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UNIT 1

Differential Calculus

1.1 FUNCTIONS

Students are familiar, to some extent, with the concept of relation. A relation can
be thought of as a relationship of elements of a set to the elements of another set. In
other words, when 4 and B are sets, a subset R of the cartesian product A x B is called
a relation from 4 to B viz., If R is a relation from A4 to B, R is a set of ordered pairs
(a, b) whereae A and b € b.

1.1.1 Definitions

A relation from set X to another set Y is called a function, if for every x € X, there is
aunique y € Y such that (x, y) € f.

In other words, a function from X to Y is an assignment of exactly one element of
Y to every element of X.

If y is the unique element of Y assigned by the functions f'to the element x of X,
we write f{x) = y and say that y is a function of x.

If fis a function from X to Y, we may also represent it as

f:X—Y o XL

Note™ (i) Sometimes the terms transformations, mapping or correspondence are
also used in the place of function.
(i1) If y = f{x), then x is called an argument or preimage and y is called the
image of x under f or the value of the function fat x.
(iii) X is the domain of f denoted by D, and Y is called the codomain of f
(iv) The set of the images of a/l elements of X is called the range of X
denoted R ncYR <y.
(v) x is called the independent variable and y the dependent variable,

ify = fx).
1.1.2 Representation of Functions

(1) A function can be represented or expressed by means of a mathematical rule
of formula, such as y = x*[= f(x)] or

(2) itcan be represented pictorially by means of two closed circles or two closed
ellipses or any two closed curves. This representation is possible only if D,
consists of finite number of elements. The elements of D fwill be represented
by points inside the first closed curve and those of range or co-domain of / by
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points inside the second closed curve. The points in D and the corresponding
Rf.will be connected by directed arrows as explained below:

LetD,=(1,2,3,4) and (1) = b, 2) = d, f(3) = a and f14) = b
The pictorial representation is shown as follows:

K

Fig. 1.1
Here Df: {1,2,3,4}, Rf: {a, b, d} and co-domain of /= {a, b, ¢, d}
(3) A continuous function can be represented by means of a (curve) graph. For
example, y = x*[=f(x)] is a continuous function of x;

The values of x? = [f(x)] for different values of x € R lie on a parabola as in the
figure given below: f(x)
Note™ (i) The curve y = x* drawn here is a one-piece

without any break.

(i1)) Discontinues  functions can also be

represented graphically but with a break in the 0 x
neighbourhood of the point of discontinuity. Fig. 1.2
x+1Lin(-=1,0) . . . : :
For example, f(x)= . is a discontinues function, with the point
x —1,1in(0, 1)

x =0 as a point of discontinuity. The graph of y = f{(x) consists of two line segments
with a break near the origin as shown in the figure below:

y

3

7

Fig. 1.3

Note™  Detailed discussion of continuous functions will be done later.

1.2 LIMIT OF A FUNCTION

2

Let us consider the function y = f(x) = al 57 The value of f{x) can not be found

out at x = 2 by direct substitution though the values of f{x) can be found out for all
other values of x, however close they may be to 2.
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As may be verified, f{x) assume the values 3.9, 3.99, 3.999, 3.9999, ctc. as x take
the values 1.9, 1.99, 1.999, 1.9999, etc.

Similarly f(x) assume the value 4.1, 4.01, 4.001, 4.0001, etc. as x takes the value
2.1,2.01,2.001, 2.0001, etc.

But if we put x = 2 in the definition of f{x), we get y = 9, which is meaningless
and usually referred to as an indeterminate form. 0

The definition of limit of a function f{x) does not require that the function f{x) be
defined at x = 2.

From the above example, we note that to make the difference between f{(x) and 4
as small as possible, we have to make the difference between x and 2 correspondingly

2
small. This fact is symbolically put as lim[x _24] =4
x—=2 x —

Note™  For all value of x =2, f(x) :%(J;—I-Z)
¥ —

=x+2
lim [/ (x)]=4

The formal definition of the limit of a function is given below:
lim[ f(x)]=1, if and only if for any arbitrarily small positive number €, there
xX—a

exists another small positive number 8, such that
| f(x)—1|<e, whenever 0<|x—a|<3.

Note @  When x — a through values greater than a, we say that x approaches a
from the right (or from above) and write lim+ {f(x)} =1. This is called the right

hand limit. Similarly when x — a through values less than a (or from below), we
obtain the left hand limit and write lim {f(x)} = L.
If lim{f(x)} exists and equals /, it implies that both the left hand and right hand

limits exist and are equal, each equal to

1.2.1 Some Fundamental Theorems on Limits (stated without
proof)
If lim[ f(x)] =1 and lim[g(x)] = m, then

® li_ffl [f(X)xgx)]=ltm

Note ™ This theorem can be extended to the algebraic sum of a finite number of
functions.

viz,  limle f,(x) + 6 (0) + -+ f (0] = ¢, liml £, ()] + ¢, liml £,(x)]
e, lim £, (1)
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(i) lim{ £(x) - g(x)] = I

f(x)
g(x)

. l
(iii)  lim = —, provided m # 0.
m

x—a

1.2.2 Some Standard Limits

. |x"=a" _ .
1. 11m{ ]» =na"~", for all rational values of n and @ # 0.
y—a|l x—a

Proof: Letx—a=h. sincex > a,h — 0

{(a+h)” —a"}
h

n n
x" = .
=lim

h—0

lim

x—a

X—a

a" [l + h] —a"
=lim
h—0 h

Since x can approach a from the left or right,

(1

a

|h|=|x—a|— 0andhence|—|<1

Using this fact and binomial theorem for a rational index in (1), we have

] R

. X" =a"
Iim|—|=
x—a XxX—a h—0 h
: n n—1 n n—2 n n—rypr—1
=lim|| |a" +| |a" “h+-4]| |a"TH" +---
h—0 1 2 v
=na"""
. [sin@ . . . T
2. }}lrr(} T =1, where 0 is measured in radians and < E
Proof:
C
B
, ’]
A 5 A
Fig. 1.4

Consider a circle with centre at 0 and radius » = (= O4= OB)
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Let ZAOB = O radians and let the tangent at 4 meet OB produced at C,
Area of the AOAC = %OAoAC
1 AC .
=—r-rtanf |- — = tan @ from the right angled AOAC
2 04
—Lotang
2
Area of the AOAB = %OA -OB -sin ZAOB
— Lo ging
2
Area of the sector OAB = %rZG.

Obviously, Area of the AOAB < Area of the sector OAB < Area of AAOC.

viz., l1’2 sinf <lr29<lr2 tan 0
2 2 2
Viz., sinf < 0 < tan6
. 0 1
Viz. I<——<
sinf  cosf
sinf
or 1> o > cosf (considering the reciprocate)

Taking limits as §— 0, hm(l) > hm[ ; 9] > hm(cos 0)

viz., 1> lim[%} >1 llm[snale] =1.

0—0 0—0

Cor: lim[tang]:l,sincelim[tang]—l [51n9][ ! ]zlxlzl
o—ol 6 o—ol @ =0l 6 )lcosd

xX—00

3. lim [H— 1] =e¢, which is the Naperian logarithmic base defined as

11
1+—+
Y

1 '—l—l-l— <00 =2.71828

3!
Proof:

X
Expanding (1 + l) by Binomial theorem, we have
X
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: -1 1 ~Dx—-2) 1
[14_1] :1+x.l+—x(x 1)._2+—x(x )x )_3_|_
X 2! X 3! X
1 2
el
2! x) 3! X X
1Y 1 1 1
hm[lJr ]2+ +—+- + +
X0 2! 3!
=e
Note™  Obviously, e > 2.
Also e<2+l+L+L+...
2 2.2 222
| RO
ViZ., e<l4+14+=+|=| +|=| +--
2 2 2
. 1 , a
VIZ., e<l+—— | a+tar+ar +---0=
1_1 1—r
2
viz., e<3
Hence, 2<e<3
Cor (1) 111’1’3(1 —+ x)l/x —=e

.1 .
Putting — = y in result(3), we see that y — 0 as x — oo
X

lim(1+ )" =e
y—0

Replacing y by x, the corollary follows:

Cor (2): lim[e ‘1]:1
x—0 X
Uxqx _
L.S. = limM = hm[ ] 1.
x—0 X x—0\ x
mx mx y—1
Cor (3): lim[e Hom, as lim[e 1]:lim ¢ lxm=m
x—0 X x—0 X y—0 y
Cor (4): lim [1 +21 = lim [1 +— ] = lim [1 + g]a =e°
xX—00 X xX—00 LN X
x x _1 ) xloga
Cor (5): 1im[a ! =log ,, since 1im{a } = hm{e—} =log .,
x—0 X € x—0 X x—0 X €

by cor. (3)
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1.3 CONTINUITY OF A FUNCTION

A function f{x) is said to be continuous at x = a, if
(1) fla) exists and is equal to / and

(i)  lim[f(x)] exists and is equal to /, viz., lim {f(x)}= lim {f(x)}=!
xX—a xX—>a— x—a+
[viz., the left hand and the right hand limits exist and are equal]

Note (1) If the graph of y = f{x) is a continuous curve in an interval, the function
is said to be continuous in that interval.

If the graph of y = f{x) has a break at a point x = a, the function is
said to be discontinuous at x = a. The point itself is called a point of
discontinuity of f{x).

(2) When a function f(x) is continuous at every point in the interval
a <x<b, flx) is said to be continuous in that interval.

(3) If a function f{x) is continuous at a point x = a, a small change in the
value of x will produce only a small change in the value of y = f(x).
For example, let y = x* and let x be given a small change Ax. Let Ay be
the corresponding change in y.

Then Ay = (x + Ax)> —y = 2x Ax + (Ax)?, which tends to 0 as Ax — 0.

(4) When a continuous function changes from one values to another, it
will pass at least once through every intermediate value

(5) A continuous function cannot change sign (either from +ve to —ve or
—ve to +ve) without passing through the value 0.

1.4 DIFFERENTIABILITY OF A FUNCTION

S(x, +Ax) — f(x,) and

Let /(4= Alimol

Ax
Py = lim | L _AZ) —SOD| 1 4 = £, —), then
Ar—0 —Ax

Sx) is said to be differentiable at x = x, and the common value is denoted by f1x,)

Note™ (1) If the two limits exist but are unequal or if neither of them exists, then
f(x) is not differentiable at x = x,;

(2) If a function is differentiable at a point, it follows from the definition
that it is continuous at that point, but a function which is continuous at
a point need not be differentiable at that point.

( WORKED EXAMPLES 1(a) ]

Example 1.1 If f{x) = x* — 3x> + 2, show that f(\/x +1)—2f(/x)+ f(Jx—1) is

a constant.



1.8 Engineering Mathematics 1

SO =2 =3x+2 f(Jr+ D) =(x+1? =3x+D+2=x—x;
fx=D=(x—-1)*=3x-1)+2=x>-5x+6
SAx+D+ f(x—1)=22" —6x+6
=2(x* —3x+2)+2
=2Wx)+2
Fx+1) = 2f(x) + fJ(x = 1) =2, a constant.

x—2 x—3

—_— for which it
3x4+1 3x—-2

Example 1.2 Find the domain of the function f(x)=
is positive (x is real).

x=2 x-3 (x=2Bx-2)—(x-3)Bx+])
3x+1 3x—2 (3x 4+ D(3x —2)
7
C Bx+DBx+2)
Since fix) >0, (3x+ 1)(3x—2)>0

fx)=

1 2 . 2
x>——and x>—, viz.,, x> —
3 3 3
1 2 .
and x<——and x<—, vViz,x<——
3 3 3

The required domain is [—oo, _i] U [%) 0

Example 1.3 If x is real, find the range of the function.

x4+ 34x + 71
X)y=—"—""
J@) X' +2x—7
2
+34x - 171
Let = X :—x
y=f(x) -
X*y-D+2x(y-17)+(71-7y)=0 (1
Since x is real, discriminant of (1) > 0
viz., 4y —-17Y -4 -1 (71 -Ty)20
viz., 82— 112y +360=>0 or »*—14y+4520
viz., -50-9=20
: y=25andy=29 or y<5 and y<9
viz., y29 or y<5

. Rang of f{x) is (—eo, 5) and (9, )
i.e., f{x) cannot have any values between 5 and 9.
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\/2x+a—\/§
Jx—l—3a—2\/;

Putx=a+ h Whenx > a, h — 0.

JBa +2h) — J3(a + h)
Jda+h —Jda + 4h

Example 1.4 Find lim

x—a

. Required limit = }111’1(1)

1 1
Via |1+ 20— Jrali+ b
a a

= lim

h—0 1

2\/21+h]2—2\/2[1+h]2
4a a
\/5{1+1-2h+0(h2)}—@{1+h+0(h2)}
— lim 2 3a 2a
“°2\/E{1+1-h+0(h2)}—2\/2{1+1-h+0(h2)}
2 4a 2 a

h 3 / [ h h ] (o terms involving A?

e wa e va

and higher power of 7 — 0)
(Lo ]
B 2]/ 4

h—0

= lim[

1 . .=4_ 2
233 33
\/x—|—5a—\/7x—a

Example 1.5 Evaluate lim

x—a

2 2
X —a

Multiplying the denominator and numerator by \/x + 5a + \/ Tx—a, we get
required limit = lim (x+5a) = (Tx - a)
x—a (xz — az) {\/X + 5a + \/7)6 — a}
— lim —bx—a)
(G az){\/x +Sa + \/7x — a}

= lim -6
(x4 a){\/x + 5a + \/7x — a}

= lim - ___ 3
s=a2g . 2ba  (2a)”
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Example 1.6 Evaluate lim

n— o0

2n+l +3n+l
{ 2n_3n ]'

Required limit = lim Eiiggitggii_]

= fim|—2L—
i
3
_2x0+3 L_g<q
0—1
-3

Example 1.7 Evaluate [im |S2* — €OSX|
et m
4 X ——

4

Put x—%zy.Whenxeg,yHO

s )-ems(5+ )
sin| y+— |—cos| y+—
.. The required limit = lim 4 4
y—>0_ y
_(lsin +Lcos )—(lcos —Lsin )
N T R R I O e G -
y%O_ y
_ lim \E(mﬂzﬁ
y=0| y

Example 1.8 Evaluate lim{x(cosec x + 2 cosec 2x)].

Required limit = lim x{ ! + 2 }

x=0| (sinx sin2x

. 14 cosx
=lim|x| ———
x—=0 SIn X COS x
X
x-2c0525
=lim

x—0

. X X
2sin—cos— - coS x
2 2
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X 2cosE
— lim|—2—|. 2

=0 L X cos x
s —

=1x2=2.

Example 1.9 Evaluate lim

0 3

X

[sinx][l - cosx]. 1
x x? CoS X

2sin® X |

[tanx - sinx]

L =1lim

x—0

= lim|l x > X
x—0 X coS X
x 4

2

:1><l><12><1:1.
2 2

(a+ h)*sin(a + h) — a* sina

Example 1.10 Evaluate %in%

h
2 2 : 2 .
I —1im (a” 4 2ah + h”) sin(a + h) — a” sina
h—0 h
2 - o
= }11n% a{sin(a +hh) sinaj + 2a sin(a + k)|, omitting /°,
a -2c0s[a + h]sinh
— 1im 2 | 2qsin(a + h)
h—0 h

=a’cosa + 2asina

Example 1.11 Find ling(l + sinx)*"".

1
L= hn'é{(l + sin x)sinx }cosx

= lim(e™") = e, by cor (1) under standard limit (3)

Example 1.12 Find 1im{a' 4 ]
Xﬂy x — y

xX—y 71
L:limay{“—}
x—y x_y

xX—y _
¥ lim [“—1

(x=y)—0  x — y

=a
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= a’ loga, by cor (5)

1 1{ 2 X H
X X 2 3

111xx2]

Example 1.13 Evaluate ]jm{l — Lzlog(l + x)
=0lx  x

L =1im

x—0

= lim

x—0

_7_+_7_+_7...
x x 2 3 4

Example 1.14 Examine if the function f{x) defined below is continuous at x = 0:

xsinl x=0
f(x)= x’
0 ,x=0

Left hand limit of f{x) at (x =0) = }’m(l) f(O0—h)
= lim\—h . sin[i]l
h—0 _h

-

=0, since sin [%] is numerically less than 1

=lim
h—0

Right hand limit of f{x) at (x =0) = }llng fO+h)
. . (1
=lim#h- sm[—] =0
h—0 h
Since }lin(l)f(O —h)= }lln’é f(O+ h)= f(0)=0, f(x) is continuous at the origin.

Example 1.15 Test the continuity of the function f{x) at x = 0 defined as

1

e’ —1

1) - , when x =0
x)=1 1
e’ +1
0 , whenx=0
—1/h
Left lim {%1}—1
el CRl

1/h —1/h
Right T et Y T Ll
V;ggh e +1 h—0 1+e
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Since lim {f(x)}# lim {f(x)}# f(0), the function f{x) is not continuous
x—>0-nh x—=>0+h
at the point x = 0.

Example 1.16 A function f{x) is defined as follows: Discuss the continuity of f{x) at
x=1landx=2.
x,inx <1
f(X)=12—x,in1<x<2
—243x—x*,inx>2
Left lin}{f(x)} = liIII}h 1-h=1
X Xh‘)()
Right lin}{f(x)} = li{nh{2—(l +h)}=1. Alsof[l1)=2-1=1
xX— x—1+
h—0
. flx) is continuous at x = 1
Left lin%{f(x)} = 1i12nh 2-Q2-h}=0
X Xhﬂg
Right lin;{f(x)} = 1i£nh{—2 +3Q+h)—-Q2+h?*=0
X x;;:;
Also, f2)=2-2=0
. fix) is continuous at x = 2 also.

Example 1.17 A function f{x) is defined as follows: Discuss the continuity of the
function at x =0 and at x = 1.

—x%,if x<0
f(x)=15x—4,if 0<x <1
4x* —3x,if l<x<2
Left lim{f(x)} = lim {(~(—h)}=0
- x;}HB
Right lim{f(x)} = lim {Sh—4}=—4
x— x—0+
h—0
.. fix) is not continuous at x = 0, since left lim # right lim.
Left linll{f(x)} = lirlnh{S(l —h)y—4;=1
o xh‘;?)
Right linll{f(x)} = h?jh{‘l(l +h) =31+ h)}=1;Also f(1)=1
h—0

Since left lim = right lim = f{1), f(x) is continuous at x = 1.
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Example 1.18 Find the values of a, b, ¢ for which the function defined below is
continuous at the origin:

sin(a + 1)x + sinx

, forx <0
x
S(x)= c , forx=0
1 1
22 2
W , forx>0
bx?
Left iy |SM@ DD+ sm(—h)] _ i |$inC@ + DA N sinh
X;th _h h—0 h h
—a+1+l=a+2
Also, (0) = ¢
Right Vh+ bk — \/—] o [ =iy (k4 bi 4
733" bk o i iJh+ bk +h

bh’ 1

lim— 2
=0 b I+ bh+ 1} 2

Since the function f{x) is continuous at the origin,

a+2=c=l
2

a:—éandczé;bisarbitrary,but;tO

Example 1.19 Examinethecontinuityanddifferentiabilityof f(x) = x*sin— (x #0)
and f{0) = 0 at the origin.

Left lim |(—h)’ sm[lﬂhm " sin[l]
x=0—h h h
h—0
. . (1],
=0, since sm[z] is bounded
Right lim |2 sin[l]: 0, Aslo £(0)=0
x—0+h h

h—0

.. fix) is continuous at x = 0

h? sin

= lim
h—0

Now

1
{f(O +hy— f(O)] h] 0
h

h~>0
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= lim|A sin [l]] =0
h—0 h
" sin[1] -0
1imlw] — lim -
h—0 _h h—0 _h
. . (1
=lim|h sm[—] =0
h—0 h
. flx) is also differentiable at the origin.
Example 1.20 Examine the continuity and differentiability of f{x) defined below at
x=2.
1+x, forx<2
f(x)_{S—x, for x >2
Left lirznh{l +2—-h}=3
x;“'g
Right ligri]{S —(24+nh)}=3.Als0f(2)=3
X o h
. f{x) is continuous at the point x = 2.
Now g [CEN 1)
h—0 h
= limM =—1
h—0 h
and hm[ﬂz —h - f(2)]
h—0 _h
~im 1+2-hr-3) 1
h—0 —

Since the two limits are not equal, f{x) is not differentiable at the point x = 2.

( EXERCISE 1(a) ]

Part A
(Short Answer Questions)

1. Iffix)=a cos'x + b sin’*x + ¢, show that f(w + x) — A —x) = fx).

2. [Ifxisreal, find the domain of the function of f{x) =x* + x — 12, for which it is
negative.
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3. Ifxisreal, find the domain of the function f{x) = (x*> — 3x — 18) for which it is
positive.

Evaluate the following limits:

]

x~>0 X"l
6. lim 7. lim|————— f I
g \/F NG " a|3dx -3
n+1 n+1
8. lim[w,0<a<b 9. 1im[W]
n—o00 anfbn n—o0 n
. |1—cosmx . |1—cosx
10. lim{—— 11. lim{——
x=0|1— cosnx x=0| xsinx
_ . |sinf —sina
. 1im{cosecx cotx} 13, %lm{ }
x—0 X —a O_Oé

14, lim[sin(x+h)—sin(x—h)j| s, lim{cosecxsecx}
h—0 h

x_;% cotx —tanx
) b
16. hmw(sec 2x — tan 2x) 17. lim[(1 + ax)*]
- 10
1
18. lim{x" ! 19. lim(l + cos x)>**

X——

2

20. lim{(1 4 cosx)™*}

X——

2

Part B
21. Find the domain of the function f(x)= x -1 Y72 for which fix) is
negative, given that x is real. 4x+5 43
22. If x is real, find the domain of the function f(x)= 3x—2

which f{x) is negative.

2
23. Ifx is real, find the range of the function f(x)= ﬂ
x4+ 2x + 4
. . 1
24. If x is real, prove that f(x) :2; lies between —— and 1.
x"—=5x+4+9 11
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25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

2
If x is real, prove that the range of the function f(x)= X —3x+4 is [l’ ]
x*+3x+4 |7
+b

If ¥ = f(x) =2 prove that x = f(y).

cx—a

2 2 2
Evaluate lim F+2 +-+n

x—00 n(n® +1)
(12 +3* 45 +~~-(2n—1)2]

3

Evaluate lim

xX—00 n

3 3 3
Evaluate [im | QT2 t3t-m@ +2" 4+ +n)
n— o0 n3(12 +22++n2

Evaluate lim 1'34—22'4—5“_‘_”("? 2 .

3 3 3
Evaluate lim V2 +-+n .
nooel1.2-342-3-4+---n(n+1)(n+2)

L~ {Hint: Use lim[a _1]}
JFx—1 ol x

(l—cos2x+tan2x)

xsinx

Evaluate lim

x—0

Evaluate lim
x—0

X -2
Evaluate lim {e +log(1+x) - (1-x) i| {Hint: Use expansions}

2

x—0 X

X X
Evaluate lim {8 —2 }

x—0 X

x—1

Evaluate lim {(1 — x)tan %}

Show that the function f{x) defined below is continuous at x = 0 and at x = 1:
Also draw the graph of y = f{x).

—x, when x<0
f(x)= x, when O0<x<l1
2—x, when x2>1

3
Test the continuity of the function f{x) defined below at x = 5
| 2x -3 |

3
, for x=—
2x—3 2

S(x)= 3
0, for x=—
2
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39. Examine the continuity of the function f{x) defined below at x = 0.

1
sin—, forx=0
Sx)=7 «x
0, forx=0

40. Find the values of the a and b, if the function f{x) defined below is continuous
atx=3and atx=5.

1, if x<3
f(x)=qax+b, if 3<x<5
7, if x>5

x—1, when x>1
41. If f(x)=1 0, when x=1
1—x, when x<1
shown that f{x) is continuous at x = 1, but is not differentiable there.
42. Show that f{x) = | x| is continuous at x = 0, but is not differentiable there.
43. Discuss the continuity and differentiability of the function f{x) defined as
2x—3, for 0<x<2
x* =3, for x>2

44. Discuss the continuity and differentiability of the function f{x) defined below
atx=1and atx=2.

fx)=x,forx<l;=2—x,for1<x<2 and =—2+3x—x*forx>2

f(x)=

at the point x = 2.

45. Discuss the continuity and differentiability of the function f{x)=|x—1 |+ |x—2|
at the point x = 1 and x = 2.

1.5 DERIVATIVES

Let y be a continuous function of x. Let Ax be a small increment in the value of x and

&]
Ax
as Ax — 0, if it exists is called the differential coefficient or derivative of y with re-

spect to x and denoted by d_y viz, lim [&] _ b or Dy
a e Al dr

Ax

let the corresponding increment in the value of y be Ay. The limit of the ratio

If y is assumed as f{x), then & = lim [ﬂ] = lim {f(x +Ax) — f(x)} and is
dr a0l Ax) Ao Ax

denoted f(x) or Df(x). The process of finding % is called differentiation.
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Notem (1) % is a composite symbol and should be understood neither as

M noras dy + dx. i must be interpreted as derivative w.r.t. x.
lim(Ax) dx

. Ay . . .
(2) The lim (_y) is found out by the methods discussed in the
Ax—0\ Ax

previous section.
1.5.1 Derivatives of Elementary/Standard Functions
We shall follow the 4-step working procedure given below to find the derivatives of

some elementary functions from first principles, viz., using the definition of d_y or
1. dr
(i) Inthe given function y =f{(x), replace x by x +Ax. At the same time y becomes
y+Ay. viz.,y + Ay = fix + Ax)
(il)) Obtain Ay = fix + Ax) — fix) and simplify as far as possible

(iii) Obatin .
Ax

. A L . .. d
(iii) Find lim (—y), which is the required derivative —y.
Ax—0\ Ax dx

d _
1. a(x") =nx" 1, where n is rational number

Let y = x". Let Ax and Ay be the small increments in x and y respectively.
Then y + Ay = (x + Ax)"

Ay (x+A)" -x"

Ax Ax
n n
& = lim A X , by definition
dx  Aa—0 | (x+Ax)—x
X+Ax—x

n n
_.n—1 : : X —a | -l
=nx""",on using lim =na
x—a X—a

. d _
viz., —(x")=nx" !

dx

2. i(sin X)=cosx
dx

Let y = sinx. Let Ax and Ay be the small increments in x and y respectively.
Then v+ Ay = sin(x + Ax)
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Ay = sin(x + Ax) — sinx
=2cos| x +— |sin—
2 2

sin[Ax]
d_y = lim [ﬂ] = lim cos[x + —] 2
dxr  M—0(Ax) Ao 2 [Ax]
2
= cosx-l('.’ lim sind = 1)
6—0 0O
= cosx
. d .
viz.,  —(sinx)=cosx
3. i(cos Xx)=—sinx
dx
Let y =COoSx
Then Ay = cos(x + Ax) — cosx
= —2sin|x + —] -sin—
. [Ax
dy Y , e
a = LHO[—] = 11r11 —sin [x + —] [Ax]
2
=—sinxx1=—sinx
. d .
Viz., —(cosx)=—sinx
dx
4. i(tan x)=sec’x
dx
Let y =tanx
Then Ay = tan(x + Ax) — tanx

_sin(x +Ax)  sinx

 cos(x 4 Ax)  cosx

_sin(x 4+ Ax)cos x — cos(x +Ax)sin x
B cos(x + Ax)cosx

_ sin Ax
cos(x + Ax)cosx
dy . [sin Ax] 1
— = lim .
dx =0l Ax ) cos(x+ Ax)cosx
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=1x 7= sec? x
cos” x
. d
viz., —(tanx) = sec” x.
dx
d 2
5. —(cot x) = — cosec’x
dx
Let y = cotx
Then Ay = cot(x + Ax) — cotx

sin x cos(x + Ax) — cos x sin(x + Ax)
sin x sin(x + Ax)

_ sin(—Ax)
sin x sin(x + Ax)
Y im [ﬂ]: lim —[Smm} —
dx Aol Ax] Ao Ax sin x -sin(x + Ax)
=1x— x —cosec” x
sin” x
. d 2
viz.,  —(cotx) = —cosec” x
dx
d
6. —(sec x) =—secx tanx
dx
Let y =secx
Then Ay = sec(x + Ax) —secx

__cosx — cos(x + Ax)
cos - cos(x + Ax)

il 5 snl 5]
2sin{x + —|sin|—
_ 2 2
cos x - cos(x + Ax)

ol 5 sl
sin x+7 sin|—

dy . (Ay] . 2

— = lim [—|= lim .

dx  a—0{Ax) A—0|cosx-cos(x 4+ Ax) Ax
2

sin x
= 5 -1 =secxtanx
cos” x

. d
viz., a (secx)=secxtanx
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d
7. —(cosec x) = —cosec x cot x
dx

Let y = cosecx
Then Ay = cosec(x + Ax) — cosecx

_sinx — sin(x + Ax)

sin(x + Ax) - sinx

e Sl
2cos x—|—7 -sin|———

2
B sin(x + Ax) sinx
[ Ax] . Ax
cos|x +—— —sin—
dy . [Ay) . 2 2
— = lim |—|= lim ||— -
dx -0l Ax) ar—0)|sin(x + Ax)sinx Ax
2
cos X
=———-D
sin” x

= —cosec x cotx

. d
Viz., —(cosecx) = —cosecx cot x.
dx
d
8. —(e')=¢"
dx( )
Let y=e
Then Ay=e "o —¢
x+Ax _x
Y _ im [ﬂ] = lim [u]
dx =0l Ax) Ao Ax
M [eA" — l]
=e" - lim
Ax—0 Ax
h p—
=e" %1, [since lim[e 1] = 1]
h—1 h
. d x
viz., —(e)=e
dx( )
9. i(logex) 1
dx x
Let y=logx
Then Ay =log (x + Ax) — (log x)
[x + Ax]
=log,
X

= log, [1 + ﬁ]
X
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X
-1 im {bge(uﬂ)“}
Al
X
1
=lloge(e) { lim (1 + h)” =e}
X h—0
12!
X X
. 1
viz., _(1Ogex)__
X

1.6 RULES OF DIFFERENTIATION

1. i(c) =(, where c is a constant
dx

Let y=c

Then Ay=c—-c=0
Y _ yim [ﬂ]: li [i]zo
dx Ax—0 Ax Ax—0 Ax

. d
viz., — (any constant) =0
dx

d du
2. d_ (cu)= Ca, where c is a constant and « is a function of x
X

Let y=c-u
Then Ay =c(u+ Au)—cu = cAu

d_y: lim[Ay]— lim [ AM]—c-d—u

dx -0l Ax Aax—0|  Ax dx
3. i(u +v)= du + d—, where u and v are functions of x
dx dx dx
Let y=uztv
Then Ay={(u+Au)t(v+Av)} — {utv}
=AuztAv

dy

o= dm ()= m (5)+(5)
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This result can be extended as follows:
Ify=aut bv*cw= -, whereq, b, ¢, are constants and u, v, w, --- are function of
dy du  dv  dw

x, then — —:t—j: +--
dx dx dx dx

4. Product rule, viz., (uv) uﬂ+ (;u, where u are v are different

X

function of x

Let y=uy
Then Ay =ulAv+vAu—Au - Av
d_y = lim [Q] = lim u[—v] + lim v—u + lim [&]Av
dx Ax—0 A_x Ax—0 X Ax—0 X Ax—0 A_x
dv du du
=u—+v—+-—x0
dx dx
dv du
=u—+v—
dx dx
. dv du
viz., —(uv) =u—+v—
dx dx
Extension

d d
a (uvw) = a {u-(vw)}

g
=u{v—+w— +vw— (or)
dx dx

—uvd—w—|— de_u+ wuQ
dx dx

dx

du dv
d(u "
5. Quotient rule, viz., & _] = M

dx\v

2
\4

u
Let y=-
v

u+Au_z

Then Ay =
v+Av v
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_vAu—ulAvy
v(v + Av)
. [Au . [Av
vlim |[—|—u lim |[—
d_y_ lim [&]_ av—0| Ax Av—0| Ax
dr  a—olAx) a0 lim v(v + Av)

W v du

u v u
dx dx _ _dx dx

v(v+0) v
Jdu_ dv
viz., i[z] _dr _dr
dx (v v
6. Derivative of a Function of Function
When y is a function of u, where u itself is a function of x, then Y = & . d_u
dx  du dx

In this situation, Ay = % Au
u

Extension
If y is a function of u, u a function of u, v a function of w and w a function of x,
then

dy_ 1
dy

If y is a function of x, say f{x), x can also be considered as a function of y and denoted

as f7(y)

Then Ay -g—l
Ax Ay
li [ﬂ][g]_
2;:8 Ax )| Ay
viz., lim [&] lim [&] =
Ax—0( Ax ) Ayv—0 Ay
viz., d_y.gzlor d_y:L
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1.7 DERIVATIVES OF HYPERBOLIC FUNCTION

d
1. —(sinhx)=coshx
dx( )

Let y =sinhx

=¢ [by definition]

b
= {e f(e**) d - 1)}

dx

e te”
2
=coshx

d .
2. Similarly we can prove that a(COSh x)=sinhx

d
— (tanh x) = sech? x
3. dx( )

sinh x

Let y=tanhx =
cosh x

dy cosh x- % (sinh x) — sinh x % (cosh x)

= = [by quotient rule]
dx cosh® x
_ cosh’ x —sinh’ x
cosh® x
= — =sech’x
cosh™ x
4. Similarly, we can prove that %(coth x) = — cosech’ x

d
5. —(sechx) = —sech x tanh x
dx( )

Let y=sechx= !
cosh x
L = . i(coshx)

dx cosh’x dx



Differential Calculus 1.27

sinh x

cosh’ x
= —sech x-tanh x

6. Similarly, we can prove that %(cosech x) = —cosech x coth x

1.7.1 Derivative of Inverse Circular and Inverse Hyperbolic

Functions
. 1
1. i(sm_1 x) =

dx 1—x*

Let y=sin"'x; Then x =siny
dr_ cos
dy 7
dy 1 1

1
dx  cosy \/1 —sin’ y \/1 —x

2. Similarly, we can prove that i(cos" X)=-— !
‘ ’ dr Ji-+

1

d
3. —(tan Xx)=
( ) 1+ x*
Let y=tan 'x; Then x = tan y
dx 2
— =sec’y
dy
1 1 1
= 2

a_seczyzl—i—tanzy:l—kx
- d . 1

4. Similarly, we can prove that —(cot ' x) = —
dx 1+ x

5 i(sec’lx)—;
o dx xyx? =1

y=sec ' x, Then x =secy

2

Let

dx
— =secytany
dy

1

d_yi - 1
dx secy\/seczyfl )c\/x2 -1
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6. Similarly, we can prove that i(cosec" x)=—
dx xyxt —1
1

d
7. —(cosh™'x)=
dx( x)

[

x° —

Let y =cosh 'x Then x = cosh y

dx =sinh y
dy
dy 1 1 2 12
= = (. cosh” y —sinh” y=1)
dx sinhy Jcosh® y—1
_ 1
X' —1
- d .. 1
8. Similarly, we can prove that — (sinh ™' x) =
dx x* 41
d 1
9. —(coth™ x) = —
dx( ) X' —1
Let y =coth™' x. Then x = coth y
& cosech? y
dy
dy 1 -1

.. 2 o 2
dx_icosechzy:*1+coth2y (- coth” y —1=cosech” y)

1

X =1

1
1—x*

10. Similarly, we can prove that %(tanh’] x) =

1
Jm/l—i—x2

Let y =cosech™'. Then x = cosech y

d =
—(cosech™ x) =
11. dx( )

b __ cosech y - coth y
dy

dy 1

dxiixdl+x2
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1

12.  Similarly we can prove that %(sech" xX)=—
2

xyJl—x

1.8 METHODS OF DIFFERENTIATION

Though the rules of differentiation stated earlier can be applied to find the derivatives
of many functions some functions can be differentiated using the methods indicated
below:

1. Logarithmic Differentiation

When the given function y is of the form uv, where u and v are functions of x, we
use this method, in which we take logarithms on both sides of y = uv and then
differentiate w.r.t. x. This method will also simplify the work on differentiation of a
function consisting of a number of products and quotients.

2. Differentiation of Implicit Functions

If x and y are implicitly related as f{x, y) = 0, viz., if y cannot be expressed explicity
as a function of x, the differentiation of f{x, y) = 0 w.r.t. x is done, noting that y is a

function of x whose derivation is d_y On simplification, we will get L as a mixed
function of x and y. dx dx
3. Differentiation by Trigonometric Substitution

Some apparently complicated functions ofx, in particular, certain inverse trigonometric
functions can be simplified by using appropriate trigonometric substitutions for x
and then differentiation is performed.

4. Differentiation from Parametric Equations
When x and y are both expressed as functions of a parameter, say ‘¢’, it is not recovery

to get y as a function of x, as % can be given as a function of ¢.

In this case, %:d_yi or dy /dx

dr dx de/ dt
5. Differentiation of One Function w.r.t. another Function

If it is required to find the derivative of u(x) w.r.t. v(x), we treat that » and v are
parametrically expressed in terms of the parameter x.

Then d_u:diu/g
dv  dx/ dx
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( WORKED EXAMPLES 1(b) ]

Example 1.1 Find % from first principles, when y =

2
(1) 1+ 3x, (i1) ; ii, (iii) sin’x,  (iv) e&, and (v) tan'(sinx)
X

(i) y=+/143x.Let Ax and Ay be the increments in x and y respectively.

Then Ay:\/l—i—?a(x +Ay) —\/1+3x

dy JI+3x +3Ax — 1+ 3x
dx_ArﬂO Ax
1 1
2 2 1_
_ 3 fim (LE3X 380 —A+307 ) 3 g et 3
a—0| (143x+3Ax)—(143x) | 2 2.1+ 3x
. x> +38
(i1) Y= 03

Let Ax and Ay be the increments in x and y respectively.
2 2
Then Ay:(x+Ax) +8_X +8
2(x+Ax)+3 2x+3

(2x+ 3)(x% +2xAx + Ax® +8) — (2x + 2Ax + 3)(x* +8)
B (2x +3)(2x + 2Ax + 3)

_ (2x +3)(2xAx + Ax?) = 2Ax(x* +8)

B (2x 4+ 3)(2x + 2Ax 4 3)

Ay (2x+3)(2x 4+ Ax) —2(x* +8)
Ax (2x +3)(2x + 2Ax + 3)
b [Q]_ (2x +3)-2x — 2(x* +8)
dx Aol Ax (2x + 3)?

_ 4x* +6x —2x* —6

(2x +3)°
_ 2x* +6x—16
(2x +3)’

(iii) y =sin’x
Let Ax and Ay be the increments in x and y respectively.
Then Ay =sin’(x + Ax) — sin’x
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= {sin(x + Ax) — sinx} {sin’(x + Ax) + sinx - sin(x + Ax) + sin’x}
= {2 cos
sin(m)

2ol 22

——=4cos
- (5
2

X %] sin %} {sin”(x + Ax) + sin x-sin(x + Ax) + sin” x}

{sinz(x+Ax) +sinx sin(x-kAx)+sin2 X}

d_y_ lim (&)z{cosx'l} {sin2x+sin2x+sin2x}
dx Ax—0\ Ax
=3sin’ x cosx.
(v) y=e'®

Let Ax and Ay be the increments in x and y respectively
Then Ay:evx"'m —eJ;

14—
X

-

[1 + ﬂ] — ¥, expanding by Binomial theorem and omitting
2x higher power of Ax

Ax
=l {eZ& -1}

(v) y=tan"'(x)
Let Ax and Ay be the increments in x and y respectively.
Then y + Ay =tan—1{(x + Ax)}
=tany and (x + Ax) = tan (y + Ay)
Ax =tan (y + Ay) —tany

Y fim [—y] — lim Ay
dx  A—1lAx) &-0ltan(y + Ay) —tany
{ when Ax— 0, Ay also — 0}
~ lim {cosyocos(y + Ay)- Ay}

Ay—0 sin Ay
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=cos’ y-1

N .
=cos” y- lim
y Ay_;o[

sin y
R
sec’y l4tan’y 14x

Example 1.2 Find %, when y = ./sin” x + cos” x.
y =4/sin” x 4+ cos" x

d_yi 1
dx  2./sin” x + cos” x

1 e _ .
= {msin" "' x cosx + n cos" " x-(—sinx)}

24/sin” x 4 cos” x
sinxcos x(m sin” ~>—ncos” * x

24/sin” x + cos” x

Example 1.3 Find %, where y = loge[

2

d .
x —(sin” x 4 cos” x)

a+bcosx
a—bcosx|

y =log(a + b cos x) — log(a — b cos x)

d_y_ —bsinx bsinx

dx_a—i—bcosx_a—bcosx

. {abcostraercosx}
=—bsinx

a® —b*cos’ x

—2ab sin x

a® —b*cos* x
x—J1+x*

X+ 1+ x?

v =log(x — /1 + x7) — log(x + /1 + x*)

d—yzéll—;{bc)]— ! {l—i— ! -Zx]
dx x—\/l—i—ix2 241+ x° x4+ 1+ x° 2\/14—7

_ 1 ﬁ—x 1 14+ x* +x
x\/1x2| \/1+x2 ] x+\/l+x2| \/l—i—x2 }

_ 1 _ 1 _ 2

- \/l—i—x2 \/1+x2_ \/l—l—x2

Example 1.4 Find d_y when y = log
dx
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o dy cosx + sinx
Example 1.5 Find —, when y=log, |[——F—.
dx cosx —sinx

y= l[log(cosx + sin x) — log(cos x — sin x)]

[\S}

—sinx 4+ cosx (—sinx — cosx)

&le
o —

coSx + sinx Ccosx — sinx

1|(cosx —sinx)* — (cosx + sinx)’

2 cos® x —sin’ x
2 .
2(cos’ x +sin* x) 1
2 cos’x—sin’x cos® x —sin? x

Example 1.6 Find %, when y=(x+ x> +a*) +(—x+ x> +a*)".
_n(x—i—\/x +a’ ) !
X +a’
—n(—x+x*+a’)" -1+

n(x+ X +ad’) + —m—

2 2
x +a

Ji

m n(=x + ¥’ +a’)"

ny

/xz + a2
2
Example 1.7 Find %, when y = B\/xz +a* + %log{x +4x* +a’}l

y  x X ¥ t+ad & 1 X
=== + +— A
dx 2 \/x2+a2 2 2 x+\/x2+a2 X +a
1 22 2 2
_12x +a i a
2\/x2+a2 \/szraz
_ [x2+a2

o

d 1 b+a+.b—a tan >
Example 1.8 Find Ey’ when y— log 2

b’ —a’ \/b—i—a—\/b—atan% .
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Putting \/b+a =c and /b —a =d, we get

y=— log[c+d tang]—log[c—d tang] , Where ¢ and d

are constants

) X d ,x
—sec” — —sec” —
d_1l 2772 2772
dx Cdc—l—dtang c—dtan’
1 ) X c
= —sec” — X
2¢

[c2 —d*tan® 2
2

X
sec’ =

- (b+a)—(b—a)tan2§

x
sec’ =
2

a[l + tan? x] + b[l — tan? x]
2 2

1 1

[1—tan2x a—+bcosx

a+b P
1+ tan* =
2

Example 1.9 Find %, when y:cos—l(M)

b+ acosx
1
- a+bcos 2
b+ acosx
_ (b +acosx)(—bsinx) — (a+bcosx)-(—asinx)
(b+acosx)2

Y__
dr

— (b +acosx) (@’ —b*)sinx
J® + acosx)* — (a + beosx)® (b+acosx)’
(a> —b*)sinx

— J®" —aP)sin® x(b + acosx)

2 2
b —a

 b+acosx
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Example 1.10 Find % when y =tan' [w]

bcosx —asinx

dy 1

. 2
acosx + bsinx
bcosx —asinx

{bcosx—asin x)(—asin x+bcosx)—(acosx+bsin x)(—bsinx—acosx)}

(bcosx — asinx)’

1

2 2
= +b
(bcosx — asinx)’ + (acosx + bsin x)’ (a )

7(12 +b°
a’ + b’

Example 1.11 If x=2asin" 4/— —+2ay - y show that -y

y

=1

Differentiating w.r.t. y, we have

_ 2a\2a ) 1 _a—y

_ a ~ (a—y)
\/Zay — y2 \/Zay — y2
)y

N2ay -y

dy 2ay —y°
dx y

_ \/;1/2a—y
y
2a —y
y




1.36 Engineering Mathematics 1

Example 1.12 Find %, when y = +/sinh/x.

d—yZ;i(sinh\/;)
dx - sinh\/; dx

1 d
= ————cosh+/x, —+/
Vx ™ x

24/sinh+/x
_ cosh \/;

- dn/xsinh/x

Example 1.13 Find d_y, when y =sinh™' tan Ifx .
dx 1—x
S %tan[—r_xJ
—Xx
1+tan2[1+x]
—X
1 14+ x) d{l+x
= sec —
[l—l-x] l—x) dx(l—x
sec
1—x
~ sec I+ x||1—=x)— 104+ x)(—1
1—x (1—x)’
2 I+x
= ~sec
1—x) 1—x

x3x* + 4
i +3 .

logy =logx + %log(x2 +4)— %log(x2 +3)

Example 1.14 Find % when y =

Taking logarithms,

Differentiating w.r.t x,
ldy 1 2x X

ydv x 3’ +4) ¥ +3

dy  xYx* 441 2x X

+ —
dx \/x2+3 x 3x"+4) x+3

Example 1.15 Find %, when y = x™" + (sinx)".

Let y=u+v,say.
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dy du dv
Then =4 — (1)
dx dr dx
u= xsinx
Taking logarithms,
log u = sinx logx
1du_ sinx + log x-cosx
u dx X g
du dnx | 1
— =x""{—sinx + log x - cos x} (2
dx {x £
v = (sinx)*
Taking logarithms,
log v =x log sinx
Tdv .. cosx + log sinx
v dx sin x g
dv C o x .
o (sinx)" (x cotx + log sin x) 3)
. . dy
Using (2) and (3) in (1), we get e
. dy 1 1+
Example 1.16 Find . when y=(1+x)" +x -~
Let y=u+tv,say
Then ~ & v, dv ()
dx dx
1
u=(1+x)*

Taking logarithms,

1
logu = —log (1+ x)
X

1du 1 1 1
—— == ————log(1+
ude x l+x 52 g(l+x)

1

du = 1

—=+x)~ ——log(1+

PR {x(1+x) 2ol x)}
141

v=x X

Taking logarithms, logy = (1 + l)logx
X

2
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v dx x
dv e x41 1
a:x x{ 5 x—zlogx} ®)

Using (2) and (3) in (1), we get %

Example 1.17 Find Y when x and y are connected by the relation x* + y* = ¢, where

>

¢ 1S a constant.

X +y'=c, viz, u+v=c

du dv
— 4+ —=0 1
% 3 (1
u=x"
log u =y logx
ude x dx
du _ x” [Z + logxd—y] (2)
dx x dx
v=y*
log v=xlogy
Idv xdy
——==—+41o
vde ydx &Y
dv x dy
dx y 3 dx gy]
Using (2) and (3) in (1), we get
y dy] ofx dy
x’|=+logx-—|+y'|—=+1o =0
[x g o y [ydx gy]

viz,  (x"logx + xyx’l)% =—(»" "+ y logy)

dv (' '+ logy)

r ("' + x” logx)

Example 1.18 Find %, when (sin x)**" = (cosx)™.

Taking logarithms on both sides of the given relation, we get

cos y-logsinx =sin y-logcosx (1)
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Differentiating both sides of (1) w.r.t. x,

cos y-cot x — logsin x(—sin y)% = —sin y tan x + log cos x(cos y)%

. . . dy .
viz., (sin y log sin x — cos y log cos x)a = —(sin y tan x + cos y cot x)

dy  sinytanx+ cosycotx

dx  cosylogcosx — sin y logsin x

Example 1.19 If x"y" = (x + y)"*", prove that % =2
x

Taking logarithms on both sides of the given relation, we get
mlogx + nlogy = (m + n) log(x + y)

(1)
Differentiating both sides of (1) w.r.t. x,
m ndy 1 [ dy]
—+——=m+n) - ——|1+—=
x ydx ( ) xX+y dx
viz., m+n n dy ﬂ_m—i—n
x+y yjdx x x4y
viz., (my—nx) dy my—nx
yx+y) dx x(x+y)
Y_y
dx  x
1 4,2
Example 1.20 If \/1 — x* +./1— y* = a(x — y), prove that % = y2 )
1—x
Differentiating both sides of the give equation w.r.t. x, we get
y dy [1 B dy] (1)
,/1 —x* (1- dx

Eliminating ‘a’ between the given equation and (1), we get

Xy @ dy
1 — x? lfyzdx: Cdx
\/l—xz—i—\/l—yz X=y

d (x—»)
O N

dy  1=x" 0= =) +x° —xp

dx 1—x*

viz, lﬁ+ﬁ_y(x—y)

viz, (NO=x)A=y) +1-y" —y 47
J1—3°
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viz,  NO=xI—y) +0-x) dy_JO-2)I—y) + (- )
\/l—y2 dx \/l—x2

b 1=y
dx 1—x*

2
Example 1.21 Find d_y, when y = sin™! 2x 4 cos”! 1-x)
dx 1+x°

1+ x*
Put x=tan O
. 2t 1 — tan’
Then y=sin"" Lﬁ +cos™! ize
1+ tan“ 6 1+ tan“ 6@

= sin”'(sin 26) + cos ™' (cos 26)
=46 or 4tan'x

d_y_ 4
dx 14 x°

Example 122 Find & when y=cos” tan ' [l 12X
dx 1+x
Put x=cos 0
Then y = cos tan”! 1 —cosf
1+ cosd

2 -1 9
= Cos” tan tanE

,0 1 1
cos 3 (14 cos®) 2( + x)

2
d_1
dv 2
Example 1.23 Find d_y’ when y =tan™' M , Where a is a constant.
dx 1—ax

Put \/; =tanf and \/E =tano
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tanf + t
y=tan"' ant + tana = tan"" tan(d + o)

1 —tand tan o
:9+a:tan’1\/;+tan’1\/;

dy 1 1
—_— N +0:
dc  1+x" 2x

1
24/x (1+ )

1—|—x2+\/1—x2]

d
Example 1.24 Find ay, when y = tan™'

JI+x7 —1—x°

Put x>=cos 0
Then = tan"! \/1+cose —i—\/l—cose
JI 4 cosf — /1 —cos
\/ECOSQ—I—\/ESHIQ
= tan ' 2 2
\/Ecosg—\/zsing
2 2
0
1+ tan—
=tan™' —g
1—tan—
2
tan — + tan —
= tan"’
1—tan— - tan—

T _
=—+4+—-cos x
4
d_y:l. —! o=
dx 2 \llf)c4 1—x*
2
Example1.25 Find d—y, when x:ﬂ and y= 3at .
dx 1+1¢ 1+7
_ 3ar dx_ 3a{l+1) 130
1+  de (1+2y

~ 3a(1-2¢)
RS
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2

_ 3at
Ty
dy  3a{(l+1)2t—1 -3t}
dr 1+ £
_ 3a(2t—1t")
S+

d_dy v -t
dx dr T dr 1-27

Example 1.26 Find %, when x = a(cost + log tan %) and y = a sint.

t
x= a[cost + log tanE]

dx . 1 ,t 1

— =a|—sint + -sec” — - —

dt t 2 2
tanE

1

=q |—sint +
.t
2sin —cos —
2 2

. 1 acos’ t
=a|—sint+—|= -
sint sint
y=asint
d
_y: a cost
dr

d_y_d_y;%_ acost
dv dr ~dr acos’t

X sint = tant

Example 1.27 Find %, when y = log(secf + tanf) and x = secé.

y = log(secf + tan6)

d_y - ;(secﬂ tan 6 + sec’ 0)
dfd  secH + tanf
=secl
x=secH

% =secl tand
do



Differential Calculus 1.43

d—y:d—y+%:ﬂ:cot9.
dx df df secOtand

_ 3
Example 1.28 Differentiate tan™ 3x_x2 w.r.t.sin”' =
1—3x 1+ x
_ 3

Let u=tan"' 3x xz and v=sin"' 2x 5

1—3x 1+x
Put x =tanf
Then u = tan ' (tan30) and v =sin"'(sin26)
viz., u=230 and v=120

du du  dv 3

dv do Ao 2

1

Example 1.29 Find d_u’ where u=¢" *and v=e .

dv

u:esin Ty
d_u:esin"x . 1
dx J1—x°

—1

v eCOS X
dv 1 1
_:ecos Y
dx 1—x°
d_uid_uéyiie(sin Ty —cos 'x)
dv  dx dx

X =1

Example 1.30 Differentiate tan~ w.r.t. tan”\x.
x
Jl4+ 27 =1
Let u=tan"’ ;J and v=tan 'x
X
Put x=tan 0
1 1—
Then u=tan"' sect ] =tan"' Ls@]
tand sinf
2sin’ Q
-1 2 —1 9 9
= tan ﬁ = tan tal’lz = 5
2sin— cos—
2 2
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v=tan '(tanf) =0

du  du  dv 1

v do do 2

( EXERCISE 1(b) ]
Part A
(Short Answer Questions)
2 3
1. If y=l+—+—+x—+---, show that d—y:y.
mn 2t 3! dx
. o dy
Using first principles, find a when
1 x+2
2. y=—F= 3. y=
s y=——

4. y=,/logx 5. y=x’sinx

6. y=sin"! x?

Find % using the rules and methods of differentiation, when

7. yzlog[l_smx] 8. y=tany/l+x+x’

1+ sinx
9. y=cos’x sin*x 10. y=sin"'(cosx)
11. y=tan’!(sinh x) 12. y = (tan x)=*
13. x* +y*=3axy 14. y=a”

15, 3 =sin~'2xyl1 — x*) 16. y=tan"'

17. x=cos’t and y = sin’¢
18. x=a(0—sin ) and y = a(1 — cos 0)

19. Differentiate u = a sec x w.r.t. v= b tan x

20. Differentiate u = +/sin2x w.r.t.v =+/cos2x

Part B
Differentiate the following function w.r.t. x:

X
1—x*

21. \Ja® +b* — 2ab cosx 22, \fi+sin2x — J1—sin2x
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23.

25.

27.

29.

30.

31.

33.

35.

37.

38.

39.

40.

41.

42.

43.

44,

xsinx + cosx y 1—x+x2
xsinx — cosx A4 x4+ 22
JI+x—1
JIi+x+1

\Iaz +x* +x 3 3
log[\/zi— 28. seclog+fa” —x
a +x—x

xsin ' x

J1—x
xyx* —a —a’log(x + x> —a’

ax’

e cosbx® 26. log

e

coshx + cosx

t -1
an-(cos \/;) 32. sinh x + sin x
1

_ 2 3

sinh™" [1 x] 34, {—(x T+ b)}
1+x X +c
1

X"+ x* 36. (sinx)™" + (tanx)™"

Find %, when x and y are connected by (x + y)* =x*".
Loody L .
Find o if sin y = x sin(a + y).

Find %, if (sinx)®” + (cos y)™ =1.

Find ¥, ifc- o) -0y =1+¢
dx, .

Find d_y’ if y =sin’ cot™' I x
dx —Xx

. dy
Find =, y = cos™'(4x> — 3x).
o ( )

Find dy if » cosx —sinx
ind —, =
dx cosx + sinx

Find %, if y= cos’l[\/x2 —x 4 \/x —-x']
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45. Find %,ifx:cost +tsint and y =sint — fcost.
ody . c
46. Find . if x=clogtand and y :E(tang—i- cotf).

.o dy . . .
47. Find ay,lfx:3smt —sin’tand y = 3cost — cos’ £.

48. Differentiate tan™' | wort.sin”! 2x =l
I—x 1+x
2
49. Differentiate tan™' 3x xz wrt tan~! 2x |.
1—-3x 1—x

' 2 ' 2
50. Differentiate tanl{ It L ]w.r.t. cos ' (x?).

\/l—l—xz —|—\/l—x2

1.9 MAXIMA AND MINIMA OF FUNCTIONS OF ONE
VARIABLE

A function f{x) is said to have a maximum at the point x = a, if fla) = fla + h) for all
positive and negative values of / sufficiently near zero.

Similarly f{x) is said to have a minimum at the point x = b, if f(b) < fib + h) for
values of % close to zero.

The figure given below represents the graph of f(x), viz., y = f(x) is the equation
of the curve shown. The function has maximum at 4 and C, while it has minimum at
B and D. In other words if the continuous
function increases algebraically upto a ¥
certain value and then decreases, that value
is called a maximum value of the function.

Similarly if the continuous function

R bS
o

.

decreases algebraically upto a certain value | 1B

and then increases, that value is called a i i

minimum value of the function. o x=a x=b *
Fig. 1.5

Note™ (1) There are values of f{x) which
are greater then the maximum and values which are less than the
minimum.

Hence fla) is a relative maximum value of f(x). This means that f{a)
is algebraically greater than fla — /&) and fla + #) where 4 is a small
positive quantity. Similarly, a relative minimum value of f{x) occurs at
x=b.

(2) The points 4, B, C, D... at which the tangents to the curve y = f(x) are
parallel to the x-axis are called stationary points or turning points of
the curve y = f{x). The maximum or minimum values of f{x) [at x = a
and x = b] are called extreme values of f(x).
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Theorem
If fix) is differentiable at x = a and has a maximum or minimum there, then
fa)=0

By definition f(a) = fla + h), if x = a is a maximum point.

By definition f”/(a) = lim {M}, since f1(x) exist at x = a.

This value is zero, for
Mgo’if},>oandwzo,if}lis<o

h
viz., lim+ M <0 (1
and  lim M >0 2)

(1) and (2) will be true, if and only if /{a) = 0.
Similarly if /(b) is a minimum value of f{x), /(b) = 0.
Theorem f(a) is an extreme value of f{x) if and only if /(x) change sign as x passes
through the point x = a.
Form the figure, it is clear that f(x) is an increasing function before reaching 4 and
after passing through 4 it is a decreasing function.

Thus % [slope of the curve y = f{x)] changes sign from positive to negative as x

passes through 4

2
viz., jx—J; is negative at 4.

Hence a function y = f{x) is said to have a maximum (minimum) at x = a, if
i) Y_0atx=a
dx

.o d? .
(i1) a); < 0 atx =g for a maximum

d? .
—J; > (0 at x = g for a minimum
dx

Working Rule
(1) Find /() and solve the equation f{(x) = 0. Let the roots be a, b, c,...
(2) Find /"(x) and find /" {a), f (D), etc.
(3) Iff{a) <0, there is a maximum at the point x = a for f{x).
If f{a) > 0, there is a minimum point for fx) at x = a.
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(4) If f{(a) = 0, this rule fails for testing whether f{(x) is maximum or minimum
atx =a.

( WORKED EXAMPLES 1(c) ]

Example 1.1 Find the maximum and minimum values of f{x) = 2x* — 9x> — 24x — 20.
Sx)=6x*—18x — 24 =6(x* —3x — 4)
=0,when (x —4)(x+1)=0

.. The turning point of f(x) are x =4 and x = -1

1) = 6(2x - 3)

f4)=6x5>0 .. f{x)is minimum at x =4

f1=1)=6x5<0 .. f{x)is maximum at x =—1

~. Maximum of fix) (atx=-1)=-2-9+24-20=-7.
and minimum value of f{x) (atx =4) = 128 — 144 -96 — 20 = —132.

Example 1.2 Find the maximum and minimum values of y = 3 sin’x + 4 cos>x.

d . .
& 6sinx cosx — 8cos x sin x
dx
= —2sinx cosx or —sin2x
dzy

—> =—2co0s2x

The turning points of y are given by sinx =0 and cos x =0

: ™
VIZ., x=0 and x:E

2 2
[jx—f] —_2<0 and [%] —2>0
x=0 xX=

o

.~y is maximum at x = 0 and minimum at x =

SR

Maximum value of y = 4 and minimum value of y =3

Example 1.3 Find the maximum and minimum values of y=kx’ log, [1],
x

where x > 0.
y = —kx*log x
d—y:k x2~l+2x10gx
X
=kx(1+ 2 logx)
d’y 2
—=kjx-—+1+2logx
dx’ X g

=k(3+2logx)
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%:O,Whenx:Oandx: ¢ x>0

&l -

d’y

2 _ —

[d_y] is undefined and [@Ll = k{3 —2log \/E} =—k<0
x=0

de

S

sy is maximum at x =

-

. 1 1
Maximum value of y =k -—log—.
e e
Example 1.4 Find the maximum and minimum values of y, given by
xXy=x-3x+4.
_ ¥ —3x +4

y P
X

dy x*(3x” — 6x) — (x* —3x" +4)-2x

dx x*
x* —8x 8
= or l——
X x
d—y:0, atx’ =8 orx=2.
: 24
jx—f——6>o, at x=2.
x
s yis minimum at x =2
- —12+4
and the minimum value of yzST+:0

Example 1.5 Find the minimum value of (x? + 1?), given that x and y are connected
by the relation ax + by = 0, where a, b, ¢ are constants.

From the given constant y = ¢ —bax R (1

using (1) in the given function, whose minimum value is required, we get

f()=x* +bi2(c—ax)2 @

£l =2x + bi (c — ax)(—a)

2ac

2
f'(x) =0, where x[Z + zbiz] = s
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ac

viz., when X=——-
a +b

2
f”(x) =24 2})12 >0, for values of x.

.~ fix) is minimum, when x = % o y= be get from (1), minimum value
a’ + b a’ + b
2
c
of X)= —.
J(x) e

Example 1.6 A rectangular sheet of metal has four equal square portions removed
at the corners and the sides are then turned up so as to form an open rectangular
box. Show that, when the volume of the box made is maximum, the depth will be

1
— [(a+b)- \/az — ab + b* ], where a and b the sides of the original rectangle.
sin
Let x be the side of each square metal removed. . «
Then the dimensions of the rectangular box made are poTTTTTTTTTT i
a—2x,b—2xand x [ ;
~. Volume of the box made, V = x(a — 2x)(b — 2x), X X
where x is the depth of the box Fig. 1.6
viz., V=14x3-2(a + b)x> + abx (1
We have to find the value of x, for which V' is maximum.
d—V:12x2 —4(a+b)x + ab (1)
d’v
> =24x — 4(a + b) ()
dv

. =0, when 12x’—4(a + b)x +ab=0

4(a + b) £ /16(a + b)* — 48ab
X =
24

:%[(a+b)i\/az fab+b2}
1 v
when :_[ +b)++Ja? — b_|_b2}: >0
X 6(a )+4a" —a o

Hence x= é[(a +b) —Ja* —ab + b2] is the admissible value of the depth for

which v is maximum.

viz., when
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Example 1.7 The power output of a radio valve is proportional to Lz, where
(x+k)
k, the valve resistance is a constant and x is a variable impedance. Show that the
output is a maximum when x = £.

P, the power output in given by

P= L, where A is the constant of proportion.
(x + k)*
[ (x+ k) —x-2(x+ k)
dx (x +k)*
Mk —x)
(x + k)’
d’p ) (x + k) (=D(k + x)*(k — x)
dx (x + k)
- 3(k —x)
(k + x)’
dpP d’p

=—-A<0atx=k.

azo,whenx:kand >

. P is maximum, when x = k.

Example 1.8 A man in a rowboat at P, 5 kms form the nearest point 4 situated on a
straight shore wishes to reach a point B, 6 kms from A along the shore, in the shortest
time. Where should be land on 4B, if the can row 2 kms per hour and walk 4 kms
per hours?

Let L be the point of landing such that AL = x

Rowing distance = /x* + 25 5 kms

Walking distance = 6 — x

A x L

B

P
The time taken by the man to go from P to B via Fig. 1.7
L is given by
1 —
T=Jx +25 +64x
a_ x 1
de 2k’ 425 4
2
2 X
X+ 25 - —— 25
T 1 NP +25|
de* 2 x* +25

3
(x> +25)
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a7 _ 0, where ol ]
dx , Jxi 425 2
viz., 4x*=x>+25
. 5
viz., Xx=—
3
2
ar >0, where x = D . Tis minimum, where x = i
dx? 3 3

.. The man should land at L, where AL = % kms. to reach B in the shortest times
3
Example 1.9 The horse-power developed by an air-craft travelling horizontally with
AW?
v
for what value of v, the horse-power is minimum?

velocity v metres per second is H = + Bv?, where 4, B, Ware constants. Find

2
u=A4" + BV
A%
2
v v
d’H  24W*
IR
1
2 2\%
A o e = A v:[AW ]
dv 3B 3B
d*H
[dv2 ]V[AWZ]“‘ >0

3B

1
L AW? |4
. H is minimum when v:[ w ]

Example 1.10 What is the maximum volume of a right circular cone if the sum of
the length of its height and base radius is a constant ?

Let “x’ be the base radius and ‘%’ the height of the right circular cone.
Then its volume J = % X’y €]

Given thatx + y =k (2)
Using (2) in (1), we have 7 = %xz (k —x) 3)
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Differentiating (3) w.r.t. x;

VT ke — 307
dr 3

v =

ar

— =0, where x(2k —3x) =0
dx

2k

viz., where x = 0 or ?

x =0 is meaningless.

2k

2
) =Eaam o
a2 ), 2% 3

-, Vis maximum, when x = ? .

Example 1.11 An open cylindrical vessel is to be made with a given quantity of
metal sheet. Find the ratio of the height to the diameter of the base, if the vessel is to

have maximum capacity.

Let r be the base radius and /4 the height of the cylindrical vessel, assumed to be open
at one end.
Given Quantity of metal used = ¢

viz., 2mh+m?=c (or) 2rh+ri=k (1)
The volume of the vessel V' is given by
V=mrh 2)
2
Using (1) in (2) we have ¥ = 717 k—r)
r
viz., V="Alr— 1)
2
v =
—=—(k—3r"
dr ( )
2
d 12/ =—-37r
dr
d—V:O, when k—32=0
dr
viz., when r= E
3
2
For this value of r, v <0.

2
r
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. Vis maximum, when r = \/g

_ .2
When r = \/E, from (2), h = k—r = 3 or =
3 2r k 3

Thus when ¥ is maximum,
h:r=1:1
. h:d=1:2,where d is the diameter of the base.

Example 1.12 A normal window consists of a rectangle surmounted by a semi-
circle. Given the perimeter of the window to be £, find its height and breadth, if the
quantity of light admitted is to be maximum.

Let the length and breadth of the rectangular part of the window be / and 25
Then the perimeter of the window is given by
204+2b+mb=k (M

If the light admitted is to be maximum, the area of the window T

A =2Ib + mb? is to be maximum.
)

Using (1) in the value of 4, AL
viz A= (k—2b—7b)b + L
’ (msbmmiey b
- Fig. 1.8
viz., A—[k2b—b]b
2
%:[k—Zb—zb]-l—[2+z]b
db 2 2
=k—4b—7b
2
df:—4—7r<0
db
- A is maximum, when p = k
T+4

When b:L,from D, 2=k —(m+2)b
T+ 4

k
=k—(m+2),——
( )7r+4

2k
= or [ =
T+ 4 T+ 4
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k
T+ 4
viz., when the greatest height and breadth of the window are equal.

- A is maximum, when [ = p =

Example 1.13 Find the dimensions of the rectangle of maximum area which can be
inscribed in a circle of radius R.

When the rectangle inscribed in a circle is to have maximum area, it should be

symmetrically situated inside the circle and the four

corners should be on the circle. Choosing the centre y

of the circle as the origin, its equation become
X+)2=R (1) (x, y)

If 2x, 2y are the length and width of the rectangle,

equation (1) holds good. 0

We have to find the maximum of

A=dxy = 4xJk* —x°
d4 x’ Fig. 1.9
— =4 - X - —

dx J

2 2
k®—x

B 4(k* —2x7)
a K —x*

d’4 4 JE — %7 (—4x) + (x* —2x7) (%)
de? K — N

—4x(k* — x*) 4+ x(k* —2x%)
3

(K —x*)?
—3k*x + 2x7

3

k> —x°)?

%:O,Whenx:i.
dx

2

2 2 2
Whn ek A k[0
5]

.. A is maximum, when the length and breadth of the rectangle are equal, each equal

to k2.
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Example 1.14 Prove that the height of the cylinder of maximum value that can be

2
inscribed in a sphere of radius a is TZ.

Let r and 24 be the base radius and height of the cylinder inscribed in the sphere.
By symmetry, (r, i) lies on x* + ) = @?

P+ =a (1) y
The volume of the cylinder to be maximise is (r, h)
given by V= rr’h
=7(a* — h*)h, from (1)

ar o *

— =n(a* —3h%)

dh X2 +y2 =32

4

e =6mwh <0, forall i

Fig. 1.10
a =0, when & = <
dh NE)

2
d—Iz/<Oat h:i
dh NE)
2a

~. V'is maximum, when the height of the cylinder 24 = ==,

Example 1.15 Of all the right circular cones of given slant length /, find the dimen-
sions and volume of the cone of maximum volume.

Let 7, h, [ be the radius, height and slant length of the cone.
Given 72 + h* = constant (—/) @)

If V is the volume of the cone, then J/ = % r2h

e, v="h? - )
3
ar _ E(ﬂ —3h%)
dh 3
2
d_Z=—27th<0,forallh
dh

d—V—Owhenhz—ﬁorh——' Vi i hen h =
a ) 3 \/5, is maximum, when s =

NG

2
When £ :L, from (1), 7 2 = \/gl
NG 3 3
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. Vi
Maximum volume of the cone = grzh

Part A

_r2p L
33 3
2w

( EXERCISE 1(c) ]

(Short Answer Questions)

1.

4.

5.
Part B
6.

10.

X
. Find the maximum value of (l) .

Find the maximum and minimum values of y = (x — 2)* (x — 3).

X

. Find the maximum and minimum values of (cos x + cos 2x) in (0, 27).

Find the maximum and minimum values of x + >
X+

Find the minimum values of x + y, if xy = 1.

A battery whose internal resistance is » ohms E.M.F is E sends a current
2

through an internal resistance R. The power is given by W = i Given

E and r, find R so that W may be maximum. (R+71)

. The bending moment M at a distance x from one end of a beam of length

[ uniformly loaded is given by M = % wix — %wxz, where w = load per

unit length . Show that the maximum bending moment is at the centre of the
beam.

. The cost of fuel per hour for running a train with uniform spend is propor-

tional to be square of the speed in kms per hour and the cost is Rs. 48/= per
hour when the speed is 16 kms per hour, what is the most economical speed
if the other fixed charge are Rs. 300 per hour? Take the distance to be covered
is a constant.

. Of all rectangles of given area, show that the square has the least perimeter.

A rod 4B of given length k slides between two perpendicular lines Ox and 0Oy.
Find when the area of the triangle is maximum.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

An open tank is to be constructed with a square base and vertical sides so as
to contain a given quantity of water. If the experience of lining it with lead is
to be least find the ratio of the depth to the side of the base.

Given the sum of the area of curved surface and two circular ends of a right
circular cylinder is a constant, find the height of the cylinder so that the
volume may be a maximum.

A wire of length ‘a’ is cut into two parts which are bent respectively in the

form of a square and a circle. Show that the least value of the sum of the arcas
2

Am+4)
Find the maximum volume of a right circular cylinder inscribed in a given
sphere whose radius is R.

so formed is

Find the attitude and radius of the cone of maximum volume that can be in-
scribed in a sphere of radius R.

a cylinder is inscribed in a cone of height ‘4’ and semi vertical and ‘¢o’. Prove
. .o 4

that the volume of the greatest cylinder thus obtained is Ewlf tan” ov.

Show that a conical tent of given capacity will require the least amount of

canvas when the height /2 time the radius of the base.

If the sum of the length of the hypotenuse and another side of a right angled
triangle is given, show that the area of the triangle is maximum, when the
angle between those sides is 60.

A sector is cut out of a circular piece of canvas and the bounding radii of
the remaining part are drawn together to form a conical tent. What should be
angle of the sector cut out, if the tent has maximum volume?

A cone is circumscribed to a sphere of radius 7. Show that, when the volume
of the cone is a minimum, its altitude is 4r.

[ ANSWERS ]
Exercise 1(a)
2) (43) Q) (=-3),(06,2) (42 () 2
32 1 1
© 242 () Sa ®) 5 ©) 5
m’ 1 1
(10) e (11) 5 (12) cos (15) N

(16) 0 (17) e® (18) e (19) &
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20 21 [—2 E] 22) (0, 1 23 [l 3]
20) e ey |33 @) 0.1 @3 |5
27 ! 28 4 29 3 30) 1

@7) 5 (28) 3 29) 2 (30)

311 (32) 21log?2 (33) 3 (34) -3
(35) log4 (36) % (38) not continuous at x = —
(39) not continuous at z =0 (40) a=3,b=-8

(43) Continuous but not differentiable
(44) Continuous at both point; not differentiable at x = 1, but differentiable x = 2

(45) Continuous, but not differentiable at both the points.

Exercise 1(b)

,_ 1 4 /:;
@ YV="7 V=" @ T e

2x
(5) ¥ =x’cosx+2xsinx ©) ¥'= 2x
1—x*
(7) 2secx  (8) sec’yl+x+4x° - (2x +1)
214+ x+x°
(9) sin x cos*x(2 cos’x — 3 sin’x) (10) -1 (11) sechx
42
(12) (tanx)™"-{cosec’ x(1 — log tan x)} (13) a)2/ al
v —ax
2
y loga 2
19 7 loga 15 == 16 7=
0 a . 372
—tan ¢ > - smx - X
(17) (18) cot 3 (19) b sin (20) —cot™"(2x)
ab sin x

(21) (22) J1—sin2x + /1 + sin2x
\/az +b* —2abcos x
2(x + sin x + cos x) x' -1

23) = @4 Q+x4+x)"1A=—x+x)"

(xsinx — cosx)’

25) xe™ {2acosbx’ — 3bx” sinbx’} (26)

1 2
xyl14x @7 Ja' +x°
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(28) Tz ixz seclogy/a’ — x° tan log+/a’x2y
2 L |
(29) Xyl —x" +sin” x 30) 2 /xz—az

(1-x*)"

—sin/x _ 2(1 + cosh xcosx)
31 2\/;(1 + cos’ \/;) (32) (sinh x + sin x)’

—2
33) —F———
) 1+ x4+ x%)
(x 4+ a)(x* +b) % 1 x 3x*

(34) { X +c } 2(x+a)+x2+b X +c

1

(35) x(1+x)+ L}Og)‘)
X

(36) (sinx)“"* {1+ sec’ x + logsin x) + (tan x)™"* {sin x + cos x log tan x}

.2
x+ x sin“(a + y)
37) 2 +logx — ———log(x + ) 38) 2
X x+y Sina
(39) (sin x)*** cos y cot x 4 (cos y)™* cos xlogcos y 40) - 1+
(sinx)** sin y logsin x + (cos y)*"* sin x tan y 1+ x°
1 _ _
@n - @) T ) T
(44) ! + ! (45) tan ¢ (46) t26
- an —co
1—x*  2Jxf1—x
3 1
(47) —tan’t (48) 1 (49) 5 (50) 5
Exercise 1(c)
2 1
(1) Max :E and min =0 (2) e® Max=-6 and min =2
(3) Max values 2, 0, 2 and min value —% and —2 6) R=r
(8) 40 km/hr.  (10) When 04 = 0B = ¥ (1) 1:2
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2k 4
(13) ,/—3 , where £ is the total 5.A (14) gwR3\/§
s

22

(15) altitude = gR and radius = = R

(19) 66° approximately






UNIT 2

Functions of
Several Variables

2.1 INTRODUCTION

The students have studied in the lower classes the concept of partial differentiation
of a function of more than one variable. They were also exposed to homogeneous
functions of several variables and Euler’s theorem associated with such functions.
In this chapter, we discuss some of the applications of the concept of partial
differentiation, which are frequently required in engineering problems.

2.2 TOTAL DIFFERENTIATION

In partial differentiation of a function of two or more variables, it is assumed that
only one of the independent variables varies at a time. In total differentiation, all
the independent variables concerned are assumed to vary and so to take increments
simultaneously.

Let z = f(x, y), where x and y are continuous functions of another variable z.

Let At be a small increment in ¢. Let the corresponding increments in x, y, z be Ax,
Ay and Az respectively.

Then Az = f(x+Ax,y+Ay)— f(x,y)
={/(x+Ax,y+Ay)— f(x, y+ M)} +{f (x, y+Ay) = f(x, 1)}

Az _ {f(xmx,ymy)—f(x,ywy)}g

At Ax At
+{f(x,y+Ay)—f(x,y)},g (1)
Ay At

We note that Ax and Ay — 0 as At — 0 and hence Az — 0 as At > 0

Taking limits on both sides of (1) as Ar—0, we have & :Blg_’_ald_y
de ox dr dy dt

(“.r x, y and z are functions of ¢ only and fis a function of x and y).
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% 0z dx azy
dr ox dr ad

ie.,

[since f(x, ) = z(x, y)]. (2)

dz e dy)
m and also @ and 4 ) 18 called the total differential coefficient of z.

This name is given to distinguish it from the partial differential coefficients

0z
gz and W Thus to differentiate z, which is directly a function of x and y, (where
X y
x and y are functions of f) with respect to #, we need not express z as a function of ¢

by substituting for x and y. We can differentiate z with respect to ¢ via x and y using
the result (2).

Corollary 1: In the differential form, result (2) can be written as

dz = L aer & gy 3)
ox dy

dz is called the fotal differential of z.

Corollary 2: If z is directly a function of two variables « and v, which are in turn
functions of two other variables x and y, clearly z is a function of x and y ultimately.

Hence the total differentiation of z is meaningless. We can find only % and g by
v
using the following results which can be derived as result (2) given above.
9z _ 0z ou 9z dv @)
dx du dx Jv Ox
9z _ 9z du, 9z v (5)

o ou ay ov oy

We note that the partial differentiation of z is performed via the intermediate

0z

variables u and v, which are functions of x and y. Hence % and — are called

. o . . dx
partial derivatives of a function of two functions. o

Note @ Results (2), (3), (4) and (5) can be extended to a function z of several
intermediate variables.

2.2.1 Small Errors and Approximations

Since lim (

Ax—0

QJ L Ay 7 approximately or Ay = (dy) Ax ()
Ax de’ Ax  dx dx

If we assume that dx and dy are approximately equal to Ax and Ay respectively, result
(1) can be derived from the differential relation.
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()

Though (2) is an exact relation, it can be made use of to get the approximate
relation (1), by replacing dx and dy by Ax and Ay respectively.

Let y = f(x). If we assume that the value of x is obtained by measurement, it is
likely that there is a small error Ax in the measured value of x. This error in the
value of x will contribute a small error Ay in the calculated value of y, as x and y are
functionally related. The small increments Ax and Ay can be assumed to represent
the small errors Ax and Ay. Thus the relation between the errors Ax and Ay can be
taken as

Ay = f'(x) Ax
This concept can be extended to a function of several variables.
If u = u(x, y, z) or f(x, y, z) and if the value of u is calculated on the measured

values of x, y, z, the likely errors Ax, Ay, Az will result in an error Au in the calculated
value of u, given by

Au = a—qu+a—uAy+a—qu
ox dy 0z

which can be assumed as the approximate version of the total differential relation

du =2 e P gy g,
ox ay oz

Note ™  The error Ax in x is called the absolute error in x, while ﬂ is called the

. . X .
relative or proportional error in x and 100Ax i called the percentage error in X.
X

2.2.2 Differentiation of Implicit Functions

When x and y are connected by means of a relation of the form f(x, y) = 0, x and y
are said to be implicitly related or y is said to be an implicit function of x. When x
and y are implicitly related, it may not be possible in many cases to express y as a

single valued function of x explicitly. However % can be found out in such cases as

a mixed function of x and y using partial derivatives as explained below:
Since f(x,y)=0,df =0
af gf dy = 0, by definition of total differential. Dividing by dx, we have
X

IR
ox dy dr
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dy _ _@ (1)
“ )
dy

2 2
If we denote al’al’ 9/ ’a_f and az_f by the letters p, g, r, s, t respectively,
ox’ dy’ ox* " oxdy 9y’

then
dv__» )
dx q
2

. dy .
We can express the second order derivative —)2} in terms of p, g, r, s, t as given
dx

below. Noting that p and ¢ are functions of x and y and differentiating both sides of
(2) with respect to x totally, we have

dp_dg
dy_ | e Par
de q2
9, 9q dy|_ Jop dp dy
p{8x+8y dx} q{8x+8y dx
p{s+t(_pJ}—q{r+s(_p)}
q q
q’ ’
since a_p_azf: .E)_p_a_q_ O f — .a_q:azf

= R ; =t
ox  ox’ : dy dx oxdy * dy o’

_ plgs=p1)—q(qr—ps)

3

q
__(P't=2pgs+q’r)

3

q

( WORKED EXAMPLE 2(a) ]

Example 2.1

(1) fu=xy+yz+zx, wherex =¢', y = e and z:l, find du
t dt

(i) Ifu=sin" (x — y), where x = 3¢ and y = 42, show that 9% = 3

a  J1-¢




Functions of Several Variables 2.5

(i) u=xy+yz+zx

du Ou dx odu dy odu dz

= 2.7 =

dt ox dr dy dr 9z dt

= (y+2)e' +(z+x)(—e )+ (x+ y)(_tlz)

Il
—_
+
o
| —
Q
|
—_
|
I
Q
|
I
Q

% sinh t— % cosht.
t t

(i) u=sin"" (x -)

A AN e )
At i -y A 1 (e-y)? U d
-1 g (1)

Ji- -2

Now 1—(x—y)2 =1- (31—4t3)2

=1-9¢" +24¢* —16¢°

= (1-£7)(1-8 +16t*)

= (l_tl)(1_4t2)2 (2)
Using (2) in (1), we get

du

1
— = —————=x3(1-4)
de (-4 W1-2
—_— 3 .
1-#
Example 22 If u :f Eazyi > prove that xa—u+ya—u+za_u:0
y z X ox ay oz

Let 7= ,S=Zandt=f (1)
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Su=f(r,s, t), where r, s, t are functions of x, y, z as assumed in (1)

a_u
ox

ou _
dy

a_u
0z

From (2), (3) and (4), we have

ou du du
x —+z—
ox " dy oz [

Ju ar Ju as Ju ot

Ju ar Ju 0Os E)u ot

Ju ar Ju as Ju ot

2)

)

4)

Example 2.3 If z be a function of x and y, where x = ¢ + ¢ and y = ¢™ — ¢, prove

that

Jz oz

ou Jdv

az az

ax ay

dz 0z dox 0z dy

. ox ou dy du

Jz oz Ebc_{_%.a_y

v ox v dy dv

=—e€

From (1) and (2), we have

Jz 0z

———=(€" +e’”)%—(e’“ —e’)—
ox

du 0Jv

b % az
ox ay

0z
dy
Jz 0z

ox yay

(1

2)
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Example 2.4 1f u = f(x, y), where x = r cos O and y = r sin 6, prove that
2]
ox dy
{&-52)
a}" r2 86 .

Ju Ju 0x  Ou Oy

o ox or dy or

=cos@-8—u+sin08—u (1)
ox ay

ox ady
ie., %%z—sineg—z+cos&g—i ()

Squaring both sides of (1) and (2) and adding, we get

BEONCNS
or 72\ 00 ox dy
. . du du . .
Example 2.5 Find the equivalent of 8_2+ Fw in polar co-ordinates.
X~ oy

u =u(x, y), where x =r cos 0 and y = sin 0

.. u can also be considered as u(r, 6), where

r=+yx*+y* and 0 =tan" [Z]

X

Now we proceed to find 8_u and a_u via r and 6.
ox dy

— +
ox or dx 00 ox

= cosGa—u—ﬁa—u (1)
or r 00



2.8 Engineering Mathematics 1

From (1), we can infer that
d d sin@ 9

By P (2)
X cos or r 00
ST
o o Ox\ox
d sinf o Ju sin@ du
(COS o r 89)[ o r 89)
2
= cos’ 6- a——s1n9cos0 J (1 Buj
ar or\r 00

_sine_i(cose8_u]+sm9 8( 08_14)
r 00 or 2 00 00

( r and @ are independent and g_u and g—g are functions of » and 9).
r

sin @ %u . du sin @ %u Ju
- " (cos@aear—51n0§J+ 2 ( 0£+0050£j 3)

Now Z L.

x
— sing 2 <030 )
or r a0
From (4) we infer that
9 _ g9 088 9 (5)
dy or r 00

not ou
or r 00

2 2
=sin208—u+sin0cost9 la_u_LE)u
rordd 290

cos@ %u oJu | cosO 9%u ou
in@ sO— |+ $6— —sinf—
+ . (sm 898r+co ar] > [ 202 sin 89] (6)

0 +cos(9 0 )( Jdu cos@ auj
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Adding (3) and (6), we have
o%u 62 82u lou 1 o%u
8x2 By ot ror 20>

Example 2.6 Given the transformations u = e* cos y and v = ¢* sin y and that f'is a
function of u and v and also of x and y, prove that

?f azf_( 1))[azf azfj

ox* 9y’ o’ v’
o _9of ou_ of ov
ox Jdu Ox OV Ox

=e* cosy-§l+ex siny~ai
u

AN (1)
du Jv
3 o9 2
9 _,%2.,9 ()
x “on You

2
a—f{uiwi)(ﬁlMBLJ
ox2 Ju  dv ou dv

2 2 2

o _of du_of dv

dy ou dy v dy
o . /A
v

=—¢e"siny-——+e* cosy
ou

LYY 4

=—Uo “4)
iz—viﬂ/t— %)
dy ou  dv

2
a—f=(_vi+uij[_val+uaij
oy’ du  Jv du  Jv
f If Lo If L
_.2YJ - | =
B ”[” audv " ov ) | " ovou " ou

+ut —= (6)
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Adding (3) and (6), we get
2 2 2 2
a—{+a—{ = (u® +v?) a—{ + 8_/:
ox°  dy ou ov

Example 2.7 1If z = f(u,v), where u = cosh x cos y and v = sinh x sin y, prove that

0’z 0%z 2 , \[ 9%z 9%z
—+— = (sinh” x+sin —t—
ox* oy’ ( ¥ y) ou’ oV’

4
z,=z,Uu,+z,-0,, where z, Egetc.

= sinhx-cos y-z, +coshxsiny-z,

Since z is a function of u and v, z, and z, are also functions of u and v.
Hence to differentiate z, and z_ with respect to x or y, we have to do it via u and v.

Zo = cosy[coshx- z, +sinhx{zuu - sinh xcos y +z,,,, cosh xsin y}]

+sin y [sinh X-z,+coshx {zw -sinh xcos y +z,,, -cosh x sin y}]

_ . . . 2 2
z . =coshxcosy-z, +sinhx-sinyz, +sinh” xcos” y-z,,

ie.,
+2sinh x cosh x sin y cos y-z,, +cosh’ xsin® y-z 0]
z, =—z,-cosh x siny+z, sinhx cos y
z,, = —coshx[cos y-z, +sin y{z,,-(—cosh x sin y)
+z,,-sinh x-cos y} +sinh x[-sinh y-z,
+ cosy{—z,,-coshx siny+z,  -sinhxcosy}]
ie., z,, = —coshxcos y-z, —sinhx-siny-z,

2 -2 . .
+cosh” x sin” y-z, —2sinhx coshx siny cosy-z,,

+sinh® xcos® y-z,, 2)

Adding (1) and (2), we get
1.2 2 2 22
z,+z,=(sinh”x cos” y+cosh” x sin” y)(z,, +2z,,)
= {sinh® x(1-sin® y)+(1+sinh® x)sin’ y}(z,, +z,,)

= (sinh’ x+sin’ y)(z,, +z,,)
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Example 2.8 Find 9, when (i) x* + ) = 3ax?y and (ii) ¥ + y* = c.

dx
() f(x, y) =" +)* —3ax’y
p= al =3x> —6axy
dx
q= al =3y’ -3ax’
dy

d_y . p_ _3(x2—2axy) _ x(2ay—x)

- = 2

dx q 3(y* —ax?) y* —ax
(i1) [, y)=x"+y —c

p= s "y logy
ox

_ Y x” log x+xy*"
dy

dy P _ '+ log x
q x4+ x" logx

d’ h* —ab
Example 2.9 If ax? + 2hxy + by* = 1, show that —)2/ = —a3.
dx (hx+by)

flx,y)=ax®+2hxy + by* — 1

= g—]; = 2(ax+hy); q= g—i = 2(hx+by)
2 2 2
=a{=2a;s=a—f=2h;t=aj:=2b
ox dx dy dy

dy_ p_ (axthy)

dx q hx+by

dy —(p1-2pgs+q’r)

o 7

(Refer to differentiation of implicit functions)

—{8b(av+hy)* =16 h(ax+hy)(hv+by)+8a(hx-+ by}
8(hx+by)3

= W[Zh{ahx2 +(ab+h*)xy+bhy*}

—{a’bx* +2abhxy+ h’*by*} —{ah’x" + 2abhxy+ab’ y*}]



2.12 Engineering Mathematics 1

= ﬁ[a(h2 —ab)x” +2h(h*> —ab)xy +b(h* —ab)y’]
X+

(h*=a
W(ax +2hxy+by ) =

(h 2—ab)-l_ h* —ab )
(hx+by)’ (hx+by)’

Example 2.10 Find % if () u = sin (x> + )?), where a’x> + b>y* = ¢* (i), u =tan™! (%)

where x?+ = @2, by treating u as function of x and y only.

(i) u = sin (x*+)?)

du au du dy

dr ax aydx

dy

= 2xcos(x’ +y*)+2ycos(x’ + 1
( y) y ( y)dx (1)

Now a*x* + b*? = 2

Differentiating with respect to x,

2a°x+2b*y— dy =0
dx

or b __ax )
dx b’y

Using (2) in (1), we get

~ . —-a’x
=2xcos|x" +y )+2ycos(x +y ) (bzy)

(
—2xcos(x2+y )( az)/b2
(ii) u=tan” (ZJ

X
du _ou ou dy
dr ox dy dx
1 ( y) 1 (l)dy
- 2 2 P
ler—2 * 1+y—2 x) dx
X X
=—%+%'d—y 3)
X4y x+y dx
x2+y2:a2
d



Functions of Several Variables 2.13
dy
&__x (4)
or dx
Using (4) in (3), we get
du y X X
[ + —
dx X+yt x4yt y
__1
y
ox odx dy dy

Example 2.11 If u =x* —)? and v =xy, find the values of w9y ou d 5,

x and y cannot be easily expressed as single valued functions or u and v.

Given X*—y'=u

and Xy="0

(1
2)

Nothing that x and y are functions of # and v and differentiating both sides of (1)

and (2) partially with respect to u, we have

2xa_x_2y8_y =1
Ju du
ox dy
— — =
4 Ju i Ju
Solving (3) and (4), we get
ox X dy
P adE -
Jdu 2(x2+y2) . Jdu

Differentiating both sides of (1) and (2) partially with respect to v, we have

2xa—x—2ya—y=0
v v

ox dy
—+x—=—=1
yav+xav

Solving (5) and (6), we get

o __y 4
dv x*+y’ v

3)
“4)
y
2 (x2 + yz)
(5)
(6)
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Example 212 Ifx?+)” + 2> — 2xyz = 1, show that dx + dy + d =0
. y 3Z 5 \/l—xz \/1_y2 \/1—22

Let G=x"+y +27 —2xyz-1=0 (1)
dg=0

ie, a—¢dx+a—¢dy+%dz -0 )

dx dy 0z
ie., 2(X—yZ)dx+2(y—ZX)dy+2(Z—xy)dz=()
Now ()c—yz)2 =x"—2xyz+y°z’

=1-y*—z*+y*2*, from (1)
=(1-y7)(1-’)

X—yz= (l—yz)(l—z2

~—

Similarly, y—zx = (1—22)(1—x2)
and Z—Xxy = (l—xz)(l—yz)

Using these values in (2), we have

\/(l—yz)(l—zz)dx+\/(1—22)(1—x2)dy+\/(1—x2)(l—y2)dz =0

Dividing by \/(l—xz)(l—yz)(l—zz), we get

dx + dy N dz _
\/1—x2 \/l—yz \/l—z2

0.

Example 2.13 The specific gravity s of a body is given by s = " where W,

17 "2
and W, are the weights of the body in air and in water respectively. Show that if there
is an error of 1% in each weighing, s is not affected. But if there is an error of 1% in

W, and 2% in W,, show that the percentage error in s is _m
W=,
W

W
logs = log W, —log (W, - W,)

N
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Taking differentials on both sides,

1 1 1
—ds = —dW, - (aw,—aw,)
soW W,

.. The relation among the errors is nearly
1 1 1 1
—As = — AW, ————— (AW, - AW,) )
s©om T wew,

100As 100AW, 3 1
s AN

or

(100AW,-100AW,) (2

(i) Given that 100Am; _ | and 100 AW,

1 2

=1

Using these values in (2), we have

100 As 1
=1- W,-W,)=0
s WI—WQ(I )

s 1s not affected, viz., there is no error in s.

(ii) Given that M)(;/Vﬂ =1and 10047,

= 2. Using these values in (2), we have

100 As - 1 (W—2W2)
s W =W,
_m
W,
i.e., % errorin § = W, .
’ W, =W,

Example 2.14 The work that must be done to propel a ship of displacement D for a
distance s in time ¢ is proportional to s> D*? + 2. Find approximately the percentage
increase of work necessary when the distance is increased by 1%, the time is
diminished by 1% and the displacement of the ship is diminished by 3%.

Given that W = ks* D¥?/f?, where k is the constant of proportionality.

log = logk+ 210gs+310gD 2logt.

Taking differentials on both sides,
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.. The relation among the percentage errors is approximately,

100AW 100As 3 100AD 100 At 1
=2x += —2x (1)
w Ky 2 D t
Given that 1004s _ 1, ngt =—1and 10040 _ -3.
N

Using these values in (1), we have

100AW"_ 2><1+%><(—3)—2><(—1)

=-0.5

i.e., percentage decrease of work = 0.5.

Example 2.15 The period T of a simple pendulum with small oscillations is
given by T = 2/[\/2. If T is computed using / = 6 cm and g = 980 cm/sec?, find
g

approximately the error in 7, if the values are / = 5.9 cm and g = 981 cm/sec?. Find
also the percentage error.
T=2x \/z
g

1 1
logT = log 2+1og7[+510gl—510gg

Taking differentials on both sides,

—dT——dl——dg (1)
T 2g

I
dT=27z\/;{ dl—gdg}
A
0-1 J5-9 “(-1)
71 /5.9x981 9814981

ie., Error in 7= 0.0044 sec.
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100dT

%errorin T =

|
W
(=)
—
!&
0o R
——
o
—~
—
~

Example 2.16 The base diameter and altitude of a right circular cone are measured

as 4 cm and 6 cm respectively. The possible error in each measurement is 0.1 cm.
Find approximately the maximum possible error in the value computed for the
volume and lateral surface.

2
Volume of the right circular cone is given by V' = % ”(%) h

dV=%(D2~dh+2Dh-dD)

:%{16x0.1+2><4><6><0.1}

i.e., Errorin V'=1.6755 cm’.

Lateral surface area of the right circular cone is given by

V4 1
dS == | D-——(2DdD+8hdh++D* +4h* dD
4 2./ D* +4h*
=z L{4x0.1+24x0.1}+1/16+144><0~1
4| J16+144

=1.6889cm?.
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Example 2.17 The side ¢ of a triangle ABC is calculated by using the measured
values of its sides a, b and the angle C. Show that the error in the side ¢ is given by

Ac = cos B-Aa+cos A-Ab+asin B-AC.
The side ¢ is given by the formula
> =a*+b’-2ab cos C
Taking the differentials on both sides of (1),
2¢Ac = 2aAa+2bAb-2{bcosC-Aa

+acosC-Ab—absinC-AC}, nearly
(a—bcosC)Aa+(b—acosC)Ab+absinC-AC

c

ie., Ac =

Now bcos C+ccosB=a

—bcosC
w=cosB
c

acosC+ccosA=5b

b— C
&:CosA
c

Also b _ ¢

sinB sinC

bsinC = csin B
absinC
c

=asinB

Using (3), (4) and (5) in (2), we get

Ac = cosB-Aa+cos A-Ab+asin B-AC

()

2)

G)

4)

)

Example 2.18 The angles of a triangle ABC are calculated from the sides a, b, c. If

small changes da, 0b, dc are made in the measurement of the sides, show that

04 = i(ﬁa—ékcosC—é‘ccosB)

and 0B and oC are given by similar expressions, where A is the area of the triangle.

Verity that 64 + 0B + 0C = 0.
In triangle ABC,

b+t -a*
2bc

cos A =

(1
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Taking differentials on both sides of (1),

—2sin -4 = [ be{2b Sb+2c5c—2ada}—(b* +¢* - a* ) (bSe +cob) |+ b ¢

(bzc—c3 + azc)éb+(bc2 -b+d’ b) oc—2abc da
b*c?

c(a2 +b° —cz)é'b+b(cz+a2 —bz)é'c—2abcé'a

2.2
b'c

c(2abcosC) db+b(2cacos B) dc—2abc da

2.2 2
b'c

by formulas similar to (1)

= z—a(cos C-Ob+cos B-dc—da)
c

04 = —2(Sa—cos C-Sb—cos B-5c)
bcsin
= 2 (Sa—cosC-Sb—cos B-5c), since A=Lpesin 4 )
2A 2
Similarly,
JBz%(db—cosA-é‘c—cosC-é‘a) 3)
oC = i(Jc—cosB-Ja—cosA-é‘b) “4)

Adding (2), (3) and (4), we get

2A(6A+ 0B+ 6C) =(a—bcosC—ccos B) da
+(b—acosC—ccos A) ob+(c—acos B—bcos A) oc
=(a—a)da+(b-b)ob+(c—c)dc
(- beosC+ccos B=aetc.)
=0
0A+J0B+JC = 0.
Example 2.19 The area of a triangle 4BC is calculated from the lengths of the sides

a, b, c. If a is diminished and b is increased by the same small amount %, prove that
the consequent change in the area is given by
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SA _ 2(a-b)k

A ¢ —(a-b)

The area of triangle ABC is given by

A= s(s —a)(s —b)(s —c),where 2s =a + b+ c

logA = %{bgs + log(s — a) + log(s — b) + log(s — ¢)}

Taking differentials on both sides, we get

A 1|ds JOs—da Is—0b Js—oc
— =4+ + + (1)
A 2|s s—a s—b s—c
Since 2s =a+b+c, 20s = da+ b+ Ic
i.e.; 205 =—k+k+0=0, by the given data.
=0 (2)

Using (2) in (1), we have

A_1[ kK

A 2\ s—a s-b

= k 2 2 (25 =a+b+c)
2|b+tc—a c+a-b

=f><2{ (c+a—b)—(b+c—a)}
2 [c—(a=b)][c+(a—b)]
_ 2k(a—b)

B ¢’ —(a-b)’

( EXERCISE 2(a) ]

Part A
(Short Answer Questions)

What is meant by total differential? Why it is called so?

If u = sin(x)?), express the total differential of u in terms of those of x and y.
If u = ¥y, express du in terms of dx and dy.

If u = xy log xy, express du in terms of dx and dy.

If u = a¥, express du in terms of dx and dy.

kW=
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10.

11.

12.
13.
14.
15.
16.
17.
18.
19.

20.

Part B
21.

22.

. Find
dt

. Find d_“, if u=x%?*+x%?, where x = af?, y = 2at.

dt

. du . .
. Find o ifu =e”, where x = \Ja’—t*, y =sin’ ¢.
t

du

»ifu=log (x +y + z), where x =e™, y =sin ¢, z = cos t.

. Find %, using partial differentiation, if x> + 3x%y + 6x)* +)° = 1.

If x sin (x — y) — (x + y) = 0, use partial differentiation to prove that

dy _ y+x’cos (x—y)
dx  x+x’cos (x—y)

Find %» when u = sin (x? + )?), where x? + 4)? =9,

Find %, if u = x*y, where x> + xy + )? =1.

Define absolute, relative and percentage errors.

Using differentials, find the approximate value of Ji5

Using differentials, find the approximate value of 2x* + 7x* — 8x + 3x + 1
when x = 0.999.

What error in the common logarithm of a number will be produced by an
error of 1% in the number?

The radius of a sphere is found to be 10 cm with a possible error of 0.02 cm.
Find the relative errors in computing the volume and surface area.

Find the percentage error in the area of an ellipse, when an error of 1% is
made in measuring the lengths of its axes.

Find the approximate error in the surface of a rectangular parallelopiped of
sides a, b, ¢ if an error of k is made in measuring each side.

If the measured volume of a right circular cylinder is 2% too large and the
measured length is 1% too small, find the percentage error in the calculated
radius.

Ifu=f(x-y,y—z z—x),prove that 8_u+8_u+8_u =0.
dx dy Oz

If f'is a function of u, v, w, where y = \/;, V= \/;, and w= \/E /show
that

f .
Zua—zycax.
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23 1 /=f(2=% Z=%) showthat 2 ¥y 2 Yy 2V
Xy ’ zX ox E)y oz

24. Ifu=f(x*+ 2yz, y* + 2zx), prove that

+(x —yz)a—+(z —xy)au =0.

ou
=5, a oz

ox

25. If f(cx —az, cy — bz) = 0, where z is a function of x and y, prove that

Jz Oz

a—+b—=c.

0z az 0z
26. If z=f(u, v), where u = x + y and v =x — y, show that 2— = — .
Jdu 8x 8y

27. If z=f(x,y), where x = u? + V*, y = 2uv, prove that

az oz oz
Z_0E o z,
US T V3, = N ) o

28. If z=f(x, y), where x =u + v, y = uv, prove that

dz 0Oz 0z 0z
U—+V—=x—+2y—-
du Jdv ox dy

29. If x=rcos 6, y =r sin 6, prove that the equation g_u+8_u =0 is equivalent
x oy
du 1 z du
0 —+—tan| =— =0.
or r 4 26

30. If z = flu, v), where u = x> — 2xy — y* and v = y, show that the equation

%)
(x+y)g—+(x y) gy = (is equivalent to i} =0,

31.If z = f(u, v), where u = x> — y* and v = 2xy, prove that
zY (azY oz (ozY
il e =4 2 2 il il .
(ax) +(ay) ber ){(au) +(avJ

32.1f z = f(u, v), where u = x> — y* and v = 2xy, show that

A 1 0’z 9’z
§+a—y2:4(x2+y2)( + 2].

Wau



Functions of Several Variables 2.23

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

If z = f(x, y) where x = X cos a — Y sin ovand y = X sin ot + Y cos ¢, show that
2 2 2 2

9z, 0z_0z dz

ox* 9y’ aXx’ 9y’

If z =f(u, v), where u = Ix + my and v = Iy — mx, show that
9’z 9’z d’z 9z
— = =+m’)| =

ox* 9y’ ( )[ ou’ 802)

By changing the independent variables x and ¢ to  and v by means of the trans-

,0y 9%y 9’y
formations u = x — at and v = x + at, show that a———=d4a’ ——

> a .
ox’ o oudv

By using the transformations u = x + y and v = x — y, change the independent

2 2
variables x and y in the equation —z—a—j =0 touand v.
ox” dy
.0z 0’z 32
Transform the equation —+2 = 0 by changing the independent
ox ox ay ay

variables usingu=x—yand v=x+y.

2’z 2’z

Transform the equation x° ?+2xy
x

2’z
+y? —= = 0,by changing the
2w 5 y changing

2
independent variables using # =x and ¥ = X
x

2 2
Transform the equation E_ 5 9’z 6E =0, by changing the indepen-
ox* oxdy oy’

dent variables using u =2x +yand v =3x+ .

u o'u

Transform the equation Fres + e = 0, by changing the independent variables
X o
using z =x + iy and z* =x — iy, where i = \/ — L.

Use partial differentiation to find %, when (1) » = »5 (i) xm" =

m+n,

(x+y)" " (1) (cos x)" = (sin p)*; (iv) (sec x)’ = (cot p); (V) X' = e 7.

2
Use partial differentiation to find jx—J;, when x° + )* —3axy = 0.
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43.

44,

45.

46.

47.

48

49.

50.

51.

52.

2
Use partial differentiation to find jx—J; when x* + y* = 4a%xy.

>

2 2 2 2
Use partial differentiation to prove that 4 _ abe+2/gh—af” —bg” —ch
dr? (hx+by+f)

when ax? + 2hxy + by? + 2gx + 2fy + ¢ = 0.

s

d’y  b*-ac

Use partial differentiation to prove that —- = ———_ when ay*+2by +c
dx (ay+b)
=x2
Ifx* — )2 + u*+ 20 = 1 and x* + ) — u? — V* = 2, prove that a_u=3_x and
ox u
9 _ =
ox v

The deflection at the centre of a rod of length / and diameter d supported at its
ends and loaded at the centre with a weight w is proportional to wl*/d*. What
is the percentage increase in the deflection, if the percentage increases in w, [
and d are 3, 2 and 1 respectively.

The torsional rigidity of a length of wire is obtained from the formula

N = SZL{K If / is decreased by 2%, ¢ is increased by 1.5% and r is increased

tr
by 2%, show that the value of N is decreased by 13% approximately.

The Current C measured by a tangent galvanometer is given by the relation
C = k tan 6, where 0 is the angle of deflection. Show that the relative error in
C due to a given error in 6 is minimum when 6 = 45°.

The range R of a projectile projected with velocity v at an elevation 0is given

by R = E sin 26. Find the percentage error in R due to errors of 1% in v and

l%in 6, when g 7~
2 6

. . A 22T
The velocity v of a wave is given by »* = g4, , where g and A are con-

27 pA

stants and p and 7 are variables. Prove that, if p is increased by 1% and 7'is

decreased by 2%, then the percentage decrease in v is approximately ——-.
v

The focal length of a mirror is given by the formula 1 = l_l If equal

UV u
errors k are made in the determination of # and v, show that the percentage

error in f'is 100k (l+l)
u v
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53. A closed rectangular box of dimensions a, b, ¢ has the edges slightly altered
in length by amounts Aa, Ab and Ac respectively, so that both its volume and

Aa  Ab  Ac
a’(b—c) b’(c—a) c*(a-b)
[Hint: Solve the equations d/' =0 and dS = 0 for Aa, Ab, Ac using the method
of cross-multiplication]

surface area remain unaltered. Show that

54. If a triangle ABC is slightly disturbed so as to remain inscribed in the same
circle, prove that

Aa Ab Ac
+ + =
cosd cosB cosC

. . . 1 .
55. The area of a triangle ABC is calculated using the formula A = — bc sin A.
Show that the relative error in A is given by 2

ﬂ = @+é+cotA§A.
A b ¢

If an error of 5’ is made in the measurement of 4 which is taken as 60°, find
the percentage error in A.

56. Prove that the error in the area A of a triangle ABC due to a small error in the
measurement of ¢ is given by

é‘A=é(l+ ! + L1 )Jc.

s s—a s-b s—c

57. The area of a triangle ABC is determined from the side @ and the two angles B
and C. If there are small errors in the values of B and C, show that the result-

ing error in the calculated value of the area A will be %(CZAB +b°AC).

Hint:A = —

1 a*sin BsinC
2 sin(B+C)

2.2.3 Taylor’s Series Expansion of a Function of Two Variables

Students are familiar with Taylor’s series of a function of one variable viz. f'(x + /) =

2
f(x) +% f(x)+ % f”(x)+---o0,which is an infinite series of powers of /4. This idea

can be extended to expand f(x + &, y + k) in an infinite series of powers of / and k.
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Statement

Iff(x, y) and all its partial derivatives are finite and continuous at all points (x, y), then

f(x+hy+k)= f(x,y)+— (h—a +k— )f+ (h—a +k a) f
ox "\ ox dy
0
[’ﬁ*kay] S

Proof:

If we assume y to be a constant, f(x + %, y + k) can be treated as a function of x only.
h of (x, y+k) h2 9’ f(x,y+k) e

Then f(x+h,y+k)= f(x, y+k)+ ox 2! ox’

(1

Now treating x as a constant,

ﬁaf(x,y)+k_282f(x,y)+

f(x,y+k) zf(x,y)+1! 3 2 9

2

Using (2) in (1), we have

Pt byt k) = [ flaek kaf(x V), k() ]
dy

T

kaf(xy) kzaf(xy)
l'a{f( n* 1 dy 2! 9’ }

Z.g {f( - kaf(axy) k Bf(ﬁzcy) }Jr..m
)y 2! dy

_ af af za f a f 2 f .00
= f(x,y)+— ( ax+kayJ 2'(h Pl 2hkaxay+k e )

—f(xy)+—(hai +hk—- Jf —( ai k—) S oo 3)
X X

Interchanging x and /4 and also y and & in (3) and then putting /4 = k = 0, we have

ey = 10, on%{x Y00, ¥O O)}%{xz 2700

ox 4 dy ox’

+2xy J a{c(g;()) +y° ‘ J;;g’())}Jr'" @)
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Series in (4) is the Maclarin’s series of the function f(x, y) in powers of x and y.
Another form of Taylor’s series of f(x, y)

f(x,y)= f(a+x—a,b+y—b)
= f(a+h), (b+k), say

8f(a b) 8f(a,b)
= flab)+-, { - » }

29’ f(a,b) 9’f(a,b) ., 9 f(a,b)
{h ox’ +2kh dxdy k oy’

} by (3)

: [(x—a)@ﬂy—b)

- L Y (a.b)
_f(a’b)+1! ay :|

f(ab)

,0°f(a,b)
oxdy +(y=b)’ } )

+zi!|:(x—a)zw+2(x—a)(y—b) PR 5

ox*

(5) is called the Taylor’s series of f(x, y) at or near the point (a, b).
Thus the Taylor’s series of f(x, y) at or near the point (0, 0) is Maclaurins series

of f(x, ).

2.3 JACOBIANS

If u and v are functions of two independent variables x and y, then the determinant

Ju du
ox Ay
Jdv Jv
oy

is called the Jacobian or functional determinant of u, v with respect to x and y and
is written as
o(u,v v
(,0) or J (u,_)
a(x,y) X,y

Similarly the Jacobian of u, v, w with respect to x, y, z is defined as

du du du
ox 5 oz
ou,v,w) |dv dv Jv
Ax,p,z) S a 9z
ow ow ow
ox oy oz
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Note @

1. To define the Jacobian of n dependent variables, each of these must be a func-
tion of » independent variables.

2. The concept of Jacobians is used when we change the variables in multiple
integrals. (See property 4 given below)

2.3.1 Properties of Jacobians

1. If u and v are functions of x and y, then I, ) % I, ¥) -1
dx,y) du, v)

Proof:

Let u = f{x, y) and v = g(x, y). When we solve for x and y, let
x=¢(u, v) and y = y(u, V).

Then

o g _du_ )
ox du dy OJu Ju
Ou dx du oy ou_
ox dv dy dv Jv

v o av W _dv_,
ox du dy du Jdu
Ou 9x  ou dy Odv_,
ox dv dy oJv Jv |

(1

du du ox dx
Now a(u,l)) % a(st’) — ox ay ou dv
o(x,y) Odu,v) |dv dv a_y dy

o | lou 9w
Ju du ox dy

— —| |== 2| by interchanging the rows
- dx dy > du du and columns of the

dv dv| |0x Jy| second determinant.

ox dy| |dv dv

du dx ou v\ ax ou oy
ox du dy du)ldx dv dy Jdv

(220 00000 2x 0w 20
ox du dy du )\ dx dv dy Jdv
10
01
=1

[by (D]
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2. If u and v functions of r and s, where 7 and s are functions of x and y, then

o(u,v)  d(u,0) y a(r,s)

a(x,y) 8(r,s) a(x,y)

Proof:
du du or or
ou,v)  A(rs) _ or ds o [9% O
(r,s) " 9(x,y) 9w Iy |95 Is
or ds| |ox dy
du Ju| |Ir ds
- or ds X dx ox , by rewriting the second determinant.
dv dy| |dr s
or 0s dy dy

(a_”ﬁJ,a_”%)a_”iJra_”ﬁ
or ox os ox)J\or dy 9s dy

(81) Jor  dv as)(az/ Jor v as)

9r ox  9s ox)\or dy  as oy
ou ou

_|ox dy | 9(u,v)

RELEL EEES)
ox dy

Note™  The two properties given above hold good for more than two variables too.

3. If u, v, w are functionally dependent functions of three independent variables

du,v,w)

X, ¥,z then =
a(x,y,z)

Note™  The functions u, v, w are said to be functionally dependent, if each can be
expressed in terms of the others or equivalently f(u, v, w) = 0. Linear dependence of
functions is a particular case of functional dependence.

Proof:

Since u, v, w are functionally dependent, f(u, v, w) =0 (1)

Differentiating (1) partially with respect to x, y and z, we have
f;A'ux+fv'1),v+f;1f'Wx:O (2)
Joou, + f, 0+ 1, w, =0 3)
foou +f,.0.+f w =0 4
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Equations (2), (3) and (4) are homogeneous equations in the unknowns f, f,, f..
At least one of f, /. and f; is not zero, since if all of them are zero, then f(u, v, w) =
constant, which is meaningless.

Thus the homogeneous equations (2), (3) and (4) possess a non-trivial solution.
. Matrix of the coefficients of £, f., /. is singular.

ux X W.X
ie., u, v, w|=0
uZ z WZ
o(u, v, w) _

i.e.,

a(x7 y! Z)

Note ™  The converse of this property is also true. viz., if u, v, w are functions of
d(u, v, w)

X, ¥, z such that
. A, 1. 2)

=0 then u, v, w are functionally dependent. i.e., there

exists a relationship among them.
4. If the transformations x = x(u, v) and y = y(u, v) are made in the double
integral ”f(x, y)dxdy, then fix, y) = F(u, v) and dxdy = |J| dudo, where
o(u, v)

Proof:
dx dy = Elemental area of a rectangle with vertices (x, y), (x + dx, y), (x + dx, y + dy)
and (x, y +dy)

This elemental area can be regarded as equal to the area of the parallelogram with

vertices (x, ), (x+g—du y+ SZ ) ( +§—zdu+g—vd %dqug—zdv) and

(x + g—xdv, v+ g—ydv), since dx and dy are infinitesimals.
v v

Now the area of this parallelogram is equal to 2x area of the triangle with vertices

(x, »), (x + %du, v+ a—ydu) and | x + a_xdz)’ v+ a_ydv
du du Jdv Jdv

dxdy=2><%x+a—xdu y+—ydu 1
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X 1

3 ay g—xdu g—yd

=1Zd 2w of=|% u
du ou ox dy
o ay a—dU a—d
—dov —dv 0 v v
v v
dx Iy
ou Ju

= dudo
oyl
Jdv dJv

ie., axdy = 2059 4.4
d(u, v)
Since both dx dy and du dv are positive, drdy = [J|dudw, where J = 2523

o(u, )

Similarly, if we make the transformations

x =x(u,v,w), y = y(u,v,w) and z = z(u, v,w)
in the triple integral [[[f(x.y,z)dvdydz, then dvdydz =|J|dudvdw, where

)
o(u, v, w)

2.4 DIFFERENTIATION UNDER THE INTEGRAL SIGN

When a function f(x, y) of two variables is integrated with respect to y partially, viz.,

b
treating x as a parameter, between the limits a and b, then J f(x, y)dy will be a

function of x.

Let it be denoted by F(x).

Now to find F"'(x), if it exists, we need not find F(x) and then differentiate it with
respect to x. ' (x) can be found out without finding F(x), by using Leibnitz’s rules,
given below:

1. Leibnitz’s rule for constant limits of integration

If f(x, y) and Y (%,¥) are continuous functions of x and v, then
X

d | 1)
a[ J f(x,y)dy] - j 22— dy, where

a and b are constants independent of x.
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Proof:

Let [ feedy = Fx).

Then  F(x + Ax) — F(x) = ff(x + Ax, y)dy — ff(x,y)dy
= [+ Ax p) = flx )y

b
:Axf—af()H_eAx’ y)dy,0<9<1,

Ox
[by Mean Value theorem, viz., f(x + h)— f(x) = hw, 0<éb< 1:|
F@+A@—ﬂm:jw@+€Anﬁ® (1)

Ax ox

a

Taking limits on both sides of (1) as Ax — 0,

F(x=[ 22

b
me®
ox

a

. (i b b E)
1€, 3{{ﬂnw®}=fl%§2®

a

2. Leibnitz’s rule for variable limits of integration

b(x)
If f{x, y) and M are continuous functions of x and y, then —l: J f(x, y)dy:|
ox

a(x)

b(x)
= I Mdy + f{x,b(x)}% - f{x’a(x)}d_a’provided a(x) and b(x) possess
ox dx dx

a(x)
continuous first order derivatives.

Proof:
Let J-f(x, y)dy = F(x,y), so that %F(x, )= f(x,y) (1)
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b(x)

[ fedy = Flxb()} - Fix,a(0}

a(x)

b(x)
il | f(x,y)dy] = L F (b)) - £ Fixa(o)
x dx

dx )
d d
= [_F(X:J/):l - [_F(an’):|
dx y=b(x) dx y=a(x)

d 0 d
= | SF@y)+ = F(x,y) =
ox dy dx |

0 0 d
~| SF@y)+ = Fx,p)
ox dy dx .

by differentiation of implicit functions

y =b(x)
— a d_y
o] "t

y=a(x)

dy:l
= f(xy)— by (1
[ de y (1)

y=b(x)
- [ai [ rey) dy:I /1 () =[x, a(x)ba’(x)

y=a(x)

y =b(x)
[ J Jf (x,¥) ] + f{x, b(x)}b’(x) — fix, a(x)}a’(x)

y=a(x)

b(x)
- o (a); SN 4y 4+ Fix, b (x) — fix, alx)ia’(x)

a(x)

[ WORKED EXAMPLE 2(b) ]

Example 2.1 Expand e* cos y in powers of x and y as far as the terms of the third
degree.

= f.(x,y) = e"cos y;

)
f(x,y) =€ cosy; %
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o)) f,(x,y) = —e"sin y.
dy Y
? 2
a _g(x);sy) = fu(st) = ex COSy; 85;(—;;})}) = f;/x(x,y) — _ex Siny
2
% = f,(x,y) =—e" cos y.
Similarly S (X, y) =€ cosy; [, (x,y) =~ e siny;

Sy (x,3) =—e"cosy; f, (x,y) =e'siny
f(0,0) =1 f,.(0,0) =1; £,(0,0) = 0;
f.(0,0) =1 f,(0,0)=0; £,(0,0) =-1
£.(0,0) =1 £, (0,0)=0; £, (0,0)= -1 £, (0,0)=0

Taylor’s series of f'(x, y) in powers of x and y is

F) = 0.0+ 0,0.0 + o, (0,00} +
%{xzfn (0,0) + 207, (0,0) + ¥, (0.0)} +

1
§{x3fm (0,0) + 3x7y/,,(0,0) + 3xp° £,,,(0,0) + ¥ £, (0,0)} + -

1 1
ecosy=1+ ﬁ{x~1 +y-0} + E{le +2xy-0 + y* (1)}
1
+ ;{x3 A43x7y-0+3xy” (=) + 3’ -0} +---

_ X 1 2 2 L 2
—1+1!+2!+(x y)+3!(x 3xy°) +

2.4.1 Verification

X + iy

e" cos y = Real part of e

T . N\2 . \3
=RRdP+x W+“+W)+@+W)+J,
Il 2! 3!

by exponential theorem
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_ 1 3 2
1+1{+—{x - )+§#x =3y )+--

Example 2.2 Expand (AW +E) iy a series of powers of /4 and k upto the

x+h+y+k
second degree terms.
(x+h)(y+k)
+hy+k)=—"""=
Let Sxthyth) x+th+y+k
) ===
X+y

Taylor’s series of f(x + &, y + k) in powers of 4 and £ is

f(x+hy+k)= f(x, y)+—( al+ af]
ox dy
(hz I o 2L 32{) (1)
2! ox’ dx dy ay
(x+y)-x s
o ) 4cww }(ww
P x{(xw) y} X’
: (x+y)’ (x+y)*
fo=- 2y - (X+y)2~2y—yi-2(x+y)
(x+y) (x+y)
_ 200Gyt 2
(x+y)  (x+y)
_ 2x°
Ty
Using these values in (1), we have
(x+h)(y+k)= o, hy* N ke 3 ny?
x+h+y+k  x+y (x+y) (x+y) (x+y)

2hkxy k*x’

(x+y) (X+y)
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Example 2.3 Find the Taylor’s series expansion of x' near the point (1, 1) upto the
second degree terms.
Taylor’s series of f(x, y) near the point (1, 1) is f(x,y) = f(1,1)+_

(=02 00+ 0=0 £, 0D {01 £, 1) 420001 1, (1)

(=1 £, (LD} + (1)
fxy)=x"; fi(xy) =" f,(x,y) = x" logx;
fo(xy) = y(y=1)x"2 £, (x,y) = X +x" logx
£, (x.3) = x"(logx)"-
L) =1 £, (L1) =1 £, (1,1) = 0;
[ (1) =0 £, (L) =1 £, (L1)=0

Using these values in (1), we get
=1+ (x=D)+(x=1)(y-1)+--

Example 2.4 Find the Taylor’s series expansion of e* sin y near the point (-L%)

upto the third degree terms.

Taylor’s series of f(x, y) near the point (_1’%[) is

f(xy)= f(—l,§)+ll'{(x+l)f ( 1, Z)Jr(y_’z’)fy(_l,%)}
e (e (2]
+(y—%[)z fﬂ(—l,izz)}J,... (1)

f(x,y)=e€"siny; f, = e"siny; f, =" cos y;
Jo=e'siny; f =ecosy; [, =—esiny;

— % Q1 . — F . — Xl .
S =€ 8iny; f =€ cosy; f, =—e€ siny;

Sy =—€" cos y.
1 ( )
A

f(lz):% (‘1’%—):% (‘lfJ:‘m;

\

[
NE
N————

I

|
Iy
\_/

||
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2 PRREE P P I =
(5 )

25
1 T 1

= —=i [l 1T |=-
"y f( 4) o

Using these values in (1), we get
1 1 T
fsiny = ——=|[1+=3(x+1)+| y——
e siny e\/i|: 1!{(x ) (y 4)}
1 V4 Ay
2
+2—!{(x+1) +2(x+l)(y—z)—(y—z) }

+3l!{(x+1)3+3(x+1)2(y—%)—3(x+l)(y—§)2—(y—§)3}+-~-

Example 2.5 Find the Taylor’s series expansion of x2)? + 2x%y + 3x)? in powers of
(x +2) and (y — 1) upto the third powers.
Taylor’s series of f(x, v) in powers of (x + 2) and (y — 1) or near (-2, 1) is

f(xy)= f(—2,1)+%{(x+2)fx (—2.1)+(y-1)/, (—2,1)}

+21!{(x+2)2 Lo (F20)+2(x4+2)(y=1) £, (-2.1)

+(y=1) 1, (—2,1)}+--- (1)
f(xy) = Xy +2x7y+ 30’ f(-21)=6

£ = 2507+ 4xy+ 3y° f(=21)=-9
f, = 2x°y+2x° + 6xy f(=2.1) =
f.=2y"+4y fu(-21)=6
) = 4xy+4x+6y £ (=21)=~10
f, = 2x"+6x £ (=2,1)=~4
f.=0 fu(=21)=0
foy =4y+4 f(-2.1)=8
Sy = 4x+6 fw(_z,1) =_2
£, =0 [ (-21)=0
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Using these values in (1), we have
Xy +2x°y+3x7 = 6+%{—9(x+2)+4(y—1)}
+i{6(x+2)2—20(x+2)( ~1)-4(y-1)"}
X y y
- f2a(x42) (r=1)=6(x-+2) (y-1)" -
30 ¥ ¥

Example 2.6 Using Taylor’s series, verify that

3

fog (1+x+3) = (x+3) =2 (- 3) +3(x+)

The series given in the R.H.S. is a series of powers of x and y.
So let us expand f (x, y) = log (1 + x + y) as a Taylor’s series near (0, 0) or

Maclaurin’s series.
— 1 . —_ 1
l+x+y 77" l+x+y
1
(1+x+y)2
2

Jow = LN fm = fm’ = fy}y
(1+x+y)

£(0,0)=0; £,(0,0) = £,(0,0) = 1;
1(0,0) = £,,(0,0) = £,,(0,0) = ~1;
0

0
fr(0,0) = £,,(0,0) = £, (0,0) = £, (0,0) = 2.

Maclaurin’s series of f(x, y) is given by

x

Jo = =fo =1

ﬂ%ﬁ:fWﬁH%hg@ﬁnymm}

1

EﬂxaﬁJ04D+2xW;(Qoyhﬁjh(qo”+“. )

+
Using the relevant values in (1), we have
1 _ 1 2 2
og(l+x+y) = (x+y)+5{—x —2xy—y }+

1
+=12x7 +6x7y+6x)° +2y° b+
Al y+6xy” +2y° }
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= (e 2) =5 () + 5 (x0) =

Example 2.7 Ifx =7 cos 0,y =rsin 0, verify that d(x.y) d(r.6)
3(r.0) 3

x=rcos 8;y=rsin 6

Jx ox
a(x,y) B 9 90 B cosf —rsinf
d(r,0) |dy dy| |sing rcosd
or 90

= r(cos2 6 +sin? 9) =7

Now P =x*+y" and #=tan" 2
x
Zriz 2x %z ! > X%
ox ox ' ox
I+=
X
or _x D A
ox r X +yt
Similarly, i =2 Similarly %:%
dy r r
aror
o(r,0) |ox dy
o(vy) |00 26
ox dy
b Y
I S Sy |
v X r P
) 2
r r

Example 2.8 If we transform from three dimensional cartesian co-ordinates

(x, y, z) to spherical polar co-ordinates (r, 8, ¢), show that the Jacobian of x, y, z with
respect to r, 6, d)ﬁs 72 sin 6.
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The transformation equations are

x = rsin @ cos ¢, y =rsin 0 sin ¢, z = rcos 6.

ox .

— =sin 6 cos ¢, ¥ =sin 0 sin¢,% = cosf
or or or

X reos cos ¢, P = rcos 0sing, 2 =—rsinf
00 00
Ox = —rsin 0 sin ¢, 2 = rsin 0 cos ¢, oz =0.
o ¢ oo
ox dy 32
Jor dr dr

Now O(62:2) |ax oy oz

3 (r,0,6) |06 90 00

Ox 9y dz

d¢ d¢ d¢

sinf cos¢ sinf sing cosf
=|rcosfcos¢ rcosfsing —rsinf

—rsinf sing rsinf cos¢ 0

= r*[sinf cos ¢ (0+ sin” 6 cos ¢) —sinf sin¢
x(0—sin” @ sin @)+ cos @(sin g cosf cos’ ¢ +sinf cosf sin® )]
= r*[sin’ 0 cos® ¢ +sin’ @ sin® ¢ +sin ) cos” 0]
= r*(sin’ 0 +sind cos’ 0)
= r*sin.

Example 2.9 Ifu=2xy, v=x*-)% x=rcos Oand y =r sin 6, compute M

0 (r, 6’) '
By the property of Jacobians,

— X ¥y er xﬁ
Ux vy yr yﬂ
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2y 2x| |cosf —rsinf
= X

2x —2y| |sind rcosf
=—4(y* +x7)xr(cos’ §+sin” 0)
=—4r.

Example 210 Find the Jacobian of y,, y,, y, with respect to x , x,, x,, if

XX, XX X,
= » V2 = > V3
X X, X3

W
ox, dx, ox,
01, ¥5,05) _ % % %
o(x,,x,,x,) |0x, Ox, Ox,
dy;  dy; 9y
ox, dx, ox,
X X3 )
x12 xl xl
s mxox
x2 'x22 x2
X A A%
X, X, x;
XXy X3X XXy
= XX, —XX, XX
x12x22X32 2773 37 172
x2x3 x3x1 xl'xZ
-1 1 1
_Xxx; {21 1
T 222 -
NN
-1 1 1
=0 0 2(=4
020

Example 211 Express |[[\/xyz(1-x— y—z) dxdy dzin terms of u, v, w given that
xty+z=u,y+tz=uvand z=uvw.
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The given transformations are

X+y+z=u (1)
y+z=uv 2)
and zZ=uvw 3)

Using (3) in (2), we have y = uv(1 — w)
Using (2) in (1), we have x = u(1 — v)

dx dy dz = IJI du dv dw, where

ox Ox Ox

du ov ow
o 9oyz) |y dy Iy

Cou,v,w) |du dv ow

0z 0z Oz

u v Iw
1-v —u 0
=(l-w) u(l-w) —uv
vw wu uv

(1-v){u*v (I-w)+u*vw}+ufuv’ (1-w)+uv*w}
=u’v (1-v)+u’v’
=u’v

dxdydz =u’v dudvdw (4)

Using (1), (2), (3) and (4) in the given triple integral /, we have

1 = [[]u’ 0 w(l-0)(1-w)(1-u) v*vdudvdw

=[[1u"? * W' (l—u)% (1-0)? (1-w)? dudvdw

Example 2.12 Examine if the following functions are functionally dependent. If
they are, find also the functional relationship.

(i) u= sin” x+sin” y; v = x\/1-y” + p/1-x7

() u=y+z;0=x+2z"; w=x-4yz-2y’

(i) u=sin"'x+sin”' y; v=x\/1-37 +p/1-x
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w (1 Yo (1 Yo g o
ox J1-x° "y J1-7 " ox 1-x?
v Xy

dy 1-

+4/1—x7

1 1
Now ga)(u_,v; _ 1-x NIES
(x,y 2 Xy Xy 2
JI-y - - +4/1—x
1-x* J1-y?
= e
NA=x")(1=p") NA=x")(1=p")

=0.

.. u and v are functionally dependent by property (3).

Now sinu = sin (sin”' x+sin”" y)

= sin (sin”' x)cos (sin”' y)+cos (sin”' x)sin (sin”" y)

= x~cos{cosfl(\ll—yz)}+005{00571(\/1_352)}'y

=0.

.. The functional relationship between u and v is v = sin u.

(i) u=y+z;v=x+2z"; w=x—4yz-2)"

g ov_ ow
ox ox ox

M _1, 9% 0. _4y_s

>

w Ty
au_l_@: ow

=1

e !
0z 0z z 0z Y
1 1
Now M = 0 4z
a(x,y,2)

1 —-4y—-4z -4y
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=—{—4y+4y+4z}+4z=0.

.. u, v and w are functionally dependent
Now v—-w=2z"+4yz+2y’
= 2(y+z)2 =2’

. The functional relationship among u, v and w is 2u> = v — w.

dr Z__(a>b), find

a+bcosx la? —b?

]-r and T cosxdx

Example 2.13 Given that j

o ( a+bcosx 0(a+bcosx)2

]E dx _ V4 (1)

- 2 2
v a+bcosx at—b

Differentiating both sides of (1) with respect to a, we get

Va
j i(;de = 9 7% since the limits of integration are constants
v da\ a+bcosx da  Ja? —p>

ie., {Hbmsx =z x-1/2(a*~b*)"" 2a
ie., T za

o a+bcosx) (a2 _b2)3/2

Differentiating both sides of (1) with respect to b, we get

Ti 1 & = 9 z
» Ob a+bcosx ob g2 —p?

ie., J.—

o (a+bcosx)

—_—

sxcosxdr = zx—1/2(a* -5?) " (-2b)

V4
ie., J- cosXx 7h

3/2°
o ( a+bcosx (gZ_bz)
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(1+
Example 2.14 By differentiating inside the integral, find the value of jg—xy) dy-
+y
Hence find the value of J‘ de
1+x7
Let Ilog 1+xy (1)
o 1+ »:
Differentiating both sides of (1) with respect to x, we have
, d { log(1+xy)
/(%)= EJ 1+ 57 dr
0 y
o a{log 1+xy>}dx+log(l+x2) d(x)
) Ox I+y 1+ x° dx
( by Leibnitz's rule)

x 10g(1+x2)
J(-) 1+xy 1+y2) . 1+ x?

f N 1 Y+ x d+10g(1+x2)
ol (142 1+xy) e 1y ) | T s

by resolving the integrand in the first term into partial fractions
_ 1
1+x°

2log(lerz)+

X 2
10g(1+y2)+ 5 tan™ y] +—10g(1+x )

1 1
log(1+xy)+— -
gl o)+ o 1+x°

0

~tan”' x (2)

1
2'1+x +Xx

Integrating both sides of (2) with respect to x, we have

tan” xdx+c

f(x)= %J.log(sz)d(tan’l x)+_[

1+x?

= %[tan"1 xlog(1+x2)—Jtan'] X - 1_'2_);2 dx

xtan™' x
+f

o dx+c
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| 2
=—tan"'x - log(1+x?)+c¢ (2)
2 g( )

Now putting x = 0 in (2), we get
c=/(0)=0, by (1)

X

log (1+
og xy = %tan_1 x - log (1+x2) 3)

o'-—.

1+y

Putting x = 1 in (3), we get

V4
= —log2
3 g

Since y is only a dummy variable,

tlog(1+
J- og x Z1og2
o 1+x? 8

Example 2.15 Show that i j tan™! (i)dx =2atan™ (a)—ll()g (a2 + 1) .
da a 2

2

d < o x T x J(a) d,,
—jtan —ldx=]—tan" | — [dx+tan" | — -—(a ),
da 3 a y 0a a a ) da

by Leibnitz's rule

. (_—f)dx+ 2atan' a
a

Il
S — S
—_

o

2

a

x _

—J ——dx+2atan"' a
\ X +a

2

—%[log(x2 +a2)]: +2atan'a
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1 f+a’
= ——1og(a 2a )+2a tan”' a
2 a

=2atan"' a —%log(a2 +l)

oo

Example 2.16 If 7 = J.eq 7(;) dx, prove that ;ﬂ = —21/. Hence find the value of /.
a
0

I= Teﬂ ) dx (1)

7Y . a a
e”  2dy, on putting x =—or y = —
y X

_ ZT e,yz 7(?] dy

ie., ar_ )
da
a =—2da
I

Solving, we get log [ =log ¢ — 2a

I=ce™ 3)

When a=0,1= je‘xz dx = — 4)

Using (4) in (3), we get ¢ = g
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Hence 1=
2
( EXERCISE 2(b) ]
Part A
(Short Answer Question )

1. Write down the Taylor’s series expansion of f(x + &, y + k) in a series of (i)
powers of 4 and k (ii) power of x and y.

. Write down the Maclaurin’s series expansion of (i) f(x, y), (i) f (x + &, y + k).

Write down the Taylor’s series expansion of f(x, y) near the point (a, b).

Write down the Maclaurin’s series for e**>.

Write down the Maclaurin’s series for sin (x + y).

. Define Jacobian.

State any three properties of Jacobians.

. State the condition for the functional dependence of three functions u(x, y, z),
V(x, y, z) and w(x, y, z).

N LR

9. Prove that [ [/ (x.y)dxdy = [[ f (rcos&,rsin8)- rdrde.

10. Show that J_[f(x,y)dxdy = “‘f{u(l—v), uv} -ududo.

11. Ifx=u (1 + v) and y = v(1 + u), find the Jacobian of x, y with respect to u, v.
12. State the Leibnitz’s rule for differentiation under integral sign, when both the
limits of integration are variables.
b(x)
13. Write down the Leibnitz’s formula for — | f(x,y)dy, where a is a con-
stant. dr ¢

b
14. Write down the Leibnitz’s formula for d J f(x,y)dy, where b is a
constant. dx a(x)

d | . . . . .
15. Evaluate ™ J. log(x* + y*)dx, without integrating the given function.
V%

Part B
16. Expand e* sin y in a series of powers of x and y as far as the terms of the third
degree.
17. Find the Taylor’s series expansion of e* cos y in the neighbourhood of the

y 4
point (LZ) upto the second degree terms.
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18. Find the Maclaurin’s series expansion of e* log (1 + y) upto the terms of the
third degree.

19. Find the Taylor’s series expansion of tan™ (Z) inpowers of (x—1)and (y— 1)
X

upto the second degree terms.

20. Expand x?*y + 3y — 2 in powers of (x — 1) and (y + 2) upto the third degree
terms.

21. Expand x)? + 2x — 3y in powers of (x + 2) and (y — 1) upto the third degree
terms.

22. Find the Taylor’s series expansion of y* at (1, 1) upto the second degree
terms.

23. Find the Taylor’s series expansion of e® at (1, 1) upto the third degree
terms.

24. Using Taylor’s series, verify that

Gy’ Gt
2! 41

cos(x+y)=1-
25. Using Taylor’s series, verify that
1
tan” (x+y) = (x+y)+§(x+y)3 -+- 00

26. If x=u (1 — v), y =uv, verify that

00 y) dww)
d(u,v)  9(x,y)
27. (1) if x = u*> — v* and y = 2uv, find the Jacobian of x and y with respect to u

and v.
(i) ifu=x*and v=)? find 9,V)
d(x, )
28. If x =a cosh u cos vand y = a sinh u . sin v, show that
2
M = a—(COShZM—COSZZ)).
du,v) 2
29. If x=rcos 0, y=rsin 6, z = z, find 9(x,3,2)
Ja(r,b,z)
30 If F=xu+v-y, G=u>+ vy +wand H=zu — v+ vw, compute
Jo(F,G,H)
o(u, v,w)
31. fu=xyz, v=xy+yz+zxand w=x+y+z, find M
a(x,y,z
32. Examine the functional dependence of the functions y = XY and
xX=y
v=—22__If they are dependent, find the relation between them.

(x—y)?
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33.

34.

35.

36.

37.

38.

39.

40.

Are the functions y = X*) and v=tan" x + tan"' v functionally dependent?
I—xy

If so, find the relation between them.

Are the functions f,=x +y +z, f, =x* + )* + z and f, = xy + yz + zx function-

ally dependent? If so, find the relation among £, f, and f,.

If f Ae M) f(p)dy = AP xe ™ prove that f(x) = Ae”™ . [Hint: Differentiate
0

both sides with respect to x].
Use the concept of differentiation under integral sign to evaluate the following:

X dx . X

j m [ HlntUSCJ x2+ az
0 0

1 1

[ x" (logx)" d [ Hint: Use [ 2" dy
0 0

oo

J- e cos2axdx

0

I—e Smxdx and hence JSIdex
0 X 0 x
exm—1

j dx, m 2 0.

log x

0

2.5 MAXIMA AND MINIMA OF FUNCTIONS OF TWO

VARIABLES

Students are familiar with the concept of maxima and minima of a function of one
variable. Now we shall consider the maxima and minima of a function of two variables.

A function f(x, y) is said to have a relative maximum (or simply maximum) at
x=aandy=>b,if f(a, b) > f(a+ h, b+ k) for all small values of # and £.

A function f{x, y) is said to have a relative maximum (or simply maximum) at
x=aandy=b,iffla, b) <f(a+ h, b+ k) for all small values of / and .

A maximum or a minimum value of a function is called its extreme value. We give
below the working rule to find the extreme values of a function f(x, y):

(1) Find & and & .

ox dy
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(2) Solve the equations gl = 0and gl = 0 simultaneously. Let the solutions be
X y
(a, b); (c, ;...
. . .o of of .
Note ™  The points like (a, b) at which P = (0and ™ = 0 are called stationary
X vy

points of the function f(x, y). The values of f(x, y) at the stationary points are called
stationary values of f(x, y).

2 2 2
8]2”’B=8f’c=8{
ox dxdy dy

(3) Foreachsolutioninstep(2), find the values of 4 =

and A=AC - B>
(4) (i) If A>0and A4 (or C) < 0 for the solution (a, b) then f(xx, y) has a maximum
value at (a, b).
(i) If A>0and A4 (or C) > 0 for the solution (a, b) then f(x, y) has a minimum
value at (a, b).

(iii) If A <0 for the solution (a, b), then £ (x, y) has neither a maximum nor a
minimum value at (a, b). In this case, the point (a, b) is called a saddle
point of the function f(x, ).

(iv) If A=0or A4 =0, the case is doubtful and further investigations are required
to decide the nature of the extreme values of the function f{(x, y).

2.5.1 Constrained Maxima and Minima

Sometimes we may require to find the extreme values of a function of three (or more)
variables say f(x, v, z) which are not independent but are connected by some given
relation (])/(x, v, z) = 0. The extreme values of f(x, y, z) in such a situation are called
constrained extreme values.

In such situations, we use ¢ /(x, v, z) = 0 to eliminate one of the variables, say
z from the given function, thus converting the function as a function of only two
variables and then find the unconstrained extreme values of the converted function.
[Refer to examples (2.8), (2.9), (2.10)].

When this procedure is not practicable, we use Lagrange’s method, which is
comparatively simpler.

2.5.2 Lagrange’s Method of Undetermined Multipliers

Let u=f(x,z) (1)

be the function whose extreme values are required to be found subject to the
constraint

¢(x, ¥, z) =0 (2)

The necessary conditions for the extreme values of u are a_f = o’al =0 and a_f =0
dx dy oz
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o o o
—dx+=—dy+—dz=0 3)
x YT
From (2), we have

a—¢dx+%dy+a—¢dz=0 4)

ox dy oz
Now (3) + A x (4), where 4 is an unknown multiplier, called Langrange multiplier,
gives

(ai+2%)dx+ al+/ia—¢ dy+(al+ﬂa—¢):0 )
ox  ox dy dy 0z 0z

Equation (5) holds good, if

a2 ©)
ox ox

A, 599 _ 7
ay+ ay_O (7
A 99 _ (8)
az+/zaz =0

Solving the Equations (2), (6), (7) and (8), we get the values of x, y, z, 4, which give
the extreme values of u.

Note o

(1) The Equations (2), (6), (7) and (8) are simply the necessary conditions for
the extremum of the auxiliary function (f'+ A¢), where A is also treated as
a variable.

(2) Lagrange’s method does not specify whether the extreme value found out
is a maximum value or a minimum value. It is decided from the physical
consideration of the problem.

( WORKED EXAMPLE 2(c) ]

Example 2.1 Examine f(x,y) =x* + 3x3? — 15x* — 152 + 72x for extreme values.
f(x,y)= X’ +3x° = 15x" = 15y° + 72x
f.=3x"+3y"=30x+ 72
S, = 6xy=30y

S = 6x=30,f, = 6y;f, = 6x=30
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The stationary points are given by f =0 and f =0

ie., 3(x*+ y* —10x+24) = 0

and 6y(x—=5)=0
From (2),x=50ry=0

When x =5, from (1), we get * —1=0; .. y==%1
When y =0, from (1), we get x> — 10x +24 =0

x=4,6.

The stationary points are (5, 1), (5, —1), (4, 0) and (6, 0)
Atthe point (5, +1), 4=/, =0; B=/f =16, C:(];v =0
Though AC—B?<0,4=0 ) ’

.. Nothing can be said about the maxima or minima of f(x, y) at (5, £1).

At the point (4, 0), 4 =6, B=0, C=—6
AC-B=36>0 and A<0

- f(x, y) is maximum at (4, 0) and maximum value of f(x, y) = 112.
At point (6,0),4=6,83=0,C=6

AC—-B>=36>0and 4 >0.

- f(x, y) is minimum at (6, 0) and the minimum value of f(x, y) = 108.

(M
2

Example 2.2 Examine the function f(x, y) = x*?*(12 — x — y) for extreme values.

[l y) =120y =x"y* —x’y’

f.o=36x"y" — 4x°y* =37y’
S = 24x°y— 2x*y-3x’y"
foo=T2xy" — 12x°y* —6x)°
So = 72x°y— 8x’ y—9x*y*
Sy = 24x° — 2x* —6x’y

The stationary points are given by f, = 0; ]j =0

ie., Xy (36 —4x—3y)=0

and xXy(24-2x-3y)=0

()
)

Solving (1) and (2), the stationary points are (0, 0), (0, 8), (0, 12), (12, 0), (9, 0)

and (6, 4).
At the first five points, 4C — B* = 0.

.. Further investigation is required to investigate the extremum at these points. At

the point (6, 4), 4 =-2304, B=—1728, C=-2592 and AC — B> > 0.

Since AC—B>>0and 4 < 0, f(x, y) has a maximum at the point (6, 4).

Maximum value of f(x, y) = 6912.
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Example 2.3 Discuss the maxima and minima of the function f(x, y) = x* + y* —2x?
+ 4dxy — 2.

f(x,y) = x*+y* =2x* +4xy-2)°.
[ = 4(x3—x+y)
[, =40 +x-y)
fo = 4(3x" -1); fo =% 1, = 43y -1)

The possible extreme points are given by

fX=Oandfy=0

ie. X —x+y=0 (1)
and YV +x—y=0 (2)
Adding (1) and (2), ¥+ =0sy=—x 3)
Using (3) in (1): xX=2x=0

ie., x(3*=2)=0.. x=0,+v2, -2

and the corresponding values of y are 0, —2,++2.

.. The possible extreme points of f(x, y) are (0, 0), (+\/§ ,—\/E) and (—\/5 ) \/E)
At the point (0, 0), 4 =-4,B=4and C=—4
AC-B*=0

~. The nature of f(x, y) is undecided at (0, 0). At the points (£~/2,F+2), 4 = 20,
B=4,C=20

AC—-B*>0

.. f(x, ) is minimum at the points (£ V2,5+/2), and minimum value of f(x, y) = 8.

11
Example 24 Examine the extrema of f(x,y) = x> +xy+y" +—+—.
Xy
) , 11
Sy)=x"+xy+y +—+—
Xy
1
fi=2xty—-—
X

1
[, =x+2y——
’ y
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2 2
.fxx=2+?;j{xy:1;j{yy:2+7

The possible extreme points are given by /. = 0 and jz =0.

. 1
ie., 2x+y—-—=0 (D)
X
1
and x+2y—-— =0 )
y
. 1 1
(1) —(2) gives x—y+—-—=0
yoox
22
ie., x—y+x 5 )2/ 0
Xy
ie., (x=»)(xX*Y +x+y)=0
xX=y )

Using (3)in (1), 3x*-1=0

&)
X = _ =
3 y

1y (1)
At the point (5) ,(g) ,A=8 B=1land C=38

AC-B*>0
3 3 4
- f(x, y) is minimum at (—) , (—J and minimum value of f(x,y) = 3°.

Example 2.5 Discuss the extrema of the function f(x, y) = x>— 2xy + > + x*— )?
+ x* at the origin

f(x,y)=x>=2xy+y* +x =y +x*.
f.=2x=2y+3x" +4x’
S, =-2x+2y-3)°
fo. = 2+6x+12x2
Lo

=-2; f,=2-6y
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The origin (0, 0) satisfies the equations f =0 andfy =0.
.. (0, 0) is a stationary point of f(x, y).
At the origin,4=2,B=-2and C=2

AC-B*=0

Hence further investigation is required to find the nature of the extrema of f(x, y)
at the origin.

Let us consider the values of f(x, y) at three points close to (0, 0), namely at (%, 0),
(0, k) and (%, k) which lie on the x-axis, the y-axis and the line y = x respectively.
f(h,0)=h+h +h*>0.
f(0,k)=k*—k’ = k*(1-k)>0, when 0< k <1
f(h,h)=h*>0
Thus f(x, y) > f(0, 0) in the neighbourhood of (0, 0).
.. (0, 0) is a minimum point of f(x, y) and minimum value of f(x, y) = 0.
Example 2.6 Find the maximum and minimum values of
f(x,y)=sinxsin ysin(x+y);0< x,y < 7.
f(x,y)=sinxsin ysin(x+y)
f. =cosxsin ysin(x+ y)+sinxsin ycos(x + y)

f, =sinxcos ysin(x+ y)+sinxsin ycos(x+ y)

Le., f. =sinysin(2x+y)
and S, =sinx-sin(x+2y)
f.. =2sinycos(2x+y)
Sy =sinycos(2x+y)+cosy-sin(2x+y)
=sin(2x+2y)
S, =2sinxcos(x+2y)
For maximum or minimum values of f(x, ), /=0 and / =0

i.e., sin ysin (2x +y)=0and sinx - sin (x + 2y) =0

. 1 1
1e., 5[cos2x—cos(2x+2y)]:0 and 5[0052y—c05(2x+2y)]20

ie., cos2x—cos (2x+2y)=0 (1)
and cos2y—cos (2x+2y)=0 (2)
From (1) and (2), cos 2x = cos 2y. Hence x = y 3)

Using (3) in (1), cos 2x —cos 4x =0
i.e.,2sinxsin3x=0
~sinx=0 or sin3x=0

Sox=0,rand3x=0, 7, 2wi.e., x = 0,%[,27[

3
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.. The admissible values of x are 0, 7_[,2_7[ .
3

3
Thus the maxima and minima of f(x, y) are given by (0, 0) (% ?) and (2{ , 2{)
At the point (0,0),A=B=C=0
: AC-B*=0
Thus the extremum of f'(x, y) at (0, 0) is undecided.

V3

T
AtthepOint[E,E), A=-3,B= Y and C=—Band AC— B> = 3—%>0-

As AC— B>>0and 4 <0, f(x, y) is maximum at (%’ %’J .

NN

Maximum value of f(x,y) = ——— .

Atthepoint(zf 23”) A= \/_B_§ dC= \/gand AC_32:3_%>0.

AsAC—-B’>0and 4 >0, f(x, y) is maximum at (23” 23”)

33

Minimum value of f(x,y) = —T

Example 2.7 Identify the saddle point and the extremum points of

f(x,y) = x*—y*=2x* +2)°
f(x,y) = x* =yt —2x* +2)°

f.= 4x° —4x; S, = 4y—4y°

S =12x"—4; fo =0 f,= 4-12y°

The stationary points of f(x, y) are given by f, = 0 and jz =0
ie., 4x*-x)=0and 4(y-»’)=0

ie., 4x(x*~1)= 0 and 4y(1-)*) =0

S x=0ortl andy=0or=£l.
At the points (0, 0), (£1, £1), AC - B*< 0
*. The points (0, 0), (1, 1), (1, —1), (=1, 1) and (-1, —1) are saddle points of the
function f(x, y).
At the point (1, 0), AC—B*>>0and 4 >0
. f(x, y) attains its minimum at (1, 0) and the minimum value is —1.
At the point (0, 1), AC—B>>0and 4 <0
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- f(x, y) attains its maximum at (0, £1) and the maximum value is + 1.

Example 2.8 Find the minimum value of x> + ) + 2%, when x + y + z = 3a.
Here we try to find the conditional minimum of x* + y* + 22, subject to the condition

xX+y+z=3a (1)
Using (1), we first express the given function as a function of x and y.
From (1), z=3a—x—y.
Using this in the given function, we get
fup)=x"+y"+(Ba—x-y)
f.=2x-2Ba-x—y)
S, =2y=-2@a-x-y)
Jo=4 [y =2],=4
The possible extreme points are given by f =0 and va =0.
ie., 2x+y=23a (2)
and x+2y=3a 3)

Solving (2) and (3), we get the only extreme point as (a, a)
At the point (@, a), AC—B*>0and 4 >0
- f(x, y) is minimum at (a, @) and the minimum value of f(x, y) = 34°.

Example 2.9 Show that, if the perimeter of a triangle is constant, its area is maxi-
mum when it is equilateral.
Let the sides of the triangle be a, b, c.

Given that a+ b+ c=constant
=2k, say (1)

Area of the triangle is given by

A=s(s—a)(s—b)(s—c) (2)
where s = atbte

2

Using (1) in (2),

A= Jk(k—a)(k-b)(k—c) 3)

A is a function of three variables a, b , ¢
Again using (1) in (3), we get

A= Jk(k-a)(k-b)(a+b—k)
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A is maximum or minimum, when f(a, b) = A_z =((k-a)(k=b)a+b-k)is
maximum or minimum. k
[, =(k=b){(k—a) 1+(a+b-k) (1)}
= (k-b)(2k—2a-b)
f, =(k—a){(k=b) - 1+(a+b-k) - (-1)}
=(k—a)(2k—a-2b)
Sfow =—2(k=Db); f,, = —3k+2a+2b;
fop =—2(k—a)
The possible extreme points of f (a, b) are given by
f,=0andf =0
ie., (k—b)(2k—2a—-b)=0and (k—a)2k—a—2b)=0
Sb=kor2a+b=2kanda=kora+2b=2k
Thus the possible extreme points are given by

()a=k b=k (i) b=k a+2b=2k (iii) a = k, 2a + b = 2k and (iv) 2a + b = 2k,
a+2b=2k

(i) gives a =k, b=k and hence c=0.
(i) gives a =0, b=k and hence ¢ = k.
(iii) gives a =k, b =0 and hence ¢ = k.

All these lead to meaningless results.
Solving 2a + b = 2k and a + 2b = 2k, we get

2k 2k
az?andbz—

st i (2,2
e point | ==, == |,

2k k 2k
A:f;a:_?;B:f‘ab:_g;C:ﬁb:_?

AC—-B*>>0and 4<0

.. f(a, b) is maximum at (% %J

Hence the area of the triangle is maximum when a = % and b = %

When a = 23—k, b =%; c=2k—(a+b) = 23—k

Thus the area of the triangle is maximum, when @ = b = ¢ = —, i.e., when the

triangle is equilateral.
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Example 2.10 1In a triangle 4BC, find the maximum value of cos 4 cos B cos C. In
triangle ABC, A +B + C=m.
Using this condition, we express the given function as a function of 4 and B
Thus cos 4 cos B cos C = cos Acos Bcos {7#—(A+B)}
= —cos Acos Bcos (A+ B)

Let f(A4,B) = —cos Acos Bcos(A+ B)

f, =—cosB{-sin Acos(A+B)—cos 4 sin(4+B)}
= cos Bsin(24+ B)

fz = —cos A{—sin Bcos(A+ B)—cos B sin(4+ B)}
= cos Asin(A+2B)

fuy =2cosBcos(24+ B)

f.s =cosBcos(24A+B)—sin Bsin(24+ B)
=cos(24+2B)

Jsp = 2cos Acos(A+2B)

The possible extreme points are given by
f,=0and f, =0

ie., cos Bsin(24+B) =0 (D)
and cos A sin(4+2B)=0

Thus the possible values of 4 and B are given by (i) cos B =0, cos 4 = 0; (ii) cos
B=0,sin (4 +2B)=0; (iii) sin (24 + B) =0, cos 4 = 0 and (iv) sin (24 + B) =0, sin
(A4+2B)=0

z T ..

ie., (I)A_E —;(11)B—2 A= 001‘72’(111)/1—2 B =0or 7 and
(iv)2A+B =7z, A+2B=rxor

4=% p="
3 3

The first three sets of values of 4 and B lead to meaningless results.

Hence 4 = %’ B = g give the extreme point.
1
At this point (? g) A=f,=-LB=f,= _5; fus =—1and AC = B*>0.
Also4<0

- f(4, B) ismaximum at 4 = B = ? and the maximum value

V4 V4 27 1
= —C0S— * COS*—COS— = —.
3 3 3 8
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Example 2.11 Find the maximum value of x” " z, whenx + y + z = a.
Letf=x"y"zzand =x+y +z—a.
Using the Lagrange multiple A, the auxiliary function is g = (f+ A@).

This stationary points of g = (f+ A¢) are given by g =0, g,=0,g.=0 andg,=0

ie., mx" "y 2P+ A4=0 (1)
nx" Yy zZP+ 1=0 (2)

pxX" Y "+ A=0 3)

x+y+z-a=0 4)

From (1), (2) and (3), we have

_2 — mxmfl yn Zp — nxm ynfl Zp — pxm yn prl.

. m n p m+n+p
1.€. S SRR .
’ X y oz x+y+z

m+n+p
= 2L by (4
a
.. Maximum value of foccurs,

when y = 4" -_an -

’y - » Z =
m+n+p m+n+p m+n+p

m+n+p m n P
. a -m™-n"-
Thus maximum value of f = p

m+n+p

(m+n+p)

Example 2.12 A rectangular box, open at the top, is to have a volume of 32 c.c. Find
the dimensions of the box, that requires the least material for its construction.
Let, x, y, z be the length, breadth and height of the respectively.
The material for the construction of the box is least, when the area of surface of the
box is least.
Hence we have to minimise

S =xy+2yz+2zx,

subject to the condition that the volume of the box, i.e., xyz = 32.

Here f=xy + 2yz + 2zx; ¢ =xyz — 32.

The auxiliary function is g = f + A¢, where A is the Lagrange multiplier.
The stationary points of g are given by g =0, g,=0,g.=0 andg, =0

ie., y+2z+Ayz=0 (1)
x+2x+Azx =0 )
2x4+2y+Axy =0 3)

xyz=32=0 4)
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From (1), (2) and (3), we have

1.2__, (5)
zy
1.2_, ©)
z X
2,2__, %)
y X
Solving (5), (6) and (7), we get
4 4
x=—-—,y=—-——and z=——
A A A
Using these values in (4), we get
2
—%—32 =0
ie., A=-—1

x=4,y=4z=2.

Thus the dimensions of the box and 4 cm; 4 cm and 2 cm.

Example 2.13 Find the volume of the greatest rectangular parallelopiped inscribed
2 2 2
in the ellipsoid whose equationis ¥ , Y ,Z _
a b )

Let 2x, 2y, 2z be the dimensions of the required rectangular parallelopiped.

By symmetry, the centre of the parallelopiped coincides with that of the ellipsoid,
namely, the origin and its faces are parallel to the co-ordinate planes.

Also one of the vertices of the parallelopiped has co-ordinates (x, y, z), which
satisfy the equation of the ellipsoid.

2 2 2
Thus, we have to maximise ¥ = 8xyz, subject to the condition *_ —+ Y —+ z _=1
b ¢
2 2 2
X z
Here f=8xyzand ¢ = _2+y_2+_2_1
a b ¢

The auxiliary function is g = f+ 1¢, where 4 is the Lagrange multiplier. The stationary
points of g are given by

g, =0,g,=0,¢g =0andg, =0

ie., 8yz+ Z/Ex =0 (1)
a
s+ 22 _ ¢ )
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2
g0+ 225 =0 ©
xZ y2 Z2
—S+5+— =1 )
a2 b2 CZ
2
Multiplying (1) by x, Z/Zf = —8xyz
Similarly 240" _ 242% _ ¢\ from (2) and (3)
b c
x2 y2 ZZ
Thus a_2:b_2:c_2:k say

Usingin (4), 3k =1 - k =%

Lx= L y—iandz—i

BT B J3

.. Maximum volume = 8abc'
33

Example 2.14 Find the shortest and the longest distances from the point (1, 2, —1)

to the sphere x? + )2 + z2 = 24.

Let (x, y, z) be any point on the sphere. Distance of the point (x, y, z) from (1, 2, —1)

is given by d = \/(x—1)2+(y—2)2+(z+1)2.

We have to find the maximum and minimum values of d or equivalently

d* = (x=1)" +(y=2)" +(z+1)’,

subject to the constant x? +y* +z2 —24 =0

Here f=(x—1)2+(y—2)2+(z+1)2 and
$=x"+y +z° =24

The auxiliary function is g = /' + A¢, where A is the Lagrange multiplier. The

stationary points of g are given by g =0, g,=0,g=0 and g, = 0.

ie., 2(x=1)+24x =0
2(y=2)+24y =0
2(Z+1)+2/iz =0

X +y +zt =24

(1)
2)
3)

“4)
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From (1), (2) and (3), we get

1 2 1
x: ,y: N Z:
1+4 1+4 1+4
Using these values in (4), we get
1
6 ~=24ie, (14 4) = -
(1+ 4) 4
A= 1 or _3
2 2

1 . .
When A = —5 the point on the sphere is (2, 4, —2)

When A = —% , the point on the sphere is (-2, —4, 2)

When the point is (2, 4, -2), d = . [(1)2 +(2)2 -|-(_1)2 =6
When the point is (-2, —4,2), 4 = (_3)2 +(—6)2 +32 =36

.. Shortest and longest distances are \/g and 36 respectively.

Example 2.15 Find the point on the curve of intersection of the surfaces z=xy + 5
and x + y + z =1 which is nearest to the origin.

Let (x, y, z) be the required point.

It lies on both the given surfaces.

xy—z+5=0 and x+y+z=1

Distance of the point (x, y, z) from the origin is given by d =[x’ +y* +z° -
We have to minimize d or equivalently

d’=x"+y*+z2°,
subject to the constraints xy—z+5=0andx +y +z—1=0.

Note®™ Here we have two constraint conditions. To find the extremum of /' (x, y, z)
subject to the conditions ¢, (x, y, z) = 0 and ¢, (x, y, z) = 0, we form the auxiliary
function
g=f+ A0, + A0, where A, and A, are two Lagrange multipliers.

The stationary points of g are given by g =0, 8,=0,2=0,g,=0 andg,=0.

In this problem, f=x*+)*+2°, ¢, =xy-z+5and ¢, =x +y +z— 1.
The auxiliary function is g =+ 4,¢, + 4,¢,, where A,, A, are Lagrange multipliers.
The stationary points of g are given by

2x+ A4 y+A4, =0 (1)
2y+ A x+A4, =0 )
2z—-A4+4, =0 3)
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xy—z+5=0 4)
X+y+z-1=0 (%)
Eliminating A , A, from (1), (2), (3), we have
2x oy 1
2y x 1|=0
2z -1 1
ie. x(x+1)=y (y=2)=(y+=z) =0
ie. ¥ =y tx-y=z(x-y)=0
ie., (x=y)(x+y-z+1)=0
x=yorx+y—z+1 =0
Using x = y in (4) and (5), we have
z=x"+5 (6)
and z=1-2x (7)
From (6) and (7), x> + 2x + 4 = 0, which gives only imaginary values for x.

Hence x+y—z+1=0 ()
Solving (5) and (8), we get x + y =0 9)
and z=1 (10)
Using (10) in (4), we get xy=-4 (11)

Solving (9) and (11), we get x =+ 2 and y = % 2.

.. The required points are (2, -2, 1) and (-2, 2 ,1) and the shortest distance is 3.

( EXERCISE 2(c) ]

Part A
(Short Answer Questions)

1. Define relative maximum and relative minimum of a function of two variables.
2. State the conditions for the stationary point (a, b) of f(x, y) to be (i) a maxi-

mum point (i) a minimum point and (iii) a saddle point.
3. Define saddle point of a function f{(x, y).

4. Write down the conditions to be satisfied by f(x, y, z) and @(x, y, z), when we

extremise f(x, y, z) subject to the condition @(x, y, z) = 0.
5. Find the minimum point of f(x, y) = x> +)? + 6x + 12.
Find the stationary point of f(x, y) = x> —xy +y* — 2x + y.
7. Find the stationary point of f(x, y) = 4x? + 6xy + 9)? — 8x — 24y + 4.

o
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10.

Part B

2 2
. Find the possible extreme point of f(x,y) = Xty +;+;-

Find the nature of the stationary point (1, 1) of the function f'(x, y), if /=
6x)°, f. = 9x? 3% and /= 6x° y.

Given f =6x, f, =0, f = 6y, find the nature of the stationary point (1, 2) of
the function f(x, y).

Examine the following functions for extreme values:

I1.
12.
13.
14.
15.
16.
17.

18.

19.

20.
21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

X3 +y* = 3axy

X +33—12x -3y + 20
X+ 2xy — X2+ 3)?
Xy-3x*—22-4y-3
x*+ x2 y +y? at the origin
x*y*(a—x-p)

X3y (12 = 3x — 4y)

1 1
xy+27(—+—)

Xy
smx+s1ny+s1n(x+y),0£x,ySE

Identify the saddle points and extreme points of the function xy (3x +2y + 1).
Find the minimum value of x> + )2 + 2%, when (i) xyz = &* and (ii) xy + yz +
zx =3a’.

Find the minimum value of x? + y* + 2, when ax + by + ¢z = p.

Show that the minimum value of (a® x* + b* * + ¢* z?), when

LI l, is k> (a+b+c)’.

x y z k

Split 24 into three parts such that the continued product of the first, square of
the second and cube of the third may be minimum.

The temperature at any point (x, y, z) in space is given by 7=k x y z2, where
k is a constant. Find the highest temperature on the surface of the sphere
X+ +z2=ak

Find the dimensions of a rectangular box, without top, of maximum capacity
and surface area 432 square meters.

Show that, of all rectangular parallelopipeds of given volume, the cube has
the least surface.

Show that, of all rectangular parallelopipeds with given surface area, the cube
has the greatest volume.

Prove that the rectangular solid of maximum volume which can be inscribed
in a sphere is a cube.

Find the points on the surface z2 = xy + 1 whose distance from the origin is
minimum.

If the equation 5x* + 6xy + 5)* = 8 represents an ellipse with centre at the
origin, find the lengths of its major and minor axes.
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(Hint: The longest distance of a point on the ellipse from its centre gives the
length of the semi-major axis. The shortest distance of a point on the ellipse
from its centre gives the length of the semi-minor axis).

32. Find the point on the surface z = x* + )7, that is nearest to the point (3, —6, 4).

33. Find the minimum distance from the point (3, 4, 15) to the cone x* + y* =
422,

34. Find the points on the ellipse obtained as the curve of intersection of the
surfaces x + y =1 and x* + 2y* + z2 = 1, which are nearest to and farthest from
the origin.

35. Find the greatest and least values of z, where (x, y, z) lies on the ellipse formed by
the intersection of the plane x + y + z = 1 and the ellipsoid 16x* + 4)? + 22 = 16.

( ANSWERS ]

Exercise 2(a)
(2) du =cos (x3*) ()*dx + 2xy dy)
(3) du=x""'-y"(y+xlogy)de+x"p* ' (x+ylogx)dy
4) du=y (1 +logxy)dx+x(1+logxy)dy
(5) du=(yloga)a®dx+ (xloga)a” dx
(6) 8a’° (4t+17);

(7) & sin® t{_’a a® —t* sin® tcost—tsin’ t/~Ja* —t* }
(8) (cost—e?—sinf)/(e” +sin t + cos t)

2 2
(9) _ X +2xy+2y" (11) %xcos > +%)

X +dxy+y°
(12) x(xy + 4y> —2x2)/(x + 2y) (14) 3.875
(15) 4.984 (16) 0.0043
(17) 0.006 cm?; 0.004 cm? (18) 2
(19) 4@+ b+ )k (20) 1.5
’z 0 %z
(36) duov 37) 5,79
’z ’z
— =0 =0
S (9 uav
2
u
=0
(40) dz-dz*
@1) () L@=xlogy) (i) ¥
x(x—ylogx) ¥
(i) ¥ tan x+logsin y (iv) logcot y—ytanx

log cos x — x cot log sec x+ x sec y cosec
g y g y y
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v r—y
x(1+logx)

(42) 2a°xy/(ax —y*) (43) 2a%xy Ba* + xH)/(a*x — y*)?
(47) 5% (50) 2.3%
(5 5) 5\/5%

324

Exercise 2(b)
@) 1+ (x4y)+ EHI ;” 6)(x£w—§ﬁx+yf+m
(1) u+v+1 (15) mmg(l)
2 3 y
Xy Y.

(16) y+xy+ 5 6 +

(17 \/—{H(x - ( Z)+@_(x_1)(y_’f)_%(y_§) +}

18 y+xy— y2+1x2y l)cy +1y+
(18) 2 277 27 3

(19) ’Zf_é(x_l)+5<y_1)+i<x_1)z_i(y_nu

(20) —10—4 (x— 1) +4(y+2) 2 — 1P +20— 1) 7 +2) + (x — 12 (v + 2)
21) —9+3(x+2)- T -1 +2x+2) (= 1) - 20— 1P+ (x +2) (v — 1)?
22) 1+(-D+GE—1)F—1)+--

@3)e[H{x—D+(y—D+%(x—D2+2@—Iﬂy—D+(y—D2+é(x—D3

+§<x—1>2 (y—2>+§(x—1)(y—2)2+%<y—2)3}

(27) (i) 4*+ 1)

(11) 4xy
(28) r
30) xpv+1-w)+z—-2uv
G =y -2)(z-x)
(32) w*=v+1
(33) utan v
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(34) f1=/f,+2f,
(36) L} ftan™' =+ (ax) /(x* +a?)}
2a a

1) n!

6D (e

(38) %\/;e

(39) tan”’ (l);f
a) 2

(40) log (1 +m)
Exercise 2(c)
(5) (-3,0) (6) (1,0)

(®) (1, 1) (9) Saddle point

4
™ (03]

(10) Minimum point

(11) Maximum at (a, @) if a <0 and minimum at (a, @) ifa > 0

(12) Minimum at (2, 1) and maximum at (-2, —1)

(13) Minimum at (i%, _%J

(14) Maximum at (0, —1) (15) Minimum at (0, 0)

(16) Maximum at (ﬁ,ﬁ) (17) maximum at (2, 1)
2’3

(19) Maximum at (Z , Z) and minimum at ( 7z 7
3 373

3

1
(20) Saddle point are (0, 0), (_l, 0) and (0, —5) ; maximum at (_l _l)
3

21) 3a% 32 22 P
a’+b*+c?
4
(25) ka_ (26) 12, 12 and 6 metres
8

(30) (0,0, 1)and (0,0,-1) (31) 4,2
1

(18) Minimum at (3, 3)

>

9 6
(24) 4,8, 12
(32) (1,-2,5)

(33) 5V5 (34) (_,3,0}(1, 00 6952

33






UNIT 3

Integral Calculus

3.1 INTRODUCTION

Integration can be considered as the reverse process of differentiation. viz, in
integration, we are required to find the function f{x) from its derivative which will be

given as g(x), say. In other words, the process of finding f{x) from g(x), given that %
{f(x)} = g(x) is integration. In this situation, we say that f(x) is the integral of g(x) and
write symbolically that f g(x)dx = f(x).

The symbol f is the symbol of integration, g(x) is called the integrand and dx

indicates the variable (x) with respect to which integration is performed.

. . d, .
For example, f cos x dx = sin x, since o (sinx) =cosx
and f3x2 dx = x’, since 4 (x*) =3x7
’ dx

3.2 CONSTANT OF INTEGRATION

When f 3x* dx=x’, the result f 3x*dx=x’ + ¢ equally holds good, as

d d . .
— ()= a(}f + ¢), where c is a constant. As ¢ can take any constant value, it is

dx
called the arbitrary constant of integration.

In general, when % f(x)=g(x), fg(x)dx =[f(x)+c]-[f(x)+ c] is called the

indefinite integral of g(x) due to indefinite nature, of c. For convenience, we normally
omit ¢ when we evaluate an indefinite integral.

3.2.1 Definite Integrals

When fg(x)dx = f(x)+c, then [f(b) — fla)] is called the definite integral of g(x)
b

between the limits (or end values) « and b and denoted by the symbol f g(x)dx. ais

called the lower limit and b called the upper limit and is denoted by [f(x)]f.
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Thus [ g(dr =[/ ()], = /(5) ~ /(@)

Note @ The constant of integration ‘c’ occurring in the indefinite integral
does not find a place in the definite integral, for if f gx)dx = f(x)+c,

Then Jedr=1/()+c,

={b) +c} —fla)+c
=/b) -fla)

b
Thus to evaluate f g(x)dx first get f{x) and omit the arbitrary constant c. Then

we substitute b and ; for the variable x and obtain f{h) and f{a). Finally we get
b
)~ fi)] = [ g(x)ax

/2
For example, fcos x dx =[sin x]g/2 = sing —sin0=1-0=1
0

2
and f3fdﬁ=uﬁf:2%—fzs—1=7.
1

3.2.2 Standard Integrals

Using the knowledge of derivatives of elementary/standard functions, the following
standard integrals are obtained. Students should not try to derive these results from
differentiation results, but remember them as formulas of integral calculus. [Constants

of integration are omitted in all the formulas]
n+l

1. fx" dx= :—i—l (n = —1); Extension: f(aerb)

[Lave Y at [¥ 2

An important note on the extension:

v g @+ D)
(n+1)-a

In the place of the variable x of the integrand of any standard integral, if we have
a simple first degree expression (ax + b), we have to replace x by (ax + b) in the
corresponding result in the R.H.S. also and divide it by the coefficient of x in
(ax + b), namely ‘a’. viz., if

[ etydr= 10 . (1)

then fgw+mmzlﬂm+m 2)
a
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This result which can be considered as extended standard integral is obtained as
follows:

If we putax+b=yin (1), then a dx=dy or dx = 1 dy
a

d 1
Ths (1) becomes ['¢(1) % == [ ¢()dy == f(2) by ().

Particular cases of stand and formula(1):

1. (a) f%dx: 7% Extension: f

x 1
(ax + b)’ B a(ax+b)

(b) f%—z&

2 b
Extension: f\/ dx > = ax+
ax + a

Extension: f dj— : = 1 log, (ax + b)]
ax a

2. f%zlogg x;

1
3. fex dx = e*;| Extension: fa””b dx=—e™"

a

4, fsinxdx:—cosx;

Extension: f sin (ax + b) dx = 1 cos(ax + b)]
a

Note™  Extensions are omitted for the remaining standard integrals that follow, as
they are obvious.

5. fcosxdx:sinx

@)

. ftanxdx:logsecx

7. fcosec x dx = —log(cosec x + cot x) or log tan %

*

fsec x dx = log(sec x + tan x) or log tan [% + g]

he

fcot x dx =log sin x

Note™  Formulas (6), (7), (8) and (9) are not derived from standard differentiation
formulas.

10. fsec2 xdx=tan x

11. fcosec2 xdx=—cot x

12. fsecx tan x dx =sec x
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13. fcosecxcotxdx:—cosecx
14. fsinhxdx: cosh x

15. fcosh x dx =sinh x

. IL:sin’1 x and IL:sin’l X
NI N a
17. f%:cosh1 [2] or log (x ++/x* —a*)

16

dx .1 x
18. fﬁ:smh ‘[—] or log (x ++/x* —a%)
X" +a a

1 X
=—sec —

f dx dx
. X\[XZ—I x,[xz—az a a

20. IL _1 tan™' [ﬁ] and hence fzd—xH =tan ' x
x

19 =sec ' x and f

X +a a a
dx 1 x—a
21. ——=—7I1o
fxz—az 2a & x+a]
dx 1 a—+x
22. =—Ilog|——
faz—xz 2a & a—x]

23.

W
N

5]
|

=

o
|
N | =
N

o
|

=

o
_|_
oS,
<

D\
/_H\
\L/

2

W

' foz +a’ dx:%\/szraz Jra—;sinhl[f]
a

3.3 TECHNIQUES OF INTEGRATION

Before we proceed to discuss techniques of integration, we give below two basic
properties of integration for which no proof is required as it is obvious.

(i) Ifkis a constant, f k f(x)dx—k f £(x) dx.
(ii) Ifk, k,, ..., k, are constants, then f[klfl(x) Lk, f5(x) £k (%)
ok, 0N dx =k [ fi)dxtk, [ f(x)dv -k, [ f,(0dx

3.3.1 Integration by Substitution

If the integral is of the form f F{f(x)}- f'(x)dx, where f(x) is an elementary/
standard function, the integral can be reduced to a simpler integrable form by putting
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¥ = fix) so that dy ~ f’(x)dx. The integral gets reduced to the form f F(y)}dy,
which can be done by known methods or by using standard formulas.

As particular cases of this rule, we mention a few:

To evaluate

° f F(x")x"~'dx, we put x" =y

° fF(xz)xdx, we put x2=y

° fF(logx)-ﬁ, we put logx =y
X

° fF(e‘)-e‘dx,wepute‘=y

o fF(sin x) cos x dx, we putsinx =y

° fF(tan x) sec® x dx, we puttanx =y

. d. .
. fF(snfl ) —2_ weputsin x=y
1—x°
o fF(tan’1 X) d weputtan ' x =y
1+ x%°

Note™  The following two particular cases of f F{f(x)}f"(x) dx are of importance,

as they will be used in integrating some rational and irrational functions.
/()
S (x)

(ii) f%dxﬁf%zz\/}_@ 7(x)

3.3.2 Integration by Trigonometric Substitution

(M)

dx — fd7y:10gy — log f(x)

If the integrand contains \/az —x?, \/x2 +a* or \/x2 —a?, it can be reduced to
a rational or integrable form by making the trigonometic substitution x = a sin 6,
x =atan @ or x = a sec O respectively

In the first case, we may even put x = a cos 6
In the second case, we may also put x = a cot @ or x =sinh y

In the third case, we may also put x = a cosec 6 or x = cosh y.

3.3.3 Compound Trigonometric Substitution
(x—a)
(B—x
be retionalised or reduced to the integrable form by making the substitution
x= o cos? O+ [sin? 6.

If the integrand contains /(x —a)(8 —x) or , when 8 > ¢, it can
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( WORKED EXAMPLE 3(a) ]

Example 3.1 Evaluate f
NI

The integrand is of the form /(1 + x%) x x3

SPutl+xt=y s Addx=dy
1
7dy
1:]4—:l><2 y:l 1+x* +¢
Jyo 4 2

dx
2 x| 712 _-x

Example 3.2 Evaluate f . —
pae +be

e}

1:[ ‘et +b2 f +b2

0

Pute*=y .. e'dx = dy, since the integrand is of the form f{(e*) X e*.

Note™  Instead of evaluating the indefinite integral and using the limits in the end,
we can express the limits for the new variable y using the substitution used.

Thus, when x =0, y = 1 and when x = o,

y=
f—fm‘iz[

= iz < |tan™ [_y] =— [— —tan”' —]
a b b)l, ab\2
1
Example 3.3 Integrate m W.ILX.

. . . . R |
Since the integrand is the product of log x or 1 + log x and its derivative —, we put
X

1+logx=y .. ldx:dy
X

d 1
1= f—JZ}:———i-c or ———+c
y y 1+ logx

/4
Example 3.4 Evaluate f sin 3x cos x dx.
0
The integrand can be rewritten as the product of f'(sin x) and cos x. So we put sin x
=yand .. cosxdx=dy
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T 1
When x=0,y=0and whenx= —, y=—F
X y when x 4 y «/5

/4
I = f(?;sinx—4sin3 x) cos x dx
0
12
= [Gy-4)d

0

(3.2 s
[2yy

]1/J§

31 1. 1
22 4 2

0

Example 3.5 Evaluate f

l—sinx]dx

+ sin x

cos’ x

I = f[m]dx—f(secxtanx)zdx

- f[seczx+(seczx—l)—25ecxtanx]dx

=2tanx—2secx—x+tc
/2

Example 3.6 Evaluate f [l + sin 2x dx.
0

/2

I = f\/coszx+sin2x+2(:osxsinxdx

0

/2

I = f\/costrsinx)2 dx
0
/2

= f(cosx+sinx)dx:(sinx—cosx)g/2 =2
0

Example 3.7 Evaluate f cosec® x dx.
I = f cosec® x cosec® x dx
= f(l + cot’ x)’ cosec” x dx

As the integrand is of the form f(cot x). cosec® x, we put cot x = y and cosec? x dx
=_dy

1= [a+y) (~dy)

— [a+3y 43y 4 ) dy

—{)}4—)/3 —i—3y§+yZ
5 7
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+c

3 1
cotx+cot3x+—cot5x+7cos7x

(sin”'
1—

3
X
Example 3.8 Evaluate /= f - \/—xz dx.

As the integrand is of the form f(sin™' x)-

, we put

1
wllfxz

! dx=dy

s
sin” x=yand .
\/1+x2

4
_ 3 _J’__l RN
I_fydy—4—4(s1n x)" +c

[ -1
Example 3.9 Evaluate f %.
+x

As the integrand if of the form f(tan ' x)- % we put

PR
X

tan’l)c:yand_'_1 dx=dy

+ x*
22 2 2
I:f\/;dyZEy :g(tan x)?2+c

e

sec’lx
Example 3.10 Evaluate f dex.

As the integrand is of the form f(sec™' x)- we put

1
x\/xz 71’
dx=dy

1

~1

sec  x=yand . ———
x«/x2 —1

= fe’”dy —e = +c

Example 3.11 Evaluate f / i ~ Y.
+x

Multiplying the Nr. and Dr. by /1 — x, we get

_ 1—x
1_f ,—1_x2dx
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To reduce the integrand to the integrable form, we make the trigonometric substitution
x =sin 6 and so dx = cos d@

I= f[l — sme]cos& do

cosf
=0 + cosf
:sin’]x—h/l—x2 +c

dx
Example 3.12 Evaluate f m

Due to the occurrence of /1 —x* in the integrand, we put
x =sin6and so dx = cos df
I f co’se do
(1—sinf)cosb

1+ sinf )
= df = | (sec” 0 + sech tan0)dd
f cos’ 0 f( )

=tan@ + secf
1 1 1
- * 4 or % 0r/+x—|—c
\/l—x2 \/l—x2 \/l—x2 I—x

Example 3.13 Evaluate f a xzz)y dr.
+x7)”

Due to the presence of (x* + 4)% in the integrand, we put
x=2tan@ and so dx = 2 sec’ § df

2 2
[:f4tan 0-2sec” 0 do

(4sec’0)”
_ 8 rtan’f
32J sec’d
o 1 .2
—Zfsm Ocosb do
-3
:% s 0, on putting sin 0 =¢
3
i b 1 x

—_—— or — ———5+¢
12\ Jx? +4) 12 (% +4)?
' 2 2
Example 3.14 Evaluate f udx.
X

Due to the presence of /x> —a’ in the integrand, we put x = a secd and so
dx=asecOtan6do
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Then f “a sec’§ —a’ asecl tanf df

asect

:aftanZGdQ:af(secze—l)dG
=a(tand — 0)

[2 2
Example 3.15 Evaluate f a—4xdx
X

Due to the presence of /a® —x* in the integrand, we put x = a sin@ and so

dx=acosBcos0dO

Then - facosﬁ acos@ df

a*sin* @

= —zfcot2 6 - cosec® 6 do
a

1 o
=— | t*(—dt), where t = cotf
= [y

t—: —Lcot 0
3 3a’®

=

)

1
__2

1
3d®
1
3

Example 3.16 Evaluate f (x—=3)(7 —x) dx.

We make the compound trigonometric substitution
x=3cos*0+ 7 sin’0
Then x—3=3cos’0+ 7 sin*0— 3 =4 sin’0
and 7 —x=7-(3 cos?’0+ 7 sin’0) = 4 cos*0
dx = (=6 cos Osin 6+ 14 sin 6 cos H)dO
=8 sinBcosHdo

Then ]:f\/mx%inQ cosf df
:32fsin20c0520d0
=3 f (2 sinfcosf)’do
=8fsin229d9



Integral Calculus

3.11

8
= f (1— cos40)do

:4[9_ sm49]

Afx—=3

=4sin” —2sin26 cos 26

2
— 4sin~'| M =3 — 4sinfcosf(2cos’f —1)

2
-3 Jx=3 J7— —
U] EN G PR\ C S ' Kl PV )
2 2 2 4
x—3 5—x
= 4sin”" —J(x=3 7—x[ +c
2 N =3)(7—x) 2
ax—1
Example 3.17 Evaluate f dx.
P \N2—x
Putx = cos?0+2sin’0 .. dx= (-2 cosOsin O+ 4 sinf cos 6) dO
=2sinfcosOdo
x—1=cos’0+2sin?0—1
=sin’0
2—x=2—(cos* 0+ 2 sin*6)
=cos’ 0
When x=1,co8’0 +2sin*f +1 viz., sin’8=0 -.6=0
When x=2,cos’0 +2sin’0 =2 viz.,cos’0 =0 .-.9:%
/2
Then I:ftan6‘~2sin6’ cosf do
0
/2 /2

- fz sin6 df = f(l — cos 26)dd
0 0

2

0

= [9 — lsin 20
2

l\.).| 3

B
Example 3.18 Evaluate f & ssa
w N —a)(B—x)
Put x=a cos’ 0 +Fsin*0 ..dx =2(5 — a) sinf cosd df
x=0=acos’§+Fsin*0 —0 = (5 —a)sin*0
B—x=p—(acos’+Fsin*0) = (5 —a)cos’ §

|
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When x=a, =0 andwhenx:ﬂ,ﬁzg
/2 .
I:f2(ﬁ—a)s.1m900s9d9:2_£:m
i, (8 —a)sinf cost 2
x—2
Example 3.19 Evaluate f dx.
5—x

Put x=2cos’0 +5sin’0 ...=dx=6sin6 cosd df

x—2=3sin’0 and 5— x=3cos*d

/3sin29
I=| [———=-6sinfcosfdd= | 6sin’ 0 do
f 3cos’d ' f

-3 f (1— cos20)dd

= 3{0 — lsin 20
2

=360 — 3sinf cosf

. 1\/)62 \/xZ \/Sx
=3sin -3 .
3 3 3

—3sin”’ XT_z— (x—2)5—x) +c

S S
(x —a)(B—x)

Putting x = av cos’f + B sin’ @ and proceeding as in Example (3.18),

B
Example 3.20 Evaluate f

_ "facos’0+ Bsin’0
i (B —a)sinf coso

2 2
a[l—l—cos 0]+5[1 cos 0]
2 2

we get I -2(8 — a)sind cosf do

/2

:2{

g e

de
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( EXERCISE 3(a)

Part A
(Short Answer Questions)
Integrate the following functions w.r.t. x:

. x2 ) X2 —4x+3
M) x+1 & x—2
A sin® x
) 1—cosx ®) 14 cosx
_ 1
) 24+e" +e ®) x(logx)"
. sinx + cos x " x+1
0) sinx — cosx (1 x> +2x+38
(13) Jax+b +;
Jex +d
s x" ! 16 sinh x
(15) a*t — x* (16) \/sinh2x+5

COSXx

Part B
Evaluate the following integrals:

cos' % i F

22) 2

@n NP

' dx
S e

NP

(26) ]x @ —xdx (27) j\/lf—xz

' dx
29 “[(2 — X )4 —x°

¥ a X
30) [ 5
0

a +x

T

(19 \J9 —sin® x

(3) COSmx COSnx

A ++/x)
© — 75

) sin® x-sin2x

x2 4+ 2x

12) ————
(12) X 37 +2
27

14) —

( ) x14_4
x

17

(17) 4
sec’ x

20) —FT7/—/—/——
(20) AJ16 4+ tan’ x

@) o

tan~! x

o\g o\_
Q

e Jie
1 dx
o [

[Hint: Put x? = a? cos26]
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(D) ] & (32) TL [Hint: Put x + 1 =)?]
b (L4 )1 —x° L (x=3)x+1

r[x—2 3 dx
(33) [\/S—de 349 L[«/(fo)(3fx)

35 f &
33 ) xJ(x—a)B—a)

3.4 INTEGRATION OF RATIONAL (ALGEBRAIC)
FUNCTIONS

dx and (Ix + m)

ax’ +bx+c ax’ +bx+c
integrals of rational functions.

Integrals of the form f dx are two typical

o 1 dx )
(1) To evaluate f —————, Wwe rewrite it as — f (viz., the
ax” +bx+c a x2_|_éx_~_f
coefficient of x? is made unity) a a
Then f L is re-written in any one of the forms
, b c
X +—x+—
a a
f dxz > f dxz 5 and f % There are extend-
x+p)+q 7 (x+p)—q g —(x+p)
ed standard integral formulas and hence easily evaluated.
(1) To evaluate (zlx;m)dx, we express
ax” +bx+c

Ix+m=4 ~%(ax2 + bx + ¢) + B, where 4 and B are constants to be found

out in individual problems.

i(axz—l—bx—i—c)
dx dx
Then I = A4 dx+B | ————
f ax’* +bx+c fax2+bx+c

!/
The first of these integrals is of the form f %dx and hence the result
X

is log {fix)} or log (ax* + bx + ¢) and the second integral is evaluated as in
case (i).
(i) If the denominator of the integrand f{x) in f f(x)dx can be factorised,

fix) is split into partial fractions by algebraic method and the integration is
performed term by term.
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Integration of the trigonometric functions of the following form can be reduced to
integration of rational functions, or integration by substitution.

(1)

(i)

(iii)

dx

2 =2
acos"x+bsin“x+c

To evaluate integrals of the form f (where a, b, c are

constants, we multiply the numerator and denominator of the integrand by

sec?@ and then the integral can be rewritten as [ f(tan®@)sec’ 6 df, which
can be evaluated by earlier method by making the substitution tan 6 = u.

dx
acosx + bsinx +c¢

To evaluate integrals of the form f , We eXpress cosx

L X TP .
and sinx in terms of tanz. On simplification, the integral takes the form

f ZL which can evaluated by the earlier method.
at” + bt +c

lcosx+msinx +n

To evaluate integrals of the form f [ /]dx, first

!"cosx+m'sinx+n

we put integral in the form Nr.= [A Dr + Bx %Dr] where 4, B, and C

constants to be found out in individual problems [Nr = numerator and Dr. =
denomination]
Then the integral takes the form

d
—(Dr)
] = f A+ B de + c¢|dx, the result of which is immediately obtained as
r

dx
Ax = Blog(Dr.)+ ¢ f Dr The third integral is a problem in the case (ii)

( WORKED EXAMPLE 3(b) ]
dx

Example 3.1 Evaluate [ &

P f xxt
The integrand is the product of a f{x?) and x. So we make substitution x> =y and hence

1
dx =—dy.

2

Ly

Then = f 2 _ 1 dy

2 Y 2
+y+1 2 1 1
2 4
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+-| +
Y 2
y+l
:litanfl—z
2 3 ﬁ
2
1 2x2+1]
= —tan +c
NE) [ 3
dx
Example 3.2 Evaluate | ——.
. f1+4x74x2
I:% dx :i dx
+ _ 2 - 2_
2 ( )
1
i
I VR
2 2
RIS
BN S U 1 NI
PRI 1]242‘%1_%L
N ) 2
_ 1 log 2-— \/_+2\/_x
w2 12 e — o
| dx
Example 3.3 Evaluate f ¥ 0<h<l
x> 4+ 2xcosf+1’
1= dx

(x + cosf)’ + (1— cos” 0)
dx

sinf

1 1[x—kcos&
tan

(x + cosf)* +sin* 6 ~ [sing

can-! [1 + cosf
sinf

] — tan”"' (cot 9)}

=—{tan"' [cot g] — tan”'(cot 6)}

sinf

T R e REREE
=——1tan  tan|———|—tan tan|——0
sinf 2 2 2

1

™ 0 7 0
=—— 1T~ —+0 —.
sinf {2 2 2 } 2sinf

]1

0
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8

Example 3.4 Evaluate )
’ f X +1

1
Put x’ = y and so x’dx = gdy

1
~y’dy

= i +1:_f[ )’ +1}

1
= g[y —tan"' y]+c¢

—%[x2 —tan 'x’]+c¢

x—2
Example 3.5 Evaluate | ————
B f2x2—|—3x—|—1
d
Let x—2=A4-—2x" +3x+1)
dx
=A(4x+3)+ B
o . 1 3 11
Comparing like terms; 4=— and =+ B=-2 . B=—
4 4 4
11
7(4 +3)——
Then _[4 4 4y
2x" 4 3x+1
leog(2x2 —|—3x+1)—ﬂf¢
4 8 3yl
4 2
1 11 dx
=—log(2x* +3x+1)—— | —————
R RERT)
X+ — —
4
I
—llog(2x2+3x+1)—5xi1g—4 4
4 8 2 x+é+l
4 4
1 11 2x +1
=—log(2x* +3x+1)——1lo +c
4 el ) 4 g[2x+2

Example 3.6 Evaluate f % &
x+7—x

Let x+1=A(6-2x)+B

Comparing like terms; 1— 24 =1 -, A= — % and 64+ B=1 - B—4
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1
——(6—2x)+4
Then 1: 2—:__10 6 _|_7_ 2 +4 L
f 6x+7—x° 2 g(6x x) f7—(x2—6x)
! dx
=—log(6x +7—x*) +4
2g(x x%) f4z 3y
:_llog(6x+7—x2)+4>< : log Arxo3) e
2 2x4 4—x+3
= Llog(6x +7 - x) + Tlog| X |
2 Jlog|——
Example 3.7 Evaluate w
X —x+1

Integrand is an improper function. So we express it as the sum of an integer and a
proper function.

2x
Then I= |1+ dx
f[ X —x+1
LQx-D+1,
+
- f X —x+1
dx
:x—Hog(xz—x—i—l)—kf—2 -
-3 4[]
2 2
2 2x—1
=x+log(x* —x+1 +—tan‘[ ]+c,
g( ) 5 N
2 2
1
Example 3.8 Evaluate f 3)‘—+
b dx +12x +7

2 éx(uxz +12) |
I= 12— gr=Lilogy’ +12x+ 7))
[4x3+12x+7 Pl o

1 1
=—Jlog63 —log7]=—1log 9.
12[ g g7] 1 o8

X 4x+1

Example 3.9 Evaluate f W
x—D)(x—

As the denominator is the product of factors, we split the integrand into partial
fractions.
x4 x+1 4 B C

L =
“ (x —D(x —2) x—l—i—x—2+(x—2)2
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X+ x+1=A(x—2) +B(x—1)(x—2)+C(x—1)
Putting x=1, A4=3
Putting x=2, C=17
Equating coefficients of x? on both sides, we get A +B=1 .. B=-2.

Then I = f 2 7

3
— + 3
x—1 x-2 (x-=2)
:3log(x—1)—210g(x—2)—L+c
x—2

x =1

Example 3.10 Evaluate | ——  —
: f X+

Though the denominator of the integrand is not directly factorisable, it is made
factorisable as explained below:

X=X
= +1)7 —x
=" +x+DE*—x+1)
I x*—1
(X —x+DE*+x4+1)
Let 7= Ax+ B Cx+D
¥ —x+1 x+x+1

Then

X —1=(Ax+B)(x* +x+ 1)+ (cx + D)(x> —x+1)
Equating like coefficients, we get
A+C=0
A+B-C+D=1
A+B+C-D=0
B+D=-1

. . 1
Solving these equations, we get A =1,C=-1, B= 3 =D

x—l x—&-l
= 2 2
X—x+1 x*4+x+1
1 2x —1 _ 2x +1
2 X—x+1 x*+x+1

2_
~Liog x2 x+1 np
2 x+x+1
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xdx
X +1

Example 3.11 Evaluate f

The denominator of the integrand is factorisable as (x + 1) (x* —x + 1)
X A Bx+C

Let 3 = >
x+1 x+1 x —x+1
x=A(x> —x+1)+ (x + 1)(Bx + 0)
Putting x=-1, A:f%

Equating like terms, we get 4 + B=0 _;B:% and4+C=0 .'.C:%

1
Then sz 3 -i-l 2x+1
x+1 3 x —x+1
1 3
—2x-D+=
1 12t 2
=——log(x+)+—- | =——=dx
3 el ) 3f X —x+1
1 1 1 dx
:——10g(x+1)+—10g(x27x+1)+—f—2
3 6 2 1V ({3
SR
2 2
1 1 1 2x —1
=——log(x +1)+—lo (x2x+l)+—tanl[ ]+C
300 6" N NG
i cosx dx
Example 312 Evaluate [—— —
(1+ sinx) (2 + sinx)

0

Put sinx =y and so cosx dx =dy

When x=0 and %, y=0 and 1resepectively

d

I = —y
L[(l+J/)(2+J’)

on splitting the integrand into partial fractions.
I =[log(l+ y) —log(2 + »)],

=lo g—10 l—10 [i]
g3 g2 g 3
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Example 3.13 Evaluate f
0

(+x)(1+x)
Let x - A Bx—i—zC
I+x)(A+x) 14+4x 14x
AL+ x*) + A+ x)(Bx +c)=x
Putting x=-124=—1 ."A:_%
Equating like terms, A+B=0 ,',B:%
1
and A+C:0.'.C:E
Then ]:f l x+12 d
b 1—|—x 2 1+x

1 1 1 °°
=|——log(l + x) + —log(1 + x*) + =tan ' x
[ 2 g(l + x) 2 g( ) 5

0

IOC
1+ x3)* 1
=log % + —tan"' 0o —Etan*1 0
(1+x? |,
1]
1 n
]
~+1 4
X 0
dx

Example 3.14 Evaluate f P
sin x SIn 2x

= dr
sin x 4 2 sin x cos x
_ f _ f sinx dx
sinx(1+ 2 cosx) (1 —cos® x)(1 + 2cosx)

Put cosx =y and so sinx dx =—dy

= dy
1=+ y)(A+2y)
1 A B C
et — +
1=»a+ya+2y) 1-y 1+y 142y
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r1r 4
-6 2 3 , on splitting into partial fractions.
-y 1+y 142y
1 4
6 2 3
1= + d
J 1=y 11y 11297

1 1 1 4
=—log(1— y +—log(l + y) — —-—log(1 + 2
c g(l—y 3 g1+ ) >3 g(1+2y)

= élog(l —cosx) + %log(l + cosx) — %log(l +2cosx)+C.

dx

sin? x + 6cos®x + 3

Example 3.15 Evaluate f

Multiplying the numerator and denominator by sec?x,

2
we have 1= f 5 sec’ x dx 5
tan® x + 6 + 3(1 + tan” x)

Since the integrand is the product of f{tan 6) and sec?6, we make the substitution tan
x =y and so sec’x dx = dy

:f dy
YV 4+ 643147

f fd—y:lztanl(z_y]
4y* +9 , (3 43 3

/2 d_x
Example 3.16 Evaluate f

2 2 2 2 °
v @ cos X+ b"sin” x

sec’ x dx
= f -
a® + b*tan* x

Put tanx =y and sosec’ xdx =dy
When x=0, y=0 and whenx:%,y:oo
T dy 17 dy
Th = —_—_—— — i —
en ’ [az by b2f
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Example 3.17 Evaluate f 4cosx +3sinx+5

. . . X . X
Expressing cosx and sinx in terms of tanz and putting tanzzt and so

sec2£~ldx:dt01rdx:it2
2 2 1+¢
2dt
we get ]:f 1+
YL Y B
1+7 1+7

:2f dt
41 —1) + 6t + 51+ 1)

dr dr
=2 =2
ft2+6t+9 f(t+3)2

Evaluate | ———=————.
Example 3.18 Evaluate ) 12 cosx + 9 sinx

2dt

Putting tan% =t and so dx = s and changing the limits as 0 and 1, we get

2dt

I_f 1+
0121—t2 gx 2
1+7 1+1¢

1

_2f ds
12 —12¢ +18¢

0
1

1 dt 1 dt
:gf 3t]:€f 3 3
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5,,.3
*lleog 4 4
6 5 5 3
4 4)
1 3 1
—|log——log—
15[ g2 8 ]
—Llog6.

sinx + 18 cosx
S frrrre

Let sinx + 18cosx = A(3sinx + 4cosx) + B(3cosx — 4sinx) Equating like terms,

we get
34-4B=1
and 44+3B=18
Solving equation (1) and (2), we get A =3 and B=2
d
3x(Dr)+2—(Dr.

- (Dr) dx( r.)

Then [—f dx
Dr.

=3x + 2 log(3sinx + 4cosx) + ¢

/2 dx
Example 3.20 Evaluate f -

1+ cotx

sin x
1= f
sinx + cosx

Let sinx=4- f(x)+ B- f'(x), where f(x) is the denominator
= A(sinx + cos x) + B(cosx — sin x)
Equating like terms, we get 4A—B=1and A+ B=0
A= 1 and B = 1
2 2
/2 1 1
Then I=||— f (x)
2 2 f(x)

= lx—llo (sin x 4+ cos x) ’
2 2 g 0

T 1
——0|——(logl —log1l
[2 ] 2( g gl)

1
2
T
4

(1
@)



Integral Calculus

3.25

[ EXERCISE 3(b) ]

Part A
(Short Answer Questions)

Wy @3
x+1
O mry O g
©) sin x (10) cos x
Part B

Integrate the following functions w.r.t. x:

2
an x4+ x+1
2logx +3
x[(logx)* + 2logx + 5

(13)

5- 4smx)cosx
15)
1+ 2sinx —sin® x

1
(x—3)
(17) Evaluate {xz x4
dx
(19) Evaluate [ T

dx
21) Evaluate | ———
(21) Evalu fx3—|—1

Evaluate the following:

23) f .cosxdx. i
(1+ sinx)(1 4+ sin” x)
dx
25
(25) fcoszx+25in2x+3
dx
27 f1+3sinx+4cosx

1. (x+1

O s @ e [T
COS X

D+ @ Snxd+sinn

(12) e +2e" +10

3x+7

(14) 2x* —3x+5

X —x+1

R

1

(x-3)
(18) Evaluate | —/————
{x +2x—4

(7x — 4)

(20) Evaluate f e

2x* 43

(22) Evaluate f 1
o

= 1)(x +4)

e [T
3dx

(26) f2 + 7 cos*x

K dx
28 _
(28) jo‘5+3cosx
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/2

i f 8cosx +sinx +6 & 0
(29) 3cosx+2sinx +4 & )f

1+ tanx

3.5 INTEGRATION OF IRRATIONAL FUNCTIONS

dx
(i) To evaluate f > We make the coefficient of x? as unity, viz., I
Nax’ +bx +c¢

1 dx 1 dx
is rewritten as —= f ——— whichisputas —= f T
va e b e Va < J(x+p) £q
a a
1 dx
o —= | —m————.
) Ja’ =+ py’

Ix+m
(ii) To evaluate dx, we express [x+m= A ><— x)+ B,
f«/ax +bx+c 7&)

where f(x) = ax? + bx + ¢ and A4, B are constants to be found out in individual
problems.

Af! (x) + B dx ]
n /= dx=A4A%x2\f(x)+B . The second inte-
L A e ey
gral is evaluated as in case (i).

(iii) fq/axz +bx+c dx:

Making coefficient of x? as unity, we get
1=\a [+ py +¢" dvorva [’ = (x+ p)dx,

which are extended standard integrals.

(iv) f(lx—km)\laxz +bx +c dx

To evaluate this, we put /x + m = Af'(x) + B, when 4 and B are constants t
to be found out in individual problems and f{x) = ax* + bx + c.

Then I= f (A f'(x) + B[ f(x) dx
=420V + B [ TG d

Then second integral is evaluated as in case (iii).
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(v) Integral of the form

dx dx )
f B \/ T et can be converted as f ﬁ, by making
x — k)\ax X + ¢ X" +mx+n

the substitution x — k =

1
v
dx
(px + @Wflx +m

(vii) If a part of the integral contains /ax + b, we may put ax+b= y* and

. o 1
(vi) To evaluate f also, the substitution px + g =— can be
y

made.

remove the irrational part from the integrand.

dr , weput x= l Then the
(ax® + b)\/cx2 +d y

integral takes the form which can be evaluated by substitution.

(viii) If the integral is of the form f

( WORKED EXAMPLE 3(c) ]

Example 3.1 Evaluate f ﬁ
dx
[= | —
. IL
J22 —(x—3)

. I[x—3]
=sin |——|+c¢
2

1

Example 3.2 Evaluate f

R
o X +2x+2

| dx
I=[———— =] +1) + x> 4+ 2x +2}],
=log(2 +~/5) — log(1 ++2)
2445

1++2

=log
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Example 3.3 Evaluate f

&
J2x° —Tx +5
1 dx 1 dx
\/Efx2_7x+5 \/Ef 7V 9
22 74 16

= Lcosh*l [4x — 7], since a* = 2
3 16

N

x
Example 3.4 Evaluate | ————=dx
. f \/5x2 —4x
Let x—A~i(5x2—4x)—|—B
dx

A-(10x—4)+ B
. . 1
Equating like terms, we 10 4 =1 and so 4= I

—444+B=0 andsoB:%

~(10x—4)+ =
Then [:flO—S
5x* —4x
2 dx
=—x25x" —4x +
10 5¢‘f 4
5

3x—2
Example 3.5 Evaluate f m
4x° —8x +

Let 3x—2:Axa(4x2—8x+13)+B
— Ax(8x—8)+ B

Equating like terms, 4 = % and B-3=-2andso B=1.
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7(8x—8)+1

1_
f\/4x 8x—|—13
—éw/4x2—8x+13+lf dx
4 2

B B 13

—2x+—=

x X 4
_3 e —sxt13 +lfL
4 2 32
(x_1)2+[2]

3o —sxr34+ L 22D
4 > 3

Then

5
Example 3.6 Evaluate f
2

5—x

Multiplying the numerator and denominator of the integrand by /x — 2, we get

:] (x—2) f (x—2)
) V(X —=2)(5—x) \/—10+7x—x

Let x—=2=A4x(7-2x)+B
Equating like terms, 4 = _1 and B = 3
3
—*X(7 2x)+5

=] J-10+7x — 22

=—y—10+7x—x’ +§f—dx
29 =10+ 7x—x?

=& =2)E-0} +
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Example 3.7 Evaluate f Jx(1—x) dx.
1= f\/x —x7 dx
- f,/—(x2 — x)dx

S b3

1

1Y 1
WL
—[—2 x(lfx)+ZTsin’1 -2

2

N | —

:(2%—1)‘” —x +ésin’l(2x -D+c

Example 3.8 Evaluate f(x + x> —x+1dx

Let x—i-l:A%(xz—x—H)—i—B

= AXQ2x—1)+B

Equating like terms, we get 24 = 1 and so A4 :% and—-4+B=1andso B :%

Then [= f {% F(x) + %}/ 7 (x)dx, where f(x)=x> —x+1

LY | 3 17 (B
2 ) 2

2
1
1 3 T2 o

=—(x2—x+1)% +=|—=5x —x+14
3 21 2

2

<)

\2)
2

sinh ™!

S

1, 3 B 9 ., _[2x—1
=—(x"—x+D)+=2x—1)/x" —x+1+—sinh +c
3 )+ @x-1y - [ N ]

x+2

x—2

dx.

Example 3.9 Evaluate f (x+1)

I= f (x+1 \(/% dx, on multiplying the numerator and
X

denominator by vX +2.
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I —I—mx—l—n

\/ax +bx+c

Now [ = fx t3x+2 dx. This integral is of form f

To evaluate thls 1ntegra1, we proceed as given below

Let ¥ 4304 2= A — )+ B - 4+ C
Equating like terms, we get A=1, B= % andC=6

Then 1= [{¥—4dc+2 fdx dx+6f
zg xP—4 —%coshl[gj —i—%x 2x* —4 + 6cosh*1§

= g\/xz -4+ 3.\/x2 —4 +4cosh™ [g] +C.

dx
(x4 DyJx* +4x+2

Example 3.10 Evaluate f

Let x+1:landsodx:flzdyandx:1_—y
y y y
1
——dy

Then :f 4

1 [(1—y)  [(1—y

L [ ] +4[ ]+2

y y y

__f\/(l
_ _ dy
- \/1+2y—y2 / J&2y - -’

—1
=cos [y_] or cos '

N

y) + 4y(1 -y +2y

\/_(x—i—l)]

Example 3.11 Evaluate f

dx
(4x—|—1)1ll—x—x2.

Let 4x+1:landsodx:—%dyandx:[l—l]+4or1y
y 4y y 4y
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1

dy

RRE=NE

- [ —dv
J16y> —4y(1—y) — (1 — )’

Then

19 19
-5
——Lcosh v 19)
19
19y —1
=———cosh™'
V19 V20 }
1 e 1 1
—__cosh71 x—+
J19 V20
_ 1 cosh! 76x + 18
J19 V20(4x +1)
_ 1 cosh”! 38x+9
J19 J5(4x + 1)
dx
Example 3.12 Evaluate | —  —
f(x+2)«/x+3
1 1 1
Let x+2=—andsodx=——dy. Alsox+3=1+—
y y y
Ly

y

Then 1:[1\/7 ff\/yT
y
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__ dy dy
f\/y2+y_ f 1 1

[”2]2[2]2
el

=—cosh'(2y +1)or — cosh[Z X

=—cosh™ [er ;] +e.

X+
Example 3.13 Evaluate f Jx
T
Let x=y" andsodx =2y dy
Then = f y2ydy
2+y

4 2
=2 f [J’ -2+ m] 4y, as the improper function Y has
been rewritten y+2

2

= 2[%— 2y + 4log(y + 2)]

=x — 4/x +8log(\x +2) + ¢

Example 3.14 Evaluate f

dx
(D —4

Let x:landsodx:fizdy
y y

1dy

e

- f —ydy
(* + D1 =4y’

Let 1—4y* =u* and so —8ydy = 2u du

Then

fu du du

Then I= fl uz) :f(\/g)z _ 42

‘u
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\/E—I—u

1 —

=——1lo
25 B\ —u

_ 1 log V5 + 41— 4y
V51— 4y?

25
R Rl -4
= log X
245 4
ﬁ‘f‘f
1 x\/g + \/xz —4
= log +c
25 x\/g—\/xz —4

N5
Example 3.15 Evaluate f

dx
b (4 x)1— 22

1 1
Let x=— andso dx=-—-dy, whenx =0,y = and when
Y Y
1
x:_a.y:\/g
NG
1
5 —5d
Then szy—
1 1
y

ydy

5O+ Dy —1

Let 32— 1 =u? and so ydy = u du; when y=+~/3, u=+/2 and when y = oo, 11 = oo

Then



Integral Calculus

3.35

( EXERCISE 3(c)

Part A
(Short Answer Questions)

f dx
Ja' —x*
f dx
Jxt —a’
f dx
&xz_i_az
4. Evaluate f L
XX +2x+5
&
J4d—2x—x"
dx
X2 4+ 3x+1

(x + 3)dx

7. Evaluat
valuate ﬂ

8. Evaluate f

1. Evaluate
2. Evaluate

3. Evaluate

5. Evaluate f

6. Evaluate f

_ &
(x + AW
dx
Xal—x
10. Evaluate f L
N 2ax — x?

Part B

9. Evaluate f

11. Evaluate f

—dx
X(2 —3x)
12. Evaluate f

o A1+ x*

13. Evaluate f ( )(ﬁ )(ﬁ
x—a)B—x
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(2x+5)
NJxr=2x+10

x+1
-3

14. Evaluate f dx

dx

15. Evaluate f

2
2x
16. Evaluate | ———————=dx
jo‘wlbc —x*=2

2
17. Evaluate f de

\/xz +1
dx
(x+ 2W/x> +6x+7

Evaluate f +
XAJ7x" —6x—1

dx
20. Evaluate f m
_
(x+3)yx—5
o (14+x7 )wll—x

dx

(% —Dx* +1
24. Evaluate f,/7x—10—x2dx

25. Evaluate f(x-i—l)«lxz +x+1dx

3.6 INTEGRATION BY PARTS

18. Evaluate f

19.

21. Evaluate f

VAR
22. Evaluate f

23. Evaluate f

When u and v are function of x, then by the product rule of differentiation, we have

i(uv) uﬂvad—u
dc 7 dr dx
. dv
viz., dx_dx( V)

Integration both side w.r.t. x, we have

fudv:uv—fvdu
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Evaluation of f udv depends on f vdu. Thus when we want to evaluate an

integral which is a product, it should be identified as the product of one factor (i) and
the differential of another factor v. The choice of u and v should be carefully made so

that f vdu 1is easier then f udv.

3.6.1 Improper Integrals

b
The definite integral 7 = f f(x)dx has meaning only when the limits a and b are finite

and the integrand f{x) is bounded in the interval [a, b]. Now we extend the definition
when the range of integration is infinite or when the integrand is unbounded.

Definition: If f{¢) is bounded and integrable in a <¢ < x, where a is a constant and

z is any number greater than a and if f f(®)dt = F(t), then

f f()dt = lim f F(O)dt = im {F(x) — F(a)}
is called the improper or infinite integral of f(¢), provided the limit exists. If the limits

exists, theintegral is said to converge. Onthe other hand, if f f(®)dt - o0 as x — oq,

the integral is said to diverge to +eo or said not to exist.

b
Similarly lim f f(®)dt = lim {F(b) — F(x)}, if the limit exists, is denoted by

b
f f(t)dt and the infinite integral is said to converge

Finally f f(®)dt = lim f £()dt + lim f f(t)dt is defined the infinite integral

in the in the L.S. is said to converge if both the integrals in the R.S. converge, ‘a’ is
arbitrary and the value of the integral does not depend on a.

3.6.2 Integral with Unbounded Integrands

b b
If /() is unbounded at t—aina<t<b, then f f(0)dr = lim f F()dt(e > 0),

. . . . at+e
provided the limit exists.

Similarly if f{¢) becomes unbounded as to — b in a < ¢ < b, then

b b—¢
[ r@yde=1im [ f(e)de(e>0), provided the limit exists.
€ —
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If both and a and b are points of discontinuity, then

f f(®)dt = 11rn f f(Hde + hm f f()dt, a < ¢ < b. Iff(f)isunboundedataninterior

a+e€ c+€7

point ¢ such that a < ¢ <b, then f f(Hdt = 11m f f(®at + llm f f(0)de,

c+€2

where € and €, are two arbitrary positive quantities tending to zero independently.

Although the two integrals in the R.S. may not exist independently, their sum may
existwhene =€, =e.
The value of the sum is called the Cauchy Principal value and written as
P f f(0)dt = lim f F()de + f F@)dt

ct+e

If f{#) has a finite number of points of infinite discontinuity in (a, b), say, ¢, c,, ..., ¢
where a <¢, <c, ---<c¢, <b then

n

jf(t)dt = Cf‘f(f)dt + jf(t)dt + e +]f(t)

3.6.3 Comparison Tests for Improper Integrals

b
Let f f(t)dt be an improper integral. If there exists a g(¢) such that [f{7)| < g(¢) in

b b
a<t<band f g(#)dt converge, then f f(t)dt also converges.

If there ex1sts function g(¢) such that f(¢) > | g(@) | ina<t<band f | 2(0) |dt

diverges, then f f(¢)dt also diverges.

Limit Form of Comparison Tests
Let fix) > 0 and g(x) > 0 for all x < a.

S

g(x)
converge or diverge together.

If lim

xX—+00

=k, where k = 0, then both the integrals f f(x)dx and f g(x)dx

It £ =0, we may conclude only that the convergence of f g(x)dx implies that of

f f(x)dr.



Integral Calculus 3.39

[ WORKED EXAMPLE 3(d) ]

Example 3.1 Evaluate f e dx.
Let x> =tand so xdx:%dt
1
Th - !
en I 2fte dr
_ ! e — t dy— of e
_Eftd(e) [Note:u=t;dv=e'dt. ~.v=e']

1 t t
:E[te ffe dr]

Example 3.2 Evaluate f xle*dx.

1=fx3d[e;x

] 2x

~~u=x" and dv=e**dx and so v :fe“dx:e—
2

— %{x??eb( _ erx . 3x2dx}

I 55 3 2 [ezx]
=—xe" ——= | xd
2 2f 2

_1 3 2x 3 2 2x 2x
=—xe —Z[xe —fe -2xdx}

2
2x
lx362x§xzezx+§fxd[e ]
2 4 2 2
le3ezv——xzezx—&-é[xezx—fehdx]
2 4
:lx3e2v x2621+ erv__eZX +C

Example 3.3 Evaluate f x* sin 2x dx.
2x
[ d[— cos ]
Jra-=5

cu=x’ anddv:sin2xdxandsov:fsinde:f

cos2x
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2

:fX—COSfoffMQxdx
2 2

2 .
= —x—cos2x—|— fxd[s1n2x]
2 2

2

1 . .
= —x—cos2x + —[xsm2x — fsm 2xdx}
2 2
x? 1 . 1
=——co0s2x + —xsin2x + —cos2x + ¢
2 2 4
Example 3.4 Evaluate f x tan’ x dx.

2

2 _ — _x
I= f x(sec? x — 1)dx f xd(tanx) =

2

:xtanx—ftanxd _x?

2
b
= xtanx — log secx —?—i— c

2
Example 3.5 Evaluate f x" log x dx.

1
2 n+1
Let =
e 1= [x logx dx = ‘[logx d[n+l]

£ [

LN
x
xn+1
log x
n+1 \ (n+1)

n n+1

n+1 n+1
= log2 — + >
n+1 (n+1) (n+1)
log x
Example 3.6 Evaluate
’ Joxr
1
Let I=|logx-d|—
f g [ 1+x]

1
=—logx- — | - -—
& x+1 f x+1 x

:_logx_i_fl_ 1 e
x+1 x x+1
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log x X
=— + log
x+1 x+1

Example 3.7 Evaluate f (log x)* dx.

+c

Note @  The integrand is not a product of two factors. So we assume that
u = (log x)* and dx = dv so that v=1x.

Then /= f (log x)2d(x) = x(log x)* — f X+ 2logax- ~dr
X

— x(logx)? — 2 f (log x) d(x)
) 1
= x(logx)” — 2{xlogx — fx . ;dx}

= x(logx)* —2xlogx 4+ 2x + ¢

]
2

X x’ 1
== S O S I
2sm X fz ,—1_x2

2

xT . L p., . .
="——sin ' x —— | sin’ #d#, on putting x = sin &
2 2f

2 —
:x—sin'x—lf[—l c0329]d9
2 2 2

Let I:fsin’lx-d

x’ 1 1
="sin 'x— —[0 S sin20]
2 4 2
2
N l(9 — sinfcosf)
2 4

2

= %sin’l x— %(sin’1 x—xyl—x")+c

-1
Example 3.9 Evaluate f tan2 T dx.
X
1
I= tanlx-d[——]
J :
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1
=——tan 'x + 1= - |dx
X x 14+x

1

= —ltan’ X+ logx—%log(l +x)+c
X

Example 3.10 Evaluate f sin”' x - dx.

I= f sin”' x- d(x)

. 1
= xsin 'x—&—ExZ 1—x* 4+¢

=xsin'x++1—x*+¢

Example 3.11 Evaluate f i”rﬂ &
+ cosx

.X X
X 2sin— cos—
Let I = + 2 2 |dx

2cos? X 2cos? X
2 2

— [|Esec?E + tanf]dx
2 2 2

X X
tan— |+ | tan—
T

x X X
=xtan—— | tan—dx + [ tan—dx
2 f 2 f 2

=||x-d dx

X
=xtan—+c¢
2

Example 3.12 Evaluate f x? —a*dx.

(Note @ This integral and f Ja' —x’dx and f x* +a’dx have been included

in the list of standard integrals.)

Let 1= fﬁxz —a’d(x)
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=x\x’ —a’ —fx~2—xdx
2\/x2 —a°
2 2 2
_ [2 2 x —a +a
= XA\/X —a *\/72—(1)(?
X —da
2
_ 2 2 2 2, 4
=x\x" —a f[\/x a +m]dx
=xyJx* —a’* I —a’cosh™ [f]
a
2] = x+Jx* —a® —a’cosh™ [f]
a
2
=2/ & —a—coshl[f]—kc
2 2 a
Example 3.13 Evaluate 7, = f e cosbxdx and I, = f e sin bx dx.
eax
Let I, = | cosbx-d
= -
L coshr— f € (“bsinbx)dx
a a
Zle‘”‘cosbx—&-élz (1)
a a
eax
Let 1, = | sinbxd
= Joma]
:le‘”sinbx—fe—xbcosbxdx
a a
:le‘”‘ sinbx—él1 (2)
a

a

Using (2) in (1), we get

1
I, =—e"cosbx + b
a a

1 .
—e™ sinbx —211]
a a

2
[1 + b—z]ll = le’” cosbx + %eax sinbx
a a

ax

e
I, = ———(acosbx + bsinbx
1 a2+b2( )

3)
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Similarly, using (1) in (2) and simplifying, we can get

e—bz (asinbx + bcos bx) 4)

27
a” +

1

(Note™  Results (3) and (4) can be treated as formulas and remembered as such, as
these will be used frequently in later situations)

Example 3.14 Evaluate f e > sindxdx.
0

Using the formula (4) derived in Example (3.13) above, we have

0 —3x o
fe’“ sindxdx = %(73sin4x74cos 4x
0 (=3)" +4 0
1 4
0 — (4= —
25( ) 25

Example 3.15 Evaluate f cosh 3x cos4x dx.
3x —3x
Le 1= [ eosaran
2

_ 1 3x 1 —3x
751‘6 cos4xdx+5fe cosdx dx
3x

1 .
¢ (3cos4x + 4sin4x)
225

1 e
+ —_
2 25

(—3cos4x 4 4sindx) + ¢

3x _ —3x 3x —3x
_ iwm[L] LA sim[&
25 2 25 2

—_—

= icos 4x sinh3x + i sin4x cosh3x + ¢
25 25

Example 3.16 Evaluate f e" (sin x + cosx) dx.
Let ]:fexsinxdx+ fe“cosxdx
= fsinx-d(e‘)—l—fe" cosx dx

:fe" sinx—fex cosxdx—i—fe" cos x dx

=e‘sinx+c
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Example 3.17 Evaluate f e [1 + logx) dx].
X

Let I= f dx+fe log xdx

fe*d(log X) +fe’“ log x dx
e* logx—flogxd(e*)—i—fe" log x dx

e logx—fe’“ 10gxdx+fe" log x dx
=e'logx+c

et (x> +3x+3)
(x +2)°

I= e"{l— x—Hz}dx
(x+2)
o x+l
== Je cro

X X 1
e +fe (erl)d[x——i—?_]

Example 3.18 Evaluate f

e'(x+1) 1
e+ — die" (x+1
x+2 fx+2 e )}]
=ex e(x+1)_ 1 {ex+(x+1)eX}
(x+2) x+2
:ex—&——e ()C—Fl)—e)C = X+l e +c
x+2 x+2

Example 3.19 Evaluate f & [m] dx.

1+ cos x
Let 1= f
2cos’

= fe‘d[tang]—i—fex tan%dx

X X X
e tan—— | tan —-e" dx + | € tan —dx
2 f 2 f 2

dx+fe tan—dx

. X
e tan—+c¢
2
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Example 3.20 Examine the convergence of f log x dx.
1

The integrand (log x) is unbounded as x — oo, viz. at x = b, where b — oo
[ b
flogxdx ~ lim [ log x d
1 1

lim (xlog x — x)!

= lim [blogh—b+1]—> o as b—> oo
b—oo

f log x dx diverges to + oo

Example 3.21  Test the convergence of the integral f Lp dx, where @ > 0 and
X

p#1.
%) b
1 . 1
f—dx = lim | —dx
xl’ bh—s00 xl’
Pl b
— lim
b—oo _p_|_1
b*(pfl) alfp
= lim (1)
booo | p—1 p—1
_ K (p-1
Now lim —0,if p>1
b—o0 pf

) 1 1-p
f— =2
AR A
viz., I converges if p > 1 and diverges to +eo, if p < 1
Tl .
Ifp=1, f—dx:{hm(logb)floga]ﬂoo, as b — oo
x b
The integral diverges.

1
Example 3.22  Examine the convergence of f
0

e

The integrand has an infinity at the lower limit

%

0+e€

= lim[2 - 2V€] =

I= lim
€—0

= lim (2+/x).
€ —
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The given integral converges to 2.

Example 3.23 Find the Cauchy’s principal value of the integral f -3y x=31is

the interior point of discontinuity for the integrand or has an infinity at x =3

4 3-g

dx . dx . ¥ dx
Jo s tm [ e lim [ s
) (x=3) | ) (x—=3) =0 (x=3)

3-g 4
. 1 . 1
lim B eE——— + lim e
aoo| 2(x -3, e 2(x-3)

3-¢,

+ lim
€, —0

lim
€ —0

+1_ 1 1
2¢! 2¢e;

1
——+
2 ] 2

Both the limits do not exist and hence the integral diverges. Butif we pute | =€, =
€, then

1 S .
= ] =0, which is the Cauchy’s principal
value of the integral.

3
Example 3.24 Test the convergence of

al > and find its value.
. 0 (x— 1)5

Let f p the denoted by f'(x)
0 (x _ 1)3

3
dx
Choose glx)= f 2
0 x3
2
3
Now lim G lim |—~ -
g(x) ( _1)5
_ lim [1—1] ’
X—00 x

=0
rl
f g(x)dx = f - dx converges. Hence by comparison test,

0x3

3 3
f f(x)dx = f 7 also converges.
g 0 (x—1)
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1 3
Required value = [3(x — 1)3‘ =3 %27 -3(-1)"”?

0

=3{1+213}

X
1+ x*

Example 3.25 Test the convergence of /= f

0 00
B fl:xzdx+f1:xzdx

-0 0

~

b
= lim dx + lim dx

fH*OOal—&—x2 oo 14+ x

2

0 b

= lim {% log (1+ xz)} + lim {% log (1+ xz)}

0

= lim [% log (1+a)|+ blim %bg a1+ bz)l
=0
( EXERCISE 3(d) ]

Part A
(Short Answer Questions)

Evaluate the following integrals:

1. fxe‘”dx 2. fxsinmxdx 3 fxcoseczxdx
4, flc;gzxdx 5. [logxdr 6. [xcos’xdx
7. ftan"xdx 8. fsinh’]xdx 9. fxsec’]xdx
10. fxlogxdx

11. Define improper integral.
12. Explain Cauchy’s principal value of an improper integral.
13. When do you say that an improper integral converges or diverges?

14. State the comparison test used in testing convergence of an improper
integral.

15. State the limit form of comparison test used for testing convergence of an
improper integral.



Integral Calculus

3.49

Part B

Evaluate the following integrals:

[e-—peetyae 17 [eG+Dde g5 [2sin’ 2ede

16.

19.

22.

25.

27.

29.

31.

32.

33.

34.

35.

36.

37.

38.

39.

w2

fxzcos3xdx 20. fXSiHXCOSde 21 fxcoseczxdx
0

1

[sin"x dx 23. [+ tan xdr 24. Vo’ = xdx
0

f J¥ +a’ dx 26. f &% sin(3x + 1)dx

fex(secx(l +tanx)dx 28, fe"(x + Dlogx dx

1 2
xe'dx e (x* +1
fl 3 30. f(—z)dx
o (14x) (D

Test the convergence of f
(x—=1)*

Test the convergence of f \/7

Test the convergence of f dx.

4
Evaluate Cauchy’s principal value of f %
X —
1

oo
Discuss the convergence of f e “x* dx, using comparison test.

sin x

Test the convergence of f dx.

Test the convergence f %
X

1+ x*

\IZx—x

Test the convergence of f
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40. Test the convergence of f smzx dx.
X
[ ANSWERS ]
Exercise 3(a)
X x’
(1) E—x—i—log(x—i—l) 2) 7—2x—10g(x—2)
1lsi L
5 51nE1;1n—’—_|—nn)x + sms’n— nn)x (4) —cotx —cosecx
) 2(1 + \/;)n+1 B 1
(5) x—sinx (6) n——|—1 (7) 1+e'
_ 1 sin’ x .
() (n—)logxyn —1 ) 3 (10) log(sinx — cosx)
(11) %log(x2+2x+8) (12) %s/x3+3x2+2
2 ; 2
(13) —(ax—i—b)/z +—Jex+d
3a c
(14) L2 4+ 2log(a™ —4) (15) Lsin™! [x—]
14 7 a a"
(16) log{coshx + /cosh’x +4} (17) %log{x2 + 14+ x*}
(18) sin"'(logx) (19) sin”" [%J
. t
(20) sinh™' ﬂ] @21) Jx+ %sinZ\/;
1
(22) —3cosvx 7500s3\/; (23) tan"2—% 24) V2r
% 1
(25) e* —1 (26) 34 27 1
1 1 1 T 1
infh] o0l
@) =5 29) 3¢ 5 (30) @'| 35
T 1 [é] 3
(31) 2 (32) 5 g 3 (33) 7
™
(34) 35) T7—
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Exercise 3(b)
ltan’lﬁ Llo r—a —lo atx
) a a 2 2a g x+a 3) & a—x
1 1 1 X
_— —log(x* +9)+ —tan ' =
@ F ot (5) logb +9)+Jtan T3
© s[5 () log| ® ot
24 pe x+1 1+ sinx
. 1+tan§
(9) logtan— (10) log —
2 1—tan—
2
S2x +1 e +1
(11) 3\/— T (12) —tan

1
(13) log(»* +2y—|—5)—|— Lian 1[%] where y = log x

(14) ilog(Zx2 —3x+5)+ 37 tan1[4x _3]

231 V31

\f—&—y—l
f_

> where y = sin x

(15) 2log(1+2y— )+ \lf og

2 [ 2x+1
16) x —log(x* + x + 1)+ —=tan 1[—
(16) NE NE

. 3-45
3445

1 1 2
o bl

1 1
(19) Elogx —log(x +1)+ Elog(x +2)

(20) 2log -1 !
x—i—2 S x+1

1 1 1 2x —1
Zlog(x +1)—=log(x* —x +1) + —tan"* ]
@D 3 g(x +1) p g( ) 7 NE
5 1 , L (2x+1
=log(x—1)+—1o +x+1)—+/3 tan
(22) Floglx =D+ clog(x’ +x+1) 3 7 ]

(23) %log(l + sinx) + %1og(l +sin’ x) + %tan*1 (sinx)
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| 1,
—tan~ x ——tan
(24) 3 6

(26) %tan’

™
28 7

1

1[x

2

! [Qtan x] 27) ! log
3 26

1[5
(25) mtan Ttanx

2243 tan;_l]
2\/57\6 tan;cl]

=

2 tan—

(29) 2x+log(3cosx+25inx+4)72\/§tan 1[ N ] (30) 1

Exercise 3(c)

1 X

(1) sin” -

ol x+1
(4) sinh [T]

7) —AT—x +3sin'x () tan,]ﬁ ©) —log 1+\/\/:
(10) sin”' %] (1) fsm 'Gx=1  (12) Elog(H\/E)
(13) = (14) 2\/er7sinh'[xT_l]

(15) %m+%cos}f] [?] (16) 37

cosh' X sinh ' X
2) P 3) P

(6) cosh™ [_Zx +3
J5

(5) sin ' [X—HJ
J5

(17) f\/x2 142y 41 +§sinh"x

(18) ©

1

|

(20) ~ 708
1

(21) N

1
@3 77° «

—(x+1)
V2(x+2)

2x+3

1 1 1
+——=+ +
J14 \/ 2x+3)7  72x+3)

Sinl[i_l} L
x+3 22 42
x\/——\/x +1
Xx/_—h/x +1

} (19) _sin][l—i-?)x
4x

|
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2 7) B 4 1[2x—7]
_— 7 _10_ +—Sln _—
(24)[ 4 ] * TR 3

(25) Lo txa ) £ Lox 4 )0 Fx+1 4 —osinh | 2211
3 3 16 NE)
Exercise 3(d)
o1 _xcosmx sin mx
) *" ~ @ —— —t 3

1 1
(3) —xcotx + log sinx (4) [—10gx+—]
x x
XX 1
(5) xlogx — x (6) ?—I—Zsian—gcoszx
7) xtan*‘x—%log(H—xz) (8) xsinh™'x—q/x* +1
2

X sec ' x— L ¥ —1 x_zlo X

2 (16) €' (2x* =5x—1)

er

1 1 1 1
17 (2x* +2x+1) 18) —x° ——x”sin 4x — — x cosdx + —sin4x
a7 7 ( )6 8 16 64

(19) % x*(3sinx + sindx 2x[3cosx - cos3x] +2 [3sinx _sin3x
T —fcot3x+llo sin3x
(20) 3 (21 3 9 2
s X X1
——1 “—tan'x — — + —log(1 + x*
22) 5 23) 3 1% g( )
2 2
(24) 2Ja —x +Lsin™! {f] (25) 2 +a +Lsinh! [f]
2 2 a 2 2 a
(26) %€2X+3[2 sin(3x +1) — 3cos(Bx +1)]
e
(27) e'secx (28) e*(xlogx—1) (29) E —1
1
(30) gez (31) divergent
(32) convergent to g (33) convergent to 0
(34) % (35) convergent
(36) convergent (37) divergent
(38) convergent (39) convergent

(40) convergent






UNIT 4
Multiple Integrals

41 INTRODUCTION

When a function f{x) is integrated with respect to x between the limits ¢ and b, we get
b
the definite integral f f)dx .

If the integrand is a function f'(x,y) and if it is integrated with respect to x and
y repeatedly between the limits x; and x, (for x) and between the limits y, and y,
(for y),

we get a double integral that is denoted by the symbol f f f(x, y)dxdy .

Yo Yo
Extending the concept of double integral one step further, we get the triple integral

a0 N
[ fee, v, ) dedyz

2 Yo %o

4.2 EVALUATION OF DOUBLE AND TRIPLE INTEGRALS

To evaluate f f f (x, y)dxdy, we first integrate f (x, ) with respect to x partially,

Yo %o

i.e. treating y as a constant temporarily, between x; and x,. The resulting function got
after the inner integration and substitution of limits will be a function of y. Then we
integrate this function of y with respect to y between the limits y, and y, as usual.

The order in which the integrations are performed in the double integral is
illustrated in Fig. 4.1.
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i X
f jf(x, y)dx dy
Y0 X0

Fig. 4.1

Note ™  Since the resulting function got after evaluating the inner integral is to be
a function of'y, the limits x, and x, may be either constants or functions of y.

The order in which the integrations are performed in a triple integral is illustrated
in Fig. 4.2.

Zl i x1
f | [ /3, 2) d & | @
ZO yO .X'O

Fig. 4.2

When we first perform the innermost integration with respect to x, we treat y and z
as constants temporarily. The limits x, and x, may be constants or functions of y and
z, so that the resulting function got after the innermost integration may be a function
of y and z. Then we perform the middle integration with respect to y, treating z as a
constant temporarily. The limits y, and y, may be constants or functions of z, so that
the resulting function got after the middle integration may be a function of z only.
Finally we perform the outermost integration with respect to z between the constant
limits z, and z .

NN hdl X
Note™  Sometimes f f f(x, y)dx dy is also denoted as f dy f f(x, y)dx and
Yo %o Yo X0
[ fe, v, 2)dx dy dz s also denoted as [d= [dv [ f(x, v, 2) dx. If these
20 Yo %o Zo Yo Xo

notations are used to denote the double and triple integrals, the integrations are
performed from right to left in order.

4.3 REGION OF INTEGRATION

4 20

Consider the double integral f f S (x, y)dxdy. As stated above x varies from ¢ ()
¢ o1 (y)

to ¢.(») and y varies from c to d.

ie. g sx< g, (yandc<y=<d.
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These inequalities determine a region in the xy-plane, whose boundaries are the
curves x = ¢ (v), x = ¢ () and the lines y = ¢, y = d and which is shown in Fig. 4.3.
This region ABCD is known as the region of integration of the above double integral.

y D y=d C
x=¢1(y) x=¢(»)
A y=c B

0 X
Fig. 4.3
b P2 ()

Similarly, for the double integral f f f(x, y)dy dx, the region of integration

a ¢,(x)

ABCD, whose boundaries are the curves y = ¢ (x), y = ¢,(x) and the lines x = a, x =
b, is shown in Fig. 4.4.

y=02(x)

y=01()

Fig. 4.4
3 () (.2
For the triple integral I j I f(x,,z) dx dy dz, the inequalities ¢ (y,2z) <x
1 V1@ 9102
< 6,0, 2); w,(2) <y S w,(2); z, <z < z, hold good. These inequalities determine a
domain in space whose boundaries are the surfaces x = ¢,(y, 2), x = ¢,(v, 2), y =

w,(2), y = y,(2), z =z and z = z,. This domain is called the domain of integration of
the above triple integral.

( WORKED EXAMPLE 4(a) ]

2 1 12
Example 41 Verify that [ [ + y*)dxdy = [ [ + ") dydx.
10 0 1

2

Ls.= [

1

dy

jlﬂ(x2 +y7)dx
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2
1

Note™  y is treated a constant during inner integration with respect to x.

3 x=1
x_+y2 X
3

x=0

32
2y

3 3

I
——

1
_+y2]dy:

~
»
I

2
[ +y*)dy|dx

I T

31V 2
x2y+y— dx
3 .

y=1

Note™  x is treated a constant during inner integration with respect to y.

Jlhe

Thus the two double integrals are equal.

8

3

0

X 7
—+—=Xx
3 3

Note @  From the above problem we note the following fact: If the limits of
integration in adouble integral are constants, then the order of integration is immaterial,
provided the relevant limits are taken for the concerned variable and the integrand is
continuous in the region of integration. This result holds good for a triple integral also.

27 7w a

Example 42 Evaluate f f f 7 sin ¢ dr do df.

0 0 0

The given integral f dé f do f risingdr

fd@f[ ] sinpd¢

:%[d@[sinqsdqs

5 271

a m
:?[(—cosgb)od&

:%gﬁ Zj:dﬂ

4
5
=—Ta
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2

U dxdy
1+x2+y2'

R

Example 4.3 Evaluate
0

N 1
The given integral = _
jo‘ jo‘ I+y)+x

X =\ 1+yz

1 . X

t
V1+y2 " V1+y2 =0
s
0 1‘|‘y

:%log( 1+y)}

dy

I
o

.l;|=1

:glog(l—kx/z)

1y
Example 4.4 Evaluate f f xy (x + y) dx dy-

0 x
Since the limits for the inner integral are functions of x, the variable of inner integration

should be y. Effecting this change, the given integral I becomes

1 [Jx
szfxy(x+y)dy dx

0| x

=i

2 3

I
ok_’—-
><|\>
<
_|_
=
|
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Example 4.5 Evaluate j;l j:iz j;liyiz xyz dx dy dz.

11—z

2
The given integral = f f vz il

-z

f z(—y—z) dydz
0
1—z
0

[yzta=27 =202+t dy

2 3 gp=t-=

1222 20— +22 ] &
z(1—2z2) 5 z( z)3 24

y=0

— z(l —z)! —%z(l —z) +iz(l —z)

0
1 1) .
5——+Z]fz(1—z) dz

0

1 s
—ﬁjo‘{l—(l—z)}(l—z) dz

_iyvﬂf+a—n“
24| =5 6

0
1 l,l _ L
“24ls5 ) 720

log2 x x+y

Example 4.6 Evaluate f f f et dx dy dz.
0

0 0

Sincethe upper limit forthe innermost integration is a function ofx, y, the corresponding
variable of integration should be z. Since the upper limit for the middle
integration is a function of x, the corresponding variable of integration should be y.
The variable of integration for the outermost integration is then x. Effecting these
changes, the given triple integral I becomes,

log2 x x+y
_ x+y+z
[= [ff dz dy dx

x

dxfdyex+y (e )z x+y

log 2

-/

0
j‘ ]\(er+2yiex+y)dy
0

0
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log 2 2y y=x
:fdx ez"-e——ex-ey]
0 2 y=0
log 2
1
= f[—e‘”—:;ezx—i—ex]dx
J 27 2

Example 4.7 Evaluate f f xy dx dy , where R is the region bounded by the line
R

x + 2y =2, lying in the first quadrant.

We draw a rough sketch of the boundaries of R and identify R.
The boundaries of R are the lines x = 0, y = 0 and the segment of the line

d + % =1 lying in the first quadrant.

2
Now R is the region as shown in Fig. 4.5.
y
B C
————— XY
_________ 2 1
(x():y)P Q(xl,J’)
ZZZZZZZEZZZZZEET?§>;\\\
0 y *
Fig. 4.5

Since the limits of the variables of integration are not given in the problem and to
be fixed by us, we can choose the order of integration arbitrarily.
Let us integrate with respect to x first and then with respect to y. Then the
integral I becomes
I= f f Xy dx] dy
R

When we perform the inner integration with respect to x, we have to treat y as a
constant temporarily and find the limits for x.

Geometrically, treating y = constant is equivalent to drawing a line parallel to the
x-axis arbitrarily lying within the region of integration R as shown in the figure.

Finding the limits for x (while y is a constant) is equivalent to finding the variation
of the x co-ordinate of any point on the line PQ. We assume that the y co-ordinates
of all points on PQ are y each (since y is constant on PQ) and P = (x,, »)

and O = (x,, ).
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Thus x varies from x to x,.

Wherever the line PQ has been drawn, the left end P lies on the y-axis and hence
x, = 0 and the right end Q lies on the line x + 2y = 2, and hence x, + 2y = 2 i.e.
x, =2-2y.

Thus the limits for the variable x of inner integration are 0 and 2 — 2y. When we
go to the outer integration, we have to find the limits for y.

Geometrically we have to find the variation of the line PQ, so that the region R is
fully covered. To sweep the entire area of the region R, PQ has to start from the
position O4 where y = 0, move parallel to itself and go up to the position BC where
y=1.

Thus the limits for y are 0 and 1.

2 y

—2
[ xy dx dy

~
Il

2-2y

dy

2

[\

S

Il
o%._. o?»— o%—

(2—-2y)y dy

[SRRS

1
=2 [ya-»dy
0
2 3 4!
=2 y__zy__|_y_
2 3 4

0

4.3.1 Aliter
Let us integrate with respect to y first and then with respect to x.

Then 1=ﬂfxydy}dx

R
As explained above, to find the limits for y, we draw a line parallel to the y-axis
(x = constant) in the region of integration and note the variation of y on this line

y

Q(xayl)

0 P (x,0) A

Fig. 4.6
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P(x, y,) lies on the x-axis. ..y, =0

O(x,y) liesonthe linex +2y=2. .. y :%(fo)

i.e., the limits for y are 0 and %(Z—x) .

To cover the region of integration OA4B, the line PQ has to vary from OB (x = 0)
to AC (x =2)
*. The limits for x are 0 and 2.

1
) 5(27)6)

sz f xydy dx
0

0

1
2 23 2-x)
5 2

1 2
=— [ x(2—x)*dx
]

dx

(
0

2 3 4)?2
:l[4x__4x_+x_]
0

8l 2 3 4
_1
6
e -y
Example 4.8 Evaluate f f dxdy , by choosing the order of integration suitably,
Y
R
given that R is the region bounded by the lines x =0, x =y and y = co.
yoo o Qk®
y =
0,4 B,y
x=0 R
y=x
P (x,x)
o X
Fig. 4.7
e -y
Let 1= ——dxdy
"

Suppose we wish to integrate with respect to y first.

Then I= jj ey” dy dx
0

x
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We note that the choice of order of integration is wrong, as the inner integration
cannot be performed. Hence we try to integrate with respect to x first.

Then I:Tje?ywdy
0 0

Note ¥ From this example, we note that the choice of order of integration
sometimes depends on the function to be integrated.

Example 4.9 Evaluate f f xydxdy , where R is the region bounded by the parabola
R

y? = x and the lines y = 0 and x + y = 2, lying in the first quadrant.
R is the region OABCDE shown in Fig. 4.8.

y
p— V=¥
0 C
E x+y=2
F
O |

Fig. 4.8

Suppose we wish to integrate with respect to y first. Then we will draw an arbitrary
line parallel to y-axis (x = constant). We note that such a line does not intersect the
region of integration in the same fashion throughout.

If the line is drawn in the region OADE, the upper end of the line will lie on the
parabola y* = x; on the other hand, if it is drawn in the region ABCD, the upper end
of the line will lie on the line x + y = 2.

Hence in order to cover the entire region R, it should be divided into two, namely,
OADE and ABCD and the line P, Q, should move from the y-axis to AD and the line
P, O, should move from 4D to BF.

Accordingly, the given integral I is given by
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[ the co-ordinates of D are (1, 1) and so the equation of AD is x = 1]
1 5 3
= 4 —=—
6 24 8
Note ™  This approach results in splitting the double integral into two and evaluating
two double integrals. On the other hand, had we integrated with respect to x first, the
problem would have been solved in a simpler way as indicated below. [Refer to Fig. 4.9]

()] RS — 0Q2-»y)
x+ty=2

X

Fig. 4.9
2-y

I=foydxdy
0

2

2

= [rie-» -

1 1
=5f(4y—4y2+y3—y5)dy
0

Note™  From this example, we note that the choice of order of integration is to be
made by considering the region of integration so as to simplify the evaluation.

Example 4.10 Evaluate f f f (x+y+z)dxdy dz, where V is the volume of the

Vv
rectangular parallelopiped bounded by x =0, x=a,y=0,y=b,z=0and z =c.
Z|c e

S

~

Fig. 4.10
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The region of integration is the volume of the parallelopiped shown in Fig. 4.10, in
which OA =a, OB =5, OC = c. Since the limits of the variables of integration are not
given, we can choose the order of integration arbitrarily.

Let us take the given integral I as

szf (x+y+z)dz dy dx

The innermost integration is to be done with respect to z, treating x and y as
constants.

Geometrically, x = constant and y = constant jointly represent a line parallel to the
Z-axis.

Hence we draw an arbitrary line PQ in the region of integration and we note the
variation of z on this line so as to cover the entire volume. In this problem, z varies
from 0 to ¢. since P = (x, y, 0) and O = (x, y, ¢)

Having performed the innermost integration with respect to z between the limits
0 and ¢, we get a double integral.

As P take all positions inside the rectangle OAC'B in the xy-plane, the line PO
covers the entire volume of the parallelopiped. Hence, the double integral got after
the innermost integration is to be evaluated over the plane region OAC'B.

The limits for the double integral can be easily seen to be 0 and b (for y) and 0

and « (for x). L
I:[[[(x+y+z)dzdydx

2

:f}{(x-i—y)z—i—%}p dy dx

2
bcx——i—E (b+o)x
2 2

0

:a—l;c(a—i—b—i—c)

Example 4.11 Evaluate f f f dx dy dz, where V is the finite region of space
(terra-hedron) formed by the Vplanes x=0,y=0,z=0and 2x + 3y + 4z =12.
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4.13

(x,y,0)

Fig. 4.11
Let [ = the given integral.

LetI=fffdzdydx
14

The limits for z, the variable of the innermost integral, are 0 and z,, where

(x, ¥, z,) lies on the plane 2x + 3y + 4z = 12. [Refer to Fig. 4.11]

z :i(1272x73y)

After performing the innermost integration, the resulting double integral is
evaluated over the orthogonal projection of the plane ABC on the xy-plane, i.e. over

the triangular region OAB in the xy-plane as shown in Fig. 4.12.
In the double integral, the limits for y are 0

and %(12 —2x) and those for x are 0 and 6.

1

. %(1272)() Z(12-2x=3y)
aoa=fa [dv [
0 0 0
1
:ljdx 3f02251)2—2x—3y) dy Fig. 412
44 )
. y=La2-2n
:%[dx{ (12—2x)y—%]y:

1 6
=— [(12—2x) dx
24[

_1fe-o]
6| -3,

=12
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dzdydx

Example 4.12 Evaluate —_

I e
bounded by the co-ordinate planes and the sphere x* + y* + z* = 1 and contained in
the positive octant.

where V is the region of space

z

C
(x,»,21)

1

X— g ————x

~

(x,,0)

Fig. 4.13

Note @  In two dimensions, the x and y-axes divide the entire xy-plane into 4
quadrants. The quadrant containing the positive x and the positive y-axes is called
the positive quadrant.

Similarly in three dimensions the xy, yz and zx-planes divide the entire space into
8 parts, called octants. The octant containing the positive x, y and z-axes is called the
positive octant.

The region of space V given in this problem is shown in Fig. 4.13.

dzdydx

Let sz[fm

To find the limits for z, we draw a line PQ parallel to the z-axis cutting the volume
of integration.
The limits for z and 0 and z,, where (x, y, z) lies on the sphere x* +y* + 2> = 1

z, =y 1-x"—y* (- the point Q lies in the positive octant)
Afterperforming the innermostintegration, theresulting double integral is evaluated

over the orthogonal projection of the spherical surface on the xy-plane, i.e. over the
circular region lying in the positive quadrant as shown in Fig. 4.14.

Yy B E

x2+y2:

Fig. 4.14
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In the double integral, the limits for y are 0 and 1—x” and those for x are 0
and 1.

[ EXERCISE 4(a) ]

Part A
(Short Answer Questions)

1. Evaluate ] f 4xy dx dy.

()
b a

2. Evaluate f f drdy
1 1 xy

w2 w2

3. Evaluate f f sin (0+ ¢)d0do.
0 0

4. Evaluate jjdxdy .
0 0

5. Evaluate j 7 rdrdd.
0 0

6. Evaluate ‘lf‘zfifxyzdxdydz.
0 0 0

z y+z

7. Evaluate jl‘ f f dzdydx.
0 0 0
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Sketch roughly the region of integration for the following double integrals:

8. ]]f(x,y)dxdy.

—b—a

9. j]f(x,y)dxdy.

0- [ [ reey)ded.

A

1. f [ reey)dxdy.

Find the limits of integration in the double integral f f f(x,y)dxdy, where R is in the
R

first quadrant and bounded by

12. x=0,y=0,x +y=1
2 2
X Y
13. x=0,y=0,—+==1
d a b
14. x=0,x=y,y=1
15. x=1,y=0,)*=4x

Part B

4

16. Evaluate f

0 y?/4

a @ —x?
17. Evaluate f f ydxdy and also sketch the region of integration roughly.

0 a—x

r ydxdy
x2 +y2

and also sketch the region of integration roughly.

1 1

18. Evaluate f 4 de dJ; and also sketch the region of integration roughly.

0 x X +y
a Ja? =x*
19. Evaluate f f Ja' —x* —y* dxdy.
0 0
1 I—xl-x—y
20. Evaluate f f f xyzdxdydz.
0 0 0
log2 x x+logy

21. Evaluate fff e dzdy dx.

0 00
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2

22. Evaluate ffxé? dxdy over the region bounded by x = 0, x = 0, y = 0 and

23. )Fivaluate f xydxdy, over the region in the positive quadrant bounded
by the line 2x + 3y = 6.

24. Evaluate f f xdxdy, over the region in the positive quadrant bounded
by the circle x> — 2ax +y*=0.

25. Evaluate f f (x+ y)dxdy, over the region in the positive quadrant bounded

2 2

Xy
by the ellipse — +=-=1.
26. Evaluate f f (x* 4+ y*)dxdy, over the area bounded by the parabola y* = 4x

and its latus rectum.

27. Evaluate f f x* dxdy, where R is the region bounded by the hyperbola xy = 4,
R

y=0,x=1andx=2.
28. Evaluate f f (xy+ yz+zx)dxdydz, where V is the region of space boun-
Vv

dedbyx=0,x=1,y=0,y=2,z=0and z=3.
29. Evaluate f f f drdy dz , where V is the region of space bounded by
(x+y+z+1y
x=0,y= O,z Oandx+y+z=1.
30. Evaluate f f f xyz dxdydz, where V is the region of space bounded by the

Vv
co-ordinate planes and the sphere x> + )? + z2 = 1 and contained in the posi-
tive octant.

4.4 CHANGE OF ORDER OF INTEGRATION
IN ADOUBLE INTEGRAL

In worked example (1) of the previous section, we have observed that if the limits
of integration in a double integral are constants, then the order of integration can be
changed, provided the relevant limits are taken for the concerned variables.

But when the limits for inner integration are functions of a variable, the change in
the order of integration will result in changes in the limits of integration.

d () b h(x)
i.e. the double integral f f f(x,y)dxdy will take the form f f S(x,y)dydx,
c gy a h(x)

when the order of integration is changed. This process of converting a given double
integral into its equivalent double integral by changing the order of integration is often
called change of order of integration. To effect the change of order of integration, the
region of integration is identified first, a rough sketch of the region is drawn and then
the new limits are fixed, as illustrated in the following worked examples.
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4.5 PLANE AREA AS DOUBLE INTEGRAL

Plane area enclosed by one or more curves can be expressed as a double integral both
in Cartesian coordinates and in polar coordinates. The formulas for plane areas in
both the systems are derived below:
(i) Cartesian System

Let R be the plane region, the area of which is
required. Let us divide the area into a large
number of elemental areas like PQORS (shaded) / Q
by drawing lines parallel to the y-axis at intervals
of Ax and lines parallel to the x-axis at intervals TS
of Ay (Fig. 4.15).

Area of the elemental rectangle PORS = Ax.
Ay. Required area A of the region R is the sum of Fig. 4.15
clemental areas like PORS.

=
=

o [

—_
N

viz., A= Alirilo (XX Ax Ay)

Ay —0
[fwe
R

(ii) Polar System

We divide the area A of the given region R into a large
number of elemental curvilinear rectangular areas like
PORS (shaded) by drawing radial lines and concentric
circular arcs, where P and R have polar coordinates
(7, 0) and (r + Ar, 8 + A0) (Fig. 4.16)

Area of the element PORS = r Ar AO *
(- PS=r A and PO = Ar)
". Required area A:Alim0 XX rAr A9)
200
= f f rdrdé.
R
4.5.1 Change of Variables
(i) From Cartesian Coordinates to Plane Polar Coordinates
If the transformations x = x(u, v) and y = y (u, v) are made in the double integral
9 (x,)

f f(x,y)dxdy , then f(x,y)=g(u,v) and dx dy = |J| du dv, where J=a( )
u,v

[Refer to properties of Jacobians in the Unit 2, “Functions of Several
Variables™].
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When we transform from cartesian system to plane polar system,

x=rcosf andy=rsin 6

Ox Ox
_|or 00
oy oy

ar 00

cosf —rsind

In this case, J

sinf 7 cosf

=r(cos’ O+sin’ O)=r
Hence fff(x,y)dxdy:ffg(r,@)rdrd@
R R

In particular,
Area A of the plane region R is given by

A:j;f dxdy:fRfrdrda

(ii) From Three Dimensional Cartesians to Cylindrical Coordinates
y

Let us first define cylindrical coordinates
of a point in space and derive the relations
between cartesian and cylindrical coordinates
(Fig. 4.17).

P(x,y,2)

Let P be the point (x, y, z) in Cartesian
coordinate system. Let PM be drawn L r
to the xoy-plane and MN parallel to Oy. Let

NOM =0 and OM =r. The triplet (7, 0, z) are
called the cylindrical coordinates of P.
Clearly, ON=x=rcos § ; NM =y =rsin

60 and MP =z. Fig. 4.17

Thus the transformations from three dimensional cartesians to cylindrical

coordinates are x =7 cos 8, y=rsin 4, z=z.
In this case,

5 X, x, x,| |cos@ —rsinf O
J: (x’y’Z):yr
o(r.,0,z)

z

r

Y, y.|=|sin@ rcosf 0
z, z 0 0 1

z

=r

Hence dx dy dz=rdr df dz

and fff f(x,y,z)dxdydz:fff 2 (r,0,z)rdrd0dz
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In particular, the volume of a region of space V'is given by
fffdxdydz: fffrdrdadz
v v

Note™ Whenever f f f(x, y, z)dx dy dz is to be evaluated throughout the

volume of a right circular cylinder, it will be advantageous to evaluate the
corresponding triple integral in cylindrical coordinates.

(iiiy From Three Dimensional Cartesians to Spherical Polar Coordinates

Let us first define spherical polar coordinates of a point in space and derive the
relations between Cartesian and
spherical polar coordinates (Fig. 4.18).

Let P be the point whose Cartesian
coordinates are (x, y, z). Let PM be " P(x,,2)
drawn L 7 to the xOy-plane. Let MN 4
be parallel to y-axis. Let OP = r, the
angle made by OP with the positive
z-axis = @ and the angle made by OM
with x-axis = @.

The triplet (r, 6, ¢) are called the
spherical polar coordinates of P.

Since |OMP =90°, MP = z = r cos
0, OM =rsin §, ON=x=rsin @ cos ¢
and NM =y =rsin 0sin ¢ .

Thus the transformations from three dimensional cartesians to spherical polar
coordinates are

z

Fig. 4.18

x=rsinfcos ¢,y=rsinfsin ¢,z=rcos 0

8(x,y,z)

J:—:r2 Sin0

8(r,0,¢)

In this case,

[Refer to example (2.8) of Worked example set 2(b) in Unit 2 “Functions of
Several Variables.”]

Hence dx dy dz =12 sinddr d0d ¢ and ffff(x,y,z)dxdydz:fffg(r,9,¢)r2
V V

sinf@drdfdeo.
In particular, the volume of a region of space V' is given by

ffdedde:fffrz sin 6 dr d6 d¢ .

Note™  Whenever f f f(x, y,z)dx dy dz is to be evaluated throughout the

volume of a sphere, hemisphere or octant of a sphere, it will be advantageous to use
spherical polar coordinates.)
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( WORKED EXAMPLE 4(b) ]

Example 4.1 Change the order of integration in f f dxdy and then

evaluate it. R
The region of integration R is defined by y <x <gand 0 <y <a.

i.e. it is bounded by the linesx =y, x =a,y =0 and y = a.

The rough sketch of the boundaries and the

region R is given in Fig. 4.19. %
After changing the order of integration, the y=a

given integral I becomes

1= [[——— dydx
[ s
The limits of inner integration are found by
treating x as a constant, i.e. by drawing a line
parallel to the y-axis in the region of integration x

as explained in the previous section. 0 0P y=0

e
_!x{log(erm)}i::dx

:ix[log(x+xﬁ)—logx]dx

Thus Fig. 4.19

:10g(1+\/§)-

2)¢ 2
=l =S log (1+42)
2) 2
x dx dy

x4y

Note®  Since the limits of inner integration are x and 1, the corresponding variable
of integration should be y. So we rewrite the given integral I in the corrected form

first.
(- fjaos

The region of integration R is bounded by the lines x =0, x =1,y =xandy = 1
and is given in Fig. 4.20.

The limits for the inner integration (after changing the order of integration) with
respect to x are fixed as usual, by drawing a line parallel to x-axis (v = constant)

=

and then evaluate it.

Example 4.2 Change the order of integration in f
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y =1 |
4 b x=1
(0,9) P f-mmmmmem 0.y
x=0
R
y=x
X
(0]
Fig. 4.20
1 1 xX=y
f Slog (" +)%)  dy
0 2 x=0

a
b))

b

Example 4.3 Change the order of integration in f f xydrxdy and then
0 0

evaluate it.

The region of integration R is bounded by the lines x = 0, x = % (b—y) or

£+%=1,y=0andy=bandisshowninFig.4.21.
a

Fig. 4.21

After changing the order of integration, the integral becomes 1= f f xydy dx .
The limits are fixed as usual.

a E(‘l*x)

I:ff xy dy dx
(U]
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:fx
0
2 a

:2b—2 x(a—x)* dx
a

0

L(a—)

2
2 dx
2

0

2 2 3 419
A PRSP VL SE
2a 2 34
ab’(1 2 1
== |—-—Z4-
2 12 3 4
a’b’
T4
bl g
Example 4.4 Change the order of integration in f f x> dydx and then
0 0

integrate it.

The region of integration R is bounded by the lines x = 0, x = a, y = 0 and the
2 2

b . 2 2 _ 2 . .
curve y=2 [i2 — % ie. the curve y_2 — %, i.e. the ellipse x_2+)b}_2 =1
a b a a

and is shown in Fig. 4.22.

0.»P
L
x=0

Fig. 4.22

After changing the order of integration, the integral becomes

I:ffxzdxdy
R

The limits are fixed as usual.

afp 2
I:j: b ‘0[ x* dx dy
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3 b 3
_e 2 av;
a3 /2
_“ 4 4 ) o
=3 L[ b" cos” 0 do (on putting y = b sin 0)
ab 3 1 «
=—X—X—X—
3 4 2 2
—1a3b
16
p aziyz
Example 4.5 Change the order of integration in f f ydxdy and then
0 a—y

evaluate it.

The region of integration R is bounded by the line x = a — y, the curve

x=+/a’— " ,thelinesy=0andy=a.
i.e. the line x + y = q, the circle x> + y* = @* and the lines y = 0, y = a. R is shown in

Fig. 4.23.
Yy

Fig. 4.23

After changing the order of integration, the integral I becomes,

I:ffydydx
R
a i
SN
0 a—xm
dx

=/
0
1
2

2

Y

2

a—x

f (2ax —2x%) dx
0
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a

a

_x
3

N |,

0

_Z
6
4 2Jx
Example 4.6 Change the order of integration in f f dy dx and then evaluate it.

0

4
2

The region of integration R is bounded by the curve y = x: i.e. the parabola

x2 =4y, the curve y = 2Jx i.e. the parabola y* = 4x and the lines x =0, x=4. R is
shown in Fig. 4.24.

Fig. 4.24

The points of intersection of the two parabolas are obtained by solving the
equations x*> = 4y and y* = 4x.

2
Solving them, we get ﬁ ] — 4,
4
ie x(x*—64)=0
x=0, x=4
and y=0, y=4

i.e. the points of intersection are O(0, 0) and A(4, 4).
After changing the order of integration, the given integral
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4

1
3 12)
32 16
33
16
E}
o atya+y
Example 4.7 Change the order of integration in f f xydxdy and then
0y Ji

evaluate it.
The region of integration R is bounded by the curve x=aF+a* —)* , i.e. the

circle (x — a)* + »* = @* and the lines y = 0 and y = a. The region R is shown in Fig.
4.25.

y
(x, 2ax — x? )
/ (x_a)2+y2:a2
Y R

I

|

I : ¥

O (x,0)P C(a,0)

Fig. 4.25
After changing the order of integration, the integral I becomes

I=ffxydydx
R
20 2ar—
:{ j(; xydydx

2a 2 J2ax —x*
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12—y
Example 4.8 Change the order of integration in f f xy dx dy and then
0y

evaluate it.

The region of integration R is bounded by the linesx =y, x + y=2, y=0and y =
1. It is shown in Fig. 4.26.

After changing the order of integration,
the integral I becomes

I=fijydydx
R

To fix the limits for y in the inner

integration, we have to draw a line parallel © C A x
to y-axis (since x = constant). The line drawn
parallel to the y-axis does not intersect the Fig. 4.26

region R in the same fashion. If the line segment is drawn in the region OCB, its
upper end lies on the line y = x; on the other hand, if it is drawn in the region BC4, its
upper end lies on the line x + y = 2. In such situations, we divide the region into two
sub-regions and fix the limits for each sub-region as illustrated below:

AOCB ABCA
:]]xy dydx—i—]{fxy dy dx
0 0 1 0

0 4 1
I 5
=— 4 —
8 24
_1
3

a 2a—x

Example 4.9 Change the order of integration in f f xydydx and then
0 ¥

evaluate it. a

2
The region of integration R is bounded by the curve ) — *_i.e. the parabola x* = ay,
a

the line y = 2a — x, i.e. x + y = 2a and the lines x = 0 and x = a. It is shown in Fig.
4.27.
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Fig. 4.27
After changing the order of integration, the integral I becomes

I=ffxydxdy
R

When we draw a line parallel to x-axis for fixing the limits for the inner integration
with respect to x, it does not intersect the region of integration in the same fashion.
Hence the region R is divided into two sub-regions OABE and EBCD and then the
limits are fixed as given below:

1= [[wdxdy + [[xvardy

OABE EBCD
2q2a—y

—ffxydxdy +f f xy dxdy

Note™  The co-ordinates of the point B are obtained by solving the equations x +
y="2a and x* = ay.
B = (a, a) and the equation of EBisy = a.
2

17]” ﬁﬁd +2f ai
70y20 y ay2

_1 a , 2a ,
=3 fay dy+fy(2a—y) dy

0

3)¢
3 0

Example 4.10 Change the order of integration in each of the double integrals

2a—y

dy

0

3 4
=—a.

8

2a

4q !

Y A A
Y 3 Y 4 .

1
2

f f drdy ong f f dvdy  and hence express their sum as one double integral
X+ x4y’
and evaluate it.
The region of integration R, for the first double integral I, is bounded by the lines

x=1,x=2,y=0andy=1.
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The region of integration R, for the second double integral I, is bounded by the
linesx =y, x=2,y=1andy =2.
R, and R, are shown in Fig. 4.28.

EQ2,2
y (6. ) 02 2)
|
|
(. 1) |
0y |
1,1)D c2, 1
R
, I
i |
s I
i |
// I
! X
0 A Pi(x,0) B
Fig. 4.28

After changing the order of integration,

2 x
and Izszxczly+d;2
11

201 y=x
:f[—tanlz] dx
x x)

2
ZIEE—Elogz
1 4 x

Example 4.11 Find the area bounded by the parabolas > =4 — x and y* = x by double
integration.

The region, the area of which is required is bounded by the parabolas (y — 0)*> = —
(x —4) and y* = x and is shown in Fig. 4.29.

Required area = f f dxdy

OC 4B
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=2 ffdx dy, by symmetry

o AB
NEESE Y
=2 [ [ dvay e
0 )2 5 B
¥ TR 4-y%y)
=2 4=1y>*=y)d P AN |
{( y —y)dy of——+— a0
2 )" 1 -
2[4y§y3] P 2-12) .
0 V=4—x
4
=242 -2\
[\/_ ] Fig. 4.29

16 .
= Py 2 square units

Example 4.12 Find the area between the circle x* + )? = @* and the line x + y =a ly-
ing in the first quadrant, by double integration.
The plane region, the area of which is required, is shown in Fig. 4.30.

y
Required area = f f dx dy c
ABC
- Wa*-)%y)
e (@a-y,)
S e
0 a-y o A X
:f(\/az -y —a—i—y)dy
0
Fig. 4.30

Example 4.13 Find the area enclosed by the lemniscate * = a* cos 26, by double
integration.

As the equation 72 = a? cos 26 remains unaltered on changing € to — 0, the curve
is symmetrical about the initial line.

The points of intersection of the curve with the initial line 8 = 0 are given by r*=
a*orr==a.
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Since ? = a® cos 2a. = a* cos 2 (7 — «), the curve is symmetrical about the line

="

2 3

On putting » = 0, we get cos 20 = 0. Hence g = + E, 4+ 2™ Hence there is a loop
4 4
s T 3m

of the curve between @ = — " and = " and another loop between § = — e and
g="

4

Based on the observations given above the lemniscate is drawn in Fig. 4.31.

e
AN - D
AN ,
\ s
N //
N
N / C
A 7 P
S s ~
N // ="
N\ gt
= X
y N A B
770 N
s N
s S
7 N
s N
s N
s S
7 N
s S
s N
N
Fig. 4.31

Required area = 4 x area OABC (by symmetry)

:4ffrdrd9

OAB

When we perform the inner integration with respect to 7, we have to treat 6 as a
constant temporarily and find the limits for 7.

Geometrically, treating 6 = constant means drawing a line OP arbitrarily through
the pole lying within the region of integration as shown in the figure.

Finding the limits for » (while  is a constant) is equivalent to finding the variation
of the r coordinate of any point on the line OP. Assuming that the 8 coordinates of
all points on OP are 6 each (since 6 is constant on OP), we take O = (0, §) and P =
(), 0); viz., r varies from 0 to »,. Now wherever OP be drawn, the point P(r,, 0) lies
on the lemniscate.

Hence 77 = a? cos 20 or 7, = a4J/cos 20 (since r coordinate of any point is + ve)

Thus the limits for inner integration are 0 and a4/cos 26.

When we perform the outer integration, we have to find the limits for 6.
Geometrically, we have to find the variation of the line OP so that it sweeps the
area of the region, namely OABC. To cover this area, the line OP has to start from
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the position O4 (€ = 0) and move in the anticlockwise direction and go up to

oD [0 = E] . Thus the limits for # are 0 and %

ks

4 ayJcos 20
Required area = 4 rdrdf
I

a yJcos 20

2

=4 do

o%»\:\

r
2

0

[E]

4
=2d? fcos 260 d6

0

T

=4’ (sin 20)0Z =a’

Example 4.14 Find the area that lies inside the cardioid »=a (1 + cos ) and outside
the circle 7 = a, by double integration.

The cardioid » = a (1 + cos 0) is symmetrical about the initial line. The point
of intersection of the line # = 0 with the cardioid is given by r = 24, viz., the point
(2a, 0).

Putting » = 0 in the equation, we get cos # = — 1 and 6 = + w. Hence the cardioid
lies between the lines = — 7 and 6 = 7.

The point of intersection of the line

0=""1s [a,f].
2 2

Noting the above properties, the
cardioid is drawn as shown in Fig. 4.32.
All the points on the curve r = a have
the same r coordinate a, viz., they are
at the same distance a from the pole.

Hence the equation » = a represents a L i
circle with centre at the pole and radius
equal to a. E y
Noting the above points, the circle
r = a is drawn as shown in Fig. 4.32. Fig. 4.32

The area that lies outside the circle r =
a and inside the cardioid is shaded in the figure.
Both the curves are symmetric about the initial line. Hence the required area

=2x4AFGCB
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T

2N
=2 frdrdﬂ , where (7, 0) lies on the circle » = a and (r,, 0)
U

lies on the cardioid » =a (1 + cos 6)

a(l4cosf)

7 drdf

Il
o

a

a(1+cosf)

dé

2

Il
o

o%w\:l o%w\:l

r
2

a

2

[(14 cos 0)° —1]d6

|
1N}
oglm\: og.m\d

[N}

de

a

[200S0+1+cos 26]

x
2

=a° ZSin0+Q+lSin 20
2 4

0
2

:a2[2+§]=%(ﬁ+8)

a a 2
dxd . . .
Example 4.15 Express f f ( al Y in polar coordinates and then evaluate it.
0 y X

3/2
2 + yz)
The region of integration is bounded by the lines x =y, x =a,y=0and y = a,

whose equations in polar system are § =—, r = a sec 6, 8§ = 0 and r = a cosec

T
4
6 respectively. The region is shown in Fig. 4.33.

r=a cosec G

B

r=asect

Putting x = r cos 0, y = r sin 6 and dx dy = r dr d6 in the given double integral /,
we get
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= [ r3c03s29 dr do

OAB r

/4 asecl

:f fcoszﬂdrdH

0 0
/4

= fcosz 0-[r]s>’ do
0

/4
- —q[sin T/ =L
—afcosedQ—a[sm@]0 =5

0

a \/llzf)(z dxdy
Example 4.16 Transform the double integral f f

in polar
2 2
0 V(IX*XZ a - x - y

coordinates and then evaluate it.

The region of integration is bounded by the curves y = \/ ax—x',y= \/ a—x
and the lines x =0 and x = a.

y=+ax—x" isthe curve x>+ —ax =0
al a’
ie., x——| +(—0)7>=|=
3] oo =[5
i.e. the circle with centre at [%,0] and radius g

y=+a’ —x isthe curve x> +)? = &2

i.e. the circle with centre at the origin and radius a.
The polar equations of the boundaries of the region of integration are > — ar

cos@=0orr=acosf,r=a,r=asec6and g —" . The region of integration is

shown in Fig. 4.34.

Putting x = r cos 6, y = r sin § and dx dy = r dr df in the given double integral /,

we get
T2 a

[:f f rdrdf
0 acosé’dazirz
w2 a

:f{—%xz az—rz]» df, on putting > — > =t
0

a cos 6
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I
r=a ,
I
O=m : r=asect
2 I
> I
,/r =acosf :
:
o 1. a X
2
Fig. 4.34

/2

:fasinGdQ:—a[COSH]oé:a
0

Example 4.17 By transforming into cylindrical coordinates, evaluate the integral

f f (x* + y* 4+ z°) dx dy dz taken over the region of space defined by x? + 2 < 1

and0<z<I1.

The region of space is the region enclosed
by the cylinder x*> + y* = 1 whose base radius is
1 and axis is the z-axis and the planes z = 0 and
z = 1. The equation of the cylinder in cylindrical
coordinates is 7= 1. The region of space is shown
in Fig. 4.35.

Putting x = r cos 6, y =r sin 0, z =z and dx dy
dz = r dr d@ dz in the given triple integral /, we get

I:fff(rz—i—zz)rdrdﬁdz,

where V is the volume of the region of space.

2m

1 1
[[[e+z)rdraoe
0 0 0

4 rzl
[—+22—] do dz

4 2),

|

Il
o%—
o%;’

1
+_
2

Il
o%—
OHS’

N

zz]dﬁ dz
+ Zz]dZ

|

N}

3
S
N
N | —

™z=1

>y

f
|
|
— T
|
ﬁ_><
|
|
|

Fig. 4.35
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Note™ The intersection of z = constant ¢ and the cylinder x> + 1* = 1 is a circle
with centre at (0, 0, ¢) and radius 1. The limits for » and € have been fixed to cover
the area of this circle and then the variation of z has been used so as to cover the
entire volume. ]

Example 4.18 Find the volume of the portion of the cylinder x* + ? = 1 intercepted
between the plane z = 0 and the paraboloid x> +y* =4 — z.

z

L

T

Fig. 4.36
Using cylindrical coordinates, the required volume ¥ is given by

V= f f f r dr df dz, taken throughout the region of space.

Since the variation of z is not between constant limits, we first integrate with respect
to z and then with respect to » and 6.

Changing to cylindrical coordinates, the boundaries of the region of space are r =
l,z=0andz=4—r%

V:T]4f dz r dr df
0 0 0

o Jat =2 lazixziyz
Example 4.19 Evaluate f f f xyz dz dy dx, by transforming to spherical
0 0 0
polar coordinates.
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The boundaries of the region of integration are z =0, z = Jai —=x*—y* orx? +)2+

2=ay=0, y=+Ja*—x> orx*+31>=a% x =0 and x = a. From the boundaries,
we note that the region of integration is the volume of the positive octant of the
sphere x> +1? + 22 = a2,

By puttingx=rsinf cos ¢,y=rsinfsin ¢,z=r
cos #and dx dy dz=r? sin § dr df d ¢, the given triple z
integral / becomes

_ 322 . 2 .
I_f[fr sin” € cos fsin ¢cos ¢p.r" sin fdrdfde

where V' is the volume of the positive octant of Y
the sphere 7 = a, which is shown in Fig. 4.37.
To cover the volume ¥, r has to vary from 0 to

a, 6 has to vary from 0 to g and ¢ has to

vary from 0 to g ) Fig. 4.37

a

Thus I= frs sin® @ cos Osinpcospdrdfde
0

O%N\:
o%w\a

T

2 % a
:fsin¢cos¢d¢.fsm3ecosade.fr5 dr
0 0

0

[ the limits are constants]

7sin2¢5 sin* ]2 [r¢]'
2 bl 4 hlolh
1

:—aG-

48

Example 4.20 Evaluate f f f J1—x*—y>—z* dxdy dz, taken throughout the

volume of the sphere x? + )? + z2 = 1, by transforming to spherical polar coordi-
nates.

Changing to spherical polar coordinates, the given triple integral / becomes

1= [[[ 1= r*sinodrdode
Vv
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Fig. 4.38

To cover the entire volume ¥ of the sphere, r has to vary from 0 to 1, 4 has to vary
from 0 to 7 and ¢ has to vary from 0 to 2.

Thus I:‘zfﬂfﬂfl\/l—rzrz dr-sinfdé-d¢
0 0 0

27 T %
:qubfsianQfsinztcosztdt,by putting
0 0 0

r = sin ¢ in the innermost integral

27‘(‘)((0050)g><[l£§l£]
22 422
:47r><£><l:l7r2
474 4
( EXERCISE 4(b) ]

Part A
(Short Answer Questions)

1. Change the order of integration in f f f(x,y)dydx.
0 0

1

1
2. Change the order of integration in f f f(x,y)dxdy.
)

0

3. Change the order of integration in f f S (x,y)dydx.
0 x

1y
4. Change the order of integration in f f f(x,y)dxdy-
0 0

1 1=y
5. Change the order of integration in f f f(x, y)dx dy.
0 0
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10.

Part B

13.

15.

17.

19.

21.

23.

Change the order of integration in f f fx,y)dydx.
(U]

1 —

. Change the order of integration in f f f(x,y)dydx.
0 0
e
Change the order of integration in f f f(x,y)dxdy.
0 0
1 2Jx
Change the order of integration in f f f(x,y)dydx-
0 0
oo 1y
Change the order of integration in f f f(x,y)dxdy.
0 0
Change the order of integration in the following integrals and then evaluate them:
xdxdy r 2, 2
12. x" 4y )dydx
0 Ak [T
oo X 7'72 [oeiNe ] e,}/
ffxe 7 dydx 14. fdeydx
0 0 0 x
1 1-x 2 \4—)?
e dydx 16. xydxdy
1 I
2a a 1y
[ [a+mdydx 15, [ 1D
0 i 0 2 X +y
4a
3 fa—x a Na* =
f f (x+y)dydx 20. f f 12 dvdy
0 1 —a 0
5
]Jf 2 4/x
dxdy 22. xydydx
/]
9
1 \2— x?
[ [ dvar
0 x 1 x

24.

Change the order of integration in each of the double integrals f f xydy dx
2 2—x

and f f xydydx and hence express their sum as one double integral and
1 0

evaluate it.
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25.

0 1

Change the order of integration in each of the double integrals f f (x> +5%)

-1 —x

dy dx and f f (x*+y*)dydr and hence express their sum as one double

integral and evaluate it.

Find the area specified in the following problems (26—35), using double integration:

26.
27.
28.
29.
30.
31.
32.
33.
34.

35.

36.

38.

40.

41.

42.

43.

The area bounded by the parabola y = x? and the straight line 2x —y + 3 =0.
The area included between the parabolas y* = 4a (x + a) and y* = 4a(a — x).
The area bounded by the two parabolas y? = 4ax and x* = 4by.
The area common to the parabola y*= x and the circle x* + )? = 2.

3

The area bounded by the curve y* = and its asymptote.

The area of the cardioid » = a (1 + cos ).
The area common to the two circles » = a and » = 2a cos 6.
The area common to the cardioids » = a (1 + cos #) and r=a (1 — cos 6).
The area that lies inside the circle » = 3a cos 6 and outside the cardioid » = a
(1+cos ).
The area that lies outside the circle » = a cos 6 and inside the circle » = 2a
cos 6.

Change the following integrals (36 — 40), into polar coordinates and then
evaluate them:

f f (4] 37 ffxdxdy

x+y

ff x’dxdy 39 j‘m xdxdy

\/x +) ' 00 \/x2+y2

Evaluate the following integrals (41— 45) after transforming into cylindrical
coordinates:

f f f (x +y +z)dxdydz, where V is the region of space inside the cylinder
x2V+ y* = a?, that is bounded by the planes z =0 and z = /.

f f (x* + »*) dx dy dz, taken throughout the volume of the cylinder x>+ 2= 1
that is bounded by the planes z = 0 and z = 4.

f f dxdydz, taken throughout the volume of the cylinder x* + y* = 4

bounded by the planes z=0and y +z = 3.
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44. f f dvdydz, taken throughout the volume of the cylinder x> + 2 = 4
bounded by the plane z = 0 and the surface z = x> + y? + 2.

45. f f dxdydz, taken throughout the volume bounded by the spherical

surface x* + y? + 2 = 44? and the cylindrical surface x> + > — 2ay = 0.
Evaluate the following integrals (46-50) after transforming into spherical
polar coordinates:

dxdydz 5 5
46. f f f N , taken throughout the volume of the sphere x* + )? +

22 =a>

47. f f f dxdy dz , taken throughout the volume contained in the
J1—x

positive octant of the sphere x> +y* +2z2=1.
48. f f f zdxdydz, where V is the region of space bounded by the
Vv
sphere x* + y* + z* = a* above the xOy-plane.

PR o0 oo 00
R

0 0

4.6 LINE INTEGRAL
The concept of a line integral is a generalisation of the concept of a definite
b

integral f f(x)dx.

In the definite integral, we integrate along the x-axis from «a to b and the integrand
fix) is defined at each point in (a, b). In a line integral, we shall integrate along a
curve C in the plane (or space) and the integrand will be defined at each point of C.
The formal definition of a line integral is as follows.

Definition Let C be the segment of a continuous curve joining A(a, b) and
B(c, d) (Fig. 4.39).

y B(c, d)
Q (xrv yr)
(xr—ls Yr— 1) P \/ (éw ’7’)
A (a, b)

Fig. 4.39
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Let /' (x, ), f,(x, »), f,(x, y) be single-valued and continuous functions of x and y,
defined at all points of C.

Divide Cinto narcs at (x, y) [i =1, 2,...(n = 1)]

Letx,=a,x=c,y,=b,y,=d.

Letx —x_, = Ax,y —y_, = Ay and the arcual length of PQ(i.e. PQ)
where Pis (x_,y_,) and Q(xr V).

Let (<., n,) be any point on C between P and Q.

Then ELTCZf(fwnr)ASV
r=1

or lim D[4 m) A%+ £€ ) Ay,
r=I1

is defined as a line integral along the curve C and denoted respectively as

Jre s or - [Th6n »drt £l ) dv]

4.6.1 Evaluation of a Line Integral

Using the equation y = ¢ (x) or x = w(y) of the curve C, we express f I, (x, »)
dx+ f,(x, y)dy] either in the form f g(x)dx or in the form f h(y)dy and evaluate
it, which is only a definite integral.

If the line integral is in the form f f(x, y)ds, itis first rewritten as f f@x, ) %dx:
C C

ff(x y) /1+[ ] dror as ff(x y)—dy ff(x y) /1+[d"] dy and then
dy

evaluated after expressing it as a deﬁmte 1ntegral.

4.6.2 Evaluation when C is a Curve in Space

The definition of the line integral given above can be extended when C is a curve in
space. In this case, the line integral will take either the form f [f, e, y,z)dx+
LG y,2)dy+ fi(x, y,z)dz] or the form ff(x,y,z)ds. When CC is a curve in

C
space, very often the parametric equations of C will be known in the form x = ¢ (1),
y= ¢ (1), z= ¢ (1). Using the parametric equations of C, the line integral can be

expressed as a definite integral. In the case of f f(x,y,z)ds , it is rewritten as

ff(X,y,Z) gdt , where
) di

o FRERC

C
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4.7 SURFACE INTEGRAL

The concept of a surface integral is a generalisation of the concept of a double
integral. While a double integral is evaluated over the area of a plane surface, a
surface integral is evaluated over the area of a curved surface in general. The formal
definition of a surface integral is given below.

Definition Let S be a portion of a regular two-sided surface. Let f(z, y, z) be a
function defined and continuous at all points on S. Divide S into 7 sub-regions As ,

AS,, ..., AS . Let P({,n,{) be any point in AS. Then lim Zf(fr,nr,CY)ASr
As, 2o =1

is called the surface integral of f{x, y, z) over the surface S and denoted as

[rerds or [[Fer.2ds.

4.7.1 Evaluation of a Surface Integral

Let the surface integral be f f(x,y,2z)dS , where S is the portion of the surface

N
whose equation is ¢ (x, y, z) = ¢ (Fig. 4.40).

V777777777
I =

Fig. 4.40

Project the surface S orthogonally on xoy-plane (or any one of the co-ordinate
planes) so that the projection is a plane region R.

The projection of the typical elemental surface AS (shaded in the figure) is the
typical elemental plane area A4 (shaded in the figure).

We can divide the area of the region R into elemental areas by drawing lines
parallel to x and y axes at intervals of Ay and Ax respectively. Then A4 =Ax - Ay.

Then Ax - Ay = AS cos 0, where 0 is the angle between the surface S and the
plane R (xoy-plane), i.e. @ is the angle between the normal to the surface S at the
typical point (x, y, z) and the normal to the xoy-plane (z-axis). From Calculus, it is
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known that the direction ratios of the normal at the point (x, y, z) to the surface

¢ (x, y,z) = c are Bﬁ’@’aﬁ . The direction cosines of the z-axis are (0, 0, 1)
Ox Oy 0z
¢
cosf = Oz =
2 2
RERE
Ox Jy 0z

Thus AS= —‘W AxAy.
oL+ 0] + 6
[ r@y2ras= [[ fxr,2-3———drdy

N R ¢z

Thus the surface integral is converted into a double integral by using the above
relation, in which the limits for the double integration on the right side are fixed so
as to cover the entire region R and the integrand is converted into a function of x and
y, using the equation of S.

Note™  Had we projected the curved surface S on the yoz-plane or zox-plane then
the conversion formula would have been

(ﬂ?m%nwaUVm%niﬁiﬁiﬁww

.

or f f S, y,2)dS= f f f(x,y, Z)~—Mdzdx, respectively.

2

4.8 VOLUME INTEGRAL

Definition Let V be a region of space, bounded by a closed surface. Let
fix, v, z) be a continuous function defined at all points of V. Divide V into n sub-
regions AV by drawing planes parallel to the yoz, zox and xoy-planes at intervals of
Ax, Ay and Az respectively. Then AV is a rectangular parallelopiped with dimensions
Ax, Ay, Az.

Let P(¢., n,.,C) be any point in AV .

Then lim Z f(&.,n.,C)AV, is called the volume integral of fx, y, z) over the
A Vj Zor=1
region V (or throughout the volume ¥) and denoted as
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[r@y.dv or [[[ 16y, ) dxdy dz

4.8.1 Triple Integral versus Volume Integral

A triple integral discussed earlier is a three times repeated integral in which the limits
of integration are given, whereas a volume integral is a triple integral in which the
limits of integration will not be explicitly given, but the region of space in which it
is to be evaluated will be specified. The limits of integration in a volume integral are
fixed so as to cover the entire volume of the region of space V.

Note @  Though the line integral and surface integral have been defined in the
scalar form in this unit, they are also defined in the vector form.

( WORKED EXAMPLE 4(c) ]

Example 4.1 Evaluate f[(3xy2 +y)dx + (x> +3xy°)dy] where C is the
C

parabola y? = 4ax from the point (0, 0) to the point (a, 2a).

The given integral

= [ 160 ) dr (& +397) &) v 4@, 2)
y? =4dax

In order to use the fact that the line integral
is evaluated along the parabola )* = 4ax, we
use this equation and the relation between dx ~ (0,0) O
and dy derived from it, namely, 2y dy = 4a dx
and convert the body of the integral either to
the form f{x) dx or to the form ¢ (v) dy. Then
the resulting definite integral is evaluated Fig. 4.41
between the concerned limits, got from the
end points of C.

The choice of the form f{x) dx or ¢ (y) dy for the body of the integral depends on

convenience. In this problem, x is expressed as 1 y? more easily than expressing y
as2+/ax . 4a

Note @ From y* = dax, we get y= +2/ax . Since the arc C lies in the first

quadrant, y is positive and hence y = 2+/ax .

2a

1 y 1 1
Thus I = 3o—yployit 3]—d —i—[— S43.—yp2 2]d
us [[[ 4ay yory 2a Y 644’ Y 4ay e

(As the integration is done with respect to y, the limits for y are the y co-ordinates of
the terminal points of the arc C).
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2a

5 3 1
I: -~ 4+_ 5_|__ 6]d
[[4ay 8a’ 7 64a’ e

_[L5+;6+ 1 ]
40’ T16a2” T aasa” ),
:§a4
7

Example 4.2 Evaluate f [(2x — y)dx + (x+ y) dy], where C'is the circle x> +)?=9.
C
In this problem the line integral is evaluated around a closed curve. In such a
situation the line integral is denoted as

99 [(2x—y) dx+(x+y) dy], where a small circle is put across the integral symbol.
C

When a line integral is evaluated around a closed curve, it is assumed to be described
in the anticlockwise sense, unless specified otherwise. (Fig. 4.42)

In the case of a line integral around a closed curve C, any point on C can be
assumed to be the initial point, which will also be the terminal point.

Further if we take x or y as the variable of integration, the limits of integration will
be the same, resulting in the value ‘zero’ of the line integral, which is meaningless.
Hence whenever a line integral is evaluated around a closed curve, the parametric
equations of the curve are used and hence the body of integral is converted to the
form f'(¢) d¢ or £ (6) d6.

In this problem, the parametric equations of the circle x> + y?> =9 are x = 3 cos 0
and y =3 sin 6.

: dvr=-3sin0df and dy=3cosfHdé.

-
B 6 2
O=nrn A’ 0=0
y X
0=2m
B/
3z
2
Fig. 4.42

27

The given integral = [ [(6 cos 0 —3sin 0) (—3sin 0.d 0)

0
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+ (3cos 6 +3sinf) (3cos b dF)]

2w
=9f(1—sin0cos 0) do
0

9[0_ sin’ 9]%
2 )

=187

Example 4.3 Evaluate f xy ds, where C is the arc of the parabola )* = 4x

between the vertex and the positive end of the latus rectum.

Given integral I= f xy%dx

C

Equation of the parabola is )? = 4x

Differentiating with respect to x, d_y = %

%FF

F

||
c\

Jax+4

zf (t* —1)-¢-2¢t dt, on putting x + 1 = 7

8
ZE(HJE)

Example 4.4 Evaluate f (»*dx — x*dy), where C is the boundary of the triangle
C

whose vertices are (—1, 0), (1, 0) and (0, 1) (Fig. 4.43).

C is made up of the lines BC, CA4 and 4B.
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Equations of BC, CA and AB are respectively y =0, x + y=1and —x + y = 1.
Given integral = f f f (¢ dx—x’dy)
AB

}:0 x+y=I1 —x+y=I
dy=0 dy=—dx dy=dx
y
A](0,1)
B C
=10 o (1,0
Fig. 4.43

:O+f[(1—x)2+x2]dx+][(1+x)2—x2]dx
zf(1—2x+2x2)dx+](1+2x)dx

0
2 3
[xx2 +%] +x+x7),"

1

3
Example 4.5 Evaluate f [x’ydx+(x—z)dy+xyzdz], where C is the arc of the

C
parabola y = x? in the plane z = 2 from (0, 0, 2) to (1, 1, 2).
Given integral = f [’y dx+(x—z)dy + xyz dz]

y=x'
z=2

—f [’ ydx+(x—2)dy]

[ dzzO,whenz: ]

1 5 1
:f[x4—|—(x—2)2x]dx LR
0 5 3 0
__ 7
15

Example 4.6 Evaluate f (xdx+xydy+xyzdz), where C is the arc of the
C

twisted curvex=t,y=1*,z=01,0<r<1.

The parametric equations of Carex=t,y=£,z=¢£
dx=dt,dy=2¢dt, dz=3¢dton C.

Usmg these values in the given integral I,
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1
I:f(t+t3«2t+t6o3t2)dt
0
£ )
=|=4+2—+3—
2 75 79
By
30
Example 4.7 Evaluate f (x* +y* +z%)ds, where C is the arc of the circular helix
C
x=cost,y=sint, z=3tfrom (1,0, 0)to (1,0, 67)

The parametric of equations of C are
xX=cost, ysint, z=23t.

%:fsint, d—y:cost, %:3 on C.

dr dx dr

R R

= | =] =] =

dt dr dr dr
= Jsin’t +cos’t +9=+/10
27

Given integral I=f(cosz t+sin® t+9t2)$dt
0

Note™  The point (1,0, 0) corresponds to =0 and (1, 0, 67) corresponds to t=27.
1=(1+3¢)" <10
=2J107(1+127?)

Example 4.8 Evaluate f f xyzdS , where S is the surface of the rectangular

N
parallelopiped formed by x =0,y =0,z=0,x = a, y = b and z = ¢ (Fig. 4.44).

z
z=c
c | o
Y
B' o
<~——y=b
S0 [
Y= 0 ’
B
A
A | c
X z=0
Fig. 4.44

Since S is made up of 6 plane faces, the given surface integral I is expressed as
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I:[fo—k!f+!\£+\!{+szo+zf‘[(xyzdS)

a

Since all the faces are planes, the elemental curved surface area dS becomes the
elemental plane surface area dA4.
On the planes x =0 and x = a, d4 = dy dz.
On the planes y =0 and y = b, d4 = dz dx.
On the planes z=0and z = ¢, d4 = dx dy.

I:ff+ff(xyzdydz)+ff+ff(xyzdzdx)
+ [[+ [[ czaay)

Simplifying the integrands using the equations of the planes over which the
surface integrals are evaluated, we get

I=a]]yzdydz—l—b]]zxdzdx—i—c]]xydxdy
0 0 0 0 0 0

Note @  On the plane face O'A'CB’ (z = c), the limits for x and y are easily found
to be 0, @ and 0, b. Similarly the limits are found on the faces O'B’AC’ (x = a) and
O'C'BA' (y =b).]

2 2 2 2 2 2
Now =g e b

2 2 2 2 2 2

:%(ab+bc+ca)

Example 4.9 Evaluate f f (y+2z-2)dS, where S is the part of the plane 2x +

N
3y + 6z = 12, that lies in the positive octant (Fig. 4.45).

Fig. 4.45

Rewriting the equation of the (plane) surface S in the intercept form, we get
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* + Y + z =1
.. S is the plane that cuts off intercepts of lengths 6, 4 and 2 on the x, y and z-axes
respectively and lies in the positive octant.
We note that the projection of the given plane surface S on the xoy-plane is the
triangular region OAB shown in the two-dimensional Fig. 4.46.

2x+3y=12

|

N

e
=

Fig. 4.46

Converting the given surface integral I as a double integral,

I:ff(y—l—Zz—Z)—dedy,

AOAB z

where ¢ = c is the equation of the given surface S.

Here ¢ =2x+3y+ 6z
L 9.=2¢,=3; ¢_=6.

I:ff(y+22—2)—v4+2+36dxdy

AOAB

=%ff(y+22—z)dxdy (1)

AOAB
Now the integrand is expressed as a function of x and y, by using the value of
z (as a function of x and y) got from the equation of §, i.e. from the equation 2x +
3y+6z=12
1
Thus z:g(IZ—Zx—3y) 2)

Using (2) in (1), we get

I:%ff%(6—2x)dxdy

AOAB
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74 “p
:ﬁ[[(6 2x)dxdy

7 28
:E[[ ]®_3

Example 4.10 Evaluate f f z*d S, where S is the positive octant of the surface
N

of the sphere x* +)? + 2> = ¢* (Fig. 4.47)
z

C

Fig. 4.47

The projection of the given surface of the sphere x* + y* + z* = ¢? (lying in the
positive octant) in the xoy - plane is the quadrant of the circular region O4B, shown
in the two-dimensional Fig. 4.48.

Fig. 4.48

Converting the given surface integral I as a double integral.

[+ ol ol ol +¢ ol

OAB
where ¢ =x?+)? + 22 = @? is the equation of the given spherical surface.

¢, =2x; ¢ =2y; ¢ =2z
ff ENCTES +y +27%) NP 2 ) Gedy

0A4B

:ffzzwlxz—l—yz—kzz dxdy

OAB
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Zaff(az—xz—yz)dxdy [ (x,,z) lies on x* +)? + 22 = &?]
01p
a m2 L,

:aj(; [ (a—y —x")dxdy
AT i=a =57

=aL[ (@ —y )x—?]x_o dy

P
—ga[m—y)dy

/2

2 . .
= 5a5 f cos* §d6, on putting x = a sin 6.

,2531E

=—a
3 422

Example 4.11 Evaluate f f y(z+x)dS, where S is the curved surface of the
S

cylinder x? + )? = 16, that lies in the positive octant and that is included between the
planes z =0 and z = 5 (Fig. 4.49).

z
C E
77
VS
227
s
s S
D 227
227
s
2220
78 7
A
X
Fig. 4.49 z
c D
We note that the projection of .S on the xoy-plane is T
not a plane (region) surface, but only the arc 4B of the | ________ |
circle whose centre is O and radius equal to 4. 3
For converting the given surface integral into a
double integral, the projection of S must be a plane

region. Hence we project S on the zox-plane (or yoz- O | 4 > 4
plane). The projection of S'in this case is the rectangular

region OCDA, which is shown in Fig. 4.50. Fig. 4.50
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Converting the given surface integral I as a double integral,

I—ffy(z-l—x)—Wdzdx

0ADC Y

where ¢ =x* +)? = 16 is the equation of the given cylindrical surface. ¢_=2x; ¢ V=

2y, ¢.=0.
I—ffy(z+x) VA e

OADC

:4ff(Z+X)dde [ (x,y,z)liesonxz+yz=l6]

0ADC
5 4
:4[]0‘(z+x)dxdz.

:4j(4z+8)¢

=38( 22+ 42)3
=360.

Example 4.12 Evaluate f f f xyz dx dy dz , where V'is the region of space inside the

Y

tetrahedron bounded by the planes x=0,y=0,z=0and — + 5 + =1

Vide worked Example 4.11 in the section on ‘Double and tr1ple integrals’ for
fixing the limits of the volume integral.

. bl—% cl—%fi]
1:[[ [ )bcyzdzdydx
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2 2 a 4
_be fx[lﬁ] dx

24 b a
b X x)*
5P
24 5 a a

x) xﬁa
7abzcz l_a] +[1_a
a5 e

a a

azbzczl 1
5 6

_T,

:L a2 b2 CZ .
720
Example 4.13 Express the volume of the sphere x* + )? + z2 = a* as a volume integral
and hence evaluate it. [Refer to Fig. 4.51]

z

Fig. 4.51

Required volume =2 x volume of the hemisphere above the xoy-plane. Vide worked
Example 4.12 in the section on ‘Double and Triple Integrals’.

2_2 PR

f f dz dy dx

Required volume =2 f

JE -0
=2 [ J@=x)-» dar
“a _Jase

Taking @ — x* = b?, when integration with respect to y is performed,

VzZ]]w/bz —y* dydx
—a—b
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a b
:4ff“b2_y2 dy dx [-4/b* — »” is an even function of ]

—a 0

:Wf(az %) dx
3 a
= 27r[a2x—x—]
0
=—7a’

Example 4.14 Evaluate f f (x+y+2z)dxdydz, where V is the region of space
Vv

inside the cylinder x* + )* = 42 that is bounded by the planes z = 0 and z = & [Refer
to Fig. 4.52].

z

0

(X,y, h) /'<:~__/

(x, 5, 0) /7})_/ y

Fig. 4.52

Note™  The equation x* + y* = @ (in three dimensions) represents the right circular
cylinder whose axis is the z-axis and base circle is the one with centre at the origin
and radius equal to a.

f f f(x—i—y—l—z)dzdydx

\/72

f |
e h

2h- [[Hg]dydx

a

2

x+y)h+h dy dx

[by using properties of odd and even functions]
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Part A

¥ h
=2h x+—|\Ja?—x?dx
J[+3]

a

:2h2f a’—x*dx [ x+a’—x’isoddand yJa®—x"iseven]
N SCPNE

( EXERCISE 4(c) ]

(Short Answer Questions)

10.

11.

12.

13.

14.

. Define a line integral.
. What is the difference between a definite integral and a line integral?

Define a surface integral.

. What is the difference between a double integral and a surface integral?

Define a volume integral.

. What is the difference between a triple integral and a volume integral?

Write down the formula that converts a surface integral into a double integral.

. Evaluate f(x2 dy+ y* dx) where C is the path y = x from (0, 0) to (1, 1).

C

. Evaluate f«/ (x* 4 y?) ds, where C is the path y = —x from (0, 0) to (-1, 1).

C

Evaluate f (x dy—ydx), where C is the circle x* + y* = 1 from (1, 0) to

C

(0, 1) in the counterclockwise sense.

Evaluate f f dS, where § is the surface of the parallelopiped formed by
S

x=+x1,y=+2,z=43,
[Hint: f f dS gives the area of the surface S]
N

Evaluate f f dS, where S is the surface of the sphere x* + y* + 2% = ¢*
N

Evaluate f f dS, where S is the curved surface of the right circular cylinder
N

x2+3y?=a?, included between z =0 and z = A.
Evaluate f f dV, where V is the region of space bounded by the planes
Vv

x=0,x=a,y=0,y=2b,z=0and z=3c.
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15.

[Hint: dV gives the volume of the region V]
]

Evaluate f f dV, where V is the region of space bounded by x* + )? +
Vv

z22=1.

16.

Part B

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Evaluate f f dV, where V is the region of space bounded by x* +)? = a2,
14

z=—h,z=h.

3
Evaluate f [x*y dx+(x* — y*)dy] along the (i) curve y = 3x2 (ii) line y = 3x.

©.0)
Evaluate f[(x2 —y*+x)dx—(2x y + y) dy] from (0, 0) to (1, 1), when C is
C
()3 =x, (if) y = .
@,0)
Evaluate f (y? dx—x*dy) along the upper half of the circle x>+ = a2,
¢a,0)
X 2 y 2
Evaluate f (xdy—ydx), where Cis the ellipse — + T =1 and described
a
C
in the anticlockwise sense.

Evaluate f [(x* —y®) dx+2xy dy], where C is the boundary of the rectangle

C
formed by the lines x=0,x=2,y =0, y= 1 and described in the anticlockwise
sense.

Evaluate f[(3x2 —8y%) dx+(4y—6xy )dy ], where C is the boundary of the
C
region enclosed by )? = x and x* = y and described in the anticlockwise sense.

Evaluate f (x—»*)ds, where C is the arc of the circle x = a cos 0, y = a
C

sin 6 ; Ogeég

Evaluate f x ds, where C is the arc of the parabola x> = 2y from (0, 0 ) to

C
)
2
Evaluate f[xyder(szrz) dy+(»* +x)dz] from (0, 0, 0) to (1, 1, 1) along
C

the curve C given by y =x? and z = x°.

Evaluate [ [(3x” +6y)dx—14yzdy+20xz* dz], where C is the segment of
y yzdy g

C
the straight line joining (0, 0, 0) and (1, 1, 1).
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27.

28.

29.

30.

31.

32.

33.

34.

35.

4.9

Evaluate f[3x2 dx + (2xy — y) dy — zdz] from¢=0 to #= 1 along the curve
C
Cgivenby x =28,y =t,z=48.
Evaluate f xy ds along the arc of the curve given by the equations x = @ tan
0,y =acot 6 z= V2 a log tan 0 from the point 4= % to the point
g=".
Evaluate f (xy + z°)ds , where C is the arc of the helix x = cos ¢, y = sin ¢,
C
z=tfrom (1,0,0)to (—1,0, 7). X -
Find the area of that part of the plane — + % +—=1 that lies in the
a c
positive octant. Hint: Area of the surface = f f ds
N

Evaluate f f zdS, where S is the positive octant of the surface of the sphere
N

X2+ y P+ 22 =a%
Evaluate f f xy dS, where S is the curved surface of the cylinder x> + )? =

a@?, 0 <z <k, included in the positive octant.

Find the volume of the tetrahedron bounded by the planes x =0,y =0,z=0,
E + Z + Z_ 1
a b ¢ '

Evaluate f f f zdx dy dz, where V' is the region of space bounded by the
Vv

sphere x* + )? + z> = ¢ above the xoy-plane.

Evaluate f f f (x* +»*) dxdy dz, where Vis the region of space inside the
Vv

cylinder x* + y* = & that is bounded by the planes z =0 and z = .

GAMMA AND BETA FUNCTIONS

Definitions The definite integral f e x" ' dx exists only when n> 0 and when it
0

exists, it is a function of » and called Gamma function and denoted by I'(n) [read as
“Gamma n”].

Thus

I'(n)= fe"” X" dx
0

1
The definite integral f x" ' (1—x)""" dx exists only when m > 0 and n > 0 and
0

when it exists, it is a function of m and n and called Beta function and denoted by
(m, n) [read as “Beta m, n’].

Thus

B(m, n)zfx’"*1 (1—x)" 'dx:

0
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Notew P(l):fe’“‘ de=(—e ") =1,

1

B D= [dc=1.
/
4.9.1 Recurrence Formula for Gamma Function

I'(n) =fe’x x" ! dx
0

=—@""e )+ f (n—1)e ™ x" *dx [integrating by parts]
0

n—1
=(n—1)T(n — 1), since lim [x ]: C

n— 0o x

e

This recurrence formulaI'(n) = (n — 1) I" (n — 1) is valid only whenn> 1, as I'(n — 1)
exists only when n > 1.

Cor.

I['(n+1)=n, where n is a positive integer.
I'n+1)=nT(n)
=nm—-DILm@-1
=nm—-Dm—-2)T' (n—2)

nn=1)(n-2)..3210T0)
=n!l (" TOH=1)

Note™ 1. T'(n) does not exist (i.e. = ), when 7 is 0 or a negative integer.
2. When n is a negative fraction, I'(n) is defined by using the recurrence
formula. i.e. when n < 0, but not an integer,

I(n) = % L(n+1)

For example, I'(—3.5) = (_13.5) I'(-2.5)
1 1
T (=35 (-25) F=13)
- ! I(-.5)
(3.5) (2.5)(—1.5)
I'(0.5)

T (3.5)(2.5)(1.5) (0.5)

The value of I'(0.5) can be obtained from the table of Gamma functions, though its
value can be found out mathematically as given below.

Value of I‘[%]
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o

T 1
:fe’x -—-2xdx
A X
=2 dx

2

= 4??5“*)’“ dr dy
0 0

(on putting ¢ = x?)

is only a dummy variable]

(1

[ the product of two definite integrals can be expressed as a double integral, when

the limits are constants].

Now the region of the double integral in (1) is given by 0 <x <ooand 0 <y < oo,

i.e. the entire first quadrant of the xy-plane.

Let us change over to polar co-ordinates through the transformations
x=rcosf and y=rsinb.

Thendxdy=|JjdrdO=rdrd@

The region of the double integration is now given by 0 <r <o and <9< T,

Then, from (1), we have

{F[l]}z = 47%?@”2 rdrdf
2 0 0

4.9.2 Symmetry of Beta Function

B (m, n)=p(n, m)
ﬂ(m,n)=fx’"’l (1—x)"" dx (1)

By definition,
0

Using the property ]f(x) dx = ]f(a —x)dx in (1),

T2
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B(m, n):f(l—x)'H 1—(1—x)"" dx

1
=[x -0 d
0
=3 (n, m).
4.9.3 Trigonometric Form of Beta Function

1
By definition, 3(m, n) = fx'”’l (1—x)""dx

0

Put x =sin* § o dx=2sinOcos 0dO
.. T
The limits for 6 are 0 and 5 .

/2
B(m,n)= fsinz'”’2 6-cos* > 0-2sin 6 cos O df
0
w/2

=2 fsin 0. cos 9 do

0

/2

Note ™ fsin 1. cos ™ 0 dO = %ﬂ(m, n)

0
The first argument of the Beta function is obtained by adding 1 to the exponent of

sin 6 and dividing the sum by 2. The second argument is obtained by adding 1 to the
exponent of cos d and dividing the sum by 2.

/2

Thus [sin” 6 cost 69 = % ﬂ[pTH, qT“]

0

4.9.4 Relation Between Gamma and Beta Functions

_T'mI'(n)
B(m, my= I'(m+ n)
Consider IL'(m)I'(n)= jje*’ " dt- je*s 5"l ds

In the first integral, put £ = x* and in the second, put s = )*.

F(m)-r(n)zzfe** X! dx-Zfe’yz 32 dy
0 0
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72 vz — —
e(x+})x2m]'y2r/ldxdy

Il
N
0%8

e (rcos 0)*" - (rsin @) rdrdf

I
~
R
o%g 0%8

[changing over to polar co-ordinates]

/2 00
2m—1 . 2n—1 - 2m+2n-2
:4fcos’" 0 sin*" 9d0~fe’ P2 e dr
0 0

o0
=3 (m, n) fef’z p2TD 0 dp

=B (m,n)- f S dy [putting 7 = u]

T'(m) T (n)
I'(m—+n)

cr ) T 1]Hi]}

Putting m = n = — in the above relation, [ [—,— =
2 22 NG

B (m, n) =

2

R

/2

=2 fsinoﬁ-cosoﬂdﬂ
0

=T
1
-
2
[ WORKED EXAMPLE 4(d) ]
Example 4.1 Prove that f —a =l Qg = T , where a and n are positive.
a”
N’
log[—] dx.
X

Hence find the value of f x4t
0

T o dt
In fe “ x"""dx, put ax =1, so that dx = —
a

0
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0 0 a
LT
=— e 't" dt
a"[
:Lnl“(n)
a

1
put —=e

x
1.e. x=e”
Then dx =—e>dy

Also the limits for y are o and 0.

fe*(q 1)y,yp*1, (_e*y)dy

fe qy ypfl dy

1

=—T(p) [by (1)].
q

m—1

Example 4.2 Prove that (3 (m,n) = f(l_:—dx
0

x)m+ n

1 m—1 n—1
X +x

Hence deduce that 8 (m,n) = | ———
S

1
By definition, 3(m,n) = ftmfl (1—t)""dt
0

1
In (1), put t=—"_ . Then dt =—dx
I+x (1+x)
When¢t=0,x=0; whent=1,x=o
Then (1) becomes,

B (m,n) =

m—1

I
(1_|_x)m+n

Il
o o—3 o—3

(1+ x)" " [(H x)"

m—1 n—1
X ) 1 ] 1 _dx
14+x 1+ x (1+x)

(1

(1

2

)
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SR 1 1
In fx—+dx,putx=—.Then dr=——dy
- (L+x0)"" y y

Whenx=1,y=1;whenx=00,y=0

1
f xmfl y(m D] _i dy
(1 + x)m+n l [ 1] y2
1+
y

m+

1 n
dy
Ojv(1+y)m+n.ym+l

| n—

1
—d
;f e

e

[changing the dummy variable] 4)
Using (4) in (3), we have
L m—1 n—1
X7 +x
m,n)= | ———dx
/8( ) 10/1 (1+x)m+n

1

Example 4.3 Evaluate f x"(1—x")’dx in terms of Gamma functions and
0

hence find f

VI—x" .
1
In I:fxm(l—x”)pdx,

o

put xX"=1t
then nx" ' dx = dt

Whenx=0,t=0; whenle t=1.

Ifft"(l —t" dr

1 1 m+1
== [er a-nra
n 0

1 1
_ﬂ[ﬂ’er]]
n

n
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1r[mn“]-r(p+1)

T F[m—&-l
n

(1)

+p+1]

L dx _10_’,71
Of —fx(lx)zdx

n
0

;

1
Here m=0,n=n, p:—E.

Using (1); we have

frte

n 2
T F[i]
T

Jr T'(n)

Example 4.4 Prove that 3 (n,n) = 1
22n—1 I [n + 2]

1 1
]

/2
B (n,n)=2 f sin®”' §-cos™ ' 6 df [using trigonometric form]
0

(OI') ﬁ (n’ n) =

w2
=2 [(sin 0 cos 0)""'d0
0
" (sin 20]2'1l 40
2

=2

0
w2

1 s 2n—1
=T sin 20 do
==

T

1 PTRTR« [) . -~
=nz {sm ¢7, putting 20 = ¢
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/2

== fsin”’l(bdqb
2 0

1 1 1
=)
1 1

= 22)1—1 /8[’1’5]
I'(n)-T l
_ b2
- 22n—1 1
T =
[n+ 2]

Jr-T(n)

T o)
22n71 1—\ +]
[" 2

~ 2.2 1
Example 4.5 Show that f x"e T dx = Lr[ﬂ] )

w2

f f(sin ¢) dp =2 f f(sing) do

J 2an+l 2
Deduce that f e dy = ﬁ . Hence show that
J 2a
~ 9 _ r. 2 1
fcos(x )dx—fsm(x )dx—z 3
0 0
In 1= foox”e’“ledx,put ax =t ; then dx = dr
5 2aNt
Whenx =0, t=0; whenx =00, =0
[ ] Za\[
f %- e'dt
— ;lr n+l (1)
2a"" 2
In (1), putn=0.
1
o D
Then f ey = —2) ﬁ 2)
J 2a 2a

In (2), put @ 17 then a? = —i
n(2),put a =—; =-
P V2
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i NT
i _
[e de= J2(1—-i)

=
—2\/5(14—1)

Equating the real parts on both sides,

00

fcos(xz)dx:l .
/ 2\2

Equating the imaginary parts on both sides,

fsin(xz)dx:l .
! 2\2

Example 4.6 Evaluate
b
(i) f Gc—a)"" (b—x)"" dx and
(ii) fa (@+x)"" - (@a—x)"" dx in terms of Beta function.

it = "c—ay" (b—x)"" d,

putx — a =y; then dx =dy
Whenx =a,y=0;,whenx=b,y=b—a

b—a
L= [y {e-a-y""d
0

b—a n—1
=(b—-a)" f ! [1——y ] dy
5 b—a

In (1), put by =t;thendy=(b—a)dt

7a_
Wheny=0,t=0; wheny=5b—a,t=1.

[ =®b-—a)"" f =) de
=(b—a)""" 3 (m,n)

(i) In I, = ](a +x)" " (@a—x)"" dx,

put a + x =y; then dx = dy
When x =—a,y =0; whenx =a, y = 2a.

2a
L= [y @a—yy dy
0
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— (2a)"! [ _L'Hd 2
wr g o o

In (2), put % =t; then dy = 2a dt.
Wheny=0,7=0; wheny=2a,t=1.
L, =Qa)"" " j " A=) de -
0
= (2a)""""'3 (m,n)

&xjx%”hx -

2

Example 4.7 Prove that f ¢

Jx 42
dt dt
In I, = dx, put x* = ¢; then dx = —
f\/_ 2x 2\/;
When x =0, t—O'whenx—oo t=oo
17
= 1/4' =—[ett?® df
Oft Jt 2{
:lp[l]
2 4
Toa ds  ds
:fxze dx,put)c4=s;thendx:E:“SW
When x =0, s =0; when x =0, s = 00.
oo 100 7l
Izzf\/;ef'V 3/4*—fs4e‘ds
0 4+
:lp[é]
4 4
f : f 2 xAdleF[l]F[E] 0
0 8 4 4
From Example 4.4;
1
5 0um =3[ 1]
e FmT(n) 1 F(n)-\/;
e - 2)1—1.
r'@2n) 2 F[n—i—;
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Putting n:l,we get
4

1) (3 \/;'F[;]

-

22

2)
Using (2) in (1);

Fe ™ r 4 2 T
dex | X¥e ' dx=—"=—+.
;)[ Jx 5[ 8 42
0 xm—l
— dx
Example 4.8 Evaluate ! RESOY and deduce that f

dx.
1+ x"
= 7T . Hence show that -
. (mm f1+x 22
nsin| —
n
x xm—l
Inl=|———dx,putt=
Of(1+x")P P
n 1_t . n—1 _ 1
Then x" =—— .. nx dxf—t—zdt
Whenx=0,t=1; whenx=o00, =0
A
et =0 dr
I_f P ' JRCED) a1
0 nt2t " (1=t)"
1 ; p*ﬂ—l 2
——fx (=t dt
n
0
1 m m
n non
NGnan
2\ n) \n (1)
n L'(p)
Putting p =1 in (1), we get

00

m—1
[EEE
) 14+ x n

n n

™ ™m
=—Co0s¢eC | —
n n

Hint: Usel'(a)T'(1—a)=

2

sinar
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Taking m = 1 and n =4 in (2), we get

oo

f dx T [ﬂ']
= —.cosec|—
0 1+x* 4 4

_7T
22

Example 4.9 Find the value of f f x"' y""dxdy , over the positive quadrant of

/%
Puc X=X and L=F \\/

Then dr = —%— dX and dy — ——d¥

The region of double integration in the xy-plane is given by x > 0, y > 0 and

2 2
. X . .
the ellipse —2+z—2 =1, in terms of Gamma functions. 4
a

_+y <1, shown in Fig. 4.53.
a b

". The region of integration in the XY-plane is given by X>0, Y>0and X+ Y <1,
shown in Fig. 4.54.
The given integral

Y
B
m— n— b
1= [ [(adX)" (v7) —2 _dxdy Yoy
Z[)i xSy T
myn m n X
_a’h [[x* "y axar © 4
4 AO AB
mbn 1 1-Y m Flg. 4.54

_4 fXTIYTIdXdY
4

0 0

I:

a"b" Pt 2y
g fY m(X) dy

a’b fYZl (1-y)"dy
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o 551
_a b" 212 2
2m F[m+”+1]
2 2

o 500

4 F[ern_H]

Example 4.10 Find the area of the astroid x ** + y ?* = ¢ **, using Gamma func-
tions.

By symmetry of the astroid, required area 4 =

y

4xareaof0ACB:4ffdxdy 2

0OACB

23 2/3 C
Put [f] = X and Z] =Y
a a .
, 0 A
ie.x=aX¥and y=aY3?
. 3 1/2 3 1/2
Sodx==aX" and dy == qY"?dY
2 2
The region of integration in the xy-plane is )
203 23 Fig. 4.55
given by x>0,y >0 and [f] +[Z] <1 ,as shown in Fig. 4.55.
a a

.. The region of integration in the XY-plane is given by X>0, Y>0and X+ Y < 1
as shown in Fig. 4.56.

Y
0 0
A=4xoar [ [xeyeaxay |\
4 AO PQ
1 1-Y o P *
:9a2-ffX1/2 Yvzdx dy
0 0
| -y Fig. 4.56
:9a2fY1/2 [EX”] dy ’
3 0

0
1

= 6az [Y2(1-1)" dy
0

35
:6 2% —,—
i3]

['(4)

=6azx
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, 1. (1) 3 1 1 N
= Eﬂ'az lF[l] = \/;
8 2

Example 4.11 Evaluate f f [xy(1—x— y)]l/ *>dxdy, over the area enclosed by the
lines x =0,y =0 and x + y = 1 in the positive quadrant.

1 1—x

Given Intergral I:ffxl/zyl/2 (1—x—y)"” dydx, y
0 0

1 a
= [x"dx [y (@=)" dv
0 0

where a =1 —x. (1
Consider f y" a—y) ' dy 10) : x
0
a n—1 Fig. 4.57
— anflfymfl [I_Z] dy
5 a
1
=a""' fa”’" 2" (1-2)""adz [putting Y_ z]
o a
— am+n—1 5(”” n) (2)

Note™  This result (2) will be of use in the following worked examples also.
Using (2) in (1)

>

3
notethatm = n = E
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Example 4.12 Show that the volume of the region of space bounded by the
coordinate planes and the surface \/7 \/7 \/7 —1is a_bc .
Required volume is given by

Vol = f f f dz dy dx, where V'is the region of space given.
Vv

o fon o

x=aX?,y=bY*, z=cZ?
Sodx=2aXdX,dy=2bYdY,dz=2cZdZ

"~ Vol= fffgachYZ dZ dY dXx , where V' is the region of space in XYZ-space
i

defined by X>0,Y>0,Z>0, X+ Y+ Z<1 [Refer to Fig. 4.58]
A

I-X 1-X-Y

Vol = Sabcfdxfdy fXYZdZ

1-X Z2| X-Y
—8abe [ xdx [ vdy Y
acf f [2]0 ,
1-X
—4abcfXdX fY (1—X—YPdY x

Fig. 4.58
1
=4 abc fX (1—-X)"-B(2,3)dX [by step (2) of Example (4.11)]

4 ghe. LATO) B,

5)
L'(5)
:4abc><1><2 y re)reo)
24 X))
abc 1x24
_ac, 1rer
3 720
_abe
90

Example 4.13 Evaluate

taken over the region of space

IIIJL

in the positive octant bounded by the sphere x> +y? +2z> = 1.
Putx*=X,y*’=Y,22=7
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dx dy 4z
dr=- . dy = =
Wx O ody YN

The region of integration in xyz-space is defined by x >0, y >0, z> 0 and x* +)* +
22< 1.

.. The region of integration V in the XYZ-space is defined by X>0, ¥Y>0, Z> 0 and
X+Y+Z<1.

L O | L
..Given integral [:fff%)( 2y?27Z2(1-X-Y—-2)*dXx-dy-dz

1 1

1 1 - X -
x2dax [v: f 2(1-X-Y—-2)2dz
0

2’2
[by step (2) of Example (4.11)]

s
X’%dX:[X FdY (- X — 1)’ ;‘.5[1 1]

L L NS Ll 1)
7T1 ; 12
:Z[X (11— X)2 dx
T 1 3
25[5’5]
rl3)r[3)
_r. \2) 2
4 T(Q)
_r
8

Example 414 Evaluate fff\/az b2 cz — bz cz xz — c2 az yz — az b2 ZZ dxdydz,
Vv

2 2 2

x z
where Vis the region defind by x>0,y >0,z>0and — + =5 2 +—5<I.
a

b? c
¥ 2 2 z 2
Put [—] — X, [1] —v, [—] —7
a b c

ie. x:a\/},y:b\/?,zzcﬁ

dr=— ¥, dy= 2 dy.de=—_dz

Wx N N7
The region J” of integration in the XYZ-space is defined by X>0, Y>0,Z2>0, X +
Y+Z<1.
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Integral = abc fffﬂll -X-Y-Z c;bj_dX\/d_Yj_Z

b22 1 1-X-Y

fXZdeYZdY f 22(1—)( Y — 2)2

2b2 2 1 1-X 1 1 3
2 2 _
fX dx fY dY(1—X —7)- 5[2 2]

[by step 2 of Example (4.11)]
a’b’c’ 13 3 5 Al
- 5[ ] fX dx (1— X) 5[2 2]

8
[by step 2 of Example 4.11]

a*b’c? 1 3 1 15
3 5[5 5] ﬁ[z’z]‘ﬁ[z’z]

cve ") e )l

8 (2 F[ 5] r'3)
2
ma’b’c’
2
Example 4.15 Find the value of fffxl’l Yy 2" (1—=x—y—z)”" dx dy dz, taken

over the interior of the tetrahedron bounded by x=0,y=0,z=0andx+y+z=1,
in terms of Gamma functions.

1-x l—x—y

x”ldxfy””ldy f ' (l—x—y—z)""dz
0

0

1
Given integral =
/
1 1-x
- fx’*l dx f Y A=x =) B(n, p) dy-
0 0
[by step (2) of Example (4.11)]

=B0n,p) [ ¥ A=x)" " Bmn+ p)d,

[by step (2) of Example (4.11)]
= B(n, p)-B(m,n+ p)-B(l,m+n+ p)
_TI'n)Tp) Tm)I'(n+p) T'())-T'(m+n+p)
" T(n+p) Dm+n+p) T(+m+n+p)
_TOImTmIp)
F'{+m+n+p)
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[ EXERCISE 4(d) ]

Part A
(Short Answer Questions)

1. Prove that fx“e’xz dng\/;~
0

00

2. Evaluate f xe ™ dx , given that F[g] =0.902.

0
/2

3. Find the value of fsin3x cos™x dx.
0

/2

4. Find the value of j\sin5 0 cos’6do .
0

/2

5. Find the value of f JJtan @ d@ in terms of Gamma functions.
0

/2
3

6. Prove thatf cot @ dg—lf‘[lJF[—}-
. 2 4) \4

do

/sin @
dv =7
\/cos x '

log [l]] dx=T'(n).
x

/2 /2
0

7. Find the value of f sin @ df x f
0

/2 /2

8. Prove that f coS x dxxf
0 0

1
9. Prove that f
0

10. Find the value of fx—rdx (n>1).
n
0
x* T

1
dx= , prove that T'(a)-I'(1 — ) = —
I+x

sin a sin ar
where a is neither zero nor an integer. [Hint: put x = tan? 0]

>

11. Assuming that f
0

12 Find the value of f e dx.

13. Prove that SmtLn) _m

B(mn+1) n

14. Prove that 2 +Lm) Bm,n+1) _ Bm,n)
m n m+n
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m—1
15. Find the value of f — = dx interms of a Beta function.
a +bx)m+n
Hint: put x = Et]
16. Prove that S(m + 1, n) + f(m, n+ 1) = (m, n). b
2 1
17. Find the value of f (8—x’) 3 dx in terms of Gamma functions.
18. Prove that fx'" (@—x)"de=a"""B(m+1,n+1).
19. Define Gamoma and Beta functions.
20. Derive the recurrence formula for the Gamma function.
21. When 7 is a positive integer, prove that ['(n + 1) = n!
22. State the relation between Gamma and Beta functions and use it to find the
value of T 1 .
2
Part B 00 o , , 1
23. Prove that f f @ ) amt 2ol g, wog T ).
0 0
1
24. When 7 is a positive integer and m > —1, prove that f x" (log x)" dx=
0
=" n!
(m + 1)n+1 :
-1 n—1
25. Prove that f Gt dx= BGm,n)
(a+bx)"™" a' (a+b)"
Hint:Put ==
a+ bx a+b
26. Express 5[,1 + l, n-+ 11 in terms of Gamma functions in two different ways
2 2
+
and hence prove that I'|n + 1 = M .
2 27" T'(n +1)
27. Prove that \/;e’xzdxx idxzi .
f f Jxoo22
28. Prove that [xe ™ dix [x%e ™ dx=—"_.
f Of 1632
2 1
29. dr

x

Prove that f \/1 X f \/1
- 0
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30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

o X dx
Evaluate (i) f 3 , (i) f I+ ) and (iii) Of m

[Hint: put x> = tan® 0]
Find the value of ffx y" dxdy, taken over the areax>0,y>0,x+y<1in
terms of Gamma functions, if m, n > 0.
Find the value, in terms of Gamma functions, of f f f x" y"zP dxdydz
taken over the volume of the tetrahedron given by x >0,y >0,z >0 and x +
y+z<1.

2/3 2/3
Find the area in the first quadrant enclosed by the curve [E] + [%J =1
a

and the co-ordinate axes.

Evaluate ffx'”’l y" ' (1—x—y)” "dxdy , taken over the area in the first

quadrant enclosed by the linesx=0,y=0,x+y=1.

The plane = + % + 2o meets the axes in 4, B and C. Find the volume of the
a c

tatrahedron OABC. 2 2 2
Find the volume of the ellipsmd —+ )b/_z +—=1.
a’ c’
Find the volume of the region of the space bounded by the co-ordinate planes

and the surface [i] +[%] +[£] =1 and lying in the first octant.
a c

Evaluate f f f \/ xyz(1—x—y—z)drdydz, taken over the tetrahedral
volume in the first octant enclosed by the planex=0,y=0,z=0andx+y+z=1.

Evaluate f f f x* yzdxdydz, taken throughout the volume in the first

octant bounded by x =0,y =0, z= 0 and 14-%_1-5:1.
a c

40. Evaluate f f f xyz dx dy dz, taken over the space defined by x>0,y >0,z>0
x2 y2 22
and S tash
( ANSWERS ]
Exercise 4(a)
(1) 4 (2) logalogb 3) 2
@ L 5) T © -
2 4 2
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y=>b
1 XxX=a
™ 3 ® . 5
y=-b
y Fig. 4.59
¥
y=x .
.
©) (10) E
o . x=0
=0 X
y 0 y=0
Fig. 4.60 Fig. 4.61
i+l=l 1 1-x 11—y
(1) x=0| N2 P a2) [ [rend @ @on [ [ repdedy
0 0 0 0
10) -0 x
y
Fig. 4.62
[Nt [ e

[ [ rensacon [ fenad

(14) ij(X,Y)dXdy(or) ]jf(x,y)dydx
1 2Jx

(15) ]If(x,y)dxdy(or) fff(x,y)dydx

4
3

(16) 2 log 2 (17) % (18) —
ra’ 1
(19) o 20 =5,
8 19 3
(21)510g2—§ (22) 1 (23) 5
24) g 25) Lab(atb 26) 24
4 Za (5) Jab(a+b) 6) T
33
27)6 28) 2
(27) (28) 5
1 1
(29) - (8log2-5) G0 o
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Exercise 4(b)
) [ [ repdedy @ [ [ reydvd
3 [ [ femdedy @ [ [ e
(5) f ] £(x,y)dydx (6) f f f(x,y)dxdy
1 l—y2 a \/m
D [ [ reydedy ® [ [ seoydvdr
© [ [ repdedy 10) [ [ ferydydx
ma 16
an o (12) 3 (13) 1
1 2
(14) 1 (15) 5 (e—1) (16) 2
9 1 241
(17 34 (18) 5 log2 (19)
(20) %a“ 1) 3 (22) 8log2
s 3 2
23) 7 24 3 29 5
32 16 16
(26) 3 @) 3¢ (28) 7 b
T 1 3 2
29 5 t3 (30) 37 G1) 5 ma
(32) o 2?”—?] (33) % (3 —8) (34) T
3 2 s 2 a
(35) 3 @ G6) 7 (1= 37 o
(38) % log(1++2) (39) gcf (40) f
T 272
(41) 5 h 42) 27 43) 127

(44) 167 4s) ' Gr-4) (46) 47a
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2

T ™ 4 ™
47) < (48) 4 ¢ (49) 5

4
m

50) —

()6a2

Exercise 4(c)

2
® 3 9 1 (10) g
(11) 88 (12) 4nd (13) 2rah
4
(14) 6 abc (15) 37 (16) 2mah
iy -2,-2 1) —2;-2 19) 2o
TR (18) =373 (19 3
(20) 2mab @1) 4 (22) %
23) & [1—%] (24) %(2\/5 —1)_ ©25) %
26 2 o B 28 2
26) 5 en - 8 7
2

(29) %w (30) %\/azb2+b2c2+cz @

ra® ka® abc
G (32) (33)
(34 a (35) Ja'h
Exercise 4(d)

8 1

) 0.456 (3) 77 @ T2

1.(1).(3 1
Q) EF[Z]F[Z] (7 n (10) Wr(”ﬂ)
(12) J% (15) = Bmn  (17) %F[é]r[é]
(22) Jr (30) r 7w Sm2

24278427 128
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€2))
(32)

(33)

(35)

(37

(39)

Tm+1)T(n+1)/T(m+n+3)

TC(m+1)-T(n+D)T(p+1)/T(m+n+ p+4)

3mwab

> (34) T(m)T(n) T(p)/T(m+n+ p)
a_bc i wabc

: (36) 3

/L, (3
abC{F[]} / 3n F[—] (38) /1920
n n

a*b*c?/2520 (40) a*b*c*/48






UNIT 5

Differential
Equations

5.1 EQUATIONS OF THE FIRST ORDER AND HIGHER
DEGREE

In the lower classes, the students have studied differential equations of the first order

and first degree, such as variable separable equations and linear equations. Now we shall

study differential equations of the first order and degree greater than or equal to two.
The general form of the differential equation of the first order and n” degree is

dx dx dx
d
+ fomi (x,y)aerfn () =0.

R

If we denote % by p for convenience, the general equation becomes

Pyt L pt et ) p () =0 (1)

Since (1) is an equation of the first order, its general solution will contain only one
arbitrary constant. Solution of (1) will depend on solving one or more equations of
the first order and first degree.

To solve (1), it is to be identified as an equation of any one of the following types
and then solved as per the procedure indicated below:

(1) Equations solvable for p.
(i1) Equations solvable for y.
(ii1) Equations solvable for x.
(iv) Clairaut’s equations.

51.1 Type 1—Equations solvable for p

If equation (1) is of this type, then the L.H.S. of (1) can be resolved into » linear factors.
Then (1) becomes
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p-F)@p-F)...(p—F)=0, fromwhichwe getp=F,p=F,,...,p =F,, where
F,F,, ..., F are functions of x and y.

Each of these n equations is of the first order and first degree and can be solved
by methods already known.

Let the solutions of the above n component equations be ¢, (x, y, ¢) = 0, ¢, (x, y,
¢)=0,..., 9 (x,y, c) = 0. Then the general solution of (1) is got by combining the
above solutions and given as ¢, (x, y, ¢) ¢, (x,,¢) ...¢, (x,y,¢) = 0.

5.1.2 Type 2—Equations Solvable for y

If the given differential equation is of this type, then y can be expressed explicitly as
a single valued function of x and p.
i.e. the equation of this type can be re-written as

y =fix,p) ©)
Differentiating (1) with respect to x, we get
dp
= X, Py 2
P ¢[ p dx] 2

Equation (2) is a differential equation of the first order and first degree in the variables
x and p. It can be solved by methods already known. Let the solution of (2) be
v (x, p, ¢) =0 - (3), where ¢ is an arbitrary constant. If we eliminate p between (1)
and (3), the eliminant is the general solution of the given equation.

If p cannot be easily eliminated between (1) and (3), they jointly provide the
required solution in terms of the parameter p.

5.1.3 Type 3—Equations solvable for x

If the given differential equation is of this type, then x can be expressed explicitly as a
single valued function of y and p. i.e the equation of this type can be re—written as

x=f0,p) (M
Differentiating (1) with respect to y, we get

@)

1 d
_:(b[y’p’_p
p dy

Equation (2) is a differential equation of the first order and first degree in the
variables y and p. It can be solved by methods already known.
Let the solution of (2) be

v(,p,e)=0 (©)

where c is an arbitrary constant.

If we eliminate p between (1) and (3), the eliminant is the general solution of the
given equation.

If p cannot be easily eliminated between (1) and (3), they jointly provide the
required solution in terms of the parameter p.
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Note™  Some differential equations can be put in both the forms y = f(x, p) and x
= fly, p). Both these forms may lead to the required solution. Sometimes one of the
forms will lead to the required solution more easily than the other.

5.1.4 Type 4—Clairaut’s Equations

An equation of the form y = px + f{p) is called Clairaut’s equation.

Clairaut’s equation is only a particular case of type-2 equation. Hence it can be
solved in the same way in which a type—2 equation is solved, as explained below: Let
the Clairaut’s equation be

y =px+fip) (M
Differentiating (1) w. r. ¢. x,
p d
p=p+{x+f (p)}ap @)
%:0...(2) or f'(p)+x=0 3)
Solving (2), we getp = ¢ 4

Eliminating p between (1) and (4), we get the general solution of (1) as y = cx + fc).

Thus the general solution of a Clairaut’s equation is obtained by replacing p by ¢
in the given equation.

Eliminating p between (1) and (3), we also get a solution of (1).

This solution does not contain any arbitrary constant. Also it cannot be obtained as
a particular case of the general solution. This solution is called the singular solution
of the equation (1).

Note™  The singular solution of (1) is the eliminant of p between y = px + f(p) and

x+ j—f = 0. Equivalently, the singular solution of (1) is the eliminant of ¢ between
p
_ df . . .
y=cx+flc)and x+ 1 = 0. Hence, we observe that if the general solution of (1), i.e.
c

y =cx + f{c) represents a family of straight lines, then the singular solution represents
the envelope of the family of straight lines.

( WORKED EXAMPLE 5(a) ]

2
Example 5.1 Solve the equation %} _gd +15=0.

dx
The given equation is p? — 8p + 15 = 0, which is solvable for p.

The equationis (p—-3) (p—5)=0

d—y:3 or d_y:5
dx

dx
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Solving these equations, we get y = 3x + cand y = 5x + c.

To get the general solution of the given equation, we rewrite the solutions as
y—3x—c=0and y — 5x — ¢ = 0 (in which the R.S. = 0) and combine them as
y-3x—c)(y—5x-c¢c)=0.

Example 5.2 Solve the equationp (p +y) =x (x + y).
The given equation is p* + yp — (x* + xy) = 0.

—yi‘[y2+4<x2+xy>

Solving for p, p =

2
_fy:I: (y+2x)2
B 2
dy
—— =X 1
ie . D
dy
or —=—Xx— 2
& y 2
2
lving (1) y:x_+£.
Solving (1), )
ie. 2y—x*—c=0 3)

d
Rewriting (2), & + ¥ =—Xx, which is a linear equation of the first order in y.
g dx q

Integrating factor = e*
Hence the solution of (2) is

yve'=[|-xedx+c

=—xe t+te tec
ie. y+tx—1-ce* =0 4)
Combining (3) and (4), the required general solution is
Qy-x*-c)(y+tx—1-ce*)=0.
Example 5.3 Solve the equation p* — 2py tan x — )*.

The given equation is p? — 2py tan x — y? = 0.

Solving for p, 2y tan x = /4y” tan® x 4 4)°
p =

2

2y tan x /4y’ (H—tan2 x) W
B 2
:y(tanx:tsecx)

d_y =y (tan x + sec x) or % =y (tan x — sec x).

. d d
ie. & (tan x + sec x) dx (1) and —y=(tanx—sec x)dx (2
y y
Integrating (1), we get,
log y = log sec x + log (sec x + tan x) + log ¢
ie. y=csec x (sec x + tan x)
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_ c(l+sinx)
~ cos’ x
<
~ 1—sinx
ie. y(l —sinx)—c=0 3)
Integrating (2), we get,
log y = log sec x — log (sec x + tan x) + log ¢

ie. __ cseex
sec x + tan x
_ c
1+ sinx
ie. y(l +sinx)—c=0 4

Combining (3) and (4), the required general solution is [y (1 —sin x) —c] [y (1 +
sinx) —c] =0.

Example 5.4 Solve the equation xp> —2py + x = 0.
Solving the given equation for p, we get

2y 4 J4y* —4x°
p=——F-

2x
d 2

ie. D_ry [Z] 1 (1)
dx x X

(1) is a homogeneous equation.
Putting y=vx, (1) becomes

v—l—xﬂ:v:lz vi—1
dx

= @
v —1 X

Integrating (2), we get,
log (v—!— V2 _1)=ilogx+logc

ie.

.. Solutions are

+ [ 2 _ 42
%:c and y+.)y' —x* =c
X
ie. Y+ =X —ex*=0 and y+.y ' —x —c=0

.. The general solution of the given equation is

il =2 e} ey -2 —e)=0.

Example 5.5 Solve the equation
-ty ) prt (a0 p - Xyt =0,
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The given equation is of the form

p—(a+p+y)p*+(af+ Byt ya) p—afy =0,

where a = x?, f = xy and y= .
.. The given equation can be rewritten as

p-)@-pp-1=0

ie. P-x)@-xy)(p-y)=0.
d—yzxz,d—y:xyandd—y:
dx dx dx

Solving these equations, we get
2

3
1
y:x_+£;]0gy:x——|—10gc;——zx_c-
3 2 y

3

2 1
ie. 3y—x3—c:O;y—cexn:O;x—&———c:O.
y

.. The required general solution is

2

x
y—ce?

(3y—x3—c) !

y
Example 5.6 Solve the equation p*x — 2py —x — 0.

Rewriting the given equation, we have

x—x 1 X
y=L =—|px——
2p 2 p

We identify the equation as one solvable for y.
Differentiating (1) w.r.t. x, we get

dp
[
=—3p+tx=-—
p > p dx p2
p-x®
i 2p= +xd—p— dx
1.€. p=p dx p2
. dp dp
1.C. 3 = X 2 + x—
p ‘P dx p dx
ie. (52 11)= p(p* +1)=0
dx
. dp
1.€. X—=
dr p

Solving this equation, we get

x+——c¢

2

|-o

(1)

(- p*+1=0)
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f%=f%+logc

ie. p=cx 2)
Using (2) in the given equation, the required solution is ¢*x*=2cy + 1.
Example 5.7 Solve the equation 16x> + 2p?y — p’x = 0.

The given equation cannot be solved for p, nor for x. As it is solvable for y, the given
equation is rewritten as
3 2
p x—16x
Differentiating (1) w.r.t. x,

2| 3 » dp ] 3 2 dp
+3p°x——32x|—(p'x—16x")2p—
p\p p dr (P ) pdx

2p= —
Le. 2p’=p’ +3P4x%—3ZPZX—2p4x%+32px2%
ie. p’+32px = p4x% +32px %
ie. P’ (P +32x)— px(p’ + 32x)% =0
ie. p— px% -0 )
or PP+ 32x=0 (3)

(2) is differential equation in p and (3) is an algebraic equation.

If we eliminate p between the given equation and the solution of (2), we will get
the general solution of (1).

If we eliminate p between (1) and (3), we will get the singular solution of (1).

(2) can be rewritten as d_p = g

p x
Solving this, we get

p=cx “
Eliminating p between the given equation and (4) we have

1632+ 2¢3%y — =0
i.e. ’x*—2c%* — 16 = 0, which is the required general solution. Using (3) in the given
equation,
16x% +2p%y +32x2 =0
ie py =—24x2
ie. p%P=—(24)*x¢
i.e. 1024x%° + (24)* x=0
i.e. 16)® + 9x* = 0, which is the singular solution.
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Example 5.8 Solve the equation y = (1 +p) x + p°.
Treating the given equation as one solvable for y and differentiating w.r.t. x,

dp dp
=l+p+x—+2p— (1)
p p dx p dr
. dp
ie. X+2p)=+1=0
(x+2p)
. dx
ie. —+x=-2p ()
dp
This is a linear equation in x.
Solving (2), xe’ = | —2pe’ dp+c
=—2(per—e’) +c
ie. x=2-2p + cet 3)

It is not easy to eliminate p between (3) and the given equation.

.. The parametric equations of the general solution are given as
x=2-2p + ce? and
y=({1+p)(2-2p+ce=?)+p’

ie. x=2-2p+tce? and y=2-p*+c(l +p)e”.

Example 5.9 Solve the equation y = x + p* — 2p.
This equation can be treated as one solvable for y and for x. We shall solve the
equation in both ways.
Method I: Let us assume y =x + p?>—2p ... (1) as solvable for y.
Differentiating (1) w.r.t. x,

_ )&
p=1+(2p 2ux (1)
ie. Np—mﬂlﬁp—mzo
dx
p—1=0 )
b _ 3
or 25-=1 )

Eliminating p between (1) and (2), we get the singular solution y = x — 1.
Solving (3), we have
2p=x+c “4)

(x+e)
4

i.e. 4 (y +¢) = (x + ¢)* which is the general solution of (1).

Method II: Treating (1) as one solvable for x and rewriting, we have
x=y+2p-p 1y

Differentiating (1)’ w.r.t. y,

Eliminating p between (1) and (4), y — x = —(x+¢)

E:1—|—Zd—p—2pd—p

dy dy dy
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1 d
ie. ——1=2(-p<
D dy

ie. (-p) {2;73—”—1}:0.
Ly
p= Q)
or 2L 1=0 (©6)

Eliminating p between (1)" and (5), we get the same singular solution as before.
Solving (6), we have
pP=yte Q)
Using (7) in (1), we get
xX-y+y+c=2p
Squaring and again using (7), we get the general solution as
(xter=4(y+to
Example 5.10 Solve the equation p’x + py —y* = 0.
Note™  Though the equation appears to be solvable for p, the component equations
are not easily solvable. Also the given equation is not solvable for y. Hence we treat
it as one solvable for x.
Rewriting the given equation,

y —py
Y= (1)
P
Differentiating (1) w.r.t. y,
dp dp
2 4 3_ Y o 4_ 2 7
g_p Yy —p ydy] (y py) pdy
dy P
pl4y’ —p—yL|-(2y* 2py)dl
. 1 dy
1.€. — = 3
p P
2 3 4 dp
1e P =dpy’—p*—(2y —py)d—
. 3 dp 3 _
1e. y(2y fp)—pr(2y fp>70
dy
dp
£ _2p=0
ydy P )
or 2’ —p=0 3)
()is 9o _ 2dv

P y
Integrating, log p =2 logy + log c
ie. p=c7 4
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Eliminating p between (1) and (4), we get
Attt ar—-yt=0
i.e. ¢’y + ¢ =y, which is the general solution of the given equation.
Eliminating p between (1) and (3), we get
4+ =0
i.e. 4x)? + 1 = 0, which is the singular solution of the given equation.

Example 5.11 Solve the equation p* — 2 x yp +4)* = 0.

The given equation is neither solvable for p nor for y.
Rewriting the given equation,
2
=P A (1)
y p
Differentiating (1) w.r.t. y,

2 p2 2pdp 4 4ydp

y ydyppdy

2
ie. _p__y_ z_p_
y p
2

: 3 dp 1 3 2
ie. p - ———(p -2y")=0
2 (p-2) 2L -2y
, dp
ie. P-2y*)|2y=-p|=0
(p* -2y )[ s p]
dp
2y—-p=0
& @)
or p=2y'=0 3)

2dp f dy

Solving (2), f +logc

ie. 2log p=1logy+logc

ie. p=cy 4
Let us eliminate p between (1) and (4).
Using (4) in (1), cpy 2xyp + 4> =0
ie. p(c—2x)=—-4y
Squaring and using (4),
¢y (c —2x)* = 16)?
i.e. ¢ (¢ —2x)* = 16y, which is the general solution of the given equation.
Using (3)in (1),2)*-2xyp +4* =0
ie. xp =3y
Cubing and using (3),
2x3y =27y}
ie. 2x* = 27y, which is the singular solution of the given equation.
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Example 5.12 Solve the equaion p’x — p*y —1=0.

The equation may be treated as one solvable for x. However if we treat it as one
solvable for y, it becomes a Clairaut’s equation.

Rewriting the given equation, we get y = px ——, which is a Clairaut’s equation.
p
.. Its general solution is
y=cx—— (1)
Differentiating (1) partially w.r.t. c,
2
0=x+5 @)
c

Eliminating ¢ between (1) and (2), we get the singular solution of the given equation.
From (2),

3 2
@ === G)
x
From (1), y=cx-1
=-2—1,using (3)
S by =-27
ie. 4y? = -27x%, using (3)

This is the singular solution of the given equation.
Example 5.13 Solve the equation y = 2px + yp°.

The equation may be treated as one solvable for x. However we can convert it as a
Clairaut’s equation by means of the transformation

=Y
2y & _d¥
dx dx
ie. 2yp = P, say.
Multiplying through out the given equation by y, it becomes
V= 2ypx +yp? ()
On using the transformation, (1) becomes
2
Y+ Px+ PT’ 2)
which is a Clairaut’s equation
.. General solution of (2) is
2
c
Y=cx+— 3
2 )

. General solution of (1) is »* =cx + CZ
Differentiating (3) partially w.r.t. ¢,

0=x+ % (4)
Eliminating ¢ between (3) and (4), we get,

Y=-x*
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i.e. x2 +3? =0, which is the singular solution of (1).
Example 5.14 Solve the equation (px —y) (py + x) = 2p.

Put X=x* and Y=)?
’ dX=2xdx and dY=2ydy
dY dy .
Wz%d_))c} 1.e. Pz%}p(say)
or p=£P
y

Then the given equation becomes

(¥*P-y*) = (P+1)=22P
y

y
. 2P
i.e. PX-y=""
P+1
. 2P L ., .
ie. Y = PX — ==, which is a Clairaut's equation.
P+1

. General solution is y* =cx® — —
c+1

Example 5.15 Solve the equation e* (p— 1)+ e* p* =0

Note™  In problems involving e and e we make the transformations X = ¢* and
Y = e where k is the H.C.F. of ¢ and b

In the given equation, put X = ¢** and Y= ¥

a2 by

dX 2™ dx
1e. pzzP, WhereP:d—Y.
Y dx

Then the given equation becomes
X X’
X | =P-1|+Y =P =0
Y Y

Le. XP-Y+P*=0
i.e. Y=PX+ P2, which is a Clairaut’s equation.
". The general solution of the given equation is e* = ce™ + ¢

( EXERCISE 5(a) ]

Part A
(Short Answer Questions)

1. Explain briefly how to find the general solution of the equation [p - f, (x, )]
[p —/, (x. )]=0.

2. Explain briefly how to solve the equation, y = f'(x, p), if it is solvable for y.

3. Explain briefly how to solve the equation x = f'(y, p), if it is solvable for x.

4. Write down the standard form of a Clairaut’s equation and give its general
solution.
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— O 0 3O W

—_— —

12.

13.

14.

15.

Part B

. How will you find the singular solution of the equation y = px + f(p)?
. What does the singular solution represent geometrically?

. Solve the equation p* — 5p + 6 =0.

. Solve the equation p? — (x +y) p + xy = 0.

. Solve the equation p? — (e* + ) p + &7 = 0.

. Solve the equation x yp*> — (x + y) p + 1 =0.

Rewrite the equation (y — px) (p — 1) = p as a Clairaut’s equation and write
down its general solution.

Rewrite the equation p = log (px — y) as a Clairaut’s equation and give its
general solution.

Rewrite the equation p = sin (y — px) as a Clairaut’s equation and give its
general solution.

1
Find the singular solution of y = px + —.
P

Find the singular solution of y = px — p?.

Solve the following equations:

16.
17.
18.
19.

20. p

21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34,
35.
36.
By

w+x-y)p-x-0
2P - (x+27)p+x°=0
xyp? + (3x*=2y*) p—6xy =0
xyp*—(x* + ) p +xy =0

P>+ 2pycotx =)?

Xp=2xp+ 2y =x) =0

y=-px +x'p’

4y = x* + p?

y=2px +p"

y=2px—p’

y=x+2tan'p

y=~I+p)x+e

y=3x + log p, by considering the equation as one solvable for (i) y and (ii) x.
p—4xyp +87°=0

x=y+p

Y =2px + 4yp’

y=2px +y’p’

ylogy=xyp +p’

Find the singular solution of the equation y = (x — 1) p + tan™' p.

Find the singular solution of the equation y + log p = px.

suitable transformations, reduce the following equations into Clairaut's

equations and hence solve them:

37.
38.
39.
40.

X(y-px)=yp* [PutX=x%Y =)
y=2px +p* [PutX=2x,Y =)

(v +px)=px* [PutY=1xy]
p-1eX+pe?=0 [PutX=¢Y=¢]
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5.2 LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND
HIGHER ORDER WITH CONSTANT COEFFICIENTS

5.2.1 Introduction

Students are already familiar with formation and solutions of some types of linear
differential equations of second and higher order with constant coefficients. Before
we take up the study of remaining types of such equations, we shall recall the various
notions and working rules related to the solutions of such equations. This will be
of use to pursue the study of not only the remaining types of linear differential
equations with constant coeffcients, but also linear differential equations with
variable coefficeints and simultaneous differential equations.

The general form of a linear differential equation of the n” order with constant
coefficients is

dny dnfly dy
aOW_FaI dxn—l—"_.”—’—an—la—i_any:X’ (1)
where a, (#0),a,, a,, ..., a, are constants and X is a function of x.
. . d ., & L d”
If we use the differential operator symbols D=—,D* = —,.--D" = —,
dx dx dx”
equation (1) becomes
(aD'+aD'+-+a D+a)y=X (2)

or (D) y = X, where (D) is a polynomial in D, which may be treated as an algebraic
quantity.
When X =0, (2) becomes

SD)y=0 (3)

(3) is called the homogeneous equation corresponding to equation (2).

General Solution of equation (2) is y = u + v, where y = u is the general solution of
(3), that contains » arbitrary constants and y = v is a particular solution of (2), that
contains no arbitrary constants. u is called the complementary function (C.F.) and v is
called the particular integral (P.1.) of the solution of Equation (2).

5.3 COMPLEMENTARY FUNCTION
To find the C.F. of the solution of Equation (2), we require the general solution of
Equation (3). To get the solution of /(D) y = 0 or
(a,D"+aD'+--+a)y=0 3y
we first write down the auxiliary equation (A.E.)
f(m)=0 or am'+am'+---+a =0 4)
which is obtained by simply replacing D by m in the operator polynomial, and then

by equating it to zero.
The auxiliary equation is an n" degree algebraic equation in m.
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The solution of Equation (3)" depends on the nature of roots of the A.E. (4) as
explained below.

Case (i) The roots of the A.E. are real and distinct.

Let the roots of the A.E. be m , m,, ..., m .
Then the solution of Equation (3) is y=ce™" +c,e™ +---c,e™", where
¢,, ¢, ..., C, are arbitrary constants.

.. C.F. of the solution of Equation (2) is given by
u=ce" +c,e™ +---+ce™
Case (ii) The A.E. has got real roots, some of which are equal.

Let the roots of the A.E. be m, m, m,, m,, ..., m (the first two roots are equal).
Then the solution of Equation (3)’ is

y=(gx+c,)e" +c,e™ +- 4™
If three roots of the A.E. are equal, i.e. if m, = m, = m, (say), then the solution is
y= (c]x2 +co,x+¢ )emlx e 4t e
In general, if 7 roots of the A.E. are equal, then the solution of (3)” becomes.

_ r—l1 r=2
y=(x" +cx

+ .. 'Cr—l X + cr) emlx + cr+lemr+1x + cee + cnemn'x .
Case (iii) Two roots of the A.E. are complex. As complex roots occur in conjugate
pairs, let m, = a + if and m,= o —if.

Then the solution of Equation (3)” is

y = e“(cicos Bx + casin Bx) + c;e™ + -+ + c.e™.

Case (iv) Two pairs of complex roots of the A.E. are equal.
ie. . m1=.m3=a.+iﬁ and m,=m,=a—ip.

Then the solution of Equation (3)’ is

y = e“[cx + ) cos Bx + (cax + ) sin x|+ cse™ + -+ c,e™

5.3.1 Particular Integral

The particular integral (P.1.) of the solution of the equation

D)y =X (1)
is the function v, where y = v is a particular solution of (1) containing no arbitrary
constants. The particular integral depends on the value of the R.H.S. function X and

. 1 | .
is defined as P.I. = —— X, where —— is the inverse operator of /(D).

f(D) f(D)

1
ie. f(D){—X} =X
f(D)
We give below the rules and working procedures to be adopted when X is equal
to some special function:
Rule I X= e*, where a is a constant.

p L oo flon+0

1
L= 4D = fa
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When f{a) =0, (D — a)" is a factor of D).
Let AD) = (D — a)" ¢ (D), where ¢ (a) # 0.

1
Then  PlL=-— 1 em
(D-a) ¢(D)
_ 1 [ 1 em]
()| (D-a)
1 X"
= ——e":
pla) T
In particular, ﬁe o = 11!9 ax and
1 ax — x_2 ax
me I

Rule 2 X =sin ax or cos ax, where « is a constant. In this case, the following rules
are used.

———ssi 1

1 .
¢(D2) m ax ZWSIH ax

mcos ax =ﬁcos ax,if ¢ (—a*)=0.
—a

When ¢ (—e?) =0, (D*> + &) is a factor of ¢ (D?)

Let ¢ (D?) = (D* + o?) y (D?), where w (—a?) # 0.

o 1 ,
¢(D2) S ox = z//(D2) (D2 +a2)Sln ox.

1 o
= Sin .
l//(—az)[Deraz x}

.. 1 1 1
Similarly ———cos ax = 7[7cos ox
Y ¢(D2) W(_az) D2+ o2
1 . X
Now D2+ o2 sinox = “3q cos ax
X .
=5 Intergral of sin a.x.
and 1 X o
D2 n 0{2 COS OX = Esm ox

= % x Intergral cos ax.

Note™  When finding the P.I, the above rules are to be applied in parts, as D)
will not be, in general, of the form ¢(D?). This means that we have to first replace D>
by — o2, D* by — a*D, D* by o, etc. After this has been done, (D) will take the form
(aD + b).
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Thenp 1, = 1 sin ax

D)
= ﬁ sinax
= —;?gz__lgz sinax,
on multiplying the numerator and denominator by (aD — b).
Then Pl = ! aD — b) sin ax,

—(a2a2 +b? ) (

using the rule in the denominator.

1
B (azqz +b2)<

& |e

aacosax —bsin ax) ,since D =

1 .
Similarly, —7~c0sSax=—F——"— (aa sin oux + b cos ax).

f (D) a‘a”+b
Rule 3 X =x", where m is a positive integer.
/(D)

Rewrite f{D) in terms of a standard binomial expression of the form [1 + ¢(D)], by
taking out the constant term or the lowest degree term from f{D).

1 m
P.I.I—aDk [1 n ¢(D)] x
L io(o) '

Now expand [1 £+ ¢(D)] " in a series of ascending powers of D, by using binomial

1
aD*

Thus

theorem, so that the simplified expansion of

[l +o( D)r1 may contain terms up
to D™ and then operate by each term on x™.

Note™  The ultimate expansion of need not be considered beyond the D"

term, since D™ (x™) =0, D™ (x™) = 0 and so on.
Rule 4 X =e™. V(x), where V is of the form sin fx, cos fx or x™.
1

Pl= mV(x)

1 ax _ ax
f(D)e V(x)—e

! V(x) is evaluated by using the rule (3) or (4).

f(D+0z)

Note™  Thie rule is referred to as Exponential shift rule.
Rule 5 X =x. V(x), where V(x) is of the form sin ax or cos ax.
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/(D) 7(D) b | /(D)
o f'(D) (x)

By repeated applications of this rule, we can find the P.I. when X = x"V(x), where
is a positive integer.

Note™ Instead of applying the Rule (5), we may adopt the following alternative
procedure to find the P.I.,

when X=x"cosax or x'sin ax.
1 1 ;
———x" cos ax = ———[Real Part of x" &'**]
£(D) /(D)
=R.P.of ! x" e
/(D)
=R.P.of " . _ x
f(D+ia)
Similarly,
l ro: iox 1 r
——x sinax=1LP.of & ———x" -
7(D) f (D +ia)
Rule 6 X is any other function of x.
1
Pl=——X
/(D)
1
= X ,
(D — ml)(D — mz)---(D — mn)
resolving /(D) into linear factors.
S R RN ]X, ()
D—m D-—m, D —m,
spliting into partial fractions.
Consider ; X =u, say
D—m
1
D — ——X=(D—
(0|t 6] (0
ie. (D—m)u:X or d—ufmu:X.
dx

This is a linear equation of the first order.
- Its solution is u e™™ = fef’"" X dx

The usual arbitrary constant is not added in the R.H.S, as u is a part of the P.I. of
the main problem.



Differential Equations 5.19

u= ! X=e" [e™Xdx )

" D-m
Inserting (2) in (1), the required
PL=Ae™ [ X dvt de™ [ Xdrtt Aen* [ "n X

[ WORKED EXAMPLE 5(b) ]

Example 5.1 Solve the equation (D*—4D + 3) y = sin 3x +x%

A.E.is m*—4m+3=0.
ie. m-1)(m-3)=0, ... m=1,3
: CF. =ce +ce™
P.I.:%(sin 3x + x%)
D> —4D +3

2

1
=——(in3x)+ ——x
3( ) D> —4D +3

D* —4D +
=PI, +P.l, (say)

D" —4D +3

= sin3x
—9—4D+3

1 :
=—————sin3x
2(2D+3)

2D —
B CLD) P
2 4D° -9

- L (2D —3)sin 3x
90

:L(6 cos 3x — 3 sin 3x)

= % (2 cos 3x — sin 3x)

D —4D+3

1 2

3
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-1

:ll_w x?2
3 3

D(4— 2(4— DY
_1f,, ple-p) Do),
3 3 9
_11+i13+§1)2]x2
3 3 9
1(, 8 26}
=-|x +-x+—
3 3 9

. The general solution of the given equation is y = C.F + P.I. +P.L,

1 1 2
ie. y=c¢ e +c, e +—(2cos3x—sin3x)+ - R
30 3 3 9

Example 5.2 Solve (D* +4) y =x*+ cos® x.

AE.ism*>+4=0.
The roots are m =+ i 2.
C.F. =4 cos 2x + B sin 2x.

T D 14l2

1 1 o 1

=5 e+

214" "D 14
lll X sin 2x

2042 2

! [l +lcos Zx]
2

cos 2x

= %(1 + x sin 2x)
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.. General solution of the given equation is

y= Acos2x+Bsm2x+8(4 6x* + 2x* +xs1n2x)

Example 5.3 Solve (D + 8)y =x*+ 2x + 1 + cosh 2x.
AE.ism*+8=0.
ie.(m+2)(m*-2m+4)=0.

2+.,4-16
m:—Z,m:f or lii\/g

CF.=Ae™ +e" (B cos\3x + C sin y/3x)

PIL, = 1 (x +2x+1)

:% —] (' +2x+1)

%[ ](x +2x+1)
[ +2x+1) —3x]
:g(x4 —x+1)

2x —2x
P, = 31 e’ +e
D’ +8 2

1 2x 1 —2x
e + e
(D+2)(D* -2D +4)

N | —
%
+
[oe)

N | —
H»—ﬂ
@)
[
=
—
N|’—‘
o
+i—l
\S)
b
=
[

1
=— B +4xe
96 ¢ )

.. General solution is y = C.F. + P.I. +P.L,
Example 5.4 Solve (D*—-2D*+ D?*)y =x>+ ¢".

AE. ism*—2m’+m?>=0.
ie.m*(m*-2m+1)=0

.. Therootsare m=0,0, 1, 1.
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C.F.=(c1x—|—cz)+(c3x+cz)ex

PL-— = Llaopyre
D*(D—1) D
:%(1+2D+3Dz+403+51)4)x2
D
1 2 2| 2
=|—+=+3+4D+5D"|x
D’ D
4 3
=X +2 +3x> +8x+10 '.'lxzzfxzdx
23 D
PIL, = ! e
D*(D—1)
_1_1 -
12 (D_l)z
x2

.. General solution is

4 2
X

y=(cx+c,)+(ex+c,)e’ —|—12+23 +3x7 —|—8x+10+?e

Note™ The two terms (8x + 10) in P.I., can be merged with the two terms (¢ x +
c,) of the C.F.

.. The general solution may be given as

4 3 2

2x
= 3 —_—
y=(cx+c)+(ex+c,)e" +12+ 3t +Z 5 e

Example 5.5 Solve (D2 +1)?y=x*+2sinx cos 3x.
A.E.is (m*+1)?=
The roots are m =i, i, —i, —i (i.e. two pair’s of equal complex conjugate roots)
: C.F.=(cx +c,)cosx + (cx+c,)sinx.
_ 1
(1 +D

(1 + D2> x!
(1 —2D? +3D4)x4
x'=24x* +72.

PIL, = ;2 2 sin x cos 3x.
(D* +1)
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= ;2 (sin 4x —sin 2x)

(D* +1)
1 . 1 .
= mSlﬂ“-x —m sin 2x
= ——sin4x — — sin 2x.
225 9

. General solution of the given equationis y = C.F. + PI. +P.I..
Example 5.6 Solve (D? + 6D + 9)y =2 x*

A.E.is m*+6m+9=0

ie. (m+3)=

The roots are m = -3, -3
: CF. =(cxtc)e™

PIL= _ 5 ey’
(D+3)

1 . .
= e *.—————x’, by Exponential shift rule

(D—2+ 3)

—2x (1 )

= ¢ (1-2D+3D* 4D’ ) ¥’
=™ (x —6x’ —|—18x—24)

.. General solution is y = C.F. + P.I.

Example 5.7 Solve (D° —3D>+3D—1)y = e’

AE.is m*—3m*+3m-1=0

ie. (m-1y>=

Theroots arem=1,1,1
CE=(cx*+cx+tc)e

PlL= ! 3e”‘x3-
(D-1)
=e ", ! 3x3
(P-2)
-3
z—lex-[l—g] x’
8 2
2 3
Ll 12+2 3+D+34D—+45D— ’
2 4 8

= —ie’x 2+4+3D+3D? —+—§D3]x3
16 2

N <2x3 +9x7 +18x+15)
16

.. the general solution is y = C.F. + P.I
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Example 5.8 Solve (D?—4) y = x? cosh 2x.
AE.is m*—4=0

ie.  (m+2)(m-2)=0

.. Therootsare m = —2,2

*“ CF.=4e*+ Be¥

PlL= 3 x* cosh 2 x
D" —4
1 )C2 2x —2x
—D2_47(e +e )
1 1 1 1
:_er_ - x2 + _efzx. 5 x2
2 (D+2)" -4 2 (D-2) -4
1 o 1 2 1 o 1 2

= ———x e X
2 D*+4D 2 D*—4D

3 2
- x sinh 2x — X cosh 2x + =X sinh 2x
12 16 32

2x

(the terms — 1 e~ and — L e~ ** are omitted, as they may be considered to
256 256

havebeen includedin the C.F.)
Then the G.S. is

y=Ae > +Be* +% (8x2 sinh2x — 6xcosh 2x+3sinh 2x)

Example 5.9 Solve (D*—2D*+ 1)y = (x + 1)e*.
AE. is m*-2m*+1= 0

ie. m*-1)*=0

.. The roots are m = +£l, +1

: CFE=(cx+c)e+(cx+c)e™
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1
{(p+2y -1}

zezx(erl):ezx. 2(x+1)

= -1{1+ D(D3+4)}2 (x+1)

:éezx~{1—2TD(D+4)}(x+l)

- éezx [l—%D](x—i—l)

4o}
9 3

Then the general solution is y = C.F. + P.I.

Example 5.10 Solve (D* + 2D — 1)y = (x + €)%

AE.ism*+2m-1=0.
ie.(m+1)72=2

Cm=—1+2 (real roots)

CF.= A g _ e (46 +Be®)
1 2
PlL=—(x+¢€"
D2+2D—1( )
1
= 2—()62 +e* +2xe")
D +2D-1

=PI, +P.I,+P.L, (say)

P.I.] =mx2 =—{1+D(D+2)+D2 (D+2)2}X2
— 1= +
=-{1+2D+5D"}x’
=—(x2+4x+10).
_ l 2x=l 2x
M=o 77
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.1322;2)%"
D*+2D—1
=2e"- 5 ! X
(D+1) +2(D+1)—1
— X, 1 X
7 D*+4D+2
—1
:2ex.1{1+M} i
2 2
:ex-{l—|—2D}x
:ex-(x+2)

Then the general solution is y = C.F. + P.I. +PI, +PL..
Example 5.11 Solve (D> + 5D +4) y = ¢ sin 2x.
AE.is m?+5m+4=0.

ie. (m+1)(m+4)=0.
. Therootsarem=-—1,—4
CF.=Ae*+Be™,
PlL= 2; e " sin 2x
D" +5D+4
1 .
= sin 2x

(D—-1) +5(D—1)+4

=e ' ————sin 2x
D" +3D

=e - sin 2x
3D—4
3D+ 4

e ( > )sin2x
9D" —

L (6 cos 2x + 4 sin 2x)
52

= Le*x (3 cos 2x + 2 sin 2x)
26

Then the general solution is y = C.F. + P.I.

Example 5.12 Solve (D* — 1)y = cos 2x cosh x.
A.E.is m*—1=0
ie. (m=1)(m~+1)(m*+1)=0
. Therootsarem=1,-1, i
CF =c e +c,e*+c,cosx+c, sinx.
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4

Pl= ; cos 2x ¢ e
D" —1 2

. 1 1 1

1
:Ee r—————cos2x +—e -

(D+1)' —1 2 (p-1) -1

1
=—e  — S 5 cos 2x
2 D" +4D° + 6D +4D

+-e’— 31 5 cos 2x
2 D" —4D° +6D° —4D

e - ! cos 2x—|—le*"- !
2 16 —16D — 24 4+ 4D 2 16 +16D — 24 — 4D

cos 2x

cos 2x

‘ 1 |-
=——¢e" - cos2x +—e -
8 3D+2 8 3D-2

. (3D-2) 1 . (3D+2)
e ~2—00s2x+—-e Ehey e
8 9D —4 8 9D —4

__ 1
320

:fisin2x e —e —LCOSZX i
80 80

cos 2x

cos 2x

" (—65sin 2x — 2 cos 2x) — ﬁ e (—6sin 2x + 2 cos 2x)

2 2

=— % (3'sin 2x sinh x 4 cos 2x cosh x)

.. The general solution is
y=CF +PL

Example 5.13 Solve (D? — 4D + 13) y= e* cos 3x.
A.E.is m*—4m +13=0

ie. (m-2=-9

.. The roots are m =2 + i3

C.F. = ¢ (4 cos 3x + B sin 3x)

1 .
PlL= T e — eb - cos 3x
D*-4D+13

= - ! cos 3x
(D+2) —4(D+2)+13

1 x sin 3x
=¥ ——cos3x=e"-=.

D*+9 2 3

1
= —x ¢ sin 3x
6
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.. The general solution is y = C.F. + P.I.

Example 514  Solve (D? + D +1)y=e *sin’ %

AE.is m+m+1=20
The roots are m:—liiﬁ
2 2
CF.=¢ 2 Acosﬁx—i—Bsinﬁx
2 2
PL=— 1 ex[lcost
D"+ D+1 2
1 1 . 1 y
=== e —— e “cosx
2D+ D+1 D°+D+1
1 ., 1 _, 1
——e Y __e¢ . 5 cos x
2 2 (D-1)"+(D-1+1
1 ., 1 _, 1
=—e¢ ' ——e ' -—————cosx
2 2 D —D+1

1 .1 (1
=—e e 4 c[—— COS X
D

=—¢ " (1+sinx
5 ( )

.. General solution is y = C.F. + P.I.
Example 5.15 Solve (D*>+ 2D + 5) y =¢e*cos’ x.

A.E.is m+2m+5=0
The roots are m=—1+i2

CF.=e¢ " (4cos2x+ Bsin2x).

PL= 2; e* cos’ x
D +2D+5
1 1
:z—ex Ecosx+—cos$x
D°+2D+5 4 4
3. 1
e*. > cOS X
4 D+ +2D+1)+5
1, |
+—e" - 5 co
4 D+ +2D+1)+5

B PSS WS U S S
4 D* +4D +38 4 D” +4D +8

s 3x

cos3x
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—éex cosx+lex- cos 3x
4 4D+7 4 4D —1
:Eex.me—_ncosx+lex.wcos3x
4 16D° — 49 4 16D —1

:ie" (4sinx+7cosx)+Lex (12 sin 3x — cos 3x)
260 580

.. The general solution is y = C.F. + P.I.
Example 5.16 Solve (D*+ 4D + 8) y = 12¢7> sin x sin 2x.
A.E.is m*+4m+8=0.
The roots are m=—2+i2

C.F.=¢* (4 cos 2x + B sin 2x)

PlL= 2; 6e " (cos x — cos 3x)
D" +4D +38
1

=6e > - >
(D—-2)y +4D—-2)+38

(cos x — cos 3x)

— 6672): .

(cos x — cos 3x)
D* +4

= 6e {l cos x + 1 cos Sx}
3 5
2 —2x
:ge (5 cos x + 3 cos 3x)

.. The general solution is y = C.F. + P.I.
Example 5.17 Solve (D*— 1) y = xsin x.

AE.is m—1=0
ie.(m—-1)(m+m+1)=0

3

.. The roots are m =1, 71 4=

_ 3 . 3
CF.=c e" +e? [02 cosTerc3 sm%x}

Pl= xsin x
D’ —1
=x- sinx—isinx ;x =Xx- ! V— f/(D) V
D’ -1 (D* -1 /(D) o) {ro)f
=—x- sin x + sin x
D+1 (D+1)°
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D . 3 .
==X — 51nx+2—s1nx
D —1 D" +2D +1

b . 3
= —(cos x —sin x) — = oS X.
2 2

.. The general solution is y = C.F. + P.I
Alternative method for finding P1.

PlL= X sin x

D3 —1

1 ,
= (Imaginary part of x e™)
D’ -1

=1P.of 31 xe"
:IP.ofe”“%x
(D+i)y —1
=LP.of ™ - 3 5 ! X
+3iD° —3D —i—1
ix -1
—pof— -2 (343ipe )l o«
1+ 1+
:I.P.of—
1+ 1+1
:I.P.of—
141 l+z
=1.P.of — 1= )(cosx—f—zsmx){x—é(l—z)}

=LP.of — % {(cos x + sin x) 4 i(sin x — cos x)} {x f% 1- i)}

(sin x — cos x)

3 ) 3
—(cosx +sinx)+|x — =
2 2

3 X .
= ——cos x + — (cos x — sin x)
2 2

Example 5.18 Solve the equation (D? + 4) y = x? cos 2x.
AE. is m*+4=0
The roots are m =312
. C.F. = 4 cos 2x + B sin 2x.
1

04 R.P.of x* %"

PlL=
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SRPofe Ly
D+i2) +4
=R.P.of ™ 2; x’
D* +4iD
i2x . -1
—RP.of & [1-2|
4iD 4
—RP.of e 1+2_D_2_£ 2
"~ 4iD 4 16 64
3

_RP.of_ Lo [x_+1x2_z_i]

3

=R.P.of % (sin 2x — i cos 2x) {

3

XX sin2x—&—l xz—l cos 2x
8 4 8

_1
AE

.. General solutionis y =C.F. +PL

Example 5.19 Solve (D* — 4D +4) y = 8x? e > sin 2x.
A.E.is m?*—4m+4=0

ie. (m-2)=0

.. Rootsare m = 2, 2.

CF.=(c, xtc,)e™

- 1
(-2

:8e2x~i 2 —cos 2x oy —sin 2x +zcos2x
D 2 4 8

(by applying Bernouilli's formula)

PL 8x? e2¥ sin 2x =8e* Lz x? sin 2x
D

= , 2x

1 2 1 . 1
— (—4x~ cos 2x) + — (4x sin 2x) + — (2 cos 2x
D( ) D( ) D( )

_aly? sin 2x oy —cos 2x s —sin 2x
2 4 8

L4y —cos2x _ —sin 2x 4 sin 2x
2 4

e {(3 — 2x%) sin2x —4x cos Zx]

— 2x

.. The general solution is y = C.F. +P.I.



5.32 Engineering Mathematics 1

Example 5.20 Solve (D*+a®) y = sec a x.
AE.is m>+a*=0

The roots are m = *ia
.. CF.=4cosax+ Bsinax.

P.I.:msecax
_ 1
(D —ia)(D +ia) seear
1 1
= ﬂ — % secax

D—ia D+ia

1 » 1 ,
=—"¢"" fe “Tsecaxdx — — e fe’”sec axdx

2ia ia
! X:emx.erfmxdx
D—m
1 ia x . 1 —iax .
=—ce f(l—ztanax)dx—Te f(1+ztanax)dx
ia

, ; 1 ;
=—2¢"" [x—L log seca x] ——e [x + L log sec a x]
j a 2ia a

X eiax _e—iax 1 eiax + e—iax
=—|——F— | —Flogsecax|——
a 2i a
X . 1
=—sina x —— cos axlogsecax
a a
.. General solution is y = C.F. + P.I
( EXERCISE 5(b) ]

Part A
(Short Answer Questions)

Solve the equation (D*—D + 1)?y = 0.

Find the particular integral of (D — 1)* y = 2 cosh x.

Find the particular integral of (D* + a*) y = b cos ax + ¢ sin ax.
Find the particular integral of (D> + 4D +4) y = x ™.

Find the particular integral of (D — 3)’y = x e ™.

Find the particular integral of (D + 1)’y = ¢ cos x.

Find the particular integral of (D> —2D + 5) y = e * sin 2x.
Find the particular integral of (D> + 4D + 5) y = ¢ cos x.

e A ol i
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9. Find the particular integral of (D> — 2D + 6)y = e * (4 sin x + cos x).

1
/.

10. Find a formula for

Part B
Solve the following differential equations.
1. (DP+D*+D+ 1)y =x*+2e~
12. (D*+9)y =x2 + cosh x
13. (D*+2D + 1)y = x>+ cos 2x
14. (D*-8D +9)y =8 sin Sx + x?
15. (D*+3D+2)y=2sin*x + 2x?
16. (D*+ D*+ D*)y=12x>+2 cos 2x cos x
17. (D*-1)y = 12¢*(x + 1)?
18. (D*—6D*+ 12D —8)y = 16x° e*
19. (D?+2D*+ D)y = x’e*
20. (D*—4)y =xsinhx
21. (D*+ 1)y =2x%™
22. (D*-5D +4)y=(2x + ™)
23. (D*—4D + 3)y = 8e*cos 2x
24. (D*- 1)y =cos x cosh x
25. (D*-2D + 5)y = e*(sin x + cos x)*

26. (D’ +1)y=e™ cos2%

27. (D*+4)y=4e¥sin’x

28. (D*—4D + 3)y = sin 3x cos 2x
29. (D*-2D+ 1)y=xe*sinx

30. (D*+D)y=xcosx

31. (D*—4D+4)y=xsinx

32. (D*-1)y=x*cosx

33. (D*+4)’y=cos 2x

34. (D*+ 1)y =x?sin 2x

35. (D*+4)y=4tan 2x

5.4 EULER’S HOMOGENEOUS LINEAR DIFFERENTIAL
EQUATIONS

The equation of the form

n n-1
_ d
a,x" f—i—alx" ! n}]}—l—---—l—anflx—y—&—any:)( (1)
dx dx dx
wherea,a,, ... ,a are constants and Xis a function of x is called Euler's homogeneous

linear differential equation.
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Note @  1In each term in the L.H.S. of Equation (1), the power of x and the order
of the derivative are equal. It is because of this property that the equation is called a
homogeneous equation.

Equation (1) can be reduced to a linear differential equation with constant
coefficients by changing the independent variable from x to ¢ by means of the
transformation.

x=¢€ or t=logx
as explained below:
dy dy dr 1dy

dx dr dx x dr
(b
dx  dr @
Differentiating both sides of (2) w.r.t. x,
d? d d?y 1
* dx); " d_))}c - dﬂy x

ie. X St X ——=

X dx df?
. d’y _d’y dy
.e. 2 =——— 2 |by(2 3
o ) ®

. d d
Denoting — by D and — by 6,
Fe i

(2) gives xD = 0 and

(3) givesx*D*=6-0=0(0-1)

Similarly we can show that
XD=0(6-1)0-2)
xX*D*=0(0-1)(0-2)(0—3) and so on.

If this transformation is made, then Eqn. (1) becomes [ao 0(0—1)- (9 —n— l) +

a 0(0—1)- (9 —n— 2) +e an] v =0, which is a linear differential equation with

constant coefficients and can be solved by methods discussed in the previous section.
The more general form of Euler’s homogeneous equation is

n R dn-l
ao(ax+b)7):+al(ax+b) ldx"i+m
+a, (ax+b)%+any=)( 2)

Equation (2) can be reduced to a linear differential equation with constant
coefficients by the substitution ax + b = €.
Equation (2) is called Legendre's linear differential equation.
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5.5 SIMULTANEOUS DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

If x and y are two dependent variables and ¢ is the independent variable, then the
pair of equations of the form

SiD)x +f,(D)y =T, (1
¢ (D)x + ¢ (D)y =T (2

wheref,, f,, 9,, ¢,, are polynomials in the operator D = d and 7' and 7, are functions

of ¢ is called a pair of simultaneous differential equations.

It is not possible to solve for the two dependent variables (unknowns), if only one
of the above equations is given.

If there are more than 2 dependent variables, we should have as many equations
as the number of dependent variables.

To solve Equations (1) and (2) simultaneously, we proceed as in solving
simultaneous algebraic equations.

We operate both sides of (1) by ¢, (D) and both sides of (2) by f,(D) and subtract
to eliminate y.

Thus we get

11 (D) 6. (D)~ £,(D) (D))=, (D)7~ £,(D)T, or f(D)x=T @)

which is a linear equation in x and ¢ with constant coefficients and can be solved by
the methods discussed already.

The value of x obtained by the solution of (3) is substituted either in (1) or (2) to
get the value of y.

The number of arbitrary constants that appear in the values of x and y should be
equal to the order of the resultant equation (3).

If more arbitrary constants are introduced in the process of solving the equations,
the extra ones should be expressed in terms of the other constants.

Note ™ We can also eliminate x, get a linear equation in y and ¢ and solve it first.

( WORKED EXAMPLE 5(c) ]
d? d 1
Example 5.1 Solve the equation x? )2}+ 4xl+ 2y=x"+ —-
dx dx X
. .. 212 , 1 d
The given equation 1s( x D"+ 4xD+ 2) y=x+ ?,WhereD = .

d
Putx = ¢'or ¢ = log x and denotea by 0.

Then the given equation becomes
[0(0—1)+40+2]y=e" +e

ie. (92 +39 +2>_)/:€2t +e—2t
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A.E.is m*+3m+2=0
re.(m+1)(m+2)=0
.. The roots are m = —1, —2.

C.F.=Ae"+Be’21:é+£2
X X

PL=— L
@+ O+2)
:Lezt _ 1 e—Zt

12 0+2

1 1 1
=—e¥ —te=—x’——logx

12 12

(e 2t 4 6721‘)

.. The general solution is y = C.F. + P.I.
Example 5.2 Solve (x> D* +xD + 1) y =sin (2 log x) - sin (log x).

Putting x = ¢’ or = log x and denoting %by 0, the given equation becomes
[0(0 —1) + 0 + 1] y = sin 2¢ sin?

i.e. @+ y= % (sin 3¢ + sin ¢)

A.E.is m?>+1=0.

The roots are m ==+ i
.. CF.=A4cost+ Bsin t=A4 cos (log x) + B sin (log x).

1 1
PlL= — (sin 3¢ + sin ¢
02+12( )
:l —lsin3t+£(—cost)
21 8 2
——Lsin(3lo x)—llo x cos (log x)
16 g 4 g g

.. General solution is y = C.F.+ P.I.
Example 5.3 Solve (x> D*—2 xD —4) y =32 (log x)*

Putting x = ¢’ or ¢ = log x and denoting diby g, the given equation becomes
t

[00—1)—20—4]y=327

ie. 0> —30—4)y=232¢
AE.is m*—3m—-4=0
ie. m-Hm+1)=0

.. The roots are m = 4, —1.
CF=4e¢" +Be!



Differential Equations 5.37

B
=Ax'+—
x

0°—30—-4

&{1%(03)} i

=38 1+Q(49—3)+ﬁ(9—3)2 t?
N 4 16

=-38 1_ﬁ+£92 t?
4 16

=-8 IZ—EH—E
2 8
=—[8(logx)* —12(log x)+13]

.. General solution is y = C.F. + P.I.

2
Example 5.4 Solve(x’D* - xD+ 1)y = ( log x ) ,
X.

Putting x = ¢’ or ¢ = log x and denoting diby 9, the given equation becomes
t

[0O-1)—0+D)]y=t>e™

ie. 0> =204+ y=t>e*-
AE.is m*—2m+1=0.
iec. (m—172=0

.. The roots are m = 1, 1.

CF.=t+B)e :(Alogx—HB’)-l
x

1 =2t 42

Pl= e
(0-1)°

—2t 1 2

—t
0-3)°
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1

T 275
.. General solution is y = C.F. + P.I.
Example 5.5 Solve (x 2D? —xD + 4) y = x ? sin (log x).

{3(logx)2+ 4log x+ 2}

Putting x = ¢’ or £ = log x and denoting d by 6 » the given equation becomes
de

[0(0-1)—0+4]y=e"sint

ie. (0> —20+4)y=e" sint
A.E.is m-2m+4=0
The roots are m=1ii\/§

CF.=¢ (Acos\/gtJrBsin\/gt)
:x{A cos (\/glog x)—i—Bsin (ﬁlogx)}

PL=— " sins
0% —20+4

1 .
=e*. sint

(0+2) —2(0+2)+4

=’ —————sint
0 +20+4

=e*. sint
2043

:ezt.ﬂsint
46° —9

:fiez' (2008173Si1’11)
13

1 .
:_Exz {2 Cos(logx)—351n (log x)}

.. General solution is y = C.F. + P.I.

2d’y

de

Example 5.6 Solve (2x+3) —2(2X+3)%—12y=6x.
The given equation is a Legendre's linear equation.
Put2x+3=¢" or t=log(2x+3)

Then d_y:d_ 2

dx dr 2x+3

ie. (2x—|—3)j);:29y
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2
Similarly (2x+3) ‘;X;V —40(0—1)y

The given equation then becomes
[40(0—1)—2x20—12| y=3(e" —3)

ie. (40> —80—12)y=3(e" -3
. 3/,
ie. (02—29—3))/:2(6 -3)
AE.is m>-2m—-3=0
The rootsare m =3, — 1
CF.=Ade" +Be™!
B
=A2x+3) +——
( e ) +2x—|—3
1 3/
:é{_lef_F]]
4| 4
:—i(2x—|—3)+é
16 4

.. General solution is y = C.F. + P.I.
Example 5.7 Solve (x>D* +xD + 1) y = log x sin (log x).

Putting x = ¢’ or ¢ = log x and denoting iby@ , the given equation becomes
dr
[0(0—1)+60+1]y=tsint
ie. (0> +1) y=tsint
A.E.is m*+1=0

The roots are m = £ i
: CF.=Acost+Bsint

1 )
P.I.=———Imaginary part of e - ¢
e ginary p

. -1
=IP.of ei’-;zt:I‘P. ofe”~#[l£} t
(9—|—i) +1 2i0 2
. . . 2 .
=1P. Of—ieit~l l—i—ﬁ t=1.P. of_ief’ t_+£
2 0 2 2 2 2

2 .
=ILP.of l(sint—z’cost) t_+z
2 2 2

t . 1,
=—sinf{——1¢" cost
4 4



5.40 Engineering Mathematics 1

:% log x-sin (log x) — % (log x)2 cos (10g x)

.. General solution is y = C.F. + P.I.
Example 5.8 Solve (x> D* + 4xD + 2) y = sin x.

Putting x = ¢’ or log x = ¢ and denoting ibyg , the given equation becomes
de

[A6—1)+46+2]y=sin(e)

ie. (6°+360 +2)y=sin(e)
AE.is m*+3m+2=0
The roots are m=—1,-2.
: CF.=A4c¢'+Be™
A B
X X
oL (o)
(0+1)(0+2)

| 1.,
e

:e*’fsin(e’)e’dt—e’z’fsin(e‘)e”dt

=e’ fsinu du—e™ fu sin u du, putting ¢’ =u

_ ) .
=—e'cosu—e ' (—ucosu+sinu)
=—¢" cos(e’)+e*’ cos(e’)—e’” sin(e’)
=——sinx

x2

.. General solution is y = C.F. + P.I.

Example 5.9 Solve the simultaneous equations

dx
& oy 3p=5y
dr Y

d—y—3x+2y=2e2‘
dr

Denoting ibyD , the given equations become
ds (D +2)x—3y = 5t
Bx+(D+2)y=2e
Operating (1) by
(D+2);(D+2yx-3(D+2)y=5+10¢t
Multiplying (2) by 3;
—9x + 3(D + 2)y = 6e*
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Adding (1) and (2)', we get
(D* +4D —5)x =5(1 +2¢) + 6&*' 3)
AE.ism*+4m—-5=0
The roots are m=1,— 5
S CF=4e'+Be>.

1

Pl=—s—F— ! -
D’ +4D—5

142 -
5( + t)+6 D2+4D—Se

D(D+4
:1X{1(5+

—1
)} (1+21)+§e2’
7
:—lx{l+4—D}(l+2t)+ée2‘
5 7

S P YR
5) 7

:_21«_£+§er
5 7

x=Ae'+Be™” —ZI—E—O—Eez’.
5 7

To find y, we may follow any one of the following two methods:

Method 1
If we eliminate x between Equations (1) and (2), we will get

(D*+4D —5)y=15¢+ 8" 4)
Solving (4) in the usual manner, we will get

y=Ce’+De_5’—3t—£+§e2’
5 7

Note ™ In the solution of y, we should not use the same arbitrary constants 4 and
B used in the solution of x. Though the values of x and y have been found out, they
are expressed in terms of four arbitrary constants. The solutions for x and y should
contain as many constants (in this problem, it is 2) as the order of the Equation (3)
or (4). Hence the values of C and D should be expressed in terms of 4 and B as
explained below:
Inserting the values of x and y in Equation (1),
12 26

(Ae’ —5Be™ +%e2’ —2)+(2Ae’ +2Be ™" +7e2f —4z—? )

—(3Ce’ +3De ™™ +%e2’ —9;—%}:&

ie. 3A-C)e'-3(B+D)e =0
C=4 and D =-B.
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.. The required solutions of the given equations are

x=Ae +Be™ +§ezt —Zt—E
7 5
and y=Ae’—B.e_5’+§ez’—?)t—2
7 5
Method 2
We eliminate Dy from Equation (1) and (2).
Operating (1) by D; D> +2Dx—-3Dy =5
Multiplying (2) by 3;
—9x +6y+3Dy=06¢e*
Adding; 6y +x"+x —9x =5+ 6e”

y=—%[x”+x'—9x—6ez’—5]

x is given by szet+Be_5’+§eZt—2t—E
7

5

Differentiating x w.r.t. £;

X' =Ae' —5¢ +%e“ -2

Further differentiating w.r.t. ¢,

x"=Ae' +25Be™ + % e

Using (6), (7) and (8) in (5) and simplifying,

y=—l —6Ae’+6Be’5’—£e2’+18t+2
6 7 5

12
ie. y=Ae‘—Be’5'+§eZ’—3t——
7 5

Example 5.10 Solve Dx — (D —2) y = cos 2t.

(D—-2)x+ Dy =sin2t
Dx—(D—-2)y=cos 2t
(D—=2)x+ Dy =sin2t

Operating (1) by D; D> — D(D —-2)y=-2sin 2¢

Operating (2) by (D —2); (D —2)x + D(D —2)y = 2cos 2¢ — 2sin 2t.
Adding; (2D*— 4D + 4) x = 2cos 2t — 4sin 2¢
ie. (D*—2D +2) x = cos 2t — 2sin 2t

AE. ism*-2m+2=0
The rootsare m = 1 i

)

(6)

(7

(®)

(1
2)

3)
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CFE. =¢ (Acost+ Bsint)

1
D*-2D+2

P.L (cos2t—2sin2t)

(p-1)
-5

:—l. ! (cosZt—ZsinZt):—
2 D+1

| —

1 1
= E(—ZsinZt— 4cos2t—cos2t+ 2sin2t) = _E cos 2t

. 1
x= e’(Acost+ Bsmt)—z cos 2¢

Adding (1) and (2);
2Dx —2x + 2y =sin 2¢ + cos 2t

2y =2x —2x' + sin 2¢ + cos 2t
Differentiating both sides of (4) w.r.t. #;
x'=¢e'(Acost+Bsint)+ e (—A4sint+ Bcos f) + sin 2¢
Using (4) and (6) in (5), we get,
2y=2A4 ¢e'sint—2B €' cos t —sin 2t
y=é(Asint—B cosft)— % sin 2¢
Now (4) and (7) constitute the solutions of the given equations.

Example 5.11 Solve D*x — Dy —2x =2t

Dx +4Dy—3y =0
Rewriting the given equation,

(D*-2)x—Dy =2t

Dx+@4D-3)y =0
Operating (1) by (4D — 3);

(D*-2)(4D—-3)x-D(A4D -3)y=8—6t
Operating (2) by D:
Dx+DMA4D-3)y=0
Adding (1) and (2)', we get
(4D* —2D*—-8D + 6)x = 8 — 6¢

ie. (2D*—-D*-4D +3)x=4-3¢

(cosZt— ZSinZt)

4)

)

(6)

(7

(1)
2

ay

@

)
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AE.is 2m*—m*—4m+3=0

ie. m-1)2m>*+m-3)=0

ie. m—1)(m-1)2m+3)=0
3

. Therootsarem=1, 1, 5

3

CF.=(At+B)e +Ce *

1 1(, 2D)" o
P.I.:WM—%):E[I—FT] (1-D) " (4-31)
:l[I—ZTD](H—2D)(4—3t):§[1+§D](4—3t)
:%(4_%_4)
—(A1+B)e +Ce T i )

Eliminating Dy from (1) and (2), we get
4D + Dx —8x—3y =8t

y:%(4x”+x/f8x78t) ©)

3

(At+B>e’ + 4é' —%Ceigt -1

Form (4) x'

3
and x”:(At+B)e’+2Ae‘+%Ce 2

Using the values of x, x" and x" in (5),

3
y={(3-1)4-Ble —écﬁ’ —%

2

d
Example 5.12 Solve §—3x74y:0.

d’y .
—+x+y=0 ifx=y=1
a7 y y
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and ﬂ:d—y: 0, whent=0
de dt
The given equations are
(D*-3)x—4y=0 (1)
x+(D*+1)y=0 2)
Operating (1) by (D + 1);
D+ D) (D*=3x—-4D*+1)y=0
Multiplying (2) by 4;
4x+4D*+1)y=0
Adding, (D*-2D*+ 1)x=0
AE.is (m*-1=0
Roots are m = £1, £1
.. Solution is x = (At + B) e+ (Ct + D) e 3)
Differentiating x w.r.t. £;
xX'=At+ B tAe—(Ct+D)e'+Ce" 4
Differentiating further
x"=t+B)e+2A4e+(Ct+D)e'—2Ce" 5)
From (1),
y= l(x”—3)c)
4
:i[—z(AtJrB)e’ +24¢' —2(Ct+D)e ' —2Ce”
4
1 A 1 C
__ 1 t a b —t_ =t 6
2(At+B)e +ze 2(Ct-&-D)e > ¢ (6)
, 1 - —
y :—E(At—I—B)e +E(Ct+D)e (7)
Using the condition x = 1 when ¢ = 0 in (3),
B+D=1 ®)

Using the condition y = 1 when =0 in (6),
A-B C+D

R e |

2 2
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ie A-B-C-D=1 9)
Using the condition x’= 0 when # =0 in (4),
A+B+C-D=0 (10)
Using the condition y'= 0 when =0 in (7),
B+D=0 (1)
Solving equations (8), (9), (10), and (11), we get
=2l eed !

Using these values in (3) and (6), the required particular solutions are

e [13) e (130
2 2

and y= l—ét e+ l—i—gt e’
2 4 2 4

Example 5.13 Solve (D*—5)x + 3y =sin .

Bx+(D*+5)y=t

Eliminating y from the given equations, we get (D* — 16)x = 4 sin ¢ — 3¢
AE.ism*-16=0

The roots are m = £2, +i 2.

CF=4¢e&"+Be?+ Ccos 2t + D sin 2t

Pl.=4. 41 sint——; t
D" -16 D" -16

4  3(. b\’
=——sint+—| I-— | ¢
15 16 16

4 3( p*)"
=——sint+—| I+—| ¢
15 16 16

. 4 . 3
x=Ae* +Be ¥ +Ccos2t+Dsin2t——sint+-—¢ (1)
15 1
. 4
x'=2A4e* —2Be ™ —2Cs1n2t+2Dc052thcost

. 4 .
and x”:4Ae2’+4Be‘2’—4Cc052t—4Dsm2t+Esmt
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From the given equation,

Part A

1
== |5x—x"+sint¢
y=3 ]

_A

e +£e’2’ +3Ccos 21+3Dsin2t—lsint+it
3 3 5 16

( EXERCISE 5(c) ]

(Short Answer Questions)

1.

2.
3.

SalNg

Part B
Solve the following equations

8.

9.
10.
11.
12.
13.
14.
15.

16.

17.
18.

19.

Solve the following simultaneous equations: [D:i]

20.

Transform the equation x)y”’ + )" + 1 = 0 into a linear equation with constant
coefficients and hence solve it.

Solve the equation x3"' —xy' + y=0.

Convert the equation xp” — 3y’ + x'y = x? as a linear equation with constant
coefficients.

. Convert the equation x*y” — x3*" + x*' = 1 as a linear equation with constant

coefficients.

Solve the equation x*y" — 2nxy’' + n(n + 1)y = 0.

Solve the equation x*y" '+ 3x*" + xy' +y = 0.

Solve for x from the equations x'—y =tand x + y'= 1.

D= i]

dx
(D24 2xD — 20)y = (x> + 1)?
x*D*=x*D*+ x*D)y = 1
(x*D?—x*D* + 2xD — 2)y = cos (2 log x)
(x*D* + xD —9)y = sin’(log x)
(x*D? + 9xD + 25)y = (log x)
(x*D* + 6x°D + 9x?D? + 3xD + 1)y = (1 + log x)?
(x*D* = 3xD + 4)y = x (log x)*
(x*D*+ 2x*D* + x*D*—xD + 1)y = x*log x
()czD2 —xD—3)y:% cos (2logx)

(x*D* + 3xD + 5)y = x cos (log x)
[(Bx+2)D*+3(3x +2)D—-36] y =3x>+4x + 1
[(x+1D*+(x+1) D+1] y=4coslog(x+1)

dr

(D+4)x+3y=1
2&x+(D+5)y=¢e*
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21. 2D+ D)x+@BD+ 1) y=¢
D+5x+D+T)y=2¢
22. Dx +y=sint x+ Dy=costgiventhatx =2andy=0att=0
23. 2D — Dy — 4x = 2t
2Dx +4Dy—-3y=0
24, Dx+y =3¢
Dx — Dy = 3e*
25. (D*+4)x+y=0
(D*+ 1)y —2x=1+cos*t
26. D>x — 2Dy —x=¢' cos t
D* +2Dx —y=¢'sin ¢t
27. (D*+4)x+5y="7
(D*+4)y+5x=t+1

5.6 LINEAR EQUATIONS OF SECOND ORDER
WITH VARIABLE COEFFICIENTS

In the previous section we have discussed the solution of Euler's homogeneous linear
differential equations of the second (and higher) order, which are a particular case
of linear equations of second order with variable coefficients, that are functions of x.
The general form of such a differential equation will be taken as

d’y
de

+p(R)E +a(x)y=r(x)

2
in which the coefficient of d_f is unity and p(x), g(x) and r(x) are functions of x. In

this section, we shall discuss a few methods of solving such equations.

5.6.1 Method of Reduction of Order-Transformation of the
Equation by Changing the Dependent Variable

Let the given equation be

d’y
de

+p(x) L+ q(x)y = r(¥) n

Let us assume that one solution of the corresponding homogeneous equation,
namely,

d’y

dx2

() +a(x)y=0 @

is known. Let it be y=1u(x) 3)
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We then assume that y=1u(x)- v(x) 4)
is a solution of equation (1).

From (4), we get y'=u'"+u'y (5)
and y"'=uv" + 2uv'+u'y (6)

Using (4), (5) and (6) in (1), we get
w"+ Qu'+pu)v'+ W +pu'tquyv=r

re. uv” + (Qu'+ pu) v' =r, by (2) and (3)

!
ie. V”+[2u*+17]v/:1
u u

. 2u’
ie. V' = pv' =7, where p, = “—+ pandr, = . )
u u

Putting v/ = win (7) it becomes

W =

& tpw=n (8)
Now equation (8) is a linear equation of the first order in w, which can be solved.

Thus by changing the dependent variable y to w, we have reduced the order of the
equation by one.

Note™  Had the given equation (1) been homogeneous, viz., r(x) = 0, then equation
(7) would have become

Integrating both sides with respect to x, we get 108 vi=—2logu— f pdx +log 4

=log| Au"’ eif -

V= au e )
Solving equation (9), we get v and hence the solution of equation (1).

5.6.2 Definition

A second order differential equation in y not containing the term in the first derivative
y'is said to be in the canonical or normal form.
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5.6.3 Reduction to Canonical or Normal Form

The second order linear differential equation y” + p(x) y' + g(x)y = r(x) can be
transformed to the canonical or normal form v" + f{x)v = g(x), where f'(x) =
q(x)— %{p(x)}z —% p'(x)and g(x)=r(x).e”? /7%)* by using the substitution

172 p(x)dx
e .

Proof:

Let ufs assume that y = uv is a solution of the equation y" + p(x) y' + g(x) y = r(x)(1)
Differentiating y=uv 2)
with respect to x,

we get y'=uv+u' 3)
and y'=u"v + 2uv'+uv" 4)
The values of y, y"and y" given in steps (2), (3), (4) should satisfy equation (1).

ie. u"v +2uVv'+u" +puv+uv) +quv=r

ie. w" + Qu'+pu)v' + W +pu'+qu)yv=r 5)

Equation (5) should be in the canonical form, viz., it should not contain the v’
term.

2u'+pu=0
!
ie. LA &
u 2
. pdx
ie. logu=—| —+c
gu=-[

. 71/2fpdx
Assuming c =0, we getu =e

_ 12 [ pas
Thus the substitution y = uv = ve

transforms equation (l) into the canonical form

-1/2 dx —1/2 | pdx

When u=e fp ,u’:—g-e fp
2

2 e Ty [pax

and ur/:%.e/fpx_p?.e/fp

. . . o 1
Using the values of u, " and «" in the canonical form, viz., in v"+—(u"+ pu’+ qu)
u

1 .
v =—r it becomes
u
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/

2 2
v//+[p__p__p_+q]vzrel/2fpdx

4 2 2
ie. v//Jr[q%pz%p’]v—remfm
ie. v”+f(x)~v = g(x),where
1
f(x)=a(x)= 4 {p(x)} — ' (x)and

5.6.4 Method of Reduction of Order—Special Types of Equations

2
Type 1. Equations of the form :x—‘f =f [x,:x—y] , in which y is explicitly absent.

. d d d
Putting ay = p, we get de: = ap

dp
The equation gets transformed as a:f (x:P)’which is only a first order
equation.
Solving this transformed equation, we get

dy
p = a = ¢ (x} Cl)
Again, solving this equation, we get
y=y(x,cp ).

Extension:

n n—1

d
Equations of the form ) = S [x

n—1

Jljzpand

’ dx"71 n—

o y] can be solved by putting

reducing the order successively.

dy

2
Type 2. Equation of the form d—}; =f [ y,— | in which x is explicitly absent.
dx

dx

d? d d
We put % = p and treat p as a function of y. Then K); = ap =p ﬁ

dp
The equation becomes a = f(¥.P). which is a first order equation.
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Solving this transformed equation, we get
d

p:ay:gf)(}/,cl)

Solving this equation further, we get

x =y (y, ¢, cz)
Extension:
Equations of the form f{y, y', »", ... ¥(")} = 0 can be solved by the above technique,

. . d . .
viz., by putting Ey = p and treating p as a function of y.

Type 3. Equations f'(x, y, y', ') = 0, which are homogeneous in y, y' and y"
(but not in x)

By putting y = ef de, the order of the equation can be reduced by one and hence

solved. When y = ef - y' = zef “and y'= (22 +z ) ef “*Thus, the order of the

transformed equation in the dependent variable z will be one less than that of the
given equation.

Type 4. Equations f (x,y, y’, y") = 0 which are exact, viz. which can be
yp q y.y.y

d
expressed as -~ {(i)(x’y,y’)} =0 -

The first integral of the equation % {(;S (x,y,y’)} =0is qu(x,y,y') =c¢,whichis a

first order equation, solving which we get the solution of the given second order
equation.
Note @  The equation [p,()D* + p,(x)D + p,(x)ly = r(x) is exact if and only if
pﬂo 7p'| +pz =0.
Let(p,D* +p, D +p,)y=D(q,D +q,)y=[q,D* + (¢, +q)D +q"]y
Comparing like terms, we get

Py =4y P, =4t g, andp, =q’,
Differentiating both sides of p, = ¢/ + ¢,

we get p\=q9",*4q
=p'*tp,
p!!07p/1+p2: 0

Conversely, when p" —p', + p,= 0, we have
p, D’+p.D+p)y=@p, D’+pD +p'\—p")y
=py ' tpy+p'y-p"y
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=py"+tp,y)+t@y+tp v -@"y+pLy)
:D(poyr) +D(p1y)_D(p,0.y)

=Dp,y+py-p',y)
Thus (p, D* + p, D + p,)y = 0 is an exact equation, when p", —p' + p, = 0.

( WORKED EXAMPLE 5(d) ]

Example 5.1 Solve the equation xy” —2(x + 1)y'+ (x + 2)y = (x — 2)e*, by finding
one solution of the corresponding homogeneous equation by inspection and reducing
the order of the equation.

Important Notes &
To find one solution of the equation p(x) y” + p (x) y' + p,(x). y = 0, the following
hints may be useful:

(i) Ifpy(x) +p,(x) + p,(x) =0,y = e'is a solution of the equation.
(i) If p,(x) —p,(x) + p,(x) =0, y = e is a solution of the equation.
(iii) If p,(x) + xp,(x) = 0, y = x is a solution of the equation.
In the given problem, p, = x,p, =—2(x + 1) and p, = x + 2.
The condition p, + p, + p, = 0 is satisfied.

oy = e° is a solution of the homogeneous equation corresponding to the given
equation.
Let y = ve* be a solution of the given equation.

Then y'=ve +v'e*
y'=v"e" +2v'e" +ve
Using these values of y, y’, y" in the given equation, it becomes

x(ev"+2ev' +ev)—2(x + 1) (eV'+eV) + (x +2) e'v = (x —2)e*
ie., xv"'=2v'= (x —2)e"

b 2

1€,
dx x

2 dv

=|1—=|e",where p = —

p=[1-2)erwhere p =&
This is a linear equation of the first order.

2
—=dx
LF.= ef ¥ = gler —

Solution of this equation is

><N|>-G

1 2
:f[—z——3]ex dx—‘r3C]
X X
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_fd[ize*]ﬁcl
X

1
=—e" +3¢
x

d
ie. av =3cx’ +e'

Solving this equation, we get
= 3 X
v=cx’ +tc¢,+te
.. The solution of the given equation is
y=e(cx’ +ctc)

2
Example 5.2 Solve the equation d—); +(1—cot x)d—y —ycotx=sin’ x, by the
method of reduction of order. dx dx
The given equation is y” + (1 — cot x) y'—y cot x = sin’ x (1
Here p,=1; p, =1 —cotx; p,=—cotx
We observe that p, —p, +p, =0
.y = e™is a solution of the equation

y"+ (I —cotx)y'—ycotx=0 2)
Let y = ve™ be a solution of equation (1)
Then y'=v'er—ve*
and yN — V/!e—x_ Zv!e—ervefx

Using these values of y, y"and " in (1), we have
(v'e*—=2v'e* +veX)+ (1 —cotx) (v'e*—ve™)—ve™cotx = sin’x

ie. v"—(1+ cotx) v' = e sin® x 3)

Putting v' = p in (3), it becomes

%—(H—cot x)p=e"sin’ x &)

(4) in a linear equation of the first order

IF _ eff(IJrcot x)dx

efx

—x—logsinx __

sin x

=e
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.. Solution of equation (4) is

—X —X

e . e
P :fe"smzx- —dx+¢
sin x sin x
=—cosx+¢
. dv . .
ie. p=—-= e* (¢, sin x—sin x cos x) 6))
x

Integrating (5) with respect to x,

. 1 .
v=g fex smxdx—zfex sin 2x dx +c,

:%e‘ (sin x — cos x)— -%(sin 2x —2cos 2x) + ¢,

N | —

.. The solution of the given equation (1) is

y = A(sin x — cos x _ L sin 2x — 2 cos 2x)+ Be™".
10

2
Example 5.3 Solve the equation (1 —x )d—);— 2xd—y +2y =2, by the method of
reduction of order. dx dx

The given equation is

(I-x)y"=2xy"+2y=2 (D
Here p, =1 -x%p, =-2x;p, =2
We observe that p, +px = 0.
.. y=x1s a solution of

(I=x)" =2xy'+2y=0 )
Let y = vx be a solution of equation (1).
Then y'=vx+v y'=vix+2v

»,y',y" satisfy equation (1)

ie. (1=x)(v"x +2v) = 2x(v'x +v) + 2vix =2

ie. x(1 ="+ [2(1 —=x?) = 2% =2

. d_p+[g_ 2x ] 2

ie. o x 1—2)P x(l—x2> 3)

where p=v
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Equation (3) is a linear equation of the first order.

LF.= ej(%:;}jx

210gx+10g(17x2)

=x? (l—xz)

.. Solution of equation (3) is

px° (1—x2):fx(l%x2)~xz(l—x2)dx+cl

2
=Xx"+¢q

ie.

! +CI[L2+ ! ] @

.. Solution of equation (1) is

1
y= atl xlog[1+xJ—cl+02x
2 I—x

Example 5.4 Solve the equation xii/ + (2 — x)ﬂ —y=0, given that y= 1 is
a solution. dx dx x
[Refer to the note under the discussion of the method of reduction of order]
If y = u is a solution of the equation

y" + px)y'+ q(x)y = 0, then y = uv will also be a solution of "+ p(x) y' + g(x)y =

a = p(x)dx
0, where v/ = cu%e J

The given equation can be rewritten as

y”+[z—l]y’—1y=0 M
X X
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2 1
Here p(x)=——-1and g¢(x)=——
p(x)== q(x)=——
. 1. . .
Since y =— is a solution of equation (1),
X

| .
y=—v is also a solution of (1), where
X

e
Vi=cexte V"
=C1x2 ef2logx+x

2 -2
=cx -x e =ce

_ X
v=ce +c,

.. The general solution of equation (1) is

l X X
y:—(cle +cz) or xy=ce +¢
X

2 1.
Example 5.5 Solve the equation d_); + 2d 4 y=0given that y==—sinx is a
dx

x dx x

. 1. . . . .
solution. y = —sinx-vis also a solution of the given equation, where

x
, x? *fzdx . 1. 2
Vi=g———e 7" , sinceu = —sinxand p(x)==
sin”x x x
x _ C
= — . e 2logx =— 12
sin”x sin”x

Integrating, we get
v=-—c cotx+c, or Acotx+B

1.

.. The general solution of the given equation is ¥y = —sinx (A cotx+ B )
x

ie. xy = Acosx+ Bsinx

2
Example 5.6 Solve the equation d_)2/+2xd_y+x2 y=0, by reducing it to the
canonical form. dx dx
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The given equation is y" + 2xy’ + x>y =0
Comparing equation (1) with the standard equation
V') Y qx) y = r(x)
We have p(x) = 2x; g(x) = x?; r(x) = 0.
B p(x)dx
J5= _ e

2. in (1), it becomes

Putting y = uv, where u =e

2 /
p/2dx
v+ q_p__p_ V= ref
4
[Refer to the discussion of reduction to normal form]
ie. v+ = x2-1)v=0
ie. v'=vy

which is of the form v" = f{v, v')

. . . d
Putting v' = p and treating p as a function of v, we have v" = p d_p
v
.. The equation becomes
dp
ar_,
P dv

Solving this equation, we get p> =V* + ¢

or pz?zquJrclz

X

Solving equation (5), we have sinh ™ [1 =x+c,
G
or v=c¢ sinh(x+c,)
{ex+cz _ e—(x+cz) }
= cl .
2
=Ae" +Be™

.. The required solution of equation (1) is
y= (Ae" + Be_”)e_xz/2

dy
2

2
Example 5.7 Solve the equation 4x? jx—y + 4xa + ( X2 — 1) y =0, by reducing it

to the normal form.

(1)

2)

)

4)

)
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The given equation can be rewritten as

1 1 1
Vit =y +=1=—=|y=0 ()
X 4 X

H ! !
T =—,d=—
ere p xq 4

1—%]andr—0
X

Let y = uv be a solution of (1), where

I LT L

Jx

1
Putting y =—=V in (1), it becomes
Jx

1 1 1 1
. Vil —1-—=|-—=+—1v=0
e 4 x2) 4ax? 2yt
. g1
ie. v +Zv:0 (3)

. . X . X
Solving equation (3), we have v= 4 COSE +B SmE

. . . 1 .
*. Solution of equation (1) is y = —[A cos%—i— Bsin %]

Jx

2
Example 5.8 Solve the equation xd_y Y _ x%e*, given that y(0) =— 1 and y'(0)
=0 A’ dr

The given equation does not contain y explicitly.

2
Putting [ = p and treating p as a function of'x, we have d—f = 21; the equation
dx

becomes dx

dp 2
x——p=x‘e"
o p

ie. ——lp:xe (1)
x
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Equation (1) in a linear equation of first order in p.

x
1 | B
Solution of (1) is p~;: ;-xe dx+2¢
ie. p=x(e+2c)
dy
or —=xe" +2¢x 2)
dx 1

Solving equation (2), we have
y= fxex dx—l—f2clxdx—|—cz

i.e., the solution of the given equation is
— X 2
y=@x-1e+cx’+c,

Using the condition y(0) = —1, ¢, = 0. Using the condition y'(0) = 0 in (2), c, is
arbitrary. Taking ¢, = 0, the required solution is y = (x — 1)e".

2 2
Example 5.9 Solve the equation Elix_f + [%] =1, given that »(0) =0, »'(0) =0

Method 1
The given equation
yrEyr=l (1)

can be considered as one not containing y explicitly.

2
Putting Y = p and treating p as a function of x, we have 4y = L
dx dx?  dx

Then equation (1) becomes
dp 2
e Ay 2
1 p (2)

Solution of equation (2) is

d
f p2:x+cl
I=p
. 1 1
ie. —lo —tr =x+q
2 1-p

Given that p =0, whenx =0
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Thus we have I+p =™

l-p

_d_y_ e2x_1
dr e +1

e —e
=———=tanhx
e +e

Solving (3), we have y = log cosh x + ¢,
Using the condition y(0) = 0, we get ¢, =0
.. Solution of equation (1) is y = log cosh x.

Method 2
The equation

Yyt =
can be considered as one not containing x explicitly.

. d . .
Putting ay: p and treating p as a function of y, we have

Then equation (1) becomes

dp
e A
p@) P

2

Solution of equation (2) is

=yt
l-p

i.e. —%log<l—pz)=y—l-c1

Given that y=0 and p = 0, when x = 0
orwheny=0,p =0

Thus l-p?P=e?

ie. p:%: 1—e

Solving equation (3),

fld—y—ercz

—2y

)

(1

dp

2)

)
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Le. cd =x+c,
Jer —1
ie. cosh-' (e)=x +c,
When x=0,y=0.".¢,=0

.. The required solution of equation (1) is

¢’ = cosh x or y = log cosh x.

2
Example 5.10 Solve the equation xd—f:d—'log 1y
dx®  dx x dx

! !/
The given equation is V "= y;log [y;] (1)

It is of the form y"” =f(x, "), which does not contain y explicitly.

Putting y' = p and treating p as a function of x, we have y” :% .

Then equation (1) becomes

dp_p p]

—==log|— 2

= x g[x 2)
dp dv

Putting p = xe’, we have —=¢" +xe" —
gp dx dx

Then equation (2) becomes

ie. x—=v—1 3
ie & (3)
.. Solution of (3) is
dv

—= | —+loge

v—1 X
ie. v=1+cx
ie. log E]—lJrcx

X

p= dy_ e ()
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Solving equation (4), we have

.. The required solution of equation (1) is

cy = (ex — e +c’

2 2
Example 5.11 Solve the equation d—f#—i d_y] =0 The given equation is
dx®  1—ypldx
2
y//+_.y/2:0 (1)
1=y

It is of the form y” = f{y, y"), which does not contain x explicitly.

Putting y’ = p and treating p as a function of y, we have »"= p—p :

dy

Then equation (1) becomes

d, 2

pLr = pi=0 2)

dy I-y

p 1=y
.. solution of (2) is

logp—21log(l-y)=logc,

. dy 2
ie. =P=a (1-y) 3)

Solving (3), we have

dy
f =¢x+c,
(1-y)

i.e. =X+
I-y

.. The required solution of equation (1) is

1

¢ x+c,

y=1-
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dx

dx

2 2
d’y [dy] —ydy:O~

Example 5.12 Solve the equation xy e X

The given equation xy" —xy” —yy' =0
is homogeneous of degree 2 in y, y', y".

fzdx

Putting y=e
(1), we have
2

efm {x(z2 —i—z’)—xz2 —z} =0
ie. xz'—z=0
Solving (2), we get z=cx

fcl xdx
y=e = =

or y=Ae™

Ay () P
Example 5.13 Solve the equation yg-i- ol =

The given equation yy” 4 y"* = yy’/1 N+x?

is homogeneous of degree 2 in y, y"and y".

and hence y'= zel ™ and y"=(z* +z/>efm

(1

in equation

2

(1)

z zdx zdx
Putting y :ef o and hence ' =Zef and ¥ = (22 +Zl)ef in equation (1), we

have
2
edex (Z2+Zl)+22— i =0
\/l—i—xz
z
1.e =427 =0
dx wll—i—xz
1 dz 1 1
i.e - ot =2
-~ z2dx oz 1452
ie. d_u+ ! u=2

2)

A3)
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where u=-—
z

Equation (3) is a linear equation of the first order.

1

— dx
1
LF=¢ V"

Solution of equation (3) is
(x+\/1+x2 )u:JZ(x+\/1+x2 )dx+c1
=x" +x4/1+x° +log()c-i-\/1+x2 )+cl

. xHA1+x°
1.C. zZ=
x2—|—x\/1—|—x2—|—log(x—|— 1+x2)+c1

= %%bg{xz +xqf1+x° +log(x+ 1+x° )—i—c]}

fzdx

y=e
1/2 ]og{xz +x\/l+x2 +log(x+ l+xz)+cl}+c‘2

1
:{x2 +x1+x° +10g(x+ 1+x2)+cl}2 e

or yzzA{xz—kx\/l—kxz—i—log(x—i— 1+x2)+B}

2
Example 5.14 Show that the equation x?jx_i}+<x+2)%+y: 0 is exact and

hence solve it.
The given equation is x)” + (x + 2)y'+ y=0 (1)

Comparing equation (1) with
py" +py'+py=0.
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We have py=Xp,=x+2,p,=1

Now p, —p' +tp,=0-1+1=0
Thus the condition for exactness is satisfied.

Now equation (1) can be rewritten as

" +))+ (' +y)+y =0

. d N d dy
1.€. — () +—(xy)+—=0
dx( V) dx( v) dx
d
or - (@ +y)=0 2)
. . dy
.. Solution of (2) is xd_ + (x + 1))/ =G
X
dy 1 c
; — 4|1+ |y=-2L
1.€C. dx ( X )y X (3)
Equation (3) is a linear equation of the first order.
1+l d x
LF.= ej( )‘]
— e.r+10g‘c — xex

.. Solution of equation (3) and hence equation (1) is

X X
y-x-e :fc,e dx +¢,
ie. xye' =ce’ +c,

2
Example 5.15 Solve the equation (sinx) jx); —(cos x)% +2(sinx)y =cos x

Comparing the given equation with
poy" +py' +py=0,wehave
p,=sinx, p, =—cosxandp, =2 sinx.

Now p" —p', +p,=—sinx—sinx+2sinx=0
Hence the given equation is exact. It can be rewritten as

d , ,
a(poy + Py — p,y) = cos x
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% [(sinx)y' —(cosx)y—(cos x)y] =cos x

.. The first solution of the given equation is (sin x) ' — 2(cos x) y = sin x + ¢,

ie.

Equati

.. Solution of (1) is

Part A
(Short

1.

2.

5.

V' —2(cotx)y =1+ ¢, cosec x (1)
on (1) is a linear equation of the first order
IF _ e—_[ 2 cot x dx

i 1

_ _2logsinx __

=e =

sin® x
Y

——=—cotx+¢ | cosec’ xdx+c,
sin” x

c x
=— cot x+3](— cosec x cot x + log tan E)+ ¢,

. of . X . 2
y:—smxcosx+51(sm xlogtana—cosx)+c2 sin” x

( EXERCISE 5(d) ]

Answer Questions)

If y = u(x) and y = u(x) v(x) are solutions of the equation y" + p(x) y' + g(x) y
= 0, write down the first order equation satisfied by v(x).

When is a second order linear differential equation said to be in the canonical
form?

. Write down the transformation which will convert the equation y" + p(x) y' +

q(x) y = r(x) into the normal form.

. When the equation y" + p(x) ' + g(x) ¥ = r(x) is transformed as v" + f{x) v =

g(x) by the substitution y=v exp |:—1 / 2J‘ p (x)dx] , what are the values of

fix) and g(x)?

What is the substitution to be made to convert the equation y” = f{x, »") and
y"=f(y, ") into first order equation? Indicate the difference in the subsequent
procedures.

. Write down the substitution to be made to convert the equation f{x, y, y', y") =

0 that is homogeneous in y, )/, y", into a first order equation.

. Write down the condition for the equation p(x) y" + p,(x) V' + p,(x) y = 1(x)

to be exact.

. If the equation p (x) y" + p,(x) ' + p,(x) y = r(x) is exact, what is its first

integral?
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9. How will you identify a second order linear differential equation in y with
variable coefficients that has (i) y =e* as a solution (ii) y = ¢ ™ as a solution?
10. How will you identify a second order linear differential equation in y with
variable coefficients that has y = x as a solution?

Part B
Solve the following equations by the method of reduction of order, after finding one
solution of the corresponding homogeneous equation by inspection:

d’y dy .
12, ¥ 23 —(2x—1)a+(x—1)y=e
dzy dy X o
13. 1 —cotx-a—(l—cotx)y=e sin x
2
1. xij)z}+2x(x—l)j—i:+x(x—2)y=0
2
15. (x—l)dJ;+xd—y+y:1
X dx
d’y dy
16. xdx2+(2x+1)a+(x+l)y=0

2
X X

2
17. (1—x2)d Y _ox jy+2y=6(1—x2)

2
4
dy xdy+ 4

18. - =0
dx* 2x-1dx 2x—1y
d’y dy
19. x* —(x* +2x) ==+ (x+2)y =2’
x? ( )dx ( )y

2
20. xzj—);—3xj—y+3y =2 (2x —1)
X X

Solve the following equations by the method of reduction:

. & +[x2 —2x—2)d_y_[2x2 —2x-2

dx? X +x dx X+

solution.

}y:O , given that y =x?is a
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2
22. d )2} + xd_y -9y =0, given that y = x* is a solution.
dx X
2
23. i }2} + y =sec x , given that y = cos x is a solution of the corresponding
X

homogeneous equation.

2

24. d 32/ + 4y =4 tan 2x , given that y = sin 2x is a solution of the corresponding
X

homogeneous equation.

2
25. 42 d’y i (xz — Xtan x — %)y =0, given that y = % cos x 1s a solution.

2
X X

2
26. x(1+3x2)dy+2d_y_6xy=0,giventhaty=l is a solution.
dx’ dx X

2

27. (x* =1) d J; —6y =1, given that y = x — x* is a solution of the corresponding
X

homogeneous equation.

2

28. cos’ x- =2y, given that y = tan x is a solution.

2
X

2

29. sin’ x q )2} =2y, given that y = cot x is a solution.
x

30. Find the values of @ and b if y = x is a solution of the homogeneous equation

. . d’ d
corresponding to the equation x* 1 )2} —-2x(1+x) d_y +(ax+b)y=x". For
x x

these values of a and b, solve the equation completely.

2
31. Solve the equation (x sin x + cos x) j J; — X COS X j—y +ycosx=0, given
x x

that y = x" is a solution of the equation.
Reduce the following equations to the canonical form and hence solve them:

2

32. x2%+x3—y—(xz+%}/=0
x x
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2

34, X dy —2(x2+x)d—y+(x2+2x+2)y=0
X dx

2

3

2 2
35. 4x2%+4x3—y+(16x2 — 1)y = 4x? sin x
X X

Reduce the order of the following equations by suitable transformations and hence
solve them:

d’y dy . .
36. — + tanx - —— =sin 2x, given that y(0) = — 1 and y'(0) = 0.
dx dx

&’y dy , N
37. (1-x")—5 —x——=1, given that y(0) = 0 and y( )—4 .
dx dx

2 2
38. (1+x2)d—{+(d—y) +1=0
dx X

&y (dy)
39 dx2=x[_x]
&y (dyY (dy)
40. y—2-|=Z 1 +[=L ] =0
dx X dx
dy &y (dy) (&Y
41, p XYV _Er 18
dx dx? dx dax?

&y (dy) dy
2. 5774 | Tde

5 2 2
43. [d y] +(j—y) =4, given that y(0) = — 1 and /(0) = 0.
X

2
&y (d
44, y=—2 —(—y} = 6xy°
X

dx? d
d? d ]
Yy )y
- ydxz +($J _2y2

2 2
46, y3 ) L
dx dx



Differential Equations 5.71

Show that the following equations are exact and hence solve them

dx dx
d’y dy
48. (1— -3 —y=1
T
d>y
49. 1 =1
(x -l-)d
50 xdzy (x—|—2)d +y=e"
T dx 7

5.7 METHOD OF VARIATION OF PARAMETERS

The method of Variation of Parameters is another method for solving a linear
differential equation, either of the first order or of the second order. If the given
equation is of the form f{D)y = x, this method can be applied to get the general
solution, provided the corresponding homogeneous equation, viz. f{D)y = 0 can be
solved by earlier methods. The procedures to solve linear equations of the first and
second orders are the following.

Solution of the equation j—y +Py=0 Q)
x

where P and Q are functions of x.

The homogeneous equation corresponding to equation (1) is

d
& py=0 )
dx

ie. d_y = —Pdx
Yy

log y = —dex—l—log c=log ceifp(LY

*. solution of Eq. (2) is

Pdx
=ce - (3)
Now we treat the arbitrary constant ¢ as a function of x and assume that (3) is the
required solution of (1).

Differentiating (3) with respect to x, we have
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_c.e—dex ( )+d—€fpd @)

dx

Since (3) is assumed as the solution of (1), (3) and (4) satisfy (1)

. —cPeifPGLV —|—:—ceifptiv —|—cPeidex =Q
by

i.e_ E — Qeifpd.x
dx

c=fQ.ef”d‘ dv+ 4 (5)

Using (5) in (3), the required general solution of (1) is
_ Pdx
y:ef””‘fgef -dx+A}

yedeX=fQ~edex.dx—|—A ©

Note @  Solution (6) should not be treated as a formula and hence should not be
directly used in problems. The procedure used in obtaining (6) alone should be used
in solving problems.

dy
dx

—+Qy=R (1

where P, Q and R are functions of x or constants.
The homogeneous equation corresponding to equation (1) is

d*y dy
+P L op=0 2
e dx Oy (2)

Let the general solution of equation (2) be
y = Au+ Bv 3)

where A and B are arbitrary constants (parameters) and y = u(x) and y = v(x) are
independent particular solutions of Eq. (2).

Now we treat 4 and B as functions of x and assume (3) to be the general solution
of (1). Differentiating (3) with respect to x, we have

j—i =(4u'+ Bv')+(4'u+B'v) (4)
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We choose 4 and B such that
Au+Bv=0 (5)
Then (4) becomes

dy / /
— = Au’ + Bv (6)
dx

Differentiating (6) with respect to x, we have

jxj; Au”" + Bv" + A'v' + BV (7)

Since (3) is a solution of Eq. (1), (3), (6) and (7) satisfy (1).
(Au" + Bv"+ A’ + BV') + P(Au' + BV') + Q(Au + Bv) =R
ie. A"+ Pu'+Qu)y+BO"+Pv'+Qv)+Au"+ Bv' =R (8)
Since y = u is a solution of Equation (2)
u'"+ Pu'+ Qu=20
Similarly VI'+Pv'+Qv=0

Inserting these values in (8), it reduces to
A'v'+ BYv' =R 9)

Solving (5) and (9), we get the values of 4" and B’ integrating which, we get the
values of 4 and B as functions of x. Using these values in (3), we get the required
general solution of Eq. (1).

Notes &

1. To solve Eq. (1) by the method of variation of parameters, one should know
the complementary function of (1) and remember (5) and (9), solving which
the values of 4 and B are obtained.

2. Equations (5) and (9) hold good, only if the coefficient of d— in the given
differential equation is unity. dx®

3. The method is known as variation of parameters, as we treat the parameters
(arbitrary constants) 4 and B as varying functions of x.

( WORKED EXAMPLE 5(e) ]

Example 5.1 Solve the equation (x2 + 1) %} +dxy =

of variation of parameters.
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The homogeneous equation corresponding to the given equation is

<x2+1)d—y+4xy:0 (1
Xy
i, LS N
y  x +1

Integrating, we get log y + 2 log (x> + 1) =log ¢

iec. y=—S— is the solution of (1) 2)
(+* +1)

Treating c as a function of x and differentiating (2) with respect to x, we have

dy (x2 —l—l)2 c’—c-Z(x2 +1)-2x

3)
& (2 +1)
Using (2) and (3) in the given equation, we have
(xz + 1)2 c'—dex (xz + 1) dex 1
4 =
(2 +1) (@)

ie. P+ —dex () tdex P+ 1) =2+ 1)
ie. c'=1 o c=x+tk &)

Using (4) in (2), the required general solution of the given equation is (x* + 1)*y =
x + k, where k is an arbitrary constant.

Example 5.2 Solve the equation % + x sin 2y =x* cos?y, by the method of
variation of parameters.

The method of variation of parameters can be applied to solve only a linear
differential equation. The given equation is not linear. We shall convert the given
equation into a linear equation and then apply the method of variation of parameters.
Dividing the given equation by cos?y, we get

dy

2 3

sec’y —+2xtan y=x 1
Yy i Yy )

Putting tan y =z, Eq. (1) becomes

% +2x-z=x", which is linear. 2)

The homogeneous equation corresponding to Eq. (2) is
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E a0 o oo (3)
dx z

Integrating, we get log z = log ¢ — x?

i.e. the solution of Eq. (3) is
z=ce " @)

Treating c as a function of x and differentiating (4) with respect to x,

3 = _2cxe ™ + cle ™
" 5)

Using (4) and (5) in (2),
—2cxe™ + c'e™? + 2cxe ™ = x°

ie. c'=x’e?

c:fx3eX2dx+k
1 ‘ S
- ) tt =t
the dt + k , on putting x

te —e' )+ k
(e = <)

N~ =

(x2 — 1) etk (6)

Using (6) in (4), the required general solution of Eq. (2) is
1 2 —x?
z=— (x — l) + ke
2
Therefore the general solution of the given equation is
tan y = 1 (x2 - 1) + ke
2

where £ is an arbitrary constant
2
Example 5.3 Solve the equation d—J; + y =x cos x, by the method of variation of
parameters. dx
d2
K); +y=xcosx (1
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The homogeneous equation corresponding to Eq. (1) is

12y
_2+ y= 0
The solution of Eq (2) is

y=Acosx + B sinx,

where 4 and B are parameters.

Treating 4 and B as functions of x, 4" and B’ are given by

—A'sinx+ B'cosx=xcosx

and A" cosx+B'sinx=0

by Eq. (5) and (9) of the discussion of the method of variation of parameters.

Solving (4) and (5), we get

. |
A =—xsinxcosx or —Exsm2xand

1
B =xcos’x or 5x(1+cos2x)

Integrating (6) and (7) with respect to x, we get

2 2 4

1 [—x cos 2x  sin 2x
A=—-— + +c

and B=—+—

4 2 2

1 |:x sin 2x N cos 2x

Using (8) and (9) in (3), the general solution of Eq. (1) is
X I .
y= ( ¢ + —cos2x— —sin Zx) COS X
4 8

X ox . 1
+ c2+T+Zsm2x+§cos2x

i.e.

2
. X X
Y=¢ cosx+ ¢, sin x+ Ts1nx+ Zcosx

or

1
where [c2 - g] has been assumed as c;.

2

3)

“)
)

(6)

(7

@®)

)

. 1 . x° . X
y=¢ cosx+ ¢, sin x— gsm X+ Tsmx+zcosx
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2
Example 5.4 Solve the equation
parameters.

de

d’y
de

The homogeneous equation corresponding to Eq. (1) is

+ a’y = tan ax

d2y

de

+a’y=0

The solution of Eq. (2) is
y=2A4 cos ax + B sin ax

If we treat 4 and B as functions of x, 4" and B'are given by

—aA'sin ax + aB' cos ax = tan ax
and A' cos ax + B’ sin ax =0

Solving (4) and (5), we get

1 sin® ax
A==
a cos ax
1 .
and B’ =—sin ax
a

Integrating (6) and (7) with respect to x, we get

I r.
A= - [sm ax — log (sec ax + tan ax)] +¢

1
and B=——cosax+c,
a

Using (8) and (9) in (3), the general solution of Eq. (1) is

ie. y=[cl+Lz{sinax—log(secax+tanax)}] cos ax
a

1 .
+ (cz——zcos ax | sin ax
a

. . 1
1.€. y=¢ Cosax+ ¢, SIn ax——cosax-log(secax+tan ax)
1 2 (12

+ a’y = tan ax, by the method of variation of

(1)

2)

3)

4)

)

(6)

()

®)

©)
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Example 5.5 Solve the equation (2D? — D —3) y = 25¢™, by the method of variation

of parameters.
As the formulae (5) and (9) given in the discussion of the procedure can be applied,
only if the coefficient of D?y is unity, we rewrite the given equation as

2 2 2

Dz_lD_i]yzéex (1)

The homogeneous equation corresponding to (1) is

1 3
2 1p_2ly= 2
[D 2D 2]y 0 ()

The auxiliary equation corresponding to Eq. (2) is

or (m—é)(m+l):0

3
som=—and—1.
Therefore the solution of Equation (2) is
3
y=Ae* + Be™ 3)
Treating 4 and B as functions of x, 4" and B’ are given by

3
ET e? 4+ Ble = 23 e )
2 2

)

and E
A e? +Be =0

Solving (4) and (5), we get
5

A=5¢2 and B'=-5

Integrating, we get,

5
A=-2¢? + ¢ and B=-5x+c,

Using these values in (3), the general solution of Eq. (1) is

y= (cl - 2e_%x ]ezx + (02 - Sx) e



Differential Equations 5.79

3
=x
ie. y=c e’ +ce’ -2 —5xe”

Example 5.6 Solve the equation x* ly 4x3x + 6y =sin (log x), by the method

of variation of parameters.

2
To make the coefficient of d—}; as unity, we rewrite the given equation as
dx

dy 4dy 6 |
PR xzy:?sm(logx) (1)

The homogeneous equation corresponding to (1) is

d’y 4dy 6

—_——— =0or

dx*  x dx xzy

» dy dy

X —=-4x—+6y=0 2
o ] y 2)

Putting x = e’ or log x = ¢ and denoting diby 0, Eq. (2) becomes
t
[0(0—1)—40+6]y=0

ie. (0*=50+6)y=0 3)

The auxiliary equation corresponding to (3) is
m*=5m+6=0

m=2,3
Therefore the solution of Eq. (2) is
y= 4de* + Be
or y= Ax*+ Bx’ 4)

Treating 4 and B as functions of x, A’ and B’are given by

24'x +3Bx* = LZ sin (log x) (%)
x

and AX+Bx =0 (©)
Solving (5) and (6), we get

A = %sin logx and B = x%sin log x.
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1. 1 .
A:—f; sin log xdx + ¢, andB=fysmlogxdx-i-c2

ie. Az—je'z’ sin ¢ dt + ¢, andeJ.e’” sin ¢ df + ¢,

on putting log x =t orx = ¢

—2t
ie. A:cl—%(—2sint—cost)and

e—3t
B=c2+ﬁ(—3sint—cost)

ie. A=c, + SLZ (2 sin log x + cos log x) and
X
B=c, —L(3sinlogx+coslogx)
10x°
Using these values of 4 and B in (4), the required solution of Eq. (1) is

2

1 .
y:[c1 +5—2(2 sin log x + cos log x):lx
x

3

1 .
+| ¢, ——— (3sin log x + cos log x) | x
10x
i =cx’ +e,x + 2_3 sin log x + I_1 cos log x
1.€. y 1 2 510 g 5 10 g
2 s, 1.
i.e. y=cx +c,x +E{sm log x + cos logx}.

2
Example 5.7 Solve the equation x’ d_“: —x dy + y = xlog x , by the method of
variation of parameters. dx dx

dzy

2
X

To make the coefficient of as unity, we rewrite the given equation as

d’ 1d 1 1
y———y-i-—y:;logx (1)

2 2
dx xdx x

The homogeneous equation corresponding to Eq. (1) is
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£ttt
jxy P2y =0 2)
Putting x = ¢’ or # = log x and denoting % by 6, Eq. (2) becomes
[0(6-1)—0+1]y=0
ie. (6-1)2y=0 (3)
Therefore the solution of Eq. (3) is
y=(At + B) e ory = Axlog x + Bx 4)
Treating 4 and B as functions of x, 4"and B’ are given by
A’(l—l—logx)-i—B’:%logx (%)
and A xlogx+ B x=0 (6)

Solving (5) and (6), we get

A’:llogxandB’:fl(logx)2
x x

1 1
A:f;logxdx andB:—f;(logx)zdx

ie. A= ft dfand B=— ftzdt on putting log x = ¢

A:%(logx)z—&-c1 ande—%(lngV*'cz

Using these values of 4 and B in (4), the required solution of Eq. (1) is

y=|:%(logx)2+cl:|xlogx+[—§(logx)3+cz]x

1
ie. yzcl)c10gx+c2x+g)c(logx)3
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EXERCISE 5(e)

)

Solve the following equations by the method of variation of parameters.

d
1. —y—ytanxzexsecx
dx

dy .
2. x—+(1+x)y=e€"
3 )y
d2
3. +y=xsinx
d2
d2
4. O +a’y = sec ax
2
4. d—}; 2d—y+2y:e“tanx
dx dx
2
6. d_'i} 6d_y+9 :_263)(
dx dx X
d? d 1
7. zdxy+4xay+2y_x +—
d’ d
8. xzdxf 2x di 4y =32(log x)’

[ ANSWERS

Exercise 5(a)
7 (y=2x-C)(y—3x-C)=0

9 -e-CO)(e@—-x-C)=0
(an y=ptL i y=—cnr S
p—l 1

(13) y=px+sin! p;y=Cx +sin! C
(15) x*=4y

(17) [y—%—C][x—&-i-l—C]:O

2

®)

2

(m)(y—ng—C%%;—x_C

(12) y :prep;y: CX*@C

(14) 2=
(16) h—x—C) (2+1*—C)=0

(18) (- C¥) (3~ 2~ ) =0

|

y—%—C](logy—x—C)zo

0
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(19) (- @=»*-0O)=0 (20) xy-O) (x*~»*~C)=0
@1 [ +cosx)—C] [y(1-cosx)—C]=0

22 sin*‘y+logx—C sin*‘X—logx—C =0
(22)

X X

C 1
(23) y+—==C%y+—=0
X 4x

+C.

(24) Eliminant of p between 4y = x*+ p* and log ( p— x) =
p—x

n—1

. C . .
(25) Eliminant of p between x = — +— and the given equation.
p

n+1
2 22
(26) Eliminant of p between x:—er% andy:p—+—c.
3o 3o
p—1

VP’ +1

r 1
(28) Eliminant of p between x = Ce ” —%andy =C(l+ple’+ 5(1 —p)e’

1

(27) Eliminant of p between x + C = log —tan~

p and the given equation.

o]

1—-Ce*™

(30) 64y = C(C—4x)* 4x* =27y

(31) Eliminant of p betweeny = C —[2 log(p — 1) +2p + p’land x = C - [2
log(p — 1) + 2p]

(29) y=3x+log [

(32) Y»=2Cx +4C (33) 2= 2Cx + C*(34) log y = Cx + C°
(35) y=—yx(1—x)+tan"' 1x (36) y=1+logx
—Xx
(37) y* =Cx*+ C* (38)y?=2Cx + C?
(39) xy=Cx-C* (40) e =Ce*+ C
Exercise 5(b)
(1) y=¢ (Clx—l—Cz)cosgx—i-(Qx—i— C4)sin?x .
x 1 b
) Ze"—ge’x 3) 2—(bsin ax—ccosax).
a
x3
4) Ze’z" 5) (x—2)e*

(6) —e*cosx @) —ixe‘“cos 2x
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(8) 1 re¥sinx
2
(9) e*(4sinx + cos x)
(11) y=C,e*+ C,cos x + C,sinx + x> — 2x + xe ™
2

X 2 1
=C cos3x+C, sin3x+———+— cosh x
(12) » | 2 9 8110

(13) ¥ =(Ax+B)e™ +x’ —6x° +18x—24+2LS(4 sin 2x—3 cos 2x)

(14) y=¢€" (Aeﬁx +Be"ﬁ")+%(5 cos 5x—2 sin 5x)+é[x2 +§x+%]

(15) y=Ce" +Ce ™ +%(cos 2x—3sin 2x)+x’ —3x+4

B3

3 .
G, cos£x+C4 sin—ux
2 2

x

(16) y:(C1x+C2)+67 +xt—4x’ +

L(80053x—3sin3x)—sinx
657
(17) y=Ce" + Cie™ + xe* + (3 + 3x + 2x%)
(18) y=(C, x> + C,x+ C)) e+ (2x’ = 9x* + 18x — 15) e
e 7 11
=C +(Cx+Ce " +—|x’ —=x+—
(19) ¥=C+(Cx+Cy) 18[ 3 6]

2x

(20) y=Ce* +Cye —g sinh x —% cosh x

(21) y=(Cx+ C)cosx+(Cx+ C)sinx+ (x> +4x+4) e~
(22) y=Ce" +C,e™ +ie’2)‘ —l—ze”‘ [x—l]—i—[xz —éx—i—2

18 5 10 2 8
(23) y=Ce" +C,e™" —e"(cox 2x +sin 2x)

. 1 .
(24) y=Ce +Ce" +C cosx+C, smx—g sin x cosh x

. 1 | -
25) y=¢"(C, cos 2x+C, sin 2x)+Zex —er*cos 2x

.1 .
+—xe 4+ —e (2smx
6 26

G, cos—3x+C3 sin—3x
2 2

26) y=Ce " +e?
+3cos x)

(27) y =G, cos2x+ C, sin2x + e**

%(7sinx—4cosx)

+ L (12cos3x +sin 3x)]
145
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(28)
(29)
(30)
31)
(32)
(33)
(34)

(35)

1 1
=Ce + C,e™ + —(10cos 5x— 11sin 5x) + — (sin x+ 2 cos x).
y=Ge e o )

y=(Ax+ B) e — " (xsinx+ 2cos x)

sin x

y=A+ Be " + g(sin X = C0S X)+ COS X +

y=(Ax+ B)e“+%(3sinx+ 4cosx)+%(llcosx+ 2 sin x)
1 .

y=Ae"+ Be * + E(l—xz)cosx+ X sin x.

y=(C1x+ Cz)c052x+(C3x+ C4)sin2x+é(sin2x—2x0052x)

y=Acosx+Bsinx—%[Z4xcos2x+(9x2—26)sin2x].

y=Acos2x+ Bsin2x— cos2xlog(sec2x+ tan 2 x).

Exercise 5(c)

(1)
(3)
)
(©)

(7
@®)

©)
(10)
(11)

(12)
(13)
(14)
(15)

(16)

y=Alogx+ B—x (2) y=x(Alogx+ B)
(02 —40+1)y:e3’ 4) (03 — 407 +49)y:e*’
y=Ax"+ Bx"".

y:§+ &{Bcos[?logx) +Csin[§long}

x=Acost+ Bsint+ 2
1

B 1 1
=Axt+ —+—-x'logx——x’——.
7 PR R A A

1
=A+x*(B+ Clogx)— —
v ( gx) = o=
y=(Alogx+B)x+Cx2+${sin(210gx)+7c0s(210gx)}.

y= Ax3+x—B3—%sin(logx)+71—25in(310gx).

yleﬁ[Acos(3logx)+Bsin(3logx)] +2is|:(logx) 2_£logx+%:l

y:(Alogx+B) cos(logx)+(Clogx+D)sin(logx)+(logx) +2
log x—3
y=x’(Alogx+ B)+x{(logx) >~ 4logx+ 6}

y:[A(logx) *+ B( logx)’+ Clogx+ D] x+ x° (log x— 4)

y=Ax3+E—%{2sin(210gx)+cos(210gx)}
x x
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17) y:l{Acos(210gx)+Bsin(210gx)+6—xs{4sin(logx)+7cos(logx)}
x

e

108

(19) y=Acoslog(x+ 1)+ Bsinlog (x+ 1)+ 2 log (x+ 1) sin log (x + 1)

05 31 1,

(18) »=A(3x+2] +B(3x+2) " +—|(3x-+2)} log(3r+2)+1]

—2t

20) x=Ae " +Be " +—t—————c¢
(20) 14 196 12
y:—er_zt+Be_7’—lt+i+lezt
3 7 98 6
@1 w2 g By Ly
3 3 3

y=Ae > +Be
(22) x=2cosht;y=sint—2sinh¢
3t

(23) x=(A+Bt)e' +Ce > f%

X

y:(—2A+6B—2Bt)ef—§e72 -3

(24) x:A+Bcost+Csint+%e2’

. 6
y:BcosH-Csmt—Eez’

(25) x:Acosﬁt—l—Bsinﬁt—i—Ccosﬁt—i—Dsinﬁt—%(l—&-cosh)
y:1—2Acosﬁt—2Bsinﬁt—Ccosﬁt—DSinﬁt

(26) *=(4t+B)cos t+(Ct+D)sin H_ZLSet (4 sin 13 cos 1)

y =—(At+B)sin t+(Ct+ D)cos I_ZLSet (3 sin t+4 cos )

(27) x=Aé' +Be +Ccos3t+Dsin3t— 4 42431
9 9 8l
y:—Ae’—Beit+Ccos3t+Dsin3t+§t2—gt+%.

Exercise 5(d)
(1) :A(x—l—l)5 e’ —%ex + Be".

(12) y=e"(c, logx +c, +x).
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i 1
(13) y=4e™ (281nx+con)+BeX _Eex oS x

(14) y = (Ax*+ B)e™
(15) y=Axe™ + Be™
(16) y=e>(c, logx+c,)

(17) y= c—1+§ xlo Ihx —c +c x+§x2
S IS el PR

(18) y=ce™+cx

(19) y=c,xe +cx +x (x—1)e

(20) y=c, X’ +cx +x* log x + x*

(21) y=c xe* + cx*

(22) y=c, ¥’ +cx?

(23) y=c, cosx +c,sinx +x sinx + cos x log cos x

(24) y=c,cos 2x + ¢, sin 2x — cos 2x log (sec 2x + tan 2x)

(25) y:L cos x| 4+ B(xtan x +log cos x|

Jx
1
26) y=¢,(14+x")+¢,-—
X

27 y:01<x—x3)+02 (4—3x—6x2+3x3>10g [—H_x]_l.
I—x

(28) y=c tanx—c, (1 +x tan x)

(29) y=c, (1 —=xcotx)+c, cotx

2

(30) y=(Ae™ +B)x—
y=(et 4 )t
(Bl) y=cx—c,cosx

1
32) y=—— (A4 coshx+ B sinhx
(2) y="=( )

1
(33) y=——=(Acosx+Bsinx
g )
(34) y=xe* (Ax+B)
1 1
(35) y=—[Acost+Bsin2x+—sinx]
Jx 3
(36) y=2sinx—sinxcosx—x— 1
1

(37) y=—(sin %) + Zsin" x
Y72 4

1 1
(38) y:——x-l—[l-i——z]log(l—l—clx)—f—cz

G G
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(39) x=c¢,sin(y—c,)

(40) y+c logy=x+c,

41) y=c, e + ¢,

(42) y=c, e+ 1
cl

(43) y=acosx—(a+1)

(44) y=c, 1

(45) y*=c, cosh (2x +¢))

(46) y’=Ax +B

B
47) y=Ax+;

(48) y=csin' x/\1—x" +¢, /1 -x" +1
49) yl1+x* =y1+x’ +¢ sinh” x+¢,
(50) xye*=c e +c,—x.

Exercise 5(e)

sin 2x
(1) cosx=£+
Y 2 T 4

+c

2) xyer=x+c

. 1 . 1,
3) y=c¢ cosx+c, smx+zxsmxfzx COS X

. 1 .
(4) y=c¢cosax—+c, smax—l—a—zcosaxlogcosax—i—;xsmax

(5) y=e*(c, cos x + ¢, sin x) — e* cos x log (sec x + tan x)
(6) y=(cx+c)e—e>logx

1 1
(7) y:c—l—l—c—i—l——xz——zlogx
X X X

(8) y:clx4+cz-1—8(logx)2+1210gx+13
X
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