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Differential Calculus

1UNIT

1.1 FUNcTIoNs

Students are familiar, to some extent, with the concept of relation. A relation can 

be thought of as a relationship of elements of a set to the elements of another set. In 

other words, when A and B are sets, a subset R of the cartesian product A × B is called 

a relation from A to B viz., If R is a relation from A to B, R is a set of ordered pairs 

(a, b) where a Œ A and b Œ b.

1.1.1  Definitions

A relation from set X to another set Y is called a function, if for every x Œ X, there is  

a unique y Œ Y such that (x, y) Œ f.

In other words, a function from X to Y is an assignment of exactly one element of 

Y to every element of X.

If y is the unique element of Y assigned by the functions f to the element x of X, 

we write f(x) = y and say that y is a function of x.

If f is a function from X to Y, we may also represent it as

 
: or .ff X Y X Y→ →

Note  (i)  Sometimes the terms transformations, mapping or correspondence are 

also used in the place of function.

 (ii)  If y = f(x), then x is called an argument or preimage and y is called the 

image of x under f or the value of the function f at x.

 (iii) X is the domain of f denoted by D
f
 and Y is called the codomain of f

 (iv)  The set of the images of all elements of X is called the range of X 

denoted R
f
 ncY R

f
 ≤ y.

 (v)  x is called the independent variable and y the dependent variable, 

if y = f(x).

1.1.2  Representation of Functions

 (1)  A function can be represented or expressed by means of a mathematical rule 

of formula, such as y = x3[≡ f(x)] or

 (2)  it can be represented pictorially by means of two closed circles or two closed 

ellipses or any two closed curves. This representation is possible only if D
f
 

consists of finite number of elements. The elements of D
f
 will be represented 

by points inside the first closed curve and those of range or co-domain of f  by 
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points inside the second closed curve. The points in D
f
 and the corresponding 

R
f
 will be connected by directed arrows as explained below:

   Let D
f
 = (1, 2, 3, 4) and f(1) = b, f(2) = d, f(3) = a and f(4) = b

  The pictorial representation is shown as follows:

1

2

3

4

a

b

c

d

Fig. 1.1

  Here D
f
 = {1, 2, 3, 4}, R

f
 = {a, b, d} and co-domain of f = {a, b, c, d}

 (3)  A continuous function can be represented by means  of a (curve) graph. For 

example, y = x2[= f(x)] is a continuous function of x;

The values of x2 = [f(x)] for different values of x Œ R lie on a parabola as in the 

figure given below:

Note  (i)  The curve y = x2 drawn here  is a one-piece 

without any break.

  (ii)  Discontinues functions can also be 

represented graphically but with a break in the 

neighbourhood of the point of discontinuity. 

For example, f x
x

x
( )

, in( , )

, in( , )
=

+ −

−







1 1 0

1 0 1
 is a discontinues function, with the point 

x  = 0 as a point of discontinuity. The graph of y = f(x) consists of two line segments 

with a break near the origin as shown in the figure below:

y

–1
x

y

x
=

+
1

y

x
=

–
1

Fig. 1.3

Note  Detailed discussion of continuous functions will be done later.

1.2 LImIT oF a FUNcTIoN

Let us consider the function y f x
x

x
= =

−

−
( ) .

2 4

2
 The value of f(x) can not be found 

out at x = 2 by direct substitution though the values of f(x) can be found out for all 

other values of x, however close they may be to 2.

f x( )

O
x

Fig. 1.2
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As may be verified, f(x) assume the values 3.9, 3.99, 3.999, 3.9999, etc. as x take 

the values 1.9, 1.99, 1.999, 1.9999, etc.

Similarly f(x) assume the value 4.1, 4.01, 4.001, 4.0001, etc. as x takes the value 

2.1, 2.01, 2.001, 2.0001, etc.

But if we put x = 2 in the definition of f(x), we get y =
0

0
,  which  is meaningless 

and usually referred to as an indeterminate form.

The definition of limit of a function f(x) does not require that the function f(x) be 

defined at x = 2.

From the above example, we note that to make the difference between f(x) and 4 

as small as possible, we have to make the difference between x and 2 correspondingly 

small. This fact is symbolically put as lim
x

x

x→

−

−











=

2

2 4

2
4

Note  For all value of x f x
x x

x
≠ =

− +

−
2

2 2

2
, ( )

( )( )

        = x + 2

\       lim [ ( )]
x

f x
Æ

=
2

4

The formal definition of the limit of a function is given below:

lim [ ( )] ,
x a

f x l
Æ

=  if and only if for any arbitrarily small positive number Œ, there 

exists another small positive number d, such that

 
f x l x a( ) , whenever .- < Œ < - <0 d

Note  When x Æ a through values greater than a, we say that x approaches a 

from the right (or from above) and write lim { ( )} .
x a

f x l
→ +

=  This is called the right 

hand limit. Similarly when x Æ a through values less than a (or from below), we 

obtain the left hand limit and write lim { ( )} .
x a

f x l
→ −

=

If lim{ ( )}
x a

f x
→

 exists and equals l, it implies that both the left hand and right hand 

limits exist and are equal, each equal to l.

1.2.1   Some Fundamental Theorems on Limits (stated without 

proof)

If lim[ ( )] and lim[ ( )] , then
x a x a

f x l g x m
→ →

= =

(i) lim [ ( ) ( )]
x a

f x g x l m
Æ

± = ±

Note  This theorem can be extended to the algebraic sum of a finite number of 

functions.

viz., lim[ ( ) ( ) ( )] lim[ ( )] lim[
x a

k k
x a x a

c f x c f x c f x c f x c
→ → →

+ + = +1 1 2 2 1 1 2 ff x

c f xk
x a

x

2 ( )]

lim[ ( )]+
→
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(ii) lim[ ( ) ( )]
x a

f x g x lm
→

⋅ =

(iii) lim
( )

( )
,

x a

f x

g x

l

m→












=  provided m π 0.

1.2.2  Some Standard Limits

1. lim ,
x a

n n
nx a

x a
na

→

−−

−












= 1  for all rational values of n and a π 0.

Proof: Let x – a = h. since x Æ a, h Æ 0

 

lim lim
( )

x a

n n

h

n nx a

x a

a h a

h→ →

−

−














=

+ −









0

 =

+








 −

















→

lim
h

n

n

na
h

a
a

h0

1

 (1)

Since x can approach a from the left or right,

 
h x a

h

a
= − → <0 1and hence

Using this fact and binomial theorem for a rational index in (1), we have 

lim lim
x a

n n

h

n

x a

x a

a
n h

a

→ →

−

−














=

+



















0

1
1 +


















 +




















n h

a

n

r

h

a2

2



rr

na

h

+













−























 

=










+










+ +







→

− −lim
h

n n
n

a
n

a h
n

r0

1 2

1 2



+















=

− −

−

a h

na

n r r

n

1

1



2. lim
sin

,
θ

θ

θ→









=0

1  where q is measured in radians and <
π

2
.

Proof:

O

q

A

B

C

A¢

Fig. 1.4

Consider a circle with centre at 0 and radius r = (= OA= OB)
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Let –AOB = q radians and let the tangent at A meet OB produced at C,

Area of the ∆OAC OA AC= ⋅
1

2

 
= ⋅ =











1

2
r r

AC

OA
OACtan tan from the right angledθ θ∵ ∆

 
=

1

2

2r tanθ

Area of the ∆OAB OA OB AOB= ⋅ ⋅ ∠
1

2
sin

 
=

1

2

2r sinθ

Area of the sector OAB =
1

2

2r θ.

Obviously, Area of the DOAB < Area of the sector OAB < Area of DAOC.

viz.,   
1

2

1

2

1

2

2 2 2r r rsin tanθ θ θ< <

viz., sin tanθ θ θ< <

viz. 1
1

< <
θ

θ θsin cos

or 1> >
sin

cos
θ

θ
θ  (considering the reciprocate)

Taking limits as θ
θ

θ
θ

θ θ θ

→ ≥








≥→ → →

0 1
0 0 0

, lim( ) lim
sin

lim(cos )

viz., 1 1 1
0 0

≥








≥









=→ →

lim
sin

or lim
sin

.
θ θ

θ

θ

θ

θ

Cor: lim
tan

, since lim
tan

lim
s

θ θ θ

θ

θ

θ

θ→ → →









=









=0 0 0

1
iin

cos

θ

θ θ


















= × =

1
1 1 1

3.  lim ,
x

x

x
e

→∞
+









 =1

1
 which is the Naperian logarithmic base defined as 

1
1

1

1

2

1

3
2 71828+ + + + ∞=

! ! !
.

Proof:

Expanding 1
1

+Ê
ËÁ

ˆ
¯̃x

x

 by Binomial theorem, we have
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1
1

1
1 1

2

1 1 2

3

1

1

2 3
+









 = + ⋅ +

−
⋅ +

− −
⋅ +

= +

x
x

x

x x

x

x x x

x

x
( )

!

( )( )

!


11
1

2
1

1 1

3
1

1
1

2
+ −









+ −









 −








+! !

lim

x x x

x



→→∞
+









 = + + + + +

=

1
1

2
1

2

1

3

1

x n

e

x

! ! !
 

Note  Obviously, e > 2.

Also e< + +
⋅
+

⋅ ⋅
+2

1

2

1

2 2

1

2 2 2


viz., e< + + +







 +








 +












1 1

1

2

1

2

1

2

2 3



viz., e a ar ar
a

r
< +

−

+ + + ∞=
−











1
1

1
1

2

1

2
∵ 

viz., e < 3

Hence, 2 < e < 3

Cor (1): lim( ) /

x

xx e
→

+ =
0

11

Putting 
1

x
y=  in result(3), we see that y Æ 0 as x Æ •

\ lim( ) /

y

yy e
→

+ =
0

11

Replacing y by x, the corollary follows:

Cor (2): lim
x

xe

x→

−







=0

1
1

L. S.   = lim
[( ) ]

lim .
/

x

x x

x

x

x

x

x→ →

+ −
=








=0

1

0

1 1
1

Cor (3): lim , as lim lim
x

mx

x

mx

y

e

x
m

e

x→ → →

−







=

−







=0 0 0

1 1 ee

y
m m

y −








× =

1

Cor (4): lim lim li
x

x

x

x

a

a

a

x

a

x→∞ →∞
+









 = +


























=1 1 mm

x

a

x

a

a

aa

x
e

→∞

+

























=1

Cor (5):   lim log , since lim
x

x

e x

xa

x

a

x
a

→ →

−







=

−









0 0

1 1


=

−










=

→
lim log ,

log

x

x a

e

e

x
a

0

1

 by cor. (3)
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1.3 coNTINUITy oF a FUNcTIoN

A function f(x) is said to be continuous at x = a, if

(i) f(a) exists and is equal to l and

(ii)  lim [ ( )]
x a

f x
Æ

 exists and is equal to l, viz., lim { ( )} lim { ( )}
x a x a

f x f x l
Æ - Æ +

= =  

[viz., the left hand and the right hand limits exist and are equal]

Note  (1)  If the graph of y = f(x) is a continuous curve in an interval, the function 

is said to be continuous in that interval.

   If the graph of y = f(x) has a break at a point x = a, the function is 

said to be discontinuous at x = a. The point itself is called a point of 

discontinuity of f(x).

 (2)  When a function f(x) is continuous at every point in the interval 

a < x < b, f(x) is said to be continuous in that interval.

 (3)  If a function f(x) is continuous at a point x = a, a small change in the 

value of x will produce only a small change in the value of y = f(x).

   For example, let y = x2 and let x be given a small change Dx. Let Dy be 

the corresponding change in y.

   Then Dy = (x + Dx)2 – y = 2x Dx + (Dx)2, which tends to 0 as Dx Æ 0.

 (4)  When a continuous function changes from one values to another, it 

will pass at least once through every intermediate value

 (5)  A continuous function cannot change sign (either from +ve to –ve or 

–ve to +ve) without passing through the value 0.

1.4 DIFFereNTIabILITy oF a FUNcTIoN

Let ′ + =
+ −









→

f x
f x x f x

xx
( ) lim

( ) ( )
and0

0

0 0

∆

∆

∆

 

′ − =
− −

−













′ + = ′ −
→

f x
f x x f x

x
f x f x

x
( ) lim

( ) ( )
. If ( ) ( )0

0

0 0

0 0
∆

∆

∆
,, then

f(x) is said to be differentiable at x = x
0
 and the common value is denoted by f¢(x

0
)

Note  (1)  If the two limits exist but are unequal or if neither of them exists, then 

f(x) is not differentiable at x = x
0
.

     (2)  If a function is differentiable at a point, it follows from the definition 

that it is continuous at that point, but a function which is continuous at 

a point need not be differentiable at that point.

WorkeD exampLes 1(a)

Example 1.1 If f(x) = x4 – 3x2 + 2, show that f x f x f x( ) ( ) ( )+ − + −1 2 1  is 

a constant.



1.8 Engineering Mathematics I

 
f x x x f x x x x x( ) ; ( ) ( ) ( ) ;= − + + = + − + + = −2 2 23 2 1 1 3 1 2

 

f x x x x x

f x f x x x

( ) ( ) ( )

( ) ( )

− = − − − + = − +

+ + − = − +

1 1 3 1 2 5 6

1 1 2 6 6

2 2

2

 

= − + +

= +

2 3 2 2

2 2

2( )

( )

x x

x

\ f x f x f x( ) ( ) ( ) , a constant .+ − + − =1 2 1 2

Example 1.2 Find the domain of the function f x
x

x

x

x
( )=

−

+
−

−

−

2

3 1

3

3 2
 for which it 

is positive (x is real).

 

f x
x

x

x

x

x x x x

x x
( )

( )( ) ( )( )

( )( )
=

−

+
−

−

−
=

− − − − +

+ −

=

2

3 1

3

3 2

2 3 2 3 3 1

3 1 3 2

7

(( )( )3 1 3 2x x+ +

Since f(x) > 0, (3x + 1)(3x – 2) > 0

\ x x x>− > >
1

3

2

3

2

3
and , viz.,

and x x z x<− < <−
1

3

2

3

1

3
and , vi .,

\ The required domain is −∞ −








 ∪ ∞








, ,

1

3

2

3

Example 1.3 If x is real, find the range of the function.

 

f x
x x

x x
( )=

+ +

+ −

2

2

34 71

2 7

Let y f x
x x

x x
= =

+ −

+ −
( )

2

2

34 71

2 7

\ x2(y – 1) + 2x(y – 17) + (71 – 7y) = 0 (1)

Since x is real, discriminant of (1) ≥ 0

viz., 4(y – 17)2 – 4(y – 1) (71 – 7y) ≥ 0

viz., 8y2 – 112y + 360 ≥ 0 or y2 – 14y + 45 ≥ 0

viz., (y – 5)(y – 9) ≥ 0

\ y ≥ 5 and y ≥ 9 or y £ 5 and y £ 9

viz., y ≥ 9 or y £ 5

\ Rang of f(x) is (–•, 5) and (9, •)

i.e., f(x) cannot have any values between 5 and 9.
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Example 1.4 Find lim
x a

x a x

x a x→

+ −

+ −

















2 3

3 2
.

Put x = a + h. When x Æ a, h Æ 0.

\ Required limit =
+ − +

+ − +















→

lim
( ) ( )

h

a h a h

a h a h0

3 2 3

4 4 4

 

=

+








 − +











+





→
lim
h

a
h

a
a

h

a

a
h

a

0

1

2

1

2

3 1
2

3
3 1

2 1
4




 − +



































=

+

→

1

2

1

2

0

2 1

3 1
1

2

a
h

a

a

h
lim

⋅⋅ +{ }− + +{ }
+ ⋅ +{ }− + ⋅

2

3
0 3 1

2
0

2 1
1

2 4
0 2 1

1

2

2 2

2

h

a
h a

h

a
h

a
h

a
h a

h

a

( ) ( )

( ) ++{ }0 2( )h

 = −










−









→

lim
h

h

a a
h

h

a

h

a0 3

3

2 4
 (∵ terms involving h2 

                       and higher power of h Æ 0)

 

= −










−











=− ÷
−
=

1

3

3

2

1

4
1

1

2 3

4

3

2

3 3

Example 1.5 Evaluate lim .
x a

x a x a

x a→

+ − −

−

















5 7
2 2

Multiplying the denominator and numerator by x a x a+ + −5 7 ,  we get 

required limit =
+ − −

− + + −{ }→
lim

( ) ( )

( )x a

x a x a

x a x a x a

5 7

5 72 2

 

=
− −

− + + −{ }
















=
−

+ +

→

→

lim
( )

( )

lim
( )

x a

x a

x a

x a x a x a

x a x

6

5 7

6

2 2

55 7

6

2 2

3

2 3 2

a x a

a ba ax a

+ −{ }
















=
−

⋅
=−











→

lim
( ) /
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Example 1.6 Evaluate lim .
n

n n

n n→∞

+ ++

−












2 3

2 3

1 1

   Required limit =
× + ×

−










→∞
lim
n

n n

n n

2 2 3 3

2 3

 

=

×







 +








 −























=
×

→∞
lim
n

n

n

2
2

3
3

2

3
1

2 00 3

0 1

2

3
1

3

+

−
<











=−

∵

Example 1.7 Evaluate lim
sin cos

.
x

x x

x→

−

−



















π π
4

4

Put x y x y− = → →
π π

4 4
0. When ,

\ The required limit =
+Ê

ËÁ
ˆ
¯̃ - +Ê

ËÁ
ˆ
¯̃

È

Î

Í
Í
Í

˘

˚

˙
˙
˙Æ

lim

sin cos

y

y y

y0

4 4

p p

 

=
+Ê

ËÁ
ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

Æ
lim

sin cos cos sin

y

y y y y

y0

1

2

1

2

1

2

1

2

llim
sin

y

y

yÆ

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ =

0
2 2

Example 1.8 Evaluate lim[ (cosec cosec )].
x

x x x
→

+
0

2 2

 Required limit = +{ }









→

lim
sin sinx

x
x x0

1 2

2

 

=
+





















=
⋅

→

→

lim
cos

sin cos

lim

cos

s

x

x

x
x

x x

x
x

0

0

2

1

2
2

2 iin cos cos
x x

x
2 2

⋅
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=













⋅









→
lim

sin

cos

cosx

x

x

x

x0

2

2

2
2


= × =1 2 2.

Example 1.9 Evaluate lim
tan sin

.
x

x x

x→

−







0 3

 

L
x

x

x

x xx
=










−







 ⋅











→

lim
sin cos

cos0 2

1 1

  

= ×







 ×

×























→
lim

sin

cosx

x

x x0

2

2
1

2
2

2
4

1

  
= × × × =1

1

2
1 1

1

2

2 .

Example 1.10 Evaluate lim
( ) sin( ) sin

.
h

a h a h a a

h→

+ + −









0

2 2

 

L
a ah h a h a a

h

a a

h

h

=
+ + + −











=

→

→

lim
( ) sin( ) sin

lim
{sin(

0

2 2 2

0

2

2

++ −
+ +













h a

h
a a h h

) sin }
sin( ) , omitting ,2 2

 

=
⋅ +











+ +



















=

→
lim

cos sin

sin( )
h

a a
h h

h
a a h

0

2 2
2 2

2

aa a a a2 2cos sin+

Example 1.11 Find lim( sin ) .cot

x

xx
→

+
0

1

 
L x

x

x x= +
→

lim{( sin ) }sin cos

0

1

1

 = =
→

lim( ) ,cos

x

xe e
0

 by cor (1) under standard limit (3)

Example 1.12 Find lim .
x y

x ya a

x y→

−

−












 

L a
a

x y

a
a

x y

x y

y
x y

y

x y

x y

=
−

−













=
−

−






→

−

− →

−

lim

lim
( )

1

1

0
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= a ay log , by cor ( )5

Example 1.13 Evaluate lim log( ) .
x x x

x
→

− +










0 2

1 1
1

 

L
x x

x
x x

x

x

x

= − − + −
























= −

→

→

lim

lim

0 2

2 3

0

1 1

2 3

1 1



xx

x x
+ − + −













1

2 3 4

2



Example 1.14 Examine if the function f(x) defined below is continuous at x = 0: 

f x
x

x
x

x

( )
sin ,

,

=
≠

=










1
0

0 0

Left hand limit of f(x) at (x = 0) = −
→

lim ( )
h

f h
0

0

 

= − ⋅
−























= ⋅









→

→

lim sin

lim sin

h

h

h
h

h
h

0

0

1

1











 =







0

1
, since sin

h
 is numerically less than 1

Right hand limit of f(x) at (x = 0) = +
→

lim ( )
h

f h
0

0

 
= ⋅








=→

lim sin
h

h
h0

1
0

Since lim ( ) lim ( ) ( ) , ( )
h h

f h f h f f x
→ →

− = + = =
0 0

0 0 0 0  is continuous at the origin.

Example 1.15 Test the continuity of the function f(x) at x = 0 defined as

 

f x

e

e

x

x

x

x
( )

, when

, when

=

−

+

≠

=











1

1

1

1

0

0 0

Left lim
/

/x h

h

h

h

e

e→ −
→

−

−

−

+












=−

0

0

1

1

1

1
1

Right lim lim
/

/

/

/x h

h

h

h h

h

h

e

e

e

e→ +
→

→

−

−

−

+












=

−

+0

0

1

1 0

1

1

1

1

1

1












=1
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Since lim { ( )} lim { ( )} ( ),
x h x h

f x f x f
Æ - Æ +

π π
0 0

0  the function f(x) is not continuous 

at the point x = 0.

Example 1.16 A function f(x) is defined as follows: Discuss the continuity of f(x) at 

x = 1 and x = 2.

 

f x

x x

x x

x x x

( )

,

,

,

=

<

− ≤ ≤

− + − >










in

in

in

1

2 1 2

2 3 22

Left lim{ ( )} lim ( )
x x h

h

f x h
→ → −

→

= − =
1 1

0

1 1

Right lim{ ( )} lim { ( )} .
x x h

h

f x h
→ → +

→

= − + =
1 1

0

2 1 1  Also f(1) = 2 – 1 = 1

\ f(x) is continuous at x = 1

Left lim{ ( )} lim { ( )}
x x h

h

f x h
→ → −

→

= − − =
2 2

0

2 2 0

Right lim{ ( )} lim { ( ) ( ) }
x x h

h

f x h h
→ → +

→

= − + + − + =
2 2

0

22 3 2 2 0

Also, f(2) = 2 – 2 = 0

\ f(x) is continuous at x = 2 also.

Example 1.17 A function f(x) is defined as follows: Discuss the continuity of the 

function at x = 0  and at x = 1.

 

f x

x x

x x

x x x

( )

, if

, if

, if

=

− ≤

− < ≤

− < ≤











2

2

0

5 4 0 1

4 3 1 2

Left lim{ ( )} lim { ( ) }
x x h

h

f x h
→ → −

→

= − − ≡
0 0

0

2 0

Right lim{ ( )} lim { }
x x h

h

f x h
→ → +

→

= − =−
0 0

0

5 4 4

\ f(x) is not continuous at x = 0, since left lim π right lim.

Left lim{ ( )} lim { ( ) }
x x h

h

f x h
→ → −

→

= − − =
1 1

0

5 1 4 1

Right lim{ ( )} lim { ( ) ( )} ; Also ( )
x x h

h

f x h h f
→ → +

→

= + − + = =
1 1

0

24 1 3 1 1 1 1

Since left lim = right lim = f(1), f(x) is continuous at x = 1.
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Example 1.18 Find the values of a, b, c for which the function defined below is 

continuous at the origin:

 

f x

a x x

x
x

c x

x bx x

bx

x

( )

sin( ) sin
, for

, for

( )
, for

=

+ +
<

=

+ −
>

1
0

0

2

1

2

1

2

3

2

00











Left  lim
sin( )( ) sin( )

lim
sin( )

x h

h

h

a h h

h

a h

h→ −
→

→

+ − + −

−












=

+
0

0

0

1 1
++













= + + = +

sinh

h

a a1 1 2

Also, f(0) = c

Right lim
x h

h

h bh h

bh h→ +
→

+ −













0

0

2

=
+ − + +

+ +















→

lim
{ }{

{h

h bh h h bh h

bh h h bh h0

2 2

2

 

lim
{ }h

bh

bh bh→ + +
=

0

2

2 1 1

1

2

Since the function f(x) is continuous at the origin,

 
a c+ = =2

1

2

\ a c= - =
3

2

1

2
and ; b is arbitrary, but π 0

Example 1.19 Examine the continuity and differentiability of f x x
x

x( ) sin ( )= π2 1
0  

and f(0) = 0 at the origin.

Left lim ( ) sin lim sin
x h

h

h
h

h
h

h→ −
→

→
− −






















=






0

0

2

0

21 1


















=







0

1
, since sin is bounded

h

Right 
lim sin , Aslo ( )

x h

h

h
h

f
→ +
→








=







=
0

0

2 1
0 0 0

\ f(x) is continuous at x = 0

Now lim
( ) ( )

lim

sin

h h

f h f

h

h
h

h→ →

+ −










=








−









0 0

2

0 0

1
0
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=




















=

→
lim sin
h

h
h0

1
0

 

lim
( ) ( )

lim

sin

h h

f h f

h

h
h

h→ →

− −

−












= −









−

−



0 0

2

0 0

1
0














=




















=

→
lim sin
h

h
h0

1
0

\ f(x) is also differentiable at the origin.

Example 1.20 Examine the continuity and differentiability of f(x) defined below at 

x = 2.

f x
x x

x x
( )

, for

, for
=

+ ≤

− >







1 2

5 2

Left lim { }
x h

h

h
→ −
→

+ − =
2

0

1 2 3

Right lim { ( )} .
x h

h

h
→ +
→

− + =
2

0

5 2 3  Also f(2) = 3

\ f(x) is continuous at the point x = 2.

Now   lim
( ) ( )

h

f h f

h→

+ −









0

2 2

 
=

− + −
=−

→
lim

( )

h

h

h0

5 2 3
1

and   lim
( ) ( )

h

f h f

h→

− −

−











0

2 2

 
=

+ − −

−












=

→
lim

( )

h

h

h0

1 2 3
1

Since the two limits are not equal, f(x) is not differentiable at the point x = 2.

EXERCISE 1(a)

Part A

(Short Answer Questions)

1. If f(x) = a cos4x + b sin2x + c, show that f (p + x) – f(p – x) = f(x). 

2. If x is real, find the domain of the function of f(x) = x2 + x – 12, for which it is 

negative.
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3. If x is real, find the domain of the function f(x) = (x2 – 3x – 18) for which it is 

positive.

Evaluate the following limits:

4. lim
x

x x

x→

+ − −









0

1 1
 5. lim

x

x x

x→

− −

−











1

5 4

1

6. lim
x

x

x→ + −












0 2 2

 7. lim
x a

x a

x a→

−

−















3 3

8. lim ,
n

n n

n n

a b

a b
a b

→∞

+ ++

−











< <

1 1

0  9. lim
n

n

n→∞

+ + +









1 2 3
2



10. lim
cos

cosx

mx

nx→

−

−












0

1

1
 11. lim

cos

sinx

x

x x→

−










0

1

12. lim
cosec cot

x

x x

x→

−{ }
0

 13. lim
sin sin

θ α

θ α

θ α→

−

−













14. lim
sin( ) sin( )

h

x h x h

hÆ

+ - -È
ÎÍ

˘
˚̇0

 15. lim
cosec sec

cot tanx

x x

x x→

−

−












π

4

16. lim(sec tan )
x

x x
→

−
π

4

2 2  17. lim[( ) ]
x

b

xax
→

+
0

1

18. lim{ }
x

xx
→

−

1

1

1   19. lim( cos ) sec

x

xx
→

+
π

2

21

20. lim{( cos ) }tan

x

xx
→

+
π

2

1

Part B

21. Find the domain of the function f x
x

x

x

x
( )=

−

+
−

−

−

1

4 5

3

4 3
 for which f(x) is 

negative, given that x is real.

22. If x is real, find the domain of the function f x
x

x
x( ) ( )=

−

−
− ≠

3 2

1
2 1  for 

which f(x) is negative.

23. If x is real, find the range of the function f x
x x

x x
( ) .=

− +

+ +

2

2

2 4

2 4

24. If x is real, prove that f x
x

x x
( )=

− +2 5 9
 lies between −

1

11
 and 1.
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25. If x is real, prove that the range of the function f x
x x

x x
( ) is , .=

− +

+ +













2

2

3 4

3 4

1

7
7

26. If y f x
ax b

cx a
= =

+

−
( ) ,  prove that x = f(y).

27. Evaluate lim
( )

.
x

n

n n→∞

+ + +

+















1 2

1

2 2 2

2



28. Evaluate lim
( ( )

.
x

n

n→∞

+ + + −











1 3 5 2 12 2 2 2

3



29. Evaluate lim
( )( )

(
.

n

n n

n n→∞

+ + + + + +

+ + +















1 2 3 1 2

1 2

3 3 3

3 2 2 2

 



30. Evaluate lim
. . ( )

.
n

n n

n→∞

+ + + +

+ + +













1 3 2 4 2

1 22 2 2





31. Evaluate lim
( )( )

.
n

n

n n n→∞

+ + +

⋅ ⋅ + ⋅ ⋅ + + +








1 2

1 2 3 2 3 4 1 2

3 3 3




32. Evaluate lim lim
x

x

x

x

x

a

x→ →

−

+ −
















⋅

−












0 0

2 1

1 1

1
Hint: Use










33. Evaluate lim
cos tan

sin
.

x

x x

x xÆ

- +Ê
ËÁ

ˆ
¯̃0

21 2

34. Evaluate lim
log( ) ( )

.
x

xe x x

xÆ

-+ + - -È

Î
Í

˘

˚
˙

0

2

2

1 1
  {Hint: Use expansions}

35. Evaluate lim .
x

x x

xÆ

-Ï
Ì
Ó

¸
˝
˛0

8 2

36. Evaluate lim ( ) tan .
x

x
x

Æ
-{ }

1
1

2

p

37.  Show that the function f(x) defined below is continuous at x = 0 and at x = 1: 

Also draw the graph of y = f(x).

   

f x

x x

x x

x x

( )

, when

, when

, when

=
- £

< <
- ≥

Ï
Ì
Ô

ÓÔ

0

0 1

2 1

38. Test the continuity of the function f(x) defined below at x =
3

2
.

   

f x

x

x
x

x

( )

, for

, for

=

−

−
≠

=











2 3

2 3

3

2

0
3

2
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39. Examine the continuity of the function f(x) defined below at x = 0.

   

f x x
x

x

( )
sin , for

, for

=
≠

=










1
0

0 0

40.  Find the values of the a and b, if the function f(x) defined below is continuous 

at x = 3 and at x = 5.

   

f x

x

ax b x

x

( )

, if

, if

, if

=

≤

+ <

≥










<

1 3

3

7 5

5

41. If f x

x x

x

x x

( )

, when

, when

, when

=

− >

=

− <










1 1

0 1

1 1

 shown that f(x) is continuous at x = 1, but is not differentiable there.

42. Show that f(x) = | x | is continuous at x = 0, but is not differentiable there.

43. Discuss the continuity and differentiability of the function f(x) defined as

   f x
x x

x x
( )

, for

, for
=

− ≤ ≤

− >







2 3 0 2

3 22
 at the point x = 2.

44. Discuss the continuity and differentiability of the function f(x) defined below 

at x = 1 and at x = 2.

 
f x x x x x x x x( ) , for ; , for and for= < = − ≤ ≤ =− + − >1 2 1 2 2 3 22

45. Discuss the continuity and differentiability of the function f(x) = | x – 1 | + | x – 2 | 

at the point x = 1 and x = 2.

1.5 DerIvaTIves

Let y be a continuous function of x. Let Dx be a small increment in the value of x and 

let the corresponding increment in the value of y be Dy. The limit of the ratio 
∆

∆

y

x









  

as Dx Æ 0, if it exists is called the differential coefficient or derivative of y with re-

spect to x and denoted by d

d

d

d

y

x
viz

y

x

y

x
Dy

x
. , lim or

∆

∆

∆→









=0

If y is assumed as f(x), then 
d

d

y

x

y

x

f x x f x

xx x
=









=

+ −{ }
→ →

lim lim
( ) ( )

∆ ∆

∆

∆

∆

∆0 0

 and is 

denoted f¢(x) or Df(x). The process of finding 
d

d

y

x
 is called differentiation.
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Note  (1)  
d

d

y

x
 is a composite symbol and should be understood neither as 

lim( )

lim( )

∆

∆

y

x
 nor as d d

d

d
y x

x
∏ .  must be interpreted as derivative w.r.t. x.

   (2)  The lim
D

D
Dx

y

xÆ

Ê
ËÁ

ˆ
¯̃0

 is found out by the methods discussed in the 

previous section.

1.5.1  Derivatives of Elementary/Standard Functions

We shall follow the 4-step working procedure given below to find the derivatives of 

some elementary functions from first principles, viz., using the definition of 
d

d

y

x
 or 

f¢(x).

 (i)  In the given function y = f(x), replace x by x +Dx. At the same time y becomes 

y + Dy. viz., y + Dy = f(x + Dx)

 (ii)  Obtain Dy = f(x + Dx) – f(x) and simplify as far as possible

(iii)  Obatin 
D
D

y

x
.

(iii)  Find lim ,
D

D
Dx

y

xÆ

Ê
ËÁ

ˆ
¯̃0

 which is the required derivative 
d

d

y

x
.

1. 
d

d
( ) ,

1

x
x = nx

n n -
 where n is rational number

Let y = xn. Let Dx and Dy be the small increments in x and y respectively.

Then y + Dy = (x + Dx)n

\ D
D

D
D

y

x

x x x

x

n n

=
+ -( )

 
d

d

y

x

x x x

x x xx

x x x

n n

=
+ -

+ -

È

Î
Í

˘

˚
˙

Æ
+ Æ

lim
( )

( )
,

D
D

D
D0

 by definition

 

=
-
-

Ê

ËÁ
ˆ

¯̃
=-

Æ

-nx
x a

x a
nan

x a

n n
n1 1, on using lim

viz., 
d

dx
x nxn n( ) = - 1

2. 
d

d
(sin ) = cos

x
x x

Let y = sin x. Let Dx and Dy be the small increments in x and y respectively.

Then y + Dy = sin(x + Dx)
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\ Dy = sin(x + Dx) – sin x

 
= +Ê

ËÁ
ˆ
¯̃2

2 2
cos sinx

x xD D

\ 
d

d

y

x

y

x
x

x

x

x x
=









= +









⋅→ →

lim lim cos

sin

∆ ∆

∆

∆

∆
∆

0 0 2

22

2









































∆x

 
= ◊ =Ê

ËÁ
ˆ
¯̃Æ

cos lim
sin

x 1 1
0

∵

q

q

q

 = cos x

viz., 
d

dx
x x(sin ) cos=

3. 
d

d
(cos ) = sin

x
x x−

Let y = cos x

Then Dy = cos(x + Dx) – cos x

 
=− +









 ⋅2

2 2
sin sinx

x x∆ ∆

\ d

d

y

x

y

x
x

x

x x
=









= − +









 ⋅→ →

lim lim sin

sin

∆ ∆

∆

∆

∆
∆

0 0 2

xx

x

2

2
















































 ∆














 
=− × =−sin sinx x1

viz., 
d

dx
x x(cos ) sin=−

4. 
d

d
(tan ) = sec

2

x
x x

Let y = tan x

Then Dy = tan(x + Dx) – tan x

 

=
+

+
−

=
+ − +

sin( )

cos( )

sin

cos

sin( ) cos cos( )sin

co

x x

x x

x

x

x x x x x x

∆

∆

∆ ∆

ss( ) cos

sin

cos( ) cos

x x x

x

x x x

+

=
+

∆

∆

∆

\ 
d

d

y

x

x

x x x xx
=









⋅ +→

lim
sin

cos( ) cos∆

∆

∆ ∆0

1
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= ¥ =1
1

2

2

cos
sec

x
x

viz., 
d

dx
x x(tan ) sec .= 2

5. 
d

d
(cot ) = cosec

2

x
x x−

Let y = cot x

Then Dy = cot(x + Dx) – cot x

 

=
+ − +

+

=
−

sin cos( ) cos sin( )

sin sin( )

sin( )

sin sin(

x x x x x x

x x x

x

x

∆ ∆

∆

∆

xx x+∆ )

\ d

d

y

x

y

x

x

x xx x
=









= −









 ⋅→ →

lim lim
sin

sin∆ ∆

∆

∆

∆

∆0 0

1

⋅⋅ +











sin( )x x∆

      
= × −1

1
2

2

sin
cosec

x
x x

viz., 
d

dx
x x(cot ) cosec=− 2

6. 
d

d
(sec ) = sec tan

x
x x x−

Let y = sec x

Then Dy = sec(x + Dx) – sec x

 

=
− +

⋅ +

=
+
















cos cos( )

cos cos( )

sin sin

x x x

x x

x
x x

∆

∆

∆ ∆
2

2 2





⋅ +cos cos( )x x x∆

\ 
d

d

y

x

y

x

x
x

xx x
=









=

+










⋅→ →
lim lim

sin

cos c∆ ∆

∆

∆

∆

0 0

2

oos( )

sin

x x

x

x+
⋅






























 ∆

∆

∆
2

2














 
= ⋅ =

sin

cos
sec tan

x

x
x x

2
1

viz., 
d

dx
x x x(sec ) sec tan=
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7. 
d

d
(cosec ) = cosec cot

x
x x x−

Let     y = cosec x

Then Dy = cosec(x + Dx) – cosec x

 

=
− +

+ ⋅

=
+









 ⋅ −



sin sin( )

sin( ) sin

cos sin

x x x

x x x

x
x x

∆

∆

∆ ∆
2

2 2







+sin( ) sinx x x∆

\ 
d

d

y

x

y

x

x
x

xx x
=









=

+










+→ →
lim lim

cos

sin(∆ ∆

∆

∆

∆

0 0

2

∆∆

∆

∆x x

x

x)sin

sin


















−



















2

2
























 

= −

=−

cos

sin
( )

cot

x

x

x x

2
1

cosec

viz., 
d

dx
x x x(cosec ) cosec cot .=−

8. 
d

d
( ) =

x
e e

x x

Let y = ex

Then Dy = ex + Dx – ex

\ 
d

d

y

x

y

x

e e

xx x

x x x

=








=

−







→ →

+

lim lim
∆ ∆

∆∆

∆ ∆0 0

 

= ⋅
−









= ×
−








→

→

e
e

x

e
e

h

x

x

x

x

h

h

lim

, since lim

∆

∆

∆0

1

1

1
1=









1

viz., 
d

dx
e ex x( ) =

9. 
d

d
(log ) =

1

x
x

x
e

Let y = log
e
x

Then Dy = log
e
(x + Dx) – (log

e
x)

 

=
+









= +










log

log

e

e

x x

x

x

x

∆

∆
1
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\ 
d

d

y

x

y

x x

x

xx x
e=









= +














→ →
lim lim log
∆ ∆

∆

∆ ∆

∆
0 0

1
1











 

= +Ê
ËÁ

ˆ
¯̃

= +Ê
ËÁ

ˆ

Æ

Ê
ËÁ

ˆ
¯̃ Æ

lim log

lim log

D

D

D

D

D

x
e

x

x

x

x

e

x

x

x

x

x

x

0

0

1
1

1
1 ¯̃̄

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

= + =
È

Î
Í
Í

˘

˚
˙
˙

= ◊ =

Æ

x

x

e
h

h

x
e h e

x x

D

1
1

1
1

1

0

1

log ( ) lim ( )∵

viz., 
d

dx
x

x
e(log ) .=

1

1.6 rULes oF DIFFereNTIaTIoN

1. 
d

d
( ) 0,

x
c =  where c is a constant

Let y = c

Then Dy = c – c = 0

\ d

d

y

x

y

x xx x
=









=









=→ →

lim lim
∆ ∆

∆

∆ ∆0 0

0
0

viz., 
d

dx
 (any constant) = 0

2. 
d

d
( ) =

d

d
,

x
c u c

u

x
⋅  where c is a constant and u is a function of x

Let y c u= ◊
Then Dy = c(u + Du) – cu = cDu

\ d

d

d

d

y

x

y

x
c

u

x
c

u

xx x
=









=









= ⋅

→ →
lim lim
∆ ∆

∆

∆

∆

∆0 0

3. 
d

d
( ) =

d

d

d

d
,

x
u v

u

x

v

x
± ±  where u and v are functions of x

Let y = u ± v

Then Dy = {(u + Du) ± (v + Dv)} – {u ± v}

 = Du ± Dv

\ 
d

d

y

x

y

x

u

x

v

xx x
= Ê

ËÁ
ˆ
¯̃ = Ê

ËÁ
ˆ
¯̃ ± Ê

ËÁ
ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛Æ Æ

lim lim
D D

D
D

D
D

D
D0 0
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= ±

d

d

d

d

u

x

v

x

This result can be extended as follows:

If y = au ± bv ± cw ± ..., where a, b, c,... are constants and u, v, w, ... are function of 

x, then 
d

d

d

d

d

d

d

d

y

x

u

x

v

x

w

x
= ± ± ±

4.   Product  rule,  viz., 
d

d
( ) =

d

d
+

d

d
,

x
uv u

v

x
v

u

x
  where  u  are  v  are  different 

function of x

Let y = uv

Then Dy = uDv + vDu – Du . Dv

\ 
d

d

y

x

y

x
u

v

x
v

x x x
=









=









+→ → →

lim lim lim
∆ ∆ ∆

∆

∆

∆

∆0 0 0

∆∆

∆

∆

∆
∆

∆

u

x

u

x
v

x
+









→

lim
0

 

= + + ×

= +

u
v

x
v

u

x

u

x

u
v

x
v

u

x

d

d

d

d

d

d

d

d

d

d

0

viz., 
d

d

d

d

d

dx
uv u

v

x
v

u

x
( )= +

Extension

 

d

d

d

dx
uvw

x
u vw( ) { ( )}= ⋅

 

= +

= +{ }+
= + +

u
x

vw vw
u

x

u v
w

x
w

v

x
vw

u

x

uv
w

x
vw

u

x
w

d

d

d

d

d

d

d

d

d

d

d

d

d

d

( )

(or)

uu
v

x

d

d

5. Quotient rule, viz.,  d

d

d

d

d

d
2

x

u

v
=

v
u

x
u

v

x

v










−
















Let y
u

v
=

Then ∆
∆

∆
y

u u

v v

u

v
=

+

+
−
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=
−

+

v u u v

v v v

∆ ∆

∆( )

\ d

d

y

x

y

x

v
u

x
u

x x

x

=








=









−

→ →

→
lim lim

lim

∆ ∆

∆∆

∆

∆

∆
0 0

0
llim

lim ( )

∆

∆

∆

∆

∆

x

x

v

x

v v v

→

→











+

0

0

 

=
−

+
=

−v
u

x
u

v

x

v v

v
u

x
u

v

x

v

d

d

d

d

d

d

d

d

( )0 2

viz., 
d

d

d

d

d

d

x

u

v

v
u

x
u

v

x

v








=

−

2

6. Derivative of a Function of Function

When y is a function of u, where u itself is a function of x, then 
d

d

d

d

d

d

y

x

y

u

u

x
= ⋅ .

In this situation, ∆
∆

∆
∆y

y

u
u= ⋅

\ 
d

d

d

d

y

x

y

x

y

u

u

x

y

ux x
=









= ×









=→ →

lim lim
∆ ∆

∆

∆

∆

∆

∆

∆0 0
⋅⋅

d

d

u

x
.

Extension

If y is a function of u, u a function of u, v a function of w and w a function of x, 

then

 

d

d

d

d

d

d

d

d

d

d

y

x

y

u

u

v

v

w

w

x
= ⋅ ⋅ ⋅ .

7. 
d

d
=

1

d

d

y

x x

y











If y is a function of x, say f(x), x can also be considered as a function of y and denoted 

as f –1(y)

Then 
∆

∆

∆

∆

y

x

x

y
⋅ =1

\ lim
∆
∆

∆

∆

∆

∆x

y

y

x

x

y→
→



















=

0

0

1

viz., lim lim
∆ ∆

∆

∆

∆

∆x y

y

x

x

y→ →









 ⋅










=

0 0
1

viz., 
d

d

d

d

d

d d

d

y

x

x

y

y

x x

y

⋅ = =










1
1

or
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1.7 DerIvaTIves oF hyperboLIc FUNcTIoN

1.  
d

dx
x x(sinh ) cosh=

  Let y x= sinh

 =
− −e ex x

2
 [by definition]

  \ 
d

d

d

d

d

d

y

x x
e

x
ex x= −{ }−1

2
( ) ( )

 

= −







 −













=
+

=

−

−

1

2
1

2

e e
x

e e

x

x x

x x

( ) ( )

cosh

d

d

2. Similarly we can prove that 
d

dx
x x(cosh ) sinh=

3. 
d

dx
x x(tanh ) sech= 2

  Let y x
x

x
= =tanh

sinh

cosh

  \ 
d

d

d

dy

x

x
x

x x
x

x

x
=

⋅ −cosh
d

d
(sinh ) sinh (cosh )

cosh2
 [by quotient rule]

 

=
−

= =

cosh sinh

cosh

cosh
sech

2 2

2

2

21

x x

x

x
x

4. Similarly, we can prove that 
d

dx
x x(coth ) cosech=− 2

5. 
d

dx
x x x(sech ) sech tanh=−

  Let y x
x

= =sech
cosh

1

  \ d

d

d

d

y

x x x
x=− ⋅

1
2cosh

(cosh )
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=−

=− ⋅

sinh

cosh

sech tanh

x

x

x x

2

6. Similarly, we can prove that 
d

dx
x x x(cosech ) cosech coth=−

1.7.1   Derivative of Inverse Circular and Inverse Hyperbolic 

Functions

1. 
d

dx
x

x
(sin )− =

−

1

2

1

1

  Let y x x y= =−sin ; Then sin1

  \ 
d

d

x

y
y= cos

  \ 
dy

dx y y x
= =

−
=

−

1 1

1

1

12 2cos sin

2. Similarly, we can prove that 
d

dx
x

x
(cos )− =−

−

1

2

1

1

3. 
d

dx
x

x
(tan )− =

+
1

2

1

1

  Let y x x y= =−tan ; tan1 Then

  \ 
d

d

x

y
y= sec2

  \ d

d

y

x y y x
= =

+
=

+

1 1

1

1

12 2 2sec tan

4. Similarly, we can prove that 
d

dx
x

x
(cot )− =−

+
1

2

1

1

5. 
d

dx
x

x x
(sec )− =

−

1

2

1

1

  Let y x x y= =−sec , Then sec1

  \ 
d

d

x

y
y y= sec tan

  \ d

d

y

x y y x x
=

−
=

−

1

1

1

12 2sec sec
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6. Similarly, we can prove that d

dx
x

x x
(cosec )− =−

−

1

2

1

1

7. 
d

dx
x

x
(cosh )− =

−

1

2

1

1

  Let y x x y= =−cosh cosh1 Then

  \ 
d

d

x

y
y= sinh

  \ 
d

d

y

x y y
y y= =

−
− =

1 1

1
1

2

2 2

sinh cosh
( cosh sinh )∵

 

=
−

1

12x

8. Similarly, we can prove that 
d

dx
x

x
(sinh )− =

+

1

2

1

1

9.  
d

dx
x

x
(coth )− =−

−
1

2

1

1

  Let y x x y= =−coth . Then coth1

  \ 
d

d

x

y
y=− cosech2

  \ d

d

y

x y y
y y=− =

−

− +
− =

1 1

1
1

2 2

2 2

cosech coth
( coth cosech )∵

 

=−
−

1

12x

10. Similarly, we can prove that 
d

dx
x

x
(tanh )− =

−
1

2

1

1

11. 
d

dx
x

x x
(cosech )− = −

+

1

2

1

1

  Let y x y= =−cosech . Then cosech1

  \ 
d

d

x

y
y y=− ⋅cosech coth

  \ d

d

y

x x x
=−

+

1

1 2
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12. Similarly we can prove that 
d

dx
x

x x
(sech )− =−

−

1

2

1

1

1.8 meThoDs oF DIFFereNTIaTIoN

Though the rules of differentiation stated earlier can be applied to find the derivatives 

of many functions some functions can be differentiated using the methods indicated 

below:

1. Logarithmic Differentiation

When the given function y is of the form uv, where u and v are functions of x, we 

use this method, in which we take logarithms on both sides of y = uv and then 

differentiate w.r.t. x. This method will also simplify the work on differentiation of a 

function consisting of a number of products and quotients.

2. Differentiation of Implicit Functions

If x and y are implicitly related as f(x, y) = 0, viz., if y cannot be expressed explicity 

as a function of x, the differentiation of f(x, y) = 0 w.r.t. x is done, noting that y is a 

function of x whose derivation is 
d

d

y

x
.  On simplification, we will get 

d

d

y

x
 as a mixed 

function of x and y.

3. Differentiation by Trigonometric Substitution

Some apparently complicated functions of x, in particular, certain inverse trigonometric 

functions can be simplified by using appropriate trigonometric substitutions for x 

and then differentiation is performed.

4. Differentiation from Parametric Equations

When x and y are both expressed as functions of a parameter, say ‘t’, it is not recovery 

to get y as a function of x, as 
d

d

y

x
 can be given as a function of t.

In this case, 
d

d

d

d

d

d

d

d

d

d

y

x

y

t

t

x

y

t

x

t
= ⋅ or

5. Differentiation of One Function w.r.t. another Function

If it is required to find the derivative of u(x) w.r.t. v(x), we treat that u and v are 

parametrically expressed in terms of the parameter x.

Then 
d

d

d

d

d

d

u

v

u

x

v

x
=
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WorkeD exampLes 1(b)

Example 1.1 Find 
d

d

y

x
 from first principles, when y =

(i) 1 3+ x ,  (ii) 
x

x

2 +

+

8

2 3
,  (iii) sin3x, (iv) e x ,  and (v) tan (sin )−1 x

(i) y x= +1 3 . Let Dx and Dy be the increments in x and y respectively.

Then ∆ ∆y x y x= + + − +1 3 1 3( )

\ dy

dx

x x x

xx
=

+ + − +









→

lim
∆

∆

∆0

1 3 3 1 3

 

= ×
+ + − +

+ + − +















→

3
1 3 3 1 3

1 3 3 1 30

1

2

1

2

lim
( ) ( )

( ) ( )∆

∆

∆x

x x x

x x x
== + =

+

−3

2
1 3

3

2 1 3

1

2
1

( )x
x

(ii) y
x

x
=

+

+

2 8

2 3

Let Dx and Dy be the increments in x and y respectively.

Then ∆
∆

∆
y

x x

x x

x

x
=

+ +

+ +
−

+

+

( )

( )

2 28

2 3

8

2 3

 

=
+ + + + − + + +

+ + +

=

( )( ) ( )( )

( )( )

(

2 3 2 8 2 2 3 8

2 3 2 2 3

2

2 2 2x x x x x x x x

x x x

∆ ∆ ∆

∆

xx x x x x x

x x x

+ + − +

+ + +

3 2 2 8

2 3 2 2 3

2 2)( ) ( )

( )( )

∆ ∆ ∆

∆

\ 
∆

∆

∆

∆

y

x

x x x x

x x x
=

+ + − +

+ + +

( )( ) ( )

( )( )

2 3 2 2 8

2 3 2 2 3

2

 

d

d

y

x

y

x

x x x

xx
=









=

+ ⋅ − +

+→
lim

( ) ( )

( )∆

∆

∆0

2

2

2 3 2 2 8

2 3

      

=
+ − −

+

=
+ −

+

4 6 2 6

2 3

2 6 16

2 3

2 2

2

2

2

x x x

x

x x

x

( )

( )

(iii) y = sin3x

Let Dx and Dy be the increments in x and y respectively.

Then Dy = sin3(x + Dx) – sin3x
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     = {sin(x + Dx) – sinx} {sin2(x + Dx) + sinx . sin(x + Dx) + sin2x}

= +





















+ + ⋅2

2 2

2cos sin {sin ( ) sin sx
x x

x x x
∆ ∆

∆ iin( ) sin }x x x+ +∆ 2

\ D
D

D
D

D
y

x
x

x

x

x
= +Ê

ËÁ
ˆ
¯̃ ◊

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ï

Ì
ÔÔ

Ó
Ô
Ô

¸

˝
ÔÔ

˛
Ô
Ô

cos

sin

{si
2

2

2

nn ( ) sin sin( ) sin }2 2x x x x x x+ + + +D D

\ 
d

d

y

x

y

x
x x x x

x

x
= Ê

ËÁ
ˆ
¯̃ = ◊ + +

=
Æ

lim {cos }{sin sin sin }

sin c

D

D
D0

2 2 2

2

1

3 oos .x

(iv) y e x=
Let Dx and Dy be the increments in x and y respectively

Then ∆ ∆
y e e

x x x= −+

 
= +









 −e

x

x
ex x1

1

2∆

 = +








−e

x

x
ex x1

2

∆
,   expanding by Binomial theorem and omitting 

      higher power of Dx

 
= −e ex

x

x{ }

∆

2 1

\ d

d

y

x

y

x
e

e

x

x

x

x

x

x x

=








= ⋅

−








→ →
lim lim

/

∆ ∆

∆∆

∆ ∆0 0

2 1

2










×

= × ×
−









=






→

2

1 2
1

1
0

x

e x
e

mh

x

h

mh

∵ lim









(v) y = tan–1(x)

Let Dx and Dy be the increments in x and y respectively.

Then y + Dy = tan–1{(x + Dx)}

\ x = tan y and (x + Dx) = tan (y + Dy)

\ Dx = tan (y + Dy) – tan y

\ d

d

y

x

y

x

y

y y yx y
=









= + −









→ →
lim lim

tan( ) tan∆ ∆

∆

∆

∆

∆1 0





→ →

=
⋅ + ⋅

→

{ when , also }

lim
cos cos( )

sin

∵ ∆ ∆

∆ ∆

∆∆

x y

y y y y

yy

0 0

0
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= ⋅









= ⋅

= =
+

=

→
cos lim

sin
cos

sec tan

2

0

2

2 2

1

1 1

1

1

1

y
y

y
y

y y

y∆

∆

++ x2

Example 1.2 Find 
d

d

y

x
y x xm n, when sin cos .= +

 
y x xm n= +sin cos

\ d

d

d

d

y

x x x x
x x

m n

m n=
+

× +
1

2 sin cos
(sin cos )

 

=
+

+ ⋅ −− −1

2

1 1

sin cos
{ sin cos cos ( sin )}

m n

m n

x x
m x x n x x

 

=
−

+

− −sin cos ( sin cos

sin cos

x x m n x

x x

m n

m n

2 2

2

Example 1.3 Find 
d

d

y

x
y

a b x

a b x
e, where log

cos

cos
.=

+

−











 
y a b x a b x= + − −log( cos ) log( cos )

\ d

d

y

x

b x

a b x

b x

a b x
=

−

+
−

−

sin

cos

sin

cos

 

=−
− + +

−













=
−

−

b x
a b x a b x

a b x

ab x

a

sin
cos cos

cos

sin

2 2 2

2

2

bb x2 2cos

Example 1.4 Find d

d

y

x
y

x x

x x
, when log .=

− +

+ +













1

1

2

2

    
y x x x x= − + − + +log( ) log( )1 12 2

d

d

y

x x x x
x

x x x
x=

− +
−

+
⋅















−
+ +

+
+

⋅
1

1
1

1

2 1
2

1

1
1

1

2 1
2

2 2 2 2
( )















=
− −

− −

+

















−
+ +

1

1

1

1

1

12

2

2x x

x x

x x x22

2

2

2 2 2

1

1

1

1

1

1

2

1

+ +

+

















=−
+

−
+

=−
+

x x

x

x x x
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Example 1.5 Find 
d

d
when

y

x
y

x x

x x
, log

cos sin

cos sin
.=

+
-

  

y x x x x

y

x

x x

x

= + − −

=
− +

+

1

2

1

2

[log(cos sin ) log(cos sin )]

sin cos

cos s

d

d iin

( sin cos )

cos sinx

x x

x x
−
− −

−













 

=
− − +

−















= ×

1

2

1

2

2

2 2

2 2

2

(cos sin ) (cos sin )

cos sin

(cos

x x x x

x x

x++

−
=

−

sin )

cos sin cos sin

2

2 2 2 2

1x

x x x x

Example 1.6 Find 
d

d

y

x
y x x a x x an n, when ( ) ( ) .= + + + − + + −2 2 2 2

 

d

d

y

x
n x x a

x

x a

n x x a

n

n

= + + +
+













− − + + − +

−

− −

( )

( )

2 2 1

2 2

2 2 1

1

1
xx

x a2 2+













 

=
+

⋅ + + +
+

⋅ − + +

=
+

−1 1

2 2

2 2

2 2

2 2

2 2

x a
n x x a

x a
n x x a

ny

x a

n n( ) ( )

Example 1.7 Find 
d

d

y

x
y

x
x a

a
x x a, when log{ } .= + + + +











2 2

2 2
2

2 2

 

d

d

y

x

x x

x a

x a a

x x a

x

x a
= ⋅

+
+

+
+

+ +
⋅ +

+
















2 2 2

1
1

2 2

2 2 2

2 2 2 2








=
+

+
+

+

















= +

1

2

2 2 2

2 2

2

2 2

2 2

x a

x a

a

x a

x a

Example 1.8 Find 
d

d

y

x
y

b a

b a b a
x

b a b a
x

, when log

tan

tan

=
−

+ + −

+ − −












1 2

2

2 2








.
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Putting b a c b a d+ = − =and ,  we get

 y
cd

c d
x

c d
x

= +








− −























1

2 2
log tan log tan ,  where c and d 

                         are constants

 

d

d

d d

y

x cd

x

c d
x

x

c d
x

=

+

+

−





















1 2 2

2

2 2

2

2 2sec

tan

sec

tan

 

= ×

−










=

+ − −

1

2 2

2

2

2

2

2 2 2

2

2

c

x c

c d
x

x

b a b a
x

sec

tan

sec

( ) ( ) tan

 

=

+








+ −











sec

tan tan

2

2 2

2

1
2

1
2

x

a
x

b
x

 

=

+
−











+

=
+

1

1
2

1
2

1

2

2

a b

x

x

a b x
tan

tan

cos

Example 1.9 Find 
d

d

y

x
y

a b x

b a x
, when cos

cos

cos
.=

+
+

Ê
ËÁ

ˆ
¯̃

-1

 

d

d

y

x a b

b a x

b a x b x a b x

= -

-
+

+
Ê
ËÁ

ˆ
¯̃

◊
+ - - + ◊

1

1

2
cos

cos

( cos )( sin ) ( cos ) (( sin )

( cos )

-

+
Ï
Ì
Ó

¸
˝
˛

a x

b a x 2

 

=−
+

+ − +
⋅

−

+

=−

( cos )

( cos ) ( cos )

( )sin

( cos )

(

b a x

b a x a b x

a b x

b a x

a

2 2

2 2

2

22 2

2 2 2

2 2

−

− +

=
−

+

b x

b a x b a x

b a

b a x

)sin

( )sin ( cos )

cos
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Example 1.10 Find 
d

d

y

x
y

a x b x

b x a x
, when tan

cos sin

cos sin
.=

+

−











−1

d

d

y

x a x b x

b x a x

b x a x a

=

+
+

−











− −

1

1

2
cos sin

cos sin

{ cos sin )( ssin cos ) ( cos sin )( sin cos )}

( cos sin )

x b x a x b x b x a x

b x a x

+ − + − −

− 2

 

=
− + +

+
1

2 2

2 2

( cos sin ) ( cos sin )
( )

b x a x a x b x
a b

 

=
+

+
=

a b

a b

2 2

2 2
1

Example 1.11 If x a
y

a
ay y= - --2

2
21 2sin ,  show that 

d

d

y

x

a y

y
=

−2
.

Differentiating w.r.t. y, we have

 

d

d

d

d

x

y
a

y

a

y

y

a ay y
a y= ◊

-
◊ -

-
-2

1

1
2

2

1

2 2
2 2

2
( )

 

=
−

⋅
⋅

−
−

−

=
−

−
−

−

=
−

2 2

2

1

2 2 2

2 2

2

2

2 2

2

a a

a y a y

a y

ay y

a

ay y

a y

ay y

y

ay y

( )

\ 
d

d

y

x

ay y

y
=

−2 2

 

=
−

=
−

y a y

y

a y

y

2

2
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Example 1.12 Find 
d

d

y

x
y x, when sinh .=

 

d

d

d

d

y

x x x
x=

1

2 sinh
(sinh )

 

=

=

1

2

4

sinh
cosh ,

cosh

sinh

x
x

x
x

x

x x

d

d

Example 1.13 Find 
d

d

y

x
y

x

x
, when sinh tan .=

+

−











−1 1

1

 

d

d

d

d

y

x x

x

x

x

x
=

+
+

−











+

−











1

1
1

1

1

1
2tan

tan

 

=
+

−











+

−










⋅

+

−






1

1

1

1

1

1

1

2

sec

sec
x

x

x

x x

x

x

d

d






=
+

−











− − + −

−








sec

( ) ( )( )

( )

1

1

1 1 1

1 2

x

x

x x

x





=
−

+

−











2

1

1

12( )
sec

x

x

x

Example 1.14 Find 
d

d

y

x
y

x x

x
, when .=

+

+

23

2

4

3

Taking logarithms,

 
log log log( ) log( )y x x x= + + − +

1

3
4

1

2
32 2

Differentiating w.r.t x,

 

1 1 2

3 4 32 2y

y

x x

x

x

x

x

d

d
= +

+
−

+( )

\ d

d

y

x

x x

x x

x

x

x

x
=

+

+
+

+
−

+













23

2 2

4

3

1 2

3 4 3( )

Example 1.15 Find 
d

d

y

x
y x xx x, when (sin ) .sin= +

Let y = u + v, say.
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Then 
d

d

d

d

d

d

y

x

u

x

v

x
= +  (1)

 u = xsin x

Taking logarithms,

 log u = sin x log x

\ 
1

u

u

x

x

x
x x

d

d
= + ⋅

sin
log cos

\ 
d

d

u

x
x

x
x x xx= + ⋅{ }sin sin log cos

1
 (2)

 v = (sin x)x

Taking logarithms,

 log v = x log sin x

\ 
1 1

v

v

x
x

x
x x

d

d
= ⋅ +

sin
cos log sin

\ 
d

d

v

x
x x x xx= +(sin ) ( cot log sin )  (3)

Using (2) and (3) in (1), we get 
d

d

y

x
.

Example 1.16 Find 
d

d

y

x
y x xx x, when ( ) .= + +

+

1
1

1
1

Let y = u + v, say

Then 
d

d

d

d

d

d

y

x

u

x

v

x
= +  (1)

 
u x x= +( )1

1

Taking logarithms, log log ( )u
x

x= +
1

1

\ 1 1 1

1

1
1

2u

u

x x x x
x

d

d
= ◊

+
- +log( )

\ d

d

u

x
x

x x x
xx= +

+
- +Ï

Ì
Ó

¸
˝
˛

( )
( )

log( )1
1

1

1
1

1

2
 (2)

 
v x x=

+1
1

Taking logarithms, log logv
x

x= +Ê
ËÁ

ˆ
¯̃1

1
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\ 
1

1
1 1 1

2v

v

x x x x
x

d

d
= +








⋅ − log

\ d

d

v

x
x

x

x x
xx=

+
−{ }+1

1

2 2

1 1
log  (3)

Using (2) and (3) in (1), we get 
d

d

y

x
.

Example 1.17 Find 
d

d

y

x
,  when x and y are connected by the relation xy + yx = c, where 

c is a constant.

 
x y c u v cy x+ = + =, viz.,

\ 
d

d

d

d

u

x

v

x
+ = 0  (1)

 u = xy

\ log u = y log x

\ 
1

u

u

x

y

x
x

y

x

d

d

d

d
= + ⋅log

\ 
d

d

d

d

u

x
x

y

x
x

y

x

y= +








log  (2)

 v = yx

\ log v = x log y

\ 
1

v

v

x

x

y

y

x
y

d

d

d

d
= + log

\ d

d

d

d

v

x
y

x

y

y

x
yx= +











log  (3)

Using (2) and (3) in (1), we get

x
y

x
x

y

x
y

x

y

y

x
yy x+ ⋅









+ +










=log log

d

d

d

d
0

viz., ( log ) ( log )x x xy
y

x
yx y yy x y x+ =− +− −1 1d

d

\ d

d

y

x

yx y y

xy x x

y x

x y
=−

+

+

−

−

( log )

( log )

1

1

Example 1.18 Find 
d

d

y

x
x xy y, when (sin ) (cos ) .cos sin=

Taking logarithms on both sides of the given relation, we get

 cos logsin sin log cosy x y x⋅ = ⋅  (1)
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Differentiating both sides of (1) w.r.t. x,

 
cos cot logsin ( sin ) sin tan log cos (cos )y x x y

y

x
y x x y

y

x
⋅ − − =− +

d

d

d

d

viz., (sin log sin cos log cos ) (sin tan cos cot )y x y x
y

x
y x y x− =− +

d

d

\ 
d

d

y

x

y x y x

y x y x
=

+

−

sin tan cos cot

cos log cos sin logsin

Example 1.19 If x y x y
y

x

y

x

m n m n= + =+( ) , prove that .
d

d

Taking logarithms on both sides of the given relation, we get

 
m x n y m n x ylog log ( ) log( )+ = + +

 (1)

Differentiating both sides of (1) w.r.t. x,

 

m

x

n

y

y

x
m n

x y

y

x
+ = + ⋅

+
+











d

d

d

d
( )

1
1

viz., m n

x y

n

y

y

x

m

x

m n

x y

+

+
−











= −
+

+

d

d

viz., 
( )

( ) ( )

my nx

y x y

y

x

my nx

x x y

−

+
⋅ =

−

+

d

d

\ 
d

d

y

x

y

x
=

Example 1.20 If 1 1
1

1

2 2

2

2
− + − = − =

−

−
x y a x y

y

x

y

x
( ), prove that .

d

d

Differentiating both sides of the give equation w.r.t. x, we get

 
−

−
−

−
⋅ = −











x

x

y

y

y

x
a

y

x1 1
1

2 2

d

d

d

d
 (1)

Eliminating ‘a’ between the given equation and (1), we get

 

−
−

−
−

− + −
=

−

−

x

x

y

y

y

x

x y

y

x

x y

1 1

1 1

12 2

2 2

d

d
d

d

viz., 1 1
1

1 1
1

2 2

2

2 2

2
− + − −

−

−

















= − + − +
−

−
x y

y x y

y

y

x
x y

x x y

x

( ) ( )d

d

viz., 
( )( ) ( )(1 1 1

1

1 1 12 2 2 2

2

2 2 2− − + − − +

−

















=
− + − −x y y xy y

y

y

x

x x yd

d

)) + −

−

x xy

x

2

21
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viz., ( )( ) ( ) ( )( ) ( )1 1 1

1

1 1 1

1

2 2

2

2 2

2

− − + −

−
⋅ =

− − + −

−

x y xy

y

y

x

x y xy

x

d

d

\ 
d

d

y

x

y

x
=

−

−

1

1

2

2

Example 1.21  Find 
d

d

y

x
y

x

x

x

x
, when sin cos=

+










+

−

+











− −1

2

1
2

2

2

1

1

1 
.

Put             x = tan q

Then y=
+










+

−

+










− −sin
tan

tan
cos

tan

tan

1

2

1
2

2

2

1

1

1

θ

θ

θ

θ



 

= +

=

− −

−

sin (sin ) cos (cos )

or tan

1 1

1

2 2

4 4

θ θ

θ x

\ d

d

y

x x
=

+

4

1 2

Example 1.22  Find 
d

d

y

x
y

x

x
, when cos tan .=

−

+











−2 1 1

1

Put x = cos q

Then y=
−

+











−cos tan
cos

cos

2 1 1

1

θ

θ

 

= −cos tan

sin

cos

2 1

2

2

2
2

2
2

θ

θ

 

=










= = + = +

−cos tan tan

cos ( cos ) ( )

2 1

2

2

2

1

2
1

1

2
1

θ

θ
θ x

\ 
d

d

y

x
=

1

2
.

Example 1.23  Find 
d

d

y

x
y

x a

ax
, when tan ,=

+

−












−1

1
 where a is a constant.

Put x a= =tan and tanq a
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\ y=
+

−










= +− −tan

tan tan

tan tan
tan tan( )1 1

1

θ α

θ α
θ α

 = + = +− −
θ α tan tan1 1x a

\ 
d

d

y

x x x x x
=

+
+ =

+

1

1

1

2
0

1

2 1
,

( )

Example 1.24  Find 
d

d

y

x
y

x x

x x
, when tan .=

+ + −

+ − −













−1

2 2

2 2

1 1

1 1

Put x2 = cos q

Then y=
+ + −

+ − −












−tan

cos cos

cos cos

1 1 1

1 1

θ θ

θ θ

 

=
+

−













=

−tan

cos sin

cos sin

ta

1

2
2

2
2

2
2

2
2

θ θ

θ θ

nn

tan

tan

−
+

−





















1

1
2

1
2

θ

θ

 

=
+

− ⋅





















−tan

tan tan

tan tan

1 4 2

1
4 2

π θ

π θ

 

= +










= +

−

−

tan tan

cos

1

1 2

4 2

4

1

2

π θ

π
x

\ 
d

d

y

x x
x

x

x
= ⋅

−

−
⋅ =−

−

1

2

1

1
2

14 4

Example 1.25  Find 
d

d

y

x
x

at

t
y

at

t
, when and .=

+
=

+

3

1

3

1

2

3

 

x
at

t

x

t

a t t t

t
=

+
∴ =

+ − ⋅

+

3

1

3 1 3

13

3 2

3 2

d

d

{ ) }

( )

 

=
−

+

3 1 2

1

3

3 2

a t

t

( )

( )



1.42 Engineering Mathematics I

 

y
at

t
=

+

3

1

2

3

\ 
d

d

y

t

a t t t t

t

a t t

t

=
+ − ⋅

+

=
−

+

3 1 2 3

1

3 2

1

3 2 2

3 2

4

3 2

{( ) }

( )

( )

( )

\ d

d

d

d

d

d

y

x

y

t

x

t

t t

t
= ÷ =

−

−

2

1 2

4

2

Example 1.26  Find 
d

d

y

x
x a t

t
y a t, when (cos log tan ) and sin .= + =

2

 
x a t

t
= +









cos log tan

2

\ 
dx

dt
a t

t

t
= − + ⋅ ⋅



















sin

tan

sec
1

2

2

1

2

2

 

= − +


















= − +









a t
t t

a t
t

sin

sin cos

sin
sin

1

2
2 2

1 =
a t

t

cos

sin

2

 y = a sin t

\ d

d

y

t
a t= cos

\ d

d

d

d

d

d

y

x

y

t

x

t

a t

a t
t t= ÷ = × =

cos

cos
sin tan

2

Example 1.27  Find 
d

d

y

x
y x, when log(sec tan ) and sec .= + =θ θ θ

 
y= +log(sec tan )θ θ

\ 
d

d

y

θ θ θ
θ θ θ

θ

=
+

+

=

1 2

sec tan
(sec tan sec )

sec

 x = sec q

\ 
d

d

x

θ
θ θ= sec tan
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\ 
d

d

d

d

d

d

y

x

y x
= ÷ = =

θ θ

θ

θ θ
θ

sec

sec tan
cot .

Example 1.28  Differentiate tan w.r . t . sin .− −−

−










 +











1
3

2

1

2

3

1 3

2

1

x x

x x

Let u
x x

x
v

x

x
=

−

−











=

+











− −tan and sin1
3

2

1

2

3

1 3

2

1

Put x= tanθ

Then u v= =− −tan (tan ) and sin (sin )1 13 2θ θ

viz., u v= =3 2θ θand

 

d

d

d

d

d

d

u

v

u v
= ÷ =

θ θ

3

2

Example 1.29  Find 
d

d

u

v
u e v ex x, where and .sin cos= =

− −1 1

 
u e x=

−sin 1

\ d

d

u

x
e

x

x= ⋅
−

−sin 1 1

1 2

 
v e x=

−cos 1

\ d

d

v

x
e

x

x= ×−
−

−cos 1 1

1 2

 

d

d

d

d

d

d

u

v

u

x

v

x
e x x= ÷ =−

− −−(sin cos )1 1

Example 1.30  Differentiate tan−
+ −1

21 1x

x
 w.r.t. tan–1x.

Let u
x

x
v x=

+ −









 =− −tan and tan1

2

11 1

Put x = tan q

Then u =
−







=

−









− −tan
sec

tan
tan

cos

sin

1 11 1θ

θ

θ

θ

 

=













=− −tan

sin

sin cos

tan tan1

2

1

2
2

2
2 2

2

θ

θ θ

θ







=

θ

2
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v= =−tan (tan )1

θ θ

 

d

d

d

d

d

d

u

v

u v
= ÷ =

θ θ

1

2
.

EXERCISE 1(b)

Part A

(Short Answer Questions)

1. If y
x x x

= + + + +1
1 2 3

2 3

! ! !
,  show that 

d

d

y

x
y= .

 Using first principles, find 
d

d

y

x
 when

2. y
x

=
1

 3. y
x

x
=

+

−

2

2

4. y x= log  5. y = x2 sin x

6. y = sin–1 x2

Find 
d

d

y

x
 using the rules and methods of differentiation, when

7. y
x

x
=

−

+











log
sin

sin

1

1
 8. y x x= + +tan 1 2

9. y = cos3x sin2x 10. y = sin–1(cos x)

11. y = tan–1(sinh x) 12. y = (tan x)cot x

13. x3 + y3 = 3axy 14. y = axy

15. y x x= −−sin ( )1 22 1  16. y
x

x
=

−













−tan 1

21

17. x = cos3t and y = sin3t

18. x = a(q – sin q) and y = a(1 – cos q)

19. Differentiate u = a sec x w.r.t. v = b tan x

20. Differentiate u x v x= =sin w.r . t . cos2 2

Part B

Differentiate the following function w.r.t. x:

21. a b ab x2 2 2+ − cos  22. 1 2 1 2+ − −sin sinx x
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23. 
x x x

x x x

sin cos

sin cos

+

−
 24. 

1

1

2

2

− +

+ +

x x

x x

25. e bxax2 3cos  26. loge

x

x

1 1

1 1

+ −

+ +













27. log
a x x

a x x

2 2

2

+ +

+ −

















 28. sec log a x2 2−

29. 
x x

x

sin−

−

1

21

30. x x a a x x a2 2 2 2− − + −log(

31. tan (cos )−1 x  32. 
cosh cos

sinh sin

x x

x x

+

+

33. sinh−
−

+











1 1

1

x

x
 34. 

( )( )x a x b

x c

+ +

+













2

3

1

2

35. x xx x+
1

 36. (sin ) (tan )tan sinx xx x+

37. Find 
d

d

y

x
,  when x and y are connected by (x + y)x = xx + y.

38. Find 
d

d

y

x
,  if sin y = x sin(a + y).

39. Find 
d

d

y

x
x yy x, if (sin ) (cos ) .cos sin+ =1

40. Find 
d

d

y

x
,  if (x – c) (y – c) = 1 + c2.

41. Find 
d

d

y

x
y

x

x
, if sin cot .=

+

−
−2 1 1

1

42. Find 
d

d

y

x
,  y = cos–1(4x3 – 3x).

43. Find 
d

d

y

x
y

x x

x x
, if

cos sin

cos sin
.=

−

+

44. Find 
d

d

y

x
y x x x x, if cos [ ].= − + −−1 2 3 3
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45. Find 
d

d

y

x
x t t t y t t t, if cos sin and sin cos .= + = −

46. Find 
d

d

y

x
x c y

c
, if log tan and (tan cot ).= = +θ θ θ

2

47. Find 
d

d

y

x
x t t y t t, if sin sin and cos cos .= − = −3 33 3

48. Differentiate tan sin .− −

−









 +











1

2

1

2

2

1

2

1

x

x

x

x
w.r.t.

49. Differentiate tan tan .− −−

−










 −











1
2

2

1

2

3

1 3

2

1

x x

x

x

x
w.r.t.

50. Differentiate tan cos ( ).− −+ − −

+ + −

















1

2 2

2 2

1 21 1

1 1

x x

x x
xw.r.t.

1.9  maxIma aND mINIma oF FUNcTIoNs oF oNe 

varIabLe

A function f(x) is said to have a maximum at the point x = a, if f(a) ≥ f(a + h) for all 

positive and negative values of h sufficiently near zero.

Similarly f(x) is said to have a minimum at the point x = b, if f(b) £ f(b + h) for 

values of h close to zero.

The figure given below represents the graph of f(x), viz., y = f(x) is the equation 

of the curve shown. The function has maximum at A and C, while it has minimum at 

B and D. In other words if the continuous 

function increases algebraically upto a 

certain value and then decreases, that value 

is called a maximum value of the function.

Similarly if the continuous function 

decreases algebraically upto a certain value 

and then increases, that value is called a 

minimum value of the function.

Note  (1)  There are values of f(x) which 

are greater then the maximum and values which are less than the 

minimum.

     Hence f(a) is a relative maximum value of f(x). This means that f(a) 

is algebraically greater than f(a – h) and f(a + h) where h is a small 

positive quantity. Similarly, a relative minimum value of f(x) occurs at 

x = b.

   (2)  The points A, B, C, D... at which the tangents to the curve y = f(x) are 

parallel to the x-axis are called stationary points or turning points of 

the curve y = f(x). The maximum or minimum values of f(x) [at x = a 

and x = b] are called extreme values of f(x).

y

O x

A

B

C

D

x a= x b=

Fig. 1.5
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Theorem

If f(x) is differentiable at x = a and has a maximum or minimum there, then 

f¢(a) = 0

By definition f (a) ≥ f(a + h), if x = a is a maximum point.

By definition ′ =
+ −{ }

→
f a

f a h f a

hh
( ) lim

( ) ( )
,

0

 since f¢(x) exist at x = a.

This value is zero, for

 

f a h f a

h
h

f a h f a

h
h

( ) ( )
, if and

( ) ( )
, if is

+ −
≤ >

+ −
≥ <0 0 0 0

viz., lim
( ) ( )

h

f a h f a

h→ +

+ −










≤

0
0  (1)

and lim
( ) ( )

h

f a h f a

h→ −

+ −










≥

0
0  (2)

(1) and (2) will be true, if and only if f¢(a) = 0.

Similarly if f(b) is a minimum value of f(x), f¢(b) = 0.

Theorem  f(a) is an extreme value of f(x) if and only if f¢(x) change sign as x passes 

through the point x = a.

Form the figure, it is clear that f(x) is an increasing function before reaching A and 

after passing through A it is a decreasing function.

Thus 
d

d

y

x
 [slope of the curve y = f(x)] changes sign from positive to negative as x 

passes through A

viz., 
d

d

2

2

y

x
 is negative at A.

Hence a function y = f(x) is said to have a maximum (minimum) at x = a, if

 (i) 
d

d

y

x
= 0  at x = a

(ii) 
d

d

2

2
0

y

x
<  at x = a for a maximum

  
d

d

2

2
0

y

x
>  at x = a for a minimum

Working Rule

(1) Find f ¢(x) and solve the equation f¢(x) = 0. Let the roots be a, b, c,...

(2) Find f ¢¢(x) and find f¢ ¢(a), f ¢¢(b), etc.

(3) If f ¢¢(a) < 0, there is a maximum at the point x = a for f(x).

   If f ¢¢(a) > 0, there is a minimum point for f(x) at x = a.
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(4) If f ¢¢(a) = 0, this rule fails for testing whether f(x) is maximum or minimum 

at x = a.

WORKED EXAMPLES 1(c)

Example 1.1 Find the maximum and minimum values of f(x) = 2x3 – 9x2 – 24x – 20.

 f¢(x) = 6x2 – 18x – 24 = 6(x2 – 3x – 4)

 = 0, when (x – 4)(x + 1) = 0

\ The turning point of f(x) are x = 4 and x = –1

 f¢¢(x) = 6(2x – 3)

 f¢¢(4) = 6 × 5 > 0  \ f(x) is minimum at x = 4

 f¢¢(–1) = 6 × 5 < 0  \ f(x) is maximum at x = –1

\ Maximum of f(x) (at x = –1) = –2 – 9 + 24 – 20 = –7.

and minimum value of f(x) (at x = 4) = 128 – 144 –96 – 20 = –132.

Example 1.2 Find the maximum and minimum values of y = 3 sin2x + 4 cos2x.

 

d

d

d

d

y

x
x x x x

x x x

y

x
x

= −

=− −

=−

6 8

2 2

2 2
2

2

sin cos cos sin

sin cos or sin

cos

The turning points of y are given by sin x = 0 and cos x = 0

viz., x x= =0
2

and
π

 

d

d

d

d

2

2
0

2

2

2

2 0 2 0
y

x

y

xx x









 =− <









 = >

= =

and
π

\ y is maximum at x = 0 and minimum at x=
π

2

Maximum value of y = 4 and minimum value of y = 3

Example 1.3 Find the maximum and minimum values of y kx
x

e=









2 1
log ,  

where x > 0.

 y = –kx2 log x

 

d

d

y

x
k x

x
x x

kx x

= ⋅ +












= +

2 1
2

1 2

log

( log )

 

d

d

2

2

2
1 2

3 2

y

x
k x

x
x

k x

= ⋅ + +












= +

log

( log )
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d

d

y

x
x x

e
x= = = >0 0

1
0, when and ( )∵

 d

d

2

2
0

y

x x










=

 is undefined and 

d

d

2

2 1

2

3 2 0
y

x
k e k

x









 = −{ }=− <
=

log

\ y is maximum at x
e

=
1

Maximum value of y k
e e

= ⋅
1 1

log .

Example 1.4 Find the maximum and minimum values of y, given by 

x2y = x3 – 3x2 + 4.

 
y

x x

x
=

− +3 2

2

3 4

\ d

d

y

x

x x x x x x

x
=

− − − + ⋅2 2 3 2

4

3 6 3 4 2( ) ( )

 
=

−
−

x x

x x

4

4 3

8
1

8
or

\ 
d

d

y

x
x x= = =0 8 23, at or .

 

d

d

2

2 6

24
0 2

y

x x
x= > =, at .

\ y is minimum at x = 2

and the minimum value of y=
− +

=
8 12 4

4
0

Example 1.5 Find the minimum value of (x2 + y2), given that x and y are connected 

by the relation ax + by = 0, where a, b, c are constants.

From the given constant y
c ax

b
=

−
, (1)

using (1) in the given function, whose minimum value is required, we get 

  f x x
b

c ax( ) ( )= + -2

2

21
 (2)

 

′ = + − −

′ = +








=

f x x
b

c ax a

f x x
a

b

ac

( ) ( )( )

( ) , where

2
2

0 2
2 2

2

2

2 bb2
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viz., when x
a c

a b
=

+2 2

 ′′ = + >f x
a

b
( ) ,2

2
0

2

2
 for values of x.

\ f(x) is minimum, when x
ac

a b
y

bc

a b
=

+
=

+2 2 2 2
or  get from (1), minimum value 

of f x
c

a b
( ) .=

+

2

2 2

Example 1.6 A rectangular sheet of metal has four equal square portions removed 

at the corners and the sides are then turned up so as to form an open rectangular 

box. Show that, when the volume of the box made is maximum, the depth will be 

1 2 2

sin
[( ) ],

b
a b a ab b+ - - +  where a and b the sides of the original rectangle.

Let x be the side of each square metal removed.

Then the dimensions of the rectangular box made are 

a – 2x, b – 2x and x

\ Volume of the box made, V = x(a – 2x)(b – 2x), 

where x is the depth of the box

viz., V = 4x3 – 2(a + b)x2 + abx (1)

We have to find the value of x, for which V is maximum.

 
d

d

V

x
x a b x ab= − + +12 42 ( )  (1)

 
d

d

2

2
24 4

V

x
x a b= − +( )  (2)

 
d

d

V

x
= 0,  when 12x2 – 4(a + b)x + ab = 0

viz., when x
a b a b ab

=
+ ± + −4 16 48

24

2( ) ( )

 
= + ± − +





1

6

2 2( )a b a ab b

when x a b a ab b
V

x
= + + − +




= >

1

6
02 2

2

2
( )

d

d

Hence x a b a ab b= + − − +





1

6

2 2( )  is the admissible value of the depth for 

which v is maximum.

x x

x x

Fig. 1.6
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Example 1.7 The power output of a radio valve is proportional to 
x

x k( )
,

+ 2
 where 

k, the valve resistance is a constant and x is a variable impedance. Show that the 

output is a maximum when x = k.

P, the power output in given by

 P
x

x k
=

+

λ

( )
,

2
 where l is the constant of proportion.

 

d

d

d

d

P

x

x k x x k

x k

k x

x k

P

x

x

=
+ − ⋅ +

+















=
−

+

=
+

λ

λ

λ

( ) ( )

( )

( )

( )

(

2

4

3

2

2

kk k x k x

x k

k x

k x

) ( )( ) ( )

( )

( )

( )

3 2

3

3

1

1
3

− + −

+















= − −
−

+













λ

 

d

d

d

d

P

x
x k

P

x
x k= = =− < =0 0

2

2
, when and at .λ

\ P is maximum, when x = k.

Example 1.8 A man in a rowboat at P, 5 kms form the nearest point A situated on a 

straight shore wishes to reach a point B, 6 kms from A along the shore, in the shortest 

time. Where should be land on AB, if the can row 2 kms per hour and walk 4 kms 

per hours?

Let L be the point of landing such that AL = x

Rowing distance = 2 25x +

Walking distance = 6 – x

The time taken by the man to go from P to B via 

L is given by

 

21 6
25

2 4

x
T x

−
= + +

 

2

2
2

22

2 2 3

2 2

d 1

d 42 25

2525
25d 1 2

2d 25
( 25)

T x

x x

x
x

xT

x x
x

= =−
+

 
 + −
 + = = 

+   +

A

P

5 kms

x L
B

Fig. 1.7
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2

d 1
0, where

d 225

T x

x x
= =

+

viz., 4x2 = x2 + 25

viz., 
5

3
x=

2

2

d 5
0, where

d 3

T
x

x
> =  \ T is minimum, where 

5
.

3
x=

\ The man should land at L, where 
5

kms.
3

AL =  to reach B in the shortest times

Example 1.9 The horse-power developed by an air-craft travelling horizontally with 

velocity v metres per second is 
2

3 ,
AW

H Bv
v

= +  where A, B, Ware constants. Find 

for what value of v, the horse-power is minimum?

 

2
3AW

H Bv
v

= +

   

2
2

2

2 2

2 3

d
3

d

d 2
6

d

H AW
Bv

v v

H AW
Bv

v v

=− +

= +

 

1
2 4

1
2 2 4

4

2

2

3

d
0, if or

d 3 3

d
0

d AW
v

B

H AW AW
v v

v B B

H

v   =   

  = = =  

   >  

\ H is minimum when 

1
2 4

3

AW
v

B

  =   

Example 1.10 What is the maximum volume of a right circular cone if the sum of 

the length of its height and base radius is a constant k?

Let ‘x’ be the base radius and ‘h’ the height of the right circular cone.

Then its volume 3

3
V x y

π
=  (1)

Given that x + y = k (2)

Using (2) in (1), we have 2 ( )
3

V x k x
π

= −  (3)
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Differentiating (3) w.r.t. x;

 

2

2

2

d
(2 3 )

d 3

d
(2 6 )

3d

V
kx x

x

V
k x

x

π

π

= −

= −

 

d
0, where (2 3 ) 0

d

V
x k x

x
= − =

viz., where x = 0 or 
2

3

k

 x = 0 is meaningless.

 

2

2 2

3

d 2
( 2 ) 0

3d

p

=

Ê ˆ
= - <Á ˜Ë ¯ k

x

V
k k

x

\ V is maximum, when 
2

3

k
x = .

Example 1.11 An open cylindrical vessel is to be made with a given quantity of 

metal sheet. Find the ratio of the height to the diameter of the base, if the vessel is to 

have maximum capacity.

Let r be the base radius and h the height of the cylindrical vessel, assumed to be open 

at one end.

Given Quantity of metal used  = c

viz., 2prh + pr2 = c (or) 2rh + r2 = k (1)

The volume of the vessel V is given by

 V = pr2h (2)

Using (1) in (2) we have 
2

2 ( )

2

k r
V r

r
π

−
=

viz., 3( )
2

V kr r
π

= −

\ 2

2

2

d
( 3 )

d 2

d
3

d

V
k r

r

V
r

r

π

π

= −

=−

 
d

0,
d

V

r
=  when k – 3r2 = 0

viz., when 
3

k
r =

For this value of r, 
2

2

d
0.

d

V

r
<
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\ V is maximum, when 
3

k
r =

When 
2

3, from (2), or
3 2 3

2
3

k
k

k k r k
r h

r k

−
−

= = =

Thus when V is maximum,

 h : r = 1 : 1

\ h : d = 1 : 2, where d is the diameter of the base.

Example 1.12 A normal window consists of a rectangle surmounted by a semi-

circle. Given the perimeter of the window to be k, find its height and breadth, if the 

quantity of light admitted is to be maximum.

Let the length and breadth of the rectangular part of the window be l and 2b

Then the perimeter of the window is given by

 2 2l b b kp+ + =  (1)

If the light admitted is to be maximum, the area of the window 

A = 2lb + pb2 is to be maximum.

Using (1) in the value of A,

viz., A = 2( 2 )
2

k b b b b
π

π− − +

viz., 2
2

A k b b b
π = − −   

 

2

2

d
2 1 2

d 2 2

4

d
4 0

d

A
k b b b

b

k b b

A

b

π π

π

π

     = − − ⋅ − +       

= − −

=− − <

\ A is maximum, when 
4

k
b

π
=

+

When , from (1), 2 ( 2)
4

( 2),
4

2
or

4 4

k
b l k b

k
k

k k
l

π
π

π
π

π π

= = − +
+

= − +
+

= =
+ +

l

b

Fig. 1.8
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\ A is maximum, when 
4

k
l b

π
= =

+

viz., when the greatest height and breadth of the window are equal.

Example 1.13 Find the dimensions of the rectangle of maximum area which can be 

inscribed in a circle of radius R.

When the rectangle inscribed in a circle is to have maximum area, it should be 

symmetrically situated inside the circle and the four 

corners should be on the circle. Choosing the centre 

of the circle as the origin, its equation become 

      x2 + y2 = R2 (1)

If 2x, 2y are the length and width of the rectangle, 

equation (1) holds good.

We have to find the maximum of

 

A xy x k x

A

x
k x

x

k x

k x

k

= = −

= − −
−













=
−

−

4 4

4

4 2

2 2

2 2
2

2 2

2 2

2

d

d

( )

xx2

 

d

d

2

2

2 2 2 2

2 2 2 2
4

4 2

4
4

A

x

k x x x x

k x

x

k x

x k

=
− − + −

−
⋅

−

















=
−

( ) ( ) ( )

( 22 2 2 2

2 2

3

2

2 2

2 2

3

2

2

4
3 2

− + −

−

















=
− +

−







x x k x

k x

k x x

k x

) ( )

( )

( )











 

d

d

A

x
x

k
= =0

2
, when .

When x
k A

x

k k k

k

= = ⋅
− +





























2

4
2

3 2

2

2

2

2 2

2
3

2

,
d

d



< 0

\ A is maximum, when the length and breadth of the rectangle are equal, each equal 

to k 2.

x

y

( , )x y

O

Fig. 1.9
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Example 1.14 Prove that the height of the cylinder of maximum value that can be 

inscribed in a sphere of radius a is 
2

3

a
.

Let r and 2h be the base radius and height of the cylinder inscribed in the sphere.

By symmetry, (r, h) lies on x2 + y2 = a2

\ r2 + h2 = a2 (1)

The volume of the cylinder to be maximise is 

given by V = p r2h

        
= −π( ) , from ( )a h h2 2 1

 

d

d

d

d

V

h
a h

V

h
h h

= −

= <

π

π

( )

, for all

2 2

2

2

3

6 0

 

d

d

d

d

V

h
h

a

V

h
h

a

= =

< =

0
3

0
3

2

2

, when

at

\ V is maximum, when the height of the cylinder 2
2

3
h

a
= .

Example 1.15 Of all the right circular cones of given slant length l, find the dimen-

sions and volume of the cone of maximum volume.

Let r, h, l be the radius, height and slant length of the cone.

Given r2 + h2 = constant (–l2) (1)

If V is the volume of the cone, then V r h=
p

3

2

i.e., V h l h= -
p

3

2 2( )

 

d

d

d

d

V

h
l h

V

h
h h

= -

= - <

p

p

3
3

2 0

2 2

2

2

( )

, for all

 
d

d

V

h
h

l
h

l
= = =0

3 3

2
2

, when or ;  V is maximum, when h
l

=
3

When h
l

r
l

r l= = =
3

1
2

3

2

3

2
2

, from ( ), or

x

y

( , )r h

O

x y a2 2 2+ =

Fig. 1.10
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Maximum volume of the cone =
π

3

2r h

       

= ⋅ ⋅

=

π

π

3

2

3 3

2

9 3

2

3

l
l

l

EXERCISE 1(c)

Part A

(Short Answer Questions)

1. Find the maximum and minimum values of y = (x – 2)2 (x – 3).

2. Find the maximum value of 
1

x

x
Ê
ËÁ

ˆ
¯̃ .

3. Find the maximum and minimum values of (cos x + cos 2x) in (0, 2p).

4. Find the maximum and minimum values of x
x

+
+
4

2
.

5. Find the minimum values of x + y, if xy = 1.

Part B

6. A battery whose internal resistance is r ohms E.M.F is E sends a current 

through an internal resistance R. The power is given by W
RE

R r
=

+

2

2( )
.  Given 

E and r, find R so that W may be maximum.

7. The bending moment M at a distance x from one end of a beam of length 

l uniformly loaded is given by M wlx wx= −
1

2

1

2

2 ,  where w = load per 

unit length . Show that the maximum bending moment is at the centre of the 

beam.

8. The cost of fuel per hour for running a train with uniform spend is propor-

tional to be square of the speed in kms per hour and the cost is Rs. 48/= per 

hour when the speed is 16 kms per hour, what is the most economical speed 

if the other fixed charge are Rs. 300 per hour? Take the distance to be covered 

is a constant.

9. Of all rectangles of given area, show that the square has the least perimeter.

10. A rod AB of given length k slides between two perpendicular lines 0x and 0y. 

Find when the area of the triangle is maximum.
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11. An open tank is to be constructed with a square base and vertical sides so as 

to contain a given quantity of water. If the experience of lining it with lead is 

to be least find the ratio of the depth to the side of the base.

12. Given the sum of the area of curved surface and two circular ends of a right 

circular cylinder is a constant, find the height of the cylinder so that the 

volume may be a maximum.

13. A wire of length ‘a’ is cut into two parts which are bent respectively in the 

form of a square and a circle. Show that the least value of the sum of the areas 

so formed is 
a2

4 4( )
.

π +

14. Find the maximum volume of a right circular cylinder inscribed in a given 

sphere whose radius is R.

15. Find the attitude and radius of the cone of maximum volume that can be in-

scribed in a sphere of radius R.

16. a cylinder is inscribed in a cone of height ‘h’ and semi vertical and ‘a’. Prove 

that the volume of the greatest cylinder thus obtained is 
4

27

3 2
π αh tan .

17. Show that a conical tent of given capacity will require the least amount of 

canvas when the height 2  time the radius of the base.

18. If the sum of the length of the hypotenuse and another side of a right angled 

triangle is given, show that the area of the triangle is maximum, when the 

angle between those sides is 60.

19. A sector is cut out of a circular piece of canvas and the bounding radii of 

the remaining part are drawn together to form a conical tent. What should be 

angle of the sector cut out, if the tent has maximum volume?

20. A cone is circumscribed to a sphere of radius r. Show that, when the volume 

of the cone is a minimum, its altitude is 4r.

aNsWers

Exercise 1(a)

(2) (–4, 3) (3) (–•, –3), (6, •) (4) 2 (5) 2

(6) 2 2  (7) 
3

2

1

6a  (8) 
1

2
 (9) 

1

2

(10) 
m

n

2

2
 (11) 

1

2
 (12) cos a (15) 

1

2

(16) 0 (17) eab (18) e (19) e2
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(20) e (21) −










5

4

3

4
,  (22) (0, 1) (23) 

1

3
3,











(27) 
1

3
 (28) 

4

3
 (29) 

3

8
 (30) 1

(31) 1 (32) 2 log 2 (33) 3 (34) –3

(35) log 4 (36) 
2

π
 (38) not continuous at x=

3

2

(39) not continuous at z = 0 (40) a = 3, b = –8

(43) Continuous but not differentiable

(44) Continuous at both point; not differentiable at x = 1, but differentiable x = 2

(45) Continuous, but not differentiable at both the points.

Exercise 1(b)

(2) ′ =y

x

1

2
3

2

 (3) ′ =−
−

y
x e

4

2( )
 (4) ′ =y

x x

1

2 log

(5) ′ = +y x x x x2 2cos sin  (6) ′ =
−

y
x

x

2

1 4

(7) –2 sec x (8) sec ( )2 2

2
1

1

2 1
2 1+ +

+ +
⋅ +x x

x x
x

(9) sin x cos2x(2 cos2x – 3 sin2x) (10) –1 (11) sech x

(12) (tan ) {cosec ( log tan )}cotx x xx ⋅ −2 1  (13) 
ay x

y ax

−

−

2

2

(14) 
y a

xy a

2

1

log

log−
 (15) 

2

1 2− x
 (16) 

1

1 2− x

(17) –tan t (18) cot
θ

2
 (19) 

a

b
xsin  (20) −cot ( )/3 2 2x

(21) 
ab x

a b ab x

sin

cos2 2 2+ −
 (22) 1 2 1 2− + +sin sinx x

(23) −
+ +

−

2
2

( sin cos )

( sin cos )

x x x

x x x
 (24) 

x

x x x x

2

2 2

1

1 1
3

2
1

2

−

+ + − +( ) ( )

(25) xe a bx bx bxax2

2 33 2 2{ cos sin }−  (26) 
1

1x x+
 (27) 

2

2 2a x+
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(28) −
−

−
x

a x
a x a x y

2 2

2 2 2 2sec log tan log

(29) 
x x x

x

1

1

2 1

2 3
2

− +

−

−sin

( )
 (30) 2 2 2x a−

(31) 
−

+

sin

( cos )

x

x x2 1 2  (32) −
+

+

2 1
2

( cosh cos )

(sinh sin )

x x

x x

(33) 
−

+ +

2

1 1 2( ) ( )x x

(34) 
( )( )

( )

x a x b

x c x a

x

x b

x

x c

+ +

+











 +
+

+
−

+












2

3

1

2

2

2

3

1

2

3 


(35) x x
x x

x

x
x

( )
( log )

1
1

1

2
+ +

−

(36) (sin ) { sec logsin ) (tan ) {sin cos log tan }tan sinx x x x x x xx x1 2+ + + +

(37) 
x y

x
x

x

x y
x y

+
+ −

+
− +log log( )   (38) 

sin ( )

sin

2 a y

a

+

(39) 
(sin ) cos cot (cos ) cos log cos

(sin ) sin logs

cos sin

cos

x y x y x y

x y

y x

y

+

iin (cos ) sin tansinx y x yx+
 (40) −

+

+

( )1

1

2

2

y

x

(41) −
1

2
 (42) −

−

3

1 2x
 (43) −

+

1

1 2x

(44) −
−

+
−

1

1

1

2 12x x x
 (45) tan t (46) –cot 2q

(47) –tan3 t (48) 1 (49) 
3

2
 (50) 

1

2

Exercise 1(c)

(1) Max =
2

27
 and min = 0 (2) ee

1

 Max = –6 and min = 2

(3)  Max values 2, 0, 2 and min value − −
2

3
2and  (6) R = r

(8) 40 km/hr. (10) When OA OB
k

= =
2

2
 (11) 1 : 2
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(13) 
2

3

k

π
,  where k is the total 5.A (14) 

4

3
33

πR

(15) altitude =
4

3
R  and radius =

2 2

3
R

(19) 66° approximately





Functions of 

Several Variables

2Unit

2.1 intRODUCtiOn

The students have studied in the lower classes the concept of partial differentiation 

of a function of more than one variable. They were also exposed to homogeneous 

functions of several variables and Euler’s theorem associated with such functions. 

In this chapter, we discuss some of the applications of the concept of partial 

differentiation, which are frequently required in engineering problems.

2.2 tOtAL DiFFEREntiAtiOn

In partial differentiation of a function of two or more variables, it is assumed that 

only one of the independent variables varies at a time. In total differentiation, all 

the independent variables concerned are assumed to vary and so to take increments 

simultaneously.

Let z = f (x, y), where x and y are continuous functions of another variable t.

Let ∆t be a small increment in t. Let the corresponding increments in x, y, z be ∆x, 

∆y and ∆z respectively.

Then ∆ = +∆ +∆ −
= +∆ +∆ − +∆ + +∆

z f x x y y f x y

f x x y y f x y y f x y y

( , ) ( , )

{ ( , ) ( , )} { ( , )−− f x y( , )}

∴

 

∆
∆

=
+∆ +∆ − +∆

∆







⋅
∆
∆

+
+ ∆ −

∆

z

t

f x x y y f x y y

x

x

t

f x y y f x y

( , ) ( , )

( , ) ( , )

yy

y

t








⋅
∆
∆

 

(1)

We note that ∆x and ∆y → 0 as ∆t → 0 and hence ∆z → 0 as ∆t → 0

Taking limits on both sides of (1) as ∆t → 0, we have
 d

d

d

d

d

d

z

t

f

x

x

t

f

y

y

t
=

∂
∂

⋅ +
∂
∂

⋅

( ∴  x, y and z are functions of t only and  f  is a function of x and y).
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i.e.,  
d

d

d

d

d

d
since

z

t

z

x

x

t

z

y

y

t
f x y z x y=

∂
∂

+
∂
∂

≡[ ( , ) ( , )].  (2)

d

d
and also

d

d
and

d

d

z

t

x

t

y

t







 is called the total differential coefficient of z.

This name is given to distinguish it from the partial differential coefficients  

∂
∂

z

x
 and ∂

∂
z

y
. Thus to differentiate z, which is directly a function of x and y, (where 

x and y are functions of t) with respect to t, we need not express z as a function of t 

by substituting for x and y. We can differentiate z with respect to t via x and y using 

the result (2).

Corollary 1: In the differential form, result (2) can be written as

 

dz
z

x
x

z

y
y=

∂
∂

+
∂
∂

d d  (3)

dz is called the total differential of z.

Corollary 2: If z is directly a function of two variables u and u, which are in turn 

functions of two other variables x and y, clearly z is a function of x and y ultimately. 

Hence the total differentiation of z is meaningless. We can find only ∂
∂

z

x

 and ∂
∂

z

y
by 

using the following results which can be derived as result (2) given above.

 

∂
∂

=
∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

z

x

z

u

u

x

z

xυ

υ

 

(4)

 

∂
∂

=
∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

z

y

z

u

u

y

z

yυ

υ

 

(5)

We note that the partial differentiation of z is performed via the intermediate 

variables u and u, which are functions of x and y. Hence ∂
∂

z

x
 and ∂

∂
z

y
 are called 

partial derivatives of a function of two functions.

Note  Results (2), (3), (4) and (5) can be extended to a function z of several 

intermediate variables.

2.2.1 Small Errors and Approximations

Since lim ,
∆ →

∆
∆







=
∆
∆

= ∆ 



x

y

x

y

x

y

x

y

x
y

y

x0

d

d

d

d
approximately or

d

d



∆x  (1)

If we assume that dx and dy are approximately equal to ∆x and ∆y respectively, result 

(1) can be derived from the differential relation.
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d
d

d
dy

y

x
x= 





 

(2)

Though (2) is an exact relation, it can be made use of to get the approximate 

relation (1), by replacing dx and dy by ∆x and ∆y respectively.

Let y = f (x). If we assume that the value of x is obtained by measurement, it is 

likely that there is a small error ∆x in the measured value of x. This error in the 

value of x will contribute a small error ∆y in the calculated value of y, as x and y are 

functionally related. The small increments ∆x and ∆y can be assumed to represent 

the small errors ∆x and ∆y. Thus the relation between the errors ∆x and ∆y can be 

taken as

∆ ′ ∆y f x x ( )

This concept can be extended to a function of several variables.

If u = u(x, y, z) or f (x, y, z) and if the value of u is calculated on the measured 

values of x, y, z, the likely errors ∆x, ∆y, ∆z will result in an error ∆u in the calculated 

value of u, given by

∆
∂
∂

∆ +
∂
∂

∆ +
∂
∂

∆u
u

x
x

u

y
y

u

z
z ,

which can be assumed as the approximate version of the total differential relation

d d d du
u

x
x

u

y
y

u

z
z=

∂
∂

+
∂
∂

+
∂
∂

Note  The error ∆x in x is called the absolute error in x, while ∆x

x
 is called the 

relative or proportional error in x and 100∆x

x
 is called the percentage error in x.

2.2.2 Differentiation of implicit Functions

When x and y are connected by means of a relation of the form f (x, y) = 0, x and y 

are said to be implicitly related or y is said to be an implicit function of x. When x 

and y are implicitly related, it may not be possible in many cases to express y as a 

single valued function of x explicitly. However 
d

d

y

x
 can be found out in such cases as 

a mixed function of x and y using partial derivatives as explained below:

Since f x y f( , ) ,= =0 0d

i.e., 
∂
∂

+
∂
∂

=
f

x
x

f

y
yd d 0, by definition of total differential. Dividing by dx, we have

∂
∂

+
∂
∂

⋅ =
f

x

f

y

y

x

d

d
0
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∴
 d

d

y

x

f

x

f

y

= −

∂
∂







∂
∂







 

(1)

If we denote ∂
∂

∂
∂

∂
∂

∂
∂ ∂

f

x

f

y

f

x

f

x y
, , ,

2

2

2

 and ∂
∂

2

2

f

y
 by the letters p, q, r, s, t respectively,

then

 d

d

y

x

p

q
= −  (2)

We can express the second order derivative 
d

d

2

2

y

x
 in terms of p, q, r, s, t as given 

below. Noting that p and q are functions of x and y and differentiating both sides of 

(2) with respect to x totally, we have

d

d

d

d

d

d

d

d

2

2

2

y

x

q
p

x
p

q

x

q

p
q

x

q

y

y

x
q

p

= −
−















=

∂
∂

+
∂
∂

⋅







−

∂
∂xx

p

y

y

x

q

p s t
p

q
q r s

p

q

+
∂
∂

⋅








=

+
−












− +

−









d

d
2





q2
,

since

 

∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂ ∂

=
∂
∂

=
∂
∂

=

=
− −

p

x

f

x
r

p

y

q

x

f

x y
s

q

y

f

y
t

p qs pt

2

2

2 2

2
; ; .

( ) qq qr ps

q

p t pqs q r

q

( )

( )

−

= −
− +

3

2 2

3

2

WORKED EXAMPLE 2(a)

Example 2.1

 (i) If u = xy + yz + zx, where x = et, y = e-t and z
t

=
1

,  find d

d

u

t

(ii) If u = sin-1 (x - y), where x = 3t and y = 4t3, show that 
d

d

u

t t
=

−

3

1 2
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(i) u = xy + yz + zx

∴ d

d

d

d

d

d

d

d

u

t

u

x

x

t

u

y

y

t

u

z

z

t

y z e z x e xt t

=
∂
∂

⋅ +
∂
∂

⋅ +
∂
∂

⋅

= + + + − + +−( ) ( ) ( ) ( yy
t

e
t

e
t

e e e e
t

t t t t t t

)

.

−





= +





− +





− +( )

=

− − −

1

1 1 1

1

2

2

++ − − − −

= −

− −1 1
1

1 1

2 2

2 2

2

t
e

t
e

t
e

t
e

t
t

t
t

t t t t

sinh cosh .

(ii) u = sin-1 (x - y)

∴

 

d

d

d

d

d

d

u

t x y

x

t x y

y

t

x y
t

=
− −

+
− −

−





=
− −

−

1

1

1

1

1

1
3 12

2 2

2

2

( ) ( )

( )
( )

 

(1)

Now 1 1 3 4

1 9 24 16

1 1 8 16

1

2 3 2

2 4 6

2 2 4

− − = − −

= − + −

= − − +

=

( ) ( )

( ) ( )

(

x y t t

t t t

t t t

−− −t t2 2 21 4) ( )

 

(2)

Using (2) in (1), we get

 

d

d
3(1 4 )2u

t t t
t

t

=
− −

× −

=
−

⋅

1

1 4 1

3

1

2 2

2

( )

Example 2.2 If u f
x

y

y

z

z

x
=







, , , prove that x
u

x
y

u

y
z

u

z

∂
∂

+
∂
∂

+
∂
∂

= 0.

Let r
x

y
s

y

z
t

z

x
= = =, and  (1)
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∴ u = f (r, s, t), where r, s, t are functions of x, y, z as assumed in (1)

∴

 

∂
∂

=
∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

= ⋅
∂
∂

+
∂
∂

⋅ − ⋅
∂
∂

u

x

u

r

r

x

u

s

s

x

u

t

t

x

y

u

r

u

s

z

x

u

t

1
0

2

 

(2)

 

∂
∂

=
∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

= − ⋅
∂
∂

+ ⋅
∂
∂

u

y

u

r

r

y

u

s

s

y

u

t

t

y

x

y

u

r z

u

s2

1

 

(3)

 

∂
∂

=
∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

= − ⋅
∂
∂

+ ⋅
∂
∂

u

z

u

r

r

z

u

s

s

z

u

t

t

z

y

z

u

s x

u

t2

1

 

(4)

From (2), (3) and (4), we have

 

x
u

x
y

u

y
z

u

z

x

y

u

r

z

x

u

t

x

y

u

r

y

z

u

s

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

−
∂
∂







+ −
∂
∂

+
∂
∂






++ −

∂
∂

+
∂
∂







=

y

z

u

s

z

x

u

t

0.

Example 2.3 If z be a function of x and y, where x = eu + e-u and y = e-u - eu, prove 

that

 

∂
∂

−
∂
∂

=
∂
∂

−
∂
∂

∂
∂

=
∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

=
∂
∂

−
∂−

z

u

z
x

z

x
y

z

y

z

u

z

x

x

u

z

y

y

u

e
z

x
e

zu u

υ

∂∂y

 

(1)

   

∂
∂

=
∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂

= −
∂
∂

− ⋅
∂
∂

−

z z

x

x z

y

y

e
z

x
e

z

y

υ υ υ

υ υ

 

(2)

From (1) and (2), we have

   

∂
∂

−
∂
∂

= +
∂
∂

− −
∂
∂

=
∂
∂

−
∂
∂

− −z

u

z
e e

z

x
e e

z

y

x
z

x
y

z

y

u u

υ
υ υ( ) ( )
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Example 2.4 If u = f (x, y), where x = r cos q and y = r sin q, prove that

 

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

u

x

u

y

u

r r

u

2 2

2

2

2
1

q
.

 

∂
∂

=
∂
∂

◊
∂
∂

+
∂
∂

◊
∂
∂

= ◊
∂
∂

+
∂
∂

u

r

u

x

x

r

u

y

y

r

u

x

u

y
cos sinq q  (1)

 

∂
∂

=
∂
∂

◊
∂
∂

+
∂
∂

◊
∂
∂

= - ◊
∂
∂

+ ◊
∂
∂

u u

x

x u

y

y

r
u

x
r

u

y

q q q

q qsin cos

i.e.,

 

1

r

u u

x

u

y

∂
∂

= -
∂
∂

+ ◊
∂
∂q

q qsin cos  (2)

Squaring both sides of (1) and (2) and adding, we get

∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

Ê
ËÁ

ˆ
¯̃

+
∂
∂

Ê
ËÁ

ˆ
¯̃

u

r r

u u

x

u

y

2

2

2 2 2
1

q

Example 2.5 Find the equivalent of 
∂
∂

+
∂
∂

2

2

2

2

u

x

u

y
 in polar co-ordinates.

u = u(x, y), where x = r cos q and y = r sin q

∴ u can also be considered as u(r, q), where

r x y
y

x
= + =










−2 2 1and θ tan

Now we proceed to find 
∂
∂

∂
∂

u

x

u

y
and via r and q.

 

∂
∂

=
∂
∂

◊
∂
∂

+
∂
∂

◊
∂
∂

=
+

∂
∂

+
+

◊ -Ê
ËÁ

ˆ
¯̃
◊
∂
∂

u

x

u

r

r

x

u

x

x

x y

u

r y

x

y

x

u

q

q

2 2 2

2

2

1

1
qq

q
q

q
=

∂
∂

-
∂
∂

cos
sinu

r r

u

 

(1)
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From (1), we can infer that

 

∂
∂

∫
∂
∂

-
∂
∂x r r

cos
sin

q
q

q  

(2)

Now

 

∂

∂
=

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

-
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

-
∂

2

2

u

x x

u

x

r r

u

r r
cos

sin
cos

sin
q

q

q
q

q uu

u

r r r

u

r

∂
Ê
ËÁ

ˆ
¯̃

= ◊
∂

∂
-

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

- ◊
∂
∂

q

q q q
q

q

q

cos sin cos

sin
c

2

2

2

1

oos
sin

sinq
q

q
q

q

∂
∂

Ê
ËÁ

ˆ
¯̃
+ ◊

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

u

r r

u
2  

∵ r
u

r

u
rand are independent and and are functions of andq

q
q

∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃̃

.

 

=
∂
∂

-
∂

∂ ∂
-

∂
∂

Ê

ËÁ
ˆ

¯̃

-
∂

∂

cos sin cos

sin
cos

2
2

2

2

2

2

1 1
q q q

q q

q
q

u

r r

u

r r

u

r

u

qq
q

q
q

q
q

q∂
-

∂
∂

Ê

ËÁ
ˆ

¯̃
+

∂
∂

+
∂
∂

Ê

ËÁ
ˆ

¯̃r

u

r r

u u
sin

sin
sin cos

2

2

2

 

(3)

Now 
∂
∂

=
∂
∂

◊
∂
∂

+
∂
∂

◊
∂
∂

=
+

∂
∂

+
+

◊Ê
ËÁ

ˆ
¯̃
∂
∂

=

u

y

u

r

r

y

u

y

y

x y

u

r y

x

x

u

q

q

q2 2 2

2

1

1

1

siin
cos

q
q

q

∂
∂

+
∂
∂

u

r r

u

 

(4)

From (4) we infer that

 

∂
∂

∫
∂
∂

+
∂
∂y r r

sin
cos

q
q

q  

(5)

∴

 

∂
∂

=
∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

+
∂

2

2

u

y y

u

y

r r

u

r r
sin

cos
sin

cos
q

q

q
q

q uu

u

r r

u

r r

u

∂
Ê
ËÁ

ˆ
¯̃

=
∂
∂

+
∂

∂ ∂
-

∂
∂

Ê

ËÁ
ˆ

¯̃

+

q

q q q
q q

sin sin cos

cos

2
2

2

2

2

1 1

qq
q

q
q

q
q

q
q

qr

u

r

u

r r

u u
sin cos

cos
cos sin

∂
∂ ∂

+
∂
∂

Ê

ËÁ
ˆ

¯̃
+

∂
∂

-
∂
∂

Ê

ËÁ
2

2

2

2

ˆ̂

¯̃
 

(6)
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Adding (3) and (6), we have

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2 2

2

2

1 1u

x

u

y

u

r r

u

r r

u

q

Example 2.6 Given the transformations u = ex cos y and u = ex sin y and that f is a 

function of u and u and also of x and y, prove that

 

∂
∂

+
∂
∂

= +
∂
∂

+
∂
∂

Ê

ËÁ
ˆ

¯̃

∂
∂

=
∂
∂

◊
∂
∂

+
∂
∂

2

2

2

2

2 2
2

2

2

2

f

x

f

y
u

f

u

f

f

x

f

u

u

x

f

( )u
u

uu

u
◊
∂
∂x

 
= ◊

∂
∂

+ ◊
∂
∂

e y
f

u
e y

fx xcos sin
u

 
=

∂
∂

+
∂
∂

u
f

u

f
u

u  

(1)

 

∂
∂

∫
∂
∂

+
∂
∂x

u
u

u
u  

(2)

 

∂
∂

=
∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃

= ◊
∂
∂

+
∂
∂

Ê

ËÁ
ˆ

2

2

2

2

f

x
u

u
u

f

u

f

u u
f

u

f

u

u
u

u
u

¯̃̄
+

∂
∂ ∂

+
∂
∂ ∂

+
∂
∂

+
∂
∂

Ê

ËÁ
ˆ

¯̃

u
f

u
u

f

u

f f

u
u

u
u

u u
u u

2 2

2

2
 

(3)

 ∂
∂

=
∂
∂

◊
∂
∂

+
∂
∂

◊
∂
∂

=- ◊
∂
∂

+
∂
∂

=-
∂
∂

+
∂

f

y

f

u

u

y

f

y

e y
f

u
e y

f

f

u
u

x x

u

u

u

u

sin cos

ff

∂u

 

(4)

∴
 

∂
∂

∫ -
∂
∂

+
∂
∂y u

uu
u  

(5)

 

∂
∂

= -
∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃

-
∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃

=
∂
∂

-
∂
∂

2

2

2
2

2

2

f

y u
u

f

u
u

f

f

u
u

f

u

u
u

u
u

u u
∂∂

+
∂
∂

Ê

ËÁ
ˆ

¯̃
-

∂
∂ ∂

+
∂
∂

Ê

ËÁ
ˆ

¯̃

+
∂
∂

u u
u

u

u

f
u

f

u

f

u

u
f

2

2
2

2
 

(6)
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Adding (3) and (6), we get

∂
∂

+
∂
∂

= +
∂
∂

+
∂
∂

Ê

ËÁ
ˆ

¯̃

2

2

2

2

2 2
2

2

2

2

f

x

f

y
u

f

u

f
( )u

u

Example 2.7  If z = f (u,u), where u = cosh x cos y and u = sinh x sin y, prove that

∂
∂

+
∂
∂

= +( ) ∂
∂

+
∂
∂

Ê

ËÁ
ˆ

¯̃

= ◊ +

2

2

2

2

2 2
2

2

2

2

z

x

z

y
x y

z

u

z

z z u zx u x

sinh sin
u

u ◊◊ ∫
∂
∂

= ◊ ◊ + ◊

u

u

x x

u

z
z

x

x y z x y z

,

sinh cos cosh sin

where  etc.

Since z is a function of u and u, z
u
 and z

u
 are also functions of u and u.

Hence to differentiate z
u
 and z

u
 with respect to x or y, we have to do it via u and u.

∴

 

z y x z x z x y z x yxx u uu u= ◊ + ◊ +{ }ÈÎ ˘̊

+

cos cosh sinh sinh cos cosh sin

sin

u

yy x z x z x y z x yusinh cosh sinh cos cosh sin◊ + ◊ + ◊{ }ÈÎ ˘̊u u uu

i.e., z x y z x y z x y z

x x

xx u uu= ⋅ + ⋅ + ⋅

+

cosh cos sinh sin sinh cos

sinh cosh s

υ

2 2

2 iin cos cosh siny y z x y zu⋅ + ⋅υ υυ

2 2

 
(1)

 
z z x y z x yy u= − ⋅ +cosh sin sinh cosυ

 

z x y z y z x y

z x y

yy u uu

u

= − ⋅ + ⋅ −( )

+ ⋅ ⋅ +

cosh [cos sin { cosh sin

sinh cos } sυ iinh [ sinh

cos { cosh sin sinh cos }]

x y z

y z x y z x yu

− ⋅

+ − ⋅ + ⋅

υ

υ υυ

i.e.,

 

z x y z x y z

x y z x

yy u

uu

= − ⋅ − ⋅ ⋅

+ ⋅ −

cosh cos sinh sin

cosh sin sinh cosh

υ

2 2 2 xx y y z

x y z

usin cos

sinh cos

⋅

+ ⋅
υ

υυ
2 2

 
(2)

Adding (1) and (2), we get 

z z x y x y z z

x y

xx yy uu+ = + +

= −

(sinh cos cosh sin )( )

{sinh ( sin

2 2 2 2

2 21

υυ

)) ( sinh )sin }( )

(sinh sin )( )

+ + +

= + +

1 2 2

2 2

x y z z

x y z z

uu

uu

υυ

υυ
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Example 2.8  Find d

d

y

x

, when (i) x3 + y3 = 3ax2y and (ii) xy + yx = c.

 (i) f (x, y) = x3 + y3 -3ax2y

 
p

f

x
x axy=

∂
∂

= −3 62

 

q
f

y
y ax=

∂
∂

= −3 32 2

 

d

d

y p

q

x axy

y ax

x ay x

y axx
= − = −

−
−

=
−

−
3 2

3

22

2 2 2 2

( )

( )

( )

(ii) f (x, y) = xy + yx - c

 
p

f

x
yx y yy x=

∂
∂

= +−1 log

 

q
f

y
x x xyy x=

∂
∂

= + −log 1

 

d

d

y

x

p

q

yx y x

xy x x

y x

x y
= − = −

+
+

−

−

1

1

log

log
.

Example 2.9 If ax2 + 2hxy + by2 = 1, show that 
d

d

2

2

2

3

y

x

h ab

hx by
=

−

+( )
.

f (x, y) = ax2 + 2hxy + by2 - 1

 

p
f

x
ax hy q

f

y
hx by=

∂
∂

= +( ) =
∂
∂

= +( )2 2;

 

r
f

x
a s

f

x y
h t

f

y
b=

∂
∂

= =
∂
∂ ∂

= =
∂
∂

=
2

2

2 2

2
2 2 2; ;

 

d

d

y

x

p

q

ax hy

hx by
= − = −

+( )
+

 

d

d

2

2

2 2

3

2y

x

p t pqs q r

q
=

− − +( )

(Refer to differentiation of implicit functions)

 

=
− +( ) − +( ) +( )+ +( ){ }

+( )

=
+

8 16 8

8

1

2 2

3

b ax hy h ax hy hx by a hx by

hx by

hx( bby
h ahx ab h xy bhy

a bx abhxy h by ah x

)
[ { ( ) }

{ } {

3

2 2 2

2 2 2 2 2 2

2

2

+ + +

− + + − + 22 2 2abhxy ab y+ }]
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=
+

− + − + −

=
−
+

1
2

3

2 2 2 2 2

2

( )
[ ( ) ( ) ( ) ]

( )

(

hx by
a h ab x h h ab xy b h ab y

h ab

hx byy
ax hxy by

h ab

hx by

h ab

hx by)
( )

( )

( ) ( )
.

3

2 2
2

3

2

3
2

1
+ + =

− ⋅
+

=
−
+

Example 2.10  Find 
d

d

u

x

 if (i) u = sin (x2 + y2), where a2x2 + b2y2 = c2 (i), u = tan-1 
y

x





  

where x2 + y2 = a2, by treating u as function of x and y only.

(i) u = sin (x2 + y2)

∴

 

d

d

d

d

d

d

u

x

u

x

u

y

y

x

x x y y x y
y

x

=
∂
∂

+
∂
∂

⋅

= +( )+ +( )2 22 2 2 2cos cos
 

(1)

Now a2x2 + b2y2 = c2

Differentiating with respect to x,

or

   

2 2 02 2

2

2

a x b y
y

x

y

x

a x

b y

+ =

= −

d

d

d

d
    

(2)

Using (2) in (1), we get

(ii)

 

d

d

u

x
x x y y x y

a x

b y

x x y b

= +( )+ +( )× −





= +( )

2 2

2

2 2 2 2
2

2

2 2

cos cos

cos 22 2 2

1

2

2

2

1

1

−( )
= 





=
∂
∂

+
∂
∂

⋅

=
+

−


−

a b

u
y

x

u

x

u

x

u

y

y

x

y

x

y

x

/

tan

d

d

d

d




+

+






⋅

= −
+

+
+

⋅

1

1

1
2

2

2 2 2 2

y

x

x

y

x

y

x y

x

x y

y

x

d

d

d

d
 

(3)

∴
 

x y a

x y
y

x

2 2 2

2 2 0

+ =

+ =
d

d
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or
 

d

d

y

x

x

y
= −

 

(4)

Using (4) in (3), we get

d

d

u

x

y

x y

x

x y

x

y

y

= −
+

+
+

−






= −

2 2 2 2

1 .

Example 2.11 If u = x2 - y2 and u = xy, find the values of 
∂
∂

∂
∂

∂
∂

x

u

x y

u
, ,

υ  and 
∂
∂

⋅
y

υ

x and y cannot be easily expressed as single valued functions or u and u.

Given x2 - y2 = u (1)

and xy = u (2)

Nothing that x and y are functions of u and u and differentiating both sides of (1) 

and (2) partially with respect to u, we have

 
2 2 1x

x

u
y

y

u

∂
∂

−
∂
∂

=
 

(3)

 
y

x

u
x

y

u

∂
∂

+
∂
∂

= 0
 

(4)

Solving (3) and (4), we get

 

∂
∂

=
+( )

∂
∂

= −
+( )

x

u

x

x y

y

u

y

x y2 22 2 2 2
and

Differentiating both sides of (1) and (2) partially with respect to u, we have

 
2 2 0x

x
y

y∂
∂

−
∂
∂

=
υ υ  

(5)

 
y

x
x

y∂
∂

+
∂
∂

=
υ υ

1
 

(6)

Solving (5) and (6), we get

 

∂
∂

=
+

∂
∂

=
+

x y

x y

y x

x yυ υ2 2 2 2
and .
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Example 2.12  If x2 + y2 + z2 - 2xyz = 1, show that

 

d d dx

x

y

y

z

z1 1 1
0

2 2 2−
+

−
+

−
= .

Let 
φ ≡ + + − − =x y z xyz2 2 2 2 1 0

 
(1)

∴ dφ = 0

i.e.,

 

∂
∂

+
∂
∂

+
∂
∂

=
φ φ φ

x
x

y
y

z
zd d d 0

 

(2)

i.e.,
 

2 2 2 0x yz x y zx y z xy z−( ) + −( ) + −( ) =d d d

Now

 

x yz x xyz y z

y z y z

y z

−( ) = − +

= − − +

= −( ) −( )

2 2 2 2

2 2 2 2

2 2

2

1 1

1 1

, ( ) from 

∴
 

x yz y z− = −( ) −( )1 12 2

Similarly,
 

y zx z x− = −( ) −( )1 12 2

and
 

z xy x y− = −( ) −( )1 12 2

Using these values in (2), we have

 
1 1 1 1 1 1 02 2 2 2 2 2−( ) −( ) + −( ) −( ) + −( ) −( ) =y z x z x y x y zd d d

Dividing by 1 1 12 2 2−( ) −( ) −( )x y z ,  we get

 

d d dx

x

y

y

z

z1 1 1
0

2 2 2−
+

−
+

−
= .

Example 2.13 The specific gravity s of a body is given by s
W

W W
=

−
1

1 2

 where W
1
 

and W
2
 are the weights of the body in air and in water respectively. Show that if there 

is an error of 1% in each weighing, s is not affected. But if there is an error of 1% in 

W
1
 and 2% in W

2
, show that the percentage error in s is W

W W

2

1 2−
.

s
W

W W
=

−
1

1 2

∴
 

log log logs W W W= − −( )1 1 2
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Taking differentials on both sides,

 

1 1 1

1

1

1 2

1 2
s

s
W

W
W W

dW dWd d= −
−

−( )

∴ The relation among the errors is nearly

 

1 1 1

1

1

1 2

1 2
s

s
W

W
W W

W W∆ ∆ ∆ ∆= −
−

−( )  (1)

or

 

100 100 1
100 1001

1 1 2

1 2

∆ ∆
∆ ∆

s

s

W

W W W
W W= −

−
−( )

 

(2)

 (i) Given that 100
1

100
11

1

2

2

∆ ∆W

W

W

W
= =and

Using these values in (2), we have

 

100
1

1
0

1 2

1 2

∆s

s W W
W W= −

−
−( ) =

∴ s is not affected, viz., there is no error in s.

(ii)  Given that 
100 100

21

1

2

2

∆ ∆W

W

W

W
= =1 and .  Using these values in (2), we have

 

100
1

1
2

1 2

1 2

2

1 2

∆s

s W W
W W

W

W W

= −
−

−( )

=
−

i.e., % error in s
W

W W
=

−
2

1 2

.

Example 2.14  The work that must be done to propel a ship of displacement D for a 

distance s in time t is proportional to s2 D3/2 ÷ t2. Find approximately the percentage 

increase of work necessary when the distance is increased by 1%, the time is 

diminished by 1% and the displacement of the ship is diminished by 3%.

Given that W = ks2 D3/2/t2, where k is the constant of proportionality.

∴
 

log log log log log .W k s D t= + + −2
3

2
2

Taking differentials on both sides,

d d d dW

W

s

s

D

D

t

t
= + −2

3

2
2
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∴ The relation among the percentage errors is approximately,

 

100
2

100 3

2

100
2

100∆ ∆ ∆ ∆W

W

s

s

D

D

t

t
= × + ⋅ − ×  (1)

Given that 
100

1
100

1
100

3
∆ ∆ ∆s

s

t

t

D

D
= = − = −, . and 

Using these values in (1), we have

 

100
2 1

3

2
3 2 1

0 5

∆W

W
= × + × −( )− × −( )
= − .

i.e., percentage decrease of work = 0.5.

Example 2.15  The period T of a simple pendulum with small oscillations is 

given by T
l

g
= 2π .  If T is computed using l = 6 cm and g = 980 cm/sec2, find 

approximately the error in T, if the values are l = 5.9 cm and g = 981 cm/sec2. Find 

also the percentage error.

   

T
l

g
= 2π

∴
 

log log log log logT l g= + + −2
1

2

1

2
π

Taking differentials on both sides,

 

1 1

2

1

2T
T

l
l

g
gd d d= −  (1)

∴

 

d d d

d d

T
l

g l
l

g
g

l
l

l

g g
g

= −








= −












=
⋅
×

2
1

2

1

2

1

0 1

5 9 98

π

π

π

g

. 11

5 9

981 981
1−

⋅
× −( )













i.e., Error in T = 0.0044 sec.
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% error in T
T

T
=

100d

 

= −








=
⋅
⋅

−
−( )








=

50

50
0 1

5 9

1

981

0 8984

d d
by (1)

l

l

g

g
,

.

Example 2.16  The base diameter and altitude of a right circular cone are measured 

as 4 cm and 6 cm respectively. The possible error in each measurement is 0.1 cm. 

Find approximately the maximum possible error in the value computed for the 

volume and lateral surface.

Volume of the right circular cone is given by V
D

h= ⋅





1

3 2

2

π

∴

 

d d dV D h Dh D= ⋅ + ⋅

= × + × × ×

π

π

12
2

12
16 0 1 2 4 6 0 1

2( )

{ . . }

i.e., Error in V = 1.6755 cm3.

Lateral surface area of the right circular cone is given by

 

S
D

l

D D h

=

= +

π

π

2

4
42 2

∴

 

d d d dS D
D h

D D h h D h D= ⋅
+

+ + +












=
+

× ⋅

π

π

4

1

2 4
2 8 4

4

4

16 144
4 0 1

2 2

2 2(

{ ++ × ⋅ + + × ⋅












=

24 0 1 16 144 0 1

1 6889 2

}

. .cm
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Example 2.17  
The side c of a triangle ABC is calculated by using the measured 

values of its sides a, b and the angle C. Show that the error in the side c is given by

∆ = ⋅∆ + ⋅∆ + ⋅∆c B a A b a B Ccos cos sin .

The side c is given by the formula

 
c a b ab C2 2 2 2= + − cos

 
(1)

Taking the differentials on both sides of (1),

i.e.,

 

2 2 2 2c c a a b b b C a

a C b ab C C

c
a b

∆ = ∆ + ∆ − ⋅∆{
+ ⋅∆ − ⋅∆ }

∆ =
−

cos

cos sin , nearly

ccos cos sinC a b a C b ab C C

c

( )∆ + −( )∆ + ⋅∆  (2)

Now b cos C + c cos B = a

∴

 

a b C

c
B

−
=

cos
cos

 

(3)

 a cos C + c cos A = b

∴
 

b a C

c
A

−
=

cos
cos

 

(4)

Also

 

b

B

c

C

b C c B

ab C

c
a B

sin sin

sin sin

sin
sin

=

=

=
 

(5)

Using (3), (4) and (5) in (2), we get

 
∆ = ⋅∆ + ⋅∆ + ⋅∆c B a A b a B Ccos cos sin

Example 2.18 The angles of a triangle ABC are calculated from the sides a, b, c. If 

small changes δa, δb, δc are made in the measurement of the sides, show that

 
δ δ δ δA

a
a b C c B=

∆
− −( )

2
cos cos

and δB and δC are given by similar expressions, where ∆ is the area of the triangle.

Verify that δA + δB + δC = 0.

In triangle ABC,

 
cos A

b c a

bc
=

+ −2 2 2

2  

(1)

∴

∴
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Taking differentials on both sides of (1),

 

− ⋅ = + −{ }− + −( ) +( )  ÷

=

2 2 2 2 2 2 2 2 2sin A A bc b b c c a a b c a b c c b b cδ δ δ δ δ δ

bb c c a c b bc b a b c abc a

b c

c a b c b b c

2 3 2 2 3 2

2 2

2 2 2

2− +( ) + − +( ) −

=
+ −( ) +

δ δ δ

δ 22 2 2

2 2

2

2

2 2 2

+ −( ) −

=
( ) + ( ) −

a b c abc a

b c

c ab C b b ca B c abc a

b

δ δ

δ δ δcos cos

cc2
,

by formulas similar to (1)

∴

 

= ⋅ + ⋅ −( )

= − ⋅ − ⋅( )

=

2

2

a

bc
C b B c a

A
a

bc A
a C b B c

a

cos cos

sin
cos cos

δ δ δ

δ δ δ δ

∆∆
− ⋅ − ⋅( ) ∆ =δ δ δa C b B c bc Acos cos , sinsince

1

2  

(2)

Similarly,

 
δ δ δ δB

b
b A c C a=

∆
− ⋅ − ⋅( )

2
cos cos

 

(3)

 
δ δ δ δC

c
c B a A b=

∆
− ⋅ − ⋅( )

2
cos cos

 

(4)

Adding (2), (3) and (4), we get

∴ 

2∆ + +( ) = − −( )
+ − −( ) + − −

δ δ δ δ

δ

A B C a b C c B a

b a C c A b c a B b

cos cos

cos cos cos ccos

cos cos .

A c

a a a b b b c c c

b C c B a

A

( )
= −( ) + −( ) + −( )

+ =( )
=

+

δ

δ δ δ

δ

∵ etc

0

δδ δB C+ = 0.

Example 2.19  The area of a triangle ABC is calculated from the lengths of the sides 

a, b, c. If a is diminished and b is increased by the same small amount k, prove that 

the consequent change in the area is given by
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δ ∆
∆

=
−

− −
2

2 2

( )

( )

a b k

c a b

The area of triangle ABC is given by

∴
 

∆ = − − − = + +

∆ = + − +

s s a s b s c s a b c

s s a

( )( )( ) ,

log {log log( ) log(

where 2

1

2
ss b s c− + −) log( )}

Taking differentials on both sides, we get

 

δ δ δ δ δ δ δ δ∆
∆

= +
−
−

+
−
−

+
−
−









1

2

s

s

s a

s a

s b

s b

s c

s c
 

(1)

Since  2 2s a b c s a b c= + + = + +, δ δ δ δ

 i.e.; 2ds = -k + k + 0 = 0, by the given data.

∴ ds = 0 (2)

Using (2) in (1), we have

 

δ∆
∆

=
−

−
−







=
+ −

−
+ −









= + +( )

= ×

1

2

2

2 2
2

2

k

s a

k

s b

k

b c a c a b
s a b c

k

∵

22

2
2 2

( ) ( )

[ ( )][ ( )]

( )

( )

c a b b c a

c a b c a b

k a b

c a b

+ − − + −
− − + −









=
−

− −

EXERCiSE 2(a)

Part A

(Short Answer Questions)

 1. What is meant by total differential? Why it is called so?

 2. If u = sin(xy2), express the total differential of u in terms of those of x and y.

 3. If u = xy.yx, express du in terms of dx and dy.

 4. If u = xy log xy, express du in terms of dx and dy.

 5. If u = axy, express du in terms of dx and dy.
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 6. Find d

d

u

t
, if u = x3 y2 + x2 y3, where x = at2, y = 2at.

 7. Find 
d

d
where

u
u e x a t y txy

t
, , , sin .if = = − =2 2 3

 8. Find 
d

d

u

t
, if u = log (x + y + z), where x = e-t, y = sin t, z = cos t.

 9. Find 
d

d

y

x
, using partial differentiation, if x3 + 3x2y + 6xy2 + y3 = 1.

10. If x sin (x - y) - (x + y) = 0, use partial differentiation to prove that

d

d

y y x x y

x x x yx
=

+ −
+ −

2

2

cos ( )

cos ( )
.

11. Find 
d

d

y

x
,  when u = sin (x2 + y2), where x2 + 4y2 = 9.

12. Find 
d

d

y

x
,  if u = x2y, where x2 + xy + y2 =1.

13. Define absolute, relative and percentage errors.

14. Using differentials, find the approximate value of 15 .

15.  Using differentials, find the approximate value of 2x4 + 7x3 - 8x2 + 3x + 1 

when x = 0.999.

16.  What error in the common logarithm of a number will be produced by an 

 error of 1% in the number?

17.  The radius of a sphere is found to be 10 cm with a possible error of 0.02 cm. 

Find the relative errors in computing the volume and surface area.

18.  Find the percentage error in the area of an ellipse, when an error of 1% is 

made in measuring the lengths of its axes.

19.  Find the approximate error in the surface of a rectangular parallelopiped of 

sides a, b, c  if an error of k is made in measuring each side.

20.  If the measured volume of a right circular cylinder is 2% too large and the 

measured length is 1% too small, find the percentage error in the calculated 

radius.

Part B

21. If u = f (x - y, y - z, z - x), prove that ∂
∂

+
∂
∂

+
∂
∂

=
u

x

u

y

u

z
0.

22.  If f is a function of u, u, w, where u yz= ,  u= =zx w xy, and  show 

that

 
u

f

u
x

f

x

∂
∂

=
∂
∂∑ ∑ .
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23. If f = f y x

xy

z x

zx

− −





, , show that x
f

x
y

f

y
z

f

z

2 2 2 0
∂
∂

+
∂
∂

+
∂
∂

= .

24. If u = f (x2 + 2yz, y2 + 2zx), prove that

 

y zx
u

x
x yz

u

y
z xy

u

z

2 2 2 0−( ) ∂
∂

+ −( ) ∂
∂

+ −( ) ∂
∂

= .

25. If  f (cx – az, cy – bz) = 0, where z is a function of x and y, prove that

 

a
z

x
b

z

y
c

∂
∂

+
∂
∂

= .

26. If  z = f (u, u), where u = x + y and u = x – y, show that 2
∂
∂

=
∂
∂

+
∂
∂

z

u

z

x

z

y
.

27. If  z = f (x, y), where x = u2 + u2, y = 2uu, prove that

 
u

z

u

z
x y

z

x

∂
∂

−
∂
∂

= −
∂
∂

υ
υ

2 2 2( ) .

28. If  z = f (x, y), where x = u + u, y = uu, prove that 

 

u
z

u

z
x

z

x
y

z

y

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

υ
υ

2 .

29. If  x = r cos q, y = r sin q, prove that the equation 
∂
∂

+
∂
∂

=
u

x

u

y
0  is equivalent 

to ∂
∂

+ −




∂
∂

=
u

r r

u1

4
0tan .

π
θ

θ

30. If  z = f(u, u), where u = x2 – 2xy - y2 and u = y, show that the equation 

x y
z

x
x y

z

y
+( ) ∂

∂
+ −( ) ∂

∂
= 0 is equivalent to 

∂
∂

=
z

υ
0..

31. If z = f (u, u), where u = x2 - y2 and u = 2xy, prove that

 

∂
∂







+
∂
∂







= +
∂
∂







+
∂
∂









z

x

z

y
x y

z

u

z
2 2

2 2

2 2

4( )
υ






.

32. If z = f (u, u), where u = x2 - y2 and u = 2xy, show that

 
∂
∂

+
∂
∂

= +
∂
∂

+
∂
∂







2

2

2

2

2 2
2

2

2

2
4

z

x

z

y
x y

z

u

z
( ) .

υ
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33.  If z = f (x, y) where x = X cos a - Y sin a and y = X sin a + Y cos a, show that

 

∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂

2

2

2

2

2

2

2

2

z

x

z

y

z

X

z

Y
.

34.  If z = f (u, u), where u = lx + my and u = ly - mx, show that

 

∂
∂

+
∂
∂

= +
∂
∂

+
∂
∂







2

2

2

2

2 2
2

2

2

2

z

x

z

y
l m

z

u

z
( ) .

υ

35. By changing the independent variables x and t to u and u by means of the trans-

formations u = x - at and u = x + at, show that a
y

x

y

t
a

y

u

2
2

2

2

2

2
2

4
∂
∂

−
∂
∂

=
∂

∂ ∂υ
.

36.  By using the transformations u = x + y and u = x - y, change the independent 

variables x and y in the equation 
∂
∂

−
∂
∂

=
2

2

2

2
0

z

x

z

y
 to u and u.

37.  Transform the equation 
∂
∂

+
∂
∂ ∂

+
∂
∂

=
2

2

2 2

2
2 0

z

x

z

x y

z

y
 by changing the independent 

variables using u = x - y and u = x + y.

38.  Transform the equation x
z

x
xy

z

x y
y

z

y

2
2

2

2
2

2

2
2 0

∂
∂

+
∂
∂ ∂

+
∂
∂

= , by changing the  

independent variables using u = x and υ =
y

x

2

.

39.  Transform the equation 
∂
∂

−
∂
∂ ∂

+
∂
∂

=
2

2

2 2

2
5 6 0

z

x

z

x y

z

y
,  by changing the indepen-

dent variables using u = 2x + y and u = 3x + y.

40.  Transform the equation 
∂
∂

+
∂
∂

=
2

2

2

2
0

u

x

u

y
, by changing the independent variables 

using z = x + iy and z* = x – iy, where i = − 1.

41.  Use partial differentiation to find 
d

d

y

x
, when (i) xy = yx; (ii) xmyn =  

(x + y)
m + n

; (iii) (cos x)
y
 = (sin y)x; (iv) (sec x)

y
 = (cot y)x; (v) xy = ex - y.

42.  Use partial differentiation to find 
d

d

2

2

y

x
,  when x3 + y3 -3axy = 0.
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43.  Use partial differentiation to find
 d

d

2 y

x2
,
 
when x4 + y4 = 4a2xy.

44. Use partial differentiation to prove that d

d

2
y

x

abc fgh af bg ch

hx by f
2

2 2 2

3

2
=

+ − − −

+ +( )
,  

when ax2 + 2hxy + by2 + 2gx + 2fy + c = 0.

45.  Use partial differentiation to prove that 
d

d

2

2

2

3

y

x

b ac

ay b
=

−
+( )

,  when ay2 + 2by + c
 

= x2.

46.  If x2 – y2 + u2+ 2u2 = 1 and x2 + y2 – u2 – u2 = 2, prove that ∂
∂

=
u

x

x

u

3  and 

∂
∂

=−
υ

υx

x2
.

47.  The deflection at the centre of a rod of length l and diameter d supported at its 

ends and loaded at the centre with a weight w is proportional to wl3/d4. What 

is the percentage increase in the deflection, if the percentage increases in w, l 

and d are 3, 2 and 1 respectively.

48  The torsional rigidity of a length of wire is obtained from the formula 

N
Il

t r
=

8
2 4

π
.  If l is decreased by 2%, t is increased by 1.5% and r is increased 

by 2%, show that the value of N is decreased by 13% approximately.

49.  The Current C measured by a tangent galvanometer is given by the relation 

C = k tan q, where q is the angle of deflection. Show that the relative error in 

C due to a given error in q is minimum when q = 45°.

50.  The range R of a projectile projected with velocity u at an elevation q is given 

by R
g

=
υ 2

 sin 2q. Find the percentage error in R due to errors of 1% in u and

1

2
% in q, when θ

π
=

6
.

51.  The velocity u of a wave is given by υ
λ

π

π

ρλ
2

2

2
= +

g T
,  where g and l are con-

stants and r and T are variables. Prove that, if r is increased by 1% and T is 

decreased by 2%, then the percentage decrease in u is approximately 
3

2

π

λρυ

T
.

52.  The focal length of a mirror is given by the formula 
1 1 1

f u
= −
υ

.  If equal  

errors k are made in the determination of u and u, show that the percentage 

error
 
in f is 100k 1 1

u
+



υ

.
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53.  A closed rectangular box of dimensions a, b, c has the edges slightly altered 

in length by amounts ∆a, ∆b and ∆c respectively, so that both its volume and 

surface area remain unaltered. Show that 
∆

−
=

∆
−

=
∆
−

a

a b c

b

b c a

c

c a b2 2 2( ) ( ) ( )
.  

[Hint: Solve the equations dV = 0 and dS = 0 for ∆a, ∆b, ∆c using the method 

of cross-multiplication]

54.  If a triangle ABC is slightly disturbed so as to remain inscribed in the same 

circle, prove that

 

∆
+

∆
+

∆
=

a

A

b

B

c

Ccos cos cos
.0

55.  The area of a triangle ABC is calculated using the formula ∆ =
1

2
 bc sin A. 

Show that the relative error in ∆ is given by

δ δ δ
δ

∆
∆

= + +
b

b

c

c
A Acot .

If an error of ′5  is made in the measurement of A which is taken as 60°, find 

the percentage error in ∆.

56.  Prove that the error in the area Δ of a triangle ABC due to a small error in the 

measurement of c is given by

 

δ δ∆ =
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57.  The area of a triangle ABC is determined from the side a and the two angles B 

and C. If there are small errors in the values of B and C, show that the result-

ing error in the calculated value of the area ∆ will be 
1

2

2 2( ).c B b C∆ + ∆
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sin sin

sin( )
∆ =

+
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B C

2.2.3 taylor’s Series Expansion of a Function of two Variables

Students are familiar with Taylor’s series of a function of one variable viz. f (x + h) =

f x
h

f x
h

f x( )
!

( )
!

( ) ,+ ′ + ′′ + ∞
1 2

2

 which is an infinite series of powers of h. This idea 

can be extended to expand f (x + h, y + k) in an infinite series of powers of h and k.
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Statement

If f (x, y) and all its partial derivatives are finite and continuous at all points (x, y), then

f x h y k f x y h
x

k
y
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y
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Proof:

If we assume y to be a constant, f (x + h, y + k) can be treated as a function of x only.

Then f x h y k f x y k
h f x y k

x

h f x y k

x
( , ) ( , )

!

( , )
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( , ) ...+ + = + +
∂ +

∂
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∂ +
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Now treating x as a constant,
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Using (2) in (1), we have
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(3)

Interchanging x and h and also y and k in (3) and then putting h = k = 0, we have
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Series in (4) is the Maclarin’s series of the function f (x, y) in powers of x and y. 

Another form of Taylor’s series of f (x, y)

f x y f a x a b y b

f a h b k
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(5)

(5) is called the Taylor’s series of f (x, y) at or near the point (a, b).

Thus the Taylor’s series of f (x, y) at or near the point (0, 0) is Maclaurins series 

of f (x, y).

2.3 JACOBiAnS

If u and u are functions of two independent variables x and y, then the determinant

∂
∂

∂
∂

∂
∂

∂
∂

u

x

u

y

x y

υ υ

is called the Jacobian or functional determinant of u, u with respect to x and y and 

is written as
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Similarly the Jacobian of u, u, w with respect to x, y, z is defined as
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Note  

1.  To define the Jacobian of n dependent variables, each of these must be a func-

tion of n independent variables.

2.  The concept of Jacobians is used when we change the variables in multiple 

integrals. (See property 4 given below)

2.3.1 Properties of Jacobians

1. If u and u are functions of x and y, then ∂
∂

×
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Proof:

Let u = f(x, y) and u = g(x, y). When we solve for x and y, let

 x = f (u, u) and y = ψ(u, u).

Then
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by interchanging the rows 

and columns of the 

second determinant.
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2. If u and u functions of r and s, where r and s are functions of x and y, then
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Note  The two properties given above hold good for more than two variables too.

3. If u, u, w are functionally dependent functions of three independent variables

 

x y z
u w

x y z
, ,

( , , )

( , , )
.then

∂
∂

=
υ

0

Note  The functions u, u, w are said to be functionally dependent, if each can be 

expressed in terms of the others or equivalently f (u, u, w) = 0. Linear dependence of 

functions is a particular case of functional dependence.

Proof:

Since u, u, w are functionally dependent, f (u, u, w) = 0 (1)

Differentiating (1) partially with respect to x, y and z, we have
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, by rewriting the second determinant.
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Equations (2), (3) and (4) are homogeneous equations in the unknowns f
u
, f

u
, f

w
.  

At least one of f
u
,  f

u
 and f

w
 is not zero, since if all of them are zero, then f (u, u, w) ≡ 

constant, which is meaningless.

Thus the homogeneous equations (2), (3) and (4) possess a non-trivial solution. 

∴ Matrix of the coefficients of f
u
, f

u 
, f

w
 is singular.

i.e.,
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Note  The converse of this property is also true. viz., if u, u, w are functions of 

x, y, z such that 
∂
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=
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υ
0  then u, u, w are functionally dependent. i.e., there 

exists a relationship among them.

4.  If the transformations x = x(u, u) and y = y(u, u) are made in the double  

integral f x y x y( , ) ,d d∫∫ then f(x, y) = F(u, u) and d d d dx y J u= υ, where 

J
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Proof:

dx dy = Elemental area of a rectangle with vertices (x, y), (x + dx, y), (x + dx, y + dy) 

and (x, y + dy)

This elemental area can be regarded as equal to the area of the parallelogram with 
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Since both dx dy and du du are positive, d d d dx y J u= υ,  where J
x y

u
=

∂
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( , )
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Similarly, if we make the transformations
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in the triple integral f x y z x y z( , , ) ,d d d∫∫∫  then d d d d d dx y z J u w= υ ,  where 

J
x y z

u w
=

∂
∂

( , , )

( , , )
.

υ

2.4 DiFFEREntiAtiOn UnDER tHE intEGRAL SiGn

When a function f(x, y) of two variables is integrated with respect to y partially, viz., 

treating x as a parameter, between the limits a and b, then f x y y
a

b

( , )∫ d  will be a 

function of x.

Let it be denoted by F(x).

Now to find F ' (x), if it exists, we need not find F(x) and then differentiate it with 

respect to x. F ' (x) can be found out without finding F(x), by using Leibnitz’s rules, 

given below:

1. Leibnitz’s rule for constant limits of integration

If f (x, y) and ∂
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where

a and b are constants independent of x.
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Proof:

Let f x y y F x
a

b

( , ) ( ).d =∫
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Taking limits on both sides of (1) as ∆x → 0,
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2. Leibnitz’s rule for variable limits of integration

If f(x, y) and ∂
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provided a(x) and b(x) possess 

continuous first order derivatives.

Proof:

Let f x y y F x y( , ) ( , ),d =∫ so that 
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WORKED EXAMPLE 2(b)

Example 2.1  Expand ex cos y in powers of x and y as far as the terms of the third 

degree.
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Taylor’s series of f (x, y) in powers of x and y is
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2.4.1  Verification
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by exponential theorem
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Example 2.2  Expand ( )( )x h y k

x h y k

+ +
+ + +

 in a series of powers of h and k upto the 

second degree terms.

Let f x h y k
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∴
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Taylor’s series of f (x + h, y + k) in powers of h and k is
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Using these values in (1), we have
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Example 2.3  Find the Taylor’s series expansion of x
y
 near the point (1, 1) upto the 

second degree terms.

Taylor’s series of f (x, y) near the point (1, 1) is f x y f, ,
!
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Using these values in (1), we get
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Example 2.4  Find the Taylor’s series expansion of ex sin y near the point −





1
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upto the third degree terms.
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Example 2.5 Find the Taylor’s series expansion of x2 y2 + 2x2 y + 3xy2 in powers of 

(x + 2) and (y - 1) upto the third powers.

Taylor’s series of f (x, y) in powers of (x + 2) and (y - 1) or near (-2, 1) is
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Using these values in (1), we have
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Example 2.6  Using Taylor’s series, verify that
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Maclaurin’s series of f (x, y) is given by
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= +( )− +( ) + +( ) −⋅⋅⋅x y x y x y
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1

3

2 3

Example 2.7  If x = r cos q, y = r sin q, verify that ∂( )
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Example 2.8  If we transform from three dimensional cartesian co-ordinates 

(x, y, z) to spherical polar co-ordinates (r, q, f), show that the Jacobian of x, y, z with 

respect to r, q, f is r2 sin q.

∴

∴

Similarly,
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The transformation equations are

   
x r y r z r= = =sin cos , sin sin , cos .θ φ θ φ θ
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Example 2.9  If u = 2xy, u = x2 – y2, x = r cos q and y = r sin q, compute 
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By the property of Jacobians,
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Example 2.11  Express ∫ ∫ ∫ − − −xyz x y z( )1  dx dy dz in terms of u, u, w given that 

x + y + z = u, y + z = uu and z = uuw.
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The given transformations are

 x + y + z = u (1)

 y + z = uu (2)

and z = uuw (3)

Using (3) in (2), we have y = uu(1 – w)

Using (2) in (1), we have x = u(1 – u)

    dx dy dz = ׀J׀ du du dw, where
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Using (1), (2), (3) and (4) in the given triple integral I, we have
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Example 2.12  Examine if the following functions are functionally dependent. If 

they are, find also the functional relationship.

  (i) u x y x y y x= + = − + −− −sin sin ;1 1 2 21 1υ

 (ii) u y z x z w x yz y= + = + = − −; ;υ 2 4 22 2

  (i) u x y x y y x= + = − + −− −sin sin ;1 1 2 21 1υ
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∴ u and u are functionally dependent by property (3).
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∴ The functional relationship between u and u is u = sin u.
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y z y

υ
0 1 1

1 0 4

1 4 4 4
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=− − + +{ }+ =4 4 4 4 0y y z z .

∴ u, u and w are functionally dependent

Now υ − = + +

= +( ) =

w z yz y

y z u

2 4 2

2 2

2 2

2 2

∴ The functional relationship among u, u and w is 2u2 = u - w.

Example 2.13 Given that 
dx

a b x a b
a b

+
=

−
( )∫ cos

,
0

2 2

π
π

>  find

 

d
and

d

x

a b x

x x

a b x

x

a b x a b

+( ) +( )

+
=

−

∫ ∫

∫

cos

cos

cos

cos

2

0

2

0

2 2
0

π π

π
π

d

 

(1)

Differentiating both sides of (1) with respect to a, we get

∂
∂ +







=
∂
∂

⋅
−

∫ a a b x
x

a a b

1

2 2
0

cos
,d

π
π

 since the limits of integration are constants

i.e., 
−

+( )
= × − −( )−∫

dx

a b x
a b a

cos
/

/

2

2 2
3 2

0

1 2 2π
π

i.e., 
dx

a b x

a

a b+( )
=

−( )∫
cos

/2
2 2

3 2

0

π
π

Differentiating both sides of (1) with respect to b, we get

  
∂
∂ +







=
∂
∂

⋅
−

∫ b a b x
x

b a b

1

0
2 2cos

d

π
π

i.e.,

 

−
+( )

× = ×− −( ) −( )∫
−1

1 2 2
2

0

2 2
3 2

a b x
x x a b b

cos
cos /

/
π

πd

i.e.,

 

cos

cos
.

/

x

a b x
x

b

a b+( )
= −

−( )∫ 2
2 2

3 2

0

d
π

π
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Example 2.14  By differentiating inside the integral, find the value of 
log

.
1

1 2

0

+( )
+∫

xy

y
y

x

d

Hence find the value of log
.

1

1 2

0

1 +( )
+∫

x

x
xd

Let  f x
xy

y
y

x

( ) =
+( )

+∫
log 1

1 2

0

d  (1)

Differentiating both sides of (1) with respect to x, we have

′ ( ) =
+( )

+

=
∂
∂

+( )
+









+

∫

∫

f x
x

xy

y
x

x

xy

y
x

x

x

d

d
d

d

log

log lo

1

1

1

1

2

0

2

0

gg

log

1

1

1 1

1

2

2

2

+( )
+

⋅
( )

( )

=
+( ) +( ) +

x

x

x

x

y

xy y
y

d

d

by Leibnitz's rule

d
++( )

+

=
−

+( ) +( )
+

+
+

+


















∫

∫

x

x

x

x xy x

y x

y

x

x

2

2

0

2 2 2

0

1

1 1

1

1 1
ddy

x

x
+

+( )
+

log
,

1

1

2

2

by resolving the integrand in the first term into partial fractions

 

= −
+

+( )+ ⋅
+

+( )+
+









 +−1

1
1

1

2

1

1
1

12 2

2

2

1

0
x

xy
x

y
x

x
y

x

log log tan
log 11

1

1

2

1

1
1

1

2

2

2

2

2

1

+( )
+

= ⋅
+

+( )+
+

−

x

x

x
x

x

x
xlog tan

 

(2)

Integrating both sides of (2) with respect to x, we have

f x x x
x

x
x x c

x x

( ) = +( ) ( )+
+

+

= +

− −

−

∫∫
1

2
1

1

1

2
1

2 1

2

1

1

log tan tan

tan log

d d

22 1

2

1

2

2

1

1

( )− ⋅
+











+
+

+

−

−

∫

∫

tan

tan

x
x

x
x

x x

x
x c

d

d
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= ⋅ +( )+−1

2
11 2tan logx x c  (2)

Now putting x = 0 in (2), we get

 c = f(0) = 0, by (1)

∴

 

f x
xy

y
y x x

x

( ) =
+( )

+
= ⋅ +( )∫ −log

tan log
1

1

1

2
1

2

0

1 2d  (3)

Putting x = 1 in (3), we get

 

log
tan log

log

1

1

1

2
1 2

8
2

2

0

1

1
+( )

+
= ( ) ⋅

=

∫ −y

y
yd

π

Since y is only a dummy variable,

 

log
log

1

1 8
2

2

0

1 +( )
+

=∫
x

x
xd

π

Example 2.15 Show that 
d

d
d

a

x

a
x a a a

a

tan tan log− −





= ( )− +( )∫ 1

0

1 2

2

2
1

2
1 .

 

d

d
d d

d

da

x

a
x

a

x

a
x

a

a a
atan tan tan− − −





=
∂
∂







+





⋅1 1 1

2
2(( )

=
+

⋅
−





+

∫∫

∫

,

ta

00

2

2
0

2

22

2

1

1

2

aa

a

x

a

x

a
x a

by Leibnitz's rule

d nn

tan

log tan

−

−

−

= −
+

+

=− +( )  +

∫

1

2 2

0

1

2 2

0

1

2

2

2

1

2
2

a

x

x a
x a a

x a a a

a

a

d
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= −
+




+

= − +( )

−

−

1

2
2

2
1

2
1

4 2

2

1

1 2

log tan

tan log

a a

a
a a

a a a

Example 2.16 If I e x
x

a

x=
− −





∞

∫
2

2

0

d , prove that 
d

d

I

a
I= − 2 . Hence find the value of I.

 

I e x
x

a

x=
− −





∞

∫
2

2

0

d

. 

(1)

Differentiating both sides of (1) with respect to a, we have

 

d

d
d

d

I

a a
e x

e
a

x

x
a

x

x
a

x

=
∂
∂













= ⋅ −





∞ − −

− −∞

∫

∫

0

0

2

2
2

2

2
2

2 2
xx

e y x
a

y
y

a

x

e

a

y
y

y
a

y

= = =

=−

− −

∞

− −






∞

∫

∫

2

2

2

2

2

0

0

2

2

d on putting or,

ddy

i.e., 
d

d

I

a
I=− 2  (2)

∴

 

d
d

I

I
a=− 2

Solving, we get log I = log c – 2a

∴ I = ce-2a (3)

When a I e xx= = =−
∞

∫0
2

2

0

, d
π

 (4)

Using (4) in (3), we get
 
c =

π

2
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Hence I e a= −π

2

2 .

EXERCiSE 2(b)

Part A

(Short Answer Question )

 1.  Write down the Taylor’s series expansion of f (x + h, y + k) in a series of (i) 

powers of h and k (ii) power of x and y.

 2.  Write down the Maclaurin’s series expansion of (i) f (x, y), (ii) f (x + h, y + k).

 3. Write down the Taylor’s series expansion of f (x, y) near the point (a, b).

 4. Write down the Maclaurin’s series for e x + y.

 5. Write down the Maclaurin’s series for sin (x + y).

 6. Define Jacobian.

 7. State any three properties of Jacobians.

 8.  State the condition for the functional dependence of three functions u(x, y, z), 

u(x, y, z) and w(x, y, z).

 9. Prove that f x y x y f r r r r, cos , sin .( ) = ( ) ⋅∫∫ ∫∫d d d dθ θ θ

10. Show that f x y x y f u u u u, ( ), .( ) = −{ } ⋅∫ ∫∫∫ d d d d1 υ υ υ

11.  If x = u (1 + u) and y = u(1 + u), find the Jacobian of x, y with respect to u, u.

12.  State the Leibnitz’s rule for differentiation under integral sign, when both the 

limits of integration are variables.

13.  Write down the Leibnitz’s formula for 
d

d
d

x
f x y y

a

b x

( , ) ,

( )

∫  where a is a con-

stant.

14.  Write down the Leibnitz’s formula for 
d

d
d

x
f x y y

a x

b

( , ) ,
( )
∫  where b is a 

 constant.

15. Evaluate 
d

d
d

y
x y xlog( ) ,2 2

0

1

+∫ without integrating the given function.

Part B

16. Expand ex sin y in a series of powers of x and y as far as the terms of the third 

degree.

17.  Find the Taylor’s series expansion of ex cos y in the neighbourhood of the 

point 1
4

,
π



  upto the second degree terms.
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18.  Find the Maclaurin’s series expansion of ex log (1 + y) upto the terms of the 

third degree.

19.  Find the Taylor’s series expansion of tan− 





1 y

x
 in powers of (x - 1) and (y - 1) 

upto the second degree terms.

20.  Expand x2y + 3y - 2 in powers of (x - 1) and (y + 2) upto the third degree 

terms.

21.  Expand xy2 + 2x - 3y in powers of (x + 2) and (y - 1) upto the third degree 

terms.

22.  Find the Taylor’s series expansion of yx at (1, 1) upto the second  degree 

terms.

23.  Find the Taylor’s series expansion of e xy at (1, 1) upto the third degree 

terms.

24. Using Taylor’s series, verify that

cos ( )
( )

!

( )

!
x y

x y x y
+ = −

+
+

+
−⋅⋅⋅ ∞1

2 4

2 4

25. Using Taylor’s series, verify that

tan ( ) ( ) ( )− + = + + + ⋅⋅⋅ ∞1 31

3
x y x y x y

26. If x = u (1 - u), y = uu, verify that

∂
∂

×
∂
∂

=
( , )

( , )

( , )

( , )

x y

u

u

x yυ

υ
1

27.  (i)  if x = u2 – u2 and y = 2uu, find the Jacobian of x and y with respect to u 

and u.

 (ii) if u = x2 and u = y2, find ∂
∂

( , )

( , )

u

x y

υ

28. If x = a cosh u cos u and y = a sinh u . sin u, show that

∂
∂

= −
( , )

( , )
(cosh cos ).

x y

u

a
u

υ
υ

2

2
2 2

29. If x = r cos q, y = r sin q, z = z, find ∂
∂
( , , )

( , , )

x y z

r zθ

30.  If F = xu + u – y, G = u2 + uy + w and H = zu – u + uw, compute 

∂
∂
( , , )

( , , )
.

F G H

u wυ

31. If u = xyz, u = xy + yz + zx and w = x + y + z, find

 

∂( )
∂( )

u w

x y z

, ,

, ,

υ
.

32.  Examine the functional dependence of the functions u
x y

x y
=

+
−

 and  

υ =
−
xy

x y( )
.

2
 If they are dependent, find the relation between them.
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33.  Are the functions u
x y

xy
=

+
−1

 and u = tan-1 x + tan-1 y functionally  dependent? 

If so, find the relation between them.

34.  Are the functions f
1 
= x + y + z, f

2
 = x2 + y2 + z2 and f

3
 = xy + yz + zx function-

ally dependent? If so, find the relation among f
1
, f

2
 and f

3
.

35.  If λ λλ λe f y y xe
x y

x

x− −( ) −= ⋅∫ ( )d

0

2
 prove that f (x) =

 

λ λe x−
. [Hint: Differentiate 

both sides with respect to x].
Use the concept of differentiation under integral sign to evaluate the following:

36. 
d

Use
d

0

x

x a

x

x a

x x

( )2 2 2

0

2 2+ +




∫ ∫Hint:

37. x x x x xm n m

0

1

∫ ∫



(log ) d Use d

0

1

Hint:

38. e ax xx−
∞

∫
2

0

2cos d

39. 
e x

x
x

x

x
x

ax−

∫ ∫
sin sin

d dand hence
0 0

∞ ∞

40. 
x

x
x m

m −
≥ ⋅∫

1
0

0

1

log
,d .

2.5  MAXiMA AnD MiniMA OF FUnCtiOnS OF tWO 

VARiABLES

Students are familiar with the concept of maxima and minima of a function of one 

variable. Now we shall consider the maxima and minima of a function of two variables.

A function f (x, y) is said to have a relative maximum (or simply maximum) at 

x = a and y = b, if f (a, b) > f (a + h, b + k) for all small values of h and k.

A function f(x, y) is said to have a relative maximum (or simply maximum) at 

x = a and y = b, if f(a, b) < f (a + h, b + k) for all small values of h and k.

A maximum or a minimum value of a function is called its extreme value. We give 

below the working rule to find the extreme values of a function f (x, y):

(1) Find ∂
∂
f

x
 and ∂

∂
f

y
.
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(2)  Solve the equations ∂
∂

=
f

x
0 and ∂

∂
=

f

y
0 simultaneously. Let the solutions be 

(a, b); (c, d);…

Note  The points like (a, b) at which 
∂
∂

=
f

x
0 and 

∂
∂

=
f

y
0  are called stationary 

points of the function f (x, y). The values of f (x, y) at the stationary points are called 

stationary values of f (x, y).

(3)  For each solution in step (2), find the values of A
f

x
B

f

x y
C

f

y
=

∂
∂

=
∂
∂

=
∂
∂

2

2

2 2

2
, ,

d
 

and ∆ = AC - B2.

(4) (i)  If ∆ > 0 and A (or C) < 0 for the solution (a, b) then f (x, y) has a maximum 

value at (a, b).

 (ii)  If ∆ > 0 and A (or C) > 0 for the solution (a, b) then f (x, y) has a minimum 

value at (a, b).

 (iii)  If ∆ < 0 for the solution (a, b), then f (x, y) has neither a maximum nor a 

minimum value at (a, b). In this case, the point (a, b) is called a saddle 

point of the function f (x, y).

 (iv)  If ∆ = 0 or A = 0, the case is doubtful and further investigations are required 

to decide the nature of the extreme values of the function f (x, y).

2.5.1 Constrained Maxima and Minima

Sometimes we may require to find the extreme values of a function of three (or more) 

variables say f (x, y, z) which are not independent but are connected by some given 

relation f (x, y, z) = 0. The extreme values of f (x, y, z) in such a situation are called 

constrained extreme values.

In such situations, we use f (x, y, z) = 0 to eliminate one of the variables, say 

z from the given function, thus converting the function as a function of only two 

variables and then find the unconstrained extreme values of the converted function. 

[Refer to examples (2.8), (2.9), (2.10)].

When this procedure is not practicable, we use Lagrange’s method, which is 

comparatively simpler.

2.5.2 Lagrange’s Method of Undetermined Multipliers

Let u f x y z= ( ), ,  (1)

be the function whose extreme values are required to be found subject to the 

constraint

 
φ x y z, ,( ) = 0

 
(2)

The necessary conditions for the extreme values of u are ∂
∂

=
∂
∂

=
∂
∂

=
f

x

f

y

f

z
0 0 0, and
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∴ ∂
∂

+
∂
∂

+
∂
∂

=
f

x
x

f

y
y

f

z
zd d d 0  (3)

From (2), we have

 

∂
∂

+
∂
∂

+
∂
∂

=
φ φ φ

x
x

y
y

z
zd d d 0

 

(4)

Now (3) + λ × (4), where λ is an unknown multiplier, called Langrange multiplier, 

gives

 

∂
∂

+
∂
∂







+
∂
∂

+
∂
∂







+
∂
∂

+
∂
∂







=
f

x x
x

f

y y
y

f

z z
λ

φ
λ

φ
λ

φ
d d 0

 

(5)

Equation (5) holds good, if

 

∂
∂

+
∂
∂

=
f

x x
λ

φ
0  (6)

 

∂
∂

+
∂
∂

=
f

y y
λ

φ
0  (7)

 

∂
∂

+
∂
∂

=
f

z z
λ

φ
0  (8)

Solving the Equations (2), (6), (7) and (8), we get the values of x, y, z, λ, which give 

the extreme values of u.

Note 

 (1)  The Equations (2), (6), (7) and (8) are simply the necessary conditions for 

the extremum of the auxiliary function (f + λf), where λ is also treated as 

a variable.

 (2)  Lagrange’s method does not specify whether the extreme value found out 

is a maximum value or a minimum value. It is decided from the physical 

consideration of the problem.

WORKED EXAMPLE 2(c)

Example 2.1  Examine f (x, y) = x3 + 3xy2 - 15x2 - 15y2 + 72x for extreme values.

f x y x xy x y x

f x y x

f xy y

f

x

y

xx

( , ) = + − − +

= + − +

= −

3 2 2 2

2 2

3 15 15 72

3 3 30 72

6 30

== − = = −6 30 6 6 30x f y f xxy y; ;
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The stationary points are given by f 
x
 = 0 and  f 

y
 = 0

i.e., 3 10 24 02 2( )x y x+ − + =      (1)

and 
6 5 0y x( )− =  

    (2)

From (2), x = 5 or y = 0 

When x = 5, from (1), we get y2 - 1 = 0; ∴ y = ± 1

When y = 0, from (1), we get x2 - 10x + 24 = 0

∴ x = 4, 6.

The stationary points are (5, 1), (5, -1), (4, 0) and (6, 0)

At the point (5, ±1), A = f
xx

 = 0; B = f
xy

 = ±6; C = f
yy

 = 0 

Though AC - B2 < 0, A = 0

∴ Nothing can be said about the maxima or minima of f (x, y) at (5, ±1).

At the point (4, 0), A = -6, B = 0, C = -6

∴ AC - B2 = 36 > 0 and A < 0

∴ f (x, y) is maximum at (4, 0) and maximum value of f (x, y) = 112.

At point (6, 0), A = 6, B = 0, C = 6

∴ AC - B2 = 36 > 0 and A > 0.

∴ f (x, y) is minimum at (6, 0) and the minimum value of f (x, y) = 108.

Example 2.2  Examine the function f (x, y) = x3y2(12 - x - y) for extreme values.

f x y x y x y x y

f x y x y x y

f x y

x

y

( , ) = − −

= − −

= −

12  

 4  

 2

3 2 4 2 3 3

2 2 3 2 2 3

3

36 3

24 xx y x y

f xy x y xy

f x y x y x y

f

xx

xy

yy

4 3 2

2 2 2 3

2 3 2 2

3

72 6

72 9

2

−

= − −

= − −

=

 12

 8

44 63 4 3x x x y− − 2

The stationary points are given by f
x
 = 0;  f

y
 = 0

i.e., x2 y2 (36 - 4x - 3y) = 0  (1)

and x3 y (24 - 2x - 3y) = 0 (2)

Solving (1) and (2), the stationary points are (0, 0), (0, 8), (0, 12), (12, 0), (9, 0) 

and (6, 4).

At the first five points, AC - B2 = 0.

∴ Further investigation is required to investigate the extremum at these points. At 

the point (6, 4),  A = -2304, B = -1728, C = -2592 and AC - B2 > 0.

Since AC – B2 > 0 and A < 0,  f (x, y) has a maximum at the point (6, 4).

Maximum value of f (x, y) = 6912.
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Example 2.3  Discuss the maxima and minima of the function f (x, y) = x4 + y4 -2x2 

+ 4xy – 2y2.

 

f x y x y x xy y

f x x y

f y x y

f x

x

y

xx

( , ) .

( )

( )

(

= + − + −

= − +

= + −

=

4 4 2 2

3

3

2

2 4 2

4

4

4 3 −− = = −1 4 4 3 12); ; ( )f f yxy yy

The possible extreme points are given by

f fx y= =0 0and

i.e.,
 

x x y3 0− + =
 

(1)

and 
 

y x y3 0+ − =
 

(2)

Adding (1) and (2), x y y x3 3 0+ = ∴ = −  (3)

Using (3) in (1):
 

x x3 2 0− =

i.e., x x x( ) , ,2 2 0 0 2 2− = ∴ = + −

and the corresponding values of y are 0, − +2 2, .

∴ The possible extreme points of f (x, y) are (0, 0), ( , ) ( , ).+ − −2 2 2 2and

At the point (0, 0), A = -4, B = 4 and C = -4

AC - B2 = 0

∴ The nature of f (x, y) is undecided at (0, 0). At the points ( , ),± 2 2∓  A = 20,  

B = 4, C = 20

AC - B2 > 0

∴ f (x, y) is minimum at the points ( , ),± 2 2∓  and minimum value of f (x, y) = 8.

Example 2.4  Examine the extrema of f x y x xy y
x y

( , ) = + + + +2 2 1 1
.

 

f x y x xy y
x y

( , ) = + + + +2 2 1 1

 
f x y

x
x = + −2

1
2

 
f x y

y
y = + −2

1
2
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f
x

f f
y

xx xy yy= + = = +2
2

1 2
2

3 3
; ;

The possible extreme points are given by f
x
 = 0 and  f

y
 = 0.

i.e., 2
1

0
2

x y
x

+ − =  (1)

and

 

x y
y

+ − =2
1

0
2

 

(2)

(1) – (2) gives x y
y x

− + − =
1 1

0
2 2

i.e., x y
x y

x y
− +

−
=

2 2

2 2
0

i.e., ( )( )x y x y x y− + + =2 2 0

∴ x y=  (3)

Using (3) in (1), 3x3 – 1 = 0

∴

 

x y= 





=
1

3

1

3

At the point 
1

3

1

3

1

3

1

3






















, , A = 8, B = 1 and C = 8

∴ AC - B2 > 0

∴ f (x, y) is minimum at 
1

3

1

3

1

3

1

3






















,  and minimum value of f x y( , ) .= 3

4

3

Example 2.5  Discuss the extrema of the function f (x, y) = x2 - 2xy + y2 + x3 - y3 

+ x4 at the origin

f x y x xy y x y x

f x y x x

f x y y

f

x

y

xx

( , ) .= − + + − +

= − + +

= − + −

2 2 3 3 4

2 3

2

2

2 2 3 4

2 2 3

== + +2 6 12 2x x

 f f yxy yy= − = −2 2 6;
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The origin (0, 0) satisfies the equations f 
x
 = 0 and f 

y
 = 0.

∴ (0, 0) is a stationary point of f (x, y).

At the origin, A = 2, B = –2 and C = 2

∴ AC - B2 = 0

Hence further investigation is required to find the nature of the extrema of f (x, y) 

at the origin.

Let us consider the values of f (x, y) at three points close to (0, 0), namely at (h, 0), 

(0, k) and (h, h) which lie on the x-axis, the y-axis and the line y = x respectively.

f h h h h

f k k k k k k

f h h h

( , ) .

( , ) ( ) ,

( , )

0 0

0 1 0 0 1

2 3 4

2 3 2

= + + >

= − = − > < <

=

when

44 0>

Thus f (x, y) > f (0, 0) in the neighbourhood of (0, 0).

∴ (0, 0) is a minimum point of f (x, y) and minimum value of f (x, y) = 0.

Example 2.6  Find the maximum and minimum values of

 

f x y x y x y x y

f x y x y x y

fx

( , ) sin sin sin ( ); , .

( , ) sin sin sin ( )

= + < <
= +
=

0 π

ccos sin sin ( ) sin sin cos ( )

sin cos sin ( ) sin

x y x y x y x y

f x y x y xy

+ + +
= + + ssin cos ( )y x y+

i.e.,
 

f y x yx = +sin sin ( )2

and

 

f x x y

f y x y

f y x y y

y

xx

xy

= ⋅ +

= +
= + + ⋅

sin sin ( )

sin cos ( )

sin cos ( ) cos

2

2 2

2 ssin ( )

sin ( )

sin cos ( )

2

2 2

2 2

x y

x y

f x x yyy

+

= +
= +

For maximum or minimum values of f (x, y),  f
x
 = 0 and  f

y
 = 0

i.e., sin y sin (2x + y) = 0 and sin x · sin (x + 2y) = 0

i.e., 
1

2
2 2 2 0[cos cos ( )]x x y− + =  and 

1

2
2 2 2 0[cos cos ( )]y x y− + =

i.e., cos cos ( )2 2 2 0x x y− + =  (1)

and cos cos ( )2 2 2 0y x y− + =  (2)

From (1) and (2), cos 2x = cos 2y. Hence x = y (3)

Using (3) in (1), cos 2x – cos 4x = 0

i.e., 2 sin x sin 3x = 0

∴ sin x = 0  or  sin 3x = 0

∴ x = 0, π and 3x = 0, π, 2π i.e., x = 0
3

2

3
, ,
π π
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∴ The admissible values of x are 0, π π

3

2

3
, .

Thus the maxima and minima of f (x, y) are given by (0, 0)

 

π π

3 3
,







 

and

 

2

3

2

3

π π
,







At the point (0, 0), A = B = C = 0

∴ AC - B2 = 0

Thus the extremum of f (x, y) at (0, 0) is undecided.

At the point 
π π

3 3
3

3

2
, , ,







= − = −A B  and C = − 3 and AC B− = − >2 3
3

4
0. 

As AC – B2 > 0 and A < 0, f (x, y) is maximum at 
π π

3 3
,







.

Maximum value of f x y( , ) = ⋅ ⋅ =
3

2

3

2

3

2

3 3

8
.

At the point 
2

3

2

3
3

3

2

π π
, , ,







= =A B  and C = 3  and AC B− = − >2 3
3

4
0.

As AC – B
2
 > 0 and A > 0,  f (x, y) is maximum at 

2

3

2

3

π π
,







.

Minimum value of f x y( , ) = −
3 3

8
.

Example 2.7  Identify the saddle point and the extremum points of

f x y x y x y

f x y x y x y

f x x f y yx y

( , )

( , )

;

= − − +

= − − +

= − = −

4 4 2 2

4 4 2 2

3

2 2

2 2

4 4 4 4 33

2 212 4 0 4 12f x f f yx x x y yy= − = = −; ;

The stationary points of f (x, y) are given by f
x
 = 0 and  f

y
 = 0

i.e., 4 0 4 03 3( ) ( )x x y y− = − =and

i.e., 4 1 0 4 1 02 2x x y y( ) ( )− = − =and

∴ x = 0 or ±1 and y = 0 or ±1.

At the points (0, 0), (±1, ±1), AC - B2 < 0

∴ The points (0, 0), (1, 1), (1, -1), (-1, 1) and (-1, -1) are saddle points of the 

function f (x, y).

At the point (±1, 0), AC - B2 > 0 and A > 0

∴ f (x, y) attains its minimum at (±1, 0) and the minimum value is -1.

At the point (0, ±1), AC - B2 > 0 and A < 0
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∴ f (x, y) attains its maximum at (0, ±1) and the maximum value is + 1.

Example 2.8  Find the minimum value of x2 + y2 + z2, when x + y + z = 3a.

Here we try to find the conditional minimum of x2 + y2 + z2, subject to the condition

 
x y z a+ + = 3

 (1)

Using (1), we first express the given function as a function of x and y.

From (1), z = 3a - x - y.

Using this in the given function, we get

 

f x y x y a x y

f x a x y

f y a x y

f

x

y

xx

( , ) ( )

( )

( )

;

= + + − −

= − − −

= − − −

=

2 2 23

2 2 3

2 2 3

4 ff fxy yy= =2 4;

The possible extreme points are given by f
x 
= 0 and  f

y
 = 0.

i.e., 2x + y = 3a (2)

and x + 2y = 3a (3)

Solving (2) and (3), we get the only extreme point as (a, a)

At the point (a, a), AC – B2 > 0 and A > 0

∴ f (x, y) is minimum at (a, a) and the minimum value of f (x, y) = 3a2.

Example 2.9  Show that, if the perimeter of a triangle is constant, its area is maxi-

mum when it is equilateral.

Let the sides of the triangle be a, b, c.

Given that a + b + c = constant

 = 2k, say (1)

Area of the triangle is given by

 
A s s a s b s c= − − −( ) ( ) ( )

 
(2)

where s
a b c

=
+ +

2

Using (1) in (2),

 
A k k a k b k c= − − −( ) ( ) ( )

 
(3)

A is a function of three variables a, b , c

Again using (1) in (3), we get

 
A k k a k b a b k= − − + −( ) ( ) ( )
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A is maximum or minimum, when f (a, b) = A

k

2

 = (k - a) (k - b)(a + b - k) is 

maximum or minimum.

  

f k b k a a b k

k b k a b

f k a k b

a

b

= − − ⋅ + + − ⋅ −
= − − −
= − −

( ){( ) ( ) ( )}

( ) ( )

( ){(

1 1

2 2

)) ( ) ( )}

( ) ( )

( );

⋅ + + − ⋅ −
= − − −
= − − = − + +

1 1

2 2

2 3 2 2

a b k

k a k a b

f k b f k a baa ab ;;

( )f k aab = − −2

The possible extreme points of f (a, b) are given by

f
a
 = 0 and f

b
 = 0

i.e., (k - b) (2k - 2a - b) = 0 and (k - a)(2k - a - 2b) = 0

∴ b = k or 2a + b = 2k and a = k or a + 2b = 2k

Thus the possible extreme points are given by

(i) a = k, b = k; (ii) b = k, a + 2b = 2k; (iii) a = k, 2a + b = 2k and (iv) 2a + b = 2k, 

a + 2b = 2k.

   (i) gives a = k, b = k and hence c = 0.

  (ii) gives a = 0, b = k and hence c = k.

 (iii) gives a = k, b = 0 and hence c = k.

All these lead to meaningless results.

Solving 2a + b = 2k and a + 2b = 2k, we get

 
a

k
b

k
= =

2

3

2

3
and

At the point
 

2

3

2

3

k k
, ,







A f
k

B f
k

C f
k

aa ab bb= = − = = − = = −
2

3 3

2

3
; ;

AC - B2 > 0 and A < 0

∴ f (a, b) is maximum at

 

2

3

2

3

k k
,







Hence the area of the triangle is maximum when
 
a

k
b

k
= =

2

3

2

3
and

.

When

 

a
k

b
k

c k a b
k

= = = − + =
2

3

2

3
2

2

3
, ; ( )

Thus the area of the triangle is maximum, when a b c
k

= = =
2

3
,  i.e., when the 

triangle is equilateral.
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Example 2.10  In a triangle ABC, find the maximum value of cos A cos B cos C. In 

triangle ABC, A + B + C = π.

Using this condition, we express the given function as a function of A and B

Thus

 

cos cos cos cos cos cos { ( )}

cos cos cos ( )

A B C A B A B

A B A B

= − +
= − +

π

Let

 

f A B A B A B

f B A A B A A BA

( , ) cos cos cos ( )

cos { sin cos ( ) cos sin(

= − +
= − − + − + ))}

cos sin ( )

cos { sin cos ( ) cos sin( )}

cos

= +
= − − + − +
=

B A B

f A B A B B A B

A

B

2

ssin ( )

cos cos ( )

cos cos ( ) sin sin (

A B

f B A B

f B A B B A B

AA

AB

+
= +
= + − +

2

2 2

2 2 ))

cos ( )

cos cos ( )

= +
= +

2 2

2 2

A B

f A A BBB

The possible extreme points are given by

i.e., 

f f

B A B

A B= =
+ =

0 0

2 0

and

cos sin ( )  
(1)

and cos A sin (A + 2B) = 0

Thus the possible values of A and B are given by (i) cos B = 0, cos A = 0; (ii) cos

B = 0, sin (A + 2B) = 0; (iii) sin (2A + B) = 0, cos A = 0 and (iv) sin (2A + B) = 0, sin 

(A + 2B) = 0

i.e., ( ) , ; ( ) , , ( ) ,

( )

i ii iii and

iv

A B B A A B= = = = = =
π π π

π
π

π
2 2 2

0
2

0

2

or or

AA B A B+ = + =π π, 2 or

A B= =
π π

3 3
,

The first three sets of values of A and B lead to meaningless results.

Hence A B= =
π π

3 3
,

 
give the extreme point.

At  this point

 

π π

3 3
1

1

2
1 02, , ; ; .







= = − = = − = − = >A f B f f AC BAA AB BB and

Also A < 0

∴ f (A, B) is maximum at

 

A B= =
π

3  

and the maximum value 

 

= − ⋅ ⋅ =cos cos cos .
π π π

3 3

2

3

1

8
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Example 2.11  Find the maximum value of xm yn zp, when x + y + z = a.

Let f = xm yn zp and f = x + y + z – a.

Using the Lagrange multiple l, the auxiliary function is g = (f + λf).

This stationary points of g = ( f + λf) are given by g
x
 = 0, g

y
 = 0, g

z
 = 0 and g

l
 = 0

i.e.,
   

mx y zm n p− + =1 0λ
  

(1)

 
nx y zm n p− + =1 0λ

 
(2)

 
px y zm n p− + =1 0λ

 
(3)

 
x y z a+ + − = 0

 (4)

From (1), (2) and (3), we have

− = = =

= = =
+ +
+ +

=

− − −λ mx y z nx y z px y z

m

x

n

y

p

z

m n p

x y z

m n p m n p m n p1 1 1.

.,i.e

mm n p

a

+ +
, ( )by 4

∴ Maximum value of  f occurs,

when

 

x
am

m n p
y

an

m n p
z

ap

m n p
=

+ +
=

+ +
=

+ +
, ,

Thus maximum value of

 

f
a m n p

m n p

m n p m n p

m n p
=

⋅ ⋅ ⋅
+ +

+ +

+ +( )

Example 2.12  A rectangular box, open at the top, is to have a volume of 32 c.c. Find 

the dimensions of the box, that requires the least material for its construction.

Let, x, y, z be the length, breadth and height of the respectively.

The material for the construction of the box is least, when the area of surface of the 

box is least.

Hence we have to minimise

 
S xy yz zx= + +2 2 ,

subject to the condition that the volume of the box, i.e., xyz = 32.

Here f = xy + 2yz + 2zx; f = xyz - 32.

The auxiliary function is g = f + lf, where l is the Lagrange multiplier. 

The stationary points of g are given by g
x
 = 0, g

y
 = 0, g

z
 = 0 and g

λ
 = 0

i.e.,
 

y z yz+ + =2 0λ
 

(1)

 
x x zx+ + =2 0λ

 
(2)

 
2 2 0x y xy+ + =λ

 
(3)

 
xyz − =32 0

 (4)
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From (1), (2) and (3), we have

 

1 2

z y
+ = − λ

 

(5)

 

1 2

z x
+ = −λ

 

(6)

 

2 2

y x
+ = −λ

 

(7)

Solving (5), (6) and (7), we get

 
x y z= − = − = −

4 4 2

λ λ λ
, and

Using these values in (4), we get

− − =
32

32 0
3λ

i.e.,
 

λ = −1

∴
 

x y z= = =4 4 2, , .

Thus the dimensions of the box and 4 cm; 4 cm and 2 cm.

Example 2.13  Find the volume of the greatest rectangular parallelopiped inscribed 

in the ellipsoid whose equation is
 x

a

y

b

z

c

2

2

2

2

2

2
1+ + = .

Let 2x, 2y, 2z be the dimensions of the required rectangular parallelopiped.

By symmetry, the centre of the parallelopiped coincides with that of the ellipsoid, 

namely, the origin and its faces are parallel to the co-ordinate planes.

Also one of the vertices of the parallelopiped has co-ordinates (x, y, z), which 

satisfy the equation of the ellipsoid.

Thus, we have to maximise V = 8xyz, subject to the condition
 x

a

y

b

z

c

2

2

2

2

2

2
1+ + =

Here  f = 8xyz and φ = + + −
x

a

y

b

z

c

2

2

2

2

2

2
1

The auxiliary function is g = f + λf, where λ is the Lagrange multiplier. The stationary 

points of g are given by

g g g gx y z= = = =0 0 0 0, , and λ

i.e.,
 

8
2

0
2

yz
x

a
+ =

λ

 
(1)

 
8

2
0

2
zx

y

b
+ =

λ

 
(2)



Functions of  Several  Variables 2.63

 
8

2
0

2
xy

z

c
+ =

λ

 
(3)

 

x

a

y

b

z

c

2

2

2

2

2

2
1+ + =

 

(4)

Multiplying (1) by x,

 

2
8

2

2

λx

a
xyz= −

Similarly

 

2 2
8

2

2

2

2

λ λy

b

z

c
xyz= = −

 

from (2) and (3)

Thus
 

x

a

y

b

z

c
k

2

2

2

2

2

2
= = =

 
say

Using in (4),

 
3 1

1

3
k k= ∴ =

 

∴ = = =x
a

y
b

z
c

3 3 3
, and

 

∴ =Maximum volume
8

3 3

abc
.

Example 2.14  Find the shortest and the longest distances from the point (1, 2, -1) 

to the sphere x2 + y2 + z2 = 24.

Let (x, y, z) be any point on the sphere. Distance of the point (x, y, z) from (1, 2, -1) 

is given by d x y z= −( ) + −( ) + +( )1 2 1
2 2 2

.

We have to find the maximum and minimum values of d or equivalently

d x y z2 2 2 2
1 2 1= −( ) + −( ) + +( ) ,

subject to the constant x2 +y2 +z2 – 24 = 0

Here

  

f x y z

x y z

= −( ) + −( ) + +( )
= + + −

1 2 1

24

2 2 2

2 2 2

and

φ

The auxiliary function is g = f + lf, where l is the Lagrange multiplier. The 

stationary points of g are given by g
x
 = 0, g

y
 = 0, g

z 
= 0

  
and g

λ
 = 0.

i.e.,
 

2 1 2 0x x−( )+ =λ
 

(1)

 
2 2 2 0y y−( )+ =λ

 
(2)

 
2 1 2 0z z+( )+ =λ

 
(3)

 
x y z2 2 2 24+ + =

 (4)
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From (1), (2) and (3), we get

 

x y z=
+

=
+

=
+

1

1

2

1

1

1λ λ λ
, ,

Using these values in (4), we get

 

6

1
24 1

1

42

2

+( )
= +( ) =

λ
λi.e.,

∴
 

λ = − − ⋅
1

2
or

3

2

When

 

λ = −
1

2
, the point on the sphere is (2, 4, -2)

When

 

λ = −
3

2
, the point on the sphere is (-2, -4, 2)

When the point is (2, 4, -2),
 
d = ( ) + ( ) + −( ) =1 2 1 6

2 2 2

When the point is (-2, -4, 2), 
 
d = −( ) + −( ) + =3 6 3 3 6

2 2 2

∴ Shortest and longest distances are 6 and 3 6  respectively.

Example 2.15  Find the point on the curve of intersection of the surfaces z = xy + 5 

and x + y + z = 1 which is nearest to the origin.

Let (x, y, z) be the required point.

It lies on both the given surfaces.

∴ xy – z + 5 = 0 and x + y + z = 1

Distance of the point (x, y, z) from the origin is given by d x y z= + + ⋅2 2 2

We have to minimize d or equivalently

 
d x y z2 2 2 2= + + ,

subject to the constraints xy – z + 5 = 0 and x + y + z – 1 = 0.

Note  Here we have two constraint conditions. To find the extremum of f (x, y, z) 

subject to the conditions f
1
 (x, y, z) = 0 and f

2
 (x, y, z) = 0, we form the auxiliary 

function

g = f + l
1
f

1
 + l

2
f

2
, where l

1
 and l

2
 are two Lagrange multipliers.

The stationary points of g are given by g
x
 = 0, g

y
 = 0, g

z
 = 0, g

λ1
 = 0 and g

λ2
 = 0.

In this problem,  f = x2 + y2 + z2, f
1
 = xy – z + 5 and f

2
 = x + y + z – 1.

The auxiliary function is g = f + l
1
f

1
 + l

2
f

2
, where l

1
, l

2
 are Lagrange multipliers.

The stationary points of  g are given by

 2 01 2x y+ + =λ λ  (1)

 2 01 2y x+ + =λ λ  (2)

 2 01 2z − + =λ λ  (3)
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xy z− + =5 0

 

(4)

 

x y z+ + − =1 0

 

(5)

Eliminating l
1
, l

2
 from (1), (2), (3), we have

 

2 1

2 1

2 1 1

0

1 2 0

02 2

x y

y x

z

x x y y y zx

x y x y z x y

x y

−
=

+( )− −( )− +( ) =

− + − − −( )=
−(( ) + − +( )=x y z 1 0

 x y x y z= + − + =or 1 0

Using x = y in (4) and (5), we have

 
z x= +2 5

 
(6)

and
 

z x= −1 2
 

(7)

From (6) and (7), x2 + 2x + 4 = 0, which gives only imaginary values for x.

Hence x y z+ − + =1 0  (8)

Solving (5) and (8), we get x y+ = 0  (9)

and z = 1  (10)

Using (10) in (4), we get xy = − 4  (11)

Solving (9) and (11), we get x y= ± = ±2 2and .

∴ The required points are (2, -2, 1) and (-2, 2 ,1) and the shortest distance is 3.

EXERCiSE 2(c)

Part A

(Short Answer Questions)

 1.  Define relative maximum and relative minimum of a function of two variables.

 2.  State the conditions for the stationary point (a, b) of f (x, y) to be (i) a maxi-

mum point (ii) a minimum point and (iii) a saddle point.

 3.  Define saddle point of a function f (x, y).

 4.  Write down the conditions to be satisfied by f (x, y, z) and f (x, y, z), when we 

extremise f (x, y, z) subject to the condition f (x, y, z) = 0.

 5.  Find the minimum point of f (x, y) = x2 + y2 + 6x + 12.

 6.  Find the stationary point of f (x, y) = x2 – xy + y2 – 2x + y.

 7. Find the stationary point of f (x, y) = 4x2 + 6xy + 9y2 – 8x – 24y + 4.

i.e.,

i.e.,

i.e.,

∴



2.66 Engineering Mathematics I

 8. Find the possible extreme point of f x y x y
x y

( , ) .= + + +2 2 2 2

 9.  Find the nature of the stationary point (1, 1) of the function f (x, y), if f
xx

 = 

6xy3,  f
xy

 = 9x2 y2 and f
yy

 = 6x3 y.

10.  Given f
xx

 = 6x,  f
xy

 = 0,  f
yy

 = 6y, find the nature of the stationary point (1, 2) of 

the function  f (x, y).

Part B

Examine the following functions for extreme values:

11.  x3 +y3 - 3axy

12. x3 + y3 -12x - 3y + 20

13. x4 + 2x2 y - x2 + 3y2

14. x3 y -3x2 - 2y2 -4y - 3

15. x4 + x2 y + y2 at the origin

16.  x3 y2 (a – x –y)

17. x3 y2 (12 – 3x - 4y)

18.  xy
x y

+ +






27
1 1

19.  sin sin sin ( ), ,x y x y x y+ + + ≤ ≤0
2

π

20.  Identify the saddle points and extreme points of the function xy (3x + 2y + 1).

21.  Find the minimum value of x2 + y2 + z2, when (i) xyz = a3 and (ii) xy + yz + 

zx = 3a2.

22.  Find the minimum value of x2 + y2 + z2, when ax + by + cz = p.

23.  Show that the minimum value of (a3 x2 + b3 y2 + c3 z2), when 

1 1 1 1 2 3

x y z k
k a b c+ + = + +, ( ) . is

24.  Split 24 into three parts such that the continued product of the first, square of 

the second and cube of the third may be minimum.

25.  The temperature at any point (x, y, z) in space is given by T = k x y z2, where 

k is a constant. Find the highest temperature on the surface of the sphere  

x2 + y2 + z2 = a2.

26.  Find the dimensions of a rectangular box, without top, of maximum  capacity 

and surface area 432 square meters.

27.  Show that, of all rectangular parallelopipeds of given volume, the cube has 

the least surface.

28.  Show that, of all rectangular parallelopipeds with given surface area, the cube 

has the greatest volume.

29.  Prove that the rectangular solid of maximum volume which can be inscribed 

in a sphere is a cube.

30.  Find the points on the surface z2 = xy + 1 whose distance from the origin is 

minimum.

31.  If the equation 5x2 + 6xy + 5y2 = 8 represents an ellipse with centre at the 

origin, find the lengths of its major and minor axes.
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    (Hint: The longest distance of a point on the ellipse from its centre gives the 

length of the semi-major axis. The shortest distance of a point on the ellipse 

from its centre gives the length of the semi-minor axis).

32.  Find the point on the surface z = x2 + y2, that is nearest to the point (3, -6, 4).

33.  Find the minimum distance from the point (3, 4, 15) to the cone x2 + y2 = 

4z2.

34.  Find the points on the ellipse obtained as the curve of intersection of the 

surfaces x + y = 1 and x2 + 2y2 + z2 = 1, which are nearest to and farthest from 

the origin.

35.  Find the greatest and least values of z, where (x, y, z) lies on the ellipse formed by 

the intersection of the plane x + y + z = 1 and the ellipsoid 16x2 + 4y2 + z2 = 16.

AnSWERS

Exercise 2(a)

 (2)  du = cos (xy2) (y2dx + 2xy dy)

 (3)  du = xy - 1 ∙ yx (y + x log y) dx + xy yx - 1 (x + y log x) dy

 (4)  du = y (1 + log xy) dx + x(1 + log xy) dy

 (5)  du = (y log a) axy dx + (x log a) axy dx

 (6)  8 a5t6 (4t + 7);

 (7) e t a t t t t t a ta t2 2 3 2 2 2 3 2 23− − − −{ }sin sin cos sin /

 (8)  (cos t - e-t – sin t)/(e-t + sin t + cos t)

 (9)  −
+ +
+ +

x xy y

x xy y

2 2

2 2

2 2

4
 (11) 

3

2

2 2x x ycos ( )+

(12)  x(xy + 4y2 – 2x2)/(x + 2y) (14) 3.875

(15)  4.984 (16) 0.0043

(17)  0.006 cm3; 0.004 cm2 (18) 2

(19)  4(a + b + c)k (20) 1.5

(36)
  

∂
∂ ∂

=
2

0
z

u υ
 

(37)
 

∂
∂

=
2

2
0

z

υ

(38)
  

∂
∂

=
2

2
0

z

u  
(39)

 

∂
∂ ∂

=
2

0
z

u υ

(40)
  

∂
∂ ⋅ ∂

=
2

0
u

z z *

(41)   (i)

 

y y x y

x x y x

( log )

( log )

−
−

 

(ii)

 

y

x

     

(iii) y x y

x x y

tan logsin

log cos cot

+
−

 

(iv) log cot tan

logsec sec

y y x

x x y y

−
+ cosec
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     (v) x y

x x

−
+( log )1

(42)  2a3xy/(ax – y2)3 (43)  2a2xy (3a4 + x2y2)/(a2x – y3)3

(47)  5% (50)  2.3%

(55)  5 3

324

π

Exercise 2(b)

 (4)  1
2

2

+ + +
+

+( )
( ) ...x y
x y

 (5) ( )
!
( ) ...x y x y+ − + +

1

3

3

(11)  u + u + 1 (15) 2
11tan− 



y

(16)  y xy
x y y

+ + − +
2 3

2 6
...

(17)

 

e
x y

x
x y y

2
1 1

4

1

2
1

4

1

2 4

2 2

+ − − −




+

−
− − −




− −





( )
( )

( )
π π π

++⋅⋅⋅












(18)
 

y xy
y

x y xy y+ − + − + +⋅⋅⋅
2

2 2 3

2

1

2

1

2

1

3

(19)
 

π

4

1

2
1

1

2
1

1

4
1

1

4
12 2− − + − + − − − +⋅⋅⋅( ) ( ) ( ) ( )x y x y

(20) - 10 – 4 (x - 1) + 4(y + 2) – 2(x - 1)2 + 2(x - 1) (y + 2) + (x - 1)2 (y + 2)

(21) - 9 + 3 (x + 2) – 7(y - 1) + 2(x + 2) (y - 1) – 2(y - 1)2 + (x + 2) (y - 1)2

(22) 1 + (y - 1) + (x - 1) (y – 1) + …

(23)

 

e x y x x y y x1 1 1
1

2
1 2 1 1 1

1

6
1

3

2

2 2 3+ − + − + − + − − + − + −


+

( ) ( ) ( ) ( ) ( ) ( ) ( )

(xx y x y y− − + − − + − 


1 2
3

2
1 2

1

6
22 2 3) ( ) ( ) ( ) ( )

(27) (i) 4(u2 + u2)

  (ii) 4xy

(28) r

(30) x(yu + 1 - w) + z – 2uu

(31) (x - y) (y - z) (z - x)

(32) u2 = u + 1

(33) u tan u
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(34) 
f f f1

2

2 32= +

(36)
 

1

2 3

1 2 2

a

x

a
ax x a{tan ( ) /( )}− + +

(37)

 

( ) !

( )

−
+ +

1

1 1

n

n

n

m

(38)
 

1

2

2

π e a−

(39)
 

tan ;− 





1 1

2a

π

(40) log (1 + m)

Exercise 2(c)

 (5) (-3, 0) (6) (1, 0)  (7) 0
4

3
,







 (8) (1, 1) (9) Saddle point (10) Minimum point

(11) Maximum at (a, a) if a < 0 and minimum at (a, a) if a > 0

(12) Minimum at (2, 1) and maximum at (-2, -1)

(13) Minimum at ± −






3

2

1

4
,

(14) Maximum at (0, -1) (15) Minimum at (0, 0)

(16) Maximum at a a

2 3
,







 (17) maximum at (2, 1) (18) Minimum at (3, 3)

(19) Maximum at π π

3 3
,







 and minimum at − −





π π

3 3
,

(20) Saddle point are (0, 0), −





1

3
0,  and 0

1

2
, −





; maximum at − −





1

9

1

6
,

(21) 3a2; 3a2 (22) p

a b c

2

2 2 2+ +
 (24) 4, 8, 12

(25) ka4

8
 (26) 12, 12 and 6 metres

(30) (0, 0, 1) and (0, 0, -1) (31) 4, 2 (32) (1, -2, 5)

(33) 5 5  (34) 1

3

2

3
0 1 0 0, , ; ( , , )







 (35) 8

3

8

7
; −





3UNIT

3.1 INTrodUcTIoN

Integration can be considered as the reverse process of differentiation. viz, in 

integration, we are required to find the function f(x) from its derivative which will be 

given as g(x), say. In other words, the process of finding f(x) from g(x), given that 
d

dx
 

{f(x)} = g(x) is integration. In this situation, we say that f(x) is the integral of g(x) and 

write symbolically that ( )d ( ).g x x f x=∫
The symbol is∫  the symbol of integration, g(x) is called the integrand and dx 

indicates the variable (x) with respect to which integration is performed.

For example, 
d

cos d sin , since (sin ) cos
d

x x x x x
x

= =∫

and 2 3 3 2d
3 d , since ( ) 3 .

d
x x x x x

x
= =∫

3.2 coNsTaNT of INTegraTIoN

When 2 33 d ,x x x=∫  the result 2 33 dx x x c= +∫  equally holds good, as 

3 3d d
( ) ( ),

d d
x x c

x x
= +  where c is a constant. As c can take any constant value, it is 

called the arbitrary constant of integration.

In general, when 
d

( ) ( ), ( )d [ ( ) ] [ ( ) ]
d

f x g x g x x f x c f x c
x

= = + ⋅ +∫  is called the 

indefinite integral of g(x) due to indefinite nature, of c. For convenience, we normally 

omit c when we evaluate an indefinite integral.

3.2.1  Definite Integrals

When ( )d ( ) ,g x x f x c= +∫  then [f(b) – f(a)] is called the definite integral of g(x) 

between the limits (or end values) a and b and denoted by the symbol ( )d .

b

a

g x x∫  a is 

called the lower limit and b called the upper limit and is denoted by [f(x)]
a

b
.

Integral Calculus
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Thus ( )d [ ( )] ( ) ( )

b

b

a

a

g x x f x f b f a= = −∫

Note  The constant of integration ‘c’ occurring in the indefinite integral 

does not find a place in the definite integral, for if ( )d ( ) ,g x x f x c= +∫   

Then      ( )d [ ( ) ]

b

b

a

a

g x x f x c= +∫

                    = {f(b) + c} – f(a) + c

                    = f(b) – f(a)

Thus to evaluate ( )d

b

a

g x x∫  first get f(x) and omit the arbitrary constant c. Then 

we substitute b and a for the variable x and obtain f(b) and f(a). Finally we get  

[f(b) – f(a)] = ( )d

b

a

g x x∫

For example, 

/2

/2

0

0

cos d [sin ] sin
2

x x x

π

π π
= =∫  – sin 0 = 1 – 0 = 1 

and  

2

2 3 2 3 3

1

1

3 d [ ] 2 1 8 1 7.x x x= = − = − =∫

3.2.2  Standard Integrals

Using the knowledge of derivatives of elementary/standard functions, the following 

standard integrals are obtained. Students should not try to derive these results from 

differentiation results, but remember them as formulas of integral calculus. [Constants 

of integration are omitted in all the formulas]

1. 

1

d ( 1);
1

n
n x

x x n
n

+

= ≠−
+∫  Extension: 

1( )
( ) d

( 1)

n
n ax b

ax b x
n a

++
+ =

+ ⋅∫

  
2

1 1 d
and 2

x
dx x

x x x
≠− =∫ ∫

An important note on the extension:

In the place of the variable x of the integrand of any standard integral, if we have 

a simple first degree expression (ax + b), we have to replace x by (ax + b) in the 

corresponding result in the R.H.S. also and divide it by the coefficient of x in  

(ax +  b),  namely ‘a’. viz., if

  ( )d ( )g x x f x=∫  ...  (1)

 then   
1

( )d ( )g ax b x f ax b
a

+ = +∫  (2)
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This result which can be considered as extended standard integral is obtained as 

follows:

If we put ax + b = y in (1), then a dx = dy or dx = 
1

a
 dy

Thus (1) becomes 
d 1 1

( ) ( )d ( )
y

g y g y y f y
a a a
= =∫ ∫  by (1).

Particular cases of stand and formula(1):

 1. (a) 
2 2

1 1 d 1
d : 

( ) ( )

x
x Extension

x x ax b a ax b

 
 =− =− + + 

∫ ∫

 (b) 
2d d

2 : 
ax bx x

x Extension
ax ax b

 + = = +  
∫ ∫

 2. 
d d 1

log ; : log ( )e e

x x
x Extension ax b

x ax b a

 
 = = + + 

∫ ∫

 3. 
1

d ; : a dx x ax b ax be x e Extension x e
a

+ + 
 = =
  

∫ ∫

 4. 
1

sin d cos ; : sin ( ) d cos( )x x x Extension ax b x ax b
a

 
 =− + =− +
  

∫ ∫

Note   Extensions are omitted for the remaining standard integrals that follow, as 

they are obvious.

 5. cos d sinx x x=∫
 6. tan d log secx x x=∫

 7. cosec d log (cosec cot ) or log tan
2

x
x x x x=− +∫

 8. sec d log (sec tan ) or log tan
4 2

x
x x x x

π = + +   ∫
 9. cot d log sinx x x=∫

Note   Formulas (6), (7), (8) and (9) are not derived from standard differentiation 

formulas.

 10. 2sec d tanx x x=∫
 11. 2cosec d cotx x x=−∫
 12. sec tan d secx x x x=∫
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 13. cosec cot d cosecx x x x=−∫
 14. sinh d coshx x x=∫
 15. cosh d sinhx x x=∫
 16. 1 1

2 2 2

d d
sin and sin

1

x x x
x

ax a x

− −= =
− −

∫ ∫

 17. 1 2 2

2 2

d
cosh or log ( )

x x
x x a

ax a

−  = + −  +
∫

 18. 1 2 2

2 2

d
sinh or log ( )

x x
x x a

ax a

−  = + −  +
∫

 19. 
1 1

2 2 2

d d 1
sec and sec

1

x x x
x

a ax x x x a

− −= =
− −

∫ ∫

 20. 1 1

2 2 2

d 1
tan and hence tan

1

x x dx
x

x a a a x

− − = =  + +∫ ∫

 21. 
2 2

d 1
log

2

x x a

x a a x a

 −  =   − + ∫

 22. 
2 2

d 1
log

2

x a x

a x a a x

 +  =   − − ∫

 23. 
2

2 2 2 2 1d sin
2 2

x a x
a x x a x

a

−  − = − +   ∫

 24. 
2

2 2 2 2 1d cosh
2 2

x a x
x a x x a

a

−  − = − −   ∫

 25. 
2

2 2 2 2 1d sinh
2 2

x a x
x a x x a

a

−  + = + +   ∫

3.3 TechNIqUes of INTegraTIoN

Before we proceed to discuss techniques of integration, we give below two basic 

properties of integration for which no proof is required as it is obvious.

 (i) If k is a constant, ( ) ( ) .k f x dx k f x dx−∫ ∫
 (ii) If k

1
, k

2
, ..., k

n
 are constants, then 1 1 2 2 3 3[ ( ) ( ) ( )k f x k f x k f x± ±∫  

1 1 2 2( )] ( ) ( ) ( )d .n n m nk f x dx k f x dx k f x dx k f x x± = ± ±∫ ∫ ∫ 

3.3.1  Integration by Substitution

If the integral is of the form { ( )} ( ) ,F f x f x dx′⋅∫  where f(x) is an elementary/

standard function, the integral can be reduced to a simpler integrable form by putting 
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y = f(x) so that dy  f ¢(x)dx. The integral gets reduced to the form ( )} d ,F y y∫  

which can be done by known methods or by using standard formulas.

As particular cases of this rule, we mention a few:

To evaluate

∑ ∫ F(xn)xn – 1dx, we put xn = y

∑ ∫ F(x2) x dx, we put x2 = y

∑ (log )F x∫ ◊ ,
dx

x
 we put log x = y

∑ ∫ F(ex) ◊ ex dx, we put ex = y

∑ ∫ F(sin x) cos x dx, we put sin x = y

∑ ∫ F(tan x) sec2 x dx, we put tan x = y

∑ 1 1

2
(sin ) , we put sin

1

dx
F x x y

x

− − =
−

∫

∑ 1 1

2
(tan ) , we put tan

1

dx
F x x y

x

− − =
+∫

Note  The following two particular cases of ∫ F{f (x)}f ¢(x) dx are of importance, 

as they will be used in integrating some rational and irrational functions.

 (i) 
( )

d log log ( )
( )

f x dy
x y f x

f x y

′
→ = →∫ ∫

 (ii) 
( )

d 2 2 ( )
( )

f x dy
x y f x

f x y

′
→ = →∫ ∫

3.3.2  Integration by Trigonometric Substitution

If the integrand contains 2 2 2 2 2 2, or ,a x x a x a− + −  it can be reduced to 

a rational or integrable form by making the trigonometic substitution x = a sin q, 

x = a tan q or x = a sec q respectively

In the first case, we may even put x = a cos q

In the second case, we may also put x = a cot q or x = sinh y

In the third case, we may also put x = a cosec q or x = cosh y.

3.3.3  Compound Trigonometric Substitution

If the integrand contains ( ) ( )x xα β− −  or 
( )

,
( )

x

x

α

β

−
−

 when b > a, it can 

be retionalised or reduced to the integrable form by making the substitution 

x = a cos2 q + b sin2 q.
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Worked example 3(a)

Example 3.1 Evaluate 

3

4
.

1

x
dx

x+
∫

The integrand is of the form f (1 + x4) ¥ x3

\ Put 1 + x4 = y  \ 4x3dx = dy

  I = 
4

1
d

1 14 2 1
4 2

y

y x c
y
= × = + +∫

Example 3.2 Evaluate 
2 2

0

d
.

x x

x

a e b e

∞

−+∫

                        
2 2 2 2 2

0 0

dx

x x x

dx e x
I

a e b e a e b

∞ ∞

−= =
+ +∫ ∫

Put ex = y \  exdx = dy, since the integrand is of the form f (ex) ¥ ex.

Note  Instead of evaluating the indefinite integral and using the limits in the end, 

we can express the limits for the new variable y using the substitution used.

Thus, when x = 0, y = 1 and when x = •, y = •

 \ I = 2 2 2 2 2

21 1

d 1 dy y

a y b a b
y

a

∞ ∞

=
+  +   

∫ ∫

   = 
1 1

2

1

1 1
tan tan

2

a ay a

b b ab ba

π
∞

− −
       × = −         

Example 3.3 Integrate 2

1

(1 log )x x+
 w.r.t x.

Since the integrand is the product of log x or 1 + log x and its derivative 
1

,
x

 we put 

1 + log x = y \ 
1

d dx y
x

=

 \ I = 2

1 1
or .

1 log

dy
c c

y y x
=− + − +

+∫

Example 3.4 Evaluate 

/4

0

sin 3 cos d .x x x

π

∫
The integrand can be rewritten as the product of f (sin x) and cos x. So we put sin x 

= y and  \ cos x dx = dy
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  When  x = 0, y = 0 and when x = 
1

,
4 2

y
π

=

 \ I = 

/4

3

0

(3 sin 4 sin ) cos dx x x x

π

−∫

   = 
1/ 2

3

0

(3 4 ) dy y y−∫

   = 

1/ 2

2 4

0

3 3 1 1 1
.

2 2 2 4 2
y y

  − = ⋅ − =  

Example 3.5 Evaluate 
1 sin

d .
1 sin

x
x

x

 −     + ∫

  I  = 

2
2

2

(1 sin )
d (sec tan ) d

cos

x
x x x x

x

 −   = −   ∫ ∫

   = 
2 2sec (sec 1) 2 sec tan dx x x x x + − −  ∫

   = 2 tan x – 2 sec x – x + c

Example 3.6 Evaluate 
/2

0

1 sin 2 d .x x

π

+∫

  I = 

/2

2 2

0

cos sin 2 cos sin dx x x x x

π

+ +∫

  I = 

/2

2

0

cos sin ) dx x x

π

+∫

   = 

/2

/2

0

0

(cos sin ) d (sin cos ) 2x x x x x

π

π+ = − =∫

Example 3.7 Evaluate 
8cosec d .x x∫

  I = 
6 2cosec cosec dx x x∫

   = 
2 3 2(1 + cot ) cosec dx x x∫

As the integrand is of the form f (cot x). cosec2 x, we put cot x = y and cosec2 x dx 

= –dy

 \ I = 2 3(1 + ) ( d )y y−∫
   = 2 4 6(1 + 3 3 ) dy y y y− + +∫

   = 
3 5 7

3
5 7

y y y y
 
 − + + +
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   = 
3 5 73 1

cot cot cot cos
5 7

x x x x c
 
 − + + + +
  

Example 3.8 Evaluate I = 

1 3

2

(sin )
d .

1

x
x

x

−

−
∫

As the integrand is of the form 1

2

1
(sin ) ,

1
f x

x

− ⋅
−

 we put

 

1

2

1
sin and d d

1
x y x y

x

− = ∴ =
+

 

4
3 1 41
d (sin )

4 4

y
I y y x c−= = = +∫

Example 3.9 Evaluate 
1

2

tan
d .

1

x
x

x

−

+∫

As the integrand if of the form 1

2

1
(tan ) ,

1
f x

x

− ⋅
+

 we put

 

1

2

1
tan and d d

1
x y x y

x

− = ∴ =
+

 

3 3

12 2
2 2

(tan )
3 3

I y dy y x c−= = = +∫

Example 3.10 Evaluate 

1sec

2
d .

1

e x
x

x x

−

−
∫

As the integrand is of the form 1

2

1
(sec ) ,

1
f x

x x

− ⋅
−

 we put

 

1

2

1
sec and d d

1
x y x y

x x

− = ∴ =
−

 

1secdy y xI e y e e c
−

= = = +∫

Example 3.11 Evaluate 
1

d .
1

x
x

x

−
+∫

Multiplying the Nr. and Dr. by 1 ,x−  we get

 
2

1
d

1

x
I x

x

−
=

−
∫
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To reduce the integrand to the integrable form, we make the trigonometric substitution 

x = sin q and so dx = cos dq

\  

1 2

1 sin
cos d

cos

cos

sin 1

I

x x c

θ
θ θ

θ

θ θ

−

 − =   

= +

= + − +

∫

Example 3.12 Evaluate 
2

d
.

(1 ) 1

x

x x− −
∫

Due to the occurrence of 21 x−  in the integrand, we put

 x = sin q and so dx = cos  dq

\  
cos

(1 sin )cos

d
I

θ θ

θ θ
=

−∫

 

2

2

2 2 2

1 sin
(sec sec tan )d

cos

tan sec

1 1 1
or or

11 1 1

d

x x x
c

xx x x

θ
θ θ θ θ θ

θ

θ θ

+
= = +

= +

+ +
= + +

−− − −

∫ ∫

Example 3.13 Evaluate 
5

2

2

2
d .

(4 )

x
x

x+∫

Due to the presence of 
1

22( 4)x +  in the integrand, we put

 
22 tan and so d 2 sec dx xθ θ θ= =

\  
5

2

2 2

2

4 tan 2sec d

(4sec )
I

θ θ θ

θ

⋅
= ∫

 

2

3

2

8 tan
d

32 sec

1
sin cos

4
d

θ
θ

θ

θ θ θ

=

=

∫

∫

 
31 sin

,
4 3

q
=  on putting sin q = t

 = 

3
3

2 3/22

1 1
or

12 12 ( 4)4)

Ê ˆ
◊ +Á ˜

Á ˜ ++Ë ¯

x x
c

xx

Example 3.14 Evaluate 
2 2

d .
x a

x
x

−
∫

Due to the presence of 2 2x a−  in the integrand, we put x = a sec q and so 

dx = a sec q tan q dq
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Then 
2 2 2sec

sec tan d
sec

a a
I a

a

θ
θ θ θ

θ

−
= ∫

 

2 2

2 2

1

tan d (sec 1)d

(tan )

sec

a a

a

x a x
a c

a a

θ θ θ θ

θ θ

−

= = −

= −
   −  = − +     

∫ ∫

Example 3.15 Evaluate 

2 2

4
d .

a x
x

x

−
∫

Due to the presence of 2 2a x−  in the integrand, we put x = a sin q and so 

dx = a cos q cos q dq

Then 
4 4

cos cos d

sin

a a
I

a

θ θ θ

θ

⋅
= ∫

 

2 2

2

2

2

1
cot cosec d

1
( d ), where cot

a

t t t
a

θ θ θ

θ

= ⋅

= − =

∫

∫

 

3
2

3
3

2 2

3
2 2

2

2 2

2 3

1 1
cot

3 3

1

3

1 ( )
.

3

t

a a

a x

a x

a x
c

a x

θ=− =−

 −  =−   

−
=− +

Example 3.16 Evaluate ( 3)(7 ) d .x x x− −∫
We make the compound trigonometric substitution

 x = 3 cos2q + 7 sin2q

Then x – 3 = 3 cos2q + 7 sin2q – 3 = 4 sin2q
and 7 – x = 7 – (3 cos2q + 7 sin2q) = 4 cos2q

  dx = (–6 cos q sin q + 14 sin q cos q)dq

 = 8 sin q cos q dq

Then 2 24sin 4cos 8sin cos dI θ θ θ θ θ= ⋅ ×∫

 

2 2

2

2

32 sin cos d

8 (2 sin cos ) d

8 sin 2 d

θ θ θ

θ θ θ

θ θ

=

=

=

∫
∫
∫
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8
(1 cos4 )d

2

sin 4
4

4

θ θ

θ
θ

= −

 = −   

∫

 

1

1 2

1

1

3
4sin 2sin 2 cos2

2

3
4sin 4sin cos (2cos 1)

2

3 3 7 (7 )
4sin 4 2 1

2 2 2 4

3 5
4sin ( 3)(7 )

2 2

x

x

x x x x

x x
x x c

θ θ

θ θ θ

−

−

−

−

 −  = −  
 −  = − −  
   − − − − = − ⋅ × −       
   − − = − − − +      

Example 3.17 Evaluate 

2

1

1
d .

2

x
x

x

−
−∫

Put x = cos2q + 2 sin2q \ dx = (–2 cos q sin q + 4 sin q cos q) dq

       = 2 sin q cos q dq

 x – 1 = cos2 q + 2 sin2 q – 1

 = sin2 q

 2 – x = 2 – (cos2 q + 2 sin2 q)

 = cos2 q

When 2 2 21, cos 2 sin 1 viz., sin 0 0x θ θ θ θ= + + = ∴ =

When 2 2 2
, cos2 2 sin 2 viz., cos 0

2
x

π
θ θ θ θ= + = = ∴ =

Then 
/2

0

tan 2 sin cos dI

π

θ θ θ θ= ⋅∫

 

/2 /2

2

0 0

2

0

2 sin d (1 cos 2 )d

1
sin 2 .

2 2

π π

π

θ θ θ θ

π
θ θ

= = −

 = − =  

∫ ∫

Example 3.18 Evaluate 
d

( ).
( )( )

x

x x

β

α

β α
α β

>
− −∫

Put 2 2cos sin d 2( ) sin cos dx xα θ β θ β α θ θ θ= + ∴ = −

 

2 2 2

2 2 2

cos sin ( )sin

( cos sin ) ( )cos

x

x

θ α θ β θ θ β α θ

β β α θ β θ β α θ

= = + − = −

− = − + = −
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When , 0 and when ,
2

x x
π

α θ β θ= = = =

 \ 
/2

0

2( )sin cos
2 .

( )sin cos 2
I d

π
β α θ θ π

θ π
β α θ θ

−
= = ⋅ =

−∫

Example 3.19 Evaluate 
2

5

x

x

−
−∫ dx.

Put 2 22 cos 5 sin d 6 sin cos dx xθ θ θ θ θ= + ∴= =

 
2 22 3 sin and 5 3 cosx xθ θ− = − =

 \ 
2

2

2

3 sin
6 sin cos d 6 sin d

3 cos
I

θ
θ θ θ θ θ

θ
= ⋅ =∫ ∫

 

3 (1 cos2 )d

1
3 sin 2

2

3 3sin cos

θ θ

θ θ

θ θ θ

= −

 
 = −
  

= −

∫

 

1
3

1

2 2 5
3 sin

3 3 3

2
3 sin ( 2)(5 )

3

x x x

x
x x c

−

−

− − −
= − ⋅

−
= − − − +

Example 3.20 Evaluate d .
( )( )

x
x

x x

β

α
α β− −∫

Putting 2 2cos sinx α θ β θ= +  and proceeding as in Example (3.18),

we get 
/2 2 2

0

cos sin
2( )sin cos d

( ) sin cos
I

π
α θ β θ

β α θ θ θ
β α θ θ

+
= ⋅ −

−∫

 

/2 2 2

0

1 cos 1 cos
2 d

2 2

or ( )
2 2 2

π
θ θ

α β θ

π π π
α β α β

    + −    = +        
     = + +       

∫
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EXERCISE 3(a)

Part A

(Short Answer Questions)

Integrate the following functions w.r.t. x:

(1) 

2

1

x

x+  (2) 

2 4 3

2

x x

x

− +
−  (3) cos cosmx nx

(4) 
1

1 cos x−  (5) 

2sin

1 cos

x

x+  (6) 
(1 )nx

x

+

(7) 
1

2 x xe e−+ +  (8) 
1

(log )nx x
 (9) 

2sin sin 2x x⋅

(10) 
sin cos

sin cos

x x

x x

+
−  (11) 2

1

2 8

x

x x

+
+ +  (12) 

2

3 2

2

3 2

x x

x x

+

+ +

(13) 
1

ax b
cx d

+ +
+

 (14) 

27

14 4

x

x −

(15) 

1

2 2

n

n n

x

a x

−

−
 (16) 

2

sinh

sinh 5

x

x+
 (17) 41

x

x+

(18) 2

1

1 (log)x −
 (19) 

2

cos

9 sin

x

x−
 (20) 

2

2

sec

16 tan

x

x+

Part B

Evaluate the following integrals:

(21) 

2cos x

x
 (22) 

3sin
2

x

x
 (23) 

1

0

d
x x

x

e e−+∫

(24) 

1

1 2
0

d

sin (1 )

x

x x− −
∫  (25) 

1tan

2

0
1

xe

x

−∞

+∫

(26) 2 2

0

d

a

x a x x−∫  (27) 

1

2
0

d
1

x
x

x−
∫  (28) 3

22 2

0
( )

a
dx

a x+∫

(29) 

1

2 2
0

d

(2 ) 4

x

x x− −
∫

(30) 
2 2

2 2

0

d

a

x
a x

x
a x

−
+∫  [Hint: Put x2 = a2 cos2q]
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(31) 

1

2 2
0

d

(1 ) 1

x

x x+ −
∫  (32) 

15

8

d

( 3) 1

x

x x− +∫  [Hint: Put x + 1 = y2]

(33) 

5

2

2
d

5

x
x

x

−
−∫    (34) 

3

2

d

( 2)(3 )

x

x x− −∫

(35) 
d

( )( )

x

x x

β

α
α β α− −∫

3.4   InTEgRATIon of RATIonAl (AlgEbRAIC) 

fUNcTIoNs

Integrals of the form 
2 2

d ( )
and d

x lx m
x

ax bx c ax bx c

+
+ + + +∫ ∫  are two typical 

integrals of rational functions.

 (1) To evaluate 
2

d
,

x

ax bx c+ +∫  we rewrite it as 
2

1 dx

b ca
x x

a a
+ +

∫  (viz., the 

coefficient of x2 is made unity)

  Then 
2

dx

b c
x x

a a
+ +

∫  is re-written in any one of the forms  

2 2 2 2 2 2

d
and .

( ) ( ) ( )

x dx dx

x p q x p q q x p
⋅

+ + + − − +∫ ∫ ∫  There are extend-

ed standard integral formulas and hence easily evaluated.

 (i) To evaluate 
2

( )
d ,

lx m
x

ax bx c

+
+ +∫  we express

  2d
( ) ,

d
lx m A ax bx c B

x
+ = ⋅ + + +  where A and B are constants to be found 

out in individual problems.

  Then 

2

2 2

d
( )

dd d

ax bx c
xxI A x B

ax bx c ax bx c

+ +
= +

+ + + +∫ ∫

  The first of these integrals is of the form 
( )

d
( )

f x
x

f x

′
∫  and hence the result 

is log {f(x)} or log (ax2 + bx + c) and the second integral is evaluated as in 

case (i).

 (ii) If the denominator of the integrand f(x) in ( )df x x∫  can be factorised, 

f(x) is split into partial fractions by algebraic method and the integration is 

performed term by term.
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Integration of the trigonometric functions of the following form can be reduced to 

integration of rational functions, or integration by substitution.

 (i) To evaluate integrals of the form 
2 2

d

cos sin

x

a x b x c+ +∫  (where a, b, c are 

constants, we multiply the numerator and denominator of the integrand by 

sec2q and then the integral can be rewritten as 2(tan )sec d ,f θ θ θ∫  which 

can be evaluated by earlier method by making the substitution tan q = u.

 (ii) To evaluate integrals of the form 
d

,
cos sin

x

a x b x c+ +∫  we express cos x 

and sin x in terms of tan .
2

x
 On simplification, the integral takes the form 

2

dt

at bt c+ +∫  which can evaluated by the earlier method.

 (iii) To evaluate integrals of the form 
cos sin

d ,
cos sin

l x m x n
x

l x m x n

 + +    ′ ′ ′+ + ∫  first 

we put integral in the form 
d

. Dr Dr
d

Nr A Bx
x

 = +   
 where A, B, and C 

constants to be found out in individual problems [Nr = numerator and Dr. = 

denomination]

  Then the integral takes the form

  

d
(Dr)

d d ,
Dr

xI A B c x

 
 
 = + + 
 ∫  the result of which is immediately obtained as 

d
log(Dr.) .

Dr

x
Ax B c= + ∫  The third integral is a problem in the case (ii)

Worked example 3(b)

Example 3.1 Evaluate 
4 2

d
.

1

x x

x x+ +∫

The integrand is the product of a f(x2) and x. So we make substitution x2 = y and hence 

1
d d .

2
x y=

Then 
22

1
d

1 d2

1 2 1 1
1

2 4

y
y

I
y y

y

= =
+ +      + + −       

∫ ∫
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22

1

2
1

1 d

2 1 3

2 2

1
1 2 2tan
2 3 3

2

1 2 1
tan

3 3

y

y

y

x
c

−

−

=
    + +      

  +   = ⋅      
 +  = +   

∫

Example 3.2 Evaluate 
2

d
.

1 4 4

x

x x+ −∫

 

2 2

2

1 d 1 d

1 14 4
( )

4 4

1 d

4 1 1

2 2

x x
I

x x x x

x

x

= =
+ − − −

=
 − −   

∫ ∫

∫

 

2 2

1 1

1 d 1 2 22
log

1 14 4 21 1
2222

1 2 2 2 2
log

4 2 2 2 2 2

x
x

xx

x
c

x

  + −    = = ⋅        − +  − −          
  − + = +  + −  

∫

Example 3.3 Evaluate 
1

2

0

d
; 0 1.

2 cos 1

x

x x
θ

θ
< <

+ +∫

 

1

2 2

0

11

1

2 2

00

d

( cos ) (1 cos )

d 1 cos
tan

( cos ) sin sin sin

x
I

x

x x

x

θ θ

θ

θ θ θ θ

−

=
+ + −

  +  = =    + +  

∫

∫

 

1 1

1 1

1 1

1 1 cos
tan tan (cot )

sin sin

1
tan cot tan (cot )

sin 2

1
tan tan tan tan

sin 2 2 2

1

sin 2 2 2

θ
θ

θ θ

θ
θ

θ

π θ π
θ

θ

π θ π
θ

θ

− −

− −

− −

   + = −      
    = −      
        = − − −           
 = ⋅ − − +

.
2sin

θ

θ

=
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Example 3.4 Evaluate 
8

6
.

1

x

x +∫

Put 
3 2 1

and so d d
3

x y x x y= =

 

2

2 2

1

2 1 3

1
d

1 13 1 d
1 3 1

1
[ tan ]

3

1
[ tan ]

3

y y

I y
y y

y y c

x x c

−

−

 = = −  + + 

= − +

= − +

∫ ∫

Example 3.5 Evaluate 
2

2
d .

2 3 1

x
x

x x

−
+ +∫

Let 2d
2 (2 3 1)

d

(4 3)

x A x x
x

A x B

− = ⋅ + +

= + +

Comparing like terms; 
1 3 11

and 2
4 4 4

A B B= + =− ∴ =

Then 
2

2

2

1 11
(4 3)

4 4 d
2 3 1

1 11
log(2 3 1)

3 14 8

4 2

x

I x
x x

dx
x x

x x

+ −
=

+ +

= + + −
+ +

∫

∫

 

2

2 2

2

2

1 11 d
log(2 3 1)

4 8 3 1

4 4

3 1

1 11 4 4 4log(2 3 1) log
3 14 8 2

4 4

1 11 2 1
log(2 3 1) log

4 4 2 2

x
x x

x

x

x x

x

x
x x c

x

= + + −
     + −       

  + −    = + + − ×    + +   
 + = + + − +  + 

∫

Example 3.6 Evaluate 
2

1
d .

6 7

x
x

x x

+
+ −∫

Let 1 (6 2 )x A x B+ = − +

Comparing like terms; 
1

1 2 1 and 6 1 4
2

A A A B B− = ∴ =− + = ∴ =
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Then 2

2 2

1
(6 2 ) 4

1 d2 log(6 7 ) 4
6 7 2 7 ( 6 )

x
x

I x x
x x x x

− − +
= =− + − +

+ − − −∫ ∫

 

2

2 2

2

2

1 d
log(6 7 ) 4

2 4 ( 3)

1 1 4 3
log(6 7 ) 4 log

2 2 4 4 3

1 1 1
log(6 7 ) log

2 2 7

x
x x

x

x
x x c

x

x
x x c

x

=− + − +
− −

 + − =− + − + × + × − + 
 + =− + − + +  − 

∫

Example 3.7 Evaluate 
2

2

( 1)
d .

1

x x
x

x x

+ +
− +∫

Integrand is an improper function. So we express it as the sum of an integer and a 

proper function.

Then 
2

2
1 d

1

x
I x

x x

 = +   − + ∫

 

2

2

22

2 1

1 (2 1) 1
d

1

d
log( 1)

1 3

2 2

2 2 1
log( 1) tan .

3 3

x
x x

x x

x
x x x

x

x
x x x c−

⋅ − +
= +

− +

= + − + +
    − +      

 − = + − + + +  

∫

∫

Example 3.8 Evaluate 

2 2

3

0

1
d .

4 12 7

x
x

x x

+
+ +∫

 

2
2

3 2

03

0

1
(12 12)

112 d {log(4 12 7)}
4 12 7 12

1 1
[log63 log7] log 9.

12 12
e

x

I x x x
x x

× +
= = + +

+ +

= − =

∫

Example 3.9 Evaluate 
2

2

1
d .

( 1)( 2)

x x
x

x x

+ +
− −∫

As the denominator is the product of factors, we split the integrand into partial 

fractions.

Let 
2

2 2

1

( 1)( 2) 1 2 ( 2)

x x A B C

x x x x x

+ +
= + +

− − − − −
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\ 2 21 ( 2) ( 1)( 2) ( 1)x x A x B x x C x+ + = − + − − + −

Putting  x = 1, A = 3

Putting  x = 2, C = 7

Equating coefficients of x2 on both sides, we get A + B = 1 \  B = –2.

Then 
2

3 2 7
d

1 2 ( 2)

7
3log( 1) 2log( 2)

2

I x
x x x

x x c
x

 
 = − +
 − − − 

= − − − − +
−

∫

Example 3.10 Evaluate 
2

4 2

1
d .

1

x
x

x x

−
+ +∫

Though the denominator of the integrand is not directly factorisable, it is made 

factorisable as explained below:

 

4 2 4 2 2

2 2 2

2 2

1 ( 2 1)

( 1)

( 1)( 1)

x x x x x

x x

x x x x

+ + = + + −

= + −

= + + − +

Then 
2

2 2

1

( 1)( 1)

x
I

x x x x

−
=

− + + +

Let 2 21 1

Ax B Cx D
I

x x x x

+ +
= +

− + + +

\ 2 2 21 ( )( 1) ( )( 1)x Ax B x x cx D x x− = + + + + + − +
Equating like coefficients, we get

 A + C = 0

 A + B – C + D = 1

 A + B + C – D = 0

 B + D = –1

Solving these equations, we get A = 1, C = –1, 
1

2
B D=− =

\ 
2 2

1 1

2 2 d
1 1

x x

I x
x x x x

  − +    = −  − + + + ∫

 

2 2

2

2

1 2 1 2 1
d

2 1 1

1 1
log

2 1

x x
x

x x x x

x x
c

x x

 − + = −   − + + + 
 − +  = +   + + 

∫
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Example 3.11 Evaluate 
3

d

1

x x

x +∫ .

The denominator of the integrand is factorisable as (x + 1) (x2 – x + 1)

Let 
3 21 1 1

x A Bx C

x x x x

+
= +

+ + − +

\ 
2( 1) ( 1)( 0)x A x x x Bx= − + + + +

Putting  
1

1,
3

x A=− =−

Equating like terms, we get 
1

0
3

A B B+ = ∴ =  and A + C = 0 
1

3
C∴ =

Then 
2

1

1 13 d
1 3 1

x
I x

x x x

 
 − + = + + − +  
∫

 

2

2

22

1 3
(2 1)

1 1 2 2log( 1) d
3 3 1

1 1 1 d
log( 1) log( 1)

3 6 2 1 3

2 2

x

x x
x x

x
x x x

x

− +
=− + +

− +

=− + + − + +
    − +      

∫

∫

 

2 11 1 1 2 1
log( 1) log( 1) tan

3 6 3 3

x
x x x C−  − =− + + − + + +  

Example 3.12 Evaluate 

/2

0

cos d
.

(1 sin ) (2 sin )

x x

x x

π

+ +∫

Put sin x = y  and so cos x dx = dy

When 0 and , 0 and 1 resepectively
2

x y
π

= =

\ 
1

0

d

(1 )(2 )

y
I

y y
=

+ +∫

 

1

0

1 1
d ,

1 2
y

y y

 = −   + + ∫
on splitting the integrand into partial fractions.

\ 1

0[log(1 ) log(2 )]

2 1 4
log log log

3 2 3

I y y= + − +

 = − =   
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Example 3.13 Evaluate 
2

0

d .
(1 )(1 )

x
x

x x

∞

+ +∫

Let 
2 2(1 )(1 ) 1 1

x A Bx C

x x x x

+
= +

+ + + +

\ 2(1 ) (1 )( )A x x Bx c x+ + + + =

Putting 
1

1, 2 1
2

x A A=− =− ∴ =−

Equating like terms, 
1

0
2

1
and 0

2

A B B

A C C

+ = ∴ =

+ = ∴ =

Then 
2

0

1
1 12 d

1 2 1

x
I x

x x

∞
  −  + = + ⋅   + + ∫

 

2 1

0

1

2 4
1 1

1

2

0

1
1

4

2

0

1 1 1
log(1 ) log(1 ) tan

2 4 2

(1 ) 1 1
log tan tan 0

2 2
(1 )

1
1

log
1 4

1

x x x

x

x

x

x

π

∞
−

∞

− −

 
 = − + + + +
  
   +  = + ∞−   +   
      +     = =   +   

Example 3.14 Evaluate 
d

.
sin sin 2

x

x x+∫

 
2

d

sin 2 sin cos

d sin d

sin (1 2 cos ) (1 cos )(1 2cos )

x
I

x x x

x x x

x x x x

=
+

= =
+ − +

∫

∫ ∫

Put cos x = y and so sin x dx = –dy

\ d

(1 )(1 )(1 2 )

y
I

y y y

−
=

− + +∫

Let 
1

(1 )(1 )(1 2 ) 1 1 1 2

A B C

y y y y y y
= + +

− + + − + +
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1 41

6 32 ,
1 1 1 2y y y

= − +
− + +

 on splitting into partial fractions.

\ 

1 41

6 32 d
1 1 1 2

I y
y y y

  −    = + −  − + + ∫

 

1 1 1 4
log(1 log(1 ) log(1 2 )

6 2 2 3

1 1 2
log(1 cos ) log(1 cos ) log(1 2cos ) .

6 2 3

y y y

x x x C

= − + + − ⋅ +

= − + + − + +

Example 3.15 Evaluate 
2 2

d
.

sin 6cos 3

x

x x+ +∫
Multiplying the numerator and denominator by sec2x,

we have 
2

2 2

sec d

tan 6 3(1 tan )

x x
I

x x
=

+ + +∫  

Since the integrand is the product of f(tan q) and sec2q, we make the substitution tan  

x = y and so sec2x dx = dy

\ 
2 2

d

6 3(1 )

y
I

y y
=

+ + +∫

 

1

2 2

2

1

d 1 d 1 2 2
tan

4 4 3 34 9 3

2

1 2
tan tan

6 3

y y y

y
y

x C

−

−

 = = = ⋅   +  +   
 = +  

∫ ∫

Example 3.16 Evaluate 
/2

2 2 2 2

0

d
.

cos sin

x

a x b x

π

+∫

 

/2 2

2 2 2

0

sec d

tan

x x
I

a b x

π

=
+∫

Put 2tan and so sec d dx y x x y= =

When 0, 0 and when ,
2

x y x y
π

= = = =∞

Then 
22 2 2 2

20 0

d 1 dy y
I

a b y b a
y

b

∞ ∞

= =
+   +  

∫ ∫
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1

2

0

1
tan

1
0

2 2

b by

b a a

ab ab

π π

∞
−

   = ⋅     
 = − =  

Example 3.17 Evaluate 
d

.
4cos 3sin 5

x

x x+ +∫

Expressing cos x and sin x  in terms of tan
2

x
 and putting tan

2

x
t=  and so 

2

2

1 2d
sec d d or d

2 2 1

x t
x t x

t
⋅ = =

+

we get 
2

2

2 2

2d

1

1 2
4 3 5

1 1

t

t
I

t t

t t

+
=

   −  + +     + +   

∫

 

2 2

2 2

d
2

4(1 ) 6 5(1 )

d d
2 2

6 9 ( 3)

2

tan 3
2

t

t t t

t t

t t t

c
x

=
− + + +

= =
+ + +

=− +
+

∫

∫ ∫

Example 3.18 Evaluate 

/2

0

d
2 .

12 cos 9 sin

x

x x

π
π

+∫

Putting tan
2

x
t=  and so 

2

2d
d

1

t
x

t
=

+
 and changing the limits as 0 and 1, we get

 

1 2

2

0
2 2

2d

1

1 2
12 9

1 1

t

t
I

t t

t t

+
=

 −  + ×   + + 

∫

 

1

2

0

1 1

2 2
20 0

d
2

12 12 18

1 d 1 d

36 6 5 31
2 4 4

t

t t

t t

t t t

=
− +

= =
       − −   − −           

∫

∫ ∫
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1

0

5 3

1 2 4 4log
5 36 5

4 4

1 3 1
log log

15 2 4

1
log 6.

15

t

t

  + −    = ×    − +   

 = −   

=

Example 3.19 Evaluate 
sin 18 cos

d .
3 sin 4 cos

x x
x

x x

+
+∫

Let sin 18cos (3sin 4cos ) (3cos 4sin )x x A x x B x x+ = + + −  Equating like terms, 

we get

 3A – 4B = 1 (1)

and 4A + 3B = 18 (2)

Solving equation (1) and (2), we get A = 3 and B = 2

Then 

d
3 (Dr) 2 (Dr.)

d d
Dr.

3 2 log(3sin 4cos )

xI x

x x x c

× +
=

= + + +

∫

Example 3.20 Evaluate 
/2

0

d
.

1 cot

x

x

π

+∫

 

/2

0

sin
d

sin cos

x
I x

x x

π

=
+∫

Let sin ( ) ( ),x A f x B f x′= ⋅ + ⋅  where f(x) is the denominator

 
(sin cos ) (cos sin )A x x B x x= + + −

Equating like terms, we get 1 and 0A B A B− = + =

\ 1 1
and

2 2
A B= =−

Then 
/2

0

1 1 ( )
d

2 2 ( )

f x
I x

f x

π  ′
 = −
  
∫

 

2

0

1 1
log(sin cos )

2 2

1 1
0 (log1 log1)

2 2 2

.
4

x x x

π

π

π

 
 = − +
  
 = − − −  

=
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EXERCISE 3(b)

Part A

(Short Answer Questions)

(1) 2 2

1

x a+  (2) 2 2

1

x a−  (3) 2 2

1

a x−
 (4) 

11 1
tan

2 2

x−  +    

(5) 2

1

9

x

x

+
+

 (6) 4 4

x

x a+  (7) 
1

( 1)x x+  (8) 
cos

sin (1 sin )

x

x x+

(9) 
1

sin x
 (10) 

1

cos x

Part B

Integrate the following functions w.r.t. x:

(11) 

2

6 3 1

x

x x+ +   (12) 2 2 10

x

x x

e

e e+ +

(13) 2

2log 3

[(log ) 2log 5

x

x x x

+
+ +  (14) 2

3 7

2 3 5

x

x x

+
− +

(15) 2

(5 4sin )cos

1 2sin sin

x x

x x

−
+ −  (16) 

2

2

1

1

x x

x x

− +
+ +

(17) Evaluate 

1

2

0

( 3)
d

2 4

x
x

x x

−
+ −∫  (18) Evaluate 

1

2

0

( 3)
d

2 4

x
x

x x

−
+ −∫

(19) Evaluate 
d

( 1)( 2)

x

x x x+ +∫  (20) Evaluate 
2

(7 4)
d

( 1) ( 2)

x
x

x x

−
− +∫

(21) Evaluate 
3

d

1

x

x +∫  (22) Evaluate 
2

3

2 3
d

1

x
x

x

+
−∫

Evaluate the following:

(23)  
2

cos d

(1 sin )(1 sin )

x x

x x+ +∫  (24) 2 2

d

( 1)( 4)

x

x x+ +∫

(25)  
2 2

d

cos 2sin 3

x

x x+ +∫  (26) 2

3 d

2 7 cos

x

x+∫

(27) 
d

1 3 sin 4 cos

x

x x+ +∫  (28) 

0

d

5 3 cos

x

x

π

+∫



3.26 Engineering Mathematics I

(29) 
8 cos sin 6

3 cos 2 sin 4

x x

x x

+ +
+ +∫ dx (30) 

/2

0

d

1 tan

x

x

π

+∫

3.5 INTegraTIoN of IrraTIoNal fUNcTIoNs

 (i) To evaluate 
2

d
,

x

ax bx c+ +
∫  we make the coefficient of x2 as unity, viz., I 

is rewritten as 
1 dx

a b c
x x

a a

2 + +
∫  which is put as 

2 2

1 d

( )

x

a x p q+ ±
∫  

or 
2 2

1 d
.

( )

x

a a x p− +
∫

 (ii) To evaluate 
2

d ,
lx m

x
ax bx c

+

+ +
∫  we express 

d
( ) ,

d
lx m A f x B

x
+ = × +  

where f(x) = ax2 + bx + c and A, B are constants to be found out in individual 

problems.

  Then 
( ) d

d 2 ( ) .
( ) ( )

Af x B x
I x A f x B

f x f x

′ +
= = × +∫ ∫  The second inte-

gral is evaluated as in case (i).

 (iii) 2 d :ax bx c x+ +∫
  Making coefficient of x2 as unity, we get

  
I a x p q x a q x p x= + ± − +∫ ∫( ) or ( ) ,2 2 2 2d d

  which are extended standard integrals.

 (iv) ( )lx m ax bx c x+ + +∫ 2 d

  To evaluate this, we put lx m Af x B+ = ′ +( ) ,  when A and B are constants t 

to be found out in individual problems and f(x) = ax2 + bx + c.

  Then 

3
2

{ ( ) } ( ) d

2
[ ( )] ( ) d

3

I A f x B f x x

A f x B f x x

′= ⋅ +

= ⋅ +

∫

∫
  Then second integral is evaluated as in case (iii).
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 (v) Integral of the form

  
2

d

( )

x

x k ax bx c− + +
∫  can be converted as 

2

d
,

x

lx mx n+ +
∫  by making 

the substitution 
1

.x k
y

− =

 (vi) To evaluate 
d

( )

x

px q lx m+ +∫  also, the substitution 
1

px q
y

+ =  can be 

made.

 (vii) If a part of the integral contains ,ax b+  we may put 
2ax b y+ =  and 

remove the irrational part from the integrand.

 (viii) If the integral is of the form 
2 2

d
,

( )

x

ax b cx d+ +
∫  we put 

1
.x

y
=  Then the 

integral takes the form which can be evaluated by substitution.

Worked example 3(c)

Example 3.1 Evaluate 
2

d
.

6 5

x

x x− −
∫

 

2

2 2

1

d

5 ( 6 )

d

2 ( 3)

3
sin

2

x
I

x x

x

x

x
c−

=
− − −

=
− −

 − = +  

∫

∫

Example 3.2 Evaluate 

1

2
0

d
.

2 2

x

x x+ +
∫

 

1

2 1

0
2

0

d
[log{( 1) 2 2}]

( 1) 1

log(2 5) log(1 2)

2 5
log

1 2

x
I x x x

x
= = + + + +

+ +

= + − +
 +  =   + 

∫
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Example 3.3 Evaluate 
2

d
.

2 7 5

x

x x− +
∫

 

2
2

1 d 1 d

7 52 2 7 9
2 2

4 16

x x
I

x x
x

= =
 − +  − −  

∫ ∫

   

1 21 4 7 9
cosh , since

3 162

x
a−  − = =  

Example 3.4 Evaluate 
2

d .
5 4

x
x

x x−
∫

Let 2d
(5 4 )

d
x A x x B

x
= ⋅ − +

 
(10 4)A x B⋅ − +

Equating like terms, we 10 A = 1 and so 
1

.
10

A=

 

2
4 0 and so

5
A B B− + = =

Then 
2

1 2
(10 4)

10 5

5 4

x

I
x x

− +
=

−
∫

 

2

2

2

2 2

2 1

1 2 d
2 5 4

10 5 5 4

5

1 2 d
5 4

5 5 5 2 2

5 5

1 2 5 2
5 4 cosh .

5 25 5

x
x x

x x

x
x x

x

x
x x c−

= × − +

−

= − +
     − −       

 − = − + +  

∫

∫

Example 3.5 Evaluate 
2

3 2
d .

4 8 13

x
x

x x

−

− +
∫

Let 
2d

3 2 (4 8 13)
d

(8 8)

x A x x B
x

A x B

− = × − + +

= × − +

Equating like terms, 
3

8
A=  and B – 3 = –2 and so B = 1.
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Then 
2

3
(8 8) 1

8 d
4 8 13

x

I x
x x

− +
=

− +
∫

 

2

2

2

2

2

2 1

3 1 d
4 8 13

4 2 13
2

4

3 1 d
4 8 13

4 2 3
( 1)

2

3 1 2( 1)
4 8 13 sinh

4 2 3

x
x x

x x

x
x x

x

x
x x c−

= − + +

− +

= − + +
 − +   

−
= − + + +

∫

∫

Example 3.6 Evaluate 
5

2

2
d .

5

x
x

x

−
−∫

Multiplying the numerator and denominator of the integrand by 2,x−  we get

 

5 5

2
2 2

( 2) ( 2)
d or d

( 2)(5 ) 10 7

x x
I x x

x x x x

− −
=

− − − + −
∫ ∫

Let x – 2 = A × (7 – 2x) + B

Equating like terms, 
1 3

and
2 2

A B=− =

\ 
2

2

2

1 3
(7 2 )

2 2

10 7

3 d
10 7

2 10 7

x

I
x x

x
x x

x x

− × − +
=

− + −

=− − + − +
− + −

∫

∫

         

5

5

2
2 2

2

5

1

2

3 d
{ ( 2)(5 )}

2 3 7

2 2

3 2 7
0 sin

2 3

3

2 2 2

3

2

x
I x x

x

x

π π

π

−

=− − − +
     − −       

  −  = +     
   = − −     

=

∫
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Example 3.7 Evaluate (1 ) d .x x x−∫

 

2

2

2 2

d

( ) d

1 1
d

2 2

I x x x

x x x

x x

= −

= − −

     = − −       

∫
∫

∫

 

2

1

2 1

1 1 1

2 2 2(1 ) sin
12 2

2

(2 1) 1
sin (2 1)

4 8

x x

x x

x
x x x c

−

−

        − −             = − +      

−
= − + − +

Example 3.8 Evaluate 2( 1) 1 d .x x x x+ − +∫

Let 2d
1 ( 1)

d

(2 1)

x A x x B
x

AX x B

+ = − + +

= − +

Equating like terms, we get 2A = 1 and so 
1

2
A=  and –A + B = 1 and so 

3

2
B=

Then   I f x f x x f x x x= ′ +{ } = − +∫
1

2

3

2
12( ) ( ) , where ( )d

    

3
2

3
2

22

2

2 2 1

2 2 1

1 { ( )} 3 1 3
d

32 2 2 2

2

1 3 1

1 3 2 2 2( 1) 1 sinh
3 2 2 2 3

2

1 3 9 2 1
( 1) (2 1) 1 sinh

3 8 16 3

f x
x x

x x

x x x x

x
x x x x x

−

−

    = + − +     

        − −              = − + + − + +        
 −= − + + − − + + 

∫

c
+

Example 3.9 Evaluate 
2

( 1) d .
2

x
x x

x

+
+

−∫

 
2

( 2)
( 1) d ,

4

x
I x x

x

+
= +

+
∫  on multiplying the numerator and

         denominator by 2.x+
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Now 
2

2

3 2
d .

4

x x
I x

x

+ +
=

−
∫  This integral is of form 

2

2
d

lx mx n
x

ax bx c

+ +

+ +
∫

To evaluate this integral, we proceed as given below

Let 2 2 2d
3 2 ( 4) ( 4)

d
x x A x B x C

x
+ + = − + ⋅ − +

Equating like terms, we get 
3

1, and 6
2

A B C= = =

Then 

2

2

22

d
( 4)

3 d4 d d 6
2 44

x
dxxI x x x

xx

−
= − + +

−−
∫ ∫ ∫

 

2 1 2 1

2 2 1

4 3
4 cosh 2 4 6 cosh

2 2 2 2 2

4 3 4 4 cosh .
2 2

x x x
x x

x x
x x C

− −

−

 = − − + × − +  
 = − + − + +  

Example 3.10 Evaluate 
2

d
.

( 1) 4 2

x

x x x+ + +
∫

Let 
2

1 1 1
1 and so d d and

y
x x y x

y y y

−
+ = =− =

Then 
2

2

1
d

1 1 1
4 2

y
y

y y

y y y

−
=

   − −  + +        

∫

 

2 2

2 2 2

1 1

d

(1 ) 4 (1 ) 2

d d

1 2 ( 2) ( 1)

1
cos or cos

2 2( 1)

y

y y y y

y y

y y y

y x
c

x

− −

=−
− + − +

=− =−
+ − − −

   − −  = +     + 

∫

∫ ∫

Example 3.11 Evaluate 
2

d
.

(4 1) 1

x

x x x+ − −
∫

Let 
2

1 1 1 1
4 1 and so d d and 1 4 or

44

y
x x y x

y y yy

  −+ = =− = − ÷  
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Then 

2

2

1
d

4

1 1 1
1

4 4

y
y

I

y y

y y y

−
=

   − −  − −        

∫

 

2 2

2

2

22

d

16 4 (1 ) (1 )

d

19 2 1

1 d

19 2 1

19 19

1 d

19
1 20

19 19

y

y y y y

y

y y

y

y y

y

y

−
=

− − − −

=−
− −

=−

− −

=−
    − −     

∫

∫

∫

∫

 

1

1

1

1

1

1

1 19
cosh

19 20

19

1 19 1
cosh

19 20

1
19 1

1 4 1
cosh

19 20

1 76 18
cosh

19 20(4 1)

1 38 9
cosh

19 5(4 1)

y

y

x

x

x

x

x

−

−

−

−

−

     −     =−          
 − =−   
  × −   +  =−    
 +  =−   +  

+
=−

+
.c

   +    

Example 3.12 Evaluate 
d

.
( 2) 3

x

x x+ +∫

Let x + 2 
2

1 1 1
and so d d . Also 3 1x y x

y y y
= =− + = +

Then 
2

1
d

d

1 1 1
1

y
yy

I
y y

y y

−
= =−

⋅ +
+

∫ ∫
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2 22

d d

1 1

2 2

y y

y y
y

=− =−
   +   + −       

∫ ∫

 

1

1

1
cosh (2 1) or cosh 2 1

2

4
cosh .

2

y
x

x
c

x

−

−

 =− + − × +   + 
 + =− +  + 

Example 3.13 Evaluate d .
2

x
x

x+∫

Let 2 and so d 2 dx y x y y= =

Then 
2 d

2

y y y
I

y

⋅
=

+∫

 
4

2 2 d ,
2

y y
y

 = − +   + ∫  as the improper function 
2

2

y

y+
 has 

       been rewritten

 

2

2 2 4log( 2)
2

4 8log( 2)

y
y y

x x x c

 
 = − + +  

= − + + +

Example 3.14 Evaluate 
2 2

d
.

( 1) 4

x

x x+ −
∫

Let 
2

1 1
and so d dx x y

y y
= =−

Then 
2

2 2

1
d

1 1
1 4

y
y

I

y y

−
=

  + −  

∫

 
2 2

d

( 1) 1 4

y y
I

y y

−
=

+ −
∫

Let 2 21 4 and so 8 d 2 dy u y y u u− = − =

Then 
2 2

2

1
d

4
1 ( 5)(5 )
4

u u
du

I
uu u

= =
−− ⋅

∫ ∫
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2

2

2

2

1 5
log

2 5 5

5 1 41
log

2 5 5 1 4

4
5 1

1
log

2 5 4
5 1

u

u

y

y

x

x

 +  =   − 
  + −  =   − −   
   + −   =     − −   

 

2

2

5 41
log

2 5 5 4

x x
c

x x

  + −  = +  − −   

Example 3.15 Evaluate 

1
3

2 2
0

d
.

(1 ) 1

x

x x+ −
∫

Let 2

1 1
and so d d ,x x y

y y
= =  when x = 0, y = • and when   

 

1
, 3

3
x y= =

Then 
3 2

2 2

1
d

1 1
1 1

y
y

I

y y
∞

−
=

  + −  

∫

 
2 2

3

d

( 1) 1

y y

y y

∞

=
+ −

∫

Let y2 – 1 = u2 and so ydy = u du; when 3, 2y u= =  and when y = •, u = •

Then 

2

2

1

2

( 2)

1
tan

2 2

1

2 42 4 2

u du
I

u u

u

π π π

∞

∞
−

=
+

 =   

 = − =  

∫
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EXERCISE 3(c)

Part A

(Short Answer Questions)

1. Evaluate 
2 2

dx

a x−
∫

2. Evaluate 
2 2

dx

x a−
∫

3. Evaluate 
2 2

dx

x a+
∫

4. Evaluate 
2

d

2 5

x

x x+ +
∫

5. Evaluate 
2

d

4 2

x

x x− −
∫

6. Evaluate 
2

d

3 1

x

x x+ +
∫

7. Evaluate 2

( 3)d

1

x x

x

+

−
∫

8. Evaluate 
d

( 4)

x

x x+∫

9. Evaluate 
d

1

x

x x−∫

10. Evaluate 
2

d

2

x

ax x−
∫

Part B

11. Evaluate 

1

3
d

(2 3 )
x

x x−∫

12. Evaluate 

1

4
0

d

1

x x

x+
∫

13. Evaluate 
d

( )
( )( )

x

x x

β

α

β α
α β

>
− −∫
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14. Evaluate 
2

(2 5)
d

2 10

x
x

x x

+

− +
∫

15. Evaluate 
1

d
2 3

x
x

x

+
−∫

16. Evaluate 

2

2
0

2
d

3 2

x
x

x x− −
∫

17. Evaluate 
2

2

2 3
d

1

x x
x

x

+ +

+
∫

18. Evaluate 
2

d

( 2) 6 7

x

x x x+ + +
∫

19. Evaluate 
2

d

7 6 1

x

x x x− −
∫

20. Evaluate 
d

(2 3) 5

x

x x+ +∫

21. Evaluate 
d

( 3) 5

x

x x+ −∫

22. Evaluate 

1
3

2 2
0

d

(1 ) 1

x

x x+ −
∫

23. Evaluate 
2 2

d

( 1) 1

x

x x− +
∫

24. Evaluate 27 10 dx x x− −∫

25. Evaluate 2( 1) 1 dx x x x+ + +∫

3.6 INTegraTIoN by parTs

When u and v are function of x, then by the product rule of differentiation, we have

 

d d d
( )

d d d

v u
uv u v

x x x
= +

viz., 
d d d

( )
d d d

v u
u uv v

x x x
= −

Integration both side w.r.t. x, we have

 
d du v uv v u= −∫ ∫
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Evaluation of du v∫  depends on d .v u∫  Thus when we want to evaluate an 

integral which is a product, it should be identified as the product of one factor (u) and 

the differential of another factor v. The choice of u and v should be carefully made so 

that v du∫  is easier then .u dv∫

3.6.1  Improper Integrals

The definite integral ( )d

b

a

I f x x= ∫  has meaning only when the limits a and b are finite 

and the integrand f(x) is bounded in the interval [a, b]. Now we extend the definition 

when the range of integration is infinite or when the integrand is unbounded.

Definition: If f(t) is bounded and integrable in ,a t x≤ ≤  where a is a constant and 

z is any number greater than a and if ( )d ( ),f t t F t=∫  then

 

( )d lim ( )d lim{ ( ) ( )}

x

x x
a a

f t t f t t F x F a

∞

→∞ →∞
= = −∫ ∫

is called the improper or infinite integral of f (t), provided the limit exists. If the limits 

exists, the integral is said to converge. On the other hand, if ( )d as ,

x

a

f t t x→∞ →∞∫  

the integral is said to diverge to +• or said not to exist.

Similarly lim ( )d lim { ( ) ( )},

b

x x
x

f t t F b F x
→−∞ →−∞

= −∫  if the limit exists, is denoted by 

( )d

b

f t t

−∞
∫  and the infinite integral is said to converge

Finally ( ) lim ( )d lim ( )d

a x

x x
x a

f t dt f t t f t t

∞

→−∞ →∞
−∞

= +∫ ∫ ∫  is defined the infinite integral 

in the in the L.S. is said to converge if both the integrals in the R.S. converge, ‘a’ is 

arbitrary and the value of the integral does not depend on a.

3.6.2  Integral with Unbounded Integrands

If f(t) is unbounded at in ,t a a t b→ ≤ ≤  then 
0

( ) lim ( ) ( 0),

b b

a a

f t dt f t dt
∈→

+∈

= ∈>∫ ∫  

provided the limit exists.

Similarly if f(t) becomes unbounded as to Æ b in a £ t £ b, then

 
0

( )d lim ( )d ( 0),

bb

a a

f t t f t t

−∈

∈→
= ∈>∫ ∫  provided the limit exists.
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If both and a and b are points of discontinuity, then

2

0 0
( )d lim ( )d lim ( )d , .

b c b

a a c

f t t f t t f t t a c b

−∈

∈→ ∈→
+∈ +∈

= + < <∫ ∫ ∫  If f (t) is unbounded at an interior 

point c such that a < c < b, then 

1

1 2

2

0 0
( )d lim ( ) lim ( )d ,

cb b

a a c

f t t f t at f t t

−∈

∈ → ∈ →
+∈

= +∫ ∫ ∫

where Œ
1
 and Œ

2
 are two arbitrary positive quantities tending to zero independently.

Although the two integrals in the R.S. may not exist independently, their sum may 

exist when Œ
1
 = Œ

2
 = Œ.

The value of the sum is called the Cauchy Principal value and written as

 
0

( )d lim ( )d ( )d

cb b

a a c

P f t t f t t f t t

−∈

∈→
+∈

 
 = + 
  

∫ ∫ ∫

If f(t) has a finite number of points of infinite discontinuity in (a, b), say, c
1
, c

2
, ..., c

n
 

where 1 2  na c c c b≤ ≤ ≤ ≤  then 

 

1 2

1

( )d ( )d ( )d ( )

n

c cb b

a a c c

f t t f t t f t t f t= + + +∫ ∫ ∫ ∫

3.6.3  Comparison Tests for Improper Integrals

Let ( )d

b

a

f t t∫  be an improper integral. If there exists a g(t) such that | f(t) | £ g(t) in   

and ( )d

b

a

a t b g t t≤ ≤ ∫  converge, then ( )d

b

a

f t t∫  also converges.

If there exists function g(t) such that ( ) ( ) in and ( ) d

b

a

f t g t a t b g t t≥ ≤ ≤ ∫  

diverges, then ( )d

b

a

f t t∫  also diverges.

Limit Form of Comparison Tests

Let f(x) > 0 and g(x) > 0 for all x £ a.

If 
( )

lim , where 0,
( )x

f x
k k

g x→+∞

 
  = ≠
  

 then both the integrals ( )d and ( )d

a a

f x x g x x

∞ ∞

∫ ∫  

converge or diverge together.

It k = 0, we may conclude only that the convergence of ( )d

a

g x x

∞

∫  implies that of 

( )d .

a

f x x

∞

∫
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Worked example 3(d)

Example 3.1 Evaluate 
23 d .xx e x∫

Let 2 1
and so d d

2
x t x x t= =

Then 
1

d
2

tI te t= ∫

 

2 22

1
d( ) [ ; d d . ]

2

1
[ ]

2

1
[ ]

2

t t t

t t

x x

t e u t v e t v e

te e dt

x e e c

= = = ∴ =

= −

= − +

∫

∫

note :

Example 3.2 Evaluate 3 2 d .xx e x∫

 

2
3

2

xe
I x d

  =   ∫

      

2
3 2 2and d d and so d

2

x
x x e

u x v e x v e x
 
 = = = =  ∫∵

 

3 2 2 2

2
3 2 2

3 2 2 2 2

1
3 d

2

1 3
d

2 2 2

1 3
2 d

2 4

x x

x
x

x x x

x e e x x

e
x e x

x e x e e x x

 = − ⋅  
  = −   

 = − − ⋅  

∫

∫

∫

 

2
3 2 2 2

3 2 2 2 2 2

3 2 2 2 2 2

1 3 3
d

2 4 2 2

1 3 3
d

2 4 4

1 3 3 3

2 4 4 8

x
x x

x x x x

x x x x

e
x e x e x

x e x e xe e x

x e x e xe e c

  = − +   

 = − + −  

= − + − +

∫

∫

Example 3.3 Evaluate 2 sin 2 d .x x x∫

 

2 cos2
d

2

x
I x

 = −   ∫

 

2 cos2
and d sin 2 d and so sin 2d

2

x
u x v x x v x

 
 = = = =−
  ∫∵
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2

2

cos2
cos2 2 d

2 2

sin 2
cos2 d

2 2

x x
x x x

x x
x x

=− − − ⋅

 =− +   

∫

∫

 

2

2

1
cos 2 sin 2 sin 2 d

2 2

1 1
cos 2 sin 2 cos 2

2 2 4

x
x x x x x

x
x x x x c

 =− + −  

=− + + +

∫

Example 3.4 Evaluate 2tan d .x x x∫

 

2
2(sec 1)d d(tan )

2

x
I x x x x x= − = −∫ ∫

 

2

2

tan tan
2

tan log sec
2

x
x x xdx

x
x x x c

= − −

= − − +

∫

Example 3.5 Evaluate 

2

1

log d .nx x x∫

Let 
2 2 1

1 1

log log
1

n
n x

I x x dx x d
n

+  = = ⋅    + ∫ ∫

 

2 21 1

1 1

2 2
1 1

2

1 1

1 1

2 2

1
log d

1 1

log
1 ( 1)

2 2 1
log 2

1 ( 1) ( 1)

n n

n n

n n

x x
x x

n n x

x x
x

n n

n n n

+ +

+ +

+ +

  = − ⋅   + + 

       = −     + +    

= − +
+ + +

∫

Example 3.6 Evaluate 
2

log
d .

( 1)

x
x

x+∫

Let 
1

log
1

I x d
x

 = ⋅ −   + ∫

 

1 1 1
log d

1 1

log 1 1
d

1 1

x x
x x x

x
x

x x x

=− ⋅ − − ⋅
+ +
 =− + −   + + 

∫

∫
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log
log

1 1

x x
c

x x

 =− + +  + + 

Example 3.7 Evaluate 2(log ) d .x x∫
Note  The integrand is not a product of two factors. So we assume that 

u = (log x)2 and dx = dv so that v = x.

Then      
2 2 1

(log ) d( ) (log ) 2 log dI x x x x x x x
x

= = − ⋅ ⋅∫ ∫

 

= −

= − − ⋅{ }
= −

∫

∫

x x x x

x x x x x
x

x

x x

(log ) (log ) ( )

(log ) log

(log )

2

2

2

2

2
1

d

d

22 2x x x clog + +

Example 3.8 Evaluate x x xsin .−∫ 1 d

Let I x
x

= ⋅







−∫ sin 1
2

2
d

 = − ⋅
−

− ∫
x

x
x

x
x

2
1

2

22 2

1

1
sin d

 = −− ∫
x

x
2

1 2

2

1

2
sin sin ,θ θd  on putting x = sin q

 

= −
−








= − −



−

−

∫
x

x

x
x

2
1

2
1

2

1

2

1 2

2

2

1

4

1

2
2

sin
cos

sin sin

θ
θ

θ θ

d






= − −

= − − −

−

− −

x
x

x
x x x

2
1

2
1 1

2

1

4

2

1

4
1

sin ( sin cos )

sin (sin

θ θ θ

xx c2 )+

Example 3.9 Evaluate 
tan

.
−

∫
1

2

x

x
xd

 

I x d
x

x
x

x x
x

= ⋅ −








=− + ⋅
+

−

−

∫

∫

tan

tan

1

1

2

1

1 1 1

1
d
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=− + −
+











=− + − +

−

−

∫
1 1

1

1 1

2
1

1

2

1

x
x

x

x

x
x

x
x x x

tan

tan log log(

d

22 )+ c

Example 3.10 Evaluate sin .− ⋅∫ 1 x xd

 

I x x

x x x
x

x

= ⋅

= − ⋅
−

−

−

∫

∫

sin ( )

sin

1

1

2

1

1

d

d

 

= −
− −

−

= + × − +

= + − +

−

−

−

∫x x

x

x
x

x x x c

x x x c

sin

( )

sin

sin

1

2

1 2

1 2

1

2
2

1

1

2
2 1

1

d

Example 3.11 Evaluate 
x x

x
x

+
+∫

sin

cos
.

1
d

Let I
x

x

x x

x
x= +












∫

2
2

2
2 2

2
2

2 2cos

sin cos

cos

d

 

= +








= ⋅






+







∫

∫

x x x
x

x
x x

2 2 2

2 2

2sec tan

tan tan

d

d






= − +

= +

∫

∫ ∫

d

d d

x

x
x x

x
x

x

x
x

c

tan tan tan

tan

2 2 2

2

Example 3.12 Evaluate x a x2 2−∫ d .

(Note  This integral and a x x x a x2 2 2 2− +∫∫ d dand  have been included 

in the list of standard integrals.)

Let I x a x= −∫ 2 2 d( )
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= − − ⋅
−

= − −
− +

−

= − − − +

∫x x a x
x

x a
x

x x a
x a a

x a
x

x x a x a
a

2 2

2 2

2 2
2 2 2

2

2 2 2 2

2

2
d

d

22

2 2x a
x

−










∫ d

 
= − −








−x x a I a
x

a

2 2 2 1cosh

\ 2 2 2 2 1I x x a a
x

a
= − −








−cosh

\ I
x

x a
a x

a
c= − −






+

−

2 2

2 2
2

1cosh

Example 3.13 Evaluate I e bx x I e bx xax ax

1 2= =∫ ∫cos and sin .d d

Let I bx
e

a

ax

1 = ⋅






∫ cos d

 
= − −∫

1

a
e bx

e

a
b bx xax

ax

cos ( sin )d

 = +
1

2
a

e bx
b

a
Iax cos  (1)

Let I bx
e

a

ax

2 =






∫ sin d

 
= − ×∫

1

a
e bx

e

a
b bx xax

ax

sin cos d

 = −
1

1
a

e bx
b

a
Iax sin  (2)

Using (2) in (1), we get

 
I

a
e bx

b

a a
e bx

b

a
Iax ax

1 1

1 1
= + −













cos sin

\ 1
12

2 1 2
+







 = +

b

a
I

a
e bx

b

a
e bxax axcos sin

\ I
e

a b
a bx b bx

ax

1 2 2
=

+
+( cos sin )  (3)
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Similarly, using (1) in (2) and simplifying, we can get

 I
e

a b
a bx b bx

ax

2 2 2
=

+
+( sin cos )  (4)

(Note  Results (3) and (4) can be treated as formulas and remembered as such, as 

these will be used frequently in later situations)

Example 3.14 Evaluate e x xx−
∞

∫ 3

0

4sin .d

Using the formula (4) derived in Example (3.13) above, we have

 

e x x
e

x xx
x

−
∞ − ∞

∫ =
− +

− −












3

0

3

2 2

0

4
3 4

3 4 4 4sin
( )

( sin cosd

 
= − − =0

1

25
4

4

25
( )

Example 3.15 Evaluate cosh cos .3 4x x xd∫

Let I
e e

x x
x x

=
+








−

∫
3 3

2
4cos d

 

= +

= +

+ ⋅

∫ ∫ −

−

1

2
4

1

2
4

1

2 25
3 4 4 4

1

2

3 3

3

e x x e x x

e
x x

e

x x

x

cos cos

( cos sin )

d d

33

25
3 4 4 4

x

x x c( cos sin )− + +

 

=
−






+

+







=

− −3

25
4

2

4

25
4

2

3

3 3 3 3

cos sinx
e e

x
e ex x x x

225
4 3

4

25
4 3cos sinh sin coshx x x x c+ +

Example 3.16 Evaluate (sin cos ) d .xe x x x+∫

Let I = sin d cos dx xe x x e x x+∫ ∫  

 = sin d ( ) cos dx xx e e x x⋅ +∫ ∫

 = sin cos d cos dx x xe x e x x e x x− +∫ ∫ ∫
 = ex sin x + c
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Example 3.17 Evaluate 
1

log ) d .xe x x
x

  +   ∫

Let I = 
1

d log dx xe x e x x
x
⋅ +∫ ∫

 = d (log ) log dx xe x e x x+∫ ∫
 = log log d ( ) log dx x xe x x e e x x− +∫ ∫

 = log log d log dx x xe x e x x e x x− +∫ ∫
 = ex log x + c

Example 3.18 Evaluate 
2

2

( 3 3)
d .

( 2)

xe x x
x

x

+ +
+∫

         

2

2

1
1 d

( 2)

1
d

( 2)

x

x x

x
I e x

x

x
e e x

x

  + = −  +  
+

= − ⋅
+

∫

∫

 = 
1

( 1) d
2

x xe e x
x

  + +    + ∫

 = 
( 1) 1

{ ( 1)}
2 2

x
x xe x

e d e x
x x

 + + − + + + 
∫

 = 
( 1) 1

{ ( 1) }
( 2) 2

x
x x xe x

e e x e
x x

 + + − + + + + 

 = 
( 1) 1

2 2

x
x x xe x x

e e e c
x x

   + +   + − = +   + +  

Example 3.19 Evaluate 
1 sin

d .
1 cos

x x
e x

x

 +     + ∫

Let I = 
2

1
d tan d

2
2cos

2

x x x
e x e x

x
⋅ +∫ ∫

 = d tan tan d
2 2

x xx x
e e x
  +  ∫ ∫

 = tan tan d tan d
2 2 2

x x xx x x
e e x e x− ⋅ +∫ ∫

 = tan
2

x x
e c+  
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Example 3.20 Examine the convergence of 
1

log d .x x

∞

∫

The integrand (log x) is unbounded as x Æ •, viz. at x = b, where b Æ •

\ 
1

log dx x

∞

∫  = 
1

lim log d

b

b
x x

→∞∫

 = 1lim ( log )b

b
x x x

→∞
−

 = lim [ log 1] as
Æ•

- + Æ • Æ •
b

b b b b

\  
1

log d diverges to +

•

•x x∫

Example 3.21  Test the convergence of the integral 
1

d ,
p

a

x
x

∞

∫  where a > 0 and 

p π 1.

 
1

p

a

dx
x

∞

∫  = 
1

lim

b

pb
a

dx
x→∞ ∫

 = 

1

lim
1

b
p

b
a

x

p

− +

→∞

 
 
 − + 

 = 

( 1) 1

lim
1 1

p p

b

b a

p p

− − −

→∞

 −  + − − 
 (1)

Now  
( 1)

lim 0, if 1
1

p

b

b
p

p

− −

→∞

 −  → > − 

\  

11

1

p

p

a

a
dx

px

∞ −

=
−∫  by (1), if p > 1

viz., I converges if p > 1 and diverges to +•, if p < 1

If p = 1, 
1

lim (log ) log ,

•

•
•

b
a

dx b a
x →

 = − →  ∫  as b Æ •

\ The integral diverges.

Example 3.22  Examine the convergence of 

1

0

d
.

x

x
∫

The integrand has an infinity at the lower limit

\ I = 

1

1

0 0
0

lim lim (2 )
dx

x
x

∈∈→ ∈→
+∈

 
  = 
  
∫

 = 
0

lim [2 2 ] 2
∈→

− ∈ =
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\ The given integral converges to 2.

Example 3.23 Find the Cauchy’s principal value of the integral 

4

3

2

d

( 3)

x

x−∫    x = 3 is 

the interior point of discontinuity for the integrand or has an infinity at x = 3

 

4

3

2
( 3)

dx

x−∫  =  

1

1 2

2

3 4

3 30 0
2 3

lim lim
( 3) ( 3)

dx dx

x x

−∈

∈ → ∈ →
+∈

+
− −∫ ∫

 = 

1

1 2

2

3 4

2 20 0
2 3

1 1
lim lim

2( 3) 2( 3)x x

−∈

∈ → ∈ →
−∈

   
   − + −   − −   

 = 
1 2

2 20 0
1 2

1 1 1 1
lim lim

2 22 2∈ → ∈ →

   
   + − + − +   ∈ ∈   

Both the limits do not exist and hence the integral diverges. But if we put Œ
1
 = Œ

2
 = 

Œ, then

 I = 
2 20

1 1 1 1
lim 0,

2 22 2∈→

 
 − − + =
 ∈ ∈ 

 which is the Cauchy’s principal 

value of the integral.

Example 3.24  Test the convergence of 

3

2

30 ( 1)

dx

x−
∫  and find its value.

Let 

3

2

30 ( 1)

dx

x−
∫  the denoted by f (x)

Choose g(x) = 

3

2

30

dx

x
∫

Now 

2

3

2

3

( )
lim lim

( )
( 1)

x x

f x x

g x
x

→∞ →∞

 
   
   =      − 

 = 

2

31
lim 1
x x

−

→∞

 
   −    
  

 = 0

 

3

0

( )g x dx∫  = 

3

2

30

1
dx

x
∫  converges. Hence by comparison test, 

 

3

0

( )f x dx∫  = 

3

2

30

1

( 1)x−
∫  also converges.
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Required value = 

3
1

3

0

3( 1)x
 
 − 
 

 = 3 ¥ 21/3 – 3(–1)1/3 

   = 3{1 + 21/3}

Example 3.25  Test the convergence of I = 2
d .

1

x
x

x

∞

−∞
+∫

 I = 

0

2 2

0

d d
1 1

x x
x x

x x

∞

−∞

+
+ +∫ ∫

 = 

0

2 2

0

lim d lim d
1 1

b

a l
a

x x
x x

x x→−∞ →∞
+

+ +∫ ∫

 = 

0

2 2

0

1 1
lim log (1 ) lim log (1 )

2 2

b

a b
a

x x
→−∞ →∞

         + + +            

 = 
2 21 1

lim log (1 ) lim log (1 )
2 2a b

a b
→ ∞ →∞

   
   − + + +
      

 = 0

EXERCISE 3(d)

Part A

(Short Answer Questions)

Evaluate the following integrals: 

1. xe xaxd∫  2. x mx xsin d∫  3 x x xcosec2 d∫

4. 
log x

x
x

2
d∫  5. log x xd∫  6. x x xcos2 d∫

7. tan−∫ 1 x xd  8. sinh−∫ 1 x xd  9. x x xsec−∫ 1 d

10. x x xlog d∫
11. Define improper integral.

12. Explain Cauchy’s principal value of an improper integral.

13. When do you say that an improper integral converges or diverges?

14. State the comparison test used in testing convergence of an improper 

integral.

15. State the limit form of comparison test used for testing convergence of an 

improper integral.
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Part B

Evaluate the following integrals:

16. e x x xx∫ − +( )( )2 2 3 d  17. e x xx2 21( )+∫ d  18. x x x2 2 2sin∫ d

19. x x x2 3cos d∫  20. x x x xsin cos

/

d

0

2π

∫  21. x x xcosec2 d∫

22. sin−∫ 1

0

1

x xd  23. x x x2 1tan−∫ d  24. a x x2 2−∫ d

25. x a x2 2+∫ d  26. e x xx2 3 3 1+∫ +sin( )d

27. e x x xx (sec ( tan )1+∫ d  28. e x x xx ( ) log+∫ 1 d

29. 
xe x

x

xd

( )1 2

0

1

+∫  30. 
e x

x
x

x ( )

( )

2

2

1

2
1

1

+
+∫ d

31. Test the convergence of 
dx

x( )
.

−∫ 1 2

1

2

32. Test the convergence of 
dx

a x

a

2 2
0 −
∫ .

33. Test the convergence of 
1

1

1

x
xd

−
∫ .

34. Evaluate Cauchy’s principal value of 
dx

x( )
.

−∫ 2 3

1

4

35. Discuss the convergence of e x xx−
∞

∫
1

2 d ,  using comparison test.

36. Test the convergence of 
sin

.
x

x
xd

0

∞

∫

37. Test the convergence 
dx

x
0

1

∫ .

38. Test the convergence of 
1

2

2

2
0

1 +

−
∫

x

x x
xd .

39. Test the convergence of 
e

x
x

x−∞

∫ d

1

.
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40. Test the convergence of 
sin

.
x

x
x

2

1

∞

∫ d

aNsWers

Exercise 3(a)

(1) 
x

x x
2

1− + +log( )  (2) 
x

x x
2

2
2 2− − −log( )

(3) 
1

2

sin( ) sin( )m n x

m n

m n x

m n

+
+

+
−
−











  (4) − −cot cosecx x

(5) x – sin x (6) 
2 1

1

1( )+
+

+x

n

n

 (7) − +
1

1 ex  

(8) − − −
1

1 1( )(log )n x n
 (9) 

sin3

3

x
 (10) log(sin cos )x x−

(11) 
1

2
2 82log( )x x+ +  (12) 

2

3
3 23 2x x+ +

(13) 
2

3

23
2

a
ax b

c
cx d( )+ + +

(14) 
1

14

2

7
414 14x x+ −log( )  (15) 

1 1

a

x

a

n

n
sin−








(16) log{cosh cosh }x x+ +2 4  (17) 
1

2
12 4log{ }x x+ +

(18) sin (log )−1 x  (19) sin
sin− 







1

3

x

(20) sinh
tan− 







1

4

x
 (21) x x+

1

2
2sin

(22) − −3
1

3
3cos cosx x  (23) tan− −1 2

4

π
 (24) 2π

(25) e
π

2 1−  (26) 
1

3

3a  (27) 1

(28) 
1

22a
 (29) 

1

4

1

3
log






  (30) a2

4

1

2

π
−









(31) 
π

2 2
 (32) 

1

2

5

3
log





  (33) 

3

2
π

(34) π  (35) 
π

αβ
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Exercise 3(b)

(1) 
1 1

a

x

a
tan−  (2) 

1

2a

x a

x a
log

−
+









  (3) 

1

2a

a x

a x
log

+
−











(4) 
1

2 52x x+ +  (5) 
1

2
9

1

3 3

2 1log( ) tanx
x

+ + −

(6) 
1

2 2

1
2

2a

x

a
tan−






  (7) log

x

x+








1  (8) log

sin

sin

x

x1+










(9) log tan
x

2
 (10) log

tan

tan

1
2

1
2

+

−













x

x

(11) 
2

3 3

2 1

3

1
3

tan
x +







  (12) 

1

3

1

3

1tan−
+








ex

(13) log( ) tany y
y2 12 5

1

2

1

2
+ + +

+







−
 where y = log x

(14) 
3

4
2 3 5

37

2 31

4 3

31

2 1log( ) tanx x
x

− + + ×
−








−

(15) 2 1 2
1

2 2

2 1

2 1

2log( ) log ,+ − +
+ −
− +











y y
y

y
 where y = sin x

(16) x x x
x

− + + +
+








−log( ) tan2 11
2

3

2 1

3

(17) 
1

2

1

4

2

5

3 5

3 5
log log





−

−
+











(19) 
1

2
1

1

2
2log log( ) log( )x x x− + + +

(20) 2
1

2

1

1
log

x

x x

−
+










−

+

(21) 
1

3
1

1

6
1

1

3

2 1

3

2 1log( ) log( ) tanx x x
x

+ − − + +
−








−

(22) 
5

3
1

1

6
1 3

2 1

3

2 1log( ) log( ) tanx x x
x

− + + + −
+








−

(23) 
1

2
1

1

4
1

1

2

2 1log( sin ) log( sin ) tan (sin )+ + + + −x x x
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(24) 
1

3

1

6 2

1 1tan tan− −−





x

x
 (25) 

1

2 5

5

2

1tan tan−








x

(26) 
1

2

2

3

1tan tan−








x  (27) 

1

2 6

2 2 3
2

1

2 2 3
2

1

log

tan

tan

+ −








− −


















x

x











(28) 

π

4

(29) 2 3 2 4 2 3

2
2

3

1x x x

x

+ + + −












−log( cos sin ) tan

tan

 (30) 
π

4

Exercise 3(c)

(1) sin−1 x

a
 (2) cosh−1 x

a
 (3) sinh−1 x

a

(4) sinh−
+








1 1

2

x
 (5) sin−

+







1 1

5

x
 (6) cosh−

+







1 2 3

5

x

(7) − − + −1 32 1x xsin  (8) tan−1

2

x
 (9) −

+ −

− −











log

1 1

1 1

x

x

(10) sin−
−








1 x a

a
 (11) 

1

3
3 11sin ( )− −x  (12) 

1

2
1 2log( )+

(13) π  (14) 2 2 10 7
1

3

2 1x x
x

− + +
−








−sinh

(15) 
1

2
2 3

5

4 2

4 1

5

2 1x x
x

− − +
−








−cosh  (16) 3π

(17) 
x

x x x
2

1 2 1
5

2

2 2 1+ + + + −sinh

(18) cos
( )

( )

− − +
+











1 1

2 2

x

x
 (19) −

+







−sin 1 1 3

4

x

x

(20) − +
+ +

+
+

+













1

14

1

2 3

1

14

1

2 3

1

7 2 32
log

( ) ( )x x x

(21) − +
−











−1

8

16

3
11sin

x
 (22) 

π

4 2

(23) 

1

2

2 1

2 1

2

2
log

x x

x x

− +

+ +
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(24) 
2 7

4
7 10

9

8

2 7

3

2 1x
x x

x−





 − − +

−







−sin

(25) 
1

3
1

1

3
2 1 1

3

16

2 1

3

2 2 13
2( ) ( ) sinhx x x x x

x
+ + + + + + +

+







−

Exercise 3(d)

(1) 
1 1

2a
xe

a
eax ax−  (2) − +

x mx

m

mx

m

cos sin
2

(3) − +x x xcot log sin  (4) − +








1 1

x
x

x
log

(5) x x xlog −  (6) 
x x

x x
2

4 4
2

1

8
2+ −sin cos

(7) x x xtan log( )− − +1 21

2
1  (8) x x xsinh− − +1 2 1

(9) 
x

x x
2

1 2

2

1

2
1sec− − −  (10) 

x
x

x2 2

2 4
log −  (16) e x xx ( )2 5 12 − −

(17) 
e

x x
x2

2

4
2 2 1( )+ +  (18) 

1

6

1

8
4

1

16
4

1

64
43 2x x x x x x− − +sin cos sin

(19) 
1

4
3

3

8
2 3

3

9
2 3

3

2

2x x
x

x x
x

x
x

( sin
sin

cos
cos

sin
sin

+ − − −






+ − −

77





















(20) 
π

8
 (21) − +

x
x x

3
3

1

9
3cot log sin

(22) 
π

2
1−   (23) 

x
x

x
x

3
1

2
2

3 6

1

6
1tan log( )− − + +

(24) 
x

a x
a x

a2 2

2 2
2

1− +







−sin       (25) 
x

x a
a x

a2 2

2 2
2

1+ +







−sinh

(26) 
1

13
2 3 1 3 3 12 3e x xx+ + − +[ sin( ) cos( )]

(27) e xx sec  (28) e x xx ( log )−1  (29) 
e

2
1−

(30) 
1

3

2e  (31) divergent

(32) convergent to 
π

2
 (33) convergent to 0

(34) 
3

8
 (35) convergent

(36) convergent (37) divergent

(38) convergent (39) convergent

(40) convergent





Multiple Integrals

4Unit

4.1 intRODUCtiOn

When a function f(x) is integrated with respect to x between the limits a and b, we get 

the definite integral f x x

a

b

( )d∫ .

If the integrand is a function f (x,y) and if it is integrated with respect to x and 

y repeatedly between the limits x
0
 and x

1
 (for x) and between the limits y

0
 and y

1
 

(for y), 

we get a double integral that is denoted by the symbol f x y x y

x

x

y

y

( , )d d

0

1

0

1

∫∫ .

Extending the concept of double integral one step further, we get the triple integral

f x y z x y z

x

x

y

y

z

z

( , , ) d d d

0

1

0

1

0

1

∫∫∫

4.2 EVALUAtiOn OF DOUBLE AnD tRiPLE intEGRALS

To evaluate f x y x y

x

x

y

y

( , )d d ,

0

1

0

1

∫∫  we first integrate f (x, y) with respect to x partially,

i.e. treating y as a constant temporarily, between x
0
 and x

1
. The resulting function got 

after the inner integration and substitution of limits will be a function of y. Then we 

integrate this function of y with respect to y between the limits y
0
 and y

1
 as usual.

The order in which the integrations are performed in the double integral is 

illustrated in Fig. 4.1.
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y1
x1

x0

f (x, y) dx dy

y0

Fig. 4.1

Note  Since the resulting function got after evaluating the inner integral is to be 

a function of y, the limits x
0
 and x

1
 may be either constants or functions of y.

The order in which the integrations are performed in a triple integral is illustrated 

in Fig. 4.2.

Fig. 4.2

dy dz

x1

x0

f (x, y, z) dx

y1
z1

z0
y0

When we first perform the innermost integration with respect to x, we treat y and z 

as constants temporarily. The limits x
0
 and x

1
 may be constants or functions of y and 

z, so that the resulting function got after the innermost integration may be a function 

of y and z. Then we perform the middle integration with respect to y, treating z as a 

constant temporarily. The limits y
0
 and y

1
 may be constants or functions of z, so that 

the resulting function got after the middle integration may be a function of z only. 

Finally we perform the outermost integration with respect to z between the constant 

limits z
0
 and z

1
.

Note  Sometimes f x y x y

x

x

y

y

( , )d d

0

1

0

1

∫∫  is also denoted as d dy f x y x

x

x

y

y

( , )

0

1

0

1

∫∫  and

f x y z x y z

x

x

y

y

z

z

( , , )d d d

0

1

0

1

0

1

∫∫∫  is also denoted as d d ( , , ) dz y f x y z x

y

y

x

x

z

z

0

1

0

1

0

1

∫ ∫∫ . If these

notations are used to denote the double and triple integrals, the integrations are 

performed from right to left in order.

4.3 REGiOn OF intEGRAtiOn

Consider the double integral f x y x y

y

y

c

d

( , )d d

( )

( )

φ

φ

1

2

∫∫ . As stated above x varies from φ
1
(y)

to φ
2
(y) and y varies from c to d.

i.e. φ
1
(y) ≤ x ≤ φ2

(y) and c ≤ y ≤ d.
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These inequalities determine a region in the xy-plane, whose boundaries are the 

curves x = φ
1
(y), x = φ

2
(y) and the lines y = c, y = d and which is shown in Fig. 4.3. 

This region ABCD is known as the region of integration of the above double integral.

y = d

y = c

x =   2 (y)x =   1 (y)

x

y

o

A B

D C

Fig. 4.3

Similarly, for the double integral f x y y x

x

x

a

b

( , )d d

( )

( )

φ

φ

1

2

∫∫ , the region of integration

ABCD, whose boundaries are the curves y = φ
1
(x), y = φ

2
(x) and the lines x = a, x = 

b, is shown in Fig. 4.4.

x = bx = a

y =   2 (x)

y =   1 (x)
x

y

o

Fig. 4.4

For the triple integral 

z2

z1

ψ2

ψ1

φ2

φ1

(z)

(z)

(y, z)

(y, z)

f (x, y, z) dx dy dz,  the inequalities φ
1
(y, z) ≤ x 

≤ φ
2
(y, z); ψ

1
(z) ≤ y ≤ ψ

2
(z); z

1
 ≤ z ≤ z

2
 hold good. These inequalities determine a 

domain in space whose boundaries are the surfaces x = φ
1
(y, z), x = φ

2
(y, z), y = 

ψ
1
(z), y = ψ

2
(z), z = z

1
 and z = z

2
. This domain is called the domain of integration of 

the above triple integral.

WORKED EXAMPLE 4(a)

Example 4.1 Verify that ( )d d ( )d dx y x y x y y x2 2

0

1

2 2

1

2

0

1

1

2

+ = +∫ ∫∫∫ .

 L.S. = ( )d dx y x y2 2

0

1

1

2

+
















∫∫
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= +










∫
=

=
x

y x y

x

x
3

2

1

2

0

1

3
d

Note   y is treated a constant during inner integration with respect to x.

 = +






 = +










=∫

1

3 3 3

8

3

2

1

2 3

1

2

y y
y y

d

 R.S. ( )d d

d

= +
















= +












∫∫

∫
=

=

x y y x

x y
y

y

y

2 2

1

2

0

1

2
3

0

1

1

2

3
xx

Note  x is treated a constant during inner integration with respect to y.

 = +






 = +










=∫ x x

x
x2

0

1 3

0

1

7

3 3

7

3

8

3
d

Thus the two double integrals are equal.

Note  From the above problem we note the following fact: If the limits of 

integration in a double integral are constants, then the order of integration is immaterial, 

provided the relevant limits are taken for the concerned variable and the integrand is 

continuous in the region of integration. This result holds good for a triple integral also.

Example 4.2  Evaluate r r

a

4

000

2

∫∫∫
ππ

φ φ θsin d d d .

The given integral =

=










=

∫∫∫

∫∫

d d sin d

d sin d

θ φ φ

θ φ φ

ππ

ππ

r r

r

a

a

a

4

000

2

5

00

2

0
5

55

00

2

5

0

0

2

5

0

2

5

5

5

2

5

4

5

d sin d

( cos ) d

d

θ φ φ

φ θ

θ

π

ππ

π

π

π

∫∫

∫

∫

= −

=

=

a

a

a
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Example 4.3 Evaluate 
d dx y

x y

y

1 2 2

0

1

0

1
2

+ +

+

∫∫ .

The given integral =
+



















=
+ +











+

−

∫∫
1

1

1

1 1

2 2

0

1

0

1

2

1

2

2

( ) +
d d

tan

y x
x y

y

x

y

y







=
+

= + +( )





=

∫

∫

=

= +

0

1

0

1

2
0

1

2

0

1

2

4 1

4
1

4

x

x y

y

y

y

y y

d

d

log

lo

π

π

π
gg ( )1 2+

Example 4.4  Evaluate xy x y x y

x

x

( ) d d+∫∫
0

1

.

Since the limits for the inner integral are functions of x, the variable of inner integration 

should be y. Effecting this change, the given integral I becomes

 

I ( ) d d= +
















= +










∫∫

=

=

xy x y y x

x
y

x
y

x

x

y x

y x

0

1

2
2 3

2 3
ddx

x
x

x x

0

1

3
5 2

4 4

2

1

3 2 3

∫

= +









− +






















/



= + −










= + − =

∫ dx

x
x

x

0

1

4
7 2

5

0

1

8

2

21 6

1

8

2

21

1

6

3

56

/
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Example 4.5 Evaluate xyz x y z
y zz

d d d
0

1

0

1

0

1 − −−

∫∫∫ .

The given integral =










= − −

− − −

−

∫∫

∫

yz
x

y z

yz y z y z

z y z

z

2

0

1

0

1

0

1

0

1

2

1

2
1

d d

( ) d d2

00

1

2 2

0

1

0

1

2
2

1

2
1 2 1

1

2
1

2
2 1

∫

∫∫= − − − +

= − −

−

yz z z y y y z

z z
y

z

z

{( ) ( ) } d d

( ) ( −− +












= − − − +

∫
=

= −

z
y

z
y

z

z z z z

y

y z

) d

( ) ( )

3 4

0

1

0

1

4 4

3 4

1

2

1

2
1

2

3
1

1

4
zz z z

z z z

( ) d

( ) d

1

1

2

1

2

2

3

1

4
1

1

24

4

0

1

4

0

1

−












= − +






 −

=

∫

∫

{{ ( )} ( ) d

( ) ( )

41 1 1

1

24

1

5

1

6

1

24

1

5

0

1

5 6

0

1

− − −

=
−
−

+
−











= −

∫ z z z

z z

11

6

1

720







=

Example 4.6 Evaluate e x y zx y z

x yx

+ +
+

∫∫∫ d d d

log

000

2

.

Since the upper limit for the innermost integration is a function of x, y, the corresponding 

variable of integration should be z. Since the upper limit for the middle 

integration is a function of x, the corresponding variable of integration should be y. 

The variable of integration for the outermost integration is then x. Effecting these 

changes, the given triple integral I becomes,

 

I e z y x

x y e e

x y z

x yx

x y z

z

z x y

x

=

=

+ +
+

+
=
= +

∫∫∫

∫ ∫

d d d

d d ( )

log

log

000

2

0

2

0

0

== −∫ ∫ + +d ( ) d

log

x e e yx y x y

x

0

2

2 2

0
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= ⋅ − ⋅










= − +



∫
=

=

d

log

x e
e

e e

e e e

x
y

x y

y

y x

x x x

0

2

2
2

0

4 2

2

1

2

3

2






= − +








=

∫ d

log

log

x

e e ex x x

0

2

4 2

0

2
1

8

3

4

5

8

Example 4.7 Evaluate xy x y

R

d d∫∫ , where R is the region bounded by the line

x + 2y = 2, lying in the first quadrant.

We draw a rough sketch of the boundaries of R and identify R.

The boundaries of R are the lines x = 0, y = 0 and the segment of the line

x y

2 1
1+ =  lying in the first quadrant.

Now R is the region as shown in Fig. 4.5.

Since the limits of the variables of integration are not given in the problem and to 

be fixed by us, we can choose the order of integration arbitrarily.
Let us integrate with respect to x first and then with respect to y. Then the 

integral I becomes

I = d dxy x y

R

∫∫ 



When we perform the inner integration with respect to x, we have to treat y as a 

constant temporarily and find the limits for x.

Geometrically, treating y = constant is equivalent to drawing a line parallel to the 

x-axis arbitrarily lying within the region of integration R as shown in the figure.
Finding the limits for x (while y is a constant) is equivalent to finding the variation 

of the x co-ordinate of any point on the line PQ. We assume that the y co-ordinates 

of all points on PQ are y each (since y is constant on PQ) and P ≡ (x
0
, y) 

and Q ≡ (x
1
, y).

Q (x1, y)(x0, y) P

=1+

x

y

O

B

x y

C

A

R

12

Fig. 4.5
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Thus x varies from x
0
 to x

1
.

Wherever the line PQ has been drawn, the left end P lies on the y-axis and hence 

x
0
 = 0 and the right end Q lies on the line x + 2y = 2, and hence x

1
 + 2y = 2 i.e. 

x
1
 = 2 − 2y.

Thus the limits for the variable x of inner integration are 0 and 2 − 2y. When we 

go to the outer integration, we have to find the limits for y.

Geometrically we have to find the variation of the line PQ, so that the region R is 

fully covered. To sweep the entire area of the region R, PQ has to start from the 

position OA where y = 0, move parallel to itself and go up to the position BC where 

y = 1.

Thus the limits for y are 0 and 1.

∴ I xy x y

y
x

y

y
y y

y

y

=

=










= −

−

−

∫∫

∫

d d

d

( ) d2

0

2 2

0

1

2

0

2 2

0

1

0

1

2

2
2 2∫∫

∫= −

= − +










=

2 1

2
2

2
3 4

1

6

0

1

2 3 4

0

1

y y y

y y y

( ) d2

4.3.1 Aliter

Let us integrate with respect to y first and then with respect to x.

Then I xy y x

R

= 



∫ ∫ d d

As explained above, to find the limits for y, we draw a line parallel to the y-axis 

(x = constant) in the region of integration and note the variation of y on this line

Fig. 4.6

Q (x, y1)

(x, y0)

=1+

y

B

x

x y C

A

R

Po

12
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P(x, y
0
) lies on the x-axis. ∴ y

0
 = 0

Q(x, y
1
) lies on the line x + 2y = 2. ∴ y x1

1

2
2= −( )

i.e., the limits for y are 0 and 
1

2
2( )−x .

To cover the region of integration OAB, the line PQ has to vary from OB (x = 0) 

to AC (x = 2)

∴ The limits for x are 0 and 2.

∴ I d d

d

( )

( )

( )

=

=








= −

−

∫∫

∫
−

xy y x

x
y

x

x x

x

x

00

2

0

2 2

0

1

2
2

1

2
2

2

1

8
2 22

0

2

2 3 4

0

2

1

8
4

2
4

3 4

1

6

dx

x x x

∫

= − +








=

Example 4.8 Evaluate 
e

y
x y

y

R

−

∫∫ d d , by choosing the order of integration suitably,

given that R is the region bounded by the lines x = 0, x = y and y = ∞.

Q (x, ∞)

y = ∞

y

x

R

P (x, x)

(0, y) A

x = 0

B (y, y)

y = x

o

Fig. 4.7

Let I d d=
−

∫∫
e

y
x y

y

R

Suppose we wish to integrate with respect to y first.

Then I d d=
−∞∞

∫∫
e

y
y x

y

x0
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We note that the choice of order of integration is wrong, as the inner integration 

cannot be performed. Hence we try to integrate with respect to x first.

Then I d d

( ) d

d

=

=

=

=( ) =

−∞

−∞

−
∞

−
∞

∫∫

∫

∫

e

y
x y

e

y
x y

e y

e

yy

y
y

y

y

00

0

0

0

0

1

Note  From this example, we note that the choice of order of integration 

sometimes depends on the function to be integrated.

Example 4.9 Evaluate xy x y

R

d d∫∫ , where R is the region bounded by the parabola

y2 = x and the lines y = 0 and x + y = 2, lying in the first quadrant.
R is the region OABCDE shown in Fig. 4.8.

Fig. 4.8

y

x

E

D

C

F

x + y = 2

y2 = x

O

Q2

Q1

P1 P2A B

Suppose we wish to integrate with respect to y first. Then we will draw an arbitrary 
line parallel to y-axis (x = constant). We note that such a line does not intersect the 

region of integration in the same fashion throughout.

If the line is drawn in the region OADE, the upper end of the line will lie on the 

parabola y2 = x; on the other hand, if it is drawn in the region ABCD, the upper end 

of the line will lie on the line x + y = 2.

Hence in order to cover the entire region R, it should be divided into two, namely, 

OADE and ABCD and the line P
1
 Q

1 
should move from the y-axis to AD and the line 

P
2
 Q

2
 should move from AD to BF.

Accordingly, the given integral I is given by

I d d d d= +∫ ∫∫∫
−

xy y x xy y x

x x

0 0

2

1

2

0

1
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[
∴

 the co-ordinates of D are (1, 1) and so the equation of AD is x = 1]

I= + =
1

6

5

24

3

8

Note  This approach results in splitting the double integral into two and evaluating 

two double integrals. On the other hand, had we integrated with respect to x first, the 
problem would have been solved in a simpler way as indicated below. [Refer to Fig. 4.9]

y

x

E

P

D

C

Q (2 – y, y)

x + y = 2

y2 = x

(y2, y)

O B

Fig. 4.9

 I d d

{( ) }d

( )d

=

= − −

= − + −

−

∫∫

∫

xy x y

y y y y

y y y y y

y

y

2

2

0

1

2 4

0

1

2 3 5

0

1

1

2
2

1

2
4 4∫∫

=
3

8

Note  From this example, we note that the choice of order of integration is to be 

made by considering the region of integration so as to simplify the evaluation.

Example 4.10 Evaluate ( )d d dx y z x y z

V

+ +∫∫∫ , where V is the volume of the

rectangular parallelopiped bounded by x = 0, x = a, y = 0, y = b, z = 0 and z = c.

O

P
B

A'

B'
O'

C'

y

Q

C

A
x

z

Fig. 4.10
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The region of integration is the volume of the parallelopiped shown in Fig. 4.10, in 

which OA = a, OB = b, OC = c. Since the limits of the variables of integration are not 

given, we can choose the order of integration arbitrarily.

Let us take the given integral I as

I ( + + ) d d d= ∫∫∫ x y z z y x

V

The innermost integration is to be done with respect to z, treating x and y as 

constants.

Geometrically, x = constant and y = constant jointly represent a line parallel to the 

z-axis.

Hence we draw an arbitrary line PQ in the region of integration and we note the 

variation of z on this line so as to cover the entire volume. In this problem, z varies 

from 0 to c. since P ≡ (x, y, 0) and Q ≡ (x, y, c)

Having performed the innermost integration with respect to z between the limits 

0 and c, we get a double integral.

As P take all positions inside the rectangle OAC′B in the xy-plane, the line PQ 

covers the entire volume of the parallelopiped. Hence, the double integral got after 

the innermost integration is to be evaluated over the plane region OAC′B.
The limits for the double integral can be easily seen to be 0 and b (for y) and 0 

and a (for x).

∴ I ( + + ) d d d

( + ) d d

=

= +










∫∫∫

=

x y z z y x

x y z
z

y x

cba

z

c

000

2

00
2

bba

ba

c x y
c

y x

cx
c

∫∫

∫∫= +










=








0

2

00

2

2

2

( + ) d d

+  +










= + +








∫ y c
y

x

bcx
bc b c

x

ba

a

2

00

2 2

0

2

2 2

d

d∫∫

= + +












= + +

bc
x bc

b c x

abc
a b c

a
2

02 2

2

( )

( )

Example 4.11 Evaluate d d dx y z

V

∫∫∫ , where V is the finite region of space

(terra-hedron) formed by the planes x = 0, y = 0, z = 0 and 2x + 3y + 4z = 12.
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B

A

x

C

z

(x, y, z1)

(x, y, 0)

Q

P

O y

Fig. 4.11

Let I = the given integral.

Let I = d d dz y x

V

∫∫∫
The limits for z, the variable of the innermost integral, are 0 and z

1
, where 

(x, y, z
1
) lies on the plane 2x + 3y + 4z = 12. [Refer to Fig. 4.11]

∴ z x y1

1

4
12 2 3= − −( )

After performing the innermost integration, the resulting double integral is 

evaluated over the orthogonal projection of the plane ABC on the xy-plane, i.e. over 

the triangular region OAB in the xy-plane as shown in Fig. 4.12.

In the double integral, the limits for y are 0

and 
1

3
12 2( )− x  and those for x are 0 and 6.

∴

 

I d d d

d ( ) d

( ) (12 )

=

= − −

∫ ∫ ∫

∫

− − −

x y z

x x y y

x x y

0

6

0

1

3
12 2

0

1

4
2 3

0

6

0

1

1

4
12 2 3

33
12 2

0

6 2

0

1

3
12 2

1

4
12 2

3

2

1

24

( )

( )

d ( )

(

−

=

= −

∫

∫= − −












=

x

y

y x

x x y
y

112 2

1

6

6

3

12

2

0

6

0

6

−

=
−
−











=

∫ x x

x

) d

( )3

B

O D

= 1+
6 4

A

E

y

yx

x

Fig. 4.12
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Example 4.12 Evaluate 
d d dz y x

x y zV 1 2 2 2− − −
∫∫∫ , where V is the region of space

bounded by the co-ordinate planes and the sphere x2 + y2 + z2 = 1 and contained in 

the positive octant.

B

C

A

x

O

Q

P

z

y

(x, y, z1)

(x, y, 0)

Fig. 4.13

Note   In two dimensions, the x and y-axes divide the entire xy-plane into 4 

quadrants. The quadrant containing the positive x and the positive y-axes is called 

the positive quadrant.

Similarly in three dimensions the xy, yz and zx-planes divide the entire space into 

8 parts, called octants. The octant containing the positive x, y and z-axes is called the 

positive octant.

The region of space V given in this problem is shown in Fig. 4.13.

Let I =
d d dz y x

x y zV 1 2 2 2− − −
∫∫∫

To find the limits for z, we draw a line PQ parallel to the z-axis cutting the volume 

of integration.

The limits for z and 0 and z
1
, where (x, y, z

1
) lies on the sphere x2 + y2 + z2 = 1

∴ z x y1

2 21= − −  (

∴

 the point Q lies in the positive octant)

After performing the innermost integration, the resulting double integral is evaluated  

over the orthogonal projection of the spherical surface on the xy-plane, i.e. over the 

circular region lying in the positive quadrant as shown in Fig. 4.14.

B

D AO

y
E

x2 + y2 = 1

x

Fig. 4.14
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In the double integral, the limits for y are 0 and 1 2−x  and those for x are 0 

and 1.

∴ 

I d d
d

d d

= x y
z

x y z

x y
z

x x y

x

0

1

0

1

2 2 2
0

1

0

1

0

1

1

2 2 2

2

1
∫ ∫ ∫

∫ ∫

− − −

−

−

− − −

=

( )

sin
11

2

2
1

2 2

0

1

0

1

0

1

2

2 2

2

− −













=

= −

=

= − −

−

∫ ∫

x y

x y

x

z

z x y

x

π

π

d d

ddx

x
x x

0

1

2 1

0

1

2 2
1

1

2

2 4 8

∫

= − +








= × =

−π

π π π

sin

2

EXERCiSE 4(a)

Part A

(Short Answer Questions)

1. Evaluate 4

0

1

0

2

xy x yd d∫∫ .

2. Evaluate d dx y

xy

ab

11

∫∫ .

3. Evaluate sin ( ) .θ φ θ φ

ππ

+∫∫
00

/2/2

d d

4. Evaluate d d

1

x y

x

00

∫∫ .

5. Evaluate r rd dθ

θπ

00

sin

.∫∫

6. Evaluate xyz x y zd d d

0

3

0

2

0

1

∫∫∫ .

7. Evaluate d d dz y x

y zz

000

1 +

∫∫∫ .
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Sketch roughly the region of integration for the following double integrals:

8. f x y x y

a

a

b

b

( , ) .d d

−−
∫∫

9. f x y x y

x

( , ) .d d

00

1

∫∫

10. f x y x y

a xa

( , ) .d d

00

2 2−

∫∫

11. f x y x y

a

b
b y

b

( , ) .

( )

d d

00

−

∫∫

Find the limits of integration in the double integral f x y x y

R

∫∫ ( , )d d , where R is in the

first quadrant and bounded by

12. x = 0, y = 0, x + y = 1

13. x y
x

a

y

b
= = + =0 0 1

2

2

2

2
, ,

14. x = 0, x = y, y = 1

15. x = 1, y = 0, y2 = 4x

Part B

16. Evaluate 
y x y

x y
y

y
d d

2 2

40

4

2 +∫∫
/

 and also sketch the region of integration roughly.

17. Evaluate y x y

a x

a xa

d d

−

−

∫∫
2 2

0

 and also sketch the region of integration roughly.

18. Evaluate y x y

x y
x

d d
2 2

1

0

1

+∫∫  and also sketch the region of integration roughly.

19. Evaluate a x y x y

a xa

2 2 2

00

2 2

− −
−

∫∫ d d .

20. Evaluate xyz x y z

x yx

0

1

0

1

0

1 − −−

∫∫∫ d d d .

21. Evaluate e z y xx y z

x yx

+ +
+

∫∫∫
000

2 loglog

d d d .
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22. Evaluate x e x y

x

y
−

∫∫
2

d d , over the region bounded by x = 0, x = ∞, y = 0 and

y = x.

23. Evaluate xy x yd d∫∫ , over the region in the positive quadrant bounded

by the line 2x + 3y = 6.

24. Evaluate x x yd d∫∫ , over the region in the positive quadrant bounded

by the circle x2 − 2ax + y2 = 0.

25. Evaluate ( )x y x y+∫∫ d d , over the region in the positive quadrant bounded

by the ellipse
x

a

y

b

2

2

2

2
1+ = .

26. Evaluate ( )x y x y2 2+∫∫ d d , over the area bounded by the parabola y2 = 4x

and its latus rectum.

27. Evaluate x x y

R

2 d d∫∫ , where R is the region bounded by the hyperbola xy = 4,

y = 0, x = 1 and x = 2.

28. Evaluate ( )xy yz zx x y z

V

+ +∫∫∫ d d d , where V is the region of space boun-

ded by x = 0, x = 1, y = 0, y = 2, z = 0 and z = 3.

29. Evaluate 
d d dx y z

x y z
V

( )+ + +∫∫∫ 1 3
, where  V is the region of space bounded by

x = 0, y = 0, z = 0 and x + y + z = 1.

30. Evaluate xyz x y z

V

d d d∫∫∫ , where V is the region of space bounded by the

co-ordinate planes and the sphere x2 + y2 + z2 = 1 and contained in the posi-

tive octant.

4.4 CHAnGE OF ORDER OF intEGRAtiOn 

in A DOUBLE intEGRAL

In worked example (1) of the previous section, we have observed that if the limits 

of integration in a double integral are constants, then the order of integration can be 

changed, provided the relevant limits are taken for the concerned variables.

But when the limits for inner integration are functions of a variable, the change in 

the order of integration will result in changes in the limits of integration.

i.e. the double integral f x y x y

g y

g y

c

d

( , )

( )

( )

d d

1

2

∫∫  will take the form f x y y x

h x

h x

a

b

( , )

( )

( )

d d

1

2

∫∫ ,

when the order of integration is changed. This process of converting a given double 

integral into its equivalent double integral by changing the order of integration is often 

called change of order of integration. To effect the change of order of integration, the 

region of integration is identified first, a rough sketch of the region is drawn and then 
the new limits are fixed, as illustrated in the following worked examples.
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4.5 PLAnE AREA AS DOUBLE intEGRAL

Plane area enclosed by one or more curves can be expressed as a double integral both 

in Cartesian coordinates and in polar coordinates. The formulas for plane areas in 

both the systems are derived below:

(i) Cartesian System

Let R be the plane region, the area of which is 

required. Let us divide the area into a large 

number of elemental areas like  PQRS (shaded) 

by drawing lines parallel to the y-axis at intervals 

of ∆x and lines parallel to the x-axis at intervals 

of ∆y (Fig. 4.15).

Area of the elemental rectangle PQRS = ∆x. 

∆y. Required area A of the region R is the sum of 

elemental areas like PQRS.

viz., A x y

x y

x
y

R

= ∆ ∆

=

∆ →
∆ →

∫∫

lim ( )
0
0

ΣΣ

d d

(ii) Polar System

We divide the area A of the given region R into a large 

number of elemental curvilinear rectangular areas like 

PQRS (shaded) by drawing radial lines and concentric 

circular arcs, where P and R have polar coordinates 

(r, θ) and (r + ∆r, θ + ∆θ) (Fig. 4.16) 

Area of the element PQRS = r ∆r ∆θ

(
∴

 PS = r ∆θ and PQ = ∆r)

∴  Required area A r r

r r

r

R

= ∆ ∆

=

∆ →
∆ →

∫∫

lim ( )

.

0
0θ

θ

θ

ΣΣ

d d

 

4.5.1 Change of Variables

(i) From Cartesian Coordinates to Plane Polar Coordinates

If the transformations x = x(u, v) and y = y (u, v) are made in the double integral

f x y x y( , )d d∫∫ , then f x y g u v( , ) ( , )≡  and dx dy = |J| du dv, where J
x y

u v
=
∂

∂

( , )

( , )
.

[Refer to properties of Jacobians in the Unit 2, “Functions of Several 

Variables”].

ARS

P Q

o

y

x

Fig. 4.15

R
S Q

P

O x

Fig. 4.16
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When we transform from cartesian system to plane polar system,

 x = r cos θ  and y = r sin θ

In this case, J

x

r

y

r

x

y

r

r

r r

=

∂
∂
∂
∂

∂
∂
∂
∂

=
−

= + =

θ

θ

θ θ

θ θ

θ θ

cos sin

sin cos

(cos sin )2 2

Hence f x y dx dy g r r r

R R

, ,( ) = ( )∫∫ ∫∫ θ θd d

In particular,

Area A of the plane region R is given by

A x y r r

RR

= =∫∫∫∫ d d d dθ

(ii) From Three Dimensional Cartesians to Cylindrical Coordinates

Let us first define cylindrical coordinates 
of a point in space and derive the relations 

between cartesian and cylindrical coordinates 

(Fig. 4.17).

Let P be the point (x, y, z) in Cartesian 

coordinate system. Let PM be drawn ┴ r 

to the xoy-plane and MN parallel to Oy. Let 

NOM =θ  and OM = r. The triplet (r, θ, z) are 

called the cylindrical coordinates of P.

Clearly, ON = x = r cos θ ; NM = y = r sin 

θ and MP = z.

Thus the transformations from three dimensional cartesians to cylindrical 

coordinates are x = r cos θ, y = r sin θ, z = z.

In this case,

J
x y z

r z

x x x

y y y

z z z

r

r

r z

r z

r z

=
∂
∂

= =
−

( , , )

( , , )

cos sin

sin cos
θ

θ θ

θ θ

θ

θ

θ

0

00

0 0 1

= r

Hence dx dy dz = r dr  dθ dz

and f x y z x y z g r z r r z

VV

( , , ) ( , , )d d d d d d=∫∫∫∫∫∫ θ θ

y

z

r

O

θ

N
x

y

M

P (x, y, z)

Fig. 4.17
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In particular, the volume of a region of space V is given by

d d d d d dx y z r r z

V V

∫∫∫ ∫∫∫= θ

Note  Whenever f x y z x y z( ,  ,  ) d d d∫∫∫  is to be evaluated throughout the 

volume of a right circular cylinder, it will be advantageous to evaluate the 

corresponding triple integral in cylindrical coordinates.

(iii) From Three Dimensional Cartesians to Spherical Polar Coordinates

Let us first define spherical polar coordinates of a point in space and derive the 
relations between Cartesian and 

spherical polar coordinates (Fig. 4.18).

Let P be the point whose Cartesian 

coordinates are (x, y, z). Let PM be 

drawn ┴ r to the xOy-plane. Let MN 

be parallel to y-axis. Let OP = r, the 

angle made by OP with the positive 

z-axis = θ and the angle made by OM 

with x-axis =φ .

The triplet (r, θ, φ) are called the 

spherical polar coordinates of P. 

Since OMP= °90 , MP = z = r cos  

θ, OM = r sin θ, ON = x = r sin θ cos φ  

and NM = y = r sin θ sin φ  .

Thus the transformations from three dimensional cartesians to spherical polar 

coordinates are

x = r sin θ cos φ , y = r sin θ sin φ , z = r cos θ

In this case,

 

J
x y z

r
r=

∂( )
∂( )

=
, ,

, ,
sin

θ φ
θ2

[Refer to example (2.8) of Worked example set 2(b) in Unit 2 “Functions of 

Several Variables.”]

Hence dx dy dz = r2 sinθ dr dθ dφ  and f x y z x y z g r r

V V

( , , ) d d d ( , , ) 2=∫∫∫ ∫∫∫ θ φ

sin θ dr dθ dφ .

In particular, the volume of a region of space V is given by

d d d sin d d dx y z r r

VV

= ∫∫∫∫∫∫ 2 θ θ φ .

Note  Whenever f x y z x y z( , , ) d d d∫∫∫  is to be evaluated throughout the 

volume of a sphere, hemisphere or octant of a sphere, it will be advantageous to use 

spherical polar coordinates.)

Fig. 4.18

y

r

O

θ

N

x

z

M

P (x, y, z)
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WORKED EXAMPLE 4(b)

Example 4.1 Change the order of integration in 
x

x y
x y

y

aa

2 2
0 +
∫∫ d d  and then 

evaluate it.

The region of integration R is defined by y ≤ x ≤ a and 0 ≤ y ≤ a.

i.e. it is bounded by the lines x = y, x = a, y = 0 and y = a.

The rough sketch of the boundaries and the 

region R is given in Fig. 4.19. 

After changing the order of integration, the 

given integral I becomes

 I = d d
x

x y
y x

R
2 2+

∫∫
The limits of inner integration are found by 

treating x as a constant, i.e. by drawing a line 

parallel to the y-axis in the region of integration 

as explained in the previous section.

Thus I = d d
x

x y
y x

xa

2 2
00 +
∫∫

 = + +( ){ }
= + −

=

=

=

∫

∫

x y y x x

x x x x x

y

y xa

a

log d

[log ( ) log ] d

log (1 +

2 2

0
0

0

2

2)) log (1 + )⋅









=

x a
a

2

0

2

2 2
2

Example 4.2 Change the order of integration in
x x y

x y
x

d d
2 2

1

0

1

+∫∫  and then evaluate it.

Note  Since the limits of inner integration are x and 1, the corresponding variable 

of integration should be y. So we rewrite the given integral I in the corrected form 

first.

I
d d

=
+∫∫

x y x

x y
x

2 2

1

0

1

The region of integration R is bounded by the lines x = 0, x =1, y = x and y = 1 

and is given in Fig. 4.20.

The limits for the inner integration (after changing the order of integration) with 

respect to x are fixed as usual, by drawing a line parallel to x-axis (y = constant)

∴  I
d d

=
+∫∫

x x y

x y

y

2 2

00

1

x
O

Q

y

(x, x) R

(x, 0) y = 0

x = y

y = a

x = a

P

Fig. 4.19
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x
O

R

y

(0, y) P Q (y, y)

x = 0

y = 1
x = 1

y = x

Fig. 4.20

 =












=










∫
=

=
1

2

1

2

2

0

1

0

2

2

log ( + ) d

log d

2 2x y y

y

y
y

x

x y

00

1

1

2

∫

= log 2.

Example 4.3 Change the order of integration in xy x y

a

b
b y

b

d d

( )

00

−

∫∫  and then

evaluate it.

The region of integration R is bounded by the lines x = 0, x
a

b
b y= −( )  or

 
x

a

y

b
+ =1, y = 0 and y = b and is shown in Fig. 4.21.

O P

R

Q

y = 0

(x, 0)

(a – x)x,

x = 0

y = b

x

y

= 1+
x y

b

b

a

a

Fig. 4.21

After changing the order of integration, the integral becomes I d d= ∫∫ xy y x

R

.

The limits are fixed as usual.

I = d d

( )

xy y x

b

a
a x

a

00

−

∫∫
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=










= −

=

−

∫

∫

x
y

x

b

a
x a x x

b

a
a

x

b
a

a xa

a

2

00

2

2

2

0

2

2

2
2

2

2

2

( )

d

( ) d

22
2

3 4

2

1

2

2

3

1

4

24

3 4

0

2 2

2 2

− +












= − +








=

a
x x

a b

a b

a

Example 4.4 Change the order of integration in x y x

b

a
a x

a

2

00

2 2

d d

−

∫∫  and then

integrate it.

The region of integration R is bounded by the lines x = 0, x = a, y = 0 and the 

curve y
b

a
a x= −2 2  i.e. the curve y

b

a x

a

2

2

2 2

2
=

− , i.e. the ellipse 
x

a

y

b

2

2

2

2
1+ =  

and is shown in Fig. 4.22.

Fig. 4.22

O

R

Q

y = 0

(0, y) P

= 1+

x = 0

x = a

x

a2 b2

b2 – y2, y

x2 y2

a

b

After changing the order of integration, the integral becomes

I d d= ∫∫ x x y

R

2

The limits are fixed as usual.

 

I d d

d

=

=










−

−

∫∫

∫

x x y

x
y

a

b
b y

b

a

b
b yb

2

00

3

00

2 2

2 2

3
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= −∫
a

b
b y y

b3

3

2 2

3

2

0
3

( ) d

 

 = ∫
a

b
b

3

3

4 4

0

2

3
cos dθ θ

π /

 (on putting y = b sin θ)

 

= × × ×

=

a b

a b

3

3

3

3

4

1

2 2

16

π

π

Example 4.5 Change the order of integration in y x y

a y

a ya

d d

−

−

∫∫
2 2

0

 and then

evaluate it.

The region of integration R is bounded by the line x = a − y, the curve

x a y= −2 2 , the lines y = 0 and y = a.

i.e. the line x + y = a, the circle x2 + y2 = a2 and the lines y = 0, y = a. R is shown in 

Fig. 4.23.

R

Q

(x, a – x) P

= 1+

x

a a

a2 – x2

x2 + y2 = a2

x,

x y

y

O

Fig. 4.23

After changing the order of integration, the integral I becomes,

 I d d

d d

d

=

=

=










=

∫∫

∫∫

∫

−

−

−

−

y y x

y y x

y
x

R

a x

a xa

a x

a xa

2 2

2 2

0

2

0
2

11

2
2 2 2

0

( ) dax x x

a

−∫
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= −










= ⋅

a
x x

a

a
2 3

0

3

2 3

6 .

Example 4.6 Change the order of integration in d dy x

x

x

2

4

2

0

4

∫∫  and then evaluate it.

The region of integration R is bounded by the curve y
x

=
2

4
 i.e. the parabola

x2 = 4y, the curve y x= 2  i.e. the parabola y2 = 4x and the lines x = 0, x = 4. R is 

shown in Fig. 4.24.

Q (2    y, y)

y2 = 4x
x2 = 4y

O

y
A

P
y2

, y
4

Fig. 4.24

The points of intersection of the two parabolas are obtained by solving the 

equations x2 = 4y and y2 = 4x.

Solving them, we get x
x

2
2

4
4










=

i.e x (x3 − 64) = 0
∴ x = 0, x = 4

and y = 0, y = 4

i.e. the points of intersection are O(0, 0) and A(4, 4).

After changing the order of integration, the given integral

 I x y

x y

y
y

y

R

y

y

=

=

= −










∫∫

∫∫

∫

d d

d d

d

2

4

2

0

4

2

0

4

2
4



4.26 Engineering Mathematics I

 

= −










= −

=

4

3 12

32

3

16

3

16

3

3

2

3

0

4

y
y

Example 4.7 Change the order of integration in xy x y

a a y

a a ya

d d

− −

+ +

∫∫
2 2

2 2

0

 and then

evaluate it.

The region of integration R is bounded by the curve x a a y= −∓
2 2 , i.e. the 

circle (x − a)2 + y2 = a2 and the lines y = 0 and y = a. The region R is shown in Fig. 

4.25.

x,   2ax – x2

(x – a)2 + y2 = a2

C (a, 0)(x, 0) P 

y

RQ

O
x

Fig. 4.25

After changing the order of integration, the integral I becomes

 I = d d

d d

xy y x

xy y x

x
y

R

ax xa

ax xa

∫∫

∫∫

∫

=

=










−

−

0

2

0

2

2

0

2

0

2

2

2

2
dd

(2 )d2

x

ax

a
x x

a

a

a

= −

= −










= ⋅

∫
1

2

1

2
2

3 4

2

3

3

0

2

3 4

0

2

4

x x
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Example 4.8 Change the order of integration in xy x y

y

y

 d  d

2

0

1 −

∫∫  and then

evaluate it.

The region of integration R is bounded by the lines x = y, x + y = 2, y = 0 and y = 

1. It is shown in Fig. 4.26.

After changing the order of integration, 

the integral I becomes

I = d dxy y x

R

∫∫
To fix the limits for y in the inner 

integration, we have to draw a line parallel 

to y-axis (since x = constant). The line drawn 

parallel to the y-axis does not intersect the 

region R in the same fashion. If the line segment is drawn in the region OCB, its 

upper end lies on the line y = x; on the other hand, if it is drawn in the region BCA, its 

upper end lies on the line x + y = 2. In such situations, we divide the region into two 

sub-regions and fix the limits for each sub-region  as illustrated below:

 

I = d d d d

d d d d

xy y x xy y x

xy y x xy y x

x
y

BCA

xx

∆ ∆

−

∫∫ ∫∫

∫∫∫∫

+

= +

=

OCB

0

2

1

2

00

1

22

0

2

0

2

1

2

0

1

3

0

1

2 2

2











+










= +

−

∫∫

∫

x x

x x
y

x

x
x

d d

d
xx

x x

x
x x

x

2

8

1

2
2

4

3 4

1

2

4

0

1

2 3
4

(2 ) d2−

=









+ − +











∫



= +

=

1

2

1

8

5

24

1

3

Example 4.9 Change the order of integration in xy y x

x

a

a xa

d d
2

2

0

−

∫∫  and then

evaluate it.

The region of integration R is bounded by the curve y
x

a
=

2

, i.e. the parabola x2 = ay,

the line y = 2a − x, i.e. x + y = 2a and the lines x = 0 and x = a. It is shown in Fig. 

4.27.

x + y = 2x = y

B (1, 1)

y

A
x

CO

Fig. 4.26
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y = 2a

(0, y) P2

(0, y) P1

D

E

Q2 (2a – y, y)

Q1

C

A

O

B (a, a)

y

x

ay, y

Fig. 4.27

After changing the order of integration, the integral I becomes

I = d dxy x y

R

∫∫
When we draw a line parallel to x-axis for fixing the limits for the inner integration 
with respect to x, it does not intersect the region of integration in the same fashion. 

Hence the region R is divided into two sub-regions OABE and EBCD and then the 

limits are fixed as given below:

 I d d d d

d d d d

= +

= +

∫∫ ∫∫

∫∫ ∫∫
−

xy xy x y

xy x y xy x y

OABE EBCD

aya a y

a

a

x y

00 0

22

Note  The co-ordinates of the point B are obtained by solving the equations x + 

y = 2a and x2 = ay.

B ≡ (a, a) and the equation of EB is y = a.

 
I d d=











+










=

∫ ∫
−

y
x

y y
x

y

a

aya

a

a a y
2

00

2 2

0

2

2 2

1

2
yy y y a y y

a
y

a

a

a

a

a

2

0

2

3

0

21

2 3
2

d (2 ) d2∫ ∫+ −
















=









+ yy

a
y

y
a

a

a

2 3
4

2

44

3 4

3

8
− +


























= .

Example 4.10 Change the order of integration in each of the double integrals

d dx y

x y2 2

1

2

0

1

+∫∫  and d dx y

x y
y

2 2

2

1

2

+∫∫  and hence express their sum as one double integral

and evaluate it.

The region of integration R
1
 for the first double integral I

1
 is bounded by the lines 

x = 1, x = 2, y = 0 and y = 1.
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The region of integration R
2
 for the second double integral I

2
 is bounded by the 

lines x = y, x = 2, y = 1 and y = 2.

R
1
 and R

2
 are shown in Fig. 4.28.

P2 (x, 1)

(x, 1)

(1, 1) D

(x, x) Q2

C (2, 1)

E (2, 2)y

x

Q1

P1 (x, 0)A BO

Fig. 4.28

After changing the order of integration,

 I
d d

1= +∫∫
y x

x y2 2

0

1

1

2

and I
d d

2 2 2

11

2

=
+∫∫
y x

x y

x

Adding the integrals I
1
 and I

2
, we get

 

I d
d d

=
+

+
+










∫∫∫ x
y

x y

y

x y

x

2 2 2 2

10

1

1

2

 =
+∫∫ d
d

x
y

x y

x

2 2

01

2

 =








−

=

=

∫
1 1

1

2

0
x

y

x
x

y

y x

tan d

 = =∫
π π

4 4
2

1

2
d

log
x

x
.

Example 4.11 Find the area bounded by the parabolas y2 = 4 − x and y2 = x by double 

integration.

The region, the area of which is required is bounded by the parabolas (y − 0)2 = − 
(x − 4) and y2 = x and is shown in Fig. 4.29.

Required area = ∫∫ d dyx

ABOC
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 = ∫∫2 d dx y

ABo

, by symmetry

 

=

= − −

= −








= −

−

∫∫

∫

2

2 4

2 4
2

3

2 4 2

2

24

0

2

2 2

0

2

3

0

2

d d

( ) d

x y

y y y

y y

y

y

44

3
2









 =
16

3
2  square units

Example 4.12 Find the area between the circle x2 + y2 = a2 and the line x + y = a ly-

ing in the first quadrant, by double integration.
The plane region, the area of which is required, is shown in Fig. 4.30.

Required area

 

=

=

= − − +( )

= − +

∫∫

∫∫

∫

−

−

d d

d d

d

si

x y

x y

a y a y y

y
a y

a

CAB

a y

a ya

a

2 2

0

2 2

0

2 2
2

2 2
nn

( )

− − +










= ⋅ − + = −

1
2

0

2
2

2 2

2

2 2 2
2

4

y

a
ay

y

a
a

a a

a

π
π

Example 4.13 Find the area enclosed by the lemniscate r2 = a2 cos 2θ, by double 

integration.

As the equation r2 = a2 cos 2θ remains unaltered on changing θ to − θ, the curve 

is symmetrical about the initial line.

The points of intersection of the curve with the initial line θ = 0 are given by r2 = 

a2 or r = ± a.

(4 – y2, y)

2)

y2 = 4 – x

(y2, y)

(4, 0)

y2 = x

y

B

C

A
O x

(2,–

2)(2,

Fig. 4.29

a2– y2, y)(a – y, y)

y

O A

C

x

B (

Fig. 4.30
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Since r2 = a2 cos 2α = a2 cos 2 (π  − α), the curve is symmetrical about the line

θ
π

=
2

.

On putting r = 0, we get cos 2θ = 0. Hence θ
π π

=± ±
4

3

4
, . Hence there is a loop 

of the curve between θ
π

=−
4

 and θ
π

=
4

 and another loop between θ
π

=−
3

4
 and

θ
π

=
3

4
.

Based on the observations given above the lemniscate is drawn in Fig. 4.31.

C
P

D

O
A B

X

Fig. 4.31

Required area = 4 × area OABC (by symmetry)

 = ∫∫4 r r

BOA

d dθ

When we perform the inner integration with respect to r, we have to treat θ as a 

constant temporarily and find the limits for r.

Geometrically, treating θ = constant means drawing a line OP arbitrarily through 

the pole lying within the region of integration as shown in the figure.
Finding the limits for r (while θ is a constant) is equivalent to finding the variation 

of the r coordinate of any point on the line OP. Assuming that the θ coordinates of 

all points on OP are θ each (since θ is constant on OP), we take O ≡ (0, θ) and P ≡ 
(r

1
, θ); viz., r varies from 0 to r

1
. Now wherever OP be drawn, the point P(r

1
, θ) lies 

on the lemniscate.

Hence r1

2  = a2 cos 2θ or r a1 2= cos θ  (since r coordinate of any point is + ve)

Thus the limits for inner integration are 0 and a cos 2θ.

When we perform the outer integration, we have to find the limits for θ. 

Geometrically, we have to find the variation of the line OP so that it sweeps the 

area of the region, namely OABC. To cover this area, the line OP has to start from 
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the position OA (θ = 0) and move in the anticlockwise direction and go up to

OD θ
π

=






4

. Thus the limits for θ are 0 and 
π

4
.

∴ Required area =

=











=

∫∫

∫

4

4
2

2 2

00

4

2

00

4

2

0

r r

r

a

a

a

d d

d

cos d

cos 2

cos 2

θ
π

θ
π

π

θ

θ

θ θ
44

2

0
4 22

∫

= =a a(sin )θ
π

Example 4.14  Find the area that lies inside the cardioid r = a (1 + cos θ) and outside 

the circle r = a, by double integration.

The cardioid r = a (1 + cos θ) is symmetrical about the initial line. The point 

of intersection of the line θ = 0 with the cardioid is given by r = 2a, viz., the point 

(2a, 0).

Putting r = 0 in the equation, we get cos θ = − 1 and θ = ± π. Hence the cardioid 

lies between the lines θ = − π and θ = π.

The point of intersection of the line

θ
π

=
2

 is a,
π

2







 .

Noting the above properties, the 

cardioid is drawn as shown in Fig. 4.32. 

All the points on the curve r = a have 

the same r coordinate a, viz., they are 

at the same distance a from the pole. 

Hence the equation r = a represents a 

circle with centre at the pole and radius 

equal to a.

Noting the above points, the circle 

r = a is drawn as shown in Fig. 4.32. 

The area that lies outside the circle r = 

a and inside the cardioid is shaded in the figure.
Both the curves are symmetric about the initial line. Hence the required area

 = 2×AFGCB

C

B

A

D

E
y

H

G

FO
x

Fig. 4.32
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 = ∫∫2
1

2

0

2

r r

r

r

d dθ

π

, where (r
1
, θ) lies on the circle r = a and (r

2
, θ)

lies on the cardioid r = a (1 + cos θ)

 =

=











= +

+

+

∫∫

∫

2

2
2

1

1

0

2

2
1

0

2

2

r r

r

a

a

a

a

a

d d

d

[(

( cos )

( cos )

θ

θ

θ

π

θ
π

ccos ) ] d

cos
cos

d

sin

2θ θ

θ
θ

θ

θ

π

π

−

= +
+








= +

∫

∫

1

2
1 2

2

2

0

2

2

0

2

2

a

a
θθ

θ

π
π

π

2

1

4
2

2
4 4

8

0

2

2
2

+












= +






= +

sin

( )a
a

Example 4.15  Express 
x x y

x yy

aa 2

2 2
3 2

0

d d

+( )∫∫ /
 in polar coordinates and then evaluate it.

The region of integration is bounded by the lines x = y, x = a, y = 0 and y = a, 

whose equations in polar system are θ
π

=
4

, r = a sec θ, θ = 0 and r = a cosec

θ respectively. The region is shown in Fig. 4.33.

r = a cosec θ

θ = 0
O

θ 
= π

A

B

r = a sec θ

x

4

Fig. 4.33

Putting x = r cos θ, y = r sin θ and dx dy = r dr dθ in the given double integral I, 

we get
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I
r

r
r

r

r

OAB

a

a

=

=

= ⋅

∫∫

∫∫

3 2

3

2

00

4

0

cos
d d

cos d d

cos [ ]

sec

2 sec

θ
θ

θ θ

θ

θπ

θ

/

00

4

0

4

0
2

π

π

π

θ

θ θ θ

/

/

∫

∫= = =/4

d

cos d [sin ]a a
a

Example 4.16 Transform the double integral 
d dx y

a x y
ax x

a xa

2 2 2
0 2

2 2

− −
−

−

∫∫  in polar

coordinates and then evaluate it.

The region of integration is bounded by the curves y ax x y a x= − = −2 2 2,  

and the lines x = 0 and x = a.

 y ax x= − 2  is the curve x2 + y2 − ax = 0

i.e., x
a

y
a

−






 + − =






2

0
2

2 2

( )2

i.e. the circle with centre at 
a

2
,0







 and radius 

a

2

 y a x= −2 2  is the curve x2 + y2 = a2

i.e. the circle with centre at the origin and radius a.

The polar equations of the boundaries of the region of integration are r2 − ar

cos θ = 0 or r = a cos θ, r = a, r = a sec θ and θ
π

=
2

. The region of integration is

shown in Fig. 4.34.

Putting x = r cos θ, y = r sin θ and dx dy = r dr dθ in the given double integral I, 

we get

 

I r r

a r

a r

a

a

a

a

=
−

= − × −










∫∫ d d

cos

θ

θ

π

θ

π

2 20

2

2 2

0

1

2
2

/

cos

/22

∫ dθ , on putting a2 − r2 = t
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r = a

r = a cos θ

θ = π
2

2

r = a sec θ

xaaO

Fig. 4.34

= =− [ ] =∫ a a asin d cosθ θ θ

π π

0

2

0

2

/

Example 4.17 By transforming into cylindrical coordinates, evaluate the integral

( ) d d d2x y z x y z+ +∫∫∫ 2 2
 taken over the region of space defined by x2 + y2 ≤ 1

and 0 ≤ z ≤ 1.

The region of space is the region enclosed 

by the cylinder x2 + y2 = 1 whose base radius is 

1 and axis is the z-axis and the planes z = 0 and 

z = 1. The equation of the cylinder in cylindrical 

coordinates is  r = 1. The region of space is shown 

in Fig. 4.35.

Putting x = r cos θ, y = r sin θ, z = z and dx dy 

dz = r dr dθ dz in the given triple integral I, we get

 I r z r r z

V

= +∫∫∫ ( ) d d d2 2 θ ,

where V is the volume of the region of space.

 

= +

= +








∫∫∫

∫

( ) d d d

d d

2 2r z r r z

r
z

r
z

0

1

0

2

0

1

4
2

2

0

1

0

2

0

1

4 2

θ

θ

π

π

∫∫

∫∫

∫

= +








= +








1

4

1

2

2
1

4

1

2

2

0

2

0

1

2

0

1

z z

z z

d d

d

θ

π

π

z = 1

z = 0

z

x

y

Fig. 4.35
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= +












=

2
4 6

5

6

3

0

1

π

π

z z

Note  The intersection of z = constant c and the cylinder x2 + y2 = 1 is a circle 

with centre at (0, 0, c) and radius 1. The limits for r and θ have been fixed to cover 
the area of this circle and then the variation of z has been used so as to cover the 

entire volume.]

Example 4.18 Find the volume of the portion of the cylinder x2 + y2 = 1 intercepted 

between the plane z = 0 and the paraboloid x2 + y2 = 4 − z.

z

x

y

Fig. 4.36

Using cylindrical coordinates, the required volume V is given by

 V r r z= ∫∫∫ d d dθ , taken throughout the region of space.

Since the variation of z is not between constant limits, we first integrate with respect 
to z and then with respect to r and θ.

Changing to cylindrical coordinates, the boundaries of the region of space are r = 

1, z = 0 and z = 4 − r2.

∴ V z r r

r r r

r
r

r

=

= −

= −












−

∫∫∫

∫∫

d d d

( ) d d

θ

θ

π

π

0

4

0

1

0

2

2

0

1

0

2

2
4

0

2

4

2
4

11

0

2

0

2
7

4

7

2
d dθ θ π

π π

= =∫ ∫

Example 4.19 Evaluate xyz z y x

a x ya xa

000

2 2 22 2 − −−

∫∫∫ d d d , by transforming to spherical

polar coordinates.
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The boundaries of the region of integration are z = 0, z a x y= − −2 2 2
 or x2 + y2 + 

z2 = a2, y = 0, y a x= −2 2  or x2 + y2 = a2, x = 0 and x = a. From the boundaries,

we note that the region of integration is the volume of the positive octant of the 

sphere x2 + y2 + z2 = a2.

By putting x = r sin θ cos φ, y = r sin θ sin φ, z = r 

cos θ and dx dy dz = r2 sin θ dr dθ dφ, the given triple 

integral I becomes

I r r r

V

= ∫∫∫ 3 2 2sin cos sin cos sin d d dθ θ φ φ θ θ φ.

where V is the volume of the positive octant of 

the sphere r = a, which is shown in Fig. 4.37.

To cover the volume V, r has to vary from 0 to 

a, θ has to vary from 0 to 
π

2
 and φ  has to 

vary from 0 to 
π

2
.

Thus I r r

a

=

=

∫∫∫

∫

5

00

2

0

2

0

2

3

sin cos sin cos d d d

sin cos d sin

3 θ θ φ φ θ φ

φ φ φ

ππ

π

. θθ θ θ

π

cos d d.

0

2

5

0

∫ ∫ r r

a

[

∴

 the limits are constants]

 

=










 ⋅










 ⋅











= ⋅

sin sin2

0

2 4

0

2 6

0

6

2 4 6

1

48

φ θ
π π

r

a

a

Example 4.20 Evaluate 1 2 2 2− − −∫∫∫ x y z x y zd d d , taken throughout the

volume of the sphere  x2 + y2 + z2 = 1, by transforming to spherical polar coordi-

nates.

Changing to spherical polar coordinates, the given triple integral I becomes

 
I r r r

V

= −∫∫∫ 1 2 2 sin d d dθ θ φ

Z

M

Pr

O

x

y

θ

Fig. 4.37
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z

M

P (r, θ,   )

O

x

y

θ
r

Fig. 4.38

To cover the entire volume V of the sphere, r has to vary from 0 to 1, θ has to vary 

from 0 to π and φ  has to vary from 0 to 2π.

Thus I r r r= − ⋅ ⋅∫∫∫ 1 2 2

0

1

00

2

d sin d dθ θ φ

ππ

 = ∫ ∫ ∫d sin d sin cos dφ θ θ

π π

π

0

2

0

2 2

0

2

t t t , by putting

 r = sin t in the innermost integral

 = × − × ⋅ − ⋅ ⋅








= × × =

2
1

2 2

3

4

1

2 2

4
4

1

4

1

4

0

2

π θ
π π

π
π

π

π( cos )

EXERCiSE 4(b)

Part A

(Short Answer Questions)

1. Change the order of integration in f x y y x

xa

( , )d d

00

∫∫ .

2. Change the order of integration in f x y x y

y

( , )d d

1

0

1

∫∫ .

3. Change the order of integration in f x y y x

x

aa

( , ) d d∫∫
0

.

4. Change the order of integration in f x y x y

y

( , )d d

00

1

∫∫ .

5. Change the order of integration in 

0

1

0

1

∫ ∫
−

f x y x y

y

( , ) d d .
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6. Change the order of integration in f x y y x

a xa

( , )d d

00

−

∫∫ .

7. Change the order of integration in f x y y x

x

( , )

0

1

0

1
2−

∫∫ d d .

8. Change the order of integration in f x y x y

a ya

( , )

00

2 2−

∫∫ d d .

9. Change the order of integration in f x y y x

x

( , )

0

2

0

1

∫∫ d d .

10. Change the order of integration in f x y x y

y

( , )

/

0

1

0

∫∫
∞

d d .

Part B

Change the order of integration in the following integrals and then evaluate them:

11. 
x x y

x y
y

aa
d d

2 2

0
+∫∫  12. ( )x y y x

x

2 2

2

0

2

+∫∫ d d

13. x e y x

x

y

x −∞

∫∫
2

00

d d  14. 
e

y
y x

y

x

−∞∞

∫∫ d d

0

15. e y xx y

x

2

0

1

0

1

+
−

∫∫ d d  16. xy x y

y

0

4

0

2
2−

∫∫ d d

17. ( )x y y x

x

a

aa

+∫∫
2

4

0

2

d d  18. 
y x y

x y
y

y
d d

2 2

0

1

2 +∫∫

19. ( )x y y x

x

+
−

∫∫
1

4

0

3

d d  20. y x y

a y

a

a

2

0

2 2−

−
∫∫ d d  

21. d dx y

x

x

5

9

5

3

0

3

2

∫∫  22. xy y x

x

d d

0

4

1

2 /

∫∫

23. d dy x

x

x2

0

1
2−

∫∫
24. Change the order of integration in each of the double integrals xy y x

x

00

1

∫∫ d d

and xy y x

x

0

2

1

2 −

∫∫ d d and hence express their sum as one double integral and

evaluate it.
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25. Change the order of integration in each of the double integrals ( + )2 2x y

−−
∫∫

x

1

1

0

d dy x and ( + ) d d2 2x y y x

x

1

0

1

∫∫  and hence express their sum as one double

integral and evaluate it.

Find the area specified in the following problems (26−35), using double integration:
26. The area bounded by the parabola y = x2 and the straight line 2x − y + 3 = 0.

27. The area included between the parabolas y2 = 4a (x + a) and y2 = 4a(a − x).

28. The area bounded by the two parabolas y2 = 4ax and x2 = 4by.

29. The area common to the parabola y2 = x and the circle x2 + y2 = 2.

30. The area bounded by the curve y
x

x

2
3

2
=

−
 and its asymptote.

31. The area of the cardioid r = a (1 + cos θ).

32. The area common to the two circles r = a and r = 2a cos θ.

33. The area common to the cardioids r = a (1 + cos θ) and r = a (1 − cos θ).

34. The area that lies inside the circle r = 3a cos θ and outside the cardioid r = a 

(1 + cos θ).

35. The area that lies outside the circle r = a cos θ and inside the circle r = 2a

cos θ.

Change the following integrals (36 − 40), into polar coordinates and then 
evaluate them:

36. e x y
x y

a xa
− +( )

−

∫∫
2 2

2 2

00

d d  37. x x y

x y
y

aa
d d
2 2

0 +( )∫∫

38. 
x x y

x y

xa 3

2 2
00

d d

+
∫∫  39. 

x x y

x y

a x xa
d d

2 2
0

2

0

2
2

+

−

∫∫

40. 
d dx y

a x y2 2 2
3 2

+ +( )−∞

∞

−∞

∞

∫∫ /

Evaluate the following integrals (41− 45) after transforming into cylindrical
coordinates:

41. (  +  + ) d d dx y z x y z

V

∫∫∫ , where V is the region of space inside the cylinder

x2 + y2 = a2, that is bounded by the planes z = 0 and z = h.

42. ( + ) d d d2 2x y x y z∫∫∫ , taken throughout the volume of the cylinder x2 + y2 = 1

that is bounded by the planes z = 0 and z = 4.

43. d d dx y z∫∫∫ , taken throughout the volume of the cylinder x2 + y2 = 4

bounded by the planes z = 0 and y + z = 3.
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44. d d dx y z∫∫∫ , taken throughout the volume of the cylinder x2 + y2 = 4

bounded by the plane z = 0 and the surface z = x2 + y2 + 2.

45. d d dx y z∫∫∫ , taken throughout the volume bounded by the spherical

surface x2 + y2 + z2 = 4a2 and the cylindrical surface x2 + y2 − 2ay = 0.

Evaluate the following integrals (46-50) after transforming into spherical 

polar coordinates:

46. 
d d dx y z

x y z2 2 2+ +∫∫∫ , taken throughout the volume of the sphere x2 + y2 +

z2 = a2.

47. 
d d dx y z

x y z1 2 2 2− − −
∫∫∫ , taken throughout the volume contained in the

positive octant of the sphere x2 + y2 + z2 = 1.

48. z x y z

V

d d d∫∫∫ , where V is the region of space bounded by the

sphere x2 + y2 + z2 = a2 above the xOy-plane.

49. x x y z

a y za xa

d d d

000

2 2 22 2 − −−

∫∫∫  50.
d d d x y z

a x y z2 2 2 2
5 2

000 + + +( )

∞∞∞

∫∫∫ /

4.6 LinE intEGRAL

The concept of a line integral is a generalisation of the concept of a definite

integral f x x

a

b

( )d∫ .

In the definite integral, we integrate along the x-axis from a to b and the integrand 

f(x) is defined at each point in (a, b). In a line integral, we shall integrate along a 

curve C in the plane (or space) and the integrand will be defined at each point of C.  

The formal definition of a line integral is as follows.
Definition  Let C be the segment of a continuous curve joining A(a, b) and 

B(c, d) (Fig. 4.39).

y

Q

P

B (c, d) 

(xr, yr) 

A (a, b) 

(xr –1, yr – 1)
(ξr, ηr) 

O
x

Fig. 4.39
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Let f (x, y), f
1
(x, y), f

2
(x, y) be single-valued and continuous functions of x and y,

defined at all points of C.

Divide C into n arcs at (x
i
, y

i
) [i = 1, 2,

 
.
 
.
 
.
 
(n − 1)]

Let x
0
 = a, x

n
= c, y

0
 = b, y

n
 = d.

Let x
r
 − x

r−1
 = Δx

r
, y

r
 − y

r−1
 = Δy

r
 and the arcual length of PQ PQ sr(i.e. ) =∆ ,

where P is (x
r−1

, y
r−1

) and Q(x
r
, y

r
).

Let (ξ
r 
, η

r
) be any point on C between P and Q.

Then lim
n

r r r

r

n

f s
→∞

=
∑ ( , )ξ η ∆

1

or lim ( ) ( )
n

r r r r r r

r

n

f x f y
→∞

=

+



∑ 1 2

1

ξ η ξ η, ,∆ ∆

is defined as a line integral along the curve C and denoted respectively as

 f x y s

C

( , )d∫  or [ ( , )d ( , )d ]f x y x f x y y

C

1 2+∫  

4.6.1 Evaluation of a Line integral

Using the equation y = φ  (x) or x = ψ(y) of the curve C, we express [ ( )f x y

C

1 ,∫
d ( )d ]x f x y y+ 2 ,  either in the form g x x

a

c

( )d∫  or in the form h y y

b

d

( )d∫  and evaluate

it, which is only a definite integral.

If the line integral is in the form f x y s

C

( , )d∫ , it is first rewritten as f x y
s

x
x

C

( , )
d

d
d =∫  

f x y
y

x
x

C

( , )
d

d
d1

2

+





∫ or as f x y

s

y
y f x y

x

y
y

C C

( , )
d

d
d ( , )

d

d
d= +








∫ ∫ 1

2

 and then

evaluated after expressing it as a definite integral.

4.6.2 Evaluation when C is a Curve in Space

The definition of the line integral given above can be extended when C is a curve in

space. In this case, the line integral will take either the form [ ( , , )df x y z x

C

1 +∫
f x y z y f x y z z2 3( , , ) d ( , , )d ]+ or the form f x y z s

C

( , , ) d∫ . When C is a curve in 

space, very often the parametric equations of C will be known in the form x = φ
1
(t), 

y = φ
2
(t), z = φ

3
(t). Using the parametric equations of C, the line integral can be

expressed as a definite integral. In the case of f x y z s

C

( , , ) d∫ , it is rewritten as

f x y z
s

t
t

C

( )
d

d
d, ,∫ , where

d

d

d

d

d

d

d

d

s

t

x

t

y

t

z

t
=





 +






 +








2 2 2

.
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4.7 SURFACE intEGRAL

The concept of a surface integral is a generalisation of the concept of a double 

integral. While a double integral is evaluated over the area of a plane surface, a 

surface integral is evaluated over the area of a curved surface in general. The formal 

definition of a surface integral is given below.

Definition Let S be a portion of a regular two-sided surface. Let f (z, y, z) be a 

function defined and continuous at all points on S. Divide S into n sub-regions Δs
1
,

ΔS
2
, . . ., ΔS

n
. Let P(ξ

r
,
 
η

r
,
 
ζ

r
) be any point in ΔS

r
. Then lim ( , , )

n
S

r r r r

r

n

r

f S
→∞
→ =
∑

∆

∆
0 1

ξ η ζ

is called the surface integral of f(x, y, z) over the surface S and denoted as 

f x y z S

S

( , , ) d∫  or f x y z S

S

( , , ) d∫∫ .

4.7.1 Evaluation of a Surface integral

Let the surface integral be f x y z S

S

( , , ) d∫∫ , where S is the portion of the surface

whose equation is φ (x, y, z) = c (Fig. 4.40).

z

O y

S

R

x

Fig. 4.40

Project the surface S orthogonally on xoy-plane (or any one of the co-ordinate 

planes) so that the projection is a plane region R.

The projection of the typical elemental surface ∆S (shaded in the figure) is the 

typical elemental plane area ∆A (shaded in the figure).
We can divide the area of the region R into elemental areas by drawing lines 

parallel to x and y axes at intervals of ∆y and ∆x respectively. Then ∆A = ∆x · ∆y.

Then ∆x · ∆y = ∆S cos θ, where  θ is the angle between the surface S and the 

plane R (xoy-plane), i.e. θ is the angle between the normal to the surface S at the 

typical point (x, y, z) and the normal to the xoy-plane (z-axis). From Calculus, it is
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known that the direction ratios of the normal at the point (x, y, z) to the surface

φ (x, y, z) = c are 
∂
∂

∂
∂

∂
∂











φ φ φ

x y z
, , . The direction cosines of the z-axis are (0, 0, 1)

∴ cosθ

φ

φ φ φ

=

∂
∂

∂
∂






 +

∂
∂









 +

∂
∂








z

x y z

2 2 2

Thus ∆ ∆ ∆S x y
x y z

z

=
+ +φ φ φ

φ

2 2 2

.

∴  f x y z S f x y z x y
x y z

zRS

( , , ) d , , ) d d= ⋅
+ +

∫∫∫∫ (
φ φ φ

φ

2 2 2

Thus the surface integral is converted into a double integral by using the above 

relation, in which the limits for the double integration on the right side are fixed so 
as to cover the entire region R and the integrand is converted into a function of x and 

y, using the equation of S.

Note   Had we projected the curved surface S on the yoz-plane or zox-plane then 

the conversion formula would have been

 

f x y z S f x y z y z
x y z

xRS

( , , )d ( , , ) d d= ⋅
+ +

∫∫∫∫
φ φ φ

φ

2 2 2

or  f x y z S f x y z z x
x y z

yRS

( , , )d ( , , ) d d= ⋅
+ +

∫∫∫∫
φ φ φ

φ

2 2 2

, respectively.

4.8 VOLUME intEGRAL

Definition Let V be a region of space, bounded by a closed surface. Let 

f(x, y, z) be a continuous function defined at all points of V. Divide V into n sub-

regions ΔV
r
 by drawing planes parallel to the yoz, zox and xoy-planes at intervals of 

Δx, Δy and Δz respectively. Then ΔV
r
 is a rectangular parallelopiped with dimensions 

Δx, Δy, Δz.

Let P(ξ
r 
, η

r 
,ζ

r
) be any point in ΔV

r 
.

Then lim ( , , )
n
V

r r r r

r

n

r

f V
→∞
→ =
∑

∆

∆
0 1

ξ η ζ is called the volume integral of f(x, y, z) over the

region V (or throughout the volume V) and denoted as
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f x y z v

V

( , , ) d∫  or f x y z x y z

V

( , , ) d d d∫∫∫

4.8.1 triple integral versus Volume integral

A triple integral discussed earlier is a three times repeated integral in which the limits 

of integration are given, whereas a volume integral is a triple integral in which the 

limits of integration will not be explicitly given, but the region of space in which it 

is to be evaluated will be specified. The limits of integration in a volume integral are 
fixed so as to cover the entire volume of the region of space V.

Note   Though the line integral and surface integral have been defined in the 
scalar form in this unit, they are also defined in the vector form.

WORKED EXAMPLE 4(c)

Example 4.1  Evaluate [(3 ) d ( ) d ]2 3xy y x x xy y

C

+ + +∫ 3 23  where C is the

parabola y2 = 4ax from the point (0, 0) to the point (a, 2a).

The given integral

I [(3 ) d ( ) d ]2 3= + + +
=

∫ xy y x x xy y

y ax

3 2

4

3
2

In order to use the fact that the line integral 

is evaluated along the parabola y2 = 4ax, we 

use this equation and the relation between dx 

and dy derived from it, namely, 2y dy = 4a dx 

and convert the body of the integral either to 

the form f(x) dx or to the form φ  (y) dy. Then 

the resulting definite integral is evaluated 
between the concerned limits, got from the 

end points of C.

The choice of the form f(x) dx or φ  (y) dy for the body of the integral depends on

convenience. In this problem, x is expressed as 1

4a
y2  more easily than expressing y

 as 2 ax .

Note  From y2 = 4ax, we get y ax=±2 . Since the arc C lies in the first

quadrant, y is positive and hence y ax= 2 .

Thus I d= ⋅ ⋅ +






 + + ⋅ ⋅







3

1

4 2

1

64
3

1

4

2 2 3

3

6 2 2

a
y y y

y

a
y

a
y

a
y y 











∫ dy

a

0

2

 

(As the integration is done with respect to y, the limits for y are the y co-ordinates of 

the terminal points of the arc C).

y

O

C

A (a, 2a)

(0, 0)
x

Fig. 4.41
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I d= + +








= + +

∫
5

4

3

8

1

64

1

4

1

16

1

448

4

2

5

3

6

0

2

5

2

6

a
y

a
y

a
y y

a
y

a
y

a

a

33

7

0

2

486

7

y

a

a







=
 

Example 4.2 Evaluate [(2 ) d ( ) d ]

C

x y x x y y∫ − + + , where C is the circle x2 + y2 = 9.

In this problem the line integral is evaluated around a closed curve. In such a 

situation the line integral is denoted as

[(2 ) d ( ) d ]x y x x y y

C

− + +∫ , where a small circle is put across the integral symbol.

When a line integral is evaluated around a closed curve, it is assumed to be described 

in the anticlockwise sense, unless specified otherwise. (Fig. 4.42)
In the case of a line integral around a closed curve C, any point on C can be 

assumed to be the initial point, which will also be the terminal point.

Further if we take x or y as the variable of integration, the limits of integration will 

be the same, resulting in the value ‘zero’ of the line integral, which is meaningless. 

Hence whenever a line integral is evaluated around a closed curve, the parametric 

equations of the curve are used and hence the body of integral is converted to the 

form f (t) dt or f (θ) dθ.

In this problem, the parametric equations of the circle x2 + y2 = 9 are x = 3 cos θ 

and y = 3 sin θ.

∴ dx = −3 sin θ d θ and dy = 3 cos θ d θ.

y
B

A

θ = 0

θ =

θ = 2π

θ = π
x

B'

A'

π

2

θ =
3π

2

Fig. 4.42

The given integral = [(6 cos sin ) ( sin d )

0

2

3 3

π

θ θ θ θ∫ − −
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+ (3 cos + 3 sin ) (3 cos d )]θ θ θ θ

 = 9 ( sin cos ) d

sin

1

9
2

18

0

2

2

0

2

−

= −








=

∫ θ θ θ

θ
θ

π

π

π

Example 4.3 Evaluate xy s

C

∫ d , where C is the arc of the parabola y2 = 4x

between the vertex and the positive end of the latus rectum.

Given integral  I
d

d
d= ∫ xy

s

x
x

C

Equation of the parabola is y2 = 4x

Differentiating with respect to x
y

x y
,

d

d
=

2

∴  
d

d

d

d

s

x

y

x y
= +






 = +1 1

4
2

2

∴ 
 

I d=
+

∫ xy
y

y
x

C

2 4

 

= +

= − ⋅ ⋅

∫

∫

x x x

t t t t

4 4

2 1 2

0

1

1

2

d

( ) d2 , on putting x + 1 = t2

 
= −

= −








= +( )

∫4

4
5 3

8

15
1 2

4 2

1

2

5 3

1

2

( ) dt t t

t t

Example 4.4 Evaluate ( d d )y x x y

C

2 2−∫ , where C is the boundary of the triangle

whose vertices are (−1, 0), (1, 0) and (0, 1) (Fig. 4.43).
C is made up of the lines BC, CA and AB.
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Equations of BC, CA and AB are respectively y = 0, x + y = 1 and −x + y = 1.

Given integral = + + −

− + =
=

+ =
=−

=
=

∫∫∫ ( d d )

d dd dd

y x x y
AB

x y

y x

CA

x y

y x

BC

y

y

2 2

110

0

y

A

C

O

B

(0, 1)

(– 1, 0) (1, 0)
x

Fig. 4.43

 = + − + + + −

= − + + +

∫ ∫

∫

−

0 1 1

1 2 2 1 2

2

1

0

2 2 2

0

1

1

0

2

[( ) ]d [( ) ]d

( )d (

x x x x x x

x x x xx x

x x
x

x x

)d

( )

0

1

2
3

1

0

2

0

12

3

2

3

−

−

∫

= − +









+ +

=−

Example 4.5 Evaluate [ d ( )d d ]x y x x z y xyz z

C

2∫ + − + , where C is the arc of the

parabola y = x2 in the plane z = 2 from (0, 0, 2) to ( 1, 1, 2).

Given integral = + − +
=
=












∫ [ d ( )d d ]x y x x z y xyz z

y x

z

2

2

2

 = + −
=

∫ [ d ( )d ]x y x x y

y x

2

2

2

[
∴

 dz = 0, when z = 2]

 = + − = + −










=−

∫ [ ( ) ]dx x x x
x x

x4

0

1 5 3
2

0

1

2 2
5

2

3
2

17

15

Example 4.6 Evaluate ( d d d )x x xy y xyz z

C

+ +∫ , where C is the arc of the

twisted curve x = t, y = t2, z = t3, 0 ≤ t ≤ 1.

The parametric equations of C are x = t, y = t2, z = t3

∴  dx = dt, dy = 2t dt, dz = 3t2 dt on C.

Using these values in the given integral I,
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I = ( )dt t t t t t

t t t

+ ⋅ + ⋅

= + +










=

∫ 3

0

1

6 2

2 5 9

0

1

2 3

2
2

5
3

9

17

30

Example 4.7 Evaluate ( )dx y z s

C

2 2 2+ +∫ , where C is the arc of the circular helix

x = cos t, y = sin t, z = 3t from (1, 0, 0) to (1, 0, 6π)

The parametric of equations of C are

x = cos t, y sin t, z = 3t.

∴ 
d

d
sin

x

t
t=− , 

d

d
cos

y

x
t= , 

d

d

z

t
=3  on C.

 
d

d

d

d

d

d

d

d

sin

s

t

x

t

y

t

z

t

t

=





 +






 +








=

2 2 2

2 ++ + =cos2 9 10t

Given integral I = (cos sin )
d

d
d2 2 2

0

2

9t t t
s

t
t+ +∫

π

Note  The point (1, 0, 0) corresponds to t = 0 and (1, 0, 6π) corresponds to t = 2π .

 I =

(1+12 )

t t+( ) ×
=

3 10

2 10

3

0

2

2

π

π π

Example 4.8 Evaluate xyz S

S

∫∫ d , where S is the surface of the rectangular

parallelopiped formed by x = 0, y = 0, z = 0, x = a, y = b and z = c (Fig. 4.44).

B

A
x

B' O'

C'

A'

z

C

O

y = b

z = c

z = 0

y = 0

y

Fig. 4.44

Since S is made up of 6 plane faces, the given surface integral I is expressed as
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I ( d )= + + + + +
= = = = = =
∫∫ ∫∫ ∫∫ ∫∫ ∫∫ ∫∫
x x a y y b z z c

xyz S

0 0 0

Since all the faces are planes, the elemental curved surface area dS becomes the 

elemental plane surface area dA.

 On the planes x = 0 and x = a, dA = dy dz.

 On the planes y = 0 and y = b, dA = dz dx.

 On the planes z = 0 and z = c, dA = dx dy.

∴  I ( d d ) ( d d )= + + +
= = = =
∫∫ ∫∫ ∫∫ ∫∫
x x a y y b

xyz y z xyz z x

0 0

 + +
= =
∫∫ ∫∫
z z c

xyz x y

0

( d d )

Simplifying the integrands using the equations of the planes over which the 

surface integrals are evaluated, we get

 I = d d d d d da yz y z b zx z x c xy x y

bc ca ab

00 00 00

∫∫ ∫∫ ∫∫+ +

Note  On the plane face O′A′CB′ (z = c), the limits for x and y are easily found 

to be 0, a and 0, b. Similarly the limits are found on the faces O′B′AC′ (x = a) and 

O′C′BA′ (y = b).]

Now I =

( )

a
b c

b
c a

c
a b

abc
ab bc ca

2 2 2 2 2 2

2 2 2 2 2 2

4

⋅ + ⋅ ⋅ + ⋅ ⋅

= + +

Example 4.9 Evaluate ( )dy z S

S

+ −∫∫ 2 2 , where S is the part of the plane 2x +

3y + 6z = 12, that lies in the positive octant (Fig. 4.45).

B

A

x

z

C

O y

Fig. 4.45

Rewriting the equation of the (plane) surface S in the intercept form, we get
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x y z

6 4 2
1+ + =

∴ S is the plane that cuts off intercepts of lengths 6, 4 and 2 on the x, y and z-axes 

respectively and lies in the positive octant.

We note that the projection of the given plane surface S on the xoy-plane is the 

triangular region OAB shown in the two-dimensional Fig. 4.46.

B
y

4

6
O A

2x + 3y = 12

x

Fig. 4.46

Converting the given surface integral I as a double integral,

I ( ) d d= + −
+ +

∫∫ y z x y

OAB

x y z

z

2 2

2 2 2

∆

φ φ φ

φ
,

where φ  = c is the equation of the given surface S.

Here φ  = 2x + 3y + 6z

∴ φ
x
 = 2; φ

y
 = 3; φ

z
 = 6.

∴ I ( ) d d= + −
+ +

∫∫ y z x y

OAB

2 2
4 9 36

6
∆

 

 = + −∫∫
7

6
2 2( )d dy z x y

OAB∆

 (1)

Now the integrand is expressed as a function of x and y, by using the value of 

z (as a function of x and y) got from the equation of S, i.e. from the equation 2x + 

3y + 6z = 12

Thus  z x y= − −
1

6
12 2 3( )  (2)

Using (2) in (1), we get

 
I ( )d d= −∫∫

7

6

1

3
6 2x x y

OAB∆
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= −

= −






 =

−

∫∫

∫

7

18
6 2

7

18
9

9

4

28

3

0

6
3

2

0

4

2

0

4

( )d d

d

x x y

y y y

y

Example 4.10 Evaluate z d S

S

3∫∫ , where S is the positive octant of the surface 

of the sphere x2 + y2 + z2 = a2 (Fig. 4.47)

O

C

z

A

B

x

y

Fig. 4.47

The projection of the given surface of the sphere x2 + y2 + z2 = a2 (lying in the 

positive octant) in the xoy - plane is the quadrant of the circular region OAB, shown 

in the two-dimensional Fig. 4.48.

a2 – x2, y

x2 + y2 = a2

x
A

y

B

(0, y)

O

Fig. 4.48

Converting the given surface integral I as a double integral.

I d d=
+ +

∫∫ z x y

OAB

x y z

z

3

2 2 2φ φ φ

φ
,

where φ  ≡ x2 + y2 + z2 = a2 is the equation of the given spherical surface.

φ
x
 = 2x; φ

y
 = 2y; φ

z
 = 2z.

∴  I
( )

d d

d d

=
+ +

= + +

∫∫

∫∫

z
x y z

z
x y

z x y z x y

OAB

OAB

3

2 2 2

2 2 2 2

4

2
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 = − −∫∫a a x y x y

OAB

( )d d2 2 2
 [

∴
 (x, y, z) lies on x2 + y2 + z2 = a2]

 = − −

= − −












−

=

=

∫∫

∫

a a y x x y

a a y x
x

a ya

a

x

x a

( )d d

( )

2 2 2

00

2 2
3

0 0

2 2

2

3

−−

= −∫

y

a

y

a a y y

2

2

3

2 2

3

2

0

d

( ) d

 = ∫
2

3

5 4

0

2

a cos dθ θ

π /

, on putting x = a sin θ.

 = ⋅ ⋅ ⋅

= ⋅

2

3

3

4

1

2 2

8

5

5

a

a

π

π

Example 4.11 Evaluate y z x S

S

( )d+∫∫ , where S is the curved surface of the

cylinder x2 + y2 = 16, that lies in the positive octant and that is included between the 

planes z = 0 and z = 5 (Fig. 4.49).

y

x

z

C E

B

D

O

A

Fig. 4.49

We note that the projection of S on the xoy-plane is 

not a plane (region) surface, but only the arc AB of the 

circle whose centre is O and radius equal to 4.

For converting the given surface integral into a 

double integral, the projection of S must be a plane 

region. Hence we project S on the zox-plane (or yoz- 

plane). The projection of S in this case is the rectangular 

region OCDA, which is shown in Fig. 4.50.

x

z

C

O A

D

5

4

Fig. 4.50
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Converting the given surface integral I as a double integral,

 I = ( ) d dy
y

z x

OADC

x y z
z + x∫∫

+ +φ φ φ

φ

2 2 2

,

where φ  ≡ x2 + y2 = 16 is the equation of the given cylindrical surface. φx
 = 2x; φ 

y
 = 

2y; φz
 = 0.

∴  I ( )
( )

d d

2 2

= ∫∫ y
y

z x

OADC

z + x
x + y4

2

 = ∫∫4 ( ) d dz + x

OADC

z x  [
∴

 (x, y, z) lies on x2 + y2 = 16]

 =

= +

=

=

∫∫

∫

4

4 8

8 4

360

0

4

0

5

0

5

0

5

( ) d d

(4 ) d

( + )2

z + x

z z

z z

.

x z .

Example 4.12 Evaluate xyz x y z

V

d d d∫∫∫ , where V is the region of space inside the 

tetrahedron bounded by the planes x = 0, y = 0, z = 0 and 
x

a

y

b

z

c
+ + =1.

Vide worked Example 4.11 in the section on ‘Double and triple integrals’ for 

fixing the limits of the volume integral.

 I d d d= xyz z y x

c
x

a

y

b
b

x

aa

0

1

0

1

0

− −






−









∫∫∫

 =










−






 − −









∫ xy
z

b
x

a c
x

a

y

b

0

1
2

0

1

2
00

a

y x∫ d d

 = −








∫∫

c
xy t

y

b
y x

bta2 2

00
2

d d , where t
x

a
= −1

 = − +








∫

c
x t

y t

b

y

b

y
x

a bt
2

2
2 3

2

4

0 0
2 2

2

3

1

4
d

 = − +








∫

c
b xt x

a2

0

2 4

2

1

2

2

3

1

4
d
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= −










= − −
















∫
b c

x
x

a
x

b c
a

x

a

a2 2 4

0

2 2

24
1

24
1 1

d





 ⋅ −










=
−









−
+

−

∫
0

4

2 2

5

1

24

1

5

1

a
x

a
x

ab c

x

a

a

x

a

d

































= −










6

0

2 2 2

6

24

1

5

1

6

a

a b c

a



= ⋅
1

720

2 2 2a b c

Example 4.13  Express the volume of the sphere x2 + y2 + z2 = a2 as a volume integral 

and hence evaluate it. [Refer to Fig. 4.51]

y

x

z

O

Fig. 4.51

Required volume = 2 × volume of the hemisphere above the xoy-plane. Vide worked 

Example 4.12 in the section on ‘Double and Triple Integrals’.

Required volume =
− −

− −

−

−
∫∫∫2
0

2 2 2

2 2

2 2

d d dz y x

a x y

a x

a x

a

a

 

= − −
− −

−

−
∫∫2 2 2

2 2

2 2

( ) d d2a x y x

a x

a x

a

a

y

Taking a2 − x2 = b2, when integration with respect to y is performed,

 V b y y x

b

b

a

a

= −
−−
∫∫2 2 2 d d
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= −∫∫
−

4 2 2

0

b y y x

b

a

a

d d

 
[ is an even function of ]∵ b y2 2− y

 = − +










= −

=

−

−

−

∫

∫

4
2 2

2

2 2
2

1

0

2

y
b y

b y

b
x

x x

b

a

a

a

a

sin d

( ) d2π

π

a

aa x
x

a

a

2
3

0

3

3

4

3

−










= π

Example 4.14 Evaluate ( )d d dx y z x y z

V

+ +∫∫∫ , where V is the region of space

inside the cylinder x2 + y2 = a2 that is bounded by the planes z = 0 and z = h [Refer 

to Fig. 4.52].

y

z

Q

P

x

(x, y, 0)

(x, y, h)

Fig. 4.52

Note  The equation x2 + y2 = a2 (in three dimensions) represents the right circular 

cylinder whose axis is the z-axis and base circle is the one with centre at the origin 

and radius equal to a.

 I ( ) d d d

( ) d d

= + +

= +












∫∫∫
− −

−

−

x

x + y h

y z z y x

h
y

h

a x

a x

a

a

0

2

2 2

2 2

2
xx

h x
h

y x

a x

a x

a

a

a x

a

a

− −

−

−

−

−

∫∫

∫∫= ⋅ +










2 2

2 2

2 2

2
2

0

d d

[by using properties of odd and even functions]
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= +






 −

−
∫2

2

2 2h x
h

a x x

a

a

d

 = −∫2 2 2 2

0

h a x x

a

d   [ is odd and is even ]∵ x a x a x2 2 2 2− −

 = − +










=

−2
2 2

2

2 2 2
2

1

0

2 2

h
x

a x
a x

a

a h

a

sin

π

EXERCiSE 4(c)

Part A

(Short Answer Questions)

1. Define a line integral.
2. What is the difference between a definite integral and a line integral?
3. Define a surface integral.
4. What is the difference between a double integral and a surface integral?
5. Define a volume integral.
6. What is the difference between a triple integral and a volume integral?
7. Write down the formula that converts a surface integral into a double integral.

8. Evaluate ( d d )x y y x

C

2 2+∫  where C is the path y = x from (0, 0) to (1, 1).

9. Evaluate ( ) dx y s

C

2 2+∫ , where C is the path y = −x from (0, 0) to (−1, 1).

10. Evaluate ( d d )x y y x

C

−∫ , where C is the circle x2 + y2 = 1 from (1, 0) to

(0, 1) in the counterclockwise sense.

11. Evaluate dS

S

∫∫ , where S is the surface of the parallelopiped formed by

x = ± 1, y = ± 2, z = ± 3.

[Hint: dS

S

∫∫ gives the area of the surface S]

12. Evaluate dS

S

∫∫ , where S is the surface of the sphere x2 + y2 + z2 = a2.

13. Evaluate dS

S

∫∫ , where S is the curved surface of the right circular cylinder

x2 + y2 = a2, included between z = 0 and z = h.

14. Evaluate dV

V

∫∫∫ , where V is the region of space bounded by the planes

x = 0, x = a, y = 0, y = 2b, z = 0 and z = 3c.
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[Hint: dV

V

∫∫∫ gives the volume of the region V]

15. Evaluate dV

V

∫∫∫ , where V is the region of space bounded by x2 + y2 +

z2 = 1.

16. Evaluate dV

V

∫∫∫ , where V is the region of space bounded by x2 + y2 = a2,

z = −h, z = h.

Part B

17. Evaluate [ d ( )d ]

(0, )

(1,3)

x y x x y y2

0

2 2∫ + −  along the (i) curve y = 3x2, (ii) line y = 3x.

18. Evaluate [( + ) d (2 ) d ]

C

x y x x x y y y∫ − − +2 2  from (0, 0) to (1, 1), when C is

(i) y2 = x, (ii) y = x.

19. Evaluate ( d d )

(- , )

( , )

y x x y

a

a

2 2

0

0

−∫  along the upper half of the circle x2 + y2 = a2.

20. Evaluate ( d d )

C

x y y x∫ − , where C is the ellipse 
x

a

y

b

2

2

2

2
1+ =  and described

in the anticlockwise sense.

21. Evaluate [( ) d d ]x y x xy y

C

2 2 2− +∫ , where C is the boundary of the rectangle

formed by the lines x = 0, x = 2, y = 0, y = 1 and described in the anticlockwise 

sense.

22. Evaluate [( ) d ( )d ]3 8 4 62 2x y x y xy y

C

− + −∫ , where C is the boundary of the

region enclosed by y2 = x and x2 = y and described in the anticlockwise sense.

23. Evaluate ( ) dx y s

C

−∫ 2 , where C is the arc of the circle x = a cos θ, y = a

sin θ ; 0
2

≤ ≤θ
π

.

24. Evaluate x s

C

d∫ , where C is the arc of the parabola x2 = 2y from (0, 0 ) to 

1
1

2
,






 .

25. Evaluate [ d ( ) d ( )d ]xy x x z y y x z

C

+ + + +∫ 2 2  from (0, 0, 0) to (1, 1, 1) along

the curve C given by y = x2 and z = x3.

26. Evaluate [ (3 )d d d ]x y x yz y xz z

C

2 26 14 20+ − +∫ , where C is the segment of 

the straight line joining (0, 0, 0) and (1, 1, 1).
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27. Evaluate [ d ( ) d d ]3 22x x xy y y z z

C

∫ + − −  from t = 0 to t = 1 along the curve

C given by x = 2t2, y = t, z = 4t3.

28. Evaluate xy sd∫  along the arc of the curve given by the equations x = a tan

θ, y = a cot θ, z a= 2 log tan θ from the point θ
π

=
4

 to the point 

θ
π

=
3

.

29. Evaluate ( )dxy z s

C

+∫ 2 , where C is the arc of the helix x = cos t, y = sin t,

z = t from (1, 0, 0) to (−1, 0, π ).

30. Find the area of that part of the plane 
x

a

y

b

z

c
+ + =1  that lies in the

positive octant.  H s

S

int: Area of the surface = d∫∫
















31. Evaluate z S

S

d∫∫ , where S is the positive octant of the surface of the sphere

x2 + y2 + z2 = a2.

32. Evaluate xy Sd∫∫ , where S is the curved surface of the cylinder x2 + y2 =

a2, 0 ≤ z ≤ k, included in the positive octant.

33. Find the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 0, 

x

a

y

b

z

c
+ + =1 .

34. Evaluate z x y z

V

d d d∫∫∫ , where V is the region of space bounded by the

sphere x2 + y2 + z2 = a2 above the xoy-plane.

35. Evaluate ( ) d d dx y x y z

V

2 2+∫∫∫ , where V is the region of space inside the

cylinder x2 + y2 = a2 that is bounded by the planes z = 0 and z = h.

4.9 GAMMA AnD BEtA FUnCtiOnS

Definitions  The definite integral e x xx n− −
∞

∫ 1

0

d  exists only when n > 0 and when it

exists, it is a function of n and called Gamma function and denoted by Γ(n) [read as 

“Gamma n”].

Thus Γ( ) dn e x xx n= − −
∞

∫ 1

0

The definite integral x x xm n− −−∫ 1

0

1

1( ) d1 exists only when m > 0 and n > 0 and

when it exists, it is a function of m and n and called Beta function and denoted by β 

(m, n) [read as “Beta m, n”].

Thus β ( , ) ( ) d :1m n x x xm n= −− −∫ 1

0

1

1
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Note  Γ( ) = d ( )1 10

0

e x ex x− − ∞
∞

= − =∫ .

 β( , ) = d = 11 1

0

1

x∫ .

4.9.1 Recurrence Formula for Gamma Function

 Γ( ) = dn e x xx n− −
∞

∫ 1

0

 =− + −− − ∞ − −
∞

∫( ) ( ) dx e n e x xn x x n1

0

2

0

1  [integrating by parts]

 = − −









=

→∞

−

( ) ( ), since limn n
x

en

n

x
1 1 0

1

Γ

This recurrence formula Γ(n) = (n − l) Γ (n − 1) is valid only when n > 1, as Γ(n − 1) 
exists only when n > 1.

Cor.

Γ(n + 1) = n !, where n is a positive integer.

 Γ(n + l) = n Γ(n)

 = n (n − l) Γ(n − l)
 = n (n − l) (n − 2) Γ (n − 2)
 = . . . . . . . . . . . . . . . . . . . . .

 = n (n − l) (n − 2) ... 3.2.1 Γ(l)

 = n ! (

∴

 Γ(l) = 1)

Note  1. Γ(n) does not exist (i.e. = ∞), when n is 0 or a negative integer.

2. When n is a negative fraction, Γ(n) is defined by using the recurrence 
formula. i.e. when n < 0, but not an integer,

Γ Γ( ) ( )n
n

n= +
1

1

For example,Γ Γ

Γ

( )
( )

( )

( ) ( )
( )

1

( ) ( ) (

− =
−

−

=
−

⋅
−

−

=

3 5
1

3 5
2 5

1

3 5

1

2 5
1 5

3 5 2 5

.
.

.

. .
.

. . −−
−

=

1 5
5

0 5

3 5 2 5 1 5 0 5

.
.

.

. . . .

)
( )

( )

( ) ( ) ( ) ( )

Γ

Γ

The value of Γ(0.5) can be obtained from the table of Gamma functions, though its 

value can be found out mathematically as given below.

Value of Γ
1

2
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By definition, Γ
1

2

1

2

0






=

− −
∞

∫ e t tt d

 = ⋅ ⋅−
∞

∫ e
x

x xx2 1
2

0

d  (on putting t = x2)

 = −
∞

∫2
2

0

e xx d

Now Γ
1

2
2 2

2

00

2 2














 = ⋅− −

∞∞

∫∫ e x e yx yd d  [

∴

 the variable in a definite integral

 is only a dummy variable]

 = − +
∞∞

∫∫4
2 2

00

e x yx y( ) d d  (1)

[
∴

 the product of two definite integrals can be expressed as a double integral, when
the limits are constants].

Now the region of the double integral in (1) is given by 0 ≤ x < ∞ and 0 ≤ y < ∞, 
i.e. the entire first quadrant of the xy-plane.

Let us change over to polar co-ordinates through the transformations

x = r cos θ and y = r sin θ.

Then dx dy = |J| d r d θ = r d r d θ

The region of the double integration is now given by 0 ≤ r < ∞ and 0
2

≤ ≤θ
π .

Then, from (1), we have

 Γ
1

2
4

4
1

2

2

00

2

2

















=

= −

−
∞

−

∫∫ e r r

e

r

r

d d

d

/2

θ

θ

π









=

=

∞

∫

∫

00

0

2

π

π

θ

π

/2

/2

d

∴  Γ
1

2






= π

4.9.2 Symmetry of Beta Function

β (m, n) = β (n, m)

By definition, β ( ) = ( ) d1m n x x xm n, − −−∫ 1

0

1

1  (1)

Using the property f x x f a x x

aa

( ) d ( ) d= −∫∫
00

 in (1),
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β

β

( , ) ( ) { ( )

( )

( , ).

m n x x x

x x x

n m

m n

n m

= − − −

= −

=

− −

− −

∫

∫

1 1 1

1

1 1

0

1

1

0

1

1

d

d

4.9.3 trigonometric Form of Beta Function

By definition, β ( , ) ( )m n x x xm n= −− −∫ 1

0

1

11 d

Put x = sin2 θ ∴ dx = 2 sin θ cos θ dθ

The limits for θ are 0 and 
π

2
.

∴ β θ θ θ θ θ

θ

π

( , ) sin cos sin cos

sin cos

/

m n m n

m n

= ⋅ ⋅

= ⋅

− −

− −

∫ 2 2 2 2

0

2

2 1 2

2

2

d

11

0

2

θ θ

π

d

/

∫

Note  sin cos ( , )

/

2 1 2 1

0

2
1

2

m n m n− −⋅ =∫ θ θ θ β

π

d

The first argument of the Beta function is obtained by adding 1 to the exponent of 
sin θ and dividing the sum by 2. The second argument is obtained by adding 1 to the 

exponent of cos θ and dividing the sum by 2.

Thus sin cos ,

/

p q p q
θ θ θ β

π

d =
+ +






∫

1

2

1

2

1

2
0

2

4.9.4 Relation Between Gamma and Beta Functions

β ( , )
( ) ( )

( )
m n

m n

m n
=

+
Γ Γ
Γ

Consider Γ Γ( ) ( )m n e t t e s st m s n= ⋅ ⋅− −
∞

− −
∞

∫ ∫1

0

1

0

d d

In the first integral, put t = x2 and in the second, put s = y2.

∴ Γ Γ( ) ( )m n e x x e y yx m y n⋅ = ⋅− − − −
∞∞

∫∫2 2
2 22 1 2 1

00

d d
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= ⋅

= ⋅

− + − −
∞∞

− −

∫∫4

4

2 2

2

2 1 2 1

00

2 1 2

e x y x y

e r r

x y m n

r m

( )

( cos ) ( sin )

d d

θ θ nn r r−
∞

∫∫ 1

00

2

d dθ

π /

[changing over to polar co-ordinates]

 = ⋅ ⋅

=

− − − + −
∞

−

∫∫4 2 1 2 1 2 2 2

00

2

2

2

2

cos sin

( , )

/

m n r m n

r

e r r r

m n e r

θ θ θ

β

π

d d

(( )m n r r+ −
∞

⋅∫ 1

0

2 d

 = ⋅ ⋅− + −
∞

∫β ( , )m n e u uu m n 1

0

d  [putting r2 = u]

 = ⋅β ( , ) ( , )m n m nΓ

∴ β ( , )
( ) ( )

( )
m n

m n

m n
=

+
⋅

Γ Γ
Γ

Cor.

Putting m n= =
1

2
 in the above relation, β

1

2

1

2

2

1

2

,
( )







=

1
















Γ

Γ

∴  Γ
1

2

1

2

1

2

2

2

0

















=









= ⋅

β

θ θ

,

sin cos0 ddθ

π

π

0

2/

∫
=

∴ Γ
1

2






= π

WORKED EXAMPLE 4(d)

Example 4.1 Prove that e x x
n

a

ax n

n

− −
∞

=∫ 1

0

d
Γ ( ), where a and n are positive.

Hence find the value of x
x

xq

p

−
−

∫



















1

0

1 1

1
log d .

In e x xax n− −
∞

∫ 1

0

d , put ax = t, so that d
d

x
t

a
=
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∴ e x x e
t

a

t

a

ax n t

n

− − −
−∞∞

=





 ⋅∫∫ 1

1

00

d
d

 

=

=

− −
∞

∫
1

1

1

0
a

e t t

a
n

n

t n

n

d

( )Γ  (1)

In I log d=







−
−

∫ x
x

xq

p

1

1

0

1
1

,

put 
1

x
ey=

i.e. x = e−y

Then dx = − e−y dy

Also the limits for y are ∞ and 0.

∴  I ( )d( )= ⋅ ⋅ −− − − −

∞
∫ e y e yq y p y1 1

0

 

=

= ⋅

− −
∞

∫ e y y

q
p

qy p

p

1

0

1

d

( ) [by (1)]Γ .

Example 4.2 Prove that β ( ) =
( )

d
 

m n
x

x
x

m

m n
,

−

+

∞

+∫
1

0
1

.

Hence deduce thatβ ( ) =
( )

d
 

m n
x x

x
x

m n

m n
,

− −

+

+
+∫

1 1

0

1

1
.

By definition, β ( ) = ( ) d1m n t t tm n, − −−∫ 1

0

1

1  (1)

In (1), put t
x

x
=
+1

. Then d
( )

dt
x

x=
+
1

1 2

When t = 0, x = 0; when t = 1, x = ∞  ∵x
t

t
=
−









1Then (1) becomes,

 β ( , ) =
( )

dm n
x

x x x

m n

1

1

1

1

1
0

1 1

2+











⋅
+










⋅
+

∞ − −

∫ xx

 =
( )

d
x

x
x

m

m n

−

+

∞

+∫
1

0
1

 (2)

 =
( )

d
( )

d
x

x
x

x

x

m

m n

m

m n

−

+

−

+

∞

+
+

+∫ ∫
1

0

1 1

1
1 1

 (3)
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In 
x

x
x

m

m n

−

+

∞

+∫
1

1
1( )

d , put x
y

=
1

. Then d dx
y

y=−
1

2

When x = 1, y = 1; when x = ∞, y = 0

∴ 
x

x
x

y

y

y

m

m n

m

m n

−

+

∞ −

++
=

+










⋅ −








∫

1

1

1

21

1

1
1

1

( )

( )

d ∫ dy

1

0

 

=
+ ⋅

=
+

=
+

+

+ +

−

+

−

+

∫

∫

y

y y
y

y

y
y

x

x
x

m n

m n m

n

m n

n

m n

( )

( )

( )

1

1

1

1

0

1

1

0

1

1

0

1

d

d

d∫∫

 [changing the dummy variable] (4)

Using (4) in (3), we have

 

β( , )
( )

m n
x x

x
x

m n

m n
=

+
+

− −

+∫
1 1

0

1

1
d .

Example 4.3 Evaluate x x xm n p

0

1

1∫ −( ) d  in terms of Gamma functions and

hence find dx

xn10

1

−
∫ .

In I d= −∫ x x xm n p( )1

0

1

,

put xn = t;

then nxn−1 dx = dt

∴ d
d

x
n

t

t n

= ⋅
−

1

1
1

When x = 0, t = 0; when x = 1, t = 1.

 I d

d

= − ⋅ ⋅

= ⋅ −

=
+

+

−

+
−

∫

∫

t t
n

t t

n
t t t

n

m

n
p

m

n p n

m

n p

( )

( )

,

1
1

1
1

1 1

1
1

0

1

1
1

0

1

β 11










4.66 Engineering Mathematics I

 =

+





⋅ +

+
+ +









1

1
1

1
1

n

m

n
p

m

n
p

Γ Γ

Γ

( )

 (1)

 
d

d
x

x
x x x

n

n

1
10

1

2

0

1

0

1

−
= −

−

∫∫ ( )

Here m = 0, n = n, p=−
1

2
.

Using (1); we have

 
dx

x n

n

n

n1

1

1 1

2

1 1

2
0

1

−
=






⋅







+








∫
Γ Γ

Γ

 

= ⋅








+








π

n

n

n

Γ

Γ

1

1 1

2

Example 4.4 Prove that β
π

( , )
( )

.n n
n

nn

=
+









−

Γ

Γ2
1

2

2 1

(or) β β( , ) ,n n n
n

= ⋅






−

1

2

1

22 1

  β θ θ θ

π

( , ) sin cos

/

n n n n= ⋅

=

− −∫2

2

2 1

0

2

2 1 d [using trigonometric form]

ssin cos

sin

/

/

θ θ θ

θ
θ

π

π

( )

=








=

−

−

−

∫

∫

2 1

0

2

0

2 2 1

2 2

2
2

2

1

2

n

n

n

d

d

ssin

/

2 1

0

2

2 2

2 1

0

2

1

2 2

n

n

n

−

−
−

∫

∫=

π

π

θ θ

φ
φ

θ φ

d

sin
d

, putting 2 =
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= =











−

−∫ ∫ ∫
1

2
2

2 2

2 1

0

2

0 0

2

n

n f fsin (sin ) (sin )

/ /π π π

φ φ φ φ φ φd d d 



= ⋅








=








=

−

−

−

1

2

1

2

1

2

1

2

1

2

1

2

2 2

2 1

2 1

n

n

n

n

n

β

β

,

,

⋅⋅
⋅







+








=
⋅

⋅ +




−

Γ Γ

Γ

Γ

Γ

( )

( )

n

n

n

nn

1

2

1

2

2
1

2

2 1

π





Example 4.5 Show that x e x
a

nn a x

n

−
∞

+∫ =
+








2 2

0

1

1

2

1

2
d Γ .

Deduce that e x
a

a x−
∞

∫ =
2 2

0
2

d
π . Hence show that

cos ( ) sin ( )x x x x2

0

2

0

1

2 2

∞ ∞

∫ ∫= =d d
π

In I d=
∞

−∫ x e xn a x

0

2 2

, put ax t= ; then d
d

x
t

a t
=

2

When x = 0, t = 0; when x = ∞, t = ∞.

∴ I
d

=










−
∞

∫
t

a
e

t

a t

n

t

0 2

 

= ⋅

=
+








+

−
−

∞

+

∫
1

2

1

2

1

2

1

1

2

0

1

a
t e t

a

n

n

n

t

n

d

Γ   (1)

In (1), put n = 0.

Then  e x
a a

a x−
∞

∫ =







=

2 2

0

1

2

2 2
d

Γ
π

 (2)

In (2), put a
i

a i=
−

=−
1

2

2; then
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∴ =
−

= +

∞

∫ e x
i

i

ix2

0
2

2 2

d
(1 )

(1 )

π

π

Equating the real parts on both sides,

cos ( ) dx x2

0

1

2 2

∞

∫ =
π

.

Equating the imaginary parts on both sides,

sin ( ) dx x2

0

1

2 2

∞

∫ =
π

.

Example 4.6  Evaluate

(i) ( ) ( ) dx a b x xm

a

b
n− −− −∫ 1 1  and

(ii) ( ) ( ) da x a x xm

a

a
n+ ⋅ −−

−

−∫ 1 1  in terms of Beta function.

(i) In I ( ) ( ) d1

1 1= − −− −∫ x a b x xm

a

b
n ,

put x − a = y; then dx = dy

When x = a, y = 0; when x = b, y = b − a

 

∴ = − −{ }

= − −
−








− −
−

− −
−

∫

∫

I ( ) d

( )

1 y b a y y

b a y
y

b a

m n
b a

n m

b a

1 1

0

1 1

0

1 

−n

y

1

d  (1)

In (1), put 
y

b a
t

−
= ; then dy = (b − a) dt

When y = 0, t = 0; when y = b − a, t = 1.

∴ I ( ) (1 ) d

( ) ( , )

1 = − −

= −

+ − − −

+ −

∫b a t t t

b a m n

m n m n

m n

1 1

0

1
1

1 β

(ii) In I ( ) ( ) d2 = + −− −

−
∫ a x a x xm n

a

a

1 1 ,

put a + x = y; then dx = dy

When x = − a, y = 0; when x = a, y = 2a.

∴ I (2 ) d2 = −− −∫ y a y ym n

a

1 1

0

2
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 = −








− −
−

∫(2 ) da y
y

a
yn m

na

1 1

1

0

2

1
2

 (2)

In (2), put 
y

a
t

2
= ; then dy = 2a dt.

When y = 0, t = 0; when y = 2a, t = 1.

∴ I (2 ) ( ) d

(2 ) ( , )

2 = ⋅ −

=

+ − − −

+ −

∫a t t t

a m n

m n m n

m n

1 1

0

1

1

1

1

β

.

Example 4.7 Prove that 
e

x
x x e x

x
x

−∞
−

∞

× =∫ ∫
2

4

0

2

0
4 2

d d
π

.

In I d1

0

2

=
−∞

∫
e

x
x

x

, put x2 = t; then d
d d

x
t

x

t

t
= =

2 2

When x = 0, t = 0; when x = ∞, t = ∞

∴  I
d

d1 1 4

3

4

00
2

1

2

1

2

1

4

= ⋅ = ⋅

=







−
− −

∞∞

∫∫
e

t

t

t
e t t

t
t

/

Γ

In I d2 =
−

∞

∫ x e xx2

0

4

, put x4 = s; then d
d d

x
s

x

s

s
= =

4 43 3 4/

When x = 0, s = 0; when x = ∞, s = ∞.

∴  I
d

d2 = ⋅ =

=







−
∞

− −
∞

∫ ∫s e
s

s
s e ss s

4

1

4

1

4

3

4

3 4

0

1

4

0

/

Γ

∴ 
e

x
x x e x

x
x

−∞ ∞
−∫ ∫× =














2

4

0

2

0

1

8

1

4

3

4
d d Γ Γ  (1)

From Example 4.4;

β β( , ) ,n n n
n

= ⋅






−

1

2

1

2
2 1

i.e. 
Γ Γ
Γ

Γ

Γ

( ) ( )

(2 )

( )n n

n

n

n
n

= ⋅
⋅

+








−

1

2 1

2

2 1

π

∴  Γ Γ
Γ

( )
(2 )

n n
n

n
⋅ +






= −

1

2 22 1

π
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Putting n=
1

4
, we get

 

Γ Γ
Γ

1

4

3

4

1

2

2

2

1

2






⋅





=

⋅







=

−

π

π  (2)

Using (2) in (1);

e

x
x x e x

x
x

−∞
−

∞

∫ ∫× = =
2

4

0

2

0

2

8 4 2
d d

π π
.

Example 4.8 Evaluate 
x

x
x

m

n p

−∞

+∫
1

0
1( )

d  and deduce that 
x

x
x

m

n

−∞

+∫
1

0
1

d .

=








π

π
n

m

n
sin

. Hence show that 
dx

x1 2 2
4

0
+

=
∞

∫
π

.

In I
( )

d=
+

−∞

∫
x

x
x

m

n p

1

0
1

, put t
xn

=
+
1

1

Then x
t

t

n =
−1

 ∴    nx x
t

tn− =−1

2

1
d d

When x = 0, t = 1; when x = ∞, t = 0

∴   I
( ) d

( )

( )
=

⋅ −
⋅

⋅ −

−
−








−

−
−

− −∫
t t

t

t

nt t t

m

n

m

n

p n

n

n

1 1

0

1

2

1

1

1

11

1

0

1
11

1

1

n

p
m

n

m

n

n
t t t

n
p

m

n

m

n

= ⋅ −

= −








− − −

∫ ( ) d

,β

 =
−







⋅





1

n

p
m

n

m

n

p

Γ Γ

Γ( )
 (1)

Putting p = 1 in (1), we get

x x

x n

m

n

m

n

m

n

−∞

+
= −













∫

1

0
1

1
1

d
Γ Γ

 =








π π

n

m

n
cosec  H int : Use ( ) (1 )

sin
Γ Γα α

π

απ
− =













 (2)
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Taking m = 1 and n = 4 in (2), we get

d
cosec

x

x1 4 4

2 2

4

0
+

= ⋅







=

∞

∫
π π

π

Example 4.9 Find the value of x y x ym n− −∫∫ 1 1 d d , over the positive quadrant of

the ellipse 
x

a

y

b

2

2

2

2
1+ = , in terms of Gamma functions.

Put 
x

a
X=  and 

y

b
Y=

Then d dx
a

X
X=

2
 and d dy

b

Y
Y=

2
.

The region of double integration in the xy-plane is given by x ≥ 0, y ≥ 0 and

x

a

y

b

2

2

2

2
1+ ≤ , shown in Fig. 4.53.

∴  The region of integration in the XY-plane is given by X ≥ 0, Y ≥ 0 and X + Y ≤ 1,
shown in Fig. 4.54.

The given integral

I d d

d d

= ( ) ⋅( )

=

− −

− −

∫∫

∫∫

a X b Y
ab

X Y
X Y

a b
X Y X Y

m n

ABO

m n m n

ABO

1 1

2
1

2
1

4

4

∆

∆

==
− −

−

∫∫
a b

X Y X Y
m n m nY

4
2

1
2

1

0

1

0

1

d d

I d

d

= ⋅ ( )

= ⋅ −( )

=

− −

−

∫

∫

a b
Y

m
X Y

a b

m
Y Y Y

a b

m n n

m Y

m n n

m

m

4

2

2
1

2
1

2

0

1

0

1

2
1

2

0

1

nn

m n

m

n m

a b

m

n m

2 2 2
1

2

2 2
1

β ⋅ +








= ⋅






⋅ +








,

Γ Γ 

+ +






Γ

m n

2 2
1

x

y

O

Fig. 4.53

AO

B
Y

X

X + Y = 1

Fig. 4.54
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= ⋅






⋅







+ +








=

a b

m

m m n

m n

a

m n

m

2

2 2 2

2 2
1

Γ Γ

Γ

bb

m n

m n

n

4

2 2

2
1

⋅






⋅







+
+









Γ Γ

Γ

Example 4.10 Find the area of the astroid x 2/3 + y 2/3 = a 2/3, using Gamma func-

tions.

By symmetry of the astroid, required area A =

4 × area of OACB x y

OACB

= ∫∫4 d d

Put 
x

a
X






 =

2 3

 and 
y

a
Y






 =

2 3

i.e. x = aX 3/2 and y = aY 3/2

∴ dx aX=
3

2

1 2  and d dy aY Y=
3

2

1 2

The region of integration in the xy-plane is

given by x ≥ 0, y ≥ 0 and x

a

y

a






 +






 ≤

2 3 2 3

1 , as shown in Fig. 4.55.

∴ The region of integration in the XY-plane is given by X ≥ 0, Y ≥ 0 and X + Y ≤ 1 
as shown in Fig. 4.56.

∴  A a X Y X Y

a X Y X Y

a Y X

PQO

Y

= ×

= ⋅

=

∫∫

∫∫
−

4
9

4

9

9
2

3

2 1 2 1 2

2 1 2 1 2

0

1

0

1

2 1 2 3

d d

d d

∆

22

0

1

0

1

2 1 2 3 2

0

1

2

6 1

6
3

2

5

2









= −

= ×







−

∫

∫

Y

Y

a Y Y Y

a

d

( ) d

,β 

= ×














6

3

2

5

2

4
2a

Γ Γ

Γ ( )

C

O A

B

y

x

Fig. 4.55

O

Q

P
X

Y

Fig. 4.56
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 = ×





 × × ×






a2 1

2

1

2

3

2

1

2

1

2
Γ Γ  [

∴

 Γ(4) = 3!]

 =
3

8

2πa  ∵Γ
1

2






=











π

Example 4.11 Evaluate [ ( )] d dxy x y x y1 1 2− −∫∫ , over the area enclosed by the

lines x = 0, y = 0 and x + y = 1 in the positive quadrant.

Given Intergral I ( ) d d

d ( ) d

= − −

= −

−

∫∫

∫ ∫

x y x y y x

x x y a y y

x

a

1 2 1 2 1 2

0

1

0

1

1 2

0

1

1 2 1 2

0

1 ,

where a = 1 − x. (1)

Consider y a y ym n

a

− −−∫ 1 1

0

( ) d

 

= −








= −

− −
−

− − − −

∫

∫

a y
y

a
y

a a z z a z

n m

na

n m m n

1 1

1

0

1 1 1 1

0

1

1

1

d

( ) d   putting
y

a
z=









 = ⋅+ −a m nm n 1 β ( , )  (2)

Note  This result (2) will be of use in the following worked examples also.

Using (2) in (1) note that m n= =












3

2
,

 
I ( ) , d

, ,

= −








=






×





∫ x x x1 2 2

0

1

1
3

2

3

2

3

2

3

2

3

2
3

β

β β 




=






⋅






×






⋅Γ Γ

Γ

Γ Γ
3

2

3

2

3

3

2
3

( )

( ))

Γ

Γ

Γ

9

2

1

2

1

2

3

2

7

2

5

2

3

2

3

2








=
× ×








× × ×







π π



=
2

105

π

O x

y

Fig. 4.57
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Example 4.12 Show that the volume of the region of space bounded by the

coordinate planes and the surface x

a

y

b

z

c

abc
+ + =1

90
is .

Required volume is given by

Vol d d d= ∫∫∫ z y x

V

, where V is the region of space given.

Put 
x

a
X

y

b
Y

z

c
Z= = =, ,

i.e. x = aX2, y = bY2, z = cZ2

∴ dx = 2aX dX, dy = 2bY dY, dz = 2cZ dZ

∴ Vol d d d= ∫∫∫ 8abc XYZ Z Y X

V '

, where V′ is the region of space in XYZ-space

defined by X ≥ 0, Y ≥ 0, Z ≥ 0, X + Y + Z ≤ 1 [Refer to Fig. 4.58]

∴  Vol d d d

d d

=

=





∫ ∫ ∫

∫ ∫

− − −

−

8

8
2

0

1

0

1

0

1

0

1

0

1 2

abc X Y XYZ Z

abc X X Y Y
Z

X X Y

X








= ⋅ − −

− −

−

∫ ∫

0

1

0

1

2

0

1

4 1

X Y

X

abc X X Y X Y Yd ( ) d

 = − ⋅∫4 1 34

0

1

abc X X X( ) (2, ) dβ  [by step (2) of Example (4.11)]

 = ⋅ ⋅

= ×
×

×

= ×
×

4
2 3

5
2 5

4
1 2

24

2 5

7

3

1 2

abc

abc

abc

Γ Γ
Γ

Γ Γ
Γ

( ) ( )

( )
( , )

( ) ( )

( )

β

44

720

90
=

abc

Example 4.13 Evaluate 
d d dx y z

x y z1 2 2 2− − −
∫∫∫ , taken over the region of space

in the positive octant bounded by the sphere x2 + y2 + z2 = 1.

Put x2 = X, y2 = Y, z2 = Z

Y

X

Z

Fig. 4.58
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∴ d
d

, d
d

, d
d

x
X

X
y

Y

Y
z

Z

Z
= = =

2 2 2

The region of integration in xyz-space is defined by x ≥ 0, y ≥ 0, z ≥ 0 and x2 + y2 + 

z2 ≤ 1.
∴ The region of integration V in the XYZ-space is defined by X ≥ 0, Y ≥ 0, Z ≥ 0 and 
X + Y + Z ≤ 1.

∴Given integral I ( ) d d d

d d

-

= − − − ⋅ ⋅

=

− − −

− −

∫∫∫

∫

1

8
1

1

8

1

2

1

2

1

2

1

2

1

2

0

1 1

2

X Y Z X Y Z X Y Z

X X Y Y

V

00

1 1

2

1

2

0

1

1

2

0

1 1

2

1

2

1

1

8
1

−
−

− −

− −

∫ ∫

∫

− − −

= − −

X X Y

Z X Y Z Z

X X Y Y X Y

( ) d

d d ( )

-

++ −
−

⋅






∫

1

2
1

0

1
1

2

1

2
β ,

X

[by step (2) of Example (4.11)]

 =










−
−

∫
π

8
2

1

2

1

2

0

1

0

1

X X Y

X

d   ∵β π
1

2

1

2
,







=











 = −

=








= ⋅








−

∫
π

π
β

π

4
1

4

1

2

3

2

4

1

2

1

2

0

1

X X X( )  d

,

1/2

Γ Γ
33

2

2

8

2








=

Γ( )

π

.

Example 4.14 Evaluate a b c b c x c a y a b z x y z

V

2 2 2 2 2 2 2 2 2 2 2 2− − −∫∫∫ d d d ,

where V is the region defind by x ≥ 0, y ≥ 0, z ≥ 0 and 
x

a

y

b

z

c

2

2

2

2

2

2
1+ + ≤ .

Put 
x

a
X

y

b
Y

z

c
Z






 =






 =






 =

2 2 2

, ,

i.e. x a X y b Y z c Z= = =, ,

∴ d d , d d , d dx
a

X
X y

b

Y
Y z

c

Z
Z= = =

2 2 2

The region V′ of integration in the XYZ-space is defined by X ≥ 0, Y ≥ 0, Z ≥ 0, X + 

Y + Z ≤ 1.



4.76 Engineering Mathematics I

∴ Integral = − − −

=

∫∫∫

∫ ∫
− −

−

abc X Y Z
abc X Y Z

X Y Z

a b c
X X Y Y Z

V

X

1
8

8

2 2 2 1

2

0

1 1

2

0

1

'

d d d

d d
−−

− −

− − −∫
1

2

1

2

0

1

1( ) dX Y Z Z

X Y

 = − − ⋅








− −
−

∫ ∫
a b c

X X Y Y X Y

X2 2 2 1

2

0

1 1

2

0

1

8
1

1

2

3

2
d d ( ) ,β

[by step 2 of Example (4.11)]

 = ⋅






⋅ − ⋅









−

∫
a b c

X X X
2 2 2 1

2

3

2

0

1

8

1

2

3

2
1

1

2
2β β, d ( ) ,

[by step 2 of Example 4.11]

 

= ⋅






⋅







⋅









a b c2 2 2

8

1

2

3

2

1

2
2

1

2

5

2
β β β, , ,

== ⋅






⋅







⋅






⋅a b c2 2 2

8

1

2

3

2

2

1

2
Γ Γ

Γ

Γ Γ

( )

(22

5

2

1

2

5

2

3

3

2 2 2 2

)

( )Γ

Γ Γ

Γ






⋅






⋅








=
π a b c

22
⋅

Example 4.15 Find the value of x y z x y z x y zl m n p− − − − − −∫∫∫ 1 1 1 1( ) d d d-1 , taken

over the interior of the tetrahedron bounded by x = 0, y = 0, z = 0 and x + y + z = 1, 

in terms of Gamma functions.

Given integral = − − −− −
−

−
− −

∫ ∫ ∫x x y y z x y z zl m

x

n p

x y

1

0

1

1

0

1

1

0

1

1d d ( ) d- 1 ,

 = − − ⋅− − +
−

∫ ∫x x y x y n p yl m n p

x

1

0

1

1

0

1

1d ( ) ( , ) d1- β ,

[by step (2) of Example (4.11)]

 = − +− + + −∫β β( , ) ( ) ( , )dn p x x m n p xl m n p1 1

0

1

1 ,

[by step (2) of Example (4.11)]

 = ⋅ + ⋅ + +

=
+

⋅
+

+

β β β( , ) ( , ) ( , )

( ) ( )

( )

( ) ( )

(

n p m n p l m n p

n p

n p

m n p

m

Γ Γ
Γ

Γ Γ
Γ nn p

l m n p

l m n p

l m n p

l m n p

+
⋅

⋅ + +
+ + +

=
+ + +

)

( ) ( )

( )

( ) ( ) ( ) ( )

( )

Γ Γ
Γ

Γ Γ Γ Γ
Γ
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EXERCiSE 4(d)

Part A

(Short Answer Questions)

1. Prove that x e xx4

0

2 3

8

∞
−∫ =d π .

2. Evaluate x e xx−
∞

∫
3

0

d , given thatΓ
5

3
0 902








= . .

3. Find the value of sin cos d3 5 2

0

2

x x x/

/π

∫ .

4. Find the value of sin cos d5 7

0

2

θ θ θ

π/

∫ .

5. Find the value of tan dθ θ

π

0

2/

∫  in terms of Gamma functions.

6. Prove that cot dθ θ

π

0

2
1

2

1

4

3

4

/

∫ =















Γ Γ .

7. Find the value of sin d
d

sin
θ θ

θ

θ

ππ

× ⋅∫∫
0

2

0

2 //

8. Prove that cos d
d

cos
x x

x

0

2

0

2π π

π

/ /

x
∫ ∫× = .

9. Prove that log d ( )
1

0

1 1

x
x

n




















 =∫
−

Γ n .

10. Find the value of 
x

n
x

n

x
d ( )

0

1

∞

∫ >n .

11. Assuming that 
x

x
x

α π

απ

−∞

+
=∫

1

0
1

d
sin

, prove that Γ Γ( ) (1 ) =
sin

α α
π

απ
⋅ − ,

where α is neither zero nor an integer. [Hint: put x = tan2 θ]

12 Find the value of e xkx−

−∞

∞

∫
2

d .

13. Prove that β

β

( , )

( , )

m n

m n

m

n

+
+

=
1

1
.

14. Prove that β β β( , ) ( , ) ( , )m n

m

m n

n

m n

m n

+ +
=

+
1 1 .
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15. Find the value of 
x

x
m−∞

∫
1

0
( )

d
a + bx m + n

 in terms of a Beta function.

H x
a

b
tint: put =













16. Prove that β(m + 1, n) + β(m, n + 1) = β(m, n).

17. Find the value of (8 ) d3

1

3−
−

∫ x x

0

2

 in terms of Gamma functions.

18. Prove that x x a m nm

a

m n( ) d ( , )a  x n− = ⋅ + +∫ + +

0

1 1 1β .

19. Define Gamma and Beta functions.
20. Derive the recurrence formula for the Gamma function.

21. When n is a positive integer, prove that Γ(n + 1) = n!

22. State the relation between Gamma and Beta functions and use it to find the

value of Γ
1

2










.

Part B

23. Prove that e x y x y
a b

nm n

m n

−
∞

− −
∞

∫∫ =( )2 2

d d ( ) ( )ax + by m

0

2 1 2 1

0

1

4
Γ Γ .

24. When n is a positive integer and m > −1, prove that x xm (log ) dx n =∫
0

1

( 1) !

( )

− n

n + m + 

n

1 1
.

25. Prove that x x
x

a b

m

m n n m

− −−
=∫

1 1

0

1
1( )

( )
d

( , )

( )

n

 +  a + bx

m n

a  + 

β .

H
x

a bx

z

a b
int:Put

+
=

+













26. Express β n n+ +










1

2

1

2
,  in terms of Gamma functions in two different ways 

and hence prove that Γ
Γ
Γ

n
n

+








=

1

2 22

π (2  +1)

(  +1)

n

n
.

27. Prove that x e x
e

x
xx

x
−

∞ −∞

∫ ∫× =
2

2

0 0
2 2

d d
π

.

28. Prove that x e x x e xx x−
∞

−
∞

∫ ∫× =
8 4

0

2

0
16 2

d d
π

.

29. Prove that 
x x

x

x

x

2

4 4
0

1

0

1

1 1 4

d d

−
×

−
=∫∫
π

.
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30. Evaluate (i) 
dx

x1 4

0
+

∞

∫ , (ii) 
x x2

0

d

(1 + )4 2x

∞

∫  and (iii)
x x2

0

d

(1 + )4 3x

∞

∫

[Hint: put x2 = tan2 θ]

31. Find the value of x y x ym n∫∫ d d , taken over the area x ≥ 0, y ≥ 0, x + y ≤ 1 in

terms of Gamma functions, if m, n > 0.

32. Find the value, in terms of Gamma functions, of x y z x y zm n p∫∫∫ d d d  

taken over the volume of the tetrahedron given by x ≥ 0, y ≥ 0, z ≥ 0 and x + 

y + z ≤ 1.

33. Find the area in the first quadrant enclosed by the curve 
x

a

y

b








 +








 =

2 3 2 3

1

/ /

and the co-ordinate axes.

34. Evaluate x y x ym n− − −∫∫ − −1 1 1(1 ) d dx y p  , taken over the area in the first

quadrant enclosed by the lines x = 0, y = 0, x + y = 1.

35. The plane 
x

a

y

b

z

c
+ + =1  meets the axes in A, B and C. Find the volume of the

tatrahedron OABC.

36. Find the volume of the ellipsoid 
x

a

y

b

z

c

2

2

2

2

2

2
1+ + = .

37. Find the volume of the region of the space bounded by the co-ordinate planes

and the surface 
x

a

y

b

z

c

n n n






 +








 +








 =1  and lying in the first octant.

38. Evaluate xyz x y z x y z(1 ) d d d− − −∫∫∫ , taken over the tetrahedral 

volume in the first octant enclosed by the plane x = 0, y = 0, z = 0 and x + y + z = 1.

39. Evaluate x yz x y z2∫∫∫ d d d , taken throughout the volume in the first

octant bounded by x = 0, y = 0, z = 0 and 
x

a

y

b

z

c
+ + =1 .

40. Evaluate xyz x y z∫∫∫ d d d , taken over the space defined by x ≥ 0, y ≥ 0, z ≥ 0

and x

a

y

b

z

c

2

2

2

2

2

2
1+ + ≤ .

AnSWERS

Exercise 4(a)

(1) 4 (2) log a log b (3) 2

(4) 
1

2
 (5) 

π

4
 (6) 

9

2
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(7) 
1

2
 (8) 

Fig. 4.59

y
y = b

y = – b

x = – a

x = a
x

O

(9) 

y

RO

x = 1
y = x

y = 0
x

Fig. 4.60

 (10) 

y

R

y = 0

x = 0

O

x2 + y2 = a2

x

Fig. 4.61

(11) 

y = 0

x = 0

O

= 1

x

x

a b

y
+

Fig. 4.62

 (12) f x y y x

x

( , )

0

1

0

1 −

∫∫ d d  (or) f x y x y

y

( , )

0

1

0

1 −

∫∫ d d

(13) f x y y x

b

a
a x

a

( , )

00

2 2−

∫∫ d d  (or) f x y x y

a

b
b y

b

( , )

00

2 2−

∫∫ d d

(14) f x y x y

y

( , )

00

1

∫∫ d d  (or) f x y y x

x

( , )

1

0

1

∫∫ d d

(15) f x y x y

y

( , )
2

4

1

0

2

∫∫ d d  (or) f x y y x

x

( , )

0

2

0

1

∫∫ d d

(16) 2 log 2 (17) 
a3

6
 (18) 

π

4

(19) 
πa3

6
 (20) 

1

720

(21)
8

3
2

19

9
log −   (22) 1 (23) 

3

2
 

(24) 
π

2

3a  (25) 
1

3
ab a b( )+  (26) 

344

105

(27) 6 (28) 
33

2

(29) 
1

16
8 2 5( log )−  (30) 

1

48
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Exercise 4(b)

(1) f x y x y

y

aa

( , )∫∫ d d

0

 (2) f x y y x

x

( , )

00

1

∫∫ d d

(3) f x y x y

ya

( , )

00

∫∫ d d  (4) f x y y x

x

( , ) .

1

0

1

∫∫ d d

(5) f x y y x

x

( , )

0

1

0

1 −

∫∫ d d  (6) f x y x y

a ya

( , )

00

−

∫∫ d d

(7) f x y x y

y

( , )

0

1

0

1
2−

∫∫ d d  (8) f x y y x

a xa

( , )

00

2 2−

∫∫ d d

(9) f x y x y

y

( , )
2

4

1

0

2

∫∫ d d  (10) f x y y x

x

( , )

/

0

1

0

∫∫
∞

d d

(11) 
πa

4
 (12) 

16

3
 (13) 1

(14) 1 (15) 
1

2
1 2( )e−  (16) 2

(17) 
9

5

3a  (18) 
1

2
2log  (19) 

241

60

(20) 
π

8

4a  (21)  3 (22) 8 log 2

(23) 
π

4
 (24) 

3

8
 (25) 

2

3

(26) 
32

3
 (27) 

16

3

2a  (28) 
16

3
ab

(29) 
π

2

1

3
+  (30) 3π  (31) 

3

2

2πa

(32) a2 2

3

3

2

π
−











 (33) 
a2

2
3 8( )π−  (34) π a2

(35) 
3

4
πa2

 (36) 
π

4
1

2

−( )−e a
 (37) 

π a

4

(38) 
a4

4
1 2log +( )  (39) 

4

3

3a  (40) 
2π

a

(41) 
π

2

2 2a h  (42) 2π  (43) 12π

(44) 16π  (45) 
16

9
3 43a ( )π−  (46) 4π a
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(47) 
π2

8
 (48) 

π

4

4a  (49) 
π

16

4a

(50) 
π

6 2a

Exercise 4(c)

(8) 
2

3
 (9) 1 (10) 

π

2

(11) 88 (12) 4πa2 (13) 2πah

(14) 6 abc (15) 
4

3
π  (16) 2πa2h

(17) − −
69

10

29

4
;  (18) − −

2

3

2

3
;  (19) 

4

3

3a

(20) 2πab (21) 4 (22) 
3

2

(23) a
a2 1

4
−









π
 (24) 

1

3
2 2 1−( ) . (25) 

163

70

(26) 
13

3
 (27) 

13

6
 (28) 

2

3

3a

(29) 
2

3

3π  (30) 
1

2

2 2 2 2 2 2a b b c c a+ +

(31) 
πa3

4
 (32) 

ka3

2
 (33) 

abc

6

(34) 
π

4

4a  (35) 
π

2

4a h

Exercise 4(d)

(2) 0.456 (3) 
8

77
 (4) 

1

120

(5) 
1

2

1

4

3

4
Γ Γ











  (7) π (10) 

1
1

1(log )
( )

n
n

n+ +Γ

(12) 
π

k
 (15) 

1

a b
m n

n m
β ( , )  (17) 

1

3

1

3

2

3
Γ Γ





⋅







(22) π  (30) 
π π π

2 2 8 2

5 2

128
; ;
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(31) Γ Γ Γ( ) ( ) / ( )m n m n+ + + +1 1 3

(32) Γ Γ Γ Γ( ) ( ) ( ) / ( )m n p m n p+ ⋅ + + + + +1 1 1 4

(33) 
3

32

πab
 (34) Γ Γ Γ Γ( ) ( ) ( ) / ( )m n p m n p+ +

(35) 
abc

6
 (36) 

4

3
π abc

(37) abc
n

n
n

Γ Γ
1

3
3

3

2





















  (38) π2/1920

(39) a3b2c2/2520 (40) a2b2c2/48





Differential 
Equations

5.1  EQUATIONS OF THE FIRST ORDER AND HIGHER 

DEGREE

In the lower classes, the students have studied differential equations of the first order 

and first degree, such as variable separable equations and linear equations. Now we shall 

study differential equations of the first order and degree greater than or equal to two.

The general form of the differential equation of the first order and nth degree is

 d

d

d

d

d

d

y

x
f x y

y

x
f x y

y

x

n n







 + ( )









 + ( )






−

1

1

2, , 



 +

+ ( ) + ( ) =

−

−

n

n nf x y
y

x
f x y

2

1 0



, , .
d

d

If we denote 
d

d

y

x
 by p for convenience, the general equation becomes 

 pn + f
1
 (x, y) pn–1 + f

2
 (x, y) pn–2 + …+ f

n–1
 (x, y) p + f

n
(x, y) = 0 (1)

Since (1) is an equation of the first order, its general solution will contain only one 

arbitrary constant. Solution of (1) will depend on solving one or more equations of 

the first order and first degree.

To solve (1), it is to be identified as an equation of any one of the following types 

and then solved as per the procedure indicated below:

 (i) Equations solvable for p. 

 (ii) Equations solvable for y.

(iii) Equations solvable for x.

(iv) Clairaut′s equations.

5.1.1 Type 1—Equations solvable for p

If equation (1) is of this type, then the L.H.S. of (1) can be resolved into n linear factors. 

Then (1) becomes 

5UNIT
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(p – F
1
) (p – F

2
) . . . (p – F

n
) = 0, from which we get p = F

1
, p = F

2 
, … , p = F

n
, where 

F
1
, F

2
, … , F

n
 are functions of x and y.

Each of these n equations is of the first order and first degree and can be solved 

by methods already known.

Let the solutions of the above n component equations be f
1
 (x, y, c) = 0, f

2
 (x, y, 

c) = 0,…, f
n
 (x, y, c) = 0. Then the general solution of (1) is got by combining the 

above solutions and given as f
1
 (x, y, c) f

2
 (x, y, c) …f

n
 (x, y, c) = 0.

5.1.2 Type 2—Equations Solvable for y

If the given differential equation is of this type, then y can be expressed explicitly as 

a single valued function of x and p.

i.e. the equation of this type can be re-written as

 y = f(x, p) (1)

Differentiating (1) with respect to x, we get

 p x p
p

x
=









φ , ,

d

d
 (2)

Equation (2) is a differential equation of the first order and first degree in the variables 

x and p. It can be solved by methods already known. Let the solution of (2) be 

y (x, p, c) = 0 ... (3), where c is an arbitrary constant. If we eliminate p between (1) 

and (3), the eliminant is the general solution of the given equation.

If p cannot be easily eliminated between (1) and (3), they jointly provide the 

required solution in terms of the parameter p.

5.1.3 Type 3—Equations solvable for x

If the given differential equation is of this type, then x can be expressed explicitly as a 

single valued function of y and p. i.e the equation of this type can be re–written as

 x = f (y, p) (1)

Differentiating (1) with respect to y, we get

 
1

p
y p

p

y
=











φ , ,
d

d
 (2)

Equation (2) is a differential equation of the first order and first degree in the 

variables y and p. It can be solved by methods already known.

Let the solution of (2) be

 y (y, p, c) = 0 (3)

where c is an arbitrary constant.

If we eliminate p between (1) and (3), the eliminant is the general solution of the 

given equation.

If p cannot be easily eliminated between (1) and (3), they jointly provide the 

required solution in terms of the parameter p.
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Note  Some differential equations can be put in both the forms y = f(x, p) and  x 

= f(y, p). Both these forms may lead to the required solution. Sometimes one of the 

forms will lead to the required solution more easily than the other.

5.1.4  Type 4—Clairaut′s Equations

An equation of the form y = px + f(p) is called Clairaut′s equation.

Clairaut′s equation is only a particular case of type–2 equation. Hence it can be 

solved in the same way in which a type–2 equation is solved, as explained below: Let 

the Clairaut′s equation be

 y = px+ f(p) (1)

Differentiating (1) w. r. t. x,

  (2) 

 
p p x f p

p

x
= + + ′( ){ } d

d

∴ 
d

d
or

p

x
f p x= ′( )+ =0 2 0…( )  (3)

Solving (2), we get p = c  (4)

Eliminating p between (1) and (4), we get the general solution of (1) as y = cx + f(c).

Thus the general solution of a Clairaut′s equation is obtained by replacing p by c 

in the given equation.

Eliminating p between (1) and (3), we also get a solution of (1).

This solution does not contain any arbitrary constant. Also it cannot be obtained as 

a particular case of the general solution. This solution is called the singular solution 

of the equation (1).

Note  The singular solution of (1) is the eliminant of p between y = px + f(p) and 

x
f

p
+ =

d

d
0 . Equivalently, the singular solution of (1) is the eliminant of c between 

y = cx + f(c) and x
f

c
+ =

d

d
0 . Hence, we observe that if the general solution of (1), i.e. 

y = cx + f(c) represents a family of straight lines, then the singular solution represents 

the envelope of the family of straight lines.

WORKED EXAMPLE 5(a)

Example 5.1 Solve the equation 
d

d

d

d

y

x

y

x









 − + =

2

8 15 0 .

The given equation is p2 – 8p + 15 = 0, which is solvable for p.

The equation is (p – 3) (p – 5) = 0

∴ = =
d

d
or

d

d

y

x

y

x
3 5
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Solving these equations, we get y = 3x + c and y = 5x + c.

To get the general solution of the given equation, we rewrite the solutions as 

y – 3x – c = 0 and y – 5x – c = 0 (in which the R.S. = 0) and combine them as  

(y – 3x – c) (y – 5x – c) = 0.

Example 5.2 Solve the equation p (p + y) = x (x + y).

The given equation is p2 + yp – (x2 + xy) = 0.

Solving for p, p
y y x xy

y y x

=
− ± + +( )

=
− ± +( )

2 2

2

4

2

2

2

i.e. 
d

d

y

x
x=  (1)

or 
d

d

y

x
x y= − −  (2)

Solving (1), y
x c

= +
2

2 2
.

i.e. 2y – x2 – c = 0 (3)

Rewriting (2), 
d

d
,

y

x
y x+ = −  which is a linear equation of the first order in y.

Integrating factor = ex 

Hence the solution of (2) is

 y ex = ∫ – x ex dx + c 

 = – x ex + ex + c

i.e. y + x – 1 – c e–x = 0 (4)

Combining (3) and (4), the required general solution is

 (2y – x2 – c) (y + x – 1 – ce–x) = 0.

Example 5.3 Solve the equation p2 – 2py tan x – y2.

The given equation is p2 – 2py tan x – y2 = 0. 

Solving for p,

 

p
y x y x y

y x y x

y x x

=
± +

=
± +( )

= ±( )

2 4 4

2

2 4 1

2

2 2 2

2 2

tan tan

tan tan

tan sec
 

(1)

∴ d

d

y

x
= y (tan x + sec x) or 

d

d

y

x
 = y (tan x – sec x).

i.e. 
dy

y
 = (tan x + sec x) dx (1) and 

dy

y
= (tan x – sec x) dx (2)

Integrating (1), we get,

log y = log sec x + log (sec x + tan x) + log c 

i.e. y = c sec x (sec x + tan x)
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 =
+

=
−

c x

x

c

x

( sin )

cos

sin

1

1

2

i.e.  y (1 – sin x) – c = 0 (3)

Integrating (2), we get,

 log y = log sec x – log (sec x + tan x) + log c

i.e. y
c x

x x

c

x

=
+

=
+

sec

sec tan

sin1

i.e. y (l  + sin x) – c = 0 (4)

Combining (3) and (4), the required general solution is [y (1 – sin  x) – c] [y (1 + 

sin x) – c] = 0.

Example 5.4 Solve the equation xp2 – 2py + x = 0.

Solving the given equation for p, we get

i.e. 

p
y y x

x

y

x

y

x

y

x

=
± −

= ±






 −

2 4 4

2

1

2 2

2
d

d
 (1)

(1) is a homogeneous equation.

Putting y = vx, (1) becomes

i.e. 

v x
v

x
v v

v

v

x

x

+ = ± −

−
= ±

d

d

d d

2

2

1

1
 (2)

Integrating (2), we get,

 log v v+ −( )2 1 = ± log x + log c

∴ Solutions are

y y x

x
c y y x c

y y x cx y y x c

+ −
= + − =

+ − − = + − − =

2 2

2

2 2

2 2 2 2 20 0

and

i.e. and

∴ The general solution of the given equation is

y y x cx y y x c+ − −{ } + − −{ } =2 2 2 2 2 0 .

Example 5.5 Solve the equation 

p3 – (x2 + xy + y2) p2 + (x3y + xy3 + x2y2) p – x3y3 = 0.
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The given equation is of the form

p3 – (α + β + γ) p2 + (αβ + βγ+ γα) p – αβγ = 0,

where α = x2, β = xy and γ= y2.

∴ The given equation can be rewritten as

 (p – α) (p – β) (p – γ) = 0

i.e. (p – x2) (p – xy) (p – y2) = 0.

∴  
d

d
,
d

d
and

d

d

y

x
x

y

x
xy

y

x
y= = =2 2

Solving these equations, we get

y
x c

y
x

c
y

x c= + = + − = −
3 2

3 3 2

1
; log log ; .

i.e. 3 0 0
1

03 22

y x c y ce x
y

cx− − = − = + − =; ;/ .

∴ The required general solution is

3
1

03 2

2

y x c y ce x
y

c
x

− −( ) −











+ −









 = .

Example 5.6 Solve the equation p2x – 2py – x – 0.

Rewriting the given equation, we have

 y
p x x

p
px

x

p
=

−
= −







2

2

1

2
 (1)

We identify the equation as one solvable for y.

Differentiating (1) w.r.t. x, we get

p p x
p

x

p x
p

x

p
= + −

−

































1

2 2

d

d

d

d

i.e. 2
2

p p x
p

x

p x
p

x

p
= + −

−







d

d

d

d

i.e. p xp
p

x
p x

p

x

3 2= − +
d

d

d

d

i.e. x
p

x
p p p

d

d

2 21 1 0+( ) − +( ) =

i.e. x
p

x
p

d

d
=   ( ) p2 1 0+ ≠

Solving this equation, we get
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d d
log

p

p

x

x
c= +∫∫

i.e. p = cx  (2)

Using (2) in the given equation, the required solution is c2x2 = 2 c y + 1.

Example 5.7 Solve the equation 16x2 + 2p2y – p3x = 0.

The given equation cannot be solved for p, nor for x. As it is solvable for y, the given 

equation is rewritten as

 y
p x x

p
=

−3 2

2

16

2
 (1)

Differentiating (1) w.r.t. x,

2

3 32 16 22 3 2 3 2

4
p

p p p x
p

x
x p x x p

p

x

p
=

+ −






 − −( )d

d

d

d

i.e. 2 3 32 2 325 5 4 2 4 2p p p x
p

x
p x p x

p

x
px

p

x
= + − − +

d

d

d

d

d

d

i.e.  p p x p x
p

x
px

p

x

5 2 4 232 32+ = +
d

d

d

d

i.e.  p p x px p x
p

x

2 3 332 32 0+( ) − +( ) =
d

d

i.e.  p px
p

x

2 0− =
d

d
 (2)

or p3 + 32x=0  (3)

(2) is differential equation in p and (3) is an algebraic equation.

If we eliminate p between the given equation and the solution of (2), we will get 

the general solution of (1).

If we eliminate p between (1) and (3), we will get the singular solution of (1).

(2) can be rewritten as 
d dp

p

x

x
=

Solving this, we get

 p = cx (4)

Eliminating p between the given equation and (4) we have

16x2 + 2c2x2y – c3x4 = 0

i.e. c3x2 – 2c2y – 16 = 0, which is the required general solution. Using (3) in the given 

equation,

 16x2 + 2p2y + 32x2 = 0

i.e. p2y = – 24x2

i.e. p6y3 = – (24)3 x6

i.e. 1024x2y3 + (24)3  x6 = 0

i.e. 16y3 + 9x4 = 0, which is the singular solution.
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Example 5.8 Solve the equation y = (1 + p) x + p2.

Treating the given equation as one solvable for y and differentiating w.r.t. x,

 p p x
p

x
p

p

x
= + + +1 2

d

d

d

d
 (1)

i.e. x p
p

x
+( ) + =2 1 0

d

d

i.e.  
d

d

x

p
x p+ = − 2  (2)

This is a linear equation in x.

Solving (2),  xe pe dp cp p= − +∫ 2

 = – 2 (pe p – e p) + c

i.e.  x =2 – 2p + ce–p  (3)

It is not easy to eliminate p between (3) and the given equation. 
∴ The parametric equations of the general solution are given as

 x = 2 – 2p + ce–p and

 y = (1 + p) (2 – 2p + ce – p) + p2

i.e. x = 2 – 2p + ce–p and y = 2–p2 + c (1 + p) e–p.

Example 5.9 Solve the equation y = x + p2 – 2p.

This equation can be treated as one solvable for y and for x. We shall solve the 

equation in both ways.

Method I: Let us assume y = x + p2 – 2p . . . (1) as solvable for y.

Differentiating (1) w.r.t. x,

 p p
p

x
= + −( )1 2 2

d

d
 (1)

i.e. 2 1 1 0p
p

x
p−( ) − −( ) =

d

d

∴ p – 1 = 0 (2)

or 2 1
d

d

p

x
=  (3)

Eliminating p between (1) and (2), we get the singular solution y = x – 1.

Solving (3), we have

 2p = x + c  (4)

Eliminating p between (1) and (4), y x
x c

x c− =
+( )

− +( )
2

4

i.e. 4 (y + c) = (x + c)2, which is the general solution of (1).

Method II: Treating (1) as one solvable for x and rewriting, we have

 x = y + 2p – p2  (1)'

Differentiating (1)′ w.r.t. y,

d

d

d

d

d

d

x

y

p

y
p

p

y
= + −1 2 2
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i.e. 
1

1 2 1
p

p
p

y
− = − ( )

d

d

i.e. ( )
d

d
1 2 1 0− −











=p p
p

y
.

∴ p = 1  (5)

or 2 1 0p
p

y

d

d
− =  (6)

Eliminating p between (1)′ and (5), we get the same singular solution as before. 

Solving (6), we have

 p2 = y + c (7)

Using (7) in (1)′, we get

x –y + y + c = 2p

Squaring and again using (7), we get the general solution as

(x + c)2 = 4 ( y + c)

Example 5.10 Solve the equation p2x + py – y4 = 0.

Note  Though the equation appears to be solvable for p, the component equations 

are not easily solvable. Also the given equation is not solvable for y. Hence we treat 

it as one solvable for x.

Rewriting the given equation, 

 x
y py

p
=

−4

2  (1)

Differentiating (1) w.r.t. y,

d

d

d

d

d

d

i.e.

x

y

p y p y
p

y
y py p

p

y

p

p

p y

=
− −









− −( )

=
−

2 3 4

4

3

4 2

1
4 pp y

p

y
y py

p

y

p

p py p y py

−








− −( )

= − − −(

d

d

d

d

i.e.

2 2

4 2

4

3

2 3 2 4 ))

−( ) − −( ) =

∴ − =

d

d

i.e.
d

d

d

d

p

y

y y p
p

y
p y p

y
p

y
p

2 2 2 0

2 0

3 3

 (2)

or 2y3 – p = 0 (3)

(2) is d dp

p

y

y
=

2

Integrating, log p = 2 log y + log c

i.e.  p = cy2 (4)
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Eliminating p between (1) and (4), we get

c2xy4 + cy3 – y4 = 0

i.e. c2xy + c = y, which is the general solution of the given equation.

Eliminating p between (1) and (3), we get

4xy6 + y4 = 0

i.e. 4xy2 + 1 = 0, which is the singular solution of the given equation.

Example 5.11 Solve the equation p3 – 2 x yp + 4y2 = 0.

The given equation is neither solvable for p nor for y.

Rewriting the given equation,

 2
42

x
p

y

y

p
= +  (1)

Differentiating (1) w.r.t. y,

2 2 4 4

2 4 2

2

2 2

2

2

2

p

p

y

p

y

p

y p

y

p

p

y

p

y

y

p

p

y p

p

y

= − + + −

−








 + −

d

d

d

d

i.e.
d

d









 =

−( ) − −( ) =

−( )

0

2
2

1
2 0

2 2

2

3 2

2

3 2

3 2

i.e.
d

d

i.e.

p y
p y

p

y py
p y

p y y
dd

d

d

d

p

y
p

y
p

y
p

−








 =

∴ − =

0

2 0  (2)

or  p3 – 2y2 = 0 (3)

Solving (2), 
2d d

log
p

p

y

y
c∫ ∫= +

i.e. 2 log log logp y c= +

i.e. p2 = cy (4)

Let us eliminate p between (1) and (4).

Using (4) in (1), cpy –2xyp + 4y2 = 0

i.e.  p (c –2x) = – 4y 

Squaring and using (4), 

 cy (c –2x)2 = 16y2

i.e. c (c – 2x)2 = 16y, which is the general solution of the given equation.

Using (3) in (1), 2y2 – 2 x yp + 4y2 = 0

i.e.  xp = 3y

Cubing and using (3),

 2x3y2 = 27y3

i.e. 2x3 = 27y, which is the singular solution of the given equation.



Differential Equations 5.11

Example 5.12 Solve the equaion p3x – p2y –1= 0.

The equation may be treated as one solvable for x. However if we treat it as one 

solvable for y, it becomes a Clairaut′s equation.

Rewriting the given equation, we get y px
p

= −
1

2
, which is a Clairaut′s equation.

∴ Its general solution is

 y cx
c

= −
1

2
 (1)

Differentiating (1) partially w.r.t. c,

 0
2
3

= +x
c

 (2)

Eliminating c between (1) and (2), we get the singular solution of the given equation.

From (2),

 c
x

3 2
= −  (3)

From (l), c2y = c3x – 1

 = –2 – 1, using (3)
∴  c6y3  = –27

i.e.  4y3 = –27x2, using (3)

This is the singular solution of the given equation.

Example 5.13 Solve the equation y = 2px + yp2.

The equation may be treated as one solvable for x. However we can convert it as a 

Clairaut′s equation by means of the transformation

 y2 = Y 

∴ 2y
y

x

Y

x

d

d
=

d

d

i.e. 2yp = P, say. 

Multiplying through out the given equation by y, it becomes

 y2 = 2ypx + y2p2  (1)

On using the transformation, (1) becomes

 Y Px
P

+ +
2

4
,  (2)

which is a Clairaut′s equation 

∴ General solution of (2) is

 Y cx
c

= +
2

4
 (3)

∴ General solution of (1) is y cx
c2

2

4
= + .

Differentiating (3) partially w.r.t. c,

 0
2

= +x
c

 (4)

Eliminating c between (3) and (4), we get, 

Y = – x2
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i.e. x2 + y2 = 0, which is the singular solution of (1).

Example 5.14 Solve the equation (px – y) (py + x) = 2p.

Put  X = x2 and Y = y2

∴ dX = 2 x dx and dY = 2y dy 

∴ = =d
d

d

d
i.e. (say)

Y
X

y
x

y

x
P

y
x p

or p
x

y
P=

Then the given equation becomes

 
x P y

x

y
P

x

y
P2 2 1 2−( ) +( ) =

i.e. PX Y
P

P
− =

+
2

1

i.e. Y PX
P

P
= −

+
2

1
, which is a Clairaut′s equation.

∴ General solution is y cx
c

c

2 2 2

1
= −

+
 

Example 5.15 Solve the equation e4x (p – 1) + e2y p2 = 0

Note  In problems involving eax and eby we make the transformations X = ekx and 

Y = eky where k is the H.C.F. of a and b

In the given equation, put X = e2x and Y= e2y 

∴ =
d

d

d

d

Y

X

e

e

y

x

y

x

2

2

2

2

i.e. p
X

Y
P P

Y

X
= , where =

d

d
.

Then the given equation becomes

 
X

X

Y
P Y

X

Y
P2

2

2

21 0−





 + ⋅ =

i.e. XP – Y + P2 = 0

i.e. Y = PX + P2, which is a Clairaut′s equation.
∴  The general solution of the given equation is e2y = ce2x + c2.

EXERCISE 5(a)

Part A

(Short Answer Questions)

 1. Explain briefly how to find the general solution of the equation [p – f
1
 (x, y)] 

[p – f
2
 (x, y)]=0.

 2. Explain briefly how to solve the equation, y = f (x, p), if it is solvable for y.

 3. Explain briefly how to solve the equation x = f (y, p), if it is solvable for x.

 4. Write down the standard form of a Clairaut′s equation and give its general 

solution.
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 5. How will you find the singular solution of the equation y = px + f (p)?

 6. What does the singular solution represent geometrically?

 7. Solve the equation p2 – 5p + 6 = 0.

 8. Solve the equation p2 – (x + y) p + x y = 0.

 9. Solve the equation p2 – (ex + e–y) p + ex–y = 0.

10. Solve the equation x yp2 – (x + y) p + 1 =0.

11. Rewrite the equation (y – px) (p – 1) = p as a Clairaut′s equation and write 

down its general solution.

12. Rewrite the equation p = log (px – y) as a Clairaut′s equation and give its 

general solution.

13. Rewrite the equation p = sin (y – px) as a Clairaut′s equation and give its 

general solution.

14. Find the singular solution of y px
p

= +
1

.

15. Find the singular solution of y = px – p2.

Part B

Solve the following equations:

16. yp2 + (x – y) p – x – 0

17. 2p2 – (x + 2y2) p + xy2 = 0

18. xyp2 + (3x2 – 2y2) p – 6xy = 0

19. xyp2 –(x2 + y2) p + xy = 0

20. p
p

x

y

y

x
− = −

1

21. p2 + 2py cot x = y2

22. x2p2 – 2xyp + (2y2 – x2) = 0

23. y = – px + x4p2

24. 4y = x2 + p2

25. y = 2px + pn

26. y = 2px – p2

27. y = x + 2 tan–1 p

28. y = (1+ p) x + ep

29. y = 3x + log p, by considering the equation as one solvable for (i) y and (ii) x.

30. p3 – 4xyp + 8y2 = 0

31. x = y + p2

32. y = 2px + 4yp2

33. y = 2px + y2p3

34. y2 log y = xyp + p2

35. Find the singular solution of the equation y = (x – 1) p + tan–1 p.

36. Find the singular solution of the equation y + log p = px.

By suitable transformations, reduce the following equations into Clairaut′s 

equations and hence solve them:

37. x2 (y – px) = yp2 [Put X = x2, Y = y2]

38. y = 2px + p2y [Put X = 2x, Y = y2]

39. (y + px)2 = px2 [Put Y = xy]

40. (p – 1) e3x + p3e2y = 0 [Put X = ex, Y = ey]



Engineering Mathematics I5.14

5.2  LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND 

HIGHER ORDER WITH CONSTANT COEFFICIENTS

5.2.1 Introduction

Students are already familiar with formation and solutions of some types of linear 

differential equations of second and higher order with constant coefficients. Before 

we take up the study of remaining types of such equations, we shall recall the various 

notions and working rules related to the solutions of such equations. This will be 

of use to pursue the study of not only the remaining types of linear differential 

equations with constant coeffcients, but also linear differential equations with 

variable coefficeints and simultaneous differential equations.

The general form of a linear differential equation of the nth order with constant 

coefficients is

 a
y

x
a

y

x
a

y

x
a y X

n

n

n

n n n0 1

1

1 1

d

d

d

d

d

d
,+ + + + =

−

− −  (1)

where a
0
 (≠ 0), a

1
, a

2
, . . . , a

n
 are constants and X is a function of x.

If we use the differential operator symbols D
x

D
x

D
x

n
n

n
≡ ≡ ≡

d

d
, 

d

d
,

d

d
,2

2

2


equation (1) becomes

 (a
0
Dn + a

1 
Dn–1 + ...+ a

n–l 
D + a

n
) y = X  (2)

or f (D) y = X, where f (D) is a polynomial in D, which may be treated as an algebraic 

quantity.

When X = 0, (2) becomes

 f (D) y = 0 (3)

(3) is called the homogeneous equation corresponding to equation (2).

General Solution of equation (2) is y = u + v, where y = u is the general solution of 

(3), that contains n arbitrary constants and y = v is a particular solution of (2), that 

contains no arbitrary constants. u is called the complementary function (C.F.) and v is 

called the particular integral (P.I.) of the solution of Equation (2).

5.3 COMPLEMENTARy FUNCTION

To find the C.F. of the solution of Equation (2), we require the general solution of 

Equation (3). To get the solution of f (D) y = 0 or

 (a
0
Dn + a

1
Dn–1 + . . .+ a

n
) y = 0 (3)¢

we first write down the auxiliary equation (A.E.)

 f (m) = 0 or a
0
mn + a

1
mn–1 + . . . + a

n
 = 0 (4)

which is obtained by simply replacing D by m in the operator polynomial, and then 

by equating it to zero.

The auxiliary equation is an nth degree algebraic equation in m.
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The solution of Equation (3)¢ depends on the nature of roots of the A.E. (4) as 

explained below.

Case (i) The roots of the A.E. are real and distinct.   

Let the roots of the A.E. be m
1
, m

2
, …, m

n
.

Then the solution of Equation (3)¢ is y c e c e c e
m x m x

n

m xn= + +1 2
1 2

 , where 

c
1
, c

2
, …, c

n
 are arbitrary constants.

∴ C.F. of the solution of Equation (2) is given by 

u c e c e c e
m x m x

n

m xn= + + +1 2
1 2



Case (ii) The A.E. has got real roots, some of which are equal.

Let the roots of the A.E. be m
1
, m

1
, m

3
, m

4
, …, m

n
 (the first two roots are equal).

Then the solution of Equation (3)¢ is

y c x c e c e c e
m x m x

n

m xn= +( ) + + +1 2 3
1 3



If three roots of the A.E. are equal, i.e. if m
l
 = m

2
 = m

3
 (say), then the solution is

y c x c x c e c e c e
m x m x

n

m xn= + +( ) + + + ⋅1

2

2 3 4

1 4


In general, if r roots of the A.E. are equal, then the solution of (3)¢ becomes.

y c x c x c x c e c e c er r

r r

m x

r

m x

n

m xr n= + + + + + + ⋅− −
− +

+( ) 1

1

2

2

1 1
1 1

 

Case (iii) Two roots of the A.E. are complex. As complex roots occur in conjugate 

pairs, let m
1
 = α + iβ and m

2
= α – iβ. 

Then the solution of Equation (3)¢ is

( ) .y e c x x c c ecos sinc e2
3 nax m x m x

n1 3 gb b= + + + +

Case (iv) Two pairs of complex roots of the A.E. are equal.

i.e. m
l
 = m

3
 = α + iβ and m

2
 = m

4
 = α – iβ.

Then the solution of Equation (3)¢ is

.y e c x c x c x c x c e c ecos sin 5ax m x
n1 2 3 4 5

nm x
gb b= + + + + + +^h h7 A

5.3.1 Particular Integral

The particular integral (P.I.) of the solution of the equation 

 f (D) y = X (1)

is the function v, where y = v is a particular solution of (1) containing no arbitrary 

constants. The particular integral depends on the value of the R.H.S. function X and 

is defined as P.I. =
1 1

f D
X

f D( )
where

( )
,  is the inverse operator of f (D). 

i.e. f D
f D

X X( )
( )

1









= .

We give below the rules and working procedures to be adopted when X is equal 

to some special function:

Rule I X= eax, where α is a constant.

P ,
f D

e
f

e f1 1 0.I.
ax ax

!= = a
a

] ]
]

g g
g
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When f(α) = 0, (D – α)r is a factor of f(D).

Let f(D) = (D – α)r f (D), where f (α) ≠ 0.

Then 1

1 1

1

D D
e

D
e

r
x
e

P.I. r
x

r
x

r
x

$ $

a z

z a a

z a

=

=

=

-

-

a

a

a

^ ]

^ ^

^

h g

h h

h

< F

In particular, 1
1!

1
2!

.

D
x
e

D

x
e

and 

2

2

x x

x x

e

e

a

a

=

=

-

-

a a

a a

^ h

Rule 2 X = sin ax or cos ax, where α is a constant. In this case, the following rules 

are used.

1
sin sin=ax ax

φ ( D2 )

1
cos ax

φ ( D2 )

1

φ ( – a2 )

cos= ax, if φ ( – a2 ) ≠ 0.1

φ ( – a2 )

When f (– α2) = 0, (D2 + α2) is a factor of f (D2)

Let f (D2) = (D2 + α2) y (D2), where y (–a2) ≠ 0.

∴

 

1
sin =

=

αx sin

sin

α x.

α x

1

1 1

ψφ ) ) )(D2 (D2 (D2

ψ )(– α 2 D2

+ α 2

+ α 2

Similarly 1
cos

1 1
cos

D
x

D
x

2 2 2 2z
a

} a a
a=

+-] ^g h
; E

Now sin cos=

=

α x α x
1 x

x

D2 2α

2
× Intergral of sin α x.

+ α 2
–

and cos =

=

α x sin α x
1

2α

x

x

2
× Intergral cos α x.

D2 + α 2

Note   When finding the P.I., the above rules are to be applied in parts, as f(D) 

will not be, in general, of the form f(D2). This means that we have to first replace D2 

by – α2, D3 by – α2D, D4 by α4, etc. After this has been done, f(D) will take the form  

(aD + b).
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Then sin

sin

sin ,

f D
x

aD b
x

a D b

aD b
x

1

1

P.I.

2 2 2

=

=
+

=

a

a

a

-

-

]

]
]

g

g
g

on multiplying the numerator and denominator by (aD – b).

Then P.I. =
− +( )

−( )1

2 2 2a b
aD b x

α
αsin ,

using the rule in the denominator.

 = −
+( )

−( ) ≡ ⋅
1

2 2 2a b
a x b x D

xα
α α αcos sin , since

d

d

Similarly, 
1 1

2 2 2f D
x

a b
a x b x

( )
=

+
+( )cos sin cos .α

α
α α α

Rule 3 X =xm, where m is a positive integer.

 P.I. =
( )
1

f D
xm

Rewrite f(D) in terms of a standard binomial expression of the form [1 ± f(D)], by 

taking out the constant term or the lowest degree term from f(D).

Thus P.I.=
1

1

1
1

1

aD D
x

aD
D x

k

m

k

m

± ( )





= ± ( )




−

φ

φ

 

Now expand [1 ± f(D)]–1 in a series of ascending powers of D, by using binomial 

theorem, so that the simplified expansion of 
1

1
1

aD
D

k
± ( )




−

φ  may contain terms up 

to Dm and then operate by each term on xm.

Note  The ultimate expansion of 
1

f D( )
need not be considered beyond the Dm 

term, since Dm+1 (xm) = 0, Dm+2 (xm) = 0 and so on.

Rule 4 X = eαx . V(x), where V is of the form sin βx, cos βx or xm.

P.I.=
1 1

f D
e V x e

f D
V xx x

( )
( ) = ⋅

+( )
( )α α

α  

1

f D +( )α
V(x) is evaluated by using the rule (3) or (4).

Note  Thie rule is referred to as Exponential shift rule. 

Rule 5 X = x. V(x), where V(x) is of the form sin αx or cos αx.
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P.I =
d

d

     

1 1 1

f D
xV x x

f D
V x

D f D
V x

( )
( ) = ⋅

( )
( ) +

( )












( )

                            or

= x
f D

V x
f D

f D
V x⋅

( )
( ) −

′( )

( ){ }
(1

2
))

By repeated applications of this rule, we can find the P.I. when X = xrV(x), where r 

is a positive integer.

Note  Instead of applying the Rule (5), we may adopt the following alternative 

procedure to find the P.I.,

when  X = xr cos ax or xr sin ax.

1 1

1

f D
x x

f D
x e

f D
x e

r i x

i x

( )
=

( )

( )

cos [Real Part of ]

= R.P. of

r

r

α α

α

== ⋅
+( )

R.P. of e
f D i

xi x rα

α

1

Similarly,

1 1

f D
x x e

f D i
xr i x r

( )
= ⋅

+( )
⋅sin I.P. ofα

α

α

 
Rule 6  X is any other function of x.

P.I

,

                         

=
( )

=
−( ) −( ) −( )

1

1

1 2

f D
X

D m D m D m
X

n

                                               resolving f D(( )

−
+

−
+ +

−











into linear factors.

=
A

D m

A

D m

A

D m
Xn

n

1

1

2

2

 ,, ( )

                                                     

1

                             spliting into partial fractions..

Consider say

i.e.

1

1

D m
X u

D m
D m

X D m u

D

−
=

∴ −( )
−( )












= −( )

,

−−( ) = − =m u X
u

x
mu Xor

d

d
.

This is a linear equation of the first order.

∴ Its solution is u e e X xmx mx− −= ∫ d

The usual arbitrary constant is not added in the R.H.S, as u is a part of the P.I. of 

the main problem.
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∴ u
D m

X e e X xmx mx=
−

= ⋅ ∫ −1
d  (2)

Inserting (2) in (1), the required

P.I. d  d d= ⋅ + + + ⋅− − −∫ ∫∫A e e X x A e e X x A e n e n X x
m x m x m x m x

n

m x m x

1 2
1 1 2 2

  

WORKED EXAMPLE 5(b)

Example 5.1 Solve the equation (D2 – 4D + 3) y =  sin 3x + x2.

A.E. is  m2 – 4m + 3 = 0. 

i.e. (m – 1) (m – 3) = 0; ∴ m = 1, 3

∴ C.F. = c
1
ex + c

2
e3x.

 

P. I. = (sin )

= (sin ) +

P.I. P

1

4 3
3

1

4 3
3

1

4 3

2

2

2 2

2

1

D D
x x

D D
x

D D
x

− +
+

− + − +
= + ..I. (say)2

P. I. = sin

= sin

= sin

1

1

4 3
3

1

9 4 3
3

1

2 2 3
3

1

2

2 3

2D D
x

D
x

D
x

D

− +

− − +

−
+( )

= − ⋅
−( ))
−

= −( )

= −( )

= −

4 9
3

1

90
2 3 3

1

90
6 3 3 3

1

30
2 3

2D
x

D x

x x

x

sin

sin

cos sin

cos siin 3x( )

 

P.I.2 2

2

2

1

4 3

1

3 1
4

3

=
− +

=

−
−( )













D D
x

D D
x
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= −
−( )















= +
−( )

+
−( )















−
1

3
1

4

3

1

3
1

4

3

4

9

1

2

2 2

D D
x

D D D D
xx

D D x

x x

2

2 2

2

1

3
1

4

3

13

9

1

3

8

3

26

9

= + +










= + +










∴ The general solution of the given equation is y = C.F + P.I.
1
 + P.I.

2

i.e. y c e c e x x x xx x= + + −( ) + + +



1 2

3 21

30
2 3 3

1

3

8

3

26

9
cos sin

Example 5.2 Solve (D2 + 4) y = x4 + cos2 x.

A.E. is m2 + 4 = 0.

The roots are m = ± i 2.

∴ C.F. = A cos 2x + B sin 2x.
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∴ General solution of the given equation is

y A x B x x x x x= + + − + +( )cos 2 sin sin2
1

8
4 6 2 22 4

Example 5.3 Solve (D3 + 8)y = x4 + 2x + 1 + cosh 2x.

A.E. is m3 + 8 = 0.

i.e. (m + 2) (m2 – 2m + 4) = 0.

∴ = − =
± −

±m m i2
2 4 16

2
1 3, or

∴ = + +−C.F. ( cos sin )A e e B x C xx x2 3 3
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2 2

2 2

e
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e
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∵

1

1

1
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3 42 2

D
e

x
e

e x e

x x

x x

α
α α

!

( )

∴ General solution is y = C.F. + P.I.
1
 + P.I.

2

Example 5.4  Solve (D4 – 2D3 + D2)y = x2 + ex.

A.E. is m4 – 2m3 + m2 = 0.

i.e. m2(m2 – 2m + 1) = 0

∴ The roots are m = 0, 0, 1, 1.
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∴ C.F. =

P.I. = 1

c x c c x c e

D D
x

D
D x

x

1 2 3 2

2 2

2

2

2 21

1

1
1

1

+( )+ +( )

−( )
= −( )

=

−

.

DD
D D D D x

D D
D D x

x

2

2 3 4 2

2

2 2

4

1 2 3 4 5

1 2
3 4 5

12

+ + + +( )

= + + + +










= +
22

3
3 8 10

1

1

1

1

1

3
2 2 2

2 2 2

2

x
x x

D
x x x

D D
ex

+ + + =










=
−( )

=

∫∵ d

P.I.

⋅⋅
−( )

=

1

1

2

2

2

D
e

x
e

x

x

!

∴ General solution is

y c x c c x c e
x x

x x
x

ex x= +( )+ +( ) + + + + + +1 2 3 4

4 3
2

2

12

2

3
3 8 10

2
.

Note  The two terms (8x + 10) in P.I.
1
 can be merged with the two terms (c

1
x + 

c
2
) of the C.F.

∴ The general solution may be given as

y c x c c x c e
x x

x
x

ex x= +( )+ +( ) + + + +1 2 3 4

4 3
2

2

12

2

3
3

2
.

Example 5.5 Solve (D2 + 1 )2 y = x4 + 2 sin x cos 3x.

A.E. is (m2 + l)2 = 0

The roots are m = i, i, –i, –i (i.e. two pair’s of equal complex conjugate roots)

∴ C.F. = (c
1
x + c

2
) cos x + (c

3
x+ c

4
) sin x.

P.I.

P.I.

1
2

2

4

2
2

4

2 4 4

4 2

2

1

1

1

1 2 3

24 72

=
+( )

= +( )
= − +( )
= − +

−

D
x

D x

D D x

x x .

==
+( )
1

1
2 3

2
2

D
x xsin cos .
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=
+( )

−( )

=
− +( )

−
− +( )

=

1

1
4 2

1

16 1
4

1

4 1
2

1

225

2
2

2 2

D
x x

x x

sin sin

sin sin

sinn sin4
1

9
2x x− .

∴ General solution of the given equation is y = C.F. + P.I.
1
 + P.I.

2
.

Example 5.6 Solve (D2 + 6D + 9)y = e–2x x3

A.E. is  m2 + 6m + 9 = 0

i.e.  (m + 3)2 = 0

The roots are m = –3, –3

∴ C.F. = (c
1
x+c

2
) e–3x

 

P.I. =

, by Exponential shift rule
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e D x
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−

−
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= − + −( )
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2 3

2 2 3 3

2 3 2

1

1 2 3 4

6 18 24

∴ General solution is y = C.F. + P.I.

Example 5.7 Solve (D3 - 3D2 + 3D – 1) y = e–xx3.

A.E. is  m3 - 3m2 + 3m –1 = 0

i.e. (m - l)3 = 0

The roots are m = 1, 1, 1

∴ C.F. = (c
1
x2 + c

2
x + c

3
) ex

 

P.I. =
−( )

⋅

=
−( )

= − ⋅ −
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1 2 2 3
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2 3
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D D D
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ee D D D x
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x

x

−
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= − + + +( )

2 3 3
5

2

1

16
2 9 18 15

2 3 3

3 2

∴ the general solution is y = C.F. + P.I.
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Example 5.8 Solve (D2 – 4) y = x2 cosh 2x.

A.E. is  m2 – 4 = 0

i.e. (m + 2) (m – 2) = 0
∴ The roots are m = – 2, 2
∴   C.F. = A e–2x + B e2x 
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8 33 4 8
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32
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= − +

x x

x
x

x
x

x
xsinh 2 cosh 2 sinh 2

(the terms and areomitted,as they may beconsid− − −1

256

1

256

2 2e ex x eered to

have been included in theC.F.)

Then the G.S. is

 y A e B e
x

x x x x xx x= + + − +( )−2 2 2

96
8 2 6 2 3 2sinh cosh sinh

Example 5.9 Solve (D4 – 2D2 + 1)y = (x + 1)e2x.

A.E. is m4 – 2m2 + 1 =  0

i.e. (m2 – 1)2 = 0

∴ The roots are m = ±l, ±l

∴  C.F. = (c
1
x + c

2
) ex + (c

3
x + c

4
) e–x.
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P.I. =
−( )

+( ) = ⋅
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= ⋅
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1

1
1

1

2 1

1

1

4 3

2
2

2 2

2
2

2

2

D
e x e

D

x

e
D D

x x

x

22

2

2

2

1

1

9
1

4

3
1

1

9
1

2

3

x

e
D D

x

e
D

D

x

x

+( )

= ⋅ +
+( )











+( )

= ⋅ − +

−

44 1

1

9
1

8

3
1

1

9

2

2

( )










+( )

= −








 +( )

= −

x

e D x

e x

x

x 55

3











Then the general solution is y = C.F. + P.I.

Example 5.10 Solve (D2  + 2D – 1)y = (x + ex)2.

A.E. is m2 + 2m –1 = 0.

i.e. (m + 1)2 = 2

∴ m = − ± ( )1 2 real roots

∴
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P.I3 2

2

2
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2
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1 2 1 1

2
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e D x
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x

x

Then the general solution is y = C.F. + P.I.
1
 + P.I.

2
 + P.I.

3
.

Example 5.11 Solve (D2 + 5D + 4) y = e–x sin 2x.

A.E. is m2 + 5m + 4 = 0.

i.e. (m + 1) (m + 4) = 0.

∴ The roots are m = - 1, - 4
∴        C.F. = Ae–x + B e–4x.

P.I. sin 2
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=
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x

e x xx
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Then the general solution is y = C.F. + P.I.

Example 5.12 Solve (D4 – l)y = cos 2x cosh x.

A.E. is m4 – l = 0

i.e. (m – l) (m + l) (m2 + l) = 0

∴  The roots are m = 1, -1, ± i

∴  C.F. = c
1
 ex + c

2
 e–x + c

3
 cos x + c

4
 sin x.
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P.I. = cos 2

cos 2
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∴ The general solution is

y = C.F. + P.I.

Example 5.13 Solve (D2 - 4D + 13)  y= e2x cos 3x.

A.E. is m2 - 4m +13 = 0

i.e. (m - 2)2 = - 9

∴ The roots are m = 2 ± i3

∴ C.F. = e2x (A cos 3x + B sin 3x)
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∴ The general solution is y = C.F. + P.I.

Example 5.14 Solve ( ) sin2D D y e
xx2 1
2

+ + = − .

A.E. is m2 + m + 1  =  0

The roots are m i=− ±
1
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2

C.F.= cos sine A x B x
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∴ General solution is y = C.F. + P.I.

Example 5.15 Solve (D2 + 2D + 5) y = ex cos3 x.

A.E. is m2 + 2m + 5 = 0

The roots are m i= − ±1 2

 C.F. ( cos sin )= +−e A x B xx 2 2 .
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∴ The general solution is y = C.F. + P.I.

Example 5.16  Solve (D2 + 4D + 8) y = 12e–2x sin x sin 2x.

A.E. is m2 + 4m + 8 = 0.

The roots are m i= − ±2 2

∴ C.F. ( cos sin )= +−e A x B xx2 2 2
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∴ The general solution is y = C.F. + P.I.

Example 5.17  Solve (D3 – 1) y = x sin x.

A.E. is m3 – 1 = 0

i.e. (m – 1) (m2 + m + 1) = 0

∴ The roots are m i= − ±1
1
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2
,

∴ C.F. cos sin= + +










−c e e c x c xx x
1

2
2 3

3

2

3

2

/

P.I. sin

sin
( )

sin
( ) ( )

=
−

= ⋅
−

−
−

= ⋅

1

1

1

1

3

1

1 1

3

3

2

3 2

D
x x

x
D

x
D

D
x

f D
xV x

f D
∵ VV

f D

f D
V

x
D

x
D

x

−
′

{ }

















= − ⋅
+

+
+

( )

( )

sin
( )

sin

2

2

1

1

3

1



Engineering Mathematics I5.30

= − ⋅
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sin sin
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.

∴ The general solution is y = C.F. + P.I.

Alternative method for finding P.I.

 

P.I. sin

(Imaginary part of )

I.P. of=

=
−

=
−

−

1

1

1

1

1

1

3

3

3

D
x x

D
x e

D
x e

ix

ix

== ⋅
+ −

= ⋅
+ − − −

= −

I.P. of
( )

I.P. of

I.P. of

3
e

D i
x

e
D iD D i

x

e

ix

ix

1

1

1

3 3 13 2

iix

ix

i

D

i
iD D x

e

i

D

1
1

1
3 3

1
1

3

2

1

+
−

+
− + +











= −
+

−

−

( )

I.P. of
11

1

3

1

+











= −
+

−
+











= −

i
x

e

i
x

i

ix

I.P. of

I.P. of
(11

2

3

2
1

1

2

−
+ − −











= − +

i
x i x x i

x

)
(cos sin ) ( )

I.P. of {(cos ssin ) (sin cos )} ( )

(cos sin

x i x x x i

x

+ − − −










= − +

3

2
1

1

2

3

2
xx x x x

x
x

x

) (sin cos )

cos (cos sin

+ −








 −













= − + −

3

2

3

2 2
xx)

Example 5.18  Solve the equation (D2 + 4) y = x2 cos 2x.

A.E. is m2 + 4 = 0

The roots are m i= ± 2  

∴ C.F. = A cos 2x + B sin 2x.

 
P.I. R.P. of=

+

1

42

2 2

D
x ei x



Differential Equations 5.31

= ⋅
+ +

= ⋅
+

=

R.P. of
( )

R.P. of

R.P. of

e
D i

x

e
D iD

x

e

i

i x

i x

i x

2

2

2

2

2

2

2

1

2 4

1

4

4 DD

iD
x

e

iD

iD D iDi x

1
4

4
1

4 16 64

1

2

2 2 3

−










= + − −





−

R.P. of





= − + − −










=

x

i
e

x i
x

x ii x

2

2
3

2

4 3 4 8 32

1

R.P. of

R.P. of
44

2
3 8 4

1

8

3
2(sin 2 cos )x i x

x x i
x− −











+ −






















= −










+ −










1

4 3 8
2

1

4

1

8

3
2x x

x xsin cos 22x












∴  General solution i s  y = C.F. + P.I.

Example 5.19  Solve (D2 - 4D + 4) y = 8x2 e 2x sin 2x.

A.E. is  m2 – 4m + 4 = 0

i.e. (m - 2)2 = 0

∴ Roots are m = 2, 2.

∴ C.F. = (c
1
 x+ c

2
) e2x.

 

P.I.
( )

sin  sin

cos

2=
−

= ⋅

= ⋅
−

1

2
8 2 8

1
2

8
1 2

2

2

2 2

2

2

2 2

D
x e x e

D
x x

e
D

x
x

x x

x







 −

−







 +











2
2

4
2

2

8
x

x xsin cos

 (by  applying Bernouilli's formula)

( cos ) ( sin= e
D

x x
D

xx2 21
4 2

1
4 2⋅ − + xx

D
x

e x
x

x
xx

) ( cos 2 )

sin cos
=

+












−








 −

−

1
2

4
2

2
2

2

4

2 2







 +

−

























+
−

2
8

4
2

sin 2

cos

x

x
xx x

x
2

2

4
2









 −

−



















+






sin
sin

== − −



e x x x xx2 23 2 2 4 2( ) sin cos

∴ The general solution is y = C.F. + P.I.
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Example 5.20 Solve (D2 + a2) y = sec a x.

A.E. is m2 + a2 = 0

The roots are m ia= ±
∴ C.F. = A cos a x + B sin a x.

P.I. = sec

sec

1

1

1

2

1

2

2 2D a
a x

D ia D ia
a x

ia

D ia

ia

D ia

+

=
−( ) +( )

=
−

−
+













= ⋅ −− −∫

sec

sec d

a x

ia
e e ax x

ia
e eia x ia x ia x1

2

1

2

iia x

mx mx

ia x

ax x

D m
X e X e x

ia
e i a x

∫

∫−
=













= −( )

−

sec d

d

tan

∵

1

1

2
1

.

∫∫ ∫− +( )

= −










−d tan d

log sec

x
ia

e i a x x

ia
e x

i

a
a x

ia x

ia x

1

2
1

1

2  − +










=
−








−

−

1

2

2

ia
e x

i

a
a x

x

a

e e

i

ia x

iax ia x

log sec


−

+









= −

−1

2

1

2

2

a
a x

e e

x

a
a x

a
a

ia x ia x

log sec

sin cos xx a xlog sec

∴ General solution is y = C.F. + P.I.

EXERCISE 5(b)

Part A

(Short Answer Questions)

 1. Solve the equation (D2 – D + 1)2 y = 0.

 2. Find the particular integral of (D – 1)3 y = 2 cosh x.

 3. Find the particular integral of (D2 + a2) y = b cos ax + c sin ax.

 4. Find the particular integral of (D2 + 4D + 4) y = x e–2x.

 5. Find the particular integral of (D – 3)2 y = x e–2x.

 6. Find the particular integral of (D + 1)2 y = e–x cos x.

 7. Find the particular integral of (D2 – 2D + 5) y = e x sin 2x.

 8. Find the particular integral of (D2 + 4D + 5) y = e–2x cos x.
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 9. Find the particular integral of (D2 – 2D + 6)y = e x (4 sin x + cos x).

10. Find a formula for 1

D a
f x

−
( ).

Part B

Solve the following differential equations.

11. (D3 + D2 + D + 1)y = x2 + 2e–x

12. (D2 + 9)y = x2 + cosh x

13. (D2 + 2D + 1)y = x3 + cos 2x

14. (D2 _ 8D + 9)y = 8 sin 5x + x2

15. (D2 + 3D + 2)y = 2 sin2 x + 2x2

16. (D4 + D3 + D2)y = 12x2 + 2 cos 2x cos x

17. (D2 _ l)y = 12ex (x + l)2

18. (D3 – 6D2 + 12D – 8)y = 16x3 e4x

19. (D3 + 2D2 + D)y = x2e2x

20. (D2 – 4) y = x sinh x

21. (D2 + l)2y = 2x2e–x

22. (D2 – 5D + 4)y = (2x + e–x)2

23. (D2 – 4D + 3)y = 8ex cos 2x

24. (D4 – 1)y = cos x cosh x

25. (D2 – 2D + 5)y = ex (sin x + cos x)2

26. ( ) cosD y e
xx3 21
2

+ = −

27. (D2 + 4)y = 4 e2x sin3 x

28. (D2 – 4D + 3)y = sin 3x cos 2x

29. (D2 – 2D + 1)y = x ex sin x

30. (D2 + D)y = x cos x

31. (D2 – 4D + 4)y = x sin x

32. (D2 – l)y = x2 cos x

33. (D2 + 4)2 y = cos 2x

34. (D2 + l)y = x2 sin 2x

35. (D2 + 4)y = 4 tan 2x

5.4   EULER′S HOMOGENEOUS LINEAR DIFFERENTIAL 

EQUATIONS

The equation of the form

 a x
y

x
a x

y

x
a x

y

x
a y Xn

n

n

n
n

n n n0 1

1
1

1 1

d

d

d

d

d

d

-

+ + + + =−
− −  (1)

where a
0
, a

1
, … , a

n
 are constants and X is a function of x is called Euler′s homogeneous 

linear differential equation.
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Note  In each term in the L.H.S. of Equation (1), the power of x and the order 

of the derivative are equal. It is because of this property that the equation is called a 

homogeneous equation.

Equation (1) can be reduced to a linear differential equation with constant 

coefficients by changing the independent variable from x to t by means of the 

transformation. 

x = et or t = log x

as explained below:

 

d

d

d

d

d

d

d

d

y

x

y

t

t

x x

y

t
= ⋅ =

1

∴ x
y

x

y

t

d

d

d

d
=  (2)

Differentiating both sides of (2) w.r.t. x,

 
x

y

x

y

x

y

t x

d

d

d

d

d

d

2 2

2 2

1
+ =

i.e. x
y

x
x

y

x

y

t

2
2

2

2

2

d

d

d

d

d

d
+ =

i.e. x
y

x

y

t

y

t

2

2 2
2

d

d

d

d

d

d
by

2 2

= − ( )   (3)

Denoting 
d

d
by  and 

d

d
by ,

x
D

t
θ

(2) gives xD = θ and

(3) gives x2 D2 = θ2 – θ = θ (θ – 1) 

Similarly we can show that

 x3 D3 = θ (θ– 1) (θ – 2)

 x4 D4 = θ (θ – 1) (θ –2) (θ – 3) and so on. 

If this transformation is made, then Eqn. (1) becomes a n0 1 1θ θ θ−( ) − −( ) +


  

a n a yn1 1 2 0θ θ θ−( ) − −( ) + 


=  , which is a linear differential equation with 

constant coefficients and can be solved by methods discussed in the previous section.

The more general form of Euler′s homogeneous equation is

 

a a x b
y

x
a a x b

y

x

a a x b
y

x
a y

n
n

n

n
n

n

n n

0 1

1
1

1

1

+( ) + +( ) +

+ +( ) +

−

−

−

d

d

d

d

d

d

-



== X  (2)

Equation (2) can be reduced to a linear differential equation with constant 

coefficients by the substitution ax + b = et.

Equation (2) is called Legendre′s linear differential equation.
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5.5  SIMULTANEOUS DIFFERENTIAL EQUATIONS 

WITH CONSTANT COEFFICIENTS

If x and y are two dependent variables and t is the independent variable, then the 

pair of equations of the form

 f
1 
(D) x + f

2
 (D) y = T

1  
(1)

 D x D y T1 2 2z z+ =] ]g g  (2)

where f
1
, f

2
, f

1
, f

2
, are polynomials in the operator D

t
≡

d

d
and T

1
 and T

2
 are functions 

of t is called a pair of simultaneous differential equations.

It is not possible to solve for the two dependent variables (unknowns), if only one 

of the above equations is given.

If there are more than 2 dependent variables, we should have as many equations 

as the number of dependent variables.

To solve Equations (1) and (2) simultaneously, we proceed as in solving 

simultaneous algebraic equations.

We operate both sides of (1 ) by f
2
 (D) and both sides of (2) by f

2
(D) and subtract 

to eliminate y.

Thus we get

 f D D f D D x D T f D T f D x T1 2 2 1 2 1 2 2( ) ( ) − ( ) ( )



 = ( ) − ( ) ( ) =φ φ φ or  (3)

which is a linear equation in x and t with constant coefficients and can be solved by 

the methods discussed already.

The value of x obtained by the solution of (3) is substituted either in (1) or (2) to 

get the value of y.

The number of arbitrary constants that appear in the values of x and y should be 

equal to the order of the resultant equation (3).

If more arbitrary constants are introduced in the process of solving the equations, 

the extra ones should be expressed in terms of the other constants.

Note  We can also eliminate x, get a linear equation in y and t and solve it first.

WORKED EXAMPLE 5(c)

Example 5.1 Solve the equation x
y

x
x

y

x
y x

x

2

2

2

2
4 2

1d

d

d

d

2

+ + = + .

The given equation is x D xD y x
x

D
x

2 2 2

2
4 2

1
+ +( ) = + ≡, where

d

d
 

Put x = et or t = log x and denote
d

d
by .

t
θ  

Then the given equation becomes

θ θ θ−( ) + +



 = + −1 4 2 2 2y e et t

i.e. θ θ2 2 23 2+ +( ) = + −y e et t
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A.E. is m2 + 3m + 2 = 0

i.e. (m + 1) (m + 2) = 0

∴ The roots are m = -1, -2.

∴ C.F. = + = +− −A e B e
A

x

B

x

t t2

2

P.I.
( ) ( )

( )=
+ +

+

= −
+

= − =

−

−

−

1

1 2

1

12

1

2

1

12

1

1

2 2

2 2

2 2

θ θ

θ

e e

e e

e t e

t t

t t

t t

22

12

2
x

x
x− log 

∴ The general solution is y = C.F. + P.I.

Example 5.2 Solve (x2 D2 + xD + 1) y = sin (2 log x) · sin (log x).

Putting x = et or t = log x and denoting 
d

d
by ,

t
θ  the given equation becomes

[ ( ) ] sin sinθ θ θ− + + =1 1 2y t t

i.e. ( ) (sin sin )θ2 1
1

2
3+ = +y t t

A.E. is  m2 + 1 = 0.

The roots are m = ± i

∴ C.F. = A cos t + B sin t = A cos (log x) + B sin (log x).

P.I. =
1

1

1

2
3

1

2

1

8
3

2

2θ +
+

= − + −










(sin sin )

sin ( cos )

t t

t
t

t


= − −
1

16
3

1

4
sin ( log ) log cos (log )x x x

∴ General solution is y = C.F.+ P.I.

Example 5.3 Solve (x2 D2 – 2 xD - 4) y = 32 (log x)2

Putting x = et or t = log x and denoting 
d

d
by ,

t
θ  the given equation becomes

[ ( ) ]θ θ θ− − − =1 2 4 32 2y t

i.e. ( 2θ θ− − =3 4 32 2) y t

A.E. is m2 - 3m - 4 = 0

i.e. (m – 4)(m + l) = 0

∴ The roots are m = 4, -1.

∴ C.F.= A e B et t4 + −
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= +

=
− −

= − ⋅ − −










=−

−

A x
B

x

t

t

4

2

2

1

1

3 4
32

8 1
4

3

8

P.I.

( ) 2

θ θ

θ
θ

11
4

3
16

3

8 1
3

4

13

16

+ − + −












=− − +












=−

θ
θ

θ
θ

θ
θ

( ) ( )
2

2 2

2 2

t

t

88
3

2

13

8

8 12 13

t t

x x

2

2[ (log ) (log ) ]

− +










=− − +

∴ General solution is y = C.F. + P.I.

Example 5.4  Solve(x D xD y
x

x

2 2

2

1− + = 





⋅)
log

.

Putting x = et or t = log x and denoting 
d

d
by

t
θ ,  the given equation becomes

 [ ( ) )]θ θ θ− − + = −1 1 2 2y t e t

i.e. ( )θ θ2 2 22 1− + = ⋅−y t e t

A.E. is m2 - 2m + 1 = 0.

i.e. (m – l)2 = 0

∴ The roots are m = 1, 1.

∴ C.F. ( ) ( log )= + = + ⋅At B e A x B
x

t 1

P.I.=
( )

=
( )

=

1

1

1

3

1

9
1

3

2

2 2

2

2

2

2

θ

θ

θ

−
⋅

⋅
−

⋅ −










−

−

−
−

e t

e t

e

t

t

t

22

2

2
2

2

2 2

1

9
1

2

3
3

9

1

9

4

3

2

3

t

e t

e t t

t

t

=

=

−

−

+ + ⋅










+ +







θ θ
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 = ( ) + +{ }1

27
3 4 2

2

2

x
x xlog log

∴ General solution is y = C.F. + P.I.

Example 5.5 Solve (x 2D2 - xD + 4) y = x 2 sin (log x).

Putting x = et or t = log x and denoting d

d
by

t
θ , the given equation becomes

θ θ θ−( )− +



 =1 4 2y e tt sin

i.e. θ θ2 22 4− +( ) =y e tt sin

A.E. is m2 - 2m + 4 = 0

The roots are m i= ±1 3

∴ C.F.= e A t B t

x A x B x

t cos sin

cos log sin log

3 3

3 3

+( )
= ( )+ ( ){ }

P I. . sin

sin

=
− +

= ⋅
+( ) − +( )+

= ⋅
+ +

1

2 4

1

2 2 2 4

1

2 4

2

2

2

2

2

2

θ θ

θ θ

θ θ

e t

e t

e

t

t

t ssin

sin

sin

cos sin

t

e t

e t

e t t

t

t

t

= ⋅
+

= ⋅
−
−

=− −( )

2

2

2

2

1

2 3

2 3

4 9

1

13
2 3

θ

θ

θ

==− ( )− ( ){ }1

13
2 32x x xcos log sin log

∴ General solution is y = C.F. + P.I.

Example 5.6 Solve 2 3 2 2 3 12 6
2

2
x

y

x
x

y

x
y x+( ) − +( ) − =

d

d

d

d

2

.

The given equation is a Legendre′s linear equation.

Put 2x + 3 = et or t = log(2x + 3)

Then 
d

d

d

d

y

x

y

t x
= ⋅

+
2

2 3

i.e. 2 3 2x
y

x
y+( ) =

d

d
θ
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Similarly 2 3 4 1
2

2
x

y

x
y+( ) = −( )d

d

2

θ θ

The given equation then becomes

 4 1 2 2 12 3 3θ θ θ−( )− × −



 = −( )y e t

i.e. 4 8 12 3 32θ θ− −( ) = −( )y e t

i.e. θ θ2 2 3
3

4
3− −( ) = −( )y e t

A.E. is m2 -2m - 3 = 0

The roots are m = 3, - 1

∴ C F. .= +

= +( ) +
+

−Ae B e

A x
B

x

t t3

3
2 3

2 3

P I. .=
− −

−( )

= − +












=− +( )+

1

2 3

3

4
3

3

4

1

4
1

3

16
2 3

3

4

2θ θ
e

e

x

t

t

∴ General solution is y = C.F. + P.I.

Example 5.7 Solve (x2 D2 + xD + 1) y = log x sin (log x).

Putting x = et or t = log x and denoting d

d
by

t
θ , the given equation becomes

 θ θ θ−( )+ +



 =1 1 y t tsin

i.e. θ2 1+( ) =y t tsin

A.E.is m2 + 1 = 0

The roots are m = ± i

∴         C.F. = A cos t + B sin t

 

P.I.= Imaginary part of

I P of I P of

1

1

1

1

2

2

θ

θ

+
⋅

= ⋅
+( ) +

=

e t

e
i

t

it

it. . . . ee
i

i
t

i
e

i

it

it

⋅ −










= − ⋅ +










−
1

2
1

2

2

1
1

2

1

θ

θ

θ

θ
I P of. .  = − +











= −( )

t
i

e
t it

t i t
t

itI P of

I P of sin cos

. .

. .

2 2 2

1

2

2

22

2

2 2

4

1

4

+










= −

it

t
t t tsin cos
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 = ⋅ ( )− ( ) ( )1

4

1

4

2
log sin log log cos logx x x x

∴ General solution is y = C.F. + P.I.

Example 5.8 Solve (x2 D2 + 4xD + 2) y = sin x.

Putting x = et or log x = t and denoting d

d
by

t
θ , the given equation becomes

 [q (q - 1) + 4q + 2] y = sin  (e–t )

i.e. (q 2 + 3q  + 2) y = sin (e–t )

A.E. is m2 + 3m + 2 = 0

The roots are m = - 1, - 2.

∴ C.F. = A e–t + B e–2t.

= +

+( ) +( ) ( )

=
+

−
+









 (

A

x

B

x

e

e

t

t

2

1

1 2

1

1

1

2

P.I.= sin

sin

θ θ

θ θ
))

= ( ) − ( )⋅

−
=






− −

−

∫ ∫

∫

e e e t e e e t

D m
X e X e x

t t t t t t

m x m x

sin d sin d

d

2 2

1
∵







= − ⋅ =

= − − −

− −

− −

∫∫e u u e u u u e u

e u e

t t t

t t

sin d sin d , putting

cos

2

2 uu u u

e e e e e e

x
x

t t t t t t

cos sin

cos cos sin

sin

+( )
=− ( )+ ( )− ( )

=−

− − −2

2

1

∴ General solution is y = C.F. + P.I.

Example 5.9 Solve the simultaneous equations

d

d

d

d

x

t
x y t

y

t
x y e t

+ − =

− + =

2 3 5

3 2 2 2

Denoting 
d

d
by

t
D , the given equations become

 (D + 2)x – 3y = 5t  (1)

 –3x + (D + 2) y = 2e2t (2)

Operating (1) by

 (D + 2); (D + 2)2x – 3(D + 2)y = 5 + 10t (1)′

Multiplying (2) by 3;

 –9x + 3(D + 2)y = 6e2t (2)′
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Adding (1)′ and (2)′, we get

 (D2 + 4D – 5) x = 5(1 +2t) + 6e2 t  (3)

A.E. is m2 + 4m - 5 = 0

The roots are m = 1, - 5

∴ C.F. = A e t + B e–5t.

P.I.=
1

4 5
5 1 2 6

1

4 5

1 1
4

5

2 2

2

D D
t

D D
e

D D

t

+ −
+( )+ ⋅

+ −

=− × −
+( )











+( )+

=− × +










+( )+

=− +

−1

2

2

1 2
6

7

1 1
4

5
1 2

6

7

1 2

t e

D
t e

t

t

tt e

t e

t

t

+








+

=− − +

8

5

6

7

2
13

5

6

7

2

2

∴  x Ae B e t et t t= + − − +−5 22
13

5

6

7
.

To find y, we may follow any one of the following two methods:

Method 1

If we eliminate x between Equations (1) and (2), we will get

 (D2 + 4D - 5) y = 15t + 8e2 t  (4)

Solving (4) in the usual manner, we will get

y C e D e t et t t= + − − +−5 23
12

5

8

7

Note  In the solution of y, we should not use the same arbitrary constants A and 

B used in the solution of x. Though the values of x and y have been found out, they 

are expressed in terms of four arbitrary constants. The solutions for x and y should 

contain as many constants (in this problem, it is 2) as the order of the Equation (3) 

or (4). Hence the values of C and D should be expressed in terms of A and B as 

explained below: 

Inserting the values of x and y in Equation (1),

Ae Be e Ae Be e tt t t t t t− + −





 + + + − −








−

− −5
12

7
2 2 2

12

7
4

26

5

5 2 5 2

33 3
24

7
9

36

5
55 2Ce De e t tt t t+ + − −






 =−

i.e. 3(A – C) et – 3(B + D) e–5t = 0

∴ C = A and D = – B.
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∴ The required solutions of the given equations are

 x A e Be e tt t t= + + − −−5 26

7
2

13

5

and  y A e B e e tt t t= − + − −−5 28

7
3

12

5

Method 2

We eliminate Dy from Equation (1) and (2).

Operating (1) by D;  D2x + 2Dx - 3Dy = 5

Multiplying (2) by 3; 

   -9x + 6y + 3Dy = 6 e2t 

Adding;    6 9 5 6 2y x x x e t+ ′′ + ′ − = +

∴ y x x x e t= − ′′ + ′ − − − 
1

6
9 6 52  (5)

x is given by  x A e B e e tt t t= + + − −−5 26

7
2

13

5

 (6)

Differentiating x w.r.t. t;

 ′ = − + −−x Ae e et t t5
12

7
25 2

 (7)

Further differentiating w.r.t. t;

 ′′ = + +−x Ae Be et t t25
24

7

5 2  (8)

Using (6), (7) and (8) in (5) and simplifying,

 y A e Be e tt t t= − − + − + +





−1

6
6 6

48

7
18

72

5

5 2

i.e. y Ae Be e tt t t= − + − −−5 28

7
3

12

5

Example 5.10 Solve Dx - (D - 2) y = cos 2t.

 (D - 2) x + Dy = sin 2t 

 Dx - (D - 2) y = cos 2t  (1)

 (D - 2) x + Dy = sin 2t  (2)

Operating (1) by D; D2x - D(D - 2) y = -2 sin 2t

Operating (2) by (D - 2); (D - 2)2x + D(D - 2)y = 2cos 2t - 2sin 2t.

Adding; (2D2 - 4D + 4) x = 2cos 2t - 4sin 2t

i.e.  (D2 - 2D + 2) x = cos 2t - 2sin 2t  (3)

A.E. is m2 - 2m + 2 = 0

The roots are m = 1 ± i
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∴  C.F. = et (A cos t + B sin t)

∴  

P.I. cos sin

cos sin

=
− +

−( )

= −
+

−( ) = −
−

1

2 2
2 2 2

1

2

1

1
2 2 2

1

2

1

2D D
t t

D
t t

D
. .

(( )
−

−( )

= − − − +( ) = −

5
2 2 2

1

10
2 2 4 2 2 2 2

1

2

cos sin

sin cos cos sin co

t t

t t t t ss

cos sin cos

2

1

2
2

t

x e A t B t tt= +( )−  (4)

Adding (1) and (2);

 2Dx – 2x + 2y = sin 2t + cos 2t

∴ 2y = 2x – 2x′ + sin 2t + cos 2t  (5)

Differentiating both sides of (4) w.r.t. t;

 x′ = et (A cos t + B sin t) + et (–A sin t + B cos t) + sin 2t  (6)

Using (4) and (6) in (5), we get,

 2y = 2A et sin t – 2B et cos t – sin 2t

∴ y = et(A sin t – B  cos t) – 
1

2
 sin 2t (7)

Now (4) and (7) constitute the solutions of the given equations.

Example 5.11 Solve D2x – Dy – 2x = 2t.

Dx + 4Dy – 3y = 0

Rewriting the given equation,

 (D2 - 2)x – Dy = 2t  (1)

 Dx + (4D - 3)y = 0  (2)

Operating (1) by (AD – 3);

 (D2 – 2) (4D – 3) x –D(4D – 3) y = 8 – 6t (1)′

Operating (2) by D:

 D2x + D(4D – 3) y = 0 (2)′

Adding (1)′ and (2)′, we get

 (4D3 – 2D2 – 8D + 6)x = 8 – 6t

i.e. (2D3 – D2 – 4D + 3)x = 4 – 3t (3)
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A.E. is 2m3 – m2 – 4m + 3 = 0

i.e. (m – l) (2m2 + m – 3) = 0

i.e. (m – l) (m – l) (2m + 3) = 0

∴ The roots are m = −1 1
3

2
, ,

∴ 
C.F. = +( ) +

−
At B e Cet

t
3

2

∴ 

P.I.=
−( ) +( )

−( ) = +








 −( ) −( )

−
−1

1 2 3
4 3

1

3
1

2

3
1 4 3

2

1
2

D D
t

D
D t

== −








 +( ) −( ) = +









 −( )

=

1

3
1

2

3
1 2 4 3

1

3
1

4

3
4 3

D
D t D t

11

3
4 3 4

3

2

− −( )

=−

= +( ) + −
−

t

t

x At B e Ce tt
t

.

 (4)

Eliminating Dy from (1) and (2), we get

4D2x + Dx – 8x – 3y = 8t

∴ y x x x t= ′′ + ′− −( )1

3
4 8 8   (5)

Form (4) ′ = +( ) + − −
−

x At B e Ae Cet t
t3

2
1

3

2

and ′′ = +( ) + +
−

x At B e Ae Cet t
t

2
9

4

3

2

Using the values of x, x' and x'' in (5),

y t A B e C et
t

= −( ) −{ } − −
−

3
1

6

1

3

3

2

Example 5.12 Solve 
d

d

d

d
if = 1

2

2

2

2

3 4 0

0

x

t
x y

y

t
x y x y

− − =

+ + = =

.
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and 
d

d

d

d
when

x

t

y

t
t= = =0 0,

The given equations are

 (D2 – 3)x – 4y = 0  (1)

 x + (D2 + l)y = 0  (2)

Operating (1) by (D2 + 1);

(D2 + 1) (D2 – 3)x – 4 (D2 + 1) y = 0

Multiplying (2) by 4;

4x + 4(D2 + 1) y = 0

Adding, (D4 – 2D2 + 1) x = 0

A.E. is (m2 – l)2 = 0

Roots are m = ±1, ±1

∴ Solution is x = (At + B) et+ (Ct + D) e–t  (3)

Differentiating x w.r.t. t;

 x' = (At + B)et + A et – (Ct + D) e–t + C e–t   (4)

Differentiating further

 x'' = (At + B) et + 2 A et + (Ct + D) e–t – 2C e–t   (5)

From (1),

 

y x x

At B e Ae Ct D e C e

A

t t t t

= ′′−( )

= − +( ) + − +( ) −





=−

− −

1

4
3

1

4
2 2 2 2

1

2
tt B e

A
e Ct D e

C
et t t t+( ) + − +( ) −− −

2

1

2 2
 (6)

∴ ′ =− +( ) + +( ) −y At B e Ct D et t1

2

1

2
 (7)

Using the condition x = 1 when t = 0 in (3),

 B + D = 1  (8)

Using the condition y = 1 when t = 0 in (6),

A B C D−
−

+
=

2 2
1
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i.e  A – B – C – D = 1 (9)

Using the condition x′ = 0 when t = 0 in (4),

 A + B + C – D = 0  (10)

Using the condition y′ = 0 when t = 0 in (7),

 –B + D = 0 (11)

Solving equations (8), (9), (10), and (11), we get

A B C D= = = − =
3

2

1

2

3

2

1

2
, , ,

Using these values in (3) and (6), the required particular solutions are

and

 x
t

e
t

e

y t

t t=
+







 +

−









= −










−1 3

2

1 3

2

1

2

3

4  + +










−e t et t1

2

3

4

Example 5.13 Solve (D2 – 5)x + 3y = sin t.

–3x + (D2 + 5) y = t

Eliminating y from the given equations, we get (D4 - 16)x = 4 sin t - 3t 

A.E. is m4 – 16 = 0

The roots are m = ±2, ±i 2.

∴  C.F.= A e2t + B e–2t + C cos 2t + D sin 2t

 

P.I.= 4. sin

sin

1

16

3

16

4

15

3

16
1

16

4

15

4 4

4
1

D
t

D
t

t
D

t

−
−

−

= − + −







= −

−

ssin

sin

t
D

t

t t

+ +







= − +

−
3

16
1

16

4

15

3

16

4
1

and 

x Ae B e C t D t t t

x Ae B e C

t t

t t

= + + + − +

= − −

−

−

2 2

2 2

2 2
4

15

3

16

2 2 2

cos sin sin

s' iin cos cos

cos sin s

2 2 2
4

15

4 4 4 2 4 2
4

15

2 2

t D t t

x Ae B e C t D tt t

+ −

= + − − +−'' iin t  

(1)

∴
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From the given equation,

y x x t

A
e

B
e C t D t tt t

= − ′′ +





= + + + − +−

1

3
5

3 3
3 3 2

1

5

52 2

sin

cos 2 sin sin
116

t

EXERCISE 5(c)

Part A
(Short Answer Questions)

 1. Transform the equation xy′′ + y′ + 1 = 0 into a linear equation with constant 

coefficients and hence solve it.

 2. Solve the equation x2y′′ – xy′ + y = 0.

 3. Convert the equation xy″ – 3y′ + x–1y = x2 as a linear equation with constant 

coefficients.

 4. Convert the equation x4y″ '– x3y″ + x2y′ = 1 as a linear equation with constant 

coefficients.

 5. Solve the equation x2y″ – 2nxy′ + n(n + 1)y = 0.

 6. Solve the equation x3y″ ' + 3x2y″ + xy′ + y = 0.

 7. Solve for x from the equations x′ – y = t and x + y′ = 1.

Part B

Solve the following equations D
x

≡










d

d

 8. (x2D2 + 2xD – 20)y = (x2 + 1)2

 9. (x4D3 – x3D2 + x2D)y = 1

10. (x3D3 – x2D2 + 2xD – 2)y = cos (2 log x)

11. (x2D2 + xD – 9)y = sin3 (log x)

12. (x2D2 + 9xD + 25)y = (log x)2

13. (x4D4 + 6x3D3 + 9x2D2 + 3xD + l)y = (1 + log x)2

14. (x2D2 – 3xD + 4)y = x (log x)2

15. (x4D4 + 2x3D3 + x2D2 – xD + 1)y = x2 log x

16. x D xD y
x

x2 2 3
1

− −( ) = ( )cos 2log

17. (x2D2 + 3xD + 5)y = x cos (log x)

18. [(3x + 2)2 D2 + 3(3x + 2) D – 36] y = 3x2 + 4x + 1

19. [(x + 1)2D2 + (x + 1 ) D + 1 ]  y = 4 cos log (x + 1)

Solve the following simultaneous equations: D
t

≡










d

d

20. (D + 4) x + 3y = t

2x + (D + 5) y = e2t
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21. (2D + 1) x + (3D + 1) y = et

(D + 5)x + (D + 7) y = 2et

22. Dx + y = sin t x + Dy = cos t given that x = 2 and y = 0 at t = 0

23. 2D2x - Dy - 4x = 2t
 2Dx + 4Dy – 3y = 0

24. D2x + y = 3e2t 

Dx - Dy = 3e2t

25. (D2 + 4) x + y = 0

(D2 + 1) y – 2x= 1 + cos2 t

26. D2x - 2Dy - x = et cos t

D2y + 2Dx - y = et sin t

27. (D2 + 4) x + 5y= t2

(D2 + 4) y + 5x = t + 1

5.6  LINEAR EQUATIONS OF SECOND ORDER 

WITH VARIABLE COEFFICIENTS

In the previous section we have discussed the solution of Euler′s homogeneous linear 

differential equations of the second (and higher) order, which are a particular case 

of linear equations of second order with variable coefficients, that are functions of x. 

The general form of such a differential equation will be taken as

d

d

d

d

2

2

y

x
p x

y

x
q x y r x+ ( ) + ( ) = ( ) ,

in which the coefficient of d

d

2

2

y

x
is unity and p(x), q(x) and r(x) are functions of x. In

this section, we shall discuss a few methods of solving such equations.

5.6.1  Method of Reduction of Order-Transformation of the 

Equation by Changing the Dependent Variable

Let the given equation be

 
d

d

d

d

2

2

y

x
p x

y

x
q x y r x+ ( ) + ( ) = ( )   (1)

Let us assume that one solution of the corresponding homogeneous equation, 

namely, 

 d

d

d

d

2

2
0

y

x
p x

y

x
q x y+ ( ) + ( ) =  (2) 

is known. Let it be  y = u (x)  (3)
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We then assume that  y = u (x) . v(x)  (4)

is a solution of equation (1).

From (4), we get  y′ = uv′ + u′v  (5)

and  y″ = uv″ + 2u′v′+ u′′v  (6)

Using (4), (5) and (6) in (1), we get

uv″ + (2u′ + pu) v′ + (u″ + pu′ + qu) v = r

i.e. uv″ + (2u′ + pu) v′ = r, by (2) and (3)

i.e. ′′ +
′

+










′ =v
u

u
p v

r

u
2

(7)i.e. where and                    ′′ = ′ = =
′

+ =v p v r p
u

u
p r

r

u
1 1 1 1

2
, .

Putting in it becomes        

d

′ = ( )v w 7 ,

ww

x
p w r

d
+ =1 1 (8)

Now equation (8) is a linear equation of the first order in w, which can be solved.

Thus by changing the dependent variable y to w, we have reduced the order of the 

equation by one.

Note  Had the given equation (1) been homogeneous, viz., r(x) = 0, then equation  

(7) would have become

i.e. 

′′ +
′

+










′ =

′( )
′

= −
′

+










v
u

u
p v

d v

v

u

u
p

2
0

2

Integrating both sides with respect to x, we get log log log′ = − − +∫v u pdx A2

 
= ∫











− −
log Au e

pdx
2

∴ ′ = ∫− −
v Au e

pdx
2  (9)

Solving equation (9), we get v and hence the solution of equation (1).

5.6.2  Definition

A second order differential equation in y not containing the term in the first derivative 

y′ is said to be in the canonical or normal form.
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5.6.3 Reduction to Canonical or Normal Form

The second order linear differential equation y″ + p(x) y′ + q(x)y = r(x) can be 

transformed to the canonical or normal form v″ + f(x)v = g(x), where f (x) =

q x p x p x g x r x e
p x dx( ) − ( ) − ′( ) ( ) = ( ) ( )∫1

4

1

2

2 1 2{ } and , by using t. / hhe substitution

y ve
p x dx

= ⋅− ( )∫1 2/

Proof:

Let us assume that y = uv is a solution of the equation y'' + p(x) y′ + q(x) y = r(x)(1)

Differentiating y = uv  (2)

with respect to x, 

we get  y′ = u′v + uv′  (3)

and y′′ = u′′v + 2u′v′ + uv″ (4)

The values of y, y′ and y″ given in steps (2), (3), (4) should satisfy equation (1).

i.e.  u″v + 2u′v′ + uv″ + p(u′v + uv′) + quv = r

i.e. uv″ + (2u′ + pu) v′ + (u″ + pu′ + qu) v = r  (5)

Equation (5) should be in the canonical form, viz., it should not contain the v′ 

term.

∴ ′ + =

′
= −

= − +

=

∫

2 0

2

2

0

u pu

u

u

p

u
pdx

c

c u e

i.e.

i.e. log

Assuming we get = ,
−−

−

∫

= = ∫

1 2

1 2

pdx

pdx

y uv veThus the substitution

transforms equationn into the canonical form

When ,

and

1

2

1 2 1 2

( )

= ∫ = − ⋅ ∫− −
u e u

p
e

pdx pdx

'

uu
p

e
p

e
pdx pdx

'' = ⋅ ∫ −
′

⋅ ∫− −
2

1 2 1 2

4 2

Using the values of u, u′ and u″ in the canonical form, viz., in ′′ + ′′ + ′ +( )v
u

u pu qu
1

 

v
u

r=
1

it becomes
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′′ + −
′

− +










= ∫

′′ + − − ′

v
p p p

q v re

v q p

pdx
2 2

1 2

2

4 2 2

1

4

1

2

/

i.e. pp v re

v f x v g x

f x q x

pdx







 = ∫

′′ + ( )⋅ = ( )

( ) = ( )

1 2/

,i.e. where

−− ( ){ } − ′( )

( ) = ( )⋅ ∫ ( )

1

4

1

2

2

1 2

p x p x

g x r x e
p x dx

and

/

5.6.4  Method of Reduction of Order—Special Types of Equations

Type 1. Equations of the form 
d

d
,
d

d

2

2

y

x
f x

y

x
=

æ

è
ççç

ö

ø
÷÷÷
, in which y is explicitly absent.

Putting 
d

d
, we get

d

d

d

d

2y

x
p

y

x

p

x
= =

2

The equation gets transformed as 
d

d
,

p

x
f x p= ( ), which is only a first order 

equation.

Solving this transformed equation, we get

 p
y

x
x c= = ( )d

d
φ , 1

Again, solving this equation, we get

 y = ψ (x, c
1
, c

2
).

Extension:

Equations of the form 
d

d

d

d

n

n

n

n

y

x
f x

y

x
=











−

−,
1

1  can be solved by putting
d

d

n

n

y

x
p

−

− =
1

1
and 

reducing the order successively.

Type 2. Equation of the form 
d

d
,
d

d

2

2

y

x
f y

y

x
=

æ

è
ççç

ö

ø
÷÷÷

 in which x is explicitly absent.

We put 
d

d

y

x
p=  and treat p as a function of y. Then 

d

d

d

d

d

d

2

2

y

x

p

x
p

p

y
= =

The equation becomes 
d

d
,

p

y
f y p= ( ),  which is a first order equation.
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Solving this transformed equation, we get

p
y

x
y c= = ( )d

d
,φ 1

Solving this equation further, we get

x = ψ (y, c
1
, c

2
)

Extension:

Equations of the form f{y, y′, y′′, ... y(n)} = 0 can be solved by the above technique,

viz., by putting 
d

d

y

x
 =  p and treating p as a function of y.

Type 3. Equations f (x, y, y', y'') = 0, which are homogeneous in y, y' and y'' 

(but not in x)

By putting y e
zdx

= ∫
,  the order of the equation can be reduced by one and hence 

solved. When y e y ze y z z e
zdx zdx zdx

= ∫ ′ = ∫ ′′ = + ′( ) ∫
, .and 2  Thus, the order of the 

transformed equation in the dependent variable z will be one less than that of the 

given equation.

Type 4. Equations f (x, y, y′, y′′) = 0 which are exact, viz. which can be 

expressed as d

dx
x y yφ , , ¢( ){ } = 0 .

The first integral of the equation 
d

d
is

x
x y y x y y cφ φ, , , , ' ,′( ){ } = ( ) =0 1 which is  a 

first order equation, solving which we get the solution of the given second order 

equation.

Note  The equation [p
0
(x)D2 + p

1
(x)D + p

2
(x)]y = r(x) is exact if and only if  

p′′
0
 – p′

1
 + p

2
 = 0.

Let (p
0
 D2 + p

1
 D + p

2
) y = D(q

0
 D + q

1
) y = [q

0
 D2 + (q′

0
 + q

1
)D + q′

1
] y 

Comparing like terms, we get

 p
0
 = q

0′
; p

1
 = q′

0
+ q

1
 and p

2
 = q′

1

Differentiating both sides of p
1
 = q′

0
 + q

1
,

we get p′
1 
= q′′

0 
+ q′

1

 = p′′
0
 + p

2

∴ p′′
0
– p′

1
+ p

2 
= 0

Conversely, when p′′
0 
– p′

1 
+ p

2 
= 0, we have

 (p
0 
 D2 + p

1
D + p

2
)y = (p

0 
 D2 + p

1
D + p′

1 
– p′′

0
)y

 = p
0 
y′′ + p

1 
y′+ p′

1
y – p′′

0 
y
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 = (p
0 
y′′ + p′

0  
y′) + (p

1 
y′+ p′

1 
y) – (p′′

0 
y + p′

0 
y′)

 = D(p
0 
y′) + D(p

l 
y) – D(p′

0 
y)

 = D(p
0 
y′+ p

l 
y – p′

0 
y)

Thus (p
0
 D2 + p

1
 D + p

2
)y = 0 is an exact equation, when p′′

0
 – p′

1
 + p

2
 = 0.

WORKED EXAMPLE 5(d)

Example 5.1 Solve the equation xy″ – 2(x + 1)y′ + (x + 2)y = (x – 2)e2x, by finding 

one solution of the corresponding homogeneous equation by inspection and reducing 

the order of the equation.

Important Notes 
To find one solution of the equation p

0
(x) y″ + p

1
(x) y′ + p

2
(x). y = 0, the following 

hints may be useful: 

 (i) If p
0
(x) + p

1
(x) + p

2
(x) = 0, y = ex is a solution of the equation.

 (ii) If p
0
(x) – p

1
(x) + p

2
(x) = 0, y = e–x is a solution of the equation. 

 (iii) If p
1
(x) + xp

2
(x) = 0, y = x is a solution of the equation. 

In the given problem, p
0
 = x, p

1
 = – 2(x + 1) and p

2
 = x + 2.

The condition p
0
 + p

1
 + p

2
 = 0 is satisfied.

∴ y = ex is a solution of the homogeneous equation corresponding to the given 

equation.

Let y = vex be a solution of the given equation.

Then y′ = vex + v′ex

 y′′= v′′ex  + 2v′ex  + vex

Using these values of y, y′, y″ in the given equation, it becomes

 x(exv″ + 2exv′ + exv) – 2(x + 1) (exv′ + exv) + (x + 2) exv = (x – 2)e2x

i.e., xv″ – 2v′ =  (x – 2)ex

i.e., 
d

d
where

d

d

p

x x
p

x
e p

v

x

x− = −








 =

2
1

2
,

This is a linear equation of the first order.

 I.F. = loge e
x

x
dx

x
− −∫ = =

2

2

2

1

Solution of this equation is

 
p

x x x
e x cx

2 2 3 1

1 2
3= −







 +∫ d
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i.e. 

=






+

= +

= +

∫ d
x

e c

x
e c

v

x
c x e

x

x

x

1
3

1
3

3

2 1

2 1

1

2d

d

Solving this equation, we get

v =c
1
x3 + c

2
 +ex

∴ The solution of the given equation is

y = ex (c
1
x3 + c

2
+ cx)

Example 5.2 Solve the equation 
d

d
cot

d

d
cot sin

2

2

21
y

x
x

y

x
y x x+ −( ) − = ,  by the 

method of reduction of order.

The given equation is y″ + (1 – cot x) y′ – y cot x = sin2 x  (1)

Here p
0
=1; p

1
 = 1 – cot x; p

2 
= – cot x

We observe that p
0
 – p

1
 + p

2
 = 0

∴ y = e–x is a solution of the equation

 y″ + (l – cot x)y′ – y cot x = 0  (2)

Let y = ve–x be a solution of equation (1)

Then y′ = v′ e–x – ve–x  

and y″ = v″e–x – 2v′e–x+ve–x

Using these values of y, y′ and y″ in (1), we have

(v″ e–x – 2v′ e–x + ve–x) + (1 – cot x) (v′ e–x – ve–x) – ve–x cot x = sin2 x

i.e.  v″ – (1+ cot x) v′ = ex sin2 x  (3)

Putting v′ = p in (3), it becomes

 
d

d
cot sin

p

x
x p e xx− +( ) =1 2

 (4)

(4) in a linear equation of the first order

 
I.F. =

sin

cot

log sin

e

e
e

x

x dx

x x
x

− +( )

− −
−

∫

= =

1
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∴ Solution of equation (4) is

i.e. 

pe

x
e x

e

x
dx c

x c

p
dv

dx
e c x

x
x

x

x

− −

= ⋅ +

= − +

= = −

∫sin
sin

sin

cos

sin sin

2

1

1

1 xx xcos( )  (5)

Integrating (5) with respect to x,

v c e x dx e x dx c

c
e x x

e
x

x x

x
x

= − +

= −( )− ⋅

∫ ∫1 2

1

1

2
2

2

1

2 5
2

sin sin

sin cos sin −−( ) +2 2 2cos x c

∴ The solution of the given equation (1) is

 y A x x x x Be x= −( )− −( )+ −sin cos sin  cos
1

10
2 2 2 .

Example 5.3 Solve the equation 1 2 2 22
2

2
−( ) − + =x

y

x
x

y

x
y

d

d

d

d
,  by the method of 

reduction of order.

The given equation is 

 (1 - x2)y″ – 2xy′ + 2y = 2  (1)

Here p
0
 = 1 – x2; p

1
 = –2x; p

2
 = 2

We observe that p
1
 + p

2
x = 0.

∴ y = x is a solution of

 (1 – x2)y″  – 2xy′ + 2y = 0  (2)

Let y = vx be a solution of equation (1).

Then y′ = v′x + v; y″ = v″x + 2v′

y, y′,y″ satisfy equation (1)

i.e. (1 – x2)(v″x + 2v′) – 2x(v′x + v) + 2vx = 2

i.e. x(1 – x2)v′′+ [2(1 - x2) – 2x2]v′ = 2

i.e.  
d

d

p

x x

x

x
p

x x
+ −

−







 =

−( )
2 2

1

2

1
2 2   (3) 

where p = v′
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Equation (3) is a linear equation of the first order.

I.F. =
∫

=

= −( )

−
−











+ −( )

e

e

x x

x

x

x
dx

x x

2 2

1

2 1

2 2

2

2

1

log log

∴ Solution of equation (3) is

px x
x x

x x dx c

x c

2 2

2

2 2
1

2
1

1
2

1
1−( ) =

−( )
⋅ −( ) +

= +

∫

i.e. 
d

d

v

x x

c

x x

x
c

x x

=
−

+
−( )

=
−

+ +
−











1

1 1

1

1

1 1

1

2

1

2 2

2 1 2 2

 

(4)

Integrating (4) with respect to x

v c
x

x

c

x
c= +( ) +

−









− +1

1
21

1

2

1

1
log

∴ Solution of equation (1) is

y
c

x
x

x
c c x=

+









+
−









− +1

1 2

1

2

1

1
log

Example 5.4 Solve the equation x
d y

dx
x

dy

dx
y

2

2
2 0+ −( ) − = , given that y

x
=

1
is 

a solution.

[Refer to the note under the discussion of the method of reduction of order]

If y = u is a solution of the equation

y″ + p(x)y′ + q(x)y = 0, then y = uv will also be a solution of  y″ + p(x) y′ + q(x)y =

0, where ′ = − − ( )∫
v c u e

p x dx

1
2

The given equation can be rewritten as

 ′′ + −










′ − =y
x

y
x

y
2

1
1

0   (1)



Differential Equations 5.57

Here p x
x

q x
x

( ) = − ( ) = −
2

1
1

and

Since y
x

=
1

 is a solution of equation (1),

y
x

v=
1

 is also a solution of (1), where

′ =
∫

=

= ⋅ =

− −







− +

−

v c x e

c x e

c x x e c e

x
dx

x x

x x

1

2

2
1

1

2 2

1

2 2

1

log

∴  
v c e cx= +1 2

∴ The general solution of equation (1) is

y
x

c e c xy c e cx x= +( ) = +
1

1 2 1 2or

Example 5.5 Solve the equation d

d

d

d

2

2

2
0

y

x x

y

x
y+ + = given that y

x
x=

1
sin  is a 

solution. y
x

x v= ⋅
1

sin is also a solution of the given equation, where

′ = ⋅ = ( ) =

= ⋅

−

−

∫
v c

x

x
e u

x
x p x

x

c
x

x
e

x
dx

1

2

2

2

1

2

2

2

1 2

sin
since sin and

sin

,

llog

sin

x c

x
= 1

2

Integrating, we get

v = -c
1
 cot x + c

2
 or A cot x + B

:. The general solution of the given equation is y
x

x A x B= +( )1
sin cot

i.e. xy A x B x= +cos sin

Example 5.6 Solve the equation 
d

d

d

d

2

2

22 0
y

x
x

y

x
x y+ + = , by reducing it to the 

canonical form.
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The given equation is y″ + 2xy′ + x2y = 0  (1)

Comparing equation (1) with the standard equation 

 y″ + p(x) y′ + q(x) y = r(x) (2)

We have p(x) = 2x; q(x) = x2; r(x) = 0.

Putting y = uv, where u e e

p x dx

x= =
−

( )
−∫ 2 22

, in (1), it becomes

′′ + − −
′









= ∫
v q

p p
v re

p x
2

2

4 2

d

[Refer to the discussion of reduction to normal form]

i.e. v″ + (x2 - x2 -1) v = 0

i.e.  v″ = v  (3)

which is of the form v″ = f(v, v′)

Putting v′ = p and treating p as a function of v, we have ′′ =v p
p

v

d

d
∴ The equation becomes 

 p
p

v
v

d

d
=   (4)

Solving this equation, we get p2 = v2 + c 1

2

or  p
dv

dx
v c= = +2

1
2  (5)

Solving equation (5), we have sinh−










= +1

1
2

v

c
x c

or v c x c

c
e e

Ae Be

x c x c

x x

= +( )

=
−












= +

+ − +( )

−

1

1

2 2

2

sinh 2
 

∴ The required solution of equation (1) is

y Ae Be ex x x= +( )− − 2 2/

Example 5.7 Solve the equation 4 4 1 02
2

2

2x
y

x
x

y

x
x y

d

d

d

d
+ + −( ) = , by reducing it 

to the normal form.
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The given equation can be rewritten as

 ′′ + ′ + −








 =y

x
y

x
y

1 1

4
1

1
0

2
 (1)

Here p
x

q
x

r= = −








 =

1 1

4
1

1
0

2
, and 

Let y = uv be a solution of (1), where

u e e
x

p x
x

x= = =
− −∫ ∫1 2 1 2 1d

d

Putting y
x

v=
1

 in (1), it becomes

 

′′ + − −
′









= ∫
v q

p p
v re

p
x2

2

4 2

d

i.e. ′′ + −








− +











=v
x x x

v
1

4
1

1 1

4

1

2
0

2 2 2

i.e. ′′ + =v v
1

4
0  (3)

Solving equation (3), we have v A
x

B
x

= + cos sin
2 2

∴ Solution of equation (1) is y
x

A
x

B
x

= +










1

2 2
cos sin

Example 5.8 Solve the equation x
y

x

y

x
x exd

d

d

d

2

2

2− = , given that y(0) = – 1 and y′(0) 

= 0.

The given equation does not contain y explicitly.

Putting d

d

y

x
p=  and treating p as a function of x, we have 

d

d

d

d

2

2

y

x

p

x
= ; the equation 

becomes

x
p

x
p x exd

d
− = 2

i.e. 
d

d

p

x x
p xex− =

1
 (1)
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Equation (1) in a linear equation of first order in p.

I.F. = =
−∫

e
x

x
dx

1
1

Solution of (1) is p
x x

xe dx cx⋅ = ⋅ +∫
1 1

2 1

i.e. p = x (ex + 2c
1
)

or 
d

d

y

x
xe c xx= + 2 1

 (2)

Solving equation (2), we have

 y xe x c x x cx= + +∫ ∫d d2 1 2

i.e., the solution of the given equation is

 y = (x - 1) ex + c
1
x2 + c

2
.

Using the condition y(0) = -1, c
2
 = 0. Using the condition y′(0) = 0 in (2), c

1
 is 

arbitrary. Taking c
1
 = 0, the required solution is y = (x - 1)ex.

Example 5.9 Solve the equation 
d

d

d

d

2

2

2

1
y

x

y

x
+









 = , given that y(0) = 0, y′(0) = 0

Method 1

The given equation 

 y″ + y′2 = 1  (1) 

can be considered as one not containing y explicitly.

Putting 
d

d

y

x
p=  and treating p as a function of x, we have 

d

d

d

d

2

2

y

x

p

x
=

Then equation (1) becomes

 
d

d

p

x
p= −1 2   (2)

Solution of equation (2) is

dp

p
x c

1 2 1
−

= +∫

i.e.  
1

2

1

1
1log

+
−











= +
p

p
x c

Given that p = 0, when x = 0

∴ c
1
 = 0
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Thus we have 
1

1

2+
−

=
p

p
e x  

∴  p
y

x

e

e

x

x
= =

−
+

d

d

2

2

1

1

 =
−
+

=
−

−

e e

e e
x

x x

x x
tanh  (3)

Solving (3), we have y = log cosh x + c
2

Using the condition y(0) = 0, we get c
2
 = 0

∴ Solution of equation (1) is y = log cosh x.

Method 2

The equation 

 y″ + y′2 = 1  (1)

can be considered as one not containing x explicitly.

Putting 
d

d

y

x
p=   and treating p as a function of y, we have 

d

d

d

d

2 y

x
p

p

y2
=  

Then equation (1) becomes

 p
p

y
p

d

d
= −1 2  (2)

Solution of equation (2) is

p p

p
y c

 d

1 2 1−
= +∫

 

i.e.  − −( )= +
1

2
1 2

1log p y c  

Given that y = 0 and p = 0, when x = 0

or when y = 0, p = 0

∴  c
1 
= 0

Thus 1 – p2 = e–2y

i.e.  p
y

x
e y= = − −d

d
1 2  (3)

Solving equation (3),

dy

e
x c

y1 2
2

−
= +

−∫  
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i.e. 
e y

e
x c

y

y

d

2
2

1−
= +∫

i.e. cosh–1 (ey)= x + c
2

When x = 0, y = 0.∴ c
2
 = 0

∴The required solution of equation (1) is

 ey = cosh x or y = log cosh x.

Example 5.10 Solve the equation x
y

x

y

x x

y

x

d

d

d

d
log

d

d

2

2

1
= ⋅









The given equation is ′′ =
′ ′







y

y

x

y

x
log  (1)

It is of the form y″ =f (x, y′), which does not contain y explicitly.

Putting y′ = p and treating p as a function of x, we have ′′ =y
p

x

d

d
 .

Then equation (1) becomes

 
d

d
log

p

x

p

x

p

x
=







  (2)

Putting p = xev, we have 
d

d

d

d

p

x
e xe

v

x

v v= +  

Then equation (2) becomes

 e x
v

x
e ev v v1+







= ( )d

d
log

i.e.  x
v

x
v

d

d
= −1  (3)

∴ Solution of (3) is

d d
log

v

v

x

x
c

−
= +∫∫ 1

i.e. v = 1 + cx

i.e. log
p

x
cx







= +1  

∴ p
y

x
xe cx= = +d

d

1  (4)
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Solving equation (4), we have

y
x e

c

e

c
c

cx cx

=
⋅

− + ′
+ +1 1

2
 

∴ The required solution of equation (1) is 

 c2y = (cx – 1)e1+cx+c′ 

Example 5.11 Solve the equation 
d

d

d

d

2

2

2
2

1
0

y

x y

y

x
+

−







 =  The given equation is

 ′′ +
−

⋅ ′ =y
y

y
2

1
02  (1)

It is of the form y″ = f(y, y′), which does not contain x explicitly.

Putting y′ = p and treating p as a function of y, we have ′′ =y p
p

y

d

d
.

Then equation (1) becomes

 p
p

y y
p

d

d
+

−
=

2

1
02  (2)

i.e. d
d

p

p y
y+

−
=

2

1
0

∴ solution of (2) is

log p – 2 1og (l – y) = log c
1

i.e.  
d

d

y

x
p c y= = −( )1

2
1  (3)

Solving (3), we have

dy

y
c x c

1
2 1 2

−( )
= +∫  

i.e. 
1

1
1 2−

= +
y

c x c  

∴ The required solution of equation (1) is

y
c x c

= −
+

1
1

1 2

.
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Example 5.12 Solve the equation xy
y

x
x

y

x
y

y

x

d

d

d

d

d

d

2

2

2

0−






 − = .

The given equation xyy″ – xy′2 – yy′ = 0 (1)

is homogeneous of degree 2 in y, y′, y″.

Putting y e
z x

= ∫ d

 and hence ′ = ∫
y ze

z xd

 and ′′ = + ′( ) ∫
y z z e

z x
2

d

 in equation 

(1), we have

e x z z xz z
z xd∫











+ ′( )− −{ } =
2

2 2 0

i.e. xz′ – z = 0 (2)

Solving (2), we get z = c
1
x

∴ y e e
c x x c

x
c

= ∫ =
+

1 1

2

2
2

d

or y AeBx=
2

Example 5.13 Solve the equation y
y

x

y

x

y
y

x

x

d

d

d

d

d

d
2

2

2

21
+







 =

+
.

The given equation yy y yy x′′ + ′ = ′ +2 21  (1)

is homogeneous of degree 2 in y, y′ and y″.

Putting y e
z x

= ∫ d

 and hence ′ = ∫
y ze

z xd

and ′′ = +( ) ∫
y z z e

z x
2 1

d

in equation (1), we 

have

e z z z
z

x

z xd∫











+( )+ −
+















=
2

2 1 2

21
0

i.e. 
d

d

z

x
z

z

x
+ −

+
=2

1
02

2
 (2)

i.e.  − + ⋅
+

=
1 1 1

1
2

2 2z

z

x z x

d

d

i.e. 
d

d

u

x x
u+

+
=

1

1
2

2
 (3)
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where u
z

=
1

Equation (3) is a linear equation of the first order.

I.F.

d

log

=
∫

= = + +

+

+ +( )

e

e x x

x
x

x x

1

1

1
2

2

2

1

Solution of equation (3) is

 

x x u x x dx c

x x x x x c

+ +( ) = + +( ) +

= + + + + +( )+

∫1 2 1

1 1

2 2

1

2 2 2

1log
 

i.e.  z
x x

x x x x x c

x
x x x x x

=
+ +

+ + + + +( )+

= + + + + +

1

1 1

1

2
1 1

2

2 2 2

1

2 2 2

log

d

d
log log(( )+{ }c1

∴ y e

e

x x x x

z x

x x x x x c c

= ∫

=

= + + + +

+ + + + +( )+{ }+

d

log log

log

1 2 1 1

2 2

2 2 2
1 2

1 1++( )+{ } ⋅x c c2

1

1

2

3

 

or  y A x x x x x B2 2 2 21 1= + + + + +( )+{ }log

Example 5.14 Show that the equation x
y

x
x

y

x
y

d

d

d

d

2

2
2 0+ +( ) + = is exact and

hence solve it.

The given equation is xy″ + (x + 2)y′ + y = 0 (1)

Comparing equation (1) with

p
0
y″ + p

1
y′ + p

2
y =0.
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We have  p
0
 = x, p

1
 = x + 2, p

2
 = 1

Now  p
0
″ – p

1
′ + p

2
 = 0 – 1 + 1 = 0

Thus the condition for exactness is satisfied.

Now equation (1) can be rewritten as

(xy″ + y′) + (xy′ + y′) + y′ = 0

i.e. 
d

d

d

d

d

dx
xy

x
xy

y

x
′( ) + ( ) + = 0

or  
d

dx
xy xy y′ + +( ) = 0  (2)

∴ Solution of (2) is x
y

x
x y c

d

d
+ +( ) =1 1

i.e.  
d

d

y

x x
y

c

x
+ +






 =1

1 1

 (3)

Equation (3) is a linear equation of the first order.

 
I.F.

d

log

=
∫

= =

+







+
e
e xe

x
x

x x x

1
1

∴ Solution of equation (3) and hence equation (1) is

i.e.  

y x e c e x c

xye c e c

x x

x x

⋅ ⋅ = +

= +

∫ 1 2

1 2

d

 

Example 5.15 Solve the equation sin
d

d
cos

d

d
sin cosx

y

x
x

y

x
x y x( ) − ( ) + ( ) =

2

2
2

Comparing the given equation with

p
0 
y″ + p

1
y′ + p

2
y = 0, we have

p
0
 = sin x, p

1
 = – cos x and p

2
 = 2 sin x.

Now p″
0
 – p′

1
 + p

2 
= – sin x – sin x + 2 sin x = 0

Hence the given equation is exact. It can be rewritten as

d

d
cos

x
p y p y p y x0 1 0

′+ − ′( ) =
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i.e. 
d

d
sin cos cos cos

x
x y x y x y x( ) ′ − ( ) − ( )  =  

∴ The first solution of the given equation is (sin x) y′ – 2(cos x) y = sin x + c
1

i.e.  y′ – 2(cot x)y = 1 + c
1
 cosec x  (1)

Equation (1) is a linear equation of the first order

 

I.F.

sin

cot d

log sin

= ∫

= =

−

−

e

e
x

x x

x

2

2

2

1
 

∴ Solution of (1) is 
y

x
x c x x c

sin
cot cosec d

2 1

3

2= − + +∫

 = − + − +





 +cot cosec cot log tanx

c
x x

x
c1

2
2 2

i.e. y x x
c

x
x

x c x= − + −





 +sin cos sin log tan cos sin1 2

2

2

2 2

EXERCISE 5(d)

Part A

(Short Answer Questions)

 1. If y = u(x) and y = u(x) v(x) are solutions of the equation y″ + p(x) y′ + q(x) y 

= 0, write down the first order equation satisfied by v(x).

 2. When is a second order linear differential equation said to be in the canonical 

form?

 3. Write down the transformation which will convert the equation y″ + p(x) y′ + 

q(x) y = r(x) into the normal form.

 4. When the equation y″ + p(x) y′ + q(x) y = r(x) is transformed as v″ + f(x) v = 

g(x) by the substitution y v p x dx= − ( )



∫  exp /1 2 , what are the values of 

f(x) and g(x)?

 5. What is the substitution to be made to convert the equation y″ = f(x, y′) and 

y″ = f(y, y′) into first order equation? Indicate the difference in the subsequent 

procedures.

 6. Write down the substitution to be made to convert the equation f(x, y, y′, y″) = 

0 that is homogeneous in y, y′, y″, into a first order equation.

 7. Write down the condition for the equation p
0
(x) y″ + p

1
(x) y′ + p

2
(x) y = r(x) 

to be exact.

 8. If the equation p
0
(x) y″ + p

1
(x) y′ + p

2
(x) y = r(x) is exact, what is its first 

integral?
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 9. How will you identify a second order linear differential equation in y with 

variable coefficients that has (i) y =ex as a solution (ii) y = e–x as a solution?

10. How will you identify a second order linear differential equation in y with 

variable coefficients that has y = x as a solution?

Part B

Solve the following equations by the method of reduction of order, after finding one 

solution of the corresponding homogeneous equation by inspection:

11. x
y

x
x

y

x
x y ex+( ) − +( ) + +( ) =1 2 3 5

2

2

d

d

d

d

12. x
y

x
x

y

x
x y exd

d

d

d

2

2
2 1 1− −( ) + −( ) =

13.  
d

d
cot

d

d
cot sin

2

2
1

y

x
x

y

x
x y e xx− ⋅ − −( ) =

14. x
y

x
x x

y

x
x x y2

2

2
1 2 0

d

d
2

d

d
+ −( ) + −( ) =

15. x
y

x
x

y

x
y−( ) + + =1 1

2

2

d

d

d

d

16. x
y

x
x

y

x
x y

d

d

d

d

2

2
2 1 1 0+ +( ) + +( ) =

17. 1 2 2 6 12
2

2

2−( ) − + = −x
y

x
x

y

x
y x

d

d

d

d
( )

18. 
d

d

d

d

2

2

4

2 1

4

2 1
0

y

x

x

x

y

x x
y−

−
+

−
=

19. x
y

x
x x

y

x
x y x ex2

2

2

2 32 2
d

d

d

d
− +( ) + +( ) =

20. x
y

x
x

y

x
y x x2

2

2

23 3 2 1
d

d

d

d
( )− + = −

Solve the following equations by the method of reduction:

21. 
d

d

d

d

2

2

2

2

2

3 2

2 2 2 2 2
0

y

x

x x

x x

y

x

x x

x x
y+

− −
+









 −

− −
+









 = , given that y = x2 is a 

solution.
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22. 
d

d

d

d

2

2
9 0

y

x
x

y

x
y+ − = , given that y = x3 is a solution.

23. 
d

d
sec

2

2

y

x
y x+ = , given that y = cos x is a solution of the corresponding 

homogeneous equation.

24. 
d

d
tan

2

2
4 4 2

y

x
y x+ = , given that y = sin 2x is a solution of the corresponding 

homogeneous equation.

25. x
y

x
x x x y2

2

2

2 3

4
0

d

d
tan+ − −






 = , given that y

x
x=

1
cos  is a solution.

26. x x
y

x

y

x
xy( )

d

d

d

d
1 3 2 6 02

2

2
+ + − = , given that y

x
=

1
  is a solution.

27. ( )
d

d
x

y

x
y2

2

2
1 6 1− − = , given that y = x – x3 is a solution of the corresponding 

homogeneous equation.

28. cos
d

d

2
2

2
2x

y

x
y⋅ = , given that y = tan x is a solution.

29. sin
d

d

2
2

2
2x

y

x
y= , given that y = cot x is a solution.

30. Find the values of a and b if y = x is a solution of the homogeneous equation 

corresponding to the equation x
y

x
x x

y

x
ax b y x2

2

2

32 1
d

d

d

d
− +( ) + +( ) = . For 

these values of a and b, solve the equation completely.

31. Solve the equation x x x
y

x
x x

y

x
y xsin cos

d

d
cos

d

d
cos+( ) − + =

2

2
0 , given 

that y = xm is a solution of the equation.

Reduce the following equations to the canonical form and hence solve them:

32. x
y

x
x

y

x
x y2

2

2

2 1

4
0

d

d

d

d
+ − +






 =

33. x
y

x
x

y

x
x y2

2

2

2 1

4
0

d

d

d

d
+ + −






 =
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34. x
y

x
x x

y

x
x x y2

2

2

2 22 2 2 0
d

d

d

d
( )− +( ) + + + =

35. 4 4 1 42
2

2

2

3

2x
y

x
x

y

x
x y x x

d

d

d

d
(16 ) sin+ + − =

Reduce the order of the following equations by suitable transformations and hence 

solve them:

36. 
d

d
tan

d

d
sin

2

2
2

y

x
x

y

x
x+ ⋅ = , given that y(0) = – 1 and y′(0) = 0.

37. ( )
d

d

d

d
1 12

2

2
− − =x

y

x
x

y

x
 , given that y(0) = 0 and y 1

4

2

( ) = π
.

38. ( )
d

d

d

d
1 1 02

2

2

2

+ +








 + =x

y

x

y

x

39. 
d

d

d

d

2

2

3

y

x
x

y

x
=











40. y
y

x

y

x

y

x

d

d

d

d

d

d

2

2

2 3

0−








 +









 =

41. y
y

x

y

x

y

x

y

x
⋅ ⋅ =









 +











d

d

d

d

d

d

d

d

22

2

3

2

2

42. y
y

x

y

x

y

x

d

d

d

d

d

d

2

2

2

−








 =

43. 
d

d

d

d

2

2

2 2

2y

x

y

x
a









 +









 = , given that y(0) = – 1 and y′(0) = 0.

44. y
y

x

y

x
xy

d

d

d

d

2

2

2

26−








 =

45. y
y

x

y

x
y

d

d

d

d

2

2

2

22+








 =

46. y
y

x

y

x

d

d

d

d

2

2

2

2 0+








 =
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Show that the following equations are exact and hence solve them

47 02
2

2
. .x

y

x
x

y

x
y

d

d

d

d
+ − =

48 1 3 12
2

2
. −( ) − − =x

y

x
x

y

x
y

d

d

d

d

49 1 3 12
2

2
. x

y

x
x

y

x
y+( ) + + =

d

d

d

d

50 2
2

2
. x

y

x
x

y

x
y e xd

d

d

d
+ +( ) + = −  

5.7  METHOD OF VARIATION OF PARAMETERS

The method of Variation of Parameters is another method for solving a linear 

differential equation, either of the first order or of the second order. If the given 

equation is of the form f(D)y = x, this method can be applied to get the general 

solution, provided the corresponding homogeneous equation, viz. f(D)y = 0 can be 

solved by earlier methods. The procedures to solve linear equations of the first and 

second orders are the following.

Solution of the equation 
d

d

y

x
Py Q+ =  (1)

where P and Q are functions of x.

The homogeneous equation corresponding to equation (1) is

 
d

d

y

x
Py+ = 0  (2)

i.e. 
d

d
y

y
P x= −

∴  
log d log log

d

y P x c ce
P x

= − + = ∫−

∫

∴ solution of Eq. (2) is

 y ce
P x

= ∫− d
 (3)

Now we treat the arbitrary constant c as a function of x and assume that (3) is the 

required solution of (1).

Differentiating (3) with respect to x, we have
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d

d

d

d

d dy

x
c e P

c

x
e

P x P x

= ⋅ ∫ ⋅ −( )+ ⋅ ∫− −
 (4)

Since (3) is assumed as the solution of (1), (3) and (4) satisfy (1)

∴ − ∫ + ∫ + ∫ =
− − −

cPe
c

x
e cPe

P x P x P xd d dd

d
Q

i.e.
 

d

d

dc

x
Qe

P x

= ∫−

∴ c Q e x A
P x

= ⋅ ∫ +∫
d

d.  (5)

Using (5) in (3), the required general solution of (1) is

 

y e Qe x A
Pdx Pdx

= ∫ ∫ ⋅ +












−

∫ d

 ye Q e x A
Pdx Pdx∫ = ⋅ ∫ +∫ .d  (6)

Note  Solution (6) should not be treated as a formula and hence should not be 

directly used in problems. The procedure used in obtaining (6) alone should be used 

in solving problems.

Solution of the equation 
d

d

d

d

2

2

y

x
P

y

x
Qy R+ + =  (1)

where P, Q and R are functions of x or constants.

The homogeneous equation corresponding to equation (1) is

 
d

d

d

d

2

2
0

y

x
P

y

x
Qy+ + =  (2)

Let the general solution of equation (2) be

 y Au Bv= +  (3)

where A and B are arbitrary constants (parameters) and y = u(x) and y = v(x) are 

independent particular solutions of Eq. (2).

Now we treat A and B as functions of x and assume (3) to be the general solution 

of (1). Differentiating (3) with respect to x, we have

 
d

d

y

x
Au Bv A u B v= ′ + ′( )+ ′ + ′( )  (4)
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We choose A and B such that

 A′u + B′v = 0 (5)

Then (4) becomes

 
d

d

y

x
Au Bv= ′ + ′  (6)

Differentiating (6) with respect to x, we have

 
d

d

2

2

y

x
Au Bv A u B v= ′′ + ′′ + ′ ′ + ′ ′  (7)

Since (3) is a solution of Eq. (1), (3), (6) and (7) satisfy (1).

∴ (Au′′ + Bv″ + A′u′ + B′v′) + P(Au′ + Bv′) + Q(Au + Bv) = R

i.e. A (u″ + Pu′ + Qu) + B (v″ + Pv′ + Qv) + A′u′ + B′v′ = R (8)

Since y = u is a solution of Equation (2)

∴ u′′+ Pu′ + Qu = 0

Similarly v′′ + Pv′ + Qv = 0 

Inserting these values in (8), it reduces to

 A′u′ + B′v′ = R (9)

Solving (5) and (9), we get the values of A′ and B′ integrating which, we get the 

values of A and B as functions of x. Using these values in (3), we get the required 

general solution of Eq. (1).

Notes 

 1. To solve Eq. (1) by the method of variation of parameters, one should know 

the complementary function of (1) and remember (5) and (9), solving which 

the values of A and B are obtained.

 2. Equations (5) and (9) hold good, only if the coefficient of 
d

d

2

2

y

x
in the given 

differential equation is unity.

 3. The method is known as variation of parameters, as we treat the parameters 

(arbitrary constants) A and B as varying functions of x.

WORKED EXAMPLE 5(e)

Example 5.1 Solve the equation x
y

x
xy

x

2

2
1 4

1

1
+( ) + =

+
d

d
, by using the method 

of variation of parameters. 
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The homogeneous equation corresponding to the given equation is

i.e.  

x
y

xy
xy

y

y

x

x
x

2

2

1 4 0

4

1
0

+( ) + =

+
+

=

d

d
d  

(1)

Integrating, we get log y + 2 log (x2 + 1) = log c

i.e. y
c

x
=

+( )2
2

1
 is the solution of (1) (2)

Treating c as a function of x and differentiating (2) with respect to x, we have

 
d

d

y

x

x c c x x

x
=

+( ) − ⋅ +( )⋅

+( )

2
2

2

2
4

1 2 1 2

1

'
 (3)

Using (2) and (3) in the given equation, we have

x c cx x

x

cx

x x

2
2

2

2
3

2
2 2

1 4 1

1

4

1

1

1

+( ) − +( )
+( )

+
+( )

=
+

'

i.e. (x2 + l)2 c′ – 4cx (x2 + l) + 4cx (x2 + 1) = (x2 + 1)2

i.e.  c′ = 1 ∴  c = x + k (4)

Using (4) in (2), the required general solution of the given equation is (x2 + 1)2 y = 

x + k, where k is an arbitrary constant.

Example 5.2 Solve the equation 
d

d

y

x
x+  sin 2y = x3 cos2 y, by the method of 

variation of parameters.

The method of variation of parameters can be applied to solve only a linear 

differential equation. The given equation is not linear. We shall convert the given 

equation into a linear equation and then apply the method of variation of parameters. 

Dividing the given equation by cos2 y, we get

 sec
d

d
tan2 32y

y

x
x y x+ =  (1)

Putting tan y = z, Eq. (1) becomes

 
d

d

z

x
x z x+ ⋅ =2 3 , which is linear. (2)

The homogeneous equation corresponding to Eq. (2) is
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d

d

z

x
xz+ =2 0  or 

d
d

z

z
x x+ =2 0  (3)

Integrating, we get log z = log c – x2

i.e. the solution of Eq. (3) is

 z ce x= − 2  (4)

Treating c as a function of x and differentiating (4) with respect to x,

 
d

d

z

x
cxe c ex x= − + ′− −2

2 2

 (5)

Using (4) and (5) in (2),

 – 2cxe–x2 + c′e–x2 + 2cxe–x2 = x3 

i.e.  c′ = x3 ex2

∴  c = ∫ x3 ex2 dx + k

 = +∫
1

2
t e t kt d , on putting x2 = t

 

= −( ) +

= −( ) +

1

2

1

2
12 2

te e k

x e k

t t

x  (6)

Using (6) in (4), the required general solution of Eq. (2) is

z x ke x= −( ) + −1

2
12 2

Therefore the general solution of the given equation is

 tan y x ke x= −( ) + −1

2
12 2

where k is an arbitrary constant

Example 5.3 Solve the equation 
d

d

2 y

x
y x

2
+ =  cos x, by the method of variation of 

parameters.

 
d

d
cos

2 y

x
y x x

2
+ =  (1)
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The homogeneous equation corresponding to Eq. (1) is

 
d

d

2

2

y

x
y+ = 0 (2)

The solution of Eq. (2) is

 y = A cos x + B sin x, (3)

where A and B are parameters.

Treating A and B as functions of x, A′ and B′ are given by

 – A′ sin x + B′ cos x = x cos x (4)

and A′ cos x + B′ sin x = 0 (5)

by Eq. (5) and (9) of the discussion of the method of variation of parameters. 

Solving (4) and (5), we get

 ′ = − −A x x x x xsin cos sinor and
1

2
2  (6)

 ′ = +( )B x x x xcos cos2 1

2
1 2or  (7)

Integrating (6) and (7) with respect to x, we get

 A
x x x

c= −
−

+





+
1

2

2

2

2

4
1

cos sin  (8)

and  B
x x x x

c= + +





+
2

2
4

1

2

2

2

2

4

sin cos
 (9)

Using (8) and (9) in (3), the general solution of Eq. (1) is

or

 

y c
x

x x x

c
x x

x x

= + −





+ + + +







1

2

2

4
2

1

8
2

4 4
2

1

8
2

cos sin cos

sin cos 

= + − + +

= +

sin

cos sin sin sin cos

cos sin

x

y c x c x x
x

x
x

x

y c x c x

1 2

2

1 3

1

8 4 4

++ +
x

x
x

x
2

4 4
sin cos

where has been assumed asc c2 3

1

8
−









 .

i.e.
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Example 5.4 Solve the equation
d

d

2

2

y

x
a y ax+ =2 tan , by the method of variation of 

parameters.

 
d

d

2

2

y

x
a y ax+ =2 tan  (1)

The homogeneous equation corresponding to Eq. (1) is

 
d

d

2

2

y

x
a y+ =2 0  (2)

The solution of Eq. (2) is

 y = A cos ax + B sin ax (3)

If we treat A and B as functions of x, A′ and B′are given by

 – aA′ sin ax + aB′ cos ax = tan ax (4)

and A′ cos ax + B′ sin ax =0 (5)

Solving (4) and (5), we get

 ′ = −A
a

ax

ax

1 2sin

cos
 (6)

and ′ =B
a

ax
1

sin  (7)

Integrating (6) and (7) with respect to x, we get

 A
a

ax ax ax c= − +( )  +
1

2 1sin log sec tan  (8)

and B
a

ax c= − +
1

2 2cos   (9)

Using (8) and (9) in (3), the general solution of Eq. (1) is

i.e. y c
a

ax ax ax ax= + − +( ){ }





1 2

1
sin log sec tan cos

i.e.

 

+ −





= + − ⋅

c
a

ax ax

y c ax c ax
a

ax ax

2 2

1 2 2

1

1

cos sin

cos sin cos log sec ++( )tan ax
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Example 5.5 Solve the equation (2D2 – D – 3) y = 25e–x, by the method of variation 

of parameters.

As the formulae (5) and (9) given in the discussion of the procedure can be applied, 

only if the coefficient of D2y is unity, we rewrite the given equation as

 D D y e x2 1

2

3

2

25

2
− −









 = −  (1)

The homogeneous equation corresponding to (1) is

 D D y2 1

2

3

2
0− −









 =  (2)

The auxiliary equation corresponding to Eq. (2) is

m m

m m

2 1

2

3

2
0

3

2
1 0

− − =

−





+( ) =or

∴ = −m
3

2
1and .

Therefore the solution of Equation (2) is

 y Ae Be
x

x= + −
3

2  (3)

Treating A and B as functions of x, A′ and B′ are given by

 3

2

25

2

3

2′ ⋅ + ′ =− −A e B e e
x

x x  (4)

and  
′ + ′ =−A e B e

x
x

3

2 0
 (5)

Solving (4) and (5), we get

′ = ′ = −
−

A e B
x

5 5
5

2 and

Integrating, we get,

A e c B x c
x

= − + = − +
−

2 5
5

2
1 2and

Using these values in (3), the general solution of Eq. (1) is

y c e e c x e
x x

x= −








 + −( )− −

1

5

2

3

2
22 5
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i.e.  y c e c e e xe
x

x x x= + − −− − −
1

3

2
2 2 5

Example 5.6 Solve the equation x
y

x
x

y

x
y x2 4 6

d

d

d

d

2

2
− + = ( )sin log , by the method 

of variation of parameters.

To make the coefficient of 
d

d

2

2

y

x
 as unity, we rewrite the given equation as

 
d

d

d

d

2

2

y

x x

y

x x
y

x
x− + = ( )4 6 1

2 2
sin log  (1)

The homogeneous equation corresponding to (1) is

 

d

d

d

d
or

d

d

d

d

2

2

2 2

2

2

4 6
0

4 6 0

y

x x

y

x x
y

x
y

x
x

y

x
y

− + =

− + =

 

(2)

Putting x = e′ or log x = t and denoting 
d

dt
by θ, Eq. (2) becomes

 θ θ θ−( ) − +



 =1 4 6 0y

i.e. θ θ2 5 6 0− +( ) =y  (3)

The auxiliary equation corresponding to (3) is

 m2 –5m + 6 = 0

∴  m = 2, 3

Therefore the solution of Eq. (2) is

or 

y Ae Be

y Ax Bx

t t= +

= +

2 3

2 3  (4)

Treating A and B as functions of x, A′ and B′are given by

 2 3
12

2
′ + ′ =A x B x

x
xsin (log )  (5)

and ′ + ′ =A x B x2 3 0  (6)

Solving (5) and (6), we get

′ = ′ =A
x

x B
x

x
1 1

3 4
sin log sin log .and
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∴ A
x

x x c B
x

x x c= − + +∫ ∫
1 1

3 1 4 2sin log sin logd and = d

i.e. A e t t c B e t t ct t= − + = +− −∫ ∫2

1

3

2sin sin ,d and d

on putting log x = t or x = et

i.e. A c
e

t t

B c
e

t t

t

t

= − − −( )

+ − −( )

−

−

1

2

3

5
2

10
3

sin cos

sin cos

and

= 2

i.e.

 

A c
x

x x

B c
x

x x

= + +( )

= − +( )

1 2

2 3

1

5
2

1

10
3

sin log cos log

sin log cos log

and

Using these values of A and B in (4), the required solution of Eq. (1) is

y c
x

x x x= + +( )





1 2

21

5
2 sin log cos log

 
+ − +( )





c
x

x x x2 3

31

10
3 sin log cos log

i.e. y c x c x x x= + + −





 + −






1

2

2

3 2

5

3

10

1

5

1

10
sin log cos log

i.e. y c x c x x x= + + +{ }1

2

2

3 1

10
sin log cos log .

Example 5.7 Solve the equation x
y

x
x

y

x
y x x2

2

2

d

d

d

d
− + = log , by the method of 

variation of parameters.

To make the coefficient of 
d

d

2

2

y

x
 as unity, we rewrite the given equation as

 
d

d

d

d

2

2 2

1 1 1y

x x

y

x x
y

x
x− + = log  (1)

The homogeneous equation corresponding to Eq. (1) is
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d

d 

d

d 

d

d

d

d

2

2 2

2
2

2

1 1
0

0

y

x x

y

x x
y

x
y

x
x

y

x
y

− + =

− + =  

or

 (2)

Putting x = et or t = log x and denoting 
d

d
by

t
θ , Eq. (2) becomes

i.e.  

θ θ θ

θ

−( )− +



 =

−( ) =

1 1 0

1 02

y

y  (3)

Therefore the solution of Eq. (3) is

 y At B e y Ax x Bxt= +( ) = +or log  (4)

Treating A and B as functions of x, A′ and B′ are given by

 ′ +( ) + ′ =A x B
x

x1
1

log log  (5)

and ′ + ′ =A x x B xlog 0  (6)

Solving (5) and (6), we get

 

′ = ′ = − ( )

= = − ( )∫ ∫

A
x

x B
x

x

A
x

x x B
x

x x

1 1

1 1

2

2

log log

log log

and

d and d

i.e.

 

A t t B t t x t

A x c B x

= = − =

= ( ) + = −

∫ ∫d and d on putting log

and

2

2

1

1

2

1

3
log log(( ) +3

2c

Using these values of A and B in (4), the required solution of Eq. (1) is

 y x c x x x c x= ( ) +





+ − ( ) +





1

2

1

3

2

1

3

2log log log

i.e. y c x x c x x x= + + ( )1 2

31

6
log log

∴

∴
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EXERCISE 5(e)

Solve the following equations by the method of variation of parameters.

 1. 
d

d
tan sec

y

x
y x e xx− =

 2. x
y

x
x y e xd

d
+ +( ) = −1

 3. 
d

d
sin

2

2

y

x
y x x+ =

 4. 
d

d
sec

2

2

y

x
a y ax+ =2

 4. 
d

d

d

d
tan

2

2
2 2

y

x

y

x
y e xx− + =

 6. 
d

d

d

d

2

2 2

36 9
1y

x

y

x
y

x
e x− + =

 7. x
y

x
x

y

x
y x

x

2
2

2

2

2
4 2

1d

d

d

d
+ + = +

 8. x
y

x
x

y

x
y x2

2

2

2
2 4 32

d

d

d

d
log − − = ( )

ANSWERS

Exercise 5(a)

 (7) y x C y x C− −( ) − −( ) =2 3 0   (8) y
x

C y x C− −










− −( ) =
2

2
0log

 (9) (y – ex – C) (ey – x – C) = 0 (10) y x C
y

x C− −( ) − −










=log
2

2
0

(11) y px
p

p
y Cx

C

C
= +

−
= +

−1 1
;  (12) y = px – ep; y = Cx – eC

(13) y = px + sin–1 p; y = Cx + sin–1 C (14) y2 = 4x

(15) x2 = 4y (16) (y – x – C ) (x2 + y2 – C) = 0

(17) y
x

C x
y

C− −










+ +








 =

2

4

1
0  (18) (y – Cx2) (3x2 – y2 – C) = 0
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(19) (y – Cx) (x2 – y2 – C) = 0 (20) (xy – C) (x2 – y2 – C) = 0

(21) [(y (1 + cos x) – C] [y (1 – cos x) – C] = 0

(22) sin log sin log− −+ −






 − −







 =1 1 0

y

x
x C

y

x
x C

(23) y
C

x
C y

x
+ = + =2

2

1

4
0;

(24) Eliminant of p between 4y = x2 + p2 and log p x
x

p x
C−( ) =

−
+ .

(25) Eliminant of p between x
n

n
p

C

p

n= −
+

+−

1

1

2
 and the given equation.

(26) Eliminant of p between x
p C

p
y

p C

p
= + = +

2

3 3

2
2

2

 and .

(27) Eliminant of p between x C
p

p
p+ =

−

+
− −log tan

1

12

1  and the given equation.

(28) Eliminant of p between x Ce
e

y C p e p ep
p

p p= − = +( ) + −( )− −

2
1

1

2
1and 

(29) y x
Ce x

= +
−







3

3

1 3
log

(30) 64y = C(C – 4x)2; 4x3 = 27y

(31)  Eliminant of p between y = C – [2 log (p – 1) + 2p + p2] and x = C – [2 

log(p – l) + 2p]

(32) y2 = 2Cx + 4C2 (33) y2 = 2Cx + C3 (34) log y = Cx + C2

(35) y x x
x

x
= − −( ) +

−
−1

1

1tan  (36) y = 1 + log x

(37) y2 =Cx2+ C2  (38) y2 = 2Cx + C2

(39) xy= Cx – C2 (40) ey = Cex + C3

Exercise
 
5(b)

 (1) y e C x C x C x C x
x

= +( ) + +( )












2
1 2 3 4

3

2

3

2
cos sin .

 (2) 
x

e ex x
3

6

1

8
− −  (3) 

x

a
b a x c a x

2
sin cos−( ).  

 (4) 
x

e x
3

2

6

−  (5) (x – 2) e2x

 (6) – e–x cos x (7) −
1

4
2xe xxcos



Engineering Mathematics I5.84

 (8) 
1

2

2x e xx− sin  

 (9) ex (4 sin x + cos x)

(11) y = C
1 
e–x  + C

2 
cos x + C

3 
sin x +  x2 – 2x + xe–x

(12) y C x C x
x

x= + + − +1 2

2

3 3
9

2

81

1

10
cos sin  cosh  

(13) y Ax B e x x x x xx= +( ) + − + − + −( )− 3 26 18 24
1

25
4 2 3 2sin cos

(14) y e Ae Be x x x xx x x= +( )+ −( )+ + +




−4 7 7 21

29
5 5 2 5

1

9

16

9

110

81
cos sin




(15) y C e C e x x x xx x= + + −( )+ − +− −
1 2

2 21

20
2 3 2 3 4cos sin

(16) 
y C x C e C x C x x x

x

= +( )+ +










+ − +
−

1 2
2

3 4

4 33

2

3

2
4

1

657
8

cos sin

ccos sin sin3 3 3x x x−( )−

(17) y = C
1
ex + C

2
e–x + xex + (3 + 3x + 2x2)

(18) y = (C
1
 x2 + C

2
 x + C

3
) e2x + (2x3  – 9x2 + 18x – 15) e4x

  (19) y C C x C e
e

x xx
x

= + +( ) + − +








−
1 2 3

2
2

18

7

3

11

6

(20) y C e C e
x

x xx x= + − −−
1

2

2

2

3

2

9
sinh cosh

(21) y = (C
1
x

 
+ C

2
) cos x + (C

3
x

 
+ C

4
) sin x + (x2 + 4x + 4) e–x

(22) y C e C e e e x x xx x x x= + + + −






+ − +





− −
1 2

4 2 21

18

2

5

7

10

5

2

21

8 


(23) y C e C e e x xx x x= + − +( )1 2

3 2 2cox sin

(24) y C e C e C x C x x xx x= + + + −−
1 2 3 4

1

5
cos sin sin cosh

(25) y e C x C x e xe xx x x= +( )+ −1 22 2
1

4

1

4
2cos sin cos

(26) y C e e C x C x xe ex

x

x x= + +










+ + (− − −
1

2
2 3

3

2

3

2

1

6

1

26
2cos sin siin

cos 

x

x+ )3

(27) y C x C x e x x

x

x= + +






−( )

+ +

1 2
2 3

65
7 4

1

145
12 3 3

cos 2 sin 2 sin cos

cos sin xx( )
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(28) y C e C e x x x xx x= + + −( ) + +( )1 2

3 1

884
10 5 11 5

1

20
2cos sin sin cos .

(29) y Ax B e e x x xx x= +( ) − +( )sin cos2

(30) y A Be
x

x x x
xx= + + −( ) + +−

2 2
sin cos cos

sin

(31) y Ax B e
x

x x x xx= +( ) + +( ) + +( )2

25
3 4

2

125
11 2sin cos cos sin

(32) y Ae Be x x x xx x= + + −( ) +− 1

2
1 2 cos sin .

(33) y C x C x C x C x
x

x x x= +( ) + +( ) + −( )1 2 3 42 2
64

2 2 2cos sin sin cos

(34) y A x B x x x x x= + − + −( ) cos sin cos sin .
1

27
24 2 9 26 22

(35) y A x B x x x x= + − +( )cos sin cos log sec tan .2 2 2 2 2

Exercise 5(c)

 (1) y A x B x= + −log   (2) y x A x B= +( )log

 (3) θ θ2 34 1− +( ) =y e t   (4) θ θ θ3 24 4− +( ) = −y e t

 (5) y Ax Bxn n= + +1.

 (6) y
A

x
x B x C x= +







+


















cos log sin log

3

2

3

2

 (7) x A t B t= + +cos sin 2

 (8) y Ax
B

x
x x x= + + − −4

5

4 21

9

1

7

1

20
log .

 (9) y A x B C x
x

= + +( ) −2 1

9
log

(10) y A x B x Cx x x= +( ) + + ( ) + ( ){ }log sin log cos log .2 1

100
2 7 2

(11) y Ax
B

x
x x= + − ( ) + ( )3

3

3

40

1

72
3sin log sin log .

(12) y
x

A x B x x x= ( ) + ( )  + ( ) − +
1

3 3
1

25

16

25

78

6254

2cos log sin log log log






(13) y A x B x C x D x x

x

= +( ) ( ) + +( ) ( ) + ( ) +

−

log cos log log sin log log

log

2 2

3

(14) y x A x B x x x= +( ) + ( ) − +{ }2 2 4 6log log log

(15) y A x B x C x D x x x= ( ) + ( ) + +  + −( )log log log log3 2 2 4

(16) y Ax
B

x x
x x= + − ( ) + ( ){ }3 1

20
2 2 2sin log cos log
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(17) y
x

A x B x
x

x x= ( )+ ( )+ ( )+ ( ){ }

1

2 2
65

4 7cos log log sin log cos logsin


(18) y A x B x x x= +( ) + +( ) + +( ) +( )+





−
3 2 3 2

1

108
3 2 3 2 1

2 2 2
log

(19) y = A cos log (x + 1) + B sin log (x + 1) + 2 log (x + 1) sin log (x + 1)

(20) x Ae Be t e

y Ae Be t

t t t

t t

= + + − −

=− + − + +

− −

− −

2 7 2

2 7

5

14

31

196

1

12

2

3

1

7

9

98

1

6
ee t2

(21) x Ae
B

e e

y Ae Be

t t t

t t

=− − +

= +

−

−

5

3

4

3

1

3

2

2

(22) x = 2 cosh t; y = sin t – 2 sinh t

(23) x A Bt e Ce
t

y A B Bt e
C

e

t

t

t

t

= +( ) + −

= − + −( ) − −

−

−

3

2

3

2

2

2 6 2
3

1

3

(24) x A B t C t e

y B t C t e

t

t

= + + +

= + −

cos sin

cos sin

9

10

6

10

2

2

(25) x A t B t C t D t t

y A t B

= + + + − +( )

= − −

cos sin cos sin cos

cos sin

2 2 3 3
1

4
1 2

1 2 2 2 22 3 3t C t D t− −cos sin

(26) x At B t Ct D t e t t

y At B t Ct

t= +( ) + +( ) + −( )

=− +( ) +

cos sin sin cos

sin

1

25
4 3

++( ) − +( )D t e t ttcos sin cos
1

25
3 4

(27) x Ae Be C t D t t t

y Ae Be C t

t t

t t

= + + + − + −

=− − + +

−

−

cos sin

cos

3 3
4

9

5

9

37

81

3

2 .

DD t t tsin 3
5

9

4

9

44

81

2+ − + .

Exercise 5(d) 

(11) y A x e
x

e Bex x x= +( ) − +1
4

5
.  

(12) y = ex (c
1
 log x + c

2
 + x).
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(13) y Ae x x Be e xx x x= +( )+ −− 2
1

2
sin cos cos

(14) y = (Ax3 + B)e–x

(15) y = Axe–2x + Be–x

(16) y = e–x (c
1
 log x + c

2
)

(17) y
c

x
x

x
c c x x= +











+
−











− + +1

1 2

2

2

3

4

1

1

3

2
log

(18) y = c
1
e2x + c

2
x

(19) y = c
1 
xex + c

2
x + x (x – 1)ex

(20) y = c
1 
x3 + c

2
x + x3 log x + x2

(21) y = c
1 
xex + c

2
x2

(22) y = c
1 
x3 + c

2
x–3

(23) y= c
1 
cos x + c

2 
sin x + x sin x + cos x log cos x

(24) y= c
1 
cos 2x + c

2 
sin 2x – cos 2x log (sec 2x + tan 2x)

(25) y
x

x A B x x x= + +( ) 
1

cos tan log cos  

(26) y c x c
x

= +( )+ ⋅1

2

21
1

(27) y c x x c x x x
x

x
= −( )+ − − +( ) +

−











−1

3

2

2 34 3 6 3
1

1

1

6
log .

(28) y = c
1
 tan x – c

2
 (1 + x tan x)

(29) y = c
1
 (1 – x cot x) + c

2
 cot x

(30) y Ae B x
xx= +( ) −2

2

2

(31) y = c
1
x – c

2
 cos x

(32) y
x

A x B x= +( )1
cosh sinh

(33) y
x

A x B x= +( )1
cos sin  

(34) y = xex (Ax + B)

(35) y
x

A x B x x= + +








1
2 2

1

3
cos sin sin

(36) y = 2 sin x – sin x cos x – x – 1

(37) y x x= ( ) +− −1

2 4

1
2

sin sin 1π

(38) y
c

x
c

c x c=− + +










+( )+
1

1
1

1
1 1

2 1 2log
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(39) x= c
1
 sin (y – c

2
)

(40) y + c
1
 log y = x + c

2

(41) y = c
2
 e

c x1  + c
1

(42) y = c
2 

e
c x1 + 

1

1c

(43) y = a cos x – (a + 1)

(44) y = c
1
 e

x c x( )3
2+

(45) y2 = c
1
 cosh (2x + c

2
)

(46) y3 = Ax + B

(47) y Ax
B

x
= +

(48) y c x x c x= − + − +−
1

2

2

21 1 1sin 1 / /  

(49) y x x c x c1 12 2

1 2+ = + + +sinh -1

(50) xyex = c
1
 ex + c

2
 – x.

Exercise 5(e)

 (1) y x
x x

ccos
sin 2

= + +
2 4

 

 (2) xy ex = x + c

 (3) y c x c x x x x x= + + −1 2

21

4

1

4
cos sin sin cos

 (4) y c ax c ax
a

ax ax
a

x ax= + + +1 2 2

1 1
cos sin cos log cos sin

 (5) y = ex (c
1
 cos x + c

2
 sin x) – ex cos x log (sec x + tan x)

 (6) y = (c
1
x + c

2
) e3x – e3x log x

 (7) y
c

x

c

x
x

x
x= + + −1 2

2

2

2

1

12

1
log

 (8) y c x c
x

x x= + ⋅ − ( ) + +1

4

2

21
8 12 13log log  
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