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 Preface xiii

Engineering Mechanics, one of the oldest branches of physical science, is a subject of immense importance. 

Although it is taught at an earlier semester of engineering, its foundation is rooted in the two other fundamental 

subjects—applied mathematics and physics. Generically, Mechanics is a subject that deals with the action of 

force(s). It is broadly classified under Statics and Dynamics. While the former deals with the action of forces on the 

rigid bodies at rest, the latter deals with motion characteristics of the bodies when subjected to force. The present 

text includes preliminary concepts of Strength of Materials which is basically an extension of Statics wherein the 

internal behaviours of the materials are analyzed when subjected to load, an area not considered in the purview 

of Statics. It would not be an exaggeration if Mechanics is envisaged as the ABC of Engineering Education, 

irrespective of the discipline or specialization. Its wide range of application potential—ranging from nature to 

modern creations, encapsulating a wide spectrum—rightly justifies its candidature as one of the most proliferated 

subjects with universal applicability. 

The main objective of writing this book is fundamental-concept building combined with strong analytical and 

problem-solving abilities that would form the backbone of many other subjects in higher semesters. It is, therefore, 

extremely important to emphasize on the basic issues to develop a solid foundation, particularly at the early-stage/

years of engineering education.

The present text is an endeavour towards this goal by offering the students a textbook on a first course in 

Mechanics in a most comprehensive manner. Plenty of textbooks on this subject are available in the market. 

However, these books include several advanced topics, which sometimes become too difficult and confusing for  

students to understand. Further, in most of the cases, Strength of Materials is normally covered by a separate 

text. Interestingly, the West Bengal University of Technology (WBUT) has modified the course curriculum and 

Engineering Mechanics is considered at the very first semester that includes mechanics and basics of strength 

of materials. We, therefore, felt the need to write a textbook that would exclusively conform to the syllabus of 

WBUT.

The West Bengal University of Technology has emerged as a promising technological university with over 

90 odd affiliated institutions to its credit, poised to foster technical education in the state of West Bengal. These 

institutions follow a common syllabus in the first year, irrespective of specialization; and introductory mechanics 

is taught at the very first semester. This creates difficulty for the beginners since they need to go through several 

books to extract what would exactly serve their purpose.

The present approach is to provide the students a textbook that would guarantee concept building and equip 

them with problem-solving ability. The present text will be highly helpful to understand the subject in its true 

spirit. 

This book is primarily meant for the first-semester students of all disciplines pursuing BTech. under WBUT. 

However, the national scenario shows that similar types of courses are also offered by several institutions and 

universities in other states as well. Thus, the present book is not only confined to the students of WBUT; rather its 

appeal is generic. Further, students pursuing diploma courses can also benefit from this text. Moreover, the topics 

discussed and associated problems and questions framed would be extremely helpful in the preparation for various 

competitive examinations. 

Preface
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Salient Features
• Complete coverage of the WBUT syllabus (2010 Regulation)

• Lucid explanation of Kinetics and Kinematics of Rigid Bodies 

• Concepts of Vector Algebra have been amply supported by illustrations and vector diagrams

• Practice questions and solved examples provided at the end of each chapter 

• Model Question Papers based on WBUT pattern

• Addition of Solved 2013 and 2014 Question Papers

• Pedagogy includes

 o 315 Illustrations

 o 135 Multiple-choice questions

 o 140 Short answer type questions

 o 225 Solved examples

 o 145 Numerical problems

Chapter Organisation of the Book 
The entire content is divided strictly as per the syllabus of WBUT. Chapter 1 highlights the scope and application 

potential of the subject, its purview, history, basic idealisation of the situation and the units. The concept of 

idealisation is very important without which the entire analysis would be in vain.

Chapter 2 discusses fundamentals of vector algebra. Although vector algebra comes under the purview of 

Applied Mathematics, it is mandatory to recapitulate the same since there is a growing need to follow the vector 

approach. It is the essence and a prerequisite in the study of Mechanics. Interestingly, the various vector operations 

are explained in the context of Mechanics to justify their relevance.

In the subsequent chapters, the basic approach is fully explored to study force analysis in two-dimensional 

(Chapter 3) coordinate frames. In addition to the vector approach, scalar approach has been adopted too, so that 

students can trade off between the two. Clear elucidation is provided to distinguish equilibrium of particles from 

rigid bodies in Chapter 4. The study of Mechanics in majority of the cases is based on the premise of condition 

of equilibrium.

Chapters 5, 6, along with Chapter 7, discuss the major topics of Statics—Centre of Gravity, Friction and 

Moment of Inertia. Additional emphasis is given to them with quite a good number of solved problems and almost 

an equal number of problems provided as an exercise. Moreover, one particular problem is solved by several 

methods. This is one of the key features of the text. 

Utmost care has been taken in other areas, namely, Dynamics and Strength of Materials in Chapters 8 to 

14. Since the coverage of Strength of Materials is confined only to basic definitions of Stress and Strain and 

their associated properties, these are rightly described. Moreover, Stress–Strain diagram for ductile material is 

meticulously investigated and results or trends are illustrated in the right perspective. However, quite a good 

number of problems have been solved involving basic Stress–Strain.

Similarly, emphasis is laid on Newton’s Law of Motions and D’Alembert’s Principle in Chapters 11 and 12.

Projectiles are covered in Chapter 13. And finally, work, power and energy are discussed in  Chapter 14.

At the end of each chapter, adequate questions (both subjective and multiple-choice questions) along with 

sufficient numerical problems are provided to accustom students with different question patterns and enable them 

to practice the same in order to grasp the subject in the right spirit. The answers to multiple-choice questions and 

numerical problems are provided immediately after the end of chapters.
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1
Introduction

 1.1 WHY DO WE STUDY MECHANICS?

If we turn around our eyes to the several creations of civilizations like that of Pyramid of Egypt to Eiffel 

Tower of Paris; Tajmahal of Agra to Sydney Harbor; Howrah Bridge to Tirupati Temple, we would hardly 

find any item that is beyond the purview of mechanics. Astonishing! Let us take few more examples. Consider 

tables and chairs of our drawing room; a building and a factory shed; an automobile and an aircraft; a bicycle 

and a three wheeler; a bridge and a TV or mobile tower; a lock gate and a dam; a robot and a human being; 

a column and a jack and so on and so forth. All these aforesaid applications have had their own intended 

objectives; still these have commonalities from the mechanics point of view. Although these are only a few, 

there is no dearth of such examples. It is therefore quite interesting and imperative to study this subject which 

has immense application potentials and form the backbone of engineering study irrespective of specialization. 

The authenticity of such credentials can be verified as the readers will navigate through various topics of the 

text. It would not be an exaggeration to say that even people from all walks of life ought to study a little bit 

of mechanics which is so versatile and has got immense potential to its credit.

 1.2 WHAT IS MECHANICS?

It is one of the oldest branches of physical science and perhaps the most powerful that deals with the action 

of forces on bodies that are either in rest or in motion.

The subject has proliferated to a great extent to emerge as one of the most prominent and fundamental engineering 

field with wide diversifications. Essentially, mechanics is classified into Solid Mechanics and Fluid Mechanics.

 Solid mechanics has got two broad domains − namely, Statics and Dynamics.

 While Statics deals with bodies under rest, Dynamics deals with bodies under motion. Statics is further 

classified as rigid body mechanics and deformable body mechanics. While the former deals with physical 

bodies that do not manifest any changes in its dimension when subjected to external forces, the latter deals 

with bodies that exhibit some kind of deformation under load. Dynamics is also categorised as kinematics 

and kinetics. Kinematics involves various attributes of motion of a particle like position, velocity and 

acceleration but without regard to the force that causes motion. It is kinetics where forces find place for 

necessary analysis.

 Like solid mechanics, fluid mechanics also has got two wings titled fluid statics and fluid dynamics 

depending on whether fluid is at rest or in motion. Similar classification of fluid dynamics is also made as 

fluid kinematics and fluid kinetics. Further classification of fluid dynamics stems from the fact whether fluid 

is viscous or not and hence it falls under the category of viscous fluid flow or non-viscous fluid flow. Another 

approach to classify fluid flow resulted from the consideration of whether the fluid density remains unchanged 

or not and hence it is categorised as incompressible or compressible fluid flow respectively. 

 Few other emerging areas of mechanics that have come into existence and got adequate attention in recent 

years are fracture mechanics, tribology, computational fluid dynamics, etc. 

CHAPTER



1.4 Engineering Mechanics

 In this book, the focus of discussion is solely confined to solid mechanics and hence any further attempt 

to deal with fluid mechanics is beyond the scope of this text.

 1.3 FUNDAMENTAL IDEALISATION

Whenever it is required to analyse any physical system (such as a structure, an automobile, a power plant), it is 

imperative to develop a model that would describe the behaviour of the system. This model may be of any type 

that is suitable for this purpose (a graphical model, a mathematical model, a physical model, etc). The real life 

situations are so complex that it is almost impossible to model it keeping its each and every aspect identical to 

that of the actual situation. Further, the actual predictability of behaviour of such systems is too low. Under these 

circumstances, it is prudent to simplify the scheme while modeling such systems for the purpose of analysis with 

a pledge that such simplification or idealisation would not lead to inclusion of error in the result of analysis so as 

to cross reasonable accuracy limits. Nevertheless, such an idealisation would reduce the effort, make it amenable 

for analysis and form the foundation of design. This idealisation or simplification of the physical systems which 

essentially comprises several members (rigid bodies) that are constrained suitably and are under the action of external 

loads and reactions from supports, and maintain equilibrium is the fundamental premise of study of mechanics.

1.3.1 Continuum

A definite quantity of matter can be decomposed to several small elements that can be further divided to atoms 

and molecules. The behavior of these individual entities varies widely from each other and it is too complicated 

a situation to measure their various attributes individually. It is the aggregation of all such properties that is 

manifested by the body as a whole. It is therefore worthwhile to consider the average of different attributes 

of these entities to represent the gross behavior of the body. This eventually leads to the consideration that 

the matter of body is the collection of uniformly distributed identical elements. Such description of matter is 

called continuum.

1.3.2 Space

Space is a geometric region in three-dimension that extends in all directions and is occupied by bodies. The 

position of a solid body is described in space by a three-dimensional coordinate system. 

1.3.3 Time

Time is the measure of duration between successive events. The unit of time is second which is a fraction of 

the period by the earth’s rotation, i.e., 1

86400
 of an average solar day.

1.3.4 Rigid Body

Statics, as defined earlier, deals with analysis of force on rigid bodies under rest. A rigid body is a hypothetical 

consideration which implies that it will not undergo any deformations under load. It may be a continuous 

member or collection of several members. A finite body when subjected to external forces must undergo some 

form of deformation, however small it may be. This deformation is accompanied by stress induced in the 

body which is manifestation of resistance offered by the body as a consequence of applied load. The amount 

of deformation and hence the stress induced are the properties of materials that characterise its strength. Such 

behavior, although a reality, is complex to analyse. However, there are ample situations where the deformation 

pattern and the amount are too small to affect the results. This led to simplification of the analysis, assuming 

that bodies do not deform under load. These are what is called rigid bodies and form the basis of statics. 

Such consideration should only be made without much loss of accuracies. Nevertheless, it is the mechanics of 

deformable bodies where the strength of the materials are dealt with.
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1.3.5 Particle

A body of negligible dimensions but having a definite mass concentrated at a point is called particle. Strictly 

speaking, such a consideration is absurd in the sense that the mass of a body is not concentrated at a point; 

rather it is distributed over the entire space it occupies and hence definite mass of matter must occupy a finite 

space. Mathematically, above definition can be considered as when the volume approaches zero, entire mass 

is concentrated at a point. But when the size of bodies is so small compared to its range, such consideration 

would lead to simplification of the problem without any gross error and the body is considered as a particle. 

For example, a bullet or a piece of stone is regarded as a particle following the above logic.

 Just like entire statics is based on the analysis of force on rigid bodies, the study of dynamics deals with 

the particle.

 1.4 FORCE

It is an external agency that causes disturbances to the existing status of a body. In other words, it is an 

action on the body that tends to change the state of rest or the motion of the body. It is a vector quantity and 

it is completely defined by its magnitude, direction and point of application.

 Sir Isaac Newton developed the fundamental laws of mechanics for the motion of a particle. The concepts 

of space, time, and mass are absolute, independent of each other in Newtonian Mechanics. 

 It is the Newtonian Mechanics that is the cynosure of present study. 

 It is to be noted that

  Newtonian Mechanics deals with Forces

  Hamiltonian Mechanics deals with Impulse and Momentum 

  Langrangian Mechanics deals with Energy

1.4.1 Newton’s 3 Fundamental Laws

Newton’s First Law states that a particle either remains at rest or continues to move in a straight line with 

a constant velocity provided that there is no unbalanced force acting on it (resultant force = 0).

Newton’s Second Law states that the acceleration of a particle is proportional to the resultant force acting 

on it and its direction is in the direction of this force.

 Thus mathematically

  F = ma (1.1)

 Here F is the force that causes an acceleration of a to the body of mass m. 

Newton’s Third Law states that the forces of action and reaction between interacting bodies are equal in 

magnitude, opposite in direction, and act along the same line of action (collinear).

 All the three laws in combination provide the fundamental consideration of statics as well as dynamics. More 

precisely, Newton’s first law provides the basis for statics where as it is the second law that governs the dynamics.

 Critical investigation to the second law reveals that first law has been derived from the second law. In the 

absence of any unbalanced force (F = 0), the particle will maintain its status quo of motion (ma = 0) or it will 

maintain its status of rest. Thus when there is no external unbalanced force, the body will be in equilibrium. 

1.4.2 Newton’s Law of Gravitation

Newton’s Law of gravitation states that

  F G
Mm

r
=

2
 (1.2)

where, F = mutual force of attraction between two particles

  G = universal constant known as the constant of gravitation
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  M, m = masses of the two particles

  r = distance between the two particles

 If we introduce the constant

  g
GM

r
=

2
 (1.3)

and let M = mass of earth

  m = mass of a particle

  r = radius of earth

  g = acceleration of gravity at earth’s surface

then from Eq. (1.3) we get

  G
gr

M
=

2

 Substituting in Eq. (1.2), we get F
gr

M

Mm

r
F mg= Ê

ËÁ
ˆ
¯̃

fi =
2

2

  F = mg

 Using F = ma, at the surface of the earth, we get a = g

  F = mg

  W = mg (1.4)

g is dependent upon r.

 1.5 DIMENSIONS AND UNITS

A dimension is a physical variable used to specify some characteristic of a system. Mass, length and time 

are examples of dimension. A unit is a particular amount of a physical quantity. For example, time can be 

measured in second minute, hour, etc.

 The dimension mass (M), length (L) and time (T) are considered to be basic dimensions, from which other 

dimensions are derived. For example, the dimension of velocity is LT−1, and acceleration is LT−2.

 In mentioning a unit, it is recommended that small letter (lower case) be used when abbreviated, and small 

letters when expanded. For example, the unit of time is s or second, of length and of m or metre. But when 

a unit is named after a person, capital letter is used when abbreviated, for example, Newton (N), Pascal (Pa), 

Watt (W). Multiples in powers of 10 are indicated by prefixes, which are also abbreviated. It is internationally 

accepted to use the prefixes given in Table 1.1.

 Dimensions are those terms which are used to characterise physical qualities. Common examples of 

dimensions include mass M, length L, time t, temperature T, force F, etc. The reason why dimensions are 

Table 1.1 SI Unit prefixes

 Multiple Prefix Abbreviation Multiple Prefix Abbreviation

 10 deca da 10−1 deci d

 102 hecto h 10−2  centi c

 103 kilo k 10−3 milli m

 106 mega M 10−6 micro m
 109 giga G 10−9 nano n

 1012 tera T 10−12 pico p

 1015 peta P 10−15 femto f

 1018 exa E 10−18 atto a

r

F

–F

m

M
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important in engineering analysis is that any equation which relates physical quantities must be dimensionally 

homogeneous. By dimensionally homogeneous we mean that the dimensions of terms on one side of an equation 

equal to those on the other side. Equations relating physical quantities which do not fulfill the condition of 

dimensional homogeneity are not correct.

 In order to make numerical computation with equations involving physical quantities, there is the additional 

requirement that units, as well as the dimensions, be homogeneous. Units are those arbitrary magnitudes and 

names assigned to dimensions which are adopted as standards for measurements. For example, the primary 

dimension of time may be measured in unit of second, minute, hour, etc.

1.5.1 Base Units

The basic units of mass, length, time and temperature in the SI units are described below:

i) Mass The basic SI unit for mass is kilogram (abbreviated as kg). A standard alloy block of platinum and iridium 

maintained at the International Bureau of Weights and Measures at Sevres, Paris, is taken as the base unit of mass.

ii) Length The basic SI unit for length is metre (abbreviated as m). The distance between two arks on 

platinum - iridium bar, kept at the International Bureau of Weights and Measures at Sevres, Paris, France, when 

measured at 0°C, is taken as the base unit of length.

iii) Time The basic SI unit for time is the second (abbreviated as s). For many years, the accepted basic 

unit second was defined as 
1

86400
 of the mean solar day.

iv) Temperature The basic SI unit for temperature is the Kelvin (abbreviated as K). In 1967, the Thirteenth 

Conference General des Poids et Measures defined Kelvin as the fraction 
1

273 16.
 of the thermodynamic 

temperature of the triple point of water.

1.5.2 Derived Units

The secondary quantities are expressed in term of the derived units, which in turn are formed from the base 

units. The relation between the derived units and the base units depends on a definition or a law. For example, 

velocity is defined as v
dL

dt
= ; where L is length and t is time. The units of velocity is m/s. The units of force 

can be derived from the equation F = ma (Newton’s second law) as kg-m/s2. In honour of Newton, the unit 

of force has been named Newton and is abbreviated as N. The dimensions and units of some of the physical 

quantities commonly used in thermodynamics are given in Table 1.2.

Table 1.2 Dimensions and Units of some physical quantities

 Quantity Dimensions Units Abbreviation

 Mass M Kilogram Kg

 Length L Metre m

 Time T Second s

 Temperature q Kelvin K

 Velocity LT−1 m/s ---

 Acceleration LT−2 m/s2 ---

 Force MLT−2 kg m/s2 (N) Newton

 Pressure ML−1T−2 kg/ms2 (N/m2) Pascal

 Energy ML2T−2 kg m2/s2 (N-m) joule

 Power ML2T−3 kg m2/s3 (J/s) watt
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SHORT ANSWER TYPE QUESTIONS

 1.1 What is mechanics? What is its purview?

 1.2 Give few engineering applications that are based on principles of mechanics.

 1.3 What is meant by idealisation? Why it is essential in the study of mechanics?

 1.4 Distinguish between a rigid body and a particle.

 1.5 What is Force? Is it scalar or vector? What is its unit?



2
Fundamentals of 
Vector Algebra

 2.1 INTRODUCTION

The various attributes that are encapsulated under the purview of mechanics are broadly classified into two 
categories – scalars and vectors. While scalar quantities are represented only by their magnitude, the vector 
quantities require both the magnitude and direction to define it completely. Time, mass, volume, density, energy, 
etc., are some of the prominent scalar quantities that appear frequently in the study of mechanics. On the other 
hand, force, moment, displacement, velocity, acceleration, etc., fall under the category of vector quantities.
 From the earlier discussion, it is understood that it is the analysis of force(s) that form the nucleus of study 

of mechanics. It is therefore of paramount important to discuss and review the fundamentals of vector algebra 
to understand the mechanics in full vigor.

 2.2 TYPES OF VECTOR

A vector quantity is represented by an arrow, where its length represents the magnitude 

and the head of the arrow indicates its direction. A vector F is shown in Fig. 2.1 (a). 
It is conventionally appears in bold face like F. The magnitude is represented by |F|.

Types of Vectors

 (1) Fixed (or bound) vector – A vector for which a unique point of application is 
specified and thus cannot be moved unless the conditions of the problem are 
modified.

 (2) Free vector – A vector whose action is not confined to or associated with a unique line in space. This 
implies that a free vector can be moved anywhere in space so long its magnitude and direction remains 
unaltered for example, displacement, couple. 

 (3) Sliding vector – A vector for which a unique line in space (line of action) must be maintained. 
Thus without disturbing its line of action, it can be shifted to any point following the principle of 

transmissibility. Force applied on rigid bodies can be regarded as a sliding vector.
  Three different types of vector are shown in Fig. 2.1 (b).

  For two vectors to be equal, they must have same magnitude and direction.

  However, their point of application need not necessarily be the same. Figure 2.2 (a) shows two different 
points A and B where two vectors are applied having same magnitude P and they are parallel, i.e., their 
directions are same. These two vectors are equal.

  A negative vector of a given vector has same magnitude but opposite direction as shown in Fig. 2.2 (b).
  P and −P are equal and opposite such that P + (−P) = 0

F

Figure 2.1 (a) 

CHAPTER
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 (4) Unit Vector – A vector having a magnitude of one unit is 
called unit vector. If P is a vector, then its unit vector along 

P is P
P

P
=

| |

 2.3 VECTOR OPERATIONS

2.3.1 Product of a Vector by a Scalar

Product of a scalar and a vector is a vector in the same direction but its magnitude is magnified by a factor 
equal to that of the scalar.

Example: If P is a vector, then nP is also a vector, which is n times that of P. Here n is a scalar. Thus

 (+n)P = vector having same direction as P, but n times long as that of P.

 (−n)P = vector opposite to the direction of P, but n times long as that of P.

2.3.2 Vector Addition

If P and Q are two vectors, then the vector addition would yield another vector R such that R = P + Q. 
Nevertheless, this addition is not similar to that of addition of 
two scalars.

2.3.2.1 Geometrical Significance of Vector Addition
The vector addition can be interpreted as if two vectors P and Q 
originated from a common point, such that they represent the 
two adjacent arms of a parallelogram, then the diagonal of the 
parallelogram having P and Q as its adjacent sides will represent 
the resultant of P and Q as shown in Fig. 2.3. This is known as 
Parallelogram Law. 

 Thus, resultant R = P + Q

Note: The magnitude of P + Q is not usually equal to |P| + |Q|.

 From the parallelogram OACB, two adjacent sides OA and OB represent the vectors P and Q respectively. 
Thus diagonal OC represents the resultant R = P + Q. 
 Since, OB and AC are equal in magnitude and parallel to each other, AC can also represent Q, since it is a 
free vector. Thus considering the triangle OAC as shown in the Fig. 2.3, three arms of the triangle represents 
P, Q and R.
 Thus vector addition has got a different geometrical interpretation that if the two sides of a triangle can 
represent two basic vectors in succession such that tail of one vector (Q) coincides with the arrow head of 

Free Vectors Sliding Vectors Bound Vectors

r1

r2
r3

O

Figure 2.1 (b)

P P

A B

Figure 2.2 (a)

P –P

Figure 2.2 (b)

Figure 2.3 Parallelogram law
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another vector (P), then the closing side of the triangle (OC) having O as its tail end and C as its arrow 
end, will represent the resultant (R) of P and Q as shown in the above Fig. 2.3. This is popularly known as 
Triangle Law.
 Similar logic also holds true if triangle OBC is considered, instead. In this case, R = Q + P.
 This leads to a very important conclusion that “addition of vectors is commutative.”

i.e. P + Q = Q + P

 The magnitude of the resultant R can be computed geometrically.
 Refer to Fig. 2.3. Draw a perpendicular from C so as to meet OA at D.
 Thus from the right-angled triangle OCD, OC2 = OD2 + CD2

 or, OC2 = (OA + AD)2 + CD2 = (P + Q cos q)2 + (Q sin q)2 = P2 + Q2 + 2PQ cos q

  \  R = P Q PQ2 2 2+ + cos q

 Inclination of the resultant R with P can be computed by the relationship tan
sin

cos
a

q

q
=

+

Q

P Q
.

Polygon Rule This rule is meant for the addition of more than two vectors. To implement this rule, initially 
two vectors are summed first according to parallelogram law or triangle law, and the resultant so obtained is 
added to the third vector to get the final resultant. Thus any number of vectors can be added successively to 
get the final resultant. This is called composition of vectors. Needless to say, such addition is not limited to 
any specific numbers of vectors.
 Let’s add three vectors, namely P, Q and S. First R1 is obtained such that R1 = P + Q. Now considering 
R1 and S, finally R is obtained such that R = R1 + S = P + Q + S. This sequence of operation is presented 
in Fig. 2.4 (a), (b) and (c) following Parallelogram Law.

R P Q= +
1

R R S P Q= + S+ = +
1

R1

S

O P

Q
R

R1

S

PO

Q

(a) (b) (c)

S

P

Q

O

Figure 2.4 Composition of vectors by Parallelogram law

 Same resultant R can be obtained by following triangle law as shown in Fig. 2.5 from (a) through (c).

Q

O P

S

O

Q
R1

P

S

R Q P1 = + R R S Q P= + = + + S1

O

Q
R1

P

S

(a) (b) (c)

R

Figure 2.5 Composition of vectors by Triangle law
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 Thus polygon rule is essentially successive applications of triangle rule as evident from Fig. 2.6.

Figure 2.7 Vector 

subtraction

O
P Q–

–Q

B

P

A

Figure 2.8 Resolution of vector

O

P

Q

Rb

g
a

Q

O P

S

O

Q

P

S

R

Figure 2.6 Successive applications of Triangle law

 It is noteworthy to see that in lieu of P and Q, Q and S could have been taken first to get their resultant, 
which subsequently added with P would have given the final resultant, which is essentially identical with the 
former.
 This leads to another important conclusion that “addition of vectors is associative”.

 Thus, P + Q + S = (P + Q) + S = P + (Q + S).

2.3.3 Vector Subtraction

The vector subtraction can be envisaged as the addition of the corresponding 
negative vector. Thus P can be added to (−Q) to obtain P − Q. From the 
DOAB, OB + BA = OA. This is shown in Fig. 2.7.

2.3.4 Resolution of Vector into Components

A single vector can be decomposed to two or more vectors. These vectors are components of the original vector. 
Finding these is called resolving the vector into its components. This is just opposite to that of composition 
of vectors.
 There are mainly two methods to accomplish this.

Case I: When one of the two components, P is known: 
The second component Q is obtained using the triangle 
rule. Refer to Fig. 2.8; join the tip of P to the tip of R. The 
magnitude and direction of Q are determined graphically or 
by trigonometry.
 By using properties of triangle, we have

  
P Q R

sin sin sina b g
= = .

Case II: When the lines of action of two components are 

known: The force R can be resolved into two components 
P and Q provided their line of actions are known. Let us consider a and b are two lines, originated from 
point O, so as to represent the line of actions of P and Q respectively, as shown in the Fig. 2.9.
 From the head of the R, draw a line parallel to b so as to intersect the line Oa at A. Similarly, draw another 
line parallel to a so that it meets the line Ob at B. Now OA and OB will represent the magnitudes of P and Q 
respectively.
 However, it is quite useful to resolve a vector into two components having included angle 90°. Such 
components are called rectangular components or orthogonal components as shown in Fig. 2.10.



 Fundamentals of Vector Algebra 2.5

 2.4 ORTHOGONAL TRIAD OF UNIT VECTORS

A vector P can be expressed as product of its magnitude |P| and a 
unit vector n, having its direction same as that of P.
 Thus P = |P|n. This concept of unit vector can be extended to 
three-dimensional coordinate system to solve many problems of 
mechanics.
 Let us consider a three-dimensional coordinate system as shown 
in Fig. 2.11. Three unit vectors i, j and k are considered to act along 
x, y and z axis respectively, called orthogonal triad of unit vectors.
 Therefore, a vector P can be expressed in terms of the orthogonal 
triad as P = Pxi + Py  j + Pzk, where Pxi, Py  j and Pzk are the three 
vector components of P as shown in Fig. 2.12.
 Note that Px, Py and Px represents the magnitude of the three 
component vectors, such that Px = P cos qx, Py = P cos qy, 
Pz = P cos qz, where cos2 qx + cos2 qy + cos2 qz = 1.

 The magnitude of P can be expressed as P P P Px y z= + +
2 2 2 .

 The three mutually perpendicular scalar components of a 
vector can also be established by methods of projection as 
shown in the Fig. 2.13.
 The vector P can have two projections – the vertical one 
denoted as Pz that aligns with z axis and its projection on xy 
plane denoted as Pxy.
 Thus mathematically Pxy = P cos q1 and Pz = P sin q1.
 Further Pxy can now be resolved into two components, 
namely, Px and Py such that Px = Pxy cos q2 = P cos q1 cos q2 
and Py = Pxy sin q2 = P cos q1 sin q2.
 A vector is often represented by a line AB that passes 
through A(x1, y1, z1) and B(x2, y2, z2) as shown in Fig. 2.14.
 Thus a vector P can be expressed as

  

P P= =
- + - + -

- + - + -

n P
x x i y y j z z k

x x y y z z

( ) ( ) ( )

( ) ( ) ( )

2 1 2 1 2 1

2 1
2

2 1
2

2 1
2

b

B

Q

O P A a

R

Figure 2.9

Q

O
P

R

Figure 2.10

O
j

k

i

x

y

z

Figure 2.11 Orthogonal triad of 

unit vectors

Figure 2.12 Scalar components 

of a vector
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 This expression is quite useful for solving problems.
 Comparing with the previous expression, the inclination of the vector P with three mutually perpendicular 
axes [Refer Fig. 2.12] can be calculated as
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 2.5 POSITION VECTOR

As discussed earlier, displacement, which is fundamentally the position of a point 
w. r. t. a coordinate frame, is a vector. Thus position vector r [Refer Fig. 2.15] of 
any point A(x, y, z) can also be described as r = xi + yj + zk.

 2.6 IDENTITY OF VECTORS

Two vectors P = Pxi + Py  j + Pzk and Q = Qxi + Qy  j + Qzk are said to be identical provided their magnitude 
and direction are both same [Refer 2.1]. It therefore follows that Pxi + Py  j + Pzk = Qxi + Qy  j + Qzk, which 
eventually leads to

  Px = Qx; Py = Qy; Pz = Qz.

 Let P = (Pxi + Py  j + Pzk), Q = (Qxi + Qy  j + Qzk)

 Then by definition P + Q = (Px + Qx)i + (Py + Qy)j + (Pz + Qz)k

 Similarly, P − Q = (Px − Qx)i + (Py − Qy)j + (Pz − Qz)k

 2.7 SCALAR OR DOT PRODUCT OF VECTORS

Refer to the Fig. 2.16, the dot or scalar product of two vectors P and Q, expressed 
as P.Q, is defined as the product of the magnitudes of the two vectors and the cosine 
of their included angle q. Thus P.Q = |P||Q| cos q fi cos q = P.Q/PQ.

z

y

x

Px
Pxy

O

q2

q1 Py

P

Pz

Figure 2.13 Method of projection Figure 2.14
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2.7.1 Physical Significance of Scalar or Dot Product of Vectors

2.7.1.1 Projection of One Vector on to the Other
P.Q = PQ cos q = P(Q cos q) = (P cos q)Q. It therefore follows that Q cos q is the projection of Q in the 
direction of P or P cos q is the projection of P along Q.
 Thus, dot product of two vectors is the product of one vector and the projection or component of the other 

along the former.

 This interpretation of dot product can be related with mechanics as follows.
 From the basic definition of work done by a force, it is 

quantified by either the product of force multiplied by the 

component of the displacement along the line of action of the 

force or displacement multiplied by component of the force along 

the displacement.

 Thus, refering to the Fig. 2.17, if a force F applied on the 
block at an inclination q with the horizontal causes a displacement 
ds along the horizontal plane, the component of ds along F is 
ds cos q. Thus work done associated with this displacement 
would be dW = F(ds cos q) = (F cos q)ds = component of the 
force along the displacement multiplied by the displacement.

2.7.1.2 Geometrical Interpretation of Scalar Product
From the DOAB, OA = P; OB = Q. Thus AB becomes P − Q.

  |P − Q|2 = (P − Q).(P − Q) = P.P + Q.Q − 2(P.Q) = P2 + Q2 − 2(P.Q) (2.1) 

Figure 2.17 Significance of dot product 

in mechanics (Work done)

ds
cos

q

F

dsq

B

Q

O

q

P Q–

P A

B

Q

O

q

P AB¢

Figure 2.18 Scalar or Dot product of vectors

 Further from the DOAB, cosine law yields |P − Q|2 = P2 + Q2 − 2PQ cos q (2.2) 

 From Eqs (2.1) and (2.2), it follows that P.Q = PQ cos q
 Thus, dot product of two vectors is tantamount to cosine law of triangle.

2.7.2 Laws of Scalar or Dot Product of Vectors

The Following laws of multiplication can be derived from the definition of scalar or dot product.

(a) P.Q = Q.P (Commutative Law)
 From the very definition of the dot product, i.i = j.j = k.k = 1, since, cos 0° = 1 and

i.j = j.i = i.k = k.i = j.k = k.j = 0 since cos 90° = 0

 Thus P.Q = (Pxi + Py  j + Pzk).(Qxi + Qy  j + Qzk) = PxQx + PyQy + PzQz

 As a special case, when P = Q, we get P.P = Q.Q = Px
2

 + Py
2 + Pz

2 = Qx
2

 + Qy
2

 + Qz
2

Note: When P and Q are perpendicular i.e. cos 90 = 0, then P.Q also becomes zero.
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(b) P.(Q + R) = P.Q + P.R (Distributive Law)

 Let P = (Pxi + Py  j + Pzk),

  Q = (Qxi + Qy  j + Qzk) and 

  R = (Rxi + Ry  j + Rzk)

 \ Q + R = (Qx + Rx)i + (Qy + Ry)j + (Qz + Rz)k

 Hence

  P.(Q + R) = (Pxi + Py  j + Pzk).(Qx + Rx)i + (Qy + Ry)j + (Qz + Rz)k

   = Px(Qx + Rx) + Py(Qy + Ry) + Pz(Qz + Rz)

   = PxQx + PyQy + PzQz + PxRx + PyRy + PzRz

   = P.Q + P.R  [Proved]

(c) (lP).Q = l(P.Q) = P.(lQ) (Scalar multiple of a scalar product of two vectors)

(d) Schwarz Inequality |P.Q| £ |P||Q|

  |P.Q| = |P||Q||cos q| £ |P||Q|

 2.8 VECTOR OR CROSS PRODUCT OF VECTORS

The vector or cross product of two vectors P and Q, expressed as P ¥ Q, is defined as 
the product of the magnitudes of the two vectors and the sine of their included angle q.
 Thus R = P ¥ Q =P.Q sin q. This R is orthogonal to the plane of P and Q and 
pointed in the direction of advance of a right-handed screw when turned in the direction 
from P to Q by an angle q as shown in the Fig. 2.19 (a) and (b).

The magnitude of the vector product can be obtained by the following relationship.

  (P ¥ Q)2 + (P.Q)2 = P2Q2

Note: This expression is the relationship between scalar and vector product. Figure 2.19 (a)

q

O D P A

CB

Q

P Q¥

q

Q

P

P Q¥

Figure 2.19 (b) Vector or cross product of vectors

2.8.1 Geometrical Interpretation of Vector Product

Refer to the parallelogram OACB, OA and OB represents the two vectors P and Q respectively.

 Thus area of OACB = OD ¥ BD + AD ¥ BD = BD ¥ (OD + DA) = BD ¥ OA = PQ sin q

Hence the magnitude of the vector product is equal to the area of the parallelogram, whose sides are 

parallel to and have lengths equal to the magnitudes of the vectors and its direction is perpendicular to the 

parallelogram. 
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2.8.2 Physical Significance of Vector Product

Refer to Fig. 2.20. A force F is applied on a body at a point A 
having its position vector r. Thus as per definition M = r ¥ F = 

rF sin q = r(F sin q) = F(r sin q) = Fd.
 This can be illustrated as moment of a force which is the cross 
product of the position vector r and the force F and it is quantified 
by the magnitude of the force and the perpendicular distance 

between the line of application of the force and the moment center.

 Refer to the Fig. 2.20. F can be resolved into two mutually 
perpendicular components – one along the position vector r having 
magnitude F cos q and other perpendicular to r having magnitude 
F sin q.
 Since F cos q being directed along r, it cannot have any 
moment about O. However, F sin q can produce moment about O, its magnitude being equal to r(F sin q).
 Further, the perpendicular distance between the line of actions of r and F is r sin q. The moment therefore 
can also be quantified as F(r sin q) = Fd.

Note: Further illustrations on moment will find its place in chapter 3.

2.8.3 Laws of Vector Product

The following laws of vector product hold true.

(a) P.Q = −Q.P (It is not commutative) [since sin q π sin (−q)]

 When q = 0; sin 0 = 0. This yields P ¥ P = Q ¥ Q = 0.

(b) P ¥ (Q + R) = P ¥ Q + P ¥ R (Distributive Law)

 Since i, j and k are orthogonal to each other, i ¥ i = j ¥ j = k ¥ k = 0, since sin 0 = 0 and i ¥ j = k; 
j ¥ k = i; k ¥ i = j and

  j ¥ i = − k; k ¥ j = −i; i ¥ k = −j

  P ¥ Q = (Pxi + Py  j + Pzk) ¥ (Qxi + Qy  j + Qzk)

   = (PyQz − PzPy)i + (PzQx − PxQz)j + (PxQy − PyQx)k

   = 

i j k

P P P

Q Q Q

x y z

x y z

Note: Due to presence of i, j and k in the cells, the absolute value of this determinant cannot be computed. 
That is why this determinant is called pseudo-determinant.

 Thus P ¥ P = Q ¥ Q = 0

(c) (P ¥ Q).P = (P ¥ Q).Q = 0 [Since P ¥ Q is orthogonal to both P and Q]

(d) l(P ¥ Q) = lP ¥ Q = P ¥ lQ (Scalar multiple of a vector product of two vectors)

 2.9 TRIPLE AND MULTIPLE PRODUCTS

Using mixtures of the pair-wise scalar product and vector product, it is possible to derive “triple products” 
between three vectors, and indeed n number of products between n vectors.

M = r F¥

O

r

F

q

d

A

Figure 2.20 Significance of vector 

product in mechanics (moment)



2.10 Engineering Mechanics

2.9.1 Scalar Triple Product

This is the scalar product of a vector product and a third vector, i.e., P.(Q ¥ R). Unlike the vector product of 
two vectors, the scalar triple product can be represented by the true determinant.

  P.(Q ¥ R) = 

P P P

Q Q Q

R R R

x y z

x y z

x y z

 When expanded, 

  P.(Q ¥ R) = Px(QyRz − QzRy) + Py(QzRx − QxRz) + Pz(QxRy − QyRx) = (P ¥ Q).R

 Nevertheless, the most generic expression of scalar triple product is

  P.(Q ¥ R) = Q.(R ¥ P) = R.(P ¥ Q)

 Further

  (P ¥ Q).R = R.(P ¥ Q)

2.9.1.1  Geometrical Interpretation of Scalar 
Triple Product

The scalar triple product gives the volume of the 
parallelepiped whose sides are presented by the vectors 
P, Q and R as shown in the Fig. 2.21.
 We had seen earlier that the vector product P ¥ Q has 
magnitude equal to the area of the base and direction is 
perpendicular to the base. The component of R in this 
direction is equal to the height of the parallelepiped 
shown in the Fig. 2.21.

2.9.2.1 Vector Triple Product
This is defined as the vector product of a vector with a vector product, P ¥ (Q ¥ R). The vector triple product 
P ¥ (Q ¥ R) must be perpendicular to Q ¥ R, which in turn is perpendicular to both Q and R. Thus P ¥ 
(Q ¥ R) can have no component perpendicular to Q and R and hence should be coplanar with them.
 Following the law (a) as mentioned in the topic 2.6.2,

  (P ¥ Q) ¥ R = −R ¥ (P ¥ Q) = R ¥ (Q ¥ P)

 Further, (P ¥ Q) ¥ R = R.PQ − R.QP

 And  P ¥ (Q ¥ R) = P.RQ − P.QR

Note: Application of vector operations in mechanics will be discussed in detail in the subsequent chapters.

Here is a question:
What is the significance of vector dot product and cross product in relation to mechanics?

Example 2.1  Given the vectors P = i − 2j + 4k and Q = 3i + j − 2k find P ¥ Q and |P ¥ Q|.

Solution P ¥ Q = (Pxi + Py  j + Pzk) ¥ (Qxi + Qy  j + Qzk)

   = (PyQz − PzQy)i + (PzQx − PxQz)j + (PxQy − PyQx)k

R
R cos b

b

Q

P

Figure 2.21 Scalar triple product of vectors
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   = 

i j k

P P P

Q Q Q

x y z

x y z

   = i(4 − 4) + j(12 + 2) + k(1 + 6)

   = 14j + 7k

  |P ¥ Q| = 14 7 196 492 2
+ = +  = 15.7

Example 2.2  A force vector P = 10i + 9j + 12k. Find the magnitude of this vector. Also find the unit vector 
of P.

Solution Given vector P = 10i + 9j + 12k, which is in the form Pxi + Py  j + Pzk

\ The magnitude of P P P Px y z= + + = + + =
2 2 2 2 2 210 9 12 18.

 Thus the unit vector P along P will be = 10i + 9j + 12k/18 = 0.55i + 0.5j + 0.67k

Example 2.3  Determine the magnitude of the resultant force vector F1 and F2 and its direction, measured 
counter-clockwise from the positive x axis. Also find out the resultant in vector expression.

Solution From the figure, we see that included angle of two vectors F1 and F2 is (90° − 30°) + 45° = 105°.
 These two vectors can represent the two adjacent sides of a parallelogram having included angle 105°, and the 
diagonal of the parallelogram will be the resultant of F1 and F2.

 Thus the magnitude R = F F F F1
2

2
2

1 22 105+ + cos  N

   = 250 375 2 250 375 105 3932 2
+ + ¥ ¥ =cos .N N

 The inclination of the resultant makes an angle a with x axis

 \ tan a = 
F

F F

1

2 1

105

105

250 105

375 250 105
0 778

sin

cos

sin

cos
.

+
=

+
=

 \ a = tan−1 0.778 = 38°

 Therefore its direction measured counter-clockwise from the positive x axis 
will be 360° − (45° − 38°) = 353°.
 Both F1 and F2 can be resolved into two rectangular components, horizontal 
components being F1x and F2x and vertical components are F1y and F2y respectively.
 Thus F1x = F1 cos 60° = 250 cos 60° = 125N; F2x = F2 cos (−45°) = 
375 cos 45° = 265.16N;

  F1y = F1 sin 60° = 250 sin 60° = 216.5N; F2y = F2 sin (−45°) = −375 sin 45° = − 265.16N.

 Hence R = F1 + F2 = (F1x + F2x)i + (F1y + F2y)j = (125 + 265.16)i + (216.5 − 265.16) j

   = 390.16i − 48.66j.

Example 2.4  Express the force F having magnitude 10 kN as a vector in terms of the unit vectors i, j and k, 
as shown in the Fig. 2.13. Assume q1 = 40° and q2 = 60°.

Solution Refer to the Fig. 2.14, OP represents the force F having magnitude 10 kN.
 Its projection on x−y plane will be represented by Fxy = F cos q1 = 10 cos 40° = 7.66 kN and its projection 
on z axis will be Fz = F sin q1 = 10 sin 40° = 6.43 kN.

30°

y

F1 = 250 N

45°

x

F2 = 375 N

Figure 2.22
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 Thus the component of 10 kN force along x axis becomes

  Fx = Fxy cos q2 = 7.66 cos 60° = 3.83 kN and along y axis becomes

  Fy = Fxy sin q2 = 7.66 sin 60° = 6.63 kN.

 Thus the vector expression of F in terms of unit vectors i, j and k becomes, Fxi + Fx  j + Fxk = 3.83 i + 6.63 j + 
6.43k

Example 2.5  Refer to the Fig. 2.23. Find the magnitude of the resultant of vectors AB and AD. Also find the 
resultant in vector expression.

Solution Let AB AD= = - + - = = = - + - =P Q( ) ( ) . ( ) ( ) .9 5 5 3 4 472 7 5 12 3 9 222 2 2 2and

  tan q1 = 
2

4
 = 0.5; \ q1 = 26.56°

  tan q2 = 
9

2
 = 4.5; \ q2 = 77.47°

 \  q = q2 − q1 = 50.9°

 Thus R = P Q PQ2 2 2+ + cos q

   = 4 472 9 22 2 4 472 9 22 50 92 2. . . . cos .+ + ¥ ¥

   = 12.53

 Further P = 4i + 2j and Q = 2i + 9j

 Thus R = P + Q = (4 + 2)i + (2 + 9)j = 6i + 11j

 The magnitude of R can also be calculated from R = 6 112 2
+  = 12.53

Example 2.6  A force 150 N originates from the point (2, 4, 6) and passes through the point (4, 9, 15). Express 
the force in terms of unit vectors i, j and k.

Solution

  F = Fn = F
( ) ( ) ( )

( ) ( ) ( )

x x y y z z

x x y y z z

2 1 2 1 2 1

2 1
2

2 1
2

2 1
2

- + - + -

- + - + -

i j k

   = 150
( ) ( ) ( )

( ) ( ) ( )

4 2 9 4 15 6

4 2 9 4 15 62 2 2

- + - + -

- + - + -

i j k

   = 28.6i + 71.5j + 128.7k

Example 2.7  Refer to the Fig. 2.24. The structure shown is 
subjected to force vectors P and T having magnitude 500 N and 200 
N respectively. Combine P and T into a single force R.

Solution Given P = 500 N

 T = 200 N

 Let the angle between P and T be a. So, P and T can be represented 
by two adjacent sides of the parallelogram and the resultant R can be 
represented by the diagonal.

O

B (9, 5)

A (5, 3)

D (7, 12)

q1

q2

Figure 2.23

T

P

A

B

C D

a 75°

5
m

3 m

Figure 2.24
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 From the given geometry,

  tan a = 
BD

AD
=

∞

+ ∞

5 75

3 5 75

sin

cos
 fi a = 48.4°

 Using Law of cosines:

  c2 = a2 + b2 − 2ab cos a

  R2 = 2002 + 5002 − 2(200)(500) cos (48.4°)

  R = 396.5 N

 Using Law of sines, we get 
200 396 5

48 4sin

.

sin .q
=

∞

\  q = 22.2°

 Thus the magnitude of R is R = 396.5 N and its inclination with P is 22.2°.

Example 2.8  A force F of magnitude 200 N is applied to the point O (origin) of a three-dimensional coordinate 
system and passes through a point A having coordinates (4, 8, 5). Express the force in terms of unit vectors i, j, k. 
What is the unit vector in the direction of the 200 N force?

Solution The unit vector n = 
4 8 5

4 8 52 2 2

i j k+ +

+ +

 N = 
4 8 5

10 25

i j k+ +

.
 N = 0.39i + 0.78j + 0.49k N

 Thus unit vector in the direction of the force F = Fn = 200[0.39i + 0.78j + 0.49k] N = 78i + 156j + 98k N

Example 2.9  The ball joint at O is subjected to various loads as shown in the Fig. 2.25. Find out the orthogonal 
scalar components of the forces on the joint O. The 1000 N force goes through the solid diagonal as shown in the Figure.

Q > 611

SU > 311

z

600 N

O

500 N

x

400 N

y

3
4

21000 N

Figure 2.25

Solution The unit vector corresponds to 1000 N force = FFD = 1000nFD

   = 1000
3 4 2

3 4 22 2

i j k+ +

+ +

 N = 185.7[3i + 4j + 2k] N = 55.7.1i + 742.8j + 371.4k N

 Thus Fx = (557.1 − 500) N = 57.1 N; Fy = (742.8 − 400) N = 342.8 N

  Fz = (600 + 371.4) N = 971.4 N

Example 2.10  A force F of magnitude 400 N is applied to the bracket as shown in the Fig. 2.26. Develop the 
force vector F and the position vector r. Also compute the cross product r ¥ F.
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Solution

1st Method: Let Two rectangular scalar components of F will be Fx = F cos 75 
and Fy = F sin 75.
 Thus the vector F becomes F cos 75i + F sin 75j = 103.52i + 386.37j.
 The position vector r = 3i + 8j.
 Therefore
  r ¥ F = (3i + 8j) ¥ (103.52i + 386.37j) = 8 ¥ 103.5(−k) + 3 ¥ 386.37k

   = 330.95k N-m.

2nd Method: From the given geometry, tan q = 
3

8
 fi q = 20.5°

 Thus the included angle between r and F measured counter-clockwise becomes 
a = 20.5º − 15º = 5.5º.
 The magnitude of the cross product r ¥ F can be computed by |rF sin a|.

   = 8.544 ¥ 400 ¥ sin 5.5° N-m = 330.6 N-m.

Example 2.11  A force F of magnitude 350 N is applied at A that connects 
two members AB and AC as shown in Fig. 2.27. Find the magnitudes of the two 
components of F directed along AB and AC.

Solution The vertical force F of 350 N acts downward at A.
 Let the induced force in the two members AB and AC are denoted by TAB and 
TAC respectively.
 Knowing the included angles, the three vectors F, TAB and TAC can be represented 
by the three arms of triangle as shown in the figure.
 By using Law of sine’s;

 

T T
AB AC

sin sin sin60 45

350

75∞
=

∞
=

∞

  TAB = 314 N

  TAC = 256 N

 Thus the force in the two members AB and AC become 314 N and 256 N 
respectively.

Example 2.12  A block is placed on an inclined plane that makes an angle 30º with 
the horizontal and subjected to a force F = 5i + 20j + 30k as shown in the Fig. 2.28. If the work done associated 
with the force F is 20 N-m, how far does the block have to move?

Solution Let the displacement of the block along the plane is s.

 Therefore the displacement vector s can be written as 0.i + 
s cos 30°j + s sin 30°k

 Work done by the force F corresponds to displacement s

   = F.s = (5i + 20j + 30k).(0.i + s cos 30j + s sin 30k)

   = 5 ¥ 0 + 20 cos 30°s + 30 sin 30°s = 32.32s N-m

  Given work done = 20 N-m

  32.32s = 20

  s = 
20

32 32.
 = 0.618 m

 Thus displacement becomes s = 0.618 m

8 m

3 m

F = 400 N

75°

B

A

q

O

r

Figure 2.26

Figure 2.27

A

F C

30°

45°

B

30°

F

y
O

x

z

Figure 2.28
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MULTIPLE-CHOICE QUESTIONS

 2.1 If the resultant of two forces P and Q acting at an angle q makes an angle a with P, then

 (a) tan a = 
P

Q P

sin

cos

q

q-
 (b) tan a = 

Q

P Q

sin

cos

q

q+
 (c) tan a = 

P

P Q

sin

cos

q

q+
 (d) tan a = 

P

P Q

sin

sin

q

q+

 2.2 A force is completely defined when we specify
 (a) its magnitude (b) its direction (c) point of application (d) all of the above
 2.3 If two equal forces of magnitude P act at an angle q, their resultant will be

 (a) 2P cos 
q

2
 (b) 2P sin 

q

2
 (c) 2P tan 

q

2
 (d) P cos 

q

2

 2.4 The resultant of two forces P and Q inclined at angle q will be inclined at following angle with respect 
to P

 (a) tan−1 
P

Q P

sin

cos

q

q-
 (b) tan−1 

Q

P Q

sin

cos

q

q+
 (c) tan−1 

P

P Q

sin

cos

q

q+
 (d) tan−1 

P

P Q

sin

cos

q

q+

 2.5 If two forces each equal to P in magnitude act at right angles, their effect may be neutralized by a 
third force acting along their bisector in opposite direction whose magnitude is equal to

 (a) 2P (b) 2P  (c) 
P

2
 (d) 

P

2
 2.6 Which of the following is a vector quantity?
 (a) mass (b) energy (c) momentum (d) angle
 2.7 Which of the following is not a vector quantity?
 (a) mass (b) velocity (c) force (d) moment

SHORT ANSWER TYPE QUESTIONS

 2.1 What do you understand by a vector quantity? Give examples.
 2.2 State the parallelogram and triangle laws in relation to vector addition.
 2.3 What do you mean by composition and resolution of a vector?
 2.4 State and explain the principle of transmissibility of vector. Does it affect its behavior? 
 2.5 Show that cosine of two vector P and Q is equal to mP mQ + nP nQ + oP oQ where mP, nP, oP, and mQ, 

nQ and oQ are the direction cosines of P and Q respectively.
 2.6 State the laws of vector dot and cross products. Why is the cross product of two vectors a vector 

whereas a dot product is a scalar?
 2.7 What is unit vector? What is meant by orthogonal triad of unit vectors?
 2.8 What is the geometrical interpretations of dot and cross product of two vectors?
 2.9 What is a position vector? What type of vector is it?
 2.10 Prove that a force vector F can be expressed as Fn.

NUMERICAL PROBLEMS

 2.1 If P = 5i − j − 2k and Q = 2i + 3j − k, find
 (a) P ¥ Q and Q ¥ P

 (b) |P ¥ Q|
 (c) sin q and q where q is the smaller angle between P and Q.
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 2.2 If A = 5i − j − 2k and B = 2i + 3j − k, find A ¥ B, (A ¥ B)◊B, and (A ¥ B)◊A.
 2.3 If A = 3i − 2j + 4k, B = 2i − 4j + 5k, and C = i + j − 2k, find
 (a) A ¥ (B ¥ C) (b) (A ¥ B) ¥ C

 2.4 Evaluate
 (a) 2i ¥ (3j − 4k) (b) (i + 2j) ¥ k (c) (2i − 4j) ¥ (i + k)
 2.5 Find P.Q of two vectors P = 10i + 20j + 25k and Q = 5i − 10j + 12k. What is cos (P.Q)? What is 

the projection of P on Q?
 2.6 Given the vectors P = 6i + 3j + 10k, Q = 2i − 5j + 5k and R = 5i − 2j + 7k. Which vector S gives 

the following results?
S.P = 20; S.Q = 5; S.i = 10.

 2.7 A 500 N force is acting along the solid diagonal from O to C i.e. OC = 500 N. What is the rectangular 
component of this force along the other diagonal B to A as shown in the Fig. 2.29?

 2.8 If vectors P and Q in the xy plane have a dot product of 50 units and if the magnitudes of these vectors 
are 10 units and 8 units respectively, what is P ¥ Q?

 2.9 What is the component of the cross product P ¥ Q along the direction n where
P = 10i + 16j + 3k; Q = 5i − 2j + 2k; n = 0.8i + 0.6j

 2.10 What is the sum of the following three vectors? 
P = 6i + 10j + 16k; Q = 2i − 3j

  R is a vector in the xy plane at an inclination of 45º to the positive x axis and directed away from the 
origin of magnitude 25 N.

 2.11 Given a force F= 10i + 5j + Ak N. If this force is to have a rectangular component of 8 N along a line 
having unit vector r = 0.6i + 0.8k. What should be the value of A? What is the angle between F and r?

 2.12 Two forces are applied at the end of a screw eye as shown in the Fig. 2.30 in order to remove the 
post. Determine the angle q (0° £ q £ 90°) and the magnitude of the force F so that the resultant force 
acting on the post is directed vertically upward and has a magnitude of 750 N.

A

8
O

500 N C

B
y

5

10

x

z

Figure 2.29 Figure 2.30

500 N
30°

q

y

x

F

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 2.1 (b) 2.3 (a) 2.5 (b) 2.7 (a)
 2.2 (d) 2.4 (b) 2.6 (c)
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Two-Dimensional Force 

Systems

 3.1 INTRODUCTION

From the foregoing discussions, it is evident that study of mechanics involves detailed analysis of force(s) on 

rigid bodies, supported suitably by varieties of constraints to ensure equilibrium of the entire system. It is, 

therefore, quite reasonable to study the force(s) in full vigor that would form the basis of further analysis.

 3.2 FORCE

It has already been explained that force is any action on bodies that tends to change its status. It is a vector quantity 

and hence it is completely defined primarily by its magnitude and direction, similar to that of any other vectors.

 Let us consider a cantilever beam as shown in Fig. 3.1, loaded by a transverse force P applied at the 

free end A. This force P will cause deflection d at the free end 

A of the beam as shown by the dotted line. Now if the force 

P is moved to act at a new position B keeping its magnitude 

and direction unchanged, the beam will be deflected similarly but 

present deflection l will be smaller than that of d. Thus it can be 

concluded that point of application of the load, i.e., the force has 

got important bearings as regard to its effects.

 Hence in addition to its magnitude, and direction, point of 

application of the load has to be considered for its complete description.

3.2.1 Types of Forces

The action of forces on bodies can broadly be classified into two categories: External and Internal.

 Refer to Fig. 3.2 (a), a slender bar of weight W is hung from the ceiling and subjected to a load P. The 

force P which is applied together with W is called external force. However, this force P and self weight W are 

called active force since these cause different effects on the bar like reactions, deformations, deflections, stress, 

tension, compression, etc. Following Newton’s third law, every action is accompanied by an equal and opposite 

reaction. Thus the ceiling, by virtue of its reaction will apply a pull force to the slender bar to counteract the 

effect of P and W. This is what is called reactive force or simply reaction.

Note: The self weight W is called body force and also treated as external force.

 The internal forces on the other hand are those which are induced in the body as a consequence of resistance 

that it offers to balance the external force. Under the actions of W and P, the bar will be elongated. This 

Figure 3.1

CHAPTER
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elongation is accompanied by stress induced in the bar, the magnitude of which is a property of materials. 

Analysis of stress and other associated parameters find their place in strength of materials.

 Refer to the Fig. 3.3 (a). The load PExt applied at the lower end of the bar will try to stretch it. Thus, 

internal force induced by virtue of its tendency to oppose the external load will be directed as shown by Pint. 

So the gross effects of PExt is to elongate the bar. The internal forces associated with such situations are called 

tensile force or tension.

 If the direction of externally applied load is reversed, the internal force will also be modified accordingly. 

 Refer to the Fig. 3.3 (b), the external force will try to shorten or compress the block and internal force so 

developed, called compressive force, will try to oppose it.

3.2.2 Principle of Transmissibility

Refer to the Fig. 3.4. The pull force P applied to the block 

can be shifted to any point along its line of action without 

changing its effect on the system. This is in agreement 

with the consideration of force as a sliding vector. This 

is a very useful characteristic of a force.

 Following the same logic, the block in Fig. 3.4 (a) which 

is subjected to a horizontal pull force P applied at the front 

side may be transmitted to the rear side maintaining its 

same line of action to consider as a push force.

 The principle by virtue of which a force can be envisaged to act at any position without violating its line 

of action with same consequences is called principle of transmissibility.

 This can also be explained by the principle of vector addition.

 Let a rigid body is subjected to a force vector P, P = Pxi + Py   j + Pzk applied at point A as shown in Fig. 3.4 (b).

 Since P + (−P) = 0, presence of any such combination will not alter the situation. Let such a combination 

exist at point B as shown in Fig. 3.4 (b). Now P at A and (−P) at B if cancelled out result in a system equivalent 

to an applied force P at B maintaining same line of action as was earlier.

 Thus we can conclude that two situations are equivalent.

3.2.3 Superimposition of Forces

A null vector can be assumed to be a combination of P + (−P). If such a combination is added to a system 

without producing any effect, it is called superimposition of forces.

Figure 3.2

(a) (b)

N

W

PExt

PInt

PExt = PInt

PInt

PExt = P W+

Figure 3.3

–P

B
P

PA

(a) (b)

PP

Figure 3.4
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 3.3 TYPES OF LOAD

Force can also be classified depending on nature of its loading pattern. 

 If the entire magnitude of force is assumed to be applied through a point, it is called concentrated load; and 

on the other hand, if it is distributed over a finite area, it is called distributed load as shown in the Fig. 3.5 (a) 

and Fig. 3.5 (b) respectively.

 The concept of concentrated load is hypothetical since a definite 

amount of force can only be transmitted through a definite area. 

Nevertheless, such an idealisation will help simplify the problem to 

a great extent without appreciable compromise on accuracy provided 

the area over which the force is acting is too small compared to 

other related dimensions. In majority of the analysis, we come 

across concentrated loading to the structural or machine members. 

 The distributed load normally follows a definite pattern of 

loading over the entire area. Unlike concentrated load, it is 

customary to express it as its intensity in terms of load/unit length.

 Thus entire load therefore is calculated by multiplying its length 

to its intensity. However, there are ample evidences when the 

distribution does not follow such linear law. Loading of beams is 

a very good example of distributed loading.

 3.4 SYSTEM OF FORCES

Most of the engineering problems manifest that systems are subjected to different kinds of forces to constitute 

what is called a complete system of forces in space. Based on certain similarities, these forces can be grouped 

together under different titles.

3.4.1 Coplanar Forces

When the lines of action of several forces lie in one plane, the forces are called coplanar forces as shown in 

the Fig. 3.6 (a).

 Essentially such forces and their analysis are confined to two-dimensions only.

3.4.2 Non-Coplanar Forces

When the lines of action of several forces are not contained in one plane, the forces are called non-coplanar 

forces as shown in the Fig. 3.6 (b). Force analysis in such a situation requires three-dimensional coordinate 

systems.

3.4.3 Concurrent Forces

When the lines of action of several forces intersect at a point so that we can consider all these forces are 

applied at that point, these forces together are called concurrent forces as shown in Fig. 3.6 (c).

 However, the point of application of all such forces may not be concurrent apparently, but following the 

principle of transmissibility, these can be made to intersect at a common point and hence they are said to be 

concurrent forces. The common point of intersection is called point of concurrency. Refer to the Fig. 3.6 (d). 

Forces F1, F2 and F3 are applied at A, B and C respectively. By extending their lines of action, they do converge 

at point O and hence considered as concurrent.

 If it is not possible to attain any such concurrency, then the force systems are called non-concurrent forces.

W

w/unit length

(a)

(b)

Figure 3.5
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3.4.4 Collinear Forces

If the lines of action of several forces are identical, these are called 

collinear forces. For the collinear forces, magnitude as well as 

directions of different forces may differ.

Figure 3.7

3.4.5 Parallel Forces

If the lines of action of several forces are parallel to each other, these 

are called parallel forces as shown in Fig. 3.8. 

 A system or structure acted upon by a system of forces may exhibit 

any such combinations. 

 3.5 TWO-DIMENSIONAL FORCE SYSTEMS

There are quite a number of occasions, when forces are found to be confined to one plane only, i.e., coplanar. 

Analysis of such system of forces requires two-dimensional coordinate frame only.

 If two forces F1 and F2 are originating from point O, then it will follow parallelogram law (as explained in 

topic 2.2.1) and their resultant R would be another vector that can be expressed by vector addition of F1 and 

F2 such that R = F1 + F2. The term resultant implies a single force that would be equivalent to the combined 

effect(s) of its components.

 The magnitude of R = F F F F1
2

2
2

1 22+ + cosq  and its inclination with F1 can be computed by the relationship 

tan a =
F

F F

2

1 2

sin

cos
.

q

q+

 It is misnomer to consider that R = F1 + F2 means the magnitude of R = F1 + F2.

 Let us now consider few typical cases.

Case I: When q = 0, cos q = 1.

 Thus, R = F1 + F2.

 This implies F1 and F2 are now collinear having same direction.

 It is noteworthy that when F1 and F2 are parallel having same direction, q = 0 and R = F1 + F2.

Case II: When q = 180°, cos q = −1. Thus R = F1 − F2. Once again F1 and F2 become collinear but 

opposite directed.

 When F1 and F2 are parallel but their directions are just opposite, then R = F1 − F2.

Figure 3.8
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Case III: When q = 90°, cos q = 0. R = F F1
2

2
2+ .

 This can be interpreted as R being resolved into two mutually perpendicular components – one horizontal 

(Fx = F1 = R cos a) and other vertical (Fy = F2 = R sin a).

 Thus in terms of unit vectors i and j, R = Fxi + Fy  j and a = tan−1 
F

F

y

x

.

 The above addition of two vectors can also be explained by triangle law as discussed in topic 2.2.1.

 3.6 COMPOSITION OF FORCES

Following the discussions of topic 2.4, several such forces can be added successively and vectorically to get 

the final resultant. While doing so, we can follow either graphical 

approach or analytical approach.

A. Graphical Approach: Consider a suitable scale to represent 

different force vectors. 

 Say, for example, 50 N force is represented by 1 cm. So scale 

factor becomes 50.

 Therefore, a force of magnitude 200 N will be represented 

by 4 cm.

 Refer to the Fig. 3.9. Vector OA represents force F1. From A, 

draw a line to represent F2 by AB. From B, again draw BC to 

represent F3. Now join OC which will represent resultant R. Measure the length of OC in cm and multiply it 

by scale factor 50 to convert it to Newton. Measure the angle q to obtain its inclination with the horizontal. 

 Likewise, any number of forces can be added to get their resultant.

 This can be stated as when a system is subjected to several coplanar, concurrent forces, these can be 

represented by a polygon such that its closing arm directed from origin of first vector to the arrowhead of last 

vector will represent their resultant. This is popularly known as Polygon of forces.

B. Analytical Approach: Let us consider similar polygon of forces for this purpose.

 Let us consider a two-dimensional coordinate frame, the origin of which coincides with the origin of first 

vector F1.

 Resolving F1, F2 and F3 and R into x and y directions

 We have

  (F1)x = F1 cos q1; (F1)y = F1 sin q1

  (F2)x = F2 cos q2; (F2)y = F2 sin q2

  (F3)x = F3 cos q3¢; (F3)y = F3 sin q3¢

  Rx = R cos q; Ry = R sin q

 From the geometry, it is evident that

  R cos q = F1 cos q1 + F2 cos q2 − F3 cos q3¢

  R cos q = F1 cos q1 + F2 cos q2 − F3 cos (180 − q3)

  R cos q = F1 cos q1 + F2 cos q2 + F3 cos q3¢

   = (F1)x + (F2)x + (F3)x = 
i

i

=

=

Â
1

3

(Fi)x  (3.1)

F2

B

R

F3

C

O
F1 A

q

Figure 3.9
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 Similarly

  R sin q = F1 sin q1 + F2 sin q2 + F3 sin q3 = (F1)y + (F2)y + (F3)y = 
i

i

=

=

Â
1

3

(Fi)y (3.2)

 In case n number of such forces are added

  Rx = R cos q = (F1)x + (F2)x + ... + (Fn)x = 
i

i n

=

=

Â
1

(Fi)x

and Ry = R sin q = (F1)y + (F2)y + ... + (Fn)y = 
i

i n

=

=

Â
1

(Fi)y such that

  R = R R F Fx y i x

i

i n

i y

i

i n
2 2

1

2

1

2

+ =
È

Î
Í
Í

˘

˚
˙
˙

+
È

Î
Í
Í

˘

˚
˙
˙=

=

=

=

Â Â( ) ( )  (3.3)

and 

  q = tan−1 

( )

( )

F

F

i y

i

i n

i x

i

i n

=

=

=

=

Â

Â

1

1

 (3.4)

C. Vector Approach: Once Rx and Ry are calculated, the resultant R can be expressed in terms of unit vectors 

i and j, so that R = Rxi + Ry  j.

 Following the reverse procedure, R can be decomposed into F1, F2 ... Fn which is called resolution of forces.

Example 3.1  Determine the magnitude of the resultant force and its direction, measured counter-clockwise 

from the positive x-axis as shown in the Fig. 3.11.

Solution All the three forces F1, F2 and F3 are resolved into two mutually perpendicular components.

 (F1)x = F1 cos q1 = 600 cos 45 = 424.26 N;

 (F1)y = F1 sin q1 = 600 sin 45 = 424.26 N

 (F2)x = F2 cos q2 = −800 cos 30 = −692.82 N;

 (F2)y = F2 sin q2 = 800 sin 30 = 400 N

 (F3)x = F3 cos q3 = −450 cos 15 = −434 N;

 (F3)y = F3 sin q3 = −450 sin 15 = −116.47 N

 Rx = 
i

n

=
Â

1

(Fi)x = 424.26 − 692.82 − 434.66 = −703.22 N;

 Ry = 
i

n

=
Â

1

(Fi)y = 424.26 + 400 − 116.47 N = 707.8 N

Thus R = R Rx y
2 2 2 2703 22 707 8 997 75+ = - + =( . ) ( . ) . N

 q = tan−1 
R

R

y

x

 = tan−1 707 8

703 22

.

.-
 = 134.8°

F2 = 800 N

75°

60°

45°

F3 = 450 N

F1 = 600 N

x

y

Figure 3.11
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Example 3.2  Refer to the Fig. 3.12 the rod AB is 

subjected to a load of 250 N. Determine the two mutually 

perpendicular components of this load – one along the 

crank BC and other perpendicular to it.

Solution Let the inclination of the applied force P with 

the horizontal be q.
 From the direction of the applied force P,

   tan q = 
5

12

   fi q = tan−1 
5

12
 = 22.62°.

 Refer to the Fig. 3.12, the angle between the force 

P and a line perpendicular to the crank body BC is

30° − 22.62°= 7.38°.

 Hence the component of P along the direction of the 

crank becomes P sin 7.38 N = 250 ¥ sin 7.38 N = 32.11 N and its component perpendicular to the crank body 

becomes P cos 7.38 N = 250 ¥ cos 7.38 N = 247.93 N.

Example 3.3  Refer to the Fig. 3.13. The pin joint at O is subjected to forces 500 N and 400 N that make angles 

a and b with the horizontal as shown to yield a resultant of 700 N vertically upward. What are the angles a and b?

Solution All the forces are resolved into horizontal and vertical components as shown in the Fig. 3.13.

 Thus 0 = 500 cos a − 400 cos b (3.5)

 and 700 = 500 sin a + 400 sin b (3.6)

 Multiplying both sides of Eq. (3.5) by cos a and (3.6) by sin a and adding, we have 500 cos2 a − 400 cos a 

cos b + 500 sin2 a + 400 sin a sin b = 700 sin a

or  500 − 400 cos (a + b) = 700 sin a (3.7)

 Further R = F F F F1
2

2
2

1 22+ + cosq

or  7002 = 5002 + 4002 + 2 ¥ 500 ¥ 400 cos {180 − (a + b)}

or  cos (a + b) = 
- + +

¥ ¥

700 500 400

2 500 400

2 2 2

 = −0.2

or  (a + b) = cos−1 − 0.2 = 101.53

 Putting the value of cos (a + b) in Eq. (3.7), we have

  500 + 400 ¥ 0.2 = 700 sin a or a = sin−1 
580

700
 = 56°

\  b = 101.53 − 56 = 45.5°.

 Therefore a and b are 56° and 45.5° respectively. Figure 3.13

700 N

400 N

500 N

ab

O

Figure 3.12
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Example 3.4  Refer to the Fig. 3.14. Compute the resultant R [in vector expression] of the two forces 

applied to the bracket.

150 N

2
0
°

y

30°

200 N

3
5
°

x

Figure 3.14

Solution Let 200 N and 150 N forces are denoted by F1 and F2 respectively.

 Resolving these two forces along x and y we have

  (F1)x = F1 cos q1 = 200 cos 35 = 163.83 N; (F1)y = F1 sin q1 = 200 sin 35 = 114.71 N

  (F2)x = F2 cos q2 = 150 cos 60 = 75 N; (F2)y = F2 sin q2 = 150 sin 60 = 129.9 N

 Thus R = Rxi + Ry  j = {(F1)x − (F2)x}i + {(F1)y + (F2)y}j

  R = {163.83 − 75}i + {114.71 + 129.9}j

 Thus R = 88.83i + 244.6j is the required vector expression of the resultant.

Example 3.5  The pulley is subjected to two equal forces T 

amounts to 400 N applied by means of a cable wrapped around it as 

shown in the Fig. 3.15. Determine the vector expression of resultant 

R applied to the pulley.

Solution Tension T which applied at an angle 60 is resolved into 

two components.

Thus Rx = (F1)x + (F2)x = T + T cos 60 = 1.5T = 1.5 ¥ 400 N = 

600 N

  Ry = (F1)y + (F2)y = 0 + T sin 60 = 0.866T

   = 0.866 ¥ 400 N = 346 N

 Thus R = 600i + 346j is the required vector expression of the 

resultant [Answer].

The magnitude of R would be R = R Rx y
2 2+  = 600 3462 2+  N = 693 N.

Example 3.6  The ‘A’ shaped frame is subjected to two forces as shown in the Fig. 3.16. Combine the 

two forces into a single force R. Express R in vector notation in terms of unit vectors i and j. Also compute 

the magnitude and direction of R.

60
°

y

x

T

T

Figure 3.15



 Two-Dimensional Force Systems 3.9

Solution Let 4 kN and 2 kN forces are denoted 

by F1 and F2 respectively.

 Resolving these two forces along x and y we have

  (F1)x = F1 cos q1 = 4 cos 30 = 3.464 N;

  (F1)y = F1 sin q1 = 4 sin 30 = 2 N

  (F2)x = F2 cos q2 = 2 cos 30 = 1.732 N;

  (F2)y = F2 sin q2 = 2 sin 30 = 1 N

Thus R = Rxi + Ry  j = {(F1)x + (F2)x}i

    + {(F1)y − (F2)y}j

  R = {3.464 + 1.732}i + {2 − 1}j

 Thus R = 5.2i + j is the required vector expression 

of the resultant.

 The magnitude of R becomes R = R Rx y
2 2+  = 5 2 12 2. +  = 5.29 kN

 If the two forces are extended following the principle of transmissibility, these would supposed to meet at O 

as shown with an included angle q = 60°

 Thus tan a = 
F

F F

1

2 1

sin

cos

q

q+
 = 

4 60

2 4 60

sin

cos+
 fi a = 40.89°

 Therefore the inclination of R with the horizontal is 40.89° − 30° = 10.89°.

 3.7 MOMENT

In earlier discussions, we have seen that the forces try to 

move the object along its direction which is essentially linear. 

However, there are instances, when a force may also try to 

invoke a rotation about an axis (perpendicular to the plane 

in which the force is applied). Such behavior is desirable in 

the light of many applications – a common example being 

tightening a nut or bolt by a spanner as depicted in Fig. 3.17.

 From experience of this arrangement, it is evident that 

success of the rotational tendency - the desired objective-

depends not only on the applied force but also on the distance of the point of application of the load from a 

point with respect to which body tends to rotate. Here, point is essentially an axis since an axis becomes a 

point when viewed perpendicularly.

 It is also observed that force that is applied perpendicular to the axis of the spanner is more effective. 

Further, increase in the above distance also has an encouraging effect in this endeavor. Thus refer to the Fig. 

3.17, the force F applied at A is the most effective as compared to the other two situations when its point of 

application is shifted to B and C.

 Thus, a precise definition of moment would be it is the measure of the tendency of the force that tries 

to produce a rotation with respect to an axis which is neither parallel nor intersecting with the line of 

application of the applied force.

 It is quantified by the product of the force (F) and perpendicular distance measured between line of action 

of the force and axis of rotation (d).

O

60°

2
kN

A

D

a

30°
B

R

y

x

4 kN

E

C

Figure 3.16

F

C

F

B A

F

O

Figure 3.17
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 Thus Mo = F ¥ d.

 Since moment is the product of force and distance, its unit 

following SI system is Newton-metre (N-m).

 The moment is a vector and is perpendicular to the plane of the 

body as shown in the Fig. 3.18. 

 Since the moment produces rotation – either clockwise or 

anti-clockwise, it follows the right-hand rule as shown in the 

Fig. 3.18. 

 As a sign convention, counter-clockwise moment is considered 

positive (right-hand rule) and clockwise moment is considered 

negative.

 The moment of a force F about a point O can be expressed as by the following cross product of vector

  M = r ¥ F (3.8)

where, r is a position vector that originates from the axis with respect to which moment is computed and 

directed to meet the line of action of the applied force.

 Thus, the basic rules of cross product as mentioned in chapter 2 hold true with moment also.

 The direction of M is defined as the direction which would bring r in line with F following right-hand 

rule.

Note: r is a vector from O to any point on the line of action of F.

 From the definition of a cross product,

  M0 = rF sin q

  M0 = Fr sin q

 From the Fig. 3.18, r sin q = d, so

  M0 = Fd (3.9)

where d represents the perpendicular from O to the line of action of F. d is commonly known as the 

moment arm.

 Resultant moment of a system of forces is

  MRO = Â (r ¥ F) (3.10)

 3.8 PRINCIPLE OF MOMENTS - VARIGNON’S THEOREM

The underlying principle of Varignon’s Theorem has a significant contribution in mechanics which can be read as

“The moment of the resultant of several concurrent forces about a given point O is equal to the sum of the 

moments of the same individual forces about the same point O”.

Proof: Let’s consider several concurrent forces. We can determine its resultant

 R = F1 + F2 ...

 The moment of 
�

R  about O is 
�

�

�

M r RO = ¥  where 
�

r  is the position vector from O to a point on the line 

of action of 
�

R .

 

�

�

� �

�

�

�

�

�

M r F F

M r F r F

O

O

= ¥ + +

= ¥ + ¥ +

( ...)

...

1 2

1 2

M F= ¥r

F

r

q

d

O

Figure 3.18
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 The authenticity of Varignon’s Theorem can also be 

proved following scalar approach.

 Let F1 and F2 be the two forces that originate 

from O and let R represent their resultant as shown in 

Fig. 3.19. 

 From any point A which is considered as moment 

centre on y axis, perpendiculars are dropped.

 Thus moment of the resultant R about A = Rd = 

R.OA cos q = OA.R cos q = OA.Rx.

 Similarly, moment of the force F1 with respect to 

the same moment centre A = F1d1 = F1.OA cos q1 = 

OA.F1 cos q = OA.(F1)x and that of F2 = F2d2 = F2.OA 

cos q2 = OA.F2 cos q2 = OA.(F2)x

 The sum of moments of F1 and F2 becomes = F1d1 + 

F2d2 = OA[(F1)x + (F2)x] = OA.Rx = Rd = Moment of 

the resultant with the same moment centre [Proved].

Example 3.7  Determine the magnitude and directional 

sense of the moment of the force at A about point P as 

shown in the Fig. 3.20.

Solution Let the inclination of the applied force F = 520 N 

be q with the horizontal.

\  tan q = 
12

5
 fi q = tan−1 

12

5
 = 67.4°

 Thus horizontal component of F becomes Fx = F cos q = 

520 cos 67.4 = 199.83 N; and vertical component becomes 

Fy = F sin q = 520 sin 67.4 = 480 N.

 The perpendicular distance between the line of action of Fx and 

the moment centre P is OP cos 30 = 4 cos 30 = 3.464 m and same 

for Fy is OP sin 30 + 6 = 8 m.

 It is evident from the sense of Fx and location of P, its moment 

with respect to P will be Fx ¥ OP cos 30 = 520 ¥ 3.464 m = 

692.21 N-m and its direction is clockwise and hence negative.

 Similarly the moment of Fy with respect to P will be 

Fy ¥ (6 + OP sin 30) = 480 ¥ 8 = 3840 N-m which is clockwise 

and hence positive.

 Thus the algebraic sum of these two moments is the resultant 

moment about P which is 3840 − 692.21 N-m = 3147.8 N-m.

Example 3.8  Determine the moment of the 10 N force about 

the pivot O of the toggle switch as shown in the Fig. 3.21.

Solution The applied force F is resolved into two mutually 

perpendicular components – the horizontal component is F sin a, 

vertical component is F cos a.

 The inclination of the toggle arm OA with the horizontal is 

q = 30°.

Figure 3.19
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  ÂMO = F cos a ¥ OB − F sin a ¥ AB

   = F cos a ¥ OA cos q − F sin a ¥ OA sin q

   = F ¥ OA [cos a cos q − sin a sin q]

   = F ¥ OA cos (a + q)

   = 10 ¥ 25 cos 45°

   = 176.78 N-mm.

Example 3.9  Compute the moment of the 250 N force on the handle of the monkey wrench about the 

centre of the bolt as shown in the Fig. 3.22.

Figure 3.22

Solution The applied force F = 250 N can be resolved into two components. Thus horizontal component 

of F becomes Fx = F sin q = 250 sin 15 = 64.7 N; and vertical component becomes Fy = F cos q = 250 

cos 15 = 241.48 N.

 Thus following the sense of moment,

  MOÂ  = −Fy ¥ 200 + Fx ¥ 30 = −241.48 ¥ 200 + 64.7 ¥ 30 N-mm = −46.36 N-m

 Thus net moment about center of the bolt becomes 

46.36 N-m and it is clock wise.

Example 3.10  The rocker arm BD of an I.C. engine 

is supported by a non-rotating shaft at C as shown in the 

Fig. 3.23. If the force exerted by the push pin AB on the 

rocker arm is 360 N, determine what force the valve stem 

DE will exert at D so that net moment at C is zero. Also 

calculate the resultant of the two forces on the rocker arm 

on the rocker.

Solution Let the forces exerted on the rocker by pin AB 

and valve stem DE are denoted by FAB and FDE respectively. 

These two forces can be resolved into two components – one 

horizontal and other vertical.

 Thus (FAB)x = FAB sin 5; and (FAB)y = FAB cos 5

 Similarly, (FDE)x = FDE sin 10; and (FDE)y = FDE cos 10 

(FAB)x and (FDE)x being directed towards point C, they cannot 

produce any moment about C. Figure 3.23

FAB FEDC

A

B D

E

42 mm 24 mm

5° 10°
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 It is therefore (FAB)y and (FDE)y that will produce moment about C.

 Since the net moment about C is zero, clockwise and counter-clockwise moments produced by (FAB)y and 

(FDE)y respectively will cancel each other.

 This implies,

  ÂMC = 0 fi FAB cos 5 ¥ 42 = FDE cos 10 ¥ 24

or  FDE = 
F
AB cos

cos

5 42

24 10

¥
 = 

360 5 42

24 10

cos

cos

¥
= 637 N

 If FAB and FDE are extended, they are supposed to meet at a point with an included angle of 10° + 5° = 15°.

 Therefore their resultant R = F F F F
AB DE AB DE
2 2 2 15+ + cos

or  R = 360 637 2 360 637 152 2+ + ¥ ¥ cos  N = 989 N

  tan a = 
F

F F

DE

AB DE

sin

cos

q

q+
 = 

637 15

360 637 15

sin

cos+
 fi a = 9.6°

 Thus inclination of R with the horizontal becomes 90° − 5° + 9.6° = 94.6°.

Example 3.11  Determine the moment of the 100 N force about point A as shown in Fig. 3.24.

Solution The applied force P(=100 N) is resolved into 

two mutually perpendicular components – the horizontal 

component being P sin a, vertical component is P cos a,

 M
AÂ  = P sin a ¥ AC + P cos a ¥ BC

  = P sin a ¥ (OA − OC) + P cos a ¥ BC

  = P sin a ¥ (OB − OB cos q) + P cos a ¥ OB sin q

  = P ¥ OB (sin a − cos q sin a + sin q cos a)

  = P ¥ OB [sin a + sin (q − a)]

  = 100 ¥ 0.125 [sin 20 + sin (70 − 20)] N-m

  = 13.85 N-m

 Thus the force P will produce a moment of 13.85 N-m 
and its sense is clockwise.

Example 3.12  The force exerted by the plunger of 

cylinder AB on the door is 60 N that acts along AB so as to close the door as shown in Fig. 3.25 [All 

dimensions are in mm]. Calculate the moment of this force about O. What is the value of the force Fc, normal 

to the plane of the door, that the door stop at C exerts on the door so that the combined moment about O of 

the two forces is zero?

Solution Considering the cylinder AB, the force of 60 N is acting along the plunger of the cylinder and is 

directed towards point A to keep the door in closed condition.

 Let the inclination of the plunger AB with the horizontal is q

  tan q = 
100

400

  q = tan−1 (0.25) = 14.03°

q = 70°

O

12
5 m

m

P Sin 20
B

a = 20°

P

P cos 20

A

C

Figure 3.24
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 The 60 N force is resolved into horizontal and vertical components having magnitudes 60 cos q and 60 sin q 

respectively.

 Both the component of force will produce clockwise moment with respect to point O.

 Thus

  MOÂ  = 60 sin q ¥ (400 + 25) + 60 cos q ¥ 75

   = 60[425 sin 14.03 + 75 cos 14.03] N-mm

   = 60[103.03 + 72.762] N-mm

   = 10.548 N-m

 If the door stop at C exerts a force Fc, 

perpendicular to the plane of the door, it must 

produce same amount of moment but opposite in 

direction, i.e., counter-clockwise.

 Moment arm for Fc would be 400 + 400 + 25 = 

825 mm = 0.825 m

  Fc ¥ 0.825 = 10.548

  Fc = 12.785 N

 Force exerted by door stop at C is 12.785 N.

 3.9 COUPLE

Two equal parallel forces with opposite directions, although do not yield 

any resultant force, but produce a resultant moment with respect to a 

moment centre. This moment is called moment of a couple and has got 

a very important role to play in mechanics.

 Refer to the Fig. 3.26. Two forces +F and −F have the same magnitude, 

parallel lines of action and opposite direction.

 Although SFy = 0 but +F and −F together will try to rotate about O.

 The moment of these two forces with respect to the point O [Refer 

Fig. 3.26 (a)] yields MO = F ¥ d + F ¥ d = F ¥ 2d = Any one of the 

force multiplied by perpendicular distance between them.

 Unlike the previous case, if the moment centre lies on any one side, 

still the above relation will hold true.

 Refer to the Fig. 3.26 (b). The moment of the two forces with respect 

to the point O¢ now becomes MO = F ¥ (2d + x) − F ¥ x = F ¥ 2d.

 The moment of couple can also be computed by vector approach.

 Suppose we have two equal and opposite forces F applied at A and B having 

their position vector rA and rB with respect to the origin O as shown in Fig. 3.27.

 Thus combined moment of this two equal and opposite forces would be

  M = rA ¥ F + rB ¥ (−F) = (rA − rB) ¥ F (3.11)

 But from the principle of addition of vector, rB + r = rA (3.12)

 Comparing Eqs (3.11) and (3.12) we have,

  M = r ¥ F (3.13)

 It is interesting to note that r has got no relation with the moment centre; 

rather it is the relative position between two forces and hence moment of a 

couple is treated as free vector.
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Note: Since the moment of a couple is the product of two parameters – the force and the position vector 

of one with relative to the other – it will remain unchanged even if both r and F are modified in such a 

way so that their product remains unaltered.

 3.10 FORCE – COUPLE SYSTEM

A force applied at any point of a rigid body can be replaced by an equivalent force applied at different point 

along with a couple.

 Refer to the Fig. 3.28. A force F is applied at point A of the body. Following the principle of superimposition 

of forces, a set of forces +F and −F is applied at point B without changing the status of the body as shown in 

Figure 3.28

–F
B

F

F

A

d
B

A

F

F

B

M Fd=

(a) (b) (c)

the Fig. 3.28 (b). It is clear from the very definition of couple that +F at point A and −F at point B together 

constitute a couple having its moment d ¥ F in addition to +F at B without altering its status quo. Thus, initial 

situation of the body which was acted upon by a force F at A is no way different to the final situation as 

depicted in Fig. 3.28 (c) when it exhibits presence of a couple with a moment M = Fd along with a force +F 

at B. This situation is known as a force can be replaced by same force but at a different location along with 

a couple. 

Example 3.13  The bracket shown in the Fig. 3.29 

is spot welded to the end of the shaft at point O and 

is subjected to 900 N force. Find out equivalent force 

and couple to replace 900 N force.

Solution Let the 900 N force is applied at point A.

 At point O, we can superimpose +900 N and 

−900 N.

 Thus +900 N at A and −900 N at O together 

constitutes a couple having moment

  M = 900 ¥ 100 N-mm = 90 N-m.

 In vector notation, applied force vector F = Fxi + 

Fy  j + Fzk = 900k. Its position vector r = rxi + ry  j + 

rzk = −100j.

 Therefore M = r ¥ F = −100j ¥ 900k N-mm = −90i N-m.

Example 3.14  Refer to the wrench shown in the Fig. 3.30. It is subjected to the 200 N force and the force P. 

If the equivalent of the two forces is a force R at O and a couple expressed as M = 20k N-m, determine the 

vector expressions for P and R.

Figure 3.29
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 The magnitude of the moment of the couple is 20 N-m and it is counter-clockwise.

 Thus 200 ¥ 160 − P ¥ 300 = 20 ¥ 1000; P = 
200 160 20 1000

300

¥ - ¥
 N = 40 N

 Therefore vector expression of P becomes P = 40j

 The net force R becomes −200j N + 40j N = −160j N.

MULTIPLE-CHOICE QUESTIONS

 3.1 Force is a

 (a) free Vector (b) sliding (c) fixed (d) all of the above

 3.2 Force is completely specified by its

 (a) magnitude only   (b) magnitude and direction

 (c) magnitude, direction and point of application (d) none of the above

 3.3 Resolution of force means 

 (a) conversion of several forces to a single force (b) vector addition

 (c) Both (i) and (ii)   (d) none of the above 

 3.4 A system of forces are said to be coplanar if they lie in

 (a) a single plane   (b) two planes

 (c) three mutually perpendicular planes (d) none of the above

 3.5 Lami’s theorem is related to

 (a) equilibrium of two coplanar, concurrent forces

 (b) equilibrium of three coplanar, concurrent forces

 (c) equilibriums of four coplanar, concurrent forces 

 (d) none of the above

 3.6 Transmissibility of force refers to

 (a) a force can be shifted any where with in the body

 (b) a force can be rotated by 90º

y
20
0
N

160
mm

P

O

300 mm

z

x

Figure 3.30
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 (c) force can be shifted with out altering its line of action and direction

 (d) none of the above

 3.7 Superimposition of forces

 (a) increases the magnitude of the force (b) decreases the magnitude of the force

 (c) does not change its status  (d) none of the above

 3.8 Moment of a force with respect to a moment centre in its plane is the 

 (a) sum of force and perpendicular distance between the moment centre and the line of action of force.

 (b) difference between force and above distance. 

 (c) ratio of force and the distance.

 (d) product of force and the distance.

 3.9 Moment is obtained by

 (a) vector addition (b) vector subtraction (c) vector dot product (d) vector cross product

 3.10 The force or component of a force which is directed towards moment centre will produce

 (a) zero moment (b) maximum moment (c) average moment (d) none of the above

 3.11 Varignon’s theorem is related with

 (a) moment of force(s)   (b) friction

 (c) deformation characteristics of rigid bodies (d) none of the above

 3.12 A couple is formed by

 (a) two equal and opposite intersecting forces (b) two equal forces that are at 90º

 (c) two equal and opposite parallel forces (d) all of the above

 3.13 The moment of a couple will remain unchanged if

 (a) either the force or the distance remains unchanged.

 (b) both are changed arbitrarily.

 (c) both are increased and decreased simultaneously by same scale factor.

 (d) one is increased and other is deceased by same scale factor.

 3.14 The moment of a couple is 

 (a) independent of the location of the moment centre

 (b) independent if it is outside the body

 (c) dependent if it is with in the body

 (d) none of the above

 3.15 M = r ¥ F yields

 (a) rF cos q (b) rF sin q (c) rF tan q (d) rF cot q

SHORT ANSWER TYPE QUESTIONS

 3.1 Define force. How it is specified? Is it a vector quantity? If yes, what type of vector is it?

 3.2 What is meant by point load and distributed load? Give examples.

 3.3 What do you mean by coplanar, concurrent and collinear force? What is the condition of equilibrium 

for two such forces?

 3.4 What is meant by transmissibility and superimposition of forces?

 3.5 State Lami’s Theorem. 

 3.6 State and explain Parallelogram Law, Triangle Law and Polygon of Forces. In this context, what is 

meant by closed polygon and under what situation it is possible to construct a closed polygon?

 3.7 Develop a vector expression for resultant of two coplanar, concurrent forces.

 3.8 What is meant by composition and resolution of forces?

 3.9 Define moment of a force. What types of vector is it? How it is relevant with vector cross product?

 3.10 State Varignon’s Theorem and prove it.
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 3.11 What is a couple? Under what circumstances is it formed? Replace a force by an equivalent force-couple 

system.

 3.12 Is couple a vector? Prove that moment of a couple does not depend on the location of the moment 

center.

NUMERICAL PROBLEMS

 3.1 A barge is pulled by 2 tugboats as shown in Fig. 3.31. The 

resultant of the forces exerted by the tugboats is a 5000 N force 

directed along the centre axis of the barge. Find tension in each 

rope if a = 45º and value of a such that the tension in rope 2 

is minimum.

 3.2 Replace the 6 kN and 4 kN forces as shown in Fig. 3.32 by a 

single force, expressed in vector notation.

 3.3 The resultant of three forces is R = 60 N as shown in the Fig. 3.33. 

Two of the three forces are also shown as 120 N and 65 N. 

Determine the third force.

 3.4 The pole OA is subjected to a force applied at A as shown in 

Fig. 3.34.

40°

30°
6 kN

y4 kN

x

Figure 3.32

45°

70°

R = 60 N

65 N

120 N

Figure 3.33

  Find: (a) Moment of the 100 N force about O.

   (b) Magnitude of a horizontal force applied at A which create the same 

moment about O.

   (c) The smallest force applied at A which creates the same moment 

about O.

   (d) Distance from O at which a 240 N vertical force must act to create 

the same moment about O.

 3.5 The lever is loaded by various forces and a couple as shown in Fig. 3.35. If the 

resultant of these forces and couple passes through O, calculate M.

 3.6 The aircraft is subjected to thrust forces T as shown in Fig. 3.36. Determine 

the equivalent force couple system at O. Replace this force couple system by 

a single force and find out its location on x axis.

24 cm 100 N

A

60°

O

Figure 3.34

A

a

30°

1

C
2

B

Figure 3.31
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Figure 3.35
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 3.7 A device called a rolamite is used to replace slipping motion with rolling motion as shown in Fig. 3.37. 

If the belt, which wraps between the rollers, is subjected to a tension of 15 N, determine the reactive 

Figure 3.37
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forces N of the top and bottom plates on the rollers so that the resultant couple acting on the rollers 

is equal to zero.

 3.8 A roller with a lever of radius 60 mm attached to its centre makes an angle of 60° with the horizontal 

as shown in Fig. 3.38. Replace the couple and force by an equivalent, single force applied to the lever. 

Also determine the distance from O to the point of application of this force.

 3.9 The lever ABC is hinged at B and subjected to various forces as shown in Fig. 3.39. (a) Replace the 

three forces with an equivalent force-couple system at B. (b) Determine the single force which is 

equivalent to the force-couple system obtained in, and (a) locate its point of application on the lever.

Figure 3.38

P

311!O

311!O

511!O

B

411!nn

Figure 3.39
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A

20°

20°

55°
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30 m
m

 3.10 The bracket ABCD is hinged at B and subjected to a horizontal force P = 80 N applied at A as 

shown in Fig. 3.40. (a) Replace the force with an equivalent force-couple system at B. (b) What is 
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the magnitude and direction of the vertical applied forces at C and D that would produce equivalent 

amount of moment at B?

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 3.1 (b) 3.4 (a) 3.7 (c) 3.10 (a) 3.13 (d)

 3.2 (c) 3.5 (b) 3.8 (d) 3.11 (a) 3.14 (a)

 3.3 (d) 3.6 (c) 3.9 (d) 3.12 (c) 3.15 (b)

ANSWERS TO NUMERICAL PROBLEMS

 3.1 (a) T1 = 3660 N, T2 = 2590 N (b) a = 60°, T1 = 4330 N, T2 = 2500 N

 3.2 2630i + 6060j

 3.3 168.8 N. 66.84°

 3.4 (a) 1200 N-cm (b) 57.7 N (c) 50 N (d) 10 cm

 3.5 M = 148 N-m

 3.6 T = 1.966i + 0.259j; MO = 2.69T; x = −10.4 m

 3.7 26 N

 3.8 420 mm

 3.9 (a) F = 50 N; 65° with the horizontal, M = 455.21 N-mm, (b) F = 50 N; 65° with the horizontal, 

15.86 mm to the left of B

 3.10 (a) F = 80 N horizontal at B, towards left; M = 4 N-m (CCW), (b) FC = 100 N (downward), FD = 100 N 

(upward)]

Figure 3.40

100 mm 40 mm

C

A

B

D

P = 80 N

50 mm





4
Equilibrium of Rigid Bodies

 4.1 CONDITIONS OF EQUILIBRIUM

In statics, force analysis is carried out considering the equilibrium of the structures. Thus, establishing condition 

of equilibrium is utmost important in regard to its study.

 These structures quite often comprise several members that are envisaged as rigid bodies. The structure will 

maintain equilibrium when all the members present in it are in equilibrium, separately. 

 A body is said to be in equilibrium when it does not have any motion whatsoever, in any direction. The 

motions essentially are of two types:

 (a) Translation

 (b) Rotation

 Thus, the condition of equilibrium leads to the following requirements that have to be fulfilled simultaneously 

to prevent both the motions.

  Under the action of several forces – active and reactive – the net force, i.e., the resultant diminishes, and 

  The net moment of all the forces with respect to any moment centre should be zero. 

 4.2 GENERALISED CONDITIONS OF EQUILIBRIUM

A. Graphical Approach: Considering the polygon of forces, closing arm directed from origin of first vector 

to the arrowhead of last vector will represent their resultant. 

 Thus it can be considered that gross effects of individual forces F1, F2, F3, and so on, can be replaced by 

a single force R which is the resultant. 

 Considering the conditions of equilibrium of two forces, if another force −R exists such that it is collinear 

with that of R, the net force will become zero, a necessary condition for equilibrium.

 Thus refer to the Fig. 3.9. Following the principle of transmissibility −R can be superimposed over R to 

obtain equilibrium.

 In other words, when a system is subjected to several coplanar, concurrent forces, these can be represented 

by a closed polygon under condition of equilibrium.

 A closed polygon implies all the arrowheads follow an order, either clockwise or anti-clockwise to form a 

closed loop.

 If a polygon has n sides, then nth side will represent the magnitude as well as the direction of the resultant 

of n − 1 number of individual forces.

B. Vector Approach: The resultant of several coplanar, concurrent forces can be expressed by R = Rx i + Ry j 

(Refer to article 3.5)

 Thus R becomes zero when both Rx = 0 and Ry = 0

 Mathematically, RX = ( )Fi x

i

i n

=

=

Â
1

 = XÂ  = 0 (4.1) 
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and

  RY = ( )Fi y

i

i n

=

=

Â
1

 = YÂ  = 0 (4.2)

 This can be stated as under condition of equilibrium “Algebraic sum of all the forces along X direction 

and along Y direction has to be zero simultaneously”.

 These pair of equations is a necessary condition for equilibrium but not sufficient for rigid bodies since zero 

resultant force implies there is no resultant force, which means that there cannot be any translational motion.

 However, to prevent rotary motion, there should not be any resultant moment.

 Thus, condition of equilibrium states “Algebraic sum of moments of all the forces with respect to any 

moment centre in its plane should be zero”.

 Thus mathematically ÂMO = ÂFd = 0 (4.3) 

where ÂMO represents moments of all the forces with respect to any moment centre O.

 It can therefore be concluded that the necessary and sufficient conditions of equilibrium of rigid bodies 

leads to simultaneous satisfaction of Eqs (4.1), (4.2) and (4.3).

 However, while dealing with a particle, only Eqs (4.1) and (4.2) become necessary and are sufficient 

condition of equilibrium. This is in congruence with the Newton’s First Law. This is called statics of a particle.

 For a particle, the question of moment does not arise since in the absence of moment arm there cannot be 

any moment.

C. Scalar Approach: From the expression of R = R Rx y
2 2+  = ( ) ( )F Fi x

i

i n

i y

i

i n

=

=

=

=

Â Â
È

Î
Í
Í

˘

˚
˙
˙

+
È

Î
Í
Í

˘

˚
˙
˙1

2

1

2

, it is evident that 

R is the summation of two square terms.

 The necessary condition for R to be zero implies both the terms individually have to be zero, which leads 

to Eqs (4.1) and (4.2).

 Note that ÂX is simplified expression of 
i

i n

=

=

Â
1

(Fi)x and ÂY is simplified expression of 
i

i n

=

=

Â
1

(Fi)y and hence 

forth only ÂX and ÂY will be used.

 Let us consider few situations, which are simplified, yet encountered quite often.

Case I: Conditions of equilibrium under two concurrent forces

From the expression of R = F F F F1
2

2
2

1 22+ + cos q , when q = 180°, and F1 = −F2, R becomes zero.

 This implies net effect of F1 and F2 on the body is zero and hence equilibrium is restored.

 This can be stated as when a body is subjected to two coplanar, concurrent forces, the equilibrium of the 

body can lead to the following conditions that must be satisfied simultaneously.

  The magnitude of the two forces should be equal.

  The direction of the two forces should be opposite. 

  The forces should be collinear.

Case II: Conditions of equilibrium under three concurrent forces

When n = 3, the polygon is reduced to a triangle as shown in Fig. 2.8.

 It can therefore lead to the statement when a system is subjected to three coplanar, concurrent forces, these 

can be represented by a closed triangle under condition of equilibrium.

 Thus the expression 
P Q R

sin sin sina b g
= =  holds true. [Refer to article 2.3.4 and Fig. 2.8]
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 This is popularly known as Lami’s Theorem and found to be extremely useful in the analysis of structures 

involving three coplanar, concurrent forces that ensures equilibrium.

 4.3 REACTIONS FROM DIFFERENT TYPES OF SUPPORTS

Engineering structure and machine members ensure equilibrium under the influence of active forces and 

reactions from various supports that constrain their motion. While the magnitude and direction of active forces 

are known, magnitude or direction of its reactive forces are not known. The force analysis of such systems 

basically focussed to the computations of reactive forces – both magnitude and directions. Further, depending 

on the nature of external load to be experienced, wide varieties of supports having their own characteristics 

are used. It is therefore imperative to study various types of supports before considering force analysis under 

condition of equilibrium.

 Depending on the merits of the structures, the following types of supports are widely used. A particular 

situation can make use of any combinations of these supports.

4.3.1 Roller or Simple Support

These types of supports are developed by smooth spherical rollers and hence the name. 

These are called simple supports owing to the fact it is easier to establish the direction 

of the reaction it offers. In the absence of any frictional forces (since it is smooth), the 

reactions from such supports are exactly perpendicular to its base on which the rollers are 

mounted as shown in the Fig. 4.1.

 Thus the direction of reactive forces is known with certainty. The contact between the 

members and the rollers are point contact. Even a smooth wall and a floor may be considered 

as roller supports when these are smooth, i.e., frictionless. Confirmed direction of reactive 

forces makes it easy to calculate their magnitudes.

4.3.2 Short Inextensible Cable or String

Loads are often applied by means of short inextensible cable as shown in the Fig. 4.2. Such 

cables are not very strong and hence cannot offer resistance to compression, bending, and 

torsion and can withstand only tensile force. This tensile force induced in the string acts 

axially and therefore facilitates to calculate its magnitude only. 

4.3.3 Hinge Supports

These supports are developed by inserting a smooth pin through a common hole made 

between the member to be supported and a bracket of the support as shown in the 

Fig. 4.3. The bracket is fixed suitably to the intended locations. Such supports, although 

do not permit any translational movement, but they allow rotation with respect to the 

centre of the pin. For such supports, complexity arises from the fact that the direction 

of the reactions it offers is not unique. It is the point of application of external loads 

together with nature and types of other supports that the system utilizes, govern its 

direction. 

 Nevertheless, it would not be very difficult to establish its direction considering the 

equilibrium of the entire structure as a whole.

 To symbolize the uncertainty of directions, it is denoted by a zigzag arrow at the first 

instance as shown in the Fig. 4.3. 

 Few common examples of hinge joints are tongs, scissors, knifes, etc. Two arms of a tong or of a scissor 

can be rotated although these cannot be separated. 

Figure 4.1

T

T

Figure 4.2

Figure 4.3
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 While dealing with such supports, it is wiser not to ponder 

too much time over finding its direction. Notwithstanding 

the fact that its direction is not clear, it can be resolved into 

two mutually perpendicular components – one horizontal RX 

(along +x axis) and other vertical RY (along +y axis) as shown 

in the Fig. 4.4, such that R = R RX Y
2 2+ .

 Note that this expression does not include the angle of 

inclination of R.

 This does not necessarily mean that R will always make 

an angle q with the horizontal such that 0 £ q £ 90, so that 

RX and RY will always act along positive x axis and positive 

y axis respectively. If by virtue of calculations, RX and RY are 

found to be negative, its direction is to be modified accordingly.

 Following illustration will help to understand this approach more clearly.

 The member AB is subjected to a load P and supported at A and B which are the hinge and roller support 

respectively.

 The reactions from A and B are shown. For roller support, there is no ambiguity. However, being uncertain, 

the reaction by hinge is shown by a zigzag arrow at the beginning.

 This now can be resolved into two components RAX and RAY as shown. 

 Considering the equilibrium of the member AB under the actions of P, RA and RB, these must intersect at a 

common point. By following principle of transmissibility, P and RB are made to intersect at O. Thus the third 

force RA must intersect no other but the same common point O. Thus, AO represents the exact direction of RA. 

Knowing RA and its inclination, RAX and RAY can be computed.

4.3.4 Cantilever or Fixed Supports

This is another category of supports which is called built-in or fixed, but 

popularly known as cantilever. It is so named because in essence, one side of 

the member is fixed and restrains its motion completely and other side is free 

as shown in the Fig. 4.5. Under such complex loading situation, it can exhibit 

similar reactions like that of hinge in addition to a couple with moment M to 

prevent bending.

 4.4 FREE BODY DIAGRAM

Free Body Diagram abbreviated as FBD is a very useful aid to solve the problems of mechanics. The very 

name implies that a member for which we focus our attention for the purpose of force analysis should be 

isolated from various constraints and all the forces acting on it – both active and reactive, should be shown 

without altering its directions. This is a simplified scheme of the actual problem but helps in a bigger way 

to its solution.

 Free-body diagrams now consist of both applied forces and reactions from the other bodies.

Steps for Drawing a FBD

 (1) Decide which body to analyse.

 (2) Separate this body from all constraints and sketch the contour.

 (3) Draw all applied forces. These includes both active forces and reactions from supports.

 (4) Include any necessary dimensions and coordinate axis.

P

RAXRA

A

RAY

O

B

RB

Figure 4.4

Figure 4.5

RY

RX

M

P
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Applied forces are forces that try to get the body to move.

Reaction forces are forces that try to prevent motion.

 Reactions at supports and connections are of only two types:

 1. If a support or connection prevents translation (linear motion) in some direction, then a force may be 

developed in that direction.

 2. If a support or connection prevents rotation about some axis, then a moment may be developed around 

that axis.

Note: When drawing the forces, if you don’t know the direction, assume a direction and let the sign of the 

answer tell you if the direction is correct or not.

Rules of FBD:

 (1) Magnitude and direction of all forces should be clearly indicated.

 (2) Indicate the direction of the forces on the body.

 4.5 TYPES OF PROBLEMS UNDER EQUILIBRIUM

In most of the 2-D problems, it is found that members ensure equilibrium under the actions of three forces. 

Given the situations, we have to compute the reactions from various supports – their magnitudes and directions. 

It may also be required to find out the forces induced in the cables, tie rods, struts, etc, which are also used 

as supporting members. However, as mentioned earlier, these axial forces are either tensile or compressive.

 4.6 SOLUTION STRATEGIES

  Identify the member(s) of interest and draw the free body diagram. The success of solution to equilibrium 

problem is dependent on this issue.

  Identify the forces (both active and reactive) acting on it along with the clear line of actions.

  Never consider the forces that the member under consideration exerts on the others while drawing FBD.

  Whenever a body is acted upon by three forces, use Lami’s Theorem.

  After construction of FBD, resolve the forces into two mutually perpendicular directions, namely x and y. 

Use Eqs (4.1), (4.2) and (4.3). Note that while taking moment, choose a moment centre scrupulously so 

that the unknown becomes one. This helps to solve the problem very easily. Further, in one problem, 

any number of moments can be taken with respect to different moment centres.

  Whenever, a supporting member is stated as tie bar, it implies the induced force will be tensile. On the 

other hand, if it is termed as strut, the induced force will be compressive.

  While dealing with the hinge supports, do not meddle over finding its direction at the beginning. If the 

body maintains equilibrium under the actions of three forces involving hinge supports, identify the point 

of intersection of the other two forces. Thus this point of intersection will be point of concurrency of 

the three forces. Notwithstanding the direction of the reactions from hinge supports, resolve it into two 

mutually perpendicular directions.

  You can follow any approach – graphical, analytical or vector.

Example 4.1  A homogeneous prismatic bar AB of weight W is supported by two smooth inclined planes 

AC and BC that are mutually perpendicular and one (BC) makes an angle a with the horizontal as shown in 

the Fig. 4.6. If the bar is under equilibrium, what angle (q) the bar makes with the plane CA?

Solution Since both the planes are perfectly smooth, the reactions offered by them should be just perpendicular 

to these planes. Thus RA and RB meets at point D, implying the other force which is the weight of the bar W will 

also meet at D. So point D becomes the point of concurrency of the three forces that ensures equilibrium of the bar.
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 Since the bar is homogeneous; its weight will act at its mid-point (G).

 Therefore, ACBD becomes a rectangle.

 Thus q = –GAC = –GCA = a.

 Hence under equilibrium, the bar makes an angle q = a with the plane CA.

Example 4.2  A right circular roller of weight W rests on a smooth horizontal plane and is subjected to 

a pull force P as shown in Fig. 4.7. It is held in position by a string AC. Find the tension T in the string AC 

and reaction RB at B.

Solution The free body diagram of the roller is shown in the Fig. 4.7 (a).

 Resolving all the forces along x and y direction,

  ÂX = 0

  P − T cos b = 0

  T = P sec b

  ÂY = 0

  RB − T sin b − W = 0
  RB = P tan b + W

 Thus tension in the string AC = T = P sec b and RB = P tan b + W

Example 4.3  A load P = 200 N is hung by means of a bar AB and a string BC as shown in Fig. 4.8. The 

inclination of the string with the horizontal is 30º. Calculate the axial forces induced in the bar and in the string.

Solution Let the axial forces induced in the bar and in the string are denoted by TAB and TBC respectively. 

 From the given configuration of the system, the bar will be under compression and the string will be under 

tension.

 Considering the free body diagram of the point B and using the condition of equilibrium,

  ÂX = 0

  TAB = TBC cos a (4.4)

  ÂY = 0

  P = TBC sin a (4.5)

 From (4.5), we get TBC = 
P

sin a
 = 

200

30sin
 = 400 N

Figure 4.6 Figure 4.7 Figure 4.7 (a)
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Figure 4.8

 Combining Eqs (4.4) and (4.5), TAB = TBC cos a = 400 cos 30 = 346.41 N

 Thus the axial forces induced in the string and the bar are 400 N and 346.41 N respectively.

Example 4.4  A smooth sphere of mass 75 kg is held in a position 

by means of a vertical wall and an inclined plane as shown in Fig. 4.9. 

Assuming the supports are frictionless, calculate the reactions exerted 

by the supports.

Solution The free body diagram of the sphere is shown in Fig. 4.9 (a)

 RA makes an angle 60º with the horizontal.

 Thus (RA)X = RA cos 60 and (RA)Y = RA sin 60

 Considering the equilibrium of the sphere,

  ÂX = 0

  RA cos 60 = RB

  ÂY = 0

  RA sin 60 = mg = 75 ¥ 9.81

  RA = 
75 9 81

60

¥ .

sin
 = 849.57 N

  RB = RA cos 60 = 849.57 cos 60 N = 424.785 N

Example 4.5  Two smooth spheres, each of radius r = 150 mm and 

weight W = 100 N, rest in a horizontal channel having vertical walls, and 

the distance between them is w = 512 mm, as shown in Fig. 4.10. Find 

the reactions exerted at their points of contacts by the walls and the floor.

Solution From the free body diagrams of the spheres and geometry,

  cos q = 
C E

C C

1

1 2

  C1E =  2r cos q

30°
A

B

Figure 4.9

A

B
RB

mg

RA

Figure 4.9 (a)
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 Thus w = r + 2r cos q + r = 2r(1 + cos q)

 Taking r = 150 mm and w = 512 mm,

  cos q = w

r2
 − 1 = 512

2 150¥
 − 1 = 0.707

  q = 45°

 The force polygons are now drawn for the two spheres as 

shown in Fig. 4.10 (a) and Fig. 4.10 (b).

 Since W = 100 N therefore RA = 100 N as q = 45°

 Thus RC C1 2
= 100 ¥ 2  N = 141.4 N.

 From the force polygon of sphere 1; RB = 100 N and 

RD = 200 N.

Figure 4.10

Figure 4.11

Figure 4.10

Example 4.6  A smooth roller of weight W = 200 N, rests 

on a smooth inclined plane and is prevented from rolling 

down by a string as shown in Fig. 4.11. Find the reaction 

exerted by the plane and the tension in the string.

Solution Force polygon (triangle in this case) is superimposed 

in the above Fig. 4.11.

 By using Lami’s theorem,

  
W

sin 75
 = 

T

sin 45
 = 

RB

sin 60

  RB = 
sin

sin

60

75
 ¥ W = 179.3 N

  T = 
sin

sin

45

75
 ¥ W = 146.4 N

Note: Students are advised to solve the same problem by analytical and graphical methods also.
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Example 4.7  A smooth right circular cylinder of radius r 

rests on a horizontal plane and is prevented from rolling by an 

inclined string AC of length 2r. A prismatic bar AB of length 3r 

and weight W is hinged at point A and leans against the roller as 

shown in the Fig. 4.12. Find the tension T induced in the string.

Solution From the centre C, perpendiculars CD and CE are 

drawn on the horizontal plane and AB respectively. DACD and 

DACE being similar, AD = AE and –CAD = –CAE = q (say) 

such that

  sin q = 
r

r2

or,  q = 30°

 Therefore AD = AE = 2r cos 30 = 3r.

 Considering the free body of the bar AB [refer Fig. 4.12 (a)] and taking moment at A,

  ÂMA = 0

  RE ¥ 3r = W cos 60 ¥ 1.5r

  RE = 
3

4
 W = 0.433 W

 Now considering the free body of the roller [refer Fig. 4.12 (b)] and ÂX = 0 we have;

  RE cos q =  T cos q

  T =  RE = 0.433 W

1.5r
W T

q

RE

E

F

A

Figure 4.12 (a) Figure 4.12 (b)

Figure 4.12

Example 4.8  A vertical prismatic bar AB of negligible weight and length l is hinged to a cylinder of 

radius r at A and supported at D by an elastic spring CD as shown in Fig. 4.13. The stiffness of the spring 

is k and the spring is not deformed when a = 0. The horizontal force P is applied to the bar AB at B. Find 

the position of equilibrium, as defined by the angle a.

Solution The force induced in the spring corresponds to deformation amount d is F = kd.

 In the present situation this deformation d is tantamount to the arc DG.

 Further, from geometry DG = ra.

  \ d = ra
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 The spring force F will act perpendicular to the bar AB.

 Considering the equilibrium of the bar AB and having ÂMA = 0

  F ¥ r = P ¥ AH = P ¥ l cos a

  k ¥ ra ¥ r = Pl cos a

  
cos a

a
 = 

kr

Pl

2

Example 4.9  Refer to Fig. 4.14. A mass of weight 30 kg is hung from a bar AB which is hinged at A and 

is supported by a cable BC. Determine the tension in the cable and the reaction from the hinge at A.

H

F

G

D

A
r

B P

a

C

Figure 4.13

( )RA Y

RA

(RA)
X

TBC

D

q

B

W

A

C

q = 30°

 Figure 4.14 Figure 4.14 (a)

Solution

1st Method: Since A is a hinge point, exact direction of (RA) cannot be established.

 It is therefore convenient to resolve this force into two mutually perpendicular components - along positive 

x axis and along positive y axis.

 However, by virtue of calculation, if (RA)X and (RA)Y are found to be negative, it implies the directions need 

to be reversed.

 Resolving TBC into two mutually perpendicular components and considering
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  ÂX = 0

  (RA)X = TBC cos q (4.6)

 Since the system is under equilibrium

  ÂMA = 0

  W ¥ AB = TBC ¥ AD (4.7)

  W ¥ AB = TBC ¥ AB ¥ sin q

  TBC = 
W

sinq

   = 
30 9 81

30

¥ .

sin
 = 588.6 N

  (RA)X = TBC cos q

   = 
W

tan

.

tan30

30 9 81

30
=

¥
 = 509.74 N

 Considering the bar AB

  ÂY = 0

  (RA)Y + TBC sin q = W

  (RA)Y = 0

2nd Method: Consider the bar AB is in equilibrium under the 

action of three forces, W, TBC and RA.

 So, these three forces constitute a force triangle.

 Again, since W and TBC intersect at point B, the third force RA 

must pass through point B, implying (RA)X = RA and (RA)Y = 0.

 Considering the force triangle DEF

  
W

sin q
 = 

( )

sin ( )

R
A X

90 - q
 = 

TBC

sin
,

90
 which yields

  TBC = 
W

sin q
 = 588.6 N

  (RA)X = 
W

tan q
 = 509.74 N

Example 4.10  Two rollers of weight P =

40 N and Q = 80 N are connected by a flexible 

string AB as shown in Fig. 4.15. These rollers 

are placed on two inclined planes DE and EF 

such that –DEF = 90° and –EFD = a = 30°. 

Find the tension in the string and the angle q 

that it makes with the horizontal when the 

system is in equilibrium.

Solution From the free body diagram of the 

two rollers, it is clear that individually they 

q

q

TBC

( )RA X

W

E F( )RA X

TBC

D

Figure 4.14 (b)

E

90°

RA

A

D

WP

q
T

T
RB

B

WQ a
F

Figure 4.15
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are under equilibrium under three forces and hence these three forces can be represented by closed triangle as 

shown. Thus the roller at A is in equilibrium under the forces WP, RA and T and the roller at B is in equilibrium 

under the forces WQ, RB and T.

 Considering force triangle of the roller of weight Wp and using Lami’s Theorem,

T

WP

RA

a + q

90° – q

90° – a

(a)

RB
WQ

T

90°– a – q

90° + q

a

(b)

Figure 4.15

  
WP

sin ( )a q+
 = 

T

sin ( )90 - a
 = 

R
A

sin ( )90 - q
 (4.8)

 Similar relation from the force triangle of the roller of weight WQ yields

  
WQ

sin { ( )}90 - +a q
 = 

T

sin a
 = 

RB

sin ( )90 + q
 (4.9)

 Comparing Eqs (4.8) and (4.9),

  T = 
sin ( )

sin ( )

90 -
+

a

a q
WP = 

sin

sin { ( )}

a

a q90 - +
WQ

  
cos

sin ( )

a

a q+
WP = 

sin

cos ( )

a

a q+
WQ

  tan (a + q) tan a = 
W

W

P

Q

  tan (a + q) = 
W

W

P

Q tan a
 = 

40

80 30tan
 = 0.866

  (a + q) = tan−1 0.866 = 40.89°

  q = 40.89 − 30 = 10.89°

 Thus, from Eq. (4.8) T = 
WP cos

sin ( )

a

a q+
 = 

40 30

40 89

cos

sin .
 = 52.92 N

Example 4.11  A prismatic bar AB of weight 50 N and length 3.5 metre is hinged to a vertical wall at A 

and other end is supported by a horizontal strut BC as shown in Fig. 4.16. Find the axial force induced in the 

strut and reaction at hinge A.
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RAY

A

RAX

C
E

W

FG
SBC

RA

B

D

30°

Figure 4.16

Solution

A. Graphical Approach Strut is a member which is subjected to 

compressive load.

 From the arrangement of the system, it is evident that self-weight 

W of the bar will induce axial force in the strut that is directed 

from B towards C. Thus the strut will exert same amount of force 

on the bar but in opposite direction.

 Thus, the bar AB is under equilibrium under the actions of three 

forces W, RA and SBC.

 To construct the force triangle, select a scale 1 cm = 10 N. Thus 

W = 50 N can be represented by 5 cm. 

 From the point D, which is mid-point of AB, a vertical line 

is drawn. This line will intersect BC at E. Thus point E is the 

common point of intersection. Thus, reaction RA will also pass 

through the point E. From E, a vertical line EF is drawn such 

that EF = 5 cm. From F, a horizontal line is drawn to represent 

only the sense of SBC since its magnitude is still not known. Now, 

AE is extended so as to meet with this horizontal line at G. Now, FG and GE will represent the magnitudes 

of SBC and RA respectively. Measure their length in cm and multiply by the scalar factor 10  to convert their 

magnitudes into N.

B. Analytical Approach Taking moment of all the forces with respect to A,

 ÂMA = 0

 SBC ¥ l sin 30 = W ¥ 
l

2
 cos 30

 SBC = 
W

2 30tan
 = 

50

2 30tan
 = 43.3 N

 Since A is a hinge, exact direction of RA is not known. 

However, it can be resolved into (RA)X and (RA)Y.

 From the other conditions of equilibrium,

 ÂX = 0

 (RA)X = SBC = 43.3 N

and ÂY = 0

 (RA)Y = W = 50 N

 Thus RA = ( ) ( )R R
A X A Y

2 2+  = ( . ) ( )43 3 502 2+

  = 66.14 N

Example 4.12  A nail has to be removed from the ground 

by the nail diver. If the applied force at A is F = 25 N, what 

force is applied on the nail?

Solution If the applied force on the nail is RC, the nail 

will also apply the same amount of force on the diver as 

shown in Fig. 4.17.

300 mm

F = 25 N

A

C

B

40 mmRC

20°

Figure 4.17
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 Under condition of equilibrium,

 ÂMB = 0

 F ¥ 300 = Rc cos 20 ¥ 40

 RC = 
F ¥

¥
300

40 20cos
 = 

25 300

40 20

¥
¥ cos

 = 199.53 N

 Thus the force exerted on the nail is 199.53 N.

Note: The horizontal component of Rc (Rc sin 20) will not produce any moment about B since it passes 

through the moment center.

Example 4.13  A horizontal bar AB is hinged to a vertical wall at A and supported at its mid-point C by 

a cable CD as shown in Fig. 4.18. The bar is subjected to a vertical load P applied at the free end B. The bar 

maintains horizontal position. Find the tension T in the cable and the reaction at A. Neglect the weight of the bar.

Solution Let the tension in the cable be T. Thus its horizontal and vertical components become T cos 45 

and T sin 45, respectively.

 The reaction form hinge A can be resolved into (RA)x and (RA)y as shown in the free body diagram 

[Fig. 4.18 (a)].

1 m 1 m

A

45°

C

B

P

D

B

P

1 m

C

1 m

45°

A

D

RAY

RAX

 Figure 4.18 Figure 4.18 (a)

  ÂMA = 0

  T sin 45 ¥ 1 = P ¥ 2

  T = 
2

45

P

sin
 = 2.828 P

  ÂX = 0

  (RA)x = −T cos 45 = −2P

  ÂY = 0

  (RA)y + T sin 45 = P

  (RA)y = P − T sin 45 = P − 2P = −P
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E

C

A

T cos 30 B

1.
5
m

300 N55°

30°F
T sin 30

D

3.
5
m

Figure 4.19

 Since the sign of (RA)x and (RA)y is found to be negative, it implies the assumed directions are not correct, 

rather it has to be reversed to get the correct directions.

 Thus RA = ( ) ( )- + -2 2 2P P  = 2.236 P.

\ The tension in the cable = 2.828 P and the reaction at A due to vertical load P applied at B = 2.236 P.

Example 4.14  A bar AB, 5 m long is hinged to a vertical wall at A and is supported at its other end B by 

a cable BC. The bar makes an angle 55º with the vertical and the cable makes an angle 30º as shown in the 

Fig. 4.19. The bar is subjected to a vertical load of 300 N applied at a point D at a distance of 3.5 m along the 

bar from A. Find the tension T in the cable. Neglect the weight of the bar.

Solution Due to the load applied at D, the bar AB will experience compressive force.

 Application of 300 N force will try to rotate the bar with respect to A, but it would be prevented due to 

tension (T) in the cable BC.

 T can be resolved into two mutually perpendicular components as shown in Fig. 4.19. 

 Taking moment of all the forces with respect to A and equating it to zero yields

  ÂMA = 0

  T cos 30 ¥ AE = T sin 30 ¥ BE + 300 ¥ DF

 From geometry,

  AE = 5 cos 55

  BE = 5 sin 55 and

  DF = 3.5 sin 55

  T [cos 30 ¥ 5 cos 55 − sin 30 ¥ 5 sin 55] = 300 ¥ 3.5 sin 55

  T = 
300 3 5 55

5 85

¥ ¥
¥

. sin

cos
 = 1973.73 N

 Thus tension in the cable becomes T = 1973.73 N.
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Example 4.15  A man weighing 65 kg stands at the 

middle rung of a homogeneous ladder that is supported by 

a smooth vertical wall at B and a stopper at A to prevent 

slipping. The weight of the ladder is 20 kg and it is 4 m 

long. Under this configuration, the ladder makes an angle 

60º with the horizontal. Find the reactions RA and RB at A 

and B respectively.

Solution The forces acting on the ladder is shown in 

Fig. 4.20. Since the ladder is homogeneous, its self weight is 

concentrated at its mid-point C. Thus total vertical downward 

load on the ladder is W = Wman + Wladder = 65 + 20 = 85 kg.

 Since the wall is smooth, RB is perpendicular to the wall.

 The line of action of W and RB when extended, meets at 

point E, implying the third force RA will also pass through 

the same point E as shown, since the ladder is under 

equilibrium under the action of three forces W, RA and RB. 

 Considering equilibrium of the ladder,

  ÂMA = 0

  W ¥ AC cos q = RB ¥ AB sin q

  W ¥ 
l

2
 cos q = RB ¥ l sin q

  
W

2
 = RB tan q

  RB = 
W

2 tan q
 = 

85 9 81

2 60

¥ .

tan
 N = 240.7 N

\  RA = ( ) ( )R WB
2 2+  = ( . ) ( . )240 7 85 9 812 2+ ¥  = 867.9 N

 Thus the reactions RA and RB become 867.9 N and 240.7 N, respectively.

Example 4.16  A horizontal prismatic bar AB of negligible weight and length l is hinged at A with the 

vertical wall at A and supported at B by a tie rod BC that makes an angle q with the horizontal as shown in 

Fig. 4.21. A weight W can have any position (x) along the bar. Determine the tension T in the tie bar.

OA

60°

W

C

RA

E

B RB

Figure 4.20

 Figure 4.21 Figure 4.21 (a)
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Figure 4.22

Solution The cable tension T can be resolved into two components – the horizontal component is T cos q 

and vertical component is T sin q.

 The reaction form hinge A can be resolved into (RA)x and (RA)y. However, this resolution is not necessary 

as far as the requirements of the problem is concerned.

 Taking moment of all the forces with respect to A,

  ÂMA = 0

  T sin q ¥ l = W ¥ x

  T = 
Wx

l sin q

 Thus tension in the tie bar becomes T = 
Wx

l sin q

Example 4.17  A roller of 50 cm diameter weighing 

1000 N rests against a rectangular block with a 10 cm 

height. It is subjected to a pull force P through the centre 

of the roller so that it will enable the roller to move over 

the block. Find the minimum value of P and its direction.

Solution The arrangement and the free body diagram 

of the roller is superimposed and shown in the diagram 

(Fig. 4.22).

 In the situation when the roller is just on the verge of 

rolling past the block, its contact with the floor ceases. Thus 

the roller maintains equilibrium under the actions of self 

weight W, the pull force P and the reaction RA from the 

point A of the block.

 The radius of the roller = AC = BC = r and height of the block = AE = OB = h

 From point A, perpendicular AD is drawn on the line of action of P.

 Let –ACD = q and –ACO = l

  ÂMA = 0

  W ¥ OA = P ¥ AD = P ¥ AC sin q

  OA = AC OC2 2-  = AC BC AE2 2- -( )  = r r h2 2- -( )  = 2 2rh h-

 Thus W ¥ 2 2rh h-  = P ¥ r sin q

  P = 
W rh h

r

¥ -2 2

sin q

 The magnitude of P will be least, when sin q = 1 or q = 90°.

 Thus Pmin = 
W rh h

r

¥ -2 2

 = 
1000 2 10 25 10

25

2¥ ¥ ¥ -
 = 800 N

 From the DACO, cos l = 
OC

AC
 = 

r h

r

-
 = 

25 10

25

-
 = 0.6

  l = 53.13°

 Thus the direction of P with the horizontal would be 53.13° + 90° − 90° = 53.13°
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Example 4.18  The cylinder of radius r = 25 mm shown in 

Fig. 4.23 is held by a spanner wrench which is subjected to a vertical 

load of 80 N applied at free end A. Determine the forces exerted on 

the cylinder at the points of contact B and C by the spanner wrench. 

Neglect friction at B and C.

Solution Under the action of the vertical load, the cylinder will 

exert a horizontal reaction force RB at B as shown. C, being the other 

point of contact, will act as a hinge, the magnitude of which (RC) 

will be equivalent to the resultant of RB and 80 N.

 However, RC is resolved into two rectangular components (RC)x 

and (RC)y as shown.

 ÂMC = 0

 RB ¥ r = 80 ¥ 200

 RB = 
80 200

25

¥
 N = 640 N

 ÂX = 0

 (RC)x = −RB = −640 N

 ÂY = 0

 (RC)y = 80 N

\ RC = ( ) ( )- +640 802 2  = 645 N.

 Thus reactions at B and C are found to be 640 N and 645 N respectively.

Note: Since (RC)x is calculated to be negative, its direction will be opposite to what we have assumed, i.e., 

it will be directed towards negative x direction.

Example 4.19  A heavy prismatic bar AB of weight W and 

length l rests at A against a horizontal floor and is pressed against 

at two intermediate points C and D as shown in Fig. 4.24. 

Determine the reactions at A, C and at D. Neglect friction at 

all contact points.

Solution The free body diagram of the prismatic bar is shown 

in Fig. 4.24.

 Resolving RA and W along the axis of the bar (x axis) and 

its perpendicular direction ( y axis) and using the condition of 

equilibrium,
we have ÂX = 0

or RA sin q = W sin q

 RA = W

 ÂY = 0

 RD + RA cos q = RC + W cos q

 RC = RD [since RA = W]
Figure 4.24

200 mm

B

RB

90°
Rcy

Rcx

C

r

A

80 N

Figure 4.23
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Figure 4.25

 It is interesting to note that RC and RD are equal in magnitude, opposite in direction and are parallel. Thus 

these two forces will form a couple having anti-clockwise moment M = RC a = RDa.

 Likewise RA and W will also produce a couple having an arm length of 
l

2
cos q  that produces clockwise 

moment, the magnitude of which is W
l

2
cos q .

 Equating the clockwise and anti-clockwise moment;

  RC ¥ a = W cos q ¥ 
l

2

  RC = 
Wl

a2
 cos q = RD

 Thus RA = W and RC = RD = 
Wl

a2
 cos q

Example 4.20  A weight of 200 N is supported by two 

rigid members AB and BC connected at point B by a pin. 

Other ends of the two members A and C are hinged to the 

ground as shown in Fig. 4.25. Calculate the axial forces 

induced in the two members as a result of 200 N force 

applied vertically at point B.

Solution Under the action of vertical load, both the members 

AB and BC will be subjected to axial compressive forces.

 The free body diagram of the joint B is shown in 

Fig. 4.25. It is in equilibrium under the action of three 

forces namely applied load of 200 N, TAB and TBC.

1st Method: Since the system is under equilibrium, the 

above three forces will form a closed triangle.

 The force triangle OBG is shown in Fig. 4.21.

 By using Lami’s theorem,

  
TBC

sin 30
 = 

T
AB

sin 60
 = 

200

90sin

  TBC = 200 sin 30 = 100 N

  TAB = 200 sin 60 = 173.2 N

2nd Method: Taking the moments of all the forces with respect to C,

  ÂMC = 0

  200 ¥ CD = TAB ¥ BC

 Now,

  BC = AC cos 30

  CD = BC cos 30

  200 ¥ BC cos 30 = TAB ¥ BC

  TAB = 200 cos 30 = 173.2 N

 Similarly,

  ÂMA = 0
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  TBC ¥ AB = 200 ¥ AD

  TBC ¥ AB = 200 ¥ AB cos 60

  TBC = 200 cos 60 = 100 N

 Thus axial forces in the members AB and BC are 173.2 N and 100 N respectively.

Example 4.21  A roller of radius r and weight Q is to be rolled over a curb of height h by a horizontal force 

P applied to the end of a string wound around the circumference of the roller as shown in Fig. 4.26. Find the 

magnitude of P required to start the roller over the curb. There is sufficient friction between the roller surface and 

the edge of the curb to prevent slip at A.

  

PE

Q

A
D

C

B

q

RB

 Figure 4.26 Figure 4.26(a)

Solution The free body diagram of the roller is shown in the Figure 4.26(a). The reactions from the curb RA, 

the applied force P and the weight of the roller Q is represented by a closed triangle (DADE) under equilibrium. 

From the geometry of the Figure [4.26(a)], we get

 AD = r r h2 2- -( )  = 2 2rh h-  

and DE = 2r – h

Considering the equilibrium of the roller and taking moment about A, we obtain

 M
AÂ  = 0

or Q ¥ AD = P ¥ DE

or P = 
2

2 2

r h

rh h

-

-
 Q

Example 4.22  Three identical rollers A, B and C of 350 mm diameter and weight 20 N each are placed in a 

box which is 760 mm wide as shown in Fig. 4.27. Determine the reactions offered by the floor and the wall on 

the rollers B and C and the contact pressures between rollers.  
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D

Rf Rf

RW

W

Figure 4.27

Solution From the geometry of the figure [Fig. 4.27], we have

 cos q = 
BD

AB
 = 

0 38 0 175

0 35

. .

.

-
 = 0.586

 sin q = 1 0 586 2- ( . )  = 0.81

The reaction exerted by the wall and the floor on B and C as well as contact pressure between A-B and A-C 

is shown in Fig. 4.27. 

Considering the equilibrium of roller A, one can write

 YÂ  = 0

or W = 2RC sin q

or RC = 
W

2 sin q
 = 

20

2 0 81¥ . sin q
 = 12.35 N

Again considering the equilibrium of roller B, we obtain

 XÂ  = 0

or RW = RC cos q = 12.35 ¥ 0.586 = 7.24 N

and YÂ  = 0

or Rf = W + RC sin q = 20 + 12.35 ¥ 0.81 = 30 N

Note: One can consider the roller C instead of B to get the same results. 

Example 4.23  A uniform roller weighing 100 N is supported by a V-block having included angle 90°. The 

block is tilted as shown in Fig. 4.28. Compute the angle of tilt q for which the reaction at B will be one third of 

that at A. Also compute RA and RB.
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RA

RB

A

W

B

C

q

Figure 4.28

Solution The roller is in equilibrium under the action of four coplanner forces, namely W, RA and RB [Fig. 4.28].  

Using the condition of equilibrium, we have

 XÂ  = 0

or RA cos (45 + q) = RB cos (45 – q)

or 
cos ( )

cos ( )

45

45

-
+

q

q
 = 

R

R

A

B

 = 3 ∵R RB A
=È

ÎÍ
˘
˚̇

1

3

Solving q, we get q = 26.56°

Again, from the other condition of equilibrium, we get

 YÂ  = 0

or W = RA sin (45 + q) + RB sin (45 – q)

Substituting W = 100 N, q = 26.56° and RB = RA/3 in the above equation, we obtain RA = 94.876 N and

RB = 31.625 N

Example 4.24  A person, weighing 700 N, stands on the middle rung of a ladder of weight 300 N, as shown 

in Fig. 4.29. Assuming that the floor and the wall are perfectly smooth and slipping is prevented by a string DE; 

find the tension T in the string and reactions at A and B.

B

C

D

A

4 m

2 m

O

T

30°

RB

RA

Figure 4.29
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Solution The reactive forces RA and RB exerted on the ladder by the floor and the wall are vertical and horizontal 

respectively as shown in the Fig. 4.29. Thus the ladder is in equilibrium under the action of four coplanar forces, 

namely RA, RB, T and total weight W (sum of weight of man and ladder). Using the condition of equilibrium, 

we have

 XÂ  = 0

or T cos 30° = RB

 YÂ  = 0

or T sin 30° + 1000 = RA

 MOÂ  = 0

or RA ¥ 2 = RB ¥ 4 + 1000 ¥ 1

Solving the above three equations, we obtain RB = 351.5 N, RA = 1203 N and T = 406 N. 

Example 4.25  A uniform ladder 40 meter long and having weight 50 N is held from sliding by a force P 

applied at the lower end as shown in Fig. 4.30. If all surfaces of contact are smooth, determine the force P. 

45°P

A

NA

D
C

B

W = 50 N

ND
10 m

Figure 4.30

Solution Since the ladder is uniform, we have AC = AB/2 = 20 m

From geometry of the figure [Fig.4.30], we get

 AD = 2 ¥ 10 = 14.14 m

Thus, CD = AC – AD = 5.86 m

Taking moment about D, we obtain

 NA ¥ 10 + 50 ¥ 5.86 cos 45° = P ¥ 10 (4.4)

Further moment about point A yields

 ND ¥ 14.14 = 50 ¥ 20 cos 45° (4.5)
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Again, from the consideration of equilibrium, we get

 YÂ  = 0

or NA + ND sin 45° = 50 (4.6)

Solving Eqs. (4.4), (4.5) and (4.6), we obtain P = 45 N

Example 4.26  A uniform beam AB of length 1 m and weight 10 N is held in equilibrium against a vertical wall 

and a string BC attached to it as shown in Fig. 4.31. Find the reaction at the wall and the tension in the string. 

 

RA

W

A

B

T

30°

C

 

T

W

RA

  Figure 4.31 Figure 4.31(a)

Solution The force triangle is shown in Fig. 4.31(a). Following graphical approach T and RA are measured to 

have values of 4.33 N and 6.625 N respectively.

Note: The readers are advised to check the results by analytical method. 

Example 4.27  A homogeneous prismatic bar AB of weight W and length l is supported at one end B by a 

string BC of length a and rests at A exactly below C by a smooth vertical wall as shown in Fig. 4.32. Determine 

the position of the bar as defined by the length x that ensures equilibrium.

C

x

A a

F

T1
RA

W

B
ED

Figure 4.32

Solution The weight of the bar AB acts at the mid of its length, since it is homogeneous. The tensile force T in 

string BC acts along its length. 

The line of action of W and T intersects at F implying that the third force RA also passes through this common 

point. 
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Considering the DADB, E becomes the mid point of BD. Further as regard to DBCD, F is the midpoint of BC 

and interestingly this is also the common point of intersection of the three forces W and T and RA that hold 

the system under equilibrium. Following the properties of triangle, point A also becomes the midpoint of CD.

From DABCD, we get

 a2 = (x + x)2 + BD2

and from DADB, l2 = x2 + BD2 

Comparing the above two equations, we obtain

 a2 – 4x2 = l2 – x2,

or x = 
a l2 2

1

2

3

-È

ÎÍ
˘

˚̇

Example 4.28  A weight W is attached to a pulley that rides on a wire which is attached to a wall at the left 

and connected to a weight Q that passes over a pulley at the right as shown in Fig. 4.33. The horizontal distance 

between the left support and the right pulley is L. Determine the sag d at the center in terms of W, Q and L 

neglecting the dimensions of the pulleys.

W

Q

L

q
d

       W

O

T Q

q

  Figure 4.33 Figure 4.33(a)

Solution Considering equilibrium of the point O [Fig. 4.33 (a)], one can write 

 XÂ  = 0

or T cos q = Q cos q

or T = Q (4.7)

and YÂ  = 0

or 2Q sin q = W  [Since T = Q] (4.8)

From the geometry of the figure [Fig. 4.33], we get

sin q = 
d

d L2 22+ ( / )

Substituting the value of sin q into Eq. (4.8), we obtain

2Q ¥ 
d

d L2 22+ ( / )
 = W

Squaring both sides and rearranging; 
4 2

2

Q

W
 = 1 + 

( / )L

d

2 2

2
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from which, we obtain d = 
L

Q

W

2

1

2
1

2
Ê
ËÁ

ˆ
¯̃ -

Example 4.29  A system of levers are loaded and supported as shown in Fig. 4.34. Determine the reaction 

forces at the supports A, B and C. 

3 m 4.5 m 4 m2 m

A B

C

D

60 N

Figure 4.34

Solution The free body diagrams of the two levers are shown in Fig. 4.34(a). Since the entire system of levers 

is under equilibrium; each lever separately would also maintain equilibrium. 

Considering the upper lever and taking moment about D, we obtain

 MDÂ  = 0

or RC ¥ 6 = 60 ¥ 4

or RC = 40 N

C

C

60 N

B

A
RB

RA
RC

RC

D

Figure 4.34(a)

When the equilibrium of the lower lever is considered, the same RC will act downward as evident from the 

free body diagram. Taking moment about A, we get

 M
AÂ  = 0

or RC ¥ 7.5 = RB ¥ 3

or RB = 100 N

Further, from the consideration of YÂ  = 0, we obtain

 RA + RC = RB

or RA = 100 – 40 = 60 N
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Example 4.30  The frictionless pulley at A is supported by two rigid bars AB and AC which are hinged at B 

and C respectively to a vertical wall as shown in Fig 4.35. The flexible cable AD is hinged at D and goes over 

the pulley to carry a vertical load of 20 kN. Neglecting the size of the pulley, determine the forces in AB and AC. 

 

A

1

60°

B

E

30°

G
D

2

C

W = 20 kN

F

30°

      

30°

30°

30°

30°

20 kN

20 kN

T
2

T
1

 Figure 4.35 Figure 4.35(a)

Solution The free body diagram is shown in Fig. 4.35(a). From the geometry, it is evident that –BAC = 90°. 

Establishing AB and AC as x and y axes respectively, the equilibrium of point A yields

 XÂ  = 0

or T1 + 20 sin 30° – 20 sin 30° = 0

 T1 = 0

and YÂ  = 0

or T2 + 20 cos 30° + 20 cos 30° = 0

or T2 = –34.6 kN

The negative sign indicates that the axial force in the bar AC will be compressive.

MULTIPLE-CHOICE QUESTIONS

 4.1 A number of forces acting at a point will be in equilibrium if

 (a) their total sum is zero.

 (b) sum of resolved parts in any two perpendicular directions are both zero.

 (c) all of them inclined equally.

 (d) two resolved parts in two directions at right angles are equal.

 4.2 Two non-collinear parallel equal forces acting in opposite direction

 (a) balance each other.   (b) constitute a moment.

 (c) constitute a moment of couple. (d) constitute a couple.
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 4.3 The necessary and sufficient condition of equilibrium for a two-dimensional force system is

 (a) Â Â= =X Y0 0and    (b) Â =Mo 0

 (c) both (a) and (b)   (d) none of the above

 4.4 The necessary condition for forces to be in equilibrium is that these should be

 (a) coplanar (b) meet at a point (c) both of these (d) none of these

 4.5 If three forces acting in different planes can be represented by a triangle, these will be in 

 (a) equilibrium (b) non-equilibrium (c) unpredictable (d) partial equilibrium

 4.6 The algebraic sum of moments of the forces forming couple about any point in their plane is

 (a) constant   (b) equal to the moment of the couple

 (c) both of these   (d) none of these

SHORT ANSWER TYPE QUESTIONS

 4.1 What is meant by equilibrium of rigid bodies? What are the necessary conditions to ensure the same?

 4.2 Mention different types of supports with sketches showing the reactions that are commonly used in 

structures. 

 4.3 What is the condition of equilibrium of a rigid body subjected to three coplanar and concurrent forces?

 4.4 What is Free Body Diagram (FBD)? How it is useful in solving equilibrium problems? 

 4.5 What do you understand by statics of a particle?

 4.6 What is a hinge support? What motion does it permit and what motion does it not?

 4.7 What types of reactions do a cantilever (fixed support) exhibit?

 4.8 For the equilibrium of a particle ÂX = 0 and ÂY = 0 are necessary and sufficient conditions but for 

rigid bodies these are not sufficient. Justify.

NUMERICAL PROBLEMS

 4.1 Refer to Fig. 4.36. Determine the magnitudes of F1 and F2 so that the particle is in equilibrium.

 4.2 Determine the maximum weight of the flowerpot as shown in Fig. 4.37 that can be supported without 

exceeding a cable tension of 50 N in either cable AB or AC.
y

400 N

30°

60° 5
3

4

F2
F1

P
x

Figure 4.36

30°

B

C

4 5

3

A

Figure 4.37
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 4.3 Determine the horizontal force P and tension in the string that is connected to the ceiling to hold the 

80 N force in equilibrium (Fig. 4.38).

 4.4 The bar AB weighs 250 N is supported by a wall at C and a horizontal cable as shown in Fig. 4.39. 

Assuming all surfaces are smooth, find the cable tension and forces at A and C.

 

0.6 m

1.8 m

1.2 m
B

C

Cable

50°

A

Figure 4.39Figure 4.38

 4.5 If the wheelbarrow and its contents have a mass of 

60 kg and a centre of mass at G as shown in Fig. 4.40, 

determine the magnitude of the resultant force which 

the man must exert on each of the two handles in 

order to hold the wheelbarrow in equilibrium.

 4.6 Refer to Fig. 4.41. Determine the tension in the 

cable and the horizontal and vertical components of 

the reaction at pin A. The pulley at D is frictionless 

and the cylinder weighs 80 N.

 4.7 Determine the distance d for placement of the load 

P for equilibrium of the smooth bar in the position q 

as shown in Fig. 4.42. Neglect the weight of the bar.

1.5 m 1.5 m 0.9 m

A B

C

1

2

D

Figure 4.41 Figure 4.42

a

d

q

P

0.6 m

A

0.5 m 0.9 m

0.5 m

BG

Figure 4.40
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 4.8 The beam is loaded as shown in Fig. 4.43. Find the reactions at A. The reaction includes the reaction 

force as well as the moment.

 4.9 Given the mass of the crate is 50 kg. Find the horizontal force P needed to position the crate directly 

over the wagon as shown in Fig. 4.44.

Figure 4.43

1 m 0.7 m

A B C

300 N-m 200 N

1 m

4 m

2 m

Figure 4.44

 4.10 A rigid bar AB of negligible weight and 4 metres long is hinged at A and carries a vertical downward 

load of P = 700 N at B as shown in the Fig. 4.45. The bar is maintained equilibrium by a horizontal tie 

bar CD. Assuming D as a midpoint of the bar AB, determine the tension in the tie bar and reaction at A.

 

P

C D

B

A

55°

Figure 4.45

0.2 m

0.1 m

0.5 m

B

400 N

D

A

0.2 m

Figure 4.46
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r!>!41�

 

 

Figure 4.47

 4.11 The lever ABC is pin-supported at A and connected to a short link BD as shown in Fig. 4.46. If the 

weight of the members are negligible, determine the components of the force of the pin on the lever at A.

 4.12 The cord shown in Fig. 4.47 supports a force of 100 N and wraps over a frictionless pulley. Determine 

the tension in the cord at C and the horizontal and vertical components of the reaction at the pin A.

 4.13 Two smooth circular cylinders of each of weight W and radius r are connected by a string AB of length  

l and rest upon a horizontal plane, supporting a third cylinder of weight Q and radius r above them, 

as shown in Fig. 4.48. Find the tension T in the string AB and the pressure produced by the floor at 

points of contact D and E. 

WW C

BA l

Q

ED

Figure 4.48

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 4.1 (a) 4.3 (c) 4.5 (a)

 4.2 (d) 4.4 (c) 4.6 (b)

 
ANSWERS TO NUMERICAL PROBLEMS

 4.1 F1 = 434.9 N, F2 = 170.8 N

 4.2 76.72 N
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 4.3 T = 85.14 N, P = 29.11 N

 4.4 RA = 59.2 N, RC = 141.26 N, T = 108.2 N

 4.5 105 N

 4.6 T = 74.6 N, Ax = 33.4 N, Ay = −61.3 N

 4.7 cos
3q =

a

d

 4.8 (RA)X = 0, (RA)Y = 200 N, MA = 40 N-m

 4.9 126.7 N

 4.10 TCD = 2000 N, RA = 2119 N

 4.11 Ax = 533 N, Ay = 933 N

 4.12 T = 100 N, Ax = 50.0 N, Ay = 187 N

 4.13 T = 
Ql

r l2 16
2 2-

, RD = RE = W + 
Q

2



5
Centre of Gravity

This topic is broadly divided into two. The first part deals with computations of centre of gravity of single 
geometrical entities while the second part deals with composites.

PART A

 5.1 INTRODUCTION

In all our earlier discussions, we had considered that the forces whether active, reactive or any others, are all 
concentrated at the point of application. But actually such a consideration is of no practical significance since 
a definite amount of force can be applied only over a finite area. Further, the distribution of the forces over 
the entire area is also not uniform under all circumstances; rather it varies depending on the geometry of the 
surfaces and direction of the applied load. Study of the actual distribution pattern of the forces over a finite area 
is too complex and quite often there is absolutely no need of such study keeping the global objective in mind. 
In other words, the concept of idealisation of assuming a concentrated load will not be erroneous provided the 
area is too small compared to other relevant dimensions of the body – a situation which is predominant in the 
study of mechanics. Thus, the forces that are distributed over the entire area and its equivalence to a single 
concentrated load are tantamount to a system of parallel forces and its resultant. Such scrupulous approach 
forms the basis of computation of centre of gravity of rigid bodies. 

 5.2 IMPORTANCE OF CENTRE OF GRAVITY

The study of mechanics revolves around concept of rigid bodies and consequence of forces applied on it that 
ensure equilibrium. Such rigid bodies may follow any unique fundamental geometric shape or it may be a 
composite. While dealing with the forces, when the self-weight of the body is appreciable, we cannot neglect 
its effect as evident from our preceding discussions. Since the point of application of the load has important 
bearings to this effect, need for computing the exact point of a body at which the entire weight is concentrated, 
needs no special mention. It is the centre of gravity of the rigid body at which the entire weight of the body 

is concentrated. 
 Thus, establishing the centre of gravity is very relevant in the study of mechanics. 

 5.3 CENTRE OF GRAVITY

The centre of gravity is a point through which the entire body weight acts vertically downwards. The weight 
of a body is essentially a force by which the body is attracted towards gravity. It is the Newton’s well known 
Law of Gravitation that explains this phenomenon. 

CHAPTER
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 Physical bodies have a definite mass due to the gross effect of several particles which constitute them and 
such particles also occupy finite volume in space. All such particles are distributed through out the volume, 
so their distances from the centre of earth will also be different, and also the gravitational force each of 
them experiences. Nevertheless, the variations in the aforesaid distances are negligibly small since the various 
dimensions of the body are too small in comparison to the radius of the earth. Thus, it would be prudent to 
envisage that these particles are identically located with respect to the earth’s centre of attraction. In essence, 
the gross weight of the body is the resultant gravitational force of its constituent particles and the centre of 
gravity is a point at which resultant gravitational force is acting. So in the light of mechanics, the situation is 
nothing special that these gravitational forces (individual and resultant) form a system of parallel forces. Such 
equivalence helps to compute the location of centre of gravity of rigid bodies.

 5.4 COMPUTATION OF CG

In congruence with the above discussion, let us consider a rigid body is divided into infinitesimal small elements 
of mass dm and weight dW. Thus W is the resultant of all the weights dW. 
 Since the point of applications of these body forces is unique, any change in the orientation of the object 
will not alter the position of their body forces their resultant. Nevertheless, it is quite useful to describe the 
location of this point with respect to a coordinate frame.
 Thus refer to Fig. 5.1, if C is considered the CG such that its coordinate is (xc, yc, zc) then by following 
Varignon’s Theorem, the moment of the resultant with respect to the moment centre O will be equal to the 
sum of moments of all the individual forces with respect to the same moment centre O.

O

x

yc

xc

y
x

z zc

z

y

C

WdW

dm

Figure 5.1

Gdm

rc
r

z

y

x

Figure 5.2

 Thus mathematically,

  W ¥ xc = Ú xdW or xc = 
xdW

W

Ú
 = 

xdW

dW

Ú
Ú

 (5.1)

 If all the forces as well as their resultant are rotated by 90°, the situation will remain unaltered and following 
the same principle, we can compute,

  yc = 
ydW

dW

Ú
Ú

 and zc = 
zdW

dW

Ú
Ú

. (5.2)
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 Now dW = dm.g

 Thus xc = 
x dm g

dm g

¥ ¥

¥
Ú

Ú
 = 

xdm

dm

Ú
Ú

; yc = 
ydm

dm

Ú
Ú

 and zc = 
zdm

dm

Ú
Ú

 (5.3)

 If it is considered that rc = xci + yc j + zck is the position vector of the CG and r = xi + yj + zk (Refer 
Fig. 5.2) is the position vector of a small element of mass dm then

  rc = 
rdm

dm

Ú
Ú

 (5.4)

 Thus the point C is also called the centre of mass so long as g remains constant.
 Further if the body is homogeneous such that its density r remains constant, the expressions of (xc, yc, zc) 
from Eq. (5.3) become

  xc = 
xdm

dm

Ú
Ú

 = 
x dV

dV

¥ ¥

¥
Ú

Ú
r

r
 = 

xdV

dV

Ú
Ú

; yc = 
ydV

dV

Ú
Ú

 and zc = 
zdV

dV

Ú
Ú

 (5.5)

 5.5 COMPUTATION OF CENTROID

It is noteworthy to see that expressions under Eqs (5.5) include only the geometrical attributes. Centroid is a 

terminology coined with calculations involving geometrical parameters only. Therefore xc, yc and zc of Eqs (5.5) 
can be considered as coordinates of centroid of the rigid bodies. Thus, in case of homogeneous objects, centre 

of mass and centroid coincide.
 The computation of centroid of various geometrical entities needs no special care since basic concept remains 
same. Nevertheless, based on few attributes, the entire range of objects can be classified under three categories, 
namely, volumes, areas and lines. Thus the expressions of Eq. (5.5) get modified and computational efforts 
also become reduced.

5.5.1 Volumes

This is a feature that is associated with a three-dimensional object. Thus for a solid geometrical object, the 
Eq. (5.5) will hold true.

5.5.2 Areas

The volume of a three-dimensional object of uniform thickness t can be calculated by multiplying its area with 
the thickness. Thus for such an object we can write V = A ¥ t and similarly, the volume of an infinitesimal 
small element dV = dA ¥ t

 Thus from Eq. (5.5),

  xc = 
xdV

dV

Ú
Ú

 = 
x t dA

t dA

¥ ¥

¥
Ú

Ú
 = 

xdA

dA

Ú
Ú

; yc = 
ydA

dA

Ú
Ú

 and zc = 
zdA

dA

Ú
Ú

 (5.6)

 The numerators on the right-hand side of all the expressions of Eq. (5.6) are called first moments of area.

 Thus if the coordinates xc, yc and zc are computed and knowing the area of the object, first moments can 

be calculated as Ú xdA = xcÚ dA; Ú ydA = ycÚ dA and Ú zdA = zcÚ dA
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5.5.3 Lines or Slender Bars

Quite often, we encounter objects of uniform cross-section, like a slender bar or rod or thin wire. The volume 
of such objects of uniform cross-section A can be calculated by multiplying its area with the length. Thus for 
such an object we can write V = A ¥ L and similarly the volume of an infinitesimal small element dV = A ¥ dL

 Thus from Eq. (5.5),

  xc = 
xdV

dV

Ú
Ú

 = 
x A dL

A dL

¥ ¥

¥
Ú

Ú
 = 

xdL

dL

Ú
Ú

; yc = 
ydL

dL

Ú
Ú

 and zc = 
zdL

dL

Ú
Ú

Note: It is to be borne in mind that centroid of slender bars of uniform cross-section and thin surfaces of 
uniform thickness may not always lie within the body itself. The results of few case studies in the subsequent 
discussion will corroborate this statement.

 In the context of mechanics, in majority of cases, we are supposed to deal with plane geometrical entities. 
It is, therefore, imperative to emphasize on computations of centroid. However, centroid and centre of gravity 
become synonymous and are also found to be identical when the density and acceleration due to gravity remain 
constant.

Road Map to Solution of Problems

Types of Problems

In problems, we encounter several types of geometrical entities – solid, plane lamina, slender bar or uniform 
wire for which CG is to be computed. However, computations of CG based on area are more common. These 
areas are formed by single geometrical entities or it may be an area formed by intersection of two curves.

Solution Guidelines 

  Position of origin with respect to which all the coordinates to be calculated has got significant bearings 
on overall calculations.

  While selecting an infinitesimal small element, one must be careful about judicious selection of it, such 
that when integrated over given limits it must cover the entire domain. 

  It is to be remembered that in the Eq. (5.5), x, y and z are coordinates of the CG of the small element 
and its value to be correctly computed before integration.

  Uses of polar coordinates is simpler for bodies having circular boundaries.
  If the objects become symmetrical with respect to any particular axis, then its CG will lie on that axis. 

Thus if an area is found to be symmetrical with x axis, its CG will lie on x axis and hence yc will 
become zero. However, unbiased computational result will justify the authenticity of this statement.

  In case of symmetrical objects, instead of integrating over the entire area, it can be considered just half 
and results of integration so obtained should be multiplied by 2. At the same time, one must take care 
of the change of limits of integration.

  For geometrical regions covered by curves for which generic equations are given, the actual equations 
of the curve are to be obtained first from the given limits.

  It is the sole discretion of an individual to select any type of small infinitesimal element for the purpose 
of integration provided it serves the intended objectives.

 5.6 THEOREMS OF PAPPUS AND GULDINUS

Two theorems developed by Pappus and Guldinus are found to be extremely useful in calculating the surface 
areas and volumes of different geometrical entities and are intertwined with the centre of gravity. These two 
theorems have got adequate utilities in the Computer Aided Drawings.
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5.6.1 Theorem 1

The area of the surface generated by rotating a plane curve about a non-intersecting axis in its plane is equal 

to the product of the length l of the curve and the distance traveled by its centroid.

Proof: To prove the above theorem, let us consider a plane curve 
MN of length l having its CG located at C that lies in the xy plane. 
Let the distance of CG from x axis be y .

 Let’s consider an elemental length dl having its CG located at 
a distance y from x axis.
 Now the curve is rotated by an angle q to assume a new position M¢N¢. 
Thus the original plane curve of length MN will now generate a surface 
MNN ¢M¢. Consequently the modified position of CG now becomes C¢. 
 Thus the elemental length dl of the curve covers a distance yq 
and the CG of the entire curve covers a distance yq .
 The elemental area of the surface generated = dA = yq.dl

 Thus the entire surface area of the curve will be A = Ú dA =

Ú yq.dl = qÚ ydl.

 But by definition, y = 
ydl

dl

Ú
Ú

 \ Úydl = y l

 Thus area of the surface = A = qÚ ydl = q y l = (yq)l distance traveled by its CG (yq ) multiplied by the 
length of the curve (l).

5.6.2 Theorem 2

The volume of the solid generated by rotating a plane surface about a non-intersecting axis in its plane is 

equal to the product of the area A of the surface and the distance traveled by its centroid.

Proof: To prove the 2nd theorem, let us consider a plane area 
MNOP of area A having its CG located at C that lies in the xy 
plane. As before, let the distance of CG from x axis be y .

 Now let’s consider an elemental area dA having its CG located 
at a distance y from x axis.

 Now the surface is rotated by an angle q so as to generate a 
solid of definite volume. The new position of CG becomes C¢.
 Thus the elemental surface area dA covers a distance yq and 
the CG of the entire curve covers a distance yq .
 The elemental volume of the solid generated = dV = yq.dA

 Hence the entire volume of the solid becomes V = ÚdV = 

Úyq.dA = qÚydA.

 But by definition, y  = 
ydA

dA

Ú
Ú

 \ Ú ydA = yA

 Thus volume of the solid = V = qÚ ydA = qyA = (yq)A = distance travelled by its CG (yq) ¥ area of the 
surface (A) [Proved]

Note: When the curve or surface is rotated by one complete revolution, q becomes 360°.

y

y N¢
N

M¢
M

X

Z

Y
dl

P
C
C¢

O

Figure 5.3
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Example 5.1  Prove that for a triangle, its centroid lies at a distance h/3 from its base, where h is the 
height of the triangle.

Figure 5.5

Solution Let us consider DOAB having height h and base width OB = b as shown in Fig. 5.5.
 To compute its centroid, let us consider an elemental rectangular strip of width b¢ at a distance y from x 
axis and thickness dy.

\ From similarity of triangles,

  
¢b

b
 = 

h y

h

-
 fi b¢ = 

b

h
(h − y)

\ Area of the strip = dA = b¢ ¥ dy = 
b

h
(h − y)dy

\  yc = 
ydA

dA

Ú
Ú

 = 

y
b

h
h y dy

b

h
h y dy

h

h

. ( )

( )

-

-

Ú

Ú

0

0

   = 

h
y

y

h y y

h

h

h h

¥
È

Î
Í

˘

˚
˙ -

¥ -

2

0

3
0

0
2

0

2

1

3

1

2

[ ]

[ ] [ ]
 = 

h h

h
h

3 3

2
2

2 3

2

-

-
 = 

h

h

3

2
6

2

 = 
h3

6
 ¥ 

2
2h
 = 

h

3
 [Proved]

Example 5.2  Determine the coordinates (xc, yc) of the centroid C of the area of one-quarter of an ellipse 
OAB having major and minor semi-axes a and b respectively.

Solution

1st Method: Refer to Fig. 5.6. OAB is the quarter of an ellipse so that OA = a and OB = b.

x dx

a

( . .)C G

b

O

y

B

A
x

x
2

a
2 +

y
2

b
2 = 1

P x y( , )

Figure 5.6
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 To compute its centroid, let us consider a vertical elemental rectangular strip at a distance x from y axis 
and thickness dx.

 Let P(x, y) be a point on the curve.

\ Area of the strip = dA = y ¥ dx = 
b

a
a x2 2- dx since the equation of the ellipse is x

a

2

2
 + y

b

2

2
 = 1, from 

which, y = 
b

a
a x2 2-

 \ xc = 
xdA

dA

Ú
Ú

 = 

x
b

a
a x dx

b

a
a x dx

a

a

. 2 2

0

2 2

0

-

-

Ú

Ú
 = 4

3

a

p

 But yc = 

y
dA

dA

2Ú
Ú

, since the vertical coordinate of the small rectangular strip lies at a distance 
y

2
 from the

x axis.

 \ yc = 

y
dA

dA

2Ú
Ú

 = 

y
ydx

ydx

2
.Ú

Ú
 = 

1

2

2

2
2 2

0

2 2

0

b

a
a x dx

b

a
a x dx

a

a

( )-

-

Ú

Ú
 = 

b

a

a x x

x a x a
x

a

a a

a2

1

3

1

2

2
0

3
0

2 2 2

0

[ ] [ ]-

- +È
ÎÍ

˘
˚̇

ArcSin

   = 
b

a

a
a

a
2

3
1

2 2

3
3

2

-

¥È
ÎÍ

˘
˚̇

p
 = 

b

a2
 ¥ 

2

3

4

3

2

a

ap
 = 

4

3

b

p

 Thus coordinates (xc, yc) of the centroid C of the area of one-quarter of an ellipse is 
4

3

4

3

a b

p p
,

Ê
ËÁ

ˆ
¯̃

Note: For the special case, when a = b = r, the ellipse becomes a circle of radius r and the equation of 
the circle becomes x2 + y2 = r2.

 Thus coordinates (xc, yc) of the centroid C of the area of one-quarter of a circle become 
4

3

4

3

r r

p p
,

Ê
ËÁ

ˆ
¯̃

.

2nd Method: Instead of taking the vertical strip, one could have taken similar horizontal strip.

 Since P(x, y) is a point on the curve as before, area of the horizontal strip = dA = x ¥ dy and 

xc = 

x
dA

dA

2Ú
Ú

 and yc = 
ydA

dA

Ú
Ú

. Since dA = x ¥ dy, the variable now being y, its limit will be from 0 to b. 

Nevertheless, the end result would be same as computed earlier. Students are advised to check the validity of 
it.

Example 5.3  Locate the centroid of the circular arc PQ of radius R that subtends an angle y as shown 
in the Fig. 5.7.
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Solution Refer to the Fig. 5.7, where –POQ = y and OP = OQ = R.
 x axis is considered as axis of symmetry.
 To compute its centroid, let us consider a differential length P¢Q¢ = dl and –P¢OQ¢ = dq.
 The height of the triangle is R. \ dl = R.dq.
 From the geometry, x = R cos q and y = R sin q.

\  xc = 
xdL

dL

Ú
Ú

 = 

R Rd

Rd

cos .q q

q

y

y

y

y

-

+

-

+

Ú

Ú

2

2

2

2

 = R 

[sin ]

[ ]

q

q

y

y

y

y

-

+

-

+

2

2

2

2

 = R 

sin sin
y y

y y

2 2

2 2

- -Ê
ËÁ

ˆ
¯̃

È

ÎÍ
˘

˚̇

- -Ê
ËÁ

ˆ
¯̃

È

ÎÍ
˘

˚̇

 = 

2
2

R sin
y

y

\  yc = 
ydL

dL

Ú
Ú

 = 

R Rd

Rd

sin .q q

q

y

y

y

y

-

+

-

+

Ú

Ú

2

2

2

2

 = R 

[ cos ]

[ ]

-
-

+

-

+

q

q

y

y

y

y
2

2

2

2

 = R 

- - -Ê
ËÁ

ˆ
¯̃

È

ÎÍ
˘

˚̇

- -Ê
ËÁ

ˆ
¯̃

È

ÎÍ
˘

˚̇

cos cos
y y

y y

2 2

2 2

 = 0.

 Thus coordinates (xc, yc) of the centroid C of the circular arc PQ are 

2
2 0

R sin
,

y

y

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

Note:

 1. The value of yc is found to be zero. This is because that the arc of the circle PQ is symmetrical 
about x axis. This implies that x axis divides the arc in two equal halves such that portion above x 

axis is equal to the portion that lies below it. This is why the limits of q varies from − 
y

2
 to + 

y

2
. 

However, one can perform the integration over the limits 0 to +y/2 and results so obtained require 
to be multiplied by 2 to get the final result.

 2. From the coordinates of C, it is clear that for a circular arc, it may not always lie on the element itself.

O

P¢

Q¢

P¢Q = dl¢

Figure 5.7
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Example 5.4  Compute the coordinates (xc, yc) of the centroid C of the sector of a circle OAB of radius R 
and included angle 2q as shown in Fig. 5.8.
Solution

1st Method: Refer to Fig. 5.8 (a), where OAB is the sector of a circle such that x axis is considered as axis 
of symmetry.
 To compute its centroid, let us consider a differential area OA¢B¢. This differential area can be approximated 
as a triangle having apex angle –A¢OB¢ = da. The height of the triangle = OA¢ = OB¢ = R

 The base of the triangle is approximated by arc A¢B¢ = R.da.

\ Area of the DOA¢B¢ = dA = 
1

2
 ¥ R ¥ R.da = 

1

2
R2.da

 The CG of a triangle lies at a distance 
2

3
 of its height from its apex [Refer Problem 5.1].

\ OC = 
2

3
R, from which x = 

2

3
R cos a and y = 

2

3
R sin a

\  xc = 
xdA

dA

Ú
Ú

 = 

2

3

1

2

1

2

2

2

R R d

R d

cos a a

a

q

q

q

q

¥
-

+

-

+

Ú

Ú
 = 

2

3
R

[sin ]

[ ]

a

a

q
q

q
q
-
+

-
+  = 

2

3
R

[sin sin ( )]

[ ( )]

q q

q q

- -
- -

   = 
2

3
R

sin q

q

\  yc = 
ydA

dA

Ú
Ú

 = 

2

3

1

2

1

2

2

2

R R d

R d

sin a a

a

q

q

q

q

¥
-

+

-

+

Ú

Ú
 = 

2

3
R

[ cos ]

[ ]

- -
+

-
+
a

a

q
q

q
q  = 

2

3
R

[cos cos ( )]

[ ( )]

q q

q q

- -
- -

 = 0.

 Thus coordinates (xc, yc) of the centroid C of the sector of a circle are 
2

3
0

R sin
,

q

q

Ê
ËÁ

ˆ
¯̃  [Answer].

Figure 5.8 (a)

A

A¢

B¢

dA

y

y

O

x B

C
x

q

q a

da

R

Figure 5.8
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Note: If the included angle of the sector of the circle is p, it becomes a semi-circle. Thus xc = 

2

3

R sin q

q
 = 

2
2

3
2

R sin
p

p
 = 

4

3

R

p
. However, yc remains zero since it continues to be remain symmetrical with x axis.

2nd Method: In this method, a differential element as shown in Fig. 5.8 (b) is selected such that its centroid 
is denoted by C(x, y).
 Thus area of the differential element = dA = (r.da).dr.

 Since the number of variables being two, we have to resort to multiple integral involving da and dr for 
which the limits of a would be from −q to +q and for r, it would be from 0 to R.
 Now, x = r cos a and y = r sin a

\  xc = 
xdA

dA

Ú
Ú

 = 

r r d dr

r d dr

R

R
0

0

ÚÚ

ÚÚ

-

+

-

+

cos .( . ).

( . ).

a a

a

q

q

q

q  = 

2

2

2

0

0

sin q

q

r dr

rdr

R

R

Ú

Ú
= 

sin q

q
 ¥ 

R

R

3

2
3

2

\   = 
2

3
 R 

sin q

q
 [Same as before]

 The computation of yc is left to the reader.

3rd Method: This method is based on the results of the calculation of problem 5.3
 Here, a uniform circular arc is considered at a distance r from y axis having thickness dr as shown in 
Fig. 5.8 (c)
\ Area of the differential element = dA = 2q.r.dr.

 The x coordinates of the centroid of this differential circular arc = x = 
r

q
 sin q [Refer result of the 

problem 5.3]

Figure 5.8
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\  xc = 
xdA

dA

Ú
Ú

 = 

r
r dr

r dr

R

R

q
q q

q

sin . . .

. .

2

2

0

0

Ú

Ú
 = 

2

2

2

0

0

sin q

q

r dr

rdr

R

R

Ú

Ú
 = 

sin q

q

1

3
1

2

3

2

R

R

 = 
2

3
 R  

sin q

q

Example 5.5  Compute the coordinates (xc, yc) of the centroid C of the sector of the general spandrel OAB 
as shown in Fig. 5.9.

Solution Let us consider an elemental rectangular strip of 
thickness dx at a distance x from y axis.

\ Area of the strip = dA = y ¥ dx

 Let P(x, y) be a point on the curve.
 The general equation of the curve is y = kxn.
 Since the point A(a, b) lies on the curve, it must satisfy 
the equation of the curve.

\  b = kan fi k = 
b

an .

 Thus equation of the curve becomes y = 
b

an xn.

\ Area of the strip = dA = y ¥ dx = 
b

an xn dx

\  xc = 
xdA

dA

Ú
Ú

 = 

x
b

a
x dx

b

a
x dx

n

n
a

n

n
a

.
0

0

Ú

Ú
 = 

x dx

x dx

n
a

n
a

+Ú

Ú

1

0

0

 = 

1

2
1

1

2
0

1
0

n
x

n
x

n a

n a

+

+

+

+

[ ]

[ ]
 = 

n

n

+
+

1

2
 [an +2−n−1] = 

n

n

+
+

1

2
 a

  yc = 

y
dA

dA

2Ú
Ú

 = yc = 

y
ydx

ydx

2Ú
Ú

 = 

1

2

2

2
2

0

0

b

a
x dx

b

a
x dx

n

n
a

n

n
a

Ú

Ú
 = 

1

2

1

2 1
1

1

2 1
0

1
0

.

[ ]

[ ]

b

a

n
x

n
x

n

n a

n a

+

+

+

+

   = 
b

a

n

nn2

1

2 1

+
+

[a2n+1−n−1] = 
n

n

+
+
1

4 2
 b.

 Thus coordinates (xc, yc) of the centroid C of the parabolic spandrel is 
n

n
a

n

n
b

+
+

+
+

Ê
ËÁ

ˆ
¯̃

1

2

1

4 2
,

Note: When n = 2, it becomes a parabolic spandrel.

Example 5.6  Determine the y-coordinate of the centroid C of the shaded area OAB as shown in Fig. 5.10.

Solution The area of interest, i.e., OAB is the difference of area formed by the curve OA and the straight 
line OB with the x axis as evident from the figure.
 The equation of the curve is y2 = bx.

 It is imperative to find out the equation of the straight line AB that passes through the point b
b

,
2

Ê
ËÁ

ˆ
¯̃
.

O

y

Y = kx
n

A

P x y( , )

x dx B
x

Figure 5.9
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 Since the line passes through the origin, let us 
consider its generic equation to be y = mx.
 Putting the coordinates of point B in the above 

equation, we have b

2
 = mb or m = 1

2
.

 Thus, the equation of the straight line becomes 

y = 
1

2
x.

 To calculate the centroid of the given area, we 
select a differential vertical strip of thickness dx.
 The height h of this elemental strip would be 
the difference between the y coordinate of the curve

(y2 = bx.) and the straight line y x=Ê
ËÁ

ˆ
¯̃

1

2
.

\  h = bx  − 
x

2
.

\ Area of the strip = dA = h ¥ dx = bx
x

-Ê
ËÁ

ˆ
¯̃2

.dx

 Let the distance of centroid of the elemental strip be hc from the x axis.

 From geometry, hc = 
h

2
 + y coordinate of the straight line.

\  hc = 
h

2
 + 

x

2

\  yc = 
h dA

dA

cÚ
Ú

 = 

h x
b x

x
dx

b x
x

dx

b

b

2 2 2

2

0

1
2

1
2

1
2

0

1
2

+Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

-

Ú

Ú
 = 

b b b b

b b

3 3 3 3

2 2
4 10 10 24

2

3 4

+ - -

-
 = 

5

24

3b
 ¥ 

12

5 2b
 = 

b

2

y coordinate of the centroid of the enclosed area OAB therefore becomes 
b

2

Example 5.7  Determine the coordinates of the centroid C of the shaded area OAB as shown in Fig. 5.11.

Figure 5.10

O

x y,

y = k|x|
3

BA

b

Y a

x

Figure 5.11

Solution The general equation of the curve is y = k |x|3.

 Since it passes through the point (a, b), b = ka3 or k = 
b

a3 .
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 Thus equation of the curve becomes y = 
b

a3 |x|3.

\ Area of the strip = dA = 2xdy

\  yc = 
ydA

dA

Ú
Ú

 = 
y xdy

xdy

2

2

Ú
Ú

 = 

y
a

b

y dy

a

b

y dy

b

b

1

3

1

3

0

1

3

1

3

0

Ú

Ú
 = 

b

b

4

3
1

1

3
1

4

3
1

1

3
1

+

+

+

+

 = 
3

7
 ¥ 

4

3
 b = 

4

7
 b.

 The given geometry being symmetrical with respect to y axis, xc = 0.

 Thus coordinates (xc, yc) of the centroid C of the shaded area are 0
4

7
, b

Ê
ËÁ

ˆ
¯̃

Example 5.8  Using Pappus and Guldinus Theorem, compute the volume of a right-circular cone of height h 
and base radius r.

Solution As per Pappus and Guldinus 2nd Theorem, volume of a solid generated by rotating 
a plane curve with respect to a non-intersecting axis would be equal to the area of the curve 
multiplied by the distance travelled by its CG.
 To generate a right-circular cone, a plane triangular area ABC is considered. The arm AB 
is aligned with the vertical axis OO, as shown in the Fig. 5.12.
 The height of this triangle is AB = h and base BC = r.

 Therefore, its CG will lie at a distance 
r

3
 from the OO axis.

 This triangle, if rotated about OO by 360°, will generate a cone.

 The area of the triangle is = A = 
1

2
rh.

 The distance travelled by its CG when rotated by one complete revolution becomes 2p 
r

3
.

 Thus volume of the cone is V = 
1

2
rh ¥ 2p 

r

3
 = 

1

3
pr2h

Example 5.9  Using Pappus and Guldinus Theorem, compute the surface area and volume of the torus 
generated by rotating a circle of radius r whose centre is located at a 
distance R from y axis as shown in Fig. 5.13.

Solution A circle is a plane curve of length = its perimeter = L = 2pr.

 The CG being located at its centre, it covers a distance = 2pR 

when rotated by one complete revolution and consequently generates 
a torus.
 Thus, as per Pappus and Guldinus 1st Theorem, surface area of the 
torus so generated will be A = 2pr ¥ 2pR = 4p2 Rr, since the surface 
area of the circle Ac = pr2

 By Pappus and Guldinus 2nd Theorem, the volume of the torus 
becomes

  V = pr2 ¥ 2pR = 2p 2Rr2.

O

A

B

h

C

r

O

Figure 5.12

Figure 5.13
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Example 5.10  Locate the CG of a solid right-circular cone of 
height h and base radius r as shown in Fig. 5.14.

Solution Let us consider the cone as shown in Fig. 5.10 having 
height OA = h and base radius OB = r.

 To compute its centroid, let us consider an elemental circular 
strip of thickness dy at a distance y from x axis.
 Let the radius of the circular strip be r¢.

\ From similarity of triangles, 
¢r

r
 = 

h y

h

-
 fi r¢ = 

r

h
 (h − y)

\ Cross-section area of the strip = A = pr¢2 = p 
r

h

2

2
 (h − y)2.

\ Differential volume of the strip becomes

  dV = A ¥ dy = p 
r

h

2

2 (h − y)2dy

\  yc = 
ydV

dV

Ú
Ú

 = 

y
r

h
h y dy

r

h
h y dy

h

h

. ( )

( )

p

p

2

2
2

0

2

2
2

0

-

-

Ú

Ú
 = 

h
y

h
y y

h y h
y

h h h

h

2
2

0

3

0

4

0

2
0

2

2
2

3 4

2
2

¥
È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙

¥ [ ] -
È

Î
Í

˘

˚̊
˙ +

È

Î
Í

˘

˚
˙

0

3

0
3

h h
y

   = 

h h h

h h
h

4 4 4

3 3
3

2

2

3 4

3

- +

- +
 = 

h

h

3

2
6

2

 = 
h4

12
 ¥ 

3
3h
 = 

h

4
 [Answer]

Example 5.11  Determine the CG of a hemisphere of radius r as shown in Fig. 5.15.

y

h

x
r

O

y

dyr ¢

area = A

z

Figure 5.14

z

Or

xy

x

dy y

Figure 5.15

Solution To compute its CG, let us consider a differential element of radius x and having thickness dy at a 
distance y from x axis.
 Thus the equation of the circular strip becomes x2 + y2 = r2

\ Cross-section area of the strip = A = px2

\ Differential volume of the strip becomes dV = A ¥ dy = px2dy.
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\  yc = 
ydV

dV

Ú
Ú

 = 

y x dy

x dy

r

h

.p

p

2

0

2

0

Ú

Ú
 = 

y r y dy

r y dy

r

r

( )

( )

2 2

0

2 2

0

-

-

Ú

Ú

   = 

r r

r
r

4 4

3
3

2 4

3

-

-
 = 

r

r

4

3
4

2

3

 = 
r4

4
 ¥ 

3

2 3r
 = 

3

8

r

 By symmetry, xc = 0 and zc = 0

PART B

 5.7 COMPUTATIONS OF CG AND CENTROIDS FOR COMPOSITES

In mechanics, one has to confront with several objects which do not conform to any unique geometry. Rather a 
close look at such objects reveals that although they seem very complicated but basically they are the aggregation 
of several fundamental geometric shapes. Such objects which are combination of basic geometrical shapes 
are called composites and find wide application in real-life situations. They have several distinct advantages 
over their simplified counterparts in view of material savings, enhanced strength, reduced weight and cost-
effectiveness. It is therefore indeed very relevant to compute centre of gravity and centroids for such composites. 
However, it is not at all a difficult task to calculate the CG of such composites provided the locations of the 
centroids of the elementary geometrical shapes, present in it, are known.
 Under such situations, it is not prudent to start from scratch; rather one must make use of results that are 
already obtained for basic geometrical entities.
 Refer to Fig. 5.16 for which we are interested to compute the CG of 
the composite. The composite can be divided into three basic finite shapes 
having masses m1, m2 and m3 and x coordinates of their CG being x1, x2 
and x3 respectively.
 Then by using the principle of Varignon’s Theorem, we can find out the 
CG of the composite.
 Thus, we have (m1 + m2 + m3)Xc = m1x1 + m2x2 + m3 x3

  Xc = 
m x m x m x

m m m

1 1 2 2 3 3

1 2 3

+ +
+ +

 = 

m x

m

i i

i

i

i

=

=

Â

Â
1

3

1

3

 Similarly, other two coordinates can be calculated as Yc = 

m y

m

i i

i

i

i

=

=

Â

Â
1

3

1

3  and Zc = 

m z

m

i i

i

i

i

=

=

Â

Â
1

3

1

3

 It is worth mentioning that there is no limit regarding the choice of numbers as well as types of individual 
finite elements.

x3

x2

x1

G3

m3

G

G2

m2
G1
m1

XC

Figure 5.16
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 Thus above three expressions can be expressed generically when the composite is divided into n number 
elements

  Xc = 

m x

m

i i

i

n

i

i

n

=

=

Â

Â
1

1

 ; Yc = 

m y

m

i i

i

n

i

i

n

=

=

Â

Â
1

1

 ; Zc = 

m z

m

i i

i

n

i

i

n

=

=

Â

Â
1

1

 Following the article 5.4, the above sets of expressions of centre of gravity can be extended for computation 
of volumes, areas and lines.

 Thus Xc = 

V x

V

i i

i

n

i

i

n

=

=

Â

Â
1

1

 ; Yc = 

V y

V

i i

i

n

i

i

n

=

=

Â

Â
1

1

 ; Zc = 

V z

V

i i

i

n

i

i

n

=

=

Â

Â
1

1

 for volumes

  Xc = 

A x

A

i i

i

n

i

i

n

=

=

Â

Â
1

1

 ; Yc = 

A y

A

i i

i

n

i

i

n

=

=

Â

Â
1

1

 ; Zc = 

A z

A

i i

i

n

i

i

n

=

=

Â

Â
1

1

 for areas

  Xc = 

L x

L

i i

i

n

i

i

n

=

=

Â

Â
1

1

 ; Yc = 

L y

L

i i

i

n

i

i

n

=

=

Â

Â
1

1

 ; Zc = 

L z

L

i i

i

n

i

i

n

=

=

Â

Â
1

1

 for slender bars

 It may so happen that it may be easier to consider the composites as a difference of two or more basic 
entities. Thus depending on the merits of the problem, it can be any combination – only additive, only subtractive 
or hybrid.
 In such cases, the summation is to be interpreted as algebraic sum both in the numerator and 
in the denominator. A few worked out problems will help understand this approach in regard to its 
implementation.
 Here is a question for you!

 “While computation of centre of gravity of composites, the summation formula is used, whereas for basic 

entities, integration method is followed” – Justify with reasons.

Example 5.12  Determine the coordinates of centroid C(xc, yc) of an L section as shown in Fig. 5.17.

Solution Let the given L-section be divided into two rectangles OABC and CDEF and let these be denoted 
by 1 and 2 respectively.

  A1 = 100 ¥ 10 = 1000 mm2; A2 = (80 − 10) ¥ 10 = 700 mm2

  x1 = 
10

2
 = 5 mm x2 = 

( )80 10

2

-
 + 10 = 45 mm

  y1 = 
100

2
 = 50 mm y2 = 

10

2
 = 5 mm
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\  xc = 
A x A x

A A

1 1 2 2

1 2

+
+

 = 
1000 5 700 45

1000 700

¥ + ¥
+

 mm = 21.47 mm and

  yc = 
A y A y

A A

1 1 2 2

1 2

+
+

 = 
1000 50 700 5

1000 700

¥ + ¥
+  mm = 31.47 mm.

 Thus, coordinates of centroid C(xc, yc) of a L-section become (21.47 mm, 31.47 mm)

Example 5.13  Determine the coordinates of centroid C(xc, yc) of the shaded area formed by subtracting a 
square with a 50 mm side from a bigger square with a 100 mm side as shown in Fig. 5.18.

Solution Let the larger square with 100 mm sides be represented by OABC and smaller square with 50 mm 
sides be represented by BDEF and let these be denoted by 1 and 2 respectively.

  A1 = 100 ¥ 100 = 10000 mm2; A2 = 50 ¥ 50 = 2500 mm2

  x1 = 
100

2
 = 50 mm x2 = 50 + 25 = 75 mm

  y1 = 
100

2
 = 50 mm y2 = 50 + 25 = 75 mm

 Since x1 = y1 and x2 = y2

 It therefore follows that xc = yc

\  xc = 
A x A x

A A

1 1 2 2

1 2

-
-  = 

10000 50 2500 75

10000 2500

¥ - ¥
-

 mm = 41.67 mm = yc

Example 5.14  Determine the coordinates of centroid C(xc, yc) of the 
composite developed by combining a sector of a circle and a triangle as shown 
in Fig. 5.19.

Solution Let the sector of the circle OAB and the triangle OBC be denoted 
by 1 and 2 respectively.

 A1 = 
1

6
 ¥ p ¥ 602 = 600p mm2;

 A2 = 
1

2
 ¥ (60 cos 30) ¥ 30 = 900 cos 30 mm2

1
0
0
m
m

10 mm

( , )x y

BA

Y

X
1
0
m
m

ED

O C F

80 mm

Figure 5.17
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C

D

1
0
0
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B
A

O

E

F

Figure 5.18
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XO

C
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Y
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Figure 5.19
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 x1 = 
2

3

r

q
 sin q = 

2 60

3 3

¥

¥ p
 sin 60 mm = 

120
p

 sin 60 mm x2 = 
1

3
 ¥ 30 = 10 mm

 y1 = 
2

3

r

q
[1 − cos q] = 

2 60

3 3

¥

¥ p
[1 − cos 60] mm = 

60
p  mm y2 = 

2

3
(60 cos 30) = 40 cos 30 mm

\  xc = 
A x A x

A A

1 1 2 2

1 2

+
+

 = 
600

120
60 900 30 10

600 900 30

p
p

p

¥ + ¥

+

sin cos

cos
 mm = 26.33 mm.

\  yc = 
A y A y

A A

1 1 2 2

1 2

+
+

 = 
600

60
900 30 40 30

600 900 30

p
p

p

¥ + ¥

+

cos cos

cos
 mm = 23.64 mm.

Example 5.15  Determine the coordinates of centroid C(xc, yc) of the area remaining after a semi-circle is 
removed from the trapezoid as shown in Fig. 5.20.

100 mm100 mm

y

1
0
0
m
m

O

x

1
5
0
m
m

Figure 5.20

Solution The shaded area can be considered as area of the rectangle (size 200 mm ¥ 100 mm) + area of the 
triangle (base 200 mm ¥ height 50 mm) – area of the semi-circle with a 100 mm diameter.

 From the given dimensions,

 A1 = 200 ¥ 100 = 20000 mm2; A2 = 
1

2
 ¥ 200 ¥ 50 = 5000 mm2; A3 = 

1

2
 ¥ p ¥ 502 = 1250p mm2

 x1 = 
200

2
 = 100 mm x2 = 

2

3
 ¥ 200 mm = 133.33 mm x3 = 100 + 

50

2
 mm = 125 mm

 y1 = 
100

2
 = 50 mm y2 = 100 + 

1

3
 ¥ 50 mm = 116.678 mm y3 = 

4 50

3

¥
p

 mm = 21.22 mm

\  xc = 
A x A x A x

A A A

1 1 2 2 3 3

1 2 3

+ -
+ -  = 

20000 100 5000 133 33 1250 125

20000 5000 1250

¥ + ¥ - ¥
+ -

. p

p
 mm = 103.25 mm

\  yc = 
A y A y A y

A A A

1 1 2 2 3 3

1 2 3

+ -
+ -

 = 
20000 50 5000 116 67 1250 21 22

20000 5000 1250

¥ + ¥ - ¥
+ -

. .p

p
 mm = 71.2 mm
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Example 5.16  Locate the coordinates of centroid C(xc, yc) of the shaded obtained by removing a semi-circle 
of diameter a from a quadrant of a circle of radius a, as shown in Fig. 5.21.

Solution Let the quadrant of the circle of radius a be denoted as 1 and semi-circle of diameter a as 2.

  A1 = 
p

4
a2 mm2; A2 = 

1

2
 ¥ 

p

4
a2 mm2 = 

p

8
a2 mm2

  x1 = 
4

3

a

p
 mm x2 = 

a

2
 mm

  y1 = 
4

3

a

p
 mm y2 = 

4

3 2p

aÊ
ËÁ

ˆ
¯̃  mm = 

2

3

a

p
 mm

\  xc = 
A x A x

A A

1 1 2 2

1 2

-
-

 = 

p

p

p

p p
4

4

3 8 2

4 8

2 2

2 2

a
a

a
a

a a

¥ - ¥

-
 mm == 0.349a mm.

\  yc = 
A y A y

A A

1 1 2 2

1 2

-
-

 = 

p

p

p

p
p p

4

4

3 8

2

3

4 8

2 2

2 2

a
a

a
a

a a

¥ - ¥

-
 mm = 0.636a mm

Example 5.17  Locate the centroid C(xc, yc) of the bent wire of uniform cross-section as shown in Fig. 5.22.

Solution The bent wire has got four distinct parts into which it 
can be decomposed. These are denoted as 1 through 4 as shown.

 L1 = 50 mm; L2 = 100 mm;

 L3 = p ¥ 100 mm; L4 = 50 mm

 x1 = − 100
50

2
+Ï

Ì
Ó

¸
˝
˛

 = −125 mm; x2 = −100 mm;

 x3 = 0; x4 = 100
50

2
+Ï

Ì
Ó

¸
˝
˛

 = 125 mm

 y1 = 0; y2 = 
100

2
 mm = 50 mm;

 y3 = 100 + 
2 100¥

p
 mm; y4 = 100 mm

\  xc = 

L x

L

i

i

i

i

i

=

=

Â

Â
1

4

1

4  = 
50 125 100 100 100 0 50 125

50 100 100 50

¥ - + ¥ - + ¥ + ¥
+ + +

( ) ( ) p

p
 mm = −19.45 mm

\  yc = 

L y

L

i

i

i

i

i

=

=

Â

Â
1

4

1

4
 = 

50 0 100 50 100 100
200

50 100

50 100 100 50

¥ + ¥ + ¥ +È
ÎÍ

˘
˚̇

+ ¥

+ + +

p
p

p
 mm = 119.45 mm

O
X

Y

50

100 100 502

3

4

1

Figure 5.22
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Example 5.18  An isosceles triangle is to be cut from one edge of a square plate of side 1 metre such that 
the remaining part of the plate remains in equilibrium in any position when suspended from the vertex of the 
triangle, as shown in Fig. 5.23.

Solution The remaining part of the plate remains in equilibrium when suspended from the vertex of the 
triangle, which implies that centroid of the remaining part coincides with the vertex of the triangle.
 Let h be the height of the triangle from x axis.
 The square plate and the triangle is denoted as 1 and 2 respectively.

  A1 = 1 ¥ 1 m2 = 1 m2; A2 = 
1

2
 ¥ 1 ¥ hm2 = 

h

2
 m2

  y1 = 
1

2
 = 0.50 m

  y2 = 
h

3
 m

\  yc = 
A y A y

A A

1 1 2 2

1 2

-
-

 = 
1 0 5

2 3

1
2

¥ - ¥

-

.
h h

h
 = 

0 5 0 167

1 0 5

2. .

.

-
-

h

h

 By definition yc = h

\  h = 
0 5 0 167

1 0 5

2. .

.

-
-

h

h
 fi 0.33h2 − h + 0.5 = 0

  h = 
1 1 4 0 33 0 5

2 0 33

± - ¥ ¥
¥

. .

.
 = 

1 0 583

0 66

± .

.
 = 2.4 m or 0.631 m

 Since the height of the triangle cannot be 2.4 m, it should be 0.631 m.

 Thus the area of the triangle becomes A2 = 
1

2
 ¥ 1 ¥ 0.631 m2 = 0.3155 m2.

Example 5.19  A square hole has to be punched out from a circular 
lamina as shown in Fig. 5.24. The diagonal of the square which is punched 
out is equal to the radius of circle. Find the centroid of the remaining 
lamina. 

Solution Let the circle be denoted by 1 and the square be denoted by 2.
 The radius of the circle is = r = diagonal of the square.

 Thus sides of the square become 
r

2
.

  A1 = pr2 mm2; A2 = 
r

2
 ¥ 

r

2
 mm2 = 

r2

2
 mm2

  x1 = 0, x2 = − 
r

2
 mm

  y1 = 0, y2 = 0

\  xc = 
A x A x

A A

1 1 2 2

1 2

-
-

 = 

p

p

r
r r

r
r

2
2

2
2

0
2 2

2

¥ - ¥ -Ê
ËÁ

ˆ
¯̃

-
 mm = 0.095r rmm.

 The shaded area being symmetrical about x axis yc will be zero.

Y

x

500500

h

1
0
0
01

2

Figure 5.23
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Example 5.20  Identify the mass centre of the slender bar bent to the shape as shown in Fig. 5.25.

300 mm

o

y

x

15
0
m
m

Figure 5.25

Solution Let the circular arc be denoted by 1 and the linear bar be denoted by 2.
 The radius of the arc = r = 150 mm. 

  L1 = p r = 150p mm; L2 = 300 mm

  x1 = 
2 150¥

p
 sin 90 = 

300
p

 mm x2 = −150 mm

  y1 = 0 y2 = −150 mm

\  xc = 
L x L x

L L

1 1 2 2

1 2

+
+

 = 
150

300
300 150

150 300

p
p

p

¥ + ¥ -

+

( )
 mm = 0

\  yc = 
L y L y

L L

1 1 2 2

1 2

+
+

 = 
150 0 300 150

150 300

p

p

¥ + ¥ -
+

( )
 mm = −58.3 mm

 Thus, the location of the mass centre of the bent bar becomes (0, −58.3 mm)

MULTIPLE-CHOICE QUESTIONS

 5.1 Centre of gravity is a point at which
 (a) resultant of all the external force acts (b) resultant of all the reaction force acts
 (c) entire body force is concentrated (d) none of the above
 5.2 For homogeneous rigid bodies, centre of gravity depends on
 (a) shape of the object   (b) materials of the object
 (c) both shape and materials of the object (d) none of the above
 5.3 For homogeneous rigid bodies, centre of mass depends on
 (a) position of the body   (b) orientation of the body
 (c) both Position and Orientation of the body (d) none of the above
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 5.4 For a semi-circular arc of radius r, centre of mass lies at a distance

 (a) 
r

p
 from its centre (b) 

2r

p
 from its centre (c) 

3

2

r

p
 from its centre (d) 

4

3

r

p
 from its centre

 5.5 For a quarter circular sector of radius r, centre of gravity lies at a distance

 (a) 
r

p
 from its centre (b) 

2r

p
 from its centre (c) 

3

2

r

p
 from its centre (d) 

4

3

r

p
 from its centre

 5.6 Pappus and Guldinus Theorem is relevant with
 (a) friction   (b) moment of Inertia
 (c) centre of gravity   (d) moment of a force with respect to a point
 5.7 Computation of centre of gravity by method of integration is valid only for
 (a) solid objects   (b) 2D lamina
 (c) slender bar of uniform cross section (d) all of the above
 5.8 The center of gravity of a uniform lamina lies at
 (a) the centre of heavy portion (b) the bottom surface

 (c) the mid-point of its axis   (d) all of the above

 5.9 To generate a solid right-circular cone by using Pappus and Guldinus Theorem, the surface to be 
considered should conform to

 (a) triangle (b) circle (c) semicircle (d) trapezoidal

 5.10 An object which is symmetrical about y axis, its

 (a) xc = 0 (b) yc = 0 (c) zc = 0 (d) none of the above

 5.11 For solid right-circular cone of height h, its CG lies at a distance

 (a) 
h

2
 from the base (b) 

h

3
 from the base (c) 

h

4
 from the base (d) none of the above

 5.12 For a hemisphere of radius r, its CG lies at a distance

 (a) 
2

3

r
 from the base (b) 

3

4

r
 from the base (c) 

3

8

r
 from the base (d) 

r

2
 from the base

SHORT ANSWER TYPE QUESTIONS

 5.1 What is centre of gravity? Does it differ from centre of mass? If yes, under what condition? When did 
the term centroid get more relevance?

 5.2 Why is computation of centre of gravity important in connection with mechanics?

 5.3 Is centre of gravity a unique point? If yes, why is it so?

 5.4 If method of integration is replaced by summation technique for basic geometrical shapes, what would 
be the difficulties?

 5.5 Why is method of integration not valid for irregular objects?

 5.6 For slender rods of uniform cross section, prove that xc = 
xdm

dm

Ú
Ú

 = 
xdL

dL

Ú
Ú

 5.7 What is meant by symmetrical objects? For such objects, why does computations of centre of gravity 
sometimes become easier and under what conditions?

 5.8 Briefly outline the method of calculation of centre of gravity of composites? 

 5.9 State Pappus and Guldinus 1st and 2nd theorems and prove them.

 5.10 For a circle, prove that its CG lies at its centre.
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NUMERICAL PROBLEMS

 5.1 Determine the location of the centroid of the circular arc of radius R having included angle 90º as 
shown in Fig. 5.26.

 5.2 Determine the location of the centroid of the shaded area formed by the curve y = k (x − a)2 with the 
x axis as shown in Fig. 5.27.

O
10

10

30
10

50

60

X

Y

Figure 5.30 Figure 5.31 Figure 5.32

 5.3 Starting from the fundamentals, compute the location of the centre of gravity of the area formed by 
subtracting a triangle of base a and height b from a quarter of an 
ellipse having semi major and minor axes as a and b respectively, 
as shown in Fig. 5.28.

 5.4 Determine by direct integration, the y coordinate yc of the 
homogeneous wire bent into the shape as shown in Fig. 5.29.

 5.5 Calculate the CG (xc, yc) of a semi-circular area of radius r such 
that centre of the circle coincides with the origin and the object 
is symmetrical about positive x axis.

 5.6 Find out the CG (xc, yc) of an ‘I’ section as shown in Fig. 5.30.
 5.7 Locate the centroid of a composite as shown in Fig. 5.31.
 5.8 Locate the centroid of the hatched area formed by the intersection 

of straight line y = x and a parabola y = 
x

a

2

 as shown in Fig. 5.32.

Figure 5.27Figure 5.26

Y

O a X

b

Figure 5.28

X
45°

45°

Y

r

O

Figure 5.29
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   5.9 Find out the CG of the hatched area formed by the eliminating a square with 40 mm sides from that 
of a quarter of a circle with 80 mm radius as shown in Fig. 5.33.

 5.10 Using Pappus and Guldinus Theorem, compute the surface area and volume of a solid sphere of radius r.
 5.11 Using Pappus and Guldinus Theorem, calculate the surface area and volume of a right circular cylinder 

of radius r and height h.
 5.12 Find out the CG of the composite as shown in Fig. 5.34.

40

40

R = 80

Y

XO

Figure 5.33

r r

r

r

r

O
X

Y

Figure 5.34

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 5.1 (c) 5.3 (d) 5.5 (d) 5.7 (d)  5.9 (a) 5.11 (c)
 5.2 (a)  5.4 (b) 5.6 (c) 5.8 (c) 5.10 (a) 5.12 (c)

ANSWERS TO NUMERICAL PROBLEMS

 5.1 x
R

yc c= =
2 2

0
p

,

 5.2 x
a

y
b

c c= =
4

3

5
,

 5.3 x
a

y
b

c c=
-

=
( -

2

3 2

2

3 2( )
,

)p p

 5.4 yc = 0

 5.5 x
R

yc c= =
2

0
p

,

 5.6 xc = 30, yc = 23.57

 5.7 xc = 19.16, yc = 19.07

 5.8 x
a

y
a

c c= =
2

2

5
,

 5.9 xc = 40.5 = yc

 5.12 xc = 0.744a = yc
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Friction

 6.1 INTRODUCTION

As discussed earlier, statics involve primarily the analysis of forces on rigid bodies such that it forms a system 

of forces that ensures equilibrium of the system. These forces are basically the active forces, i.e., external 

applied force(s) and or the body force(s), the reactions from different supports that constrain the motion and 

the induced forces (tension and compression) in several members as a consequence of applied load. Such force 

analysis would form the basis for subsequent design. While dealing with such force analysis, the reaction forces 

from various supports are assumed to act normally from the supports. The reason for such consideration is 

attributed to the premise that these surfaces are perfectly smooth, although in reality it is not so. Such idealistic 

approach helps simplify the complexity of the problem to a great extent without any signif icant gross error 

and well accepted in many cases. Nevertheless, there are plenty of situations, when such considerations would 

be misleading. In fact, all the real life surfaces exhibit some kind of roughness, however small it may be. It is 

therefore found that while dealing with two mating surfaces (similar or dissimilar), these not only exert normal 

reactions but also offer mutually tangential resisting forces that oppose their motion. Thus, whenever there 

is a contact between two mating surfaces, a tangential force is developed by virtue of the roughness of the 

surfaces that always act opposite to the direction of motion. This resisting force is called friction force and 

often plays a very dominant role in many engineering problems. Thus the concept of perfectly smooth surface, 

popularly known as ideal surface, is imaginary and therefore, all real life surfaces that manifest some degree 

of roughness are called real surface.

 6.2 APPLICATION DOMAIN

Friction force, basically being a resisting force, seems to be undesirable. There are ample situations in 

engineering applications like power transmission systems involving gears, shafts, keys, bearings (e.g. gearbox), 

mechanics of metal cutting (chip flows over tool rake face and rubbing of flank surface of the tool over machined 

surface), machine tool slides, hydraulic or pneumatic actuators where presence of friction cause wear and 

tear of components, undue heat generation, increase in power consumption and encourage premature failure. 

Notwithstanding this fact, this opposing force are very much welcome in the applications like brakes, clutches, 

belt drives, screw jack, wedge block etc. Even a simple ladder that is used for the purpose of climbing, utilises 

friction to maintain equilibrium, when a person stands on it. It is therefore very much essential to study friction 

to incorporate its effects in the analysis of forces in true spirit.

 6.3 CLASSIFICATION OF FRICTION

Friction is a natural phenomenon that is exhibited in the wide range of areas. Based on certain attributes and 

characteristics, it is broadly classif ied under three categories that help to analyse the problems of engineering.

CHAPTER
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 (a) Dry friction This type of friction is encountered between the surfaces of two rigid bodies when there 

exists a sliding motion or there is a tendency of motion in the absence of any oil or lubrication in 

between. The dry friction is present even if there is no motion, under the condition of impending motion 

and when there is motion. It is also called Coulomb friction, named after the scientist Coulomb who 

had carried out several experiments in this domain to realise the theory in its present form. The actual 

mechanism of friction is too complicated to be reasoned. In the present text, considering the relevance, 

this category of friction will be discussed in detail.

 (b) Fluid friction Fluid does not have any def inite shape; rather it conforms to the shape of the conduit 

or vessel in which it is contained for the purpose of fluid flow to take place or simply for its storage. 

When fluid flow takes place, the inner wall of the conduit offers resistance to the motion by virtue 

of friction. Further, the entire fluid column in a conduit can be envisaged as aggregation of several 

layers and there is a relative motion between the layers of fluid during fluid flow and these layers also 

offer resistance to the neighboring layer. Such type of friction associated with fluid flow is termed 

as fluid friction. This flow phenomenon and the friction characteristics depend on several parameters 

like velocity gradient, surface roughness of the conduit, viscosity of the fluid, cross-section of the 

conduit, etc. This fluid friction being predominant in different types of fluid flow problems, f inds 

its discussion and analysis in the study of a separate subject titled fluid mechanics and will not be 

discussed here. 

 (c) Internal friction This type of friction occurs in solids undergoing cyclic loading. Nevertheless it is not 

uniform in all types of solids. Internal friction is considerable in those materials that manifest adequate 

plastic deformation compared to those that deform less plastically. Whenever a solid is subjected to 

tangential external force, the material undergoes shear deformation and internal friction comes into 

existence. The mechanics of internal friction is associated with the subject strength of materials and 

hence any further illustration is not under the purview of present discussion.

 6.4 MECHANICS OF FRICTION

A surface that apparently seems very smooth is actually not so. 

A microscopic look at such a surfaces will reveal presence of lots of 

asperities on it that arise from the intrinsic material qualities or the 

consequences of the procedures that are followed during manufacturing. 

Presence of these irregularities put hindrance to its motion over the 

other surfaces. 

 To understand the mechanics of friction, consider a body of mass m 

resting on a rough horizontal floor and subjected to a horizontal pull 

force P as shown in Fig. 6.1.

 The magnitude of P is increased gradually from zero to assume a 

value till we get a motion of the body with suff icient velocity. Figure 6.1 

shows that the body force W = mg of the block will act vertically downward and in turn, the floor on which 

the block rests will exert a normal reaction N on it. The frictional force F will act at the mating surface and 

will be tangential to it–its direction being just opposite to that of external applied force P.

 The manifestation of frictional force is the gross behavior of the surface that resulted from asperities present 

on it. Meticulous inspection of the surfaces under investigation shows that lots of hills and valleys are present 

and their depth and distribution is not uniform throughout the surface areas, as evident from Fig. 6.2 (a).

 Whenever, two surfaces come in contact with each other, irregularities of both the surfaces stick together 

(temporary locking) and offer resistance to their motions. It is therefore misnomer to consider that higher 

contact surface area would eventually enhance the frictional resistance; rather it is the degree of irregularities 

that present on the surface which contributes to friction.

P

W

F

N

Figure 6.1
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 Since under the action of all these forces, the block is under static equilibrium, it leads to

  XÂ  = 0

  P = F (6.1)

  YÂ  = 0 

  W = N (6.2)

 Thus from Eq. (6.1), when P = 0; F = 0.

 Increase in magnitude of P eventually increases the magnitude of F so as to hold the block under equilibrium. 

 Thus a plot of friction force (F ) against the applied force (P) [Refer Fig. 6.3] shows a linear curve that 

passes through the origin and having a slope of 45º. While increasing the value of P, an optimum or threshold 

value is reached beyond which the block will start moving. At this point, when the block is just on the verge of 

motion, the friction force attains its maximum value. Further increase of P enables the block to move. However, 

friction force now drops almost instantaneously and remains fairly constant despite increase in P. Substantial 

increase in P will induce appreciable velocity to the block, when F drops slightly. This can be explained by 

the fact that temporary bonding that took place between the asperities of mating surface that cause friction is 

self-adjusting since it increases linearly from 0 to Fmax with the increase in value of P. The maximum value 

of friction force, which comes into play when the motion is impending, is known as limiting friction. When 

the block starts moving, the bonding becomes weak and it is prevalent only along the humps as shown in 

Fig. 6.2 (b) that results in reduction of the frictional resistance.

Impending Motion

45°

P

F

F N= msmax

Zone of Kinetic
Friction

Zone of Static
Friction

F N= mkk

Figure 6.3

 Refer to Fig. 6.3; it is clear that there are two distinct regions as divided by the condition of impending 

motion marked by vertical dotted line. On the left side of this line, it is the region that portrays the behavior 

of friction force when the body is under rest. When the applied force is less than the limiting friction, the 

body remains at rest and such frictional force is called static friction, which may have any value between 

zero and the limiting friction. If the value of the applied force exceeds the limiting friction, the body starts 

moving over the other body and the frictional resistance experienced by the body while moving is known as 

Figure 6.2 (a) Surfaces showing asperities, (b) Conditions during motion

(a) (b)
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dynamic friction (or kinetic friction). Kinetic friction is found to be less than limiting value of static friction. 

To distinguish between static friction and kinetic friction, henceforth Fs and Fk will be used respectively.

 6.5 COEFFICIENTS OF FRICTION

Refer to Fig. 6.4 (a), using the concept of composition of forces, the normal reaction N and the frictional 

force F can be replaced by their resultant R. The block is therefore in equilibrium under the action of three 

intersecting coplanar forces W, P and R. Thus the number of forces acting on the block is now reduced [from 4 

to 3]. Hence these forces will form a closed triangle. This composition of forces is very much useful in solving 

problems involving friction.

 It is interesting to note that experimental results show that the magnitude 

of limiting friction Fmax bears a constant ratio to the normal reaction N 

between the two surfaces and this ratio is called coeff  icient of Friction (m).

 Thus mathematically, m = 
F

N

max.

 Further from Fig. 6.4 (b), tan js = 
F

N

max . Thus tan js = m.

 So, the coeff  icient of friction is equal to the tangent of the angle between 

the normal reaction and the resultant. This angle js is called angle of 

limiting friction or angle of static friction.

 When the value of P is less than that required to cause impending motion say, P¢, 
we have a different force triangle as shown in Fig. 6.4 (c). Since, W is constant 

and P¢ < P, R¢ will also be less than R. Thus tan b j b j= = <
F

N

P

N

¢
tan or < .

 This observation leads to the conclusion that when b assumes its maximum 

value = j, F becomes Fmax, which corresponds to the condition of limiting friction.

 Thus Fmax = msN. ms is called coeff  icient of static friction. Its value is less 

than 1 and for common materials its range varies between 0.2 and 0.5.

 Once the block attains its motion due to further increase in P, the friction force is 

found to be lower than that of its static counterpart. However, it still maintains proportionality 

with the normal reaction. 

 Under such condition, friction force is quantif ied by Fk = mkN, where mk is called 

coeff  icient of kinetic friction and mk = tan jk. Angle jk is called angle of kinetic friction.

 The value of friction force Fk remains more or less constant over a wide range until the 

block attains reasonably high velocity, when it drops marginally. 

 Since Fk < Fmax, it follows that mk is less than ms.

 Based on the f indings of friction characteristics in dry condition, certain laws, called laws of friction were 

developed. These are popularly known as Coulomb’ Laws of Friction, which are mentioned underneath.

 6.6 COULOMB’S LAWS OF FRICTION

 (1) The friction force always acts in a direction opposite to that in which the body tends to move.

 (2) Till the condition of limiting friction is satisf ied, the magnitude of friction is exactly equal to the force 

which tends to move the body.

 (3) The magnitude of the limiting friction bears a constant ratio to the normal reaction between the two 

surfaces.

 (4) The force of friction depends upon the materials and the degree of roughness/smoothness of the surfaces.

 (5) The friction is independent of the area of contact between the two mating surfaces.

P

R

W

j

R N

F

Figure 6.4 (a)

NR

Fmax

js

Figure 6.4 (b)

W

P¢

R¢
b

Figure 6.4 (c)
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 6.7 CONE OF FRICTION

When a body is on the verge of impending motion in the direction of applied force, the frictional force 

encountered is the limiting friction and the resultant reaction force R (R = F + N) will make limiting friction 

angle js with the normal reaction as shown in the Fig. 6.5. If the direction 

of applied force is changed in the same plane, the body will have similar 

impending motion along the modif ied direction of the applied force. The 

situation is no different from the former and hence the resultant reaction 

force makes same angle js with the normal reaction. Likewise, if the 

direction of applied force is changed continuously from 0º to 360º, the 

resultant R generates a right circular cone with semi-central angle equal to 

js, its height and base radius being equal to that of N and Fmax respectively 

as shown in Fig. 6.5. If R is on the surface of this right circular cone having

semi-central angle as limiting frictional angle js, the body is under the 

condition of impending motion. From this f igure, it is clear that when the 

base radius of the cone is lower than that of Fmax, N being unaltered, R will 

be reduced. Consequently, semi-central angle assumes a value q lower than 

that of js, and the situation corresponds to the no motion or static condition. 

This cone with semi-central angle equal to limiting angle js is called Cone 

of Friction or Cone of Static Friction in particular.

 A similar cone of friction can also be developed having semi-central angle equal to jk, height being same 

as that of N but base radius equal to Fk = mkN. Needless to say, base of such a cone will be smaller than the 

previous one, since mk is less than ms. Such a cone is called Cone of Kinetic Friction.

Note: It must be borne in mind that Fs = msN is valid only under the condition of impending motion. Thus 

when applied force is not adequately high to initiate any movement, F is to be calculated by using the 

equations of static equilibrium only. Frictional phenomenon associated with situation upto the condition of 

impending motion is considered as static friction. Further, when there is motion, the condition of static 

equilibrium is not valid. Under such a situation, friction force that comes into existence is kinetic friction 

the magnitude of which is quantif ied by Fk = mkN.

 6.8 ANGLE OF REPOSE

Quite often a situation is encountered when objects are placed on an inclined plane. But, if the inclination of 

plane exceeds a certain limiting value, the object will slide down along the plane in the absence of any external 

force. This is owing to the fact that a component of the self weight will act along the plane which is directed 

downwards and is a function of the inclination angle of the plane.

 As shown in Fig. 6.6, the object having weight W = mg is resting on an inclined plane having its inclination 

q with the horizontal. W can be resolved into two mutually 

perpendicular components – one along the plane having 

magnitude of mg sin q and the other, perpendicular to the 

plane of magnitude mg cos q, as is evident from the free 

body diagram. The component mg sin q will act along the 

plane, so as to cause a downward movement of the block 

along the plane.

 Since the tendency of the block is to slide down, the 

frictional force will act upward along the plane.

Figure 6.5

Figure 6.6 Angle of repose

q

F

mg cos q

N

mg sin q

W mg=

q
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 Considering the static equilibrium of the block, force balance along the plane and perpendicular to the plane 

yields

  XÂ  = 0 

  Fs = mg sin q (6.3)

  YÂ  = 0 

  N = mg cos q (6.4)

 Dividing Eq. (6.3) by Eq. (6.4), we have 

  
F

N

s
 = tan q (6.5)

 Further, under the condition of limiting friction

  
F

N

s  = ms = tan js (6.6)

 Comparing Eq. (6.5) and Eq. (6.6) tan q = tan j, fi q = js

 Thus under limiting condition,

 The inclination of the plane = Angle of static friction.

 Hence to ensure stability of the block q £ js is the criteria.

 This optimum (maximum) inclination of the plane for which a body resting on it would not slide down due 

to self weight when free from external forces is called angle of repose. The etymological meaning of the term 

repose means rest. Thus angle of repose implies that it is the inclination of a plane such that a person on it 

can sleep or can take rest comfortably without slipping. 

Example 6.1  Two blocks A and B having weights WA and WB respectively are attached by an inextensible 

string and rest on two different horizontal planes as shown in Fig. 6.7. A force Pmin is applied to block A 

so as to induce motion to the system. Find the magnitude and direction of Pmin. Assume that co-eff icient of 

friction for both the blocks are m.

WB

WA

a

P

b

Figure 6.7

Solution Let the force P makes an angle a with the horizontal. Also consider the string has got an inclination 

b with the horizontal and experience a tensile force T.

 Introducing A and B as suff ices for the blocks A and B respectively, we have two different free body diagrams 

of block A [Fig. 6.7 (a)] and B [Fig. 6.7 (b)].

 Considering equilibrium of block A when motion impends,

  XÂ  = 0

  P cos a = T cos b + FA (6.7) 

  YÂ  = 0 

  P sin a + NA = WA + T sin b (6.8)

  FA = mNA (6.9)



 Friction 6.7

 From Eqs (6.7) and (6.9),

  P cos a = T cos b + mNA (6.10)

 Similar equilibrium condition of block B leads to

  XÂ  = 0

  T cos b = FB (6.11)

  YÂ  = 0 

  WB = NB + T sin b (6.12)

  FB = mNB (6.13)

 From Eq. (6.11) and Eq. (6.13),

  T cos b = mNB (6.14)

 Equations (6.10) and (6.14) together yield 

  P cos a = mNA + mNB (6.15) 

 Equations (6.8) and (6.12) together yield

  P sin a = (WA + WB) − (NA + NB) (6.16)

 From Eqs (6.15) and (6.16),

  P sin a = (WA + WB) − 
P cos a

m

  P sin
cos

a
a

m
+

È

Î
Í

˘

˚
˙ = WA + WB

  P sin
cos

tan
a

a

j
+

È

Î
Í

˘

˚
˙ = WA + WB; Since tan j = m.

  P cos (a − j) = (WA + WB) sin j

  P = 
( ) sin

cos ( )

W W
A B+

-
j

a j

 From the above expression of P, it is evident that P will be minimum, when the denominator of the above 

expression, is maximum.

 Thus cos (a − j) = 1 = cos 0; this leads to a = j

 Hence Pmin = (WA + WB) sin j and inclination of P is a = j 

Figure 6.7
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 From Eqs (6.18) and (6.19),

  T sin q = W − mNA (6.20)

 Similar equilibrium condition of block B leads to

  XÂ  = 0 T cos q = FB = mNB (6.21)

  YÂ  = 0 T sin q + W = NB (6.22)

 From Eqs (6.17) and (6.21), NA = mNB (6.23)

 From Eqs (6.20) and (6.22), W − mNA = NB − W

 or 2W = NB + m2NB = (1 + m2)NB (6.24)

 Again, from Eqs (6.21) and (6.22), mNB = NB − W or NB = 
W

1 - m
 (6.25)

 From Eqs (6.24) and (6.25),

 2W = (1 + m2) ¥ 
W

1 - m
 fi m2 + 2m − 1 = 0, from which m = 2  − 1 = 0.414.

 Thus the common co-eff icient of friction m becomes 0.414.

Example 6.2  Two identical blocks A and B each having 

weight W are connected by rigid link and supported by a vertical 

wall and a horizontal plane having same co-eff icient of friction (m) 

as shown in Fig. 6.8. If sliding impends for q = 45°, calculate m.

Solution The weight of each block is W. These two blocks will 

experience normal reaction from the supports on which they rest. 

The friction force offered by the wall and the floor will oppose 

their motion. Further, both the blocks will exert mutual thrust on 

each other of magnitude T along the link. The free body diagram of 

blocks A and B are shown separately in Fig. 6.8 (a) and Fig. 6.8 (b) 

respectively.

 For block A, when motion impends,

  XÂ = 0 NA = T cos q (6.17)

  YÂ = 0 T sin q + FA = W (6.18)

  FA = mNA (6.19)

A

B

q = 45°

Figure 6.8

Figure 6.8

W

T cos q
q

T
T sin q

FA

NA
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Example 6.3  Two blocks connected by a horizontal link, are 

placed on two rough planes as shown in Fig. 6.9. The co-eff icient 

of friction for block A and B are mA and mB respectively. What is the 

smallest weight of block A for which the system would be under the 

condition of equilibrium? Given the weight of the block B is WB.

Solution The block B is in the form of a wedge that can slide 

along the inclined plane on which it rests. Since both the blocks 

are tied together by a rigid link, the downward movements of the 

block B will cause block A to move towards left along the horizontal 

floor. As a consequence, an axial load S will be induced in the link.

 From free body diagram of block A [Refer Fig. 6.9 (a)],

  XÂ  = 0 or FA = S (6.26)

  YÂ  = 0 or NA = WA (6.27)

 From the condition of limiting friction,

  FA = mANA = mAWA = S (6.28)

 Similarly, from free body diagram of block B [Refer Fig. 6.9 (b)],

  XÂ  = 0 

  FB sin q + S = NB cos q (6.29)

  YÂ  = 0

  FB cos q + NB sin q = WB (6.30)

  FB = mBNB (6.31)

A B

q

Figure 6.9

 From Eqs (6.28), (6.29) and (6.31), 

  mBNB sin q + mAWA = NB cos q 

  NB = 
m

q m q
A A

B

W

cos sin-
 (6.32)

 Further from Eqs (6.30) and (6.31), 

  NB = 
WB

Bm q qcos sin+
 (6.33)

 Comparing Eqs (6.32) and (6.33),

  
m

q m q
A A

B

W

cos sin-
 = 

WB

Bm q qcos sin+

Figure 6.9
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or  
W

W

A

B

 = 
1

m

q j q

q j q
A

B

B

cos tan sin

sin tan cos

-
+

È

Î
Í

˘

˚
˙ = 

1

m

q j q

q j q
A

B

B

cos tan sin

sin tan cos

-
+

È

Î
Í

˘

˚
˙

\  WA = 
cot ( )

tan

q j

j

+ B

A

WB 

Example 6.4  A ladder AB = 7 metre long of negligible weight is supported 

at A by a smooth vertical wall and a rough horizontal plane at B. A person 

weighing 60 kg is standing on the ladder at a distance 3 metre from the bottom 

along its length as shown in Fig. 6.10. If the co-eff icient of friction between 

the floor and the ladder is 0.3, what is the angle (q) the ladder should make 

with the horizontal to prevent slipping?

Solution Let the weight of the person be W and it acts vertically downward 

through point C. Let AB = l = 7 metre and BC = x = 3 metre.

 Since the wall is smooth, i.e., frictionless, the reaction RA would be 

perpendicular to the wall. However, in presence of friction, the resultant of 

normal force and friction force from floor will make an angle (j) with the 

vertical such that tan j = m.

 Considering the free body of the ladder, the equilibrium condition leads to

  XÂ  = 0

  RA = FB (6.34) 

  YÂ  = 0 

  NB = W (6.35)

  MBÂ  = 0 

  RA ¥ l sin q = W ¥ x cos q (6.36)

 Further under limiting condition,

  FB = mNB (6.37)

 Combining Eqs (6.34), (6.35), (6.36) and (6.37), we have

  
Wx

l

cos

sin

q

q
 = mW which yields q = Arc tan 

x

lm

 For l = 7 m, x = 3 m and m = 0.3, q = Arc tan 
3

0 3 7. ¥  = 55°

[Note: Refer to the Fig. 6.10 (a), RB is the resultant of NB and FB]

Example 6.5  A ladder AB of length l carries a person of weight W and is 

supported by a vertical wall at A and a horizontal floor at B and makes an angle 

q with the horizontal as shown in Fig. 6.11. If the co-eff  icient of friction between 

all the mating surfaces is m, what is the location of the person along the length of 

the ladder as def  ined by the position x, for which there would not be any slippage?

Solution

1st Method: Let the weight of the person be W and let it act vertically 

downward. However, exact location of the person and hence the point of 

application of W cannot be ascertained at the very beginning.

 Since both the wall and the floor offer friction, the resultant of normal force (N ) and friction force (F) from 

the wall as well as from that of floor will make an angle (j) with the horizontal and vertical respectively as 

evident from Fig. 6.11 (a), such that tan j = m.

A

B

C

Figure 6.10

Figure 6.10 (a)

 

 

 

Figure 6.11
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 Thus RA is the resultant of NA and FA and RB is the resultant of NB and FB respectively.

 These two resultants meet at point D. Since the ladder is in equilibrium under the action of RA, RB and W, 

they must have a common point of intersection, which is D.

 Thus point C on the ladder is the unique point through which the weight of the person should act vertically 

downwards. So it is BC = x, the location of the person along the ladder from the floor end, that governs the 

equilibrium of the system.

 From the DABD, –BAD = q + j and –ABD = 90° − (q + j)

\  –BDA = 180° − (–BAD + –ABD) = 90°

 Further, AB = l and BC = x

\  sin {90° − (q + j)} = 
AD

AB

  AD = l cos (q + j)

 Again from DADE, cos j = 
AE

AD

  AE = l cos (q + j).cos j

 From the DAEC, cos q = 
AE

AD

  AC = l cos (q + j).cos j.sec q

\  BC = x = AB − AC = l [1 − cos (q + j) cos j .sec q]

2nd Method: Considering the equilibrium of the ladder,

  XÂ  = 0

  NA = FB = mNB (6.38) 

  YÂ  = 0 

  NB = W − FA = W − mNA (6.39) 

  MBÂ  = 0

  W ¥ x cos q = NA ¥ l sin q + mNA ¥ cos q = NA l [sin q + m cos q] (6.40) 

 Comparing Eqs (6.38) and (6.39), 

  NA = 
m

m

W

1 2+
 Replacing NA in Eq. (6.40),

  W ¥ x cos q = 
m

m

W

1 2+
 l[sin q + m cos q]

  x cos q (1 + m2) = l[m sin q + m2
 cos q]

  x cos q (1 + tan2 j) = l[tan j sin q + tan2 j cos q]

  x cos q ¥ 
1
2cos j

 = l 
sin

cos
sin

sin

cos
cos

j

j
q

j

j
q+

È

Î
Í

˘

˚
˙

2

2

   = l 
sin sin cos sin cos

cos

q j j j q

j

+È

Î
Í

˘

˚
˙

2

2

  x cos q = l sin j [cos j sin q + sin j cos q] = l sin j sin (q + j)

Note: This expression looks different from the expression of x obtained by 1st method. But, little bit of 

trigonometry will help achieve the same expression.

Figure 6.11 (a)
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  x cos q = l sin j sin (q + j)

 Since cos j cos (q + j) + sin j sin (q + j) = cos {j − (q + j)} = cos q

  sin j sin (q + j) = cos q − cos j cos (q + j)

 Thus x cos q = l sin j sin (q + j) = l [cos q − cos j cos (q + j)]

  x = 
l

cos q
 [cos q − cos j cos (q + j)] = l[1 − cos (q + j) cos j sec q]

Note: From the expression of x, it is evident when j = 0, i.e., in the absence of friction, x becomes zero. 

This implies without friction it is not possible to climb the ladder. Thus presence of friction is desirable in 

an attempt to climb the ladder.

Example 6.6  Determine the range of values of the weight of 

block B for which the system as shown in Fig. 6.12 would be on 

the verge of impending motion.

Solution Let the weight of the blocks A and B are WA and WB 

respectively.

 As regards to the impending motion of the system, two different 

situations may arise.

(1) When the block B slides up along the inclined plane If the 

weight of the block is less than certain minimum value (WB)min, WB 

will slide up along the plane, under the action of WA.

 Since both the blocks are tied by the string, both will experience 

common tension T, as evident from the free body diagram.

 From the free body diagram of the block B, equilibrium condition leads to

   XÂ  = 0

  WB sin q + FB = T = WA (6.41)

  YÂ  = 0

  NB = WB cos q (6.42) 

 From the condition of impending motion of block B, we have

  FB = msNB (6.43)

 Combination of Eqs (6.41), (6.42) and (6.43) yields

  WB = 
W

A

ssin cosq m q+
 = (WB)min

(2) When the block B slides down along the inclined plane If the weight of the block B is greater than 

certain maximum value (WB)max, it will slide down along the plane. This will cause block A to move up.

 Since the block B changes its direction as compared to the earlier case, the friction force will also change 

its direction.

 Proceeding as before, from the free body diagram of the block B, equilibrium condition leads to

  XÂ  = 0

  WB sin q = FB + T = FB + WA (6.44)

  YÂ  = 0 

  NB = WB cos q (6.45)

  FB = msNB (6.46)

q

  

  

Figure 6.12



 Friction 6.13

 Combination of Eqs (6.44), (6.45) and (6.46) yields 

  WB = 
W

A

ssin cosq m q-  = (WB)max

Example 6.7  Block A of mass 25 kg rests on another block B of mass 35 kg. The two blocks together 

are placed on an inclined plane that makes an angle 30° with the horizontal as shown in Fig. 6.13. Block A 

is tied by a horizontal rope that is connected to the vertical wall at C. What should be the magnitude of P 

applied on block B parallel to the inclined plane so that motion impends? Assume the co-eff  icient of friction 

for all the contiguous surfaces to be 0.3.

Solution Since two blocks are placed one over the other, 

as per Newton’s third law, there would be mutual normal 

reactions. 

 Further, the lower block B being placed over the inclined 

plane, it will also experience normal reaction from the plane.

 As regard to friction forces, the lower block B having 

two contact surfaces (the lower one with the inclined plane 

and the top one with that of block A), will be subjected to 

two different friction forces that oppose the motion.

 Free body diagram of the block A is presented in 

Fig. 6.13 (a).

  XÂ  = 0

  T cos q = WA sin q + FA = WA sin q + mNA (6.47)

  YÂ  = 0 

  T sin q = NA − WA cos q (6.48)

 Dividing Eqs (6.48) by (6.47) yields  = 
sin

cos

cos

sin

q

q

q

q m
=

-
+

N W

W N

A A

A A

 Rearranging above expression leads to

  NA = 
W

A

cos sinq m q-  (6.49)

 For block B [Refer Fig. 6.13 (b)],

  XÂ  = 0

 

 

   

 

 

Figure 6.13

Figure 6.12

  

    

  
  

     q

     q

   

  

 

   



6.14 Engineering Mechanics

  

  
  

  

       q

        q

   

  P + WB sin q = FA + FB = m(NA + NB) (6.50)

  YÂ  = 0

  WB cos q + NA = NB (6.51)

 Combining Eqs (6.50) and (6.51),

  P = m[NA + NA + WB cos q] − WB sin q

   = 2mNA − WB[sin q − m cos q]

   = 2m
W

A

[cos sin ]q m q-
 − WB[sin q − m cos q]

 Putting the values of m = 0.3, WA = 25 ¥ 9.81 N, WB = 40 ¥ 9.81 N and q = 30°

  P = 2 ¥ 0.3 ¥ 
25 9 81

30 0 3 30

¥
- ¥

.

[cos . sin ]
 − 40 ¥ 9.81[sin 30 − 0.3 ¥ cos 30] N

   = 111.26 N

Example 6.8  A 50 kg crate is placed on an inclined plane that makes an angle 15° with the horizontal as 

shown in Fig. 6.14. Assuming the co-eff icient of static friction (ms) and kinetic friction (mk) between the crate 

and the block are 0.23 and 0.17 respectively, determine the magnitude and direction of friction force offered 

by the surface on the crate for (a) P = 0, (b) P = 195 N, (c) P = 260 N (d) What is the optimum value of P 

for which the motion of the crate up along the plane is impending?
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Figure 6.14 (a) Block is sliding down, (b) Block is moving up
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Solution

(a) When P = 0.

Since the crate is placed on an inclined plane freely, it is worthwhile to investigate whether it will slide down 

along the inclined plane due to its self weight in the absence of any external force, i.e., when P = 0.

 Under this circumstance, the condition for stable equilibrium implies

 Angle of inclination of the plane (a) £ Friction Angle (js)

 Given ms = 0.23 = tan js; js = Arc tan (0.23) = 13°

 But a = 15°, which is greater than js. Hence, the crate will slide down when P = 0.

 So, the force balance along the plane considering static equilibrium will not hold true. 

 But force balance normal to the inclined plane yields N = mg cos a [Refer Fig. 6.11 (a)].

 Since the crate is under motion, the friction offered by the inclined plane is kinetic friction.

\ Friction force = Fk = mk N = mk .mg cos a = 0.17 ¥ 50 ¥ 9.81 cos 15 N = 80.53 N

 Since the crate will slide down, the friction force will act upward along the plane.

(b) When P = 195 N.

P is resolved into two mutually perpendicular components – one along the plane with a magnitude of P cos b and the 

other, perpendicular to the plane of magnitude P sin b as evident from the free body diagram [Refer Fig. 6.11 (b)].

 As before, mg sin a would also act along the plane. Since P cos b and mg sin a are directed opposite, it 

is imperative to calculate numerical values to establish the direction of friction force.

 From the given data, P cos b = 195 cos 20 N = 183.25 N and mg sin a = 50 ¥ 9.81 ¥ sin 15 N = 126.95 N. 

 Thus P cos b > mg sin a ; this implies that the crate has a tendency to go up.

 Friction force would therefore act downwards along the plane.

 Considering the static equilibrium, the force balance of the crate along the plane gives

 P cos b = mg sin a + F fi F = P cos b − mg sin a = 183.25 − 126.95 N = 56.3 N.

Note: It would be a blunder to apply Fs = msN since the block is not under the condition of impending motion. 

(d) Condition of impending motion.

The condition of impending motion leads to

  Fs = msN (6.52)

 Let the P assumes an optimum value P = Popt under this condition.

 Considering the static equilibrium of the crate,

  XÂ  = 0 

  P cos b = mg sin a + Fs (6.53)

  YÂ  = 0 

  N + P sin b = mg cos a (6.54)

 Combining Eqs (6.52), (6.53) and (6.54), we have

  P cos b = mg sin a + ms[mg cos a − P sin b]

  Popt = 
mg s

s

[sin cos ]

[cos sin ]

a m a

b m b

+
+

 = 
mg s

s

[sin tan cos ]

[cos tan sin ]

a j a

b j b

+
+

 = 
mg s

s

sin ( )

cos ( )

a j

b j

+
-

 For a = 15°, js = 13°, b = 20°, Popt = 
50 9 81 15 13

20 13

¥ +
-

. sin( )

cos( )
 N = 232 N

 Thus P should have a value of 232 N to cause motion to impend.

(c) When P = 260 N.

Since P = 260 N > Popt (232 N), the crate will slide up. Hence the crate is under kinetic friction and it will 

act downwards along the plane.
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 So, the force balance along the plane considering static equilibrium is no longer valid. However, force 

balance normal to the inclined plane yields N + p sin b = mg cos a fi N = mg cos a − P sin b

\  Friction force = Fk = mkN = mk.[mg cos a − P sin b]

   = 0.17 ¥ [50 ¥ 9.81 ¥ cos 15 − 260 ¥ sin 20] N = 65.43 N

Example 6.9  A block ABCD having height h and base width b rests on an inclined plane that makes an 

angle q with the horizontal and subjected to a force P applied at the top and parallel to the plane as shown in 

Fig. 6.15. Assuming the co-eff icient of static friction (ms) determine the maximum 
h

b
 ratio for which the block 

will slide along the plane without tipping. 

Solution The free body diagram of the block is shown in Fig. 6.15 (a).
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 Figure 6.15 Figure 6.15 (a)

 When tipping occurs, the contact between the block and the inclined plane will be only at the lower left edge.

 Thus under optimum condition, there are two forces that are held responsible for its equilibrium. These are 

P and W. P will try to produce a counter-clockwise moment with respect to A so that it can tip. On the other 

hand, W that acts at the CG of the block will produce a clockwise moment with respect to A so as to prevent 

tipping. 

 Under equilibrium, these two moments must be equal. Further, since the contact between the block and the 

plane is only at A, the normal reaction N and frictional force F necessarily will act at A.

 Thus using the conditions of equilibrium,

  XÂ  = 0

  P + W sin q = Fs = msN (6.55)

  YÂ  = 0 

  N = W cos q (6.56)

  
MBÂ  = 0 

  P ¥ h + W sin q ¥ 
h

2
 = W cos q ¥ 

b

2
 (6.57)

 Combining Eqs (6.55) and (6.56), we have 

  P = W [ms cos q − sin q] (6.58)

 Now eliminating P from Eqs (6.57) and (6.58), we have

  Wh[ms cos q − sin q] + W sin q 
h

2
 = W cos q 

b

2

  h m q q
q

s cos sin
sin

- +È
ÎÍ

˘
˚̇2
 = cos q 

b

2

  h[2ms cos q − sin q] = b cos q
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h

b
 = 

cos

cos sin tan

q

m q q m q2

1

2S S-
=

-

 Hence 
h

b

È
ÎÍ

˘
˚̇max

 = 
1

2m qS - tan

Example 6.10  A wedge block A weighing 1000 N is to be raised by another block B weighing 600 N as 

shown in Fig. 6.16. The angle of wedge for both the block is set at 20º. Determine the minimum horizontal 

force P to be applied horizontally to the block B so as to enable the block A to rise. Assume the co-eff icient 

of static friction (ms) for all the surfaces in contact to be 0.25.

Solution

1st Method: Free body diagram of both the blocks are portrayed in the 6.16 (a).

 Under the action of force P, the lower block B will be pushed towards left. Since there is a common taper 

provided on both the blocks along their surfaces of contact, A will be raised. Thus the block B will experience two 

different friction forces – one between the block and the floor and other along the contact surface with the block A.

 Similarly, block A will experience two different friction forces – one between the block and the wall and 

the other along the contact surface with the block B.

 Note that the friction force along their mutual contact surfaces will be equal but their direction will be just 

opposite to each other. 

 Further, both the blocks will be subjected to normal reactions that arise from the supports, i.e., the floor, 

wall and their common surface of contact.

Figure 6.16 Figure 6.16 (a)
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 The details of force that are acting on individual block are shown in free body diagrams. 

 Frictional forces for all the contiguous surfaces are listed f irst.

 Introducing suff ix W for wall; F for floor and AB for common contact surface, i.e., Fw = m ◊Nw; FF = m◊NF 

and FAB = m ◊NAB

 Considering the equilibrium of upper block A,

  XÂ  = 0;

  Nw − FAB cos 20° − NAB sin 20° = 0

  Nw − m ◊NAB cos 20° − NAB sin 20° = 0 (6.59)
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 This yields

  Nw = 0.5777.NAB (6.60)

  YÂ  = 0

  NAB cos 20° − mNAB sin 20° − mNw − 1000 = 0

  0.8545NAB − 0.25Nw = WA = 1000 (6.61)

 Solving Eqs (6.60) and (6.61), NAB = 1407.95 N and NW = 812.4 N

 Now considering the equilibrium of lower block B

  XÂ  = 0

  mNF + mNAB cos 20° + NAB sin 20° = P

  0.25NF = P − 812.4 (6.62)

  YÂ  = 0

  NF + mNAB sin 20° = NAB cos 20° + 600

 Substituting for NAB,

  NF = 600 + 1407.95 cos 20° − 0.25 ¥ 1407.95 sin 20° = 1802.6 N

\  P = 0.25 ¥ 1802.6 + 812.4 N = 1263.04 N. [From Eq. (6.62)]

 Thus the value of P should be at least 1263.04 N so that block A can be raised.

2nd Method: This is a graphical method based on Polygon of forces. Consider the forces acting on block A 

followed B. Once Nw is calculated, we can proceed to construct vector diagram.

  RW = N FW W
2 2+  = 1 1 0 25 811 42 2+ ◊ = + ¥ =m NW ( . ) . N 837.4 N

 Refer to Fig. 6.16 (b). Select a suitable scale to represent R
W

 by OL. While doing 

so, consider a point O from which draw a line OL with an inclination j with the 

horizontal. Thus OL is a vector to represent the magnitude and direction of RW. 

From point L, draw a vertical line LM equal to the magnitude of WA = 1000 N.

Now LM represents 1000 N.

 Since the block A is in equilibrium under the action of three forces namely WA, 

RW and RAB, they must form a closed triangle. Thus MO represents RAB.

 Since RAB is common to both the blocks, it will act on block B but its direction 

will be reversed. Thus OM represents RAB as regard to the block B. From M, draw 

a vertical line MN to represent 600 N – the weight of the block B.

 From N, we draw a horizontal line NT following the sense of P. Further from O, 

a line OT is drawn so that it makes an angle j with the vertical. NT and OT intersect 

at T. Thus NT
� ���

and TO
� ���

 represent the vectors correspond to P and RF respectively. 

Thus OLMNTO is the polygon (closed) of forces.

 Measure the length of NT and multiply it by the scale factor to express its 

magnitude in Newton.

3rd Method: This is an analytical method based on Trigonometry. Based on Fig. 6.16 (b),

from DOL¢L, OL¢ = OL cos j = RW cos j = T ¢N and LL¢ = RW sin j

\  OM¢ = L¢M = L¢L + LM = RW sin j + 1000

 Further, MN = 600 = M¢T ¢ 

\  OT ¢ = OM¢ + M¢T ¢ = RW sin j + 1000 + 600 = RW sin j + 1600

 From DOTT, tan j = 
TT

OT

¢
¢

 or TT ¢ = OT ¢ tan j

  ¢
 

 

 

 ¢j

j

j     

 

 ¢

Figure 6.16 (b)
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\ P = NT = NT ¢ + T ¢T = RW cos j + (RW sin j + 1600) tan j = 837.4 cos 14 + (837.4 sin 14 + 1600) ¥ 0.25

 P = 1263.1 N

 Thus the value of P should be at least 1263.1 N.

Note: Readers are advised to follow any techniques. Nevertheless, 2nd method (graphical) is less time 

consuming and easier. However, its accuracy depends on the scale factor and the human errors associated 

while drawing vector diagram.

Example 6.11  Two blocks having weights W1 = 

W2 = 20 N are attached by a short string and rest on an 

inclined plane as shown in Fig. 6.17. If the co-eff icient 

of friction for the blocks are m1 = 0.2 and m2 = 0.3 

respectively, f ind the angle of inclination of the plane 

for which motion impends.

Solution From the free body diagrams of block 1 

[Fig. 6.17 (a)] and considering equilibrium of block 1 

when motion impends,

  XÂ  = 0

  W1 sin a = T + F1 = T + m1N1 (6.63)

  YÂ  = 0

a

  

  

Figure 6.17

Figure 6.17 (a)

a

  
   

a

 

m  

  
  
 a

  

  
  

   
a

  
  

  
 a

  

a

m  

  

  W1 cos a = N1 (6.64)

 From Eqs (6.63) and (6.64),

  W1 sin a = T + m1W1 cos a1 (6.65)

 Similar equilibrium condition of block 2 leads to

  XÂ  = 0

  W2 sin a + T = F2 = m2N2 (6.66)

  YÂ  = 0

  W2 cos a = N2 (6.67)
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 From Eqs (6.66) and (6.67),

  W2 sin a = m2N2 − T = m2W2 cos a − T (6.68)

 Comparing Eqs (6.65) and (6.68),

  W1 sin a − m1W1 cos a = m2W2 cos a − W2 sin a

 Since W1 = W2, simplif ication of above relationship yields

  tan a = 
m m1 2

2

0 2 0 3

2
0 25

+
=

+
=

. .
.

  a = tan−1 (0.25) = 14.04°

Example 6.12  Two blocks having weights W1 = W2 = 10 N 

are attached by a flexible string and rest on a horizontal and 

an inclined plane respectively as shown in Fig. 6.18. The 

string passes over a frictionless pulley. If the co-eff icient 

of friction for both the blocks is m, prove that the angle of 

inclination of the plane should be at least twice the angle 

of friction so as to have impending motion of the system.

Solution From the free body diagram of block 1 that rests 

on inclined plane (Fig. 6.18) and considering equilibrium of 

block 1 when motion impends, we have

  XÂ  = 0

  W1 sin q = T + F1 = T + mN1 (6.69) 

  YÂ  = 0

  W1 cos q = N1 (6.70)

 From eqs (6.69) and (6.70),

  W1 sin q = T + mW1 cos q (6.71)

 From the free body diagram of block 2 that rests on horizontal plane (Fig. 6.8 (b)), we obtain

  XÂ  = 0

  T = F2 = mN2 (6.72) 

  YÂ  = 0

  W2 = N2 (6.73)

 Thus T = mW2 (6.74) 

 Eliminating T = mW2 from Eqs (6.71) and (6.74), 

  W1 sin q − mW1 cos q = mW2

Figure 6.18

N
2

N
2

2

Figure 6.18 (a)
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Since W1 = W2; sin q − m cos q = m

  sin q = (1 + cos q)m

  2 sin 
q

2
 cos 

q

2
= 2 cos2 

q

2
m

  tan 
q

2
= m = tan j

  q = 2j

 Thus inclination of plane (q) should be twice of angle of friction (j).

Example 6.13  A short right circular cylinder of weight W rests on a ‘V’ block having included angle 2a 

as shown in Fig. 6.19. If the co-eff icient of friction for the cylinder and the ‘V’ block is m, f ind the minimum 

value of applied horizontal pull force P so that motion of the cylinder impends.

 

 

 

 

 

a a

 
 

 
 

Figure 6.19 Figure 6.19 (a)

Solution From the front view of the block, Y = 0 gives

  2N sin a = W

  N = 
W

2 sin a

From the side view of the block, considering the equilibrium, we get

  P = 2F = 2 ¥ mN = 2m ¥ 
W W

2 sin sina

m

a
=

Example 6.14  A right circular cylinder of mass m = 10 kg rests on a ‘V’ block having included angle 90°. 

The ‘V’ block is now inclined by 30° with the horizontal as shown in Fig. 6.20. If the co-eff icient of friction 

between the cylinder and the ‘V’ block is m = 0.5, determine (a) the friction force F acting on each sides of 

the cylinder before the application of force P and (b) the magnitude of P so that cylinder is on the verge of 

sliding up the plane.
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"   #

 

   

Figure 6.20
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     q

Figure 6.20 (a)
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Solution

 (a) Since before application of force P, the cylinder is not under the condition of impending motion; the 

rules of limiting friction i.e. F = mN can not be applied. Under this condition the F to be calculated 

by using the condition of static equilibrium only.

  From the free body of the cylinder and considering direction along the plane as x axis;

  XÂ  = 0

  2F = mg sin q

  F = 
1

2
  mg sin q = 

1

2
 ¥ 10 ¥ 9.81 ¥ sin 30 = 24.525 N

 (b) When the P is applied so that the cylinder is about to move up along the plane; condition of limiting 

friction will hold true.

  From the front view of the cylinder;

  2 N sin a = W = mg

  N = 
mg

2 sin a
 (6.75)

  Now from the side view of the cylinder; force balance along the plane yields 

  2F ¢ + mg sin q = P (6.76)

  where F¢ is the friction force when P is applied

 The interesting fact about this problem is that N computed above is not that so as to have F¢ = mN. 

The normal reactions perpendicular to the direction of motion RN to be considered so that F¢ = mRN [refer 

Fig. 6.20 (a)]

\  2mRN + mg sin q = P (6.77)

 But RN = N cos q (6.78)

 Comparing Eqs (6.77) and (6.78)

\  2m ¥ 
mg

2 sin a
 ¥ cos q + mg sin q = P

  mg m
q

a
q¥ +

È

Î
Í

˘

˚
˙

cos

sin
sin  = P   

   P = 10 ¥ 9.81 0 5
30

45
30.

cos

sin
sin¥ +

È

Î
Í

˘

˚
˙ N = 109.12 N

 Thus the minimum value of P should be 109.12 N to enable the 

cylinder to move up along the incline.

Example 6.15  A wedge ‘A’ having weight 50 N is to be driven 

between an inclined support and a block ‘B’ of weight 1500 N as shown 

in Fig. 6.21. Determine the magnitude of the vertically applied force P 

on the wedge so as to initiate movement of the blocks. Assume that the 

co-eff icient of friction between all the contiguous surfaces to be m = 0.3.

Solution The following suff ices are introduced as given below

W for wall; F for floor and AB for common contact surface.

 Therefore Fw= m◊Nw; FF = m◊NF and FAB = m◊NAB

 Considering the equilibrium of the block ‘B’,

$  
$  

 

 

 

Figure 6.21
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  XÂ  = 0

  0.3NAB cos 75 + 0.3NF − NAB sin 75 = 0 (6.79)

  YÂ  = 0

  NF − 1500 − 0.3NAB sin 75 − NAB cos 75 = 0 (6.80)

 Solving Eqs (6.79) and (6.80),

  NAB = 621.4 N

\  FAB = mNAB = 0.3 ¥ 621.4 N = 186.4 N

 Now considering free body of the block ‘A’ and having 

  YÂ  = 0

  P + 50 = 2(621.4 cos 75 + 186.4 sin 75)

  P = 632 N

 Thus the magnitude of P should be 632 N.

Example 6.16  A block of weight W1 = 400 N rests on the horizontal surface and supports on top of it, another 

block of weight W2 = 100 N. The block W2 is attached to a vertical wall by the inclined string AB. Find the 

magnitude of the horizontal force P applied to the lower block as shown in Fig. 6.22, which will be necessary to 

cause slipping to impend. Take coefficient of static friction for all contiguous surfaces is m = 0.3.

B

3

4
q

1

A
P2

Figure 6.22

 

  

1/4   

1/4    

   

86¡

2611 O

Figure 6.21 (a)

86¡ 86¡

732/5 O

 
732/5 O

297/5 O297/5 O

 , 61

Figure 6.21 (b)



6.24 Engineering Mechanics

Solution From the geometry of the figure, one can write

tan q = 
3

4

The free body diagram of the two blocks is shown in Fig. 6.22(a). For limiting equilibrium, one can write

F1 = m1 R1 and F¢1 = mR¢1

F
1

q

R
1

Block 1 Block 2

W
1

1

F¢
1

R¢
1

P

W
1

R¢
1

F¢
2

T

Figure 6.22(a)

From the consideration of equilibrium of block 1, we obtain 

 FxÂ  = 0

or P = F1 + F¢1 (6.81)

 FyÂ  = 0

or R1 = W1 + R¢1 (6.82)

Substituting F1 = m1R1 and F¢1 = mR¢1 into Eq. (6.82), we get 

 
F1

m
 = W1 + 

¢F1

m
 (6.83)

From the consideration of equilibrium of block 2, we get 

 FxÂ  = 0

or F¢1 = T cos q

or T = 
¢F1

cos q
 (6.84)

 FyÂ  = 0

or R¢1 + T sin q = W2 (6.85)

Substituting the value of T from Eq. (6.84) into Eq. (6.85), we obtain

 
¢
+

¢F F1 1

m qcos
 ¥ sin q = W2

or F¢1 = 
W2

1

m
q+ tan

 = 
100

1

0 3

3

4.
+

 = 24.49 N

From Eq. (6.83), we have

F1 = 0.3 ¥ 400 + 24.49 = 144.49 N
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From Eq. (6.81), we obtain

P = F1 + F ¢1 = 144.49 + 24.49 = 168.98 N

Example 6.17  Two rollers – one large and another small having diameters D and d respectively are placed 

side by side on a rough floor as shown in Fig. 1. The larger roller is pulled horizontally by a force P. Assuming 

the coefficient of friction, m is same for all the contiguous surfaces, determine the necessary condition for which 

the larger roller can be pulled over the smaller one. 

 

P

  

W
F

P

N
C

1

C
2

q

N
F

 Figure 6.23 Figure 6.23(a)

Solution The forces acting on the larger roller is shown in Fig. 6.23(a). Considering equilibrium when the 

motion impends, we obtain

 XÂ  = 0

or P + F cos q = N sin q

or P + mN cos q = N sin q

or N = 
P

sin cosq m q-
 (6.86)

Further, taking moment about C1, we get

 Mc1Â  = 0

or P ¥ 
D

2
 = F ¥ 

D

2

or P = F = mN

or N = 
P

m
 (6.87)

Comparing Eqs. (6.86) and (6.87), we have

 m = sin q – m cos q fi m = 
sin

cos

q

q1 +
 

or m = 
sin

cos

q

q1 +
 (6.88)

From the geometry of the figure [6.23(a)], one can write 

 cos q = 
D d

D d

-
+
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 sin q = 1

2

-
-
+

Ê
ËÁ

ˆ
¯̃

D d

D d
 = 2 

Dd

D d+

Substituting the values of cos q and sin q into Eq. (6.23), we obtain

m = 

2

1

Dd
D d

D d

D d

+

+
-
+

 = 
d

D

The necessary condition for which the larger roller can be pulled over the smaller one is m ≥ 
d

D
. 

Example 6.18  A smooth circular cylinder of weight W and radius r is placed above two smooth semicircular 

cylinders each of radius r and weight W/2 as shown in the Fig. 6.24. Find the maximum value of distance b for 

which motion will impend. Consider m = 0.5 between the semicircular cylinders and the horizontal plane. 

A

D
W

E

b

qqB C

W/2 W/2

Figure 6.24

Solution The free body diagram of the upper cylinder is shown in Fig. 6.24(a). From the consideration of 

equilibrium of the upper cylinder and symmetrical configuration, one can write 

 RD = RE = 
W

2 sin q
 (6.89)

 

A

WR
D

R
E

 
N
B

F
B

R
D

q
W/2

 Figure 6.24(a) Figure 6.24(b)

The free body diagram of the lower left semicircular cylinder is shown in Fig. 6.24(b). Considering the 

equilibrium of the cylinder, we get

 XÂ  = 0

or FB = mNB = RD cos q (6.90)
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 YÂ  = 0

or NB = 
W

2
 + RD sin q (6.91)

Substituting the value of RD from Eqs. (6.89) into Eq. (6.91), we obtain

NB = 
W W

2 2
+

sin q
 sin q = W

Substituting m = 0.5 and NB = W into Eqs. (6.90) and (6.91), one can write

 RD cos q = mNB = 
W

2

and RD sin q = NB – 
W

2
 = W – 

W

2
 = 

W

2
 

From the above two equations, we have

tan q = 1

From the geometry of the figure (Fig. 6.24), one can write

 tan q = 

( )2
2

2

2
2

r
b

b

- Ê
ËÁ

ˆ
¯̃

or 1 = 

( )2
2

2

2
2

r
b

b

- Ê
ËÁ

ˆ
¯̃

or b = 2 2r

Example 6.19  Two ends of a heavy prismatic bar AB are supported by a circular ring in a vertical plane, as 

shown in Fig. 6.25. The length of the bar is such that it subtends an angle 90 degree in the ring. If the angle of 

friction at A and B are each f, what is the greatest angle of inclination that the bar can make with the horizontal 

in a condition of equilibrium? 

E

D
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W

f

R
B

B

R
A

A

f

C

q

Figure 6.25
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Solution The bar AB is under equilibrium under the actions of three forces W, RA and RB. Therefore, these three 

forces meet at common point D. 

Let the length of the bar AB = l. C being the mid-point of AB, AC = l/2.

It is given that –AOB = 90° and  OA = OB, therefore from DAOB, we get –OAB = –OBA = 45°

From DDAB, one can write, –DAB = 45° + f and –DBA = 45° – f.

\ –ADB = 180 – (45° + f + 45° – f) = 90°

From DAEC, AE = 
l

2
 cos q 

From DDAE, –DAE = 45° – q + f  

\ cos (45° – q + f) = 
AE

AD
 = 

l

AD

/ cos2 q

or AD = 
l / cos

cos ( )

2

45

q

q f∞ - +
 (6.92)

Again from DDAB, we obtain

 cos (45° + f) = 
AD

AB
 = 

AD

l

or AD = l cos (45° + f) (6.93)

Comparing Eqs. (6.92) and (6.93), one can write

 
l / cos

cos ( )

2

45

q

q f∞ - +
 = l cos (45° + f)

or 2 cos (45° – q + f) cos (45° + f) = cos q

Simplifying the above expression, we obtain

 cos {90 – (q – 2f)} = 0 fi sin (q – 2f) = sin 0 fi q = 2f  

or sin (q – 2f) = sin 0

or q = 2f

MULTIPLE-CHOICE QUESTIONS

 6.1 If j is the angle of friction, then the co-eff icient of friction (m) is

 (a) cos j (b) sin j (c) tan j (d) sec j
 6.2 The maximum frictional force that acts when a body is about to slide over a surface

 (a) sliding friction (b) rolling friction (c) kinetic friction (d) limiting friction

 6.3 Under static condition when motion is not impending, the friction force F is the

 (a) F < msN (b) F = msN (c) F > msN (d) unpredictable

 6.4 The coeff icient of friction depends on

 (a) strength of surface   (b) nature of surface

 (c) contact area of surface   (d) none of the above

 6.5 Strike the incorrect statement.

 (a) The magnitude of the limiting friction bears a constant ratio to the normal reaction between the 

two surfaces.
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 (b) The frictional force depends on the degree of roughness of the surface.

 (c) The frictional force depends on the surface area of contact.

 (d) The frictional force acts in a direction opposite to the impending motion of the body.

 6.6 One of the laws of kinetic friction is 

 (a) the frictional force is independent of the normal reaction.

 (b) the frictional force is always opposite to the direction of motion. 

 (c) the frictional force is constant for moderate speeds.

 (d) kinetic friction is always less than the static friction.

 6.7 The optimum inclination angle of a surface with the horizontal when a body placed on it is on the 

verge of sliding down in absence of any external force is called 

 (a) the angle of equilibrium   (b) the angle of repose

 (c) the angle of sliding   (d) the angle of friction.

 6.8 A block of 70 N is placed on a horizontal plane. A pull force of P is applied at an angle q with the 

horizontal. The magnitude of P will be minimum when 

 (a) q < j (b) q = j (c) q > j (d) q = 0

 6.9 A block of 40 N is placed on a horizontal plane having m = 0.4. A pull force of P is applied at an 

angle q with the horizontal. The minimum value of P will be

 (a) 10.86 N (b) 12.37 N (c) 14.85 N (d) 20 N

 6.10 A body of weight W is kept on a rough inclined plane having an angle q with the horizontal. The 

minimum force P required to be applied parallel to the plane to slide the body up is

 (a) 
W sin ( )

cos

q j

j

-
 (b) 

W sin ( )

sin

q j

j

+
 (c) 

W cos ( )

sin

q j

j

+
 (d) 

W sin ( )

cos

q j

j

+

 6.11 For a particular surface,

 (a) μs < μk (b) μs = μk (c) μs > μk (d) none of the above

SHORT ANSWER TYPE QUESTIONS

 6.1 What is friction? Where does it come from? Is it desirable or not?

 6.2 Explain the physics behind friction.

 6.3 Classify friction and explain its concept.

 6.4 Give some application examples where friction is desirable.

 6.5 Plot friction versus applied force and explain its nature.

 6.6 What is meant be angle of friction and coeff icient of friction? What are the parameters that influence 

its value?

 6.7 Write the laws of friction.

 6.8 What is meant by angle of repose? What should be its value for a particular surface?

 6.9 Explain cone of friction.

 6.10 What is meant by limiting value of static friction? 

 6.11 “Force required to maintain motion of a body is lesser than that to initiate movement” – Justify the 

statement with reasons.

 6.12 Derive an expression for the force P that is required to slide a body of weight W up along an inclined 

plane when P is applied horizontally. Assume inclination of the plane with the horizontal is q and angle 

of friction is j.
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NUMERICAL PROBLEMS

 6.1 An inclined force P is applied to a block resting on a rough floor as shown in the Fig. 6.26. The 

inclination of the force is q with the horizontal. For P to be least, prove that q = j, where j is the 

angle of friction between the block and the floor.

Figure 6.26

 6.2 A uniform ladder weighting 28 N rests against a smooth vertical wall with its lower end 5 cm from the 

wall. The friction co-eff icient between the ladder and the floor is 0.32. The inclination of the ladder is 

25° with the vertical. Show that the ladder remains in equilibrium in this position.

 6.3 A body of certain weight is placed on an inclined plane that is inclined 

at angle q with the horizontal. Prove that when q = j, the angle of 

friction, the sliding of the body down the plane impends.

 6.4 A block weighing 900 N is held on an inclined plane by a horizontal 

force of 1500 N as shown in Fig. 6.27 is the block in equilibrium? 

The co-eff icient of static friction is 0.3.

 6.5 A block of weight 800 N is held on an inclined plane by a force P 

applied to it at angle of 40° with the plane as shown in Fig. 6.28. 

The angle of friction between the plane and the body is 15°. Find 

the minimum value of P when the motion of the block is impeding 

(a) up the plane. (b) down the plane.

 6.6 A 100 kg block is on an inclined plane of 30° as shown in Fig. 6.29. The coeff icient of static friction 

between the block and the plane is 0.4. Determine the range of m for which the system will be in 

equilibrium.

Figure 6.28 Figure 6.29

30°

800 N

1500 N

40°

P

30°

50 kg

n

30°

900 N

1500 N

Figure 6.27
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 6.7 Figure 6.30 shows a braking system to stop the rotation of drum. If a moment M is applied on the 

drum, f ind out the force P to keep the drum in equilibrium.

 6.8 An equivalent uniform triangular lamina ABC rests vertically with the corner A on a rough horizontal 

floor and the corner B against a smooth vertical wall as shown in Fig. 6.31. Show that the least inclination 

q of the side AB with the horizontal is given by cot q = 
1

3
 + 2m, where m is the coeff icient of friction 

at the floor.

Figure 6.30
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b
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Q

Figure 6.31
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 6.9 A solid right circular cone of height h and base radius r rests on an inclined plane that makes an 

angle q with the horizontal and subjected to a force P applied at the top and parallel to the plane as 

shown in Fig. 6.32. Assuming the coeff icient of static friction (ms), determine the maximum 
h

r
 ratio 

for which the cone will slide along the plane without tipping.

 6.10 A wedge block weighing 500 N is to be lifted along the wall by applying a force P horizontally to 

another small wedge as shown in Fig. 6.33. The coeff icient of friction between all surfaces of contact 

is 0.35. Determine the magnitude of the force P required that can enable the wedge to move.

q

Q

21¡
Q

Figure 6.32 Figure 6.33

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 6.1 (c) 6.4 (b) 6.7 (b) 6.10 (d)

 6.2 (d) 6.5 (c) 6.8 (b) 6.11 (c)

 6.3 (a) 6.6 (d) 6.9 (c)
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ANSWERS TO NUMERICAL PROBLEMS

 6.4 No. 6.6 7.68 kg £ m £ 42.32 kg  6.9 
h

r
s

=
-

1

2
3

2
m qtan

 6.5 (a) 625 N (b) 335 N 6.7 Ma

bRm
 6.10 1133.5 N
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Moment of Inertia

 7.1 INTRODUCTION

In chapter 5, we have discussed the procedures to calculate centroid and centre of gravity of regular geometrical 

entities which either conform to basic geometrical primitives (those that can be defined mathematically) or 

composition of more than one such primitives that are called composites. This computation is fundamentally 

the identification of a point where the entire body force is assumed to be concentrated, i. e., the location of 

the resultant of the distributed gravity force. A close look at the pertinent equations shows that these involve 

a term which is the integration of the product of the infinitesimal small area and its distance from a reference 

axis [ yc ¥ A = Úy.dA or xc ¥ A = Úx.dA].

 Although this expression is the simplified form that manifests presence of only the geometrical parameters, 

original expression is based on the moment of the distributed gravity force with respect to an axis, following 

Varignon’s Theorem. Nevertheless, there are ample occasions when the force is found to be a linear function 

of aforesaid distance and hence moment equation of such forces generically can be computed by an expression 

which is the integration of the product of the infinitesimal small area and square of its distance from a reference 

axis. Mathematically, such expression is in the form Ú y2.dA or Ú x2.dA. This integral is called Moment of 

Inertia of the plane figures with respect to an axis in its plane. In mechanics, there are plenty of situations 

which are quite often encountered that involve above integrals and hence a detailed study of these integrations 

is found to be useful to realise the merits of computations. Stresses in beams, deflection of beams, buckling 

of columns, and torsion of shafts are few such areas, where the moment of inertia appears quite significantly.

 It is, however, worth mentioning that apart from mathematical computations, moment of inertia hardly has 

any physical interpretation whatsoever.

 7.2  DEFINITION OF MOMENT OF INERTIA WITH RESPECT TO AN AXIS 
IN ITS PLANE

Consider an area A in the x–y plane as shown in Fig. 7.1. Let dA be any element of the area at a distance 

(x, y) from the axes.

 The moment of inertia of the area A with respect to the x axis Ix = Ú y2dA (7.1)

 The moment of inertia of the area A with respect to the y axis Iy = Ú x2dA (7.2)

 The moment of inertia of the area A is also called the second moment of the area.

 The moment of inertia of an area = (Area) ¥ (Distance)2 = (Length)4

 Thus, in SI system, the moment of inertia has unit of m4.

CHAPTER
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7.2.1 Polar Moment of Inertia

The moment of inertia of an area with respect to an axis perpendicular to the x–y plane (z axis) and passing 

through a point “O” is called the polar moment of inertia and is denoted by Jo.

  Jo = Iz = Ú r2dA (7.3)

 From the above figure, x2 + y2 = r2

 It therefore follows that Jo = Ú r2dA = Ú (x2 + y2)dA = Ix + Iy

  Jo = Ix + Iy (7.4)

7.2.2 Radius of Gyration

Consider an area A which has a moment of inertia Ix with respect to x axis.

 Let us imagine this area A to be concentrated into a thin strip parallel to the x axis. If this area A (concentrated 

strip) is to have the same moment of inertia (Ix) with respect to the x axis, the strip should be placed at a 

distance kx from the x axis, as given by the relation

  Ix = kx
2A

  kx =
I

A

x
 (7.5)

kx is known as the radius of gyration of the area with respect to the x axis and has the unit of length.

 Radius of gyration with respect to the y axis,

  ky =
I

A

y
 (7.6)

 Radius of gyration with respect to the polar axis,

  ko =
J

A

o
 (7.7)

  Jo = Ix + Iy

  ko
2A = kx

2A + ky
2A

  ko
2 = kx

2 + ky
2 (7.8)

Figure 7.1
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 7.3 PARALLEL AXIS THEOREM

Let x, y be the rectangular coordinate axes through any point O in the plane of the figure of area A as shown 

in Fig. 7.2.

xc, yc be the corresponding parallel axes through the centroid C of the area. The axes through the centroid of 

an area are also called the centroidal axes.

 The moment of inertia of the area A about the x axis is 

Ix = Ú y2dA, where dA is an element of area at a distance y 

from xc axis.

 Therefore, the distance of the element from x axis now 

becomes y + dx, dx being the perpendicular distance between 

axes x and xc.

\  Ix = Ú (y + dx)
2 dA = Ú (y2 + 2ydx + dx

2)dA

   = Ú y2dA + 2dx ÚydA + Ú dx
2dA = Úy2dA + 2dx.0 +

 Údx
2dA = Ú y2dA + Údx

2dA

 The term Ú y2dA represents the moment of inertia of the 

area A about the axis xc and the term Ú y2dA represents the 

first moment of the area A about its own centroidal axis xc.

  Ix = Ixc + Adx
2 (7.9)

 Similarly,

  Iy = Iyc + Ady
2 (7.10)

  Ix + Iy = Ixc + Iyc + A(dx
2 + dy

2)

 The polar moment of inertia now becomes

  Jo = Ix + Iy = Joc + Ad2 (7.11)

Example 7.1  Determine the moment of inertia of a rectangle of base b and height h with respect to its 

centroidal axes as shown in Fig. 7.3. Also find its moment of inertia about its base.

Solution The centroid of rectangular area is at C. Centroidal 

axes, xc – yc is shown in Fig. 7.3.

 Consider an element of thickness dy situated at a distance y 

from the xc axis.

 Area of the element dA = bdy

 Moment of inertia of the elemental area about xc axis is 

dIxc = y2bdy

 Moment of inertia of the rectangular cross-section about xc 

axis is

  Ixc = Ú dIxc = y bdy
h

h

2

2

2

-

Ú  = b
y

h

h
3

2

2

3

È

Î
Í

˘

˚
˙

-

 = 
bh3

12

Figure 7.2

y
yc

xc

x
O

d

dy

dA
y

x

dx

C

Figure 7.3

yc

y

d
y

y

xc

x

h
/2

h
/2

b

C

O
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 Similarly, moment of inertia about yc axis is

  Iyc = 
hb3

12

Moment of inertia with respect to base

The time elemental area remains same. But since the axes are modified, the limits of integration will change.

 Thus Ix = ÚdIx = 
0

h

Ú y2bdy = b
y

h
3

0
3

È

Î
Í

˘

˚
˙  = 

bh3

3

 The same result can be obtained by using parallel axis theorem. 

 By definition; Ix = Ixc + A
h

2

2
Ê
ËÁ

ˆ
¯̃ , where 

h

2
 is the perpendicular distance of the centroid from the base.

\  Ix = 
bh3

12
 + bh

h

2

2
Ê
ËÁ

ˆ
¯̃  = 

bh3

3

Example 7.2  Find the moment of inertia of a triangle of base b and height h with respect to its base.

Figure 7.4

Solution Choose x axis to coincide with the base as shown in Fig. 7.4.

 Consider an element of thickness dy at a distance y from the x axis.

 Area of the element dA = b¢dy

 From similar triangles, we get 
¢b

b
 = 

h y

h

-
 or b¢ = b

h y

h

-

 Thus area of the elemental strip becomes dA = b¢.dy = 
b

h
(h – y)dy

 Moment of inertia of the elemental area about x axis is dIx = y2dA = y2b 
h y

h

-
 dy

 Moment of inertia of the triangular cross-section about x axis is

  Ix = Ú dIx = 
0

h

Ú y2b 
h y

h

-
 dy = 

b

h

h

0

Ú (hy2 – y3)dy = 
b

h
h

y y
h

3 4

0
3 4

-
È

Î
Í

˘

˚
˙  = 

bh3

12
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Example 7.3  Determine the moments of inertia of a circular area of diameter D about the centroidal axes. 

Also calculate its polar moment of inertia and radius of gyration.

Figure 7.5

Solution The centroid of circular area is its centre. Centroidal axes x–y are shown in Fig. 7.5.

 Consider an element of thickness dr having an included angle dq situated at a radius r and angle q from 

the x axis.

 Area of the element dA = rdqdr

 Moment of inertia of the elemental area about x axis

  dIx = (r sin q)2 rdqdr

 Moment of inertia of the circular area about x axis

  Ix = Ú dIx = 

q

q p

=

=

=

=

ÚÚ
0

2

0r

r R

(r sin q)2rdqdr = 

q

q p

=

=

=

=

ÚÚ
0

2

0r

r R

r3sin2 qdqdr = 

q

q p

=

=

=

=

ÚÚ
0

2

0r

r R

r3 1 2

2

- cos q dqdr

   = 

r

r R

=

=

Ú
0

r3 1

2
[2p – 0]dr = p

r

r R

=

=

Ú
0

r3dr = 
pR4

4
 = 

pD4

64

 Because of symmetry of circular area, Ix = Iy

 Since Jo = Ix + Iy

  Jo = 2Ix = 2Iy = 2 ¥ 
pD4

64
 = 

pD4

32

 However, polar moment of inertia can also be computed directly.

 By definition, radius of gyration is 

  kx = I

A

x  = 

p

p

D

D

4

2
64

4

 = D

4
 = ky and ko = k kx y

2 2+  = kx ¥ 2  = 
D

4
 ¥ 2  = 

D

2 2
.
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Example 7.4  Determine the moment of inertia of a hollow circular section about its centroidal axes.

Solution This problem is similar to that of Example 7.3.

 The limits of r will be from 
Di

2
 to 

D0

2

Example 7.5  Determine the polar moment of inertia of the shaded 

area with respect to the point O as shown in Fig. 7.6.

Solution The shaded area can be considered as subtraction of quarter 

circle OAB of radius r from the square OACB of sides r.

 Using previous results, the polar moment of inertia of the square is 

Jo = 2Ix = 2Iy = 2
r4

3
 and the for one quarter circle it is J ¢o = 

1

4
 ¥ 

pr4

2
 =

pr4

8
.

 Thus the requisite polar moment of inertia for the shaded 

area is

  Jo – J ¢o = 
2

3
 r4 – 

p

8
 r4 = 0.274r4

Example 7.6  Determine the moment of inertia of the 

shaded area with respect to the point O as shown in Fig. 7.7.

Solution The hatch area can be obtained by the following 

relationship.

  Hatch area = Area of the triangle ABC + Area of the

   semicircle (with a 80 mm diameter) –

   Area of the hole (with a 40 mm diameter).

 Let us denote these geometrical entities by suffices 1, 2 

and 3 respectively.

Thus Ix1 = 
1

12
bh3 = 

1

12
 ¥ 80 ¥ 803 mm4 = 3413333.3 mm4

  Ix2 =  1

2
¥ pd4

64
 = 

p

128
 ¥ 804 mm4 = 1005309.6 mm4 and

  Ix3 = 
p ¢d 4

64
 = 

p

64
 ¥ 404 mm4 = 125663.7 mm4

 Therefore the moment of inertia for the shaded area is

  Ix = Ix1 + Ix2 – Ix3 = 3413333.3 + 1005309.6 – 125663.7 mm4 = 429.3 cm4

Example 7.7  Determine the moment of inertia of the angle with respect to a centroidal axis parallel to 

the x axis as shown in Fig. 7.8.

Solution The angle can be decomposed to two rectangles – one is ABCF and the other is OFDE.

 All the attributes of these two rectangles are denoted by suffices 1 and 2.

 Thus A1 = 90 ¥ 10 mm2 = 900 mm2 and A2 = 100 ¥ 10 mm2 = 1000 mm2.

Figure 7.6

C

B

A

x

y

O
r

Figure 7.7

f
4
0
m
m

A

y

C

8
0
m
m

40 mm 40 mm

BO
x
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\  Ix1 = bh3

3
 = 90 10

3

3¥  mm4 = 30000 mm4 and Ix2 = 10 100

3

3¥  mm4 = 3333333.33 mm4

 The y coordinate of the centroid of the composite is

  yc = 
A y A y

A A

1 1 2 2

1 2

+

+
 = 

900 5

900

× +1000×50

+1000
 mm = 28.68 mm

 The moment of inertia of the composite with respect to the base would be

  I xi

i=
Â

1

2

 = Ix1 + Ix2 = 30000 + 3333333.33 mm4 = 3363333.33 mm4

 Now by using parallel axes theorem; Ixc = I xi

i=
Â

1

2

 – dx
2

Ai

i=
Â

1

2

  Ixc = 3363333.33 – 28.682[900 + 1000] mm4 = 1800502.77 mm4

Example 7.8  Determine the moment of inertia of the “T” section with respect to a centroidal axis parallel 

to the x axis as shown in Fig. 7.9. Consider all the dimensions are in mm.

10 mm

y

E D

C

O A

B

1
0
0
m
m

1
0
m
m

y
c

x
F

100 mm

Figure 7.8

Figure 7.9

y

O
150

50

1
0
0

5
0

G

F

D

E
C

y
c

x

H

A B

Solution For composites, it is imperative to calculate various parameters of the individual areas into which the 

entire composite is decomposed and present these in a tabular form to improve legibility and to reduce errors.
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 Thus by using parallel axes theorem, Ixc = I xi

i=
Â

1

2

 – dx
2

Ai

i=
Â

1

2

  Ixc = 60420000 – 552 ¥ 12500 mm4 = 22607500 mm4

 7.4 PRODUCT OF INERTIA

Consider a plane figure of area A in the x–y plane as shown in Fig. 7.1.

 The product of moment of inertia is computed by multiplying the infinitesimal small area with it’s coordinates 

and integrating the product over the entire area.

 Thus by definition, the integral Ixy = Ú xydA is known as the product of moment of inertia.

 There are few interesting features of product moment of inertia that need to be discussed. 

 Although the moments of inertia Ix and Iy are always positive for positive areas (a void, hole or area removed 

is a negative area), the product of inertia Ixy for a positive area may be either positive or negative since any 

one of x or y, having negative values, will yield negative Ixy. 

 Another interesting characteristic of product of moment of inertia is that it may have a zero value also. 

When either one or both of the x and y axes are treated as axes of symmetry, Ixy can be zero. This implies 

that either x or y axis divides the given area into two identical areas so that one is treated as mirror image of 

the other. Under this situation, x and y value will have negative signs so that the product moment of inertia of 

the entire area is the sum of product moment of inertia of two equal areas having exactly equal and opposite 

magnitudes so that their combined effect becomes zero.

 The product of moment of inertia also varies with the change in reference systems. If the reference 

system xc – C – yc is considered parallel to that of x – O – y such that distance between two horizontal 

and vertical axes are dx and dy respectively [Refer Fig. 7.2], then by using the parallel axes theorem,

we get

  Ixy = Ú (x + dx) (y + dy)dA = Ú xydA + dx Ú ydA + dy Ú xdA + dxdy Ú dA

 Since C is the centroid of the plane figure, the 2nd and 3rd term becomes zero.

 Thus above relation reduces to

  Ixy = Ú xydA + dxdy Ú dA = (Ixy)c + Adxdy (7.12)

 This expression is extremely useful to the solution of the product of moment of inertia of the composites.

 Following the previous problem,

 Identification Area (A) Ixi y

 ABCD A1 = 150 ¥ 50 = 7500 Ix1 = 
150 50

3

3¥
 = 6250000 y1 = 25

 EFGH A2 = 100 ¥ 50 = 5000 Ix2 = 
50 100

12

3¥
 + 5000 ¥ 1002 = 54170000 y2 = 50 + 50 = 100

 Composite A1 + A2 = 12500 I xi

i=
Â

1

2

 Ix1 + Ix2 = 60420000 yc = 55
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 7.5 PRINCIPAL AXES AND PRINCIPAL MOMENT OF INERTIA

From the very definition of the product of inertia, it 

can be concluded that Ixy may have negative value, 

since it is the product of two different coordinates. 

Further, if the reference axes are rotated by a definite 

angle, it may have a zero value. The reference 

coordinate system for which the product moment of 

inertia of an area diminishes is called principle axes. 

The two principal axes are perpendicular to each other 

and are such that the product of inertia of the given 

area with respect to these axes is zero.

 Consider a plane figure of area A. Let the moments 

of inertia Ix, Iy and the product of inertia Ixy with 

respect to the axes x and y passing through any point 

O are known.

 Let the axes be rotated anticlockwise about O by an angle q to new position x¢ and y¢ as shown in

Fig. 7.10.

  x¢ = OA¢ = OC + CA¢ = OA cos q + AC¢ = OA cos q + PA sin q = x cos q + y sin q (7.13)

  y¢ = OB¢ = PA¢ = PC¢ – A¢C¢ = PA cos q – AC = PA cos q – OA sin q = y cos q – x sin q (7.14)

 Thus Ix¢ = Ú (y cos q – x sin q)2dA = Ú y2 cos2 qdA + Ú x2 sin2 dA – Ú 2xy sin q cos qdA

   = cos2 q.Ix + sin2 q.Iy – sin 2q.Ixy  (7.15)

 Since cos2 q = 
1

2
(1 + cos 2q) and sin2 q = 

1

2
(1 – cos 2q)

  Ix¢ = 
1

2
(1 + cos 2q).Ix + 

1

2
(1 – cos 2q).Iy – sin 2q.Ixy

 Rearranging,

  Ix¢ = 
I Ix y+

2
 + 

I Ix y-

2
 cos 2q – Ixy sin 2q (7.16)

 Similarly, Iy¢ = Ú (x cos q + y sin q)2dA = Ú x2 cos2 qdA + Ú y2 sin2 dA + Ú 2xy sin q cos qdA

   = cos2 q.Iy + sin2 q.Ix + sin 2q.Ixy  (7.17)

  Iy¢ = 
I Ix y+

2
 – 

I Ix y-

2
 cos 2q + Ixy sin 2q (7.18)

 Adding Eqs (7.16) and (7.18),

  Ix¢ + Iy¢ = Ix + Iy

 This implies in view of rotation of the axes (reference system), the sum of moments of inertia remains 

constant.

 Subtracting Eq. (7.18) from Eq. (7.16).

  Ix¢ – Iy¢ = (cos2 q – sin2 q)Ix – (cos2 q – sin2 q)Iy – 2 sin 2q Ixy = (Ix – Iy) cos 2q – 2 sin 2qIxy (7.19)

B

y ¢ y

P
dA

q

q

q

C¢

A
x

x ¢

C

B¢

O

Figure 7.10
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 The product moment of inertia with respect to new axes is

  Ix¢y¢ = Ú (x cos q + y sin q)(y cos q – x sin q)dA

   = Ú xy cos2 qdA + Ú y2 sin q cos qdA – Ú x2 sin q cos qdA – Ú xy sin2 qdA

   = 1

2
(Ix – Iy) sin 2q + Ixy cos 2q  (7.20)

 If x¢–y¢ is considered as principle axes then by definition, Ix¢y¢ = 0

\  
1

2
(Ix – Iy) sin 2q + Ixy cos 2q = 0

  tan 2q = 
2I

I I

xy

y x-
 (7.21)

Example 7.9  Determine the product moment of inertia of the rectangle with respect to x and y axis that 

coincides with two adjacent sides of the rectangle.

Solution By definition, Ixy = Ú xydA = b
h

2
0

Ú .y.bdy = 
b2

2
ydy

h

0

Ú ydy = b y
h

2 2

0
2 2

È

Î
Í

˘

˚
˙  = b h2 2

4

Example 7.10  Determine the product moment of inertia of the shaded spandrel area as shown in Fig. 7.6.

Solution By using the result of Example 7.9, we have (Ixy)1 = 
r4

4 Now

  (Ixy)2 = Ú xydA = 

00

2 R

ÚÚ

p

(r cos q).(r sin q).(rdq)dr =R4

0

2

4

2

2

sin q

p

Ú  dq = R4

8
 ¥ -1

2
2 0

2[cos ]q

p

   = 
-R4

16
[cos p – cos 0] = 

-R4

16
[–1 – 1] = 

R4

8

 Therefore the product moment of inertia of the shaded spandrel area is

  (Ixy)Com = (Ixy)1 – (Ixy)2 = 
R4

4
 – 

R4

8
= 

R4

8

Example 7.11  Determine the product moment of inertia of the “L” section as shown in Fig. 7.11.

Solution The given L section is divided into two rectangles as shown

  (Ixy)1 = 
80 10

4

2 2¥
 mm4 = 160000 mm4

  (Ixy)2 = 10 ¥ 70 ¥ 
10

2

2

 + 
70 10

4

2 2¥
mm4 = 157500 mm4

  (Ixy)Com = (Ixy)1 + (Ixy)2 = 160000 + 157500 mm4 = 317500 mm4
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Example 7.12  Referring to Fig. 7.12, find the relation between r and h so that x and y will be principle 

axes for the composite area.

Solution The given composite is divided into one triangle having base h and height 2r and a semicircle of 

radius r. Let us denote them as 1 and 2.

\  (Ixy)1 = 
h r2 22

24

¥ ( )
 = 

h r2 2

6

 Since the centre of the semicircle does not coincide with the origin O, it is imperative to use parallel axes 

theorem.

 Thus (Ixy)2 = (Ixy)2c + Adxdy = 0 + 
1

2
 ¥ pr2 ¥ r ¥ 

-Ê
ËÁ

ˆ
¯̃

4

3

r

p
 = –

2

3
r4

Note: The semicircle being symmetrical with respect to xc axis, (Ixy)2c = 0.

 Therefore, product moment of inertia of the composite is

  (Ixy)Com = (Ixy)1 + (Ixy)2 = 
h r2 2

6
 – 

2

3
r4

 When x and y will be principle axes for the composite area, its product moment of inertia will be zero, 

implying (Ixy)Com = 
h r2 2

6
 

2

3
 r4 = 0

  
h r2 2

6
 =

2

3

4r

  h = 2r

 Thus the required relationship is h = 2r.

Note: The readers are advised to compute the product moment of inertia of a triangle from the basics.

10 mm

y

O

8
0

m
m

1
0

m
m

y
c

x

2

1

80 mm

Figure 7.11

r

h

x

y

O

Figure 7.12
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Example 7.13  Referring to Fig. 7.13, find the angle q that will define the principle axes through point O 

for the right-angled triangle having base b = 30 mm and height h = 40 mm.

Solution For the triangle Ix = 
1

12
bh3; Iy = 

1

12
b3h and Ixy = 

1

24
b2h2

 The necessary condition for present (rotated) axes will be principle axes if

  tan 2q = 
2I

I I

xy

y x-
 = 

2
1

24
1

12

1

12

2 2

3 3

¥

-

b h

b h bh

 = 
b h

bh b h

2 2

2 2¥ -( )
 = 

bh

b h2 2-

   = 
40 30

30 402 2

¥
-

 = –1.714

  2q = tan–1 (–1.714) = –59.74; 120.256

  q = –29°52¢; 60°7¢
 Thus considering q being positive; q = 60°7¢

 7.6 MASS MOMENT OF INERTIA

The mass moment of inertia of a body about an axis is defined as the product of the mass and the square of the 

distance between the mass centre of the body and the axis, with respect to which it is computed. 

 Consider a body of mass m. The moment of inertia of the body with respect to the axis OO¢ is defined by 

integral

  I = Ú r2dm  (7.22)

where dm is the mass of the element of the body situated at a distance r from the axis OO¢ and the integration 

is extended over the entire volume of the body.

 From the above definition, it follows that the mass moment of inertia of a body has the dimension of 

mass ¥ (length)2

 The radius of gyration k of the body with respect to the axis is expressed by the relation 

  I = k2m

  k = 
I

m
  (7.23)

 The radius of gyration gives the measurement of the distance of a point from the axis at which the entire 

mass is assumed to be concentrated.

 Following the parallel axes theorem,

  Ix = Ixc + md2  (7.24)

Example 7.14  Determine the mass moment of inertia of a 

uniform slender rod of length l about its centroidal axis normal 

to its length. 

Solution Refer to the Fig. 7.14, and let us consider a small

length element dx located at a distance x from the centroidal axes 

CC ¢.

Figure 7.13

h
=
4
0

b = 30

x

y

O

Figure 7.14

O C

O C

1/2 1/2

x
dx
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 Thus the mass of this elemental length is dM = m.dx., where m is the mass per unit length.

 Therefore, mass moment of inertia of the entire rod about the axis CC¢ is 
-
Ú
1

2

1

2

x2.m.dx = m ¥ 
1

3

3
1

2

1

2[ ]x -  =

m
l l ml ml l Ml1

3 8 8 12 12 12

3 3 3 2 2

+
È

Î
Í

˘

˚
˙ = = =

( )
.

Example 7.15  Determine the mass moment of inertia of a solid right circular cone of base radius R and 

height h about its own axis.

Solution Refer to Fig. 7.15; let us consider a small elecmental thin disk of radius r and thickness dz located 

at a distance z from the base.

Then

 
r

h z

h
R=

-Ê
ËÁ

ˆ
¯̃

Thus the mass of this elemental length is dm = rpr2dz, where, r is the density.

 
\ = =

-Ê
ËÁ

ˆ
¯̃

dm r dz
h z

h
R dzrp rp2

2
2

Since the mass moment of inertia of a thin circular disk = 
1

2

2¥ ¥mass radius

It therefore follows that

 

dI
h z

h
R

h z

h
R dz

R

h
h z dz

I

z

z

= ¥
-Ê

ËÁ
ˆ
¯̃

¥
-Ê

ËÁ
ˆ
¯̃

= -

\

1
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1

2

2
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== - =Ú
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Fig. 7.15
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But mass of the cone is M
R h

=
rp 2

3

Hence I MRz =
3

10

2.

MULTIPLE-CHOICE QUESTIONS

 7.1 Moment of inertia is called

 (a) first moment of the area   (b) second moment of the area

 (c) third moment of the area  (d) none of the above

 7.2 Moment of inertia of a rectangle with respect to its base having base b and height h is

 (a) 
1

3
b2h2 (b) 

1

3
b3h (c) 

1

3
bh3 (d) 

1

12
b2h2

 7.3 Moment of inertia of a rectangle with respect to its centroidal axis parallel to its base having base b 

and height h is

 (a) 
1

3
bh3 (b) 

1

3
b3h (c) 

1

12
bh3 (d) 

1

12
b2h2 

 7.4 Moment of inertia of a circular area of diameter d about an axis perpendicular to the area and passing 

through its center is given by

 (a) 
pd4

16
 (b) 

pd4

32
 (c) 

pd4

64
 (d) 

pd4

128

 7.5 Moment of inertia of a triangle with respect to its base having base b and height h is

 (a) 
1

3
bh3 (b) 

1

3
b3h (c) 

1

12
bh3 (d) 

1

12
b2h2 

 7.6 The polar moment of inertia of a square of sides a with respect to its centroid is

 (a) 
1

3
a4 (b) 

1

4
a4 (c) 

1

6
a4 (d) 

1

12
a4 

 7.7 The polar moment of inertia of a one quarter circular sector of radius r with respect to its centre is

 (a) 
pr4

2
 (b) 

pr4

4
 (c) 

pr4

8
 (d) 

pr4

16

 7.8 The moment of inertia of an ellipse with respect to x axis having semi-major and semi-minor axis as 

a and b respectively is

 (a) Ix = 
pab3

2
 (b) Ix = 

pab3

3
 (c) Ix = 

pab3

4
 (d) Ix = 

pab3

8

 7.9 The product of moment of inertia of a geometrical figure which is symmetrical about one or both the 

axes is

 (a) maximum (b) minimum (c) zero (d) unpredictable

 7.10 The axes system for which product of moment of inertia of a geometrical figure is zero is called

 (a) principle axes (b) major axes (c) minor axes (d) none of the above
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 7.11 The moment of inertia of a circular area of diameter d about an axis perpendicular to the area as 

compared to its moment of inertia with respect to a horizontal axis, when the origin coincides with 

the geometrical centre is 

 (a) same (b) double (c) half (d) one-third

 7.12 As per parallel axes theorem, axial moment of inertia (Ix) is related with centroidal moment of inertia 

(Ix)c by the following relationships.

 (a) Ix = Ixc + A.dx
2   (b) Ix = Ixc – A.dx

2

 (c) any one of the above   (d) none of the above

 7.13 The radius of gyration of a circular area of diameter d about x-axis and passing through its centre is 

given by

 (a) 
d

2
 (b) 

d

4
 (c) 

d

8
 (d) 

d

16

SHORT ANSWER TYPE QUESTIONS

 7.1 What is moment of inertia? What is its unit? Can it be negative?

 7.2 What is meant by polar moment of inertia? What is radius of gyration? What is its unit?

 7.3 Does moment of inertia have any physical significance? Justify it.

 7.4 State and prove parallel axes theorem.

 7.5 What is the product of moment of inertia? Can it be negative or zero?

 7.6 Derive an expression for moment of inertia when reference axes system is rotated by an angle f in 

anti-clockwise direction.

 7.7 Prove that sum of axial moments of inertia always remains constant.

 7.8 What is principle axes and principle moment of inertia? Derive an expression for angle f for which, 

the present axes can be regarded as principle axes.

 7.9 What is mass moment of inertia?

 7.10 Prove that JO = Ix + Iy. Validate the same for a circle.

NUMERICAL PROBLEMS

 7.1 Find the moment of inertia of the parallelogram as shown in Fig. 7.16 with respect to its base.

 7.2 Find the moment of inertia of a triangle of base b and height h with respect to an axis that passes 

through its vertex and parallel to its.

 7.3 Find the moment of inertia of a square of sides a with respect to 

its diagonal by using the concept of rotation of the axes system.

 7.4 Determine the polar moment of inertia of an isosceles triangle 

having base b and height h with respect to is vertex.

 7.5 Calculate the polar moment of inertia of a circular sector of radius r 

and included angle q with respect to its centre.

 7.6 Determine the moment of inertia of the “I” section as shown in 

Fig. 7.17.

 7.7 Determine the axial and polar moment of inertia of an ellipse having 

semi-major and semi-minor axes as a and b respectively, as shown 

in Fig. 7.18. Figure 7.16

y

yc

xc

x
bO

C

h
/2

h
/2
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 7.8 Calculate the axial moment of inertia Ix, for the channel about a centroidal 

axis that runs parallel to its base, as shown in Fig. 7.19. All the dimensions 

are in mm. 

 7.9 Calculate the product of moment of inertia Ixy of a three-quarter circular 

sector of radius r as shown in Fig. 7.20.

 7.10 Calculate the product of moment of inertia Ixy for the angle section as 

shown in Fig. 7.21.

 7.11 Calculate the moment of inertia of a solid sphere of radius R about its 

diametral axis.

 7.12 Prove that the moment of inertia of a rectangle having dimensions a and 

b with respect to a diagonal is ID = 
a b

a b

3 3

2 26( )+
.

 7.13 Determine the mass moment of inertia of a solid right circular cyclinder 

of base radius R and height h about its own axis.

Figure 7.17
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ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 7.1 (b) 7.3 (c) 7.5 (c) 7.7 (c) 7.9 (c) 7.11 (b) 7.13 (b)

 7.2 (c)  7.4 (b) 7.6 (c) 7.8 (c) 7.10 (a) 7.12 (a)

ANSWERS TO NUMERICAL PROBLEMS

 7.1 
bh

3

3

 7.2 
bh

3

4

 7.3 
a4

12

 7.4 
bh hb

3 3

4 48
+

 7.5 
r4

4

q

 7.6 9002353.3 mm4

 7.7 
p pab a b

3 3

4 4
+

 7.8 1443610 mm4

 7.9 I
r

xy =
- 4

8

 7.10 Ixy = 7.75 ¥ 104 mm4

 7.11 I I I MRx y z= = =
2

5

2

 7.13 I MRZ =
1

2

2
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 8.4 HOOKE’S LAW AND MODULUS OF ELASTICITY

In case of axial loading of the bar, experiments show that up to a certain limit, stress induced in the bar is 

proportional to the strain. Thus a plot of stress versus strain, as shown in Fig. 8.5, for ductile material shows 

a linear behavior upto a limit called proportional limit.

 Thus, s μ e

  s = Ee

where E is known as Modulus of Elasticity.

 By definition, s = 
P

A
 and e = 

d

l

 Thus, 
P

A
 = E 

d

l

  d = 
Pl

AE

 This can be interpreted as that deformation of the bar under axial loading is proportional to the load P, 

initial length l and inversely proportional to the cross-section A.

 8.5 LATERAL STRAIN AND POISSON’S RATIO

Referring to the uni-axially loaded members (elastic) in addition to longitudinal deformation, a certain amount 

of lateral (transverse) expansion or contraction takes place. To illustrate this, if a solid body is subjected to an 

axial tension, it contracts laterally; on the other hand, if it is compressed, the material squashes out sideways. 

Therefore, a longitudinal strain is always accompanied by transverse strain. It is experimentally found that 

this lateral strain bears a constant relationship to the longitudinal (or axial) strain caused by an axial force, 

provided the material remains elastic and is homogeneous and isotropic. This constant is a definite property 

of a material and is called Poisson’s ratio (m).

  m = 
lateral strain

axial strain
 = – 

lateral strain

axial strain

 The negative sign indicates that when axial strain is positive, lateral strain is negative and vice-versa.

 For common engineering materials, m varies between “0.25 to 0.35”.

 8.6  VOLUMETRIC STRAIN AND MAXIMUM VALUE OF 

POISSON’S RATIO

Refer to Fig. 8.1 (a). Let the initial length of the bar be l0 and initial diameter be d0.

 Thus, initial cross-section of the bar is A0 = 
p

4
 d0

2.

 The bar is subjected to axial load F as shown in Fig. 8.3.

 Thus, after deformation, final length lf = l0 + d = l0 + el0 = l0(l + e)

Figure 8.5
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s
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 Since the above deformation is also accompanied by lateral contraction, Poisson’s ratio

  m = 

Dd

d

l

0

0

0

d

  
Dd

d

0

0

 = me

 Thus present cross-section

  Af = 
p

4
 df 

2 = 
p

4
 [d0 – Dd0]

2 = 
p

4
 d0

2 1 0

0

2

-
Ê

ËÁ
ˆ

¯̃

È

Î
Í
Í

˘

˚
˙
˙

Dd

d
 = A0(1 – me)2.

 Initial volume of the bar = V0 = A0l0
 Final volume of the bar = Vf = Af lf = A0(1 – me)2 l0(1 + e) = A0 l0[1 – 2me + m2e2](1 + e) = ªA0 l0 

[1 – 2me + e] [neglecting higher order terms involving m and e].

 Therefore, change in volume

  DV = Vf – V0 = A0 l0[1 – 2me + e] – A0 l0 = A0l0e (1 – 2m) = V0e(1 – 2m)

 The volumetric strain is defined by the ratio of change in volume to the original volume.

 Therefore, volumetric strain = 
DV

V0

 = e(1 – 2m)

 The above expression is the volumetric strain in terms of e and m.

 The limiting condition of DV is zero, implying the volume of the bar diminishes.

 Thus,

  
DV

V0

 = 0 = e(1 – 2m)

  m = 
1

2

This implies that the value of Poisson’s ratio cannot exceed 
1

2
.

 8.7  ELONGATION OF A BAR OF CONSTANT CROSS-SECTION DUE TO 

SELF WEIGHT

Refer to Fig. 8.1. Let the bar hang vertically from a support freely. Thus the load on the bar is its self weight 

W = rAl.

 A small elemental length dx of the bar is considered at a distance x from the support.

 The force acting on it is Fx = rAx.

 Thus, its elongation dd = 
F dx

AE

x

 Therefore, total elongation of the bar will be

  d = Údd = 
F dx

AE

Axdx

AE E

x l

E

Al l

AE

Wl

AE

x

l l l

0 0

2

0

2

2 2 2 2Ú Ú= =
È

Î
Í

˘

˚
˙ = = =

r r r r .
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 If the bar was subjected to a load of W, elongation would have been 
Wl

AE
.

 Thus it can be concluded the elongation of the bar due to its own weight is just half that of the elongation 

resulted from externally applied weight when the magnitude of the applied load is equal to that of the self 

weight of the bar. 

Example 8.1  A short cylinder with 1 cm wall thickness is subjected to a compressive load of 10 ton. 

Calculate the required outside diameter, if the working stress in compression is 800 kg/cm2.

Solution Load P = 10 ton = 10 ¥ 1000 kg,

 Let the outer diameter = d0 cm; wall thickness = t = 1 cm

\ Inner diameter di = (d0 – 2t) cm = (d0 – 2) cm

  sw = 800 kg/cm2

  sw ¥ A = P

  800 ¥ 
p

4
{d0

2 – (d0 – 2)2} = 10 ¥ 1000

  d0 = 4.98 cm

 Thus the required outside diameter is d0 = 4.98 cm.

Example 8.2  A steel wire hangs vertically under its self-weight. What is the greatest possible length that 

it can have if the allowable tensile stress is 2000 kg/cm2? The specific weight of the steel is 8000 kg/cm3.

Solution The weight of the wire W = rV = rAl

\  st = 
W

A
 = r ¥ l

  st = 2000 kg/cm2

  r = 8000 kg/m3 = 8000 ¥ 10–6 kg/cm3

  l = 
s

r
t
 = 

2000

8000 10 6¥ -  = 2500 m

 Thus the length of the bar becomes l = 2500 m

Example 8.3  Three pieces of wood having 3.75 cm ¥ 3.75 cm square cross-section are glued together and 

to the floor as shown in Fig. 8.6. If a horizontal force P = 3000 kg is applied to the middle member, what is 

the average shear stress in each of the glued joints?

Figure 8.6
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Solution tav =  700 kg/cm2

 Taking moment at the centre C

  ÂMC = 0

 Force at the key is F = 
P ¥ 75

2 5.
 = 30 P kg

 Area to shear As = 0.6 ¥ 2.5 cm2

  tav ¥ As = F

  700 ¥ 0.6 ¥ 2.5 = 30 P

  P = 35 kg

 Therefore the safe value of the load P is 35 kg.

Example 8.5  A 100 mm diameter shaft has a projected collar of 

diameter 130 mm over a length of 20 mm and supported by a hollow 

structure as shown in Fig. 8.8. The shaft is subjected to an axial load 

of 500 kN. Find the shear stress induced in the collar?

Solution In view of the configuration, the shaft can be sheared of 

owing to failure of the collar. The area that offers shear resistance = 

As = pDt = p ¥ 100 ¥ 20 mm2 = 2000p mm2

 The load to be withstand = P = 500 kN = 500 ¥ 1000 N

 Therefore induced shear stress in the shaft = t = 
P

As

 = 
500 1000

2000

¥
p

 N/mm2 = 79.57 N/mm2

Solution P = 3000 kg

 The area that resists shear stress corresponds to the plan area. Since there are two such areas; area to shear

 As = 2 ¥ 10 ¥ 3.75 cm2

\  tav = 
P

As

 = 
3000

2 10 3 75¥ ¥ .
 = 40 kg/cm2

 Thus the average shear stress in each of the glued joints is tav = 40 kg/cm2.

Example 8.4  A lever is attached to a spindle by means of a square key 6 mm ¥ 6 mm ¥ 2.5 cm long as 

shown in Fig. 8.7. If the average shear stress in the key is not to exceed 700 kg/cm2, what is the safe value 

of the load P applied at the free end of the lever?

Figure 8.7

Figure 8.8

130 mm

20 mm

500 kN

100 mm dia
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Example 8.6  An aluminum bar 1.8 m long has a 2.5 cm square cross-section along 0.6 m of its length and 

2.5 cm diameter circular cross-section over rest 1.2 m. If the bar is subjected to a tensile load of P = 1750 kg, 

what will be the elongation of the bar? Take E = 75 ¥ 104 kg/cm2.

Solution l1 = 0.6 m = 60 cm

 l2 = 1.2 m = 120 cm

 A1 = 2.5 cm ¥ 2.5 cm

 A2 = 
p

4
 ¥ 2.52 cm2

 Tensile load P = 1750 kg

 Modulus of elasticity E = 75 ¥ 104 kg/cm2

  d = d1 + d2 = 
Pl

A E

Pl

A E

1

1

2

2

+  = 
P

E

l

A

l

A

1

1

2

2

+
Ê
ËÁ

ˆ
¯̃

   = 
1750

75 104¥
 

60

2 5 2 5

120

4
2 52. .
.

¥
+

¥

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

p
 cm

   = 0.794 cm

 Thus the elongation of the bar = 0.794 cm.

Example 8.7  A rigid bar AB is hinged to a vertical wall at A and supported horizontally by a tie bar 

CD shown in Fig. 8.9 (a). The tie-bar has cross-section area of 0.5 sq cm and its allowable stress in tension 

is 1500 kg/cm2. Find the safe value of the load P and the corresponding vertical deflection of point B. The 

modulus of elasticity of the tie-bar is E = 2 ¥ 106 kg/cm2.

Figure 8.9

q

C

D

s

B

A

P

1.5m

2 m2 m

(a)

C1

B ¢

B

C¢

C

D

A

(b)

Solution The cross-section area of the tie-bar is At = 0.5 cm2

  Et = 2 ¥ 106 kg/cm2

  sall = 1500 kg/cm2
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 Let the tension induced in the tie bar be S kg.

  S = sau ¥ At = 1500 ¥ 0.5 = 750 kg

 Taking moment about A,

  S sin q ¥ 2 = P ¥ 4

  P = 
S sin q

2
 = 

750

2
 ¥ 

1 5

2 5

.

.
 = 225 kg

 Refer to Fig. 8.9 (b). Elongation of tie rod CD = CC1 = 
S l

A E

t

t t

¥
¥

    = 
7 2

0 2

50 50

5 106

¥
¥ ¥.

    = 1875 ¥ 10–4 cm

 Vertical deflection of point C will be = CC¢ and vertical deflection of point B will be = BB¢.
 From DCC1C ¢,

  sin q = 
CC

CC

1

¢

  CC¢ = 
CC1

sin q
 = 1875 ¥ 10–4 ¥ 

2 5

1 5

.

.
 = 0.3125 cm

 From DACC ¢ and DABB¢,

  
CC

BB

¢
¢
 = 

AC

AB
= =

2

4

1

2

  BB¢ = 2CC¢ = 2 ¥ 0.3125 = 0.625 cm = 6.25 mm

Example 8.8  A rigid bar AB of length 9 m is suspended by two vertical rods at its ends and hangs in a 

horizontal position under its own weight as shown in Fig. 8.10. The rod at A is made of brass having 3 m 

length and cross-section area 10 cm2. Take modulus of elasticity EBr = 10 ¥ 105 kg/cm2. The rod at B is steel 

having a length of 5 m, cross-section area 4.45 cm2, modulus of elasticity Est = 2 ¥ 106 kg/cm2. At what 

distance x from A may a vertical load P be applied if the bar is to remain horizontal after the load is applied?

Solution Let us introduce “Br” and “St” as suffices for brass and steel 

respectively.

 Thus lBr = 3 m = 300 cm; ABr = 10 cm2 and EBr = 10 ¥ 105 kg/cm2.

 Likewise, lst = 5 m = 500 cm ; ASt = 4.45 cm2 and Est = 2 ¥ 106 kg/cm2.

 Let the tension induced in A and B be SBr and SSt respectively.

 Length of the bar AB = 9 metre.

 Taking moment of all the forces about B, equilibrium of the bar AB 

yields

  MB = 0

  SBr ¥ 9 = P ¥ (9 – x)

  SBr = 
P x( )9

9

-

 Therefore SSt = P – 
P x( )9

9

-
 = 

Px

9

Figure 8.10

BA

x

P

9 m
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 The deflection/elongation of the two bars are dBr = 
S l

A E

Br Br

Br Br

 = 
P x( )9

9

-
 ¥ 

300

10 10 105¥ ¥
 and dSt = 

S l

A E

St St

St St

= 
Px

9
 ¥ 

500

4 45 2 106. ¥ ¥
 respectively.

 In order to maintain horizontal position of the bar,

  dBr = dSt

  
P x( )9

9

-
 ¥ 

300

10 10 105¥ ¥
 = 

Px

9
 ¥ 

500

4 45 2 106. ¥ ¥
 Solving; x = 3.13 m

 Thus the force P has to be applied at a distance of x = 3.13 m from the end A to maintain horizontal 

position of the bar AB. 

Example 8.9  A prismatic steel bar having cross-section of 3 sq. cm is subjected to axial loading as shown 

in Fig. 8.11. Determine net deformation of the bar. Take Es = 2 ¥ 106 kg/cm2.

Figure 8.11

1 m 1 m 2 m

2t 1.5t 1.5t

Solution To solve this problem; method of superimposition is followed, i.e., initial one metre length of the 

bar from the support is subjected to 2 T load (tensile) only. For this condition, deformation is calculated.

 Similarly, next 2 metres of length is subjected to 1.5 T load (tensile) and finally we consider the entire 

bar of 4 metres which is subjected to 1.5 T load (compressive). For these two situations, deformations are 

calculated.

 Once the deformations are calculated individually for different loads and of different length of the bar, we 

take the algebraic sum of the deformations to get the final deformation of the bar. 

 Introducing suffices for above three situations by 1, 2 and 3,

  A = 3 cm2

 Modulus of elasticity E = 2 ¥ 106 kg/cm2

  P1 = 2 ton = 2000 kg

  l1 = 1 m = 100 cm

\  d1 = 
Pl

AE

1 1
 = 

2000 100

3 2 106

¥
¥ ¥

 = 0.033 mm

  P2 = 1.5 ton = 1500 kg

  l2 = 2 m = 200 cm

\  d2 = 
P l

AE

2 2
6

1500 200

3 2 10
=

¥
¥ ¥

 = 0.05 mm

  P3 = 1.5 ton = 1500 kg
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  l3 = 4 m = 400 cm

\  d3 = – 
P l

AE

3 3  = – 
1500 400

3 2 106

¥
¥ ¥

 = –0.1 mm

  d = d1 + d2 + d3 = 0.033 + 0.05 – 0.1 = –0.17 mm

 Thus net deformation of the bar is –0.17 mm.

Example 8.10  A vertical load P = 2100 kg is supported 

by two inclined steel wires AC and BC as shown in Fig. 8.12. 

Determine the required cross-section area A of each wire 

if the allowable working stress in tension is 700 kg/cm2. 

Take angle q = 30° and AB = 10 m. Also calculate vertical 

deflection of the point C.

Solution P = 2100 kg; q = 30°; AB = 10 m

\ OA = 5 m \ OC = 5 tan 30° = 2.886 m

 Therefore AC = 5 2 8862 2+ .  = 5.773 m

 From symmetry of the configuration, it is evident that the 

tension induced in the two wires, namely, AC and BC will be same.

 Let this tension is S. The allowable working stress in tension is sall = 700 kg/cm2

 From the force balance considering equilibrium of the point C,

  2S sin q = P

  S = P, since q = 30°

 Thus sall ¥ A = S = P = 2100

  A = 
2100

700
 cm2 = 3 cm2

 The required cross-section area of the wires becomes A = 3 cm2

 Let CC1 is the elongation of the wire AC.

\  CC1 = 
S l

A E

AC

AC

¥
¥

   = 
P l

A E

AC

AC

¥
¥

   = 
2100 5 773 100

3 2 106

¥ ¥
¥ ¥

.
 cm

   = 0. 202 cm

 Vertical deflection of point C will be 

  D = CC¢ = 
CC1 0 202

30sin

.

sinq
=

∞
 = 0.404 cm = 4.04 mm

 Therefore vertical deflection of the point C is 4.04 mm.

Example 8.11  Refer to Fig. 8.13. The structure is subjected to a vertical load P = 200 kg applied at B. 

Member BC is steel wire with a 3 mm diameter and member AB is a wood strut of 2.5 cm square cross-section. 

Determine the vertical and horizontal components of the deflection of point B.

Figure 8.12
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Solution

Figure 8.13

C

q

A

P

B

dv

dh

Figure 8.13

q
P

SAB

SBC

(a)

  ABC = 
p

4
 d2 = 

p

4
 ¥ 0.32 = 0.0707 cm2

  A
AB = 2.5 ¥ 2.5 = 6.25 cm2

  P = 200 kg

  ES = 2 ¥ 106 kg/cm2

  Ew = 10 ¥ 104 kg/cm2

 Under the action of load P, member BC will be subjected to tension and strut AB will be compressed.

 Length of BC will be increased and AB will be shortened.

  dBC = 
S l

A E

BC BC

BC S

¥

  d
AB = 

S l

A E

AB AB

AB W

¥

 To calculate the force induced in BC and AB, we construct the triangle of force as shown in Fig. 8.13 (a). 

  AC = 2 m

  BC = 1.5 m

  AB = AC BC2 2+  = 2 1 52 2+ .  = 2.5 m
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  sin q = 
1 5

2 5

.

.

  cos q = 
2

2 5.

  
SAB

sin 90∞
 = 

S PBC

sin sin ( )q q
=

∞ -90

  S
AB = 

P

cos q
 = 

200

2

2 5.

 = 250 kg

  SBC
 = 

P sin

cos

q

q
 = P tan q = 200 ¥ 

1 5

2

.
 = 150 kg

  dBC = 
S l

A E

BC BC

BC S

¥
 = 

150 150

0 0707 2 106

¥
¥ ¥.

 = 0.159 cm

 Horizontal deflection dH = dBC = 0.159 cm

 d
AB = 

S l

A E

AB AB

AB W

¥
 = 

250 250

6 25 10 104

¥
¥ ¥.

 = 0.1 cm

 From Fig. 8.13 (b)

 Vertical deflection

  dV = B1L = B1N + NL = OB + NL

  BO = BB2 cos q = d
AB cos q = 0.1 ¥ 

2

2 5.
 = 0.08 cm

  
OM

NL
 = 

OB

B N

OB

OB ON

2

2

2

2

=
+

  OM = BM – OB = 
BB2

cos q
 – OB = 

0 1

2

2 5

.

.

 – 0.08 = 0.045 cm

  OB2 = BB2 sin q = 0.1 ¥ 
1 5

2 5

.

.
 = 0.06 cm

  NL = 0.164 cm

  B1L = B1N + NL = OB + NL = 0.08 + 0.164 = 0.244 cm = dV

 Thus vertical deflection of point B is dV = 0.244 cm.

Example 8.12  Prove that volumetric strain of a rectangular bar is the algebraic sum of strains of length, 

width and height.

Solution Consider a rectangular bar having initial length, width and height as l0, w0 and h0 respectively.

 Thus, initial volume V0 = l0 w0h0

 In view of deformation, the final corresponding dimensions are, say, lf, wf and hf.

 Thus lf = l0 + dl0; wf = w0 + dw0 hf = h0 + dh0
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 Therefore, final volume

  Vf = lf wf hf = (l0 + dl0)(w0 + dw0)(h0 + dh0) ª l0w0h0 + w0h0dl0 + l0h0dw0 + l0w0dh0

 Thus volumetric strain =

  
DV

V0

 = 
V V

V

f - 0

0

 = 
w h l l h w l w h

l w h

0 0 0 0 0 0 0 0 0

0 0 0

d d d+ +
 = 

d d dl

l

w

w

h

h

0

0

0

0

0

0

+ +  = el + ew + eh [Proved]

Example 8.13  Refer to Fig. 8.12. Prove that the vertical deflection of point C, is D = 
l P

AE2
3

Solution AB = l

AO = BO = 
l

2
 = L (say) 

 From static equilibrium,

  P = 2T sin q

 Let AC = L'

 Again,

  
TL

AE

¢
 = L¢ – L = L¢ – L¢ cos q = L¢ (1 – cos q)

  T = AE(1 – cos q)

  P = 2AE(1 – cos q) sin q

   = 2AE 
q q2 4

2 4! !
- +

Ê

ËÁ
ˆ

¯̃
---  q

q
- +Ê

ËÁ
ˆ
¯̃

3

3!
---

 Keeping only first one term of each series,

  P ª 2AE q
2

2
q = AEq3

 Since the deflection is very small compared to length,

  tan q qª =
D
L

  P = AE 
D3

3L

  D3 = L3 P

AE

  D = L
P

AE

l P

AE
3 3

2
=

Example 8.14  The frame shown in Fig. 8.14 is made of 10 cm ¥ 10 cm square wooden post, for which 

allowable stress in shear parallel to the grain is tw = 7 kg/cm2, while that in compression perpendicular to the 

grain is sw = 28 kg/cm2. Calculate the minimum safe values of the dimensions a, b and c. The vertical post 

is pinned at its lower end to a foundation plate.
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Solution From the given geometry, tan q = 
0 9

1 2

.

.

 q = 37°

 Considering the equilibrium of vertical post and taking moment at its base,

  ÂMBase = 0

  150 ¥ 2.1 – F cos q ¥ 0.9 = 0

  F cos q = 350 kg

\  F sin q = 263 kg

 Now F sin q = sw ¥ (c ¥ w)

  c = 
F

ww

sin q

s ¥
 = 

263

28 10¥
 cm = 0.9393 cm

 Similarly, a compressive force F cos q is exerted on the area amounts to b ¥ w.

\  F cos q = sw ¥ (b ¥ w)

  b = 
F

ww

cos q

s ¥
 = 

350

28 10¥
 cm = 1.25 cm

 Further F cos q will cause a shear stress over the area a ¥ w

\  F cos q = tw ¥ (a ¥ w)

  a = 
F

ww

cos q

t ¥
 = 

350

7 10¥
 cm = 5 cm

MULTIPLE-CHOICE QUESTIONS

 8.1 Stress is defined by

 (a) force/unit area   (b) force ¥ unit area

 (c) (force/unit length) ¥ area  (d) none of the above

Figure 8.14

d

1.2 m

0.9 m

150 kg

c

F

1.2 m

a

b

q
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 8.2 Strain is defined by

 (a) original length/final length (b) final length/original length 

 (c) elongation/original length  (d) none of the above

 8.3 According to the Hook’s law,

 (a) stress μ (1/strain) (b) stress μ strain  (c) stress μ (strain)2 (d) none of the above

 8.4 Poisson’s ratio is defined by

 (a) ratio of lateral strain and longitudinal strain (b) ratio of longitudinal strain and lateral strain

 (c) ratio of lateral stress and longitudinal stress (d) ratio of longitudinal stress and lateral stress

 8.5 Shear stress is quantified by

 (a) unit angular deformation  (b) unit lateral deformation

 (c) unit longitudinal deformation (d) none of the above

 8.6 Modulus of Elasticity (E) can be found out by following relationship

 (a) E = s + e (b) E = s – e (c) E = s ¥ e (d) E = 
s

e

 8.7 The stress produced in the members so to prevent sliding of a section over other is called

 (a) nominal stress (b) bearing stress (c) shear stress (d) none of the above

 8.8 The maximum value Poisson’s ratio is

 (a) 0.25 (b) 0.50 (c) 0.75 (d) 1.0

SHORT ANSWER TYPE QUESTIONS

 8.1 Define stress and strain. What is meant by elasticity of materials?

 8.2 What is normal stress, bearing stress and shear stress? Explain with sketches and quantify them.

 8.3 What is Poisson’s ratio? Prove that Poisson’s ratio of materials can never exceed 0.5.

 8.4 State and explain Hooke’s law with necessary diagram. What is modulus of elasticity? What is its unit?

 8.5 What are longitudinal strain, lateral strain and volumetric strain? 

 8.6 What is shear strain? How it is quantified?

 8.7 Obtain an expression for the elongation of a bar of uniform cross-section subjected to self-weight 

only.

 8.8 Prove that the volumetric strain of a sphere is three times of diametrical strain.

NUMERICAL PROBLEMS

 8.1 Prove that volumetric strain of a cylindrical bar is 

sum of longitudinal strain and twice that of lateral 

strain.

 8.2 Find the stresses induced in two different sections 

of the stepped bar as shown in Fig. 8.15, subjected 

to a compressive load of 20 kN. 

 8.3 The cylinder has inside diameter D = 25 cm and 

is subjected to internal gas pressure of intensity 

P = 20 kg/cm2 gauge. How many 12.5 mm-diameter 

steel bolts will be required to fasten the top cover 

plate to the cylinder if the working stress for the bolt 

is 700 kg/cm2? Figure 8.15

Δ 30 mm

Δ 20 mm

20 kN
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 8.4 A stepped steel bar of varying cross-section (rectangular) is loaded as shown in Fig. 8.17. Calculate 

the total deformation. Take E = 2 ¥ 105 N/mm2. The magnitude of different forces are P1 =  100 kN, 

P2 =  80 kN and P3 =  50 kN.

Figure 8.16

p

Figure 8.18

60 kN
Δ 25 mm Δ 25 mm

Δ 18 mm

0.2 mm 0.3 mm 0.2 mm

60 kN

 8.5 Find the change in length of the bar loaded as shown in Fig. 8.18. Take E = 2 ¥ 106 kg/cm2.

 8.6 A rod of steel 60 mm wide and 15 mm thick is 8 m long. It extends by 6 mm when an axial pull of 

100 kN is applied. Find the modulus of elasticity of steel.

 8.7 A steel column is 100 mm in diameter and is 2.8 m long. Find the intensity of stress and the strain 

when it carries an axial compressive load of 800 kN. Take Es = 2 ¥ 105 N/mm2.

 8.8 A rod circular in section tapers from 20 mm diameter at one end to 10 mm diameter at other end and 

is 200 mm long. On applying an axial pull of 10 kN, it was found to extend by 0.068 mm. Find the 

Young’s modulus of the material of the rod.

40 × 40 sq. mm

30 × 30 sq. mm

20 × 20 sq. mm

500 mm 800 mm 1000 mm

P1 P2 P3 P4

Figure 8.17
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 8.9 A copper rod 5 mm in diameter when subjected to a pull of 600 N extends by 0.125 mm over a gauge 

length of 350 mm. Find the Young’s modulus for copper.

 8.10 A hollow steel column of external diameter 300 mm has to support an axial load of 3500 kN. If the 

ultimate stress for the steel column is 480 N/mm2, find internal diameter of the column. Allow a load 

factor of 2.50.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 8.1 (a) 8.3 (b) 8.5 (a) 8.7 (c)

 8.2 (c)  8.4 (a) 8.6 (d) 8.8 (b)

ANSWERS TO NUMERICAL PROBLEMS

 8.2 63.7 N/mm2, 28.3 N/mm2

 8.3 12

 8.4 1.12 mm

 8.5 0.6 mm

 8.6 1.48 × 105 N/mm2

 8.7 s = 102 N/mm2, e = 5.1 × 10−4

 8.8 1.87 × 105 N/mm2

 8.9 8.55 × 104 N/mm2

 8.10 284 mm
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Stress – Strain Diagram

 9.1 VARIATION OF STRESS IN REGARD TO CROSS-SECTION

In chapter 8, we have found that the prismatic bar is loaded uniaxially by application of tensile force P, as 

shown in Fig. 8.1.

f

n q

P P

m
P

Figure 9.1

 Under the action of force P, normal stress induced s = 
P

A

 To investigate the stress characteristics, let us consider an oblique section p-q having inclination f with the 

vertical as shown in Fig. 9.1.

 Considering equilibrium of the left side of the section, the internal force S = P

Figure 9.2

 Refer to Fig. 9.2. The two mutually perpendicular components of S - one perpendicular to the oblique plane 

and the other along the plane denoted by N and T respectively will have values

  N = P cos f

  T = P sin f

 The cross-section of the oblique plane

  A¢ = 
A

cos f

CHAPTER
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 Therefore, stress corresponds to N is sn = 
P

A

cos

cos

f

f
 = 

P

A
 cos2 f

 And stress corresponds to T is t = 
P

A

sin

cos

f

f
 = 

P

A2
 sin 2f

 Let us consider few typical cases based on the values of f.

 (i) When f = 0, sn = 
P

A
 = (sn)max and t = 0

 (ii) When f = 90°, sn = 0 and t = 0

 (iii) When f = 45°, sn = t = 
P

A2
 = tmax

 Further, when f = 90° + f,

  s ¢n = 
P

A
 cos2 (90° + f) = 

P

A
 sin2 f

  t¢ = 
P

A2
 sin (180° + 2f) = – 

P

A2
 sin 2f

  sn + sn¢ = 
P

A
 (cos2 f + sin2 f) = 

P

A

  t + t ¢ = 
P

A2
 (sin 2f – sin 2f) = 0

  t = –t ¢

 9.2 CONCEPT OF STRAIN ENERGY

In case of an axially loaded bar when load P causes a deformation d, the work done by the force P is 
1

2
 Pd 

as evident from Fig. 9.3.

 This energy is stored in the body.

 Thus total energy U = 
Pd

2
  d = 

Pl

AE

 U = 
P l

AE

2

2
 = 

AE

l

d 2

2

 This is known as strain energy.

 When it is expressed per unit volume,

  u = 
U

Al
 = 

AE

l Al

d 2

2 ¥
 = 

E

2
 × 

d

l

Ê
ËÁ

ˆ
¯̃

2

 = 
E

2
e2

   = 
E

E2

2

2
¥

s
 = 

s 2

2E

P

L
o

a
d

Elongation

d

Figure 9.3
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 9.3 PROPERTIES OF MATERIALS

In regard to different behaviors exhibited by materials under different types of load, it is imperative to discuss 

few salient properties of materials that are found to be extremely useful in justifying their candidature for 

intended use. Needless to say, all do not respond equally in varieties of loading conditions. 

9.3.1 Ductility

It is the property of the material by virtue of which it can be drawn into thin wire, i.e., the material undergoes 

sufficient elongation before failure when subjected to tensile load. Mild steel and structural steel are more 

ductile than cast iron.

9.3.2 Brittleness

This property is just opposite to that of ductility implying the property of the material by which the material 

does not manifest adequate deformation before failure when subjected to axial load. Failure of such types of 

materials under loading takes place without any appreciable changes in its dimensions. Examples are cast iron 

and glass. 

9.3.3 Hardness

It is the property of the material by virtue of which it offers resistance to indentation or scratch. It is quantified 

by depth and distribution of the indentation caused by a standard diamond ball. There are various scales by 

which it is measured and expressed such as Brinnell Hardness number, Rockwell hardness, Vickers Pyramid 

Number, etc. It is desirable that hardness of the materials should be evenly distributed all over the surface.

9.3.4 Malleability

It is the property of the material that makes it amenable to be rolled into thin sheet. Aluminum, magnesium 

are highly malleable materials.

9.3.5 Toughness

The toughness is the amount of energy a material can absorb before actual fracture.

 Once various properties of materials are discussed, it is imperative to study stress-strain behavior of ductile 

materials such as mild steel to investigate its behavior under loading. Mild steel is widely used materials in 

engineering applications. Thus, its recommendation for multifarious use calls for gathering of data’s pertaining 

to its strength which can be made available from experiments. Thus a plot of stress versus strain based on 

experimental data is of paramount importance.

 9.4  STRESS-STRAIN DIAGRAM OF DUCTILE MATERIALS SUBJECTED 
TO TENSILE LOADING

To carry out the test, a standard specimen having a definite gauge length and diameter with collars at two ends is 

prepared by suitable machining. Experiment is carried out in equipment called Universal Testing Machine (UTM).

 The sample or specimen is gripped firmly between two jaws of the machine and subjected to axial loading. 

Before start of the experiment, the initial length (l0) and initial diameter (d0) of the specimen is measured and 

recorded.

 The load is applied slowly from zero to a magnitude such that the specimen breaks. The load and the 

corresponding deformations are recorded and plotted automatically that is similar to one as shown in Fig. 9.4.
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 From 0 to 1, the curve is linear following Hooke’s law. This implies 

that stress is proportional to the strain. The point 1 in the curve 

is the last point along straight line behavior of the curve, known as 

proportional limit.

 Since s = Ee, it therefore follows that E can be interpreted as 

the slope of the curve up to point 1. Withdrawal of load brings the 

material to original state, i.e., the behavior of the material is elastic. 

Further loading beyond proportional limit shows somewhat different 

characteristics as evident from the curve. At point 2, material starts 

yielding. Without appreciable increase in load, higher deformation takes 

place. This phenomenon continues till it reaches point 3. The point 2 

is called upper yield point whereas point 3 is called lower yield point. 

After point 2 material becomes plastic and the deformation is permanent, i.e., even after 

removal of load, this deformation will be present in the material. Thus yield point is a 

transition point from elastic to plastic.

 Further loading will cause deformation and this continues upto point 4 when stress 

reaches its peak after which it reduces. The maximum value of stress, i.e., stress at 

point 4 is known as Ultimate stress. After point 4, further loading of the material is 

not associated with increased stress value. This can be attributed to the formation of 

a neck which causes rapid yielding. Finally, the material breaks after reaching point 5. 

The stress value corresponds to point 5 is known as breaking stress, which is lower 

than ultimate stress. It is interesting to note that the breaking stress has got some what 

lower value than the ultimate stress. This can be explained as the stresses are based 

on original cross-sectional area. However, the dotted line which is true stress-strain 

diagram shows that the breaking stress (actual) is higher than that at point 5, since 

the cross-section area of the specimen between point 4 and 5 reduces significantly 

to form a neck prior to failure as shown in Fig. 9.5. This is why, in actual stress-strain diagram, stress 

is calculated as load divided by instantaneous cross-sectional area, which shows continuous rise in stress 

value till it fails. During breakage, area reduces sharply. Thus actual breaking stress 5¢ is higher than that 

of point 5.

 Meticulous investigation shows that failure takes place due to shear rather than tensile along a 45° plane. 

This is in congruence with the theory as explained earlier.

 The above nature of curve of stress-versus-strain is valid for ductile material.

 From the linear segment of the above curve, it is evident that area under the curve is equivalent to 

the area of a triangle, which is the measure of the strain energy up to proportional limit. Thus the total 

area under the curve represents the energy absorbed by the material before failure, which is measure of 

toughness. After yielding takes place, material enters into the plastic zone implying withdrawal of load 

will not allow the material to regain its original size. Thus, total energy is the sum of energy absorbed 

elastically and plastically. 

9.4.1 Modulus of Resilience and Resilience

Resilience is the property of a material which means the amount of energy it can absorb elastically.

 The maximum energy which can be stored in a body up to elastic limit or more precisely up to 

proportional limit is called the Proof resilience and the proof resilience per unit volume is called modulus 

of resilience.

 Modulus of resilience u = 
s p.l.

2

2E

S
tr
e
s
s

Strain

1

2

3

4

5

5¢

Figure 9.4

Figure 9.5
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9.4.2 Measure of Ductility

After the test is over, the final diameter (df) and final length (lf) are measured.

 Thus % elongation of the specimen is calculated by 
increase in length

original length
 × 100

  
d

l0
 × 100% = 

l l

l

f - 0

0

 × 100%

 Similarly % reduction in area is calculated by 
decrease in area

original area
 × 100

  
A A

A

f0

0

-
 × 100% = 

d d

d

i0
2 2

0
2

-
 × 100%

 These two parameters are used to measure the ductility of the material.

 9.5 STRESS-STRAIN DIAGRAM OF BRITTLE MATERIALS

Similar experiments, when carried out for brittle materials like 

cast iron, a curve similar to that shown in Fig. 9.6 is obtained.

 In contrast to the ductile materials, no distinct yield point 

is obtained. Further amount of deformation before failure is 

also not pronounced as compared to that of ductile materials. 

This leads to the conclusion, that responsiveness of cast iron to 

withstand tensile loading is poor. However, to consider a stress 

which would be tantamount to yield point that forms the basis 

for design, the concept of proof stress is introduced.

 A line parallel to the straight line portion of the curve is 

drawn to intersect x axis so that corresponding elongation is 

0.2%. Thus, a stress that corresponds to above strain is called 

proof stress and considered as basis for design calculations.

 9.6 WORKING STRESS AND FACTOR OF SAFETY

For ductile material, proportional limit, yield point and ultimate stress can be determined experimentally. These 

values provides basis for design.

 Nevertheless, there are certain practical reasons as mentioned below for which data obtained from laboratory 

experiments cannot be used directly. 

  During actual design, exact load cannot be estimated, which is normally found to be higher that it is 

assumed.

  Static load considerations sometimes become misleading. Load may also come from unforeseen 

circumstances, which is not hitherto considered and of varying natures.

  Materials used in manufacturing often exhibits lower strength due to non-availability of requisite 

materials as recommended in design.

 To cope with such situations, it is imperative to keep the stress value below that which has been found 

experimentally so as to be remain safe.

Figure 9.6
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 The design stress, commonly known as working stress, is therefore reduced by a factor (>1). If the design 

is based on yield stress, working stress becomes

  sworking = 
s yield point

n
, where n > 1.

 The factor “n” is called factor of safety.

 Instead of yield stress, design may be based on ultimate stress. In such a case,

  sworking = 
s ultimate

¢n
, where n¢ > 1

 Sometimes working stress is also called as allowable stress.

 Both n and n¢ are called factor of safety.

Note: While dealing with the stress, we come across two categories. The applied force divided by the 

area is the stress induced in the materials as a consequence of load. The other one is the characteristics of 

materials, which is the limiting or maximum stress that a particular materials can withstand before rupture. 

This is what is obtained from experiments. Thus while designing a load bearing member, one must bear in 

mind that induced stress should never exceed the stress that a material can endure safely.

Example 9.1  A mild steel specimen of circular cross-section of diameter d = 1.25 cm shows an elongation 
of 0.005 cm over a gauge length of 5 cm. Calculate the maximum shear stress in the material. Assume 
E = 2 × 106 kg cm2.

Solution d = 1.25 cm; elongation d = 0.005 cm; initial length l = 5 cm

  e = 
d

l
 = 

0 005

5

.
 = 0.001

  E = 2 × 106 kg/cm2 \ s = Ee = 2 × 106 × 0.001 = 2 × 103 kg/cm2

\  tmax = 
s

2
 = 1000 kg/cm2

 The maximum shear stress in the material is tmax = 1000 kg/cm2

Example 9.2  A prismatic bar carrying an axial tensile stress sx is cut by an oblique section p – q as shown 
in Fig. 9.2. If the normal and shear stress on this section are sn = 825 kg/cm2 and t = 275 kg/cm2 respectively; 
find the values sx and the angle f.

Solution

  sn = 825 kg/cm2 and

  t = 275 kg/cm2

  sn = 
P

A
 cos2 f = sx cos2 f

  sx cos2 f = 825  (9.1)

  t = 
P

A2
 sin 2f = 

s x

2
 2 sin f cos f

  sx sin f cos f = 275  (9.2)
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 Dividing Eqs (9.2) by (9.1),

  tan f = 
1

3

  f = 18°26¢

  sx = 
825

18 262cos ∞ ¢
 = 917 kg/cm2

Example 9.3  A prismatic bar is subjected to an axial tensile force. Find the aspect angle f that defines an 
oblique section on which the normal and shear stress on this section are equal.

Solution

  sn = 
P

A

cos

cos

f

f
 = 

P

A
 cos2 f and

  t = 
P

A

sin

cos

f

f
 = 

P

A2
 sin 2f

 Since sn = t

  
P

A
 cos2 f = 

P

A2
 sin 2f = 2 sin f cos f

  tan f = 1

  f = 45°

 Thus aspect angle f becomes 45°.

Example 9.4  While carrying out experiment (tensile test) in the laboratory; following observations were made.

 Diameter of the specimen is 12.5 mm.

 Length of the specimen (gauge length) is 50 mm.

 Load at proportional limit is 3000 kg.

 Load at yield point is 3100 kg.

 Maximum load is 5250 kg.

 Strain at proportional limit is 0.11%.

 Final length is 64 mm.

 Diameter over neck is measured as 9.72 mm.

 Calculate the following:

 (a) Modulus of elasticity E.

 (b) Proportional limit

 (c) Ultimate stress

 (d) % elongation

 (e) % reduction in area

 (f) Allowable stress based on yield point, considering factor of safety as 1.75.

Solution Initial diameter (d0) of the specimen is 12.5 mm.

 Initial area (A0) = 
p

4
 d0

2 = 
p

4
 × 1.25 × 1.25 cm2 = 1.227 cm2

 Strain at proportional limit (e) is 0.11% = 0.0011

 Load at proportional limit is 3000 kg

 Therefore, proportional limit = sPl = 
3000

1 227.
 = 2445 kg/cm2
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 From sPl = Ee

  E = 
s

e
Pl  = 

2445

0 0011.
 = 2.2 × 106 kg/cm2

 Maximum load is 5250 kg

\ Ultimate stress = sUlt = 
5250

1 227.
 = 4278 kg/cm2

 Initial length of the specimen (gauge length) (l0) is 50 mm and final length (lf) is 64 mm.

 Thus % elongation = 
l l

l

f - 0

0

 × 100% = 
64 50

50

-
 × 100% = 28%

 % reduction in area =

  
A A

A

f0

0

-
 × 100% = 

d d

d

i0
2 2

0
2

-
 × 100% = 1

9 72

12 5

2

- Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

.

.
 × 100% = 39.54%

 Yield stress = syp = 
3100

1 227.
 = 2526.5 kg/cm2

\  sall = 
s yp

n
 = 

2526 5

1 75

.

.
 = 1443.6 kg/cm2

Example 9.5  A prismatic steel bar, 25 cm long and having cross-section of 12.5 cm2, is subjected to an axial 

compressive force P = 2000 kg. Find the strain energy in the bar. Assume E = 2 × 106 kg/cm2.

Solution Strain energy U = 
P l

AE

2

2
 = 

2000 2000 25

2 12 5 2 106

¥ ¥
¥ ¥ ¥.

 = 2 kg/cm

Example 9.6  Compute the modulus of resilience for structural steel. Assume E = 2 × 106 kg/cm2 and 
proportional limit is 2000 kg/cm2.

Solution Modulus of resilience u = 
s p l

E

. .
2

2
 = 

2000 2000

2 106

¥
¥

 = 2 kg/cm2

Example 9.7  A prismatic steel bar of length l and cross-section area A is hanging vertically under its own 
weight. How much strain energy is stored in the bar if its density is and the modulus of elasticity is E.

Solution Refer to article 8.7.

 The tensile force in the elemental strip dx is rAx that causes an infinitesimal small elongation dd = 
( ).rAx dx

AE
 

 Thus strain energy induced in this small element = du = 
1

2
 × (rAx) 

( ).rAx dx

AE

 Therefore, strain energy induced in the entire bar is U = Ú du = 
r2

2

A

E
 

0

l

Ú x2dx = 
r2 3

6

Al

E
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Example 9.8  A wooden block with a 5 cm × 5 cm square cross-section has a glued joint at its mid-section 
similar to that as shown in Fig. 9.1. If the allowable working stresses for the glue in tension and shear are 
sw = 70 kg/cm2 and tw = 42 kg/cm2 respectively, what is the optimum angle f < 45° for the joint? What is the 
corresponding safe load Pw for the stick?

Solution

  sw = 
P

A

cos

cos

f

f
 = 

P

A
 cos2 f

  P cos2 f = A.sw

  tw = 
P

A

sin

cos

f

f
 = 

P

A2
 sin 2f (9.3)

  P sin 2 = 2A.tw  (9.4)

 Dividing Eqs (9.4) by (9.3) yields

  tan f = 
t

s
w

w

 = 
42

70
 = 0.6

  f = tan–1 0.6 = 31°

 Thus Pw = 
A ws

fcos2
 = 

5 5 70

312

¥ ¥
cos ( )

 = 2382 kg

 9.1 The limit up to which stress varies linearly with strain is called

 (a) proportional limit (b) yield point (c) ultimate stress (d) breaking stress

 9.2 The values of normal stress and shear stress becomes equal in a plane that makes 

 (a) zero angles (b) 30° (c) 45° (d) 90°

 9.3 The ductility is a property by virtue of which materials

 (a) undergo adequate elongation before failure. (b) can be rolled into thin sheets

 (c) offer resistance against indentation. (d) none of the above

 9.4 The hardness is a property of materials that exhibits its response to 

 (a) undergo adequate elongation before failure. (b) be rolled into thin sheets

 (c) offer resistance against indentation. (d) none of the above

 9.5 The following materials have very good malleability.

 (a) Mild Steel (b) Cast Iron (c) Aluminum (d) Silver 

 9.6 Energy stored in the body by virtue of deformation under load is called

 (a) potential energy (b) internal energy (c) strain energy (d) heat energy

 9.7 The factor by which allowable stress is calculated is called 

 (a) power factor (b) factor of safety (c) scale factor (d) none of the above

 9.8 Toughness is the measure of

 (a) resistance against abrasion (b) ductility

 (c) brittleness   (d) energy absorbed before failure

MULTIPLE-CHOICE QUESTIONS
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 9.9 In case of an axially loaded bar when load P causes a deformation s, the strain energy absorbed is

 (a) Pd (b) 
Pd

2
 (c) 

Pd

3
 (d) 

P

E

d

2

 9.10 For brittle materials, following stress is considered as a basis for design 

 (a) yield stress (b) proof stress (c) ultimate stress (d) breaking stress

 9.11 Energy absorbed by materials per unit volume up to proportional limit is called 

 (a) resilience   (b) proof resilience

 (c) modulus of resilience   (d) toughness

 9.12 The maximum values of normal stress (s)max and shear stress (t)max can be related by following 

expression.

 (a) (s)max = (t)max (b) (s)max = 
1

2
 (t)max (c) (t)max = 

1

2
 (s)max (d) (t)max = 

1

3
 (s)max

 9.13 The following material is found to be extremely brittle.

 (a) Cast iron (b) Copper (c) Gold (d) Glass

 9.14 Area under stress-strain diagram represents

 (a) resistance (force) against deformation (b) energy absorbed before failure

 (c) depth and distribution of hardness (d) % elongation

 9.15 For ductile materials loaded axially

 (a) ultimate stress < breaking stress (b) ultimate stress = breaking stress

 (c) ultimate stress > breaking stress (d) none of the above

 9.16 The failure of ductile materials during tensile test is actually due to

 (a) normal stress (b) fatigue (c) shear (d) strain hardening

 9.1 Derive expressions for normal stress and shear stress for an axial loaded (tensile) bar in a plane that 

makes an angle 90° + f with the direction of the load.

 9.2 Refer to the Q1; what are the values of  for which these two stresses will be maximum, minimum and 

equal?

 9.3 What is strain energy? Derive an expression for the same in terms of geometric attributes and material 

properties when a prismatic bar is subjected to tensile loading.

 9.4 Explain the following properties of materials: Ductility, Malleability, Brittleness, Hardness and 

Toughness.

 9.5 Draw a stress-strain diagram of a mild steel specimen for tensile test, clearly stating the implications 

of important points.

 9.6 Define proof resilience and modulus of resilience.

 9.7 What is proof stress? Name the category of materials to which it is associated? What purpose does it 

serve?

 9.8 Explain the need of introducing factor of safety for design purpose.

 9.9 What is the interpretation of the area under stress-strain diagram? 

 9.10 Why is the breaking stress less than that of ultimate stress?

 9.11 How is ductility of materials quantified?

SHORT ANSWER TYPE QUESTIONS
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 9.1 Referring to the case of axial tension of a prismatic bar as shown in Fig. 9.1, consider following 

numerical data. A = 5 sq cm, P = 5,000 kg, f = 20°. Calculate the stresses sn, s¢n, t, t¢ for section p–q 

and p¢–q¢, where the later is inclined at +90° with the former.

 9.2 Referring to Fig. 9.1, assume that the angle f = 30° and that sn = 700 kg/cm2. What is the shear 

stress (t)?

 9.3 Refer to the problem 2. Here, sn = –1000 kg/cm2, sn = –655 kg/cm2. What is the aspect angle  defining 

the orientation of the section and what is the axial stress P/A to which the bar is subjected?

 9.4 A concrete test cylinder having length l = 30 cm and diameter d = 15 cm is subjected to axial 

compressive forces P in a testing machine. If the maximum shear stress in the concrete is not to exceed 

140 kg/cm2, what is the safe value for the axial load P?

 9.5 Following observations were made during tensile test of a mild steel sample in UTM.

  Diameter of the sample is 20 mm.

  Gauge length is 200 mm.

  Load at yield point is 66 kN.

  Maximum load is 128 kN.

  Deformation at yield point is 0.9545 mm.

  Final length is 267 mm.

  Diameter over neck is measured as 15.67 mm.

  Calculate the following:

 (a) Modulus of elasticity E

 (b) Yield point.

 (c) Ultimate stress

 (d) % elongation

 (e) % reduction in area

 (f) Working stress based on yield point, considering factor of safety as 2.25.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 9.1 (a) 9.5 (c)  9.9 (b) 9.13 (d)

 9.2 (c) 9.6 (c) 9.10 (b) 9.14 (b)

 9.3 (a) 9.7 (b) 9.11 (c) 9.15 (c)

 9.4 (c) 9.8 (d) 9.12 (c) 9.16 (c)

ANSWERS TO NUMERICAL PROBLEMS

 9.1 sn = 884 kg/cm2, s¢n = 117 kg/cm2, t = -t¢ = 321.4 kg/cm2

 9.2 t = 404.15 kg/cm2

 9.3 f = 39°

 9.4 49480 kg

 9.5 (a) 44 kN/mm2 (b) 210 N/mm2 (c) 407.65 N/mm2

  (d) 33.5% (e) 38.6% (f) 93.33 N/mm2

NUMERICAL PROBLEMS
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10
Rectilinear Motion of a Particle

 10.1 INTRODUCTION

In statics the entire analysis was focused on the rigid bodies that are under rest. In contrast, dynamics deals with 

bodies under motion. Although the statics is an old branch of mechanics, dynamics is relatively new. Another 

distinguishing feature of dynamics is that in addition to the force analysis like that of statics, it deals with other 

attributes that are associated with motion – namely position, velocity and acceleration, which are essentially 

function of time. It is already outlined in the chapter 1 that dynamics has got two wings – kinematics and 

kinetics. While the former deals with the study of motion parameters like position, velocity and acceleration 

without paying any attention to the force which causes motion, the latter deals with the analysis of force on 

the bodies under motion. In dynamics, the majority of the analysis is revolved around particle (the concept 

of particle is illustrated in chapter 1) giving rise to the concept of particle dynamics. Further, as regards to 

motion, it can be of two types – rectilinear and curvilinear.

 10.2 RECTILINEAR MOTION

If a particle moves along a straight path, it is said to have undergone a rectilinear motion. Under this situation, 

its position will change with respect to time if measured from a reference point (origin).

10.2.1 Position or Displacement

The instantaneous position of the particle measured from a reference point is called its displacement with respect 

to the origin during a specified time interval.

 Refer to Fig. 10.1. Say a particle P moves along a straight 

path to occupy a position at A during time interval t such that 

OA = x. This x is called its displacement in time t. The sign 

of x is used to symbolise whether it is moving along positive 

or negative x direction. If x is known for every value of t, it 

is said that the motion of the particle is known.

 Mathematically, it can be expressed as x = f(t). Essentially x is linear length unit and therefore in S.I. units 

it is expressed in metre. Since x = f(t), a plot of x vs. t will exhibit a complete picture of variations of x with 

respect to t.

10.2.2 Velocity

The position of P at any instant of time t may be specified by its distance x measured from some convenient 

reference point O fixed on the line. Further, at time t + Dt, the particle has moved to B and its displacement 

becomes x + Dx. The change in the position during the interval Dt is called the displacement Dx of the particle. 

The average velocity of the particle is defined as the rate of change of displacement with respect to time.

P

B

x Dx

AO

Figure 10.1
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 Thus mathematically, average velocity v = 
D
D

x

t
. As the time interval t approaches zero, the motion becomes 

uniform and above ratio assumes the velocity at any particular instance.

 Thus the instantaneous velocity of the particle is defined as

  v = lim
D

D
Dt

x

tÆ0
 = 

dx

dt
 = �x  

 In S.I. units the velocity is expressed in m/s. The sign of v becomes positive or negative depending on 

whether x is positive or negative.

10.2.3 Acceleration

Similar to the average velocity, the average acceleration of the particle is defined as the rate of change of velocity 

with respect to time. Let at the time interval t, the velocity be v and at time t + Dt, let the velocity be v + Dv. 

 Thus mathematically, average acceleration a = 
D
D

v

t
.

 The instantaneous acceleration of the particle is defined as

  a = lim
D

D
Dt

v

tÆ0
 = 

dv

dt

d x

dt
x= =

2

2
��

 In S.I. units the velocity is expressed in m/s2.

 The sign of a becomes positive or negative depending on whether x is positive or negative. Further, positive 

a implies that the velocity increases and negative a implies that the velocity decreases. When a is negative, it 

is popularly known as deceleration.

  a = 
dv

dt

dv

dx

dx

dt
v

dv

dx
= =

  vdv = adx

 The motion parameters can also be computed following vector approach. 

 If a particle moves along any arbitrary path in space such that its position vectors at two different locations 

are given by 
�
r1 = x1i + y1 j + z1k and 

�
r2  = x2 i + y2 j + z2 k as shown in Fig. 10.2, then the displacement during 

the time interval t is expressed as

D
�
r  = 

�
r2 – 

�
r1 = (x2 – x1)i + ( y2 – y1) j + (z2 – z1)k

x

i

O j y

k

z
2

1

r1
r2

Figure 10.2
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 Thus average velocity of the particle is vav = 
D
D

D
D

D
D

D
D

�
r

t

x

t
i

y

t
j

z

t
k= + +

 The instantaneous velocity can be expressed as vinst = lim
D

D
Dt

r

t

dr

dtÆ
=

0

� �

= lim
D

D
D

D
D

D
Dt

x

t
i

y

t
j

z

t
k

Æ
+ +È

ÎÍ
˘
˚̇0
 = 

dx

dt
i

dy

dt
j

dz

dt
k+ +  = � � �xi yj zk+ +

 Thus magnitude v of the velocity v  is expressed as v = � � �x y z2 2 2+ +

 Similarly average acceleration aav = 
D
D

�
v

t
 and instantaneous acceleration 

�
a = lim

D

D
D

D
D

D
D

D
Dt

v

t

dv

dt

x

t
i

y

t
j

z

t
k xi yj zk

Æ
= = + + = + +

0

� �
� � �

�� �� ��

 Thus magnitude a of the acceleration 
�
a is expressed as a = �� �� ��x y z2 2 2+ +

 10.3  GRAPHICAL REPRESENTATIONS OF POSITION, VELOCITY AND 

ACCELERATION

The motion of a particle is said to be known if the position x is known 

for every values of t. Thus, we can have x = f(t).

 This forms the basis for x vs. t plot. Considering t as abscissa and 

x as ordinate, the above curve can be plotted. This is what is called 

displacement-time diagram.

 Figure 10.3 shows displacement-time diagram for the particle P. By 

definition v = lim
D

D
Dt

x

tÆ0
 = 

dx

dt

 Thus velocity at any instant is equivalent to the slope of the curve at 

that point.

 Similarly, if the above function is differentiated with respect to time, it gives velocity. Thus x¢ = f ¢(t) and 

it is possible to plot v vs. t.

 Figure 10.4 shows velocity-time diagram for the particle P. By definition,

  a = lim
D

D
Dt

v

tÆ0
 = 

dv

dt

 Thus, acceleration of the particle at any instant is equivalent to the slope 

of the velocity-time curve at that point.

 Further, the area of the small rectangular strip under the curve = vdt

 Thus, the entire area under the curve can be obtained by 
t

t

1

2

Ú vdt

 Further v = 
dx

dt

  dx = vdt

G

FE

D

dt

t
2

t
1 t

v

O

Figure 10.4

x

O

x

t

B
A

t t+ Dt

Dt Dx

Figure 10.3



10.6 Engineering Mechanics

  
x

x

1

2

Ú dx = 
t

t

1

2

Úvdt

  x2 – x1 = 
t

t

1

2

Ú vdt

 This can be interpreted as the area under the “v–t” curve considering a finite time interval represents the 

displacement by the particle during the same time interval.

 Figure 10.5 shows acceleration-time diagram for the particle P. By definition,

  a = lim
D

D
Dt

v

tÆ0
 = 

dv

dt

 Further, the area of the small rectangular strip under the curve = adt

 Thus the entire area under the curve can be obtained by 
t

t

1

2

Ú adt

 Further a = 
dv

dt

  dv = adt

  

v

v

1

2

Ú dv = 

t

t

1

2

Ú adt

  v2 – v1 = 
t

t

1

2

Ú adt

 This can be interpreted as the area under the “a–t” curve considering a finite time interval represents the 

change in velocity of the particle during the same time interval.

 There are situations when acceleration is expressed as function of time, displacement and velocity.

1. Acceleration is a given function of time.

 Mathematically a = f(t)

 By definition a = 
dv

dt

  dv = adt = f (t)dt

  Údv = Ú f (t)dt

 Observing that when t = 0, v has an initial value of vi and after the time t, v has final value of vf

 Thus integrating both sides within given limits 

  
v

v

i

f

Ú dv = 
o

t

Ú f (t)dt

  vf – vi = 
o

t

Ú f (t)dt

Figure 10.5

dt

t
2

t
1

t

a

O
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 Thus v is now expressed in terms of t, say v = g(t).

 Further v = 
dx

dt

  dx = vdt = g(t)dt

  Ú dx = Úg(t)dt

 Observing that when t = 0 x has an initial value of xi and after the time t, x has final value of xf we have 

 

x

x

i

f

Ú dx = 
o

t

Ú g(t) dt

  xf – xi = 
o

t

Ú g(t)dt

2. Acceleration is a given function of displacement.

 Mathematically, a = f (x)

  vdv = adx = f (x)dx

  
v

v

0

Ú vdv = 
x

x

0

Ú f (x)dx

  
1

2
v2 – 

1

2
v0

2 = 
x

x

0

Ú f(x)dx

  Ú vdv = Ú f(x)dx

  v = 
dx

dt

  dt = 
dx

v

3. Acceleration is a given function of velocity.

 Mathematically, a = f(v)

 By definition, 
dv

dt
 = f(v)

  dt = 
dv

f v( )

 Integrating both sides, Údt = 
dv

f v( )Ú . This is the relationship between v and t.

 Further, vdv = adx
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  a = f(v) = 
vdv

dx

  dx = 
vdv

f v( )

 Integrating both sides, Ú dx = 
vdv

f v( )Ú .

 This is the relationship between x and v.

 10.4 UNIFORM RECTILINEAR MOTION

A motion is considered to be uniform if the velocity of the particle remains unchanged (v = C). This implies 

the acceleration of the particle is zero.

  v = 
dx

dt

  
x

x

0

Ú dx = v
o

t

Ú dt

  x – x0 = vt

  x = x0 + vt.

10.4.1 Uniform Accelerated Rectilinear Motion

If a particle moves with constant acceleration, its motion is considered to be uniform accelerated rectilinear 

motion.

  a = 
dv

dt

  
v

v

0

Ú dv = a
o

t

Ú dt

  v – v0 = at

  v = v0 + at

  x – x0 = vt  (10.1)

 Since v = 
dx

dt
  

dx

dt
 = v0 + at

  
x

x

0

Ú dx = 
0

t

Ú (v0 + at)dt

  x – x0 = v0t + 
1

2
at2
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  x = x0 + v0 t + 
1

2
at2 (10.2)

 Again, vdv = adx

  
v

v

0

Ú vdv = 
x

x

0

Ú adx

  
1

2
(v2 – v0

2) = a(x – x0)

  v2 = v0
2 + 2a(x – x0) (10.3)

 Equations (10.1), (10.2) and (10.3) are very useful relationships for rectilinear motion with uniform 

acceleration.

10.4.2 Non-uniform Accelerated Rectilinear Motion

When the acceleration of the particle is not uniform, the motion is said to be non-uniform accelerated rectilinear 

motion. Under such conditions, basic equations are used to relate displacement, velocity, acceleration and time. 

 10.5 RECTILINEAR MOTION UNDER GRAVITY

When a particle is allowed to fall freely, it is subjected to gravity force only. Under this condition, the 

acceleration of the particle would be a = g.

 Thus if a particle is released from a height of h, the above equations can be written as

  v = gt

  h = 
1

2
gt2

  v2 = 2gh

 Here, v represents velocity of the particle with which it touches the ground.

 On the other hand, if a particle is thrown vertically upward with an initial velocity of v0, the distance traveled 

can be computed by the relationship v2 = v0
2 + 2a(x – x0)

  0 = v0
2 – 2gh

  h = 
v

g

0
2

2

 Time required to attain a height h can be calculated from v = v0 + at

  0 = v0 – gt

  t = 
v

g

0

 10.6 RELATIVE MOTION OF TWO PARTICLES

When more than one particle moves along the same line, their position, velocity and acceleration can be 

described independently with respect to the same reference frame.

 However, it’s quite useful to establish various motion attributes of one particle with respect to the other. 

This is what is called relative motion.
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 Let there be two particles namely P1 and P2 are moving along positive x direction so as to occupy a position 

A and B respectively form reference point O as shown in Fig. 10.6.

 Let OA = xP1 and OB = xP2 which are the distances of P1 and P2 respectively 

from O.

 Thus the distance between P1 and P2 = xP1P2 = AB = OB – OA = xp2 – xp1

 This is the relative distance between the two particles. 

 From the above relation, xP2 = xP1 + xP1P2

 This is the relative position of P2 with respect to P1.

 Similarly, relative velocity of P2 with respect to P1 can be expressed as vP2 = vP1 + vP1P2 and relative 

acceleration of P2 with respect to P1 can be expressed as aP2 = aP1 + aP1P2

 10.7 DEPENDENT MOTIONS

There are ample instances when position of one particle is dependent on the other. 

Lifting/lowering of loads by means of wire ropes wrapped around several pulleys is 

one of the widely used means in industrial applications. Under such condition, velocity 

and the acceleration of one particle is dependent on the others.

 Refer to Fig. 10.7. The load B is to be lifted by lowering the load A by means of 

two pulleys D and E. The entire system is hung from the ceiling as shown.

 Let xA = the distance of load A from the ceiling

  xB = the distance of load B from the ceiling

   xD and xE are the centre distances of the two pulleys at D and E 

respectively from the ceiling.

  h = distance between the load B from the center of the pulley at E

  r = radius of the pulleys

 Note that r, h and xD are constant.

 From the geometry of the above configuration, we have

  xA – xD + p r + xE – xD + pr + xE = L

  xA + 2xE = L – 2p r + 2xD

  xA + 2(xB – h) = L – 2pr + 2xD

  xA + 2xB = L – 2pr + 2xD + 2h = Constant

 From this expression, DxA + 2D xB = 0. This implies an infinitesimal small displacement (downward) DxA 

if given to the weight A, corresponding displacement of the weight B will be DxB = 
-Dx

A

2
 Thus the displacement of the weight B will be half of that of A. Negative sign implies movement of the 

weight B is upward.

 Differentiating both sides with respect to time t yields

  �xA + 2 �xB = 0

  �xB = 
- �x

A

2

 Differentiating this equation with respect to time t yields

  ��xA + 2 ��xB = 0

  ��x
B = 

-��x
A

2

 Thus the acceleration of the weight B is half of that of A and in the opposite direction.

O A

x
P1

B

x
P2

Figure 10.6
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Figure 10.7
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Example 10.1  The motion of a particle is expressed as x = x0 + V0t + 
1

2
at2. Calculate the displacement and 

velocity at time t = 5s. Given the initial displacement and velocity are 12 m and 5 m/s respectively. Acceleration 

of the particle is 20 m/s2.

Solution  x = x0 + V0 t + 
1

2
at2

  x0 = 12 m, v0 = 5 m/s, a = 20 m/s2

  x = 12 + 5t + 
1

2
 ¥ 20t2

  xt=5 = 12 + 5 ¥ 5 + 
1

2
 ¥ 20 ¥ (52) = 12 + 25 + 250 m = 287 m

  vt=5 = 
dx

dt t =5

   = V0 + 
1

2
2

5

a t
t

¥
=

   = 5 + 20 ¥ 5 = 105 m/s

Example 10.2  The velocity of a particle is described as �x  = 
1

2
at2 where a = 10 m/s2. Calculate displacement 

of the particle when t = 5 s.

Solution  �x  = 
1

2
at2

  
dx

dt
 = 

1

2
at2

  dx = 
1

2
at2 dt

  x = Ú dx = 

0

5

Ú
1

2
at2dt

   = 
1

2
a ¥ 

1

3
[t3]0

5

   = 
1

2
 ¥ 10 ¥ 

1

3
 ¥ 53 = 208.33 m

Example 10.3  The motion of a particle is defined by the relation x = t4 – 3t3 + 2t2 – 8 where x is in metre

and t is in second. Determine the velocity and acceleration when t = 5 s.

Solution The equation of motion of the particle is x = t4 – 3t3 + 2t2 – 8

  �x  = 
dx

dt
 = 4t3 – 3 ¥ 3t2 + 2 ¥ 2t



10.12 Engineering Mechanics

 Thus �x t=5 = 4 ¥ 53 – 3 ¥ 3 ¥ 52 + 2 ¥ 2 ¥ 5 = 295 m/s

  �x  = 
dx

dt
 = 4t3 – 3 ¥ 3t2 + 2 ¥ 2t

  ��x  = 
dx

dt

�
 = 4 ¥ 3t2 – 3 ¥ 3 ¥ 2t + 2 ¥ 2

  ��x t=5 = 4 ¥ 3 ¥ 52 – 3 ¥ 3 ¥ 2 ¥ 5 + 2 ¥ 2 = 214 m/s2

Example 10.4  The acceleration of a particle is defined by the relation a = t2 – 2t + 2, where a is in m/s2 and t 

is in sec. The displacement and velocity of the particle at t = 1 s is found to be 14.75 m and 6.33 m/s. Find the 

distance traveled, velocity and acceleration when t = 3 s.

Solution The acceleration of the particle is a = 
dv

dt
 = t2 – 2t + 2

  Údv = Ú adt = Ú (t2 – 2t + 2)dt

  v = 
1

3
 t3 – 2 ¥ 

1

2
 t2 + 2t + c1

 When t = 1 sec; v = 6.33 m/s

 Thus 6.33 = 
1

3
13 – 2 ¥ 

1

2
12 + 2 ¥ 1 + c1 or c1 = 5

 Therefore v = 
dx

dt
 = 

1

3
 t3 – 2 ¥ 

1

2
 t2 + 2t + 5

  x = Ú dx = Ú vdt = Ú
1

3
t3dt – Ú t2dt + 2Ú tdt + 5Údt

  x = 
1

3 4¥ t4 – 
1

3
t3 + 2 ¥ 

1

2
t2 + 5t + c2

 When t = 1 s; x = 14.75 m

 Thus 14.75 = 
1

3 4¥
14 – 

1

3
13 + 2 ¥ 

1

2
12 + 5 ¥ 1 + c2

  c2 = 9

 Hence x = 
1

12
t4 – 

1

3
t3 + t2 + 5t + 9

 When t = 3 s;

  x = 
1

12
 ¥ 34 – 

1

3
 ¥ 33 + 32 + 5 ¥ 3 + 9 = 30.75 m

 Similarly

  v = 
1

3
 ¥ 33 – 32 + 2 ¥ 3 + 5 = 11 m/s

  a = 32 – 2 ¥ 3 + 2 = 5 m/s2
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Example 10.5  A particle starts from rest and moves along a straight line with constant acceleration a. If the 

particle attains a velocity v = 10 m/s after a distance of 25 m, find the acceleration.

Solution  v = u + at

  s = ut + 
1

2
at2

 When u = 0,
  v = at

  s = 
1

2
at2

  s = 
1

2
at ¥ t = 

1

2
 ¥ v ¥ 

v

a
 = 

1

2
 ¥ v

a

2

  25 = 
1

2
 ¥ 102

a

  a = 2 m/s2 

Example 10.6  A particle is moving with constant acceleration a. It covers initial distance of 16 m in 10 seconds. 

What time it will take to cover entire distance of 400 m? What will be its final velocity? Assume that the particle 

has started from rest.

Solution  s = 
1

2
at2

  s1 = 
1

2
at1

2

  a = 
2 1

1
2

s

t

  s1 = 16 m, t1 = 10 s

  a = 
2 16

100

¥
 = 0.32 m/s2

  s2 = 
1

2
at2

2

  t2
2 = 2 2s

a

   = 
2 400

0 32

¥
.

  t2 = 50 s

  V = at2 = 0.32 ¥ 50 = 16 m/s

Example 10.7  A car starts its motion from rest with a maximum permissible acceleration a so as to attain its 

maximum velocity v and immediately after that retards with the same deceleration rate so as to come to a halt. 

Find the minimum time in which the car can move from one location to other if the distance between two is S. 
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Solution Between start and stop, the characteristics of movement will be as stated below.

 (1) Acceleration from zero velocity to maximum velocity of v with acceleration a.

 (2) Deceleration from velocity v to stoppage at a deceleration rate a.

 (3) The distance covered by the train in (1) and (2) are x and y respectively and the corresponding times 

are t1 and t2 respectively.

  x = 
1

2
at1

2

  v2 = 2ax

  v = at1

  2x = vt1  (10.4)

 Again,

  y = vt2 – 
1

2
at2

2

  v = at2

  2y = vt2  (10.5)

 Equations (10.4) and (10.5) give

  2(x + y) = v(t1 + t2)

  tmin = 
S

v
 + 

S

v
  v2 = 2ax

  v2 = 2ay

  v2 + v2 = 2a(x + y)

  2v2 = 2aS

  
v

a
 = 

S

v

  tmin = 
S

v
 + 

S

v

   = 
S

v
 + 

v

a

Example 10.8  A rope AB is attached at B to a small block and passes 

over a small pulley C so that its free end A hangs 5 m above the ground as 

shown in Fig. 10.8. The end A is moved horizontally following a straight 

line with a uniform velocity vO. Establish a relationship between velocity 

of the block with time.

Solution Let the vertical distance traveled by the block B is x during 

the time interval t.

 From DA0CA we get A0C = h and A0 A = v0t

\ AC = A C A AO O
2 2+  = h v tO

2 2 2+

 Length of the rope before movement of the block = L = h + 5 + p r + 

h = 2h + pr + 5

5

h

A
0

C

B

A

V
0

Figure 10.8
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 Further, length of the rope during movement of the block to a position B = AC + h + p r + 5 – x = h + 5 

+ pr – x + h v tO
2 2 2+

  2h + p r + 5 = h + 5 + pr – x + h v tO
2 2 2+

  x = h v tO
2 2 2+  – h

v = 
dx

dt
 = 

1

2
 ¥ 

1

2 2 2h v tO+
 ¥ vO

2 ¥ 2t = 
v t

h v t

O

O

2

2 2 2+
 is the velocity-time relationship of the block.

Example 10.9  A particle falls freely from the top of a tower and during the last second of its motion, it falls 

5/9 of the entire height. Find the height of the tower.

Solution Let the height of the tower be h and it takes time t second to cover it.

 Thus h = 
1

2
gt2

 Let h¢ be the distance the particle covers in (t – 1) s.

  h¢ = 
1

2
g(t – 1)2

 Thus h – h¢ = 
1

2
gt2 – 

1

2
g(t – 1)2 is the distance covered by the particle in last second.

 By problem statement, h – h¢ = 
5

9
h

  
1

2
g[t2 – t2 + 2t – 1] = 

5

9
 ¥ 

1

2
gt2

  (5t – 3)(t – 3) = 0

  t = 
3

5
 s

or  t = 3 s

 As per problem, t > 1 s; hence t = 
3

5
 s is not acceptable.

 Thus t = 3 s

\ Total distance covered by the particle = height of the tower = h = 
1

2
gt2 = 

1

2
 ¥ 9.8 ¥ 32 m = 44.1 m

Example 10.10  A car starts from rest to attain a speed v with a constant acceleration a1; it maintains the same 

speed v for sometime and then comes to rest following a constant deceleration a2. If the total distance covered 

is S, find the total time t required to cover this distance.

Solution Let S1 be the distance during initial part when it moves with constant acceleration a1;

S2 be the distance during intermediate part when it moves with constant velocity v;

S3 be the distance during last part when it moves with constant deceleration a2 and t1, t2 and t3 are the 

corresponding time. 

  S1 = 
1

2
a1t1

2 and v = a1t1;

 Thus t1 = 
v

a1

 and S1 = 
1

2
vt1
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  S2 = vt2 and t3 = 
v

a2

 and S3 = 
1

2
vt3

 Thus S = S1 + S2 + S3 = 
1

2
vt1 + vt2 +

1

2
vt3

  t1 + 2t2 + t3 = 
2S

v

  (t1 + t2 + t3) + t2 = 2S

v
  (10.6)

 Further, t1 + t3 = 
v

a

v

a1 2

+  = v
a a

1 1

1 2

+
È

Î
Í

˘

˚
˙

  t1 + t2 + t3 – t2 = v
a a

1 1

1 2

+
È

Î
Í

˘

˚
˙

  t – t2 = v
1 1

1 2a a
+

È

Î
Í

˘

˚
˙  (10.7)

 Adding Eqs (10.6) and (10.7), we get 2t = 
2S

v
 + v

1 1

1 2a a
+

È

Î
Í

˘

˚
˙

  t = 
S

v

v
+

2

1 1

1 2a a
+

È

Î
Í

˘

˚
˙

Example 10.11  The acceleration of a particle at any point A is expressed by the relation a = 200x(1 + kx2), 

where a and x are expressed in m/s2 and metres respectively and k is a constant. If the velocity of the particle at 

A is vA = 2.5 m/s when x = 0 and vA = 5 m/s when x = 0.15 m, find the value of k.

Solution Given a = 200x(1 + kx2)

  
dv

dt
 = 200x(1 + kx2)

  
dv

dx

dx

dt
 = 200x(1 + kx2) 

  v
dv

dx
 = 200x(1 + kx2)

  vdv = 200x(1 + kx2)dx

fi  Úvdv = Ú200x(1 + kx2)dx

 Integrating both sides,

  
1

2
v2 = 200 ¥ x2

2
 + 200k ¥ 

x4

4
 + C1

when x = 0; vA = 2.5 m/s.
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 Thus C1 = 
2 5

2

2.

 Further, when x = 0.15; vA = 5 m/s 

\  
1

2
52 = 200 ¥ ( . )0 15

2

2

 + 200k ¥ 
( . ) .0 15

4

2 5

2

4 2

+
 Solving, we get

  k = 281 m–2

Example 10.12  Steep safety ramps are built to enable vehicles with defective brakes to stop safely. A truck 

enters such a ramp of 240 m at a high speed v0 and travels 165 m in 6 s at constant deceleration so as to 

reduce its speed to 
v0

2
.  Assuming the same uniform deceleration, determine (a) the additonal time required to 

stop the truck, and (b) the additional distance traveled by the truck.

Solution Let the deceleration of the truck is a m/s2

\
 

v
v a0

0
2

6= - ¥

or,   a
v

= 0

12

Following x v t= -0

1

2
 at2;

 165 6
1

2 12
60

0 2= ¥ - ¥ ¥v
v

or,  v0

165

4 5
=

.
m/s

(a) Let the additional time required to stop the truck is t¢ s 

Thus from the relation vf – vo = at¢, we have 

    0
2 12

0 0- = ¢
v v

t

or, t ¢ = 6 s

(b) Let the additional distance traveled by the truck is x' m.

It therefore follows from the relationship vf
2

 – vo
2 = 2ax'

 

v v
x0

2
0

4
2

12
= ¥ ¥ ¢

or, ¢ = = ¥ =x v1 5 1 5
165

4 5
550. .

.
m

Example 10.13  The position vector of a particle moving in the x-y plane at time t = 4 s is 5.05 i + 3.2 j m. 

At t = 4.5 s its position vector becomes 6.27 i + 4.7 j m. Determine the magnitude v of its average velocity during 

this interval and the angle q made by v with x-axis.

Solution The position vector at t = 4 s is 
�
r1 = 5.05 i + 3.2 j and the same at t = 4.5 s is 

�
r2 = 6.27 i + 4.7 j

Thus, Dr = 
� �
r r2 1-  = (6.27 i + 4.7 j) – (5.05 i + 3.2 j) = 1.22 i + 1.5 j

\ vav = 
D
D

D
D

D
D

�
r

t

x

t

y

t
= + = +i j i j

1 22

0 5

1 5

0 5

.

.

.

.
 = 2.44 i + 3 j = 2.44 i + 3 j
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 Therefore the magnitude v of its average velocity during this interval becomes 2 44 32 2. +  m/s = 3.867 m/s 

and the angle q made by v with x-axis is tan–1 3

2 44.

Ê
ËÁ

ˆ
¯̃  = 50.87°

Example 10.14  A particle undergoing rectilinear translation along x-axis has an acceleration ax = –kvx, where 

k is a constant and vx is the instantaneous velocity. Find the velocity and displacement at any time t, if the initial 

velocity and initial displacement are v0 and 0 respectively.

Solution

It is given that ax = –kvx

or vx 

dv

dx

x  = –kvx

or  dvx = –kdx

 Integrating the above equation, we get

  vx = –kx + C

where C is constant of integration. Applying the initial condition x = 0, vx = v0, we get C = v0

Thus the instantaneous velocity becomes vx = –kx + v0

 Further, one can write vx = 
dx

dt

or  
dx

vx

 = dt

or  
dx

v kx0 -
 = dt

 Integrating the above equation, we obtain

– 
1

k
 ln (v0 – kx) = t + C1

where C1 is constant of integration. Applying the initial condition x = 0, vx = v0, we get C1 = – 
1

k
 ln v0.

 Therefore, one can write

 –
1

k
 ln (v0 – kx) = t – 

1

k
  ln v0

or ln 
v kx

v

0

0

-
 = –kt

or x = 
v

k

0 (1 – e–kt)

 The velocity is then found to be

vx = 
dx

dt
 = v0 e

–kt

Example 10.15  A particle travels along a straight line with a velocity vp = 
a

b xp+
. Determine its acceleration 

when xp = 2 m. Given that a = 6 m2/s  and b = 3 m.

Solution

It is given that vp = 
a

b xp+

 Differentiating the above expression with respect to xp, we obtain

dv

dx

p

p

 = 
-
+

a

b xp( )2



 Rectilinear Motion of a Particle 10.19

 The acceleration of the particle becomes 

vp 

dv

dx

p

p

 = 
-
+ +

=
-
+

a

b x

a

b x

a

b xp p p( ) ( )2

2

 

 For the given condition, the acceleration becomes

= 
-
+
6

3 2

2

3( )
 = –0.288 m/s2

Example 10.16  The velocity of a particle that moves along x-axis is expressed as v = 2 + 5t

3

2 , where t is in 

s and v is in m/s. Determine the displacement x, the velocity v, and acceleration a when t = 4 s. The particle is 

at the origin when t = 0

Solution It is given that v = 2 + 5t

3

2

or 
dx

dt
 = 2 + 5t

3

2

or dx = 2 5

3

2+( )t  dt

 Integrating the above equation, we obtain

x = 2t + 5 ¥ 
3

2

5

2t  + C

where C is constant of integration. Applying the condition x = 0, when t = 0, we get C = 0

 Thus, the above equation becomes x = 2t + 2 t

5

2

 When t = 4 s, the displacement becomes x = 2 ¥ 4 + 2 ¥ 4

5

2 = 72 m.

 Velocity at t = 4 s becomes v = 2 + 5 ¥ 4

3

2 = 42 m/s

 Acceleration can be expressed as

a = 
dv

dt
 = 5 ¥ 

3

2
 ¥ t

1

2  

 Acceleration at t = 4 s becomes a = 5 ¥ 
3

2
 ¥ t

1

2 = 15 m/s2

Example 10.17  The acceleration a of a particle that moves in + x direction varies with its position as shown 

in Fig. 10.9. If the velocity of the particle is 0.8 m/s when x = 0, determine the velocity v, when x = 1.4 m. 

1.20 0.4 0.8 1.6

0.2

0.4

x m( )

a m s( / )
2

Figure 10.9
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Solution

 (i) The acceleration remains constant at a = 0.4 m/s2 for 0 < x < 0.4.

  We know that a = v 
dv

dx

  or vdv = adx

  Integrating both sides, we get

  vdv adx a dxÚ Ú Ú= =

  When x = 0; v = 0.8 m/s

  Let the velocity is v1 when x = 0.4 m

  Hence above integration is written as vdv a dx

v

0 8 0

0 41

.

.

Ú Ú= , from which v1 = 0.98 m/s

 (ii) The acceleration follows straight line for 0.4 < x < 0.8

  It is now essential to develop the acceleration equation considering a = f (x)

  From the graph, it is found that when x = 0.4; a = 0.4 and when x = 0.8; a = 0.2

  Let the general equation of the curve is in the form a = mx + k

  Thus 0.4 = m ¥ 0.4 + k and 0.2 = m ¥ 0.8 + k

  Solving these two equations; the particular equation becomes a = –0.5x + 0.6

  Let the velocity is v2 when x = 0.8 m

  Then vdv

v

0 98

2

.

Ú  = ( . . )

.

.

- +Ú 0 5 0 6

0 4

0 8

x dx  which yields v2 = 1.0956 m/s

 (iii) During the period 0.8 < x < 1.2 acceleration once again remains constant at a = 0.2 m/s2

  If the velocity of the particle is v3 when x = 1.2 m, then from the relationship

  v3
2 = v2

2 + 2ax; v3 = 1.166 m/s

  Since a = 0 and when x > 1.2; the velocity of the particle remains constant at v3 = 1.166 m/s.

  This implies velocity v = v3 = 1.166 m/s, when x = 1.4 m. 

Example 10.18  The acceleration a of a particle following rectilinear translation is defined as a = –k v , where 

k is a constant. Knowing that x = 0 and v = 25 m/s at t = 0, and that v = 12 m/s when x = 6 m, determine (a) the 

velocity of the particle when x = 8 m and (b) the time required for the particle to come to rest.

Solution It is given that a = –k v  = –kv

1

2

or v 
dv

dx
 = –kv

1

2

or v

1

2dv = –kdx

 Integrating the above equation, we obtain

2

3

3

2v  = – kx + C

where C is constant of integration. Applying the condition v = 25 m/s, when x = 0, we get C = 83.33.

 From the above equation, we obtain

2

3

3

2v  = –kx + 83.33
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 Further, when v = 12 m/s; x = 6 m.

Thus, 
2

3
12

3

2( )  = –k ¥ 6 + 83.33

or k = 9.27

 Finally, one can write

2

3

3

2v  = –9.27x + 83.33

 (a) The velocity of the particle when x = 8 m is found to be

   
2

3
8

3

2( )vx =  = –9.27 ¥ 8 + 83.33

  or vx = 8 = 5.746 m/s

 (b) Again, a = –k v  = –kv

1

2

  or 
dv

dt
 = –kv

1

2

  or v
-

1

2 dv = –kdt

  Integrating the above equation, we obtain

  2v

1

2 = –kt + C1

  When t = 0, v = 25 m/s; from which C1 = 10

  Thus, 2v

1

2 = –9.27t + 10

  The time required for the particle to come to rest is tv = 0 = 
10

9 27.
 = 1.078 s

NUMERICAL PROBLEMS

 10.1 A particle has straight line motion according to the equation x = t3 – 3t2 – 5, where x is in metre and 

t is in second. Find the change in position when its velocity changes from 8 m/s to 40 m/s.

 10.2 A particle is undergoing a rectilinear motion such that its displacement from a fixed origin can be 

expressed by x = 3t2 + 2t, where x is in metre and t is in second. Find the displacement, velocity and 

acceleration at the end of 4 seconds.

 10.3 A train “A” starts from rest from a point O and travels along a straight line with an acceleration of 

2 m/s2. Another train “B” starts from rest from same point O, but 4 sec later and moves with an 

acceleration of 3 m/s2. At what distance from O will the train B overtake the train A? 

 10.4 The acceleration of a particle is given by the equation a = 
10

1v +
, where a is expressed in m/s2 and v 

in m/s. The particle starts from rest at x = 0. What is the position of the particle when v = 10 m/s?

 10.5 The position of a particle describing rectilinear motion can be described by x = t3 – 9t2 + 15t + 18, 

where x is expressed in metre and t is in second. Determine the time, displacement, and acceleration 

of the particle when its velocity is zero.
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 10.6 A car moves along a straight line with a constant acceleration 2 m/s2. How long will it take to change 

its speed from 6 m/s to 9 m/s? What will be the displacement during this period? 

 10.7 A train starts from rest from station O; it gains speed at the rate of 1 m/s2 for 5 seconds and then at 

the rate of 1.5 m/s2 until it reaches the speed of 10 m/s. The train maintains the same speed until it 

reaches the station A when brakes are applied so that the train has a constant deceleration and comes 

to rest in 5 seconds. The total duration of travel between the stations O and A is 40 seconds. Find the 

distance between the two stations.

 10.8 A particle is dropped from the top of a tower h metres high and at the same time another particle is 

thrown upwards from the ground. These two particles meet when the 1st particle has covered 
1

n
 times 

of the total height h. Prove that the velocities when they meet are in the ratio 2: (n – 2) and that the 

initial velocity of projection of the second particle is 
ngh

2
.

 10.9 Water drips from a faucet at a uniform rate of n drops per second. Find the distance x between any 

two adjacent drops as a function of the time t that the trailing drop has been in motion. 

 10.10 Refer to Fig. 10.10. Determine the velocity and acceleration of the block 3 at the instant considered. 

Given �x1 = 4.0 m/s; ��x1 = 1.5 m/s2 and �x2 = 2.5 m/s; ��x 2 = 2.0 m/s2

x
1

3

2

1

x
2

Figure 10.10

 10.11 A train starts at station A so as to reach another station B located along a straight line. The train 

accelerates in such a way that its velocity increases uniformly from 0 to 20 m/s and then decreases 

uniformly to 0 at B. If the total time taken by the train to cover AB is 5 min, draw the v – t diagram 

and hence determine the distance between the two stations.

 10.12 A train accelerates from rest with constant acceleration of a1 to acquire a maximum velocity of vmax 

and immediately starts decelerating with constant deceleration of a2 so as to come to rest. If the total 

duration of the travel is T, prove that vmax = 
a a

a a

1 2

1 2+
T.

 10.13 The acceleration a of a particle is described as a = 40 – 160x, where a and x are expressed in m/s2 

and in m respectively. If the velocity of the particle is 0.3 m/s, when x = 0.4 m, determine (a) the 

maximum velocity of the particle and (b) the positions at which the velocity is zero. 

 10.14 While traveling a distance of 4 km between points A and D, a car is driven at 100 km/hr from A to B 

for t s and at 60 km/hr from C to D also for t s. If the brakes are applied for 5 s between B and C to 

ensure uniform deceleration calculate t and the distance s between A and B. 
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 10.15 The velocity v of a particle with respect to time t is as shown in Fig. 10.11. Draw the a – t and x – t 

graphs for the particle during the period 0 < t < 40, if x = –14.6 m at t = 0. Also determine (a) the 

maximum value of its position, (b) the values of t for which x = 32.6 m, (c) the total distance traveled 

by the particle during the period t = 0 to t = 30 and (d) the two values of t for which the particle 

passes through the origin.

  Note: Solve (c) by method of integration and validate the result by area method. 

10

–5.5

0

1.8

5.5

t s( )

V m s( / ) 18 24 30

Figure 10.11

 10.16 The velocity of a particle having motion in the x-y plane at time t = 3.5 s is 4.12i + 3.17j m/s. The 

average acceleration during next 0.05 s becomes 2i + 2.5j m/s2. Determine the velocity at t = 3.55 s 

and the angle a made by average acceleration and the velocity vector at t = 3.55 s.

ANSWERS TO NUMERICAL PROBLEMS

 10.1 41.6 m

 10.2 x = 56 m, �x  = 26 m/s, ��x  = 6 m/s2

 10.3 475 m 

 10.4 38.33 m

 10.5 t = 1 s, x = 25 cm, ��x  = -12 m/s2 and t = 5 s, x = -7 m, ��x  = 12 m/s2

 10.6 t = 1.5 s; x = 11.25 m

 10.7 t = 11.6 s; x = 50.46 m (measured from 'O')

 10.9 x
gt

n

g

n
= +

2 2

 10.10 �x3 = 10.5 m/s ≠; ��x3 = 5 m/s2 ≠
 10.11 AB = 3000 km

 10.13 (a) Vmax = 1.921 m/s, (b) 0.09812 m, 0.402 m

 10.14 t = 87.5 s, s = 2.43 km

 10.15 (a) 49.1m, (b) 18 s and 30 s, (c) 8.1 s and 36 s

 10.16 v = 0.412i + 0.396j m/s; a = 7.12°]





 11.1 INTRODUCTION

In chapters 1 and 10, it is explained that kinetics is the branch of dynamics that deals with motion attributes 

along with force that causes motion. It is the force that causes motion of the particle with acceleration and 

deceleration. The motion parameters and associated force analysis are based on the Newton’s well known 

laws of motion.

 11.2 NEWTON’S LAWS OF MOTIONS

11.2.1 Newton’s First Law of Motion

A particle maintains its state of rest or state of motion along a straight line with a constant velocity unless 

and until it is acted upon by a force.

 This implies that it is the inherent nature of a particle to maintain its status quo in regard to its state of 

rest or motion. Thus, if a particle moves with constant velocity, it will never stop unless some force opposes 

its motion so as to stop it. If a ball is thrown with an initial velocity over a floor, we find that after moving 

through a certain distance it comes to rest. This is owing to the fact that frictional resistance between the ball 

and the floor becomes instrumental to stop the motion of the ball. Thus, it is a resistive force that brings down 

the velocity of the ball. Similarly, when the speed of a car increases it is due to the tractive force developed by 

the engine. Further, a particle if at rest will not start its motion from its own. It is therefore can be concluded 

that without any external agency in the form of a force, change of status is not possible. This characteristic of 

continuation of original status of rest or motion is called the inertia of the particle. 

11.2.2 Newton’s Second Law of Motion

The acceleration of a particle is proportional to the net force acting on it and its direction is in the direction 

of this force.

 Thus mathematically

  ÂF = ma (11.1)

 Here F is the force that causes an acceleration of a to the body of mass m.

 If the force F is resolved into two mutually perpendicular components, namely, Fx and Fy such that 

F = Fx i + Fy j and acceleration a has also got the same components ax and ay, then

 ÂFx = max (11.2)

11
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and

 ÂFy = may (11.3)

 Closer look at the second law reveals that when a = 0, F = 0. This implies that in the absence of resultant 

force, the particle cannot have any acceleration. Further, if it is already under rest, it will remain stationary. 

This is in congruence with the Newton’s first law.

11.2.3 Newton’s Third Law of Motion

For every action, there is always an equal and opposite reaction.

 This statement does not require any further elaboration since from the very beginning of statics, we have 

considered the concept of equal and opposite reactive forces in order to restore equilibrium. This is in compliance 

with the equilibrium of bodies under the actions of two forces. However, this concept of equal and opposite 

forces is not only confined to the bodies under rest, rather it is equally applicable to the bodies under motion. 

Example 11.1  A weight W = 100 N is lifted by means of two pulleys as 

shown in Fig. 11.1. If the free end of the rope is pulled down vertically with 

constant acceleration a = 5 m/s2, find the tension in the rope. Neglect friction 

in the pulleys.

Solution Let the tension in the string be T.

 Since the free end of the rope is pulled down with an acceleration a, the 

acceleration of the weight will be a¢ = – 
a

2
 [Negative sign implies W is moving 

opposite to the direction of applied load at the free end of the rope.]

 Considering the free body of the weight and considering Newton’s second law 

of motion,

 ÂF = ma

 fi 2T – W = 
W

g
 a¢ = 

W

g

a

2

 T = 
W a

g2
1

2
+

È

Î
Í

˘

˚
˙ = 

100

2
1

5

2 9 81
+

¥
È

Î
Í

˘

˚
˙

.
 N = 62.74 N

 Thus, the tension in the rope is 62.74 N.

Example 11.2  The driver of a train that moves along a straight line suddenly applies brake so as to stop 

the train in 3 seconds. The train covers a distance of 9.81 m before it comes to rest. Assuming the train has 

got a constant deceleration, find the co-efficient of friction between the wheel and the track.

Solution t = 3 s; x = 9.81 m; vf = 0

 Let the velocity of the train at the time of braking be v0 and the deceleration rate is a.

 Then considering linear motion, we have

  vf = v0 – at

  0 = v0 – 3a

  v0 = 3a  (11.4) 

and

  vf
2 = v0

2 – 2ax

  0 = v0
2 – 2 ¥ a ¥ 9.81

Figure 11.1

W

a a¢ = /2a

A

T T
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  v0
2 = 2 ¥ 9.81 ¥ a  (11.5)

 Comparing Eqs (11.4) and (11.5),

  9 ¥ a2 = 2 ¥ 9.81 ¥ a

  a = 
2 9 81

9

¥ .
 m/s2

 The force that causes deceleration of the train is friction.

 Thus ÂF = ma = Ff = mN = m.mg

  m = 
a

g
=

¥
¥

2 9 81

9 9 81

.

.
 = 0.22

 Thus the co-efficient of friction between the wheel and the track is 0.22.

Example 11.3  Weights W and 2W are supported by a string in a vertical 

plane as shown in Fig. 11.2. Find the magnitude of an additional weight Q 

applied over W that will give a downward acceleration of a = 0.1g. Find the 

tension in the rope. Neglect friction in the pulleys.

Solution Let the tension in the string be T.

 The situation being similar to that of the problem 11.1. If the combined 

W and Q move down with an acceleration a, the acceleration of the weight 

2W will be a¢ = – 
a

2
. 

 Applying Newton’s second law of motion,

  ÂF = ma

  (W + Q) – T = 
W Q

g

+
a

  T = (W + Q) 1 -
È

Î
Í

˘

˚
˙

a

g
 (11.6)

 Similar consideration of the weight 2W yields

  2T – 2W = 
2W

g
.a¢ = 

2

2

W

g

a

  T = W 1
2

+
È

Î
Í

˘

˚
˙

a

g
  (11.7)

 Comparing Eqs (11.6) and (11.7) and replacing a = 0.1g

  (W + Q) 1
0 1

-
È

Î
Í

˘

˚
˙

. g

g
 = W 1

0 1

2
+

È

Î
Í

˘

˚
˙

. g

g

  (W + Q) ¥ 0.9 = W ¥ 1.05

  Q = 
0 15

0 90

.

.
W = 

W

6

 Thus, weight Q becomes 
W

6

Figure 11.2

Q

W

T
T

T

2W a a¢ = /2

a
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Example 11.4  Two blocks of masses m1 = 15 kg and m2 = 10 kg are connected by a flexible string as 

shown in Fig. 11.3. Assuming the coefficient of friction between block of mass m2 and the horizontal surface 

on which it rests to be m = 0.25, find the acceleration of the system of masses and tension in the string. 

Neglect friction in the pulley.

Solution Let the block 1 move downwards at an acceleration of a m/s2 and 

let the tension in the string be T.

 Since both the blocks are connected by a common string, the block 2 that 

rests on the floor will also have same acceleration as that of block 1.

 Considering the free body of the block 1 and applying Newton’s second 

law of motion,

  ÂF = ma

  m1g – T = m1a

  T = m1(g – a)  (11.8)

 For block 2, T – Ff = m2a

  T – mm2g = m2a

  T = m2(a + mg)  (11.9)

 Eliminating T from Eqs (11.8) and (11.9), we have

  m1(g – a) = m2(a + mg)

  a = 
[ ]m m g

m m

1 2

1 2

-
+
m

 = 
[ . ]15 0 25 10

15 10

- ¥
+

 ¥ 9.81 m/s2 = 4.905 m/s2

 From Eq. (11.8), we have T = m1(g – a) = 15(9.81 – 4.905) N = 73.575 N

Example 11.5  A small block of mass m rests on an inclined 

plane as shown in Fig. 11.4. Sliding of the block impends 

when the inclination angle q = 30°. If the inclination angle is 

increased to 45°, what would have been the acceleration of the 

block? Assume ms = mk.

Solution From the free body diagram of the block and 

considering static equilibrium,

 We have N = W cos q and

  Ff = W sin q = mN = mW cos q

  m = tan q = tan 30°

 When q is increased to q ¢ = 45°; there will be motion and the block is under dynamic equilibrium, implying 

  W sin q ¢ – F¢f = 
W

g
a

  W sin q ¢ – mN ¢ = 
W

g
a

  W sin q ¢ – mW cos q ¢ = 
W

g
a

Figure 11.3

T

T

F

m
1

m
2

a

Figure 11.4

W

N

a

W
cos qW

sin
q

q

F f
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  a = g[sin q ¢ – m cos q ¢]

  a = g[sin 45° – tan 30° cos 45°] = 0.3g

Example 11.6  A small block of mass m rests on an inclined plane, starts from point A and slides down 

the plane as shown in Fig. 11.5. What distance along the horizontal plane BC will it travel before it comes to 

rest? The co-efficient of friction between the block and both the planes is m = 0.3. Assume there is no loss of 

velocity while changing its motion from inclined plane to that of horizontal plane.

Solution AB = 3 42 2+  = 5 m

 Let the inclination of the plane with the horizontal be q ;

 Thus cos q = 
4

5
 and sin q = 

3

5

 From the free body diagram of the block and considering dynamic equilibrium,

  W sin q – mW cos q = 
W

g
a

  a = g[sin q – m cos q] [a = acceleration of the block along the inclined plane]

 Since the block starts from rest;

  vf
2 = 2as = 2 ¥ g[sin q – m cos q] ¥ 5 = 2 ¥ 9.81 ¥ 

3

5

3

10

4

5
- ¥È

ÎÍ
˘
˚̇
 ¥ 5

  vf = 5.943 m/s

 While moving along the plane BC, the block will come to rest due to retarding force friction. If a¢ is the 

corresponding deceleration,

  F = ma¢ = Ff = mmg

  a¢ = mg = 0.3 ¥ 9.81 m/s2 = 2.943 m/s2

 Let the distance covered by the block along horizontal plane BC be x.

  0 = vf
2 – 2a¢x

  x = 
v

a

f
2

2 ¢
 = 

5 943 5 943

2 2 943

. .

.

¥
¥

 m

  x = 6 m

Figure 11.5
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Example 11.7  Two small cars of weights W1 = 200 N and W2 = 100 N are connected by a flexible but 

inextensible string wrapped around a pulley C and are free to roll on an inclined plane. If the cars are released 

from rest having the position as shown in Fig. 11.6, find the time required for them so as to exchange their 

positions. Assume entire system is frictionless. 

Solution For car 1, W1 sin 30° – T = 
W

g

1
a

  T = W1 sin 30∞ -
È

Î
Í

˘

˚
˙

a

g
 = 

W a

g

1

2
1

2
-

È

Î
Í

˘

˚
˙ = 100 1

2
-

È

Î
Í

˘

˚
˙

a

g
 (11.10)

 For car 2, T – W2 sin 30° = 
W

g

2
a

  T = W2 sin 30∞ +
È

Î
Í

˘

˚
˙

a

g
 = W2 

1

2
+

È

Î
Í

˘

˚
˙

a

g
 = 100 

1

2
+

È

Î
Í

˘

˚
˙

a

g
 (11.11)

 From Eqs (11.10) and (11.11),

  100 1
2

-
È

Î
Í

˘

˚
˙

a

g
 = 100 

1

2
+

È

Î
Í

˘

˚
˙

a

g

  
3a

g
 = 

1

2

  a = 
g

6

  x = 
1

2
at2

  50 = 
1

2
 ¥ 

9 81

6

.
t2

  t = 
600

9 81.
 sec = 7.82 s

Figure 11.6
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q
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2
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1
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 11.3  EQUATIONS OF DYNAMIC EQUILIBRIUM: D’ALEMBERT’S 

PRINCIPLE

From Newton’s Second Law,

  ÂF = ma

  ÂF – ma = 0

  ÂF + (–ma) = 0  (11.12)

 The above equation can be interpreted as if it is considered that ÂF is the net force acting along the direction 

of motion and –ma is the force that acts opposite to the motion so that their combined effect will restore 

equilibrium, i.e., no unbalance force is acting on the body. This can, however, be envisaged that equation of 

dynamic equilibrium is tantamount to the equation of static equilibrium. The product of mass and acceleration 

with a negative sign is called inertia force to assume to act so as to oppose the motion. 

 The above equation is treated as equation of dynamic equilibrium of the particle. 

 To obtain dynamic equilibrium of a particle, a fictitious force called inertia force is added opposite to the 

direction of motion so that resultant force on the particle becomes zero. This concept is known as D’ Alembert’s 

Principle and is a very useful approach in the solution of problems in kinetics. 

Example 11.8  A block of weight W, height 2h and width 2c rests on a flat trailer car that moves horizontally 

with a constant acceleration a as shown in Fig. 11.7. Determine 

 (a) the acceleration at which slipping of the block will impend if the coefficient of friction between the 

block and the car is m.

 (b) the value of the acceleration at which tipping of the block about the rear edge of the block will impend, 

assuming sufficient friction to prevent slipping.

Solution Let the acceleration of the car be a1.

 (a) From the free body of the block, it is clear that the motion of the car is governed by friction force Ff 

and the inertia force ma1.

  Under the condition of impending motion; Friction force = Inertia Force

  Ff = ma1

  mN = ma1

  mmg = ma1

  a1 = mg

  Thus the acceleration at which slipping of the block will impend is a1 = mg

 (b) When the tipping of the block about the rear edge will impend, there will be no surface contact between 

the block and the floor of the car; rather the contact is along the edge A.

Figure 11.7

A

aa

W
h

h
W
g

2c
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  Thus with respect to A, the inertia force will try to topple the block which will be counteracted by the 

weight.

  From the mechanics point of view, the CCW moment produced by the inertia force should be equal to 

the CW moment produced by the body force.

  ÂMA = 0

  W ¥ c = 
W

g
 a2 ¥ h

  a2 = 
cg

h
.

  The value of the acceleration at which tipping of the block about the rear edge of the block will impend 

is a2 = 
cg

h
.

Example 11.9  Neglecting friction and inertia of the two step pulley 

as shown in Fig. 11.8, find the acceleration of the falling weight P. 

Assume P = 20 N, Q = 30 N and r1 = 2r2.

Solution Let the acceleration of the weight P on pulley of radius 

r1 = ap and the acceleration of the weight Q on pulley of radius r2 = aQ.

 Let during any time interval t the rotation of the pulleys be q.

\  q = 
l

r

1

1

 = 
l

r

2

2

  l1r2 = l2r1

 Differentiating both sides twice with respect to t yields

  
d

dt

2

2
 (l1r2) = 

d

dt

2

2  (l2r1)

  apr2 = aQ r1

  aQ = 
a r

r

aP P2

1 2
=  [since r1 = 2r2]

 Considering the dynamic equilibrium of the weights, moment about C yields

  ÂMC = 0

  W
W

g
aQ

Q
Q+

È

Î
Í

˘

˚
˙.  r2 = W

W

g
aP

P
P-

È

Î
Í

˘

˚
˙. r1

  WQ 1
2

+
È

Î
Í

˘

˚
˙

a

g

P  r2 = WP 1 -
È

Î
Í

˘

˚
˙

a

g

P  2r2

  30 ¥ 1
2

+
È

Î
Í

˘

˚
˙

a

g

P  = 20 ¥ 2 1 -
È

Î
Í

˘

˚
˙

a

g

P

  
3

2

4a

g

a

g

P P+  = 4 – 3 = 1

  aP = 
2

11
 g

\ Acceleration of the falling weight P = 
2

11
 g.

Figure 11.8
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Example 11.10  Refer to Fig. 11.9. Find the maximum permissible acceleration that the car can develop 

without tipping over backward.

b c

C

Rf

hW

a
W
g

a

Rr

F

Figure 11.9

Solution When the backward tipping of the car takes place, there would not be any contact between the 

front wheel and the road.

 Following the similar situations as that of problem 11.8.

 Taking moment about the point of contact between the rear wheel and the road

  W ¥ b = 
W

g
 a ¥ h

  a = 
bg

h

 Thus the maximum permissible acceleration that the car can develop with out tipping over backward is a = 
bg

h
.

Example 11.11  Two blocks A and B weighing WA = 

45 N and WB = 90 N respectively are placed side by side 

on an inclined plane having inclination angle q = 30° as 

shown in Fig. 11.10, so that they can slide together. If the 

coefficient of friction between the blocks and the plane are 

mA = 0.15 and mB = 0.30 respectively, find the contact thrust 

existing between the blocks under motion.

Solution Let the mutual thrust existing between the 

blocks be T and the acceleration of the blocks be a.

 Considering the free body of the block A and using 

dynamic equilibrium,

  T + 
W

g

A
 a + FA = WA sin q (11.13)

 Similar considerations of the block B yields

  T + WB sin q = 
W

g

B
 a + FB (11.14)

 Eqs (11.13) – (11.14) yield

  
W

g

A  a + FA – WB sin q = WA sin q – 
W

g

B
 a – FB

  (WA + WB) 
a

g
 = (WA + WB) sin q – (FA + FB)

Figure 11.10
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   = (WA + WB) sin q – (mANA + mBNB)

   = (WA + WB) sin q – (mA ¥ WA cos q + 2 ¥ mA ¥ WB cos q)

  (WA + WB) 
a

g
 = (WA + WB) sin q – mA cos q (WA + 2WB) (11.15)

 Using WB = 2WA, Eq. (11.15) becomes

  3WA ¥ 
a

g
 = 3WA sin q – 5WA mA cos q

  3
a

g
 = 3 sin q – 5mA cos q

  a = g sin q – 
g

3
 5mA cos q = 9.81 ¥ sin 30 – 

9 81

3

.
 ¥ 5 ¥ 0.15 ¥ cos 30 = 2.78 m/s2

 Thus from Eq. (11.13)

  T = WA sin q – 
W

g

A
a – mAWA cos q = 45 sin 30 – 

45

9 81.
 ¥ 2.78 – 0.15 ¥ 45 cos 30 = 3.86 N

 Thus the contact thrust existing between the blocks under motion is 3.86 N.

Example 11.12  A block of weight W1 = 150 N is 

placed on an inclined plane having inclination angle 

q = 45° and connected to another weight W2 = 100 N by 

means of two frictionless pulleys and string as shown in 

Fig. 11.11. If the coefficient of friction between the block 

and the plane is m = 0.15, find the tension in the string.

Solution Let the tension in the string be T and the 

acceleration of the weights be a1 and a2 respectively.

 The most interesting aspects of the given problem is 

that it is not clearly mentioned whether the block will 

move up or slide down along the plane. This is to be 

ascertained first.

 Since the motion is dependent, the acceleration of the two weights are related, which is also required to be 

established.

 As regards to the first criteria, let us consider force analysis of the block and assume the weight is in static 

condition.

 Considering static equilibrium of the weight W2 = 100 N, 

we have 2T = W2 = 100

  T = 50 N

 As regards the block, the component of the weight mg sin q = 150 sin 45 = 106.06 N is acting down the 

plane and is greater than the tension T = 50 N in the string that is acting upward along the plane.

 Thus the block will slide down with a consequence of rising of weight W2.

 Now considering the motion of the system, if the displacement of the block is x in a time interval t, the 

upward movement of the weight W2 is 
x

2
.

 Thus x = 
1

2
at2 and 

x

2
 = 

1

2
a¢t2

Figure 11.11
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 Comparing these two equations, we have a¢ = 
a

2

 Now considering dynamic equilibrium of the block,

we have from D’Alembert’s principle,

  T + mN + 
W

g

1
 a = W1 sin q

  T = W1 sin cosq m q- -
È

Î
Í

˘

˚
˙

a

g
 (11.16)

 Similarly for the weight W2,

we have from D’Alembert’s principle,

  2T = W2 + 
W

g

2
 a¢ = W2 1 +

¢È

Î
Í

˘

˚
˙

a

g

  T = 
W2

2
 1 +

¢È

Î
Í

˘

˚
˙

a

g
 (11.17)

 Comparing Eqs (11.16) and (11.17),

  W1 sin cosq m q- -
È

Î
Í

˘

˚
˙

a

g
 = 

W a

g

W a

g

2 2

2
1

2
1

2
+

¢È

Î
Í

˘

˚
˙ = +

È

Î
Í

˘

˚
˙

 Putting the values of W1, W2, g, m and q, we have a = 1.953 m/s2

 Thus from Eq. (11.17), T = 
W a

g

2

2
1 +

¢È

Î
Í

˘

˚
˙ = 

W a

g

2

2
1

2
+

È

Î
Í

˘

˚
˙ = 

100

2
1

1 953

2 9 81
+

¥
È

Î
Í

˘

˚
˙

.

.
 = 55 N

 Therefore the tension in the string is T = 55 N.

Example 11.13  A system of weights and pulleys is arranged in a vertical plane 

as shown in Fig. 11.12. Find the acceleration of each weight, if their magnitudes are 

in the ratio WA:WB:WC = 3:2:1. Assume the pulleys are frictionless.

Solution Let the accelerations of three weights be denoted by aA, aB and aC 

respectively.

 Let the weight A be coming down. Thus force balance of the weight A leads to

  T1 + 
W

g

A
 aA = WA

  T1 = WA 1 -
È

Î
Í

˘

˚
˙

a

g

A  (11.18)

 Since the weights B and C are connected with a pulley, lowering of weight A 

with an acceleration of aA will cause the pulley (that connects weights B and C) to 

move up with the same acceleration.

 However, this will cause weight B to come down and weight C to move up with 

the same acceleration say, a. 

 Thus the weight B will have an actual acceleration aB = (a – aA) and the weight C will have an actual 

acceleration aC = (a + aA).

WC

WB

WA

T
2

T
2

T
1

T
1

Figure 11.12
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 Therefore, the force balance of weights B and C yields

  T2 + 
W

g

B
(a – aA) = WB

fi  T2 = WB 1 -
-È

Î
Í

˘

˚
˙

( )a a

g

A  (11.19)

and

  T2 – 
W

g

C (a + aA) = Wc

fi  T2 = WC 1 +
+È

Î
Í

˘

˚
˙

( )a a

g

A  (11.20) 

 Now considering the equilibrium of the pulley (which is moveable), neglecting friction and inertia,

  T1 = 2T2

 From Eqs (11.18) and (11.19),

  WA 1 -
È

Î
Í

˘

˚
˙

a

g

A  = 2 ¥ WB 1 -
-È

Î
Í

˘

˚
˙

( )a a

g

A

 Since WA:WB = 3:2;

  3 ¥ 1 -
È

Î
Í

˘

˚
˙

a

g

A  = 2 ¥ 2 1 -
-È

Î
Í

˘

˚
˙

( )a a

g

A

fi  7aA – 4a = –g  (11.21)

 Further equating Eqs (11.19) and (11.20),

  WB 1 -
-È

Î
Í

˘

˚
˙

( )a a

g

A  = WC 1 +
+È

Î
Í

˘

˚
˙

( )a a

g

A

 Introducing WB:WC = 2:1

 2 ¥ 1 -
-È

Î
Í

˘

˚
˙

( )a a

g

A  = 1 ¥ 1 +
+È

Î
Í

˘

˚
˙

( )a a

g

A

or  3a – aA = g  (11.22)

 Solving Eqs (11.21) and (11.22) yields aA = 
g

17
 and a = 

6

17

g

 Thus the acceleration of weight A is aA = 
g

17
 Ø.

 Acceleration of weight B is aB = a – aA = 
6

17 17

5

17

g g g
- =  Ø.

 Acceleration of weight C is aC = a + aA = 
6

17 17

7

17

g g g
+ =  ≠.
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MULTIPLE-CHOICE QUESTIONS

 11.1 A particle if in motion will

 (a) continue its status of motion in the absence of any force.

 (b) comes to rest after certain time in the absence of any force.

 (c) accelerate automatically in the absence of any force.

 (d) none of the above.

 11.2 According to Newton’s Second Law of motion,

 (a) net force on a particle is proportional to its velocity.

 (b) net force on a particle is proportional to the square of the velocity.

 (c) net force on a particle is proportional to its acceleration.

 (d) none of the above.

 11.3 D’Alembert’s Principle is used

 (a) to solve the problems of friction. 

 (b) to solve the problems of kinetics by equivalent statics problem.

 (c) to find the range and time of flight of projectiles.

 (d) none of the above.

 11.4 An elevator weighing 1000 N attains an upward velocity of 5 m/s in 3 sec following a uniform 

acceleration. The tension in the cables that supports the elevator is 

 (a) 850 N (b) 1000 N (c) 1250 N (d) 1500 N

 11.5 The acceleration of a particle placed on an inclined plane of angle q with the horizontal due to its self 

weight, when it starts from rest is

 (a) g(sin q + m cos q)   (b) g(sin q – m cos q)

 (c) g(cos q + m sin q)   (d) g(cos q – m sin q)

SHORT ANSWER TYPE QUESTIONS

 11.1 State Newton’s 1st and 2nd laws of motion.

 11.2 Newton’s 1st law of motion is a special case of 2nd law – Justify this statement.

 11.3 State and explain D’Alembert’s Principle. 

 11.4 What is inertia force? What is its role in kinetics of a particle?

 11.5 Compute the acceleration of a particle placed on an inclined plane of angle q with the horizontal due 

to its self weight, when it starts from rest. 

NUMERICAL PROBLEMS

 11.1 A train weighing 70 kN is capable of developing a tractive effort of 25000 N. Find the acceleration 

obtained on a straight path if the coefficient of friction is 0.25 between the wheels and the track.

 11.2 A small block of weight 10 N is projected with an initial velocity of 8 m/s along a horizontal plane. 

If the block travels a distance of 9 m before coming to rest, what is the coefficient of friction between 

the block and the floor? 

 11.3 Two blocks A and B of masses 10 kg and 20 kg respectively are connected by an inclined string. 

A horizontal force P = 80 N is applied to the block B as shown in Fig. 11.13. Determine the tension 

in the string and the acceleration of the systems. Assume mA and mB are 0.4 and 0.2 respectively.
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 11.4 A block of mass 40 kg is resting on a horizontal table at a distance of 2 m from its edge. The block 

is connected another block weighing 5 kg by means of a string that passes over a frictionless pulley 

as shown in Fig. 11.14. If the coefficient of friction is 0.05 between the block and the table, find the 

acceleration of the system and time required for the block to come to the edge of the table.

 11.5 A homogeneous sphere of radius r and weight W slides along the floor under the action of a constant 

horizontal force P applied to a string as shown in Fig. 11.15. Determine the height h during this motion, 

if the coefficient of friction is m between the block and the floor.

 11.6 Two weights of masses m1 = 25 kg and m2 = 15 kg are connected by a light inextensible string that 

passes over a small frictionless pulley as shown in Fig. 11.16. Find the acceleration of the system and 

the tension in the string. 

 11.7 Two blocks of masses m1 = 5 kg and m2 = 10 kg are connected by a bar of negligible weight and rest 

on an inclined plane having inclination angle q = 30° as shown in Fig. 11.17. Find the acceleration of 

the system and induced force in the bar when the system slides down the plane. Assume mA and mB 

are 0.15 and 0.3 respectively.

 11.8 Refer to Fig. 11.18. Find the acceleration of the weight Q, assuming that P = Q. Neglect friction and 

inertia in the pulleys. 

Figure 11.14

2 m

A

B

Figure 11.15

C

W
P

h

Figure 11.16

m
1

m
2

Figure 11.17

M B

M A

q

Figure 11.18

Q

P

Figure 11.13

7°
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 11.9 Find the maximum possible acceleration that the rear-wheel drive car, as shown in Fig. 11.9, can develop 

if the coefficient of friction is m between the car and the road.

 11.10 A mass M resting on a smooth table is connected to masses M1 and M2 by strings as shown in Fig. 11.19. 

Find the acceleration of the system assuming M1 is moving down.

Figure 11.19

M
2

M
1

M

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

11.1 (a) 11.2 (c) 11.3 (b) 11.4 (c) 11.5 (b)

ANSWERS TO NUMERICAL PROBLEMS

11.1 1.05 m/s2 

11.2 0.36

11.3 T = 38.5 N, a = 0.8 m/s2

11.4 a
g

=
15

 m/s2, t = 2.473 s

11.5 h r
W

P
= -Ê

ËÁ
ˆ
¯̃

1
m

11.6 a = 0.25 g m/s2, T = 184 N

11.7 a = 0.355 g m/s2, F = 2.95 N

11.8 0.4 g

11.9 
m

m

cg

b c h+ -

11.10 
( )

( )

M M g

M M M

1 2

1 2

-
+ +
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Curvilinear Motion of a Particle

 12.1 INTRODUCTION

In the preceding articles, we had considered motion of particles undergoing rectilinear motions. Nevertheless, there 
are situations when a particle moves following a curved path, giving rise to the concept of curvilinear motion. If the 
curved path lies in a plane, it is termed as plane curvilinear motion. In the situation when the direction of the applied 
force acting on a particle varies or when the particle has some initial motion in a direction that does not coincide 
with the direction of the force acting on the particle, the particle moves in a curved path. For example, an object 
when thrown horizontally with some initial velocity moves in a curved parabolic path, because the force of gravity 
acting on the object does not coincide with the initial velocity of the object and the object moves in a curved path.

 12.2 DISPLACEMENT, VELOCITY AND ACCELERATION

When a particle moves along a curved path, its position at any instant is defined by considering its displacement s 
along the curved path at any interval of time t. Thus we have s = f(t). However, it is rather convenient to resolve 
the displacement into two rectangular components, namely, along the x axis and the y axis, where x and y are 
the two separate functions of t. Mathematically, this can be expressed by x = f1(t) and y = f2(t).
 However, the motion can also be defined as y = f (x).
 Refer to Fig. 12.1; at time t, the displacement of the particle is s having horizontal and vertical components 
as x and y respectively. After a small time interval Dt, the corresponding values are Ds, Dx and Dy.
 Following vector algebra, the position vector r of a point on such a curve in terms of unit vectors i and j 

along x and y axes respectively can be expressed by r = xi + yj.
 Refer to Fig. 12.2. Consider now the position P¢ of the particle, at a later time t + Dt as defined by a 
position vector r¢.
 The vector Dr joining P and P¢ represents the change 
in the position vector r during the time interval Dt. This 
can be verified by applying the triangle law as

 r + Dr = r¢
 Dr = r¢ – r

Dr represents the change in the magnitude as well as the 
change in the direction of the position vector r.
 Instantaneous velocity of the particle can be defined as

 v = 0
limit

t

r

tD Æ

D
D

 As Dr and Dt become smaller, the points P and P¢ 
get closer and the vector v obtained at the limit becomes 

CHAPTER

Figure 12.1
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tangent to the path at P. The magnitude of Dr is given by the length of the line segment PP¢. But as Dt 
approaches zero, the length of the line segment PP¢ approaches the length Ds of the arc PP¢.
 The magnitude of the velocity v is thus obtained as

  v = limit
D Dt

PP

tÆ

¢
0

 = limit
D

D
Dt

s

tÆ0
 = 

ds

dt

 The speed of the particle can thus be obtained by differentiating with respect to the time the length of the 
arc described by the particle.

  v = 
ds

dt

 12.3 COMPONENTS OF MOTION: RECTANGULAR COMPONENTS

12.3.1 Rectangular Components of Velocity

As the direction of the velocity of a particle in curvilinear motion changes continuously, so it is convenient 
to deal with its components vx and vy.
 As the particle moves, r changes and so also the velocity v changes.

 Since r = xi + yj,

differentiating, we get v = dr

dt
 = �r  = 

dx

dt
 i + 

dy

dt
j = �x i + �y j

 Thus the speed of the particle at any given instance can be expressed by above expression; the magnitude 

of which is |v | = � �x y2 2+

 If q is the angle the velocity vector of the particle makes with x axis; q = tan–1 
�

�

y

x

Ê
ËÁ

ˆ
¯̃ . It therefore follows 

that velocity vector is tangent to the curved path at any point P.

Figure 12.2
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12.3.2 Acceleration of the Particle

It may be emphasised here that in general, the acceleration of the particle at any instant is not tangential to 
the path of the particle. That is, the direction of acceleration and velocity may not be the same in a curvilinear 
motion.
 By definition, acceleration a is also a vector which is the time rate of change of v.

 Thus acceleration a = 
dv

dt
 = v◊  = ��r  = 

d x

dt

2

2
i + 

d y

dt

2

2  j = ��x i + ��y j and its magnitude becomes |a | = �� ��x y2 2+

 12.4 TANGENTIAL AND NORMAL COMPONENTS

In the previous article, the velocity and acceleration were resolved into two mutually perpendicular components 
along the unit vectors i and j, called rectangular components. Since the trajectory of the particle is a curve, 
these can also be resolved into two mutually perpendicular components, one tangent to the curve and the other 
normal to the curve. Such resolution is sometimes found to be extremely useful for computational purpose.

Figure 12.3

r

P

V P ¢ V¢

r

Dq

y

O
x

n

t

B

V Dv

A

V ¢
v

D
DVt

CDVn

Dq

 Refer to Fig. 12.3. AB
� ���

 and AC
� ���

 represents velocity v and v¢ respectively. Thus following triangle rule,  
BC
� ���

represents change in velocity Dv = v¢ – v in time Dt. This Dv can now be resolved into two components, 
one tangent to the path Dvt and other normal to the path Dvn.
 Therefore, Dv = Dvt + Dvn

 Since by definition; acceleration a = limit
D

D
Dt

v

tÆ0

 a = Lt
v

tt

t

D

D
DÆ0

 + Lt
v

tt

n

D

D
DÆ0

 = at + an

12.4.1 Tangential Component

Refer to Fig. 12.3; Dvt ª v¢ – v

\  at = limit
D Dt

v v

tÆ

¢ -
0

( )
 = limit

D

D
Dt

v

tÆ0
 = 

dv

dt
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 Thus the tangential component of acceleration is equal to the rate of change of the speed of the particle.
 Tangential acceleration (at) is considered to be positive in the direction of the tangent coinciding with the 
sense of the motion.

12.4.2 Normal Acceleration

Refer to the same figure; Dvn ª vDq for a small change in the angle q

 Therefore, an = limit
D

D
Dt

v

tÆ0

q

 If r is the radius of curvature of the curve then,

  Ds = rDq

  Dq = 
Ds

r

  an = limit
D

D
Dt

v

tÆ0

q
 = limit

D

D
Dt

v s

tÆ0 r

  an = 
v ds

dtr

 But ds

dt
 = v

 So, an = v2

r

 Thus Normal acceleration an of a particle at a point is equal to the square of its speed divided by the 

radius of curvature of the path at that point.

 The direction of the normal acceleration is such that it is always directed towards the centre of curvature 
of the path. This normal acceleration is also called as the centripetal acceleration.

 If we consider two unit vectors - one et tangent to the curved path at point P and the other en normal to 
it, then a can be expressed as a = atet + anen.

 Direction q = tan–1 
a

a

n

t

Example 12.1  The motion of a particle is defined by the following equations, which are x = 
( )t - 4

6

3

 + t2 

and y = 
t3

6
 – 

( )t - 1

4

2

, where x and y are expressed in metres and t is in seconds. Determine the acceleration 

of the particle when t = 2 s. Also calculate the radius of curvature of the path.

Solution

  x = ( )t - 4

6

3

 + t2

  �x  = 
1

6
 ¥ 3 ¥ (t – 4)2 + 2t
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\  �x t=2 = 
1

2
 ¥ (2 – 4)2 + 2 ¥ 2 = 6 m/s

  ��x  = 
1

2
 ¥ 2 ¥ (t – 4) + 2 = t – 2

\  ��x t=2 = 2 – 2 = 0

  y = 
t t3 2

6

1

4
-

-( )

  �y  = 
1

6
 ¥ 3t2 – 

2

4
(t – 1) = 

t2

2
 – 

1

2
(t – 1)

\  �y
t=2 = 

1

2
 ¥ 22 – 

1

2
(2 – 1) = 1.5 m/s

  ��y  = 
1

2
 ¥ 2t – 

1

2
 = t – 

1

2

\  ��y
t=2 = 2 – 

1

2
 = 1.5 m/s2

  |a| = �� ��x y2 2+  = 0 1 5 2+ ( . )  = 1.5 m/s2

 By definition, the radius of curvature 
1

r
 = 

��� ���

� �

xy xy

x y

-

+( )2 2
3

2

 = 
6 1 5 0

6 1 52 2
3

2

¥ -

+

.

( . )

  r = 26.3 m

Example 12.2  The motion of a particle is expressed by the following equations: x = t2 + 8t + 6 and 
y = t 3 + 3t2 + 8t + 6, where x and y are expressed in metres and t is in seconds. Determine (a) the initial 
velocity of the particle, (b) the velocity at t = 2 s and (c) acceleration of the particle at t = 2 s.

Solution

  x = t2 + 8t + 6

  �x  = 2t + 8

  ��x  = 2

  \ �x t=0 = 8 m/s; �x t=2 = 2 ¥ 2 + 8 = 12 m/s and ��x t=2 = 2 m/s2

  y = t3 + 3t2 + 8t + 6

  �y  = 3t2 + 3 ¥ 2t + 8 = 3t2 + 6t + 8

  ��y  = 6t + 6

  \ yt=0 = 8 m/s; ��y t=2 = 3 ¥ 22 + 6 ¥ 2 + 8 = 32 m/s and 

  ��y t=2 = 6 ¥ 2 + 6 = 18 m/s2

 The velocity |v |t=0 = � �x y2 2+  = 8 82 2+  = 11.31 m/s and

  |v |t=2 = � �x y2 2+  = 12 322 2+  = 34.176 m/s and q = tan–1
y

x

Ê
ËÁ

ˆ
¯̃  = tan–1

32

12

Ê
ËÁ

ˆ
¯̃
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  q = 69.45°

  |a |t=2 = �� ��x y2 2+  = 2 182 2+ ( )  = 18.11 m/s2

Example 12.3  The distance s travelled by a particle moving along a circular path of radius r is given by 
the following equation:
 s = kt2, where k is a constant.
 If the particle starts its motion from rest, find (a) the tangential velocity and acceleration (b) the normal 
velocity and acceleration.

Solution

  s = kt2

  vt = 
ds

dt
 = k ¥ 2t = 2kt

  at = 
dv

dt
 = 2k

  vn = 0 and

  an = 
v v

r

k t

r

t
2 2 2 24

r
= =

Example 12.4  Prove that if the ends A and B of a bar of length 2l are constrained along the x axis and y axis 
respectively as shown in Fig. 12.4, its mid-point C describes a circle of radius l with centre at O while any 
intermediate point D describes an ellipse with semi-major and semi-minor axes as l + b and l – b respectively.

Solution Let the coordinate of the point C is (x, y) considering O as origin.
 Thus from the simple geometry x = l cos q and y = l sin q, 
where q is the inclination of the bar AB with the floor.

 Thus x2 + y2 = l2 (cos2 q + sin2 q) = l2.

 This is the equation of a circle of radius l.
 Further, let the coordinate of the point D be (x¢, y¢), 
 considering O as origin.

 Now, x¢ = (l + b) cos q and y¢ = (l – b) sin q

 Therefore x¢2 + y¢2 = (l + b)2 cos2 q + (l – b)2 sin2 q

¢
+
x

l b

2

2( )
 + 

¢
-
y

l b

2

2( )
 = cos2 q + sin2 q = 1; which is the 

equation of an ellipse with semi-major and semi-minor axes 
as l + b and l – b respectively. 

Example 12.5  A car starts from rest on a curved road of radius 250 m and attains a speed of 18 km/hour 
at the end of 60 seconds while travelling with a uniform acceleration. Find the tangential and normal accelera-
tions of the car 30 seconds after it started.

Solution r = r = 250 m; v = 18 km/hr = 
18 1000

60 60

¥
¥

 m/s = 5 m/s v0 = 0, t = 60 s

Figure 12.4

y

A

O B
x

l

lb

D

C
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 Let the acceleration of the car be a.

 Therefore vt = v = v0 + at

  a = 
v

t
 = 

5

60
 = 0.083 m/s2

 Since the car is moving with constant acceleration, at = 0.083 m/s2 after 30 seconds.

 Let the velocity of the particle be v¢ after 30 seconds.

  v¢ = v0 + at¢ = 0 + 0.083 ¥ 30 m/s2 = 2.5 m/s2

\  (an)t=30 = 
¢v

r

2

 = 
2 5

250

2.
 m/s2 = 0.025 m/s2

 Thus tangent and normal accelerations of the car after 30 seconds becomes 

  at = 0.083 m/s2 and an = 0.025 m/s2 respectively

Example 12.6  A car enters a curved section of a road of length equal to the quarter of a circle with a 
100 metres radius at a speed of 18 km/hour and leaves at 36 km/hour. If the car is moving with a uniform 
tangential acceleration, find the magnitude and direction of total acceleration when (a) it enters the curve and 
(b) it leaves the curve. 

Solution

  v1 = 18 km/hr = 
18 1000

60 60

¥
¥  m/s = 5 m/s ; 

  v2 = 36 km/hr = 
36 1000

60 60

¥
¥

m/s = 10 m/s.

  r = r = 100 m

 Length of the curved path = distance covered = 
1

4
 ¥ 2p r = 

p r

2
 m

 Let the uniform tangential acceleration be at.

  v2
2 = v1

2 + 2 ¥ at ¥ 
p r

2

  at = 
v v

r

2
2

1
2 2 210 5

100

-
=

-
¥p p

 = 0.238 m/s2

  (an)1 = 
v

r

1
2 25

100
=  = 0.25 m/s2 and

  (an)2 = 
v

r

2
2 210

100
=  = 1 m/s2

 Therefore, total velocity at the entry is 

  a1 = ( ) ( )a at n
2

1
2+  = ( . ) ( . )0 238 0 252 2+  = 0.345 m/s2 and its direction is

  q1 = tan–1
( )a

a

n

t

1Ê

ËÁ
ˆ

¯̃
 = tan–1 0 25

0 238

.

.

Ê
ËÁ

ˆ
¯̃

= 46.4°
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 The same at the exit is a2 = ( ) ( )a at n
2

2
2+  = ( . )0 238 12 2+  = 1.028 m/s2 and its direction is

  q2 = tan–1 ( )a

a

n

t

2Ê

ËÁ
ˆ

¯̃
 = tan–1

1

0 238.

Ê
ËÁ

ˆ
¯̃  = 76.4°

Example 12.7  The telescopic rod in Fig. 12.5 forces the pin P to move along the fixed path 

y = 
x2

9
, where x and y are expressed in centimetres. At any 

instant t, the x-coordinate of P is given by x = t2 – 14t.  Determine 
the y components of the velocity and acceleration of P at t = 15 s.

Solution

  x = t2 – 14t and

  y = 
x2

9

 Combining these two equations,

  y = ( )t t2 214

9

-

  �y  = 
1

9
 ¥ 2(t2 – 14t)(2t – 14)

  ��y  =
2

9
 [(t2 – 14t) ¥ 2 + (2t – 14)(2t – 14)] 

\  �y
t=15s = 

1

9
 ¥ 2(152 – 14 ¥ 15)(2 ¥ 15 – 14) = 53.33 cm/s and 

  ��y t=15s = 
2

9
[(152 – 14 ¥ 15) ¥ 2 + (2 ¥ 15 – 14)2] = 63.55 cm/s2

 12.5 KINETICS OF CURVILINEAR MOTION

It has already been analysed that the acceleration of a particle moving in a curvilinear path is a vector which 
can be resolved into two rectangular components ax and ay, along the directions of the coordinates axes x 
and y respectively. The same can also be resolved as at and an along the directions of the tangent and normal 
to the curve respectively.
 The equations of motion, therefore, can be written following either set of the components of acceleration.

 12.6 EQUATION OF MOTION IN RECTANGULAR COMPONENTS

If a particle is acted upon by several forces that cause its motion, then these forces can be resolved in the x 

and y directions. Let ÂX and ÂY represent the sum of the components of the forces in the x and y directions 
respectively.

Figure 12.5

y
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 Applying Newton’s second law of motion,

  ÂX = max

and 
  ÂY = may

 12.7  EQUATION OF MOTIONS: IN TANGENTIAL AND NORMAL 
COMPONENTS

Sometimes it is convenient to resolve the forces acting on the particle into components Ft and Fn, the former 
being in the tangential direction, the latter being along the normal. 
 Applying Newton’s second law once again,

  Â Ft = mat

and 
  Â Fn = man

 12.8   EQUATIONS OF DYNAMIC EQUILIBRIUM (D’ALEMBERT’S 
PRINCIPLE)

Similar to the case of rectilinear motion of a particle, the curvilinear motion can also be expressed by 
using  D’Alembert’s Principle, which are known as the equations of dynamic equilibrium. 

12.8.1 In Rectangular Components

The equations of motion are 

  Â X = max

and 
  ÂY = may

 These can be written as ÂX + (–max) = 0 and Â Y + (–may) = 0 and are called the equations of dynamic 

equilibrium, where (–max) and (–may) are the inertia forces added to the system of forces acting on the particle, 
in the directions opposite to the direction of accelerations ax and ay. The basic philosophy is that condition of 
dynamic equilibrium is equivalently converted to the conditions of static equilibrium.

12.8.2 In Normal and Tangential Components

  ÂFt = mat and ÂFn = man

 Following D’Alembert’s Principle, these can be written as 

  Â Ft + (–mat) = 0

  Â Fn + (–man) = 0
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Example 12.8  A locomotive of weight W = 534 kN negotiates a curve of radius r = 300 m at a speed of 
72 km/ hr. Determine the total lateral thrust on the rails.

Solution The speed of the locomotive is v = 72 km/hr = 
72 1000

60 60

¥
¥

 m/s = 20 m/s

 The lateral thrust is due to the force associated with normal acceleration.

 Therefore T = m. 
v

r

2

= 
534

9 81

20

300

2

.
¥  kN = 72.57 kN

Example 12.9  A motorcycle and rider having a total weight W = 2225 N travels in a vertical plane  following 
a curve AB of radius r = 300 m at a speed of 72 km/hr. Compute the thrust exerted by the road as it passes 
over the crest C on the curve, as shown in Fig. 12.6.

Solution The speed of the motorcycle is v = 72 km/hr = 
72 1000

60 60

¥
¥

 m/s = 20 m/s 

 Let the thrust be R Newton.

 The force balance along the vertical direction yields W – R = 
W

g

v

r
.

2

 R = W 1
2

-
È

Î
Í

˘

˚
˙

v

gr
 = 2225 1

20

9 81 300

2

-
¥

È

Î
Í

˘

˚
˙

.
N = 1922.4 N

Example 12.10  The bob of a conical pendulum of length l 
and weight W describes a horizontal circle defined by equa-
tions x = a cos wt, y = a sin wt, where a is the radius of the 
circular path and w is a constant, as shown in Fig. 12.7. Prove 
that the tension in the string is constant during such motion 
and find its magnitude. 

Solution Let at any instant t, the bob occupies a position 
on its circular path in horizontal plane as shown in Fig. 12.7.

x = a cos wt; x
.

 = –aw sin wt; y = a sin wt; y
.

 = aw cos wt 

 Therefore velocity of the bob becomes v = � �x y2 2+  = wa 

 The forces on the bob at this position are shown in Fig. 12.7.
Figure 12.7

q

l

T

X

W

y

a

T sin q

Wv
2

gr

Figure 12.6

B

C

A

r
=
3
0
0
m

D

a
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 The force balance normal to the circular path considering the equilibrium of the bob yields T sin q = 

W

g

v

r
.

2

 = 
W

g

a

a
.
w 2 2

 = 
W

g
.w2a

 From the geometry, sin q = 
a

l

 Therefore T ¥ 
a

l
 = 

W

g
.w2a or T = 

W

g
w 2l.

 Since all the parameters on the right side of the expression are constant, so T is also a constant. 

Example 12.11  A small block of weight W rests on a horizontal turntable at a distance r from the axis of 
rotation as shown in Fig. 12.8. If the coefficient of friction between the block and the surface of the turntable is  m, 
find the maximum uniform speed that the block can have due to rotation of the turntable without slipping off.

Solution The lateral thrust owing to normal acceleration will try to slip off 
the block outward which will be prevented by frictional forces.

 Under the condition of equilibrium, Ff = m.
v

r

m
2

  mW = 
W

g

v

r

m.
2

 vm= mgr

 Thus maximum velocity at which the turntable can be rotated is vm = mgr

Example 12.12  An automobile of weight W travels with a 
 uniform speed v over a vertical curve ACB which is parabolic, as 
shown in Fig. 12.9. Determine the total pressure exerted by the 
wheels of the car as it passes over the crest at C. Given d = 1.2 m, 

l = 60  m and v = 96 km/hr.

Solution Considering the problem as similar to that of example 9, 

we have R = W 1
2

-
È

Î
Í

˘

˚
˙

v

gr
.

  v = 96 km/hr = 
96 1000

60 60

¥
¥

 m/s = 26.67 m/s

 However, unlike the previous case, the curve now conforms to a parabola, for which radius of curvature r 
is to be computed from given data.

 Let the equation of the parabola be x2 = ky. Since point C
l

2
, d

Ê
ËÁ

ˆ
¯̃ lies on the curve, this point must satisfy 

the equation, leading to

Figure 12.9

l/2 l/2

B

C

A

d

Figure 12.8

r

W
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l2

4
 = kd

  k = 
l2

4d

 Thus x2 = 
l2

4d
y

  
dy

dx
 = 

4
2

d

l
 ¥ 2x and

  d y

dx

2

2
 = 

4
2

d

l
 ¥ 2

 Now 
dy

dx x =0
 = 0 and 

d y

dx x

2

2
0=

 = 
4

2

d

l
 ¥ 2

 The radius of curvature r is given by

  
1

r
 = 

d y

dx

dy

dx

2

2

2
3

2

1 + Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

 = 

8

1

2

d

l
 = 

8 1 2

602

¥ .

  r = 
60

1.2 8

2

¥
 m = 375 m

 Therefore, R = W 1
2

-
È

Î
Í

˘

˚
˙

v

gr
 = W 1

26 67

9 81 375

2

-
¥

È

Î
Í

˘

˚
˙

.

.
 = 0.807W

 Thus the total pressure exerted by the wheels of the car as it passes over the crest at C is R = 0.807W

Example 12.13  Find the proper super-elevation e for 7.2 m highway curve of radius r = 600 m, in order 
that a car travelling with a speed of 80 km/hr will have no tendency to skid sideways.

Solution The super-elevation is provided on the outer track so as to experience equal thrust on two wheels – 
inner and outer.

 Refer to Fig. 12.10, the force balance on the car in horizontal plane gives R sin q = 
W

g
v2r and perpendicular 

to the track gives R cos q = W.

 Thus tan q = 
v

rg

2
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 Further from geometry, sin q = 
e

b
, where e is 

the super-elevation and b is the distance between 
the wheels.

 For small value of q, sin q ª tan q

  
e

b
 = 

v

rg

2

  e = 
bv

rg

2

 = 
7 2 22 22

600 9 81

2. .

.

¥
¥  = 0.604 m

Example 12.14  Racing cars travel around a  circular track of radius r = 300 m with a speed of 384 km/hr. 
What angle a should the floor of the track make with the horizontal in order to avoid skidding?

Solution

  tan a = 
v

rg

2

 = 3.866

  a = tan–1 (3.866) = 75°29¢

 Thus the requisite angle is a = 75°29¢

MULTIPLE-CHOICE QUESTIONS

 12.1 The tangential component of acceleration of a particle in a curvilinear motion is defined by 

 (a) at = 
dv

dt
 (b) at = 

dx

dt

�
 (c) at = 

dy

dt

�
 (d) at = 

v2

r

 12.2 The normal component of acceleration of a particle in a curvilinear motion is defined by 

 (a) an = 
dv

dt
 (b) an = 

dx

dt

�
 (c) an = 

dy

dt

�
 (d) an = 

v2

r

 12.3 The maximum velocity of a car following a circular motion of radius r and having coefficient of friction 
as m to avoid skidding is

 (a) mgr (b) 
1

2
ugr  (c) mgr  (d) 

1

2
grm

 12.4 On a curved railway track, the amount by which the outer track is raised is known as
 (a) cambering (b) super-elevation (c) deflection (d) none of the above

 12.5 On a curved track, the super-elevation is provided for the following purpose.
 (a) To reduce centrifugal force (b) To reduce vertical thrust
 (c) To equalize thrust on two sets of wheels (d) None of the above

 12.6 The amount of super-elevation is quantified by 

 (a) e = 
bv

gr

3

2  (b) e = 
bv

gr

2

 (c) e = 
bvr

g
 (d) None of the above

Figure 12.10

q

qW

R

Wv
2

gr

e

b
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SHORT ANSWER TYPE QUESTIONS

 12.1 Define curvilinear motion. How does it differ from a straight line motion? 
 12.2 Define and quantify tangential and normal acceleration of a particle in relation to curvilinear motion.
 12.3 If a particle moves with a constant speed, what would be its tangential acceleration?
 12.4 Write the equations of dynamic equilibrium of a particle for curvilinear motion in a plane.
 12.5 Explain and apply D’Alembert’s principle to the curvilinear motion of a particle. 

NUMERICAL PROBLEMS

 12.1 A particle moves along the path y = 
1

3
x2 with a constant velocity of 8 m/s. What are the x and y 

components of the velocity when x = 3? What is the corresponding acceleration? Note that x and y are 
expressed in metres.

 12.2 A particle moves with constant speed v along a parabolic path y = kx2, where k is a constant. Find the 
maximum acceleration of the particle.

 12.3 The equations of motions by a particle undergoing curvilinear motion can be described by x = 2t2 + 8t 
and y = 4.9t2, where x and y are expressed in metres and t is in seconds. Determine the velocity and 
the acceleration at the end of 4 seconds.

 12.4 A car is moving along a curved path with 150 m radius with a uniform velocity of 90 km/hr. Find the 
normal and tangential acceleration of the car.

 12.5 The bob of a simple pendulum of length l and weight W undergoes oscillation that is defined by s = s0 

cos pt, where s0 is the amplitude of oscillation and p is a constant such that p = 
g

l
. Determine the 

maximum value of the tensile force in the string.
 15.6 Refer to the Example 12.1. Determine (a) the magnitude of the smallest velocity reached by the particle 

and (b) the corresponding time, position and direction of the velocity.
 12.7 Refer to the Example 12.9. Determine the location D of the motorcycle on the curve as defined by 

angle a so that the reaction R becomes zero.
 12.8 The coefficient of friction between the road and the wheels of a car is found to be 0.2. At what constant 

velocity should the car move so as to avoid skidding, if the radius of the curve is 240 m. Assume that 
the road is levelled.

 12.9 A car starts from rest on a curved road of 250 m radius and accelerates at a constant tangential 
acceleration of 0.6 m/s2. Determine the distance and the time for which the car should travel before 
the magnitude of the total acceleration attained by the car becomes 0.75 m/s2.

 12.10 A motorist is moving along a curved path with a 300 metre radius at a speed of 72 km/hr. He suddenly 
applies brake that causes its speed to decrease to 40 km/hr at a constant rate in 10 seconds. Calculate 
the tangential and normal components of acceleration immediately after the application of brake and 
6 seconds after that.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 12.1 (a) 12.2 (d) 12.3 (c) 12.4 (b) 12.5 (a) 12.6 (b)
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ANSWERS TO NUMERICAL PROBLEMS

 12.1 x
.

 = 3.58 m/s, y
.

 = 7.16 m/s , a = 3.82 m/s2

 12.2 amax = 2kv2

 12.3 x
.

 = 24 m/s, y
.

 = 39.2 m/s, ��x  = 4 m/s2, ��y  = 9.8 m/s2 

 12.4 an = 4.167 m/s2, at = 0

 12.5 W
s

l
1 0

2

2

+
Ê

ËÁ
ˆ

¯̃
 12.6 (a) vmin = 6.14 m/s, (b) t = 1.758 s, x = 1.206 m, y = 0.761 m, u = 10.9 

 12.7 à = 82 14 
 12.8 27.45 m/s
 12.9 x = 93.65 m, t = 17.68 s

 12.10 an = 1.333 m/s2, at =  0.88 m/s2; an=  0.722 m/s2 , at =  0.88 m/s2
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13
Projectile

 13.1 INTRODUCTION

When an object is thrown with an initial velocity such that further motion is exclusively under the action of gravity, 

the object is called a projectile and its motion is called motion of a projectile. This motion is quite common in 

practice. Firing of a bullet from a gun, release of a bomb from a fighter jet, throwing a stone are few such examples 

that fall under this category. A projectile covers a distance along horizontal as well as along vertical directions.

 13.2 TERMINOLOGY OF PROJECTILE MOTION

13.2.1 Velocity of Projection

The initial velocity with which a projectile is thrown is called velocity of projection.

13.2.2 Angle of Projection

The angle at which the projectile is thrown with the horizontal is called the angle of projection of the projectile.

13.2.3 Range of a Projectile

Range of a projectile is the horizontal distance it covers from the point of origin and the point on the ground 

where it touches.

13.2.4 Trajectory of a Projectile

The path a projectile navigates through space is called its trajectory. The trajectory of a projectile is parabolic. 

 13.3 EQUATION OF THE PATH

Let us consider a particle that is thrown from the point O with an initial velocity v0 that makes an angle q 

with the horizontal as shown in Fig. 13.1.

 The velocity v0 has got two components – the horizontal component being v0 cos q, the vertical component   

is v0 sin q.

 Since there is no force acting along the horizontal direction, the particle cannot have any acceleration in 

this direction. However, along the vertical direction, it is under the action of gravity. But since the particle is 

moving against the gravity, it will decelerate with constant deceleration g. 

 Let the time of travel of the particle is t corresponds to position C(x, y).

 Thus the distance covered by the projectile along horizontal is

  x = v0 cos qt  (13.1) 
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and the distance along the vertical direction is

   y = v0 sin q t – 1

2
 gt2 (13.2)

 Eliminating t from Eqs (13.1) and (13.2) yields 

   y = v0 sin q 
x

v
g

x

v0 0

2
1

2cos cosq q
-

Ê

ËÁ
ˆ

¯̃

   y = tan q x – g

v
x

2 0
2 2

2

cos q

Ê

ËÁ
ˆ

¯̃
 (13.3)

 The equation is in the form of y = Ax + Bx2 which is the equation of a parabola.

 Thus Eq. (13.3) is the requisite trajectory of a projectile that manifests a parabola.

 At any point on the curve, say, at A, the velocity v can be resolved into two components as shown in the 

above figure.

Time of Flight The time of flight of a projectile is defined as the time interval between the object is thrown 

and the instant it touches the ground. Thus it is the duration of the particle during which it flies.

 From v = v0 + at, we have

 0 = v0 sin q – gt

 t
v

g
= 0 sin q

 [since the particle is moving against the gravity and at the end of its vertical motion, its velocity 

becomes zero.]

 The value of t so calculated is for only upward movement.

 Thus by definition Time of Flight tFlight = 2t = 
2 0v

g

sin q
.

Height The maximum height the projectile can reach is called its height.

 From v2 = v0
2 + 2ax, we have 0 = (v0 sin q)2 – 2gh

   
h

v

g
= 0

2 2

2

sin
.

q

V0 sin q

V0 cos q

r

q

C x y( , )

Vy

Vx

VV0

y

O B
x

A

h

Figure 13.1
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 Thus the height of a projectile h
v

g
= 0

2 2

2

sin
.

q

Range of a Projectile In the absence of any acceleration, the displacement is x = vt.

 Thus the range r = (v0 cos q) 2t = (v0 cos q ) 2 0v

g

sin q

   r = v

g

0
2 2sin q

 For a given v0, r is a function of q only, since g is a constant.

 Thus the condition of r to be maxima; sin 2q = 1 = sin 90 fi q = 45°

 Hence  r
v

g
max = 0

2

Slope of the Curve From Eq. (16.3) we have y = tan q x – g

v
x

2 0
2 2

2

cos q

Ê

ËÁ
ˆ

¯̃

 Thus the slope of the curve is 
dy

dx

g

v
x= -

Ê

ËÁ
ˆ

¯̃
¥tan

cos
q

q2
2

0
2 2

 Putting dy

dx
= 0, we have tan

cos
q

q
-

Ê

ËÁ
ˆ

¯̃
¥ =

g

v
x

2
2 0

0
2 2

   

x
v

g

v v

g

v v

g

x y= = =
tan cos ( cos )( sin )q q q q0

2 2
0 0 0 0

 Further,  x
v

g

r
= =0

2 2

2 2

sin q

 This implies the slope of the curve becomes zero when the projectile covers half of its range.

Example 13.1  An aircraft is moving horizontally with a velocity of 500 km/h. It releases a bomb when it is 

at an altitude of 1800 m above the ground to hit a target on the ground. Determine the location of the target 

in terms of the horizontal distance from the instantaneous position of the aircraft when the bomb was released.

Solution Let the time of flight of the bomb be t seconds.

 Initial velocity  v0 = 500 km/hr = 500 1000

60 60

¥
¥

 m/s = 138.88 m/s

 Thus  y h gt= =
1

2

2

   

t
h

g
= =

¥
=

2 2 1800

9 8
19 167

.
.s s

  x = v0.t = 138.88 ¥ 19.167 m = 2661 m ª 2.662 km
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Example 13.2  Refer to Fig. 13.2. The pilot of an aircraft flying horizontally at a speed of 480 km/hr at an 

elevation of 600 metre above ground wants to hit the target on the ground. At what angle q below the horizontal 

should the pilot see the target at the instant of releasing the bomb in order to hit the same?

Solution From the geometry of the system, tan q =
h

x

   
h gt=

1

2

2

   

t
h

g
= =

¥
=

2 2 600

9 8
11 06

.
.s s

  x = v0.t = 480

60 60¥
 ¥ 11.06 km = 1.474 km = 1474 m

\  tan q = h

x
=

600

1474

  q = 22°8¢

Example 13.3  The maximum range of a projectile is found to be 2000 m. What should be the angle of projection 

so as to obtain a range of 1500 m if the velocity at which it is thrown, remains same?

Solution

   r
v

g
max = 0

2

  v0
2 = rmax g

 Let the angle of projection be q.

   r
v

g
= 0

2 2sin q
sin 2q = rmax sin 2q

  

sin
max

2
1500

2000

3

4
q = = =

r

r

  2q = sin–1 (0.75) = 48.6°; 131.4° [since sin q = sin (180 – q)]

  q  = 24.3° (24°18¢) or 65.7°(65°42¢)

Example 13.4  Two adjacent guns having the same muzzle velocity of 500 m/s, fire simultaneously at angles 

of projections q1 and q2 for the same target located at a range of 5000 m. Find the time difference between 

the two hits.

Solution Initial velocity v0 = 500 m/s and range r = 5000 m

 For 1st gun, r
v

g
= 0

2 2sin q

 \  5000
500 22

1=
sin q

g

or  sin
.

2
5000 9 81

500 500
1q =

¥
¥

h

x

q

V0

Figure 13.2
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  2q1 = 11.31

  q1 = 5.65°

 Thus 2q2 = 180 – 2q1 = 180 – 11.31 = 168.69°

  q2 = 84.345°

 Considering the 1st gun, let t1 be the time of flight.

\   t
g

=1
0 12 2 500 5 65

9 81
10 03=

¥ ¥v sin sin .

.
.

q
= s s

 Similarly, for 2nd gun, let t2 be the time of flight.

\   t
g

=2
0 22 2 500 84 345

9 81
= =

¥ ¥v sin sin .

.

q
s 101.44 s

 Thus time difference between two hits = t2 – t1 = 101.44 – 10.03 sec = 91.41 s

Example 13.5  A person throws a stone so as to clear a wall of height 3.685 m located at a distance 5.25 m 

from the origin. The stone touches the ground at a distance of 3.58 m from the wall – away from the origin. 

Find the least initial velocity at which the stone to be thrown along with its direction.

Solution The range of the stone r = 5.25 + 3.58 m = 8.83 m

 The trajectory of the stone can be expressed by y = tan q x – 
g

x
2 0

2 2

2

v cos q

Ê

ËÁ
ˆ

¯̃

 From the given situation, the top of the wall will lie on the trajectory. Thus the coordinate of the top of 

the wall (5.25 m, 3.685 m) will satisfy the equation.

 Thus 3.685 = tan q ¥ 5.25 – 
g

2 0
2 2¥

Ê

ËÁ
ˆ

¯̃v cos q
 ¥ 5.252

 Further, range of the stone = r = 
v0

2 2sin q

g
= 8.83

  

v0
2 8 83

2g
=

.

sin q

 Comparing the two equations, we get 

  3.685 = tan q ¥ 5.25 – sin

. cos

2

2 8 83 2

q

q¥ ¥

Ê

ËÁ
ˆ

¯̃
 ¥ 5.252

  3.685 = tan q ¥ 5.25 – 
2

2 8 83 2

sin cos

. cos

q q

q¥ ¥

Ê

ËÁ
ˆ

¯̃
 ¥ 5.252

  3.685 = 5.25 tan q – 3.12 tan q = 2.13 tan q

  tan q = 
3 685

2 13

.

.
 = 1.73 fi q = tan–1 (1.73) = 60°

 Thus 
v0

2 8 83

2

8 83

120g
= =

.

sin

.

sinq
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  v0
2 = 

8 83 9 81

120
100

. .

sin

¥
=

  v0 = 10 m/s

 Thus the stone is to be thrown with an initial velocity of 10 m/s having its inclination of 60° with the 

horizontal so as to just cross the wall. 

Example 13.6  A projectile is thrown with an initial velocity of 400 m/s at an angle 60º with the horizontal. 

Find the velocity and the direction of the particle after 20 seconds from start. 

Solution Initial velocity v0 = 400 m/s and the angle of projection is q.

 The horizontal component of the velocity is (v0x) = v0 cos q = 400 cos 60 m/s = 200 m/s and the vertical 

component is (v0y) = v0 sin q = 400 sin 60 m/s = 346.4 m/s.

 The horizontal component of the velocity remains unchanged throughout its motion.

 To compute vertical component of the velocity after 20 seconds, we have 

  (vfy) = v0y – gt = 346.4 – 9.81 ¥ 20 m/s = 150.2 m/s

 Thus the resultant velocity would be v¢ = ¢ + ¢ = +v vx y
2 2 2 2200 150 2. = 250.12 m/s

  tan a = 
¢

¢
= =

v

v

y

x

150 2

200
0 75

.
.

  a = tan–1 (0.75) = 37°

Example 13.7  A particle is thrown with an initial velocity of 12 m/s at an angle 60º with the horizontal. 

If another particle is thrown from the same position at an angle 45º with the horizontal, find the velocity of 

the latter for the following situations.

 (a) Both have same horizontal range

 (b) Both have same maximum height

 (c) Both have same time of flight

Solution Denoting the 1st particle as A and 2nd particle as B,

we have; v0A = 12 m/s, qA = 60° and qB = 45°

 (a) Both have same horizontal range:

  rA = rB

  

v

g

v

g

A A B B0
2

0
22 2sin sinq q

=

  v2
0B = v

A A

B

0
2 22

2

12 120

90

sin

sin

( ) sin

sin

q

q
=

¥  = 124.7

  v0B = 124 7.  m/s = 11.16 m/s

 (b) Both have same maximum height:

  hA = hB

  

v

g

v

g

A A B B0
2 2

0
2 2

2 2

sin sinq q
=
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  v2
0B = v

A A

B

0
2 2

2

2 2

2

12 60

45

sin

sin

( ) sin

sin

q

q
=

¥  = 216

  v0B = 216 m/s = 14.7 m/s

 (c) Both have same time of flight:

  tFA = tFB

  

2 20 0v

g

v

g

A A B Bsin sin
.

q q
=

 v0B = v
A A

B

0 12 60

45

sin

sin

sin

sin

q

q
=

¥  = 14.7 m/s

Example 13.8  A projectile is launched with an initial speed of 200 m/s at an angle of 60° with respect to 

the horizontal. Compute the length of an inclined plane AB that makes an angle 22º with the horizontal such 

that point B lies on the trajectory as shown in Fig. 13.3.

Solution The trajectory of the projectile and location of the inclined plane AB is shown in Fig. 13.3 (a) 

 The trajectory of the projectile can be expressed by y = tan q x – g

v2 0
2 2cos q

Ê

ËÁ
ˆ

¯̃
x2

 For q = 60°, the above equation becomes

  y = tan 60 x – g

v2 600
2 2cos

Ê

ËÁ
ˆ

¯̃
x2

  y = 1.732 x – g

2 250 602 2¥

Ê

ËÁ
ˆ

¯̃cos
x2

  y = 1.732 x – 0.0003x2  (13.4)

 Further from DABC, tan 22 = y

x

  y = 0.404x  (13.5)

 Solving Eqs (13.4) and (13.5), we have

  x = 4426.67 and y = 1788.37

 Thus AC = 4426.67 m; BC = 1788.37 m

\  r = AB = r AB x y AC BC= = + = + = + =2 2 2 2 2 24426 67 1788 37 4774 3. . . m

60°
22°

25
0

m
/s

A

r

B

Figure 13.3

V0

60°
22°

A C D

B x y( , )

r

Figure 13.3 (a)
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Example 13.9  A bullet is fired from a rifle with an initial velocity of 50 m/s so as to just clear a vertical 

wall of 20 m high and located at a distance of 30 m measured horizontally from the point of projection. Find 

the two angles of projection with horizontal.

20 m

30 m

v0 = 50 m/s

q

Figure 13.4

Solution The trajectory of the bullet can be expressed by using Eq. (13.3) as

y = tan q x – 
g

v2 0
2 2cos q

Ê
ËÁ

ˆ
¯̃
 x2

 From the given situation, the top of the wall will lie on the trajectory. Thus the coordinate of the top of 

the wall (30 m, 20 m) satisfies the equation. Thus, we get

 20 = tan q ¥ 30 – 
g

2 502 2¥
Ê
ËÁ

ˆ
¯̃cos q
 ¥ 302

or 1.7658 tan2 q + 30 tan q – 21.7658 = 0

 Solving the above equation, we get

q = 86.76° or 34.87°

Example 13.10  A bullet is fired at an angle of 30� up the horizontal with velocity 100 m/s from the top of a 

tower, 50 m high. Determine:

 (i) The time of flight

 (ii) The horizontal range along the ground

 (iii) The maximum height the bullet can attain from the ground

 (iv) The velocity of the bullet after 6 sec.

 Assume horizontal ground at the foot of the tower.

q

x

y

h

R

Figure 13.5
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Solution The initial velocity v0 has got two components – the horizontal component being v0 cos q, the vertical 

component is v0 sin q.

 Let the total time of flight is T s. Also consider that the projectile will cover h¢ m height above the tower 

to reach its peak and its corresponding time is t ¢ and during fall, it covers h m in t s. 

Thus T = 2t ¢ + t

 0 = v0 sin q – gt ¢

 2t ¢ = 
2 0v

g

sinq
 = 

2 100 30

9 81

¥ ∞sin

.
 = 10.194 s

Further h = v0 sin qt + 
1

2
 gt2;

 50 = 100 sin 30°t + 
1

2
 ¥ 9.81 ¥ t2

or t = 0.92 s

 Thus total time of flight becomes T = 2t¢ + t = 10.194 + 0.92 = 11.114 s

Now, 0 = (v0 sin q)2 – 2gh¢

or h¢ = 
( sin )

.

100 30

2 9 81

2∞
¥

 = 127.42 m 

\ Total height above the ground becomes H = h¢ + h = 127.42 + 50 = 177.42 m

 The range R = (v0 cos q)T = 100 cos 30° ¥ 11.114 = 962.5 m

 Since t¢ = 5.097 s, after 8 s the projectile on its downward movement from the peak height. 

 Thus the downward component of the velocity after 6 seconds if denoted by vv, 6, then 

vv, 6 = g ¥ 0.903 = 8.858 m/s

 The horizontal component being unchanged at v0 cos q implying

vh, 6 = 100 cos 30° = 86.6 m/s

 Thus resultant velocity after 6 s is 

v8 = ( ) ( ), ,v vh v6
2

6
2+  = 86 6 8 8582 2. .+  = 87.05 m/s

Example 13.11  A particle is projected at an angle q with the horizontal from point O, as shown in Fig. 13.6. 

If after time t the particle is at A, prove that b = 
tan tanq a+

2
, where a is the angle with the horizontal which the 

particle makes at A and b is the angle of elevation of point A. 

A
V0sinq

Vy
V

a
V0 ( , )x y

V0cosq
O

b
q

Vx

Figure 13.5
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Solution Let the position of the particle is at A (x, y) after time t [Fig. 13.5]. Then, using Eqs. (13.1) and (13.2), 

we obtain

 x = v0 cos qt

and y = v0 sin qt – 
1

2
gt2

 From the above two equations, we have

 tan b = 
y

x
 = tan q – 

gt

v2 0

 sec q (13.6)

 Let the velocity of the particle at A is v. Then, one can write

 vx = v cos a = vo cos q

and vy = v sin a = v0 sin q – gt 

 From the above two equations, we obtain

 tan a = tan q – 
gt

v0

 sec q (13.7)

 Comparing (13.6) and (13.7), we get

 tan b – tan q = 
1

2
 (tan a – tan q)

or tan b = 
1

2
 (tan q + tan a)

Example 13.12  The velocity of a particle when it reaches its maximum height is 
2

5
 times of its velocity when 

it reaches half of its maximum height. Prove that the angle of projection is 60° for such condition. 

Solution Let the angle of projection is q with an initial velocity v0. Velocity of the particle when it reaches its 

maximum height is v0 cos q.

 Let the velocity at half of its maximum height is v. Then, one can write

 vo cos q = 
2

5
 v

or v2 = 
5

2
 v0

2 cos2 q

 The horizontal component of v is vx = v0 cos q since there is no acceleration in the horizontal direction. 

 The maximum height of the projectile is h = 
v

g

0
2 2

2

sin q

 The half of the maximum height of the projectile therefore is h¢ = 
1

2 2

0
2 2v

g

sin q

 Let the vertical component of v is vy. Then, we have

vy
2 = (v0 sin q)2 – 2g

v

g

v0
2 2

0
2 2

4 2

sin sinq q
=  

 Since v2 = vx
2 + vy

2, we have

 
5

2
 v0

2 cos2 q = (v0 cos q)2 + 
v0

2 2

2

sin q

or 3 cos2 q = sin2 q

or tan q = 3 = tan 60°

or q = 60°
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Example 13.13  A daredevil tries to jump a canyon of width 10 m. To do so, he drives his motorcycle up an 

incline sloped at an angle of 15� as shown in Fig. 13.6. What minimum speed is necessary to clear the canyon?

10 m

V = ?

15°

Figure 13.6

Solution Let the required velocity is v m/s, and the time required is t seconds. 

 The velocity v has got two components – the horizontal component being v cos q, the vertical component 

is v sin q. 

 Thus the distance covered by the cyclist along horizontal = the width of the canyon. 

 (v cos 15°)t = 10

and 0 = (v sin 15°)t = 
1

2
 gt2

 Combining the above two equations and eliminating t, we get

 v sin 15° 
10

15v cos ∞
 = 

1

2

10

15

2

g
v cos ∞

Ê
ËÁ

ˆ
¯̃

or v = 14 m/s

Example 13.14  A brick is thrown upward from the top of a building at an angle of 25� above the horizontal 

and with an initial speed of 15 m/s. If the brick is in the air for 3 seconds, how high is the building? At what 

distance from the base of the building, the brick will touch the ground? 

Solution The horizontal component of the velocity is vx = vo cos q = 15 cos 25° = 13.6 m/s

 The time of flight t = 3 seconds

 Therefore horizontal distance covered is found to be

= 13.6 ¥ 3 = 40.8 m

 Let the height of the building is h m. Using Eq. (13.2), we obtain

h = vy t – 
1

2
 gt2 = (v sin 15°)3 – 

1

2
 g32 = – 25.18 m

 The height of the building is 25.18 m. 

MULTIPLE-CHOICE QUESTIONS

 13.1 The path of a projectile is

 (a) straight line (b) circular (c) parabolic (d) any arbitrary

 13.2 The range of a projectile is expressed by the following expression:

 (a) r
v

g
= 0

2 2sin q
 (b) r

v

g
= 0

2 sinq
 (c) r

v

g
= 0

2 2

2

sin q
 (d) r

v

g
= 0

2

2

sinq
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 13.3 The time of flight of a projectile is expressed by the following expression:

 (a) T
v

g
= 0 sinq

 (b) T
v

g
=

2 0 sinq
 (c) T

v

g
= 0 cosq

 (d) T
v

g
=

2 0 cosq

 13.4 The slope of the curve (trajectory) generated by a projectile after it covers half of its range is

 (a) positive (b) negative (c) zero (d) unpredictable

 13.5 The horizontal component of the velocity of a projectile

 (a) increases continuously (b) decreases continuously (c) remains constant (d) is zero

 13.6 The maximum height attained by a projectile is expressed by the following expression:

 (a) h
v

g
= 0 sinq

 (b) h
v

g
= 0

2 sinq
 (c) h

v

g
= 0

2 2sin q
 (d) h

v

g
= 0

2 2

2

sin q

 13.7 The range of a projectile is maximum when its angle of projection is

 (a) 30° (b) 45° (c) 60° (d) 75°

 13.8 The maximum value of the range of a projectile is

 (a) r
v

g
max = 0

2

 (b) r
v

g
max = 0

2

2
 (c) r

v

g
max .= 1 5 0

2

 (d) r
v

g
max =

2 0
2

SHORT ANSWER TYPE QUESTIONS

 13.1 What is a projectile? Give few real - life examples.

 13.2 Prove that the trajectory of a projectile is a parabola.

 13.3 Compute the range of a projectile and what is the condition for maximum range?

 13.4 Determine the time of flight and maximum height attained by a projectile.

 13.5 Prove that the slope of the curve that a projectile generates is zero when it covers half of its range.

NUMERICAL PROBLEMS

 13.1 A ball is thrown horizontally from the top of a building having height 20 m. The ball touches the 

ground at a distance of 25 m from the base of the building. What was the initial velocity of the ball? 

 13.2 If the initial velocity of a projectile is increased by 20%, what would be the change in maximum range?

 13.3 A particle is projected with an initial velocity of 60 m/s at an angle of 70° with the horizontal. Find 

the maximum height it can reach, the time of flight and the range.

 13.4 The maximum range of a particle is rmax. Find the range, time of flight and maximum height it can 

reach when angle of projection is 60° having same initial velocity.

 13.5 An object is projected with an initial velocity of 100 m/s at an angle of 65º with the horizontal. Find 

its position and velocity [both magnitude and direction] after 8 seconds.

 13.6 A projectile is aimed at a target situated on the horizontal plane. It is observed that when angle of 

projection is 15°, it falls 12 m short of the target and it overshoots by 24 m when the angle of projection 

is 45°. Find the correct angle of projection so as to hit the target.
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 13.7 If t1 be the time in which a projectile reaches a point on its path and t2 be the time in which the 

projectile reaches the ground from the previous point, prove that the height of the point above the 

ground is 1

2
gt1t2.

 13.8 If a particle is projected at an angle q1 with the horizontal from the foot of an inclined plane that makes 

an angle q2 with the horizontal, it strikes the plane at right angle. Prove that cot q2 = 2 tan (q1 – q2).

 13.9 The horizontal range of a projectile is found to be 2.3 times of its maximum height. Determine the 

angle of projection.

 13.10 A bullet is fired at 125 m/s from a point on the ground so as to hit a target at a horizontal distance of 

1000 m from the origin and at a height of 203 m from the ground. Determine (a) the angle at which 

the bullet is fired, (b) the maximum height attained by the bullet and (c) time required to hit the target.

 13.11 A projectile is shot from the edge of a cliff 125 m above ground level with an initial speed of 65 m/s 

at an angle of 37° above the horizontal. Determine the magnitude and the direction of the velocity at 

the maximum height.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 13.1 (c) 13.3 (b) 13.5 (c) 13.7 (b)

 13.2 (a)  13.4 (c) 13.6 (d) 13.8 (a)

ANSWERS TO NUMERICAL PROBLEMS

 13.1 v0 = 12.5 m/3

 13.2 44%

 13.3 hmax = 162 m, tflight = 11.5s, r = 236 m

 13.4 r = 0.866rmax, tflight = 0.553 rmax , h = 0.375rmax

 13.5 x = 338 m, y = 411 m, x· = 42.26 m/s, y· = 12.15 m/s

 13.6 21°

 13.9 60°

 13.10 (a) 33°, (b) hmax = 236.23 m, (c) t = 9.54s

 13.11 52 m/s [forward] (horizontally)
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Work, Power, Energy

 14.1 INTRODUCTION

In the chapter 11, we have discussed the effect of force(s) on the motion parameters of a particle by using 

Newton’s second law of motion and using D’Alembert’s principle. Since as a consequence to the application 

of force, there is displacement, it therefore follows that the force produces some work done. This work done 

by a force is a very important attribute to deal with power and energy analysis pertaining to a mechanical 

system. For example, if we consider a car or a train, it is essential to consider power developed by the engines 

to propel the vehicle with definite motion characteristics under load. 

 14.2 WORK OF A FORCE

From the basic definition of work done by a force, it is quantified by either the product of force multiplied by 

the component of the displacement along the line of action of the force or displacement multiplied by component 

of the force along the displacement.

 Thus refer to Fig. 14.1. If a force F applied on the block at an 

inclination q with the horizontal causes a displacement ds along the 

horizontal plane, the component of ds along F is ds cos q. Thus work 

done associated with this displacement would be dU = F(ds cos q) =

(F cos q)ds = component of the force along the displacement multiplied 

by displacement.

 Thus work done by a force F during a finite displacement from any position P1 to another position P2 can 

be computed by U1–2 = 
s

s

1

2

Ú(F cos q) ds, where s1 and s2 are displacement along the path AB and measured from 

a reference frame O.

 Following vector algebra, work done by a force F acting on a particle moving along any path is defined 

as the line integral from position P1 at time t1 to position P2 at time t2. Thus U = 
A

ÚF.dr, where dr is the 

infinitesimal change in the position vector r.

 Since F = (Fx i + Fy j + Fz k), and r = (dxi + dyj + dzk),

  U = 
A

Ú(Fxi + Fy j + Fzk).(dxi + dyj + dzk) = 
A

Ú(Fxdx + Fy dy + Fzdz)

 This can be expressed further to a time integral as

   

U F
dx

dt
F

dy

dt
F

dz

dt
dtx y z

t

t

= + +Ê
ËÁ

ˆ
¯̃Ú

1

2

CHAPTER

F

dsq

Figure 14.1
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14.2.1 Graphical Interpretation of Work Done

Figure 14.2 shows the plot of F cos q versus s. This is called force-displacement diagram. The area of the 

infinitesimal rectangular strip of thickness ds becomes F cos q. ds. Thus U1–2 = 
s

s

1

2

Ú(F cos qds) = entire shaded 

area under the curve as shown in the above Fig. 14.2.

ds S
2

S
1

O

F cos q

S

Figure 14.2

Unit: The unit of work done following S.I. system is Nm or Joule (J). Thus one joule of work corresponds 

to displacement of a particle by one metre when the magnitude of force along the direction of displacement 

is one Newton.

 14.3 ENERGY

Energy of a particle implies its ability to do work. Thus it is the stored energy of a particle at the expense of 

which it can carry out some work to overcome resistance. Thus energy and work is tantamount to each other 

and hence the unit of energy is same as that of the work. Nevertheless, energy has many forms; thermal or 

heat energy, electrical energy, mechanical energy, light energy, etc. However, in regard to present discussion, 

we will focus our attention to only mechanical energy which has got two wings, namely, potential energy and 

kinetic energy. 

14.3.1 Conservative Forces

A force F acting on a particle is called conservative if work corresponds to it is independent of the path followed 

by the particle as it changes its position. Such work can be quantified as a change in its potential energy. 

Gravity force is a conservative force, where as friction is non-conservative force. Other types of conservative 

forces are spring force and elastic force.

 Following the above definition, if a particle undergoes a closed path so that initial position and final position 

is identical, the work is zero. 

 Mathematically,  Ú =F dr. 0

14.3.2 Work Done by Gravity Force – Potential Energy

The energy gained or expended by a particle while doing some work against the gravity force is called its 

potential energy.

 Refer to Fig. 14.3, let a particle of mass m be moved vertically from its initial position of A to a new 

position B such that AB = OB – OA = y2 – y1
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 The force acting on the particle is gravity force = W = mg

 Thus corresponding work done would be UA–B = 

y

y

1

2

Ú (–mg)dy = –mg( y2 – y1) = 

– mgh [Note that (–) sign implies the direction of force and displacement are 180°.]

 Thus the potential energy of the particle is quantified by product of weight and 

vertical displacement. 

 It is interesting to note that since weight has got no horizontal components, any 

displacement along horizontal direction will have no effect on potential energy.

14.3.3 Work Done by Net Force – Kinetic Energy

Kinetic energy is the energy of a particle that it gains by virtue of its motion.

 From Newton’s second law of motion; F = ma = m��x

 Thus  F.dx = m
dx

dt
dx. �  = d m

x�2

2

Ê

ËÁ
ˆ

¯̃

 The left-hand side of the above expression shows the work done by the force F that causes a displacement 

of dx. The term with in the bracket in the right hand side is called kinetic energy which is half of the product 

of mass and square of the velocity.

 Integrating both sides of the above equation with in two limits such that x changes its value from x1 to x2 

and v changes its value from v1 to v2.

   F(x2 – x1) = 
1

2
mv2

2 – 
1

2
mv1

2

 This can be interpreted as the work done associated with the force for a finite amount of displacement is 

equal to the change in kinetic energy of the particle between the two points.

 

U F dr F dr mr dr mr
dr

dt
dt

A r

r

r

r

r

r

= = = =Ú Ú Ú Ú. . . .

1

2

1

2

1

2

�� ��

   

= = =Ú Úm r r dt m
d

dt
r dt m v

t

t

v
v

t

t

( . ) ( ) [ ]�� � �

1

2

1

2

1

2
1

2

1

2

2 2

   
= -

1

2

1

2
2
2

1
2mv mv

Example 14.1  A particle of mass 5 kg is thrown up vertically with an initial velocity of 10 m/s. What is its 

kinetic energy (a) at the moment of release, (b) after half second, (c) after one second? Assume g = 10 m/s2. 

Solution

 (a) Initial velocity of the particle is v0 = 10 m/s

  Therefore K.E. corresponds to this velocity = 
1

2
mv0

2 = 
1

2
 ¥ 5 ¥ 102 N-m = 250 N-m

 (b) Let the velocity after t1 = 
1

2
 sec is v1. Therefore, v1 = v0 – gt1 = 10 – 10 ¥ 

1

2
 = 5 m/s

  Therefore K.E. after t1 = 
1

2
 sec = 

1

2
 mv1

2 = 
1

2
 ¥ 5 ¥ 52 N-m = 62.5 N-m

y2 A

O

h

y1

B

Figure 14.3
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 (c) Let the velocity after t2 = 1 sec be v2. Therefore, v2 = v0 – gt2 = 10 – 10 ¥ 1 = 0

  Therefore K.E. after t2 = 1 sec is zero.

Example 14.2  A block of weight W is thrown with an initial velocity of v0 along a rough horizontal plane 

and is brought to rest by friction in a distance x Determine the coefficient of friction.

Solution Let the coefficient of friction between the block and the floor be m.

 Thus the work done by the frictional force is U = Ff .x = mN.x = mW.x = m.mg.x

 Change in K.E. = 
1

2
mv0

2 – 0 = 
1

2
mv0

2

 Since the work done is equal to the change in K.E., it therefore follows that

   m.mg.x = 
1

2
mv0

2

 m = 
v

gx

0
2

2

 Thus the coefficient of friction becomes m = 
v

gx

0
2

2
.

Example 14.3  A block of weight W slides down an inclined plane from rest from a height h, as shown in 

Fig. 14.4. Find the velocity of the block when it reaches the ground.

Figure 14.4

Solution Let the distance traveled by the block from initial position to the final position is x and corresponding 

velocity of the block is v.

 Since the block is lying on the inclined plane, the net force that causes displacement along the plane is 

F = W sin q – mW cos q.

 The net work done corresponds to this force = U = F x = [W sin q – mW cos q]x

 Thus net work done = change in K.E.

  U = F x = [W sin q – mW cos q]x = 
1

2
mv2

  mg[sin q – m cos q]x = 
1

2
mv2

 From the geometry, x = 
h

sin q
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 Thus, g[sin q – m cos q]
h

sin q
 = 

1

2
v2

  v = 2 1gh( cot )- m q

 Thus the velocity of the block becomes v = 2 1gh( cot )- m q

Example 14.4  Calculate the work done on a body of mass 5 kg by 60 N force applied to it as shown 

in Fig. 14.5 when the same is placed on an inclined plane having inclination angle q = 30° and associate 

displacement 6 m. Assume a = 15° and m = 0.25.

Figure 14.5

y x

N
P+

sin
a

P
cos aP

W
sin

q

W
cos q

WF f

q

6 m
a

Solution From the free body diagram of the block and considering equilibrium perpendicular to the plane.

  ÂY = 0

  N + P sin a = mg cos q

  N = mg cos q – P sin a = 5 ¥ 9.8 cos 30 – 60 sin 15 N = 26.95 N

 Net force on the body along the plane = Fnet

  P cos a – mg sin q – mN = 60 cos 15 – 5 ¥ 9.8 sin 30 – 0.25 ¥ 26.95 = 26.7 N

 Thus work done due to Fnet = 26.7 ¥ 6 = 160.2 Nm

Example 14.5  A bullet loses 
1

20
 th of its velocity in passing through a wooden plank. Determine how 

many such uniform planks it would pass through before coming to rest. Assume that the resistance offered by 

the planks is uniform. 

Solution Let the mass of the bullet be m kg and its velocity be vm/s.

 Hence after penetrating one plank, the velocity of the bullet becomes v¢ = 1
1

20
-Ê

ËÁ
ˆ
¯̃

v = 
19

20
v
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 Thus loss of K.E. while passing through one wooden plank = 
1

2
mv2 – 

1

2
mv¢2 = 

1

2
mv2 – 

1

2
m

19

20

2

v
Ê
ËÁ

ˆ
¯̃ = 

1

2
 ¥ 0.0975 mv2.

 Let the number of planks that the bullet can penetrate is n such that after passing through n number of 

planks, its kinetic energy is completely lost.

 Thus n ¥ 
1

2
 ¥ 0.0975 mv2 = 

1

2
mv2

  n = 
1

0 0975.
 = 10.25

 Since number of planks cannot be fraction, n = 10.

 Therefore, the bullet can penetrate 10 planks.

Example 14.6  A particle of mass m moves linearly along x axis under the action of force F = kx, where k 

is a constant. Find the velocity v as a function of displacement x if the initial conditions of motion are x0 = 0 

and �x0 = v0.

Solution

  F = kx = m �x

  m
dx

dt

�

 = kx

  m
dv

dt
 = kx

  mdv = kxdt = kx
dt

dx
dx

  mdv = kx
1

dx

dt

dx = kx
1

v
dx

  mvdv = kxdx

  m
v

v

0

Úvdv = k
o

x

Úxdx

  
1

2
m(v2 – v0

2) = 
1

2
kx2

  v2 – v0
2 = kx2/m

  v = v kx m0
2 2+ /

 This is the requisite expression of v.
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Example 14.7  Two blocks A and B of masses 20 kg and 25 kg respectively are connected by a string as 

shown in Fig. 14.6. If the system is released from rest, find the velocity of the blocks after the distance moved 

by the block A along the table on which it rests is 1 metre. Assume the coefficient of friction between the 

block and the table is 0.25.

Solution mA = 20 kg; mB = 25 kg; x = 1 metre m = 0.25

 Let T be the tension in the string and v is the velocity of the blocks 

at the end.

 For the block A, change in K.E. = 
1

2
mAv2 – 0 = 

1

2
 ¥ 20 ¥ v2 = 10v2

 Net force on the block A = FA = T – mmAg = T – 0.25 ¥ 20g = T – 5g N

 Thus work done on the block A = FA ¥ x = (T – 5g)x = (T – 5g) ¥ 1 = 

T – 5g N-m

 For the block B, change in K.E. = 
1

2
mBv2 – 0 = 

1

2
 ¥ 25 ¥ v2 = 12.5v2

 Net force on the block B = FB = mBg – T = 25g – T N

 Thus work done on the block B = FB x = (25g – T )x = 25g – T N – m

 For the entire system comprising block A and B, we have

  T – 5g + 25g – T = 10v2 + 12.5v2

  22.5v2 = 20g = 20 ¥ 9.81

  v = 
20 9 81

22 5

¥ .

.
 m/s = 2.95 m/s

 Thus the velocity of the blocks becomes v = 2.95 m/s.

 14.4 PRINCIPLE OF CONSERVATION OF ENERGY

From the principle of work-energy,

 Work done = Change in kinetic energy.

 Thus between any two finite states, work done = (K.E.)2 – (K.E.)1

 If a particle moves under the action of gravity force, work done is stored as potential energy.

 Thus net work done by a particle when it changes its height between two finite positions = (P.E.)1 – (P.E.)2

 Comparing these two equations, we have (K.E.)2 – (K.E.)1 = (P.E.)1 – (P.E.)2

  (P.E.)1 + (K.E.)1 = (P.E.)2 + (K.E.)2

 Thus “the sum of the potential energy and the kinetic energy of a particle or a system comprising several 

particles remain constant during its motion under the action of conservative forces”. However, potential 

energy can be changed to kinetic energy and vice versa so as to maintain their sum at a constant value. This 

is popularly known as law of conservation of energy.

14.4.1  Principle of Conservation of Energy – Applied to a Free Falling 
Particle

Let a particle of mass m be released freely from a height h. This implies initial velocity of the particle v0 = 0 

 At this stage sum of P.E. and K.E. = mgh + 0 = mgh (14.1)

Figure 14.6

T

T

N

F

m gA

m gB
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 Let us now consider any intermediate stage when the particle is in motion but 

not reached the ground. Let its height at present is h¢ from the ground as shown in 

Fig. 14.7. Also consider its velocity as v¢.
 Thus the distance moved by the particle = h – h¢
 Therefore v ¢2 = 2g(h – h¢)

 Hence, sum of P.E. and K.E. = mgh¢ + 
1

2
mv¢2 = mgh¢ + 

1

2
m ¥ 2g(h – h¢)

 = mgh (14.2)

 Finally, let us consider the particle is just about to touch the ground with a 

velocity vf .

 Thus the distance moved by the particle = h, implying vf
2 = 2gh

 Sum of P.E. and K.E. at this stage = 0 + 
1

2
mvf

2 = 0 + 
1

2
m ¥ 2gh = mgh. (14.3)

 Comparing Eqs (14.1), (14.2) and (14.3), it can be concluded that the law of conservation of energy holds 

good for a freely falling particle.

Example 14.8  If the system of weights as shown by solid lines [Refer Fig. 14.8] is released from rest, find 

the maximum distance h that the weight P will fall. Neglect friction and consider the pulleys are very small.

Figure 14.7

h A

O

h¢

B

Vf

V ¢

V0

Figure 14.8

A

l l

P

C

h

Q Q

BO

y

Solution Let the location of the weights Q below the line AB be y.

 Thus total length of the string following initial configuration is LT = 2(l + y)

 From the DOAC, AC = OA OC l h2 2 2 2+ = +

 Let the lift of the weight Q be d. Thus the present length of the string becomes

  2 ¥ [ l h2 2+  + y – d ] = LT = 2(l + y)

  l h2 2+  + y – d = l + y

  l + d = l h2 2+

 Squaring both sides, we have l2 + d2 + 2ld = l2 + h2

  d2 + 2ld – h2 = 0
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 d = 
- ± +2 4 4

2

2 2l l h

 Since d cannot be negative, we take d = l h2 2+  – l

 The loss of potential energy by the weight P due to lowering by height h should be equal to the gain in 

P.E. by the weights Q.

 Thus P.h = Q.2d fi P.h = 2Q.( l h2 2+  – l)

  
Ph

Q2
 + l = l h2 2+

 Squaring both sides we get, 
Ph

Q
l

2

2

+
Ê
ËÁ

ˆ
¯̃

 = l2 + h2

  
P h

Q

2 2

24
 + l2 + 2 ¥ 

Ph

Q2
 ¥ l = l2 + h2

  
Pl

Q
 = h 1

4

2

2
-

È

Î
Í

˘

˚
˙

P

Q

  h = 
4

4 2 2

PQl

Q P-

Example 14.9  If a system of two masses mA = mB = 20 kg are arranged 

as shown in Fig. 14.9 are released from rest, find the velocity of the mass mB 

after it has fallen a vertical distance of 2 m. Neglect the inertia of the pulleys 

and friction.

Solution From the given configuration, it can be concluded that when 

mass mB is lowered by 2 m, the pulley Q is lowered by 1 m and the mass mA 

is lifted up by 1 m.

 At this stage, if the velocity of the mass mB is vB = v m/s; the velocity of 

the mass mA would be vA = 
v

2
 m/s;

 Before start of the movement, the combined system is considered to coincide 

with datum, implying (P.E.)1 as zero. Since there is no motion in the system, 

(K.E.)1 is also zero.

 When mB is lowered by 2 m,

the total P.E. of the system = (P.E.)2 = (P.E.)2A + (P.E.)2B = mA ghA – mBghB = 20g ¥ 1 – 20g ¥ 2 = –20g

 Total K.E. of the system = (K.E.)2 = (K.E.)2A + (K.E.)2B = 
1

2
mAvA

2 + 
1

2
mBvB

2

   = 
1

2
 ¥ 20 ¥ 

v

2

2
Ê
ËÁ

ˆ
¯̃  + 

1

2
 ¥ 20 ¥ v2 = 

25

2
v2.

 Thus total energy at this position is (P.E.)2 + (K.E.)2 = –20g + 12.5v2

Figure 14.9

P

vA

mA

Q

vB

2 m
mB
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 Applying the principle of conservation of energy, we get –20g + 12.5v2 = 0

 v2 = 
20

12 5

g

.

    v = 3.962 m/s

 Thus the velocity of the mass mB after it has fallen a vertical distance of 2 m becomes vB = 3.96 m/s.

 14.5 POWER

Power is defined as time rate of work. As regard to application, power plays very significant role compared to 

energy in the sense that a definite work to be delivered in a specified time. Thus in most of the engineering 

applications, equipments are specified in terms of their power output. Examples are a car, a motor and a 

railway engine. 

14.5.1 Average Power

If DU is the work done during an interval Dt, then average power is defined by 
D
D
U

t
.

 The instantaneous power is defined as Lt
U

ttD

D
DÆ0

 = 
dU

dt
 = 

F dr

dt

.
 = F.v

  dU = F cos q.ds;

  v = 
ds

dt

\  dU = F cos q.vdt

  
dU

dt
 = (F cos q).v

 This implies that power is the product of component of the force along the velocity and the velocity. 

 When both are having the same direction,

  q = 0;

  
dU

dt
 = Fv

Units: The unit of power in S.I. system is Nm/s or Joule/s or Watt. A larger unit of power is kW, where 

1 kW = 1000 W. 

Example 14.10  A train of mass 600 ton starts from rest and accelerates uniformly to attain a speed of 

100 km/hr in 55 seconds. The total frictional resistance to motion is 20 kN. Determine (a) the maximum power 

required by the train, (b) the power required to maintain above speed.

Solution Initial velocity of the train is v0 = 0

 Final velocity of the train is vf = 100 km/hr = 
100 1000

3600

¥
 m/s = 27.78 m/s.

 Time required to reach this velocity is t = 55 s.

 From vf = v0 + at or a = 
v v

t

f - =0 27 78

55

.
 = 0.5 m/s2
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 Let the force generated by the train be FT

 Therefore FT = Ff + Fa = 20 + 
600 1000 0 5

1000

¥ ¥ .
 kN = 320 kN 

 Thus power = FT.vf = 320 ¥ 27.78 kW = 8889.6 kW.

Example 14.11  A train of mass 100 ton is moving uniformly along an incline of 1 in 200 having frictional 

resistance as 6 N/kN. If the power produced by the engine is 1.2 ¥ 105 W, find the speed of the train.

Solution Frictional resistance is @ 6 N/kN = 
6 100 1000 9 81

1000

¥ ¥ ¥ .
 N = 5886 N

 For the inclined plane, tan q =
1

200
ª sin q

 In the absence of any acceleration, force balance along the incline gives

  ÂF = 0

  W sin q + Ff = FT

  FT = 100 ¥ 1000 ¥ 9.81 ¥ 
1

200
 + 5886 N = 10791 N

\  P = FT.v.

  1.2 ¥ 105 = 10791 ¥ v

  v = 11.12 m/s = 40 km/hr

 Therefore the speed of the train is 40 km/hr.

 14.6 EFFICIENCY

The efficiency is one of the major attributes of a mechanical system or machine that indicates its performance. 

Machines utilise one form of energy to be converted to other form compatible to its intended application. For 

example in an automobile, the fuel is burnt to liberate heat energy. This heat energy is converted to mechanical 

energy so as to propel the vehicle. Similarly, in an electric motor, electrical energy is converted to mechanical 

energy. However, the output mechanical energy is not same as that of input energy; rather it is always less 

than the input energy. It is owing to the fact that some amount of input energy is always lost to overcome 

friction between various mating members. This energy is lost in the form of dissipated heat and not possible 

to recover for useful purpose. the performance of a machine is said to be good if it can successfully convert 

the input energy to the useful work. It is the efficiency of the machine that indicates its performance and is 

defined as the ratio of the output power to the input power. 

Thus efficiency h = =
Output energy

Input energy

Output power

Input power

The value of h is always less than 1. The efficiency is usually expressed in terms of percentage (%). While 

computing h, both the output and input to be expressed in same unit. Higher the value of h, better is the 

performance. Thus in other words, efficiency signifies the amount of energy loss during conversion. 
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MULTIPLE-CHOICE QUESTIONS

 14.1 Work is quantified by

 (a) component of the force along the displacement multiplied by displacement.

 (b) component of the displacement along the force multiplied by force.

 (c) component of the force perpendicular to the displacement multiplied by displacement.

 (d) either (a) or (b).

 14.2 Work is a 

 (a) fixed vector.

 (b) sliding vector.

 (c) scalar quantity.

 (d) may be scalar or vector depending on its nature.

 14.3 The unit of work in S.I. system is

 (a) lb-ft (b) N-m (c) joule (d) both (b) and (c)

 14.4 Following category of energy is associated with conservative force.

 (a) Kinetic Energy   (b) Potential Energy

 (c) Energy lost due to friction (d) None of the above

 14.5 Following category of energy is associated with conservative force.

 (a) Kinetic Energy   (b) Potential Energy

 (c) Energy lost due to friction (d) None of the above

 14.6 The kinetic energy of a particle of mass m and velocity v is quantified by 

 (a) mv (b) mv2 (c) 
1

2
mv2 (d) 2mv2 

 14.7 As per conservation of energy, following statement holds true

 (a) (P.E.)1 + (K.E.)1 = (P.E.)2 + (K.E.)2 (b) (P.E.)1 + (P.E.)2 = (K.E.)1 + (K.E.)2

 (c) (P.E.)1 ¥ (K.E.)1 = (P.E.)2 ¥ (K.E.)2 (d) (P.E.)1 ∏ (K.E.)1 = (P.E.)2 ∏ (K.E.)2

 14.8 The potential energy of a particle of mass m and density r and at an elevation h from a reference 

datum is quantified by 

 (a) rgh (b) mgh (c) 
1

2
rgh (d) 2mgh

 14.9 Power is

 (a) time rate of force   (b) time rate of work

 (c) time rate of momentum   (d) time rate of impulse

 14.10 The unit of power in S.I. system is

 (a) hp (b) Joule/s (c) Watt (d) both (b) and (c)

SHORT ANSWER TYPE QUESTIONS

 14.1 Define work and energy. What are their units in S.I. system?

 14.2 Explain work by vector algebra.

 14.3 State and prove the principle of work and energy.

 14.4 What do you mean by conservative force? Give examples. 

 14.5 Prove the conservation of energy for a free falling particle.

 14.6 What is power? How it is quantified? What is its unit in S.I. system?

 14.7 From the Newton’s second law of motion, prove that change in kinetic energy is equal to the work 

done.
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 14.8 Illustrate work from force-displacement diagram.

 14.9 State and prove the law of conservation of energy.

 14.10 Define potential energy? Does its change in magnitude depend on path?

NUMERICAL PROBLEMS

 14.1 A force of 500 N is applied on a block of mass 50 kg that is resting on a rough horizontal floor having 

coefficient of friction 0.4. Determine the velocity of the block after it covers a distance of 8 m.

 14.2 A small block of weight W = 50 N is given an 

initial velocity v0 = 5 m/s down the inclined plane 

as shown in Fig. 14.10. If the coefficient of friction 

between the plane and the block is 0.25, find the 

velocity vf of the block at B after it has travelled 

a distance AB = x = 2 m.

 14.3 Find the total work done on an 8 kg block that is 

acted upon by the 100 N force and consequently 

moves to the right by 4 m, as shown in Fig. 14.11. 

Assume coefficient of friction is 0.30.

 14.4 A car of weight W = 20 kN is driven down a 7° 

incline at a speed of 95 km/hr when the brakes are applied. The total braking force is estimated as 

7kN. Determine the distance travelled by the car before it stops.

Figure 14.11

q = 20°

100 N

8 kg

Figure 14.10

 14.5  A bullet of mass m can penetrate a thickness t of a fixed plate of mass M. Show that if the plate is 

free to move, the thickness it can penetrate is t¢ = 
M

M m+
Ê
ËÁ

ˆ
¯̃

t.

 14.6 A block of mass 10 kg is released from rest so that it can slide down a distance of 8 m along an 

incline of slope 30°. If the coefficient of friction between the plane and the block is 0.25, find the time 

required by the block to cover the inclined path.

 14.7 A block “A” of mass 20 kg rests on an inclined plane that is connected to another block “B” of mass 

40 kg by a string that passes over a frictionless pulley as shown in Fig. 14.12. If both the masses are 

released from rest, calculate their velocities after the block B is lowered by 0.5 m.

 14.8 Two weights P and Q are hung and initially at rest as shown in Fig. 14.13. Find the velocity of the 

falling weight P when it covers a vertical distance of 3 m. Given P = Q = 10 N; r2 = 100 mm; r1 = 

150 mm.

 14.9 A train weighing 1000 kN is accelerated uniformly up an inclined plane of 2% grade. The velocity 

increases from 9 m/s to 18 m/s in a distance of 600 m. The resistance offered by the track is 50 N per kN 

weight of the train. Determine the maximum power developed by the train.

 14.10 An engine weighing 500 kN, moving on a horizontal track, attains a speed of 40 km/hr in 4 minutes 

starting from rest following uniform acceleration. Take the resistance to motion as 5 N/kN. Determine 

the power developed by the engine.
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 14.11 A 5 kg block slides 3 m on a horizontal floor. If the coefficient of friction between the floor and the 

block is 0.25, determine (a) the work done by the block on the surface, (b) the work done by the 

surface on the block.

 14.12 A 5 kg block slides down by 2 m along an inclined plane that makes an angle 40° with the horizontal. 

If the coefficient of sliding friction is 0.40, determine the work done by all forces acting on the block. 

Also calculate its velocity when it touches the ground.

 14.13 A particle moves along the path x = 2t, y = t3 where t is in seconds and distances are in metres. What 

is the work done in the interval from t = 0 to t = 3 s by a force whose components are Fx = 2 + t and 

Fy = 2t2. Forces are in Newton.

 14.14 An automobile weighing 20 kN is driven down a 5° incline at a speed of 85 km/h when the brakes 

are applied. The total braking force exerted by the road on the tier is 7000 N. Determine the distance  

covered by the automobile before it comes to a halt.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

 14.1 (d) 14.2 (c) 14.3 (b) 14.4 (b) 14.5    (c)

 14.6 (c) 14.7 (a) 14.8 (b) 14.9 (b) 14.10 (c)

Figure 14.12

B

q = 45°

A

Figure 14.13

Q P

r1

r2
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ANSWERS TO NUMERICAL PROBLEMS

 14.1 9.86 m/s 14.2 vf = 6 m/s 14.3 241 N-m

 14.4 55.7 m 14.6 2.82 s 14.7 2.9 m/s

 14.8 3.685 m/s 14.9 1356 kW 14.10 54 kW

 14.11 36.78 N-m 14.12 32.95 N-m, 3.63 m/s 14.13 313 N-m

 14.14 108 m





Group – A

(Multiple-Choice Questions)

1. Choose the correct alternatives for the following: 10  ¥ 1 = 10

 (i) Two non-collinear parallel equal forces acting in opposite directions

 (a) balance each other   (b) constitute a moment

 (c) constitute a couple   (d) constitute a moment of a couple

 (e) constitute a resultant couple

 (ii) The centre of gravity of a uniform lamina lies at the

 (a) centre of the heavy portion (b) bottom surface

 (c) mid point of its axis   (d) all of these

 (e) none of these

 (iii) The ratio of limiting friction and reaction is known as

 (a) coefficient friction (b) angle of friction (c) angle of repose (d) sliding friction

 (e) friction resistance

 (iv) D’ Alembert’s principle is applied to solve problems related to

 (a) statics (b) strength of structures (c) dynamics (d) none of these

 (v) Materials having the same elastic properties in all directions are called

 (a) ideal materials (b) isotropic materials (c) elastic materials (d) uniform materials

 (vi) For stable equilibrium, the potential energy will be

 (a) maximum (b) minimum (c) zero (d) none of these

 (vii) When a body slides down an inclined surface of inclination q, the acceleration ‘f ’ of the body is given 

by

 (a) f = g (b) f = g sin q (c) f = g cos q (d) f = tan q

 (e) f = g/sin q

 (viii) According to the principle of transmissibility of forces, the effect of a force upon a body is 

 (a) maximum when it acts at the centre of gravity of the body

 (b) different at different points in its line of action

 (c) the same at every point in its line of action

 (d) minimum when it acts at the CG of the body

 (e) none of the above

 (ix) Poisson’s ratio is defined as

 (a) longitudinal stress and longitudinal strain (b) longitudinal stress and lateral stress

 (c) lateral stress and longitudinal stress (d) lateral stress and lateral strain

 (e) none of the above

Model Question Paper

Set-1
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 (x) The maximum strain energy that can be stored in a body is known as the

 (a) impact energy   (b) resilience

 (c) proof resilience   (d) modulus of resilience

 (e) toughness

Group – B

(Short-Answer Type Questions)
   Answer any three questions 3  ¥ 5 = 15

 2. (i) State and prove Lami’s theorem.

 (ii) Define free-body diagram.

 3. State and prove the perpendicular axis theorem of the area moment of inertia.

 4. A circular roller of weight 100 N and 10-cm radius hangs by a tied rod AB = 20 cm and rest against 

a smooth vartical wall at C as shown in the Fig. 1. Determine the force F in the rod.

20 cm

10 cm

BC

A

q

Figure 1

 5. A particle moves along the path y = 
1

3
x2 with a constant velocity of 8 m/s. What are the x and y 

components of the velocity when x = 3? What is the corresponding acceleration? Note that x and y are 

expressed in metres.

Group – C

(Long-Answer Type Questions)
   Answer any three questions 3  ¥ 15 = 45

 6. (i) Two blocks (1) and (2) are resting on the horizontal surface as shown in Fig. 2. The block 2 is 

attached to a vertical wall by an inclined string AB. Find the magnitude of the horizontal force  P 

that will be necessary to cause slipping to impend. Take m between the surface and block as 0.4 and 

m between the blocks as 0.25.
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3

4

q

A 2

1
P

B

Figure 2

 (ii) Two smooth spheres, each of radius r = 150 mm and weight W = 100 N, rest in a horizontal 

channel having vertical walls, the distance between them is w = 560 mm, as shown in Fig. 3. Find 

the reactions exerted at their points of contacts by the walls and the floor.

RB

B C
1

W

E

D RD

W

C
2

RC

RC

A

RA

q

Figure 3

 7. (i) Two blocks having weights W1 = W2 = 20 N are attached by a short string and rest on an inclined 

plane as shown in Fig. 4. If the coefficients of friction for the blocks are m1 = 0.2 and m2 = 0.3 

respectively, find the angle of inclination of the plane for which motion impends.

a

W
2

W
1

Figure 4
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  (ii) Determine the moment of inertia of the T section with respect to a centroidal axis parallel to the 

x axis as shown in Fig. 5. Consider all the dimensions to be in mm.

y

O
150

50

1
0
0

5
0

G

F

D

E
C

y
c

x

H

A B

Figure 5

 8. (i) Using the Pappus and Guldinus theorem, compute the volume of a right-circular cone of height h 

and base radius r.

  (ii) The bar AB weighs 250 N is supported by a wall at C and a horizontal cable as shown in the 

Fig. 6. Assuming all surfaces are smooth, find the cable tension and forces at A and C.

1.2 m

1.8 m

0.6 m

50°

Cable

C

B

A

Figure 6

 9. (i) A lever is attached to a spindle by means of a square key 6 mm ¥ 6 mm ¥ 2.5 cm long as shown 

in the Fig. 7. If the average shear stress in the key is not to exceed 700 kg/cm2, what is the safe 

value of the load P applied at the free end of the lever?

Figure 7

  (ii) A body of 5 kg mass drops freely from a height of 60 m and penetrates the ground by one metre. 

Find the average resistance of penetration and the time of penetration.
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 10. (i) A train weighing 1000 kN is accelerated uniformly up an inclined plane of 2% grade. The velocity 

increases from 5 m/s to 15 m/s in a distance of 500 m. The resistance offered by the track is 

50N per kN weight of the train. Determine the maximum power developed by the train.

 (ii) The motion of a particle is defined by the following equations:

  x = 
( )t - 4

6

3

 + t2 and y = 
t t3 2

6

1

4
-

-( )
, where x and y are expressed in metre and t is in 

second. Determine (a) the magnitude of the smallest velocity reached by the particle, and (b) the 

corresponding time, position and direction of the velocity.





Group – A

(Multiple-Choice Questions)

1. Choose the correct alternatives for the following: 10  ¥ 1 = 10

 (i) Lami’s theorem is related to

 (a) equilibrium of two coplanar, concurrent forces

 (b) equilibrium of three coplanar, concurrent forces

 (c) equilibriums of four coplanar, concurrent forces

 (d) none of the above

 (ii) Moment of a force is obtained by

 (a) vector addition (b) vector subtraction (c) vector dot product (d) vector cross product

 (iii) A block of 40 N is placed on a horizontal plane having m = 0.4. A pull force of P is applied at an 

angle q with the horizontal. The minimum value of P will be

 (a) 10.86 N (b) 12.37 N (c) 14.85 N (d) 20 N

 (iv) Two non-collinear parallel equal forces acting in opposite directions

 (a) balance each other   (b) constitute a moment

 (c) constitute a couple   (d) constitute a moment of a couple

 (v) An elevator weighing 1000 N attains an upward velocity of 5 m/s in 3 s following a uniform acceleration. 

The tension in the cables that support the elevator is 

 (a) 850 N (b) 1000 N (c) 1250 N (d) 1500 N

 (vi) When the temperature increases, the thermal stress induced in a bar is

 (a) tensile (b) compressive (c) shear (d) unpredictable

 (vii) The following category of energy is associated with conservative force:

 (a) Kinetic energy   (b) Potential energy

 (c) Energy lost due to friction (d) None of the above

 (viii) Poisson’s ratio is defined by

 (a) ratio of lateral strain and longitudinal strain (b) ratio of longitudinal strain and lateral strain

 (c) ratio of lateral stress and longitudinal stress (d) ratio of longitudinal stress and lateral stress

 (ix) The moment of inertia of a rectangle having base b and height h with respect to its base is

 (a) 
1

3
b2h2 (b) 

1

3
b3h (c) 

1

3
bh3 (d) 

1

3
b2h2

 (x) The energy absorbed by materials per unit volume up to a proportional limit is called

 (a) resilience   (b) proof resilience

 (c) modulus of resilience   (d) toughness
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Group – B

(Short-Answer Type Questions)
   Answer any three questions 3  ¥ 5 = 15

 2. What is a couple? Under what circumstances is it formed? Replace a force by an equivalent force–couple 

system.

 3. Prove that work done is a scalar product of two vectors.

 4. The acceleration of a particle at any point A is expressed by the relation a = 200x(1 + kx2); where a 

and x are expressed in m/s2 and metres respectively, and k is a constant. If the velocity of the particle 

at A is vA = 2.5 m/s when x = 0 and vA = 5 m/s when x = 0.15 m; find the value of k.

 5. Draw the stress–strain diagram of mild steel and explain the implications of the salient points. What 

is the interpretation of area under such a curve?

 6. What is meant by angle of repose? What should be its value for a particular surface? Prove the same.

Group – C

(Long-Answer Type Questions)
   Answer any three questions 3  ¥ 15 = 45

 7. (i) A right-circular roller of weight W rests on a smooth horizontal plane and is subjected to a pull 

force P, as shown in Fig. 1. It is held in position by a string AC. Find the tension T in the string 

AC and reaction RB at B.

Figure 1

  (ii) State Coulomb’s laws of friction.

  (iii) The bracket shown in Fig. 2 is spot welded to the end of the shaft at the point O and is subjected 

to a 900 N force. Find out the equivalent force and couple to replace the 900 N force. 

900 N

z

O

y

x

100 mm

Figure 2
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 8. (i) A right-circular cylinder of mass m = 10 kg rests on a V block having an included angle of 90°. 

The V block is now inclined by 30° with the horizontal as shown in Fig. 3. If the coefficient of 

friction between the cylinder and the V block is m = 0.5, determine (a) the friction force F acting 

on each side of the cylinder before the application of force P, and (b) the magnitude of P so that 

the cylinder is on the verge of sliding up the plane.

30°

Horizontal

End View

45°
45°

P

Figure 3

  (ii) Determine the moment of inertia of the shaded area with respect to the point O as shown in Fig. 4.
f40

m
m

A

y

C

8
0
m
m

40 mm 40 mm

BO
x

Figure 4

 9. (i) A 100 mm diameter shaft has a projected collar of 130 mm diameter over a length of 20 mm and 

is supported by a hollow structure as shown in Fig. 5. The shaft is subjected to an axial load of 

500 kN. Find the shear stress induced in the collar.

  (ii) A mass M resting on a smooth table is connected to masses M1 and M2 by strings as shown in 

Fig. 6. Find the acceleration of the system, assuming M1 is moving down.

 10. (i) A lever is loaded by various forces and a couple as shown in Fig. 7. If the resultant of these forces 

and the couple passes through O, calculate M.

  (ii) A person throws a stone so as to clear a wall of 3.685 m height located at a distance of 5.25 m 

from the origin. The stone touches the ground at a distance of 3.58 m from the wall—away from 

the origin. Find the least initial velocity at which the stone was thrown along with its direction.
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 11. (i) A motorcycle and rider having a total weight W = 2225N travels in a vertical plane following a 

curve AB of radius r = 300 m, at a speed of 72 km/hr. Compute the thrust exerted by the road as 

it passes over the crest C on the curve, as shown in the Fig. 8.

Figure 8

  (ii) The frame shown in Fig. 9 is made of a 10 cm ¥ 10 cm square wooden post, for which the allowable 

stress in shear parallel to the grain is tw = 7 kg/cm2, while that in compression perpendicular to 

the grain is sw = 28 kg/cm2. Calculate the minimum safe values of the dimensions a, b and c. 

The vertical post is pinned at its lower end to a foundation plate.

Figure 5

130 mm

20 mm

500 kN

100 mm dia

M

M2 M1

Figure 6

O

15
0
m
m

15
0
m
m

Figure 7
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d

1.2 m

0.9 m

150 kg

c

1.2 m

a

b
q

Figure 9

 12. (i) If a system of two masses mA = mB = 20 kg are arranged as shown in Fig. 10 are released from 

rest, find the velocity of the mass mB after it has fallen a vertical distance of 2 m. Neglect the 

inertia of the pulleys and friction.

P

vA

mA

Q

vB

2 m

mB

Figure 10

  (ii) Compute the coordinates (xc, yc) of the centroid C of the sector of the general spandrel OAB as 

shown in Fig. 11.

O

y

Y = kx
n

A

y

x dx B x

Figure 11
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Group-A

(Multiple-Choice Type Questions)

1. Choose the correct alternatives for the following: 10 ¥ 1 = 10

 (i) Free body diagram can be applied only in

 (a) a dynamic equilibrium problem        (b) a static equilibrium problem

 (c) both dynamic and static equilibrium problem  (d) none of these

 Answer (c) 

 (ii) The condition of equilibrum for coplanar non-concurrent forces are

 (a) F F
X Y

= =Â Â0 0;    (b) F M
X

= =Â Â0 0;

 (c) F M
Y

= =Â Â0 0;    (d) F F M
X Y

= = =Â ÂÂ0 0 0; ;

 Answer (d) 

 (iii) The centre of gravity of a solid hemisphere of radius R is

 (a) 3R/8 (b) R/2 (c) 3R/4 (d) none of these

 Answer (a) 

 (iv) The equation of motion of a particle is s = 2t3 – t2 – 2 where s is the displacement in metres and t is 

time in seconds. The acceleration of the particle after 1 second will be

 (a) 8 m/s2 (b) 9 m/s2 (c) 10 m/s2 (d) 5 m/s2

 Answer (c)  

 (v) When a body slides down an inclined surface of inclination q, the acceleration of the body is given by

 (a) f = g (b) f = g sin q (c) f = g cos q (d) f = g/sin q

 Answer (b) 

 (vi) The maximum strain energy that can be stored in a body is known  as

 (a) impact energy (b) resilience (c) proof resilience (d) modulus of resilience

 Answer (c)

 (vii) When two ships are moving along inclined directions then the time when the two ships will be closest 

together depends upon
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 (a) velocity of one of the ships (b) velocity of both the ships

 (c) angle between the two directions (d) all of these

 Answer (d) 

 (viii) The maximum height of a projectile on ahoriontal range is

 (a) 
u

g

2 2

2

sin a( )
   (b) 

u

g

2

2

sin a( )

 (c) 
u

g

2 2 2

2

sin a( )
   (d) 

u

g

2 2

2

sin a( )

 Answer (d)

 (ix) The differential equation of a falling body under gravity is

 (a) �� ��x y= =0 0,  (b) �� ��x y g= =0,  (c) �� ��x c y g= =,  (d) �� ��x y= =0 0,

 (e) none of these

 Answer (e)

 (x) If a momentum of a body is doubled, its kinetic energy will

 (a) increase by two times   (b) increase by four times

 (c) remain same   (d) get halved

 (e) reduce to four times

 Answer (b) 

Group-B

(Short-Answer Type Questions)

    

 3 ¥ 5 = 15

 2. What do you mean by a free-body diagram? Draw the free-body diagrams of the following as 

shown below:       1 + 2 + 2

Fig. Q.1 Fig. Q.2
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Answer

A free-body diagram, abbrebiated as FBD, is a very useful aid to solve the problems of mechanics. The 

very name implies that a member for which we focus our attention for the purpose of force analysis should 

be isolated from various constraints and all the forces acting on it, both active and reactive, should be shown 

without altering its directions. This is a simplified scheme of the actual problem but helps in a bigger way 

to arrive at its solution.

 3. Determine the force P required to intend the motion of the block B shown in the Fig. Q.5. Take 

m = 0.3 for all surfaces of contact, where m = coefficient of friction.   5

Answer

Fig. Q.3 Free-body diagram of the ball Fig. Q.4 Free-body diagram of the ladder

Fig. Q.5

Fig. Q.6
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Since all the blocks are placed one over the other, as per Newton’s third law, there would be mutual 

normal reactions.

As regards the middle block B, under the equilibrium condition when there is impending motion, the 

minimum force P will be just sufficient enough to overcome the frictional forces resulted from two mating 

surface, namely between A and B and between B and C.

The free-body diagrams of all the blocks are shown above.

Thus for the block A, NA = 300 N and FAB = m.NA = 0.3 ¥ N = 90 N

For the block B, considering Y =Â 0

NA + WB = NC

NC = 300 + 500 N = 800 N

Similarly for the block C,

Y =Â 0

NB + WC = NC

NB = 800 − 400 N = 400 N

\ FBC = mNC = 0.3 ¥ 800 N = 240 N

For the block B, considering X =Â 0

P = FAB + FBC = 90 + 240 N = 330 N

 4. A force F = 3i − 4j + 12k acts at a point A whose coordinates are (1 − 2, 3) m

  Compute

 (a) moment of force about origin (b) moment of force about the point B(2, 1, 2) m

Answer

 (a) The force vector F = 3i − 4j + 12k and the position vector for point of application of force at A 

is rAO = i − 2j + 3k

  Thus as per definition, MO = rAO ¥  F = (i − 2j + 3k) ¥ (3i − 4j + 12k) = (−24 + 12)i + (9 − 12) j + 

(−4 + 6) K = −12i − 3j + 2k

 (b)  The position vector now becomes rAB = (1 − 2)i + (−2 −1)j + (3 − 2)j + (3 − 2)k = −3j + k MB = 

rAB ¥ F = −i −3j + k) ¥ (3i − 4j + 12k) = (−36 + 4)i + (3 + 12)j + (4 + 9)k = −32i + 15j + 13k

 5. If the string AB is horizontal, find the angle that the string AC makes with the horizontal when 

the ball is in a position of equilibrium. Also, find the pressure R between the ball and the plane.

Fig. Q.7
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Answer The free-body diagram of the roller is shown in Fig. Q.8

Resolving all the forces alobg the x and y directions

 X =Â 0

 P = Q cos a

 cos a = 
P

Q

 a = cos–1 
P

Q

Ê
ËÁ

ˆ
¯̃

 Y =Â 0

R + Q sin a = W

 R = W − Q sin a = W − Q P2 2-

Group-C

(Long-Answer Type Questions)

 Answer any three of the following questions     3 ¥ 15 = 45

 6. (a) A short semi-circular right cylinder of radius r and weight W rests on a horizontal surface and 

is pulled at right angles to its geometric axis by a horizontal force P applied at the middle B of 

the frontage as shown. Find the angle a that the flat face will make with the horizontal plane 

just before sliding vbegins if the coefficient of friction at the line of contact A is m. The gravity 

force W must be considered as acting at the centre of gravity C as shown in Fig. Q.9.

Fig. Q.8

Fig. Q.9
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Answer Considering the equilibrium of the semi-circular cylinder during impending motion

X =Â 0; P = Ff = mN (1)

Y =Â 0;  N = W (2)

and

M W
r

P r r
A

= ¥ = ¥ -Â 0
4

3
; sin ( sin )

p
a a  (3)

Combining equations (1), (2) and (3);

W
r

Wr¥ = -
4

3
1

p
a m asin ( sin )

4

3

1r

rm

a

a
=

- sin

sin

1
1

4

3sina mp
= +

a = sin–1 
3

4 3

mp

mp+
È

Î
Í

˘

˚
˙

 (b) Determine the coordinates of the centroid C of the area of the circular sector OBD of radius r 

and central angle a.       (7)

Answer The problem is worked out in example 5.4 (page 5.9).

 7. (a) The following details refer to the bar as shown:

 Portion  Length Cross-section

 AB 600 mm 40 ¥ 40 mm

 BC  800 mm 30 ¥ 30 mm

 CD  1000 mm 20 ¥ 20 mm

If the load P4 = 80 kN, P2 = 60 kN and P3 = 40 kN, find the extension of the bar, where E = 2 ¥ 105 N/mm2.

Fig. Q.10
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Answer These types of problems are solved following the method of superimposition, i.e., individual 

sections are in equilibrium under load as well as the entire bar. Thus, force balance of the bar 

axially yielding that reaction force generated by the support is R = P3 + P4 – P2 = 80 + 40 – 

60 N = 120 N.

  Now  the free-body diagrams of the three different sections are shown in Fig. Q.11.

Fig. Q.11

 Introducing suffices for the above three situations by AB, BC and CD and having the modulus of elasticity 

E = 2 ¥ 105 N/mm2, we have

dAB =
60 10 60 1000 600

40 40 2 10

3

5

¥ ¥
=

¥ ¥
¥ ¥ ¥

l

A E

AB

AB

mm = 0.1125 mm

dBC =
120 10 120 1000 800

30 30 2 10

3

5

¥ ¥
=

¥ ¥
¥ ¥ ¥

l

A E

BC

BC

mm = 0.5333 mm and

dCD =
80 10 80 1000 1000

20 20 2 10

3

5

¥ ¥
=

¥ ¥
¥ ¥ ¥

l

A E

CD

CD

mm = 1 mm

d = dAB + dBC  = dCD = 0.1125 + 0.5333 + 1 = 1.6458 mm

thus, net deformation of the bar is –1.6458.

 (b)  Calculate the increase in stress for each segment of the compound bar shown in Fig. Q.12, if 

the temperature increases by 100°F. Assume that the supports are unyielding and that the bar is 

suitably braced against bckling. Take      (8)

  EAl = 10 ¥ 106 psi, AAl = 2.0 in2, aAl = 12.8 ¥ 10–6/°F and

  ESt = 29 ¥ 106 psi, ASt = 1.5 in2, aSt = 6.5 ¥ 10–6/°F 

Fig. Q.12
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Answer Change (rise) in temperature is Dt = 100°F

  Both the bas will be under compression.

  Force balance of the two bars yields sSt ¥ ASt = sAl ¥ AAl

  sSt ¥ 1.5 = sAl ¥ 2

  sSt = 1.33sAl (4)

  Now, s = Ee = E ¥ 
d

1

  \ dSt = 
s s

sSt St

St

St
St

l

E

¥
=

¥
= ¥ ¥-15

19 10
0 517 10

6

6.

  Similarly, dAl = 
s s

sAl Al

Al

Al
Al

l

E

¥
=

¥
= ¥-10

10 10
10

6

6

  Free contraction = dSt + dAl

  Further free contraction = lSt aSt Dt + lAl aAl Dt

  = 100 [15 ¥ 6.5 ¥ 10–4 + 10 ¥ 12.8 ¥ 10–6] = 0.2255 inch

  Therefore, 0.2255 = 0.517 ¥ 10–6 ¥ sSt + 10–4 ¥ sAl (5)

  Solving Eq. (4) and (5)

  sSt = 17,690 psi and sAl = 13,352 psi.

 8. (a) A spring normally 150 mm long is connected to the two masses as shown in the figure and is 

compressed by 50 mm. If the system is released on a smooth horizontal plane, what will be 

the speed of each block when the spring is again in its normal length? The spring constant is  

2100 N/m.       (8)

Fig. Q.13

Fig. Q.14

Answer The free-body diagrams of the two masses are shown in Fig. Q.14.
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 Considering the mass M1; the dynamic equation becomes

 M x kx1 0�� + =

 
��x

kx

M
=

-

1

 Thus differential equation of mass M1 becomes ��x
kx

M
=

1

= 0

 Angular velocity w1 = 
k

M1

 The x – t relationship becomes x = x0 sin wt 

 \ �x x t= 0w wcos

 Thus �x x= = ¥ ¥ =-
0

3 2 250 10
2100

1
2 3w m/s m/s.

 Similarly �x  becomes 1.87 m/s.

 (b) A projectline is aimed at a mark on the horizontal plane through the point of projection and 

falls 12 m short when the angle of projection is 15°, while it overshoots the mark by 24 m when 

the same angle is 45°. Find the angle of projection to hit the mark. Assume no air resistance. 

Consider the velocities of projections are constant in all cases.

Answer The range r =
v

g

0
2 2sin q

  Let t he distance of the target from the point of projection along the horizontal direction be x.

  Initially, q – q1 (say) = 15°. The range r = r2 (say) therefore becomes x – 12 m

  \ x – 12 =
v

g

v

g

0
2

0
22 15

2

sin ( )¥ ∞
=      (6)

  During the second occasion, q = q2 (say) = 45°. The range r = r2 (say) therefore becomes 

(x + 24) m

  \ x + 24 = 
v

g

0
2 2 45sin ¥

     (7)

  Solving Eqs (6) and (7), x = 48 and 
v

g

0
2

 = 72

  Therefore, the range of the projecttile should be 48 m to hit the target.

  Let the correct angle of projection be q.

  \ 48 =
v

g

0
2 2sin q

= 72 sin 2q.

  q  = 20.9° 
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 9. (a) Two inclined rollers, each weighing Q = 100 kgf are supported by an inclined plane and a vertical 

wall as shown in Fig. Q.14. Assuming smooth surfaces, find the reactions induced at the points 

  AB and C       (7)

Fig. Q.15

Answer Let the mutual thrust exerted by two rollers from their common point of contact be T.

  Thus (RA)X = RA cos 60° and (RA)Y = RA sin 60°

  Considering the equilibrium of the lower roller; X =Â 0;  RB sin 30° + T cos 30° = RC (8)

  SY = 0; RB cos 30° = T sin 30° + Q     (9)

  Similar considerations of the upper roller yields

  SX = 0; T cos 30° = RA sin 30°     (10)

  SY = 0; RA cos 30° + T sin 30° = Q      (11)

  From Eqs (10) and (11), tan 30° = 
Q T

R

A

A

- ∞
∞

cos

sin

30

30

  RA [tan 30°sin 30° + cos 30°] = Q

  RA = Q cos 30° = 100 cos 30° = 86.6 kgf

  From Eqs (11), T sin 30° = Q – RA cos 30° = Q sin2 30° = 25 kgf

  Thus, from Eq. (9), RB cos 30° + T sin 30° + Q = 25 + 100 = 125

  RB = 
125

30cos
 = 144.34 kgf

  \ RC = RB sin 30° + T cos 30° = 144.34 sin 30° + 50 cos 30° = 115.47 kgf

 (b) Two blocks of weight W1 and W2 rest as shown. If the angle of friction of each block is j, find the 

magnitude and direction of the least force P applied to the upper block that will induce sliding.

Answer The problem is worked out in Example 6.1 (page 6.6).
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  Group – A 10 ¥ 1 = 10

(Multiple Choice Questions)

1. Choose the correct alternatives for the following:

 (i) Lami’s theorem is related to

 (a) equilibrium of two co-planar, concurrent forces

 (b) equilibrium of three co-planar, concurrent forces

 (c) equilibriums of three co-planar, non-concurrent forces

 (d) none of the above

  Answer (b)

 (ii) Strain energy is the

 (a) maximum energy which can be stored in a body

 (b) energy stored in a body when stresses to the elastic limit

 (c) energy stored in a body when stresses to the breaking point

 (d) none of these

  Answer (c)

 (iii) Poisson’s ratio is defined as

 (a) longitudinal stress by lateral stress

 (b) lateral stress by longitudinal stress

 (c) longitudinal strain by lateral strain

 (d) lateral strain by longitudinal strain

  Answer (d)

 (iv) Free-body diagram of a body is drawn

 (a) by isolating the body and its surrounding

 (b) by indicating the forces acting on it

 (c) both of these

 (d) none of these

  Answer (c)

 (v) If a momentum of a body is doubled, its kinetic energy will

 (a) increase by two times

 (b) increase by four times

 (c) remain same

 (d) get halved

 (e) reduced by four times

  Answer (a)
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 (vi)  A body falling freely from a height of 10 m rebounds from the floor. If it loses 20% of its energy in 

the impact, how high will it rebound?

 (a) 10 m

 (b) 8 m

 (c) 12 m

 (d) None of these

  Answer ( b)

 (vii) The dot product of two orthogonal vectors is

 (a) one

 (b) zero

 (c) no definite value

 (d) none of these

  Answer (b)

 (viii) The centre of gravity of a uniform lamina lies at

 (a) the centre of the heavy portion

 (b) the bottom surface

 (c) the midpoint of its axis

 (d) none of the these

  Answer (c)

 (ix)  If the velocity of a projectile is u and the angle of projection is a, the maximum height attained by a 

projectile above the horizontal plane is

 (a) u2 cos2 a /2g

 (b) u2 sin2 a /2g

 (c) u2 tan2 a /2g

 (d) u2 sin2 a /g

  Answer (b)

 (x)  Three forces 3p,  p and 2p acting on a particle are in equilibrium. If the angle between the first and 

second be 90∞, the angle between the second and third will be

 (a) 30∞
 (b) 60∞
 (c) 120∞
 (d) 150∞
  Answer (b)

  Group – B 3 ¥ 5 = 15

(Short-Answer Type Questions)
Answer any three questions

2. (a) State D’ Alembert’s principle.

  Answer

  From Newton’s second law,

  ÂF = m ��x

  ÂF - m ��x  = 0

  ÂF + (-m��x) = 0

   The above equation can be interpreted as if it is considered that ÂF is the net force acting along the 

direction of motion and - m ��x  is the force that acts opposite to the motion so that their combined effect 



 Solved Question Paper 2009 SQ.3

will restore equilibrium, i.e., no unbalanced force is acting on the body. This can, however, be envisaged 

that equation of dynamic equilibrium is tantamount to the equation of static equilibrium. The product 

of mass and acceleration with a negative sign is called inertia force to assume to act so as to oppose 

the motion.

  The above equation is treated as equation of dynamic equilibrium of the particle.

   To obtain dynamic equilibrium of a particle, a fictitious force called inertia force is added opposite to 

the direction of motion so that resultant force on the particle becomes zero. This concept is known as 

D’ Alembert’s principle and is a very useful approach in the solution of problems in kinetics.

 (b)  A smooth circular cylinder of radius 1.5-m is lying in a rectangular groove, as shown in Fig. 1. Find 

the reactions at the surfaces of contact, if there is no friction and the cylinder weighs 1000 N.

Figure 1

  Answer

   The FBD is shown in Fig. 1 (a). The reactions from the two supports (RG and RH) and the weight of the 

cylinder (W ) will constitute a closed triangle under equilibrium.

Figure 1 (a)

  Therefore, following Lami’s theorem, 
W R RG H

sin sin sin 120 15 45∞
=

∞
=

∞
 which yields

  RG = 298.8 N and RH = 816.5 N
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3.  Refer to Fig. 2, and determine the range of values of mass m0 so that the 100-kg block will neither move 

up nor slip down the inclined plane. The coefficient of static friction for the surfaces in contact is 0.3.

Figure 2

  Answer

  Denoting the 100-kg block that rests on the inclined plane as m, and maximum mass of the

  m0 as (m0)max

  (m0)max = m[m cos q + sin q] = 100 ¥ [0.3 cos 20∞ + sin 20∞ ] = 62.4 kg

  and

  (m0)min = m[sin q - m cos q] = 100 ¥ [sin 20∞ - 0.3 cos 20∞] = 6 kg

  Thus the range of values of m0 becomes 6 kg £ m0 £ 62.4 kg

4. (a) State Varignon’s principle.

  Answer

   The algebraic sum of the moments of a system of coplanar forces about a moment centre in their plane 

is equal to the moment of their resultant force about the same moment centre.

  Written analytically,

  
M r Fi i

i i

Â Â= ¥

  where Mi

i

Â  = algebraic sum of the moments, r = position vector, Fi

i

Â  = resultant force.

 (b)  A circular roller of 100-N weight and 10-cm radius hangs by a ties rod AB = 20 cm and rest 

against a smooth vertical wall at C as shown in the Fig. 3. Determine the force F in the rod.

20 cm

10 cm

C B

A

θ

Figure 3
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Answer

From the given geometry, q is computed to be 30∞.

 Under condition of equilibrium (Fig. 3 (a)), considering YÂ  = 0;

  F cos q = W

or,  F = W/cos q = 
100

30cos
 = 115.5 N

 Thus, the tension in the rod F is 115.5 N.

Figure 3 (a)

5.  Referring to Fig. 4, r = 12 cm, Q = 500 N and h = 6 cm. Find the magnitude of P required to start the roller 

over curb.

Figure 4

  The FBD is shown in Fig. 4 (a). The reactions from the curb RB, the applied force P and the weight of the 

roller Q is represented by a closed triangle (DBDE) under equilibrium.
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Figure 4 (a)

  From the geometry;

  BD = r r h2 2- -( )  = 2 2rh h-  = 10.4 cm; DE = 2r - h = 18 cm

  Considering the equilibrium of the roller and taking moment about B,

  Â MB = 0

  Q ¥ BD = P ¥ DE

 or  P = 500 ¥ 
10 4

18

.
 = 288.88 N

  Thus, Pmin is 288.88 N to initiate movement of the roller.

6.  Two smooth circular cylinders of Fig. 5 each of weight W = 100 N and radius r = 6 cm are connected 

by a string AB of length l = 16 cm and rest upon a horizontal plane, supporting a third cylinder of 

weight Q = 200 N and radius r = 6 cm above them. Find the tension S in the string AB and the pressure 

produced by the floor at points of contact D and E.

Figure 5
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  Answer

  The FBD of the upper roller is shown in Fig. 5 (a).

    Figure 5 (a)      Figure 5 (b)

  Under condition of equilibrium, considering XÂ = 0  yields that RAC and RBC are equal (say R).

  From the geometry,

  sin q = 
l

r

/ 2

2

  \ q = 41.8∞

  From YÂ = 0 , we get

  2R cos q = Q

 or, R = 
Q

2cosq

  Since the lower two rollers are identical in all respect, RD and RE is same.

  The FBD of the lower-left roller is shown in the Fig. 5 (b).

  XÂ  = 0;

  R sin q = T

 or, T = 
Q

2
 tan q = 

200

2
 tan 41.8∞ = 89.4 N

  YÂ  = 0;

 or, RD = W + R cos q = W + 
Q

2
 = 200 N = RE

Group – C

(Long-Answer Type Questions)
Answer any three questions 3 ¥ 15 = 45

7. (a)  A 150-kg man stands on the midpoint of a 50-kg ladder as shown in Fig. 6. Assuming that the 

floor and the wall are perfectly smooth, find the reactions at points A and B. 8
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Figure 6

  Answer

  This problem is similar to the worked out Example 4.15.

Figure 6 (a)

  The forces acting on the ladder are shown in Fig. 6 (a).

  The inclination of the ladder with the horizontal is q (say)

  tan q = 
4

2
 = 2

  or, q = 63.4∞

  Total vertical downward load on the ladder is W = Wman + Wladder = 150 + 50 = 200 kg.

  Considering the equilibrium of the ladder,

  M
AÂ  = 0
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  W ¥ 
l

2
cos a = RB ¥ l sin a

  
W

2
 = RB tan a

  RB = 
W

2

200 9 81

2 63 4tan tana
=

¥ .

.
 = 491.25 N

  \ RA = ( ) ( ) ( . ) ( . )R WB
2 2 2 2491 25 200 9 81+ = + ¥  = 2022.5 N

 (b)  Determine the moment of inertia for the T section (as shown in Fig. 7) with respect to a centroidal 

axis parallel to x-axis. All the dimensions are in mm. 7

Figure 7

  Answer

  This problem is identical to the worked out Example 7.8.

   For composites, it is imperative to calculate various parameters of the individual areas into which the entire 

composite is decomposed and present these in a tabular form to improve legibility and to reduce errors.

  Following the previous problem,

Identification Area (A) Ixi y

 ABCD A1 = 150 ¥ 50 = 7500 Ix1 = 
150 50

3

3¥
 = 6250000 y1 = 25

 EFGH A2 = 100 ¥ 50 = 5000 Ix2 = 
150 100

12

3¥
 + 5000 ¥ 1002 = 54170000 y2 = 50 + 50 = 100

 Composite A1 + A2 = 12500 I xi

i=
Â

1

2

 = Ix1 + Ix2 = 60420000 yc = 55

  Thus by using parallel axes theorem; I I d Axc xi x

i

i

i

= -
= =
Â Â2

1

2

1

2

  Ixc = 60420000 - 552 ¥ 12500 = 22607500 mm4
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8. (a)  Prove that the volumetric strain of a rectangular bar is the algebraic sum of strains of length, width 

and height. 6

  Answer

  This problem is identical to the worked out Example 8.12.

 (b)  Show that elongation of a conical bar under its weight is independent of its base diameter but on 

length only. 4

  Answer

Figure 8

  With reference to Fig. 8 of a solid cone, a section M-N is considered at a distance y from the vertex. The 

cross-section area at section M-N is say A.

 The weight of the lower part of section M-N is = 
1

3
 Ayr, where r is the density of the cone material.

 Thus stress at this section becomes s =
1

3
yr

 The elongation of the elemental length dy becomes 
1

3E
 yr.dy

 The total elongation of the conical bar becomes 
1

3
0

E

l

Ú  rydy = 
rl

E

2

6

 This expression shows that it is independent of base diameter but depends on length.

 (c)  Determine the strain energy stored within a bar of length l, cross-sectional area A, density r and 

modulus of elasticity E, hanging vertically due to its height. 5

  Answer

  Refer to Article 8.7, the gravitational force acting on a small elemental length dx of the bar at a distance x 

from the support is Fx = rAx.

  Thus its elongation d
F dx

AE

xd =

  Therefore strain energy induced in this small element of the bar is
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  du
F d Ax Ax dx

AE

x= =
. ( ).( ).d r r

2 2

 Thus total strain energy induced in the bar is u du
A

E
x dx

Al

E

l

= = =Ú Ú
r r2

2

0

2 3

2 6

 This is the required expression.

9. (a)  Two spheres P and Q rests in the channel as shown in Fig. 9. The sphere P has a diameter 400 mm 

and weight of 200 N, whereas the sphere Q has diameter 500 mm and weight 500 N. If bottom width 

of the channel is 500 mm with one side vertical and other side inclined at 60∞, determine the reaction 

induced in the contacts. 8

Figure 9

  Answer

Figure 9 (a)
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  The geometry of the system is shown in Fig. 9 (a).

  From the DO1BC,

  tan ,
q

2 1

=
BC

O C

  or, BC = 250 tan 30∞

  \ O1G = CF = BD - DF - BC = 500 - 250 tan 30∞ - 200 = 155.66 mm

  
cos

.
;f = =

O G

O O

1

1 2

155 66

450

  or f = 69.76∞

Figure 9 (b)

  The FBD of the two rollers is shown in the Fig. 9 (b).

  Considering equilibrium of the roller P and having X =Â 0,  we have

  RE = RO1O2 cos f

  From Y =Â 0,  we get

  WP = RO1O2 sin f

  Solving the above two equations, we have

  RE = 73.75 N and RO1O2 = 213.2 N

  Similar considerations of the roller Q yields X =Â 0;

  RAsin q = RO1O2 cos f

  and
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Y =Â 0;

  RC + RA cos q = WQ + RO1O2 = sin f

  Solving these two equations, we have

  RA = 85.2 N and RC = 657.5 N

 (b)  In Fig. 10, find the minimum value of horizontal force P applied to the lower block that will keep the 

system in equilibrium. Given, coefficients of friction between lower block and floor = 0.25, between 

the upper block and the vertical wall = 0.30, between the two blocks = 0.20. 7

Figure 10

  Answer

  This problem is similar to the worked out Example 6.10.

Figure 10 (a)
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  Introducing suffice W for wall; F for floor and B for common contact surface between blocks

  Fw = m1.Nw; FB = m2.NB and FF = m3.NF

  Given m1 = 0.30 fi f1 = 16.7∞.

  Similarly, m2 = 0.20

  or, f2 = 11.3∞ and

  m3 = 0.25

  or, f2 = 14∞
  RW, RB and RF are the resultant of normal reaction and frictional force at the wall, between blocks and the 

floor respectively.

  Selecting a particular scale and drawing the vector diagram for the two blocks [refer Fig. 10 (a)], 

P becomes 82 N.

10. (a) State the principle of virtual work. 3

  Answer

   The work done is expressed byU F dx F dy F dzx y z= + +Ú .  In view of equilibrium condition, the algebraic sum 

of all forces along the three mutually perpendicular directions is zero i.e. F F Fx y z= = =Â ÂÂ0 0 0; ; .  

This leads to the situation that U is also zero.

  Another condition of equilibrium M =Â 0  also converges to the same conclusion that work done by the 

moment of a couple is also zero.

  These two situations can be extended to conclude that “if a rigid body is in equilibrium, the algebraic sum 

of all the work done by external forces for any virtual displacements consistent with the geometrical 

configurations of the body is zero.” This is popularly known as Principle of Virtual Work.

 (b)  Two blocks weighing W1 and W2 resting on smooth inclined planes are connected by an inextensible 

string passing over a smooth pulley as shown in Fig. 11. Find the value of W2, when W1 = 500 N and 

a = 30∞, b = 60∞. 7

Figure 11

  Answer

  Since the two rollers are connected by a common string, the tension is same.

  Considering the roller A, T = W1 sin a and from the roller B, T = W2 sin b
  Comparing the above two equations,

  W2 sin b = W1 sin a.

  or, W2

500 30

60
288 67= =

sin

sin
. N
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 (c)  Determine velocity V of the falling weight W of the system as shown in Fig. 12 as a function of its 

displacement from the initial position of rest. Assume weight of the cylinder as 2 W. 5

Figure 12

  Answer

  The total K.E. of the system = (K.E.)Cylinder + (K.E.)Block

  = +
1

2

1

2

2 2Im

W

g
Vw

  = ¥ ¥
Ê
ËÁ

ˆ
¯̃

+
1

2

1

2

2 1

2

2 2 2W

g
r

W

g
Vw

  = ¥
Ê
ËÁ

ˆ
¯̃

+
1

2

1

2

2 2 2W

g
r

W

g
Vw

  

= ¥
Ê
ËÁ

ˆ
¯̃

+

=

1

2

1

2

2 2

2

W

g
V

W

g
V

W

g
V

  The work done = Wx

  Considering conservation of energy, we get

  =
W

g
V W x2 .

  or, V gx=

  This is the requisite relation between V and x.
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11. (a)  From top of a 60-m high, tower, a bullet is fired at an angle of 20∞ up the horizontal with a velocity of 

l20 m/s. Determine

  (i) time of flight

  (ii) horizontal range of ground

  (iii) maximum height of the bullet from ground

  (iv) velocity of the bullet after 8 seconds

  Assume horizontal ground at the foot of the tower 10

  Answer

Figure 13

  The initial velocity v0 has got two components — the horizontal component being v0 cos q, the vertical 

component is v0 sin q.

  Let the total time of flight is T seconds. Also consider that the projectile will cover h' meter height above 

the tower to reach its peak and its corresponding time is t' and during fall, it covers h meter in t seconds.

 Thus T = 2t' + t

  0 = v0 sin q - gt'

  2
2 2 120 20

9 81
8 3670¢ = =

¥
=t

v

g

sin sin
s

q

.
.

  Further h v t gt= +0
21

2
sinq. ;

  60 120 20
1

2
9 81 1 272= + ¥ ¥ fi =sin st t t. .

  Thus total time of flight becomes T = 2t' + t = 8.367 + 1.27 = 9.637s

  0 = (v0 sin q)2 - 2gh'

 or, ¢ =
¥

=h
( sin )

.
.

120 20

2 9 81
85 85

2

m

  \ Total height above the ground becomes H = h' + h = 85.85 + 60 = 145.85 m
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  The range R = (v0 cos q).T = 120 cos 20∞ ¥ 9.637 m = 1086.7 m.

  Since t' = 4.183 s, after 8 s the projectile on its downward movement from the peak height.

  Thus the downward component of the velocity after 8 seconds if denoted by vv8, then

  vv8 = g ¥ 3.817 = 37.45 m/s

  The horizontal component being unchanged at v0 cos q implying

  vh8 = 120 cos 20 = 112.76 m/s

  Thus resultant velocity after 8 s is

  v v vh v8 8
2

8
2 2 2112 76 37 45 118 82= + = + =( ) ( ) . . . m/s

 (b)  Determine the tension in the strings and accelerations of two blocks of masses 150 kg and 50 kg 

connected by a string and a frictionless, weightless pulley as shown in Fig. 12. 5

Figure 14

  Answer

  This problem is similar to the worked out Example 11.3.

  For the given system, the 50-kg mass (m1) will go up and the 150-kg mass (m2) will come down. Let the 

tension in the string is T.

 If the mass m1 moves up with accelerations a; the mass m2 moves down with acceleration

 ¢ = -a
a

2

 Considering the equilibrium of the mass m1 and applying Newton’s second law of motion

  T - m1g = m1a

  or, T = m1(g + a)
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  Similar consideration of the mass m2 yields

  m g T m a m
a

T m g
a

2 2 2 22
2

2
2

- = ¢ = fi = -Ê
ËÁ

ˆ
¯̃

  Comparing above two equations

  m g
a

m g a2 1
2

2( ) ( )- = +

  Solving a
g

=
2

7

  Thus the acceleration of the block of mass 50 kg is a = ≠
2

7

g
 and the block of mass 150 kg is ¢ = Øa

g

7

  Tension in the string is T = m1(g + a) = 50 ¥ 9 ¥ 9.81/7 N = 630.65 N
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ENGINEERING MECHANICS

SEMESTER – 1

  Group – A

(Multiple Choice Questions)

1. Choose the correct alternatives for the following: 10 ¥ 1

 (i) Mass moment of inertia of a body is

 (a) moment of its inertia

 (b) rotational analogue of mass

 (c) inertial moment about the centroidal axis

 (d) none of these

  Answer (b) 

 (ii) The centre of percussion of a rigid body is a point

 (a) through which the resultant of all forces acts

 (b) where minimum external forces act

 (c) where impact is made

 (d) all of these

  Answer (a)

 (iii) Two coplanar couples having equal and opposite moments

 (a) balance each other

 (b) produce a couple and an unbalance force

 (c) an equivalent

 (d) all of these

  Answer (a)

 (iv) The moment of inertia of a rectangle having base b and height h with respect to its base is

 (a) 2 21

3
h b

 (b) 31

3
b h

 (c) 31

3
bh

 (d) 2 21

3
b h

  Answer (c)
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 (v) D’Alembert’s principle

 (a) is based upon the presence of inertia force

 (b) provides advantage over Newton’s law

 (c) is purely a hypothetical principle

 (d) allows a dynamic problems to be treated as a static ones

  Answer (d)

 (vi) Centroid of a line segment

 (a) must lie on the line

 (b) must not lie on the line

 (c) must be same as the centre of gravity

 (d) none of these

  Answer (b)

 (vii) Volumetric strain of a rectangular body subjected to an axial force, in terms of linear strain e and 

Poisson’s ratio m, is given by

 (a) ( )1 2e m+

 (b) ( )1 2e m-

 (c) ( )1e m+

 (d) ( )1e m-
  Answer (b)

 (viii) Poisson’s ratio is defined as

 (a) lateral stress and lateral strain

 (b) longitudinal stress and longitudinal strain

 (c) lateral stress and longitudinal stress

 (d) none of these

  Answer (d)

 (ix) Relative velocity of A
�

 with respect to B
�

 is defined as

 (a) A B B AV V V= -
� � �

 (b) A B A BV V V= -
� � �

 (c) A B B AV V V= +
� � �

 (d) none of these

  Answer (a)

 (x) When a change in length takes place, the strain is known as

 (a) linear strain

 (b) lateral strain

 (c) shear strain

 (d) volumetric strain

  Answer (a)
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  Group – B

(Short-Answer Questions)
 Answer any three questions 3 ¥ 5 = 15

2.  The position vector of a particle moving in the x-y plane at time t = 3.60 s is 2.76j m. At t = 3.62 s, its 

position vector has become 2.79i – 3.33j m. Determine the magnitude v of its average velocity during 

this interval and the angle q made by v with the x-axis.

  Answer

  The position vector at t = 3.60 s is 
1 2.76r j=
�

 and the same at t = 3.62 s is 2 2.79 3.33r i j= -
�

  Thus,

   2 1 2.79 3.33 2.76 2.79 6.09r r r i j j i jD = - = - - = -
� �

  

2.79 6.09
139.5 304.5

0.02 0.02
av

r x y
v i j i i j

t t t

D D D
\ = = + = - = -

D D D

�

  Therefore, the magnitude v of its average velocity during this interval becomes

2 2(139.5) ( 304.5)  m/s 334.9 m/s+ - =
 

  The angle q made by v with x-axis is 1 304.5
tan 65.38

139.5

- -
= - ∞

3.  What do you mean by a free-body diagram? Draw the FBD for the Fig.1

A

B

+

+

20+

20+

Figure 1

  Answer

  See Section 4.4, Page 4.4.

  The FBD is shown in Fig. 1.(a).

RA¢

RAB

RAB
RA RB

WA
WB

Figure 1(a)



SQ.4 Mechanical Sciences-I

4.  If two equal tensions T in a pulley cable are 400 N, as shown in Fig. 2, express in vector notation the 

force R exerted on the pulley by the two tensions. Determine the magnitude of R.

T = 400 N

y

60°

x

T = 400 N

Figure 2

  Answer

  This problem is identical to the worked out Example 3.5.

5. (i) State and prove Lami’s theorem.

  Answer

  If a body is in equilibrium under the action of three concurrent forces, each force will be proportional 

to the sine of the angle between the other two forces.

  Hence for the system of forces shown above,

   

1 2 3

sin sin sin

P P P

a b g
= =

  Proof:

  Forming a triangle of forces as shown in Fig. 2 (a), we have

a C

P3

180° – a

A

g

b B

P2

P1

180° – b 180° – g

Figure 2 (a)

  where AB = P1, BC = P2, CA = P3

  Now applying sine rule for the triangle ABC,

   
( ) ( ) ( )sin 180 sin 180 sin 180

AB BC CA

a b g
= =

∞ - ∞ - ∞ -

  or, 
1 2 3

sin sin sin

P P P

a b g
= =
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 ii) Define free-body diagram.

  Answer

  See Section 4.4, Page 4.4.

6.  A bullet of mass m, moving with a horizontal velocity v, hits a stationary block of mass M, suspended 

by a massless string of length L. The bullet gets embedded in the block after impact and the two 

together swing up. Show that the maximum angle of swing (i.e., angle made by the string with the 

vertical is

  

Ê ˆ
= Á ˜Ë ¯

m v

gL M m

2 2
1

2
cos 1

2 ( )
q

-
-

+

  Answer

  The arrangement is shown in Fig. 2.(b).

O

q
L

B
A

m

M m+

M
C

Figure 2 (b)

  Let after collision, the velocity of the mass (M + m) becomes v¢.

  
0 ( )M mv m m v\ ¥ + = + ¢

  or, 
mv

v
M m

=¢
+

  From Fig. 2 (b), we get

    cosAC OC OA L L q= - = -
  Now energy of the system at points C and B will remain same.

  \ energy at the point C = Energy at the point B

    

21
( ) ( )

2
M m v M m g AC+ = + ¥¢

  or, 21
( ) ( )

2
M m g AC M m v+ ¥ = + ¢

  or, 

2 2

2

1
( ) ( cos ) ( )

2 ( )

m v
M m g L L M m

M m
q+ ¥ - = +

+

  or, 

2 2

2

1
(1 cos )

2 ( )

m v

gL M m
q- =

+

  or, 

2 2

2

1
cos 1

2 ( )

m v

gL M m
q = -

+

  or, 
2 2

1

2

1
cos 1

2 ( )

m v

gL M m
q - Ê ˆ

= -Á ˜+Ë ¯
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  Group – C

(Long-Answer Questions)
 Answer any three questions 3 ¥ 15 = 45

7.  (a) A 50 N block is released from rest on an inclined plane which is making an angle of 35° to the 

horizontal (Fig. 3). The block starts from ‘A’, slides down a distance of 1.2 m and strikes a spring 

with a stiffness of 8 kN/m. The coefficient of friction between the inclined plane and the block is 

0.25. Determine (i) the amount the spring gets compressed, and (ii) distance the block will rebound 

up the plane from the compressed position. 

N

F

W

q

q

W cos q
W sin q

Figure 3

  Answer

  Normal reaction on the block = cos 50cos35 40.96NN W q= = ∞ =

  Friction force on the block 0.25 40.96 10.24NF Nm= = ¥ =

  The net downward force acting on the block is net sin 18.44NF W Nq m= - =
  Let x be the displacement (deformation) of the spring when the block strikes. 

  Thus total displacement of the block becomes (1.2 ) mx+

  Thus work done by the block is net . 18.44(1.2 )N-mU F x x= = +

  Work done by the spring is 21 1
( ) 8000 N-m

2 2
kx x x- ◊ = - ¥ ¥

  The net work done of the system is 2
net 18.44(1.2 ) 4000 N-mU x x= + -

  Since the block starts from rest and after striking, it also comes to rest, the net change in kinetic energy 

of the system is zero. 

  Following work-energy principle, 218.44(1.2 ) 4000 0x x+ - =
  Solving, we get

    0.0766 mx =
  (a) Thus the compression of the spring is 0.0766 m.

    During rebounds, the net force on the block is 
1
net sin 38.92NF W Nq m= + =

    If s is the distance travelled by the block along the plane (upward) then work done is 

    
1
net . 38.92 .N-mF s s= ¥

     

21
38.92  N-m

2
kx s\ = ¥

    or, 21
8000 (0.0766) 38.92 .

2
s¥ ¥ = ¥
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      or, s = 0.603 m

  (b) Thus the block rebounds by 0.603 m up along the plane.

 (b) A reinforced concrete column having a cross-section of 300 mm X 300 mm is provided with 9 bars 

of 20 mm diameter (Fig. 4). The column carries a load of 300 KM. Find the stress developed in 

the steel bars and concrete. Take Es = 2.1 × 105 N/mm2 and Ec = 2.1 × 105 N/mm2.

3
0
0
 m

n

300 mn

Figure 4

  Answer

  Applied load = P = 300 kN = 300000 N. 

  Total area of the column = 300 ¥ 300 mm2.

  Area of steel bars = 
2 2 2

steel 9 (20) mm 32827.5 mm
4

A
p

= ¥ ¥ =

  Area of concrete therefore becomes Acon = (90000 – 2827.5) mm2 = 87172.5 mm2

  Let the stresses induced in the concrete and steel be scon and ssteel respectively.

  Due to loading, the deformation of both the materials would be same.

   
steel con

steel con

.
E E

s s
\ =  (1)

  Further total load = Load shared by steel + Load shared by concrete

   steel steel con conA A Ps s\ ¥ + ¥ =  (2)

  Solving Eqs (1) and (2), we have

   scon = 2.315 N/mm2 and ssteel = 34.726 N/mm2

 8. A rigid bar AB is hinged to a vertical wall and supported horizontally by a tie bar CD as shown 

in Fig 5. The cross-sectional area of CD is A = 0.5 sq cm and its allowable stress in tension is 1500 

kg/cm2. Find the safe value of P and the corresponding vertical deflection DB of B. The modulus 

of elasticity of the tie-rod E = 2 × 106 kg/cm2.

A

q

S

C

2 m 2 m

P

B

D

1.5 m

Figure 5
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  Answer

  This problem is identical to the worked out Example 8.7.

 9. (a)  A block of weight W1 = 200 N rests on the horizontal surface and supports on top of it, another 

block of weight W2 = 50 N. The block W2 is attached to a vertical wall by the inclined string AB. 

Find the magnitude of the horizontal force P applied to the lower block, as shown in Fig. 6, that 

will be necessary to cause slipping to impend. Take coefficient of static friction for all continuous 

surfaces is μ =0.3.

B

3

4 q
A 2

1
P

Figure 6

  Answer

  The coefficient of friction between the supporting surface and block m1 = 0.4

  And the coefficient of friction between the blocks m2 = 0.25

  The angle q is given by

    

1 3
tan 36.87

4
q -= = ∞

  Let us draw the FBD of the two blocks [Fig. 6 (a)].

F ¢1

W1

Block 1

P

T
q

Block 2

R ¢1

1

F1
R1

W2

F ¢2

R1

Figure 6 (a)

  For Block-1,

    
0xF =Â

  or, 1 1P F F ¢= +  (3)

    
0yF =Â

  or, 
1 1 1R W R ¢= +  (4)

  For limiting equilibrium,

    1 1 1F Rm=  (5)

    1 1F Rm¢ ¢=  (6)

    1 1 1R W R ¢= +

    1 1
1

1

F F
W

m m

¢
= +  (7)
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  For Block-2,

    
0xF =Â

  or, 1 cosF T q¢ =

  or, 
1

cos

F
T

q

¢
=  (8)

    
0yF =Â

  or, 
1 2sinR T Wq¢ + =  (9)

    

1 1
2sin

cos

F F
W

μ
q

q

¢ ¢
+ ¥ =

    

2
1

570
120N

1 1 3
tan

0.25 4

W
F

q
m

¢ = = =
+ +

  From Eq.(7), we have

    
1 1

120
1290

0.25
F m

È ˘= +Í ˙Î ˚

        = 0.4 × 1770 = 708 N

  From Eq.(3), we find

    1 1 120 708P F F ¢= + = +

         = 828 N

 (b) Two smooth circular cylinders of Figure 5, each of weight W = 100 N and radius r = 6 cm are 

connected by a string AB of length l = 16 cm. They rest upon a horizontal plane, supporting a 

third cylinder of weight Q = 200 N and radius r = 6 cm above them. Find the tension S in the 

string AB and the pressure produced by the floor at points of contact D and E. 

W C W

M N

A B1

q

Q

D E

Figure 7
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  Answer

  The FBD of the upper roller is shown in Fig. 7(a).

C

q

Q

RAC
RBC

q

  

q

RAC

RD

A

W

T

Figure 7 (a)       Figure 7 (b) 

  Under condition of equilibrium, considering 0X =Â  yields that RAC and RBC are equal (say R).

  From the geometry,

    

/2
sin

2

l

r
q =

   \ q = 41.8°

  From 0Y =Â , we get

    
2 cosR Qq =

  or, 
2cos

Q
R

q
=

  Since the lower two rollers are identical in all respect, RD and RE are same. 

  The FBD of the lower-left roller is shown in Fig. 7(b).

  
0;X =Â

    sinR Tq =

  or, 
200

tan tan 41.8 89.4 N
2 2

Q
T q= = ∞ =

  0;Y =Â

  or, cos 200
2

D E

Q
R W R W N Rq= + = + = =

 10. (a) Two rollers of diameters 60 mm and 30 mm weigh 200 N and 150 N respectively. They are 

supported by an inclined plane and vertical walls as shown in Fig. 8. Assuming smooth surfaces, 

determine the reactions at the contact surfaces. 
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+

+

45°

Figure 8

  Answer

  This problem is identical to the worked out Example 4.5.

 (b) Find out the moment of inertia about centroidal axes of an area as shown in Fig. 9. 

  Answer

20 mm

80 mm

100 mm

20 mm

 Figure 9

  This problem is identical to the worked out Example 8.8.

11. (a) Calculate the increase in stress for each segment of the compound bar shown in Fig. 10. If the 

temperature increases by 100°F, assume that the supports are unyielding and that the bar is 

suitably braced against buckling.

  EAl = 10 × 106 psi, AAl = 2.0 in2, aAl = 12.8 × 10–6/°F and

  ESt = 29 × 106 psi, ASt = 1.5 in2, aSt = 6.5 × 10–6/°F
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Aluminium

10 in.

Steel

15 in.

Figure 10

  Answer

  Change (rise) in temperature is Dt = 100°F

  Both the bars will be under compression.

  Force balance of the two bars yields

    sSt ¥ ASt = sAl ¥ AAl

  or, sSt ¥ 1.5 = sAl ¥ 2

  or,        sSt = 1.33 sAl (10)

  Now,

    
E E

l

d
s e= = ¥

   

St St
St

St

l

E

s
d

¥
\ = 6St

St6

15
0.517 10

29 10

s
s-= = ¥ ¥

¥
   Similarly,

       

6Al Al Al
Al Al6

Al

10
10

10 10

l

E

s s
d s-¥

= = = ¥
¥

  Free contraction = dSt + dAl 

  Further, free contraction = lStaStDt + lAlaAlDt 

           

6 6100 15 6.5 10 10 12.8 10- -È ˘= ¥ ¥ + ¥ ¥Î ˚

           = 0.2255 inch

  Therefore,

           
6 6

St Al0.2255 0.517 10 10s s- -= ¥ ¥ + ¥
 (11) 

  Solving Eqs (10) and (11), we get

    sSt = 17,690 psi and sAl = 13,352 psi

 (b) In Fig. 11, a lever is attached to a spindle that is 2.5 cm in diameter by means of a square key 

of dimensions 6 mm × 6 mm. If the average shear stress in the key is not to exceed 700 N/cm2, 

what is the safe value of the load P applied at the free end of the lever? 
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2.5 cm

Key

75 cm

P

Figure 11

  Answer

  This problem is identical to the worked out Example 8.4.
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ENGINEERING MECHANICS

SEMESTER – 1

Time: 3 Hours Full Marks: 70

  Group – A

(Multiple Choice Questions)

1. Choose the correct alternatives for any ten of the following: 10 ¥ 1 = 10

 (i) Coulomb friction is between 

 (a) solids and liquids

 (b) dry surfaces

 (c) between bodies having relative motion

 (d) none of these

  Answer (b) 

 (ii) The velocity of a simple wheel and axle, with D and d as the diameters of effort respectively is 

 (a) (D + d)

 (b) (D – d)

 (c) d/D

 (d) D/d

  Answer (d)

 (iii) For stable equilibrium the potential energy will be 

 (a) maximum

 (b) minimum

 (c) zero

 (d) equal to kinetic energy

  Answer (b) 

 (iv) The centroid of a semicircular area of radius r from the base is 

 (a) 4

3

r

p

 (b) 2

3

r

p

 (c) 3

2

r

p

 (d) r

  Answer (a) 
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 (v) Materials having same elastic properties in all directions are called 

 (a) isotropic

 (b) orthotropic

 (c) composite 

 (d) elastic

  Answer (a) 

 (vi) The work done against any conservative force is stored in the body in the form of 

 (a) energy

 (b) potential energy

 (c) elastic energy

 (d) strain energy

  Answer (b)

 (vii) A pair of a force and a couple in the same plane upon a rigid body 

 (a) balance each other

 (b) cannot modify each other

 (c) produce a moment

 (d) none of these

  Answer (c)

 (viii) A particle inside a hollow sphere of radius r having coefficeient of friction 
1

3
, can be in rest up to 

a height of

 (a) r/2

 (b) r/4

 (c) 3r/8

 (d) none of these

  Answer (d) 

 (ix) Hooke’s law is valid up to 

 (a) yield point 

 (b) elastic limit 

 (c) proportional limit

 (d) ultimate stress

  Answer (c)

 (x) A jet engine works on the principle of conservation of yield point 

 (a) energy

 (b) angular momentum

 (c) linear momentum

 (d) none of these

  Answer (c) 

 (xi) Moment of inertia of a triangle of base and height about the centroidal axis parallel to base is 

 (a) 
3

36

bh  

 (b) 
3

12

bh

 (c) 
3

3

bh
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 (d) none of these

  Answer (a)

 (xii) Couple is a 

 (a) bound vector

 (b) free vector

 (c) sliding vector

 (d) none of these

  Answer (b) 

 xiii) Angle between the vectors (i + j) and (i – j) is 

 (a) 90°

 (b) 45°

 (c) 0

 (d) none of these

  Answer (b) 

 Group – B

(Short-Answer Questions)
 Answer any three questions 3 ¥ 5 = 15

2. (a)  Define moment.

  Answer

  See Section 3.7

 (b) In the given Figure 1, the weight of the block is 1600 N and m = 0.2. Find the value of P for 

impending motion.

P

60°

Figure 1

  Solution

  Considering equilibrium condition of the block when motion impends,

    ÂX = 0

  or, P cos 60° + F = W sin 60° (1)

    ÂY = 0

  or,  N = W cos 60° + P sin 60° (2)

  Further, under limiting condition

    F = mN (3)

  Combing Eqs (1), (2) and (3), we have

    
( )

(sin60 cos60 ) 1600(sin60 0.2cos60 )
1820.54N

(cos60 sin60 ) cos60 0.2sin60

W
P

m

m

∞ - ∞ ∞ - ∞
= = =

∞ + ∞ ∞ + ∞
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3.  The position coordinate of particle which is confined to move in a straight line is given by S = 2t3 – 

24t + 6, where S is in m and t is in seconds. 

 Determine,

 (a) the time required for the particle to reach a velocity of 72 m/s from its initial condition at t = 0.

 (b) the acceleration of the particle when v = 30 m/s.

 (c) the net displacement of the particle during the interval from t = 1 second to t = 4 seconds.

  Solution

  It is given that S = 2t3 – 24t + 6

  Now, 26 24
dS

v t
dt

= = -

 (a) When v = 72 m/s, we have

    72 = 6t2 – 24

  or, t = 4 s

 (b) When v = 30 m/s, we get

    30 = 6t2 – 24

  or, t = 3 s

  The acceleration of the particle is given by

    
12

dv
a t

dt
= =

  \ at=3 s = 12 ¥ 3 = 36 m/s2

 (c) The net displacement of the particle during the interval from t = 1 second to t = 4 second is

    DS = 2(43 – 13) – 24(4 – 1) = 54 m

4.  Define (i) Malleability, (ii) Resilience, (iii) Toughness, (iv) Ductility, and (v) Proof Resilience.

 Answer

 See sections 9.3.1, 9.3.4, 9.3.5, and 9.4.1.

5.  A force F = 3i – 4j + 12k acts at a point A whose coordinates are (1, –2, 3). Compute,

 (a) moment of force about origin,

 (b) moment of force about point (2, 1, 2).

  Solution

   The position vector . 2 3Ar xi yj zk i j k= + + = - +
�

 (a) The moment of force about origin becomes

    

( 2 3 ) (3 4 12 )

12 2

o AM r F i j k i j k

i j k

= ¥ = - + ¥ - +

= - - +

�

�

 (b) To compute moment of force about point B(2, 1, 2), it is essential to find out position vector BAr
�

 as

    

( 2 3 ) (2 2 )

3

BA A Br r r i j k i j k

i j k

= - = - + - + +
= - - +

� � �
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  The moment of force about the point (2, 1, 2) becomes

    

( 3 ) (3 4 12 )

32 15 13

B BAM r F i j k i j k

i j k

= ¥ = - - + ¥ - +
= - + +

�

�

6. (a) State and Prove Lami’s theorem.

  Answer

  See answer to Question 5 (i) of 2010 Solved Question Paper.

 (b) Two equal loads of 2500 N are supported by a flexible string ABCD at points B and D as shown 

in Figure 2. Find the tensions in the portions AB, BC and CD of the string.

2500 N

60°

30°

60°

A

D

C
2500 N

Figure 2

  Solution

  Considering equilibrium condition of the point B

    ÂX = 0

  or, TAB sin 30° = TBC cos 30° (4)

    ÂY = 0

  or, TAB cos 30° = TBC sin 30° + 2500 (5)

  Dividing Eq.(4) by Eq.(5), we get

    

cos30
tan30

sin30 2500

BC

BC

T

T

∞
∞ =

∞ +

  or, TBC = 2500 N

  From Eq. (4), we have

    TAB = TBC cot 30° = 4330.13 N

  Equilibrium of the point C yields TCD = TBC = 2500 N   [From symmetry]

  Group – C

(Long-Answer Questions)
 Answer any three questions 3 ¥ 15 = 45

7.  (a) A block of weight W1 = 200 kgf rests on the horizontal surface and supports on top of it, another 

block of weight W2 = 50 kgf. The block W2 is attached to a vertical wall by the inclined string 

AB. Find the magnitude of the horizontal force P applied to the lower block as shown, that will 

be necessary to cause slipping to impend. Take coefficient of static friction for all continuous 

surfaces is μ = 0.3.
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P
A

q

B

3

4

1

2

Figure 3

  Solution

  This problem is identical to solution to Question 9 (a) of 2010 Solved Question Paper.

 (b) A shot is fired with a bullet with an initial velocity of 40 m/s from a point 20 m in front of a

10 m high vertical wall. Find the angle of projection with the horizontal to enable the shot to 

just clear the wall. 

u = 40 m/s

a

20 m

10 m

Figure 4

  Solution

  The trajectory of the bullet can be expressed by

    

2

2 2
0

tan
2 cos

g
y x x

v
q

q

Ê ˆ
= - Á ˜Ë ¯

  From the given situation, the top of the wall will lie on the trajectory. Thus the coordinate of the top 

of the wall (20 m, 10 m) satisfies the equation.

  Thus 2

2 2
10 tan 20 20

2 40 cos

g
q

q

Ê ˆ= ¥ - ¥Á ˜Ë ¯¥

  Solving the above equation, we get

    q = 86.36°   or   30.27°

8. (a) The bar shown in Figure 5 is subjected to a tensile load of 152 kN. Find the diameter of the 

middle portion if the stress there is to be limited to 140 N/mm2. Find also the length of the middle 

portion if the total elongation of the bar is to be 0.16 mm. Take E = 2 ¥ 105 N/mm2.

Figure 5
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  Solution

  Let the diameter of the middle portion of the bar is d mm.

  \ 
2

152 1000

4

P

A
d

s
p

¥
= =

  or, 6

2

152 1000
140 10

4
d

p

¥
¥ =

  or, d = 0.3718 m = 37.18 mm

  Let the length of the two ends (having 50 mm diameters) of the bar is l1 mm and that of middle portion 

is l2 mm respectively and the corresponding areas are A1 mm2 and A2 mm2.

  \ 
1 2

1 2
1 2

2 2
P l l

E A A
d d d

È ˘
= + = +Í ˙

Î ˚

  or, 
( ) ( )

3
3 1 2

5 6 2 2

152 10
0.16 10 2

2 10 10 0.05 0.03718
4 4

l l

p p
- ¥ È ˘¥ = +Í ˙¥ ¥ Í ˙

Î ˚

  or, 800l1 + 723.4l2 = 165.35 (6)

  Again, 2l1 + l2 = 0.3 (7)

  Solving Eqs.(6) and (7), we get

    l2 = 0.140 m = 140 mm

 (b) Determine the coordinate of the centroid with respect to the given axis of the shaded area as 

shown in Figure 6.

A

BC

D

Y

X

3 cm

3 cm

O

Figure 6

  Solution

  The area of interest can be considered as 

  Area of the quarter circle OAB(A1) + Area of the rectangle OADC(A2) – Area of the quarter circle 

ACD(A3)

  2
1

1

4
A rp= ¥ ; 

1

4

3

r
x

p
= ;  1

4

3

r
y

p
=

  A2 = r2;   2
2

r
x

-
= ; 2

2

r
y =
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  2
3

1

4
A rp= ¥ ;  

3

4
1
3

x r
p

Ê ˆ= - -Á ˜Ë ¯
; 3

4
1
3

y r
p

Ê ˆ= -Á ˜Ë ¯

  \ 
1 1 2 2 3 3

1 2 3
c

A x A x A x
x

A A A

+ -
=

+ -

       

2 2
2

2 2
2

4 4
1

4 3 2 4 3
0.856 mm

4 2

4 4

r r r r
r r

r r

r r
r

p p

pp p

p p

Ê ˆ Ê ˆ¥ + ¥ - - -Á ˜ Á ˜Ë ¯ Ë ¯
= = - =

+ -

             yc = 
1 1 2 2 3 3

1 2 3

A y A y A y

A A A

+ -
+ -

      = 

2 2
2

2 2
2

4 4
1

24 3 2 4 3
1.144 mm

3 4 2

4 4

r r r r
r r

r r r

r r
r

p p

pp p

p p

Ê ˆ¥ + ¥ - -Á ˜Ë ¯
= - + =

+ -

9. (a) State principle of transmissibility.

  Answer

  See Section 3.2.2

 (b)  Given a force F = 10i + 5j + Ak. If this force is to have a rectangular component of 8 N along a 

line having unit vector r = 0.6i + 0.8k, what should be the value of A? What is the angle between 

F and r?

  Solution

  Work done by this force would be

    

(10 5 ) (0.6 0.8 )

10 0.6 5 0 0.8 6 0.8

F r i j Ak i k

A A

◊ = + + ◊ +
= ¥ + ¥ + ¥ = +

�

�

  \ 6 + 0.8 A = 8

  or, A = 2.5

  \ 
2 2 210 5 2.5 11.456F = + + =

  And 
2 20.6 0.8 1r = + =

  Further, cosF r F r q◊ =
�

�

 

  or, 

2.5
cos 45.7

11.456 1

F r

F r
q q

◊
= = fi = ∞

¥

�

�

 

  or, q = 45.7°

 (c) Two identical blocks A and B each having weight W are connected by rigid link and supported by 

a vertical wall and a horizontal plane having same co-efficient of friction (m) as shown in Figure 

7. If sliding impends for q = 45°, calculate m.
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A

B

45°

Figure 7

  Solution

  This problem is identical to the worked out Example 6.2.

10. (a) If the string AB is horizontal, find the angle that the string AC makes with the horizontal when 

the ball is in a position of equilibrium. Also find the pressure R between the ball and the plane.

B

C

a

P

A
Q

W

Figure 8

  Solution

  This problem is identical to solution to Question 5 of 2008 Solved Question Paper.

 (b) A roller of radius r = 12 cm and weight Q = 500 kgf is to be rolled over a curb of height

h = 6 cm by a horizontal force P applied to the end of a string wound around the circumference 

of the roller. Find the magnitude of P required to start the roller over the curb. There is sufficient 

friction between the roller surface and the edge of the curb to prevent slip at A.

C

P

Q

r

h

A

Figure 9
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  Solution

  This problem is identical to solution to Question 5 of 2009 Solved Question Paper.

11. (a) State parallel axis and perpendicular axis theorem for moment of inertia.

  Answer 

  See Sections 7.3 and 7.2.1

 (b) Define radius of gyration. How is it related to mass moment of inertia?

  Answer

  See Sections 7.2.2 and 7.6

 (c) Determine the center of a quarter circular arc of radius

  Answer 

  This problem is identical to worked out Example 5.2.
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Group – A

(Multiple Choice Questions)

1.  Choose the correct alternatives for any ten of the followings: 10 ¥ 1 = 10

 (i) Two non-collinear parallel equal forces acting in opposite directions

 (a) balance each other

 (b) constitute a moment

 (c) constitute a couple

 (d) constitute a moment of a couple

  Answer (c) 

 (ii) The centre of gravity of a uniform lamina lies at the 

 (a) centre of the heavy portion

 (b) bottom surface 

 (c) midpoint of its axis

 (d) all of these 

  Answer (c) 

 (iii) Materials having the same elastic properties in all directions are called

 (a) ideal materials

 (b) isotropic materials

 (c) elastic materials

 (d) uniform materials

  Answer (b) 

 (iv) Given F j k
��

1 5 4= ˆ ˆ+  and F i k
��

2 3 6= ˆ ˆ+ . The magnitude of the scalar product of these vectors is 

 (a) 15 (b) 30 (c) 24 (d) 12

  Answer (c) 

 (v) The moment of inertia of a semicircle of radius R about its centroidal axis x-x is

 (a) 0.22R4

 (b) 0.055R4

 (c) 0.11R4

 (d) none of these

  Answer (c) 

 (vi) The first moment of an area about the centroidal axis of that area is

 (a) maximum   (b) minimum

 (c) zero   (d) cannot be defined

  Answer (c) 
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 (vii) A projectile is fired at an angle q to the vertical. Its horizontal range will be maximum when q is 

 (a) 0 (b) 30° (c) 45° (d) 60°

  Answer (c) 

 (viii) When a body slides down an inclined surface of inclination q, the acceleration of the body is given by

 (a) f = g   (b) f = g sin q

 (c) f = g cos q   (d) f = g /sin q

  Answer (b) 

 (ix) A body is testing on a plane inclined at an angle of 30° to the horizontal. What forces would be required 

to slide down, if the coefficient of friction between body and plane is 0.3? 

 (a) zero   (b) 1 kg 

 (c) 5 kg   (d) none of these

  Answer (a) 

 (x) Poisson’s ratio is defined as

 (a) longitudinal stress and longitudinal strain

 (b) longitudinal strain and lateral strain 

 (c) lateral stress and longitudinal stress

 (d) lateral strain and longitudinal strain

  Answer (c) 

 (xi) The maximum strain energy that can be stored under elastic limit in a body is known as 

 (a) impact energy   (b) resilience

 (c) proof resilience   (d) toughness

  Answer (c)

 (xii) Coulomb friction is

 (a) the friction between solids and liquids

 (b) the friction between dry surfaces

 (c) the friction between bodies having reactive motion

 (d) none of these

  Answer (b)

 (xiii) The deformation of a bar per unit length in the direction of force is known as 

 (a) linear strain

 (b) lateral strain

 (c) shear strain 

 (d) volumetric strain

  Answer (a) 

Group – B

(Short-Answer Questions)
Answer any three questions

2. (a) State D’Alembert principle.

  Answer See Section 11.3, page 11.7

 (b) A smooth circular cylinder of radius 1.5 cm is lying in a rectangular groove is shown in Figure 1. 

Find the reactions at the surfaces of contact, if there is no friction and cylinder weighs 1000 N. 
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E

A C B

D O

150°
450°

Figure 1

  Solution

  This problem is identical to solution to Question 9 (a) of 2009 Solved Question Paper.

3. A horizontal bar AB is hinged to a vertical wall at A and supported at its mid point C by a cable 

CD as shown in Figure 2. The bar is subjected to a vertical load P applied at the free end B. The 

bar maintains horizontal position. Find the tension T in the cable and the reaction at A. Neglect the 

weight of the bar. 

1 m1 m

P

C

B

A

45°

D

Figure 2

 Solution

 This problem is identical to the worked out Example 4.13.

4. (a) State the parallel axes theorem of moment of inertia of lamina.

  Answer See Section 7.3, page 7.3

 (b) Calculate the location of the centroid of the L section shown in Figure 3. 

8 mm

8 mm

100 nm

100 nm

Figure 3
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  Solution

  This problem is identical to the worked out Example 7.7.

5. A bar of variable cross-sectional areas as shown in Figure 4 is subjected to different forces. Find the 

total elongation of the bar. Take E = 2 ¥ 105 N/mm2

1 m 1.5 m 1.2 m

60 kN
30 kN 40 kN

B C

A

70 kN

D

f60 mm

f100 mm

f40 mm

Figure 4

 Solution

 This problem is identical to solution to Question 8 (a) of 2011 Solved Question Paper.

6. The motion of a particle is expressed as x = x0 + v0t + 
1

2

2
at . Calculate the displacement and velocity 

at time t = 5 second. x0 = 12 m, v0 = 5 m/s, a = 20 m/s2.

 Solution

 This problem is identical to the worked out Example 10.1.

  Group – C

(Long-Answer Questions)
Answer any three questions

7. (a) A cart of mass M rolls down a track inclined at an angle q. The cart starts from rest a distance 

l up the track from a spring, and rolls down to collide with the spring as shown in Figure 5.

h

q

1

Figure 5

 (a) Assuming no non-conservative work is done, what is the speed of the cart when it first contacts 

the spring? (Express your answer in terms of the given variables and the gravitational acceleration 

g).

 (b) Suppose the spring has a force constant k. What is the peak force compressing the spring during 

the collision? 
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  Solution

 (a) Following conservation of energy, loss in PE = gain in KE

  \   Mg ◊ l sin q = 
1

2
Mv2 fi v = 2glsinq

 (b) Let the maximum compression of the spring is x

  Since the cart will come to rest after collision, final velocity would be zero

  According to conservation of energy, potential energy loss by the cart = Mechanical energy gain 

by the spring. 

  \ Mg (l + x) sin q = 
1

2
(kx)x

  or kx2 – (2Mg sin q) x – 2Mgl sin q = 0

  or x = 
2 2 4 2

2

2Mg Mg k Mgl

k

sin ( sin ) sinq q q± + ¥

    =  
Mg

k

kl

Mg

sin

sin

q

q
1 1

2
± +

È

Î
Í
Í

˘

˚
˙
˙

  Neglecting the minus sign, xmax = 
Mg

k

kl

Mg

sin

sin

q

q
1 1

2
+ +

È

Î
Í
Í

˘

˚
˙
˙

  The maximum compressive force therefore becomes

Fmax = kxmax = Mg
kl

Mg
sin

sin
q

q
1 1

2
+ +

È

Î
Í
Í

˘

˚
˙
˙

8. A block of weight W1 = 200 kgf rests on the horizontal surface and supports on top of it, another block 

of weight W2 = 50 kgf. The block W2 is attached to a vertical wall by the inclined string AB. Find 

the magnitude of the horizontal force P applied to the lower block as shown in Figure 6, that will be 

necessary to cause slipping to impend. Take coefficient of static friction for all contiguous surfaces is 

m = 0.3.

4

1

2

3

q

PA

B

Figure 6

 Solution This problem is identical to the worked out Example 6.16.
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9. (a) Determine the moment of inertia of the shaded area with respect to the given axis as shown in 

Figure 7.

40 mm 40 mm

A BO

8
0
 m

m

C

y

x

9
4
0

m
m

Figure 7

  Solution

  This problem is identical to the worked out Example 7.6.

 (b) Explain D’Alembert principle.

  Answer See Section 11.3, page 11.7

 (c) Two shots are fired from a rifle with an initial velocity of 800 m/s from a point 5 km in front 

of a vertical wall of 1.5 km high. Find the two angles of projection with horizontal to enable the 

short to just clear the wall (g = 9.81 m/s2).

  Solution

  This problem is identical to the worked out Example 13.9.

10.  (a) In the following Figure 8, F = 1000 N while O(0, 0, 0), A(0, 10, 0) and B(5, 0, 4). Calculate the 

moment of force about O. 

B5 m

4 m

XO

A

Y

r
Æ

F
Æ

Z

Figure 8
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  Solution

  The force F can be expressed as 

   F = Fn = F
x x i y y j z z k

x x y y z z

( ) ( ) ( )

( ) ( ) ( )

2 1 2 1 2 1

2 1
2

2 1
2

2 1
2

- + - + -

- + - + -
= 1000

(( ) ( ) ( )

( )

5 0 0 10 4 0

5 10 42 2 2

- + - + -

+ - +

i j k

   1000
5 10 4

5 10 42 2 2

i j k- +

+ - +( )
 = 421i – 842j + 337k

   r = xi + yj + zk = 0i + 10j + 0k = 10j

  Therefore the moment of force F about O is Mo = r ¥ F = (337 ¥ 10) i – (421 ¥ 10) j = 3370i – 4210j

 (b) Find the perpendicular distance from the point A(1, 2, 3) to the line joining the origin O and the 

point B(2, 10, 5) 

  Solution

  Equation of the line joining the origin O and the point B(2, 10, 5) is given by

   
x y z-

-
-
-

-
-

0

2 0

0

10 0

0

5 0
= =  = t (say)

  or x = 2t, y = 10t, z = 5t

  If d be the distance from the point A(1, 2, 3) to the line joining the origin O and the point B(2, 10, 5), 

then one can write

  d2 = (2t – 1)2 + (10t – 2)2 + (5t – 3)2

  For minimization of d, we have

   
d d

dt

( )2

 = 2 (2t – 1)2 + 2(10t – 2)10 + 2(5t – 3)5 = 0

  or t = 
37

129

  The perpendicular distance from the point A(1, 2, 3) to the line joining the origin O and the point 

B(2,10, 5) is

   d = 2
37

129
1 10

37

129
2 5

37

129
3

2 2 2

¥ -Ê
ËÁ

ˆ
¯̃

+ ¥ -Ê
ËÁ

ˆ
¯̃

+ ¥ -Ê
ËÁ

ˆ
¯̃

    = 1.939 unit
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11. (a) Determine velocity V of the falling weight W of the system as shown in Figure 9 as a function of 

its displacement from the initial position of rest. Assume weight of the cylinder as 2W.

C

r

X

V

Figure 9

  Solution

  This problem is identical to solution to Question 10(c) of 2009 Solved Question Paper.

 (b) From the top of a tower, 60 m high a bullet is fired at an angle of 20° up the horizontal with 

velocity 120 m/s. Determine:

 (i) Time of flight

 (ii) Horizontal range of ground

 (iii) Maximum height of bullet from ground

 (iv) Velocity of bullet after 8 sec.

  Assume horizontal ground at the foot of the tower.

  Solution

  This problem is identical to the worked out Example 13.10.
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ENGINEERING MECHANICS

Group–A

(Multiple-Choice-Type Questions)

1.  Choose the correct alternatives for any ten of the followings: 10 ¥ 1 = 10

 *(i) Lami’s theorem is applicable to

 (a) equilibrium of two coplanar, concurrent forces

 (b) equilibrium of three coplanar, concurrent forces

 (c) equilibrium of three coplanar, non-concurrent forces

 (d) none of these

  Answer (b)
 *(ii) The angle between the vectors (i + j) and (i – j) is 

 (a) 90° (b) 45°  (c) 0° (d) none of these

  Answer (a)
 **(iii) When a body slides down an inclined surface of inclination q with the horizontal, the acceleration q 

of the body is given by

 (a) a = g (b) a = g cos q (c) a = g sin q (d) 
cos

g
a

q
=

  Answer (c)
 *(iv) The values of ˆ ˆ ˆ ˆandi i i i◊ ¥  are

 (a) 1 and 0 (b) 1 and 1 (c) 0 and 0 (d) 0 and 1

  Answer (a)
 *(v) The moment of inertia of a circle with its centroidal x-axis is

 (a) pd 4/32 (b) pd 4/256 (c) pd 4/64 (d) pd 4/128

  Answer (c)
 **(vi) A particle moves along the horizontal direction and its position at any instance is prescribed by the 

relation x = 3t3 – 5t2 where x is in metres and t is in seconds. What distance will be covered by the 

particle during t = 2 seconds to 5 seconds?

 (a) 246 m (b) 146 m (c) 200 m  (d) 216 m

  Answer (a)
 *(vii) When a rectangular bar of length l, breadth b and thickness t is subjected to an axial pull of P, the 

linear strain is given by

 (a) bt E/P (b) P/bt E (c) bt/PE (d) PE/bt

  Answer (b)

 **(viii) Given 1
ˆˆ5 4F j k= +  and 2

ˆˆ3 6F i k= + . The magnitude of the scalar product of these vectors is

 (a) 15 (b) 30  (c) 24 (d) 12

  Answer (c)

Note: * Indicates Level 1 diffi culty

 ** Indicates Level 2 diffi culty

 *** Indicates Level 3 diffi culty
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 *(ix) The equation of motion of a particle is s = 2t3 – t2 – 2, where s is the displacement in metres and t 

is time in seconds. The acceleration of the particle after 1 second will be

 (a) 8 m/s2 (b) 9 m/s2 (c) 10 m/s2 (d) 5 m/s2

  Answer (c)

 *(x) If ˆˆ ˆ
x y zA A i A j A k= + +  and ˆˆ ˆ

x y zB B i B j B k= + +  then A B◊  is given by

 (a) x y x y z zA B B A A B+ +    (b) x y z y z xA A A B B A+ +

 (c) x y x y z xA A B B B A+ +    (d) x x y y z zA B A B A B+ +

  Answer (d)
 *(xi) D’ Alembert’s principle

 (a) is based upon the presence of inertia force

 b) provides an advantage over Newton’s law

 (c) is purely a hypothetical law

 (d) allows a dynamic problem to be treated as a static one

  Answer (d)
 ***(xii) A single force and couple action in the same plane upon a rigid body

 (a) balance each other   (b) cannot balance each other

 (c) produce moment of a couple (d) are equivalent

  Answer (b)

Group–B
(Short-Answer-Type Questions)

Answer any three of the following.

 3 × 5 = 15

 **2. A member is shown in Fig. 1. Replace the force (100 N) acting at the point D, into an equivalent 

force-couple system at the point C. Find the reaction forces at points A and B. 

Figure 1

  Solution
  At the point C, a pair of 100 N force, one vertically upward and another vertically downward, is 

added as shown in Fig. 2(a). 
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Figure 2

  Thus, the 100 N force applied vertically downward at D can be replaced by an equivalent clockwise 

couple of moment 1000 N-mm at C along with a 100 N force applied vertically downward at C as 

shown in Fig. 2(b).

  Let the reactions at A and B be denoted by RA and RB respectively. Taking moment with respect to 

the point A, we obtain

   
0AM =Â

  or  RB ¥ 100 = 1000 + 100 ¥ 50 

  or RB = 60 N and

  From the condition of equilibrium, we get

   RA = 100 – 60 = 40 N

 *3. A load P = 50 kg is suspended from A. The spring AB is deformed by an amount of 0.025 m 
and is horizontal in the equilibrium position according to Fig. 3. Determine the stiffness of the 
spring.

Figure 3

  Solution From the conditions of equilibrium at the point A, we get

   
0Y =Â

  or T sin 30° = P 

  or 

50
100 kg

sin30
T = =

∞

   
0X =Â

  or T cos 30° = F

  or F = 100 cos 30° = 86.6 kg

  It is given that the deformation amount d = 0.025 m. Let the stiffness of the spring is k.
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  For a spring, F = kd
  Thus, k = F/d = 86.6/0.025 = 3464 kg/m

 **4. A bar of uniform cross section A and length L is vertically hung subjected to its own weight. 
Prove that strain energy within the bar U = Aw2L3/6E, where w = sp. weight, E = modulus of 
elasticity.

  Solution This problem is identical to Example 9.7.

 5. *(a) State the parallel axes theorem of moment of inertia of lamina.
  Solution Refer Section 7.3.

 *(b) Calculate the location of the centroid of the L-section as shown in Fig. 4.

8 mm

100 mm

100 mm

Figure 4

  Solution This problem is identical to Example 5.12.

 *6. A force F i j k= (3 – 4 + 2 ) N  acts at a point A whose coordinates are (1, –2, 3) m. Compute
(a) moment of force about the origin, and (b) moment of force about the point (2, 1, 2) m. 

  Solution It is given that 3 4 2F i j k= - +  and 2 3 .r i j k= - +
 (a) Moment of the force about the origin is

  
( 2 3 ) (3 4 2 ) 8 7 2OM r F i j k i j k i j k= ¥ = - + ¥ - + = + +

 (b) Now, 3 .ABr i j k= - - +
  Moment of the force about the point (2,1,2) m is

  
( 3 ) (3 4 2 ) 2 5 13B ABM r F i j k i j k i j k\ = ¥ = - - + ¥ - + = - + +

Group–C
(Long-Answer-Type Questions)

Answer any three of the following.

 3 × 15 = 45

 7. *(a) A ball of weight W is resting upon a smooth plane and is attached at its centre to the strings 
which pass over a smooth pulley and carry loads P and Q as shown in Fig. 5. Find the angle q 
and pressure between the ball and the plane. 
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A

B

C

P

Q

q

Figure 5

  Solution This problem is identical to solution to Question 5 of 2008 Solved Question Paper.

 **(b) A uniform wheel of 60 cm diameter rests against a rigid rectangular block of 15 cm height 
as shown in Fig. 6. Find the magnitude and direction of the least pull through the centre of 
the wheel that will just turn the wheel over the corner of the block. All surfaces are smooth. 
Determine the reaction of the block at the point C. Weight of the wheel is 5 kN. 

15 cm

P

60 cm

Figure 6

  Solution This problem is identical Example 4.17.

 8.*(a) State D’ Álembert’s principle.
  Answer Refer Section 11.3. 

 ***(b) Two blocks weighing 600 N and 1200 N are placed on 30° and 60° planes respectively as shown 
in Fig. 7. The blocks are connected by an extensible string passing over a friction pulley. If
m = 0.25 for both the planes, find the tension in the string and the acceleration of blocks. 

30°

60
0
N

1
2
0
0
N

60°

Figure 7

  Solution Let the tension in the string be T and the acceleration of the blocks is a 
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  Considering the free-body diagram of the block 1 [Refer Fig. 8 (a)] and using dynamic equilibrium, 

   

1
1 1 1sin

W
T F W a

g
q- - =

  or 1
1 1 1 1cos sin

W
T W W a

g
m q q- - =  (1)

  Similar condition of the block 2 [Refer Fig. 8(b)] yields

   

2
2 2 2sin

W
W T F a

g
q - - =

  or 2
2 2 2 2sin cos

W
W T W a

g
q m q- - =  (2)

  Eliminating T from the above two equations; 

   
2 2 2 1 1 1 1 2[sin cos ] [sin cos ] ( )

a
W W W W

g
q m q q m q- - + = +

  or 1200(sin60 0.25cos60 ) 600(sin30 0.25cos30 ) 1800
a

g
∞ - ∞ - ∞ + ∞ = ¥

  or a = 2.5 m/s2

  From Eq. (1), we get

   
1 1 1cos sin

a
T W

g
m q q

Ê ˆ
= + +Á ˜Ë ¯

  or  
2.5

600 0.25cos30 sin30 583N
9.81

Ê ˆ
= + ∞ + ∞ =Á ˜Ë ¯

 9. **(a) A gun is fired, so that the initial velocity of its bullet is 200 m/s and can hit the target located 
500 m above the level of gunpoint and at horizontal distance of 3000 m. Neglecting the air 
resistance, determine the firing angle. 

  Solution This problem is identical to Example 13.9.

 **(b) Determine the centroid of the shaded area as shown in Fig. 9. 
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10 mm

O

Y

X

20 mm

Figure 9

  Solution Let the larger circle and the smaller circle be denoted by 1 and 2 respectively.

   

2 2 2 2
1 2(20) 100 mm ; (10) 25 mm ;

4 4
A A

p p
p p= = = =

  x1 = 10 mm x2 = 15 mm

  \ 1 1 2 2

1 2

100 10 25 15
8.33 mm

100 25
c

A x A x
x

A A

p p

p p

- ¥ - ¥
= = =

- -

  Since the centroid lies on the x-axis, yc = 0 

 *(c) Draw the stress-strain curve for ductile material and show various regions and points on it. 

  Answer Refer Section 9.4.

 10. ***(a)  A force F = 50i + 75 j + 100 k acts through E as shown in Fig. 10. Determine the moment of 
the force about x, y, and z axes respectively. 

Figure 10

  Solution 

   
50 75 100 ;F i j k= + +

 
4 5 3 .r i j k= + +

   
(50 75 100 ) (4 5 3 ) 275 250 50OM r F i j k i j k i j k= ¥ = + + ¥ + + = - +

  \ 275 N-m; 250 N-m; 50 N-mx y xM M M= = =

 ***(b) Two steel cylinders are supported in a right-angled wedge support as shown in Fig. 11. The 
side OL makes an angle of 30° with the horizontal. The diameters of the cylinders A and B are 
250 mm and 500 mm, and their weights being 100 N and 400 N, respectively. Determine the 
reactions R between all contact points. 
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O

A

B

30°

L
a

Figure 11

  Solution From the geometry, 

   

2 1

2 1

125
sin 0.33 19.5

375

r r

r r
a a

-
= = = fi = ∞

+

  The free-body diagrams of the two cylinders are shown in Fig. 12(a) and Fig. 12(b).

 Figure 12(a)         Figure 12(b)

  Considering the equilibrium of the larger cylinder,

   20 cos 49.5 sin 30CX R R= fi =Â

   2 20 cos 30 sin 49.5 400cY R R W= fi + = =Â

  Solving the above two equations, RC = 212.17 N and R2 = 275.6 N

  To calculate N and R1 for the smaller cylinder, the force polygon is drawn and shown in Fig. 12 (c). 

49.5°

Rc

R1 30°

W1

N

30°

Figure 12(c)
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  From Fig. 12 (c), N = 250 N and R1 = 157 N

 11. **(a)   Find the decrease in length of the steel bar loaded as shown in Fig. 13. Take E = 2 × 105 N/mm2

15 mm dia

10 mm dia

180 mm

200 mm

5 kN

Figure 13

  Solution 

   

2 2 2 2
1 2 1 22 kN; 5 kN 10 25 mm ; 15 56.25 mm

4 4
F F A A

p p
p p= = = = = =

;

   

2 21 1
1 2

1 1

2500 2000 5000
25.46 N/mm ; 39.61 N/mm

25 56.25

F F

A A
s s

p p

+
= = = = = =

  \ 
1 2 1 1 2 2 5

1 1
( ) (25.46 180 39.61 200) 0.0625 mm

2 10
l l

E
d d d s s= + = + = ¥ + ¥ =

¥

 ***(b) t1 is the time in which a projectile reaches a point P1 along its path and t2 is the time taken 
by the projectile from P1 till it hits the horizontal plane passing through point P2 as shown in
Fig. 14. Show that the height of the point P1 above the plane is 1/2 gt1t2.

Figure 14

  Solution The expression 2
0

1
sin

2
y v t gtq= -  can be written in the following form in the context of 

the present problem.

   

2
0

1
sin

2
h v t gta= -

  In the given figure (Fig. 14), P1 and P2 both are located at a height h from the horizontal plane. 
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  It, therefore, implies that the time required by the projectile to reach from P1 to the ground = time 

required by the projectile to reach P2 from O (following the same path) = t2
  The above equation being a quadratic one, its two roots are t1 and t2 which corresponds to the time 

required to reach P1 and P2 from O respectively. 

  Rearranging the above equation, we have 

   

2 02 sin 2
0

v h
t t

g g

a
- + =

  or 1 2

2h
t t

g
=

  or 1 2

1

2
h gt t=
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ENGINEERING MECHANICS

Group–A

(Multiple-Choice-Type Questions)

1.  Answer any ten questions. 10 ¥ 1 = 10

 *(i) The work done against any conservative forces is stored in the body in the form of 

 (a) energy  (b) potential energy (c) elastic energy  (d) strain energy

  Answer (b)

 **(ii) The magnitude of two forces, acting at right angles, produces a resultant force of 10  kg and when 

acting at 60°, produces a resultant of 13  kg. These forces are at

 (a) 90° (b) 45° (c) 0° (d) none of these

  Answer (b)

 *(iii) If three forces acting in one plane upon a rigid body keep it in equilibrium then they must either

 (a) meet in a point   (b) be all parallel

 (c) at least two of them must meet (d) all of the above are correct

  Answer (a)

 *(iv) A projectile is fired at an angle q to the vertical. Its horizontal range will be maximum when q is 

 (a) 0° (b) 30° (c) 45° (d) 60°

  Answer (c)

 *(v) Varignon’s theorem is related to 

 (a) moment of forces(s)   (b) friction

 (c) deformation characteristics of rigid bodies (d) none of the above

  Answer (a)

 *(vi) Strain energy is the

 (a) maximum energy which can be stored in a body

 (b) energy stored in a body when stressed to the elastic limit

 (c) energy stored in a body when stressed to the breaking point 

 (d) none of the above

  Answer (b)

 *(vii) The CG of a solid hemisphere lies on the central radius

 (a) at distance 3r/2 from the plane base (b) at distance 3r/4 from the plane base 

 (c) at distance 3r/5 from the plane base (d) at distance 3r/8 from the plane base 

  Answer (d)

 *(viii) If i and j are two Cartesian unit vectors then

 (a) i ◊ j = 1  (b) i ◊ j = 0

 (c)  i ◊ j = 2 (d) none of these

  Answer (b)

Note: * Indicates Level 1 diffi culty

 ** Indicates Level 2 diffi culty

 *** Indicates Level 3 diffi culty
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 **(ix) An elevator weighing 980 N attains an upward velocity of 3 m/s in 3 s following a uniform acceleration. 

The tension in the cable that supports the elevator is 

 (a) 1000 N (b) 1080 N (c) 880 N (d) 1150 N

  Answer (b)

 *(x) If momentum of a body is doubled, its kinetic energy

 (a) gets doubled (b) gets halved (c) remain same (d) gets quadrupled

  Answer (a)

 *(xi) The condition of equilibrium of co-planar non-concurrent forces are

 (a) 0; 0x yF F= =Â Â    (b) 0;  0;  0x yF F M= = =Â Â Â
 (c) 0;  0yF M= =Â Â    (d) 0 ;  0xF M= =Â Â
  Answer (b)

 *(xii) The equation of motion of a particle is S = 2t3 – t2 – 2, where S is the displacement in metres and 

t is time in seconds. The acceleration of the particle after 1 second will be

 (a) 8 m/s2 (b) 9 m/s2 (c) 10 m/s2 (d) 5 m/s2

  Answer (c)

Group–B

(Short-Answer-Type Questions)
Answer any three of the following.

 3 × 5 = 15

 **2. A string is connected at the point C of a structure AB, passing through a frictionless pulley and 

at the free end of the string, a weight is attached as shown in Fig. 1. Determine the reaction 

forces developed at points A and B. Neglect the mass of the structure AB.

C

RA

A B

T

40 cm

RB

1000 N

100 cm

20 cm

Figure 1

  Solution Taking moment of all the forces with respect to A, we get

   
0AM =Â

  or Rb ¥ 100 = T ¥ 20 = 1000 ¥ 20

  or Rb = 200 N

  Considering the beam AB, we have

   
0Y =Â

  or RA + RB = 0

  or RA = –RB = –200N
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 *3. What is meant by toughness? What is meant by resilience? Draw a stress-strain diagram of a 

mild steel specimen and show the region of modulus of toughness and modulus of resilience.

  Solution Refer Section 9.4.

 *4. By integration, determine the co-ordinate of the centroid of the plane area under the curve y = 

kx2 and x-axis, between (0, 0) and (a, b) of Fig. 2. 

O

( )a, b

x

x dx

a

y

Figure 2

  Solution This problem is identical to Example 5.5.

 **5. By integration, determine the co-ordinate of the centroid of the plane area under 5, given a 

force F = 10i + 5j + Ak N. If this force is to have a rectangular component of 8 N along a line 

having unit vector r = 0.6i + 0.8k, what should be the value of A? What is the angle between F 

and r? 

  Answer 

   F = 10i + 5j + Ak N and r = 0.6i + 0.8k N

  According to the given statement, F. r = 8 N

  Thus, F◊ r = (10i + 5j + Ak) ◊ (0.6i + 0.8k) = 6 + 0.8A

  or 6 + 0.8A = 8

  or A = 2.5

  Therefore, F = 10i + 5j + 2.5k

  The magnitude of F is 2 2 210 5 2.5 11.456 N+ + =  and the magnitude of r is 
2 20.6 0.8 1+ =

  Further,  F.r cosF r q=

  or 
. 8

cos
11.456 1F r

q = =
¥

F r

  or q = 45.7°

  Therefore, the angle between F and r becomes 45.7°.

 *6.(a) State Lami’s theorem.

  Solution Refer Section 4.2.

 *(b)  Two equal loads of 2500 N are supported by a flexible string ABCD at points B and D as shown 

in Fig. 3. Find the tensions in the portions AB, BC, CD of the string.
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B

A

C

D

30°

60° 60°

2500 N

2500 N

Figure 3

  Solution This problem is identical to the solution to Question 6(a) of 2011 Solved Question 

Paper. 

Group–C

(Long-Answer-Type Questions)
Answer any three of the following.

 3 × 15 = 45

 7. **(a) A force of 200 N is directed along the drawn from the point P (5, 2, 4) to the point Q(3, –5, 6).

Determine the moment of this force about a point A (4, 3, 2). The distances are in metres. 

  Solution 

        

2 1 2 1 2 1

2 2 2
2 1 2 1 2 1

( ) ( ) ( )

( ) ( )
 

( )

x x i y y j z z k
F

x x y y z z
n

- + - + -
=

- + - + -
=F F

         

2 2 2

(3 5) ( 5 2) (6 4)
200

(3 5) ( 5 2) (6 4)

53 185.5 53

i j k

i j k

- + - - + -
=

- + - - + -

= - - +

  The moment of force F about the point A (4, 3, 2), therefore, would be 

   MA = rA ¥ F

    = (4i + 3j + 2k) ¥ (–53i – 185.5j + 53k)

    = 530i – 318j – 583k

 *(b) Referring to Fig. 4, with what minimum horizontal velocity u can a boy throw a rock at A and 

have it just clear the obstruction at B?

A

B

16 m

40 m

26 m

Figure 4
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  Solution The equation of the projectile is given by 
2

2 2
0

tan
2 cos

g
y x x

v
q

q

Ê ˆ
= - Á ˜

Ë ¯

  The coordinate of the point B is (40, –10) and q = 0

  The above equation, therefore, becomes

    

2
02 2

0

10 40 28 m/s
2 cos 0

g
v

v

Ê ˆ
- = - fi =Á ˜

Ë ¯

  or v0 = 28 m/s

 8. **(a) A block of weight W1 = 200 kgf rests on a horizontal surface and supports on top of it another 

block of weight W2 = 50 kgf. 

A

B

P

3

4
q

1

2

Figure 5

  The block W2 is attached to a vertical wall by the inclined string AB. Find the magnitude of 

the horizontal force P applied to the lower block as shown in Fig. 5, which will be necessary 

to cause slipping to impend. The coefficient of static friction for all contiguous surfaces is

m = 0.3. 

  Solution This problem is identical to Example 6.16.

 **(b) A steel rod ABCD of stepped section is loaded as shown in Fig. 6. The loads are assumed to act 

along the centreline of the load. Estimate the displacement of D relative to A. Assume E = 2 ¥ 

105 N/mm2.

10 kN4 kN 2 kN

(2 cm sq) (4 cm sq)

A

B C

D

10 cm 10 cm20 cm

(2 cm sq)

8 kN

Figure 6

  Solution The bar ABCD can be divided into three segments AB, BC, and CD and the forces acting 

on them are shown in Fig. 7. 
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4 kN 2 kN

A B C D

4 kN 6 kN 6 kN 2 kN

B C

Tension Compression Tension

Figure 7

  Total elongation is found to be

   

3 31 1 2 2

1 2 3

1
AD AB BC CD

P lP l P l

E A A A
d d d d

È ˘
= - + = - +Í ˙

Î ˚

  or 
1 4 100 6 200 2 100

0.01 0.015 0.005 0
200 2 100 4 100 2 100

ADd
¥ ¥ ¥È ˘

= - + = - + =Í ˙¥ ¥ ¥Î ˚

 9. **(a) Determine velocity V of the falling weight W of the system as shown in Fig. 8, as a function of 

its displacement from the initial position of rest. Assume weight of the cylinder as 2W.

V

X

C

r

Figure 8

  Solution This problem is identical to solution to Question 10(c) of 2009 Solved Question Paper.

 *(b) Prove that the volumetric strain of a rectangular bar is the algebraic sum of strains of length, 

width, and height.

  Solution Refer Example 8.12.

 *(c) A small block of weight W rests on a horizontal turntable at a distance r from the axis of 

rotation as shown in Fig. 9. If the coefficient of friction between the block and the surface of 

the turntable is m, find the maximum uniform speed that the block can have due to rotation of 

the turntable without slipping off.

W

r

Figure 9
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  Answer This problem is identical to Example 12.11.

 10. ***(a)  For the rectangle shown in Fig. 10, compute Iu, Iv and Iuv with respect to u-v axes inclined to 

x-y axes by 30°. Determine the principal axes and second moment of area about the principal 

axes. 

20 mm

30°

50 mm
V

U

x
30°

Figure 10

  Solution We know that

   
cos2 sin2

2 2

x y x y
u xy

I I I I
I Iq q

+ -
= + -

   
cos2 sin2

2 2

x y x y
v xy

I I I I
I Iq q

+ -
= - +

   

1
( )sin2 cos2

2
uv x y xyI I I Iq q= - +

  For the given figure, we have

   

3 3
5 420 50

8.33 10 mm
3 3

x

bh
I

¥
= = = ¥

   

3
5 420 50

1.33 10 mm
3

yI
¥

= = ¥

   

2 2 2 2
5 420 50

2.5 10 mm and = 30°
4 4

xy

b h
I q

¥
= = = ¥

  Therefore, we get

   
5 5 5 44.83 10 3.5 10 cos60 2.5 10 sin60 441493.65 mmuI = ¥ + ¥ - ¥ =

    
5 5 5 44.83 10 3.5 10 cos60 2.5 10 sin60 524506.35 mmvI = ¥ - ¥ + ¥ =

   

5 5 5 41
(8.33 10 1.33 10 ) sin60 2.5 10 cos60 428108.89 mm

2
uvI = ¥ - ¥ + ¥ =

  Principal moments of inertia are found to be

   

2

2
max ( )

2 2

x y x y
xy

I I I I
I I

+ -Ê ˆ
= + +Á ˜Ë ¯

        

2
5 5 5 5

5 28.33 10 1.33 10 8.33 10 1.33 10
(2.5 10 )

2 2

Ê ˆ¥ + ¥ ¥ - ¥
= + + ¥Á ˜

Ë ¯
 = 913116.26 mm4
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2

2
min ( )

2 2

x y x y
xy

I I I I
I I

+ -Ê ˆ
= - +Á ˜Ë ¯

     

2
5 5 5 5

5 28.33 10 1.33 10 8.33 10 1.33 10
(2.5 10 )

2 2

Ê ˆ¥ + ¥ ¥ - ¥
= - + ¥Á ˜

Ë ¯
 = 52883.74 mm4

  Principal axes are obtained as follows:

   

5

5 5

2 2 2.5 10
tan2

1.33 10 8.33 10

xy

y x

I

I I
f

- - ¥ ¥
= =

- ¥ - ¥

  or   2f = 35.54°

  or      f = 17.77° or 162.23°

 ***(b) Three forces F1, F2 and F3 act on the box as shown in Fig. 11. The magnitudes of the given 

forces are 19 N, 23 N and 46 N respectively. Determine the resultant  of 2.5 ¥ 105 the forces 

and its magnitude. 

Figure 11

  Solution

   F1 = 
2 2 2

(1 0) (0 2) (3 3) 2
19 19 8.5( 2 )

5(1 0) (0 2) (3 3)

i j k i j
i j

- + - + - -
= ¥ = -

- + - + -

   F2 = 
2 2 2

(3 0) (2 0) (0 3) 3 2 3
23 23 4.9(3 2 3 )

22(3 0) (2 0) (0 3)

i j k i j k
i j k

- + - + - + -
= ¥ = + -

- + - + -

   F3 = 
2 2 2

(3 3) (0 2) (0 0)
46 46( ) 46

(3 3) (0 2) (0 0)

i j k
j j

- + - + -
= - = -

- + - + -
 

  Therefore, F = F1 + F2 + F3 = 8.5( 2 ) 4.9(3 2 3 ) 46 23.2 53.2 14.7i j i j k j i j k- + + - - = - -

 11. **(a)  A solid right circular cone of altitude h = 12 cm and radius r = 3 cm has its CG C on its 

geometric axis at a distance h/4 above the base. This cone rests on the inclined plane AB 

which makes an angle of 30° with the horizontal and for which the angle of friction is 0.5. 

A horizontal force P is applied to the vertex O of the cone and acts in the vertical plane of 

the figure. Find the maximum and minimum values of P consistent with equilibrium of the 

cone of weight W = 10 kgf.
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Figure 12

  Solution The free-body diagram of the cone is shown in Fig. 13. 

Figure 13

  Two different situations may arise regarding the motion of the cone: (i) the cone may slide down 

along the inclined plane, and (ii) the cone may topple against the point B of the base. 

  Under the limiting condition, the force P required to maintain equilibrium in case (i) would be less 

than that required in case (ii). 

  Case (i) the cone may slide down along the inclined plane.

  Considering the equilibrium of the cone, we have

   0X =Â
  or P cos 30 + mN = W sin 30 

  or 
3 1

0.5 10
2 2

NP + ¥ = ¥¥

   
0Y =Â

  or P sin 30 + W cos 30 = N

  or 
1 3

10
2 2

P N¥ + ¥ =

  Solving the above two equations, we get

   P = Pmin = 0.6 kgf 
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  Case (ii) The cone may topple against the point B of the base of the cone.

   
0BM =Â  

  or sin30 ( cos30 sin30) cos30
4

h
W W P r P h¥ + + ¥ = ¥

  or 

sin30 cos30
[3sin30 3cos30]4

10 4.608
[ cos30 sin30] [12cos30 3sin30]

h
W r

P
h r

È ˘+Í ˙ +Î ˚= = =
- -

 

  or  P = Pmax = 4.608 kgf

 **(b)  A block A weighing 1000 N rests on a rough inclined plane whose inclination to the horizontal 

is 45°. The block is connected to another block B weighing 3000 N resting on a rough horizontal 

plane, by a weightless rigid bar inclined at an angle of 30° to the horizontal as shown in Fig. 

14. Find the horizontal force that has to be applied on the block B to just move the block A up 

the slope. Assume that the coefficient of friction for all contact surfaces is 0.26.

1000 N

3000 N

B P

30°

45°

A

Figure 14

  Solution Let the axial force in the bar that connects the two blocks be T. The free-body diagrams 

of the blocks A and B are shown in Fig. 15. Note that RA is the resultant of NA and FA. 

Figure 15

  Considering the equilibrium of the block A and using Lami’s theorem, 

   

1000

sin(180 45 15) sin120

T
=

- -
  or T = 1000 N

  Considering the equilibrium of the block B,

   0Y =Â
  or T sin 30 + 3000 = N

  or N = 3500 N

   
0X =Â

  or cos30 1000cos30 0.26 3500 1776.02NP T Nm= + = + ¥ =  
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