx+f fxydydx
0 0 1 0
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[ the co-ordinates of D are (1, 1) and so the equation of AD is x = 1]
1 5 3
4= ==
6 24 8
Note ™  This approach results in splitting the double integral into two and evaluating
two double integrals. On the other hand, had we integrated with respect to x first, the
problem would have been solved in a simpler way as indicated below. [Refer to Fig. 5.9]

I QC2-»y
x+y=2
x

(0] B
Fig. 5.9
1 2—y
I= xydxdy
/]
1 1
= [yt
0
1

f(4y*4y2+y3*y5)dy
0

Note™  From this example, we note that the choice of order of integration is to be
made by considering the region of integration so as to simplify the evaluation.

Example 5.10 Evaluate f f f (x+y+z)dx dy dz, where ¥ is the volume of the

14
rectangular parallelopiped bounded by x=0,x=a,y=0,y=b,z=0and z=c.
z C Al

B’

Q

Fig. 5.10
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The region of integration is the volume of the parallelopiped shown in Fig. 5.10, in
which OA =a, OB = b, OC = c. Since the limits of the variables of integration are not
given, we can choose the order of integration arbitrarily.

Let us take the given integral I as

I:ff (x+y+z)dzdydx

The innermost integration is to be done with respect to z, treating x and y as
constants.

Geometrically, x = constant and y = constant jointly represent a line parallel to the
Z-axis.

Hence we draw an arbitrary line PQ in the region of integration and we note the
variation of z on this line so as to cover the entire volume. In this problem, z varies
from 0 to c. since P = (x, y, 0) and O = (x, y, ¢)

Having performed the innermost integration with respect to z between the limits
0 and ¢, we get a double integral.

As P take all positions inside the rectangle OAC'B in the xy-plane, the line PQ
covers the entire voulme of the parallelopiped. Hence, the double integral got after
the innermost integration is to be evaluated over the plane region OAC'B.

The limits for the double integral can be easily seen to be 0 and & (for y) and 0

and a (for x). ,
I:fff(x+y+z)dzdydx

0 0 0

a

‘[Zj{(x-i-y)z—k%} ly dx

Lz‘{c(x-l-y) %}dydx

Jllwss )i e
2

=l 5 o

a

I
ot

cx +—

2
2 2 o

:a—bc(a+b+c)

Example 5.11 Evaluate f f f dx dy dz, where V is the finite region of space
(terra- hedron) formed by theVplanes x=0,y=0,z=0and 2x + 3y + 4z =12.
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(x, »,21)

(x,,0)

Fig. 5.11
Let I = the given integral.

Letl= [ [ [dzdydr
V

The limits for z, the variable of the innermost integral, are 0 and z,, where
(x,y,z,) lies on the plane 2x + 3y + 4z = 12. [Refer to Fig. 5.11]

z, = i(12—2x—3y)

After performing the innermost integration, the resulting double integral is
evaluated over the orthogonal projection of the plane ABC on the xy-plane, i.e. over
the triangular region OAB in the xy-plane as shown in Fig.5. 12.

In the double integral, the limits for y are 0

and %(12 —2x) and those for x are 0 and 6.

X Y
Loy Laa—av—3y K+I_l
6 3 4
1:[@ Ody [dz
1 A g

. P 3(1272;()

:Zfdx [ a2-2c-3pd Fig. 5.12
0 0

1
1 6 3 2 y:E(IZ—Zx)
=—|dx| (12=2 _2
4f [( Ny == ]

0 y=0

1 6
=— [ (12 —2x) dx
24[

_1[e-»)
6| -3

0

=12
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dzdydx

Example 5.12 Evaluate fff =
NI

bounded by the co-ordinate planes and the sphere x? +y* + z2 =1 and contained in
the positive octant.

, where V is the region of space

z

C
(X, Vs Zl)

QT

|

l
P

(x,»,0)
A
X

Fig. 5.13

Note ¥  In two dimensions, the x and y-axes divide the entire xy-plane into 4
quadrants. The quadrant containing the positive x and the positive y-axes is called
the positive quadrant.

Similarly in three dimensions the xy, yz and zx-planes divide the entire space into
8 parts, called octants. The octant containing the positive x, y and z-axes is called the
positive octant.

The region of space V given in this problem is shown in Fig. 5.13.

Let I—fff\hf&

To find the limits for z, we draw a line PQ parallel to the z-axis cutting the voulme
of integration.
The limits for z and 0 and z,, where (x, y, z,) lies on the sphere x* + y* + z* = 1

z,=4/1-x"—»* (" the point Q lies in the positive octant)

Afterperforming the innermostintegration, theresulting double integral is evaluated
over the orthogonal projection of the spherical surface on the xy-plane, i.e. over the
circular region lying in the positive quadrant as shown in Fig. 5.14.

Yy B E

e

Fig. 5.14
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In the double integral, the limits for y are 0 and J1=x* and those for x are 0
and 1.

=% )2

( EXERCISE 5(a) ]

Part A
(Short Answer Questions)

1. Evaluate ]]4)@/ dx dy

0 0
b a

2. Evaluate f f M
I

w2 7/2

3. Evaluate f f sin (0+¢)d0 de
0 0

1 x

4. Evaluate f dxdy.
0 0

7 sinf

5. Evaluate f f rdrdf
0 0

6. Evaluate ]]]xyzdxdydz
0 0 0

z y+z

7. Evaluatef f f dzdydx
0 0 0
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Sketch roughly the region of integration for the following double integrals:

8. ]]f(x,y)dxdy.

—b—a

9. ]‘]‘f(x,y)dxdy.

2_ 2
a \a —x

10. f f f(x,y)dxdy.
Lb-y)

b

] f S (xy)dedy.

Find the limits of integration in the double integral f f £(x, y)dxdy, where R is in the
R

first quadrant and bounded by
12. x=0,y=0,x +y=1.

2 2

X,y
13. x=0,y=0,—5+==1
7 a b
14. x=0,x=y,y=1
15. x=1,y=0,)y*=4x

Part B

16. Evaluate f f 4 dxdy and also sketch the region of integration roughly.

0»/4

p /a27 2
17. Evaluate f f ydxdy and also sketch the region of integration roughly.

0 a—x

11
18. Evaluate f yzdx d); and also sketch the region of integration roughly.
X +y

0

X
a Na*—x*

19. Evaluatef f Ja© —x* —y* dxdy.
0 0

1 I=xl-x—y

20. Evaluate f f f xyz dxdy dz.
0

0 0

log2 x x+logy

21. Evaluate fff e dzdy dx.

0 00
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22. Evaluate f f xef% dxdy, over the region bounded by x =0, x = 0, y = 0 and
y=

23. Evaluate f f xydxdy, over the region in the positive quadrant bounded
by the line 2x + 3y =6.

24. Evaluate f f xdxdy, over the region in the positive quadrant bounded
by the circle x> — 2ax +)? = 0.

25. Evaluate f (x+ y)dxdy, over the region in the positive quadrant bounded

2 2

by the ellipse x_2 + y—z =1.
a b

26. Evaluate f f (x* +y*)dxdy, over the area bounded by the parabola y? = 4x

and its latus rectum.

27. Evaluate f f x> dxdy, where R is the region bounded by the hyerbola xy = 4,
R

y=0,x=1andx=2.
28. Evaluate f f f (xy+ yz+zx)dxdydz, where V is the region of space boun-
Vv

dedbyx=0,x=1,y=0,y=2,z=0andz=3.
29. Evaluate f f f dxdydz , where V is the region of space bounded by
(x+y—|—z+1)
x=0,y= 0,z—0andx+y+z— 1.
30. Evaluate f f f xyzdxdydz, where V is the region of space bounded by the

v
co-ordinate planes and the sphere x? + )* + z2 = 1 and contained in the posi-
tive octant.

5.4 CHANGE OF ORDER OF INTEGRATION
IN ADOUBLE INTEGRAL

In worked example ( 1) of the previous section, we have observed that if the limits
of integration in a double integral are constants, then the order of integration can be
changed, provided the relevant limits are taken for the concerned variables.

But when the limits for inner integration are functions of a variable, the change in
the order of integration will result in changes in the limits of integration.

d g () b hy(x)
i.e. the double integral f f f(x,y)dxdy will take the form f f f(x,y)dydx,
c g a h(x)

when the order of integration is changed. This process of converting a given double
integral into its equivalent double integral by changing the order of integration is often
called change of order of integration. To effect the change of order of integration, the
region of integration is identified first, a rough sketch of the region is drawn and then
the new limits are fixed, as illustrated in the following worked examples.
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5.5 PLANE AREA AS DOUBLE INTEGRAL

Plane area enclosed by one or more curves can be expressed as a double integral both
in Cartesian coordinates and in polar coordinates. The formulas for plane areas in

both the systems are derived below:
(i) Cartesian System

Let R be the plane region, the area of which is
required. Let us divide the area into a large
number of elemental areas like PQORS (shaded)
by drawing lines parallel to the y-axis at intervals
of Ax and lines parallel to the x-axis at intervals
of Ay (Fig. 5.15).

Area of the elemental rectangle PORS = Ax.
Ay. Required area A4 of the region R is the sum of
elemental areas like PORS.

viz., A= AlimO (XX Ax Ay)

Ay —0
- [faso
R

(ii) Polar System

We divide the area 4 of the given region R into a large
number of elemental curvilinear rectangular areas like
PORS (shaded) by drawing radial lines and concentric
circular arcs, where P and R have polar coordinates (7,
0) and (r + Ar, 6 + A9) (Fig. 5.16)

Area of the element PORS =r Ar AG
(" PS=rAfand PO = Ar)

. Required area A= Alilllo X rAr Af)

A —0

:fRfrdrdH.

5.5.1 Change of Variables

—_

(i) From Cartesian Coordinates to Plane Polar Coordinates

If the transformations x = x(u, v) and y =y (u, v) are made in the double integral

f f F(x,y)dxdy , then f(x,y)=g(u,v) and dx dy = |J| du dv, where J =

9(x,»)
o(u,v)

[Refer to properties of Jacobians in the Chapter 4, “Functions of Several Variables”

in Part I] .
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When we transform from cartesian system to plane polar system,

x=rcosf andy=rsin 8

ox ox

In this case, J— or 00| _ C(?S 0 —rsind
dy Oy| |sinf rcosd
or 00

=r(cos’ @ +sin’ 0)=r
Hence fff(x,y)dxdy:ffg(r,@)rdrde
R R

In particular,
Area A of the plane region R is given by

A:fRf dxdyszfrdrde

(i) From Three Dimensional Cartesians to Cylindrical Coordinates

. . . y
Let us first define cylindrical coordinates

of a point in space and derive the relations
between cartesian and cylindrical coordinates P (x,y,2)
(Fig. 5.17).

Let P be the point (x, y, z) in Cartesian
coordinate system. Let PM be drawn L r
to the xoy-plane and MN parallel to Oy. Let

NOM =60 and OM=r. The triplet (r, 6, z) are

. . N M
called the cylindrical coordinates of P. x
Clearly, ON=x=rcos § ; NM=y=rsin
6 and MP =z. Fig. 5.17

Thus the transformations from three dimensional cartesians to cylindrical
coordinates are x =rcos 0, y=rsin 6, z=z.
In this case,

) x. x, x| |cos§ —rsind O
_ (x»yy Z) — y, yg yz = Sln 9 1”0080 O
o(r,0,z)
z oz, z 0 0 1
=r

Hence dxdy dz=rdr df dz

and fff f(x,y,z)dxdydz:fff g (r,0,z)rdrdfdz
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In particular, the volume of a region of space V'is given by
dxdydz= rdrdfdz
[[fasave= fff

Note™ Whenever f f f f(x, ¥, z)dx dy dz is to be evaluated throughout the

volume of a right circular cylinder, it will be advantageous to evaluate the
corresponding triple integral in cylindrical coordinates.

(iiiy From Three Dimensional Cartesians to Spherical Polar Coordinates

Let us first define spherical polar coordinates of a point in space and derive the
relations between Cartesian and
spherical polar coordinates (Fig. 5.18).

Let P be the point whose Cartesian
coordinates are (x, y, z). Let PM be
drawn L r to the xOy-plane. Let MN
be parallel to y-axis. Let OP = r, the
angle made by OP with the positive
z-axis = @ and the angle made by OM
with x-axis = 9.

The triplet (r, 6, ¢) are called the
spherical polar coordinates of P.

Since |OMP =90°, MP =z = r cos
0, OM =rsin 6, ON=x=rsin 6 cos ¢
and NM=y=rsinfsin ¢ .

Thus the transformations from three dimensional cartesians to spherical polar
coordinates are

P(x,y,2)

>y

Fig. 5.18

x=rsinfcos ¢,y=rsinfsin ¢,z =rcos

J d(x,y,z)
8(r,9,¢)

In this case,

=r?sind

[Refer to example (4.8) of Worked example set 4(b) in the Chapter 4 “Functions of
Several Variables.” in Part I]

Hence dx dy dz=*sinddr dfd ¢ and ffff(x,y,z)dxdydz:fffg(r,o,¢)r2
v 14

sinfddrdfdeo.
In particular, the volume of a region of space V' is given by

fffdxdydz:fffrz sin 0 dr df do .

Note™ Whenever f f f f(x, y,z)dxdydz is to be evaluated throughout the

volume of a sphere, hemisphere or octant of a sphere, it will be advantageous to use
spherical polar coordinates.)



Chapter 5: Multiple Integrals I-5.21

( WORKED EXAMPLE 5(b) ]

Example 5.1 Change the order of integration in f f drdy and then

evaluate it. \/x +y°

The region of integration R is defined by y <x <aand 0 <y <a.
i.e. it is bounded by the linesx =y, x =a,y =0and y =a.
The rough sketch of the boundaries and the
region R is given in Fig. 5.19. y
After changing the order of integration, the y-a
given integral I becomes

X —
= [ v vy

5 xZ + y2 Q xX=a
The limits of inner integration are found by (x,x) R
treating x as a constant, i.e. by drawing a line
parallel to the y-axis in the region of integration : x

o ) ) Ox0P y=0

as explained in the previous section.

e
- [foep - 7))

y=0

Thus Fig. 5.19

a

:fx[log(x—&-x\/i)—logx]dx

a

2 2
—log (1+v2)- || =L 1og (1++2)
2), 2
x dx dy
x4y’
Note  Since the limits of inner integration are x and 1, the corresponding variable
of integration should be y. So we rewrite the given integral I in the corrected form

first.
dy dx
- [

The region of integration R is bounded by the lines x =0, x =1,y =xand y = 1
and is given in Fig. 5.20.

The limits for the inner integration (after changing the order of integration) with
respect to x are fixed as usual, by drawing a line parallel to x-axis (v = constant)

Example 5.2 Change the order of integration in f f and then evaluate it.
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y =1 |
J s x=1
(O’y)P fr-=" "2 Q(y’y)
x=0
R
y=x
X
o
Fig. 5.20
1 1 x=y
= [|log +y2)} dy
2
0 x=0
1o (22
= E!log [ —|dy
= 1 log 2
b %(h*y)
Example 5.3 Change the order of integration in f f xydxdy and then
0 0

evaluate it.

The region of integration R is bounded by the lines x = 0, x= % (b—y) or

i-l—%:l,y:Oandy:bandisshowninFig. 521.
a

Fig. 5.21

After changing the order of integration, the integral becomes I = f f xy dy dx.
The limits are fixed as usual.

,(a x)

:ff xy dy dx
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a 2 ,ﬂ,(‘l*)‘)
:fxy— dx
0 2 0
b
=— | x(a—x)* dx
2a2[( )
B PR
2a 2 304
@R[ 21
2 12 3 4
a’b?
T4

b >
b2

Example 5.4 Change the order of integration in f f x> dydx and then
0 0

integrate it.

The region of integration R is bounded by the lines x = 0, x = a, y = 0 and the

b . 2 2 Xt . . : g
curve y=-~a’—x* ie. the curve ¥ — 9 =¥ ie the ellipse 5+ =1
a b? a> a b
and is shown in Fig. 5.22.
i + y_2 =1
a b

0,» P
x=0

Fig. 5.22

After changing the order of integration, the integral becomes

I:ffﬁ&@
R

The limits are fixed as usual.

b
2
‘[ f x~ dxdy

0

SR

I

|
.
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=37 f(b2 ) dy

3 /2

— T p* cost o
=35 [b cos” 6.df (on putting y = b sin 6)
ab 3 1 «
=X X—X—
3 4 2 2
Zla3b
16
o Ji—»?
Example 5.5 Change the order of integration in f f ydxdy and then
0 a-y

evaluate it.
The region of integration R is bounded by the line x = a — y, the curve

x=+/a’ —y" ,thelinesy=0andy=a.
i.e. the line x + y = q, the circle x> + > = ¢? and the lines y = 0, y = a. R is shown in

Fig. 5.23.
y

Fig. 5.23

After changing the order of integration, the integral I becomes,

I:ffydydx
R
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53l

_a,
6
4 24x
Example 5.6 Change the order of integration in f f dy dx and then evaluate it.
0 ¥

4
2

The region of integration R is bounded by the curve y = X e the parabola
4

=4y, the curve y = 2Jx ie. the parabola y? = 4x and the lines x =0, x =4. R is
shown in Fig. 5.24.

Fig. 5.24

The points of intersection of the two parabolas are obtained by solving the
equations x* = 4y and )? = 4x.

2
Solving them, we get [XT:] — 4,

ie x(x*-64)=0
x=0, x=4
and y=0, y=4

i.e. the points of intersection are O(0, 0) and A4(4, 4).
After changing the order of integration, the given integral
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gy
3 12)

32 16

303

16

3
a a+\+y

Example 5.7 Change the order of integration in f f xydxdy and then

0 a—a =y

evaluate it.
The region of integration R is bounded by the curve x=aF+la’ — " , i.e. the

circle (x — a)* + y* = &® and the lines y = 0 and y = a. The region R is shown in Fig.
5.25.

Y

(x, N2ax — x2 )

/V (xia)2+y2:a2
9 R
|
|
! + X
O (x,0)P C(a,0)
Fig. 5.25

After changing the order of integration, the integral I becomes

I=ffxydydx
R
2q \2ax =2

:[ [ xydydx

= [x|& dx
0 0

12a
=2 f Qax® — x*)dx

0

3 4%

Ay o x
2073 4
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12—y
Example 5.8 Change the order of integration in f f xy dxdy and then
0y

evaluate it.

The region of integration R is bounded by the linesx=y,x +y=2,y=0and y =
1. It is shown in Fig. 5.26.

After changing the order of integration, Y
the integral I becomes

I:ffxydydx
R

To fix the limits for y in the inner

integration, we have to draw a line parallel © C A .
to y-axis (since x = constant). The line drawn
parallel to the y-axis does not intersect the Fig. 5.26

region R in the same fashion. If the line segment is drawn in the region OCB, its
upper end lies on the line y = x; on the other hand, if it is drawn in the region BCA, its
upper end lies on the line x + y = 2. In such situations, we divide the region into two
sub-regions and fix the limits for each sub-region as illustrated below:

1= [[avdvdr+ [[xvdyax

Rocs Rica
:j]xy dydx+]‘2fxydydx
0 2 0 1 2 0

4 42
= x_ +l 2x2 _x3 + x_
8) 2 4
1
I 5
:—+_
8 24
_!
3 a 2a—x
Example 5.9 Change the order of integration in f f xydydx and then
0
evaluate it. a

2
The region of integration R is bounded by the curve 5 — X ie. the parabola x> = ay,
a

the line y = 2a — x, i.e. x + y = 2a and the lines x = 0 and x = a. It is shown in Fig.
5.27.
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0,y) Py === 0r(2a-y,y)
E B (a, a)
(0,y) P e~ O1(Jay,y)

Fig. 5.27
After changing the order of integration, the integral I becomes

I=ffxydxdy
R

When we draw a line parallel to x-axis for fixing the limits for the inner integration
with respect to x, it does not intersect the region of integration in the same fashion.
Hence the region R is divided into two sub-regions OABE and EBCD and then the
limits are fixed as given below:

I:ffxydxdy —I—ffxydxdy

OABE EBCD

_jfxydxdy +2fazif}xydxdy

Note™  The co-ordinates of the point B are obtained by solving the equations x +
y=2aand x* = ay.
B = (a, a) and the equation of EB is y = a.
a _X2 \/T 2a-y
=) y|l—
5

dy

2a 2

dy—l—[y%

0

_1 a , 2a ,
=3 [ay dy+fy(2a*y) dy
1 (») 4a O 3
=—la| 2 + 2a2y2——y3+y— =—da".
2 , 3 4) 1 8

Example 5.10 Change the order of integration in each of the double integrals

1 2
f f dxdy and f f drdy and hence express their sum as one double integral
01 x4y X+
and evaluate it.
The region of integration R, for the first double integral I, is bounded by the lines
x=1,x=2,y=0and y=1.
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The region of integration R, for the second double integral 1, is bounded by the
linesx=y,x=2,y=1andy =2.
R, and R, are shown in Fig. 5.28.

E@2,2
y 0o, /72
l
|
|
7 !
1 |
c,1
(1,1)/13 e 2, 1)
|
|
|
X
0 A4 Pi(x,0) B
Fig. 5.28

After changing the order of integration,

1

2
-

0

X

2
and I2_ffx(21y+d;c2
1

1

Adding the integrals I, and I,, we get

Example 5.11 Find the area bounded by the parabolas > =4 — x and ) = x by double
integration.

The region, the area of which is required is bounded by the parabolas (y — 0)? = —
(x —4) and y* = x and is shown in Fig. 5.29.

Required area = f f dxdy
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=2 f f dx dy, by symmetry

o AB

:? 2 square units

Example 5.12 Find the area between the circle x2 + )2 = @? and the line x + y =a ly-
ing in the first quadrant, by double integration.
The plane region, the area of which is required, is shown in Fig. 5.30.
y
Required area = f f dx dy C

ABC

(a=»,) 8-y y)
a a *}

_ffdxdy . -
j(ma+y)dy

SRS

2 2
2 2, a4 .Yy Yy
Jai =yt +—sinT = —ay +—
[ Y 2 a v 2]

2 a’
_ “ _ n <
a 2 (m— )

o

a
2

Example 5.13 Find the area enclosed by the lemniscate r* = a* cos 26, by double
integration.
As the equation 72 = @ cos 20 remains unaltered on changing 6 to — 0, the curve
is symmetrical about the initial line.
The points of intersection of the curve with the initial line 8 = 0 are given by r*=
dorr=zxa.
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Since 2 = a® cos 2a = a* cos 2 (7 — a), the curve is symmetrical about the line

h="=

2

On putting » = 0, we get cos 20 = 0. Hence g — + 1, + 37 Hence there is a loop
4 4
s T 3

of the curve between 0 = — Z and § = — and another loop between § = — T and
63"

4

Based on the observations given above the lemniscate is drawn in Fig. 5.31.

> X

Fig. 5.31

Required area = 4 x area O4BC (by symmetry)

=4ffrdrde

0OAB

When we perform the inner integration with respect to 7, we have to treat 6 as a
constant temporarily and find the limits for 7.

Geometrically, treating 6 = constant means drawing a line OP arbitrarily through
the pole lying within the region of integration as shown in the figure.

Finding the limits for » (while @ is a constant) is equivalent to finding the variation
of the » coordinate of any point on the line OP. Assuming that the 8 coordinates of
all points on OP are 6 each (since 0 is constant on OP), we take O = (0, §) and P =
(), 0); viz., r varies from 0 to r,. Now wherever OP be drawn, the point P(r, 0) lies
on the lemniscate.

Hence 1} = a® cos 20 or 7, = a/cos 20 (since r coordinate of any point is + ve)

Thus the limits for inner integration are 0 and a./cos 26.

When we perform the outer integration, we have to find the limits for 6.
Geometrically, we have to find the variation of the line OP so that it sweeps the
area of the region, namely OABC. To cover this area, the line OP has to start from
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the position O4 (8 = 0) and move in the anticlockwise direction and go up to

01)[9:E
4

% a.Jcos 20
Required area = 4 f f rdrdf
0 0

a \Jcos 26
de

2

r
2

Il
NN
CHb\ﬂ

0

2a* | cos26do

o%&\:\

™

=a’ (sin 20)} = a’

. Thus the limits for @ are 0 and % .

Example 5.14 Find the area that lies inside the cardioid » = a (1 + cos 0) and outside

the circle » = a, by double integration.

The cardioid » = a (1 + cos 6) is symmetrical about the initial line. The point
of intersection of the line § = 0 with the cardioid is given by r = 24, viz., the point

(a, 0).

Putting » = 0 in the equation, we get cos & = — 1 and § = + 7. Hence the cardioid

lies between the lines 8 = — 7 and 0 = 7.

The point of intersection of the line
0=7is[al)
2 2

Noting the above properties, the
cardioid is drawn as shown in Fig. 5.32.
All the points on the curve » = a have
the same » coordinate a, viz., they are
at the same distance a from the pole.
Hence the equation » = a represents a
circle with centre at the pole and radius
equal to a.

Noting the above points, the circle
r = a is drawn as shown in Fig. 5.32.
The area that lies outside the circle » =

a and inside the cardioid is shaded in the figure.

Fig. 5.32

Both the curves are symmetric about the initial line. Hence the required area

=2x4AFGCB
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™

2 n

=2 frdrd@ , where (7, 0) lies on the circle ¥ = a and (r,, 0)
0 5

lies on the cardioid » = a (1 + cos 6)

a(14-cos0)

r drdf

I
N

a

a(14-cos0)

do

2
r

2

Il
N

OSN\# OSN‘A

a

[(14cos H)* —1]d6

2
a

QSN\:\ OSN\:\

2
a

dé

1 2
[2c0s9 + %Se]

s

2
2

=da

2 sin 9+g+lsin 20
2 4

0
2

2+z]—a—(7r+8)
4) 4

2
=da

a a 2
Example 5.15 Express f f ( xdrdy in polar coordinates and then evaluate it.
0y X

3/2
2 + yz)
The region of integration is bounded by the lines x =y, x =a,y=0and y = a,

whose equations in polar system are § =—, » = a sec 4, # = 0 and r = a cosec

0
4
6 respectively. The region is shown in Fig. 5.33.

r=a cosec 0

B

r=aseco

Putting x = r cos 6, y = r sin 6 and dx dy = r dr d6 in the given double integral /,
we get
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= ffrcosﬂd 40

OAB

/4 asech
= 2
[ [ cos“0dr do

/4

- f cos® 0-[r]*" do
0

w/4

=a [ cos0df = a[sin 0] = =
o) 7

Example 5.16 Transform the double integral ] fa 2"*2& in polar
0 I /az 2 _yz

coordinates and then evaluate it.

The region of integration is bounded by the curves y = \/ ax—x*,y= \/ a—x’
and the lines x =0 and x = a.

y=+ax—x* isthe curve x> +12 —ax =0

i, [x——] +(—0)? —[ ]

i.e. the circle with centre at [%’0] and radius <

2 2 .
y=+a" —x" isthe curve x> +)*=a’

i.e. the circle with centre at the origin and radius a.
The polar equations of the boundaries of the region of integration are > — ar

cos@=0orr=acosf,r=a,r=asecfand g —" . The region of integration is
2
shown in Fig. 5.34.

Putting x = 7 cos 6, y = r sin 8 and dx dy = r dr df in the given double integral 7,

we get
T2 a

I= ff rdrdf

I 2
0 acosf a —r

w2

—f{——xz a—r } df, on putting &> — 2 =1t
acos 0
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I
r=a ,
I
O0=mx : r=asect
2 |
> I
~r=acos 0 :
/// I
A |
(0] a a X
2
Fig. 5.34

w/2

—fasm@d@——a[cos&]

Example 5.17 By transforming into cylindrical coordinates, evaluate the integral

f f f (x> + »* + z%) dx dy dz taken over the region of space defined by x2 +1? < 1
and0<z<1.

The region of space is the region enclosed
by the cylinder x* + y* = 1 whose base radius is
1 and axis is the z-axis and the planes z = 0 and
z = 1. The equation of the cylinder in cylindrical
coordinates is » = 1. The region of space is shown
in Fig. 5.35.

Putting x = r cos 6, y =r sin 6, z =z and dx dy
dz = r dr d dz in the given triple integral I, we get

]:fff(rz+zz)rdrd9dz,

where Vis the volume of the region of space. Fig. 5.35

7
i

Y
<

M

J?J(rz +2z*)rdrdfdz
0 0 0

27

Affegee
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37

Note @ The intersection of z = constant ¢ and the cylinder x> + )2 = 1 is a circle
with centre at (0, 0, ¢) and radius 1. The limits for » and 6 have been fixed to cover
the area of this circle and then the variation of z has been used so as to cover the
entire volume. ]

Example 5.18 Find the volume of the portion of the cylinder x* + )? = 1 intercepted
between the plane z = 0 and the paraboloid x*> +)*=4 — z.

z

L | T

T

Fig. 5.36
Using cylindrical coordinates, the required volume V'is given by

V= f f f r dr df dz, taken throughout the region of space.

Since the variation of z is not between constant limits, we first integrate with respect
to z and then with respect to » and 6.

Changing to cylindrical coordinates, the boundaries of the region of space are r =
l,z=0andz=4— 2.

2 1 4-r7

V:fffdzrdrde
0 0 0
27 1
o 2
—{[r(4 ) dr do

27 1
0

PN RN
Example 5.19 Evaluate f f f xyz dz dy dx , by transforming to spherical
0 0 0

4
r

2 — —
4

2m
do :Zf do=Lx
49 2

0

polar coordinates.
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T

The boundaries of the region of integration are z =0, z = a—x"—y" orx®+)P+

2=a,y=0, y=+a’—x> orx*+)?=d? x =0 and x = a. From the boundaries,
we note that the region of integration is the volume of the positive octant of the
sphere x* +y? + 22 = g%

By puttingx=rsinf cos ¢,y=rsinfsin ¢,z=r
cos @ and dx dy dz=r* sin 6 dr d§ d ¢, the given triple
integral / becomes

%

I:fjl/‘ff sin” @ cos @sin ¢cos ¢.r* sin Hdrdfde

where V is the volume of the positive octant of
the sphere » = a, which is shown in Fig. 5.37.
To cover the volume V, r has to vary from 0 to

a, 6 has to vary from 0 to % and ¢ has to

vary from 0 to . Fig. 5.37

a

Thus I= f 7* sin® @ cos Osinpcospdrdfde
0

o%w\:\
o ia

T T

2 2 a
:fsin<bcos¢d¢.fsin300059d9.fr5 dr
0 0 0

[ the limits are constants]

T

T
— a
2

_ sin¢ |2 [sin* @2 |r°
2 bl 4 hlél
1
:_aﬁ'
48

Example 5.20 Evaluate f f f Jl—x*—1? —z* dvdy dz, taken throughout the

volume of the sphere x? + )? + z2 = 1, by transforming to spherical polar coordi-
nates.

Changing to spherical polar coordinates, the given triple integral / becomes

I:fff\/l—rz 2 sinfdrdfde
v
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Fig. 5.38

To cover the entire volume ¥ of the sphere, r has to vary from 0 to 1, € has to vary
from 0 to 7 and ¢ has to vary from 0 to 2z.

Thus Izszjﬂlfrzrz dr-sinfdé -do
0o 0 0

27 T %
:fd¢fsin9d6fsin2tcosztdt,by putting
0 0 0

r = sin ¢ in the innermost integral

zzﬁx(—cosﬁ)gx[l.z_é.l.Z]

22 422
=47r><z><l:17r2

( EXERCISE 5(b) ]

Part A
(Short Answer Questions)

1. Change the order of integration in f f f(x,y)dydx.

00

11
2. Change the order of integration in f f f(x,y)dxdy.
0y

3. Change the order of integration in f f S, y)dydx,
0 x

1y
4. Change the order of integration in f f f(x,y)dxdy.
0

0

9]

1 1-y
. Change the order of integration in f f f(x, y) dx dy.

0 0
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. Change the order of integration in f

. Change the order of integration in f f £ (x,y)dydx.
0 0

1 1-x%

Change the order of integration in f f f(x,y)dydx.

0 0
0

0
1 2Jx

. Change the order of integration in f f f(x,y)dydx-
0

0
oo 17y

Change the order of integration in f f f(x,y)dxdy.
0 0

S(x,y)dxdy

1

10.
Part B
Change the order of integration in the following integrals and then evaluate them:
a a xdxd 2 2
O 2. [ [ +y")dydx
0 y X +y 0 x
o0 X 7£ [o <l o) efy
13. xe ¥ dydx 14. —dydx
I 115
1 1—x 24—y
15. [ [ dyax t6. [ [ wdrdy
0 0 0 0
2a a 1y
17. [ [Ge+y)dvar 18 ydrdy
0 2 05 +y
4a
3 \/E a \a —?
19. [ [ c+y)dyar 20. [ [ ydxdy
0 1 —a 0
S
]‘] 2 4/x
21. dxdy 22. xydydx
/]
9
1 3 2—x*
23. dydx
Iy
24

Jx
. Change the order of integration in each of the double integrals f f xydydx
0 0

2 2—x

and f f xydydx and hence express their sum as one double integral and
10

evaluate it.



1-5.40 Part I: Mathematics 1

25.

0 1
Change the order of integration in each of the double integrals f f (x> +y%)

-1 —x

dy dx and f f (x> +y*)dydx and hence express their sum as one double

integral and evaluate it.

Find the area specified in the following problems (26—35), using double integration:

26.
27.
28.
29.
30.
31.
32.
33.
34.

35.

36.

38.

40.

41.

42.

43.

The area bounded by the parabola y = x? and the straight line 2x —y + 3 =0.
The area included between the parabolas y* = 4a (x + a) and )? = 4a(a — x).
The area bounded by the two parabolas y* = 4ax and x*> = 4by.
The area common to the parabola y>= x and the circle x2 + y? = 2.

3
The area bounded by the curve y* = 2x and its asymptote.

The area of the cardioid » = a (1 + cos ).
The area common to the two circles » = a and r = 2a cos 6.
The area common to the cardioids » = a (1 + cos §) and » = a (1 — cos 6).
The area that lies inside the circle » = 3a cos § and outside the cardioid » = a
(1 + cos 0).
The area that lies outside the circle » = a cos 6 and inside the circle » = 2a
cos 6.

Change the following integrals (36 — 40), into polar coordinates and then
evaluate them:

f f ex+v dr dy 37, ffxdxdy

x +y
2a A\ 2ax—x*

x’dxdy xdxdy
[ R oy

Evaluate the following integrals (41— 45) after transforming into cylindrical
coordinates:

(x +y +z)dxdydz, where V is the region of space inside the cylinder
g P y
14
x? + 32 = @, that is bounded by the planes z=0 and z = A.
f f f (x* + »*) dx dy dz, taken throughout the volume of the cylinder x> +)*=1
that is bounded by the planes z = 0 and z = 4.

f f f dxdydz, taken throughout the volume of the cylinder x2 + )? = 4

bounded by the planes z=0and y +z =3.



Chapter 5: Multiple Integrals I-5.41

44.

45.

46.

47.

48.

49.

f f dxdydz, taken throughout the volume of the cylinder x> + y*> = 4
bounded by the plane z = 0 and the surface z = x> +y* + 2.
f f f dxdydz, taken throughout the volume bounded by the spherical

surface x? +)? + 22 = 44? and the cylindrical surface x* + )2 — 2ay = 0.
Evaluate the following integrals (46-50) after transforming into spherical
polar coordinates:

f f f dxdy dz , taken throughout the volume of the sphere x> + )? +

X4y 4z
2=d.
dxdydz . .
f f f ——————_, taken throughout the volume contained in the
1— 2 — yz _ 2

positive octant of the sphere x> + y? + 22 = 1.

f f f zdxdydz, where V¥ is the region of space bounded by the
Vv

sphere x* + y2 + 2z = &? above the xOy-plane.

a2 - 00 00 oo
f xdxdydz 50.!!!( 2 dzxdyzdz _
0

0 0

5.6 LINE INTEGRAL

The concept of a line integral is a generalisation of the concept of a definite
b

integral f f(x)dx.

In the definite integral, we integrate along the x-axis from a to b and the integrand
fx) is defined at each point in (a, b). In a line integral, we shall integrate along a
curve C in the plane (or space) and the integrand will be defined at each point of C.
The formal definition of a line integral is as follows.

Definition Let C be the segment of a continuous curve joining A(a, b) and
B(c, d) (Fig. 5.39).

y B (C, d)
(0] (31
(x,‘,l,y,-f 1) P \/Y (fra ”r)

A (a, b)

Fig. 5.39
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Let f'(x, ), f,(x, ¥), f,(x, y) be single-valued and continuous functions of x and y,
defined at all points of C.

Divide Cintonarcsat (x,y) [i=1,2,...(n = 1)]

Letx,=a,x=c,y,= b,y =d.

Letx —x_ = Ax,y —y_ =Ay and the arcual length of PQ(i.e. PQ) As,,
where Pis (x_,,y_,) and Q(xr, »)-

Let (., ) be any point on C between P and Q.

Then }ij{chf(fw’h)Asr
r=1

or lim 3 [ £€n)Ax, + £, (€n,) Ay, |
r=l1

is defined as a line integral along the curve C and denoted respectively as

[reemds o [ ydet £6x ) dv]

5.6.1 Evaluation of a Line Integral

Using the equation y = ¢ (x) or x = y(y) of the curve C, we express f [/, (x, »)
dx+ f,(x, y)dy] either in the form f g(x)dx or in the form f h(y)dy and evaluate
it, which is only a definite integral.

Ifthe line integral is in the form f f(x, y)ds, itis first rewritten as f fx, ) % dx=
C C

ff(x ») ’1+[dx] dx or as ff(x ¥) —dy ff(x ¥) [j;] dy and then

cvaluatcd after expressing it as a deﬁmtc mtcgral.

5.6.2 [Evaluation when C is a Curve in Space

The definition of the line integral given above can be extended when C is a curve in
space. In this case, the line integral will take either the form f [f,(x, v, z)dx+
Ly, z2)dy+ f,(x,y,z)dz] or the form ff(x,y,z)ds. When CC is a curve in

C
space, very often the parametric equations of C will be known in the form x = ¢ (7),
y= 9 ,(1),z= ¢ (). Using the parametric equations of C, the line integral can be

expressed as a definite integral. In the case of f f(x,y,z)ds , it is rewritten as

f S dt where

o RO

C
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5.7 SURFACE INTEGRAL

The concept of a surface integral is a generalisation of the concept of a double
integral. While a double integral is evaluated over the area of a plane surface, a
surface integral is evaluated over the area of a curved surface in general. The formal
definition of a surface integral is given below.

Definition Let S be a portion of a regular two-sided surface. Let f(z, y, z) be a
function defined and continuous at all points on §. Divide S into » sub-regions As ,

AS,, ..., AS . Let P(¢,n,() be any point in AS. Then lim Zf(fr,n,,g)AS,

AS, —0 =1

is called the surface integral of fix, y, z) over the surface S and denoted as

ff(x,y,z)dS or fff(x,y,z)dS.

5.7.1 Evaluation of a Surface Integral
Let the surface integral be f f f(x,y,2z)dS , where S is the portion of the surface
N

whose equation is ¢ (x, y, z) = c (Fig. 5.40).

Fig. 5.40

Project the surface S orthogonally on xoy-plane (or any one of the co-ordinate
planes) so that the projection is a plane region R.

The projection of the typical elemental surface AS (shaded in the figure) is the
typical elemental plane area A4 (shaded in the figure).

We can divide the area of the region R into elemental areas by drawing lines
parallel to x and y axes at intervals of Ay and Ax respectively. Then A4 = Ax - Ay.

Then Ax - Ay = AS cos 6, where 6 is the angle between the surface S and the
plane R (xoy-plane), i.e. 8 is the angle between the normal to the surface S at the
typical point (x, y, z) and the normal to the xoy-plane (z-axis). From Calculus, it is
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known that the direction ratios of the normal at the point (x, y, z) to the surface

¢ (x,y,z) = c are %,%,% . The direction cosines of the z-axis are (0, 0, 1)
Ox Oy Oz
9¢
0z

cosf=

26) (00 ,(00)
\/[ax] +[8y] +[az]
Thus AS= —W AxAy.
(Ol +0r + 62
[f r@y.2ras= [[ fxy,2- 3 ———ardy

N R (z)z

Thus the surface integral is converted into a double integral by using the above
relation, in which the limits for the double integration on the right side are fixed so
as to cover the entire region R and the integrand is converted into a function of x and
¥, using the equation of S.

Note@  Had we projected the curved surface S on the yoz-plane or zox-plane then
the conversion formula would have been

Sy, 2)dS= f(my,z}mdydz
) JJ “

(bx

’ 2 2 2
X + y + z .
or f S(x,y,2)dS= f [, z)~mdzdx, respectively.

S R ¢1

5.8 VOLUME INTEGRAL

Definition Let V be a region of space, bounded by a closed surface. Let
Ax, v, z) be a continuous function defined at all points of V. Divide V into »n sub-
regions AV by drawing planes parallel to the yoz, zox and xoy-planes at intervals of
Ax, Ay and Az respectively. Then AV is a rectangular parallelopiped with dimensions
Ax, Ay, Az.

Let P(¢., n,.,C) be any point in AV .

Then lim Z f(&.,n,.,¢.)AV, is called the volume integral of f{x, y, z) over the
o
region V (or throughout the volume V) and denoted as
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ff(x,y,z)dv or ff fx, y,z)dedy dz

5.8.1 Triple Integral Versus Volume Integral

A triple integral discussed earlier is a three times repeated integral in which the limits
of integration are given, whereas a volume integral is a triple integral in which the
limits of integration will not be explicitly given, but the region of space in which it
is to be evaluated will be specified. The limits of integration in a volume integral are
fixed so as to cover the entire volume of the region of space V.

Note™  Though the line integral and surface integral have been defined in the
scalar form in this chapter, they are also defined in the vector form. The vector form
of the line and surface integrals will be discussed in Part II, Chapter 2.

( WORKED EXAMPLE 5(c) ]

Example 5.1 Evaluate f [Bxy” +y7)dx +(* +3x°)dy] where C is the
C

parabola y* = 4ax from the point (0, 0) to the point (a, 2a)

The given integral

1= [ (G0 +y)dr+( +3x07) dy]
= dax v A (a,2a)

In order to use the fact that the line integral C
is evaluated along the parabola y* = 4ax, we
use this equation and the relation between dx
and dy derived from it, namely, 2y dy = 4a dx 0.0 0 > X
and convert the body of the integral either to
the form f{x) dx or to the form ¢ (y) dy. Then
the resulting definite integral is evaluated
between the concerned limits, got from the Fig. 5.41
end points of C.

The choice of the form f{x) dx or ¢ (y) dy for the body of the integral depends on

convenience. In this problem, x is expressed as 1 y* more easily than expressing y

as 2Jax . 4a

Note @  From j? = 4ax, we get y= +2ax . Since the arc C lies in the first

quadrant, y is positive and hence y = 2+/ax .

2a
1 y 1 1
thus 1= [|3:Ly 2ty | Lo oy eaynfd
! [‘ 2a” " T 2a Y eaa” T aa” )Y
(As the integration is done with respect to y, the limits for y are the y co-ordinates of

the terminal points of the arc C).
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5 3
1=f[—y4+—y5+

6
d
o \4a 8a* y]y

2a
y7]

0

1
64a°
Lt
4a” " 16a
86 .
=—a
7

6
+
T

Example 5.2 Evaluate f [(2x —y) dx + (x + y) dy], where C'is the circle x* +)*=9.
C

In this problem the line integral is evaluated around a closed curve. In such a
situation the line integral is denoted as

§ [(2x — y) dx + (x + y) dy], where a small circle is put across the integral symbol.
C

When a line integral is evaluated around a closed curve, it is assumed to be described
in the anticlockwise sense, unless specified otherwise. (Fig. 5.42)

In the case of a line integral around a closed curve C, any point on C can be
assumed to be the initial point, which will also be the terminal point.

Further if we take x or y as the variable of integration, the limits of integration will
be the same, resulting in the value ‘zero’ of the line integral, which is meaningless.
Hence whenever a line integral is evaluated around a closed curve, the parametric
equations of the curve are used and hence the body of integral is converted to the
form f(7) dt or f(6) dé.

In this problem, the parametric equations of the circle x> +)? =9 are x = 3 cos 0
and y =3 sin 6.

‘ dx=-3sinfdf and dy=3cosfdé.

y
B 0=—

O=rn A’ 0=0 X
A
0=2m

53
_ O
0=
Fig. 5.42

271
The given integral = | [(6 cos 6—3sin 0) (—3sin 6. 0)
0
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4+ (3 cos 8 +3sin ) (3cos b dh)]

27
:9f(1—sin0cos9)d9
0

.2 27
:9[9_sm 0]

Example 5.3 Evaluate f xyds, where C is the arc of the parabola j? = 4x
C
between the vertex and the positive end of the latus rectum.

Given integral I= f xyédx
7 dx

Equation of the parabolais )*=4x

d
" dx

ds |
= 1+ /1+—
dx

y+4
y

Differentiating with respect to x

<N

I= dx

Xy

QH

= 4x—|—

:2f (t* —1)-t- 2t dt, on putting x + 1 =7

N
4](;4 —1*)dt

2

—_—

45
(

V2)

Example 5.4 Evaluate f (»*dx — x*dy), where C is the boundary of the triangle
C

whose vertices are (—1, 0), (1, 0) and (0, 1) (Fig. 5.43).
C is made up of the lines BC, CA and AB.
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Equations of BC, CA4 and 4B are respectively y =0, x + y=1and —x +y = 1.
Given integral = f f f (0 dx—x*dy)
AB

y:O x+y=1 —x+y=1
dy=0 dy=—dx dy=dx
y
A41(0,1)
B _ C
L0 o0 (1,0)

Fig. 5.43

—0+ [[0-0* +xJdr+ [[(1+x —x"Jav
:f(1—2x+2x2)dx+:f(l+2x)dx

0
2 3
:[x—x2 +%] +@x+xP),!
1

2

3
Example 5.5 Evaluate f [x*ydx+(x—z)dy+xyzdz], where C is the arc of the

C
parabola y = x? in the plane z = 2 from (0, 0, 2) to (1, 1, 2).
Given integral = f [’y dx+(x—2z)dy+xyzdz]
y=x
-
= [ Wydv+a-2)dy]

y=x"

[ dz=0, when z =2]

1 x> 2 1
:f[x4+(x—2)2x]dx= T I, PV
0 5 3 0

17
15

Example 5.6 Evaluate f (xdx+xydy+xyzdz), where C is the arc of the
C

twisted curve x=t¢t,y =~ z=£,0<¢t<1.

The parametric equations of Carex=¢,y=1#,z=+¢
dx=dt,dy=2¢dt, dz=3£dton C.

Usmg these values in the given integral I,
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1
I:f(t+t3-2t+t"-3t2)dt
0

£ F P
2 43—
2 5 9

By
30

0

Example 5.7 Evaluate f (x* +y* +z%)ds, where C is the arc of the circular helix
C

x=cost,y=sint, z=3tfrom (1, 0, 0) to (1, 0, 67)
The parametric of equations of C are
x=cost,ysint, z=3t.

&

dx .
—=—siny, —~ —cost, E:3 on C.

dt

 HRHEE]

dt dt dt dt

:\/sinzt+coszt+9:\/ﬁ
27

Given integral 1:f(c052 t+sin? t—|—912);1£dt
t
0

&

de

Note™  The point (1, 0, 0) corresponds to =0 and (1, 0, 67) corresponds to £ =27.

I=(t+3t3>zﬁx\/ﬁ
=2J10m(1+127%)
Example 5.8 Evaluate f f xyzdS, where S is the
N

surface of the rectangular

parallelopiped formed by x =0, y =0,z=0,x = a, y = b and z = ¢ (Fig. 5.44).

z
z=c
C A’
Y
B’ o
~—y=b
o |
y= 0 ,
* B
4 | c
X z=0
Fig. 5.44

Since S is made up of 6 plane faces, the given surface integral I is expressed as
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Iz[[-ﬁ-!f—#!{+[{+!{+!{(xyzd$)

a

Since all the faces are planes, the elemental curved surface area dS becomes the
elemental plane surface area dA4.
On the planes x =0 and x = a, d4 = dy dz.
On the planes y =0 and y = b, d4 = dz dx.
On the planes z =0 and z = ¢, d4 = dx dy.

I:ff+ff(xyzdydz)+ff+ff(xyzdzdx)

y=b

Simplifying the integrands using the equations of the planes over which the
surface integrals are evaluated, we get

I:a]‘]‘yzdy&+b]jzxdzdx+c]]xydxdy
0 0 0 0 0 0

Note @  On the plane face O'A'CB’ (z = ¢), the limits for x and y are easily found
to be 0, a and 0, b. Similarly the limits are found on the faces O'B'AC’ (x = a) and
O'C'BA' (y=b).]

2 2 2 2 2 2
Now I:ab_.c_+b.c_.a_+c.a_.b_
2 2 2 2 2 2

zaTbc(ab—i—bc—i—ca)

Example 5.9 Evaluate f (y+2z—2)dS, where S is the part of the plane 2x +

N
3y + 6z = 12, that lies in the positive octant (Fig. 5.45).

Fig. 5.45
Rewriting the equation of the (plane) surface S in the intercept form, we get
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f +X + i =1
6 4 2
.. S is the plane that cuts off intercepts of lengths 6, 4 and 2 on the x, y and z-axes
respectively and lies in the positive octant.
We note that the projection of the given plane surface S on the xoy-plane is the
triangular region OAB shown in the two-dimensional Fig. 5.46.

2x+3y=12

- X
~ >
o 3 A
Fig. 5.46
Converting the given surface integral I as a double integral,
PL+oL+o:
I= f (y+2z-2)—"— " dxdy-
AOAB ¢ z
where ¢ = c is the equation of the given surface S.
Here ¢ =2x+3y+ 6z
L 9.=29,=3; ¢ =6
J4+9+36
1= f 42— Y20 4gy
AOAB 6
7
ngf(y+2z—2)dxdy 1)

AOAB

Now the integrand is expressed as a function of x and y, by using the value of
z (as a function of x and y) got from the equation of S, i.e. from the equation 2x +
3y+6z=12

Thus z:%(12—2x—3y) 2)

Using (2) in (1), we get
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Example 5.10 Evaluate f f 2> d S, where S is the positive octant of the surface
N

of the sphere x* +)? + 22 = &? (Fig. 5.47)
z
C

Fig. 5.47

The projection of the given surface of the sphere x> + y? + z2 = ¢® (lying in the
positive octant) in the xoy - plane is the quadrant of the circular region OA4B, shown

in the two-dimensional Fig. 5.48.

Fig. 5.48

Converting the given surface integral I as a double integral.
Joi+0+o?
I = z e A 2 - dx dy s
J= ==

OAB
where ¢ =x?+)? + 2% = &* is the equation of the given spherical surface.

¢ = 2x; ¢y=2y; ¢Z=Zz.
4(x2+y2+22)
1= PN 2 " Zdxd
JJ == y

OAB

= [[22+y +2 deay

OAB
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zaff(az—xz—yz)dxdy [ (x,y,z) liesonx* +3? + 22 = @]
OAB
p a2 )2
=a a’ 2 _x?)dxd
l[ ([ (a—y )dxdy
:af (az—yz)x——} dy
0 x=0

0
2 .31
= —q +—-—- —
422
Ty
8

Example 5.11 Evaluate f f y(z+x)dS, where S is the curved surface of the
N

cylinder x? + * = 16, that lies in the positive octant and that is included between the
planes z =0 and z = 5 (Fig. 5.49).

C E
77
A
22277
> //jj/fff
D z2222227
zzz22227
2222
— - z 2252 B Y
2222
) z
X
Fig. 5.49 z
C D
We note that the projection of S on the xoy-plane is T
not a plane (region) surface, but only the arc AB of the | ______ |
circle whose centre is O and radius equal to 4. )
For converting the given surface integral into a
double integral, the projection of S must be a plane

region. Hence we project S on the zox-plane (or yoz- O l— 4 —>| 4
plane). The projection of S in this case is the rectangular
region OCDA, which is shown in Fig. 5.50. Fig. 5.50
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Converting the given surface integral I as a double integral,

I:ffy(ﬁx)—m MR

04ADC Y

where ¢ =x*+)* = 16 is the equation of the given cylindrical surface. ¢ = 2x; ¢ V=

2y;¢Z:0.
4(x” +
VAG? y)dzdx
2y

=4ff(z+x)dzdx [ (x,p,2) lies on x> +)* = 16]

0ADC
5 4
:4[[(z+x)dxdz.

:4](4z+8)dz

I—f y(z+x)

04DC

=8(z° +4z))
=360.

Example 5.12 Evaluate f f f xyz dx dy dz , where V is the region of space inside the
tetrahedron bounded by the planesx=0,y=0,z=0and — + 4 + —:l

Vide worked Example 5.11 in the section on ‘Double and trlple integrals’ for
fixing the limits of the volume integral.

RIS

1—ff f xyzdzdy dx
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24 5 a
b et X x\'
= fa 1— 1——] 1—] dv
24 o a a
X 5 X 61°
d -2
ab® ¢ [ a] +( a]
N R
a a

— L aZ b2 C2 A
720
Example 5.13 Express the volume of the sphere x* + ) + z2 = ¢* as a volume integral
and hence evaluate it. [Refer to Fig. 5.51]

z

Fig. 5.51

Required volume = 2 X volume of the hemisphere above the xoy-plane. Vide worked
example 5.12 in the section on ‘Double and Triple Integrals’.

Required volume =2 f f f dz dy dx

“a Jie o
:Zf f J@ —x*)—y* dydx
“e Ja-e

Taking o — x> = b%, when integration with respect to y is performed,

V= 2]‘]‘\%2 —y* dydx

—a —b
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a b
:4ff Vb= dydx [+-y/b* —y” is an even function of y]

—a 0
a b
Y [z T by
=4 | |[=b"—y +— —| dx
AR
:Wf(az—xz)dx

3 a
=2r azxfx—
3

0

4

=—7a’
3
Example 5.14 Evaluate f f f (x+ y+z)dxdydz, where V is the region of space
v
inside the cylinder x? + )? = ¢? that is bounded by the planes z = 0 and z = / [Refer

to Fig. 5.52].

z

(xaya h) /<:Qh_/

(x,»,0) /7})_/ y

Fig. 5.52

Note™  The equation x2 + )* = @ (in three dimensions) represents the right circular
cylinder whose axis is the z-axis and base circle is the one with centre at the origin
and radius equal to a.

1:[ f f(x+y+z)dzdydx

2

(x+y)h+h?]dydx

[ [x+g]dydx

[by using properties of odd and even functions]
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Part A

:2h2f a’—x*dx [ xya’—x"isoddand \/a’—x*iseven]

a

[ EXERCISE 5(c) ]

(Short Answer Questions)

e I e I S R

10.

11.

12.

13.

14.

. Define a line integral.

. What is the difference between a definite integral and a line integral?

. Define a surface integral.

. What is the difference between a double integral and a surface integral?

. Define a volume integral.

. What is the difference between a triple integral and a volume integral?

. Write down the formula that converts a surface integral into a double integral.
. Evaluate f(x2 dy + y* dx) where C is the path y = x from (0, 0) to (1, 1).

C

. Evaluate (x2 +y? ds, where C is the path y = —x from (0, 0) to (—1, 1).
y pathy
C

Evaluate f (x dy—y dx), where C is the circle x> + * = 1 from (1, 0) to

C

(0, 1) in the counterclockwise sense.

Evaluate f f dS, where S is the surface of the parallelopiped formed by
N

x=x1,y=+2,z=%3.
[Hint: f f dS gives the area of the surface S
S

Evaluate f f dS, where S is the surface of the sphere x> + 32 + 22 = @
N

Evaluate f f dsS, where S is the curved surface of the right circular cylinder
N

x?+y? =% included between z =0 and z = A.
Evaluate f f f dV, where V is the region of space bounded by the planes
Vv

x=0,x=a,y=0,y=2b,z=0and z=3c.
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15.

16.

Part B

17

18.

19.

20.

21.

22.

23.

24,

25.

26.

[Hint: dV gives the volume of the region V]
I

Evaluate f f dV, where V is the region of space bounded by x* + ? +
Vv

z22=1.

Evaluate f f f dV, where V is the region of space bounded by x> + y* = @2,
Vv

z=—-h,z=h.

(1.3
Evaluate f [x*y dx+ (x* — »*)dy] along the (i) curve y = 3x (ii) line y = 3x.

(0,0)

Evaluate f[(xz —y*+x)dx—(2x y + y) dy] from (0, 0) to (1, 1), when C'is

!
@)y =x, () y =nx
@0
Evaluate f (y* dx—x’dy) along the upper half of the circle x* + * = a*.
(a.0)
2 2

Evaluate f (xdy —ydx), where C'is the ellipse x_2 + Z—z =1 and described
a
C
in the anticlockwise sense.
Evaluate f [(x* —»*) dx+2xy dy], where Cis the boundary of the rectangle

-
formed by the lines x=0,x=2,y=0, y=1 and described in the anticlockwise
sense.

Evaluate f [(3x* —8y*) dx+(4y—6xy )dy ], where C is the boundary of the
-
region enclosed by y* = x and x? =y and described in the anticlockwise sense.

Evaluate f(x—y2 ) ds, where C is the arc of the circle x =a cos 0,y = a
C

sin 0 ; OSGS%'

Evaluate f x ds, where C is the arc of the parabola x2 = 2y from (0, 0 ) to

C
[1, 1].
2
Evaluate f[xydx+(x2+z) dy+(* +x)dz] from (0,0, 0) to (1, 1, 1) along

-
the curve C given by y =x* and z = x°.

Evaluate f [(3x* 4+ 6y)dx —14yzdy+20xz* dz], where C is the segment of

C
the straight line joining (0, 0, 0) and (1, 1, 1).



Chapter 5: Multiple Integrals I-5.59

27.

28.

29.

30.

31.

32.

33.

34.

35.

Evaluate f[3x2 dx + (2xy — y) dy — zdz] from¢=0to = 1 along the curve
C

Cgivenby x=2£,y=t,z=47.
Evaluate f xy ds along the arc of the curve given by the equations x = a tan
6,y =acot 0, z= V2a log tan 0 from the point § = % to the point

g="".
3

Evaluate f (xy + z*)ds , where C is the arc of the helix x = cos #, y = sin ¢,

C
z=tfrom (1,0, 0)to (—1,0, 7). X .
Find the area of that part of the plane — + % + —=1 that lies in the
a c
positive octant. Hint: Area of the surface = f f ds
N
Evaluate f f zdS, where S is the positive octant of the surface of the sphere
S

x2+y2+Z2:a2.

Evaluate f xy dS, where S is the curved surface of the cylinder x* + y* =
a%, 0 <z <k, included in the positive octant.

Find the volume of the tetrahedron bounded by the planes x =0,y =0,z=0,
x 'y z

4=l

a b ¢

Evaluate f f f zdx dy dz, where V' is the region of space bounded by the

Vv

sphere x? + 3? + z? = ¢® above the xoy-plane.
Evaluate f f f (x* + »*) dx dy dz, where V is the region of space inside the
4

cylinder x* + 32 = &? that is bounded by the planes z =0 and z = /.

5.9 GAMMA AND BETA FUNCTIONS

Definitions The definite integral f e " x" ' dx exists only when n> 0 and when it
0

exists, it is a function of » and called Gamma function and denoted by I'(n) [read as
“Gamma n’].

Thus

rmy:j}*x“lm
0

1
The definite integral f "1 —= x)”*l dx exists only when m > 0 and » > 0 and
0

when it exists, it is a function of m and » and called Befa function and denoted by S
(m, n) [read as “Beta m, n’].

Thus

G (m, n):fx"”l (1—x)""'dx:

0
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Note & T()= [edv= (=) =1.
0

ﬁ(1,1)=fdx=1.

5.9.1 Recurrence Formula for Gamma Function
F(n)y= [ e x" "dx
/

=—@"e M)y + f(n —1)e ™ x" *dx [integrating by parts]
0

n—1
—(n—1)T(n — 1), since lim [x ]— 0

n— 00 X

e

This recurrence formulaI'(n) = (n — 1) " (n — 1) is valid only whenn > 1,as I'(n — 1)
exists only when n > 1.

Cor.

I['(n+ 1)=n!, where n is a positive integer.
IT'n+1)=nT(n)
=n(m—NDI'(rn-1
=nm—-1)(n—-2)T (n—2)

n(n—1)(n—2)..32.1T()
—n! (- T()=1)

Note™ 1. T'(n) does not exist (i.e. = o), when 7 is 0 or a negative integer.
2. When 7 is a negative fraction, I'(n) is defined by using the recurrence
formula. i.e. when n <0, but not an integer,

T(n) = % T(n+1)

F le,T'(—3.5)= —2.
or example, ['( —3.5) 35 I'(—2.5)
1 1
T (=3.5) (—25) H(=15)
- ! I(—.5)
(3.5) (2.5) (—1.5)
I (0.5)

T (3.5)(25)(1.5) (0.5

The value of I'(0.5) can be obtained from the table of Gamma functions, though its
value can be found out mathematically as given below.

Value of T [1]
2
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T oo 1 .
= fe”‘ c—-2x dx (on putting ¢ = x?)
0

0
W .7 . o o L
Now - =2f€ dx-2fe dy [ the variable in a definite integral
0 0

is only a dummy variable]

fe’("zﬂ'z) dx dy (1)
0

[ the product of two definite integrals can be expressed as a double integral, when
the limits are constants].

Now the region of the double integral in (1) is given by 0 <x <o and 0 <y <o,
i.e. the entire first quadrant of the xy-plane.

Let us change over to polar co-ordinates through the transformations

x=rcosf@ and y=rsiné.

Thendxdy=|J|drdf@=rdrdé
The region of the double integration is now given by 0 < r <o and <9< i

Then, from (1), we have 2

5.9.2 Symmetry of Beta Function
B (m, n)=p (n, m)
1
By definition, 3 (m, n) = f XA - x)" dx (1)

0

Using the property ]f(x) dx = ]f(a —x)dx in (1),
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Bmmy= [(A=x)"" {1 (1-x)"" dr

1
:fxnfl (l_x) m—1 dx
=3 (n, m).
5.9.3 Trigonometric Form of Beta Function

1
By definition, 3(m, n) = fx’"’] (I—-x)"" dx

0

Put x = sin? @ S dx=2sin 0 cos 6 df
The limits for 0 are 0 and g .

w2
B(m, n)= fsinz'”’2 6-cos®*0-2sinfcos b dd
0
/2

=2 fsin =1 9. cos " 0 do

0

w2
ome _ 1
Note o« fsm”” "6-cos '9d9:5ﬁ(m,n)
0
The first argument of the Beta function is obtained by adding 1 to the exponent of

sin # and dividing the sum by 2. The second argument is obtained by adding 1 to the
exponent of cos 4 and dividing the sum by 2.

/2
Thus fsin" 0 cos? 0dO = lﬁ[p——H, q_+l]
2 2

0

5.9.4 Relation Between Gamma and Beta Functions

_ T(m)T(n)
A iy
Consider L(m)I'(n)= je” " de- Te"“ 5" Nds

In the first integral, put # = x and in the second, put s = )?.

Lom-T(m =2 [ x " de-2 [ "' dy
0 0
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— 2 2 — —
e(,v+y)x2m 1'y2"ldxdy

-IIL
Lo~
o%g ng

3

e (reos@) " (rsin ) rdrdo

-IIL
ot

[changing over to polar co-ordinates]

w2 )
=4 fcosz’"’l Osin® " 0.do- fe”‘ Py dr
0 0

=3 (m.n) f e P oy dr

=G (m,n)- f S du [putting * = u]

:,B(m,n)~F(m,n)

_T'm)T'(n)
Blm.m =

o L o 5[] )

Putting m = n = — in the above relation, §|—,—
2 2 ra

2

REREE

/2

:zfsin(’a.cos“ode

=7
1
-
2
( WORKED EXAMPLE 5(d) ]
Example 5.1 Prove that f S F(”) , where a and » are positive.
a"
"
Hence find the value of fx 4! log[—] dx.
X
0

T dt

In fe"” x"""dx, put ax =1, so that dx = —
a

0
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- L(m) (1

1 :
put —=¢

X
ie. x=e?
Then dx =—e>dy

Also the limits for y are oo and 0.

0

I:fef(qfl)y_yp*l, (_e*,v)dy

0
1
=—-T(p) [by (1)]
q
ol xm—l
Example 5.2 Prove that 3 (m,n)= | ———dx
p pemm = [
1 m—1 n—1
X +x
Hence deduce that 8 (m,n)= | ———
ﬂ( ) [ (1+x)m+ n
1
By definition, ﬁ(m,n)=ft"'*l(1—t)”7l dr )
0
In (1), put r = X Then dt—;dx
’ R (1+x)°
Whent=0,x=0; whenz=1,x=o0 [xL]
Then (1) becomes, 11
00 m—1 n—1
X 1 1
m,n) = . .
B (m.m) «Of I+x I+x (1+x)*
Bl xm—l
= | —— & (2)
[(1+x)m+;1
1 X”Hl ) xm—l
= dx+ 3
[(1+x)m+n !(l+x))n+n ( )
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m—1

w 1 1
In [ dx,putx="—". Then dv=——dy

1 (l _|_ x)m+n y y
Whenx=1,y=1; whenx=00,y=0

1

0 m—1 0 (m—1) 1

: m+n = y m+n ’ 7_2 dy

(+x) ; [ 1] y
1+—
y

!‘ 1+x)m+n
[changing the dummy variable] 4
Using (4) in (3), we have
1 m—1 n—1
X —+x
mn)= | ———
6( ) J (1 + x)m+n

1
Example 5.3 Evaluate f x"(1—x")’dx in terms of Gamma functions and
0

1
hence find f dx .
0 V1I—x"
1
In I= [ x"(1—x")"dx,
/
put X"=1,
then nx™ ' dx = dr
o 8
n 1=
t n

Whenx=0,7=0; whenx=1,¢=1.
| 1

m 1 -1
I= [t Q=0)P =1t dt
/

n
1t
~ [ a—orde
/
1 1
=—ﬁ[’”+ ,p+1]
n n
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| I‘[m:l]T(p—H)

= (1)
" F[m+l+p+1]

n

1 d 710_n7l
! n—fx(lx)zdx

0

:

1
Here m=0,n=n, p:—z.

o

o
o NI=x" 7 F[l+l]

Using (1); we have

r

n 2

Jr T(n)

Example 5.4 Prove that 3 (n,n) = ]
22n1r[n+2]

(or) B (n,n) = %ﬂ [n, %]

B (n,n) = 2f sin®”" @-cos ' df  [using trigonometric form]
0

/2
=2 f(sin 0 cos 9)2Hd0
0
/2 .
_5 [sm 20
0

2n—1

| w

2
/2
f sin? 26 df

0

_ 1 r s 2n—1 d¢) . —
= [sm (b?, putting 26 = ¢

= 22n72
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/2

f f(sin ¢) dp =2 f f(sing) dg

/2

fsmz" '¢ do

~2n—2
2 0

1 14,1
_22;172 ) ’2
1 1
=g
1“(;/1)-Fl
1 2
St 1)
2 F[nJrl]
2

\/;T(n)

N 1
2217—]'F -
[n+2]

n 7a ¥ 1 n +1
Example 5.5 Show that f Xe = F[T]

s a

Deduce that f e dy = £ Hence show that

[cos (') dr— [sin () de— L [T
fcos(x)dx—fsm(x)dx—z\/;

0 0

0

~ 20 dr
InI= x"e’“dx,putax:x/;;thendx:
Of 2af

When x =0, t=0; when x = o0, ¢ = o0.

e
I e

1 oo p—1
= o t 2 e’'ds
a
1 1
- L) 0
2a 2
In (1), putn=0.
1
ot
Then fe’”zxzdx 2 ﬁ ()
it 2a 2a

In (2), put @ 17 then a? = —i
n(2), put a=—=; =—
P V2
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1 ifdx:i

[e V2(1-)
Jr

=" (1+i

2J§( 0

Equating the real parts on both sides,

i 1 |7
2 dx=—1/—o
[cos(x) 5\

Equating the imaginary parts on both sides,

00

fsin(xz)dle .
) 2\2

Example 5.6 Evaluate

i ['@-ay -2 dx and

(ii) I : (@+x)""-(a—x)"" dx in terms of Beta function.

O L= [ ca - dr,

putx — a=y; then dx =dy
Whenx =a,y=0;whenx=b,y=b—a

b—a
L= [y {e-a-y)"a
0

b—a n—1
:(bfa)"’lfym’l [1—by ] dy
0

—a

In (1), put by —¢;thendy= (b —a) dt

Wheny=0,7=0; wheny=>b—a,t=1.

1
L=G—a)"" [ 1-1""dt
!

=(b—a)""" B (m,n)

a

(i) In I, = f (a+x)"" (@a—x)"" dx,

puta + x=y; then dx =dy
When x=—a,y =0; whenx =a, y = 2a.

2a
12 — fym—] (2a_y)n—l dy
0

(M
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_ . 2a o _l n—1 2
(2a) [y [12] dy 2

In (2), put 21 =t; then dy = 2a dr.
a

When y =0, t=0; when y=2a, ¢t = 1.
1
12 — (za)ernfl .ftmfl (1 _t)nfl df .
0

= (2a)""""'3 (m,n)

o0 2

eix 7 4
Example 5.7 Prove that dxx | x’e " dx=—
!JE L[ 42

dr dr

fx:e,xz
Inl,= | — dx,putx’=1,then dx=—=—+=
' [J} P 2x 2t

Whenx=0, r=0; when x =00, = 0

0 t

e’ dt 17 23
— - . = _ =t 4
Il_ftl/4 2\/; 2[6 r*dt

0
:l%%
2 |4

o . ds ds
In 12:fx2 e dx, put x* =s; then dx:4—3:—

0
When x =0, s = 0; when x = o0, s = o0,

Izz[ﬁe’s 2 3/4—‘1‘[s4esds
i)
z;gwafefﬁ_éﬂﬂ E] (1)
From Example 5.4;
50um) =8| 1|

PmTm) 1 T
I'(2n) _2”1PP+q
2

I‘(n)T[n—l—%]—%
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Putting 5 = 1 , we get
4
1
Jr F[]
1 3 2
4 4 -3
=2 @

Using (2) in (1);
- r dr — 71'\/5 _.7

Ofe\/)_c dxxf e g m

0

0 m—1

X

Example 5.8 Evaluate | ——— dx and deduce that
‘0[ (1+x")" Bf

xm—l

1+x"

dx

dx T

7r o0
" . Hence show that
Of I+x" 242

X 1
Inl=[|———dr,put t=——
fa+ﬂv P
— 1
Iz o™ dx =——dr
t

Whenx=0,7=1; whenx=o00, =0
7['”*1] m—1
— STAERN( S dr
_f P ' ICED) a1
nt2t " (1=)"

o

L'(p)
Putting p = 1 in (1), we get

e

3 |

1+ x" n n n
e ™m
=—cosec [—] Hint: UseT'(a)T'(1—a)= .W )
n n SIom
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Taking m = 1 and n =4 in (2), we get

odx T [7‘(]
f o = —-cosec|—
o 1+x 4 4

_7T
242

Example 5.9 Find the value of f f x" ' y" " dxdy , over the positive quadrant of

2 2
the ellipse x_2 +z—2 =1, in terms of Gamma functions. Y
a

Put E:\/X and Z:\/Y &/ )
a b
a b
Then dx = —— dX and dy=——=dY

X N Fig. 5.53
The region of double integration in the xy-plane is given by x > 0, y > 0 and

y_2<1 shown in Fig. 5.53.
PR

QN|><

". The region of integration in the XY-plane is given by X>0, Y>0and X+ Y <1,
shown in Fig. 5.54.
The given integral

Y
B
m 1
= ax) (oY) 22 _axdy X+Y=
ii JYJ? ffffff ’
m gy moyon X
:"4b ffXZleldXdY O‘ 4
AO AB
min 1 1=y m n
=g b f X;—l YE—IdXdY Flg 5.54
4
0 0

I:“mb"fyg’l-z()(m/z) 4y
4 9 m 0
1 n

mbnfyz

0

m/2 dY

= a’b” g[ﬁ ﬂ—l—l]

2m 2’2

n m
_a%afhlﬂz+@

2m F[m+n+1]
22
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5373

a”b 2 \2 2
2m m n

r ++1]
5+3

e 510

4 F[m+n+1]

2

Example 5.10 Find the erea of the astroid x ** + y 23 = @23, using Gamma func-
tions.

By symmetry of the astroid, required areca 4 =

4><area0f0ACB:4ffdxdy By
OACB

X 2/3 2/3 C
Put [_] — X and [Z] =Y

a a .
. o A
ie.x=aX* andy=aY
. 3 /2 3 1/2
Sode=—aX" and dy == qaY"*dY

2 2
The region of integration in the xy-plane is .
s 2 Fig. 5.55
given by x>0, y > 0 and [f] +[Z] <1 ,as shown in Fig. 5.55.
a a

.. The region of integration in the XY-plane is given by X>0, Y>0and X+ Y < 1
as shown in Fig. 5.56.

Y
0
A:4X2asz)(l/2Yl/2dXdY ,,,,,
4 AO PQ >X

11-7 [0 P :
:9az.ffX1/2Y1/2dXdY

0 0

| -y Fig. 5.56
:9a2fy1/2 [%XW] dy g

) 3 0

1

- 6a2fY‘/2 (1-Y)V2dy

0
35

= 6az2x -, =
. ﬁ[z 2]

INC))

=6a2x
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11 3 1 1 o
e

Example 5.1 Evaluate f f [xy (1—x—)]"> dxdy, over the area enclosed by the

lines x =0, y =0 and x + y = 1 in the positive quadrant.

1 I—x

Given Intergral = ffxl/2y1/2 (1—x—y)*dydr,
0 0

1 a
= [x"dx [ 37 (@~ y)" dy
0 0

where a=1—x. (1)
Consider fymfl (a—y)'dy 18] : x
0
a n—1 Flg. 5.57
— an—l fym—l [12] dy
0 a
1
—qa n—1 famfl mel (I_Z)nfl adZ [puttlng Z e Z]
0 a
— amﬁ»nfl B(m, n) (2)

Note ™  This result (2) will be of use in the following worked examples also.
Using (2) in (1)

notethatm =n = %] >
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Example 5.12 Show that the volume of the region of space bounded by the

coordinate planes and the surface \/7 + \/Z + \/; =1lis abe
Required volume is given by a b 90

[

Vol = f f dz dy dx, where V is the region of space given
vV

Put X — X, \/z =7, \/2 =
a b c
e. x=aXty=bY:z=cZ
dx=2aXdX,dy=2bYdY,dz=ZCZdZ
Vol = f f f 8abc XYZ dZ dY dX , where V' is the region of space in XYZ-space
i

definedby X>0,Y>0,Z>0,X+ Y+ Z<1 [Refer to Fig. 5.58]

Z
1-X  1-X-Y

Vol—sabcde de fXYZdZ

1-X 22 1-X-Y
=8abc [Xxdx [ vdy Y
aCf f [2]0 ,
1-X
_4abcfXdX fY (1-X-Y)dY x
Fig. 5.58

=4 abc f X (1— X)*- B(2,3)dX [by step (2) of Example (5.11)]

=4 abc- HENC)

e
daper X2 TTE)
24 I'(7)
_abc 1x24
37 720
__abc
T 90

Example 5.13 Evaluate f f f d); d dzz =, taken over the region of space
JI—x"—y" —z

in the positive octant bounded by the sphere x? + 32 +z2 =1
Putx’=X,y*=Y,2>=Z7
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o
2Wx’

dy

N

de =

Az
yNIA

The region of integration in xyz-space is defined by x >0, y >0, z> 0 and x* +)? +

22< 1.

.. The region of integration ¥ in the XYZ-space is defined by X>0, Y>0, Z >0 and

X+Y+Z<1.

~.Given intergral

1 1-X 1

2

o%

oo|._.

[deY(l

2 4dx
1
2

ool»—

1-X

X

ool:]

1 1
2 dx [2Y2]

0

X)I/Z d.X .

e
i
)
EiAN

4>I=1

13

3

2°2

1

T 2
Ifff XY RZR(-X Y- 2) XAy dz

X-ro1 1
Z2(1-X-Y—-2)2dz
0

1 1

—x—ypatplL]

7 [5’ 5]
[by step (2) of Example (5.11)]
11

A4

22

2 2 2
CcC X

Example 5.14 Evaluate fff\/az Bt —
Vv

where Vis the region defind by x >0,y >0,z>0 and — +

2 2 2
Put [5] - X, [Z] —vy, [—] -7
a b c
ie. x=aJX,y=blY,z=cJZ
a b c
dx=——dX,dy=—~=dY,dz=——=4dZ
N N WZ

—c’a’y’ —a’b’z’ dxdydz»
2
Yooz
b—2+c—2§1.

The region V' of integration in the XYZ-space is defined by X>0,Y>0,Z2>0, X +

Y+z<1.
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Integral = abc fff«/l—X Y-Z7 C;Z:;_dX\/(lY\/d_Z

ab221 1 1—X—Y
fXZdeYZdY f 22(1—)( Y- Z)ZdZ

0

ab“1 Lo A 13
fX deY Y (1-X-7Y)- 5[2 2]

0
[by step 2 of Example (5.11)]

@b (13 ! Do
== .5[ ]fx dY (1— X) 5[2 2]

[by step 2 of Example 5.11]

a*b*c? 13 1 15
S e S

_eve ) e

8 ') F[ 5 ] r'(3)
2
T a’ b c?
=

Example 5.15 Find the value of fffxl’l Y 2" (1=x—y—z)"" dx dy dz, taken

over the interior of the tetrahedron bounded by x =0,y =0,z=0andx+y+z=1,
in terms of Gamma functions.

l—x—y

I—x
xl"dxfym’ldy f " T(l—x—y—z)""dz
0

0

Given integral =

1-x

K de [ Aexe ) B p) dy-
0

[by step (2) of Example (5.11)]

S S

=BG, p) [x A=) " B(mn+ p)dx,

[by step (2) of Example (5.11)]
= B(n, p)-B(m,n+ p)-B(l,m+n+ p)
_Tm I I'mIn+p) I()-Lm+n+p)
~ T(n+p) T(m+n+p) TU+m+n+p)
_TOrmImle)
I'(l+m+n+ p)
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Part A

( EXERCISE 5(d) ]

(Short Answer Questions)

1.

10.

11.

12

13.

14.

/2 1 3
. Prove that f cotd dG_ [—]F[—].
4
. Find the value of f sin 8 df x f
. Prove that f CoS X dxxf
0

1
. Prove that f
0

Prove that fx“e”z dngx/;

0

o0

. Evaluate f xe ™ dr, given thatf[g]:0.902.

0
/2

. Find the value of fsin3x cos™*xdx.

/2

. Find the value of fsin5 0cos’0do .

/2

. Find the value of f Jtan 0 df in terms of Gamma functions.

4

/2

|/sin 6
dx
=T
§ /cos x

log[lﬂ dx=T(n).
X

/2 /2

Find the value of [*—dx (n>1).
n
0

sin am

where o is neither zero nor an integer. [Hint: put x = tan? 4]
Find the value of f e dx.

Prove that M _m,
B(mn+1) n

Prove that S +1Ln) B0m,n+1) _ Bm,n)
m n m—+n

-1
dr=—" , prove that I' (o)-I'(1—- )=

b

sin am
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15.

16.

17.
18.
19.
20.

21.
22.

Part B
23.

24.

25.

26.

27.

28.

29.

m—1
Find the value of f b—) dx in terms of a Beta function.
a + X m+n

. a
Hint: putx = —t}
Prove that f(m + 1, n) + f(m, n + 1) = B(m, n). b

2 1
Find the value of f (8—x’) 3 dx in terms of Gamma functions.

Prove that fx”’ (@a—x)"dx=a"""B(m+1n+1).

Define Gamoma and Beta functions.

Derive the recurrence formula for the Gamma function.

When # is a positive integer, prove that I'(z + 1) = n!

State the relation between Gamma and Beta functions and use it to find the

value of 1‘[1] .
2

Prove that f f e @ DY) 2l 2l g dy = Lm)T(n).
0 0

1
4a™ b"
1
When 7 is a positive integer and m > —1, prove that f x" (log x)" dx =
0
=D"n!

(m +1)n+l :

-1 n—1
Prove that f A=t BGm.n)
(a+bx)"" a' (a+b)"

z

Hint:Put =
a+bx a+b

Express g[n + l’ n4+ l] in terms of Gamma functions in two different ways
2 2

and hence prove that I’

1]: JrT@2n +1)

n—+— 3 .
2 27" T'(n +1)

Prove that f\/;e"dxxf\/, dx_2\/§

Prove that fxe S dex [ x2e™ dr=

2
Prove that f X
1 _

dx

\/le

I
=
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30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

Evaluate (i) f " , (i) f 1+ ') and (iii)j%

[Hint: put x* = tan’ 0]
Find the value of ffx y" dxdy, taken over the areax>0,y>0,x+y<1in

terms of Gamma functions, if m, n > 0.
Find the value, in terms of Gamma functions, of f f f x" y" zP dxdy dz

taken over the volume of the tetrahedron given by x >0, y>0,z>0 and x +

Y tz S 1 X 2/3 2/3

Find the area in the first quadrant enclosed by the curve [—] + [%] =1
a

and the co-ordinate axes.

Evaluate f f x" 'y (1—x—y)? "dxdy , taken over the area in the first
quadrant enclosed by the linesx=0,y=0,x+y=1.

X z
The plane —+ % +—=1 meets the axes in 4, B and C. Find the volume of the
a C

tatrahedron OABC. 2 2
Find the volume of the elhpsmd -+ ;; - +—=1.
Find the volume of the region of the space bounded by the co-ordinate planes

and the surface [ﬁ] +[%] +[£] =1 and lying in the first octant.
a c

Evaluate f f f Jwz(1—x—y—z)dxdydz taken over the tetrahedral
volume in the first octant enclosed by the planex=0,y=0,z=0andx +y+z=1.
Evaluate f f f x* yzdrxdydz, taken throughout the volume in the first

octant bounded by x =0, y =0, z=0 and £+Z+E:1.

a b ¢

Evaluate f f f xyz dx dy dz, taken over the space defined by x>0,y >0,z>0

2 2

2
and 4 21 2 <.
a b c

( ANSWERS ]
Exercise 5(a)
(1) 4 (2) logaloghb 3) 2
@ L 5) T © 2
2 4 2
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y=>b
1 xX=a
™ 3 ® . o
y=-0>b
’ Fig. 5.59
y=x g
© = o R
0 . x=0
y=0 0 y=0 *
Fig. 5.60 Fig. 5.61
XY 1 1-—x 11y
(1) x=0| N4 7 a2) [ [7endyds on [ [ reydcdy
0 y:() x 0 0 0 0
Fig. 5.62

[ [ senddon [ repdedy

(14) jjf(X,Y)dXdy (or) J]f(x,y)dydx
(15) j]f(x,y)dxdy (or) szf(x,y)dydx

4
3

! a ™
(16) 2 log 2 (17 = (18)
ra’ 1
9 = @0 720
8 19 3
(21)§1og2—3 (22) 1 (23) 5
24) L 25) Lab(atp 26) 234
()Ea ()ga(a+) ()105
33
27) 6 28) 22
(27 (28) 5
1 1
(29) E(81<)gz—5) (30) m
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Exercise 5(b)

(1) ij(x,y)wdy ) J:“Zf(x,y)dydx
€) ij(x,y)ﬁdy “4) ij(x,y)dydx
®) IIf(LJOdydx (6) ja[yf(x,y)dxdy

L 1= P
M [ [ repdedy ® [ [ serdvar

© [[renaa a0 [[rande
Ta 16
an - (12) 5
1 2
(14) 1 (15) 5 (=D
(17) %a% (18) %10g2
T 4
(20) 3 a 21 3
T 3
23) 5 24) 3
32 16 ,
(26) @n 3 ¢
T, 1
(29) 53 (30) 37
, | 2m NG a_2 _
(32) a T_T] (33) 3 (3m—8)
3, L
(35) 2 ma (36) % (l—e a )
(38) “T log(1++2) (39) %zf
T 232
@y Sah (42) 27

(44) 167 (45) %aS (Br—4)

(13) 1

(16) 2

(19) 50
(22) 8 log 2

2
25) 3

(28)
(31
(34) T
s
37
2
(40) ~
43) 127

(46) 47 a
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4y T
()8

0
50) —
(50)

Exercise 5(¢c)

2
®) 3

(11) 88

(14) 6 abc

17 _9. 2
a7 100 4
(20) 27ab

(23) @’ [1_”_‘1]
4
13
(26) =
V2
(29) T’]T
7'1'613
B =~

4

™

Exercise 5(d)

(2) 0.456

o o)

™
(12) \/;

22) V=

Za4 1614
“48) 5 49 1¢
9) 1 100 ©
C) (10) )
(12) 4ra? (13) 27ah
(15) %W (16) 2ma*h
(18) =373 (19 3
3
21) 4 2y 3
(21) (22) :
1 163
(24) 5(2\/5 1) @) o
13 2
@n ~ 28 5
(60 BB T
ke abe
(2) 5 33)
(35) %a“h
8 1
) 77 @ T2
1
(7 = (10) oy LD
1 1.(1) (2
(15) —Bmn) (7 gp[g].p[g]
(30) ™ ™ .57r\/§

2J278J2 7 128
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31 I'm+D)T(n+1)/T(m+n+3).

(32) T'(m+1)-T(n+DI(p+1)/T(m+n+p+4)

3mab
(33) =55 (34) T'm)I'(n) L'(p)/T(m+n+ p)
a_bc 4 mabc
(35 (36) 3
N /.3
(37) abC{F[n]} /371 r ;] (38) 7%/1920.

(39) @*b2c*/2520. (40) ?b>c¥/48.



Appendix A

Partial Differentiation

A.1 INTRODUCTION

In many situations we come across a quantity whose value depends on the values
of more than one variable. For example, (i) the volume of a right circular cylinder
is a function of the base radius and height; (ii) the volume of a cuboid depends on
its length, breadth and height. If the value of the variable quantity » depends on the
values of several other variable quantities x, y, z,..., we say that « is a function of x,
¥, z,... and it is denoted as u =f(x, y, z,...); X, ¥, z,... are called independent variables
and u is called the dependent variable.

A.2 PARTIAL DERIVATIVES

Let z=f{x, y) be a function of two independent variables. Let Ax be a small increment
given to x and let Az be the corresponding increment in z.
Then z+Az=fix+Ax,y)

Note™  (We do not make any change in y, viz., y is kept constant)
Az =flx + Ax, y) = fix, y)

Then lim E] — lim {f(x +Ax,y) —f(x,y)}
A0 Ax ) A0 Ax
is called the partial derivative of z with respect to x and denoted as oz (if the limit
exists) "
Smilarly,
9z _ b B2 i [ LGy A0 — F (3, )
dy =0 Ay| A0 Ay

The process of finding the partial derivative of z with respect to x is similar to that of
finding the ordinary derivative with respect to x, but with the only difference that we
treat the other independent variables as constants temporarily.
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Note @ All elementary rules of ordinary differentiation hold good for partial
differentiation too. For example, if # and v are both functions of x and y, then

2(uv) = u@—l—va—u

Ox Ox Ox

Partial derivatives of higher order

When u = f{x, y), the partial derivatives % and u will be, in general, functions

Ox 8y
of x and y. Hence each of them may be further differentiated partially with respect to
x or y, giving partial derivatives of the second order.

2
Thus g[%] = Z—L; is a second order partial derivative of u
x| Ox X
2
Similarly i[@_u] = ou
oy\ox) Oyox
o (on)_ o
Ox(0y) Ox0y
d0u| Ou
and — ===
oyldy) oy’

2

Note™  The ways by which the two mixed second order partial derivatives 9
yOx
2

and 3 are different, but they are equal when they are continuous. In
xXoy
2 2
almost all situations we may assume that Ou = Ou .
OyOx  OxQy

Further partial differentiations will lead to third and higher order partial
derivatives.

Alternative Notations

b 2
Ou and S are denoted also as u_and u Ou = 2[%] is denoted by u_,
Ox y Y Oyox Oyl ox i’

indicating that u_is first found out and then it is differentiated with respect to y.

0u _ 0
Oxdy  Ox

Ou

dy

is denoted by u .
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82u 8 21/[
and —— are denoted by #_and u .
ox* Oy = »

A.3 HOMOGENEOUS FUNCTIONS

Y
X

When a function of x and y can be rewritten as x” f , then the function is called

a homogeous function of the nth degree in x and y.

The homogeneous polynomial in x, y of the nth degree, viz., ax" + ax™"y + ax™>
Y+ +a_ xy~' +ay, with which the students are familiar, may be considered a
homogeneous function of the nth degree in x and y, as ax” + ax™'y +--- +a_ xy"" +

ay

eforfrof el

X X X X
<o

X

A4 EULER’S THEOREM ON HOMOGENEOUS

FUNCTIONS
If u is a homogeneous function of degree » in x and y, then
x@_u + 8—“ = nu
Ox 4 oy B

Proof
Since u is a homogeneous function of the nth degree in x, y, we may assume that

u:ﬂqu (1)
X
Differentiating (1) partially with respect to x,
@:x”f/ Z]x —lz —|—nx"1f[l]
Ox X X
x@:‘“WWFFMVF] @
Ox x X

Differentiating (1) partially with respect to y,

@:x"f’[l}xl
Qy x) x

y%=ﬂvﬂﬁ} 3)
)y X



I1-A4 Part I: Mathematics 1

Adding (2) and (3), we have

8_u_|_y8 x"f[l]

Ox oy X
= nu, by (1)
Note @ 1f u is a function of several variables x, y, z,..., such that u = x"

f [1,5,. . ] , then u is said to be a homogeneous function of the nth degree in x, y,

'Y ou  ou 9
.. In this case, Euler's theorem will be xa—u + ya—u +z & + = nu.

X )y Ox

A.5 EULER’S THEOREM FOR SECOND DERIVATIVES

If u is a homogeneous function of degree #» in x and y, then

0’u 0'u 0’u
x’ +2x +y? =n(n—1u.
ox’ 7 Oxy 7 oy’ (»=1)
Proof
By Euler’s theorem for first derivatives, we have
xa—u +y Bu =nu (D)
Ox 8y
Differentiating (1) partially with respect to x,
P O o
o ox oxdy | ox
. O’u 0’u Ou
ie., X =n—-1)— 2
o 7 Ox0y (»=1) Ox @
Differentiating (1) partially with respect to y,
P P o o
OyOx 4 oy* Oy Oy
2 2
ie., N T —1)— 3)
8y8 8
(2) xx + (3) x y gives
0u O’u 0u
x’ +2xy ——+ Y —
ox* 4 Ox0y 4 oy*
Ou Ou
=m—-Dyx—+
=( ){ o ay}

=n(n — 1) u, by Euler’s theorem
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( WORKED EXAMPLE

)

Example 1 If v = log (tan x + tan y + tan z), prove that sin Zx%—ksin 2y- g—u+
X v

sin2z - % =2.
1z
u =log (tan x + tan y + tan z)
@ _ sec’ x
Ox Ytanx
Ou  2sinxcosxsec’ x
sin2x —=--"—"_"~""""" ©
Ox Ytan x
_ 2tanx
Ytanx
Similarly, sin2y Ou - 2tany
dy Xtanx
and Sinzza_u: 2tanz
Jz Xtanx

Adding (1), (2) and (3), we get

sin2x@+sin2ya—u+sin2z@
ox dy 4

_ 2(tanx+tan y +tanz)
Y tanx

=2
Example 2 Ifu =log (x*+)* +2° — 3xyz2),
Ou Ou Ou 3

show that (i —+——|—— _—
® dy 0z x+y+z

iy 24042 o
" 5’y 9z (x+y+z)
u=log (x> + > +2° - 3xy2)
Ou _ 3(x* —yz)
Ox X +y +2°—3xz
ou_ 3G =)
dy X +y +2-3xz

Similarly

()

)

)
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u 32 —x)
0z x+y +2°=3xz

and

Adding, we get
Ou +@+@: 34y + 2 —xy—yz—2zx)

O dy Oz X +y 42 —3xyz
= TW (" the denominator
= (x+y+2){Zx" —Sxp})
(o0 0) _ 3 o
Hes Ox 0Oy 0z x+y+z )
2
0,0 0), (0,0 o) 3 )
Ox Oy Oz Ox Oy Oz)|\x+y+z
_ 3 - 3 - 3
(x+y+z2)’ (x+y+z)’ (x+y+z)
___ 92
(x+y+z)
Example 3 Ifx =rcos 6, y =r sin 0, prove that
@) @:ﬁ (ii) rﬁzlg
Ox Or ox rof
. 0F 0? 0% cos 26
(iii) 1 =— 1 = =_
ox? (logr) oy’ (logr) Oxy P
9’0 0%
iv) —+—=0.
) ox* oy’
x=rcos 0 (1)
and y=rsinf )
},.2: x2 + y2 (3)
and 0 =tan' [1] ()
X
Differentiating (3) partially with respect to x, we have
2r& =2x
Ox
or x rcosf
=—= =cosf

ox r r
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&:cose
s

o _ox
ox  or

which is the required result (i)
Differentiating (4) partially w.r.t. x,

@_;.[_L]__L
o 1+[y2] )y

X
o1,
e 7
ie., r% = —siné (%)
Ox

ox = —rsinf
00
1ox sin @
r 00 ©)
00 X S P
From (5) and (6), ¥ — = ———, which is required in (ii)
Ox radl

From (3), 2 log r =1log (x* +)?)

i(logr):l- > ! - 2x=—; al 2
Ox 2 x4y X +y
2 2 2y H.2
(logr) = = EXIT20
Ox (x"+y%)
Yy =x* r’(sin’ @ —cos’ 0)
(x2 +y2)2 r4
:—LZCOSZH (7
-
0 1 1 y
Now —(logr)=—- 2y =
8_)/ g 2 x2 +y2 y x2 +y2
2 (10 B (x2 +y2)_2y2 B xZ_yZ
2 gr)_ 2 242 2 242
dy (x"+y7) (" +y7)
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= Lz cos 20 (8)
r
0_ 1 1_ «x
From (4), we get ay o v x x4y
X<
9’0 x*+y?)—2x7 1
o3y = ( (sz—}Fi/z)z - cos26 )

From (7), (8), (9), the required result (iii) follows.

2 2

From (4), we have % = 1 . [_l]

Ox H—J% X
X
Y
x2 +y2
2
8?:7 - 2122'2: 22xy22 (10)
dy (x"+y7) (" +y9)
From (4) again, we have
20  x
ay x2 +y2
2
a_f:x._ﬁ.zy:_% (11)
dy (" +y7) (" +y7)
From (10) and (11), the required result (iv) follows
Example 4 If u = (x* +? + z%)"'2, prove that
Fu Fu Fu_
ox> oy 07
Putting Xy = (1)

we get u=—
r

ou 1 Or 1 x

—=———=——=, from(l)
Ox r- Ox roor
or
Pl-x3r —
0’u d Ox
o s
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7 —3xr? X
- r |, from (1)
r

2 2
X -7
==

Since u is a symmetric function in x, y, z,

we vet Ou_3y'-r Qw321
g 8y T 922 e
8_Zu+ 0’u + 0%u _ 3(x* +y 42 =3r°
ox> oyt 0z r
3rr =37

=T 6, by (1)
p

Example 5 Ifu’=(x—a)*+ (y— b)*+ (z — ¢)% prove that

0*u +82u +82u 2

ox* oyt 07
w=@x-—a)+y-by+Ez—cy (1)
ZuZ—Z:Z(xfa)
. ou x—a
ie., = 2
Ox u @
azu_u—(x—a)gz
ox? u?
2
)
uZ

' —(x—a)’

il 3)
Similarly, by symmetry, we have

Pu  u'—(y—b)y
» w @

8_2u_ u —(z—c)

and
0z° u’?

)
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Adding (3), (4) and (5), we get
Ou_ 3P —{(x—a) +(y=b) +(z=0)"}
ox’ w’
_ 3u® —u?

—, by
u

2
"

Example6 If y — _*“ | prove that V satisfies
X+’

v oV Y
5+

=0
ox*  oy' 07

XZ

y=—2
x2+y2

ov (x> +y*)—2x z(y* —x%)
., _
ax (x2 +y2)2 (xZ +y2)2

v _ . ()7 (=20) = (" —x7)-2(x" 4 y7)-2x
axZ (x2 +y2)4
2xz(3y* —x7%)
) W
Note & v is not symmetric in x, y, z
o _ Tl 2wz
dy @y T @Y
L AP T S Ce 2 E e S O B
ay’ (" + )
_—2xz(x® —3y%)
e @
aVy  x 9%V
Now 0 x2—|—y2 and 5 =0 3)

Adding (1), (2), (3), the required result follows.
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2Z
Example 7 Ifx*-)” -z =1, find the value of whenx=y=z=1.
OxQy
xx . yy cZF= 1
Taking logarithms, we have
zlogz=—xlogx—ylogy (1)
Differentiating (1) partially w.r.t. y,
10z 0z 1
z-——+logz—=—{y-—+logy
z dy oy y
. 0z
ie., (1+1logz)— =—(1+1logy) 2)
dy
Differentiating (2) partially w.r.t. x,
0’z 0z 1 0z
1+logz += 2%
( g2 Oxdy 0Oy z Ox
10z 0z
O’z zOx Oy 3)
Ox0y  (l+logz)
0.
Differentiating (1) partially w.r.t. x, we can get (14-logz) 8_2 =—(1+1logx) 4)
X
Using (2) and (4) in (3), we have
2’z ~ (I4logx)(1+1log y)
Ox0y z(1+logz)’
0’z _
Oxdy [ 1-r
Example 8 If /'(x, y) = (1 — 2xy +)?)2, show that
2l(l—xz)a—f + 1Yy
Ox Ox| Ooy|” 0Oy
Sy =01 2xy+y) 2 (D
Vo a2y w2y
Ox 2
-y
(1 _ 2xy + y2 )3/2
9 N/ (1=x")y
o= x) o = o ey
Ox Ox] Ox|(1-2xy+y7)
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(=23 + )2 (—2x) (1—x2)%(1 ~2xp 4y} (<2)

-7 (I—2xp+ 7y
_ —2x(1=2xy+y*) +3(1—x")y
(1_2w+y2)5/2

—2x+3y+x*y—2x @)
(172Xy+y2)5/2
Differentiating (1) partially w.r.t. y,
9] 1 _
=02y X2 2)
0 _
P =P 2wy
(1=2xy+y")"? 2y —3y") —
2, .3 . E _ 2N\1/2 . _
oL o] (rx y)2(1 2xy+y7)"-(2y —2x)
ay|" oy (1-2xy+y°)
_ (=204 p)(2ay =35°) + 30y x = y)(x — )
(1 _ ny + y2 )5/2
_ —y{—2x+3y+x*y—2xy°}
(1—2xy+ )" 3)
Adding (2) and (3), the required result follows:
2 2
Example 9 Verify that Ou _ Ou
Oyox  OxQy
when u=x"tan"' [Z —y*tan”’ [i} .
X y
u=x"tan"' [Z —y*tan” [i} (1)
X y
%ﬁxz. 1 — _xlz]-yzxtanl[%]_yz. 1 - 1
1+ 1+ 7
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2

:—%—i—bctanl[z— 2y 2
X" +y X x4y
— —y+2xtan” [%] 2)
2
Fu_ 1
yox y_o X
1+2
252 P
Py 4 3)

Differentiating (1) partially w.r.t. y,

@:xz.%.l_ yz. 1 3 _iz _~_2ytan71 i
y X X y

1+x2 14+~
3 2
X xy o x
= + —2ytan” |—
x2+y2 x2+y2 [y]
:x—Zytanl[i]
y
: 1 1
;g —pogy L
oy 1+ 7
y
:1 2y2 _xZ_yZ

7x2+y2*x2_’_y2 )

From (3) and (4), we see that

u O
OyOx  Ox0Oy
2 2
Example 10 Verify that -V _ 0V
Oyox  Oxdy
when V=x" -y
V=x"-y
Taking logarithms,

log V= ylogx+xlogy (1)
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V Oy ¢ y
LoV y

and ——=Z11o
V ox x gy

Differentiating (2) partially w.r.t. x;
1oV 1oV or 1

1
V oxdy V? Ox 6‘_y_x ;

ie.,

Ox0y -
Differentiating (3) partially w.r.t. y;
1oV 1oroy 1 1

V oyox V? Oy ox  x y

dy-Ox

v o
OxQy 8y8x.

From (4) and (5), we see that

2
8V_V{18V v 1

v 1o or 11
V:ox Oy x y

1
Viox oy x 5}

2)

)

(4)

)

Example 11 Verify Euler’s theorem, when (i) u = ax? + 2hxy + by? and (ii) u = et

(1) u=ax*+2hxy + by?

X

8_u =2ax+2hy; 8_u =2hx+2by
0 y

2 2O 4 2hy) + oy + 2y
ox dy
=2 (ax* + 2hxy + by?)
=2u

uxz{a2 +2h[

Y
X

|+

u is a homogeneous function of degree 2.

Step (1) verifies Euler’s theorem.
(i) u=e""
v=logu=x’+)
is a homogeneous functions of degree
ov_1ou_

— = 3x?
ox u Ox

3.

Y
X

-

hd

g

(1
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av 10u , ,
ay  udy
x@—l—y—v: (x3+y3)

Ox 0
=3v

Step (2) verifies Euler’s theorem
Note @  (2) can be rewritten as

1 Ou 1 Ou
x.— . ——

— 4 =3logu
u Ox 4 u dy g
i x8u+ Ou 3ulogu
ie., —+y—=
¢ Ox y@y &

2 2
Example 12 Ifuzsin‘[x +y ],prove that x 2%+ 5 P tanu, (i), by
X+y Ox Oy

using Euler's theorem, (ii) without using Euler’s theorem

2 2
(1) u:sin71 m
x+y

2

2 2 x2{1+[y]}
ie., sinu =217 _ al :xf[l]
x+y x{l+[y]]» X

X

. sin u is a homogeneous function of order (degree) 1.
. By Euler’s theorem, we have

x% (sinu)er % (sinu) =1xsinu

€ 8”4— Ou tanu
1.C., —_— —_— =
Ox y&‘y
2 2
Gi) sinu="T2" o (x+y)sinu=x’+)"’
x+y

Differentiating (1) partially w.r.t. x,
ou .
(x+ y)cosu — +sinu =2x
Ox
Differentiating (1) partially w.r.t. y,

ou .
(x+y)cosu — +sinu =2y
dy

2

(1

2)

)
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(2) xx+(3) x y gives,

Ou Ou
x4+ y)cosu|x—+ y—|+(x+ y)sinu =2(x* +°
(v y)eosulx g4 v+ (v+5) (¥ +57)
i.e xaqu 8qutanuf 2(x2+y2)
T ox yé)y (x+y)cosu
:2smu or 2tanu
cosu
ou
X—+y—=tanu
Ox )y
2 -1y 2 1| X Ou Ou
Example13 If u =x"tan™ |=|—y“tan” |—|, find the value of x —+y —
X y Ox Qy

X

o (- )

o)

u=x"tan"' [l] fyz tan "' [i]

2
=X

u is a homogenous function of degree 2.
By Euler’s theorem,
Ou ou

X—+y—=2u
ox 7 oy

0
Note™  From example (9), 6_u =—y+2xtan”’ [Z]
x x

and @:x—Zytan" =
dy y
x@—&—y%:—xy'i‘bcz tan |2 +xy—2y° tan”' 4
Ox dy X X

= 2{x2 tan”' [Z}— y* tan”!
x

=2u

X1

y
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2 2
Example 14 If ; — tan! Xty , find the value of
X—y
xZ&Jery Ou + 28_214
Ox’ Ox0y 4 o)

U= tan71 M

xX=y
xZ + y2

. tanu =

is a homogeneous function of degree 1.
xX=y

.. By Euler’s theorem,

xa(tanu)er%(tanu) =tanu

. Ou Ou  tanu .
ie., —ty—= =sinucosu
Ox ~ 0y sec’u
= 1 sin 2u
2
Differentiating (1) partially w.r.t. x,
O’u  Ou O’u Ou
X—+—+y =cos2u—
ox~  Ox OxQy Ox
x° (92u+x8_u+x Ou = xcos2u 22
ox’ Ox Y OxQy Ox
Differentiating (1) partially w.r.t. y,
X Ou + 8_2u+% = cos2u%
OyOx 4 dy* Oy Ay
x Fu + 2 Ou  Ou_ cos 2u —
4 Oyox 4 oy’ 7 Oy 4 dy
Adding (2) and (3), we get
x282u+2x O’u n 28_2u+ xa_u+ Ou
o Paxay T oy Tox oy
=cos2u

Ox yay

(1

)

3)
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x’ a—zu—i—2x Ou +° Ou —i—lsm2u
ox’ 7 Ox0y 7 oy’
1 .
=7 sin 2u cos 2u, by (1)
ie., Xu, +2xyu,, + y'u,, = % sin 2u (cos 2u —1)
( EXERCISE ]
Part A
(Short answer questions)
Ou Ou Ou
1. Ifu=@x—-y)*+(@y—2z*+(z—x)*, show that — +—+—=
Ox 0Oy Oz
2. fu=(x—y)y—2z)(z— x), prove that @4—& ou _ =0.
Ox 8y 0z
— 3 61/1 Ou - .
3. Ifu=x% — x)?, show that the value of | =——| 4+ |==| at the point (1, 2)
Ix y
S ——
22 P 5
4. If 2 — 3yz— 3x = 0, show that z 2= = &2
Ox Oy
2 2
5. If u=x cos y + y sin x, verify that Ou = O
Oxdy  OyOx
2 2 2 2
6. 1f u = log| 2| verify that 24 = 2%
Xy Ox0y  OyOx

7. Verify Euler’s theorem when u = \/; + \/; .

8. Verify Euler’s theorem, when u = x’ sin [Z] .
X

9. Ifuf[ ] prove that x%+%:0
X Ox Oy
10. If u =sin ' | = +tanl[l] prove that x6_+y8_u:0
y X Ox dy

11. Define a homogeneous function and state Euler’s theorem on homogeneous
functions.



Appendix A I-A.19

12. State Euler’s theorem on homogeneous functions for second order deriva-
tives.

13. If u=xf [Z] , show that
X

x282u+2x 0%u n 262147
ox’ y@xay 7 oy’
2 2 2
14. ifu= ,provethatxzabzl+2xyau—|—y28Lzl:O
x+y Ox Ox0y Oy
2 2
15. If x =7 cos 0 and y = r sin 8, prove that [Q] + & =1
Ox oy
Part B
16, f20c + ) = 2+ 2 thtaz oz\ 4182 0z
. = s ethat | ———| = -
z(x +y) = x>+ )72, prov o oy o oy
2 b3 8214 821/1
17. If u=log (x* + %), prove that —+—=0
Ox~ Oy

18. If u = log (x> +y* + z%), prove that

*u  O*'u O 2

ox> 9y’ 0 X4y +7
19. If u=—, where ¥ = (x — a)> + (y — b)> + (z — ¢)% prove that

!
B
O*u  O*u  O'u

+ 5 +5=0-
ox* oyt 07
2 2
20. If V:l,wherer2=x2+y2,provethat 9 V+6 v :i.
r ox* ot
2 2
21. If V'=1og r, where r* = (x — a)* + (v — b)*, prove that o + oV =0.
ox> 0y’
o 0’
22. Ify=f(x — af) + ¢(x + af), show that £ — 2 <V
or ox’
_ n 2z ,0z
23. Ifz=tan (y + ax) + (y — ax)**, prove that —= — 4>~ = —=0.
ox’ oy’
0’z 4
24. If x*y» z# = ¢, show that, when x =y =z, =—{x-(1+logx)}

Ox0dy
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25. If x =7 cos @ and y = r sin @, prove that
v Or [8r] or)
+ _
Ox dy

+
ox* 8yt
Pr ov 1oy

26. If V= ¢ cos (a log r), prove that

o’ ror row
2 2
27. Verify that O = Ou , when u =x" +y*.
Oxdy  OyOx
2 2
28. Verify that Ou = Ou , when
Oxdy  Oyox
u=3xy—y*+(*—2x)*"
29. If u = tan™" % , show that
I+x"+y
lu 1
8xay (1 +x2 +y2)3/2
30. Without using Euler’s theorem, prove that
xa—u—i—yau =1, when y =log l
Ox oy x4y
31. If u=rcos™ , prove that
f + f
Ou ou 1
X—+y—-+—cotu=0.
ay 2
¥
32. If u=sin" Y1 prove that
xX+y
ou

x—++ 8— 2 tan u.
Ox y&'y

33.If u=e" """, prove that x%—ky% =3ulogu
Ox dy
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34. If y=sin™' \/f;i//, , prove that
+
282 +oxy 0u O 28_2u_fsinucos2u
ox* 8x3y 4 oy’ 4cos’ u
3 3
35.1F u—tan ' | 1Y , prove that
x+y
2 2 2
2@+2xy O +y? Ou = sin4u —sin 2u

ox’ Ox0y >
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Solutions to the
January 2012
Question Paper

B.E./B.Tech. DEGREE EXAMINATIONS, JANUARY 2012
(First Semester)

MA2111 MATHEMATICS -1
(Common to all Branches)
(Regulations 2008)
Times: 3 Hours Maximum: 100 marks
Answer ALL questions.

PART-A (10 x 2 = 20 marks)
6 -2 2

1. The product of two eigenvalues of the matrix 4 = | -2 3 -1 is 16. Find
2 -1 3

the third eigenvalue of 4.

1 0
2. Cand= [0 1) be diagonalized? Why?

3. Find the equation of the sphere concentric with x* + y? + z* — 4x + 6y — 8z + 4
= 0 and passing through the point (1, 2, 3).
4. Find the equation of the right circular cone with vertex at the origin, whose

axis is % == % and with a semi-vertical angle 30°.

5. Find the radius of curvature for y = ¢" at the point where it cuts the y-axis.

6. Find the envelope of the family of lines §+ yt = 2¢, where ¢ is the

parameter.

2 2
7. Ifu=x", show that 9u = 9u )
dxdy dyox
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8. Ifx=u>—1 and y = 2uv, find the Jacobian of x and y with respect to « by v.

Express J _[ f(x, ) dxdy in polar co-ordinates.
0 0

1 y x+y
Evaluate J j j dxdydz .
00 0
Part-B (5 x 16 = 80 marks)
2 2 1]
11. (a) (i) Find the eigenvalues and eigenvectorsof |1 3 1 (®)
12 2]
1 4
(ii) Find A" using Cayley Hamilton theorem, taking 4 = 2 3l Hence find
A, i (8)
Or
(b) Reduce the quadratic form 2x* + 5y + 3z° + 4xy to canonical form by
orthogonal reduction and state its nature. (16)
12. (a) (i) Obtain the equation of the sphere having the circle X+ y2 +2+ 10y -4z

(i)

() ()

(i)

13.(a) ()

(i)

() ()

—8=0,x+y+z=3 as the greatest circle. ®)

Find the equation of the cone formed by rotating the line 2x + 3y =6,z =

0 about the y-axis. )
Or

Obtain the equation of the tangent planes to the sphere x* + y* + z* + 2x
—4y + 6z — 7 = 0 which intersect in the line 6x -3y -23 =0 =3z + 2. (8)

Find the equation of the right circular cylinder of radius 2 and whose axis

is the line X~ 1_¥=2_2-3 @®)
1 2
ax 2523 2 2
Ify= ——, prove that (—pj = (1] + (lj , where p is the radius
a+x a y X
of curvature. (8)
Find the circle of curvature of \/; + \/; = \/; at (%, %) . ®)
Or

Find the evolute of the parabola y2 =4ax. (8)
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(b)

(ii) Find the envelope of §+l=1, where the parameters / and m are

m
connected by the relation !’ + % =1 (a and b are constants). ®)
a

. 2 822 82
14.(a) (i) If z = fix, y), where x = v~ — Vv , ¥ = 2uv, prove that —+_— =

82 az au av
4w’ +v) | 5+ —5 (®)

ox* oy’
(i1) Find the Taylor’s series expansion of 7 + 2x% + 3x7 in powers of
y p y y Y™ 1m p
(x+2)and (y - 1) upto 31 degree terms. ®)
Or
() fx+y+z=u,y+z=uv,z=uvw rovethatM—u2 (®)
prEmhymEm AR eI A, vow)

(ii) Find the extreme values of the function fx, y) = x° +° — 3x — 12y + 20.
(®)

15. (a) (i) Change the order of integration in

(b)

b(Ja® —x?)
J x* dydx and then evaluate
0

O —

it. (®)
J- dxdy
\/72 «/a —x? =yt

(i) Transform the double integral into polar co-

O —

ordinates and then evaluate it. (®)
Or
1 1= X2 \fl-x? - y2
(i) Evaluate j j j dhxdlydz . )
0 0 \/1 x? y -z
(ii) Find the smaller of the areas bounded by the ellipse 4x* + 9y* = 36 and
the straight line 2x + 3y =6 ®)
SOLUTIONS
PART-A
6 -2 2
Product of all the three eigenvalues = |[4|= [-2 3 -1 =32
2 -1 3

Product of 2 eigenvalues = 16; .. the third eigenvalues = 2.
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10.

Al
B

Equation of a sphere concentric with the given sphere is of the form X+ y2 +
Z—4x+6y—8+k=0.

Since it passes though the point (1,2,3), 1 +4+9-4+12-24+k=0

ie, k=2

.. The required sphere is > —4x + 6y—8z+2=0.

The equation of the right circular cone is

0
| j cannot be further diagonalised, as it is already in the diagonal form.

(P+ (1) +28 (P + Y2+ D) % =(x—y+22)7
e, 97+ +20) =20 +)7 + 425 — 2xy — dyz + 4zx)

ie., T+ +25+4xy+8yz—8zx=0.
The point where y = ¢" cuts the y-axis is (0, 1)

A+ )32 A+e*)3/2

V=e=)yp= . .

Yy e
[P](o, n= 2‘/5 .

The equation of the family is yl2 —2ct+x=0

Equation of the envelope is B> = 44C; i.e., 4c> = 4xy or xy = &

2

d
x=xy;a—u=xylogx; u=y-xy_llogx+xy_1
y

0xdy
Ju o d%u -
g:yxyl' o ="+ y ¥ logx; S =y
ox,y) |x, x,| [2u —2v o
- = = = 4
ou,v) |y, »nl [2v 2u @+v)

/2 o

TTf(x,y)dxdy: [ [F@.0)raras.
0 0 0 0

Xty

+ 1y 1
[ dzdyds = [ [(x+yydvay=]
0 00 0

N
S t—_—

1]
“fore

le
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2 2 1 2-1 2 1
1.(a) ) A=|1 3 1|;dE.ofdis| 1 3-1 1 |=0;
1 22 1 2 2-1

ie;(A-5)(A-1)*=0
Eigenvalues of 4 are 5, 1, 1.
When A = 5, the eigenvector is given by —3x, + 2x, + x; = 0 and x, — 2x,
+x;=0
Solving, X, = (1,1, 1)".
When A = 1, the eigenvector is given by x; + 2x, + x; =0
Taking x, = 1, x, = 0, we get x; = —1 L X=(1,0,-1)7
Taking x, = 1, x; =0, we getx, =—1/2 . X;=(2,-1,0)".

1 4 1-A 4
(i) 4=|, 5[;TheCE.ofdis| , ; =0;ie, A*—41-5=0

The eigenvalues are A =-1, 5
When 4" is divided by A* — 44— 5, let the quotient and remainder be &(A) and

(ad + b) respy.

Then A" = (A* — 44— 5) B(A) + (aA + b) 1)
When A =-1, from (1), —a + b= (-1)" Solving, we get

When A =35, from (1), 5a+ b=5" a:ﬂandb:%s(_l)

Replacing A by 4 in (1);
A" = (4% - 44 - 51) 6(A) + (ad + bI)
= aA + bl, by C.H. Theorem

An:{s"—(—l)"Hl 4}{5%5(—1)}"{1 o}
6 2 3 6 0 1

Putti 3, we have A° 2114+2010—41 84
dHng =S weRe A =20 3 0 1| |42 83

11. (b) 6= 2)612 + 5x§ + 3x32 +4x,x,

2 20 2-4 2 0
Ag=12 5 0|;CE.ofdis| 2 5-4 0 |=0
0 0 3 0 0 3-2

i, CE.of Ais(3—2A) {A2—7A+6}=00r(A-3)(A-1)(A-6)=0
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Eigenvalues of 4 are 1, 3, 6
When A = 1, the eigenvector is given by x; + 2x, =0 and 2x; =0

X, =(2,-1,07
When A = 3, the eigenvector is given by —x; + 2x, = 0 and x; + x, = 0; x5 is
arbitrary.
X,=(0,0,1)"
When A = 6, the eigenvector is given by 2x;, —x, =0 and x; =0
Xy=(1,2,0)
2 01
Modal matrix M= |-1 0 2
0 1 0

275 0 145
The normalised modal matrix N = —1/\/5 0 2/\/5
0 1 0

The orthogonal transformation required for reduction is X = NY

ie,x = %yl +%y3;x2: T;yl +%y3 and x; =
The canonical form of 0 is y% + 3y§ + 6y§.
0 is positive definite.
12. (a) (i) The problem is the same as the worked example 2.11 in page [-2.57 of the
book “Engg. Maths for sem I and II-Third edition”
(ii) Let (7, m’, n") be the DR’s of the rotating line.

l, m/ l’l/
Then 2/ +3m’=0andn’ =0 So— = =—
3 =2 0

DC’s of the y-axis are (0, 1, 0)

. Semivertical angle 6 of the required right circular cone is given by

4
cos 0= or cos? 0——
NEw E

The vertex of the right circular cone is the point of intersection of the two
lines 2x + 3y =6,z=0andx=0,z=0; i.e.,, v=(0, 2, 0)

The equation of the right circular cone is given by

17 {3 (x— @)} cos® 0=[TA (x— )T
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4
In this problem, /=0, m=1,n=0; =0, =2, y=0 and cos* 8= i

The equation of the cone is {x2 + (- 2)* + zz} X % =(y- 2)?

ie., 4[x2+y2+22—4y+4]= 13 (y2_4y+4)
e, 4’ -9%+422+36y-36=0

12. (b) (i) Any plane that intersects (or passes through) the line 6x — 3y —23 =0 =
3z+2is

6x—-3y-23+A(Bz+2)=00r6x-3y+34z+(24-23)=0 (1)
Centre of the given sphere C = (-1, 2, -3) and

radius r= 1+4+9+7 =21

If plane (1) is to be the tangent plane to the given sphere,
Length of the L» from C on plane (1) =r

[<6-6-92+24-23 _ p5y

ie., 21
J36+9+922

ie, 2-7A-4=0 or QA+1)(A-4)=0
2

-1 . .
When A= B the equation of one tangent plane is

1
6x—3y—23—5(3z+2) =0or4x—-2y—z-16=0
When A4 = 4, the equation of the second tangent plane is
6x-3y-23+4@Bz+2)=00r2x—-y+4z-5=0.

(b) (ii) This problem is similar to the worked example 2.4 in page [-2.77 of the book,
except for the change in the radius. Instead of 5 in the W.E., 2 is given as the
radius of the cylinder.

Proceeding as in the W.E., the equation of the cylinder is
1
5{2x+y+22—10}2 +4 =12+ =2P+(-3)

ie., 4x* + 7 + 427 + 100 + 4xy + 4yz + 8zx — 40x — 20y — 40z + 36
=9(x2+y2+22—2x—4y—6z+ 14)
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ie., 5x + 8)% +52° —4xy —dyz — 8zx + 22x — 16y =10 =0
13. (a) (i) This problem is the same as the worked example 3.3, given in page I-3.9
of the book.

(ii) This problem is the same as the worked example 3.16, given in page
1-3.19 of the book.

(b) (i) This problem is the same as the worked example 3.13, given in page 1-3.35
of the book.

(ii) This problem is the same as the worked example 3.10, given in page
1-3.34 of the book.

0z 0z dx 0z 9y _, 0z, , 0z

14. @ @ ou  Ox du Oy du ox dy

Zy =22, + 2u [z, 2u + 2, 2v] + 2v [z, 2u + z,,, 2V],
since z, and z,, are also functions of x and y, since z is a function of x and y
2 2
=2z +4u z, +8uvz, + 47z, (1)
z,=2,- (-2v) +z,- (2x)

Zyy == 22, = 2v [2,, (-2V) + 2, 2u] + 2u [z, (-2V) + z,,, 2u]

=-2z + 4?2 Zye = 8UV Zyy, + 4 zZ,, 2)
Adding (1) and (2), we get
Zy t 2o = 4(u2 + v2) Zo + 4(u2 + vz) z,,
=47 +V7) (2 + 2,,)
(ii) This problem is the same as the worked example 4.5 given in page 1-4.37 of
the book.

(b) (i) The solution to this problem is given as the major part of the solution of the
worked example 4.11, given in page [-4.41 of the book.

(i) flx,y)=x+1y —3x-12y+20
=3 =3 £,=3 — 12; f,, = 6x; £, = 0, f,, = 6y
The stationary points are given by /., = 0 and , =0
ie,x==xlandy =42
The possible stationary points are (1, 2), (1, -2), (-1, 2) and (-1, -2)
At the point (1, 2),4=1,,=6,B=0;C=f, =12
AC—-B*=72>0and 4 and C>0
.~ fix, y) is minimum at (1, 2)
At the point (-1,-2),4=-6; B=0; C=-12
AC-B*=72>0and 4 and C<0.
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.~ fix, y) is maximum at (-1, -2)
At the points (1, -2) and (-1, 2), AC-B*<0
. fix, y) is neither maximum nor minimum at these points
15 (a) (i) This problem is the same as the worked example 5.4, given in page 1-5.23
of the book.

(i) This problem is the same as the worked example 5.16, given in page
1-5.34 of the book.

(b) (i) The solution of this problem is available as the latter part of the solution
of the worked example (in which I is evaluated) 5.12 given in page [-5.14
of the book.

2 2
ii The given ellipse is X + 2 1 and the given line is X + 2 1
(i) g p 25 g

B

C
CLYD (x2,)
A
g/

The required area is the shaded part of the diagram.

2 x
The required area = ” dxdy = J. f dx dy

ABCD 0 x
1
(x,») lieson2x + 3y =6 R 5(6—3y)
1
(x5, ») lies on 45 + 97 =36 =g 36— 9y’

5 %\/3679}12
.. Area = J j dx dy
0

1
5637

2
| B«/%—wz —%(6—33/)} dy
0

2

i 2
=% [N22 =y dy—f(Z—y)dy]
L 0

0

2 2

r 2
3y 72, 2. ’
=5% 22—y2+7s1n_ll—2y+y—}

3 3
= Jlm-4+2]=2(x-2)
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B.E./B.Tech. DEGREE EXAMINATIONS, JANUARY 2013
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(Common to all Branches)

MA2111/MA 12/080030001—MATHEMATICS -1
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Times: 3 Hours Maximum: 100 marks
Answer ALL questions.

PART-A (10 x 2 =20 marks)

1. Findthesymmetric matrix 4, whose eigenvalues are 1 and 3 with corresponding

1 1
eigenvector ( j and[ j
-1 ! 2 0 -2
2. Write down the quadratic form corresponding to the matrix | 0 2 1].
-2 1 =2

3. Find the equation of the sphere whose centre is (1, 2, —1) and which touches
the plane 2x —y +z+ 3 =0.

4. Find the radius of curvature of the curve x> + y2 —4x+2y-8=0.

5. Find the equation of the right circular cylinder whose axis is z-axis and radius
is ‘a’.

6. Find the envelope of the lines x cosec 68—y cot 6 = a, O being the parameter.

7. Ifu=f(y—Z,Z—x,x—y)’ﬁnda_u+a_u+a_u'
ox dy oz
8. Ifr=2Z g2 oW g 90sD
x y z a(x, y, 2)
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9. Plot the region of integration to evaluate the integral H f(x, y)dxdy where
D

D is the region bounded by the line y = x — 1 and the parabola y* — 2x + 6.

2r
10. Evaluate ”r sin? 0d0dr.
00

Part-B (5 x 16 = 80 marks)
1 2 1
11. (a) (i) Find the eigenvalues and eigenvectorsof | 6 -1 0. (8)
-1 -2 -1
8 -6 2
(ii) Iftheeigenvaluesofd=|-6 7 -4/|are0,3,15,findtheeigenvectors
2 -4 3
of A and diagonalize the matrix 4. (®)
Or

(b) (i) Reduce the quadratic form 2x,x, + 2x,x; + 2x;x, into canonical form. (8)

1 -1 1

(ii) Show that the matrix |0 1 0| satisfies its own characteristic
2 0 3

equation. Find also its inverse. (®)

12. (a) (i) Find the equations of the tangent planes to the sphere X+ y2 +2° —4x -
2y + 6z + 5 = 0 which are parallel to the plane x + 4y + 8z = 0. Find also
their points of contact. (®)

(ii) Find the equation of the right circular cone whose vertex is (2, 1, 0)

semiverticle angle is 30° and the axis is the line s ; 2 = yT_l = % (®)

Or

(b) (i) Find the equation of the cylinder whose generators are parallel to

XY _ % and whose guiding curve is the ellipse 3x* + y* = 3, z = 2.

2 2 3 (8)

(ii) Show that the plane 2x — 2y + z + 12 = 0 touches the sphere X+ y2 +2
—2x —4y + 2z = 3 and also find the point of contact. (®)



Appendix C I-C.3

13. (a) (i) Find the envelope of i % =1, where the parameters are related by the

a
equation A +b =7 (®)
(i) Find the radius of curvature at any point of the cycloid x = a(0 + sin 6)
and y = a(l — cos ). ®)
Or
(b) (i) Find the radius of curvature and centre of curvature of the parabola
% = 4x at the point 7. Also find the equation of the evolute. (10)
(i) Find the envelope of the circles drawn upon the radius vectors of the
2 2
. Xy .
ellipse — +-=-=1 as diameter. ®)
a b
2 2 2 2

14. @) () Ifu=e”, show that %+ 2% L (a—”j AN (8)

ox*  9y? u|\ox dy

(ii) Test for the maxima and minima of the function f{x, y) = x3y3 (6-x-y).
(®)
Or

(b) (i) If Fis a function of x and y and if x = " sin v, y = " cos v, prove that
O’°F O°F | *F 9*F
T2t 27¢ |2t
ox dy du dv

®)

(i) Ifx* +y* +z* =2, show that the maximum value of yz + zx + xy is 7 and
2
the minimum value is —%. (®)

ala-x
15. (a) (i) Change the order of integration in the integral j I xydxdy and evaluate
it. 0 x%/2 (8)

dxdyd:
(i) Evaluate Jjj \/ = = for all positive values of x, y, z for
1-

-yt -z

which the integral is real. ®)
Or

x2y?

X4y

(b) (i) By transforming into polar coordinates, evaluate J.J‘ dxdy over

2

the annular region between the circles x* + y* = a* and x* + y* = b7,
(b>a). (3)

(ii) Find the area which is inside the circler » = 3a cos 6 and outside the
cardioid r = a(1 + cos 6). (®)
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SOLUTIONS

PART-A

A =MDM', where D is the diagonal matrix and M is the model matrix of the
required matrix 4

(0 O - -0

2 0 2
A=1| 0 2 1|; The quadratic form corresponding to 4 is given by
-2 1 =2

0,= 2x12 + 2x§ - 2x32 —4xx3 + 2x,%3 .

Equation of the sphere, whose center is (1, 2, — 1) and radius is 7, is given
by
=12+ -2 +@c+ 1)y =/ (1)
Sphere (1) touches the plane 2x—y+z+3=0 2)
. r = the length of the Lr drawn from (1, 2, —1) on the plane (2)
2-2-1+3 2

N I TN

2
.. Equation of the required sphere is (x — 1)2 + (- 2)2 +(z+ 1)2 =3
The given curve x> + y* — 4x + 2y — 8 = 0 is the circle (x — 2)* + (y + 1)* =
(13,
Radius of curvature of a circle = its radius = \/ﬁ at any point on it.

The right circular cylinder whose axis is the z-axis and radius is ‘a’ is that
whose guiding curve is a circle of radius ‘a’ in the xy-plane

. Its equation is x* + y* = &>

x cosec 0—ycot O=a (1)

Diffg.(I) w.r. t. ‘0", —x cosec Ocot O+ y cosec’ =0

ie., —xcos 8+y=0orcos 0:Z 2)
x

(™ using (2) in (1), we have
y
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2 2
X
2 2 2y 2 4ot ¥ =) =a
-y -y “
.. Equation of the required envelope is X - y2 =a
7. u=f(@,s, t),wherer=y—z,s=z—xandf=x-y

a_u_auar on ds Ou ot  Odu On

2

= e — = 3~
dx 9r dx OJs Ox Ot Ox ds ot
Ju  Ju on on du Ju

by, —m = — — — d —=—_" "

I v dy or ot o oz 8r+8s
Ju
Mo
ox

8. The problem is the same as the worked example 4.10 in page 1-4.41 of the
book “Engineering Mathematics (For semesters I and 1) — Third Edition”.

The letters x,, x,, x; must be changed as x, y, z and the letters y,, y,, y; must
be changed as 7, s, . Answer = 4.

9. _U Sf(x,y) dxdy , where D is the region bounded by the liney=x—1orx—y
= 1 and the parabola (y — 0> = 2 (x + 3)

2=2x+b
g (5, 4)

12 o

The shaded region is the region of integration D.

10. j a z
0

2 b4 2
rsin29d9dr=errjsin29d9:(—j ><2><l><—:7r
0 0 2 2 2

S

PART-B

11. (a) (i) C, E, of the given matrix
1 2 1 1-2 2 1
A=|16 -1 0]is| 6 —-1-4 0 =0
-1 -2 -1 -1 -2 -1-2
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(i)

ie, A2 +24% =124 =0 or A(A+4)(A-3)=0
The eigenvalues of the 4 are — 4, 0, 3.
When A=-4, the eigenvector is given by 5x, +2x, +x;=0and 6x, +3x,=0
ie, X,=(-1,2, 1)
When A = 0, the eigenvector is given by x, + 2x, + x; =0 and 6x, —x, =0
ie,X,=(1,6,-13)"
When A = 3, the eigenvector is given by — 2x; + 2x, + x3 = 0 and —6x, —
4x,=0
ie,X;=(2,3,-2)"
When A = 0 the eigenvector is given by 8x; — 6x, + 2x; = 0 and —6x, +
Txy—4x3=0
ie, X, =(1,2,2)"
When A = 3, the eigenvector is given by 5x; — 6x, + 2x; = 0 and — 6x; +
4x, —4x3=0
e, X,=(2,1,-2)"
When A = 15, the eigenvector is given by — 7x; — 6x, + 2x; = 0 and — 6x,
—8x;—4x;=0
e, X;=(2,-2,1)"

Diagonalisation of 4 is given by M~ 'AM = D or N'AN = D, where N is the
normalized model matrix given by

11. (b) (i)

/3 2/3 2/3
N=2/3 1/3 -2/3|; Verification can be done.
2/3 =2/3 13

O = 2x,x5 + 2x)%3 + 23X,

0 1 1
Matrix of the Q.F.isd=|1 0 1};
1 10
-1 1 1
CE.ofdis|1 -1 11]=0
1 1 -2

i.e., the C.E.is (A + 1)> (A—2) = 0;
the eigenvalues of 4 are 2, - 1, - 1

When A = -1, the eigenvector is given by — 2x, + x, + x3 = 0 and x; — 2x,
+x;=0

ie, X =(1,1, 1)
When A4 = -1, the eigenvector is given by the single equation x; + x, + x5
=0.



Appendix C I-C.7

Letus choose x; =0 and x, = 1, x,=—1.ie,X,=(1,-1,0)"
Let X; = (a, b. ¢)". X; is orthogonal to both X; and X,
atb+c=0anda-b=0

Leta=b=1,so thatc=-2 Lo X=(1,1,-2)
1 1 1
Model matrix M= |1 —1 1 |; Normalised model matrix N
1 0 -2

/43 1/42 1/4/6
isgivenby N=[1/33 —1/42  1/46
/3 0 —2/46

1 1 1
The orthogonal transformation X=NYi.e.,x, = f »n+ Eyz + %J@ 5

and x; = will reduce the

1 1 1 1 2
NE=EENT =t =Y ==Y
2 NG 1 NG 2 NG 3 NE] 1 NG 3
given Q. F. to the Canonical form 2y12 - y% - y32 .

I -1 1 -2 -1 1

(i) The C.E.ofA={0 1 0|is| 0 1-2 0 |=o.
2 0 3 2 0 3-2

ie, A2-522+51-1=0

We have to verify that 4> — 54> +54—1=0. (1)
(1 -1 1][1 -1 1 3 -2 4
A=|0 1 olj0 1 0l=|0 0 O0f;
2 0 3{|2 0 3 8 -2 11

1 -1 1][3 -2 4 11 -5 15
A=10 1 ol 0o of=|0 1 0
2 0 3|18 -2 11 30 —10 41

L.S.of (1)
11 -5 15 15 -10 20 5 =5 5 1 00
=l 0 I 0|-| O 5 0|+ 0 5 0|-({0 1 0
30 -10 41 40 -10 55 10 0 15 0 0 1

=R.S. of (1)

1l
S O O
S O O
S o O
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Hence Cayley-Hamilton theorem is verified
From (1), 4> =54 +51-A47'=0 A = A2 54451
3 2 4 5 5 51 [500 33 -1
ie,4'=10 1 0|-|0 5 0|+|/0 5 0/=|0 1 0
8§ —2 11| [10 0 15| [0 0 5 -2 -2 1

12. (a) (i) This problem is the same as the worked example 2.6 in page [ — 2.53 of
the book “Engg. Maths (For Sem I and II) Third edition”.

(i) The equation of the right circular cone whose vertex is (¢, B, 7), axis

XxX—0o - z—
is _ 2 b = Y and semi-vertical angle 6 is given by
n

/ m
P +m* +n){(x— ) +(y—B)* +(z—7)*}cos* 6

= {l(x =)+ m(y = B)+n(z =)y’
In this problem (¢, 8, = (2, 1, 0), ([, m, n) = (3, 1, 2) and 6 = 30°
.. Required equation of the cone is

14 {(x—2)2+(y—1)2+(z—0>2}x%

= B3(x-2) +1(y=1)? +2(z - 0)*}

e, 21 P+ )P+ —4x—2y+5) =203x+y +2z-T7)
ie,3x? + 19y + 1322 — 12xy — 8yz — 24zx — 14y + 562+ 7=0

(b) (i) LetP (xy,y;,z)be any point on the required cylinder.

Then the equations of the generator through P are

X=h _Y-hn_z74 _
2 2 -3
Any point Q on this generator is (x; + 27, y, + 2r, z; — 37)
Since the generator intersects the guiding curve, for somes,
We have 3(x, + 2r)* + (v, + 2r)* =3 (1)
and z,=3r=2 2)

From (2), r = %(z1 — 2) . Using the value of r in (1), we have

2 2 2 2
3{x1 L 2)} +{y1 NG 2)} =3

ie., %(3)(1 +2z - 4)% + é(3y1 +2z, - 4)° =3

ie., 3(3x; = 2z, —4)* + 3y, + 2z, - 4)* =27
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(ii) This problem is the same as the worked example 2.5 in page [ — 2.53 of
the book “Engg. Maths (For Sem I and II) Third edition”.

13. (a) (i) £+%=1,Whel‘ea2+b2:c20rb= ch—az
a

. The family of straight lines is s J == 1...(1), where ‘a’ is
the parameter. a ¢ —a
Diffg.(1) w.rt. ‘@’ =5+ —5 2 =0 @)
a (c"—a)
273 23 23, 213
+
From (2), i3: 2 yz 2 Of . 2 2y 2 : 2y Q)
a (¢"—-a) a ¢ —a c
1 [2/3 423 | /x2/3+y2/3
From (3), — = 7 and ——= 7 3)
a cx ¢ —a cy

Using these values in (1), the equation of the envelope is

x2/3 [x2/3 +y2/3 y2/3 x2/3+y2/3 |

+
C c

i.e., (x2/3 +y2/3)3/2

=cor x2/3 +y2/3 — 02/3

(ii) x=a(@+sinf); X =a (1 +cos @) and X =—asin O
y=a(l—cos 0); y =asinBand  =acos 0

B (& + %) _ {a®(1+ cos0)? + a* sin* 6}/ _ a’ (2 +2cos0)*?
P |xy—yx| |a2 cos (1 + cos 0) + a sin’ 9| a*(1+ cosh)

22 all 3/2
_ V2 a(l + cos6) =22 afl+cos6 or 4acos%

1+ cos@

b) (i) The parameter equations of the parabola y* = 4ax are
( p q p y

x=at’ y=2at,
X =2at, Y =2a ﬁzl_:l
dy x t
dzy_i(ﬂ);ﬂ__L 1 __1
E ~dt\dx)  dt 2 2at 2at’
( V2
1+j
1213/2 2
p= (1+y”) _ tl = 2a(l+ )"
Y

2at’
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If (x, ) is the centre of curvature at‘?’

_ ! 1 1
X =x- y”(1+y'2)=at2+—X2at3(l+—2)
y t 4

=2a + 3af’ (1)

_ 1 , 1

y :y+7(l+y2)=2at—2az3[1+t—2):—2at3 2)
2 X —2a 3 )_/

From (1), ¢ = ; From (2), £ = ——

3a 2a

—\2 _ 3
N . -2

Eliminating ¢ form these equations, we get (— l) = (x a) )
2a 3a

.. Locus of (¥, ¥) or the evaluate of the parabola is
27 ay2 =4 (x- 2a)3

(ii) The family of the circles drawn on the radius vectors of the ellipse as diameter
is given by

y

/_Wose,bsin 0)
=
X(x—acos @) +y(y—bsin 6)=0

i.e., ax cos @ + bysin O=x" +)” ... (1), where 0 s the parameter
Diffg. (1) w.r. t. ‘6", we get —ax sin 6 + by cos =0 2)

From (2), sin @ _ cos@ _ 1

by ax o f(ax)® + (by)

b
ie.,sin 6= % and cos@ = _~x
V(@x)” +(by) J(ax)? + (by)?

Using these values in (1), we get

2 2
((ax))2+ (2/))2 R (@) +(By) =5+’
V(ax)* + (by

ie., (ax) + (by) = (2 + %)

14. (@) () w=e";u,=ye” u, = y2exy

— — 2
u,=xe”; u, =xe

LS =u, +u,= o +y%)e?
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RS = l[ux2 +y?%]= L[yzezxy + 2=V (x? + )
u exy
RS=LS
(i) fx, ) =2y (6 —x—y); £, =y (185" —4x’ = 32%y); £, =x°(12y — 20y = 3y")
S =12 (36x — 12x% — 6xy); Sy = 36x%y — 8 Xy — 9xH%
fp=x"(12-2x-6y)
Stationary points are given by f, =0 and f, =0
ie,x)? (18—4x—3y)=0and x’y (12-2x-3y) =0
i.e., they are (0, 0), (0, 4), (6, 0), (0, 6), (9/2, 0) and (3, 2)
(3, 2) is the only stationary point which requires examination.
At(3,2),A=f,=—144;B=f, =-108; C=f, =162
AC-B*=11664>0and 4<0
. fix, y) is maximum at the point (3, 2)
(b) (i) x=eé"sinv; y=e“cosv

ad
=  si o = L, — =X +
F,=F.e smv+F,. e cosv=xF +yF; . = I y PN

d d
F,= (xa—x-k ygj(xe +F,)

= (WF, + yF,) + (" Fy, + 2xyF,, + y°F,) (1)
F,=yF,-xF, .. i=yi—xi
dv ox  dy
0 0
F =|y——x—|(JF. — yF
w (yax xayj(y Y~ YE)
= —(xF, + yF,) + (y*F, = 2xyF,, + x’F) )
Adding (1) and (2):

Fo,+F, =0 +)F, + F,) or e (F + F,)

_2x
F. .+ Fyy =e" (F,+F,)

(ii) Letf=yz+zx+xy and q)=x2+y2+zz—r2

.. The Lagrange’s auxiliary function is g =+ A¢

The stationary points of g are given by g, =0;g,=0;g.=0 and g; =0.

ie, (+z)+A-2x=0 (1)
Z+x)+A-2y=0 2)
x+y)+A1-22=0 3)
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and X’ + y2 +22 =/ 4)
+z z4+x x+ 2x+y+z
From (1), 2)and (3), —24= 2 F 22X _x+y _2xty+2)
X y z X+y+z
e, Qx+AYx=0; ie., (X x)a+n=0
szO orA=-1
When szo,(x+y+z)2=0, fe, ¥+ 4+ +2(y+yz+2x)=0
i.e., xy + yz + zx = — #* /2, which corresponds to the minimum value of
/-
WhenA=-1, y+z=2x, z+x=2y, x+y=2z
Ly-x=2(x-y); ie,3x-y)=0 . x=y
Similarly y=zand z=x
LX=y=z 2
S Whend=—1, 3x*=3y*=32=/ orx’ =)’ == 3
.. When A = — 1, the value f'= #*, which corresponds to the maximum
value of /.
a 2a-x
15.(a) () I= j j xy dy dx
0 x%/2

The problem is wrongly given. It ought to have been given as
a 2a-x

I= _[ .[ xy dy dx . The corrected problem is the same as the worked
0 ¥?/2

example 5.9, given in page 1-5.27 of the book.

(i) 7= J-J-J- dx dy dz

® O =[]

. The integral is real, when the region of space
/1 2

is bounded by the co-ordinate planes and the sphere x* + ) + 2> = 1.
This problem is the same as the worked example 5.12, given in page
1-5.14 of the book.

x2y2

>~ dx dy , over the region.
X +y

Putting x = cos 6, y = r sin 6, dx dy = r dr d6, we get
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I ” x* cos? 0sin6

) 7 dr d@  where R is the annular region shown
R r
b 21 b 20 0g
= [ [ 7 cos’osin*0 dr do =] r* ar j( 5 ) de
a 0 a 0

2n
%(b“ _a4)J~(1—c;s40)de=£(bz —ah)

0 16

(i)

r=a(1 + cos 6)

By symmetry, the required area =2 x area ABCDE

n/3  3acos@

area = ZJ. J- rdrdb
0 a(l+cosh)

3acosO
7r/3(r2 )
=2||—| db
I
0 a(l+cos6)

/3

j [9a% cos® 8 — a*(1 + cos 6)*] dO
0

/3

ic,Arca = @’ [ (8cos’0—2cos6—1)d
0

/3
a* | {4(1+ cos20) - 2cos0 - 1} dO
0

a* [25in26 - 2sin6 +30];° d6

a® (Zsinz—n— 2sin£+ 7'[) -0
3 3

az[\/g—\/g+ﬂ:]=ﬂ'a2



AppendixD
Model Question Paper I

B.E./B.Tech. DEGREE EXAMINATIONS
(First Semester)
(Regulations: 2013)

MATHEMATICS -1
(Common to all Branches)
Times: 3 Hours Maximum: 100 marks

INSTRUCTIONS

Answer ALL Questions

PART-A
(10 x 2 =20 Marks)

1
If4= { 5 4 } , find the eigenvalues of 4" and 4°.

o
.

a b
2. Use Cayley-Hamilton theorem to find the inverse of L d}

7
R converges to the

W | W

3. Use the definition to show that the sequence 1, i,
limit 2. 2

4. Give one example for each of absolutely convergent and conditionally
convergent series.

5. Find the radius of curvature of the curve x* + y* = 2 at the point (1, 1).

6. Find the envelope of the line X sece—ltanezl, where 6 is the
a
parameter.
o*u _ *u

7. Ifu=xcosy+ysinux, verify that =—.
dyox dxdy

o(u, v)

8. Ifu=2xy,v=x2—y2,x=rcos9andy=rsin9,ﬁnd .
oa(r, 0)
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2 2
9. Express the area bounded by x=0, y=0and x_2 + y_2 =1 in the first quadrant
a

as a double integral.

10. Change the order of integration in '”x ey dy dx.
0-—

PART-B
(5 X 16 = 80 marks)

11. (a) (i) Find the eigenvalues and eigenvectors of the matrix

2 2 0
A4=]12 1 1 3
-7 2 -3

1 3 7
(i) Verify cayley-Hamilton theorem for the matrix 4= |4 2 3| andalso
1 21

use it to find 4~ (®)
Or

(b) Reduce the quadratic form x,” + 2x,” + x3° — 2x,x, + 2x,x; to the canonical
form through an orthogonal transformation. Give also a non-zero set of values

(1, x5, x3) which makes this quadratic form zero. (16)
Jn+1-
12. (a) (i) Examine the convergence of the series (i) zn—p\/;
n
n
and (it 5+5
(i) X (5+5)
. . . 1 1 1 1
(ii) Examine the convergence of the series — - —+————+--- (6)
1.2 3.4 56 78
Or
xn—l 3n
(b) (i) Test the convergence of the series (i) z " and (ii) z e 5+5)
n .
. . 1 1
(ii) Test the convergence of the series 6)

j— + cee
2log2 3log3 4log4
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13. (a) (i) Find the radius of curvature of the curve x)* = a’(a — x) at the point

(a, 0). (®)

x2 2
(ii) Findthe evolute of the hyperbola — — <5 =1, treating it as the envelope
of its normals. b ®)

Or

(b) (i) Show that the measure of curvature of the curve \/7 \/7 =1 at any

point on it is ab/2(ax + by)3/ 2 ®)
(i) Find the equation of the evolute of the curve x = a(cos ¢ + ¢ sin ?),
(y=a(sint—tcost). ®)
. u  u
14. (a) (i) Find the equivalent of —— + — in polar co-ordinates. (8)
ox* 9
(i) Given thatx =7 sin @cos ¢,y =rsin Osin ¢ and z =r cos 6, find the value
o 20 02) ®
8(r 0,0)
(b) () Ifz=fu,v)whereu= X y2 and v = 2 xy, show that
0’ 0’z 9’z 82
Sl )| S @®)
ox® dy a

(i) Show that the minimum value of x* + y* + z> when ax + by + cz = p. (8)

dz dy dx

15. (a) (i) Evaluate m —

by the co-ordinate planes and the sphere x* + * + z* = 1 and contained in
the positive octant. ®)

, where V is the region of space bounded

(i) Find the area that lies inside the cardioid » = a (1 + cos 6) and outside the

circle r = a by double integration. ®)
Or
a Na' =y
(b) (i) Change the order of integration in _[ J- y2 dx dy and then evaluate
it. R (8)
(ii) Find the value of ”z dS, where S is the positive octant of the surface of
s

the sphere x + y* + 2> = &°. (®)
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SOLUTIONS

PART-A

1= -2
C.E.of 4 1is

— -1 2_ —6 = 1 — =
s 4_1—0,1.6.,/1 5A-6=0ie,(A-6)(A+1)=0.

. Eigenvalues of 4 are 6 and 2 — 1.
. - . 1
. Eigenvalues of 4 "and 4% are respectively 5 and —1 and 216 and —1.

C.E.ofA4is =0; i.e, A= (a+d)A+ (ad—bc)=0

a-2A b
c d-2

By Cayley-Hamilton theorem A - (a+d)A+ (ad—bc) =0
sA—(a+d) I+ (ad-bc)d " =0

1

ad — bc

o ] 1 a+d 0 a by 1 d -b
Lo A= d —be 0 a+d) \¢c d) ad—bc|-c a

_2n-1
n

A=

{(a+d)I - 4)}

357
a}=L>,2,=, = a,
@ity

1 1 1
—2|=‘2———2‘=—<e, if n> E; If we choose € = 0.01, n can be
n

found as 101, 102, ... .. {a,} is cgt. to the limit 2.

. 1 1 1 . . 1 1
(i) Zun=l—5+2—2—2—3+-~-lsalsocgt,slncez|un|=1+5+2—2+~~°<>,

o . . . 1
which is a geometric series with r = 3

I 1 1 . ..
(i) =]—-—+———+-.. is conditionally cgt;
Zun 237y ycg

1 1
since Y, |u,,\=1+5+§+--- is dgt.
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3 2 ’
3 -
5. X+y'=24’+4=0 y= __x3 3 y7 = 3o =y)

y y!

’ ’ (1+y/2)3/2 \/5
0N y=-L0Dq,n="6r="—" 7 =7

”

3
6. ﬁsec@—ltanQ:l; isecO—tanO—lsecz(9=0i.sin(9=2
a b a X
b2 2
Using in (1); === () *=(@): ie, Vb5 - (@) =ab
a
2 2
1.e., x__y_=1
at b

2

. Ju .
7. u=xcosy+ysinx; a—:cosy+ycosx;—=—s1ny+cosx
X X

2

. . . ’u o%u
— =—xsin y +sin x; =—sin y+cosx .. =
dy dx dy dyox oxdy
3 I(u, v) _ du,v) d(x,y) I N LA
a(l", 9) a(x> y) a(l", 9) Y Vy ‘ Yr Ve

2y  2x
2x =2y

cos@ —rsinf

sin@ rcos@

= 4(x2 + yz) . r(00320 + sin’ 0) = 453

= et
9. A7) i a=[ [ acav=][acdy=] [axay
\j_/A OAB 00 00

y
oo X1
xe® dy dx='H-x ey dx dy
00

10. T
0

O —y =

(>, ¥)
= ]:Txe_xz/y dx dy 0 X
0y
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PART-B

2-1 2 0
11.(a) () CE.of A4is | 2 1-42 1 [=0; ie, > — 134 + 12 = 0;
-7 2 3-2
ie. A+4)(A-1)(A-3)=0

. Eigenvalues of 4 are —4, 1, 3.

When A = —4; the eigenvector is given by 6x, + 2x, = 0 and 2x, + 5x, +
X3 = O

Solving, we get X; = (1,3, 13)"

When A = 1; the eigenvector is given by x, + 2x, = 0 and 2x, + x; =0
Solving, we get X, = (2, -1, —4)T
When A =3; the eigenvector is given by —x; +2x, =0 and 2x, —2x, +x; =0
Solving, we get X5 = (2, 1, 27,
(ii) Worked example in the book.
(b) Worked example in the book.

12. (a) (i) (1) worked example in the book.
(2) worked example in the book.

(ii) Worked example in the book.

n—1 n n

X Uyt u n-2 X 1
b) (i) (1 E u, = E ; . ==.
( )() ( ) n2" u, (n+1)2n+l xn—l 2 1

un . . . .
1. lim [ HJ:%. .. Byratiotest, Zun iscgt.ifx<2anddgt.ifx>2.

1 1 1.
When x = 2, zun = ZE Oraz;ls (D)

3" Uy B 3n+1 2n+3

3
(2) zu"222n+3; u, _2n+4>< 3n :5

n—e | U, 2

. lim [ynH ] _3 >1 .- Zun is dgt. by Ratio test.
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oo -1 n+1
(ii) Let the given series be Zm = 2{(—1)'”rl “u,

n=1

lim (u,)= lim S S =0
n— oo n—e| (n+1)log (n+1)

1 1
T e ) log (n+2)  (n+1)log (n+1)

u <0, for all n.

.. By Leibnitz test, the given series is Cgt.

3
a , a
13. (a) (i) y2 = a2 (; - 1], S 2yy = —x—z

3
a dx
i.e.’ 4 = - .. (y,) a =oco (| — = 0
y szy (a,0) (dy j(a’o

2 2
2 y,ﬂz_i{ z+2xy§}__g

' dy B a a’y2 a dy
a 4+ x2)2 1 a
- x” _E 2
a
(ii) Equation of normal at (a sec 6, b tan ) is e by _ a* +b* (D
secO tan@
Diffg w.r.t 8; —ax sin 6— by cosec’ =9 Q)
N3
From (2), sin® 6 = b or sin 0 = %
ax (ax)

(ax)?® — (by)*

2/3 2/3
Af(ax)™ = (b
. cos 0= and cot 6= ( ) ( y)

(ax)1/3 (by)m

Using these values in (1);

a3 /(ax)z/z — () = )3 (@) = () = + b

e, [(@) = (by)P)P2 = + b2
i.e., the equation of the evolute is (ax)** — (by)** = (a* + b
(b) (i) Worked example in the book.
(ii) Worked example in the book.

2/3
)
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14. (a) (i) Worked example in the book.
(ii) Worked example in the book.
) @) z=fu, v);u=x"— )% v="2xy

Zx

=z, 2x+z,-2y;
zo=2z,+2x{z,, - 2x+z,,- 2y} + 2y{z,, - 2x + z,,, - 2y}
=2z, + 45’2, + 8xy 2, + 4’ z,, (1)
z,=z,- (-2y) +z,- 2x
z,,= 2z, 24z, 2y)+2z,, - 2x} +2x{z,, - (-2y) +z,, - 2x}
=-2z,+ 4y2 Zyy — XY 2, + 4x22w 2)
Adding (1) and (2);
Zo+ 2y = A7+ 3002, + 407 +57) 2, = 467 4)) (2 + 20,

(i) Consider g=f+ 1 ¢, Wheref=x2 +y2 +2z*and o=ax+by+cz—p
The stationary points of g are given by g, =0,g,=0,g,=0,2,=0
ie,2x+Aa=0;2y+Ab=0;2z+ Ac=0and ax + by + cz = p.

2x 2y 2z 2ax+bytcez)  2p

"'%za P T Y
pa__ pb __ pc
ARD YWD YWER Wt
rye  p

Minimum value of = (Zaz) = JERF YRR

15. (a) (i) Worked example in the book.

(ii) Worked example in the book.

Mb)@ = J j y? dx dy ; Area of integration is bounded by x = 0,
0

—a

X = \/az -y or ¥ +1y'=d% y=-aand y = a. It is shown in the
figure.
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On changing the order of integration,

a* —x*

(i)

X

Projection of the spherical surface lying in the +ve octant in the x,, -plane
is the quadrant of the circular region OAB.

Converting the surface integral into a double integral, we get

[2 2. 2
I= ”z%dxdy,

OAB

where gDEx2+yz+zz—a2

7[612 T 3
4

= ”Z.dedy: jfa'dXdy:a'TZ—a.

OAB OAB



AppendixE
Model Question Paper II

B.E./B.Tech. DEGREE EXAMINATIONS
(First Semester)
(Regulations: 2013)

MATHEMATICS -1
(Common to all Branches)
Times: 3 Hours Maximum: 100 Marks

INSTRUCTIONS

Answer ALL Questions

PART-A
(10 x 2 =20 Marks)

300
1. Find the sum of the eigenvalues of 4, if A= |8 4 0
6 25

1 2
2. Find the matrix B = 4* — 44> — 54> + 4 + 21, when 4 = {4 3} , using

Cayley-Hamilton theorem.

3. Give an example of a sequence which is bounded and monotonic. What is the
limit to which it converges?

1
4. Show that the series 2 D" = s convergent.
n

5. Find the curvature of the curve y = log sec x at any point on it.

6. Find the envelope of the line y = mx+\/azm2 +b*, where m is the
parameter.

7. Ifu=(@x-y)(y—2) *(z—x), prove that a—u+a—u+a—u=0,
ox dy oz
8. Expand ¢ sin y in a series of powers of x and y as far as the terms of the
second degree.
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0 0o

. .. 1 _
9. Change the order of integration in '” —e Ydydx.
0 x

10. Express the area that lies outside the circle » = 2 cos 6 and inside the circle
r =4 cos 0 as a double integral.

PART-B
(5 x 16 = 80 Marks)

11. (a) (i) Find the eigenvalues and eigenvectors of the matrix

1 -4 -7
A=|7 -2 -5 ®)
10 -4 -6
2 -3 1
(ii) Showthat4=| 3 1 3 | satisfies the equation 4(4 +2) (4—-1)=1
-5 2 -4
®)
Or
2 1 -1
(b) Diagonalise the matrix 4 = | 1 1 —2| by means of an orthogonal
-1 -2 1
transformation. Verify your answer. (16)

12. (a) (i) Examine the convergence of the series

@ Y sin [lj and (ii) ¥ — (5+5)

n 1+n*

n

(ii) For what values of x, the series z (-p" '

. is convergent? (6)
+ X

Or

(b) (i) Test the convergence of the series

n n 1
@) Y, 5= (x>0) and (i) )y

nl n (log n)* (5+5)
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(ii) Test the convergence of the series z (-t (Wn+1- \/; ). (6)

13. (a) (i) Find the equation of the circle of curvature of the parabola y2 = 12x at the
point (3, 6). (3

2/3

(ii) Find the evolute of the curve x¥* +1773 = ¢ ®)

Or
A . 0
(b) (i) Find the radius of curvature of the curve x = a|log| cot ) cos O |,
y =a sin 0 at the point ‘6. ®)
(i) Find the envelope of the family of lines R % = 1, where the parameters

a
a and b are connected by the relation ab = ¢*. ®)

14. (a) (i) Iff=f(y_x,z_xj,showthat PR A X A S
xy zx ox dy ady

(i) Find the extreme value of x* y* (12 — 3x — 4y). (®)

(b) (i) Find the Taylor's series expansion of (x* y* + 2x%y + 3x)?) in powers of
(x +2) and (y — 1) upto the third powers. ®)

(ii) A rectangular box, open at the top, is to have a volume of 32 c.c. Find the
dimensions of the box, that requires the fast material for its construction.
(®)

a atsa -y
15. (a) (i) Change the order of integration in j J xy dxdy and then
0

evaluate it. ®)
(ii) Express the volume of the sphere x> + y* + z* = ¢* as a volume integral
and hence evaluate it, 8)

Or

(b) (i) Find the area included between the parabolas y2 =4 gx and x> = 4 by,
using double integration. ®)

(ii) Change the double integral J ‘[ xzdx dJ; into polar co-ordinates and
0y Xty

then evaluate it. ®)
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SOLUTIONS
PART-A
300 3-4 0 0
1. A4=|8 4 0|;CE.ofd4is| 8 4-2 0 |=0;
6 2 5 6 2 5-4

e, (3= @-1)(5-21)=0.

-, E’ values of 4 are 3,4, 5. . E’ values of 4" are l, l, l
3'4°5
. o 47
~. Sum of the eigenvalues of 4~ = —.
. 1- 2 . 2
2. C.E.ofAis =0; ie, A" —41-5=0
4 3-1

By C.H theorem, 4> — 44 — 51=0

A4 5P+ A+ 2= A (A - 44 -5+ A+ 2]

oL JE IR

1 111 . . .
3. 1,—,—,—,—.---; The sequence in bounded, as |a,| < 1; It is monotonic
2 4 816
decreasing. The limit of the sequence is 0.

4. Let Y (-1 u, =Y (D" l;
n

1 1 1 1
U -y = = <0. forall, | =lim|—|=0
n+l n n+1 n I’l(l’l+1) ,,I_I}L(u”) nl_I)ll(nj

.. By Leibnitz test, Z(_l)"‘l LA cgt.
n

5. y=logsecx; y' = -secx tanx = tan x; y” =sec’ x

S€C X

B (1+y/2)3/2 B (1+ tan2 x)3/2

” 2
y S€C X

[2 2 .2 . .
6. y=mx+qa m +b", 1.e.(y—mx)2=a2m2+b2; Le., (xz—az)m2—2xym+

()/2 —b*)=0.Thisisa quadratic equation in m.

=sec x C=cosx

. The envelope is 4x)” — 4(x> — a*) (> = b*) =0
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2 2
ie. a2y2 + b7 = a*b’ or —+ Z—z =1
a

7. u=x-y) (-2 E-x); g—u =0-29CE-x-x+t))=0-2)@+z-2)
=y’ -2 - 2x(y—2) *

Similarly, a_u =X 2y(z — x); a_u =x* —y2 -2z(x-y)
ay oz

Ju
M 0-2%0=0
ox

8. f=e'siny;f,=€"siny;f, =€ cosy;f, =€ siny;f,, =€ cosyf, =€ siny.
A0, 0)=0;£(0,0)=0;£(0,0) =1, £, (0,0)=0; £, = 1/, = 0.
1
S y) =10, 0) + 77 8. (0,0)= - £,(0,0)

¥ % 21 (0,0) + 2y £, (0,0)+ 2 £,,(0, 0)} +++-

.o 1 1
soesiny= Fy+—2xy+---

2!
y
9. ]fofle_y dy dx = ]ij‘le_y dx dy ©.5) (x1,¥)
0x Y 00
0 X
4cosO A (r2, 6)
10. A=”_/[2 [ rdr ao [ 30) «
0 2cos6 '

PART-B

11. (a) (i) Worked example in the book.
2-A -3 1
@) CEof 4is | 3 1-2 3 [=0; ie. A* + 22 - 21 = 0;
-5 3 —4-2
e, AA+2)(A-1)=0

By Cayley-Hamilton theorem, A(A + 21) (4 — 1) = 0.
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(b) Worked example in the book.

12.(a) () (1) Zun = Z’sin2 (%) Choose zvn = ZL

n2

. 2 . 2
fim | 2 | = gim {SR AU IS0 Ly
n—eo\ V, n— oo (l/l’l) 6—0 0

zun and Zvn converge or diverge together.

zvn = zniz is cgt. .. By comparison test, Zun is also egt.

o o

2) Zun :z +n 4;Ju(x)dx=J- x dx =%°1Ji

t . 2
o onputting x” = ¢

1+n* Y 1+ x* 1+
1 - 1

:—(tan’lt)l S (LG

2 202 4) 8

=3

Since Ju(x)dx exists, Zun is cgt, by integral test.
1

(ii) Worked example in the book.

(b) i) (1) Worked example in the book.

o

| -
@ Yy = Y ———: Ju(x)dr =
Zn(1og n)* I {

@
1 yz

]
x(log x)*

on putting log x =y
Ve

Since ju(x) dx does not exist, Zun is dgt, by integral test.
1
(ii) Worked example in the book.
13. (a) (i) Worked example in the book.

(ii) Worked example in the book.

Mb)@ x=a {log (cot gj — Cos 9}
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. 1 cosec’ 6/2 . 1 . acos’ 0
X=a|-——————+sinf |=a| ———+sinf |=——
2 cotB/2 sin sin O

y=asin 6, j/=acos0;y’=l,=—tan9

X
d do 5 —sin 6 sin 0
y” =—(~tan 8)-— = —sec” 0- =
do dx acot’ 6 acos* 0
72~3/2 4
. p:%:se(ﬁe-a?o—sezacote.
y s

() Z+2=1 whereab=¢* ie, T4+2 o
a b a cz
i.e., the given family is y a* — *a+ *x =0, where ‘@’ is the parameter.
This is of the form 4 &’ + Ba+ C = 0.
.. The envelope is B>-44C=0,ie.,c*— 4czxy =0

ie., 4xy = &

14. (a) (i) f=Ar,s), where r = i

Xy y X zX X z

& _of o of os 1 ., 1 o .
dx or 8x+8s ax_xzfr xzfs S Se= s

S_ Ly 2,
ay—fr( yzj’az_zz Jfo Y py=—~fandz =1

LY X fe=f—fi— .+ f,=0.

(i) fx,y)= X y2(12 —-3x—-4y)= 12)c3y2 —3x* y2 - 4x3y3
£,=36x° — 12007 — 122, f,= 24x%y — 6x'y — 1257
Jo=T2x V= 36xH7 — 24x)°; Jo= 72x%y — 24x%y — 36 x%)*
£y =24 — 6x* - 241y,
The stationary points are given by /., =0 and f,=0
ie., x’y?* (36 — 12x — 12y) = 0 and 6x°y(4 —x — 2y) =0

Solving, we get the possible stationary points are (0, 0), (0, 2), (4, 0),
(0,3),(3,0)and (2, 1).

At all points except (2, 1), AC — B> = 0, which requires further
consideration.

At the point (2, 1), 4 =48, B=-48, C=-96 .. AC—B*>0and4<0
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.~ flx, y) is maximum at the point (2, 1) and the maximum value of
fix,y)=16.
(b) ) Worked example in the book.
(ii) Worked example in the book.
15. (a) (i) Worked example in the book.
(ii) Worked example in the book.

(b) (i)
y
X2 = 4by B P
A
0 X
Kyz = dax
4
The point of intersection of the two parabolas in given by 1;)2 =4ax
i.e.x=0andx’ = 64 ab® or x = 4a'"” b*” and
y=0 y=4" . pl
4423p273 \/@
Required area = J.J‘ dx dy = J J- dx dy
04PB 0 V2 /4a
4a2/3b1/3
= | faby -y raaydy
0
3 402/3 b1/3
2_y
=[4b ¥ S -
[ 7 3 12a
0
_ A prgape 84 2y 10,
3 12a 30
(i)

x=aorr=asec o,
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/4 asec
/= j rcos@-rdrdo
= —_—
00 r
/4 /4

= jcos 9-[r1§mce J‘adez%.
0 0
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