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Engineering mathematics (also called mathematical engineering) is a branch of applied mathematics 

concerning mathematical models (mathematical methods and techniques) that are typically used in 

engineering and industry. Along with fi elds like engineering physics and engineering geology—both 

of which may belong to the wider category, i.e., engineering science—engineering mathematics is an 

interdisciplinary subject motivated by engineers’ needs. These needs may be practical, theoretical, 

or other considerations together with their specializations, and deal with constraints effective in 

engineering work.

Historically, engineering mathematics consisted mostly of mathematical analysis (applied analysis), 

most notably differential equations, real analysis, and complex analysis including vector analysis, 

numerical analysis, Fourier analysis, as well as linear-algebra applied probability, outside of analysis. 

Salient Features

 ∑ Complete coverage of the foundational topics in Engineering Mathematics

 ∑ 360° coverage of subject matter: Introduction - History – Pedagogy - Applications

 ∑ Engrossing problem sets based on real life situations

 ∑ 626 solved problems with detailed procedure and solutions 

 ∑ 397 MCQs with answers derived from important competitive examinations

 ∑ Appendix includes chapter-wise list of formulae

 ∑ Other pedagogical aids include

 � Drill and Practice Problems: 993

 � Illustrations: 130

Chapter Organization

The book is divided into sixteen chapters. In Chapter 1, we have discussed matrix algebra which 

includes basic terminology of a matrix, matrix inverse, rank of a matrix, solutions of homogeneous 

and non-homogeneous simultaneous equations, characteristic roots and vectors, quadratic forms, and 

applications of matrices. Chapter 2 deals with successive differentiation and Leibnitz’s theorem, while 

Chapter 3 discusses partial derivatives of higher orders, homogeneous functions including Euler’s 

theorem, Jacobian and its properties, and Taylor’s series. Chapter 4 covers Lagrange’s multipliers 

method to fi nd extreme points of two and more variables, convexity, concavity, and point of infl ection. 

Asymptotes of the curve and curve tracing in Cartesian, polar, and parametric coordinates are 

discussed. 
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In Chapter 5, we present areas, volumes, and surfaces of solids of revolution of curves in Cartesian, 

polar, and parametric coordinates; moment of inertia; improper and multiple integrals; and Dirichlet’s 

integral. In Chapter 6, special functions which include Bessel’s equation, Legendre’s polynomials, 

Beta and Gamma functions, along with their properties, including orthogonal properties, are discussed. 

Chapter 7 covers differential and integral calculus which includes parametric representation of vector 

functions, gradient of a scalar fi eld, divergence of a vector fi eld, curl of a vector function, Green’s 

theorem, Gauss’s theorem, and Stokes’ theorem. In Chapter 8, infi nite series and sequences are 

discussed. 

Chapter 9 deals with Fourier series which includes periodic functions, even and odd functions, 

Euler’s formulae, Fourier series for discontinuous functions, even and odd functions, and Fourier 

sine and cosine series. Chapters 10, 11, and 12 cover the basics of ordinary differential equations, 

integrating factors, exact differential equations and linear differential equations of higher orders with 

constant coeffi cients and the methods to solve these equations. Second-order differential equations and 

various methods to solve them are discussed in Chapter 13. Series solutions which deal with analytic 

functions, ordinary and singular points, power series and its solution including Frobenius method is 

also covered.

Chapters 14 and 15 deal with partial differential equations. In Chapter 14, methods to solve 

homogeneous and nonhomogeneous linear partial differential equations, Clairaut’s equation, Charpit’s 

method, and Monge’s method, along with classifi cations of partial differential equations, are discussed. 

Chapter 15 deals with applications of partial differential equations including wave and heat equations. 

Finally, Chapter 16 presents Laplace and inverse Laplace transformations with different properties 

and theorems and applications of the Laplace transform. Also, Summary and Objective-Type Questions 

are discussed at the end of every chapter.

Online Learning Center

The Online Learning Center can be accessed at https://www.mhhe.com/gupta/em1/2 and contains the 

Instructor Elements: Solutions Manual.
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1.1  INTRODUCTION

In many applications in physics, pure and applied mathematics, and engineering, it is useful to represent 
and manipulate data in tabular or array form. A rectangular array which obeys certain algebraic rules 
of operation is called a matrix. The aim of this chapter is to study the algebra of matrices and algebraic 
structures along with its application to the study of systems of linear equations.

1.2  NOTATION AND TERMINOLOGY

A matrix is a rectangular array of numbers (may be real or complex); its order is the number of rows 
and columns that defi ne the array.

Thus, the matrices

  

1 3 2
1 3 1 3 4

, , 3 2 5 , , [1, 1 , 1], [0]
4 5 5 0 2

7 1 0

x

y i

z

-È ˘ È ˘
È ˘ È ˘ Í ˙ Í ˙ -Í ˙ Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Í ˙ Í ˙-Î ˚ Î ˚

have orders 2 ¥ 2, 2 ¥ 3, 3 ¥ 3, 3 ¥ 1, 1 ¥ 3, and 1 × 1, respectively (the order 2 ¥ 2 is read “two by 
two”).

In general, the matrix A, defi ned by

 A = 

11 12 1

21 22 2

1 2

q

q

p p pq

a a a

a a a

a a a

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

 

 

 

 

is of order p ¥ q. The numbers aij (i = 1, 2, 3, … p, j = 1, 2, 3, … q) are called the entries or elements of 
A; the fi rst subscript defi nes its row position and the second, its column position.

In general, we will use bold letters to represent the matrices, but sometimes it is convenient to 
explicitly mention the order of A or display a typical element by use of the notations Apxq and (aij),

Matrix Algebra
1



1.2 Engineering Mathematics for Semesters I and II

 A3¥3 = (i j) = 
2 3

2 3
3 3

1 1 1

2 2 2

3 3 3
¥

È ˘
Í ˙
Í ˙
Í ˙
Î ˚

 (i = 1, 2, 3, j = 1, 2, 3)

 A2¥4 = (i – j) = 
2 4

0 1 2 3

1 0 1 2 ¥

- - -È ˘
Í ˙- -Î ˚

(i = 1, 2, j = 1, 2, 3, 4)

Consider the system of simultaneous equations:

 3x1 – 2x2 + 3x3 – x4 = 1

 x1 – 2x3 = 2

 x1 + x2 + x4 = –1

Matrix A = 

3 2 3 1

1 0 2 0

1 1 0 1

- -È ˘
Í ˙-Í ˙
Í ˙Î ˚

 is the coeffi cient matrix, and C = 

3 2 3 1 1

1 0 2 0 2

1 1 0 1 1

È ˘- -
Í ˙-Í ˙
Í ˙-Î ˚

 is the 

augmented matrix. The augmented matrix is the coeffi cient matrix with an extra column containing the 
right-hand side constant matrix.

1.3  SPECIAL TYPES OF MATRICES

(i) Square Matrix

A matrix A in which the number of rows is equal to the number of columns is called a square matrix. 
Thus, for the elements aij of a square matrix A = [ ]ij n na ¥  for which i = j, the elements a11, a22, … ann 
are called the diagonal elements and the line along which they lie is called the principal diagonal of 
the matrix. 

Example: A = 

3 3

0 5 4

3 1 7

4 3 1
¥

È ˘
Í ˙-Í ˙
Í ˙Î ˚

 is a square matrix of order 3. The elements 0, –1, 1 constitute the 

principal diagonal of the matrix A.

(ii) Row Matrix–Column Matrix

Any 1 ¥ n matrix which has only one row and n column is called a row matrix or a row vector. 
Similarly, any m ¥ 1 matrix which has m rows and only one column is called a column matrix or a 
column vector.

Example: A = [3, 4, 5, 6]1 ¥ 4 is a row matrix of the type 1 ¥ 4, while B = 

4 1

7

8

9

5 ¥

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 is a column matrix of 

the type 4 ¥ 1.
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(iii) Unit Matrix or Identity Matrix

A square matrix in which each diagonal element is one and each non-diagonal elements is equal to zero 
is called a unit matrix or an identity matrix and is denoted by I. It will denote a unit matrix of order n.

Thus, a square matrix A = [aij] is a unit matrix if 

 aij = 1 if i = j and aij = 0 if i π j.

Example: I4 = 

4 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ¥

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 I3 = 2
2 2

3 3

1 0 0
1 0

0 1 0
0 1

0 0 1

I

¥
¥

È ˘
È ˘Í ˙ = Í ˙Í ˙ Î ˚Í ˙Î ˚

(iv) Null Matrix or Zero Matrix

The m ¥ n matrix whose elements are all zero is called the null matrix or zero matrix of the type m ¥ 
n. It is denoted by Om¥n

Example: O3¥4 = 3 3

3 4

0 0 0 0
0 0 0

0 0 0 0
and 0 0 0

0 0 0 0
0 0 0

0 0 0 0

O ¥

¥

È ˘
È ˘Í ˙
Í ˙Í ˙ = Í ˙Í ˙
Í ˙Í ˙ Î ˚

Î ˚

are matrices of the type 3 ¥ 4 and 3 ¥ 3.

(v) Diagonal Matrix

A square matrix A = [aij]n¥n whose elements above and below the principal diagonal are all zero, i.e., 
aij = 0 " i π j, is called a diagonal matrix. Thus, a diagonal matrix has both upper and lower triangular 
matrices.

Example: A3¥3 = 3 3

3 0 0 5 0 0

0 0 0 and 0 2 0

0 0 6 0 0 3

B ¥

È ˘ È ˘
Í ˙ Í ˙=Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

 are diagonal matrices.

(vi) Scalar Matrix

A diagonal matrix whose diagonal elements are all equal to a scalar is called a scalar matrix.

Example: A4¥4 = 

0 0 0

0 0 0

0 0 0

0 0 0

K

K

K

K

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 is a scalar matrix each of whose diagonal elements is equal to K.
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(vii) Upper and Lower Triangular Matrices

A square matrix A = [aij] is called an upper triangular matrix if aij = 0 whenever i > j. Thus, in an upper 
triangular matrix, all the elements below the principal diagonal are zero. Similarly, a square matrix A 
= [aij] is called a lower triangular matrix if aij = 0 whenever i < j. Thus, in a lower triangular matrix all 
the elements above the principal diagonal are zero.

Example: A = 

3 3
4 4

1 3 4 5
3 5 7

0 2 1 0
0 2 3 and

0 0 3 1
0 0 4

0 0 0 7

B

¥
¥

È ˘
È ˘ Í ˙-Í ˙ Í ˙=Í ˙ Í ˙
Í ˙ Í ˙Î ˚

Î ˚
are upper triangular matrices.

 P = 

3 3
4 4

2 0 0 0
2 0 0

5 3 0 0
1 2 0 and

4 3 6 5
3 5 7

6 1 0 8

Q

¥
¥

È ˘
È ˘ Í ˙
Í ˙ Í ˙=Í ˙ Í ˙
Í ˙ Í ˙Î ˚ -Î ˚

 are lower triangular matrices.

(viii) Orthogonal Matrix

A square matrix A is said to be orthogonal if AT
A = I

Example: A = 

3 3

2 1 2
1

2 2 1
3

1 2 2
¥

-È ˘
Í ˙
Í ˙
Í ˙-Î ˚

(ix) Idempotent Matrix

A matrix A is said to be idempotent if A2 = A

Example: A = 

2 2 4

1 3 4

1 2 3

- -È ˘
Í ˙-Í ˙
Í ˙- -Î ˚

(x) Involuntary Matrix

A matrix A is said to be involuntary if A2 = I, where I is the identity matrix.

Example: A = 

5 8 0

3 5 0

1 2 1

- -È ˘
Í ˙
Í ˙
Í ˙-Î ˚

(xi) Nilpotent Matrix

A matrix A is said to be nilpotent if AK = 0 (null matrix) where K is a positive integer. However, if K is 
a least positive integer for which AK = 0 then K is called the index of the nilpotent matrix.

Example: A = 
2

2

ab b

a ab

È ˘
Í ˙
- -Í ˙Î ˚
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(xii) Trace of a Matrix

Let A be a square matrix of order n. The sum of the elements of A lying along the principal diagonal is 
called the trace of the matrix A. Trace of matrix A is denoted as tr A. 

Thus, if A = ij
n n

a
¥

È ˘Î ˚  then

 tr A = 11 22 33
1

n

ii nn

i

a a a a a
=

= + + + +Â  

Note: Let A and B be two square matrices of order n and l be a scalar then
 (i) tr(lA) = l tr A
 (ii) tr(A + B) = tr A + tr B
 (iii) tr (AB) = tr (BA)

1.4  EQUALITY OF TWO MATRICES

Two matrices A = [aij] and B = [bij] are said to be equal if they are of the same size and the elements in 
the corresponding elements of the two matrices are the same, i.e., aij = bij " i, j.

Thus, if two matrices A and B are equal, we write A = B. If two matrices A and B are not equal, we 
write A π B. If two matrices are not of the same size, they cannot be equal.

Example: If A = 
2 2 2 2

and
a b e f

B
c d g h¥ ¥

È ˘ È ˘
=Í ˙ Í ˙

Î ˚ Î ˚

Then A = B iff a = e, b = f, c = g and d = h.

Example 1  Find the values of a, b, c and d so that the matrices A and B may be equal, where

 A = 
1 3

,
0 5

a b
B

c d

È ˘ È ˘
=Í ˙ Í ˙-Î ˚ Î ˚

Solution The matrices A and B are of the same size, 2 ¥ 2. If A = B then the corresponding elements 
of A and B must be equal.

\ if a = 1, b = 3, c = 0 and d = –5 then we will have A = B

1.5  PROPERTIES OF MATRICES

1.5.1 Addition and Subtraction of Two Matrices

Two matrices A and B are said to be comparable for addition and subtraction, if they are of the same 
order.

Let A = [aij]m¥n and B = [bij]m¥n be the two matrices.
Then the addition of the matrices A and B is defi ned by

 C = [cij] = A + B = [aij] + [bij]

    = [aij + bij]

Thus,  cij = aij + bij; i = 1, 2, 3, … m

    j = 1, 2, 3, … n

The order of the new matrix C is same as that of A and B.
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Similarly,  C = A – B = [aij] – [bij]

 C = [aij – bij]

Thus,  cij = aij – bij; i = 1, 2, 3, … m

           j = 1, 2, 3, … n

Let A = [aij], B = [bij], and c = [cij] be m ¥ n matrices with entries from the complex numbers. Then 
the following properties hold:
 (i) Commutative law for addition, i.e., A + B = B + A.
 (ii) Associative law for addition, i.e., (A + B) + C = A + (B + C).
 (iii) Existence of additive identity, i.e., A + O = O + A = A
  ‘O’ is the additive identity.
 (iv) Existence of inverse, i.e., A + (–A) = O = (–A) + A
  ‘–A’ is the additive inverse of A.

1.5.2 Multiplication of Matrices

Two matrices A = [aij]m¥n and B = [bij]n¥p are said to comparable for the product AB, if the number of 
columns in the matrix A is equal to the number of rows in the matrix B. Then the matrix multiplication 
exists. 

Let A = [aij]m¥n and [bij]n¥p be two matrices.
Then, the product AB is the matrix C = [cij]m¥p such that 

 C = AB

 Cij = [aij] [bij]

 Cij = ai1 b1j + ai2 b2j + … + a1n bnj

 = 
1

1, 2, 3,
for

1, 2, 3,

n

ir rj

r

i m
a b

j n
=

=Ê ˆ
Á ˜=Ë ¯Â  

 

Example 2  If A = 
3 5 2 3

and ,
6 1 1 0

B
È ˘ È ˘

=Í ˙ Í ˙-Î ˚ Î ˚
 fi nd A + B and A – B

Solution

 A + B = 3 5 2 3

6 1 1 0

È ˘ È ˘
+Í ˙ Í ˙-Î ˚ Î ˚

 

 = 
3 2 5 3

6 1 1 0

+ +È ˘
Í ˙+ - +Î ˚

 = 
5 8

7 1

È ˘
Í ˙-Î ˚

Now, A – B = 
3 5 2 3

6 1 1 0

È ˘ È ˘
-Í ˙ Í ˙-Î ˚ Î ˚

 = 
3 2 5 3

6 1 1 0

- -È ˘
Í ˙- - -Î ˚
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 = 
1 2

5 1

È ˘
Í ˙-Î ˚

Example 3  Find the product of matrices A and B, where

 A = 

1 3 0 2 5 1

1 2 1 and = 1 0 2

0 0 2 2 1 3

B

È ˘ È ˘
Í ˙ Í ˙- -Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

Solution

 AB = 

1 3 0 2 5 1

1 2 1 1 0 2

0 0 2 2 1 3

È ˘ È ˘
Í ˙ Í ˙- -Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

 = 

1 5 7

2 4 6

4 2 6

-È ˘
Í ˙- -Í ˙
Í ˙Î ˚

Example 4  Give an example to show that the product of two non-zero matrices may be a zero 
matrix.

Solution Let A = 
1 0 0 0

,
0 0 0 1

B
È ˘ È ˘

=Í ˙ Í ˙
Î ˚ Î ˚

Then A and B are both 2 ¥ 2 matrices. Hence, they are conformable for product. Now,

 A ◊ B = 
1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

+ +È ˘ È ˘ È ˘ È ˘
= =Í ˙ Í ˙ Í ˙ Í ˙+ +Î ˚ Î ˚ Î ˚ Î ˚

1.5.3 Multiplication of a Matrix by a Scalar

Let l be a scalar (real or complex) and A be a given matrix. Then the multiplication of A = [aij] by a 
scalar l is defi ned by

 aA = a[aij] = [a aij].

Thus, each element of the matrix A is multiplied by the scalar l. The size of the matrix so obtained 
will be the same as that of the given matrix A.

Example: 
1 3 5 2 1 2 3 2 5 2 6 10

2
6 1 0 2 6 2 1 2 0 12 2 0

¥ ¥ ¥È ˘ È ˘ È ˘
= =Í ˙ Í ˙ Í ˙¥ ¥ ¥Î ˚ Î ˚ Î ˚

1.6   PROPERTIES OF MATRIX MULTIPLICATION

If A = [aij]m¥n, B = [bjk]n¥p and C = [ckl]p¥q are three matrices with entries from the set of complex 
numbers then
 (i) Associative Law

  (AB) C = A(BC)
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 (ii) Distributive Law

  A(B + C) = AB + AC

 (iii) AB π BA, in general,
  Thus, the Commutative Law is not true for matrix multiplication.

1.7  TRANSPOSE OF A MATRIX

If A = [aij]m¥n matrix then the transpose of a matrix A is denoted by A¢or AT and defi ned as

 A¢ or AT = [aji]n¥m

Thus, a matrix obtained by interchanging the corresponding rows and columns of a matrix A is 
called the transpose matrix of A.

Example: If A = 

3 3

2 0 7

2 5 8

2 1 7
¥

È ˘
Í ˙
Í ˙
Í ˙Î ˚

, the transpose of the matrix A is 

3 3

2 2 2

0 5 1

7 8 7
¥

È ˘
Í ˙
Í ˙
Í ˙Î ˚

Further,

(a) The transpose of a column matrix is a row matrix.

Example: If A = 

3

4
,

5

8

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 then AT = [3 4 5 8].

(b) The transpose of a row matrix is a column matrix. 

Example: If A = [3 4 5 8] then

 A
T = 

3

4
,

5

8

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

(c) If A is p ¥ q matrix then AT
 is an q ¥ p matrix. Therefore, the products of AA

T, AT
A are both defi ned 

and are of order p ¥ p and q ¥ q, respectively.

(d) If AT
 and BT

 denote the transpose of A and B respectively then

 (i) (AT)T = A

 (ii) (A + B)T = AT + BT

 (iii) (AB)T = BT
A

T

1.8  SYMMETRIC AND SKEW-SYMMETRIC MATRICES

(i) Symmetric Matrix

A square matrix A = [aij] is said to be symmetric if AT = A.
Thus, for a symmetric matrix aij = aji " i, j.
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Example: A = 

a h g

h b f

g f c

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 is a symmetric matrix of order 3 ¥ 3.

(ii) Skew-Symmetric Matrix

A square matrix A = [aij] is said to be skew-symmetric if AT = –A. Thus, for a skew-symmetric matrix 
aij = –aji " i, j.

For diagonal elements i = j,
\ aii = –aii or 2aii = 0
or aii = 0
Thus, the diagonal elements are all zero.

Example: A = 

0

0

0

a b

a c

b c

È ˘
Í ˙-Í ˙
Í ˙- -Î ˚

 is a skew-symmetric matrix.

1.9   TRANSPOSED CONJUGATE,  HERMITIAN,  AND 
 SKEW-HERMITIAN MATRICES

(i) Transposed Conjugate of a Matrix

The transpose of the conjugate of a matrix A is called the transposed conjugate of A and it is denoted 
by Aq or by A*.

Thus, the conjugate of the transpose of A is the same as the transpose of the conjugate of A, i.e.,

 ( ) ( )T T
A A A

q= =
If  A = [aij]m¥n then

 A
q = [bji]n¥m, where bji = ijaÈ ˘Î ˚

Example: If A = 

1 2 2 4 2 5

4 5 7 2 7 3

8 5 6 7

i i i

i i i

i

+ - +È ˘
Í ˙- + +Í ˙
Í ˙+Î ˚

Then A
T = 

1 2 4 5 8

2 4 7 2 5 6

2 5 7 3 7

i i

i i i

i i

+ -È ˘
Í ˙- + +Í ˙
Í ˙+ +Î ˚

and  A
q = ( )T

A  = 

1 2 4 5 8

2 4 7 2 5 6

2 5 7 3 7

i i

i i i

i i

- +È ˘
Í ˙+ - -Í ˙
Í ˙- -Î ˚
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Theorem 1 If Aq and Bq be the transposed conjugate of A and B respectively then

 (i) (Aq)q = A

 (ii) (A + B)q = Aq + Bq, A and B being of the same order

 (iii) (lA)q = A
ql , l being any complex number

 (iv) (AB)q = Bq
A

q, A and B being conformable to multiplication

(ii) Hermitian Matrix

A square matrix A = [aij] is said to be Hermitian if Aq = A.

Thus, for a Hermitian matrix aij = , .ij jia a i j= "
If A is a Hermitian matrix then

 aii = ,iia i"  by defi nition

Therefore, aii is real for all i. Thus, every diagonal element of a Hermitian matrix must be real.

Example: A = 
a b ic

b ic d

+È ˘
Í ˙-Î ˚

 and 

 B = 

1 2 3 4

2 0 5 4

3 4 5 4 3

i i

i i

i i

+ -È ˘
Í ˙- -Í ˙
Í ˙+ +Î ˚

 are Hermitian matrices.

(iii) Skew-Hermitian Matrix

A square matrix A = [aij] is said to be skew-Hermitian if Aq = –A.
Thus, a matrix is skew-Hermitian if aij = – " , .jia i j

If A is a skew-Hermitian matrix then

 = "ii iia a i

\ + = 0ii iia a

 Thus, the diagonal elements of a skew-Hermitian matrix must be pure imaginary numbers or zero.

Example: A = 
0 3 2 2 3 5

and
3 2 0 3 5 0

i i i
B

i i

- - - +È ˘ È ˘
=Í ˙ Í ˙- - +Î ˚ Î ˚

 are skew-Hermitian matrices.

We observe the following notes:

 1. If A is a symmetric (skew-symmetric) matrix then kA is also a symmetric (skew-symmetric) 
matrix, where k is any constant.

 2. If A is a Hermitian matrix then iA is a skew-Hermitian matrix.
 3. If A is a skew-Hermitian matrix then iA is a Hermitian matrix.
 4. If A and B are symmetric (skew-symmetric) then (A + B) is also asymmetric (skew-symmetric) 

matrix.
 5. If A be any square matrix then A + AT is symmetric and A – AT is a skew-symmetric matrix.
 6. If A be any square matrix then A + Aq, AA

q, Aq
A are all Hermitian and A – Aq is a skew-

Hermitian matrix.
 7. Every real symmetric matrix is Hermitian.
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Example 5  Give an example of a matrix which is skew-symmetric but not skew-Hermitian.

Solution Let A = 
0 2 3

2 3 0

i

i

+È ˘
Í ˙- -Î ˚

 be a square matrix of order 2 ¥ 2.

Then A
T = 0 2 3 0 2 3

2 3 0 2 3 0

i i
A

i i

- - +È ˘ È ˘
= - = -Í ˙ Í ˙+ - -Î ˚ Î ˚

Thus, the matrix A is skew-symmetric.

Again, A
q = 

0 2 3
( )

2 3 0
T i

A A
i

- +È ˘
= π -Í ˙-Î ˚

So that, the matrix A is not skew-Hermitian.

Example 6  Show that every square matrix is uniquely expressible as the sum of a symmetric 
matrix and a skew-symmetric matrix.

Solution Let A be any square matrix we can write 

 A = 1 1
( ) ( )

2 2
T T

A A A A+ + -

 A = P + Q (say)

where P = 1 1
( ) and ( )

2 2
T T

A A Q A A+ = -

Now, P
T = 1

( )
2

T

T
A A

È ˘+Í ˙Î ˚

 = l lÈ ˘+ =Î ˚∵
1

( ) ( )
2

T T T T
A A A A

 P
T = +È ˘ È ˘+ + =Î ˚ Î ˚∵

1
( ) ( )

2
T T T T T T

A A A B A B

 = 
1

( )
2

T
A A+

 = 
1

( )
2

T
A A P+ =

Thus, P is a symmetric matrix.

Again,  Q
T = 1

( )
2

T

T
A A

È ˘-Í ˙Î ˚

 = 1 1
( ) ( )

2 2
T T T T T

A A A AÈ ˘- = -Î ˚

 = 
1

[ ]
2

T
A A-
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 = 
1

[ ]
2

T
A A- -

 Q
T = –Q

Therefore, Q is a skew-symmetric matrix.
Thus, we have expressed the square matrix A as the sum of a symmetric and skew-symmetric 

matrix. 
Now, to prove that the representation is unique, let A = R + S be another such representation of A, 

where R is symmetric and S is skew-symmetric. Then to prove that R = P and S = Q,

we have A
T = (R + S)T

 = RT + ST

 = R – S(Q RT = R and ST = –S)

Therefore,  A + AT = 2R and A – AT = 2 S

This implies that R = 
1

( )
2

T
A A+  and 

1
( )

2
T

S A A= - .

Thus, R = P and S = Q.
Therefore, the representation is unique.

Example 7  Show that every square matrix is uniquely expressible as the sum of a Hermitian 
matrix and a skew-Hermitian matrix.

Solution If A is any square matrix then A + Aq is a Hermitian matrix and A – Aq is a skew-Hermitian 
matrix.

Therefore, 
1

( )
2

A A
q+  is a Hermitian and 

1
( )

2
A A

q-  is a skew-Hermitian matrix.

Now,  A = 
1 1

( ) ( )
2 2

A A A A
q q+ + -

  A = P + Q (say)

where P = 1
( )

2
A A

q+  is Hermitian and q = 
1

( )
2

A A
q-  is a skew-Hermitian matrix.

Thus, every square matrix can be expressed as the sum of a Hermitian matrix and a skew-Hermitian 
matrix.

Now, to prove that A = R + S be the another representation is unique, where R is Hermitian and S is 
skew-Hermitian.

Therefore,  A
q = (R + S)q

 = Rq + Sq

 = R – S (∵ Rq = R and Sq = –S)

\ R = 
1 1

( ) and ( )
2 2

A A P S A A Q
q q+ = = - =

Thus, the representation is unique.
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1.10   ELEMENTARY TRANSFORMATION OR ELEMENTARY 
OPERATIONS

The following transformations are called elementary transformations of a matrix.
 (i) Interchanging of rows (columns)
 (ii) Multiplication of a row (column) by a non-zero scalar
 (iii) Adding/subtracting K multiples of a row (column) to another row (column)

Notation

The following row (column) transformations will be denoted by the following symbols.
 (i) Ri ¤ Rj (Ci ¤ Cj) for the interchange of the ith and j

th row (column)
 (ii) Ri Æ KRi (Ci Æ KCi) for multiplication of the ith row (column) by K
 (iii) Ri Æ Ri + a Rj (Ci Æ Ci + a Cj) for addition to the ith row (column), a times the jth row 

(column)

1.11  THE INVERSE OF A MATRIX

The inverse of an n ¥ n matrix A = [Aij] is denoted by A–1 and is an n ¥ n matrix such that

 AA
–1 = A–1

A = In

where I is the n ¥ n unit matrix.
If A has an inverse, then A is called a non-singular matrix.
If A has no inverse, then A is called a singular matrix.

1.11.1 The Inverse of a Square Matrix is Unique

Proof Let B and C are inverse of A then

 AB = BA = In (1)

And AC = CA = In (2)

From (1), we have AB = In

Premultiplication with C gives

 C(AB) = CIn

 C(AB) = C (3)

From (2), we have CA = In

Post-multiplication with B, gives

 (CA)B = In B = B (4)

Since  C(AB) = (CA)B

Therefore, from (3) and (4), we have B = C.
Hence, the inverse of a square matrix is unique.

1.11.2 Some Special Points on Inverse of a Matrix

 (i) If A be any n-rowed square matrix, then

 (Adj A)A = A(Adj A) = |A| In,

  where In is the n-rowed unit matrix.
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 (ii) The necessary and suffi cient condition for a square matrix A to possess the inverse is that 
|A| π 0.

 (iii) If A be an n ¥ n non-singular matrix then

 (A¢)–1 = (A–1)¢, where ( ¢ ) (desh) denote, the transpose.

 (iv) If A be an n ¥ n non-singular matrix then

 (A–1)q = (Aq)–1

 (v) If A, B be two n-rowed non-singular matrices then AB is also non-singular and

 (AB)–1 = B–1
A

–1

 (vi) If A is a non-singular matrix then det(A–1) = (det A)–1. 
 (vii) If the matrices A and B commute then A–1 and B–1 also commute.
 (viii) If A, B, C be three matrices conformable for multiplication then (ABC)–1 = C–1

 ◊ B–1
 ◊ A–1.

 (ix) If the product of two non-zero square matrices is a zero matrix then both must be singular 
matrices.

 (x) If A be an n ¥ n matrix then

 |adj A| = |A|n–1

 (xi) If A is a non-singular matrix then

 adj adj A = |A|n–2 A

 (xii) If A and B are square matrices of the same order then adj (AB) = adj B. adj A

1.11.3 Method of Finding the Inverse by Elementary Operations

The elementary row transformations which reduce a given square matrix A to the unit matrix I, when 
we applied the above transformations to the unit matrix I. Give the inverse of matrix A, i.e., A–1.

To fi nd A–1, write the matrix A and I side by side and then applying the same row operations on both 
sides. We get A is reduced to I, the other matrix represents A–1.

Example 8  Using row elementary operation, fi nd the inverse of the matrix A, where

 A = 

3 3

3 3 4

2 3 4

0 1 1
¥

-È ˘
Í ˙-Í ˙
Í ˙-Î ˚

Solution Writing the given matrix A side by side with the unit matrix of the same order as A, we 
have

 [A | I3] = 

3 3 4 1 0 0

2 3 4 0 1 0

0 1 1 0 0 1

-È ˘
Í ˙-Í ˙
Í ˙-Î ˚

  1 1 2

1 0 0 1 1 0

2 3 4 0 1 0

0 1 1 0 0 1

R R R

-È ˘
Í ˙Æ - -Í ˙
Í ˙-Î ˚
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  2 2 2

1 0 0 1 1 0

2 0 3 4 2 3 0

0 1 1 0 0 1

R R R

-È ˘
Í ˙Æ - - -Í ˙
Í ˙-Î ˚

  

-È ˘
Í ˙Æ - - -Í ˙
Í ˙-Î ˚

2 2 3

1 0 0 1 1 0

4 0 1 0 2 3 4

0 1 1 0 0 1

R R R

  -
-È ˘

Í ˙ È ˘Æ + - - =Í ˙ Î ˚
Í ˙- -Î ˚

1
3 3 2 3

1 0 0 1 1 0

0 1 0 2 3 4

0 0 1 2 3 3

R R R I A

Hence, A
–1 = 

1 1 0

2 3 4

2 3 3

-È ˘
Í ˙- -Í ˙
Í ˙- -Î ˚

Example 9  Using row elementary operations, fi nd the inverse of the given matrix A, where

 A = 

4 4

0 2 1 3

1 1 1 2

1 2 0 1

1 1 2 6 ¥

È ˘
Í ˙- -Í ˙
Í ˙
Í ˙
-Î ˚

Solution

 [A | I4] = 

0 2 1 3 1 0 0 0

1 1 1 2 0 1 0 0

1 2 0 1 0 0 1 0

1 1 2 6 0 0 0 1

È ˘
Í ˙- -Í ˙
Í ˙
Í ˙
-Î ˚

  
1 2

1 1 1 2 0 1 0 0

0 2 1 3 1 0 0 0

1 2 0 1 0 0 1 0

1 1 2 6 0 0 0 1

R R

- -È ˘
Í ˙
Í ˙´
Í ˙
Í ˙
-Î ˚

  

- -È ˘
Í ˙Æ - Í ˙
Í ˙Æ + -
Í ˙
Î ˚

3 3 1

4 4 1

1 1 1 2 0 1 0 0

0 2 1 3 1 0 0 0

0 1 1 3 0 1 1 0

0 2 1 4 0 1 0 1

R R R

R R R

  
2 2 3

1 1 1 2 0 1 0 0

0 1 0 0 1 1 1 0

0 1 1 3 0 1 1 0

0 2 1 4 0 1 0 1

R R R

- -È ˘
Í ˙-Í ˙Æ -
Í ˙-
Í ˙
Î ˚
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  3 3 2

4 4 2

1 1 1 2 0 1 0 0

0 1 0 0 1 1 1 0

2 0 0 1 3 1 2 2 0

0 0 1 4 2 1 2 1

R R R

R R R

- -È ˘
Í ˙Æ - -Í ˙
Í ˙Æ - - -
Í ˙

- -Î ˚

  
4 4 3

1 1 1 2 0 1 0 0

0 1 0 0 1 1 1 0

0 0 1 3 1 2 2 0

0 0 0 1 1 1 0 1

R R R

- -È ˘
Í ˙-Í ˙Æ -
Í ˙- -
Í ˙

-Î ˚

  3 3 4

1 1 4

1 1 1 0 2 3 0 2

3 0 1 0 0 1 1 1 0

2 0 0 1 0 2 5 2 3

0 0 0 1 1 1 0 1

R R R

R R R

- -È ˘
Í ˙Æ - -Í ˙
Í ˙Æ + - -
Í ˙

-Î ˚

  

- -È ˘
Í ˙-Í ˙Æ +
Í ˙- -
Í ˙

-Î ˚

1 1 3

1 1 0 0 0 2 2 1

0 1 0 0 1 1 1 0

0 0 1 0 2 5 2 3

0 0 0 1 1 1 0 1

R R R

  1
1 1 2 4

1 0 0 0 1 3 3 1

0 1 0 0 1 1 1 0

0 0 1 0 2 5 2 3

0 0 0 1 1 1 0 1

R R R I A
-

- - -È ˘
Í ˙-Í ˙ È ˘Æ - = Î ˚Í ˙- -
Í ˙

-Î ˚

Hence, A
–1 = 

1 3 3 1

1 1 1 0

2 5 2 3

1 1 0 1

- - -È ˘
Í ˙-Í ˙
Í ˙- -
Í ˙
-Î ˚

EXERCISE 1.1

 1. Find the inverses of the following matrices by elementary transformation:

 (i) 

1 3 3

1 4 3

1 3 4

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 (ii) 

2 1 2

2 2 1

1 2 2

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 (iii) 

1 1 1

4 1 0

8 1 1

-È ˘
Í ˙
Í ˙
Í ˙Î ˚

 (iv) 

1 2 3

2 4 5

3 5 6

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 (v) 

1 1 3

1 3 3

2 4 4

È ˘
Í ˙-Í ˙
Í ˙- - -Î ˚

 (vi) 

3 13 17

5 7 1

8 3 11

È ˘
Í ˙
Í ˙
Í ˙Î ˚
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Answers

 (i) 

7 3 3

1 1 0

1 0 1

- -È ˘
Í ˙-Í ˙
Í ˙-Î ˚

 (ii) 

2 2 3
1

2 2 2
5

2 3 2

- -È ˘
Í ˙-Í ˙
Í ˙-Î ˚

 (iii) 

1 2 1

4 7 4

4 9 5

-È ˘
Í ˙- -Í ˙
Í ˙- -Î ˚

 (iv) 

1 3 2

3 3 1

2 1 0

-È ˘
Í ˙- -Í ˙
Í ˙-Î ˚

 (v) 

12 4 6

5 1 3

1 1 1

È ˘
Í ˙- - -Í ˙
Í ˙- - -Î ˚

 (vi) 

74 92 106
1

47 103 82
1086

41 95 44

-È ˘
Í ˙-Í ˙
Í ˙-Î ˚

1.12  ECHELON FORM OF A MATRIX

A matrix A is said to be in Echelon form if the following hold:
 (i) Every row of matrix A, which has all its entries zero occurs below every row which has a non-

zero entry.
 (ii) The fi rst non-zero entry in each non-zero row is equal to one.
 (iii) the number of zeros preceding the fi rst non-zero element in a row is less than the number of 

such zero in the succeeding row.

Example: The matrix

 A = 

1 3 2 6

0 1 4 2

0 0 0 5

0 0 0 0

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 is an Echelon form.

1.13  RANK OF A MATRIX

The rank of a matrix A is said to be ‘r’ if it possesses the following two properties:
 (i) There is at least one non-zero minor of order ‘r’ whose determinant is not equal to zero.
 (ii) If the matrix A contains any minor of order (r + 1) then the determinant of every minor of A of 

order r + 1, should be zero.
  Thus, the rank of a matrix is the largest order of a non-zero minor of the matrix

The rank of a matrix A is denoted by r(A).
The rank of a matrix in Echelon form is equal to the number of non-zero rows of the matrix, i.e.,

 r(A) = Number of non-zeros in the Echelon form of the matrix.

Some Important Results

 (i) Rank of A and AT is same.
 (ii) Rank of a null matrix is zero
 (iii) Rank of a non-singular matrix A of order n is n.
 (iv) Rank of an identity matrix of order n is n.
 (v) For a rectangular matrix A of order m ¥ n, rank of A £ min (m, n), i.e., rank cannot exceed the 

smaller of m and n.
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 (vi) For an n-square matrix A, if r(A) = n then |A| π 0, i.e., matrix A is non-singular.
 (vii) For any square matrix, if r(A) < n then |A| = 0, i.e., matrix A is singular.
 (viii) The rank of a product of two matrices cannot exceed the rank of either matrix.

1.14  CANONICAL FORM (OR NORMAL FORM) OF A MATRIX

The normal form of a matrix A of order m × n of rank ‘r’ is one of the forms

  
0

[ ], , [ 0],
0 0 0
r r

r r

I I
I I

È ˘ È ˘
Í ˙ Í ˙
Î ˚ Î ˚

where Ir is an identity matrix of order r. By the application of a number of elementary operations, a 
matrix of rank r can be reduced to normal form. Then the rank of matrix A is r. 

Example 10  Reduce the matrix A to echelon form and, hence, fi nd its rank, where 

 A = 

1 2 1 2

1 3 2 2

2 4 3 4

3 7 4 6

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

Solution

  A = 

1 2 1 2

1 3 2 2

2 4 3 4

3 7 4 6

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

  

2 2 1

3 3 1

4 4 1

1 2 1 2

2 0 1 1 0

3 0 0 1 0

0 1 1 0

R R R

R R R

R R R

Æ - È ˘
Í ˙Æ - Í ˙
Í ˙Æ -
Í ˙
Î ˚

  
4 4 3

1 2 1 2

0 1 1 0

0 0 1 0

0 0 0 0

R R R

È ˘
Í ˙
Í ˙Æ -
Í ˙
Í ˙
Î ˚

The last equivalent matrix is in echelon form. The number of non-zero rows in this matrix is 3.
Therefore, r(A) = number of non-zero rows in echelon form of the matrix

 r(A) = 3

Example 11  Determine the rank of the given matrix.

 A = 

1 3 4 3

3 9 12 9

1 3 4 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚



Solution

 A = 

1 3 4 3

3 9 12 9

1 3 4 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚

  
2 2 1

3 3 1

3 1 3 4 3

0 0 0 0

0 0 0 2

R R R

R R R

Æ - È ˘
Í ˙Æ - Í ˙
Í ˙-Î ˚

  
2 3 1 3 4 3

0 0 0 2

0 0 0 0

R R´ È ˘
Í ˙-Í ˙
Í ˙Î ˚

The last equivalent matrix is in echelon form. The number of non-zero rows in this matrix is 2. 
Therefore, r(A) = 2 

Example 12  Determine the values of K such that the rank of the matrix A is 3, where.

 A = 

1 1 1 0

4 4 3 1

2 2 2

9 9 3

K

K

-È ˘
Í ˙-Í ˙
Í ˙
Í ˙
Î ˚

Solution  We have

 A = 

1 1 1 0

4 4 3 1

2 2 2

9 9 3

K

K

-È ˘
Í ˙-Í ˙
Í ˙
Í ˙
Î ˚

  

2 2 1

3 3 1

4 4 1

4 1 1 1 0

2 0 0 1 1

9 2 0 4 2

0 0 9 3

R R R

R R R

R R R K

K

Æ - -È ˘
Í ˙Æ - Í ˙
Í ˙Æ - -
Í ˙

+Î ˚

  

3 3 2

4 4 2

4 1 1 1 0

3 0 0 1 1

2 0 0 2

0 0 6 0

R R R

R R R

K

K

Æ - -È ˘
Í ˙Æ - Í ˙
Í ˙- -
Í ˙

+Î ˚

  

4 3 1 1 1 0

0 0 1 1

0 0 6 0

2 0 0 2

R R

K

K

´ -È ˘
Í ˙
Í ˙
Í ˙+
Í ˙

- -Î ˚
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 (i) If K = 2, |A| = 1.0.8. – 2 = 0, the rank of the matrix A = 3.
 (ii) If K = –6, number of non-zero rows is 3, the rank of matrix A is 3.

Example 13  Reduce the matrix A = 

1 2 1 0

2 4 3 0

1 0 2 8

È ˘
Í ˙-Í ˙
Í ˙-Î ˚

 to canonical (normal) form. Hence, fi nd 

the rank of A.

Solution

 A = 

1 2 1 0

2 4 3 0

1 0 2 8

È ˘
Í ˙-Í ˙
Í ˙-Î ˚

  
2 2 1

3 3 1

2 1 0 0 0

2 8 5 0

1 2 1 8

C C C

C C C

Æ - È ˘
Í ˙Æ - -Í ˙
Í ˙- -Î ˚

  
2 2 1

3 3 1

2 1 0 0 0

0 8 5 0

0 2 1 8

R R R

R R R

Æ + È ˘
Í ˙Æ - Í ˙
Í ˙- -Î ˚

  
2 2

1
1 0 0 0

8
0 1 5 0

1
0 1 8

4

C CÆ È ˘
Í ˙
Í ˙
Í ˙

- -Í ˙Î ˚

  

3 3 25 1 0 0 0

0 1 0 0

1 9
0 8

4 4

C C CÆ - È ˘
Í ˙
Í ˙
Í ˙

- -Í ˙Î ˚

  
3 34 1 0 0 0

0 1 0 0

0 1 9 32

R RÆ È ˘
Í ˙
Í ˙
Í ˙- -Î ˚

  
3 3 2 1 0 0 0

0 1 0 0

0 0 9 32

R R RÆ + È ˘
Í ˙
Í ˙
Í ˙-Î ˚

  3 3
1

1 0 0 0
9

0 1 0 0

0 0 1 32

C CÆ È ˘
Í ˙
Í ˙
Í ˙-Î ˚
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4 4 332 1 0 0 0

0 1 0 0

0 0 1 0

C C CÆ + È ˘
Í ˙
Í ˙
Í ˙Î ˚

  3 0IÈ ˘Î ˚ 

Hence, the rank of the matrix A = 3 (number of non-zero rows in I3).

Example 14  Reduce the matrix A = 

1 1 2 3

4 1 0 2

0 3 0 4

0 1 0 2

- -È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 to the normal form 
0

0 0
rIÈ ˘

Í ˙
Î ˚

 and, hence, 

fi nd its rank.

Solution The given matrix is A = 

1 1 2 3

4 1 0 2

0 3 0 4

0 1 0 2

- -È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

  

2 2 1

3 3 1

4 4 1

1 0 0 0

2 4 5 8 14

3 0 3 0 4

0 1 0 2

C C C

C C C

C C C

Æ + È ˘
Í ˙Æ - -Í ˙
Í ˙Æ +
Í ˙
Î ˚

  2 2 1

1 0 0 0

0 1 0 2
4

0 3 0 4

0 5 8 14

R R R

È ˘
Í ˙
Í ˙Æ -
Í ˙
Í ˙

-Î ˚

  

4 4 22 1 0 0 0

0 1 0 0

0 3 0 2

0 5 8 4

C C CÆ - È ˘
Í ˙
Í ˙
Í ˙-
Í ˙

-Î ˚

  

3 3 2

4 4 2

3 1 0 0 0

5 0 1 0 0

0 0 0 2

0 0 8 4

R R R

R R R

Æ - È ˘
Í ˙Æ - Í ˙
Í ˙-
Í ˙

-Î ˚

  

3 4 1 0 0 0

0 1 0 0

0 0 2 0

0 0 4 8

C C´ È ˘
Í ˙
Í ˙
Í ˙-
Í ˙

-Î ˚
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  3 3

4 4

1 0 0 01
0 1 0 03

1 0 0 1 0
8 0 0 2 1

C C

C C

È ˘
Í ˙´
Í ˙
Í ˙Æ - Í ˙

-Î ˚

  

´ + È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

∼

4 4 3

4

2 1 0 0 0

0 1 0 0
[ ]

0 0 1 0

0 0 0 1

R R R

I

which is in normal form.
Hence, the rank of the matrix A is 4.

Example 15  Find two non-singular matrices P and Q such that PAQ is in the normal form, 
where

 A = 

1 1 1

1 1 1

3 1 1

È ˘
Í ˙- -Í ˙
Í ˙Î ˚

Solution We write A = I3AI3, i.e.,

  

1 1 1 1 0 0 1 0 0

1 1 1 0 1 0 0 1 0

3 1 1 0 0 1 0 0 1

—————
Pre factor____________________

Post factor

A

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- - =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

≠≠ ≠
≠

Now, we apply the elementary operations on the matrix A (left-hand side of the above equation). 
Until it is reduced to the normal form, every elementary row operation will also be applied to the 
prefactor and every elementary column operation to the post-factors of the above equation.

Performing R2 Æ R2 – R1, R2 Æ R3 – 3R1, we get

  

1 1 1 1 0 0 1 0 0

0 2 2 1 1 0 0 1 0

0 2 2 3 0 1 0 0 1

A

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- - = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚

  C2 Æ C2 – C1, C3 Æ C3 – C1, we get

  

1 0 0 1 0 0 1 1 1

0 2 2 1 1 0 0 1 0

0 2 2 3 0 1 0 0 1

A

- -È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- - = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚
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2 2

1

2
R RÆ -

  

1 0 0 1 0 0 1 1 1

0 1 1 1/2 1/2 0 0 1 0

0 2 2 3 0 1 0 0 1

A

- -È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚

  C3 Æ C3 – C2

  

1 0 0 1 0 0 1 1 0

0 1 0 1/2 1/2 0 0 1 1

0 2 0 3 0 1 0 0 1

A

-È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- -Î ˚ Î ˚ Î ˚

  R3 Æ R3 + 2R2

  

1 0 0 1 0 0 1 1 0

0 1 0 1/2 1/2 0 0 1 1

0 0 0 2 1 1 0 0 1

A

-È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- -Î ˚ Î ˚ Î ˚

 PAQ = 
2 0

0 0

IÈ ˘
Í ˙
Î ˚

 

where P = 

1 0 0 1 1 0

1/2 1/2 0 , 0 1 1

2 1 1 0 0 1

Q

-È ˘ È ˘
Í ˙ Í ˙- = -Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

, the rank of matrix A is 2.

Example 16  Find the two non-singular matrices P and Q such that the normal form of A is PAQ 

where A = 

3 4

1 3 6 1

1 4 5 1

1 5 4 3
¥

-È ˘
Í ˙
Í ˙
Í ˙Î ˚

. Hence, fi nd its rank.

Solution Consider

 A = I3AI4

  

1 0 0 0
1 3 6 1 1 0 0

0 1 0 0
1 4 5 1 0 1 0

0 0 1 0
1 5 4 3 0 0 1

0 0 0 1

A

È ˘
-È ˘ È ˘ Í ˙

Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚

Î ˚

  R2 Æ R2 – R1, R3 Æ R3 – R1
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1 0 0 0
1 3 6 1 1 0 0

0 1 0 0
0 1 1 2 1 1 0

0 0 1 0
0 2 2 4 1 0 1

0 0 0 1

A

È ˘
-È ˘ È ˘ Í ˙

Í ˙ Í ˙ Í ˙- = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙- - Í ˙Î ˚ Î ˚

Î ˚

  C2 Æ C2 – 3C1, C3 Æ C3 – 6C1, C4 Æ C4 + C1

  

1 3 6 1
1 0 0 0 1 0 0

0 1 0 0
0 1 1 2 1 1 0

0 0 1 0
0 2 2 4 1 0 1

0 0 0 1

A

- -È ˘
È ˘ È ˘ Í ˙
Í ˙ Í ˙ Í ˙- = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙- - Í ˙Î ˚ Î ˚

Î ˚

  R3 Æ R3 – 2R2

  

1 3 6 1
1 0 0 0 1 0 0

0 1 0 0
0 1 1 2 1 1 0

0 0 1 0
0 0 0 0 1 2 1

0 0 0 1

A

- -È ˘
È ˘ È ˘ Í ˙
Í ˙ Í ˙ Í ˙- = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙- Í ˙Î ˚ Î ˚

Î ˚

  C3 Æ C3 + C2, C4 Æ C4 – 2C2

  

1 3 9 7
1 0 0 0 1 0 0

0 1 1 2
0 1 0 0 1 1 0

0 0 1 0
0 0 0 0 1 2 1

0 0 0 1

A

- -È ˘
È ˘ È ˘ Í ˙-Í ˙ Í ˙ Í ˙= -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙- - Í ˙Î ˚ Î ˚

Î ˚

  

2

1 3 9 7
1 0 0

0 0 1 1 2
1 1 0

0 0 0 0 1 0
1 2 1

0 0 0 1

I
A

- -È ˘
È ˘ Í ˙-È ˘ Í ˙ Í ˙= -Í ˙ Í ˙ Í ˙Î ˚ Í ˙- Í ˙Î ˚

Î ˚

\ PAQ = 
2 0

0 0

IÈ ˘
Í ˙
Î ˚

, 

where P = 

1 3 9 7
1 0 0

0 1 1 2
1 1 0 ,

0 0 1 0
1 2 1

0 0 0 1

Q

- -È ˘
È ˘ Í ˙-Í ˙ Í ˙- =Í ˙ Í ˙
Í ˙- Í ˙Î ˚

Î ˚

, the rank of the matrix A is 2.
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EXERCISE 1.2 

 1. Find the ranks of the following matrices:

  (i) 

1 1 3 6

1 3 3 4

5 3 3 11

-È ˘
Í ˙- -Í ˙
Í ˙Î ˚

 (ii) 

2 3 7

3 2 4

1 3 1

È ˘
Í ˙-Í ˙
Í ˙- -Î ˚

 (iii) 

2 1 3

4 7 13

4 3 1

È ˘
Í ˙
Í ˙
Í ˙- -Î ˚

 (iv) 

4 4

0 1 3 1

1 0 1 1

3 1 0 2

1 1 2 0 ¥

- -È ˘
Í ˙
Í ˙
Í ˙
Í ˙

-Î ˚

 (v) 

3 4

1 2 3 1

2 4 6 2

1 2 3 2
¥

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 (vi) 

4 5

3 2 0 1 7

0 2 2 1 5

1 2 3 2 1

0 1 2 1 6 ¥

- - -È ˘
Í ˙-Í ˙
Í ˙- - -
Í ˙
Î ˚

 2. Find the non-singular matrices P and Q such that PAQ is in the normal form for A. Hence, fi nd 
the rank of A.

  (i)  

3 2 1 5

5 1 4 2

1 4 11 19

A

-È ˘
Í ˙= -Í ˙
Í ˙- -Î ˚

 (ii) 

1 1 2 1

4 2 1 2

2 2 2 0

A

- -È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

 (iii) A = 

1 1 2

1 2 3

0 1 1

È ˘
Í ˙
Í ˙
Í ˙- -Î ˚

 (iv) A = 

1 2 3 2

2 2 1 3

3 0 4 1

-È ˘
Í ˙-Í ˙
Í ˙Î ˚

 3. Reduce the matrix A = 

9 7 3 6

5 1 4 1

6 8 2 4

È ˘
Í ˙-Í ˙
Í ˙Î ˚

 to normal form and fi nd its rank.

 4. Reduce the matrix A = 

0 1 3 1

1 0 1 1

3 1 0 2

1 1 2 0

- -È ˘
Í ˙
Í ˙
Í ˙
Í ˙

-Î ˚

 to normal form and fi nd its rank.

Answers

 1. (i) 3 (ii) 2 (iii) 2 (iv) 4 (v) 2 (vi) 4
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 2. (i) PAQ = 2 0

0 0

IÈ ˘
Í ˙
Î ˚

, where P = 

0 0 1

0 1/3 5/3

1/2 1/3 1/6

È ˘
Í ˙-Í ˙
Í ˙-Î ˚

 and Q = 

4 9 9
1

7 119 217
1 1 1

0
7 7 7

1
0 0 0

17
1

0 0 0
31

È ˘
Í ˙
Í ˙
Í ˙- -Í ˙
Í ˙
Í ˙-Í ˙
Í ˙
Í ˙
Í ˙Î ˚

, r(A) = 2

 (ii) P = 

1
1 1 0

1 0 0 2
32 1 1

0 1 1, ; ( ) 3
23 6 2

0 0 0 11 1 1

0 0 1 03 3 2

Q Ar

È ˘È ˘ -Í ˙Í ˙
Í ˙Í ˙
Í ˙Í ˙ -- - = =Í ˙Í ˙
Í ˙Í ˙
Í ˙Í ˙- - Í ˙Í ˙Î ˚ Î ˚

 (iii) r

- -È ˘ È ˘
Í ˙ Í ˙= - = - =Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

1 0 0 1 1 1

1 1 0 , 0 1 1 and ( ) 2

1 1 1 0 0 1

P Q A  

 (iv) P = 

1 4 1
1

3 3 31 0 0
1 5 7

02 1 0 , , ( ) 2
6 6 6

1 1 1 0 0 1 0

0 0 0 1

Q Ar

È ˘- -Í ˙
Í ˙È ˘
Í ˙Í ˙ - -- = =Í ˙Í ˙
Í ˙Í ˙- -Î ˚ Í ˙
Í ˙Î ˚

 3. r(A) = 3
 4. r(A) = 2

1.15  LINEAR SYSTEMS OF EQUATIONS

Matrices play a very important role in the solution of linear systems of equations, which appear 
frequently as models of various problems, for instance, in electrical networks, traffi c fl ow, production 
and consumption, assignment of jobs to workers, population of growth, statistics, and many others. In 
this section we shall the study of the nature of solutions of linear systems of equations. We shall fi rst 
consider systems of homogeneous linear equations and proceed to discuss systems of nonhomogeneous 
linear equations.
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1.16  HOMOGENEOUS SYSTEMS OF LINEAR EQUATIONS

Consider

  

11 1 12 2 1

21 1 22 2 2

1 1 2 2

0,

0

0

n n

n n

m m mn n

a x a x a x

a x a x a x

a x a x a x

+ + + = ¸
Ô+ + + = Ô
˝
Ô
Ô+ + + = ˛

 

 

 

 

 (5)

is a system of m homogeneous equations in n unknowns x1, x2, x3, …, xn.

Let A = 

1
11 12 1

2
21 22 2

3

1 2
11

0

0

, , 0

0

n

n

m m mn m n
n mn

x
a a a

x
a a a

xX O

a a a
x¥

¥¥

È ˘ È ˘
È ˘ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙= =
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Í ˙Î ˚ Í ˙ Í ˙Î ˚Î ˚

 

 

   
  

 

Then, the system (5) can be written in the matrix form

 AX = O (6)

The matrix A is called the coeffi cient matrix of the system of (5).
The system (5) has the trivial (zero) solution if the rank of the coeffi cient matrix A in the echelon 

form of the matrix is equal to the number of unknown variables (n), i.e.,
  r(A) = n
The system (5) has infi nitely many solutions if the rank of coeffi cient matrix is less than the number 

of unknown variables, i.e., r(A) < n.

Remark I: The number of linearly independent solutions of m homogeneous linear equations in n 
variables, AX = O, is (n – r), where r is the rank of the matrix A.

Remark II: A homogeneous linear system with fewer equations than unknowns always has nontrivial 
solutions.

1.17  SYSTEMS OF LINEAR NON-HOMOGENEOUS EQUATIONS

Suppose a system of m non-homogeneous linear equations with n unknown variables is of the form

  

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

+ + + = ¸
Ô+ + + = Ô
˝
Ô
Ô+ + + = ˛

 

 

 

 

 (7)

If we write  A = 

11 12 1 1 1

21 22 2 2 2

1 2 1 1

, and

n

n

m m mn n mm n n m

a a a x b

a a a x b
X B

a a a x b
¥ ¥ ¥

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙= =
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

 

 

    

 

Then, the above system (7) can be written in the form of a single matrix equation AX = B.
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The matrix [ ]
11 12 1 1

21 22 2 2

1 2

n

n

m m mn m

a a a b

a a a b
A B

a a a b

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Í ˙Î ˚

  

  

   

…  

 is called the augmented matrix of the given 

system of equations. Any set of values which simultaneously satisfy all these equations is called a 
solution of the given system (7). When the system of equations has one or more solution then the given 
system is consistent, otherwise it is inconsistent.

1.18  CONDITION FOR CONSISTENCY THEOREM

The system of equations AX = B is consistent, i.e., possesses a solution, if and only if the coeffi cient 
matrix A and the augmented matrix [ ]A B  are of the same rank. Now, two cases arise.

Case 1 If the rank of the coeffi cient matrix and the rank of the augmented matrix are equal to the 
number of unknown variables, i.e.,

r(A) = r(A : B) = n (number of unknown variables) then the system has a unique solution.

Case 2 If the rank of the coeffi cient matrix and the rank of the augmented matrix are equal but less 
than the number of unknown variables, i.e., r(A) = r(A : B) < n then the given system has infi nitely 
many solution.

1.19  CONDITION FOR INCONSISTENT SOLUTION

The system of equations AX = B is inconsistent, i.e., possesses no solution if the rank of coeffi cient 
matrix A is not equal to the rank of augmented matrix [ ]A B  i.e. r(A) π [ ]A Br

Example 17  Show that the given system of equations 

 x + y + z = 6, x + 2y + 3z = 14, x + 4y + 7z = 30 are consistent and solve them.

Solution  The given systems of equations can be written in matrix form AX = B i.e.,

  

1 1 1 6

1 2 3 14

1 4 7 30

x

y

z

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

Now, the augmented matrix

  

[ ]
1 1 1 6

1 2 3 14

1 4 7 30

A B

È ˘
Í ˙= Í ˙
Í ˙Î ˚

  

2 2 1

3 3 1

1 1 1 6

0 1 2 8

0 3 6 24

R R R

R R R

Æ - È ˘
Í ˙Æ - Í ˙
Í ˙Î ˚
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3 3 23 1 1 1 6

0 1 2 8

0 0 0 0

R R RÆ - È ˘
Í ˙
Í ˙
Í ˙Î ˚

The above is the echelon form of the matrix [A | B]. 

Here, r[A | B] = number of non-zero rows = 2 and r(A) = 2.

 r(A) = 2

\ r[A | B] = 2 = r(A).

Hence, the system is consistent.
Now, the number of unknown variables is 3.
Since r(A) < 3, the given system will have an infi nite number of solutions.
The given system of equations is equivalent to the matrix equation

  

1 1 1 6

0 1 2 8

0 0 0 0

x

y

z

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

Or x + y + z = 6

 y + 2z = 8

Let z = k so that y = 8 – 2k and x = 6 – 8 + 2k – k = k – 2
where k is an arbitrary constant.

Example 18  Investigate for what values of l and m, the simultaneous equations

 x + y + z = 6, x + 2y + 3z = 10 and x + 2y + lz = m have (i) no solution, (ii) a unique solution, 
and (iii) an infi nite number of solutions.

Solution The given system can be written in matrix form. 

 AX = B, i.e.,

  

1 1 1 6

1 2 3 10

1 2

x

y

zl m

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

The augmented matrix

  

[ ]
1 1 1 6

1 2 3 10

1 2

A B

l m

È ˘ È ˘
Í ˙ Í ˙= =Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

  

2 2 1

3 3 1

1 1 1 6

0 1 2 4

0 1 1 6

R R R

R R R

l m

Æ - È ˘
Í ˙Æ - Í ˙
Í ˙- -Î ˚
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3 3 2 1 1 1 6

0 1 2 4

0 0 3 10

R R R

l m

Æ - È ˘
Í ˙
Í ˙
Í ˙- -Î ˚

 (i) If l = 3 and m π 10 then r(A|B) = 3 and r(A) = 2.
  Thus, r(A | B) π r(A)
  The given system is inconsistent.
  Hence, the system has no solution.
 (ii) If l π 3 and m have any value then
  r(A | B) = r(A) = 3 = number of unknown variables
  Hence, the system has a unique solution.
 (iii) If l = 3 and m = 10 then r(A | B) = 2 = r(A)
  In this case, the system is consistent. Here, the number of unknown variables is 3.
  \ r(A | B) = r(A) < 3
  Hence, the system of equations possesses an infi nite number of solutions.

Example 19   Solve the following system of linear equations:

 x + 2y – z = 3, 3x – y + 2z = 1, 2x – 2y + 3z = 2 and x – y + z = –1.

Solution The given system of equations can be written in matrix form AX = B, i.e.,

  

1 2 1 3

3 1 2 1

2 2 3 2

1 1 1 1

x

y

z

-È ˘ È ˘
È ˘Í ˙ Í ˙- Í ˙Í ˙ Í ˙=Í ˙Í ˙ Í ˙-
Í ˙Í ˙ Í ˙Î ˚- -Î ˚ Î ˚

The augmented matrix

  

[ ]

1 2 1 3

3 1 2 1

2 2 3 2

1 1 1 1

A B

-È ˘
Í ˙-Í ˙=
Í ˙-
Í ˙

- -Î ˚

  

2 2 1

3 3 1

4 4 1

3 1 2 1 3

2 0 7 5 8

0 6 5 4

0 3 2 4

R R R

R R R

R R R

Æ - -È ˘
Í ˙Æ - - -Í ˙
Í ˙Æ - - -
Í ˙

- -Î ˚

  

2 2 3 1 2 1 3

0 1 0 4

0 6 5 4

0 3 2 4

R R RÆ - -È ˘
Í ˙- -Í ˙
Í ˙- -
Í ˙

- -Î ˚



 Matrix Algebra 1.31

  

3 3 2

4 4 2

6 1 2 1 3

3 0 1 0 4

0 0 5 20

0 0 2 8

R R R

R R R

Æ - -È ˘
Í ˙Æ - - -Í ˙
Í ˙
Í ˙
Î ˚

  

3 3

4 4

1
1 2 1 3

5
0 1 0 4

0 0 1 4
1

0 0 1 4
2

R R

R R

Æ -È ˘
Í ˙- -Í ˙
Í ˙
Í ˙Æ Î ˚

  

4 4 3 1 2 1 3

0 1 0 4

0 0 1 4

0 0 0 0

R R RÆ - -È ˘
Í ˙- -Í ˙
Í ˙
Í ˙
Î ˚

The augmented matrix [A | B] has been reduced to echelon form.

r[A | B] = number of non-zero rows in echelon form = 3.

Also,  r(A) = 3

\ r[A | B] = 3 = r(A) = number of unknown variables

Hence, the given system of equations has a unique solution.

Now,  

1 2 1 3

0 1 0 4

0 0 1 4

0 0 0 0

x

y

z

-È ˘ È ˘
È ˘Í ˙ Í ˙- -Í ˙Í ˙ Í ˙=Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚

Î ˚ Î ˚
  x + 2y – z = 3, –y = –4, z = 4

 \ y = 4, z = 4, x = –1

Example 20  Discuss for all values of K for the system of equations

 x + y + 4z = 6, x + 2y – 2z = 6, kx + y + z = 6

as regards existence and nature of solutions.

Solution The given system of equations can be written in matrix form AX = B;

  

1 1 4 6

1 2 2 6

1 1 6

x

y

K z

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

The given set of equations will have a unique solution if and only if the coeffi cient matrix A is non-
singular.
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2 2 1

3 3 1

1 1 4 6

0 1 6 0

0 1 1 4 6 6

R R R x

R R KR y

K K z K

Æ - È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙Æ - - =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚

  
3 3 2(1 ) 1 1 4 6

0 1 6 0

0 0 7 10 6 6

R R K R x

y

K z K

Æ - - È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- -Î ˚ Î ˚ Î ˚

 (1)

\ The coeffi cient matrix A in (1) will be a non-singular iff

  7 – 10K π 0, i.e., 7

10
K π

Hence, the given system of equations will have a unique solution if π
7

10
K

In case 7

10
K =  then (1) becomes

  

1 1 4 6

0 1 6 0

0 0 0 18/10

x

y

z

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

The above system is not consistent if 
7

10
K = .

Example 21  Solve x + 3y – 2z = 0, 2x – y + 4z = 0 and x – 11y + 14z = 0.

Solution  The given system of equations can be written in matrix form as AX = 0;

  

1 3 2 0

2 1 4 0

1 11 14 0

x

y

z

-È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚ Î ˚

Here, |A| = 

1 3 2

2 1 4 30 72 42 0

1 11 14

-
- = - + =

-

\   the matrix A is singular, i.e., r(A) < n.
Thus, the given system has a nontrivial solution and will have an infi nite number of solutions. 
Now, the given system is

  

1 3 2 0

2 1 4 0

1 11 14 0

x

y

z

-È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚ Î ˚
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2 2 1

3 3 1

2 1 3 2 0

0 7 8 0

0 14 16 0

R R R x

R R R y

z

Æ - -È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙Æ - - =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚ Î ˚

    

3 3 22 1 3 2 0

0 7 8 0

0 0 0 0

R R R x

y

z

Æ - -È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

And so we have

 x + 3y – 2z = 0

 –7y + 8z = 0

Let z = K, y = 
8

7
K , x = 10

7
K-  where K is any arbitrary constant.

\ x = 10
, and .

7 7
K y K z K

8
- = =

Thus, the system has an infi nite number of solutions.

1.20   CHARACTERISTIC ROOTS AND VECTORS (OR EIGENVALUES 
AND EIGENVECTORS)

Let A be a square matrix of order n, l is a scalar and 

1

2

n

x

x
X

x

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Í ˙Î ˚

 
 a column vector.

Consider the equation

 AX = lX (8)

Clearly, X = 0 is a solution of (8) for any value l. 
Now, let us see whether there exist scalars l and non-zero vectors X which satisfy (8). This problem 

is known as characteristic value problem. If In is unit matrix of order n then (8) may be written in the 
form

 (A – l In)X = 0 (9)

Equation (9) is the matrix form of a system of n homogeneous linear equations in n unknowns. This 
system will have a nontrivial solution if and only if the determinant of the coeffi cient matrix A – l In 
vanishes, i.e.,

If   

11 12 1

21 22 2

1 2

0

n

n
n

n n nn

a a a

a a a
A I

a a a

l

l
l

l

-
-

- = =

-
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The expansion of this determinant yields a polynomial of degree n in l, called the characteristic 

polynomial of the matrix A.
The equation |A – l In| = 0 is called the characteristic equation or secular equation of the matrix 

A.
The nth roots of the characteristic equation of a matrix A of order n are called the characteristic 

roots, characteristic values, proper values, eigenvalues, or latent roots of the matrix A.
The set of the eigenvalues of a matrix A is called the spectrum of A.
If l is a characteristic root of an n ¥ n matrix A then a non-zero vector X such that

 AX = lX

is called a characteristic vector, eigenvector, proper vector or latent vector of the matrix A corresponding 
to the characteristic root l.

1.21   SOME IMPORTANT THEOREMS ON CHARACTERISTIC ROOTS 
AND CHARACTERISTIC VECTOR

Theorem 2

l is a characteristic root of a matrix A if and only if there exists a non-zero vector X such that AX = 
lX.

Theorem 3

If X is a characteristic vector of A then X cannot correspond to more than one characteristic value of 
A.

Theorem 4

The characteristic vectors corresponding to distinct characteristic roots of a matrix are linearly 
independent.

Theorem 5

The characteristic roots of a Hermitian matrix are real.

1.22  NATURE OF THE CHARACTERISTIC ROOTS

 (i) The characteristic roots of a real symmetric matrix are all real.
 (ii) The characteristic roots of a skew-Hermitian matrix are either pure imaginary or zero.
 (iii) The characteristic roots of a real symmetric matrix are either pure imaginary or zero, for every 

such matrix is skew-Hermitian.
 (iv) The characteristic roots of a unitary matrix are of unit modulus.
 (v) The characteristic roots of an orthogonal matrix are of unit modulus.
 (vi) The sum of the eigenvalues of a matrix A is equal to the trace of the matrix also equal to the 

sum of the elements of the principal diagonal.
 (vii) The product of the eigenvalues of A is equal to the determinant of A.
 (viii) If l1, l2, …, ln are the eigenvalues of A then the eigenvalues of (a) Ak are l1

k, l2
k, …, ln

k , and 

(b) A–1 are 
1 2

1 1 1
, ,...,

nl l l
.
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Example 22  Find the characteristic roots and the corresponding characteristic vectors of the 
matrix

 A = 

8 6 2

6 7 4

2 4 3

-È ˘
Í ˙- -Í ˙
Í ˙-Î ˚

Solution The characteristic equation of the matrix A is

  |A – lI| = 0

i.e.,  

8 6 2

6 7 4 0

2 4 3

l

l

l

- -
- - - =

- -

or   (8 – l) {(7 – l) (3 – l) – 16} + 6{–6(3 – l) + 8} + 2{24 – 2(7 – l)} = 0

or  l3 – 18 l2 + 45 l = 0

or  l(l – 3) (l – 15) = 0

or  l = 0, 3, 15.

The characteristic roots of A are 0, 3, 15
The eigenvector of A corresponding to the eigenvalue 0 is given by

  (A – 0I) X = O

or  
1

2

3

8 6 2 0

6 7 4 0

2 4 3 0

x

x

x

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

or  
1

2 1 3

3

2 4 3 0

6 7 4 0 , by

8 6 2 0

x

x R R

x

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - = ´Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

or  
1

2 2 2 1

3 3 3 1

2 4 3 0

0 5 5 0 , by 3

0 10 10 0 4

x

x R R R

x R R R

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- = Æ +Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- Æ -Î ˚ Î ˚Î ˚

or      
1

2 3 3 2

3

2 4 3 0

0 5 5 0 , by 2

0 0 0 0

x

x R R R

x

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- = Æ +Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚

The coeffi cient matrix is of rank 2.
Therefore, these equations have n – r = 3 – 2 = 1 linearly independent solutions. 
The above equations are

 2x1 – 4x2 + 3x3 = 0

 –5x2 + 5x3 = 0

From the last equation, we get x2 = x3.
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Choose x2 = k, x3 = k; then the fi rst equation gives 1 2

k
x = , where k is any scalar.

\ X1 = k 
1

, 1, 1
2

¢È ˘
Í ˙Î ˚

 = k[1, 2, 2]¢ is an eigenvector of A corresponding to the eigenvalue 0.

The eigenvector of A corresponding to the eigenvalue 3 are given by (A – 3I)X = 0.

or  
1

2

3

5 6 2 0

6 4 4 0

2 4 0 0

x

x

x

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

or  
1

2 1 1 2

3

1 2 2 0

6 4 4 0 , by

2 4 0 0

x

x R R R

x

- - - È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - = Æ +Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚

or  
1

2 2 2 1

3 3 3 1

1 2 2 0

0 16 8 0 , by 6

0 8 4 0 2

x

x R R R

x R R R

- - - È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙= Æ -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- - Æ +Î ˚ Î ˚Î ˚

or  
1

2 3 3 2

3

1 2 2 0
1

0 16 8 0 , by
2

0 0 0 0

x

x R R R

x

- - - È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙= Æ +Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚

The coeffi cient matrix of these equations is of rank 2. 
Therefore, this equation is of rank 2.
Therefore, these equations have n – r = 3 – 2 = 1 linearly independent solutions.
The above equations are
 –x1 – 2x2 – 2x3 = 0

 16x2 + 8x3 = 0

From the last equation, we get 2 3
1

.
2

x x= -

Choose x3 = 4k, x2 = –2k; then from the fi rst equation. X1 = –4 k, where k is any scalar.
\ X2 = k[–4, –2, 4]¢ is an eigenvector of A corresponding to the eigenvalue 3.
Now, the eigenvector of A corresponding to the eigenvalue 15 is given by (A – 15 I)X = 0

or  
1

2

3

7 6 2 0

6 8 4 0

2 4 12 0

x

x

x

- - È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - - =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚

or  
1

2 1 1 2

3

1 2 6 0

6 8 4 0 , by .

2 4 12 0

x

x R R R

x

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - - = Æ -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚
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or  
1

2 2 2 1

3 3 3 1

1 2 6 0

0 20 40 0 , by 6

0 0 0 0 2

x

x R R R

x R R R

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - = Æ -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙ Æ +Î ˚ Î ˚Î ˚

The coeffi cient matrix of these equations is of rank 2.
\   these equations have n – r = 3 – 2 = 1 linearly independent solutions.
The above equations are

 –x1 + 2x2 + 6x3 = 0

 –20 x2 – 40 x3 = 0

From the last equation, we get x2 = –2x3
Choose  x3 = k, x2 = –2 k.
Then from the fi rst equation, we get x1 = 2 k, where k is any scalar.
\ x3 = k [2, –2, 1]¢ is an eigenvector of A corresponding to the eigenvalue 15.

Method 1

Example 23  Find the eigenvalues and the corresponding eigenvectors of the matrix

 A = 

6 2 2

2 3 1

2 1 3

-È ˘
Í ˙- -Í ˙
Í ˙-Î ˚

Solution The characteristic equation of A is

 |A – lI| = 0

or 

6 2 2

2 3 1

2 1 3

l

l

l

- -
- - -

- -
 = 0

or 

2

6 2 0

2 3 2

2 1 2

l

l l

l

- -
- - -

- -
 = 0 by C3 Æ C3 + C2

or 

6 2 0

(2 ) 2 3 1

2 1 1

l

l l

- -
- - -

-
 = 0

or 

6 2 0

(2 ) 4 4 0

2 1 1

l

l l

- -
- - -

-

 = 0, by R2 Æ R3 – R3

or [ ](2 ) (6 ) (4 ) 8l l l- - - -  = 0

or (2 – l) (l – 2) (l – 8) = 0

or l = 2, 2, 8

\ the characteristic roots of A are 2, 2, 8.
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Now, the eigenvectors of the matrix A corresponding to the eigenvalue 2 are given by non-zero 
solutions of the equation

 (A – 2I) X = 0

or  
1

2

3

4 2 2 0

2 1 1 0

2 1 1 0

x

x

x

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

or   

- - È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- = ´Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

1

2 1 2

3

2 1 1 0

4 2 2 0 , by

2 1 1 0

x

x R R

x

or    
1

2 2 2 1

3 3 3 1

2 1 1 0

0 0 0 0 , by 2

0 0 0 0

x

x R R R

x R R R

- - È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙= Æ +Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙ Æ +Î ˚ Î ˚Î ˚

The coeffi cient matrix of these equations is of rank 1.
\ there are n – r = 3 – 1 = 2 linearly independent solutions.
The above equation is
 –2 x1 + x2 – x3 = 0
Clearly,
 X1 = [–1, 0, 2]¢ and X2 = [1, 2, 0]¢ are two linearly independent vectors.
Then X1 and X2 are two linearly independent eigenvectors of A, linearly independent vector 

corresponding to the eigenvalue 2.
The eigenvectors of A corresponding to the eigenvalue 8 are given by the non-zero solutions of the 

equation
                                                         (A – 8I)X = 0

or  
1

2

3

2 2 2 0

2 5 1 0

2 1 5 0

x

x

x

- - È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - - =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚

or  
1

2 2 2 1

3 3 3 1

2 2 2 0

0 3 3 0 , by

0 3 3 0

x

x R R R

x R R R

- - È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - = Æ -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- - Æ +Î ˚ Î ˚Î ˚

or  
1

2 3 3 2

3

2 2 2 0

0 3 3 0 , by

0 0 0 0

x

x R R R

x

- - È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - = Æ -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚

The coeffi cient matrix of these equations is of rank 2.
\  there are n – r = 3 – 2 = 1 linearly independent solutions.
The above equations are

 –2x1 – 2 x2 + 2 x3 = 0

 –3 x2 – 3x3 = 0
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The last equation gives x2 = –x3
Choose x3 = 1, x2 = –1; then the fi rst equation gives x1 = 2. Hence, X3 = [2, –1, 1] is an eigenvector 

of A corresponding to the eigenvalue 8.

Method 2

Example 24  Find the eigenvalues and eigenvectors of the given matrix A, where

 A = 

2 1 1

1 2 1

1 1 2

-È ˘
Í ˙- -Í ˙
Í ˙-Î ˚

Solution The characteristic equation for A is |A – lI| = 0

or 

2 1 1

1 2 1

1 1 2

l

l

l

- -
- - -

- -

 = 0

or (2 – l) [(2 – l)2 – 1] + 1[–2 + l + 1] + 1[1 – 2 + l] = 0

or l3 – 6l2 + 9l – 4 = 0

or  l = 1, 1, 4

The eigenvalues are 1, 1, 4.
Let X1 = (x1, x2, x3)

T be the eigenvectors corresponding to the eigenvalues l = 4.

 [A – lI] X1 = 0

or  [A – 4I] X1 = 0

or          
1

2

3

2 1 1 0

1 2 1 0

1 1 2 0

x

x

x

- - È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - - =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚

        

1 2 2 1

2

3 3 13

12 1 1 0
20 3/2 3/2 0
1

0 3/2 3/2 0
2

x R R R

x

R R Rx

- - È ˘È ˘ È ˘ Æ -
Í ˙Í ˙ Í ˙- - =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙ Æ +- -Î ˚ Î ˚Î ˚

        

1

2 3 3 2

3

2 1 1 0

0 3/2 3/2 0

0 0 3/2 0

x

x R R R

x

- - È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - = Æ -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

or –2x1 – x2 + x3 = 0 or 2x1 + x2 – x3 = 0

 2 3 2 3
3 3

0 or
2 2

x x x x- - = +  = 0

Let x3 = k1, x2 = –k1; then x1 = k1

\  X1 = k1[1, –1, 1]T or X1 = [1, –1, 1]T
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Let x2 = [x1, x2, x3]
T be the eigenvectors corresponding to eigenvalue l = 1

  [A – lI] X2 = 0 or [A – I] X2 = 0

or  
1

2

3

1 1 1 0

1 1 1 0

1 1 1 0

x

x

x

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- - =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

or  
1

2 2 1
2

3 3 1
3

1 1 1 0

0 0 0 0

0 0 0 0

x
R R R

x
R R R

x

- È ˘È ˘ È ˘
Æ +Í ˙Í ˙ Í ˙=Í ˙Í ˙ Í ˙ Æ -

Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚
or  x1 – x2 + x3 = 0

Let x1 = k1 and x2 = k2; then x3 = k2 – k1
\ X2 = [k1, k2, k2 – k1]

T or X2 = [1, 1, 0]T. Put k1 = 1 and k2 = 1
The given matrix A is symmetric with repeated eigenvalues. 
So we consider the third eigenvector X3 = [l, m, n]T.
Since, the given matrix is symmetric, the vector X3 is orthogonal to X1, i.e., X1X3

T = 0

 [1, 1, 1] 0

l

m

n

È ˘
Í ˙- =Í ˙
Í ˙Î ˚

 or l – m + n = 0 (1)

Now, X3 is orthogonal to X2, i.e., X2X3
T = 0

 [1, 1, 0] 0

l

m

n

È ˘
Í ˙- =Í ˙
Í ˙Î ˚

 or l + m = 0 (2)

Solving (1) and (2), we get l = –1, m = 1 and n = 2.

\ X3 = [–1, 1, 2]T.

Thus, the eigenvectors X1, X2, X3 corresponding to eigenvalues l = 4, 1, 1 are given by

 X1 = [1, –1, 1]T, X2 = [1, 1, 0]T and X3 = [–1, 1, 2]T

1.23  THE CAYLEY–HAMILTON THEOREM

Statement

Every square matrix satisfi es its own characteristic equation, i.e., if for a square matrix A of 

order n,

 |A – lIn| = (1)n [ln + a1 l
n–1 + an l

n–2 + … + an]

then the matrix equation
 X

n + a1X
n–1 + a2 Xn–2 + … + an In = 0

is satisfi ed by X = A
i.e., A

n + a1 A
n–1 + a2 A

n–2 + … + an In = 0.

Proof The characteristic matrix of A is A – l In. 
Since the elements of A – l In are at most of the fi rst degree in l, the elements of Adj (A – l In) are 

ordinary polynomials in l of degree (n – 1) or less.
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Therefore, Adj (A – l In) can be written as a matrix polynomial in l, given by

 Adj (A – l In) = B0 l
n–1 + B1 l

n–2 + … + B l
 n–2 + Bn–1

where B0, B1, B2, …, Bn–2 , Bn–1 are matrices of order n ¥ n whose elements are functions of aij’s.
Now,

   (A – l In) Adj (A – l In) = |A – l In| ◊ In [∵ A Adj A = |A| ◊ In]

\  (A – l In) (B0 l
n–1 + B1ln–2 +   + Bn–2l + Bn–1)

                                                 = (–1)n [ln + a1 l
n–1 +   + an] In.

Equating the coeffi cients of like powers of l on both sides, we get

 –In B0 = (–1)n In

 A B0 – In B1 = (–1)n a1 In

 …

 ABn – 1 = (–1)n a2 In

Multiplying these successively by An, An – 1, …, In and adding, we get

                                       0 = (–1)n [An + a1 A
n–1 + a2 A

n–2 +   + an In]

Thus,           An
 + a1 A

n–1
 + a2 A

n–2
 + … + an In = 0

Corollary The matrix A is non-singular, i.e., |A| π 0.

Also, |A| = (–1) an and an π 0.

 A
–1 = 1 2

1 1
1 n n

n n
n

A a A a I
a

- -
-

Ê ˆ È ˘- + + +Á ˜ Î ˚Ë ¯
 

Example 25  Verify the Cayley–Hamilton theorem for the matrix

 A = 

2 1 1

1 2 1

1 1 2

-È ˘
Í ˙- -Í ˙
Í ˙-Î ˚

 and, hence, fi nd A–1. 

Solution The characteristic equation of the matrix A is |A – lI| = 0

or 

2 1 1

1 2 1

1 1 2

l

l

l

- -
- - -

- -
 = 0

or –l3 + 6l2 – 9l + 4 = 0

or l3 – 6l2 + 9l – 4 = 0

To verify Cayley–Hamilton theorem, we have to show that 

 A
3 – 6A

2 + 9A – 4I = 0 (1)

We have I = 

1 0 0 2 1 1

0 1 0 , 1 2 1

0 0 1 1 1 2

A

-È ˘ È ˘
Í ˙ Í ˙= - -Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚
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 A
2 = A ◊ A = 

2 1 1 2 1 1 6 5 5

1 2 1 1 2 1 5 6 5

1 1 2 1 1 2 5 5 6

- - -È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- - - - = - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚

, 

and  A
3 = A2 ◊ A = 

22 21 21

21 22 21

21 21 22

-È ˘
Í ˙- -Í ˙
Í ˙-Î ˚

Now,
 A

3 – 6A
2 + 9A – 4I

 = 

22 21 21 6 5 5 2 1 1 1 0 0 0 0 0

21 22 21 6 5 6 5 9 1 2 1 4 0 1 0 0 0 0

21 21 22 5 5 6 1 1 2 0 0 1 0 0 0

O

- - -È ˘ È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙ Í ˙- - - - - + - - - = =Í ˙ Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚ Î ˚ Î ˚

Hence, theorem is verifi ed.
Further, premultiplying (1) by A–1, we get

 A
2 – 6A + 9I – 4A

–1 = 0

or A
–1 = 21

[ 6 9 ]
4

A A I- +

 A
–1 = 

3 1 1
1

1 3 1
4

1 1 3

-È ˘
Í ˙
Í ˙
Í ˙-Î ˚

Example 26  Find the eigenvalues of the matrix A = 
1 4

2 3

È ˘
Í ˙
Î ˚

 and verify Cayley–Hamilton theorem 

for the matrix A. Find the inverse of the matrix A and also express
 A

5 – 4A
4 – 7A

3 + 11 A2 – A – 10 I as a linear polynomial in A.

Solution The characteristic equation of the matrix A is

 |A – lI| = 0

or 
1 4

2 3

l

l

-
-

 = 0 or l2 – 4l – 5 = 0 (1)

or (l – 5) (l + 1) = 0 or l = 5, –1

Thus, the eigenvalues of A are 5, –1.
By Cayley–Hamilton theorem, the matrix A must satisfy its characteristic equation (1). 
We have,

 A
2 – 4A – 5I = 0 (2)

We have,

 I = 
1 0 1 4

,
0 1 2 3

A
È ˘ È ˘

=Í ˙ Í ˙
Î ˚ Î ˚
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 A
2 = A ◊ A = 

1 4 1 4 9 16

2 3 2 3 8 17

È ˘ È ˘ È ˘
=Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚
Now,

 A
2 – 4A – 5I = 

È ˘ È ˘ È ˘ È ˘
- - = =Í ˙ Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚ Î ˚

9 16 1 4 1 0 0 0
4 5

8 17 2 3 0 1 0 0
O

Hence, the theorem is verifi ed
Now, premultiplying (2) by A–1, we get

  A – 4I – 5A
–1 = 0

or A
–1 = 1

[ 4 ]
5

A I-

 = 
3 41

2 15

-È ˘
Í ˙-Î ˚

The characteristic equation of A is l2 – 4l – 5 = 0. Dividing the polynomial l5 – 4l4 – 7l3 + 11 l2 
– l – 10 by the polynomial l2 – 4l – 5 = 0, we get

  l5 – 4l4 – 7l3 + 11l2 – l – 10 = (l2 – 4l – 5) (l3 – 2l + 3) + l + 5

\  A
5 – 4A

4 – 7A
3 + 11A

2 – A – 10I

 = (A2 – 4A – 5I) (A3 – 2A + 3I) + A + 5I.

 = A + 5I [∵ A2 – 4A – 5I = 0]

which is a linear polynomial in A.

1.24  SIMILARITY OF MATRICES

Let A and B be the two square matrices of order n. Then B is said to be similar to A if there exists a 
non-singular matrix P such that

 B = P–1 AP

If B is similar to A then

 | B | = | P–1 AP |

 = | P–1| | A | | P |

 = | P–1 | | P | | A |

 = |P–1 P | | A |

 = | I | | A |

 = | A |

Thus, the similar matrices have the same determinant

1.25  DIAGONALIZATION MATRIX

A matrix A is said to be diagonalizable if it is similar to a diagonal matrix.
Thus, the matrix A is diagonalizable if $ an invertible matrix P such that
 D = P–1 AP, where D is a diagonal matrix.
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Theorem 6

A matrix of order n is diagonalizable if and only if it possesses n linearly independent 

eigenvectors.

Proof Suppose fi rst that A is diagonalizable. Then A is similar to a diagonal matrix

 D = Diag. [l1, l2, …, ln].

\ there exists an invertible matrix P = [X1, X2, …, Xn], such that

 P
–1 AP = D

i.e., AP = PD

or A[X1, X2, … , Xn] = [X1, X2, …, Xn]D = [X1, X2, …, Xn] diag. [l1, l2, …, ln]

or [A X1, A X2, …, AXn] = [l1 X1, l2 X2, …, ln Xn]

Hence, A X1 = l1 X1, A X2 = l2 X2, …, AXn = ln Xn

Thus, X1, X2, …, Xn are eigenvectors of A corresponding to the eigenvalues l1, l2, …, ln 
respectively.

Since the matrix P is non-singular, its column vectors 

 X1, X2, …, Xn are linearly independent.

Hence, A has n linearly independent eigenvectors.

Conversely, suppose that A possesses n linearly independent eigenvectors X1, X2, …, Xn and let l1, 
l2, …, ln be the corresponding eigenvalues.

Then A X1 = l1 X1, AX2 = l2 X2, …, AXn = ln Xn.

Let P = [X1, X2, …, Xn] and D = Diag. [l1, l2, …, ln]

Then  AP = A[X1, X2, …, Xn]

 = [A X1, A X2, …, AXn]

 = [l1 X1, l2 X2, …, ln Xn]

 = [X1, X2, …, Xn] diag. [l1, l2, …, ln]

 = PD

Since the column vectors X1, X2, …, Xn of the matrix P are linearly independent, so P is invertible 
and P–1 exists.

\ AP = PD

fi P
–1 AP = P–1 PD

fi P
–1 AP = D [∵ P–1 P = I]

fi A is similar to D
fi A is diagonalizable.

Theorem 7

If the eigenvalues of a matrix of order n × n are all distinct then it is always similar to a diagonal 

matrix.

Proof Suppose A be a square matrix of order n and let matrix A have n distinct eigenvalues l1, 
l2, …, ln. We know that eigenvectors of a matrix corresponding to distinct eigenvalues are linearly 
independent.
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\   A has n linearly independent eigenvectors and so it is similar to a diagonal matrix D = Diag. [l1, 
l2, …, ln].

Corollary The two matrices of order n with the same set of n distinct eigenvalues are similar.

Example 27  Show that the matrix A = 

9 4 4

8 3 4

16 8 7

-È ˘
Í ˙-Í ˙
Í ˙-Î ˚

 is diagonalizable. Also, fi nd the diagonal 

form and a diagonalizing matrix P.

Solution The characteristic equation of the matrix A is

 | A – lI | = 0

or 

9 4 4

8 3 4

16 8 7

l

l

l

- -
- -

- -

 = 0

or 

1 4 4

1 3 4

1 8 7

l

l l

l l

- -
- - -
- - -

 = 0, by C1 Æ C1 + C2 + C3

or 

1 4 4

(1 ) 1 3 4

1 8 7

l l

l

- + -
-

 = 0

or     2 2 1

3 3 1

1 4 4

(1 ) 0 1 0 0, by

0 4 3

R R R

R R R

l l

l

- + - - = Æ -
- Æ -

or (1 + l) (1 + l) (3 – l) = 0

or l = –1, –1, 3

\   the eigenvectors of the matrix A corresponding to the eigenvalue –1 are given by the equation

  [A – (–1)I] X = 0 or (A + I) X = 0

or  
1

2

3

8 4 4 0

8 4 4 0

16 8 8 0

x

x

x

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- =Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

or   
1

2 2 2 1

3 3 3 1

8 4 4 0

0 0 0 0 , by

0 0 0 0 2

x

x R R R

x R R R

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙= Æ -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- Æ -Î ˚ Î ˚Î ˚

The coeffi cient matrix of these equations has the rank 1. 
\   there are n – r = 3 – 1 = 2 linearly independent solutions.
The above equation

 –8 x1 + 4 x2 + 4 x3 = 0
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or –2 x1 + x2 + x3 = 0

Clearly,
X1 = [1, 1, 1]¢ and X2 = [0, 1, –1]¢ are two linearly independent solutions.
\   X1 and X2 are two linearly independent eigenvectors of A corresponding to the eigenvalue –1.
Now, the eigenvectors of A corresponding to the eigenvalue 3 are given by (A – 3I) X = 0

or  
1

2

3

12 4 4 0

8 0 4 0

16 8 4 0

x

x

x

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

or  
1 2 2 1

2 3 3 1

3

12 4 4 0

4 4 0 0 , by

4 4 0 0

x R R R

x R R R

x

- Æ -È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- Æ -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

or  
1

2 3 3 2

3

12 4 4 0

4 4 0 0 , by

0 0 0 0

x

x R R R

x

- È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- Æ +Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚

The coeffi cient matrix of these equations has the rank 2. 
\   there are n – r = 3 – 2 = 1 linearly independent solutions.
The above equations are

 –12 x1 + 4 x2 + 4 x3 = 0

 4 x1 – 4 x2 = 0

The last equation gives x2 = x1
Choose x1 = 1, so x2 = 1, then from the fi rst equation, we have x3 = 2
\ X3 = [1, 1, 2]¢ is an eigenvector of A corresponding to the eigenvalue 3.
Now, the modal matrix 

 P = 1 2 3

1 0 1

[ ] 1 1 1

1 1 2

X X X

È ˘
Í ˙= Í ˙
Í ˙-Î ˚

The columns of P are linearly independent eigenvectors of A corresponding to the eigenvalues 
–1, –1, 3 respectively. The matrix P will transform A to the diagonal form D which is given by the 
relation.

 P
–1 AP = 

1 0 0

0 1 0

0 0 3

D

-È ˘
Í ˙- =Í ˙
Í ˙Î ˚

EXERCISE 1.3

 1. Test for consistency and solve the following systems of equations.
  (i) 2x + 6y + 11 = 0, 6x + 20y + 6z = –3, 6y – 18z = –1
 (ii) 2x – y + 3z = 8, –x + 2y + z = 4, 3x + y – 4z = 0
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 2. Find the values of a and b for which the equations
  x + 2y + 3z = 4, x + 3y + 4z = 5, x + 3y + az = b have (i) no solution, (ii) a unique solution, and 

(iii) an infi nite number of solutions.
 3. Solve:
  x + y + z = 0, 2x + 5y + 7z = 0, 2x – 5y + 3z = 0
 4. Show that the only real value of l for which the following equations have a non-zero solution 

is 6:
  x + 2y + 3z = lx, 3x + y + 2z = ly, 2x + 3y + z = lz.
 5. For what values of do the equations
  x + y + z = 1, x + 2y + 4z = l, x + 4y + 10z = l2, have a solution and solve them completely in 

each case.
 6. Show that the three equations
  –2x + y + z = a, x – 2y + z = b, x + y – 2z = c have no solutions unless a + b + c = 0, in which 

case they have infi nitely many solutions. Find these solutions when a = 1, b = 1, and c = –2.
 7. Find the eigenvalues and eigenvectors of the matrix

 A = 
5 4

1 2

È ˘
Í ˙
Î ˚

 8. Find the eigenvalues and eigenvectors of the matrix

 A = 

2 2 3

2 1 6

1 2 0

- -È ˘
Í ˙-Í ˙
Í ˙- -Î ˚

 9. Verify the Cayley–Hamilton theorem for the matrix

 A = 

0 0 1

3 1 0

2 1 4

È ˘
Í ˙
Í ˙
Í ˙-Î ˚

  Hence, or otherwise, evaluate A–1.

 10. Verify that the matrix A = 

1 2 0

2 1 0

0 0 1

È ˘
Í ˙-Í ˙
Í ˙-Î ˚

 satisfi es its own characteristic equation. Is it true of 

every square matrix? State the theorem that applies here. 

 11. If A = 
1 2

1 3

È ˘
Í ˙-Î ˚

, express A6 – 4A
5 + 8A

4 – 12 A3 + 14A
2 as a linear polynomial in A.

 12. Show that the following matrices are not similar to diagonal matrices:

 (i) 

2 1 0

0 2 1

0 0 2

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 (ii) 

2 1 1

2 2 1

1 2 1

-È ˘
Í ˙-Í ˙
Í ˙-Î ˚
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 13. Show that the matrix 
9 4 4

8 3 4

16 8 7

-È ˘
Í ˙-Í ˙
Í ˙-Î ˚

 is diagonalizable. Find the diagonalizing matrix P.

 14. Diagonalize the matrix A = 

1 0 1

1 2 1

2 2 3

-È ˘
Í ˙
Í ˙
Í ˙Î ˚

Answers

 1. (i) Not consistent (ii) consistent, x = 2, y = 2, z = 2.
 2. (i) a = 4, b π 5 (ii) a π 4, (iii) a = 4, b = 5.
 3. x = 0 = y = z.
 5. for l = 1, x = 1 + 2c, y = –3c, z = c, where c is any arbitrary constant.
  For l = 2, x = 2K, y = 1 – 3K, z = K, where K is any arbitrary constant.
 6. x = c – 1, y = c – 1, z = c, where c is any arbitrary constant.
 7. l = 6, 1, X1 = [4, 1]¢, X2 = [1, –1]¢
 8. l = 5, –3, –3, X1 = [1, 2, –1]¢, X2 = [–2, 1, 0]¢, X3 = [3, 0, 1]¢.

 9. A
–1 = 

4 1 1
1

12 2 3
5

5 0 0

-È ˘
Í ˙-Í ˙
Í ˙Î ˚

.

 11. –4 A + 5 I

 13. P = 

1 0 1

1 1 1 , diag. [ 1, 1, 3]

1 1 2

È ˘
Í ˙ - -Í ˙
Í ˙-Î ˚

 14. D = P–1 AP = 

1 0 0 1 2 1

0 2 0 , 1 1 1

0 0 3 0 2 2

P

È ˘ È ˘
Í ˙ Í ˙= - - -Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

1.26  QUADRATIC FORMS 

Let X = [x1, x2, x3,…, xn]
T be an n-vector in the vector space Vn over a fi eld F, and let A = [aij] be an 

n-square matrix over F. A real quadratic form is a homogeneous expression of the form.

 Q(x1, x2, …, xn) = 
=

Â
, 1

n

ij i j

i j

a x x  (10) 

in which the power of each term is 2.
Now, Eq. (10) can be written as

 Q1 = a11 x
2 + (a12 + a21) x1x2 +   + (a1n + an1) x1xn + a22x2

2 + (a23 + a32) x2x3

           +   + (a2n + an2) x2xn +   + annxn
2
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 Q = XT
AX  (11)

Using the defi nition of matrix multiplication, let 
( )

2
ij ji

ij

a a
b

+
=  and the matrix B = [bij] be 

symmetric since bij = bji. Further, bij + bji = aij + aji. Then Eq. (11) becomes Q = XT
BX, where B is a 

symmetric matrix and bij = (aij + aji)/2.

Example 28  Obtain the matrix of the quadratic form Q = x1
2 + 2x2

2 – 7x3
2 – 4x1x2 + 8x1x3 + 

5x2x3.

Solution   a11 = 1, a22 = 2, a33 = –7

 a12 = 1 2
1 1

(coefficient of ) ( 4) 2
2 2

x x = - = -

 a13 = 1 3
1 1

(coefficient of ) (8) 4
2 2

x x = =

 a23 = 2 3
1 1

(coefficient of ) (5) 5/2
2 2

x x = =

Then the matrix A = 
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 A = 

È ˘
Í ˙-
Í ˙
Í ˙- = =
Í ˙
Í ˙
Í ˙-
Í ˙Î ˚

∵ 12 21 23 32

1 2 4

5
2 2 [ , ]

2
5

4 7
2

a a a a  

which is a symmetric matrix.

Example 29  Find the matrix of the quadratic form Q = 2x1
2 + 3x2

2 + x3
2 – 3x1x2 + 2x1x3 + 4x2x3.

Solution a11 = 2, a22 = 3, a33 = 1

 a12 = 1 2 21
1 1 3

(coefficient of ) ( 3)
2 2 2

x x a= - = - =

 a13 = = = =1 3 31
1 1

(coefficient of ) (2) 1
2 2

x x a

 a23 = 2 3 32
1 1

(coefficient of ) (4) 2
2 2

x x a= = =

\ Matrix A = 

-È ˘
Í ˙-Í ˙
Í ˙Î ˚

2 3/2 1

3/2 3 2

1 2 1

which is a symmetric matrix.



1.50 Engineering Mathematics for Semesters I and II

Example 30  Obtain the symmetric matrix B for the quadratic form Q = x1
2 + 2x1x2 – 4x1x3 + 6x2x3 

– 5x2
2 + 4x2

3.

Solution a11 = 1, a22 = –5, a33 = 4

\ b11 = a11 = 1, b22 = a22 = –5, b33 = a33 = 4 and 

 b12 = 21 12 21
1 1

( ) (2) 1
2 2

b a a= + = =

 b13 = 31 13 31
1 1

( ) ( 4) 2
2 2

b a b= + = - = -

 b23 = 32 23 32
1 1

( ) (6) 3
2 2

b a a= + = =

Hence, the symmetric matrix

 B = 
11 12 13

21 22 23

31 32 33

1 1 2

1 5 3

2 3 4

b b b

b b b

b b b

-È ˘ È ˘
Í ˙ Í ˙= -Í ˙ Í ˙
Í ˙ Í ˙-Î ˚Î ˚

1.27  COMPLEX QUADRATIC FORM 

Let A be a complex matrix.
Then the quadratic form is defi ned as

 Q = 
, 1

n
T

ij i j

i j

a x x X AX
=

=Â   (12)

where X = [x1, x2, …, xn]
T be a vector in C.

Complex quadratic form is defi ned for Hermitian matrix and it is called a Hermitian form and is 
always real.

Example 31  Let the Hermitian matrix A = 
1 2

2 3

i

i

+È ˘
Í ˙-Î ˚

.

The quadratic form.

 Q = 1
1 2

2

1 2
[ , ]

2 3
T

xi
X AX x x

xi

+ È ˘È ˘
= Í ˙Í ˙-Î ˚ Î ˚

 = 2 2
1 1 2 1 2 2| | (2 ) (2 ) 3 | |x i x x i x x x+ + + - +

 = 2 2
1 1 2 1 2 1 2 1 2 2| | 2( ) ( ) 3 | |x x x x x i x x x x x+ + + - +

Since 1 2 1 2x x x x+  is real and 1 2 1 2x x x x-  is an imaginary,

\ Q = |x1|
2 + Real + 3|x2| = Real

Hence, the Hermitian matrix A is always real.
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1.28  CANONICAL FORM

The sum of the square form of a real quadrate form Q = XT
 AX is

  2 2 2 2
1 1 2 2 3 3

T
n nY DY y y y yl l l l= + + + +  (13)

Equation (13) is formed with the help of the orthogonal transformation X = PY

where P is the modal matrix and D is a diagonal matrix or a spectral matrix whose diagonal elements 
are the eigenvalues of the matrix A.

Consider the rank of a matrix A as r and let n be the number of variables in quadratic form.

Index

The number of positive terms in the canonical form of a quadratic form is called the index and it is 
denoted by P.

Signature

The signature of a quadratic form is the difference between the number of positive terms and the 
negative terms.

1.29  POSITIVE DEFINITE QUADRATIC AND HERMITIAN FORMS

Let a real quadratic or Hermitian form Q(x) = XT
 AX or TX HX  over a real fi eld R or a complex fi eld C. 

Then a real quadratic or Hermitian form Q(x) is said to be
 (i) positive defi nite if Q(x) > 0 when X π 0
 (ii) negative defi nite if Q(x) < 0 when X π 0
 (iii) positive semidefi nite if Q(x) ≥ 0 when X π 0
 (iv) negative semidefi nite if Q(x) £ 0 when X π 0

A real symmetric matrix A (or a Hermitian matrix H) is said to be a positive defi nite matrix (or a 

+ve defi nite Hermitian matrix) iff Q = XT
 AX (or TX AX ) is +ve defi nite and is defi ned as A > 0 (or H 

> 0). Similarly
 ∑ for a negative defi nite matrix, A < 0 (or H < 0)
 ∑ for a positive semidefi nite matrix, A ≥ 0 (or H ≥ 0)
 ∑ for a negative semidefi nite matrix, A £ 0 (or H £ 0)

1.30  SOME IMPORTANT REMARK’S

(R–1)

Let Q(X) = XT
 AX be a real quadratic form of order (n), rank (r) and index (P). Then Q(X) is

 (i) Positive Defi nite (PD) iff r = p = n or if all the eigenvalues of A are positive.
 (ii) Positive SemiDefi nite (PSD) iff r = p < n or all the eigenvalues of A are ≥ 0.
 (iii) Negative Defi nite (ND) iff r = –p = n or all the eigenvalues of A are negative.
 (iv) Negative SemiDefi nite (NSD) iff r = –p < n or all the eigenvalues of A are £ 0.

(R–2)

A real quadratic form Q(x) = XT
AX is PD, if the 

 (i) det·(A) > 0
 (ii) every principal minor of A is positive
 (iii) aii > 0, i = 1, 2, …, n, where A = [aij]
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(R–3)

If a real quadratic form Q(X) = XT
AX is PSD then

 (i) det(A) = 0 
 (ii) every principal minor of A is positive 
 (iii) aii > 0 if xi

2 appears in Q(X)

(R–4)

A real quadratic form Q(X) = XT
AX is ND iff all the principal minors of A of even order are positive and 

those of odd order are negative.

(R–5)

A quadratic form Q(X) = XT
AX is NSD iff A is singular and all principal minors of even order of A are 

non-negative while those of odd order are negative.

(R–6)

A real symmetric matrix A is indefi nite iff at least one of the following conditions is satisfi ed.
 (i) A has a –ve principal minor of even order 
 (ii) A has a +ve principal minor and odd order and a –ve principal minor of odd order

Note: All the above remarks are same for Hermitian form.

Theorem 8: Sylvester Criterion for Positive Defi niteness

A quadratic form Q(X) = XT
AX = 

, 1

n

ij i j

i j

a x x
=

Â  (14)

is positive defi nite iff all the leading principal minors of A are positive.

and (14) is negative defi nite iff 11 12
11

21 22

0, 0
a a

a
a a

< > , 
11 12 13

21 22 23

31 32 33

0

a a a

a a a

a a a

<  and so on ….

Example 32  Determine the nature, index, and signature of the quadratic form

 Q(X) = 2x1x2 + 2x1x3 + 2x2x3 = XT
 AX 

Solution Here,  A = 

0 1 1

1 0 1

1 1 0

È ˘
Í ˙
Í ˙
Í ˙Î ˚

The characteristic matrix for the matrix A is

 |A – lI| = 0 fi 

1 1

1 1 0

1 1

l

l

l

-
- =

-
or l3 – 3l – 2 = 0

or l = 2 –1, –1
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Therefore, some eigenvalues are +ve and some are –ve. Hence, the Q(X) is indefi nite.
The index of Q(X) is 1 and signature = 1 – 2 = –1

Example 33  Examine whether the quadratic form Q(X) is positive defi nite, where Q(X) = XT
 AX 

= 3x1
2 + 3x1x2 + 4x2

2.

Solution Here, A = 
3 1

2 4

È ˘
Í ˙
Î ˚

; then the eigenvalues of A are 2 and 5 both are positive and the leading 

minor, |3| = 3 > 0 and 
3 1

2 4
 = 12 – 2 = 10 > 0

Hence, Q(X) is positive defi nite.

Example 34  Determine the nature, index, and signature of the quadratic form

 Q(X) = 2 2
1 3 1 2 1 3 2 34 4 10 6x x x x x x x x+ + + +

Solution  Here,  A = 

1 2 5

2 0 3

5 3 4

È ˘
Í ˙
Í ˙
Í ˙Î ˚

The characteristic equation for A is |A – lI| = 0

or  

l

l

l

- )
-

- )

(1 2 5

2 3

5 3 (4

 = 0

or (1 – l) [l(l – 4) – 9] – 2[2(4 – l) – 15] + 5[6 + 5 l] = 0

or l 3 – l2 – 38l – 36 = 0

or l = –1, 1 37±
\ some of the eigenvalues are positive and some are negative. Hence, Q(X) is indefi nite.
Now, index = 1, signature = 1  – 2 = –1.

Example 35  Determine the nature of the quadratic form

 Q(X) = 
3 2

2 4
T

i
X X

i

-È ˘
Í ˙
Î ˚

Solution  Q(X) = 
1 1 2

1 2 1 2
2 1 2

3 23 2
[ , ] [ , ]

2 42 4

x x ixi
x x x x

x ix xi

-- È ˘ È ˘È ˘
=Í ˙ Í ˙Í ˙ +Î ˚ Î ˚ Î ˚

 = - - + >1 1 1 2 1 2 2 23 2 ( ) 4 0x x i x x x x x x  and real.

Since 1 2 1 2andx x x x  both are imaginary. Hence, Q(x) is a positive defi nite.
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EXERCISE 1.4

Determine the nature, index and signature of the following quadratic forms:

 1. Q(X) = 2 2 2
1 2 3 1 2 1 3 2 34 4 2 4x x x x x x x x x+ + - + -

 2. Q(X) = 2 2 2
1 2 3 1 2 1 3 2 33 3 3 2 2 2x x x x x x x x x+ + + + -

 3. Q(X) = 2 2 2
1 1 2 2 2 3 3 1 36 4 3 2 3 4x x x x x x x x x- + - + +

 4. Q(X) = 2 2 2
1 2 3 2 3 1 3 1 25 26 10 4 14 6x x x x x x x x x+ + + + +

 5. Q(X) = 2 2 2
1 2 3 1 2 1 3 2 33 3 3 2 2 2x x x x x x x x x- - - - - -

 6. Q(X) = 2 2 2
1 2 3 1 2 2 3 1 32 3 2 2 2x x x x x x x x x+ + + + -

Answers

 1. Positive defi nite, index = 3, signature = 3
 2. Positive defi nite, index = 3, signature = 3
 3. Positive defi nite, index = 3, signature = 3
 4. Positive semi-defi nite, index = 3, signature = 3
 5. Negative defi nite, index = 0, signature = –3
 6. Indefi nite, index = 2, signature = 1

1.31  APPLICATIONS OF MATRICES

(i) Differentiation and Integration of a Matrix

The elements of a matrix A may be functions of a variable, say, t. This functional dependence of A on t 
is shown by writing A and its elements as A(t) and aij(t), defi ned as

 A = A(t) = [aij(t)]

Thus, the differential coeffi cient of A w.r.t. t is defi ned as 

 Å = ( ) ( )ij

d d
A a t

dt dt

È ˘= Í ˙Î ˚

 = 

11 12 1

21 22 2

1 2

n

n

n n nn

d d d
a a a

dt dt dt

d d d
a a a

dt dt dt

d d d
a a a

dt dt dt

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 

 

  

 

The integral of the matrix A is defi ned as ( ) ( )ijA t dt a t dtÈ ˘= Î ˚Ú Ú , assuming the elements in A(t) to 
be integrable.

Thus, the integral of A is obtained by integrating each element of A.
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Example 36  Prove that ( )t td
e e

dt

a aa= .

Solution We know that

 e
a t = 

2 3( ) ( )
1

1! 2! 3!

t t ta a a
+ + + + 

\    
2 3( ) ( )

( ) 1
1! 2! 3!

td d t t t
e

dt dt

a a a aÈ ˘
= + + + +Í ˙

Í ˙Î ˚
 

 = 
2 3

2 31
1! 2! 3!

d
t t t

dt

a a aÈ ˘
+ + + +Í ˙

Í ˙Î ˚
 

 = 
2 3

2 3(1) ( ) ( ) ( )
1! 2! 3!

d d d d
t t t

dt dt dt dt

a a a
+ + + + 

 = a a
a+ + + + 

2 3
20 2 3

2! 3!
t t

 = 
2

21
1! 2!

t t
a a

a
È ˘

+ + +Í ˙
Í ˙Î ˚

 

 = a eat 
Proved.

Example 37  Solve 
2

2
4 12 0

d y dy
y

dtdt
+ - =   (1)

y(0), y¢(0) = 8 by matrix method.

Solution Suppose y = y1 and 1
2

dy
y

dt
=  (2)

Equation (1) becomes

         1 1
14 12

dy dyd
y

dt dt dt

Ê ˆ
= - +Á ˜Ë ¯

  (3)

  = -2
1 212 4

dy
y y

dt

Equations (2) and (3) written in matrix form are

  
1 1

2 2

0 1

12 4

y yd

y ydt

È ˘ È ˘È ˘
=Í ˙ Í ˙Í ˙-Î ˚Î ˚ Î ˚

  (4)

RHS of Eq. (4) gives the eigenvector. The characteristic equation

 
0 1

12 4

l

l

-
- -

 = 0

or –l(–4 – l) – 12 = 0



1.56 Engineering Mathematics for Semesters I and II

or l2 + 4l + 12 = 0

or (l – 2) (l + 6) = 0

or l = 2, –6

For l = 2 and l = –6, eigenvectors are [1, 2]T and [1, –6]T

Matrix of eigenvectors is 

 P = 11 1 6 11
,

2 6 2 18
P

-È ˘ È ˘
=Í ˙ Í ˙- -Î ˚ Î ˚

Now,  P e
lt

P
–1 = 

-

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙- -Î ˚ Í ˙ Î ˚Î ˚

2

6

1 1 0 6 11

2 6 2 180

t

t

e

e

 = 
-

-

È ˘ È ˘
Í ˙ Í ˙--Í ˙ Î ˚Î ˚

2 6

2 6

6 11

2 18 2 6

t t

t t

e e

e e

 = 
- -

- -

È ˘+ -
Í ˙

- +Í ˙Î ˚

2 6 2 6

2 6 2 6

6 21

8 12 12 2 6

t t t t

t t t t

e e e e

e e e e

Using the initial conditions,

 y(0) = 0 and y¢(0) = 8

  
- -

- -

È ˘+ -È ˘ È ˘
= Í ˙Í ˙ Í ˙

- +Í ˙ Î ˚Î ˚ Î ˚

2 6 2 6
1

2 6 2 6
2

6 2 01

88 12 12 2 6

t t t t

t t t t

y e e e e

y e e e e

 = 
2 6

2 62 6

t t

t t

e e

e e

-

-

È ˘-
Í ˙

+Í ˙Î ˚
 

\ y1 = y = e2t – e–6t and y2 = 2 62 6t tdy
e e

dt

-= +  

(ii) Use of Matrices in Graph Theory

Matrices play an important role in the fi eld of graph theory, the fi rst application of graph theory, which 
shows its face in communications, transportation, sciences, and many more fi elds. There are two 
important matrices associated with graphs.

(a) Adjacency matrix (b) Incidence matrix.

(a) Adjacency Matrix In this matrix, vertices (nodes) are written as rows and columns also. This 
matrix is the symmetric matrix

 A = [aij]

where aij = 
ÏÔ
Ì
ÔÓ

1, if ( , ) is an edge, i.e., if is adjacent to

0, otherwise

i j i jV V V v

(b) Incidence Matrix In this matrix, vertices are as rows and edges are as columns. If any graph 
consists of m vertices and n edges then the incidence matrix is m × n.
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 A = [aij], where

 aij = 
1, if vertex is incident on the edge

0, otherwise

i jV eÏÔ
Ì
ÔÓ

Example 38  Find the adjacency matrix A = [aij] of the given graph G.

Fig. 1.1

Solution The given graph G has 4 vertices V1, V2, V3, and V4. The adjacency matrix contains 4 rows 
and 4 columns. By the defi nition of adjacency matrix,

 A = [aij] = 

1 2 3 4

1

2

3

4 4 4

1 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

V V V V

V

V

V

V ¥

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

Example 39  Find the incidence matrix of the graph G in the above example.

Solution The graph G has 4 vertices and 6 edges. The incidence matrix contain 4 rows and 6 columns. 
By the defi nition of incidence matrix.

 A = [aij] = 

5 61 2 3 4

1

2

3

4 4 6

1 1 1 0 0 1

1 0 0 1 0 0

0 0 1 1 1 0

0 1 0 0 1 0

e e e e e e

V

V

V

V ¥

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

(iii) Use of Matrices in Characteristic Values and Characteristic Vectors

Matrices play an important role in the fi eld of vibrational problems, the fundamental frequencies are 
the characteristic values and the fundamental modes of vibration are characteristic vectors. Thus, they 
are very important in the study of quantum mechanics, population dynamics, genetics, and vibrations 
of beams.



1.58 Engineering Mathematics for Semesters I and II

(iv) Use of Matrices in Electric Circuits

Matrices play an important role in the study of electric circuits by using the following laws:

(a) Ohm’s Law 
V

R
i

= , where V is the potential difference in volts, i is the current in amperes, 

and R is the resistance in ohms.

(b) Voltage Law The algebraic sum of the voltage drop around a closed circuit is equal to the 
resultant electromotive force in the circuit.

(c) Kirchhoff’s Law Closed circuit is equal to the resultant electromotive force to the circuit.

(d) Current Law At a node or junction, current coming is equal to the current going.

(v) Use of Matrices in Mechanical Equilibrium

Consider mass m1 suspended from spring (1) with spring constant k1 and the displacement is y1
\  Restoring force = Spring constant × Displacement
  = k1y1

Now, the spring (2) with the spring constant k2 is connected with the spring (1). Let 
mass m2 be suspended on the spring (2) and the displacement be y2.

Then Restoring force = Spring constant × Displacement

 = k2(y1 – y2)

At equilibrium condition,
       Downward force = Restoring force

  
2

1
1 1 1 2 1 22

( )
d y

m k y k y y
dt

= - - -   (15)

  
2

1
1 1 2 1 2 22

( )
d y

m k k y k y
dt

= - + +

Similarly, the equation of motion of mass m2.

 m2 = 
2

2
2 2 12
( )

d y
k y y

dt
= - -   (16)

 = –k2y2 + k2y1

The downward force is taken as positive and the negative restoring force act to restore the masses to 
their original position upwards. Then (15) and (16) can be written in matrix form.

  
2

2
, where

d y
AY my y

dt
= =    

  

2
1

1 2
1 2 2 1

2
2 2 2 2

2 2

d y
m

k k k y dt

k k y d y
m

dt

È ˘
Í ˙+ -È ˘ È ˘ Í ˙=Í ˙ Í ˙ Í ˙-Î ˚ Î ˚ Í ˙
Í ˙Î ˚

Fig. 1.2
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SUMMARY

1. Elementary Transformation or Elementary Operations

The following transformations are called elementary transformations of a matrix.
 (i) Interchanging of rows (columns).
 (ii) Multiplication of a row (column) by a non-zero scalar.
 (iii) Adding/subtracting K multiple of a row (column) to another row (column).

2. The Inverse of a Matrix

The inverse of an n ¥ n matrix A = [aij] is denoted by A–1, such that
 AA

–1 = A–1
A = In

where In is the n ¥ n unit matrix.

Some Special Points on Inverse of a Matrix

 (i) If A be any n-rowed square matrix, then
  (Adj A)A = A(Adj A) = |A| In

  where In is the n-rowed unit matrix.
 (ii) The necessary and suffi cient condition for a square matrix A to possess the inverse, that is,

|A| π 0.
 (iii) If A be an n ¥ n non-singular matrix then (A¢)–1 = (A–1)¢, where ( ¢ ) (dash) denote the transpose.
 (iv) If A be an n ¥ n non-singular matrix then

  (A–1)q = (Aq)–1

 (v) If A, B be two n-rowed non-singular matrices then AB is also non-singular and (AB)–1 = B–1
A

–1.
 (vi) If A is a non-singular matrix then det(A–1) = (det A)–1. 
 (vii) If the matrices A and B commute then A–1 and B–1 also commute.
 (viii) If A, B, C be three matrices conformable for multiplication then (ABC)–1 = C–1

 B
–1 A–1.

 (ix) If the product of two non-zero square matrices is a zero matrix then both of them must be singular 
matrices.

 (x) If A be an n ¥ n matrix then |adj A| = |A|n–1.
 (xi) If A is a non-singular matrix then adj adj A = |A|n–2 A.
 (xii) If A and B are square matrices of the same order then adj (AB) = adj B adj A.

3. Echelon Form of a Matrix

A matrix A is said to be in Echelon form if
 (i) Every row of the matrix A, which has all its entries zero occurs below every row which has a 

non-zero entry.
 (ii) The fi rst non-zero entry in each non-zero row is equal to one.  
 (iii) The number of zeros preceding the fi rst non-zero element in a row is less than the number of such 

zero in the succeeding row.

4. Rank of a Matrix

The rank of a matrix A is said to be ‘r’ if it possesses the following two properties:
 (i) There is at least one non-zero minor of order ‘r’ whose determinant is not equal to zero.
 (ii) If the matrix A contains any minor of order (r + 1) then the determinant of every minor of A of 

order r + 1, should be zero.
Thus, the rank of a matrix is the largest order of a non-zero minor of the matrix.
The rank of the matrix A is denoted by r(A).
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The rank of a matrix is equal to the number of non-zero rows of in the Echelon form of the matrix. i.e., 
r(A) = number of non-zeros in Echelon form of a matrix.

Some Important Results

 (i) Rank of A and AT is same.
 (ii) Rank of a null matrix is zero.
 (iii) Rank of a non-singular matrix A of order n is n.
 (iv) Rank of an identity matrix of order n is n.
 (v) For a rectangular matrix A of order m ¥ n, rank of A £ min (m, n), i.e., rank cannot exceed the 

smaller of m and n.
 (vi) For n-square matrix A, if r(A) = n then |A| = π 0, i.e., the matrix A is non-singular.
 (vii) For any square matrix, if r(A) < n then |A| = 0, i.e., the matrix A is singular.
 (viii) The rank of a product of two matrices cannot exceed the rank of either matrix.

5. Canonical Form (or Normal Form) of a Matrix

The normal form of a matrix A of order m × n of rank ‘r’ is one of the following forms

 

0
[ ], , [ 0],

0 0 0
r r

r r

I I
I I

È ˘ È ˘
Í ˙ Í ˙
Î ˚ Î ˚

where Ir is an identity matrix of order ‘r’.

6. Homogeneous Systems of Linear Equations

Consider

 

11 1 12 2 1

21 1 22 2 2

1 1 2 2

0,

0

0

n n

n n

m m mn n

a x a x a x

a x a x a x

a x a x a x

+ + + = ¸
Ô+ + + = Ô
˝
Ô
Ô+ + + = ˛

 

 

 

 

 (1)

This is a system of m homogeneous equations in n unknowns x1, x2, x3, …, xn.

Let A = 

1
11 12 1

2
21 22 2

3

1 2
11

0

0

, , 0

0

n

n

m m mn m n
n mn

x
a a a

x
a a a

xX O

a a a
x¥

¥¥

È ˘ È ˘
È ˘ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙= =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Í ˙Î ˚ Í ˙ Í ˙Î ˚Î ˚

 

 

   
  

 

Then, the system (1) can write in the matrix form:
 AX = O (2)
The matrix A is called the coeffi cient matrix of the system of (1).
The system (1) has the trivial (zero) solution if the rank of the coeffi cient matrix is equal to the number of 
unknown variables (n), i.e.,
  r(A) = n
The system (1) has infi nitely many solutions if the rank of the coeffi cient matrix is less than the number 
of unknown variables, i.e., r(A) < n.
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7. Systems of Linear Nonhomogeneous Equations

Suppose a system of ‘m’ non-homogeneous linear equations with n unknown variables is of the form

  

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

+ + + = ¸
Ô+ + + = Ô
˝
Ô
Ô+ + + = ˛

 

 

 

 

 (3)

If we write A = 

11 12 1 1 1

21 22 2 2 2

1 2 1 1

, and

n

n

m m mn n mm n n m

a a a x b

a a a x b
X B

a a a x b
¥ ¥ ¥

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙= =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

 

 

    

 

Then, the above system (3) can be written in the form of a single matrix equation AX = B.

The matrix [ ]
11 12 1 1

21 22 2 2

1 2

n

n

m m mn m

a a a b

a a a b
A B

a a a b

È ˘
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙Î ˚

  

  

   

…  

 is called the augmented matrix of the given system 

of equations. Any set of values which simultaneously satisfi es all these equations is called a solution of 
the given system (3). When the system of equations has one or more solutions then the given system is 
consistent, otherwise it is inconsistent.

(a) Condition for Consistency Theorem

The system of equations AX = B is consistent, i.e., possesses a solution if and only if the coeffi cient matrix 
A and the augmented matrix [A  B] are of the same rank. 
Now, there two case arise.
Case I: If the rank of the coeffi cient matrix and the rank of the augmented matrix are equal to the number 
of unknown variables, i.e., r(A) = r(A : B) = n (number of unknown variables), then the system has a 
unique solution.
Case II: If the rank of the coeffi cient matrix and rank of the augmented matrix are equal but less than 
the number of unknown variables, i.e., r(A) = r(A : B) < n, then the given system has infi nitely many 
solutions.

(b) Condition for Inconsistent Solution

The system of equations AX = B is inconsistent, i.e., possesses no solution, if the rank of the coeffi cient 
matrix A is not equal to the rank of the augmented matrix [A  B], i.e., r(A) π r[A  B] 

8. Characteristic Roots and Vectors

Let A be a square matrix of order n, l is a scalar and 

1

2

n

x

x
X

x

È ˘
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙Î ˚

 
 a column vector.

Consider the equation
 AX = lX (4)
Clearly, X = 0 is a solution of (4) for any value l. 
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Now let us see whether there exist scalars l and non-zero vectors X which satisfy (4). This problem is 
known as the characteristic value problem. If In is a unit matrix of order n then (4) may be written in the 
form
  (A – l In)X = 0 (2)

Equation (5) is the matrix form of a system of n homogeneous linear equations in n unknowns. This system 
will have a non-trivial solution if and only if the determinant of the coeffi cient matrix A – l In vanishes, 
i.e.,

 | A – l In | = 

11 12 1

21 22 2

1 2

0

n

n

n n nn

a a a

a a a

a a a

l

l

l

-
-

=

-

 

 

    

 

The equation |A – l In| = 0 is called the characteristic equation or secular equation of the matrix A.
The nth roots of the characteristic equation of a matrix A of order n are called the characteristic roots, 
Characteristic values, proper values, eigenvalues, or latent roots of the matrix A.
The set of the eigenvalues of a matrix A is called the spectrum of A.
If l is a characteristic root of an n ¥ n matrix A then a non-zero vector X such that
 AX = lX

is called a characteristic vector, eigenvector, proper vector or latent vector of the matrix A corresponding 
to the characteristic root l.

9. The Cayley-Hamilton Theorem

Statement: Every square matrix satisfi es its own characteristic equation, i.e., if for a square matrix A of 
order n,

 |A – lIn| = (1)n [ln + a1 l
n–1 + an l

n–2 + … + an] then the matrix equation

 X
n + a1X

n–1 + a2 Xn–2 + … + an In = 0

is satisfi ed by X = A

i.e., A
n + a1 A

n–1 + a2 A
n–2 + … + an In = 0.

10. Diagonalization Matrix

A matrix A is said to be diagonalizable if it is similar to a diagonal matrix.
Thus, the matrix A is diagonalizable if $ and the invertible matrix P such that
 D = P–1 AP, where D is a diagonal matrix.
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OBJECTIVE-TYPE QUESTIONS

 1. An arbitrary vector X is an eigenvector of the 

matrix 
1 0 0

0 0 , if ( , )

0 0

A a a b

b

È ˘
Í ˙= =Í ˙
Í ˙Î ˚

 (a) (0, 0) (b) (1, 1)
 (c) (0, 1) (d) (1, 2)

 2. The inverse of a matrix 
0

0 1

abÈ ˘
Í ˙
Î ˚

 is

 (a) 0

0

a

a

È ˘
Í ˙
Î ˚

 (b) 
0b

a b

È ˘
Í ˙
Î ˚

 (c) 
1/ 0

0 1/

a

b

È ˘
Í ˙
Î ˚

 (d) 
0

0 1/

a

b

È ˘
Í ˙
Î ˚

 3. The eigenvalues of 

1 1 1

1 1 1

1 1 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 are

 (a) 0, 0, 0 (b) 0, 0, 1
 (c) 0, 0, 3 (d) 1, 1, 1

 4. The eigenvectors of the matrix 
1 1

1 1

-È ˘
Í ˙-Î ˚

 

are
 (a) (1, 0) (2, 3) (b) (0, 1) (1, 2)
 (c) (1, 1) (0, 1) (d) (1, –1) (1, 1)

 5. The inverse of the matrix 
3 5

2 1

-È ˘
Í ˙
Î ˚

 is

 (a) 

3 1

13 13
2 3

13 13

È ˘
-Í ˙

Í ˙
Í ˙
Í ˙Î ˚

 (b) 

2 3

13 13
1 3

13 13

È ˘
Í ˙
Í ˙
Í ˙-Í ˙Î ˚

 (c) 

1 5

13 13
2

13 13

È ˘
-Í ˙

Í ˙
3Í ˙

Í ˙Î ˚

 (d) 

1 3

13 13
2

13 13

È ˘
-Í ˙

Í ˙
3Í ˙

Í ˙Î ˚

 6. The real symmetric matrix C corresponding 
to the quadratic form Q = 4x1x2 – 5x22 is

 (a) 
1 2

2 5

È ˘
Í ˙-Î ˚

 (b) 
2 0

0 5

È ˘
Í ˙-Î ˚

 (c) 
1 1

1 2

È ˘
Í ˙-Î ˚

 (d) 
0 2

1 5

È ˘
Í ˙-Î ˚

 [GATE (CE) 1998]

 7. If A is a real symmetric matrix then AA
T is

 (a) unsymmetric
 (b) always symmetric
 (c) skew symmetric
 (d) sometimes symmetric [GATE 1998]

 8. The vector 

1

2

1

È ˘
Í ˙
Í ˙
Í ˙-Î ˚

 is an eigenvector of 

2 2 3

2 1 6

1 2 0

A

- -È ˘
Í ˙= -Í ˙
Í ˙- -Î ˚

 if one of the given 

eigenvalues of A is
 (a) 1 (b) 2
 (c) 5 (d) –1
 [GATE (EE) 1998]

 9. 

2 0 0 1

0 1 0 0

0 0 3 0

1 0 0 4

A

-È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
-Î ˚

. The sum of the 

eigenvalues of the matrix A is
 (a) 10 (b) –10
 (c) 24 (d) 22
 [GATE (EE) 1998]

 10. 

5 0 2

0 3 0

2 0 1

A

È ˘
Í ˙= Í ˙
Í ˙Î ˚

, the inverse of A is

 (a) 
1 0 2

0 1/3 0

2 0 5

-È ˘
Í ˙
Í ˙
Í ˙-Î ˚

 (b) 
5 0 2

0 1/3 0

2 0 1

È ˘
Í ˙-Í ˙
Í ˙Î ˚
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 (c) 
1/5 0 1/2

0 1/3 0

1/2 0 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 (d) 

1/5 0 1/2

0 1/3 0

1/2 0 1

-È ˘
Í ˙
Í ˙
Í ˙-Î ˚

 [GATE (EE) 1998]

 11. For a given matrix 
2 2 3

2 1 6

1 2 0

A

-È ˘
Í ˙= - -Í ˙
Í ˙Î ˚

, one

of the eigenvectors is 3. The other two 
eigenvectors are

 (a) 7, –5 (b) 3, –5
 (c) 2, 5 (d) 3, 5
 [GATE (EE) 1996]

 12. If 
1 3 5

0 2 1

0 0 3

A

È ˘
Í ˙= -Í ˙
Í ˙Î ˚

 then eigenvalues of the 

matrix I + A + A2, where I denotes the identity 
matrix is

 (a) 3, 7, 11 (b) 3, 7, 12
 (c) 3, 7, 13 (d) 3, 9, 16

 13. The eigenvector of a real symmetric matrices 
corresponding to different eigenvalues are

 (a) orthogonal (b) singular

 (c) non-singular (d) none of these

 14. The eigenvalues of the matrix 
1 1

0 1
A

È ˘
= Í ˙

Î ˚
 

are
 (a) 1, 1 (b) –1, –1
 (c) i, –i (d) 1, –1
 [GATE (ECE) 1998]

 15. Rank of the matrix 

3 2 9

6 4 18

12 8 36

-È ˘
Í ˙- -Í ˙
Í ˙-Î ˚

 is

 (a) 1 (b) 2
 (c) 3 (d) 0
 [GATE (ME) 1999]

 16. The eigenvalues of the matrix 
5 3

3 3

È ˘
Í ˙-Î ˚

 are

 (a) 6, –4 (b) 5, –4

 (c) –3, –4 (d) –4, 4
 [GATE (ME) 1999]

 17. The eigenvalues of the matrix 

2 1 0 0

0 3 0 0

0 0 2 0

0 0 1 4

-È ˘
Í ˙
Í ˙
Í ˙-
Í ˙

-Î ˚

 

are
 (a) 2, –2, 1, –1 (b) 2, 3, –2, 4
 (c) 2, 3, 1, 4 (d) none of these
 [GATE (ECE) 2000]

 18. The three characteristic roots of the following 

matrix A, where 

1 2 3

0 2 3

0 0 2

A

È ˘
Í ˙= Í ˙
Í ˙Î ˚

 are

 (a) 1, 2, 3 (b) 1, 2, 2
 (c) 1, 0, 0 (d) 0, 2, 3
 [GATE (ME) 2000]

 19. If A, B, C are square matrices of the same 
order, (ABC)–1 is equal to

 (a) C
–1 A–1 

B
–1 (b) C

–1 B–1 
A

–1

 (c) A
–1 B–1 

C
–1 (d) A

–1 C–1 
B

–1

 [GATE (CE) 2000]

 20. Consider the following two statements:

  I. The maximum number of LI column 
vectors of a matrix A is called the rank of A.

  II. If A is an n × n square matrix, A will be 
non-singular of rank A = n.

  With reference  to the above statements which 
of the following are applicable?

 (a) Both statements are false.
 (b) Both statements are true.
 (c) I is true but II is false.
 (d) I is false but II is true.
 [GATE (CE) 2000]

 21. If 
1

1

a
A

a

È ˘
= Í ˙

Î ˚
 then eigenvalues of A are

 (a) (a + 1), 0 (b) a, 0
 (c) (a – 1), 0 (d) 0, 0
 [GATE (EE) 1994]

 22. A 5 × 7 matrix has all its entries equal to –1. 
The rank of the matrix is

 (a) 7 (b) 5
 (c) 1 (d) 0
  [GATE (EE) 1994]
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 23. The rank of a 3 × 3 matrix C(= AB), found 
by multiplying a non-zero column matrix A 
of size 3 × 1 and a non-zero row matrix B of 
size 1 × 3 is

 (a) 0 (b) 1
 (c) 2 (d) 3
 [GATE (ME) 2001]

 24. The product [P] [Q]T of the following two 
matrices [P] and [Q] is

2 3 4 8
[ ] ;

4 5 9 2
P Q

È ˘ È ˘
= =Í ˙ Í ˙

Î ˚ Î ˚

 (a) 
32 24

56 46

È ˘
Í ˙
Î ˚

 (b) 
46 56

24 32

È ˘
Í ˙
Î ˚

 (c) 
55 22

61 42

È ˘
Í ˙
Î ˚

 (d) 
32 56

24 46

È ˘
Í ˙
Î ˚

 [GATE (CE) 2001]

 25. Consider the system of equations given below:

x + y = 2, 2x + 2y = 5

  The system has
 (a) one solution (b) no solution
 (c) infi nite solution (d) four solutions
 [GATE (ME) 2001]

 26. The determinant of the matrix 
1 0 0 0

100 1 0 0

100 200 1 0

100 200 300 1

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 is

 (a) 100 (b) 200
 (c) 1 (d) zero
 [GATE (EE) 2002]

 27. Consider the n eigenvalues of a n by n real 
value matrix. Which one of the following is 
necessarily true?

 (a) The eigenvalues are n distinct real 
numbers

 (b) The eigenvalues are n distinct complex 
numbers

 (c) If any eigenvalue is the real number p 
then –p is also an eigenvalue

 (d) If any eigenvalue is the complex number 
p + iq then p – iq is also an eigenvalue

 [GATE (IPE) 2003]

 28. Given matrix 

4 2 1 3

6 3 4 7

2 1 0 1

A

È ˘
Í ˙= Í ˙
Í ˙Î ˚

, the rank of 

the matrix is
 (a) 4 (b) 3
 (c) 2 (d) 1
 [GATE (CE) 2003]

 29. Consider the system of simultaneous 
equations x + 2y + z = b, 2x + y + 2z = 6, x + 
y + z = 5. Then the system has

 (a) a unique solution
 (b) an infi nite number of solutions
 (c) no solution
 (d) exactly two solutions
 [GATE (ME) 2003]

 30. A system of equations represented by AX = 
0, where X is a column vector of unknown 
elements and A is a matrix containing coef-
fi cients has a non-trivial solution, when A is

 (a) non-singular (b) singular
 (c) symmetric (d) Hermitians
 [GATE (IE) 2003]

 31. For the matrix 
4 1

1 4

È ˘
Í ˙
Î ˚

, the eigenvalues are

 (a) 3 and –3 (b) –3 and –5
 (c) 3 and 5 (d) 5 and 0

 32. The sum of the eigenvalues of the matrix 
1 1 3

1 5 1

3 1 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 is

 (a) 5 (b) 7
 (c) 9 (d) 18
 [GATE (ME) 2004]

 33. For which value of x will the matrix given 
below become singular?

8 0

4 0 2

12 6 0

xÈ ˘
Í ˙
Í ˙
Í ˙Î ˚

 (a) 4 (b) 6
 (c) 8 (d) 12
 [GATE (ME) 2004]

 34. The system of equations is
 4x + 6y + 3z = 20, x + 2y + 3z = 26,
 6x + 10y + 9z = 72
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  The system of equations
 (a) has no solution
 (b) defi nes a line in (x, y, z) space
 (c) has a unique solution
 (d) defi nes a plane in (x, y, z) space
 [GATE (IPE) 2004]

 35. Given the matrix 
4 2

4 3

-È ˘
Í ˙
Î ˚

, the eigenvector is

 (a) 
3

2

È ˘
Í ˙
Î ˚

 (b) 
4

3

È ˘
Í ˙
Î ˚

 (c) 
2

1

È ˘
Í ˙-Î ˚

 (d) 
2

1

-È ˘
Í ˙
Î ˚

 [GATE (ECE) 2005]

 36. Let 12 0.1 1/2
and

0 3 0

a
A A

b

--È ˘ È ˘
= =Í ˙ Í ˙

Î ˚ Î ˚
. Then

(a + b) =

 (a) 
7

20
 (b) 3

20

 (c) 19

60
 (d) 11

20
 [GATE (ECE) 2005]

 37. Given an orthogonal matrix 

1

1 1 1 1

1 1 1 1
; ( )

1 1 0 0

0 0 1 1

T
A AA

-

È ˘
Í ˙- -Í ˙=
Í ˙-
Í ˙

-Î ˚

 is

 (a) 

1/4 0 0 0

0 1/4 0 0

0 0 1/2 0

0 0 0 1/2

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 (b) 

1/2 0 0 0

0 1/2 0 0

0 0 1/2 0

0 0 0 1/2

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 (c) 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 (d) 

1/4 0 0 0

0 1/4 0 0

0 0 1/4 0

0 0 0 1/4

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 [GATE (ECE) 2005]

 38. Consider the matrices X4 × 3, Y4 × 3 and P2 × 3. 

The order of (P(XT
 Y)–1 PT)T will be

 (a) 2 × 2 (b) 3 × 3
 (c) 4 × 3 (d) 3 × 4
 [GATE (CE) 2005]

 39. Consider a non-homogeneous system of linear 
equations representing mathematically an 
over determined system. Such system will be

 (a) consistent having a unique solution
 (b) consistent having many solutions
 (c) inconsistent having a unique solution
 (d) inconsistent having no solution
 [GATE (CE) 2005]

 40. A is a 3 × 4 real matrix and AX = b is an 
inconsistent system of equations. The highest 
possible rank of A is

 (a) 1 (b) 2
 (c) 3 (d) 4
 [GATE (ME) 2005]

 41. Which one of the following is an eigenvector 
of the matrix

5 0 0 0

0 5 0 0
?

0 0 2 1

0 0 3 1

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 (a) 

1

2

0

0

È ˘
Í ˙-Í ˙
Í ˙
Í ˙
Î ˚

 (b) 

0

0

1

0

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 (c) 

1

0

0

2

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
-Î ˚

 (d) 

1

1

2

1

È ˘
Í ˙-Í ˙
Í ˙
Í ˙
Î ˚

 [GATE (ME) 2005]

 42. Let A be a 3 × 3 matrix with rank 2; then AX 
= 0 has
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 (a) only the trivial solution X = 0
 (b) it has one independent solution
 (c) it has two independent solutions
 (d) it has three independent solutions
 [GATE (IE) 2005]

 43. Identify which one of the following is an 

eigenvector of the matrix 
1 0

1 2
A

È ˘
= Í ˙- -Î ˚

 (a) [–1 1]T (b) [3 –1]T

 (c) [1 –1]T (d) [–2 1]T

 
[GATE (IE) 2005]

 44. For the matrix 
3 2 2

0 2 1

0 0 1

P

-È ˘
Í ˙= -Í ˙
Í ˙Î ˚

, one of the 

eigenvalues is equal to –2. Which of the 
following is an eigenvector?

 (a) 

3

2

1

È ˘
Í ˙-Í ˙
Í ˙Î ˚

 (b) 
3

2

1

-È ˘
Í ˙
Í ˙
Í ˙-Î ˚

 (c) 

1

2

3

È ˘
Í ˙-Í ˙
Í ˙Î ˚

 (d) 

2

5

0

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 [GATE (EE) 2005]

 45. If 

1 0 1

2 1 1

2 3 2

R

-È ˘
Í ˙= -Í ˙
Í ˙Î ˚

, the top row of R–1 is

 (a) [5 6 4] (b) [5 –3 1]

 (c) [2 0 –1] (d) 
1

2 1
2

È ˘
-Í ˙Î ˚

 [GATE (EE) 2005]

 46. Multiplication of matrices E and F is G. 
Matrices E and G are

  

cos sin 0 1 0 0

sin cos 0 and 0 1 0

0 0 1 0 0 1

E G

q q

q q

-È ˘ È ˘
Í ˙ Í ˙= =Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

, 

What is the matrix F ?

 (a) 

cos sin 0

sin cos 0

0 0 1

q q

q q

È ˘
Í ˙-Í ˙
Í ˙Î ˚

 (b) 

cos sin 0

sin cos 0

0 0 1

q q

q q

-È ˘
Í ˙
Í ˙
Í ˙Î ˚

 (c) 
sin cos 0

cos sin 0

0 0 1

q q

q q

È ˘
Í ˙-Í ˙
Í ˙Î ˚

 (d) 

sin cos 0

cos sin 0

0 0 1

q q

q q

-È ˘
Í ˙
Í ˙
Í ˙Î ˚

 [GATE (ME) 2006]

 47. For a given 2 × 2 matrix A, it is observed 

that 
1 1 1 1

and 2
1 1 2 2

A A
È ˘ È ˘ È ˘ È ˘

= - = -Í ˙ Í ˙ Í ˙ Í ˙- - - -Î ˚ Î ˚ Î ˚ Î ˚
. 

Then the matrix A is

 (a) 
2 1 1 0 1 1

1 1 0 2 1 2
A

-È ˘ È ˘ È ˘
= Í ˙ Í ˙ Í ˙- - - - -Î ˚ Î ˚ Î ˚

 (b) 
1 1 1 0 2 1

1 2 0 2 1 1
A

È ˘ È ˘ È ˘
= Í ˙ Í ˙ Í ˙- - - -Î ˚ Î ˚ Î ˚

 (c) 
1 1 1 0 2 1

1 2 0 2 1 1
A

-È ˘ È ˘ È ˘
= Í ˙ Í ˙ Í ˙- - - - -Î ˚ Î ˚ Î ˚

 (d) 
0 2

1 3
A

-È ˘
= Í ˙-Î ˚

 [GATE (IE) 2006]

 48. Eigenvalues of a matrix 
3 2

2 3
S

È ˘
= Í ˙

Î ˚
 are 5 

and 1. What are the eigenvalues of the matrix 
S

2?
 (a) 1 and 25 (b) 6 and 4
 (c) 5 and 1 (d) 2 and 10
 [GATE (ME) 2006]

 49. The rank of the matrix 
1 1 1

1 1 0

1 1 1

È ˘
Í ˙-Í ˙
Í ˙Î ˚

 is

 (a) 0 (b) 1
 (c) 2 (d) 5
 [GATE (ECE) 2006]

 50. Solution for the system defi ned by the set of 
equations 4y + 3z = 8, 2x – z = 2 and 3x + 2y 
= 5 is
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 (a) 
4

0, 1,
3

x y z= = =

 (b) 
1

0, , 2
2

x y z= = =

 (c) 
1

3, , 4
2

x y z= = =

 (d) no solution exists [GATE (CE) 2006]

 51. For the matrix 
4 2

2 4

È ˘
Í ˙
Î ˚

, the eigenvalue 

corresponding to the eigenvector 
101

101

È ˘
Í ˙
Î ˚

 is

 (a) 2 (b) 4
 (c) 6 (d) 8
 [GATE (ECE) 2006]

 52. The inverse of the 2 × 2 matrix 
1 2

5 7

È ˘
Í ˙
Î ˚

 is

 (a) 
7 21

5 13

-È ˘
Í ˙-Î ˚

 (b) 
7 21

5 13

È ˘
Í ˙
Î ˚

 (c) 
7 21

5 13

-È ˘
Í ˙-Î ˚

 (d) 
7 21

5 13

- -È ˘
Í ˙- -Î ˚

 [GATE (CE) 2007]

 53. For what values of a and b do the following 
simultaneous equation have an infi nite 
number of solutions?

   x + y + z = 5; x + 3y + 3z = 9;
   x + 2y + a z = b
 (a) 2, 7 (b) 3, 8
 (c) 8, 3 (d) 7, 2
 [GATE (CE) 2007]

 54. The minimum and maximum eigenvalues 

of the matrix 

1 1 3

1 5 1

3 1 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 are –2 and 6 

respectively. What is the other eigenvalue?
 (a) 5 (b) 3
 (c) 1 (d) –1
 [GATE (CE) 2007]

 55. Let A be an n × n real matrix such that A2 = 
I and y be an n-dimensional vector. Then the 
linear system of equations Ax = y has

 (a) no solution
 (b) a unique solution

 (c) more than one but fi nitely many indepen-
dent solutions

 (d) infi nitely many independent solutions
 [GATE (IE) 2007]

 56. Let A = [aij], 1 £ i, j £ n with n ≥ 3 and aij = i.j 
then the rank of A is

 (a) 0 (b) 1
 (c) n – 1 (d) n

 [GATE (IE) 2007]

 57. For what value of a if any will the following 
system of equations in x, y and z have a solution

2x + 3y = 4, x + y + z = 4, x + 2y – z = a
 (a) any real number (b) 0
 (c) 1
 (d) there is no such value
 [GATE (ME) 2008]

 58. The matrix 
1 2 4

3 0 6

1 1 p

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 has one eigenvalue 

equal to 3. The sum of the other two 
eigenvalues is

 (a) p (b) p – 1
 (c) p – 2 (d) p – 3
 [GATE (ME) 2008]

 59. The eigenvectors of the matrix 
1 2

0 2

È ˘
Í ˙
Î ˚

 are 

written in the form 
1 1

and
a b

È ˘ È ˘
Í ˙ Í ˙
Î ˚ Î ˚

. What is

a + b?

 (a) 0 (b) 
1

2
 (c) 1 (d) 2
 [GATE (ME) 2008]

 60. For a matrix 
3/5 4/5

[ ]
3/5

M
x

È ˘
= Í ˙

Î ˚
, the transpose 

of the matrix is equal to the inverse of the 
matrix, [M]T = [M]–1, the value of x is given 
by

 (a) 4

5
-  (b) 

3

5
-

 (c) 
3

5
 (d) 

4

5

 [GATE (ME) 2008]
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 61. Eigenvalues of the matrix 

3 1 1

1 3 1

1 1 3

- -È ˘
Í ˙- -Í ˙
Í ˙- -Î ˚

 are

 (a) 1, 1, 1 (b) 1, 1, 2
 (c) 1, 1, 4 (d) 1, 2, 4

 62. The largest eigenvalue of the matrix 
1 6 1

1 2 0

0 0 3

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 is

 (a) 1 (b) 4
 (c) 2 (d) 3

 63. The system of linear equations 4x + 2y = 7,
2x + y = 6 has

 (a) a unique solution
 (b) no solution
 (c) an infi nite number of solutions
 (d) exactly two distinct solutions
 [GATE (ECE) 2008]

 64. Consider the matrix 
0 1

2 3
p

È ˘
= Í ˙- -Î ˚

, the value 

of ep is

 (a) 
2 1 1 2

2 1 2 1

2 3

2 2 5

e e e e

e e e e

- - - -

- - - -

È ˘- -
Í ˙
Í ˙- -Î ˚

 (b) 
1 2 2 1

1 2 1 2

2

2 4 3 2

e e e e

e e e e

- - - -

- - - -

È ˘+ -
Í ˙
Í ˙- +Î ˚

 (c) 
2 1 1 2

2 1 2 1

5 3

2 6 4

e e e e

e e e e

- - - -

- - - -

È ˘- -
Í ˙
Í ˙- +Î ˚

 (d) 
1 2 1 2

1 2 1 2

2

2 2 2

e e e e

e e e e

- - - -

- - - -

È ˘- -
Í ˙
Í ˙- + - +Î ˚

 [GATE (ECE) 2008]

 65. The product of matrices (PQ)–1 P is

 (a) P
–1 (b) Q

–1

 (c) P
–1 

Q
–1 (d) PQP

–1

 [GATE (CE) 2008]

 66. The eigenvalues of the matrix 
4 5

[ ]
2 5

P
È ˘

= Í ˙-Î ˚
 

are
 (a) –7 and 8 (b) –6 and 5
 (c) 3 and 4 (d) 1 and 2
 [GATE (CE) 2008]

 67. The following simultaneous equations
   x + y + z = 3; x + 2y + 3z = 4;
   x + 4y + kz = 6
  will not have a unique solution for k equal to
 (a) 0 (b) 30
 (c) 6 (d) 7
 [GATE (CE) 2008]

 68. All the four entries of the 2 × 2 matrix 

11 12

21 22

p p
P

p p

È ˘
= Í ˙

Î ˚
 are non-zero, and one of its 

eigenvalues is zero, which of the following 
statements is true?

 (a) p11p22 – p12p21 = 1
 (b) p11p22 – p12p21 = –1
 (c) p11p22 – p12p21 = 0
 (d) p11p22 + p12p21 = 0 [GATE (ECE) 2008]

 69. The characteristic equation of a 3 × 3 matrix 
P is defi ned as

   a(l) = [lI – P] = l3 + l2 + 2l + I = 0

  If I denotes the identity matrix then the 
inverse of matrix P will be

 (a) P
2 + P + 2I (b) P

2 + P + I
 (c) – (P2 + P + I) (d) – (P2 + P + 2I)
 [GATE (EE) 2008]

 70. If the rank of a 5 × 6 matrix Q is 4, then which 
one of the following statements is correct?

 (a) Q will have four LI rows and four LI 
columns.

 (b) Q will have four LI rows and fi ve LI 
vectors.

 (c) QQ
T will be invertible.

 (d) Q
T
Q will be invertible.

 [GATE (EE) 2008]

 71. The value of the determinant 

1 3 2

4 1 1

2 1 3

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 is

 (a) –28 (b) –24
 (c) 32 (d) 36
 [GATE (IPE) 2009]

 72. The value of x3 obtained by solving the 
following system of linear equations is

   x1 + 2x2 – 2x3 = 4, 2x1 + x2 + x3 = –2,
   –x1 + x2 – x3 = 2
 (a) –12 (b) –2
 (c) 0 (d) 12
 [GATE (IPE) 2009]
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 73. A square matrix B is skew-symmetric, if

 (a) B
T = –B (b) B

T = B
 (c) B

–1 = B (d) B
–1 = BT

 [GATE (CE) 2009]

 74. Which of the following is a Hermitian 
matrix?

 (a) 
2 3

3 1

i

i

+È ˘
Í ˙-Î ˚

 (b) 
2 3

3 1

i

i

+È ˘
Í ˙- +Î ˚

 (c) 
3 2

1 3

i

i

+È ˘
Í ˙-Î ˚

 (d) 
3 2

1 3

i

i

+È ˘
Í ˙- +Î ˚

 75. The eigenvalues of the following matrix

 

1 3 5

3 1 6

0 0 3

-È ˘
Í ˙- -Í ˙
Í ˙Î ˚

 are

 (a) 3, 3 + 5i, 6 – i (b) –6 + 5i, 3 + i, 3 – i
 (c) 3 + i, 3 – i, 5 + i (d) 3, –1 + 3i, –1 – 3i

 [GATE (IE) 2009]

 76. A square matrix B is skew-symmetric, if

 (a) B
T = –B (b) B

T = B
 (c) B

–1 = B (d) B
–1 = BT

 [GATE (CE) 2009]

 77. The system of equations
 x + y + z = 6
 x + 4y + 6z = 20
 x + 4y + lz = m

  has no solution for values of l and m given 
by

 (a) l = 6, m = 20 (b) l = 6, m π 20
 (c) l π 6, m = 20 (d) l π 6, m π 20
 [GATE (EC) 2011]

 78. Given that 
5 3 1 0

and
2 0 0 1

A I
- -È ˘ È ˘

= =Í ˙ Í ˙
Î ˚ Î ˚

, 

the value of A3 is
 (a) 15A + 12I (b) 19A + 30I

 (c) 17A + 15I (d) 17A + 21I

 79. The system of algebraic equations given 
below has

 x + 2y + z = 4
 2x + y + 2z = 5
 x – y + z = 1

 (a) a unique solution of x = 1, y = 1, and z = 1
 (b) only the two solutions of (x = 1, y = 1, 

and z = 1) and (x = 2, y = 1, and z = 0)

 (c) infi nite number of solutions
 (d) no feasible solution
 [GATE (ME) 2012]

 80. For the matrix 
5 3

1 3
A

È ˘
= Í ˙

Î ˚
, one of the 

normalized eigenvectors is given as

 (a) 

1

2

3

2

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

 (b) 

1

2
1

2

Ê ˆ
Á ˜
Á ˜

-Á ˜
Á ˜Ë ¯

 (c) 

3

10

1

10

Ê ˆ
Á ˜
Á ˜

-Á ˜
Á ˜Ë ¯

 (d) 

1

5

2

5

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

 [GATE (ME) 2012]

 81. One of the eigenvalue of 
10 4

18 12
P

-È ˘
= Í ˙-Î ˚

 is

 (a) 2 (b) 4
 (c) 6 (d) 8
 [GATE (BT) 2013]

 82. If 
1 1 2 1 3 0

, and
2 2 2 2 1 3

P Q R
È ˘ È ˘ È ˘

= = =Í ˙ Í ˙ Í ˙
Î ˚ Î ˚ Î ˚

,

which one of the following statements is 
TRUE?

 (a) PQ = PR (b) QR = RP

 (c) QP = RP (d) PQ = QR

 [GATE (BT) 2013]

 83. The solution of the following set of equations 
is

 x + 2y + 3z = 20
 7x + 3y + z = 13
 x + 6y + 2z = 0

 (a) x = –2, y = 2, z = 8
 (b) x = 2, y = –3, z = 8
 (c) x = 2, y = 3, z = –8
 (d) x = 8, y = 2, z = –3 [GATE (BT) 2013]

 84. Let A be an m × n matrix and B an n × m 
matrix. It is given that determinant (Im + AB) 
= determinant (In + BA), where Ik is the k × k 
identity matrix. Using the above property, the 
determinant of the matrix given below is
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2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 (a) 2 (b) 5
 (c) 8 (d) 16
 [GATE (EC) 2013]

 85. The equation 1

2

2 2 0

1 1 0

x

x

- È ˘È ˘ È ˘
=Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

 has

 (a) no solution

 (b) only one solution 1

2

0

0

x

x

È ˘ È ˘
=Í ˙ Í ˙

Î ˚Î ˚
 (c) non-zero unique solution
 (d) multiple solutions [GATE (EE) 2013]

 86. A matrix has eigenvalues –1 and –2. 
The corresponding eigenvectors are 

1 1
and

1 2

È ˘ È ˘
Í ˙ Í ˙- -Î ˚ Î ˚

 respectively. The matrix is

 (a) 
1 1

1 2

È ˘
Í ˙- -Î ˚

 (b) 
1 2

2 4

È ˘
Í ˙- -Î ˚

 (c) 
1 0

0 2

-È ˘
Í ˙-Î ˚

 (d) 
0 1

2 3

È ˘
Í ˙- -Î ˚

 [GATE (EE) 2013]

 87. The dimension of the null space of the matrix 
0 1 1

1 1 0

1 0 1

È ˘
Í ˙-Í ˙
Í ˙- -Î ˚

 is

 (a) 0 (b) 1
 (c) 2 (d) 3
 [GATE (IN) 2013]

 88. The minimum eigenvalue of the following 
matrix is

 

3 5 2

5 12 7

2 7 5

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 (a) 2 (b) 1
 (c) 2 (d) 3
 [GATE (EC) 2013]

 89. The rank of the matrix 

6 0 4 4

2 14 8 18

14 14 0 10

È ˘
Í ˙-Í ˙
Í ˙- -Î ˚

is _________ .
 [GATE (CE) 2014]

 90. The sum of eigenvalues of the matrix, [M] is 

where 

215 650 795

[ ] 655 150 835

485 355 550

M

È ˘
Í ˙= Í ˙
Í ˙Î ˚

 (a) 915 (b) 1355
 (c) 1640 (d) 2180

 91. Given the matrices 
3 2 1 1

2 4 2 and 2

1 2 6 1

J K

È ˘ È ˘
Í ˙ Í ˙= =Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

, the product 

K
T JK is _________. [GATE (CE) 2014]

 92. The determinant of the matrix 

0 1 2 3

1 0 3 0

2 3 0 1

3 0 1 2

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

 

is _________. [GATE (CE) 2014]

 93. If the matrix A is such that

2

4 [1 9 5]

7

A

È ˘
Í ˙= -Í ˙
Í ˙Î ˚

  Then the determinant of A is equal to 
_________. [GATE (CS) 2014]

 94. The maximum value of the determinant 
among all 2 × 2 real symmetric matrices with 
trace 14 is _________. [GATE (EC) 2014]

 95. Given a system of equations:
 x + 2y + 2z = b1

 5x + y + 3z = b2

  Which of the following is true regarding its 
solutions?

 (a) The system has a unique solution for any 
given b1 and b2.

 (b) The system will have infi nitely many 
solutions for any given b1 and b2.
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 (c) Whether or not a solution exists depends 
on the given b1 and b2.

 (d) The system would have no solution for 
any values of b1 and b2.

 96. A system matrix is given as follows:

 

0 1 1

6 11 6

6 11 5

A

-È ˘
Í ˙= - -Í ˙
Í ˙- -Î ˚

  The absolute value of the ratio of the 
maximum eigenvalue to the minimum 
eigenvalue is _________. [GATE (EE) 2014]

 97. The system of linear equations

 

2 1 3 5

3 0 1 4

1 2 5 14

a

b

c

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜= -Á ˜ Á ˜ Á ˜Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 has

 (a) a unique solution
 (b) infi nitely many solutions
 (c) no solution
 (d) exactly two solutions
 [GATE (EC) 2014]

 98. Consider the matrix

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

J =

  which is obtained by reversing the order of 
the columns of the identity matrix I6.

  Let P = I6 + aJ6, where a is a non-negative 
real number. The value of a for which det(P) 
= 0 is _________. [GATE (EC) 2014]

 99. For matrices of same dimension M, N, and 
scalar c, which one of these properties DOES 
NOT ALWAYS hold?

 (a) (MT)T = M
 (b) (cM

T)T = c(M)T

 (c) (M + N)T = MT + NT

 (d) MN = NM [GATE (EC) 2014]

 100. A real (4 × 4) matrix A satisfi es the equation 
A

2 = I, where I is the (4 × 4) identity matrix. 
The positive eigenvalue of A is _________.
 [GATE (EC) 2014]

 101. Given that determinant of the matrix 
1 3 0

2 6 4

1 0 2

È ˘
Í ˙
Í ˙
Í ˙-Î ˚

 is –12, the determinant of the 

matrix 

2 6 0

4 12 8

2 0 4

È ˘
Í ˙
Í ˙
Í ˙-Î ˚

 is

 (a) –96 (b) –24
 (c) 24 (d) 96
 [GATE (ME) 2014]

 102. Which one of the following statements is 
TRUE for all real symmetric matrices?

 (a) All the eigenvalues are real.
 (b) All the eigenvalues are positive.
 (c) All the eigenvalues are distinct.
 (d) Sum of all the eigenvalues is zero.
 [GATE (EE) 2014]

 103. The matrix form of the linear system 

3 5 and 4 8
dx dy

x y x y
dt dt

= - = +  is

 (a) 
3 5

4 8

x xd

y ydt

-Ï ¸ È ˘Ï ¸
=Ì ˝ Ì ˝Í ˙

Î ˚Ó ˛ Ó ˛

 (b) 
3 8

4 5

x xd

y ydt

Ï ¸ È ˘Ï ¸
=Ì ˝ Ì ˝Í ˙-Î ˚Ó ˛ Ó ˛

 (c) 
4 5

3 8

x xd

y ydt

-Ï ¸ È ˘Ï ¸
=Ì ˝ Ì ˝Í ˙

Î ˚Ó ˛ Ó ˛

 (d) 
4 8

3 5

x xd

y ydt

Ï ¸ È ˘Ï ¸
=Ì ˝ Ì ˝Í ˙-Î ˚Ó ˛ Ó ˛

 [GATE (ME) 2014]

 104. One of the eigenvectors of the matrix 
5 2

9 6

-È ˘
Í ˙-Î ˚

 is

 (a) 
1

1

-Ï ¸
Ì ˝
Ó ˛

 (b) 
2

9

-Ï ¸
Ì ˝
Ó ˛

 (c) 
2

1

Ï ¸
Ì ˝-Ó ˛

 (d) 
1

1

Ï ¸
Ì ˝
Ó ˛

 105. Consider a 3 × 3 real symmetric matrix S such 
that two of its eigenvalues are a π 0, b π 0



 Matrix Algebra 1.73

with respective eigenvectors 
1 1

2 2

3 3

,

x y

x y

x y

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

.

If a π b then x1y1 + x2y2 + x2y2 equals
 (a) a (b) b

 (c) ab (d) 0
 [GATE (ME) 2014]

 106. The state equation of a second-order linear 
system is given by

 ẋ(t) = Ax(t), x(0) = x0

  For 0
1

, ( )
1

t

t

e
x x t

e

-

-

È ˘È ˘
= = Í ˙Í ˙-Î ˚ Í ˙-Î ˚

 and for 

2

0 2

0
, ( )

1 2

t t

t t

e e
x x t

e e

- -

- -

È ˘-È ˘
= = Í ˙Í ˙

Í ˙- +Î ˚ Î ˚

  When 0
3

, ( )
5

x x t
È ˘

= Í ˙
Î ˚

 is

 (a) 
2

2

8 11

8 22

t t

t t

e e

e e

- -

- -

È ˘- +
Í ˙
Í ˙-Î ˚

 (b) 
2

2

11 8

11 16

t t

t t

e e

e e

- -

- -

È ˘-
Í ˙
Í ˙- +Î ˚

 (c) 
2

2

3 5

3 10

t t

t t

e e

e e

- -

- -

È ˘-
Í ˙
Í ˙- +Î ˚

 (d) 
2

2

5 3

5 6

t t

t t

e e

e e

- -

- -

È ˘-
Í ˙
Í ˙- +Î ˚

 [GATE (EC) 2014]

 107. For the matrix A satisfying the equation given 
below, the eigenvalues are

1 2 3 1 2 3

[A] 7 8 9 4 5 6

4 5 6 7 8 9

È ˘ È ˘
Í ˙ Í ˙=Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

 (a) (1, –j, j) (b) (1, 1, 0)
 (c) (1, 1, –1) (d) (1, 0, 0)

 108. Which one of the following statements is 
NOT true for a square matrix?

 (a) If A is upper triangular, the eigenvalues 
of A are the diagonal elements of it

 (b) If A is real symmetric, the eigenvalues of 
A are always real and positive

 (c) If A is real, the eigenvalues of A and AT 
are always the same

 (d) If all the principal minors of A are 
positive, all the eigenvalues of A are also 
positive

 109. The determinant of the matrix A is 5 and 
the determinant of the matrix B is 40. The 
determinant of the matrix AB is _________.

 [GATE (EC) 2014]
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2.1  INTRODUCTION

The derivative is an important and a fundamental tool of calculus for studying the behaviour of 

functions of the real variable. The derivative measures the sensitivity to change of one quantity (a 

function or a dependent variable) to another quantity (the independent variable).

The concept of derivative is at the core of calculus and modern mathematics. The defi nition of the 

derivative can be approached in two different ways, one is the geometrical (as a slope of the curve) 

and the other, physical (as a rate of change).

2.2  DIFFERENTIATION

Let f(x) be a differentiable function on [a, b]. Then corresponding to each point c Œ [a, b], we obtain 

a unique real number equal to the derivative of f(x) at x = c. This correspondence between the points 

in [a, b] and derivatives at these points defi nes a new real-valued function with domain [a, b] and 

range, a subset of R. The set of real numbers, such that the image of x in [a, b] is the value of the 

derivative or differentiation of f(x) with respect to x and it is denoted by f ¢(x) or Df(x) or ( ).
d

f x
dx

Thus, 

 ( )
d

f x
dx

 = f ¢(x) = 
0

( ) ( )
lim
h

f x h f x

hÆ

+ -
 (1)

or ( )
d

f x
dx

 = f ¢(x) = 
0

( ) ( )
lim
h

f x h f x

hÆ

- -
-

 (2)

2.3  GEOMETRICAL MEANING OF DERIVATIVE AT A POINT

Let the curve y = f(x). Suppose f(x) be differentiable at x = c. Let P(c, f(c)) be a point on the curve 

and let Q(x, f(x)) be a neighbouring point on the curve.

Then, the slope of the chord PQ = 
( ) ( )

.
f x f c

x c

-
-

 

Taking limit Q Æ P, i.e., x Æ c, we get

 lim
Q PÆ

 (slope of the chord PQ) = 
( ) ( )

lim
x c

f x f c

x cÆ

-
-

 (3)

Differential 

Calculus2
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Fig. 2.1

As Q Æ P, the chord PQ becomes the tangent at P.

\ from Eq. (3), we have

Slope of the tangent at P = 
( ) ( )

lim
x c

f x f c

x cÆ

-
-

 = 
0

lim ( ) or  ( )
x

d
f x f c

dxÆ

Ê ˆ
¢Á ˜Ë ¯

Thus, the derivative of a function at a point x = c is the slope of the tangent to the curve y = f(x) at 

the point (c, f(c)). Also, a function is not differentiable at x = c only if the point (c, f(c)) is a corner point 

of the curve y = f(x), i.e., the curve suddenly changes its direction at the point (c, f(c)).

2.4  SUCCESSIVE DIFFERENTIATION

Let y = f(x) be a differentiable (or derivable) function of x. Then ( )
dy

f x
dx

= ¢  is called the fi rst 

differential coeffi cient of y with respect to x. If f ¢(x) is again derivable then 
2

2
( )

d dy d y
f x

dx dx dx

Ê ˆ
= = ¢¢Á ˜Ë ¯

 

is called the second differential coeffi cient of y with respect to x. If f¢¢(x) is further differentiable then, 
2 3

2 3
( )

d d y d y
f x

dx dx dx

Ê ˆ
= = ¢¢¢Á ˜

Ë ¯
 is called the third differential coeffi cient of y with respect of x. In general, 

the nth order differential coeffi cient of y with respect of x is 
1

( )

1
( )

n n
n

n n

d d y d y
f x

dx dx dx

-

-

Ê ˆ
= =Á ˜

Ë ¯
.

The process of fi nding the differential coeffi cient of a function again and again is called successive 

differentiation.

Thus, if y = f(x) then the successive differential coeffi cients of y with respect to x are
2 3

2 3
, , , ,

n

n

dy d y d y d y

dx dx dx dx
 .
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or y¢, y¢¢, y¢¢¢,  , y(n)

or y1, y2, y3,   yn

or Dy, D2
y, D3

y,   Dn
y

or f ¢(x), f ¢¢(x), f ¢¢¢(x),  , f (n)(x).

The differential operator 
d

dx
 is also denoted by D. As such, the nth order derivative of y is denoted 

by Dn.

2.5   CALCULATION OF nth ORDER DIFFERENTIAL COEFFICIENTS

(i) Find the nth
 order differential coeffi cient of eax + b

.

Let y = eax + b

Therefore,

 y1 = ax bd
y ae

dx

+=

 y2 = 
2

2

2

ax bd y d dy
a e

dx dxdx

+Ê ˆ
= =Á ˜Ë ¯

 y3 = a3 eax + b

and so on.

Therefore, the nth order derivative Dn
y is

 yn = aneax + b

(ii) Find the nth
 order derivative of (ax + b)

m
; m > n.

Let y = (ax + b)m

Therefore,  y1 = m(ax + b)m – 1 ◊ a = ma(ax + b)m – 1

 y2 = m(m – 1)a2 (ax + b)m – 2

 y3 = m(m – 1)(m – 2) a3(ax + b)m – 3

and so on. Therefore,

 yn = m(m – 1)(m – 2)(m – 3) … (m – n + 1)an (ax + b)m – n

Remark I: If m is a positive integer then

 yn = 
n m – nm

a an b
m n

!
( + )

( – )!

Remark II: If m = n then

 ym = m! ◊ am

(iii) Find the nth
 order derivative of 

Ê ˆ
πÁ ˜Ë ¯

b
x .

ax b a

1
; –

( + )

Let  y = 
11

( )ax b
ax b

-= +
+

Therefore,  y1 = (–1) (ax + b)–2 ◊ a
 y2 = (–1)(–2)(ax + b)–3 ◊ a2 = (–1)2 ◊ 2! ◊ a2 (ax + b)–3
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 y3 = (–1)(–2)(–3)(ax + b)–4 ◊ a3 = (–1)3 ◊ 3! a3(ax + b)–4

and so on.

Therefore, yn = (–1)n ◊ n! an(ax + b)–(n + 1)

or yn = 
n n

n

n a

ax b +1

(–1) !

( + )

(iv) Find the nth
 order derivative of log (ax + b).

Let y = log (ax + b)

 y1 = 
1

a
ax b

◊
+

 = a ◊ (ax + b)–1 

 y2 = a2(–1) (ax + b)–2

 y3 = a3 (–1) (–2) (ax + b)–3 = a3(–1)2 ◊ 2! (ax + b)–3

 y4 = a4(–1)(–2)(–3)(ax + b)–4 = a4(–1)3 ◊ 3! (ax + b)–4

and so on.

Therefore, yn = an(-1)n–1 ◊ (n – 1)! (ax + b)–n

or yn = 

n n

n

a n

ax b

–1
(–1) × ( – 1)!

( + )

(v) Find the nth
 order differential coeffi cient of amx

.

Let y = amx

Therefore,  y1 = m ◊ amx ◊ (log a).

 y2 = m2 ◊ amx◊ (log a)2

 y3 = m3 . amx ◊ (log a)3

and so on.

Therefore,

 yn = mn
 ◊ amx ◊ (log a)

n

(vi) Find the nth
 order derivative of xm

.

Let y = xm

Therefore, y1 = m ◊ xm–1

 y2 = m(m – 1) ◊ xm – 2

 y3 = m(m – 1)(m – 2) ◊ xm–3

and so on.

Therefore, yn = m(m – 1)(m – 2)(m – 3) … (m – n + 1) ◊ xm – n, where m > n

Remark: If m is a positive integer and n = m then 

 ym = m(m – 1) (m – 2)(m – 3) … (m – m + 1) ◊ xm – m

 ym = m(m – 1)(m – 2) (m – 3) … 1

 ym = m!

(vii) Find the nth
 order derivative of sin(ax + b).

Let  y = sin (ax + b)

\ y1 = a cos (ax + b) = a sin
2

ax b
pÊ ˆ

+ +Á ˜Ë ¯
 sin cos

2

p
q q

È ˘Ê ˆ
+ =Í ˙Á ˜Ë ¯Î ˚

∵
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 y2 = a2 cos 2 sin
2 2 2

ax b a ax b
p p pÊ ˆ Ê ˆ

+ + = + + +Á ˜ Á ˜Ë ¯ Ë ¯
 = a2 sin 2.

2
ax b

pÊ ˆ
+ +Á ˜Ë ¯

 y3 = a3 cos 
2

ax b n
pÊ ˆ

+ + ◊Á ˜Ë ¯
 = a3 sin 3

2
ax b

pÊ ˆ
+ +Á ˜Ë ¯

and so on. Hence, in general,

 yn = an
 sin 

Ê ˆ
◊Á ˜Ë ¯

p
ax + b + n

2

Similarly, the nth order derivative of cos (ax + b) is 

 yn = an
 cos 

Ê ˆ
◊Á ˜Ë ¯

p
ax + b + n

2

(viii) Find the nth
 order derivative of eax

 sin (bx + c).

Let  y = eax sin (bx + c) 

\ y1 = ae
ax sin (bx + c) + be

ax cos (bx + c)

 y1 = eax [a sin (bx + c) + b cos (bx + c)] (4)

Let us choose a = r cos q and b = r sin q, then

 r = 2 2
a b+  and q = tan–1 (b/a) and (4) reduces to 

 y1 = reax sin (bx + c + q)

Similarly, repeating the above argument, we obtain

 y2 = r2 eax sin (bx + c + 2q)

 y3 = r3 
e

ax sin (bx + c + 3q)

and so on. 

Hence, in general,

 yn = rn
 eax

 sin (bx + c + nq)

where  r = 2 2( )a b+  and q = tan–1 (b/a)

In a similar manner, we can fi nd the nth order derivative of eax cos (bx + c). Then

 yn = rn eax
 cos (bx + c + nq)

where  r = 
2 2( )a b+  and q = tan–1(b/a)

Example 1  Find the nth derivative of y = sin 2x ◊ sin 4x.

Solution

Given  y = sin 2x ◊ sin 4x = 
1

[2 sin 2 sin 4 ]
2

x x

 y = 
1

[cos 2 cos 6 ]
2

x x-  (1)

[∵ 2 sin A cos B = cos (A – B) – cos (A + B)]

Differentiating n times, both sides on (1), we get

 yn = 
1

[cos 2 cos 6 ]
2

n
D x x-
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 yn = 
1

[ cos cos 6 ]
2

n n
D x D x-

 yn = 
1

2 cos 2 6 cos 6
2 2 2

n nn n
x x

p pÈ ˘Ê ˆ Ê ˆ
+ - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

Example 2  Find the nth derivative of log (ax + x2).

Solution

Let  y = log (ax + x2) = log x (a + x)

 y = log x + log (a + x) (1)

Differentiating n times both sides on (1), we get

 D
n
y = Dn [log x + log (x + a)] (By art. (iv)

or yn = Dn log x + Dn log (x + a)

 = 

1 1( 1) ( 1)! (1) ( 1) ( 1)! (1)

( )

n n n n

n n

n n

x x a

- -- - - ◊ -
+

+

 = (–1)n–1 (n – 1)! 
1 1

( )n n
x x a

È ˘
+Í ˙

+Í ˙Î ˚

Example 3  Find the nth derivative of 
2

1

6 5 1x x- +
.

Solution

Let  y = 
2

1

6 5 1x x- +

 y = 
1 2 3

(2 1)(3 1) (2 1) (3 1)x x x x
= -

- - - -
 (By partial fraction)

Differentiating n times, both sides, we get

 yn = 
1 1

2 3
2 1 3 1

n n
D D

x x

Ê ˆ Ê ˆ
-Á ˜ Á ˜- -Ë ¯ Ë ¯

 yn = 
1 1

( 1) ! (2) ( 1) ! (3)
2 3

(2 1) (3 1)

n n n n

n n

n n

x x
+ +

È ˘ È ˘- ◊ - ◊
-Í ˙ Í ˙

- -Í ˙ Í ˙Î ˚ Î ˚

 = 
1 1

1 1

(2) (3)
( 1) !

(2 1) (3 1)

n n
n

n n
n

x x

+ +

+ +

È ˘
- ◊ -Í ˙

- -Í ˙Î ˚

Example 4  Find the nth derivative of 
2

1

6 8x x- +
.

Solution Do same as Example 3.

 yn = 
1 1

( 1) ! 1 1

2 ( 4) ( 2)

n

n n

n

x x
+ +

È ˘- ◊
-Í ˙

- -Í ˙Î ˚
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Example 5  Find the nth derivative of tan–1 
x

a

Ê ˆ
Á ˜Ë ¯

.

Solution Let y = tan–1 
x

a

Ê ˆ
Á ˜Ë ¯ . (1)

Differentiating (1) both sides w.r.t. ‘x’, we get

 y1 = 
2 2

1 1 1

( )( ) 2 ( ) ( )

a a

x ia x ia i x ia x iax a

È ˘
= = -Í ˙+ - - ++ Î ˚

 (2)

Differentiating (2) (n – 1) times, we get

 yn = 1 1 1 1

2

n
D

i x ia x ia

- È ˘Ê ˆ
-Í ˙Á ˜- +Ë ¯Í ˙Î ˚

 = 1 11 1 1 1

2 2

n n
D D

i x ia i x ia

- -Ê ˆ Ê ˆ
-Á ˜ Á ˜- +Ë ¯ Ë ¯

 = 

1 1 1 11 ( 1) ( 1)! (1) 1 ( 1) ( 1)! (1)

2 2( ) ( )

n n n n

n n

n n

i ix ia x ia

- - - -- - - - ◊
-

- +

 yn = 11 1 1
( 1) ( 1)!

2 ( ) ( )

n

n n
n

i x ia x ia

- È ˘
- ◊ - -Í ˙

- +Í ˙Î ˚
 (3)

Putting x = r cos q and a = r sin q so that 

 r
2 = x2 + a2 and q = tan–1 a

x

Ê ˆ
Á ˜Ë ¯

Thus, yn = 11
( 1) ( 1)!

2

n
n

i

-- -  [(r cos q – ir sin q)–n – (r cos q + ir sin q)–n]

 = 
1( 1) ( 1)!

2

n

n

n

i r

-- ◊ -

¥
[(cos q – i sin q)–n – (cos q + i sin q)–n]

 = 
1( 1) ( 1)!

2

n

n

n

i r

-- ◊ -

¥
cos nq sin cosi n nq q+ - sini nqÈ ˘+Î ˚

 = 

1( 1) ( 1)!
[2 sin ]

2

n

n

n
i n

i r
q

-- ◊ -

¥

 = 
1( 1) ( 1)! sinn

n

n n

r

q
-- ◊ -

; where 2 2
r x a= +  and q = tan–1 a

x

Ê ˆ
Á ˜Ë ¯

Example 6  Find the nth derivative of tan–1 
2

2

1

x

x

Ê ˆ
Á ˜-Ë ¯

.

Solution Do same as Example 5

Ans fi yn = 2(–1)n–1 ◊ (n – 1)! ◊ sin nq ◊ sinn q , where q = tan–1 
1

x

Ê ˆ
Á ˜Ë ¯
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Example 7  If y = 
1

log ,
1

x
x

x

Ê ˆ-
Á ˜+Ë ¯

 show that yn = (–1)n – 2 . (n – 2)! 
( 1) ( 1)n n

x n x n

x x

È ˘- +
-Í ˙

- +Í ˙Î ˚
.

Solution

 y = x log 
1

1

x

x

Ê ˆ-
Á ˜+Ë ¯

 y = x[log (x – 1) – log (x + 1)] (1)

Differentiating (1) both sides w.r.t. ‘x’, we get

 y1 = 
1 1

log ( 1) log( 1)
1 1

x x x
x x

È ˘
- + - - +Í ˙- +Î ˚

 = log ( 1) log( 1)
1 1

x x
x x

x x

Ê ˆ
- + - - +Á ˜- +Ë ¯

 = 
1 1 1 1

log ( 1) log( 1)
1 1

x x
x x

x x

Ê ˆ- + + -
- + - - +Á ˜- +Ë ¯

 = 
1 1

1 1 log ( 1) log( 1)
1 1

x x
x x

Ê ˆ Ê ˆ
+ - - - - +Á ˜ Á ˜- +Ë ¯ Ë ¯

 y1 = 
1 1

log ( 1) log( 1)
1 1

x x
x x

+ + - - +
- +

 (2)

Again, differentiating (2), (n – 1) times w.r.t. ‘x’, we get

 yn = 
1 1 2 2

1 1

( 1) ( 1)! ( 1) ( 1)! ( 1) ( 2)! ( 1) ( 2)!

( 1) ( 1) ( 1) ( 1)

n n n n

n n n n

n n n n

x x x x

- - - -

- -

- ◊ - - ◊ - - ◊ - - ◊ -
+ + -

- + - +

or yn = (–1)n–2 ◊ (n–2)! 
( 1)( 1) ( 1)( 1) 1 1

( 1) ( 1) ( 1) ( 1)n n n n

n n x x

x x x x

È ˘- - - - - -
+ + -Í ˙

- + + +Í ˙Î ˚

or yn = (–1)n–2 ◊ (n – 2)! 
( 1) ( 1)n n

x n x n

x x

È ˘- +
-Í ˙

- +Í ˙Î ˚

EXERCISE 2.1
 1. Find the nth derivative of the following functions:

 (i) y = cos2
x ◊ sin3

x

 (ii) y = e2x sin 3x

 (iii) y = log 3x

 (iv) y = log (x2 – a2)

 (v) y = 
2 2

1

x a+

 2. If y = tan–1 
1

1

x

x

Ê ˆ+
Á ˜-Ë ¯

, prove that yn = (–1)n–1 ◊ (n – 1)! sinn q sin nq, where q = tan–1 
1

x

Ê ˆ
Á ˜Ë ¯

.
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 3. Prove that the value nth derivative of 
3

2 1

x

x -
 for x = 0 is 0 if n is even and (–n)! if n is odd and 

greater than 1.

 4. If y = cos–1 1/

1/

x x

x x

Ê ˆ-
Á ˜+Ë ¯

, prove that yn = 2(–1)n–1 (n – 1)! sinn q sin nq; where q = tan–1 
1

x

Ê ˆ
Á ˜Ë ¯

 5. Find the nth derivative of 
2

( 2)(2 3)

x

x x+ +
.

 6. Find the nth derivative of ex sin2
x.

 7. If In = Dn(xn log x); D ∫ 
d

dx
, prove that In = n In–1 + (n – 1)!

 8. If y = x log (1 + x), prove that yn = 
1( 1) ( 2)! ( )

(1 )

n

n

n x n

x

-- - +

+

Answers

 1.  (i)   
1

2 sin 3 sin 3 5 sin 5
16 2 2 2

n nn n n
x x x

p p pÈ ˘Ê ˆ Ê ˆ Ê ˆ
+ + + - +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

 (ii) 2 2 1 2 2 2 13 1 1 3
2 1 sin tan 2 3 sin 2 tan

4 2 4 2

n n
x x

e x n e x n
- -È ˘ È ˘Ê ˆ Ê ˆÈ ˘ È ˘+ ◊ + - + ¥ +Í ˙ Í ˙Á ˜ Á ˜Í ˙ Í ˙Î ˚ Ë ¯ Î ˚ Ë ¯Î ˚ Î ˚

 (iii) 
1( 1) ( 1)!n

n

n

x

-- ◊ -

 (iv) (–1)n–1 ◊ (n – 1)! 
1 1

( ) ( )n n
x a x a

È ˘
+Í ˙

+ -Í ˙Î ˚

 (v) 
1

2

( 1) ! sin ( 1) sinn n

n

n n

a

q q
+

+

- ◊ + ◊

 5. 
1 1

( 1) ! 9 2 8

2 (2 3) ( 2)

n n

n n

n

x x
+ +

È ˘- ◊ ¥
-Í ˙

+ +Í ˙Î ˚

 6. /2 11 5 cos (2 tan 2
2

x
ne

x n
-È ˘- +Î ˚

2.6  LEIBNITZ’S THEOREM

This theorem is applicable for fi nding the n
th order derivative of the product of two differentiable 

functions.

Let u and v be the two functions of x such that nth derivatives Dn
u and Dn

v exist. Then the nth 

derivative, or differential coeffi cient, of their product is given by

D
n(u ◊ v) = nC0 (D

n
u) ◊ v + nC1 (D

n–1 u)Dv + nC2 (D
n–2 u)D2

v +   + nCr (D
n–r u) Dr

v +   + nCn u(Dn
v).

    = nC0 un ◊ v + nC1 un–1 ◊ v1 + nC2 un–2 u
n–2

v2 +   + nCr un–r ◊ vr +   + nCn u ◊ vn.
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Gottfried Wilhelm Leibniz (1 July 1646–14 November 1716), born in Leipzig, 

Saxony (now Germany) was a most versatile genius. He wrote on mathematics, 

natural science, history, politics, jurisprudence, economics, philosophy, theology, 

and philology. His father, Friedrich, was Vice Chairman of the Faculty of Philosophy 

and Professor of Moral Philosophy in the University of Leipzig. He offered his 

service for noblemen, statesmen, and members of royal families because he believed 

that they had the power to reform the country. However, it was his destiny not to 

be able to roam freely but to be a tool for his masters. During his service to the 

Elector of Mainz, as part of his duties, he travelled extensively through England, 

France, German, Italy, Poland, and other countries. During these trips, he met or 

got acquainted with many prominent scholars of his time, such as Huygens, Boole, Spinoza, and Newton, 

who greatly enriched his knowledge. He died in Hannover, Hanover (now Germany).

Proof: We shall prove the theorem using mathematical induction.

Step I: For n = 1, we have

 D(uv) = (Du)v + u ◊ (Dv) = u1 ◊ v + u ◊ v1

Thus, the theorem is true for n = 1.

Step II: For n = 2, we have

 D
2(uv) = (D2

u)v + 2C1(Du) ◊ (Dv) + 2C2 u ◊ (D2 ◊ v)

 = u2
v + 2u1 v1 + u ◊ v2

Thus, the theorem is true for n = 2

Step III: Let us assume that the theorem holds for n = k. Thus,

D
k(uv) = (Dk

u) v + kC1 D
k–1

u ◊ Dv + kC2 D
k–2 u ◊ D2

v +   + kCr D
k–r u Dr

v +   + kCk u Dk
v

Differentiating both sides with respect to ‘x’, we get

 D
k+1(uv) = {(Dk+1 u) v + Dk

u ◊ Dv] + kC1[D
k
u Dv + Dk–1 u D2

v]

  + kC2[D
k–1 u ◊ D2

v + Dk–2 u ◊ D3
v] +  

  + kCr[D
k–r+1 u ◊ Dr

v + Dk-r u ◊ Dr+1
v] +   + [Du. Dk

v + uD
k+1 v]

 = (Dk+1 u)v + (k
C0 + kC1) D

k
u ◊ Dv + (k

C1 + kC2) D
k–1 u ◊ D2

v 

  +   + (k
Cr + kCr+1) D

k–r u ◊ Dr+1 v +   + u Dk+1 v

 = (Dk+1 u)v + k+1
C1 D

k
u ◊ Dv + k+1

C2 D
k–1 

u ◊ D2
v 

  +   + k+1
Cr +1 D

k–r u ◊ Dr+1 
v +   + u ◊ Dk+1 ◊ v [∵ kCr–1 + kCr = k+1

Cr]

Thus, the theorem is true for n = k + 1, i.e., it is also true for the next higher integral value of k. 

Hence, by mathematical induction, the theorem holds for all positive integral values of n.

Example 8  If y = xn – 1 ◊ log x, prove that yn = 
( 1)!n

x

-
.

Solution We have y = xn–1 ◊ log x (1)

Differentiating (1) both sides w.r.t. ‘x’, we get

 y1 = 
1 21

( 1) logn n
x n x x

x

- -◊ + - ◊
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or x y1 = xn–1 + (n – 1)xn–1 ◊ log x

or xy1 = xn–1 + (n – 1)y (2) [By Eq. (1)]

Differentiating (2), (n – 1) times, we get

 D
n–1(xy1) = Dn–1 xn–1 + (n – 1) Dn–1 y

 (Dn–1 ◊ y1)x + n–1
C1 (D

n–2
y1) Dx = (n – 1)! + (n – 1) yn–1

or  xyn ((n – 1) yn–1 ◊ 1) = (n – 1)! + (n – 1) yn–1

or xyn = (n – 1)!

or yn = 
( 1)!n

x

-
 Hence, proved.

Example 9  If x = tan (log y), show that

 (1 + x2)yn + 2 + [2(n + 1)x – 1)] yn+1 + n(n + 1)yn = 0

Solution Given x = tan (log y)

or y = etan–1x  (1)

Differentiating (1) both sides, w.r.t. ‘x’, we get

 y1 = etan–1x. 
2 2

1

1 1

y

x x
=

+ +

or (1 + x2) y1 = y (2)

Differentiating (2), (n + 1) times both sides by Leibnitz’s theorem, we get

 D
n+1[(1 + x2)y1] = Dn+1 y or (Dn+1 y1) (1+ x2) + n + 1

C1 (D
n 
y1) D(1 + x2) + n + 1

C2(D
n – 1 y1)D

2(1 + x2) = yn + 1

or (1 + x2)yn+2 + (n + 1)
C1 yn+1(2x) + n+1

C2 yn ◊ 2 = yn+1

or (1 + x2) yn+2 + [2(n + 1)x – 1] yn+1 + n(n+1)yn = 0 Hence, proved.

Example 10  If y = sin (m sin–1 x), prove that

 (1 – x2)yn+2 – (2n + 1)x ◊ yn+1 + (m2 – n2) yn = 0.

Solution Given y = sin (m sin–1 x) (1)

Differentiating (1) both sides w.r.t. ‘x’, we get

 y1 = cos (m sin–1 x) ◊ 
21

m

x-

or y1 = 
21

m

x-
 ◊ cos (m sin–1 x)

or 2
11 x y- ◊  = m cos (m sin–1 x)

Squaring both sides, we have.

 (1 – x2)y1
2 = m2 cos2 (m sin–1 x)

 = m2[1 – sin2(m sin–1 x)]

 = m2[1 – y2] [Using (1)]
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or (1 – x2)y1
2 = m2(1 – y2) (2)

Again differentiating (2) both sides, we get

 (1 – x2) 2y1y2 – 2xy1
2 = m2(–2y y1)

or (1 – x2)y2 – xy1 + m2
y = 0 (3)

Differentiating n times, by Leibnitz’s theorem, we get

 2
2 1

( 1)
(1 ) ( 2 ) ( 2)

2!
n n n

n n
x y n x y y+ +

-È ˘
- + - + -Í ˙Î ˚

 – 2
1 (1)n n nxy n y m y+ + +È ˘Î ˚  = 0

 [(1 – x2)yn+2 – (2n + 1) xyn+1 + (m2 – n2 + n – n)yn = 0

or (1 – x2)yn+2 – (2n + 1)x yn+1 + (m2 – n2) yn = 0 Hence, proved.

Example 11  If y = xn ◊ log x, prove that yn+1 = 
!n

x
.

Solution Given y = xn ◊ log x (1)

Differentiating (1) both sides w.r.t. ‘x’, we get

 y1 = nx
n–1 ◊ log x + xn ◊ 

1

x
or xy1 = n xn log x + xn

or xy1 = ny + xn (2) [Using (1)]

Differentiating (2), n times by Leibnitz’s theorem, we get

 x ◊ yn+1 + n(1) ◊ yn = n yn + n!

or x ◊ yn+1 = n!

or yn+1 = 
!n

x
 Hence, proved.

Example 12  If y = a cos (log x) + b sin (log x) then show that 

 (i) x
2
y2 + xy1 + y = 0

 (ii) x
2
yn+2 + (2n + 1)xyn+1 + (n2 + 1)yn = 0.

Solution Given y = a cos (log x) + b sin (log x) (1)

Differentiating (1) both sides w.r.t. ‘x’, we get.

 y1 = –a sin (log x) ◊ 
1 1

cos (log )b x
x x

+ ◊

or xy1 = –a sin (log x) + b cos (log x) (2)

Again, differentiating (2) w.r.t. ‘x’, we get

 xy2 + y1 = –a cos (log x) ◊ 
1 1

sin (log )b x
x x

- ◊

or x(xy2 + y1) = –[a cos (log x) + b sin (log x)]

or x
2
y2 + xy1 = –y [Using (1)]

or x
2
y2 + xy1 + y = 0 (3)

Differentiating (3), n times by Leibnitz’s theorem, we get

 [x2
yn+2 + nC1 yn+1 (2x) + nC2 yn (2)] + [xyn+1 + nC1 yn(1)] + yn = 0
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or x
2
yn+2 + 2nxyn+1 + 1

( 1)
2

2!
n n n n

n n
y ny ny y+

-
◊ + + +  = 0

or x
2
yn+2 + (2n + 1) xyn+1 + (n2 – n + n + 1)yn = 0

or x
2
yn+2 + (2n + 1)xyn+1 + (n2 + 1) yn = 0 Hence, proved.

Example 13  If y = cos (m sin–1 x), prove that

 (1 – x2)yn+2 – (2n + 1) x yn+1 + (m2 – n2)yn = 0

Solution Do same as Example 10.

Example 14  If y = (x2 – 1)n, prove that

 (1 – x2)yn+2 – 2xyn+1 + n(n + 1)yn = 0.

Solution Given y = (x2 – 1)n (1)

Differentiating (1) both sides with respect to ‘x’, we get

 y1 = n(x2 – 1)n–1 ◊ 2x

or y1 = 2nx (x2 – 1)n–1 (2)

Multiplying (2) both sides by (x2 – 1), we get

 (x2 – 1)y1 = 2nx y(x2 – 1)n

 (x2 – 1)y1 = 2nx y

Again, differentiating both sides w.r.t. ‘x’, we get

 (x2 – 1)y2 + 2xy1 = 2nx y1 + 2ny (3)

Differentiating (3) both sides n times, by Leibnitz’s theorem, we have

 (x2 – 1) yn+2 + n ◊ (2x) yn+1 + 1

( 1)
(2) 2 2 (1)

2!
n n n

n n
y x y n y+

-
+ +

 = 2nxyn+1 + (2n) n(1)yn + 2nyn

or (x2 – 1)yn+2 + 2xyn+1 + (n2 – n + 2n – 2n
2 – 2n)yn = 0

or (x2 – 1)yn+2 + 2xyn+1 – (n2 + n)yn = 0

or (1 – x2)yn+2 – 2xyn+1 + n(n + 1)yn = 0 Hence, proved.

Example 15  Find the nth differential coeffi cient of ex ◊ log x.

Solution Let u(x) = ex and v(x) = log x

 D
n
u = un = ex

 un–1 = ex

 un–2 = un–3 = … = u2 = u1 = ex

and Dv = v1 = 
1

x

 D
2
v = v2 = 32 3

1 2
, v

x x
- =

  ......

  ......
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  ......

 D
n
v = 

1( 1) ( 1)!n

n n

n
v

x

-- ◊ -
=

Now, by Leibnitz’s theorem, we have

 D
n(ex ◊ log x) = nC0 e

x ◊ log x + nC1 e
x ◊ 2 2

1 1n x
C e

x x

-Ê ˆ Ê ˆ
+ +Á ˜ Á ˜Ë ¯ Ë ¯

 

1( 1) ( 1)!x n
n

n n

e n
C

x

-◊ - -
+

 D
n(ex ◊ log x) = 

1

2

( 1) ( 1) ( 1)!
log

2

n
x

n

n n n n
e x

x x x

-È ˘- - -
+ - + +Í ˙

Í ˙Î ˚
 

Example 16  If 

1 1

m my y
-

+  = 2x, prove that

 (x2 – 1)yn+2 + (2n + 1)xyn+1 + (n2 – m2) yn = 0. 

Solution Given 

1 1

m my y
-

+  = 2x (1)

Putting z = 

1

my ; then (1), becomes

 z + 
1

2x
z

=

or z
2 – 2xz + 1 = 0 (2)

 z = 

2
22 4 4

( 1)
2

x x
x x

± -
= ± -

i.e. y
1/m = 2 2( 1) 1

m

x x y x xÈ ˘± - fi = ± -Í ˙Î ˚

Let  y = 
2 1

m

x xÈ ˘+ -Í ˙Î ˚  (3)

Differentiating (3) w.r.t.’x’, we get

 y1 = 

1
2

2

1 2
1 1

2 1

m x
m x x

x

- Ê ˆ
È ˘ Á ˜+ - ◊ +Í ˙Î ˚ Á ˜-Ë ¯

or y1 = 

21
2

2

1
1

1

m x x
m x x

x

- Ê ˆ- +È ˘ Á ˜+ - ◊Í ˙Î ˚ Á ˜-Ë ¯
 = 

2

2

1

1

m

m x x

x

È ˘+ -Í ˙Î ˚

-

 y1 = 
2 1

my

x -
  [Using (3)]

or 2
11x yÈ ˘- ◊Î ˚  = my or (x2 – 1) y1

2
 = m2

y
2

or (x2 – 1) y1
2 = m2

y
2 (4)
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Similarly, if y = 
2 1 , then

m

x xÈ ˘- -Í ˙Î ˚
 (x2 – 1)y1

2 = m2
y

2 (5)

Thus, (4) and (5) are the same.

Differentiating (4) or (5) w.r.t. ‘x’, we get

 (x2 – 1) 2y1y2 + y1
2 ◊ 2x = m2 ◊ 2y y1

or (x2 – 1)y2 + xy1 – m2
y = 0 (6)

Differentiating (6) n times by Leibnitz’s theorem, we get

 2 2
2 1 1

( 1)
( )( 1) 2 2 [ 1]

2!
n n n n n n

n n
y x n y x y y x n y m y+ + +

-È ˘
- + ◊ + ◊ + ◊ + ◊ -Í ˙Î ˚

 = 0

or (x2 – 1) yn+2 + (2n + 1) xyn+1 + (n2 – n + n – m2)yn = 0

or (x2 – 1)yn+2 + (2n + 1) xyn+1 + (n2 – m2) yn = 0 Hence, proved.

Example 17  If y = (sin–1 x)2, prove that

 (i) (1 – x2) y2 – xy1 – 2 = 0

 (ii) (1 – x2) yn+2 – (2n + 1) x yn+1 – n2
yn = 0.

Also fi nd the value of nth derivative of y for x = 0.

Solution Given y = (sin–1 x)2 (1)

Differentiating (1) both sides w.r.t. ‘x’, we get

 y1 = 2(sin–1 x) ◊ 
2

1

1 x-
 (2)

Squaring both sides of (2), we obtain

 (1 – x2)y1
2 = 4(sin–1 x)2 = 4y

or (1 – x2)y1
2 = 4y

Again, differentiating,

 2(1 – x2) y1y2 – 2x y1
2 = 4y1

Dividing both sides by 2y1, we get

 (1 – x2)y2 – x y1 = 2

or (1 – x2)y2 – xy1 – 2 = 0 (3)

Differentiating (3) n times, by Leibnitz’s theorem, 

 (1 – x2)yn+2 + nC1 yn+1 (–2x) + nC2 yn(–2) – xyn+1 – nC1 yn = 0

or (1 – x2)yn+2 – (2n + 1) xyn+1 – n2
yn = 0 (4)

Putting x = 0 in (2), (3) and (4); then

 y1(0) = 0 and y2(0) = 2

and yn+2(0) = n2
yn(0) (5)
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Putting n = 1, 2, 3, 4, … in (5), we get

 y3(0) = 12
y1(0) = 0

 y4(0) = 22
y2(0) = 2.22

 y5(0) = 33
y3(0) = 0

 y6(0) = 42
y4(0) = 2.22 ◊ 42

 y7(0) = 52
y5(0) = 0

 y8(0) = 62
y6(0) = 2.22 ◊ 42 ◊ 62

   …

   …

   …

In general,

 yn(0) = 0; when n is odd

and yn(0) = 2.22 ◊ 42 ◊ 62 … (n – 2)2; when n is even.

EXERCISE 2.2

 1. Apply Leibnitz’s theorem to fi nd yn.

 (i) x
n–1 ◊ log x.   (ii) x3 log x

 2. If x = sin 
log y

a

Ê ˆ
Á ˜Ë ¯

, prove that

  (1 – x2)yn+2 – (2n + 1) x yn+1 – (n2 + a2) yn = 0.

 3. If y = x cos (log x), prove that

  x
2 yn+2 + (2n – 1) xyn+1 + (n2 – 2n + 2) yn = 0

 4. If y = cos (m sin–1
 x), prove that

  (1 – x2)yn+2 – (2n + 1) x yn+1 + (m2 – n2) yn = 0

 5. If y = x log (1 + x), prove that

  yn = 

2( 1) ( 2)! ( )

(1 )

n

n

n x n

x

-È ˘- - +Î ˚
+

 6. If x = tan y, prove that (1 + x2) yn+1 + 2nxyn + n(n – 1) yn – 1 = 0.

 7. If y = tan–1 x, prove that (1 + x2) yn+2 + 2(n + 1) xyn+1 + n(n + 1)yn = 0

  Hence, fi nd yn(0).

 8. If y = sin (m sin–1 x), prove that (1 – x2)yn+2 – (2n + 1)xyn+1 – n2
yn = 0 and, hence, fi nd yn(0).

 9. If y = sin–1
x, prove that (1 – x2)yn + 2 – (2n + 1)xyn + 1 – n2

yn = 0 and, hence, fi nd yn(0).

Answers

 1.  (i) 
( 1)!n

x

-
  (ii) 

1

3

( 1) ! 1 3 3 1

1 2 3

n

n

n

n n n nx

-

-

È ˘- ◊
- + -Í ˙- - -Î ˚
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 7. yn(0) = 

( 1)

2( 1) ( 1)!

n

n

-

- -

 8. yn (0) = 0; when n is even and yn(0) = m(12 – m2) (32 – m2) … [(n – 2)2 – m2]; when n is odd.

 9. yn(0) = 0; when n is even and yn(0) = (n – 2)2 (n – 4)2 … 32 12; when n is odd.

SUMMARY
1. Successive Differentiation 

The process of fi nding the differential coeffi cient of a function again and again is called successive 

differentiation. If y = f(x) be a function then the successive differential coeffi cients of y with respect to x 

are

 
2 3

2 3
, , , ,

n

n

dy d y d y d y

dx dx dx dx
  or y¢, y¢¢, y¢¢¢, …, y(n) or y1, y2, y3, …, yn

or Dy, D
2
y, D3

y, …, Dn
y or f ¢(x), f ¢¢(x), f ¢¢¢(x), …, f  (n)(x).

The differential operator 
d

dx
 is also denoted by D. As such, the nth order derivative of y is denoted by 

D
n.

2. The nth Order Differential Coeffi cients

 (i) D
n (eax + b) = a

n eax + b

 (ii) D
n (ax + b)m = m(m – 1) (m – 2) (m – 3) … (m – n + 1)an (ax + b)m – n; m > n.

Remark I: If m is a positive integer then

 yn = 
!

( )
( )!

n m nm
a an b

m n

-+
-

Remark II: If m = n, then

 ym = m! ◊ am

 (iii) 
1

)

n
D

ax b

Ê ˆ
Á ˜+Ë ¯

 = 
1

( 1) !
;

( )

n n

n

n a b
x

aax b
+

-
π -

+

 (iv) D
n
 log (ax + b) = 

1( 1) ( 1)!

( )

n n

n

a n

ax b

-- ◊ -

+

 (v) D
n 

a
mx

 = mn ◊ amx ◊ (log a)n

 (vi) D
n 

x
m

 = m(m – 1)(m – 2)(m – 3) … (m – n + 1) ◊ xm – n, where m > n

Remark III: If m is a positive integer and n = m then ym = m!

 (vii) D
n
 sin (ax + b) = an sin 

2
ax b n

pÊ ˆ
+ + ◊Á ˜Ë ¯

 (viii) D
n
 cos (ax + b) = an cos 

2
ax b n

pÊ ˆ
+ + ◊Á ˜Ë ¯

 (ix) D
n
 e

ax
 sin (ax + b) = rn eax sin (bx + c + nq) , where r = 2 2( )a b+  and q = tan–1 (b/a).

 (x) D
n
 e

ax
 cos (ax + b) =  rn eax sin (bx + c + nq) , where r = 

2 2( )a b+  and q = tan–1(b/a)
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3. Leibnitz’s Theorem

This theorem is applicable for fi nding the nth order derivative of the product of two differentiable functions. 

Let u and v be the two functions of x such that nth derivatives Dn
u and Dn

v exist. Then the nth derivative or 

differential coeffi cient of their product is given by

D
n(u.v) = nCo (D

n
u).v + nc1 (D

n–1 u).Dv + nC2 (D
n–2 u).D2

v + … + nCr (D
n–r u) Dr

v + ... + nCn u(Dn
v).

      = nc0 un v + nc1 un–1 v1 + nc2 un–2 v2 + ... + ncr un–r vr + … + ncn u vn.

OBJECTIVE-TYPE QUESTIONS

 1. The differential coeffi cient of log sin x is

 (a) 2 cos 2x (b) 2 cosec 2x

 (c) 2 sin 2x (d) 0

 2. The derivative of 
2sin

( )
x

f x
x

= , when x π 0 

and = 0; x = 0 is

 (a) 0 (b) 2

 (c) 1 (d) –1

 3. If 
10

10

1
then

d y
y

x dx
=  is

 (a) –9! x10 (b) –9! x–10

 (c) 9! x–10 (d) 9! x9

 4. If y = sin x then 
n

n

d y

dx
 is

 (a) sin
2

n
x

pÊ ˆ
+Á ˜Ë ¯

 (b) cos
2

n
x

pÊ ˆ
+Á ˜Ë ¯

 (c) sin
2

n x
pÊ ˆ

+Á ˜Ë ¯
 (d) 0

 5. The Leibnitz theorem for the nth derivative is 

true, if n is

 (a) positive integer (b) negative integer

 (c) zero (d) all of above

 6. The Liebnitz theorem is applied to fi nd the nth 

derivative, when

 (a) product of the functions is given

 (b) difference of two functions is given

 (c) sum of two functions is given

 (d) division of two functions is given

 7. If 1 1
tan then

1

x dy
y

x dx

- Ê ˆ-
= Á ˜+Ë ¯

 is equal to

 (a) 
2

1

1 x+
 (b) 

2

1

1 x

-

+

 (c) 
1

1 x+
 (d) 

1

1 x-

 8. The nth derivative of y = xn – 1·log x at 
1

2
x =  

is

 (a) (n – 1)! (b) 2(n – 1)!

 (c) (n – 2)! (d) 
( 1)!

2

n -

 9. If y = log x3 then 
n

n

d y

dx
 is equal to

 (a) (–1)n – 1 n! x–n

 (b) 3(n!) x–n

 (c) (–1)n – 1 3(n – 1) x–n

 (d) none of the above

 10. The nth derivative of log (x + 1) is

 (a) 
1( 1) ( 1)!

( 1)

n

n

n

x

-- -

+
 (b) 

2( 1) ( 2)!

( 1)

n

n

n

x

-- -

+

 (c) 
1

( 1) !

( 1)

n

n

n

x
+

-

+
 (d) 

1

1

( 1) ( 1)!

( 1)

n

n

n

x

-

- +
- -

+

ANSWERS

 1. (b) 2. (c) 3. (b) 4. (a) 5. (a) 6. (a) 7.(b) 8. (b) 9. (c) 10. (a)



3.1  INTRODUCTION

The partial derivative of a function of several variables is its derivative with respect to one of those 

variables, with the others held constant. 

For example, in the package on introductory differentiation, rates of change of functions were shown 

to be measured by the derivative. Many applications require functions with more than one variable. 

The ideal gas law is 

 PV = kT (1)

where P is the pressure, V is the volume, T is the absolute temperature of gas, and k is a constant. 

Equation (1) can be written as

 P = 
kT

V
 (2)

Equation (2) shows that P is a function of T and V. 

If one of the variables, say T, is fi xed and V changes then the derivative of P w.r.t. V measures the 

rate of change of pressure w.r.t. volume (V) and it is denoted by 
P

V

∂
∂

.

Similarly, the rate of change of P w.r.t. T, keeping V as a constant is denoted by 
P

T

∂
∂

.

Note: Partial derivatives are very useful in vector calculus and differential geometry.

3.2  PARTIAL DERIVATIVES OF FIRST ORDER 

Consider z = f(x, y) be a function  of two independent variables, x and y.

The derivative of z, with respect to x, y is kept constant, is called the partial derivative of z w.r.t. x

and is denoted by 
z

x

∂
∂

or zx or fx or 
f

x

∂
∂

. It is defi ned as 

z

x

∂
∂

 = 
0

( , ) ( , )
lim
h

f x h y f x y

hÆ

+ -

Partial 

Differentiation3
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Similarly, the derivative of z, with respect to y, with x kept as a constant, is called the partial 

derivative of z w.r.t. y and is denoted by or
z f

y y

∂ ∂
∂ ∂

 or fy or zy. It is defi ned as

 
z

y

∂
∂

 = 
0

( , ) ( , )
lim
k

f x y k f x y

kÆ

+ -

Thus, 
z

x

∂
∂

 and 
z

y

∂
∂

 are called fi rst-order partial derivatives of z.

3.3  GEOMETRIC INTERPRETATION OF PARTIAL DERIVATIVES 

Let z = f(x, y) be a function of two variables which represents a surface in three-dimensional space. 

Calculate the partial derivatives zx and zy at the point (x1, y1). Then zx is the slope (along the x-axis) of 

the line l1, which is a tangent to the surface at the point [x1, y1, f(x1, y1)], and zy is the slope (along the 

y-axis) of the line l2, which is a tangent to the surface at the point [x1, y1, f(x1, y1)].

Fig. 3.1

3.4  PARTIAL DERIVATIVES OF HIGHER ORDERS 

Let z = f(x, y) be a function of x and y. If 
z

x

∂
∂

 and 
z

y

∂
∂

 exist then they can be further differentiated 

partially w.r.t. x or/and y. Thus,
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2

2

z

x

∂

∂
 = 

0

( , ) ( , )
or lim x x

xx xx
h

f x h y f x yz
z f

x x hÆ

+ -∂ ∂Ê ˆ
= =Á ˜Ë ¯∂ ∂

 
2

2

z

y

∂

∂
 = 

0

( , ) ( , )
or lim

y y

yy y
k

f x y k f x yz
z f

y y kÆ

+ -Ê ˆ∂ ∂
= =Á ˜∂ ∂Ë ¯

 
2
z

x y

∂
∂ ∂

 = 
,

0

( , ) ( , )
or lim

y y

xy xy
h

f x h y f x yz
z f

x y hÆ

+ -Ê ˆ∂ ∂
= =Á ˜∂ ∂Ë ¯

 

2
z

y x

∂
∂ ∂

 = ,
0

( , ) ( , )
or lim x x

yx yx
k

f x y k f x yz
z f

y x kÆ

+ -∂ ∂Ê ˆ
= =Á ˜Ë ¯∂ ∂

Remark I: If f(x,y) and its partial derivatives are continuous then

 

2 2

, i.e., xy yx

f f
f f

x y y x

∂ ∂
= =

∂ ∂ ∂ ∂

Example 1  Find the fi rst-order partial derivatives of the function u = log (x2 + y2)

Solution Given u = log(x2 + y2) (1)

Differentiating (1) partially w.r.t. ‘x’ treating ‘y’ as a constant, we get

 
u

x

∂
∂

 = 
2 2

1
2x

x y
◊

+

 
u

x

∂
∂

 = 
2 2

2x

x y+

Again differentiating (1) partially w.r.t. ‘y’ treating x as a constant, we get

 
u

y

∂
∂

 = 
2 2 2 2

1 2
2

y
y

x y x y
◊ =

+ +

Example 2  If z = eax + by·f(ax – by), show that 

  2 .
z z

b a abz
x y

∂ ∂
+ =

∂ ∂

Solution Given Z = eax + by·f(ax – by) (1)

Differentiating (1) partially w.r.t. ‘x’, we get

 
z

x

∂
∂

 = ( ) ( )ax by ax by
e f ax by a f ax by e a

+ +◊ - ◊ + - ◊¢

 
z

x

∂
∂

 = [ ( ) ( )]ax by
a e f ax by f ax by

+ - + -¢

\  
z

b
x

∂
∂

 = [ ( ) ( )]ax by
abe f ax by f ax by

+ - + -¢  (2)
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Again differentiating (1) partially, w.r.t. ‘y’, we get

 
z

y

∂
∂

 = ( ) ( ) ( )]ax by ax by
e f ax by b f ax b e b

+ +◊ - ◊ - + - ◊ ◊¢

 
z

y

∂
∂

 = [ ( ) ( )]ax by
b e f ax by f ax by

+ - + -¢

\  
z

a
y

∂
∂

 = [ ( ) ( )]ax by
abe f ax by f ax by

+ - - + -¢  (3)

Adding equations (2) and (3), we get

 2 .
z z

b a abz
x y

∂ ∂
+ =

∂ ∂

Example 3  If u = 1 1sin tan
x y

y x

- -Ê ˆ Ê ˆ
+ Á ˜Á ˜ Ë ¯Ë ¯

 then fi nd the value of .
u u

x y
x y

∂ ∂
+

∂ ∂

Solution

 u = - -Ê ˆ Ê ˆ
+ Á ˜Á ˜ Ë ¯Ë ¯

1 1sin tan
x y

y x
 (1)

Differentiating (1) partially w.r.t. ‘x’, we get

 
u

x

∂
∂

 = 
2 22

1 1 1

11

y

y xyx
xy

Ê ˆ Ê ˆ
◊ + -Á ˜Á ˜ Ë ¯Ë ¯ Ê ˆÊ ˆ + Á ˜- Á ˜ Ë ¯Ë ¯

 
u

x

∂
∂

 = 
2 22 2

1 y

x yy x
-

+-

\  
u

x
x

∂
∂

 = 
2 22 2

x xy

x yy x
-

+-
 (2)

Again differentiating (1) partially w.r.t. ‘y’, we get

 
u

y

∂
∂

 = 
2 2 2 22 2 2

1 1 1

11

x x x

xy x yy y y xx
xy

Ê ˆ
◊ - + ◊ = - +Á ˜ +Ë ¯ Ê ˆ -Ê ˆ + Á ˜- Á ˜ Ë ¯Ë ¯

\  
u

y
y

∂
∂

 = 
2 22 2

x xy

x yy x
- +

+-
 (3)

Adding (2) and (3), we get

 

0
y y

x y
x y

∂ ∂
+ =

∂ ∂
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Example 4  Prove that y = f(x + at) + g(x – at) satisfi es 
2

2

y

t

∂

∂
 = 

∂

∂

2
2

2
,

y
a

x
 where f and g are assumed 

to be at least twice differentiable and a is any constant.

Solution                 y = f(x + at) + g(x – at) (1)

Differentiating (1) partially w.r.t. ‘x’, we get

 
y

x

∂
∂

 = f¢(x + at) + g¢(x – at)

and  
2

2

y

x

∂

∂
 = f¢¢(x + at) + g¢¢(x – at) (2)

Again differentiating (1) partially w.r.t. ‘t’, we get

 
y

t

∂
∂

 = f¢(x + at) ◊ a + g¢(x – at) ◊ (–a)

and  
2

2

y

t

∂

∂
 = f¢¢ (x + at) (a)2 + g¢¢(x – at)◊ (–a)2

 
2

2

y

t

∂

∂
 = a2[f¢¢(x + at) + g¢¢(x – at)] (3)

From (2) and (3),

 

2

2

y

t

∂

∂
 = a2◊

2

2

y

x

∂

∂
 Hence, proved.

Example 5   If u = exyz, then fi nd the value of 
3
u

x y z

∂
∂ ∂ ∂

.

Solution u = exyz (1)

Differentiating (1) partially, w.r.t. z, treating x and y as constants, we get

 
u

z

∂
∂

 = exyz ◊ (xy)

 

2
u

y z

∂
∂ ∂

 = ( )xyzu
e xy

y z y

∂ ∂ ∂Ê ˆ
= ◊Á ˜Ë ¯∂ ∂ ∂

 = exyz ◊ x + exyz(xy) ◊ (xz)

 
2
u

y z

∂
∂ ∂

 = exyz(x + x2
yz)

 

3
u

x y z

∂
∂ ∂ ∂

 = 
Ê ˆ∂ ∂ ∂ È ˘= ◊ +Á ˜ Î ˚∂ ∂ ∂ ∂Ë ¯

2
2( )xyzu

e yz x x yz
x y z x

 = exyz ◊ (1 + 2xyz) + exyz ◊ yz(x + x2
yz)

 = exyz[1 + 2xyz + xyz + x2
y

2
z

2]
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3
z

x y z

∂
∂ ∂ ∂

 = exyz[1 + 3xyz + x2
y

2
z

2]

Example 6  If xx
y

y
z

z = constant (k), show that at x = y = z,

 
2
z

x y

∂
∂ ∂

 = – (x log ex)–1

Solution  Given xx
y

y
z

z = k (1)

Here, z can be regarded as a function of x and y. Taking logarithm on both sides of (1), we get

  x log x + y log y + z log z = log k (2)

Since z is a function of x and y, differentiating (2) partially w.r.t. x taking ‘y’ as constant, we get

 
1 1

log log
z

x x z z
x z x

∂È ˘
◊ + + ◊ +Í ˙ ∂Î ˚

 = 0

or  (1 log ) (1 log )
z

x z
x

∂
+ + +

∂
 = 0

\  
z

x

∂
∂

 = 
1 log

1 log

x

z

+
-

+
 (3)

Similarly, differentiating (2) partially w.r.t. ‘y’, we get

 (1 log ) (1 log )
z

y z
y

∂
+ + +

∂
 = 0

or  
z

y

∂
∂

 = 
(1 log )

1 log

y

z

+
-

+
 (4)

Differentiating (4) partially w.r.t. ‘x’, we get

 

2
z

x y

∂
∂ ∂

 = 
z

x y

Ê ˆ∂ ∂
Á ˜∂ ∂Ë ¯

 = 
1 log

1 log

y

x z

È ˘∂ +
-Í ˙∂ +Î ˚

 = 
1

(1 log )
1 log

y
x z

Ê ˆ∂
- + ◊ Á ˜∂ +Ë ¯

 = 2 1
(1 log ) (1 log )

z
y z

z x

- ∂È ˘
- + - + ◊ ◊Í ˙∂Î ˚

 = 
2

(1 log ) 1 log

1 log(1 log )

y x

zz z

È ˘+ +
◊ -Í ˙++ Î ˚

    [By Eq. (3)]
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At x = y = z, we get

 
2
z

x y

∂
∂ ∂

 = 
2

3

(1 log ) 1

(1 log )(1 log )

x

x xx x

+
- = -

++

 = 11
( log )

(log log )
x ex

x e x

-- = -
+

 Hence, proved.

Example 7  If u = log(x3 + y3 + z3 – 3xyz), show that

 

2

u
x y z

Ê ˆ∂ ∂ ∂
+ +Á ˜∂ ∂ ∂Ë ¯

 = 
2

9

( )x y z
-

+ +
.

Solution Given u = log(x3 + y3 + z3 – 3xyz) (1)

Differentiating (1) partially w.r.t. x, y and z, we get

 
u

x

∂
∂

 = 
2

3 3 3

3 3

( 3 )

x yz

x y z xyz

-

+ + -
 (2)

 
u

y

∂
∂  = 

2

3 3 3

3 3

3

y xz

x y z xyz

-

+ + -
 (3)

and 
u

z

∂
∂

 = 

2

3 3 3

3 3

3

z xy

x y z xyz

-

+ + -
 (4)

Adding (2), (3) and 4, we get 

 
u u u

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
u = 

2 2 2

3 3 3

3( )

3

x y z xy yz zx

x y z xyz

+ + - - -

+ + -
 = 

3

x y z+ +

[∵ x3 + y3 + z3 – 3xyz = (x + y + z)◊{x
2 + y2 + z2 – xy – yz – zx}]

Now,  

2

u
x y z

Ê ˆ∂ ∂ ∂
+ +Á ˜∂ ∂ ∂Ë ¯

 = u
x y z x y z

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂
+ + + +Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

 = 
u u u

x y z x y z

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂
+ + + +Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

 = 
3

x y z x y z

Ê ˆ Ê ˆ∂ ∂ ∂
+ +Á ˜ Á ˜∂ ∂ ∂ + +Ë ¯ Ë ¯

 = 
1 1 1

3
x x y z y x y z z x y z

È ˘Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂
+ +Í ˙Á ˜ Á ˜ Á ˜∂ + + ∂ + + ∂ + +Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

 = 
2 2 2

1 1 1
3

( ) ( ) ( )x y z x y z x y z

È ˘- -
- -Í ˙

+ + + + + +Í ˙Î ˚

 = 
2 2

3 9
3

( ) ( )x y z x y z

- -
◊ =

+ + + +
 Hence, proved.
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Example 8  If u = f(r), where r2 = x2 + y2, show that 

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 

1
( ) ( )f r f r

r
+¢¢ ¢

Solution Given r2 = x2 + y2 (1)

Differentiating (1) partially w.r.t. x and y, we have

 2
r

r
x

∂
∂

 = 2 and 2 2
r

x r y
y

∂
=

∂

or 
r

x

∂
∂

 = and
x r y

r y r

∂
=

∂

But u = f(r)

\ 
u

x

∂
∂

 = ( ) ( )
u r r x

f r f r
r x x r

∂ ∂ ∂
◊ = ◊ = ◊¢ ¢

∂ ∂ ∂

 

2

2

u

x

∂

∂
 = 

u

x r

∂ ∂Ê ˆ
Á ˜Ë ¯∂ ∂

 = 
2

1 1
( ) ( ) ( )

r x r
f r xf r f r

r x r xr

∂ ∂È ˘
+ - - ◊¢ ¢ ¢¢Í ˙∂ ∂Î ˚

 
2

2

u

x

∂

∂
 = 

2 2

3 2

1
( ) ( ) ( )

x x
f r f r f r

r r r
- +¢ ¢ ¢¢  (2)

Similarly,

 

2

2

u

y

∂

∂
 = 

2 2

3 2

1
( ) ( ) ( )

y y
f r f r f r

r r r
- +¢ ¢ ¢¢  (3)

Adding (2) and (3), we get

 

2 2

2 2

u

x y

∂ ∂
+

∂ ∂
 = 

2 2 2 2

3 2

2
( ) ( ) ( )

x y x y
f r f r f r

r r r

+ +
- +¢ ¢ ¢¢

 = 
2 1

( ) ( ) ( )f r f r f r
r r

- +¢ ¢ ¢¢

 = 
1

( ) ( )f r f r
r

+¢¢ ¢  Hence, proved.

Example 9  If z(x + y) = x2 + y2, show that

  

2
z z

x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

 = 4 1
z z

x y

Ê ˆ∂ ∂
- -Á ˜∂ ∂Ë ¯

Solution Here z = 
2 2

x y

x y

+
+

We have 
z

x

∂
∂

 = 
2 2 2 2

2 2

( ) 2 ( ) 1 2

( ) ( )

x y x x y x y xy

x y x y

+ ◊ - + ◊ - +
=

+ +
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Similarly, 
z

y

∂
∂

 = 

2 2

2

2

( )

y x xy

x y

- +

+

Now, 
z z

x y

∂ ∂
-

∂ ∂
 = 

2 2

2

2( ) 2( )

( )( )

x y x y

x yx y

- -
=

++

\  

2
z z

x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

 = 
2

2

4( )

( )

x y

x y

-

+
 (1)

Again, 1
z z

x y

Ê ˆ∂ ∂
- +Á ˜∂ ∂Ë ¯  = 

2

4
1

( )

xy

x y
-

+

 = 
2

2

( ) 4

( )

x y xy

x y

+ -

+

 = 
2 2

2

2

( )

x y xy

x y

+ -

+

 = 
2

2

( )

( )

x y

x y

-

+

\ 4 1
z z

x y

È ˘∂ ∂
- -Í ˙∂ ∂Î ˚

 = 
2

2

4( )

( )

x y

x y

-

+
 (2)

From (1) and (2), we have

 

2
z z

x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

 = 4 1
z dz

x y

È ˘∂
- -Í ˙∂ ∂Î ˚

 Hence, proved.

Example 10  If u = log (tan x + tan y + tan z), prove that

 

sin 2 sin 2 sin 2 2
u u u

x x z
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂

Solution Here, u = log (tan x + tan y + tan z)

\ 
u

x

∂
∂

 = 
2sec

tan tan tan

x

x y z+ +

 sin 2
u

x
x

∂
∂

 = 
2sin 2 sec

tan

x x

x

◊
S

or sin 2
u

x
x

∂
∂

 = 
2

1
2sin cos

cos

tan

x x
x

x

◊

S

 sin 2
u

x
x

∂
∂

 = 
2 tan

tan

x

xS
 (1)
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Similarly,

 sin 2
u

y
y

∂
∂

 = 
2 tan

tan

y

yS
 (2)

and sin 2
u

z
z

∂
∂

 = 
2 tan

tan

z

zS
 (3)

Adding (1), (2), and (3), we get

 sin 2 sin 2 2
u u u

x y z
x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
 = 

+ +
S

2(tan tan tan )

tan

x y z

x

 = 
2 tan

tan

x

x

S
S

 = 2 Hence, proved.

EXERCISE 3.1

 1. Verify 
2 2
u u

x y y x

∂ ∂
=

∂ ∂ ∂ ∂
 for the following functions:

 (i) u = tan–1 
x

y

Ê ˆ
Á ˜Ë ¯

 (ii) u = sin–1 
x

y

Ê ˆ
Á ˜Ë ¯

 (iii) u = x log y

 (iv) u = 
2 2

loge

x y

x y

+
+

 (v) u = ax
2 + by

2 + 2hxy 

 (vi) u = sin (x ◊ y2)

 2. If u = x2
y + y2

z + z2
x, show that

 
2( )

u u u
x y z

x y z

∂ ∂ ∂
+ + = + +

∂ ∂ ∂
.

 3. If u = log (x2 + y2) + tan–1 
y

x

Ê ˆ
Á ˜Ë ¯

, show that

 
2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂

 4. If u = x3
y – xy

3, show that

 
1
2

1 1 13

22x y x
y

u u =
=

È ˘
+ = -Í ˙

Í ˙Î ˚
.
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 5. If u = log (x2 + y3 – x2
y – xy

2), show that

 uxx + 2 uxy + uyy = –4(x + y)–2

 6. If u(x, y, z) = 

2 2 2

1 1 1

x y z

x y z , show that

 ux + uy + uz = 0

 7. If u = xy, show that 
3 3

2

u u

x y x x y

∂ ∂
=

∂ ∂ ∂ ∂ ∂

 8. If 

2 2 2

2 2 2
1,

x y z

a u b u c u
+ + =

+ + +
 show that

  

22 2

2
u u u u u u

x y z
x y z x y z

Ê ˆ È ˘∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ
+ + = + +Í ˙Á ˜ Á ˜Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Î ˚

 9. If z = y ◊ f(x2 – y2), show that

 y ◊ zx + x ◊ zy = 
xz

y
.

 10. If z = (x2 – y2) ◊ f(xy), prove that

 
2 2

2 2

z z

x y

∂ ∂
+

∂ ∂
 = (x4 – y4) f¢¢ (xy)

 11. If u = 
y z x

z x y
+ + , show that x ux + y uy + z uz = 0

 12. If u = 2 2 2log ,x y z+ +  show that

  (x2 + y2 + z2) (uxx + uyy + uzz) = 1

 13. If u = (x2 + y2 + z2)–1/2, show that

 

u u u
x y z u

x y z

∂ ∂ ∂
+ + = -

∂ ∂ ∂

 14. If u = f(r) and r2 = x2 + y2 + z2, prove that

 

2 2 2

2 2 2

2
( ) ( )

u u u
y z f r f r

rx y z

∂ ∂ ∂
+ + = +¢ ¢¢

∂ ∂ ∂

3.5  HOMOGENEOUS FUNCTION

A function is called homogeneous if the degree of each term is same, i.e., an expression of the form

 f(x, y) = a0 x
n + a1 x

n–1 ◊ y + a2 xn–2 ◊ y2 + … + any
n. 

in which each term of nth degree is called a homogeneous function of degree n.
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Now, the above expression can be written as

 f(x, y) = 

2

0 1 2

n

n
n

y y y
x a a a a

x x x

È ˘Ê ˆ Ê ˆÍ ˙+ + + +Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
 

or = 
n y

x
x

f
Ê ˆ
Á ˜Ë ¯

Thus, the function f(x, y) which can be expressed as xn f (y/x) or yn y (x/y) is called a homogeneous 

function of degree n in the variables x and y.

Note: A function f(x, y) is said to be a homogeneous function of degree ‘n’ in the variables x and y if

  f(tx, ty) = tn f(x, y). 

Example: Function f(x, y) = cos–1 (x/y) is a homogeneous function of degree 0.

Example: Function f(x, y) = x
5 + 2xy

4 + x
2
y

3 + 3x
3
y

2 + x
4
y + y

5 is a homogeneous function of

degree 5.

Example: If f(x, y) is a homogeneous function of degree n in the variables x and y then and
f f

x y

∂ ∂
∂ ∂

 

are homogeneous functions of x and y of degree (n – 1) each.

3.6  EULER’S THEOREM ON HOMOGENEOUS FUNCTIONS

Leonhard Euler (15 April 1707–7 September 1783) was born in Basel, 

Switzerland. A great mathematician and a brilliant physicist, Euler is best 

described as a genius.  Euler’s father was a friend of Johann Bernoulli, a 

renowned European mathematician who had a great influence on Euler. At 

thirteen, Euler entered the University of Basel and received his Master of 

Philosophy in 1723. Euler was a leading Swiss mathematician and physicist 

who made significant discoveries in varied fields such as graph theory and 

infinitesimal calculus. He also defined a substantial amount of contemporary 

mathematical terminology and notation, specifically for mathematical 

analysis, such as the notion of a mathematical function. He is also well 

renowned for his works in fluid dynamics, astronomy, mechanics, and 

optics. Euler worked on his subjects mostly in St. Petersburg (Russia) and 

in Berlin, during his adulthood. All his collections, if printed, would occupy 60-80 quarto volumes reflecting 

his outstanding mathematical abilities. Euler was a versatile mathematician who worked on a spectrum of 

topics such as number theory, algebra, geometry, and trigonometry and in different areas of physics such 

as continuum physics, lunar theory, etc. Contrary to Monadism and Wolffian science, Euler firmly believed 

in knowledge found on the basis of exact quantitative laws. 

Theorem 1

If u is a homogeneous function in the variables x and y of degree n then 

 

u u
x y nu

x y

∂ ∂
+ =

∂ ∂

Proof Since u is a homogeneous function of x and y of degree n then u can be written as

 u = n y
x

x
f

Ê ˆ
Á ˜Ë ¯

 (3)
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Differentiating (1) partially w.r.t. ‘x’, we get

 
u

x

∂
∂

 = 1

2

n ny y y
x nx

x xx
f f-Ê ˆ Ê ˆ Ê ˆ

◊ ◊ - +¢ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

or 
u

x

∂
∂

 = 2 1n ny y
y x nx

x x
f f- -Ê ˆ Ê ˆ

- +¢ Á ˜ Á ˜Ë ¯ Ë ¯

Multiplying both sides by ‘x’, we have

 
u

x
x

∂
∂

 = 1n ny y
y x nx

x x
f f- Ê ˆ Ê ˆ

- +¢ Á ˜ Á ˜Ë ¯ Ë ¯
 (4)

Again, differentiating (3) partially w.r.t. ‘y’, we get

 

1nu y
x

y x x
f

∂ Ê ˆ
= ◊¢ Á ˜Ë ¯∂

or 
1nu y

x
y x

f-∂ Ê ˆ
= ¢ Á ˜Ë ¯∂

Multiplying both sides by ‘y’, we have

 

1nu y
y y x

y x
f-∂ Ê ˆ

= ¢ Á ˜Ë ¯∂
 (5)

Adding (4) and (5), we get

 

nu u y
x y n x

x y x
f

∂ ∂ Ê ˆ
+ = ◊ Á ˜Ë ¯∂ ∂

or 
∂ ∂

◊
∂ ∂
u u

x y n u
x y

+ =  Hence, proved.

Generalized Form

Euler’s theorem can be extended to a homogeneous function of any number of variables. If u(x1, x2, x3, 

…, xn) be a homogeneous function of degree n in the variables x1, x2, x3, …, xn then

 
1 2 3

1 2 3

.n
n

u u u u
x x x x n u

x x x x

∂ ∂ ∂ ∂
+ + + + = ◊

∂ ∂ ∂ ∂
 

3.7   RELATIONS BETWEEN SECOND-ORDER DERIVATIVES OF 

HOMOGENEOUS FUNCTIONS

Theorem 2

If u is a homogeneous function of degree n then

 (i) 
2 2

2
( 1)

u u u
x y n

x y xx

∂ ∂ ∂
+ = -

∂ ∂ ∂∂
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 (ii)  
2 2

2
( 1)

u u u
x y n

x y yy

∂ ∂ ∂
+ = -

∂ ∂ ∂∂

 (iii) 
2 2 2

2 2

2 2
2 ( 1)

u u u
x xy y n n u

x yx y

∂ ∂ ∂
+ + = -

∂ ∂∂ ∂

Proof Since u is a homogeneous function in the variables x and y of degree n then by Euler’s 

theorem,

 
u u

x y
x y

∂ ∂
+

∂ ∂
 = nu (6)

Differentiation (6) partially both sides w.r.t. ‘x’, we get

 
∂ ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂∂

2 2

2

u u u u
x y n

x x y xx

or 
2 2

2
( 1)

u u u
x y n

x y xx

∂ ∂ ∂
+ = -

∂ ∂ ∂∂
 (7)

Again, differentiating (6) partially both sides w.r.t. ‘y’, we get

 

2 2

2

u u u u
x y n

y x y yy

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂∂

or 
2 2

2
( 1)

u u u
x y n

x y yy

∂ ∂ ∂
+ = -

∂ ∂ ∂∂
 (8)

Multiplying (7) by x and (8) by y and then adding, we get

 

2 2 2
2 2

2 2 2
2

u u u
x xy y

x x y y

∂ ∂ ∂
+ +

∂ ∂ ∂ ∂
 = ( 1)

u u
n x y

x y

Ê ˆ∂ ∂
- +Á ˜∂ ∂Ë ¯

 = n(n – 1) ◊ u   [Using (6)] Hence, proved.

3.8  DEDUCTION FROM EULER’S THEOREM

Theorem 3

If z is a Homogeneous Function in the variables x and y of degree n and z = f(u) then

 

( )

( )

u u f u
x y n

x y f u

∂ ∂
+ =

∂ ∂ ¢

Proof Since z is a homogeneous function in the variables x and y of degree n then by Euler’s 

theorem,

 
z z

x y
x y

∂ ∂
+

∂ ∂
 = nz (9)

Now, z = f(u)
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\ ( ) and ( )
z u z u

f u f u
x x y y

∂ ∂ ∂ ∂
= =¢ ¢

∂ ∂ ∂ ∂

Then (9) becomes

 ( ) ( )
u u

x f u y f u
x y

∂ ∂
+¢ ¢

∂ ∂
 = n f(u)

or 
( )

( )

u u n f u
x y

x y f u

∂ ∂
+ =

∂ ∂ ¢
 (10)  Hence, proved.

Theorem 4

If z is a homogeneous function in the variables x and y of degree n and z = f(u) then 

 
2 2 2

2 2

2 2
2

u u u
x xy y

x yx y

∂ ∂ ∂
+ +

∂ ∂∂ ∂
 = f(u) [f¢(u) – 1]

where f(u) = 
( )

( )

f u
n

f u¢
.

Proof From Theorem 3, let f(u) = 
( )

( )

n f u

f u¢
; then Eq. (10), becomes

 
u u

x y
x y

∂ ∂
+

∂ ∂
 = f(u) (11)

Differentiating (11) partially w.r.t. ‘x’,  we get

 

2 2

2 2
( )

u u y u
x y u

x xx y
f

∂ ∂ ∂ ∂
+ + = ◊¢

∂ ∂∂ ∂

or 
2 2

2 2
[ ( ) 1]

u u u
x y u

xx y
f

∂ ∂ ∂
+ = -¢

∂∂ ∂
 (12a)

Similarly, differentiating (11) partially w.r.t. ‘y’, we get

 

2 2

2
( )

u u u u
x y u

y x y yy
f

∂ ∂ ∂ ∂
+ + = ¢

∂ ∂ ∂ ∂∂

or 
2 2

2
[ ( ) 1]

u u u
x y u

x x yy
f

∂ ∂ ∂
+ = -¢

∂ ∂ ∂∂
 (12b)

Multiplying (12) by x and (13) by y and adding, we get

 
2 2 2

2 2

2 2
2

u u u
x xy y

x yx y

∂ ∂ ∂
+ +

∂ ∂∂ ∂
 = [ ( ) 1]

u u
u x y

x y
f

Ê ˆ∂ ∂
- +¢ Á ˜∂ ∂Ë ¯

 = [f¢(u) – 1] . f(u)   [From (11)]
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Example 11   If 
3 3

,
x y

u
x y

+
=

+
 apply Euler’s theorem to fi nd the value of .

u u
x y

x y

∂ ∂
+

∂ ∂

Solution u(x, y) = 
3 3

x y

x y

+
+

 u(tx, ty) = 
3 3 3( )

( )

t x y

t x y

+
+

 = 
3 3

2 2 ( , )
x y

t t u x y
x y

Ê ˆ+
=Á ˜+Ë ¯

\  u is a homogeneous function in x and y of degree 2.

Hence, by Euler’s theorem,

 
u u

x y
x y

∂ ∂
+

∂ ∂
 = 2u

Example 12   If u = 
3 3

1tan ,
x y

x y

- Ê ˆ+
Á ˜-Ë ¯

 prove that

 (i) sin 2
u u

x y u
x y

∂ ∂
+ =

∂ ∂

 (ii) 
2 2 2

2 2

2 2
2

u u u
x xy y

x yx y

∂ ∂ ∂
+ +

∂ ∂∂ ∂
 = sin 4u – sin 2u

 = 2 cos 3u ◊ sin u

Solution Here, the given function u is not a homogeneous function.

Let tan u = 
3 3

( , )
x y

f x y
x y

+
=

-
 (1)

Now, f(tx, ty) = 
3 3 3( )

( )

t x y

t x y

+
-

 = t2 f(x, y)

Hence, f(x, y) = tan u is a homogeneous function of degree 2.

 (i) By Euler’s theorem, we have

 
f f

x y
x y

∂ ∂
+

∂ ∂
 = 2f

or (tan )x u y
x y

∂ ∂
+

∂ ∂
 = (tan u) = 2 tan u

or x sec2 u 2sec
u u

y u
x y

∂ ∂
+

∂ ∂
 = 2 tan u
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or 
u u

x y
x y

∂ ∂
+

∂ ∂
 = 

2

2 tan

sec

u

u

 = 22sin
cos

cos

u
u

u
◊

 = 2 sin u cos u

or 
u u

x y
x y

∂ ∂
+

∂ ∂
 = sin 2u Hence, proved.

 (ii) Using Theorem 4,

let  f(u) = sin 2u

\ f¢(u) = 2 cos 2u

Hence,

 
2 2 2

2 2

2 2
2

u u u
x xy y

x yx y

∂ ∂ ∂
+ +

∂ ∂∂ ∂
 = f(u) [f¢(u) – 1] 

 = sin 2u (2 cos 2u – 1)

 = 2 cos 2u sin 2u – sin 2u

 = sin 4u – sin 2u

 = 2 cos 3u . sin u Hence, proved.

Example 13  If u = sin–1 
8 8 8

2 3x y z

x y x

Ê ˆ+ +
Á ˜
Á ˜+ +Ë ¯

, show that

 

3 tan
u u u

x y z u
x y z

∂ ∂ ∂
+ + = -

∂ ∂ ∂

Solution Here, u is not a homogeneous function.

Let  f = sin u = 
8 8 8

2 3x y z

x y x

Ê ˆ+ +
Á ˜
Á ˜+ +Ë ¯

 (1)

\ f(tx, ty, tz) = 3

4 8 8 8

( 2 3 )
( , , )

t x y z
t f x y z

t x y x

-+ +
=

+ +

Hence, f(x, y, z) = sin u is a homogeneous function in the variables x, y, z of degree –3.

By Euler’s theorem, we have

 x f y f z f
x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
 = –3 f

or (sin ) (sin ) (sin )x u y u z u
x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
 = –3 sin u
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or cos cos cos
u u u

x u y u z u
x y z

∂ ∂ ∂
+

∂ ∂ ∂
 = –3 sin u

or 
u u u

x y z
x y z

∂ ∂ ∂
+

∂ ∂ ∂
 = 

3 sin

cos

u

u
-

 = –3 tan u Hence, proved.

Example 14  If u = loge 
4 4

,
x y

x y

Ê ˆ+
Á ˜+Ë ¯

 show that 3
u u

x y
y y

∂ ∂
+ =

∂ ∂

Solution Here u is not a homogeneous function

Let  f(x, y) = eu = 
4 4

x y

x y

+
+

 (1)

\ f(tx, ty) = 
4 4 4 4 4

3 3( )
( , )

( )

t x y x y
t t f x y

t x y x y

Ê ˆ+ +
= ◊ = ◊Á ˜+ +Ë ¯

Hence, f(x, y) = eu is a homogeneous function in the variables x and y of degree 3.

By Euler’s theorem, we have

 
f f

x y
x y

∂ ∂
+

∂ ∂
 = 3·f

or ( ) ( )u u
x e y e

x y

∂ ∂
+

∂ ∂
 = 3·eu

or u uu u
x e y e

x y

∂ ∂
+

∂ ∂
 = 3·eu

or 
u u

x y
x y

∂ ∂
+

∂ ∂
 = 3

Example 15  If u = 
3 3 3

1sin ,
x y z

ax by cz

- Ê ˆ+ +
Á ˜+ +Ë ¯

 prove that 

 2 tan
u u u

x y z u
x y x

∂ ∂ ∂
+ + =

∂ ∂ ∂

Solution Do same as Example 12.

Example 16  If u = 
2 2

,
x y

log
x y

È ˘+
Í ˙

+Í ˙Î ˚
 fi nd the value of 

 (i)  
u u

x y
x y

∂ ∂
+

∂ ∂

 (ii) 
2 2 2

2 2

2 2
2

u u u
x xy y

x yx y

∂ ∂ ∂
+ +

∂ ∂∂ ∂
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Solution Given function u is not a homogeneous function.

We have  e
u = 

2 2

( , )
x y

f x y
x y

+
=

+

\ f(tx, ty) = 
2 2 2 2 2

3/2 3/2

1/2

( )
( , )

( )

t x y x y
t t f x y

t x y x y

Ê ˆ+ +
= = ◊Á ˜

+ +Ë ¯

Thus, f(x, y) is a homogeneous function in x and y of degree 
3

2
.

 (i) By Euler’s theorem,

 

3

2

f f
x y f

u y

∂ ∂
+ =

∂ ∂

or 
3

2

u u u
x e y e e

x y

∂ ∂
+ =

∂ ∂

or 
3

2

u u uu u
x e y e e

x y

∂ ∂
+ =

∂ ∂

or 
3

2

u u
x y

x y

∂ ∂
+ =

∂ ∂

 (ii) Here, f(u) = 
3

2
, f ¢(u) = 0

 Using the deduction of Euler’s theorem, we have

 
2 2 2

2 2

2 2
2

u u u
x xy y

x yx y

∂ ∂ ∂
+ +

∂ ∂∂ ∂
 = f(u) . [f ¢(u) – 1]

 = 
3

[0 1]
2

-

 = 
3

2

-

Example 17  If u = tan–1 

3 3
x y

x y

Ê ˆ+
Á ˜

+Ë ¯
, fi nd the value of 

 (i) 
u u

x y
x y

∂ ∂
+

∂ ∂

 (ii) 
2 2 2

2 2

2 2
2

u u u
x xy y

xyx y

∂ ∂ ∂
+ +

∂∂ ∂

Solution Do same as Example 19.

 (i) 
5

sin 2
4

u
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 (ii) 
25 5

sin 4 sin 2
16 4

u u-

Example 18  If log u = 
3 3

3 4

x y

x y

Ê ˆ+
Á ˜+Ë ¯

, show that 

 2 log
u u

x y u u
x y

∂ ∂
+ = ◊

∂ ∂

Solution Left as an exercise to the student.

EXERCISE 3.2

 1. Verify Euler’s theorem in each case:

 (i) u = 1/4 1/4 1/5 1/5( ) ( )x y x y+ +

 (ii) u = 
1/3 1/3

1/2 1/2

x y

x y

+

+

 (iii) u = 
2 2

log
x y

xy

Ê ˆ+
Á ˜
Ë ¯

 (iv) u = x2 log 
y

x

Ê ˆ
Á ˜Ë ¯

 (v)  u = 2 1 2 1tan tan
y x

x y
x y

- - Ê ˆÊ ˆ
-Á ˜ Á ˜Ë ¯ Ë ¯

 (vi) u = ax
2 + by

2 + 2h xy

 (vii) u = 3x
2 yz + 5xy

2 
z + 4 z4

 (viii) u = 
x y z

y z x
+ +

 2. If u(x, y) = x4
y

2 sin–1 y

x

Ê ˆ
Á ˜Ë ¯

, prove that 6.
u u

x y u
x y

∂ ∂
+ =

∂ ∂

 3. If u = x2 + y3 + z3 + 3xyz, show that 3
u u u

x y z u
x y z

∂ ∂ ∂
+ = = ◊

∂ ∂ ∂

 4. If u = 
1cos ,

x y

x y

-
Ê ˆ+
Á ˜

+Ë ¯
 prove that 

1
cot 0

2

u u
x y u

x y

∂ ∂
+ + =

∂ ∂

 5. If u = 
2 2

log ,
x y

x y

Ê ˆ+
Á ˜+Ë ¯

 prove that 1
u u

x y
x y

∂ ∂
+ =

∂ ∂

 6. If u = 
4 4

log ,
x y

x y

Ê ˆ+
Á ˜+Ë ¯

 show that 
∂ ∂

+ =
∂ ∂

3
u u

x y
x y
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 7. If u = 
2 2 2

1 1 log log
,

x y

xyx x y

-
+ +

+
 prove that 

∂ ∂
+ + =

∂ ∂
2 0

u u
x y u

x y

 8. If u = x2 tan–1 2 1tan ,
y x

y
x y

- Ê ˆÊ ˆ
-Á ˜ Á ˜Ë ¯ Ë ¯

 show that 
2 2 2

2 2

2 2
2 2

u u u
x xy y u

x yx y

∂ ∂ ∂
+ + = ◊

∂ ∂∂ ∂

 9. If u = x sin–1 1sin ,
x y

y
y x

-Ê ˆ Ê ˆ
- Á ˜Á ˜ Ë ¯Ë ¯

 show that 
2 2 2

2 2

2 2
2 0

u u u
x xy y

x yx y

∂ ∂ ∂
+ + =

∂ ∂∂ ∂

 10. If u = 

3 3
1sec ,

x y

x y

- Ê ˆ-
Á ˜+Ë ¯

 prove that

  (i) 
∂ ∂

+ =
∂ ∂

2 cot
u u

x y u
x y

 (ii) 
2 2 2

2 2

2 2
2

u u u
x xy y

x yx y

∂ ∂ ∂
+ +

∂ ∂∂ ∂
 = –2 cot u [ 2 cosec2 u + 1]

 11. If 
1sin ,

x y
u

x y

-
Ê ˆ+

= Á ˜
+Ë ¯

 prove that

  (i) 
1

tan
2

u u
x y u

x y

∂ ∂
+ =

∂ ∂

 (ii) 
2 2 2

2 2

2 2 3

sin cos 2
2

4 cos

u u u u u
x xy y

x yx y u

∂ ∂ ∂ ◊
+ + = -

∂ ∂∂ ∂

 12. If u = 1 1sin tan ,
x y

y x

- -Ê ˆ Ê ˆ
+ Á ˜Á ˜ Ë ¯Ë ¯

 prove that 0
u u

x y
x y

∂ ∂
+ =

∂ ∂

 13. If u = 
5 5 5

2 2 2
log

x y z

x y z

Ê ˆ+ +
Á ˜+ +Ë ¯

, prove that 3
u u u

x y z
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂

 14. State and prove Euler’s theorem for partial differentiation of a homogeneous function u(x, y).

 15. If u = 
1/4 1/4

1

1/6 1/6
sin

x y

x y

- Ê ˆ+
Á ˜+Ë ¯

, prove that 
2 2 2

2 2 2

2 2

tan
2 (tan 11)

144

u u u u
x xy y u

x yx y

∂ ∂ ∂
+ + = -

∂ ∂∂ ∂

3.9  COMPOSITE FUNCTION

Let u = f(x, y), where x = f(t) and y = y(t) then u is called a composite function of the variable ‘t’

\ 
du u dx u dy

dt x dt y dt

∂ ∂
= +

∂ ∂

Also, if w = f(x, y) where x = f(u, v) and y = y(u, v) then w is called a composite function of the 

variables u and v so that we can obtain and
w w

u v

∂ ∂
∂ ∂

.
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w

u

∂
∂

 = 
w x w y

x u y u

∂ ∂ ∂ ∂
◊ + ◊

∂ ∂ ∂ ∂

and 
w

v

∂
∂

 = 
w x w y

x v y v

∂ ∂ ∂ ∂
◊ + ◊

∂ ∂ ∂ ∂

Hence, 
du

dt
 is called the total derivative of u to distinguish it from the partial derivatives 

and .
u u

x y

∂ ∂
∂ ∂

Remark I:  If u = f(x, y, z) and x, y, z are functions of t then u is a composite function of t and is given 

by 

 
du

dt
 = 

u dx u dy u dz

x dt y dt z dt

∂ ∂ ∂
◊ + ◊ + ◊

∂ ∂ ∂

Remark II: If u = f(x, y, z) and y, z are function of x then 

 
du

dx
 = 

u dx u dy u dz

x dx y dx z dx

∂ ∂ ∂
+ +

∂ ∂ ∂

or 
du

dx
 = 

u u dy u dz

x y dx z dx

∂ ∂ ∂
+ + ◊

∂ ∂ ∂

Remark III: If we are given an implicit function f(x, y) = constant then u = f(x, y)

where u = constant.

We know that 
du u u dy

dx x y dx

∂ ∂
= + ◊

∂ ∂

Given u = constant fi 0
du

dx
=

\ 
u u dy

x y dx

∂ ∂
+

∂ ∂
 = 0 or  

f f dy

x y dx

∂ ∂
+

∂ ∂

or 
dy

dx
 = x

y

f

fx
f f

y

∂
∂- = -
∂
∂

Remark IV: If f(x, y) = constant then from Remark III, we have 

 
dy

dx
 = x

y

f

f
-  (13)

Differentiating (13) w.r.t. ‘x’, we get

 

2

2

d y

dx
 = 

2

( ) ( )y x x y

y

d d
f f f f

dx dx

f

È ˘◊ - ◊Í ˙
- Í ˙

Í ˙Î ˚
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 = 
2

y yx x
y x

y

f ff f dy dy
f f

x y dx x y dx

f

∂ ∂È ˘È ˘∂ ∂
◊ + ◊ - + ◊Í ˙Í ˙∂ ∂ ∂ ∂Î ˚ Î ˚-

 = 
2

x x
y xx yx x xy yy

y y

y

f f
f f f f f f

f f

f

È ˘ È ˘
◊ - ◊ - - ◊Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚-

 
2

2

d y

dx
 = 

2 2

3

2xx y x y xy yy x

y

f f f f f f f

f

È ˘- +
Í ˙
Í ˙Î ˚

Example 19  If u = x log (xy), where x3 + y3 + 3xy = 1, fi nd 
du

dx
.

Solution Given u = x log (xy) (1)

and x
3 + y3 + 3xy = 1 (2)

We know that 
du u u dy

dx x y dx

∂ ∂
= + ◊

∂ ∂
 (3)

Differentiating (1) partially w.r.t. ‘x’, we get

 
1

log 1 log
u

xy x y xy
x xy

∂
= + ◊ ◊ = +

∂  (4)

Again, differentiating (1) partially w.r.t. ‘y’, we get

 
u

y

∂
∂

 = 
1 x

x x
xy y

◊ ◊ =  (5)

Now, differentiating (2) w.r.t. ‘x’, we get  

 2 23 3 3
dy dy

x y x y
dx dx

È ˘
+ + +Í ˙Î ˚

 = 0

or 
dy

dx
 = 

2

2

x y

x y

Ê ˆ+
-Á ˜+Ë ¯

 (6)

Substituting the value of , and
u u dy

x y dx

∂ ∂
∂ ∂

 in (3), we obtain

 
du

dx
 = 

2

2
(1 log )

x x y
xy

y x y

È ˘+
+ + ◊ -Í ˙

+Í ˙Î ˚

 = (1 + log xy) 
2

2

x x y

y x y

Ê ˆ+
- Á ˜+Ë ¯
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Example 20  If u = f(y – z, z – x, x – y), prove that 0
u u u

x x z

∂ ∂ ∂
+ + =

∂ ∂ ∂
.

Solution Given u = f(X, Y, Z), where X = y – z, Y = z – x and Z = x – y.

Since u is a composite function of x, y and z,

\ 
u

x

∂
∂

 = 
u X u Y u Z

X x Y x Z x

∂ ∂ ∂ ∂ ∂ ∂
◊ + ◊ + ◊

∂ ∂ ∂ ∂ ∂ ∂

 = 0 ( 1) (1)
u u u

X Y Z

∂ ∂ ∂
◊ + ◊ - + ◊

∂ ∂ ∂

 
u

x

∂
∂

 = 
u u

Y Z

∂ ∂
- +

∂ ∂
 (1)

 
u

y

∂
∂

 = 
u X u Y u Z

X y Y y Z y

∂ ∂ ∂ ∂ ∂ ∂
+ ◊ + ◊

∂ ∂ ∂ ∂ ∂ ∂

 = (1) (0) ( 1)
u u u

X Y Z

∂ ∂ ∂
◊ + ◊ + ◊ -

∂ ∂ ∂

 
u

y

∂
∂

 = 
u u

X Z

∂ ∂
-

∂ ∂
 (2)

and 
u

Z

∂
∂

 = 
u X u Y u Z

X z Y z Z z

∂ ∂ ∂ ∂ ∂ ∂
+ ◊ + ◊

∂ ∂ ∂ ∂ ∂ ∂

 = ( 1) (1) (0)
u u u

X Y z

∂ ∂ ∂
◊ - + ◊ + ◊

∂ ∂ ∂
  

 
u

Z

∂
∂

 = 
u u

X Y

∂ ∂
- +

∂ ∂
 (3)

Adding (1), (2) and (3), we get

 
u u u

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
 = 0

Example 21  If f(x, y) = 0, f(y, z) = 0, show that 

 
f dz

y z dx

f∂ ∂
◊ ◊

∂ ∂
 = 

f

x y

f∂ ∂
◊

∂ ∂

Solution We know that 

 
dz

dx
 = 

dz dy

dy dx
◊  (1)

Given  f(x, y) = 0 fi 
/

/

dy f x

dx f y

∂ ∂
= -

∂ ∂

and  f(y, z) = 0 fi   
/

/

dz y

dy z

f

f

∂ ∂
= -

∂ ∂
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\ Eq. (1), becomes

 
dz

dx
 = 

/ /

/ /

y f x

z f y

f

f

Ê ˆ Ê ˆ∂ ∂ ∂ ∂
- ◊ -Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

or 
f dz

y z dx

f∂ ∂
◊ ◊

∂ ∂
 = 

d f

y x

f ∂
◊

∂ ∂
 Hence, proved.

Example 22  If u = x2
y and the variables x, y are connected by the relation x2 + y2 + xy = 1, fi nd 

du

dx
.

Solution Given u = x2
y (1)

and x
2 + y2 + xy = 1 (2)

We know that 
du u u dy

dx x y dx

∂ ∂
= + ◊

∂ ∂
 (3)

Differentiating (1) partially both sides w.r.t. x and y, we get

 
u

x

∂
∂

 = 22 and
u

xy x
y

∂
=

∂

Again, differentiating (2) w.r.t. ‘x’, we get

 2 2
dy dy

x y x y
dx dx

+ +  = 0

or 
dy

dx
 = 

2

2

x y

x y

+
-

+
\   Eq. (3), becomes

 
du

dx
 = 2 2

2
2

x y
xy x

x y

Ê ˆ+
+ ◊ -Á ˜+Ë ¯

 
du

dx
 = 

2 (2 )
2

( 2 )

x x y
xy

x y

+
-

+

Example 23  If f(x, y, z) = 0, show that 1
x y z

y z x

z x y

Ê ˆ∂ ∂ ∂Ê ˆ Ê ˆ
= -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂Ë ¯

.

Solution Given f(x, y, z) = 0 (1)

 
x

y

z

∂Ê ˆ
Á ˜Ë ¯∂

 means the partial derivative of y w.r.t. ‘z’, treating x as a constant.

\ 
x

y

z

∂Ê ˆ
Á ˜Ë ¯∂  = 

f

z

f

y

∂
∂-
∂
∂

 (2)

Similarly, 
y

z

x

∂Ê ˆ
Á ˜Ë ¯∂

 = 
/

/

f x

f z

∂ ∂
-

∂ ∂
 (3)
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and 
z

x

y

Ê ˆ∂
Á ˜∂Ë ¯

 = 
/

/

f y

f x

∂ ∂
-

∂ ∂
 (4)

Multiplying (2), (3), and (4), we get

 
x y z

y z x

z x y

Ê ˆ∂ ∂ ∂Ê ˆ Ê ˆ
◊Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂Ë ¯

 = –1 Hence, proved.

EXERCISE 3.3

 1. If u = x2 – y2 + sin yz, where y = ex and z = log x, fi nd 
du

dx
.

 2. If z is a function of x and y, where x = eu + e–v and y = e–u – ev, show that

 

.
z z z z

x y
u v x y

∂ ∂ ∂ ∂
- = -

∂ ∂ ∂ ∂

 3. If u = f(r, s, t), where r = , and ,
x y z

s t
y z x

= =  prove that 0.
u u u

x y z
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂

 4. If u = f(2x – 3y, 3y – 4z, 4z – 2x), prove that 
1 1 1

0
2 3 4

u u u

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
.

 5. If z = f(x, y), where x = eu cos v and y = eu sin v, show that 
2 .uz z z

y x e
u v y

∂ ∂ ∂
+ =

∂ ∂ ∂

 6. If u = sin–1 (x – y), x = 3t, y = 4t
3, show that 

2

3

(1 )

du

dt t
=

-
.

 7. If u = sin(x2 + y2), where a2
x

2 + b2
y

2 = c2, fi nd 
du

dx
.

 8. If u = x2 + y2, where x = at
2, y = 2 at, fi nd 

du

dt
.

 9. If x increases at the rate of 2 cm/s at the instant when x = 3 cm and y = 1 cm, at what rate must y 

be changing in order that the function 2xy – 3x
2
y shall be neither increasing nor decreasing?

 10. If xy + yx = ab, fi nd 
dy

dx
.

Answers

 1. (x – e2x) + ex cos (ex log x) 
1

log x
x

Ê ˆ
+Á ˜Ë ¯

 7. 
2 2

2 2

2
2 cos ( )

b a
x x y

b

Ê ˆ-
◊ +Á ˜

Ë ¯

 8. 4a
2
t (t2 + 2) 9. y is decreasing at the rate of 

32

21
 cm/s

 10. 
1

1

log

log

y x

y x

y x y y

x x xy

-

-

Ê ˆ+
-Á ˜+Ë ¯
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3.10  JACOBIAN

A Jacobian is a functional determinant (whose elements are functions). It is very useful in the transformation 

of variables from Cartesian to polar, and cylindrical and spherical coordinates in multiple integral. The 

Jacobian is named after the German mathematician Carl Gustav Jacob-Jacobi.

Karl Gustav Jacob Jacobi (10 December 1804–18 February 1851) was born in 

Potsdam, Prussia (Germany). Karl Jacobi founded the theory of elliptic functions. 

His official biography says, “Carl Jacobi came from a Jewish family but he was 

given the French name Jacques Simon”. He founded the theory of elliptic functions 

based on four theta functions. His Fundamenta nova theoria functionum 

ellipticarum in 1829 and its later supplements made basic contributions to the 

theory of elliptic functions. In 1834, Jacobi proved that if a single-valued function 

of one variable is doubly periodic then the ratio of the periods is imaginary. This 

result prompted much further work in this area, in particular by Liouville and 

Cauchy. Jacobi carried out important research in partial differential equations of the first order and 

applied them to the differential equations of dynamics. He also worked on determinants and studied the 

functional determinant now called the Jacobian. Jacobi was not the first to study the functional determinant 

which now bears his name; it appears first in a 1815 paper of Cauchy. However, Jacobi wrote a long 

memoir De determinantibus functionalibus in 1841 devoted to this determinant. He proves, among many 

other things, that if a set of n functions in n variables are functionally related then the Jacobian is 

identically zero, while if the functions are independent the Jacobian cannot be identically zero. 

Let u and v be given functions of two independent variables x and y. 

The Jacobian of u, v  w.r.t. x, y denoted by 
( , )

( , )

u v

x y

∂
∂

 of J(u, v) is a second order functional determinant 

defi ned as

 
( , )

( , )

u v

x y

∂
∂

 = ( , )

u u

x y
J u v

v v

x y

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

Similarly, the Jacobian of three functions u, v, w of three independent variables x, y, z is defi ned as

 
( , , )

( , , )

u v w

x y z

∂
∂

 = ( , , )

u u u

x y z

v v v
J u v w

x y z

w w w

x y z

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

=
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

In a similar manner, we can defi ne the Jacobian of n functions u1, u2, u3, …, un of n independent 

variables x1, x2, x3, …, xn;

 
1 2 3

1 2 3

( , , , , )

( , , , , )

n

n

u u u u

x x x x

∂
∂

 

 

 = J(u2, u3, …, un)
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 = 

1 1 1 1

1 2 3

2 2 2 2

1 2 3

3 3 3 3

1 2 3

1 2 3

n

n

n

n n n n

n

u u u u

x x x x

u u u u

x x x x

u u u u

x x x x

u u u u

x x x x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 

 

 

     

     

 

3.11  IMPORTANT PROPERTIES OF JACOBIANS

(i) If u, v are functions of r, s and r, s are functions of x, y then

 
∂ ∂ ∂

◊
∂ ∂ ∂

u v u v r s

x y r s x y

( , ) ( , ) ( , )
=

( , ) ( , ) ( , )

Proof Since u and v are composite functions of x, y, we have

 
u

x

∂
∂

 = 
u r u s

r x s x

∂ ∂ ∂ ∂
◊ + ◊

∂ ∂ ∂ ∂
 (14)

 
u

y

∂
∂

 = 
u r u s

r y s y

∂ ∂ ∂ ∂
◊ + ◊

∂ ∂ ∂ ∂
 (15)

 
v

x

∂
∂

 = 
v r v s

r x s x

∂ ∂ ∂ ∂
◊ + ◊

∂ ∂ ∂ ∂
 (16)

 
v

y

∂
∂

 = 
v r v s

r y s y

∂ ∂ ∂ ∂
◊ + ◊

∂ ∂ ∂ ∂
 (17)

From the defi nition of Jacobian,

 

( , ) ( , )

( , ) ( , )

x yr s

r s x y

r ru uu v r s

v v s sr s x y

∂ ∂
◊ =

∂ ∂

By interchanging the rows and columns in the second determinant,

 = 
x xr s

y yr s

r su u

r sv v
◊

 = 
r x s x r y s y

r x s x r y s y

u r u s u r u s

v r v s v v v s

+ ◊ + ◊

+ +
 [Multiplying the determinant row-wise]

 = 
x y

x y

u u

v v
 [Using (14), (15), (16), and (17)]
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( , ) ( , ) ( , )

( , ) ( , ) ( , )

u v r s u v

r s x y x y

∂ ∂ ∂
◊ =

∂ ∂ ∂

Note: It can be extended to n(any number of) variables. 

(ii) If  J1 = 
∂ ∂
∂ ∂

u, v x, y
J

x, y u, v
2

( ) ( )
and =

( ) ( )
, then J1J2 = 1

i.e.,    
∂ ∂

◊
∂ ∂

u, v x, y

x, y u, v

( ) ( )

( ) ( )
 = 1

Proof Let  u = f(x, y) and v = g(x, y) (18)

be two given functions in terms of x and y, which are transformable from u, v  to x, y. Then x and y can 

be written is the form of

 x = f(u, v) and y = y (u, v) (19)

Differentiation partially w.r.t u and v, we get

 1 = x u y u

u u x u y
u x u y

u x u y u

∂ ∂ ∂ ∂ ∂
= ◊ + ◊ = +

∂ ∂ ∂ ∂ ∂
 (20)

 0 = 
∂ ∂ ∂ ∂ ∂

= ◊ + ◊ = + ◊
∂ ∂ ∂ ∂ ∂ x v y v

u u x u y
u x u y

v x v y v
 (21)

 0 = x u y u

v v x v y
v x v y

u x u y u

∂ ∂ ∂ ∂ ∂
= ◊ + ◊ = +

∂ ∂ ∂ ∂ ∂
 (22)

 1 = x v y v

v v x v y
v x v y

v x v y v

∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂
 (23)

Now, 

 J1 ◊ J2 = 
( , ) ( , )

( , ) ( , )

u v x y

x y u v

∂ ∂
◊

∂ ∂

 = 
x y u v

u vx y

u u x x

y yv v

 = 
x y u u

v vx y

u u x y

y yv v
  [Interchanging rows and columns in the second determinants].

 = 
x u y u x v y v

x u y v x v y v

u x u y u x u y

v x v y v x v y
 [∵ Multiplying the determinant row-wise]

 = 
1 0

0 1
 [Using Eqs (3), (4), (5), and (6)]

 = 1.

Hence, J1 J2 = 1. Hence, proved.
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3.12  THEOREMS ON JACOBIAN (WITHOUT PROOF)

Theorem 5

If the functions u1, u2, u3, …, un of the variables x1, x2, x3, …, xn be defi ned by the relation 

 u1 = f1(x1), u2 = f2(x1, x2), u3 = f3(x1, x2, x3), …, un = fn(x1, x2, x3, ..., xn); then

 

1 2 3 31 2

1 2 3 1 2 3

( , , , , )
, ,

( , , , , )

n n

n n

u u u u u uu u

x x x x x x x x

∂ ∂ ∂∂ ∂
= ◊ ◊

∂ ∂ ∂ ∂ ∂
 

 

 

Theorem 6

If the functions u, v, w of three independent variables x, y, z are not independent then the Jacobian of 

u, v, w with respect to x, y, z vanishes.

i.e., 
( , , )

( , , ) 0.
( , , )

u v w
J u v w

x y z

∂
= =

∂

3.13  JACOBIANS OF IMPLICIT FUNCTIONS

Theorem 7

If u1, u2 be connected by the implicit relations of the forms

 F1(u1, u2, x1, x2) = 0

and F2(u1, u2, x1, x2) = 0

then        21 2 1 2 1 2

1 2 1 2 1 2

( , ) ( , )/ ( , )
( 1)

( , ) ( , )/ ( , )

u u F F x x

x x F F u u

È ˘∂ ∂ ∂
= - Í ˙∂ ∂ ∂Î ˚

In general, if u1, u2, u3, ..., un are connected with n independent variables x1, x2, x3, ..., xn by the 

relation of the form

 F1(u1, u2, …, un, x1, x2, …, xn) = 0

 F2(u1, u2, …, un, x1, x2, …, xn) = 0

 …

 …

 Fn(u1, u2, …, un, x1, x2, …,  xn) = 0

then,

                        

1 2 1 2 1 2

1 2 1 21 2

( , , , ) ( , , , ) ( , , , )
( 1)

( , , , ) ( , , , )( , , , )

nn n n

n nn

u u u F F F F F F

x x x u u ux x x

È ˘∂ ∂ ∂
= - Í ˙∂ ∂∂ Î ˚

   

   

3.14  FUNCTIONAL DEPENDENCE

Let u = f(x, y), v = g(x, y) be two given differentiable functions of two independent variables x and y. 

Suppose u and v are connected by a relation F(u, v) = 0, where F(u, v) is differentiable. Then u and v 

are said to be functionally dependent on each other if the partial derivatives ux, uy, vx and vy are not all 

zero simultaneously.
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3.14.1 Necessary and Suffi cient Condition

The necessary and suffi cient condition for functional dependence can be expressed in terms of a 

determinant as follows:

Differentiating F(u, v) = 0 partially w.r.t. x and y, we obtain

 
F u F v

u x v x

∂ ∂ ∂ ∂
◊ + ◊

∂ ∂ ∂ ∂
 = 0

 
F u F v

u y v y

∂ ∂ ∂ ∂
◊ + ◊

∂ ∂ ∂ ∂
 = 0

A nontrivial solution 0, 0
F F

u v

∂ ∂
π π

∂ ∂
 to this system exists if the coeffi cient determinant is zero,

i.e. 

u uu v

x yx x

u v v v

y y x y

∂ ∂∂ ∂
∂ ∂∂ ∂

=
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 = 0

Two functions u and v are functionally dependent if their Jacobian J(u, v) = 
∂
∂

y v

x y

( , )
= 0

( , )
.

If the Jacobian is not equal to zero then u and v are said to be functionally independent,

We can extend this concept more than two functions suppose three given functions u, v, w of three 

independent variables x, y, z connected by the relation F(u, v, w) = 0 are functionally dependent if Jacobian 

of u, v, w w.r.t. x, y, z is zero, i.e., 
( , , )

0
( , , )

u v w

x y z

∂
=

∂
. Otherwise, they are functionally independent.

Note: m functions of n variables are always functionally dependent if m > n.

Example 24  Find the Jacobian 
( , )

( , )

u v

x y

∂
∂

, where u = ex sin y, v = x + log sin y.

Solution Given u = ex sin y; v = x + log sin y

\ sinxu
e y

x

∂
=

∂
 1

v

x

∂
=

∂

 cosxu
e y

y

∂
=

∂
 

cos

sin

v y

y y

∂
=

∂

Now,  
( , )

( , )

u v

x y

∂
∂

 = 

sin cos

cos
1

sin

x x
u u

e y e y
x y

y
v v

y
x y

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

 = ex cos y – ex cos y  = 0

Example 25  Calculate J1 = 2

( , ) ( , )
and .

( , ) ( , )

u v r
J

r u v

q

q

∂ ∂
=

∂ ∂
 Also verify J1 J1 = 1, where u = r cos q, 

v = r sin q.
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Solution Given      u = r cos q,           v = r sin q

\ 
u

r

∂
∂

 = cos q 
v

r

∂
∂

 = sin q

 
u

q

∂
∂

 = –r sin q 
v

q

∂
∂

 = r cos q

Now,

 J1 = 
cos sin( , )

sin cos( , )

u u

ru v r

v v rr

r

q qq

q qq

q

∂ ∂
-∂ ∂ ∂= =

∂ ∂∂
∂ ∂

 = r cos2 q + r sin2 q = r(sin2 q + cos2 q) = r.

From (1),   r
2 = u2 + v2 and q = tan–1 

v

u

Ê ˆ
Á ˜Ë ¯

\ 
r

u

∂
∂

 = 
q∂ Ê ˆ

= ◊ - = -Á ˜Ë ¯∂ +
+

2 2 2 2

2

1
and

1

u v v

r u v u u v

u

 
r

v

∂
∂

 = 
q∂ Ê ˆ

= ◊ = -Á ˜Ë ¯∂ +
+

2 2 2

2

1 1

1

v u

r v uv u v

uNow,

 J2 = 
( , )

( , )

r r

r u v

u v

u v

q

q q

∂ ∂
∂ ∂ ∂=

∂ ∂∂
∂ ∂

  = 
2 2

2 2 2 2

2 2 2 2

( ) ( )

u v

r r u v

v u r u v r u v

u v u v

= +
+ +-

+ +

 = 

2 2

2 2

1 1u v

r ru v

È ˘+
=Í ˙

+Í ˙Î ˚

 J1 J2 = 
( , ) ( , )

( , ) ( , )

u v r

r u v

q

q

∂ ∂
◊

∂ ∂

 = 
1

r
r

◊

 = 1 Hence, proved.
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Example 26  If y1 = 2 3 3 1 1 2
2 3

1 2 3

, , ,
x x x x x x

y y
x x x

= =  show that the Jacobian of y1, y2, y3 w.r.t

x1, x2, x3 is 4.

Solution Given 2 3 3 1 1 2
1 2 3

1 2 3

, ,
x x x x x x

y y y
x x x

= = =

\ 
1

1

y

x

∂
∂

 = 2 3 31 1 2

2
2 1 3 11

, ,
x x xy y x

x x x xx

∂ ∂
- = =

∂ ∂

 2

1

y

x

∂
∂

 = 3 3 12 2 1

2
2 2 3 22

, ,
x x xy y x

x x x xx

∂ ∂
- = - =

∂ ∂

 
3

1

y

x

∂
∂

 = 3 32 1 1 2

2
3 2 3 3 3

, ,
y yx x x x

x x x x x

∂ ∂ -
= =

∂ ∂

Now,

 
1 2 3

1 2 3

( , , )

( , , )

y y y

x x x

∂
∂

 = 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

y y y

x x x

y y y

x x x

y y y

x x x

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

 = 

2 3 3 2

2
1 11

3 1 3 1

2
2 22

2 1 1 2

2
3 3 3

x x x x

x xx

x x x x

x xx

x x x x

x x x

-

-

-

 

 = 

2 3 1 3 1 2

2 3 1 3 1 22 2 2
1 2 3

2 3 1 3 1 2

1
x x x x x x

x x x x x x
x x x

x x x x x x

-
-

-

 = 

2 2 2
1 2 3

2 2 2
1 2 3

1 1 1

1 1 1

1 1 1

x x x

x x x

-
-

-

 = –1(1 – 1) – 1(–1 –1) + 1(1 + 1)

 = 0 + 2 + 2

 = 4 Hence, proved.

Example 27  If y1 = cos x1, y2 = sin x1 cos x2, y3 = sin x1 sin x2 cos x3 then show that

 
1 2 3

1 2 3

( , , )

( , , )

y y y

x x x

∂
∂

 = –sin3 x1 sin2 x2 sin x3

Solution Given y1 = cos x1, y2 = sin x1 cos x2, y3 = sin x1 sin x2 cos x3

\ 1

1

y

x

∂
∂

 = 2
1 1 2

2

sin , sin sin
y

x x x
x

∂
- = -

∂
, and 3

1 2 3
3

sin sin sin
y

x x x
x

∂
= - ◊ ◊

∂

Now, 1 2 3

1 2 3

( )

( , , )

y y y

x x x

∂
∂

 = 31 2

1 2 3

yy y

x x x

∂∂ ∂
◊ ◊

∂ ∂ ∂
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 = (–sin x1) (–sin x1 sin x2) ◊ (–sin x1 sin x2 sin x3)

 = –sin3 x1 sin2 x2 sin x3. Hence, proved.

Example 28  If u = xyz, v = x2 + y2 + z2 and w = x + y + z, fi nd the Jacobian 
( , , )

( , , )

x y z

u v w

∂
∂

.

Solution Givne u = xyz, v = x2 + y2 + z2, w = x + y + z

 
( , , )

( , , )

u v w

x y z

∂
∂

 = 2 2 2

1 1 1

u u u

x y z
yz zx xy

v v v
x y z

x y z

w w w

x y z

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

=
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 = 2

1 1 1

yz zx xy

x y z

 = 1 1 3

2 2 3

( ) ( )

2 Applying 

0 0 1

y z x x z y xy
C C C

x z y z z
C C C

- -
Æ -

- -
Æ -

 = 2(z – x) (y – z) 1 1

0 0 1

y x xy

z

-
-

 = 2(z – x)(y – z) ◊ (y – x)

 = –2(x – y)(y – z) (z – x)

We know that

 
( , , ) ( , , )

( , , ) ( , , )

u v w x y z

x y z u v w

∂ ∂
◊

∂ ∂
 = 1

\ 
( , , )

( , , )

x y z

u v w

∂
∂

 = 
1

( , , )

( , , )

u v w

x y z

∂
∂

 = 
1

2( )( )( )x y y z z x

-
- - -

Example 29  If x + y + z = u, y + z = uv, z = uvw then fi nd the Jacobian 
( , , )

( , , )

x y z

u v w

∂
∂

.

Solution Given x + y + z = u, y + z = uv, z = uvw

\ x = u – (y + z) = u – uv = u(1 – v)

 y = uv – z = uv – uvw = uv(1 – w)

 z = uvw
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\ 
( , , )

( , , )

x y z

u v w

∂
∂

 = 

(1 ) 0

(1 ) (1 )

x x x

u v w
v u

y y y
v w u w uv

u v w
vw uw uv

z z z

u v w

∂ ∂ ∂
∂ ∂ ∂ - -
∂ ∂ ∂

= - - -
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

  = 1 1 2 3

1 0 0

(1 ) (1 ) Applying ( )v w u w uv R R R R

vw uw uv

- - - Æ + +

or 
( , , )

( , , )

x y z

u v w

∂
∂

 = u2
v(1 – w) + uvw

 = u2 v

Example 30  If u3 + v3 = x + y and u2 + v2 = x3 + y3 then show that 
2 2( , )

.
( , ) 2 ( )

u v y x

x y uv u v

∂ -
=

∂ -
Solution Since the variables u, v are implicit functions of x, y and are related by the following relations,

 F1(u, v, x, y) ∫ u3 + v3 – (x + y) = 0

 F2(u, v, x, y) ∫ u2 + v2 – (x3 + y3) = 0

\ 
( , )

( , )

u v

x y

∂
∂

 = 2 1 2 1 2( , ) ( , )
( 1)

( , ) ( , )

F F F F

x y u v

È ˘∂ ∂
- Í ˙∂ ∂Î ˚

  (1)

Now, 
1 2( , )

( , )

F F

x y

∂
∂

 = 

1 1

2 2

2 2
2 2

1 1
3(( )

3 3

F F

x y
y x

F F x y

x y

∂ ∂
- -∂ ∂

= = -
∂ ∂ - -
∂ ∂

 1 2( , )

( , )

F F

u v

∂
∂

 = 

1 1
2 2

2 2

2 2

3 3
6 6 6 ( )

2 3

F F

u vu v
u v uv uv u v

F F u v

u v

∂ ∂
∂ ∂ = = - = -
∂ ∂
∂ ∂

Equation (1) becomes

  
( , )

( , )

u v

x y

∂
∂

 = 
2 23( )

6 ( )

y x

uv u v

-
-

 = 
2 2( )

2 ( )

y x

uv u v

-
-

 Hence, proved.

Example 31  If u1 = x1 + x2 + x3 + x4, u1u2 = x2 + x3 + x4

 u1u2u3 = x3 + x4, u1 u2 u3 u4 = x4, then show that 3 21 2 3 4
1 2 3

1 2 3 4

( , , , )
.

( , , , )

u u u u
u u u

x x x x

∂
=

∂
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Solution Since u1, u2, u3 and u4 are implicit functions of the variables x1, x2, x3, x4 and they are related 

by the relations,

 F1 ∫ x1 + x2 + x3 + x4 – u1 = 0

 F2 ∫ x2 + x3 + x4 – u1u2 = 0

 F3 ∫ x3 + x4 – u1u2u3 = 0

 F4 ∫ x4 – u1 u2 u3 u4 = 0

 
1 2 3 4

1 2 3 4

( , , , )

( , , , )

F F F F

u u u u

∂
∂

 = 
31 2 4

1 2 3 4

FF F F

u u u u

∂∂ ∂ ∂
◊ ◊ ◊

∂ ∂ ∂ ∂

 = (–1) (–u1)(–u1 u2) ◊ (–u1 u2 u3)

 = u1
3 u2

2 u3

and  1 2 3 4

1 2 3 4

( , , , )

( , , , )

F F F F

x x x x

∂
∂

 = 31 2 4

1 2 3 4

FF F F

x x x x

∂∂ ∂ ∂
◊ ◊ ◊

∂ ∂ ∂ ∂
 = (1) (1) (1) (1) = 1.

Now,

 
1 2 3 4

1 2 3 4

( , , , )

( , , , )

u u u u

x x x x

∂
∂

 = 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

( , , , ) ( , , , )
( 1)

( , , , ) ( , , , )

F F F F F F F F

u u u u x x x x

È ˘∂ ∂
- Í ˙∂ ∂Î ˚

 

 = 
3 2
1 2 3

1

u u u

 = u1
3 u2

2 u3 Hence, proved.

Example 32  If u3 = xyz, 
1 1 1 1

,
v x y z

= + +  w2 = x2 + y2 + z2 then show that

  
( , , )

( , , )

u v w

x y z

∂
∂

 = 
2

( ) ( ) ( )( )

3 ( )

v x y y z z x x y z

u w xy yz zx

- - - + +

+ +

Solution Let F1 ∫ u3 – xyz = 0

 F2 ∫ - - -
1 1 1 1

v x y z
 = 0

 F3 ∫ w2 – x2 – y2 – z2 = 0

Now, 
1 2 3( , , )

( , , )

F F F

x y z

∂
∂

 = 
2 2 2

1 1 1

2 2 2

yz xz xy

x y z

x y z

- - -

- - -

 = 

2 2 2

2 2 2

3 3 3

2
1 1 1

x yz xy z xyz

x y z
x y z

+
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 = 
2 2 2

3 3 3

2 2( )( )( )( )
1 1 1

x y z
xyz x y y z z x x y z

x y zx y z
x y z

- - - + +
=

and  1 2 3( , , )

( , , )

F F F

u v w

∂
∂

 = 

2

2

2 2

3 0 0

1 6
0 0

0 0 2

u

u w

v v

w

- = -

\ 
( , , )

( , , )

u v w

x y z

∂
∂

 = 3 1 2 3 1 2 3( , , ) ( , , )
( 1)

( , , ) ( , , )

F F F F F F

x y z u v w

È ˘∂ ∂
- Í ˙∂ ∂Î ˚

 = 
2

2

2( )( )( )( )

6

x y y z z x x y z v

x y z u w

Ê ˆ- - - + +
- ◊ -Á ˜

Ë ¯
 

 = 
2

2( )( )( )( )

1 1 1
6

x y y z z x x y z

x y z u w
x y z

- - - + +
Ê ˆ

◊ + +Á ˜Ë ¯

 = 
2

2 ( )( )( )( )

6 ( )

v x y y z z x x y z xyz

xyz u w xy yz zx

- - - + + ◊

+ +

 = 
2

( )( )( )( )

3 ( )

v x y y z z x x y z

u w xy yz zx

- - - + +

+ +
 Hence, proved.

Example 33  If u = 
1

x y

xy

+
-

 and v = tan–1 x + tan–1 y, fi nd 
( , )

.
( , )

u v

x y

∂
∂

 Are u and v functionally related? 

If so fi nd the relationship.

Solution

   

2 2

2 2

2 2

1 1

( , ) (1 ) (1 )

( , ) 1 1

1 1

x y

x y

y x

u uu v xy xy

v vx y

x y

+ +
∂ - -

= =
∂

- -

 = 
2 2

1 1
0

(1 ) (1 )xy xy
- =

- -
Hence, u and v are functionally related.

Now,  v = tan–1 
x + tan–1 y = 1tan

1

x y

xy

- Ê ˆ+
Á ˜-Ë ¯

 

 v = tan–1 u

or                 u v= tan  which is the required relation between u and v.
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Example 34  If u = x + 2y + z, v = x – 2y + 3z and w = 2xy – xz + 4yz – 2z
2. Show that they are not 

independent. Find the relation between u, v, and w.

Solution Here,  ux = 1, uy = 2, uz = 1

 vx = 1, vy = –1, vz = 3

and wx = 2y – z, wy = 2x + 4z, wz = –x + 4y – 4z

\ J(u, v, w) = 

1 2 1
( , , )

1 2 3
( , , )

2 2 4 4 4

u v w

x y z
y z x z x y z

∂
= -

∂
- + - + -

 = 
1 1 3

2 2 3

0 0 1

2 8 3
3

2 3 4 8 12 4 4

C C C

C C C
x y z x y z x y z

Æ -
- -

Æ -
- + - + - + -

 = 
2 8

2 3 4 8 12x y z x y z

- -
- + - +

 = 
2 2

4 0
2 3 2 3x y z x y z

- =
- + - +

 [∵ C1 and C2 are identical]

Hence, u, v, w are not independent.

Now, u + v = 2x + 4z

 u – v = 4y – 2z

\ u
2 – v2 = (u + v) (u – v) = (2x + 4z)(4y – 2z) = 4(x + 2z)(2y – z)

 = 4(2xy – zx + 4yz – 2z
2) = 4 w

 u2
 – v2

 = 4w

which is the required relation between u, v, and w.

Example 35  If u = x2 + y2 + z2, v = x + y + z, w = xy + yz + zx, show that the Jacobian 
( , , )

( , , )

u v w

x y z

∂
∂

 

vanishes. Find the relation between u, v, and w.

Solution Here, ux = 2x, uy = 2y, uz = 2z

 vx = 1, vy = 1, vz = 1

and wx = (y + z), wy = (x + z), wz = (y + x)

\ J(u, v, w) = 

2 2 2
( , , )

1 1 1
( , , )

x y z
u v w

x y z
y z z x x y

∂
=

∂
+ + +

 = 
1 2

1 1 1

2 ( )x y z R R

y z z x x y

- ´
+ + +
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 = - - - Æ - Æ -
+ - -

2 2 1 3 3 1

1 0 0

2 [ , ]x y x z x C C C C C C

y z x y x z

 = 

1 0 0

2 ( ) ( ) 0

( ) ( )

x x y x z

y z x y x z

- - - - - =
+ - -

Hence, u, v, and w are not independent.

Now, v = x + y + z fi v2 = (x + y + z)2

       = x2 + y2 + z2 + 2(xy + yz + zx)

              
v u + w2

= 2

which is the required relation between u, v, and w.

Example 36  If u = 2 21 1y x x y- + -  and 2 2(1 ) (1 )v x y x y= - - -  then prove that u and 

v are not independent and fi nd the relationship between them. 

Solution J(u, v) = 
( , )

( , )

x y

x y

u uu v

v vx y

∂
=

∂

 = 

2 2

2 2

2 2

2 2

1 1
1 1

1 1

1 1

x y x y
y x

x y

x y y x
y x

x y

-
+ + - -

- -

- -
- - - -

- -

 = 
- - - - - -

- - - - - - - - - -

2 2 2 2

2 2 2 2 2 2

(1 )(1 ) (1 )(1 )1

(1 )(1 ) 1 ) 1 ) 1 ) 1 )

x y xy x y xy

x y x y y x x y y x

 = 0

Hence, u, v are not independent.

Now, u
2 + v2 = 

2 2
2 2 2 21 1 (1 )(1 )y x x y x y xyÈ ˘ È ˘- + - + - - -Í ˙ Í ˙Î ˚ Î ˚

 = y2(1 – x2) + x2(1 – y2) + 2xy 2 2(1 )(1 )x y- -

 + (1 – x2)(1 – y2) + x2 
y

2 – 2xy 2 2(1 )(1 )x y- -

 = y2(1 – x2 + x2) + (1 – y2)(x2 + 1 – x2)

 = y2 + 1 –y
2 = 1

\ u2
 + v2

 = 1, which is the required relation. 



3.40 Engineering Mathematics for Semesters I and II

EXERCISE 3.4

 1. Find the Jacobian of the following transformation u = ax + by, v = cx + dy.

 2. If u = a cos hx cos y, v = a sinh x . sin y then show that J(u, v) = 
2

2

a
 (cosh2 x – cos 2y).

 3. If x = r sin q cos f, y = r sin q sin f, z = r cos q then show that  
( , , )

( , , )

x y z

r q f

∂
∂

 = r2 sin q.

 4. If u = x + y – z, v = x – y + z, w = x2 + y2 + z2 – 2yz then show that 
( , , )

( , , )

u v w

x y z

∂
∂

 = 0.

 5. If x = r cos q cos f, y = r cos q sin f, z = r sin q, show that 
( , , )

( , , )

x y z

r q f

∂
∂

 = –r
2 cos q.

 6. If u1 = 1 – x1, u2 = x1(1 – x2), u3 = x1 x2 (1 – x3), fi nd the value of 1 2 3

1 2 3

( , , )

( , , )

u u u

x x x

∂
∂

.

 7. If y1 = x1 + x2 + x3, y1
2 y2 = x2 + x3, y1

3 y3 = x3, fi nd the value of the Jacobian 1 2 3

1 2 3

( , , )

( , , )

y y y

x x x

∂
∂

.

 8. If u3 + v3 = x + y, u2 + v2 = x3 + y3 then show that 
2 2( , )

( , ) 2 ( )

u v y x

x y uv u v

∂ -
=

∂ -
.

 9. If u = xyz, v = x2 + y2 + z2, w = x + y + z. Show that 
( , , ) 1

( , , ) 2( )( ) ( )

x y z

u v z x y y z z x

∂
=

∂ - - -
.

 10. Find the Jacobian of y1, y2, y3, …, yn, when it is given that y1 = (1 – x1), y2 = x1(1 – x2), y3 = x1 

x2(1 – x3), …, yn = x1 x2 … xn – 1 (1 – xn).

 11. Prove that the functions u = xy + zx, v = xy + yz and w = xz – zy are not independent and fi nd 

the relation between them.

 12. If u = x + y + z, v = xy + yz + zx, w = x3 + y3 + z3 – 3xyz, show that u, v, w are not independent 

and fi nd the relation between them.

 13. Use the Jacobian to prove that the functions u = xy + yz + zx, v = x2 + y2 + z2, w = x + y + z are 

not independent. Find the relation between them.

 14. If u = x3 + x2
y + x2

z – z2(x + y + z), v = x + z and w = x2 – z2 + xy – zy, prove that u, v, w are 

connected by a functional relation.

Answers

 1. ad – bc 6. –x1
2 x2

 7. 
5
1

1

y
 10. J(y1, y2, …, yn) = (–1)n x1

n–1 x2
n–2, …, xn–1.

 11. u – v = w 12. u
3 – 3uv = w

 13. w
2 = v + 2u

 14. u = wv
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3.15  EXPANSION OF FUNCTIONS OF SEVERAL VARIABLES

3.15.1 Expansion of Functions of One Variable

Taylor’s Theorem (or Taylor’s Series)

Let f(x + h) be a function of h(x being independent of h) which can be expanded in powers of h and this 

function be differentiable any number of times. Then the theorem states that

 f(x + h) = f(x) + hf ¢(x) + 
2 3

( )( ) ( ) ( )
2! 3! !

n
nh h h

f x f x f x
n

+ + + +¢¢ ¢¢¢    (24)

Brook Taylor (18 August 1685–29 December 1731), was born in Edmonton, 

England. His parents, John Taylor and Olivia Tempest, had a very stable financial 

condition. Taylor was home-tutored before starting his studies in St. John’s 

College, Cambridge. He acquired the degrees of LLB in 1709 and LLD in 1714. 

He was interested in Art and Music but his first love was Mathematics. He 

portrayed exceptional abilities in mathematics by writing a very important paper 

even before his graduation. It gave the explanation of the oscillation of a body. 

Taylor provided the solution to the ‘Kepler’s Law’ to Machin in 1912. Noticing 

Taylor’s extraordinary expertise in the subject, he was elected as a member of the 

Royal Society by Machin and Keill. In 1714, Brook Taylor became the secretary 

of the Royal Society. 

Other Forms of Taylor’s Theorem

 (i) Putting x = a in (24), we obtain

 f(a + h) = f(a) + h f¢(a) + 
2 3

( )( ) ( ) ( )
2! 3! !

n
nh h h

f a f a f a
n

+ + + +¢¢ ¢¢¢    (25)

 (ii) Putting h = x – a in (25), we obtain.

f(x) = f(a) + (x – a) f ¢(a) + 
2 3

( )( ) ( ) ( )
( ) ( ) ( )

2! 3! !

n
nx a x a x a

f a f a f a
n

- - -
+ + + +¢¢ ¢¢¢    (26)

3.15.2 Corollary

Putting h = x and a = 0 in (25), we get

 f(x) = f(0) + xf ¢(0) + 
2 3

( )(0) (0) (0)
2! 3! !

n
nx x x

f f f
n

+ + + +¢¢ ¢¢¢    (27)

which is called Maclaurin’s theorem.

3.16  EXPANSION OF FUNCTIONS OF TWO VARIABLES

Taylor’s Series/Theorem Expansion of a Function of Two Variables

Statement

Let f(x, y) be a function of two independent variables x and y. It possesses fi nite and continuous 

partial derivatives up to nth order in any neighborhood D of a point (a, b) and let (a + h, b + k) be 
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any point of D. Then f(a + h, b + k) = f(a, b) + 

2
1

( , ) ( , )
2!

h k f a b h k f a b
x y x y

Ê ˆ Ê ˆ∂ ∂ ∂ ∂
+ + +Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

3
1

( , )
3!

h k f a b
x y

Ê ˆ∂ ∂
+ + +Á ˜∂ ∂Ë ¯

 

where  a £ x £ a + h,   b £ y £ b + k.

Proof Since f(x, y) is  a function of two independent variables x and y, if taking y as a constant then 

f(x + h, y + k) is a function of x. Expanding with the help of Taylor’s theorem for one variable, we 

have

          f(x + h, y + k) = f(x, y + k) + h fx(x, y + k) + 
2 3

( , ) ( , )
2! 3!

xx xxx

h h
f x y k f x y k+ + + +  (28)

Now, expanding functions on the RHS of (28) as functions of y by Taylor’s theorem for one variable, 

we have

 f(x, y + k) = f(x, y) + k fy(x, y) + 
2

( , )
2!

yy

k
f x y + 

 h(fx(x, y + k) = 2

2

( , ) ( , ) ( , )
2!

x xy xy

k
h f x y k f x y f x y

È ˘
+ + +Í ˙

Í ˙Î ˚
 

 
È ˘

+ = + + +Í ˙
Í ˙Î ˚

 

2 2 2

( , ) ( , ) ( , ) ( , )
2! 2! 2!

xx xx xxy xxyy

h h k
f x y k f x y k f x y f x y , and so on.

Substituting these values in (28), we obtain

 f(x + h, y + k) = f(x, y) + (hfx + kfy) + 2 21
( 2 )

2!
xx xy yyh f hkf k f+ +  

 3 2 2 31
( 3 3 )

3!
xxx xxy xyy yyyh f h kf hk f k f+ + + + +  (29)

or symbolically, we have

 f(x + h, y + k) = f(x, y) + 

2
1

( , ) ( , )
2!

h k f x y h k f x y
x y x y

Ê ˆ Ê ˆ∂ ∂ ∂ ∂
+ + +Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

 

3
1

( , )
3!

h k f x y
x y

Ê ˆ∂ ∂
+ + +Á ˜∂ ∂Ë ¯

  (30)

Putting x = a and y = b in (30), we get

 f(a + h, b + k) = f(a, b) + 

2
1

( , ) ( , )
2!

h k f a b h k f a b
x y x y

Ê ˆ Ê ˆ∂ ∂ ∂ ∂
+ + +Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

 

3
1

( , )
3!

h k f a b
x y

Ê ˆ∂ ∂
+ + +Á ˜∂ ∂Ë ¯

  (31)
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Putting h = x – a and k = y – b in (31), we get

 f(x, y) = f(a, b) + [(x – a)fx(a, b) + (y – b)fy(a, b)] + 21
[( ) ( , )

2!
xxx a f a b-

 + 2(x – a)(y – b) fxy(a, b) + (y – b)2 fyy(a, b)]

 
1

3!
[(x – a)3 fxxx(a, b) + 3(x – a)2 (y – b) fxxx(a, b)

 + (x – a(y – b)2 fxyy(a, b + (y – b)3 fyyy(a, b)] + ... (32)

Now, putting a = 0 = b is (32), we get

 f(x, y) = f(0, 0) + [x fx(0, 0) + y fy(0, 0)]

 + 2 21
(0, 0) 2 (0, 0) (0,0)

2!
xx xy yyx f xy f y fÈ ˘+ + +Î ˚  

 3 2 2 31
(0, 0) 3 (0, 0) 3 (0, 0) (0, 0)

3!
xxx xxy xyy yyyx f x y f xy f y fÈ ˘+ + + + +Î ˚   (33)

Equations (30), (31), and (32) are known as Taylor’s theorem and Eq. (33) is called Maclaurin’s 

theorem.

3.17   TAYLOR’S AND MACLAURIN’S THEOREMS FOR 
 THREE VARIABLES

(i) Taylor’s Theorem

 f(x + h, y + k; z + p) = f(x, y, z) + 
Ê ˆ∂ ∂ ∂

+ +Á ˜∂ ∂ ∂Ë ¯
( , , )h k p f x y z

x y z

    

2
1

( , , )
2!

h k p f x y z
x y z

Ê ˆ∂ ∂ ∂
+ + + +Á ˜∂ ∂ ∂Ë ¯

 

(ii) Maclaurin’s Theorem

 f(x, y, z) = (0,0,0) (0,0,0)f x y z f
x y z

Ê ˆ∂ ∂ ∂
+ + +Á ˜∂ ∂ ∂Ë ¯

 

2
1

(0,0,0)
2!

x y z f
x y z

Ê ˆ∂ ∂ ∂
+ + + +Á ˜∂ ∂ ∂Ë ¯

 

Example 37  Expand sin xy in powers of (x – 1) and 
2

y
pÊ ˆ

-Á ˜Ë ¯
 up to second-degree terms.

Solution The Taylor’s series expansion in powers of (x – a) and (y – b) is given by

 f(x, y) = f(a, b) + [(x – a) fx(a, b) + (y – b) fy(a, b)] + 21
[( ) ( , )

2!
xxx a f a b-

 + 2(x – a) (y – b) fxy (a, b) + (y – b)2 fyy(a, b)] + ... (1)

We have f(x, y) = sin xy

 fx(x, y) = y cos xy, fy(x, y) = x cos xy
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 fxx = –y
2 sin xy fyy = –x sin xy, fxy = –xy sin y + cos xy

\ at the point 1,
2

pÊ ˆ
Á ˜Ë ¯

, we have

 1,
2

f
pÊ ˆ

Á ˜Ë ¯  = 1, 1, 0, 1, 0
2 2

x yf f
p pÊ ˆ Ê ˆ

= =Á ˜ Á ˜Ë ¯ Ë ¯

 1,
2

xxf
pÊ ˆ

Á ˜Ë ¯  = 
2

, 1, 1, 1,
4 2 2 2

yy xyf f
p p p pÊ ˆ Ê ˆ

- = - = -Á ˜ Á ˜Ë ¯ Ë ¯

Putting these values is (1), we obtain

 sin xy = 

2

21
1, ( 1) 0 0 ( 1)

2 2 2! 4
f x y x

p p pÈÈ ˘Ê ˆ Ê ˆ Ê ˆÍ+ - ◊ + - ◊ + - ◊ -Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ÍÎ ˚ Î

 

2

2( 1) ( 1)
2 2 2

x y y
p p p ˘Ê ˆ Ê ˆ Ê ˆ ˙+ - - ◊ - + - -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ ˙̊

 = 

22
21

1 ( 1) ( 1)
2 4 2 2

x x y y
p p p

p
È ˘Ê ˆ Ê ˆÍ ˙+ - - - - - - -Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

 = 

22
2 1

1 ( 1) ( 1)
8 2 2 2 4

x x y y
p p p pÊ ˆ Ê ˆ

- - - - - - -Á ˜ Á ˜Ë ¯ Ë ¯

Example 38  Expand ex cos y in powers of (x – 1) and 
4

y
pÊ ˆ

-Á ˜Ë ¯
 by Taylor’s theorem.

Solution Taylor’s theorem in powers of (x – 1) and 
4

y
pÊ ˆ

-Á ˜Ë ¯
 is given by

  f(x, y) = 1, ( 1) 1, 1,
4 4 4 4

x yf x f y f
p p p pÊ ˆ Ê ˆ Ê ˆ Ê ˆ

+ - + -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

 

2

21
( 1) 1, 2 ( 1) 1, 1,

2! 4 4 4 4 4
xx xy yyx f x y f y f

p p p p pÈ ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆÍ ˙+ - + - - + - +Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
 

 (1)

We have 

 f(x, y) = ex cos y

 fx = ex cos y, fy = –e
x sin y, fxx = ex cos y, fxy = –e

x sin y

and  fyy = –e
x cos y

\ at the point 1,
4

pÊ ˆ
Á ˜Ë ¯

, we have

 

1, cos , 1 cos
4 4 4 42 2

y x

e e
f e f e

p p p pÊ ˆ Ê ˆ
= = - = =Á ˜ Á ˜Ë ¯ Ë ¯
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1, sin , 1 , 1,
4 4 4 42 2 2

y xx xy

e e e
f e f f

p p p pÊ ˆ Ê ˆ Ê ˆ
= - = - - = = -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

and 
pÊ ˆ

= -Á ˜Ë ¯
1,

4 2
yy

e
f  and so on.

Putting these values in (1), we get

 f(x, y) = ( 1)
42 2 2

e e e
x y

pÈ ˘Ê ˆÊ ˆ
+ - ◊ + - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 

2

21
( 1) 2( 1)

2! 4 42 2 2

e e e
x x y y

p pÈ ˘Ê ˆ Ê ˆÊ ˆ Ê ˆÍ ˙+ + - ◊ + - - ◊ - + - ◊ - +Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯Ë ¯ Ë ¯Í ˙Î ˚
 

e
x cos y = 

2

21
1 ( 1) [( 1) 2( 1)

4 2! 4 42

e
x y x x y y

p p pÈ ˘Ê ˆ Ê ˆ Ê ˆÍ ˙+ + - - - + - - - - - - +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
 

Example 39  Expand f(x, y) = 
2 2( ) cosx y

e xy
- + ◊  about the point (0, 0) up to three terms by 

Taylor’s series.

Solution The Taylor’s series expansion of f(x, y) at (0, 0) is given by

f(x, y) = 2 21
(0, 0) (0, 0) (0, 0) (0, 0) 2 (0, 0) (0, 0)

2!
x y xx xy yyf x f y f x f xy f y fÈ ˘È ˘+ + + + + +Î ˚ Î ˚   (1)

We have

 f(x, y) = 
2 2( ) cosx y

e xy
- + ◊

  fx = 
2 2( ) (2 cos sin )x y

e x xy y xy
- +- +

 fy = 
2 2( ) (2 cos sin )x y

e y xy x xy
- +- +

 fxx = 
2 2( ) 2 2[4 cos 4 sin 2 cos sin ]x y

e x xy xy xy xy y xy
- + + - -

 fxy = 
2 2( ) 2 2[3 cos 2 sin 2 sin sin ]x y

e xy xy x xy y xy xy
- + + + -

 fyy = 
2 2( ) 2 2[4 cos 4 sin 2cos sin ]x y

e y xy xy xy xy x xy
- + + - -

\ at the point (0, 0), we have 

 f(0, 0) = 1, fx(0, 0) = 0, fy(0, 0) = 0

 fxx(0, 0) = –2, fxy(0, 0) = 0, fyy(0, 0) = –2, etc.

Substituting these values in (1), we obtain

 
2 2( ) cosx y

e xy
- + ◊  = 2 21

1 [ 0 0] ( 2) 2 (0) ( 2)
2

x y x xy yÈ ˘+ ◊ + ◊ + ◊ - + ◊ + - +Î ˚  

 = 1 – x2 – y2 + …
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Example 40  Expand f(x, y) = 
1tan

y

x

- Ê ˆ
Á ˜Ë ¯  in the neighborhood of (1, 1) up to and inclusive of 

second-degree terms. Hence, fi nd f (1◊1, 0◊9) approximately.

Solution Taylor’s series expansion of f(x, y) at (1, 1) is given by

 f(x, y) = (1, 1) ( 1) (1, 1) ( 1) (1, 1)x yf x f y fÈ ˘+ - + -Î ˚

 + 2 21
( 1 (1, 1) 2( 1)( 1) (1,1) ( 1) (1, 1)

2!
xx xy yyx f x y f y fÈ ˘- + - - + -Î ˚

 
1

3!
+ [(x – 1)3 fxxx(1, 1) + 3(x – 1)2(y – 1) fxxy(1, 1) 

 + 3(x – 1)(y – 1)2 fxyy(1, 1) + (y – 1)3 fyyy(1, 1)] + ... (1)

We have 

 f(x, y) = 1tan
y

x

-  f(1, 1) = 
4

p

 fx = 
2 2

y

x y
-

+
 fx(1, 1) = 

1

2
-

 fy = 
2 2

x

x y+
 fy(1, 1) = 

1

2

 fxx = 
2 2 2

2

( )

xy

x y+
 fxx(1, 1) = 

1

2

 fxy = 
2 2

2 2 2( )

y x

x y

-

+
 fxy(1, 1) = 0

 fyy = 
2 2 2

2

( )

xy

x y
-

+
 fyy(1, 1) = 

1

2
-

Similarly, we obtain

 fxxx(1, 1) = 
1 1 1 1

, (1, 1) , (1, 1) , (1, 1)
2 2 2 2

xxy xyy yyyf f f- = - = =

Putting these values in (1), we get

1tan
y

x

-  = 2 21 1 1 1 1
( 1) ( 1) ( 1) 2( 1)( 1) 0 ( 1)

4 2 2 2! 2 2
x y x x y y

p È ˘ È ˘Ê ˆ Ê ˆ
+ - - + - ◊ + - ◊ + - - ◊ + - ◊ -Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚ Î ˚

3 2 2 31 1 1 1
( 1) 3( 1) ( 1) (3 1( 1) ( 1)

3! 2 2 2 2
x x y y y

p È ˘-Ê ˆ Ê ˆ
+ + - + - - ◊ - + - - ◊ + - ◊ +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 

 = 2 21 1
[( 1) ( 1)] ( 1) ( 1)

4 2 4
x y x y

p È ˘- - - - + - - -Î ˚

 

3 2 2 31
[ ( 1) 3( 1) ( 1) 3( 1)( 1) ( 1) ]

12
x x y x y y+ - - - - - + - - + - + 
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Now f(1◊1, 0◊9) = [ ] 2 21 1
0.1 ( 0.1) [(0.1) ( 0.1) ]

4 2 4

p
- - - + - -

 

3 2 2 31
(0.1) 3(0.1) ( 0.1) 3(0.1)( 0.1) ( 0.1) ]

12
È ˘+ - - - + - + - +Î ˚  

 = 
0.2 1

[ 0.001 0.003 0.003 0.001]
4 2 12

p
- + - + + - + 

 =  0.6857 (approximately).

Example 41  Find the Taylor’s series expansion of f(x, y) = xy in the powers of (x – 1) and (y – 1) 

up to third-degree terms,

Solution Taylor’s series expansion of f(x, y) in powers of (x – 1) and (y – 1) is given by

 f(x, y) = f(1, 1) + [(x – 1)fx(1, 1) + (y – 1) fy(1, 1)]

 2 21
[( 1) (1, 1) 2( 1)( 1) (1, 1) ( 1) (1, 1)]

2!
xx xy yyx f x y f y f+ - + - - + -

 

3 21
[( 1) (1, 1) 3( 1) ( 1) (1, 1)

3!
xxx xxyx f x y f+ - + - -

 

                 + 3(x – 1)(y – 1)2
fxyy(1, 1) + (y – 1)3 fyyy(1, 1)] + ...  (1)

We have

 f(x, y) = xy; f(1, 1) = 1

 fx = yx
y–1; fx(1, 1) = 1

 fy = xy log x; fy(1, 1) = 0

 fxx = y(y – 1) xy–2; fxx(1, 1) = 0

 fyy = y xy–1 log x + xy–1; fxy(1, 1) = 1

 fyy = xy(log x)2; fyy(1, 1) = 0

 fxxx = y(y – 1(y – 2)xy–3; fxxx(1, 1) = 0

 fxxy = (y – 1)xy–2 + y(y – 1) xy–2 log x + yx
y–2; fxxy(1, 1) = 1

 fxyy = y xy–1 ◊ ( logx)2 2x
y–1 ◊ log x;  fxyy(1, 1) = 0

 fyyy = xy(log x)3;  fyyy(1, 1) = 0

Substituting these values is (1), we obtain

 x
y = 1 + [(x – 1) ◊ 1 +(y – 1) ◊ 0] + 2 21

[( 1) 0 2( 1)( 1) ( 1) 0]
2!

x x y y- ◊ + - - + - ◊

 

3 2 2 31
[( 1) 0 3( 1) ( 1) 3( 1)( 1) 0 ( 1) 0]

3!
x x y x y y+ - ◊ + - - ◊ + - - ◊ + - ◊ + 

or x
y = 1 + (x – 1) + (x – 1(y – 1) 21

[3( 1) ( 1)]
3!

x y+ - ◊ - + 

Example 42  Expand f(x, y) = x2 + xy + y2 is powers of (x – 2) and (y – 3) up to second-degree terms. 

Solution The Taylor’s series expansion of f(x, y) in powers of (x – 2) and (y – 3) is given by

 f(x, y) = f(2, 3) + [(x – 2) fx(2, 3) + (y – 3) fy(2, 3)]
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2 21

( 2) (2, 3) 2( 2)( 3) (2,3) ( 3) (2,3)
2!

xx xy yyx f x y f y fÈ ˘+ - + - - ◊ + - +Î ˚   (1)

We have

 f(x, y) = x2 + xy + y2; f(2, 3) = 19

 fx = 2x + y; fx(2, 3) = 7

 fy = x + 2y; fy(2, 3) = 8

 fxx = 2; fxx(2, 3) = 2

 fxy = 1; fxy(2, 3) = 1

 fyy = 2; fyy(2, 3) = 2

Substituting thee values in (1), we obtain 

f(x, y) = 19 + [(7(x – 2) + 8(y – 3)] + 2 21
[2( 2) 2( 2)( 3) 2( 3) ]

2
x x y y- + - - + - + 

EXERCISE 3.5

 1. Find the Taylor’s series expansion of f(x, y) = x2
y + 3y – 2 in powers of (x – 1) and (y + 2) up 

to second-degree terms.

 2. Obtain Taylor’s series expansion of the function f(x, y) = exy about (1, 1) up to third-degree 

terms.

 3. Find Taylor’s series expansion f(x, y) = tan–1(xy). Hence, compute an approximate value of 

f(0.9, –1.2).

 4. Expand f(x, y) = yx in powers of (x – 1) and (y – 1) up to second-degree terms

 5. Expand ex ◊ sin y in powers of x and y up to third-degree terms.

 6. Expand eax sin by in powers of x and y as far as their terms of third degree.

 7. Find the Taylor’s series expansion of the function ex. log (1 + y) in the neighborhood of the 

point (0, 0).

 8. Expand (x2
y + sin y + ex) in powers of (x – 1) and (y – p).

 9. Expand sin(x + y) about (0, 0) up to and including the third-degree terms.

Answers

 1. f(x, y) = –10 – 4(x – 1) + 4(y + 2) – 2(x – 1)2 + 2(x – 1)(y + 2) + (x – 1)2 (y + 2)

 2. f(x, y) = 
2 21 1

1 ( 1) ( 1) ( 1) 2( 1)( 1) ( 1)
2 2

e x y x x y y
È

+ - + - + - + - - + -ÍÎ

 
3 2 2 31 3 3 1

( 1) ( 1) ( 1) ( 1)( 1) ( 1)
6 2 2 6

x x y x y y
˘

+ - + - - + - - + - +˙̊  

 3. At (1, –1), f(x, y) = 
p

- - - + + + - + + + 2 21 1 1 1
( 1) ( 1) ( 1) ( 1)

4 2 2 4 4
x y x y

 f(0.9, –1.2) = –0.8229. 

 4. y
x = 1 + (y – 1) + (x – 1) (y – 1) + …
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 5. e
x sin y = y + xy + 

2 3

2 6

x y y
- + 

 6. f(x, y) = by + ab xy + 2 2 3 31
(3 )

3!
a bx y b y- + 

 7. f(x, y) = y + xy – 
2 2 2 3

2 2 2 3

y x y xy y
+ - + + 

 8. p + e + (x – 1)(2p + e) +  21
( 1) (2 ) 2( 1)( )

2
x e x yp p- + + - - + 

 9. sin (x + y) = x + y – 
3( )

3

x y+
+ 

SUMMARY
1. Homogeneous Function

A function f(x, y) is called a homogeneous function if the degree of each term is same.

2. Euler’s Theorem 

If u is a homogeneous function in the variables x and y of degree n then 
u u

x y nu
x y

∂ ∂
+ =

∂ ∂
.

Generalized Form Euler’s theorem can be extended to a homogeneous function of any number of 

variables. If u(x1, x2, x3, …, xn) be a homogeneous function of degree n in the variables x1, x2, x3, …, xn 

then

 1 2 3
1 2 3

n
n

u u u u
x x x x

x x x x

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂
  = n·u

3. If z is a homogeneous function in the variables x and y of degree n and z = f(u) then

 
u u

x y
x y

∂ ∂
+

∂ ∂
 = 

( )

( )

f u
n

f u¢

4. If z is a homogeneous function in the variables x and y of degree n and z = f(u), then

 
2 2 2

2 2

2 2
2

u u u
x xy y

x yx y

∂ ∂ ∂
+ +

∂ ∂∂ ∂
 = f(u)[f¢(u) – 1], where 

( )
  ( )  

( )

f u
u n

f u
f =

¢
.

5. Jacobian

Let u and v be given functions of two independent variables x and y. The Jacobian of u, v w.r.t. x, y denoted 

by 
( , )

( , )

u v

x y

∂
∂

 or J(u, v) is a second-order functional determinant defi ned as 
( , )

( , )

u v

x y

∂
∂

 = J(u, v) = 

u u

x y

v v

x y

∂ ∂
∂ ∂
∂ ∂
∂ ∂

In a similar manner, we can defi ne the Jacobian of n functions u1, u2, u3, …, un of n independent variables 

x1, x2, x3, …, xn;
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 1 2 3

1 2 3

( , , , , )

( , , , , )

n

n

u u u u

x x x x

∂
∂

 

 

 = J(u2, u3, …, un)

      = 

1 1 1 1

1 2 3

2 2 2 2

1 2 3

3 3 3 3

1 2 3

1 2 3

n

n

n

n n n n

n

u u u u

x x x x

u u u u

x x x x

u u u u

x x x x

u u u u

x x x x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 

 

 

     

     

 

(a) Important Properties of Jacobian

 (i) If u, v are functions of r, s and r, s are functions of x, y then

 
( , )

( , )

u v

x y

∂
∂

 = 
( , ) ( , )

( , ) ( , )

u v r s

r s x y

∂ ∂
◊

∂ ∂

 (ii) If J1 = 2

( , ) ( , )
and

( , ) ( , )

u v x y
J

x y u v

∂ ∂
=

∂ ∂
 then J1 J2 = 1, i.e., 

( , ) ( , )
1

( , ) ( , )

u v x y

x y u v

∂ ∂
◊ =

∂ ∂

(b) Theorems on Jacobian

Theorem I: If the functions u1, u2, u3, …, un of the variables x1, x2, x3, …, xn be defi ned by the relation 

 u1 = f1(x1), u2 = f2(x1, x2), u3 = f3(x1, x2, x3), …, un = fn(x1, x2, x3, ..., xn) then

 
1 2 3

1 2 3

( , , , , )

( , , , , )

n

n

u u u u

x x x x

∂
∂

 

 

 = 31 2

1 2 3

. . n

n

u uu u

x x x x

∂ ∂∂ ∂
◊ ◊

∂ ∂ ∂ ∂
 

Theorem II: If the functions u, v, w of three independent variables x, y, z are not independent then the 

Jacobian of u, v, w with respect to x, y, z vanishes.

(c) Jacobian of Implicit Functions

Theorem: Let u1, u2, u3, ..., un are connected with n independent variables x1, x2, x3, ..., xn by the relation 

of the form

F1(u1, u2, …, un, x1, x2, …, xn) = 0, F2(u1, u2, …, un, x1, x2, …, xn) = 0…

… Fn(u1, u2, …, un, x1, x2, …, xn) = 0. 

Then,

 1 2

1 2

( , , , u )

( , , , )

n

n

u u

x x x

∂
∂

 

 

 = 1 2 1 2

1 2 1 2

( , , , ) ( , , , )
( 1)

( , , , ) ( , , , )

n n n

n n

F F F F F F

x x x u u u

È ˘∂ ∂
- Í ˙∂ ∂Î ˚

  

  

(d) Necessary and Suffi cient Condition

The necessary and suffi cient condition for functional dependence can be expressed in terms of a determinant 

as follows: Two functions u and v are functionally dependent if their Jacobian J(u, v) = 
( , )

0
( , )

u v

x y

∂
=

∂
. If the 

Jacobian is not equal to zero then u and v are said to be functionally independent,
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6. Expansion of Functions of Several Variables

(a) Expansion of Functions of One Variable

 f(x) = f(a) + (x – a) f ¢(a) + 
2 3

( )( ) ( ) ( )
( ) ( ) ( )

2! 3! !

n
nx a x a x a

f a f a f a
n

- - -
+ + + +¢¢ ¢¢¢   

(b) Maclaurin’s Theorem

 f(x) = f(0) + x f ¢(0) + 
2 3

( )(0) (0) (0)
2! 3! !

n
nx x x

f f f
n

+ + + +¢¢ ¢¢¢   

7. Expansion of Functions of Two Variables

Let f(x, y) be a function of two independent variables x and y. Then the Taylor’s series in the powers of 

(x – a) and (y – b) is given by

 f(x, y) = f(a, b) + [(x – a)fx(a, b) + (y – b)fy(a, b)] + 21
[( ) ( , )

2!
xxx a f a b-

  + 2(x – a)(y – b) fxy(a, b) + (y – b)2 fyy(a, b)] +

3 2 2 31
( ) ( , ) 3( ) ( ) ( , ) 3( ( ) ( , ) ( ) ( , )

3!
xxx xxy xyy yyyx a f a b x a y b f a b x a y b f a b y b f a bÈ ˘- + - - + - - + - +Î ˚  

where a £ x £ a + h, b £ y £ b + k.

Now, putting a = 0 = b in the above expression, we get

 f(x, y) = f(0, 0) + [x fx(0, 0) + y fy(0, 0)] 

  + 2 2 31
(0, 0) 2 (0, 0) 3 (0, 0) y (0, 0)

2!
xx xy xyy yyyx f xy f xy f fÈ ˘+ + + +Î ˚  

  

3 2 2 31
(0, 0) 3 (0, 0) 3 (0, 0) (0, 0)

3!
xxx xxy xyy yyyx f x y f xy f y fÈ ˘+ + + + +Î ˚  

which is called Macluarin’s theorem. 

OBJECTIVE-TYPE QUESTIONS

 1. If 
2 2

1sin then
x y u u

u x
x y x y

- + ∂ ∂
= +

+ ∂ ∂
 is

 (a) u (b) 2u

 (c) tan u (d) sin u

 2. If 
1 1sin tan then

x y u u
u x y

y x x y

- -Ê ˆ ∂ ∂Ê ˆ
= + +Á ˜Á ˜ Ë ¯ ∂ ∂Ë ¯

 

is equal to

 (a) 0

 (b) 3[sin–1 (x/y) + tan–1 (y/x)]

 (c) 2[sin–1 (x/y) + tan–1 (y/x)]

 (d) sin–1 (x/y) + tan–1 (y/x)]

 3. If x = r cos q, y = r sin q then

 (a) 0
r

x

∂
=

∂
 (b) 

x r

r x

∂ ∂
=

∂ ∂

 (c) 0
x

r

∂
=

∂
 (d) 2

x

r

∂
=

∂
 4. If z = f(x, y), x = e2u + e–2v, y = e–2u + e2v then 

f f

u v

∂ ∂
-

∂ ∂
 is equal to

 (a) 2
f f

x
x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

 (b) 2
f f

x
x y

Ê ˆ∂ ∂
+Á ˜∂ ∂Ë ¯

 (c) 2
f f

u v
x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

 (d) 2
f f

u v
x y

Ê ˆ∂ ∂
+Á ˜∂ ∂Ë ¯
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 5. If z = f(x, y), x = r cos q, y = r sin q then 
22

f f

x y

Ê ˆ∂ ∂Ê ˆ
+Á ˜ Á ˜Ë ¯∂ ∂Ë ¯

 is

 (a) 

2 2
f f

r q

∂ ∂Ê ˆ Ê ˆ
+Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

 (b) 

2 2
2f f

r
r q

∂ ∂Ê ˆ Ê ˆ
+Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

 (c) 

2 2

2

1f f

r r q

∂ ∂Ê ˆ Ê ˆ
+Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

 (d) 

2 2
f f

r
r q

∂ ∂Ê ˆ Ê ˆ
+Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

 6. If f(x, y) = 0 and f(y, z) = 0 then

 (a) 
f dx f

y x dz x y

f f∂ ∂ ∂ ∂
◊ = ◊

∂ ∂ ∂ ∂

 (b) 
f dz f

y z dx x y

f f∂ ∂ ∂ ∂
◊ = ◊

∂ ∂ ∂ ∂

 (c) 
f df f

x z dy x y

f f∂ ∂ ∂ ∂
◊ = ◊

∂ ∂ ∂ ∂

 (d) 
f

y z

f∂ ∂
=

∂ ∂

 7. If f(x, y, z) = 0 then 
x yz

x y z

y z x

Ê ˆ∂ ∂ ∂Ê ˆ Ê ˆ
Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯∂ ∂ ∂Ë ¯

 is

 (a) 0 (b) 1

 (c) 2 (d) –1

 8. If u = x2 + y2 then 
2
u

x y

∂
∂ ∂

 is equal to

 (a) 2 (b) 0

 (c) x + y (d) 2(x + y)

 9. If 
4 4

log then
x y u u

u x y
x y x y

+ ∂ ∂
= +

+ ∂ ∂
 is

 (a) 3u (b) u

 (c) 3 (d) log u

 10. If 

2 2
1sin then

x y u u
u x

x y x y

- Ê ˆ+ ∂ ∂
= +Á ˜+ ∂ ∂Ë ¯

 is

 (a) 2u (b) u

 (c) 2 tan u (d) tan u

 11. If log u = x2
y

2/(x + y) then 
u u

x y
x y

∂ ∂
+

∂ ∂
 is

 (a) tan u (b) 3u log u

 (c) 3 log u (d) u log u

 12. If u = xy then ∂u/∂y is

 (a) yx
y – 1 (b) 0

 (c) x
y log x (d) y

x

 13. If u = xy then 
u

x

∂
∂

 (a) yx
y – 1 (b) x

y log x

 (c) 0 (d) y
x log x

 14. If u = f(y/x) then

 (a) 0
u u

x
x y

∂ ∂
- =

∂ ∂
 (b) 0

u u
x y

x y

∂ ∂
+ =

∂ ∂

 (c) 1
u u

x y
x y

∂ ∂
+ =

∂ ∂
 (d) 

u u
x y u

x y

∂ ∂
+ =

∂ ∂

 15. The Taylor’s series expansion of sin x about 

x = p/6 is given by

 (a) 
2 3

1 3 1 3

2 2 6 4 6 12 6
x x x

p p pÊ ˆ Ê ˆ Ê ˆ
+ - - - - - +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 

 (b) 
3 5 7

3! 5! 7!

x x x
x - + - + 

 (c) 
3 5( /6) ( /6)

6 3! 5!

x x
x

p p p- -Ê ˆ
- - + -Á ˜Ë ¯

 

 (d) 
1

2

 16. Taylor’s series expansion of ex cos y at (0, 0) is

 (a) 2 21
1 ( )

2
x x y+ + - + 

 (b) 2 21
1 ( )

2
x x y+ + + + 

 (c) 2 21
1 ( )

2
x x y- + +

 (d) 2 21
1 ( )

2
x x y- - + - + 

 17. The Taylor’ series expansion of e
x sin y in 

powers of x and y is

 (a) 
2 3

2 6

x y y
y xy+ + + + 
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 (b) 
2 3

2 6

x y y
x xy+ + - + 

 (c) 
2 3

2 6

x y y
y xy- - + + 

 (d) 
2 3

2 6

x y y
y xy+ + - + 

 18. If x = eu cos v, y = eu sin v then 
( , )

( , )

x y

u v

∂
∂

 is 

equal to

 (a) e
u (b) e

2u

 (c) e
–2u (d) e

–u

 19. The Jacobian 
( , )

( , )

u v

u v

∂
∂

 is equal to

 (a) 0 (b) 2

 (c) 1 (d) 1/2

 20. If u = ex sin y, v = ex cos y then 
( , )

( , )

u v

x y

∂
∂

 is 

equal to

 (a) –e
x (b) 1

 (c) 0 (d) e
2x sin y cos y

 21. Two functions u and v are functionally de-

pendent if their Jacobian 
( , )

( , )

u v

x y

∂
∂

 is equal to

 (a) 1 (b) xy

 (c) uv (d) 0

 22. If u = sin x + sin y, v = sin (x + y) then u and 

v are

 (a) functionally dependent

 (b) functionally independent

 (c) u
2 = v

 (d) constants

 23. If u = x sin y, v = y sin x then 
)( ,

( , )

vu

x y

∂
∂

 is equal 

to

 (a) sin x sin y

 (b) cos x cos y

 (c) xy sin y sin x

 (d) sin x sin y – xy cos x cos y

 24. The Taylor’s series expansion of sin x is

 (a) 
2 4

1
2! 4!

x x
- + -  (b) 

2 4

1
2! 4!

x x
+ + + 

 (c) 
3 5

3! 5!

x x
x + + +  (d) 

3 5

3! 5!

x x
x - + - 

 25. If f = a0x
n + a1x

n – 1
y + a2x

n – 2
y

2 + ... + an – 1 

xy
n – 1 + any

n, where ai(i = 0 to n) is constant, 

then 
f f

x y
x y

∂ ∂
+

∂ ∂
 is

 (a) f/n (b) n/f

 (c) nf (d) n f

 [GATE (IE) 2005]

 26. Let f = yx the value of 
2

f

x y

∂
∂ ∂

 at x = 2, y = 1 is

 (a) 0 (b) log 2

 (c) 1 (d) 1/log 2

 [GATE (ME) 2008]

 27. The Jacobian 
( , )

( , )

u v

x y

∂
∂

 for the function u = ex 

sin y, v = (x + log sin y) is equal to

 (a) 1

 (b) sin x sin y – xy cos x cos y

 (c) 0

 (d) 
x

e

x
 [UPTU 2008]

 28. In the Taylor’s series expansion of exp (x) + 

sin (x), about the point x = p, the coeffi cient 

of (x – p)2 is

 (a) exp (p) (b) 0.5 exp (p)

 (c) exp (p) + 1 (d) exp (p) – 1

 [GATE (ECE) 2008]

 29. In the Taylor’s series expansion of ex about x 

= 2, the coeffi cient of (x – 2)4 is

 (a) 1/4! (b) 24/4!

 (c) e
2/4! (d) e

4/4!

 30. Total derivative of the function ‘xy’

 (a) x dy + y dx (b) x dx + y dy

 (c) dx + dy (d) dx dy

 [GATE (IPE) 2009]

 31. Taylor’s series expansion of 
sin x

x p-
 at x = p 

is given by

 (a) 
2( )

1
3!

x p-
+ + 

 (b) 
2( )

1
3!

x p-
- - - 

 (c) 
2( )

1
3!

x p-
- + 
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 (d) 
2( )

1
3!

x p-
- + + 

 [GATE (ECE) 2009]

 32. If u = log(ex + ey) then 
u u

x y

∂ ∂
+ =

∂ ∂
 

 (a) e
x + ey (b) e

x – ey

 (c) 
1

x y
e e+

 (d) 1

 [GATE (BT) 2013]

 33. If z = xyln(xy) then

 (a) 0
z z

x y
x y

∂ ∂
+ =

∂ ∂
 (b) 

z z
y x

x y

∂ ∂
=

∂ ∂

 (c) 
z z

x y
x y

∂ ∂
=

∂ ∂
 (d) 0

z z
y x

x y

∂ ∂
+ =

∂ ∂

 [GATE (CE) 2014]

 34. The Taylor series expansion of 3 sin x + 2 cos 

x is

 (a) 
3

22 3
2

x
x x+ - - + 

 (b) 
3

22 3
2

x
x x- + - + 

 (c) 
3

22 3
2

x
x x+ + + + 

 (d) 
3

22 3
2

x
x x- - + + 

 [GATE (EC) 2014]

ANSWERS

 1. (c) 2. (a) 3. (b) 4. (a) 5. (b) 6. (b) 7.(d) 8. (b) 9. (c) 10. (d)

 11. (b) 12. (c) 13. (a) 14. (b) 15. (a) 16. (a) 17.(d) 18. (d) 19. (d) 20. (b)

 21. (c) 22. (d) 23. (c) 24. (c) 25. (b) 26. (b) 27.(c) 28. (a) 29. (d) 30. (a)

 31. (b) 32. (d) 33. (c) 34. (a)



4.1  INTRODUCTION

An important application of differential calculus is to fi nd the maximum or minimum values of a 

function of several variables and to obtain where they occur.

4.2   MAXIMA AND MINIMA OF FUNCTIONS OF TWO 
INDEPENDENT VARIABLES

Let f(x, y) be a function of two independent variables x and y, which is continuous for all values of 

x and y in the neighborhood of (a, b), i.e., (a + h, b + k), be a point in its neighborhood which lies inside 

the region R. We defi ne the following:

 (i) The point (a, b) is called a point of relative (or local) minimum, if

  f(a, b) £ f(a + h, b + k) for all h, k. 

  Then f(a, b) is called the relative (or local) minimum value.

 (ii) The point (a, b) is called a point of relative (or local) maximum, if

  f(a, b) ≥ f(a + h, b + k) for all h, k. 

  Then f(a, b) is called the relative (or local) maximum value.

A function f(x, y) may also attain its minimum or maximum values on the boundary of the region R. 

The smallest and the largest values attained by a function over the region including the boundaries are 

called the absolute (or global) minimum and absolute (or global) maximum values.

The points at which maximum/minimum values of the function exist are called the stationary points

or the points extrema.

The maximum and minimum values taken together are called the extreme values of the function.

4.3   NECESSARY CONDITIONS FOR THE EXISTENCE OF MAXIMA 

OR MINIMA OF f(x,  y) AT THE POINT (a,  b)

Statement

The necessary conditions for the existence of a maxima or a minima of f(x, y) at the point (a, b) are 

fx(a, b) = 0 and fy(a, b) = 0, where fx(a, b) and fy(a, b) respectively denote the values of and
f f

x y

∂ ∂
∂ ∂  at 

x = a, y = b.

Maxima and 

Minima4
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Proof Let (a + h, b + k) be a point in the neighborhood of the point (a, b). Then the point (a, b) will 

be a maximum if

 Df = f(a + h, b + k) – f(a, b) £ 0 for all h, k. 

and a point of minimum if

 Df = f(a + h, b + k) – f(a, b) ≥ 0 for all h, k.

Using the Taylor’s series expansion about the point (a, b), we get

 f(a + h, b + k) = f(a, b) + [(hfx + kfy)](a, b) + 2 2
( , )

1
[ 2 ]

2!
xx xy yy a bh f hk f k f+ + +  (1)

Neglecting the second and higher order terms, we get

                                       Df ª [hfx + kfy](a, b) = hfx(a, b) + kfy(a, b) (2)

The sign of Df in (2) depends on the sign of hfx(a, b) + kfy(a, b) which is a function of h and k.

\   the necessary condition that Df has the same positive or negative sign is when fx(a, b) = 0 and 

fy(a, b) = 0 (even though h and k can take both positive and negative values).

Hence, the necessary conditions for f(x, y) to have a maximum or minimum value at a point (a, b) 

are that the partial derivatives fx and fy vanish for x = a and y = b.

4.4   SUFFICIENT CONDITIONS FOR MAXIMA AND MINIMA 
(LAGRANGE’S CONDITION FOR TWO INDEPENDENT 
VARIABLES)

Let fx(a, b) = 0 and fy(a, b) = 0

Suppose fxx(a, b) = r, fxy(a, b) = s and fyy(a, b) = t.

Then the following are true:

 (i) If r > 0 and (rt – s2) > 0, f(x, y) is minimum at (a, b).

 (ii) If r < 0 and (rt – s2) > 0, f(x,  y) is maximum at (a, b).

 (iii) If (rt – s2) < 0, f(x, y) is neither maximum nor minimum at (a, b), i.e., (a, b) is a saddle point.

 (iv) If (rt – s2) = 0, it is a doubtful case (point of infl ection).

Proof By Taylor’s theorem for two variables, we have 

 Df = f(a + h, b + k) – f(a, b) = (hfx + kfy)(a, b) +  È ˘+ + +Î ˚  
2 2

( , )

1
2

2!
xx xy yy

a b
h f hk f k f

If the necessary conditions are fx(a, b) = 0 = fy(a, b) then 

 Df = f(a + h, b + k) – f(a, b) = È ˘+ + +Î ˚
2 2

3

1
2

2
rh shk tk R  (3)

where R3 consists of terms of third and higher orders in h and k. For suffi ciently small values of the h 

and k, the sign of RHS and, hence, of LHS of (3) is governed by the second degree terms.

Now, rh
2 + 2shk + tk2 = È ˘+ +Î ˚

2 2 21
2r h rshk rtk

r

 = È ˘+ + + -Î ˚
2 2 2 2 2 2 21

( 2 )r h rshk s k rtk s k
r

 = È ˘+ + -Î ˚
2 2 21

( ) ( )rh sh rt s k
r

 (4)
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Now, the following cases arise:

 (i) When rt – s2 > 0 and r > 0, clearly RHS of (4) is positive.

  \   RHS of (3) is positive and the LHS of (3), i.e., 

  Df  > 0, for all h and k.

  Hence, f(x, y) has a minima at the point (a, b).

 (ii) When (rt – s2) > 0 and r < 0, the RHS of (4) is negative and the RHS of (3) is negative.

  \   LHS of (3), i.e., Df < 0.

  Hence, f(x, y) has a maxima at point (a, b).

 (iii) When (rt – s2) < 0, in this case, we can say nothing about the sign of the second degree terms 

in the RHS of (3), i.e., (rh
2 + 2shk + tk2), is not an invariable sign.

  Hence, in this case, f(x, y) have neither maxima nor minima at (a, b).

 (iv) When (rt – s2) = 0, i.e., rt = s2 and r π 0.

In this case, Eq. (4) becomes

 rh
2 + 2shk + tk2 = 21

( )rh ks
r

+
and so it has the same sign as r.

Hence, f(x, y) is maximum if r < 0 and minimum if r > 0.

Now, if rt = s2 and 
h s

k r
= -  (i.e., rh + ks = 0) then second-degree terms vanish and we have to 

consider terms of higher order in (3). This case is doubtful, if

 r = 0 then rt – s2 = 0 fi s = 0

\ rh
2 + 2shk + tk2 = tk2

which is clearly zero when k = 0 " h. Hence, this case is again doubtful.

\   if rt – s2 = 0, the case is doubtful and further investigation is required to decise whether the 

function f(x, y) is a maximum or a minimum at (a, b).

Example 1  Discuss the extreme values (maxima and minima) of the function x3 + y3 – 3axy. 

Solution Let  f(x, y) = x3 + y3 – 3axy (1)

 
f

x

∂
∂

 = 3x
2 – 3ay and 

f

y

∂
∂

 = 3y
2 – 3ax.

For maxima or minima of f(x, y),

 
f

x

∂
∂

 = 0 = 
f

x

∂
∂

fi 3x
2 – 3ay = 0 or x2 = ay (2)

and 3y
2 – 3ax = 0 or y2 = ax (3)

fi x = y = a and x = y = 0 [For solving (2) and (3)]

\   the stationary or critical points are (a, a) and (0, 0).

Now, 
2 2 2

2 2
6 , 3 , 6

f f f
r x s a t y

x yx y

∂ ∂ ∂
= = = = - = =

∂ ∂∂ ∂



4.4 Engineering Mathematics for Semesters I and II

 (i) At the point (a, a), we have

 rt – s2 = (6a)(6a) – (–3a)2 = 36a
2 – 9a

2 = 27a
2 > 0.

  Since rt – s2 > 0 and r is +ve or –ve depending on whether a is +ve or –ve.

  Thus, f(x, y) have a maximum or a minimum, whether a is –ve or +ve at (a, a).

 (ii) At the point (0, 0), we have

 r = 0, s = –3a and t = 0

 rt – s2 = 0 – (–3a)2 = –9a
2 < 0

  Since (rt – s2) < 0, thus, f(x, y) has neither maximum nor minimum at (0, 0).

Example 2  Find a maximum and minimum values of  f(x, y) = 4x
2 + 9y

2 – 8x – 12y + 4 over the 

rectangle is the fi rst quadrant bounded by the lines x = 2, y = 3 and the coordinates axes.

Solution Given f(x, y) = 4x
2 + 9y

2 – 8x – 12y + 4 (1)

The given function f(x, y) can attain maximum or minimum values at the stationary (or critical) 

points or on the boundary of the rectangle OABC.

\ fx = 8x – 8

 fy = 18y – 12

For stationary points, put 

 fx = 0 fi 8x – 8 = 0, or x = 1

 fy = 0 fi 18y – 12 = 0, or y = 
2

3

\   stationary points are 
2

1, .
3

Ê ˆ
Á ˜Ë ¯

Now,   r = fxx = 9, s = fxy = 0 and t = fyy = 18

\  rt – s2 = 8 ¥ 18 – 0 = 144

since  rt – s2 = 144 > 0 and r = 8 > 0

Hence, f(x, y) is minimum, i.e., the point 
2

1,
3

Ê ˆ
Á ˜Ë ¯

, is a point of relative minimum.

The minimum value is 
2

1, 4
3

f
Ê ˆ

= -Á ˜Ë ¯
 on the boundary of the rectangle.

Along line OA: y = 0 and f(x, y) = f(x, 0) = F(x) = 4x
2 – 8x + 4

which is a function of one variable

Putting  0
dF

dx
=  fi 8x – 8 = 0 fi x = 1

Now, 
2

8 0
d F

dx

2

= >

\   at x = 1, the function has a minimum and minimum value is F(1) = 4 ¥12 – 8.1 + 4 = 0

y

(0, 3) C

O

B(2, 3)

A
(2, 0)

x

Fig. 4.1
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Also, at the corners (0, 0) and (2, 0),

we have f(0, 0) = F(0) = 4 and f(2, 0) = F(2) = 4.

Similarly, along the other boundary  lines, we have the following results:

At  x = 2, G(y) = 9y
2 – 12y + 4

 

2

2

2
18 12 0 and 18 0

3

dG d G
y y

dy dy
= - = fi = = >

\   y = 
2

3
 is a point of minimum and the minimum  value is 

2
2, 0.

3
f

Ê ˆ
=Á ˜Ë ¯

 At the corner (2, 3), we 

have f(2, 3) = 49.

At  y = 3,       H(x) = 4x
2 – 8x + 49

 
2

2
8 8 0 1 and 8 0

dH d H
x x

dx dx
= - = fi = = >

\   x = 1 is a point of minimum and the minimum value is f(1, 3) = 45. At the corner point (0, 3), 

we have f(0, 3) = 49.

At x = 0, I(y) = 9y
2 – 12 y + 4, which is the same case as for x = 2.

\   the absolute minimum value is –4 which occurs at 
2

1,
3

Ê ˆ
Á ˜Ë ¯

 and the maximum value is 49 which 

occurs at the points (2, 3) and (0, 3).

Example 3  Find the maxima and minima of the function sin x + sin y + sin (x + y).

Solution f(x, y) = sin x + sin y + sin (x + y) (1)

 
f

x

∂
∂

 = cos x + cos (x + y)

 
f

y

∂
∂

 = cos y + cos (x + y)

For maximum or minimum of f, we have

 
f

x

∂
∂

 = 0 fi cos x + cos (x + y) = 0 (2)

 
f

y

∂
∂

 = 0 fi cos y + cos (x + y) = 0 (3)

Solving (2) and (3), we get cos x = cos y or x = y.

Now, from (2),  cos x + cos (x + x) = 0

 cos x + cos 2x = 0

or 2 cos2
 x + cos x – 1 = 0

or 2 cos2 x + 2 cos x – cos x – 1 = 0

or 2 cos x (cos x + 1) – 1(cos x + 1) = 0
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or  (cos x + 1) (2 cos x – 1) = 0

When  2 cos x – 1 = 0 fi cos x = 
1

cos
2 3

p
=

or x = 2
3

n
p

p ±

When cos x + 1 = 0 fi cos x = –1 = cos p

or x = 2np ± p

\ stationary points are , and ( , )
3 3

p p
p p

Ê ˆ
Á ˜Ë ¯

.

Now, r = 
2

2

f

x

∂

∂
 = –sin x – sin(x + y)

 s = 
2

f

x y

∂
∂ ∂

 = –sin (x + y)

 t = 
2

2

f

y

∂

∂
 = –sin y – sin (x + y)

At ,
3 3

p pÊ ˆ
Á ˜Ë ¯

, r = 
2

sin sin 3
3 3

p pÊ ˆ
- = -Á ˜Ë ¯

 s = 
3

sin
3 3 2

p pÊ ˆ
- + = -Á ˜Ë ¯

 t = 
2

sin sin 3
3 3

p pÊ ˆ
- - = -Á ˜Ë ¯

Now, rt – s2 = 

2

3
( 3) ( 3)

2

Ê ˆ-
- - - Á ˜

Ë ¯

 = 
3 9

3 0
4 4

- = >

Since (rt – s2) = 
9

0
4

>  and r = 3 0,- <  the function has a maximum value at 
3

x y
p

= =

At (p, p), we have

 r = –sin p – sin (p + p) = 0

 s = –sin (p + p) = 0 and t = –sin p – sin(p + p) = 0

\ rt = s2 = 0 – 0 = 0

Hence, this case is doubtful and we shall leave it.

Example 4  Find the maximum and minimum values of the function f(x, y) = 3x
2 + y2 – x. Over 

the region 2x
2 + y2 £ 1.
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Solution Given f(x, y) = 3x
2 + y2 – x (1)

and region  2x
2 + y2 £ 1 (2)

For maximum/minimum of f, we have

 fx = 
1

6 1 0
6

f
x x

x

∂
= - = fi =

∂

 fy = 2 0 0
f

y y
y

∂
= = fi =

∂
 

\   stationary (or critical) points are 
1

, 0
6

Ê ˆ
Á ˜Ë ¯

.

Now,  r = fxx = 6, s = fxy = 0, t = fyy = 2

At 
1

, 0
6

Ê ˆ
Á ˜Ë ¯

, r = 6, s = 0 and t = 2.

\ rt – s2 = 6.2 – 0 = 12 > 0

Hence, the point 
1

, 0
6

Ê ˆ
Á ˜Ë ¯

 is a minimum, because rt – s2 > 0 and r > 0.

The minimum value at 
1

, 0
6

Ê ˆ
Á ˜Ë ¯

 is 
1 1

, 0 .
6 12

f
Ê ˆ

= -Á ˜Ë ¯

On the boundary, we have y2 = 1 – 2x
2; 

1 1
.

2 2
x- £ £

Putting in f(x, y), we get

 f(x, y) = 3x
2 + 1 – 2x

2 – x

 = x2 – x + 1 ∫ F(x) (which is a function of one variable ‘x’)

Putting  
dF

dx
 = 0 fi 2x – 1 = 0

or x = 
1

2
 

Also,  
2

2

d F

dx
 = 2 > 0

For x = 2 21 1 1
, we get 1 2 1

2 2 2
y x= - = - =

or          y = 
1

2
±

\   the points 
1 1

,
2 2

Ê ˆ
±Á ˜Ë ¯

 are points of minimum.

The minimum value is 
1 1 1 1 1 3

, 3 .
2 4 2 2 42

f
Ê ˆ

± = ◊ + - =Á ˜Ë ¯
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At the corners (vertices), we have

 
1

, 0
2

f
Ê ˆ
Á ˜Ë ¯

 = 
3 2 1 3 2

, , 0
2 22

f
Ê ˆ- +

- =Á ˜Ë ¯
 and f(0, ±1) = 1.

Thus, the given function has an absolute minimum value 
1 1

at , 0
12 6

Ê ˆ
- Á ˜Ë ¯

 and absolute maximum 

value.

 
(3 2)

2

+
 at 

1
, 0

2

Ê ˆ
-Á ˜Ë ¯

Example 5  Find the maxima and minima of the function f(x, y) = sin x ◊ sin y ◊ sin (x + y).

Solution Given f(x, y) = sin x ◊ sin y ◊ sin (x + y) (1)

For maxima and minima of ‘f’, we have

 
f

x

∂
∂

 = sin x sin y cos (x + y) + cos x sin y sin (x + y) = sin y(sin (2x + y) = 0 (2)

 
f

y

∂
∂

 = sin x sin y cos(x + y) + sin x cos y sin (x + y) = sin x sin (x + 2y) = 0 (3)

Since the given function is periodic with the period p, both for x and y, it is suffi cient to consider the 

values of x and y between 0 and p.

From (2), sin y = 0 or sin (2x + y) = 0

fi y = 0 or 2x + y = p or 2p

and from (3),  sin x = 0 or sin (x + 2y) = 0 (4)

fi x = 0 or x + 2y = p or 2p (5)

Solving equations (4) and (5), we obtain the critical points 

 

2 2
, and , .

3 3 3 3

p p p pÊ ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

Now,  r = 
2

2

f

x

∂

∂
 = 2 sin y cos(2x + y)

 s = 
2

f

x y

∂
∂ ∂

 = cos x ◊ sin(x + 2y) + sin x ◊ cos (x + 2y) = sin (2x + 2y).

 t = 
2

2

f

y

∂

∂
 = 2 sin x cos (x + 2y)

At the point ,
3 3

p pÊ ˆ
Á ˜Ë ¯

,

 r = 
3

2 ( 1) 3,
2

◊ ◊ - = -  and

 s = 
4 3

sin
3 2

p
= -
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 t = 
3

2 ( 1) 3
2

Ê ˆ
◊ - = -Á ˜
Ë ¯

\ rt – s2 = 
3 9

3 0
4 4

- = >  and r = 3 0- <

Hence, f(x, y) is a maximum at x = y = , i.e., , .
3 3 3

p p pÊ ˆ
Á ˜Ë ¯

At 
2 2

, ,
3 3

p pÊ ˆ
Á ˜Ë ¯

 

 r = 
3

2 1 3,
2

Ê ˆ
◊ =Á ˜

Ë ¯

 s = 
3

2
 and

 t = 3

\ rt – s2 = 

2

3 3 9
( 3) ( 3) 3 0 and 3 0

2 4 4
r

Ê ˆ
- = - = > = >Á ˜

Ë ¯
 

Hence, f(x, y) is a minimum at x = y = 
2 2 2

, i.e., , .
3 3 3

p p pÊ ˆ
Á ˜Ë ¯

Now,  fmax = 
2 3 3

sin sin .
3 3 3 8

p p p
◊ ◊ =

 fmin = 
2 2 4 3 3

sin sin sin .
3 3 3 8

p p p
◊ ◊ =

Example 6  If x, y, z are angles of a triangle then fi nd the minimum value of sin x sin y sin z.

Solution Let f(x, y, z) = sin x sin y sin z, where  x + y + z = p

        x + y = p – z

\ sin (x + y) = sin (p – z)

 = sin z

\ f(x, y) = sin x sin y sin (x + y).

Now, do as Example 5.

Example 7  Show that the rectangular solid of maximum volume that can be inscribed in a given 

sphere is a cube.

Solution Let x, y, z be the length, breadth, and height of the rectangular solid.
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If V is the volume of the solid then

 V = xyz (1)

Since each diagonal of the solid passes through the centre of the sphere, therefore, each diagonal is 

equal to the diameter of sphere = a (say).

i.e., x
2 + y2 + z2 = a2 or z = 2 2 2

a x y- -
Then (1), becomes

 V = 
2 2 2

xy a x y- -

or V
2 = x2 y2 (a2 – x2 – y2) = a2

x
2
y

2 – x4
y

2 – x2
y

4 = f(x, y) (2)

For maximum/minimum of f, we have

 fx = 2xy
2(a2 – 2x

2 – y2) = 0

and fy = 2x
2
y (a2 – x2 – 2y

2) = 0

fi a
2 – 2x

2 – y2 = 0     (∵ x π 0, y π 0) (3)

 a
2 – x2 – 2y

2 = 0 (4)

Solving (3) and (4), we obtain

 –x
2 + y2 = 0 or y = x.

\ from (1), x = y = 
2 2

2,
3 33 3

a a a a
z a= - - =

Now, r = fxx = 2a
2
y

2 – 12x
2
y

2 – 2y
4

 s = fxy = 4a
2
xy – 8x

3
y – 8xy

3

 t = fyy = 2a
2
x

2 – 2x
4 – 12x

2
y

2

At ,
3 3

a aÊ ˆ
Á ˜Ë ¯

, r = 48
0

9
a- <

 s = 44

9
a-  and

 t = 48

9
a-

\ rt – s2 = 

2 8
4 4 48 8 4 16

0
9 9 9 27

a
a a a

Ê ˆ Ê ˆ Ê ˆ
- - - - = >Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 and r < 0

\   V is maximum when x = y = z, i.e., when the rectangular solid is a cube.

4.5  MAXIMUM AND MINIMUM VALUES FOR A FUNCTION f(x,  y,  z)

Let u = f(x, y, z)

For maximum/minimum of u is

 0
u u u

x y z

∂ ∂ ∂
= = =

∂ ∂ ∂

Now, fi nd uxx, uyy, uzz, uyz, uzx, uxy. They are denoted by A, B, C, F, G, H respectively.
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Again, fi nd D1 = 2and

A H G
A H

D H B F
H B

G F C

=

Thus, the given function will have a minimum, if A > 0, D1 > 0 and D2 > 0.

and will have a maximum, if A > 0, D1 > 0 and D2 < 0.

If these above conditions are not satisfi ed then the function has neither maximum nor minimum.

Example 8  Find the maximum and minimum values for the function f(x, y, z) = x2 + y2 + z2 – xy 

+ x – 2z.

Solution We have

 f(x, y, z) = x2 + y2 + z2 – xy + x – 2z (1)

For maximum/minimum of f, we have

 fx = 2x – y + 1 = 0 (2)

 fy = 2y – x = 0 (3)

 fz = 2z – 2 = 0 (4)

Solving (2), (3), and (4), we get

 

2 1
, , 1

3 3
x y z= - = - =

\ the critical (or stationary) point is 
2 1

, , 1 .
3 3

Ê ˆ
- -Á ˜Ë ¯

Now, A = fxx = 2(> 0) F = fyz = 0

 B = fyy = 2 G = fzx = 0

 C = fzz = 2 H = fxy = –1

Now, D1 = 
2 1

4 1 3 0
1 2

A H

H B

-
= = - = >

-

 D2 = 

2 1 0

1 2 0 6 0

0 0 2

A H G

H B F

G F C

-
= - = >

\ A = 2 > 0, D1 = 3 > 0 and D2 = 6 > 0.

Thus, the given function has a minimum at 
2 1

, , 1 .
3 3

Ê ˆ
- -Á ˜Ë ¯

\   Minimum value = 
2 1

, , 1
3 3

f
Ê ˆ

- -Á ˜Ë ¯

 = 

2 2
2 1 2 2

1 2
3 3 9 3

Ê ˆ Ê ˆ
- + - + - - -Á ˜ Á ˜Ë ¯ Ë ¯
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 = 
4 1 2 8

1
9 9 9 3

+ + - -

 fmin = 
4

3
-   

4.6  LAGRANGE’S METHOD OF MULTIPLIERS

In many practical and theoretical problems, it is required to fi nd the extremum of the function f(x1, x2, 

x3, …, xn) under the conditions 

 fi(x1, x2, x3, …, xn) = 0; i = 1, 2, 3, …, r (5)

Now, we construct an auxiliary function of the form

 F(x1, x2, …, xn, l1, l2, …, lr) = f(x1, x2, x3, …, xn) 1 2

1

( , , , )
r

i i n

i

x x xl f
=

+ Â   (6)

where li’s are undetermined parameters and are known as Lagrange’s multipliers.

Now, we fi nd the critical (or stationary) points of F; we have the necessary conditions

 1 2

0
n

F F F

x x x

∂ ∂ ∂
= = = =

∂ ∂ ∂
 

which implies that

 

1

0; 1, 2, ,
r

i
i

j ji

f
j n

x x

f
l

=

∂∂
+ = =

∂ ∂Â   (7)

From equations (5) and (7), we obtain (n + r) equations in (n + r) unknowns x1, x2, …, xn, l1, l2, …, 

lr. Solving these equations, we get the required stationary points (x1, x2, …, xn) at which the function 

‘f’ has an extremum. Further investigation is needed to fi nd the exact nature of these points.

Example 9  Find the extreme values of the function f(x, y, z) = 2x + 3y + z under the conditions

x
2 + y2 = 5 and x + z = 1.

Solution We have f(x, y, z), = 2x + 3y + z

Subject to conditions  f1 ∫ x2 + y2 – 5 = 0 (1)

and f2 ∫ x + z – 1 = 0 (2)

Now, construct an auxiliary function

 F(x, y, z, l1, l2) = f(x, y, z) + 
2

1

( , , )i i

i

x y zl f
=
Â  

 = (2x + 3y + z) + l1 f1 (x, y, z) + l2 f2(x, y, z)

 = (2x + 3y + z) + l1(x
2 + y2 – 5) + l2(x + z – 1)

For the extremum, we have

 
F

x

∂
∂

 = 2 + 2 l1 x + l2 = 0
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F

y

∂
∂

 = 3 + 2l1 y = 0

 
F

z

∂
∂

 = 1 + l2 = 0

For the above equations, we get l2 = –1, 3 + 2 l1y = 0 

and 1 + 2 l1 x = 0

or x = 

1 1

1 3
,

2 2
y

l l
- = -

Substituting the values of x and y in x2 + y2 = 5, we obtain

 
2
1 12 2

1 1

1 9 1 1
5 or or

24 4 2
l l

l l
+ = = = ±

\   for l1 = 
1 2 3 2 (2 2)

, , , 1
2 2 22

x y z x
+

= - = - = - =

\ f(x, y, z) = 
2 3 2 2 2

, ,
2 2 2

f
Ê ˆ+

- -Á ˜
Ë ¯

 = 
9 2 2 2 2 10 2

2 (1 5 2)
2 2 2

+ -
- - + = = -

For l1 = 
1 2 3 2 2 2

, , and 1
2 2 22

x y z x
-

- = = = - =

\ f(x, y, z) = 
9 2 2 2 2 10 2

2 1 5 2
2 2 2

- +
+ + = = +

Example 10  Find the maximum and minimum distance of the point (3, 4, 12) from the sphere

x
2 + y2 + z2 = 1.

Solution Let P(x, y, z) be any point on the sphere x2 + y2 + z2 = 1.

The distance of the point A(3, 4, 12) from the sphere is

 AP
2 = (x – 3)2 + (y – 4)2 + (z – 12)2 = f(x, y, z) say (1)

where       f(x, y, z) ∫ x2 + y2 + z2 – 1 = 0 (2)

Now, construct the Lagrange’s function or auxiliary function.

 F(x, y, z) = f(x, y, z) + lf(x, y, z)

 = [(x – 3)2 + (y – 4)2 + (z - 12)2] + l(x2 + y2 + z2 – 1) (3)

For extremum, we have

 
F

x

∂
∂

 = 2( 3) 2 0, 2( 4) 2 0
F

x x y y
y

l l
∂

- + = = - + =
∂

 and
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F

z

∂
∂

 = 2(z – 12) + 2lz = 0

Solving the above equations, we obtain

 x = 
3 4 12

, and = .
1 1 1

y z
l l l

=
+ + +

Putting the values of x, y, z in Eq. (2), we get

 

2 2 2
3 4 12

1
1 1 1l l l

Ê ˆ Ê ˆ Ê ˆ
+ + =Á ˜ Á ˜ Á ˜+ + +Ë ¯ Ë ¯ Ë ¯

or 
2

9 16 144
1

( 1)l

+ +
=

+
 or (l + 1)2 = 169

 l + 1 = ±13  or  l = 12, –14

When l = 12, x = 
3 4 12

, ,
13 13 13

y z= =

When l = –14, x = 
3 4 12

, ,
13 13 13

y z- = - = -

Hence, we fi nd the two points P and Q, i.e.,

 P = 
Ê ˆ Ê ˆ

- - -Á ˜ Á ˜Ë ¯ Ë ¯
3 4 12 3 4 12

, , and = , , .
13 13 13 13 13 13

Q

\ the distance from the point A(3, 4, 12) to P and Q are

 AP = 

2 2 2
3 4 12

3 , 4 12 12
13 13 13

Ê ˆ Ê ˆ Ê ˆ
- + - + - =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 AQ = 

2 2 2
3 4 12

3 , 4 12 14
13 13 13

Ê ˆ Ê ˆ Ê ˆ
- - + - - + - - =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

Thus, the minimum distance is 12 and the maximum distance is 14.

Example 11  Show that the rectangular solid of maximum volume that can be inscribed in a given 

sphere is a cube.

Solution Let 2x, 2y, 2z be the length breadth and height of the rectangular solid and let r be the radius 

of the sphere.

Then, the volume V = 8xyz ∫ f(x, y, z) (1)

Subject to constraint f(x, y, z) ∫ x2 + y2 + z2 – r2 = 0 (2)

Construct Lagrange’s function,

 F(x, y, z, l) = f(x, y, z) + l f(x, y, z)

 = 8xyz + l(x2 + y2 + z2 – r2) (3)
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For extremum of F, we have

  
F

x

∂
∂

 =  8 yz + 2lx = 0 (4)

 
F

y

∂
∂

 = 8 xz + 2ly = 0 (5)

 
F

z

∂
∂

 = 8 xy + 2lz = 0 (6)

From (4),  2lx
2 = –8 xyz

From (5),  2ly
2 = –8 xyz

From (6), 2lz
2 = –8 xyz

\  2lx
2 = 2ly

2 = 2lz
2 or x2 = y2 = z2

or x = y = z.

Hence, the rectangular solid is a cube. Hence, proved.

Example 12  Find the volume of the largest rectangular parallelepiped that can be inscribed in the 

ellipsoid 
2 2 2

2 2 2
1

x y z

a b c
+ + = .

Solution Let 2x, 2y, 2z be the length, breadth, and height of the rectangular parallelepiped then its 

volume 

 V = 8 xyz ∫ f(x, y, z) say (1)

subject to constraints

 f(x, y, z) ∫ 
2 2 2

2 2 2
1

x y z

a b c
+ + -  = 0 (2)

Construct the Lagrange’s function.

 F(x, y, z, l) = f(x, y, z) + l f(x, y, z)

 = 8 xyz + 
2 2 2

2 2 2
1

x y z

a b c
l

Ê ˆ
+ + -Á ˜

Ë ¯
 (3)

For stationary points, we have

 
dF

dx
 = 

2

2
0 8 0

x
yz

a

lÊ ˆ
fi + =Á ˜Ë ¯

 (4)

 
dF

dy
 = 

2

2
0 8 0

y
xz

b

l
fi + =  (5)

 
dF

dz
 = 

2

2
0 8 0

z
xy

c

l
fi + =  (6)

Multiplying (4), (5), and (6) by x, y, and z respectively, and adding

we get

 24 xyz + 2l = 0 fi l = –12 xyz
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From (4),  8 yz – 
2

2
12 0 or =

3

x a
xyz x

a
◊ =

From (5),  8 xz – 
2

2
12 0 or =

3

y b
xyz y

b
◊ =

From (6), 8 xy – 
2

2
12 0 or =

3

z c
xyz z

c
◊ =

At the point  , ,
3 3 3

a b cÊ ˆ
Á ˜Ë ¯

,

volume of the largest rectangular parallelepiped = 8 xyz

 = 8
3 3

abc
◊

 V = 
8

3 3

abc

EXERCISE 4.1

 1. Examine the following functions for extreme values

  (i) x
3 + y3 – 3xy

  (ii) x
2
y

2 – 5x
2 – 8xy – 5y

2

 (iii) 2(x – y)2 – x4 – y4

 2. Discuss the extreme values of the function 

 f(x, y) = x3 – 4xy + 2y
2

 3. Examine for extreme values the function

 f(x, y) = xy(a – x – y)

 4. A rectangular box, open at the top, is to have a given capacity. Find the dimensions of the box 

requiring least material for its construction.

 5. The sum of three positive numbers is constant. Prove that their product is maximum when they 

are equal.

 6. Find the extreme values of the function

 f(x, y) = 2(x2 – y2) – x4 + y4

 7. Find the dimensions of a rectangular box of maximum capacity whose surface area is given 

when

 (i) box is open at the top

 (ii) box is closed

 8. Find the shortest distance from the point (1, 2, 2) to the sphere x2 + y2 + z2 = 36.

 9. The sum of three positive numbers is constant. Prove that their product is maximum when they 

are equal.

 10. Using the method of Lagrange’s multiplier, fi nd the largest product of the number x, y, and z, 

when x + y + z2 = 16.
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 11. Using the method of Lagrange’s multiplier, fi nd the minimum value of x2 + y2 + z2 subject to 

the condition 
1 1 1

x y z
+ + .

 12. Find the extreme value of x2 + y2 + z2 subject to the constraints xy + yz + zx = p.

 13. Use Lagrange’s method to fi nd the minimum distance from the origin to the plane 

3x + 2y + z = 12.

 14. Find the maxima and minima of f(x, y, z) = x2 + y2 + z2 where ax
2 + by

2 + cz
2 = 1.

 15. The temperature T at any point (x, y, z) in space is T = 400 xyz
2. Find the highest temperature 

at the surface of a unit sphere x2 + y2 + z2 = 1.

Answers

 1.  (i)    Minimum value = –1 at (1, 1), i.e., fmin (1, 1) = -1.

 (ii) fmax (0, 0) = 0.

 (iii) fmax = 8 at ( 2, 2 ) and ( 2, 2 )- - .

 2. min

4 4 32
,

3 3 27
f

Ê ˆ
= -Á ˜Ë ¯

.

 3. f(x, y) has a maximum at ,
3 3

a aÊ ˆ
Á ˜Ë ¯

 and has no extreme value at (0, 0), (0, a), and (a, 0).

 4. Function is minimum at x = y = (2 v)1/3

 6. f(x, y) is minimum at (0, 1) and (0, –1), the minimum value is –1 at (0, 1) and (0, –1). Also, the 

points (0, 0), (±1, ±1) are neither the points of maximum nor minimum

 7.  (i)    When the box is open at the top, n = 1.

                    
3

s
x = , dimensions are 

1
,

3 2 3

s s
x y z= = =

 (ii) When the box is closed, n = 2

 
6

s
x = , dimensions are x = y = z = 

6

s

  where s is the surface area of the box.

 8. 3.

 10. max

32 32 4 4096
, , .

5 5 5 25 5
f

Ê ˆ
=Á ˜Ë ¯

 11. Minimum is 27.

 12. p

 13. 3. 2071

 14. Minimum and maximum of f are the roots of 
1 1 1

0f f f
a b c

Ê ˆ Ê ˆ Ê ˆ
- - - =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 15. T = 50
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4.7  CONVEXITY,  CONCAVITY,  AND POINT OF INFLECTION

Let y = f(x) be a curve, this curve has continuous fi rst- and second-order derivatives in an open interval 

(a, b). Then we defi ne the convexity, concavity, and point of infl ection of the curve as follows:

(i) Concave Upward

A curve y = f(x) is said to be concave upward if and only if the derivative f¢(x) is an increasing function 

on (a, b) and all points on the curve in the interval (a, b) lie above the tangent to the curve at any point 

in this interval. In terms of the second-order derivative, we defi ne that a curve is concave upward if 

f¢¢(x) > 0 on (a, b). Such a curve is also known as a convex curve.

Fig. 4.2

(ii) Concave Downward

A curve y = f(x) is said to be concave downward if and only if the derivative f¢(x) is a decreasing 

function on (a, b) and all the points on the curve in the interval (a, b) lie below the tangent to the curve 

at any point in (a, b).

In terms of the second-order derivative, we defi ne that a curve is concave downward if f¢¢(x) < 0 in 

(a, b). Such a curve is known as a concave curve.

(iii) Point of Infl ection

A point P on the curve y = f(x) is called a point of infl ection if 

the curve changes its concavity from concave upward to concave 

downward or from concave downward to concave upward.

In other words, the point that separates the convex part of a 

continuous curve from the concave part is called the point of 

infl ection.

If y = f(x) be a continuous curve and if f¢¢(p) = 0 or f¢¢(p) does 

not exist, and if the derivative f¢¢(x) changes sign when passing 

through x = p then the point of the curve with abscissa x = p is 

the point of infl ection.

Thus, a point of infl ection P, f¢(x) is +ve on one side of P and 

–ve on the other side. Hence, at a point of infl ection, f¢¢(x) = 0 

and f¢¢¢ (x) π 0.

y

x
O

Point of inflection

P

Fig. 4.3
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4.8  ASYMPTOTES TO A CURVE

A point P(x, y) on a curve y = f(x), if the distance of the point P(x, y) from a straight line (L) tends to 

zero as x or y or both x, y tends to infi nity then the line (L) is called an asymptote of the curve.

In other words, a straight line, at a fi nite distance from the origin to which a tangent to a curve tends, 

as the distance from the origin of the point of contact tends to infi nity, is called an asymptote of the 

curve.

Asymptotes are usually classifi ed as the following:

 (i) Vertical asymptotes

 (ii) Horizontal asymptotes

 (iii) Inclined, or oblique asymptotes

(i)  Vertical Asymptotes or Asymptotes Parallel to the y-axis

A line x = a is called a vertical asymptote to the curve y = f(x), or is called an asymptotes parallel to the  

y-axis to the curve y = f(x).

The asymptotes parallel to the y-axis are obtained by equating to zero the coeffi cient of the highest 

power of y.

y

x
O

Vertical asymptote

x a=

Fig. 4.4    

y

x
O

Horizontal asymptote

y b=

Fig. 4.5

(ii)  Horizontal Asymptotes or Asymptotes Parallel to the x-axis

A line y = b is called a horizontal or parallel to x-axis asymptote.

Asymptotes parallel to the  x-axis are obtained by equating to zero the coeffi cient of the highest 

power of x.

(iii) Inclined (or Oblique) Asymptotes

Oblique asymptote (not parallel to the x-axis and y-axis) are given by y = mx + c, where m = lim
x

y

xÆ•

Ê ˆ
Á ˜Ë ¯  

and c = lim ( )
x

y mx
Æ•

- .

Oblique asymptotes are obtained when the curve is represented by an implicit function of the form 

f(x, y) = 0. (8)

Let y = mx + c be the asymptote of (8), where m and c are constants whose values are determined 

as follows:

 (i) Put x = 1 and y = m in (8) (i.e., terms of highest power ‘n’ in the equation of the curve) and put 

the expression thus obtained equal to fn(m).
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 (ii) Put x = 1 and y = m in the (n – 1)th degree terms in the equation of the curve and put the 

expression thus obtained equal to fn–1(m).

 (iii) Put x = 1 and y = m in the (n – 2)th degree terms and we obtained fn–2(m).

Repeat the above process for the terms of lower degrees.

To fi nd the value of m, we put

 fn(m) = 0 (9)

Solve (9) and fi nd all values of m.

To fi nd the value of c, the value of c is given by the following formula

 c = 1( )

( )

n

n

m

m

f

f
--
¢

 (10)

For the different values of m, we obtain the values of c and putting the values of m and c in y = mx 

+ c, the asymptotes are obtained.

(iv) Two Mutually Parallel Asymptotes

From Eq. (9),

 fn(m) = 0

If two values of m are equal then there will be two mutually parallel asymptotes.

In this case, the two different values of ‘c’ cannot be determined from (10).

Hence, in this case, the values of ‘c’ are given by the formula

 
2

1 2( ) ( ) ( )
2! 1!

n n n

c c
m m mf f f- -+ +¢¢ ¢  = 0 (11)

If three values of m are equal then the three different values of c are determined by the given 

formula.

 
3 2

1 2 3( ) ( ) ( ) ( )
3! 2! 1!

n n n n

c c c
m m m mf f f f- - -+ + +¢¢¢ ¢¢ ¢  = 0 (12)

Example 13  Find the asymptote parallel to the axis of ‘x’ of the curve y3 + x2
y + 2xy

2 – y + 2 = 0.

Solution Let f(x, y) ∫ y3 + x2
y + 2xy

2 – y + 2 = 0 (1)

Asymptote parallel to x-axis = coeffi cient of highest power of x = 0

i.e., y = 0

Example 14  Find the asymptotes parallel to the y-axis of the curve x4 + x2
y

2 – a2( a2 + y2) = 0.

Solution Let f(x, y) ∫ x4 + x2
y

2 – a2( a2 + y2) = 0

Asymptote parallel to y-axis is coeffi cient of highest power of y = 0.

i.e., x
2 – a2 = 0

 x = ±a

Example 15  Find the asymptotes of the curve

 4x
3 – x2

y – 4xy
2 + y3 + 3x

2 + 2xy – y2 – 7 = 0.

Solution Given 4x
3 – x2

y – 4xy
2 + y3 + 3x

2 + 2xy – y2 – 7 = 0 (1)
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Here, the coeffi cient of the highest power of x is 4 which is a constant and the coeffi cient of the 

highest power of y is 1, which is a constant.

Therefore, there are no asymptotes parallel to x-axis and y-axis.

Thus, the curve has only oblique asymptotes.

Let y = mx + c be any asymptote to the curve (1).

Putting x = 1 and y = m in the highest power terms (i.e., in third-degree terms), we have

 f3(m) = 4(1)3 – (1)2 m – 4(1) (m)2 + m3

 = m3 – 4m
2 – m + 4

Now, putting x = 1 and y = m in second-degree terms, we have

 f2(m) = 3(1)2 + 2(1) m – m2 = 3 + 2 m – m2

Now, putting f3(m) = 0

i.e., m
3 – 4m

2 – m + 4 = 0

or (m – 1) (m2 – 3m – 4) = 0

 m = 1, –1, 4.

To fi nd the value of ‘c’, we have

i.e., c = 1 2

3

( ) ( )

( ) ( )

n

n

m m

m m

f f

f f
- = -
¢ ¢

 c = 
2

2

(3 2 )

(3 8 1)

m m

m m

+ -
-

- -

When m = 1, c = 
3 2 1 2

3 8 1 3

+ -Ê ˆ
- =Á ˜Ë ¯- -

When m = –1, c = 
3 2 1

0
3 8 1

- -Ê ˆ
- =Á ˜Ë ¯+ -

When m = 4, c = 
3 8 16 1

3 16 8 4 1 3

+ -Ê ˆ
- =Á ˜Ë ¯¥ - ¥ -

Putting the values of m and c in y = mx + c, the three asymptotes of the given curve are

 y = 
2 2

1 , i.e.,
3 3

x y x◊ + = +

 y = (–1) x + 0, i.e., y = –x

and  y = 
1 1

4 , i.e., 4
3 3

x y x+ = +

4.9  CURVE TRACING

Curve tracing is an analytical method to sketch an approximate shape of the curve involving a study of 

some important points such as symmetry, multiple points, asymptotes, tangents, region, and sign of the 

fi rst- and second-order derivatives.
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4.9.1  Curve Tracing in Cartesian Coordinates

We shall study the following properties of the curve to trace/sketch it.

(i) Symmetry
 (a) If the equation of the curve involves even powers of y or if y is replaced by –y and the equation 

of the curve remains unaltered then the curve is symmetrical about the x-axis.

  Example: y2 = 4ax is symmetrical about the x-axis.

 (b) If the equation of the curve involves even powers of x or if x is replaced by –x and the equation 

of the curve remains unaltered then the curve is symmetrical about the y-axis.

  Example: x2 = 4ay is symmetrical about the y-axis.

 (c) If the equation of a curve remains unaltered when x and y are interchanged then the curve is 

symmetrical about the line y = x.

  Example: x3 + y3 = 3axy is symmetrical about the line y = x.

 (d) If x is replaced by –x and y is replaced by –y then the equation of the curve remains unaltered, 

i.e., f(–x, –y) = f(x, y) then the curve is symmetrical in the opposite quadrants.

  Example: xy = c2 and x2 + y2 = a2 are symmetrical in opposite quadrants.

 (e) If the equation of the curve remains unaltered when x and y are replaced by –x and –y, i.e., f(–x, 

–y) = f(x, y) then the curve is symmetrical about the origin.

  Example: x5 + y5 = 5a
2 x2

y is symmetrical about the origin.

 (f) If the equation of the curve remains unaltered when x is replaced by –y and y is replaced by –x, 

i.e., f(–y, –x) = f(x, y) then the curve is symmetrical about the line y = –x.

  Example: x3 – y3 = 3axy

(ii) Origin

If the equation of the curve does not contain any constant term then the curve passes through the origin, 

i.e., (0, 0).

Example: x3 + y3 = 3axy

(iii) Tangents to the Curve at the Origin
If the equation of the curve passes through the origin then the tangents to the curve at the origin are 

obtain by equating to zero the lowest degree terms in the equation of the curve.

Example: x2 = 4ay, lowest degree term 4ay = 0, i.e., y = 0, is the tangent to the curve at the origin.

Now, some important points arise:

 (a) If there are two tangents at the origin then the origin is a double point. 

 ∑ When the two tangents are real and distinct then the origin is a node. 

 ∑ If the two tangents real and coincident then the origin is a cusp.

 ∑ If the two tangents are imaginary then the origin is a conjugate point or an isolated point.

Fig. 4.6
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(iv) Asymptotes

To obtain the asymptotes of the curve parallel to the axes and the oblique asymptotes.

(v) Region or Extent

To fi nd the region by solving y in terms of x or vice versa.

(a) Real Region It is defi ned by values of x for which y is defi ned. The real vertical region is 

defi ned by values of y for which x is defi ned.

(b) Imaginary Region It is defi ned by values of x for which y becomes imaginary (i.e., undefi ned) 

or vice versa.

(vi) Point of Infl ection

A point P on a curve is said to be a point of infl ection if the curve is concave on one side and convex on 

the other side of the point P with respect to any line, not passing through the point P. Then, there will 

be a point of infl ection at a point P on the curve if 
2 3

2 3
0 but 0

d y d y

dx dx
= π .

(vii) Intersection with the Coordinate Axes

To obtain the points where the curve cuts the coordinate axes, we put y = 0 in the equation of the curve 

to fi nd where the curve cuts the x-axis. Similarly, put x = 0 in the equation of the curve to fi nd where 

the curve cuts the y-axis.

(viii) Sign of First Derivative dy/dx

 (a) If 0 in [ , ]
dy

a b
dx

>  then the curve is increasing in [a, b].

 (b) If 0 in [ , ]
dy

a b
dx

<  then the curve is decreasing in [a, b].

 (c) If 0
dy

dx
=  at x = a then the point (a, b) is a stationary point where maxima and minima 

can occur.

(ix) Sign of the Second Derivative d2y/dx2

 (a) If in 
2

2
0

d y

dx
>  in [a, b] then the curve is convex or concave upward.

 (b) If 
2

2
0

d y

dx
<  in [a, b] then the curve is concave downward.

 (c) If 
2

2
0

d y

dx
=  at a point P, it is called an infl ection point where the curve changes the direction 

of concavity from downward to upward or vice versa.
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Example 16  Trace the curve 

2 2 2

3 3 3x y a+ = .

Solution Given 

2 2 2

3 3 3x y a+ =  (1)

Rewrite (1) as

 

1 1 1

2 2 23 3 3( ) ( ) ( )x y a+ =
 (2)

 (i) Symmetry: Equation of the curve contains even powers of x as well as y, so the curve is 

symmetrical about both the axes.

 (ii) Origin: The curve does not pass through the origin because the curve contains a constant 

term.

 (iii) Asymptotes: The curve has no asymptotes.

 (iv) Region: From (1), we obtain 

2 2 2

3 3 3y a x= - .

  If x > a and x < –a, y becomes imaginary; hence, the curve does not pass the left side of the 

line x = –a and the right side of the line x = a.

  Similarly, if y > a and y < –a, x becomes imaginary; hence, the curve does not pass above the 

line y = a and below the line y = –a.

 (v) Points of intersection: Put x = 0 in (1). We get y = ±a; thus, the curve (1) meets the y-axis at 

the points (0, a) and (0, –a).

  Also, putting y = 0 in (1), we obtain x = ±a. 

Thus, the curve (1) meets the x-axis at the 

points (a, 0) and (–a, 0).

 (vi) Special points: From (1), we have

 y = 

2 2 3

3 3 2( )a x-

 
dy

dx
 = 

2 2 1

3 3 2

1

3

( )a x

x

-
-  = 

1

3y

x

Ê ˆ
-Á ˜Ë ¯

\ 
dy

dx
 = 0, when y = 0

Hence, when y = 0, x = ±a, the tangents to the curve are parallel to the x-axis at the points (±a, 0),

Again, 
dy

dx
 = •, when x = 0

From (1), y = ±a, when x = 0

Hence, the curve (1) has a tangent parallel to the y-axis at (0, ±a).

The shape of the curve is as shown in the Fig. 4.7.

Example 17  Trace the curve x3 + y3 = 3axy.

Solution Given  x3 + y3 = 3axy (1)

Fig. 4.7
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 (i) Symmetry: If x and y are interchanged, then the curve (1) remains unaltered. Thus, the curve is 

symmetrical about the line y = x.

 (ii) Origin: Curve (1) passes through (0, 0).

 (iii) Tangent at origin: Equating the lowest degree term of (1) to zero, i.e., 3axy = 0

  fi x = 0 and y = 0

  \ tangents at the origin are x = 0 and y = 0

  Thus, the origin is a node (since tangents are real and distinct)

 (iv) Intercept: There are no x-intercepts and no y-intercepts except the origin (0, 0), because if we 

put x = 0 in (1), we obtain y = 0 and if we put y = 0 in (1), we obtain x = 0.

 (v) Asymptotes: The coeffi cients of highest powers of x and y are constant; there are no asymptotes 

parallel to the coordinate axes.

  Now, for oblique asymptotes, putting x = 1 and y = m, we get

 f3(m) = 1 + m3 = 0  fi m = –1 (left imaginary root).

 f2(m) = –3am

\ c = 2

2
3

( ) ( 3 )

( ) 3

m am a

m mm

f

f

-
- = - = +

¢

At m = –1, c = 
1

a
a

+
= -

-
 \ the required asymptote is y = mx + c = –x –a or y + x + a = 0

 (vi) Region:

 (a) If x and y are –ve then the equation of the curve (1) is not satisfi ed. Thus, no part of the 

curve exists in the third quadrant.

 (b) If x is –ve and y is +ve, or vice versa then the equation of the curve is satisfi ed. Thus, the 

curve lies in second and fourth quadrants. Also, if both x and y are +ve then the equation 

of the curve is satisfi ed. Hence, the curve lies in the fi rst quadrant.

 (vii) Intersection of the curve with the line y = x 

  Putting y = x in the curve (1), we obtain.

 x
3 + x3 = 3ax

2 or x(2x
2 – 3ax) = 0

 or x = 0 or x = 
3

2

a
y=

 Thus, the line y = x meets the curve in two points (0, 0) and 

3 3
,

2 2

a aÊ ˆ
Á ˜Ë ¯ .

\ 
dy

dx
 = 

2

2

ay x

y ax

-

-

At 
3 3

, ,
2 2

a aÊ ˆ
Á ˜Ë ¯

 
dy

dx
 = –1

\    equation of the tangent to the curve at the point 
3 3

,
2 2

a aÊ ˆ
Á ˜Ë ¯

 

is 
3 3

( 1)
2 2

a a
y x

Ê ˆ Ê ˆ
- = - -Á ˜ Á ˜Ë ¯ Ë ¯

or  x + y – 3a = 0

Fig. 4.8
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Thus, this tangent is parallel to the asymptote x + y + a = 0

Hence, the shape of the curve is as shown in the Fig. 4.8.

Example 18  Trace the curve y2(a + x) = x2(b – x).

Solution Given y
2(a + x) = x2(b – x) (1)

 (i) Symmetry: The given curve (1) contains an even power of y. Thus, the curve is symmetrical 

about the x-axis.

 (ii) Origin: Curve (1) passes through the origin.

 (iii) Tangent at origin: Equating the lowest degree term to zero,

i.e., bx
2 – ay

2 = 0 fi ay
2 = bx

2

or y = 
b

x
a

±

  Thus, the origin is a node.

 (iv) Intercept: For x-intercept, putting y = 0 in (1), we get

 x = 0 or x = b

  The curve meets the x-axis at (0, 0) and (b, 0).

  For y-intercept, putting x = 0 in (1), we get y = 0

  The curve meets the y-axis at (0, 0).

 (v) Asymptotes: The coeffi cient of the highest order term of x is constant; thus, no asymptotes 

exist parallel to the X-axis. 

  Now, x = –a is the asymptote parallel to the y-axis, obtained by equating the coeffi cient of y2, 

i.e., (x + a), to zero.

 (vi) Region: From (1), we have

 y = 

1

2b x
x

a x

-Ê ˆ
± Á ˜Ë ¯+

  when x > b and x < –a, y becomes imaginary; thus, the curve exists only between x = –a and x = b.

 (vii) Derivative: From (1), we have

 
dy

dx
 = 

2

3 1

2 2

( 2 3 2 )

2( ) ( )

x ax ab bx

a x b x

- - + +

+ ◊ -

 
dy

dx
 = • at x = b,  so the tangent to the curve at (b, 0) is 

parallel to the y-axis.

 \ the curve cuts the x-axis at right angles at (b, 0).

Hence, the shape of the curve is as shown in the Fig. 4.9.

Example 19  Trace the curve 

1 1 1

2 2 2x y a+ = .

Solution Given 

1 1 1

2 2 2x y a+ =  (1)

y

x

x a= –
x b=

O

Fig. 4.9
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 (i) Symmetry: The curve is symmetrical about the line y = x.

 (ii) Origin: The curve does not pass through the origin (0, 0).

 (iii) Asymptotes: There are no asymptotes parallel to the coordinate 

axes.

 (iv) Point of intersection: Putting y = 0 in (1), we get x = a; thus, the 

curve meets the x-axis at (a, 0).

  Now, putting x = 0 in (1), we get y = a; thus, the curve meets the 

y-axis at (0, a).

 (v) Region: The curve exists only between x > 0 and y > 0.

 (vi) Special points/Derivative: From (1), we have

 
dy

dx
 = 

1

2y

x

Ê ˆ
-Á ˜Ë ¯

At (a, 0), 
dy

dx
 = 0, thus, tangent at (a, 0) is parallel to the x-axis (or y-axis).

At (0, a), 
dy

dx
 = •; thus the tangent at (0, a) is parallel to the y-axis.

Hence, the shape of the curve is as shown in the Fig. 4.10.

Example 20  Trace the curve x = (y – 1) (y – 2) (y – 3).

Solution Given x = (y – 1) (y – 2) (y – 3) (1)

 (i) Symmetry: Here, the curve has odd powers of x and y, so it is not symmetrical about the axes 

and opposite quadrant.

 (ii) Origin: The curve does not passes through the origin.

 (iii) Asymptotes: The curve has no linear asymptotes, because y Æ ±• as  x Æ ±•.

 (iv) Point of intersection: Put x = 0 in (1), we get y = 1, 2, 3. 

Therefore, the curve cuts the y-axis at (0, 1), (0, 2), and (0, 3). 

Similarly, put y = 0, we get x = –6, i.e., the curve meets on x-axis 

at (–6, 0).

 (v) Region: When 0 < y < 1 then all the factors are –ve and so x is 

–ve. When 1 < y < 2, x is +ve, similarly, when 2 < y < 3 then x 

is –ve. At y = 3, x = 0, when y > 3, x is +ve, when y < 0, x is –ve. 

Hence, the shape of the curve is as shown in the Fig. 4.11.

4.9.2  Curve Tracing in Polar Coordinates

The general equation of the curve in polar coordinates (r, q) in the explicit form is r = f(q) or q = f(r) 

and in the implicit form is f(r, q) = 0. Now, to trace a curve in a polar form of equation, we adopt the 

following procedure:

(i) Symmetry

 (a) If the equation of the curve does not change when q is replaced by –q, the curve is symmetrical 

about the initial line.

y

x
O

(0, )a

a/4

y
x

=

( , 0)aa/4

Fig. 4.10

y

x
O

(0, 3)

(0, 2)

(0, 1)

Fig. 4.11



4.28 Engineering Mathematics for Semesters I and II

 (b) If r is replaced by –r and the equation of the curve remains unaltered then the curve is 

symmetrical about the pole and the pole is the center of the curve.

 (c) If q is changed to –q and r is changed to –r, and the equation of the curve does not change,

  i.e., f(–r, –q) = f(r, q),

  then the curve is symmetrical about the line q = 
2

p

(ii) Pole

If r = f(q) = 0 at q = a (constant), then the curve passes through the pole and the tangent at the pole is 

q = a.

(iii) Asymptotes

If a is a root of the equation f(q) = 0 then r sin (q – a) = 
1

( )f a¢
 is an asymptote of the polar curve 

1

r
 = f(q).

Region or Extent Find the region where the given curve does not exist. If r is imaginary in 

a < q < b then the curve does not exist between the lines q = a and q = b.

(iv) Points of Intersection

Points of intersection of the curve with the initial line and the line q = 
2

p
 are obtained by putting q = 0 

and q = 
2

p
 respectively in the polar equation.

(vi) Direction of Tangent

The tangent at a point (r, q) on the curve is obtained by tan f = 
d

r
dr

q
 where f is the angle between 

radius vector and the tangent.

(vii) Derivative

If 0
dr

dq
>  then r increases and if 0

dr

dq
<  then r is decreases.

Example 21  Trace the curve r = a(1 – cos q) (cardioid)

Solution Given r = a(1 – cos q) (1)

 (i) Symmetry:  If q is replaced by –q then the equation of the curve (1) remains unchanged.

  Thus, the curve is symmetrical about the initial line.

 (ii) Pole: Putting r = 0 in (1), we get 1 – cos q = 0 or q = 0.

  Hence, the curve passes through the pole and the line q = 0 is tangent to the curve at the pole.

 (iii) Asymptotes: No asymptote to the curve, because for any fi nite value of q, r does not tend to 

infi nity.

 (iv) Points of intersection: The curve cuts the line q = p at (2a, p)

 (v) Tangent: From (1), we get sin
dr

a
d

q
q

=
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\ tan f = 
(1 cos )

tan
sin sin 2

d r a
r

dr a a

q q q

q q

-
= = =

If    90
2 2

q p
f= fi = ∞

  Thus, at the point q = p, the tangent to the curve is perpendicular to the radius vector.

 (vi) Region: The values of q and r are

q: 0
3

p

2

p
2

3

p
p

r: 0
3

a
a 3

3

a
2a

We observed that as q increases from 0 to p, r increases from 0 

to 2a and r is never greater than 2a. Thus, no portion of the curve 

lies to the left of the tangent at (2a, 0). Since |r| £ 2a then the curve 

lies entirely within the circle r = 2a.

The shape of the curve is shown in Fig. 4.12.

Example 22  Trace the curve r = a cos 3q (three-leaved rose). 

Solution Given r = a cos 3q (1)

 (i) Symmetry: If q is replaced by –q and the equation of the curve remains unchanged; hence, the 

curve is symmetric about the initial line.

 (ii) Pole: Putting r = 0 in (1), we get a cos 3q = 0 or cos 3q = 0 

or  3q = 
3 5 7 9 11

, , , , , .
2 2 2 2 2 2

p p p p p p

or q = 
3 5 7 9 11

, , , , , .
6 6 6 6 6 6

p p p p p p
 

  Hence, the curve passes through the pole.

  Thus, the tangents to the curve at pole 0 are given by the six lines, i.e.,

 

5 7 3 11
, , , , , and .

6 2 6 6 2 6

p p p p p p
q q q q q q= = = = = =

  Hence, the pole is a node.

 (iii) Asymptotes: No asymptote, because r is fi nite for 

any value of q.

 (iv) Points: Curve intersects the initial line q = 0 at the 

point (a, 0) only.

 (v) Region: Curve lies within a circle r = a, since the 

maximum value of cos 3q is one.

 (vi) Tangent: tan f = 
cos3

.
3 sin 3

d
r

dr

q q

q
=

-
  At q = 0, tan f = •
  Thus, the tangent at the point (a, 0) is perpendicular 

to the initial line.

Fig. 4.12

Fig. 4.13
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 (vii) For n = 3, the curve has 3 loops. 

Example 23  Trace the curve r = a cos 2q, a > 0. [Four-leaved rose]

Solution Given r = a cos 2q (1)

Here, n = 2, the curve consists of 2n = 2.2 = 4 equal loops.

 (i) Symmetry: 

 (a) The curve is symmetrical about the initial line, because q is changed by –q and the 

equation of the curve remains unchanged.

 (b) If r(p – q) = a cos 2(p – q) = a cos 2p

 cos 2q = a cos 2q = r(q).

  \ The curve is symmetric about the line 
2

p
q =  

 (ii) Pole: The curve passes through the pole, when

 r = a cos 2q = 0 or cos 2q = 0 so that

 2q = 
3 5 7

, , ,
2 2 2 2

p p p p

or q = 
3 5 7

, , , .
4 4 4 4

p p p p

  Hence, the tangents to the curve at the pole are the lines 

 

3 5 7
, , and = .

4 4 4 4

p p p p
q q q q= = =

 (iii) Asymptotes: No asymptote, since r is fi nite for any value of q.

 (iv) Variation of r: The following table gives values of r = a cos 2q for different values of q. 

1
0.70

2

Ê ˆ
=Á ˜Ë ¯

q = 0
8

p

4

p 3

8

p

2

p 5

8

p 3

4

p 7

8

p
p

9

8

p 5

4

p 11

8

p 3

2

p 13

8

p 7

4

p 15

8

p
2p

2q = 0
4

p

2

p 3

4

p
p

5

4

p 3

2

p 7

4

p
2p

9

4

p 5

2

p 11

8

p
3p

13

4

p 7

2

p 15

4

p
4p

r = a 0.7a 0 –0.7a –a –0.7a 0 0.7a a 0.7a 0 0.7a –a –0.7a 0 0.7a a

As q varies from 0 to 
4

p
, r varies from a to 0.
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y

x

3
—
4

p
q =

5
—
4

p
q =

3
—
2

p
q =

7
—
4

p
q =

p
—
2

q =

q p=

q = 0

p
—
4

q =

a

a

a

a

Fig. 4.14

Example 24  Trace the curve r2 cos 2q = a2.

Solution Given r2 cos 2q = a2 (1)

or r
2(cos2 q – sin2 q) = a2

or x
2 – y2 = a2, (2) where x = r cos q, y = r sin q

Equation (2) represents a rectangular hyperbola.

 (i) Symmetry: The curve is symmetrical about both the axes.

 (ii) Origin: The curve does not passes through the origin (0, 0).

 (iii) Asymptotes: No asymptotes parallel to coordinate axes 

and the oblique asymptotes are y = x and y = –x.

 (iv) Region: The equation of the curve can be written as y2 = 

x
2 – a2. when 0 < x < a, y2 is –ve, i.e., y is imaginary.

  \  The curve does not lies in the region 0 < x < a. But 

when x > a, y2 is +ve and y is a real so the curve exists 

in the region x > a. Further, when x Æ •, y2 Æ •.

 (v) Tangents: Shifting the origin to (a, 0), we obtain 

 (x + a)2 – y2 = a2 or x2 – y2 + 2ax = 0.

  \  The tangents at (a, 0) is given by 2ax = 0 or x = 0 the 

tangent at (a, 0) is the line parallel to the y-axis.

4.9.3   Curve Tracing in Parametric Form

If the equation of the curve are x = f(t) and y = g(t), then eliminate the parameter and obtain a Cartesian 

equation of the curve. Then trace the curve as dealt with in case of the Cartesian equation. When the 

parameter (t) cannot be eliminated easily then a series of values are given to ‘t’ and the corresponding 

values of x, y, and 
dy

dx
 are found.

Fig. 4.15
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We explain the process with the help of an example.

Example 25  Trace the curve 

2 2 2

3 3 3x y a+ = .

Solution Given 

2 2 2

3 3 3x y a+ =  (1)

 (i) The parametric equations of the curve are x = a cos3 t, y = a sin3 t.

 \ |x| £ a and |y| £ a.

 fi The curve lies between the lines x = ±a and y = ±a.

 (ii) The equation of the curve (1) can be rewritten as 

 

1 1

2 23 3

2 2
1

x y

a a

Ê ˆ Ê ˆ
+ =Á ˜ Á ˜

Ë ¯ Ë ¯
 (2)

  This equation shows the curve is symmetric about the line y = x.

 (iii) Asymptotes: No asymptotes

 (iv) Points of intersection: The curve cuts the x-axis at (a, 0) and (–a, 0), and meets the y-axis at 

(0, a) and (0, –a).

\ 
0t

dy

dx =

Ê ˆ
Á ˜Ë ¯  = 0

0

( tan ) 0t

t

dy dx
t

dt dt
=

=

È ˘ = - =Í ˙Î ˚

Thus, at the point (a, 0), the x-axis is the tangent to the curve.

Similarly, at the point (0, a), the y-axis is the tangent to the curve.

The shape of the curve is as shown in Fig. 4.16.

Fig. 4.16

EXERCISE 4.2

 1. Trace the curve a2
y

2 = x2(a2 – 
x

2).

 2. Trace the curve y2(2a – x) = x3 (cissoid).

 3. Trace the curve xy = a2(a – x).
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 4. Trace the curve y = x3 – 12x – 16.

 5. Trace the curve 9ay
2 = x(x – 3a)2.

 6. Trace the curve r = a cos 2q

 7. Trace the curve r2 = a2 sin 2q  (lemniscate).

 8. Trace the curve r = 
2sin

cos

a q

q
 (cissoid).

 9. Trace the curve r = a(1 + sin q).

 10. Trace the curve x = a(t + sin t), y = a(1 + cos t).

 11. Trace the curve x = a(q – sin q), y = a(1 + cos q).

Answers

1.

Fig. 4.17

2.

O
x

y

x a= 2

Fig. 4.18

3.

O
x

y

x a=

( , 0)a

Fig. 4.19

4.

Fig. 4.20
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5.

Fig. 4.21

6.

Fig. 4.22

7.

Fig. 4.23

8.

O
x

y

x a=

( , 0)a

Fig. 4.24

9.

Fig. 4.25

10.

Fig. 4.26

11. y

x
O

2a

ap ap q p= 2

q p=

Fig. 4.27
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SUMMARY
1. Maxima and Minima of Functions of two Independent Variables

Let f(x, y) be a function of two independent variables x and y, which is continuous for all values of x and 

y in the neighborhood of (a, b), i.e., (a + h, b + k) be a point in its neighborhood and lies inside the region 

R. We defi ne the following:

 (i) The point (a, b) is called a point of relative (or local) minimum, if

  f(a, b) £ f(a + h, b + k) for all h, k. 

 (ii) The point (a, b) is called a point of relative (or local) maximum, if

  f(a, b) ≥ f(a + h, b + k) for all h, k. 

2.  Necessary Conditions for the Existence of Maxima or Minima of f(x, y) at the 
Point (a, b)

Statement: The necessary conditions for the existence of a maxima or a minima of f(x, y) at the point

(a, b) are fx(a, b) = 0 and fy(a, b) = 0, where fx(a, b) and  fy(a, b) respectively denote the values of 

and
f f

x y

∂ ∂
∂ ∂

 at x = a, y = b.

3.  Suffi cient Conditions for Maxima and Minima
(Lagrange’s Condition for Two Independent Variables)

Let fx(a, b) = 0 and fy(a, b) = 0

Suppose fxx(a, b) = r,  fxy(a, b) = s and  fyy(a, b) = t.

Then 

 (i) If r > 0 and (rt – s2) > 0, f(x, y) is minimum at (a, b).

 (ii) If r < 0 and (rt – s2) > 0, f(x,  y) is maximum at (a, b).

 (iii) If (rt – s2) < 0, f(x, y) is neither maximum nor minimum at (a, b), i.e., (a, b) is a saddle point.

 (iv) If (rt – st) = 0, it is a doubtful case. 

4. Maximum and Minimum Values for a Function f(x, y, z)

Let u = f(x, y, z). For the maximum/minimum of u is 0
u u u

x y z

∂ ∂ ∂
= = =

∂ ∂ ∂

Now, fi nd uxx, uyy, uzz, uyz, uzx, uxy. They are denoted by A, B, C, F, G, H  respectively.

Again, fi nd D1 = 2and

A H G
A H

D H B F
H B

G F C

=

Thus, the given function will have a minimum if A > 0, D1 > 0 and D2 > 0, and will have a maximum if

A > 0, D1 > 0 and D2 < 0.

If these above conditions are not satisfi ed, we have neither maximum nor minimum.

5. Curve Tracing

Curve tracing is an analytical method to sketch an approximate shape of the curve involving a status of 

some important points such as symmetry, multiple points, asymptotes, tangents, region, and sign of the 

fi rst- and second-order derivatives.
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OBJECTIVE-TYPE QUESTIONS

 1. With usual notations, a function f(x, y) has a 

maximum at (a, b), if

 (a) r > 0, rt – s2 > 0 (b) r > 0, rt – s2 < 0

 (c) r < 0, rt – s2 < 0 (d) r < 0, rt – s2 > 0

 2. With usual notations, a function f(x, y) has a 

saddle point (a, b), if

 (a) rt – s2 = 0 (b) rt – s2 < 0

 (c) rt – s2 > 0 (d) rt = s

 3. The stationary points of f(x, y) are given by

 (a) fx = 0, fy = 0 (b) fxy = 0

 (c) fxx = 0 and fyy = 0 (d) f
2
xx = 0 + f 2

yy = 0

 4. The curve given by the equation x
3 + y

3 = 

3axy is

 (a) symmetrical about x-axis

 (b) symmetrical about y-axis

 (c) symmetrical about y = x line

 (d) tangent to x = y = a/3

 [GATE (CE) 1997]

 5. The maxima and minima of the function f(x) 

= 2x
3 + 15x

2 + 36x + 10 occur, respectively if

 (a) x = 3 and x = 2 (b) x = 1 and x = 3

 (c) x = 2 and x = 3 (d) x = 3 and x = 4

 [GATE (CE) 2000]

 6. The function f(x, y) = 2x
2 + 2xy – y3 has

 (a) only one stationary point at (0, 0)

 (b) two stationary points (0, 0) and 
1 1

,
6 3

Ê ˆ
-Á ˜Ë ¯

 (c) two stationary points at (0, 0) and 
1 1

,
6 3

Ê ˆ
Á ˜Ë ¯

 (d) two stationary points at (0, 0) and 

1 1
,

3 3

-Ê ˆ
-Á ˜Ë ¯

 [GATE (CE) 2002]

 7. The function f(x) = 2x
3 – 3x

2 – 36x + 2 has its 

maxima at

 (a) x = –2 only (b) x = 0 only

 (c) x = 3 only

 (d) both x = –2 and x = –3

 [GATE (Civil) 2004]

 8. Consider function f(x) = (x2 – 4)2, where x is 

real number then the function has

 (a) only one minima (b) only two minima

 (c) three minima (d) three maxima

 [GATE (EE) 2008]

 9. The continuous function f(x, y) is said to have 

saddle point at (a, b), if

 (a) fx(a, b) = fy(a, b) = 0, fxxfyy – (fxy)
2 < 0 at 

(a, b)

 (b) fx(a, b) = 0,  fy(a, b) = 0, (fxy)
2 –  fxxfyy > 0 

at (a, b)

 (c) fx(a, b) = 0,  fy(a, b) = 0, fxy and fyy < 0 at 

(a, b)

 (d) fx(a, b) = 0,  fy(a, b) = 0, (fxy)
2 –  fxxfyy = 0 

at (a, b)

 [GATE (CE) 2008]

 10. For real values of x, the minimum value of 

the function f(x) = exp(x) + exp(–x) is

 (a) 2 (b) 1

 (c) 0.5 (d) 0

 [GATE (ECE) 2008]

 11. Maxima and minima occur

 (a) simultaneously (b) once

 (c) alternately (d) rarely

 12. The maximum value of 
1

(sin cos )
2

x x-  is

 (a) 1 (b) 2

 (c) 1/ 2  (d) 3

 13. If x + y = k, x > 0, y > 0 then xy is the 

maximum, when

 (a) x = ky (b) kx = y

 (c) x = y (d) none of these

 14. Curve is symmetrical about origin means

 (a) curve has the same shape in the fi rst and 

fourth quadrant

 (b) curve has the same shape in the fi rst and 

second quadrant

 (c) curve has the same shape in the fi rst and 

third quadrant

 (d) curve has the same shape in all the four 

quadrants

 15. The maximum value of f(x) = x3 – 9x
2 + 24x 

+ 5 in the interval [1, 6] is

 (a) 21 (b) 25

 (c) 41 (d) 46

 [GATE (EE) 2014]

 16. The maximum value of f(x) = 2x
3 – 9x

2 + 12x 

– 3 in the interval 0 £ x £ 3 is _____.

 [GATE (EC) 2014]
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 17. Let f(x) = xe
–x. The maximum value of the 

function in the interval (0, •) is

 (a) e
–1 (b) e

 (c) 1 – e–1 (d) 1 + e–1

 
[GATE (EE) 2014]

 18. Maximum of the real value function of f(x) = 

(x – 1)2/3 occurs at x equal to

 (a) –• (b) 0

 (c) 1 (d) •
 [GATE (EE) 2014]

 19. The maximum value of the function f(x) = 

ln(1 + x) – x (where x > –1) occurs at x = 

_____. [GATE (EC) 2014]

 20. The minimum value of the function f(x) = x3 

– 3x
2 – 24x + 100 in the interval [–3, 3] is

 (a) 20 (b) 28

 (c) 16 (d) 32

 [GATE (EE) 2014]

ANSWERS

 1. (d) 2. (b) 3. (a) 4. (c) 5. (c) 6. (c) 7.(d) 8. (c) 9. (a) 10. (a)

 11. (c) 12. (d) 13. (b) 14. (c) 15. (c) 16. (6) 17.(a) 18. (c) 19. (0) 20. (b)





5.1  INTRODUCTION

In the present chapter, we examine two processes and their relation to one another. In the fi rst process, 

we determine functions from their derivatives and in the second process, we arrive at exact formulas for 

such things as area and volume by successive approximation. Both processes are called integration.

There are two types of the integration:

 (i) Indefi nite integral

 (ii) Defi nite integral

5.2  INDEFINITE INTEGRAL

A function f(x) is an antiderivative or primitive of a function f(x) if F¢(x) = f(x) for all x in the domain 

of f(x).

The collection of all antiderivatives of f is called the indefi nite integral of f(x) and is denoted by 

Ú f(x) dx.

Thus,

[ ( ) ]
d

F x C
dx

+  = ( ) ( ) ( )f x f x dx F x C¤ = +Ú  (1)

where C is an arbitrary constant known as the constant of integration.

Here, Ú  is the integral sign, f(x) is the integrand, x is the variable of integration, and dx is the element 

of integration or differential of x.

5.3  SOME STANDARD RESULTS ON INTEGRATION

 (i) ( ) ( )
d

f x dx f x
dx

È ˘ =Î ˚Ú
 (ii) Úk·f(x)dx = Úkf(x) dx, where k is a constant

 (iii) Ú[f(x) ± g(x)]dx = Ú f(x)dx ± Úg(x) dx 

 (iv) Ú–f(x)dx = –Ú f(x)dx 

Integral Calculus
5
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5.4  DEFINITE INTEGRAL

Let F(x) be the antiderivative of a function f(x) defi ned on [a, b], i.e., ( ) ( ).
d

F x f x
dx

=

Then the defi nite integral of f(x) over [a, b] is denoted by ( )

b

a

f x dxÚ  and is defi ned as 

[F(b) – F(a)].

i.e., ( ) ( ) ( )

b

a

f x dx F b F a= -Ú  (2)

The numbers a and b are called the limits of integration, ‘a’ is called the lower limit, and ‘b’ is called 

the upper limit. The interval [a, b] is called the interval of integration.

5.5  GEOMETRICAL INTERPRETATION OF DEFINITE INTEGRAL

If f(x) > 0 for all x Œ [a, b] then ( )

b

a

f x dxÚ  is numerically equal to the area bounded by the curve y = f(x), 

the x-axis, and the straight lines x = a to x = b [see Fig. 5.1(a)], i.e., ( )

b

a

f x dxÚ  = Area ABCD.

Fig. 5.1

In general, ( )

b

a

f x dxÚ  represents an algebraic sum of the areas of the fi gures bounded by the curve 

y = f(x), the X-axis, and the straight lines x = a and x = b.

The areas above the x-axis are taken with a plus sign and the areas below the x-axis are taken with 

a minus sign (see Fig. 5.1(b)], i.e.,

 ( )

b

a

f x dxÚ  = Area ABP – Area PQR + Area RCD

5.6   LEIBNITZ’S RULE OF DIFFERENTIATION UNDER THE SIGN OF 
INTEGRATION

Let F(x, t) and 
F

x

∂
∂

 be continuous functions of both x and t, and let the fi rst derivative of G(x) and H(x) 

be continuous. 
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Then, 

( )

( )

( , )

H x

G x

d
F x t dt

dx Ú  = 

( )

( )

[ , ( )]

H x

G x

F dH
dt F x H x

x dx

∂
+ ◊

∂Ú  [ , ( )]
dG

F x G x
dx

- ◊  (3)

Particular Case

If F and G are absolute constant then Eq. (3) reduces to

 ( , )

H

G

d
F x t dt

dx Ú  = 

H

G

F
dt

x

∂
∂Ú  (4)

5.7  REDUCTION FORMULA FOR THE INTEGRALS

A formula which connects an integral with another in which the integrand is of the same type, but is of 

lower degree or order, or is otherwise easier to integrate, is called a reduction formula.

5.7.1 Reduction Formula for Ú sinn x dx and Úcosn x dx

 (i) 
1

2sin cos ( 1)
sin sin

n
n nx x n

x dx x dx
n n

-
-- -

= +Ú Ú

 (ii) 
1

2sin cos ( 1)
cos cos

n
n nx x n

x dx x dx
n n

-
--

= +Ú Ú

Deduction

We have

 

/2

0

sinn
x dx

p

Ú  = 

/2

0

cosn
x dx

p

Ú

 = 

( 1)( 3)( 5) 2
; if  is odd

( 2)( 4) 3

( 1)( 3)( 5) 2
; if  is even

( 2)( 4) 3 2

n n n
n

n n n

n n n
n

n n n

p

- - -Ï
Ô - -Ô
Ì - - -Ô ◊
Ô - -Ó

 

 

 

 

Proof Using reduction formula for Úsinn
 x dx, we have

 In = 

/2

0

sinn
x dx

p

Ú

 = 

/2 /21
2 2

00

sin cos ( 1)
sin

n
nx x n

x dx
n n

p p-
-È ˘ -

- +Í ˙
Í ˙Î ˚

Ú

 = 
2

( 1)
n

n
I

n
-

-

If n is odd, we have

 In – 2 = 4 4 6

3 5
,

2 4
n n n

n n
I I I

n n
- - -

- -
=

- -
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 I5 = 

/2

3 3 1

0

4 2 2 2
, sin

5 3 3 3
I I I x dx

p

= = =Ú

Hence,

 In =  
( 1)( 3)( 5) 2

( 2)( 4) 3

n n n

n n n

- - -
- -

 

 

If n is even, we have

 In – 2 = 4 4 6 4 2

3 5 3
, ,

2 4 4
n n n

n n
I I I I I

n n
- - -

- -
◊ = =

- -

and I2 = 

/2
0

0

0

1 1 1
sin .

4 2 2 2
I xdx

p
p

= = ◊Ú

Hence,

 In = 
( 1)( 3)( 5) 3

( 2)( 4) 4 2 2

n n n

n n n

p- - -
◊

- - ◊
 

 

Example 1  Evaluate 

/2
6

0

sin .x dx

p

Ú

Solution Here, n = 6(even), so we have

 

/2

0

sinn
x dx

p

Ú  = 
( 1)( 3)( 5) 3

( 2)( 4) 4 2 2

n n n

n n n

p- - -
◊

- - ◊
 

 

\ 

/2
6

0

sin x dx

p

Ú  = 
(6 1)(6 3)(6 5) 3 1

6 (6 2)(6 4) 4 2 2

p- - - ◊
◊

◊ - - ◊
 

 

 = 
5 3 1

6 4 2 2

p◊ ◊
◊

◊ ◊
 

 

 = 
5

32

p

Example 2  Evaluate 

/2
7

0

cos .x dx

p

Ú
Solution Here, n = 7 (odd power)

 

/2

0

cosn
x dx

p

Ú  = 
( 1)( 3)( 5) 2

( 2)( 1) 3

n n n

n n n

- - -
- -

 

 

\ 

/2
7

0

cos x dx

p

Ú  = 
6 4 2 8

7 5 6 35

◊ ◊
=

◊ ◊
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5.7.2 Reduction Formula for Úsinm x cosn xdx

 sin cosm n
x x dx◊Ú  = 

1sin cos cosm n
x x x dx

-◊ ◊Ú

 

1 1
1 2sin cos 1

sin cos
1 1

m n
m nx x n

x x dx
m m

+ -
+ -Ê ˆ-

+ Á ˜+ +Ë ¯ Ú  [Integration by parts]

 = 
1 1

2 2sin cos 1
sin cos (1 cos )

1 1

m n
m nx x n

x x x dx
m m

+ -
-Ê ˆ◊ -

+ -Á ˜+ +Ë ¯ Ú

 = 
1 1

2sin cos 1
sin cos

1 1

m n
m nx x n

x x dx
m m

+ -
-Ê ˆ◊ -

+ Á ˜+ +Ë ¯ Ú
1

sin cos
1

m nn
x dx

m

Ê ˆ-
- Á ˜+Ë ¯ Ú

Hence,

 sin cosm n
x x dx◊Ú  = 

1 1
2sin cos 1

sin cos
1

m n
m nx x n

x x dx
m n m

+ -
--

+ ◊
+ + Ú

Deduction

 (i) If m and n are +ve integers then

 

/2

0

sin cosm n
x x dx

p

Ú  = 

1 1

2 2

2
2

2

m n

m n

+ +
◊

+ +

 (ii) If n be an even +ve integer and m be an odd +ve integer then 

 

/2

0

sin cosm n
x x dx

p

Ú  = 

1
1

2

2

2

m
n

m n

+
◊ +

+ +

 (iii) If n is an odd and m is an even +ve integers then the integral can be transformed into the one 

considered in (ii) by writing 
2

x
p

+  for x.

  Hence,

 

/2

0

sin cosm n
x x dx

p

Ú  = 

1 1

2 2

2
2

2

m n

m n

+ +
◊

+ +
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Example 3  Evaluate 

/2
6 2

0

sin cos d

p

q q q◊Ú

Solution Here, m = 6, n = 2

 

/2
6 2

0

sin cos d

p

q q q◊Ú  = 

6 1 2 1

2 2

6 2 2
2

2

+ +
◊

+ +

 = 

7 3

2 2

2 5

◊
 1n n nÈ ˘+ =Î ˚∵

 = 

5 3 1 1

2 2 2 2

2 4 3 2 1

p p◊ ◊ ◊ ◊

◊ ◊ ◊ ◊

 = 
5 3

16 8 3 2

p◊ ◊
¥ ¥ ◊

 = 
5

256

p
 

Example 4  Evaluate 2 2 2 3/2

0

( ) .

a

x a x dx-Ú
Solution

 2 2 2 3/2

0

( )

a

x a x dx-Ú  = 
/2

6 2 4

0

sin cosa d

p

q q q◊Ú  
Put sin

cos

x a

dx a d

q

q q

=
=

 = 
6

2 1 4 1

2 2

2 4 2
2

2

a

+ +
◊

◊
+ +

◊

 = 6

3 5

2 2

2 4
a

◊
◊

◊

 = 
6

32

ap
 

Example 5  Evaluate 

2
5/2

0

2 .

a

x a x dx◊ - ◊Ú

Solution Put x = 2a sin2q fi dx = 4a sin q cos q dq.
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\ 
2

5/2

0

2

a

x a x dx◊ - ◊Ú  = 

/2
2 5/2

0

2 (2 sin )a a

p

q◊Ú  (4a sin q cos q) ◊ cos q dq

 = 

/2
4 6 2

0

32 sin cosa d

p

q q q◊Ú

 = 4

6 1 2 1

2 232
6 2 2

2
2

a

+ +
◊

◊
+ +

 = 4

7 3

2 232
2 5

a

◊
◊

◊

 = 4

5 3 1 1

2 2 2 232
2 4 3 2 1

a

p p◊ ◊ ◊ ◊
◊

◊ ◊ ◊ ◊

 = 
432 5 3

16 2 4 3 2

a p◊ ¥ ◊
¥ ¥ ¥ ¥

 = 
45

8

a p

5.7.3 Reduction Formula for secnx and cosecnx

 (i)  secn
x dxÚ  = 

2
2sec tan 2

sec
1 1

n
nx x n

x dx
n n

-
-Ê ˆ◊ -

+ Á ˜- -Ë ¯ Ú

 (ii) cosecn
x dxÚ  = 

2
2cosec cot 2

cosec
1 1

n
nx x n

x dx
n n

-
-Ê ˆ◊ -

- + Á ˜- -Ë ¯ Ú

Example 6  Evaluate 4sec x dxÚ .

Solution

 
4sec x dxÚ  = 

2
2sec tan 2

sec
3 3

x x
x dx

◊
+ Ú

 = 
2sec tan 2

tan
3 3

x x
x

◊
+

 = 21
[tan sec 2 tan ]

3
x x x+
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Example 7  Evaluate 4cosec x dxÚ .

Solution

 
4cosec x dxÚ  = 

2
2cosec cot 2

cosec
3 3

x x
x dx

◊
- + Ú

 = 
2cosec cot 2

( cot )
3 3

x x
x

◊
- + -

 = 21
[cot cosec 2 cot ]

3
x x x- ◊ +

5.7.4 Integration of tann x and cotn x

 (i) 
1

2tan
tan tan

1

n
n nx

x dx x dx
n

-
-= -

-Ú Ú

 (ii) 
1

2cot
cot cot

1

n
n nx

x dx x dx
n

-
-= -

-Ú Ú

Example 8  Evaluate Ú tan3 x dx.

Solution

 
3tan x dxÚ  = 

2tan
tan

2

x
x dx- Ú

 = 
2tan

log sec
2

x
x-

 = 21
tan log cos

2
x x+

Example 9  Evaluate Ú cot4 x dx.

Solution

 
4cot x dxÚ  = 

3
2cot

cot
3

x
x dx- - Ú

 = 3 21
cot (cosec 1)

3
x x dx- - -Ú

 = 31
cot cot

3
x x x- - +

EXERCISE 5.1

 1. Evaluate

 (i) 

/2
4

0

sin d

p

q qÚ  (ii) 

/2
4 2

0

sin cos d

p

q q q◊Ú    (iii) 
/2

5 8

0

sin cosx x dx

p

◊Ú
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 2. Show that 
6

4 2 2

0

(
32

a
a

x a x dx
p

◊ - =Ú .

 3. Prove that 

1
3/2 3/2

0

3
(1 )

128
x x dx

p
◊ - =Ú .

 4. Show that 

1
2 2 3/2

0

(1 )
32

x x dx
p

- =Ú .

 5. Evaluate 

2
9/2 1/2

0

( ) (2 )

a

x a x dx
--Ú .

Answers

 1. (i) 
3 8

32

p -
 (ii) 

32

p
  (iii) 

8

1827

 5. 563

8
ap

5.8  AREAS OF CURVES

5.8.1 Areas of Curves given by Cartesian Equations

Area bounded by the curve y = f(x), the axis of x, and the ordinates x = a and x = b where f(x) is single-

valued, fi nite, and a continuous function of x in (a, b) is given by

 

( ) . or

b b

a a

f x dx y dxÚ Ú

Proof Let DC be the curve y = f(x), and AD and BC be the two ordinates at x = a and x = b.

Fig. 5.2

Let P be any point (x, y) on the curve and let PE be its ordinate.
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Then the area AEPD is some function of x, say f(x).

Let Q be any other point (x + h, y + k) on the curve, and let QF be its ordinate. Let PR and QS be the 

perpendiculars from P and Q to FQ and EP produced respectively.

Then the area AFQD = f(x + h).

Hence, 
( ) ( )x h x

h

f f+ -
 = 

Area AreaAFQD AEPD

h

-

 = 
Area EFQP

h
 (5)

Now, the area of the rectangle EFRP = y ◊ h and that of the rectangle EFQS = (y + k) ◊ h.

Assuming the area EFQP lies in magnitude between the areas of the rectangles EFRP and EFQS, it 

follows from (5) that

( ) ( )x h x

h

f f+ -
 lies between y + k and y

 
0

( ) ( )
lim
h

x h x

h

f f

Æ

+ -
 = y

i.e., 
( )d x

dx

f
 = f(x) (6)

Consequently, if F(x) is any known integral of f(x), f(x) = F(x) + C (7)

where C is any constant.

For the constant ‘C’, put x = a in (7).

 f(a) = 0 fi F(a) + C = 0

fi C = –F(a)

\ f(x) = F(x) – F(a)

Hence, the area ABCD = f(b) = F(b) – F(a)

 = ( )

b

a

f x dxÚ  Proved.

Note 1 Area bounded by the curve x = f(y), the axis of y, and the two abscissas at points y = a and 

y = b is given by

 

. or ( )

b b

a a

x dy y dyfÚ Ú

Note 2 Area bounded by the two curves y = f1(x) and y = f2(x), and the ordinates at x = a and x = b is

 

1 2[ ( ) ( )]

b

a

f x f x dx-Ú
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Example 10  Find the area of the ellipse 
2 2

2 2
1

x y

a b
+ = .

Fig. 5.3

Solution The curve is symmetrical about both the axis; hence, the whole area

 = 4 ¥ Area in the fi rst quadrant

 = 4 ¥ Area (AOB)

Now, area of AOB = 

0

a

x

y dx

=
Ú

 = 2 2

0

( )

a

x

b
a x dx

a
=

Ê ˆ -Á ˜Ë ¯Ú

 = 
2

2 2 1

0

sin
2 2

a

b x a x
a x

a a

-È ˘Ê ˆ◊ - +Í ˙Á ˜Ë ¯Í ˙Î ˚

 = 2 1[0 sin (1)]
2

b
a

a
+

 = 2

2 2

b
a

a

pÈ ˘
Í ˙Î ˚

 = 
4

abp

Hence, the required area = 4
4

ab
ab

p
p¥ =

Example 11  Find the area included between the cure xy
2 = 4a

2(2a – x) and its asymptote.

Solution The curve is symmetrical about the x-axis and is as shown in Fig. 5.4. It cuts the x-axis at x 

= 2a. The asymptote is the y-axis.
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Hence, the required area

 = 

2

0

2

a

y dxÚ

 = 

2

0

2
4

a
a x

a dx
x

-
Ú     Putting x = 2a sin2 q

    dx = 4a sin q cos q dq

 = 

/2
2 2

0

16 cosa d

p

q qÚ

 = 2

3 1

2 216
2 2

a

◊

 = 2

1

216
2

a

p

 = 4 pa
2

Example 12  Find the area common to the circle x2 + y2 = 4 and the ellipse x2 + 4y
2 = 9.

Solution Let S be the point of intersection in the fi rst quadrant of the circle and the ellipse shown in 

Fig. 5.5.

Fig. 5.5

The required area

 = 4 ¥ Area OASB

 = 4 ¥ (Area OPSB + Area PAS)

 = 

7/3 2
2 2

0 7/3

1
4 (9 ) 4 (4 ) .

2
x dx x dx- + -Ú Ú

Solving x2 + y2 = 4 and x2 + 4y
2 = 9, x = 7 / 3

 = 

7/3 2

2 1 2 1

0 7/3

9
2 (9 ) sin 4 (4 ) 2sin

2 2 3 2 2

x x x x
x x

- -È ˘ È ˘- + + - +Í ˙ Í ˙Î ˚ Î ˚

Fig. 5.4
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 = 17/3 7 9 7/3
2 9 sin 0

2 3 2 x

-
È ˘Ê ˆÊ ˆ- + -Í ˙Á ˜Á ˜Ë ¯ Ë ¯Í ˙Î ˚

 17/3 7 7/3
4 4 2 sin

2 3 2
p -

È ˘Ê ˆ
+ - - +Í ˙Á ˜

Ë ¯Í ˙Î ˚

 = 
1 17/3 20 9 7/3 7/3 5 7/3

2 sin 4 2 sin
2 3 2 2 3x x

p- -
È ˘Ê ˆ È ˘

◊ + + - ◊ -Í ˙ Í ˙Á ˜
Ë ¯Í ˙ Í ˙Î ˚Î ˚

Example 13  Find the area bounded by the parabola y2 = 4ax and its latus rectum.

Solution The required Area = 2 ¥ Area OAC. The curve is symmetrical about the x-axis.

\   the area between parabola and latus rectum

 = 

0

2

a

y dxÚ

 = 

0

2 4

a

ax dxÚ

 = 
1/2

0

4

a

a x dx◊Ú

 = 3/2

0

2
4

3

a

a x
È ˘◊Í ˙Î ˚

 = 3/22 4
0

3
a a

¥ È ˘-Î ˚

 = 

1 3

2 2
8

3
a

+

 = 28

3
a

5.8.2 Area of Curves in Polar Coordinates

Let f(q) be continuous for every value of q in the domain (a, 

b). Then the area bounded by the curve r = f(q) and the radii 

vectors q = a and q = b is equal to

 21

2
r d

b

a

qÚ

Proof Let O be the pole and OX, the initial line. AB is the 

portion of  the arc included between the radii vectors q = a 

and q = b.

Let P(r, q) and Q(r + dr, q + dq) be the two neighboring 

points on the curve r = f(q).

Fig. 5.6

Fig.  5.7
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Let the sectorial areas OAP and OAQ be denoted by A and A + dA. Now, taking O as the centre, draw 

circles OPM an OQN of radius r and r + dr respectively.

The sectorial area OPQ = A + dA – A = dA (8a)

Sectorial area OPM = 21

2
r dq  (8b)

Sectorial area OLQ = 21
( )

2
r rd dq+  (8c)

Evidently, the sectorial area OPQ lies in between sectorial areas 2 21 1
and ( )

2 2
r r rdq d dq+ ,

i.e.,  2 21 1
( )

2 2
r A r rdq d d dq< < +

or 
2

21
( )

2 2

r A
r r

d
d

dq
< < +  (9)

Let Q Æ P so that dq and dr both tend to zero.

\ 
dA

dq
 = 

2 2

2 2

r r
dA dqfi =

Integrating both sides, we get

 dA

b

q a=
Ú  = 21

2
r d

b

a

qÚ

 ( )A
b

q a=
 = 21

2
r d

b

a

qÚ

or     (A)q = b – (A)q = a = 21

2
r d

b

a

qÚ

Hence,  the sectorial area OAB = 21

2
r d

b

a

qÚ

Example 14  Find the area of the cardioid r = a(1 + cos q).

Fig. 5.8
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Solution

 Area of cardioid = 2 ¥ Area (OALO)

 = 
2

0

1
2

2
r d

p

q

q
=

¥ Ú

 = 
2 2 2 4

0 0

(1 cos ) 4 cos
2

a d a d

p p

q

q
q q q

=

+ =Ú Ú

 = 2 4

0

4 cos
2

a d

p
q

q
Ê ˆ
Á ˜Ë ¯Ú

 = 

/2
2 4

0

8 cosa d

p

f fÚ  
q

f
È ˘=Í ˙Î ˚
Putting

2

 = 2

4 1 1

2 28
4 2

2
2

a

+
◊

◊
+

◊

 = 2

3 1

2 28
2 2

a

p◊ ◊
◊

◊

 = 2 2

2

3
8

4 4
a

p
◊

¥

 = 
23

2

a p

Example 15  Find the area enclosed by the curve r = 3 + 2 cos q.

Solution The given curve r = 3 + 2 cos q.

The area of the given curve is

 = 
2

0

1
2

2
r d

p

q

q
=

¥ Ú

 = 
2

0

(3 2 cos) d

p

q

q
=

+Ú

 = 
2

0

[9 4 cos 12 cos ]d

p

q

q q q
=

+ +Ú

 = 

0 0 0

9 d 2 (1 cos 2 ) 12 cosd d

p p p

q q q q q+ + +Ú Ú Ú  [∵ 2 cos2 q = 1 + cos 2q]

Fig. 5.9
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 = 
0 0 0

11 2 cos 2 d 12 cosd d

p p p

q q q q q+ +Ú Ú Ú

 = 0 0

0

sin 2
11 ( ) 2 12 (sin )

2

p
p pq

q q
Ê ˆ+ +Á ˜Ë ¯

 = 
(0 0

11 ( 0) 2 12(0 0)
2

p
-

- + ◊ + -

 = 11p 

Example 16  Find the area of a loop of the curve r = a sin 3q.

Solution The given curve r = a sin 3q

One loop is obtained by the values of q from  q = 0 to 
3

p
q =

\   the area of a loop

 = 

/32
2

0

sin 3
2

a
d

p

q qÚ

 = 

/22
2

0

2
sin ;

6

a
d

p

f f
◊

Ú  

 [Putting 3q = f fi 3dq = df]

 = 
2

3 1

2 2 2

6 2 2

a
◊◊

◊

 = 
2

3 2 2

a p
◊

◊

 = 
2

12

ap
 

EXERCISE 5.2

 1. Find the area bounded by the curve y = x2, the y-axis, and the lines y = 1 and y = 8.

 2. Find the area of the curve a2
y = x2 (x + a).

 3. Find the area common to the two curves y2 = ax and x2 + y2 = 4ax.

 4. Find the area of a loop of the curve x = a sin 2t, y = a sin t.

 5. Find the area of a loop of the curve ay
2 = x2 (a – x).

 6.  Find the common area between curve  y2 = 4ax and x2 = 4ay.

 7. Find the area included between of the curve x = a (q – sin q), y = a(1 – cos q) and its base. 

 8. Find the area of one loop of r = a cos 4q.

 9. Find the area of the curve r = 8a cos q.

 10. Find the area of the curve r = a sin 3q.

Fig. 5.10
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Answers

 1. 
45

4
 2. 

2

12

a

 3. 2 24
3 3

3
a ap

Ê ˆ+Á ˜Ë ¯
 4. 

24

3

a

 5. 
28

15

a
 6. 

216

3

a

 7. 3 p a2 8. 
2

16

ap

 9. pa
2 10. 

2

12

ap

5.9  AREA OF CLOSED CURVES

Let a closed curve represented by x = f(t) and y = g(t), t being the parameter and assume that the curve 

does not interact itself. Then the area bounded by such a curve is

 

2

1

1

2

t

t

dy dx
x y dt

dt dt

Ê ˆ-Á ˜Ë ¯Ú

If the curve intersect itself once as shown in Fig. 5.12, then to compute area. Then the area bounded 

by such curves is

 

1

2

dy dx
x y dt

dt dt

Ê ˆ-Á ˜Ë ¯Ú

  

 Fig. 5.11 Fig. 5.12

Example 17  Find the area of the ellipse x = a cos t and y = b sin t.

Solution The ellipse is a closed curve and 0 £ t £ 2p, 

Therefore, the area of the ellipse is

 = 

2

0

1

2

dy dx
x y dt

dt dt

p Ê ˆ-Á ˜Ë ¯Ú
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 = 

2

0

1
[ cos cos sin ( sin )]

2
a t b t b t a t dt

p

◊ - -Ú

 = 

2
2 2

0

1
[ (cos sin )

2
a b t t dt

p

+Ú

 = 

2

0

1
( )

2
a b dt

p

Ú

 = 

2

0
2

ab
dt

p

Ú

 = 2
0( )

2

ab
t

p

 = (2 0)
2

ab
p -

 = p ab

Example 18  Find the area of the loop of the curve 

 x = a(1 – t2), y = at(1 – t2); –1 £ t £ 1.

Solution Area of the loop of the curve

 = 

1

1

1

2

dy dx
x y dt

dt dt
-

Ê ˆ-Á ˜Ë ¯Ú

 = 

1
2 2 2

1

1
[ (1 ) ( 3 ) (1 ) ( 2 )]

2
a t a at a t t a t dt

-

- - - - ◊ -Ú

 = 

1
2 2 4 2 2 4

1

1
[ (1 4 3 ) 2 ( )]

2
a t t a t t dt

-

- + + -Ú

 = 

12
2 4 2 4

1

[1 4 3 2 2 ]
2

a
t t t t dt

-

- + + -Ú

 = 

12
2 4

1

[1 2 ]
2

a
t t dt

-

- +Ú

 = 

12
3 5

1

2 1

2 3 3

a
t t t

-

È ˘- +Í ˙Î ˚

 = 
2 2 1 2 1

1 1
2 3 5 3 5

a È ˘Ê ˆ Ê ˆ- + - - + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚
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 = 
2 2 28 8 16 8

2 15 15 2 15 15

a a aÈ ˘Ê ˆ- - = ◊ =Í ˙Á ˜Ë ¯Î ˚

EXERCISE 5.3

 1. Find the area of a loop of the curve x = a sin 2t, y = a sin t.

 2. Prove that the area of the curve x = a sin 2q (1 + cos 2q), y = a cos 2q (1 – cos 2q) is 
2

2

ap
.

 3. Prove that the area of the curve

 x = a cos q + b sin q + c, y = a¢ cos q + b¢ sin q + c¢ is equal to p(ab¢ – a¢b).

 4. Find the area of the loop of the curve

 x = 
sin 3 sin 3

,
sin cos

a a
y

q q

q q
=

 5. Prove that the area of the curve x = a(3 sin q – sin3q), y = a3q is 
215

8

a p
.

Answers

 1. 
34

3

a
   4. 

23 3

2

a

5.10  RECTIFICATION

The process to obtain the length of an arc of a curve between two given points on it is called the length 

of curve or rectifi cation.

Let AB be the curve y = f(x), where A and B are two points with 

abscissae a and b.

Let s denote the length of the arc from the fi xed point A to B. 

By differential calculus, we know that

 
ds

dx
 = 

2

1
dy

dx

È ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚

or ds = 

2

1
dy

dx
dx

È ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚
Integrating both sides, we get

 

b

a

dsÚ  = 

2

1

b

a

dy
dx

dx

È ˘Ê ˆÍ ˙+ Á ˜Í Ë ¯ ˙
Î ˚

Ú

or Arc (AB) = 

2

1

b

a

dy
dx

dx

È ˘Ê ˆÍ ˙+ Á ˜Í Ë ¯ ˙
Î ˚

Ú

Fig. 5.13
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Note The length of the arc of the curve x = f(y) between the points y = c to d is

  

2

1

d

c

dx
dy

dy

È ˘Ê ˆÍ ˙+ Á ˜Í ˙Ë ¯
Í ˙Î ˚

Ú

If x and y are expressed in terms of a parameter t, and to the points A and B correspond the values t1 

and t2 of t then evidently the length of the arc AB is equal to 

 

2

1

2 2t

t

dx dy
dt

dt dt

È ˘Ê ˆ Ê ˆÍ ˙+Á ˜ Á ˜Í Ë ¯ Ë ¯ ˙
Î ˚

Ú

5.10.1 The length of the arc of the curve r = f(q) between the points where q = a, q = b is 

 

2

2 dr
r d

d

b

q a

q
q

=

È ˘Ê ˆÍ ˙+ Á ˜Í Ë ¯ ˙
Î ˚

Ú

Note The length of the arc of the curve q = f(r) between the points r = a to r = b is

 

2

21

b

a

d
r dr

dr

qÈ ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚
Ú

Example 19  Find the length of the curve y = log sec x between the points x = 0 and x = 
3

p
.

Solution The equation of the curve y = log sec x.

\ 
dy

dx
 = 

1
sec tan tan

sec
x x x

x
◊ ◊ =

The required length of the arc

 = 

2/3

0

1
dy

dx
dx

p È ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚
Ú

 = 

/3
2

0

(1 tan )x dx

p

+Ú

 = 

/3
/3

0

0

sec [log (sec tan )]x dx x x

p
p= +Ú

 = log sec tan log (1 0)
3 3

p pÊ ˆ+ - +Á ˜Ë ¯

 = log(2 3) 0+ -

 Arc = log(2 3)+
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Example 20  Find the length of the arc of the parabola x2 = 4 ay from the vertex to an extremity 

of the latus rectum.

Fig. 5.14

Solution Let O be the node and A be the extremity of the latus rectum of the parabola x2 = 4ay.

Given

 x
2 = 4ay (1)

or y = 
2

4

x

a

\ 
dy

dx
 = 

2

x

a

Now, the required length of the arc OA

 = 

22

0

1

a
dy

dx
dx

È ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚
Ú

 = 
2 2

2
0

1
4

a
x

dx
a

È ˘
+Í ˙

Í ˙Î ˚
Ú

 = 

2
2 2

0

1
4

2

a

a x dx
a

+Ú

 = 

2
2 2 2

1

0

41 4
sinh

2 2 2 2

a

x a x a x

a a

-
È ˘+ Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙
Î ˚

 = 2 11
2 2 2 4 sinh (1)

4
a a a

a

-È ˘◊ +Î ˚

 = 12 sinh (1)a
-È ˘+Î ˚

 = 2 log (1 2)a È ˘+ +Î ˚       1 2sinh log ( 1 )x x x
-È ˘= + +Í ˙Î ˚

∵
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Example 21  Find the length of the arc of the semicubical parabola ay
2 = x3 from the vertex to the 

point (0, a).

Fig. 5.15

Solution Given    ay
2 = 

3
3 2or

x
x y

a
=  (1)

 2yy¢ = 
23x

a

or 4y
2(y¢)2 = 

4

2

9x

a
 (squaring both sides)

 (y¢) = 
4 4

2 2 3

9 9 9

44 4

x x x

aa y a x
= =

◊

The required arc

 = 

2

0 0

9
1 1

4

a a
dy x

dx dx
dx a

È ˘Ê ˆ È ˘Í ˙+ = +Á ˜ Í ˙Ë ¯Í ˙ Î ˚Î ˚
Ú Ú

 = 
/2

0 0

1 1 (4 9 )
(4 9 )

9 3/22 2

aa
a x

a x dx
a a

3È ˘+
+ = Í ˙

◊Í ˙Î ˚
Ú

 = 3/2 3/21
(13 ) (4 )

27
a a

a
È ˘-Î ˚

 = 
1

[13 13 8]
27

a-

Example 22  Show that in the catenary y = c cosh 
x

c
, the length of the arc from the vertex to any 

point is given by

 (i) s = c sinh 
x

c

 (ii) s
2 = y2 – c2.
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Solution

 (i) The equation of the curve is

 y = c cosh 
x

c

Ê ˆ
Á ˜Ë ¯

 (1)

  Differentiating (1) both sides, we get

 
dy

dx
 = 

1
sinh sinh

x x
c

c c c

Ê ˆ Ê ˆ◊ =Á ˜ Á ˜Ë ¯ Ë ¯

  The length of the arc from x = 0 to x = x is

 s = 

2

0

1

x
dy

dx
dx

È ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚
Ú

 = 2

0

1 sinh

x
x

dx
c

È ˘+Í ˙Î ˚Ú

 = 
00

cosh sinh sin

xx
x x x

dx c c
c c c

Ê ˆ È ˘ Ê ˆ= =Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚Ú  (2)

 (ii) Squaring (1) and (2) and subtracting, we get

 y
2 – s2 = 2 2 2 2cosh sinh

x x
c c

c c

Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯

 = 2 2 2

2
cosh sinh

x x
c

c c

È ˘Ê ˆ Ê ˆ-Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 y
2 – s2 = c2

Example 23  Find the length of the loop of the curve

 x = t2, y = t – t3/3.

Solution The equations of the curve are

 x = t
2 ,  y = t – t3/3

\ 
dx

dt
 = 22 , 1

dy
t t

dt
= -

For the half-loop, put y = 0; then 
3

0
3

t
t - = , i.e., t varies from 0 to 3 .

The required length of the loop is

 = 

2 23

0

2

t

dx dy
dt

dt dt
=

È ˘Ê ˆ Ê ˆÍ ˙+Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú

 = 

3 3
2 2 2 2 2

0 0

2 (2 ) (1 ) 2 (1 )t t dt t dtÈ ˘+ - = +Î ˚Ú Ú
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 = 

33 3
2

0 0

2 (1 ) 2
3

t
t dt t

È ˘
+ = +Í ˙

Í ˙Î ˚
Ú

 = 
1

2 3 3 3 0
3

È ˘+ ◊ -Í ˙Î ˚

 = 4 3

Example 24  Show that 8a is the length of an arc of the cycloid whose equations are x = a(t – sin t),

y = a(1 – cos t). 

Solution The equation of cycloid are

  x = a(t – sin t)  and  y = a(1 – cos t)

\ 
dx

dt
 = (1 cos ) and sin

dy
a t a t

dt
- =

For the loop of  curve, put y = 0, i.e., a(1 – cos t) = 0, t varies 0 to 2p.

Hence, the length of arc of the curve 

 = 

2 22

0

dx dy
dt

dt dt

p È ˘Ê ˆ Ê ˆÍ ˙+Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú

 = 

2
2 2

0

[ (1 cos ) ( sin ) ]a t a t dt

p

- +Ú

 = 

2
2 2

0

1 cos 2 cos sin ]a t t t dt

p

+ - +Ú

 = 

2 2
2

0 0

[2(1 cos )] 4 sin
2

t
a t dt a dt

p p

- =Ú Ú

 = 

22

90

2 sin 4 cos
2 2

t t
a dt a

pp È ˘= -Í ˙Î ˚Ú
 = 8a Hence, proved.

Example 25  Find the entire length of the curve given by the parametric equations x = a cos3q, 

y = a sin3q.

Solution The equations of the curve are

 x = a cos3q, y = a sin3q (1)

 
dx

dq
 = 2 23 cos sin , 3 sin cos

dy
a a

d
q q q q

q
- = ◊

\ 

2 2
dx dy

d dq q

Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯
 = 9a

2 cos4q sin2q + 9a
2 sin4q cos2 q
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 = 9a
2 sin2q cos2q. (2)

The given curve (1) is symmetrical about both the axis. |x| < a, |y| < a, i.e., x = ±a, y = ±a.

The corresponding values of x, y for some values of q are 

 q = 0 p/2 p 2p

 x = a 0 –a 0

 y = 0 a 0 0

In the fi rst quadrant, q varies from 0 to 
2

p
.

\   the required length of the curve is

 = 

2 2/2

0

4
dx dy

d
d d

p

q
q q

È ˘Ê ˆ Ê ˆÍ ˙+Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú

 = 

/2
2 2 2

0

4 9 sin cosa d

p

q q qÚ

 = 

/2

0

12 sin cosa d

p

q q qÚ

 = 

/2

0

6 sin 2a d

p

q qÚ

 = 

/2

0

cos2
6 3 (cos cos0)

2
a a

p
q

p
Ê ˆ- = - -Á ˜Ë ¯

 = –3a(–1 – 1) = 6a

Example 26  Find the perimeter of the cardioid r = a(1 – cos q).

Solution The equation of the curve is

 r = a(1 – cos q) (1)

 
dr

dq
 = a sin q

The curve is symmetrical about the initial line.

When r = 0, q = 0 (tangent to the curve)

When r = 2a, q = p

The perimeter of the curve

 = 2 × Area above OA

 = 

2

2

0

2
dr

r d
d

p

q

q
q=

È ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚
Ú

 = 2 2 2 2

0

2 (1 cos ) sina a d

p

q q qÈ ˘- +Î ˚Ú

Fig. 5.16

Fig. 5.17
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 = 
2 2

0

2 1 cos 2cos sina d

p

q q q qÈ ˘+ - +Î ˚Ú

 = 

0

2 2(1 cos )a d

p

q q-Ú

 = 
2

0

2 4 sin
2

a d

p
q

qÚ

 = 

0

4 sin
2

a d

p
q

qÚ

 = 

0

cos
24

1

2

a

p
qÈ ˘-Í ˙

Í ˙
Í ˙
Í ˙Î ˚

 = 8a

Example 27  Find the entire length of the cardiod r = a(1 + cos q).

Solution Do the same as Example 26.

EXERCISE 5.4

 1. Find the length of an arc of the parabola y = x2, measured from the vertex. Calculate the length 

of the arc to the point (1, 1), given log (2 5) 1.45e + = .

 2. Find the length of the curve 
1

log
1

x

x

e
y

e

Ê ˆ-
= Á ˜+Ë ¯

 from x = 1 to x = 2.

 3. Find the length of one quadrant of the astroid x
2/3 + y

2/3 = a
2/3 and, hence, fi nd its whole 

length.

 4. Find the length of an arc of the cycloid x = a(q + sin q), y = a(1 + cos q).

 5. Find the length of the arc of the curve x = eq ◊ sin q, y = eq ◊ cos q from q = 0 to q = 
2

p
.

 6. Find the length of arc of the equiangular spiral r = a eq cot q between the points for which the 

radius vectors r1 and r2.

 7. Find the length of the arc of the spiral r = aq between the points whose radii vectors are r1 and 

r2.

 8. Find the length of an arc of the cissoid r = 
2sin

cos

a q

q
.

 9. Find the perimeter of the following curves.

 (i) 1/3 8 cos
3

r
q

=    (ii) 1/2 1/3 cos
3

r a
q

=
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Answers

 1. 2 2 21 1 1 1
log log ; 1.48

4 4 4 4
x x x x e

È ˘Ê ˆ+ + + + +Í ˙Á ˜Ë ¯ Í ˙Î ˚

 2. 
1

log e
e

Ê ˆ+Á ˜Ë ¯

 3. 
3

, 6
2

a
a

 4. 8a

 5. /22 ( 1)e
p -

 6. sec a (r2 – r1)

 7. 2 22 1 , where ( ) 1 log { 1 }
2

r r a
f f f

a a
q q q q q

Ê ˆ Ê ˆ È ˘- = + + + +Á ˜ Á ˜ Í ˙Î ˚Ë ¯ Ë ¯

 8. f(q2) – f(q1), where f(q) = 2 2(3 sec ) 3 log (1 3 cos ) 3 cosa q q q
È ˘È ˘+ - + +Í ˙Í ˙Î ˚Î ˚

 9. (i) 76 p (ii) 
3

2

ap

5.11  INTRINSIC EQUATIONS

The intrinsic equation of a curve is a relation between s and y, where s is the 

length of the arc of a curve measure from a fi xed point A on it to any point 

P, and y is the angle which the tangent at P makes with the tangent at A to 

the curve. s and y are called the intrinsic co-ordinates.

5.11.1  To Find the Intrinsic Equation from the 
Cartesian Equation

Let y = f(x) be the Cartesian equation of a given curve. Let the x-axis be 

the tangent to the curve at the origin O from which the arc is measured. Let

P(x, y) be any point on the curve and PT be the tangent at the point P.

Now, tan y = ( )
dy

f x
dx

= ¢  (10)

\ s = 

2

0

1

x
dy

dx
dx

È ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚
Ú

 = 
2

0

1 { ( )}

x

f x dxÈ ˘+ ¢Î ˚Ú  (11)

Fig. 5.18
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Eliminating x between (10) and (11), we get a relation between s and y, which is the required 

intrinsic equation of the curves.

5.11.2 To Find the Intrinsic Equation from the Polar Equation

Let r = f(q) be the polar equation of a given curve. Let O be the pole and 

the initial line be the tangent to the curve at the pole from which the arc 

is measured.

Let arc OP = s and – xTP = y

\ 
dr

dq
 = f¢(q) (12)

If f be the angle between the radius vector and the tangent at P,

 tan f = 
1 ( )

( )

d f
r r

drdr f

d

q q

q

q

= ◊ =
¢

 (13)

Also, y = q + f (14)

The arc s = 
2

2 2 2

0 0

[ ( )] [ ( )]
dr

r d f f d
d

q q

q q q q
q

È ˘Ê ˆÍ ˙+ = + ¢Á ˜Ë ¯Í ˙Î ˚
Ú Ú  (15)

Eliminating q and f, from (13), (14), and (15), we get a relation between s and y, which is the 

intrinsic equation of the curve.

5.11.3 Intrinsic Equation in Parametric Equation

Let x = f(t), y = g(t) be the parametric equation of a given curve. Let the x-axis be the tangent to the 

curve, at the point P(x, y). If PT is the tangent then.

 tan y = 
( )

( )

dy dy dx g t

dx dt dt f t

¢
= =

¢
 (16)

\ s = 

2 2

0

t
dx dy

dt
dt dt

È ˘Ê ˆ Ê ˆÍ ˙+Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú

 s = 2 2

0

{ ( )} { ( )}

t

f t g t dtÈ ˘+¢ ¢Î ˚Ú  (17)

Eliminating t between (16) and (17), we get a relation between s and y which is the required 

intrinsic equation of the curve.

Example 28  Find the intrinsic equation of the catenary y = a cosh (x/a). 

Solution Let s be measured from the point whose abscissa is O. Then.

 s = 

2

0

1

x
dy

dx
dx

È ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚
Ú

Fig. 5.19
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 = 

2

2

0 0

1 sinh 1 sinh

x x
x x

dx dx
a a

È ˘ È ˘Ê ˆ Ê ˆÍ ˙+ - = +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙ Î ˚Î ˚
Ú Ú

 s = 

0

cosh sinh

x
x x

dx a
a a

Ê ˆ Ê ˆ=Á ˜ Á ˜Ë ¯ Ë ¯Ú  (1)

Also,  tan y = sinh
dy x

dx a

Ê ˆ= Á ˜Ë ¯
 (2)

From (1) and (2), we get

 tans a y=

Example 29  Find the intrinsic equation of the cardioid  r = a(1 – cos q).

Solution The given curve is

 r = a(1 – cos q)

\ 
dr

dq
 = a sin q

Then, the arc (s) = 
2

2

0

dr
r d

d

q

q
q

È ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚
Ú

  = 2 2 2

0

[ (1 cos ) ( sin )a a d

q

q q q- +Ú

 = 
2 2

0

[1 cos 2 cos sin ]a d

q

q q q q+ - +Ú

 = 
00

2 sin 4 cos
2 2

a d a

qq
q q

q
È ˘= -Í ˙Î ˚Ú

 = 4 1 cos
2

a
qÊ ˆ-Á ˜Ë ¯

 s = 28 sin
4

a
qÊ ˆ

Á ˜Ë ¯
 (1)

Also,  tan f = 
(1 cos )

tan
sin 2

d
r

dr

q q q

q

-
◊ = =

\ f = 
3

so that
2 2 2

y
q q q

q f q= + = + =  (2)

From (1) and (2), we get

 28 sin
8

s a
yÊ ˆ= Á ˜Ë ¯
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Example 30  Find the intrinsic equation of the cycloid x = a(t + sin t), y = a(1 – cos t) and prove 

that s2 + r2 = 16a
2.

Solution The parametric equations of the cycloid are 

 x = a(t + sin t), y = a(1 – cos t)

 
dx

dt
 = (1 cos ), sin

dy
a t a t

dt
+ =

\ tan y = 
/ sin

/ (1 cos )

dy dy dt a t

dx dx dt a t
= =

+

 = 
2

sin 2 sin /2 cos /2

1 cos
2 cos

2

t t t

tt

◊
=

+

 tan y = tan
2 2

t t
yfi =  (1)

 

2 2
dx dy

dt dt

Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯
 = a2 (1 + cos t)2 + a2 sin2 t

 = 2a
2(1 + cos t) = 4a

2 cos2 
2

tÊ ˆ
Á ˜Ë ¯

\ s = 

2 2

2 2

0 0

4 cos
2

t t
dx dy t

dt a dt
dt dt

È ˘Ê ˆ Ê ˆ Ê ˆÍ ˙+ =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
Ú Ú

 = 

0

2 cos 2 2 sin
2 2

t
t t

a dt a= ◊Ú

 s = 
1

4 sin
2

a  (2)

From (1) and (2), we get

 s = 4a sin y (3)

 r = 4 cos
ds

a
d

y
y

=  (4)

where r is the radius of curvature of the curve at any point.

Squaring (3) and (4) and adding, we get

 s
2 + r2 = 16a

2 sin2 y + 16a
2 cos2 y = 16a

2.

 2 2 216s ar+ =

EXERCISE 5.5

 1. Find the intrinsic equation of y = a log sec (x/a).

 2. Find the intrinsic equation of y3 = ax
2.
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 3. Show that the intrinsic equation of the astroid x2/3 + y2/3 = a2/3, taking (a, 0) as the fi xed point 

is 23
sin .

2

a
s y=

 4. Show that the intrinsic equation of the semicubical parabola ay
2 = x3 taking its cusp as the 

fi xed point is 27s = 8a (sec3 y – 1).

 5. Show that the intrinsic equation of the cycoloid 

 x = a(t + sin t), y = a(1 – cos t) is s = 4a sin y.

 6. Find the intrinsic equation of the spiral r = aq, the arc being measured from the pole.

 7. Find the intrinsic equation of the parabola x = at
2 , y = 2at, the arc being measured from the 

vertex.

 8. Show that the intrinsic equation of the semicubical parabola 3ay
2 = 2x

3 is 

 9s = 4a(sec3 y – 1).

Answers

 1. s = log (sec y ∓ tan y)

 2. 27s = 8a(cosec2 y – 1)

 6. 2 1 11 sinh , tan
2

a
s q q q y q q- -È ˘= + + = +Í ˙Î ˚

 7. s = a[cot y cosec y + log (cos y + cosec y)]

5.12  VOLUMES AND SURFACES OF SOLIDS OF REVOLUTION

5.12.1 Volume of the Solid of Revolution (Cartesian Equations)

(i) Revolution about x-axis

The volume of the solid generated by the revolution about the 

x-axis of the area bounded by the curve y = f(x), the x-axis, 

and the ordinates x = a, x = b is

 

pÚ
b

a

y dx2

(ii) Revolution about y-axis

The volume of the solid generated by the revolution about the 

y-axis of the area bounded by the curve x = f(y), the y-axis, 

and the abscissae y = c, y = d is

 

pÚ
d

c

x dy2

Fig. 5.20
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(iii) Revolution about a Line

If the generated curve AB revolves about any line (other than x-axis and y-axis), and AC, BD be the 

perpendiculars on the axis CD from A and B then the volume of the solid generated by the revolution 

of the arc AB is

 

pÚ
ED

EC

PM d EM2
( )

where PM is the perpendicular from any point P of the curve on the axis and E is a fi xed point on the 

axis.

Example 31  Find the volume of the solid obtained by the revolution of an ellipse 
2 2

2 2
1

x y

a b
+ =  

about its minor axis.

Fig. 5.21

Solution The equation of the ellipse is

 
2 2

2 2

x y

a b
+  = 1

or x
2 = 

2
2 2

2
( )

a
b y

b
-  (1)

Volume of the ellipse = twice the volume generated by the revolution of the arc BA about the minor 

axis, i.e., y-axis. For the arc BA, y varies from y = 0 to y = b.

\   the required volume = 2

0

2

b

y

x dyp
=
Ú

 = 

2 2
2 2 2 2

2 2
0 0

2
2 ( ) ( )

b b
a a

b y dy b y dy
b b

p
p - = -Ú Ú

 = 
2 3 2 3

2 3

2 2

0

2 2

3 3

b

a y a b
b y b

b b

p pÈ ˘ Ê ˆ
- = -Í ˙ Á ˜

Ë ¯Í ˙Î ˚

 = 
24

3

a bp
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Example 32  Prove that the volume of the solid generated by the revolution of the curve 

(a – x)y2 = a2
x about its asymptote is 

2 3

2

ap
.

Solution The given equation of the curve

 (a – x) y2 = a2
x

or  x = 
2

2 2

ay

a y+
 (1)

The curve is symmetrical about the x-axis and the equation of 

the asymptote is x = a. The revolution of the axis is x = a.

Let P(x, y) be any point on the curve and PM, the perpendicular 

on the asymptote.

Let PN be the perpendicular on the x-axis. Then

 PM = NA = OA – ON = (a – x)

Therefore, the required volume

 = 2PM (AM)dpÚ

 = 

2
2

2

2 2
0 0

2 ( ) 2
ay

a x dy a dy
a y

p p
• • È ˘

- = -Í ˙
+Í ˙Î ˚

Ú Ú

 = 6

2 2 2
0

2
( )

dy
a

a y
p

•

+Ú

 = 

/2 2
6

2 2 2
0

sec
2

( tan )

a
a d

a a y

p
q

p q
q2+Ú

 [Putting y = a tan q, dy = a sec2 q dq, and 0 £ q £ p/2]

 = 
/26 2

4 2 2
0

2 sec

(1 tan )

a a
d

a

p
p q

q
q

◊
+Ú

 = 

/2 /2
3 2 3

0 0

2 cos (1 cos 2 )a d a d

p p

p q q p q q= +Ú Ú

 = 

/2

3 2

0

sin 2 1
sin 0

2 2 2
a a

p
q p

p q p p
È ˘ È ˘+ = + -Í ˙ Í ˙Î ˚ Î ˚

 = 
2 3

2

ap

Example 33  The curve y2(a + x) = x2(3a – x) revolves about the x-axis. Find the volume generated 

by the loop.

Fig. 5.22
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Solution The equation of the curve is 

 y
2(a + x) = x2(3a – x) or y2 = 

2 (3 )

( )

x a x

a x

-
+

 (1)

The curve is symmetrical about the x-axis and 0 £ x £ 3a. Then 

the required volume

 = 

3
2

0

a

y dxpÚ

 = 

3 2

0

(3 )

( )

a
x a x

dx
a x

p
-

+Ú  [∵ by (1)]

 = 

3 3
2 2

0

4
4 4

a
a

x a ax dx
a x

p
È ˘
- - + +Í ˙

+Í ˙Î ˚
Ú

 = 

3
2 2

2 3

0

4 4 4 log( )
3 2

a

x x
a x a a a xp

È ˘
- - + + +Í ˙

Í ˙Î ˚

 = p [–9a
3 – 12a

3 + 18a
3 + 4a

3 (log 4a – log a)]

 = p [–3a
3 + 4a

3 log 4]

 = pa
3(8 log 2 – 3)

5.12.2 Volume of Revolution for Parametric Equations

Let x = f(t), y = g(t) be the equations of the parametric form, where ‘t’ is a parameter. There are two 

cases arise.

Case I

The volume generated by the revolution of the area bounded by the given equations of curve, the x-axis, 

and the ordinates x = a, x = b about the x-axis is

 2
b

a

y dxpÚ  = 
2

1

2[ ( )]

t

t

dx
g t dt

dt
p Ú

where t = t1 when x = a, and t = t2 when x = b.

Case II

The volume generated by the revolution of the area bounded by the given equations of the curve, the 

y-axis, and the abscissae y = c, y = d about the y-axis is

 2
d

c

x dypÚ  = 
4

3

2[ ( )]

t

t

dy
f t dt

dt
p Ú

where t = t3 when y = c, and t = t4 when y = d.

Fig. 5.23
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Example 34  Find the volume of the solid generated by the revolution of the curve x = a cos3
t, 

y = a sin3 t about the x-axis.

Solution The parametric equations of the astroid are x = a cos3
t and y  = a sin3

t (1)

The curve is symmetrical about both the axes. It cuts the axis at 

t = 0 and 
2

t
p

= . For the portion of the curve in the fi rst quadrant, 

t varies from 0 to 
2

p
.

The required volume

 = 

/2
2

0

2
dx

y dt
dt

p

pÚ

 = 

/2
3 2 2

0

2 ( sin ) ( 3 cos sin )a t a t t dt

p

p ◊ -Ú

 = 

/2
3 7 2

0

6 sin cosa t t dt

p

p- ◊Ú

 = 3 4 3/2
6

2 11/2
ap

◊
- ◊

 = 3

1
3 2 1

26
9 7 5 3 1

2
2 2 2 2 2

a

p
p

p

◊ ◊ ◊
- ◊

◊ ◊ ◊ ◊ ◊

 = 
332

105

ap
-

 Volume = 
232

105

ap
 (in magnitude)

Example 35  Find the volume of the solid generated by the revolution of the cissoid

 x = 2a sin2 t, y = 2a sin3
t/cos t

about its asymptote.

Solution The parametric equation of the cissoid

  x = 2a sin2 t, y = 2a sin3
t/cos t (1)

The curve is symmetrical about the  x-axis, and the asymptote is x = 2a.

Hence, the required volume

 = 2

0

2 (2 )

y

a x dyp
•

=

-Ú

 = 

/2
2

0

2 (2 )

t

dy
a x dt

dt

p

p
=

- ◊ ◊Ú

Fig. 5.24

Fig. 5.25
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 = 

/2 2 2 4
2 4

2
0

3 sin cos sin
2 4 cos 2

cos
t

t t t
a t a dt

t

p

p
=

+
◊ ◊Ú

 = 

/2
3 2 2 2

0

16 cos sin (1 2 cos )a t t t dt

p

p ◊ +Ú

 = 
/2 /2

3 2 2 2 4

0 0

16 cos sin 2 sin cosa t t dt t t dt

p p

p
È ˘

◊ + ◊Í ˙
Í ˙Î ˚
Ú Ú

 = 3 3/2 3/2 5/2 3/2
16 2

2 3 2 4
ap

È ˘◊ ◊
+ ◊Í ˙

Í ˙Î ˚

 = 2 p2 a3

5.12.3 Volume of the Solid of Revolution for Polar Coordinates

 (i) The volume of the solid generated by the revolution of the area bounded by the curve r = f(q) 

and the radii vectors q = a and q = b about the initial line q = 0 is given by

 

b

a

p
q qÚ r d32

sin
3

 (ii) The volume of the solid generated by the revolution of the area about the line q = p/2 of the 

area bounded by the curve r = f(q) and the radii vectors q = a, q = b is given by

 

b

a

p
q qÚ r d32

cos
3

 (iii) If the curve r = f(q) revolves about the initial line (i.e., x-axis) then the volume generated is

 pÚ
b

a

y dx2
 = 

b

a

p q
qÚ

dx
y d

d

2

  where q = a when x = a, and q = b, when x = b.

  But x = r cos q, y = r sin q, ( cos )
dx d

r
d d

q
q q

=

\ Volume = 2( sin ) ( cos )
d

r r d
d

b

a

p q q q
q

◊Ú

Similarly, if r = f(q) revolves about the y-axis then 

 Volume = 2( cos ) ( sin )
d

r r d
d

b

a

p q q q
q

¢

¢
Ú

where q = a ¢ when y = c, and q = b¢ when y = d.
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Example 36  If the cardioid r = a(1 + cos q) revolves about the initial line, fi nd the volume generated.

Solution The equation of the curve r = a(1 + cos q) (1)

The curve (1) is symmetrical about the initial line and for the 

upper half, q varies from 0 to p.

\ the required volume = 3

0

2
sin

3
r d

p
p

q qÚ

 = 3 3

0

2
(1 cos ) sin

3
a d

p
p

q q q+ ◊Ú

 = 
3

3

0

2
(1 cos ) sin

3

a
d

p
p

q q q+ ◊Ú

 = 
3 4

3

0

2 (1 cos ) 1
(0 16)

3 4 6

a
a

p
p q

p
È ˘+

- = - -Í ˙
Í ˙Î ˚

 = 38

3
ap

Example 37  Find the volume of the solid generated by revolving one loop of the curve

r
2 = a2 cos 2q about the line 

2

p
q = .

Solution The equation of the curve is

 r
2 = a2 cos 2q (1)

The curve (1) is symmetrical about the initial line.

Putting r = 0 in (1), we get

 cos 2q = 0
4

p
qfi = ±

For the upper half of the fi rst loop, q varies from 0 to
4

p
q = .

\   the required volume

 = 

/4
3

0

2
2 cos

3
r d

p
p

q q◊ Ú

 = 

/4
3 3/2

0

4
cos 2 cos

3
a d

p
p

q q q◊Ú

 = 

/43
3/2

0

4
(1 2sin ) cos

3

a
d

p
p

q q q- ◊Ú  

[Put 2 sin sin

2 cos cos .

Also, when ,
4 2

0, 0.]

d d

q f

q q f f

p p
q f

q f

=

=

= =

= =

∵

\ Volume = 

/23
4

0

4 1
cos

3 2

a
d

p

f

p
f f

=
Ú

Fig. 5.26

Fig. 5.27
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 = 
3 3

3 1

4 1/2 5/2 4 2 2

2 2 13 2 2 3 3 2

a a
p p

p p
◊ ◊◊

◊ = ◊
◊ ◊

 = 
2 3

4 2

ap

EXERCISE 5.6

 1. Show that the volume of the solid formed by the revolution of the loop of the curve y2(a + x) 

= x2(a – x) about the x-axis is 32
2 log2

3
ap

Ê ˆ-Á ˜Ë ¯
.

 2. Find the volume of the solid generated by the revolution of the catenary cosh
x

y c
c

Ê ˆ= Á ˜Ë ¯
 about 

the x-axis.

 3. Find the volume of the solid generated by the revolution of the plane area bounded by y2 = 9x 

and y = 3x about the x-axis.

 4. Find the volume of the solid generated by revolving the curve xy
2 = 4(2 – x) about the y-axis.

 5. Find the volume when the loop of the curve y2 = x(2x – 1)2 revolves about the x-axis.

  6. Find the volume of the solid generated by the revolution of the cycloid x = a(q – sin q) and 

y = a(1 – cos q) about the y-axis.

 7. Find the volume generated by the revolution of the loop of the curve x = t2, y = 
3

3

t
t

Ê ˆ
-Á ˜

Ë ¯
 about 

the x-axis.

 8. Find the volume generated by the revolution of the curve x = a cos t + 2log tan
2 2

a t
, y = a sin t

about its asymptote.

 9. Find the volume of the solid generated by the revolution of the cardioid r = a(1 + cos q) about 

the initial line.

 10. Find the volume of the solid formed by revolving the cardioid r = a(1 – cos q) about the initial 

line.

 11. Find the volume generated by the revolution of r = 2a cos q about the initial line.

 12. The area lying within the cardioid r = 2a(1 + cos q) and within the parabola r(1 + cos q) = 2a 

revolves about the initial line. Show that the volume generated is 18p a3.

Answers

 2. Volume = 
2 2

sinh
2 2

c c x
x

c

p È ˘+Í ˙Î ˚
 3. 

3

2

p

 4. 4p2 5. p/48

 6. 6p3a
3 7. 

3

4

p

 8. 
32

3

ap
 9. 

38

3

ap
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 10. 
38

3

ap
 11. 4p a3

5.13  SURFACES OF SOLIDS OF REVOLUTION

5.13.1 Surface of the Solid of Revolution in Cartesian Coordinates

The curved surface of a solid generated by revolution about the x-axis, of the area bounded by the curve 

y = f(x), the x-axis, and the ordinates x = a, x = b is

 

pÚ
b

x a

y dS

=

2

where S is the length of the arc of the curve measured from a fi xed point on it to any point (x, y).

Note 1 We know that 

2

1
dS dy

dx dx

Ê ˆ= + Á ˜Ë ¯
. Therefore, the above formula may be rewritten as the 

required curved surface = 

2

2 1

b

x a

dy
y dx

dx
p

=

Ê ˆ+ Á ˜Ë ¯Ú .

Note 2 Similarly, the curved surface of the solid generated by the revolution about the y-axis of the 

area bounded by the curve x = f(y), the y-axis, and the abscissae y = c and y = d is

 pÚ
d

y c

x dS

=

2  = 

2

2 1

d

y c

dx
x dy

dy
p

=

Ê ˆ
+ Á ˜Ë ¯Ú

or = 

2

2 1

d

y c

dx
x dy

dy
p

=

Ê ˆ
+ Á ˜Ë ¯Ú

Example 38  The part of the parabola y2 = 4ax bounded by the latus rectum revolves about the 

tangent at the vertex. Find the area of the surface of the reclithus generated. 

Solution The given equation of the parabola is

 y
2 = 4 ax (1)

The required curved surface is generated by the revolution 

of the arc BOB¢, cut off by the latus rectum about the axis of 

y. Here, BAB¢ is the latus rectum. For half the arc, x varies 

from 0 to a.

From (1),  y = 2 ax

 
dy

dx
 = /a x

\ 
2

1
dy

dx

Ê ˆ+ Á ˜Ë ¯
 = 1

a a x

x x

+
+ =

Fig. 5.28
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The required surface = 2 ¥ Surface generated by the revolution of the arc OB

 = 
0

2 2

a

x dSpÚ

 = 

2

0

4 1

a
dy

x dx
dx

p
Ê ˆ+ Á ˜Ë ¯Ú

 = 2

0 0

4 4 ( )

a a
a x

x dx x ax dx
x

p p
+Ê ˆ = +Á ˜Ë ¯Ú Ú

 = 

2 2

0

4
2 2

a
a a

x dxp
È ˘Ê ˆ Ê ˆÍ ˙+ -Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

Ú

 = 
2

2 2

0

1 1
4 log

2 2 2 2 2

a

a a a
x x ax x x axp

È ˘Ï ¸Ê ˆ Ê ˆ Ê ˆÍ ˙+ + - + + +Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Ó ˛Î ˚

 = 2 3 2 log ( 2 1)ap È ˘- +Î ˚

5.13.2 Surface of the Solid of Revolution in Parametric Equations

The curved surface of the solid generated by the revolution about the x-axis of the area bounded by the 

curve x = f(t), y = y(t), the x-axis, and the ordinates t = t1, t = t2 is 

 2 y dSpÚ  = 
2

1

2

t

t t

dS
y dt

dt
p

=
Ú

where  
dS

dt
 = 

2 2
dx dy

dt dt

Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯

Similarly, the revolution about the y-axis gives

 2 x dSpÚ  = 
2

1

2

t

t t

dS
y dt

dt
p

=
Ú

where 
dS

dt
 = 

2 2
dx dy

dt dt

Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯

Example 39  Find the surface of the solid generated by the revolution of the curve x = a cos3 t, 

y = a sin3 t about the x-axis.

Solution The parametric equations are 

 x = a cos3 t, y = a sin3 t  (1)
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\ 
dx

dt
 = 2 23 cos sin , 3 sin cos

dy
a t t a t t

dt
- ◊ =

 
dS

dt
 = 

2 2

2 2 2 2( 3 cos sin) (3 sin cos )
dx dy

a t a t t
dt dt

È ˘Ê ˆ Ê ˆÍ ˙+ = - +Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

 = 4 2 4 23 cos sin sin cosa t t t t◊ +

 
dS

dt
 = 3a ◊ sin t cos t

The required surface = 2 ¥ Area of the surface generated by revolution about the x-axis

 = 

/2 /2

0 0

2 2 2 2

t t

dS
y dS y dt

dt

p p

p p
= =

= ◊Ú Ú

 = 

/2

3

0

4 sin (3 sin cos )

t

a t a t t dt

p

p
=
Ú

 = 

/2 /2
2 4 2 4

0 0

4 3 sin cos 12 sin cos

t

a t t dt a t t dt

p p

p p
=

= ◊Ú Ú

 = 

/2
5

2 2

0

sin 1
12 12 0

5 5

t
a a

p

p p
È ˘ È ˘= -Í ˙ Í ˙Î ˚Í ˙Î ˚

 = 212

5
ap

5.13.3 Surface of the Solid of Revolution in Polar Form

The curved surface of the solid generated by the revolution about the x-axis of the area bounded by the 

curve r = f(q) and the radii vectors q = a, q = b is

 2 y dS

b

q a

p
=
Ú  = 2

dS
y d

d

b

a

p q
qÚ

where 
dS

dq
 = 

2

2 dr
r

dq

È ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚
 and y = r sin q

Similarly, revolution about the y-axis of the area bounded by the curve q = f(r) is

 2 x dS

b

q a

p
=
Ú  = 2

dS
x d

d

b

a

p q
qÚ

where  
dS

dq
 = 

2

2 dr
r

dq

È ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚
 and x = r cos q.
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Example 40  Find the surface area generated by the revolution of the loops of the lemniscate

r
2 = a2 cos 2q about the initial line.

Solution The given curve is symmetrical about the initial line and the line q = p/2. The curve consist 

of two loops and in the fi rst quadrant, for half the loop, q varies from 0 to p/4.

\  r
2 = a2 cos 2q or r = cos 2a q  (1)

 2
dr

r
dq

 = a2 (– 2 sin 2q)

 
dr

dq
 = 

2 sin 2a

r

q
-

 
dS

dq
 = 

2 4 2
2 2 2

2

sin 2
cos 2

dr a
r a

d r

q
q

q

È ˘ È ˘Ê ˆÍ ˙+ = +Í ˙Á ˜Ë ¯Í ˙ Í ˙Î ˚Î ˚

 = 
4 2 2

2 2

2

sin 2
cos 2

cos2cos2

a a
a

a

q
q

qq

È ˘
+ =Í ˙

Í ˙Î ˚

 = 
cos2

a

q

The required surface

 = 

/4 /4

0 0

2 2 4 sin
dS dS

y d r d
d d

p p

p q p q q
q q

=Ú Ú

 = 

/4

0

4 cos 2 sin
cos2

a
a d

p

p q q q
q

◊ ◊Ú

 = 
/4

2 2 /4
0

0

4 sin 4 [ cos ]a d a

p
pp q q p q= -Ú

 = 2 1
4 1

2
ap

Ê ˆ
-Á ˜Ë ¯

 

EXERCISE 5.7

 1. Find the area of the surface formed by the revolution of x2 + 4y
2 = 16 about its major axis.

 2. Find the surface of the solid formed by the revolution about the x-axis of the loop of the curve 

x = t2, y = 
3

3

t
t - .

 3. Show that the surface area of the solid generated by revolving one complete arc of the cycloid 

x = a(q – sin q), y = a(1 – cos q) about the line y = 2a is 232

3
ap .
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 4. Find the surface generated by the revolution of the curve x = 
21

cos log tan
2 2

t
a t a

Ê ˆ+ Á ˜Ë ¯ , 

y = a sin t about its asymptote. 

 5. Find the surface of the solid generated by the revolution of the cycloid x = a(q + sin q),

y = a(1 + cos q) about its base.

 6. Find the surface of the solid formed by the revolution of the cardioid r = a(1 + cos q) about the 

initial line.

 7. Find the area of the surface of revolution formed by revolving the curve r = 2a cos q about the 

initial line.

 8. The lemniscate r2 = a2 cos 2q revolves about a tangent at the pole. Show that the surface of the 

solid generated is 4pa
2.

Answers

 1. 232 3
8

9
p p+  2. 3p

 4. 4p a2 5. 264

3
ap

 6. 232

5
ap  7. 4p a2

5.14  APPLICATIONS OF INTEGRAL CALCULUS

5.14.1  Centre of Gravity

A point fi xed in the body through the weight of the body irrespective of whatever position the body may 

be placed is said to be the centre of gravity of the body.

(i) Centre of Gravity of a System of Particles

Let a system of particles of mass m1, m2, m3, …, mn situated at points in a plane whose coordinates 

are (x1, y1), (x2, y2), … (xn, yn), respectively. Then the centre of gravity (CG) of this system is the point 
( , )x y , where

  
1 1

1 1

,

n n

i i i i

i i

n n

i i

i i

m x m y

m m

= =

= =

= =
Â Â

Â Â
x y  (18)

The centre of gravity is also known as centre of mass or centre of inertia.

(ii) Centre of Gravity of a Plane Area

Let ( , )x y  be the CG of a plane area A. 
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Then x  = ,
x dm y dm

dm dm
=Ú Ú

Ú Ú
y

where dm is an element of the mass of A and (x, y) are coordinates of the CG of dm.

Let dA be an element of area A and let (x, y) denote the CG of dA.

Let r be mass per unit area. Then dm = r dA and (x, y) is CG of r dA or dm.

Therefore,

 x  = ,
x dA y dA

dA dA

r r

r r
=Ú Ú

Ú Ú
y

or x  = ,
x dA y dA

dA dA
=Ú Ú

Ú Ú
y , if r is a constant.

Special Cases

 (i) When the area is bounded by the curve y = f(x), x-axis, and the ordinates x = a, x = b.

  Then the area of the elementary strip of width dx is dA = ydx. The centre of gravity of the 

elementary strip is (x, y/2).

  \ CG of the area is given by

 x  = 
2

,

b b

a a

b b

a a

y
xy dx ydx

y dx y dx

◊

=
Ú Ú

Ú Ú
y

or x  = 

21

2
,

b b

a a

b b

a a

xy dx y dx

y dx y dx

=
Ú Ú

Ú Ú
y

 (ii) Similarly, the CG of a plane area bounded by the curve x = f(y), y-axis, and the abscissae

y = a and y = b, is given by

 x  = 

21

2
,

b b

a a

b b

a a

x dy yx dy

x dy x dy

=
Ú Ú

Ú Ú
y

 (iii) Consider the CG of the sectorial area bounded by the curve r = f(q) and the two radii q = a and 

q = b. Then the area of the elementary sectorial area dA = 21

2
r dq  and the elementary strip 

2 2
cos , sin

3 3
r rq q

Ê ˆ
Á ˜Ë ¯

 is given by
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 x  = 

3 3

2 2

2
cos cos

3 2

3

r d r d

r d r d

b b

a a
b b

a a

q q q q

q q

=
Ú Ú

Ú Ú

 y  = 

3 3

2 2

2
sin sin

3 2

3

r d r d

r d r d

b b

a a
b b

a a

q q q q

q q

=
Ú Ú

Ú Ú

 (iv) CG of a surface of revolution: The CG of a surface of revolution about the x-axis of the curve 

y = f(x) from x = a to x = b, is ( x , 0) is given by

 x  = 

2

2

b b

a a

b b

a a

x y dS xy dS

y dS y dS

p

p

◊

=
Ú Ú

Ú Ú
 and

 y  = 0

  Similarly, the surface of revolution about y-axis of the curve x = f(y) from y = a to y = b for 

(0, y ) is given by

 x  = 0 and =

b

a

b

a

xy dS

x dS

Ú

Ú
y

 (v) Centre of gravity of an arc: Suppose ds be a small portion of the curve between the points (x, 

y) and (x + dx, y + dy). Let r be the density at point (x, y) of the curve y = f(x). Then the mass 

of the small portion is dm = r ds.

\ x  = and
x dS y dS

dS dS

r r

r r
=Ú Ú

Ú Ú
y

  where dS is given by

 (a) Cartesian equation: dS = 

2 2

1 or 1
dy dy

dx dS dy
dx dx

Ê ˆ È ˘Ê ˆ Ê ˆÍ ˙+ = +Á ˜Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Ë ¯ Î ˚

 (b) Parametric equation: dS = 

2 2
dx dy

dt
dt dt

È ˘Ê ˆ Ê ˆÍ ˙+Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
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 (c) Polar form: dS = 

2 2

2 or 1
dr d

r d dS r dr
d dr

q
q

q

È ˘ È ˘Ê ˆ Ê ˆÍ ˙ Í ˙+ = +Á ˜ Á ˜Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

Example 41  Find the CG of the area enclosed by the parabola y2 = 4ax and the double ordinates 

x = h.

Solution Let ( , )x y  be the CG, y  = 0 by the symmetry. The abscissa of the CG will be the same even 

if we consider the area on one side only. Hence.

 x  = 

3/2

0 0

1/2

0 0

h h

h h

xy dx x dx

y dx x dx

=
Ú Ú

Ú Ú
 [By y2 = 4 ax]

 = 

5/2

3/2

2

35
2 5

3

h

h

h

=

Example 42  Find the CG of a uniform lamina bounded by the coordinate axis and arc of the 

ellipse 
2 2

2 2
1

x y

a b
+ =  in the fi rst quadrant.

Fig. 5.29

Solution The equation of the ellipse can be written as

 y = 2 2b
a x

a
-  (1)

Let the CG  of the ellipse be ( , )x y

\   The CG of the ellipse in the fi rst quadrant is given by

 x  = 

2 2

0 0

2 2

0 0

( )

( )

a a

a a

b
xy dx x a x dx

a

b
y dx a x dx

a

◊ -

=

-

Ú Ú

Ú Ú
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 x  = 

2 2

0

2 2

0

( )
4

3
( )

a

a

x a x dx
a

a x dx
p

-

=

-

Ú

Ú
 [By putting x = a cosq]

 y  = 

2
2 2 2

2

0 0

2 2

0 0

1
( )

2 2 4

3
( )

a a

a a

b
y dx a x dx

a b

b
y dx a x dx

a

p

-

= =

-

Ú Ú

Ú Ú
 [Put x = a cos q]

Hence,  ( , )x y  = 
4 4

,
3 3

a b

p p

Ê ˆ
Á ˜Ë ¯

Example 43  Find the centre of gravity of a uniform hemispherical shell.

Solution A hemispherical shell is obtained by revolving the circle x2 + y2 = a2 about the x-axis.

\ 
dy

dx
 = 

22

and 1 1
x dS dy x

y dx dx y

Ê ˆÊ ˆ- = + = + -Á ˜ Á ˜Ë ¯ Ë ¯

 = 
2 2

2

x y a

yy

+
=  [∵ x2 + y2 = a2]

Let the CG of the hemispherical shell be ( , )x y .

Hence, the CG ( , )x y  is given by

 x  = 0 0

0 0

2

2

a a

a a

dS
x y dS xy dx

dx

dS
y dS y dx

dx

p

p

◊

=
Ú Ú

Ú Ú

 = 0 0

0 0

2

a a

a a

ax dx x dx
a

a dx dx

= =
Ú Ú

Ú Ú

and y  = 0

Hence, , 0
2

aÊ ˆ
Á ˜Ë ¯

 is the required CG of the given curve.

Example 44  Find the position of the centroid of the area of the curve 

2/3 2/3

1
x y

a b

Ê ˆ Ê ˆ+ =Á ˜ Á ˜Ë ¯ Ë ¯
 lying 

in the positive quadrant.
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Solution The parametric forms of the given curve are

 x = a cos3 q, y = b sin3 q (1)

\ 
dx

dq
 = 2 23 cos sin , 3 sin cos

dy
a b

d
q q q q

q
- =

Let the CG of the given curve for ( , )x y  and is given by

 x  = 

/2 /2

0 0

/2 /2

0 0

dx
xy dx xy d

d

dx
y dx y d

d

p p

p p

q
q

q
q

◊

=
Ú Ú

Ú Ú

 = 

/2
3 3 2

0

/2
3 2

0

cos sin ( 3 cos sin )

sin ( 3 cos sin )

ab a d

b a d

p

p

q q q q q

q q q q

◊ - ◊

◊ - ◊

Ú

Ú

 = 

/2
4 5

0

/2
4 2

0

5 11sin cos
3 2

2 2

5 3
2 4sin cos

2 2

d

d

p

p

q q q

q q q

◊ ◊ ◊
=

◊ ◊◊

Ú

Ú

 = 

3 4 256

31511 3

2 2

a

p

◊
=

◊

Similarly,  y  = 
256

315

b

p

Hence, the required CG is 
256 256

,
315 315

a b

p p

Ê ˆ
Á ˜Ë ¯

Example 45  Find the CG of the area of a loop of the lemniscate r2 = a2 cos 2q.

Solution The given equation of the curve is

 r
2 = a2 cos 2q (1)

Let ( , )x y  be the required CG of the loop of the curve. Since the curve is symmetrical about the 

x-axis, y = 0, also for this loop q varies from = –p/4 to p/4.

\  x  = 

/4 /4
3 3 3/2

/4 /4

/4 /4
2 2

/4 /4

2
cos (cos 2 ) cos

3 2

3
cos2

r d a d

r d a d

p p

p p

p p

p p

r q q q q q

r q q q

- -

- -

=
Ú Ú

Ú Ú
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 x  = 

/4
3/2

2
0

/4

0

(cos 2 ) cos
2

3
2 cos2

d
a

d

p

p

q q q

q q

Ú

Ú

 = 

/4
2 3/2

0

/4

0

(1 2sin ) cos
2

3 sin 2

2

d
a

p

p

q q q

q

-

Ê ˆ
Á ˜Ë ¯

Ú

 = 

/2
2 3/2

0

/4

0

cos
(1 sin )

22

3 1
0

2

t dt
t

a

p

p

-

Ê ˆ-Á ˜Ë ¯

Ú
 

[Put 2 sin sin

2 cos cos ]

t

d t dt

q

q q

=

=

 = 

/2
4

0

4
cos

3 2

a
t dt

p

Ú

 = 
4 3 1 2

2 2 2 83 2

a ap p
◊ ◊ =

and y  = 0

Hence, the required CG is 
2

, 0
8

apÊ ˆ
Á ˜
Ë ¯

Example 46  Find the CG of the curve x = a cos3
 t, y = a sin3 t in the positive quadrant.

Solution Let ( , )x y  be the required CG of the curve in the fi rst quadrant.

Since the curve is symmetrical about the line y = x, 

 we have y  = x  (1)

The equation of the curve is

 x = a cos3 t, y = a sin3 t (2)

 
dx

dt
 = 2 23 cos ( sin ), 3 sin cos

dy
a t t a t t

dt
◊ - = ◊

\ dS = 
2 2

dx dy
dt

dt dt

È ˘Ê ˆ Ê ˆÍ ˙+Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

 = 2 2 2 2[(3 cos ( sin )) (3 sin cos )a t t a t t dt◊ - + ◊

 = 2 4 2 4 29 [(cos sin sin cos ]a t t t t dt◊ + ◊
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 = 2 23 sin cos sin cosa t t t t dt◊ +

 dS = 3a sin t cos t dt

For the arc of the curve in the fi rst quadrant, t varies from t = 0 to t = p/2.

\ x  = 

/2
3

0

/2

0

cos 3 sin cos

3 sin cos

a t a t t dt
x dS

dS
t t dt

p

p

r

r

◊ ◊

=

◊

ÚÚ
Ú Ú

 = 

/2
4

0

/2

0

cos ( sin )

cos ( sin )

t t dt

t t dt

p

p

-

-

Ú

Ú

 = 

/2
5

0

/2
2

0

cos

5 2

5
cos

2

t

a
a

t

p

p

Ê ˆ
Á ˜Ë ¯

=
Ê ˆ
Á ˜Ë ¯

From (1),  y  = 
2

5

a
x =

Hence, the CG is 
2 2

,
5 5

a aÊ ˆ
Á ˜Ë ¯

.

EXERCISE 5.8

 1. Find the CG of the area bounded by the parabola y2 = 4ax, the x-axis, and the latus rectum.

 2. Find the CG of the area included between the curve y2(2a – x) = x3 and its asymptote.

 3. Find the CG of a uniform circular wire of radius a in the form of a quadrant of a circle.

 4. Find the CG of a uniform wire of radius a in the form of a semicircle.

 5. Find the CG of the arc of the cardioid r = a(1 + cos q) lying above the initial line.

 6. Find the CG of a solid formed by revolving a quadrant of an ellipse about its minor axis.

 7. Find the centroid of the surface formed by the revolution of one loop of the lemniscate r2 = a2 

cos 2q about the initial line.

Answers

 1. 
2 sin

, 0
3

a a

a

Ê ˆ
Á ˜Ë ¯

 2. 
5

, 0
3

aÊ ˆ
Á ˜Ë ¯

 3. 
4 2

, 0
a

p

Ê ˆ
Á ˜
Ë ¯

 4. 
2

, 0
a

p

Ê ˆ
Á ˜Ë ¯
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 5. 
4 4

,
5 5

a aÊ ˆ
Á ˜Ë ¯

 6. 
3

0,
8

bÊ ˆ
Á ˜Ë ¯

 7. (2 2), 0
6

aÊ ˆ+Á ˜Ë ¯

5.14.2  Moment of Inertia

Let a particle of mass m lie at a distance r from a given line. Then mr
2 is said to be the Moment of Inertia 

(MI) of the particle about the given line.

If particles of masses m1, m2, m3, …, mn be placed at distances r1, r2, r3, …, rn then

 m1r1
2
 + m2 r2

2
 + … + mn rn

2
 = Â

n

i i

i =

m r2

1

 (19)

If the MI of a body of mass M about any axis AB be MK
2 then K is called the radius of gyration of 

the body about AB.

Similarly, the MI of a plane lamina about any straight line OZ perpendicular to it is equal to the sum 

of the MI about any two perpendicular straight lines OX and OY in the lamina which pass through the 

point of intersection O of the lamina and OZ, i.e.,

 Iz = Ix + Iy

5.14.3 Some Standard Results of Moment of Inertia

 (i) The MI of a rod of length 2a and mass M about a line through

 (a) one of its extremities perpendicular to its length is ◊
a

M
3

2
4

 (b) its centre perpendicular to its length is ◊
a

M
2

3

 (ii) The MI of a rectangular parallelepiped of edges 2a, 2b, 2c, and mass m about a line through 

the centre parallel to the edge

 (a) 2a is 
m b c2 2

( + )

3

 (b) 2b is 
m a c2 2

( + )

3

 (c) 2c is 
m a b2 2

( + )

3

 (iii) The MI of a rectangular lamina of sides 2a, 2b, and mass m about a line 

 (a) through the center parallel to the side 2a is 
mb2

3

 (b) through the center parallel to the side 2b is 
ma2

3
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 (c) perpendicular to the plate through the centre is 
m a b2 2

( + )

3

 (iv) The MI of a circular ring of radius a and mass m about a

 (a) diameter is 
ma2

2

 (b) line through its center and perpendicular to its plane is ma2

 (v) The MI of a circular disc (plate) of radius a and mass m about a

 (a) diameter is 
ma2

4

 (b) line through its centre and perpendicular to its plane is 
ma2

2

 (vi) The MI of the elliptic disc 
2 2

2 2
1

x y

a b
+ =  of mass m about the

 (a) major axis is 
mb2

4

 (b) minor axis is 
ma2

4

 (vii) The MI of a solid sphere of radius a and mass m about a diameter is 
ma2

2

5
.

 (viii) The MI of a hollow sphere of radius a and mass m about a diameter is 
ma2

2

3

Example 47  Find the MI of a right circular cylinder of radius a and mass m about its axis.

Fig. 5.30

Solution Let a be the height of the cylinder, and let O be the center of base AB and OE be its axis. 

Suppose a circular disc of thickness dx at a distance x from O.
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Then the volume of the elementary disc

 = p a2dx

Mass per unit volume of the cylinder 

 = 
2

m

a hp

\   the mass of the elementary disc

 = 2

2

m
a x

a h
p d

p
◊

 = 
m x

h

d◊

The MI of the elementary disc about OE

 = 21

2

m x
a

h

d
◊

Hence, MI of the circular cylinder about its axis 

 = 
2

2
0

0

1
[ ]

2 2

h
hm ma

a dx x
h h

=Ú

 = 21

2
ma

Example 48  Find the moment of inertia of a solid right circular cone about its axis.

Fig. 5.31

Solution Let the right circular cone be with vertex O, height h, radius r, and its mass is 

 M = 21

3
r hp r◊  (1)

Consider y is the radius of an elementary disc perpendicular to the x-axis at a distance x from the 

vertex O and width dx.

Then 
y x rx

y
r h h

= fi =  and the mass of this strip is py
2 xr.
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The MI about the x-axis is py
2 x ◊ r ◊ 

2

2

y

\   MI of the solid right circular cone is

 

2
2

0
2

h
y

y x dxp r◊Ú  = 4

0
2

h

y dx
rp

Ú

 = 

4
4

4

4
0 0

2 2

h h
rx r

dx x dx
h h

rp rpÊ ˆ = ◊Á ˜Ë ¯Ú Ú

 = 
4 5 4 2

4

3

5 10 102

r h hr Mr

h

rp rp
= =  [By (1)]

EXERCISE 5.9

 1. Find the MI of a hollow right circular cone of base radius r and mass M.

 2. Find the MI of a solid right circular cone about the diameter of its base.

 3. Find the MI of a uniform solid sphere of radius a, mass M about any tangent line.

 4. Show that the MI of a cone of mass M standing on a circular base of radius a is 23

10
Ma  about 

its axis.

 5. Find the MI of a circular disc about an axis through its centre perpendicular to its plane, 

assuming that the density at any point varies as the square of its distance from the center.

Answers

 1. 
2

2

Mr
 2. 2 2(3 2 )

20

M
r h+

 3. 27

5
Ma  5. 22

3
Ma

5.15  IMPROPER INTEGRALS

The integral

 

( )

b

a

f x dxÚ
 (20)

when the range of integration is fi nite and the integrand function f(x) is bounded for all x in range

[a, b] is said to be a proper (defi nite) integral. But if either a or b (or both) are infi nite or when a and b 

are fi nite but f(x) becomes infi nite at x = a or x = b or at one or more points within [a, b] then the integral 

(20) is called an improper or infi nite integral.
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5.15.1  Kinds of Improper Integrals

Improper integrals be divided into the following two kinds:

(i) Improper Integrals of the First Kind

Those integrals in which the integrand function is bounded and the range of integration is infi nite are 

called improper integrals of the fi rst kind.

(ii) Improper Integrals of the Second Kind

Those integrals in which the integrand function is unbounded, i.e., infi nite, for some values in the range 

of integration are called improper integrals of the second kind.

5.15.2  Convergence of Improper Integrals

(i) Improper Integrals of the First Kind

In this section, we shall discuss to evaluate improper integrals of the following forms:

 (a) ( )

a

f x dx

•

Ú  (b) ( )

b

f x dx

-•
Ú  (c) ( )f x dx

•

-•
Ú

(a) Integral 

•

Ú
a

f(x)dx

If f(x) is bounded and integrable in the interval (a, b), where b > a then the integral

 ( )

a

f x dx

•

Ú  = lim ( )

x

x
a

f x dx
Æ• Ú  provided this limit exists. (21)

The improper integral (21) is said to be convergent if the limits on the right of (21) are unique and 

fi nite, otherwise the improper integral is divergent.

Example 49  Test the convergence of 

0

.x
e dx

•
-Ú

Solution

 
0

x
e dx

•
-Ú  = 

0

lim

x
x

x
e dx

-

Æ• Ú

 = 
0

lim
x

x

x
e

-

Æ•
È ˘-Î ˚

 = lim x

x
e

-

Æ•
È ˘-Î ˚

 = lim (1 )x

x
e

-

Æ•
-

 = 1. (fi nite and unique)

Hence, the given integral is convergent.
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Example 50  Test the convergence of 
0

x
e dx

•

Ú .

Solution

 
0

x
e dx

•

Ú  = 

0

lim

x
x

x
e dx

Æ• Ú

 = 0lim ( ) lim ( 1)
xx x

x x
e e

Æ• Æ•
= -

 = •
Hence, the integral diverges to +•

Note If the integral neither converges nor diverges to a defi nite limit, it is said to be oscillating. e.g. 

0

sinx x dx

•

Ú  oscillates infi nitely.

(b) Integral 
-•
Ú
b

 f(x)dx

If f(x) is bounded and integrable in the interval (a, b) where b is fi xed and b < a then

 ( )

b

f x dx

-•
Ú  = lim ( )

b

n
x

f x dx
Æ-• Ú  provided the limit exists.

If the limit is fi nite and exists then the improper integral converges, otherwise it is diverges.

Example 51  Evaluate 
0

x
e dx

-•
Ú .

Solution

 

0
x

e dx

-•
Ú  = 

0

lim x

x
x

e dx
Æ-• Ú

 = 0lim ( )x
x

x
e

Æ-•

 = lim (1 ) 1x

x
e

Æ-•
- =

Hence, the integral converges to 1.

Example 52  Evaluate 

0
x

e dx
-

-•
Ú .

Solution

 

0
x

e dx
-

-•
Ú  = 

0 0

lim lim ( 1)x x

x x
x x

e dx e
- -

Æ-• Æ-•
= - = •Ú Ú

Hence, the integral diverges to +•.
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(c) Integral 
•

-•
Ú  f(x)dx

If  ( )f x dx

•

-•
Ú  = lim ( ) lim ( )

yc

x y
x c

f x dx f x dx
Æ-• Æ•

+Ú Ú  (22)

where c is any fi nite constant including zero.

If both the limits on the RHS of (22) exist separately and are fi nite then the improper integral 

converges. If one or both the limits do not exist or are infi nite then the improper integral diverges.

Example 53  Test the convergence of 
2

1

1
dx

x

•

-• +Ú .

Solution

 
2

1

1
dx

x

•

-• +Ú  = 

0

2 2
0

1 1

dx dx

x x

•

-•

+
+ +Ú Ú

 = 

0

2 2
0

lim lim
1 1

y

x y
x

dx dx

x xÆ-• Æ•
+

+ +Ú Ú

 = 1 1lim tan lim tan
x y

x y
- -

Æ-• Æ•
È ˘ È ˘- +Î ˚ Î ˚

 = 
2 2

p p
+

 = p (fi nite)

Hence, the integral converges to the value p.

Necessary and Suffi cient Condition for the Convergence of 

•

Ú
0

f(x)dx

The integral 

0

( )f x dx

•

Ú  converges to the value I, when corresponding to any positive number Œ having 

chosen, there exists a positive number m such that

 I = 

0

( ) ;f x dx

•

< ŒÚ  provide x ≥ m.

Integral 

•

Ú
a

f x dx( )  when integrand f(x) is positive.

The integral ( )

a

f x dx

•

Ú  converges to the positive number l, such that ( )

a

f x dx l

•

<Ú , when x > a and 

in this case, ( )

a

f x dx l

•

£Ú .

Otherwise, it diverges.
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Example 54  Test the convergence of 
2

2

sin

a

x
dx

x

•

Ú .

Solution We know that 0 < sin x < 1, when x > 0.

Now,   
2

2 2

sin 1x

x x
£  when x ≥ a > 0

Hence, 
2

2 2

sin 1

a a

x
dx dx

x x

• •

£Ú Ú

 £ 
1

a
x

•
Ê ˆ-Á ˜Ë ¯

 £ 
1

a
 (which is positive)

Hence, the integral is convergent.

Example 55  Test the convergence of 
2

2 ( 1)

dx

x

•

-
Ú .

Solution We know that 
2

1 1

( 1) xx
>

-
 when x ≥ 2,

 
2

2 2

1 1

( 1)
dx dx

xx

• •

>
-

Ú Ú

Hence, the integral is divergent.

We do not always study the convergence or divergence of an improper integral by evaluating, it as 

was done in previous problems. For example, 

2

1

log
dx

x

•

Ú  which cannot be evaluated directly. Now, we 

discuss the following tests for evaluating the convergence or divergence of an improper integral.

(i) Comparison Test Let f(x) and g(x) be two positive functions, bounded and integrable in the 

interval (a, b) in which a is fi xed and b > a. Also, let f(x) £ g(x) when x ≥ a. Then 

 

0

( )f x dx

•

Ú  is convergent if 

0

( )g x dx

•

Ú  is convergent, and 

0 0

( ) ( )f x dx g x dx

• •

£Ú Ú .

If f(x) ≥ g(x) and 

0

( )g x dx

•

Ú  diverges, then 

0

( )f x dx

•

Ú  also diverges.
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(ii) m-test for the Convergence of 
•

Ú
0

f(x)dx

Let f(x) be bounded and integrable in the interval (a, b) where a > 0. If a positive number m > 1, such 

that lim ( )
x

x f x
m

Æ•
◊  exists fi nitely (the limit being neither zero nor infi nite) then the integral 

0

( )f x dx

•

Ú  

converges.

If m £ 1, the integral 

0

( )f x dx

•

Ú  is divergent.

(iii) Abel’s Test for Convergence of Integral of a Product

If ( )

a

f x dx

•

Ú  is convergent and g(x) is bounded and monotonic in (a, •) then the integral ( ) ( )

a

f x g x dx

•

◊Ú  

is convergent.

(iv) Dirichlet’s  Test for Convergence of the Integral of a Product

Let f(x) be bounded and monotonic and 
0

lim ( ) 0
x

f x
Æ

= , also consider ( )

x

a

x dxfÚ  be bounded when x ≥ 

a; then ( ) ( )

a

f x x dxf
•

Ú  is convergent.

Example 56  Prove that 
2

0

x
e dx

•
-Ú  is convergent.

Solution

 
2

0

x
e dx

•
-Ú  = 

2 2
1

0 1

x x
e dx e dx

•
- -+Ú Ú  (1)

In the RHS of (1), the fi rst integral 
2

1

0

x
e dx

-
-Ú  is proper (defi nite) so it is convergent.

And 
2 2

1 0

as 1x x
e dx xe dx x

• •
- -< >Ú Ú

 
2

0

1

2

x
e

•
-Ê ˆ< -Á ˜Ë ¯

 
1

2
<  (a fi nite quantity)

\ 
2

1

x
e dx

•
-Ú  is convergent
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Hence, 
2

0

x
e

•
-Ú  is convergent. Hence, proved

Example 57  Test the convergence of 
3

0
(1 )

x
dx

x

•

+Ú .

Solution Here, 
3

( )
(1 )

x
f x

x
=

+
m = Highest power of x in the denominator – Highest power of ‘x’ in the numerator.

\ m = 3 – 1 = 2

Using m-test,

\ lim ( )
x

x f x
m

Æ•
È ˘◊Î ˚  = 2

3
lim

(1 )x

x
x

xÆ•
◊

+

 = 
3

3
3

lim
1

1
x

x

x
x

Æ•
◊

Ê ˆ+Á ˜Ë ¯

 = 
3

1
lim 1

1
1

x

x

Æ•
◊ =
Ê ˆ+Á ˜Ë ¯

 [a fi nite quantity]

Since m = 2 > 1; hence, the integral is convergent.

Example 58  Test the convergence of 
3

2 2 2
0

( )

x
dx

a x

•

+Ú .

Solution Here, 
3

2 2 2
( )

( )

x
f x

a x
=

+
 and m = 4 – 3 = 1.

\ lim ( )
x

x f x
m

Æ•
◊  = 

3 4

2 2 2 2
2

4

2

lim lim 1
( )

1

x x

x x
x

a x a
x

x

Æ• Æ•
◊ = =

+ Ê ˆ
+Á ˜Ë ¯

 (fi nite quantity)

Since m = 1, i.e., not > 1.

Hence, the integral is divergent.

Example 59  Show that 

3/2

4 4( )b

x
dx

x a

•

-
Ú  is divergent, b > a.

Solution Here, 
3/2

4 4
( )

( )

x
f x

x a
=

-
 is bounded in (b, •) and 

3 1
2

2 2
m = - =
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\ lim ( )
x

x f x
m

Æ•
È ˘◊Î ˚  = 

3/2
1/2

4 4
lim

( )x

x
x

x aÆ•

È ˘
Í ˙◊
Í ˙-Î ˚

 = 
2

4 4
lim

( )x

x

x aÆ•

È ˘
Í ˙
Í ˙-Î ˚

 = 
2

4
2

4

lim

1
x

x

a
x

x

Æ•

È ˘
Í ˙
Í ˙

-Í ˙
Î ˚

 = 
4

4

1
lim 1

1
x a

x

Æ•

È ˘ =Í ˙
Í ˙-Í ˙Î ˚

Since m = 
1

1
2

< , Hence, the integral is divergent.

Example 60  Test the convergence of 
2

sinx

a

x
e dx

x

•
-Ú .

Solution Let 
2

sin
( )

x
f x

x
=  and g(x) = e–x

But 
2 2

sin 1

a a

x
dx dx

x x

• •

<Ú Ú  = 
1 1

a
x a

•
Ê ˆ- <Á ˜Ë ¯

Hence, 
2

sin

a

x
dx

x

•

Ú  is convergent.

Also, e–x is monotonic increasing and bounded in (a, •).

Hence, by Abel’s test, 
2

sinx

a

x
e dx

x

•
-Ú  is convergent.

Example 61  Show that 
(cos cos )

a

ax bx
dx

x

• -
Ú  is convergent.

Solution Here, 
1

x
 is monotonic and 

1
lim 0
x xÆ•

= .

Also, (cos cos )

a

ax bx dx

•

-Ú  is bounded. Hence, the given integral is convergent.
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Example 62  Show that 
2

1

sin
1

x
x dx

x

•

+Ú  is convergent.

Solution Here, 
21

x

x+
 is monotonic and 

2
lim 0

1x

x

xÆ•
=

+

Also,  

1

sin x dx

•

Ú  = |–cos x + cos 1| £ 2

Hence, by Dirichlet’s test, the integral 
2

1

sin
1

x
x dx

x

•

+Ú  is convergent.

5.15.3  Absolute Convergence

The improper integral ( )

b

a

f x dxÚ  is said to be absolutely convergent when f(x) is bounded and integrable 

in (a, b) and ( )

b

a

f x dxÚ  is convergent.

A convergent integral which is not absolutely convergent is said to be a conditionally convergent 

integral.

Example 63  Test the convergence of 

1

0

1
sin

x
dx

x

Ê ˆ
Á ˜Ë ¯

Ú .

Solution Here, 

1
sin

( )
x

f x
x

Ê ˆ
Á ˜Ë ¯

=

There is no neighborhood of the point 0 in which f(x) constantly keeps the same sign.

Now, " x Œ [0, 1], we have

 |f(x)| = 

11 sinsin
1xx

x xx
= £

Also, 

1

0

1
dx

x
Ú  is convergent.

\  
1

0

1
sin

x dx
x

Ú  is convergent.

Hence, 

1

0

1
sin

x dx
x

Ú  is absolutely convergent.
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EXERCISE 5.10

 1. Examine the convergence of 
2

2 2
0

(4 )

x
dx

x

•

+Ú .

 2. Test the convergence of 
3/2

2 2 2
0

x
dx

b x c

•

+Ú .

 3. Show that 

0

sin
,

x
dx

x

•

Ú  is convergent.

 4. Show that 
sin

, 0

a

x
dx a

x

•

>Ú  is convergent.

 5. Show that 

/2

0

log sin x dx

p

Ú , is convergent.

 6. Show that 
1

0

sin 1/
, 0

( )n

x
dx x

x
>Ú , converges absolutely, if n < 1.

Answers

 1. Convergent  2. Divergent

5.16  MULTIPLE INTEGRALS

In this section, we shall study double and triple integrals along with their applications.

5.16.1  Double Integrals

A double integral is the counterpart, in two dimensions, of the defi nite integral of a function of a single 

variable.

Let R be a closed and bounded region (domain) of the xy-plane and let f(x, y) be a function of the 

independent variables x, y defi ned at every point in the region R. Divide the region R in to n-parts,  of 

areas dR1, dR2, dR3, …, dRn. Let (xr, yr) be any point inside the rth elementary area dRr.

Consider the sum.

 Sn = f(x1, y1) dR1 + f(x2, y2) dR2 +   + f(xr, yr) dRr +   + f(xr, yn) dRn

 = 
1

( , )
n

r r r

r

f x y Rd
=
Â  (23)

When n Æ •, the number of subdivisions increases indefi nitely such that the largest of the areas 

dRr Æ 0.

The 

0

lim

r

n
n

R

S

d
Æ•

Æ

, if it exists, called the double integral of the function f(x, y) over the region R, and is 

defi ned as 

 ( , )

R

f x y dRÚÚ  (24)
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Thus,  ( , )

R

f x y dRÚÚ  = 

0

lim

r

n
n

R

S

d
Æ•

Æ

or ( , )

R

f x y dRÚÚ  = 
1

0

lim ( , )

r

n

r r r
n

r
R

f x y R

d

d
Æ• =Æ

Â  (25)

If the region R is divided into a rectangular form of a network of lines parallel to the coordinate axis 

dx (length) and dy (breadth ) of a rectangular then dx dy is the elementary area such that

 ÚÚ
R

f x y dR( , )  = ÚÚ
R

f x y dx dy( , )  (26)

5.16.2 Properties of Double Integrals

 (i) [ ]( , ) ( , )

R

f x y g x y dR+ÚÚ  = ( , ) ( , )

R R

f x y dR g x y dR+ÚÚ ÚÚ
 (ii) If the region R is divided into two regions R1 and R2 then

 ( , )

R

f x y dRÚÚ  = 

1 2

( , ) ( , )

R R

f x y dR f x y dR+ÚÚ ÚÚ
 (iii) Let a π 0 be any real number then 

 ( , )

R

f x y dRa ◊ÚÚ  = ( , )

R

f x y dRa ÚÚ

5.16.3 Evaluation of a Double Integral in Cartesian Coordinates

The double integral can be evaluated by successive single integrations.

(i) Let R be a Region Bounded by the Curves

 y = f1(x), y = f2(x), x = a and x = b.

Then ÚÚ
R

f x y dR( , )  = Ú Ú
f xb

x a y= f x

f x y dy dx
2

1

( )

= ( )

( , )

where the integration with respect to y is performed fi rst treating 

x as a constant.

(ii) If R is a Region Bounded by the Curves 

 x = f1(y), x = f2(y), y = a and y = b then

Fig. 5.33

Fig. 5.32
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 ÚÚ
R

f x y dR( , )  = Ú Ú
f y)

y a x f y

f x y dx dy
2

1

(b

= = ( )

( , )

where the integration w.r.t. x is performed fi rst treating y as a constant.

(iii) If R is a Region Bounded by the Lines

 x = a, x = b, y = c and y = d then

 ÚÚ
R

f x y dR( , )  = Ú Ú
b d

x= a y = c

f x y dy dx( , )

OR

 = ( , )

d b

y c x a

f x y dx dy

= =
Ú Ú

Example 64  Evaluate 

R

xy dx dyÚÚ  over the region R in the positive quadrant for which x + y £ 1.

Solution Since the region R is bounded by x = 0, y = 0 and 

x + y = 1, and the order of given integration is dxdy, so we 

consider the strip parallel to the x-axis.

We can consider it as the area bounded by the lines

 x = 0, x = 1 – y, y = 0 and y = 1

\ 
R

xy dx dyÚÚ  = 

11

0 0

y

y x

xy dx dy

-

= =
Ú Ú

 = 

11 2

0 0
2

y

y

x
y dy

-

=

Ê ˆ
Á ˜
Ë ¯Ú

 = 
1 2

0

(1 )

2
y

y y
dy

=

-
Ú

 = 
1 1

2 3 2

0 0

1 1
(1 2 ) [ 2 ]

2 2
y y

y y y dy y y y dy

= =

+ - = + -Ú Ú

 = 

1
2 4 3

0

1 2 1 1 1 2
0

2 2 4 3 2 2 4 3

y y yÈ ˘ Ê ˆ+ - = + - -Í ˙ Á ˜Ë ¯Í ˙Î ˚

 = 
1

24

Fig. 5.34

Fig. 5.35
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Example 65  Evaluate 

211

2 2
0 0

1

1

y

dx dy
x y

+

+ +Ú Ú .

Solution

 

211

2 2
0 0

1

1

x

x y

dx dy
x y

+

= = + +Ú Ú  = 

21 1

2
2 20 0

1

1

x

dydx

x y

+

È ˘+ +Î ˚
Ú Ú

 = 

21
1

1

2 2
0

0

1
tan

1 1

x

y
dx

x x

+

-
È ˘
Í ˙
Í ˙+ +Î ˚

Ú

 = 
1 1

1 1

2 2
0 0

1 1
tan 1 tan 0

41 1
dx dx

x x

p- -È ˘- =Î ˚+ +
Ú Ú

 = 
1

2

0

log 1 log (1 2)
4 4

x x
p pÈ ˘+ + = +Í ˙Î ˚

Example 66  Evaluate 
2 2( )

R

x y dx dy+ÚÚ , where R is bounded by y = x and y2 = 4x.

Fig. 5.36

Solution

 2 2( )

R

x y dx dy+ÚÚ  = 
2

4
2 2

0

4

( )

y

y y
x

x y dx dy

=
=

+Ú Ú

 = 
2

4 43 3 6 4
2 3

0 0
4

3 3 3 64 4

y

y
y

x y y y
xy dy y dy

=

È ˘È ˘ Ê ˆ Ê ˆ
+ = + - +Í ˙Í ˙ Á ˜ Á ˜¥Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

Ú Ú

 = 

4 3 4 6

0

4

3 4 192

y y y
dy

È ˘
- -Í ˙

Í ˙Î ˚
Ú
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 = 

4
4 5 7

0

768

3 20 192 7 35

y y yÈ ˘
- - =Í ˙

¥Í ˙Î ˚

Example 67  Evaluate 
R

y dx dyÚÚ ; where R is the region bounded by the parabolas y2 = 4x and 

x
2 = 4y.

Fig. 5.37

Solution

 
R

y dx dyÚÚ  = 
2

24

0

4

y

y y
x

y dx dy

=
=

Ú Ú

  = ( ) 2

4
2

0
4

y

y
y x dy◊Ú

 = 
4 2

0

2
4

y
y y dy

Ê ˆ
-Á ˜

Ë ¯Ú

 = 

4 3
3/2

0

2
4

y
y dy

È ˘
-Í ˙

Í ˙Î ˚
Ú

 = 

4

5/2 4

0

4 1

5 16
y y

È ˘-Í ˙Î ˚

 = 5/2 44 1 4 16 16
(4) (4) 32

5 16 5 16

¥
◊ - = ◊ -

  = 
128 128 80 48

16
5 5 5

-
- = - =
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Example 68  Evaluate 2( )x y dxdy+ÚÚ  over the area bounded by the ellipse 
2 2

2 2
1

x y

a b
+ = .

Fig. 5.38

Solution For the ellipse 
2 2

2 2
1

x y

a b
+ = , so the region of integration can be considered bounded by the 

lines

 x = 2 2 2 2to
a a

b y x b y
b b

- - = -  and y = –b to y = b.

\ 
2( )x y dx dy+ÚÚ  = 

2 2

2 2

2 2( 2 )

a
b y

b b

ay b
x b y

b

x xy y dx dy

-

= - = - -

+ +Ú Ú

 = 

2 2

2 2

0

2 ( )

a
b y

b b

b

x y dx dy

-

-

+Ú Ú

 = 

2 2

2 2

0 0

4 ( )

a
b y

b b

x y dx dy

-

+Ú Ú

 = 

2 2
3

2

0 0

4
3

a
b yb bx

xy dy

-
È ˘

+Í ˙
Í ˙Î ˚

Ú

 = 
3 2

2 2 3/2 2 2 1/2

3
0

4 ( ) ( )
3

b
a ay

b y b y dy
bb

È ˘
- + -Í ˙

Í ˙Î ˚
Ú

 [Putting y = b sin q; dy = b cos q dq]

 = 

/2 3 2
2 2 2 3/2 2 2 2 2 1/2

3
0

4 ( sin ) sin ( sin ) cos
3

a ab
b b b b d

bb

p

q q q q q
È ˘

◊ - + -Í ˙
Í ˙Î ˚

Ú
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 = 

/2 3
3 2 2

0

4 cos sin cos cos
3

a
ab b d

p

q q q q q
È ˘

+ ◊Í ˙
Í ˙Î ˚

Ú

 = 
/2 2

4 2 2 2

0

4 cos sin cos
3

a
ab b d

p

q q q q
È ˘

+ ◊Í ˙
Í ˙Î ˚

Ú

 = 
2

2

5 1 3 3

2 2 2 24
3 2 3 2 3

a
ab b

È ˘
◊ ◊Í ˙

Í ˙◊ + ◊
Í ˙Î ˚

 = 2 24
( )

16

ab
a bp +

 = 2 2( )
4

ab
a b

p
+

5.16.4 Evaluation of Double Integrals in Polar Coordinates

Consider a function f(r, q) of the polar coordinates r, q which is to be integrated over a certain region 

R whose boundary is also given in polar coordinates, and it is defi ned as

 qÚÚ
R

f r dR( , )  = 

q q

q q q

q qÚ Ú
f

= r = f

f r r dr d
2 2

1 1

( )

( )

( , )

where the region R is bounded by the lines

 q = q1 to q = q2 and r = f1(q) to r = f2(q)

The fi rst integration is performed with respect to r, taking q as a constant. After substituting the 

limits, the second integration with respect to q is performed.

Example 69   Evaluate sin ;

R

r dRqÚÚ  R is the area of the cardioid r = a(1 + cos q) above the initial 

line.

Fig. 5.39
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Solution Here, the region of integration R can be covered by radial strips  whose ends are at r = 0 and 

r = a(1 + cos q) and end at q = p.

\   the required integral

 sin

R

r dRqÚÚ  = 

(1 cos )

0 0

sin

a

r

r r dr d

qp

q

q q

+

= =

◊Ú Ú

 = 

(1 cos )

2

0 0

sin

a

r dr d

qp

q q

+

Ú Ú

 = 

(1 cos )
3

0 0

sin
3

a

r
d

qp

q q

+
Ê ˆ
Á ˜
Ë ¯Ú

 = 
3

3

0

sin (1 cos )
3

a
d

p

q q q+Ú

 = 

33
2

0

2 sin cos 2 cos
3 2 2 2

a
d

p
q q q

q
Ê ˆ◊ ◊Á ˜Ë ¯Ú

 = 

/23
7

0

16
sin cos 2

3

a
d

p

f f fÚ  [Putting q = 2f; dq = 2df]

 = 

/2
3 8

0

32 cos

3 8

a
p

fÈ ˘
-Í ˙

Í ˙Î ˚

 = 
34

3

a
 

Example 70  Evaluate ÚÚ r
3
 dr dq over the area included between the circles r = 2a cos q, r = 2b 

cos q; b < a.

Fig. 5.40

Solution In the given region of integration, r varies from 2b cos q to 2a cos q, and q varies from

 q = to =
2 2

p p
q-
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\ ÚÚ r
3
 dr dq = 

2 cos2 cos/2 /2 4
3

2 cos /2 2 cos

2

4

aa

b b

r
r dr d d

qqp p

p q p qq

q q
-= -

È ˘ Ê ˆ
Í ˙ = Á ˜Í ˙ Ë ¯Î ˚

Ú Ú Ú

 = 

/2
4 4 4 4

2

1
[16 cos 16 cos ]

4
a b d

p

p

q q q

-

-Ú

 = 

/2
4 4 4

2

4 ( ) cosa b d

p

p

q q

-

-Ú

 = 

/2
4 4 4

0

8( ) cosa b d

p

q q- Ú

 = 4 4 4 4

1 5

32 28( ) ( )
22 2

a b a b
p

◊
- ◊ = -

◊

Change of Variables in a Double Integral

Change from Cartesian to Polar Coordinates The evaluation of some double integrals by 

changing from Cartesian to polar coordinates can be easily effected by noting that the element of area 

in the latter system is r drdq.

Thus,

 ( , )

R

f x y dx dyÚÚ  = ( , )

R

f x y dRÚÚ

 = ( cos , sin )

R

f r r r dr dq q q
¢

ÚÚ

 = 
2

1

( )

( )

( , )

f

r f

F r r dr d

qb

q a q

q q
= =
Ú Ú

where F(r, q) = f(r cos q, r sin q) = f(x, y) and R¢ is the corresponding domain in polar coordinates.

Example 71  Transform the integral 

2 2

2 2 2

0 0

( )

a xa

y x y dx dy

-

+Ú Ú  by changing to polar 

coordinates, and, hence, evaluate it.

Solution The given limits of integration show that the region of integration lies between the curves

 y = 0 to y = 2 2
a x-

 x = 0 to x = a.
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Thus, the region of integration is the part of the circle x2 + y2 = a2 in the fi rst quadrant.

Fig. 5.41

In polar coordinates, the equation of the circle is 

 r
2 cos2q + r2 sin2 q = a2 or r2 = a2

                  or r = a

Thus, in polar co-ordinates, the region of integration is bounded by the curves

 r = 0, r = a   and  q = 0, q = 
2

p

\ 

2 2

2 2 2

0 0

a xa

y x y dx dy

-

+Ú Ú

 = 

/2
2 2

0 0

sin

a

r r r dr d

p

q q◊Ú Ú

 = 

/2
4 2

0 0

sin

a

r dr d

p

q qÚ Ú

 = 
/2 5

2

0 0

sin
5

a

r
d

p

q q
Ê ˆ

◊Á ˜
Ë ¯Ú

 = 

/25
2

0

sin
5

a
d

p

q q◊Ú

 = 
5

3 1

2 2

5 2 2

a
◊

◊
◊

 [By Gamma function]

 = 
5

20

ap

Example 72  Evaluate 

cos/2

0 0

sin

a

r dr d

qp

q qÚ Ú .
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Solution

 

cos/2

0 0

sin

a

r dr d

qp

q qÚ Ú  = 

cos/2 2

0 0

sin
2

a

r
d

qp

q q
Ê ˆ

◊ Á ˜
Ë ¯Ú

 = 
/2 /22 2 2

2

0 0

cos
sin sin cos

2 2

a a
d d

p p
q

q q q q q◊ = ¢Ú Ú

 = 
2 2 2

2 3 3
1

2 2 2

2 2 62 2 3 3
2

2 2

a a a
◊ ◊

◊ = ◊ =
◊

◊ ◊

Example 73  Evaluate 
2 2( )

0 0

x y
e dx dy

• •
- +Ú Ú .

Fig. 5.42

Solution Using polar coordinates x = r cos q, y = r sin q and x2 + y2 = r2.

Since the fi rst quadrant lies in the xy-plane, x varies from 0 to • and y varies from 0 to •, and is 

covered where r varies from 0 to • and q varies from 0 to 
2

p
. 

\ 
2 2( )

0 0

x y
e dx dy

• •
- +Ú Ú  = 

2
/2

0 0

r
e r dr d

p

q
•

-Ú Ú

 = 
2 /2

0

0

( )r
e r dr d

pq q
•

-Ú

 = 
2

0

2
2 2

r
e r dr d

p
q

•
- ◊

¥ Ú

 = 
2

0

2
4

r
e r dr d

p
q

•
- ◊Ú
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 = 
2

0
4

r
e

p •
-È ˘-Î ˚

 = 
4

p

EXERCISE 5.11

 1. Evaluate 

log 8 log

1 0

y

x y
e dx dy

+Ú Ú .

 2. Evaluate 
2

R

x dx dyÚÚ ; where R is the region in the fi rst quadrant bounded by the hyperbola 

xy = 16 and the lines y = x, y = 0, and x = 8.

 3. Evaluate 2(4 )

R

xy y dx dy-ÚÚ , where R is the rectangle bounded by x = 1, x = 2, y = 0, and y = 3.

 4. Evaluate 

3 2

0 1

(1 )xy x y dx dy+ +Ú Ú .

 5. Evaluate 

211
2 2 1

0 0

(1 )

x

x y dx dy

+
-+ +Ú Ú .

 6. Evaluate 

1
2 2

0 0

( )

x

x y dx dy+Ú Ú .

 7. Evaluate 
2 2 ;

R

x y dx dyÚÚ  R is the region bounded by x = 0, y = 0, and x2 + y2 = 1.

 8. Evaluate ( )xy x y dx dy+ÚÚ  over the area between y = x2 and y = x.

 9. Evaluate 

(1 cos )

2

0

cos

a

r dr d

qp

q q

+

Ú Ú .

 10. Evaluate 

cos/2
2 2

0 0

a

r a r dr d

qp

q-Ú Ú .

 11. Evaluate 

4 sin

3

0 2 sin

r dr d

qp

q

qÚ Ú .

 12. Using  polar coordinates, evaluate 
2 2 3/2( )xy x y dx dy+ÚÚ  over the positive quadrant of the 

circle x2 + y2 = 1.
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 13. Evaluate 3

0 0

sin cos

a

r dr d

p

q q qÚ Ú  by changing it into Cartesian coordinates.

  Hint: 

2 2

0

0

a xa

a

xy dx dy

-

-

=Ú Ú

 14. Using polar coordinates, evaluate 

222

0 0

ax xa

dy dx

-

Ú Ú .

 15. Evaluate 
2 2 2( )a x y dx dy- -ÚÚ  over the semicircle x2 + y2 = ax in the positive quadrant.

  Hint: 

cos/2
2 2

0 0

a

a r r dr d

qp

q- ◊Ú Ú

Answers

 1. 8 log 8 – 16 + e 2. 448

 3. 18 4. 
3 123

30 or
4 4

 5. log (1 2)
4

p
+  6. 

3

35

 7. 
96

p
 8. 

3

56

 9. 
35

8

ap
 10. 

3

(3 4)
18

a
p -

 11. 
45

2

p
 12. 

1

14

 13. 0 14. 
2

2

ap

 15. 
3 2

3 2 3

a pÊ ˆ-Á ˜Ë ¯

5.16.5  Change of Order of Integration

We have seen that in evaluating a double integral of successive integrations, if the limits of the both 

variables are constant then we can change the order of integration without affecting the result. But if 

the limits of integration are variable, i.e., if the limits of x are constant and limits of y are function of x 

and order of integration is dy dx or if the limits of x are function of y and y are constants and order of 

integration is dx dy then we take a strip parallel to the y-axis, or parallel to the x-axis.
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When it is required to change the order of integration in an integral for which the limits are given, we 

fi rst of all ascertain from the given limits the region R of integration. Knowing the region of integration, 

we can then put in the limits for integration in the reverse order.

Example 74  Change the order of integration in 

0 0

( , )

ya

f x y dx dyÚ Ú .

Solution From the limits of integration, it is clear that the region of integration is bounded by x = 0,

x = y, y = 0, and y = a.

According to limits of the given integration, strips PQ parallel to the 

x-axis, i.e., horizontal strips.

For changing the order of integration, we consider the strips parallel 

to y-axis, i.e., vertical strips.

The new limits of integration become: y varies from x to a and x 

varies from 0 to a.

Thus, 

 

0 0

( , )

ya

f x y dx dyÚ Ú  = 

0

( , )

a a

x

f x y dy dxÚ Ú

Example 75  Change the order of integration in 

1

0
log

x

e

e

dy dx

yÚ Ú  and, hence, evaluate it.

Fig. 5.44

Solution From the limits, the given integration is bounded by the curves y = ex, y = e, x = 0, and x = 1.

According to limits of the given integration, the strips are parallel to y-axis, i.e., vertical strips. For 

changing the order of integration, we consider strips parallel to the x-axis i.e., horizontal strips. The 

new limits of integration become: x varies from 0 to log y and y varies from 1 to e.

Thus, 

1

0
log

x

e

e

dy dx

yÚ Ú  = 

log

1 0
log

ye
dy dx

yÚ Ú

 = 

log

01
log

ye
x

dy
y

Ê ˆ
Á ˜Ë ¯Ú

Fig.  5.43
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 = 

1

1

e

dy◊Ú
 = (y)1

e

 = (e – 1)

Example 76  Change the order of integration in 
2

21

0

x

x

xy dy dx

-

Ú Ú  and, hence, evaluate the same

Fig. 5.45

Solution From the limits of the given integral, the region of integration is bounded by y = x2, y = 2 – x, 

x = 0, and x = 1.

According to the given limits, the strip is parallel to the y-axis, i.e., it is a vertical strip. For changing 

the order of integration, we divide the region of integration into horizontal strips. The region of 

integration is divided into two parts, OAP and PAB.

For the region OAP, x varies from 0 to y  and y varies from 0 to 1, and for the region PAB, x-varies 

0 to 2 – y and y varies from 1 to 2. 

Hence,

 
2

21

0

x

x

xy dy dx

-

Ú Ú  = 

21 2

0 0 1 0

y y

xy dx dy xy dx dy

-

+Ú Ú Ú Ú

 = 

21 22 2

0 10 0
2 2

y y

x x
y dy y dy

-
Ê ˆ Ê ˆ

+ ◊Á ˜ Á ˜
Ë ¯ Ë ¯Ú Ú

 = 

21 2 2
2

0 1 0

1 1

2 2 2

y

x
y dy y dy

-
Ê ˆ

+ ◊Á ˜
Ë ¯Ú Ú

 = 

1 2
2 2

0 1

1 1
(2 )

2 2
y dy y y dy+ ◊ -Ú Ú
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 = 

1 2
3 3 4

2

0 1

1 1 4
2

2 3 2 3 4

y y y
y

Ê ˆ È ˘
+ - +Í ˙Á ˜

Ë ¯ Í ˙Î ˚

 = 
1 1 32 4 1

8 4 2
6 2 3 3 4

È ˘Ê ˆ Ê ˆ+ - + - - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 = 
3

8

Example 77  By changing the order of integration, evaluate 

0

y

x

e
dy dx

y

• • -

Ú Ú .

Fig. 5.46

Solution The given limits show that the area of integration lies between y = x, y = •, x = 0 and x = •.

New limits of the region are x varies from 0 to y and y varies from 0 to •.

\ 
0

y

x

e
dy dx

y

• • -

Ú Ú  = 

0 0

y y
e

dx dy
y

• -

Ú Ú

 = 0

0

( )
y

ye
x dy

y

• -

◊Ú

 = 

0 0

y
ye

y dy e dy
y

• •-
-◊ =Ú Ú

 = 
0( )y

e
- •-

 = 1

Example 78  Evaluate 
2

2
0 / ( )

ya

y a

y
dx dy

a x ax y- -
Ú Ú  by changing the order of integration.
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Fig. 5.47

Solution From the limits of integration, it is clear that the region of integration is bounded by 
2

y
x

a
=  

x = y, y = 0 and y = a.

For changing the order of integration, we divide the region of integration into vertical strips. The 

new limits of integration become: y varies from x to ax  and x varies from 0 to a.

Thus,

 
2

2
0 / ( )

ya

y a

y
dx dy

a x ax y- -
Ú Ú  = 

2
0 ( )

a ax

x

y dy dx

a x ax y- -
Ú Ú

 = 
2 1/2

0

( )

( )

axa

x

ax y
dx

a x

È ˘-
-Í ˙

-Í ˙Î ˚
Ú

 = 
2 1/2

0 0

( )

( )

a a
ax x x

dx dx
a x a x

Ê ˆ-
= Á ˜- -Ë ¯Ú Ú

 = 
/2 2

2
0

sin
2 sin cos

cos

a
a d

a

p
q

q q q
q

Ê ˆ
Á ˜
Ë ¯Ú  

[Putting x = a sin2 q; dx = 2a sin q ◊ cos q dq]

 = 

/2
2

0

1
2 sin 2

2 2
a d a

p
p

q q = ◊ ◊Ú

 = 
2

ap

Example 79  By changing the order of integration for 

0 0

sinxy
e px dx dy

• •
-Ú Ú , show that 

0

sin

2

px
dx

x

p
•

=Ú .

Solution The given limits show that the area of integration lies between y = 0 to • and x = 0 to •.



5.80 Engineering Mathematics for Semesters I and II

For changing the order of integration, the new limits become:

x varies 0 to • and y varies 0 to •.

\ 
0 0

sinxy
e px dx dy

• •
-Ú Ú  = 

0 0

sinxy
e px dy dx

• •
-Ú Ú

 = 

0 0

sin
xy

e
px dx

x

•• -Ê ˆ
Á ˜-Ë ¯Ú

 = 

0

sin px
dx

x

•

Ú  (1)

Again, 
0 0

sinxy
e px dx dy

• •
-Ú Ú  = 

0 0

sinxy
e px dx dy

• •
-

È ˘
Í ˙
Í ˙Î ˚

Ú Ú

 = 
2 2

0 0

( cos sin )
xy

e
p px y px dy

p y

•• -È ˘
+Í ˙

+Í ˙Î ˚
Ú

 = 
2 2

0

p
dy

p y

•

+Ú

 = 1

0

tan
2

y

p

p
•

-È ˘Ê ˆ
=Í ˙Á ˜Ë ¯Í ˙Î ˚

 (2)

From (1) and (2), we get

  

0

sin px
dx

x

•

Ú  = 
2

p
 Hence, proved.

EXERCISE 5.12

Change the order of integration and then evaluate the following:

 1. 

1

0

x

x

xy dy dxÚ Ú  2. 
2

3 21

2 4

x

x x

dy dx

+

- +
Ú Ú

 3. 

/
2 2

0 /

( )

a x a

x a

x y dy dx+Ú Ú  4. 

2 2

2 2 2

0 0

a xa

a x y dy dx

-

- -Ú Ú

 5. 
2

24

0 /4

axa

x a

dy dxÚ Ú  6. 

4 4

2 2
0 y

x
dx dy

x y+Ú Ú

Fig. 5.48
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 7. 
2

1 4

0 4

x

y

e dx dyÚ Ú  8. 

2

4 2 2
0

a a

ax

y
dx dy

y a x-
Ú Ú

 9. 
2

4 2

0 2

x

y

e dx dyÚ Ú  10. 

2

0 1

x
e

dy dxÚ Ú

 11. 
4

32
2 2

0 /4

( )

a xa

x a

x y dy dx

-

+Ú Ú  12. 
0 0

( )

( ) ( )

a x
f y dy dx

a x x y

¢
- -Ú Ú

Answers

 1. 
1

24
 2. 

9

2

 3. 
3

28 20

a a
+  4. 

3

6

ap

 5. 
216

3

a
 6. p

 7. 
16( 1)

8

e -
 8. 

2

6

ap

 10. (e2 – 3) 11. 
4314

35

a

 12. p[f(a) – f(0)]

5.16.6  Applications of Double Integrals

(i) Area of a Plane Curve

(a) In Cartesian Coordinates The area of a plane region R: {(x, y); a £ x £ b, f1(x) £ y £ f2(x)} 

is given by the double integral

 A = 

2

1

( )

( )

f xb

R x a y f x

dS dy dx

= =

=ÚÚ Ú Ú

 = 

2

1

( )

( )

g yd

y c x g y

dx dy

= =
Ú Ú  R: {(x, y); c £ y £ d, g1(y) £ x £ g2(y)}

(b) In Polar Coordinates The area A of the region R:{r, q); a £ q £ b; f1(q) £ r £ f2(q)} is given 

by the double integral

 A = 
2

1

( )

( )

f

r f

r dr d

qb

q a q

q
= =
Ú Ú

  = 

2 2

1 1

( )

( )

r g r

r r g r

d r dr

q

q
= =
Ú Ú  R: {(r, q): r1 £ r £ r2 and g1(r) £ q £ g2(r)}.
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(ii) Mass Contained in a Plane Curve

Suppose f(x, y) be the surface density (mass/unit area) of a given region R. Then the quantity of mass 

M contained in the plane region R is given by

 M = ( , )

R

f x y dx dyÚÚ

(iii) Center of Gravity (CG) of a Plane Region R

Let (xCG, yCG) be the CG of a plane region R with surface density f(x, y) and containing mass M. Then

 xCG = 

( , )

R

x f x y dx dy

M

◊ÚÚ

 yCG = 

( , )

R

y f x y dx dy

M

◊ÚÚ

(iv) Moment of Inertia (MI) of a Plane Curve

The MI of a plane region R with surface density f(x, y) relative (about) to x-axis, y-axis and the origin 

0 are given by

 Ixx = 
2 ( , )

R

y f x y dx dy◊ÚÚ

 Iyy = 
2 ( , )

R

x f x y dx dy◊ÚÚ
 IO = Ixx + Iyy

or IO = 2 2( ) ;

R

x y dx dy+ÚÚ  where IO is the polar MI

5.16.7 Volume Under Surface Area as a Double Integral

Suppose a surface z = f(x, y). Consider the region S be the 

orthogonal projection of the region S¢ of z = f(x, y) on the 

XY-plane.

Then the volume of the prism between the surface S and 

S¢ is zdxdy.

\   the volume is given by

 V = z dx dyÚÚ

 = ( , )

S

f x y dx dyÚÚ

In the polar coordinates, the region S is divided into 

elements of area r drdq. Fig. 5.49
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\   the volume is given by

 V = ( cos , sin )

S

f r r r dr dq q qÚÚ

Example 80  Find the area of the region bounded by the curves xy = 2, 4y = x2, y = 4.

Fig. 5.50

Solution The required area of the shaded region is

 = 

24

21

y

y
x

y

dx dy

= =

Ú Ú

 = 

4

1

2
2 y dy

y

Ê ˆ
-Á ˜Ë ¯Ú  = 

4

3/2

1

2
2 log

3
y y

Ê ˆ-Á ˜Ë ¯

 = 
16 2 28

2 2 log 2 4 log 2
3 3 3

È ˘Ê ˆ Ê ˆ- - = -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

Example 81  Find the area bounded by the curves y2 = x3 and x2 = y3.

Fig. 5.51
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Solution The required area of the shaded region is

 A = 

R

dx dyÚÚ

 = 

R

dy dxÚÚ

 = 

2/3

3/2

1 1
2/3 3/2

0 0

( )

x

x y x

dy dx x x dx

= =

= -Ú Ú Ú

 = 

1

5/3 5/2

0

3 2

5 5
x x

Ê ˆ-Á ˜Ë ¯

 = 
3 2 1

5 5 5
- =

OR

 A = 

2/3

3/2

1 1
2/3 3/2

0 0

( )

y

R y x y

dx dy dx dy y y dy

= =

= = -ÚÚ Ú Ú Ú

 = 

1

5/3 5/2

0

3 2

5 5
y y

Ê ˆ-Á ˜Ë ¯

 = 
1

5

Example 82  Find the area bounded by the parabola y2 = 4ax and its latus rectum.

Fig. 5.52

Solution The required area of the bounded region is

 = 2(area of OSA) 
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 = 

2

0 0

2

axa

x

dy dx

=
Ú Ú

 = 
3/2

0 0

2 2 4
3/2

aa
x

ax dx a
Ê ˆ

= Á ˜
Ë ¯Ú

 = 
28

3

a

Example 83  Find the mass, coordinates of the center of gravity and moments of inertia relative 

to the x-axis, y-axis, and origin of a rectangle 0 £ x £ 4, 0 £ y £ 2 having the mass density function

f(x, y) = xy.

Fig. 5.53

Solution The mass of the region R is given by 

 M = ( , )

R

f x y dx dyÚÚ

 = 

2 4

0 0y x

xy dx dy

= =
Ú Ú

or M = 

42 2

0 0
2

y

x
y dy

=

Ê ˆ
◊Á ˜
Ë ¯Ú

 = 

22 3 2

0 0 0

16
8 8

2 2

y
y dy y dy

Ê ˆ
◊ = = ◊ Á ˜

Ë ¯Ú Ú
 = 8◊2 = 16

Let xCG and yCG be the coordinates of the CG of the region R; Then

 xCG = 

4 2

0 0

1 1
( , ) ( )

16
R

x f x y dx dy x xy dy dx
M

◊ = ◊ÚÚ Ú Ú
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 = 

24 42
2 2

0 00

1 1 8

16 2 8 3

y
x dx x dx

Ê ˆ
◊ = =Á ˜
Ë ¯Ú Ú

 yCG = 

4 2

0 0

1 1
( , ) ( )

16
R

y f x y dx dy y xy dy dx
M

◊ = ◊ÚÚ Ú Ú

 = 

24 43
2

0 00

1 1 4

16 3 6 3

y
x dx x dx

Ê ˆ
◊ = =Á ˜
Ë ¯Ú Ú

The MI relative to x-axis

 Ixx = 
4 2

2 2

0 0

( , ) ( ) 32

R

y f x y dx dy y xy dy dx= ◊ =ÚÚ Ú Ú

Similarly, relative to y-axis

 Iyy = 

4 2
2 2

0 0

( , )

R

x f x y dx dy x xy dy dx= ◊ÚÚ Ú Ú  = 128

Now,

 IO = 2 2( ) ( , )

R

x y f x y dx dy+ ◊ÚÚ

 = 

24 2 4 3 2 4
2 2

0 0 0 0

( )
2 4

x y xy
x y xy dy dx dx

Ê ˆ
+ ◊ = +Á ˜

Ë ¯Ú Ú Ú

 = 

44 4 2
3

0 0

2 4
(2 4 )

4 2

x x
x x dx

Ê ˆ
+ = +Á ˜

Ë ¯Ú

 IO = 128 + 32 = 160

Example 84  Find the volume of the space below the paraboloid x2 + y2 + z = 4 and above the 

square in the xy-plane with vertices at (0, 0), (0, 1), (1, 0), and (1, 1).

Fig. 5.54



 Integral Calculus 5.87

Solution The top surface of the given fi gure is

 z = 4 – x2 – y2 = f(x, y). 

The projection R of the surface on the xy-plane into the square itself with coordinates O(0, 0), A(1, 

0), B(1, 1), and C(0, 1)

 V = 

1 1
2 2

0 0

( , ) (4 )

R

f x y dx dy x y dx dy= - -ÚÚ Ú Ú

 = 

11 13
2 2

0 00

11 10
4

3 3 3

y
y x y dx x dx

Ê ˆ Ê ˆ- - = - =Á ˜ Á ˜Ë ¯Ë ¯Ú Ú

5.16.8  Triple Integral

The triple integral is a generalized form of a double integral. Let V be a region of three-dimensional 

space and let f(x, y, z) be a function of the independents variables x, y, z defi ned at every point in V. 

Divide the region V into n elementary volumes dV1, dV2, …, dVn and let (xr, yr, zr) be any point inside 

the rth subdivision dVr.

\ 

1

( , , )
n

r r r r

r

f x y z Vd
=
Â  (27)

Then the limit sum of (27), as n Æ • and the dimensions of each subdivision tend to zero, is called 

the triple integral of f(x, y, z) over the region V and is denoted by

 

( , , )

V

f x y z dVÚÚÚ

If the region is bounded by z = f1(x, y), z = f2(x, y); y = g1(x), y = g2(x) and x = a, x = b

\ V = 

2 2

1 1

( ) ( , )

( ) ( , )

( , , )

g x f x yb

a g x f x y

f x y z dz dy dxÚ Ú Ú

If the limits of integration are constant then, the triple integral is

 ( , , )

V

f x y z dVÚÚÚ  = ( , , )

fb d

a c e

f x y z dx dy dzÚ Ú Ú

The order of integration may be changed with suitable change in the limits of integration. 

Similarly, volume integral/triple integral in cylindrical coordinates is

 V = 
V

r dr d dzfÚÚÚ

and in spherical polar coordinates is

 V = 2 sin

V

r dr d dq q fÚÚÚ
Note: We integrate w.r.t. x fi rst, then y and fi nally z here, but in fact there is no region to the integration 

in this order. There are 6 different possible orders to do the integral in and which order you do the 
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integral in will depend upon the function and the order that you feel will be the easiest. We will fi nd the 

same result regardless of the order however.

Example 85  Evaluate the triple integral of the function f(x, y, z) = x2 over the region V enclosed by 

the planes x = 0, y = 0, z = 0, and x + y + z = a.

Solution A vertical column is bounded by the planes z = 0, z = a – x – y. The latter plane cuts the xy-

plane in the line a – x – y = 0 so the area A above which the volume of the region in XY-plane bounded 

by the lines y = 0, y = a – x, x = 0, x = a

  

 Fig. 5.55 Fig. 5.56

\   the triple integral 

 = 
2

0 0 0

a x a x ya

x y z

x dz dy dx

- - -

= = =
Ú Ú Ú

Or = 2 2
0

0 0 0 0

( ) ( )

a x a xa a
a x y

x z dy dx x a x y dy dx

- -
- - = - -Ú Ú Ú Ú

 = 
2

2 2

0 0

( )
2

a xa
y

x a x y x dx

-
È ˘

- - ◊Í ˙
Í ˙Î ˚

Ú

 = 

2
2 2 2

0

( ) ( )
2

a
x

x a x a x dx
È ˘

- - -Í ˙
Í ˙Î ˚

Ú

 = 
2 3 5

2 2 4

0 0

1 1 2
( )

2 2 3 4 5

aa
a x x

x a x dx ax
È ˘

- = - +Í ˙
Í ˙Î ˚

Ú

 = 51 1 1 1

2 3 2 5
a

Ê ˆ- +Á ˜Ë ¯

 = 
5

60

a
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Example 86  Find the volume of the solid bounded below by the paraboloid z = x2 + y2 and above 

by the plane z = 2y.

Solution The required volume is

 V = 
A

dVÚÚÚ  (1)

where A is the area above which this volume stands.

Eliminating z between the equations z = x2 + y2 and z = 2y, we obtain

 x
2 + y2 = 2y (2)

This is the equation of the cylinder through the curve of intersection of the plane and the paraboloid, 

whose generators are parallel to the z-axis.

The section of this cylinder by the xy-plane gives the area A. Taking a strip parallel to the x-axis, the 

area A can be considered enclosed by the curves.

 x = 2 22 to = 2y y x y y- - -
 y = 0 to y = 2.

\   the integral (1) becomes

 V = 

2

2 22

2 22

0 2

y y y

x yy y

dz dx dy

-

+- -

Ú Ú Ú

 = 

2

2 2

2 22

0 0

2

y y y

x y

dz dx dy

-

+
Ú Ú Ú

 = 

222
2 2

0 0

2 (2 )

y y

y x y dx dy

-

- -Ú Ú

 = 

2sin/2
2

0 0

2 (2 sin )r r r dr d

qp

q q-Ú Ú  

2

Putting cos , sin

and 2 sin

or,  2 sin

0
2

x r y r

dx dy r dr d

r r

r

q q

q

q

q

p
q

= =È ˘
Í ˙=Í ˙
Í ˙=
Í ˙

=Í ˙
Í ˙
Í ˙£ £
Î ˚

 = 

2 sin/2
2 3

0 0

2 (2 sin )r r dr d

qp

q q-Ú Ú

 = 

2 sin/2 4
3

0 0

2
2 sin

3 4

r
r d

qp

q q
È ˘

-Í ˙
Í ˙Î ˚

Ú

 = 

/2 /2
4 4 4

0 0

16 8
2 sin 4 sin sin

3 3
d d

p p

q q q q q
È ˘- =Í ˙Î ˚Ú Ú

 = 

5 1 3 1

8 83 2 2 2

3 3 2 2 1 22 3

p p
p

◊ ◊ ◊
◊ = ◊ =

◊ ◊

Fig. 5.57
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Example 87  A triangular prism is formed by planes whose equations are ay = bx, y = 0 and x = a. 

Find the volume of the prism between the planes z = 0 and the surface z = c + xy.

Solution The required volume of the prism is given as

 V = 
0 0 0

bx

c xya a

x y z

dz dy dx

+

= = =
Ú Ú Ú

 = 

// 2

0 0 0 0

( )
2

bx aa bx a a
xy

c xy dy dx cy dx
È ˘

+ = +Í ˙
Í ˙Î ˚

Ú Ú Ú

 = 

2 3 2 2 4

2 2
0 0 0

2 42 2

a aa
cbx b x bc x b x

dx
a aa a

È ˘ Ê ˆ Ê ˆ
+ = +Í ˙ Á ˜ Á ˜

Ë ¯ Ë ¯Í ˙Î ˚
Ú

 = 
2 2

(4 )
2 8 8

abc b a ab
c ab+ = +

Example 88  Find the volume common to the cylinders x2 + y2 = a2 and x2 + z2 = a2.

Solution The required volume = 

2 2 2 2

2 2 2 2

a x a xa

x a a x a x

dz dy dx

- -

= - - - - -

Ú Ú Ú

 = 

2 2

2 2

2 2 2 22 4 ( )

a xa a

a aa x

a x dy dx a x dx

-

- -- -

- = -Ú Ú Ú

 = 
3

2 2 2

0 0

8 ( ) 8
3

aa
x

a x dx a x
Ê ˆ

- = -Á ˜
Ë ¯Ú

 = 
316

3

a

Example 89  Evaluate 2 2 2( )

c b a

c b a

x y z dz dy dx

- - -

+ +Ú Ú Ú .

Solution The function f(x, y, z) = x2 + y2 + z2 is symmetrical in x, y, and z.

\   the limits of integration can be assigned as per our preference; we get

 I = 
2 2 2( )

c b a

c b a

x y z dx dy dz

- - -

+ +Ú Ú Ú

 = 2 2 2

0

2 ( )

c b a

c b

x y z dx dy dz

- -

È ˘
+ +Í ˙

Í ˙Î ˚
Ú Ú Ú
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 = 

3
2 2

0

2
3

ac b

c b

x
xy xz dy dz

- -

È ˘
+ +Í ˙

Í ˙Î ˚
Ú Ú

 = 
3

2 22
3

c b

c b

a
ay az dy dz

- -

È ˘
+ +Í ˙

Í ˙Î ˚
Ú Ú

 = 
3

2 24
3

c b

c b

a
ay az dy dz

- -

È ˘Ï ¸Ô Ô+ +Í ˙Ì ˝
Í ˙Ô ÔÓ ˛Î ˚

Ú Ú

 = 
3 3

2

0

4
3 3

bc

c

a y ay
az y dz

-

È ˘
+ +Í ˙

Í ˙Î ˚
Ú

 = 
3 3

24
3 3

c

c

a b ab
abz dz

-

È ˘
+ +Í ˙

Í ˙Î ˚
Ú

 = 
3 3

2

0

8
3 3

c
a b ab

abz dz
È ˘

+ +Í ˙
Í ˙Î ˚

Ú

 = 
3 3 3

0

8
3 3 3

c

a bz ab z abzÈ ˘
+ +Í ˙

Í ˙Î ˚

 = 
3 3 3

2 2 28
8 ( )

3 3 3 3

a bc ab c abc abc
a b c

È ˘
+ + = + +Í ˙

Í ˙Î ˚

EXERCISE 5.13

 1. Find the area lying between the parabola y = 4x – x2 and the line y = x.

 2. Find the area bounded by the circle x2 + y2 = 9 and the line x + y = 3.

 3. Find the area bounded by the parabola y = x2 and the line y = 2x + 3.

 4. Find the smaller of the areas bounded by the ellipse 4x
2 + 9y

2 = 36 and the straight line 2x + 

3y = 6.

 5. Find by double integration, the area lying inside the cardioid r = a(1 + cos q) and outside the 

circle r = a.

 6. Find the area bounded by the circles r = 2 sin q and r = 4 sin q.

 7. Calculate the volume of the solid bounded by the surfaces x = 0, y = 0, z = 0 and x + y + z = 

1.

 8. Find the volume of the region bounded by the surfaces y = x2 and x = y2 and the planes z = 0 

and z = 3.

 9. Find the volume generated by revolving the ellipse 
2 2

2 2
1

x y

a b
+ =  about the y-axis.
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 10. Find the mass contained in the ellipse 
2 2

2 2
1

x y

a b
+ =  with surface density (x + y)2.

 11. Find the mass, centroid, and moments of inertia relative to the x-axis, y-axis, and origin of the 

plane region R having mass density (x + y) and bounded by the parabola x = y – y2 and the 

straight line x + y = 0.

 12. Find the centroid of the plane region bounded by y2 + x = 0 and y = x + 2.

 13. A thin plate of uniform thickness and constant density r covers the region of the xy-plane and 

is bounded by y = x2 and y = x + 2. Find the mass M, moment of inertia Iyy about the y-axis.

 14. Evaluate 

1

0 0 0

( )

x yx

x y z dz dy dx

+

+ +Ú Ú Ú .

 15. Find the total mass of the region in the cube 0 £ x £ 1, 0 £ y £ 1, 0 £ z £ 1 with density at any 

point given by xyz.

  Hint: Mass = 
1 1 1

0 0 0

x y z dx dy dzÚ Ú Ú

 16. Find the mass of the tetrahedron bounded by the coordinate planes and the plane

1
x y z

a b c
+ + = .

 17. Evaluate 

2

1 1 0

( )

yzz

x y z dx dy dzÚ Ú Ú .

 18. Evaluate 

2 log2

1 0

y x

z

y

e dz dx dyÚ Ú Ú .

 19. Evaluate ( )

0 0 0

y xa x
x y z

e dz dy dx

+
+ +Ú Ú Ú .

 20. Evaluate 2 ;x yz dx dy dzÚÚÚ  taken over the volume bounded by the surface x2 + y2 = 9, z = 0 

and z = 2.

 21. Find the volume bounded above by the sphere x2 + y2 + z2 = 2a
2 and below by the paraboloid 

az = x2 + y2.

Answers

 1. 
9

2
 2. 

9
( 2)

4
p -

 3. 
32

3
 4. 

3
( 2)

2
p -
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 5. 
2

( 8)
4

a
p +  6. 3 p

 7. 
1

6
 8. Hint: 

2

1

0

3 1

x

x

V dy dx= =Ú Ú

 9. 24

3
a bp  10. 2 2( )

4

ab
M a b

p
= +

 11. 
8 8 11 64 256 64

, ( , ) , , , and
15 35 8 105 105 21

CG CG xx yy oM x y I I I
Ê ˆ= = - = = =Á ˜Ë ¯

 12. 
8 1

,
5 2

Ê ˆ- -Á ˜Ë ¯
 13. 

9 63
,

2 20
yyM I

r
r= =

 14. 
7

8
 15. 

1

8

 16. 
6

abcr
 17. 

7

2

 18. 
47

24
 19. 

4 23 3

8 4 8

a a
ae e

e
Ê ˆ

- + -Á ˜
Ë ¯

 20. 
648

5
 21. 3 4 2 7

3 6
ap

Ê ˆ
-Á ˜

Ë ¯

5.16.9  Dirichlet’s Integral

This integral is useful to evaluate the double and triple integrals by expressing in terms of Beta and 

Gamma functions. The following theorems are useful in evaluating the multiple integrals.

Theorem 1

Let R be the region in the xy-plane bounded by x ≥ 0, y ≥ 0 and x + y £ k, then 

 ÚÚ p q

R

x y–1 – 1
 = ◊ p + qp q

k
p + q +( 1)

Theorem 2

Let V be the region, where x ≥ 0, y ≥ 0, z ≥ 0 and x + y + z £ 1; then

 ÚÚÚ p q r

V

x y z dx dy dz–1 –1 –1
 = 

p q r

p + q + r +( 1)

Remark 1: Dirichlet’s theorem can be extended to a fi nite number of variables.

Remark 2: If x + y + z £ h then by putting , and
x y z

X Y Z
h h h

= = =  we have 1
h

X Y Z
h

+ + £ =  and 

the Dirichlet’s theorem is 
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◊ÚÚÚ p q r p + q + r

V

p q r
x y z dx dy dz h

p + q + r

–1 –1 – 1

( + 1)

5.16.10  Liouville’s Extension of Dirichlet’s Theorem

If the variables x, y, z are all positive such that h1 < (x + y + z) < h2 then

 ÚÚÚ p q r

V

f x + y + z x y z dx dy dz–1 – 1 – 1
( )  = ◊Ú

h

p + q + r

h

p q r
f u u du

p + q + r

2

1

( – 1)
( )

( )

Example 90  Apply Dirichlet’s theorem to evaluate 
V

x yz dx dy dzÚÚÚ  taken throughout the 

ellipsoid 
2 2 2

2 2 2
1

x y z

a b c
+ + £ .

Solution Put 
2 2 2

2 2 2
, and ,

x y z
X Y Z

a b c
= = =  we get , andx a X y b Y z c Z= = =

\  xdx = 
2 2 2

, and
2 2 2

a b c
dX ydy dY zdz dZ= =

The condition, under this substitution, becomes X + Y + Z £ 1. 

Now,  xyz dx dy dzÚÚÚ  = ( ) ( ) ( )x dx y dx z dzÚÚÚ

 = 
2 2 2

2 2 2

a b c
dX dY dZ

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜
Ë ¯ Ë ¯ Ë ¯ÚÚÚ

 = 
2 2 2

1 1 1 1 1 1

8

a b c
X Y Z dX dY dZ

- - -ÚÚÚ

 = 

2 2 2 1 1 1

8 (1 1 1 1)

a b c

+ + +

 = 
2 2 2 1

8 4

a b c

 = 
2 2 2

48

a b c

\   The value for the whole ellipsoid is

 

2 2 2

8
48

a b cÊ ˆ
Á ˜
Ë ¯

 = 
2 2 2

6

a b c
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Example 91  Apply Dirichlet’s integral to fi nd the mass of an octant of the ellipsoid 

2 2 2

2 2 2
1,

x y z

a b c
+ + =  the density at any point being r = Kxyz.

Solution Put 
2 2 2

2 2 2
, , and ,

x y z
X Y Z

a b c
= = =  then X ≥ 0, Y ≥ 0, Z ≥ 0, and X + Y + Z = 1,

Also,  dx = , and =
2 2 2

a b c
dX dy dY dz dZ

X Y Z
=

\   The required mass of an octant of the ellipsoid is

 = K xyz dx dy dzÚÚÚ

 = ( ) ( ) ( ).
8

abc
K a X b Y x Z dX dY dZ

X Y Z
◊ÚÚÚ

 = 
2 2 2

8

a b c
K dX dY dZÚÚÚ

 = 
2 2 2

1 1 1 1 1 1

8

K a b c
X Y Z dX dY dZ

- - -ÚÚÚ

 = 
2 2 2 1 1 1

8 (1 1 1 1)

K a b c

+ + +

 = 
2 2 2

8 4

K a b c

◊

 = 
2 2 2

48

K a b c

Example 92  The plane 1
x y z

a b c
+ + =  meets the axis in A, B, and C. Apply Dirichlet’s theorem to 

fi nd the volume of the tetrahedron OABC. Also, fi nd its mass if the density at any point is Kxyz.

Solution Put , ,
x y z

X Y Z
a b c

= = = ; then X ≥ 0, Y ≥ 0, and Z ≥ 0

 X + Y + Z = 1

Also, x = aX, y = bY, z = cZ

 dx = adX, dy = bdY dz = cdZ.

\ The volume of tetrahedron OABC is

 V = 
V V

dx dy dz a bc dX dY dZ=ÚÚÚ ÚÚÚ
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 = 
1 1 1 1 1 1

V

abc X Y Z dX dY dZ
- - -ÚÚÚ

 = 
3! 6

abc abc
=

Now, Mass = 
V

dx dy dzrÚÚÚ

 = 
V

K xyz dx dy dzÚÚÚ

 = ( ) ( ) ( ) ( )

V

K abc XYZ adX bdY cdZÚÚÚ

 = 2 2 2 2 1 2 1 2 1

V

K a b c X Y Z dX dY dZ
- - -ÚÚÚ

 = 2 2 2 2 2 2

(2 2 2 1)
K a b c

+ + +

 = 2 2 2 1! 1! 1!

6!
K a b c

 = 
2 2 2

720

K a b c

Example 93  Apply Liouville’s theorem to evaluate log( )x y z dx dy dz+ +ÚÚÚ , the integral 

extending over all positive and zero values of x, y, z subject to x + y + z < 1.

Solution The given condition 0 £ (x + y + z) < 1. 

\ log( )x y z dx dy dz+ +ÚÚÚ  = 
1 1 1 1 1 1 log ( )x y z x y z dx dy dz

- - - + +ÚÚÚ

 = 

1
1 1 1 1

0

1 1 1
log

(1 1 1)
u u du

+ + -

+ + Ú

 = 

1
2

0

1
log

2
u u du◊Ú

 = 

1 13 3

00

1 1
log

2 3 3

u u
u du

u

È ˘Ê ˆÍ ˙- ◊Á ˜Í ˙Ë ¯Î ˚
Ú

 = 

1
3

0

1 1

2 3 3

u
È ˘Ê ˆÍ ˙- Á ˜Í ˙Ë ¯Î ˚

 = 
1

18
-
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Example 94  Evaluate 3( 1)x y z dx dy dz
-+ + +ÚÚÚ , the integral being taken throughout the 

volume bounded by planes x = 0, y = 0, z = 0 and x + y + z = 1.

Solution For the given condition 0 £ x + y + z £ 1

\ 
3( 1)x y z dx dy dz

-+ + +ÚÚÚ  = 
1 1 1 1 1 1

3( 1)

x y z
dx dy dz

x y z

- - -

+ + +ÚÚÚ

 = 

1
1 1 1 1

3
0

1 1 1 1

( 1)(1 1 1)
u du

u

+ + -

++ + Ú

 = 

1 2

3
0

1

2 ( 1)

u
du

u +Ú

Put u + 1 = t fi du = dt

\ 

2 2

3
1

1 ( 1)

2

t
dt

t

-
Ú  = 

2 2

3
1

1 ( 2 1)

2

t t
dt

t

- +
Ú

 = 

22

2 3 2
11

1 1 2 1 1 2 1
log

2 2 2
dt t

t tt t t

È ˘ È ˘- + = + -Í ˙ Í ˙Î ˚ Î ˚Ú

 = 
1 5 1 5

log 2 log 2
2 8 2 16

È ˘ Ê ˆ- = -Á ˜Í ˙ Ë ¯Î ˚

Example 95  Show that the integral 
1 1 1l m m

x y z dx dy dz
- - -ÚÚÚ  integrated over the region in the 

fi rst octant below the surface 1

p q r
x y z

a b c

Ê ˆ Ê ˆ Ê ˆ+ + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
 is 

( / ) ( / ) ( / )

( / ) ( / ) ( / ) 1

l m n
a b c l p m q n r

p q r l p m q n rÈ ˘+ + +Î ˚
.

Solution The required integral 1 1 1l m m
x y z dx dy dz

- - -ÚÚÚ , when the integral is extended to all 

positive values of the variables x, y, and z subject to the condition

 1

p q r
x y z

a b c

Ê ˆ Ê ˆ Ê ˆ+ + £Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

Let us put 

p
x

u
a

Ê ˆ =Á ˜Ë ¯
, i.e. x = au

1/p so that (1 1) ,

p q
x y

dx u du v
a b

-Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯
, i.e., y = bv

1/q so that 

(1/ )qb
dy v dv

q

Ê ˆ
= Á ˜Ë ¯

 and 

r
z

w
c

Ê ˆ =Á ˜Ë ¯
 i.e, z = (w)yr so that (1/ ) 1rc

dz w dw
r

-Ê ˆ= Á ˜Ë ¯

fi Required integral = 1 ( 1)/ 1 ( 1)/ 1 ( 1)/( ) ( ( )l l p m m q n n r
a u b v c w

- - - - - -ÚÚÚ

 
(1/ ) 1 (1/ ) 1 (1/ ) 1p q ra b c

u v w du dv dw
p q r

- - -¥ ◊
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 = (1/ ) 1 ( / ) 1 ( / ) 1
l m n

p m q n ra b c
u v w du dv dw

pqr

- - -ÚÚÚ

 
( / ) ( / ) ( / )

( / ) ( / ) ( / ) 1

l m n
a b c l p m q n r

pqr l p m q n r+ + +
 [By Dirichlet’s integral]

Example 96  Prove that 1 1 ( ) ( )

( 1)

l m l m

D

l m
x y dx dy h

l m

- - +=
+ +ÚÚ

where D is the domain x ≥ 0, y ≥ 0 and x + y £ h.

Solution Put x = Xh and y = Yh so that dx dy = h2 dXdY.

The new domain D¢ is given by X ≥ 0, Y ≥ 0 and X + Y £ 1.

\ 
1 1l m

D

x y dx dy
- -ÚÚ  = 

1 1( ) ( )l m

D

Xh Yh dX dY
- -

¢
ÚÚ

 = 

11
1 1

0 0

X

l m l m
h X Y dX dY

-
+ - -Ú Ú

 = 

11
1 1

0 0

X

l m l m
h X Y dX dY

-
+ - -Ú Ú

 = 

11
1

0 0

X
m

l m l Y
h X dX

m

-
+ - È ˘

Í ˙
Í ˙Î ˚

Ú  = 

1
1

0

(1 )
l m

l mh
X X dX

m

+
- -Ú

 = 
( ) ( 1)

( , 1)
( 1)

l m l m
h h l m

l m
m m l m

b
+ + +

+ =
+ +

 = 
( ) ( ) ( ) ( )

( 1) ( 1)

l m
l mh m l m l m

h
m l m l m

+
+=

+ + + +

Example 97  Evaluate 
2 2 2

2 2 2

1

1

x y z
dx dy dz

x y z

- - -
+ + +ÚÚÚ , integral being taken over all positive 

value of x, y, z such that x2 + y2 + z2 £ 1.

Solution Let x2 = u, y2 = v, z2 = w so that u + v + w £ 1

Also, x = 
1

2
u dx du

u
fi =

-

 y = 
1

2
v dy dv

v
fi =

 z = 
1

2
w dz dw

w
fi =
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Therefore, the given integral

 = 
1 ( )

1 ( ) 8

u v w du dv dw

u v w u v w

- + +
+ + +ÚÚÚ

 = 

1 1 1
1 1 1

2 2 2
1 1 ( )

8 1 ( )

u v w
u v w du dv dw

u v w

- - - - + +
+ + +ÚÚÚ

 = 

1 1 11
1

2 2 2

0

1 1 1

1 12 2 2

8 11 1 1

2 2 2

u
u

u

+ + -

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ -

+
+ +

Ú  [By Liouville’s extension]

 = 

3

11

2
2

0

1

21 1

8 11 1

2 2

u
u du

u

Ê ˆ
Á ˜Ë ¯ -

-Ú

 = 

11

4

0

1

4 (1 ) 2

t dt
t

t t

p -
+

-Ú  (where u2 = t)

 = 

3 1 5 11 1 11/4 1 1 1 1
4 2 4 2

0 0 0

(1 ) 8
(1 ) (1 )

8 1

t t
dt t t dt t t dt

t

p

p

- - - - -È ˘-
Í ˙= - - -

- Í ˙Î ˚
Ú Ú Ú

 = 
3 1 5 1

, ,
8 4 2 4 2

p
b b

È ˘Ê ˆ Ê ˆ-Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

Example 98  Evaluate the integral 
2 2 2 2

dx dy dz

a x y z- - -
ÚÚÚ  the integral being extended to all 

positive values of the variables for which the expression is real.

Solution Given expression is real when x2 + y2 + z2 < a2.

Therefore, the required integral is to be extended to all positive values of x, y, and z such that 0 < x2 

+ y2 + z2 < a2,

i.e., 
2 2 2

2 2 2
0 1

x y z

a a a
< + + < .

Putting 

2

2

x

a

Ê ˆ
Á ˜
Ë ¯

 = 
2 2

1, 2 32 2
and

y z
u u u

a a

Ê ˆ Ê ˆ
= =Á ˜ Á ˜

Ë ¯ Ë ¯

i.e. x = 
1/2 1/2 1/2
1 2 3, and =au y au z au=

so that dx = 
1/2

1 1

1

2
au du

-
; du = 

1/2
2 2

1

2
au du

-
; dz = 

1/2
3 3

1

2
au du

-
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With these substitutions, the given condition reduces to 0 < u1 + u2 + u2 < 1 and the required integral 

becomes

 = 

3
3 1/2 1/2 1/2

1 2 3 1 2 3

1 2 3

1

2

{1 ( }

a u u u du du dy

a u u u

- - -Ê ˆ ◊Á ˜Ë ¯

- + +ÚÚÚ

 = 

1/2 1 1/2 1 1/2 12
1 2 3 1 2 3

1 2 3
8 {1 ( }

u u u du du dya

u u u

- - -

◊
- + +ÚÚÚ

 = 

3
12

3/2 1

0

(1/2) 1

8 (1/3) (1 )

a
u du

u

-
È ˘
Î ˚◊

-Ú
 [By Liouville’s extension of Dirichlet’s theorem]

 = 

3
/22

2
1

sin 2 sin cos

18 (1 sin
2

a
d

pp q q q
q

qp

È ˘ ◊Î ˚

-
Ú

 [Putting u = sin2 q, du = 2sinq cosq dq] 

 = 

/22 2 2 2
2

0

1
sin

2 2 2 2 8

a a a
d

p
p p p p

q q = ◊ =Ú

EXERCISE 5.14

 1. Evaluate 
2 1 2 1l m

x y dx dy
- -ÚÚ  for all positive values of x and y such that x2 + y2 £ c2.

 2. Evaluate 
2 2 2

2 2 2
, where 1

x y z
dx dy dz

a b c
+ + £ÚÚÚ .

 3.   (i)  Show that 1 1m n
x y dx dy

- -ÚÚ  over the positive quadrant of the ellipse 

2 2

1 is , 1
2 2 2

m n
x y a b m n

a b n
b

Ê ˆ Ê ˆ Ê ˆ+ = +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 (ii) Find the volume of the sphere x2 + y2 + z2 = a2

 4. The plane 1
x y z

a b c
+ + =  meets the coordinate axes in the points A, B, C. Use Dirichlet’s 

integral to evaluate the mass of the tetrahedron OABC, the density at any point (x, y, z) 

being kxyz.

 5. Find the volume enclosed by the surface

 

2 2 2

1

n n n
x y z

a b c

Ê ˆ Ê ˆ Ê ˆ+ + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
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 6. Find the mass of the region in the xy-plane bounded by x = 0, y = 0, x + y = 1 with density 

K xyr = .

 7. Find the volume of the solid bounded by the coordinate planes and the surface 

1
x y z

a b c
+ + = .

 8. Apply Dirichlet’s integral to fi nd the moment of inertia about the z-axis of an octanet of the 

ellipsoid 
2 2 2

2 2 2
1

x y z

a b c
+ + = . 

2 2: MI ( ) )

V

Hint x y dx dy dzr
È ˘

= +Í ˙
Í ˙Î ˚

ÚÚÚ

 9. Evaluate ,x y z
e dx dy dz

+ +ÚÚÚ  taken over the positive octant such that x + y + z £ 1.

 10. Show that 
2

3
log 2

4( 1)

dx dy dz

x y z
= -

+ + +ÚÚÚ , the integral being taken throughout the volume 

bounded by the planes x = 0, y = 0, z = 0, and x + y + z = 1.

 11. Find the volume and the mass contained in the solid region in the fi rst octant of the ellipsoid 
2 2 2

2 2 2
1

x y z

a b c
+ + =  if the density at any point r(x, y, z) = Kxyz. Also fi nd the coordinates of the 

centroid.

 12. Show that the entire volume of the solid 

2/3 2/3 2/3
4

1 is
35

x y z abc

a b c

pÊ ˆ Ê ˆ Ê ˆ+ + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
.

Answers

 1. 2 21 ( ) ( )

4 ( 1)

l m l m
c

l m

+ ◊
+ +

 2. 
4

3
abcp

 3. (ii) 34

3
ap  4. 

2 2 2

720

k a b c

 5. 

3

2

1

22

3 3

2

n
abc

n
n

È ˘Ê ˆ
Í ˙Á ˜Ë ¯Í ˙Î ˚◊

Ê ˆ
Á ˜Ë ¯

 6. 
24

K p

 7. 
90

abc
 8. 2 2( )

30

abc
a b

r
p+

 9. 1
2

eÊ ˆ-Á ˜Ë ¯
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 10. 
2 2 2

CG CG CG

16 16 16
, and ( , , ) , ,

6 48 35 35 35

abc K a b c a b c
V M x y z

p Ê ˆ= = = Á ˜Ë ¯

SUMMARY
1. The Defi nite Integral

Let F(x) be the antiderivative of a function f(x) defi ned on [a, b], i.e., ( ) ( )
d

F x f x
dx

= . Then the defi nite 

integral of f(x) over [a, b] is denoted by ( )

b

a

f x dxÚ  and is defi ned as ( ) ( ) ( )

b

a

f x dx F b F a= -Ú .

The numbers a and b are called the limits of integration: ‘a’ is called the lower limit and ‘b’ is called the 

upper limit. The interval [a, b] is called the interval of integration.

2. Leibnitz’s Rule of Differentiation under the Sign of Integration

Let F(x, t) and 
F

x

∂
∂

 be continuous functions of both x and t and let the fi rst derivative of G(x) and H(x) be 

continuous. Then

 

( )

( )

( , )

H x

G x

d
F x t dt

dx Ú  = 

( )

( )

[ , ( )] [ , ( )]

H x

G x

F dH G
dt F x H x F x G x

x dx x

∂ ∂
+ ◊ ◊ - ◊

∂ ∂Ú

3. Improper Integrals

The integral ( )

b

a

f x dxÚ  (1)

when the range of integration is fi nite and the integrand function f(x) is bounded for all x in the range

[a, b], it is said to be proper (defi nite) integral. But if either a or b (or both) are infi nite or when a and b are 

fi nite but f(x) becomes infi nite at x = a or x = b or at one or more points within [a, b] then the integral (1) 

is called improper or infi nite integral.

Kinds of Improper Integrals

The improper integrals can be divided into the following two kinds:

 (i) Improper Integrals of First Kind: Those integrals in which the integrand function is bounded 

and the range of integration is infi nite are called improper integrals of fi rst kind.

 (ii) Improper Integrals of Second Kind: Those integrals in which the integrand function is 

unbounded, i.e., infi nite for some values in the range of integration.

4. Multiple Integrals

(a) Double Integrals 

A double integral is the counterpart, in two dimensions of the defi nite integral of a function of a single 

variable. Then 

( , )

R

f x y dRÚÚ  = ( , )

R

f x y dx dyÚÚ
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(b) Change of Order of Integration

We have seen that in evaluating a double integral of successive integrations, if the limits of both the 

variables are constant then we can change the order of integration without affecting the result. But if 

the limits of integration are variable, i.e., if the limits of x are constant and limits of y are functions of x 

and order of integration is dy dx or if the limits of x are functions of y and y are constants and order of 

integration is dx dy, then we take a strip parallel to the y-axis, or parallel to the x-axis. When it is required 

to change the order of integration in an integral for which the limits are given, fi rst of all we ascertain 

from the given limits the region R of integration. Knowing the region of integration, we can then put in the 

limits for integration in the reverse order.

5. Triple Integral

The triple integral is a generalized form of a double integral. Let V be a region of three-dimensional space 

and let f(x, y, z) be a function of the independent variables x, y, z defi ned at every point in V. The triple 

integral of f(x, y, z) over the region V is denoted by ( , , )

V

f x y z dVÚÚÚ .

If the region is bounded by z = f1(x, y), z = f2(x, y); y = g1(x), y = g2(x) and x = a, x = b

\ V = 

2 2

1 1

( ) ( , )

( ) ( , )

( , , )

g x f x yb

a g x f x y

f x y z dz dy dxÚ Ú Ú

The order of integration may be changed with a suitable change in the limits of integration. 

6. Dirichlet’s Integral

Theorem I: Let R be the region in the xy-plane bounded by x ≥ 0, y ≥ 0 and x + y £ k, then 

 
1 1p q

R

x y dxdy
- -ÚÚ  = 

( 1)

p qp q
k

p q

+◊
+ +

Theorem II: Let V be the region, where x ≥ 0, y ≥ 0, z ≥ 0 and x + y + z ≤ 1; then

 1 1 1p q r

V

x y z dx dy dz
- - -ÚÚÚ  = 

( 1)

p q r

p q r+ + +

Remark I: The Dirichlet’s theorem can be extended to a fi nite number of variables.

Remark II: If V be the closed region by coordinate planes and x + y + z £ h then the Dirichlet’s theorem 

is 

1 1 1p q r

V

x y z dx dy dz
- - -ÚÚÚ  = )

( 1)

p q rp q r
h

p q r

( + +

+ + +

7. Liouville’s Extension of Dirichlet’s Theorem

If the variables x, y, z are all positive such that h1 < (x + y + z) < h2 then

 1 1 1( ) p q r

V

f x y z x y z dx dy dz
- - -+ +ÚÚÚ  = 

2

1

1)( )
( )

h

p q r

h

p q r
f u u du

p q r

( + + +◊
+ + Ú
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OBJECTIVE-TYPE QUESTIONS

 1. 
/2 /2

0 0
sin( )x y dx dy

p p
+Ú Ú  is

 (a) 0 (b) p
 (c) p/2 (d) 2

 [GATE (ME) 2000]

 2. Value of the integral 
/4

2

0
cos x dx

p

Ú  is

 (a) 
1

8 4

p
+  (b) 

1

8 4

p
-

 (c) 
1

8 4

p
- -  (d) 

1

8 4

p
- +

 [GATE (CE) 2001]

 3. The value of the following integral

/2

/2

sin 2

1 cos

x
dx

x

p

p- +Ú
 (a) –2log 2 (b) 2

 (c) 0 (d) (log 2)2

 [GATE (CE) 2002]

 4. The area enclosed between the parabola y = 

x
2 and the straight line y = x is

 (a) 1/8 (b) 1/6

 (c) 1/3 (d) 1/2

 [GATE (ME) 2003]

 5. The volume of an object expressed in 

spherical coordinates is given by
2/ /3 1

2

0 0 0
sinV r dr d d

p p
f f q= Ú Ú Ú

  The value of integral is

 (a) p/3 (b) p/6

 (c) 2p/3 (d) p/4

 [GATE (ME) 2004]

 6. 6 7(sin sin )
a

a
x x dx

-
+Ú  is equal to

 (a) 6

0
2 sin

a
x dxÚ  (b) 7

0
2 sin

a
x dxÚ

 (c) 6 6

0
2 (sin cos )

a
x x dx+Ú

 (d) 0 [GATE (ME) 2005]

 7. The value of the integral 
1

21

dx

x-Ú  is

 (a) 2 (b) –2

 (c) does not exist (d) •
 [GATE (AIE) 2005]

 8. Changing the order of the integration in the 

double integral 
8 2

0 /4
( , )

x
I f x y dydx= Ú Ú  leads

  to ( , )
s q

r p
I f x y dx dy= Ú Ú . What is q?

 (a) 4y (b) 16y
2

 (c) x (d) 8

 [GATE (ME) 2005]

 9. By a change of variables x(u, v) = uv, y(u, v) 

= v/u in a double integral, the integral f(x, y) 

changes to , , ( , )
v

f u v u v
u

f
Ê ˆ

=Á ˜Ë ¯ . Then f(u, v) 

is

 (a) 2v/u (b) 2 uv

 (c) v
2 (d) 1

 [GATE (ME) 2005]

 10. The value of the integral 3

0
sin d

p
q qÚ  is

 (a) 1/2 (b) 2/3

 (c) 4/3 (d) 8/3

 [GATE (EC) 2006]

 11. Value of 
3

0 0
(6 )

x
x y dx dy- -Ú Ú  is

 (a) 13.5 (b) 27.0

 (c) 40.5 (d) 54.0

 [GATE (CE) 2008]

 12. The value of the integral 
2 2

0 0

x y
e e dx dy

• • - -Ú Ú  

is

 (a) /2p  (b) p
 (c) p (d) p/4

 [GATE (AIE) 2007]

 13. The following point shows a function y 

which varies linearly with x. The value of the 

integral 
2

1
I ydx= Ú

Fig. 5.58
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 (a) 1.0 (b) 2.5

 (c) 4.0 (d) 5.0

 [GATE (ECE) 2007]

 14. Consider points P and Q in the xy plane with 

P = (1, 0) and Q = (0, 1). The line integral 

2 ( )
Q

P
x dx ydy+Ú  along the semicircle with 

the line segment PQ as its diameter is

 (a) –1

 (b) 0

 (c) 1

 (d) depends on the direction (clockwise or 

anticlockwise) of the semicircle

 [GATE (ECE) 2008]

 15. The volume of the solid under the surface az 

= x2 + y2 and whose base R is the circle x2 + 

y
2
 = a

2 is given as

 (a) 
2a

p
 (b) 

3

2

ap

 (c) 34

3
ap  (d) none of the above

 [UPTU 2008]

 16. Considering the shaded triangular region P 

shown in the fi gure, what is 
P

xydx dyÚÚ ?

Fig. 5.59

 (a) 1/6 (b) 2

 (c) 1/16 (d) 1

 [GATE (ME) 2008]

 17. The length of the curve 3/22

3
y x=  between

x = 0 and x = 1 is

 (a) 2.27 (b) 0.67

 (c) 0.27 (d) 1.22

 [GATE (ME) 2008]

 18. A path AB in the form of one quarter of a 

circle of unit radius is shown in Fig. 5.60. 

Integration of (x + y)2 on path AB traversed 

in a counter-clockwise sense is

Fig. 5.60

 (a) 1
2

p
-  (b) 1

2

p
+

 (c) 
2

p
 (d) 1

  [GATE (ME) 2009]

 19. The area enclosed between the curves y2 = 4x 

and x2 = 4y is

 (a) 
16

3
 (b) 8

 (c) 
32

3
 (d) 16

 [GATE (ME) 2009]

 20. The area enclosed between the straight line y 

= x and parabola y = x2 in the xy plane is

 (a) 1/6 (b) 1/4

 (c) 1/3 (d) 1/2

 [GATE (ME) 2013]

 21. The value of the defi nite integral 

1
ln( )

e
x x dxÚ  is

 (a) 34 2

9 9
e +  (b) 32 4

9 9
e -

 (c) 32 4

9 9
e +  (d) 34 2

9 9
e -

 [GATE (ME) 2013]

 22. The value of 

/6
4 3

0

cos 3 sin 6 d

p

q q qÚ  is

 (a) 0 (b) 1/15

 (c) 1 (d) 8/3

 [GATE (CE) 2013]
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 23. The value of integral 

2

0
0

x
x y

e dydx
+Ú Ú  is

 (a) 
1

( 1)
2

e -  (b) 2 21
( 1)

2
e -

 (c) 21
( )

2
e e-  (d) 

2
1 1

2
e

e

Ê ˆ
-Á ˜Ë ¯

 [GATE (ME) 2014]

 24. The integral ( )

c

ydx xdy-Ú  is evaluated along 

the circle 2 2 1

4
x y+ =  traversed in counter-

clockwise direction. The integral is equal to

 (a) 0 (b) 
4

p
-

 (c) 
2

p
-  (d) 

4

p

 [GATE (ME) 2014]

 25. The value of the integral 
2 2

2

0

( 1) sin( 1)

( 1) cos( 1)

x x
dx

x x

- -
- + -Ú  is

 (a) 3 (b) 0

 (c) –1 (d) –2

 [GATE (ME) 2014]

 26. If 
2

0
sinx x dx k

p
p| | =Ú  then the value of k is 

equal to ______. [GATE (CS) 2014]

 27. The volume under the surface z(x, y) = x + y and 

above the triangle in the x-y plane defi ned by 

{0 £ y £ x and 0 £ x £ 12} is ______.

 [GATE (EC) 2014]

 28. To evaluate the double integral 

8 ( /2) 1

0 /2

2

2

y

y

x y
dx dy

+Ê ˆ-Ê ˆ
Á ˜Á ˜Ë ¯Ë ¯Ú Ú , we make the 

substitution 
2

2

x y
u

-Ê ˆ
= Á ˜Ë ¯

 and 
2

y
v = . The 

integral will reduce to

 (a) 
4 2

0 0
2udu dv

Ê ˆ
Á ˜Ë ¯Ú Ú  (b) 

4 1

0 0
2udu dv

Ê ˆ
Á ˜Ë ¯Ú Ú

 (c) 
4 1

0 0
udu dv

Ê ˆ
Á ˜Ë ¯Ú Ú  (d) 

4 2

0 0
udu dv

Ê ˆ
Á ˜Ë ¯Ú Ú

 [GATE (EE) 2014]

ANSWERS

 1. (d) 2. (a) 3. (d) 4. (b) 5. (a) 6. (a) 7. (c) 8. (a) 9. (b) 10. (c)

 11. (a) 12. (d) 13. (b) 14. (b) 15. (b) 16. (a) 17. (c) 18. (b) 19. (a) 20. (a)

 21. (c) 22. (b) 23. (b) 24. (c) 25. (b) 26. (4) 27. (864) 28. (b)



6.1  INTRODUCTION

The students are familiar with elementary functions like algebraic, trigonometric, exponential, and 

logarithmic. Special functions are those functions other than the elementary functions, such as Bessel’s 

function, Legendre’s polynomials, and Beta and Gamma functions.

Many integrals which cannot be evaluated in terms of elementary functions can be evaluated with 

the help of Beta and Gamma functions. The second-order linear differential equations are those 

whose solutions give rise to special functions (Bessel’s, Legendre’s).

6.2  BESSEL’S EQUATION

The differential equation of the form

2 2

2 2

1
1

d y dy n
y

x dxdx x

Ê ˆ
+ + -Á ˜

Ë ¯
 = 0

or  
2

2 2 2

2
( )

d y dy
x x x n y

dxdx
+ + -  = 0

is called Bessel’s equation of order n, where n is a non-negative constant.

6.3  SOLUTION OF BESSEL’S DIFFERENTIAL EQUATION

Bessel’s equation is

2 2

2 2

1
1 –

d y dy n
y

x dxdx x

Ê ˆ
+ + Á ˜

Ë ¯
 = 0 (1)

Let the series solution of (1) be

y = 
0

k r
r

r

a x
•

+

=
Â

dy

dx
 = 1

0

( ) k r
r

r

a k r x
•

+ -

=

+Â

Special Functions
6
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and 
2

2

d y

dx
 = 

2

0

( ) ( 1) k r
r

r

a k r k r x
•

+ -

=

+ + -Â

Putting these values in Eq. (1), we have

 
2

2 1

2
0

1
( ) ( 1) ( ) 1k r k r k r

r

r

n
a k r k r x k r x x

x x

•
+ - + - +

=

È ˘Ê ˆ
+ + - + + + -Í ˙Á ˜

Ë ¯Í ˙Î ˚
Â  = 0

or 2 2 2

0

{( ) } k r k r
r

r

a k r n x x
•

+ - +

=

È ˘+ - +Î ˚Â  = 0 (2)

Since the relation (2) is an identity, the coeffi cients of various powers of x must be zero.

Equating to zero the coeffi cient of the lowest power of x, i.e., of xk–2 in (2), we have

 a0(k
2 – n2) = 0 

Now, a0 π 0 as it is the coeffi cient of the fi rst term

 k
2 – n

2 = 0 or k = ±n (3)

Now, equating to zero the coeffi cient of xk–1 in (2), we get

 a1 {(k + 1)2 – n
2} = 0

but (k + 1)2 = n2 π 0 for k = ±n given by (3)

\ a1 = 0

Again equating to zero the coeffi cient of the general term, i.e., of xk + r in (2), we get

 ar + 2 {(k + r + 2)2 – n2} + ar = 0

or ar + 2 (k + r + n + 2)(k + r – n + 2) = –ar

 ar + 2 = 
( 2) ( 2)

ra

k r n k r n
-
+ + + + - +

 (4)

Putting r = 1 in (4), we have

 a3 = 1 0
( 3) ( 3)

a

k n k n
- =
+ + - +

, since a1 = 0

Similarly, putting r = 3, 5, 7, etc., in (4), we have

 a1 = a3 = a5 = … = 0

Now, two cases arise.

Case I

When k = n, from (4), we have

  ar + 2 = 
(2 2)( 2)

ra

n r r
-

+ + +
Putting r = 0, 2, 4, etc., we get

 a2 = 0 0

2(2 2) (2) 2 ( 1)

a a

n n
- = -

+ ◊ +

 a4 = 02 2

2 4(2 4) (4) 2 2( 2) 2 2 ( 1) ( 2)

aa a

n n n n
- = - =

+ ◊ + ◊ + +
, etc.

\ y = 

2 4

0 2 42 1 ( 1) 2 2 ( 1)( 2)

n n
n x x

a x
n n n

+ +È ˘
- + -Í ˙

+ + +Í ˙Î ˚
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 = 

2 4
2

0 2 4
1 ( 1) ( 1)

2 1 ( 1) 2 2 ( 1) ( 2)

n x x
a x

n n n

È ˘
+ - + - +Í ˙

+ + +Í ˙Î ˚
 

By taking the arbitrary constant 0

1

2 ( 1)n
a

n
=

+
, this solution is called Jn(x), known as Bessel 

function of the fi rst kind of order n.

\ Jn(x) = 

2 4
2 2

2 4
1 ( 1) ( 1)

2 1 ( 1) 2 2 ( 1) ( 2)2 ( 1)

n

n

x x x

n n nn

È ˘
+ - + - +Í ˙

+ + ++ Í ˙Î ˚
 

 = 
2

0

( 1)
2 ( 1) ( 2) ( )2 ( 1)

n r
r

rn
r

x x

r n n n rn

•

2
=

-
+ + ++

Â
 

      
2

2
0

( 1)
( )

2 1
n

r r

r
r

x
J x

r n r

•

=

-
=

+ +
Â  = 

2

0

1
( 1)

2 ( 1)

n r

r

r

x

r n r

+•

=

Ê ˆ- Á ˜Ë ¯ ◊ + +
Â

Case II

When k = –n

The series solution is obtained by replacing n by –n in the value of Jn.

\ J–n(x) =  

2

0

1
( 1)

2 ( 1)

n r

r

r

r

r n r

- +•

=

Ê ˆ- Á ˜Ë ¯ - + +
Â

When n is not an integer J–n(x) is distinct from Jn(x).

The general solution of Bessel’s equation (1) when n is not an integer is

 y = AJn(x) + B J–n(x)

where A, B are two arbitrary constants.

6.4   RECURRENCE FORMULAE/RELATIONS OF 
BESSEL’S EQUATION

(I) 
d

dx
{xn Jn(x)} = xn Jn – 1(x)

Proof By the defi nition of Jn(x),

 { ( )}n
n

d
x J x

dx
 = 

2

0

1
( 1)

2 ( 1)

n r

n r

r

d x
x

dx r n r

+•

=

È ˘Ê ˆÍ ˙- Á ˜Ë ¯ + +Í ˙Î ˚
Â

 = 2 2

2
0

( 1) 1

2( 1)

r
n r

n r
r

d
x

dxr n r

•
+

+
=

-
◊ ◊

+ +
Â

 = 

2 2 1 2 1

22
0 0

( 1) (2 2 ) ( 1) 2( )

2( 1) 2 ( )

r n r r n n r

n rn r
r r

n r x n r x x

r n r r n r n r

+ - + -• •

++
= =

- + - + ◊
= ◊

+ + ◊ + +
Â Â
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 = 

1 2

0

( 1)

21 1

n rr
n

r

x
x

r n r

- +•

=

- Ê ˆ
Á ˜Ë ¯- + +

Â  1n n nÈ ˘+ =Î ˚∵

 = xn Jn–1(x) by the defi nition of Jn–1(x)

(II) 
d

dx
{x–n Jn(x)} = – x–n Jn + 1(x)

Proof By the defi nition of Jn(x),

 { ( )}n
n

d
x J x

dx

-
 = 

2

0

1
( 1)

2 1

n r

n r

r

d x
x

dx r n r

+•
-

=

Ï ¸Ê ˆÔ Ô-Ì ˝Á ˜Ë ¯ + +Ô ÔÓ ˛
Â

 = 
2 1

2

2 2
0 0

( 1) 1 ( 1) 2

21 ( 1) ( 1) 2

r r r
r

n r n r
r r

d rx
x

dxr n r r r n r

-• •

+ +
= =

- -
◊ ◊ =

+ + - + + ◊
Â Â

 = 
2 1 2 1

1 2 1 2
0 1

( 1) 1 ( 1) 1

2 2( 1) 1 ( 1) ( 1)

r r r r

n r n r
r r

x x

r n r r n r

- -• •

- + - +
= =

- -
◊ =

- + + - + -
Â Â

 ( 1 when 0r rÈ ˘\ - = • =Î ˚

 = 
1 2 2 1

2 2 1
0

( 1)

22

m m n n

m n
m

x x x

m n m

+ + - -•

+ + -
=

- ◊
◊

+ +
Â  [On changing m = r – 1 so that r = m + 1]

 = 

1 2

0

( 1)

22

n mr
n

m

x
x

m n m

+ +•
-

=

- Ê ˆ- Á ˜Ë ¯+ +
Â

 = 

1 2

0

( 1)

22

n mr
n

m

x
x

m n m

+ +•
-

=

- Ê ˆ- Á ˜Ë ¯+ +
Â  = 

1 2

0

( 1)

21 1

n rr
n

m

x
x

r n r

+ +•
-

=

- Ê ˆ- Á ˜Ë ¯+ + +
Â

 = – x
–n Jn + 1(x) [Changing variable from m to r]

fi 
1( ) ( )n n

n n

d
x J x x J x

dx

- -
+

È ˘ = -Î ˚

(III) J¢n(x) = Jn – 1(x) – 
Ê ˆ
Á ˜Ë ¯n

n
J

x
 or xJ¢n = –nJn + x Jn–1

Proof By the recurrence relation (I),

 { ( )}n
n

d
x J x

dx
 =  xn Jn – 1(x)

or  nx
n–1 Jn(x) + xn Jn¢ (x) = xnJn–1(x)

Dividing both sides by xn–1,

           nJn(x) + x J¢n(x) = x Jn–1(x)

or              1( ) ( ) ( )n n n

n
J x J x J x

x
-

Ê ˆ= -¢ Á ˜Ë ¯
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(IV) J¢n(x) = 
Ê ˆ
Á ˜Ë ¯

n

x
 Jn(x) – Jn+1(x) or xJ¢n = –nJn + x Jn–1

Proof By the recurrence relation (II),

 { ( )}n
n

d
x J x

dx

-  = –x
–n Jn + 1(x)

or –nx
–n– 1 Jn(x) + x–n J¢n(x) = –x

–n Jn+1(x)

Dividing both sides by x–n,

 –nx
–1 Jn(x) + J¢n(x) = –Jn+1(x)

or 
1( ) ( ) ( )n n n

n
J x J x J x

x
+

Ê ˆ= -¢ Á ˜Ë ¯

(V) 2J¢n(x) = Jn–1 – Jn+1

Proof By recurrence relations (III) and (IV), we have

 J¢n(x) = 
1( ) ( )n n

n
J x J x

x
-

Ê ˆ- Á ˜Ë ¯
 (5)

and J¢n(x) = 
1( ) ( )n n

n
J x J x

x
+

Ê ˆ -Á ˜Ë ¯
 (6)

Adding (5) and (6)

 1 12 ( ) ( ) ( )n n nJ x J x J x- += -¢

(VI) Jn–1(x) + Jn+1(x) = 
Ê ˆ
Á ˜Ë ¯

n

x

2
 Jn(x) or 2nJn = x(Jn–1 + Jn+1)

Proof From recurrence relations (III) and (IV),

we have J¢n(x) = 1( ) ( )n n

n
J x J x

x
-

Ê ˆ- Á ˜Ë ¯
 (7)

and J¢n(x) = 1( ) ( )n n

n
J x J x

x
+

Ê ˆ -Á ˜Ë ¯
 (8)

Subtracting (8) from (7), we get

 0 = 1 1( ) ( ) 2n n n

n
J x J x J

x
- +

Ê ˆ+ - Á ˜Ë ¯

or Jn – 1(x) + Jn + 1(x) = 
2

( )n

n
J x

x

Ê ˆ
Á ˜Ë ¯

or 1 12 ( )n n nnJ x J J- += +
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6.5  GENERATING FUNCTION FOR Jn(x)

The function 

1

2

x
z

ze

Ê ˆ-Á ˜Ë ¯
 is called the generating function.

When n is a positive integer, Jn(x) is the coeffi cient of zn in the expansion of 

1

2

x
z

ze

Ê ˆ-Á ˜Ë ¯
 in ascending 

and descending power of z.

Also, Jn(x) is the coeffi cient of z–n multiplied by (–1)n in the expansion of 

1

2

x
z

ze

Ê ˆ-Á ˜Ë ¯
,

i.e.,

 (i)  

1

2

x
z

ze

Ê ˆ-Á ˜Ë ¯  = ( )n
n

n

z J x
•

=-•
Â

 (ii)  

1

2

x
z

ze

Ê ˆ-Á ˜Ë ¯  = ( 1) ( )n n
n

n

J x z
•

-

=-•

-Â

Proof  We have 

1

2

x
z

ze

Ê ˆ-Á ˜Ë ¯  = 22

xxz

ze e
-
◊

 = 

2 1 2
1 1 1 1

1
2 2 2 2 1 2 2 2

n n n
xz xz xz xz xz

n n n

+ +È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆÍ ˙+ + + + + + +Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯+ +Í ˙Î ˚
  

 

2 1 21 21 ( 1) ( 1) ( 1)
1

2 2 2 2 1 2 ( 2) 2

n n nn n n
xz x x x x

z z n z n z n z

+ ++ +È ˘- - -Ê ˆ Ê ˆ Ê ˆ Ê ˆÍ ˙¥ - + + + + + +Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯+ +Í ˙Î ˚
   (9)

 (i) Coeffi cient of zn in the above product (1)

 = 

2 4
1 1 1

2 1 2 2 2 2

n n n
x x x

n n n

+ +
Ê ˆ Ê ˆ Ê ˆ- + -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯+ +

 

 = 

2 40 2( 1) ( 1) ( 1)

2 2 21 1 2 2 3

n n n
x x x

n n n

+ +- - -Ê ˆ Ê ˆ Ê ˆ+ ◊ + ◊ +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯+ + +
 

 = 

2

0

1
( 1)

21

n r

r

r

x

r n r

+•

=

Ê ˆ- ◊ Á ˜Ë ¯+ +
Â  = Jn(x)

 (ii) Coeffi cient of z–n in the above product (1)

 = 

2 41 2( 1) ( 1) ( 1) 1

2 1 2 2 2 2

n n nn n n
x x x

n n n

+ ++ +- - -Ê ˆ Ê ˆ Ê ˆ+ + ◊ ◊ +ºÁ ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯+ +
 

 = 

2 40 2( 1) ( 1) ( 1)
( 1)

2 2 21 2 3

n n n

n x x x

n n n

+ +È ˘- - -Ê ˆ Ê ˆ Ê ˆÍ ˙- + + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯+ + +Í ˙Î ˚
  = (–1)n Jn(x)
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Note In the above product (1), the term independent of z is 

 
2 4 6

2 2 2 2 2 2
1

2 2 4 2 4 6

x x x
- + - +

◊ ◊ ◊
  = J0(x)

Here, we observe that the coeffi cient of z0, 2

2

1 1 1
, ( 1)n n

n
z z z

z z z

Ê ˆ È ˘Ê ˆ- + + - ◊Í ˙Á ˜ Á ˜Ë ¯ Ë ¯ Î ˚
   are (J0(x), 

J1(x), J2(x) …, Jn(x)… respectively.

Hence, 

1

2

x
z

ze

Ê ˆ-Á ˜Ë ¯
 = 2

0 1 22

1 1 1
( 1)n n

nn
J z J z J z J

z z z

Ê ˆ È ˘Ê ˆ+ - + + + + + - +Á ˜ Í ˙Á ˜Ë ¯ Ë ¯ Î ˚
  

 = ( )n
n

n

z J x
•

=-•
Â , Since J–n(x) = (–1)n Jn(x)

Theorem

Prove that J–n(x) = (–1)n Jn(x) where n is an integer.

Proof We have

 J–n(x) = 

2

0

1
( 1)

2 1

n r

r

r

x

r n r

- +•

=

Ê ˆ- Á ˜Ë ¯ - + +
Â

Since p-  is infi nite (p > 0), we get terms in J–n(x) equal to zero till r + 1 – n ≥ 1 so that the series 

begins when r ≥ n.

Hence, we can write

 J–n(x) = 

2
( 1)

21

n rr

r n

x

r n r

- +•

=

- Ê ˆ
Á ˜Ë ¯- + +

Â

Putting r = n + s, we get

 J–n(x) = 

2

0

( 1)

21

n sn s

s

x

n s s

++•

=

- Ê ˆ
Á ˜Ë ¯+ +

Â

 = 

2

0

( 1)
( 1)

21

n rr
n

r

x

n r r

+•

=

- Ê ˆ- Á ˜Ë ¯+ +
Â  {Changing the variable}

 = 

2

0

( 1)
( 1)

2( 1)

n rr
n

r

x

n r r

+•

=

- Ê ˆ- Á ˜Ë ¯+ +
Â

fi ( ) ( 1) ( )n
n nJ x J x- = -
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6.6  INTEGRAL FORM OF BESSEL’S FUNCTION

We know that

 

1

2

x
z

ze

Ê ˆ-Á ˜Ë ¯
 = 2 3

0 1 2 32 3

1 1 1
J z J z J z J

z z z

Ê ˆ Ê ˆÊ ˆ+ - + + + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
  (10)

Let  z = cos q + i sin q and 
1

cos sini
z

q q= -

\ z
n = cos n q + i sin nq and 

1
cos sin

n
n i n

z
q q= -  [by de Moivre’s theorem]

So that  
1n

n
z

z
+  = 

1
2 cos and 2 sinn

n
n z i n

z
q q- =

Substituting these values in (10), we get

 e
ix sin q = J0(x) + 2i sin q J1(x) + 2 cos 2 q J2(x) + 3i sin 3 q J3(x) + …

Since  e
ix sin q = cos (x sin q) + i sin (x sin q) (11)

Equating the real and imaginary parts in (11), we get

 cos (x sin q) = J0(x) + 2[J2(x) cos 2q + J4(x) cos 4q + …]  (12a)

 sin (x sin q) = 2[J1(x) sin q + J3(x) sin 3 q + …] (12b)

Equations (12a) and (12b) are known as Jacobi Series.

Multiplying both sides of (12a) by cos nq and integrating w.r.t. q between the limits 0 and p. (When 

n is odd, all terms on the RHS vanish. When n is even, all terms on the RHS except the one containing 

cos nq vanish). We get

 
0

cos( sin )cos

x

x n dq q qÚ  = 
0 when  is odd

( ) when is evenn

n

J x np

Ï
Ì
Ó

Similarly, multiplying (12b) by sin nq and integrating w.r.t. q between the limits 0 and p, we get

 
0

sin ( sin )sin

x

x n dq q qÚ  = 
( ) when  is odd

0 when is even

nJ x n

n

pÏ
Ì
Ó

Adding, we get

 

0

[cos ( sin ) cos sin ( sin ) sin ]x n x n d

p

q q q q q+Ú  = p Jn(x)

fi Jn(x) = 

0

1
cos ( sin )n x d

p

q q q
p

-Ú  for all integral values of n.
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Example 1  Prove that:

 (i) 1

2

( )J x  = 
2

sin x
xp

 (ii) 1

2

( )J x
-

 = 
2

cos x
xp

Solution We know that

 Jn(x) = 
2 4

2
1

2.2 ( 1) 2.4.2 ( 1) ( 2)2 1

n

n

x x x

n n nn

È ˘
- + -Í ˙

+ + ++ Í ˙Î ˚
  (1)

 (i) Replacing n by 
1

2
 in (1), we have

 1

2

( )J x  = 
1/2 2 4

1/2
1

3 52 3/2

x x xÈ ˘
- + -Í ˙

Í ˙Î ˚
 

 = 
3 51 1

12 3 5
1/2

2

x x x
x

x

È ˘
◊ - + -Í ˙
Í ˙Î ˚

  1n n nÈ ˘+ =Î ˚∵

 = 
3 52

3 5

x x
x

xp

È ˘
- + -Í ˙

Í ˙Î ˚
 

 J x1

2

( )  = 
p

x
x

2
sin

 (ii)  Replacing n by –1/2 in (1), we have

 1

2

( )J x
-

 = 
1/2 2 4

1/2
1

2 42 1/2

x x x
-

-

Ê ˆ
- + -Á ˜

Ë ¯
 

 J x1
–

2

( )  = 
p

x
x

2
cos

Example 2  Prove that

 J4(x) = 1 03 2

48 8 24
( ) 1 ( )J x J x

xx x

Ê ˆ Ê ˆ- + -Á ˜ Á ˜Ë ¯ Ë ¯

or express Jn(x) in terms of J0 and J1.

Solution Using recurrence relation (VI),

 Jn+1(x) = 1

2
( ) ( )n n

n
J x J x

x
-

Ê ˆ -Á ˜Ë ¯
 (1)
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Putting n = 1, 2, 3 in Eq. (1), we have,

 J2(x) = 1 0

1
2 ( ) ( )J x x J x

x
-È ˘Î ˚  (2)

 J3(x) = 
2 1

1
4 ( ) ( )J x x J x

x
-È ˘Î ˚  (3)

 J4(x) = 3 2

1
6 ( ) ( )J x x J x

x
-È ˘Î ˚  (4)

From (2) and (3)

 J3(x) = 1 0 12

8 4
( ) ( ) ( )J x J x J x

xx
- -  (5)

From (4) and (5)

 J4(x) = 

2

1 0 1 03 2

48 6 24 2
( ) ( ) ( ) ( )

x
J x J x J x J x

xx x

Ê ˆ-
- - +Á ˜

Ë ¯

 J4(x) = 
Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

J x J x
xx x

1 03 2

48 8 24
– ( ) + 1 – ( )

Example 3  Prove that

 x
2
Jn¢¢(x) = (n2 – n – x2) Jn(x) + x Jn+1(x), where n = 0, 1, 2, …

Solution Using recurrence relation (IV),

 xJ¢n(x) = nJn(x) – xJn+1(x) (1)

Differentiating (1) both sides w.r.t. ‘x’, we get

 xJ¢¢n(x) + J¢n(x) = nJ¢n(x) – {xJ¢n+1(x) + Jn+1(x)}

or x
2
J¢¢n(x) = (n – 1)x J¢n(x) – x{xJ¢n+1(x)} – x Jn+1(x) (2)

Now, using recurrence relation (III),

 xJ¢n(x) = –n Jn(x) + x Jn+1(x) (3)

Replacing n by (n + 1) in (3),

 xJ¢n+1(x) = –(n + 1) Jn(x) + x Jn (4)

Putting the value of x J¢n(x) and x J¢n+1(x) from (1) and (4) in (2), we get

 x2 J¢¢n = (n2 – n – x2) Jn + x Jn+1

Example 4  Prove that

 Jn+3 + Jn+5 = 4

2
( 4) nn J

x
++

Solution Using recurrence relation (VI), 2n Jn = x(Jn–1 + Jn+1)

Replacing n by n + 4, we get

 4

2
( 4) nn J

x
++  = Jn + 3 + Jn + 5



 Special Functions 6.11

or, Jn + 3 + Jn + 5 = nn J
x

+4

2
( + 4)

Example 5  Evaluate 4
1( )x J x dxÚ .

Solution Using recurrence relation (I),

 { }n
n

d
x J

dx
 = xn Jn – 1

fi 
1

n
nx J dx-Ú  = xn Jn (1)

Now, 
4

1x J dxÚ  = 2 2
1( )x x J dxÚ

 = 
2 2 2

2 2( ) 2 ( )x x J x x J dx- Ú  
2 2

1 2x J dx x JÈ ˘=Î ˚Ú∵

 = 
3 3

2 22x J x J dx- Ú
 Ú x J dx4

1  = x4 J2 – 2x3 J3 + c {by (1)}

Example 6  Prove that [J0(x)]2 + 2[J1(x)]2 + 2[J2(x)]2 + 2[J3(x)]2 + … = 1.

Solution Using Jacobi series,

 J0(x) + 2 J2(x) cos 2q + 2 J4(x) cos 4q + … = cos (x sin q) (1)

 2J1(x) sin q + 2 J3(x) sin 3q + … = sin (x sin q) (2)

Squaring (1) and (2) and integrating w.r.t. q between 0 and p,

 [J0(x)]2p + 2[J2(x)]2p + 2[J4(x)]2 p + … = 2

0

cos ( sin )x d

p

q qÚ  (3)

 2[J1(x)]p + 2[J3(x)]p + … = 2

0

sin ( sin )x d

p

q qÚ  (4)

Since 
2

0

cos n d

p

q qÚ  = 
2

0

sin
2

n d

p
p

q q =Ú

Adding (3) and (4), we get

 p{[J0(x)]2 + 2[J1(x)]2 + 2[J2(x)]2 + …} = 2 2

0 0

cos ( sin ) sin ( sin )]x x d d

p p

q q q q pÈ ˘+ = =Î ˚Ú Ú
 [J0(x)]2 + 2[J1(x)]2 + 2[J2(x)]2 + … = 1

EXERCISE 6.1

 1. Show that

 (i) J3/2(x) = 
2 1

sin cosx x
x xp

È ˘-Í ˙Î ˚
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 (ii) J5/2(x) = 
2

2

2 3 3
sin cos

x
x x

x xxp

È ˘Ê ˆ-
-Í ˙Á ˜

Ë ¯Í ˙Î ˚

 (iii) J7/2(x) = 
2

3 2

2 15 6 15
sin 1 cos

x
x x

x x xp

È ˘Ê ˆ- Ê ˆ- -Í ˙Á ˜ Á ˜Ë ¯Ë ¯Í ˙Î ˚
 2. Prove that

 (i) 2 2
1 1{ ( ) ( )} { ( ) ( )}n n n n

d
x J x J x J x J x

dx
+ += -

 (ii) x = 2 J0 J1 + 6 J1 J2 + … + 2(2n+ 1) Jn Jn+1 + …

 3. Prove that

 (i) J¢0 = –J1

 (ii) J2 – J0 = 2 J¢¢0

 (iii) J2 = 0 0

1
J J

x

Ê ˆ-¢¢ ¢Á ˜Ë ¯

 (iv) J2 + 3 J¢0 + 4 J¢¢¢0 = 0

 4. Solve 
2

2

2
4 0

d y dy
x x x y

dxdx
- + =  in terms of Bessel function.

 5. Prove that

 (i) 0

0

1
( ) cos( cos )J x x d

p

f f
p
= Ú

 (ii) 
0

0

1
( ) cos( sin )J x x d

p

f f
p
= Ú

 6. Prove that

 (i) cos x = J0 – 2 J2 + 2 J4 – …

 (ii) sin x = 2 J1 – 2 J3 + 2 J5 – …

 7. Prove that Jn(x) is an even function when n is even and is an odd function when n is odd.

 8. Prove that

 

/2

1/2

0

(2 )x J x dx

p

pÚ  = 1

 9. Show that

 (i) 
1

0

( ) ( )

x
n n

n nx J x dx x J x- =Ú

 (ii) 1 1
1

0

( ) ( )

x
n n

n nx J x dx x J x
+ +

+=Ú
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 10. Show that when n is an integral,

 p Jn = 

0

cos ( sin )n x d

p

q q q-Ú

 11. Prove 2 2 2 2
1 1

1
( ) 2n n n n

d n n
J J J J

dx x x
+ +

+Ê ˆ+ = -Á ˜Ë ¯

 12. Prove that J2
0 + 2(J1

2 + J2
2 + J3

2 + …) = 1.

6.7  LEGENDRE POLYNOMIALS

Legendre’s Equation

The differential equation of the form

 
2

2

2
(1 ) 2 ( 1)

d y dy
x x n n y

dxdx
- - + +  = 0

is known as Legendre’s differential equation (or Legendre’s equation) where n is a positive integer.

This equation can also be written as 

 2(1 ) ( 1)
d dy

x n n y
dx dx

Ï ¸- + +Ì ˝
Ó ˛

 = 0

6.8  SOLUTION OF LEGENDRE’S EQUATIONS

The Legendre’s equation is

 

2
2

2
(1 ) 2 ( 1)

d y dy
x x n n y

dxdx
- - + +  = 0 (13)

It can be solved in a series of ascending or descending powers of x. The solution in descending 

powers of x is more important.

Let us assume,

 y = 
0

k r
r

r

a x
•

-

=
Â

\ 
dy

dx
 = 1

0

( ) k r
r

r

a k r x
•

- -

=

-Â

and 

2

2

d y

dx
 = 2

0

( ) ( 1) k r
r

r

a k r k r x
•

- -

=

- - -Â

Substituting the value of y, 
2

2
and

dy d y

dx dx
 in (13), we have

 2 2 1

0 0 0

(1 ) ( ) ( 1) 2 ( ) ( 1)k r k r k r
r r r

r r r

x a k r k r x x a k r x n n a x
• • •

- - - - -

= = =

- - - - - - ◊ + +Â Â Â  = 0
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or 2

0

[( ) ( 1) { ( 1) ( )( 1) 2( )} ]k r k r
r

r

a k r k r x n n k r k r k r x
•

- - -

=

- - - + + - - - - - -Â  = 0

or 
2

0

[( ) ( 1) { ( 1) ( )( 1)} ]k r k r
r

r

a k r k r x n n k r k r x
•

- - -

=

- - - + + - - - -Â  = 0

or 2 2 2

0

[( ) ( 1) { ( ) ( )} ]k r k r
r

r

a k r k r x n k r n k r x
•

- - -

=

- - - + - - + - -Â  = 0

or 2

0

[( ) ( 1) ( )( 1)k r k r
r

r

a k r k r x n k r n k r x
•

- - -

=

- - - + - + + - +Â  = 0 (14)

which is an identity in x, we can equate to zero the coeffi cients of various power of x.

Therefore, equating to zero the coeffi cient of highest power xk, we get the initial equation

 a0(n – k) (n + k + 1) = 0 

Now, a0 π 0, as it is the coeffi cient of the fi rst term 

or 
( 1)

k n

k n

= ¸
˝= - + ˛

 (15)

Equating to zero the coeffi cient of the next lower power of x, i.e., xk–1. We have

 a1(n – k + 1) (n + k) = 0

\ a1 = 0, since neither (n – k + 1) nor (n + k) is zero for k = n or k = –(n + 1).

Again equating to zero the coeffi cient of the general term, i.e., of x
k–r, we get the recurrence 

relation

 ar–2 (k – r + 2) (k – r + 1) + (n – k + r) (n + k – r + 1) ar = 0

\ ar = 2

( 2) ( 1)

( )( 1)
r

k r k r
a

n k r n k r
-

- + - +
-
- + + - +

 (16)

Putting r = 3, a3 = 1

( 1) ( 2)

( 3)( 2)

k k
a

n k n k

- -
-
- + + -

 = 0, since a1 = 0

We have a1 = a3 = a5 = … – = 0

For the two values given by (15), there arise two cases.

Case I

When k = n, from (16), we have

 ar = 2

( 2) ( 1)

(2 1)
r

n r n r
a

r n r
-

- + - +
- ◊

- +

Putting r = 2, 4, … etc.

 a2 = 
0

( 1)

2 (2 1)

n n
a

n

-
-

-
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 a4 = 2

( 2)( 3)

4 (2 3)

n n
a

n

- -
-

◊ -

 = 0

( 1)( 2)

2.4 (2 1)(2 3)

n n n
a

n n

- -
◊ - -

, etc.

\ y = a0x
n + a2x

n–2 + a4x
n–4 + …

 y = 
È ˘
Í ˙◊Î ˚

n n nn n n n n n
a x x x

n n n

– 2 – 4
0

( – 1) ( – 1)( – 2)( – 3)
– + –

2 (2 – 1) 2.4 (2 – 1)(2 – 3)
  (17)

which is one solution of Legendre’s equation.

Case II
When k = –(n + 1)

 ar = 2

( 1)( )

(2 1)
r

n r n r
a

r n r
-

+ - +
+ +

Putting r = 2, 4, 6 … etc.

  a2 = 0

( 1)( 2)

2(2 3)

n n
a

n

+ +
+

,

 a4 = 2

( 3)( 4)

4 (2 5)

n n
a

n

+ +
◊ +

 = 0

( 1)( 2)( 3) ( 4)
etc.

2.4 (2 3) (2 5)

n n n n
a

n n

+ + + +
◊

◊ + +

\ y = 
1

0

n r
r

r

a x
•

- - -

=
Â

 = a0x
–n – 1 + a2x

–n – 3 + a4x
–n – 5 + …

 = 
È ˘

◊Í ˙◊ ◊Î ˚
n n nn n n n n n

a x x + x +
n n n

– – 1 – – 3 – – 5
0

( + 1)( + 2) ( + 1)( + 2)( + 3) ( + 4)
+

2 (2 + 3) 2.4 (2 + 3)(2 + 5)
  (18)

which is the second solution of Legendre’s equation.

Thus, two independent solution of (13) are given by (17) and (18). If we take 0

[1.3.5 (2 1)]n
a

n

-
=

 
. 

The solution (17) denoted by Pn(x) and is called Legendre’s function of the fi rst kind or Legendre 

polynomial of degree n.

Again, if we take 0
[1.3.5 (2 1)]

n
a

n
=

+ 
, the solution (18) is denoted by Qn(x) is called Legendre’s 

function of second kind.

Pn(x) and Qn(x) are two linearly independent solutions of (13). Hence, the general solution of (13) 

is 

 y = APn(x) + BQn(x), where A and B are arbitrary constants. (19)



6.16 Engineering Mathematics for Semesters I and II

Legendre’s function of the fi rst kind is denoted by

  Pn(x) = 
È ˘
Í ˙
Î ˚

n n nn n n n n n n
x x x

n n n n

– 2 – 4[1.3.5 (2 – 1)] ( – 1) ( – 1)( – 2)( – 3)
– + –

2(2 – 1) 2.4 (2 – 1)(2 – 3)

 
  (20)

Legendre’s function of the second kind is denoted by

 Qn(x) = 
È
Í
Î

n nn n n
x x

n n

–( + 1) –( + 3)( + 1)( + 2)
+

1.3 (2 + 1) 2(2 + 3) 

 
˘
˙
˚

n rn n n n
x

n n

–( + )( + 1) ( + 2) ( + 3) ( + 4)
+ +

2.4 (2 + 3) (2 + 5)
  (21)

6.8.1 Determination of Some Legendre’s Polynomials

Putting n = 0, 1, 2, 3, 4, 5, … in Eq. (20), we get

 P0(x) = 0 1
1

1 1
1, ( )

0 1
x p x x x= = =

 P2(x) = 2 0 21.3 2.1 1
(3 1)

2 2.3 2
x x x
È ˘- = -Í ˙Î ˚

 P3(x) = 3 1 31.3.5 3.2 1
(5 3 )

3 2.5 2
x x x x
È ˘- = -Í ˙Î ˚

 P4(x) = 4 2 0 4 21.3.5.7 4.3 4.3.2.1 1
(35 3 3)

4 2.7 2.4.7.5 8
x x x x x
È ˘- + = - +Í ˙Î ˚

 P5(x) = 5 3 1 5 31.3.5.7.9 5.4 5.4.3.2 1
(63 70 15 )

5 2.9 2.4.9.7 8
x x x x x x
È ˘- + = - +Í ˙Î ˚

6.9  GENERATING FUNCTION OF LEGENDRE’S POLYNOMIALS

To show that Pn(x) is the coeffi cient of hn in the expansion of (1 – 2xh + h2)–1/2 in ascending powers of 

h, we have.

 (1 – 2xh + h2)–1/2 = {1 – h(2x – h)}–1/2

  = 2 21 1.3
1 (2 ) (2 )

2 2.4
h x h h x h+ - + - + 

  1 11.3 (2 3)
(2 )

2.4 (2 2)

n nn
h x h

n

- --
+ -

-
 

 

  
1.3 (2 1)

(2 )
2.4 (2 )

n nn
h x h

n

-
+ - +

 
 

 

Therefore, coeffi cient of hn

 = 1 2
1

1.3 (2 1) 1.3 (2 3)
(2 ) (2 )

2.4 2 2.4 (2 2)

n n nn n
x C x

n n

- -- -
-

-
  

  

2 4
2

1.3 (2 5)
(2 )

2.4 (2 4)

n nn
C x

n

- --
+ -

-
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 = 
2 4

2 4

1.3 (2 1) 2 2 (2 2) ( 2)( 3)
2 ( 1)

2.4 2 2 1 (2 1)(2 3) 22 2

n n
n nn n x n n n n x

x n
n n n n

- -È ˘- - - -
- - + ◊ ◊ -Í ˙

- - -Í ˙Î ˚

 
 

 

 = 
2 41.3 (2 1) ( 1) ( 1)( 2)( 3)

2(2 1) 2.4 (2 1) (2 3)

n n nn n n n n n n
x x x

n n n n

- -È ˘- - - - -
- + ◊ -Í ˙- - -Î ˚

 
 

 = Pn(x)

Hence, 2 1/2

0

( ) (1 2 )n
n

n

h P x xh h
•

-

=

= - +Â , where P0(x) = 1

(1 – 2xh + h2)–1/2 is called the generating function of the Legendre polynomials.

6.10  RODRIGUES’ FORMULA

Pn(x) = 21
( 1)

2

n
n

n n

d
x

n dx
-  is known as Rodrigues’ formula.

Proof Let v = (x2 – 1)n then 2 1
1 ( 1) 2ndv

v n x x
dx

-= = - ◊

Multiplying both sides by (x2 – 1), we get

 (x2 – 1) v1 = 2nx(x2 – 1)n = 2nxv

or (1 – x2) v1 + 2nxv = 0

Differentiating (n + 1) times by Leibinitz’s theorem, we have

 2
2 1 1

( 1)
(1 ) ( 1)( 2 ) ( 2) 2 [ ( 1) ]

2
n n n n n

n n
x v n x v v n xv n v+ + +

È ˘+ ◊
- + + - + - + + +Í ˙

Î ˚
 = 0

or (1 – x2)vn +2 – 2xvn + 1 + n(n + 1)vn = 0

or 

2
2

2

( ) ( )
(1 ) 2 ( 1)n n

n

d v d v
x x n n v

dxdx
- - + +  = 0

which is Legendre’s equation and vn is its solution. But the solutions of Legendre’s equation are Pn(x) 

and Qn(x). 

Since vn = 2( 1)
n

n

d
x

dx
-  contains only positive powers of x, it must be a constant multiple of Pn(x),

i.e., vn = C Pn(x)

or C Pn(x) = 2( 1)
n

n

n

d
x

dx
-

 = [( 1) ( 1) ]
n

n n

n

d
x x

dx
- +  [differentiating n times by Leibnitz theorem]
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 = 
1

1
1 1

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
n n n

n n n n n n n

n n n

d d d
x x C n x x x x

dx dx dx

-
-

-
- + + ◊ - + + + + - 

 = 
1

1
1 1

( 1) ( 1) ( 1) ( 1)
n

n n n n n

n

d
x n C n x x x n

dx

-
-

-
- ◊ + ◊ - + + + + 

 = ( 1)n
n x + +  term containing powers of (x – 1)

Putting x = 1 on both sides,

 C Pn(1) = 2 or = 2n n
n C n◊ , since Pn(1) = 1

Substituting in (13), we get

 

n
n

n n n

d
P x x

n dx

21
( ) = ( – 1)

2

6.11  LAPLACE DEFINITE INTEGRAL FOR Pn(x)

(i) Laplace’s First Integral of Pn(x) 

If n is a positive integer,

  Pn(x) = 2

0

1
1 cos

n

x x d

p

f f
p
È ˘± -Í ˙Î ˚Ú

Proof We know that 

 
0

cos

d

a b

p
f

f±Ú  = 
2 2

a b

p

-
, where a2 > b2

Putting a = 1 – hx and 2( 1)b h x= -

So that a2 – b2 = (1 – hx)2 – h2(x2 – 1) = 1 – 2xh + h2

We have

 p(1 – 2xh + h2)–1/2 = 
1

2

0

1 ( 1) coshx h x d

p

f f
-

È ˘- ± -Í ˙Î ˚Ú

 = 

1

2

0

1 1 cosh x x d

p

f f

-
È ˘
- -Í ˙

Î ˚
Ú ∓[ \

 = 
1

0

[1 ]ht d

p

f--Ú  
2where 1 cost x x fÈ ˘= -Î ˚∓

fi 
0

( )n
n

n

h P xp
•

=
Â  = 2 2

0

(1 )n n
ht h t h t d

p

f+ + + +Ú  

Equating the coeffi cient of hn on both sides, we have
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 p Pn(x) = 2

0 0

1 cos
n

n
t d x x d

p p

f f fÈ ˘= -Í ˙Î ˚Ú Ú ∓

 Pn(x) = 2

0

1
1 cos

n

x x d

p

f f
p
È ˘± -Í ˙Î ˚Ú

(ii) Laplace’s Second Integral for Pn(x)

When n is a positive integer,

 Pn(x) = 
1

20

1

( 1) cos
n

d

x x

p
f

p
f

+
È ˘± -Í ˙Î ˚

Ú

Proof We have

 
0

cos

d

a b

p
f

f±Ú  = 
2 2

a b

p

-
, where a2 > b2

Putting a = xh – 1 and 2 1b h x= -

So that a2 – b2 = 1 – 2xh + h2

We have

 p(1 – 2xh + h2)–1/2 = 
1

2

0

1 1 cosxh h x d

p

f f
-

È ˘- + ± -Í ˙Î ˚Ú

or 

1/2

2

1 1
1 2x

h h h

p
-

È ˘- +Í ˙Î ˚
 = 

1

2

0

( 1) cosh x x d

p

f f

-
È ˘

± -Í ˙
Î ˚
Ú [ \

or 
0

1
( )nn

n

P x
h h

p •

=
Â  = 1

0

( 1)ht d

p

f--Ú  where 2( 1) cost x x f= ± -

 = 

1

0

1 1
1 d

ht ht

p

f

-
È ˘-Í ˙Î ˚Ú

 = 
2 2

0

1 1 1 1
1

n n
d

ht ht h t h t

p

f
È ˘+ + + + +Í ˙Î ˚Ú   

 = 
2 2 3 3 1 1

0

1 1 1 1
n n

d
ht h t h t h t

p

f
+ +

È ˘+ + + + +Í ˙Î ˚Ú   

 = 
1 1

0 0

1 1
n n

n

d
h t

p

f
•

+ +
=

È ˘
Í ˙
Í ˙Î ˚

Â Ú
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 = 
1 1

20 0

1

1 cos
n n

n

d

h
x x

p
f

f

•

+ +
=

È ˘
Í ˙
Í ˙È ˘± -Î ˚Î ˚

Â Ú

Equating the coeffi cient of 
1

1
n

h
+

, we have

 p Pn(x) = 
1

20 1 cos
n

d

x x

p
f

f
+

È ˘± -Í ˙Î ˚

Ú

or Pn(x) = 
1

20

1

1 cos
n

d

x x

p
f

p
f

+
È ˘± -Í ˙Î ˚

Ú

6.12  ORTHOGONAL PROPERTIES OF LEGENDRE’S POLYNOMIAL

 (i)  

1

1

( ) ( )m nP x P x dx

+

-
Ú  = 0 if m π  n

 (ii)  
1

2

1

[ ( )]nP x dx

+

-
Ú  = 

2

2 1n +

Proof (i)  Legendre’s equation may be written as

 2(1 ) ( 1)
d dy

x n n y
dx dx

Ï ¸- + +Ì ˝
Ó ˛

 = 0

 2(1 ) ( 1)n
n

d Pd
x n n P

dx dx

Ï ¸
- + +Ì ˝

Ó ˛
 = 0 (22a)

and        
2(1 ) ( 1)m

m

d Pd
x m m P

dx dx

Ï ¸
- + +Ì ˝

Ó ˛
 = 0 [\  Pn(x) and Pm(x) are the solutions of

Legendre’s equation] (22b)

Multiplying (22a) by Pm and (22b) by Pn and then subtracting, we have

 { }2 2(1 ) (1 ) ( 1) ( 1)n m
m n n m

d P d Pd d
P x P x n n m m P P

dx dx dx dx

Ï ¸ Ï ¸
- - - + + - +Ì ˝ Ì ˝

Ó ˛ Ó ˛
 = 0

Integrating between the limits –1 to 1,

 

1 1
2 2

1 1

(1 ) (1 )n m
m n

d P d Pd d
P x P x dx

dx dx dx dx
- -

È ˘ È ˘Ï ¸ Ï ¸
- - -Ì ˝ Ì ˝Í ˙ Í ˙

Ó ˛ Ó ˛Î ˚ Î ˚
Ú Ú

  + {n(n + 1) – m(m + 1)} 

1

1

m nP P dx

-

-
Ú  = 0
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Integrating by parts,

 

1 1
2 2

1 1

(1 ) (1 )n m n
m

d P d P d P
P x x dx

dx dx dx

+

- -

È ˘ È ˘
- - -Í ˙ Í ˙

Î ˚ Î ˚
Ú

 

1 1
2 2

1 1

(1 ) (1 )m n m
n

d P d P d P
P x x dx

dx dx dx

+ -

- -

È ˘ Ï ¸
- - + -Ì ˝Í ˙
Î ˚ Ó ˛

Ú

 

1

1

[ ( 1) ( 1)] m nn n m m P P dx

+

-

+ + - + ¥ Ú  = 0

Hence, Ú m nP x P x dx

–1

–1

( ) ( )  = 0 since m π n

(ii) (1 – 2x h + h2)–1/2 = 

•

Â
n=0

hnPn(x)

Squaring both sides, we have

 (1 – 2xh + h2) = 

1

2 2

0 0

{ ( )} ( ) ( )n m n
n m n

n m n
m n

h P x h P x P x
•

+

= =
π

+Â Â  

Integrating between the limits –1 to 1,

 

1 1
2 2

0 , 01 1

[ ( )] ( ) ( )n m n
n m n

n m n

h P x dx h P x P x dx
• •

+

= =- -

+Â ÂÚ Ú  = 

1

2
1

(1 2 )

dx

xh h- - +Ú

or 

1

2 2

0 1

[ ( )]n
n

n

h P x dx

+•

= -
Â Ú  = 

1

2
1

(1 2 )

dx

xh h

+

- - +Ú

Since the other integrals on the LHS are zero by the property 

1

1

( ) ( )m np x P x dx

-
Ú  = 0 as m π n

fi 

1
2 2

0 1

[ ( )]n
n

n

h P x dx
•

= -
Â Ú  = 

1
2

1

1
log (1 2

2
xh h

h

+

-
È ˘- - +Î ˚

 = 2 21
log (1 ) log(1 )

2
h h

h
È ˘- - - +Î ˚

 = 

2
1 1 1 1

log log
2 1 1

h h

h h h h

È ˘Ê ˆ È ˘+ +Í ˙ = Í ˙Á ˜- -Ë ¯Í ˙ Î ˚Î ˚

 = 
3 52

3 5

h h
h

h

È ˘
+ + +Í ˙

Í ˙Î ˚
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2 3 4

log(1 )
2 3 4

h h h
h h

È
+ = - + - +ºÍ

ÍÎ
∵  and 

2 3 4

log(1 )
2 3 4

h h h
h h

˘
- = - - - - º˙

˙̊

 = 
2 4 2

2 1
3 5 2 1

n
h h h

n

È ˘
+ + + +Í ˙

+Í ˙Î ˚
  

 = 

2

0

2

(2 1)

n

n

h

n

•

= +Â

Equating the coeffi cient of h2n,

 Ú nP x dx

1
2

–1

[ ( )]  = 
n

2

2 + 1

6.13  RECURRENCE FORMULAE FOR Pn(x)

(i) (2n + 1) xPn = (n + 1) Pn +1 + n Pn–1

or

  n Pn = (2n – 1) x Pn–1 – (n – 1) Pn–2, n ≥ 2

Proof From generating function, we have

 (1 – 2xh + h2)–1/2 = 
0

( )n
n

n

h P x
•

=
Â  (23a)

Differentiating both sides of (23a) w.r.t. ‘h’ we get

 
2 3/21

(1 2 ) ( 2 2 )
2

xh h x h
-- - + - +  = 

1

0

( )n
n

n

n h P x
•

-

=
Â  (23b)

Multiplying both sides of (23b) by 1 – 2xh + h2, we get

 (x – h) (1 – 2xh + h2)–1/2 = 2 1

0

(1 2 ) ( )n
n

n

xh h n h P x
•

-

=

- + Â

or (x – h) 
0

( )n
n

n

h P x
•

=
Â  = 2 1

0

(1 2 ) ( )n
n

n

xh h n h P x
•

-

=

- + Â , by (23a)

or 
1

0 0

( ) ( )n n
n n

n n

x h P x h P x
• •

+

= =

-Â Â  = 1 1

0 0 0

2n n n
n n n

n n n

n h P x n h P n h P
• • •

- +

= = =

- +Â Â Â

Equating coeffi cients of hn from both sides, we get

 xPn – Pn–1 = (n + 1) Pn+1 – 2x◊nPn + (n – 1)Pn–1

or                   
n n nn xP n P n P+1 –1(2 + 1) = ( + 1) +  (24)
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Replacing n by n – 1 is (24), we have

 n Pn = (2n – 1) x Pn–1 – (n – 1) Pn–2 (25)

(ii) n Pn = x P¢n – P¢n–1

Proof We have      (1 – 2xh + h2)–1/2 = 
0

( )n
n

n

h P x
•

=
Â  (26)

Differentiating (26) w.r.t. ‘h’

 
2 3/21

(1 2 ) ( 2 2 )
2

xh h x h
-- - + - +  = 1

0

n
n

n

n h P
•

-

=
Â

or (x – h) (1 – 2xh + h2)–3/2 = 
1

0

n
n

n

n h P
•

-

=
Â  (27)

Again differentiating (26) w.r.t. ‘x’ we have,

 h(1 – 2xh + h2)–3/2 = 
0

n
n

n

h P
•

=

¢Â

or h(x – h) (1 – 2xh + h2)–3/2 = 
0

( ) n
n

n

x h h P
•

=

- ¢Â  [Multiplying both sides by (x – h)]

or 
1

0

n
n

n

h nh P
•

-

=
Â  = 

0

( ) n
n

n

x h h P
•

=

- ¢Â  by (27)

or 
0

n
n

n

nh P
•

=
Â  = 1

0 0

n n
n n

n n

x h P h P
• •

+

= =

-¢ ¢Â Â

Equating coeffi cients of hn on both sides, we get

 n Pn = x P¢n – P¢n–1

(iii) (2n + 1) Pn = P¢n+1 – P¢n–1

Proof From the recurrence relation (I), we have

 (2n + 1) xPn = (n + 1) Pn+1 + n Pn–1

Differentiating w.r.t. ‘x’, we get

 (2n + 1) xP¢n + (2n + 1) Pn = (n + 1) P¢n+1 + n P¢n–1

or (2n + 1) (n Pn + P¢n–1) + (2n + 1) Pn = (n + 1) P¢n+1 + n P¢n–1

[∵ from recurrence (II), x P¢n = n Pn + P¢n–1]

 (2n + 1) (n + 1) Pn = (n + 1) P¢n+1 + n P¢n–1 – (2n + 1) P¢n–1

or (2n + 1) (n + 1) Pn = (n + 1) Pn+1 – (n + 1) P¢n–1

 (2n + 1) Pn = P¢n+1 – P¢n–1
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(iv) (n + 1) Pn = P¢n+1 – xP¢n

Proof From recurrence formulae (II) and (III), we have

 nPn = xP¢n – P¢n–1 (28)

and (2n + 1)Pn = P¢n+1 – P¢n – 1 (29) 

Subtracting (28) from  (29), we have

 (n + 1)Pn = P¢n+1 – xP¢n

(v) (x2 – 1)P¢n = nxPn – nPn–1

Proof From the recurrence relations (II) and (IV), we have.

 nPn = xP¢n – P¢n–1 (30)

and (n + 1) Pn = P¢n+1 – xP¢n (31)

Replacing n by (n – 1) in (31)

 nPn–1 = P¢n – xP¢n–1 (32)

Multiplying both sides of (30) by x,

 x◊nPn = x2
P¢n – xP¢n–1 (33)

Subtracting (33) from (32), we have

 n(Pn–1 – xPn) = (1 – x2) P¢n

or (x2 – 1) P¢n = nxPn – n◊Pn–1

(vi) (1 – x2) P¢n = (n + 1)(xPn – Pn+1)

Proof By the recurrence formulae (I)

 (2n + 1) xPn = (n + 1) Pn+1 + nPn–1 (34a)

which may be written as

 (n + 1) xPn + nxPn = (n + 1) Pn+1 + nPn–1

or (n + 1)(xPn – pn+1) = n(pn–1 – xPn) (34b)

From (34a) and (34b),

 (1 – x2) P¢n = (n + 1) (xPn – Pn+1)

Example 7  Show that

 (i) Pn(1) = 1

 (ii) Pn(–1) = (–1)n

 (iii) Pn(–x) = (–1)n Pn(x)

Solution

 (i) We know that

 (1 – 2xh + h2)–1/2 = 1 + hP1(x) + h2(P2(x) + h3
P3(x) + … + hn

Pn(x) + …

  Putting x = 1 in the above equation, we get

 (1 – 2h + h2)–1/2 = 1 + hP1(1) + h2(P2(1) + h3
P3(1) + … + hn

Pn(1) + …
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 [(1 – h)2]–1/2 = 
1

0

(1) (1 ) (1)n n
n n

n

h P h h P
•

-

=

fi - =Â Â

fi 1(1) (1 )n
nh P h

-= -Â  = 1 + h + h2 + h2 + … + hn …

Equating the coeffi cient of hn on both sides,

we have Pn(1) = 1

 (ii) By the generating function, we have

 (1 – 2xh + h2)–1/2 = 
0

( )n
n

n

h P x
•

=
Â  (1)

  Putting –x for x in both sides,

  (1 + 2xh + h2)–1/2 = 

0

( )n
n

n

h P x
•

=

-Â  (2)

  Again putting –h for h in (1), we have

 (1 + 2xh + h2)–1/2 = 
0

( 1) ( )n n
n

n

h P x
•

=

-Â  (3)

  From (2) and (3),

 
0

( )n
n

n

h P x
•

=

-Â  = 
0

( 1) ( )n n
n

n

h P x
•

=

-Â  (4)

  Comparing the coeffi cient of hn in both sides of (4),

 Pn(–x) = (–1)n Pn(x) (5)

  Putting x = 1 in (5) we get

 Pn(–1) = (–1)n Pn(1) = (–1)n·1 (∵   Pn(1) = 1)

 (ii) If n is even then by (5),

  Pn(–x) = Pn(x), hence Pn(x) in even function of x

 (iii) If n is odd then from (5),

  Pn(–x) = –Pn(x), hence Pn(x) is an odd function

Example 8   Show that

 (i) P2n(0) = 
1.3.5. (2 1)

( 1)
2.4.6 2

n n

n

- -
-

 

 (ii) P2n–1(0) = 0

Solution We know that

 
2

2 ( )n
nh P xÂ  = (1 – 2xh + h2)–1/2 (1)
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Putting x = 0 in (1), we get

 2
2 (0)n

nh PÂ  = (1 + h2)–1/2

 = 2 2 2 2 3

1 3 1 3 5

1 2 2 2 2 2
1 ( ) ( )

2 2 3
h h h

Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ- - - - -Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯Ê ˆ+ - + + +Á ˜Ë ¯
 

 
2

1 3 5 1
1

2 2 2 2
( )n

n

h
n

Ê ˆ Ê ˆ Ê ˆ Ê ˆ- - - - - +Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯
+ +

 

   (2)

Equating the coeffi cient of h2n in (2) both sides, we have

 P2n(0) = 
1 3 5 1

1
2 2 2 2

n
Ê ˆ Ê ˆ Ê ˆ Ê ˆ- - - - - +Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

 

 = 
1.3.5 (2 1)

( 1)
2

n

n

n

n

-
-

 

 = 
1.3.5 (2 1)

( 1)
2.4.6.8 2

n n

n

-
-

 

 

Now, coeffi cient of z(2n+1) in (2), we get P2n+1(0) = 0

Example 9  Show that

 

1
2

1

(1 ) m nx P p dx

-

- ¢ ¢Ú  = 

0 when 

2 ( 1)
, when

2 1

m n

n n
m n

n

πÏ
Ô

+Ì =Ô +Ó
Solution We have

 

1
2

1

(1 ) m nx P P dx

-

- ¢ ¢Ú  = 

1
1

2 2

1
1

(1 ) (1 )m n n m

d
x P P P x P dx

dx-
-

È ˘È ˘- - -¢ ¢Í ˙Î ˚ Î ˚Ú

 = 
1

2

1

0 [(1 ) ]n m

d
P x P dx

dx-

- - ¢Ú  [Integrating by parts]

 = 

1

1

[ ( 1) ]n mP m m P dx

-

- - +Ú

2[(1 ) ] ( 1)m m

d
x P m m P

dx

È ˘- = - +¢Í ˙Î ˚
∵  [by Legendre’ equation]

 = 

1

1

( 1) ( 1) 0 0n mm m P P dx m m

-

+ = + =Ú  [by orthogonal property if m π n

or = 
2 ( 1)

2 1

n n

n

+
+

 if m = n]
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Example 10  Prove that: 

1
2

1 1

1

( ) ( )n nx P x P x dx+ -
-
Ú  = 

2 ( 1)

(2 1) (2 1) (2 3)

n n

n n n

+
- + +

Solution By the recurrence relation (I),

 (2n + 1) x Pn = (n + 1) Pn+1 + n Pn–1 (1)

Replacing n by (n + 1) and (n – 1) in (1),

 (2n + 3) x Pn+1 = (n + 2) Pn+2 + (n + 1) Pn (2)

And (2n – 1)x Pn–1 = n ◊ Pn + (n – 1) Pn–2 (3)

Multiplying (2) and (3) and integrating from –1 to 1, we get

 

1
2

1 1

1

(2 3)(2 1) n nn n x P P dx+ -
-

+ + Ú  = 

1 1
2

2

1 1

( 1) ( 2)n n nn n P dx n n P P dx-
- -

+ + + ◊Ú Ú

 

1 1
2

2 2 2

1 1

( 1) ( 1) ( 2)n n n nn P P dx n n P P dx- + -
- -

+ - + - +Ú Ú

or 

1
2

1 1

1

(2 3)(2 1) n nn n x P P dx+ -
-

+ + Ú  = 
2

( 1)
2 1

n n
n

+ ◊
+

 

1 1
2

1 1

2
, 0

2 1
n m nP dx P P dx

n
- -

È ˘
= =Í ˙

+Í ˙Î ˚
Ú Ú∵

or Ú n nx P P dx

1
2

+1 –1

–1

 = 
n n

n n n

2 ( + 1)

(2 – 1)(2 + 1)(2 + 3)

Example 11  Prove that

 nP dxÚ  = 1 1

1

2 1
n nP P c

n
+ -È ˘- +Î ˚+

Solution From the recurrence relation (III), we have

 (2n + 1) Pn = P¢n+1 – P¢n–1 (1)

Integrating (1) both sides, we have

 (2 1) nn P dx+ Ú  = Pn + 1 – Pn – 1 + c

or nP dxÚ  = 
1 1

2 1

n nP P
c

n

+ --
+

+

or Ú nP dx  = È ˘Î ˚n nP P c
n

+1 –1

1
– +

2 + 1

EXERCISE 6.2

 1. Prove that P¢n+1 + P¢n  = P0 + 3P1 + … + (2n + 1) Pn

 2. Expand  f(x) = x2 in a series of the form 
0

( )n n

n

C P x
•

=
Â . Find series of Legendre’s polynomial 

for x2.
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 3. Show that 
2

2 3/2

1

(1 2 )

z

xz z

-
- +

 = 
0

(2 1) n
n

n

n P z
•

=

+ ◊Â

 4. Show that Pn(x) = P¢n+1(x) – 2xP¢n(x) + P¢n–1(x)

 5. If m < n, show that 

1

1

( )m
nx P x dx

-
Ú  = 

1 2(1/2) ( 1 2 ( )

(2 12 ( 3/2)

n

n

n n

nn

++
=

++

 6. Show that all the roots of Pn(x) = 0 are real and lie between –1 and 1.

 7. If m > n – 1 and n is a positive integer, prove that

 

1

0

( )m
nx P x dxÚ  = 

( 1)( 2) ( 2)

( 1)( 1) ( 3)

m m m m n

m n m n m n

- - - +
+ + + - - +

 

 

 8. Show that 
0

( )n

n

P x
•

=
Â  = 

1

2 2x-

 9. Evaluate (i) 

1
3

4

1

( )x P x dx

-
Ú , (ii) 

1
3

3

1

( )x P x dx

-
Ú

 10. 

21
2

1

(1 ) n

d
x P dx

dx
-

Ê ˆ- Á ˜Ë ¯Ú  = 
2 (2 1)

2 1n

n n +
+

 11. 

1

1

1

( ) ( )n nx P x P x dx-
-
Ú  = 

2

2

4 1

n

n -

 12. Express in terms of Legendre polynomials

 (i) x3 + 1 (ii) 4x
3 – 3x

2 + 2x + 1 (iii) 2 – 3x + 4x
2

 13. Prove that

 Pn(x) = P¢n+1(x) – 2x P¢n(x) + P¢n–1(x)

 14. (n + 1)2 Pn
2 – (x2 – 1) Pn

–2 = P0
2 + 3p1

2 + 5 p2
2 + … + (2n + 1) Pn

2

 15. Show that 

1
4

6

1

( )x P x dx

-
Ú  = 0

 16. Prove that the function 2( 1)
n

n

n

d
y x

dx
= -  satisfi es the Legendre’s differential equation 

(1 – x2) y¢¢ – 2xy¢ + n(n + 1)y = 0. Hence, obtain Rodrigues’ formula for Legendre’ polynomial 

Pn(x).

 17. If x > 1, show that Pn(x) < Pn+1(x)

 18. Prove that 

 (i) 

1

1

( )nP x dx

-
Ú  = 2 if n = 0
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 (ii) 

1

1

( )nP x dx

-
Ú  = 0 if n ≥ 1

Answers

 2. x2 = C0P0(x) + C1P1(x) + C2P2(x) = 0 2

2
(1/3) ( ) ( )

3
P x P x

Ê ˆ+ Á ˜Ë ¯

 9. (i) 0 (ii) 
4

35

 12. (i)    3 1 0

2 3
( ) ( ) ( )

5 5
P x P x P x+ +

 (ii) 
3 2 1

8 22
( ) 2 ( ) ( )

5 5
P x P x P x- +

 (iii) 
0 1 2

10 8
( ) 3 ( ) ( )

3 3
P x P x P x- +

6.14  BETA FUNCTION

The defi nite integral 

1
1 1

0

(1 )m n
x x dx
- --Ú  for m > 0, n > 0 is called the Beta function and is denoted by 

b(m, n).

Thus, b Ú m nm n x x dx, m n

1
+1 –1

0

( , ) = (1 – ) > 0, > 0

Beta function is also called the Eulerian integral of the fi rst kind.

6.14.1 Symmetry of Beta Function: b(m, n) = b(n, m)

We have

 b(m, n) = 

1
1 1

0

(1 )m n
x x dx
- --Ú

 = 

1
1 1

0

(1 ) [1 (1 )]m n
x x dx

- -- - -Ú  
0 0

( ) ( )

a a

f x dx f a x dx
È ˘

= -Í ˙
Í ˙Î ˚
Ú Ú∵

 = 

1
1 1

0

(1 )n m
x x dx
- --Ú

 = b(n, m)

Hence, b(m, n) = b(n, m)
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6.14.2 Transformation of Beta Function

(i) b(m, n) = 2
p

Ú
/2

0

sin 2m – 1 q cos 2n – 1 q q dq

Proof We have

 b(m, n) = 

1
1 1

0

(1 )m n
x x dx
- --Ú  {Putting x = sin2 q,  \  dx = 2 sin q cos q dq}

 = 

/2
2 2 2 1

0

sin (1 sin ) 2 sin cosm n
d

p

q q q q q- -- ◊Ú

 = 

/2
2 1 2 1

0

2 sin cosm n
d

p

q q q- -Ú

(ii) b(m, n) = 
•

Ú
m –

m+ n

x
dx

x

1

0 (1 + )

Proof We know that

 b(m, n) = 

1
1 1

0

(1 )m n
x x dx
- --Ú

Put x = 
1

1 y+
 so that 

2

1

(1 )
dx dy

y
= -

+

Also, when x = 0, y = •
And when x = 1, y = 0

Thus, b(m, n) = 

10

1 2

1 1 1
1

1(1 ) (1 )

n

m
dy

yy y

-

-
•

È ˘È ˘
- -Í ˙Í ˙++ +Í ˙Î ˚ Î ˚

Ú

 = 
0 1

1 1 2(1 ) (1 ) (1 )

n

m n

y
dy

y y y

-

- -
•

-
+ + +Ú

 = 
1

0
(1 )

n

m n

y
dy

y

• -

++Ú

 b(m, n) = 

1

0
(1 )

n

m n

x
dx

x

• -

++Ú  [By property of defi nite integral]

Since beta function is symmetrical in m and n, we have

 b(n, m) = 
1

0
(1 )

m

m n

x
dx

x

• -

-+Ú
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But b(m, n) = b(n, m)

\ b
•

Ú
m

m+ n

x
m n dx

+ x

–1

0

( , ) =
(1 )

6.15  GAMMA FUNCTION

The defi nite integral 
1

0

x n
e x dx

•
- -Ú , for n > 0 is called the Gamma function and is denoted by ( )n

Thus, ( )n  = 1

0

, for 0x n
e x dx n

•
- - >Ú

Gamma function is also called the Eulerian integral of the second kind.

Reduction Formula for |(n)

By defi nition of Gamma function,

 ( 1)n +  = ( 1) 1

0 0

,x n n x
e x dx x e dx

• •
- + - -=Ú Ú

 = 1

0
0

x n x n
e x e n x dx

••- - -È ˘- +Î ˚ Ú

 = 1

0

0 lim
n

x n

xx

x
n e x dx

e

•
- -

Æ•
+ + Ú  (35)

Now, lim
n

xx

x

eÆ•
 = 

2
lim

1
2

n

nx

x

x x
x

n

Æ•
+ + + + +  

 lim
n

xx

x

eÆ•
 = 

1

1
lim 0

1 1 1

1

x

n n

x

n nx x

Æ•
-

=
+ + + + +

+
  

\   Eq. (35) becomes, ( 1n +  = 1

0

0 x n
n e x dx

•
- -+ Ú

\          n n n( + 1) = ( )  [which is the reduction formula for n ]

Now, if n is a positive integer, we get

 ( 1)n +  = ( )n n

 = ( 1) ( 1)n n n- -  [By repeated application of reduction formula]
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 = ( 1) ( 2) ( 2)n n n n- - -

 = n(n – 1) (n – 2) … 3.2.1 (1)

But 1 = 1 1

0 0

1x x
e x dx e dx

• •
- - -= =Ú Ú

Hence, 1n +  = n(n – 1) (n – 2) … 3.2.1

 = n

Hence, n n+ 1 =  when n is a positive integer.

6.16  RELATION BETWEEN BETA AND GAMMA FUNCTIONS

 b(m, n) = 
m n

m n+

Proof We know that

 ( )n  = 1

0

n kx n
k e x dx

•
- -Ú  (36)

Replacing k by z in (36), we have

 ( )n  = 1

0

n zx n
z e x dx

•
- -Ú

Multiplying both sides by e–z zm–1, we get

 
1z m

n e z
- -

 = 1 1

0

n zx n z m
z e x e z dx

•
- - - -Ú

 = 1 (1 ) 1

0

n m z x n
z e x dx

•
+ - - + -Ú

Integrating both sides w.r.t. z from 0 to •,

 
1

0

( ) z m
n e z dz

•
- -Ú  = 

1 (1 ) 1

0 0

n m z x n
z e x dx dz

• •
+ - - + -

È ˘
Í ˙
Í ˙Î ˚
Ú Ú

 ( ) ( )n m  = 1

0

( )

(1 )

n

m n

m n
x dx

x

•
-

+

+
+Ú

 ( ) ( )n m  = 
1

0

( )
(1 )

n

m n

x
m n dx

x

• -

+
+

+Ú
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 ( ) ( )n m  = ( ) ( , )m n m nb+  
1

0

( , )
(1 )

n

m n

x
m n dx

x
b

• -

+

È ˘
=Í ˙

+Í ˙Î ˚
Ú∵

\ b
m n

m n
m n

( ) ( )
( , ) =

( + )

Example 12  Prove that 

 (i) 
1

2
 = p

 (ii) 
2

0

x
e dx

•
-Ú  = 

2

p

 (iii) ( ) (1 )n n-  = 
sin n

p

p
 where 0 < n < 1

Solution

 (i) We have

 b(m, n) = 
( ) ( )

( )

m n

m n+

Putting m = 
1

2
n = , we get

 
1 1

,
2 2

b
Ê ˆ
Á ˜Ë ¯  = 

(1/2) (1/2)

(1)

 
1 1

,
2 2

b
Ê ˆ
Á ˜Ë ¯  = 

2

(1/2)È ˘
Î ˚  (1) 1È ˘=Î ˚∵

or 

2

1

2

È ˘Ê ˆ
Í ˙Á ˜Ë ¯Í ˙Î ˚

 = 

1 11
1 1

2 2

0

(1 )x x dx
- -
-Ú

 = 

1
1/2 1/2

0

(1 )x x dx
- --Ú

Now, putting x = sin2q, i.e., dx = 2 sin q cos q dq, when x = 0, q = 0 and when x = 1, q = p/2.

We have  

2

1

2

È ˘Ê ˆ
Í ˙Á ˜Ë ¯Í ˙Î ˚

 = 
0

1 1
2 sin cos

sin cos
d

p

q q q
q q
◊ ◊ ◊Ú

 

2

1

2

È ˘
Í ˙
Í ˙Î ˚

 = 

/2
/2

0

0

2 2[ ]d

p
pq q p= =Ú
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\ 
Ê ˆ
Á ˜Ë ¯

1

2
 = p

 (ii) Let                  I = 
2

0

x
e dx

•
-Ú  (1)

  Putting x2 = t, i.e., 2x dx = dt in (1),

i.e., dx = 1/21

2
t dt
-

We have

 I = 1/2

0

1

2

t
e t dt

•
- -Ú  [∵ when x = 0, t = 0 and when x = •, t = •]

 = 
1 1

2 2 2

pÊ ˆ =Á ˜Ë ¯
 

1

2
p

Ê ˆÊ ˆ =Á ˜Á ˜Ë ¯Ë ¯
∵

\ 

•

Ú xe dx
2–

0

 = 
p

2

 (iii) ( ) (1 )n n-  = , where 0 1
sin

n
n

p

p
< <

We have b(m, n) = 
1

0
(1 )

n

m n

x
dx

x

• -

++Ú

and b(m, n) = 
( ) ( )

, where 0, 0
( )

m n
m n

m n
> >

+

\ 
( ) ( )

( )

m n

m n+
 = 

1

0
(1 )

n

m n

x
dx

x

• -

++Ú

Putting m + n = 1 or m = 1 – n in the above relation, we get,

 
(1 ) ( )

(1)

n n-
 = 

1

0
1

n
x

dx
x

• -

+Ú  where 0 < n < 1 [∵ m > 0 fi (1 – n) > 0 fi n < 1]

But  (1)  = 
1

0

1, also
1 sin

n
x

dx
x n

p

p

• -

=
+Ú

\ , where 0 <  < 1n
p

p
n n

n
( ) (1 – ) =

sin
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6.17  DUPLICATION FORMULA

To show that 
2 1

1
( ) (2 )

2 2 m
m m m

p
-

Ê ˆ+ =Á ˜Ë ¯
 where m > 0.

Proof We know that  b(m, n) = 
m n

m n+
, where m > 0, n > 0

If we take n = m then b(m, m) = 

2

( )

(2 )

m

m

È ˘
Î ˚

 (37a)

Again, by defi nition of Beta function, we have

 b(m, m) = 

1
1 1

0

(1 )m m
x x dx
- --Ú  (37b)

Putting x = sin2 q fi dx = 2 sin q cos q dq, we get

 b(m, m) = 

/2
2( 1) 2( 1)

0

sin cos 2 sin cosm m
d

p

q q q q q- -Ú
 [when x = 0, q = 0 and when x = 1, q = p/2]

 = 

/2 /2
2 1 2 1 2 1

0 0

2 sin cos 2 (sin cos )m m m
d d

p p

q q q q q q- - -◊ =Ú Ú

 = 

2 1/2 /2
2 1

2 2
0 0

sin 2 1
2 sin 2

2 2

m

m

m
d d

p p
q

q q q

-
-

-
Ê ˆ =Á ˜Ë ¯Ú Ú

 = 2 1

2 2
0

1
sin

22

m

m

dy
y

p
-

-
◊Ú , 

1
Putting 2

2
y d dyq q= fi =

 = 

/2
2 1 2 1

2 1 2 1
0 0

1 1
sin sin

2 2

m m

m m
y dy y dy

p p
- -

- -
= ◊Ú Ú

 = 
/2

2 1

2 2
0

1
sin cos

2

m

m
y y dy

p
-

-
∞Ú

 = 
2 1

1 1/2 (2 1 1) 1/2 (0 1)

2 2 1/2 (2 1 0 2)
m

m

m
-

- + +

- + +

 = 
1 2 1

1 ( ) (1/2 1 ( )

2 21 1

2 2

m m

m m

m m

p
- -

= ◊
Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

 (1/2 pÈ ˘=Î ˚∵
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Equating the two values of b(m, m) obtained in (37a) and (37b), we get

 

2

( )

(2 )

m

m

È ˘
Î ˚  = 

2 1

1 ( )

2 1

2

m

m

m

p
-

◊
◊
Ê ˆ+Á ˜Ë ¯

or 
pÊ ˆ

Á ˜Ë ¯ m
m m m

2 –1

1
( ) + = (2 )

2 2

Evaluate the following integrals,

 (i) 1

0

cosax m
e bx x dx

•
- -◊Ú

 (ii) 1

0

sinax m
e bx x dx

•
- -◊Ú

We have 1

0

ax ibx m
e e x dx

•
- -Ú  = ( ) 1

0

( )

( )

a ib x m

m

m
e x dx

a ib

•
- - - =

-Ú

 = ( ) ( )m
a ib m

--  (38)

First of all, separate (a – ib)–m into real and imaginary parts putting a = k cos q and b = k sin q so 

that 1tan
b

a
q -=  and 2 2

k a b= +

Then (a – ib)–m  = [k(cos q – (sin q)]–m = k–m(cos q – i sin q)–m

 = k–m (cos mq + i sin mq) (by De-Moivre’s theorem)

By (38), we have 1

0

(cos sin )ax ibx m m
e e x dx k m i m mq q
•
- - -= +Ú  [∵ e

iq = cos q + sin q]

or                    
1

0

( )
(cos sin ) (cos sin )ax m

m

m
e bx i bx x dx m i m

k
q q

•
- -+ = +Ú

or 
1 1

0 0

cos sinax m ax m
e bx x dx i e bx x dx

• •
- - - -◊ + ◊Ú Ú  = 

( ) ( )
cos sin

m m

m m
m i m

k k
q q+  (39)

Equating real and imaginary parts in (2), we have

 
1

0

cosax m
e bx x dx

•
- -◊Ú  = 

( )
cos

m

m
m

k
q  

and 
1

0

sinax m
e bx x dx

•
- -◊Ú  = 

( )
sin

m

m
m

k
q

where k = 2 2 1and tan
b

a b
a

a - Ê ˆ+ = Á ˜Ë ¯
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Some Transformations of Beta Function

 (i) Prove 

/2
2 1 2 1

0

sin cosm n
d

p

q q q- -Ú  = 
( ) ( )

2 ( )

m n

m n+

Proof We know that b(m, n) = 

/2
2 1 2 1

0

2 sin cosm n
d

p

q q q- -Ú  (40a)

and b(m, n) = 
( ) ( )

( )

m n

m n+
 (40b)

From (40a) and (40b), we get

 
( ) ( )

( )

m n

m n+
 = 

/2
2 1 2 1

0

2 sin cosm n
d

p

q q q- -Ú

\ 

p

q q qÚ m n m n
d

m n

/2
2 –1 2 –1

0

( ) ( )
sin cos =

2 ( + )
 Proved.

 (ii) Prove that 

/2

0

1 1

2 2
sin cos

2
2

2

p q

p q

d
p q

p

q q q

+ +Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

=
+ +Ê ˆ

Á ˜Ë ¯

Ú

Proof We have

 
/2

2 1 2 1

0

sin cosm n
d

p

q q q- -Ú  = b(m, n)

or 

/2
2 1 2 1

0

sin cosm n
d

p

q q q- -Ú  = 
( ) ( )

( )

m n

m n+

Putting 2m – 1 = p    2n – 1 = q, i.e., 
1 1

(  +1) and ( 1)
2 2

m p n q= = +

We get  

p

q q q

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ
Á ˜Ë ¯

Ú p q

p q

d
p q

/2

0

+ 1 + 1

2 2
sin cos =

+ + 2

2

Example 13  Evaluate (i) 
8 6

24
0

(1 )

(1 )

x x
dx

x

• -
+Ú

 (ii) 

4 5

15
0

(1 )

(1 )

x x
dx

x

• -
+Ú
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Solution (i) Let I = 
8 14

24 24
0 0(1 ) (1 )

x x
dx dx

x x

• •

-
+ +Ú Ú

  = 
9 1 15 1

9 15 15 9
0 0

(1 ) (1 )

x x
dx dx

x x

• •- -

+ +
-

+ +Ú Ú

 = b(9, 15) – b(15, 9)

 = 0  ∵   b(m, n) = b(n, m)

 (ii) Let I = 
4 9

15 15
0 0

(1 ) (1 )

x x
dx dx

x x

• •

+
+ +Ú Ú

   = 
5 1 10 1

5 10 10 5
0 0

(1 ) (1 )

x x
dx dx

x x

• •- -

+ +
+

+ +Ú Ú

 = b(5, 10) + b(10, 5) = 2b(5, 10)

 = 
2 (5) (10) 2 4 9

(5 10) 15

◊
=

+

 = 
1

5005

Example 14  Show that

 

1

4
0 (1 )

dx

x-
Ú  = 

2

2 1

48 p

È ˘Ê ˆ
Í ˙Á ˜Ë ¯Í ˙Î ˚

Solution Let I = 

1

4
0 (1 )

dx

x-
Ú

Putting x4 = sin2 q, i.e., 1/2sinx q= , so that 1/21
sin cos

2
dx dq q q-= , when x = 0, q = 0 and when 

x = 1, 
2

p
q =

 I = 

1/2
/2 /2

1/2 0

0 0

1
sin cos

12 sin cos
cos 2

d

d

p pq q q
q q q

q

-

-=Ú Ú

 = 

2 2

1 11 1
4 41 14 2

2 4 43 1 3 1 1
2 1

4 4 4 4 4

p
p

Ê ˆ È ˘Ê ˆ Ê ˆÊ ˆ Ê ˆ Í ˙Á ˜Á ˜ Á ˜Á ˜ Á ˜ Ë ¯ Ë ¯Í ˙Ë ¯ Ë ¯ Ë ¯ Î ˚◊ = = ◊
Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ-Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯
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 = 

2 2

2
1 1

4 4 2 1

114 4 48
sin

4 2

p p

ppp p

È ˘ È ˘Ê ˆ Ê ˆ
Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯ È ˘Í ˙ Í ˙ Ê ˆÎ ˚ Î ˚◊ = = ◊ Í ˙Á ˜Ë ¯Ê ˆ Í ˙Î ˚Á ˜Ë ¯

Example 15  Prove that

 (i) 
0

sin b z
dz

z

• ◊
Ú  = 

2

p

 (ii)  

2
3 1/3

0

(8 )x dx
--Ú  = 

2

3 3

p

Solution (i) Let I = 
0 0

sinxz
e bz dx dz

• •
-Ú Ú  (1)

 = 
0 0

sin
xz

e
bz dz

z

•• -È ˘
Í ˙
-Í ˙Î ˚

Ú  (Integrating w.r.t. x)

 = 

0

sin bz dz

z

•

Ú  (2)

  Integrating (1) fi rst w.r.t. z, we get

 I = 
0 0

sinxz
e bz dz dx

• •
-

È ˘
◊Í ˙

Í ˙Î ˚
Ú Ú

 = 1

2 2
00

tan
2

b x
dx

bb x

p
••

-È ˘= =Í ˙+ Î ˚Ú  (3)

  From (2) and (3), we get

 

•

Ú
bz

dz
z

0

sin
 = 

p

2

 (ii) Let I = 

2 2
3 1/3 2 3 1/3 2

0 0

(8 ) (8 )x dx x x x dx
- - -- = -Ú Ú

 Putting  x3 = 8y fi 3x
2 dx = 8dy

Hence, I = 
1

2/3 1/3

0

8
(8 ) (8 8 )

3
y y dy
- -- ◊Ú

 = 

1
2/3 2/3 1/3 1/3

0

8
8 8 (1 )

3
y y dy

- - - -◊ -Ú
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 = 

1
(1/3) 1 (2/3) 1

0

1 1 1 2
(1 ) ,

3 3 3 3
y y dy b- - Ê ˆ- = Á ˜Ë ¯Ú

 = 

1 2 1 1
1

1 1 13 3 3 3

3 3 3(1)1 2 sin
33 3

p

p

Ê ˆ Ê ˆ Ê ˆ Ê ˆ-Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯
= = ◊

Ê ˆ+Á ˜Ë ¯

 = 
2 2

3 3 3 3

p p
◊ =

Example 16  Show that 

/2 /2

0 0

tan cot
2

d d

p p
p

q q q q= =Ú Ú
Solution

 

/2

0

tan d

p

q qÚ  = 

/2 /2

0 0

tan cot
2

d d

p p
p

q q q q
Ê ˆ- =Á ˜Ë ¯Ú Ú  [By property of defi nite integral]

 = 

/2
1/2 1/2

0

1 1
1 1 1 32 2

4 42 2
cos sin

2 (1)1 1
2

2 22
2

d

p

q q q-

Ê ˆ- + + Ê ˆ Ê ˆÁ ˜
Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

◊ = =
Ê ˆ- + +Á ˜
Á ˜Ë ¯

Ú

 = 
1 1 1

1
2 4 4

Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯

 = 
1

2
sin

4

p

p
 (1 )

sin
n n

n

p

p

È ˘◊ - =Í ˙Î ˚
∵

 = 
2

p

Example 17  Show that 

1

0

(1 )p q r
x x dx-Ú  = 

1 1
, 1

p
r

q q
b
Ê ˆ+

+Á ˜Ë ¯

Solution Putting xq = y, qx
q–1 dx = dy or 

1q

q
q y dx dy

Ê ˆ-
Á ˜Ë ¯◊ =

 

1

0

(1 )p q r
x x dx-Ú  = 

1
( / )

1
0

1
(1 )p q r

q

q

y y dy

qy

Ê ˆ-
Á ˜Ë ¯

-Ú
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 = 

1
( 1)/

0

1 1 1
(1 ) 1, 1p q q r p q

y y dy r
q q q

b- + Ê ˆ- +
- = + +Á ˜Ë ¯Ú

 = 
1 1

, 1
p

r
q q

b
Ê ˆ+

+Á ˜Ë ¯

Example 18  Prove that 
( 1), )

( , )

m n m

m n m n

b

b

+
=
+

Solution By the symmetry of Beta function,

 b(m + 1, n) = b(n, m + 1)

 = 

1 1
1 ( 1) 1 1

0 0

(1 ) (1 )n m m n
x x dx x x dx
- + - -- = -Ú Ú

 = 

1 1
1

00

(1 ) (1 ) ( 1)
n n

m mx x
x m x dx

n n

-È ˘
- - - -Í ˙

Í ˙Î ˚
Ú  [Integrating by parts]

 = 

1
1 1

0

[1 (1 )](1 )n mm
x x x dx

n

- -- - -Ú  

1

0

1 ) 0
n

m x
x

n

Ï ¸È ˘Ô Ô- =Í ˙Ì ˝
Í ˙Ô ÔÎ ˚Ó ˛

∵

 = 

1 1
1 1 1

0 0

(1 ) (1 )n m n mm
x x dx x x dx

n

- - -
È ˘

- - -Í ˙
Í ˙Î ˚
Ú Ú

 = [ ( , ) ( , 1)] ( , ) ( 1, )
m m

n m n m m n m n
n n

b b b b- + = +

fi 1 ( 1, )
m

m n
n

b
Ê ˆ+ +Á ˜Ë ¯

 = ( , )
m

m n
n

b

fi 
( 1, )

( , )

m n

m n

b

b

+
 = 

m

m n+

Example 19  Show that 

/2 /2

0 0

sin
sin

d
d

p p
q

q q
q

¥Ú Ú  = p

Solution

LHS = 

/2 /2

0 0

sin
sin

d
d

p p
q

q q
q

¥Ú Ú  = 
/2 /2

1/2 0 1/2 0

0 0

sin cos sin cosd d

p p

q q q q q-◊ ¥ ◊Ú Ú

    = 

1 1 1 1 1 1
1 (0 1) 1 (0 1)

2 2 2 2 2 2

1 1 1 1
2 0 2 2 0 2

2 2 2 2

È ˘ È ˘Ê ˆ È ˘ Ê ˆ È ˘+ + - + +Í ˙ Í ˙Á ˜ Á ˜Í ˙ Í ˙Ë ¯ Ë ¯Î ˚ Î ˚Î ˚ Î ˚¥
Ï ¸ Ï ¸È ˘ È ˘+ + - + +Ì ˝ Ì ˝Í ˙ Í ˙Î ˚ Î ˚Ó ˛ Ó ˛
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 = 

3 1 1 1 1

4 2 4 2 4

5 3 1 1
2 2 2.2

4 4 4 4

p p

p

Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ ◊Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯
¥ = =

Ê ˆ Ê ˆ Ê ˆ◊Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

EXERCISE 6.3

 1. Show that 
1 1

( , )
1

m n
m n

m n
b

- ◊ -
=

+ -
 for m, n positive integer.

 2. Evaluate

 (i) 
44

0

x
I x e dx

•
-= Ú  (ii) 

/2
6 7

0

sin cos d

p

q q qÚ

 3. Evaluate

 (i) 

/2

0

(tan ) d

p

q qÚ  (ii) 

11

0

1
log

n

dx
x

-
Ê ˆ
Á ˜Ë ¯Ú

 4. Show that 

1

1
0

1

sin ( / )
(1 )n n

dx

n n
x

p

p
= ◊

-
Ú

 5. Prove that 

1
1

0

( )ax n

n

n
e x dx

a

- - =Ú

 6. Show that 
1

0

( 1)
, 1

(log )

c

x c

x c
dx c

e c

•

+

+
= >Ú

 7. Evaluate 

 (i) (4.5)  (ii) 
9 7

,
2 2

b
Ê ˆ
Á ˜Ë ¯

 (iii) b(2.5, 1/5)

 8. Evaluate

 (i) ( )1/4

0

( )
x

x e dx

•
-Ú  (ii) 

1
1/2 2 1/3

0

( ) (1 )x x dx-Ú

 9.  (i)     
9/2(2 )

(0.1) (0.2) (0.3) (0.9)
10

p
= ; provided – 1 < 2x < 1

 (ii) 23 3 1
sec

4 4 4
x x x xp p

Ê ˆ Ê ˆ Ê ˆ- + = -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
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 10. Prove that

 (i) 

2

1
1/4

0

1
2

4
{( 3) (7 )}

3
x x dx

p

Ê ˆ
Á ˜Ë ¯

- - =Ú

 (ii) 
/2

0

1 1 3 3
tan sec

42 4 4
d

p

q q q p
Ï ¸Ê ˆ Ê ˆÔ Ê ˆ ÔÈ ˘+ = +Ì ˝Á ˜Á ˜ Á ˜Î ˚ Ë ¯Ë ¯ Ë ¯Ô ÔÓ ˛

Ú

 11. Show that 

2

/2

4 4 1/2 1/4
0

1

4

( cos sin ) 4( )

d

a b ab

p
q

q q p

Ê ˆ
Á ˜Ë ¯

=
+ +Ú

 12. Assuming ( ) (1 ) cosec , 0 1n n n np p- = < < , then show that 
1

0

: 0 1
1 sin

p
x

dx p
x p

p

p

• -

= < <
+Ú

 13. Evaluate

 (i) 2

0

cos x dx

•

Ú  (ii) 
2cos

2
x dx

p
•

-•
Ú  (iii) 

1

4
0 1

dx

x+
Ú

 14. Show that

 (i) 6 2

0

45

8

x
x e dx

•
- =Ú  (ii) 

1

0 log

dx

x
p=

-Ú

 15. Prove that

 (i) 

1 12

4 4
0 0

4 21 1

x dx dx

x x

p
◊ =

- +
Ú Ú

 (ii) 

1 2

1
0

( 1)
(log )

( 1)

m n

n

n
x x dx

m
+

-
=

+Ú  where n is a positive integer and m > –1 

 16. Prove that

 

2
2

0 0
2 2

y
y e

y e dx dx
y

p
• • -

- ¥ =Ú Ú

Answers

 2. (i) 
1 5

4 4

Ê ˆ
Á ˜Ë ¯

  (ii) 
42

3 7 11 13◊ ◊ ◊

 3. (i) 
2

p
  (ii) ( )n
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 7. (i) 0.1964 (ii) 0.1227 (iii) 11.629

 8. (i) 
3

2
p  (ii) 

3 4

4 3

7
2

12

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

 13. (i) 
1

2 2

p
 (ii) 1  (iii) 

2

1 1

48 p

Ê ˆ
Á ˜
Ë ¯

SUMMARY
1. Bessel’s Equation

The differential equation of the form

2 2

2 2

1
1

d y dy n
y

x dxdx x

Ê ˆ
+ + -Á ˜

Ë ¯
 = 0 or 

2
2 2 2

2
( ) 0

d y dy
x x x y y

dxdx
+ + - =

is called Bessel’s equation of order 2, where n is a non-negative constant.

2. Recurrence Formulae/Relations of Bessel’s Equation

 (i) 1{ ( )} ( )n n
n n

d
x J x x J x

dx
-=

 (ii) 1{ ( )} ( )n n
n n

d
x J x x J x

dx

- -
-= -

 (iii) J¢n(x) = Jn–1(x) – n

n
J

x

Ê ˆ
Á ˜Ë ¯

 or xJ¢n = –nJn + xJn–1

 (iv) J¢n(x) = 1( ) ( )n n

n
J x J x

x
+

Ê ˆ
-Á ˜Ë ¯

 or   x J¢n = nJn – xJn+1

 (v) 2J¢n(x) = Jn–1 – Jn+1

 (v) Jn–1(x) + Jn+1(x) = 
2

( )n

n
J x

x

Ê ˆ
Á ˜Ë ¯

3. Generating Function of Jn(x)

The function 

1

2

x
z

ze

Ê ˆ-Á ˜Ë ¯
 is called the generating function. When n is a positive integer, Jn(x) is the coeffi cient 

of zn in the expansion of 

1

2

x
z

ze

Ê ˆ-Á ˜Ë ¯
 in ascending and descending power of z.

Also, Jn(x) is the coeffi cient of z–n multiplied by (–1)n in the expansion of 

1

2

x
z

ze

Ê ˆ-Á ˜Ë ¯
, i.e.,

 (i) 

1

2 ( )

x
z

nz
n

n

e z J x

Ê ˆ •-Á ˜Ë ¯

+-•

= Â
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 (ii) 

1

2 ( 1) ( )

x
z

n nz
n

n

e J x z

Ê ˆ •-Á ˜Ë ¯ -

+-•

= -Â

4. Legendre Polynomial

The differential equation of the form

  
2

2

2
(1 ) 2 ( 1)

d y dy
x x n n y

dxdx
- - + +  = 0

is known as Legendre’s differential equation or Legendre’s equation where n is a positive integer.

5. Rodrigues’ Formula

  

21
( ) ( 1)

2

n
n

n n n

d
P x x

n dx
= -

6. Orthogonal Properties of Legendre’s Polynomial

 (i) 

1

1

( ) ( ) 0 ifm nP x P x dx m n

+

-

= πÚ

 (ii)  

1
2

1

2
[ ( )]

2 1
nP x dx

n
-

=
+Ú , if m = n

7. Recurrence Formulae for Pn(x)

 (i) (2n + 1) xPn = (n + 1) Pn +1 + n Pn–1

  or n Pn = (2n – 1) x Pn–1 – (n – 1) Pn–2, n ≥ 2

 (ii) n Pn = x P¢n – P¢n–1

 (iii) (2n + 1) Pn = P¢n+1 – P¢n–1

 (iv)  (n + 1) Pn = P¢n+1 – xP¢n
 (v) n(Pn–1 – xPn) = (1 – x2) P¢n
  or (x2 – 1) P¢n = n(xPn – Pn–1)

 (vi) (1 – x2) P¢n = (n + 1)(xPn – Pn+1)

8. Beta Function

The defi nite integral 

1
1 1

0

(1 )m n
x x dx
- --Ú  for m > 0, n > 0 is called the Beta function and is denoted by 

b(m, n).

Thus,  

1
1 1

0

( , ) (1 ) , 0, 0m n
m n x x dx m nb + -= - > >Ú

The Beta function is also called the Eulerian integral of the fi rst kind.
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9. Gamma Function

The defi nite integral 1

0

x n
e x dx

•
- -Ú , for n > 0 is called the Gamma function and is denoted by ( )n .

Thus,  ( )n  = 1

0

, for 0x n
e x dx n

•
- - >Ú

The Gamma function is also called Eulerian integral of the second kind.

10. Some Important Formulae/Relations

 (i) ( 1)n +  = ( )n n  and 1n n+ =  when n is a positive integer.

 (ii) 
1

2
p=

 (iii) 
2

0
2

x
e dx

p
•
- =Ú

 (iv) ( ) (1 )
sin

n n
n

p

p
- =  , where 0 < n < 1

 (v) 

/2
2 1 2 1

0

( ) ( )
sin cos

2 ( )

m n m n
d

m n

p

q q q- - =
+Ú

 (vi) 

/2

0

1 1

2 2
sin cos

2
2

2

p q

P q

d
p q

p

q q q

+ +Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

=
+ +Ú

 (iv) Duplication Formula: 
1

( ) (2 )
2 2 1

m m m
m

pÊ ˆ
+ =Á ˜Ë ¯ -

 , where  m > 0.

 (v) Relation between Beta and Gamma Functions:

   b(m, n) = 
m n

m n+

OBJECTIVE-TYPE QUESTIONS

 1. Gn
 is equal to

 (a) 1

0
, 0x n

e x dx n
• - - >Ú

 (b) 1

0
, 0x n

e x dx n
p - - >Ú

 (c) 
/2

1

0
, 0x n

e x dx n
p - - >Ú

 (d) 
/4

0
, 0x

e dx n
p - >Ú

 2. G(1/2) is equal to

 (a) p (b) p/2

 (c) p  (d) 
2

pÊ ˆ
Á ˜Ë ¯
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 3. The value of G(–3/2) is

 (a) 
2

p
 (b) 

4

3

p

 (c) 
4

2

p-
 (d) 

2

p
-

 4. Beta function which is denoted by b(m, n) is 

defi ned by the integral 

 (a) 
1

1 1

0
(1 )m n

x x dx
- +-Ú

 (b) 
1

1 1

0
(1 )m n

x x dx
- --Ú

 (c) 
1

1 1

0
(1 )m n

x x dx
+ --Ú

 (d) 
1

1 1

0
(1 )m n

x x dx
+ +-Ú

 5. The value of 
1

11 16

0
(1 )x x dx-Ú  is

 (a) b(5, 7) (b) b(6, 8)

 (c) b(11, 15) (d) b(15, 15)

 6. The value of 1 1l m

D
x y dx dy
- -ÚÚ  where D is 

the domain x £ 0, y £ 0, and x + y £ 1 is

 (a) 
1

l m

l m

G G
G + +

 (b) 
l m

l m

G G
G +

 (c) 
l m

l m

G +
G G

 (d) 
1l m

l m

G + +
G G

 7. 
( 1, )

( , )

m n

m n

b

b

+
 is equal to

 (a) 
m

n
 (b) 

1m

n

+

 (c) 
1m

n

-
 (d) 

m

m n+

 8. For all positive values of n > 0, the value of 

( 1)n +
 is

 (a) n! (b) nGn

 (c) Gn (d) (n – 1)!

 9. The value of 
2

0

x
e dx
• -Ú  is equal to

 (a) 
2

p
 (b) 

2

pÊ ˆ
Á ˜Ë ¯

 (c) /2p  (d) p

 10. The value of 
40 1

dx

x

•

+Ú
 is

 (a) 
4

p
 (b) 2p

 (c) 
2

4

p
 (d) 

2

2

p

 11. The value of b(1, n) + b(m, 1) is

 (a) m + n (b) m – n

 (c) 
m n

mn

-
 (d) 

m n

mn

+

ANSWERS

 1. (a) 2. (c) 3. (b) 4. (b) 5. (d) 6. (a) 7.(d) 8. (b) 9. (c) 10. (c)

 11. (d)





7.1  INTRODUCTION

Vector calculus (or analysis) is a branch of mathematics concerned with differentiation and integration 

of vector fi elds. Vector calculus plays an important role in differential geometry and in the study 

of partial differential equations. It is used extensively in physics and engineering, especially in the 

description of electromagnetic fi elds, fl uid fl ow, and gravitational fi elds. In this chapter, we shall study 

the vector differential and integral calculus. We often call this study as vector fi eld theory or vector 

analysis. We fi rst introduce the some concepts.

(i) Scalar Function

A scalar function f(x, y, z) is a function defi ned at each point in a certain domain D in space. Its value is 

real and depends only on the point P(x, y, z) in space, but not on any particular coordinate system being 

used, for example, the distance function in 3D space which defi nes the distance between the points

P(x, y, z) and Q(x0, y0, z0), then

D = f(P) = 2 2 2
0 0 0( ) ( ) ( )x x y y z z- + - + -  defi nes a scalar fi eld.

(ii) Vector Function

A function 1 2 3
ˆˆ ˆ( )F F P F i F j F k= = + +

  
 defi ned at each point P Œ D is called a vector function. We 

say that a vector fi eld is defi ned in D. In Cartesian coordinates, we can write

F
 

 = 1 2 3
ˆˆ ˆ( , , ) ( , , ) ( , , )F z y z i F z y z j F z y z k+ +

If the scalar and vector fi elds depend on time also then we denote them as f(P, t) and F
 

(P, t), 

respectively. Both the fi elds are independent of the choice of the coordinate systems.

(iii) Level Surfaces

If f(x, y, z) be a single-valued continuous scalar function defi ned at every point P(x, y, z) in the domain 

D. Then f(x, y, z) = c, a constant defi nes the equation of a surface and is called a level surface of the 

function. For the different values of C, we obtain the different surfaces, no two of which intersect.

7.2  PARAMETRIC REPRESENTATION OF VECTOR FUNCTIONS

The two-dimensional curve C can be parametrized by x = x(t), y = y(t), a £ t £ b. Then, the position 

vector of a point P on the curve C can be written as follows:

7
Vector Differential

and Integral Calculus
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 r
 
(t) = ˆ ˆx t i + y t j( ) ( )

Similarly, a three-dimensional curve can be parametrized as

 r
 
(t) = ˆˆ ˆ £ £x t i y t j + z t k a t b( ) + ( ) ( ) ;

Parametric Forms of the Standard Curves

(i) Straight Line ( )r t
 

 = a bt+
  

The parametric form is

 r
 
(t) = ˆ ˆ(1 ) 0 1t i t j t+ - £ £

(ii) Circle x
2 + y2 = a2, the parametric form of the circle is

 r
 
(t) = ˆ ˆcos sin ; 0 2a t i a t j t p+ £ £

(iii) Parabola Consider the parabola y2 = 4ax.

Then we assume y = t as a parameter and the parametric form of the parabola as

 r
 
(t) = 

2

ˆ ˆ;
4

t
i t j t

a

Ê ˆ
+ - • < < •Á ˜

Ë ¯

(iv) Ellipse The parametric form of the ellipse 
2 2

2 2
1

x y

a b
+ =  can be written as

  r
 
(t) = ˆ ˆcos sin ; 0 2a t i b t j t p+ £ £

7.3   LIMIT,  CONTINUITY,  AND DIFFERENTIABILITY OF A VECTOR 
FUNCTION

A vector function F
 

(t) is said to a limit ‘l’, when t tends to t0, if for any given positive number Œ, 

however small, there corresponds a positive number d such that

 | F
 

(t) – l| < e, whenever |t – t0| < d 

If F
 

(t) tends to a limit ‘l’ as t tends to t0,

\  
0

lim ( )
t t

F t
Æ

 

 = l

A vector point function F
 

(t) is said to be continuous for a value t0 of t if F
 

(t0) is defi ned and for any 

given positive number e, however small, there exists a positive number d such that

 | F
 

(t) – F
 

(t0)| < e, whenever |t – t0| < d.

A vector function F
 

(t) is said to be differentiable at t = t0, if the limit 
0

0

0
0

( ) ( )
lim
t

F t t F t

tÆ

+ -
 exists.
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If the limit exists then it is denoted by ( ) or
dF

F t
dt

¢
 

 
. In Cartesian coordinates, the component of 

F
 

(t), F
 

1(t), F
 

2(t), and F
 

3(t) are differentiable at t0, i.e., 
1 2 3

ˆˆ ˆ( ) ( ) ( ) ( )
dF

F t F t i F t j F t k
dt

= = + +¢ ¢ ¢ . Let 

F
 

(t) = r
 
(t) = ˆˆ ˆ( ) ( ) ( )x t i y t j z t k+ +  be the parametric representations.

Then 
dr

dt
 = 

( ) ( ) ( ) ˆˆ ˆ( )
dx t dy t dz t

r t i j k
dt dt dt

= + +¢

7.4  GRADIENT,  DIVERGENCE, AND CURL

7.4.1 Gradient of a Scalar Field

The gradient of a scalar fi eld is a vector fi eld that points in the direction of the greatest rate of increase 

of the scalar fi eld, and whose magnitude is the greatest rate of change.

The gradient of a scalar fi eld ‘f’ is denoted by grad f or —
 

f and is defi ned as

 —
 

f = ˆˆ ˆ∂ ∂ ∂
∂ ∂ ∂

f f f
i j k

x y z
+ +

Note The del operator —
 

 operates on a scalar fi eld and produces a vector fi eld.

Geometrical Representation of the Gradient

Let f(P) = f(x, y, z) be a differentiable scalar fi eld. Let f(x, y, z) = l be a level surface and P0 be a point 

on it. There are infi nite numbers of smooth curves on the surface passing through the point P0. Each of 

these curves has a tangent at P0. A vector normal to this plane at P0 is called the normal vector to the 

surface at this point.

Fig. 7.1

Consider ˆˆ ˆ( ) ( ) ( ) ( )r t x t i y t j z t k= + +  be the position vector on the curve C at the point P. Since 

the curve lies on the surface, we have 

 f(x(t), y(t), z(t)) = l



7.4 Engineering Mathematics for Semesters I and II

Then

 
df

dt
 = 0 0

f dx f dy f dz

x dt y dt z dt

∂ ∂ ∂
fi + + =

∂ ∂ ∂

or  ˆ ˆˆ ˆ ˆ ˆf f f dx dy dz
i j k i j k

x y z dt dt dt

Ê ˆ∂ ∂ ∂ Ê ˆ
+ + ◊ + +Á ˜Á ˜ Ë ¯∂ ∂ ∂Ë ¯

 = 0

or ( )f r t— ◊ ¢
  

 = 0

Let —
 

f (P) π 0 and ( ) 0.r t π¢
 

 Now, r
 
¢(t) is a tangent vector to C at P and lies in the tangent plane to 

the surface at P. Hence, —
 

f is orthogonal to every tangent vector at P.

\   —
 

f is the vector normal to the surface f(x, y, z) = l at the point P.

Note The unit normal vector ˆ
 

f
n

f

grad
=

grad

7.4.2 Divergence of a Vector Field

Let 1 2 3
ˆˆ ˆ( , , ) ( , , ) ( , , )V V x y z i V x y z j V x y z k= + +

 
 be a differential vector function, where x, y, z are 

Cartesian coordinates, and V1, V2, V3 are the components of V
 

. Then the divergence of V
 

 is denoted 

by div V
 

 or V— ◊
  

 and is defi ned as

 div V
 

 = 31 2 VV V

x y z

∂∂ ∂
+ +

∂ ∂ ∂

Another common notation for the divergence of V
 

 is 

 div V
 

 or V— ◊
  

 = 1 2 3
ˆ ˆˆ ˆ ˆ ˆi j k V i V j V k

x y z

Ê ˆ∂ ∂ ∂ È ˘+ + ◊ + +Á ˜ Î ˚∂ ∂ ∂Ë ¯

 div V
 

 = 
∂∂ ∂

∂ ∂ ∂
VV V

+
x y z

31 2+

Hence, the divergence of a vector function is a scalar function.

Note Let V
 

 denote the velocity of a fl uid in a medium. 

If div V
 

 = 0 then the fl uid is said to be incompressible. In electromagnetic theory, if div V
 

 = 0 then 

the vector fi eld V
 

 is said to be solenoidal.

7.4.3 Physical Interpretation of Divergence

Suppose that there is a fl uid motion whose velocity at any point is V
 

 (x, y, z). Then the loss of fl uid per 

unit volume per unit time in a small parallelepiped having centre at the point P and edges parallel to the 

co-ordinate axes and having lengths dx, dy, dz respectively, is given by

 div V
 

 = —
 

·V
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Let V
 

 = 1 2 3
ˆˆ ˆ .V i V j V k+ +

x-component of velocity V at P = V1 (x, y, z).

\   x-component of V
 

 at centre of the face AFED which is perpendicular to the x-axis and is nearer 

to the origin O.

 = 
1 , ,

2

dx
V x y z

Ê ˆ
-Á ˜Ë ¯

 = 1
1( , , )

2

Vdx
V x y z

x

∂
+

∂
  [By Taylor’s theorem]

 = 1
1( , , )

2

Vdx
V x y z

x

∂
-

∂
 approximately.

Similarly, the x-component of V
 

 at the centre of the opposite face 

GHCB

 = 1
1

2

Vdx
V

x

∂
+

∂
 approximately

\   Volume of fl uid entering the parallelepiped across AFED per unit time.

 = 1
1

2

Vdx
V dydz

x

∂Ê ˆ
-Á ˜Ë ¯∂

Also, volume of fl uid going out of the parallelepiped across GHCB per unit time

 = 1
1

2

Vdx
V dy dz

x

∂Ê ˆ
+Á ˜Ë ¯∂

Therefore, loss in volume per unit time in the direction of the x-axis

 = 1 1
1 1

2 2

V Vdx dx
V dydz V dydz

x x

∂ ∂Ê ˆ Ê ˆ
+ - -Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

 = 1V
dx dy dz

x

∂
∂

Similarly, loss in volume per unit time in the direction of the y-axis

 = 2V
dx dy dz

x

∂
∂

And loss in volume per unit time in the direction of the z-axis

 = 3V
dx dy dz

x

∂
∂

\   total loss of the fl uid per unit volume per unit time

 = 

31 2 VV V
dx dy dz

x y z

dx dy dz

∂∂ ∂
+ +

∂ ∂ ∂

Fig. 7.2
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 = 31 2 VV V
V

x y z

∂∂ ∂
+ + = — ◊

∂ ∂ ∂

  

 = div V
 

7.4.4 Curl of a Vector Function 

The curl of a vector function V
 

 is denoted by curl V
 

 or V— ¥
  

 and is defi ned as

 Curl V
 

 = 
1 2 3

1 2 3

ˆˆ ˆ

ˆˆ ˆ, where

i j k

V V V i V j V k
x y z

V V V

∂ ∂ ∂
— ¥ = = + +

∂ ∂ ∂

   

 = 3 32 1 2 1 ˆˆ ˆV VV V V V
i j k

y z z x x y

Ê ˆ Ê ˆ∂ ∂∂ ∂ ∂ ∂Ê ˆ
- + - + -Á ˜Á ˜ Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

 = 3 2 ˆV V
i

y z

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯Â

where S denotes summation obtained by the cyclic rotation of the unit vectors ˆˆ ˆ, , ,i j k  the components 

V1, V2, V3, and the independent variables x, y, z respectively.

Note (i) The curl of a vector function is a vector function.

    (ii)  Irrotational vector: If curl (V
 

) = 0 then the vector function V
 

 is said to be an irrotational 

vector.

  (iii)  A force fi eld F
 

 is said to be conservative if it is derivable from a potential function f, i.e.,

F
 

= grad f. Then curl F
 

 = curl (grad f) = 0.

\   if F
 

 is conservative then curl F
 

 = 0 and there exists a scalar potential function f such that 

F
 

 = grad f.

7.5  PHYSICAL INTERPRETATION OF CURL

Consider a rigid body rotating with the uniform angular velocity ˆˆ ˆa i b j c kW = + +  about an 

axis l through the origin ‘O’. Let the position vector of any point P(x, y, z) on the rotating body 
ˆˆ ˆr x i y j z k= + +

 
. The linear velocity V

 
 of the point P is given by

 V
 

 = ˆ ˆˆ ˆ ˆ ˆ( ) ( )r a i b j c k x i y j z kW ¥ = + + ¥ + +
 

 = ˆˆ ˆ( ) ( ) ( )bz cy i cx az j ay bx k- + - + -
Now,

 Carl V
 

 = 

ˆˆ ˆi j k

V
x y z

bz cy cx az ay bx

∂ ∂ ∂
— ¥ =

∂ ∂ ∂
- - -
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 = ˆˆ ˆ2 ( )a i b j c k+ +

 = Curl V
 

 = 2 W

Hence, the angular velocity of the point P(x, y, z) is given by 
1

(curl ),
2

VW =
 

 i.e., the angular 

velocity of a uniform rotating body is equal to one-half of the curl of the linear velocity. Because of 

this interpretation, the rotation is used.

Fig. 7.3

Directional Derivative

The directional derivative of a scalar fi eld f(x, y, z) in the direction of a unit vector â  is denoted by Da f 

and is defi ned as

 Da f = ˆgrad 
df

f a
ds

= ◊

Example 1  Find the gradients of the following scalar functions:

 (i) f(x, y, z) = x2
y

2 + xy
2 – z2 at (3, 1, 1)

 (ii) f(x, y, z) = xy + 2yz – 8 at (3, –2, 1)

Solution

 (i) Given f(x, y, z) = x2
y

2 + xy
2 – z2

 grad f = 2 2 2 2ˆˆ ˆ ( )f i j k x y xy z
x y z

Ê ˆ∂ ∂ ∂
— = + + + -Á ˜∂ ∂ ∂Ë ¯

 

 = 2 2 2 2 2 2 2 2 2 2 2 2ˆˆ ˆ( ) ( ) ( )i x y xy z j x y xy z k x y xy z
x y z

∂ ∂ ∂
+ - + + - + + -

∂ ∂ ∂

 = 2 2 2 ˆˆ ˆ(2 ) (2 2 ) ( 2 )i xy y j x y xy k z
x

∂
+ + + + -

∂

 grad f = 2 2 2 ˆˆ ˆ(2 ) (2 2 ) 2xy y i x y xy j z k+ + + -

 grad f/(3, 1, 1) = ˆˆ7 24 5 2i j k+ -
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 (ii) f(x, y, z) = xy + 2yz – 8

 grad f = ˆˆ ˆ ( 2 8)f f i j k xy yz
x y z

Ê ˆ∂ ∂ ∂
— = — + + + -Á ˜∂ ∂ ∂Ë ¯

  

 = ˆˆ ˆ( ) ( 2 ) (2 )i y j x z k y+ + +

 = ˆˆ ˆ( 2 ) 2y i x z j y k+ + +

 grad f/(3, –2, 1) = ˆˆ ˆ2 5 4i j k- + -

Example 2  Find the directional derivative of f(x, y, z) = 2x
2 + 3y

2 + z2 at the point P(2, 1, 3) in the 

direction of the vector ˆˆ 2a i k= -
 

.

Solution Given f(x, y, z) = 2x
2 + 3y

2 + z2

                           grad f = ˆˆ ˆ4 6 2x i y j z k+ +

At the point (2, 1, 3), grad f = ˆˆ ˆ8 6 6i j k+ +

\   the directional derivative of f in the direction â  is

 Daf = ˆgrad f a◊

 = 
ˆˆ( 2 )ˆˆ ˆ(8 6 6 )

1 4

i k
i j k

-
+ + ◊

+

 = 
ˆˆ( 2 )ˆˆ ˆ(8 6 6 )

5

i k
i j k

-
+ + ◊

 = 
1.8 2.6

5

-

 = 
4

5
-

The minus sign indicates that f decreases at P in the direction a
 

.

Example 3  Find the directional derivative of f(x, y) = x2
y

3 + xy at (2, 1), in the direction of a unit 

vector which makes an angle of 60° with the x-axis.

Solution grad f = 3 2 2ˆ ˆ(2 ) (3 )xy y i x y x j+ + +

At the point (2, 1), grad f = ˆ ˆ5 14i j+

The unit vector â  = 
1 3ˆ ˆ ˆ ˆcos sin
2 2

i j i jq q+ = +  since q = 60°.

\ directional derivative = grad f. 
1 3ˆ ˆ ˆ ˆˆ (5 14 )
2 2

a i j i j
Ê ˆ

= + ◊ +Á ˜
Ë ¯

 

 = 
5 14 3

2

+
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Example 4  Find the unit normal vector of the cone of revolution z
2 = 4(x2 + y

2) at the point 

(1, 0, 2).

Solution The cone is the level surface f = 0 of f(x, y, z) = 4(x2 + y2) – z2.

\ grad f = 2 2 2ˆˆ ˆ (4 ( ) )f i j k x y z
x y z

Ê ˆ∂ ∂ ∂
— = + + + -Á ˜∂ ∂ ∂Ë ¯

 

 grad f = ˆˆ ˆ8 8 2x i y j z k+ -

At the point (1, 0, 2), grad f = ˆˆ8 4i k-

The unit normal vector n
 

 at the point (1, 0, 2) is

 n
 

 = 
grad

grad

f

f

 = 
ˆˆ8 4

4 5

i k-

 = 
2 1 ˆˆ

5 5
i k-

Example 5  Find the divergence of the function 2 2 2 ˆˆ ˆ( , , ) 2 3f x y z xy i x yz j yz k= + -  at the point 

(1, –1, 1).

Solution Given f(x, y, z) = 
2 2 2 ˆˆ ˆ2 3xy i x yz j yz k+ -

 div f = 2 2 2ˆ ˆˆ ˆ ˆ ˆ( 2 3 )f i j k xy i x yz j yz k
x y z

Ê ˆ∂ ∂ ∂
— ◊ = + + ◊ + -Á ˜∂ ∂ ∂Ë ¯

 div f = y2 + 2x
2 z – 6yz

At (1, –1, 1), div f = 1 + 2 + 6 = 9

Example 6  If 2 3 2 2 ˆˆ ˆ2V x z i y z j xy zk= - +
 

, fi nd curl V
 

 at (1, –1, 1).

Solution       Curl V
 

 = V— ¥
  

 = 

2 3 2 2

ˆˆ ˆ

2

i j k

x y z

x z y z xy z

∂ ∂ ∂
∂ ∂ ∂

-

 = 3 2 2 ˆˆ ˆ[2 4 ] [ ] [0 0]i xyz y z j y z x k+ - - + -

 Curl V
 

 = 3 2 2ˆ ˆ[2 4 ] [ ]i xyz y z j y z x+ - -

At the point (1, –1, 1),

 Curl V
 

 = ˆ ˆ[ 2 4] [1 1]i j- - - -

 Curl V
 

 = ˆ6 i-
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Example 7  Determine the constant ‘a’ so that the vector

 V
 

 = ˆˆ ˆ( 3 ) ( 2 ) ( )x y i y z j x az k+ + - + +  is solenoidal.

Solution A vector V
 

 is solenoidal if div V
 

 = 0

\ div V
 

 = ˆ ˆˆ ˆ ˆ ˆ( 3 ) ( 2 ) ( )V i j k x y i y z j x az k
x y z

Ê ˆ∂ ∂ ∂ È ˘— ◊ = + + ◊ + + - + +Á ˜ Î ˚∂ ∂ ∂Ë ¯

  

or 1 + 1 + a = 0

or a = –2

7.6  IMPORTANT VECTOR IDENTITIES

 1. div ( ) div divA B A B+ = +
    

 2. Curl ( ) curl curlA B A B+ = +
    

 3. If A
 

 is a differentiable vector function and f is a differentiable scalar function then

  div ( ) (grad ) divA A Af f f= ◊ +
   

 4. Curl ( ) (grad ) curlA A Af f f= ¥ +
   

 5. div ( ) curl curlA B B A A B¥ = ◊ - ◊
      

 6. Curl of the gradient of f is zero, i.e., curl (grad (f)) = 0.

 7. div curl A
 

 = 0.

 8. div grad 2
f f= — , where — is a Laplace operator.

Example 8  Prove that div ( ) ( 3)n n
r r n r= +
  

.

Solution We know that

 div ( )Af
 

 = div gradA Af f+ ◊
  

Here, A r=
  

 and f = rn, we get

 div ( )n
r r◊

 
 = 1div grad 3 ( grad )n n n n

r r r r r r nr r
-+ ◊ = + ◊

   

 [∵ div r
 

 = 3 and grad f(u) = f¢(u) grad u]

 = 1 1
3 n n
r r nr r

r

-Ê ˆ
+ ◊ Á ˜Ë ¯
  

 = 23 ( )n n
r nr r r

-+ ◊
  

 = 
2 23 n n

r nr r
-+

 = (3 + n) rn

 div ( )n
r r
 

 = (n + 3) rn 
Proved
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EXERCISE 7.1

 1. If f(x, y, z) = 3x
2
y – y3

z
2, fi nd grad f at the point (1, –2, –1).

 2. If u = x + y + z, v = x2 + y2 + z2, w = yz + zx + xy, prove the (grad u) ◊ [(grad v) ¥ (grad w)] = 0.

 3. Find the directional derivative of f = x2
yz + 4 xz

2 at the point (1, –2, –1) in the direction of the 

vector ˆˆ ˆ2 2i j k- - .

 4. Find the directional derivative of the function f = x2 – y2 + 2z
2 at the point P(1, 2, 3) in the 

direction of the line PQ, where Q is the point (5, 0, 4).

 5. For the function 
2 2

,
y

f
x y

=
+

 fi nd the value of the directional derivative making an angle of 

30° with the positive x-axis at the point (0, 1).

 6. Find the unit normal to the surface z = x2 + y2 at the point (–1, –2, 5).

 7. Find a unit normal vector to the level surface x2
y + 2xz = 4 at the point (2, –2, 3).

 8. Find the divergence and curl of V
 

 and verify that div (curl V
 

) = 0, where

 (i) 2 2 2 ˆˆ ˆ( ) 4 ( )V x y i xy j x xy k= - + + -
 

 (ii) 2 2 2 ˆˆ ˆ( ) ( ) ( )V x yz i y zx j z xy k= + + + + +
 

 (iii) 2 2 2 ˆˆ ˆ2 ( )V xyz i x y j xz y z k= + + -
 

 9. Prove that (i) div 3r =
 

, and (ii) curl 0r =
 

.

 10. Show that the vector ˆˆ ˆ(sin ) ( cos ) ( )V y z i x y z j x y k= + + - + -
 

 is irrotational.

 11. If ˆˆ ˆ( 1) ( )V x y i j x y k= + + + + - -
 

, prove that curl 0V V◊ =
  

.

 12. Prove that div (grad rn) = n(n + 1)·rn–2.

 13. Prove that curl (grad rn) = 0.

 14. If 
1

u r
r

=
  

, fi nd grad (div u
 

).

 15. Prove that 
2

ˆdiv r
r

= .

 16. Let f(x, y, z) be a solution of the Laplace equation —2
f = 0. Then, show that —

 

f is a vector 

which is both irrotational and solenoidal.

 17. If andu v
  

 are irrotational vector fi elds, show that u v¥
  

 is a solenoidal vector.

Answers

 1. ˆˆ ˆgrad 12 9 16f i j k= - - -  3.  
37

3

 4. 
4 21

3
 5. 

1

2
-
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 6. 
1 ˆˆ ˆ(2 4 )
21

i j k+ +  7. 
ˆˆ ˆ2 2

3 3 3

i j k
- - +

 14. 
3

2
r

r
-

 

7.7  VECTOR INTEGRATION

In this section, we shall defi ne the line integral, surface integral, volume integral, and some basic 

engineering applications. We shall see that a line integral is a natural generalization of a defi nite integral, 

and a surface integral is a generalization of a double integral. The line integral can be transformed in to 

double integrals or into surface integrals and conversely. 

Triple integrals can be transformed into surface integrals and vice versa. These transformations have 

the great importance.

Green’s theorem, Gauss’s divergence theorem and Stokes’ theorem serve as powerful tools in many 

applications as well as in theoretical problems.

7.8  LINE INTEGRALS

The line integral (or path integral, curve integral, contour integral) is an integral where the function to 

be integrated is evaluated along a curve. The function to be integrated may be a scalar fi eld or a vector 

fi eld. The value of the line integral is the sum of values of the fi eld at all points on the curve.

Let C be a simple curve, and let the parametric representation of C be written as

 x = x(t), y = y(t), z = z(t), a £ t £ b.

The position vector of a path on the curve C can be written as

 r
 

(t) = ˆˆ ˆ( ) ( ) ( ) ;x t i y t j z t k a t b+ + £ £

A line integral of a vector function F
 

(r) over a curve C is defi ned as

 ( )

C

F r drÚ  = ( ( ))

b

a

dr
F r t dt

dt
◊Ú  (1)

The line integral of F(r) over C with respect to the arc length s is given by

 ( )

C

F r dsÚ  = 

2 2 2

( ( )) ( ( ))

b b

a a

ds dx dy dz
F r t dt F r t dt

dt dt dt dt

Ê ˆ Ê ˆ Ê ˆ
= + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Ú Ú  (2)

where ds = 

2 2 2
ds dx dy dz

dt dt
dt dt dt dt

Ê ˆ Ê ˆ Ê ˆ
= + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

Note If the path of integration C is a closed path/curve then instead of we also write 

C C

Ú Ú 
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(i) Evaluation of a Line Integral in the Plane

Example 9  Evaluate 2 3ˆ ˆ, where

C

F d r F x i y j◊ = +Ú
   

 and the curve C is the arc of the parabola 

y = x2 in the xy plane from (0, 0 ) to (1, 1).

Solution In the xy-plane , ˆ ˆr xi yj= +
 

 dr
 

 = ˆ ˆdxi dyj+

\ 
C

F d r◊Ú
  

 = 
2 3 2 3ˆ ˆ ˆ ˆ( ) ( ) ( )

C C

x i y j dx i dy j x dx y dy+ ◊ + = +Ú Ú

Now, along the curve C, y = x2 fi dy = 2x dx

\ 
C

F d r◊Ú
  

 = 

1
2 6

0

[ 2 ]

x

x dx x x dx

=

+ ◊Ú

 = 

1
2 7

0

[ 2 ]

x

x x dx

=

+Ú

 = 

1
3 8

0

2 7

3 8 12

x xÈ ˘
+ =Í ˙

Í ˙Î ˚

Example 10  Evaluate 

C

F d r◊Ú
  

, where ˆ ˆcos ( sin )F i y j x y= -
 

 and C is the curve y2 = 1 – x2 in 

the xy-plane from (1, 0) to (0, 1).

Solution In the xy-plane, F dr◊
  

 = ˆ ˆ ˆ ˆcos ( sin )i y j x y i dx j dyÈ ˘ È ˘- +Î ˚ Î ˚
 = cos y dx – (x sin y)dy.

 = d(x cos y).

\ 
C

F d r◊Ú
  

 = ( cos )

C

d x yÚ

 = 
(0,1)
(1,0)[ cos ] 0 1 1x y = - = -

(ii) Dependence of a Line Integral on a Path

Example 11  Evaluate 

C

F d r◊Ú
  

, where 2 2 ˆ ˆ( ) 2F x y i xy j= + -
 

, curve C is the rectangle in the 

xy-plane bounded by y = 0, x = a, y = b and x = 0.

Solution In the xy-plane, z = 0, ˆ ˆ ˆ ˆr xi yj dr dxi dyj= + fi = +
  

.

Along the line OA, y = 0, dy = 0 and x varies from 0 to a,

Along the line AB, x = a, dx = 0 and y varies from 0 to b,
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Fig. 7.4

Along the line BC, y = b, dy = 0 and x varies from a to 0,

Along the line CO, x = 0, dx = 0 and y varies from b to 0.

We have 

 
C

F d r◊Ú
  

 = 2 2 ˆ ˆ ˆ ˆ( ) 2 ( )

C

x y i xy j dx i dy jÈ ˘+ - ◊ +Î ˚Ú

 = 2 2( ) 2

C

x y dx xy dyÈ ˘+ -Î ˚Ú

\ 

C

F d r◊Ú
  

 = 

OA AB BC CO

F d r F d r F d r F d r◊ + ◊ + ◊ + ◊Ú Ú Ú Ú
        

 = 

0 0
2 2 2

0 0

2 ( ) 0

a b

a b

x dx ay dy x b dx dy- + + +Ú Ú Ú Ú

 = 

0
3 3 3

2

0 0

2 0
2 2 2

a b

a

x y x
a b x- + + +

 = –2ab
2

Example 12  If ˆ ˆF yi x j= -
 

, evaluate 
C

F d r◊Ú
  

 from (0, 0) to (1, 1) along the following paths:

 (i) the parabola y = x2

 (ii) the straight lines from (0, 0) to (1, 0) and then to (1, 1)

 (iii) the straight line joining (0, 0) and (1, 1)

Solution The three paths of integration have been shown in Fig. 7.5.

We have

 

C

F d r◊Ú
  

 = ˆ ˆ ˆ ˆ( ) ( )

C

y i x j dx i d y j- ◊ +Ú

 = ( )

C

y dx x dy-Ú
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O

Y

X

A

B
(1, 0)(0, 0)

(1, 1)

Fig. 7.5

 (i) C is the arc of the parabola y = x2 from (0, 0) to (1, 1). dy = 2x dx and x varies from 0 to 1.

\ 
C

F d r◊Ú
  

 = 

1
2

0

[ (2 ) ]x dx x x dx-Ú

 = 

11 3
2

0 0

1
[ ]

3 3

x
x dx- = - = -Ú

 (ii) C is the curve consisting of straight lines OB and BA

  Along OB, y = 0, dy = 0 and x varies from 0 to 1.

  Along BA, x = 1, dx = 0 and y varies from 0 to 1.

\ 
C

F d r◊Ú
  

 = 

1 1

0 0

0 1 1dx dy+ - = -Ú Ú

 (iii) C is the straight line OA.

  The equation of OA is y – 0 = 
1 0

( 0)
1 0

x
-

-
-

i.e., y = x.

  dy = dx and x varies from 0 to 1.

\ 

1

0

( )

C

F d r x dx x dx◊ = -Ú Ú
  

 = 0

7.9  CONSERVATIVE FIELD AND SCALAR POTENTIAL

The conservative fi eld is a vector fi eld which is the gradient of a function, known as a scalar potential. 

Conservative fi elds have the property that the line integral from one point to another is independent of 

the choice of path connecting the two points, it is path-independent. Conversely, path independence 

is equivalent to the vector fi eld being conservative. Conservative vector fi elds are also irrotational.  

Mathematically, a vector fi eld F
 

 is said to be conservative if there exists a scalar fi eld f such that



7.16 Engineering Mathematics for Semesters I and II

 F
 

 = —
 
f

Here, —
 
f denotes the gradient of f. When the above equation holds, f is called a scalar potential 

for F
 

.

If 0F f— ¥ = — ¥ — =
    

. In such a case, F
 

 is called a conservative vector fi eld.

Example 13  Prove that 2 2 2 ˆˆ ˆ( cos ) (2 sin 4) (3 2)F y x z i y x j xz k= + + - + +
 

 is a conservative 

fi eld, and fi nd the scalar potential of F
 
.

Solution

 (i) For the conservative fi eld F
 

,

 F— ¥
  

 = 

2 3 2

ˆˆ ˆ

0

cos 2 sin 4 3 2

i j k

F
x y z

y x z y x x z

∂ ∂ ∂
fi — ¥ =

∂ ∂ ∂

+ - +

  

 = i(0 – 0) – j(3z
2 – 2z

2) + k(2y cos x – 2y cos x) = 0

  Hence, F
 

 is conservative.

 (ii) Let f be the scalar potential such that F f= —
  

. Then comparing the components of ˆˆ ˆ, and ,i j k  

we get 

 
f

x

∂
∂

 = y2 cos x + z3 (1)

 
f

y

∂
∂

 = 2y sin x – 4 (2)

and 
f

z

∂
∂

 = 2x z2 + 2 (3)

  Integrating (1) partially w.r.t. x,

 f = y2 sin x + x z
3 + g(y, z) (4)

  Differentiating (4) partially w.r.t. y,

 
f

y

∂
∂

 = 2 sin 0
g

y x
y

∂
+ +

∂
 (5)

  Using (2), (5) becomes,

 
g

y

∂
∂

 = –4 (6)
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  Integrating (6), w.r.t. y, we get

 g(y, z) = –4y + g1(z) (7)

  Substituting (7) in (4), we get

 f = y2 sin x + xz
2 – 4y + g1(z) (8)

  Differentiating (8), partially w.r.t. z and using (3)

 2 10 3 0
dg

xz
dz

+ - +  = 23 2
f

x z
z

∂
= +

∂

  Integrating w.r.t. z, we get

 g1(z) = 2z + C (9)

  Substituting (9) in (8), we get

 f(x, y, z) = y2 sin x + xz
3 – 4y + 2z + C

7.10  SURFACE INTEGRALS: SURFACE AREA AND FLUX

The surface integral is a simple and natural generalization of a double integral.

( , )

R

f x y dx dyÚÚ , taken over a plane region R. In a surface integral, f(x, y) is integrated over a 

curved surface.

The surface integral of a vector fi eld F
 

 actually has a simpler explanation. If the vector fi eld F
 

 

represents the fl ow of a fl uid, then the surface integral F
 

 will represent the amount of fl uid fl owing 

through the surface. The amount of the fl uid fl owing through the surface per unit time is also called the 

fl ux of fl uid through the surface.

In the xyz-space, let S be a surface and ( , , )F x y z
 

 is a vector function of the position defi ned and 

continuous over S.

Let P(x, y, z) be any point on the surface S and n̂  be the 

unit vector at P in the direction of outward drawn normal to the 

surface S at P. Then ˆF n◊
 

 is the normal component of F
 

 at P.

The integral of ˆF n◊
 

 over S ˆ

S

F n dS◊ÚÚ
 

 is called the fl ux of 

F
 

 over S.

In order to evaluate surface integrals, it is convenient to 

express them as double integrals taken over the orthogonal 

projection of the surface S on one of the coordinate planes.

Let R be the orthogonal projection of S on the xy-plane. If g  
is the acute angle which the undirected normal n at the point P, 

to the surface S makes with the z-axis then it can be shown that

dx dy = cos g dS; where dS is the small element of area of the 

surface S at P.

Fig. 7.6
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O

z

x

y

S

R

Fig. 7.7

\   dS = ˆ;
ˆcos ˆ

dx dy dx dy
k

n kg
=

◊
 is the unit vector along the z-axis.

Hence, ˆ

S

F n dS◊ÚÚ
 

 = ˆ
ˆˆS

dx dy
F n

n k
◊

◊
ÚÚ
 

Thus, the surface integral on S can be evaluated with the help of a double integral over R.

Example 14  Evaluate ˆˆ ˆˆ where

S

F n dS F yz i zx j xy k◊ = + +ÚÚ
  

 and S is that part of the surface of 

the sphere x2 + y2 + z2 = 1 which lies in the fi rst octant.

Solution A vector normal to the surface S is 

 2 2 2( )x y x— + +
 

 = ˆˆ ˆ2 2 2x i y j z k+ +
n̂  = a unit normal to any point P(x, y, z) of S

 = 
2 2 2

ˆˆ ˆ2 2 2

4 4 4

x i y j z k

x y z

+ +

+ +

 = ˆˆ ˆx i y j z k+ +

Since x2 + y2 + z2 = 1 on the surface S, we have

 ˆ

S

F n dS◊ÚÚ
 

 = ˆ
ˆˆ

R

dx dy
F n

n k
◊

◊
ÚÚ
 

where R is the projection of S on the xy-plane. The region R is bounded by the x-axis, the y-axis and 

the circle x2 + y2 = 1, z = 0.

Now, ˆF n◊
 

 = ˆ ˆˆ ˆ ˆ ˆ( ) ( ) 3yz i zx j xy k x i y j z k xyz+ + ◊ + + =

 ˆn k◊  = ˆ ˆˆ ˆ( )x i y j z k k z+ + ◊ =

y

O x

(0, 1)

x = 0

R
S

(1, 0)

x2 + = 1y2

Fig. 7.8
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Hence,

 ˆ

S

F n dS◊ÚÚ
 

 = 
3

R

x yz
dx dy

zÚÚ

 = 3

R

xy dx dyÚÚ

 = 

211

0 0

3

y

y x

xy dx dy

-

= =
Ú Ú

 = 

211 2

0 0

3
2

y

y

x
y dy

-

=

Ê ˆ
◊ Á ˜
Ë ¯Ú

 = 

1
2

0

3
(1 )

2
y

y y dy

=

◊ -Ú

 = 
1

3

0

3
( )

2
y

y y dy

=

-Ú

 = 
3 1

2 4
◊

  = 
3

8

Example 15  Evaluate  ˆ

S

F n dS◊ÚÚ , where ˆˆ ˆ2F yi x j z k= + - , and S is the surface of the plane 

2x + y = 6 in the fi rst octant cut off by the plane z = 4.

Solution A vector normal to the surface S is given by 

 (2 )x y— +
 

 = ˆ ˆ2 i j+

\ n̂  = a unit normal vector at any point (x, y, z) of S

 = 
ˆ ˆ2 1 ˆ ˆ(2 )
4 1 5

i j
i j

+
= +

+

We have

ˆ

S

F n dS◊ÚÚ
 

 = ˆ
ˆˆ

R

dx dz
F n

n j
◊

◊
ÚÚ
 

, where R is the projection of S on the xz-plane. It should be noted that 

in this case we cannot take the projection on the xy-plane because the surface S is perpendicular to the 

xy-plane.

Now,  ˆF n◊  = 
2 1 2 2ˆˆ ˆ ˆ ˆ( 2 )
5 5 5 5

y i x j z k i j y x
Ê ˆ

+ - ◊ + = +Á ˜Ë ¯
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ˆn̂ k◊  = 

1 1ˆ ˆ(2 )
5 5

i j j+ ◊ =

\ ˆ

S

F n dS◊ÚÚ  = 
2 2

5 5 1/ 5
R

dx dz
y x

Ê ˆ
+ ◊Á ˜Ë ¯ÚÚ

 = 
1

2 ( ) 5
5

R

y x dx dz+ ◊ÚÚ

 = 2 ( )

R

y x dx dz+ ◊ÚÚ

 = 2 (6 2 )

R

x x dx dz- +ÚÚ  Since 2x + y = 6 on S

 = 2 (6 )

R

x dx dz-ÚÚ

 = 

4 3

0 0

2 (6 )

z x

x dx dz

= =

-Ú Ú

 = ( ]
3

4

0
0

2 (6 )
z

x

x z dx
=

=

- ◊Ú

 = 

3
2

0

8 6
2

x
x

È ˘
-Í ˙

Í ˙Î ˚
 = 

9
8 18

2

È ˘
-Í ˙Î ˚

 = 108

Example 16  Evaluate ˆ

S

F n dS◊ÚÚ , where 2 ˆˆ ˆ 3F z i x j y z k= + -  and S is the surface of the 

cylinder x2 + y2 = 16 included in the fi rst octant between z = 0 and z = 5.

Solution A vector normal to the surface S is given by 

 
2 2( )x y— +

 

 = ˆ ˆ2 2x i y j+

\ n̂  = a unit normal to any point on S

 = 
2 2

ˆ ˆ ˆ ˆ2 2

44 4

x i y j x i y j

x y

+ +
=

+
 (∵   x2 + y2 = 16 on the surface S)

We have

 ˆ

S

F n dS◊ÚÚ
 

 = ˆ
ˆˆ

R

dx dz
F n

n j
◊

◊
ÚÚ
 

where R is the projection of S on the xy-plane. It should be noted that in this case, we cannot take the 

projection of S on the xy-plane as the surface S is perpendicular to the xy-plane.
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Now,

 ˆF n◊  = 2
ˆ ˆ

ˆˆ ˆ( 3 )
4

x i y j
z i x j y z k

Ê ˆ+
+ - ◊ Á ˜Ë ¯

 = 
1

( )
4

xz xy+

 ˆn̂ j◊  = 
ˆ ˆ

ˆ
4 4

x i y j y
j

Ê ˆ+
◊ =Á ˜Ë ¯

\ ˆ

S

F n dS◊ÚÚ
 

 = 
( )

4 /4
R

xz xy dx dz

y

+
ÚÚ

 = 
( )

R

xz xy
dx dz

y

+
ÚÚ

 = 

R

xz
x dx dz

y

Ê ˆ
+Á ˜Ë ¯ÚÚ

 = 

5 4

2
0 0 16z x

xz
x dx dz

x= =

È ˘
Í ˙+
Í ˙-Î ˚

Ú Ú  216 ony x SÈ ˘= -Í ˙Î ˚
∵

 = 

5

0

[4 8]

z

z dz

=

+Ú

 = 90

7.11  VOLUME INTEGRALS

Any integral which is evaluated along a volume is called a volume integral. Let V is a volume bounded 

by a surface S and f(x, y, z) is a single-valued function of position defi ned over V. Subdivide the volume 

V into n elements of volumes dV1, dV2, … dVn. In each part dVk, we choose an arbitrary point Pk whose 

coordinates are (xk, yk, zk). We defi ne f(Pk) = f(xk, yk, zk).

Form the sum

 1

( )
n

k k

k

f P Vd
=

Â

Now, take the limit of this sum as n Æ • in such a way that the largest of the volumes dVk Æ 0. This 

limit, if it exists, is called the volume integral of f(x, y, z) over V and is denoted by

 

( , , )

V

f x y z dVÚÚÚ

If we subdivided the volume V into small cuboids by drawing lines parallel to the three coordinate 

axis then dV = dx dy dz and the above volume integral becomes
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( , , )

V

f x y z dx dy dzÚÚÚ

If ( , , )F x y z
 

 is a vector function then

( , , ) or ( , , ) ,

V V

F x y z dV F x y z dx dy dzÚÚÚ ÚÚÚ
  

 is  a volume integral.

Example 17  If 2 ˆˆ ˆ(2 3 ) 2 4F x z i xy j x k= - - -
 

 then evaluate 

V

F dV— ◊ÚÚÚ
  

, where V is bounded 

by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4.

Solution We have F
 

 = 2 ˆˆ ˆ(2 3 ) 2 4x z i xy j x k- - -

 F— ◊
  

 = 2ˆ ˆˆ ˆ ˆ ˆ2 3 ) 2 4i j k x z i xy j x k
x y z

Ê ˆ∂ ∂ ∂ È ˘+ + ◊ - - -Á ˜ Î ˚∂ ∂ ∂Ë ¯

 = 2(2 3 ) ( 2 ) ( 4 )x z xy x
x y z

∂ ∂ ∂
- + - + -

∂ ∂ ∂

 = 4x – 2x = 2x

\ 

V

F dV— ◊ÚÚÚ
  

 = 2

V

x dx dy dzÚÚÚ

 = 

2 4 2 22

0 0 0

2

x x y

x y z

x dz dy dx

- - -

= = =
Ú Ú Ú

 = [ ]
22

4 2 2

0
0 0

2

x
x y

x z dy dx

-
- -

Ú Ú

 = 

22

0 0

2 [4 2 2 ]

x

x x y dy dx

-

- -Ú Ú

 = 

22

0 0

[4 (2 ) 4 ]

x

x x xy dy dx

-

- -Ú Ú

 = 

2
2

2

0
0

4 (2 ) 2
x

z x y xy dx
-

È ˘- -Î ˚Ú

 = 

2 2
2 2 3

0 0

2 (2 ) 2 [4 4 ]x x dx x x x dx- = - +Ú Ú

 = 

2
4

2 3

0

4 32 8
2 2 2 8 4

3 4 3 3

x
x x

È ˘ Ê ˆ
- + = - + =Í ˙ Á ˜Ë ¯Í ˙Î ˚
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Example 18  Evaluate 
2, where = 45

V

dV x yf fÚÚÚ  and V is the closed region bounded by the 

planes 4x + 2y + z = 8, x = 0, y = 0, and z = 0.

Solution We have

 
V

dVfÚÚÚ  = 

4 2 8 4 22
2

0 0 0

45

x x y

x y z

x y dx dy dz

- - -

= = =
Ú Ú Ú

 = [ ]
4 22

8 4 22

0
0 0

45

x
x y

x y z dx dy

-
- -

Ú Ú

 = [ ]
4 22

2

0 0

45 8 4 2

x

x y x y dx dy

-

- -Ú Ú

 = 

4 22 2 3
2 2

0 0

45 (8 4 ) 2
2 3

x

y y
x x x dx

-
È ˘

- -Í ˙
Í ˙Î ˚

Ú

 = 

2 2
3

0

45 (4 2 )
3

x
x dx

È ˘
-Í ˙

Í ˙Î ˚
Ú

 = 128

EXERCISE 7.2

 1. Evaluate .

C

F d rÚ
  

, where 2 2ˆ ˆ( )F xyi x y j= + +
 

 and C is the x-axis from x = 2 to x = 4 and the 

line x = 4 from y = 0 to y = 12.

 2. Find the circulation of F
 

 round the curve c, where 

  ˆ ˆ( cos ) ( cos )x x
F e y i e y j= +
 

 and C is the rectangle whose vertices are (0, 0), (1, 0), 

1, , 0,
2 2

p pÊ ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

.

 3. Calculate 2 2 2 2ˆ ˆ( ) ( ) .

C

x y i x y j d rÈ ˘+ + -Î ˚Ú
 

, where C is the curve 

 (i) y
2 = x joining (0, 0) to (1, 1)

 (ii) x
7 = y joining (0, 0) to (1, 1)

 (iii) consisting of two straight lines joining (0, 0) to (1, 0) and (1, 0) to (1, 1) 

 (iv) consisting of two straight lines joining (0, 0) to (2, –2), (2, –2) to (0, –1) and (0, –1) 

to (1, 1)

 4. Evaluate the line integral 2 2 2( ) ( )

C

x xy dx x y dyÈ ˘+ + +Î ˚Ú , where C is the square formed by the 

lines y = ±1 and x = ±1.
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 5. Evaluate ˆ.

S

F n d SÚÚ
 

, where ˆˆ ˆ18 12 3F zi j yk= - +
 

 and S is the surface of the plane 2x + 3y + 

6z = 12 in the fi rst octant.

 6. If  2 ˆˆ ˆ2F yi zj x k= - +
 

 and S is the surface of the parabolic cylinder y2 = 8x in the fi rst octant 

bounded by the planes y = 4 and z = 6, then evaluate ˆ.

S

F n d SÚÚ
 

.

 7. Evaluate ˆ.

S

F n d SÚÚ
 

, where 2 ˆˆ ˆ 3F zi xj y zk= + -
 

 and S is the surface of the cylinder x2 + y2 = 16

included in the fi rst octant between z = 0 and z = 5.

 8. If 2 ˆˆ ˆ(2 3 ) 2 4F x z i xyj xk= - - -
 

 then evaluate ( )

V

V F d V¥ÚÚÚ
  

, where V is the closed region 

bounded by the planes x = 0, y = 0 and 2x + 2y + z = 4.

 9. If V is the region in the fi rst octant bounded by y
2 + z

2 = 9 and the plane x = 2 and 
2 2 2 ˆˆ ˆ2 4F x yi y j xz k= - +

 
 then evaluate ( . )

V

F dV—ÚÚÚ
  

.

 10. If 3 2 ˆˆ ˆ( ) 2 2F x yz i x yj k= - - +
 

, evaluate ( . )

V

F d V—ÚÚÚ
  

 over the volume of a cube of side b.

Answers

 1. 768 2. 0

 3. (i) 
7

20
 (ii) 

38

45
 (iii) 1 (iv) 

7

3
-  4. 0

 5. 24 6. 132

 7. 90 8. 
8 ˆˆ( )
3

j k-

 9. 180 10. 
3

3

b

7.12   GREEN’S THEOREM IN THE PLANE: TRANSFORMATION 
BETWEEN LINE AND DOUBLE INTEGRAL

Let R be a closed bounded region in the xy-plane whose boundary C consists of fi nitely many 

smooth curves. Let M and N be continuous functions of x and y having continuous partial derivatives 

and
M N

y x

∂ ∂
∂ ∂

 in R. Then

 Ú
C

M dx + N dy( )  = 
Ê ˆ∂ ∂
Á ˜∂ ∂Ë ¯ÚÚ

R

N M
– dx dy

x y
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George Green (4 July 1793–31 March 1841), a British mathematician and 

physicist, was born in Sneinton, Nottinghamshire, England. Green wrote the 

long-lived monograph. He introduced several important concepts, among 

them a theorem similar to modern Green’s theorem, the idea of potential 

functions as currently used in physics, and the concept of what are now called 

Green’s functions. Green was the first person to create a mathematical theory 

of electricity and magnetism and his theory formed the foundation for the 

work of other scientists such as James Clerk Maxwell, William Thomson, 

and others. The Green functions play an important role in the effective and 

compact solution of linear ordinary and partial differential equations. They 

may be considered also as a crucial approach to the development of boundary 

integral equation methods.

The line integral is taken along the entire boundary C of R such that R is on the left as one advances 

in the direction of integration.

Proof Suppose the equations of the curves AEB and AFB are y = f(x) and y = g(x) respectively,

Consider

 
R

M
dx dy

y

∂
∂ÚÚ  = 

( )

( )

g xb

x a y f x

M
dy dx

y
= =

∂
∂Ú Ú

 = [ ]( , ( )) ( , ( ))

b

a

M x g x M x f x dx-Ú

 = ( , ( )) ( , ( ))

a b

b a

M x g x dx M x f x dx- -Ú Ú  

 = ( , ) ( , )

BFA AEB

M x y dx M x y dx- -Ú Ú

 = ( , )

BFAEB

M x y dx- Ú

 = ( , )

C

M x y dxÚ  (3)

Similarly, let the equations of curves EAF and EBF be x = P(y) and x = q(y) respectively.

Then

 
R

N
dx dy

x

∂
∂ÚÚ  = 

( )

( )

q yd

y c x P y

N
dx dy

x= =

∂
∂Ú Ú

 = [ ( , ) ( , )]

d

c

N q y N P y dy-Ú

 = ( , ) ( , )

d c

c d

N q y dy N P y dy+Ú Ú

Fig. 7.9
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 = ( , )

C

N x y dyÚ  (4)

Adding (3) and (4), we get

 
C

M dx N dy+Ú  = ,

R

N M
dx dy

x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯ÚÚ

Note 1 Vector notation of Green’s Theorem

Suppose  F
 

 = ˆ ˆ ˆ ˆandM i N j r x i y j+ = +
 

Then F d r◊
  

 = Mdx + Ndy

 F— ¥
  

 = 

ˆˆ ˆ

ˆ

0

i j k

N M
k

x y z x y

M N

Ê ˆ∂ ∂ ∂ ∂ ∂
= -Á ˜∂ ∂ ∂ ∂ ∂Ë ¯

\ 
C

F d r◊Ú
  

  = ˆ( ) ,

R

F k dR— ¥ ◊ÚÚ
  

 where dR = dx dy

Note 2 If  
M N

y x

∂ ∂
=

∂ ∂
 then by Green’s theorem 0

C

M dx N dy+ =Ú 

Example 19  Evaluate by Green’s theorem.

(cos sin ) (sin cos )

C

x y xy dx x y dy◊ - + ◊Ú , where C is the circle x2 + y2 = 1.

Solution By Green’s theorem in the plane, we have

 

C

M dx N dy+Ú  = 

R

N M
dx dy

x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯ÚÚ

Here, M = cos x sin y – xy, N = sin x cos y

 
M

y

∂
∂

 = cos x ◊ cos y – x, 
N

x

∂
∂

 = cos x cos y.

Now, 
C

M dx N dy+Ú  = [cos cos cos cos ]

R

x y x y x dxdy- +ÚÚ

 = 
R

x dx dyÚÚ

 = 
2 1

0 0

cos

r

r r dr d

p

q

q q
= =

◊Ú Ú  [Changing to polar coordinates]

 = 

12 3

0 0

cos
3

r
d

p

q

q q
=

È ˘
Í ˙
Í ˙Î ˚

Ú
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 = 

2

0

1
cos

3
d

p

q

q q
=
Ú  = [ ]2

0

1
sin

3

p
q

 = 
1

(0 0)
3

-

 = 0

Example 20  Evaluate 2( cosh ) ( sin )

C

x y dx y x dy- + +Ú  by Green’s theorem, where C is the 

rectangle with vertices (0, 0), (p, 0), (p, 1), and (0, 1).

Solution By Green’s theorem in plane, we have

 

R

N M
dx dy

x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯ÚÚ  = ( )

C

M dx N dy+Ú 

Here, M = x2 – cos hy

 N = y + sin x

\ 
M

y

∂
∂

 = sin , cos
N

hy x
x

∂
- =

∂

Hence, the given line integral is equal to

 [cos sin ]

R

x hy dx dy+ÚÚ  = 

1

0 0

[cos sin ]

x y

x hy dx dy

p

= =

+Ú Ú

 = 
1
0

0 0

( cos cosh ) [cos cosh 1 1]y x y dx x dx

p p

+ = + ◊ -Ú Ú

 = 0[sin cosh 1 ]x x x
p+ ◊ -

 = p[cosh ◊ 1 – 1]

Example 21  Verify Green’s theorem in the plane for 2 2( ) ,

C

xy y dx x dy+ +Ú  where C is the closed 

curve of the region bounded by y = x and y = x2.

Solution Green’s theorem in plane, we have

 
C

M dx N dy+Ú  = 

R

N M
dx dy

x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯ÚÚ

Here M = xy + y2, N = x2.

To evaluate the line integral along curve C and along the curve

y = x2 so that  dy = 2x dx.

\      
2 2( )

C

xy y dx x dy+ +Ú  = 

1
2 4 2

0

( ) ( 2 )x x x dx x x dxÈ ˘◊ + + ◊Î ˚Ú

Fig. 7.10

Y

XO

y
x

=

R y x= 2

(1, 1)

Fig. 7.11
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 = 

1
3 4

0

(3 )x x dx+Ú

 = 

1
5

4

0

3

4 5

x
x

Ê ˆ
+Á ˜

Ë ¯

 = 
3 1

0
4 5

Ê ˆ
+ -Á ˜Ë ¯

 = 
19

20

Also, along y = x so that dy = dx.

\ 

0
2 2

1

( )x x x dx x dxÈ ˘◊ + +Î ˚Ú  = 

00
2 3

11

3
3 1

3
x dx x= = -Ú

Therefore, the required line integral

 = 
19 1

1
20 20

- = -

Now, the curves y = x and y = x2 intersect at (0, 0) and (1, 1). We have

 
R

N M
dx dy

x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯ÚÚ  = [2 ( 2 )]

R

x x y dx dy- +ÚÚ  = ( 2 )

R

x y dx dy-ÚÚ

 = 2

2

1 1
2

0 0

( 2 )

x
x

x
x y x

x y dx dy xy y dx

= =

È ˘- = -Î ˚Ú Ú Ú

 = 

1 1
2 2 3 4 4 3

0 0

[ ] ( )x x x x dx x x dx- - + = -Ú Ú

 = 

1
5 4

0

1 1 1

5 4 5 4 20

x xÈ ˘
- = - = -Í ˙

Í ˙Î ˚
Hence, the theorem is verifi ed.

7.13   GAUSS’S DIVERGENCE THEOREM (RELATION BETWEEN 
VOLUME AND SURFACE INTEGERS)

Let F
 

 be a vector function of a position which is continuous and has continuous fi rst-order partial 

derivatives, in a volume V bounded by a closed surface S. Then

 —◊ÚÚÚ
V

F dV
  

 = ˆ◊ÚÚ
S

F n ds
 

where n̂  is the outwards drawn unit normal vector to S.

Proof Suppose that S is such that any straight line parallel to any one of the  coordinate axis and 

intersecting V has one segment in common with V. If R is the orthogonal projection of S on the xy-plane 

then V can be represented in the form f(x, y) £ z £ g(x, y), where (x, y) varies is R.
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Johann Friedrich Carl Gauss (30 April 1777–23 February 1855), a German 

mathematician, was born in Brunswick, Germany.  Gauss is generally 

regarded one of the greatest mathematicians of all time for his contributions 

to number theory, geometry, probability theory, geodesy, planetary astronomy, 

the theory of functions, and potential theory. 

Gauss was the only child of poor parents. He was rare among mathematicians 

in that he was a calculating prodigy, and he retained the ability to do elaborate 

calculations in his head most of his life. Impressed by this ability and by his 

gift for languages, his teachers and his devoted mother recommended him 

to the Duke of Brunswick in 1791, who granted him financial assistance to 

continue his education locally and then to study mathematics at the University 

of Göttingen from 1795 to 1798. Gauss’s first significant discovery, in 1792, 

was that a regular polygon of 17 sides can be constructed by ruler and compass alone. Its significance lies 

not in the result but in the proof, which rested on a profound analysis of the factorization of polynomial 

equations and opened the door to later ideas of Galois theory. His doctoral thesis of 1797 gave a proof of 

the fundamental theorem of algebra: every polynomial equation with real or complex coefficients has as 

many roots as its degree.

Let S1 and S2 be the upper and lower portions of S having equations z = f(x, y) and z = g(x, y) and 

having n1 and n2 normals, respectively.

Fig. 7.12

Now,

 
3

V

F
dV

z

∂
∂ÚÚÚ  = 3

V

F
dx dy dz

z

∂
∂ÚÚÚ
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 = 

( , )

3

( , )

g x y

R z f x y

F
dz dx dy

z=

È ˘∂
Í ˙

∂Í ˙Î ˚
ÚÚ Ú

 = 
( , )

3 ( , )
( , , )

g x y

z f x y
R

F x y z dx dy
=È ˘Î ˚ÚÚ

 = 3 3[( ( , , ( , )) ( ( , , ( , ))]

R

F x y g x y F x y f x y dx dy-ÚÚ

 = 3 3[ , , ( , )] [ , , ( , )]

R R

F x y g x y dx dy F x y f x y dx dy-ÚÚ ÚÚ  (1)

For the vertical portion S3 of S, the normal n3 to S3 makes a right angle g1 with k̂ .

\ 

3

3 3 3
ˆ .

S

F k n dSÚÚ  = 3
ˆ ˆ0 ( . 0)k n\ =

For the upper portion S1 of S, the normal n1 to S1 makes an acute angle g1 with k̂ .

\ 
1 1

ˆ .k n dS  = cos g1 d S1 = dxdy

Hence,

 

1

3 1 1
ˆ .

S

F k n dSÚÚ  = [ ]3 , , ( , )

R

F x y g x y dx dyÚÚ

For the lower portion S2 of S, the normal n2 to S2 makes an obtuse angle g2 with k̂

\ 
2 2

ˆ .k n dS  = 2 2cos dS dx dyg = -

Hence,

 

2

3 2 2
ˆ ˆ.

S

F k n dSÚÚ  = [ ]3 , , ( , )

R

F x y f x y dx dy- ÚÚ  

\ 

3 1 2

3 3 3 3 1 1 3 2 2
ˆ ˆ ˆˆ ˆ. . .

s S S

F k n dS F k n dS F k n dS+ +ÚÚ ÚÚ ÚÚ

 = [ ] [ ]3 3
ˆ0 . , , ( , ) , , ( , )

R R

F k x y g x y dx dy F x y f x y dx dy+ -ÚÚ ÚÚ  (2)

From (1) and (2), we get 

 3
ˆ ˆ

S

F k n dSÚÚ  = 3

V

F
dv

z

∂
∂ÚÚÚ  (3)

Similarly, by projecting S on the other coordinate planes, we get

 2
ˆ ˆ.

S

F j n dSÚÚ  = 2

V

F
dv

y

∂
∂ÚÚÚ  (4)

and 1
ˆ ˆ.

S

F i n dSÚÚ  = 1

V

F
dv

x

∂
∂ÚÚÚ  (5)
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Adding equations (3), (4), and (5), we get

 1 2 3
ˆˆ ˆ ˆ.

S

F i F j F k n dS+ +ÚÚ e j  = 31 2

V

FF F
dv

x y z

∂∂ ∂Ê ˆ
+ +Á ˜∂ ∂ ∂Ë ¯ÚÚÚ

or ˆ.

S

F n dSÚÚ
 

 = ( . )

V

F dv—ÚÚÚ
  

 = div

V

F dvÚÚÚ
 

 Hence, the theorem.

Deductions

 (i) If n̂  is the outward-drawn unit normal vector to S them

  .

V

F dVf—ÚÚÚ
    

 = ˆ. div

S V

F n dS F dVf f-ÚÚ ÚÚÚ
    

 (ii) ˆ

S

F n dS¥ÚÚ
  

 = curl

V

F dV- ÚÚÚ
  

 (iii) ˆ

S

n dSfÚÚ  = grad

V

dVfÚÚÚ

Example 22  For any closed surface S, prove that 

 ˆcurl .

S

F n dSÚÚ
  

 = 0

Solution By Gauss’s divergence theorem, we have 

 ˆ.

S

F n dSÚÚ  = 

V

div F dVÚÚÚ
  

; where V is the volume enclosed by S 

\ ˆcurl .

s

F n dSÚÚ
  

 = div (curl ) 0

V

F dV =ÚÚÚ
  

 (∵   div curl F
 

 = 0)

Example 23  If ˆˆ ˆF axi byj czk= + +
  

 a, b and c are constant, show that 
4

ˆ. ( )
3

S

F n d S a b cp= + +ÚÚ
  

, 

where S is the surface of a unit sphere.

Solution By Gauss’s divergence theorem 

 ˆ.

S

F n dSÚÚ
  

 = .

V

F dV—ÚÚÚ
  

; where V is the volume enclosed by S

 = ˆ ˆˆ ˆ ˆ ˆ.

V

i j k axi byj czk dV
x y z

∂ ∂ ∂Ê ˆ
+ + + +Á ˜∂ ∂ ∂Ë ¯ÚÚÚ e j

 = ( ) ( )

V

a b c dV a b c V+ + = + +ÚÚÚ
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 ˆ.

S

F n d SÚÚ
  

 = 34
( ) 1

3
a b c p+ + ( )

 = 
4

( )
3

a b c
p

+ +

 [Since the volume V enclosed by a sphere of unit radius, i.e., 34

3
V rp= ]

Here, r = 1.

Example 24  Evaluate 2 2 2 ( )

S

x dy dz y dzdx z xy x y dx dy+ + - -ÚÚ  where S is the surface of the 

cube 

 0 £ x £ 1, 0 £ y £ 1, 0 £ z £ 1.

Solution Using Gauss’s divergence theorem, the given surface integral is equal to the volume inte-

gral.

 = { }2 2( ) ( ) 2 ( )

V

x y z xy x y d V
x y z

∂ ∂ ∂È ˘
+ + - -Í ˙∂ ∂ ∂Î ˚

ÚÚÚ

 = [ ]
1 1 1

0 0 0

2 2 2 2 2

z y x

x y xy x y dx dy dz

= = =

+ + - -Ú Ú Ú

 = 

1 1 1

0 0 0

2

z y x

xy dx dy dz

= = =
Ú Ú Ú

 = 

11 1 1 12

0 0 0 00

2
2

z y z yx

x
y dy dz y dy dz

= = = ==

È ˘
=Í ˙

Î ˚Ú Ú Ú Ú

 = [ ]
11 12

1

0
00 0

1 1 1

2 2 2 2yz z

y
dz dz z

== =

È ˘
= = =Í ˙

Î ˚Ú Ú

Example 25  Evaluate ˆ.

S

F n d SÚÚ
  

 where ( ) ( ) ( )2 ˆˆ ˆ2 3 2F x z i xz y j y z k= + - + + +
  

 and S is the 

surface of the sphere having the centre at (3 – 1, 2) and radius 3.

Solution Suppose V is the volume enclosed by the surface S. Then using Gauss’s divergence 

theorem,

 ˆ.

S

F n dSÚÚ
  

 = div

V

FdVÚÚÚ
  

 = 
2(2 3 ) ( ) ( 2 )

V

x z xz y y z dV
x y z

∂ ∂ ∂È ˘
+ - + + +Í ˙∂ ∂ ∂Î ˚

ÚÚÚ

 = [ ]2 1 2

V

dV- +ÚÚÚ
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 = 3

V

dVÚÚÚ
 = 3 V

 = 34
3. (3)

3
p  [∵   V is the volume of a sphere of radius 3]

 = 108 p.

Example 26  If 2 ˆˆ ˆ ( 1)F xi yj z k= - + -
 

, fi nd the value of ˆ.

S

F n dSÚÚ
  

, where S is the closed surface 

bounded, by the planes z = 0, z = 1, and the cylinder x2 + y2 = 4.

Solution Here 

 F
 

 = 
2 ˆˆ ˆ ( 1)xi yj z k- + -

 div F
 

 = ( ) ( ) 2. ( 1)F x y z
x y z

∂ ∂ ∂
— = + - + -

∂ ∂ ∂

    

 = 1 – 1 + 2z

  div F
 

 = 2z

Using Gauss’s divergence theorem,

 ˆ.

S

F n dSÚÚ
  

 = div

V

FdVÚÚÚ
  

 = 

2

2

41 2

0 2 4

2

y

z y x y

zdx dy dz

-

= = - = - -

Ú Ú Ú

 = [ ]
2

2

41 2

0 2 4

2

y

z y x y

z x dy dz

-

= = - = - -

◊Ú Ú

 = 
1 2

2 2

0 2

2 . 4 4

z y

z y y dy dz

= = -

È ˘- + -Î ˚Ú Ú

 = 

1 2
2

0 2

4 4

z y

z y dy dz

= = -

-Ú Ú

 = 
1 2

2

0 0

2 4 4

z y

z y dy dz

= =

-Ú Ú

 = 

21
2 1

00

2 4 . 4 2sin
2 2

z

y y
z y dz

-

=

È ˘
- +Í ˙Î ˚Ú

 = 

1
1

0

2
2 4 2sin

2
z

z dz
-

=

È ˘
Í ˙Î ˚Ú
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 = 

1
2

0

2 8
2 2

zp È ˘
¥ Í ˙

Î ˚

 = 
1

8
2

p
È ˘

. Í ˙Î ˚
= 4p

Example 27  Verify Gauss’s divergence theorem for 2 2 2 ˆˆ ˆ( ) ( ) ( )F x yz i y zx j z xy k= - + - + -
 

 

taken over the rectangular parallelepiped 0 £ x £ a, 0 £ y £ b, 0 £ z £ c.

Solution The Gauss’s divergence theorem

 div

V

FdVÚÚÚ
  

 = ˆ.

S

F n dSÚÚ
  

 L.H.S = div

v

F dVÚÚÚ
 

 = .

V

F dV—ÚÚÚ
    

 = 2 2 2( ) ( ) ( )

V

x yz y zx z xy dV
x y z

∂ ∂ ∂È ˘
- + - + -Í ˙∂ ∂ ∂Î ˚

ÚÚÚ

 = 2( )

V

x y z dV+ +ÚÚÚ

 = 
0 0 0

2 ( )

c b a

z y x

x y z dx dy dz

= = =

+ +Ú Ú Ú

 = 
2

00 0

2
2

ac b

xz y

x
xy xz dy dz

== =

È ˘
+ +Í ˙

Î ˚Ú Ú

 = 
2

0 0

2
2

c b

z y

a
ay az dy dz

= =

È ˘
+ +Í ˙

Î ˚Ú Ú

 = 
2 2

00

2
2 2

bc

yz

a ay
y ayz dz

==

È ˘
+ +Í ˙

Î ˚Ú

 = 

2 2

0

2
2 2

c

z

a b ab
abz dz

=

È ˘
+ +Í ˙

Î ˚Ú

 = 
2 2 2

0

2
2 2 2

c

z

a b ab z
z z ab

=

È ˘
+ +Í ˙

Î ˚
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 = 
2 2 2

2
2 2 2

a bc ab c abcÈ ˘
+ +Í ˙

Î ˚
 = abc (a + b + c).

 RHS = ˆ.

S

F n dSÚÚ
 

Now, we shall evaluate the surface integral over the 

six faces of the rectangular parallelepiped. Over the face 

DEFG,

 n̂  = ˆ,i x a=

\ ˆ.

DEFG

F n dSÚÚ
 

 = 
2 2 2

0 0

ˆˆ ˆ ˆ[( ) ( ) ( ) ]

c b

z y

a yz i y az j z ay k i dy dz

= =

- + - + - ◊Ú Ú

 = 
2 2

2 2

00 0

( )
2 2

cc b

zz y

b z
a yz dy dz a b z

== =

È ˘
- = - ◊Í ˙

Î ˚Ú Ú

 = 
2 2

2

4

b c
a b c -  over the face ABCO, ˆ , 0n i x= - =

\ ˆ.

ABCO

F n dSÚÚ
 

 = 2 2 ˆˆ ˆ ˆ[( ) ( ) ( ) ] ( )

S

o yz i y o j z o k i dy dz- + - + - ◊ -ÚÚ

 = 

0 0

c b

z y

yz dy dz

= =
Ú Ú

  = 

2

00
2

bc

z

y z
dz

=

È ˘
Í ˙
Î ˚Ú

 = 
2 2 2

00
2 2 2

cc

z

b b z
z dz

=

Ê ˆ
= Á ˜Ë ¯Ú

 = 
2 2

4

b c
 over the face ABEF, ˆˆ ,n j y b= =

\ ˆ

ABEF

F n ds◊ÚÚ
 

 = 2 2 2

0 0

ˆˆ ˆ[( ) ( ) ( ) ]

c a

z x

x bz i b zx j z bx k j dx dz

= =

- + - + - ◊Ú Ú

 = 
2

0 0

( )

c a

z x

b zx dx dz

= =

-Ú Ú

 = 
2 2

2

4

a c
b ca -  

over the face OGDC, ˆˆ , 0n j y= - =

x

y

z

O

D

C B

E

A

FG

Fig. 7.13
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\ ˆ

OGDC

F n ds◊ÚÚ
 

 = 
2 2

0 0
4

c a

z x

c a
zx dx dz

= =

=Ú Ú

over the face BCDE, ˆˆ ,n k z c= =

\  ˆ

BCDE

F n ds◊ÚÚ
 

 = 
2 2

2 2

0 0

( )
4

b a

y x

a b
c xy dx dy c ab

= =

- = -Ú Ú

over the face AFGO, ˆˆ , 0n k z= =

\ ˆ

AFGO

F n ds◊ÚÚ
 

 = 
2 2

0 0
4

b a

y x

a b
xy dx dy

= =

=Ú Ú

Adding the six surface integrals, we obtain

 ˆ

S

F n ds◊ÚÚ
 

 = 
2 2 2 2 2 2 2 2

2 2

4 4 4 4

c b c b a c a c
a bc b ca

Ê ˆ Ê ˆ
- + + - +Á ˜ Á ˜Ë ¯ Ë ¯

2 2 2 2
2

4 4

a b a b
c ab

Ê ˆ
+ - +Á ˜Ë ¯

 = abc (a + b + c)

Hence,

 
V

div F dvÚÚÚ
 

 = ˆ

S

F n ds◊ÚÚ
 

The theorem is verifi ed.

7.14   STOKES’ THEOREM (RELATION BETWEEN LINE AND 
SURFACE INTEGRALS)

Sir George Gabriel Stokes (13 August 1819–1 February 1903) was born in 

Ireland. Stokes is most well-known for his study of viscous fluids, for Stokes’ 

theorem, and for his law of viscosity. Stokes’ theorem is the basic theorem of 

vector analysis. The law of viscosity is what describes the motion of a solid sphere 

in a fluid. It is also thought that his major advance was in the wave theory of 

light. In 1841, Stokes graduated as the top First Class degree in the Mathematical 

Tripos and he was the first Smith’s prizeman. Pembroke College immediately 

gave him a Fellowship. In 1851, Stokes was elected to the Royal Society and was 

awarded the Rumford medal of that society in 1852. In 1854, he was appointed 

the Secretary. 

Suppose S be a piecewise smooth open surface bounded by a piecewise smooth simple closed curve C. 

Let ( , , )F x y z
 

 be a continuous vector function which has continuous partial derivatives. Then

 ◊Ú
C

F d r
  

  = ˆ ˆ— ◊ ◊ÚÚ ÚÚ
S S

F n ds F n ds( × ) = curl
   

where C is a simple closed curve and n̂  is the outward unit normal vector drawn to the surface S.

Proof Suppose S be a surface, which is such that its projections on xy, yz, and zx planes are regions 

bounded by simple closed curves and the vector function 
1 2 3

ˆˆ ˆF F i F j F k= + +
 

. Let S be represented 
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simultaneously in the forms z = f(x, y), y = g(x, z) and x = h(y, z), where f, g, h are continuous functions 

having continuous fi rst-order partial derivatives.

Consider the integral

  

1
ˆ ˆ( )

S

F i n dS— ¥ ◊ÚÚ
 

Now,

 1
ˆ( )F i— ¥

  
 = 

1

ˆˆ ˆ

0 0

i j k

x y z

F

∂ ∂ ∂
∂ ∂ ∂

 = 1 1 ˆˆF F
j k

z y

∂ ∂
-

∂ ∂

\ 1
ˆ ˆ[ ( )]F i n— ¥ ◊

  

 = 1 1 ˆˆ ˆ ˆ
F F

j n k n
z y

∂ ∂È ˘
◊ - ◊Í ˙∂ ∂Î ˚

 = 1 1cos cos
F F

z y
b g

∂ ∂
-

∂ ∂

Now, 1
ˆ ˆ[ ( )]

S

F i n dS— ¥ ◊ÚÚ
  

 = 1 1cos cos

S

F F
dS

z y
b g

∂ ∂È ˘
-Í ˙∂ ∂Î ˚

ÚÚ
Our aim is to show that

 
1 1cos cos

S

F F
ds

z y
b g

∂ ∂È ˘
-Í ˙∂ ∂Î ˚

ÚÚ  = 1

C

F dxÚ 
Let R be the orthogonal projection of S on the xy-plane and z = f(x, y) of S

\   the line integral over C as a line integral over C1 then

 1 ( , , )

C

F x y z dxÚ  = 

1

1 [ , , ( , )]

C

F x y f x y dxÚ 

 = 

1

1{ [ , , ( , )] 0 }

C

F x y f x y dx dy+Ú 

 = 1

R

F
dx dy

y

∂
-

∂ÚÚ  [By Green’s theorem in the plane for the region R].

But 
1F

y

∂
∂

 = 1 1F F f

y z y

∂ ∂ ∂
+ ◊

∂ ∂ ∂
 [∵   z = f(x, y)].

\ 
1

C

F dxÚ  = 1 1

R

F F f
dx dy

y z y

∂ ∂ ∂Ê ˆ
- + ◊Á ˜∂ ∂ ∂Ë ¯ÚÚ  (5)

Now, the equation z = f(x, y) of the surface S can be written as

                 f(x, y, z) ∫ z – f(x, y) = 0 º (6)

Fig. 7.14
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\ grad f = ˆˆ ˆf f
i j k

x y

∂ ∂
- - +

∂ ∂

 n̂  = 
grad grad

|grad | a

f f

f
=  say |grad f| = a

 ˆˆ ˆ(cos ) (cos ) (cos )i j ka b g+ +  = 
1 1 1 ˆˆ ˆf f

i j k
a x a y a

∂ ∂
- - +

∂ ∂

\ cos a = 
1 1 1

, cos and cos
f f

a x a y a
b g

∂ ∂
- = - =

∂ ∂

Now, dS = 
cos

dxdy
a dxdy

g
= ◊

\   
1 1cos cos

S

F F
dS

z y
b g

∂ ∂È ˘
-Í ˙∂ ∂Î ˚

ÚÚ

 = 1 11 1

R

F Ff
dx dy

z a y y a

È ˘∂ ∂- ∂ +Ê ˆ Ê ˆ
◊ - ◊Á ˜Í ˙Á ˜ Ë ¯∂ ∂ ∂Ë ¯Î ˚

ÚÚ

 = – 1 1

R

F F f
dx dy

y z y

∂ ∂ ∂È ˘
+ ◊Í ˙∂ ∂ ∂Î ˚

ÚÚ  (7)

From (5) and (7), we get

 1

C

F dxÚ  = 1 1
1

ˆ ˆcos cos [ ( )]

S S

F F
dS F i n dS

z y
b g

∂ ∂È ˘
- = — ¥ ◊Í ˙∂ ∂Î ˚

ÚÚ ÚÚ
  

 (8)

Similarly, by the projections on the other coordinate planes, we get

 2

C

F dyÚ  = 
2

ˆ ˆ[ ( )]

S

F i n dS— ¥ ◊ÚÚ
  

 (9)

 3

C

F dzÚ  = 3
ˆ ˆ[ ( )]

S

F i n dS— ¥ ◊ÚÚ
  

 (10)

Adding equations (8), (9) and (10) we obtain

 1 2 3( )

C

F dx F dy F dz+ +Ú  = 1 2 3
ˆˆ ˆ ˆ[ ( )]

S

F i F j F k n dS— ¥ + + ◊ÚÚ
 

 ◊Ú
C

F d r
  

  = ˆ— ◊ÚÚ
S

F n dS( × )
  

 = ˆ◊ÚÚ
S

F n dScurl
 

Example 28  Prove that 
C

r d r◊Ú
  

  = 0.

Solution Using Stokes’ theorem,

 
C

F d r◊Ú
  

  = ˆcurl

S

F n ds◊ÚÚ
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\ 
C

r d r◊Ú
  

  = ˆcurl

S

r n ds◊ÚÚ
 

 = ˆ0

S

n ds◊ÚÚ  [ curl 0]r =
 

∵

 = 0 Hence, proved.

Example 29  Evaluate [ 2 ]x

C

e dx y dy dz+ -Ú ; by Stokes’ theorem where C is the curve 

x
2 + y2 = 4, z = 2.

Solution Using Stokes’ theorem,

 

C

F d r◊Ú
  

  = ˆcurl

S

F n ds◊ÚÚ
 

Now,

 2x

C

e dx y dy dz+ -Ú  = ˆ ˆˆ ˆ ˆ ˆ( 2 ) ( )x

C

e i y j k dx i dy j dz k+ - ◊ + +Ú 

 = 

C

F d r◊Ú
  

 ; where ˆˆ ˆ2x
F e i y j k= + -
 

 curl F
 

 = 

ˆˆ ˆ

ˆˆ ˆ0 0 0 0

2 1x

i j k

i j k
x y z

e y

∂ ∂ ∂
= + + =

∂ ∂ ∂

-

\ 
C

F d r◊Ú
  

  = ˆcurl

S

F n ds◊ÚÚ
 

 = 0; since curl F
 

 = 0.

Example 30  Apply Stokes’ theorem to evaluate ,

C

F d r◊Ú
  

  where 2 2 ˆˆ ˆ ( )F y i x j x z k= + - +
 

 and 

C is the boundary of the triangle with vertices at (0, 0. 0), (1. 0, 0), (1, 1, 0).

Solution We have F
 

 = 2 2 ˆˆ ˆ ( )y i x j x z k+ - +

 curl F F= — ¥
   

 = 

2 2

ˆˆ ˆ

ˆˆ ˆ0 2( )

( )

i j k

i j x y k
x y z

y x x z

∂ ∂ ∂
= + + -

∂ ∂ ∂

- +

Since the triangle lies in the xy-plane so that ˆn̂ k= ,

\ curl ˆF n◊
 

 = ˆ ˆˆ[ 2( ) ] 2( )j x y k k x y+ - ◊ = -
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Using Stokes’ theorem

 
C

F d r◊Ú
  

  = ˆcurl

S

F n dS◊ÚÚ
 

 = 2( )

S

x y dS-ÚÚ

 = 

1

0 0

2( )

x

x y

x y dxdy

= =

-Ú Ú

 = 

1 2

00

2
2

x

yx

y
xy dx

==

È ˘
-Í ˙

Î ˚Ú

 = 

1 2
2

0

2 0
2

x

x
x dx

=

È ˘Ê ˆ
- -Í ˙Á ˜Ë ¯Î ˚Ú

 = 

1 2

0

2
2

x

x
dx

=
Ú  = 

1
2

0x

x dx

=
Ú

 = 

1
3

03

xÈ ˘
Í ˙
Î ˚

 = 
1

3

Example 31  Verify Stokes’ theorem for the vector fi eld 2 2 ˆ ˆ( ) 2F x y i xy j= - +
 

, integrated around 

the rectangle z = 0 and bounded by the lines x = 0, y = 0, x = a, and y = b.

Solution We have

 F
 

 = 2 2 ˆ ˆ( ) 2x y i xy j- +

\ F d r◊
  

 = 2 2 ˆ ˆ ˆ ˆ[( ) 2 ] [ ]x y i xy j dx i dy j- + ◊ +

 = (x2 – y2) dx + 2xy dy

Fig. 7.16

O

y

B(1, 1)

x = 1
y
x

=

y = 0 A(1, 0) x

Fig. 7.15
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Stokes’ theorem

 
C

F d r◊Ú
  

  = ˆcurl

S

F n ds◊ÚÚ
 

 (1)

Now,

 
C

F d r◊Ú
  

  = 2 2( ) 2

C

x y dx xy dy- +Ú 

 = 

OA AB BC CO

+ + +Ú Ú Ú Ú     (2)

Along the line OA; y = 0 so that dy = 0 and x varies from 0 to a.

Along the line AB; x = a so that dx = 0 and y varies from 0 to b.

Along the line BC; y = b so that dy = 0 and x varies from a to 0.

Along the line CO; x = 0 so that dx = 0 and y varies from b to 0.

\   Eq. (2), becomes

 

C

F d r◊Ú
  

  = 

0 0
2 2 2

0 0

2 ( )

a b

a b

x dx ay dy x b dx O+ + - +Ú Ú Ú Ú

 = 
3 2 3

2

00 0

2 0
3 2 3

a b a

x y x
a b x

È ˘ È ˘ È ˘
+ + - +Í ˙ Í ˙ Í ˙

Î ˚Î ˚ Î ˚

 = 
3 3

2 2

3 3

a a
ab ab+ + -

 
C

F d r◊Ú
  

  = 2 ab
2

On the other hand,

 Curl F
 

 = 

2 2

ˆˆ ˆ

ˆ4

( ) 2

i j k

y k
x y z

x y xy O

∂ ∂ ∂
=

∂ ∂ ∂

-

\ ˆCurl

S

F n ds◊ÚÚ
 

 = 

0 0

4

a a

x y

y dy dx

= =
Ú Ú  ˆˆ[ ]n k=∵

 = 
2

2 2

00 0

4 2 2
2

ba a
y

dx b dx ab
È ˘

= =Í ˙
Î ˚Ú Ú

Hence,

 

C

F d r◊Ú
  

  = ˆcurl

S

F n ds◊ÚÚ
 

.

Stokes’ theorem is verifi ed.
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Example 32  Verify Stokes’ theorem for ˆˆ ˆF y i z j x k= + +
 

, where S is the upper-half surface of 

the sphere x2 + y2 + z2 = 1 and C is its boundary.

Solution The boundary C of S is a circle in the xy-plane of unity radius and centre at the origin. The 

equations of the curve C are x2 + y2 = 1, z = 0.

Let x = cos t, y = sin t, z = 0; 0 £ t  < 2p are parametric equations of C. Then

 

C

F d r◊Ú
  

  = ˆ ˆˆ ˆ ˆ ˆ( ) ( )

C

y i z j x k dx i dy j dz k+ + ◊ + +Ú 

 = 

C

y dx z dy x dz+ +Ú 

 = 
C

y dxÚ   [Since on the boundary C, z = 0 so dz = 0]

 = 

2

0

sin
dx

t dt
dt

p

◊Ú

 = 

2 2
2

0 0

1
sin (1 cos 2 )

2
t dt t dt

p p

- = - -Ú Ú

 = 

2
1 sin 2

2 2 o

t
t

p

p
È ˘

- - = -Í ˙Î ˚

Now, we evaluate ˆCurl

S

F n ds◊ÚÚ
 

We have curl F F= — ¥
   

 = 

ˆˆ ˆ

ˆˆ ˆ( )

i j k

i j k
x y z

y z x

∂ ∂ ∂
= - + +

∂ ∂ ∂

If R is the plane region bounded by the circle C,

\ ˆcurl

S

F n dS◊ÚÚ
 

 = ˆcurl

R

F k dS◊ÚÚ
 

 = ˆ( )

R

i j k k dS- + + ◊ÚÚ  = 

R

dS R- = -ÚÚ

But R = area of a circle of radius unity = p(1)2 = p

\ ˆcurl

S

F n dS◊ÚÚ
 

 = –p

Hence, 

C

F d r◊Ú
  

  = ˆcurl

S

F n dS◊ÚÚ
 

Stokes’ theorem is verifi ed.
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EXERCISE 7.3

 1. Evaluate [ sin cos ]x x

C

e y dx e y dy
- -+Ú  by Green’s theorem in plane where C is the rectangle 

with vertices (0, 0). (p, 0), , , 0,
2 2

p p
p

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯ .

 2. If 2 2 ˆ ˆ( ) 2F x y i xy j= - +
 

 and ˆ ˆr x i y j= +
 

, fi nd the value of 

C

F d r◊Ú
  

  around the rectangular 

boundary x = 0, x = a, y = 0 and y = b.

 3. Apply Green’s theorem in the plane to evaluate [( sin ) cos ]

C

y x dx x dy- +Ú ; where C is the 

triangle enclosed by the lines y = 0, x = p, py = 2x.

 4. Apply Green’s theorem in the plane to evaluate 2 2 2 2[(2 ) ( ) ]

C

x y dx x y dy- + +Ú , where C is 

the boundary of the surface enclosed by the x-axis and the semicircle 2(1 )y x= - .

 5. Verify Green’s theorem in the plane for 2 2 2[(2 ) ( ) ]

C

xy x dx x y dy- + +Ú , where C is the 

boundary of the region enclosed by y = x2 and y2 = x.

 6. Verify Green’s theorem in the plane for 
2 2[(3 8 ) (4 6 ) ]

C

x y dx y xy dy- + -Ú  where C is the 

boundary of the region defi ned by y2 = x and x2 = y.

 7. Apply Gauss’s divergence theorem to evaluate ˆ

S

F n dS◊ÚÚ
 

; where 2 ˆˆ ˆ ( 1)F x i y j z k= - + -
 

 

and S is the closed surface bounded by the planes z = 0, z = 1 and the cylinder x2 + y2 = 4.

 8. Evaluate ˆ

S

F n dS◊ÚÚ
 

 by Gauss’s divergence theorem, where 3 3 3 ˆˆ ˆF x i y j z k= + +
 

 and S is 

the surface of the sphere x2 + y2 + z2 = a2.

 9. Evaluate by Gauss’s divergence theorem of the integral ˆ( )

S

F n dS— ¥ ◊ÚÚ
  

, where 

ˆ[ log ( 1) sin ]z
F xy e z x k= + + -
 

 and S is the surface of the sphere x2 + y2 + z2 = a2 above the 

xy-plane.

 10. Verify Gauss’s divergence theorem for 2 ˆˆ ˆ4F xy i y j yz k= - +
 

 taken over the cube bounded 

by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.

 11. Verify Gauss’s divergence theorem for 2 2 ˆˆ ˆ4 2F x i y j z k= - +
 

 taken over the region bounded 

by the surfaces x2 + y2 = 4, z = 0, z = 3.

 12. Verify Gauss’s divergence theorem to show that 
5

3 2 ˆˆ ˆ ˆ[( ) 2 2 ]
3

S

a
x yz i x y j k n dS- - + ◊ =ÚÚ , 

where S denotes the surface of the cube bounded by the planes x = 0, x = a, y = 0, y = a, z = 0, 

z = a.
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 13. Evaluate the integral [ 2 ]x

C

e dx y dy dz+ -Ú , by Stokes’ theorem where C is the curve x2 + y2 

= 4 and z = 2.

 14. Verify Stoke’s theorem for the function 2 ˆ ˆF x i xy j= +
 

, integrated around the square in the 

plane z = 0, whose sides are along the lines x = 0, x = a, y = 0, and y = a.

 15. Evaluate by Stoke’s theorem of the integral (sin cos sin )

C

z dx x dy y dz- +Ú  where C is the 

boundary of the rectangle 0 £ x £ p, 0 £ y £ 1, z = 3.

 16. Verify Stokes’ theorem for the function ˆˆ ˆF z i x j y k= + +
 

, where the curve is the unit circle 

in the xy-plane bounded by the hemisphere 
2 2(1 )z x y= - - .

 17. Evaluate ˆ( )

S

F n dS— ¥ ◊ÚÚ
  

, where ˆˆ ˆ( 2) ( 4)F y z i yz j xz k= - + + + -
 

 and S is the surface of 

the cube x = y = z = 0, x = y = z = 2 above the xy-plane.

 18. Verify Stokes’ theorem for the function 2ˆ ˆF xy i xy j= +
 

, integrated round the square with 

vertices (1, 0, 0), (1, 1, 0), (0, 1, 0), and (0, 0, 0).

 19. Verify Stokes’ theorem for 3 3ˆ ˆF y i x j= - +
 

, where S is the circular disc x2 + y2 £ 1, z = 0.

Answers

 1. 2(e–p – 1) 2. 2 ab
2

 3. 
2

4

p

p

Ê ˆ
- -Á ˜Ë ¯

 4. 
4

3

 5. 0

C S

N M
Mdx Ndy dx dy

x y

∂ ∂Ê ˆ
+ = - =Á ˜∂ ∂Ë ¯Ú ÚÚ 

 6. 
3

2
C S

N M
Mdx Ndy dx dy

x y

∂ ∂Ê ˆ
+ = - =Á ˜∂ ∂Ë ¯Ú ÚÚ 

 7. 4p 8. 4p a5

 9. 0 10. 
3

ˆ
2

S V

F n ds div F dv◊ = =ÚÚ ÚÚÚ
  

 11. Each of the two integrals is 84 p 13. 0

 15. 2 16. Each side of integrals is p

 17. –4 19. Each side of the integrals is 
3

2

p
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SUMMARY
1. Gradient of a Scalar Field

The gradient of a scalar fi eld is a vector fi eld that points in the direction of the greatest rate of increase of 

the scalar fi eld, and whose magnitude is the greatest rate of change.

The gradient of a scalar fi eld ‘f’ is denoted by grad f or f—
 

 and is defi ned as

 f—
 

 = ˆˆ ˆf f f
i j k

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
.

The unit normal vector 
grad

ˆ
grad 

f
n

f
= .

2. Divergence of a Vector Field

Let 1 2 3
ˆˆ ˆ( , , ) ( , , ) ( , , )V V x y z i V x y z j V x y z k= + +

 
 be a differential vector function, where x, y, z are 

Cartesian coordinates, and V1, V2, V3 are the components of V
 

. Then the divergence of V
 

 is denoted by 

div V
 

 or V— ◊
  

 and is defi ned as

 div V
 

 = 31 2 VV V

x y z

∂∂ ∂
+ +

∂ ∂ ∂

Another common notation for the divergence of V
 

 is 

 div orV V— ◊
   

 = 1 2 3
ˆ ˆˆ ˆ ˆ ˆ( )i j k V i V j V k

x y z

Ê ˆ∂ ∂ ∂
+ + ◊ + +Á ˜∂ ∂ ∂Ë ¯

 div V
 

 = 31 2 VV V

x y z

∂∂ ∂
+ +

∂ ∂ ∂
Hence, the divergence of a vector function is a scalar function.

Note Let V
 

 denote the velocity of a fl uid in a medium.

If div V
 

 = 0 then the fl uid is said to be incompressible. In electromagnetic theory, if div V
 

 = 0 then the 

vector fi eld V
 

 is said to be solenoidal.

3. Curl of a Vector Function

The vector function V
 

 is denoted by curl V
 

 or V— ¥
  

 and is defi ned as

 Curl V V= — ¥
   

 = 1 2 3

1 2 3

ˆˆ ˆ

ˆˆ ˆ, where

i j k

V V i V j V k
x y z

V V V

∂ ∂ ∂
= + +

∂ ∂ ∂

 

 = 3 32 1 2 1 ˆˆ ˆV VV V V V
i j k

y z z z x y

Ê ˆ Ê ˆ∂ ∂∂ ∂ ∂ ∂Ê ˆ
- + - + -Á ˜Á ˜ Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

 = 3 2 ˆV V
i

y z

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯Â
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where Â denotes summation obtained by the cyclic rotation of the unit vectors ˆ ˆ, ,i j k , the components V1, 

V2, V3, and the independent variables x, y, z respectively.

Note (i)  The curl of a vector function is a vector function.

   (ii)   Irrotational Vector: If curl ( V
 

) = 0 then the vector function V
 

 is said to be an irrotational 

vector.

 (iii)   A force fi eld F
 

 is said to be conservative if it is derivable from a potential function f, i.e.,

F
 

 = grad f. Then curl F
 

 = curl (grad f) = 0.

\  if F
 

 is conservative then curl F
 

 = 0 and there exists a scalar potential function f such that F
 

 = grad f.

4. Important Vector Identities

 (i) div ( ) div divA B A B+ = +
    

 (ii) Curl ( ) curl curlA B A B+ = +
    

 (iii) If A
 

 is a differentiable vector function and f is a differentiable scalar function then

  div ( ) (grad ) divA A Af f f= ◊ +
   

 (iv) Curl ( ) (grad ) curlA A Af f f= ¥ +
   

 (v) div ( ) curl curlA B B A A B¥ = ◊ - ◊
      

 (vi) Curl of the gradient of f is zero, i.e., curl (grad (f) = 0

 (vii) div curl A
 

 = 0.

 (viii) div grad 2
f f= — , where — is a Laplace operator.

5. Conservative Field and Scalar Potential

Conservative fi eld is a vector fi eld which is the gradient of a function, known as a scalar potential. 

Conservative fi elds have the property that the line integral from one point to another is independent of the 

choice of path connecting the two points. It is path-independent. Conversely, path independence is equivalent 

to the vector fi eld being conservative. Conservative vector fi elds are also irrotational. Mathematically, a 

vector fi eld F
 

 is said to be conservative if there exists a scalar fi eld f such that F f= —
  

.

Here, —
 

f denotes the gradient of f. When the above equation holds, f is called a scalar potential for F
 

.

If 0F f— ¥ = — ¥ — =
    

. In such a case, F
 

 is called a conservative vector fi eld.

6.  Green’s Theorem in the Plane: Transformation between Line and Double 
Integral

Let R be a closed bounded region in the xy-plane whose boundary C consists of fi nitely many smooth 

curves. Let M and N be continuous functions of x and y having continuous partial derivatives and
M N

y x

∂ ∂
∂ ∂

 

in R. Then

 ( )

C

M dx N dy+Ú  = 

R

N M
dx dy

x y

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯ÚÚ
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The line integral being taken along the entire boundary C of R such that R is on the left as one advances 

in the direction of integration.

7.  Gauss’s Divergence Theorem (Relation between Volume and 
Surface Integers)

Let F
 

 be a vector function of position which is continuous and has continuous fi rst-order partial derivatives, 

in a volume V bounded by a closed surface S. Then

 

V

F dv—◊ÚÚÚ
  

 = ˆ.

S

F n dsÚÚ
 

where n̂  is the outward drawn unit normal vector to S.

8. Stokes’ Theorem (Relation between Line and Surface Integrals)

Suppose S be a piecewise smooth open surface bounded by a piecewise smooth simple closed curve C. Let 

( , , )F x y z
 

 be a continuous vector function. Then

 
C

F dr◊Ú
  

  = ˆ ˆ( ) curl

S S

F n ds F n ds— ¥ ◊ = ◊ÚÚ ÚÚ
   

where C is a simple closed curve and n̂  is the outward unit normal vector drawn to the surface S.

OBJECTIVE-TYPE QUESTIONS

 1. The magnitude of the gradient of the function 

f(x, y, z) = xyz
3 at (1, 0, 2) is

 (a) 0 (b) 3

 (c) 8 (d) •
 [GATE (ME) 1998]

 2. If the velocity vector in a two-dimensional 

fl uid is given by 2 2ˆ ˆ2 (2 )v xyi y x j= + -
 

, the 

curl v
 

 will be

 (a) 2 ˆ2y j  (b) ˆ6yk

 (c) 0 (d) ˆ4x k-
 [GATE (ME) 1999]

 3. In a fl ow fl uid in xy-plane, the variation of 

velocity with limit is given by

2 2 2ˆ ˆ( ) and ( )v x yt i v x y i= + +
  

  The acceleration of the particle in this fi eld, 

occupying the point (1, 1) at time t = 1 will be

 (a) î  (b) ˆ2i

 (c) ˆ3i  (d) ˆ5i

 [GATE (ME) 1999]

 4. The maximum value of the directional 

derivative of the function f = 2x
2 + 3y

2 + 5z
2 

at a point (1, 1, –1) is

 (a) 10 (b) –4

 (c) 152  (d) 152

 [GATE (ME) 2000]

 5. The divergence of a vector ˆˆ ˆr x i y j z k= + +
 

 

is

 (a) ˆˆ ˆi j k+ +  (b) 3

 (c) 0 (d) 1

 [GATE (ME) 2001]

 6. Gauss’ divergence theorem relates certain

 (a) surface integrals to volume integrals

 (b) surface integrals to line integrals

 (c) vector quantities to other vector quantities

 (d) line integral to volume integrals

 [GATE (ME) 2001]

 7. Given a vector fi eld F
 

, the divergence 

theorem states that

 (a) 
S V

F dS F dV◊ = —◊Ú Ú
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 (b) 
S V

F dS F dV◊ = — ¥Ú Ú
    

 (c) 
S V

F dS F dV¥ = —◊Ú Ú
    

 (d) 
S V

F dS F dV¥ = — ¥Ú Ú
    

 [GATE (EE) 2002]

 8. The vector fi eld ˆ ˆF xi y j= -
 

 is

 (a) divergence free, but not irrotational

 (b) irrotational, but not divergence free

 (c) divergence free and irrorational

 (d) neither divergence free nor irrotational

 [GATE (ME) 2003]

 9. The velocity fi eld is given by ˆ ˆ2 3v yi x j= +
 

, 

where x and y are in metres. The acceleration 

of a fl uid particle at (x, y) = (1, 1) in the 

x-direction is

 (a) 0 m/s2 (b) 5.00 m/s2

 (c) 6.00 m/s2 (d) 8.40 m/s2

 [GATE (CE) 2004]

 10. Value of the integral 2( )
C

xydy y dx-Ú ,

where C is the square cut from the fi rst 

quadrant by the line x = 1 and y = 1 will 

be (use Green’s theorem to change the line 

integral with double integral)

 (a) 
1

2
 (b) 1

 (c) 
3

2
 (d) 

5

2
 [GATE (ME) 2005]

 11. Stokes’ theorem connects

 (a) a line integral and a surface integral

 (b) a surface integral and a volume integral

 (c) a line integral and a volume integral

 (d) gradient of a function and its surface 

integral [GATE (ME) 2005]

 12. The line integral V dr◊Ú
  

 of the vector fi eld 

2 2 ˆˆ ˆ( ) 2V r xyz i x z j x yk= + +
 

 from the origin 

to the point P(1, 1, 1) is

 (a) 1 (b) 0

 (c) –1

 (d) cannot be determined without specifying 

the path [GATE (ME) 2005]

 13. For a scalar fi eld 
2 2

2 3

x y
u = + , the magnitude 

of the gradient at the point (1, 3) is

 (a) 
13

9
 (b) 

9

2

 (c) 5  (d) 
9

2

 [GATE (EE) 2005]

 14. If a vector ( )R t
 

 has a constant magnitude 

then

 (a) 0
dR

R
dt

◊ =
 

 
 (b) 0

dR
R

dt
¥ =

 
 

 (c) 
dR

R R
dt

◊ =
 

  
 (d) 

dR
R R

dt
¥ =

 
  

 [GATE (IE) 2005]

 15. whereP P— ¥ — ¥
  

 is a vector, is equal to

 (a) P P¥ — ¥
 

 (b) 2 ( )P P— + — — ◊
  

 (c) 2
P P— + — ¥

 
 (d) 2( )P P— — ◊ - —

 

 [GATE (ECE) 2006]

 16. ( ) , whereP dS P— ¥ ◊ÚÚ
  

 is a vector, is equal 

to

 (a) P dl◊Ú
 

  (b) P dl— ¥ — ¥ ◊Ú
 

 

 (c) P dl— ¥ ◊Ú
 

  (d) P dl— ◊Ú Ú Ú
 

 [GATE (ECE) 2006]

 17. Divergence of the fi eld

  V(x, y, z) = ˆ ˆ( cos ) ( cos )x xy y i y xy j- + +  

2 2 2 ˆ(sin )z x y k+ + +  is

 (a) 2z cos z2 (b) sin xy + 2z cos z2

 (c) x sin xy – cos z (d) none

 [GATE (EE) 2007]

 18. A velocity vector is given as

2 2 ˆˆ ˆ5 2 3V xy i y j yz k= + +
 

  The divergence of the velocity vector at

(1, 1, 1) is

 (a) 9 (b) 10

 (c) 14 (d) 15

 [GATE (CE) 2007]
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 19. The inner (dot) product of two vectors 

andP Q
  

 is zero. The angle (degrees) 

between the two vectors is

 (a) 0 (b) 5

 (c) 90 (d) 120

 [GATE (CE) 2008]

 20. The divergence of the vector fi eld 

ˆˆ ˆ( ) ( ) ( )x y i y x j x y z k- + - + + +  is

 (a) 0 (b) 1

 (c) 2 (d) 3

 [GATE (ME) 2008]

 21. The directional derivative of the scalar 

function f(x, y, z) = x
2 + 2y

2 + z all at the 

point P(1, 1, 2) in the direction  of the vector 

ˆ ˆ3 4a i j= +
 

 is

 (a) –4 (b) –2

 (c) –1 (d) 1

 [GATE (ME) 2008]

 22. The divergence of a vector fi eld ˆ3xzi +
2 ˆˆ2xy j yz k-  at a point (1, 1, 1) is equal to

 (a) 7 (b) 4

 (c) 3 (d) 0

 [GATE (ME) 2009]

 23. For a scalar function f(x, y, z) = x2 + 3y
2 + 2z

2, 

the gradient at the point P(1, 2, –1) is

 (a) ˆˆ ˆ2 6 4i j k+ +  (b) ˆˆ ˆ2 12 4i j k+ -

 (c) ˆˆ ˆ2 12 4i j k+ +  (d) 56

 [GATE (CE) 2009]

 24. For  scalar function f(x, y, z) = x2 + 3y
2 + 2z

2, 

the directional derivative at the point P(1, 2, 

–1) in the direction of a vector ˆˆ ˆ 2i j k- +  is

 (a) –18 (b) 3 6-
 (c) 3 6  (d) 18

 [GATE (CE) 2009]

 25. The line integral of the vector function 
2ˆ ˆ2F xi x j= +

 
 along the X-axis from x = 1 

to x = 2 is

 (a) 0 (b) 2.33

 (c) 3 (d) 5.33

 [GATE (IPE) 2009]

 26. Consider a closed surface S surrounding 

volume V. If r
 

 is the position vector of a 

point inside S, with n̂  the unit normal on S, 

the value of the integral ˆ5

s

r ndS◊ÚÚ  is

 (a) 3 V (b) 5 V

 (c) 10 V (d) 15 V

 [GATE (EC) 2011]

 27. The direction of the vector A is radially 

outward from the origin, with |A| = kr
n where 

r
2 = x2 + y2 + z2 and k is constant. The value 

of n for which —·A = 0 is

 (a) –2 (b) 2

 (c) 1 (d) 0

 [GATE (EE) 2012]

 28. For the spherical surface, x
2 + y

2 + z
2 – 1, 

the unit outward normal vector at the point 

1 1
, , 0

2 2

Ê ˆ
Á ˜Ë ¯

 is given by

 (a) 
1 1ˆ ˆ

2 2
i j+

 (b) 
1 1ˆ ˆ

2 2
i j-

 (c) k̂

 (d) 
1 1 1 ˆˆ ˆ

3 3 3
i j k+ +

 [GATE (ME) 2012]

 29. For a vector E, which one of the following 

statements is NOT TRUE?

 (a) If —·E = 0, E is called solenoidal

 (b) If — × E = 0, E is called conservative

 (c) If — × E = 0, E is called irrotational

 (d) If —·E = 0, E is called irrotational

 [GATE (IN) 2013]

 30. The curl of the gradient of the scalar fi eld 

defi ned by V = 2x
2
y + 3y

2
z + 4z

2
x is

 (a) 4xyax + 6yzay + 8zxaz

 (b) 4ax + 6ay + 8az

 (c) (4xy + 4z
2)ax + (2xy

2
 + 6yz)ay + (3y

2
 + 8zx)az

 (d) 0 [GATE (EE) 2013]

 31. Given a vector fi eld fi eld F = y2
xax – yzay = 

x
2
az, the line integral ÚF·dl evaluated along a 

segment on the x-axis from x = 1 to x = 2 is

 (a) –2.33 (b) 0
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 (c) 2.33 (d) 7

 [GATE (EE) 2013]

 32. The divergence of the vector fi eld 

ˆ ˆ ˆ
x y zA xa ya za= + +

 

 is

 (a) 0 (b) 1/3

 (c) 1 (d) 3

 [GATE (EC) 2013]

 33. The following surface integral is to be 

evaluated over a sphere for the given steady 

velocity vector fi eld, F xi y j z k= + +  

defi ned with respect to a Cartesian coordinate 

system having i, j, and k as a unit base vectors.

1
( )

4
S

F n dA◊ÚÚ

  where S is the sphere, x2 + y2 + z2 = 1 and n is 

the outward unit normal vector to the sphere. 

The value of the surface integral is

 (a) p (b) 2p

 (c) 3
4

p
 (d) 4p

 [GATE (ME) 2013]

 34. Consider a vector fi eld ( )A r
  

. The closed loop 

line integral A dl◊Ú
  

  can be expressed as

 (a) ( )A ds— ¥ ◊ÚÚ
  

  over the closed surface 

bounded by the loop

 (b) ( )A dv— ◊ ◊ÚÚ
 

  over the closed volume 

bounded by the loop

 (c) ( )A dv— ◊ÚÚÚ
 

 over the open volume 

bounded by the loop

 (d) ( )A ds— ¥ ◊ÚÚ
   over the closed surface 

bounded by the loop

 [GATE (EC) 2013]

 35. Divergence of the vector fi eld 
2 2 ˆˆ ˆx zi xy j yz k+ -  at (1, –1, 1) is

 (a) 0 (b) 3

 (c) 5 (d) 6

 [GATE (ME) 2014]

 36. In a steady incompressible fl ow, the velocity 

distribution is given by ˆˆ ˆ3 5V xi Py j z k= - + ,

where, V is in m/s and x, y, and z are in m. 

In order to satisfy the mass conservation, the 

value of the constant P(in s–1) is ______.

 [GATE (CH) 2014]

 37. Given the vector ˆ(cos )(sin ) xA x y a= +  

ˆ ˆ ˆ(sin )(cos ) , where ,y x yx y a a a  denote unit 

vectors along x, y directions, respectively. 

The magnitude of curl of A is ______.

 [GATE (EC) 2014]

 38. The directional derivative of 

( , ) ( )
2

xy
f x y x y= +  at (1, 1) in the direction 

of the unit vector at an angle of 
4

p
 with 

y-axis, is given by ______.

 [GATE (EC) 2014]

 39. The magnitude of the gradient for the function 

f(x, y, z) = x2 + 3y
2 + z3 at the point (1, 1, 1) is 

______. [GATE (EC) 2014]

 40. If ˆ ˆ ˆ and | |x y zr xa ya za r r= + + =
 

, then

div (r2—(ln r)) = ______.

 [GATE (EC) 2014]

 41. Given ˆ ˆ ˆ
x y zF za xa ya= + + . If S represents 

the portion of the sphere x2 + y2 + z2 = 1 for z 

≥ 0, then  

S

F ds— ¥ ◊Ú
  

 is ______.

 [GATE (EC) 2014]

 42. If 
3 2 2ˆ ˆ(2 3 ) (6 3 )E y yz x xy xz y= - - - - +

ˆ(6 )xyz z  is the electric fi eld in a source free 

region, a valid expression for the electrostatic 

potential is

 (a) xy
3 – yz

2 (b) 2xy
3 – xyz

2

 (c) y
3 + xyz

2 (d) 2xy
3 – 3xyz

2

 [GATE (EC) 2014]

 43. The line integral of function F = yzi, in the 

counterclockwise direction, along the circle 

x
2 + y2 = 1 at z = 1 is

 (a) –2p (b) –p
 (c) p (d) 2p
 [GATE (EE) 2014]

 44. Which one of the following describes 

the relationship among the three vectors, 

ˆˆ ˆi j k+ + , ˆ ˆˆ ˆ ˆ ˆ2 3 and 5 6 4i j k i j k+ + + + ?

 (a) The vectors are mutually perpendicular

 (b) The vectors are linearly dependent
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 (c) The vectors are linearly independent

 (d) The vectors are unit vectors

 [GATE (ME) 2014]

 45. Curl of vector 2 2 2 2 3 ˆˆ ˆ2 2F x z i xy zj y z k= - +
 

 

is

 (a) 3 2 2 2 ˆˆ ˆ(4 2 ) 2 2yz xy i x z j y z k+ + -

 (b) 3 2 2 2 ˆˆ ˆ(4 2 ) 2 2yz xy i x z j y z k+ + -

 (c) 2 2 2 ˆˆ ˆ2 4 6xz i xyz j y z k- +

 (d) 2 2 2 ˆˆ ˆ2 4 6xz i xyz j y z k+ +
 [GATE (ME) 2014]

 46. Gradient of a scalar variable is always

 (a) a vector (b) a scalar

 (c) a dot product (d) zero

 [GATE (CH) 2014]

 47. For an incompressible fl ow fi eld v
 

, which 

one of the following conditions must be 

satisfi ed?

 (a) 0v— ◊ =
  (b) 0v— ¥ =

 

 (c) ( · ) 0v v— ¥ =
  

 (d) ( ) 0
V

V V
t

∂
+ ◊— =

∂

  

 [GATE (ME) 2014]

ANSWERS

 1. (c) 2. (d) 3. (d) 4. (c) 5. (b) 6. (a) 7. (a) 8. (c) 9. (d) 10. (b)

 11. (a) 12. (a) 13. (c) 14. (a) 15. (d) 16. (a) 17. (a) 18. (d) 19. (c) 20. (d)

 21. (b) 22. (c) 23. (b) 24. (b) 25. (c) 26. (d) 27. (a) 28. (a) 29. (d) 30. (d)

 31. (b) 32. (d) 33. (a) 34. (d) 35. (c) 36. (7.99 to 8.01) 37. (0) 38. (3) 39. (7)

 40. (3) 41. (3.14) 42. (d) 43. (b) 44. (b) 45. (a) 46. (a) 47.(a)





8.1  SEQUENCE

Defi nition

A function whose domain is the set of natural numbers N and range, a subset of real numbers R is called 

a sequence.

A sequence is of the form {(1, x1), (2, x2), (3, x3), …, (n, xn)}, where x1, x2, …, xn are real numbers.

The real number xn that the sequence associates with the positive integer n is called the image of n 

under the sequence.

Generally, it is denoted by {x1, x2, …, xn}.

Here, x1, x2, …, xn are the terms of the sequence, and so xn is the nth term of the sequence.

A sequence has its nth term denoted by {xn}.

8.2  THE RANGE

The range set is the set consisting of all distinct elements of a sequence, without repetition and without 

regard to the position of a term. Thus, the range may be a fi nite set or an infi nite set.

8.3  BOUNDS OF A SEQUENCE

(i) Bounded-above Sequences

A sequence {xn} is said to be bounded above if there exists a real number M such that xn £ M " n Œ N.

(ii) Bounded-below Sequences

A sequence {xn} is said to be bounded below if there exists a real number m such that xn ≥ m, " n Œ N.

(iii) Bounded Sequence

A sequence is said to be bounded if it is bounded above and below. M and m are the upper and the lower 

bounds of the sequence, for example,

 xn = {(–1)n; n Œ N} is a bounded sequence.

8
Infi nite Series
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8.4  CONVERGENCE OF A SEQUENCE

A sequence {xn} is said to converge to a real number ‘l’ if for each Œ > 0, there exists a positive integer 

m (depending on Œ) such that |xn – l| < Œ, for all n ≥ m.

Mathematically, we write

xn Æ l as n Æ • or lim n
n

x l
Æ•

=

*A sequence {xn} is said to be divergent if lim n
n

x
Æ•

 is not a fi nite quantity, i.e., if lim orn
n

x
Æ•

= +• -• .

Examples: (i) Let a sequence {xn} = {n
2}

Then 2lim
n

n
Æ•

= •  (which is not a fi nite)

Hence, {xn} is divergent.

(ii) Let 
1

{ } ;
2

n n
x n N

È ˘= ŒÍ ˙Î ˚

Then 
1

lim
2nnÆ•

 = 0 (a fi nite quantity)

Hence, the sequence {xn} is convergent.

Oscillatory Sequence

A sequence {xn} which neither converges to a fi nite number nor diverges to • or –• is said to be an 

oscillatory sequence.

Example: {xn} = {(–1)n} oscillates fi nitely between –1 and +1 and the sequence {xn} = {n(–1)n} 

oscillates infi nitely between –• and +•.

Note

 (i) Every convergent sequence has a unique limit.

 (ii) Every convergent sequence is bounded.

8.5  MONOTONIC SEQUENCE

A sequence {xn} is said to be monotonic increasing if xn + 1 ≥ xn, " n

A sequence {xn} is said to be monotonic decreasing if xn + 1 £ xn, " n

Thus, a sequence {xn} is said to be monotonic if it is either monotonic increasing or decreasing.

A sequence {xn} is strictly increasing if xn + 1 > xn, " n and strictly decreasing if xn + 1 < xn, " n

Examples: (i) 
1 1 1

1, , , , ...
2 3 4

Ï ¸
Ì ˝
Ó ˛

 is a monotonic decreasing sequence.

 (ii) { }
1

n

n
x

n

Ï ¸= Ì ˝+Ó ˛
 is a monotonic increasing sequence.

 (iii) {xn} = {n} is monotonic sequence.

8.6  INFINITE SERIES

If < un> be a sequence of real numbers then the sum of the infi nite number of terms of this sequence, 

i.e., the expression u1 + u2 + u3 +   + un +   is defi ned as an infi nite series and is denoted by



 Infi nite Series 8.3

 1

orn n

n

u u
•

=
Â Â

A sequence < Sn > where Sn denotes the sum of the fi rst n terms of the series.

Thus, Sn = u1 + u2 + u3 +   + un; " n.

The sequence < Sn > is called the sequence of partial sums of the series and the partial sums,

S1 = u1, S2 = u1 + u2, S3 = u1 + u2 + u3 and so on.

8.6.1 Positive-term Series

The series Âun is called a positive-term series if each term of this series is positive, i.e.,

 Âun = u1 + u2 + u3 +   + un +  

8.6.2 Alternating Series

A series whose terms are alternatively positive and negative, i.e., Âun = u1 – u2 + u3 – u4 +  

8.6.3 Convergent Series

A series Âun is said to be convergent if the sum of the fi rst n terms of the series tends to a fi nite and unique 

limit as n tends to infi nity, i.e., if lim n
n

S
Æ•

 = fi nite and unique then the series Âun is convergent.

8.6.4 Divergent Series

A series Âun is said to be divergent if the sum of the fi rst n terms of the series tends to +• or –• as

n Æ •, i.e., if lim orn
n

S
Æ•

= +• - •  then the series Âun is divergent.

8.6.5 Oscillatory Series

The oscillatory series are two types:

(i) Oscillate Finitely

A series Âun is said to oscillate fi nitely if the sum of its fi rst n terms tends to a fi nite but not unique 

limit as n tends to infi nity, i.e., if lim n
n

S
Æ•

 = fi nite but not unique then Âun oscillates fi nitely.

(ii) Oscillate Infi nitely

A series Âun is said to oscillate infi nitely if the sum of its fi rst n terms oscillates infi nitely, i.e., if 

lim orn
n

S
Æ•

= +• - •  both then the series Âun oscillates infi nitely.

Note 1 The convergency or divergency of a series is not affected by altering, adding, or neglecting a 

fi nite number of its terms.

Note 2 The convergency or divergency of a series is not affected by the multiplication of all the terms 

of the series by a fi xed nonzero number.
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8.6.6 A Necessary Condition for Convergence

A necessary condition for a positive-term series Âun to converge is that lim 0n
n

u
Æ•

= .

Proof Let Sn = u1 + u2 + u3 +   + un – 1 + un  

 Sn – 1 = u1 + u2 + u3 +   + un – 1

\ un = Sn – Sn – 1 (1)

Now, the given series Âun is convergent if lim n
n

S
Æ•

 is fi nite and unique,

\ lim n
n

S
Æ•

 = S be a fi nite and unique quantity.

Then Eq. (1) gives

 lim n
n

u
Æ•

 = 1lim ( )n n
n

S S -Æ•
-

 = 
1lim limn n

n n
S S -Æ• Æ•

-

 = S – S

 = 0

Hence, Âun is convergent.

Note 1 The above condition is not suffi cient.

Example:

 Âun = 
1 1 1 1

1
2 3 4 n

Ê ˆ+ + + + + +Á ˜Ë ¯
  

where un = 
1

n

\ lim n
n

u
Æ•

 = 
1

lim 0
n nÆ•

=

But Âun is divergent.

Note 2 If lim 0n
n

u
Æ•

= , we are not sure whether the series Âun is convergent or not but if lim 0n
n

u
Æ•

π  

then the series Âun is divergent.

8.6.7 Cauchy’s Fundamental Test for Divergence

If lim 0n
n

u
Æ•

π  the series Âun is divergent.

Example 1  Test the convergence of the series 
2 3 4

1
3 4 5 1

n

n
+ + + + + + •

+
  .

Solution

 un = 
1

n

n +

\ lim n
n

u
Æ•

 = lim
1n

n

nÆ• +



 Infi nite Series 8.5

 = 
1

lim 1 0
1 1/n nÆ•

= π
+

Hence, by Cauchy’s test, Âun is divergent.

Example 2  Test the convergence of 
1 1n

n

n

•

= +Â
Solution

Here, un = 
1

n

n +

\ lim n
n

u
Æ•

 = lim
1n

n

nÆ• +

 = 
1

lim
1 1/n nÆ• +

 = 1 π 0 

Hence, by Cauchy’s test, Âun is divergent.

Example 3  Discuss the convergence of the series 
1 1 1 1

1.3 2.4 3.5 4.6
+ + + + 

Solution Let un be the nth term of this series 

Then un = 
1

( 2)n n +

\ lim n
n

u
Æ•  = 

1
lim 0

( 2)n n nÆ•
=

+
Hence, by necessary condition for convergence, the series Âun is convergent.

Example 4  Discuss the convergence of the series 
0

( 1)n

n

•

=

-Â .

Solution Here, Âun = Â(–1)n

\ Sn = (–1)0 + (–1)1 + (–1)2 + (–1)3 + … to n terms

 = 1 – 1 + 1 – 1 + … to n terms

 = 1 or 0 accordingly as n is odd or even.

\ lim n
n

S
Æ•

 = 1 or 0, i.e., fi nite but not unique.

Hence, the series Âun is a fi nitely oscillating series.

EXERCISE 8.1

Test the convergence of the following series:

 1. 1 + 3 + 5 + 7 + … 2. 2 + 4 + 6 + 8 + …+ 2n + …

 3. 13 + 23 + 33 + …+ n3 + … 4. 
1 1 1

1
2 4 8

+ + + + • 
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 5. 2 – 2 + 2 – 2 + 2 – … • 6. 6 – 5 – 1 + 6 – 5 –1 + 6 – 5 – 1 … •

 7. 
1 1 1

1.3 3.5 5.7
+ + + •  8. ( 1 )n n+ -Â

 9. 
( 1)( 2)( 3)

n

n n n+ + +Â  10. 
1 1n

n

n

•

= +Â

 11. 
1 1n

n

n

•

= +Â  12. ( 2 )n-Â  

 13. 
1 2 3

1 2 3

1 2 1 2 1 2- - -
+ + + •

+ + +
  14. 

1

1

3 8 15 2
1

5 10 17 2

n

n

-

+
+ + + + + + •  

 15. 
2(6 )n-Â

Answers

 1. Divergent 2. Divergent

 3. Divergent 4. Convergent

 5. Oscillatory 6. Oscillatory

 7. Convergent 8. Divergent

 9. Convergent 10. Divergent

 11. Divergent 12. Divergent

 13. Divergent 14. Divergent

 15. Divergent

8.7  GEOMETRIC SERIES

The series 1 + x + x2 + x3 + x4 + … • is

(i) Convergent if |x| < 1 (ii) Divergent if x ≥ 1 (iii) Oscillatory if x £ –1

Proof

 Sn = 2 3 1 1
1

1

n
n x

x x x x
x

- -
+ + + + + =

-
 

 (i) When |x| < 1 then lim 0n

n
x

Æ•
=

 lim n
n

S
Æ•

 = 
1 1 0 1

lim
1 1 1

n

n

x

x x xÆ•

- - Ê ˆ= = Á ˜Ë ¯- - -
 = a fi nite quantity

  Hence, the series of convergent.

(ii) (a) When x > 1, lim n

n
x

Æ•
= •  then

 lim n
n

S
Æ•

 = 
1

lim
1

n

n

x

xÆ•

-
= •

-
  Hence, the series is divergent.
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 (b) When x = 1, the series becomes 1 + 1 + 1 + 1 + … •
 Sn = 1 + 1 + 1 + 1 + … n times = n

\ lim n
n

S
Æ•

 = lim
n

n
Æ•

= •

  Hence, the series is divergent.

(iii)(a) When x < –1, let x = –r; r > 1

 x
n = (–r)n = (–1)n 

r
n

\ lim n
n

S
Æ•  = 

1 1 ( 1)
lim lim

1 1 ( )

n n n

n n

x r

x rÆ• Æ•

- - -
=

- - -
 = +• if n is odd

 = –•  if n is even

  Hence, the series is oscillatory.

 (b) When x = –1, the series becomes 1 – 1 + 1 – 1 + 1 – … •
\ Sn = 1 – 1 + 1 – 1 + … n terms

 lim n
n

S
Æ•

 = 0 if n is even

 = 1 if n is odd

Hence, the series is oscillatory fi nitely.

EXERCISE 8.2

Test the convergence of the following series:

 1. 
3 9 27

1
4 16 64

+ + + + •  2. 
1 1 1

1
3 9 27

- + - + • 

 3. 
9 27

2 3
2 4

+ + + + •  4. 1 – 2 + 4 – 8 + … •

 5. 1 – 1 + 1 – 1 + … •

Answers

 1. Convergent 2. Convergent

 3. Divergent 4. Oscillatory

 5. Oscillatory

8.8  ALTERNATING SERIES

A series whose terms are alternatively positive and negative is called an alternating series.

Example: 
1 1 1

1
2 3 4

- + - + • 

8.9  LEIBNITZ TEST

If the alternating series u1 – u2 + u3 – u4 +… (un > 0 " n) is such that

 (i) un + 1 £ un " n and
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 (ii) lim 0n
n

u
Æ•

=

then the series converges.

Example 5  Test the series 
3 3 3 3

2 3 4 5

1 2 3 4
- + - + 

Solution In the given series, we have

 (i) the terms are alternately, +ve and –ve

 (ii) the terms are continually decreasing

 (iii) 
3

1
lim limn
n n

n
u

nÆ• Æ•

+
=

       = 
2

1 1/ 1 0
lim 0
n

n

nÆ•

+ +
= =

•
 (fi nite)

Hence, the given alternating series is convergent.

Example 6  Test the series 
1 1 1 1

1
2 4 8 16

- + - + - 

Solution The given series can be written as

2 3 4

1 1 1 1
1

2 2 2 2
- + - + - 

In this series, we fi nd that

 (i) the terms are alternatively +ve and –ve

 (ii) the terms are continually decreasing

 (iii) 
1

1
lim lim 0

2
n nn n

u
-Æ• Æ•

= =

  Hence, the given series is convergent.

Example 7  Test the convergency of the series 
1 1 1

1
2 3 4

- + - + 

Solution

 un = 1

1 1
,

( 1)
nu

n n
- =

-

In the given series, we have

 (i) the terms are alternatively +ve and –ve

 (ii) un < un – 1

 (iii) 
1

lim lim 0n
n n

u
nÆ• Æ•

= =

  Hence, the alternating series is convergent.

Example 8  Test the convergency of the series 
2 1 3 2 4 3 5 4

1 2 3 4

- - + -
- + - + 
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Solution Here, un = 
1n n

n

È ˘+ -
Í ˙
Î ˚

In the given series, we have

 (i) the terms of the series are alternatively +ve and –ve

 (ii) the terms are continually decreasing as un > un + 1 for all n

 (iii) 
1

lim
n

n n

nÆ•

È ˘+ -
Í ˙
Í ˙Î ˚

 = 
1 1

lim 1
n

n n
n nÆ•

È ˘
+ -Í ˙

Í ˙Î ˚

 = 

1/2
1 1

lim 1 1
n nnÆ•

È ˘Ê ˆÍ ˙+ -Á ˜Ë ¯Í ˙Î ˚

 = 
2

1 1

1 1 1 12 2
lim 1 1

2 2!n n nnÆ•

È ˘Ê ˆÊ ˆ-Í ˙Á ˜Á ˜Ë ¯Í ˙Á ˜+ ◊ + ◊ + -
Í ˙Ë ¯Î ˚

 

 = 
2

1 1 1
lim 0

2 8n n nnÆ•

È ˘- + =Í ˙Î ˚
 

  Hence, the alternating series is convergent.

Example 9  Test the convergence of the series 
3 4 5

2
2 3 4

- + - + 

Solution Here, un = 
1n

n

+

In the given series, we have

 (i) the terms are alternately +ve and –ve

 (ii) the terms are in decreasing order, i.e., un < un – 1 and

 (iii) 
1 1

lim lim lim 1 1 0n
n n n

n
u

n nÆ• Æ• Æ•

+ Ê ˆ= = + = πÁ ˜Ë ¯

Hence, the third condition of the alternating series test is not satisfi ed, so the series is not 

convergent.

However, we can write the given series as

  

1 1 1
(1 1) 1 1 1

2 3 4

Ê ˆ Ê ˆ Ê ˆ+ - + + + - + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
 

or  
1 1 1

(1 1 1 1 1 ) 1
2 3 4

Ê ˆ- + - + + + - + - +Á ˜Ë ¯
  

The series in the IInd bracket is convergent, since its value is log (1 + 1), i.e., log 2.

But the series in the Ist bracket is an oscillating series whose value is either 0 or 1 accordingly as

n is even or odd.

\ the sum of n terms of the given series as n Æ • is (0 + log 2) or (1 + log 2) accordingly as

n is even or odd, i.e., log 2 or (1 + log 2) accordingly is n is even or odd.

Hence, by the defi nition, the given series is oscillating.
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Example 10  Test the convergency of the series 1 – 2x + 3x
2 – 4x

3 + … when x < 1.

Solution In the given series, we have

 (i) the terms are alternately +ve and –ve

 (ii) the terms are continually decreasing as x < 1

 (iii) 1 1
lim lim limn n

n
n n n

u nx nx
x

-

Æ• Æ• Æ•
= =  = 0 lim 0 if 1n

n
nx x

Æ•

È ˘= <Í ˙Î ˚
∵

Hence, all the three conditions of the alternating series test are satisfi ed and so the given series is 

convergent.

EXERCISE 8.3

Test the convergence of the following series:

 1. 
1( 1)n

n

--Â  2. 
1

( 1)

(2 1)

n

n n

•

=

-
-Â

 3. 
2 3 4

log log log
1 2 3

Ê ˆ Ê ˆ Ê ˆ- + - •Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
  4. log

1

n

n

Ê ˆ
Á ˜+Ë ¯Â

 5. 
1 1 1

( 2 1) ( 3 1) ( 4 1)
- + - •

- - -
 6. 

2 2 2

log2 log3 log 4

2 3 4
- + - • 

 7. 
1 1 1

1
2 2 3 3 4 4

+ + - + •  8. 
1 1 1 1

1 2 3 4p p p p
- + - + 

Answers

 1. Convergent 2. Convergent

 3. Convergent 4. Convergent

 5. Convergent 6. Convergent

 7. Convergent 8. Convergent if p > 0

8.10  POSITIVE-TERM SERIES

Series with positive terms are the simplest and the most important type of series one comes across. The 

simplicity arises mainly from the sequence of its partial sums being monotonic increasing. Let Âun be 

an infi nite series of positive terms and < Sn > be the sequence of its partial terms. Then,

 Sn = u1 + u2 + u3 +   + un; " n, and

 Sn + 1 = u1 + u2 + u3 +   + un + un + 1

\ Sn + 1 – Sn = un + 1 > 0, since un > 0

i.e., Sn + 1 > Sn

Hence, the sequence <Sn> is monotonic increasing. Now, two cases arise:

Case I: When the sequence <Sn> is bounded above then the series Âun is convergent.
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Case II: When the sequence <Sn> is not bounded above then the series Âun is divergent.

Note A positive-term series Âun always diverges to +• provided lim 0n
n

u
Æ•

π

Example 11  Test the series Âun whose nth term is 
1

1
n

Ê ˆ+Á ˜Ë ¯
.

Solution Here, un = 
1

1
n

+

The given series is a series of positive terms and so it is either a convergent or a divergent series.

But lim n
n

u
Æ•

 = 
1

lim 1 1 0
n nÆ•

Ê ˆ+ = πÁ ˜Ë ¯

Hence, the given series Âun is divergent.

Example 12  Test the series Âun, whose nth term is 
1

n

n

Ê ˆ
Á ˜+Ë ¯

.

Solution The given series of +ve terms is either convergent or a divergent series.

Here, un = 
1

n

n +

But lim n
n

u
Æ•  = 

1
lim lim

11
1

n n

n

n

n

Æ• Æ•
=

+ Ê ˆ+Á ˜Ë ¯

 = 
1

1 0
1 0

= π
+

Hence, the series Âun is divergent.

8.11  p-SERIES TEST

The infi nite series 
1
p

n
Â , i.e., 

1 1 1 1

1 2 3 4p p p p
+ + + + •  is

(i) Convergent, if p > 1  (ii) Divergent, p £ 1

8.12  COMPARISON TEST

If Âun and Âvn be two given series and if lim n

n
n

u

vÆ•
 is a fi nite and nonzero quantity then Âun and Âvn 

are either both convergent or both divergent.

Working Rule

First of all, we compare the given infi nite Âun with an auxiliary series Âvn for convergency or 

divergency of the series Âvn. This should already be known to us and we then fi nd lim n

n
n

u
l

vÆ•
=  (a fi nite 

and nonzero quantity). Then the series Âun and Âvn converge and diverge together.



8.12 Engineering Mathematics for Semesters I and II

Example 13  Test the convergency of the series 
1 1 1

1
2 3 4

+ + + + • 

Solution The given series can be written as

  

1 1 1 1 1

1 2 3 4 n
+ + + + + +  

Here, nuÂ  = 
1

n
 (1)

Comparing (1) with 
1
p

n
Â , we get 

1
1

2
p = <

Hence, the given series is divergent.

Example 14  Test the convergency of the series 
2 3 4

2 3 4 5

1 2 3 4
1

2 3 4 5
+ + + +  

Solution Omitting the fi rst term of the given series, we have

 un = 
1( 1) ( 1)( 1)

n n

n n

n n

n n n
+

=
+ + +

 = 
1 1

1 1

n

n

n

n

n n
n n

Ê ˆ Ê ˆ+ ¥ +Á ˜ Á ˜Ë ¯ Ë ¯

 un = 
1

1 1
1 1

n

n
n n

Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

Let vn = 
1

n

\ lim n

n
n

u

vÆ•
 = 

1 1
lim

1 1
1 1

nn e

n n

Æ•
=

Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

 (a fi nite quantity)

But nvÂ  = 
1 1

1
p

p
n n

ª fi =Â Â
Hence, the given series is divergent.

Example 15  Test the convergency of the series 
2 3 4 5

1 2 3 4p p p p
+ + + + 

Solution The nth term of the given series is

 un = 
1

1 (1 1/ ) (1 1/ )
p p p

n n n n

n n n
-

+ + +
= =

Let vn = 
1

1
p

n
-
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\ lim n

n
n

u

vÆ•
 = 

1
lim 1 1
n nÆ•

Ê ˆ+ =Á ˜Ë ¯
 (a fi nite quantity)

But Âvn is convergent if p – 1 > 1 or p > 2 and it is divergent if p – 1 £ 1 or p £ 2.

Hence, the given series is convergent if p > 2 and divergent if p £ 2.

Example 16  Test the convergence of the series 
3 3 3 3

1 2 3 4

2 3 4 5
+ + + + 

Solution Let the given series be denoted by Âun

Then

 un = 
3 2 3 3

1 1

( 1) (1 1/ ) 1
1

n

n n n
n

n

= =
+ + Ê ˆ+Á ˜Ë ¯

Let vn = 
2

1 1

nn
=

\ lim n

n
n

u

vÆ•
 = 

3

1
lim 1

1
1

n

n

Æ•
=

Ê ˆ+Á ˜Ë ¯

 [which is a fi nite number]

Now, 
1 1 1

n p p
v

nn n
ª fi ªÂ Â Â Â

\ p = 1, the given series is divergent.

Example 17  Test the convergence of the series 
1 3 5

1 2 3 2 3 4 3 4 5
+ + +

◊ ◊ ◊ ◊ ◊ ◊
 

Solution Let the given series be denoted by Âun

where un = 
3

1
2

(2 1)

1 2( 1)( 2)
1 1

n
n n

n n n
n

n n

Ê ˆ-Á ˜Ë ¯-
=

+ + Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

 un = 
2

1
2

1 2
1 1

n

n
n n

Ê ˆ-Á ˜Ë ¯
Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

Let vn = 
2

1

n

\ lim n

n
n

u

vÆ•
 = 

1
2

lim 2
1 2

1 1
n

n

n n

Æ•

Ê ˆ-Á ˜Ë ¯
=

Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

 [which is a fi nite number]
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But nvÂ  = 
2

1 1
p

n n
ªÂ Â

\ p = 2 > 1; hence the given series Âun is convergent.

Example 18  Test the convergence of the series whose general term is given by

 un = 2 2( 1) ( 1)n n+ - -

Solution

 un = 
2 2( 1) ( 1)n n+ - -

 = 

1 1 1 1

2 2

2 2 2 2

1 1 1 1
1 1 1 1

n n
n n n

n n n n

È ˘
Ê ˆ Ê ˆ Ê ˆ Ê ˆÍ ˙+ - - = + - -Á ˜ Á ˜ Á ˜ Á ˜Í ˙Ë ¯ Ë ¯ Ë ¯ Ë ¯

Í ˙Î ˚

 = 
2 4 2 4

1 1 1 1

1 1 1 12 2 2 2
1 1

2! 2!2 2
n

n n n n

È ˘Ï ¸ Ï ¸Ê ˆ Ê ˆ- -Ô Ô Ô ÔÍ ˙Á ˜ Á ˜Ë ¯ Ë ¯Ì ˝ Ì ˝Í ˙+ + ◊ + - - + ◊ -Ô Ô Ô ÔÍ ˙Ó ˛ Ó ˛Î ˚
  

 = 
2 6

1 1 3

1 12 2 2
2

3!2
n

n n

È ˘-Ê ˆ Ê ˆ-Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Í ˙+ ◊ +
Í ˙Î ˚

 

 = 
5

1 1

8n n
+

Retaining only the highest power of n,

Let nvÂ  = 
1

n

\ lim n

n
n

u

vÆ•
 = 

5

1 1

8lim
1/n

n n

nÆ•

+ + 

 = 
4

1
lim 1

8n nÆ•

Ê ˆ+ +Á ˜Ë ¯
  = 1 (which is fi nite)

But nvÂ  = 
1 1

pn n
ª Â

\ p = 1

Hence, the given series Âun is divergent.

Example 19  Test the convergence of the series, whose general term is 4 4( 1) ( 1)n n+ - - .

Solution Do same as Example 18. ( It is a convergent series.)
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Example 20  Test the series 
1

sin
n

Â
Solution Let the given series be Âun, where

 un = 
3 5

1 1 1 1 1 1
sin

3! 5!n n n n

Ê ˆ = - ◊ + ◊ -Á ˜Ë ¯
 

Retaining only the highest power of n in un, we have the auxiliary series

 nvÂ  = 
1 1

, where nv
n n

=Â

\ lim n

n
n

u

vÆ•
 = 

3 5

1 1 1 1 1

3! 5!
lim

1/n

n n n

nÆ•

- ◊ + ◊ - 

 = 
2 4

1 1
lim 1 1

6 120n n nÆ•

È ˘- + - =Í ˙Î ˚
  [which is a fi nite number]

Hence, Âun and Âvn converge or diverge together. But the auxiliary series

 nvÂ  = 
1 1

pn n
ªÂ Â

\ p = 1

Hence, the given series is divergent.

Example 21  Test the series 
1 1 1 1 1

1 1 2 2x x x x x
+ + + + +

- + - +
 

Solution Neglecting the fi rst term, denote the series by Âun.

Then, nuÂ  = 
1 1 1 1

1 1 2 2x x x x

Ê ˆ Ê ˆ
+ + + +Á ˜ Á ˜- + - +Ë ¯ Ë ¯

 

 nuÂ  = 
2 2 2 2 2 2

2 2 2

1 2 3

x x x

x x x
+ + +

- - -
 

\ un = 
2 2

2x

x n-

Let the auxiliary series 
2 2

1 1
, i.e.,n nv v

n n
= =Â Â

\ lim n

n
n

u

vÆ•
 = 

2

2

2
lim 2

1
n

x
x

x

n

Æ•
= -

Ê ˆ
-Á ˜Ë ¯

 [a fi nite quantity]

Hence, Âun and Âvn converge or diverge together.

But the auxiliary series nvÂ  = 
2

1 1
p

n n
ª
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 p = 2 > 1

Hence, the given series is convergent.

EXERCISE 8.4

Test the convergence of the following series:

 1. 
2

1n

n

+Â  2. 
1 2 3

1 1 2 2 3 3
+ + +

+ + +
 

 3. 1n nÈ ˘+ -Î ˚Â  4. 
2 21 n

n n xÈ ˘+ - ◊Î ˚Â

 5. 
3 31n nÈ ˘+ -Î ˚Â  6. 

3 1/3( 1)n nÈ ˘+ -Î ˚Â

 7. 
3 31 1n nÈ ˘+ - -Î ˚Â  8. 

1

1n n
-

È ˘+ +Î ˚Â

 9. 
1 1

sin
n n

Ê ˆ
Á ˜Ë ¯Â  10. 

1 1n n

n

È ˘+ - -
Í ˙
Í ˙Î ˚

Â

 11. 
3 3 3 3

14 24 34 10 4

1 2 3

n

n

+
+ + + + +   12. 

1 1 1

1 2 2 3 3 4
+ + +

◊ ◊ ◊
 

 13. 
1

2 1n -Â  14. 
3(2 3 )

n

n+
Â

 15. 

2

3 2

(2 1)

3 5 6

n

n n

+
+ +

Â

Answers

 1. Divergent 2. Divergent

 3. Divergent 4. Convergent if x2 < 1 and divergent x2 ≥ 1

 5. Convergent 6. Convergent

 7. Convergent 8. Divergent

 9. Convergent 10. Divergent

 11. Convergent 12. Convergent

 13. Divergent 14. Divergent

 15. Divergent

8.13  D’ALEMBERT’S RATIO TEST

Let Âun be a series of positive terms, such that

 (I) If 
1

lim
n

n
n

u

u

+

Æ•
 = l, then the series is

 (a) convergent if l < 1, (b) divergent if l > 1, and (c) fails if l = 1
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 (II) If 
1

lim
n

n
n

u

u

+

Æ•
= •  then the series Âun is divergent

OR

 (I) If 

1

lim n

n
n

u

u
l

Æ• +
=  then

 (a) convergent if l > 1,  (b) divergent if l < 1, and (c) fails if l = 1

 (II) If 
1

lim n

n
n

u

uÆ• +
= •  then Âun is convergent.

Example 22  Test the series 
1 1 1

1
2! 3! 4!

+ + + + • 

Solution

Here, un = 1

1 1
,

! ( 1)!
nu

n n
+ =

+

Now, 
1

n

n

u

u +
 = 

( 1)! ( 1) !

! !

n n n

n n

+ +
=  = (n + 1)

\   
1

lim lim ( 1)n

n n
n

u
n

uÆ• Æ•+
= + = •  which is > 1

Hence, by ratio test, the series is convergent.

Example 23  Test the series 
2 3

2! 3! 4! ( 1)!

3 3 3 3n

n +
+ + + + +  

Solution

Here, un = 1 1

( 1)! ( 2)!
, so

3 3
nn n

n n
u + +

+ +
=

Now, 
1

n

n

u

u +
 = 

1 1( 1)! 3 ( 1)! 3 3

( 2)!3 3 ( 2)( 1)!

n n

n n

n n

n n n

++ + ◊ ◊
◊ =

+ ◊ + +

 = 
3

2n +

\ 
1

lim n

n
n

u

uÆ• +
 = 

3
lim 0 1

2n nÆ•
= <

+

Hence, the given series is divergent.

Example 24  Test the series 
1 2 3 4

1.2 2.3 3.4 4.5

x x x x
+ + + + 

Solution

Here, un = 
1

1so
( 1) ( 1)( 2)

n n

n

x x
u

n n n n

+

+ =
+ + +
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Now, 
1

n

n

u

u +
 = 

1

( 1)( 2)

( 1)

n

n

x n n

n n x
+

+ +
◊

+
 = 

( 2)n

n x

+
◊

 
1

n

n

u

u +
 = 

1 2
1

x n

Ê ˆ◊ +Á ˜Ë ¯

\ 
1

lim n

n
n

u

uÆ• +
 = 

1 2 1
lim 1
n n n xÆ•

Ê ˆ◊ + =Á ˜Ë ¯

From the ratio test, we conclude that the given series Âun is

 (i) convergent if 
1

1 or 1x
x

> < , and

 (ii) divergent if 
1

1 or 1x
x

< > .

 (iii) If x = 1 then this test fails and the given series becomes Âun, whose nth term

 un = 
2

1 1

1( 1)
1

n n
n

n

=
+ Ê ˆ+Á ˜Ë ¯

Let vn = 
2

1

n

\ lim n

n
n

u

vÆ•
 = 

1
lim 1

1 1/n nÆ•

Ê ˆ
=Á ˜+Ë ¯

, which is a fi nite quantity.

Now, nvÂ  = 
2

1 1
2 1

p
p

n n
ª fi = >Â Â , the given series is convergent.

Example 25  Test the series 
2 4 61

2 1 3 2 4 3 5 4

x x x
+ + + + • 

Solution If Âun be the given series then the nth term is

 un = 

2 2 2

1and so
( 1) ( 2) 1

n n

n

x x
u

n n n n

-

+ =
+ + +

Now, 
1

n

n

u

u +
 = 

2 2 ( 2) 1

( 1)

n

n

n nx

xn n

- + +
◊

+

 = 
2

2 1 1

1

n n

n n x

Ê ˆ+ +
◊Á ˜+Ë ¯

 
1

n

n

u

u +
 = 

2

2
1

1 1
1

1
1

n

n x

n

Ê ˆ+Á ˜Ë ¯ Ê ˆ+ ◊Á ˜Ë ¯Ê ˆ+Á ˜Ë ¯
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\ 
1

lim n

n
n

u

uÆ• +
◊  = 

2 2

2
1

1 1 1
lim 1

1
1

n

n

n x x

n

Æ•

È ˘Ê ˆ+Í ˙Á ˜Ë ¯ Ê ˆÍ ˙+ ◊ =Á ˜Ë ¯Í ˙Ê ˆ+Á ˜Í ˙Ë ¯Î ˚
From the ratio test, we conclude that the given series Âun is convergent or divergent accordingly as 

2

1
1

x
>  or < 1, i.e., x2 < 1 or > 1.

If x2 = 1; then this test fails and the given series reduces to Âun whose nth term

 un = 
3/2

1 1

(1 1/ )( 1) n nn n
=

++

Let vn = 
3/2

1

n
; then by comparison test

 lim n

n
n

u

vÆ•
 = 

1
lim 1

1
1

n

n

Æ•
=

Ê ˆ+Á ˜Ë ¯

, which is a fi nite quantity

Hence, Âun and Âvn converge or diverge together but 
3/2

1 1 3
so 1

2
n p

v p
n n

= ª = >Â Â Â . 

Hence, the series is convergent. Thus, the given series is convergent if x2 £ 1 and divergent if x2 > 1.

Example 26  Test the series 
2 3

1 2 3

1 2 1 2 1 2
+ + +

+ + +
 

Solution Here, un = 1 1

1
, so

1 2 1 2
nn n

n n
u + +

+
=

+ +

Now, 
1

n

n

u

u +
 = 

1 11 2 1 2

( 1) 11 2 1 2

n n

n n

n n

n n

+ +Ê ˆÊ ˆ+ +
◊ = ◊Á ˜Á ˜+ +Ë ¯+ +Ë ¯

 
1

n

n

u

u +
 = 

1 1/2 2

1 1/2 11

n

n

n

Ê ˆ+Ê ˆ ◊ Á ˜Á ˜ +Ë ¯+Á ˜Ë ¯

\ 
1

lim n

n
n

u

uÆ• +
 = 

1
2

1 2lim 2 1
1 1

1 1
2

n

n

nn

Æ•

È ˘Ê ˆÊ ˆ +Í ˙Á ˜Á ˜Í ˙◊ = >Á ˜Á ˜Í ˙Á ˜Á ˜+ +Í ˙Ë ¯ Ë ¯Î ˚
Hence, by ratio test, the given series is convergent.

Example 27  Show that the series 
2 3

2 31 (log ) (log ) (log )
1! 2! 3!

x x x
a a a+ + + + •  is convergent.

Solution If Âun be the given series then we have the n
th term 

1
1(log )

( 1)!

n
n

n

x
u a

n

-
-= ◊

-
 and so 

1 (log )
!

n
n

n

x
u a

n
+ = .
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Now, 
1

n

n

u

u +
 = 

1
1 !

(log )
( 1)! (log )

n
n

n n

x n
a

n x a

-
- ◊

- ◊

 = 
(log )

n

x a

\ 
1

lim n

n
n

u

uÆ• +
 = lim 1

(log )n

n

x aÆ•

È ˘
= • >Í ˙

Î ˚
 for all x

Hence, by ratio test, the given series is convergent.

Some Important Remarks

 (i) To test for absolute convergence, we have to apply only the test for series with positive terms.

 (ii) Every absolutely convergent series is also convergent.

 (iii) For an absolutely convergent series, the series formed by positive terms only is convergent 

and the series formed by negative terms only is also convergent.

 (iv) If Âun is conditionally convergent then the series of its positive terms and the series of its 

negative terms are both divergent.

EXERCISE 8.5

Test the convergence of the following series:

 1. 
2

!

n
n

n
Â  2. 

3 1

5 1

nn
x

n

+
◊

+Â

 3. 1 + 3x + 5x
2 + 7x

3 + … 4. 

2 1

1

2 6 2 2
1

5 9 2 1

n
n

n

x x
x

+

+

+
+ + + + +

+
  

 5. 
2 21 n

n n xÈ ˘+ - ◊Î ˚Â  6. 
2 2 2 2

! 3! 4! 5!
1

2 3 4 5

2
+ + + + + 

 7. 
!
n

n

n
Â  8. 

2 3

1
2! 3!

x x
x+ + + + 

 9. 

3

2n

n a

a

+
+

Â

 10. Show that the series 
2 3 4

2 3 4

x x x
x - + - +  is convergent if x is numerically less than 1.

Answers

 1. Divergent 2. Convergent if x < 1 and divergent x ≥ 1

 3. Convergent if x < 1 and divergent if x ≥ 1 4. Convergent if x < 1 and divergent if n ≥ 1

 5. Convergent of x < 1 and divergent if x ≥ 1 6. Divergent

 7. Convergent 8. Convergent

 9. Convergent 10. Convergent
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8.14  CAUCHY’S ROOT (OR RADICAL) TEST

Let Âun be an infi nite series of positive terms and let 

1

lim [ ]n
n

n
u l

Æ•
=

Then the series is

 (i) Convergent if l < 1, and

 (ii) Divergent if l > 1.

 (iii) If l = 1, this test fails.

Example 28  Test the convergence of 

2

1

1
1

n

n n

-•

=

Ê ˆ+Á ˜Ë ¯Â

Solution Here, 

2

1
1

n

nu
n

-
Ê ˆ+Á ˜Ë ¯

\ 
1/lim { } n

n
n

u
Æ•

 = 

2
1/

1
lim 1

n
n

n n

-

Æ•

È ˘Ê ˆÍ ˙+Á ˜ÍË ¯ ˙Î ˚

 = 
1

lim 1

n

n n

-

Æ•

È ˘Ê ˆÍ ˙+Á ˜Ë ¯Í ˙Î ˚

 = 
1

lim
1

1

nn

n

Æ•

È ˘
Í ˙

Ê ˆÍ ˙+Á ˜Í ˙Ë ¯Î ˚

 1
lim 1

n

n
e

nÆ•

È ˘Ê ˆÍ ˙+ =Á ˜Ë ¯Í ˙Î ˚
∵

 = 
1

1
e

<  [∵   e = 2.718, 2 < e < 3]

Hence by Cauchy’s root test, the given series is convergent.

Example 29  Test the convergence of the series

1 2 3
2 3 4

2 3 4

2 2 3 3 4 4

1 2 31 2 3

- - -
Ê ˆ Ê ˆ Ê ˆ

- + - + - +Á ˜ Á ˜ Á ˜
Ë ¯ Ë ¯ Ë ¯

 

Solution The nth term of the given series is

 un = 

1

1

( 1) 1
n

n

n

n n

nn

-+

+

È ˘+ +
-Í ˙

Í ˙Î ˚

\ 
1

lim [ ] n
n

n
u

Æ•
 = 

1

1

1

( 1) 1
lim

n nn

nn

n n

nn

-+

+Æ•

È ˘Ï ¸+ +Ô ÔÍ ˙-Ì ˝Í ˙Ô ÔÓ ˛Î ˚

 = 

1
1

1 1
lim

n

n

n n

n n

-+

Æ•

È ˘+ +Ê ˆ Ê ˆÍ ˙-Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
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 = 

1

1 1
lim 1

n

n

n n

n n

-

Æ•

È ˘Ï ¸+ +Ê ˆ Ê ˆÔ ÔÍ ˙¥ -Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Ô ÔÓ ˛Î ˚

 = 

1

1 1
lim 1 1 1

n

n n n

-

Æ•

È ˘Ï ¸Ê ˆ Ê ˆÔ ÔÍ ˙+ ◊ + -Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Ô ÔÓ ˛Î ˚

 = 

1
1

1 1
lim 1 1 1

n

n n n

--

Æ•

È ˘Ê ˆ Ê ˆÍ ˙+ + -Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
 = 1·(e – 1)–1

 = 
1

1
( 1)e

<
-

 [∵   2 < e < 3 and we take e = 2.718]

Hence, by Cauchy’s root test, the given series is convergent.

Example 30  Test the convergence of the series

2 3

2 31 2 3 4

2 3 4 5
x x x

Ê ˆ Ê ˆ+ + + + •Á ˜ Á ˜Ë ¯ Ë ¯
 

Solution Neglecting the fi rst term, we obtain the nth term of the given series is

 un = 
1

2

n

nn
x

n

Ê ˆ+
Á ˜+Ë ¯

\ 

1

lim [ ] n
n

n
u

Æ•
 = 

1

1
lim

2

n n
n

n

n
x

nÆ•

È ˘Ê ˆ+Í ˙Á ˜+Ë ¯Í ˙Î ˚

 = 
1

lim
2n

n
x

nÆ•

È ˘Ê ˆ+
◊Í ˙Á ˜+Ë ¯Í ˙Î ˚

 = 

1
1

lim
2

1
n

n x

n

Æ •

È ˘Ê ˆ+Í ˙Á ˜
◊Í ˙Á ˜

Í ˙Á ˜+Ë ¯Í ˙Î ˚

 = x

From Cauchy’s root test, the given series is convergent if x < 1, and divergent if x > 1, and if x = 1, 

this test fails.

Now, putting x = 1 in the given series, we get

 un = 
1

2

n
n

n

Ê ˆ+
Á ˜+Ë ¯

and   
1

lim lim
2

n

n
n n

n
u

nÆ• Æ•

Ê ˆ+
= Á ˜+Ë ¯
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 = 

1
1

lim
2

1

n

n

n

n

Æ•

Ê ˆ+Á ˜
Á ˜
Á ˜+Ë ¯

 = 
2

1
1

1
lim 0

2
1

n

nn

en

ee

n

Æ•

Ê ˆ+Á ˜Ë ¯
= = π

Ê ˆ+Á ˜Ë ¯
Hence, the series is divergent.

Thus, the given series is convergent if x < 1 and divergent if x ≥ 1.

Example 31  Test the convergence of 

n
x

a
n

Ê ˆ+Á ˜Ë ¯Â

Solution Here un = 

n
x

a
n

Ê ˆ+Á ˜Ë ¯

\ 
1

lim [ ] n
n

n
u

Æ•
 = 

1

lim

n n

n

x
a

nÆ•

È ˘Ê ˆÍ ˙+Á ˜Ë ¯Í ˙Î ˚

 = lim
n

x
a a

nÆ•

È ˘+ =Í ˙Î ˚
By Cauchy’s root test if a > 1 then the given series is divergent, if a < 1, it is convergent, and if

a = 1 then un = 1

n
x

n

Ê ˆ+Á ˜Ë ¯
 and 

1

lim lim 1

0

n

x
n

n n

x
u e x

nÆ• Æ•

Ê ˆ= + = "Á ˜Ë ¯

π
Hence, the given series is divergent for a = 1. Thus, the given series is convergent if a < 1 and 

divergent if a ≥ 1. 

Example 32  Test the convergence of the series 

2

2

( 1)

n

n

n

n +
Â .

Solution Here, un = 

2

2

( 1)

n

n

n

n +

\ 
1

lim [ ] n
n

n
u

Æ•
 = 

2

2

1

lim lim
( 1)( 1)

nn n

nnn n

n n

nnÆ• Æ•

È ˘ È ˘
Í ˙ = Í ˙
Í ˙ +Í ˙+ Î ˚Î ˚

 = 
1 1

lim 1
1

1

nn e

n

Æ•

È ˘ = <Í ˙
Ê ˆÍ ˙+Á ˜Í ˙Ë ¯Î ˚

Hence, by Cauchy’s test, the given series is convergent.
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EXERCISE 8.6

Test the convergence of the following series:

 1. 
1 1

n
nx

n

• Ê ˆ
Á ˜+Ë ¯Â  2. 

3/2

1

1
1

n

n

-• È ˘
+Í ˙

Î ˚
Â

 3. 
( 1)

1

2
n

n
•

- - -È ˘
Í ˙Î ˚Â  4. 

2 log

1

log

log(1 )

n n
n

n

• È ˘
Í ˙+Î ˚

Â

 5. 
1

1
n

n

•

Â  6. 

1

1

n

nn
È ˘
Í ˙-
Í ˙Î ˚

Â

 7. 

2

1
1

n

n

È ˘-Í ˙Î ˚
Â

 8. 1 + a + ab + a2
b + a2

b
2 + … where 0 < ab < 1

 9. 
1

( )

2

n

n n

n n

n
+

+
◊

Â  10. 
1

;

n

nn x x
È ˘
Í ˙+ "
Í ˙Î ˚

Â

Answers

 1. Convergent if n < 1, divergent if x ≥ 1 2. Convergent

 3. Convergent 4. Convergent

 5. Convergent 6. Convergent

 7. Convergent 8. Convergent

 9. Convergent 10. Divergent

8.15  RAABE’S TEST

Let Âun be an infi nite series of positive terms and let

1

lim 1n

n
n

u
n

uÆ• +

È ˘Ê ˆ
Í ˙-Á ˜
Í ˙Ë ¯Î ˚

 = l 

Then the series is

 (i) Convergent if l > 1, and

 (ii) Divergent if l < 1.

 (iii) l = 1, this test fails.

Working Rule

Find the nth term of the given series and denote it by un. Then fi nd un + 1, calculate 

1

lim n

n
n

u

u
l

Æ• +
=  (say). 

Then series is convergent if l > 1 or divergent if l < 1 and if l = 1 then this test fails. Then calculate 

1

lim 1n

n
n

u
n

uÆ• +

È ˘Ê ˆ
Í ˙-Á ˜
Í ˙Ë ¯Î ˚

 and apply Raabe’s test.
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Example 33  Test the convergence of the series

2 3 43 3.6 3.6.9 3.6.9.12
1

7 7.10 7.10.13 7.10.13.16
x x x x+ + + + + 

Solution The nth term of the given series (neglected fi rst term) is

 un = 
3.6.9.12 (3 )

7.10.13.16...(3 4)

nn
x

n
◊

+
 

 un + 1 = 13.6.9.12 (3 )(3 3)

7.10.13.16...(3 4)(3 7)

nn n
x

n n

++
+ +

 

Now, 
1

n

n

u

u +
 = 

3 7 1

3 3

n

n x

Ê ˆ+
◊Á ˜+Ë ¯

 (other terms canceling out)

\ 
1

lim n

n
n

u

uÆ • +
 = 

3 7 1
lim

3 3n

n

n xÆ•

È ˘+
◊Í ˙+Î ˚

 = 
3 7/ 1 1

lim
3 3/n

n

n x xÆ•

È ˘+
◊ =Í ˙+Î ˚

By ratio test, the given series is convergent if 
1

1
x

> , i.e., x < 1 and divergent if 
1

1 or 1x
x

< >

If x = 1, this test fails. Then

 
1

n

n

u

u +
 = 

3 7/

3 3/

n

n

Ê ˆ+
Á ˜+Ë ¯

\ 
1

1n

n

u
n

u +

Ê ˆ
-Á ˜

Ë ¯
 = 

3 7/
1

3 3/

n
n

n

È ˘+
-Í ˙+Î ˚

 = 

4

3

1 1/

nn
n

È ˘
Í ˙
Í ˙

+Î ˚

 

1

lim 1n

n
n

u
n

uÆ• +

È ˘Ê ˆ
Í ˙-Á ˜
Í ˙Ë ¯Î ˚

 = 
4/3 4

lim 1
1 1/ 3n nÆ•

È ˘
= >Í ˙+Î ˚

 [Convergent (by Raabe’s test)]

Thus, the given series is convergent if x £ 1 and divergent if x > 1.

Example 34  Test the convergence of the series 
( 1) ( 1)( 2)

1
1.2 1 2 3

a a a a a
a

+ + +
+ + + +

◊ ◊
 

Solution Leaving the fi rst term, the nth term of the series is

 un = 
( 1)( 2)... ( 1)

1 2 3

a a a a n

n

+ + + -
◊ ◊  

 and

 un + 1 = 
( 1)( 2)... ( 1)( )

1 2 3 ( 1)

a a a a n a n

n n

+ + + - +
◊ ◊ + 
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\ 
1

n

n

u

u +
 = 

1n

a n

Ê ˆ+
Á ˜+Ë ¯

 
1

lim n

n
n

u

uÆ• +
 = 

1 1 1/
lim lim 1

1 /n n

n n

n a a nÆ• Æ•

È ˘ È ˘+ +
= =Í ˙ Í ˙+ +Î ˚ Î ˚

Hence, the ratio test is fails.

Now, 
1

1n

n

u
n

u +

Ê ˆ
-Á ˜

Ë ¯
 = 

1
1

n
n

a n

Ê ˆ+
-Á ˜+Ë ¯

 
1 a

n
a n

Ê ˆ-
Á ˜+Ë ¯

 = 
1

1 /

a

a n

Ê ˆ-
Á ˜+Ë ¯

\ 
1

lim 1n

n
n

u
n

uÆ• +

È ˘Ê ˆ
Í ˙-Á ˜
Í ˙Ë ¯Î ˚

 = 
1

lim (1 )
1 /n

a
a

a nÆ•

È ˘-
= -Í ˙+Î ˚

From Raabe’s test if (1 – a) > 1 or a < 0, the series is convergent, if (1 – a) < 1 or a > 0, the series 

is divergent and if 1 – a = 1 or a = 0, this test fails and the given series becomes 1 + 0 + 0 + 0 + …, the 

sum of whose fi rst n terms is always equal to 1. Hence, when a = 0, the series is convergent.

Thus, the given series is convergent if a £ 0 and the series is divergent if a > 0.

EXERCISE 8.7

Test the convergence of the following series:

 1. 
1 1 3 1 3 5

2 2 4 2 4 6

◊ ◊ ◊
+ + +

◊ ◊ ◊
 

 2. 
1 1 1

(log 2) (log 3) (log 4)p p p
+ + + 

 3. 
2 2 4 2 4 6 (2 )

1
3 4 3 5 6 3 5 7 (2 1)(2 2)

n

n n

◊ ◊ ◊ ◊
+ + + + +

◊ ◊ ◊ ◊ ◊ ◊ + +
 

  

 

 4. 
2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

1 1 5 1 5 9 1 5 9 13

4 4 8 4 8 12 4 8 12 16

◊ ◊ ◊ ◊ ◊ ◊
+ + + +

◊ ◊ ◊ ◊ ◊ ◊
 

 5. 
3 5 71 1 3 1 3 5

1 2 3 2 4 5 2 4 6 7

x x x x◊ ◊ ◊
+ ◊ + ◊ + ◊ +

◊ ◊ ◊
 

 6. 2 31 1 3 1 3 5
1

2 2 4 2 4 6
x x x

◊ ◊ ◊
+ + + +

◊ ◊ ◊
 

 7. 
1

n

n

x

a n

•

= +
Â



 Infi nite Series 8.27

Answers

 1. Divergent 2. Divergent

 3. Convergent 4. Convergent

 5. Convergent if x2 £ 1 and divergent if x2 > 1

 6. Convergent if x < 1 and divergent if x ≥ 1

 7. Divergent

8.16   ABSOLUTE CONVERGENCE AND CONDITIONAL 
CONVERGENCE

(i) Absolute Convergent Series

A series Âun is said to be absolutely convergent if the positive-term series Â|un| is convergent.

Example: The series 
2 3 4

1 1 1 1
1

2 2 2 2
nu = - + - + -Â   is absolutely convergent, because 

2 3 4

1 1 1 1
| | 1

2 2 2 2
nu = + + + + +Â   is an infi nite geometric series of positive terms with common 

ratio 
1

1
2

< .

Hence, it is convergent.

(ii) Conditionally Convergent Series

A series Âun is said to be conditionally convergent if the series Â|un| is divergent. It is also known as 

semi-convergent or accidentally convergent.

Example: The series 
1 1 1

1
2 3 4

- + - + •  is conditionally convergent, because 

1 1 1
1

2 3 4
nu| | = + + + +Â   is not convergent by the p-series test, 

1 1
n p

u
n n

| | = ªÂ Â Â  so p = 1. 

Hence, it is divergent.

8.17  TEST FOR ABSOLUTE CONVERGENCE

Testing whether or not a series Âun is absolutely convergent reduces to testing for convergence the 

series of positive term Â|un|. This can be done by making use of various tests shown in previous 

sections.

8.17.1 Some Important Remarks

 (i) To test for absolute convergence, we have to apply only the test for series with positive terms.

 (ii) Every absolutely convergent series is also convergent.

 (iii) For an absolutely convergent series, the series formed by positive terms only is convergent 

and the series formed by negative terms only is also convergent.
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 (iv) If Âun is conditionally convergent then the series of its positive terms and the series of its 

negative terms are both divergent.

Example 35  Test the absolute convergence of the series 
2 3

1 1 1
1

2 2 2
- + - + 

Solution Let nuÂ  = 
2 3

1 1 1
1

2 2 2
- + - + 

Then nu| |Â  = 
2 3 1

1 1 1 1
1

2 2 2 2
nn

v
-

+ + + + = =Â Â  (say)

Here, vn = 11

1 1
and

2 2
nn n

v +-
=

\ 
1

lim n

n
n

v

vÆ• +
 = 

1

1
lim 2 lim (2) 2 1

2

n

nn n-Æ• Æ•

Ê ˆ◊ = = >Á ˜Ë ¯

From the ratio test, the series Â|un| is convergent. Also, in Âun, we fi nd that its terms are alternatively  

positive and negative, its terms are continually decreasing and 
1

1
lim lim 0

2
n nn n

u
-Æ• Æ•

Ê ˆ= =Á ˜Ë ¯
.

Thus, all the above conditions of Leibnitz’s test are satisfi ed and Âun is convergent. Hence, the 

given series Âun is absolutely convergent.

Example 36  Test the absolute convergence of the series 
1 1 1

1
2 3 4

- + - + 

Solution Let nuÂ  = 
1 1 1

1
2 3 4

- + - + 

Then | |nuÂ  = 
1 1 1 1

1
2 3 4

nv
n

+ + + + = =Â Â  (say)

\ nvÂ  = 
1/2

1 1
p

n n
ªÂ Â  so that 

1
1

2
p = < , Hence Â|un| is divergent series.

Also in the series Âun, we fi nd that its terms are alternatively positive and negative, its terms are 

continually decreasing and 
1

lim lim 0n
n n

u
nÆ• Æ•

= =

Thus, all the three conditions of Leibnitz’s test are satisfi ed and as such, Âun is convergent.

But Â|un| is divergent; hence, the given series Âun is conditionally convergent.

Example 37  Is the series 1

1

1
( 1)n

n n n

•
-

=

Ê ˆ
- Á ˜Ë ¯Â  absolutely convergent?

Solution Let nuÂ  = 1 1
( 1)n

n n

- Ê ˆ
- Á ˜Ë ¯Â
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Then 
nu| |Â  = 

1
nv

n n
=Â Â  (say)

Here, nuÂ  = 
3/2

1

n
Â  so that 

3
1

2
p = >  convergent

Also, in Âun, we fi nd that the terms are alternately +ve and –ve, the terms are continually decreasing 

and lim n
n

u
Æ•

 = 
1

lim 0, n
n

u
n nÆ•

= Â  is convergent.

Hence, the given series is absolutely convergent.

Example 38  Test the absolute convergence of the series 

2 3 4

2 3 4

x x x
x - + - + • 

Solution Let nuÂ  = 
2 3 4

2 3 4

x x x
x - + - + • 

Then

 un = 
1 1

1

( 1) ( 1)
and

( 1)

n n n n

n

x x
u

n n

- +

+
- -

=
+

 
1

n

n

u

u +
 = 

1

1

( 1) ( 1) 1

( 1)

n n

n n

x n n

n nxx

-

+

- ◊ + +Ê ˆ¥ = - Á ˜Ë ¯-

 
1

n

n

u

u +
 = 

1 1 1
1

n

nx n x

+
= + ◊

\ 
1

lim n

n
n

u

uÆ• +
 = 

1 1 1
lim 1

| | | |n n x xÆ•

È ˘
+ ◊ =Í ˙

Î ˚

By ratio test, we fi nd that the series Â|un| is convergent or divergent accordingly as 
1

1
| |x

>  or < 1, 

i.e., |x| < 1 or > 1.

Also, we know that every absolutely convergent series is convergent so Âun converges if |x| < 1.

If x < 0 then Â(un) = –un

\ Âun is convergent or divergent iff Â|un| is convergent or divergent.

Since Â|un| is divergent if x < –1, so Âun is divergent if x < –1.

If x = 1, we have 
1 1 1

1 log 2
2 3 4

nu = - + - + =Â   and is a convergent series.

If x = –1, we have 
1 1 1 1

1
2 3 4

nu
n

Ê ˆ= - + + + + = -Á ˜Ë ¯Â Â 

which is a divergent series as 
1
p

n
Â  is divergent when p = 1.

If x > 1, un does not tend to zero as n Æ • and so Âun is not a convergent series if x > 1.

Hence, Âun converges if and only if –1 < x £ 1.
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Example 39  Show that the series 
1 1 1

1
2 3 4k k k

- + - +  is absolutely convergent if k > 1 and 

conditionally convergent if 0 < k £ 1.

Solution Let nuÂ  = 
1 1 1

1
2 3 4k k k

- + - + 

Then |un| = 
1 1 1 1

1
2 3 4k k k k

n
+ + + + = Â 

which is a convergent series if k > 1 and divergent series if k £ 1. [∵   by p-series test]

Also, by Leibnitz’s test, we know that Âun is convergent if k > 1 or 0 < k £ 1.

 [∵   Âun is divergent if k £ 0]

\ If k > 1, Âun and Â|un| are both convergent. Hence the given series Âun is absolutely 

convergent.

If 0 < k £ 1, Âun is convergent while Â|un| is divergent.

Hence, the given series Âun is conditionally convergent.

EXERCISE 8.8

 1. Is the series 1 – 2x + 3x
2 – 4x

3 + … where x > 1 absolutely convergent?

 2. Show that the series 
1 1 1 1

1
3 5 7 9

- + - + - •  is conditionally convergent.

 3. Show that the series 
2 3

1
2! 3!

x x
n+ + + +  converges absolutely for all values of x.

 4. Test the absolutely convergence of the series 
1 1 1

1
2 4 8

- + - + • 

 5. Test for absolute convergence of the series 
2 2 2 2

2 3 4 5

1 2 3 4
- + - + 

 6. Prove that the series Âun is conditionally convergent where 
1

( 1)n
nu

n
= - .

 7. Test for absolute convergence the series 

2
1( 1)

( 1)!

n n

n

--
+Â .

 8. Show that the series 
1( 1)

log( 1)

n

n

+-
+Â  conditionally converges.

Answers

 4. Absolutely convergent 5. Conditionally convergent

 7. Absolutely convergent
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8.18  POWER SERIES

A series of the form

 a0 + a1x + a2x
2 + a3x

3 +   + anx
n +   = 

0

n
n

n

a x
•

=
Â  (2)

is said to be a power series. The numbers ar are called coeffi cients of the power series.

Now, if we apply the Cauchy’s root test for convergence of the power series, we conclude that the 

series is absolutely convergent if 
1

x
l

| | <  and divergent if 
1

x
l

| | > .

Let 
1

R
l

= ; then the power series is absolutely convergent if |x| < R and divergent if |x| > R where R 

is called the radius of convergence and is defi ned as 1/1
lim | | n

n
n

a
R Æ•

=  OR 
1/

1

lim | | n
n

n

R
a

Æ•

=

Note A power series is absolutely convergent within its interval of convergence and divergent outside 

it.

Example 40  Find the interval of absolute convergence for the series 
1

n

n

x

n

•

Â .

Solution Let an = 
1
n

n
Since the given series is a power series, it will be absolutely convergent within its interval of 

convergence.

Now, R = 
1/

1

lim n
n

n
a

Æ•
| |

 = 
1/

1

1
lim

n

nn nÆ•

 = 

1/

1

1
lim

( )n nn nÆ•

= •

Hence, the series converges absolutely, " x.

Example 41  Test for absolute convergence of the series 
1

1

n

n

nx
•

-

=
Â .

Solution Here, an = n

\ 
1

R
 = 

1/lim lim | | 1
n n

n
n n

a n
Æ• Æ•

= =

Hence, R = 1; so the series converges absolutely on the interval ]–1, 1[, but does not converge at

x = ±1.
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Example 42  Test for absolute convergence of the series 

1

1

n
x

n

-•

Â .

Solution Here, an = 
1

n

 
1

R
 = 

1/

1/ 1
lim lim 1

n

n
n

n n
a

nÆ• Æ•
| | = =

\  R = 1 so the series converges at x = –1 but not at x = 1 and it converges absolutely on ]–1, 1[.

Example 43  Find the radius of convergence of the series 2 31.3 1 3 5

2 2.5 2 5 8

x
x x

◊ ◊
+ + +

◊ ◊
 

Solution Radius of convergence (R) = 
1 3 5 (2 1) 2 5 8 (3 2)

lim
2 5 8 (3 1)1 3 5 (2 1)n

n n

n nÆ•

◊ ◊ ◊ - ◊ ◊ ◊ ◊ +
◊ ◊ ◊ - ◊ ◊ ◊ +
  

  

 = 
3

2

Hence, the series converges absolutely for all x, where 
3

| |
2

x <

8.19  UNIFORM CONVERGENCE

Consider a sequence or a series whose terms are function of a variable, say x, in the interval [a, b]. The 

convergence of such a sequence or a series in the given interval is called uniform convergence and is 

denoted as {Sn(x)}.

A sequence {Sn(x)} is said to converge uniformly to the limit S(x) in the interval [a, b], if for any Œ 

> 0, there exists a positive integer m such that |Sn(n) – S(x)| < Œ for all n > m and x Œ[a, b].

Theorem 1: Cauchy’s General Principle of Uniform Convergence

The necessary and suffi cient condition for the sequence {Sn(n)} to converge uniformly in [a, b] is that, 

for any given Œ > 0, there exists a positive integer (I+) independent of x, such that 

|Sn(x) – Sm(x)| < Œ for all n > m ≥ I+ and all x Œ[a, b].

Theorem 2: (Mn Test)

Let {Sn(n)} be a sequence and let Mn = Sup {|Sn – S|: x Œ [a, b]}. Then {Sn(x)} converges uniformly to 

S if and only if lim 0n
n

M
Æ•

= .

8.19.1 Uniform Convergence of a Series of Functions

The series Âun(x) is said to converge uniformly on [a, b] if the sequence {Sn(n)} of its partial sums 

converges uniformly on [a, b].

Theorem 3: Weierstrass’s M-Test

A series Âun(x) converges uniformly and absolutely on [a, b] if |un(x)| £ Mn for all n and x Œ [a, b], 

where Mn is independent of x and ÂMn is convergent.
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8.19.2 Properties of Uniformly Convergent Series

We know that the fundamental properties of the functions fn do not in general hold for the pointwise 

limit function f, we shall now show that roughly speaking these properties hold for the limit function 

f when the convergence is uniform. In this connection, we now give some theorems which become 

particularly important in application.

A. If a sequence {Sn} converges uniformly in [a, b], and x0 is a point of [a, b] such that

 lim ( )n n
n

S x a
Æ•

= ; n = 1, 2, 3, 4, … then

  (i) {an} converges, and (ii) lim ( ) lim n
n n

S x a
Æ• Æ•

=

 B. If a series 
1

n

n

S
•

=
Â  converges uniformly to S in [a, b], and x0 is a point in [a, b] such that 

0

lim ( )n n
x x

S x a
Æ

= ; n = 1, 2, 3, … then

 (i) 
1

n

n

a
•

=
Â  converges, and (ii) 

0 1

lim ( ) n
x x

n

S x a
•

Æ =

= Â

  Note The limit of the sum function of a series is equal to the sum of the series of limits of 

function, i.e.,

  
0 1

lim ( )n
x x

S x
•

Æ
Â  = 

01

lim ( )n
x x

S x
•

Æ
Â

 C. If a sequence {fn} of continuous functions on an interval [a, b] and if fn Æ f uniformly on

[a, b] then f is continuous on [a, b].

 D. If a series 
1

nf
•

Â  converges uniformly to f in [a, b] and its terms fn are continuous at a point x0 

of the interval then the sum function f is also continuous at x0.

 E. If a sequence {fn} converges uniformly to f on [a, b] and each function fn is integrable then f is 

integrable on [a, b] and the sequence 

x

n

a

f dt
Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Ú  converges uniformly to 

x

a

f dtÚ  on [a, b], i.e., 

  

x

a

f dtÚ  = lim [ , ]

x

n
n

a

f dt x a b
Æ•

" ŒÚ

 F. If a series Âfn converges uniformly to f on [a, b] and each term fn(x) is integrable then f is 

integrable on [a, b] and the series 

x

n

a

f dt
Ê ˆ
Á ˜
Ë ¯

Â Ú  converges uniformly to 

x

a

f dtÚ  on [a, b], i.e.,

  

x

a

f dtÚ  = 
1

, [ , ]

x

n

a

f dt x a b
• Ê ˆ

" ŒÁ ˜
Ë ¯

Â Ú

 G. If Âfn(x) converges to the sum f in [a, b], Âf¢n(x) converges uniformly to F(x) and f¢n(x) is a 

continuous function of x in [a, b] " n, then F(x) = f¢(x).
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Example 44  Show that the sequence {Sn}, where 
2 2

( )
1

n

nx
S x

n x
=

+
, is not uniformly convergent 

on any interval containing zero.

Solution Here, Sn(x) = 
2 21

nx

n x+

\ lim ( )n
n

S x
Æ•

 = 
2 2

lim 0,
1n

nx
x

n xÆ•
= "

+

Now, 
2 21

nx

n x-
 attains the maximum value 

1

2
 at 

1 1
and 0x

n n
= Æ  as n Æ •

Now, Mn = Sup|Sn(x) – S(x)|; x Œ [a, b]

 = 
2 21

nx
Sup

n x+

 = 
1

2
, which does not tend to zero as n Æ •

Hence, the sequence {fn(x)} is not uniformly convergent in any interval containing zero.

Example 45  Is the sequence {Sn(n)}, where 
2

( ) ;
1

n

x
S x x R

nx
= Œ

+
 converge uniformly in any 

closed interval I?

Solution Given Sn(x) = 
2

;
1

x
x R

nx
Œ

+

 S(x) = 
2

lim ( ) lim 0,
1

n
n n

x
S x x

nxÆ• Æ•
= = "

+
Now,

 Mn = 
2

( ) ( ) ;
1

n

x
Sup S x S x Sup x I

nx
- = Œ

+

 = 
1

0
2 n

Æ  as n Æ •

Hence, {Sn(x)} converges uniformly on I.

21

x

nx

È
Í

+Î
∵  attains the maximum value 

1 1
at

2
x

n n

˘
= ˙

˚

Example 46  Test for uniform convergence, the series 

3 7

2 4 8

2 4 8 1 1
;

2 21 1 1

x x x
x

x x x
+ + + - £ £

+ + +
 

Solution Here, Sn(x) = 
2 1

2

2

1

n n

n

x

x

-

+
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 Sn(x) = 
2 1

2 1

2

2 1
2 ( ) ; | |

21

n n
n n

n

x
x

x
a a

-
-£ £ £

+

The series 2 12 ( )n n
a

-Â  converges and hence, by M-test the given series converges uniformly on 

1 1
,

2 2

È ˘-Í ˙Î ˚
.

Example 47  The series 
1

( 1)n
n

x
n

• -
| |Â  is uniformly convergent in [–1, 1].

Solution Since |x|n is a +ve monotonic decreasing and bounded for [–1, 1], and the series 
1

( 1)n

n

• -Â  is 

uniformly convergent.

\ 
1

( 1)n
n

x
n

• -
| |Â  is also uniformly convergent in [–1, 1].

Example 48  Show that the series 
cos cos2 cos3 cos

1 2 3p p p p

x x x nx

n
+ + + +  converges uniformly on 

the real line for p > 1.

Solution Let Sn = 
cos

p

nx

n

\ |Sn| = 
cos 1

,
p p

nx
x R

n n
£ " Œ

But the series 
1
p

n
Â  converges for p > 1. Hence, by Weierstrass’s M-test, the given series ( )nS xÂ  

converges uniformly on R for p > 1.

Example 49  Test for uniformly convergence of the series cosn

n D

a nx
•

=
Â .

Solution Do the same as in Example 48.

8.20 BINOMIAL, EXPONENTIAL, AND LOGARITHMIC SERIES

(i) Convergence of  Binomial Series

The series is 2 3( 1) ( 1)( 2)
1

2! 3!

n n n n n
nx x x

- - -
+ + + +  

( 1)( 2) ( 1)

!

rn n n n r
x

r

- - - +
+ + •

 

 

Here, ur = 1( 1)( 2) ( 2)

( )!

rn n n n r
x

r r

-- - - +
-
 

 and ur + 1 = 
( 1)( 2) ( 1)

!

rn n n n r
x

r

- - - + 

Applying the ratio test, we have

 
1r

r

u

u

+
 = 

1 1
| | 1 | |

n r n
x x

r r

- + +
= -
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\ 1
lim

r

r
r

u

u

+

Æ•
 = |x|

So that the binomial series is absolutely convergent if |x| < 1. This means that for this range of values 

of x, the series is equal to (1 + x)n; n is a +ve integer.

(ii) Convergence of  Logarithmic Series

The series 
2 3 4

1log(1 ) ( 1)
2 3 4

n
nx x x x

x x
n

-+ = - + - + + - +   is convergent for –1 < x £ 1.

Here un = 
1

1
1( 1) and ( 1)

1

n n
n n

n

x x
u

n n

+
-

+- = -
+

Applying ratio test, we have

 
1

lim
n

n
n

u

u

+

Æ•
 = 

1

1

( 1)
lim

1 ( 1)

n n

n nn

x n

n x

+

-Æ•

È ˘-
¥Í ˙

+ -Í ˙Î ˚

 = lim
1 1/n

x
x

nÆ•

È ˘-
= -Í ˙+Î ˚

Thus, the series is convergent for |x| < 1 and divergent for |x| > 1.

At x = 1, the series becomes 

1 1 1 1
1 ( 1)

2 3 4

n

n
- + - + • = -Â  which is convergent and at x = –1, the series becomes

1 1 1 1
1

2 3 4 n

Ê ˆ Ê ˆ- + + + + • = -Á ˜ Á ˜Ë ¯ Ë ¯Â  which is divergent.

(iii) Convergence of  Exponential Series

 e
x = 

2 3

1
2! 3!

x x
x+ + + + •  is convergent for all values of x.

Here, un = 
1

1and
( 1)! !

n n

n

x x
u

n n

-

+ =
-

Applying ratio test, we have

 
1

lim
n

n
n

u

u

+

Æ•
 = 

1

( 1)!
lim

!

n

nn

x n

n x
-Æ•

È ˘-
¥Í ˙

Í ˙Î ˚

 = lim 0 1
n

x

nÆ•

È ˘ = <Í ˙Î ˚
Hence, the series is convergent, " x.
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EXERCISE 8.9

 1. Find the radius of convergence of the following series:

  (i) 
2

3 4

2 3 4

2! 3!

2 3 4

x
x x x+ + + + 

  (ii) 1 + x2 + x4 + x6 + …

 (iii) 1 + x + 2! x2 + 3! x3 + …

 2. Show that the series 
1

nf
•

Â ; where 
2

2
( )

(1 )
n n

x
f x

x
=

+
, does not converge uniformly for x ≥ 0.

 3. Show that the series 
4 2 2

1

1

n n x

•

+
Â  is uniformly convergent in [–K, K], for real K.

 4. Show that the series 
2

1 (1 )

x

n nx

•

+
Â  converges uniformly for all real x.

 5. Show that n

x

a

n
Â  converges uniformly in [0, 1] if Âan converges.

Answers

 1. (i) (e)         (ii)  (1)         (iii) (0)

SUMMARY
1. Infi nite Series

If < un> be a sequence of real numbers then the sum of the infi nite number of terms of this sequence, i.e., 

the expression u1 + u2 + u3 + … + un + … is defi ned as an infi nite series and is demoted by

1

orn n

n

u u

•

=
Â Â

2. Positive-term Series

The series un is called a positive-term series if each term of this series is positive, i.e.,

 un = u1 + u2 + u3 + … + un + …

3. Alternating Series

It is a series whose terms are alternatively positive and negative, i.e., un = u1 – u2 + u3 – u4 + …

4. Convergent Series

A series un is said to be convergent if the sum of the fi rst n terms of the series tends to a fi nite and unique 

limit as n tends to infi nity,

i.e., if lim n
n

S
Æ•

 = fi nite and unique then series un is convergent.
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5. Divergent Series

A series un is said to be divergent if the sum of fi rst n terms of the series tends to +• or –• as n Æ •,

i.e., if lim orn
n

S
Æ•

= +• - • , then the series un is divergent.

6. Oscillatory Series

The oscillatory series are two types:

(i) Oscillate Finitely A series un is said to oscillate fi nitely if the sum of its fi rst n terms tends to 

a fi nite but not unique limit as n tends to infi nity, i.e., if lim n
n

S
Æ•

 = fi nite but not unique then un oscillates 

fi nitely.

(ii) Oscillate Infi nitely A series un is said to oscillate infi nitely if the sum of its fi rst n terms 

oscillates infi nitely, i.e., if lim orn
n

S
Æ•

= +• - •  both then the series un oscillates infi nitely.

7. A Necessary Condition for Convergence

A necessary condition for a positive-term series un to converge is that lim 0n
n

u
Æ•

= .

8. Geometric Series

The series 1 + x + x2 + x3 + x4 + … • is

(i) Convergent if |x| < 1 (ii) Divergent if r ≥ 1     (iii) Oscillatory if x £ –1.

9. p-series Test

The infi nite series 
1
p

n
Â  i.e., 

1 1 1 1

1 2 3 4p p p p
+ + + + •  is

(i) Convergent if p > 1   (ii) Divergent if p £ 1

10. Comparison Test

If un and vn be two given series and if lim n

n n

u
a

vÆ•
=  fi nite and non-zero quantity then un and vn are either 

both convergent or both divergent.

11. D’Alembert Ratio’s Test

Let un be a series of positive terms, such that

 I. If 1n

n

u

u
l+ =  then the series is

 (a) convergent if l < 1, (b) divergent if l > 1, and (c) if l = 1, this test fails.

 II. If 1lim n

n n

u

u

+
Æ•

= •  then the series un is divergent.

OR

 I. If 

1

lim n

n n

u

u
l

Æ• +
=  then

 (a) if l > 1, it is convergent, (b) if l < 1, it is divergent, and (c) if l = 1, this test fails.

 II. If 
1

lim n

n n

u

uÆ• +
= •  then un is convergent.
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12. Cauchy’s Root (or Radical) Test

Let un be an infi nite series of positive terms and let 

1

lim [ ]n
n

n
u l

Æ•
= .

Then the series is

 (i) Convergent if l < 1,

 (ii) Divergent if l > 1, and

 (iii) If l = 1, this test fails.

13. Raabe’s Test

Let un be an infi nite series of positive terms and let 
1

lim 1n

n n

u
n

u
l

Æ• +

È ˘Ê ˆ
- =Í ˙Á ˜Ë ¯Í ˙Î ˚

. Then the series is

 (i) convergent if l > 1,

 (ii) divergent if l < 1, and

 (iii) if l = 1, this test fails.

14. Logarithmic Test

If un be an infi nite series of positive terms and let

1

lim log n

n n

u
n

u
l

Æ• +

È ˘Ê ˆ
=Í ˙Á ˜Ë ¯Í ˙Î ˚  

Then the series is

 (i) convergent if l > 1,

 (ii) divergent if l < 1, and

 (iii) if l = 1, this test fails.

15. Absolute Convergence and Conditional Convergence

(i) Absolute Convergent Series A series un is to be absolutely convergent if the positive-term 

series |un| is convergent.

(ii) Conditionally Convergent Series A series un is said to be conditionally convergent if the 

series |un| is divergent. It is also known as semi-convergent or accidentally convergent.

16. Power Series

A series of the form

 
2 3

0 1 2 3
n

na a x a x a x a x++ + + + +  = 

0

n
n

n

a x

•

=
Â  (1)

is said to be a power series. The numbers ar  are called coeffi cients of the power series.

Now, if we apply the Cauchy’s root test for convergence of the power series, we conclude that the series 

is absolutely convergent if 
1

| |x
l

<  and divergent if 
1

| |x
l

>

Let 
1

R
l

= ; then the power series is absolutely convergent if |x| < R and divergent if |x| > R.

where R is called the radius of convergence and is defi ned as 1/1
lim | | n

n
n

a
R Æ•

=  OR 
1/

1

lim | | n
n

n

R
a

Æ•

=

Note A power series is absolutely convergent within its interval of convergence and divergent outside 

it.
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17. Uniform Convergence

Consider a sequence or a series whose terms are function of a variable, say x, in the interval [a, b]. The 

convergence of such a sequence or a series in the given interval is called uniform convergence and is 

denoted as {Sn(x)}.

A sequence {Sn(x)}is said to converge uniformly to the limit S(x) in the interval [a, b], if for any Œ > 0, 

there exists a positive integer m such that |Sn(n) – S(x)| < Œ for all n > m and x Œ[a, b].

Theorem I: Cauchy’s General Principle of Uniform Convergence

The necessary and suffi cient condition for the sequence {Sn(n)} to converge uniformly in [a, b] is that, for 

any given Œ > 0, there exists a positive integer (I+) independent of x, such that 

 |Sn(x) – Sm(x)| < Œ for all n > m ≥ I+ and all x Œ[a, b].

Theorem II: (Mn-Test)

Let {Sn(n)} be a sequence and let Mn = Sup {1Sn – S|: x Œ [a, b]}. Then {Sn(n)} converges uniformly to S 

if and only if lim 0n
n

M
Æ•

= .

18. Uniform Convergence of a Series of Functions

The series un(x) is said to converge uniformly on [a, b] if the sequence {Sn(n)} of its partial sums converges 

uniformly on [a, b].

Theorem III: Weierstrass’s M-test

A series un(x) converges uniformly and absolutely on [a, b] if |un(x)| £ Mn for all n and x Œ [a, b], where 

Mn is independent of x and Mn is convergent.

OBJECTIVE-TYPE QUESTIONS

 1. The series 
1 1 1 1

log 2 log 3 log 4 log 5
- + -

+   is

 (a) divergent

 (b) absolutely convergent

 (c) conditionally convergent

 (d) convergent

 2. The series 
1

1

( 1)

5

n

n
n

n
• -

=

-Â  is

 (a) divergent

 (b) absolutely convergent

 (c) convergent

 (d) oscillatory

 3. The series 
2 2 2 2

2 3 4 5

1 2 3 4
- + - + •  is

 (a) convergent

 (b) divergent

 (c) conditionally convergent

 (d) absolutely convergent

 4. The series 
2/3 2/3 2/3

1 1 1
1

4 9 16
+ + + +  is

 (a) convergent

 (b) divergent

 (c) absolutely convergent

 (d) conditionally convergent

 5. The sum of the alternating harmonic series 

1 1 1
1

2 3 4
- + - +  is

 (a) zero (b) infi nite

 (c) 2 (d) log 2

 6. The series 

1

1 1
log

n

n

n n

•

=

+Ê ˆ
-Á ˜Ë ¯Â  is

 (a) convergent

 (b) divergent

 (c) oscillatory

 (d) absolutely convergent
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 7. The series 

1

!
n

n

n

n

•

=
Â  is

 (a) divergent

 (b) oscillatory

 (c) absolutely convergent

 (d) convergent

 8. The series 

1

,
n

n

x

n

•

=
Â  x > 0 is

 (a) convergent for x < 1, divergent for x ≥ 1

 (b) convergent for x = 1, divergent for x < 1

 (c) convergent for x > 1, divergent for x £ 1

 (d) convergent for x £ 1, divergent for x = 1

 9. The series 

2

1

1
1

n

n
n

-•

=

Ê ˆ
+Á ˜Ë ¯Â  is

 (a) absolutely convergent

 (b) divergent

 (c) convergent

 (d) oscillatory

 10. The series 
1 1 1 1

1 2 3 4
- + - +  is

 (a) convergent

 (b) divergent

 (c) absolutely convergent

 (d) oscillatory

 11. The series 

0

1

!
n

n

•

=
Â  converges to

 (a) 2 ln2 (b) 2

 (c) 2 (d) e

 [GATE (EC) 2014]

ANSWERS

 1. (d) 2. (c) 3. (b) 4. (a) 5. (d) 6. (a) 7. (d) 8. (a) 9. (c) 10. (a)

 11. (d)





9.1  INTRODUCTION

Fourier series introduced in 1807 by Fourier was one of the most important developments in applied 

mathematics. It is very useful in the study of heat conduction, electrostatics, mechanics, etc. The Fourier 

series is an infi nite series representation of periodic functions in terms of trigonometric sine and cosine 

functions.

The Fourier series is a very powerful method to solve ordinary and partial differential equations 

particularly with periodic functions appearing as nonhomogeneous terms.

The Fourier series constructed for one period is valid for all values. Harmonic analysis is the theory 

of expanding functions in Fourier series.

Joseph Fourier (21 March 1768–16 May 1830), born in Auxerre, Bourgogne, France, 

was a mathematician and physicist, Joseph Fourier is renowned for showing how the 

conduction of heat in solid bodies could be analyzed in terms of infinite mathematical 

series, which is fondly called the Fourier Series. Joseph Fourier played an important 

role in the Egyptian expeditions as well as in the discovery of the greenhouse effect. 

9.2  PERIODIC FUNCTION

A function f (x) is said to be periodic if f (x + T) = f (x) for all x and T is the smallest positive number 

for which this relation holds. Then T is called period of f (x).

If T is the period of f (x) then f (x) = f (x + T)  = f (x + 2 T) = f (x + 3 T ) = … = f(x + nT)

Also,  f (x) = f (x – T)  = f (x – 2 T) = f (x – 3 T ) =  … = f (x – nT)

\ f (x) = f (x ± n T), where n is a positive integer.

Thus, f (x) repeats itself after periods of T.

For example, sin x, cos x, sec x, and cosec x, are periodic functions with period 2p while tan x and 

cot x are periodic functions with period p.

The functions sin n x and cos n x are periodic with period 
2

n

p
.

The sum of a number of periodic functions is also periodic.

9
Fourier Series
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If T1 and T2 are the periods of f (x) and g (x) then the period of a f (x) + b g (x) is the least common 

multiple of T1 and T2.

For example, cos x, cos 2x, cos 3x are periodic functions with periods 2p, p, and 
2

3

p
 respectively.

\   f (x) = 
1 1

cos cos2 cos3
2 3

x x x+ +  is also periodic with period 2p, the LCM of 2p, p, and 
2

3

p
.

9.3  FOURIER SERIES

The Fourier series is an infi nite series which is represented in terms of the trigonometric sine and cosine 

functions of the form

 f(x) = 0
1 1cos

2

a
a x b+ +  sin x + a2 cos 2x + b2 sin 2 x + a3 cos 3x + b3 sin 3x + …

or f(x) = [ ]0

1

cos sin ,
2

nn
n

a
a n x b n x

•

=

+ +Â
where the constants a0, an, and bn are called Fourier coeffi cients.

Result

Let m and n be integers, m π 0, n π 0 for m π n.

 1. cos cos 0m x n x d x

a p

a

+2

◊ =Ú

 2. sin cos 0m x n x d x

a p

a

+2

◊ =Ú

 3. sin cos 0m x n x d x

a p

a

+2

◊ =Ú

 4. cos 0m x d x

a p

a

+2

=Ú

 5. sin 0m x d x

a p

a

+2

=Ú
for m = n

 1. 2cos cos cosm x n x dx m x d x

a p a p

a a

p

+ 2 + 2

◊ = =Ú Ú

 2. 2sin m x d x

a p

a

p

+2

=Ú

 3. cos sin 0m x m x d x

a p

a

+2

◊ =Ú
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9.4  EULER’S FORMULAE

Let f (x) be a periodic function with period 2p defi ned in the interval (a, a, + 2 p), of the form.

 f (x) = 0

1

( cos sin )
2

n n

n

a
a n x b n x

•

=

+ +Â  (1)

where the constants a0, an, bn, are called the coeffi cients.

(i) To Find the Coeffi cient a0 

Integrate both sides of (1) with respect to x in the interval a to a + 2 p. Then, 

 

2

( )f x dx

a p

a

+

Ú  = ( )
2 2

0

1

cos sin
2

n n

n

a
d x a n x b n x d x

a p a p

a a

+ + •

=

È ˘
+ +Í ˙

Í ˙Î ˚
ÂÚ Ú

 = 
2 2

20

1

[ ] cos sin
2

n n

n

a
x a nx dx b nx dx

a p a p

a p

a

a a

+ +•
+

=

È ˘
+ +Í ˙

Í ˙Î ˚
Â Ú Ú

 

2

( )f x d x

a p

a

+

Ú  = 0
02 0

2

a
ap p◊ + = ◊

 [Using results (4) and (5), the last two integrals for all n will be zero]

Hence,  a0 = 

2
1

( )f x dx

a p

a
p

+

Ú  (2)

(ii) To Find the Coeffi cient an for n = 1, 2, 3, …

Multiplying both sides of (1) by cos n x and integrating w. r. t. ‘x’ in the interval (a, a + 2p), we get

 

2

( )cosf x n x

a p

a

+

Ú  = ( )
2 2

0

1

cos cos sin cos
2

n n

n

a
n x dx a n x b n x nx dx

a p a p

a a

+ + •

=

È ˘
◊ + +Í ˙

Í ˙Î ˚
ÂÚ Ú

 = 

2 2 2

20

1

cos cos sin .cos
2

n n

n

a
n x dx a n x dx b n x n x dx

a p a p a p

a a a

+ + +•

=

È ˘
Í ˙+ +
Í ˙Î ˚

ÂÚ Ú Ú

 = 

2 2 2

20

1 1

cos cos cos sin
2

n n

n n

a
n x d x a n x dx b n x n x dx

a p a p a p

a a a

+ + +• •

= =

È ˘ È ˘
Í ˙ Í ˙+ + ◊
Í ˙ Í ˙Î ˚ Î ˚

Â ÂÚ Ú Ú

 = 0 + an ◊ p + 0 [Using the result (1) for m = n and (3) for m = n]

 = p an

or an = 

2
1

( ) cosf x n x dx

a p

a
p

+

◊Ú  (3)
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Similarly,  bn = 

2
1

( )sinf x n x dx

a p

a
p

+

Ú  (4)

The formulae (2), (3), and (4) are known as Euler formulae.

9.5  DIRICHLET’S CONDITIONS FOR A FOURIER SERIES

The suffi cient conditions for the uniform convergence of a Fourier series are called Dirichlet’s conditions 

(after Dirichlet, a German mathematician).

All the functions that normally arise in engineering problems satisfy these conditions and, hence, 

they can be expressed as a Fourier series.

 f (x) = 0

1

( cos sin ),
2

n n

n

a
a n x b n x

•

=

+ +Â  where a0, an, and bn are Fourier coeffi cients,

Provided:

 (i) Function f (x) is periodic, single valued and fi nite.

  (ii) Function f (x) has a fi nite number of discontinuities in any one period.

 (iii) Function f (x) has at the most of fi nite number of maxima and minima.

When these conditions are satisfi ed, the Fourier series converges to f (x) at every point of 

continuity.

At a point of discontinuity, the sum of the series is equal to the mean of the right- and left-hand 

limits, i.e., 
1

[ ( 0) ( 0)]
2

f x f x+ + - , where f (x + 0) and f (x – 0) denote the limit on the right and the 

limit on the left respectively.

9.6  FOURIER SERIES FOR DISCONTINUOUS FUNCTIONS

In Article 9.4, we derived Euler’s formula for a0, an, and bn on the assumption that f (x) in continuous 

in (a, a + 2 p).

However, if f (x) has fi nitely many points of fi nite discontinuity, even then it can be expressed 

as a Fourier series. The integrals for a0, an, and bn are to be evaluated by breaking up the range of 

integration.

Let f (x) be defi ned by f (x) = f1 (x);  a < x < x0

 = f2 (x); x0 < x < a + 2 p

where x0 is the point of fi nite discontinuity in the interval (a, a + 2p).

The values of a0, an, and bn are given by

 a0 = 

0

0

2

1 2

1
( ) ( )

x

x

f x dx f x dx

a p

a
p

+È ˘
Í ˙+
Í ˙
Î ˚
Ú Ú

 an = 
0

0

2

1 2

1
( ) cos ( )cos

x

x

f x n x dx f x n x dx

a p

a
p

+È ˘
Í ˙◊ +
Í ˙
Î ˚
Ú Ú
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 bn = 
0

0

2

1 2

1
( )sin ( ) sin

x

x

f x n x dx f x n x dx

a p

a
p

+È ˘
Í ˙+ ◊
Í ˙
Î ˚
Ú Ú

At x = x0, there is a fi nite jump in the graph of the function. Both the limits f(x0 – 0) and f(x0 + 0) 

exist but are unequal. The sum of the Fourier series 

 = 0 0

1
( 0) ( 0)

2
f x f x- + +È ˘Î ˚

Example 1  Find the Fourier series expansion for the periodic function f(x) = x; 0 < x < 2p

Solution Consider the Fourier series

 f(x) = 0

1

( cos sin )
2

n n

n

a
a nx b nx

•

=

+ +Â  (1)

The Fourier coeffi cients a0, an, bn are obtained as follows:

 a0 = 

22 2 2

0 0 0

1 1 1
( ) 2

2

x
f x dx xdx

pp p

p
p p p

È ˘
= = =Í ˙

Í ˙Î ˚
Ú Ú

 an = 

22 2

2
00 0

1 1 1 sin cos
( ) cos cos

nx nx
f x nx dx x nx dx x

n n

pp p

p p p

È ˘Ê ˆ= = ◊ - -Í ˙Á ˜Ë ¯Î ˚
Ú Ú

 an = ( )2

2 2 2

1 cos 2 1 1
1 1 0

n

n n n

p

p p

È ˘ È ˘- = - - =Í ˙ Í ˙Î ˚Î ˚

 bn = 

22 2

2
00 0

1 1 1 cos sin
( ) sin sin

nx nx
f x nx dx x nx dx x

n n

pp p

p p p

È ˘-Ê ˆ Ê ˆ= = - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚
Ú Ú

 = 21 2 cos 2 2
( 1) nn

n n

p p

p

È ˘- = - -Í ˙Î ˚
 [∵ cos 2np = (–1)2n]

 = 
2

n
-

Substituting the values of a0, an and bn in (1), we get

 x = 
1

2 2 1 1
...sin 2 sin sin 2 sin 3

2 2 3
n

nx x x x
n

p
p

•

=

Ê ˆ Ê ˆ+ - = - + + +Á ˜ Á ˜Ë ¯ Ë ¯Â

Example 2  Find the Fourier series for the function 

2
( )

( )
4

x
f x

p -
= ; 0 < x < 2p.

Solution Consider the Fourier series

 f(x) = 0

1

( cos sin )
2

n n

n

a
a nx b nx

•

=

+ +Â  (1)
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The Fourier coeffi cients are obtained as follows:

 a0 = 

2 2 2

0 0

1 1 ( )
( )

4

x
f x dx dx

p p
p

p p

-
=Ú Ú

 = 

2
3 2

3 3

0

1 ( ) 1

4 3 12 6

x
p

p p
p p

p p

È ˘- - È ˘= - - =Í ˙ Î ˚-Í ˙Î ˚

 an = 

2 2 2

0 0

1 1 ( )
( ) cos cos

4

x
f x nx dx nx dx

p p
p

p p

-
=Ú Ú

 = 

2

2

2 3
0

1 sin cos sin
( ) { 2( )} 2

4

nx nx nx
x x

n n n

p

p p
p

È ˘Ê ˆ Ê ˆ- - - - - + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 = 
2 2

1 2 cos 2 2 cos 0
0 0 0 0

4

nx

n n

p p

p

È ˘Ê ˆ Ê ˆ+ + - - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 = 
2 2 2 2

1 2 2 4 1

4 4n n n n

p p p

p p

È ˘+ = =Í ˙Î ˚

 bn = 

2 2 2

0 0

1 1 ( )
( ) sin sin

4

x
f x nx dx nx dx

p p
p

p p

-
=Ú Ú

 = 

2

2

2 3
0

1 sin cos
( ) { 2( )} 2

4

nx nx
x x

n n

p

p p
p

È ˘Ê ˆ Ê ˆ- - - - - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 = 

2 2

3 3

1 cos 2 2 cos 2 cos 0
0 0

4

n n

n nn n

p p p p

p

È ˘Ê ˆ Ê ˆ2
- - + - - - +Í ˙Á ˜ Á ˜

Ë ¯ Ë ¯Í ˙Î ˚

 = 
2 2

3 3

1 2 2
0

4 b nn n

p p

p

È ˘Ê ˆ Ê ˆ
- + - - + =Í ˙Á ˜ Á ˜

Ë ¯ Ë ¯Í ˙Î ˚
 [∵   cos 2np = 1]

\ f(x) = 

2

2
1

1
cos

12
n

nx
n

p
•

=

+ Â

 
2( )

4

xp -
 = 

2

2 2 2

cos cos 2 cos 3

12 1 2 3

x x xp
+ + + + 

Example 3  Find the Fourier series for the function f(x) = x – x2 in the interval (–p, p). Hence, 

deduce that 
2

2 2 2 2

1 1 1 1

121 2 3 4

p
- + - + = .

Solution Consider the Fourier series 
0

1

( ) ( cos sin )
2

n n

n

a
f x a nx b nx

•

=

= + +Â  (1)
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The Fourier coeffi cients are obtained as follows:

 a0 = 
2 3

21 1 1
( ) ( )

2 3

x x
f x dx x x dx

pp p

p p p
p p p

- - -

È ˘
= - = -Í ˙

Í ˙Î ˚
Ú Ú

 a0 = 
2 3 2 3 21 2

2 3 2 3 3

p p p p p

p

È ˘Ê ˆ Ê ˆ
- - + = -Í ˙Á ˜ Á ˜

Ë ¯ Ë ¯Í ˙Î ˚

 an = 
1

( ) cosf x nx dx

p

p
p

-
Ú

 = 21
( ) cosx x nx dx

p

p
p

-

-Ú

 = 2

2 3

1 sin cos sin
( ) (1 2 ) ( 2)

nx nx nx
x x x

n n n

p

p
p -

È ˘Ê ˆ Ê ˆ- - - - + - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 = 
2 2

1 cos cos
(1 2 ) (1 2 )

n n

n n

p p
p p

p

È ˘- - +Í ˙Î ˚

 = 
2 2

1 cos ( 1)
4 4

n
n

n n

p
p

p

-Ê ˆ- = -Á ˜Ë ¯
 [∵   cos np = (–1)n]

 bn = 21 1
( ) sin ( ) sinf x nx dx x x nx dx

p p

p p
p p

- -

= - ◊Ú Ú

 = 2

2 3

1 cos sin cos
( ) (1 2 ) ( 2)

nx nx nx
x x x

n n n

p

p
p -

È ˘Ê ˆ Ê ˆ Ê ˆ- - - - + -Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

 = 2 2

3 3

1 cos cos cos cos
( ) 2 ( ) 2

n n n n

n nn n

p p p p
p p p p

p

È ˘- - + - - +Í ˙Î ˚

 = 
1 cos ( 1)

2 2
n

n

n n

p
p

p

-È ˘- =Í ˙Î ˚

\ (x – x2) = 
2

2
1 1

( 1) ( 1)
4 cos 2 sin

3

n n

n n

nx nx
nn

p
• •

= =

- -
- - -Â Â

 = 
2

2 2 2

cos cos2 cos 3 sin sin 2 sin 3
4 2

3 1 2 31 2 3

x x x x x xp È ˘ È ˘- - - + - + - - + - +Í ˙ Í ˙Î ˚ Î ˚
  

 = 
2

2 2 2

cos cos2 cos 3 sin 2 sin 3
4 2 sin

3 2 31 2 3

x x x x x
x

p È ˘ È ˘- + + - + - + + - + -Í ˙ Í ˙Î ˚ Î ˚
  

 (2)
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Putting x = 0 in (2), we get

 0 = 
2

2 2 2 2

1 1 1 1
4

3 1 2 3 4

p Ê ˆ- + - + - +Á ˜Ë ¯
 

or 
2 2 2 2

1 1 1 1

1 2 3 4
- + - +  = 

2

12

p
 Hence, proved.

Example 4  Find a Fourier series for the function (x + x2) in the interval –p < x < p. Hence, show 

that 
2

2 2 2

1 1 1

6 1 2 3

p
= + + + .

Solution Consider the Fourier series

 f(x) = 0 [ cos sin ]
2

n n

a
a nx b nx

p

p-

+ +Â  (1)

Now, a0 = 
2 3 2

21 1 1 2
( ) ( )

2 3 3

x x
f x dx x x dx

pp p

p p p

p

p p p
- - -

È ˘
= + = + =Í ˙

Í ˙Î ˚
Ú Ú

 an = 21 1
( ) cos ( )cosf x nx dx x x nx dx

p p

p p
p p

- -

= +Ú Ú

 = 21
cos cosx nx dx x nx dx

p p

p p
p

- -

È ˘
+Í ˙

Í ˙Î ˚
Ú Ú

 [Since x cos nx is an odd function of x, and x2 cos nx is an even function of x]

 = 
2

0

2
cosx nx dx

p

p
Ú

 = 2

2 3 2
0

2 sin cos sin 2 cos
(2 ) 2 2

nx nx nx
x x

n n n n

p

p
p

p p

È ˘-Ï ¸ Ï ¸ Ï ¸ È ˘- ◊ + - =Ì ˝ Ì ˝ Ì ˝Í ˙ Í ˙Î ˚Ó ˛ Ó ˛ Ó ˛Î ˚

 an = 
2

4
( 1)n

n
-

 bn = 
1

( )sinf x nx dx

p

p
p

-
Ú

 = 2 21 1 1
( )sin sin sinx x nx dx x nx dx x nx dx

p p p

p p p
p p p- - -

+ = +Ú Ú Ú

 = 

0

2
sinx nx dx

p

p
Ú

 [∵   x sin nx is an even function and x2 sin nx is an odd function]
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 = 
2

0

2 cos sin
(1)

nx nx
x

n n

p

p

È ˘Ê ˆ Ê ˆ- - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 = 
2 cos

0
n

n

p
p

p

È ˘- +Í ˙Î ˚

 = 
2 2

( 1) ( 1)x n

n n

p

p

È ˘- = -Í ˙Î ˚
Now, putting the values of a0, an and bn in (1), we get

 x + x2 = 
3

2
1

4 2
( 1) cos ( 1) sin

3

n n

n

nx nx
nn

p
•

=

È ˘+ - + -Í ˙Î ˚
Â

 = 
2

2
1 1

( 1) ( 1)
4 cos 2 sin

3

n n

n n

nx nx
nn

p
• •

= =

- -
+ +Â Â

 x + x2 = 

2

2 2 2

cos cos2 cos3
4

3 1 2 3

x x xp È ˘+ - + - +Í ˙Î ˚
 

sin sin 2 sin3
2

1 2 3

x x xÈ ˘+ - + - +Í ˙Î ˚
 

 (2)

Putting x = p and x = –p in (2), we have

 p + p2 = 
2

2 2 2

1 1 1
4

3 1 2 3

p È ˘+ + + +Í ˙Î ˚
   (3)

and –p + p2 = 
2

2 2 2

1 1 1
4

3 1 2 3

p È ˘+ + + +Í ˙Î ˚
   (4)

Adding equations (3) and (4), we get

 2x
2 = 

2

2 2 2

2 1 1 1
8

3 1 2 3

p Ê ˆ+ + + +Á ˜Ë ¯
 

or = 
2

2 2 2

1 1 1

6 1 2 3

p
= + + +  Hence, proved.

Example 5  Find a Fourier series expansion for the function f(x) in the interval (–p, p), where

 f(x) = 

0 0

0
4

x

x
x

p

p
p

- < £Ï
Ô
Ì

< <ÔÓ

Solution Consider 0

1

( ) cos sin
2

n n

n

a
f x a nx b nx

•

=

= + +È ˘Î ˚Â  (1)

where,

 a0 = 

0

0

1 1 1
( ) 0

4

x
f x dx dx dx

p p

p p

p

p p p- -

= +Ú Ú Ú
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 = 
2 2

0 0

1 1

4 4 2 8

x
x dx

pp
pÈ ˘

= =Í ˙
Í ˙Î ˚

Ú

 an = 
1

( ) cosf x nx dx

p

p
p

-
Ú

 an = 

0

0

1 1
0.cos cos

4

x
nx dxf nx dx

p

p

p

p p-

+Ú Ú

 = 
2

0

1 sin cos
0

4

nx nx
x

n n

p
È ˘Ê ˆ Ê ˆ+ - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 = ( )
2

1 1
cos 1

4
n

n
p

È ˘-Í ˙Î ˚

 = 
2

1
( 1) 1

4

n

n
È ˘- -Î ˚

 bn = 

0

0

1 1 1
( ) sin 0 sin sin

4

x
f x nx dx nx dx nx dx

p p

p p

p

p p p
- -

= ◊ +Ú Ú Ú

 = 
2

00

1 1 cos sin
sin (1)

4 4

nx nx
x nx dx x

n n

pp È ˘Ê ˆ Ê ˆ= ◊ - - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚
Ú

 bn = cos ( 1)
4 4

n
n

n n

p p
p- = - -

Putting the values of a0, an, bn in (1),

 f(x) = 

2

2
1 1

1
{( 1) 1} cos ( 1) sin

16 44

n n

n n

nx nx
nn

p p
• •

= =

È ˘È+ - - + - -Í ˙ÍÎÍ ˙Î ˚
Â Â

 = 

2

2

2 1 1
2 cos cos3 sin sin 2 sin 3

16 4 4 2 33
x x x x x

p p1 Ê ˆ Ê ˆ+ - - - - - + + +Á ˜ Á ˜Ë ¯ Ë ¯
  

 = 

2

2

1 1
cos sin sin 2 cos 3 sin 3

16 2 4 4.2 4.32.3
x x x x x

p p p pÊ ˆ Ê ˆ Ê ˆ+ - + + - + - + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
 

Example 6  Find the Fourier series expansion of f(x) = eax in the interval (0, 2p).

Solution Consider

 f(x) = 0

1

[ cos sin ]
2

n n

n

a
a nx b nx

•

=

+ +Â  (1)
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where a0 = 

22 2

0 0 0

1 1 1
( )

ax
ax e

f x dx e dx
a

pp p

p p p

È ˘
= = Í ˙

Í ˙Î ˚
Ú Ú

 = 
21

( 1)a
e

a

p

p
-

 an = 

2

0

1
( ) cosf x nx dx

p

p
Ú

 = 
2

0

1
cosax

e nx dx

p

p
◊Ú

 = 

2

2 2

0

1
( cos sin

( )

ax
e

a nx b nx
a n

p

p

È ˘
+Í ˙

+Í ˙Î ˚

 = 
2

2 2

1
cos 2 1

( )

a
ae n

a n

p
p

p

È ˘-Î ˚+

 = 
2

2 2

1
1

( )

a
ae

a n

p

p

È ˘-Î ˚+

 bn = 

2

0

1
( ) sinf x nx dx

p

p
Ú

 = 

2

0

1
sinax

e nx dx

p

p
◊Ú

 = 

2

2 2

0

1
( sin cos )

ax
e

a nx n nx
a n

p

p

È ˘
-Í ˙

+Í ˙Î ˚

 = 
2

2 2
cos 2 1

( )

an
e n

a n

p
p

p

-È ˘- +Î ˚+

 = 
2

2 2
1

( )

an
e

a n

p

p

È ˘-Î ˚+

Putting the values of a0, an, bn in (1), we get

 e
ax = 

2
2 2

2 2 2 2
1

1 1
( 1) cos (1 ) sin

( ) ( )

a
a a

n

e n
ae nx e nx

a a n a n

p
p p

p p p

•

=

Ê ˆ È ˘-
+ - + -Í ˙Á ˜ + +Ë ¯ Í ˙Î ˚

Â

 = 

2 2

2 2 2 2
1 1

1 1 ( 1)
sin cos

( )

a a

n n

e n ae
nx nx

a a n a n

p p

p p

• •

= =

È ˘Ê ˆ Ê ˆ- -
◊ - + ◊Í ˙Á ˜ Á ˜+ +Ë ¯Ë ¯ Í ˙Î ˚

Â Â
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9.7  FOURIER SERIES FOR EVEN AND ODD FUNCTIONS

(i) Even Function

A function f(x) is said to be an even function, if 

 f(–x) = f(x) for all x

For example, x4, cos x, sec x are even functions.

Notes 

 (a) The graph of f(x) is symmetric about the y-axis.

 (b) f(x) contains only even powers of x and may contain only cos x, sec x.

 (c) The product of two even functions is an even function.

 (d) The sum of two even functions is an even function.

 (e) 

0

( ) 2 ( ) if ( ) ( )

a a

a

f x dx f x dx f x f x

-

= - =Ú Ú

Graphs of Even Functions

Fig. 9.1

(ii) Odd Function

A function f(x) is said to be an odd function if 

 f(–x) = –f(x) for all x

For example, x, x3, sin x, tan x are odd functions.

Notes

(a) The graph of f(x) is symmetric about the origin.

(b) f(x) contains only odd powers of x and may contain only sin x, cosec x.

(c) The sum of two odd functions is odd.

(d) The product of an odd function and an even function is an odd function.

(e) Product of two odd functions is an even function.

(f) ( ) 0 if ( ) ( )

a

a

f x dx f x f x

-

= - = -Ú
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Graphs of Odd Functions

Fig. 9.2

(iii) Fourier Series for Even and Odd Functions

Let the Fourier series of f(x) in (–p, p) be

 f(x) = 
0

1

( cos sin )
2

n n

n

a
a nx b nx

•

=

+ +Â  (5)

where a0 = 
1

( )f x dx

p

p
p

-
Ú

 an = 
1

( ) cos andf x nx dx

p

p
p

-

◊Ú

 bn = 
1

( ) sinf x nx dx

p

p
p

-

◊Ú

Case I Consider f(x) is an even function in (–p, p). Then all bn’s will be zero. Thus, the Fourier 

series of an even function contains only cosine terms and is known as Fourier cosine series given by

 f(x) = 0

1

cos
2

n

n

a
a nx

•

=

+ Â  (6)

where a0 = 

0

1 2
( ) ( )f x dx f x dx

p p

p
p p

-

=Ú Ú , and

 an = 

0

1 2
( ) cos ( ) cosf x nx dx f x nx dx

p p

p
p p

-

=Ú Ú

Case II Consider f(x) is an odd function in (–p, p), Then all an’s will be zero. Also a0 is zero since 

f(x) is an odd function. Thus, the Fourier series of an odd function contains only sine terms and is 

known as Fourier sine series given by
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 f(x) = 
1

sinn

n

b nx
•

=
Â

where  bn = 

0

1 2
( ) sin ( ) sinf x nx dx f x nx dx

p p

p
p p

-

=Ú Ú

Example 7  Find the Fourier series for the function f(x) = |x| in –p < x < p. Hence, show that

 
2 2 2

1 1 1

1 3 5
+ + +  = 

2

8

p

Solution f(x) = |x| = |–x| = f(–x)

Therefore, f(x) is an even function and, hence, bn = 0,

Let the Fourier series

 f(x) = |x| = 0

1

cos
2

n

n

a
a nx

•

=

+ Â  (1)

Then,  a0 = 

2
2

0 0 0

2 2 2 2
( ) | |

2

x
f x dx x dx xdx

p p p

p p p p

Ê ˆ
= = = Á ˜

Ë ¯Ú Ú Ú

 a0 = p

and an = 

0 0 0

2 2 2
( )cos | |cos cosf x nx dx x nx dx x nxdx

p p p

p p p
= =Ú Ú Ú

 = 
2

0

2 sin cos
1

nx nx
x

x n

p

p

È ˘Ê ˆ Ê ˆ- ◊ -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 = 
2 2 2

2 cos 1 2
(cos 1)

n
n

n n n

p
p

p p

È ˘- = -Í ˙Î ˚

 = 2

2
( 1) 1n

np

È ˘- -Î ˚

 = 

2

0 if is even

4
if is odd

n

n
np

Ï
Ô

-Ì
ÔÓ

\ |x| = 
2 2

4 cos3 cos5
cos

2 3 5

x x
x

p

p

È ˘- + + +Í ˙Î ˚
  (2)

Putting x = 0 in (2), we get

 
2 2 2

1 1 1

1 3 5
+ + +  = 

2

8

p
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Example 8  Find the Fourier series for the function f(x) = x + x2, – p  < x < p. Hence, show that

 (i) 
2

2 2 2

1 1 1

61 2 3

p
+ + + = 

 (ii) 
2

2 2 2 2

1 1 1 1

121 2 3 4

p
- + - + = 

Solution Let the Fourier series

 f(x) = 0

1

( cos sin )
2

n n

n

a
a nx b nx

•

=

+ +Â  (1)

Then a0 = 21 1
( ) ( )f x dx x x dx

p p

p p
p p

- -

= +Ú Ú

 = 
2 2

0

1 1 2
0xdx x dx x dx

p p p

p p
p p p

- -

+ = +Ú Ú Ú

 = 2
0

2
[ ]

3
x

p  = 22

3
p

and an = 
21 1

( ) cos ( ) cosf x nx dx x x nx dx

p p

p p
p p

- -

= +Ú Ú

 = 
21 1

cos ( cos )x nx dx x nx dx

p p

p p
p p

- -

+Ú Ú

 = 2

0

2
0 cosx nx dx

p

p
+ Ú  [∵   x cos nx is an odd function]

 = 
2

0 0

2 sin sin
2

nx nx
x x dx

n n

p p

p

È ˘
Í ˙- ◊
Í ˙Î ˚

Ú

 = 
0

4
sinx nx dx

n

p

p
- Ú

 = 
0 0

4 cos cos
1

nx nx
x dx

n n n

p p

p

È ˘- -Ê ˆÍ ˙◊ - ◊-Á ˜Ë ¯Í ˙Î ˚
Ú

 = 
2

0

4 cos sinnx n

n n n

p
p p

p

È ˘-
Í ˙- +
Í ˙Î ˚

 = 
4 cos

0
n

n n

p p

p

- È ˘- +Í ˙Î ˚
 = 

2

4
( 1)n

n
-  [∵   cos np = (–1)n]
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Now, bn = 
1

( ) sinf x nx dx

p

p
p

-
Ú

 = 
21

( ) sinx x nx dx

p

p
p

-

+Ú

 = 
21 1

sin sinx nx dx x nx dx

p p

p p
p p

- -

+Ú Ú

 = 

0

2
sin 0x nx dx

p

p
+Ú  [∵   x2 sin nx is an odd function]

 = 
2

0 0

2 cos cos
1.

nx nx
x dx

n n

p p

p

È ˘Ê ˆ Ê ˆÍ ˙- - -Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú

 = 
2

0

2 cos sinnx nx

n n

p
p

p

È ˘
Í ˙- +
Í ˙Î ˚

 = 
2 cos 2

0 cos
n

n
n n

p p
p

p

È ˘- + = -Í ˙Î ˚

 bn = 
2

( 1)n

n
- -

Putting the values of a0, an, and bn in (1), we get

 f(x) = 
2

2

2
1 1

( 1) ( 1)
( ) 4 cos 2 sin

3

n n

n n

x x nx nx
nn

p
• •

= =

- -
+ = + -Â Â

 = 
2

2 2 2

1 1 1
4 cos cos 2 cos 3

3 1 2 3
x x x

p -È ˘+ + - +Í ˙Î ˚
 

 
1 1 1

2 sin sin 2 sin 3
1 2 3

x x x
-È ˘- + - +Í ˙Î ˚

  (2)

Putting x = –p in (2), we get

 [ ]1
( 0) ( 0)

2
f fp p- + + - -  = 

2

2 2 2

1 1 1
4

3 1 2 3

p È ˘+ + + +Í ˙Î ˚
 

or 2 21

2
p p p pÈ ˘+ - +Î ˚  = 

2

2 2 2

1 1 1
4

3 1 2 3

p È ˘+ + + +Í ˙Î ˚
 

or 
2

6

p
 = 

2 2 2

1 1 1

1 2 3
+ + + 
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Again putting x = 0 in (2), we get

 
2

2 2 2 2

1 1 1 1
4

3 1 2 3 4

p È ˘+ - + - +Í ˙Î ˚
  = 0

or 
2 2 2 2

1 1 1 1

1 2 3 4
- + -   = 

2

12

p
 Hence, proved

Example 9  Find the Fourier series for the function f(x) = x2, –p < x < p. Hence, show that

 
2 2 2 2

1 1 1 1

1 2 3 4
- + -   = 

2

12

p

Solution Since f(–x) = (–x)2 = x2 = f(x)

\   f(x) = x2 is an even function and bn = 0

Let the Fourier series

 f(x) = 0

1

cos
2

n

n

a
a nx

•

=

+ Â  (1)

Then  a0 = 2 2

0

1 1 2
( )f x dx x dx x dx

p p p

p p
p p p

- -

= =Ú Ú Ú

 = 

3 3
2

0

2 2 2

3 3 3

x
p

p
p

p p

Ê ˆ
= =Á ˜

Ë ¯

 an = 
1

( ) cosf x nx dx

p

p
p

-
Ú

 = 
2 2

0

1 2
cos cosx nx dx x nx dx

p p

p
p p

-

=Ú Ú

 = 2

0 0

2 sin sin
2

nx nx
x x dx

n n

p p

p

È ˘¸Ê ˆ ÔÍ ˙- ◊ ˝Á ˜Ë ¯Í ˙Ǫ̂Î ˚
Ú

 = 

0 0

2 2 cos cos
1

n x n x
x dx

n n n

p p

p

È ˘Ï ¸Ê ˆ Ê ˆÔ ÔÍ ˙- - - ◊ -Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Ô ÔÓ ˛Î ˚
Ú

 = 
2

0

2 2 cos sinn n x

n n n

p
p p

p

È ˘Ï ¸Ô ÔÍ ˙- - +Ì ˝
Í ˙Ô ÔÓ ˛Î ˚

 = 
2 2

2 2 ( 1) 4
( 1)

n
n

n n

p

p

È ˘-
= -Í ˙

Í ˙Î ˚
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Putting the values of a0 and an in (1), we get

 x
2 = 

2

2
1

( 1)
4 cos

3

n

n

n x
n

p
•

=

-
+ Â .

 = 

2

2 2 2 2

cos cos2 cos3 cos 4
4 ...

3 1 2 3 4

x x x xp Ê ˆ+ - + - + -Á ˜Ë ¯

 = 
2

2 2 2 2

cos cos2 cos3 cos 4
4 ...

3 1 2 3 4

x x x xp Ê ˆ- - + - +Á ˜Ë ¯
 (2)

Putting x = 0 in (2), we get

 
2

2 2 2 2

1 1 1 1
4 ...

3 1 2 3 4

p Ê ˆ- - + - +Á ˜Ë ¯
 = 0

or 
2 2 2 2

1 1 1 1
...

1 2 3 4
- + - +  = 

2

12

p
 Hence, proved

Example 10  Find the Fourier series for the function f (x) = x 3 in (– p, p).

Solution Since f (– x) = (– x) 3 = – x3 = – f (x).

\   f (x) an odd function.

Then the Fourier sine series is given by

 f (x) = 
1

sinn

n

b n x
•

=
Â

where  bn = 3

0 0

2 2
( ) sin sinf x n x dx x n x dx

p p

p p
◊ =Ú Ú

 = 
3 2

2 3 4

0

2 cos sin cos sin
3 6 ( 1) 6

n x n x n x n x
x x x

n n n n

p

p

È ˘Ê ˆ Ê ˆ Ê ˆ- - - + - - -Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

 = 

3

3

2 6
cos cosn n

n n

p p
p p

p

È ˘
- +Í ˙

Í ˙Î ˚

 = 

2

3

6
2( 1)n

n n

pÈ ˘
- - +Í ˙

Í ˙Î ˚

\   f (x) = 
2

3

3
1

6
2 ( 1) sinn

n

x nx
nn

p
•

=

Ê ˆ
= - - ◊Á ˜

Ë ¯
Â

 = 
2 2

3 3

6 6
2 sin sin 2 ...

1 21 2
x x

p pÈ ˘Ê ˆ Ê ˆ
- - - +Í ˙Á ˜ Á ˜

Ë ¯ Ë ¯Í ˙Î ˚



 Fourier Series 9.19

Example 11  Find the Fourier-series expansion of the periodic function f (x) = x; –p < x < p; 

f (x + 2 p) = f (x)

Solution Since f (x) = – x = – f (x)

 f (x) = x is an odd function.

Then the Fourier series is given by

 f (x) = 
1

sinn

n

b n x
•

=
Â

where  bn = 

0

2
( )sinf x n x dx

p

p
Ú

 = 

0

2
sinx nx dx

p

p
Ú

 = 
2

0

2 cos sin 2 cosn x n x n
x

n nn

p
p

p
p p

È ˘Ê ˆ Ê ˆ- + = ◊ -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 = 12
( 1)n

n

+-

 x = 1

1

2 1 1
( 1) sin 2 sin sin 2 sin3

2 3

n

n

n x x x x
n

•
+

=

È ˘- = - + -Í ˙Î ˚
Â  

EXERCISE 9.1

 1. Prove that in the interval – p < x < p,

 x cos x = 
2

2

1 ( 1)
sin 2 sin

2 1

n

n

n
x n x

n

•

=

-
- +

-
Â .

 2. Find the Fourier series of f (x) = | cos x | is the interval – p < x < p.

 3. Find the Fourier series of f (x) = x sin x. in – p < x < p.

 4. Find the Fourier series of f (x) = x cos x in – p < x < p.

 5. Find the Fourier series to represent the function f (x) = |sin x| in – p < x < p.

 6. Find the Fourier-series expansion of the function f (x) = (p + x), – p < x < p,

  Hence, show that 
1 1 1

1 ...
4 3 5 7

p
= - + - +

 7. Find the Fourier-series expansion of the function

 f (x) = cos x – sin 
2

xÊ ˆ
Á ˜Ë ¯

, – p < x < p.

 8. Find the Fourier series for the function f (x) = x3 in – p < x < p.
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 9. Find the Fourier series for the function f (x) = 1 – |x|; – p < x < p.

 10. Expand the function f (x) = 
2 2

12 4

xp
-  in Fourier series in the interval (– p, p).

Answers

 2. f (x) = 
2

1

cos
2 4 2 cos

1n

n

nx
n

p

p p

•

=

+
-

Â

 3. f (x) = 

1

2
2

1 2( 1)
1 cos cos

2 1

n

n

x nx
n

+•

=

-
- +

-
Â

 4. f (x) = 
2

2

1 ( 1)
sin sin

2 ( 1)

n

n

x nx
n

•

=

-
- +

-
Â

 5. f (x) = 
2

2 4 cos2 cos 4 cos2
... ...

3 15 4 1

x x nx

np p

Ê ˆ
- + + + +Á ˜-Ë ¯

 7. f (x) = 
2

2

8 cos
cos sin

(4 1)n

n n
x n x

n

p

p

•

=

È ˘
+ Í ˙

-Í ˙Î ˚
Â

 8. x
3 = 

3

3
1

2 6
( 1) sinn

n

nx
nn

p p

p

•

=

È ˘Ê ˆ
- -Í ˙Á ˜

Ë ¯Í ˙Î ˚
Â

 9. f (x) = 
2

1

2 2 1
cos( )

2
n

n

P nx
n

p

p

•

=

-Ê ˆ +Á ˜Ë ¯ Â

 10. f (x) = 
1

2
1

( 1)
cos( )

n

n

nx
n

+•

=

-
◊Â

9.8  CHANGE OF INTERVAL

Suppose we want to represent the function f (x) defi ned in the closed interval (– c, c) by a Fourier 

series, c being any positive real number. We consider this interval as a result of elongating (or 

compressing) the interval [ –p, p]. The interval – c £ x £ c is transformed into the interval – p £ z £ p 

by the transformation

 z = 
x

c

p

Then  f (x) = ( )
c z

f F z
p

Ê ˆ =Á ˜Ë ¯
, (say)
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Let  F (z) = [ ]0

1

cos sin
2

nn
n

a
a n z b nz

•

=

+ +Â

where  a0 = 
1

( )F z dz

p

p
p

-
Ú

 an = 
1

( ) cosF z n z dz

p

p
p

-

◊Ú ; n = 0, 1, 2, …

 bn = 
1

( ) sinF z n z dz

p

p
p

-

◊Ú ; n = 1, 2, 3, …

Applying the transformation z = 
x

c

p
 so that dz = dx

c

p
, we get

 f (x) = 
0

1

cos sin
2

n n

n

a n x n x
a b

c c

p p
•

=

È ˘Ê ˆ Ê ˆ+ +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚
Â

where  a0 = 
1

( )

c

c

f x dx
c

-
Ú

 an = 
1

( ) cos

c

c

n x
f x dx

c c

p

-

Ê ˆ◊ Á ˜Ë ¯Ú ; n = 0, 1, 2, 3, ..

 bn = 
1

( ) sin

c

c

n x
f x dx

c c

p

-

Ê ˆ◊ Á ˜Ë ¯Ú ; n = 1, 2, 3, …

9.9  FOURIER HALF-RANGE SERIES

Suppose a function f (x) is defi ned on some fi nite interval. It may also be the case that a periodic 

function f (x) of period 2 l is defi ned only on a half-interval [0, l]. It is possible to extend the defi nition 

of f (x) to the other half [– l, 0] of the interval [– l, l] so that f (x) is either an even or an odd function. 

In the fi rst case, we call it an even periodic extension of f (x) and in the second case, we call it an odd 

periodic extension of f (x). If f (x) is given and an even periodic extension is done then f (x) is an even 

function in [– l, l]. Hence, f (x) has a Fourier cosine series. If f (x) is given and an odd periodic extension 

is done then f (x) is an odd function in [– l, l]. Hence, f (x) has now a Fourier sine series.

Therefore, if a function f (x) is defi ned only on a half-interval [0, l] then it is possible to obtain a 

Fourier cosine or a Fourier sine-series expansion depending on the requirements of a particular problem, 

by suitable periodic extensions. Now, we defi ne the Fourier cosine and sine series.

(i) Fourier Cosine Series

The Fourier cosine series expansion of f (x) on the half-range interval [0, l] is given by

 f (x) = 
0

1

cos
2

n

n

a n x
a

l

p
•

=

Ê ˆ+ Á ˜Ë ¯Â
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where a0 = 

0

2
( )

l

f x dx
l Ú , and 

 an = 

0

2
( ) cos

l
n x

f x dx
l l

pÊ ˆ◊ Á ˜Ë ¯Ú

(ii) Fourier Sine Series

The Fourier sine-series expansion of f (x) on the half range interval [0, l] is given by

 f (x) = 
1

sinn

n

n x
b

l

p
•

=

Ê ˆ
Á ˜Ë ¯Â

where  bn =  

0

2
( ) sin

l
n x

f x dx
l l

pÊ ˆ◊ Á ˜Ë ¯Ú

Example 12  Find the Fourier cosine series of the functions

 f (x) = 
2 , 0 2

4 , 2 4

x x

x

Ï £ £Ô
Ì

£ £ÔÓ

Solution Note that f (x) is to be extended as an even function. Let the Fourier cosine series

 f (x) = 0

1

cos
2 4

n

n

a n x
a

p•

=

Ê ˆ+ Á ˜Ë ¯Â  (1)

 a0 = 

4 2 4
2

0 0 2

2 1
( ) 4

4 2
f x dx x dx dx

È ˘
= +Í ˙

Í ˙Î ˚
Ú Ú Ú

 = 

2
3

4

2

0

1 1 8 16
4( ) 8

2 3 2 3 3

x
x

È ˘Ê ˆ È ˘Í ˙+ = + =Á ˜ Í ˙Í ˙Ë ¯ Î ˚Î ˚

 an = 

4

0

2
( )cos

4 4

n x
f x dx

pÊ ˆ
Á ˜Ë ¯Ú

 = 

2 4
2

0 2

1
cos 4cos

2 4 4

n x n x
x dx dx

p pÈ ˘Ê ˆ Ê ˆ+Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú Ú

 = 

4
2

2

2 3

0
2

sin 2 cos 2sin sin
1 4 4 4 4

4
2

4 44 4

n x n x n x n x
x x

n nn n

p p p p

p pp p

È ˘Ï ¸ Ï ¸Ê ˆ Ê ˆ Ê ˆ Ê ˆÍ ˙Ô ÔÁ ˜ Á ˜ Á ˜ Á ˜Ô ÔÍ ˙Ë ¯ Ë ¯ Ë ¯ Ë ¯Ô Ô Ô Ô+ - +Í ˙Ì ˝ Ì ˝
Ê ˆ Ê ˆÊ ˆ Ê ˆÍ ˙Ô Ô Ô ÔÁ ˜ Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Ô Ô Ô ÔË ¯ Ë ¯ Ó ˛Ó ˛Í ˙Î ˚
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 = 
2 3

4sin 4cos 2sin 4sin
1 2 2 2 2

2

4 44 4

n n n n

n nn n

p p p p

p pp p

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆÍ ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙+ - -Í ˙Ê ˆÊ ˆ Ê ˆÍ ˙Á ˜Á ˜ Á ˜ Ë ¯Ë ¯ Ë ¯Í ˙Î ˚

 = 
2 2

32 2
cos sin

4 2

n n

nn

p p

pp

È ˘Ê ˆÊ ˆ Ê ˆ- ◊Í ˙Á ˜ Á ˜Á ˜Ë ¯ Ë ¯Ë ¯Í ˙Î ˚

Putting the values of a0 and an in (1), we get

 f(x) = 
2 2

1

8 32 1 2
cos sin cos

3 2 2 4n

n n n x

nn

p p p

pp

•

=

È ˘Ê ˆÊ ˆ Ê ˆ Ê ˆ+ - ◊Í ˙Á ˜ Á ˜ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¯Ë ¯Î ˚
Â

Example 13  Find the half-range Fourier cosine series of the function

 f (x) = 
2 , 0 1

2(2 ), 1 2

x x

x x

< <Ï
Ì - < <Ó

Solution Let the half-range Fourier cosine series

 f (x) = 0

1

cos
2 2

n

n

a n x
a

p
•

=

Ê ˆ+ Á ˜Ë ¯Â  (1)

where a0 = 

2 1 2

0 0 1

2
( ) 2 2(2 )

2
f x dx x dx x dx= + -Ú Ú Ú

 = 

1 2
2 2

0 1

(2 )
2 2

2 2

x x-
+

 =  2 – 1= 1

 an = 
2

0

2
( )cos

2 2

n x
f x dx

pÊ ˆ
Á ˜Ë ¯Ú

 = 

1 2

0 1

2 cos 2(2 )cos
2 2

n x n x
x dx x dx

p pÊ ˆ Ê ˆ◊ + -Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú

 = 

1

2 2

0

2 4
2 sin cos

2 2

x n x n x

n n

p p

p p

È ˘Ê ˆ Ê ˆ+Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

 

2

2 2

1

2 4
2 (2 )sin cos

2 2

n x n x
x

n n

p p

p p

È ˘Ê ˆ Ê ˆ+ - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
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 = 
2 2 2 2

2 4 4
2 sin cos

2 4

n n

n n n

p p

p p p

È ˘Ê ˆ Ê ˆ+ ◊ -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

 
2 2 2 2

4 2 4
2 cos sin cos

2 2

n n
n

nn n

p p
p

pp p

È ˘Ê ˆ+ - - +Í ˙Á ˜Ë ¯Í ˙Î ˚

 = 
2 2 2 2 2 2

16 8 8
cos cos

2

n
n

n n n

p
p

p p p

Ê ˆ - ◊ -Á ˜Ë ¯

 = 
2 2

8
2cos cos 1

2

n
n

n

p
p

p

È ˘Ê ˆ◊ - -Í ˙Á ˜Ë ¯Î ˚

\ a1 = [ ]2

8
0 1 1 0

p
◊ + - = ,  a2 = 

2

8

p
- ,  a3 = a4 = a5 = 0,

 a6 = 
2

8

9p
- , …

\ f (x) = 
2 2

8 8
1 0 cos cos3

9
x xp p

p p
+ - ◊ - ◊ - 

 = 
2 2

8 8
1 cos cos3

9
x xp p

p p
- ◊ - ◊ - 

Example 14  Expand f (x) = p x – x2 in a half-range sine series in the interval (0, p) up to the fi rst 

three terms.

Solution Let the Fourier half-range sine series is

 (px – x2) = 
1

sin ( )n

n

b nx
•

=
Â  (1)

where  bn = 
0

2
( ) sinf x n x dx

p

p
◊Ú

 = 
2

0

2
( )sinx x n x dx

p

p
p

-Ú

 = 
2

2 3
0

2 cos sin cos
( ) ( 2 ) ( 2)

n x n x n x
x x x

n n n

p

p p
p

È ˘Ê ˆ Ê ˆ Ê ˆ- - - - - + -Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚

 = 
3 3

2 2cos 2n

n n

p

p

È ˘- +Í ˙Î ˚

 = [ ]3

4
1 cos n

n
p

p
-
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 = 3

4
1 ( 1)n

np

È ˘- -Î ˚

 = 0  if n is  even

 = 
3

8

np
 if n is odd

\ Eq. (1) becomes

 (px – x2) = 
3 3

8 sin3 sin 5
sin ...

3 5

x x
x

p

È ˘+ + +Í ˙Î ˚

Example 15  Find a half-range cosine series of f (x)  = sin
x

l

pÊ ˆ
Á ˜Ë ¯  in 0 < x < l.

Solution Let a half-range cosine series be 

 f (x) = 
0

1

cos
2

n

n

a n x
a

l

p
•

=

Ê ˆ+ Á ˜Ë ¯Â  (1)

Then  a0 = 
0

2
( )

l

f x dx
l Ú

 = 

0

2
sin

l
x

dx
l l

pÊ ˆ
Á ˜Ë ¯Ú  = 

0

2
cos

l
l x

l l

p

p

È ˘Ê ˆ-Í ˙Á ˜Ë ¯Î ˚

 = [ ]2 4
cos 1p

p p
- - =

 an = 

0

2
( ) cos

l
n x

f x dx
l l

p
◊Ú

 = 
0

2
sin cos

l
n x n x

dx
l l l

pÊ ˆ Ê ˆ◊Á ˜ Á ˜Ë ¯ Ë ¯Ú

 = 

0

1
2sin cos

l
n x n x

dx
l l l

pÊ ˆ Ê ˆ◊Á ˜ Á ˜Ë ¯ Ë ¯Ú

 = 
0

1 ( 1) ( 1)
sin sin

l
n x n x

dx
l l l

p p+ -È ˘-Í ˙Î ˚Ú

 = 
0

1 ( 1) ( 1)
cos cos

( 1) ( 1)

l
l n x l n x

l n l n l

p p

p p

È ˘+ -
- +Í ˙+ -Î ˚

 = 
1

cos( 1) cos( 1)
( 1) ( 1) ( 1) ( 1)

l l l l
n n

l n n n n
p p

p p p p

È ˘Ê ˆ Ê ˆ
- + + - - - +Í ˙Á ˜ Á ˜+ - + -Ë ¯ Ë ¯Í ˙Î ˚
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 = 

1 11 ( 1) ( 1) 1 1

( 1) ( 1) ( 1) ( 1)

n n

n n n np

+ -È ˘- -
- + + -Í ˙

+ - + -Í ˙Î ˚

 = 0  if n is odd

 = 
4

( 1)( 1)n np

-
+ -

 if n is even and n π 1

Now,  a1 = 

0

2
sin cos

l
x x

dx
l l l

p p
◊Ú

 = 

0

1 2
sin

l
x

dx
l l

p

Ú  = 
0

1 2
cos

2

l
l x

l l

p

p

Ê ˆ-
◊Á ˜Ë ¯

 = ( ) 21 1
cos2 1 ( ( 1) 1) 0

2 2
p

p p
- + = - - + =

Hence, sin
x

l

pÊ ˆ
Á ˜Ë ¯

 = 

2 4
cos cos

2 4
...

1 3 3 5

x x

l l

p p

p p

È ˘
Í ˙

- + +Í ˙
◊ ◊Í ˙

Í ˙Î ˚

Example 16  Find the Fourier half-range sine series for ex in 0 < x < 1.

Solution Let the half-range Fourier sine series be

 f (x) = 
1

sinn

n

b n xp

•

=
Â  (1)

Then,  bn = 

1

0

2
( ) sin

1
f x n x dxp◊Ú

 = 

1

0

2 sinx
e n x dxp◊Ú

 = 

1

2 2

0

2 (sin cos )
1

x
e

n x n n x
n

p p p
p

È ˘
-Í ˙

+Í ˙Î ˚

 = 
2 2 2 2

1
2 ( cos ) ( )

1 1

e
n n n

n n
p p p

p p

È ˘
- - ◊ -Í ˙

+ +Î ˚

 = 
2 2

2
( 1)

( 1)

n
e n n

n
p p

p

È ˘- - +Î ˚+

 = 
2 2

2
1 ( 1)

1

nn
e

n

p

p

È ˘- -Î ˚+
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Thus, e
x = 

2 2
1

[1 ( 1) ]
2 sin

1

n

n

n e
n x

n
p p

p

•

=

- -
+

Â

Example 17  Obtain a half-range Fourier cosine series for f (x)  = x sin in 0 < x < p, and, hence, 

show that 
2 1 1 1

...
4 1 3 3 5 5 7

p -
= - + -

◊ ◊ ◊
.

Solution Let the half-range Fourier cosine series be

 f (x) = 
0

1

cos
2

n

n

a
a nx

•

=

+ Â  (1)

Then a0 = 
0 0

2 2
( ) sinf x dx x x dx

p p

p p
=Ú Ú

 = 
0

2
[ ( cos ) ( sin )]x x x

p

p
- - -

 = [ ]2
cos 2p p

p
- =

 an = 

0

2
( ) cosf x n x dx

p

p
◊Ú

 = 

0

2
sin cosx x n x dx

p

p
◊Ú

 = [ ]
0

1
2cos sinx n x x dx

p

p
◊ ◊Ú

 = 

0

1
[sin ( 1) sin ( 1) ]x n x n x dx

p

p
+ - -Ú

 = 
2 2

0

1 cos( 1) cos( 1) sin ( 1) sin ( 1)

1 1 ( 1) ( 1)

n x n x n x n x
x

n n n n

p

p

È ˘Ê ˆÊ ˆ+ - - + -
- + - -Í ˙Á ˜Á ˜+ -Ë ¯ + -Ë ¯Í ˙Î ˚

 = 
1 cos( 1) cos( 1)

1
( 1) ( 1)

n n
n

n n

p p p p

p

È ˘+ -
- + πÍ ˙+ -Î ˚

 an = 
1 1( 1) ( 1)

( 1) ( 1)

n n

n n

+ -- -
- +

+ -

 = 1 1 1
( 1)

1 1

n

n n

- È ˘
- -Í ˙- +Î ˚

 = 
1

2

2( 1)
, 1

1

n

n
n

--
π

-
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When n = 1, we get

 a1 = 

0

2
sin cosx x x dx

p

p
Ú

 = 
0

1
sin 2x x dx

p

p
Ú

 = 
2

0

1 cos2 sin 2

2 2

x x
x

p

p

È ˘- -Ê ˆ Ê ˆ-Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 = 
1 cos2 1

2 2

p p

p

-È ˘ = -Í ˙Î ˚

Thus, x sin x = 
1 cos2 cos3 cos 4

1 cos 2 ...
2 1 3 2 4 3 5

x x x
x

Ê ˆ
- - - + -Á ˜◊ ◊ ◊Ë ¯

 (2)

Putting  x = 
2

p
 in (2), we get

 
2

p
 = 

1 1 1
1 2 ...

1 3 3 5 5 7

Ê ˆ-
- + - +Á ˜◊ ◊ ◊Ë ¯

or 
2

p
 = 

2 2 2
1

1 3 3 5 5 7
+ - + -

◊ ◊ ◊
 

 1
2

p
-  = 

1 1 1
2

1 3 3 5 5 7

È ˘
- + -Í ˙◊ ◊ ◊Î ˚

 

or  
2

4

p -
 = 

1 1 1

1 3 3 5 5 7

È ˘
- + -Í ˙◊ ◊ ◊Î ˚

  Hence, proved.

EXERCISE 9.2

 1. Find the half-range Fourier sine series for the function f (x) = x2 in 0 < x < 3.

 2. Find the half-range Fourier sine series for the function f (x) = x – x2 in 0 < x < 1.

 3. Find the half-range sine series for the function

 f (x) = 

1 1
, 0

4 2

3 1
, 1

4 2

x x

x x

ÏÊ ˆ- < <ÔÁ ˜Ë ¯Ô
Ì

Ê ˆÔ - < <Á ˜ÔË ¯Ó
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 4. Obtain a half-range cosine series for the functions

 f (x) = 

if 0
2

( ) if
2

l
k x x

l
k l x x l

Ï £ £ÔÔ
Ì
Ô - £ £
ÔÓ

  Deduce the sum of the series 
2 2 2

1 1 1
...

1 3 5
+ + +

 5. Find the half-range sine series for the functions

 f (x) = (2x – 1); 0 < x < 1.

 6. Obtain the half-range cosine and sine series for

 F (x) = x in 0 £ x £ p. 

 7. Show that the series 
1

1 1 2
sin

n

n x

n l

p

p

•

=
Â  represents 

2

l
x

Ê ˆ-Á ˜Ë ¯
 when 0 £ x £ l.

 8. Find the Fourier series of the given functions on the given intervals.

  (i) f(x) = x2; –p < x < p (ii) f(x) = 
, 0

, 0

x

x x

p p

p p

- < <Ï
Ì - £ <Ó

  (iii) f(x) = 

2

2

, 0

, 0

x x

x x

p

p

Ï - < <Ô
Ì

- £ <ÔÓ
 (iv) f(x) = 1 – |x|, –p < x < p

  (v) f(x) = 
0, 0

sin , 0

x

x x

p

p

- < <Ï
Ì < <Ó

 (vi) f(x) = cos x, –p < x < p

  (vii) f(x) = x, –p £ x £ p, f(x + 2p) = f(x) (viii) f(x) = |sin x|,  –p < x < p

  (ix) f(x) = 
1, 0

1, 0

x

x

p

p

- - < <Ï
Ì < <Ó

 (x) f(x) = 
, 0

, 0

x x

x x

p p

p p

+ - < <Ï
Ì- + < <Ó

 9. Find the Fourier series expansion of the following periodic function with period 2p.

 F(x) = 
, 0

0, 0 , ( 2 ) ( )

x x

x F x f x

p p

p p

+ - < <Ï
Ì £ < + =Ó

 10. Find the Fourier series of the function

 F(x) = x ◊ sin x, 0 < x < 2p

 11. Obtain the Fourier series of the function f(x) = x – x2 from x = –p to x = p. Prove that

 
2

2 2 2 2

1 1 1 1

121 2 3 4

p
- + - + = 

 12. Find a Fourier series expansion for the function defi ned by

 F(x) = 

1 ; 0

0 ; 0

1 ; 0

x

x

x

p

p

- - < <Ï
Ô =Ì
Ô < <Ó



9.30 Engineering Mathematics for Semesters I and II

  Hence, deduce that 
1 1 1 1

1 .
3 5 7 9 4

p
- + - + - = 

 13. Find a Fourier-series expansion for the function F(x) defi ned by

 F(x) = 

2
1 ; 0

2
1 ; 0

x
x

x
x

p
p

p
p

Ï + - £ £ÔÔ
Ì
Ô - £ £
ÔÓ

  Hence, deduce that 
2

2 2 2

1 1 1
.

81 3 5

p
+ + + = 

 14. Find a Fourier series expansion of the periodic function F(x) of period 2p, where

 F(x) = 
2

0 ; 0

; 0

x

x x

p

p

- < <ÏÔ
Ì

£ £ÔÓ

  Hence, show that 
2

2 2 2

1 1 1
1

62 3 4

p
+ + + + =  and 

2

2 2 2

1 1 1
1

122 3 4

p
- + - + = .

 15. Obtain the Fourier-series expansion of the following periodic function of period 4, 

F(x) = 4 – x2; –2 £ x £ 2. Hence, show that 
2

2 2 2

1 1 1
1 .

122 3 4

p
- + - + = 

 16. Obtain the Fourier-series for the function F(x) = |x|, –p < x < p. Hence, show that 
2

2 2 2

1 1 1
.

81 3 5

p
+ + + = 

 17. Obtain the Fourier-series for the function

 F(x) = x cos x, –p < x < p

 18. Obtain the Fourier-series expansion of the periodic function

 F(x) = ex, –p < x < p, f(x + 2p) = f(x)

 19. Find the Fourier cosine and sine series of the function F(x) = 1, 0 £ x £ 2.

 20. Obtain the Fourier cosine series of the function

 F(x) = 
2; 0 2

4 ; 2 4

x x

x

Ï £ £Ô
Ì

£ £ÔÓ

 21. Express F(x) = x as a half-range sine series is 0 < x < 2.

 22. Obtain the Fourier cosine-series expansion of the periodic function defi ned by

 F(x) = sin 
x

l

pÊ ˆ
Á ˜Ë ¯

, 0 < x < l.

 23. Obtain the half-range sine series for F(x) = ex is (0, 1).

 24. Find the Fourier sine series and the Fourier cosine series corresponding to the function

f(x) = (p – x) is 0 < x < p.
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 25. Obtain the Fourier half-range sine and cosine series for the function f(x) = K in 0 < x < 2.

 26. Find the half-period sine series for the f(x) given in the range (0, l) by the graph ABC as shown 

in Fig. 9.3.

Fig. 9.3

Answers

 1. 2 1

3 3
1

18 36
( 1) [( 1) 1] sin

3

n n

n

n x
x

n n

p

p p

•
+

=

È ˘ Ê ˆ= - + - - ◊Í ˙ Á ˜Ë ¯Î ˚
Â

 2. 2

3 3 3

8 1 1
( ) sin sin3 sin 5 ...

3 5
x x t t tp p p

p

È ˘- = + + +Í ˙Î ˚

 3. f (x) = 

1 1
, 0

4 2

3 1
, 1

4 2

x x

x x

ÏÊ ˆ- < <ÔÁ ˜Ë ¯Ô
Ì

Ê ˆÔ - < <Á ˜ÔË ¯Ó

         f (x) = 
2 2 2

1 4 1 4
sin sin3

3 3
x xp p

p pp p

Ê ˆÊ ˆ
- + -Á ˜ Á ˜Ë ¯ Ë ¯ 2 2

1 4
sin 5 ...

5 5
xp

p p

Ê ˆ
+ - +Á ˜Ë ¯

 4. f (x) = 2 2 2

8 1 2 1 6
cos cos ...

4 2 6

k l k l x x

l l

p p

p

È ˘- ◊ + +Í ˙Î ˚

    and 
2

2 2 2

1 1 1
...

81 3 5

p
+ + + =

 5. f (x)  = 
2 1 1

sin 2 sin 4 sin6 ...
2 3

x x xp p p
p

È ˘- + + +Í ˙Î ˚
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 6. f (x) = 
2 2

4 cos3 cos5
cos ...

2 3 5

x x
x

p

p

Ê ˆ- + + +Á ˜Ë ¯
 and 

         f (x) = 
sin 2 sin3

2 sin ...
2 3

x x
x

Ê ˆ- + -Á ˜Ë ¯

 19. Fc{f(x)} = 1, Fs{f(x)} = 
4 1 3 1 5

sin sin sin
2 3 2 5 2

x x xp p p

p

È ˘Ê ˆ Ê ˆ Ê ˆ+ + +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚
 

 20. F(x) = 
2 2

1

8 32 1 2
cos sin cos

3 2 2 4n

n n n x

nn

p p p

pp

•

=

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ+ - ◊Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Î ˚
Â

 21. F(x) = 
4 1 2 1 3

sin sin sin
2 2 2 3 2

x x xp p p

p

È ˘- + +Í ˙Î ˚
 

 22. F(x) = 
2 4 1 2 1 4 1 6

cos cos cos
3 15 35

x x x

l l l

p p p

p p

È ˘- + + +Í ˙Î ˚
 .

 23. F(x) = 
2 2 2

1 2(1 ) 3(1 )
2 sin sin 2 sin 3

1 1 4 1 9

e e e
x x xp p p p

p p p

È ˘+ - +
+ + +Í ˙

+ + +Í ˙Î ˚
 

 24. f(x) = 
1

sin
2

n

x

x

p
•

=
Â , F(x) = 

2
1

4 cos (2 1)

2 (2 1)n

n x

n

p

p

•

=

-
+

-
Â

  25. f(x) = 

3 5
sin sin sin

4 2 2 2

1 3 5

x x x

K

p p p

p

È ˘Ê ˆ Ê ˆ Ê ˆ
Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙+ + +
Í ˙
Í ˙
Î ˚

 , f(x) = K

 26. F(x) = 
2

2 2
1

sin
2

sin
( ) n

n a

dl n xl

la l a n

p

p

p

•

=

Ê ˆ
Á ˜Ë ¯

◊
-

Â

9.10  MORE ON FOURIER SERIES

(i)  Trigonometric Series

Trigonometric series is a functional series of the form

 0

2

a
 + (a1 cos x + b1 sin x) + (a2 cos 2x + a2 sin 2x) + …

or 0

1

( cos sin )
2

n n

n

a
a nx b nx

•

=

+ +Â
where a0, an, and bn are the called the coeffi cients.
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(ii) Convergence of Fourier Series

Here we shall discuss the conditions under which Fourier-series 

expansion is possible and also fi nd the function to which the series 

converges.

Consider f(x) to be a piecewise continuous function on [–a, a]

 (a) The function f(x) is defi ned and continuous for all x in (–a, 

a) except, may be, at a fi nite number of points in (–a, a).

 (b) At any point, say x0 Œ(–a, a), where the function f(x) is 

not continuous, both the right-hand limit and left hand 

limit, i.e., RHL = 
0

lim ( )
x x

f x
+Æ

 and LHL = 
0

lim ( )
x x

f x
-Æ

 exist 

and are fi nite.

  If both f(x) and f¢(x) are piecewise continuous then the function f(x) is also called piecewise 

smooth.

(iii) Parseval’s Theorem and Identities

If the Fourier series of the function f(x) over an interval c < x < c + 2l is given as

 f(x) = 0

1

cos sin
2

a n

n

a n x n x
a b

l l

p p
•

=

Ê ˆ+ +Á ˜Ë ¯Â  then 

2 2
2 2 20

1

1 1
[ ( )] ( )

2 2 2

c l

n n

nc

a
f x dx a b

l

+ •

=

= + +ÂÚ

Proof The Fourier-series expansion of f(x) in c < x < c + 2l is given as

 f(x) = 0

1

cos sin
2

n n

n

a n x n x
a b

l l

p p
•

=

Ê ˆ+ +Á ˜Ë ¯Â  (7)

where a0 = 
2

1
( )

c l

c

f x dx
l

+

Ú

 an = 

2
1

( ) cos

c l

c

n x
f x dx

l l

p
+

◊Ú

and bn = 
2

1
( ) sin

c l

c

n x
f x dx

l l

p
+

◊Ú

Now, multiplying Eq. (7) on both sides by f(x), we have 

 [f(x)]2 = 0

1 1

( ) ( )cos ( )sin
2

n n

n n

a n x n x
f x a f x b f x

l l

p p
• •

= =

+ +Â Â   (8)

Integrating (8) on both sides w.r.t. ‘x’ from c to c + 2l, we get

 

2
2[ ( )]

c l

c

f x dx

+

Ú  = 

2 2 2
0

1 1

( ) ( )cos ( )sin
2

c l c l c l

n n

n nc c c

a n x n x
f x dx a f x dx b f x dx

l l

p p
+ + +• •

= =

¥ + +Â ÂÚ Ú Ú

Fig. 9.4 Typical piecewise 

   function
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 = 0
0

1 1

( ) ( )
2

n n n n

n n

a
la a la b lb

• •

= =

◊ + +Â Â  

 = 

2
2 20

1

( )
2

n n

n

la
l a b

•

=

+ +Â

\ 

2
21

[ ( )]
2

c l

c

f x dx
l

+

Ú  = 

2
2 20

1

1
( )

2 2
n n

n

la
l a b

l

•

=

È ˘
+ +Í ˙

Í ˙Î ˚
Â

or 

2
21

[ ( )]
2

c l

c

f x dx
l

+

Ú  = 

2
2 20

1

1
( )

4 2
n n

n

a
a b

•

=

+ +Â  Hence, proved.

(iv) Parseval’s Identities for Different Intervals

 (a) If f(x) is an even function in (–l, l) then

 
2

0

2
[ ( )]

l

f x dx
l Ú  = 

2
20

12
n

n

a
a

•

=

+ Â

 (b) If f(x) is an odd function in (–l, l) then

 
2

0

2
[ ( )]

l

f x dx
l Ú  = 2

1

n

n

b
•

=
Â

 (c) If f(x) = 0

1

cos
2

n

a n x
a

l

p
•

+ Â  in (0, l) then

 
2

0

2
[ ( )]

l

f x dx
l Ú  = 

2
20

12
n

a
a

•

+ Â

 (d) If f(x) = 

1

sinn

n x
b

l

p
•

Â  in (0, l) then 

 
2

0

2
[ ( )]

l

f x dx
l Ú  = 

2

1

n

n

b
•

=
Â

Example 18  Find Fourier-series expansion of x2 in (–p, p). Use Parseval’s identity to prove that

 
4 4

1 1
1

2 3
+ + +  = 

2

90

p

Solution Given f(x) = x2 and range = (–p, p) then the Fourier series of f(x) = x2 in (–p,p) is

 x
2 = 

2

2
1

4( 1)
cos

3

n

n

nx
n

p
•

=

-
+ Â   (1)
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Here,  a0 = 
2

2

2 4( 1)
, , 0

3

x

n na b
n

p -
= =

By Parseval’s identity,

 2 2( )x dx

p

p-
Ú  = 

4

4
1

1 16
2

9 2 n

p
p

•È ˘
+Í ˙

Í ˙Î ˚
Â

 
5

5

x
p

p-

Ê ˆ
Á ˜
Ë ¯

 = 

5

4
1

2 16

9 n n

p
p

•

=

+ Â

or 
5 52 2

5 9

p p
-  = 

4
1

16

n n
p

•

=
Â

or 
4 4 4

1 1 1
1

2 3 4
+ + + +  = 

2

90

p
 Hence, proved.

(v) Complex Form of Fourier Series

The Fourier series of a periodic function f(x) of period 2l, is

 f(x) = 0

1 1

cos sin
2

n n

n n

a n x n x
a b

l l

p p
• •

= =

+ +Â Â   (9)

 = 0

1 12 2 2

in x in x in x in x

l l l l

n n

n n

a e e e e
a b

i

p p p p- -
• •

= =

Ê ˆ Ê ˆ
+ -Á ˜ Á ˜+ +Á ˜ Á ˜

Á ˜ Á ˜Ë ¯ Ë ¯
Â Â

 cos and sin
2 2

i i i i
e e e e

i

q q q q

q q

- -È ˘+ -
= =Í ˙

Í ˙Î ˚
∵

 = 0

12 2 2

in x in x

n n nl l

n

a a ibn a ib
e e

p p• -

=

È ˘- +Ê ˆ Ê ˆ
Í ˙+ +Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

Â

 = 
0

1

in x in x

l l
n n

n

C C e C e

p p• -

-
=

È ˘
Í ˙+ +
Í ˙Î ˚

Â   (10)

Now, Cn = 
1

( )cos ( ) sin
2

l l

l l

n x n x
f x dx i f x dx

l l l

p p

- -

È ˘
- ◊Í ˙

Í ˙Î ˚
Ú Ú

 = 
1 1

( ) cos sin ( )
2 2

in xl l

l

l l

n x n x
f x i dx f x e dx

l l l l

p
p p -

- -

Ê ˆ- =Á ˜Ë ¯Ú Ú
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and C–n = 
1

( ) cos sin
2

l

l

n x n x
f x i dx

l l l

p p

-

Ê ˆ+Á ˜Ë ¯Ú

 = 
1

( )
2

in xl

l

l

f x e dx
l

p

-
Ú

Combining these, we have Cn = 
1

( )
2

in xl

l

l

f x e dx
l

p
-

-
Ú  (11)

where n = 0, ±1, ±2, …

Then, the Eq. (10), can be written as

 f(x) = 
in n

l
n

n

C e

p•

=-•
Â

which is called complex form of Fourier series and its coeffi cients are given by Eq. (11).

Example 19  Find the complex form of the Fourier series of the function f(x) = e–ax in –1 £ x £ 1.

Solution We know that

 f(x) = in x
n

n

C e
p

•

=-•
Â   (∵   l = 1)

where  Cn = 

1

1

1

2

ax in x
e e dx

p- -

-
Ú

 = 

11 ( )
(

1 1

1 1

2 2 ( )

a in x
a in x e

e dx
a in

p
p

p

- +
- + )

- -

È ˘
= Í ˙

- +Í ˙Î ˚
Ú

 = 
( ) ( )1

2 ( )

a in a in
e e

a in

p p

p

+ - +È ˘-
Í ˙

+Í ˙Î ˚

 = 
(cos sin ) (cos sin )

2( )

a a
e n i n e n i n

a in

p p p p

p

-+ - -
+

 = 2 2 2 2 2 2

( 1) ( ) sinh
( 1)

2 ( )

a a n
ne e a in a in a

a n a n

p p

p p

-Ê ˆ- - - - ◊
◊ - ◊ =Á ˜ + +Ë ¯

Hence,  e
–ax = 

2 2 2

( 1) ( )sinh

( )

n
in xa in a

e
a x

pp

p

•

-•

- -
+

Â
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9.11  SPECIAL WAVEFORMS

Some special waveforms are described here.

(i) Sawtoothed Waveform

The function f(x) in the interval (–p, p), with period 2p representing the discontinuous function is called 

a sawtoothed waveform showing in Fig. 9.5.

Fig. 9.5

(ii) Modifi ed Sawtoothed Waveform

A function f(x) is defi ned in the interval (–p, p) and is defi ned in the period 2p.

 f(x) = 0; –p < x £ 0

 = x; 0 £ x < p

Fig 9.6

Its Fourier-series expansion is

 f(x) = 
2 2 2 2

2 cos3 cos5 cos7
cos

4 3 5 7

a a x x x
x

p

È ˘- + + + +Í ˙Î ˚
  

sin 2 sin3
sin

2 3

a x x
x

p

È ˘+ - + -Í ˙Î ˚
 

(iii) Half-wave Rectifi er

The half-wave rectifi er is defi ned in the period 2p and is given as

 f(x) = i = 
0 sin ; 0

0; 2

I x x

x

p

p p

£ £Ï
Ì £ £Ó

where I0 is the maximum current.
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Fig. 9.7

Its Fourier-series expansion is

 i = 0 0 0

2
1

sin 2 cos2

2 (4 1)n

I I x I nx

np p

•

=

+ -
-

Â

(iv) Full-wave Rectifi er

The full-wave rectifi er is an extension of the function f(x) = a sin x; 0 £ x £ p. See Fig. 9.8.

Fig. 9.8

Its Fourier-series expansion is

 f(x) = 
4 1 1 1 1

cos2 cos 4 cos6
2 1.3 3.5 5.7

a
x x x

p

È ˘- - - -Í ˙Î ˚
 

(v) Triangular Waveform

The triangular waveform is an extension of the function

 f(x) = 

2
1 ; 0

2
1 ; 0

x
x

x
x

p
p

p
p

Ï + - £ £ÔÔ
Ì
Ô - £ £
ÔÓ

Its Fourier-series expansion is

 f(x) = 
2 2 2 2

8 cos cos3 cos5

1 3 5

x x x

p

È ˘+ + +Í ˙Î ˚
 

Fig. 9.9
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(vi) Square Wave

The periodic function f(x), with period f(x + 2p) = f(x) is given by

 f(x) = –k; –p < x < 0

 = k; 0 < x < p

Fig. 9.10

Its Fourier series is

 f(x) = 
4 sin3 sin 5 sin 7

sin
3 5 7

k x x x
x

p

È ˘+ + + +Í ˙Î ˚
 

9.12  HARMONIC ANALYSIS AND ITS APPLICATIONS

Harmonic analysis is a branch of mathematics concerned with the representation of functions or signals 

as the superposition of basic waves. It has become a vast subject with applications in areas as diverse 

as signal processing, quantum mechanics and neuroscience.

Harmonic analysis is the theory of expanding a given function f(x) in the range (–p, p) or (0, 2p) 

with period 2p is given by

 f(x) = 0

1

[ cos sin ]
2

n n

n

a
a nx b nx

•

=

+ +Â   (12)

where the Fourier coeffi cients a0, an and bn are given by

 

2

0

0

2

0

2

0

1
( )

1
( )cos

1
( )sin

n

n

a f x dx

a f x nx dx

b f x nx dx

p

p

p

p

p

p

¸
= Ô

Ô
Ô
Ô= ˝
Ô
Ô
Ô= Ô
˛

Ú

Ú

Ú

  (13)

when the function has been defi ned by an explicit function of an independent variable. When the 

function the f(x) is not given in analytical form, i.e., given by a graph or by a table of corresponding 

values, in such cases, the integral in (13) cannot be evaluated and instead the following alternative 

forms of (13) are employed.
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Then Eq. (13) gives

 a0 = 
2

0

1
( )f x dx

p

p
Ú

 = 
1

2 ( )
(2 0)

f x dx

p

p
p

-

◊
- Ú  

1
Mean ( )

b

a

f x dx
b a

È ˘
=Í ˙

-Í ˙Î ˚
Ú∵

\ a0 = 2·[mean value of f(x) in (–p, p)  or  (0, 2p)]

 an = 
2

0

1
( )cosf x nx dx

p

p
Ú  = 

2

0

1
2 ( )cos

(2 0)
f x nx dx

p

p
◊

- Ú
 = 2[mean value of f(x) cos nx in (–p, p) or  (0, 2p)]

The term (a1 cos x + b1 sin x) in the Fourier series (12) is called the fundamental or fi rst harmonic, 

and the term (a2 cos 2x + b2 sin 2x) in (1) is called the second harmonic, and so on.

Example 20  Determine the fi rst three coeffi cients in the Fourier cosine series for f(x), where f(x) 

is given in the following table:

x 0 1 2 3 4 5

y(x) 4 8 15 7 6 2

Solution Let the Fourier cosine series in the range (0, 2p) be

 f(x) = 0
1 2 3cos cos2 cos3

2

a
a a aq q q+ + + +   (1)

Taking the interval as 60º, we have

q = 0º 60º 120º 180º 240º 300º

x = 0 1 2 3 4 5

f(x) = 4 8 15 7 6 2

qº cos q cos 2q cos 3q f (x) f (x) cos q f (x) cos 2q f (x) cos 3q

0 1 1 1 4 4 4 4

60
1

2

1

2
- –1 8 4 –4 –8

120
1

2
- 1

2
- 1 15

15

2
-

15

2
- 15

180 –1 1 –1 7 –7 7 –7

240
1

2
-

1

2
- 1 6 –3 –3 6

300
1

2

1

2
- –1 2 1 –1 –2

Â= 42 –8.5 –4.5 8
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 a0 = 2 · 
42

(Mean of ( )) = 2 14
6

f x ¥ =

 

1

2

3

8.5
2 (Mean of ( )cos ) 2 2.8

6

4.5
2 (Mean of ( )cos 2 ) 2 1.5

6

8
2 (Mean of ( )cos 3 ) 2 2.7

6

a f x

a f x

a f x

q

q

q

¸= ◊ = + ¥ - = - Ô
Ô
Ô= ◊ = ¥ - = - ˝
Ô
Ô

= ◊ = ¥ = Ǫ̂

Using the values in the above table, we have

 a0 = 2[Mean of y in (0, 2p)] = 
8.700

2 2.9
6

Ê ˆ =Á ˜Ë ¯

 a1 = 2[Mean of y  cos x in (0, 2p)] = 
1.100

2 0.37
6

Ê ˆ- = -Á ˜Ë ¯

 a2 = 2[Mean of y cos 2x in (0, 2p)] = 
0.300

2 0.10
6

Ê ˆ- = -Á ˜Ë ¯

 a3 = 2[Mean of y cos 3x in (0, 2p)] = 
0.100

2 0.03
6

Ê ˆ =Á ˜Ë ¯

 b1 = 2[Mean of y sin x in (0, 2p)] = 
3.117

2 1.04
6

Ê ˆ =Á ˜Ë ¯

 b2 = 2[Mean of y sin 2x in (0, 2p)] = 
0.173

2 0.06
6

Ê ˆ- = -Á ˜Ë ¯

 b3 = 2[Mean of y sin 3x in (0, 2p)] = 
0

2 0
6

Ê ˆ =Á ˜Ë ¯

\   
2.9

2
y =  + (–0.37 cos x + 1.04 sin x) + (–0.10 cos 2x – 0.06 sin 2x) + (0.03 cos 3x + 0 sin 3x)

 = 1.45 + (–0.37 cos x + 1.04 sin x) + (–0.10 cos 2x – 0.06 sin 2x) + (0.03 cos 3x)

Example 21  Analyze harmonically the data given below and express y = f(x) in Fourier series up 

to the third harmonic.

x: 0 p/3 2p/3 p 4p/3 5p/3 2p

y: 1.0 1.4 1.9 1.7 1.5 1.2 1.0

Solution Since the last value of y is a repetition of the fi rst, only the six values will be used and the 

period of the given interval (0, 2p) is 2p.

Consider the Fourier series as

 f(x) = 0

2

a
 + (a1 cos x + b1 sin x) + (a2 cos 2x + b2 sin 2x) + (a3 cos 3x + b3 sin 3x)  (1)
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The desired values are tabulated as follows:

x y cos x cos 2x cos 3x sin x sin 2x sin 3x y cos x y cos 2x y cos 3x y sin x y sin 2x y sin 3x

0 1.0 1 1 1 0 0 0 1 1 1 0 0 0

3

p
1.4 0.5 –0.5 –1 0.866 0.866 0 0.700 –0.700 –1.4 1.212 1.212 0

2

3

p
1.9 –0.5 –0.5 1 0.866 –0.866 0 –0.950 –0.950 1.9 +1.645 –1.645 0

p 1.7 –1 1 –1 0 0 0 –1.7 1.7 –1.7 0 0 0

4

3

p
1.5 –0.5 –0.5 1 0.866 0.866 0 –0.750 –0.750 1.5 1.299 1.299 0

5

3

p
1.2 0.5 –0.5 –1 –0.866 –0.866 0 0.600 –0.600 –1.2 –1.039 –1.039 0

Sy = 

8.7

Sy cos x 

= –1.100

Sy cos 

2x = 

–0.300

Sy cos 

3x = 

0.100

Sy sin x 

= 3.117

Sy sin 2x 

= –0.173

Sy sin 

= 0

SUMMARY
1. Periodic Function 

A function f (x) is said to be periodic if f (x + T) = f (x) for all x and T is the smallest positive number for 

which this relation holds. Then T is called the period of f (x).

If T is the period of f (x) then f (x) = f (x + T)  = f (x + 2 T) = f (x + 3 T ) =  … f (x + n T)

Also,  f (x) = f (x – T) = f (x – 2 T) = f (x – 3 T ) =  … f (x – n T)

\ f (x) = f (x ± n T), when n is a positive integer.

Thus, f (x) repeats itself after periods of T.

2. Fourier Series 

Fourier series is an infi nite series which is represented in terms of the trigonometric sine and cosine 

functions of the form

 f (x) = 0

2

a
 + a1 cos x + b1 sin x + a2 cos x + b2 sin 2 x + a3 cos x + b3 sin 3 x + …

or f(x) = [ ]0

1

cos sin ,
2

nn
n

a
a n x b n x

•

=

+ +Â
where the constants a0, an, and bn are called Fourier coeffi cients.

3. Euler’s Formulae

Let f (x) be a periodic function with period 2p defi ned in the interval (a, a + 2 p) of the form

 f (x) = 
0

1

cos sin
2

n n

n

a
a n x b n x

•

=

+ +È ˘Î ˚Â
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where the constants a0, an, bn are called the coeffi cients, where

 a0 = 

2
1

( )f x dx

a p

a
p

+

Ú

 an = 

2
1

( ) cosf x n x dx

a p

a
p

+

◊Ú  and 

2
1

( )sinnb f x n x dx

a p

a
p

+

= Ú
The above formulae are known as Euler formulae.

4. Fourier Series for Discontinuous Functions

Let f (x) be defi ned by f (x) = f1 (x) ;     a < x < xo.

                              = f2 (x);    x0 < x < a + 2 p.

where x0 is the point of fi nite discontinuity in the interval (a, a + 2p).

The values of a0, an, and bn are given by

 a0 = 

0

0

2

1 2

1
( ) ( )

x

x

f x dx f x dx

a p

a
p

+È ˘
Í ˙+Í ˙
Í ˙Î ˚
Ú Ú

 an = 

0

0

2

1 2

1
( ) cos ( )cos

x

x

f x n x dx f x n x dx

a p

a
p

+È ˘
Í ˙+
Í ˙
Î ˚
Ú Ú

 bn = 

0

0

2

1 2

1
( )sin ( ) sin

x

x

f x n x dx f x n x dx

a p

a
p

+È ˘
Í ˙+ ◊
Í ˙
Î ˚
Ú Ú

At x = x0, there is a fi nite jump in the graph of the function. Both the limits f(x0 – 0) and f(x0 + 0) exist but 

are unequal. The sum of the Fourier series  = 0 0

1
( 0) ( 0)

2
f x f x- + +È ˘Î ˚ .

5. Even and Odd Functions

A function f(x) is said to be even, if 

 f(–x) = f(x) for all x.  For example, x4, cos x, sec x are even functions.

A function f(x) is said to be odd if 

 f(–x) = –f(x)  for all x. For example, x, x3, sin x, tan x are odd functions.

6. Fourier Series for Even and Odd Functions

Case I Consider f(x) is an even function in (–p, p). Then all bn’s will be zero. Thus, the Fourier series 

of an even function contains only cosine terms and is known as Fourier cosine series given by 

 f(x) = 0

1

cos
2

n

n

a
a nx

•

=

+ Â

where  a0 = 

0

1 2
( ) ( ) andf x dx f x dx

p p

p
p p

-

=Ú Ú  

0

1 2
( ) cos ( ) cosna f x nx dx f x nx dx

p p

p
p p

-

= =Ú Ú
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Case II Consider f(x) is an odd function in (–p, p). Then all an’s will be zero. Also, a0 is zero since f(x) 

is an odd. Thus, the Fourier series of an odd function contains only sine terms and is known as Fourier 

sine series given by

 f(x) = 

1

sinn

n

b nx

•

=
Â

where   bn = 

0

1 2
( ) sin ( ) sinf x nx dx f x nx dx

p p

p
p p

-

=Ú Ú

7. Fourier Cosine Series 

The Fourier cosine series expansion of f (x) on the half-range interval [0, l ] is given by.

 f (x) = 0

1

cos
2

n

n

a n x
a

l

p
•

=

Ê ˆ
+ Á ˜Ë ¯Â

where a0 = 

0

2
( )

l

f x dx
l Ú  and 

0

2
( ) cos

l

n

n x
a f x dx

l l

pÊ ˆ
= ◊ Á ˜Ë ¯Ú

8. Fourier Sine Series 

The Fourier sine series expansion of f (x) on the half-range interval [0, l] is given by

 f (x) = 
1

sinn

n

n x
b

l

p
•

=

Ê ˆ
Á ˜Ë ¯Â

where  bn = 

0

2
( ) sin

l
n x

f x dx
l l

pÊ ˆ
◊ Á ˜Ë ¯Ú

OBJECTIVE-TYPE QUESTIONS

 1. e
x is periodic, with a period of

 (a) 2p (b) 2pi

 (c) p (d) pi

 [GATE (CE) 1997]

 2. The function f(x) = ex is

 (a) even

 (b) odd

 (c) neither even nor odd

 (d) none of the above [GATE (CE) 1999]

 3. The trigonometric Fourier series of an even 

function of time does not have a 

 (a) dc terms

 (b) cosine terms

 (c) sine terms

 (d) odd harmonic terms

 [GATE (CE) 1996, 1998]

 4. The Fourier series expansion of a symmetric 

and even function f(x), where

2
( ) 1 ; 0

x
f x xp

p
= + - < <

        
2

1 ; 0
x

x p
p

= - < <

  will be

 (a) 
2 2

1

4
(1 cos )n

x
p

p

•
+Â
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 (b) 
2 2

1

4
(1 cos )n

n
p

p

•
-Â

 (c) 
2 2

1

4
(1 sin )n

n
p

p

•
+Â

 (d) 
2 2

1

4
(1 sin )n

n
p

p

•
-Â

 [GATE (CE) 2003]

 5. The Fourier series of a odd periodic function 

contains only

 (a) odd harmonic (b) even harmonic

 (c) cosine terms (d) sine terms

 [GATE (EC) 1994]

 6. A discontinuous real function can be 

expressed as

 (a) Taylor’s and Fourier series

 (b) Taylor’s series and not by Fourier series

 (c) neither by Taylor’s nor by Fourier series

 (d) not by Taylor’s, but by Fourier series

 [GATE (CE) 1998]

 7. The Fourier series of a real periodic function 

has only

  P: cosine terms if it is even

  Q: sine terms if it is even

  R: cosine terms if it is odd

  S: sine terms if it is odd

  Which of the above statements are true?

 (a) P and S (b) P and R

 (c) Q and S (d) Q and R

 [GATE (EC) 2009]

 8. The Fourier coeffi cient a0 of a function f(x) in 

the interval (0, 2p) is:

 (a) 
1

( )f x dx

p

p
p

-
Ú

 (b) 

2

0

1
( )f x dx

p

p
Ú

 (c) 

2
1

( )sinf x nx dx

p

p
p

-
Ú

 (d) 

2

0

( )cosf x nx dx

p

Ú

 9. The Fourier coeffi cient an of a function f(x) in 

the interval (0, 2p) is

 (a) 
1

( )cosf x nx dx

p

p
p

-
Ú

 (b) 

2

0

1
( )cosf x nx dx

p

p
Ú

 (c) 

2

0

1
( )sinf x nx dx

p

p
Ú

 (d) 
1

( )f x dx

p

p
p

-
Ú

 10. The half-range sine series for the function 

f(x) in (0, p) is

 (a) 

0

1
( )sinf x nx dx

p

p
Ú

 (b) 

0

2
( )f x dx

p

p
Ú

 (c) 

0

2
( )sinf x nx dx

p

p
Ú

 (d) 

0

2
( )cosf x nx dx

p

p
Ú

 11. The Fourier coeffi cient a0 is equal to for the 

function 
; 0

( )
; 0

x
f x

x x

p p

p

- - < <Ï
= Ì < <Ó

 (a) p/2 (b) –p/2

 (c) p (d) p/3

 12. Value of the Fourier coeffi cient a0 of the 

function f(x) = x in (0, 2p) is

 (a) –2p (b) 2p

 (c) p (d) p/2

 13. For the function f(x) = x2 in (0, 2p), the value 

of the Fourier coeffi cient bn is

 (a) 
4

n

p-
 (b) 

4

n

p

 (c) 
n

p
 (d) 

2

n

p
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ANSWERS

 1. (a) 2. (b) 3. (c) 4. (b) 5. (d) 6. (d) 7. (a) 8. (b) 9. (b) 10. (c)

 11. (b) 12. (b) 13. (a) 14. (a)

 14. For the function 
0; 0

( )
; 0

x
f x

x x

p

p

- < <Ï
= Ì < <Ó

the value of the Fourier coeffi cient a0 is

 (a) p/2 (b) –p/2

 (c) p (d) 2p/3



10.1  INTRODUCTION

Many practical problems in science and engineering are formulated by fi nding how one quantity is 

related to, or depends upon, one or more quantities defi ned in the problem. Often, it is easier to model a 

relation between the rates of changes in the variables rather than between the variables themselves.

The study of this relationship gives rise to differential equations. Derivatives can always be 

interpreted as rates. 

In this chapter, we consider the simplest of these differential equations which is of the fi rst order and 

fi rst degree. We study the solutions of differential equations which are variable-separable, homogeneous, 

non-homogeneous, exact, non-exact using the integrating factor, linear and Bernoulli’s equations.

10.2  BASIC DEFINITIONS

A differential equation is an equation which contains the derivatives of dependent variables with respect 

to independent variables.

Differential equations are classifi ed into two categories, ordinary and partial, depending on the 

number of independent variables contained in the equation.

(i) Ordinary Differential Equation (ODE)

The ODE is an equation, which contains the derivatives of a dependent variable w.r.t. only one 

independent variable. 

Example: 2 xdy
y e

dx
+ =

(ii) Partial Differential Equation (PDE)

A PDE is an equation which contains the derivatives of a dependent variable w.r.t. two or more 

independent variables.

Example: 
∂ ∂

+ =
∂ ∂

4;
z z

x y
 here, the dependent variable z depends on two independent variables, x and y. 

(iii) Order of a Differential Equation

The order of a differential equation is the order of the highest derivatives appearing in the equation.

Ordinary Differential 

Equations: First Order 

and First Degree10
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Example: 
2

2
0

d y
y

dx
+ = ; here, the highest derivative is 

2

2

d y

dx
, so the order is 2.

(iv) Degree of a Differential Equation

The degree of a differential equation is the power of the highest order derivative appearing in the 

equation, when the equation is made free from radical signs and fractions.

Example: 

22

2
0

d y dy
y

dxdx

Ê ˆ+ + =Á ˜Ë ¯
; here, the degree is 1.

(v) Solution, or Integral, or Primitive

The solution or integral, or primitive, of a differential equation is any function which satisfi es the 

equation, i.e., reduces it to an identity.

A differential equation may have a unique solution or many solutions or no solution.

In explicit functions, the dependent variable can be expressed explicitly in terms of the independent 

variable, say y = f(x). Otherwise, the solution is said to be an implicit solution where f(x, y) = 0, where 

f(x, y) is an implicit function.

The general (or complete) solution of an n
th order differential equation will have n arbitrary 

constants.

(vi) Particular Solution

The particular solution is a solution obtained from the general solution by choosing particular values of 

an arbitrary constant. Integral curves of differential equations are the graphs of the general or particular 

solutions of differential equations.

(vii) Initial (Boundary) Value Problem

The initial (boundary) value problem is one in which a solution to a differential equation is obtained 

subject to conditions on the unknown function and its derivative specifi ed at one, two, or more values 

of the independent variable.

Such conditions are called initial (boundary) conditions.

The general (or complete) integral of a differential equation is an implicit function f(x, y, c) = 0.

(viii) Particular Integral

Particular integral is one obtained from the general integral for a particular value of the constant c.

Singular solutions of a differential equation are (unusual or odd) solutions of a differential equation, 

which cannot be obtained from the general solution.

10.3  FORMATION OF AN ORDINARY DIFFERENTIAL EQUATION

Consider y and x as the dependent and the independent variables respectively.

The equation: f(x, y, c) = 0 (1)

where c is an arbitrary constant.

Equation (1) represents a family of curves.

For example, the equation x2 + y2 = r2 where r is arbitrary, represents a circle with center at the 

origin and radius r.
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Let g(x, y, c, d) = 0 (2)

Equation (2) containing two arbitrary constants c and d also represents a family of curves. We often 

say that it represents a two-parameter family of curves. For example, the equation y = mx + k, where 

m and k are arbitrary constants, represents a two-parameter family of straight lines having the slope m 

and passing through the point (0, k).

To eliminate the arbitrary constant c in Eq. (1), we need two equations. One equation is given by (1) 

itself and the second equation is obtained by differentiating Eq. (1) w.r.t. x. On eliminating c from the 

two equations, we obtain an equation containing x, y, and ,
dy

dx
 which is a fi rst-order ODE.

For example, consider y = cx
2. Differentiating, we get 

dy

dx
 = 2cx; eliminating c, we get

 
dy

dx
 = 

2
2 2

y y
x

xx

Ê ˆ =Á ˜Ë ¯

or 2
dy

x y
dx

-  = 0; x π 0

Hence, y = cx
2 satisfi ed the differential equation 2 0

dy
x y

dx
- =

Similarly, to eliminate the arbitrary constants c and d in Eq. (2), we need three equations. One 

equation is given by Eq. (2) and the remaining two equations are obtained by differentiating Eq. (2) 

w.r.t. x two times. On eliminating c and d from these equations, we obtain a second-order ODE.

10.4   FIRST-ORDER AND FIRST-DEGREE DIFFERENTIAL 
EQUATIONS

A fi rst-order and fi rst-degree ODE is given by

 
dy

dx
 = f(x, y) (3)

Equation (3) has certain standard types of fi rst-order fi rst-degree differential equations for which 

solutions can be readily obtained by standard  methods such as

 (i) Variable-separable

 (ii) Homogeneous differential equation

 (iii) Non-homogeneous differential equation reducible to homogeneous equation

 (iv) Linear fi rst-order differential equation (Leibnitz’s equation)

 (v) Bernoulli’s differential equation

 (vi) Exact differential equation

 (vii) Non-exact differential equations that can be made exact with the help of integrating factors

10.4.1  Variable-Separable

Consider an equation of the form

 f1(x) g1(y)dx + f2(x) g2(y)dy = 0 (4)
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Step 1 

The variables x and y can be separated into the form of

 
1 1

2 2

( ) ( )

( ) ( )

f x g y
dx dy

f x g y
+  = 0

or R(x)dx + S(y)dy = 0 (5)

where 1

2

( )
( )

( )

f x
R x

f x
=  is a function of x only and 

1

2

( )
( )

( )

g y
S y

g y
=  is a function of y only.

Step 2

Integrating (5) both sides, we get

 ( ) ( )R x dx S y dx+Ú Ú  = c

where c is an arbitrary constant. The arbitrary constant can be chosen in any form suitable for the 

answer, i.e., we can replace it by sin c, cos c, tan–1
c, ec, or log c, etc.

Example 1  Solve - -= +2 3 .x y ydy
e x e

dx

Solution The given equation can be written into the form of 2 3( )x ydy
e x e

dx

-= +

Separating the variables, we get

 e
y
 dy = 2 3( )x

e x dx+
Integrating both sides, we get

 y
e dyÚ  = 2 3( )x

e x dx c+ +Ú

 e
y = 

4
21

2 4

x x
e c+ +

Example 2  Solve (1 + x2)dy = (1 + y2)dx.

Solution The given equation is (1 + x2)dy = (1 + y2) dx

Separating the variables,

 
2

1

1
dy

y+
 = 

2

1

1
dx

x+
Integrating both sides, we get

 2

1

1
dy

y+Ú  = 
1

2

1
tan

1
dx c

x

-+
+Ú

or  tan–1
y – tan–1

x = tan–1
c

 1tan
1

y x

yx

- Ê ˆ-
Á ˜+Ë ¯

 = tan–1 c

or 
1

y x

xy

Ê ˆ-
Á ˜+Ë ¯

 = c
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or  (y – x) = c(1 + xy)

Example 3  Solve (1 + ex) y dy = (1 + y) ex dx

Solution Separating the variables in the given equation,

 
1

y
dy

y+
 = 

1

x

x

e
dx

e+

Integrating both sides,

 
1

y
dy

y+Ú  = log
1

x

x

e
dx c

e
+

+Ú

or  
1

1
1

dy
y

È ˘
-Í ˙+Î ˚

Ú  = log
1

x

x

e
dx c

e
+

+Ú
 y – log (1 + y) = log (1 + ex) + log c

or y = log (1 + y) + log (1 + ex) + log c

or y = log [(1 + y) (1 + ex) ◊ c]

or e
y = c(1 + y) (1 + ex)

Example 4  Solve tan x ◊ sin2
y dx + cos2

x ◊ cot y dy = 0

Solution Separating the variables in the given equation,

 tan x ◊ sec2
x dx + cot y ◊ cosec2

y dy = 0

Integrating both sides,

 2 2tan sec cot cosecx x dx y y dy◊ + ◊Ú Ú  = c

or 

2 2tan cot

2 2

x y
-  = c

or tan2
x – cot2y = c1

where c1 = 2c

Example 5  Solve 2 21 1 0x y dx y x dy+ + + =

Solution Separating the variables in the given equation,

 
2 21 1

x y
dx dy

x y
+

+ +
 = 0

Integrating both sides, we get

 2 1/2 2 1/2(1 ) (1 )x x dx y y dy c
- -◊ + + ◊ + =Ú Ú

or    2 1/2 2 1/21 1
2 (1 ) 2 (1 )

2 2
x x dx y y dy c

- -◊ + + ◊ + =Ú Ú

or                                                       2 21 1x y+ + +  = c
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EXERCISE 10.1

Solve the following differential equations:

 1. (xy + x) dx = (x2
y

2 + x2 + y2 + 1)dy 2. 2x y ydy
e x e

dx

- -= +

 3. 
2dy dy

y x a y
dx dx

Ê ˆ Ê ˆ- = +Á ˜ Á ˜Ë ¯ Ë ¯  4. (1 – x2) (1 – y) dx = xy (1 + y)dy

 5. 3e
x ◊ tan y dx + (1 – ex) sec2 

y dy = 0 6. 2 2 3ydy
x x e

dx
+ =

 7. If x ydy
e

dx

+=  and it is given that for x = 1, y = 1, fi nd y when x = –1

 8. 2
dy dy

a x y xy
dx dx

Ê ˆ+ =Á ˜Ë ¯  9. (x2 – x2
y) dy + (y2 + xy

2) dx = 0

 10. log
dy

ax by
dx

Ê ˆ = +Á ˜Ë ¯

Answers

 1. log (x2 + 1) = y2 – 2y + 4 log [c(y + 1)] 2. 
3

3

y x x
e e c= + +

 3. y = c(x + a) (1 – ay) 4. 
2 2

2log [ (1 ) ] 2
2 2

x y
x y y c- = - - +

 5. tan y = c(1 – ex)3 6. 
23 (3 )

1( 1) ,y y x
e c e

+- =  where c1 = e3c

 7. y = –1 8. tan x ◊ tan y = c

 9. log x/y – (y + x)/xy = c 10. sec y = c – 2 cos x

10.4.2  Homogeneous Equations

Consider a differential equation of the form 

 
dy

dx
 = f(y/x) (6)

Step 1

Put v = 
y

x
 or y = vx

And putting 
dy dv

v x
dx dx

= +  in 1, we get

 
dv

v x
dx

+  = f(v) (7)
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Step 2

Separating the variables in (7) and integrating, the solution is obtained as 

 
-Ú ( )

dv

f v v
 = 

dx
c

x
+Ú

Step 3

Replace v by y/x, in the solution obtained in Step 2.

10.4.3  Homogeneous Functions

A function f(x, y) is said to be homogeneous of degree n in the variables x and y if for any t,

 f(tx,  ty) = tn f(x, y) 

Example 6  Solve (x2 – y2) dx + 2xy dy = 0

Solution The given differential equation can be written as 

 
dy

dx
 = 

2 2

2

y x

xy

-
 (1)

Equation (1) is a homogeneous differential equation.

Step 1: Put v = y/x or y = vx and 
dy

dx
 = 

dv
v x

dx
+  in (1)

 
dv

v x
dx

+  = 
2 2

2

( 1)

2

x v

x v

-

 
dv

v x
dx

+  = 
2 1

2

v

v

-
 (2)

Step 2: Separating the variables in (2) and integrating,

 
2

2 1

1

v
dv dx

xv
+

+Ú Ú  = log c

 log (1 + v2) + log x = log c

or log [(1 + v2)x] = log c

or x(1 + v2) = c (3)

Step 3: Replacing v by y/x in (3), we get

 (y2 + x2) = cx

Example 7  Solve x2 ydx – (x3 + y3) dy = 0.

Solution The given differential can be written as

 
dy

dx
 = 

2

3 3

x y

x y+
 (1)
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Step 1: Put v = y/x or y = vx and 
dy

dx
 = 

dv
v x

dx
+  in (1)

 
dv

v x
dx

+  = 

2

3 3 3

x vx

x v x

◊
+

 
dv

v x
dx

+  = 
31

v

v+

or 
dv

x
dx

 = -
+

4

31

v

v
 (2)

Step 2: Separating the variables and integrating,

 
dx

xÚ  = 
+

- -Ú
3

4

1
log

v
dv c

v

 log x + log c = -
3

1
log

3
v

v

 log (c x v) = 
3

1

3v

or 3 log (c x v) = 
3

1

v
 (3)

Step 3: Replacing v by y/x in  (3), we get 

 y
3 = 

3 3/x y
k e

where k = 1/c3

Example 8  Solve x(cos y/x) (ydx + xdy) = y(sin y/x) (xdy – ydx).

Solution The given equation can be written as

 
Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯

cos
y dy

x y x
x dx

 = 
Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯
sin

y dy
y x y

x dx

or 
Ê ˆ-Á ˜Ë ¯

cos sin
dy y y

x x y
dx x x

 = 2 sin cos
y y

y xy
x x

- ◊ -

or 
dy

dx
 = 

sin cos

sin cos

y y
y x

y x x

y yx
y x

x x

È ˘Ê ˆ Ê ˆ+Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙
Í ˙Ê ˆ Ê ˆ-Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

 (1)

Step 1: Put y = vx and 
dy dv

v x
dx dx

= +  in (1), we get

 
dv

v x
dx

+  = 
( sin cos )

( sin cos )

vx vx v x v

x vx v x v

+
-
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or 
dv

v x
dx

+  = 
( sin cos )

( sin cos )

v vx v x v

vx v x v

+
-

 (2)

Step 2: Separating  the variables in (2), we get

 
cos sin

cos

v v
dv

v v

È ˘-
- Í ˙

Î ˚
 = 

2
dx

x

On integrating both sides, we get

 –log (v cos v) = 2 log x + log c

or cx
2 = 

1

cosv v
 (3)

Step 3: Replacing v by y/x in (3), we get

 cx
2(y/x) ◊  cos (y/x) = 1

or cxy cos (y/x) = 1

Example 9  Solve (1 + 2e
x/y) + 2e

x/y (1 – x/y) 0
dy

dx
= .

Solution We can write the given equation in the form of

 

Ê ˆ Ê ˆ Ê ˆ-
Á ˜ Á ˜+ + Á ˜Ë ¯Á ˜ Á ˜Ë ¯ Ë ¯

1
1 2 2

x x

y y x
e dx e dy

y
 = 0 (1)

Equation (1) is a homogeneous differential equation.

Step 1: Putting v = x/y, so that dx = ydv + vdy in (1), we get

 (1 + 2e
u) (ydv + vdy) + 2e

u(1 – u)dv = 0 

or (v + 2e
v) dy + y(1 + 2e

v) dv = 0 (2)

Step 2: Separating the variables,

 
1 2

2

v

v

dy e
dv

y v e

+
+

+
 = 0 (3)

Integrating (3) on both sides, we get

 log y + log (v + 2e
v) = log e

or y(v + 2e
v) = e (4)

Step 3: Replacing v by x/y in (4), we get

 /x yx
y e

y

Ê ˆ
+Á ˜Ë ¯

 = c

EXERCISE 10.2

Solve the following differential equations:

 1. (2xy + 3y
2)dx – (2xy + x2)dy = 0 2. 

dy dy
y x x y

dx dx

Ê ˆ Ê ˆ- = +Á ˜ Á ˜Ë ¯ Ë ¯
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 3. 
2

2( )

dy y

dx xy x
=

-
 4. 2 2( )xdy ydx x y dx- = +

 5. sin sin
y dy y

x y x
x dx x

Ê ˆ Ê ˆ◊ = +Á ˜ Á ˜Ë ¯ Ë ¯
 6. (2x – 5y)dx + (4x – y)dy = 0, given y(1) = 4

 7. 
2 2( ) 0; (1) 0y x y dx xdy yÈ ˘+ + - = =Î ˚  8. 2cos

dy y
x y x

dx x

Ê ˆ= - Á ˜Ë ¯

 9. 1 (1 ) 0

x x

y ye dx e x dy

Ê ˆ
Á ˜+ + - =
Á ˜Ë ¯

 10. (x3 – 3xy
2) dx = (y3 – 3x

2
y)dy

Answers

 1. y
2 + xy = cx

3 2. 
2 2 11

log ( ) tan log
2

y
x y c

x

- Ê ˆ+ + =Á ˜Ë ¯

 3. y = /y x
k e◊  4. 2 2 2( )y y x cx+ + =

 5. cos log 0
y

c x
x

Ê ˆ + =Á ˜Ë ¯
 6. (2x + y)2 = 12(y – x)

 7. 2 2 2( )y x y x+ + =  8. tan (y/x) = log (c/x)

 9. x + y

x

ye  = c 10. c
2 (y2 + x2)2 = (y2 – x2)

10.4.4   Non-homogeneous Differential Equations Reducible to 
Homogeneous Form

Consider a differential equation of the form

 
dy

dx
 = 

1 1 1

2 2 2

a x b y c

a x b y c

+ +
+ +

 (8)

where a1, b1, c1, a2, b2, c2 are all constants.

Case 1

If  
1 1 1 1

2 2 2 2

0, i.e.,
a b a b

a b a b
π π

Then Eq. (8) can be reduced to homogeneous form by taking new variables X and Y such that

 x = X + h and y = Y + k

where h and k are constants to be chosen as to make the given equation homogeneous. With the above 

substitution, we get dx = dX and dy = dY, so that 

 
dy

dx
 = 

dY

dX
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Hence, the given equation becomes

 
dY

dX
 = 

+ + + +
+ + + +

1 1 1

2 2 2

( ) ( )

( ) ( )

a X h b Y k c

a X h b Y k c

 = 
+ + + +
+ + + +

1 1 1 1 1

2 2 2 2 2

( )

( )

a X b Y a h b k c

a X b Y a h b k c

Now, choose h and k such that a1h + b1k + c1 = 0 and a2h + b2k + c2 = 0

Then the differential equation becomes

 
dY

dX
 = 1 1

2 2

a X b Y

a X b Y

+
+

 (9)

which is homogeneous.

Now, Eq. (9) can be solved as in (homogeneous form) by substituting  Y = VX. Finally, by replacing 

X by (x – h) and Y by (y – k), we shall get the solution in original variables x and y.

Case 2

If  
1 1

2 2

a b

a b
 = 1 1

2 2

0, i.e.,
a b

a b
=

In this case, consider 1 1

2 2

a b

a b
=  = r; then Eq. (8) becomes of the form.

 
dy

dx
 = 

2 2 1

2 2 2

( )

( )

r a x b y c

a x b y c

+ +
+ +

 (10)

To solve Eq. (10) by putting z = a2x + b2y reduces (8) to a separable equation in the variables x and z.

Example 10  Solve 
2 2 2

3 5

dy x y

dx x y

+ -
=

+ -

Solution Here, π = - = - π1 1

2 2

2 2
, i.e., 2 6 4 0

3 1

a b

a b

Then the given differential equation is reduced to homogeneous form by putting x = X + h and 

y = Y + K.

\ 
dY

dX
 = 

2( ) 2( ) 2

3( ) ( ) 5

X h Y k

X h Y k

+ + + -
+ + + -

 
dY

dX
 = 

2 2 (2 2 2)

3 (3 5)

X Y h k

X Y h k

+ + + -
+ + + -

Choose for h and k such that

 2h + 2k – 2 = 0 and 3h + k – 5 = 0

i.e.  h + k = 2 (1)

 3h + k = 5 (2)
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Solving equations (1) and (2), we get

 h = 2 and k = –1

With these values of h and k, the given differential equation, becomes 

 
dY

dX
 = 

2 2

3

X Y

X Y

+
+

 (3)

which is a homogeneous equation.

Putting Y = VX and 
dY dV

V X
dX dX

= +  in Eq. (3)

 
dV

V X
dX

+  = 
2 2 2 2

3 3 '

X VX V

X VX V

+ +
=

+ +

or  
dV

X
dX

 = 

22 2 2

3 3

V V V
V

V V

+ - -
- =

+ +
Separating the variables, we get

 
dX

X
-  = 

2

3

2

V
dV

V V

+
+ -

 = 
3

( 2)( 1)

V

V V

+
+ -

or  3
dX

X
 = 

1 4

2 1
dV

V V

È ˘
-Í ˙+ -Î ˚

  [By resolving into partial factions] (4)

Integrating (4) both sides, we get

 3 log X = log (V + 2) – 4 log (V – 1) + log C

or  log {X
3 (V – 1)4} = log {C(V + 2)}

  or  X
3 (V – 1)4 = C (V + 2) (5)

Replacing V by Y/X in (5), we get

 
4

3

4

( )Y X
X

X

-
 = 

( 2 )Y X
C

X

+

or  (Y – X)4 = C(Y + 2X) (6)

Replacing X by x – 2 and Y by y + 1 in (6) we get

 [(y + 1) – (x – 2)]4 = C[(y + 1) + 2 (x – 2)]

or  [y – x + 3]4 = C[y + 2x – 3]

Example 11  Solve 
( 2 1)

(4 3 6)

dy x y

dx x y

- +
= -

- -
Solution The given differential equation is non-homogeneous.

Here,  1

2

a

a
 = 

1

2

1 2 2

4 3 3

b

b

-
π = =

-
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i.e., 
1 2

4 3

-
-

 = 5 π 0

The given differential equation is reduced to a homogeneous equation by putting

 x = X + h and y = Y + k so that dx = dX and dy = dY

\ 
dY

dX
 = 

È ˘+ - + +
- Í ˙+ - + -Î ˚

2( ) 1

4( ) 3( ) 6

X h Y k

X h Y k

 
dY

dX
 = 

2 2 1

4 3 4 3 6

X Y h k

X Y h k

È ˘- + - +
- Í ˙- + - -Î ˚

Choose for h and k such that

 h – 2k + 1 = 0 and 4h – 3k – 6 = 0

Thus, the homogeneous equation in the new variables X and Y is

 
dY

dX
 = 

-
-

2

3 4

X Y

Y X
 (1) 

Putting Y = VX and 
d d

d d

Y V
V X

X X
= +  in (1), we get

 
dV

V X
dX

+  = 
2 1 2

3 4 3 4

X VX V

VX X V

- -
=

- -

or  
dV

X
dX

 = 
- - - +

- =
- -

21 2 1 2 3 4

3 4 3 4

V V V V
V

V V

  = 

21 2 3

3 4

V V

V

+ -
-

Separating the variables,

 
2

3 4

3 2 1

V
dV

V V

Ê ˆ-
Á ˜- -Ë ¯

 = 
dX

X

-
 (2)

Integrating (2) on both sides, we get

 
21 3 3 3

log(3 2 1) log
2 4 3 1

V
V V

V

Ê ˆ-
- + - Á ˜+Ë ¯

 = – log X + log C

or  
Ê ˆ-

- + - Á ˜+Ë ¯

3

2 2 3 3
log(3 2 1) log

3 1

V
V V

V
 = 

Ê ˆ
Á ˜Ë ¯

4

log
C

X

 
( )5
3 1

log
3( 1)

V

V

È ˘+
Í ˙

-Í ˙Î ˚
 = 

Ê ˆ
Á ˜Ë ¯

4

log
C

X

 

5(3 1)

3( 1)

V

V

+
-

 = 

4

4

C

X
 (3)
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Replacing V by 
Y

X
,

 
5

5

(3 )

3 .( )

Y X
X

X Y X

+
◊

-
 = 

4

4

C

X

Or  (3Y + X)5 = 3C
4 (Y – X)

 (3Y + X)5 = c1 (Y – X) 

Where c1 = 3C
4.

Replacing Y = y – 2 and X = x – 3, we get

 (x + 3y – 9)5 = c1 (y – x + 1)

Example 12  Solve (2x + y + 1)dx + (4x + 2y – 1) dy = 0

Solution We can write the given equation into the form

 
dy

dx
 = 

2 1

4 2 1

x y

x y

+ +
-

+ -
 (1)

Here,  
1

2

a

a
 = 

1

2

2 1 1

4 2 2

b

b
= = =

\   Consider z = 2x + y, so that 2
dz dy

X
dx dx

= +

With these substitutions, the given equation reduces to

 2
dz

dx
-  = 

1

2 1

z

z

+
-

-

or  
dz

dx
 = 

1 3 3
2

2 1 2 1

z z

z z

+ -
- =

- -

Separating the variables,

 
2 1

3( 1)

z
dz

z

-
-

 = dx

or  
2 1

1

z
dz

z

-
-

 = 3 dx

or  
1

2
1

dz
z

Ê ˆ
+Á ˜-Ë ¯

 = 3 dx

On integrating both sides, we get 

 2z + log (z – 1) = 3x + C

Replace z by 2x + y

 2(2x + y) + log(2x + y – 1) = 3x + C

 4x + 2y + log(2x + y – 1) = 3x + C

or  (x + 2y) + log (2x + y – 1) = C 
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Example 13  Solve .
2

dy y x

dx y x

-
=

- +

Solution Here, 
1 1

2 2

1 1 1

1 1 1

a b

a b

-
= = = =

-

i.e.,  
1 1

1 1

-
-

 = –1 + 1 = 0

Let  z = y – x

 
dz

dx
 = 1 or 1

dy dy dz

dz dx dx
- = +

With these substitutions, the given equation reduces to

 1
dz

dx
+  = 

2

z

z +

or  
dz

dx
 = 

2
1

2 2

z z z

z z

- -
- =

+ +

 
dz

dx
 = 

2

2z

-
+

Separating the variables, we get

 –2dx = (z + 2)dz

or  2dx + (z + 2)dz = 0

On integrating both sides, we get

 
2

2 2
2

z
x z+ +  = C

Replacing z by y – x, we get

 

2( )
2 2( )

2

y x
x y x

-
+ + -  = C

or  
2( )

2
2

y x
y

-
+  = C

or  4y + (y – x)2 = c1

where  c1 = 2c

EXERCISE 10.3

Solve the following differential equations:

 1. (2x + y – 3)dy = (x + 2y – 3)dx 2. (2x – 5y + 3)dx – (2x + 4y – 6)dy = 0

 3. 
2 3 1

3 2 5

dy x y

dx x y

+ +
=

- -
 4. (x + 2y – 2)dx + (2x – y + 3)dy = 0
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 5. 
d

(3 9) (10 2 2 )
d

y
x y x y

x
- - = - +  6. 

dy ax by a

dx bx ay b

+ -
=

+ -

 7. 
2 1

4 2 5

dy x y

dx x y

+ -
=

+ +
 8. 

7

2 2 3

dy x y

dx x y

+ +
=

+ +

 9. 
3

2 2 5

dy x y

dx x y

- +
=

- +
 10. 

( 2 3)

(2 4 5)

dy x y

dx x y

- +
=

- +

Answers

 1. (x + y – 2) = c2 (x – y)3 2. (4y – x – 3)(y + 2x – 3)2 = c

 3. 2 2 1 1
log[( 1) ( 1) ] 3 tan

1

y
x y C

x

- Ê ˆ+
- + + - =Á ˜-Ë ¯

 4. x
2 + 4xy – y2 – 4x + 6y = C 5. (y – 2x + 7) = c(x + y + 1) 4

 6. 

( )

( 1) ( 1)

a ba b

aay x y x C

-Ê ˆ+
Á ˜Ë ¯- + + - =  7. (10y – 5x + 7) log (10x + 5y + 9) = C

 8. 
2 11

( ) log(3 3 10)
3 9

x y x y x c+ - + + = +  9. x – 2y + log (x – y + 2) = C

 10. x
2 – 4xy + 4y

2 + 6x – 10y = C

10.4.5  Linear Differential Equations or (Liebnitz’s Linear Equation)

(i) Defi nition

A differential equation is said to be linear if the degree of dependent variable and its derivatives occur 

fi rst only and not any product of the dependent variable and its derivative in the equation.

The standard form of the linear equation of fi rst order is

 
dy

Py
dx

+  = Q (11)

where P and Q are functions of x only.

To fi nd the solution of (11), multiply (11) throughout by 
Ú Pdx

e . We get

 
Pdx Pdxdy

e Pye
dx

+Ú Ú  = 
Pdx

QeÚ

Rewriting  
Ê ˆ
Á ˜Ë ¯

Ú.
Pdx

d y e  = 
Pdx

Q eÚ

Integrating both sides, we get

 .
Pdx

y eÚ
 = .

Pdx
Q e dx C+ÚÚ  (12)

which is the solution of the equation (11).
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(ii) Method of Solving Linear Equations

Step 1 Write the given differential equation in the standard form (11).

Step 2 Find the integrating factor (IF) = 
Ú Pdx

e

Step 3 The solution of the given differential equation is

 y(IF) = (IF)Q dx C+Ú
Note 1 The LHS of Eq. (12) is always the product of the dependent variable (y) and the (IF)

Note 2 When the given differential equation is nonlinear in y, it would be much convenient to treat x 

as the dependent variable instead of y and solve the equation + =( ) ( )
dx

P y x Q y
dy

, which is linear in x. 

In this case integrating factor (IF) is 
Pdy

eÚ , the complete solution is

 x(IF) = (IF)Q dy C+Ú

Example 14  Solve - + =2( 1) 2 1.
dy

x xy
dx

Solution

Step 1: The given equation can be written in the standard form 

 
2

2

1

dy x
y

dx x

Ê ˆ
+ Á ˜-Ë ¯

 = 
2

1

( 1)x -
 (1)

Here, P = 
2 2

2 1
,

1 1

x
Q

x x
=

- -

Step 2: Integrating factor (IF) = 
--= =

ÚÚ 22

2

log( 1)1

x
dx

Pdx xxe e e

 IF = (x2 – 1)

Step 3: The Solution of the given equation is

 y(IF ) = (IF)Q dx C+Ú

 y(x2 – 1) = 
2

2

1
.( 1)

( 1)
x dx C

x
- +

-Ú  = dx C+Ú
 y(x2 – 1) = (x + C)

Example 15  Solve 
Ê ˆ + =Á ˜Ë ¯

2cos tan .
dy

x y x
dx

Solution

Step 1: The given equation can be written in the standard form

 2(sec )
dy

x y
dx

+  = tan x · sec2 x (1)
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Here, P = sec2 x, Q = tan x. sec2 x

Step 2: IF = =Ú Ú 2secPdx xdx
e e

 IF = 
tan x

e

Step 3: The solution of (1) is

 y ·e tan x = 2 tan(tan .sec ). x
x x e dx C+Ú  [Putting tan x = t, sec2

x dx = dt]

 = t
te dt C+Ú

 = tet – et + C

 y ·e tan x = (tan x – 1) etan x + C

or y = (tan x – 1) + Ce
–tan x

Example 16  Solve (1 + y2)dx = (tan–1 y – x)dy.

Solution

Step 1: The given equation can be written in the standard form

 
dx

dy
 = 

1

2

(tan )

1

y x

y

- -
+

or  
2

1

1

dx
x

dy y

Ê ˆ
+ Á ˜+Ë ¯

 = 
1

2

tan

1

y

y

-

+
 (1)

Here, P = 
1

2 2

1 tan
,

1 1

y
Q

y y

-

=
+ +

Step 2: IF = 
Pdy

eÚ

 = 
2

1

1
dy

ye +Ú

 = 
1tan y

e
-

Step 3: The complete solution of (1) is

 
1tan. y

x e
-

 = 
1

1
tan

2

tan
.

1

yy
e dy C

y

--

+
+Ú  

-È ˘
= =Í ˙

+Î ˚

1

2

1
Putting tan ,

1
y t dy dt

y

 = t
te dt C+Ú

 = (t – 1) et + C

 
1tan. y

x e
-

 = 
11 tan(tan 1) y

y e C
-- - +

Example 17  (2 tan ) sin ;
dy

x y x
dx

+ =  given that y = 0 when x = 
3

p
.
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Solution

Step 1: The given equation is in the the standard form.

Here, P = 2 tan x, Q = sin x,

Step 2: IF = 
Ú Pdx

e

 = 
Ú2 tan xdx

e

 = 2 logsec x
e

 = sec2 x

Step 3: The complete solution of the given differential equation is 

 y·sec2 x = +Ú 2sin .secx x dx C

 = tan .secx dx C+Ú
 y·sec2

x = sec x + C (1)

y = 0 at ,
3

p
p =  then Eq. (1) becomes

 0 = sec sec 2
3 3

C C
p p

+ fi = - = -

\  y sec2 x = sec x – 2 or y = cos x – 2cos2 x

Example 18  Solve 
12 tan(1 ) ( )xdy

x e y
dx

-
+ = - .

Solution

Step 1: The given equation can be written in the standard form.

 
2

1

1

dy
y

dx x

Ê ˆ
+ Á ˜+Ë ¯

 = 

1tan

21

x
e

x

-

+
 (1)

Here, P = 

-

=
+ +

1tan

2 2

1
,

1 1

x
e

Q
x x

Step 2:  IF = Ú Pdx
e

 = 
+

Ú 2

1

1
dx

xe

 IF = 
1tan x

e
-

Step 3: The complete solution of (1) is

 
1tan. x

y e
-

 = 

1
1

tan .
tan

2
.

1

x
xe

e dx C
x

-
-

+
+Ú  

-
-È ˘

Í ˙= =
Í ˙+Î ˚

1
1

tan
tan

2
Putting ,

1

x
x e

e t dx dt
x
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 = t dt C+Ú

 = 
2

2

t
C+

 
1tan. x

y e
-

 = 

-

+
1tan 2( )

2

x
e

C

Example 19  Solve + =
-
log

0.
log

dy y y

dx x y

Solution The given equation is not linear in y because of the presence of the term log y. It is neither 

separable nor homogeneous nor exact. But with x taken as dependent variable, the equation can be 

rewritten as

 
. 1

log

dx
x

dy y y
+ ◊  = 

1

y
 (1)

Here,  P = 
1 1

.
log

Q
y y y

=

Step 1: IF = 
Pdy

eÚ

 = 
Ú

1 1
.
log

dy
y ye

 = elog(log y)

 IF = log y

Step 2: The complete solution of (1) is

 x ·log y = 
1

. log y dy C
y

+Ú  
È ˘

= fi =Í ˙
Î ˚

1
Putting log y t dy dt

y

 = t dt C+Ú

 = 
2

2

t
C+

 x ·log y = 
2(log )

2

y
C+

Example 20  Solve y2 dx + (3xy – 1) dy = 0.

Solution

Step 1: The given equation can be written in the standard form

 
Ê ˆ

+ Á ˜Ë ¯
3dx

x
dy y

 = 
2

1

y
 (1)
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Here,  P = 
2

3 1
, Q

y y
=

Step 2: IF = 
Pdy

eÚ

 = 

1
3 dy

ye
Ú

 = 3log y
e

 = 
3

y

Step 3: The complete solution of (1) is

 x ·y3 = 3

2

1
. y dy C

y
+Ú

 = y dy C+Ú

 = 
2

3.
2

y
x y C= +

EXERCISE 10.4

Solve the following differential equations:

 1. y dx – (x + 2y
3) dy = 0 2. y

2 dx + (xy – 2y
2 – 1)dy = 0

 3. dx + (3y – x) dy = 0 4. 
x

edy
y e

dx
+ =

 5. 
2

1

1 x

dy
y

dx e
+ =

+
 6. 2(y – 4x

2) dx + x dy = 0

 7. dx – (x + y + 1)dy = 0 8. 2 (3sin 2 2cos2 )xdy
y e x x

dx
+ = +

 9. (1 + x2) dy + 2 xy dx = cot x dx 10. cot 2 .cosec
dy

y x x x
dx

+ =

 11. 2sin
dy y

x
dx x

+ =  12. 2(1 ) 2 cos
dy

x xy x
dx

+ + =

 13. 
2cos sin sec

dy
x y x x

dx

Ê ˆ + =Á ˜Ë ¯

Answers

 1. x = y3 + cy 2. xy = y2 + log y + C

 3. x – 3y – 3 = ce
y 4. y.ex = 

x
e

e C+
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 5. y = e–x. tan–1 (ex) + ce
–x 6. x

2
y = 2x

4 + C

 7. x = –(y + 2) + ce
y 8. y = ce

–2x + ex. sin 2x

 9. y = 
2

log (sin )

(1 )

x C

x

+
+

 10. y = (x2 + c) cosec x

 11. xy = 21
cos

2
x C- +  12. y (1 + x2) = sin x + C

 13. y sec x = tan x + C

10.4.6   Nonlinear Equation Reducible to Linear Form 
(Bernoulli’s Equation)

A fi rst-order and fi rst-degree differential equation of the form

 ( )
dy

P x y
dx

+  = Q(x)·yn (13)

is known as Bernoulli equation which is nonlinear for any value of the real number n (except for n = 0 

and n = 1).

If n = 0 then Eq. (13) converts to linear fi rst-order differential equation.

If n = 1 then Eq. (13) converts to linear separable differential equation.

For any n (except n = 0 and n = 1), Eq. (13) can be reduced to linear differential equation dividing 

(13) both sides by yn, we get

 
1( )n ndy

y P x y
dx

- -+  = Q(x) (14)

Now, putting y1–n = z and 
dz

dx
 = (1 – n)y–n 

dy

dx
 in (14), we get

 
1

( )
(1 )

dz
P x Z

n dx
+

-
 = Q(x)

or  (1 ) ( )
dz

n P x z
dn

+ -  = (1 – n) Q(x) (15)

which is a linear fi rst-order differential equation in z and x discussed in Section 10.4.5.

Method of Finding Solution to Bernoulli Equations

Step 1 First of all, rewrite the given differential equation in the standard Bernoulli equation

Step 2 Dividing both sides by yn

Step 3 Put z = y1–n and obtain the fi rst-order linear differential equation in z.

Step 4 Solve linear differential equation in z by the method discussed in Section 10.4.5.

Example 21  Solve + = 2 log .
dy

x y y x
dx

Solution

Step 1: The given differential equation can be written in the standard form.

21 logdy x
y y

dx x x

Ê ˆ+ = ◊Á ˜Ë ¯
 (dividing throughout by x) (1) [This is a Bernoulli equation with n = 2.]
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Step 2: Dividing (1) both sides by y2, we get

 2 11dy
y y

dx x

- -+  = 
Ê ˆ
Á ˜Ë ¯

log x

x
 (2)

Step 3: Putting z = y–1, -= - 2dz dy
y

dx dx
 in (2), we get

 
1dz

z
dx x

- +  = 
log x

x

or  
1dz

z
dx x

-Ê ˆ+ Á ˜Ë ¯
 = 

log x

x

Ê ˆ- Á ˜Ë ¯
 (3) 

which is a linear fi rst-order equation in z and x

Step 4: Here, 
1 log

,
x

P Q
x x

- Ê ˆ= = - Á ˜Ë ¯

 IF = 
Pdx

eÚ

 = 

1
dx

xe
- Ú

 = log x
e

-

 IF = 
1

x

The complete solution is 

 
1

.z
x

 = 
log 1

.
x

dx C
x x

Ê ˆ- +Á ˜Ë ¯Ú

 = 
2

1
. log x dx C

x
- +Ú

 = 
1 1 1

log .x dx C
x x x

È ˘-Ê ˆ Ê ˆ- - - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚
Ú

 [Integration by parts taking 
2

1

x
 as the second function]

 = - +Ú 2

1 1
log x dx C

x x

 ◊
1

z
x

 = 
1 1

log x C
x x

+ +

Replacing z by 
1

y
,

\  
1

xy
 = 

1
(log 1)x C

x
+ +
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or y(1 + log x) + cxy = 1

Example 22  Solve  -+ = 23 .
dy

xy xy
dx

Solution

Step 1: The given equation can be written as

 
3

dy x
y

dx

Ê ˆ+ Á ˜Ë ¯
 = 2

3

x
y

-  (1)

This is a Bernoulli equation with n = –2.

Step 2: Dividing (1) both sides by y–2, we get

 2 3

3

dy x
y y

dx
+  = 

3

x
 (2)

Step 3: Putting z = y3 and 23
dz dy

y
dx dx

=  in (2), we get

 +
1

3 3

dz x
z

dx
 = 

3

x

or 
dz

xz
dx

+  = x (3) 

which is a linear equation in z and x.

Step 4: Here, P = x,  Q = x

 IF = 
Pdx

eÚ

 = 
xdx

eÚ

 = 

2

2

x

e

Complete solution of (3) is

 

2

2

x

z e◊  = 

2

2

x

x e dx C◊ ◊ +Ú  

È ˘
= fi =Í ˙

Í ˙Î ˚

2

Putting
2

x
t xdx dt

 = 
t

e dt C+Ú
 = e t + C

 

2

2

x

z e◊  = 

2

2

x

e C+

          z = 1 + C

2

2

x

e

-

Replacing z by y3,

\ y
3 = 1 + c

2

2

x

e

-
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Example 23  Solve (xy
5 + y) dx – dy = 0.

Solution

Step 1: The given equation can be written as

 
dy

y
dx

-  = xy
5 (1)

This is a Bernoulli equation with n = 5

Step 2: Dividing (1) both sides by y5, we get

 
5 4dy

y y
dx

- --  = x (2)

Step 3: Putting z = y–4 and -= - 54
dz dy

y
dx dx

 in (2), we get

 
1

4

dz
z

dx
- -  = x

or  4
dz

z
dx

+  = – 4x (3) 

which is a linear equation is z and x.

Step 4: Here, P = 4, Q = – 4x

 IF = 
Pdx

eÚ

 IF = 
4dx

eÚ

 IF = e4x

Complete solution of (3) is.

 z·e4x = 4( 4 ) x
x e dx C- +Ú

 z·e4x = 4 41

4

x x
x e e C- + +

Replacing z by  y–4, we get

 
4

4

x
e

y
 = 4 41

4

x x
xe e C- + +

Example 24  Solve - 2
dy

dx
 cos x ◊ cot y + sin2 x ◊ cosec y ◊ cos x = 0.

Solution

Step 1: The given equation can be written as

 
dy

dx
 = 2 cos x ◊ cot y – sin2 x ◊ cos x ◊ cosec y (1)
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Step 2: Dividing (1) both sides by cosec y,

 -sin (2cos ) cos
dy

y x y
dx

 = –sin2 x ◊ cos x

or sin (2cos ) cos
dy

y x y
dx

- +  = sin2 x ◊ cos x (2)

Step 3: Putting cos y = z and sin
dz dy

y
dx dx

= - , in (2), we get

 + (2cos )
dz

x z
dx

 = sin2 x ◊ cos x (3)

which is a linear equation is z and x

Step 4: Here, P = 2 cos x, Q = sin2 x ◊ cos x

 IF = 
Pdx

eÚ

 = 
2 cos x dx

e Ú

 = 
2sin x

e

Complete solution of (5) is

 z·e2sin x = 2 2sinsin cos x
x x e dx C◊ ◊ +Ú

 ze
2sin x = 2 2t

t e dt C◊ +Ú  [Put sin x = t; then cos xdx = dt]

 = 

2 2
2 2 .

2 2

t t
e e

t t dt C
È ˘

- +Í ˙
Í ˙Î ˚

Ú

 = 2 2 21
.

2

t t
t e t e dt C

È ˘- +Í ˙Î ˚Ú

 = 

2 2
2 21

2 2

t t
t e e

t e t dt C
t

È ˘Ï ¸Ô Ô- - +Í ˙Ì ˝
Í ˙Ô ÔÓ ˛Î ˚

Ú

 = 
2 2

2 21

2 2 4

t t
t te e

t e C
È ˘

- + +Í ˙
Í ˙Î ˚

 = - + +
2sin 2sin

2 2sin1 sin
sin

2 2 4

x x
x x e e

x e C

or  z = -- + +2 2sin1 1 1
sin sin

2 2 4

x
x x c e
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Replacing z by cos y, we get

 cos y = -- + +2 2sin1 1 1
sin sin

2 2 4

x
x x c e  

Example 25  Solve cos x dy = y(sinx – y)dx.

Solution

Step 1: The given equation can be written as

 cos
dy

x
dx

 = y sin x – y2

or cos (sin )
dy

x x y
dx

-  = –y
2

or (tan )
dy

x y
dx

-  = –sec x ·y2 (1)

 Step 2: Dividing (1) both sides by y2, we get

 2 1(tan )
dy

y x y
dx

- --  = –sec x (2)

Step 3: Putting z = y–1 and 2dz dy
y

dx dx

-= -  in (2), we get

 (tan )
dz

x z
dx

- -  = –sec x

or  (tan )
dz

x z
dx

+  = sec x (3)

This is a linear in z and x.

Step 4: Here, P = tan x,  Q = sec x

 IF = = =Ú tan log sec sec
x dx x

e e x

Complete solution of (3) is

 z sec x = sec secx x dx C◊ +Ú
 = 

2sec x dx C+Ú
 z sec x = tan x + C

Replacing z by 
1

y
, we get

 
1

sec x
y

 = tan x + C

or  sec x = y (tan x + C) 
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EXERCISE 10.5

Solve the following differential equations:

 1. + = 3 2sin 2 .cos
dy

x y x y
dx

 2. (4e
–y sin x – 1) dx – dy = 0

 3. dx – (x2 y3 + xy)dy = 0 4. 3 6dy
x y x y

dx
+ =

 5. cot cot 0
dy

y x y
dx

- + =  6. 2 (sin cos ) 0
dy

y y x x
dx

+ + - =

 7. (y – y2 x2 sin x) dx + xdy = 0 8. 
3

1

2

dy x
y

dx x y
+ = ; y(1) = 2

 9. 2log (log )
dz z z

z z
dx x x

Ê ˆ+ =Á ˜Ë ¯
 10. 2 32 2

dy
xy y x

dx
= - ; y (1) = 2

 11. 
21

dy x
y x y

dx x

Ê ˆ
+ =Á ˜-Ë ¯

 12. 2 2(1 )
dy

x xy xy
dx

- + =

Answers

 1. 2y = (x2 – 1) + 2C e–x2

 2. e
y = 2 (sin x – cos x) + Ce

–x

 3. x (2 – y2) + 

2

2 1

y

C xe

-

=  4. 2 3 55
1

2
Cx x y

Ê ˆ+ =Á ˜Ë ¯
 5. sec y = x + 1 + Ce

x 6. y (ce
x – sin x) = 1

 7. xy (C + cos x) = 1 8 x
2 y4 = x4 + 15

 9. (1 + Cx) log z = 1 10. y
2 = x (5 – x2)

11. 
2 3/4

2 1/4

1
(1 )

3(1 )

y
x C

x
= - - +

-

 12. Cy = 2(1 ). (1 )y x- -

10.4.7  Exact Differential Equations

The differential of a function f(x, y) is denoted by d f and is given by

 df = 
f f

dx dy
x y

∂ ∂
+

∂ ∂
 (16)

Consider 

 M(x, y)dx + N(x, y)dy = 0 (17) is the differential equation.

Suppose 
f

x

∂
∂

 = M(x , y) (18)
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and   
f

y

∂
∂

 = N(x , y) (19)

Using equations (18) and (19), then the given equation (17) becomes

 df = ( , ) ( , ) 0
f f

dx dy M x y dx N x y dy
x y

∂ ∂
+ = + =

∂ ∂
i.e., df = 0

On integration, f(x, y) = C = arbitrary constant.

Therefore, the expression of (17) M(x, y)dx + N(x, y)dy is said to be an exact differential and the 

equation (17) is called an exact differential equation.

(i) Necessary Condition for Exactness

Differentiating (18) and (19) partially w.r.t. y and x respectively, we get

 
M

y

∂
∂

 = 
2 2 2

and
f f N f f f

y x y x x x y x y y x

Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ = = = =Á ˜ Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯

fi 

2
f

x y

∂
∂ ∂

 = 

2
f

y x

∂
∂ ∂

fi 
M

y

∂
∂

 = 
N

x

∂
∂

Thus, the necessary condition for the differential equation (17) to be an exact differential equation 

is

 
M

y

∂
∂

 = 
N

x

∂
∂

(ii) Method of Finding the Solution to an Exact Differential Equation

To solve a differential equation of the form

 M(x, y)dx + N(x, y)dy = 0

Step 1 Find 
∂ ∂
∂ ∂

and .
M N

y x

If M N

y x

∂ ∂
=

∂ ∂
, then the given equation is an exact differential equation.

Step 2 The solution of the given equation is

 +Ú Ú( , ) ( , )M x y dx N x y dy  = C

In the fi rst integral treating y as a constant and in second integral take only those terms in N which 

do not contain x.

Example 26  Solve (ax + hy + g) dx + (hx + by + f) dy = 0

Solution

Step 1: M(x, y) = (ax + hy + g) and N(x, y) = (hx + by + f)
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Find 
M

y y

∂ ∂
=

∂ ∂
 (ax + hy + g)

 
M

y

∂
∂

 = h and ( )
N

hx by f h
x x

∂ ∂
= + + =

∂ ∂

\ 
M

y

∂
∂

 = 
N

h
x

∂
=

∂

The given equation is an exact differential equation.

Step 2: The solution of the given equation is

(arbitrary constant)
Treating  as a constant take those terms ‘in  that do not contai ’n

M dx N dy
C

xy N
+ =Ú Ú

 ( ) ( )a x h y g d x b y f d y+ + + +Ú Ú  = C (arbitrary constant)

 
2 2

2 2

a x b y
h x y g x f y+ + + +  = C (arbitrary constant)

Example 27  Solve ey dx + (xe
y + 2y)dy = 0.

Solution

Step 1: M = ey, N = (xe
y + 2y)

 
M

y

∂
∂

 = y y
e e

y

∂
=

∂

 
N

x

∂
∂

 = ( 2 )y y
xe y e

x

∂
+ =

∂

\ 
m

y

∂
∂

 = y N
e

x

∂
=

∂
Hence, the given equation is exact.

Step 2: The complete solution is

 2y
e dx y dy+Ú Ú  = C

 xe
y + y2 = C

Example 28  Solve 2 33 ( log ) 0
y

x y dx x x dy
x

Ê ˆ+ + + =Á ˜Ë ¯
.

Solution

Step 1: M = 3x
2 

y + y/x, N = (x3 + log x) 

 
M

y

∂
∂

 = 2 21 1
3 , 3

N
x x

x x x

∂
+ = +

∂

\ 
M

y

∂
∂

 = 
N

x

∂
∂

Hence, the given differential equation is exact.
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Step 2: The solution of given equation is

 M dx N dy+Ú Ú  = C

 2(3 / ) 0x y y x dx dy+ +Ú Ú  = C

 x
3 y + y log x = C

Example 29  Solve (cos x – x cos y) dy – (sin y + y sin x)dx = 0.

Solution

Step 1: Here, M = – (sin y + y sin x), N = cos x – x cos y.

 
M

y

∂
∂

 = (cos sin .) , ( sin cos ) (cos sin )
N

y x x y y x
x

∂
- + = - - = - +

∂

\ 
M

y

∂
∂

 = 
N

x

∂
∂

Hence, the equation is exact.

Step 2:

 

Treating  as a constant take those terms in  that do not co ‘ ’ntain

M dx N dy
C

y N x
+ =Ú Ú

 - + +Ú Ú(sin sin ) 0y y x dx dy  = C

 – x sin y + y cos x = C

EXERCISE 10.6

Solve the following differential equations:

 1. (cos x ◊ cos y – cot x) dx – (sin x ◊ sin y )dy = 0

 2. (x2 – ay) dx – (ax – y2) dy = 0

 3. (1 + ex/y) dx + ex/y(1 – x/y)dy = 0

 4. (sin .sin ) ( cos .cos )y y
x y x e dy e x y dx- = +

 5. 3 2 2(2 2 3) ( 2 ) 0x x y y dx x y x dy- - + - + =

 6. (x2 + y2 – a2) x dx + (x2 – y2 – b2) y dy = 0

 7. 
2

2

dy y x

dx y x

-
=

-
; y (1) = 2

 8. 
2 2

0
x dy y dx

x dx y dy
x y

-
+ + =

+

 9. (y – x3) dx + (x + y3) dy= 0

 10. 
2 22 3 2( 4 ) (2 3 ) 0xy xy

y e x dx x y e y dy+ + - =

11. (1 + 4xy + 2y
2) dx + (1 + 4xy + 2x

2) dy = 0
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12. [ ]1
1 cos log sin 0y y dx x x x y dy

x

È ˘Ê ˆ+ + + + - =Í ˙Á ˜Ë ¯Î ˚

13. 
2 2

1 1 0
( ) ( )

y x
dx dy

x y x y

È ˘ È ˘
- + - =Í ˙ Í ˙

+ +Í ˙ Í ˙Î ˚ Î ˚

Answers

 1. sin x ◊ cos y = log (c sin x)  2. x
3 + y3 – 3 axy + C = 0

 3. x + y ex/y = C 4. x ey + sin x ◊ cos y = C

 5. x
4 – x2 y2 – 4xy + 6x = C 6. x

4 + 2x
2 y2 – y4 – 2 a2 x2 – 2 b2 y2 = C

 7. x
2 – xy + y2 = 3 8. x

2 – 2 tan–1 (x/y) + y2 = K

 9. 4 xy – x4 + y4 = C 10. x
4 – y3 + 

2
xy

e  = C

 11. x + 2x
2
y + 2xy

2 + y = C 12. y(x + log x) + x cos y = C

 13. x – x2 + y2 = C (x + y)

10.4.8   To Convert non-exact Differential Equations into Exact 
Differential Equations Using Integrating Factors

Consider a differential equation

 M(x, y)dx + N(x, y)dy = 0 (20)

which is not exact.

Suppose there exists a function F(x, y) such that

 F(x, y)[M(x, y)dx + N(x, y)dy] = 0 (21)

is an exact equation, then F(x, y) is called an integrating factor (IF) of the differential equations (20).

Methods to Find an Integrating Factor to a Non-exact
Differential Equation 

 M dx + N dy = 0 are

Case 1 If ◊ - ◊
1

[ ]M y N x
N

 = f(x) then IF = 
( )f x dx

eÚ

Case 2 If ◊ - ◊
1

[ ]N x M y
M

 = g(y) then IF = 
( )g y dy

eÚ

Case 3 If the differential equation of the form + =1 2( ) ( , ) 0y f xy dx x f x y dy  

Then  IF = 
1

. .M x N y-
 provided  M◊x – N◊y  π 0

Case 4 If the given differential equation M dx + N dy = 0 is a homogeneous equation and 

M ◊ x + N ◊ y   π 0 then

 IF = 
1

. .M x N y+
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Case 5 Consider if the differential equation of the form

 2 21 1( ) ( )a b c d
x y m y dx n x dy x y m y dx n x dy+ + +  = 0

where a, b, c, d, m1, n1, m2, n2  are all constants and m1m2 – n1n2 π 0

Then the integrating factor is xh. yk.

where 
1

1a h

m

+ +
 = 

1 2 2

1 1 1
and

b k c h d k

n m n

+ + + + + +
=

Example 30  Solve 2y dx + (2x log x – xy) dy = 0.

Solution M = 2 y, N = 2x log x – xy

 
M

y

∂
∂

 = 2, 2 (1 log )
N

x y
x

∂
= + -

∂

 
M N

y x

∂ ∂
π

∂ ∂

Hence, the given equation is not exact.

Since  
1 M N

N y x

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

 = 
1

(2 2 2 log )
(2 log )

x y
x x xy

- - -
-

 = 
2 log

(2 log )

x y

x x y

- +
-

 = 
2 log 1

( )
( 2 log )

x y
f x

x x y x

- +
= - =

- - +

 IF = 
( )f x dx

eÚ

 = 

1

log 1dx
xxe e

x

- -= =Ú

Multiply the given differential equation by (IF) 
1

x
, we get

  
2

(2 log ) 0
y

dx x y dy
x

+ - =  which is exact equation.

On integrating, we get

 
22

2 log
2

y y
dx y dy c y x

x
+ - = fi -Ú Ú  = C

Example 31  Solve y(2x
2 – xy + 1)dx + (x – y)dy = 0

Solution M = 2yx
2 – xy

2 + y, N = x – y

 
M

y

∂
∂

 = 22 2 1, 1
N

x xy
x

∂
- + =

∂
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\ 
M N

y x

∂ ∂
π

∂ ∂

 Hence, the given equation is not exact.

Since  
1 M N

N y x

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

 = 
21

[2 2 1 1]
( )

x xy
x y

- + -
-

 = 
1

2 ( )
( )

x x y
x y

-
-

 = 2x = f(x)

 IF = 
2( ) 2f x dx xdx x

e e e= =Ú Ú

Multiplying the given differential equation by (IF) 
2

x
e , we get

 
2

x
e y(2x

2 – xy + 1)dx + 
2

x
e (x – y)dy = 0 which is an exact equation.

Integrating both sides, we get

 
2 2(2 1)x

e y x xy dx ody- + +Ú Ú  = 0

 
2

x
e (2xy – y2) = C

Example 32  Solve (x – y)dx – dy = 0; y(0) = 2.

Solution M = (x – y), N = –1

 
M

y

∂
∂

 = 1, 0
N

x

∂
- =

∂

\ 
M N

y x

∂ ∂
π

∂ ∂
 

Hence, the given equation is not exact

Now,  
1 M N

N y x

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

 = - - =
-
1

[ 1 0] 1
1

 is a function of x (say)

 IF = 
1dx x

e e=Ú

Multiplying the given equation by ex, we get

 e
x(x – y)dx – ex

dy = 0 which is exact equation.

Integrating both sides, we get

 ( ) 0x
e x y dx dy- -Ú Ú  = C

 (x – 1)ex – ye
–x = C

Put x = 0, y = 2 so that C = –3

\ (x – 1)ex – ye
–x = –3



 Ordinary Differential Equations: First Order and First Degree 10.35

Example 33  Solve (3x
2
y

4 + 2xy)dx + (2x
3
y

3 – x2)dy = 0.

Solution M = 3x
2
y

4 + 2xy, N = 2x
3
y

3 – x2

 
M

y

∂
∂

 = 2 3 2 312 2 , 6 2
N

x y x x y x
x

∂
+ = -

∂

\ M N

y x

∂ ∂
π

∂ ∂
 

The given equation is not exact.

Now,  
1 N M

M x y

È ˘∂ ∂
-Í ˙∂ ∂Î ˚

 = 2 3 2 3

2 4

1
[6 2 12 2 ]

(3 2 )
x y x x y x

x y xy
- - -

+

 = 2 3

2 4

1
6 4

(3 2 )
x y x

x y xy
È ˘- -Î ˚+

 = 2 3

2 3

2
3 2

(3 2 )
x y x

y x y x

- È ˘+Î ˚+

 = 
2

( )g y
y

-
=

 IF = 

1
2( )

2

1dyg y dy ye e
y

-
= =

ÚÚ

Multiplying the given equation by 
2

1

y
, we get

 
2

1

y
 (3x

2
y

4 + 2xy)dx + 
2

1

y
(2x

3
y

2 – x2)dy = 0 which is an exact equation.

Integrating both sides, we get

 
È ˘

+ + ◊Í ˙
Î ˚

Ú Ú2 23 2
x

x y dx o dy
y

 = C

 
2

3 2 x
x y

y
+  = C

Example 34  Solve y(xy + 2x
2
y

2)dx + x(xy – x2
y

2)dy = 0.

Solution The given equation is y(xy + 2x
2
y

2)dx + x(xy – x2
y

2)dy = 0 (1)

Dividing (1) both sides by xy, we get

 y(1 + 2xy)dx + x(1 – xy)dy = 0 (2)

 M = y f1(xy), N = x f2(xy)

 IF = 
1 1

(1 2 ) (1 )M x N y xy xy xy xy
=

◊ - ◊ + - -
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 = 
2 2

1
( , )

3
f x y

x y
=

Multiplying (2) both sides by 
2 2

1

3x y
, we get

 
2 2

1 2 1 1

3 33 3
dx dy

x yx y xy

Ê ˆ Ê ˆ
+ + -Á ˜ Á ˜Ë ¯ Ë ¯

 = 0

On integrating,

 
2

1 2 1

3 33
dx dy

x yx y

Ê ˆ
+ + -Á ˜Ë ¯Ú Ú  = C

 
1 2 1

log log
3 3 3

x y
xy

- + -  = C

or 
1

2 log logx y
xy

- + -  = 3C

or 
1

2 log logx y
xy

- + - = C1

Example 35  Solve 
+

=
3 3

2
.

dy x y

dx xy

Solution (x3 + y3)dx – xy
2
dy = 0 (1)

which is a homogeneous equation of degree 3.

M = x3 + y3 and N = –xy
2 both are the homogeneous with degree 3.

Since  M ◊ x + N ◊ y = x4
 π 0, then

 IF = 
4 3 3 4

1 1 1

M x N y x xy xy x
= =

◊ + ◊ + -

Multiplying (1) by 
4

1

x
, we get

 3 3 2

4 4

1 1
( ) ( )x y dx xy

x x
+ + -  = 0 which is an exact equation.

fi 
3

4

1 y
dx

x x

Ê ˆ
+Á ˜

Ë ¯Ú  = C

fi 
3

3
log

3

y
x

x
-  = C

Example 36  Solve y(y2 – 2x
2)dx + x(2y

2 – x2)dy = 0.

Solution Here, M = y(y2 – 2x
2) and N = x(2y

2 – x2) are both homogeneous functions of degree 3.
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Since  M ◊ x + N ◊ y = xy(y2 – 2x
2) + xy(2y

2 – x2)

 = 3xy(y2 – x2) π 0, then

 
+ ◊
1

IF
M N y

 = 
2 2

1

3 ( )xy y x-

Multiplying the given differential equation by (IF), we get

 
2 2 2 2

2 2 2 2

( 2 ) (2 )

3 ( ) 3 ( )

y y x x y x
dx dy

xy y x xy y x

- -
+

- -
 = 0

or 
2 2 2 2

2 2 2 2

( 2 ) (2 )

3 ( ) 3 ( )

y x y x
dx dy

x y x y y x

- -
+

- -
 = 0

fi 

2 2

2 2

2

3 ( )

y x
dx

x y x

-
-Ú  = C

fi x
2
y

2(y2 – x2) = C1 where C1 = eC

Example 37  Solve 2y
2 dx + 4x

2 ydx + 4xy dy + 3x
3 

dy = 0.

Solution The given equation can be written as

 x
2(4ydx + 3xdy) + y(2ydx + 4xdy) = 0 (1)

Comparing (1) with xa
y

b(m1ydx + n1xdy) + xc
y

d(m2yds + n2xdy) = C

Here, a = 2, b = 0, m1 = 4, n1 = 3, c = 0, d = 1, m2 = 2, n2 = 4

Also, m1m2 – n1n2 = 8 – 12 = –4 π 0

The unknown constants (h, k) in the integrating factor are determined from the following:

 
1

1a h

m

+ +
 = 

1 2 2

1 1 1
and

b k c h d k

n m n

+ + + + + +
=

\ 
2 1

4

h+ +
 = 

0 1
4 3 5

3

k
k h

+ +
fi - =

and 
0 1

2

h+ +
 = 

1 1
2 0

4

k
k

+ +
fi - =

Solving for h, k, we get k = 2, h = 1

The integrating factor (IF) = xh
y

k = x1
y

2

Multiplying the given equation by (IF) xy
2, we get

 xy
2(2y

2 + 4x
2
y)dx + xy

2(4xy + 3x
3)dy = 0

or  2xy
4
dx + 4x

3
y

3 dx + 4x
2
y

3 dy + 3x
4
y

2
dy = 0

or  d(x2
y

4) + d(x4
y

3) = 0

On integrating, we get

 x
2
y

4 + x4
y

3 = C
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10.4.9  Integrating Factors by Inspection (Grouping of Terms)

 1. If the differential equation contains the group of  terms xdx + ydy then 
2 2

1

x y+
 or some 

function of these expression can be tried as an integrating factor.

 We have 
2 2

xdx ydy

x y

+
+

 = 2 21
[log( )]

2
d x y+

 2. If the differential equation contains the group of terms xdy + ydx then 
1

xy
 can be tried as an 

integrating factor.

 We have [log( )]
xdy ydx

d xy
xy

+
=

 3. If the differential equation contains the group of terms xdy + xdx then it can be tried as an 

integrating factor, we have d(x ◊ y) is an exact differential.

 4. If the differential equation contains the group of terms xdy – ydx then 
2

1

x
 can be tried as an 

integrating factor. We have

 
2

x dy y dx y
d

xx

- Ê ˆ= Á ˜Ë ¯

 5. If the differential equation contains the group of terms xdy – ydx then 
1

xy
 can be tried as an 

integrating factor. We have

 log
dy dx y

d
y x x

Ê ˆ- = Á ˜Ë ¯

 6. If the differential equations contains the group of terms xdy – ydx then 
2 2

1

x y+
 can be tried 

as an integrating factor. We have

 
1

2 2
tan

xdy ydx y
d

xx y

-- Ê ˆ= Á ˜Ë ¯+

Example 38  Solve y(y3 – x)dx + x(y3 + x)dy = 0.

Solution y
4
dx – xy dx + xy

3
dy + x2

dy = 0 (1)

We can write the given into the form

 y
3(ydx + xdy) + x(xdy – ydx) = 0

 y
3 d(xy) + x ◊ x2 ◊ d 

y

x

Ê ˆ
Á ˜Ë ¯

 = 0

or  

3

( )
x y

d xy d
y x

Ê ˆ Ê ˆ+ ◊ Á ˜Á ˜ Ë ¯Ë ¯
 = 0

or 

3

( )
x y

d xy d
y x

-
Ê ˆ Ê ˆ+ ◊ Á ˜Á ˜ Ë ¯Ë ¯

 = 0

On integrating, we get

 

2
1

2

y
xy

x

-
Ê ˆ- Á ˜Ë ¯

 = C1
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Example 39  Solve (y + x) dy = (y – x)dx.

Solution ydy + xdy – ydx + xdx = 0

Regrouping

 (ydy + xdx) + (xdy – ydx) = 0

 
1

2
 d(x2 + y2) + xdy – ydx) = 0

Dividing both sides by (x2 + y2), we get

 2 2

2 2 2 2

1
( )

2( )

xdy ydx
d x y

x y x y

Ê ˆ-
+ + Á ˜+ +Ë ¯

 = 0

 
2

2 2

2

2

1
[log( )]

2
1

xdy ydx

xd x y
y

x

-

+ +
+

 = 0

 2 2 11
[log( )] tan

2

y
d x y d

x

-È ˘Ê ˆ+ + Í ˙Á ˜Ë ¯Î ˚
 = 0

On integrating, we get

 2 2 1log ( ) tan
y

x y
x

- Ê ˆ+ + Á ˜Ë ¯
 = C

Example 40  Solve y(x3
e

xy – y)dx + x(y + x3
e

xy)dy = 0.

Solution yx
3
e

xy
dx – y2

dx + xydy + x4
e

xy
dy = 0

Regrouping

 x
3
e

xy(ydx + xdy) + y(xdy – ydx) = 0

or 3 2

2
( )xy xdy ydx

x d e y x
x

-Ê ˆ+ ◊ ◊Á ˜Ë ¯
 = 0

Dividing both sides by x3, we get

 ( )xy y y
d e d

x x

Ê ˆ Ê ˆ+ ◊Á ˜ Á ˜Ë ¯ Ë ¯
 = 0

On integrating, we get

 

2
1

2

xy y
e

x

Ê ˆ+ Á ˜Ë ¯
 = C

EXERCISE 10.7

Solve the following differential equations:

 1. (3x
2
y

4 + 2xy)dx + (2x
3
y

3 – x2)dy = 0 2. y(x2
y + ex)dx – ex

dy = 0
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 3. (xy
3 + y)dx + 2(x2

y
2 + x + y4)dy = 0 4. y(x + y)dx + (x + 2y – 1)dy = 0

 5. 2xydy – (x2 + y2 + 1)dx = 0 6. (xy
2 + 2x

2
y

3)dx + (x2
y – x3

y
2)dy = 0

 7. y(1 + xy)dx + x(1 + xy + x2
y

2)dy = 0 8. (y + xy
2) dx – xdy = 0

 9. (y4 + 2y) dx + (xy
3 + 2y

4 – 4x) dy = 0 10. 2xy dx + (y2 – x2) dy = 0 ; y (2) = 1

 11. 3 (x2 + y2) dx + x (x2 + 3y
2 + 6y) dy = 0 12. (x2

y – 2xy
2) dx – (x3 – 3x

2
y) dy = 0

 13. (x4 + y4)dx – xy
3
dy = 0 14. y

2
dx + (x2 – xy – y2)dy = 0

 15. (y – x)dx + (y + x)dy = 0 16. (y3 – 2yx
2)dx + (2xy

2 – x3)dy = 0

 17. (8ydx + 8xdy) + x2
y

3(4ydx + 5xdy) = 0 18. x
3
y

3(2ydx + xdy) – (5ydx + 7xdy) = 0

 19. (y2 + 2x
2
y)dx + (2x

3 – xy)dy = 0 20. x (3y dx + 2x dy) + 8y
4 (y dx + 3x dy) = 0

 21. y (3x + 2y
2) dx + 2x (2x + 3y

2) dy = 0 22. (x3 y3 + 1) dx + x4 y2 dy = 0  

 23. (4 x3 y3 – 2xy) dx + (3x
4 y2 – x2) dy = 0 24. 3x

2 y dx + (y4 – x3) dy = 0

 25. y dx + (x + x3 y2) dy = 0

Answers

 1. x
3
y

3 + 
2

x
C

y
=  2. + =

3

3

x
x e

C
y

 3. 
2 4 6

2

2 3

x y y
xy C+ + =  4. y(x + y – 1) = ce

–x

 5. y
2 – x2 + 1 = cx. 6. 2 log x – log y – 

1
C

xy
=

 7. 
2 2

1 1
log

2
y c

xyx y
+ - =  8. 

2

2

x x
C

y
+ =

 9. (y3 + 2) x + y4 = Cy
2 10. x

2 + y2 = 5y

 11. xe
y(x2 + 3y

2) = C 12. 
x

y
 – 2 log x + 3 log y = C

 13. y
4 = 4x

4 log x + Cx
4 14. (x – y)y2 = c(x + y)

 15. log (x2 + y2)1/2 – tan–1 x

y

Ê ˆ
Á ˜Ë ¯

 = C 16. x
2
y

4 – x4
y

2 = C

 17. 4x
2
y

2 + x4
y

5 = C 18. x
3
y

3 + 2 = Cx
5/3 . y7/3

 19. 

3/2
2

4 ( )
3

y
xy C

x

Ê ˆ- =Á ˜Ë ¯
 20. x

3 y2 + 4x
2 y6 = C

 21. x
2 y4 (x + y2) = C 22. 

3( )
log

3

xy
x C+ =

 23. x
4 y3 – x2

y = C 24. 3x
3 + y4 = Cy

 25. 2 x2 y2 log (C. y) = 1
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 APPLICATIONS OF ORDINARY DIFFERENTIAL EQUATIONS

10.5  PHYSICAL APPLICATIONS

Consider a body of mass m start from a fi xed point O along a straight line OX under the action of a 

force F.

Fig. 10.1

Let P be the position of the body at any time ‘t’, where OP = x, then the velocity of the body is 
dx

dt
 

and the acceleration of the body 
2

2
or

dv d x

dt dt
.

Also, by Newton’s second law of motion,

 F = ma

 = 
dv

m
dt

 = 
2

2

d x
m

dt

where F is the force.

Example 41  A body of mass m, falling from rest is subject to the force of gravity and an air 

resistance proportional to the square of the velocity (i.e., kv
2). If it falls through a distance x and 

possesses a velocity v at that instant, prove that 
2

2 2
2 log ;

kx a

m a v
=

-
 where mg = ka

2

Solution The forces acting on the body are (i) its weight (mg) acting vertically downwards, and 

(ii) the resistance kv
2 of the air acting vertically upwards.

\   The accelerating force on the body = mg – kv
2

 = ka
2 – kv

2  [∵   mg = ka
2]

 = k(a2 – v2)

By Newton’s second law, the equation of motion of the body is

 
dv

mv
dx

 = k(a2 – v2)

or 
2 2

v
dv

a v-
 = 

k
dx

m

Integrating both sides, we get

 
2 2

v
dv

a v-Ú  = 
k

dx
m Ú

or 
2 2

1 2

2

v
dv

a v
-

-Ú  = +
k

x C
m
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or 2 21
log( )

2
a v- -  = +

k
x C

m
 (1)

Initially, when x = 0, v = 0

\ C = 21
log

2
a-

From (1), 2 21
log( )

2
a v- -  = 21

log
2

kx
a

m
-

or 
kx

m
 = 2 2 21

[log log( )]
2

a a v- -

or 
2kx

m
 = 

2

2 2
log

a

a v-
 Hence, proved.

Example 42  A boat is rowed with a velocity V across a stream of width a. If the velocity of the 

current is directly proportional to the product of the distances from the two banks, fi nd the equation of 

the path of the boat and the distance downstream to the point, where it lands.

Solution Let O be the initial point, where the boat starts and 

at any time ‘t’, on point P(x, y), its distance from the two 

banks are y and (a – y).

\    ( )
dx

y a y
dt

μ -

or 
dx

dt
 = ky(a – y)

 
dy

dt
 = velocity of the boat = V

Now, 
dy

dx
 = 

( )

dy dt V

dt dx ky a y
◊ =

-
 (1)

Equation (1) represents the resultant velocity of the boat at P. From (1), we have

 y(a – y) dy = 
V

dx
k

Integrating, we get

 
2 3

2 3

ay y
-  = +

V
x C

k
 (2)

When x = 0, y = 0, then (2) becomes C = 0

\   The equation of the path of the boat is 2 (3 2 )
6

k
x y a y

V
= -   (3)

The distance downstream to the point where the boat lands is obtained by putting y = a in (3)

\ x = 
3

6

ka

V

Fig. 10.2
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10.6  RATE OF GROWTH OR DECAY

If the rate of change of a quantity ‘y’ is proportional to the quantity present at any instant ‘t’, i.e.,

 
dy

y
dt

μ

or 
dy

dt
 = ky (22)

where k is the proportionality constant.

If k > 0, i.e., positive then the problem is one of growth and if k < 0, i.e., negative then the problem 

is one of decay.

10.7  NEWTON’S LAW OF COOLING

If the rate of change of the temperature ‘T’ of a body is proportional to the difference between T and the 

temperature TA of the ambient medium,

then ( )A

dT
T T

dt
μ -

           = - -( )A

dT
k T T

dt

where (–k) is the proportionality constant.

Example 43  Uranium disintegrates at a rate proportional to the amount present at any instant. If 

P1 and P2 grams of uranium are present at times T1 and T2 respectively, fi nd the half-life of uranium.

Solution Let P gram of uranium be present at any time ‘t’. Therefore, the equation of disintegration 

of uranium is

 
dP

dt
 = –kP, where k is a constant

or 
dP

P
 = –kdt

Integrating both sides, we get

 log P = –kt + C (1)

Initially, when t = 0, P = P0 (say)

Then (1) becomes

 log P0 = C

\ log P = log P0 – kt

or log P0 – log P = kt (2)

When t = T1, P = P1 and t = T2, P = P2

\   from (2), we have log P0 – log P1 = kT1 (3)

and log P0 – log P2 = kT2 (4)

Subtracting (3) from (4), we get k(T2 – T1) = log P1  – log P2
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or k(T2 – T1) = 1

2

log
P

P

Ê ˆ
Á ˜Ë ¯

or k = 1 2

2 1

log( / )

( )

P P

T T-

Consider T as the half-life of uranium i.e., t = T, P = P0/2

\ from (2), we get 0
0log log

2

P
kT P= -

 kT = log 2

\ T = 2 1

1

2

( ) log 2

log

T T

P

P

-
Ê ˆ
Á ˜Ë ¯

Example 44  If a substance cools from 370 K to 330 K in 10 minutes, when the temperature of the 

surrounding air is 290 K, fi nd the temperature of the substance after 40 minutes.

Solution Using Newton’s law of cooling, we have

         ( )A

dT
k T T

dt
= - -

 
A

dT

T T-
 = –kdt

Integrating both sides, we get

 log (T – TA) = –kt + C0 or T – TA = e–kt + C0

 = - 0Ckt
e e

or T – TA = Ce
–kt, where = 0C

c e

or T = TA + Ce
–kt  (1)

\ T(t) = 290 + Ce
–kt  (2)

Using T(0) = 370 K, so that

 370 = 290 + Ce
–k·0 fi c = 80

\ Eq. (2) becomes

 T(t) = 290 + 80 e–kt  (3) 

Again, using T(10) = 330 K in (3),

\ 330 = 290 + 80 e–10 k

 40 = 80 e–10 k or e–10 k = 
1

2

or 
1

10 log
2

k- =  = – log 2
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or k = 
log2

0.06931
10

=

Putting the values of C and k in (2), we have

 T(t) = 290 + 80 e–0.06931t

\   the temperature of the substance t = 40 minutes is

 T(40) = 290 + 80 e–0.06931 × 40

 T(40) = 295

Example 45  If the temperature of the air is 30ºC and a substance cools from 100ºC to 70ºC in 

15 minutes, fi nd the time when the temperature is 40ºC.

Solution Using Newton’s law of cooling, we have

 
dT

dt
 = –k(T – TA)

or 
dT

dt
 = ( 30) or

30

dT
k T kdt

T
- - = -

-
Integrating, we get

 log(T – 30) = –kt + C0

or T(t) = - + -= +030 30
kt C kt

e Ce , where = 0C
C e  (1)

Initially, when t = 0, T = 100ºC

 100 = 30 + C fi C = 70; then

Equation (1) becomes

 T(t) = 30 + 70 e–kt (2)

Again, when t = 15, T = 70ºC

\ 70 = 30 + 70 e–15k

 40 = 70 e–15k or 15 4

7

k
e

- =

or –15 k = 
4 7

log log
7 4

Ê ˆ= - Á ˜Ë ¯

or 15k = 
7

log
4

Ê ˆ
Á ˜Ë ¯

 k = 
1 7

log 0.0162
15 4

Ê ˆ =Á ˜Ë ¯

\ Eq. (2), becomes 

 T(t) = 30 + 70 e(–0.0162)t (3)

When T = 40ºC, fi nd t

Using (3), we get

 40 = 30 + 70 e(–0.0162)t



10.46 Engineering Mathematics for Semesters I and II

or 10 = 70 e(–0.0162)t

or -0.0162 t
e  = 

1

7

or –0.0162 t = 
1

log log7
7

= -

or t = 
log7

52.16 minutes
0.0162

=

Hence, the temperature will be 40ºC after t = 52.16 minutes

10.8  CHEMICAL REACTIONS AND SOLUTIONS

Example 46  A tank contains 5000 litres of fresh water. Salt water which contains 100 g of salt per 

litre fl ows into it at the rate of 10 litres per minute and the mixture kept uniform by stirring, runs out at 

the same rate. When will the tank contain 20,0000 g of salt? How long will it take for the quantity of 

salt in the tank of increase from 15,0000 gm to 25,0000 gm?

Solution Let Q g be the quantity of salt present in the tank at time ‘t’. The rate of change of quality Q 

with respect to time t is

 
dQ

dt
 = Rate of salt entering the tank – Rate of salt leaving the tank  (1)

Now, the rate of salt entering the tank

 = 100 × 10 = 1000 g/min

Let C g be the concentration  of salt at time ‘t’.

\   the rate at which the salt content decreases due to the outfl ow = C × 10 = 10 C g/min

∵   the rate of infl ow (entering) is equal to the rate of outfl ow (leaving), there is no change in the 

volume of water at any instant.

 C = 
5000

Q

\ the rate of outfl ow = 10 g/min
5000 500

Q Q
¥ =

Now, Eq. (1) becomes

 
dQ

dt
 = 

500000
1000

500 500

Q Q-
- =

or 
500000

dQ

Q-
 = 

500

dt

On integrating, - - = + 1log(500000 )
500

t
Q C   (2)

Initially, when t = 0, Q = 0, then

 C = –log 500000

\ Eq. (2) becomes, log 500000 log(500000 )
500

t
Q= - -
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or t = 
500000

500 log
(500000 )Q-

 (3)

When Q = 200000, t = T

\ T = 
500000

500 log
500000 200000-

 = 
500000

500 log
300000

 = 10

5 5
500 log 500 2.303log

3 3

Ê ˆ Ê ˆ= ¥Á ˜ Á ˜Ë ¯ Ë ¯
 = 255.41 minutes

When Q = 150000, t = T1 and Q = 250000, t = T2

Then (3) becomes

 T1 = 
500000 10

500 log 500 log
350000 7

e

Ê ˆ= Á ˜Ë ¯

and T2 = 
500000

500 log 500 log (2)
350000

e=

\   Required time (T) = T2 – T1

 = 
10

500 log 2 log
7

e e

È ˘Ê ˆ-Í ˙Á ˜Ë ¯Î ˚

 = 
7

500 log
5

e

Ê ˆ
Á ˜Ë ¯

 = 
10

7
500 2.303log

5

Ê ˆ¥ Á ˜Ë ¯
 = 168.23 minutes

10.9  SIMPLE ELECTRIC CIRCUITS

Let q be the electric charge on a capacitance C and i be the current. Then

 (i) 
dq

i
dt

=

 (ii) the potential drop across the resistance R is iR

 (iii) the potential drop across the capacitance C is 
q

C

 (iv) the potential drop across the inductance L is 
di

L
dt

 and by Kirchhoff’s law, the total potential 

drop (or voltage drop) in the circuit is equal to the applied voltage (emf), i.e.,

 
di

L iR E
dt

+ =
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Example 47  A simple electrical circuit containing a resistance R, inductance L, and capacitance 

C in series. If the electromotive force E = v sin wt. Find the current (i).

Solution By Kirchhoff’s law,

 
di

L iR
dt

+  = E = v sin wt

or 
di R

i
dt L

+  = sin
v

t
L

w  (1)

Equation (1) is Leibnitz’s linear equation; Then

 IF = 

R Rt
dt

L Le e=Ú

\   The solution of (1) is

 i(IF) = sin (IF)
V

t dt C
L

w ◊ +Ú

 ·

Rt

Li e  = sin

Rt

L
V

t e dt C
L

w ◊ +Ú

 

Rt

Lie  = 
2 2 2

sin cos
Rt

L
V R t L t

Le C
L R L

w w w

w

È ˘-
+Í ˙

+Í ˙Î ˚

or i = 
2 2 2

sin cos

( )

Rt

L
R t L t

V C e
R L

w w w

w

-È ˘-
+Í ˙

+Í ˙Î ˚
 (2)

Initially, when t = 0, i = i0

 C = 0 2 2 2

V L
i

R L

w

w
+

+

\ i = 
w w w w

w w

-È ˘- È ˘+ +Í ˙ Í ˙+ +Î ˚Î ˚
02 2 2 2 2 2

sin cos

( )

Rt

L
R t L t V L

V i e
R L R L

Example 48  The equations of electromotive force in terms of current i for an electrical circuit 

having resistance R and capacity C in series, is 
i

E Ri dt
C

= + Ú . Find the current i at any time t, when 

E = E0 sin wt.

Solution Do as same Example 47.

10.10   ORTHOGONAL TRAJECTORIES AND GEOMETRICAL 
APPLICATIONS

The concept of a orthogonal trajectories is very useful in the fi eld of mathematics like, in fl uid fl ow, 

the stream lines and the equipotential lines of constant velocity potential curves of electric force and 

equipotential lines, lines of heat fl ow and isothermal curves. The orthogonal trajectories of a given 

family of curves depends on the solution of the fi rst-order differential equations. The general solution 
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of a fi rst-order differential equation represents a one-parameter family of curves and we fi nd out another 

one-parameter family of curves which is orthogonal to the given one-parameter family of curves. If  one 

family of the curve is orthogonal (i.e., perpendicular) to the other family of curves, i.e., the tangents to 

the curves at the point of intersection are perpendicular, they are called orthogonal trajectories.

(i)  Method of Finding the Orthogonal Trajectories of a Family of Curves 
f(x, y, c) = 0

Step 1 Find the differential equation of the family of curves f(x, y, c) = 0. By eliminating the arbi-

trary constant c, we obtain ( , )
dy

g x y
dx

=  (23)

Step 2 Let 
1

( , )

dy

dx g x y
= -  (24)

Equation (24) represents the family of orthogonal trajectories (since the product of (23) and (24) 

gives –1, i.e., the curves of the fi rst family are at right angles to the curves of the second family).

Step 3 Solving Eq. (24), we obtain h(x, y, d) = 0 (25)

The family of curves (25) is the required orthogonal trajectories of the family of curves f(x, y, c) = 0

and d is the parameter.

(ii)  Method of Finding the Orthogonal Trajectories of a Family of Curves 
f(r, q, c) = 0

Step 1 Find the differential equation of the family of curves f(r, q, c) = 0. By eliminating the arbi-

trary constant c, we obtain

 , , 0
dr

g r
d

q
q

Ê ˆ =Á ˜Ë ¯
 (26)

Step 2 Replace 2dr d
by r

d dr

q

q
-  in (26), and we get

 2, , 0
d

g r r
dr

q
q

Ê ˆ- =Á ˜Ë ¯
 (27)

Step 3 Solving Eq. (27) and we obtained the required other orthogonal trajectories curve.

Example 49  Find the orthogonal trajectories of the hyperbolas x2 – y2 = c

Solution The given curve x2 – y2 = c  (1)

Step 1: Differentiating (1) both sides w.r.t. ‘x’, we obtain

 2x – 2yy¢ = 0  (2)

Equation (2) is governs the family of hyperbolas.

Step 2: The differential equation governing the orthogonal trajectories is

 
1

2 2x y
y

Ê ˆ
- -Á ˜¢Ë ¯

 = 0
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or 
y

x
y

+
¢

 = 0

or xy¢ + y = 0

or 
dy

x y
dx

+  = 0 (3)

Step 3: We now fi nd the solution of (3), separating the variables, we get

 xdy + ydx = 0

or d(xy) = 0

On integrating,

 xy = d (4)

Thus, the rectangular hyperbolas xy = d are the orthogonal trajectories of the hyperbolas

x
2 – y2 = C.

Example 50  Find the orthogonal trajectories of the family of confocal conics 
l

+ =
+

2 2

2 2
1

x y

a a
, 

where l is the parameter.

Solution Given the family of confocal conics

 
l

+
+

2 2

2 2

x y

a c
 = 1 (1)

Differentiating (1) both sides w.r.t. ‘x’, we get

 
l

+ ¢
+2 2

2 2x y
y

a a
 = 0

or 
l

Ê ˆ+ ¢Á ˜Ë ¯+2 2

x y
y

a a
 = 0 (2)

Equation (2) governs the family of conics.

\ The differential equation governing the orthogonal trajectories is replaced by 
1

y
y

= -¢ , in (2). 

We get

 
2 2

1x y

ya a l

Ê ˆÊ ˆ+ -Á ˜ Á ˜Ë ¯ ¢Ë ¯+
 = 0

or        
2 2

1y x

ya al

- -Ê ˆ =Á ˜Ë ¯ ¢+

or       
2

2 2

1y xy

ya al

Ê ˆ
=Á ˜ ¢+Ë ¯

or      
2

2 2

y xy
y

a al

Ê ˆ= ¢Á ˜Ë ¯+
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Putting the value of 
2

2

y

a l+
 in (1), we get

    
2 2

2 2 2 2
1 or 1

x xy xy x
y y

a a a a

Ê ˆ Ê ˆ+ = = -¢ ¢Á ˜ Á ˜Ë ¯ Ë ¯

or       
2 2

2 2

( )xy a x
y

a a

-
=¢

or        2 2( ) ( )
dy

xy a x
dx

= -

Separating the variables, we get

    
2 2

a x
dx ydy

x

Ê ˆ-
=Á ˜

Ë ¯

Integrating, we obtain

    
Ê ˆ-

= +Á ˜
Ë ¯Ú Ú

2 2
a x

dx ydy C
x

    - = +
2 2

2 log
2 2

x y
a x C

or       (x2 + y2) = 2a
2 log x + C¢

which is the required orthogonal trajectories.

Example 51  Find the orthogonal trajectories of the cardioids

 r = a(1 – cos q)

Solution Given the cardioids curve

 r = a(1 – cos q)  (1)

Differentiating (1) both sides w.r.t. ‘q’, we get

 
dr

dq
 = a sin q (2)

Eliminating ‘a’ from (1) and (2), we get

     
sin

1 cos

dr r

d

q

q q
=

-

or    
1 sin

cot
1 cos 2

dr

r d

q q

q q
= =

-
 (3)

which is the differential equation governing the given family.

Replacing 2by
dr d

r
d dr

q

q
-  in (3), we obtain

 
21

cot
2

d
r

r dr

q qÊ ˆ- =Á ˜Ë ¯
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or cot
2

d
r

dr

q q
- =

or   tan 0
2

dr
d

r

q
q+ =  (4)

which is the differential equation governing the orthogonal trajectories.

Equation (4) can be rewritten as

     
sin /2

cos /2

dr
d

r

q
q

q
= -

Integrating  
q

q
q

= - +Ú Ú
1 sin /2

log
cos /2

dr d C
r

or log r = 
q

+2 logcos log
2

C

or r = 
q2cos
2

C

 = q+(1 cos )
2

C

 r = C¢(1 + cos q)

which is the required orthogonal trajectories.

10.11  VELOCITY OF ESCAPE FROM THE EARTH

Example 52  Find the initial velocity of a particle which is fi xed in radial direction from the earth’s 

centre and is supposed to escape from the earth. Assume that it is acted upon by the gravitational 

attraction of the earth only.

Solution Let the distance of the particle from the earth’s centre is r.

According to Newton’s law of gravitation, the acceleration a of the particle is proportional to 
2

1

r
.

Thus, a = 
2

dv
v

dr r

m
= -  (1)

where v is the velocity of the particle when at a distance r from the earth’s centre. The acceleration is 

–ve because velocity (v) is decreasing.

When r = R, the earth’s radius then a = –g

\ the acceleration of gravity at the surface is

 –g = 
2

2
or gR

R

m
m- =

\        
2

2

dv gR
v

dr r
= -

Separating the variables and integrating, we obtain

      = - +Ú Ú2

2

dr
v dv gR C

r
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or v
2 = +

22
2

gR
C

r
 (2)

On the earth’s surface, r = R and v = v0 (initial velocity),

Then v0
2 = 2gR + 2C

or 2C = v0
2 – 2gR

\ Eq. (2) becomes

 v
2 = 

2
2
0

2
2

gR
v gR

r
+ -

When v Æ 0, the particle stops and the velocity will change from +ve to –ve and particle will return 

to the earth.

Thus, the velocity will remain +ve iff v0
2 ≥ 2 gR.

Hence, the minimum velocity of projection 0 2v gR=  is called the velocity of escape from the 

earth.

Example 53  Find the least velocity with which a particle must be projected vertically upwards 

so that it does not return to the earth. Assume that it is acted upon by the gravitational attraction of the 

earth only.

Solution Do same as Example 52.

EXERCISE 10.8

Physical Applications

 1. A particle falls under gravity in a resisting medium whose resistance varies with velocity. Find 

the relation between distance and velocity if initially the particle starts from rest.

 2. A paratrooper and her parachute weigh 50 kg. At the instant the parachute opens, she is 

travelling vertically downward at the speed of 20 m/s. If the air resistance varies directly as 

the instantaneous velocity and it is 20 newtons when the velocity is 10 m/s, fi nd the limiting 

velocity, the position and the velocity of the paratrooper at any time t.

 3. A body falling from rest is subjected to the force of gravity and an air resistance of 
2

n

g
 times the 

square of velocity. Show that the distance travelled by the body in t seconds is 
2

g

n
 log cos h(t).

Rate of Growth or Decay

 4. The rate at which bacteria multiply is proportional to the instantaneous number present. If the 

original number doubles in 2 hours, in how many hours will it triple?

 5. The number N of bacteria in a culture grew at a rate proportional to N. The value of N was 

initially 100 and increased to 332 in one hour. What was the value of N after 1.5 hours?

 6. If 30% of a radioactive substance disappears in 10 days, how long will it take for 90% of it to 

disappear?

Newton’s Law of Cooling

 7. Newton’s law of cooling states that the temperature of an object changes at a rate proportional 

to the difference of a temperature between the object and the surrounding. Supposing water 
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at a temperature 100ºC cools to 80ºC in 10 minutes, in a room maintained at a temperature of 

30ºC, fi nd when the temperature of water will become 40ºC.

 8. Water at temperature 100ºC cools in 10 minutes to 80ºC in a room of temperature 25ºC. Find

 (i) the temperature of water after 20 minutes, and

 (ii) the time when the temperature is 40ºC.

Chemical Reaction

 9. In a chemical reaction in which two substances A and B initially of amounts a and b respectively 

are concerned, the velocity of transformation dx/dt at any time t is known to be equal to the 

product (a – x) (b – x) of the amounts of the two substances then remaining untransformed. 

Find t in terms of x if a = 0.7, b = 0.6 and x = 0.3 when t = 300 seconds.

 10. A tank is initially fi lled with 100 gallons of salt solution containing 1 lb of salt per gallon. 

Fresh brine containing 2 lb of salt per gallon runs into the tank at the rate of 5 gallons per 

minute are the mixture assumed to be kept uniform by stirring runs out at the same time. Find 

the amount of salt in the tank at any time, and fi nd how long it will take for this amount to 

reach 150 lb.

Simple Electric Circuits

 11. When a resistance R W is connected in series with an inductance L henries, an emf of E volts, 

the current i amperes at time t is given by + = .
di

L Ri E
dt

 If E = 10 sin t volts and i = 0, when 

t = 0, fi nd i as a function of t.

 12. Find the solution of the equation + = ¥200 cos300
di

L Ri t
dt

, when R = 100, L = 0.05, and fi nd 

i given that i = 0 when t = 0, what value does i approach after a long time?

 13. When a switch is closed in a circuit containing a battery E, a resistance R, and an inductance 

L, the current i builds up at rate given by 
di

L Ri E
dt

+ = , fi nd i in terms of t.

  How long will it be before the current has reached one-half its maximum value if E = 6 volts, 

R = 100 W and L = 0.1 henry?

Orthogonal Trajectories

 14. Show that the one-parameter family of curves y2 = 4C (C + x) are self-orthogonal (a family of 

curves is self-orthogonal if it is its own orthogonal family).

 15. Find the orthogonal trajectories of the family of

  (i) Parabolas y = ax
2

  (ii) Parabolas y2 = 4 ax

 (iii) Semicubical parabolas ay
2 = x3

 16. Find the orthogonal trajectories of a given family of curves

  (i) e
x + e–y = C

  (ii) y
2 = Cx

 (iii) x
2 – y2 = Cx

 (iv) x
2 + y2 = C2

 17. Find the orthogonal trajectories of each of the following family of curves:

  (i) r
2 = a sin 2q

  (ii) r = a(1 + cos q)

 (iii) r = a(1 + sin2 q)
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 (iv) r = a cos2 q
  (v) r = 2a (cos q + sin q)

 (vi) r
2 = a2 cos 2q

Answers

 1. 
2

log
g g v

x
g kv kk

Ê ˆ
= -Á ˜-Ë ¯

 2. 
/25125

25 (1 )gt
x t e

g

-= - -

 4. 3.17 hours 5. 604.9

 6. 64.5 day’s 7. 57.9 minutes

 8. (i) 65.5ºC  (ii) 51.9 minutes 9. 
0.7

300 5log2 5log
0.5

x
t

x

-Ê ˆ= - + Á ˜Ë ¯-

 10. 100(2 – e–t/20); 13.9 minutes 11. /

2 2

10
( sin cos )R L

i R t L t Le
L R

-= - +
+

 12. 20040 800
[20 cos300 3sin300 ]

409 409

t
i t t e

-= + - ; and 
40

409

 13. 0.000693 seconds

 15. (i) x
2 + 2y

2 = c2 (ii) 2x
2 + y2 = c (iii) 3y

2 + 2x
2 = C2

 16. (i) e
y – e–x = l (ii) 

2
2

2

y
x l+ =  (iii) y(y2 + 3x

2) = l   (iv) y = lx

 17. (i) r
2 = l cos 2q (ii) r = l(1 – cosq) (iii) r

2 = l cos q  cot q

  (iv) r
2 = l sin q (v) r = l(cos q  – sin q) (vi) r

2 = l2 sin 2q

SUMMARY
First-Order and First-Degree Differential Equations

An equation of the form

 
dy

dx
 = (x, y) (1)

Equations like (1) are certain standard types of fi rst-order fi rst-degree differential equations for which 

solutions can be readily obtained by standard  methods such as the following:

(a) Variable-Separable

An equation of the form

 1 1 2 2( ) ( ) ( ) ( ) 0f x g y dx f x g y dy+ =

The variables x and y can be separated and then integrating both sides, we get the solution of the given 

equation.

(b) Homogeneous Equations

A differential equation of the form 

 
dy

dx
 = f(y/x) (2)
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Step 1: Putting v = 
y

x
 or y = vx and 

dy dv
v x

dx dx
= +  in (2), we get

 ( )
dv

v x f v
dx

+ =  (3)

Step 2: Separating the variables in (3) and integrating, the solution is obtained as 

 
( )

dv

f v v-Ú  = 
dx

c
x

+Ú
Step 3: Replace v by y/x, in the solution obtained in Step 2.

(c) Linear Differential Equations or (Leibnitz’s Linear Equation) 

The standard form of the linear equation of fi rst order is

 
dy

Py
dx

+  = Q – (1) 

where P and Q are functions of x only then the method of solving the linear equation is as follows:

Step 1: Write the given differential equation in the standard form (1)

Step 2:  Find the integrating factor (IF) = 
pdx

eÚ

Step 3: The solution of the given differential equation is

i.e., (IF) (IF)y Q dx C= +Ú
(d) Nonlinear Equation Reducible to Linear Form (Bernoulli’s Equation)

A fi rst-order and fi rst-degree differential equation of the form

 ( ) ( ) ndy
P x y Q x y

dx
+ =  (4)

is known as Bernoulli’s equation which is non-linear for any value of the real number n (except for n = 0 

and n = 1).

Method of fi nding Solution to Bernoulli Equation

Step 1: First of all, rewrite the given differential equation in the standard Bernoulli equation.

Step 2: Divide both sides by yn.

Step 3: Put z = y1–n and obtain the fi rst-order linear differential equation in z.

Step 4: Solve linear differential equation in z by the method discussed in Section (10.1.3).

(e) Exact Differential Equations 

To solve a differential equation of the form

 M(x, y)dx + N(x, y)dy = 0

Step 1: Find and
M N

y x

∂ ∂
∂ ∂

. If 
M N

y x

∂ ∂
=

∂ ∂
 then the given equation is an exact differential equation.

Step 2: The solution of the given equation is

Take only those terms inTreting y as a constant 

which do not contain .

( , ) ( , )

N

x

M x y dx N x y dy+Ú Ú
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(f)  To Convert Non-exact Differential Equations into Exact Differential Equations 

Using Integrating Factors

Consider a differential equation

 M (x, y) dx + N(x,  y) dy = 0 (5)

which is not exact.

Suppose there exists a function F(x, y) such that

 F(x,y) [M(x,y)dx + N(x,y)dy] = 0 (2)

is an exact equation. Then F(x ,y) is called an integrating factor (IF) of the differential equation (5).

Methods to fi nd an integrating factor to a non-exact differential equation 

 Mdx + Ndy = 0 are given here.

Case 1: If 
1

[ . . ]M y N x
N

-  = f(x) then IF = 
( )f x dx

eÚ

Case 2: If 
1

[ . . ]N x M y
M

-  = g(y) then IF = 
( )g y dy

eÚ

Case 3: If the differential equation of the form 1 2( ) ( . ) 0y f xy dx x f x y dy+ =

Then IF = 
1

. .M x N y-
 provided   M  x – N  y ≠ 0

Case 4: If the given differential equation M dx + N dy = 0 is homogeneous equation and M  x + N  y  ≠ 0 

then

 IF = 
1

. .M x N y+

Case 5: Let the differential equation be of the form

 2
2( . . ) ( ) 0a b c d

x y m y dx n x dy x y m ydx n x dy+ + + =

where a, b, c, d, m1, n1, m2, n2 are all constants and m1m2 – n1n2 π 0

Then the integrating factor is xh yk

where 
1 1 2 2

1 1 1 1
and

a h b k c h d k

m n m n

+ + + + + + + +
= = .

OBJECTIVE-TYPE QUESTIONS

 1. For the differential equation 

( , ) ( , ) 0
dy

f x y g x y
dx

+ =  to be exact

 (a) 
f g

y x

∂ ∂
=

∂ ∂
 (b) 

f g

y y

∂ ∂
=

∂ ∂

 (c) f = g (d) 
2 2

2 2

f g

x y

∂ ∂
=

∂ ∂
 [GATE (CE) 1997]

 2. If c is a constant, solution of the differential 

equation 21
dy

y
dx

= +  is

 (a) y = sin (x + c) (b) y = cos (x + c)

 (c) y = tan (x + c) (d) y = ex + c

 [GATE (CE) 1999]

 3. The solution of the differential equation 

2 0
dy

y
dx

+ = , is
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 9. Which of the following is a solution of the 

differential equation 
( )

3 ( ) 0
dx t

x t
dt

+ = :

 (a) x(t) = 3e
–t (b) x(t) = 2e

–3t

 (c) 23
( )

2
x t t= -  (d) x(t) = 3t

2

 [GATE (ECE) 2007]

 10. The solution of differential equation 

2dy
x y

dx
=  with condition that y = 1 at x = 0 is

 (a) y = e1/2x (b) 
3

log 4
3

x
y = +

 (c) 
2

log
2

x
y =  (d) 

3/3x
y e=

 [GATE (Civil Engg) 2007]

 11. Solution of at 1and 3
dy x

x y
dx y

= - = =  is

 (a) xy
2 = 2 (b) x + y2 = 4

 (c) x
2 + y2 = 4 (d) x

2 – y2 = –2

 [GATE (Civil Engg) 2008]

 12. A function y(t) satisfi es the following 

differential equation 
( )

( ) ( )
dy t

y t t
dt

d+ = ,

where d(t) is the delta function. Assuming 

zero initial condition and denoting the unit 

step function by u(t), y(t) can be of the form

 (a) e
t (b) e

–t

 (c) e
t
u(t) (d) e

–t
u(t)

 [GATE (EE) 2008]

 13. Consider the differential equation 21
dy

y
dx

= + , 

which one of the following can be a particular 

solution of this differential equation

 (a) y = tan (x + 3) (b) y = tan x + 3

 (c) x = tan (y + 3) (d) x = tan y + 3

 [GATE (IN) 2008]

 14. The solution of 4dy
x y x

dx
+ =  with the 

condition 
6

(1)
5

y =  is

 (a) 
4 1

5

x
y

x
= +  (b) 

44 4

5 5

x
y

x
= +

 (a) 
1

y
x C

=
+

 (b) 
3

3

x
y C= - +

 (c) y = Ce
x (d) None of these

 [GATE (ME) 2003]

 4. The solution of differential equation 

2 0
dy

y
dx

+ =  is

 (a) 
1

y
x C

=
+

 (b) 
2

3

x
y C= - +

 (c) y = Ce
x (d) y = x + C

 [GATE (EC) 2003]

 5. Transformation to linear form by substitution 

v = y1 – n of the equation ( ) ( ) ndy
p t y q t y

dt
+ = ;

n > 0 will be

 (a) (1 ) (1 )
dv

n pv n q
dt

+ - = -

 (b) (1 ) (1 )
dy

n pv n q
dt

+ - = +

 (c) (1 ) (1 )
dv

n pv n q
dt

+ + = -

 (d) (1 ) (1 )
dv

n v n q
dt

+ + = +

 [GATE (Civil Engg) 2005]

 6. If 2 2 log
2

dy x
x xy

dx x
+ = , and y(1) = 0 then 

what is y(e)?

 (a) e (b) 1

 (c) 1/e (d) 1/e2

 [GATE (ME) 2005]

 7. The solution of the differential equation 
2

2 xdy
xy e

dx

-+ =  with y(0) = 1 is

 (a) 
2

(1 ) x
x e+  (b) 

2

(1 ) x
x e

-+

 (c) 
2

(1 ) x
x e-  (d) 

2

(1 ) x
x e

--

 [GATE (ME) 2006]

 8. The solution of the differential equation ẋ(t) 

+ 2x(t) = d(t), with initial condition x(0) = 0 

is

 (a) e
–2t u(t) (b) e

2t u(t)

 (c) e
–t u(t) (d) e

t u(t)

 [GATE (ECE) 2006]
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 (c) 
4

1
5

x
y = +  (d) 

5

1
5

x
y = +

 [GATE (ME) 2009]

 15. Solution of the differential equation 

3 2 0
dy

y x
dx

+ =  represents a family of

 (a) ellipses (b) circles

 (c) parabolas (d) hyperbolas

 [GATE (Civil Engg) 2009]

 16. The solution of the differential equation 

, (0)
dy

ky y c
dx

= =  is

 (a) x = ce
–ky (b) x = ke

cy

 (c) y = ce
kx (d) y = ce

–kx

 [GATE (EC) 2011]

 17. With initial condition x(1) = 0.5, the solution 

of the differential equation 
dx

t x t
dt

+ =  is

 (a) 
1

2
x t= -  (b) 2 1

2
x t= -

 (c) 
2

2

t
x =  (d) 

2

t
x =

 [GATE (EE) 2012]

 18. The solution of the differential equation 

2 0
dy

y
dx

- = , given y = 1 at x = 0 is

 (a) 
1

1 x+
 (b) 

1

1 x-

 (c) 
2

1

(1 )x-
 (d) 

3

1
3

x
+

 [GATE (CH) 2013]

 19. The solution to cot cosec
dy

y x x
dx

+ =  is

 (a) y = (c + x) cot x

 (b) y = (c + x) cosec x

 (c) y = (c + x) cosec x cot x

 (d) 
cosec

( )
cot

x
y c x

x
= +

 [GATE (BT) 2013]

 20. Which ONE of the following is a linear non-

homogeneous differential equation, where 

x and y are the independent and dependent 

variables respectively?

 (a) xdy
xy e

dx

-+ =

 (b) 0
dy

xy
dx

+ =

 (c) ydy
xy e

dx

-+ =

 (d) 0y ydy
e e

dx

- -+ = =  [GATE (EC) 2014]

 21. The solution of the initial-value problem 

2 ; (0) 2
dy

xy y
dx

= - =  is

 (a) 
2

1 x
e

-+  (b) 
2

2 x
e

-

 (c) 
2

1 x
e+  (d) 

2

2 x
e

 [GATE (ME) 2014]

 22. The integrating factor for the differential 

equation (1 )
1

dy y
x

dx x
- = +

+
 is

 (a) 
1

1 x+
 (b) (1 + x)

 (c) x(1 + x) (d) 
1

x

x+
 [GATE (CH) 2014]

 23. The general solution of the differential 

equation cos( )
dy

x y
dx

= + , with c as a 

constant, is

 (a) y + sin (x + y) = x + c

 (b) tan
2

x y
y c

+Ê ˆ
= +Á ˜Ë ¯

 (c) cos
2

x y
x c

+Ê ˆ
= +Á ˜Ë ¯

 (d) tan
2

x y
x c

+Ê ˆ
= +Á ˜Ë ¯
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ANSWERS

 1. (a) 2. (c) 3. (a) 4. (a) 5. (a) 6. (d) 7. (a) 8. (a) 9. (b) 10. (d)

 11. (c) 12. (d) 13. (a) 14. (a) 15. (a) 16. (c) 17. (d) 18. (b) 19. (b) 20. (a)

 21. (b) 22. (a) 23. (d)



11.1  INTRODUCTION

Linear differential equations play an important role in the study of many practical problems in science 

and engineering. Constant coeffi cient equations arise in the theory of vibrations, electric circuits, 

etc. Variable coeffi cient equations arises in many areas of electric circuits, physics and mathematical 

modeling of physical problems, etc. 

The solution of constant coeffi cient equations can be obtained in terms of known standard functions.

A linear ordinary differential equation of order n, with constant coeffi cient is written as

1 2

0 1 21 2
( )

n n n

nn n n

d y d y d y
a a a a y R x

dx dx dx

- -

- -
+ + + + =  (1)

where a0, a1, a2, …, an are all constants and a0 π 0, R is a function of x only.

If R(x) = 0 then it is called a homogeneous equation otherwise it is said to be a non-homogeneous 

equations.

11.2  THE DIFFERENTIAL OPERATOR D

Sometimes, it is convenient to write the given linear differential equation in a simple form using the 

differential operator D.

The part of
d dy

dx dx
 may be regarded as an operator D stands for ,

d

dx
 similarly 

2 3 4

2 3 4
, , ,

n

n

d d d d

dx dx dx dx
 

may be regarded as operators. D2 stands for 
2

2
,

d

dx
 D3 stands for 

3

3
, , nd

D
dx
…  stands for .

n

n

d

dx

Thus, we can write the given differential equation (1) is in the form of

a0D
n
y + a1D

n–1
y + a2D

n–2
y +   + any = R(x)

or [a0D
n + a1D

n–1 + a2D
n–2 +   + an] y = R(x)

or  F(D) y = R(x)  (2)

where F(D) ∫ a0 D
n + a1D

n–1 + a2D
n–2 +   + an.

Linear Differential 

Equations of Higher 

Order with Constant 

Coeffi cients11
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11.3   SOLUTION OF HIGHER ORDER HOMOGENEOUS LINEAR 

DIFFERENTIAL EQUATIONS  WITH CONSTANT COEFFICIENT

Consider the nth order homogeneous linear equation with constant coeffi cients is 

 
1 2

0 1 21 2
( )

n n n

nn n n

d y d y d y
a a a a y R x

dx dx dx

- -

- -
+ + + + =  (3)

Let y = emx be a solution of (3). Substituting y = emx,
k

k

d y

dx
 = y(k) = mk emx, k = 1, 2, 3, …, n (3) and canceling emx, we get the auxiliary (or characteristic) 

equations

 a0m
n + a1m

n–1 + a2m
n–2 + … + an = 0 (4)

The degree of the equation (4) is same as the order of the differential equation.

The auxiliary equation (4) has n roots. All the roots may be real and distinct, all or some of the roots 

may be complex, all or some of the roots may be equal. Consider the following cases.

Case I

When the auxiliary equation have all real and distinct roots say m1, m2, m3, …, mn. Then the n 

linearly independent solutions 31 2
1 2 3, , , nm x m xm x m x

ny e y e y e y e= = = =…  of equation (3).

Hence, y(x) = 31 2
1 2 3

nm x m xm x m x
nC e C e C e C e+ + + +  is a general solution of (3), where C1, C2, 

C3, …, Cn are all constants.

Case II

When the auxiliary equation may have some multiple roots. Let r be the multiplicity of the root m1, 

i.e., m = m1 is repeated r times, and the remaining (n – r) roots are real and distinct. Putting m = m1, we 

obtain y1(x) = 1m x
e  as one of the solutions.

Now, the remaining (r – 1) linearly independent solutions corresponding to the multiple root m = m1 

are given by y1, xy1, x
2
y, x3

y1, …, xr–1
y1.

Hence, y(x) = (C1 + xC2 + x2
C3 + … + xr–1

Cr) 
1 1m x m x

ne C e+ +  is a general solution of (3), where 

C1, C2, … Cr, Cn are all constants.

Case III

When the auxiliary equation may have some imaginary roots. If p + iq is a root then p – iq is also 

a root of auxiliary equation. In this case, the linearly independent solutions are given by epx cos qx and 

e
px sin qx. If the auxiliary equation (4) has r complex conjugate pairs of roots pk ± iqk, k = 1, 2, 3, …, r, 

the corresponding linearly independent solutions are

1 1 2 2
1 1 2 2cos , sin , cos , sin , , cosrp x p x p x p x p x

re q x e q x e q x e q x e q x… .

Therefore, the general solution corresponding to linearly independent solutions is

 y(x) = 1 2

1 2 2

1 1 2 1 3 2 4 2( cos sin ) ( cos sin )

( cos sin ) nr

p x p x

m xp x
r r r r n

e C q x C q x e C q x C q x

e C q x C q x C e

+ + +

+ + + + +  

Note: Multiple Complex Roots

If p + iq is a multiple root of order m then p – iq is also a multiple root of order m.
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Then the corresponding linearly independent solutions are

1 1 1 1 21 1
1 1 1 1 1 1cos , sin cos , sin , cos , sin

p x p x p x p x p xm m
e q x e q x xe q x xe q x x e q x x q x

- -+  

Therefore, the general solution corresponding to linearly independent solutions is

 y(x) = 1 2 1
1 2 3 1

2 1
1 2 3 1

[( ) cos

( ) sin ] n

p x m
m

m xm
m n

e C xC x C x C q x

C xC x C x C q x C e

-

-

+ + +

+ + + + + + ◊¢ ¢ ¢ ¢

 

 

where C1, C2, …, Cm, C¢1, C¢2, … C¢m, Cn are arbitrary constants.

Example 1  Solve 
3 2

3 2
4 4

d y d y dy
y

dxdx dx
- - +  = 0.

Solution Putting y = emx in the given differential equation and we obtain the auxiliary equation

 m
3 – m2 – 4m + 4 = 0 (1)

or (m – 1) (m2 – 4) = 0 

or m = 1, 2, –2

The roots of auxiliary equation (1) are m = 1, 2, –2, which are real and distinct.

The solution of the equation is given by

 y = C1e
x + C2e

2x + C3e
–2x, where C1, C2, C3 are arbitrary constants.

Example 2  Solve 
4 2

4 2
5 4

d y d y
y

dx dx
- +  = 0

Solution We have 
4 2

4 2
5 4

d y d y
y

dx dx
- +  = 0 (1)

Putting y = emx in (1), we obtain the auxiliary equation as

 m
4 – 5m

2 + 4 = 0 (2)

or (m2 – 1) (m2 – 4) = 0

or m = 1, –1, 2, –2

The rods of the auxiliary equation (2) are 1, –1, 2, –2.

The general solution of (1) is given by

 y = C1e
x + C2e

–x + C3e
2x + C4e

–2x, where C1, C2, C3 and C4 are arbitrary constants.

Example 3  Solve 
4 3 2

4 3 2
4 8 8 4

d y d y d y dy
y

dxdx dx dx
- + - +  = 0.

Solution We have 
4 3 2

4 3 2
4 8 8 4

d y d y d y dy
y

dxdx dx dx
- + - +  = 0 (1)

Substituting y = emx in (1), we obtain the auxiliary equation as

 m
4 – 4m

3 + 8m
2 – 8m + 4 = 0 (2)

or (m2 – 2m + 2)2 = 0

or m
2 – 2m + 2 = 0 (two times)

or m = 
2 4

1
2

i
± -

= ±   (two times)
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The general solution of (1) is given by

 y = ex [(C1 + xC2)cos x + (C3 + xC4)sin x]

where C1, C2, C3, C4 are arbitrary constants.

Example 4  Solve (D2 – 1)2 (D2 + 1)2
y = 0; 

d
D

dx
∫ .

Solution We have (D2 – 1)2 (D2 + 1)2
y = 0 (1)

Substituting y = emx in (1), we obtain the auxiliary equation as

 (m2 – 1)2 (m2 + 1)2 = 0 (2)

or m
2 – 1 = 0 (two times) and (m2 + 1)2 = 0 (two times)

or m = ±1 (two times) and m = ±i (two times)

The general solution is given by

 y = (C1 + xC2)e
x + (C3 + xC4)e

–x + [(C5 + xC6)cos x + (C7 + xC8)sin x]

where C1, C2, C3, C4, C5, C6, C7 and C8 are arbitrary constants.

Example 5  Solve 
4

4

4
0

d y
k y

dx
- = .

Solution We have 
4

4

4
0

d y
k y

dx
- =  (1)

Substituting y = emx in (1), we obtain the auxiliary equation as 

 m
4 – k4 = 0 (2)

or (m2 – k2)(m2 + k2) = 0

or m = ±k, +ik

The general solution of (1) is given by

 y = C1e
kx + C2e

–kx + C3cos kx + C4 sin kx

where C1, C2, C3 and C4 are all constants.

Example 6  Solve 
5 3

5 3
0

d y d y

dx dx
- = .

Solution We have 
5 3

5 3
0

d y d y

dx dx
- =  (1)

Substituting y = emx in (1), we obtain the auxiliary equation as 

 m
5 – m3 = 0 (2)

or m
3(m2 – 1) = 0

or m = 0, 0, 0, ±1

The roots of (2) are m = 0 (repeated three times) and m = ±1 real and distinct.

The general solution of (1) is given by

 y = (C1 + xC2 + x2
C3) + C4e

x + C5e
–x
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where C1, C2, C3, C4, and C5 are arbitrary constants.

EXERCISE 11.1

Solve the following differential equations.

 1. 
2

2
3 4 0

d y dy
y

dxdx
- - =  2. 

2

2
4 4 0

d y dy
y

dxdx
- + =

 3. 
3 2

3 2
6 3 10 0

d y d y dy
y

dxdx dx
+ + - =  4. 

4 3 2

4 3 2
9 11 4 0

d y d y d y dy
y

dxdx dx dx
- - - - =

 5. 

6

6
0

d y
y

dx
+ =  6. 

3 2

3 2
2 5 6 0

d y d y dy
y

dxdx dx
- - + =

 7. 
4 3 2

4 3 2
4 12 27 18 0

d y d y d y dy
y

dxdx dx dx
- - + - =  8. 

3

3
3 2 0

d y dy
y

dxdx
- - =

 9. 
3 2

3 2
3 4 0

d y d y
y

dx dx
- - = ; given that y(0) = 1, y ¢(0) = 0, y≤(0) = 

1

2
.

 10. 

4 3 2

4 3 2
2 11 18 18 0

d y d y d y dy
y

dxdx dx dx
+ + + + = ; given that y(0) = 0, y¢(0) = 3, y≤(0) = –11, y≤¢(0) = –23.

Answers

 1. y = C1e
–x + C2e

4x 2. y = (C1 + xC2)e
2x

 3. y = C1e
x + C2e

–2x
 + C3e

–5x 4. y = (C1 + xC2 + x2
C3)e

–x + C4e
4x

 5. y = C1e
x + C2e

–x
 +e

x/2 /2
3 4 5 6

3 3 3 3
cos sin cos sin

2 2 2 2

x
C x C x e C x C x

-Ê ˆ Ê ˆ
+ + +Á ˜ Á ˜

Ë ¯ Ë ¯

 6. y = C1e
x + C2e

–2x
 + C3e

3x
 7. 

3 3

2 2 2
1 2 3 4

x x

x x
y C e C e C e C e

-
= + + +

 8. y = C1e
2x + (C2x + C3)e

–x 9. 
2( 1) 2x x

y e x e
-È ˘= + +Î ˚

 10. y = cos 3x + sin 3x + e–x (cos x + sin x)

11.4   SOLUTION OF HIGHER ORDER NON-HOMOGENEOUS LINEAR 

DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS

As already shown in Section 11.2, the complete solution of 

[a0D
n + a1D

n – 1 + a2D
n – 2 +   + an]y = R(x) (5)

or F(D)y = R(x), where F(D) ∫ (a0D
n + a1D

n – 1 +   + an) is

 y = Complementary function + Particular integral = C.F. + P.I.

where the CF consists the general solution of the differential equation F(D)y = 0.
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In Section 11.3, we have discussed different cases of fi nding the Complementary Function (CF) by 

taking the differential equation as F(D)y = 0.

Methods of fi nding the particular integral (PI) will be discussed now.

The particular integral of the differential equation F(D)y = R(x) is 
1

( )
( )

R x
F D

◊

It is obviously a function of x which when operated by F(D) gives R(x). 

Now, as
1

( )
( )

F D R R
F D

= , therefore 
1

( )F D
 can be regarded as the inverse operator of F(D).

Hence, the particular integral of the equation

 F(D)y = R will be 
1

( )
R

F D
◊

11.5   GENERAL METHODS OF FINDING PARTICULAR INTEGRALS 

(PI)

The operator 
1

D a-
, where a being a constant. If R is any function of x then

 
1

( )
R

D a-
 = x x

e e Rdx
a a- ◊Ú

Proof Let

 y = 
1

( )
R

D a-
 (6)

Operating (6) both sides by (D – a), we get

 (D – a)y = 
1

( )D R
D

a
a

Ê ˆ
- Á ˜-Ë ¯

 (D – a)y = R

or 
dy

y
dx

a-  = :
d

R D
dx

∫  (7)

Equation (7) is a linear differential equation,

whose integrating factor = 
dx x

e e
a a- -=Ú

Thus, the complete solution of (7) is given by

 y·e–ax = 
x

R e dx
a-◊Ú

 y = x x
e R e dx

a a-◊Ú

Hence, 
1

( )
R

D a-
 = 

x x
e R e dx

a a-◊Ú

Similarly, 
1

R
D a+

 = 
x x

e R e dx
a a- ◊Ú
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Note: The above method can be used to evaluate the particular integral in which R is of the form tan ax, 

cot ax, cosec ax, sec ax or any other form not covered by shorter method (to be discussed later on).

11.6   SHORT METHODS OF FINDING THE PARTICULAR INTEGRAL 

WHEN ‘R’ IS OF A CERTAIN SPECIAL FORMS

Consider the differential equation

 
1 2

1 21 2
( )

n n n

nn n n

d y d y d
a a a y R x

dx dx dx

- -

- -
+ + + + =  (8)

or [Dn + a1D
n – 1 + a2D

n – 2 +   + an]y = R(x); 
d

D
dx

∫

or F(D)y = R(x), where F(D) ∫ (a0D
n + a1D

n – 1 +   + an)

Therefore, the particular integral (PI) is

 PI = 
1 2

1 2

1 1
( ) ( )

( )[ ]n n n
nD a D a D a

R x R x
F D- -+ +

= ◊
+ + 

Case I

When R(x) = eax

We have F(D) = Dn + a1D
n – 1 + a2D

n – 2 +   + an

Therefore,

 F(D)eax = [Dn + a1D
n – 1 + a2D

n – 2 +   + an]e
ax

 = Dn
 e

ax + a1D
n – 1 eax + a2D

n – 2 eax +   + an e
ax

 = an
 e

ax + a1a
n – 1 eax + a2a

n – 2 eax +   + an e
ax

 = (an + a1a
n – 1 + a2a

n – 2 +   + an) e
ax

 F(D)eax = f(a)eax

Operating both sides by 
1

( )F D
, we get

 e
ax = 

1
[ ( ) ]

( )

ax
f a e

F D
◊

 = 
1

( )
( )

ax
f a e

F D
◊

Hence, 
1

( )

ax
e

F D
 = 

1

( )

ax
e

f a
, provided f(a) π 0. (9)

If f(a) = 0 then the above rule fails. We consider F(D) = (D – a) f(D), where (D – a) is a factor of 

F(D). (10) 

Then 
1

( )

ax
e

F D
 = 

1

( ) ( )

ax
e

D a Df-

 = 
1 1

( ) ( )

ax
e

D a Df

È ˘
Í ˙- Î ˚
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 = 
1 1

; ( ) 0 [By Eq. (9)]
( ) ( )

ax
e a

D a a
f

f

È ˘ πÍ ˙- Î ˚

 = 
1 1

( ) ( )

ax
e

a D af

È ˘
Í ˙-Î ˚

 = 
1

( )

ax ax ax
e e e dx

af
-◊Ú  

1
By x x x x

e e e e dx
D

a a a a

a
-È ˘= ◊Í ˙-Î ˚

Ú

 = 
( )

ax
e

x
af

 (11)

Differentiating (10) with respect to D, we get

 F¢(D) = f(D) + (D – a) ◊ f¢(D)

Putting D = a, we get F¢(a) = f(a). (12)

Using (12), Eq. (11) reduces to

 
1

( )

ax
e

F D
 = 

( )

ax
e

x
af

 
1

( )

ax
e

F D
 = 

( )

ax
e

x
F a¢

, provided F ¢(a) π 0 (13)

If F¢(a) = 0 then the above rule can be repeated to give

 
1

( )

ax
e

F D
 = 2

( )

ax
e

x
F a¢¢

; provided F≤(a) π 0, and so on.

Case II

When R(x) = sin (ax + b) or cos (ax + b), we know that

 D sin (ax + b) = a cos (ax + b)

 D
2 sin (ax + b) = – a2 sin (ax + b)

 D
3 sin (ax + b) = – a3 cos (ax + b)

 D
4 sin (ax + b) = a4 sin (ax + b)

In general, (D2)n sin (ax + b) = (– a2)n sin (ax + b).

Hence,

 F(D2) sin (ax + b) = f(–a
2) sin (ax + b)

Operating both sides 
2

1

( )F D
, we get

 sin (ax + b) = 2

2

1
( ) sin ( )

( )
f a ax b

F D
- ◊ ◊ +

or 
2

1
sin( )

( )
ax b

F D
+  = 

2

1
sin( )

( )
ax b

F a
+

-
; provided f(– a2) π 0. (14)

Similarly,

 
2

1
cos( )

( )
ax b

F D
+  = 

2

1
cos( )

( )
ax b

F a
+

-
; provided f(– a2) π 0. (15)
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If f(– a2) = 0, the above rule is fails.

In such a situation, we proceed as follows.

 e
i (ax + b) = cos(ax + b) + i sin(ax + b) (by Euler’s formula)

Thus,

 
( )

2

1

( )

i ax b
e

F D

+
 = 

2

1
[cos ( ) sin ( )]

( )
ax b i ax b

F D
+ + +

or ( )

2

1

( )

i ax b
e

F D

+

¢
 = 

2

1
[cos ( ) sin ( )]

( )
ax b i ax b

F D
+ + +

or   
2

[cos ( ) sin ( )]
( )

x
ax b i ax b

F D
+ + +

¢
 = 

2

1
[cos ( ) sin ( )]

( )
ax b i ax b

F D
+ + +

Equating both sides real and imaginary parts, we have

 
2

1
cos ( )

( )
ax b

F D
+  = 

2 2
2

1
cos ( )

[ ( )]
D a

x ax b
F D

= -

◊ +
¢

 = 
2

cos ( )
( )

x
ax b

F a
+

-¢
; provided F¢(–a

2) π 0

and 
2

1
sin ( )

( )
ax b

F D
+  = 

2
sin ( )

( )

x
ax b

F a
+

-¢
; provided F¢(–a

2) π 0

If F¢(–a
2) = 0 then the above rules fails and repeating the above process, we have

 
2

1
cos ( )

( )
ax b

F D
+  = 

2

2
cos ( )

( )

x
ax b

F a
+

-¢¢
; provided F≤(–a

2) π 0

and 
2

1
sin ( )

( )
ax b

F D
+  = 

2

2
sin ( )

( )

x
ax b

F a
+

-¢¢
; provided F≤(–a

2) π 0

Case III

When R(x) = xn; n being positive integer

 PI = 
1 1

( )
( ) ( )

n
R x x

F D F D
◊ = ◊

Our aim to make the coeffi cient of the leading term of F(D) unity, take the denominator in the 

numerator and then expand it by the Binomial theorem. Operate the resulting expansion on xn.

Case IV

When R(x) = eax ◊ P(x), where P(x) is a function of x.

Let V is a function of x; then by successive differentiation of eax ◊ V, we have.

 D[eax ◊ V] = eax(DV) + a eax ◊ V = eax (D + a) V

 D
2[eax ◊ V] = eax (D + a)2 ◊ V

 D
3[eax ◊ V] = eax (D + a)3 V
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In general,

 D
n[eax V] = eax(D + a)n V

Hence,

 F(D) [eax ◊ V] = eax F(D + a) V

Operating both sides by 
1

( )F D
, we get

 e
ax V = 

1
[ ( )]

( )

ax
e F D a V

F D
◊ +

Putting F(D + a) V = P(x), we have 
( )

( )
( )

P x
V x

F D a
=

+
 and so we have

 
1

( )

ax
e P

F D a+
 = 

1
( )

( )

ax
e P

F D
◊

or 
1

( )
( )

ax
e P

F D
◊  = 

1

( )

ax
e P

F D a+

Case V

When R(x) = x ◊ P(x) where P is a function of x.

 PI = 
1

( )
( )

x P x
F D

By successive differentiation of xV, we have

 D(xV) = x DV + V

 D
2(xV) = x D2

V + 2DV

In general,

 D
n (xV) = x Dn

V + n Dn – 1 V

 = n nd
x D V D V

dD

È ˘+ Í ˙Î ˚
Hence,

 F(D) [xV] = x F(D) V + F¢(D) V (16)

Let F(D) V = P; then P will also be a function of x.

 V = 
1

( )
P

F D

Putting, the value of V in Eq. (16), we get

 
1

( )
( )

F D x P
F D

◊  = 
1 1

( ) ( )
( ) ( )

x F D P F D P
F D F D

◊ ◊ + ◊¢  (17)

Operating (17) by 
1

( )F D
 both sides, we get

 
1 1

( )
( ) ( )

F D x P
F D F D

È ˘◊Í ˙
Î ˚

 = 
1 1 1

( ) ( )
( ) ( ) ( )

xP F D P
F D F D F D

È ˘+ ◊¢Í ˙
Î ˚
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1

( )
x P

F D
◊  = 

1 1 1
( ) ( )

( ) ( ) ( )
xP F D P

F D F D F D
+ ◊¢

Hence, 
1

( )
( )

xP
F D

 = 
2

1 ( )

( ) [ ( )]

F D
x P P

F D F D

¢
-

Note: The above formula is not convenient to evaluate the PI of xn eax, n > 1.

Example 7  Solve 
2

3

2
5 6 xd y dy

y e
dxdx

- + = .

Solution The given DE can be written as

 (D2 – 5D + 6) y = e3x, D ∫ 
d

dx
 (1)

The auxiliary equation is

 m
2 – 5m + 6 = 0

 (m – 2) (m – 3) = 0

 m = 2, 3

The CF = C1 e
2x + C2 e

3x; C1, C2 being arbitrary constants.

 PI = 
3

2

1

5 6

x
e

D D- +

 = 31

( 3) ( 2)

x
e

D D- -

 = 2 3 21

( 3)

x x x
e e e dx

D

-◊
- Ú

1
By using general method x x

R e R e dx
D

a a

a
-È ˘

= ◊Í ˙-Î ˚
Ú

 = 31

3

x
e

D -

 = 
3 3 3x x x

e e e dx
-Ú

 = 
3 31x x

e dx x e=Ú
The complete solution of the equation (1), is

 y = CF + PI

 y = C1 e
2x + C2 e

3x + x e3x

Example 8  Solve 
2

2

2
4 .xd y

y e
dx

+ =

Solution The given equation can be rewritten as

 (D2 + 4) y = e2x; D ∫ 
d

dx
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The auxiliary equation is

 m
2 + 4 = 0

 m = ± 2i

 CF = C1 cos 2x + C2 sin 2x

 PI = 2

2

1

4

x
e

D +

 = 2

2

1

2 4

x
e

+
 [using Case I]

 = 21

8

x
e

The complete solution of given equation is

 y = CF + PI

 y = C1 cos 2x + C2 sin 2x + 21

8

x
e ; C1, C2 are arbitrary constants.

Example 9  Solve 
3

2

3
( 1)x
e

d y
y

dx
- = + .

Solution The given equation can be rewritten as

 (D3 – 1) y = (ex + 1)2 º (1); 
d

D
dx

∫
The auxiliary equation is

 m
3 – 1 = 0

or (m – 1) (m2 + m + 1) = 0

or m = 1, 
1 3

2

i- ±

 CF = 2
1 2 3

3 3
cos sin

2 2

x

x
C e e C x C x

- È ˘Ê ˆ Ê ˆ
+ +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

Now,

 PI = 2

3

1
( 1)

1

x
e

D
+

-

 = 
2

3

1
( 2 1)

1

x x
e e

D
+ +

-

 = 2

3 3 3

1 2 1
1

1 1 1

x x
e e

D D D
+ + ◊

- - -

 = 2

3 3 3

1 2 1

2 1 1 1

x x ox
e e e

D D
+ +

- - -
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 = 2

3 3

1 2 1

7 1 1

x x ox
e e e

D O
+ +

- -

 = 2

3 3

1 2 1

7 1 1

x x ox
e e e

D D
+ -

- -

 = 2

2

1
2 1

7 3

x xx
e e

D
+ ◊ -  

1
Using if ( ) = 0

( ) ( )

ax axx
e e f a

F D F D

È ˘
=Í ˙¢Î ˚

 

 PI = 21 2
1

7 3

ax xx
e e+ -

The complete solution is

y = 2
1 2 3

3 3
CF PI cos sin

2 2

x

x
C e e C x C x

- È ˘Ê ˆ Ê ˆ
+ = + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

21 2
1

7 3

x x
e x e+ + -

where C1, C2 and C3 are arbitrary constants.

Example 10  Solve 
3 2

3 2
cos 2

d y d y dy
y x

dxdx dx
+ - - = .

Solution The given equation can be rewritten as

 (D3 + D2 – D – 1)y = cos 2x º (1); 
d

D
dx

∫

The auxiliary equation is

 m
3 + m2 – m – 1 = 0

or m
2(m + 1) – (m + 1) = 0

or (m + 1) (m2 – 1) = 0

or m = 1, –1, –1

\ CF = C1 e
x + (C2 + C3 x) e–x

Now,

 PI = 
3 2

1
cos 2

1
x

D D D+ - -

 = 
1

cos 2
( 4) 4 1

x
D D- - - -

 [using Case II, replace D2 by –22]

 = 
1

cos 2
5 5

x
D- -

 = 
1 1

cos 2
5 1

x
D

-
+

 = 
2

1 1
cos 2

5 1

D
x

D

- -
◊

-
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 = 
1 1

( 1) cos 2
5 4 1

D x- - ◊
- -

 = 
1

( 1) cos 2
25

D x-

 = 
1

[ cos 2 cos 2 ]
25

D x x-

 = 
1

[ 2 sin 2 cos 2 ]
25

x x- -

 = 
1

[2 sin 2 cos 2 ]
25

x x- +

The complete solution is

y = CF + PI = C1 e
x + (C2 + x C3) e

–x – 
1

(2 sin 2 cos 2 )
25

x x+

where C1, C2, and C3 are constants.

Example 11  Solve (D3 + a2 D) y = sin ax; 
d

D
dx

∫

Solution The given equation is

 (D3 + a2
D)y = sin ax º (1); 

d
D

dx
∫

The auxiliary equation is

 m
3 + a2 m = 0

or m(m2 + a2) = 0 or m = 0, ± ia

 CF = C1 + C2 cos ax + C3 sin ax

Now PI = 
3 2

1
sin ax

D a D+

 = 
3 2

1
sin ax

D a D+

 = 
2 2

1 1
sin

( )
ax

DD a

Ê ˆ◊Á ˜Ë ¯+

 = 
2 2

1 cos

( )

ax

aD a

Ê ˆ◊ -Á ˜Ë ¯+

 = 
2 2

1 1
cos ax

a D a

È ˘- ◊Í ˙+Î ˚

 = 
1

sin
2

x
ax

a a
-  

2 2

1
cos sin , if ( ) 0

2

x
ax ax F a

aD a

È ˘
= =Í ˙

+Î ˚
∵
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 = 
2

sin
2

x
ax

a
-

The complete solution is

 = 1 2 3 2
cos sin sin

2

x
C C ax C ax ax

a
+ + -

Example 12  Solve (D2 – 9)y = x3; 
d

D
dx

∫ .

Solution The auxiliary equation of the given DE is

 m
2 – 9 = 0

or m = ± 3

 CF = C1 e
3x + C2 e

–3x

Now, PI = 3

2

1

9
x

D -

 = 3

2

1

9 1
9

x
DÊ ˆ

- -Á ˜Ë ¯

 = 

1
2

31
1

9 9

D
x

-
Ê ˆ

- - ◊Á ˜Ë ¯

 = 
2 4

31
1

9 9 81

D D
x

È ˘
- + + + ◊Í ˙

Î ˚
 

 = 3 2 3 4 31 1 1
( ) ( )

9 9 81
x D x D x

È ˘- + +Í ˙Î ˚

 = 31 1
6 0

9 9
x x

È ˘- + ◊ +Í ˙Î ˚

 = 
3 2

9 27

x
x- -

The complete solution is

 y = 
3

3 3
1 2

2

9 27

x x x
C e C e x

-+ - - .

Example 13  Solve (D2 + 4D – 12)y = e2x ◊ (x – 1); 
d

D
dx

∫

Solution The auxiliary equation of the given DE is

 m
2 + 4m – 12 = 0

 (m – 2) (m + 6) = 0 or m = 2, – 6

 CF = C1 e
2x + C2 e

–6x
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Now,

 PI = 2

2

1
( 1)

( 4 12)

x
e x

D D
◊ -

+ -

 = 21
( 1)

( 2) ( 6)

x
e x

D D
◊ -

- +

 = 2 1
( 1)

( 2 2) ( 2 6)

x
e x

D D
◊ -

+ - + +
 [Using Case IV]

 = 
2 1

( 1)
( 8)

x
e x

D D
◊ -

+

 = 2 1
( 1)

8 1
8

x
e x

D
D

◊ -
Ê ˆ+Á ˜Ë ¯

 = 

1

2 1
1 ( 1)

8 8

x D
e x

D

-
Ê ˆ◊ + -Á ˜Ë ¯

 = 2 1
1 ( 1)

8 8

x D
e x

D

Ê ˆ◊ - -Á ˜Ë ¯  [Neglecting higher powers of D]

 = 2 1 1
( 1)

8 8

x
e x

D

È ˘◊ - -Í ˙Î ˚

 = 
2 1 9

8 8

x
e x

D

È ˘◊ -Í ˙Î ˚

 = 
2 2 9

8 2 8

x
e x xÈ ˘

-Í ˙
Î ˚

 
1

( ) ( )f x f x dx
D

È ˘=Í ˙Î ˚Ú∵

The complete solution is

 y = 
2 2

2 6
1 2

9
CF PI

8 2 8

x
x x e x x

C e C e
- È ˘

+ = + + -Í ˙
Î ˚

where C1 and C2 are arbitrary constants.

Example 14  Solve (D2 – 2D + 2) y = x + ex . cos x; 
d

D
dx

∫ .

Solution The auxiliary equation of given equation is

 m
2 – 2m + 2 = 0

or m = 
2 4 8

1
2

i
± -

= ±

\ CF = ex [C1 cos x + C2 sin x]; C1 and C2 are arbitrary constants.

Now,

 PI = 
2

1
( cos )

( 2 2)

x
x e x

D D
◊ +

- +
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 = 
2 2

1 1
cos

( 2 2) ( 2 2)

x
x e x

D D D D
+ ◊

- + - +

 = 

1
2

2

1 2 1
1 cos

2 2 {( 1) 2( 1) 2}

xD D
x e x

D D

-
Ê ˆ-

+ ◊ + ◊Á ˜Ë ¯ + - + +

 = 
2

2

1 1
1 cos

2 2 1

xD
D x e x

D

È ˘
◊ + - + + ◊Í ˙
Î ˚ +

 

 = 
1

( 1) cos
2 2

x x
x e x

D
+ +

 = 
1

( 1) sin
2 2

x
xe

x x+ +

The complete solution is

 y = 1 2

1
[ cos sin ] ( 1) sin

2 2

x
x xe

e C x C x x x+ + + +

Example 15  Solve 
2

2
2 sinxd y dy

y x e x
dxdx

- + = .

Solution The given DE can be rewritten in the form of 

 (D2 – 2D + 1)y = x ex ◊ sin x; 
d

D
dx

∫  (1)

The auxiliary equation of (1) is

 m
2 – 2m + 1 = 0  fi (m – 1)2 = 0

or m = 1, 1

 CF = (C1 + x C2) e
x; C1 and C2 are arbitrary constants.

Now,

 PI = 
2

1
sin

( 1)

x
x e x

D -

 = 
2

1
( sin )

( 1)

x
e x x

D
◊

-

 = 
2

1
( sin )

( 1 1)

x
e x x

D
◊

+ -

 = 
2

1
sinx

e x x
D

◊

 = 
1

sinx
e x x dx

D
◊ Ú

 = 
1

[ cos sin ]x
e x x x

D
◊ - +



11.18 Engineering Mathematics for Semesters I and II

 = cos sinx
e x x dx x dxÈ ˘- +Î ˚Ú Ú

 = ex [–x sin x – cos x – cos x]

 = – ex (x sin x + 2 cos x)

Hence, the complete solution is

 y = (C1 + x C2) e
x – ex (x sin x + 2 cos x)

Example 16  Solve (D2 + 2D + 1) y = x ◊ sin x; 
d

D
dx

∫ .

Solution The auxiliary equation of the given DE is

 m
2 + 2m + 1 = 0 or (m + 1)2 = 0

or m = –1, –1

 CF = (C1 + x C2) e
–x; C1 and C2 are arbitrary constants.

Now,

 PI = 
2

1
sin

( 1)
x x

D +

 = 
2 2 2

1 2 ( 1)
sin sin

( 1) [( 1) ]

D
x x x

D D

+
◊ ◊ - ◊

+ +
 [Using Case V]

 = 
2 2 2

1 2 ( 1)
sin sin

2 1 [ 2 1]

D
x x x

D D D D

+
◊ -

+ + + +

 = 
2

1 2 ( 1)
sin sin

2 4

D
x x x

D D

+
◊ -

 = 
2

1 ( 1)
sin sin

2 2 1

x D
x dx x

+
-

-Ú

 = 
1

cos [cos sin ]
2 2

x
x x x- + +

Hence, the complete solution is

 y = 1 2

1
( ) cos [cos sin ]

2 2

x x
C xC e x x x

-+ - + +

Example 17  Solve (D2 + 1)y = x2 ◊ sin 2x; 
d

D
dx

∫ .

Solution The auxiliary equation of the given DE is

 m
2 + 1 = 0 or m = ± i

 CF = C1 cos x + C2 sin x; C1 and C2 are arbitrary constants.

Now, PI = 2

2

1
sin 2

1
x x

D +

 = IP of 
2 2

2

1

1

ix
x e

D +
 [IP = Imaginary Part]
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 = IP of 2 2

2

1

( 2 ) 1

ix
e x

D i
◊ ◊

+ +

 = IP of 2 2

2

1

4 3

ix
e x

D iD
◊ ◊

+ -

 = IP of 

1
2

2 21 4
1

3 3 3

ix iD D
e x

-
È ˘Ê ˆ

◊ - + ◊Í ˙Á ˜Ë ¯- Î ˚

 = IP of 

2
2 2 21 4 16

1
3 3 3 9

ix iD D
e D x

È ˘
◊ + + - + ◊Í ˙
- Î ˚

 

 = IP of 

2
2 8 13

2
3 3 9

ix
e ix

x
Ê ˆ È ˘+ - ◊Á ˜ Í ˙-Ë ¯ Î ˚

 = IP of 
2cos 2 sin 2 8 26

3 3 9

x i x ix
x

+Ê ˆ È ˘◊ + -Í ˙Á ˜-Ë ¯ Î ˚

 = 21 8 1
cos 2 (9 26) sin 2

3 3 9

x
x x x

È ˘- + -Í ˙Î ˚
The complete solution is

 y = 2
1 2

1 8 1
CF PI cos sin cos 2 (9 26) sin 2

3 3 9

x
C x C x x x x

È ˘+ = + - + -Í ˙Î ˚

EXERCISE 11.2

Solve the following differential equations:

 1. (D2 – 4D + 4)y = e2x + cos 2x; 
d

D
dx

∫ .

 2. (D6 + 1)y = 
3

sin sin ;
2 2

x x d
D

dx
◊ ∫ .

 3. (D4 – 2D
3 + D2)y = x3; 

d
D

dx
∫ .

 4. (D2 – 4D – 5)y = e2x + 3 cos (4x + 3); 
d

D
dx

∫ .

 5. (D2 – 1) y = x ex ◊ sin x; 
d

D
dx

∫ .

 6. (D3 – 3D
2 + 4D – 2)y = ex + cos x; 

d
D

dx
∫ .

 7. (D2 – 2D + 2)y = x + ex cos x; 
d

D
dx

∫ .

 8. (D3 – 6D + 13)y = 8e
3x sin 4x + 2x; 

d
D

dx
∫ .
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 9. (D2 + 4)y = sin x, y(0) = 1, y¢(0) = 1; 
d

D
dx

∫ .

 10. (D2 – 1)y = cos h x ◊ cos x; 
d

D
dx

∫ .

 11. (D2 – 6D + 13)y = 6 e3x ◊ sin x ◊ cos x; 
d

D
dx

∫ .

 12. (D3 + 1)y = ex + 5 e2x + 3; 
d

D
dx

∫ .

 13. A body executes damped forced vibrations given by the equation.

    
2

2

2
2

d x dx
K b x

dtdt
+ +  = e–Kt ◊ sin w t.

  Solve the equation for both the cases, when w2 π b2 – K2 and w2 = b2 – K2.

Answers

 1. y = 
2 2

2
1 2

1
( ) sin 2

2 8

x
x x e

C xC e x+ + -

 2. y = 

3

2
1 2 3 4( cos sin ) cos sin

2 2

x x x
C x C x e C C

Ê ˆ
Á ˜Ë ¯ Ê ˆ+ + +Á ˜Ë ¯

3

2
5 6

1
cos sin cos 2 sin

2 2 126 12

x x x x
e C C x x

-
Ê ˆ+ + + +Á ˜Ë ¯

 3. y = 5 4 3 2
1 2 3 4

1 1
( ) 3 12

20 2

x
C xC C xC e x x x x+ + + + + + +

 4. y = 5 2
1 2

1 3
[16 sin (4 3) 21 cos (4 3)]

9 697

x x x
C e C e e x x

-+ - - + + +

 5. y = 
1 2 [2(1 5 ) cos (5 14) sin ]

25

x
x x e

C e C e x x x x
-+ - + + -

 6. y = C1 e
x + ex (C2 cos x + C3 sin x) + xe

x + 
1

(3 sin cos )
10

x x+

 7. y = ex(C1 cos x + C2 sin x) 
1

( 1) sin
2 2

x
xe

x x+ + +

 8. y = e3x(C1 cos 3x + C2 sin 3x) 

3

2

2 2
sin 4

3 [(log2) 6 log2 13]

x x
e

x- +
- +

 9. y = 
1

cos 2 (sin sin 2 )
3

x x x+ +

 10. y = C1 e
x + C2 e

–x + 
2 1

sin sin cos cos
5 5

x h x x h x◊ - ◊
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 11. y = e3x [C1 cos 2x + C2 sin 2x] – 
33

cos 2
4

x
x e

x

 12. y = 22
1 2 3

3 3 5
cos sin 3

2 2 9 2

x x
x x e

C e e C x C x e
-

È ˘Ê ˆ Ê ˆ
+ + + + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

 13. When w2 π b2 – K2

  y = 
2 2 2 2

1 2 2 2 2

sin
cos ( ) sin ( )

Kt
Kt e t

e C b K t C b K t
b K

w

w

-
- È ˘- + - +Î ˚ - -

  when w 2 = b2 – K2

  y = 1 2[ cos sin ] cos
2

Kt Ktt
e C t C t e tw w w

w
- -+ -

11.7   SOLUTIONS OF SIMULTANEOUS LINEAR DIFFERENTIAL 

EQUATIONS

In several applied-mathematics problems, there are more than one dependent variable, each of which is 

a function of one independent variable, usually say time ‘t’. The formulation of such problems leads to 

a system of simultaneous linear differential equations. Such a system can be solved by the method of 

elimination, Laplace transform method. Here, only the method of elimination is considered.

11.7.1 Method of Elimination

Consider a system of two ordinary differential equations in two dependent variables x and y and one 

independent variable ‘t’ given by

 f1(D) x + f2(D)y = f(t) (18)

 g1(D) x + g2(D) y = g(t) (19)

where f1(D), f2(D), g1(D), g2(D), are all functions and 
d

D
dt

∫

Step 1 Elimination of y from the given system, results in a differential equation exclusively in x 

alone.

Step 2 Solve this differential equation obtained in Step 1 for ‘x’.

Step 3 Substituting x (obtained in Step 2) in a similar manner, obtain a differential equation only in y.

Step 4 Solve the differential equation obtained in Step 3 for y.

Example 18  Solve 4 3
dx

x y
dt

+ +  = t, + + =2 5 .tdy
x y e

dx

Solution Rearranging the given differential equations, we get 

 (D + 4) x + 3y = t (1)

 2x + (D + 5) y = et (2)

where 
d

D
dt

∫
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 Multiply (1) by (D + 5), and multiply (2) by 3. Then subtracting, we get

 [(D + 4) (D + 5) – 2 × 3]x = (D + 5)t – 3e
t

 [D2 + 9D + 20 – 6] x = 1 + 5t – 3e
t

 [D2 + 9D + 14] x = 1 + 5t – 3e
t  (3)

Equation (3) is a linear differential equation in x and t with constant coeffi cients.

Hence, the auxiliary equation is 

 m
2 + 9m + 14 = 0

 m = – 2, –7

 CF = C1 e
–2t + C2 e

–7t

Its  PI = 
2

1
(1 5 3 )

( 9 14)

t
t e

D D
+ -

+ +

 = 
2 22

1 5 3
1

( 9 14) ( 9 14)9
14 1

14

t
t e

D D D DD D
+ -

Ê ˆ+ + + ++
+Á ˜Ë ¯

 = 

1
2

0

2 2

1 5 9 3
1

14 14( 9 14) ( 9 14)

t tD D
e t e

D D D D

-
È ˘+

+ + -Í ˙
+ + + +Í ˙Î ˚

 = 

2
0

2

1 5 9 3
1

(0 0 14) 14 14 1 9.1 14

t tD D
e t e

È ˘+
+ - + -Í ˙

+ + + +Í ˙Î ˚

 = 
1 5 9 3

14 14 14 24

t
t e

Ê ˆ+ ◊ - -Á ˜Ë ¯

 PI = 
1 5 9 1

14 14 14 8

t
t e

Ê ˆ+ ◊ - -Á ˜Ë ¯

Hence, the complete solution of (3) is

 x (t) = CF + PI

 x (t) = 2 7
1 2

1 5 9

14 14 14 8

t
t t e

C e C e t
- - Ê ˆ+ + + - -Á ˜Ë ¯

 (4)

\ 
dx

dt
 = 2 7

1 2

5
2 7

14 8

t
t t e

C e C e
- -- - + -

Putting the values of x (t) and 
dx

dt
 in (1), we get

 2 7 2
1 2 1

5 1
2 7 4

14 8

t t t t
C e C e e C e

- - -- - + - +

 
7

2

4 20 9 4
4 3

14 14 14 8

t
t e

C e t y
- Ê ˆ+ + + - - +Á ˜Ë ¯  = t
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 2 7
1 2

5 10 9 9
2 3 3

8 7 14 14

t t t
C e C e e t y

- - Ê ˆ- - - + - + +Á ˜Ë ¯
 = t

or y (t) = 7 2
2 1

1 5 3 27
3 2

3 8 7 98

t t t
C e C e e t

- -Ê ˆ- + - +Á ˜Ë ¯
 (5)

Equations (4) and (5) are the solutions of the given simultaneous equations. 

Example 19  Solve 7 0
dx

x y
dt

- + =  and 2 5 0
dy

x y
dt

- - =

Solution The given differential equations are

 7
dx

x y
dt

- +  = 0 (1)

 2 5
dy

x y
dt

- -  = 0 (2)

Differentiating (1) and (2) w.r.t. ‘t’ we get 

 
2

2
7

d x dx dy

dt dtdt
- +  = 0 (3)

 
2

2
2 5

d y dx dy

dt dtdt
- -  = 0 (4)

Eliminating y and 
dy

dt
 from (1), (2), and (3), we get

 

2

2
7 (2 5 )

d x dx
x y

dtdt
- + +  = 0 (5) [from (2) and (3)]

or 
2

2
7 2 5 7

d x dx dx
x x

dt dtdt

Ê ˆ- + + - +Á ˜Ë ¯
 = 0 [from (1) and (5)]

 

2

2
12 37

d x dx
x

dtdt
- +  = 0

 (D2 – 12 D + 37) x = 0 (6)

where  D = 
d

dt

Equation (6) is a linear differential equation of second-order constant coeffi cients. We get

 A.E. is  m2 – 12 m + 37 = 0

 m = 6 ± i

Therefore, the solution of (6) is 

 x (t) = e 6t (C1 cos t + C2 sin t) (7)

Differentiating  (7) ) w.r.t. ‘t’, we get

 
dx

dt
 = 6 e6t (C1 cos t + C2 sin t) + e6t (– C1 sin t + C2 cos t) (8)
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Putting the values of x and 
dx

dt
 in  (1), we get

 y (t) = e6t [(C1 – C2) cos t + (C2 + C1) sin t] (9)

Equations (7) and (9) constitute the solution of the differential equation.

Example 20  Solve 3 sin
dx dy

x t
dt dt

+ + =  and - + = cos .
dx

x y t
dt

Solution Rearranging the given differential equation, we get

 (D + 3) x + Dy = sin t (1)

 (D – 1) x + y = cos t (2)

Multiplying (2) by D and subtracting from (1), we get

 [(D + 3) – D(D – 1)]x = sin t – D (cos t)

 [D + 3 – D2 + D]x = sin t + sin t

or (D2 – 2D – 3) x = –2 sin t (3)

Equation (3) is a second-order linear differential equation with constant coeffi cients. Its auxiliary 

equation is m2 – 2m – 3 = 0

 m = 3, –1

\ CF = C1 e
3t + C2e

–t

 PI = 
2

1
( 2sin )

( 2 3)
t

D D
-

- -

 = 
2

2

( 2 3)D D
-

- -
 sin t

 PI = 
2

( 1) 2 3D

-
- - -

 sin t = 
2

2 4D

-
- -

 sin t

 = 
1

2D +
 sin t

 = 
2

( 2)( 2)

D

D D

-
+ -

 sin t = 
1

5
-  (D sin t – 2 sin t)

 = 
( 2)

1 4

D -
- -

 sin t = 
1

5
-  (D sin t – 2 sin t)

 = 
1

5
-  (cos t – 2 sin t)

 = 
1

5
 (2 sin t – cos t)

Complete solution is x (t) = C1 e
3t

 + C2 e
–t + 

1

5
 (2 sin t – cos t) (4)
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Differentiating (4)  w.r.t. ‘t’, we get 

 
dx

dt
 = 3 C1 e

3t – C2 e
–t + 

1

5
 (2 cos t + sin t)

Substituting the values of x (t) and 
dx

dt
 in (2), we get

   3 3
1 2 1 2

1 1
3 (2cos sin ) (2sin cos ) cos

5 5

t t t t
C e C e t t C e C e t t t y

- -- + + - - - - = +

                3
1 2

3 1
2 2 cos sin cos

5 5

t t
C e C e t t y t

-- + - + =

 y = 3
1 2

1
(sin 2cos ) 2 2

5

t t
t t C e C e

-+ - +  (5)

Equations (4) and (5) constitute the solutions of the given equations.

Example 21  Solve 2
dx dy

y
dt dt

+ -  = 2 cos t – 7 sin t

       2
dx dy

x
dt dt

- +  = 4 cos t – 3 sin t

Solution Rearranging the given equations, we get

 Dx + (D – 2) y = 2 cos t – 7 sin t  (1)

 (D + 2) x – Dy = 4 cos t – 3 sin t (2)

Multiplying (1) by D and (2) by (D – 2) and adding, we get

 [D2 + (D + 2) (D – 2)] x = D [2 cos t – 7 sin t] + (D – 2) [4 cos t – 3 sin t]

 [D2 + D2 – 4] x = –2 sin t – 7 cos t – 4 sin t – 3 cos t – 8 cos t + 6 sin t

 (2 D2 – 4) x = –18 cos t

or (D2 – 2) x = –9 cos t (3)

Its AE is m2 –2 = 0

 m = 2±

\ CF = 2 2
1 2

t t
C e C e

-+

 PI = 
2

1
( 9cos )

2
t

D
-

-
 = – 9

2

1

2D -
 cos t = – 9

1

1 2- -
 cos t

 = 
9

3

-
-

 cos t = 3 cos t

\ x(1) = CF + PI = 9 
2t

e + C2 
2t

e
-

 + 3 cos t (4)

Putting the value of x (t) in (2), we get

 
dy

dt
 = 2 2 2 2

1 2 1 22 2 3sin 2 2 6cos 4cos 3sint t t t
C e C e t C e C e t t t

- -- - + + + - +
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dy

dt
 = 2 2

1 2(2 2) (2 2) 2cost t
C e C e t

-+ + - +

On integrating, we get

 y(t) = 2 2
1 2 3( 2 1) ( 2 1) 2sint t

C e C e t C
-+ - - + +  (5)

Equations (4) and (5) constitute the solution of the given equation.

Example 22  Solve 0
dx

t y
dt

+ = , 0
dy

t x
dt

+ = .

Solution The given equations are

 
dx

t y
dt

+  = 0 (1)

 
dy

t x
dt

+  = 0 (2)

Differentiating (1) both sides w.r.t. ‘t’, we get.

 

2

2

d x dx dy
t

dt dtdt
+ +  = 0

Multiplying both sides by ‘t’, we get

 
2

2

2

d x dx dy
t t t

dt dtdt
+ +  = 0

 

2
2

2

d x dx
t t x

dtdt
+ -  = 0 (3) [From (2)]

Equation (3) is a Cauchy’s  linear equation.

Now, our aim is to reduce Eq. (3) into a linear differential equation. With constant coeffi cient by 

putting  t = ez, i.e., z = log t and = = -
2

2
1 1 12
, ( 1)

dx d x
t D t D D

dt dt

where D1 ∫ 
d

dz
, we get

 [D1 (D1 – 1) + D1 – 1] x = 0

 (D1
2 – 1) x = 0 (4)

which is a linear equation.

Its AE is m2 – 1= 0, m = ± 1

 x (t) = CF = c1e
z + c2 e

–z = C1 t + C2/t (5) 

Differentiating (5) both sides w.r.t. ‘t’, we get

 
dx

dt
 = 

2

2
1

C
C

t
-

Equation (1) becomes

 2
1 2

C
t C y

t

Ê ˆ
- +Á ˜Ë ¯

 = 0
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 2
1

C
C t y

t
- +  = 0 or y (t) = 2

1

C
C t

t
-  (6)

Equations (5) and (4) are the solution of given equations.

Example 23  Solve 2 , 2 , 2
dx dy dz

y z x
dt dt dt

= = = .

Solution 2 2
dx

y Dx y
dt

= fi =  (1)

 
dy

dt
 = 2z fi Dy = 2z (2)

 
dz

dt
 = 2x  fi Dz = 2x (3)

where D = 
d

dt

Equation (1), we have 2
dx

y
dt

=

Differentiating both sides w.r.t. ‘t’, we get

 
2

2

d x

dt
 = 2 2(2 )

dy
z

dx
=  [using (2)]

 
2

2

d x

dt
 = 4z

Again differentiating both sides w.r.t. ‘t’, we get

 
3

3

d x

dt
 = 4 4(2 )

dz
x

dt
=  [using (3)]

 
3

3

d x

dt
 = 

3

3
8 8 0

d x
x x

dt
fi - =

fi (D3 – 8) x = 0 (4)

which is linear in x and t.

 AE is m3 – 8 = 0

 (m – 2) (m2 + 2m – 4) = 0

 m = 2, -1 3i±

\ x (t) = 2
1 2 3CF ( cos 3 sin 3 )t t

C e e C t C t
-= + +

 x (t) = 2
1 2 3cos( 3 )t t

C e e C t C
-+ -

From (3), we have 2
dz

x
dt

=
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dz

dt
 = 2

1 2 32 2 cos ( 3 )t t
C e C e t C

-+ -

on integrating, we get

 z (t) = 2
1 2 3

4
cos 3

3

t t
C e C e t C

p- Ê ˆ+ - +Á ˜Ë ¯

From (2), we have 2
dy

z
dt

=

 
dy

dt
 = 2

1 2 3

4
2 cos 3

3

t t
C e C e t C

p- Ê ˆ+ - +Á ˜Ë ¯

On integrating, we get

 y (t) = 
2

1 2 3

4
cos 3 2

3 3

t t
C e C e t C

p p- Ê ˆ+ - + -Á ˜Ë ¯

 = 2
1 2 3

2
cos 3

3

t t
C e C e t C

p- Ê ˆ+ - +Á ˜Ë ¯

EXERCISE 11.3

Solve the following simultaneous equations:

 1. 22 3 0, 2 2 tdx dy
x y y e

dt dt
+ + = + =

 2. 3 2 0, 5 3 0
dx dy

x y x y
dt dx

- - = + + =

 3. sin , cos
dx dy

y t x t
dt dt

+ = + = ; given that x = 2, y = 0, when t = 0

 4. , 2
dy dz

y y z
dx dx

= = +

 5. 2 1, 2 1
dx dy

y x
dt dt

= - = +

 6. (D + 6) y – Dx = 0, (3 – D) x – 2Dy = 0, where 
d

D
dt

=
  With x = 2, y = 3 at t = 0

 7. 2,
dx dy

y t x t
dt dt

- = + =

 8. 
2 2

2 2

2 2
2 0, 2 0

d x dx d y dy
t t y t t x

dt dtdt dt
+ + = + - =

 9. 3 8 , 3
dx dy

x y x y
dt dt

= + = - - , with x (0) = 6, y (0) = –2

 10. (D + 2) x + (D – 1) y = –sin t, (D – 3) x + (D + 2) y = 4 cos t, 
d

D
dt

=
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Answers

 1. 5 2 5 2
1 2 1 2

6 8
( ) ; ( )

7 7

t t t t t t
x t C e C e e y t C e C e e

- -= + - = - + +

 2. 1 2 2 1 1 2

1
( ) cos sin , ( ) ( 3 ) cos ( 3 )sin

2
x t C t C t y t C C t C C t= + = - - +È ˘Î ˚

 3. x(t) = et + e–t, y (t) = sin t – et + e–t

 4. 1

1

2

x
y C e= , z = (C1 + x C2)e

x

 5. - -= - - = - +2 2 2 2
1 2 1 2

1 1
( ) , ( )

2 2

t t t t
x t C e C e y t C e C e

 6. x(t) = 4e
2t – 2e

–3t

  y(t) = e2t + 2e
–3t

 7. x(t) = C1 cos t + C2 sin t + t2 – 1

  y(t) = –C1 sin t + C2 cos t + t

 8. 1
1 2 3 4( ) cos(log ) sin (log ) cos(log ) sin (log )x t t C t C t t C t C t

-= + + +È ˘È ˘Î ˚ Î ˚

  1
1 2 4 3( ) sin (log ) cos(log ) cos(log ) sin (log )y t t C t C t t C t C t

-= - + +È ˘È ˘Î ˚ Î ˚

 9. x (t) = 4e
t + 2e

– t

  y = –e
t + e– t

 10. 8 8
1 1

3 2 1
( ) sin cos , ( ) sin cos

5 5 5

t t

x t C e t t y t C e t t

-
-

= + - = + +

SUMMARY
1.  Solution of Higher Order Homogeneous Linear Differential Equations with 

Constant Coeffi cients

Consider the nth order homogeneous linear equation with constant coeffi cients.

 
1 2

0 1 21 2

n n n

nn n n

d y d y d y
a a a a y

dx dx dx

- -

- -+ + + +  = R(x) (1)

Case I When the auxiliary equation has all real and distinct roots say m1, m2, m3, …, mn. Then the n 

linearly independent solutions = = = = 
31 2

1 2 3, , , nm x m xm x m x
ny e y e y e y e  of Eq. (1).

Hence, y(x) = 31 2
1 2 3

nm x m xm x m x
nC e C e C e C e+ + +  is a general solution of (1), where C1, C2, C3, …, Cn 

are all constants.

Case II When the auxiliary equation may have some multiple roots. Let r be the multiplicity of the 

root m1, i.e., m = m1 is repeated r times, and the remaining (n – r) roots are real and distinct. Putting

m = m1, we obtain y1(x) = 1m x
e  as one of the solutions.

Now, the remaining (r – 1) linearly independent solutions corresponding to the multiple roots m = m, are 

given by y1, xy1, x
2
y, x3

y1, …, xr–1
y1.
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Hence, y(x) = (C1 + xC2 + x2
C3 + … + xr–1

Cr) 
1 nm xm x

ne C e+ +  is a general solution of (1), where C1, 

C2, … Cr, Cn are all constants.

Case III When the auxiliary equation may have some imaginary roots.

If p + iq is a root then p – iq is also a root of the auxiliary equation. In this case, the linearly independent 

solutions are given by e
px cos qx and e

px sin qx. The auxiliary equation (2) has r complex conjugate 

pairs of roots pk ± iqk, k = 1, 2, 3, …, r, the corresponding linearly independent solutions are 

1 1 2 2
1 1 2 2cos , sin , cos , sin , , cos .rp x p x p x p x p x

re q x e q x e q x e q x e q x 

Therefore, the general solution corresponding to linearly independent solutions is

y(x) = 1 2

1 2 21 1 2 1 3 2 4 2( cos sin ) ( cos sin ) ( cos sin )rp x p x p x
r r r re C q x C q x e C q x C q x e C q x C q x+ + + + + + 

Note: Multiple complex roots:

If p + iq is a multiple root of order m then p – iq is also a multiple root of order m. Then the corresponding 

linearly independent solutions are

1 1 1 1
1 1 1 1cos , sin , cos , sin ,

p x p x p x p x
e q x e q x xe q x xe q x+  

21 1
1 1cos , sin

p xm m x
x e q x x q x

- -

Therefore, the general solution corresponding to linearly independent solutions is

y(x) = 1 2 1 2 1)
1 2 3 1 1 2 3 1[( )cos ( )sin ] nm xp x m m

m m ne C xC x C x C q x C xC x C x C q x C e
- -+ + + + + + + + +¢ ¢ ¢ ¢  

where C1, C2, …, Cm, C¢1, C¢2, … C¢m, Cn are arbitrary constants.

2. General Methods of Finding Particular Integrals (PI)

The operator 
1

D a-
, where a being a constant. If R is any function of x then

 
1

( )
R

D a-
 = 

x x
e e Rdx

a a- ◊Ú

3.  Short Methods of Finding the Particular Integral when ‘R’ is of a Certain 

Special Forms

Consider the differential equation

 
1 2

1 21 2

n n n

nn n n

d y d y d
a a a y

dx dx dx

- -

- -+ + + +  = R(x) (4)

or [Dn + a1D
n – 1 + a2D

n – 2 +   + an]y = R(x); 
d

D
dx

∫

or F(D)y = R(x), where F(D) ∫ (a0D
n + a1D

n – 1 +   + an).

Therefore, the particular integral (PI) is

 PI = 
– 1 – 2

1 2

1 1
( ) ( )

( )[ ]n n n
n

R x R x
D a D a D a F D+ + +

= ◊
+ 

.

Case I When R(x) = eax

 PI = 
1 1

( ) ( )

ax ax
e e

F D F a
= , provided F(a) ≠ 0. 

If F(a) = 0 then the above rule fails, then. We consider F(D) = (D – a)f (D); where (D – a) is a factor of  

F(D).
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Then 
1

( )

ax
e

F D
 = 

1

( ) ( )

ax
e

D a Df-

 
1

( )

ax
e

F D
 = 

( )

ax
e

x
F a¢

, provided F¢(a) π 0.

If F¢(a) = 0 then the above rule can be repeated to give

 
1

( )

ax
e

F D
 = 

2

( )

ax
e

x
F a¢¢

; provided F¢¢(a) π 0, and so on.

Case II When R(x) = sin (ax + b) or cos (ax + b), we know that

 PI = 
2 2

1 1
sin( ) sin( )

( ) ( )
ax b ax b

F D F a
+ = +

-
; provided F(– a2) π 0.

Similarly,

 
2 2

1 1
cos( ) cos( )

( ) ( )
ax b ax b

F D F a
+ = +

-
; provided F(– a2) π 0. 

Case III When R(x) = xn; n being a positive integer.

 PI = 
1 1

( )
( ) ( )

n
R x x

F D F D
◊ = ◊

Our aim to make the coeffi cient of the leading term of F(D) unity, take the denominator in numerator and 

then expand it by the binomial theorem. Operate the resulting expansion on xn.

Case IV When R(x) = eax P(x), where P(x) is a function of x.

 PI = 
1 1

( )
( ) ( )

ax ax
e P e P

F D F D a
◊ =

+

Case V When R(x) = x P(x) where P is a function of x.

 PI = 
1

( )
( )

x P x
F D

      = 2

1 ( )

( ) [ ( )]

F D
x P P

F D F D

¢
- .

OBJECTIVE-TYPE QUESTIONS

 1. The solution of differential equation 
2

2
0

d y dy
y

dxdx
+ + =  is

 (a) Ae
x + Be

–x

 (b) e
x (Ax + B)

 (c) 
3 3

cos cos
2 3

x
e A x B x

-
Ï ¸Ê ˆ Ê ˆÔ Ô+Ì ˝Á ˜ Á ˜

Ë ¯ Ë ¯Ô ÔÓ ˛

 (d) /2 3 3
cos sin

2 3

x
e A x B x

-
Ï ¸Ê ˆ Ê ˆÔ Ô+Ì ˝Á ˜ Á ˜

Ë ¯ Ë ¯Ô ÔÓ ˛
 [GATE (ME) 2000]

 2. The solution of the following differential 

equations with boundary condition y(0) = –2 
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and 

2

2
(1) 3, 3 2

d y
y x

dx
= - = -¢

 (a) 
3 2

3 6
3 2

x x
y x= - + -

 (b) 
2

33 5 2
2

x
y x x= - - +

 (c) 
3

2 5
2

3 2

x x
y x= - - -

 (d) 
2

3 3
5

2 2

x
y x x= - + +

 [GATE (CE) 2001]

 3. The general solution of the differential 

equation (D2 – 4D + 4)y = a, is of the form 

(given D ∫ d/dx), and C1, C2 are constants

 (a) C1e
2x (b) C1e

2x + C2e
–2x

 (c) C1e
2x + C2e

2x (d) C1e
2x + C2xe

–2x

 [GATE (IN) 2005]

 4. For the equation ẍ (t) + 3x(t) + 2x(t) = 5, the 

solution x(t) approaches the following values 

at t Æ • 

 (a) 0 (b) 5/2

 (c) 5 (d) 10

 [GATE (EE) 2005]

 5. The solution of the following differential 

equation 
2

2
5 6 0

d y dy
y

dxdx
- + =  is given by

 (a) y = e2x + e–3x (b) y = e2x + e3x

 (c) y = e–2x + e3x (d) y = e–2x + e–3x

 [GATE (ECE) 2005]

 6. Statement for linked answer question (A) and 

(B). The complete solution for the ordinary 

differential equation

 y¢¢ + py¢ + qy = 0 is y = C1e
–x + C2e

–3x

  (A) Then p and q are

 (a) 3, 3 (b) 3, 4

 (c) 4, 3 (d) 4, 4

  (B)  Which of the following is a solution of 

the differential equation

 y¢¢ + py¢ + (q + 1)y = 0?

 (a) e
–3x

 (b) xe
–x

 (c) xe
–2x

 (d) x
2e

–2x

 [GATE (ME) 2005]

 7. The solution of 
2

2
2 17 0

d y dy
y

dxdx
+ + = ; 

y(0) = 1, ( /4) 0
dy

dx
p =  in the range, 0 < x < p/4 

is given by

 (a) 
1

cos 4 sin 4
4

x
e x x

- Ê ˆ
+Á ˜Ë ¯

 (b) 
1

cos 4 sin
4

x
e x x

Ê ˆ
-Á ˜Ë ¯

 (c) 
4 1

cos sin
4

x
e x x

- Ê ˆ
+Á ˜Ë ¯

 (d) 4 1
cos 4 sin 4

4

x
e x x

- Ê ˆ
-Á ˜Ë ¯

 [GATE (Civil Engg) 2005]

 8. For y¢¢ + 4y¢ + 3y = 3e
2x, the particular integral 

is

 (a) 21

15

x
e  (b) 21

5

x
e

 (c) 23 x
e  (d) C1e

–x + C2e
–3x

 [GATE (ME) 2006]

 9. For the differential equation 
2

2

2
0

d y
k y

dx
+ = , 

the boundary conditions are

  (i) y = 0 for x = 0 and (ii) y = 0 for x = a. 

The form of non-zero solution of y (where m 

varies over all integers) are

 (a) sin

m

m x
y Am

a

p
= Â

 (b) cos

m

m x
y Am

a

p
= Â

 (c) 
/m a

m

y Ame
p= Â

 (d) 

m x

a

m

y Ame

p

= Â
 [GATE (ECE) 2006]

 10. The solution of the differential equation  
2

2
22

d y
k y y

dx
= -  under the boundary condi-

tions
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  (i) y = y1 at x = 0, and (ii) y = y2 at x = • where 

k, y1 and y2 are constants; is

 (a) y = (y1 – y2) exp (–x/k) + y2

 (b) y = (y2 – y1) exp (–x/k) + y1

 (c) y = (y1 – y2) sinh (x/k) + y1

 (d) y = (y1 – y2) exp (–x/k) + y2

 [GATE (ECE) 2007]

 11. The degree of the differential equation 
2

3

2
2 0

d x
x

dt
+ =  is

 (a) 0 (b) 1

 (c) 2 (d) 3

 [GATE (Civil Engg) 2007]

 12. The general solution of 
2

2
0

d y
y

dx
- =  is

 (a) y = P cos x + Q sin x

 (b) y = P cos x

 (c) y = P sin x

 (d) y = P sin2 x

 [GATE (Civil Engg) 2008]

 13. Given that ẍ + 3x = 0 and x(0) = 1, ẋ(0) = 0; 

what is x(1)?

 (a) –0.99 (b) –0.16

 (c) 0.16 (d) 0.99

 [GATE (ME) 2008]

 14. The homogeneous part of the differential 

equation 
2

2

d y dy
p qy r

dxdx
+ + = , (p, q and r are 

constants) has real distinct roots if

 (a) p
2 – 4q > 0 (b) p

2 – 4q < 0

 (c) p
2 – 4q = 0 (d) p

2 – 4q = r

 [GATE (IPE) 2009]

 15. The solution of the differential equation 
2

2
0

d y

dx
=  with boundary conditions: 1

dy

dx
=  

at x = 0 and 1
dy

dx
=  at x = 1

 (a) y = 1

 (b) y = x

 (c) y = x + C, where C is an arbitrary 

constant

 (d) y = C1x + C2, where C1 and C2 are 

arbitrary constants

 [GATE (IPE) 2009]

 16. The order of the differential equation 
32

4

2

td y dy
y e

dtdt

-Ê ˆ
+ + =Á ˜Ë ¯  is

 (a) 1 (b) 2

 (c) 3 (d) 4

 [GATE (ECE) 2009]

 17. Consider the differential equation

 

2

2

( ) ( )
2 ( ) ( )

d y t dy t
y t t

dtdt
d+ + =  with 

0
0

( ) 2 and 0
t

t

dy
y t

dt=
=

= - =

  The numerical value of 
0t

dy

dt =
 is

 (a) –2 (b) –1

 (c) 0 (d) 1

 [GATE (EE) 2012]

 18. The solution of the differential equation 
2

2
0.25 0

d y dy
y

dxdx
- + = , given y = 0 at x = 0 

and 1
dy

dx
=  at x = 0 is

 (a) xe
0.5x – xe

–0.5x (b) 0.5xe
x – 0.5xe

–x

 (c) xe
0.5x (d) –xe

0.5x

 [GATE (CH) 2013]

 19. The maximum value of the solution y(t) of 

the differential equation y(t) + ÿ(t) = 0 with 

initial conditions ẏ(0) = 1 and y(0) = 2, for t ≥ 

0 is

 (a) 1 (b) 2

 (c) p (d) 2

 [GATE (IN) 2013]

 20. The solution for the differential equation 
2

2
9

d x
x

dt
= -  with initial conditions x(0) = 1 

and 
0

1
t

dx

dt =
= , is

 (a) t
2 + t + 1

 (b) 
1 2

sin 3 cos 3
3 3

t t+ +



11.34 Engineering Mathematics for Semesters I and II

 (c) 
1

sin 3 cos 3
3

t t+

 (d) cos 3t + t

 [GATE (EE) 2014]

 21. With initial values y(0) = y¢(0) = 1, the 

solution of the differential equation 
2

2
4 4 0

d y dy
y

dxdx
+ + =  at x = 1 is _____.

 [GATE (EC) 2014]

 22. If a and b are constants, the most general 

solution of the differential equation 
2

2
2 0

d x dx
x

dtdt
+ + =  is

 (a) ae
–t (b) ae

–t + bte
–t

 (c) ae
t + bte

–t (d) ae
–2t

 [GATE (EC) 2014]

 23. If the characteristic equation of the differential 

equation

 

2

2
2 0

d y dy
y

dxdx
a+ + =

  has two equal roots then the values of a are

 (a) ±1 (b) 0, 0

 (c) ± j (d) ±1/2

 [GATE (EC) 2014]

 24. Consider two solutions x(t) = x1(t) and x(t) 

and x(t) = x2(t) of the differential equation 

2

2

( )
( ) 0

d x t
x t

dt
+ = , t > 0, such that x1(0) = 1,  

1 2
2

0 0

( ) ( )
0, (0) 0, 1.

t t

dx t dx t
x

dt dt= =
= = =

  The Wronskian 

1 2

1 2

( ) ( )

( ) ( )
( )

x t x t

dx t dx t
W t

dt dt
=  at 

t = p/2 is

 (a) 1 (b) –1

 (c) 0 (d) p/2

 [GATE (ME) 2014]

ANSWERS

 1. (d) 3. (c) 3. (c) 4. (b) 5. (b) 6. (A) Æ (c); (B) Æ (c) 7. (a) 8. (b)

 9. (a) 10. (d) 11. (b) 12. (a) 13. (d) 14. (a) 15. (c) 16. (b) 17. (d) 18. (c)

 19. (wrong option, 5 ) 20. (c) 21. (0.54) 22. (b) 23. (a) 24. (a)



12.1  INTRODUCTION

Linear differential equations play a role in the study of many practical problems in engineering and 

science. In this chapter, we consider the differential equations with variable coeffi cients involved in the 

area of physics, mechanics, electric circuits, and mathematical modeling of physical problems, etc. The 

important differential equations with variable coeffi cients are Bessel’s equation, Legendre equation, 

Cauchy’s equation, and Chebyshev equation, etc. We defi ne the powerful general method (method of 

variation of parameters).

Standard Form of the Second-order LDE

Consider an LDE 
2

2
( ) ( )

d y dy
P x Q x y R

dxdx
+ + =

where P, Q, and R are functions of x or constants.

12.2   COMPLETE SOLUTIONS OF y¢¢ + Py¢ + Qy = R IN TERMS OF ONE 
KNOWN SOLUTION BELONGING TO THE CF

Given 

2

2

d y dy
p Qy R

dxdx
+ + =  (1)

Let y = u(x) be a known solution of the CF, so u is a solution of (1) when its right-hand side is taken 

to be zero. Thus, y = u is a solution of

2

2
0

d y dy
P Qy

dxdx
+ + =  (2)

Solutions of Second-Order 

Linear Differential 

Equations with 

Variable Coeffi cients 12
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so that  
2

2
0

d u du
P Qu

dxdx
+ + =  (3)

Now, let the complete solution of (1) be y = uv (4)

where v is a function of x, v will be determined.

From (4), 
dy

dx
 = 

du dv
v u

dx dx
+

and 

2

2

d y

dx
 = 

2 2

2 2
2

d u du dv d v
v u

dx dxdx dx
+ ◊ +

Substituting the values of y, y¢ and y¢¢ in (1), we get

 
2 2

2 2
2

d u du dv d v du dv
v u P v u Quv R

dx dx dx dxdx dx

Ê ˆ Ê ˆ+ ◊ + + + + =Á ˜Á ˜ Ë ¯Ë ¯

or 
2 2

2 2
2

d u du d v dv du dv
v P Qu u P R

dx dx dx dxdx dx

Ê ˆ Ê ˆ
+ + + + + ◊ =Á ˜ Á ˜

Ë ¯ Ë ¯

or 
2

2
0 2

d v dv du dv
v u P R

dx dx dxdx
◊ + + + ◊ =  [using (3)]

or                          
2

2

2d v du dv R
P

u dx dx udx

È ˘+ + ◊ =Í ˙Î ˚
 (5)

Now, put 
dv

q
dx

=  so that 
2

2

d v dq

dxdx
=

Then (5) becomes

 
2dq du

P q
dx u dx

Ê ˆ+ +Á ˜Ë ¯  = 
R

u
 (6)

which is a linear equation in q and x. Its integrating factor is

 = 

2 du
P dx

u dxe

Ï ¸Ú +Ì ˝
Ó ˛

 = 2 logPdx u
e

Ú +

 = 
Ú Ú=

2log 2u Pdx Pdx
e e u e

and the solution of (6) is

 
2 Pdx

q u e
Ú◊  = 2

1
PdxR

u e dx c
u

Ú +Ú

or q = 
12 2

Pdx Pdx
Pdxdv e e

R ue c
dx u u

- Ú - Ú
Ú= ◊ +Ú

Integrating both sides, we get

 v = 1 22 2

Pdx Pdx
Pdxe e

Rue dx c dx c
u u

- Ú - Ú
Ú

È ˘
+ +Í ˙

Í ˙Î ˚
Ú Ú Ú
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Putting the value of v in (4), we get

 y = 1 22 2

Pdx Pdx
Pdxe e

u Rue dx c u dx c u
u u

- Ú - Ú
Ú

È ˘
+ +Í ˙

Í ˙Î ˚
Ú Ú Ú

which includes the given solution y = u; and since it contains two arbitrary constants, it is the required 

complete solution.

12.3   RULES FOR FINDING AN INTEGRAL (SOLUTION) BELONGING 
TO COMPLEMENTARY FUNCTION (CF), i.e., SOLUTION OF y¢¢ + 
P(x)y + Q(x)y = 0

Rule 1: y = eax is a solution if a2 + Pa + Q = 0

Rule 2: y = ex is a solution if 1 + P + Q = 0

Rule 3: y = e–x is a solution if 1 – P + Q = 0

Rule 4: y = xm is a solution if m(m – 1) + Pmx + Qx
2 = 0

Rule 5: y = x is a solution if P + Qx = 0

Rule 6: y = x2 is a solution if 2 + 2Px + Qx
2 = 0

The working rule for fi nding the complete solution when one integral (solution) 

of CF is known or can be obtained by above rules.

Step 1 Put the given equation in the standard form y¢¢ + py¢ + Qy = R in which the coeffi cient of y¢¢ 

is unity.

Step 2 Find an integral u of CF by using the following table:

Condition  Satisfi ed An integral of CF is

 (i) 1 + P + Q = 0 u = ex

 (ii) 1 – P + Q = 0 u = e–x

 (iii) a
2 + aP + Q = 0 u = eax

 (iv) m(m – 1) + Pmx + Qx
2 = 0 u = xm

 (v) 2 + 2px + Qx
2 = 0 u = x2

If a solution u is given in a problem then this step is omitted.

Step 3 Consider the complete solution of given equation is y = u·v, where u has been obtained in 

Step 2; then fi nd v using 
2

2

2d v du dv
P

u dx dxdx

Ê ˆ+ +Á ˜Ë ¯
 = 

R

u
 (7)

Step 4 Put 
dv

q
dx

=  so that 
2

2

d v dq

dxdx
= , put in (7). Then (7) will come out to be a linear equation in q 

and x if R π 0. Solve it as usual. If R = 0, then variables q and x will be separable.

Step 5 Now, replace q by 
dv

dx
 and separate the variables v and x. Integrate and determine v. Put this 

value of v in y = u·v. This will lead us to the desired complete solution of the given equation.
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Example 1  Solve - - + - =
2

2
(2 1) ( 1) 0.

d v dy
x x x y

dxdx

Solution Putting the given equation in the standard form, we get

 
2

2

1 1
2 1

d y dy
y

x dx xdx

Ê ˆ Ê ˆ- - + -Á ˜ Á ˜Ë ¯ Ë ¯
 = 0 (1)

Comparing (1) with + + =
2

2
,

d y dy
P Qy R

dxdx
 we have 

 P = 
1 1

2 , 1 , 0Q R
x x

Ê ˆ- - = - =Á ˜Ë ¯

Here, 1 + P + Q = + - + -
1 1

1 2 1
x x

 = 0

i.e., u = ex is a part of CF of the solution of (1)

Let the complete solution of (1) is y = uv (2)

Then v is given by 
2

2

2d v du dv
P

u dx dxdx

Ê ˆ+ +Á ˜Ë ¯
 = 

R

u

or 

2

2

1 2
2 x

x

d v d dv
e

x dx dxdx e

Ê ˆ+ - + + ◊ ◊Á ˜Ë ¯  = 0

or 
2

2

1 2
2 x

x

d v dv
e

x dxdx e

Ê ˆ+ - + + ◊ ◊Á ˜Ë ¯
 = 0

or 
2

2

1d v dv

x dxdx
+  = 0 (3)

Let 
dv

q
dx

=  so that 
2

2

d v dq

dxdx
=

Equation (3) becomes

 
1dq

q
dx x

+  = 0

which is linear in q and x, so

 IF = 

1

log
dx

xxe e x
Ú

= =

\ q·x = 
10 xdx c◊ +Ú

 
dv

x
dx

 = c1

 
dv

dx
 = 1

1

1
or

c
dv c dx

x x
=

Integrating, v = c1 log x + c2

\ y = ex·(c1 log x + c2)

 y = c1 e
x log x + c2 e

x, c1, c2 are arbitrary constant.
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Example 2  Find the general solution of (1 – x2) y¢¢ – 2xy¢ + 2y = 0, if y = x is a solution of it.

Solution Rewriting the given equation in the standard form, we get

 
2

2 2 2

2 2

1 1

d y x dy
y

dxdx x x

Ê ˆ Ê ˆ- +Á ˜ Á ˜Ë ¯ Ë ¯- -
 = 0 (1)

Comparing (1) with y¢¢ + Py¢ + Qy = R, we get

 P = 
2 2

2 2
, , 0

1 1

x
Q R

x x
- = =

- -
Here, y = u = x is given to be a part of CF of the solution of (1).

Let the complete solution of (1) be y = u·v  (2)

Then v is given by 
2

2

2d v du dv
P

u dx dxdx

Ê ˆ+ +Á ˜Ë ¯
 = 

R

u

or 
2

2 2

2 2
1

1

d v x dv

x dxdx x

Ê ˆ+ - + ◊Á ˜Ë ¯-
 = 0

or 
2

2 2

2 2

1

d v x dv

x dxdx x

Ê ˆ+ -Á ˜Ë ¯-
 = 0  (3)

Let 
2

2
so that

dv d v dq
q

dx dxdx
= = ; then (5) becomes

 
2

2 2

1

dq x
q

dx x x

Ê ˆ+ -Á ˜Ë ¯-
 = 0

or 
2

2 2

1

dq x
dx

q x x

Ê ˆ+ -Á ˜Ë ¯-
 = 0

On integrating, log q + 2 log x + log (1 – x2) = log c1

 qx
2 (1 – x2) = c1

or 
dv

dx
 = 

1

2 2

1

(1 )

c

x x-

or dv = 1 12 2 2 2

1 1 1

(1 ) 1
c dx c dx

x x x x

È ˘◊ = +Í ˙- -Î ˚
Integrating

 v = 1 2

1 1 1
log

2 1

x
c c

x x

È ˘+Ê ˆ- + +Í ˙Á ˜Ë ¯-Î ˚
\ the required solution is

 y = 1 2

1 1 1
log

2 1

x
u v x c c

x x

È ˘+Ê ˆ◊ = ◊ - + +Í ˙Á ˜Ë ¯-Î ˚

 = 2 1

1 1
log

2 1

x x
x c c

x x

Ê ˆ+
+ - +Á ˜-Ë ¯
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Example 3  Solve x2
y¢¢ + xy¢ – y = 0; given that 

1
x

x
+  is one integral.

Solution Rewriting the given DE in the standard form,

 
2

1 1
y y y

x x
+ -¢¢ ¢  = 0 (1)

Comparing (1) with y¢¢ + Py¢ + Qy = R

 
2

1 1
, ,P Q R

x x
= = -  = 0

Here, given that 
1

y u x
x

Ê ˆ= = +Á ˜Ë ¯  is a part of CF of the solution of (1).

Let the complete solution of (1) is y = u·v 

Then v is given by

 
2

2

2d v du dv
P

u dx dxdx

Ê ˆ+ +Á ˜Ë ¯
 = 

R

u

or 

2

2

1 2 1

1

d v d dv
x

x dx x dxdx x
x

È ˘
Í ˙Ê ˆ+ + ◊ + ◊Í ˙Á ˜Ë ¯Í ˙+
Í ˙Î ˚

 = 0

or 
2

2 2

1 2 1
1

1

d v x dv

x dxdx xx
x

È ˘
Í ˙Ê ˆ+ + ◊ -Í ˙Á ˜Ë ¯Í ˙+
Í ˙Î ˚

 = 0

or 
2 2

2 2 2

1 2 1

1

d v x x dv

x dxdx x x

È ˘Ê ˆ-
+ + ◊Í ˙Á ˜+ Ë ¯Í ˙Î ˚

 = 0

or 
2 2

2 2

3 1

( 1)

d v x dv

dxdx x x

-
+

+
 = 0 (2)

Let 
dv

q
dx

=  so that 
2

2

d v dq

dxdx
= , (2) becomes

 

2

2

3 1

( 1)

dq x
q

dx x x

-
+ ◊

+
 = 0

which is linear in q and x,

 
2

2

3 1

( 1)

dq x
dx

q x x

-
+

+
 = 0

or 
2

4 1

1

dq x
dx

q xx

Ê ˆ
+ -Á ˜+Ë ¯

 = 0
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Integrating, log q + 2 log (x2 + 1) – log x = log c1

 
2 2( 1)q x

x

+
 = c1

 
dv

dx
 = 1 2 2( 1)

x
c

x +

or  dv = 
+1 2 2

d
( 1)

x
c x

x

Integrating, 

 v = 1 22

1 2

2 ( 1)

x
c dx c

x
+

+Ú  
Put x2 + 1 = t 

Then 2x dx = dt

 = 
-

+ = + = -
+Ú 1 1

1 2 2 22 2

1

2 2 2( 1)

c cdt
c c c c

tt x

\ the required solution is y = u·v

 y = 
1

2 2 2

1

( 1)

c
x c

x x

È ˘Ê ˆ+ ◊ -Í ˙Á ˜Ë ¯ +Í ˙Î ˚

 y = 
2

1
2

1

2

cx
c

x x

Ê ˆ+
-Á ˜

Ë ¯

Example 4  Solve x2
y¢¢ – 2x(1 + x) y¢ + 2(1 + x) y = x3.

Solution Rewriting the given DE in the standard form,

 
2

2(1 ) 2(1 )x x
y y y

x x

+ +
- +¢¢ ¢  = x (1)

Comparing (1) with y¢¢ + Py¢ + Qy = R

 P = 
2

2(1 ) 2(1 )
, ,

x x
Q R x

x x

+ +
- = =

Here, P + Qx = 0 so that y = u = x is a part of CF of (1)

Let the general solution of (1) is y = u·v

Then v is given by

 
2

2

2d v du dv
P

u dx dxdx

Ê ˆ+ +Á ˜Ë ¯
 = 

R

u

 
2

2

2(1 ) 2d v x dx dv

x x dv dxdx

- +Ê ˆ+ +Á ˜Ë ¯
 = 

x

x

 
2

2
2

d v dv

dxdx
-  = 1 (2)
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Let 
dv

q
dx

=  so that 
2

2

d v dq

dxdx
= , (2), becomes 2 1

dq
q

dx
- = , which is linear in q and x

 IF = 
2 2Pdx dx x

e e e
Ú - Ú -= = , and its solution is 

 qe
–2x = 2

11 x
e dx c

-◊ +Ú
 = 2

1

1

2

x
e c

--
+

 q = 2
1

1

2

x
c e

-
+

 
dv

dx
 = 2

1

1

2

x
c e

-
+

 dv = 2
1

1

2

x
dx c e dx

-
+

Integrating,

 v = 
2

1 2

1

2 2

x
e

x c c- + +

\ the required general solution is

 y = u·v

 y = 

2

1 2
2 2

x
x e

x c c
È ˘

◊ - + +Í ˙
Í ˙Î ˚

 y = 2
1 2

1

2 2

xx
c e xc- + +

Example 5  Solve y¢¢ – (cot x)y¢ – (1 – cot x)y = ex sin x

Solution

 y¢¢ – (cot x)y¢ – (1 – cot x)y = ex sin x (1)

Comparing (1) with y¢¢ + Py¢ + Qy = R

 P = –cot x, Q = – (1 – cot x), R = ex sin x

Here, 1 + P + Q = 1 – cot x – 1 + cot x = 0, so y = u = ex is a part of CF of (1)

Let the complete solution be y = u·v; then v is given by

 

2

2

2d v du dv
P

u dx dxdx

Ê ˆ+ +Á ˜Ë ¯  = 
R

u

 
2

2

2
cot x

x

d v dv
x e

dxdx e

Ê ˆ+ - + ◊Á ˜Ë ¯
 = 

sinx

x

e x

e

or 
2

2
( cot 2)

d v dv
x

dxdx
+ - +  = sin x (2)



 Solutions of Second-Order Linear Differential  Equations with  Variable Coeffi cients  12.9

Let 
dv

q
dx

= , so that 
2

2

d v dq

dxdx
=

 (2 cot )
dq

x q
dx

+ -  = sin x, which is linear in q and x.

 IF = 
(2 cos )Pdx x dx

e e
Ú Ú -=

 = 
12 logsin 2 log(sin )x x x x

e e e
-- = ◊

 = 
2 1(sin )x

e x
-◊

 = 
2

sin

x
e

x

\ 
2

sin

x
e

q
x

◊  = 
2

1sin
sin

x
e

x dx c
x

◊ +Ú

 
2

sin

x
e

q
x

◊  = 
2

1
x

e dx c+Ú

 
2

sin

x
e

q
x

◊  = 
2

1

1

2

x
e

c+

or q = 1 2

sin
sin

x

x
x c

e
+

 q = 2
1

1
sin sin

2

x
x c e x

-+

or 
dv

dx
 = 2

1sin sin
2

x
x c e x

-1
+

 dv = 
2

1

1
sin sin

2

x
x c e x dx

-È ˘+Í ˙Î ˚

Integrating, v = 
-

- + ◊ - - +
+ -

2

1 22 2

1
cos [ 2sin cos ]

2 1 ( 2)

x
e

x c x x c

 u = 

2
1

2

1
cos (2sin cos )

2 5

x
c e

x x x c

-

- - + +

 
È ˘

= -Í ˙
+Í ˙Î ˚

Ú∵
2 2

sin ( sin cos )
ax

ax e
e bx dx a bx ba bx

a b

\ the general solution is

 y = 

2
1

2

1
cos (2sin cos )

2 5

x
x c e

u v e x x x c

-È ˘
◊ = ◊ - - + +Í ˙

Í ˙Î ˚

 y = 1
2cos (2sin cos )

2 5

x
x xce

x e x x c e
- -- - + +
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EXERCISE 12.1

Solve the following equations:

 1. x
2
y¢¢ – (x2 + 2x)y¢ + (x + 2)y = x3

e
x

 2. xy¢¢ – 2(x + 1)y¢ + (x + 2)y = (x– 2) 
e

x

 3. y¢¢ – (1 – cot x)y¢ – (y cot x) = sin2
x

 4. xy¢¢ – (2x + 1)y¢ + (x + 1)y = x3
e

x

 5. xy¢¢ – (x + 2)y¢ + 2y = x3

 6. x
2
y¢¢ – y¢ + 4x

3
y = –4x

5, given that 
2

x
y e=  is a solution if the left-hand side is equated to 

zero.

 7. y¢¢ + y = sec x, given that cos x is a part of CF.

 8. (x sin x + cos x)y¢¢ – (x cos x)y¢ + y cos x = 0

 9. 
2

2

2
sin 2

d y
x y

dx

Ê ˆ
=Á ˜

Ë ¯
, given that y = cot x is a solution.

Answers

 1. y = c1xe
x + c2e

x + (x – 1)xe
x

 2. 

2
3

1 2

1

3 2

x x xx
y c x e c e x e

Ê ˆ
= + + -Á ˜

Ë ¯

 3. 1
2

1
(sin cos ) (sin 2 2cos2 )

2 10

xc
y x x c e x x

-= - + - -

 4. 
2 31

2

1

2 3

x x xc
y x e c e x e

Ê ˆ
= + +Á ˜Ë ¯

 5. y = c1(x
2 + 2x + 2) + c2e

x – x3

 6. 
2 2 21

2
4

x xc
y e c e x

--Ê ˆ
= + +Á ˜Ë ¯

 7. y = c1 sin x + c2 cos x + x sin x – cos x log sec x

 8. y = c2 x – c1 cos x

 9. y = c1(1 – x cot x) + c2 cot x

12.4   REMOVAL OF THE FIRST DERIVATIVE: REDUCTION TO 
NORMAL FORM

Reduce the differential equation + + =
2

2
,

d y dy
P Qy R

dxdx
 where P, Q, and R are functions of x, to the 

form 
2

2

d v
Iv S

dx
+ =  which is known as the normal form of the given equation.
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The given equation is 
2

2

d y dy
P Qy

dxdx
+ +  = R (8)

Let the complete solution of (8) be y = u·v, where u and v are functions of x. Differentiating twice, 

y = uv gives.

 
dy

dx
 = +

du dv
v u

dx dx
 

 

2

2

d y

dx
 = + +

2 2

2 2
2

d u du dv d v
v u

dx dxdx dx

Putting the values of y, y¢ and y¢¢ in (8), we get

 
2 2

2 2
2

d u du dv d v du dv
v u P v u Quv

dx dx dx dxdx dx

Ê ˆ+ ◊ + + + +Á ˜Ë ¯
 = R

or 
2 2

2 2
2

d v du dv d u du
u Pu v P Qu

dx dx dxdx dx

Ê ˆÊ ˆ+ + + + +Á ˜Á ˜Ë ¯ Ë ¯
  = R

or 

2 2

2 2

2 1d v du dv d u du
P P Qu v

u dx dx u dxdx dx

Ê ˆÊ ˆ+ + + + + ◊Á ˜ Á ˜Ë ¯ Ë ¯
 = 

R

u
 (9)

In order to remove the fi rst derivative 
dv

dx
 from (9), we take

 
2 du

P
u dx

+  = 
1

0 or
2

du
Pdx

u
= -   (10)

Integrating, log u = 

1

2
1

or
2

Pdx

Pdx u e
-

- = ÚÚ   (11)

Thus, the required suitable substitution for the dependent variable is y = uv, where u is given by 

(11).

Now, from (10), we have 
1

2

du
Pu

dx
= -  so that

 
2

2

d u

dx
 = 

1 1

2 2

du dP
P u

dx dx
- - ◊

or 

2

2

d u

dx
 = 

1 1 1

2 2 2

dP
P Pu u

dx

Ê ˆ- - -Á ˜Ë ¯
,  putting the value of

du

dx

È ˘
Í ˙Î ˚

\ 
2

2

1 d u du
P Qu

u dxdx

Ê ˆ
+ +Á ˜

Ë ¯
 = 2 21 1 1 1

4 2 2

dP
P u u P u Qu

u dx

Ê ˆ◊ - ◊ - +Á ˜Ë ¯

 = 21 1
(say)

4 2

dP
Q P I

dx
- - =   (12)

Also, take S = R/u (13) 
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Using (10), (12), (13), (9) becomes

 
2

2

d v
Iv

dx
+  = S, where I and S are given by (12) and (13).

12.5   WORKING RULE FOR SOLVING PROBLEMS BY USING 
NORMAL FORM

Step 1 Put the equation in the standard form y¢¢ + Py¢ + Qy = R, in which the coeffi cient of 
2

2

d y

dx
 

must be unity.

Step 2 To remove the fi rst derivative, we choose 

1

2
Pdx

u e
- Ú

=

Step 3 We now assume that the complete solution of the given equation is y = u·v; then the given 

equation reduces to normal form

 + =
2

2
,

d v
Iv S

dx
 where 21 1

4 2

dP
I Q P

dx
= - -  and S = R/u

Important Note The success in solving the given equation depends on the success in solving 

+ =
2

2
.

d v
Iv S

dx
 Now this latter equation can be solved easily if I take two special forms.

 (a) When I = constant then the resulting equation being with constant coeffi cients can be solved 

by the  usual methods.

 (b) When 
2

constant
I

x

Ê ˆ= Á ˜Ë ¯
 then the resulting equation reduces to homogeneous form and, hence, 

it can be solved by using the usual methods.

Step 4 After getting v, the complete solution is given by y = u·v

Example 6  Solve y¢¢ – (2tan x) y¢ + 5y = 0.

Solution

 y¢¢ – (2 tan x) y¢ + 5y = 0 (1)

Compare (1) with y¢¢ + Py¢ + Qy = R

 P = –2tan x, Q = 5, R = 0

To remove the fi rst derivative from (1),

Choose  u = 

1 1
2tan

2 2
Pdx xdx

e e
- Ú - Ú -

=

 u = elog sec x = sec x

Calculate  I = 21 1

4 2

dP
Q P

dx
- -

 = 2 21 1
5 4 tan 2sec

4 2
x x- ◊ - ¥ -

 = 5 – tan2 x + sec2
x
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 = 5 – tan2 
x + tan2 x + 1 = 6 (constant)

and S = R/u = 0/sec x = 0

Then the reduced equation is

 
2

2

d v
Iv

dx
+  = S

 
2

2
6

d v
v

dx
+  = + = ∫20 or ( 6) 0,

d
D v D

dx
 (2)

So, the solution of (2) is 1 2CF cos( 6) sin 6v c x c x= = +
\ the complete solution is y = u·v

 y = 1 2sec ( cos 6 sin 6)x c x c x+

Example 7  Solve y¢¢ – (2 tan x) y¢ + 5y = (sec x) · ex
.

Solution Given y¢¢ – (2 tan x) y¢ + 5y = (sec x) · ex (1)

Compare (1) with y¢¢ + Py¢ + Qy = R

 P = –2 tan x, Q = 5, R = (sec x)ex

Calculate  I = 21 1

4 2

dP
Q P

dx
- -

 = 2 21 1
5 4 tan ( 2sec )

4 2
x x- ◊ - ◊ -

 = 5 – tan2 x + sec2 x = 6 (constant)

 u = 

1 1
2tan

2 2
Pdx x dx

e e
- Ú - Ú -

=

 = elog sec x = sec x

 S = 
sec

sec

x
xR x e

e
u x

◊
= =

\ the reduced equation

 
2

2

d v
Iv

dx
+  = S

 
2

2
6

d v
v

dx
+  = ex or (D2 + 6)v = ex

Its auxiliary equation is m2 + 6 = 0

                                               m = 6i±

CF is = +1 2cos( 6) sin ( 6 )c x c x

and PI = 
2 2

1 1 1

76 1 6

x x x
e e e

D
= =

+ +

\ v = CF + PI = È ˘+ +Î ˚1 2

1
cos( 6) sin 6

7

x
c x c x e
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\ The complete solution is y = u·v

 y = 1 2

1
sec cos( 6) sin ( 6 )

7

x
x c x c x e

È ˘+ +Í ˙Î ˚

Example 8  Solve 
2

2 2
1y y y

x x

Ê ˆ Ê ˆ- + +¢¢ ¢Á ˜ Á ˜Ë ¯ Ë ¯
 = xe

x by changing the dependent variable.

Solution Given  
2

2 2
1y y y

x x

Ê ˆ Ê ˆ- + +¢¢ ¢Á ˜ Á ˜Ë ¯ Ë ¯  = xe
x (1)

Comparing (1) with y¢¢ + Py¢ + Qy = R

 P = 
2

2 2
, 1 , x
Q R xe

x x

Ê ˆ- = + =Á ˜Ë ¯

Calculate  I = 21 1

4 2

dP
Q P

dx
- -

 = 
2 2 2

2 1 4 1 2
1

4 2x x x
+ - ◊ - ◊

 = 
2 2 2

2 1 1
1 1

x x x
+ - - =

and u = 
- Ú - Ú- Ú

= = = =
1 2 11

log22
dx dxPdx

xx xe e e e x

 S = 
x

xR xe
e

u x
= =

Then the equation (1) reduces to 

2

2

d v
Iv S

dx
+ =

 

2

2

d v
v

dx
+  =  ex or (D2 + 1)v = ex (2)

Its AE is m2 + 1 = 0

 m = ± i
 CF = c1 cos x + c2 sin x

and  PI = 
2 2

1 1 1

21 1 1

x x x
e e e

D
= =

+ +
\ V = CF + PI

 V = + +1 2

1
cos sin

2

x
c x c x e

Then the required general solution is y = u·v

 y = 
1 2

1
cos sin

2

x
x c x c x e

Ê ˆ◊ + +Á ˜Ë ¯
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Example 9  Solve y¢¢ – 4xy¢ + (4x
2 – 1)y = -

2

3 sin 2 .x
e x

Solution Given  y¢¢ – 4xy¢ + (4x
2 – 1)y = 

2

3 sin 2x
e x-  (1)

Comparing (1) with y¢¢ + Py¢ + Qy = R

 P = 
224 , (4 1), 3 sin 2x

x Q x R e x- = - = -

Calculate I = 21 1

4 2

dP
Q P

dx
- -

 = 2 21 1
(4 1) 16 ( 4)

4 2
x x- - ◊ - ◊ -

 = 4x
2 – 1 – 4x

2 + 2 = 1 (constant)

and  u = 

1 1
4

2 2
Pdx x dx

e e
- Ú - Ú -

=

 = 
22 xdx x

e e
Ú =

 S = 

2

2

3 sin 2
3sin 2

x

x

R e x
x

u e

-
= = -

Then (1) reduced to 
2

2

d v
Iv

dx
+  = S

 
2

2

d v
v

dx
+  = –3 sin 2x

 (D2 + 1)v = –3sin 2x

Its AE    m
2 + 1 = 0

 m = ±i

The CF is c1 cos x + c2 sin x

 PI = 
2 2

1 3
3sin 2 sin 2 sin 2

1 2 1
x x x

D

-
- = =

+ - +

\ V = c1 cos x + c2 sin x + sin 2x

Then the complete solution is y = u·v

 y = 
2

1 2[ cos sin sin 2 ]x
e c x c x x+ +

EXERCISE 12.2

Solve the following differential equations:

 1. y¢¢ + 4xy¢ + 4x
2
y = 0 2. 

224 (4 3) x
y xy x y e- + - =¢¢ ¢

 3. 2 2cos cos 0
d dy

x y x
dx dx

Ê ˆ◊ + =Á ˜Ë ¯
 4. 22 2 0

d dy dy
x x y x y x y

dx dx dx

Ê ˆ- - + + =Á ˜Ë ¯
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 5. 
2

2 2

2
2 (3 2) 3 (3 4) xd y dy

x x x x x y e
dxdx

- - + - =  6. 
22 /22 ( 5) x

y xy x y xe
-+ + + =¢¢ ¢

 7. (1 – x2)y¢¢ – 4xy¢ – (1 + x2) y = x 8. 
2

0y y y
x

Ê ˆ+ - =¢¢ ¢Á ˜Ë ¯

 9. x
2
y¢¢ – 2xy¢  + (x2 + 2)y = x3

e
x 10. 

2 sin 2x
y y y

x x

Ê ˆ+ + =¢¢ ¢Á ˜Ë ¯

Answers

 1. 
2 2 2

1 2( )x x x
y e c e c e

- -= +  2. 
2

1 2[ 1]x x x
y e c e c e

-= + -

 3. 1 2sec [ cos( 2) sin( 2 )]y x c x c x= +  4. y = (c1 cos x + c2 sin x) ◊ x

 5. 
2 3 2 1 2

1 2

1
log

3

x
y x e c x c x x x

- -È ˘= + + ◊Í ˙Î ˚
 6. 

2 /2
1 2cos sin

4

x x
y e c x c x

- È ˘= + +Í ˙Î ˚

 7. y = (1 – x2)–1 [c1 cos x + c2 sin x + x] 8. y = x–1[c1e
x + c2e

–x]

 9. 1 2cos sin
2

x
e

y x c x c x
È ˘

= + +Í ˙
Í ˙Î ˚

 10. 1
1 2

1
cos sin sin 2

3
y x c x c x x

- È ˘= + -Í ˙Î ˚

12.6   TRANSFORMATION OF THE EQUATION BY CHANGING
THE INDEPENDENT VARIABLE

Consider a second order LDE with variable coeffi cients

 
2

2

d y dy
P Qy

dxdx
+ +  = R (14)

where P, Q, R are functions of x and let the independent variable be changed from x to z, where

z = f(x), (say).

Using the formula 
df

dx
 = 

df dz

dz dx
◊ , we have 

dy dy dz

dx dz dx
= ◊

and 
2

2

d y

dx
 = 

d dy d dy dz

dx dx dx dz dx

Ê ˆ Ê ˆ= ◊Á ˜ Á ˜Ë ¯ Ë ¯

 = 
d dy dz dy d dz

dx dz dx dz dx dx

Ê ˆ Ê ˆ◊ + ◊Á ˜ Á ˜Ë ¯ Ë ¯

 = 
2

2

d dy dz dz dy d z

dz dz dx dx dx dx

Ê ˆ ◊ ◊ + ◊Á ˜Ë ¯

 

2

2

d y

dx
 = 

22 2

2 2

d y dz dy d z

dx dzdz dx

Ê ˆ + ◊Á ˜Ë ¯



 Solutions of Second-Order Linear Differential  Equations with  Variable Coeffi cients  12.17

Putting the values of 
2

2
and

dy d y

dx dx
 in (1), we get

 
Ê ˆ◊ + ◊ + ◊ +Á ˜Ë ¯

22 2

2 2

d y dz dy d z dy dz
P Qy

dx dz dz dxdz dx
 = R

or 

22 2

2 2

d y dz d z dz dy
P Qy

dx dx dzdz dx

Ê ˆÊ ˆ◊ + + +Á ˜Á ˜Ë ¯ Ë ¯
 = R

Dividing by 

2
dz

dx

Ê ˆ
Á ˜Ë ¯

 on both sides, we get

 
2

1 12

d y dy
P Q y

dzdz
+ +  = R1 (15)

where P1 = 

2

2

12 2
,

d z dz
P

Qdxdx Q
dz dz

dx dx

+
=

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

 and R1 = 
2

R

dz

dx

Ê ˆ
Á ˜Ë ¯

Here, P1, Q1, and R1 are functions of x, but these can be converted to functions of z by using the 

relation z = f(x). If the equating Q1 to a constant quantity we see that P1 also becomes constant then 

(15) can be solved (since it will be linear equation with constant coeffi cients) to obtain the required 

solution.

12.7   WORKING RULE FOR SOLVING EQUATIONS BY CHANGING 
THE INDEPENDENT VARIABLE

Step 1 Put the given DE in standard form by keeping the coeffi cient of y¢¢ as unity, i.e.,

 y¢¢ + Py¢ + Qy = R (16)

Step 2 Suppose Q = ± kf(x); then we assume a relation between the new independent variable z and 

let the old independent variable x given by 

2

( )
dz

kf x
dx

Ê ˆ =Á ˜Ë ¯
.

Note Be careful that we omit the –ve sign of Q while writing this step. This is extremely important 

to fi nd real values. Sometimes we assume that 

2

( )
dz

f x
dx

Ê ˆ =Á ˜Ë ¯
 whenever we anticipate complicated 

relation between z and x.

Step 3 We now solve 

2

( )
dz

kf x
dx

Ê ˆ =Á ˜Ë ¯
. Rejecting the –ve sign, we get

 
dz

dx
 = ( )kf x±  (17) 
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Now, separating the variables, (16) gives

 dz = [ ( )]kf x dx  so that [ ( )]z kf x dx= Ú  (18)

where we have omitted the constant of integration since we are interested in fi nding just a relation 

between z and x.

Step 4 With the relationship (17) between z and x, we transform (16) to get an equation of the 

form

 

2

1 12

d y dy
P Q y

dzdx

Ê ˆ+ +Á ˜Ë ¯  = R1 (19)

where P1 = 

2

2

1 12 2
, and

z

d z dz
P

Q Rdxdx Q R
dz dz dz

dx dx dx

+
= =

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

Now, by virtue of (17), Q1 = 
( )

( )

kf x
k

kf x

±
= ± , a constant.

Then we calculate P1

If P1 is also constant. Then (19) can be solved because it will be a linear equation with constant 

coeffi cients. If, however, P1 does not become constant then this rule will not be useful. The students 

must, therefore, be sure that P1 comes out to be constant before proceeding further. The value of P1, 

Q1, and R1 must be remembered for direct use in problems. R1 can be converted to a function of z by 

using (17).

Step 5 After solving the equation (19) by usual methods, the variable z is replaced by x by using 

(18).

Example 10  Solve y¢¢ + (cot x)y¢ + (4 cosec2 x) y = 0.

Solution Given y¢¢ + (cot x)y¢ + (4 cosec2 x) y = 0 (1)

Comparing (1) with y¢¢ + Py¢ + Qy = R

 P = cot x, Q = 4 cosec2 x, R = 0

We choose z such that 

2
dz

dx

Ê ˆ
Á ˜Ë ¯  = 4 cosec2 x

so that 
dz

dx
 = 2 cosec x

or z = 2 log tan (x/2)

 
2

2

d z

dx
 = –2 cosec x · cot x

Calculate P1 = 

2

2

2 2

2 cosec cot 2cot cosec

4 cosec

d z dz
P

x x x xdxdx

xdz

dx

+
- ◊ +

=
Ê ˆ
Á ˜Ë ¯
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 P1 = 0

 Q1 = 
2

2 2

4 cosec
1

4 cosec

Q x

xdz

dx

= =
Ê ˆ
Á ˜Ë ¯

 R1 = 
2

0
R

dz

dx

=
Ê ˆ
Á ˜Ë ¯

Then the reduced equation,

 
2

1 12

d y dy
P Q y

dzdz
+ +  = R1

 
2

2

d y
y

dz
+  = 0 (2)

or (D1
2 + 1)y = 0 where 

1

d
D

dz
∫

Its AE, is m2 + 1 = 0 so that m = ±i

Hence, the required solution is y = CF = c1 cos z + c2 sin z

 y = c1 cos (2 log tan x/2) + c2 sin (2log tan x/2)

Example 11  Solve (cos x)y¢¢ + (sin x)y¢ – (2 cos3 x)y = 2 cos5 x.

Solution Dividing by cos x, the given equation in the standard form is

 y¢¢ + (tan x)y¢ – (2 cos2 x) y = 2 cos4 x (1)

Compare (1) with y¢¢ + Py¢ + Qy = R

 P = tan x, Q = –2 cos2 x, R = 2 cos4
x

Choose z, such that 

2
dz

dx

Ê ˆ
Á ˜Ë ¯  = 2 cos2 x

or 
dz

dx
 = 

2

2
2 cos and 2 sin

d z
x x

dx
= -

or dz = 2 cos or 2 sinx dx z x=

Calculate  P1 = 

2

2

2 2

2 sin tan 2 cos
0

2cos

d z dz
P

x x xdxdx

xdz

dx

+
- + ◊

= =
Ê ˆ
Á ˜Ë ¯

 Q1 = 
2

2 cos
1

2 cos

Q x

xdz

dx

-
= = -

Ê ˆ
Á ˜Ë ¯
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and  R1 = 
4 2

2 2

2 2

2cos
cos 1 sin 1

22cos

R x z
x x

xdz

dx

Ê ˆ
= = = - = -Á ˜

Ë ¯Ê ˆ
Á ˜Ë ¯

Then the reduced equation is

 

2

1 12

d y dy
P Q y

dzdz
+ +  = R1 

 
2

2

d y
y

dz
-  = 

2 2
2
11 or ( 1) 1

2 2

z z
D y

Ê ˆ
- - = -Á ˜

Ë ¯
, where ∫1

d
D

dz

Its AE is m2 – 1 = 0

 m = ±1 

CF = c1e
z + c2e

–z

 PI = 
2

2
1

1
1

2( 1)

z

D

Ê ˆ
-Á ˜- Ë ¯

 = 
2

2 2
1 1

1 1 1
1

2( 1) (1 )
z

D D
◊ +

- -

 = 
0 2 1 2

12
1

1 1
(1 )

2( 1)

z
e D z

D

-+ -
-

 = 0 2 2
1

1 1
(1 )

0 1 2

z
e D z+ + +

-
 

 = 
2

21
1 ( 2)

2 2

z
z- + + =

Hence, the required solution is y = CF + PI

 y = 

2

1 2
2

z z z
c e c e

-+ +

or y = 2 sin 2 sin 2
1 2 sin as 2 sinx x

c e c e x z x
-+ + =

Example 12  Solve 
2

3

2
4

d y dy
x x y

dxdx
- -  = 8x

3 sin x2.

Solution Dividing by 
2

2

2

1
, 4

d y dy
x x y

x dxdx
- -  = 8x

2 sin x2

Compare (1) with y¢¢ + Py¢ + Qy = R

 P = 2 2 21
, 4 , 8 sinQ x R x x

x
- = - =
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Choose z such that 

2
dz

dx

Ê ˆ
Á ˜Ë ¯  = 4x

2

 
dz

dx
 = 2x so that z = x2 and 

2

2
2

d z

dx
=

Calculate P1 = 

2

2

2 2

1
2 2

0
4

d z dz
P x

dxdx x

xdz

dx

+ - ◊
= =

Ê ˆ
Á ˜Ë ¯

 Q1 = 
2

2 2

4
1

4

Q x

xdz

dx

-
= = -

Ê ˆ
Á ˜Ë ¯

 R1 = 

2 2
2

2 2

8 sin
2sin 2sin

4

R x x
x z

xdz

dx

= = =
Ê ˆ
Á ˜Ë ¯

\ the reduced equation

 
2

1 12

d y dy
P Q y

dzdx
+ +  = R1

or 
2

2

d z
y

dx
-  = 2 sin z

or 
2
1( 1)D y-  = 2 sin z (2), where 

1

d
D

dz
∫

Its AE is            m2 – 1 = 0

 m = ±1

 CF = 1 2
z z

c e c e
-+

 PI = 
2
1

1
2sin

1
z

D -

 = 
2

1
2sin sin

1 1
z z= -

- -

Hence, the required solution is y = CF + PI

 y = c1e
z + c2e

–z – sin z

or y = 
2 2 2

1 2 sinx x
c e c e x

-+ -

Example 13  Solve 
2

2

2
(1 ) (1 )

d y dy
x x y

dxdx
+ + + +  = 4 sin log (1 + x).

Solution Dividing by (1 + x)2, the given equation in the standard form is

     
2

2 2

1 1

1 (1 )

d y dy
y

x dxdx x
+ +

+ +
 = 

2

4
sin log(1 )

(1 )
x

x
+

+
 (1)
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Comparing (1) with y¢¢ + Py¢ + Qy = R

 P = 
2 2

1 1 4
, , sin log(1 )

1 (1 ) (1 )
Q R x

x x x
= = +

+ + +

Choose z such that 

2
dz

dx

Ê ˆ
Á ˜Ë ¯  = 

2

1

(1 )x+

or 
dz

dx
 = 

1

(1 )x+
 so that z = log (1 + x)

and  
2

2

d z

dx
 = 

2

1

(1 )x
-

+

Calculate  P1 = 

2

22

2

2

1 1 1

(1 ) (1 )(1 )
0

1

(1 )

d z dz
P

x xxdxdx

dz

xdx

- + ¥+ + ++
= =

Ê ˆ
Á ˜ +Ë ¯

 Q1 = 
2

2 2

1/(1 )
1

1/(1 )

Q x

xdz

dx

+
= =

+Ê ˆ
Á ˜Ë ¯

 and

 R1 = 
2

2 2

4(1 ) cos log(1 )

(1 )

R x x

xdz

dx

-

-

+ +
=

+Ê ˆ
Á ˜Ë ¯

 = 4 cos log (1 + x) = 4 cos z

\ the reduced equation is 
2

1 12

d y dy
P Q y

dzdx
+ +  = R1

or 
2

2

d y
y

dz
+  = 4 cos z

or 2
1( 1)D y+  = 4 cos z, where 

1

d
D

dz
∫

Its AE is           m
2 + 1 = 0

 m = ±i

 CF = c1 cos z + c2 sin z

 PI = 
2
1

1
4cos

1
z

D +

 = 4 sin
2.1

z
z  

2 2

1
cos sin

2

z
az az

aD a

È ˘
=Í ˙

+Î ˚
∵

 = 2z sin z
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Hence, the required general solution is

 y = CF + PI = c1 cos z + c2 sin z + 2z sin z

or y = c1 cos {log (1 + x)} + c2 sin {log (1 + x)} + 2log(1 + x) sin {log(1 + x)}

EXERCISE 12.3

Solve the following differential equations:

 1. y¢¢ – y¢ cot x – (sin2
x)y = 0

 2. y¢¢ + (tan x – 1)2 y¢ – (n(n – 1) sec4
x)y = 0

 3. xy¢¢ + (4x
2 – 1) y¢ + 4x

3
y = 2x

3

 4. y¢¢ – (8e
2x + 2) y¢ + 4e

2x
y = e6x

 5. xy¢¢ – y¢ + 4x
3
y = x5

 6. 
6 5 2

2

1
3x y x y a y

x
+ + =¢¢ ¢

 7. x
4 

y¢¢ + 2x
3
y¢ + n2

y = 0

 8. (1 + x)2 
y¢¢ + (1 + x)y¢ + y = 4 sin {log (1 + x)}

Answers

 1. y = c1e
–cos x + c2e

cos x

 2. y = c1e
–ntan x + c2e

(n – 1)tan x as z = tan x

 3. 
2 2

1 2

1
( )

2

x
y e c c x

- È ˘= + +Í ˙Î ˚

 4. 
2 2

1 2

1
cos( 3) sin ( 3) 1

4

x x
y e c x c x e

È ˘= + + +Í ˙Î ˚

 5. 
2

2 2
1 2cos sin

4

x
y c x c x= + +

 6. 1 22 2 2 2

1
cos sin

2 2

a a
y c c

x x a x

Ê ˆ Ê ˆ= - +Á ˜ Á ˜Ë ¯ Ë ¯

 7. y = c1cos(n/x) – c2sin(n/x)

 8. y = c1cos log(1 + x) + c2 sin log (1 + x) – 2 log (1 + x)◊cos (log (1 + x)

12.8  METHOD OF VARIATION OF PARAMETERS

This method is used for fi nding the complete solution of 
2

2

d y dy
P Qy R

dxdx
+ + =  (20)

when the complementary function is known.

Let the CF be y = au + bv (21)

where a and b are constants and u and v are functions of x. Then u and v must be solutions of 
2

2
0

d y dy
P Qy

dxdx
+ + =  (22)
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Hence, u¢¢ + Pu¢ + Qu = 0 and v¢¢ + Pv¢ + Qv = 0 (23)

where R π 0, au + bv will not represent the complete solution of (20)

Now, consider y = Au + Bv (24)

The complete solution of (20), where A and B are not constants but functions of x so chosen that 

(20) shall be satisfi ed.

\ 
dy

dx
 = Au¢ + Bv¢ + A¢u + B¢v (25)

Choose A¢u + B¢v = 0 (26)

Using (26), (25) becomes

 
dy

dx
 = Au¢ + Bv¢  (27)

Differentiating (27) both sides w.r.t. ‘x’, we get

 
2

2

d y

dx
 = Au¢¢ + Bv¢¢ + A¢u¢ + B¢v¢ (28)

Putting the values of y, y¢ and y¢¢ from (24), (27), and (28) in (20), we get

 (Au¢¢ + Bv¢¢ + A¢u¢ + B¢v¢) + P(Au¢ + Bv¢) + Q(Au + Bv) = R

 A[u¢¢ + Pu¢ + Qu] + B[v¢¢ + Pv¢ + Qv] + A¢u¢ + B¢v¢ = R (29)

Using (23), (29) becomes

 A·0 + B·0 + A¢u¢ + B¢v¢ = R

or A¢u¢ + B¢v¢ = R (30)

Solving equations (26) and (30) for A¢ and B¢ , we get

 A¢ = and
Rv Ru

B
w w

-
=¢

where W = Wronskian of u and 
u v

v
u v

=
¢ ¢

i.e., W = uv¢ – u¢v

On integrating fi nd A and B, putting the values of A and B in (24), we get the complete solution of 

Eq. (20).

12.9   WORKING RULE FOR SOLVING SECOND ORDER LDE BY 
THE METHOD OF VARIATION OF PARAMETERS

Step 1 Put the given DE in standard form

 
2

2

d y dy
P Qy

dxdx
+ +  = R (31)

Step 2 Put R = 0 in (31); then (31) becomes

 
2

2

d y dy
P Qy

dxdx
+ +  = O (32)

Suppose the complementary function (CF) of (32) is 

 y = au + bv; a and b are constants.
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Step 3 Replace the parameters a and b by A(x) and B(x); then the complete solution of (31) is

 y = Au + Bv

where A = and
Rv Ru

dx B dx
w w

-
=Ú Ú

and w = Wronskian of u and 
u v

v
u v

=
¢ ¢

   w = uv¢ – u¢v

Now, fi nd A and B, then put in y = Au + Bv.

12.10   SOLUTION OF THIRD-ORDER LDE BY METHOD OF 
VARIATION OF PARAMETERS

Consider a third order LDE such as

 
3 2

3 2

d y d y dy
P Q Ry

dxdx dx
+ + +  = X (33)

Put X = 0 in (33); then (34) becomes

 
3 2

3 2

d y d y dy
P Q Ry

dxdx dx
+ + +  = 0 (34)

Suppose y = c1u + c2v + c3w is the solution of (34), where y = u, y = v and y = w satisfy the given 

DE (33).

Then let the complete solution of (33) be

 y = Au + Bv + Cw (35)

where A, B, and C are functions of x. Then using the method of variation of parameters, as in the case 

of LDE of second order, we get

 A¢ = 
( , )

( , , )

XW v w

W u v w
 (36)

 B¢ = -
( , )

( , , )

XW u w

W u v w
 (37)

 C¢ = 
( , )

( , , )

XW u v

W u v w
 (38)

where W(u, v, w) = 

u v w

u v w

u v w

¢ ¢ ¢
¢¢ ¢¢ ¢¢

 and ( , )
u v

w u v
u v

=
¢ ¢

, etc.

Now, integrating equations (36), (37), and (38), we get the values of A, B, and C respectively. 

Putting these values in (3), we get the solution of the given differential equation (33).

Example 14  Solve 
2

2

2

d y
n y

dx
+  = sec nx.

Solution We can write the given equation in the form of

 y¢¢ + n2
y = sec nx or (D2 + n2)y = sec nx (1)
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Put RHS = 0,

 (D2 + n2)y = 0  (2)

Its AE is    m2 + n2 = 0

 m
2 = –n

2

 m = ±in

Solution of (2) is y = CF = a cos nx + b sin nx

Consider the complete solution of (1) as

 y = A cos nx + B sin nx (3)

where A and B are function of x.

Compare (3) with y = Au + Bv

 u = cos nx, v = sin nx

 W(u, v) = 
cos sin

sin cos

u v nx nx

u v n nx n nx
=

-¢ ¢

 = ncos2 nx + n sin2 
nx = n(cos2 nx + sin2 nx)

 W = n

 A = 
. sec sinR v nx nx

dx dx
w n

- ◊
= -Ú Ú

 = 
2

1 1
tan logsecnx dx nx

n n
- = - -Ú

 = 12

1
logcos nx c

n
+  [∵   –log x = log 1/x]

and  B = 
◊

= = +Ú Ú 2

. . sec cos 1R u nx nx
dx dx c

w n n

Putting the values of A and B in (3), we get the required solution of (1).

 y = 
Ê ˆ Ê ˆ+ + +Á ˜ Á ˜Ë ¯ Ë ¯1 22

1 1
logcos cos sinnx c nx c nx

nn

 y = 1 2 2

1
cos sin cos logcos sin

x
c nx c nx nx nx nx

nn
+ + ◊ +

Example 15  Solve (D2 + 1)y = cosec x.

Solution

 (D2 + 1)y = cosec x (1)

Here, R = cosec x

Putting RHS = 0 = R in (1), we get

 (D2 + 1)y = 0  (2)

AE (m2 + 1) = 0

 m = ±i

Complete solution of (2) is y = CF = a cos x + b sin x

Consider the complete solution of (1) as

 y = A cos x + B sin x  (3)

where A and B are functions of ‘x’. Compare (3) with y = Au + Bv;
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 u = cos x, v = sin x

 Wronskian of u, v = 
cos sin

( , )
sin cos

x x
W u v

x x
=

-

 = cos2 x + sin2
x = 1

Now, A = 
. cosec

sin
1

R v x
dx x dx

w

-
= - ◊ ◊Ú Ú  

 A = 1dx x c- = - +Ú
and B = 

. . cosec cos

1

R u x x
dx dx

w

◊
=Ú Ú

 = 
2cot logsinx dx x c= +Ú

Putting these values of A and B in (3), we get

 y = (–x + c1) cos x + (log sin x + c2) sin x

 y = c1 cos x + c2 sin x – x cos x + sin x log sin x

Example 16  Solve (D2 + 4)y = 4 tan 2x.

Solution

 (D2 + 4)y = 4tan 2x (1)

Here, R = 4 tan 2x

Putting RHS = 0, Eq. (1) becomes 

 (D2 + 4)y = 0  (2)

Its AE is  m2 + 4 = 0

 m = ±2i

Complete solution of (2) is y = CF = a cos 2x + b sin 2x

Consider the complete solution of (1) as

 y = A cos 2x + B sin 2x (3)

where A and B are functions of x.

Compare (3) with y = Au + Bv

 u = cos 2x, v = sin 2x

 Wronskian of u, v = 
cos2 sin 2

( , )
2sin 2 2cos2

x x
W u v

x x
=

-
 = 2 cos22x + 2 sin22x = 2

Now, A = 
. 4 tan 2 sin 2

2

R v x x
dx dx

w

◊
- = -Ú Ú

 = 
2sin 2

2
cos2

x
dx

x
- Ú

 = 
21 cos 2

2
cos2

x
dx

x

-
- Ú

 = 2 sec 2 2 cos2x dx x dx- +Ú Ú
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 = –log(sec 2x + tan 2x) + sin 2x + c1

and B = 
4 tan 2 cos2

2

R u x x
dx dx

w

◊ ◊ ◊
=Ú Ú

 = 2 sin 2x dxÚ
 = –cos 2x + c2

Putting these values of A and B in (3), we get

 y = c1 cos 2x + c2 sin 2x – cos 2x log(sec 2x + tan 2x)

Example 17  Solve x2
y¢¢ + xy¢ – y = x2

e
x
.

Solution The given equation in the standard form y¢¢ + Py¢ + Qy = R is

 
2

1 1
y y y

x x
+ -¢¢ ¢  = ex (1)

Here, R = ex

Putting RHS = 0 in (1), we get

 
2

1 1
y y y

x x
+ -¢¢ ¢  = 0 or x2

y¢¢ + xy¢ – y = 0

or (x2
D

2 + xD – 1)y = 0; where 
d

D
dx

∫  (2)

which is a homogeneous equation; putting x = ez and 1

d
D

dz
∫ ; then (2) becomes

 [D1(D1 – 1) + D1 – 1]y = 0

 [D1
2 – 1]y = 0  (3)

Its AE is m2 – 1 = 0 so that m = ±1

Hence, the solution of (3) is y = CF = ae
z + be

–z

 y = ax + bx
–1

Consider the complete solution of (1) as

 y = Ax + Bx
–1  (4)

where A and B are functions of ‘x’.

Compare (4) with y = Au + Bv

 u = x, 
1

v
x

=

 Wronskian of u, v = 

2

1

( , )
1

1

x
x

w u v

x

=
-

                = 
2

1 1 2

x xx
- - = -
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Now, A = 
1/

2/

x
R v e x

dx dx
w x

◊ ◊
- = -

-Ú Ú

 = 1

1 1

2 2

x x
e dx e c= +Ú

and B = 
2/

x
R u e x

dx dx
w x

◊ ◊
=

-Ú Ú

 = 21

2

x
x e dx- Ú

 = 2
2

1
1

2

x x x
x e xe e dx cÈ ˘- + - ◊ +Î ˚Ú

 B = 2
2

1

2

x x x
x e xe e c- + - +

Putting these values of A and B in (4), we get

 y = 
1 1

1 2
x x

c x c x e x e
- -+ + -

Example 18  Solve (D2 + 2D + 1)y = e–xlog x.

Solution

 (D2 + 2D + 1)y = e–x log x  (1)

Here, R = e–x log x

Put RHS = 0 in (1), we get

 (D2 + 2D + 1)y = 0 (2)

Its AE is m
2 + 2m + 1 = 0

 m = –1, –1

The complete solution of (2) is y = CF = (a + bx)e–x

Consider the complete solution of (1) as

 y = (A + Bx)e–x (3)

where A and B are functions of ‘x’.

Compare (3) with y = Au + Bv

 u = e–x, v = xe
–x

 Wronskian of u, v = ( , )

x x

x x

e xe
w u v

e e

- -

- -
=

- -

 = –e
–2x(x – 1) + xe

–2x

 w = e–2x

Now, A = 
- -

-

◊ ¥
- = -Ú Ú 2

logx x

x

R v e x xe
dx dx

w e

 = logx x dx-Ú

 A = 
2

1

1
log

2 2

x
x c

È ˘- +Í ˙Î ˚
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and B = 
- -

-

◊ ◊
=Ú Ú 2

logx x

x

R u e x e
dx dx

w e
 = 2log logx dx x x x c= - +Ú

Putting these values of A and B in (3), we get

  y = 
2

2
1 2

1
log ( log )

2 2

x x x xx
c e c xe x e e x x x

- - - -Ê ˆ+ + - + -Á ˜Ë ¯

EXERCISE 12.4

Solve the following DE by the method of variation of parameters:

 1. (D2 – 2D + 1)y = x3/2 ·ex 2. (D2 – 1)y = e–2x·sin(e–x)

 3. (D2 – 6D + 9)y = x–2
 e

3x 4. (D2 – 2D + 2)y = ex·tan x

 5. (D2 + 3D + 2)y = ex + x2 6. (D2 + 1)y = log (cos x)

 7. (D2 + 1)y = x·cos 2x 8. (D2 – 3D + 2)y = (xe
x + 2x)

 9. x
2
y¢¢ + xy¢ – y = x2

e
x 10. x

2
y¢¢ – xy¢ = x3

e
x

 11. (D2 – 2D + 1)y = ex 12. (D2 – 3D + 2)y = e2x/(ex + 1)

 13. (D2 – 2D + 1)y = xe
x log x; x > 0

Answers

 1. 
7/2

1 2

4

35

x
y c c x x e

È ˘= + +Í ˙Î ˚
 2. y = c1e

x + c2e
–x – ex cos (e–x) – sin(e–x) 

 3. y = c1 e
3x + c2·x e

3x – e3x log x

 4. y = ex(c1 cos x + c2 sin x) – ex·cos x log (sec x + tan x)

 5. 
2

2
1 2

1 3 7

6 2 2 4

x x x x x
y c e c e e

- - Ê ˆ
= + + + - +Á ˜

Ë ¯
 6. y = c1 cos x + c2 sin x + log cos x – 1 + sin x · log (sec x + tan x)

 7. 1 2

4
cos sin cos2 sin 2

2 9

x
y c x c x x x= + - +

 8. 
2

2
1 2

3

2 2

x x x xx
y c e c e e xe x

-= + - - + +

 9. 1
1 2

1x x
y c x c x e e

x

-= + + -

 10. y = c1 + x2
c2 + (x – 1)ex

 11. 
2

1 2

1
( )

2

x x
y c xc e x e= + +

 12. y = c1 e
x
 + c2 e

2x + ex log (1 + ex) + e2x log (1 + e–x)

 13. 
3

3
1 2

5
( ) log

36 6

x x xx
y c xe e x e e x= + - - ◊
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SUMMARY

1.  Complete Solutions of y¢¢ + Py¢ + Qy = R in Terms of One Known Solu-
tion Belonging to the CF

Given 
2

2

d y dy
p Qy

dxdx
+ +  = R (1)

Let y = u(x) be a known solution of the CF, so u is a solution of (1) when its right-hand side is taken to be 

zero. Thus, y = u is a solution of

 

2

2
0

d y dy
P Qy

dxdx
+ + =

 (2)

Working Rule for Finding Complete Solution when One Integral Solution of CF 

is known or can be Obtained by the Above Rules
Step 1: Put the given equation in standard form y¢¢  + py¢ + Qy = R in which the coeffi cient of y¢¢ is unity.

Step 2: Find an integral u of CF by using the following table:

  Condition Satisfi ed An integral of CF is

 (i) 1 + P + Q = 0   u = ex

 (ii) 1 – P + Q = 0   u = e–x

 (iii) a
2 + aP + Q = 0   u = eax

 (iv) m(m – 1) + Pmx + Qx
2 = 0   u = xm

 (v) 2+ 2px + Qx
2 = 0   u = x2

If a solution u is given in a problem then this step is omitted.

Step 3: Consider the complete solution of the given equation is y = u·v, where u has been obtained in

Step 2. Then fi nd v using 
2

2

2d v du dv R
P

u dx dx udx

Ê ˆ
+ + =Á ˜Ë ¯

 (3)

Step 4: Put 
dv

q
dx

=  so that 
2

2

d v dq

dxdx
= , put in (3). Then (3) will come out to be a linear equation in q and 

x if R π 0. Solve it as usual. It R = 0 then variables q and x will be separable.

Step 5: Now, replace q by 
dv

dx
 and separate the variables v and x. Integrate and determine v. Put this value 

of v in y = u·v. This will lead us to the desired complete solution of the given equation.

2. Removal of the First Derivative (Reduction to Normal Form)

Working Rule for Solving Problems by using Normal Form

Step 1: Put the equation in the standard form y¢¢ + Py¢ + Qy = R, in which the coeffi cient of 
2

2

d y

dx
 must 

be unity.

Step 2: To remove the fi rst derivative, we choose 

1

2
Pdx

u e
- Ú

=
Step 3: We now assume that the complete solution of the given equation is y = u·v; then the given equation 

reduces to normal form

     
2

2

d v
Iv S

dx
+ = , where 21 1

4 2

dP
I Q P

dx
= - -  and S = R/u
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Important Note: Success in solving the given equation depends on the success in solving + =
2

2
.

d v
Iv S

dx
 

Now this latter equation can be solved easily if I takes two special forms.

 (i) When I = constant then the resulting equation being with constant coeffi cients can be solved by usual 

methods.

 (ii) When 
2

constant
I

x

Ê ˆ
= Á ˜Ë ¯

 then the resulting equation reduces to homogeneous form, and hence, it can be 

solved by using usual methods.

Step 4: After getting v, the complete solution is given by y = u·v

3.  Transformation of the Equation by Changing the Independent 
Variable

Working Rule for Solving Equations by Changing the Independent Variable 
Step 1: Put the give DE in standard form by keeping the coeffi cient of y¢¢ as unity i.e.

 y¢¢ + Py¢ + Qy = R (4)

Step 2: Suppose Q = ±kf(x); then we assume a relation between the new independent variable z and let the 

old independent variable x given by 

2

( )
dz

kf x
dx

Ê ˆ
=Á ˜Ë ¯

.

Note: Carefully omit –ve sign of Q while writing this step. This is extremely important to fi nd real values. 

Sometimes we assume that 

2

( )
dz

f x
dx

Ê ˆ
=Á ˜Ë ¯

 whenever we anticipate complicated relation between z and x.

Step 3: We now solve 

2

( )
dz

k f x
dx

Ê ˆ
=Á ˜Ë ¯

. Rejecting –ve sign, we get

 
( )

dz
kf x

dx
= ±

 (5) 

Now separating variables, (5) gives

 dz = [ ( )]kf x dx  so that [ ( )]z kf x dx= Ú  (6)

where we have omitted the constant of integration since we are interested in fi nding just a relation between 

z and x.

Step 4: With the relationship (6) between z and x, we transform (4) to get an equation of the form

  
2

1 1 12

d y dy
P Q y R

dzdx

Ê ˆ
+ + =Á ˜Ë ¯

 (7)

where 

2

2

1 1 12 2
, and

z

d z dz
P

Q RdxdxP Q R
dz dz dz

dx dx dx

+
= = =

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

Now, by virtue of (5), 1

( )

( )

kf x
Q k

kf x

±
= = ± , a constant.
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Then we calculate P1.

If P1 is also constant, then (7) can be solved because it will be a linear equation with constant coeffi cients. 

If, however, P1 does not become constant then this rule will not be useful. The students must, therefore, 

be sure that P1 comes out to be constant before proceeding further. The value of P1, Q1 and R1 must be 

remembered for direct use in problems. R1 can be converted to a function of z by using (6).

Step 5: After solving the equation (7) by usual methods, the variable z is replaced by x by using (6).

4. Method of Variation of Parameters

Working Rule for Solving Second Order LDE by the Method of Variation of Parameters

Step 1: Put the given DE in standard form

  
2

2

d y dy
P Qy R

dxdx
+ + =  (8)

Step 2: Put R = 0 in (8); then (8) becomes

  
2

2

d y dy
P Qy O

dxdx
+ + =  (9)

Suppose the complementary function (CF) of (9) is 

 y = au + bv; a and b are constants

Step 3: Replace the parameters a and b by A(x) and B(x); then the complete solution of (8) is

 y = Au + Bv

where and
Rv Ru

A dx B dx
w w

-
= =Ú Ú

and w = Wronskian of u and 
u v

v
u v

=
¢ ¢

 w = uv¢ – u¢v 

Now, fi nd A and B, then y = Au + Bv.

OBJECTIVE-TYPE QUESTIONS

 1. The general solution of the differential 

equation 2

2
0

dy dy
x x y

dxdx
- + =  is

 (a) Ax + Bx
2 (b) Ax – B log x

 (c) Ax + Bx
2 log x (d) Ax + Bx log x

 [GATE (ME) 1998]

 2. The differential equation 

  
2

2 8

2
( 4 ) 8

d y dy
x x y x

dxdx
+ + + = -  is

 (a) partial differential equation

 (b) non-linear differential equation

 (c) non-homogenous differential equation

 (d) ordinary differential equation

 [GATE (ME) 1999]

 3. Consider the differential equation 
2

2

2
4 0

d y dy
x x y

dxdx
+ - =  with the boundary 

conditions of y(0) = 0 and y(1) = 1. The com-

plete solution of the differential equation is

 (a) x
2 (b) sin

2

xpÊ ˆ
Á ˜Ë ¯

 (c) sin
2

x x
e

pÊ ˆ
Á ˜Ë ¯  (d) sin

2

x x
e

p- Ê ˆ
Á ˜Ë ¯

 [GATE (ME) 2012]

 4. Consider the differential equation 
2

2

2
0

d y dy
x x y

dxdx
+ - = . Which of the 
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following is a solution to this differential 

equation for x > 0?

 (a) e
x (b) x

2

 (c) 1/x (d) ln x

 [GATE (EE) 2014]

 5. If y = f(x) is solution of 
2

2
0

d y

dx
=  with the 

boundary conditions y = 5 at x = 0, and 

2
dy

dx
=  at x = 10, f(15) = _______.

 [GATE (ME) 2014]

 6. The differential equation 
2

2 3

2

xd y dy
x x y e

dxdx
+ + =  is a 

 (a) non-linear differential equation of fi rst 

degree

 (b) linear differential equation of fi rst 

degree

 (c) linear differential equation of second 

degree

 (d) non-linear differential equation of second 

degree [GATE (CH) 2014]

ANSWERS

 1. (d) 2. (d) 3. (a) 4. (c) 5. (34 to 36) 6. (b)



13.1  INTRODUCTION

 The solutions of differential equations with variable coeffi cients such as Legendre’s equation, Bessel’s 

equation, etc., cannot be expressed in terms of standard functions. However, in such cases, the solution 

can be obtained in the form of an infi nite series in terms of independent variables. In this chapter, the 

series solution method can defi ned in two ways:

 (i) Power-series method

 (ii) General series-solution method (Frobenius method)

13.2  CLASSIFICATION OF SINGULARITIES

Consider a homogeneous linear second-order differential equation with variable coeffi cients:

2

0 1 22
( ) ( ) ( )

d y dy
a x a x a x y

dxdx
+ +  = 0 (1); a0 π 0

We can write the equation (1) in the form of

2

2
( ) ( )

d y dy
P x Q x y

dxdx
+ +  = 0 (2)

where P(x) = 1 2

0 0

( ) ( )
, ( )

( ) ( )

a x a x
Q x

a x a x
=

13.2.1  Analytic Function

A function f (x) is said to be analytic at x0 if f (x) has Taylor’s series expansion about x0 such that 

0
0

0

( )
( )

!

n
n

n

f x
x x

n

•

=

-Â  exist and converges to f (x) for all x in the interval including x0.

Hence, we fi nd that all polynomial functions, ex, sin x, cos x, sinh x, and cosh x are analytic everywhere. 

A rational function is analytic except at those values of x at which its denominator is zero, for example, 

the rational function defi ned by 
2( 3 2)

x

x x- +
 is analytic everywhere except at x = 1 and x = 2.

13
Series Solutions
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13.3  ORDINARY AND SINGULAR POINTS

A point x = x0 is called an ordinary point of the equation

 y¢¢ + P(x) y¢ + Q(x) y = 0 (3)

if both the function P(x) and Q(x) are analytic at x = x0.

If the  point x = x0 is not an ordinary point of the differential equation (3) then it is called a singular 

point of the differential equation (3) there are two types of singular points.

 (i) Regular singular points

 (ii) Irregular singular points

A singular point x = x0 of the Differential Equation (DE) (3) is called a regular singular point of the 

(DE) (3) if both (x – x0)P(x) and (x – x0)
2
Q(x) are analytic at x = x0.

A singular point which is not regular is called an irregular point.

Example 1  Show that x = 0 and x = 1 are singular. Points of x2(x + 1)2
y¢¢ + (x2 – 1)y¢ + 2y = 0 where 

the fi rst is irregular and the other is regular.

Solution Dividing by x2(x + 1)2, the given equation becomes

 
2 2 2

( 1) 2

( 1) ( 1)

x
y y y

x x x x

-
¢¢ + ¢ +

+ +
 = 0 (1)

Comparing (1) with standard equation y¢¢ + p(x)y¢ + Q(x)y = 0, we get

 P(x) = 
2 2 2

( 1) 2
and ( )

( 1) ( 1)

x
Q x

x x x x

-
=

+ +

Since both P(x) and Q(x) are undefi ned at x = 0 and x = –1. 

Hence, x = 0 and x = –1 are both singular points.

Also,  (x – 0) P(x) = 2

2

( 1) 2
and ( 0) ( )

( 1) ( 1)

x
x Q x

x x x

-
- =

+ +
Showing  that both (x +1) P(x) and (x + 1)2 Q(x) are analytic at x = –1 and hence x = –1 is a regular 

singular points.

Example 2  x
3 (x – 1) y¢¢ + 2 (x – 1) y¢ + 5xy = 0.

Solution Dividing by x3 (x – 1), the given equation becomes

 
3 2

2 5

( 1)
y y y

x x x
¢¢ + ¢ +

-
 = 0 (1)

Here,     P(x) = 
3 2

2 5
and ( )

( 1)
Q x

x x x
=

-
x = 0 and x = 1 are singular points.

Since (x – 0) P(x) = 
2

2

x
 is not analytic at x = 0, we have x = 0 is an irregular singular point.

However, x = 1 is a regular singular point since both (x – 1) P(x) = 
3

2( 1)x

x

-
 and (x – 1)2 

Q(x) = 
2

5( 1)x

x

-
 are analytic at x = 1.
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Example 3  Determine whether x = 0 is an ordinary point or a regular singular point of the 

differential equation 2x
2
y¢¢ + 7x (x + 1) y¢ – 3y = 0.

Solution Dividing by 2x
2, the given equation becomes

 
2

7( 1) 3

2 2

x
y y y

x x

+
¢¢ + ¢ -  = 0 (1)

Here,  P(x) = 
2

7( 1) 3
, ( )

2 2

x
Q x

x x

+
= -

Since both P(x) and Q(x) are undefi ned at x = 0, we have P(x) and Q(x) are not analytic at x = 0. 

Thus, x = 0 is not an ordinary point and so x = 0 is a singular point.

Also, (x – 0)P(x) = 
7( 1)

2

x +
, (x – 0)2 Q(x) = 

3

2
-

Both (x – 0)P(x) and (x – 0)2
Q(x) are analytic at x = 0.

Hence, x = 0 is regular singular point.

EXERCISE 13.1

 1. Show that x = 0 is an ordinary point of y¢¢ – x y¢ + 2y = 0.

 2. Show that x = 0 is an ordinary point of (x2 + 1) y¢¢ + x y¢ – xy = 0.

 3. Show that x = 0 is a regular singular point of x2 y¢¢ + x y¢ + 2 1

4
x y

Ê ˆ-Á ˜Ë ¯
 = 0.

 4. Show that x = 0 is regular singular point and x = 1 is an irregular singular point of

  x(x – 1)3
y¢¢ + 2(x – 1)3

 y¢ + 3y = 0

 5. Verify that the origin is a regular singular point of the equation 2x
2
y¢¢ + xy¢ – (x + 1)y = 0.

 6. Determine the nature of the point x = 0 for the equation x y¢¢ + y sin x = 0.

 7. Show that x = 0 is an ordinary point of (x2 – 1) y¢¢ + x y¢ – y = 0 but x = 1 is a regular singular point.

13.4  POWER SERIES

An infi nite series of the form

     0

0

( )n
n

n

C x x
•

=

-Â  = C0 + C1 (x – x0) + C2 (x – x0)
2 + ... (4)

is called a power series in (x – x0). The constants C0, C1, C2, … are known as the coeffi cients and x0 is 

called the center of the power series (4). Since n takes only positive integral values,  the power series (4) 

does not contain negative or fractional powers. So power series (4) contains only positive powers.

The power series (4) converges (absolutely) for |x| < R, where

 R = 
1

lim n

n
n

C

CÆ• +
, provided the limit exists. (5)

R is said to be the radius of convergence of the power series (4). The interval (–R, R) is said to be 

the interval of convergence.

Result 1 A power series represents a continuous function within its interval of convergence.

Result 2 A power series can be differentiated termwise in its interval of convergence.
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13.5   POWER-SERIES SOLUTION ABOUT THE ORDINARY POINT 
x = x0

Consider the equation y¢¢ + P(x) y¢ + Q(x)y = 0 (6)

Then x = x0 is an ordinary point of (6) and has two nontrivial linearly independent power series 

solutions of the form

 
0

0

( )n
n

n

C x x
•

=

-Â  (7)

And these power series converge in some interval of convergence |x – x0| < R, about x0.

In order to get the coeffi cient Cn
s
 is (2), we take 

 y = 0

0

( )n
n

n

C x x
•

=

-Â  (8)

Differentiating (8) twice in succession w.r.t. x, we have

\ y¢ = 1
0

1

( )n
n

n

nC x x
•

-

=

-Â  and 2
0

2

( 1) ( )n
n

n

y n n C x x
•

-

=

¢¢ = - -Â  (9) 

Putting the above values of y, y¢, and y¢¢ in (6), we get an equation of the form

 A0 + A1 (x – x0) + A2 (x – x0)
2 + … + An (x – x0)

n + … = 0 (10)

where the coeffi cients A0, A1, A2, …, etc., are now some functions of the coeffi cients C0, C1, C2, …, etc. 

Since (10) is an identity, all the coeffi cients A0, A1, A2, … of (10) must be zero, i.e.,

 A0 = 0, A1 = 0, A2 = 0, …., An = 0 (11)

Solving Eq. (11),we obtain the coeffi cients of (8) in terns of C0 and C1,  Substituting these coeffi cients 

in (8), we obtain the required series solution (6) in powers of (x – x0).

Example 4  Find the solution in series of y¢¢ + x y¢ + x2
y = 0 about x = 0.

Solution y¢¢ + x y¢ + x2
y = 0 (1)

Compare (1) with y¢¢ + P(x) y¢ + Q(x) y = 0

Here,  P(x) = x, Q(x) = x2

Since P(x) and Q(x) are both analytic at x = 0, we have x = 0 is an ordinary point.

Consider  y = C0 + C1x + C2 x
2 + ... = 

0

n
n

n

C x
•

=
Â  (2)

Differentiating (2) twice in succession w.r.t. ‘x’, we get

 y¢ = 1

1

n
n

n

C n x
•

-

=

◊Â  and  2

2

( 1) n
n

n

y C n n x
•

-

=

¢¢ = -Â  (3)

Putting the above values of y, y¢ and y¢¢ in (1), we get

 2 1 2

2 1 0

( 1) n n n
n n n

n n n

C n n x x C nx x C x
• • •

- -

= = =

◊ - + ◊ +Â Â Â  = 0
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or  2 2

2 1 0

( 1) n n n
n n n

n n n

C n n x C nx C x
• • •

- +

= = =

◊ - + ◊ + ◊Â Â Â  = 0

 2 2

0 1 2

( 2)( 1) n n n
n n n

n n n

C n n x C n x C x
• • •

+ -
= = =

◊ + + + +Â Â Â  = 0

or  
•

+ -
=

+ + + + + + +Â2 3 1 2 2

2

2 (6 ) [( 1)( 2) ] n
n n n

n

C C C x n n C nC C x  = 0  (4)

Equating the constant term and the coeffi cients of various powers of x to zero, we get

 2 C2 = 0 fi C2 = 0

 6 C3 + C1 = 0 fi  C3 = 1

1

6
C-

 (n + 1) (n + 2) Cn + 2 + nCn + Cn – 2 = 0 " n > 2

or  Cn + 2 = 
2

2
( 1)( 2)

n nnC C
n

n n

-+
- " >

+ +
 (5)

Putting n = 2 in (5), 2 0 0
4

2

(3 4) 12

C C C
C

+
= - = -

◊

Putting n = 3 in (5), 
1 1

3 1
5

1
3 2

(4 5) 20

C C
C C

C

- ++
= - = -

◊

          C5 = 1

40

C
-

Putting n = 4 in (5), 

0

4 2
6

4
0

4 12

(5 6) 30

C

C C
C

- ++
= - = -

◊

           = 
0

0

1

3

30 90

C
C

- +
- = , and so on. Putting these values in (2),

 y = C0 + C1 x + C2 x
2 + ...

 y = 3 4 5 5
0 1 1 0 1 0

1 1 1 1

6 12 40 90
C C x C x C x C x C x+ - - - + + 

or  y = 
Ê ˆ Ê ˆ- + + - -Á ˜ Á ˜Ë ¯ Ë ¯

  
4 6 3 5

0 1

1 1 1 1
1

12 90 6 40
C x x C x x x

Example 5  Find the power-series solution of the equation (x2 + 1) y¢¢ + x y¢ – xy = 0 in powers of x.

Solution Dividing by (x2 + 1) can be written as

 
2 21 1

x x
y y y

x x

Ê ˆ Ê ˆ
+ -¢¢ ¢Á ˜ Á ˜+ +Ë ¯ Ë ¯

 = 0 (1)
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Compare (1) with y¢¢ + P(x)y¢ + Q(x)y = 0

Here,

 P(x) = 
2 2

, ( )
1 1

x x
Q x

x x
= -

+ +

Both P(x) and Q(x) are analytic at x = 0. So x = 0 is an ordinary point.

Consider the power-series solution  of the form

 y = 2
0 1 2

0

... n
n

n

c c x c x c x
•

=

+ + + = Â  (2)

Differentiating (2) twice in succession w.r.t. ‘x’, we get

or y¢ = 
• •

- -

= =

◊ = -¢¢Â Â1 2

1 2

and ( 1)n n
n n

n n

c nx y c n n x  (3)

Substituting the values of y, y¢, and y¢¢ in (1), we get

 2 2 1

2 1 0

( 1) ( 1) n n n
n n n

n n n

x c n n x x c nx x c x
• • •

- -

= = =

+ - + -Â Â Â  = 0

or 2 1

2 2 1 0

( 1) ( 1)n n n n
n n n n

n n n n

n n c x n n c x c nx c x
• • • •

- +

= = = =

- + - + ◊ -Â Â Â Â  = 0

or  
2 1

2 0 1 1

( 1) ( 2)( 1)n n n n
n n n n

n n n n

n n C x n n C x nC x C x
• • • •

+ -
= = = =

- + + + + -Â Â Â Â  = 0

or 2 3 1 0 2 1

2

2 (6 ) [ ( 1) ( 2)( 1) ] n
n n n n

n

C C C C x n n C n n C nC C x
•

+ -
=

+ + - + - + + + + -Â  = 0 (4)

Equating the constant term and the coeffi cients of various powers of x to zero, we get

 2C2 = 0 fi C2 = 0

 6C3 + C1 – C0 = 0 fi 0 1( )

6

C C-
 = C3

 n (n – 1) Cn + (n + 2) (n + 1) Cn + 2 + nCn – Cn – 1 = 0  " n ≥ 2

 Cn + 2 = 

2
1

2
( 1)( 2)

n nC n C
n

n n

- -
" ≥

+ +
 (5)

The above relation (5) is known as recurrence relation.

Putting n = 2 in (5), C4 = 
1

12
 C1  as C2 = 0

Putting n = 3 in (5), 3 0 1
5

9 9

(4 5) 20 6

C C C
C

- -Ê ˆ
= = - ◊Á ˜Ë ¯◊

          C5 = 
0 1

3
( )

40
C C- -
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Putting the above values of C2, C3, C4, C5, … in (2)

 y = C0 + C1x + C2 x
2 + C3 x

3 + ...

 y = 3 4 5
0 1 0 1 1 0 1

1 1 3
( ) ( )

6 12 40
C C x C C x C x C C x+ + - + - - + 

 y = 3 5 3 4 5
0 1

1 3 1 1 3
1

6 40 6 12 40
C x x C x x x x

Ê ˆ Ê ˆ+ - + + - + + +Á ˜ Á ˜Ë ¯ Ë ¯
  

which is the required solution near x = 0, where C0 and C1 are arbitrary constants.

Example 6  Solve y¢¢ – 2x
2 y¢ + 4xy = x2 + 2x + 4 in powers of x.

Solution The given equation is y¢¢ – 2x
2 y¢ + 4xy = x2 + 2x + 4 (1)

Compare (1) with y¢¢ + P(x) y¢ + Q(x)y = R

Here, P(x) = – 2x
2, Q(x) = 4x.

So P(x) and Q(x) are analytic at x = 0,

x = 0 is an ordinary point of (1).

Consider  y = 
2

0 1 2

0

... n
n

n

C C x C x C x
•

=

+ + + = Â  (2)

Differentiating (2) twice in succession w.r.t. ‘x’, we have

 y¢ = 1

1

n
n

n

n C x
•

-

=

◊Â   and  2

2

( 1) n
n

n

y n n C x
•

-

=

¢¢ = -Â  (3)

Substituting these values of y, y¢, and y¢¢ in (1),

 2 2 1

2 1 0

( 1) 2 4n n n
n n n

n n n

n n C x x n C x x C x
• • •

- -

= = =

- - ◊ +Â Â Â  = (x2 + 2x + 4)

or  1 1
2

0 1 0

( 2)( 1) 2 4n n n
n n n

n n n

n n C x nC x C x
• • •

+ +
+

= = =

+ + - +Â Â Â  = (x2 + 2x + 4)

 

• • •

+ - -
= = =

+ + - - +Â Â Â2 1 1

0 2 1

( 2)( 1) 2( 1) 4n n n
n n n

n n n

n n C x n C x C x  = (x2 + 2x + 4)

or  2
2 3 0 4 1 2 1 1

3

2 (6 4 ) (12 2 ) [( 2)( 1) 2( 1) 4 ] n
n n n

n

C C C x C C x n n C n C C x
•

+ - -
=

+ + + + + + + - - +Â

                             = (x2 + 2x + 4) (4)

Equating to zero the  coeffi cients of various powers of x in (4), we get

 2C2 = 4  fi  C2 = 2

 6C3 + 4C0 = 2  fi  C3 = 
1 2

3 3
-  C0

 12C4 + 2C1 = 1  fi  C4 = 
1 1

12 6
-  C1 and
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 (n + 2) (n + 1) Cn + 2 – 2 (n – 1) Cn – 1 + 4 Cn – 1 = 0 " n ≥ 3 (5)

Putting n = 3, 4, 5, … in (5), we get

 20 C5 – 4 C2 + 4 C2 = 0 so that C5 = 0

 30 C6 = 2 C3 so that C6 = 0

1 1 2

15 3 3
C

Ê ˆ-Á ˜Ë ¯

 = 0

1 2

45 45
C-

 42C7 = 4 C4 so that

 C7 = 1 1

2 1 1 1 1

21 12 6 126 63
C C

Ê ˆ- = -Á ˜Ë ¯
, and so on.

Putting these values in (2), the required solution is 

y = 2 30
0 1

21
2

3 3

C
C C x x x

Ê ˆ
+ + + -Á ˜Ë ¯

4 6 71 1
0

1 1 2 1

12 6 45 45 126 63

C C
x C x x

Ê ˆ Ê ˆÊ ˆ+ - + - + - +Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯
 

or y = 3 6 4 7
0 1

2 2 1 1
1 ... ...

3 45 6 63
C x x C x x x

Ê ˆ Ê ˆ- - - + - - -Á ˜ Á ˜Ë ¯ Ë ¯
 

 2 3 4 6 71 1 1 1
2

3 12 45 126
x x x x x+ + + + + + 

Example 7  Find the general solution of y¢¢ + (x – 3) y¢ + y = 0 near x = 2.

Solution The given equation is y¢¢ + (x – 3) y¢ + y = 0 (1)

Compare (1) with y¢¢ + P(x) y¢ + Q(x) y = 0

Here, P(x) = (x – 3) and Q(x) = 1

Since both P(x) and Q(x) are analytic at x = 2, so x = 2 is an ordinary point of (1).

To fi nd the solution near x = 2, we shall fi nd a series solution in powers of (x – 2).

Consider  y = C0 + C1(x – 2) + C2(x – 2)2 + C3(x – 2)3 + …

 y = 
0

( 2)n
n

n

C x
•

=

-Â  (2)

Differentiating (2) twice in succession w.r.t. ‘x’, we get.

 y¢ = 
1 2

1 2

( 2) and ( 1) ( 2)n n
n n

n n

n C x y n n C x
• •

- -

= =

◊ - ¢¢ = - -Â Â

Putting the values of y, y¢, and y¢¢ in (1), we get n = 2

 2 1

2 1 0

( 1) ( 2) ( 3) ( 2) ( 2)n n n
n n n

n n n

n n C x x n C x C x
• • •

- -

= = =

- - + - ◊ - + -Â Â Â  = 0

or 2 1

2 1 0

( 1) ( 2) [( 2) 1] ( 2) ( 2)n n n
n n n

n n n

n n C x x n C x C x
• • •

- -

= = =

- - + - - ◊ - + -Â Â Â  = 0
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or 2 1 1

2 1 1 0

( 1) ( 2) ( 2) ( 2) ( 2)n n n n
n n n n

n n n n

n n C x nC x nC x C x
• • • •

- - -

= = = =

- - + - - - + -Â Â Â Â  = 0

or 2 1

0 1 0 0

( 2)( 1) ( 2) ( 2) ( 1) ( 2) ( 2)n n n n
n n n n

n n n n

n n C x nC x n C x C x
• • • •

+ +
= = = =

+ + - + - - + - + -Â Â Â Â  = 0

or 2 1 0 2 1

1

(2 ) [( 2)( 1) ( 1) ]( 2)n
n n n n

n

C C C n n C nC n C C x
•

+ +
=

- + + + + + - + + -Â  = 0

 (3)

Equating to zero the coeffi cients of various powers of (x – 2), we get.

 2 C2 – C1 + C0 = 0 so that C2 = (C1 – C0)/2

 (n + 2) (n + 1) Cn + 2 + (n + 1) Cn – (n + 1) Cn + 1 = 0 " n ≥ 1

or  Cn + 2 = 
1( )

( 2)

n nC C

n

+ -

+
 " n ≥ 1 (1)

Putting n = 1, 2, 3, ... in (4), we get

 C3 = 

1 0
1

2 1

( )

2

3 3

C C
C

C C

-
--

=

 C3 = 0 1

6

C C+Ê ˆ
-Á ˜Ë ¯

 C4 = 3 2 0 1 1 01

4 4 6 2

C C C C C C- + -È ˘
= - -Í ˙

Î ˚

 = 0 1

1 1

12 16
C C- , and so on.

Putting these values in (2), the required solution near x = 2 is 

 y = 2 31 0 0 1
0 1 ( 2) ( 2) ( 2)

2 6

C C C C
C C x x x

- +Ê ˆ Ê ˆ
+ - + - - -Á ˜ Á ˜Ë ¯ Ë ¯

 

4
0 1

1 1
( 2)

12 6
C C x

Ê ˆ+ - - +Á ˜Ë ¯
 

or  y = 
2 3 4

0

1 1 1
1 ( 2) ( 2) ( 2)

2 6 12
C x x x

È ˘- - - - - - +Í ˙Î ˚
 

 
2 2 3 4

1

1 1 1
( 2) ( 2) ( 2) ( 2)

2 6 6
C x x x x

È ˘+ - + - - - - - +Í ˙Î ˚
 

Example 8  Find the power-series solution in powers of (x – 1) of the initial-value problem xy¢¢ + 

y¢ + 2y = 0, y (1) = 1, y¢ (1) = 2. 

Solution The given equation is

 x y¢¢ + y¢ + 2y = 0 (1)
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Dividing by x on (1), we get

 
1 2

y y y
x x

¢¢ + ¢ +  = 0 (2)

Comparing (2) with y¢¢ + P(x) y¢ + Q(x) y = 0

Here,  P(x) = 
1 2

, ( )Q x
x x

=

Since P(x) and Q(x) are analytic at x = 1, so x = 1 is an ordinary point of (1)

Consider  y = 
2 3

0 1 2 3

0

( 1) ( 1) ( 1) ( 1)n
n

n

C C x C x C x C x
•

=

+ - + - + - + = -Â  (3)

Differentiating (3) twice in succession w.r.t. ‘x’, we get

 y¢ = 1 2

1 2

( 1) and ( 1) ( 1)n n
n n

n n

n C n y n n C x
• •

- -

= =

◊ - ¢¢ = ◊ - -Â Â  (4)

Putting the values of y, y¢ and y¢¢ in (1), we get

 2 1

2 1 0

( 1) ( 1) ( 1) 2 ( 1)n n n
n n n

n n n

x n n C x n C x C x
• • •

- -

= = =

- - + ◊ - + -Â Â Â  = 0

or [ ] 2 1

2 1 0

( 1) 1 ( 1) ( 1) ( 1) 2 ( 1)n n n
n n n

n n n

x n n C x n C x C x
• • •

- -

= = =

- + - - + ◊ - + -Â Â Â  = 0

or 1 2 1

2 2 1 0

( 1) ( 1) ( 1) ( 1) ( 1) 2 ( 1)n n n n
n n n n

n n n n

n n C x n n C x n C x C x
• • • •

- - -

= = = =

- - + - - + ◊ - + -Â Â Â Â  = 0

or  1 2

1 0

( 1) ( 1) ( 2)( 1) ( 1)n n
n n

n n

n nC x n n C x
• •

+ +
= =

+ - + + + -Â Â

 1

0 0

( 1) ( 1) 2 ( 1)n n
n n

n n

n C n C x
• •

+
= =

+ + - + -Â Â  = 0

Equating to zero the coeffi cients of various powers of (x – 1), we get

(2 C2 + C1 + 2 C0) = 0  so that C2 = – (C1 + 2 C0) / 2 and (n + 1) n Cn + 1 + (n + 2) (n + 1) Cn + 2

 + (n + 1) + 2 Cn = 0   " n ≥ 1

or  (n + 1) (n + 2) Cn + 2 + (n + 1)2 Cn + 1 + 2 Cn = 0 " n ≥ 1

or  Cn + 2 = 

2
1( 1) 2

( 1)( 2)

n nn C C

n n

++ +
-

+ +
 " n ≥ 1 (5)

Given that  y (1) = 1 and y¢ (1) = 2, putting x = 1 in (3), we get,

 C0 = 1, and C1 = 2

\ C2 = – (2 + 2)/2 = – 2
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Putting x = 1, 2, 3, …in (5), we get

 C3 = 
2

2 12 2 4 2 (2 2) 2

2 3 2 3 3

C C x+ - + ¥
- = - =

◊ ◊

 C4 = 

2
3 2

2
9 2( 2)

3 2 13

3 4 3 4 6

C C

Ê ˆ¥ + -Á ˜Ë ¯+
- = - = -

◊ ◊

 C5 = 

2
4 3

1 2
16 2

4 2 16 3

4 5 4 5 15

C C

-Ê ˆ Ê ˆ◊ +Á ˜ Á ˜Ë ¯ Ë ¯+
- = - = -

◊ ◊
 and so on.

Putting these values in (3), we obtain the required solution.

 y = 2 3 42 1
1 2( 1) 2( 1) ( 1) ( 1)

3 6
x x x x+ - - - + - - - + 

EXERCISE 13.2

Find the series solution of the following equations:

 1. (1 – x2) y¢¢ + 2x y¢ – y = 0  about x = 0

 2. (1 + x2) y¢¢ + x y¢ – y = 0 near x = 0

 3. (x2 – 1) y¢¢ + x y¢ – y = 0 near x = 0

 4. y¢¢ + x2 y = 2 + x + x2  about x =0

 5. y¢¢ – x y¢ – py = 0, where p is any constant.

 6. y¢¢ – x y¢ + 2y = 0  near x = 1

 7. (x2 – 1) y¢¢ + 3 x y¢ + xy = 0, y (0) = 2, y¢ (0) =3

 8. (x2 + 2x) y¢¢ + (x + 1) y¢ – y = 0,  near x = –1

 9. y¢¢ – x y¢ = e–x, y (0) = 2,  y¢ (0) = –3

  -È ˘
= - + + +Í ˙

Í ˙Î ˚
 

2 3

Hint : Use 1
1! 2! 3!

x x x x
e

 10. (1 – x2) y¢¢ + 2 y = 0,  y (0) = 4, y¢ (0) = 5

Answers

 1. 
2 4 3 5

0 1

1 1 1 1
1 ... ...

2 24 6 120
y C x x C x x x

Ê ˆ Ê ˆ= + - - + - - -Á ˜ Á ˜Ë ¯ Ë ¯

 2. 
2 4 6

0 1

1 1 1
1 ...

2 8 15
y C x x x C x

Ê ˆ= + - + - + ◊Á ˜Ë ¯

 3. 
2 4

0 11 ...
2 4

x x
y C C x

Ê ˆ
= + + + + ◊Á ˜

Ë ¯
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 4. 

4 8 5 9 3 4 6 7
2

0 11 ... ... ...
12 672 20 1440 6 12 30 252

x x x x x x x x
y C C x x

Ê ˆ Ê ˆ
= - + - + - + + + + - -Á ˜ Á ˜

Ë ¯ Ë ¯

 5. 3 4 3 5
0 1

( 2) ( 1) ( 1)( 3)
1

2! 4! 3! 5!

p p p p p p
y C x x C x x x

È ˘ È ˘+ + + +
= + + + + + + +Í ˙ Í ˙

Î ˚ Î ˚
  

 6. 2 3 2
0 1

1 1
1 ( 1) ( 1) ( 1) ( 1)

3 2
y C x x C x x

È ˘ È ˘= - - - - - + - + - -Í ˙ Í ˙Î ˚ Î ˚
  

 7. 
3 411 1

2 3
6 4

y x x x
Ê ˆ= + + + -Á ˜Ë ¯

 

 8. 2 4 6
0 1

1 1 1
1 ( 1) ( 1) ( 1) ... ( 1)

2 8 16
y C x x x C x

È ˘= - + - + - + + + + +Í ˙Î ˚

 9. 2 3 41 2 1
2 3

2 3 8
y x x x x= - + - + - 

 10. 2 3 55 1
4 5 4

3 3
y x x x x= + - - - + 

13.6  FROBENIUS METHOD

The series solution when x = 0 is a regular singular point of the differential equation 

2

2
( ) ( ) 0

d y dy
P x Q x y

dxdx
+ + = . (12)

Step 1 Suppose that a trial  solution of (12) be of the form.

 y = xk (C0 + C1x + C2 x
2 + … + Cm xm + …)

i.e.,  y = 
0

0

, 0m k
m

m

C x C
•

+

=

◊ πÂ  (13)

Step 2 Differentiate (13) and obtain

 y¢ = 1 2

0 0

( ) and ( )( 1)m k m k
m m

m m

C m k x y C m k m k x
• •

+ - + -

= =

+ ¢¢ = + + -Â Â  (14)

Using (13) and (14), (12) reduces to an identity.

Step 3 Equating to zero the coeffi cient of the smallest power of x in the identity obtained in Step 

2 above, we obtain a quadratic equation in k. The quadratic equation so obtained is called an indicial 

equation.

Step 4 Solving the indicial equation, the following cases arise:

 (i) The roots of the indicial equation are distinct and do not differ by an integer.

 (ii) The roots of the indicial equation are equal.

 (iii) The roots of the indicial equation are distinct and differ by an integer.
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 (iv) The roots of the indicial equation are unequal, differing by an integer and making a coeffi cient 

of y indeterminate. 

Step 5 We equate to zero the coeffi cient of the general power in the identity obtained in Step 2. The 

equation so obtained will be called the recurrence relation, because it connects the coeffi cients Cm, 

Cm–2 or Cm, Cm–1, etc.

Step 6 If the recurrence relation connects Cm and Cm–2 then we, in general, determine C1 by equating 

to zero the coeffi cient of the next higher power. On the other hand, if the recurrence relation connects 

Cm and Cm–1, this step may be omitted.

Step 7 After getting various coeffi cients with the help of steps 5 and 6 above, the solution is ob-

tained by substituting these in (13) above.

13.6.1 Case 1

The roots of the indicial equation are distinct and do not differ by an integer.

If k1 and k2 do not differ by an integer then, in general, two independent solutions u and v are 

obtained by putting k = k1 and k = k2 in the series of y. Then the general solution is y = au + bv, where 

a and b are arbitrary constants.

Example 9  Solve in series the differential equation

 
2

2 2

2
2 (1 )

d y dy
x x x y

dxdx
- + -  = 0

Solution The given equation is

 
2

2 2

2
2 (1 )

d y dy
x x x y

dxdx
- + -  = 0 (1)

Dividing by 2x
2 both sides on (1), we get

 
2 2

2 2

1 1

2 2

d y dy x
y

x dxdx x

Ê ˆ-
- + Á ˜

Ë ¯
 = 0 (2)

Comparing (2) with 
2

2
( ) ( )

d y dy
P x Q x y

dxdx
+ +  = 0, we get

 P(x) = 
2

2

1 1
, ( )

2 2

x
Q x

x x

-
- =

so that at x = 0, xP(x) = 
1

2
-  and x2

Q(x) = 
21

2

x-
. Thus, both xP(x) and x

2
Q(x) are analytic at x = 0 and 

so x = 0 is a regular singular point.

Let the series solution of (1) be of the form

 y = 0

0

, 0m k
m

m

C x C
•

+

=

πÂ  (3)
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\  y¢ = 1 2

0 0

( ) , ( )( 1)m k m k
m m

m m

C m k x y C m k m k x
• •

+ - + -

= =

+ ¢¢ = + + -Â Â

Substituting y, y¢, and  y¢¢ in (1) , we have

 2 2 1 2

0 0 0

2 ( )( 1) ( ) (1 )m k m k m k
m m m

m m m

x C m k m k x x C m k x x C x
• • •

+ - + - +

= = =

+ + - - + + -Â Â Â  = 0

or 2

0 0 0 0

2 ( )( 1) ( )m k m k m k m k
m m m m

m m m m

C m k m k x C m k x C x C x
• • • •

+ + + + +

= = = =

+ + - - + + -Â Â Â Â  = 0

or [ ] 2

0 0

2( )( 1) ( ) 1 m k m k
m m

m m

C m k m k m k x C x
• •

+ + +

= =

◊ + + - - + + ◊ -Â Â  = 0

or 2 2

0 0

2( ) 3( ) 1 m k m k
m m

m m

C m k m k x C x
• •

+ + +

= =

È ˘◊ + - + + - ◊Î ˚Â Â  = 0

or ( ) 2

0 0

2 2 1 ( 1) m k m k
m m

m m

C m k m k x C x
• •

+ + +

= =

◊ + - ◊ + - -Â Â  = 0

 (4)

[∵    2 (m + k)2 – 2(m + k) + 1 = 2 (m + k)2 –2 (m + k) – (m + k) + 1 

               = 2 (m + k) (m + k – 1) – (m + k – 1) = (m + k – 1) (2m + 2k – 1)]

which is an identity. Equating to zero the coeffi cient of the smallest power of x, (4) gives the indicial 

equation

 C0 (2k – 1) (k – 1) = 0 or (2k – 1) (k – 1) = 0   [∵ C0 π 0]

so that 
1

1,
2

k =

The roots of the indicial equation are unequal, not differing by an integer. 

To obtain the recurrence relation, we equate to zero the coeffi cient of xm + k  and obtain

 Cm = (2k + 2m – 1) (k + m – 1) – Cm – 2 = 0 

or  Cm = 2

1

(2 2 1) ( 1)
mC

m k m k
-+ - ◊ + -

 (5)

To obtain C1, we now equate to zero the coeffi cient of xk +1 and we get C1(2k + 1)k = 0 so that 

C1 = 0

Now, from (5) and C1 = 0, we have

 C1 = C3 = C5 = ... = 0 (6)

Putting m = 2 in (5), 
2 0

1

(2 3)( 1)
C C

k k
=

+ +
 (7)

Putting m = 4 in (5) and using (7) gives

 C4 = 2 0

1 1

(2 5)( 3) ( 1)( 3)(2 3)(2 5)
C C

k k k k k k
=

+ + + + + +
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And so on putting these values in (3), i.e.,

 y = xk (C0 + C1x + C2x
2 + C3x

3 + …)

 y = 
2 4

0 1
( 1)(2 3) ( 1)( 3)(2 3)(2 5)

k x x
C x

k k k k k k

È ˘
+ + +Í ˙

+ + + + + +Í ˙Î ˚
  (8)

Putting k = 1 and replacing C0 by a in (8) gives

 y = 
È ˘

+ + + =Í ˙
◊ ◊ ◊ ◊Í ˙Î ˚

 

2 4

1 (say)
2 5 2 4 5 9

x x
ax au

Next, putting 
1

2
k =  in (8) and replacing C0 by b, gives

 y = 
È ˘

+ + + =Í ˙
◊ ◊ ◊ ◊Í ˙Î ˚

 

1 2 4

2 1 (say)
2 3 2 3 4 7

x x
bx bv

Hence, the required general series solution is given by

 y = au + bv, where a and b are arbitrary constants.

Example 10  Verify that x = 0 is a regular singular point of 2x
2 y¢¢ + xy¢ – (x + 1)y = 0 and fi nd two 

independent Frobenius series solutions of it.

Solution The given differential equation

 2x
2
y¢¢ + xy¢ – (x + 1)y = 0 (1)

Dividing by 2x
2 both sides of (1), we get

 
2

1 1

2 2

x
y y y

x x

+Ê ˆ¢¢ + ¢ - Á ˜Ë ¯
 = 0 (2)

Comparing (2) with y¢¢ + P(x) y¢ + Q(x)y = 0,

 P(x) = 
2

1 1
, ( )

2 2

x
Q x

x x

+Ê ˆ= - Á ˜Ë ¯

so that 
+Ê ˆ= = - Á ˜Ë ¯

21 1
( ) and ( )

2 2

x
x p x x Q x . Since xP(x) and x2

Q(x) are analytic at x = 0, so x = 0 is a 

regular singular point.

Suppose the series solution of (1) given by

 y = 0

0

, 0m k
m

m

C x C
•

+

=

πÂ  (3)

\ y¢ = 
1 2

0 0

( ) , ( )( 1)m k m k
m m

m m

C m k x y C m k m k x
• •

+ - + -

= =

+ ¢¢ = + + -Â Â
Putting the values of y, y¢, and y¢¢ in (1), we get

 2 2 1

0 0 0

2 ( )( 1) ( ) ( 1)m k m k m k
m m m

m m m

x m k m k C x x m k C x x C x
• • •

+ - + - +

= = =

+ + - + + - +Â Â Â  = 0

or 
1

0 0 0 0

2( )( 1) ( )m k m k m k m k
m m m m

m m m m

m k m k C x m k C x C x C x
• • • •

+ + + - +

= = = =

+ + - + + - -Â Â Â Â  = 0
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or 1

0 0

[2( )( 1) ( ) 1] m k m k
m m

m m

m k m k m k C x C x
• •

+ + +

= =

+ + - + + - -Â Â  = 0

or 2 1

0 0

[2( ) ( ) 1] m k m k
m m

m m

m k m k C x C x
• •

+ + +

= =

+ - + - -Â Â  = 0

or 1

0 0

[{2( ) 1}( 1)] m k m k
m m

m m

m k m k C x C x
• •

+ + +

= =

+ + + - -Â Â  = 0 (4)

Equating to zero the coeffi cient of the smallest power of x, namely, xk,  the above equation (4) in 

x gives the indicial equation

 C0 (2k + 1) (k – 1) = 0 so that k = 1, 0

1
, 0

2
C- π

Here, the difference of the roots = 
1 2

1 3
1 ,

2 2
k k- = - =  (which is not an integer).

Next, we equate to zero the coeffi cient of xm + k in (4) and obtain the recurrence relation

 {2 (m + k) + 1)} (m + k – 1) Cm – Cm – 1 = 0

Or Cm = 1

1

{2( ) 1}( 1)
mC

m k m k
-+ + + -

 (5)

Putting m = 1, 2, 3, 4, … in (5), we have

 C1 = 0

1

(2 3)
C

k +
 (6)

 C2 = 1 0

1 1

(2 5)( 1) (2 3)(2 5) ( 1)
C C

k k k k k k
=

+ + + + +
, (7)  by (6) and so on

Putting these values in (3), we get

 y = 
2

0 1 ...
(2 3) (2 3)(2 5) ( 1)

k x x
C x

K k k k k k

È ˘
+ + +Í ˙

+ + + +Í ˙Î ˚
 (8)

Putting k = 1, and replacing C0 by a in (8), we get

 y = 
È ˘

+ + + =Í ˙
Í ˙Î ˚

2

1 ... (say)
5 70

x x
ax au

Next, putting 
1

2
k = -  and replacing C0 by b in (8), we get

 y = 

1 2

2 1 (say)
2

x
bx x bv

- È ˘
- - + =Í ˙

Í ˙Î ˚
 

Hence, the general solution of (1) is given by

 y = au + bv, where a and b are arbitrary constants.
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Example 11  Show that x = 0 is a regular singular point of 

2
3

2
(2 ) 6 0

d y dy
x x xy

dxdx
+ - + =  and fi nd its solution about x = 0 using the series method.

Solution The given differential equation is 

 
2

3

2
(2 ) 6

d y dy
x x xy

dxdx
+ - +  = 0 (1)

Dividing by (2x + x3), we have

 
2

2 3 2

1 6

(2 ) (2 )

d y dy
y

dxdx x x x
- +

+ +
 = 0 (2)

Comparing (2) with 
2

2
( ) ( ) 0

d y dy
P x Q x y

dxdx
+ + = , we have

 P(x) = 
3 2

1 6
, ( )

( 2 ) 2
Q x

x x x
- =

+ +

At x = 0, P(x) and Q(x) are not analytic so that x = 0 is a singular point.

Now,  (x – 0) p(x) = 
2 2

2

2 2 2 2

1 1 6 6
and ( 0) ( )

(2 ) 2 2 2

x x
x x Q x

x x x x x

Ï ¸- ◊Ô Ô = - - = - = -Ì ˝
+ + + +Ô ÔÓ ˛

Since x P(x) and x2
Q(x) are both analytic at x = 0, so x = 0 is a regular solution point of (1).

Let the series solution of (1) be given by

 y = 2
0 1 2

0

( )m k k
m

m

C x x C C x C x
•

+

=

= + + +Â   (3)

Differentiating (3) w.r.t. ‘x’, both sides, we have

 
dy

dx
 = 

2
1 2

2
0 0

( ) , ( )( 1)m k m k
m m

m m

d y
m k C x m k m k C x

dx

• •
+ - + -

= =

+ = + + -Â Â

Putting the values of y, 
dy

dx
, and 

2

2

d y

dx
 in (1), we get

3 2 1

0 0 0

(2 ) ( )( 1) ( ) 6m k m k m k
m m m

m m m

x x m k m k C x m k C x x C x
• • •

+ - + - +

= = =

+ + + - - + -Â Â Â  = 0

or 
1 1

0 0

2( )( 1) ( )( 1)m k m k
m

m m

m k m k C x m k m k x
• •

+ - + -

= =

+ + - + + + -Â Â

 1 1

0 0

( ) 6m k m k
m m

m m

m k C x C x
• •

+ - + +

= =

- + -Â Â  = 0

or 
1 1

0 0

[2( )( 1) ( )] [( )( 1) 6]m k m k
m m

m m

m k m k m k C x m k m k C x
• •

+ - + +

= =

+ + - - + + + + - -Â Â  = 0
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or 2 1 2 1

0 0

[2( ) 3( )] [( ) ( ) 6]m k m k
m m

m m

m k m k C x m k m k C x
• •

+ - + +

= =

+ - + + + - + -Â Â  = 0

or 
• •

+ - + +

= =

+ + - + + - + +Â Â1 1

0 0

( )(2 2 3) ( 3)( 2)m k m k
m m

m m

m k m k C x m k m k C x  = 0 (4)

Equating to zero the coeffi cients of the smallest power of x, i.e., x
k–1, in (4) gives the indicial 

equation

 C0 k (2k – 3) = 0 so that C1 π 0, k = 0, and 
3

2

Roots of the indicial equation are distinct and do not differ by an integer and the difference of the 

roots = - = π
3 3

0
2 2

not an integer.

Next, equating to zero the coeffi cient of xm+ k – 1 in (4), we get

 (m + k) (2m + 2k – 3)Cm + (m + k – 5) (m + k)Cm – 2 = 0

or Cm = 2

( 5)( )

( )(2 2 3)
m

m k m k
C

m k m k
-

+ - +
-

+ + -

or Cm = 2

( 5)

(2 2 3)
m

m k
C

m k
-

+ -
-

+ -
 (5)

Putting m = 3, 5, 7, 9, … in (5) and noting that C1 = 0, we get

 C1 = C3 = C5 = C7 = C9 = … = 0 (6)

Next, putting m = 2, 4, 6, 8, … in (5), we get

 C2 = 0 4 2 0

3 1 ( 1)( 3)
,

2 1 2 5 (2 1)(2 5)

k k k k
C C C C

k k k k

- - - -
- = - =

+ + + +
  and so on

Putting these values in (3), we have

 y = 
È ˘- - -

- +Í ˙+ + +Î ˚
 

2 4
0

3 ( 1)( 3)
1

2 1 (2 1)(2 5)

k k k k
C x x x

k k k
 (7)

Putting k = 0 and replacing C0 by a in (7), we have

 y = 
È ˘Ê ˆ+ + - =Í ˙Á ˜Ë ¯Î ˚

 
2 43

1 3
5

a x x au  (say)

Next, putting 
3

2
k =  and replacing C0 by b in (7), we have

 y = 
È ˘+ - + =Í ˙Î ˚

 

3

2 42
3 3

1
8 128

bx x x bv  (say)

Hence, the required solution is y = au + bv, where a and b are arbitrary constants.
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EXERCISE 13.3

Find the series solutions of the following equations about x = 0:

 1. 
2

2
2 (1 ) (1 ) 3 0

d y dy
x x x y

dxdx
- + - + =  2. 

2
2

2
8 2 0

d y dy
x x y

dxdx
- + =

 3. 
2

2

2
2 ( 1) 0

d y dy
x x x y

dxdx
+ - + =  4. 

2
2 2

2
2 (2 ) 0

d y dy
x x x y

dxdx
+ - + =

 5. 
2

2
2 (1 ) (5 7 ) 3 0

d y dy
x x x y

dxdx
- + - - =

Answers

 1. 2 1/23
1 3 ... [1 ]

1 3
y a x x b x x

È ˘
= - + - + -Í ˙◊Î ˚

 2.  y = ax
1/2 + bx

1/4

 3. 

1 2
2 2

1 1
1 1

5 70 2

x
y a x x x b x x

- È ˘È ˘= + + + + - - +Í ˙Í ˙Î ˚ Í ˙Î ˚
  

 4. 

12 3 2 3

2
2 4 8

1 1
3 3 5 3 5 7 2 6

x x x x x
y a x b x x

È ˘ È ˘
= - + - + + - + - +Í ˙ Í ˙

◊ ◊ ◊Í ˙ Í ˙Î ˚ Î ˚
  

 5. 

2 3
3/23 3 3

1
5 7 9

x x x
y a b x

-È ˘
= + + + + +Í ˙

Í ˙Î ˚
 

13.6.2 Case II

The roots of the indicial equation are equal.

In this case, we have k1 = k2. One of the linearly independent solutions is obtained by substituting k = k1 

in the series solution. The second solution can be obtained by setting v(x) = u(x). w(x) and determining 

u(x) by the method of variation of parameters. We shall illustrate an alternate simple procedure using 

the following example.

Example 12  Find the series solution about x = 0, of the equation xy¢¢ + y¢ + xy = 0, by the Frobenius 

method.

Solution The given differential equation is

 x y¢¢ + y¢ + xy = 0 (1)

Dividing by x, 
1

y y y
x

¢¢ + ¢ +  = 0 (2) 
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Comparing (2) with y¢¢ + P(x) y¢ + Q(x) = 0, we have

 P(x) = 
1

, ( ) 1Q x
x

=

So that xP(x) = 1 and x2
Q(x) = x2, which are analytic at x = 0.

So x = 0 is a regular singular point.

Let the series solution of (1) be of the form

 y = 0

0

, 0m k
m

m

C x C
•

+

=

πÂ  (3)

\ y¢ = 1 2

0 0

( ) , ( )( 1)m k m k
m m

m m

C m k x y C m k m k x
• •

+ - + -

= =

+ ¢¢ = + + -Â Â

Putting these values of y, y¢ and y¢¢ in (1), we get

 2 1

0 0 0

( )( 1) ( )m k m k m k
m m m

m m m

x C m k m k x C m k x x C x
• • •

+ - + - +

= = =

+ + - + + +Â Â Â  = 0

or 

• • •
+ - + - + +

= = =

+ + - + + +Â Â Â1 1 1

0 0 0

( )( 1) ( )m k m k m k
m m m

m m m

C m k m k x C m k x C x  = 0

or 1 1

0 0

[( )( 1) ( )] m k m k
m m

m m

C m k m k m k x C x
• •

+ - + +

= =

+ + - + + + ◊Â Â  = 0

or 2 1 1

0 0

( ) m k m k
m m

m m

C m k x C x
• •

+ - + +

= =

+ + ◊Â Â  = 0 (4)

Equating to zero the coeffi cient of the smallest power of x, i.e., xk – 1, (4) gives the indicial equation

 C0 k
2 = 0 or k

2 = 0 (\   C0 π 0)

so that k = 0, 0 (equal roots).

For recurrence relation, equating to zero the coeffi cient of xm + k – 1 in (4) gives

 Cm (m + k)2 + Cm–2 = 0  or  
2

2( )

m

m

C
C

m k

-= -
+

 (5)

For fi nding C1, equating to zero the coeffi cient of xk gives

 C1 (k+1)2 = 0 so that C1 = 0  (for k = 0 is a root of the indicial equation)

Using C1 = 0 and (5), we get

 C1 = C3 = C5 = C7 = C9 = …= 0

Putting m = 2, 4, 6, 8, … in (5), we get

 C2 = 0 02
42 2 2

,
( 2) ( 4) ( 2)( 4)

C CC
C

k k k k
- = - =

+ + + +
,

 C6 = 04

2 2 2 2( 6) ( 2) ( 4) ( 6)

CC

k k k k
- = -

+ + + +
, and so on.
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Putting these values in (3), we get

 y = 
2 4 6

0 2 2 2 2 2 2
1

( 2) ( 2) ( 4) ( 2) ( 4) ( 6)

k x x x
C x

k k k k k k

È ˘
- + - +Í ˙

+ + + + + +Í ˙Î ˚
  (6)

Putting k = 0 replacing C0 by a in (6), gives

 y = 
È ˘

- + - + =Í ˙
◊ ◊ ◊Í ˙Î ˚

 

2 4 6

2 2 2 2 2 2
1 (say)

2 2 4 2 4 6

x x x
a au  (7)

To fi nd another independent solution, substituting (6) into the LHS of (1) and simplifying, we fi nd

 x
2 y¢¢ + y¢ + xy = C0 k

2. xk– 1 (8)

Differentiating both sides partially w.r.t. ‘k’, gives

 
2

2

2

d y dy
x xy

k dxdx

È ˘∂
◊ + +Í ˙

∂ Í ˙Î ˚
 = 20 ( )kC

k x
x k

∂
◊ ◊

∂

or 
2

2

2

d d dy
x x

dx dkdx

È ˘
+ +Í ˙

Í ˙Î ˚
 = 20 2 logk kC

k x k x x
x

È ˘+Î ˚  (9)

The presence of the factor k in each term of RHS of (9) shows that a second solution is 
0k

y

k =

∂Ê ˆ
Á ˜Ë ¯∂

, 

where y is given by (6).

Differentiating (6) partially w.r.t. ‘k’, we get

 
dy

dk
 = 

2 4 6

0 2 2 2 2 2 2
log 1

( 2) ( 2) ( 4) ( 2) ( 4) ( 6)

k x x x
C x x

k k k K k k

È ˘
- + - +Í ˙

+ + + + + +Í ˙Î ˚
 

 
È Ï ¸- -

+ - ¥ + ¥ -Í Ì ˝+ + ++ + +Í Ó ˛Î

2 4

0 2 2 2

2 2 2

( 2) 2 4( 2) ( 2) ( 4)

k x x
C x

k k kk k k

 
6

2 2 2

2 2 2

2 4 6( 2) ( 4) ( 6)

x

k k kk k k

˘Ï ¸
- - - - + ˙Ì ˝+ + ++ + + ˙Ó ˛ ˚

  (10)

Putting k = 0 and replacing C0 by b in (10), we get

 
0K

y

K =

∂Ê ˆ
Á ˜Ë ¯∂

 = 

2 4 6

2 2 2 2 2 2
log 1

2 2 4 2 4 6

x x x
b x

Ê ˆ
◊ - + - +Á ˜◊ ◊ ◊Ë ¯

 

 
2 2 2

2 2 2 2 2 2

1 1 1
1 1

2 2 32 2 4 2 4 6

x x x
b

È ˘Ê ˆ Ê ˆ+ + ◊ + + + + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯◊ ◊ ◊Í ˙Î ˚
 

 = 

2 2

2 2 2

1
log 1

22 2 4

x x
b u x

È ˘Ï ¸Ê ˆÔ Ô+ - + +Í ˙Ì ˝Á ˜Ë ¯◊Í ˙Ô ÔÓ ˛Î ˚
 

 = bv say [using (7)]

The required solution is y = au + bv, where a and b are arbitrary constants.



13.22 Engineering Mathematics for Semesters I and II

Note [To fi nd 
2 2 2

1

( 2) ( 4) ( 6)

d

dk k k k

È ˘
Í ˙

+ + +Í ˙Î ˚

Put  u = 
2 2 2

1

( 2) ( 4) ( 6)k k k+ + +

\   log u = – 2 log (k + 2) – 2 log (k + 4) – 2 log (k + 6)

Differentiating w.r.t. ‘k’, we get

 
1 du

u dk
 = 

2 2 2

2 4 6k k k
- - -

+ + +

or  
du

dk
 = 

2 2 2

2 4 6
u

k k k

È ˘
◊ - - -Í ˙+ + +Î ˚

 etc.

Other terms can be similarly differentiated easily.

Example 13  Find the series solution of (x – x2)y¢¢ + (1 – 5x) y¢– 4y = 0 about x = 0.

Solution The given differential equation is

 (x – x2)y¢¢ + (1 – 5x) y¢ – 4y = 0 (1)

Dividing by 2

2 2

(1 5 ) 4
( ),

( ) ( )

x
x x y y y

x x x x

- -
- ¢¢ + ¢ -

- -
 = 0 (2)

Comparing (2) with y¢¢ + P(x)y¢ + Q(x)y = 0, we have

 P(x) = 
- -

=
- -2 2

1 5 4
, ( )

( )

x
Q x

x x x x

So that  xP(x) = 21 5 4
and ( )

1 1

x x
x Q x

x x

-
= -

- -
Since xP(x) and x2 Q(x) are analytic at x = 0, hence, x = 0 is a regular singular point.

Let the series solution of (1) be of the form

 y = 0

0

, 0m k
m

m

C x C
•

+

=

πÂ  (3)

\ y¢ = 1 2

0 0

( ) , ( )( 1)m k m k
m m

m m

C m k x y C m k m k x
• •

+ - + -

= =

◊ + ¢¢ = + + -Â Â

Putting the values of y, y¢, and y¢¢ in (1), we get

 2 2 1

0 0 0

( ) ( )( 1) (1 5 ) ( ) 4
m

m k m k m k
m m

m m m

x x C m k m k x x C m k x C x
• • •

+ - + - +

= = =

- + + - + - + -Â Â Â  = 0

or  1 1

0 0 0

( )( 1) ( )( 1) ( )
m

m k m k m k
m m

m m m

C m k m k x C m k m k x C m k x
• • •

+ - + + -

= = =

+ + - - + + - + +Â Â Â

 
0 0

5 ( ) 4m k m k
m m

m m

C m k x C x
• •

+ +

= =

- + -Â Â  = 0
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or 1

0 0

[( )( 1) ( )] [( )( 1) 5( ) 4]m k m k
m m

m m

C m k m k m k x C m k m k m k x
• •

+ - +

= =

+ + - + + - + + - + + +Â Â  = 0

or 
2 1 2

0 0

( ) [( ) 4( ) 4]m k m k
m m

m m

C m k x C m k m k x
• •

+ - +

= =

+ - ◊ + + + +Â Â  = 0

or 
2 1 2

0 0

( ) ( 2)m k m k
m m

m m

C m k x C m k x
• •

+ - +

= =

+ - + -Â Â  = 0

 (4)

Equating to zero the coeffi cient of the smallest power of x, i.e., x
k–1 in (4), gives the indicial 

equation

 C0 k
2 = 0 or k2 = 0  (\  C0 π 0)

so that k = 0, 0 (equal roots).

For recurrence relation, equating to zero the coeffi cient of xm +k – 1 in (4), we get

 Cm (m + k)2 – Cm – 1 (m + k + 1)2 = 0

or  Cm = 
2

12

( 1)

( )
m

m k
C

m k
-

+ +
+

 (5)

Putting m = 1, 2, 3, 4, … in (5) and simplifying

 C1 = 
2

02

( 2)

( 1)

k
C

k

+
+

 C2 = 
+ + + +

= =
+ + + +

2 2 2 2

1 0 02 2 2 2

( 3) ( 3) ( 2) ( 3)

( 2) ( 2) ( 1) ( 1)

k k k k
C C C

k k k k

 C3 = 
2 2 2 2

2 0 02 2 2 2

( 4) ( 4) ( 3) ( 4)

( 3) ( 3) ( 1) ( 1)

k k k k
C C C

k k k k

+ + + +
= =

+ + + +
 and so on

Putting these values in (3), i.e.,

 y = xk [C0 + C1 x + C2 x
2 + C3 x

3 + …], we get.

 y = 
2 2 2

2 3
0 2 2 2

( 2) ( 3) ( 4)
1

( 1) ( 1) ( 1)

k k k k
x C x x x

k k k

È ˘+ + +
+ + + +Í ˙

+ + +Í ˙Î ˚
  (6)

Putting k = 0 and replacing C0 by a in (6), we get

 y = a[1 + 22 x + 32 x2 + 42 x3 + …] = au (say) (7)

Differentiating partially w.r.t. ‘k’, (6) gives

 
y

k

∂
∂

 = 
2 2 2

2 3
0 2 2 2

( 2) ( 3) ( 4)
log 1

( 1) ( 1) ( 1)

k k k k
C x x x x x

k k k

È ˘+ + +
+ + + +Í ˙

+ + +Í ˙Î ˚
 

 
2 2

2
0 2 2

( 2) 2 2 ( 3) 2 2

2 1 ( 3) ( 1)( 1) ( 1)

k k k
C x x x

k k k kk k

È ˘Ï ¸ Ï ¸+ +
+ ◊ - + - +Í ˙Ì ˝ Ì ˝+ + + ++ +Í ˙Ó ˛ Ó ˛Î ˚
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Putting k = 0 and replacing C0 by b

 
0k

y

k =

∂Ê ˆ
Á ˜Ë ¯∂

 = 
2 3 2 2

log [1 22 32 42 ] 22 (1 2) 32 2 2
3

b x x x x b x x
È ˘Ê ˆ◊ + + + + + - + ◊ - +Í ˙Á ˜Ë ¯Î ˚

  

 = b[u log x – 2(1.2x + 2◊3x
2 + …)] = bv (say) [(using (7)]

Hence, the required solution of (1) is y = au + bv, where a and b are arbitrary constants.

EXERCISE 13.4

Find the series solution of the following equations about x = 0:

 1. x y¢¢ + y¢ + x2 y = 0 2. x
2 y¢¢ – x (1 + x) y¢ + y = 0

 3. x y¢¢ + (1 + x) y¢ + 2y = 0 4. x y¢¢ + y¢ – y = 0

Answers

 1. 
3 6 9 3

6

2 4 2 6 2 3 5 2

1 1
1 ... log 2 1 ...

23 3 (2!) 3 (3!) 3 3 (2!)

x x x x
y a b u x x

È ˘È ˘ Ï ¸Ê ˆÔ Ô= - + - + + + - + +Í ˙Í ˙ Ì ˝Á ˜Ë ¯◊Í ˙ Í ˙Ô ÔÎ ˚ Ó ˛Î ˚

 2. 

2 3 2 3
2 3

1 ... log 1 ... 1 ...
2 2 3 2 2 3 4

x x x x
y ax x b x x x x

È ˘È ˘ Ï ¸ Ï ¸Ô Ô= + + + + + + + + + + - - +Í ˙Í ˙ Ì ˝ Ì ˝◊ ◊ Ó ˛Í ˙ Í ˙Ô ÔÎ ˚ Ó ˛Î ˚

 3. 2 33 4
1 2

2! 3!
y a x x x

È ˘= ◊ - + - +Í ˙Î ˚
 

 2 3 23 4 1 3 1 1
log 1 2 ... 2 2 2

2! 3! 2 2! 3 2
b x x x x x x

È ˘Ï ¸ Ê ˆ Ê ˆ+ - + - + + - - - + + +Ì ˝Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Ó ˛Î ˚
 

 4. y = 
2 3

2 2
( log ) 1

(2!) (3!)

x x
a b x x

È ˘
+ + + + +Í ˙

Í ˙Î ˚
 

  

2 3

2 2

1 1 1 1 1
2 1 1

2 2 3(2!) (3!)
b x x x

È ˘Ê ˆ Ê ˆ- + + + + + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚
 

13.6.3 Case III

When the roots of the indicial equation are distinct and differ by an integer.

Let the roots k1 and k2 of the indicial equation differ by an integer (say k1 < k2) and if one of the 

coeffi cients of y becomes indeterminate when k = k2, we modify the form y by replacing a by

b(k – k2).

Therefore, the complete solution is 

 y = au + bv
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Example 14  Find the series solution of + + =
2

2 2

2
5 0.

d y dy
x x x y

dxdx

Solution The given differential equation is

 
2

2 2

2
5

d y dy
x x x y

dxdx
+ +  = 0 (1)

Dividing by  x
2, 

2

2

5d y dy
y

x dxdx
+ +  = 0 (2)

Compare (2) with  
2

2
( ) ( )

d y dy
P x Q x y

dxdx
+ +  = 0

Here,  P(x) = 
5

, ( ) 1Q x
x

=

At x = 0, P(x) is not analytic so that x = 0 is a singular point. Also, xP(x) = 5 and x2
Q(x) = x2.

Since both xP(x) and x2
Q(x) are analytic at x = 0, so x = 0 is a regular singular point.

Let y = 
0

m k
m

m

C x
•

+

=
Â  be the series solution of (1). (3)

\ y¢ = 1 2

0 0

( ) , ( )( 1)m k m k
m m

m m

m k C x y m k m k C x
• •

+ - + -

= =

+ ◊ ¢¢ = + + -Â Â

Substituting the values of y, y¢, and y¢¢ in (1), we have

 2 2 1 2

0 0 0

( )( 1) 5 ( )m k m k m k
m m m

m m m

x m k m k C x x m k C x x C x
• • •

+ - + - +

= = =

+ + - + + ◊ +Â Â Â  = 0

or  2

0 0 0

( )( 1) 5 ( )m k m k m k
m m m

m m m

m k m k C x m k C x C x
• • •

+ + + +

= = =

+ + - ◊ + + ◊ + ◊Â Â Â  = 0

or 2

0 0

[( )( 1) 5( )] m k m k
m m

m m

C m k m k m k x C x
• •

+ + +

= =

+ + - + + + ◊Â Â  = 0

or 2 2

0 0

[( ) 4( )] m k m k
m m

m m

C m k m k x C x
• •

+ + +

= =

+ + + + ◊Â Â  = 0 (4)

Equating to zero the coeffi cient of the smallest power of x, i.e., x
k in (4), we get the indicial 

equation

 C0 (m
2 + 4m) = 0 or m (m + 4) = 0   (\   C0 π 0)

so that m = 0, –4.

Hence, the roots are distinct and differ by an integer. Next, equating to zero the coeffi cient of xm + k

in (4), we get

 Cm[(m + k)2 + 4(m + k)] + Cm – 2 = 0
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Or Cm = 
2

( )( 4)

mC

m k m k

--
+ + +

 (5)

Coeffi cient of xk+1 = 0

 (m + 1) (m + 5) C1 = 0 fi C1 = 0 (\ m π –1, –5)

Putting m = 2, 3, 4, 5, … in (5), we get 

 C2 = 0

( 2)( 6)

C

k k
-

+ +

 C3 = 1 0
( 3)( 7)

C

k k
- =

+ +
  (\  C1 = 0)

 C4 = 
02

( 4)( 8) ( 2)( 4)( 6)( 8)

CC

k k k k k k
- =

+ + + + + +

 C5 = 3 0
( 5)( 9)

C

k k
- =

+ +
  (\  C3 = 0)

 C6 = 
-

- =
+ + + + + + +

04

( 6)( 10) ( 2)( 4)( 6)( 8)( 10)

CC

k k k k k k k
, and so on.

Putting these values in (3), we get

 y = 

2 4

0 1
( 2)( 6) ( 2)( 4)( 6)( 8)

k x x
C x

k k k k k k

È ˘
- + -Í ˙

+ + + + + +Í ˙Î ˚
  (6)

Putting k = 0 in (6), we get

 y = 
È ˘

- + - =Í ˙
◊ ◊ ◊ ◊Í ˙Î ˚

 

2 4

1 (say)
2 6 2 4 6 8)

x x
a au  (7)

If we put k = – 4 in (6), the coeffi cients become infi nite. To avoid this diffi culty, we put a = b (k + 

4), so that

 y = 
2 4( 4)

( 4)
( 2)( 6) ( 2)( 6)( 8)

k k x x
b x k

k k k k k

È ˘+
+ - + -Í ˙

+ + + + +Í ˙Î ˚
  (8)

Now,  
y

k

∂
∂

 = 
2 2

2

2 2 3 2 2

( 8 20) (3 32 76)
log 1

( 8 12) ( 16 76 96)

k k k k k
y x b x x

k k k k k

È ˘+ + + +
+ + - +Í ˙

+ + + + +Í ˙Î ˚
 

\ 
4k

y

k = -

∂Ê ˆ
Á ˜Ë ¯∂

 = 
2 4

4( ) log 1
4 4

k
k

x x
y x bx

-
= -

È ˘
+ + - +Í ˙

Í ˙Î ˚
 

 = 

4 6 2 4
4 4log 0 0 1

( 2)(2)(4) 16 4 4

x x x x
bx x bx

- -È ˘ È ˘
- + - + + + - +Í ˙ Í ˙

-Í ˙ Í ˙Î ˚ Î ˚
  

 = 
- -È ˘ È ˘

- - - + + - +Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

  

4 6 2 4
4 4log 1

16 16 4 4

x x x x
bx x bx

 = bv (say)
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Hence, the general solution if given by

 y = au + bv

 = 
2 4 4 6 2 4

4 41 ... log 1
12 384 16 16 4 4

x x x x x x
a bx x bx

- -È ˘ È ˘ È ˘
- - - + - - - + + - +Í ˙ Í ˙ Í ˙

Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚
   

EXERCISE 13.5

Find the series solution of the following equations about x = 0:

 1. (1 – x2)y¢¢ – xy¢ + 4y = 0 2. x(1 – x) y¢¢ – 3 x y¢ – y = 0

 3. x
2
y¢¢ + xy¢ + (x2 – 1)y = 0 4. x

2
y¢¢ + xy¢ + (x2 – 4)y = 0

Answers

 1. 

3 5 7
2

0 1(1 2 )
2 8 16

x x x
y C x C x

Ê ˆ
= - + - - + -Á ˜

Ë ¯
 

 2. y = (a + b log x) (x + 2x
2 + 3x

2 + 4x
4 + …) + b(1 + x + x2 + x3 + …)

 3. 
2 4

2
1

2 4 2 4 6

x x
y ax

È ˘
= - + -Í ˙

◊ ◊ ◊Í ˙Î ˚
 

  

2 4 2
1 1 4

2 2 2 3

3
log 1

2 2 4 2 2 3

x x x
bx x bx x

- -È ˘ È ˘
+ ◊ - + - + + - +Í ˙ Í ˙

◊ ◊Í ˙ Í ˙Î ˚ Î ˚
  

 4. y = 
2 4

2 1
2 6 2 4 6 8

x x
a x

È ˘
- + -Í ˙

◊ ◊ ◊ ◊Í ˙Î ˚
 

4
2

2 3

1
log

2 4 2 4 6

x
b x x

- È ˘-
+ + -Í ˙

◊ ◊ ◊Í ˙Î ˚
 

  
2 4

2

2 2 2
1

2 2 4

x x
x

- È ˘
+ + + +Í ˙

◊Í ˙Î ˚
 

13.6.4 Case IV

When the roots of the indicial equation are distinct, differ by an integer and making one or more 

coeffi cients indeterminate.

Let k1 and k2 are roots of indicial equation and let k1 < k2, and let a coeffi cient of y series become 

indeterminate when k = k1. The complete solution is given by putting k = k1 in y which contains two 

arbitrary constants. If we put k = k1 in y then we obtain a series which is a constant multiple of one of 

the two series contained in the fi rst solution.

Example 15  Find the series solution of the differential equation

 
2

2

2
(1 ) 2

d y dy
x x y

dxdx
- + +  = 0
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Solution The given differential equation is

 
2

2

2
(1 ) 2

d y dy
x x y

dxdx
- + +  = 0 (1)

Dividing (1 – x2), 
2

2 2 2

2 1

1 1

d y x dy
y

dxdx x x
+ +

- -
 = 0 (2)

Compare (2) with  
2

2
( ) ( )

d y dy
P x Q x y

dxdx
+ +  = 0

Here,  P(x) = 
2 2

2 1
, ( )

1 1

x
Q x

x x
=

- -
At x = 1, P(x) and Q(x) are not analytic, so x = 1 is a singular point. Also,

(x – 1) P(x) = 
2 2

( 1)
(1 )(1 ) 1

x x
x

x x x
- = -

- + +
 and (x – 1)2 Q(x) = 2 1 1

( 1)
(1 )(1 ) 1

x
x

x x x

Ê ˆ-
- = - Á ˜- + +Ë ¯

are analytic at x = 1 so that x = 1 is a regular singular point.

Let the series solution of the given differential equation is 

 y = 
0

m k
m

m

C x
•

+

=
Â  (1)

\ y¢ = 

•
+ -

=

◊ +Â 1

0

( ) m k
m

m

C m k x

 y¢¢ = 

•
+ -

=

◊ + + -Â 2

0

( )( 1) m k
m

m

C m k m k x

Putting the values of y, y¢, and y¢¢ in (1) , we get

 2 2 1

0 0 0

(1 ) ( )( 1) 2 ( )m k m k m k
m m m

m m m

x C m k m k x x C m k x C x
• • •

+ - + - +

= = =

- + + - + + +Â Â Â  = 0

or  2

0 0 0

( )( 1) ( )( 1) 2 ( )m k m k m k
m m m

m m m

C m k m k x C m k m k x C m k x
• • •

+ - + +

= = =

+ + - - + + - + +Â Â Â

 
0

m k
m

m

C x
•

+

=

+ ◊Â  = 0

or  2

0 0

( )( 1) [( )( 1) 2( ) 1]m k m k
m m

m m

C m k m k x C m k m k m k x
• •

+ - +

= =

◊ + + - - + + - - + -Â Â  = 0

or 
2

0 0

( )( 1) [( )( 3) 1]m k m k
m m

m m

C m k m k x C m k m k x
• •

+ - +

= =

+ + - - + + - -Â Â  = 0 (4)

Equating to zero the coeffi cient of smallest power of x, i.e., x k–2,
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 C0 (k – 1)◊ k = 0 so that k = 0, 1   (\  C0 π 0)

Next, equating to zero the coeffi cient of x k – 1, we get C1 k (k + 1) = 0

Clearly, the coeffi cient C1 becomes indeterminate when k = 0

Now, equating to zero the coeffi cient of x m+ k, we get

 Cm+2 (m + k + 1) (m + k + 2) – Cm [(m + k) (m + k – 3 – 1] = 0

\ Cm + 2 = 
( )( 3) 1

( 1)( 2)
m

m k m k
C

m k m k

+ + - -
+ + + +

 (5)

Putting k = 0, 1, 2, 3, …in (5), we get

 C2 = 
0

( 3) 1

( 1)( 2)

m m
C

m m

- -
+ +

 C3 = 1

( 1)( 2) 1

( 2)( 3)

m m
C

m m

+ - -
+ +

 C4 = 2

( 2)( 1) 1

( 3)( 4)

m m
C

m m

+ - -
+ +

 = 0

[( 2)( 1) 1] [ ( 3) 1]

( 1)( 2)( 3)( 4)

m m m m
C

m m m m

+ - - ◊ - -
+ + + +

, and so on

Thus, y = 
0

m k
m

m

C x
•

+

=
Â  gives

 y = 
1 2 3 4

0 1 2 3 4
k k k k k

C x C x C x C x C x
+ + + ++ + + + + 

 = 2 4
0

( 3) 1 [( 2)( 1) 1] [ ( 3) 1]
1

( 1)( 2) ( 1)( 2)( 3)( 4)

k m m m m m m
C x x x

m m m m m m

È ˘- - + - - ◊ - -
+ + +Í ˙+ + + + + +Î ˚

 

 
3

1

( 1)( 2) 1

( 2)( 3)

k m m
C x x x

m m

È ˘+ - -
+ + +Í ˙+ +Î ˚

 (6)

Substituting k = 0 and choosing C0 = a and C1 = b in (6), we get

 y = 
2 4 3

1
2 8 3

x x x
a b x

Ê ˆ Ê ˆ
- + + + - +Á ˜ Á ˜

Ë ¯ Ë ¯
   

EXERCISE 13.6

Find the series solution of the following differential equations:

 1. 
2

2

2
(1 ) 2 2 0

d y dy
x x y

dxdx
- - + =  about x = 0

 2. 
2

2
2 (1 ) (1 ) 3 0

d y dy
x x x y

dxdx
- + - + =
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 3. 
2

2
2 0

d y dy
x xy

dxdx
+ + =

 4. 
2

2

2
0

d y dy
x x y

dxdx
+ + =

Answers

 1. 
4 6

2
0 11 ...

3 5

x x
y C x C x

Ê ˆ
= - - - + +Á ˜

Ë ¯

 2. 

2 3
1/ 2 3 3

(1 ) 1 3 ...
1 3 3 5

x x
y a x x b x

Ê ˆ
= - + - + + +Á ˜◊ ◊Ë ¯

 3. 0 1

1
( cos sin )y C x C x

x
= +

 4. 
4 6 2 5

1
12 90 6 40

x x x x
y a b x

Ê ˆ Ê ˆ
= - + - + - - = -Á ˜ Á ˜

Ë ¯ Ë ¯
  

SUMMARY

1. Analytic Function

A function f (x) is said to be analytic at x0 if f (x) has Taylor’s series expansion about x0 such that

0
0

0

( )
( )

n
n

n

f x
x x

n

•

=

-Â  exists and converges to f (x) for all x in the interval including x0.

Hence, we fi nd that all polynomial functions, ex, sin x, cos x, sinh x, and cosh x are analytic everywhere. A 

rational function is analytic except at those values of x at which its denominator is zero, for example, the 

rational functional defi ned by 2( 3 2)

x

x x- +
 is analytic everywhere except at x = 1 and x = 2.

2. Ordinary and Singular Points

A point x = x0 is called an ordinary point of the equation

  y¢¢ + P(x)y¢ + Q(x)y = 0 (1)

If both the functions P(x) and Q(x) are analytic at x = x0.

If the point x = x0 is not an ordinary point of the differential equation (1) then it is called a singular point 

of the differential equation (1). There are two types of singular points.

 (i) Regular singular points, and

 (ii) Irregular singular points.

A singular point x = x0 of the differential equation (DE) (1) is called a regular singular point of the (DE) 

(1) if both (x – x0) P(x) and (x – x0)2 Q(x) are analytic at x = x0

A singular point which is not regular is called an irregular point.
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3. Power Series

An infi nite series of the form

 
0

0

( )n
n

n

C x x

•

=

-Â  = C0 + C1 (x – x0) + C2 (x – x0)
2 +    (2)

is called a power series (x – x0). The constants C0, C1, C2 … are known as the coeffi cients and x0 is called 

the center of the power series (2). Since n takes only positive integral values,  the power series (2) does not 

contain negative or fractional powers. So the power series (1) contains only positive powers.

The power series (2) converges (absolutely) for |x| < R, where

 
1

lim n

x n

C
R

CÆ• +
= , provided the limit exists. (3)

R is said to be the radius of convergence of the power series (2). The interval (–R1 R) is said to be the 

interval of convergence.

Result I A power series represents a continuous function within its interval of convergence.

Result II A power series can be differentiated termwise in its interval of convergence.

4. Power Series Solution about the Ordinary Point x = x0

Let the equation y¢¢ + P(x) y¢ + Q(x)y = 0 (4)

Then x = x0 is an ordinary point of (4) and has two non-trivial linearly independent power series solutions 

of the form

  0

0

( )n
n

n

C x x

•

=

-Â  (5)

And this power series converges in some interval of convergence |x – x0| < R about x0.

In order to get the coeffi cient Cn’s in (5), we take 

 1
0

1

( )n
n

n

y nC x x

•
-

=

¢ = -Â  and 2
0

2

( 1) ( )n
n

n

y n n C x x

•
-

=

¢¢ = - -Â  (6)

Putting the above values of y, y¢ and y¢¢ in (4), we get the equation of the form

 A0 + A1 (x – x0) + A2 (x – x0) +   + An (x – x0)
n +   (7)

where the coeffi cients A0, A1, A2, ….etc., are now some functions of the coeffi cients C0, C1, C2, …etc. 

Since (7) is an identity, all the coeffi cients. A0, A1, A2, … of (7) must be zero, i.e.,

 A0 = 0, A1 = 0, A2 = 0, …., An = 0 (8)

Solving the equation (7), we obtain the coeffi cients of (5) in terns of C0 and C1. Substituting these 

coeffi cients in (5), we obtain the required series solution (4) in powers of (x – x0).

5. Frobenius Method 

Series solution when x = 0 is a regular singular point of the differential equation

 
2

2
( ) ( ) 0

d y dy
P x Q x y

dxdx
+ + =  (9)

Step 1 Suppose that a trial solution of (9) be of the form

 y = xk (C0 + C1x + C2 x
2 + … + Cm xm + …)
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i.e., y = 

0

m k
m

m

C x

•
+

=

◊Â , C0 π 0 (10)

Step 2 Differentiate (10) and obtain.

 
1

0

( ) m k
m

m

y C m k x

•
+ -

=

¢ = +Â  and  
2

0

( )( 1) m k
m

m

y C m k m k x

•
+ -

=

¢¢ = + + -Â  (11)

Using (10) and (11), (9) reduces to an identity.

Step 3 Equating to zero the coeffi cient of the smallest power of x in the identity obtained in Step 2

above, we obtain a quadratic equation in k. The quadratic equation so obtained is called the indicial 

equation.

Step 4 Solve the indicial equation if the following cases arise:

 (i) The roots of the indicial equation are distinct and do not differ by an integer.

 (ii) The roots of the indicial equation are equal.

 (iii) The roots of the indicial equation are distinct and differing by an integer.

 (iv) The roots of the indicial equation are unequal, differing by an integer and making a coeffi cient of 

y indeterminate. 

Step 5 We equate to zero the coeffi cient of the general power in the identity obtained in Step 2. The 

equation so obtained will be called the recurrence relation, because it connects the coeffi cients Cm, Cm–2 

or Cm, Cm–1, etc.

Step 6 If the recurrence relation connects Cm and Cm–2, then in general, determine C1 by equating to 

zero the coeffi cient of the next higher power on the other hand, if the recurrence relation connects Cm and 

Cm-1. This step may be omitted.

Step 7 After getting various coeffi cients with the help of Steps 5 and 6 above, the solution is obtained 

by substituting these in (2) above.



14.1  INTRODUCTION

A partial differential equation is an equation involving two (or more) independent variables x, y, and a 

dependent variable z and its partial derivatives such as

2 2 2

2 2
, , , ,

z z z z z

x y x yx y

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂ ∂

 etc.

We shall use the following standard notations:

 p = 
2

2
, ,x y xx

z z z
z q z r z

x y x

∂ ∂ ∂
= = = = =

∂ ∂ ∂

 s = 
2 2

2
,xy yy

z z
z t z

x y y

∂ ∂
= = =

∂ ∂ ∂

14.1.1 Order of Partial Differential Equation

The order of a PDE is the order of the highest partial derivative appearing in the equation.

14.1.2 Degree of Partial Differential Equation (PDE)

The degree of a PDE is the degree of the highest order partial derivative occurring in it after the 

equation is made free from radicals and fractions so far as partial derivatives are concerned (i.e., the 

differential equation is rationalized).

Example: (i) p + q = 1 or 1
z z

x y

∂ ∂
+ =

∂ ∂
 is of order 1 and degree 1.

 (ii) p + r + s = 1 or 
2 2

2
1

z z z

x x yx

∂ ∂ ∂
+ + =

∂ ∂ ∂∂
 is of order 2 and degree 1.

14.2  LINEAR PARTIAL DIFFERENTIAL EQUATION

A differential equation is said to be a linear partial differential equation if the dependent variable and 

all its derivatives appear in it in fi rst degree.

A PDE which is not linear is called a nonlinear partial differential equation.

14
Partial Differential 

Equations (PDE’s)
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14.3   CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS OF 
ORDER ONE

Let z be the dependent variable and x, y be independent variables. The most general form of PDE of a 

fi rst-order is given by

 f (x, y, p, q) = 0 (1)

Now, we shall classify PDE of fi rst order into linear, semi-linear, quasi-linear and nonlinear.

(i) Linear PDE of Order One

A differential equation contains p and q and no higher derivative is called of fi rst order. If the degree of 

p, q, and z are one then it is said to be a linear partial differential equation of fi rst order.

Thus, it is of the form P(x, y)p + Q(x, y)q + f (x, y)z = R(x, y) which are functions of x and y and do 

not contain any term of z.

(ii) Semi-Linear Partial Differential Equation of First Order

A partial differential equation is said to be semi-linear if it is of the form

 P(x, y)p + Q(x, y)q = R(x, y, z)

where P(x, y) and Q(x, y) are functions of x and y only and do not contain any term of z, and R(x, y, z) 

contains some terms that are not of fi rst degree in z.

(iii) Quasi-Linear Partial Differential Equation of First Order

A partial differential equation is said to be quasi-linear if it is of the form

 P(x, y, z)p + Q(x, y, z)q = R(x, y, z)

where P(x, y, z), Q(x, y, z), and R(x, y, z) are functions depending on z also.

(iv) Nonlinear Partial Differential Equation of First Order

A differential equation is said to be a nonlinear partial differential equation of fi rst order if p and/or q. 

occur in more than one degree.

(v) Homogeneous and Nonhomogeneous Partial Differential Equations

If each term of a linear PDE contains either the dependent variable or one of its partial derivatives then 

the equation is said to be homogeneous otherwise it is said to be nonhomogeneous.

14.4  FORMATION OF PARTIAL DIFFERENTIAL EQUATIONS

(i) By Elimination of Arbitrary Constants

Consider an equation F(x, y, z, a, b) = 0 (2a)

where a and b denote arbitrary constants. Let z be a function of two independent variables x and y. 

Differentiating (2a) w.r.t. x and y partially, we get

 
F F

p
x z

∂ ∂
+

∂ ∂
 = 0 (2b)

 
F F

q
y z

∂ ∂
+

∂ ∂
 = 0 (2c)
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By eliminating a, b from (2a), (2b), and (2c), we get an equation of the form

 f(x, y, z, p, q) = 0 (2d)

which is a partial differential equation of fi rst order.

Note 1  If the number of arbitrary constants equals the number of independent variables in (2a), then 

the PDE obtained by elimination is of fi rst order.

Note 2  If the number of arbitrary constants is more than the number of independent variables then the 

PDE obtained is of second or higher orders.

Example 1  Construct the partial differential equation (PDE) by eliminating the arbitrary constants.

 z = a(x + y) + b(x – y) + abt + C (1)

Solution Differentiating (1) partially both sides w.r.t. to x, y, and t, we get.

 
z

x

∂
∂

 = a + b (2)

 
z

y

∂
∂

 = a – b (3)

 
z

t

∂
∂

 = ab (4)

Since (a + b)2 – (a – b)2 = 4ab from (2), (3), and (4), we get

 

22
z z

x y

Ê ˆ∂ ∂Ê ˆ -Á ˜ Á ˜Ë ¯∂ ∂Ë ¯
 = 4

z

t

∂
∂

Example 2  Find the partial differential equation of z = ax
2 + by

2 (1), where a, b are arbitrary 

constants.

Solution Differentiating (1) partially w.r.t. ‘x’ and y, we get

 
z

x

∂
∂

 = 2ax

 
z

y

∂
∂

 = 2by

or  a = 
1 1

,
2 2

z z
b

x x y y

∂ ∂
=

∂ ∂
Eliminating the two arbitrary constants a and b, we get

 z = 
1

or 2
2

z z z z
x y z x y

x y x y

È ˘∂ ∂ ∂ ∂
+ = +Í ˙∂ ∂ ∂ ∂Î ˚

Example 3  Find a partial differential equation by eliminating a, b, c from.

 
2 2 2

2 2 2

x y z

a b c
+ +  = 1 (1)
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Solution Differentiating (1) w.r.t. x and y, we get

 
2 2

2 2x z z

xa c

∂
+

∂
 = 0 or 2 2 0

z
c x a z

x

∂
+ =

∂
 (2)

and  
2 2

2 2y z z

yb c

∂
+

∂
 = 0 or 2 2 0

z
c y b z

y

∂
+ =

∂
 (3)

Now, differentiating (2) with respect to x and (3) w.r.t. y, we get

 

2 2
2 2 2

2

z z
c a a z

x x

∂ ∂Ê ˆ+ + ◊Á ˜Ë ¯∂ ∂
 = 0 (4)

 

2 2
2 2 2

2

z z
c b b z

y y

Ê ˆ∂ ∂
+ + ◊Á ˜∂Ë ¯ ∂

 = 0 (5)

From (2),     c2 = 
2

a z z

x x

Ê ˆ ∂
- Á ˜ ∂Ë ¯

Putting the value of c2 in (4) and dividing by a2, we obtain

 
2 2

2

z z z z
z

x x x x

∂ ∂ ∂Ê ˆ Ê ˆ- + +Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂
 = 0

or 

22

2

z z z
z x x z

x xx

∂ ∂ ∂Ê ˆ Ê ˆ+ -Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂∂
 = 0 (6)

Similarly, (3) and (5) gives rise to

 

22

2

z z z
z y y z

y yy

Ê ˆ Ê ˆ∂ ∂ ∂
+ -Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯∂

 = 0 (7)

Equations (6) and (7) are the required solutions.

Example 4  Find the PDE of all spheres whose centers lie on the z-axis.

Solution Equation x2 + y2 + (z – a)2 = b2  (1) where a, b are arbitrary constants.

Differentiating (1) partially both sides w.r.t. x and y, we get

 2 2( )
z

x z a
x

∂
+ -

∂
 = 0 (1)

 2 2( )
z

y z a
y

∂
+ -

∂
 = 0 (2)

From (2), ( )
/

y
z a

z y
- =

∂ ∂
 (3)

Substituting (3) in (1), we get

 2 2
y z

x
z x

y

Ê ˆ
Á ˜ ∂

- ◊Á ˜∂ ∂Á ˜
Á ˜∂Ë ¯

 = 0
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or 
z z

x y
y x

∂ ∂
-

∂ ∂
 = 0

or x q – y p = 0  

Example 5  Find the PDE from (x – a)2 + (y – b)2 = z2 cot2 a where a is a parameter.

Solution (x – a)2 + (y – b)2 = z2 cot2 a (1)

Differentiating (1) partially w.r.t. x and y, we get

 2(x – a) = 2 22 cot ( ) cotor
z z

z x a z
x x

a a
∂ ∂Ê ˆ Ê ˆ◊ - =Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

 (2)

 2(y – b) = 2 22 cot or ( ) cot
z z

z y b z
y vy

a a
Ê ˆ Ê ˆ∂ ∂

- =Á ˜ Á ˜∂Ë ¯ Ë ¯
 (3)

From (2) and (3), (1) becomes

 

22

2 4 2 4cot cot
z z

z z
x y

a a
Ê ˆ∂ ∂Ê ˆ +Á ˜ Á ˜Ë ¯∂ ∂Ë ¯

 = z2 cot2a

or p
2 + q2 = tan2a

Example 6  Obtain a PDE by eliminating a and b from

 z = (a + x) (b + y)

Solution z = (a + x) (b + y) (1)

Differentiating (1) partially both sides w.r.t. x and y, we get

 
z

x

∂
∂

 = (b + y) (2)

 
z

y

∂
∂

 = (a + x) (3)

From (2) and (3), (1) becomes 

 z = 
z z

x y

Ê ˆ∂ ∂Ê ˆ
Á ˜ Á ˜Ë ¯∂ ∂Ë ¯

or z = p.q 

(ii)  By Elimination of Arbitrary Function f from the Equation
f(u, v) = 0 (3)

where u and v are functions of x, y, and z.

Taking z as dependent variable and x and y as independent variables so that 

 
z

x

∂
∂

 = , , 0, 0
z y x

p q
y x y

∂ ∂ ∂
= = =

∂ ∂ ∂
 (4)

Differentiating (3)  w.r.t. ‘x’ we get 

 
u x u y u z v x v y v z

u x x y x z x v x x y x z x

f fÊ ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
◊ + ◊ + ◊ + ◊ + ◊ + ◊Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

 = 0
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or  
u u v v

p p
u x z v x z

f f∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ + +Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂
 = 0

or  
u v

f f∂ ∂
∂ ∂

 = 
v v u u

p p
x z x z

∂ ∂ ∂ ∂Ê ˆ Ê ˆ- + +Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂
 (5)

Similarly, differentiating (1) w.r.t. y, we get

 
u v

f f∂ ∂
∂ ∂

 = 
v v u u

q q
y z y z

Ê ˆ Ê ˆ∂ ∂ ∂ ∂
- + +Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

 (6)

Eliminating f with the help of (5) and (6), we get

 
v v u u

q p
x x x z

∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂
 = 

v v u u
q q

y z y z

Ê ˆ Ê ˆ∂ ∂ ∂ ∂
+ +Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

or  
u u v v

q p
y z x z

Ê ˆ∂ ∂ ∂ ∂Ê ˆ+ ◊ +Á ˜Á ˜ Ë ¯∂ ∂ ∂ ∂Ë ¯
 = 

v v u u
q p

y z x z

Ê ˆ∂ ∂ ∂ ∂Ê ˆ+ ◊ +Á ˜Á ˜ Ë ¯∂ ∂ ∂ ∂Ë ¯

or Pq + Qq = R (7)

where  P = 
u v u v

y z z y

∂ ∂ ∂ ∂
- ◊

∂ ∂ ∂ ∂

 Q = 
u v u v

z x x z

∂ ∂ ∂ ∂
- ◊

∂ ∂ ∂ ∂

 R = 
u v u v

x y y x

∂ ∂ ∂ ∂
◊ - ◊

∂ ∂ ∂ ∂
Thus, we obtain a linear PDE of fi rst order and of fi rst degree in p and q.

Note If the given equation between x, y, z contains two arbitrary functions then, in general, their 

elimination gives rise to equations of higher order.

Example 7  Obtain the partial differential equation by eliminating the arbitrary function 

y
z f

x

Ê ˆ= Á ˜Ë ¯ .

Solution The given relation is  
y

z f
x

Ê ˆ= Á ˜Ë ¯
 (1)

Differentiating (1) partially w.r.t. x and y, we get

 p = 
2

z y y
f

x x x

∂ -Ê ˆ Ê ˆ= ¢ ◊Á ˜ Á ˜Ë ¯ Ë ¯∂
 (2)

and  q = 
1z y

f
y x x

∂ Ê ˆ Ê ˆ= ¢ Á ˜ Á ˜Ë ¯ Ë ¯∂
 (3)

Dividing (2) by (3), we get

 
p

q
 = 

y

x
-   or px + qy = 0

which is the required PDE.
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Example 8  Obtain a partial differential equation by eliminating the arbitrary function f from 

(x + y + z) = f(x2 + y2 + z2).

Solution Given (x + y + z) = f(x2 + y2 + z2) (1)

Differentiating (1) partially w.r.t. ‘x’ and y, we get

 1 + p = f¢ (x2 + y2 + z2) ◊ (2x + 2zp) (2)

 1 + q = f¢ (x2 + y2 + z2) ◊ (2y + 2zq) (3)

Dividing (2) by (3), we get

 
1

1

p

q

+
+

 = 
x zp

y zq

Ê ˆ+
Á ˜+Ë ¯

  or  (y – z)p + (z – x)q = x + y

which is the required PDE.

Example 9  Obtain a partial differential equation by eliminating the arbitrary functions f and g 

from y = f(x – at) + g(x + at).

Solution Given y = f(x – at) + g(x + at) (1)

Differentiating (1) partially w.r.t. x and t, we get

 
y

x

∂
∂

 = f¢(x – at) + g¢(x + at) (2)

 
y

t

∂
∂

 = –af¢(x – at) + ag¢(x + at) (3)

Again differentiating partially (2) and (3) w.r.t. x and t, we get

 
2

2

y

t

∂
∂

 = f¢¢(x – at) + g¢¢(x + at) (4)

 
2

2

y

t

∂
∂

 = a2[f¢¢(x – at) + g¢¢(x + at)] (5)

From (4) and (5), we get

 
2

2

y

t

∂
∂

 = 
2

2

2

y
a

x

∂
∂

which is the required PDE.

Example 10  Obtain a PDE by eliminating the arbitrary functions f and g from

 z = f(x2 – y) + g(x2 + y).

Solution Given z = f(x2 – y) + g(x2 + y) (1)

Differentiating (1) partially w.r.t. x and y, we get

 
z

x

∂
∂

 = 2xf¢(x2 – y) + 2xg¢(x2 + y) (2)

 
z

y

∂
∂

 = – f¢(x2 – y) + g¢(x2 + y) (3)



14.8 Engineering Mathematics for Semesters I and II

Again differentiating (2) and (3) w.r.t. ‘x’ and y, we get

 
2

2

z

y

∂
∂

 = 2[f¢(x2 – y) + g¢(x2 + y)] + 4x
2[f¢¢(x2 – y) + g¢¢(x2 + y)] (4)

and  

2

2

z

y

∂
∂

 = f¢¢(x2 – y) + g¢¢(x + y) (5)

Again, (2) fi f¢(x2 – y) + g¢(x2 + y) = 
1

2

z

x x

∂
∂

 (6)

Using equations (5) and (6) in (4), we get

 
2

2

z

x

∂
∂

 = 
2

2

2

1
4

z z
x

x x y

∂ ∂
+

∂ ∂

or  r = 24
p

x t
x

+

or p + 4x
3 t = r. x 

Example 11  Obtain a PDE from F(x y + z2, x + y + z) = 0 by eliminating the arbitrary function F.

Solution Given  F(xy + z2, x + y + z) = 0 (1)

Let  u(x, y, z) = xy + z2 (2)

 v(x, y, z) = x + y + z (3)

Then Eq. (1) may be written as.

 F(u, v) = 0 (4)

Differentiating (4) partially w.r.t. x, we get

    
F u u F v v

p p
u x z v x z

∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ + +Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂
 = 0 (5)

From (2) and (3), we get 
u

x

∂
∂

 = , 2 , , 1, 1
v u v v

y z x
z y x z

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
 (6)

Using (6) in (5), we get

 ( 2 ) (1 )
F F

y pz p
u v

∂ ∂
◊ + + +

∂ ∂
 = 0 (7)

Again differentiating (4 ) w.r.t. y, we get 

 
F u u F v v

q q
u y z v y z

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂
+ + +Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

 = 0

or ( 2 ) (1 )
F F

x qz q
x v

∂ ∂
+ + +

∂ ∂
 = 0 (8)

From (7) and (8), we get

 (2z – x)p + (y – 2z)q = (x – y) 
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EXERCISE 14.1

Obtain partial differential equations by eliminating the arbitrary constants/functions.

I. Elimination of arbitrary constants

 1. z = ax + by + ab; a, b arbitrary constants.

 2. z = ax + a2
y

2 + b; a, b arbitrary constants.

 3. az + b = a2
x + y; a, b arbitrary constants.

 4. z = axy + b; a, b arbitrary constants.

 5. z = 2 21

2

y y
axe a e b+ + ; a, b arbitrary constants.

 6. z = a(x + y) + b(x – y) + abt + C; a, b, c are arbitrary constants.

 7. z = A ept sin px; p, A are arbitrary constants.

 8. z =
2

b x
a e

-  cos by; a, b, are arbitrary constants.

 9. z = 2 2
xy y x a b+ + + ; a, b arbitrary constants.

II. Elimination of arbitrary functions

 10. z = f(x2 – y2) 11. z = f(sin x + cos y)

 12. z = eax + by f(ax – by) 13. f (x2 + y2 + z2, z2 – 2xy) = 0

 14. z = x + y + f(x y) 15. z = f(x + iy) + g (x – iy)

 16. lx + my + nz = f(x2 + y2 + z2) 17. f(x2 + y2, x2 – z2) = 0

 18. f (ax + by + cz, x2 + y2 + z2) = 0 19. f(x2 + y2, z – xy) = 0

 20. z = x2
f(x – y)

Answers

I. Elimination of arbitrary constants

 1. z = px + qy + pq 2. q = 2yp
2

 3. pq = 1 4. px = qy

 5. q = px + p2 6. p
2 – q2 = 4

z

t

∂Ê ˆ
Á ˜Ë ¯∂

 7. 
2 2

2 2
0

z z

x t

∂ ∂
+ =

∂ ∂
 8. 

2

2

z z

t x

∂ ∂
=

∂ ∂
 9. pq = py + qx

II Elimination of arbitrary functions

 10. py + qx = 0 11. p sin y + q cos x = 0

 12. bp + aq = 2 abz 13. p – q = (y – x)/z

 14. px – qy = x – y 15. r + t = 0

 16. (l + np)y + (lq – mp) z = (m + nq)x 17. yp – xq = 
xy

z
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 18. (bz – cy)p + (cx – az)q = ay – bx 19. xq – yp = x2 – y2

 20. 2z = p x + qx

14.5   LAGRANGE’S METHOD OF SOLVING THE LINEAR PARTIAL 
DIFFERENTIAL EQUATIONS OF FIRST ORDER

The general form of a quasi-linear partial differential equation of the fi rst order is

 P(x, y, z)p + Q(x, y, z)q = R(x, y, z) (8a)

is known as Lagrange’s linear  equation.

The general solution of the Lagrange’s linear partial differential equation

 Pp + Qq = R (8a)

is given by f (u, v) = 0 (8b)

where f  is arbitrary function and u(x, y, z) = C1 and v(x, y, z) = C2, form a solution of the equation

 
dx

P
 = 

dy dz

Q R
=

Working Rule for Solving Pp + Qq = R by Lagrange’s Method

Step 1 Put the given linear PDE of the fi rst order in the standard form Pp + Qq = R (9a)

Step 2 Write down Lagrange’s auxiliary equation for (8a), namely,

 
dx

P
 = 

dy dz

Q R
=  (9b)

Step 3 Solve (9b) by using the well-known methods. Let u(x, y, z) = C1 and v(x, y, z) = C2 be the two 

independent solution of (8c).

Step 4 The general solution (or integral) of (9a) is written in one of the following three forms:

 f (u, v) = 0 u = f(v)  or v = f(u)

Example 12  Solve xzp + yzq = xy

Solution The given equation is xzp + yzq = xy (1)

Lagrange’s auxiliary equations for (1) are

 

(i)

dx

xz
 = 

(ii) (iii)

dy dz

yz xy
=  (2)

From (i) and (ii), 
dx

xz
 = or

dy dx dy

yz x y
=

On integrating log x = log y + log C1

 log
x

y
 = log C1

 
x

y
 = C1
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From (ii) and (iii), 
dy

yz
 = or

dz dy dz

xy z x
=

or         xdy = zdz

On integrating,  xy = 
2

2
2

z
C+

or  
2

2

z
xy -  = C2

The general solution is 
2

,
2

x z
xy

y
f

Ê ˆ
-Á ˜

Ë ¯
 = 0

where f  is an arbitrary function.

Example 13  Solve yzp + zxq = xy.

Solution The given equation yzp + zxq = xy (1)

Lagrange’s auxiliary equation for (1) are

 
dx

yz
 = 

dy dz

zx xy
=  (2)

From (1) and (2), 
dx

yz
 = 

dy

zx

or 
dx

y
 = 

dy

x
 or xdx – ydy = 0 (3)

On integrating, x
2 – y2 = C1

From (2) and (3), 
dy

zx
 = 

dz

xy

 
dy

z
 = 

dz

y
 or ydy – zdz = 0

On integrating, y
2 – z2 = C2

The required general solution is f (x2 – y2, y2 – z2) = 0 where f is an arbitrary function.

Example 14  The given equation is y2
p – xyq = x(z –2y).

Solution The given equation is y2
p – xyz = x(z – 2y) (1)

Lagrange’s auxiliary equations for (1) are

 
2

dx

y
 = 

( 2 )

dy dz

xy x z y
=

- -
 (2)

Taking fi rst two fractions of (2), we get

 
2

dx

y
 = or

dy dx dy

xy y x
=

- -

or  xdx + ydy = 0
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On integrating, we get

 x
2 + y2 = C1 (3)

Now, taking the last two fractions of (2), we get

 
dy

xy-
 = 

( 2 )
or

( 2 )

dz dz x z y

x z y dy xy

-
=

- -

 
dz

dy
 = 2

z

y
- +

or  
1dz

z
dy y

Ê ˆ
+ Á ˜Ë ¯

 = 2 (4)

which is a linear equation in z and y, its IF = 

1

log
dy

yye e y= =
Ú

. Hence, the solution of (4) is

 z.y = Ú2y dy + C2  or  zy – y2 = C2 (5)

\   the required general solution is

 f(x2 + y2, zy – y2) = 0

where f is an arbitrary function.

Example 15  Solve xp + yq = 3z.

Solution The given equation is xp + yq = 3z. (1)

The auxiliary equations are

 
dx

x
 = 

3

dy dz

y z
=  (2)

Taking fi rst two fractions, 
dx

x
 = 

dy

y

On integrating, we get 
x

y
 = C1 (3)

Taking the last two fractions,

 
dy

y
 = or 3

3

dz dy dz

z y z
=  

Integrating, we get 3 log y – log z = log C2

 
3

log
y

z
 = log C2

or 
3

y

z
 = C2 (4)

The required solution is 

 
3

,
x y

y z
f

Ê ˆ
Á ˜
Ë ¯

 = 0 (1)

where f  is an arbitrary function.
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Example 16  Solve xz (z2 + xy)p – zy (z2 + xy)q = x4.

Solution The given equation is xz (z2 + xy)p – yz (z2 + xy)q = x4 (1)

The auxiliary equations are

 
2( )

dx

zx z xy+
 = 

2 4( )

dy dz

zy z xy x
=

- +
 (2)

Taking the fi rst two fractions, we get

 
dx

x
 = 

dy

y-
On integrating, xy = C1 (3)

Taking the fi rst and last fractions,

 x
3 dx = (z3 + xyz) dz

Integrating, 
4

4

x
 = 

4 2

2
4 2

z xyz
C+ +

or  x
4 – z4 – 2xyz

2 = C2 (4)

The general solution is 

 f (xy, x4 – z4 – 2xyz
2) = 0

Example 17  Solve p – q = log (x + y)

Solution The given equation is

 p – q = log (x + y) (1)

The auxiliary equations 
1

dx
 = 

1 log( )

dy dz

x y
=

- +
 (2)

Taking the fi rst two fractions, 
1

dx
 = 

1

dy

-
Integrating, x + y = C1 (3)

Taking the fi rst and last fractions,

 dx = 
log( )

dz

x y+

 dx = 
1log

dz

C
  [from Eq. (3)]

or  log C1 dx = dz

Integrating,  x . log C1 = z + C2

 x log (x + y) = z + C2

or  x log (x + y) – z = C2  (4)

The general solution is 

 f [(x log (x + y) – z, x + y)] = 0
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Example 18  Solve (x2 – y2 – yz)p + (x2 – y2 – xz)q = (x – y)z.

Solution The given equations is

 (x2 – y2 – yz)p + (x2 – y2 – xz)q = (x – y)z (1)

Auxiliary equations are

 
2 2( )

dx

x y yz- -
 = 

2 2 ( )( )

dy dz

x y zx y xz
=

-- -
 (2)

 dx – dy – dz = x2 – y2 – yz – x2 + y2 + zx – xz + yz = 0

Integrating x – y – z = C1 (3)

Now, taking fi rst and second and equate to third.

 
3 2 2 3

xdx ydy

x xy x y y

-
- - -

 = 
( )

dz

x y z-

or  
2 2( )( )

xdx ydy

x y x y

-
- -

 = 
( )

dz

x y z-

or  
2 2( )

xdx ydy

x y

-
-

 = 
dz

z

or  
1

2
 d log (x2 – y2) = d (log z)

On integrating, we get

 
2 2

2

( )x y

z

-
 = C2 (4)

The general solution is 

 
2 2

2
,

x y
x y z

z
f

Ê ˆ-
- -Á ˜

Ë ¯
 = 0

EXERCISE 14.2

Solve the following equations:

 1. p + q = 1 2. xp + yq = z

 3. zp = –x 4. p(tan x) + q (tan y) = tan z

 5. 
2

2( )
y z

p zx q y
x

Ê ˆ
+ =Á ˜

Ë ¯
 6. yp + x q = xyz

2(x2 – y2)

 7. p – 2q = 3x
2 sin (y + 2x) 8. x

2
p + y2

q = z2

 9. p + 3q = 5z + tan (y – 3x) 10. x(y – z)p + y(z – x)q = z (x – y)

 11. (yz)p + (x z)q = (xy) 12. (y2
z)p + (x2

z)q = xy
2

 13. zp – zq = z2 + (x + y)2 14. (y + z)p + (z + x)q = (x + y)

 15. (y – z)p + (x – y)q = (z – x)
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Answers

 1. f(x – y, x – z) = 0 2. , 0
x y

z z
f

Ê ˆ =Á ˜Ë ¯

 3. (x2 + z2, y) = 0 4. 
sin sin

, 0
sin sin

z x

y y
f

Ê ˆ
=Á ˜Ë ¯

 5. f(x3 – y3, x2 – y2) = 0 6. 
2 2

2 2

2

( ) 2
( ), 0

x y
x y

zx
f

È ˘-
- + =Í ˙

Í ˙Î ˚

 7. f  [2x + y, x3 sin (y + 2x) – z] = 0 8. 
1 1 1 1

, 0
x y y z

f
Ê ˆ

- - =Á ˜Ë ¯

 9. f[y – 3x, e–5x {5z + tan(y – 3x)}] = 0 10. f [x + y + z, xyz] = 0

 11. (x2 – y2, y2 – z2) = 0 12. f [(x3 – y3), (x2 – z2)] = 0

 13. f[(x + y) e2y{z
2 + (x + y)2}] = 0 14. , 0

x y y z

y z x y z
f

È ˘Ê ˆ- -
=Í ˙Á ˜-Ë ¯ + +Í ˙Î ˚

 15. 
2

, 0
2

x
x y z yzf

È ˘
+ + + =Í ˙

Í ˙Î ˚

14.6   NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS OF 
FIRST ORDER

Nonlinear partial differential equations of fi rst order contain p and q of degree other than one and/or 

product terms of p and q.

Its complete solution is given by f (x, y, z, a, b)  = 0 where a and b are any two arbitrary constants. 

Some standard forms of nonlinear fi rst-order partial differential equations are given by the following:

(i) Standard Form I

Only p and q present (or x, y, z are absent).

Consider equations of the form

 f (p. q) = 0 (10)

Suppose p = a; then f (a, q) = 0

Solving q = g (a)

Consider  dz = 
z z

dx dy pdx q dy
x y

∂ ∂
+ = +

∂ ∂
or  dz = adx + g(a)dy

On integrating both sides, we get

 z = ax + g(a)y + C

where a and C are arbitrary constants; thus, the complete solution is z = ax + by + C (11) 

where a, b satisfy the equation f(a, b) = 0, i.e., b = g(a)
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(ii) Standard Form II

Clairaut’s Equation

 z = px + qy + f(p, q) (12a)

The compete solution of (12a) is 

 z = ax + by + f(a, b) (12b)

which is obtained by replacing p by a and q by b in the given equation (12a). 

(iii)  Standard Form III

Only p, q, and z present; Consider equation of the form

 f (p, q, z) = 0 (13a)

Putting q = a p in (13a), we get f (p, ap, z) = 0  (13b)

In Eq. (13b) solving for p, we get p = g(z).

Now,  dz = 
z z

dx dy pdx q dy
x y

∂ ∂
+ = +

∂ ∂
 dz = pdx + apdy

 dz = p(dx + ady)

 dz = g(z) (dx + ady)

On integrating,

 x + ay = 
( )

dz
b

g z
+Ú , where a and b are two arbitrary constants.

(iv) Standard Form IV

The equation is of the form

 f1 (x, p) = f2 (y, q) (14)

Suppose f1(x, p) = f2 (y, q) = a = constant.

Solving each equation for p and q, we get

 p = g1(x, a) and q = g2(y, a)

Now, putting these values of p and q in dz = pdx + qdy, we get

 dz = g1(x, a)dx + g2(y, a)dy.

Integrating,  z = 
1 2( , ) ( , )g x a dx g y a dy b+ +Ú Ú

which is the required complete solution.

Example 19  Solve p + q = pq.

Solution The given equation is of the form f (p, q) = 0.

Hence, its solution is given by z = ax + by + C (1)

where  a + b = ab or b = 
1

a

a -
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\   the complete solution is

 z = 
1

a
ax y C

a

Ê ˆ
+ +Á ˜-Ë ¯

Example 20  Solve p2 + q2 = 1.

Solution The given equation is in the form of f (p, q) = 0.

Let the solution be z = ax + by + C (1)

where  a
2 + b2 = 1 or b2 = (1 – a2)

 b = 2(1 )a± -

\ z = 2(1 )ax a y C± - +

This is the required solution.

Example 21  Solve x2 p2 + y2 q2 = z2.

Solution We have 
2 2

2 2

2 2
1

x y
p q

z z
+ =

fi 

22
x z y z

z x z y

Ê ˆ∂ ∂Ê ˆ +Á ˜ Á ˜Ë ¯∂ ∂Ë ¯
 = 1

or  

22
z z

z z

x y

x y

Ê ˆ∂ ∂Ê ˆ
Á ˜Á ˜

+ Á ˜Á ˜∂ ∂Á ˜Á ˜ Á ˜Ë ¯ Ë ¯

 = 1 (1) 

Putting  
z

z

∂
 = , , ,

x y
Z X Y

x y

∂ ∂
∂ = ∂ = ∂  we get

 log z = Z, log x = X, log y = Y

and  

2 2
Z Z

X Y

∂ ∂Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂
 = 1

 P
2 + Q2  = 1,   (2) where P = ,

Z Z
Q

X Y

∂ ∂
=

∂ ∂
Let the required solution be Z = AX + BY + C (3)

where  P = ,
Z Z

A Q B
X Y

∂ ∂
= = =

∂ ∂

 A
2 + B2 = 1 or 2(1 )B A= ± -

\ Z = 2(1 )AX A Y C± - +

or  log z = 2log (1 ) logA x A y C± - +
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Example 22  Solve z = px + qy + (p2 + q2).

Solution The complete solution of the given PDE is 

 Z = a x + b y + (a2 + b2),  where a = p and b = q

Example 23  Solve 2z px qy pq= + + .

Solution The complete solution of the given PDE is 

 z = 2ax by a b+ + , where a = p, b = q

Example 24  Solve p (1 + q) = qz.

Solution The given PDE is in the form of f (p, q, z) = 0

Let  u = x + a y,  where z = f (u)

Then putting ,
dz dz

p q a
du du

= =  in the given equation, we get

 1
dz dz

a
du du

Ê ˆ+Á ˜Ë ¯
 = 

dz
a z

du

or 1
dz

a
du

Ê ˆ+Á ˜Ë ¯
 = az

or  
dz

a
du

 = (az – 1)

 
dz

du
 = 

( 1)
or

( 1)

az du a

a dz az

-
=

-

 du = 
( 1)

adz

az -
On integrating, we get

 u = log (az – 1) + log C

 u = log C (az – 1)

 x + ay = log C (az – 1)

Example 25  Solve z2 (p2 + q2 + 1) = a2.

Solution The given equation is of the form f (p, q, z) = 0

Let  u = x + a y, z = f (u)

Putting and
dz dz

p q a
du du

= =  in the given equation, we get

 

2 2

2 1
dz dz

z a
du du

È ˘Ê ˆ Ê ˆÍ ˙+ +Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
 = a2
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or   
2

2 2(1 )
dz

z a
du

Ê ˆ+ Á ˜Ë ¯
 = a2 – z2

 2(1 )
dz

z a
du

+  = 2 2( )a z± -

or   
2

2 2
(1 )

( )

z dz
a

a z
± +

-
 = du

On integrating, we get

 u + c = 2 2 2(1 ) ( )a a z± + -

or  (1 + a2) (a2 – z2) = (x + ay + c)2

Example 26  Solve p(1 + q2) = q(z – a).

Solution The given equation is of the form f (p, q, z) = 0.

Let u = x + a y; then putting and
dz dz

p q b
du du

= =  in the given equation, we get

 

2

1
dz dz

b
du du

È ˘Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚
 = ( )

dz
b z a

du
-

 

2

21
dz

b
du

Ê ˆ+ Á ˜Ë ¯
 = b(z – a) 

or  
2

2 dz
b

du

Ê ˆ
Á ˜Ë ¯

 = bz – ab – 1

 
dz

du
 = 

1
( 1)bz ab

b
- -

or   
( 1)

bdz

bz ab- -
 = du

On integrating, we get

 2 ( 1)bz ab- -  = u + C

 4(bz – ab – 1) = (u + C)2

 4(bz – ab – 1) = (x + ay + C)2

Example 27  Solve p2 – q2 = x – y.

Solution The given equation is p2 – x = q2 – y which is of the form f1(x, p) = f2(y, q).

Suppose  p
2 – x = q2 – y = a, 

Then p
2 = a + x and q2 = a + y

or  p = anda x q a y+ = +

Putting the values of p and q in d.z = pdx + qdy, we get

 dz = a x dx a y dy+ + +
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On integrating, we get

 z = 3/ 2 3/ 22 2
( ) ( )

3 3
a x a y C+ + + +

which is the required solution.

Example 28  Solve p – x2 = q + y2.

Solution The given equation is of the form

 f1(x, p) = f2(y, q)

Suppose   p – x2 = q + y2 = a

Then  p – x2 = a and q + y2 = a

or  p = a + x2, q = a – y2

Putting the values of p and q in dz = pdx + qdy, we get

 dz = (a + x2)dx + (a – y2)dy

On integrating, we obtain

 z = 
3 3

3 3

x y
ax ay b

Ê ˆ Ê ˆ
+ + - +Á ˜ Á ˜

Ë ¯ Ë ¯
which is the required solution.

Example 29  Solve yp = 2yx + log q.

Solution The given equation is 
1

2p x
y

- =  log q, which is of the form f1 (x, p) = f2 (y, q)

Suppose  p – 2x = 
1

log q a
y

= ,

We get

 p – 2x = a and 
1

log q a
y

=

or  p = a + 2x, q = eay

Putting the values of p and q in dz = pdx + qdy, we get

 dz = (a + 2x)dx + eay dy

On integrating, we get

 z = 2 1
( ) ay
ax x e b

a
+ + +

which is the required solution.

EXERCISE 14.3

Solve the following equation:

 1. p
2 + q2 = 2 2. pq = 1

 3. 1p q+ =  4. pq + p + q = 0
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 5. p
3 – q3 = 0 6. p = eq

 7. p(1 + q2) = q (z – a) 8. p
2 = qz

 9. z = p2 + q2 10. z = px + qy + sin (p + q) 

 11. p + q = z 12. p – x2 = q + y2

 13. p q x y+ = +  14. p + q = sin x + sin y

 15. q(p – cos x) = cos y 16. (p2 + q2) y = qz

Answers

 1. 2(2 )z ax a y C= + - +  2. 
1

z ax y C
a

= + +

 3. 2(1 )z ax a y C= + - +  4. 
1

a
z ax y C

a

Ê ˆ
= - +Á ˜+Ë ¯

 5. z = a (x + y) + C 6. z = a x + y (log a) + C

 7. [Hint: Put u = x + by] 4(bz – ab – 1) = (x + by + c)2

 8. 
2( )ax a y

z be
+=  9. 4z (1 + a2) = (x + ay + b)2

 10. z = a x + b y + sin (a + b) 11. (1 + a)log z = (x + a y + b)

 12. 3 31
( ) ( )

3
z x y a x y b= - + + +  13. 3 31 1

( ) ( )
3 3

z x a y a b= + + - +

 14. z = a (x – y) – (cos x + cos y) + C 15. 1
sin sinz ax x y b

a
= + + +

 16. z
2 = (c x + a)2 + c2 y2

14.7  CLAIRAUT’S EQUATION

A nonlinear differential equation of the form

 y = 
dy dy

x f
dx dx

Ê ˆ+ Á ˜Ë ¯
 (15)

is called Clairaut’s equation.

Putting 
dy

dx
 = p in (15), we get

 y = x.p + f(p)

or x = 
1

[ ( )]y f p
p

-  (16)

Differentiating (16) both sides with respect to y, we get

 
dx

dy
 = 

2

1 1
1 ( ) [ ( )]

dp dp
f p y f p

p dy dyp

È ˘È ˘
- ◊ + - ◊ -¢ Í ˙Í ˙

Î ˚ Î ˚

or 
1

p
 = 

2

1 1
[ ( ) ( )]

dp
y f p pf p

p dyp
- - + ¢
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or 
2

1
[ ( ) ( )]

dp
y f p pf p

dyp
- + ¢  = 0  (17a)

If 
dp

dy
 = 0 fi p = y¢ = c

\   the general solution of (15) is

 y = cx + f(c) (17b)

Note: The general solution of Clairaut’s equation is obtained by replacing p by c, where c is an arbitrary 

constant.

Example 30  Solve sin px cos y = cos px sin y + p.

Solution Rewriting the given equation as

 sin px cos y – cos px·sin y = p

or sin (px – y) = p

or  px – y = sin–1 p

or y = px – sin–1 p (1)

\   The general solution of (1) is

  y = cx – sin–1 c; where c is an arbitrary constant.

Example 31  Solve (y – px) (p – 1) = p.

Solution Rewriting the given equation as

 y – px = 
1

p

p -

or y = 
1

p
px

p
+

-
 (1)

The general solution of (1) is

 y = 
1

c
cx

c
+

-
; where c is an arbitrary constant.

Example 32  Solve p = log (px – y).

Solution The given equation

 p = log (px – y)

or px – y = ep

or y = px – ep  (1)

Equation (1) is a Clairaut’s equation

Hence, its general solution is y = cx – ec, where c is an arbitrary constant. 

Example 33  Solve p = cos (y – px)

Solution The given equation can be written as

 cos–1
p = y – px

or y = px + cos–1 p (1)

Equation (1) is a Clairaut’s equation.
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Hence, its general solution

 y = cx + cos–1 c  (2) 

Now, for a singular solution, differentiating (2) w.r.t. ‘c’, we get

 0 = 
2

1

1
x

c
-

-
 (3)

Eliminate c from (2) and (3), we rewrite (3) as 

2 1x
c

x

-
=

Putting the value ‘c’ in (2), we get

 y = 

2
2 1 1

1 cos
x

x
x

-
Ê ˆ-
Á ˜- +
Á ˜Ë ¯

which is the singular solution.

EXERCISE 14.4

Solve the following differential equations:

 1. (y – px)(2p + 3) = p 2. p = tan(px – y)

 3. y = px + ap(1 – p) 4. y = px + a/p

 5. y = px + p – p2 6. y = px + (1 + p2)1/3

 7. cos (y – px) = p2

Answers

 1. 
2 3

c
y cx

c

Ê ˆ
= + Á ˜+Ë ¯

 2. y = cx – tan–1 
c

 3. y = cx + ac (1 – c) 4. y = cx + a/c

 5. y = cx + c – c2 6. y = cx + (1 + c2)1/3

 7. y = cx + cos–1 c2

where c is an arbitrary constant.

14.8   LINEAR PARTIAL DIFFERENTIAL EQUATION WITH 

CONSTANT COEFFICIENTS

14.8.1  Homogeneous Linear Partial Differential Equation with 
Constant Coeffi cients

A partial differential equation in which the dependent variable and its derivatives appear only in the fi rst 

degree and are not multiplied together, their coeffi cients being constants, is known as a linear PDE.

Consider a PDE of the form

 
1 1 1

0 1 0 1 11 1 2 1

n n n n n n

n nn n n n n n

z z z z z z
A A A B B B

x x y y x x y y

- - -

-- - - -

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + + +Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ◊∂ ∂Ë ¯ Ë ¯
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 0 1 0

z z
M M N z

x y

Ê ˆ∂ ∂
+ +Á ˜∂ ∂ ¯Ë

 = f(x, y) (18)

where the coeffi cients A0, A1, …An, B0, …Bn–1, M0, M1, N0 are constants. Then (18) is called an LPDE 

with constant coeffi cients.

Introducing the notation

Dx = , yD
x y

∂ ∂
=

∂ ∂
. Then (18) can be rewritten as

 1 1 2
0 1 0 1( ) (n n n n n

x x y n y x x yA D A D D A D B D B D D
- - -È + ◊ + + + +Î   

 1
1 0 1 0) ( )n

n y x y
z

B D M D M D N
-

-
˘+ + + ˚  = f(x, y)

or F (Dx, Dy)z = f(x, y) (19)

When all the derivatives appearing in (18) are of the same order then the resulting equation is called 

a linear homogeneous partial differential equation with constant coeffi cients and it is then of the form

 1
0 1( ) ( , )n n n

x x y n yA D A D D A D z f x y
-+ + = 

 (20)

On the other hand, when all the derivatives in (18) are not of the same order then it is called a 

nonhomogeneous LPDE with constant coeffi cients.

The general solution of (20) is the sum of the Complementary Function (CF or Zc) and the Particular 

Integral (PI or Zp). Thus, the General Solution (GS) = CF + PI.

14.8.2   Method of Finding the Complementary Function (CF) of the 
Linear Homogeneous PDE with Constant Coeffi cients

Let F (Dx, Dy)z = 0

i.e.,  1
0 1( )n n n

x x y n yA D A D D A D z
-+ +  = 0 (21)

where A0, A1, … An are all constants.

The complementary function of (21) is the general solution of

 
1

0 1( )n n x
x x y n yA D A D D A D z

-+ +  = 0 (22a)

or  1 2[( )( ) ( )]x y x y x n yD m D D m D D m D z- - -  = 0 (22b)

where m1 m2, … m n are some constants.

The solution of any one of the equations

 (Dx – m1 Dy)z = 0, (Dx – m2 Dy)z = 0, … (Dx – mnDy)z = 0 (23)

is also a solution of (22b).

Now, we show that the general solution of (Dx – mDy)z = 0 is z = f(y + mx) where f is an arbitrary 

function.

Now,  (Dx – mDy)z = 0 or 0
z z

m
x y

∂ ∂
- =

∂ ∂
 or p – mq = 0 (24)

which is in Lagrange’s form Pq + Qq = R. Here, Lagrange’s auxiliary equations for (24) are
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1

(i)

dx
 = 

0

(ii) (iii)

dy dz

m
=

-
=

Taking (i) and (ii),

 dy + mdx = 0

On integrating y + m x = C1  (25)

Taking (iii), dz = 0 fi z = C2 (26)

Hence, from (25) and (26), the general solution of (24) is z = f(mx + y), where f  is an arbitrary 

function. so, we assume that a solution of (22a) is of the form z = f(y + mx) (27)

From (27),  Dxz = ( )
z

m y mx
x

f
∂

= ¢ +
∂

 2
xD z  = 

2
2

2
( )

z
m y mx

x
f

∂
= ¢¢ +

∂
 ...………………………………..

 ………………………………….

 n
xD z  = ( ) ( )

n
n n

n

z
m y mx

x
f

∂
= +

∂

Again, Dyz = ( )
z

y mx
y

f
∂

= ¢ +
∂

 2
yD z  = ( ) ( )

n
n

n

z
y mx

y
f

∂
= +

∂
 .............………………………….

 …............………………………..

 n
yD z  = ( ) ( )

n
n

n

z
y m x

y
f

∂
= +

∂

Also, in general Dx
r 
Dy

s 
z = mrf (r + s)(y + mx)

Substituting these values in (22a) and simplifying, we get

 (A0 m
n + A1 m

n – 1 + A2 m
n – 2 +   + An ) f (n) (y + m x) = 0

which is true if m is a root of the equation

 A0 m
n + A1 m

n –1 + A2 m n – 2 +   + An = 0 (28)

Equation (28) is known as the Auxiliary Equation (AE) and is obtained by putting Dx = m and 

Dy = 1 in F(Dx, Dy) = 0

Let m1, m2, …mn be n roots of AE (28),Two cases arise.

Case 1

When m1, m2, … m n are distinct. Then the part of CF corresponding to m = mr is z = fr (y + mr x) for r 

= 1, 2, 3, …n. Since the equation is linear, the sum of the solution is also a solution.

\   CF of (22a) = f1(y + m1x) + f2(y + m2x) +   + fn(y + mnx)

where f1, f2, … fn are arbitrary functions.
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Case 2 

Repeated roots. If m is repeated ‘r’ times, the corresponding part of CF is 

    f1(y + mx) + xf2(y + mx) + x2f1(y + mx) +   + xr – 1 fr(y + mx)

Working Rule for Finding CF

Step 1 Put the given equation in standard form

 1
0 1( ) ( , )n n n

x x y n yA D A D D A D z f x y
-+ + + =  (29)

Step 2 Replace Dx by m and Dy by 1 in the coeffi cient of z, we obtain auxiliary equation (AE) for 

(29) as

 A0 m
n + A1 m n– 1 +   + An = 0 (30)

Step 3 Solve (30) for m. Two cases will arise.

Case 1

Let m = m1, m2, …, mn (distinct roots)

Then CF = f1 (y + m1 x) + f2 (y + m2 x) +   + fn (y + mn x)

Case 2

Let m = m, (r times). Then corresponding to these roots,

 CF = f1(y + m1x) + xf1(y + m1x) + … xr – 1 fr(y + m1x).

Example 34  Solve 
2 2

2

2 2
.

z z
a

x y

∂ ∂
=

∂ ∂
Solution Auxiliary equation (AE) is obtained by replacing Dx by m and Dy by 1

So the AE is  m2 – a2 = 0 or  m = ± a.

\   the complementary function (CF) is z = f1(y + ax) + f2(y – ax)

Example 35  Solve 2 2(2 5 2 ) 0.x x y yD D D D z+ ◊ + =

Solution Given 2 2(2 5 2 ) 0x x y yD D D D z+ + =   (1)

Auxiliary equation of (1) is 2m
2 + 5m + 2 = 0

 (2m +1)(m + 2) = 0

 m = 
1

, 2
2

- -

CF is z = 
1 2 ( 2 )

2

x
y y xf f

Ê ˆ- + -Á ˜Ë ¯
   (2) where f1 and f2 being arbitrary functions.

Let  1
2

x
yf

Ê ˆ-Á ˜Ë ¯
 = 1 1

1
(2 ) (2 )

2
y x y xf y

Ï ¸- = -Ì ˝
Ó ˛

Then (2) becomes

 z = y1(2y – x) + f2(y – 2x), y1 and f2 being arbitrary functions.
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Example 36  Solve 25 r – 40 s + 16 t = 0 or (25Dx
2 – 40Dxy + 16Dy

2)z = 0

Solution Given (25Dx
2 – 40Dxy + 16Dy

2)z = 0 (1)

 AE is 25 m2 – 40 m + 16 = 0 or (5m – 4)2 = 0

m = 
4 4

,
5 5

. Then CF is 
1 2

4 4

5 5
z y x x y xf f

Ê ˆ Ê ˆ= + + +Á ˜ Á ˜Ë ¯ Ë ¯

or z = f1 (5y + 4x) + x f2 (5y + 4x), where f1, f2 being arbitrary functions.

Example 37  Solve r + t + 2s = 0 or (Dx
2 + Dy

2 + 2Dxy)z = 0.

Solution Given (Dx
2 + Dy

2 + 2Dxy)z = 0 (1)

 AE is m2 + 2m + 1 = 0 or (m + 1)2 = 0

 m = –1, –1

CF is  z = f1(y – x) + xf2(y – x)

Example 38  Solve (Dx
4 – Dy

4)z = 0.

Solution Given (Dx
4 – Dy

4)z = 0 (1)

AE is  m
4 – 1 = 0 or (m2 – 1) (m2 + 1) = 0

 m = ±1, m = ±i

Hence, CF is  z = f1(y + x) + f2(y – x) + f3(y + ix) + f4(y – ix)

Example 39  Solve (Dx
3
Dy

2 + Dx
2
Dy

3)z = 0.

Solution Given (Dx
3
Dy

2 + Dx
2
Dy

3)z = 0 (1)

Equation (1) can be rewritten as 

 Dx
2
Dy

2 (Dx  + Dy )z = 0

The CF is z = f1(y) + xf2(y) + f3(x) + yf4(x) + f5(y – x)

Example 40  Solve (Dx
3  – 4Dx

2
Dy + 4Dx Dy

2)z = 0.

Solution Given (Dx
3  – 4Dx

2
Dy + 4Dx Dy

2)z = 0 (1)

The AE is m3 – 4 m2 + 4m = 0

 m (m2 – 4m + 4) = 0

or  m (m – 2)2 = 0

 m = 0, 2, 2

The CF is z = f1(y) + f2(y + 2x) + xf3(y + 2x)

Example 41  Solve (Dx
3  – Dy

3)z = 0.

Solution Given (Dx
3  – Dy

3)z = 0 (1)

The AE is m3 – 1 = 0

m = 1, w, w2, where w and w2 are complex cube roots of unity.

The CF is z = f1(y + x) + f2(y + w x) + f3(y + w2 x)
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Example 42  Solve (Dx
2 + 3DxDy + 2Dy

2)z = 0.

Solution Given (Dx
2 + 3DxDy + 2Dy

2)z = 0 (1)

The AE is m2 + 3m + 2 = 0

 (m + 2) (m + 1) = 0

 m = –2, –1

CF is z = f1(y – 2x) + f2(y – x)

Example 43  Solve (Dx
2 – Dy

2)z = 0.

Solution Given (Dx
2 – Dy

2)z = 0 (1)

The AE is m2 – 1 = 0

 m = ±1

CF is z = f1(y + x) + f2(y – x)

EXERCISE 14.5

Solve the following partial differential equations: 

 1. 2 2( 6 ) 0x x y yD D D D z- - = , where ,x y

z z
D D

x y

∂ ∂
= =

∂ ∂

 2. 3 2 2 3( 8 12 ) 0x x y x y yD D D D D D z- - + =

 3. 
4 3 2 2 3 4

4 3 2 2 3 4
2 5 3

z z z z z z z z

y xx x x y y y

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
- ◊ + ◊ - ◊ +

∂ ∂∂ ∂ ∂ ∂ ∂ ∂
 = 0

 4. 2 2( 6 9 ) 0x x y yD D D D z+ + =

 5. 2 2( ) 0x yD D z- =

 6. 2 2(9 24 16 ) 0x x y yD D D D z+ + =

 7. 2(2 1)( 3 3 ) 0x y x x y xD D D D D D z+ + + - =

 8. 3 2 2 3( 6 11 6 ) 0x x y x y yD D D D D D z- + - =

 9. 3 2 2( 3 2 ) 0x x y x yD D D D D z- + =

 10. 
4 2 2 4( 2 ) 0x x y yD D D D z- + =

 11. (2 Dx + Dy + 5) (Dx – 2Dy + 1)2 z = 0

Answers

 1. z = f (y – 2x) + g(y + 3x)

 2. z = g1(y + 2x) + xg2(y + 2x) + g3(y – 3x)
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 3. 1 2 3

1
( ) ( ) (1 11 )

2
z f y x x f y x f y i x

È ˘= + + + + - +Í ˙Î ˚

  + 3 4 5

1 1 1
(1 11 ) (1 11 ) (1 11 )

2 2 2
f y i x i f y i x f y i x

È ˘È ˘ Ï ¸ Ï ¸- + + - + - - -Ì ˝ Ì ˝Í ˙Í ˙Î ˚ Ó ˛ Ó ˛Î ˚

 4. z = f1 (y – 3x) + xf2(y – 3x)

 5. z = f1 (y + x) + f2 (y – x)

 6. 1 2

4 4

3 3
z f y x x f y x

Ê ˆ Ê ˆ= - + -Á ˜ Á ˜Ë ¯ Ë ¯
.

 7. / 2 3
1 2 3( ) (2 ) ( 3 )x x

z f y e f y x e f y x
-= + - + -

  or 1 2 3( ) (2 ) ( 3 )y
z f y e f y x f y x

-= + - + -

 8. z = f1 (y + x) + f2 (y + 2x) + xf3 (y + 2x)

 9. z = f1 (y) + f2 (y + x) + f3 (y + 2x).

 10. z = f1 (y – x) + x f2 (y – x) + f3 (y + x) + x f4 (y + x)

 11. z = e–5y f1(2y – x)+ e–x [ f2(y + 2x) + xf3(y + 2x)]

14.9   METHOD OF FINDING THE PARTICULAR INTEGRAL 
(PI OR ZP) OF THE LINEAR HOMOGENEOUS PDE WITH 
CONSTANT COEFFICIENTS

A PDE of the form F(Dx, Dy)z = f(x, y) (31a)

 PI or ZP = 
1

( , )
( , )x y

f x y
F D D

 (31b)

14.9.1  Short Methods of Finding the Particular Integrals in Certain 
Cases

Before taking up the general method for fi nding PI of F(Dx, Dy)z = f(x, y), we begin with cases when

f(x, y) is in two special forms. The methods corresponding to these forms are much shorter than the 

general methods to be discussed in the next section. 

Short Method I

When f(x, y) is of the form f (ax + by). Two cases will arise.

Case I Replacing Dx by a and Dy by b in F(Dx, Dy), suppose that F(a, b) π 0. If F(Dx, Dy) is a 

homogeneous function of Dx and Dy of degree n then we have

 PI = 
1

( , )
( , )x y

ax by
F D D

f

 = 
1

( )
( , )

n
v dv

F a b
fÚ Ú Ú ,  where v = ax + by.

After integrating f (v) n times w.r.t. ‘v’, v must be replaced by (ax + by).
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Case II Replacing Dx by a and Dy by b in F(Dx, Dy), suppose that F(a, b) = 0. Then F(Dx, Dy) must 

be factorized. 

In general, two types of factors will arise.

Let F(Dx, Dy) = (bDx – aDy)
m ◊ G(Dx, Dy), where G(a, b) π 0

Then  PI = 
1

( ) ( )
( ) !

m

m m
x y

x
ax by ax by

b D a D b m
j j+ = +

-

Short Method II

When  f (x, y) is of the form xm yn, m and n being non-negative integers.

If 
1

,
( , )x y

n m
F D D

<  is expanded in powers of 
y

x

D

D
. On the other hand, if m < n, 

1

( , )x yF D D
 

is expanded in powers of x

y

D

D
. It will be noted that if 

1

( , )x yF D D
 is expanded in two ways in any 

problem, we arrive at different answers.

However, the difference is not material as it  can be incorporated in the arbitrary functions occurring 

in the CF of that problem.

14.9.2 General Method of Finding PI

Let F(Dx, Dy) z = f(x, y) (32)

When F(Dx, Dy) is a homogeneous function of Dx and Dy, we use the following results.

 1

1
( ) ( , )

( )x y

R f x y
D m D-

 = ( , )f x c mx dx-Ú , where c = y + mx

 2

1
( ) ( , )

( )x y

R f x y
D m D+

 = 1( , )f x c mx dx+Ú , where c1 = y – mx

After performing integrations c and c1 must be replaced by y + mx and y – mx respectively.

Example 44  Solve 2 2( 2 ) sin .x x y yD D D D z x- + =

Solution The auxiliary equation of the given equation is obtained by putting

 Dx = m and Dy = 1 in 2 2( 2 ) 0x x y yD D D D- + =  is

 m
2 – 2m + 1 = 0

 (m – 1)2 = 0

 m = 1, 1

\ CF (Zc) = f1 (y + x) + x f2 (y + x)

Now, PI is  Zp = 2

1
sin

( )x y

x
D D-

 = 
2 2

1
sin

2x x y y

x
D D D D- +

 

[Replace 2
xD  by – 12

2
yD  by 0 and Dx Dy = 0]
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 = 
1

sin
1 2 0 0

x
- - ◊ +

 = – sin x

Thus, the general solution is

 Z = CF + PI = f1 (y + x) + x f2 (y + x) – sin x where f1 and f2 are arbitrary functions.

Example 45  Solve 
2 2

2
2 sin cos 2 .

z z
x y

x yx

∂ ∂
- = ◊

∂ ∂∂
Solution The auxiliary equation is 

 m
2 – 2m = 0

 m (m – 2) = 0 or m = 0, 2

CF is  Zc = f1 (y) + f2 (y + 2x)

PI is  Zp = 
2

1 1
2sin cos2

2 2x x y

y
D D D

◊
-

 = 
2

1 1

2 2x x yD D D-
  [sin (x + 2y) + sin (x – 2y)]

 = 
2 2

1 1 1 1
sin( 2 ) sin( 2 )

2 22 2x x y x x y

x y x y
D D D D D D

+ + -
- -

[Replace Dx
2 by – 1 and Dx Dy by – 2 in fi rst zp and

Dx
2 by – 1 and Dx Dy by 2 in second zp]

 = 
1 1 1 1

sin ( 2 ) sin ( 2 )
2 1 4 2 1 4

x y x y+ + -
- + - -

 = 
1 1

sin ( 2 ) sin ( 2 )
6 10

x y x y+ - -

 = 
1 4

sin cos2 sin 2 cos
15 15

x y y x+ ◊

\   the general solution is

 Z = 1 2

1
( ) ( 2 ) (sin cos2 4 sin 2 cos )

15
c pZ Z f y f y x x y y x+ = + + + + ◊ ,

where f1 and f2 are arbitrary functions.

Example 46  Solve 2 2 2 2( )x yD D z x y+ = .

Solution The auxiliary equation is

 m
2 + 1 = 0 or m = ± i

CF is  Zc = f1(y + ix) + f2(y – ix)

PI is  Zp = 2 2

2 2

1

( )x y

x y
D D+
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 = 

1
2

2 2

2 2

1
1

y

x x

D
x y

D D

-
È ˘
Í ˙+
Í ˙Î ˚

 = 

2 4

2 2

2 2 4

1
1

y y

x x x

D D
x y

D D D

È ˘
Í ˙- + +
Í ˙Î ˚

 

 = 2 2 2 2 2

2 4

1 1
( ) ( ) 0y

x x

x y D x y
D D

- + + 

 = 
4 6

2 2.
12 3.4.5.6

x x
y -

 = 4 2 61
(15 )

180
x y x-

\   the general solution is 

 Z = CF + PI = f1(y + ix) + f2(y – ix) + 4 2 61
(15 )

180
x y x-  

Example 47  Solve 2 2( 3 2 ) .x x y yD D D D Z x y+ + = +

Solution The Auxiliary Equation (AE) of the given equation is

 m
2 + 3m + 2 = 0 or m = –1, –2

So CF is  Zc = f1(y – x) + f2(y – 2x)

Now,  PI is Zp = 2 2

1
( )

3 2x x y y

x y
D D D D

+
+ +

 [Using Case I of Section 14.9.1]

 = 
2 2

1
,

1 3 1 2 1
v dv dv

+ ◊ + ◊ Ú Ú  where v = x + y

 = 
21

6 2

v
d vÚ

 = 
31

6 6

v
◊

 = 31

36
v◊

 = 31
( )

36
x y+

Then the general solution is

 
3

1 2

1
CF + PI ( ) ( 2 ) ( )

36
Z y x y x x yj j= = - + - + + ,

where f and f2 are arbitrary functions.
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Example 48  Solve 4r – 4s + t = 16 log (x + 2y).

Solution The given equation can be rewritten as

 
2 2 2

2 2
4 4

z z z

x yx y

∂ ∂ ∂
- +

∂ ∂∂ ∂
 = 16 log(x + 2y)

or  2 2(4 4 )x x y yD D D D z- +  = 16 log(x + 2y)

The AE is  4m
2 – 4m + 1= 0 so that 

1 1
,

2 2
m =

CF is  Zc = 1 2
2 2

x x
y x yj j

Ê ˆ Ê ˆ+ + +Á ˜ Á ˜Ë ¯ Ë ¯

 = y1(2y + x) + xy2(2y + x)

Now, PI is  Zp =  2

1
16 log( 2 )

(2 )x y

x y
D D

◊ +
-

 = 
2

2
16 log ( 2 )

2 2!

x
x y+

◊
 [Using Case II of Section 14.9.1]

 = 2 x2 log (x + 2y)

Then the general solution is

 Z = CF + PI = Zc + Zp

 Z = y1 (2y + x) + x y2 (2y + x) + 2x
2 log (x + 2y)

where y1 and y2 are arbitrary functions.

Example 49  Solve 3 2 2( 4 4 ) 4 sin (2 ).x x y x yD D D D D Z x y- + = +
Solution The AE is m3 – 4 m2 + 4m = 0

 m (m2 – 4m + 4) = 0

 m (m – 2)2 = 0

 m = 0, 2, 2

CF is  Zc = f1(y) + f2(y + 2x) + xf3(y + 2x)

Now, PI is  Zp = 
3 2 2

1
4sin(2 )

4 4x x y x y

x y
D D D D D

+
- +

.

 = 
2

4
sin(2 )

( 2 )x x y

x y
D D D

+
-

 = 
2

4 1
sin (2 )

( 2 ) xx y

x y
DD D

Ï ¸Ô Ô+Ì ˝
- Ô ÔÓ ˛

 = 
2

4 1
cos(2 )

2( 2 )x y

x y
D D

Ï ¸- +Ì ˝
- Ó ˛

,
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since 
1

xD
 stands for integrating w.r.t. x treating y as constant.

 = 
2

1
2 cos(2 )

( 2 )x y

x y
D D

- ◊ +
-

 = 
2

2

2
2 cos(2 ) cos(2 )

1 2!

x
x y x x y- ◊ + = - +

◊
The general solution is

 Z = CF + PI = f1(y) + f2(y + 2x) + xf3(y + 2x) – x2 cos (2x + y)

Example 50  Solve 3 2 3 3( 7 6 ) sin ( 2 ) .x y
x x y yD D D D Z x y e

+- - = + +

Solution The AE is m3 – 7m – 6 = 0

 (m + 1) (m + 2) (m –3) = 0

 m = –1, –2, 3

CF is  Zc =  f1(y – x) + f2(y – 2x) + f3(y + 3x)

Now, PI is  Zp = 
3

3 2 3

1
sin ( 2 )

7 6

x y

x x y y

x y e
D D D D

+È ˘+ +Î ˚- -

PI corresponding to sin (x + 2y)

 = 
3 2 3

1
sin ( 2 )

7 6x x y y

x y
D D D D

+
- -

 = 
3 3 3

1
sin

1 7 1 2 6 2
v dv dv dv

- ◊ ◊ - ◊ ÚÚÚ , where v = x + 2y

 = 
1

( cos )
75

v dv dv- -Ú Ú

 = 
1 1

sin cos
75 75

v dv v- - = -Ú

 = 
1

cos( 2 )
75

x y- +

and PI corresponding to e3x + y

 = 3 3

3 2 3

1 1 1

( 3 ) ( )( 2 )7 6

x y x y

x y x y x yx x y y

e e
D D D D D DD D D D

+ +
È ˘

= ◊Í ˙
- + +- - Í ˙Î ˚

 = 
1 1

( 3 ) (3 1)(3 2)

v

x y

e dv dv
D D

◊ ◊
- + + Ú Ú , where v = 3x + y.

 = 
1 1 1 1

20 ( 3 ) 20 3

v v

x y x y

e dv e
D D D D

=
- -Ú

 = 
31 1

20 3

x y

x y

e
D D

+

-
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 = 3 31

20 1 1! 20

x y x yx x
e e

+ +=
◊

Hence, the general solution is

 Z = CF + PI = Zc + Zp

 Z = f1(y – x) +f2  (y – 2x) + (y + 3x) – 31
cos( 2 )

75 20

x yx
x y e

++ +

Example 51  Solve r + (a + b) s + a b t = xy.

Solution Given equation can be written as

 2 2( ( ) )x x y yD a b D D ab D z+ + +  = xy

The AE is  m
2 + (a + b)m + ab = 0

or  (m + a) (m + b) = 0

 m = –a, –b

CF is  Zc = f1 (y – ax) + f2(y – bx)

Now, PI is  Zp= 
2 2

1

( )x x y y

xy
D a b D D ab D+ + +

 = 
2

2

2

1

1 ( )
y y

x
x x

xy
D D

D a b ab
D D

È ˘
Í ˙+ + + ◊
Í ˙Î ˚

 = 

1
2

2 2

1
1 ( )

y y

xx x

D D
a b ab xy

DD D

-
È ˘
Í ˙+ + + ◊
Í ˙Î ˚

 = 
2

1
1 ( )

y

xx

D
a b xy

DD

È ˘
- + +Í ˙

Î ˚
 

 = 
2 2

1 ( ) 1
y

x xx x

a b a b
xy D xy xy x

D DD D

È ˘ È ˘+ +
- = - ◊Í ˙ Í ˙

Î ˚ Î ˚

 = 2

2

1 ( )

2
x

a b
xy x

D

+È ˘-Í ˙Î ˚      [since 
1

xD
 stands for integration w.r.t. ‘x’ and

      Dx and Dy stands for differentiation w.r.t. ‘x’

and y respectively]

 = 
3 4( )

2 3 2 3 4

x a b x
y

+
◊ - ◊

◊ ◊

 = 
3

4( )

6 24

x y a b
x

+
-

Hence, the general solution Z = CF + PI.
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 Z = Zc + Zp

 Z = 
3

4
1 2

( )
( ) ( )

6 24

x y a b
y ax y bx xf f

+
- + - + -

Example 52  Solve 2 2( 6 ) cos .x x y yD D D D z y x+ ◊ - = ◊

Solution The AE is m2 + m – 6 = 0

 m = 2, – 3

CF is  Zc = f1 (y + 2x) +f2 (y – 3x)

Now, PI is  Zp = 
2 2

1
.cos

6x x y y

y x
D D D D+ -

 Zp = 
1

cos
( 2 )( 3 )x y x y

y x
D D D D

◊
- +

 = 
1

(3 )cos
( 2 )x y

x c x dx
D D

+
- Ú  where c = y – 3x

 = 
1

(3 )sin 3sin
( 2 )x y

x c x x dx
D D

È ˘+ -Î ˚- Ú

 = 
1

[ sin 3cos ]
( 2 )x y

y x x
D D

+
-

 = [ ]( 2 )sin 3cos ,c x x x dx¢ - +Ú  where c¢ = y + 2x

 = ( 2 )( cos ) ( 2)( cos ) 3sinc x x x dx x¢ - - - - - +Ú
 = –y cos x – 2 sin x + 3 sin x as c¢ = y + 2x

 = sin x – y cos x

Hence, the general solution is

 Z = Zc + Zp

 Z = f1(y + 2x) + f2(y – 3x) + sin x – y cos x

Example 53  Solve 2 2( )x yD D z-  = tan3 x  tan y – tan x tan3 y.

Solution 2 2( )x yD D z-  = tan3 x  tan y – tan x tan3 y

 (Dx + Dy) (Dx – Dy)z = tan3 x tan y – tan.x tan3
y (1)

Its auxiliary equation (AE) is (m + 1) (m – 1) = 0

 m = –1, 1

CF is  Zc = f1(y – x) + f2(y + x)

Now, PI is  zp = 3 31
(tan tan tan tan )

( )( )x y x y

x y x y
D D D D

-
+ -
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 = 
3 31

tan tan ( ) tan tan ( )
( )x y

c x x c x dx
D D

È ˘◊ - - -Î ˚+ Ú  where c = y + x

 = 
21

tan tan ( )(sec 1)
( )x y

x c x x
D D

È - -Î+ Ú

 
2tan tan ( ){sec ( ) 1}x c x c x dx˘- - - - ˚

 = 2 21
tan sec tan ( ) tan ( )sec ( ) tan

( )x y

x x c x c x c x x dx
D D

È ˘◊ - - - -Î ˚+ Ú

 = 
2 2

21 tan tan
tan ( ) sec ( )( 1)

( ) 2 2x y

x x
c x c x dx

D D

È
- - - -Í

+ ÍÎ
Ú

 

2 2
2tan ( ) tan ( )

tan sec
2 ( 1) 2 ( 1)

c x c x
x x dx

˘Ï ¸- -Ô Ô- ˙Ì ˝¥ - ¥ - ˙Ô ÔÓ ˛˚
Ú

 = 2 21
tan tan ( ) tan tan ( )

2( )x y

x c x x c x
D D

È ˘- + ◊ -Î ˚+
;

 
1[ ( )]

[ ( )] ( )
1

n
n f x

f x f x dx
n

+È ˘
¢ =Í ˙

+Í ˙Î ˚
Ú∵

 
2 2 2 2(sec 1)sec ( ) {sec ( ) 1}secx c x dx c x x dx+ - - - - -Ú Ú

 = 
2 21

tan tan ( ) tan tan ( )
2( )x y

x c x x c x
D D

È - + -Î+

 
2 2sec ( ) secc x dx x dx˘- - + ˚Ú Ú

 = 
2 21

tan tan ( ) tan tan ( ) tan ( ) tan
2( )x y

x c x x c x c x x
D D

È ˘◊ - + - + - +Î ˚+

 = 2 21
tan tan tan tan tan tan

2( )x y

x y x y y x
D D

È ˘+ + +Î ˚+
 as c = y + x.

 = 
2 21

tan (tan 1) tan (tan 1)
2( )x y

y x x y
D D

È ˘+ + +Î ˚+

 = 
2 21

[tan sec tan sec ]
2( )x y

y x x y
D D

◊ + ◊
+

 = 2 21
tan ( )sec tan sec ( )

2
c x dx x c x dxÈ ˘¢ + + ◊ ¢ +Î ˚Ú Ú , where c¢ = y – x

 = 2 21
tan ( ) tan sec ( ) tan tan sec ( )

2
c x x c x x dx x c x dxÈ ˘¢ + ◊ - ¢ + ◊ + ◊ ¢ +Î ˚Ú Ú

 [On integrating the fi rst integral by parts keeping the second integral unchanged]
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 = 
1

tan ( ) tan
2

c x x¢ + ◊

 = 
1

tan tan
2

y x◊ , as c¢ = y – x

\   The general solution is

 Z = Z c + Z p

 Z = 1 2

1
( ) ( ) tan tan

2
y x y x x yf f- + + + ◊ .

14.10   NONHOMOGENEOUS LINEAR PARTIAL DIFFERENTIAL 
EQUATIONS WITH CONSTANT COEFFICIENTS

A linear partial differential equation which is not homogeneous is called a nonhomogeneous linear 

PDE.

Consider a linear equation with constant coeffi cients:

 F (Dx, Dy) z = f (x, y) (33)

If (33) is a homogeneous linear PDE with constant coeffi cient then F(Dx, Dy) can always be resolved 

into linear factors.

On the other hand, if (33) is not homogeneous then F(Dx, Dy) cannot be resolved into linear 

factors.

Hence, we classify nonhomogeneous linear partial differential equations into the following two 

types:

 1. When F(Dx, Dy) can be resolved into linear factors, each of which is of fi rst degree in Dx and Dy.

  For example, 2 2 3 3( 2 1)x y xD D D z x y- + + = , i.e., [(Dx + Dy + 1) (Dx – Dy + 1)]z = x2
y

3.

 2. When F(Dx, Dy) cannot be resolved into linear form (aDx – bDy – c)

 For Example, 4 2 2(2 3 )- +x x y yD D D D z = 2 xy
2, i.e., 2 2 2(2 )( ) 2x y x yD D D D z xy- - = .

14.10.1  Method of Finding CF when Equations are of the Type (1)

Working rule for fi nding the CF of nonhomogenous equations with constant coeffi cients, i.e.,

 F(Dx, Dy)z = 0

When F(Dx, Dy) can be resolved in to product of linear factors in Dx and Dy then

 ∑ Corresponding to each non-repeated factor (aDx – bDy – c), the part of CF is

  ( )

cx

ae ay bxf +  if a π 0.

 ∑ Corresponding to repeated factors (aDx – bDy – c)r  then the part of CF is

 

cx

ae [f1(ay + bx) + xf2(ay + bx) + x2f3(ay + bx) + … + xr – 1 fr(ay + bx)] if a π 0

Particular Cases

 (i) If c = 0 then corresponding to each nonrepeated factor (aDx – bDy), the part of CF is

f(ay + bx).
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 (ii) If c = 0 then corresponding to each repeated factor (aDx – bDy)
r, the part of CF is

    f1(ay + bx) + xf2(ay + bx) + x2 f3(ay + bx) +   + xr–1 fr (ay + bx)

 (iii) If a = 1, b = 0, c = 0 then corresponding to each nonrepeated factor Dx, the part of CF is f(y).

 (iv) If a = 1, b = 0, c = 0 then corresponding to each repeated factor Dx
r, the part of CF is 

    f1(y) + x f2(y) +   + xr – 1 fr(y)

 (v) If a = 0, b = 1, c = 0 then corresponding to each nonrepeated factor Dy, the part of CF is f(x).

 (vi) If a = 0, b = 1, c = 0 then corresponding to repeated factors Dy
r, the part of CF is

    f1(x) + f2(x) + x2 f3(x) +   + x r – 1
 fr(x)

 (vii) If a = 0, b = 1, c = 1 then corresponding to each nonrepeated factor (Dy + 1), the part of CF is 

e
x f(x)

 (viii) If a = 0, b = 1, c = 1 then corresponding to repeated factor’s (Dy + 1)r, the part of CF is

    e
x[f1(x) + x f2(x) + x2 f3(x) +   + xr – 1 fr(x)]

 (ix) If a = 1, b = 1, c = 0 then corresponding to each nonrepeated factor (Dx – Dy), the part of 

CF is f(y + x).

 (x) If a = 1, b = 1, c = 0 then corresponding to each repeated factors (Dx – Dy)
r, the point of 

CF is 

    f1(y + x) + xf2(y + x) + x2 f3(y + x) +   + xr – 1 fr(y + x)

Example 54  Solve 2 2( ) 0x y x yD D D D z- + - = .

Solution Given 2 2( ) 0x y x yD D D D z- + - =  (1)

Equation (1) can be written as

 (Dx – Dy) (Dx + Dy + 1)z = 0

Hence, CF is Zc = f1(y + x) + e–x f2(y – x)

Example 55  Solve Dx Dy (Dx – 2 Dy – 3)z = 0. (1)

Solution Hence, the required solution is

 z = f1(y) + f2(x) + e3x f3(y + 2x)

Example 56  Solve 2 2 2 2( 2 2 ) 0x y x yD a D ab D a b D z- + + = .

Solution The given equation can be written as

 [(Dx + aDy) (Dx – aDy) + 2ab(Dx + aDy)]z = 0

 (Dx + a Dy) (Dx – aDy + 2ab)z = 0

The CF is z = f1(y – ax) + e–2abx f2(y + ax)

Example 57  Solve r + 2s + t + 2p + 2q + z = 0.

Solution The given equation can be rewritten as

 2 2( 2 2 2 1)x x y y x yD D D D D D z+ + + + +  = 0

or  (Dx + Dy)
2 + 2 (Dx + Dy) + 1]z = 0

or (Dx + Dy + 1)2
z = 0
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So the required general solution is

 z = e–x [f1 (y – x) + x f2 (y – x)]

Example 58  Solve 2( 1) 0x x y yD D D D z- + - = .

Solution 
2( 1) 0x x y yD D D D z- + - =

 (Dx  – 1) (Dx – Dy + 1)z = 0

The general solution is 

 z = ex f1(y) + e–xf2(y + x)

14.10.2  Method of Finding CF when Equations are of the Type(2)

 F (Dx, Dy)z = 0 (34)

where the symbolic operator F (Dx, Dy) cannot be resolved into factors linear in Dx and Dy. In such a 

case, as a trial solution, consider Z = Ae
hx + ky (35)

where A, h, k are constants. From (35), we have

 r
xD z  = , andr hx ky r s r s hx ky s s hx ky

x y yAh e D D z Ah k e D z Ak e
+ + += =

Hence, substituting (35) in (34), we get

 Af(h, k) ehx + ky = 0

which will hold if f (h, k) = 0 (36)

and A is an arbitrary constant.

Now, for any chosen values of h or k, (36) gives one or more values of k or h. So there exist infi nitely 

many pairs of numbers (hi, ki) satisfying (36)

Thus,  Z = 

1

i ih x k y
i

i

A e
•

+

=
Â  (37a)

where  f(hi, ki) = 0 (37b)

for each i is a solution of Eq. (34). So, if f (Dx, Dy) has no linear factor, (37a) is taken as the general 

solution of (34).

See examples 62 and 64.

14.10.3  Method of Finding Particular Integrals (PI) 

The methods of fi nding PI of nonhomogeneous linear partial differential equations are very similar to 

those used in solving homogeneous linear PDE with constant coeffi cients.

Here we are considering a few cases only.

Case I

When f (x, y) = eax + by

Then,  PI = 
1 1

( , ) ( , )

ax by ax by

x y

e e
f D D f a b

+ +=  provided f(a, b) π 0

i.e., put Dx = a and Dy = b
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Case II

When f (x, y) = sin (ax + by) or cos (ax + by)

Then, PI = 
1

sin ( )
( , )x y

ax by
f D D

+  or cos (ax + by) is obtained by putting 2 2
xD a= - ,

   Dx ◊ Dy = –ab, 2 2
yD b= -

Case III

When f (x, y) = xm yn, where m and n are positive integers.

Then,  PI = 11
[ ( , ] .

( )

m n m n
x y

x y

x y f D D x v
f D D

-=  [Using binomial theorem]

Case IV

When f (x, y) = e(ax + by) V (x)

Then,  PI = 
( )1

( )
( )

ax by

x y

e V x
f D D

+

 = ( ) 1
( )

( , )

ax by

x y

e V x
f D a D b

+ ◊
+ +

Example 59  Solve 2 2( ) 0.x y x yD D D D z- + - =

Solution The given equation is

 (Dx
2 – Dy

2 + Dx + Dy)z = 0

 [(Dx + Dy) (Dx – Dy) + (Dx – Dy)] z = 0

 (Dx – Dy) (Dx + Dy + 1) z = 0

The general solution is Zc = f1(y + x) + e–x f2 (y – x)

Example 60  Solve 2 2( 2 2 2 1) 0x x y y x yD D D D D D z+ + + + + =

Solution The given equation is 2 2( 2 2 2 1) 0x x y y x yD D D D D D z+ + + + - =

or  (Dx + Dy + 1)2 z = 0

\   the general solution is Zc = e–x[f1(y – x) + xf2(y – x)]

Example 61  Solve (Dx – Dy – 1) (Dx – Dy – 2)z = e2x – y + x

Solution (Dx – Dy – 1) (Dx – Dy – 2)z = e2x – y + x

To fi nd the CF of (Dx – Dy – 1) (Dx – Dy – 2) z = 0

CF is Zc = ex f1 (y + x) + e 2x f2 (y + x)

PI corresponding to e2x – y is

 Zp = 
21

( 1)( 2)

x y

x y x y

e
D D D D

-◊
- - - -
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 Zp = 21

(2 1 1)(2 1 2)

x y
e

-

+ - + -

 Zp = 21

2

x y
e

-

Now, PI corresponding to x is 

 Zp = 
1

( 1)( 2)x y x y

x
D D D D- - - -

 = 
1 11 1 1

(1 ) 1
2 2 2

x y x yD D D D x
- -Ê ˆ- + - + ◊Á ˜Ë ¯

 = 
1

(1 ) 1
2 2 2

yx
x y

DD
D D x

Ê ˆ
+ - + - ◊Á ˜Ë ¯

  

 = 
1

1
2 2

x
x

D
D x

Ê ˆ
+ + +Á ˜Ë ¯

 

 = 
1 3

1
2 2

xD x
Ê ˆ+ ◊Á ˜Ë ¯

 = 
1 3

2 4
x +

\  The complete solution is

 Z = Zc + Zp

 Z = 2 2
1 2

1 3
( ) ( )

2 2 2

x x x y x
e y x e y x ef f -+ + + + + + ,

where f1, f2 are arbitrary functions.

Example 62  Solve 2( ) 0x yD D z- =

Solution Here, Dx – Dy
2 is not a linear factor in Dx and Dy. So we use the method (2) as explained in 

Section 14.10.2.

Let Z = Ae
hx + ky be a trial solution of the given equation.

 Dx z = Ahe
hx + ky and Dy

2 z = Ak
2
e

hx + ky

Putting these values in the given differential equation, we get

 A(h – k2)ehx + ky = 0, so that h – k2 = 0 or h = k2

Replacing h by k
2, the most general solution of the given equation is 

2
k x ky

z Ae
+= Â , where 

A and k are arbitrary constants.

Example 63  Solve (Dx – 2 Dy – 1) (Dx – 2 Dy
2 – 1)z = 0.

Solution (Dx – 2 Dy – 1) being linear in Dx and Dy, the part of CF corresponding to it is ex
f(y + 2x). To 

fi nd CF corresponding to the nonlinear factor (Dx – 2 Dy
2 – 1), we proceed as follows:
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Let a trial solution of (Dx – 2 Dy
2 – 1)z = 0 (1)

be  Z = Ae
hx + ky (2)

\ Dx z = Ahe
hx + ky,  Dy

2
z = Ak

2
e

hx + ky

Hence, (1) becomes

 A(h – 2k
2 – 1)ehx + ky = 0  or  h – 2k

2 – 1= 0  or  h = 2k
2 + 1

Replacing h by 2k
2 + 1 in (2), the solution of (1), i.e., the part of CF corresponding to 2( 2 1)x yD D- -  

in the given equation is given by

 Zc = 
2(2 1)k x ky

Ae
+ +Â , A and k being arbitrary constants.

\   the required solution is 
2(2 1)( 2 )x k x ky

Z e y x Aef + += + + Â

Example 64  Solve 2 2 2( ) 0.x yD D n z+ - =

Solution 
2 2 2( ) 0x yD D n z+ - =  (1)

Let a trial solution of (1) be z = Ae
hx + ky (2)

\ 2
xD z  = 2 2 2,hx ky hx ky

yAh e D z Ak e
+ +=

Then (1) becomes

 A(h2 + k2 – n2) ehx + ky = 0 or  h2 + k2 – n2 = 0

or  h
2 + k2 = n2

Taking a as parameter, we see that (2) is satisfi ed if

 h = n cos a and k = n sin a

Putting these values in (2), the required general solution is 

 Z = ( cos sin )n x y
Ae

a a+Â , A and a being arbitrary constants.

Example 65  Solve (DxDy + aDy + bDy + ab) z = emx + ky

Solution The given equation can be rewritten as 

 (Dx + b) (Dy + a) z = emx + ky

\C.F is  Zc = e–bx f1(y) + e–ay f2(x) and

PI is  Zp = 
1 1

( ) ( ) ( ) ( )

+ +=
+ + + +

mx ny mx ny

x y

e e
D b D a m b n a

 

Hence, the required general solution is

 Z = Zc + Zp

 Z = e–bx f1(y) + e–ay f2(x) + 
1

( )( )

mx ny
e

m b n a

+

+ +

Example 66  Solve (Dx – Dy – 1) (Dx – Dy – 2) Z = sin (2x + 3y).

Solution Given (Dx – Dy – 1) (Dx – Dy – 2) Z = sin (2x + 3y)
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The CF is Zc = exf1(y + x) + e2xf2(y + x) and

PI is  Zp= 
1

sin (2 3 )
( 1)( 2)x y x y

x y
D D D D

◊ +
- - - -

 = 
2 2

1
sin (2 3 )

2 3 3 2x x y y x x

x y
D D D D D D

◊ +
- + - + +

 = 
2 2

1
sin (2 3 )

2 3 6 (3) 3 3 2x y

x y
D D

+
- - ¥ - - - + +

 = 
2

1
sin (2 3 ) sin (2 3 )

3 3 1 3 3

x

x y x x y x

D
x y x y

D D D D D D
+ = ◊ +

- + + - + +

 = 
2

sin (2 3 ) sin (2 3 )
63 2 3 6

x x

xx

D D
x y x y

DD
+ = +

-- ¥ - + ¥ - +

 = 

2

2 2

( 6) 6
sin (2 3 ) sin (2 3 )

36 2 36

x x x x

x

D D D D
x y x y

D

+ +
+ = +

- - -

 = 21
sin (2 3 ) 6 sin (2 3 )

40
x xD x y D x yÈ ˘- + + +Î ˚

 = 
1

[ 4sin (2 3 ) 12cos(2 3 )]
40

x y x y- - + + +

\   the required solution is 

 Z = 2
1 2

1
( ) ( ) [ 4sin (2 3 ) 12cos(2 3 )]

40

x x
e y x e y x x y x yj j+ + + - - + + +

or  Z = 2
1 2

1 3
( ) ( ) sin (2 3 ) cos(2 3 )

10 10

x x
e y x e y x x y x yj j+ + + - + - +

14.11   EQUATION REDUCIBLE TO LINEAR EQUATIONS WITH 
CONSTANT COEFFICIENTS

A partial differential equation of the form

 1 2 2
0 1 21 2 2

n n n n
n n n

nn n n n

z z z z
a x a x y a x y a

x x y x y y

- -
- -

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂ ∂ ∂
  = f (x, y) (38)

having variable coeffi cients in particular form (namely, the term 
n

n

z

x

∂
∂

 is multiplied by the variable xn, 
n

n

z

y

∂
∂

 is multiplied yn, 
n

r n r

z

x y
-

∂
∂ ∂

 is multiplied by xr
y

n – r and so on) can be reduced to a linear partial 

differential equation with constant coeffi cients by the substitutions

 x = eu and y = ev (39)

so that  u = log x and v = log y (40)
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Equation (38) can be rewritten as

 1 1 2 2 2 2
0 1 2( ) ( , )n n n n n n n

x x y x y n ya x D a x y D D a x y D D a D z f x y
- - - -+ + + + =  (41)

where a0, a1, a2, … an are constants.

Let  andx yD D
x y

∂ ∂
∫ ∫

∂ ∂

Now,  
z

x

∂
∂

 = 
1z u z

u x x u

∂ ∂ ∂
◊ =

∂ ∂ ∂

\ 
z

x
x

∂
∂

 = 
z

u

∂
∂

 so that or x ux xD D
x u u

∂ ∂ ∂
= = ¢ ∫

∂ ∂ ∂

Similarly, n n
xx D  = Du¢(Du¢ – 1)

 3 3
xx D  =  Du¢(Du¢ – 1) (Du¢ – 2)

 ……………………………….

 ……………………………….

 n n
xx D  = Du¢(Du¢ – 1) (Du¢ – 2), … (Du¢ – n +1)

Also, 
z

y

∂
∂

 = 
1z v z

v y y v

∂ ∂ ∂
◊ =

∂ ∂ ∂

\ 
z

y
y

∂
∂

 = 
z

v

∂
∂

 so that or y vy y D D
y v v

∂ ∂ ∂
= = ¢ ∫

∂ ∂ ∂

Similarly, 2 2
yx D  =  Dv¢ (Dv¢ – 1), 3 3

xx D  = Dv¢ (Dv¢ – 1) (Dv¢ – 2), and so on and

 x·yDx Dy = Du¢Dv¢
Using the above values in (41) reduces to an equation having constant coeffi cients and now it 

can easily be solved by the methods already discussed for homogeneous and nonhomogeneous linear 

equations with constant coeffi cients. Finally, with the help of (39) and (40), the solution is obtained in 

terms of the old variables x and y.

Example 67  Solve 2 2 2 2( 2 ) 0x x y yx D xy D D y D z+ + =

Solution Let x = eu, y = ev so that u = log x, v = log y (1)

Also, let  Dx = , , ,y u vD D D
x y u v

∂ ∂ ∂ ∂
= = =¢ ¢

∂ ∂ ∂ ∂

Then the given equation 2 2 2 2( 2 ) 0x x y yx D xyD D y D+ + =  becomes

 ( 1) 2 ( 1)u u u v v vD D D D D D z- + + -¢ ¢ ¢ ¢ ¢ ¢È ˘Î ˚  = 0

or 2[( ) ( )]u v u vD D D D z+ - +¢ ¢ ¢ ¢  = 0 or ( ) ( 1) 0u v u vD D D D z+ - + - =¢ ¢ ¢ ¢

Hence, the required general solution is 

 Z = f1 (v – u) + eu f2 (v – u)

 Z = f1 (log y – log x) + x f2 (log y – log x)
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 Z = f1 (log y/x) + x f2 (y/x)

 Z = f1 (y/x) + x f2 (y/x), where f1 and f2 are arbitrary constants.

Example 68  Solve 
2 2 2

2 2

2 2
4 4 6

z z z z
x xy y y

x y yx y

∂ ∂ ∂ ∂
- + +

∂ ∂ ∂∂ ∂
 = x3

y
4.

Solution Let x = eu, y = ev so that u = log x, v = log y.

Also, let  Dx = , , ,y u vD D D
x y u v

∂ ∂ ∂ ∂
= = =¢ ¢

∂ ∂ ∂ ∂

Then the given equation 2 2 2 2 3 4( 4 4 6 )x x y y yx D xy D D x D y D x y- + + =  becomes

 ( 1) 4 4 ( 1) 6u u u v v v vD D D D D D D Z- - + - +¢ ¢ ¢ ¢ ¢ ¢ ¢È ˘Î ˚  = e3u + 4v

or  2[( 2 ) ( 2 )]u v u vD D D D Z- - -¢ ¢ ¢ ¢  = e3u + 4v

 ( 2 ) ( 2 1)u v u vD D D D Z- - -¢ ¢ ¢ ¢  = e3u + 4v

The CF is Zc = f1(v + 2u) + eu f2 (v +2 u)

 = f1(log y + 2 log x) + x f2(log y + 2 log x)

 Zc = f1(yx
2) + x f2(yx

2)

Now, PI is  Zp = 3 41

( 2 )( 2 1)

u v

u v u v

e
D D D D

+

- - -¢ ¢ ¢ ¢

 = 3 41

(3 2 4)(3 2 4 1)

u v
e

+

- ¥ - ¥ -

 = 3 4 3 41 1

30 30

u v
e x y

+ =

Hence, the complete solution is Z = Zc + Zp

 2 2 2 3 4
1

1
( ) ( )

30
Z f yx xf yx x y= + + , where f1, f2 are arbitrary constants.

Example 69  Solve 
3

2 2

2
[ 2 ] .x x y x

x
x D xy D D x D

y
+ - =

Solution Let x = eu, y = ev so that u = log x, v = log y

Also, let  Dx = , , ,y u vD D D
x y u v

∂ ∂ ∂ ∂
= = =¢ ¢

∂ ∂ ∂ ∂

Then the given equation 
3

2 2

2
( 2 )x x y x

x
x D xy D D x D

y
+ - =  becomes

 ( 1) 2u u u v uD D D D D Z- + -¢ ¢ ¢ ¢ ¢È ˘Î ˚  = e3u – 2v

or  2( 2 )u u v uD D D D Z+ -¢ ¢ ¢ ¢  = e3u – 2v

or ( 2 2)u u vD D D z+ -¢ ¢ ¢  = e3u – 2v
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The CF is  Zc = f1(v) + e2uf2(v – 2u) = f1(v) + (eu)2 f2(v – 2u)

or  Zc = f1(log x) + x2 f2(log y – 2 log x)

 = f1(y) + x2
f2(y/x2)

Now, PI is Zp = 3 21

( 2 2)

u u

u u v

e
D D D

-

+ -¢ ¢ ¢

 = 3 2 3 21 1
( ) ( )

3 (3 2 2 2) 9

u u u u
e e e

- -= -
◊ - ¥ - -

 = 
3

2

1

9

x

y
-

\   The complete solution is 

 Z = 
3

2 2
1 2 2

1
( ) ( / )

9

x
f y x f y x

y
+ -

EXERCISE 14.6

Solve the following equations:

 1. (Dx + Dy – 1) (Dx + 2 Dy – 2)z = 0

 2. (Dx – Dy + 1) (Dx + 2 Dy – 3)z = 0

 3. 3( 3 1)x x y xD D D D z- + +  = e 2x + 3y

 4. 2 2(2 3 ) 5 cos(3 2 )x y yD D D z x y+ - = -

 5. 
2( ) cos(3 )x yD D z x y- = -

 6. r – s + p = 1

 7. (Dx + Dy – 1) (Dx + 2 Dy – 3)z = 4 + 3x + 6y

 8. 
22( ) ax a y

x yD D x x e
+- =

 9. 2 2 ( 2 )( 3 3 ) x y
x y x yD D D D z xy e

+- - + = +

 10. [(Dx + Dy – 1) (Dx + Dy – 3) (Dx + Dy)]z = ex + y sin (2x + y)

 11. 

2 2
2 2

2 2
0

z z z z
x y y x

y xx y

∂ ∂ ∂ ∂
- - + =

∂ ∂∂ ∂

 12. 2 2 2 2 2[ ]x yx D y D z x y- =

 13. 2 2 2 22 3 8x x y y x y

y
x D xy D D y D x D y D z

x

Ê ˆÈ ˘- + - + = Á ˜Î ˚ Ë ¯

 14. 
2 2 2 2( )x yx D y D z xy- =

 15. 2 2 2 2( ) logx y x yx D y D x D y D z x- + - =
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Answers

 1. z = ex f1 (y – x) + e2x f2(y – 2x)

 2. z = e–x f1 (y + x) + e3x f2(y – 2x)

 3. 2 31

7

hx ky x y
z Ae e

+ += -Â  where A, h, k are constants and h, k are related as h3 – 3h + k + 1 = 0

 4. [ ]3 /2
1 2

1
( ) (2 ) 4cos(3 2 ) 3sin (3 2 )

10

x
z x e y x x y x yf f= + - + - + -

 5. [ ]( ) 1
9cos(3 ) sin (3 )

82

h x y
z Ae x y x y

+= - - - -Â , where A and h are arbitrary constants.

 6. z = f1(y) + e–x f2(y + x) + x

 7. z = ex f1(y – x) + e3x f2(y – 2x) + 6 + x + 2y

 8. 
2 2 2

2

1 1

4 4

hx h y ax a y
z Ae e x x

a a

+ + È ˘= + -Í ˙Î ˚
Â

 9. 3 2 2 3 2
1 2

1 1 1 1 2
( ) ( )

6 6 9 18 27

x x y
z y x e y x x y xy x x x xef f += + + - - - - - - -

 10. [ ]3
1 2 3

1
( ) ( ) ( ) 3cos(2 ) 2sin (2 )

30

x x
z e y x e y x y x x y x yf f f= - + - + - + + - +

 11. z = f1(xy) + f2(y/x)

 12. 2
1 2

1
( ) ( / )

2
z f xy xf y x x y= + +

 13. 2
1 2( ) ( )

y
z f xy x f xy

x

Ê ˆ= + + Á ˜Ë ¯

 14. 1 2( ) ( ) log
y

z f xy x f xy x
x

Ê ˆ= + +Á ˜Ë ¯

 15. 3
1 2

1
( ) (log )

6

y
z f xy f x

x

Ê ˆ= + +Á ˜Ë ¯

14.12   CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS 
OF SECOND ORDER

The general form of a second-order PDE in the function z of two independent variables x, y is given 

by.

 
2 2 2

2 2
( , ) ( , ) ( , ) , , , , 0

z z z z z
A x y B x y C x y f x y z

x y x yx y

Ê ˆ∂ ∂ ∂ ∂ ∂
+ + + =Á ˜∂ ∂ ∂ ∂Ë ¯∂ ∂

 (42)

This equation is linear in second-order terms PDE. Equation (42) is said to be linear or quasi-linear 

according to whether f is linear or nonlinear.
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PDE (42) is classifi ed as elliptic, parabolic, or hyperbolic accordingly  as B2 – 4 AC < 0, = 0 or > 0.

Example 70  Classify the equation 
2 2

2 2
0.

z z

x y

∂ ∂
+ =

∂ ∂
 (1) 

Solution Compare (1) with A Zxx + B Zxy + C Z yy + f (x, y, z, p, q) = 0

 A = 1, C = 1

Now,  B
2 – 4 AC = 0 – 4 ¥ 1 ¥ 1 = – 4 < 0

So the given equation is elliptic.

Example 71  Classify the equation 
2 2

2 2
( , ).

z z
f x y

x y

∂ ∂
+ =

∂ ∂
 (1) 

Solution Compare (1) with the standard equation so A = 1, C = 1

Now, B
2 – 4 AC = 0 – 4 ¥ 1 ¥ 1 = – 4 < 0

The given equation is elliptic.

Example 72  Classify 

2
2

2
0.

z z
a

tx

∂ ∂
- =

∂∂
 (1)

Solution Here, A = a2, B = 0, C = 0; so B2 – 4 AC = 0 – 4a
2·0 = 0 

Hence, the equation (1) is parabolic.

Example 73  Classify 
2 2 2

2 2 2

2 2
(1 ) 2 (1 ) 2

z z z z z
x xy y x x y z

x y x yx y

∂ ∂ ∂ ∂ ∂
- - + - + + -

∂ ∂ ∂ ∂∂ ∂
 = 0. (1)

Solution Compare (1) with 
2 2 2

2 2
, , , ,

z z z z z
A B C f x y z

x y x yx y

Ê ˆ∂ ∂ ∂ ∂ ∂
+ + + Á ˜∂ ∂ ∂ ∂Ë ¯∂ ∂

 = 0

Here,  A = (1 – x2), B = –2xy, C = (1 – y2)

\ B
2 – 4 AC = (–2 xy)2 – 4 ◊ (1 – x2) (1 – y2)

 = 4(x2 + y2 – 1)

The given differential equation is 

Hyperbolic if B2 – 4 AC < 0, i.e., x2 + y2 > 1

 ∑ Parabolic if B2 – 4 AC = 0, i.e., x2 + y2 = 1, and

 ∑ Elliptic if B2 – 4 AC < 0, i.e., x2 + y2 < 1

Example 74  Classify 
2 2

2

2 2
0.

z z
a

t x

∂ ∂
- =

∂ ∂
 (1)

Solution Here, A = –a
2, B = 0, C = 1

\ B
2 – 4 AC = 0 – 4 × – a2 × 1 = 4 a2 > 0

So the equation (1) is hyperbolic.
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EXERCISE 14.7

Classify the following equations:

 1. 
2 2 2

2

2 2
0

z z z
t x

x tt x

∂ ∂ ∂
+ + =

∂ ∂∂ ∂
 2. 

2 2 2

2 2
4 4

u u u

x tt x

∂ ∂ ∂
- +

∂ ∂∂ ∂

 3. 
2 2 2

2 2
4 4

u u u

x tt x

∂ ∂ ∂
+ +

∂ ∂∂ ∂
 4. 

2 2 2

2 2 2 2

1u u u u

tt y z C

∂ ∂ ∂ ∂
+ + =

∂∂ ∂ ∂

Answers

 1. Hyperbolic if t2 > 4x, Parabolic if t2 = 4x and elliptic if t2 < 4x.

 2. Hyperbolic. 3. Parabolic.          4.  Parabolic

14.13  CHARPIT’S METHOD

Charpit’s method is a general method for solving equations with two independent variables.

Consider the fi rst-order partial differential equation in two variables x, y is

 f(x, y, z, p, q) = 0 (43)

Here, z depends on x and y, ,
z z

p q
x y

∂ ∂
= =

∂ ∂
We have

 dz = 
z z

dx dy pdx qdy
x y

∂ ∂
+ = +

∂ ∂
 (44)

We try to fi nd another equation

 g(x, y, z, p, q) = 0  (45)

such that the solution of Eq. (43) is also a solution of Eq. (45). If these equations exists then the 

equations (43) and (45) are said to be compatible. We solve equations (43) and (45) for p and q and 

substitute in (44).

This will give the solution provided (44) is integrable.

Setting the derivatives of f and g with respect to x and y, we have

 
f f f p f q

p
x z p x q x

∂ ∂ ∂ ∂ ∂ ∂
+ ◊ + ◊ + ◊

∂ ∂ ∂ ∂ ∂ ∂
 = 0 (46)

 
g g g p g q

p
x z p x q x

∂ ∂ ∂ ∂ ∂ ∂
+ ◊ + ◊ + ◊

∂ ∂ ∂ ∂ ∂ ∂
 = 0 (47)

 
f f f p f q

q
y z p y q y

∂ ∂ ∂ ∂ ∂ ∂
+ ◊ + ◊ + ◊

∂ ∂ ∂ ∂ ∂ ∂
 = 0 (48)

 
g g q p g q

q
y z p y q y

∂ ∂ ∂ ∂ ∂ ∂
+ ◊ + ◊ + ◊

∂ ∂ ∂ ∂ ∂ ∂
 = 0 (49)
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Eliminating 
p

x

∂
∂

 between equations (46) and (47), we get

 0
f g g f f g g f f g g f q

p
x p x p z p z p q p q p x

Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
◊ - ◊ + ◊ - ◊ + ◊ - ◊ =Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯

 (50)

Now, eliminating 
q

y

∂
∂

 between equations (48) and (49), we get

 0
f g g f f g g f f g g f p

q
y q y q z q z q p q p q y

Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
◊ - ◊ + ◊ - ◊ ◊ + ◊ - ◊ =Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯

 (51)

∵ 
p

y

∂
∂

 = 

2 2
z z z q

y x y x x y x

∂ ∂ ∂ ∂ ∂Ê ˆ = = =Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂

The last terms in equations (50) and (51) differ in sign only. Adding (50) and (51), we obtain

 0
f f g f f g f f f g f g

p q p q
p z p y z q p q p x q y

Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ+ + + + - - + - + - =Á ˜Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯

which is a linear partial differential equation of the fi rst order with x, y, z, p, q as independent variables 

and g as the dependent variable.

The auxiliary equations are

 0

dp dq dz dx dy dg

f f f f f f f f
p q p q

x z y z p q q q

= = = = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + - - - -
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (52)

Any integral of Eq. (52) which involves p or q or both can be taken in (44).

Example 75  Solve px + qy = pq.

Solution Here, the given equation is

 f(x, y, z, p, q) ∫ px + qy – pq = 0 (1)

The Charpit’s auxiliary equations are

 
dp

f f
p

x z

∂ ∂
+

∂ ∂

 = 
dq dz dx dy

f f f f f f
q p q

y z p q p z

= = =
∂ ∂ ∂ ∂ ∂ ∂

+ - - - -
∂ ∂ ∂ ∂ ∂ ∂

or 
( )

dx

x q- -
 = 

( ) ( ) ( ) .0 .0

dy dz dp dq

y q p x q q y p p p q q
= = =

- - - - - - + +
 (2)

Taking the last two fractions of Eq. (2)

 
dp

p
 = 

dq

q

Integrating log p = log q + log a or p = aq  (3)

Putting p = aq in (1), we get

 aqx + qy – aq
2 = 0 or aq = (ax + y); q π 0 (4)
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From (3) and (4), p = ax + y and 
ax y

q
a

+
=

Putting the values of p and q in dz = p dx + q dy, we get

 dz = ( )
ax y

ax y dx dy
a

+Ê ˆ+ + Á ˜Ë ¯

or adz = (ax + y) (adx + dy)

 = (ax + y) d(ax + y)

 adz = u·du where u = ax + y

On integrating, we get

 az = 
2

2

u
b+

or az = 
2( )

2

ax y
b

+
+

which is the complete integral of (1), a and b being arbitrary constants.

Example 76  Solve (p2 + q2) x = pz.

Solution Here, f(x, y, z, p, q) ∫ (p2 + q2) x – pz = 0 (1)

The Charpit’s auxiliary equations are 

 
dp

f f
p

x z

∂ ∂
+

∂ ∂

 = 
dq dz dx dy

f f f f f f
q p q

y z p q p q

= = =
∂ ∂ ∂ ∂ ∂ ∂

+ - - - -
∂ ∂ ∂ ∂ ∂ ∂

or 
2 2 2

dp

p q p+ -
 = 

(2 ) (2 ) (2 ) (2 )

dq dz dx dy

pq p px z q qx px z qx
= = =

- - - - - - -
 (2)

Taking the fi rst two fractions of (2), we have

 
2

dp

q
 = or

dq
pdp qdq

pq
= -

-
or pdp + qdq = 0

Integrating, p2 + q2 = a2  (3)

From (1) and (3), we have

 a
2
x = 

2
a x

pz p
z

fi =

Putting 
2

a x
p

z
=  in (3), we get

 q = 2 2 2(
a

z a x
z

-

Putting the values of p and q in dz = pdx + qdy, we get

 dz = 
2 2 22 ( )a z a xa x

dx dy
z z

-
+
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or 

2

2 2 2(

z dz a x dx

z a x

-

-
 = ady

Putting z2 – a2 x2 = t so that 2(zdz – a2 xdx) = dt, we get

 

1

2
dt

t
 = 

1

2
1

or
2

ady t dt ady
-

=

Integrating both sides, we have

 t
1/2 = 2 2 2or (ay b z a x ay b+ - = +

or 
2 2 2( ) ( )z a x ay b- = +

EXERCISE 14.8

Solve the following equations by Charpit’s method:

 1. z
2 = pqxy 2. q + px = p2

 3. pxy + pq + qy = yz 4. 
2

2

p y
z px qy+ + =

 5. z = pq 6. q = 3p
2

Answers

 1. z = ax
b
 y

1/b 2. 

2
2

2

y ya
z axe e b

- -= - +

 3. log (z – ax) = y – a log (a + y) + b 4. 

2

2 34

ax a b
z

yy y
= - +

 5. 
1

2 z x a y b
a

Ê ˆ
= + +Á ˜Ë ¯

 6. z = ax + 3a
2
y + b

14.14   NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS OF 
SECOND ORDER: (MONGE’S METHOD)

Here, we study Monge’s method of integrating

 Rr + Ss + Tt = V (53)

where r, s, t have their usual meaning and R, S, T, and V are functions of x, y, z, p, q.

We know that

 dp = 
2 2

2

p p z z
dx dy dx dy

x y y xx

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂∂
 dp = rdx + sdy (54)
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and dq = 
2 2

2

q q z z
dx dy dx dy

x y x y y

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂ ∂
 dq = sdx + tdy  (55)

From (54) and (55), we have

 r = and
dp sdy dq sdx

t
dx dy

- -
=

Substituting these values in (53), we have

 
dp sdy dq sdx

R Ss T
dx dy

Ê ˆ- -Ê ˆ + +Á ˜ Á ˜Ë ¯ Ë ¯
 = V

or Rdy(dp – sdy) + Ssdx dy + Tdx(dq – sdx) = Vdxdy

or (Rdpdy + Tdqdx – Vdxdy) – s(Rdy
2 – Sdxdy + Tdx

2) = 0 (56)

Clearly, any relation between x, y, z, p, and q which satisfi es (56), must also satisfy the following 

two relations

 Rdpdy + Tdqdx – Vdxdy = 0 (57a)

and Rdy
2 – Sdxdy + Tdx

2 = 0 (57b)

The equations (57a) and (57b) are called Monge’s subsidiary equations.

Since Eq. (57b) is quadratic, it can be resolved into two linear equations in dx and dy, such that

 dy – m1dx = 0 (58a)

and dy – m2dx = 0 (58b)

Now, from (57a) and (58a), combined if necessary with dz = pdx + qdy, obtain two integrals

say u1 = a  and  v1 = b

Then the relation u1 = f(v1) (59)

is the solution and is called an intermediate integral.

Similarly, from (57a) and (58b), we get another integral

 u2 = g(v2) (60)

With the help of equations (59) and (60), we fi nd the values of p and q in terms of x and y.

Substituting these values in dz = pdx + qdy and integrating, we obtain the complete integral of the 

given equation.

Example 77  Solve r = a2
t.

Solution We know that r = and
dp sdy dq sdx

t
dx dy

- -
=

Substituting the values of r and t in r = a2
t, we get

 
dp sdy

dx

-
 = 2 dq sdx

a
dy

Ê ˆ-
Á ˜Ë ¯

 (1)

or (dpdy – a2
dqdx) – s(dy

2 – a2 dx
2) = 0

\   The Monge’s subsidiary equations are

 dpdy – a2
dqdx = 0 (2)

and dy
2 – a2

dx
2 = 0 (3)
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From (3), we have

 dy – adx = 0 (4)

and  dy + adx = 0 (5)

Now, from (4) and (2), we get

 dp(adx) – a2
dq dx = 0 or dp – adq = 0 (6)

From (4) and (6), we get

 u1 ∫ y – ax = a  and v1 ∫ p – aq = b

\ p – aq = f(y – ax) (7)

is an intermediate integral.

Similarly, from (5) and (2), we get the second intermediate integral p + aq = g(y + ax) (8)

Solving equations (7) and (8), we have

 p = 
1

[ ( ) ( )]
2

f y ax g y ax- + +

and q = 
1

[ ( ) ( )]
2

g y ax f y ax
a

+ - -

Putting the values of p and q in dz = p dx + qdy, we have

 dz = 
1 1

( ) ( ) { ( ) ( )}
2 2

f y ax g y ax dx g y ax f y ax dy
a

È ˘ È ˘- + + + + - -Í ˙ Í ˙Î ˚ Î ˚

 dz = 
1 1

( )( ) ( )( )
2 2

g y ax dy adx f y ax dy adx
a a

+ + - - -

Integrating, we get

 z = 
1 2

1 1
( ) ( )

2 2
y ax y ax

a a
j j+ - -

or z = y1(y + ax) + y2(y – ax)

Example 78  Solve pt – qs = q3.

Solution Given pt – qs = q3 (1)

Putting t = 
dq sdx

dy

-
 in (1), we get

 
( )p dq sdx

qs
dy

-
-  = q3

or (pdq – q3
dy) – s(pdx + qdy) = 0

The Monge’s subsidiary equations are

    pdq – q3
dy = 0 (2)

and  pdx + qdy = 0  (3)

From (3), we have dz = 0 fi z = a (4)

From equations (2) and (3), we obtain

 dq + q2
dx = 0   (∵   –pdx = +qdy)
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or 
2

dq
dx

q
+  = 0

\ 
1

x
q

- +  = b

or 
1

x
q

- +  = f(z)

or 
y

x
z

∂
- +

∂
 = ( ) or ( )

y
f z x f z

z

∂
- = -

∂

Integrating, we get

 y – zx = +f1(z) + c

or y = zx + f1(z) + c

 y = zx + f1(z) + f(x)

Since c is a function of x which is regarded constant at the time of integration.

Example 79  Solve y2
r – 2ys + t = p + 6y. (1)

Solution Putting r = and
dp sdy dq sdx

t
dx dy

- -
=  in (1), we get

 y
2 = 2 6

dp sdy dq sdx
ys p y

dx dy

- -Ê ˆ - + = +Á ˜Ë ¯

or [y2
dpdy – (p + 6y) dxdy + dqdx] – s[y2

dy
2 + 2y dx dy  + dx

2] = 0

\   The Monge’s  subsidiary equations are

 y
2
dpdy – (p + 6y) dxdy + dqdx = 0 (2)

and y
2
dy

2 + 2y dxdy + dx
2 = 0 (3)

From (3), (ydy + dx)2 = 0

or ydy + dx = 0 (4)

Integrating, we obtain

 y
2 + 2x = a (5)

From (2) and (4), we get

 ydp + (p + 6y)dy – dq = 0

or (ydp + pdy) + (6ydy – dq) = 0

\ yp + 3y
2 – q = b (6)

From (5) and (6), we obtain the intermediate integral is

 (yp + 3y
2 – q) = f(y2 + 2x)

or py – q = –3y
2 + f(y2 + 2x)

Lagrange’s subsidiary equations are

 
dx

y
 = 

2 21 3 ( 2 )

dy dz

y f y x
=

- - + +
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Taking the fi rst two fractions, we have 

 ydy + dx = 0  or  y2 + 2x = c

Again, taking the last two fractions, we have

 dz = [3y
2 – f(y2 + 2x)] dy

or dz = 3y
2
dy – f(c)dy

Integrating, z = y3 – y f(c) + d

or z = y3 – y f(y2 + 2x) + g(y2 + 2x)

which is the required solution.

EXERCISE 14.9

Solve the following equations:

 1. r + (a + b)s + abt = xy 2. r – t cos2 x + p tan x = 0

 3. r = t 4. rx
2 – 2sx + t + q = 0

 5. q
2
r – 2pqs + p2

t = pq
2 6. x

2
r + 2xys + y2

t = 0

 7. r = 2y
2

Answers

 1. 
3

4
1 2

1
( ) ( ) ( )

6 24

x y
z a b x y ax y bxf f= - + + - + -

 2. z = f1(y – sin x) + f2(y + sin x) 3. z = f1(x + y) + f2(y – x)

 4. z = f1(y + log x) + x f2(y + log x) 5. y = ex 
f1(z) + f2(z)

 6. z = y f1(y/x) + f2(y/x) 7. z = x2
y

2 + x f(y) + g(y)

14.15  MONGE’S METHOD OF INTEGRATING

Here, we consider

 Rr + Ss + Tt + U(rt – s2) = V  (61)

where R, S, T, U, V are functions of x, y, z, p, q, and r, s, and t have their usual meanings.

We know that 

 dp = 
p p

dx dy rdx sdy
x y

∂ ∂
+ = +

∂ ∂

and dq = 
p q

dx dy sdx tdy
x y

∂ ∂
+ = +

∂ ∂

Therefore, r = and
dp sdy dq sdx

t
dx dy

- -
=

Putting the values of r and t in Eq. (61), we have

 2dp sdy dq sdx dp sdy dq sdx
R Ss T U s

dx dy dx dy

Ï ¸Ê ˆ Ê ˆ- - - -Ê ˆ Ê ˆÔ Ô+ + + -Ì ˝Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯Ë ¯ Ë ¯Ô ÔÓ ˛
 = V
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or (RdPdy + Tdqdx + UdPdq – Vdxdy) – s(Rdy
2 – Sdxdy + Tdx

2 + UdPdx + Udqdy) = 0

Thus, the Monge’s subsidiary equations are

 L ∫ RdPdy + Tdqdx + UdPdq – Vdxdy = 0  (62a)

and        M ∫ Rdy
2 – Sdxdy + Tdx

2 + UdPdx + Udqdy = 0  (62b)

Equations (62a) and (62b) are called Monge’s subsidiary equations. Now, Eq. (62a) cannot be 

factorized, because of the presence of the term UdPdx + Udqdy.

\   we try to factorize M + lL = 0

or (Rdy
2 – Sdxdy + Tdx

2 + UdPdx + Udqdy) + l(RdPdy + Tdqdx + UdPdq – Vdxdy) = 0 (63) 

where l is some multiplier to be determined.

Consider the factors of (62b) to be

 
1

( ) 0Rdy mTdx KUdP dy dx dq
m k

lÊ ˆ+ + + + =Á ˜Ë ¯
 (64)

Comparing equations (63) and (64), we have

 
R

mT
m

+  = –(S + lV) (65)

 k = m and 
R

U
k

l
=  

Now, from the last two relations, we obtain 
R

m
U

l
=

\   from Eq. (65), we get 
U R T

U

l

l
+  = –(S + lV)

or l2(UV + RT) + lUS + U2 = 0 (66)

(which is called the l-equation)

Consider l1 and l2 as the roots of Eq. (66).

When 1
1,

R
m

U

l
l l= = , then Eq. (64) becomes

 1
1

1

R U U
Rdy Tdx R dP dy dx dq

U R R

l
l

l

Ê ˆÊ ˆ
+ + + +Á ˜ Á ˜Ë ¯ Ë ¯

 = 0 (67)

or (Udy + l1Tdx + l1UdP) (Udx + l1Rdy + l1Udq) = 0  (68)

Similarly, when 2
1,

R
m

U

l
l l= =  then Eq. (64) becomes 

 (Udy + l2Tdx + l2 UdP) (Udx + l2 Rdy + l2 Udq) = 0 (69)

Now, solving equations (68) and (69), we obtain two intermediate integrals of the form

 u1 = f(v1) and u2 = g(v2)  (70)

Solving them, fi nd the values of p and q and substitute in dz = Pdx + qdy. Integrating, we obtain the 

complete solution of the given equation.

Example 80  Solve 2s + (rt – s2) = 1.

Solution Given 2s + (rt – s2) = 1 (1)
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Comparing (1) with Rr + Ss + Tt + U(rt – s2) = V, we get

 R = 0, S = 2, T = 0, U = 1, V = 1

Using the l-equation l2(UV + RT) + l US + U2 = 0, we have

 l2 + 2l + 1 = 0 or l = –1, –1

\ l1 = –1 and l2 = –1

Putting l1 = –1 = l2 in one pair of equations

 Udy + l1Tdx + l1UdP = 0

and  Udx + l2Rdy + l2Udq = 0

\      dy – dp = 0 and dx – dq = 0

Integrating, we get

 y – p = c1 and x – q = c2

The intermediate integral is (y – p) = f(x – q)

Also,  p = y – c1 and q = x – c2

Substituting these values of p and q in dz = pdx + qdy, we have

 dz = (y – c1) dx + (x – c2)dy

 dz = (ydx + xdy) – c1dx – c2dy

\ 1 2z xy c x c y d= - - +

which is the required complete integral.

Example 81  Solve r + 3s + t + (rt – s2) = 1.

Solution Given r + 3s + t + (rt – s2) = 1 (1)

Comparing (1) with Rr + Ss + Tt + U(rt – s2) = V, we get

 R = 1, S = 3, T = 1, U = 1, and V = 1

\   the l-equation

        l2(UV + RT) + US + V2 = 0

\ 2l2 + 3l + 1 = 0 or (2l + 1) (l + 1) = 0

or l = 
1

1,
2

- -

Let l1 = –1 and 2

1

2
l = -

The fi rst intermediate integral is given by

 Udy + l1Tdx + l1UdP = 0 and Udx + l2 Rdy + l2Udq = 0

or dy – dx – dP = 0 and         
1 1

0
2 2

dx dy dq- - =

or dy – dx – dP = 0 and             –2dx + dy + dq = 0

Integrating, we get

 y – x – p = c1 and –2x + y + q = c2

\ The fi rst intermediate integral is

 (y – x – p) = f(y – 2x + q)  (2)

 = f(a), where a = y – 2x + q
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The second intermediate integral is given by

  Udx + l1Rdy + l1Udq = 0 and Udy + l1Tdx + l2UdP = 0

or –dy + dx – dq = 0 and 2dy – dx – dP = 0

Integrating, we get

 –y + x – q = c3 and 2y – x – p = c4

\   the second intermediate integral is

 2y – x – p = g(x – y – q) (3)

 = g(b), where b = x – y – q

Now, a + b = –x or da + db = – dx

and from (3) and (2),

 y = g(b) – f(a)

or dy = g¢(b) db – f¢(a) da
and P = y – x – f(a), q = x – y – (b)

Putting the values of p and q in dz = Pdx + qdy, we get

 dz = [y – x – f(a)]dx + [x – y – b]dy

 = (y – x)dx – f(a)dx + (x – y)dy – bdy

 = –(x – y)(dx – dy) – f(a)(–da – db) – b(g¢(b)db – f¢(a)da

 dz = –(x – y)(dx – dy) + f(a)da – bg¢(b)db + [f(a) db + bf¢(a)d

On integrating, we get

 z = 
2( )

( ) ( ) ( )
2

x y
f d g d fa a b b b b a

- -
+ - +¢Ú Ú

 = 
2( )

( ) ( ) ( ) ( )
2

x y
g g d ff a b b b b b a

- -
+ - + -Ú

 z = 
2( )

( ) ( ) ( ) ( )
2

x y
g ff a b b y b b a

- -
+ - + +

which is the required integral.

Example 82  Solve r + 4s + t + (rt – s2) = 2.

Solution Do same as Example 81; l1 = –1 and 2

1

3
l = -

and  2z = 2xy – x2 – y2 + b[f¢(a) – y¢(b)] – f(a) + y(b)

EXERCISE 14.10

Solve the following by Monge’s method:

 1. 3r + 4s + t + (rt – s2) = 1 2. r + t – (rt – s2) = 1

 3. 5r + 6s + 3t + 2(rt – s2) = –3 4. 3s + (rt – s2) = 2

 5. 2r + tex – (rt – s2) = 2e
x
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Answers

 1. 
2 2

1 2 3

3
2

2 2

x y
z c x c y xy c= + - + - +

 2. 

2 2

1 2 3
2

x y
z c x c y c

+
= + + +

 3. 2 2
1 2 3

3 5
2 3

2 2
z xy x y c x c y c= - - - - +

 4. z = xy + f(a) + y(b) + by, where x = b – a;  y = f¢(a) – y¢(b)

 5. z = ex + czx – c1y + y2 + c3

SUMMARY
1.  Lagrange’s Method of Solving Linear Partial Differential Equations of 

First Order

Working Rule for Solving Pp + Qq = R by Lagrange’s Method

Step I Put the given linear PDE of the fi rst order in the standard form 

  Pp + Qq = R (1)

Step II Write down Lagrange’s auxiliary equation for (1), namely,

  
dx dy dz

P Q R
= =  (2)

Step III Solve (2) by using the well-known methods, let u(x, y, z) = c1 and v(x, y, z) = c2 be the two 

independent solutions of (2).

Step IV The general solution (or integral) of (1) is written in one of the following three forms:

  f (u, v) = 0, u =f (v) or v = f (u)

2. Nonlinear Partial Differential Equations of First Order

A nonlinear partial differential equation of fi rst order contains p and q of degree other than one and/or 

product terms of p and q.

Its complete solution is given by f (x, y, z, a, b) = 0 where a and b are any two arbitrary constants. Some 

standard forms of nonlinear fi rst-order partial differential equations are given below:

(i) Standard Form I

Only p and q present or x, y, z, are absent.

Consider equations of the form

  f (p. q) = 0 (3)

Then the complete solution is

  z = a x + b y + c (4)

where a, b satisfy the equation f (a, b) = 0, i.e., b = g (a)

(ii) Standard Form II

Clairauts’ equation

  z = p x + q y + f (p, q) (5)

The complete solution of (5) is 

  z = a x + b y + f(a, b) (6)

which is obtained by replacing p by a and q by b in the given equation (5).
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(iii) Standard Form III

Only p, q, and z present. Consider an equation of the form

  f (p, q, z) = 0 (6)

Putting q = a p in (6), we get f (p, a p, z) = 0 (7)

Equating (7) and solving for p, we get p = g (z).

Now, put the values of p and q in 
z z

dz dx dy pdx q dy
x y

∂ ∂
= + = +

∂ ∂
  d z = pdx + apd yd

     z = p(dx + ady)

  d z = g(z) (dx + ady)

On integrating,

  x + a y = 
( )

dz
b

g z
+Ú , where a and b are two arbitrary constants.

(iv) Standard Form IV: Equation of the form

  f1(x, p) = f2 (y, q) (8)

Suppose f1(x, p) = f2(y, q) = a = constant 

Solving each equation for p and q, we get

  p = g1(x, a) and q = g2(y, a)

Now, putting these values of p and q in

  dz = pdx + qdy, we get

  dz = g1(x, a) dx + g2(y, a)dy

Integrating, z = 1 2( , ) ( , )g x a dx g y a dy b+ +Ú Ú
This is the required complete solution.

3.  Method of Finding the Complementary function (CF) of the Linear 
Homogeneous PDE with Constant Coeffi cients

  F(Dx, Dy)z = 0

i.e.,   1
0 1 ... 0n n n

x x y n yA D A D D A D z
-+ + =e j  (9)

where A0, A1, … An are all constants.

The complementary function of (9) is the general solution of

         

1
0 1 ... 0n n x

x x y n yA D A D D A D z
-+ + =e j

 (10)

  A0 m
n + A1 m n –1 + A2 m n – 2 + …+ An = 0 (11)

Equation (11) is known as the auxiliary equation (AE) and is obtained by putting Dx = m and Dy = 1 in

F (Dx, Dy) = 0

Let m1, m2, …mn be n roots of AE (11). Then the following cases arise:

Case I When m1, m2, … m n are distinct. Then the part of CF corresponding to m = m r is z = fr(y + mnx) 

for r = 1, 2, 3, …n. Since (10) is linear, the sum of the solution is also a solution.

\ CF of (10) = f1(y + m1x) + f2(y + m2x) + … + fn(y + mnx)

where f1, f2, … fn are arbitrary functions.

Case II Repeated roots. If m is repeated ‘r’ times, the corresponding part of the CF is 

 f1(y + mx) + xf2(y + mx) + x2f1(y + mx) + … + xr – 1 fr(y + mx).
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4.  Method of Finding the Particular Integral (PI or ZP) of the Linear 
Homogeneous PDE with Constant Coeffi cients

The particular integral of the equation F (Dx, Dy)z = f (x, y) is  (12)

  PI or 
1

( , )
( , )

p
x y

Z f x y
F D D

=  (13)

(a) Short Methods of Finding the Particular Integrals in Certain Cases

Before taking up the general method for fi nding PI of F (Dx, Dy) z = f (x, y)

Short Method (I) When f (x, y) is of the form f(ax + by), two cases will arise.

Case I Replacing Dx by a Dy by b in F(Dx, Dy), suppose that F (a, b) π 0. If F (Dx, Dy) is a homogeneous 

function of Dx and Dy of degree n, then we have

  PI = 
1

( )
( , )x y

ax by
F D D

f +

    = 
1

... ( )
( , )

n
v dv

F a b
fÚ Ú Ú , where v = ax + by.

After integrating f(v) n times w.r.t. ‘v’, v must be replaced by (ax + by).

Case II Replacing Dx by a, Dy by b in F (Dx, Dy) , suppose that F (a, b) = 0.

Then F (Dx, Dy) must be factorized. 

In general, two types of factors will arise.

Let F(Dx, Dy) = (b Dx – a Dy)m. G (Dx, Dy), where G (a, b) π 0.

Then PI = 
1

( ) ( )
( ) !

m

m m
x y

x
ax by ax by

bD a D b m
f f+ = +

-

Short Method II When f(x, y) is of the form xm yn, m and n being non-negative integers.

If 
1

,
( , )x y

n m
F D D

<  is expanded in powers of 
y

x

D

D
. On the other hand, if m < n, 

1

( , )x yF D D
 is expanded 

in two ways. In many problems, we arrive at different answers. 

However, the difference is not material as it can be incorporated in the arbitrary functions occurring in the 

CF of that problem.

(b) General Method of Finding PI of 

  F(Dx, Dy) z = f(x, y) (14)

when F(Dx, Dy) is a homogeneous function of Dx and Dy. We use the following results.

  
1

1
( ) ( , ) ( , )

( )x y

R f x y f x c mx dx
D m D

= -
- Ú , where c = y + mx.

  
2 1

1
( ) ( , ) ( , )

( )x y

R f x y f x c mx dx
D m D

= -
+ Ú , where c1 = y – mx.

After performing integrations, c and c1 must be replaced by y + mx and y – mx respectively.

5.  Nonhomogeneous Linear Partial Differential Equations with Constant 
Coeffi cients

A linear partial differential equation which is not homogeneous is called a nonhomogeneous linear PDE.

Consider a linear equation with constant coeffi cients:

  F (Dx, Dy) z = f (x, y) (15)



14.64 Engineering Mathematics for Semesters I and II

If (15) is a homogeneous linear PDE with constant coeffi cients then F(Dx, Dy) can always be resolved 

into factors. On the other hand, if (15) is not homogeneous then F(Dx, Dy) cannot be resolved into linear 

factors.

Hence, we classify nonhomogeneous linear partial differential equations into the following two types:

 (i) When F(Dx, Dy) can be resolved into linear factors, each of which is of fi rst degree in Dx and Dy.

  For example, 
2 2 3 32 1x y xD D D z x y- + + =e j , i.e., [(Dx + Dy + 1) (Dx – Dy + 1)] z = x2 y3.

 (ii) When F(Dx, Dy) cannot be resolved into linear form (a Dx + b Dy + c)

  For example, 4 2 2(2 3 )x x y yD D D D- + z = 2 xy
2, i.e., 2 2(2 )( )x y x yD D D D- - z = 2 xy

2
.

6. Method of Finding CF when Equations are of the Type (b)

  F (Dx, Dy) Z = 0 (16)

Where the symbolic operator F (Dx, Dy) cannot be resolved into factors linear such as Dx and Dy. In such 

a case, as a trial solution, consider Z = A e hx + ky (17)

where A, h, k are constants from (17). We have

 
r r h x K y
xD z Ah e

+= , 
r s r s hx ky
x yD D z Ah k e

+=  and s s hx ky
yD z Ak e

+=
Hence, substituting (17) in (16), we get

  Af (h, k)ehx + ky = 0

which will hold if f (h, k) = 0 (18)

and A is an arbitrary constant.

Now, for any chosen values of h or k, (18) gives one or more values of k or h. so there exist infi nitely many 

pairs of numbers (hi, ki) satisfying (18).

Thus,  

1

i ih x k y
i

i

Z A e

•
+

=

= Â  (19)

where f(hi, ki) = 0 (20)

for each i is a solution of the equation (16). So, if f (Dx, Dy) has no linear factor, (19) is taken as the general 

solution of (16).

7. Method of Finding Particular Integrals (PI) 

The methods of fi nding PI of nonhomogeneous linear partial differential equations are very similar to 

those used in solving a homogeneous linear PDE with constant coeffi cients.

Here, we are considering a few cases only.

Case I When f (x, y) = eax + by then

  PI = 
1 1

( , ) ( , )

ax by ax by

x y

e e
f D D f a b

+ +=  provided f (a, b) π 0

i.e., put Dx = a and Dy = b

Case II When f (x, y) = sin (ax + by) or cos (ax + by) then

  PI = 
1

sin( )
( , )x y

ax by
f D D

+  or cos (ax + by)

is obtained by putting Dx
2 = –a

2, Dx . Dy = –ab, Dx
2 = –b

2

Case III When f (x, y) = xm yn, where m and n are positive integers then

  PI = 
1

( )

m n

x y

x y
f D D

 = [f (Dx, Dy)] 
– 1 xm yn (expand by binomial theorem)
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Case IV When f (x, y) = eax + by V(x) then

  PI = 
1

( )
( )

ax by

x y

e V x
f D D

+
 = 

1

( , )

ax by

x y

e
f D a D b

+

+ +

8. Equations Reducible to Linear Equations with Constant Coeffi cients

Consider a partial differential equation of the form

 1 2 2
0 1 21 2 2

...
n n n n

n n n n
nn n n n

z z z z
a x a x y a x y a y

x x y x y y

- -
- -

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂ ∂ ∂
 = f (x, y) (21)

Putting x = eu or u = log x and y = ev or v = log y

Therefore, 
z z

x
x u

∂ ∂
=

∂ ∂
 so that x

x u

∂ ∂
=

∂ ∂
 or andx u uD D D

u

∂
= ¢ ¢

∂
≡

Similarly, 
2 2

xx D  = Du (Du – 1)

  3 3
xx D  = Du (Du – 1) (Du – 2) 

  ……………………………….

  ……………………………….

  n n
xx D  = Du (Du – 1) (Du – 2), … (Du – n +1)

Also,       
1z z v z

y v y y v

∂ ∂ ∂ ∂
= ◊ =

∂ ∂ ∂ ∂

\       
z z

y
y v

∂ ∂
=

∂ ∂
 so that or y yy D D

y v v

∂ ∂ ∂
= = ¢ ∫

∂ ∂ ∂
Similarly, x2

Dy
2 = Dv (Dv – 1), x3

Dy
3 = Dv (Dv – 1) (Dv – 2), and so on.

Using the above values, (21) reduces to an equation having constant coeffi cients and now it can easily be 

solved by the methods already discussed for homogeneous and nonhomogeneous linear equations with 

constant coeffi cients.

9. Classifi cation of Partial Differential Equation of Second Order

The general form of a second-order PDE is the function Z of two independent variables x, y given by

 
2 2 2

2 2
( , ) ( , ) ( , ) , , , , 0

z z z z z
A x y B x y C x y x y z

x y x yx y

Ê ˆ∂ ∂ ∂ ∂ ∂
+ + + =Á ˜∂ ∂ ∂ ∂Ë ¯∂ ∂

 (22)

This equation in linear in second-order terms PDE (22) is said to be linear or quasi-linear according as f 

is linear or non-linear.

PDE (22) is classifi ed as elliptic, parabolic, or hyperbolic as B2 – 4 AC < 0, = 0 or > 0.

OBJECTIVE-TYPE QUESTIONS

 1. The particular integral of (4r – 4s + t) =

16 log (x + 2y) is

 (a) 2x log(x + 2y) (b) 2x
2 log(2x + y)

 (c) 2y
2 log(x + 2y) (d) 2x

2 log(x + 2y)

 2. The general solution of 
z z

a
y x

∂ ∂
=

∂ ∂
 is

 (a) z = f(y + ax) (b) z = f(x2 + y2)

 (c) z = f(x + ay) (d) z = f(ax + by)

 3. The general solution of (D4 – D¢ 4)z = 0 is

 (a) z = f1(x
2 + y2) + f2(x

2
 – y2)

 (b) z = f1(x + y) + f2(y – x) + f3(y + ix)

+ f4(y – ix)

 (c) z = f1(x
2 – y) + f2(x – y2) + f3(y

2 + ix) + 

f4(y – ix)

 (d) z = f1(x
2 – y2) + f2(x – y2) + f3(y

2 – ix) + 

f4(y – ix)
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 4. The PI of (D2 – 5DD¢ + 4D¢ 2)z = sin (4x + y) 

is

 (a) cos( 4 )
3

x
y x+  (b) x cos (y + 4x)

 (c) cos (y + 4x) (d) cos( 4 )
3

x
y x- +

 5. The PI of (D2 + DD¢ – 6D¢ 2)z = cos (2x + y) 

is

 (a) cos (2x + y) (b) sin (2x + y)

 (c) 
1

cos(2 )
25

x y+  (d) 
1

sin(2 )
25

x y+

 6. The general solution (D2 – 5DD¢ + 6D¢ 2)z = 

e
3x – 2y is

 (a) 
3 2

1 2

1
( 2 ) ( 3 )

63

x y
z f y x f y x e

-= + + + +

 (b) 3 2
1 2

1
(3 ) (2 )

63

x y
z f x y yf x y e

-= + + + +

 (c) 
3 2

1 2

1
(2 ) ( 3 )

63

x y
z f y x f y x e

-= + + + +

 (d) 
3 2

1 2

1
(3 2 ) (2 3 )

63

x y
z f y x f y x e

-= + + + +

 7. The general solution of (D2 + D¢ 2)z = cos mx 

cos ny is

 (a) 1 2( ) ( )z f y ix f y ix= - + +

 
2 2

1
cos cos

( )
mx ny

m n
-

-

 (b) 1 2( ) ( )z f x y f y x= + + -

 
2 2

1
cos cos

( )
mx ny

m n
-

-

 (c) 1 2( ) ( )z f y ix f y ix= - + +

 
2 2

1
cos cos

( )
mx ny

m n
-

-

 (d) 1 2( ) ( )z f y x f y x= + + -

 
2 2

1
cos cos

( )
mx ny

m n
-

+

 8. The general solution of 

2
2z

xy
x y

∂
=

∂ ∂
 is

 (a) 
2 3

( ) ( )
6

x y
z f y xf= + +

 (b) 
2 2

( ) ( )
4

x y
z f y xf= + +

 (c) 
3 2

( ) ( )
6

x y
z f y xf= + +

 (d) 
3

( ) ( )
4

xy
z f y xf= + +

 9. The general solution of 

2

cosyz
e x

x y

∂
=

∂ ∂  is

 (a) z = ex
 sin y + f(y) + f(x)

 (b) z = ey
 sin x + f(y) + f(x)

 (c) z = ex
 sin x + f(y) + f(x)

 (d) z = ey
 cos y + f(x) + f(x)

 10. The PI of (r + s – 6t) = y cos x is

 (a) –y cos x + sin x (b) cos x + sin x

 (c) cos x + y sin x (d) x cos x + sin x

 11. The general solution of r = a2
t is

 (a) z = f1(y + ax) + f2(y – x)

 (b) z = f1(y + x) + f2(y – ax)

 (c) z = f1(y + ax) + f2(y – ax)

 (d) z = f1(y + x) + f2(y
2 – ax)

 12. The general solution of (D2 + DD¢ + D¢  – 1)z 

= 0 is

 (a) z = e–x 
f1(y) + ex 

f2(y – x)

 (b) z = ex 
f1(y) + e–x 

f2(y + x)

 (c) z = e–x 
f1(y) + e–x 

f2(y
2 – x)

 (d) z = ex 
f1(y) + e–x 

f2(y + x2)

 13. The type of partial differential equation 
2

2

f f

t x

∂ ∂
=

∂ ∂
 is

 (a) Parabolic (b) Elliptic

 (c) Hyperbolic (d) Nonlinear

 [GATE (IN) 3013]

 14. The partial differential equation 
2

2

u u u
u

t x x

∂ ∂ ∂
+ =

∂ ∂ ∂
 is a

 (a) Linear equation of order 2

 (b) Non-linear equation of order 1

 (c) Linear equation of order 1

 (d) Non-linear equation of order 2

 [GATE (ME) 3013]

ANSWERS

 1. (d) 2. (c) 3. (b) 4. (d) 5. (c) 6. (a) 7. (a) 8. (a) 9. (b) 10. (a)

 11. (c) 12. (a) 13. (a) 14. (d) 



15.1  INTRODUCTION

Many physical and engineering problems using mathematical modeling can be formulated as initial 

boundary-value problems consisting of partial differential equations with boundary conditions (Bc’s) 

and initial conditions (Ic’s). The method of separation of variables is a powerful technique to obtain 

the general solution of such boundary-value problems when the partial differential equation is linear. 

Assuming separability, this method reduces the boundary-value problem to two ordinary differential 

equations. The linear combination of the solutions of these ordinary differential equations, using 

the superposition principle, gives the general solution which is made to satisfy the given boundary 

conditions and initial conditions. 

15.2  METHOD OF SEPARATION OF VARIABLES

Separation of variables is a powerful technique to solve partial differential equations. For a partial 

differential equation in the function u of two independent variables x and y, assume that the required 

solution is separable, i.e., 

 u(x, y) = X(x) ◊ Y(y) (1)

where X is a function of x alone only and Y is a function of y alone only. Then substitution of u from (1) 

and its derivatives reduces the partial differential equation to the form

 F (X, X¢, X¢¢ …) = G (Y, Y¢, Y¢¢ …) (2)

which is separable in X and Y. Since the LHS of Eq. (2) is a function of x alone and RHS of (2) is a 

function of y alone, Eq. (2) must be equal to a common constant k. Thus, (2) reduces to 

 F (X, X¢, X¢¢ …) = k (3)

 G (Y, Y¢, Y¢¢ …) = k (4)

Thus, the determination of a solution to the partial differential equation reduces to the ordinary 

differential equation.

Example 1  Using the method of separation of variables, solve 2
u u

u
x y

∂ ∂
= +

∂ ∂
, where 

u(x, 0) = 6 e–3x.

15
Applications of Partial 

Differential Equations
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Solution

 
u

x

∂
∂

 = 2
u

u
y

∂
+

∂
 (1)

Consider (1) has the solution of the form

 u(x, y) = X(x) ◊ Y(y) (2)

where X is a function of x alone and Y is a function of y alone. Differentiating (2) both sides w.r.t. x 

and y, we get

 
u

x

∂
∂

 = ,
dX u dY

Y X
dx y dy

∂
=

∂

Substituting the values of u, , and
u u

x y

∂ ∂
∂ ∂

 in Eq. (1), we get

 
dX

Y
dx

 = 2
dY

x XY
dy

+

or  
dX

X Y
dx

Ê ˆ-Á ˜Ë ¯
 = 2

dY
X

dy

Separating the variables,

 
2

dYdX
X

dydx

X Y

-
=  = k (say), where k is a constant.

\ 
1

2

dX
X

X dx

Ê ˆ-Á ˜Ë ¯
 = or (1 2 )

dX
k k X

dx
= +

or 
1 dX

X dx
 = 1 + 2k (3)

and 
1 dY

Y dy
 = k (4)

Solving  (3), we get log X = (1 + 2k)x + log C1

or  X(x) = C1e
(1 + 2k)x

Solving (4), we get Y(y) = C2e
ky.

Substituting X(x) and Y(y) in (1), we get

 u(x, y) = C1C2e
(1 + 2k)x ◊ eky

 u(x, y) = Ae
(1 + 2k)x + ky, where A = C1 C2 (5)

Using u(x, 0) = 6e
–3x in (5), we get

 6e
–3x  = Ae

(1 + 2k)x

\ A = 6, 1 + 2k = –3 or k = –2

Hence, the required solution is 

 u(x, y) = 6e
–(3x + 2y)
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Example 2  Using the method of separation of variables, solve 
2

2

u u

tx

∂ ∂
=

∂∂
, given that u = 0 when 

t Æ •, as well as u(0, t) = 0 = u(l, t).

Solution The given equation is

 
2

2

u

x

∂
∂

 = 
u

t

∂
∂

 (1)

Consider (1) has the solution of the form

 u(x, t) = X(x). T (t) (2)

where X is a function of x only and T is a function of t only.

Differentiating (2) both sides w.r.t. x and t, we have

 
u

x

∂
∂

 = 
2 2 2

2 2 2
, , and

d X u dT u d X
T X T

t dtdx x dx

∂ ∂
= =

∂ ∂
Substituting these values in (1), we get

 
2

2

d X
T

dx
 = 

dT
X

dt

Separating the variables, we have 

 
2

2

1 d X

X dx
 = 21 dT

T dt
l= -  (say) where l is any constant.

\ 
2

2

2

d X
X

dx
l+  = 0 (3) 

 2dT
T

dt
l+  = 0 (4)

Solutions of (3) and (4) are

 X(x) = A cos l x + B sin l x and T(t) = 
2
t

Ce
l-

Substituting the values of X and T in (2), we get

 u(x, t) = (A cos l x + B sin l x)
2
t

Ce
l-

 = (A1 cos l x + B1 sin l x)
2
t

e
l- , where A1 = AC and B1 = BC (5)

A1 and B1 are constants.

Using the BC u(x, 0) = 0 in (5), we get

 A1

2
t

e
l-  = 0 fi A1 = 0

\ u(x, t) = B1 sin l x◊
2
t

e
l-  (6)

and u(l, t) = 0 in (5), we get

 
2

1 sint
B e l

l l- ◊  = 0

B1 π 0, \   sin l l = 0 = sin mp,  m is any integer

 ll = 
m

m
l

p
p lfi =
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Therefore, Eq. (6) becomes

 u(x, t) = 
2 2

1 2
sin

t m m x
B e

ll

p p-

Hence,  u(x, t) = 
2 2

2
1

sinm

m

m t m x
B e

ll

p p•

=

-Â  

Example 3  Use the method of separation of variables to solve 
2

tu
e

x t

-∂
=

∂ ∂
 cos x with u(x, 0) = 0 

and ut (0, t) = 0.

Solution The given equation is

 
2
u

x t

∂
∂ ∂

 = e–t cos x (1)

Suppose (1) has the solution of the form

 u(x, t) = X(x). T(t) (2)

where X is a function of x only, T is a function of t only. Differentiating (2) w.r.t. t and x, we have

 
u

t

∂
∂

 = 
2

and
dT u dX dT

X
dt x t dx dt

∂ Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

Substituting these values in (1), we have

 
dX dT

dx dt
◊  = e–t cos x

Separating the variables, we get

 t dT
e

dt
 = or tdT

k k e
dt

-=  (3)

 
dX

k
dx

 = cos x (4)

Solving (3) and (4), we get T (t) = –ke
–t + C1

 X(x) = 2

1
(sin )x C

k
+

Substituting the values of T(t) and X(x) in (2), we get

 u(x, t) = 2 1

1
(sin ) ( )t

x C C ke
k

-+ ◊ -  (5)

Differentiating  (5) both sides w.r.t. ‘t’, we get

 ut(x, t) = 
2 2

1
(sin ) (sin )t t

x C k e e x C
k

- -+ ◊ = +  (6)

Using the given condition ut(0, t) = 0 in (6) and u(x, 0) = 0 in (5), we get

 ut(0, t) = 0 fi e–t C2 = 0 or C2 = 0
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 u(x, 0) = 1

1
0 (sin ) [ ] 0x C k

k
fi - =

 C1 – k = 0 or C1 = k

\ u(x, t) = sin x(1 – e–t)

which is the required solutions.

EXERCISE 15.1

Solve the following PDE by the method of separation of variables:

 1. 4
u u

y x

∂ ∂
=

∂ ∂
, with u(0, y)  = 8e

–3y.

 2. 4 3
u u

u
x y

∂ ∂
+ =

∂ ∂
 and u(0, y)= e–5y.

 3. 2
u u

u
x y

∂ ∂
- =

∂ ∂
, with u(x, 0) = 3e

–5x + 2e
–3x.

 4. 
2

2
2

u u
u

yx

∂ ∂
= +

∂∂
, with u(0, y) = 0, 3(0, )

1 yu y
e

x

-∂
= +

∂
.

 5. 
2

2
2 0

z z z

x yx

∂ ∂ ∂
- + =

∂ ∂∂
.

Answers

 1. u(x, y) = 8 e–3(4x + y)

 2. u(x, y) = e2x – 5y

 3. u(x, y) = 3e
–5x – 5y + 2e

–3x – 2y

 4. u(x, y) = 31
sin ( 2 ) sin

2

y
h x e x

-+

 5. z(x, y) = 1 2 , where (1 1 )ax bx ky
C e C e e a k

-È ˘+ = + +Î ˚ , (1 1 )b k= - +

15.3  SOLUTION OF ONE-DIMENSIONAL WAVE EQUATION

Consider an elastic string placed along the X-axis, stretched to the length l between two fi xed points A 

at x = 0 and B at x = l. 

Let u(x, t) denote the defl ection (displacement from equilibrium position). Then the vibrations of  

the string are governed by the one-dimensional wave equation. 

 
2

2

u

t

∂
∂

 = 
2

2

2

u
c

x

∂
∂

 (5)

where c is the phase velocity of the string with boundary conditions. 
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 u(0, t) = 0, u(l, t) = 0 (6)

The form of motion of the string will depend on the initial displacement or defl ection at time t = 0

 u(x, 0) = f(x) (7)

and the initial velocity

 
0t

u

t =

∂Ê ˆ
Á ˜Ë ¯∂

 = ut(x, 0) = g(x) (8)

The initial boundary value problem (5) can be solved by the method of separation of variables.

Suppose Eq. (5) has the solution of the form

 u(x, t) = X(x) T(t) (9)

where X is a function of x alone and T is a function of t alone. Differentiating (9) both sides w.r.t. ‘x’ 

and t, we get

 
u

x

∂
∂

 = 
2 2 2 2

2 2 2 2
, and ,

dX u dT u d X u d T
T X T X

dx t dt x dx t dt

∂ ∂ ∂
= = =

∂ ∂ ∂

Substituting the values of 
2 2

2 2
and

u u

x t

∂ ∂
∂ ∂

 in (5), we get

 
2

2

d T
X

dt
 = 

2
2

2

d X
c T

dx

Separating the variables, we get

 
2

2

1 d X

X dx
 = 

2

2 2

1 d T

c T dt
 (10)

Both sides of (10) must be equal to the common constant k.

\ 
2

2

1 d X

X dx
 = 

2

2 2

1 d T
k

c T dt
=

The two ordinary differential equations are

 
2

2

d X
kX

dx
-  = 0 and 

2

2
0

d T
kT

dt
- =  (11)

The boundary conditions (6) reduce to

 
(0, ) 0 (0) ( ), i.e., (0) 0

( , ) 0 ( ) ( ), i.e., ( ) 0

u t X T t X

u l t X l T t X l

= = ◊ = ¸
˝= = ◊ = ˛

 (12)

There are three cases that arise.

Case I

If k = 0, Eq. (11) becomes

 
2

2

d X

dx
 = 0 and 

2

2
0

d T

dt
=

 X(x) = A + Bx.   T(t) = C + Dt
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Using the boundary condition  X(0) = 0 fi A = 0

 X(l) = 0 fi Bl = 0 or B = 0

\ X(x) = 0

Hence, the defl ection u(x, t) = 0 is not possible.

Case II

If k > 0, i.e., k = l2 say, Eq. (11) becomes

 
2

2

2

d X
X

dx
l-  = 

2
2

2
0 and 0

d T
T

dt
l+ =

 X(x) = Ae
lx + Be

–lx, T(t) = Ce
lt + De

–lt

Using the boundary condition (12), X(0) = 0 fi A + B = 0 or B = –A

 X(l) = 0 fi Ae
ll + Be

–ll = 0

or Ae
ll – Be

–ll = 0

or A[ell – e–ll] = 0

 A = 0,  ell – e–ll π 0

\ B = 0

 X(x) = 0

Hence, the defl ection u(x, t) = 0 is not possible.

Case III

If k < 0, i.e., k = – l2  say, Eq. (11) becomes

 
2

2

2

d X
X

dx
l+  = 

2
2

2
0 and 0

d T
T

dt
l+ =

Its solution is

 X(x) = A cos l x + B sin l x and T (t) = C cos cl t + D sin cl t

Using the boundary condition (12), X(0) = 0 fi A = 0

 X(l) = 0 fi B sin ll = 0

 B π 0, sin l l = 0 = sin np

or l l = np

or l = , 1, 2, 3, ...
n

n
l

p
=

\ Xn(x) = sin , 1, 2, 3, ...
n x

n
l

p
=

and Tn(t) = cos sinn n

n ct n ct
C D

l l

p p
+

The defl ection of the vibrating string is

 u(x, t) = 
1

cos sin sinn n

n

n c t n c t n x
A B

l l l

p p p•

=

◊ ◊È ˘+Í ˙Î ˚
Â  (13)
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The unknown constants An and Bn are determined using initial conditions.

Note I When the initial displacement u(x, 0) = f(x) is given.

Put t = 0 in (9), we get

 f(x) = 

1

sinn

n

n x
A

l

p•

=
Â

Thus, An are the Fourier coeffi cients in the half-range Fourier sine series expansion of f(x) in (0, l),

Hence,  An = 

0

2
( )sin , 1, 2, 3, ...

l
n x

f x dx n
l l

p
=Ú  (14)

Note II When the initial velocity ut(x, 0) = g(x) is given, then differentiating (13) w.r.t. ‘t’

 ut(x, t) = 

1

sin cos sinn
n

n

A l n c t l x c t n x
B

n c l n c l l

p p p

p p

•

=

È ˘- +Í ˙̊
Î

Â

Put t = 0

 ut(x, 0) = 
1

( ) sinn

n

l n x
g x B

n c l

p

p

•

=

= Â

or Bn = 

0

2
( ) sin

l
n x

g x dx
n c l

p

p
◊Ú  (15)

Hence, the general solution of the one-dimensional wave equation (5) is given by

 u(x, t) = [
1

cos sin sinnn
n

n c t n c t n x
A B

l l l

p p p•

=

˘+ ˙̊Â , where

An and Bn are given by (14) and (15).

Result 1 When only displacement is given, f(x) π 0 and g(x) = 0, in which all Bn¢s are zero.

Then the general solution is

 u(x, t) = 
1

cos sinn

n

n c t n x
A

l l

p p•

=

Ê ˆ ◊Á ˜Ë ¯Â
with An given by (14).

Result 2 When only initial velocity is given, i.e., g(x) π 0 and f(x) = 0 in which all An¢s are zero.

Then the solution is

 u(x, t) = 
1

sin sinn

n

n c t n x
B

l l

p p•

=

Ê ˆ
Á ˜Ë ¯Â

with Bn given by (15).

Example 4  Solve the vibrating-string problem 
2 2

2 2

u u
c

t x

∂ ∂
=

∂ ∂
 with the conditions u(0, t) = 0 = 

u(l, t),
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 u(x, 0) = 

if 0
2

( ) if
2

l
x x

l
l x x l

Ï < <ÔÔ
Ì
Ô - < <
ÔÓ

and ut(x, 0) = x(x – l); 0 < x < l.

Solution The given vibrating-string problem 
2 2

2

2 2

u u
c

t x

∂ ∂
=

∂ ∂
 (1) 

Here, the initial displacement u(x, 0) = f(x) and the initial velocity ut(x, 0) = g(x)

\  The solution of the given wave equation is given by

 u(x, t) = 
1

cos sin sinn n

n

n c t n c t n x
A B

l l l

p p p•

=

˘+ ◊ÈÎ ˙̊Â  (2)

where An = 

0

2
( ) sin

l
n x

f x dx
l l

p
◊Ú

 An = 

/ 2

0 / 2

2
sin ( )sin

l l

l

n x n x
x dx l x dx

l l l

p pÈ ˘
Í ˙+ -
Í ˙Î ˚
Ú Ú

 = 

/22

2 2

0

2
cos 1 sin

l
l n x l n x

x
l n l ln

p p

p p

È ˘Ê ˆÊ ˆ- -
◊ ◊ - ◊ ◊Í ˙Á ˜Á ˜Ë ¯ Ë ¯Í ˙Î ˚

           

2

2 2

/ 2

2
( ) cos ( 1) sin

l

l

l n x l n x
l x

l n l ln

p p

p p

È ˘Ê ˆÊ ˆ- -
+ - - - ◊Í ˙Á ˜Á ˜Ë ¯ Ë ¯Í ˙Î ˚

 = 

2 2 2 2

2 2 2 2 2 2

2
cos sin cos sin

2 2 2 2 2

l n l n l n l n

l nn n n

p p p p

pp p p

È ˘-
+ + +Í ˙

Í ˙Î ˚

 An = 
2 2

4
sin

2

l n

n

p

p

Ê ˆ
Á ˜Ë ¯

Now, Bn = 

0

2
( ) sin

l
n x

g x dx
n c l

p

p
◊ ◊Ú

 = 

0

2
( ) sin

l
n x

x x l dx
n c l

p

p

È ˘
- ◊ ◊Í ˙

Í ˙Î ˚
Ú

 = 

2 3

2 2 3 3

0

2
( ) cos (2 ) sin 2 cos

l

l n x l n x l n x
x x l x l

n c n l l ln n

p p p

p p p p

È ˘Ê ˆ Ê ˆÊ ˆ- -
- ◊ - - - + ◊Í ˙Á ˜ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
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 = 
p p

È ˘-
- -Í ˙

Í ˙Î ˚

3

3 3

2 2
( 1) 1nl

n c n
o t

 = 
3

4 4

8 l

n cp
, when n is odd.

Thus, the required solution of the given equation is

 u(x, t) = 
2 2

1

4 1
sin cos sin

2n

l n n c t n x

l ln

p p p

p

•

=

È ˘Ê ˆ ◊ ◊Í ˙Á ˜Ë ¯Î ˚
Â

 
3

4 4
1

8 1 (2 1) (2 1)
sin sin

(2 1)n

l n c t n x

l lc n

p p

p

•

=

- - ˘+ ◊ ˙- ˚
Â

Example 5  Solve the wave equation 
2 2

2

2 2
, 0 1, 0

u u
c x t

t x

∂ ∂
= £ £ >

∂ ∂
 with conditions 

(0, ) 0
0

(1, ) 0x

u t
t

u t

= ¸
>˝= ˛

 and

 u(x, 0) = 

1
if 0

4

1 1 1
if

2 4 2

1
0 if 1

2

x x

x x

x

Ï < <Ô
Ô
Ô - < <Ì
Ô
Ô < <ÔÓ

 ut(x, 0) = 0,     0 < x < 1

Solution The given equation 

2

2

u

t

∂
∂

 = 
2

2

2

u
c

x

∂
∂

 (1)

with boundary condition 
(0, ) 0

(1, ) 0x

u t

u t

= ¸
˝= ˛

 (2) and 

initial conditions u(x, 0) = 

1
, 0

4

1 1 1
( ) ,,

2 4 2

1
0 , 1.

2

x x

f x x x

x

Ï < <Ô
Ô
Ê ˆÔ= - < <ÌÁ ˜Ë ¯Ô

Ô
< <Ô

Ó
 ut (x, 0) = g(x) = 0, 0 < x <1

Suppose (1) has the solution of the form

 u(x, t) = X(x) ·T(t) (3)

where X is a function of x only and T is a function of t only. 
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Differentiating (3) both sides w.r.t. x and t, we have

 
2

2

u

x

∂
∂

 = 
2 2 2

2 2 2
and

d X u d T
T X

dx t dt

∂
=

∂
Substituting these values in Eq. (1), we have.

 
2

2

d T
X

dt
 = 

2
2

2

d X
c T

dx

Separating the variables,

 
2

2

1 d X

X dx
 = 

2

2 2

1
(say)

d T
k

c T dt
=  (4)

\ 
2

2

d X
kX

dx
-  = 0 (5)

and −

2
2

2

d T
kc T

dt
 = 0 (6)

using u(0, t) = 0, (3) gives X(0) ◊ T(t) = 0 so that X(0) = 0, T(t) π 0

Differentiating(3) partially w.r.t. ‘x’, we get

 ux (x, t) = X¢(x) ◊ T(t) (7)

Using ux(1, t) = 0, (7) gives X¢(1) ◊ T(t) = 0 so that X¢(1) = 0, T(t) π 0

Thus,  X(0) = 0 and X¢(1) = 0 (8)

We now solve (5) under BC (8).

Then three cases arise.

Case I

When k = 0, using BC (8), X(x) = 0

\   u(x, t) = 0. It is not possible.

Case II

When k > 0, i.e., k = l2 say using (8), X(x) = 0

\   u(x, t) = 0. It is not possible.

Case III 

When k < 0, say k = –l2

 
2

2

2

d X
X

dx
l-  = 0,  X(x) = A¢ cos lx + B¢ sin lx 

 X¢ (x) = – A¢l sin lx + B¢ l coslx

Using BC (8), we get A¢ = 0 and B¢l cos l = 0 so that A¢  = 0, cos l = 0 (\  l π 0) and B¢ π 0

Now, cos l = 
p p

l
- -

= = =
(2 1) (2 1)

0 cos or , 1, 2, 3, ...
2 2

n n
n
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Hence, the non-zero solution Xn (x) of (5) is given by 

 Xn(x) = 
(2 1)

sin
2

n

n
B xp

-
¢  (9)

Now, k = 2 2 21
(2 1)

4
nl p- = - -  so that (6) becomes

 
2

2 2 2

2

1
(2 1)

4

d T
n c T

dt
p- -  = 0,  whose general solution is

 Tn(t) = 
(2 1) (2 1)

cos sin
2 2

n n

n c t n c t
C D

p p- -
+¢ ¢  (10)

\ u(x, t) = [
1

(2 1) (2 1) (2 1)
cos s in sin

2 2 2
nn

n

n c t n c t n x
A B

p p p•

=

- - -˘+ ◊ ˙̊Â  (11)

 An = Bn¢Cn¢   Bn = Bn¢Dn¢

The initial condition ut (x, 0) = g(x) = 0

\    Bn = 0, Eq. (11), becomes

 u(x, t) = 

1

(2 1) (2 1)
cos sin

2 2
n

n

n c t n x
A

p p•

=

- -
◊Â  (12)

where An = 
1

0

2 (2 1)
( ) sin

1 2

n x
f x dx

p-
Ú

 = 

1/ 4 1/ 2 1

0 1/ 4 1/ 2

(2 1) 1 (2 1) (2 1)
2 sin sin 0 sin

2 2 2 2

n x n x n x
x dx x dx dx

p p pÈ ˘- - -Ê ˆÍ ˙◊ + - ◊ + ◊Á ˜Ë ¯Í ˙Î ˚
Ú Ú Ú

 = 

( )

( )

( )

( )

1

4

2 2

0

2 1 2 1
cos sin

2 22 (1)
2 1 2 1

2 4

n x n x

x
n n

p p

p p

È ˘Ï ¸Ï ¸- -Í ˙Ô Ô- -Ô ÔÔ Ô Ô ÔÍ ˙◊ -Ì ˝ Ì ˝Í ˙- -Ô Ô Ô ÔÍ ˙
Ô Ô Ô ÔÓ ˛Í ˙Ó ˛Î ˚

 
2 2

1

4

1
(2 1) (2 1)

cos sin 21 2 22
(2 1)2 (2 1)

2 4

n x n x

x
n n

p p

p p

È ˘Ï ¸- -Ï ¸- -Í ˙Ô ÔÔ ÔÊ ˆ Ô ÔÍ ˙+ - +Ì ˝ Ì ˝Á ˜ -Ë ¯Í ˙-Ô Ô Ô ÔÍ ˙Ô ÔÓ ˛ Ô ÔÓ ˛Î ˚

 = 
2 2

(2 1)
8sin

4

(2 1)

n

n

p

p

-

-

Hence, the required solution is 

 u(x, t) = 
2 2

1

8 sin (2 1) (2 1) (2 1)
cos sin

2 2(2 1)n

n x n c t n x

n

p p p

p

•

=

È ˘- - -
Í ˙

-Í ˙Î ˚
Â
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Example 6  Find the defl ection u(x, t) of the vibrating starting of length l = p, ends fi xed, and 

c
2 = 1 corresponding to zero initial velocity and initial defl ection u(x, 0) = f(x) = k(sin x – sin 2x).

Solution The vibrating string governing the PDE is

 
2

2

u

t

∂
∂

 = 
2

2

u

x

∂
∂

 (1) [\c
2 = 1]

with conditions u(0, t) = 0, u(p, t) = 0 and 

 u(x, 0) = f (x) = k (sin x – sin 2x)

 ut(x, 0) = g(x) = 0

Since initial velocity ut(x, 0) = g(x) = 0; then Bn = 0

The solution of the given equation (2) is given by

 u(x, t) =  
1

cos sinn

n

n t n x
A

p p

p p

•

=
Â

 u(x, t) = 

1

cos sinn

n

A nt n x
•

=

◊Â  (2)

where  An = 

0

2
( )sinf x n x dx

p

p Ú

 = 

0

2
(sin sin 2 )sink x x nx dx

p

p
-Ú

 An = 

0 0

2
sin sin sin 2 sin

k
x nx dx x nx dx

p p

p

È ˘
◊ - ◊Í ˙

Í ˙Î ˚
Ú Ú  (3)

But we know that 

0

sin sin 0mx n x dx

p

◊ =Ú  if m π n

 = 
2

p
 if m = n

\   Eq. (3) gives

 A1 = k, A2 = – k and An = 0 " n ≥ 3

Putting these values in Eq. (2), the required defl ection is given by

 u(x, t) = k (cos t sin x – cos 2 t . sin 2x)

Example 7  A tightly stretched string with fi xed end points x = 0 and x = l is initially in a position 

given by u = 
3

0 sin
x

u
l

pÊ ˆ
Á ˜Ë ¯ . If it is released from rest from this position, fi nd the displacement u(x, t).

Solution Let the equation to the vibrating string be

 

2

2

u

t

∂
∂

 = 

2
2

2

u
c

x

∂
∂

 (1)
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with the condition u(0, t) = 0, u(l, t) = 0

 ut (x, 0) = 0,  u(x, 0) = 
3

0 sin
x

u
l

pÊ ˆ
Á ˜Ë ¯

Suppose (1) has the solution of the form

 u(x, t) = (C1 cos lx + C2 sin lx) (C3 cos lct + C4 sin lct)  (2)

Using u(0, t) = 0, (2) gives

 C1 = 0

\ u(x, t) = C2 sin lx(C3 cos lct + C4 sin lct) (3)

Using u(l, t) = 0, gives

 0 = C2 sin ll(C3 cos lct + C4 sin lct)

\    sin ll = 0 = sin np or ll = np

 l = , 0, 1, 2, 3, ...
n

n
l

p
=

\ u(x, t) = 
2 3 4sin cos sin

n x n c t n c t
C C C

l l l

p p pÊ ˆ+Á ˜Ë ¯
 (4)

 ut(x, t) = 
2 3 4sin sin cos

u n x n c n c t n c n c t
C C C

t l l l l l

p p p p p∂ Ê ˆ= - + ◊Á ˜Ë ¯∂

Using  ut(x, 0) = 0 fi C4 = 0, (4) reduces to

 u(x, t) = 2 3 sin cos
n x n ct

C C
l l

p p
◊

 = sin cosn

n x n c t
B

l l

p pÊ ˆ◊ Á ˜Ë ¯
 [∵   Bn = C2 C3]

or  u(x, t) = 

1

sin cosn

n

n x n c t
B

l l

p p•

=

◊Â  (5)

But u(x, 0) = 3 0
0

3
sin 3sin sin

4

ux x x
u

l l l

p p pÊ ˆ Ê ˆ= -Á ˜ Á ˜Ë ¯ Ë ¯

\ u = 0

1

3
sin 3sin sin

4
n

n

un x x x
B

l l l

p p p•

=

Ê ˆ= -Á ˜Ë ¯Â

Hence, B1 = 0 0
3

3
,

4 4

u u
B =  and all B’s are zero.

\ u(x, t) = 0 3 3
3sin cos sin cos

4

u x c t x c t

l l l l

p p p pÈ ˘◊ - ◊Í ˙Î ˚

Example 8  The vibrations of an elastic string are governed by the partial differential equation 
2 2

2 2

u u

t x

∂ ∂
=

∂ ∂
. The length of the string is p and the ends are fi xed. The initial velocity is zero and the 

initial defl ection is u(x, 0) = 2 (sin + sin 3x). Find the defl ection u(x, t) of the vibrating string for t > 0.
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Solution The given partial differential equation is

 
2

2

u

t

∂
∂

 = 
2

2

u

x

∂
∂

 (1)  

With the condition u(0, t) = 0, u(p, t) = 0, ut(x, 0) = 0 and u(x, 0) = 2(sin x + sin 3 x).

Let the solution of (1) be in the form of

 u(x, t) = 
1

( cos sin ).sinn n

n

A nt B nt nx
•

=

+Â  (2)

Then,  An = 

0 0

2 2
( ) sin 2(sin sin3 ) sinf x nx dx x x nx dx

p p

p p
◊ = + ◊Ú Ú

 = [ ]
0

2
2sin sin 2sin3 sinx nx x n x dx

p

p
◊ +Ú

 = [ ] [ ]
0 0

2 2
cos( 1) cos( 1) cos( 3) cos( 3)n x n x dx n x n x dx

p p

p p
- - + + - - +Ú Ú

 = 

0 0

2 sin ( 1) sin ( 1) 2 sin ( 3) sin ( 3)

( 1) 1 ( 3) ( 3)

n x n x n x n x

n n n n

p p

p p

È ˘ È ˘- + - +
- + -Í ˙ Í ˙- + - +Î ˚ Î ˚

 = 
2

0

2 ( 1)sin ( 1) ( 1)sin ( 1)

1

n n x n n x

n

p

p

È ˘+ - - - +
Í ˙

-Í ˙Î ˚

           
2

0

2 ( 3)sin ( 3) ( 3)sin ( 3)

9

n n x n n x

n

p

p

È ˘+ - - - +
+ Í ˙

-Í ˙Î ˚
 = 0 (when n π 1, 3)

Now, A1 = 

0

2
2(sin sin3 )sinx x x dx

p

p
+Ú

 = [ ]2

0

2
2sin 2sin3 sinx x x dx

p

p
+ ◊Ú

 = [ ]
0

2
(1 cos2 ) cos2 cos 4x x x dx

p

p
- + -Ú

 = 
00

2 2 sin 4 2
(1 cos 4 ) ( 0)

4

x
x dx x

pp

p
p p p

È È ˘- = - = -Í Í ˙Î ˚Î
Ú

 A1 = 2

 and A3 = 
0

2
2(sin sin3 ) sin3x x x dx

p

p
+ ◊Ú

 = 
2

0

2
[2sin3 sin 2sin 3 ]x x x dx

p

p
◊ +Ú
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 = 
0

2
[cos2 cos 4 1 cos6 ]x x x dx

p

p
- + -Ú

 = 
0

2 sin 2 sin 4 sin6
2

2 4 6

x x x
x

p

p

È ˘- + - =Í ˙Î ˚

 Bn = 

0 0

2 2
( ) sin 0 sin 0g x n x dx nxdx

n n

p p

p p
◊ = ◊ =Ú Ú

\  Eq. (2) becomes

 u(x, t) = A1 cos t sin x + A3 cos 3t . sin 3x

 u(x, t) = 2 cos t sin x + 2 cos 3t sin 3x

 u(x, t) = 2 (cos t sin x + cos 3t sin 3x)

EXERCISE 15.2

 1. A string is stretched between two fi xed points at a distance l apart, motion is started by 

displacing the string in the form sin
x

y a
l

pÊ ˆ= Á ˜Ë ¯  from which it is released at time t = 0. Show 

that the displacement of any point at a fi xed distance x from one end at time t is given by

  y (x, t) = sin cos
x c t

a
l l

p pÊ ˆ Ê ˆ◊Á ˜ Á ˜Ë ¯ Ë ¯

 2. Solve completely the equation 
2 2

2

2 2

u u
c

t x

∂ ∂
=

∂ ∂
 representing the vibrations of a string of length 

l, fi xed at both ends, given that u(0, t) = 0, u(l, t) = 0, u(x, 0) = f(x) and ut(x, 0) = 0, 0 < x < l.

 3. If a string of length l is initially at rest in equilibrium position and each of its point is given the 

velocity ut(x, 0) = 3sin
x

b
l

pÊ ˆ
Á ˜Ë ¯

, fi nd the displacement u(x, t).

 4.  Solve the wave equation 
2 2

2

2 2

u u
c

t x

∂ ∂
=

∂ ∂
, under the conditions u(0, t) = 0, u(p, t) = 0, ut(x, 0) = 0

and u(x, 0) = x; 0 < x < p.

 5. A tant string of length 2l is fastened at both ends. The midpoint of the string is taken to a 

height b and then released from rest in that position. Find the displacement of the string.

 6. A string is stretched between the fi xed points (0, 0) and (l, 0) and released at rest from the 

initial defl ection given by f (x) = 

2
, when 0 /2

2 ( )
, when /2

k x
x l

l

k l x
l x l

l

Ï < <ÔÔ
Ì -Ô < <
ÔÓ

  Find the defl ection of the string at any time t.

 7. A string is stretched and fastened to two points l apart. Motion is started by displacing the 

string into the form u = k(l k – x2) from which it is released at time t = 0. Find the displacement 

of any point on the string at a distance of x from one end at time t.
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Answers

 3. u(x, t) = 
3 3

9sin sin sin sin
12

bl x c t x c t

c l l l l

p p p p

p

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ- ◊Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Î ˚

 4. u(x, t) = 
+•

=

-Â
1

1

( 1)
2 sin .cos

n

n

nx nct
n

 6. u(x, t) = 
p p

p

+•

=

- - -
-

Â
1

2 2
1

8 ( 1) (2 1) (2 1)
cos sin

(2 1)

n

n

K n ct n x

l ln

 7. u(x, t) = 
2

3 3
1

8 1
cos sin

n

K l n c t n x

l ln

p p

p

•

=

Ê ˆ Ê ˆ◊Á ˜ Á ˜Ë ¯ Ë ¯Â , when n is odd.

15.4  ONE-DIMENSIONAL HEAT EQUATION

Consider the fl ow of heat by conduction in a bar 

OA. Let OA be taken as the x-axis. We suppose 

an element PQRS of the bar at any point P is a 

function of x and time t. Suppose that the bar is 

raised to an assigned temperature distribution 

at time t = 0 and then heat is allowed to fl ow by 

conduction. We fi nd u(x, t) at any point x and at 

any point t > 0.

We consider the following assumptions:

 (i) The bar is homogeneous, i.e., the mass 

of the bar per unit volume is constant, 

say. 

 (ii) The sides of the bar are insulated and the loss of heat from the sides by conduction can be 

neglected.

 (iii) The amount of heat crossing any section of the bar is given by 
u

k A t
x

d
∂Ê ˆ

Á ˜Ë ¯∂
, where A is the 

area of cross section of the bar, 
u

x

∂
∂

 is the temperature gradient at the section, and dt is the time 

of fl ow of heat, k is the thermal conductivity of the material of the bar.

Now, the quantity of heat fl owing into the element across the section PS in time dt

 = d
∂Ê ˆ- Á ˜Ë ¯∂

x

u
kA t

x

where the negative sign has been taken because heat fl ows in the decreasing direction.

Again, the quantity of heat fl owing out of the element across the section QR in time dt

 = 
d

d
+

∂Ê ˆ- Á ˜Ë ¯∂
x x

u
kA t

x

Fig. 15.1
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Hence, the quantity of heat retained by the element is 

 = 
x x x

u u
kA t kA t

x x d

d d
+

∂ ∂Ê ˆ Ê ˆ- ◊ + ◊Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

or = 

x x

u u
kA x t

x xd

d
+

È ˘∂ ∂Ê ˆ Ê ˆ- ◊Í ˙Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂Í ˙Î ˚
 (16)

Suppose the heat above raises the temperature of the element by a small quantity du. Then the same 

quantity of heat is again given by = (rAdx)sdu. (17)

where s is the specifi c heat of the bar.

Since equations (16) and (17) are equal, we have

 kAdt[u(x + dx, t) – u(x, t)] = (rAdx)sdu.

or        
( , ) ( , )u x x t u x t u

k
x t

d d
rs

d d

+ -
◊ =

Now, as dx Æ 0 and dt Æ 0

\   
2

2

u
k

x

∂
∂

 = rs
rs

∂ ∂ ∂
= =

∂ ∂ ∂

2
2 2

2
or where

u u u k
c c

t t x
 is called the diffusivity of the material of the 

bar.

15.5  SOLUTION OF ONE-DIMENSIONAL HEAT EQUATION

The one-dimensional heat-fl ow equation is given by 

 
u

t

∂
∂

 = 
2

2

2

u
c

x

∂
∂

 (18)

To solve Eq. (18) by the method of separation of variables, suppose Eq. (18) has the solution of the 

form

 u(x, t) = X(x). T(t) (19)

where X is a function of x alone and T is a function of t alone. Differentiating (19) both sides w.r.t. x 

and t, we get

 
2

2

u

x

∂
∂

 = 
2

2
and

d x u dT
T X

t dtdx

∂
=

∂
Substituting in Eq. (18), we have

 
dT

X
dt

 = 
2

2

2

d X
c T

dx

Separating the variables,

 
2

2

1 d X

X dx
 = 

2

1 dT

dtc T
 (20)

The LHS of (20) is a function of x alone and the RHS is a function of t alone. Since x and t are 

independent variables, (20) can hold good if each side is equal to a constant, say k. Then

 
2

2

d X

dx
 = kX or 

2

2
0

d X
kX

dx
- =  (21) 
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And 
dT

k T
dt

-  = 0 (22)

Then three cases aries accordingly as k is zero, +ve or –ve.

Case I

When k = 0 then solutions (21) and (22) are

 X(x) = A1x + B1 and T(t) = C1

\ u(x, t) = (A1x + B1)C1

Case II 

When k > 0, i.e., k = + l2, (say) then solutions of (21) and (22) are

 X(x) = A2e
lx + B2e

–lx and 
2 2

2( ) k t
T t C e

l=

\ u(x, t) = 
2 2

2 2 3( )x x k t
A e B e C e

l l l-+

Case III

When k < 0, i.e., k = –l2, then solutions of (21) and (22) are

 X(x) = A3 cos lx + B3 sin lx and 
2 2

3( ) k t
T t C e

l-=

\ u(x, t) = 
2 2

3 3 3( cos sin ) k t
A x B x C e

ll l -+

Now, we have to choose that solution which is consistent with the physical nature of the problem. 

Since we are dealing with the problem of heat conduction, the temperature u(x, t) must decrease with 

the increases of time. Accordingly, the solution in Case (III) is the only suitable solution.

Example 9  If both the ends of a bar of length l are at temperature zero and the initial temperature 

is to be prescribed as a function f (x) in the bar then fi nd the temperature at a subsequent time t.

Solution The one-dimensional heat equation is

 
u

t

∂
∂

 = 
2

2

2

u
c

x

∂
∂

 (1)

Suppose u(x, t) is the temperature.

Since the ends x = 0 and x = l are kept at zero temperature, the boundary conditions is given by

u(0, t) = u(l, t) = 0 for all t  and the initial condition is given by

 u (x, 0) = f (x)

Consider Eq. (1) has solution of the form

 u(x, t) = X(x).T(t) (2)

where X is a function of x alone and T is a function of t alone.

Differentiating (2) both sides w.r.t. x and t, we have

 

2

2

u

x

∂
∂

 = 
2

2
,

d X u dT
T X

t dtdx

∂
=

∂
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Substituting it in (1), we get

 
2

2

2

d X
c T

dx
 = 

dT
X

dt

Separating the variables,

 
2

2

1 d X

X dx
 = 

2

1 dT

dtc T
 (3)

Since x and t are independent variables, (3) can hold good if each side is equal to a constant, say k. 

Then (3) becomes

 
2

2

1 d X

X dx
 = k or 

2

2
0

d X
kX

dx
- =  (4)

 
2

1 dT

dtc T
 = k or 2 0

dT
kc T

dt
- =  (5)

The boundary condition 
(0, ) 0 (0) ( ) (0) 0

, ( ) 0
( , ) 0 ( ) ( ) ( ) 0

u t X T t X
T t

u l t X l T t X l

= = fi = ¸
π˝= = fi = ˛

 (6)

Case I: When k = 0, the solution of (4) and (5) are

 X(x) = Ax + B and T(t) = C

Using BC (6), X(0) = 0 fi B = 0 and X(l) = 0 fi Al + 0 = 0

 A = 0

\ X(x) = 0

Hence, u(x, t) = 0 which is not possible.

Case II: When k > 0, i.e., k = l2 (say) then the solutions of (4) and (5) are

 X(x) = Ae
lx + Be

–lx, T(t) = 
2 2
c t

Ce
l+

Using BC (6), X(0) = 0 fi A + B = 0 or B = –A 

 X(l) = 0 fi A[ell – e–ll] = 0

 A = 0   (\   ell – e–ll π 0)

\ B = 0

\ X(x) = 0

Hence, u(x, t) = 0, which is not possible.

Case III: When k < 0, i.e., k = –l2 say, then the solutions of (4) and (5) are

 X(x) = A cos lx + B sin lx, 
2 2

( ) c t
T t ce

l-=

Using BC (6), X(0) = 0 fi A = 0

 X(l ) = 0 fi B sin ll = 0

 B π 0, sin ll = 0 = sin np

 ll = np

 l = 
n

l

p
, where n = 1, 2, 3, …
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Hence, the nonzero solution ( ) sinn n

n x
X x B

l

pÊ ˆ= Á ˜Ë ¯
 and 

2 2 2

2
( )n n

n c t
T t C e

l

p-
=

Therefore, un (x, t) = Xn (x). Tn (t)

 u(x, t) = 
2 2 2

2
1 1

( , ) sinn n

n n

n x n c t
u x t E e

l l

p p• •

= =

-Ê ˆ= ◊Á ˜Ë ¯Â Â  (7)

Putting t = 0 in (7) and using u(x, 0) = f (x), we get

 f (x) = 

1

sinn

n

n x
E

l

p•

=

Ê ˆ◊ Á ˜Ë ¯Â

which is a Fourier sine series, so the constant En is given by

 En = 

0

2
( ) sin , 1, 2, 3, ...

l
n x

f x dx n
l l

pÊ ˆ◊ =Á ˜Ë ¯Ú  (8)

Hence, (7) is required solution where En is given by (8).

Example 10  The ends A and B of a 20 cm long rod have the temperature at 30°C and 80°C until 

steady state prevails. The temperature of the ends are changed to 40°C and 60°C respectively. Find the 

temperature distribution in the rod at time t.

Solution The initial temperature distribution in the rod is 

 u = 
(80 30) 50

30 30
20 20

x x
-

+ = +

i.e., u = 
5

30
2

x+

and the fi nal distribution (i.e., in steady state) is 

 u = 
(60 40)

40 40
20

x x
-

+ = +

To get u in the intermediate period, reckoning time from the instant when the end temperature 

changed, we consider

 u = u1 (x, t) + u2 (x)

where u2 (x) is the steady-state temperature distribution in the rod and u1 (x, t) is the transient temperature 

distribution which tends to zero as t increases.

Thus, u2 (x) = 40 + x

Now, u1 (x, t) satisfi es the one-dimensional heat-fl ow equation

 
u

t

∂
∂

 = 
2

2

2

u
c

x

∂
∂

 (1)

Hence, the solution of (1) is

 u(x, t) = (A cos l x + B sin l x). 
2 2l-c t

e

Hence, u is in the form
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 u = 
2 2

1

40 ( cos sin ) c t
x A x B x e

l
l l

l

l l
•

-

=

+ + +Â
Since u = 40°C when x = 0 and u = 60°C when x = 20, we get

 Al = 0 and 
20

np
l =

\ u = 
2 2 2

1

40 sin
20 400

n

n

n x c n t
x B e

p p•

=

-
+ ◊Â  (2)

Using the initial condition u(x, 0) = 
5

30
2

x+

 
5

30
2

x+  = 

1

40 sin
20

n

n

n x
x B

p•

=

+ + Â

or 
3

10
2

x -  = 
1

sin
20

n

n

n x
B

p•

=
Â

Hence, Bn = 
20

0

2 3
10 sin

20 2 20

n x
x dx

pÊ ˆ-Á ˜Ë ¯Ú

 = 

20

2 2

0

1 3 20 3 400
10 cos sin

10 2 20 2 20

x n x n x

n n

p p

p p

È ˘Ê ˆÊ ˆ- -Ê ˆ- -Í ˙Á ˜ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

 = 
1 20 20 20

20 ( 1) ( 10) 2( 1) 1
10

n n

n n np p p

È ˘Ê ˆ Ê ˆ È ˘- - - - = - - +Í ˙Á ˜ Á ˜ Î ˚Ë ¯ Ë ¯Í ˙Î ˚

Thus, u(x, t) = 
2 2 2

1

20 2( 1)
40 sin

20 400

n

n

n x n c t
x e

n

p p

p

•

=

Ê ˆ- -Ê ˆ+ - Á ˜ Á ˜Ë ¯Ë ¯
Â  

Example 11  Obtained temperature distribution u(x, t) in a uniform long bar whose one end is kept 

at 10°C and the other end is insulated. Further, it is given that u(x, 0) = (1 – x); 0 < x < 1.

Solution Suppose the bar is placed along the x-axis. Let its one end be at the origin and the other end 

be at x = 1.Then to solve 
u

t

∂
∂

 = 
2

2

2

u
c

x

∂
∂

 (1)

With BC ux (1, t) = 0, u(0, t) = 10 (2)

and IC u(x, 0) = (1 – x), 0 < x < 1 (3)

Consider u(x, t) = y (x, t) + 10

or  y (x, t) = u(x, t) – 10 (4)

Using(4), (1), (2), and (3) reduce to

 
y

t

∂
∂

 = 
2

2

2

y
C

x

∂
∂

 (5)
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 yx(1, t) = 0, y(0, t) = 0 (6)

 y(x, 0) = u(x, 0) – 10 = –(x + 9) (7)

Let the equation (5) has the solution of the form

 y(x, t) = X(x) ◊ T(t) (8)

Substituting this value of y in (5), we get

 
dT

X
dt

 = 
2 2

2

2 2 2

1 1
or (say)

d X d X dT
c T k

X dtdx dx c T
= =  (9)

\ 
2

2

d X
k X

dx
-  = 0 (10)

 2dT
k c T

dt
-  = 0 (11)

Using(6) and (8) gives X¢(1) T(t) = 0 and X(0) T(t) = 0

Since T(t) π 0, Then X¢(1) = 0 and X(0) = 0 (12)

Cases I and II

When k ≥ 0 then using BC (12) and equation (10), have a trivial solution.

\   u(x, t) = 0, It is not possible.

Case III 

When k < 0, i.e., k = –l2 say, then the solution of (10) is 

 X(x) = A cos lx + B sin lx. (13)

So that X¢ (x) = –Al sin lx + Bl cos lx (14)

Using BC (12), equations (13) and (14) gives

 A = 0 and cos l = 0

where we have taken B π 0, since otherwise X(x) = 0, and, hence, u(x, t) = 0

Now, cos l = 0 fi l = 
1

(2 1) , 1, 2, 3, ...
2

n np- =

\ k = 2 2 21
(2 1)

4
nl p- - -

Hence, nonzero solution Xn (x) = 
1

sin (2 1)
2

nB n xp-
Now, Eq. (11) becomes

 
dT

dt
 = 

2 2
2(2 1)

or
4

n

n k dT
T C dt

dt

p-
- = -  (15)

where 2
nC  = 2 21

(2 1)
4

n kp-

Solving (15), Tn(t) = 
2
nc t

nD e
-

\ yn(x, t) = Xn(n) Tn(t) = 
2(2 1)

sin
2

nc t
n

n x
E e

p --
◊



15.24 Engineering Mathematics for Semesters I and II

are solutions of (5) satisfying (6), Here, En (= Bn Dn) in another arbitrary constant. In order to fi nd a 

solution also satisfying(7), we consider

 y(x, t) = 
2

1 1

(2 1)
( , ) sin

2
nc t

n n

n n

n x
y x t E e

p• •
-

= =

-
=Â Â  (16)

Putting t = 0 in (16) and using(7), we have

 –(x + 9) = 

1

(2 1)
sin

2
n

n

n x
E

p•

=

-Â  (17)

Multiplying both sides of (17) by sin 
(2 1)

2

m xp-
 and then integrating w.r.t. x from 0 to 1, we get

 
( )1

0

2 1
( 9)sin

2

m x
x dx

p-
- +Ú  = 

1

1 0

(2 1) (2 1)
sin sin

2 2
n

n

n x m x
E dx

p p•

=

- -Â Ú  (18)

But  

1

0

(2 1) (2 1)
sin sin

2 2

n x m x
dx

p p- -
Ú  = 

0 if

1 if

m n

m n

πÏ
Ì =Ó

 (19)

Using (19), (18) gives

 

1

0

(2 1)
( 9)sin

2

m x
x dx

p-
- +Ú  = Em

\ En = 
1

0

(2 1)
( 9)sin

2

n x
x dx

p-
- +Ú

 = 

1

2 2

0

(2 1) (2 1)
cos sin

2 22 ( 9) 1
(2 1) (2 1)

2 4

n x n x

x
n x n

p p

p p

È ˘Ê ˆ- -Ê ˆ- -Í ˙Á ˜Á ˜Í ˙- + - Á ˜Á ˜-Í ˙-Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

 [using chain rule]

 = 
2 2

8( 1) 36

(2 1)(2 1)

n

nn pp

-
-

--

Using (16) and (4), the required solution is given by

 u(x, t) = 
2

1

(2 1)
10 sin

2
nc t

n

n

n x
E e

p•
-

=

-
+ Â

Example 12  A rod of length l with insulated sides, is initially at a uniform temperate u0. Its ends 

are suddenly cooled to 0°C  and are kept at that temperature. Find the temperature distribution u(x, t).

Solution Reference Example 11. Here, f (x) = u0. Then Eq. (8)

 En = 0
0

00

22
sin cos

ll
un x l n x

u dx
l l l n l

p p

p

È ˘-
= Í ˙

Î ˚
Ú

  = 02
1 ( 1)nu

np
È ˘- -Î ˚    [\cos n p = (– 1)n]
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 = 
0

0 if 2 , , 1,2,3,...

4
if 2 1, 1,2,3,...

n m m

u
n m m

np

= =Ï
Ô
Ì = - =Ô
Ó

Hence, the solution (7) reduces to 

 u(x, t) = 
2
2 1

2 1

1

(2 1)
sin mC t

m

m

m x
E e

l

p -
•

- ◊
-

=

-Â

i.e. u(x, t) = 
2
2 10

1

4 (2 1)
sin

(2 1)

mC t

m

u l m x
e

m l

p

p
-

•
- ◊

=

-
◊

-Â

where 2
2 1mC -  = 

2 2
2

2
(2 1)

c
m

l

p
-

EXERCISE 15.3

 1. Solve 
u

t

∂
∂

 = 
2

2

2

u
c

x

∂
∂

 for 0 < x < p, t = 0, when ux(0, t) = ux(p, t) = 0 and u(x, 0) = sin x.

 2. Solve 
2

2
3

u u

t x

∂ ∂
=

∂ ∂
, t > 0 by the method of separation of variables with conditions u(0, t) = 0, 

u(2, t) = 0, t > 0 and u(x, 0) = x, 0 < x < 2.

 3. Solve 
2

2

2

u u
a

t x

∂ ∂
=

∂ ∂
 under the conditions u(0, t) = 0 = u(p, t.);  t > 0 and u(x, 0) = x

2,

0 < x < p.

 4. The temperature at one end of a 50 cm long bar with insulated sides, is kept at 0°C and the 

other end is kept at 100°C until steady-state conditions prevail. The two ends are then suddenly 

insulated, so that the temperature gradient is zero at each end thereafter, fi nd the temperature 

distribution.

 5. Find the solution of 
2

2

2

u u
h

tx

∂ ∂
=

∂∂
 for which u(0, t) = 0, u(l, t) = 0 and u(x, 0) = sin

x

l

pÊ ˆ
Á ˜Ë ¯

 by 

method of separation of variables.

 6. Use the method of separation of variables to solve the equation 
2

2

u u

t x

∂ ∂
=

∂ ∂
, given that u = 0 

when t Æ • as well as u = 0 at x = 0 and x = l.

 7. A homogeneous rod of conducting material of 100 cm length has its ends kept at 0°C and 

temperature initially is u(x, 0) = x, 0 £ x £ 50, u(x, 0) = 100 – x, 50 £ x £ 100. Find the 

temperature u(x, t) at any time t > 0.

 8. The temperature distribution in a bar of length p, which is perfectly insulated at ends x = 0 

and x = p is governed by the partial differential equation 
2

2

u u

t x

∂ ∂
=

∂ ∂
. Assuming the initial 

temperature as u(x, 0) = cos 2x, fi nd the temperature in the bar at any instant of time.
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Answers

 1. u(x, t) = 
2 24

2
1

2 4 1
cos2

4 1

m c t

m

e mx
mp p

•
-

=

-
-

Â

 2. u(x, t) = 

2 2

1

sin
32

4
sin

2
n

n x

n t
e

n

p
p

p

•

=

-Â

 3. u(x, t) = pp •
-

=

-
+ Â

2 2
2

2
1

( 1)
4 cos

3

n
a t

n

n x e
n

 4. u(x, t) = 
2 2 2(2 1) / 2500

2 2
1

400 1 (2 1)
50 cos

50(2 1)

n c

n

n x
e

n

pp

p

•
- -

=

-
-

-
Â

 5. u(x, t) = 

2

2 2

sin

t
h lx

e
l

p

p
Ê ˆ

-Á ˜
Ë ¯

 6. u(x, t) = 

2 2

2

1

sin

n
t

l
n

n

n x
b e

l

p

p -•

=

Ê ˆ ◊Á ˜Ë ¯Â

 7. u(x, t) = 

2
(2 1)

100

2 2
0

400 ( 1) (2 1)
sin

100(2 1)

n c
n t

n

n x
e

n

p
p

p

+Ê ˆ• -Á ˜Ë ¯

=

- +
◊

+
Â

 8. u(x, t) = e–4t . cos 2 x

15.6   VIBRATING MEMBRANE—TWO-DIMENSIONAL WAVE 
EQUATION

Consider a tightly stretched membrane (like membrane of a drum). For this case, we have the following 

assumptions.

 (i) The membrane is uniform.

 (ii) The tension T per unit length is the same in all directions at every point.

Fig. 15.2
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Consider the forces on an element dxdy of the membrane. Now, due to its displacement u, 

perpendicular to the xy-plane, forces Tdx and Tdy act on the edges along the tangent to the membrane. 

Here, the forces Tdy (tangential to the membrane) on its opposite edge of length dy act at angles a and 

b to the horizontal.

Hence, their vertical component = (Tdy) sin b – (T dy) sin a

 = Tdy (tan b – tan a)  (∵  a, b are very small)

 = 
x x x

u u
T y

x xd

d
+

È ˘∂ ∂Ê ˆ Ê ˆ-Í ˙Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂Í ˙Î ˚

 = 
x x x

u u

x x
T y x

x

d
d d

d

+

È ˘∂ ∂Ê ˆ Ê ˆ-Í ˙Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂Í ˙Î ˚  = 
2

2

u
T y x

x
d d

∂
◊
∂

Similarly, the forces Tdx (vertical component of the force) acting on the edges of length dx have the 

vertical component 

 
2

2

u
T y x

y
d d

∂
◊
∂

Hence, the equation of motion of the element is given by

 
2

2
( )

u
m x y

t
d d

∂
∂

 = 
2 2

2 2

u u
T x y

x y
d d

Ê ˆ∂ ∂
+Á ˜∂ ∂Ë ¯

or 
2

2

u

t

∂
∂

 = 

2 2
2 2

2 2
where

u u T
c c

mx y

Ê ˆ∂ ∂
+ =Á ˜∂ ∂Ë ¯

This is the wave equation in two dimensions. 

15.7  SOLUTION OF TWO-DIMENSIONAL WAVE EQUATION

Two-dimensional wave equation is

 

2

2

u

t

∂
∂

 = 

2 2
2

2 2

u u
c

x y

Ê ˆ∂ ∂
+Á ˜∂ ∂Ë ¯

 (23)

subject to the boundary conditions

 u(0, y, t) = 0, u(a, y, t) = 0, u(x, 0, t) = 0, u(x, b, t) = 0

and initial conditions u(x, y, 0) = f (x, y) and 
0

( , )
t

u
g x y

t =

∂Ê ˆ =Á ˜Ë ¯∂

Suppose that Eq. (23) has solutions of the form

 u(x, y, t) = X(x) ◊ Y(y) ◊ T(t) (24)

where X is a function of x alone, Y is a function of y alone, and 

T is a function of t alone.

Substituting this in (23) , we get

 X¢¢YT + XY¢¢T = 
2

1
X Y T

c
¢¢

Fig. 15.3
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or 
X Y

X Y

¢¢ ¢¢
+  = 

2

T

c T

¢¢
 (25)

Since x, y, and t are independent variables, (25) can only be true if each term on each side is equal 

to a constant.

Let 
X

X

¢¢
 = k1 so that X¢¢ - k1X = 0 (26)

 
Y

Y

¢¢
 = k2 so that Y¢¢ - k2Y = 0 (27)

and 
2

T

c T

¢¢
 = k1 + k2 so that T¢¢ - (k1 + k2) c

2
T = 0 (28)

Using u(0, y, t) = 0 and u(a, y, t) = 0, (24) gives

 X(0) Y(y) T(t) = 0 and X(a) Y(y) T(t) = 0

We assume that Y(y) π 0, T(t) π 0, then 
(0) 0

( ) 0

X

X a

= ¸
˝= ˛

 (29)

Now, we solve (26) under BC (29).

Then three cases arise.

Case I

When k1 = 0 then the solution of (26) is

 X(x) = Ax + B

Using BC (29), X(0) = 0 fi B = 0 and X(a) = 0 fi A.a = 0 

i.e., A = 0

\ X(x) = 0

 u(x, y, t) = 0, so we reject k1 = 0

Case II 

When k1 > 0, i.e., k1 = l1
2 then the solution of (26) is

 X(x) = 1 1–x x
Ae Be

l l+
Using BC (29), X(0) = 0 fi A + B = 0 or B = – A.

and X(a) = 1 1– ) 00 (
a a

A e e
l lfi - =  

 A = 0 and 1 1– 0
a a

e e
l l π- , then B = 0

\ X(x ) = 0 

Hence, u(x, y, t) = 0, so we reject k1 = l1
2.

Case III

When k1 < 0, i.e., k = –l1
2. Then the solution of (26) is 

 X(x) = A cos l1x + B sin l1x

Using BC (29), X(0) = 0 fi A = 0
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and X(a) = 0 fi B sin l1a = 0

 B π 0 so that sin l1a = 0 = sin mp
 l1a = m p

 l1 = , 1, 2, 3, ...
m

m
a

p
=

Hence, the nonzero solution Xm(x) of (26) is given by

 Xm(x) = sin , 1, 2, 3, ...m

m x
B m

a

pÊ ˆ =Á ˜Ë ¯

Now next, when k2 = –l2
2, so the solution of (27) is 

 Y(y) = C cos l2 y + D sin l2 y

Now, using the BC u(x, 0, t) = 0 and u(x, b, t) = 0, (27) gives

 Y(0) = 0 and Y(b) = 0

\ Y(0) = 0 fi C = 0 and Y(b) = 0 fi D sin l2b = 0

 D π 0 so that sin l2b = 0 = sin np
 l2b = np

 l2 = , 1, 2, 3, ...
n

n
b

l
=

Hence, the nonzero solution is

 Yn (y) = sin , 1, 2, 3, ...n

n y
D n

b

pÊ ˆ =Á ˜Ë ¯

Now, Eq. (28) becomes

 
2

T

c T

¢¢
 = 2 2

1 2 1 2( )k k l l+ = - +

 
2

T

c T

¢¢
 = 

2 2
2

2 2

m n

a b
p

Ê ˆ
- +Á ˜

Ë ¯

or 2
mnT Tl¢¢ +  = 0 (30)

where 2
mnl  = 

2 2
2 2

2 2

m n
c

a b
p

Ê ˆ
+Á ˜

Ë ¯

The solution of (30) is 

 Tmn (t) = Emn ◊ cos lmn t + Fmn ◊ sin lmnt

\ umn(x, y, t) = Xm(x) ◊ Yn(y) ◊ Tmn(t)

 umn(x, y, t) = ( cos sin ) sin sinmn mn mn mn

m x n y
A t B t

a b

p p
l l

Ê ˆ Ê ˆ+ ◊ ◊Á ˜ Á ˜Ë ¯ Ë ¯
 (31)

where Amn = (Bm ◊ Dn ◊ Emn) and Bmn = (Bm ◊ Dn ◊ Fmn) are arbitrary constants.

Consider the more general solution of Eq. (23) is given by

 u(x, y, t) = [
1 1

cos sin sin sinmn mn mnmn
m n

m x n y
A t B t

a b

p p
l l

• •

= =

Ê ˆ Ê ˆ+ ◊ ◊˘ Á ˜ Á ˜˚ Ë ¯ Ë ¯Â Â  (32)
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Differentiating (32) partially w.r.t. ‘t’, we get

 
u

t

∂
∂

 = 
p p

l l l l
• •

= =

Ê ˆ Ê ˆ- ◊ + ◊È ˘ Á ˜ Á ˜Î ˚ Ë ¯ Ë ¯Â Â
1 1

sin cos sin sinmn mn mn mn mn mn

m n

m x n y
A t B t

a b
 (33)

Putting t = 0 in (32) and (33) using I.C. u(x, y, 0) = f (x, y) and 
0

( , )
t

u
g x y

t =

∂Ê ˆ =Á ˜Ë ¯∂
, we get

 f (x, y) = 

1 1

sin sinmn

m n

m x n y
A

a b

p p• •

= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Â Â  (34)

 g(x, y) = 
p p

l
• •

= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Â Â

1 1

( )sin sinmn mn

m n

m x n y
B

a b
 (35)

which are double Fourier sine series. We get

 Amn = 

0 0

4
( , ) sin sin

a b

x y

m x n y
f x y dx dy

a b a b

p p

= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú  (36)

and Bmn = 

0 0

4
( , ) sin sin

a b

mn x y

m x n y
g x y dx dy

a b a b

p p

l
= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú  (37)

Thus, the desired defl ection u(x, y, t) of the given membrane is given by (32) where in Amn and Bmn 

are given by (36) and (37) respectively.

Example 13  Find the defl ection u(x, y, t) of the square membrane with a = b = 1 and c = 1, if the 

initial velocity is zero and initial defl ection is f (x, y) = A sin p x. sin 2 p y.

Solution The defl ection of the square membrane is given by the two-dimensional wave equation.

 
2

2

u

t

∂
∂

 = 
2 2

2

2 2

u u
c

x y

Ê ˆ∂ ∂
+Á ˜∂ ∂Ë ¯

 (1)

The boundary conditions are u(x, 0, t) = 0 = u(x, 1, t) and  u(0, y, t) = 0, u(1, y, t) = 0

The initial conditions are u(x, y, 0) = f (x, y) = A sin p x sin 2 p y,

 
0t

u

t =

∂Ê ˆ
Á ˜Ë ¯∂

 = g(x, y) = 0

\   The defl ection of (1) is given by

 u(x, y, t) = 
1 1

cos sin ( ) sin ( )mn mn

m n

A t m x n yl p p
• •

= =

◊Â Â  (2)

where Amn = 

1 1

0 0

4
( , )sin ( )sin ( )

1 1
f x y m x n y dxdyp p

◊ Ú Ú

 = 
1 1

0 0

4 sin sin 2 sin ( ) sin ( )A x y m x n y dx dyp p p p◊ ◊Ú Ú
 [ \   a = b = 1, c = 1, and l2

mn = p2(m2 + n2)]
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 = 

1 1

0 0

2sin sin 2sin 2 sinA x m x dx y n y dyp p p p
È ˘Ê ˆ Ê ˆ
Í ˙◊ ◊Á ˜ Á ˜
Í ˙Ë ¯ Ë ¯Î ˚

Ú Ú  (3)

But  

1

0

2sin sin 0 if 1

1 if 1

x m x dx m

m

p p
¸

◊ = π Ô
˝
Ô

= = ˛

Ú  (4)

and  
1

0

2sin 2 sin 0 if 2

1 if 2

y n y dy n

n

p p
¸

◊ = π Ô
˝
Ô

= = ˛

Ú  (5)

Using (4) and (5), (3) gives

 A12 = A  and  Amn = 0 otherwise

and 2
12l  = 

2 2 2 2
12(1 2 ) 5 or 5p p l p+ = ◊ =

\   Eq. (2) gives

 u(x, y, t) = A12 cos l12 t sin p x · sin 2 p y

 = cos( 5 )sin sin 2A t x yp p p◊

Example 14  A tightly stretched unit square membrane starts vibrating from rest and its initial 

displacement is k sin p y. Show that the defl ection at any instant is k sin 2 p x. sin p y. cos( 5 . ).ctp

Solution Here 
2

2

u

t

∂
∂

 = 

2 2
2

2 2

u u
c

x y

Ê ˆ∂ ∂
+Á ˜∂ ∂Ë ¯

 (1)

The BC’s are u(0, y, t) = 0 = u(1, y, t) and u(x, 0, t) = 0 = u(x, 1, t)

The IC’s are u(x, y, 0) = f (x, y) = k sin 2 p x sin p y and 
0

( , ) 0
t

u
g x y

t =

∂Ê ˆ = =Á ˜Ë ¯∂
The defl ection of (1) is given by

 u(x, y, t) = 
1 1

cos sin sinmn mn

m n

A t m x n yl p p
• •

= =

◊Â Â  (2)

 [\   a = b = 1, 2 2 2 2 2( )mn c m nl p= + ]

where  Amn = 

1 1

0 0

4
( , ) sin ( ) sin ( )

1 1
f x y m x n y dx dyp p◊ ◊

◊ Ú Ú

 = 

1 1

0 0

4 ( sin 2 sin )sin ( )sin ( )k x y m x n y dx dyp p p p◊Ú Ú

 = 

1 1

0 0

2sin 2 sin 2sin sink x m x dx y n y dyp p p p
È ˘Ê ˆ Ê ˆ
Í ˙◊ ◊ ◊Á ˜ Á ˜
Í ˙Ë ¯ Ë ¯Î ˚

Ú Ú
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But  

1

0

2sin 2 sin 0 if 2

1 if 2

x m x dx m

m

p p
¸

◊ = π Ô
˝
Ô

= = ˛

Ú  (4)

and 

1

0

2sin sin 0 if 1

1 if 1

y n y dy n

n

p p
¸

◊ = π Ô
˝
Ô

= = ˛

Ú  (5)

Using(4) and (5), (3) gives

 A21 = k  and  2 2 2 2 2 2 2
21 (2 1 ) 5c cl l p= + =

or l21 = 5cp

\   The required solution is 

 u(x, y, t) = sin 2 sin cos( 5 )k x y c tp p p◊ ◊  Hence, proved.

EXERCISE 15.4

 1. Solve 
2 2 2

2

2 2 2

u u u
c

t x y

Ê ˆ∂ ∂ ∂
= +Á ˜∂ ∂ ∂Ë ¯

 with the conditions that u = 0, along the lines x = 0, y = 0, 

x = a, y = 1.

 2. Proof show that for a rectangular membrane of sides a and b vibrating with its boundaries 

fi xed, the eigenvalues and eigenfunctions are given by 
2 2

2 2mn

m n
c

a b
l p

Ê ˆ
= +Á ˜

Ë ¯
,

  umn = cos( ) sin ( ) sin sinmn mn mn mn

m x n y
A t B t

a b

p p
l l

Ê ˆ Ê ˆ- ◊È ˘ Á ˜ Á ˜Î ˚ Ë ¯ Ë ¯
,

  m = 1, 2, 3, …, n = 1, 2, 3, …

 3. Find the defl ection u(x, y, t) of a rectangular membrane 0 £ x £ a, 0 £ y £ b whose boundary is 

fi xed, given that it starts from rest and u(x, y, 0) = xy (a – x) (b – y).

Answers

 1. u(x, y, t) = A cos (cpt). sin (px).

 3. u(x, y, t) = 
1 1

sin sin cos( )mn mn

m n

m x n y
A t

a b

p p
l

• •

= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Â Â

  where 
2 2

6 3

64

( )
mn

a b
A

mnp
=  both m and n are odd, and 

2 2

2 2mn

m n
c

a b
l p

Ê ˆ
= +Á ˜

Ë ¯
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15.8  TWO-DIMENSIONAL HEAT FLOW

Consider the heat of fl ow in a metal plate in the directions of its 

length (say x-axis) and breadth (y-axis) respectively. Where, of 

course, there is no fl ow of heat along the direction of the normal 

to the plane of the rectangle, i.e., the temperature at any point is 

independent of the z-coordinate and depends on x, y, and time t 

only, the fl ow is called two-dimensional. Consider the fl ow of 

heat in a rectangular plate with sides dx and dy. Let the metal 

plate be of uniform thickness a, density r, specifi c heat s, and 

thermal conductivity k.

Now, the quantity of heat that enters the plate per second from 

the sides AB.

 = 

y

u
k x

y
ad

Ê ˆ∂
- Á ˜∂Ë ¯

Similarly, the quantity of heat that enters the plate per second from the side AD

 = 
x

u
k y

x
ad

∂Ê ˆ- Á ˜Ë ¯∂

The quantity of heat fl owing out through the sides CD and BC per second is 

y y

u
k x

y
d

ad
+

Ê ˆ∂
- Á ˜∂Ë ¯

 and 

x x

u
k y

x d

ad
+

∂Ê ˆ- Á ˜Ë ¯∂
 respectively.

Hence, total gain of heat by the rectangular element ABCD per second.

 = 
xy y y x x

u u u u
k x k y k x k x

y x y y
d d

ad ad ad ad
+ +

Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂Ê ˆ- - + +Á ˜Á ˜ Á ˜ Á ˜Ë ¯∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯

 = 
x x x y y y

u uu u

y yx x
k x y

x y

d d
ad d

d d

+ +

È ˘Ê ˆ Ê ˆ∂ ∂∂ ∂Ê ˆ Ê ˆ --Í ˙Á ˜ Á ˜ Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯ Ë ¯ Ë ¯∂ ∂Í ˙+Í ˙
Î ˚

 (38)

But the rate of gain of heat is also = 
u

x y
t

srd d
∂
∂

 (39)

Equating (38) and (39), we get

 
x x x y y y

u uu u

y yx x
k x y

x y

d d
ad d

d d

+ +

È ˘Ê ˆ Ê ˆ∂ ∂∂ ∂Ê ˆ Ê ˆ --Í ˙Á ˜ Á ˜ Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯ Ë ¯ Ë ¯∂ ∂Í ˙+Í ˙
Î ˚

 = 
u

x y
t

srd d
∂
∂

Dividing both sides by a dx dy and applying limit dx Æ 0 and dy Æ 0, we get

  
2 2

2 2

u u u
k

tx y
sr

Ê ˆ∂ ∂ ∂
+ =Á ˜ ∂∂ ∂Ë ¯

Fig. 15.4
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or        
2 2 2 2

2 2

2 2 2 2
, where

u k u u u u k
c c

t x y x ys r s r

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂
= + = + =Á ˜ Á ˜∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

 (40)

Equation (3) gives the temperature distribution of the plate in the transient state. In the steady state, 

u is independent of t, so that 0
u

t

∂
=

∂
. Hence the temperature distribution of the plate in the steady state 

is 
2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
, called Laplace’s equation in two dimensional.

15.9   SOLUTION OF TWO-DIMENSIONAL HEAT EQUATION BY THE 
METHOD OF SEPARATION OF VARIABLES

The diffusion of heat in a rectangular metal plate of uniform, isotropic material, with both faces 

insulated and with the four edges kept at zero temperature is given by the transient temperature 

u(x, y, t) which satisfi es the following initial boundary-value problem consisting of the PDE

 
u

t

∂
∂

 = 
2 2

2

2 2

u u
c

x y

Ê ˆ∂ ∂
+Á ˜∂ ∂Ë ¯

 (41)

in the region of the plate 0 £ x £ a, 0 £ y £ b, t > 0.

With boundary conditions u(x, 0, t) = 0 = u(x, b, t) (42)

 0 < x < a, t > 0

 u(0, y, t) = 0 = u(a, y, t),      0 < y < b,    t > 0 (43)

and initial conditions u(x, y, 0) = f (x, y), 0 < x < a,  0 < y < b. (44)

We can apply the method of separation of variables on (41), because the PDE (41) and the BC (42) 

and (43) are homogeneous.

Consider (41) has the solution of the form

 u(x, y, t) = f (x, y). T (t) (45)

Substituting u in (41), we have

 
2 2

2 2
T

x y

f fÊ ˆ∂ ∂
+ ◊Á ˜∂ ∂Ë ¯

 = 
2

1 dT

dtc
f

or 
2 2

2 2

1

x y

f f

f

Ê ˆ∂ ∂
+Á ˜∂ ∂Ë ¯

 = 
2

T

c T

 

 
dT

T
dt

Ê ˆ∫Á ˜Ë ¯
 

The mutual value of the LHS and RHS of the above equation must be a constant. Since the time-

dependent part of the product solution exponentially decaying, a separation constant in the form of –l 

may be introduced.

Then the resulting equation are

 2 2dT
c T

dt
l+  = 0;  t > 0 (46)

 
2 2

2 2
x y

f f∂ ∂
+

∂ ∂
 = –l2f; 0 < x < a, 0 < y < b (47) 
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The eigenvalue l relates to the decay of the time-dependent part. The boundary condition (42), (43) 

are reduced to

 f(x, 0) T(t) = 0,    f (x, b) T(t) = 0

 f(0, y) T(t) = 0,   f (a, y) T(t) = 0

If T(t) = 0, we get the trivial solution so that u(x, y, t) = 0 for all t.

Thus, the required boundary conditions are

 f (x, 0) = 0,    f (x, b) = 0,    0 < x < a (48)

 f (0, y) = 0,    f (a, y) = 0,    0 < y < b (49)

In the new two-dimensional eigenvalue problem consisting of equations (47), (48), (49), the PDE 

and BC are linear and homogeneous. So separation of variables can be applied again.

Suppose f (x, y) = X(x). Y(y)

Then Eq. (47) becomes

 
X Y

X Y

¢¢ ¢¢
+  = –l2, 0 < x < a, 0 < y < b.

The ratios and
X Y

X Y

¢¢ ¢¢
 should be a negative constant, denoted by 

2 2
1 2andl l- -  respectively 

because the sum of a function of x and a function of y can be constant only if each of these two 

functions are individually constants. The separate equations for x and y are

 2
1X Xl¢¢ +  = 0,    0 < x < a (50)

 2
2Y Yl¢¢ +  = 0,    0 < y < b (51)

The three separations constants are connected by the relation 2 2 2
1 2l l l= +  (52)

The boundary conditions (48) and (49) take the form

 X(x) Y(0) = 0,     X(x) Y(b) = 0,     0 < x < a

 X(0) Y(y) = 0,     X(a) Y(y) = 0,     0 < y < b

Again, X(x) = 0 for all x or Y(y) = 0 for all y, we get a trivial solution u(x, y, t) = 0

Thus, the appropriate boundary conditions are

 X(0) = 0, X(a) = 0 (53a)

 Y(0) = 0, Y(b) = 0 (53b)

Equations (50) and (53a), and (51) and (53b) form two independent eigenvalue problems, with the 

following solutions:

 Xm(x) = 

2 2

2 2
1 2sin , and ( ) sin ,m n n

m x m n y n
Y y

b a b b

p p p p
l l

Ê ˆ Ê ˆ Ê ˆ Ê ˆ= = =Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

Here, the indices m and n are independent. The solutions of the two-dimensional eigenvalue 

problems (47), (48), (49) are

 fmn(x, y) = Xm(x)·Yn(y) with 2 2 2
1 2m n m nl l l= +

and the corresponding solution of (46) is

 Tmn = 
2 2
m n c t

e
l- ◊
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The PDE (41) and BC (42),  (43) are satisfi ed by the functions

 umn (x, y, t) = fmn(x, y)·Tmn(t)

 = 
2 2

sin sin m n c tm x n y
e

a b

lp p -Ê ˆ Ê ˆ◊ ◊Á ˜ Á ˜Ë ¯ Ë ¯
   (m, n = 1, 2, 3, …)

Using the superposition principle, we obtain the double series

 u(x, y, t) = 

1 1

( , ) ( )mn mn mn

m n

A x y T tf
• •

= =

◊Â Â  (54)

which satisfi es equations (41), (42), (43).

The unknown coeffi cients Amn are determined using the initial conditions (44) as follows.

In a problem involving a rectangle 0 < x < a, 0 < y < b, a double Fourier sine series is given by

 
1 1

sin sinmn

m n

m x n y
A

a b

p p• •

= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Â Â

Similarly, a double Fourier cosine series is given by

 
1 1

cos cosmn

m n

m x n y
A

a b

p p• •

= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Â Â

Clearly, other combinations of sines and cosines could be considered.

All these double series are of the form

 
1 1

( ) ( )m n

m n

x yf y
• •

= =

◊Â Â

where fm(x), yn(y) are the eigenfunctions of a Strum–Liouville problem, satisfying the orthogonally 

relations.

The expansion formula in the case of a double Fourier sine series in the rectangle  0 < x < a, 0 < y 

< b is 

 f(x, y) = 

1 1

sin sinmn

m n

m x n y
A

a b

p p• •

= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Â Â

Here, the unknown coeffi cients Amn are given by

 Amn = 

6 0

4
( , ) sin sin

b a
m x n x

f x y dx dy
a b a b

p pÊ ˆ Ê ˆ◊ Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú  (55)

with m = 1, 2, 3, …and n = 1, 2, 3, …

Now, consider the general solution is given by (54) as

 u(x, y, t) = 
2 2

1 1

sin sin m n c t

mn

m n

m x n x
A e

a b

lp p• •
-

= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Â Â  (56)

Using the initial condition (44) in (57) we have

 f (x, y) = 
1 1

( , , 0) sin sinmn

m n

m x n y
u x y A

a b

p p• •

= =

Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯Â Â
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which is a double Fourier sine series. Here, Amn are determined by (55), thus the complete solution to 

the BVP (41), (42), (43), and (44), is given by (56) with coeffi cient Amn determined by (55).

15.10   SOLUTION OF TWO-DIMENSIONAL LAPLACE’S EQUATION BY 
THE METHOD OF SEPARATION OF VARIABLES

The two-dimensional Laplace’s equation

 
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (57) 

is a rectangle in the xy-plane, 0 < x < a and 0 < y < b satisfying the 

following boundary conditions: 

 u(x, 0) = 0 (58a)

 u(x, b) = 0 (58b)

 u(0, y) = 0 (58c)

 u(a, y) = f(y) (58d)

i.e., u is zero on three sides OA, OB, BC and is prescribed by the 

given function f(y) on the fourth side AC of the rectangle OACB.

To solve (57) by the separation of variables, suppose (57) has the solution of the form

 u(x, y) = X(x). Y(y) (59)

Substituting (59) in (57), we have

      X¢¢Y + XY¢¢ = 0 where ¢ denotes differentiation w.r.t. x and y.

So 
Y

Y

¢¢
 = 

X

X

¢¢
-  (60)

Both sides of (60) must be equal to a constant k since LHS of (60) is a functions of y only and the 

RHS of (60) is a function of x only .

Then 
Y

Y

¢¢
 = 

X
k

X

¢¢
- =

or  Y ¢¢ – kY = 0 (61)

or  X¢¢ + kX = 0 (62)

The boundary conditions (58a), (58b), (58c), reduces to

 u(x, 0) = 0 = X(x). Y(0), i.e., Y(0) = 0 (63a)

 u(x, b) = 0 = X(x). Y(b), i.e., Y(b) = 0 (63b)

 u(0, y) = 0 = X(0). Y(y), i.e., X(0) = 0 (63c)

If k ≥ 0, (61) will have only trivial solutions. So we suppose k < 0, i.e., k = –l2. Then Eq. (61) 

becomes

 Y ¢¢ + l2
Y = 0

having the general solution

 Y(y) = C1 cos ly + C2 sin ly

Using (63a), Y(0) = 0 = C11 + C20, i.e., C1 = 0

Using (63b), Y(b) = 0 = C1 sin l b

Fig. 15.5
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Since C2 π 0, sin lb = 0 = sin np or lb = np

 l = , 1, 2, 3, ...
n

n
b

p
=  (64)

\ Y(y) = sin
n y

b

p
 (65)

Now, the solution of (62) is 

 X(x) = C3e
–lx + C4e

lx

Using (63c), X(0) = 0 = C3 + C4, i.e., C3 = –C4

or X(x) = 
4 42 sin

2

x x
e e

C C h x
l l

l
-Ê ˆ-

=Á ˜
Ë ¯

\ X(x) = 4 sin
n x

C
b

pÊ ˆ
Á ˜Ë ¯

 (66)

Hence, the solution of (57) is given by

 un(x, y) = sin sinn

n x n y
A h

b b

p pÊ ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

  (where C4 = An)

By superposition principle,

 u(x, y) = 
1

( , )n

n

u x y
•

=
Â

 u(x, y) = 

1

sin sinn

n

n x n y
A h

b b

p p•

=

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Â  (67)

Using (58d), f(y) = u(a, y)

\ f(y) = 

1

sin sinn

n

n a n y
A h

b b

p p•

=

È ˘Ê ˆ Ê ˆ◊Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚
Â

Thus, A¢ns are Fourier coeffi cients of the Fourier half-range sine series of f(y) in the interval (0, b) 

and are given by

 sinn

n a
A h

b

pÊ ˆ◊ Á ˜Ë ¯
 = 

0

2
( ) sin

b
n y

f y dy
b b

pÊ ˆ◊ Á ˜Ë ¯Ú

or An = 

0

2
( ) sin

sin

b
n y

f y dy
n a b

b h
b

p

p

Ê ˆ◊ Á ˜Ë ¯Ê ˆ◊ Á ˜Ë ¯

Ú  (68)

    (n = 1, 2, 3, …)

Hence, the harmonic function u(x, y) satisfying the Laplace’s equation (57) and four boundary 

conditions (58a), (58b), (58c), and (58d) is given by (67) with An’
s determined by (68).

Example 15  Determine the transient temperature in a rectangular metal plate of uniform isotropic 

material with both faces insulated, with the four edges maintained at zero temperature and with initial 

temperature distribution given by f(x, y) = xy.
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Solution The initial condition u(x, y, 0) = f(x, y) = xy.

Let the complete solution of the 2D heat equation be

 u(x, y, t) = 
2 2

1 1

sin sin mnc t
mn

m n

m x n y
A e

a b

lp p• •
-

= =

Ê ˆ Ê ˆ ◊Á ˜ Á ˜Ë ¯ Ë ¯Â Â  (1)

where Amn = 

0 0

4
( , )sin sin

b a
m x n y

f x y dx dy
a b a b

p pÊ ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯◊ Ú Ú

 = 

0 0

4
sin sin

b a
m x n y

xy dx dy
ab a b

p pÈ ˘Ê ˆ Ê ˆ
Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú Ú

 = 

0 0

4
sin sin

b a
n y m x

y dy x dx
ab b a

p pÈ ˘ È ˘Ê ˆ Ê ˆ¥Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚
Ú Ú  [Integrating by parts]

 = 
2

2 2

0

4
cos sin

b

b n y b n y
y

ab n b bn

p p

p p

È ˘Ê ˆ Ê ˆ Ê ˆ- + ¥Í ˙Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯Ë ¯Í ˙Î ˚

 
p p

p p

È ˘Ê ˆ Ê ˆ Ê ˆ- +Í ˙Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯Ë ¯Í ˙Î ˚

2

2 2

0

( ) cos sin

a
a m x a m x

x
m a am

 = 
2 24

cos cos
b a

n m
ab n m

p p
p p

È ˘Ê ˆ Ê ˆ
- ◊ -Í ˙Á ˜ Á ˜

Ë ¯ Ë ¯Í ˙Î ˚

 = 
2 2

4 4
cos cos ( 1)m nab ab

n m
mn m n

p p
p p

+◊ = -

Putting the values of Amn in (1), the required solution is

 u(x, y, t) = 
2 2

2
1 1

4 ( 1)
sin sin mn

m n
c t

m n

ab m x n y
e

mn a b

lp p

p

+• •
-

= =

- Ê ˆ Ê ˆ◊ ◊Á ˜ Á ˜Ë ¯ Ë ¯Â Â  

Example 16  An infi nite long plane uniform plate is bounded by two parallel edges and an end at 

right angles to them. The breadth is p. This end is maintained at a temperature u0 at all points and other 

edges are at zero temperature. Determine temperature at any point of the plate in the steady state.

Solution In the steady state, the temperature u(x, y) at any point 

P(x, y) satisfi es the Laplace’s equation

 
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

with the boundary conditions

 u(0, y) = 0; " y (2)

 u(p, y) = 0; " y (3)

 u(x, •) = 0;  0 < x < p (4)

and the initial condition 

 u(x, 0) = u0 (5)
Fig. 15.6
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Consider (1) has the solution of the form.

 u(x, y) = X(x) ◊ Y(y) (6)

Substituting the values of 
2 2

2 2
,

u u

x y

∂ ∂
∂ ∂

 in (1), we get

 X¢¢Y + XY ¢¢ = 0 or 
X Y

X Y

¢¢ ¢¢
= -  (7)

Now, the two sides can be equal only if both are equal to a constant, say k.

Then 
X

X

¢¢
 = k fi X¢¢– kX = 0 (8)

and 
Y

Y

¢¢
-  = k fi Y¢¢+ kY = 0 (9)

Now, the boundary conditions (2) and (3) becomes

 u(0, y) = 0 = X(0). Y(y), i.e., X(0) = 0 (10)

 u(p, y) = 0 = X(p). Y(y), i.e., X(p) = 0 (11)

 u(x, •) = 0 = X(x). Y(•), i.e., Y (•) = 0 (12)

If k ≥ 0 then (1) has a trivial solution. Now, when k < 0, i.e., k = –l2 then (8) has the solution 

 X(x) = c1 cos l x + c2 sin l x  (13)

Using BC (10 ) and (11),

 X(0) = 0 fi c1 = 0

 X(p) = 0 fi c2 sin l p = 0

Since c2 π 0,  sin l p  = 0, i.e., sin l p = sin np
                                                          l = n
\ X(x) = c2 sin nx

Solution of (9) is

 Y(y) = c3e
ly + c4e

–ly

Using Y(•) = 0 fi c3 = 0

\ Y(y) = c4e
–ny   [\   l = n]

Thus, u(x, y) = A sin nx◊e–ny

Hence, the most general solution satisfying the condition is of the form

 u(x, y) = 
1

sin ny
n

n

A n x e
•

-

=

◊Â  (14)

Putting y = 0 in (14), we have

 u(x, 0) = 0

1

sinn

n

u A n x
•

=

= Â

Now, u0 = 

1

sinn

n

A n x
•

=
Â

fi  An = 
0

0 0

2 2
( ,0) sin sinu x nxdx u nxdx

p p

p p
◊ = ◊Ú Ú
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 = 02
1 ( 1)nu

np
È ˘- -Î ˚

 = 
04

if is odd

0 if is even

u
n

n

n

p

Ï
Ô
Ì
Ô
Ó

Hence, u(x, y) = 0

1

4 1
sin n y

n

u
n x e

np

•
-

=

◊Â

Example 17  Solve the Laplace’s equation 
2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
, which satisfi es the conditions

 u(0, y) = 0 = u(l, y), u(x, 0) = 0 and ( , ) sin
n x

u x a
l

p
=

Solution The Laplace’s equation

  
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

The boundary conditions are

 u(0, y) = 0 = u(l, y) = u(x, 0) (2) 

Suppose (1) has the solution of the form

 u(x, y) = X(x) ◊ Y(y)

Substituting the values of 
2 2

2 2
,

u u

x y

∂ ∂
∂ ∂

 in (1), we get

 X¢¢Y + XY¢¢ = 0 or 
X Y

X Y

¢¢ ¢¢
= -

Now, the two sides can be equal only if both are equal to a constant, say K. Then

 X¢¢ – KX = 0 (4)

 Y¢¢ + KY = 0 (5)

The boundary condition (2) becomes

 u(0, y) = 0 = X(0) ◊ Y(y),  i.e., X(0) = 0 (∵   Y(y) π 0)

 u(l, y) = 0 = X(l) ◊ Y(y),  i.e., X(l) = 0 (∵   Y(y) π 0)

 u(x, 0) = 0 = X(0) ◊ Y(y),  i.e., Y(0) = 0 (∵   X(x) π 0)

If K ≥ 0, (4) has a trivial solution.

If K < 0, i.e., K = –l2, then equation (4) has the solution of the form 

 X(x) = C1 cos lx + C2 sin lx (6)

Using X(0) = 0 fi C1 = 0 and X(l) = 0 fi C2 sin ll = 0

Since C2 π 0, sin ll = 0 = sin np
 ll = np

 l = 
n

l

p
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\ X(x) = 
2 sin

n x
C

l

pÊ ˆ
Á ˜Ë ¯

The solution of (5) is

 Y(y) = C3 e
ly + C4 e

–ly

Using Y(0) = 0 fi C3 + C4 = 0

 C4 = –C3

\ Y(y) = 
3

n y n y

l lC e e

p p
-È ˘

Í ˙-
Í ˙Î ˚

Hence,  u(x, y) = sin

n y n y

l l
n x

A e e
l

p p
p -È ˘Ê ˆ Í ˙-Á ˜Ë ¯ Í ˙Î ˚

   [where A = C2 ◊ C3] (7)

Using  u(x, a) = sin
n x

l

pÊ ˆ
Á ˜Ë ¯

, (7) becomes

 sin
n x

l

pÊ ˆ
Á ˜Ë ¯

 = sin

n a n a

l l
n x

A e e
l

p p
p -È ˘

Í ˙◊ -
Í ˙Î ˚

or A = 
1 1

2 sin
n s n a

l l
n a

he e
l

p p p-
=

Ê ˆ◊ Á ˜- Ë ¯

\ u(x, y) = 

sin sin

sin

2sin sin

n y n y

l l
n x n ye e hl n x l

n a n al
h h

l l

p p
p p

p

p p

-È ˘Ê ˆ Ê ˆÍ ˙-Á ˜ Á ˜Ë ¯ Í ˙ Ë ¯Ê ˆÎ ˚ = Á ˜Ë ¯Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

Example 18  Find the steady-state temperature distribution in a thin sheet of metal plate which 

occupies the semi-infi nite strip, 0 £ x £ L and 0 £ y < • when the edge y = 0 is kept at the temperature 

u(x, 0) = kx(L – x), 0 < x < L while   

 1. the edges x = 0 and x = L are kept at zero temperature

 2. the edges x = 0 and x = L are insulated

Assume that u(x, •) = 0.

Solution

Case 1: When edges are kept at zero temperature

The Laplace’s equation 
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

with the boundary conditions

 u(0, y) = 0 = u(L, y) (2)
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Suppose (1) has the solution of the form

 u(x, y) = X(x) ◊ Y(y)

Substituting the values of 
2 2

2 2
and

u u

x y

∂ ∂
∂ ∂

 in (1), we get

 X¢¢Y + XY¢¢ = 0

Separating the variables

 
Y

Y

¢¢
 = (say)

X
K

X

¢¢
- =

Then,

 X¢¢ – KX = 0 (3)

 Y¢¢ + KY = 0 (4)

If K ≥ 0, (3) has a trivial solution. If K < 0, i.e., K = –l2

The boundary conditions (2) is

 u(0, y) = 0 = X(0) ◊ Y(y), i.e., X(0) = 0  (∵   Y(y) π 0)

 u(L, y) = 0 = X(L) ◊ Y(y), i.e., X(L) = 0

Now, the solution of (3) with X(0) = 0 = X(L), is

 Xn(x) = sin , 1, 2, 3, ...
n x

n
L

p
=

The solution of (4) with Y(•) = 0 is

 Y(y) = 

n y

y L
n ne e

p
lb b

-- =

Thus, u(x, y) = 
1

sin

n y

L
n

n

n x
e

L

p
p

b
• -

=

Ê ˆ◊ Á ˜Ë ¯Â  (5)

where bn = 

0

2
( ) sin

L
n x

kx L x dx
L L

pÊ ˆ- ◊ Á ˜Ë ¯Ú

 = 
2 3

2 2 3

0

2 2
( ) cos ( 2 ) sin cos

L

K L n x L n x L n x
x L x L x

L n L L Ln n

p p p

p p p3

È ˘Ê ˆ- -Ê ˆ Ê ˆ Ê ˆ Ê ˆ- ◊ - - +Í ˙Á ˜Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Ë ¯Í ˙Î ˚

 = 
3

3 3

2 2
( 1) 1nK L

L n p
È ˘◊ - -Î ˚

 = 
2

3 3

8KL

n p

-
 when n is odd

 u(x, t) = 
2

3 3
1

8 1 (2 1) (2 1)
sin

(2 1)n

KL n y n x
e

L Ln

p p

p

•

=

- - -Ê ˆ- ◊ Á ˜Ë ¯-
Â
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Case 2: Both edges are insulated

 
0x

u

x =

∂Ê ˆ
Á ˜Ë ¯∂

 = 0, 0
x L

u

x =

∂Ê ˆ =Á ˜Ë ¯∂

The boundary conditions are X¢(0) = 0 = X¢(L).

The solution of (3) with X¢(0) = 0 = X¢(L) is

 Xn(x) = cos , 0, 1, 2, 3, ...
n x

A n
L

pÊ ˆ =Á ˜Ë ¯

And the solution of (4) with Y(•) = 0 is

 Yn(y) = 

n y

Le

p-

Thus, u(x, y) = 
0

cos
2

n y

L
n

n

n x
A e

p
p• -

=

Ê ˆ◊ Á ˜Ë ¯Â

where A0 = 
2

0 0

1 3
( )

2 3

LL
K Lx x

Kx L x dx
L L

È ˘
- = -Í ˙

Í ˙Î ˚
Ú

 = 
2

6

KL
 and

 An = 

0

2
( ) cos

L
n x

Kx L x dx
L L

pÊ ˆ- ◊ Á ˜Ë ¯Ú

 = 

2

2 2

2
( ) sin ( 2 ) cos

K L n x L n x
x L x L x

L n L Ln

p p

p p

È Ê ˆ- -Ê ˆ Ê ˆ- - - ◊Í Á ˜Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ÍÎ

 
3

3 3

0

( 2) sin

L

L n x

Ln

p

p

˘Ê ˆ- Ê ˆ+ - ◊ ˙Á ˜ Á ˜Ë ¯Ë ¯ ˙̊

 = 
3

2 2

2
( 1) !nL L

L n p
È ˘◊ - +Î ˚

 = 
2

2 2

4KL

n p
 when n is even.

Hence, the required solution is 

 u(x, y) = 

22 2

2 2
1

4 1 2

6 4

ny

L

n

KL KL n x
e w

Ln

p

p

• -

=

È ˘Ê ˆÍ ˙+ ◊ Á ˜Ë ¯Í ˙Î ˚
Â

Example 19  Solve 
2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
 in a square of length p and f(x) = sin2

x, 0 < x < p.
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Solution Given

 

2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

The boundary conditions are

 u(0, y) = 0, u(a, y) = 0, u(x, b) = 0 and u(x, 0) = f(x) = sin2
x, 0 < x < p. (2)

Suppose (1) has the solution of the form

 u(x, y) = X(x) ◊ Y(y) (3)

Substituting the values of 
2 2

2 2
,

u u

x y

∂ ∂
∂ ∂

 in (1), we get

 
X

X

¢¢
 = 2 (say)

Y
K

Y
l

¢¢
- = = -

∵ X≤ + l2
X = 0 (4)

 Y≤ – l2
Y = 0 (5)

Equation (2) then becomes

 u(0, y) = 0 = X(0) ◊ Y(y), i.e., X(0) = 0

 u(a, y) = 0 = X(a) ◊ Y(y), i.e., X(a) = 0 (6)

 u(x, b) = 0 = X(x) ◊ Y(b), i.e., Y(b) = 0 (7)

The solution of (4) with X(0) = 0, X(a) = 0, is

 Xn(x) = sin , 1,2,3,....
n x

n
a

p
=

The solution of (5) with Y(b) = 0, is

 Y(y) = A1e
ly + A2e

–ly

 0 = Y(b) = A1e
lb + A2e

–lb

or A1 = 2
b

b

A e

e

l

l

-

-

or Y(y) = 2
2

b
y y

b

A e
e A e

e

l
l l

l

-
-- ◊ +

 = 2 [ ]b y b y

b

A
e e e e

e

l l l l
l

- -◊ - ◊

 = A sin h{(b – y)}

Thus, Yn(y) = sin ( )n

n
A h b y

a

pÈ ˘◊ -Í ˙Î ˚
The required solution is 

 u(x, y) = 

1

( )
sin sinn

n

n x n b y
A h

a a

p p•

=

-Ê ˆ Ê ˆ◊Á ˜ Á ˜Ë ¯ Ë ¯Â



15.46 Engineering Mathematics for Semesters I and II

Using u(x, 0) = sin2 x, we have

 An = 2

0

2
sin

sin
x xxdx

hn

p

p p
◊Ú

 = 
2 2

2 4 8

sin ( 4) ( 4) sinhn n x n x hnp p p p

Ê ˆ- -
=Á ˜- - ◊Ë ¯

Hence, u(x, y) = 
2

8 sin sin ( ( ))

sin ( 4)

nx h n y

hn n n

p

p p

◊ -
-

◊ -
Â

Example 20  A rectangular plate with insulated surfaces is 10 cm wide and so long compared 

to its width that it may be considered infi nite in length without introducing an appreciable error. The 

temperature along the short edge y = 0 is given by

 u(x, 0) = 20x; 0 < x £ 5

 = 20(10 – x); 5 < x < 10

While the two long edges x = 0 and x = 10 as well as the other short edges are kept at 0°C. Find the 

steady state temperature at any point (x, y) of the plate.

Solution In the steady state, the equation of the heat fl ow is given by

 
2 2

2 2

u u

x y

∂ ∂
+

∂ ∂
 = 0 (1)

The boundary conditions are

 

( )
( )
( )

0,    0

10,    0  

,   0

u y

u y

u x

¸=
Ô= ˝
Ô• = ˛

 (2)

Also, the initial condition is

 u(x, 0) = 20 x; 0 < x £ 5

 = 20(10 – x); 5 < x < 10 (3)

Suppose (1) has the solution of the form

 u(x, y) = X(x) ◊ Y(y) (4)

Substituting the values of 
2 2

2 2
,

u u

x y

∂ ∂
∂ ∂

 in (1), we get

 
X

X

¢¢
 = (say)

Y
K

Y

¢¢
- =

Then X¢¢ – KX = 0 and Y¢¢ + KY = 0

It can be shown that for K ≥ 0, only the trivial solution exists. So for non-trivial solutions, consider 

K < 0, i.e., K = –l2; then we get

 X¢¢ + l2
X = 0 (5)

 Y¢¢ – l2
Y = 0 (6)

Fig. 15.7
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The boundary conditions (2) reduce to 

 u(0, y) = 0 = X(0) ◊ Y(y), i.e., X(0) = 0

 u(10, y) = 0 = X(10) ◊ Y(y), i.e., X(10) = 0

 u(x, •) = 0 = X(x) ◊ Y(•), i.e. Y(•) = 0

Now, the solution of (5), with the condition X(0) = 0 = X(10) is

 X(x) = A cos lx + B sin lx

 X(0) = 0 fi A = 0 and X(10) = 0 fi  B sin 10l = 0

Since B π 0, sin 10l = 0 = sin np

or l = , 1, 2, 3 ,...
10

n
n

p
=

\  X(x) = sin
10

n x
B

pÊ ˆ
Á ˜Ë ¯

Now, the solution of (6), with Y(•¢) = 0 is

 Y(y) = Ce
ly + De

–ly

 Y(•) =  fi C = 0

\  Y(y) = De
–ly

 = 10

n y

D e

p
-

Thus,  u(x, y) = 10

1

sin
10

n y

n

n

n x
E e

p
p• -

=

Ê ˆ ◊Á ˜Ë ¯Â  (where En = BD) (7)

Using  u(x, 0) = 
1

sin
10

n

n

n x
E

p•

=

Ê ˆ
Á ˜Ë ¯Â

Using (3), this requires the expansion of u in Fourier series, and we get

 En = 
5 10

0 5

2 2
20 sin 20 (10 ) sin

10 10 10 10

n x n x
x dx x dx

p p
+ -Ú Ú

 = 
5 10

0 5

4 sin 4 (10 ) sin
10 10

n x n x
x dx x dx

p p
+ -Ú Ú

 = 

5
2

0

10 10
4 cos sin

10 10

n x n x
x

n n

p p

p p

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆÍ ˙◊ - - ◊ -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

          

10
2

5

(10 ) 10
4 10 cos ( 1) sin

10 10

x n x n x

n n

p p

p p

È ˘- Ê ˆ Ê ˆ Ê ˆÍ ˙+ ◊ - - - ◊ ◊ -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

 = ( )
2 2 2 2

50 100 100
4 cos sin 4 sin

2 2

n n
n

n n b

p p
p

p p p

È ˘ ÈÊ ˆ Ê ˆ- + ◊ +Í ˙Á ˜ Á ˜ ÍË ¯ Ë ¯ ÎÎ ˚

 
2 2

50 100
cos sin

2 2

n n

n n

p p

p p

˘Ê ˆ+ + ˙Á ˜Ë ¯ ˚
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 = 
2 2 2 2

200 100
4 sin sin ( )

2

n
n

n n

p
p

p p

È ˘Ê ˆ - ◊Í ˙Á ˜Ë ¯Î ˚

 = 
2 2

800
sin 0

2

n

n

p

p

Ê ˆ◊ -Á ˜Ë ¯

 = 
2 2

800
sin

2

n

n

p

p

Ê ˆ
Á ˜Ë ¯

 = 

1

2
2 2

800
( 1) if  is odd

0 if  is even

n

n
n

n

p

+Ï
Ô -
Ì
Ô
Ó

or En = 
1

2 2

( 1) 800

(2 1)

n

n p

+- ◊
- ◊

Thus, the required solution is

 u(x, y) = 

(2 1)1

10
2 2

1

800 ( 1) (2 1)
sin :

100(2 1)

n yn

n

n x
e

n

p
p

p

-+•

=

- -
¥

-
Â

EXERCISE 15.5

 1. Solve 
2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
 within the rectangle 0 £ x £ a, 0 £ y £ b given that u(0, y) = u(a, y) = 

u(x, b) = 0 and u(x, 0) = x(a – x).

 2. Find the steady-state temperature distribution in a thin rectangular metal plate 0 < x < a, 0 < y 

< b with its two faces insulated with the following boundary conditions prescribed on the four 

edges.

 u(0, y) = 0 = u(x, 0) = u(x, b) and u(a, y) = g(y), 0 < y < b

 3. Solve the Laplace’s equation 
2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
 with the boundary conditions u(x, 0) = 0, 

u(x, b) = 0, u(0, y) = 0, u(a, y) = f(y) = ky(b – y), 0 < y < b.

. 4. A thin rectangular plate whose surface is impervious to heat fl ow, has at t = 0 an arbitrary 

distribution of temperature f(x, y). If four edges x = 0, x = a, y = 0, and y = b are kept at zero 

temperature, determine the temperature at a point of the plate as t increases. 

 5. The edges of a thin plate of p cm side are kept at 0°C and the faces are perfectly insulated. The 

initial temperature is u(x, y, 0) = f(x, y) = xy(p – x) (p – y). Determine the temperature in the 

plate at time t.
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 6. A rectangular plate with insulated surfaces is 8 cm wide and so long compared to its width that 

it may be considered infi nite in length. If the temperature along one short edge y = 0 is given 

by u(x, 0) = 100 sin 
8

xpÊ ˆ
Á ˜Ë ¯

,  0 < x < 8, while the two long edges x = 0 and x = 8, as well as the 

other short edge are kept at 0°C, fi nd the steady state temperature u(x, y).

Answers

 (1) 

2

3 3
0

(2 1) ( )
sin

8 1 (2 1)
( , ) sin

(2 1)(2 1) sinn

n x b y
h

a n x au x y
n ban h

a

p
p

pp

•

=

+ -
+

= ¥
++ ◊

Â

 (2) 
1

( , ) .sin sinn

n

n x n x
u x y A h

b b

p p•

=

Ê ˆ Ê ˆ= ◊Á ˜ Á ˜Ë ¯ Ë ¯Â

  where 

0

2
cosec ( ) sin

b

n

n a n y
A h g y dy

b b b

p pÊ ˆ Ê ˆ= ◊Á ˜ Á ˜Ë ¯ Ë ¯Ú

 (3) 
2

3
31

8 1 (2 1) (2 1)
( , ) sin

(2 1)
(2 1) sinn

kb n x n y
u x y h

n a b b
n h

b

p p

pp

•

=

- - -Ê ˆ Ê ˆ= ◊ ◊ ◊Á ˜ Á ˜- Ë ¯ Ë ¯-
Â

 (4) 
2 2

1 1

( , , ) sin sin mnc t
mn

m n

m x n y
u x y t A e

a b

lp p• •
-

= =

Ê ˆ Ê ˆ= ◊Á ˜ Á ˜Ë ¯ Ë ¯Â Â

  where, 
0 0

4
( , ) sin sin

a b

mn

x y

m x n y
A f x y dxdy

ab a b

p p

= =

Ê ˆ Ê ˆ= ◊ ◊Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú

 (5) 3 3 2
1 1

64
( , , ) sin sin

m n

u x y t mx ny
m n p

• •

= =

= ◊Â Â

 (6) 8( , ) 100sin
8

yx
u x y e

pp -Ê ˆ= ◊Á ˜Ë ¯

15.11  TRANSMISSION-LINE EQUATIONS

15.11.1 Introduction

The purpose of a transmission-line network is to transfer electric energy from generating units at 

various locations to the distribution system which ultimately supplies the load.

All transmission lines in a power system exhibit the electrical properties of the resistance R, 

inductance L capacitance to ground C, and conductance to ground G of the cable per unit length. 

Consider a long cable or telephone wire that is imperfectly insulated so that leaks occur along the entire 

length l km of the cable.
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The sources are at x = 0 and the terminal T at x = l. Let P be any point x km from the source S. The 

instantaneous current and voltage at the point P are i(x, t) and v(x, t), where t is the time.

Fig. 15.8

15.11.2  Derivation of Transmission Line Equations

Let Q be a distance Dx from p. Applying Kirchhoff’s voltage law to a small portion PQ of the cable,

The potential drop across the segment PQ = potential drop due to resistance + potential drop due to 

inductance

i.e., –Dv = 
i

Ri x L x
t

∂
D + D

∂
Dividing by Dx and taking limit as Dx Æ 0, we have

 
v

x

∂
-

∂
 = 

i
Ri L

t

∂
+

∂
 (69)

which is known as the fi rst transmission-line equation.

Similarly, applying Kirchhoff’s current law difference of the current in crossing the segment PQ

 = loss in current due to capacitance + leakage

i.e., –Di = 
v

G v x C x
t

∂
D + D

∂
Dividing by Dx and taking limit Dx Æ 0, we have

 
i

x

∂
-

∂
 = 

v
Gv C

t

∂
+

∂
 (70)

which is known as the second transmission-line equation.

(i) Telephone Equations

Differentiating (69), and  (70) partially w.r.t. x and t respectively, we have

 
2

2

v

x

∂
∂

 = 
2

i i
R L

x x t

∂ ∂
+

∂ ∂ ∂
 (71)

and  
2
i

x t

∂
-

∂ ∂
 = 

2

2

v v
G C

t t

∂ ∂
+

∂ ∂
 (72)
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Eliminating i from (70), (71), and (72), we get

 
2

2

v

x

∂
-

∂
 = 

2

2

v v v
R Gv C G C

t t t

È ˘∂ ∂ ∂È ˘- - + - -Í ˙Í ˙∂ ∂ ∂Î ˚ Í ˙Î ˚

or 
2

2

v

x

∂
+

∂
 = 

2

2
( )

v v
LC RC LG RGv

tt

∂ ∂
+ + +

∂∂
 (73)

Now, differentiating(69), and (70) w.r.t. t and x respectively, we have

 
2
v

x t

∂
-

∂ ∂
 = 

2

2

i i
R L

t t

∂ ∂
+

∂ ∂
 (74)

And 
2

2

i

x

∂
-

∂
 = 

2
v v

G C
x x t

∂ ∂
+

∂ ∂ ∂
 (75)

Eliminating v from (69), (74), and (75), we get

 
2

2

i

x

∂
-

∂
 = 

2

2

i i i
G RL L V R L

dt dt dt

È ˘∂ ∂ ∂È ˘- - + - -Í ˙Í ˙Î ˚ Í ˙Î ˚

or 
2

2

i

x

∂
∂

 = 
2

2
( )

i i
LC LG RC RGi

tt

∂ ∂
+ + +

∂∂
 (76)

The equations (73) and (76) are known as the telephone equations.

(ii) Telegraph Equations

If L = G = 0, the equations (73) and (76) reduce to

 
2

2

v

x

∂
∂

 = 
v

RC
t

∂
∂

 (77)

 
2

2

i

t

∂
∂

 = 
i

RC
t

∂
∂

 (78)

known as submarine cable equations or telegraph equations. Equations (77) and (78) are similar to the 

one-dimensional heat equations.

(iii) Radio Equations

If R = G = 0, the equations (73) and (76) reduce to

 
2

2

v

x

∂
∂

 = 
2

2

v
LC

t

∂
∂

 (79)

and 
2

2

i

x

∂
∂

 = 
2

2

i
LC

t

∂
∂

 (80)

which are known as the radio equations. Equations (79) and (80) are similar to the one-dimensional 

wave equations.
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(v) Transmission Lines

If R and G are negligible, the transmission lines reduce to 

 
v

x

∂
∂

 = 
i

L
t

∂
-

∂

and 
i

x

∂
∂

 = 
v

C
t

∂
-

∂

Example 21  A 1000 km long transmission line is initially under steady-state conditions with a 

potential of 1300 volts at the sending end, x = 0, and 1200 volts at the receiving end, x = 1000. The 

terminal end of the line is suddenly grounded, but the potential at the source is kept at 1300 volts. 

Assuming the inductance and leakance to be negligible, fi nd the potential E(x, t). 

Solution Since L and G are negligible, we use the telegraph equation:

 
2

2

E

x

∂
∂

 = 
E

RC
t

∂
∂

 (1)

Here, Es = initial steady voltage satisfying 
2

2
0

E

x

∂
=

∂

 = 
1300 1200

1300
1000

x
-Ê ˆ- Á ˜Ë ¯

 = 1300 – 0.1x = E(x, 0) (2)

E¢s = steady voltage when steady conditions are ultimately reached

 = 
1300 0

1300
1000

x
-Ê ˆ- Á ˜Ë ¯

 = 1300 – 1.3x

\ E(x, t) =  E¢s  – Er(x, t), where Er(x, t) is the transient part

 = 

2 2

2

1

(1300 1.3 ) sin

n t

l RC
n

n

n x
x b e

l

p
p• -

=

- + ◊Â , where l = 1000 km (3)

Putting t = 0 in (3), we get

 E(x, 0) = 

1

(1300 1.3 ) sinn

n

n x
x b

l

p•

=

Ê ˆ- + Á ˜Ë ¯Â

 (1300 – 0.1 x) = 

1

(1300 1.3 ) sinn

n

n x
x b

l

p•

=

Ê ˆ- + Á ˜Ë ¯Â

or   1.2x = 

1

sinn

n

n x
b

l

p•

=

Ê ˆ
Á ˜Ë ¯Â

where bn  = 
2

1.2 sin
n x

x dx
l l

p
Ú

 = 

0

2.4
sin

l
n x

x dx
l l

p
Ú
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 = 
2

0

cos sin
2.4

l

n x n x

l lx
nl n
l l

p p

p p

È ˘Ê ˆÊ ˆÍ ˙Á ˜Á ˜Í ˙Á ˜◊ - - -Á ˜Í ˙Á ˜Ê ˆÁ ˜Í ˙Á ˜Ë ¯ Á ˜Í ˙Ë ¯Ë ¯Î ˚

 = 
2.4

[– cos ]
l

l n
l n

p
p

¥  [∵ l = 1000, cos np = (–1)n]

 = 

1
2400 ( 1)

n

np

+-

Hence,  E(x, t) = 

2 2

2
1

1

2400 ( 1)
(1300 1.3 ) sin

n t
n

l RC

n

n x
x e

n l

p
p

p

+• -

=

- Ê ˆ- + ◊Á ˜Ë ¯Â

Example 22  Neglecting R and G, fi nd the emf v(x, t) in a line of length l, t seconds after the ends 

were suddenly grounded, given that i(x, 0) = i0 and 1 5

5
( , 0) sin sin

x x
v x E E

l l

p p
= + ◊ .

Solution Since R and G are negligible, so we will use the radio equation

 
2

2

v

x

∂
∂

 = 
2

2

v
LC

t

∂
∂

 (1)

Since the ends are suddenly grounded, we have the boundary conditions 

 v(0, t) = 0, v(l, t) = 0 (2)

Also, the initial conditions are

 

0

1 5

( , 0) and

5
( , 0) sin sin

i x i

x x
v x E E

l l

p p

¸= ÔÔ
˝
Ô= +
Ǫ̂

 (3)

\  
i

x

∂
∂

 = gives
v

C
t

∂
-

∂

 
0t

v

t =

∂Ê ˆ
Á ˜Ë ¯∂

 = 0 (4)

Let v(x, t) = X(x)◊ T(t) be the solution of (1).

Substituting the values of 
2 2

2 2
,

v v

x t

∂ ∂
∂ ∂

 in (1), we have

 TX¢¢ = 2CX T ¢¢

or 
X

X

¢¢
 = 2 (say)

T
LC

T
l

¢¢
= -

\ X¢¢ + l2
X = 0 (5)
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and 
2

T T
LC

lÊ ˆ
+¢¢ Á ˜

Ë ¯
 = 0 (6)

Solutions of (5) and (6) are given by

 X(x) = C1 cos lx + C2 sin lx

 T(t) = 
3 4cos sinC t C t

LC C

l l

l

Ê ˆ Ê ˆ
+Á ˜ Á ˜Ë ¯ Ë ¯

Thus, v(x, t) = 1 2 3 4( cos sin ) cos sin
t t

C x C x C C
LC LC

l l
l l

Ê ˆ
+ ◊ +Á ˜Ë ¯

 (7)

Using (2), we get

 C1 = 0 and , 1, 2, 3 ...
n

n
l

p
l = =

\ v(x, t) = sin cos sinn n

n x n t n t
a b

l l LC l LC

p p pÈ ˘
◊ +Í ˙

Î ˚
 (8)

Using the initial condition (4), we get

 bn = 0

\ (8) becomes, v(x, t) = sin cosn

n x n t
a

l l LC

p p

Thus, the general solution of (1) is

 v(x, t) = 
1

sin cosn

n

n x n t
a

l l LC

p p•

=

Ê ˆ ◊Á ˜Ë ¯Â  (9)

Using v(x, 0) = 1 5

5
sin sin

x t
E E

l l

p p
+

\ 
1 5

5
sin sin

x t
E E

l l

p p
+  = 

1

sinx

n

n x
a

l

p•

=

Ê ˆ◊ Á ˜Ë ¯Â
\ a1 = E1 and a5 = E5, while all other a’s are zero

Hence, v(x1, t) = 
1 5

5 5
sin cos sin cos

x t x t
E E

l ll LC l LC

p p p p
+

which is the required solution.

EXERCISE 15.6

 1. Assuming R and G are negligible, fi nd the voltage v(x, t) and current i(x, t) in a transmission 

line of length l, t seconds after the ends are suddenly grounded. The initial conditions are

v(x, 0) = 0 sin
x

v
l

pÊ ˆ
Á ˜Ë ¯

 and i(x, 0) = i0.

 2. Solve 
2 2

2 2

v v
LC

x t

∂ ∂
=

∂ ∂
, assuming that the initial voltage v(x, 0) = 0 sin

x
v

l

pÊ ˆ
Á ˜Ë ¯ . vt(x, 0) = 0 and 

v = 0 at the ends, x = 0 and x = l for all t.
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 3. Obtain the solution of the radio equation 
2 2

2 2

v v
LC

x t

∂ ∂
=

∂ ∂
. When a periodic e.m.f. E0 cos lt is 

applied at the end x = 0 of the line.

 4. In a telephone wire of length l, a steady voltage distribution of 20 volts at the source end 

and 12 volts at the terminal end is maintained. At time t = 0, the terminal end is grounded. 

Determine the voltage and current assuming that L = 0 = G.

Answers

 1. 0( , ) sin cos
x t

v x t v
l l LC

p pÊ ˆÊ ˆ= ◊Á ˜ Á ˜Ë ¯ Ë ¯
; 0 0( , ) cos sin

C x t
i x t i v

L l l LC

p pÊ ˆÊ ˆ= - ◊ ◊Á ˜ Á ˜Ë ¯ Ë ¯

 2. 0( , ) cos . sin
t x

v x t v
ll LC

p pÊ ˆ Ê ˆ= Á ˜Á ˜ Ë ¯Ë ¯

 3. 
0( , ) cos( )v x t E t x LC= -  

 4. 

2 2

2

1

20
( , ) ( )

n
t

l RC

n

n

v x t l x A e
l

pÈ ˘
Í ˙-•
Í ˙Î ˚

=

= - + ◊Â ; 

2 2

2

1

20 24
( , ) ( 1) cos

n
t

l RCn

n

n x
i x t e

Rl Rl l

p

p
È ˘
Í ˙-•
Í ˙Î ˚

=

Ê ˆ= + - ◊ ◊Á ˜Ë ¯Â

SUMMARY
1. One-Dimensional Wave Equation

Consider an elastic string, placed along the X-axis, stretched to a length l between two fi xed points A at x 

= 0 and B at x = l. 

Let u(x, t) denote the defl ection (displacement from equilibrium position). Then the vibrations of the string 

is governed by the one-dimensional wave equation. 

 

2 2
2

2 2

u u
c

t x

∂ ∂
=

∂ ∂  (1)

where c is the phase velocity of the string with boundary conditions 

 u (0, t) = 0, u (l, t) = 0 (2)

The form of motion of the string will depend on the initial displacement or defl ection at time t = 0

 u (x, 0) = f (x) (3)

and the initial velocity

 0

( , 0) ( )t

t

u
u x g x

t =

∂Ê ˆ
= =Á ˜Ë ¯∂

 (4)

The initial boundary-value problem can be solved by the method of separation of variables.

Under the above conditions, the equation (1) has the solution of the form

 u (x, t) = [
1

cos sin sinnn
n

n d n d n x
A B

l l l

l l p•

=

˘
+ ˙̊Â  (5)

The unknown constants An and Bn are determined using initial conditions.
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Note I. When the initial displacement u (x, 0) = f (x) is given.

Putting t = 0 in (5), we get

 1

( ) sinn

n

n x
f x A

l

p•

=

= Â

Thus, An are the Fourier coeffi cients in the half-range Fourier sine-series expansion of f (x) in (0, l).

Hence, 

0

2
( )sin

l

n

n x
A f x dx

l l

p
= Ú , n = 1, 2, 3, … (6)

Note II. When the initial velocity ut (x, 0) = g (x) is given then differentiating (5) w.r.t. ‘t’

 ut(n, 0) = 
1

sin cos sinn
n

n

A l n ct l n ct n x
B

n c l n c l l

p p p

l p

•

=

È ˘
- +Í ˙̊

Î
Â .

Put t = 0

 ut (x, 0) = g (x) = 
1

sinn

n

l n x
B

n c l

p

p

•

=
Â

or Bn = 

0

2
( ) sin

l
n x

g x dx
n c l

p

p
◊Ú  (7)

Hence, the general solution of the one-dimensional wave equation (1) is given by

 u (x, t) = [
1

cos sin sinnn
n

n ct n ct n x
A B

l l l

p p p•

=

˘
+ ˙̊Â , where 

An and Bn are given by (6) and (7).

2. Solution of One-dimensional Heat Equation 

The one-dimensional heat-fl ow equation is given by 

 
2

2

2

u u
c

t x

∂ ∂
=

∂ ∂
 (8)

Suppose u(x, t) is the temperature. Since the ends x = 0 and x = l are kept at zero temperature. The boundary 

conditions are given by u(0, t), u(l, t) = 0 for all t, and the initial condition is given by u(x, 0) = f (x).

Therefore, the solution of the equation (8) is of the form

 u (x, t) = 

2 2 2

2
1 1

( , ) sinn n

n n

n x n c t
u x t E e

l l

p p• •

= =

-Ê ˆ
= ◊Á ˜Ë ¯Â Â  (9)

Putting t = 0 in (9) and using u (x, 0) = f (x), we get

 f (x) = 
1

sinn

n

n x
E

l

p•

=

Ê ˆ
◊ Á ˜Ë ¯Â

which is a Fourier sine series. So the constant equations are given by

 

0

2
( ) sin

l

n

n x
E f x dx

l l

pÊ ˆ
= ◊ Á ˜Ë ¯Ú , n = 1, 2, 3, … (10)

Hence, (9) is the required solution whose equation is given by (10).
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3. Solution of Two-dimensional Wave Equation

Consider the two-dimensional wave equation

 

2 2 2
2

2 2 2

u u u
c

t x y

Ê ˆ∂ ∂ ∂
= +Á ˜

∂ ∂ ∂Ë ¯
 (11)

subject to the boundary conditions

 u (0, y, t) = 0, u (a, y, t) = 0, u (x, 0, t) = 0, u (x, b, t) = 0

and initial conditions u (x, y, 0) f (x, y) and 
0

( , )
t

u
g x y

t =

∂Ê ˆ
=Á ˜Ë ¯∂

Consider that the more general solution of equation (12) is given by

 

1 1

( , , ) cos sin sin sinmn mn mn mn

m n

m x n y
u x y t A t B t

a b

p p
l l

• •

= =

Ê ˆ Ê ˆ
= + ◊ ◊È ˘ Á ˜ Á ˜Î ˚ Ë ¯ Ë ¯Â Â  (12)

Differentiating (12) partially w.r.t. ‘t’, we get

 

1 1

sin cos sin sinmn mn mn mn mn mn

m n

u m x n y
A t B t

t a b

p p
l l l l

• •

= =

∂ Ê ˆ Ê ˆ
= - ◊ + ◊È ˘ Á ˜ Á ˜Î ˚ Ë ¯ Ë ¯∂ Â Â  (13)

Putting t = 0 in (12) and (13) using IC u(x, y, 0) = f (x, y) and 
0

( , )
t

u
g x y

t =

∂
=

∂
, we get

 f (x, y) = 

1 1

sin sinmn

m n

m x n y
A

a b

p p• •

= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Â Â  (14)

 g(x, y) = 

1 1

( )sin sinmn mn

m n

m x n y
B

a b

p p
l

• •

= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Â Â  (15)

which are double Fourier sine series. We get

 Amn = 

0 0

4
( , ) sin sin

a b

n y

m x n y
f x y dx dy

ab a b

p p

= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú  (16)

and Bmn = 

0 0

4
( , ) sin sin

a b

mn n y

m x n y
g x y dx dy

ab a b

p p

l
= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú  (17)

Thus, the desired defl ection u (x, y, t) of the given membrane is given by (12) wherein Amn and Bmn are 

given by (16) and (17) respectively.

4.  Solution of Two-Dimensional Heat Equation by the Method of Separation 
of Variables

The diffusion of heat in a rectangular metal plate of uniform, isotropic material, with both faces insulated 

and with the four edges kept at zero temperature is given by the transient temperature u (x, y, t) which 

satisfi es the following initial boundary-value problem consisting of

 PDE 

2 2
2

2 2

u u u
c

t x y

Ê ˆ∂ ∂ ∂
= +Á ˜∂ ∂ ∂Ë ¯

 (18)

in the region of the plate 0 £ x £ a, 0 £ y £ b, t > 0.
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with boundary conditions u (x, 0, t) = 0 = u (x, b, t), 

 0 < x < a, t > 0 (19)

 u(0, y, t) = 0 = u (a, y, t), 0 < y < b, t > 0 (20)

and initial conditions u (x, y, 0) = f (x, y), 0 < x < a, 0 < y < b  (21)

We can apply the method of separation of variables on (18), because PDE (18) and the BC (19) and (20) 

are homogeneous

 0 0

4
( , ) sin sin

b a

mn

m x n x
A f x y dx dy

ab a b

p pÊ ˆ Ê ˆ
= ◊ Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú

 (22)

with m = 1, 2, 3, …and n = 1, 2, 3, …

Now consider the general solution is given by 

 u(x, y, t) = 
2 2

1 1

sin sin m n c t

mn

m n

m x n x
A e

a b

lp p• •
-

= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Â Â  (23)

Using the initial condition (21) in (23), we have

 f(x, y) = 

1 1

( , ,0) sin sinmn

m n

m x n x
y x y A

a b

p p• •

= =

Ê ˆ Ê ˆ
= Á ˜ Á ˜Ë ¯ Ë ¯Â Â

which is a double Fourier sine series. Here, Amn are determined by (22). Thus the complete solution to the 

BVP (18), (19), (20), and (21), is given by (23) with coeffi cient Amn determined by (22).

5.  Solution of Two-Dimensional Laplace’s Equation by the Method of 
Separation of Variables

The two-dimensional Laplace’s equation

 
2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂
 (24) 

in a rectangle is the xy-plane, 0 < x < a and 0 < y < b satisfying the 

following boundary conditions:
 u (x, 0) = 0 (25)

 u (x, b) = 0 (26)

 u (x, y) = 0 (27)

 u (a, y) = f (y) (28)

i.e., u is zero on three lines OA, OB, BC and is prescribed by the 

given function f (y) on the fourth side AC of the rectangle OACB.

To solve (24) by the separation of variables,

 u (x, y) = 
1

sin sinn

n

n x n y
A h

b b

p p•

=

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Â  (29)

Using (28), f (y) = u (a, y)

\ f (y) = [ sin sin
n

n a n y
A h

b b

p p ˘Ê ˆ Ê ˆ
◊ ˙Á ˜ Á ˜Ë ¯ Ë ¯ ˚

Â
Thus, An’s are Fourier coeffi cients of the Fourier half-range sine series of f(y) in the interval (0, b) and 

given by

Fig. 15.9
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 0

2
sin ( ) sin

b

n

n a x y
A h f y dy

b b b

p pÊ ˆ Ê ˆ
◊ = ◊Á ˜ Á ˜Ë ¯ Ë ¯Ú

or 

0

2
( ) sin

sin

b

n

n y
A f y dy

n a b
b h

b

p

p

Ê ˆ
= ◊ Á ˜Ë ¯Ê ˆ◊ Á ˜Ë ¯

Ú  (30)

n = 1, 2, 3, …

Hence, the harmonic function u(x, y) satisfying the Laplace’s equation (24) and four boundary conditions 

(25), (26), (27) and (28) is given by (29) with An’s determined by (30).

OBJECTIVE-TYPE QUESTIONS

 1. The one-dimensional heat fl ow equation is

 (a) 
2

2

2

u u
c

t x

∂ ∂
=

∂ ∂
 (b) 

2
2

2

u u
c

xt

∂ ∂
=

∂∂

 (c) 0
u

t

∂
=

∂
 (d) 

2
2

2

u
c

x

∂
=

∂
 2. Two-dimensional heat equation is

 (a) 
2

2

2

u u u
c

t yx

Ê ˆ∂ ∂ ∂
= +Á ˜∂ ∂∂Ë ¯

 (b) 
2 2

2

2 2

u u u
c

t x y

Ê ˆ∂ ∂ ∂
= +Á ˜∂ ∂ ∂Ë ¯

 (c) 
2

2

2

u u
c

tx

∂ ∂
=

∂∂

 (d) 
2 2 2

2

2 2 2

u u u
c

t x y

Ê ˆ∂ ∂ ∂
= +Á ˜

∂ ∂ ∂Ë ¯
 3. Two-dimensional wave equation is

 (a) 
2 2 2

2

2 2 2

u u u
c

t x y

Ê ˆ∂ ∂ ∂
= +Á ˜

∂ ∂ ∂Ë ¯

 (b) 
2 2

2

2 2

u u
c

t x

∂ ∂
=

∂ ∂

 (c) 0
u u

t x

∂ ∂¢ ¢
+ =

∂ ∂

 (d) 
2 2

2 2
0

u u

x y

∂ ∂¢ ¢
+ =

∂ ∂

 4. The one-dimensional wave equation is

 (a) 
2

2

u u

xt

∂ ∂
=

∂∂
 (b) 

2 2
2

2 2

u u
c

t x

∂ ∂
=

∂ ∂

 (c) 
2

2

u u

tx

∂ ∂
=

∂∂
 (d) 

2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂

 5. In two dimensional heat fl ow the temperature 

along the normal to xy plane is

 (a) 1 (b) c
2

 (c) 0 (d) •
 6. The partial differential equation of two-

dimensional heat fl ow in steady state 

conditions is

 (a) 0
u

t

∂
=

∂
 (b) 

2 2

2 2
0

u u

x y

∂ ∂
+ =

∂ ∂

 (c) 
2

2

u u

t x

∂ ∂
=

∂ ∂
 (d) none of above

 7. The boundary conditions for one dimensional 

heat fl ow when the ends x = 0 and x = l are 

insulated are

 (a) ux(0, t) = 0, ux(l, t) = 0 " t

 (b) ut(l, t) = 0, ux(0, t) = 0 " t

 (c) u(0, t) = 0 = u(x, 0) " t

 (d) none of the above

ANSWERS

 1. (a) 2. (b) 3.(a) 4. (b) 5. (c) 6. (b) 7. (a)





16.1  INTRODUCTION

Laplace transform is a powerful tool in engineering and science. This method is applicable for solving 

differential equations and corresponding initial-value and boundary-value problems. When this method 

is applied to a given initial-value or boundary-value problem consisting of a single or a system of linear 

ordinary differential equations, it converts it into a single or a system of linear algebraic equations called 

the subsidiary equation. The solution of the subsidiary equation is expressed for the Laplace transform 

of the dependent variable. Taking the inverse Laplace transform method, we obtain the solution of the 

original problem. Partial Differential Equations (PDE) can be solved by the Laplace transform method 

in which two or more than two independent variables are involved. The Laplace transform method 

is applied with respect to one of the variables,  say t. The resulting Ordinary Differential Equation 

(ODE) in terms of the second variable solved by the usual method of solving the ODE, and taking 

the inverse Laplace transform method of this solution, we obtain the solution of the PDE. The other 

important applications are in mathematical modeling of the physical problems and solutions of integral 

equations.

Pierre-Simon Laplace (23 March 1749–5 March 1827) was a French mathematician 

and astronomer whose work was pivotal to the development of mathematical 

astronomy and statistics. Laplace formulated Laplace’s equation, and pioneered the 

Laplace transform which appears in many branches of mathematical physics, a field 

that he took a leading role in forming. The Laplacian differential operator, widely 

used in mathematics, is also named after him. He restated and developed the nebular 

hypothesis of the origin of the solar system and was one of the first scientists to 

postulate the existence of black holes and the notion of gravitational collapse.

16.2  DEFINITION OF LAPLACE TRANSFORM

Let F(t) be a real-valued function defi ned over the interval (–•, •) such that F(t) = 0, t < 0. The Laplace 

transform of F(t), denoted by L{F(t)}, is defi ned as

 L{F(t)} = 
0

( )st
e F t dt

•
- ◊Ú  (1)

We also write  L{F(t)} = 

0

( ) ( )st
f s e F t dt

•
-= ◊Ú

16
Laplace Transform
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Here, L is called the Laplace transformation operator. The parameter s is a real or complex number. 

In general, the parameters are taken to be real positive numbers.

The Laplace transform is said to exist if the integral (1) is convergent for some value of s. The 

operation of multiplying F(t) by e–st and integrating from 0 to • is called Laplace transformation.

Notation

We follow two types of notations:

 (i) Functions are denoted by capital letters, F(t), G(t), H(t),… and their Laplace transforms are 

denoted by corresponding lowercase letters f(s), g(s), h(s), … or by f(p), g(p), h(p),…

 (ii) Functions are denoted by lowercase letters f(t), g(t), h(t),… and their Laplace transforms are 

denoted by ( ), ( ), ( ),f s g s h s º , respectively or ( ), ( ), ( ),f p g p h p º

Existence of Laplace Transform

Theorem 1

If F(t) is a piecewise continuous function which is defi ned on every fi nite interval in the range t ≥ 0 

and satisfi es

|F(t)| £ Me
a t; "t ≥ 0, and for some constants a and M then the Laplace transform of F(t) exists for 

all s > a.

Proof We know that

 L{F(t)} = 
0

( )st
e F t dt

•
- ◊Ú

 = 

0

00

( ) ( )

t

st st

t

e F t dt e F t dt

•
- -+Ú Ú  (2)

The fi rst integral 
0

0

( )

t

st
e F t dt

-Ú exists, since F(t) is piecewise continuous on every fi nite interval 

0 £ t £ t0.

Now, 

0 0

( ) ( )st st

t t

e F t dt e F t dt

• •
- -£Ú Ú

 

0

st t

t

e Me dt
a

•
-£ Ú  [∵   |F(t)| £ Me

at]

 = 

0

( )s t

t

e Mdt
a

•
- - ◊Ú

 = 
0( )

;
( )

s t
Me

s
s

a

a
a

- -

>
-

  
0

0

( )

( ) ;
( )

s t
st

t

Me
e F t dt s

s

a

a
a

• - -
- £ >

-Ú
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Thus, the Laplace transform exists for s > a.

Note

 1. It should be noted that the above theorem gives only the suffi cient conditions for the existence 

of the Laplace transform. That is, a function may have a Laplace transform even it violates the 

existence condition. 

  Example: Let 

1

2( )F t t
-

= . F(t) is not continuous in [0, T], because it has limit • as t Æ 0.

\ 1/2

0

T
st

e t dt
- -Ú  exists " T > 0

Thus, 

1

2L t
-Ï ¸Ô Ô

Ì ˝
Ô ÔÓ ˛

 = 

1

2

0

st
e t dt

• --Ú

 = 
2

0

2 z
e dz

s

•
-Ú  

Put st zÈ ˘=Î ˚

 = ; 0s
s

p
>

  Thus L{t
–1/2} exists for s > 0 even if t–1/2 is not continuous for t ≥ 0.

 (2) If the function F(t) satisfi es the conditions of the existence theorem and L[F(t)] = f(s), then 

(i) lim ( ) 0
s

f s
Æ•

= , and (ii) lim ( ( ))
s

s f s
Æ•

◊  is bounded.

  These two conditions indicate that not all functions of s are Laplace transforms of some 

function F(t).

16.3  LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS

1. L s
s

1
{1} = ; > 0

Proof Here, F(t) = 1

 L {F(t)} = 
0

( )st
e F t dt

•
-Ú  (3) [Putting the value of F(t) in Eq. (3)]

\  L[1] = 

0 0

0 0

1
st s s

st e e e
e dt

s s s

•• - -
- È ˘ È ˘

◊ = - = - +Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

Ú  = 
1

0
s

È ˘+Í ˙Î ˚

Hence, proof of 
1

{1} , if 0L s
s

= >

2. n

n

n
L t

s +1

( + 1)
{ } = , if s > 0 and n > –1

Proof Here, F(t) = tn

 L {F(t)} = 

0

( )st
e F t dt

•
-Ú  (4)
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\ L{t
n} = 

0

st n
e t dt

•
-Ú

 = 
0

n

x x dx
e

s s

•
- Ê ˆ ◊Á ˜Ë ¯Ú   [Put st = x]

 = 
1 1

1
0

1 x n

n
e x dx

s

•
- + -

+
◊Ú

 = 
1

1
1

n
n

s
+

◊ +  

•
- -

È ˘
◊ =Í ˙

Í ˙Î ˚
Ú∵

1

0

x n
e x dx n

 L{t
n} = 

1

1
n

n

s
+

+
 if s > 0 and n + 1 0 or n > – 1

In a particular case, if n is a +ve integer then

 ( 1)n +  = n !,  and, hence,

 L{t 
n} = 

1

!
n

n

s
+

3. L{eat} = ; s > a
s a

1

–

Proof Here,  F(t) = eat

 L{F(t)} = 
0 0

( )st s t at
e F t dt e e dt

• •
- -= ◊Ú Ú  (5)

 = 
( )

0

s a t
e dt

•
- -Ú

 = 

( )

0
( )

s a t
e

s a

•- -È ˘
Í ˙

- -Í ˙Î ˚

 L{e
at} = 

1

s a-
; if s > a

4. – atL e s > a
s + a

1
{ } = ; –

Proof Here,  F(t) = e–at

 L{F(t)} = 
0 0

( )st st at
e F t dt e e dt

• •
- - -= ◊Ú Ú  (6)

 = 
( )

00

1

( )

s a t
e dt

s a

••
- + È ˘

= Í ˙- +Î ˚
Ú
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 L{e
–at} = 

1

s a+
; if s >  – a

5. 
s a

L at L at
s a s a2 2 2

(cos ) = , (sin ) =
+ +

Proof L{e
iat} = 

0

st i at
e e dt

•
- ◊Ú  (7)

 = 
( )

0

s i a t
e dt

•
- -Ú  

 = 
( )

0
( )

s i a
e

s i a

•- -È ˘
Í ˙

- -Í ˙Î ˚
 = 

1

s i a-

 = 
2 2( )( )

s i a s i a

s i a s i a s a

+ +
=

- + +

 = 
2 2 2 2

s a
i

s a s a
+

+ +

Comparing real and imaginary part of both sides, we get the required result.

 L{ cos at} = 
2 2 2 2

and {sin }
s a

L at
s a s a

=
+ +

6. } =
a

L h at
s a2 2

{sin
–

Proof Here, F(t) = sin h at.

 L{F(t)} = 
0 0

( ) sinst st
e F t dt e h at d t

• •
- -= ◊Ú Ú  (8)

 = 
0

2

at at
st e e

e dt

• -
- Ê ˆ-

◊Á ˜
Ë ¯Ú

 = 

0 0

1 1

2 2

st at st at
e e dt e e dt

• •
- - -◊ - ◊Ú Ú

 = ( ) ( )

0 0

1 1

2 2

s a t s a t
e dt e dt

• •
- - - +-Ú Ú

 = 
2 2

1 1 1 1 2

2 ( ) 2

a

s a s a s a

È ˘
- =Í ˙- + -Î ˚

 L{sin h at} = 
2 2

a

s a-
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7. 
s

L h at
s a2 2

{cos } =
–

Proof L{cos h at} = 
0

cosst
e h at dt

•
- ◊Ú  (9)

 = 
0

2

at at
st e e

e dt

• -
- +

◊Ú

 = 
0 0

1

2

st at st at
e e dt e e dt

• •
- - -

È ˘
◊ + ◊Í ˙

Í ˙Î ˚
Ú Ú

 = ( ) ( )

0 0

1

2

s a t s a t
e dt e dt

• •
- - - +

È ˘
+Í ˙

Í ˙Î ˚
Ú Ú

 = 
2 2

1 1 1 1 2

2 2

s

s a s a s a

È ˘
+ = ◊Í ˙- + -Î ˚

 L{cos h at} = 
2 2

s

s a-

16.4  LINEARITY PROPERTY OF LAPLACE TRANSFORMS

Suppose f(s) and g(s) are Laplace transforms of F(t) and G(t) respectively. 

Then

 L{aF(t) + bG(t)}= aL{F(t)} + bL{G(t)}

where a and b are any constants.

Proof Let  L{F(t)} = 

0

( ) ( )st
f s e F t dt

•
-= Ú

And  L{G(t)} = 

0

( ) ( )st
g s e G t dt

•
-= Ú

Also, let a and b be arbitrary constants.

\ L{aF(t) + bG(t)} = { }
0

( ) ( )st
e a F t bG t dt

•
- +Ú  (10)

 = 
0 0

( ) ( )st st
a e F t dt b e G t dt

• •
- -+Ú Ú

 = aL{F(t)} + b L{G(t)} Hence, proved.

Note Generalizing this result, we obtain

 
1

( )
n

r r

r

L C F t
=

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Â  = 

1

{ ( )}
n

r r

r

C L F t
=
Â
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Theorem 2: First Shifting (or First Translation) Theorem

If L{F(t)} = f(s), then L{eat F(t)} = f(s – a)

Proof Let L{F(t)} = 

0

( ) ( )st
f s e F t dt

•
-= Ú  (11)

Then  L{e
at F(t)} = 

0

( )st at
e e F t dt

•
- ◊Ú

 = 
( )

0

( )s a t
e F t dt

•
- -Ú

 = 
0

( )ut
e F t dt

•
-Ú  where u = (s – a) > 0

 = f(u)

 = f(s – a) Proved.

Remarks This theorem can also be restated as follows:

If f(s) is the Laplace transform of F(t) and a is any real or complex number then f(s + a) is the 

Laplace transform of e–at F(t). That is to say,

 f(s) = L{F(t)} fi f(s + a) = L{e
–at F(t)}

Theorem 3: Second Translation or Heaviside’s Shifting Theorem

If L{F(t)} = f(s) and G(t) = 
Ï
Ì
Ó

F(t a) t > a

t < a

– if

0 if

Then  L{G(t)} = e–as f (s)

Proof L{G(t)} = 

0

( )st
e G t dt

•
-Ú  (12)

 = 
0

( ) ( )

a
st st

a

e G t dt e G t dt

•
- -+Ú Ú

 = 

0

0 ( )

a
st st

a

e dt e F t a dt

•
- -◊ + ◊ -Ú Ú

 = ( )st

a

e F t a dt

•
- -Ú  Put t – a = u

  dt = du

 = ( )

0

( )s u a
e F u du

•
- +Ú

 = 
0

( )su as
e e F u du

•
- -◊Ú
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  = 

0

( ) ( )as su as
e e F u du e f s

•
- - -=Ú  Hence, proved.

Another Form

If f(s) is the Laplace transform of F(t) and a > 0 then e–as f (s) is the Laplace transform of F(t – a) 

H (t – a) when

 H (t) = 
Ï
Ì <Ó

t

t

1 if > 0

0 if 0

Proof Suppose f(s) = L{F(t)} and a > 0.

Also, suppose H (t) = 
1 if 0

0 if 0

t

t

>Ï
Ì <Ó

To prove that L{F(t – a). H(t – a)} = e–as .f(s).

\   L{F(t – a) H(t – a)} = 

0

( ) ( )st
e F t a H t a dt

•
- - -Ú  (13)

Put t – a = x  so that dt = dx

 t – a = x,  t = 0 fi x = – a

 t – a = x,  t = • fi x = • 

Then L{ F(t – a) H(t – a)} = 
( )( ) ( ) s a x

a

F x H x e dx

•
- +

-

◊Ú  [by (1)]

 = 

0
( ) ( )

0

( ) ( ) ( ) ( )s a x s a x

a

F x H x e dx F x H x e dx

•
- + - +

-

◊ + ◊Ú Ú

 = 

0
( ) ( )

0

( ) 0 ( )1s a x s a x

a

F x e dx F x e dx

•
- + - +

-

◊ ◊ + ◊Ú Ú

 = ( )

0

0 ( ) s a x
F x e dx

•
- ++ Ú

 = 
0

( )as st
e F t e dt

•
- -◊Ú

 = e–as L{F(t)} = e–as ·f(s) 

Theorem 4: Change-of-Scale Property

If L{F(t)} = f(s), then L F at = f s a
a

1
{ ( )} ( / )

 L{F(at)} = 

0

( )st
e F at dt

•
- ◊Ú  (14)
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 = 

0

( )

sx

a
dx

e F x
a

• -
◊Ú  

put at x

a dt dx

=È ˘
Í ˙=Î ˚

 = 

0

1
( )

sx

a
dx

e F x
a a

• -
◊Ú

 = 

0

1
( )

st

a
dx

e F x
a a

• -
◊Ú

 = 
0

1
( ) ;pt dx s

e F t p
a a a

•
- ◊ =Ú

 = 
1

( )f p
a

  = 
1

( / )f s a
a

Example 1  Find the Laplace transform of F(t) = 3e
3t + 5t

4 – 4 cos 3t + 3 sin 4t.

Solution L{F(t)} = L{3e
3t + 5t

4 – 4 cos3 t + 3 sin 4t}

 = 3L{e
3t} + 5L{t 

4} – 4 L{cos 3t} + 3L{sin 4t}

 = 
5 2 2

1 4! 4
3 5 4 3

3 9 16

s

s s s s
◊ + - +

- + +

Example 2  Find the LT of F(t) = e–3t + 3 cosh st – 4 sinh 4t.

Solution L{F(t)} = L{e
–3t + 3 cosh 5t – 4 sinh 4t}

 = L{e
–3t} + 3L{cosh 5t} – 4L{sinh 4t}

 = 
2 2

1 4
3 4

3 25 16

s

s s s
+ ◊ - ◊

+ - -

 = 
2 2

1 3 16

3 25 16

s

s s s
+ -

+ - -

Example 3  Find L{t
3 e2t}.

Solution

 3

4 4

3! 12
{ } ( ) sayL t f s

s s
= = ∫

Then using the fi rst translation theorem,

 L{t
3◊e2t} = f(s – 2)

 = 
4

12

( 2)s -
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Example 4  Find L{e
–3t sin 2t}.

Solution

       
2

2
{sin 2 } ( ) say

4
L t f s

s
= ∫

+

Then  L{e
–3t sin 2t} = f(s + 3)

 = 
2

2

( 3) 4s + +

 = 
2

2

6 13s s+ +

Example 5  Find L{e
–2t(3 cos 6t – 5 sin 6t}.

Solution

 L{3 cos 6 t – 5 sin 6t} = 3L{cos 6 t} – 5 L{sin 6t}

 = 
2 2

3 30

36 36

s

s s
-

+ +

 = 
2

3 30

36

s

s

-
+

 = 
2

3( 10)
( )

36

s
f s

s

-
∫

+
\ L{e

–2t(3 cos 6t – 5 sin 6t)} = f(s + 2)

 = 
2

3{( 2) 10}

( 2) 36

s

s

+ -
+ +

 = 
2

3( 8)

4 40

s

s s

-
+ +

Example 6  Find L{F(t)} if 
sin ( /3); /3

( )
0; /3

t t
F t

t

p p

p

- >È ˘
= Í ˙<Î ˚

.

Solution

 L{F(t)} = 

0

( )st
e F t dt

•
-Ú

 = 

/3

0 /3

. 0 sin ( /3)st st
e dt e t dt

p

p

p
•

- -+ -Ú Ú

 = 

0

3 . sin
s u

e udu

pÊ ˆ• - +Á ˜Ë ¯Ú  
Put

3
t u

dt du

pÈ ˘
- =Í ˙

Í ˙
=Í ˙Î ˚
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 = 3

0

sin

s

su
e e udu

p •- -Ú  = 3 {sin }

s

e L u

p
-

◊

 = 3
2

1

1

s

e
s

p
-

◊
+

Example 7  Find L{cos 3t}.

Solution

  
2

{cos } ( ) say
1

s
L t f s

s
= ∫

+

\ L{cos 3t} = f(s/3)

 = 
2

1 /3

3 ( /3) 1

s

s +

 = 
2

1 9

3 3( 9)

s

s

¥
+

 = 
2 9

s

s +

16.5  A FUNCTION OF CLASS A

A function which is sectionally continuous over every fi nite interval in the range t ≥ 0 and is of 

exponential order as t Æ • is termed as ‘a function of class A’.

16.6  SECTIONALLY CONTINUOUS

A function F(t) is said to be sectionally continuous in a closed interval a £ t £ b if that interval can 

be subdivided into a fi nite number of intervals such that in each function is continuous and has fi nite 

right- and left- hand limits.

Fig. 16.1

In Fig. 16.1, F(t) is discontinuous at t1, t2, t3, t4 but is sectionally continuous in the interval (a, b).

 (i) Here, F(t) is continuous in the open intervals 

  a < t < t1, t1 < t < t2, t3 < t < t4, t4 < t < b
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 (ii) The right-hand and left-hand limits at t1 are

  1 1
0 0

Lim ( ) and Lim ( )F t F t
ŒÆ ŒÆ

+ Œ - Œ  which exist as is evident from the above diagram.

Functions of Exponential Order

A function F(t) is said to be of exponential order b as t Æ • if there exists a positive constant M, a 

number b and a fi nite number t0 such that

 |F(t)| < Me
bt; t ≥ t0 (15)

Sometimes we write

 F(t) = O(ebt), t Æ •
and read it as F(t) is of exponential order b, as t Æ •

Note If a function is of exponential order b, it is also of order a such that a > b.

Example 8  Show that F(t) = t2 is of exponential order 3.

Solution Let us fi nd

 Lim { ( )}bt

t
e f t

-

Æ•
◊  = 2Lim { }bt

t
e t

-

Æ•
◊

 = 
2

Lim 0
btt

t

eÆ•

Ï ¸Ô Ô =Ì ˝
Ô ÔÓ ˛

Therefore, it is of exponential order

Now, since |t2| = t2 < e3t for all t > 0, it is of order 3.

Example 9  Show that 
2

( ) t
F t e=  is not of exponential order as t Æ •.

Solution

    
2

Lim ( ) Limbt bt t

t t
e F t e e

- -

Æ• Æ•

È ˘È ˘ =Î ˚ Í ˙Î ˚

 = 

2

Lim
t

btt

e

eÆ•

È ˘
Í ˙
Í ˙Î ˚

 = 
2

Lim t bt

t
e

-

Æ•

Case I: If b £ 0, this limit is infi nite.

Case II:  If ( )0, Lim t t b

t
b e

-

Æ•
>  = •

Thus, whatever be the value of b, this limit is not fi nite, Hence, we cannot fi nd a number M such 

that

 e
t2 < Me

bt

Hence, the given function is not of exponential order as t Æ •.
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16.7  LAPLACE TRANSFORMS OF DERIVATIVES

Theorem 5(a)

If  L{F(t)} = f(s) then

 L{F¢(t)} = sf(s) – F(0): s > 0

Proof      L{F¢(t)} = 

0

( )st
e F t dt

•
- ¢Ú  (16)

 = 
0

( ) ( )st st
e F t s e F t dt

•- -È ˘ +Î ˚ Ú  [Integrating by parts]

 = –F(0) + sf(s)

 = sf(s) – F(0)

Result I By applying the above theorem to F¢¢(t), we have

 L{F¢¢(t)} = sL{F¢(t)} – F¢(0)

  = s{sf(s) – F(0)} – F¢(0)

  = s2
f(s) – sF(0) – F¢(0)

Result II Similarly, for LT of derivatives of order n, we have

 L{F
n(t)} = sn f(s) – sn–1

F(0) – sn–2
F¢(0) + … – F(n–1)(0)

Example 10  Find L{–3 sin 3t}.

Solution Let F(t) = cos 3t 

Then F¢(t) = –3 sin 3t and 
2

{cos 3 } ( ) say
9

s
L t f s

s
= ∫

+
\ L{–3 sin 3t} = L{F¢(t)}
 = sf(s) – F(0)

 = 
2

cos 0
9

s
s

s
◊ -

+

 = 
2

1
9

s

s
-

+

 = 
2

9

9s

-
+

16.8  DIFFERENTIATION OF TRANSFORMS 

Theorem 5(b)

Multiplication by t

If L{F(t)} = f(s) then

 L{t ◊ F(t)} = ¢
d

f s = f s
ds

(–1) ( ) (–1) ( )
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In general, L{t
n ◊ F(t)} = ( )( 1) ( ) ( 1) ( )

n
n n n

n

d
f s f s

ds
- = -  (17)

Proof We know that 

0

( ) ( )st
f s e F t dt

•
-= Ú

By Leibnitz’s rule for differentiating under the integral sign

 ( )
d

f s
ds

 = 

0

( )std
e F t dt

ds

•
-Ú

 ( )
d

f s
ds

 = 

0

( ) ( )st
F t e dt

s

• ∂
◊
∂Ú

 = 

0

( ) ( )st
F t te dt

•
-◊ -Ú

 = 

0

( ) ( )st
F t te dt

•
-- ◊Ú  = –L{t ◊ f(t)}

\ L{t ◊ F(t)} = ( ) ( 1) ( )
d

f s f s
ds

- = - ¢  (18)

Similarly, L{t
2 F(t)} = (–1)2 f ¢¢(s)

By mathematical induction, the result for the nth derivative follows:

 L{t
n ◊ F(t)} = (–1)n f (n)(s)

Example 11  Find L{t ◊ sin at}.

Solution Here, F(t) = sin at

 L{F(t)} = 
2 2

{sin } ( )
a

L at F s
s a

= ∫
+

\ L{t ◊ sin at} = ( )
d

f s
ds

-

 = 
2 2

d a

ds s a

Ê ˆ
- Á ˜+Ë ¯

 = 
2 2 2

2

( 9 )

as

s +

16.9  LAPLACE TRANSFORM OF THE INTEGRAL OF A FUNCTION

Theorem 6

If L{F(t)} = f(s) then

 
Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Ú
t

L F u du

0

( )  = 
f s

s
s

( )
; > 0
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Proof Let G(t) = 

0

( )

t

F u duÚ
Then G¢(t) = F(t) and G(0) = 0

We know that

 f(s) = L{F(t)} = L{G¢(t)}
 = s L{G(t)} – G(0)

 = s ◊ L{G(t)}

\ L{G(t)} = 
1

( )f s
s

or 

0

( )

t

L F u du
Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Ú  = 

1
( )f s

s
 (19)

Result Similarly, if L{F(t)} = f(s) then

 

1

1

0 0

( )

tt

L dt F u du
Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Ú Ú  = 

2

1
( )f s

s

The double integral can also be written as

 

2

0 0

( )

t t

L F t dt
Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Ú Ú

Generalization for nth integral is

 -times

0 0 0

( )

t t t
n

nL F t dt
Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Ú Ú Ú  = 

1
( )

n
f s

s
 (20)

16.10  INTEGRATION OF TRANSFORM! (DIVISION BY t)

Theorem 7

If L{F(t)} = f(s), then

 
Ï ¸
Ì ˝
Ó ˛

F t
L

t

( )
 = 

•

Ú
s

f u du( )

Proof f(s) = 

0

{ ( )} ( )st
L F t e F t dt

•
-= Ú  (21)

Integrating on both side w.r.t. s from 0 to •, we have

 
0

( )f u du

•

Ú  = 

0

( )st

s

e F t dt ds

• •
- ◊Ú Ú
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Since s and t are independent variables, interchanging the order of integration, we get

 ( )

s

f u du

•

Ú  = 

0

( ) st

s

F t e ds dt

• •
-

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

Ú Ú

 = 

0

( )
st

s

e
F t dt

t

•• -Ê ˆ
Á ˜-Ë ¯Ú

 = 

0

( )
st

e
F t dt

t

• -Ê ˆ-
Á ˜-Ë ¯Ú

 = 

0

( )st F t
e dt

t

•
- Ê ˆ◊Á ˜Ë ¯Ú

or ( )

s

F u du

•

Ú  = 
( )F t

L
t

Ï ¸
Ì ˝
Ó ˛

Example 12  Find 
cos cosat bt

L
t

-Ï ¸
Ì ˝
Ó ˛

.

Solution Here, F(t) = cos at – cos bt

 L{F(t)} = L{cos at – cos bt}

 = L{cos at} – L{cos bt}

 = 
2 2 2 2

( )
s s

f s
s a s b

- ∫
+ +

Using division by t,

 
( )F t

L
t

Ï ¸
Ì ˝
Ó ˛

 = ( )

S

f u du

•

Ú

 
cos cosat bt

L
t

-Ï ¸
Ì ˝
Ó ˛

 = 
2 2 2 2

s

u u
du

u a u b

• È ˘
-Í ˙

+ +Í ˙Î ˚
Ú

 = 

2 2

2 2

1
log

2
s

u a

u b

•
˘Ê ˆ+
˙Á ˜+Ë ¯ ˙̊

 = 
2 2

2 2

1
0 log

2

s a

s b

È ˘Ê ˆ+
-Í ˙Á ˜+Ë ¯Í ˙Î ˚

 = 
2 2

2 2

1
log

2

s b

s a

Ê ˆ+
Á ˜+Ë ¯
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16.11  HEAVISIDE’S UNIT FUNCTION (UNIT-STEP FUNCTION)

If a function is of the form

 F(t) = 0;  t < a

 = 1; t > a

then H(t – a) is defi ned as the Heaviside’s unit function. See 

Fig. 16.2.

Let us consider a function H(t) given by

 H(t) = 
( ) , for 0

0 , for <

F t t

t a

≥Ï
Ì
Ó

This shows that H(t) = 0 when t is negative and is F(t) when t is positive or zero. It follows that 

 H(t – a) = 
( ) for

0 for

F t a t a

t a

- ≥Ï
Ì <Ó

The graph of y = F(t), t ≥ 0 is shown in Fig. 16.3, and the graph of y = F(t – a). H(t – a) t ≥ a is shown 

in Fig. 16.4. (1)

  

 Fig. 16.3 Fig. 16.4

Now, if F(x) is defi ned for –a £ x < 0 then F(t – a) is defi ned for 0 £ t < a and y of equation (1) is 0 for 

0 £ t < a because of H(t – a).

The following diagrams will make this idea more clear.

Fig. 16.5

16.12  DIRACS DELTA FUNCTION (OR UNIT-IMPULSE FUNCTION)

Forces (like earthquakes) that produce large effects on a system, when applied for a very short time 

interval, can be represented by an impulse function which is a discontinuous function and is highly 

irregular from the mathematical point of view.

Fig. 16.2
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Impulse of a force F(t) in the interval ( , ) ( )

a

a

a a F t dt

+ Œ

+ Œ = Ú
Now, we defi ne the function

 

0 for

1
( ) for

0 for  > 

t a

F t a a t a

t a

Œ

<È
Í
Í- £ £ + Œ
ÍŒ
Í
Î

This can also be represented in terms of two unit-step functions as follows:

 FŒ(t – a) = [ ]1
( ) ( ( ))H t a H t a- - - + Œ

Œ
 (22)

Note that

 

0

( )F t a dt

•

Œ -Ú  = 

0

1
0 0 1

aa

a a

dt dt

+ Œ •

+Œ

+ + =
ŒÚ Ú Ú

Thus, the impulse IŒ is 1.

Taking Laplace transform,

 L{FŒ(t – a)} = { }1
( ) ( ( )L H t a H t a- - - + Œ

Œ

 = ( )1 as a s
e e

s

- - +ŒÈ ˘-Î ˚Œ

 = 
(1 )s

as e
e

s

-Œ
- -

◊
Œ

Dirac delta function (or unit-impulse function) is denoted by d(t – a) as the limit of FŒ(t – a)} as 

Œ Æ 0 

i.e., d (t – a) = 
0

lim ( )F t aŒŒÆ
◊ -

Then the Laplace transform of the Dirac delta function is obtained as

 L{d (t – a)} = 
0

lim { ( )}L F t aŒŒÆ
◊ -

 = 
0

(1 )
lim

s
as e

e
s

-Œ
-

ŒÆ

-
◊

Œ
 L{d (t – a)} = e–as

Thus, the Dirac delta function is a “generalized function” defi ned as

 d (t – a) = 
, if

0, otherwise

t a• =Ï
Ì
Ó

subject to 

0

( )t a dtd
•

-Ú  = 1 (23)

Fig. 16.6
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Example 13  Find L{F(t – a)}, where F(t – a) is Heaviside’s unit-step function.

Solution

 F(t – a) = 
1

0

t a

t a

>Ï
Ì <Ó

\ L{F(t – a)} = 

0

( )st
e F t a dt

•
- -Ú

 = 

0

0 1

a
st st

a

e dt e dt

•
- -◊ + ◊Ú Ú

 = 
sa

st

a a

e
e dt

s

•• -
- È ˘

= Í ˙
-Í ˙Î ˚

Ú

 = 

sa
e

s

-

Example 14  Find L{FŒ(t)}, where FŒ(t)} is a Dirac delta function.

Solution

 FŒ(t) = 

1
of 0

0 if

t

t

Ï £ £ ŒÔ
ŒÌ

Ô > ŒÓ

\ L{FŒ(t)} = 
0

( )st
e F t dt

•
-

ŒÚ

 = 
0

1
. 0st st

e dt e dt

Œ •
- -

Œ

+ ◊
ŒÚ Ú

 = 

0

1
0

st
e

s

Œ-È ˘
+Í ˙

Œ -Í ˙Î ˚

 = 
1

(1 )s
e

s

-Œ-
Œ

16.13  LAPLACE TRANSFORMS OF PERIODIC FUNCTIONS

A function F(t) is said to be a periodic function of period T > 0 if

 F(t) = F(t + T) = F(t + 2T) = … = F(t + nT)

sin t, cos t are periodic functions of period 2p.
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Theorem 8

The Laplace transform of a periodic function F(t) with period T is

 L{F(t)} = 
( )

Ú
T

sT

Ts
e F t dt s

e

–

–
0

1
( ) > 0

1 –

Proof L{F(t)} = 

0

( )sT
e F t dt

•
-Ú

 = 

2 3

0 2 ( 1)

( ) ( ) ( ) ( )

T T T nT
sT sT sT sT

T T n T

e F t dt e F t dt e F t dt e F t dt
- - - -

-

+ + + +Ú Ú Ú Ú  (24)

Put t = u + T in the second integral

 t = u + 2T in the third integral

  

 t = u + (n – 1)T in the nth integral.

Then the new limits for each interval are 0 to T and by periodicity,

 F(t + T) = F(t), T(t + 2T) = F(t) and so on

\ L{F(t)} = ( ) ( 2 )

0 0 0

( ) ( ) ( )

T T T
su s u T s u T

e F u du e F u du e F u du
- - + - ++ + +Ú Ú Ú  

  = 2

0

1 ( )

T
sT sT su

e e e F u du
- - -È ˘+ + +Î ˚ Ú 

 L{F(t)} = 

0

1
( ) , 0

1

T
sT

sT
e F t dt s

e

-
-

>
- Ú

Since the bracketed quantity in RHS is GP,

i.e., 2 3 1
1 | | 1

1
r r r r

r
+ + + = <

-
 , with r = e–sT

Example 15  Find the Laplace transform of the sawtooth wave (Fig. 16.7).

 F(t) = ; 0
K

t t T
T

◊ < <

and F(t + T) = F(t)

Solution

 L{F(t)} = 

-

--

Ú
0

( )

(1 )

T
st

sT

e F t dt

e
 (1)

Now, 
0

( )

T
st

e F t dt
-Ú  = 

0

T
st K

e t dt
T

- ◊Ú  = 

0

T
stK

e t dt
T

- ◊Ú

Fig. 16.7
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 = 
0 0

1
T T

st stK t
e e dt

T s s

- -
È ˘Ê ˆÍ ˙- +Á ˜Ë ¯Í ˙Î ˚

Ú

 = 

0

1
T

st
sTK T e

e
T s s s

-
-

È ˘Ê ˆÍ ˙◊ - + Á ˜Í ˙-Ë ¯Î ˚

 = 
2

1
( 1)sT stK T

e e
T s s

- -È ˘- - -Í ˙Î ˚
\ Eq. (1), becomes

 L{F(t)} = 
2

1
( 1)

(1 )

sT sT

sT

K T
e e

sT e s

- -
-

È ˘¥ - - -Í ˙¥ - Î ˚

 = 
2

, 0
(1 )

sT

sT

K K e
s

Ts s e

-

-
- >

-

16.14  THE ERROR FUNCTION

The error function, abbreviated as ‘erf’ or ‘E’, is defi ned as 

 erf x = 
2

0

2
x

x
e dx

p

-Ú
and erfc x read as ‘the complement of error function’ is defi ned as

 erfc x = 1 – erf x

 = 
22 x

x

e dx
p

•
-Ú

The numerical values of erf x have been tabulated in most books on the subject. It is convenient to 

note that

 
0

lim erf
x

x
Æ

 = 0, lim erf 1
x

x
Æ•

=  (25)

Example 16  Find {erf }L t .

Solution By defi nition,

       
2

0

2
erf

t
x

t e dx
p

-= Ú

 = 
4 6

2

0

2
1

2! 3!

t
x x

x dx
p

È ˘
- + - +Í ˙

Í ˙Î ˚
Ú  

 = 
3/2 5/2 7/2

1/22

3 5.2! 7.3!

t t t
t

p

È ˘
- + - +Í ˙

Í ˙Î ˚
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\ {erf }L t  = 
1/2 3/2 5/2 7/32 1 1 1

3 5.2! 7.3!
L t t t t

p

Ï ¸- + - +Ì ˝
Ó ˛

 

 = 
3/2 5/2 7/2 9/2

2 3/2 5 / 2 7 / 2 9 / 2

3 5.2! 7.3!s s s sp

Ï ¸Ô Ô- + - +Ì ˝
Ô ÔÓ ˛

 

 = 
3/2 5/2 7/2 9/2

1 1 1 1.3 1 1.3.5 1

2 2.4 2.4.6s s s s
- ◊ + ◊ - ◊ + 

 = 
3/2 2 3

1 1 1 1.3 1 1.3.5 1
1

2 2.4 2.4.6ss s s

Ï ¸- ◊ + ◊ - ◊ +Ì ˝
Ó ˛

 

 = 

1/2

3/2

1 1
1

ss

-
Ê ˆ+Á ˜Ë ¯

    L t =
s s

1
{erf }

+ 1

16.15   LAPLACE TRANSFORM OF BESSEL’S FUNCTIONS J0(t) AND J1(t)

We know that

 J0(t) = 
2 2 6

2 2 2 2 2 2
1

2 2 4 2 4 .6

t t tÈ ˘
- + - +Í ˙

◊ ◊Í ˙Î ˚
 

\ L{ J0(t)} = 
2 3 2 2 5 2 2 2 7

1 1 2! 1 4! 1 6!

2 2 4 2 .4 .6s s s s
- ◊ + ◊ - ◊ +

◊
 

 = 
2 4 6

1 1 1 1.3 1 1.3.5 1
1

2 2 4 2.4.6s s s s

È ˘
- ◊ + ◊ - ◊ +Í ˙◊Î ˚

 

 = 

1/2

2 2

1 1 1
1

1s s s

-È ˘Ê ˆÍ ˙+ =Á ˜Ë ¯Í ˙ +Î ˚
 (26)

We know that 

 L{F(at)} = 
1

( / )F s a
a

\ L{J0(at)} = 
2

2

1 1

1
a s

a

Ê ˆ
+Á ˜Ë ¯

 = 
2 2

1

s a+

Now, we know that 

 J¢0 (t) = –J1(t)

\ L{J1(t)} = –L{J¢0(t)} [Using LT of derivatives]

 = –[{sL(J0(t)} –1]

 = 
2

1
1

s

s
-

+
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16.16  INITIAL AND FINAL-VALUE THEOREMS

Theorem 9: Initial Value Theorem

If L{F(t)} = f(s) then

 
Æt

F t
0

lim ( )  = 
Æ•s

s f slim ( )

Proof We know that

 L{F ¢(t)} = sf(s) – F(0)

or 

0

( )st
e F t dt

•
- ¢Ú  = sF(s) – F(0) (27)

Taking s Æ •,

 

0

lim ( )st

s
e F t dt

•
-

Æ•
¢Ú  = lim [ ( ) (0)]

s
s f s F

Æ•
-

or lim ( )
s

s f s
Æ•

 = 

0

(0) lim ( )st

s
F e F t dt

•
-

Æ•

Ê ˆ+ ◊ ¢Á ˜Ë ¯Ú

 = 

0

(0) 0. ( )F F t dt

•

+ ¢Ú  lim 0st

s
e

-

Æ•

È ˘◊ =Í ˙Î ˚
∵

 = F(0) + 0

or lim ( )
S

sf t
Æ•

 = (0) lim ( )
t

F F t
Æ•

=

Theorem 10: Final-value Theorem

If L{F(t)} = f(s) then

 
Æ•t

F tlim ( )  = 
Æ

◊
S

s f s
0

lim ( )

Proof We know that

 L{F¢(t)} = s ◊ f(s) – F(0)

or 
0

( )st
e F t dt

•
- ◊ ¢Ú  = s · f(s) – F(0) (28)

 
0

lim [ ( ) (0)]
s

sf s F
Æ

-  = 
0

0

lim ( )st

s
e F t dt

•
-

Æ
¢Ú

 = 
0

0

lim ( )st

s
e F t dt

•
-

Æ

Ê ˆ◊ ◊ ¢Á ˜Ë ¯Ú

 = 

0

( )F t dt

•

¢Ú

 = 0[ ( )] tF t
•
=
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0

lim ( ) (0)
s

sf s F
Æ

-  = lim ( ) (0)
t

F t F
Æ•

-

 
0

lim ( )
s

s f s
Æ

◊  = lim ( )
t

F t
Æ•

 Hence, proved.

16.17  LAPLACE TRANSFORM OF THE LAPLACE TRANSFORM

 L[L{F(t)}] = 

0

( )st
L e F t dt

•
-Ú

 0 0

( )us st
e ds e F t dt

• •
- -Ú Ú  (29)

The area of integration being the whole positive quadrant. Now changing the order of integration, 

we get

 L[L{F(t)} = ( )

0 0

( ) s u t
F t dt e ds

• •
- +Ú Ú

 = 
( )

0 00

( )
( )

( ) ( )

s u t

s

e F t
F t dt dt

u t u t

•• •- +

=

È ˘
◊ =Í ˙

- + +Í ˙Î ˚
Ú Ú

Hence,  L{L{F(t)}] = 

0

( )

( )

F t
dt

u t

•

+Ú  (30)

Example 17  Find the LT of the function 
1

( )
at

e
F t

a

-
= .

Solution 
1

{ ( )}
at

e
L F t L

a

Ï ¸-Ô Ô= Ì ˝
Ô ÔÓ ˛

 = 
1

{ 1}at
L e

a
-

 = 
1 1

{ } {1}at
L e L

a a
-

 = 
1 1 1 1 1

.
( )a s a a s s s a

- =
- -

Example 18  Find the LT of F(t), if

 F(t) = 
2( 1) ; 1

0 ; 0 1

t t

t

Ï - >Ô
Ì

< <ÔÓ
Solution

 L{F(t)} = 

0

( )st
e F t dt

•
- ◊Ú
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 = 

1
2

0 1

0 ( 1)st st
e dt e t dt

•
- -◊ + -Ú Ú

 = 
2

11

( 1) 2
0 ( 1)

st
stt e

t e dt
s s

• •-
-È ˘- ◊

+ + -Í ˙
-Í ˙Î ˚

Ú

 = 
2

1 1

2 ( 1) 2
0 0

2

st st

t

t e e

s ss

• •- -

=

È ˘ Ê ˆ-
+ + - +Í ˙ Á ˜-Ë ¯Í ˙Î ˚

 = 
2 3

2 2 2
(0)

s
se

e
s ss s

-
-Ê ˆ

+ =Á ˜
Ë ¯

Example 19  Find L[(1 + te–t)3].

Solution Here, F(t) = (1 + te–t)3

 F(t) = 1 + t3 e–3t + 3te
–t + 3t

2 e–2t

\ L{F(t)} = L{1 + t3 e–3t + 3t e
–t + 3t

2 e–2t}

 = {1} + L{t
3
 e

–3t} + 3L{t e
–t} + 3 L{t

2 e–2t}

 = 
4 2 3

1 3! 3.1! 3.2!

( 3) ( 1) ( 2)s s s s
+ + +

+ + +
 

1

!
Using { }

( )

n at

n

n
L t e

s a
+

È ˘
=Í ˙

-Í ˙Î ˚

 = 
4 2 3

1 6 3 6

( 3) ( 1) ( 2)s s s s
+ + +

+ + +

Example 20  Find the Laplace transforms of (i) sin t  (ii) 
cos t

t
.

Solution (i) ( ) sinF t t=

 = 
3.2 5/2 7/2

3! 5! 7!

t t t
t + + - +  

\ L{F(t)} = {sin }L t

 = 
3.2 5/2 7/2

3! 5! 7!

t t t
L t

Ï ¸Ô Ô- + - +Ì ˝
Ô ÔÓ ˛

 

 = 1/2 3/2 5/2 7/21 1 1
{ } { } { } { }

3! 5! 7!
L t L t L t L t- + - +  

 = 
3/2 5/2 7/2 9/2

3/2 1 5/2 1 7/2 9/2

3! 5!s s s s
- + - + 

 = 
3/2 2 3

1 1 3 1 1 1 5 3 1 1 7 5 3 1

2 3! 2 2 2 2 2 2 2 2 2.5! .7!ss s s

p È ˘- ◊ ◊ ◊ + ◊ ◊ ◊ - ◊ ◊ ◊ ◊ +Í ˙Î ˚
 

 

1 1
Using { } ( 1)/ ,

2

n n
L t n s p+È ˘

= + =Í ˙
Í ˙Î ˚
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 = 

1/2

2 2 2 2 2

1 1 1 1
1

2 2 (2 ) 2! (2 ) 3!s s s s s

p È ˘Ê ˆ - + - +Í ˙Á ˜Ë ¯ ◊ ◊Í ˙Î ˚
 

 = 
2

11/2

2
1

2
se

s s

p -Ê ˆÊ ˆ Á ˜Á ˜Ë ¯ Á ˜Ë ¯

 = 

1/2

1/41

2

s
e

s s

p -Ê ˆ
Á ˜Ë ¯

(ii) Let  L{F(t)} = 1/4

3/2
{sin } ( ) say

2

s
t e f s

s

p -= ∫

 F(0) = sin 0 = 0

 F¢(t) = 
1 1 cos

cos
22

t
t

t t
=

 L{F¢(t)} = sf(s) – F(0)

 = s f(s) – 0 = s f(s)

 = 
1/4

3/22

s
s e

s

p -◊ ◊

 = 

1

4
1

2
se

s

p -

or 
1 cos

2

t
L

t

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

 = 

1

4
1

2
se

s

p -

or cos
t

L
t

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

 = 

1

4se
s

p -

Example 21  Find 

0

sin
t

x
L dx

x

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Ú .

Solution We know that 

0

1
( ) ( )

t

L F x dx f s
s

Ï ¸Ô Ô =Ì ˝
Ô ÔÓ ˛
Ú

Here, F(t) = 
sin t

t

 L{sin t} = 
2

1

1 s+

\ 
sin t

L
t

Ï ¸
Ì ˝
Ó ˛

 = 1

2

1
{tan }

1
s

S

ds s
s

•
- •=

+Ú
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 = 1 1tan cot ( )
2

s s f s
p - -- = ∫

\ 
0

sin
t

t
L dt

t

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Ú  = 11

cot s
s

-

Example 22  Find the LT of F(t), where 

 F(t) = 

2 2
cos if

3 3

2
0 if <

3

t t

t

p p

p

Ï Ê ˆ- >Ô Á ˜Ë ¯Ô
Ì
Ô
ÔÓ

Solution

Method (I)

 L{F(t)} = 

0

( )st
e F t dt

•
- ◊Ú

 = 

2

3

20

3

( ) ( )st st
e F t dt e F t dt

p

p

•
- -◊ + ◊Ú Ú

 = 

2

3

20

3

2
0 . cos

3

st st
e dt e t dt

p

p

p
•

- - Ê ˆ◊ + -Á ˜Ë ¯Ú Ú

 = 

2

3

0

2
0 cos put

3

s x

e x dx t x

p
p

Ê ˆ- +Á ˜Ë ¯
• È ˘+ - =Í ˙Î ˚Ú

 = 

2

3

0

cos

s

sx
e e x dx

p •- -Ú

 = 

2

3

0

cos

s

st
e e t dt

p- •
-Ú

 = 

2 2

3 3
2

{cos }
1

s s
s

e L t e
s

p p-
-

=
+

Method II   L{F(t)} = e–as f(s)

Here,  a = 
2

2
, ( ) cos , ( ) {cos }

3 1

s
F t t f s L t

s

p
= = =

+
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\ L{F(t)} = 

2

3
2 1

s
s

e
s

p
-

◊
+

Example 23  Find the LT of F(t), where

 F(t) = 
if 0 <

1 if >

t
t T

T

t T

Ï <Ô
Ì
ÔÓ

Solution

 L{F(t) = 

0

( )st
e F t dt

•
- ◊Ú

 = 

0

( ) ( )

T
st st

T

e F t dt e F t dt

•
- -+Ú Ú

 = 

0

1

T
st st

T

t
e dt e dt

T

•
- -◊ + ◊Ú Ú

 = 
-

- - •
=

=

È ˘Ê ˆ
- -Í ˙Á ˜-Ë ¯Í ˙Î ˚

2

0

1 1 1
( )

T
st

st st
t T

t

t e
e e

T s ss

 = 
2

1 1
0 ( 1)

st sT
sTT e e

e
T s ss

- -
-

È ˘Ê ˆ
- - - +Í ˙Á ˜-Ë ¯Í ˙Î ˚

 = 
2

1
(1 )sT

e
s T

--
-

Example 24  Show that 
3

0

3
sin

50

t
t e t dt

•
-◊ =Ú .

Solution Since 
2

1
{sin } ( )

1
L t f s

s
= ∫

+

\ L{t·sin t} = ( 1) ( )
d

f s
ds

- ◊

 = 
2 2 2

1 2

1 ( 1)

d s

ds s s

Ê ˆ
- =Á ˜+ +Ë ¯

fi 

0

( sin )st
e t t dt

•
-Ú  = 

2 2

2

( 1)

s

s +

Putting s = 3,

\ 3

0

sint
te t

•
-Ú  = 

2 2

2.3 3

50(3 1)
=

+
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Example 25  Given 
3

2

1
2

t
L

s
p

Ê ˆ
=Á ˜

Ë ¯
, show that

 
1

L
tp

Ï ¸
Ì ˝
Ó ˛

 = 
1

s

Solution Let ( ) 2 , (0) 0
t

F t F
p

Ê ˆ= =Á ˜Ë ¯

 F¢(t) = 
2 1

2 t tp p
=

\ L{F¢(t)} = s f(s) – f(0) = s f(s) – 0

 = 
3/2 1/2

1 1
s

s s
◊ =

\ 
1

L
tp

Ï ¸
Ì ˝
Ó ˛

 = 
1

s
 Hence, proved.

Example 26  Evaluate 
3

0

t t
e e

dt
t

• - --
Ú .

Solution If we write F(t) = e–t – e–3t then

 f(s) = 3 1 1
{ ( )} { }

1 3

t t
L F t L e e

s s

- -= - = -
+ +

\ 

3t t
e e

L
t

- -Ï ¸-Ô Ô
Ì ˝
Ô ÔÓ ˛

 = 
1 1

1 3
s

ds
s s

• È ˘
-Í ˙+ +Î ˚

Ú

 

3

0

t t
st e e

e dt
t

• - -
- Ê ˆ-

Á ˜
Ë ¯Ú  = 

3
log

1

s

s

Ê ˆ+
Á ˜+Ë ¯

Putting s = 0, we get

 

3

0

t t
e e

dt
t

• - --
Ú  = log 3

Example 27  Show that 

0 0

sin

4

t t

t u

e u
du dt

u

p
• -

= =

=Ú Ú .

Solution The given double integral on the LHS is the Laplace transform of 

0

sin
t

u
du

uÚ  with s = 1. 

We know that

 
0

sin
t

u
L du

u

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Ú  = 

0 0

sin
t st

t u

e u
du dt

u

• -

= =

◊
Ú Ú
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 = 1

1

1 1
tan

s
s s

•
-

=

È ˘
Í ˙Î ˚

 
1

0

sin 1 1
tan

t
x

L dx
x s s

-
È ˘

=Í ˙
Í ˙Î ˚

Ú∵

 = tan–11

 = 
4

p
 Hence, proved.

Example 28  Express in terms of Heaviside’s unit-step function:

 F(t) = 

sin 0

sin 2 2

sin3 2

t t

t t

t t

p

p p

p

< <Ï
Ô < <Ì
Ô >Ó

Solution Consider F1(t) = sin t, F2(t) = sin 2t, F3(t) = sin 3t, so that

 F(t) = F1(t) + (F2 – F1) H(t – p) + (F3 – F2) H(t – 2p)

 = sin t + (sin 2t – sin t) H(t – p) + (sin 3t – sin 2t) H(t – 2p) 

Example 29  Find the LT of F(t), where (see Fig. 16.8)

 F(t) = 1; 0 £ t < 2

 = –1; 2 £ t < 4

 F(t + 4) = F(t)

Solution Here, period T = 4, 

Then

 L{F(t)} = 

4

0 0

4

( ) ( )

1 1

T
st st

sT T

e F t dt e F t dt

e e

- -

- -
=

- -

Ú Ú

 = 

2 4

4
0 2

1
(1) ( 1)

1

st st

s
e dt e dt

e

- -
-

È ˘
◊ + ◊ -Í ˙

- Í ˙Î ˚
Ú Ú

 = 

2 4

4

0 2

1

1

st st

s

e e

s se

- -

-

È ˘Ê ˆ Ê ˆ-Í ˙+Á ˜ Á ˜Í ˙- -- Ë ¯ Ë ¯Î ˚

 = 2 4 2

4

1 1
{ 1 }

1

s s s

s
e e e

se

- - -
-

È ˘Ê ˆ - + + -Í ˙Á ˜Ë ¯- Î ˚

 = 
4

4

1

(1 )

s

s

e

s e

-

-

+
-

 

Fig. 16.8
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EXERCISE 16.1

Find the Laplace transform of the following:

 1. F(t) = t3 + t2 + t 2. F(t) = e–t cos2 t 

 3. F(t) = cos t ◊ cos 2t 4. F(t) = sin3 2t

 5. 

2 2
sin if

3 3
( )

2
0 if

3

t t

F t

t

p p

p

Ï Ê ˆ- >Ô Á ˜Ë ¯Ô= Ì
Ô <ÔÓ

 6. 
2( 1) if 1

( )
0 if 0 1

t t
F t

t

Ï - >Ô= Ì
< <ÔÓ

 7. 
sin if 0

( )
0 if 2

t t
F t

t

p

p p

< <Ï
= Ì < <Ó

 8. F(t) = t cos h at

 9. F(t) = t2 sin t 10. F(t) = t e–t cos ht

 11. F(t) = (sin t – cos t)2 12. F(t) = sin at – at cos at

 13. 

0 ; 0 1

( ) 1 ; 1 2

2 ; 2

t

F t t

t

< <Ï
Ô= < <Ì
Ô >Ó

 14. ( )
c

F t a bt
t

= + +

 15. 
sin 2

( )
t

F t
t

=  16. 
cos

( )
at

e b t
F t

t

-
=

 17. Express the following function in terms of unit-step function:

  

( 1) 1 2
( )

(3 ) 2 3

t t
F t

t t

- < <Ï
= Ì - < <Ó

  Also, fi nd its LT.

 18. Prove that 

0

sin

4

t t
e dt

t

p•
- =Ú .

 19. Use LT to prove that 

0

sin

4

t
dt

t

p•

=Ú .

 20. Prove that 
2

2(1 )
{ ( )}

4

s
e

L H t
s

p--
=

+

  where 
sin 2 0

( )
0

t t
H t

t

p

p

< <Ï
= Ì >Ó

 21. If 
2

0

2 1
( ) then prove that { ( )}

1

t
x

erf t e dx L erf t
s sp

-= =
+Ú .

 22. Find { }L erf t , and hence, deduce that 
2 3/2

3 8
{ (2 )}

( 4)

s
L t erf t

s s

+
◊ =

+
.



16.32 Engineering Mathematics for Semesters I and II

 23. Show that 2

2 2

1 1 1 2
{ ( )} S s

L F t e e
s ss s

- -Ê ˆ Ê ˆ= + - +Á ˜ Á ˜Ë ¯ Ë ¯
.

  where 

0 if 0 1

( ) if 1 2

0 if 2

t

F t t t

t

< <È
Í= < <Í
Í >Î

 24. Find L{9 cos2 3t}.

 25. Show that 3 1
{ }

( 3) ( 2)

t
L e erf t

s s
◊ =

- -
.

 26 Show that { }
2

2 2

8 12 2
(3 sin 2 2 cos 2

( 4)

s s
L t t t

s

+ -
◊ - =

+
.

 27. Prove that 

0

1

2

t
e erf t dt

•
- ◊ =Ú .

 28. Find the LT of  
(1 ) 0 1

( ) ( 2) ( )
3 1 2

t t
F t F t F t

t t

+ £ <Ï
= + =Ì - £ £Ó

.

 29. Express F(t) in terms of Heaviside’s unit-step function;

  (i) 
2 0 2

( )
4 2

t t
F t

t t

Ï < <Ô= Ì
>ÔÓ

   (ii) 
sin

( )
cos

t t
F t

t t

p

p

>Ï
= Ì <Ó

 30. Find LT of F(t), where 
0 3

( )
3 3

t t
F t

t

< <Ï
= Ì >Ó

Answers

 1. 
4 3 2

6 2 1

s s s
+ +  2. 

2

1 1

2 2 2 4 10

s

s s s

+
+

+ + +

 3. 
2

2 2

( 5)

( 1)( 9)

s s

s s

+
+ +

 4. 
2 2

48

( 4)( 36)s s+ +

 5. 

2

3
2

1

1

s

e
s

p
- Ê ˆ

Á ˜+Ë ¯
 6. 

8

2 s
e

s

-

 7. 
2

1

(1 )(1 )s
s e

p-+ -
 8. 

2 2

2 2 2( )

s a

s a

+
-

 9. 
2

2 3

2(3 1)

( 1)

s

s

-
+

 10. 
2

2 2

2 2

( 2 )

s s

s s

+ +
+

 11. 
2

2

2 4

3( 4)

s s

s

- +
+

 12. 
3

2 2 2

2

( )

a

s a+
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 13. 21
[ ]s s
e e

s

- -+  14. 
2

a b
c

s ss

pÊ ˆ+ + Á ˜Ë ¯

 15. 1cot
2

s- Ê ˆ
Á ˜Ë ¯

 16. 
2 2

2

1
log

2 ( )

s b

s a

È ˘+
Í ˙

-Í ˙Î ˚

 17. F(t) = (t – 1) H(t – 1)  24. 
2

2

9( 18)

( 36)

s

s s

+
+

 28. 
2

1 1 1

1

s

s

e

s e s

-

-

-
+ ◊

+

 29. (i)  t2 + (4t – t2) H(t – 2)   (ii)  cos t + (sin t – cos t) ◊ H(t – p)

 30. 3

2

1
(1 )s

e
s

--

16.18  THE INVERSE LAPLACE TRANSFORM (ILT)

Defi nition

If the Laplace transform of a function F(t) is f(s), i.e., L{F(t)} = f(s) then F(t) is called an inverse 

Laplace transform (ILT) of f(s). 

We also write F(t) = L–1 {f(s)}.

L
–1 is called the inverse Laplace transformation operator.

Thus,  1 1
L

s

- Ï ¸
Ì ˝
Ó ˛

 = 1 1
1, at

L e
s a

- Ï ¸
=Ì ˝-Ó ˛

 (31)

16.19  NULL FUNCTION

Let N(t) be a function of t, such that

 

0

0

( )

t

N t dtÚ  = 0 " t0 > 0 (32)

Then N(t) is called a null function.

16.20  UNIQUENESS OF INVERSE LAPLACE TRANSFORM

Since the Laplace transform of null function is zero, and hence, if

 L{F(t)} = f(s), then

 L{F(t) + N(t)} = f(s)

Consequently,  L
–1 {f(s)} = F(t)

 L
–1{f(s)} = F(t) + N(t)

This implies that we can have two different functions with the same Laplace transform.
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As a result of which the inverse Laplace transform of a function is not unique if we allow null 

functions. Hence, the inverse Laplace transform of a function is unique if we do not allow null functions 

which do not appear in cases of physical interest. This result is explained by Lerch’s theorem as given 

below.

Theorem 11: Lerch’s Theorem

Let L{F(t)} = f(s). Let F(t) be piecewise continuous in every fi nite interval 0 £ t £ a and of exponential 

order for t > a, then the inverse Laplace transform of F(t) is f(s) unique.

From some of the functions for which Laplace transforms have been obtained, given below the 

inverse Laplace transforms:

Table 16.1

F(s) F(t) = L–1{f(s)}

1/s 1

1/s2
t

+1

1
n

s 1

n
t

n +

1

s a- e
at

2 2

a

s a+
sin at

2 2

s

s a+
cos at

2 2

1

s a-
1

sin h at
a

2 2

s

s a-
cos h at

Theorem 12: Linearity Property

If L{F(t)} = f(s) and L{G(t)} = g(s) and if a, b  are constants then 

 L–1{af(s) + bg(s)} = aL–1{f(s)} + bL–1{g(s)}

 = aF(t) + bG(t)

The result can easily be proved.

Example 30  Obtain 1

4

1 2 6
.

2 5
L

s s s

- Ï ¸
+ +Ì ˝- +Ó ˛

Solution

 1

4

1 2 6

2 5
L

s s s

- Ï ¸
+ +Ì ˝- +Ó ˛

 = 1 1 1

3 1

1 1 3!
2

2 5
L L L

s s s

- - -
+

Ï ¸ Ï ¸ Ï ¸+ +Ì ˝ Ì ˝ Ì ˝- + Ó ˛Ó ˛ Ó ˛
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 = e2t + 2e
–5t + t3

Example 31  Find 1

1

1
for 1.

n
L n

s

-
+

Ï ¸ > -Ì ˝
Ó ˛

Solution We know that

            
1

{ }
1 1

n
nt

L L t
n n

Ï ¸ Ï ¸Ô Ô Ô Ô= = ◊Ì ˝ Ì ˝
+ +Ô ÔÔ Ô Ó ˛Ó ˛

 = 
1 1

1 1 1

1
n n

n

s sn
+ +

+
◊ =

+

\ 
1

1

1
n

L
s

-
+

È ˘
Í ˙Î ˚

 = 
1

n
t

n +

Theorem 13: First Shifting Property

If L–1{f(s)} = F(t), then

 L–1{f(s – a)} = eat
·F(t)

Proof L{F(t)} = 

0

( ) ( )st
f s e F t dt

•
-= Ú  (33)

\ f(s – a) = ( )

0

( )s a t
e F t dt

•
- -Ú

 = 

0

( ( ))st at
e e F t dt

•
- ◊Ú

 = L{e
at ◊ F(t)}

\ L
–1{f(s – a)} = eat ◊F(t) Hence, proved.

Note The result of this theorem is also expressible as

  L
–1{f(s)} = e–at L–1{f(s – a)}

Also  L
–1{f(s)} = eat L–1 {f(s + a)} (34)

This result is of vital importance for further study.

Example 32  Find 1

5 2 2 2

1 5 3

( 4) ( 2) 5 ( 3) 6

s
L

s s s

-
2

Ï ¸+Ô Ô+ +Ì ˝
- - + + +Ô ÔÓ ˛

.

Solution We know that 1

1

!
{ }n

n

n
L t

s

-
+

=

\ 
!

n
t

L
n

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

 = 1

1 1

1 1
or

!

n

n n

t
L

ns s

-
+ +

Ï ¸ =Ì ˝
Ó ˛
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Now, 1

5 2 2 2 2

1 5 3

( 4) ( 2) 5 ( 3) 6

s
L

s s s

- Ï ¸+Ô Ô+ +Ì ˝
- - + + +Ô ÔÓ ˛

 = 
1 1 1

5 2 2 2 2

1 5 3

( 4) ( 2) 5 ( 3) 6

s
L L L

s s s

- - -Ï ¸ Ï ¸ Ï ¸+Ô Ô Ô Ô Ô Ô+ +Ì ˝ Ì ˝ Ì ˝
- - + + +Ô Ô Ô Ô Ô ÔÓ ˛ Ó ˛ Ó ˛

 = 4 1 2 1 3 1

5 2 2 2 2

1 5

( 5 ) ( 6 )

t t t s
e L e L e L

s s s

- - - -Ï ¸ Ï ¸Ï ¸ Ô Ô Ô Ô+ +Ì ˝ Ì ˝ Ì ˝
+ +Ó ˛ Ô Ô Ô ÔÓ ˛ Ó ˛

 = 

4
4 2 3sin 5 cos6

4!

t t tt
e e t e t

-◊ + ◊ +

Example 33  Evaluate 1

5 2 2

1 5
.

( 4) ( 2) 5
L

s s

- Ï ¸Ô Ô+Ì ˝
- - +Ô ÔÓ ˛

Solution

 1

5 2 2

1 5

( 4) ( 2) 5
L

s s

- Ï ¸Ô Ô+Ì ˝
- - +Ô ÔÓ ˛

= 
1 1

5 2 2

1 5

( 4) ( 2) 5
L L

s s

- -Ï ¸ Ï ¸Ô Ô Ô Ô+Ì ˝ Ì ˝
- - +Ô Ô Ô ÔÓ ˛ Ó ˛

 = 
4 1 2 1

5 2 2

1 5

5

t t
e L e L

s s

- - Ï ¸Ï ¸ Ô Ô+Ì ˝ Ì ˝
+Ó ˛ Ô ÔÓ ˛

 = 
4

4 2 sin 5
4!

t tt
e e t◊ +

 = 
4

4 2 sin 5
24

t tt
e e t◊ +

Theorem 14: Second Shifting Property

If L–1{f(s)} = F(t), then L–1{e–as f(s)} = G(t), where

 G(t) = 
Ï
Ì
Ó

F t a t a

t a

( – ), >

0, <

Proof L{G(t)} = 
0

( )st
e G t dt

•
-Ú  (35)

 = 
0

( ) ( )

a
st st

a

e G t dt e G t dt

•
- -+Ú Ú

 = 
0

0 ( )

a
st st

a

e dt e F t a dt

•
- -+ ◊ -Ú Ú
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 = 0 ( )st

a

e F t a dt

•
-+ -Ú

 = 
( )

0

( )s a u
e F u du

•
- +Ú  [Put t – a = u fi dt = du]

 = 

0

. ( )as su
e e F u du

•
- -Ú

 = 
0

( )a s su
e e F u du

•
- -Ú

 = e–as
L{F(t)}= e–as

f{(s)}

\ L{G(t)} = e–as f (s) fi G(t) = L–1{e
–as·f(s)} (36)

Remark This result is also expressible as

 L
–1{e

–as f(s)} = 
( ) if 0

0 if 0

F t a t

t

- >Ï
Ì <Ó

or L
–1{e

–as f(s)} = F(t – a)·H(t – a) (37)

where H(t – a) is Heaviside’s unit-step function.

Example 34  Find the inverse Laplace transform of 
2 1

s
e

s

p-

+
.

Solution

 1

2

1

( 1)
L

s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = sin t = F(t)   say

\ 1

2

1

1

s
L e

s

p- -Ï ¸Ô Ô◊Ì ˝
+Ô ÔÓ ˛

 = 
sin ( ) if

0 if

t t

t

p p

p

- >È
Í <Î

 [By second shifting theorem]

 = sin (t  – p)·H (t – p)

 = – sin t·H (t – p)

Example 35  Find the inverse Laplace transform of 

 
2 2

; 0
as

s e
a

s w

-

>
-

Solution

 1

2 2
cosh ( ) say

s
L t F t

s
w

w

- Ï ¸Ô Ô = =Ì ˝
-Ô ÔÓ ˛

\ 1

2 2

cosh ( ), if

0, if

as t a t as
L e

t as

w

w

- -Ï ¸ - >ÏÔ Ô
Ì ˝ Ì <-Ô Ô ÓÓ ˛

 [By second shifting theorem]

 = cosh w(t – a). H(t – a)
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Example 36  Evaluate 
3

1

2( 4)

s
e

L
s

-
- È ˘

Í ˙
-Í ˙Î ˚

.

Solution Let 
2

1
{ ( )} ( )

( 4)
L F t f s

s
= =

-

Then  F(t) = [ ]1 1

2

1
( )

( 4)
L f s L

s

- - Ï ¸Ô Ô= Ì ˝
-Ô ÔÓ ˛

 = 4 1

2

1t
e L

s

- Ï ¸◊ Ì ˝
Ó ˛

 = te4t

By the second shifting theorem,

 1 3

2

1

( 4)

s
L e

s

- -È ˘
◊Í ˙

-Í ˙Î ˚
 = 

4( 3)( 3) if 3

0 if 3

t
t e t

t

-È - ◊ >
Í

<ÍÎ
 = (t – 3)e4(t – 3)·H(t – 3)

Example 37  Evaluate 

2

3
1

2 9

s

s e
L

s

p
-

-

È ˘
Í ˙◊
Í ˙

+Í ˙
Î ˚

.

Solution Let 
2

{ ( )} ( )
9

s
L F t f s

s
= =

+
Then

 F(t) = 1 1

2
{ ( )} cos3

9

s
L f s L t

s

- - Ï ¸Ô Ô= =Ì ˝
+Ô ÔÓ ˛

\ 

2

1 3
2 9

s
s

L e
s

p
--

Ï ¸Ô Ô◊Ì ˝
+Ô ÔÓ ˛

 = 

2 2
cos3 if

3 3

2
0 if

3

t t

t

p p

p

È Ê ˆ- >Í Á ˜Ë ¯Í
Í

<Í
Î

 = 
2

cos 3
3

t H t
pÊ ˆ◊ -Á ˜Ë ¯  

Theorem 15: Change-of-scale Property

If L–1 {f (s)} = F(t),

then  L–1{f(as)} = 
Ê ˆ
Á ˜Ë ¯

s
F

a a

1

Proof Since  f(s) = 

0

( )st
e F t dt

•
- ◊Ú , we have
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 f(a s) = 

0

( )a st
e F t dt

•
-Ú  [Putting y = at fi dt = adt]

 = 
0

1 sy y
e F dy

a a

•
- Ê ˆ

Á ˜Ë ¯Ú

 = 
1 t

L F
a a

Ï ¸Ê ˆ
Ì ˝Á ˜Ë ¯Ó ˛

 dy = adt

\  L
–1{f(as)} = 

1 t
F

a a

Ê ˆ
Á ˜Ë ¯  (38)

Example 38  Find 1

22 8

s
L

s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
.

Solution Since 1

2
cos 4

16

s
L t

s

- Ï ¸Ô Ô =Ì ˝
+Ô ÔÓ ˛

\  
1

2

2

(2 ) 16

s
L

s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = 

1 4
cos

2 2

t

 = 
1

cos2
2

t

i.e.,  1

22 8

s
L

s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = 

1
cos2

2
t

Example 39  If 1

2 2

1
sin

2( 1)

s
L t t

s

- Ï ¸Ô Ô = ◊Ì ˝
+Ô ÔÓ ˛

, fi nd 1

2 2

32

(16 1)

s
L

s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
.

Solution Given 1

2 2

1
sin

2( 1)

s
L t t

s

- Ï ¸Ô Ô = ◊Ì ˝
+Ô ÔÓ ˛

Writing as for s,

 
1

2 2 2( 1)

a s
L

a s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = 

1
sin

2

t t

a a
◊ ◊

Again writing a = 4.

 1

2 2

4

(16 1)

s
L

s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = sin

8 4

t t

\  1

2 2

1 32

8 (16 1)

s
L

s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = sin

8 4

t t
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\  1

2 2

32

(16 1)

s
L

s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = sin

4

t
t

Example 40  Find 1

4

64

81 256
L

s

- Ï ¸Ô Ô
Ì ˝

-Ô ÔÓ ˛
.

Solution We know that

 
3

1

4 4

a
L

s a

- Ï ¸Ô Ô
Ì ˝

-Ô ÔÓ ˛
 = 1

2 2 2 2

1

2

a a
L

s a s a

- È ˘
-Í ˙

- +Í ˙Î ˚

 = 
1

(sin sin )
2

h at a t-

Rewriting  1

4

64

81 256
L

s

- Ï ¸Ô Ô
Ì ˝

-Ô ÔÓ ˛
 = 

3
1

4 4

4

(3 ) 4
L

s

- Ï ¸Ô Ô
Ì ˝

-Ô ÔÓ ˛

 = L–1{f(3s)} with a = 4.

where  f(s) = 
3

4 4

1
and ( ) (sinh sin )

2

a
F t at at

s a
= -

-
Thus, applying change-of-scale property,

 L
–1{f(3s)} = 

1

3 3

t
F

Ê ˆ
Á ˜Ë ¯

 = 
1 1

sinh 4 sin 4
3 2 3 3

t tÈ ˘-Í ˙Î ˚

Example 41  If 

1

1 cos2se t
L

s tp

-
-

Ï ¸
Ô Ô

=Ì ˝
Ô Ô
Ó ˛

 then fi nd 1

a

se
L

s

-
-

Ï ¸
Ô Ô
Ì ˝
Ô Ô
Ó ˛

.

Solution Since { }1 1
( )

t
L f a s F

a a

- Ê ˆ= Á ˜Ë ¯

Hence,  

1

1
se

L
s

-
-

Ï ¸
Ô Ô
Ì ˝
Ô Ô
Ó ˛

 = 

1

1

cos2
cos(2 ) 1

gives
( )

sk

t

kt e
L

kt s k t

k

p p

-

-

Ê ˆÏ ¸ Á ˜Ô Ô Ë ¯Ì ˝ = ◊
Ô Ô Ê ˆÓ ˛

Á ˜Ë ¯

or  

1

1

( )

ske
L

s

-

-

Ï ¸
Ô ÔÔ Ô
Ì ˝
Ô Ô
Ô ÔÓ ˛

 = 

1/ 2

cos2

1
( )

2

t
k

k k

k
tp

Ê ˆ
Á ˜Ë ¯

◊
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Putting 
1

k
a

= , we get

 1

a

se
L

s

-
-

Ï ¸
Ô Ô
Ì ˝
Ô Ô
Ó ˛

 = 
cos2 at

tp

Theorem 16: Inverse Transforms of Derivatives

If L–1{f(s)} = F(t), then

 L–1{f(n)(s)} = 
Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

n

n

d
L f s

d s

–1 ( )

 = (–1)n·tn·F(t)

Proof L{t
n
F(t)} = ( )( 1) ( ) ( 1) ( )

n
n n n

n

d
f s f s

d s

Ï ¸Ô Ô- = -Ì ˝
Ô ÔÓ ˛

\  L
–1{f  

(n)(s)} = (–1)n
 t

n·F(t)        (39) Hence, proved.

Example 42  Evaluate 
1 3

log .
2

s
L

s

- È ˘Ê ˆ+
Í ˙Á ˜+Ë ¯Î ˚

Solution Let 
3

( ) log log( 3) log( 2)
2

s
f s s s

s

Ê ˆ+
= = + - +Á ˜+Ë ¯

Then  f¢(s) = 
1 1

3 2s s
-

+ +

 L
–1{f¢(s)} = e–3t – e–2t ∫ F(t)

But  L
–1{f¢(s)} = (–1)¢ t·F(t)

 = –tL
–1{f(s)}

or  L
–1{f(s)} =  11

{ ( )}L f s
t

-- ¢

 = 3 21 t t
e e

t

- -È ˘- ◊ -Î ˚

 = 2 31
3t t

e e
t

- -È ˘-Î ˚

Example 43  Find 1

2 2 2( )

s
L

s a

- Ê ˆ
Á ˜+Ë ¯

.

Solution We have 
2 2 2 2 2

1 2

( )

d s

ds s a s a

Ê ˆ -
=Á ˜+ +Ë ¯
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\ 
2 2 2( )

s

s a+
 = 

2 2

1 1

2

d

d s s a

Ê ˆ
- Á ˜+Ë ¯

But  1

2 2

s
L

s a

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = 

1
sin at

a

\  
1

2 2 2( )

s
L

s a

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = 1

2 2

1 1

2

d
L

d s s a

-
Ï ¸Ê ˆÔ Ô- Ì ˝Á ˜+Ë ¯Ô ÔÓ ˛

 = sin
2

t
at

a
 

Theorem 17: Division by S

If L–1{f(s)} = F(t) then

 
Ï ¸
Ì ˝
Ó ˛

f (s)
L

s

–1
 = Ú

t

F u du

0

( )

Proof Let 

0

( ) ( )

t

G t F u du= Ú  then G¢ (t) = F(t), G(0) = 0

\  L{G¢(t)} = sL{G(t)} – G(0) = sL{G(t)} (40)

But   L{G¢(t)} = L{F(t)} = f(s) (41)

From (40) and (41), we get

 sL{G(t)} = f(s)

\  L{G(t)} = 
( )f s

s

or  
1 ( )f s

L
s

- Ï ¸
Ì ˝
Ó ˛

 = 

0

( ) ( )

t

G t F u du= Ú

Theorem 18: 
Ï ¸
Ì ˝
Ó ˛ Ú Ú

t v

2
0 0

f (s)
L F u du dv

s

–1 ( )

Proof Let 

0 0

( ) ( )

t v

G t F u du dv= Ú Ú . Then 

0

( ) ( )

t

G t F u du=¢ Ú
 G¢¢(t) = F(t),  Also G(0) = G¢(0) = 0

\  L{G¢¢(t)} = s2
L{G(t)} – sG(0) – G¢(0) (42)

 = s2
L{G(t)} = f(s), as L{G¢¢ (t)} = L{F(t)}

\  L{G(t)} = 
2

( )f s

s

or  
1

2

( )f s
L

s

- Ï ¸
Ì ˝
Ó ˛

 = 

0 0

( ) ( )

t v

G t F u du dv= Ú Ú
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The result can also be written as

 1

2

( )f s
L

s

- Ï ¸
Ì ˝
Ó ˛

 = 2

0 0

( )

t v

F t dtÚ Ú

In general, 
1 ( )

n

f s
L

s

- Ï ¸
Ì ˝
Ó ˛

 = 
0 0 0

( )

t t t
n

F t dtÚ Ú Ú  (43)

Example 44  Find 1

2 2

1

( 1)
L

s s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
.

Solution

 L{e
at} = 

1 1
{ }at

L e
s a s a

-\ =
- +

or  
1 1

L
s a

- Ï ¸
Ì ˝+Ó ˛

 = 
1 1

or
1

at t
e L e

s

- - -Ï ¸
=Ì ˝+Ó ˛

 1 1

1

d
L

ds s

- Ï ¸Ê ˆÔ Ô
Ì ˝Á ˜+Ë ¯Ô ÔÓ ˛

 = (–1)1·t1· e–t = –te
–t

or  1

2

1

( 1)
L

s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = te–t

or  
1

2

1

( 1)
L

s s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = 

0

t
u

u e du
-◊Ú

 = 
0

t
u u

ue e du
- -È ˘- +Î ˚Ú

 = 
0

( 1) 1 ( 1)
tu t

e u e t
- -È ˘- + = - +Î ˚

or  1

2 2

1

( 1)
L

s s

- È ˘
Í ˙

+Í ˙Î ˚
 = 

0

1 ( 1)

t
u

e u du
-È ˘- +Î ˚Ú  = 

0

( 1)
tu u

u e u e
- -È ˘+ + +Î ˚

 = t + e–t + e–t(t + 1) – (1 + 1)

 = te–t + 2e
–t + t – 2

Theorem 19: Inverse Laplace Transforms of Integrals

If L–1{f(s)} = F(t),  then 

•Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Ú
s

F(t)
L f u du =

t

–1 ( )

Example 45  Evaluate 1

2 2 2 2
.

s

u u
L du

u a u b

•
-

Ï ¸Ê ˆÔ Ô-Ì ˝Á ˜+ +Ë ¯Ô ÔÓ ˛
Ú
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Solution Let 
2 2 2 2

( )
s s

f s
s a s b

= -
+ +

 F(t) = 1 1

2 2 2 2
{ ( )}

s s
L f s L

s a s b

- - Ï ¸Ô Ô= -Ì ˝
+ +Ô ÔÓ ˛

 = 1 1

2 2 2 2

s s
L L

s a s b

- -Ï ¸ Ï ¸Ô Ô Ô Ô-Ì ˝ Ì ˝
+ +Ô Ô Ô ÔÓ ˛ Ó ˛

 = cos at – cos bt

By Inverse LT of integrals,

 1 ( )

s

L f u du

•
-

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Ú  = 1

2 2 2 2
s

u u
L du

u a u b

•
-

Ï ¸Ê ˆÔ Ô-Ì ˝Á ˜+ +Ë ¯Ô ÔÓ ˛
Ú

 = 
( )F t

t

 = 
cos cosa t b t

t

-
 

Example 46  Evaluate 1 1 1
.

1
s

L du
u u

•
-

Ï ¸Ê ˆÔ Ô-Ì ˝Á ˜+Ë ¯Ô ÔÓ ˛
Ú

Solution Consider 
1 1

( )
1

f s
s s

= -
+

 F(t) = 1 1 1 11 1 1 1
{ ( )} 1

1 1

t
L f s L L L e

s s s s

- - - - -Ï ¸ Ï ¸Ï ¸= - = - = -Ì ˝ Ì ˝ Ì ˝+ +Ó ˛Ó ˛ Ó ˛
By ILT of integrals,

 1 ( )

s

L f u du

•
-

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛
Ú  = 1 1 1 ( )

1
s

F t
L du

u u t

•
-

Ï ¸Ê ˆÔ Ô- =Ì ˝Á ˜+Ë ¯Ô ÔÓ ˛
Ú

 = 
1 t

e

t

--

Theorem 20: I.L.T. of Multiplication by s

If L–1{f(s)} = F(t) and F(0) = 0 then L–1{sf(s)} = F¢(t)

Proof We know that

 L{F¢(t)} = sf(s) – F(0)

 = sf(s)

Then  F¢(t) = L–1{s.f(s)} (44)

Thus, multiplication by s amounts to differentiating F(t) w.r.t. ‘t’.
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Example 47  Find 1

2 2
.

s
L

s a

- Ï ¸Ô Ô
Ì ˝

-Ô ÔÓ ˛

Solution We know that 1

2 2

1 sinha at
L

a as a

- Ï ¸Ô Ô =Ì ˝
-Ô ÔÓ ˛

and  F(0) = sinh 0 = 0

\  1

2 2

1
L s

s a

- Ï ¸Ô Ô◊Ì ˝
-Ô ÔÓ ˛

 = 
sinh coshd at a at

dt a a
=

 1

2 2

s
L

s a

- Ï ¸Ô Ô
Ì ˝

-Ô ÔÓ ˛
 = cosh at

16.21  USE OF PARTIAL FRACTIONS TO FIND ILT

Application of LT to a differential equation results in a subsidiary equation which usually comes out 

as a rational function 
( )

( )
( )

F s
Y s

G s
= , where F(s) and G(s) are polynomials in s. When the degree of F(s) 

£ degree G(s) then the rational function 
( )

( )

F s

G s
 can be written as the sum of simpler rational functions 

called partial fractions, depending on the nature of factors of the denominator G(s) as follows:

Table 16.2

 Factor in denominator Corresponding partial fraction

1.  Nonrepeated linear factor ax + b 

(occurring once)

A

ax b+
 with A π 0

2.  Repeated linear factor (ax + b)r 

(occurring r times)

1 2
2( ) ( )

r
r

A A A

ax b ax b ax b
+ +

+ + +
 

 

with Ar π 0

3.  Nonrepeated quadratic factor ax
2 + bx + c 2

Ax B

ax bx c

+

+ +
 

with at least one of A, B nonzero

4.  Repeated quadratic factor (ax
2 + bx + c)r 

(occurring r times)

1 1 2 2
2 2 2 2( ) ( )

r r
r

A x B A x B A x B

ax bx c ax bx c ax bx c

+ + +
+ +

+ + + + + +
 

with at least one of Ar, Br nonzero

By fi nding the ILT of each of these partial fractions, { }1 1 ( )
( )

( )

F s
L Y s L

G s

- - Ï ¸
= Ì ˝

Ó ˛
 can be determined.

Example 48  Find 1

2

3 7

2 3

s
L

s s

- Ï ¸+Ô Ô
Ì ˝

- -Ô ÔÓ ˛
.
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Solution Using partial fractions, we have

 
2

3 7

2 3

s

s s

+
- -

 = 
3 7

( 3)( 1)

s

s s

+
- +

 = 
3 1

A B

s s
+

- +
or  3s + 7 = A (s + 1) + B (S – 3)

 3s + 7 = (A + B) s + A – 3 B

Equating the corresponding coeffi cients on both sides

 A + B = 3,  A – 3 B = 7

Then  A = 4, B = – 1.

\  
3 7

( 3)( 1)

s

s s

+
- +

 = 
4 1

3 1s s
-

- +

\  1 3 7

( 3)( 1)

s
L

s s

- Ï ¸+
Ì ˝- +Ó ˛

 = 1 1
4

1 1

3 1
L L

s s

- -Ï ¸ Ï ¸
-Ì ˝ Ì ˝- +Ó ˛ Ó ˛

 = 4 e3t – e–t.

Example 49  Find 
2

1

2 2

2 3

( 2 2)( 2 5)

s s
L

s s s s

- Ï ¸+ +Ô Ô
Ì ˝

+ + + +Ô ÔÓ ˛
.

Solution

 
2

2 2 2 2

2 3

( 2 2)( 2 5) ( 2 5) ( 2 5)

s s As B Cs D

s s s s s s s s

+ + + +
= +

+ + + + + + + +

 s
2 + 2s + 3 = (A s + B) (s2 + 2s + 5) + (C s + D) (s2 + 2 s + 2)

 = (A + C) s3 + (2A + B + 2C + D) s2 + (5A + 2B + 2C + 2D) s + 5B + 2D

Comparing coeffi cients of s on either side,

 A + C = 0,  2 A + B + 2C + D = 1

 5 A + 2 B + 2 C + 2 D = 2

 5 B + 2 D = 3

On solving these equations, we get

 A = 0, 
1 2

, 0,
3 3

B C D= = =

\  
2

2 2 2 2

2 3 1/3 2/3

( 2 2)( 2 5) ( 2 2) ( 2 )

s s

s s s s s s s s s

+ +
= +

+ + + + + + + +

\  

2
1

2 2

2 3

( 2 2)( 2 5)

s s
L

s s s s

- Ï ¸+ +Ô Ô
Ì ˝

+ + + +Ô ÔÓ ˛
 = 

1 1

2 2

1 1 2 1

3 32 2 2 5
L L

s s s s

- -Ï ¸ Ê ˆÔ Ô +Ì ˝ Á ˜+ + + +Ë ¯Ô ÔÓ ˛
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 = 1 1

2 2

1 1 2 1

3 3( 1) 1 ( 1) 4
L L

s s

- -Ï ¸ Ï ¸Ô Ô Ô Ô+Ì ˝ Ì ˝
+ + + +Ô Ô Ô ÔÓ ˛ Ó ˛

 = 
1 2 1

sin sin 2
3 3 2

t t
e t e t

- -+ ◊

 = 
1

(sin sin 2 )
3

t
e t t

- +  

Example 50  Find 
2 2

1

4 4

( 2 )

4

a s a
L

s a

- Ï ¸-Ô Ô
Ì ˝

+Ô ÔÓ ˛
.

Solution Rewriting s
4 + 4a

4 = (s2 + 2a
2)2 – (2as)2

 = (s4 + 2as + 2a
2) (s2 – 2as + 2a

2) 

 

2 2

4 4

( 2 )

4

a s a

s a

-
+

 = 
2 2

2 2 2 2

( 2 )

( 2 2 )( 2 2 )

a s a

s as a s as a

-
+ + - +

 = 
2 2 2 2

1 ( ) 1 ( )

2 22 2 2 2

s a s a

s as a s as a

Ê ˆ Ê ˆ- + -
+Á ˜ Á ˜+ + - +Ë ¯ Ë ¯

 = 
2 2 2 2

1 ( ) ( )

2 ( ) ( )

s a s a

s a a s a a

È ˘- + -
+Í ˙

+ + - +Í ˙Î ˚

\  

2 2
1

4 4

( 2 )

4

a s a
L

s a

- Ï ¸-Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = 1 1

2 2 2 2

1 ( ) 1 ( )

2 2( ) ( )

s a s a
L L

s a a s a a

- -Ï ¸ Ï ¸- + -Ô Ô Ô Ô+Ì ˝ Ì ˝
+ + - +Ô Ô Ô ÔÓ ˛ Ó ˛

 = 
1 1

cos cos
2 2

at at
e at e at

-- +

 = cos
2

at at
e e

at
-Ê ˆ-

Á ˜
Ë ¯

 = cos at sinh at

Example 51  Find 
3 2

1

2 2

3 6 4

( 2 2)

s s s
L

s s

- Ï ¸- + -Ô Ô
Ì ˝

- +Ô ÔÓ ˛
.

Solution 
3 2

2 2

3 6 4

( 2 2)

s s s

s s

- + -
- +

 = 
2 2 2( 2 2) ( 2 2)

As B Cs D

s s s s

+ +
+

- + - +

 s
3 – 3 s2 + 6 s – 4 = (As + B) + (Cs + D) (s 2 – 2s + 2)

 = Cs
3 + (D – 2 C)s2 + (A + 2C –2D)s + B + 2D

Equating the corresponding coeffi cients and solving,

 A = 2, B = –2, C = 1, D = –1

Now,  s
2 – 2s + 2 = (s – 1)2 + 1
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\  
3 2

1

2 2

3 6 4

( 2 2)

s s s
L

s s

- Ï ¸- + -Ô Ô
Ì ˝

- +Ô ÔÓ ˛
 = 1 1

2 2
2

2( 1) 1

( 1) 1( 1) 1

s s
L L

ss

- -
Ï ¸

Ï ¸- -Ô Ô Ô Ô+Ì ˝ Ì ˝
- +Ô ÔÈ ˘Ô Ô Ó ˛- +Î ˚Ó ˛

 = 1

2 2
2 .cos

( 1)

t ts
e L e t

s

- Ï ¸Ô Ô +Ì ˝
+Ô ÔÓ ˛

 = 2 sin .cos
2

t tt
e t e t

-◊ ◊ +

 = et[t sin t + cos t]

16.22  CONVOLUTION

Convolution is used to fi nd ILT in solving differential equations and integral equations.

Suppose two Laplace transforms f(s) and g(s) are given. Let F(t) and G(t) be their inverse Laplace 

transforms respectively, i.e., F(t) = L–t{f(s)} and G(t) = L–1{g(s)}. Then the inverse H (t) of the product 

of transforms h(s) = f(s) ◊ g(s) can be calculated from the known inverse F(t) and G(t).

Convolution H(t) of f(t) and G(t) is denoted by (F*G) (t) and is defi ned as

 H (t) = 

0

( * )( ) ( ) ( )

t

F G t F u G t u du= ◊ -Ú

 = 

0

( ) ( )

t

G u F t u du◊ -Ú
 = (G * F) (t) (45)

F * G is called the convolution or falting of F and G and can be regarded as a “generalized product” 

of these functions.

Theorem 21: Convolution Theorem

If L–1{f(s)} = F(t) and L–1{g(s)} = G(t), then

 L–1{f(s)·g(s)} = Ú
t

F G F u G t u du

0

* = ( )· ( – )

Proof From the defi nition of Laplace transform,

 L{F * G} = 

0

( * )st
e F G dt

•
-Ú

 = 
0 0

( ) ( )

t
st

e F r G t r dr dt

•
-

È ˘
◊ -Í ˙

Í ˙Î ˚
Ú Ú

 = 

0 0

( ) ( )

t
st

e F r G t r dr dt

•
- -Ú Ú

 = ( ) ( )st

R

e F r G t r dr dt
- ◊ -Ú Ú  (7)
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where R is the 45° wedge bounded by the lines r = 0 and t = r {see Fig. 16.9}. Change the variables r, 

t to the new variables u, v by the transformation

 u = t – r, v = r

 J (u, v) = 
( , )

( , )

u u

u v t r

v vt r

t r

∂ ∂
∂ ∂ ∂=

∂ ∂∂
∂ ∂

 = 
1 1

1
0 1

-
=  (46)

The Jacobian J = 1. Thus, the double integral over R transforms to a double integral over R the fi rst 

quadrant of the new uv plane [see Fig. 16.10].

\ L{F * g} = ( ) ( ) ( )s u v

R

e F v G u du dv
- +

¢

◊Ú Ú

 L{F * G} = ( )

0 0

( ) ( )s u v
e F v G u du dv

• •
- + ◊Ú Ú

 = 

0 0

( ) ( )sv su
e F v dv e G u du

• •
- -◊Ú Ú

 = L{ F(t)} ◊ L{G(t)}

 = f(s). g(s)

\  F * G = L–1 {f(s) ◊ g(s)}   (47) Hence, proved.

Properties of Convolution

 (P1)   F * G = G * F   Commutative property (48)

 (P2) (F * G) * H = F * (G * H)  Associative  property (49)

 (P3) F * (G + H) = F * G + F * H Distributive property (50)

 (P4) F * O = O * F = O

Example 52  Use convolution theorem to fi nd

 

1 1

( )( )
L

s a s b

- Ï ¸
Ì ˝+ +Ó ˛

Solution We know that 1 1 at
L e

s a

- -Ê ˆ
=Á ˜+Ë ¯

 and 1 1 bt
L e

s b

- -Ê ˆ
=Á ˜+Ë ¯

\ 
1 1

( )( )
L

s a s b

- Ï ¸
Ì ˝+ +Ó ˛

 = 
( )

0

*

t
at bt au b t u

e e e e du
- - - - -= ◊Ú

Fig. 16.9

Fig. 16.10
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 = 
( )

( )

0 0

tt a b u
bt a b u bt e

e e du e
b a

- -
- - - - È ˘

= Í ˙
-Í ˙Î ˚

Ú

 = 
at bt

e e

b a

- --
-

Example 53  Find 1 1

( 1)
L

s s

- Ï ¸Ô Ô
Ì ˝

-Ô ÔÓ ˛
.

Solution

 1 1 11 1 1
*

1( 1)
L L L

ss s s

- - -Ï ¸ Ï ¸ Ï ¸Ô Ô =Ì ˝ Ì ˝ Ì ˝--Ô Ô Ó ˛Ó ˛Ó ˛

 = 
1

* t
e

tp
 [By convolution theorem]

 = 1/ 2

0

( )

t
t u

u e dup - -◊Ú  [put u = x2 fi du = 2x dx]

 = 
2

0

2
t

t x
e e dx

p

-◊ Ú

 = erf ( )t
e t◊

Example 54  Find 
1

2 2

1

( 1)
L

s s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
.

Solution

 
2 2

1

( 1)s s +
 = 

2 2

1 1
( ) ( )

1
f s g s

s s
◊ = ◊

+

so that  F(t) = { }1 1

2

1
( )L f s L t

s

- - Ï ¸= =Ì ˝
Ó ˛

and G(t) = { }1 1

2

1
( ) sin

1
L g s L t

s

- - Ï ¸Ô Ô= =Ì ˝
+Ô ÔÓ ˛

\   by convolution theorem,

 1

2 2

1

( 1)
L

s s

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
 = 

0

* ( )sin

t

F G t u u du= -Ú
 = –t cos t + t + t cos t – sin t

 = (t – sin t)
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Example 55  Find 1

2 2 2

1

( )
L

s a

- Ï ¸Ô Ô
Ì ˝

+Ô ÔÓ ˛
.

Solution

 
2 2 2

1

( )s a+
 = 

2 2 2 2

1 1
( ) ( )

( ) ( )
f s g s

s a s a

Ê ˆ Ê ˆ
◊ = ◊Á ˜ Á ˜+ +Ë ¯ Ë ¯

\ F(t) = { }1 1

2 2

1 1
( ) sin

2
L f s L at

s a

- - È ˘
= =Í ˙

+Í ˙Î ˚

and G(t) = { }1 1

2 2

1 1
( ) sin

2
L g s L at

s a

- - È ˘
= =Í ˙

+Í ˙Î ˚
By convolution theorem,

 
1

2 2 2

1

( )
L

s a

- È ˘
Í ˙

+Í ˙Î ˚
 = 

0

sin sin ( )
*

t
au a t u

F G du
a a

-
= ◊Ú

 = 
2

0

1
[cos (2 ) cos ]

2

t

a u t at du
a

- -Ú

 = 
2

0

1 sin (2 )
cos

22

t

u

a u t
at u

aa =

È ˘-
- ◊Í ˙

Î ˚

 = 
2

1 sin sin ( )
cos

2 22

a t at
t at

a aa

È ˘-
- -Í ˙

Î ˚

 = 
3

1
[sin cos ]

2
at at at

a
-

16.23  THE HEAVISIDE EXPANSION FORMULA

Theorem 22

If 
( )

( )
( )

F s
y s

G s
= , where F(s) and G(s) are polynomials in s, the degree of F(s) < degree G(s) and if G(s) 

= (s – a1)(s – a 2) (s – a 3) … (s – a n)

where a 1, a 2, … a r are distinct constants real or complex. 

Then  
1

1

( )( )
( )

( ) ( )
r

n
tr

rr

FF s
y t L e

G s G

aa

a
-

=

Ï ¸
= = ◊Ì ˝ ¢Ó ˛

Â  (51)

Example 56  Use the Heaviside expansion theorem to fi nd

  
2

1

3 2

2 5 4

2

s s
L

s s s

- È ˘+ -
Í ˙

+ -Í ˙Î ˚
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Solution Here, G(s) = s3 + s2 – 2s, F(s) = 2s 2 + 5 s – 4

 G¢(s) = 3 s 2 + 2 s – 2

Put  G(s) = 0 fi s (s2 + s – 2) = 0

 s (s –1) (s + 2) = 0

 s = 0, 1, – 2

\  
2

1

3 2

2 5 4

2

s s
L

s s s

- È ˘+ -
Í ˙

+ -Í ˙Î ˚
 = 

3

1

( )

( )
r tr

rr

F
e

G

aa

a= ¢Â

 = 0 2(0) (1) ( 2)

(0) (1) ( 2)

t t tF F F
e e e

G G G

--
+ +

¢ ¢ ¢ -

 = 24 3 6

2 2 6

t t
e e

--
+ -

-

 = 23
2

2

t t
e e

-+ -

16.24  METHOD OF FINDING RESIDUES

(M1) Residue at Simple Pole

 (i) If f(z) has a simple pole at z = z0 then Res 
0

0 0( ) lim ( ) ( )
z z

z z z z f z
Æ

= = - ◊È ˘Î ˚

 (ii) If f(z) is of the form 1

2

( )
( )

( )

f z
f z

f z
=  where f1 (z0) = 0 but f2 (z0) π 0 then

  Res 
1 0

0
2 0

( )
( )

( )

f z
z z

f z
= =

¢  (52)

(M2) Residue at a Pole of Order ‘n’

 Res 

0

1

0 01

1
( ) ( ) ( )

( 1)!

n
n

n

z z

d
z z z z f z

n dz

-

-
=

È ˘
= = - ◊Í ˙

- Í ˙Î ˚
 (53)

(M3) Residue at a Pole of Any Order

(M3) residue at a pole z = z0, of any order where z = a + t.

Then Res (z = z0) = Res f(z0) = coeffi cient of 
1

t

Ê ˆ
Á ˜Ë ¯

. (54)

16.25  INVERSION FORMULA FOR THE LAPLACE TRANSFORM

If F(t) has a continuous derivative and is of exponential order, then

 F(t) = 
1

( ) ; 0
2

i

st

i

e f s ds t
i

g

g
p

+ •

- •

>Ú  (55)

 = sum of the residues of est
f(s) at poles of f(s) 
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where  f(s) = L{F(t)}

Example 57  Use the method of residues to show that

 
1

2

1

( 1)( 2)
L

s s

- Ï ¸Ô Ô
Ì ˝

+ -Ô ÔÓ ˛
 = 2 21 1

9 3 9

t t tt
e e e

- + -

Solution

 
1

2

1

( 1)( 2)
L

s s

- È ˘
Í ˙

+ -Í ˙Î ˚
 = 

2

1 1

2 ( 1)( 2)

i

st

i

e ds
i s s

g

g
p

+ •

- • + -Ú

 = 
2

1 1

2 ( 1)( 2)

st

c

e ds
i s sp + -Ú

 = sum of residues of 
2

1

( 1)( 2)

st
e

s s+ -
At simple pole s = –1  and double pole s = 2.

 = 
2

2 21 2

( 2)
lim ( 1) lim

( 1)( 2) ( 1)( 2)

st st

s s

e d s e
s

dss s s sÆ- Æ

È ˘ È ˘- ◊
+ ◊ +Í ˙ Í ˙

+ - + -Í ˙ Í ˙Î ˚ Î ˚

 = 
21 2

lim lim
( 1)( 2)

st st

s s

e d e

ds ssÆ- Æ

È ˘ È ˘
+Í ˙ Í ˙

+-Í ˙ Í ˙Î ˚ Î ˚

 = 
22

( 1)
lim

9 ( 1)

t st st

s

e s t e e

s

-

Æ

+ ◊ -
+

+

 = 
2 23

9 9

t t t
e t e e

- -
+

 = 2 21 1

9 3 9

t t tt
e e e

- + -  Hence, proved.

Example 58  Use the method of residue, fi nd the inverse transform of 
2

( 1)

2

s

s s

+
+

.

Solution

 f(s) = 
2

( 1) 1

( 2)2

s s

s ss s

+ +
=

++
 for pole, put s(s + 2) = 0

 s = 0 – 2

\  1 1

( 2)

s
L

s s

- È ˘+
Í ˙+Î ˚

 = 
1 1

.
2 ( 1)

i

st

i

s
e ds

i s s

g

g
p

+ •

- •

+
+Ú

 = 
1 1

2 ( 1)

st

c

s
e ds

i s sp

+
◊

+Ú
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 = sum of the residues of e st f(s) at the poles s = 0, – 2.

 = 
0 2

( 1) ( 2) ( 1)
lim ( 0) lim

( 2) ( 2)

st st

s s

e s s e s
s

s s s sÆ Æ -

È ˘ È ˘+ + ◊ +
- +Í ˙ Í ˙

+ +Í ˙ Í ˙Î ˚ Î ˚

 = 
0 2

( 1) ( 1)
lim lim

( 2)

st st

s s

e s e s

s sÆ Æ -

È ˘ È ˘+ +
+Í ˙ Í ˙

+Í ˙ Í ˙Î ˚ Î ˚

 = 21 1

2 2

t
e

-+

EXERCISE 16.2

Find the Inverse Laplace transform for each of the following functions:

 1. 
2

1

4s +
  2. 

2

8

16

s

s +

 3. 
2

3 12

8

s

s

-
+

 4. 
2

3 8

4 25

s

s

-
+

 5. If 

1

5
1 cos2e t

L
s tp

-
-

Ï ¸
Ô Ô

=Ì ˝
Ô Ô
Ó ˛

, show that 
5

1 cos2

a

e at
L

s tp

-
-

Ï ¸
Ô Ô

=Ì ˝
Ô Ô
Ó ˛

, when a > 0.

 6. If 
2

1

2 2

1
cos

( 1)

s
L t t

s

- Ï ¸-Ô Ô =Ì ˝
+Ô ÔÓ ˛

, show that 
2

1

2 2

9 1
cos

9 3(9 1)

s t t
L

s

- Ï ¸-Ô Ô = ◊Ì ˝
+Ô ÔÓ ˛

 7. 
5( 1)

s

s +
  8. 

2

3 2

4 12 9

s

s s

+
+ +

 9. 1

2

2
tan

s

-  10. 
2

( 1)
log

4

s s

s

Ê ˆ+
Á ˜+Ë ¯

 11. 1 3
cot

2

s- +Ê ˆ
Á ˜Ë ¯

 12. 
2

2 1

s

s +

 13. 
2 2

1

( )s s a+
 14. 

3

2( 4)

s
e

s

-

-
 

 15. 
3

2 2

3 4 4s s
e e

s s s

- -

- +  16. 
2

2 12

6 13

s

s s

+
+ +

 17. 
2

2 2

2 15 7

( 1) ( 4)

s s

s s

+ +
+ +

 18. 
2

3

9 9

9

s s

s s

+ -
-
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 19. Show that 

2

1 1
1 4

s t
L t

s p
-

Ï ¸Ê ˆ-Ô Ô = + -Ì ˝Á ˜
Ë ¯Ô ÔÓ ˛

 

 20. Show that 

2

1 3
5/ 2

3 2 7 8 7
6

3 2 3 3

t
s t t

L t e
ss p p

-- Ï ¸-
- = - -Ì ˝+Ó ˛

 21. Show that 1

5

2

2
(3 2 )

3
( 1)

ts t
L e t

s
p

- -Ï ¸Ô Ô = -
Ì ˝
Ô Ô+Ó ˛

 22. Show that 1 3 3/ 2 5/2

7

2

4 8

3 5
( 3)

ts
L e t t

s
p p

- - È ˘Ï ¸Ô Ô = -Í ˙Ì ˝ Í ˙Î ˚Ô Ô+Ó ˛

 23. Show that 1 1 1
(2 )

24
L er f t

s s

-
Ï ¸Ô Ô =Ì ˝

+Ô ÔÓ ˛

 24. Show that 
2

1

2 2

1 1
cos2 sin 2

2 4( 4)

s
L t t t

s

- Ï ¸Ô Ô = +Ì ˝
+Ô ÔÓ ˛

 25. Show that 
3

1* 1* 1* 1
3!

t
=

 26. Show that 
1

1* 1* 1* 1* * 1( times)
( 1)!

n
t

n
n

-

=
-

 

 27. Apply the convolution theorem to show that 

0

sin .cos( ) sin
2

t
t

u t u du t- =Ú

 28. Show that 
2

1 3 2

2

3 3 1

50 25( 2)( 3)( 2 5)

t ts
L e e

s s s s

- -Ï ¸-Ô Ô = -Ì ˝
+ - + +Ô ÔÓ ˛

  1 9
cos2 sin 2

50 25

t t
e t e t

- -- +

Apply Heaviside’s expansion theorem to prove the following:

 29. 
2

1 2 3

3 2

2 6 5 1 5

2 26 11 6

t t ts s
L e e e

s s s

- Ï ¸- +Ô Ô = - +Ì ˝
- + -Ô ÔÓ ˛

 30. 1

2

5
2 3sin 2cos

( 1)( 1)

ts
L e t t

s s

- -Ï ¸+Ô Ô = + -Ì ˝
+ +Ô ÔÓ ˛

 31. Show that 3

0

cos
1

3 3
3

x x dx
p

•

=Ú
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 32. Show that 

2 / 4
1

x s x t
e e

L
s tp

- -
-

Ï ¸Ô Ô =Ì ˝
Ô ÔÓ ˛

 33. Show that 0 1

0

( ) sin ( ) ( )

t

J u t u du t J t- = ◊Ú

 34. Show that 
3 5 7

1

2 2 2

1 1
sin

(3!) (5!) (7!)

t t t
L t

s s

- Ï ¸◊ = - + - +Ì ˝
Ó ˛

 

 35. Show that 
2 4 6

1

2 2 2

1 1
cos 1

(2!) (4!) (6!)

t t t
L

s s

- Ï ¸ = - + - +Ì ˝
Ó ˛

 .

 36.  Show that 1

2 2

1
2 2

( 1)

t t
L t e e t

s s

- - -Ï ¸Ô Ô = + + -Ì ˝
+Ô ÔÓ ˛

 37. By use of the complex inversion Formula, show that 

  

1 erf
2

a s

s
a

L e c
t

--
Ï ¸ Ê ˆÔ Ô =Ì ˝ Á ˜Ë ¯Ô ÔÓ ˛

Answers

 1. 
1

sin 2
2

t  2. 8 cos 4 t

 3. 3cos2 2 3 2 sin 2 2t t-  4. 
3 5 4 5

cos sin
4 2 5 2

t t
-

 7. 3 4(4 )
24

t
e

t t
-

-

 8. 
3 3

2 2
3 5

4 8

t t

e t e
- -

- ◊  9. 
2

sin sinh t t
t

◊ ◊

 10. 
2cos2 1t

t e

t

-- -
 11. 32

sin 2t
e t

t

-

 12. cos t 13. (1 – cos at)/a2

 14. (t – 3) e4(t – 3). H (t – 3) 15. 3 – 4 (t – 1) H (t – 1) + 4 (t – 3) H (t – 3) 

 16. e
–3t (2 cos 2t + 3 sin 2t) 17. (2 t – 3)e–t + 5 e2t

 18. (1 + 3 sin h 3 t)

16.26  APPLICATIONS OF LAPLACE TRANSFORM

16.26.1 Introduction

The Laplace transform is a mathematical tool that greatly facilitates the solution of linear differential 

equations. Its application leads the differential equation to be transformed into a relatively simple 

algebraic equation. They can be transformed back into a complete solution. It eliminates one of the 
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variables (say t) when used partial differential equation. This method is very useful specially when the 

boundary conditions are actually initial conditions, i.e., those at t = 0.

16.26.2   Solution of Ordinary Linear Differential Equations with 
Constant Coeffi cients

Let the differential equation

 

1

1 11
( )

n n

n nn n

d y d y dy
C C C y f t

dtdt d t

-

--
+ + + + =  (56)

be a linear differential equation with constant coeffi cients when t > 0 and f(t) is a given function of the 

variable t.

Suppose we fi nd a solution of this equation satisfying the conditions.

 y = 

1

0 1 11
, , ...,

n

nn

dy d y
y y y

dt dt

-

--
= =  (57)

when  t = 0

Applying Laplace transform to each term of (56), we get

 
1

1 11
{ }

n n

n nn n

d y d y dy
L C L C L C L y

dtdt d t

+-

--

Ï ¸ Ï ¸ Ï ¸Ô Ô Ô Ô+ + + +Ì ˝ Ì ˝ Ì ˝
Ó ˛Ô Ô Ô ÔÓ ˛ Ó ˛

  = L{f(t)} (58)

Let  L{f(t)} = ( ) and { }f s L y y=

Now,  

n

n

d y
L

d t

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

 = 
1 2

0

0

( )n n n
t

t

dy
s y s y s

dt

- -
=

=

Ê ˆ- - -Á ˜Ë ¯
 

 

2 1

0 02 1

n n

t tn n

d y d y
s

d t d t

- -

= =- -

Ê ˆ Ê ˆ
- -Á ˜ Á ˜

Ë ¯ Ë ¯

 = 
1 2

0 1 2 1
n n n

n ns y s y s y sy y
- -

- -- - - - - 

 

1

1

n

n

d y
L

d t

-

-

Ï ¸Ô Ô
Ì ˝
Ô ÔÓ ˛

 = 
1 2

0 2
n n

ns y s y y
- -

-- - - 

Substituting these expressions in (58), we get.

 
1 2

0 1 2 1( )n n n
n ns y s y s y s y y

- -
- -- + + + + 

 
1 2 3

1 0 1 2 1 0{ ( )} ( ) ( )n n n
n n nC s y s y s y y C sy y c y f s

- - -
- -+ - + + + + + - + =  

or  
1

1 1 1 0 2 0 1( ) ( ) ( )n n
n n n ns c s c s c y f s c y C s y y

-
- - -+ + + + = + + + +  

 1 2
0 1( )n n

ns y s y y
- -

-+ + + +  (59)

Equation (59) is called the subsidiary equation.

Note that without going through all this process, Eq. (58) can be directly written from (56) by keeping 

the following points in view.
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 1. On the LHS, write 
r

r

r

d y
s y

d t
=  for r = 0, 1, 2, …, n.

 2. On the RHS write the Laplace transform of f
–
(t), say ( )f s

 
. The terms involving the initial 

conditions (57)  are to be written according to the following rule.

Write  y0 for 
dy

dt

Write  
2

0 1 2
for

d y
s y y

d t
+

Write   
3

2
0 1 2 3

for
d y

s y s y y
d t

+ +

Write  1 2
0 1 1 for

r
r r

r r

d y
s y s y y

d t

- -
-+ + + 

The solution of (91) will give ( )y s  and the I.L.T. will give the value of y.

By Lerch’s theorem, which you have already read in the previous section, this solution is taken as 

unique solution.

Example 59  Solve (D2 + 1) y = 0, t > 0 given that y = 1 Dy = 1 when t = 0.

Solution Given (D2 + 1) y = 0 (1)

                  y0 = 1, y1 = 1 (2)

Taking L.T. both sides on (1), we have the subsidiary equation is 

 2( 1)s y+  = s + 1

 y  = 
2

1

1

s

s

+
+

 y  = 
2 2

1

1 1

s

s s
+

+ +
Taking ILT, we get

 L
–1{y} = 1 1

2 2

1

1 1

s
L L

s s

- -Ï ¸ Ï ¸Ô Ô Ô Ô+Ì ˝ Ì ˝
+ +Ô Ô Ô ÔÓ ˛ Ó ˛

 y = cos t + sin t

Example 60  Solve 

2

2
2

d y dy
y t

dtd t
+ + = ; given that y = –3, when t = 0, y = –1, when t = 1.

Solution We can write the given equation into the form of 

 (D2 + 2 D + 1) y = t (1)

Consider y¢(0) = A

Taking L.T. both sides on (1), we get the subsidiary equation 

 
2( 2 1)s s y+ +  = 0 02

1
2 5 (0)y y y

s
+ + + ¢
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 = 
2

1
2( 3) { ( 3) }s A

s
+ - + - +

 = 
2

1
6 3s A

s
- - +

\  y  = 
2 2 2

1 6 3

( 1) ( 1)

s A

s s s

+ -
-

+ +

 = 
2 2 2

2 1 2 1 3( 1) 3

1 ( 1) ( 1)

s A

s ss s s

+ + -
- + + + -

+ + +

 = 
2 2 2 2

2 1 2 1 3 3

1 1( 1) ( 1) ( 1)

A

s s ss s s s
- + + + - - +

+ ++ + +

 = 
2 2

1 2 1 2

1 ( 1)

A

s ss s

-
- - +

+ +
Taking I.L.T. on both sides, we get

 y = t – 2 – et + (A – 2) t·e–t

Now, we are to impose the other condition that y = – 1when t = 1.

\  – 1= 1 – 2 – e–t + (A – 2)e–1

i.e.,  A = 3

\   the complete solution is

 y = t – 2 – et + t e–t

Example 61  Solve (D2 + a2) y = cos at, t > 0, given that y = y0,  Dy = y,  when t = 0.

Solution Taking Laplace transform on both sides, we get

 L{(D2 + a2)y} = L{cos at}

 
2 2( )s a y+  = 0 12 2

s
s y y

s a
+ +

+

or  ( )y s  = 0 1

2 2 2 2 2 2 2( )

s y ys

s a s a s a
+ +

+ + +
Taking I.L.T., we get

 y(t) = 1
0sin cos sin

2

yt
at y at at

a a
+ +

Example 62  Solve (D2 + 1) y = 6 cos 2 t, give that y = 3, y¢ = 1  when t = 0.

Solution Taking LT on both sides on the given equation then, the subsidiary equation is 

 
2( 1)s y+  = L{6 cos 2t} + s y0 + y1

 = 
2

6
3 1

4

s
s

s
+ +

+
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or  y  = 
2 2 2 2

6 3 1

( 1)( 4) 1 1

s s

s s s s
+ +

+ + + +

 = 
2 2 2 2

2 2 3 1

1 4 1 1

s s s

s s s s
- + +

+ + + +

Taking I.L.T., we get

 y (t) = 2 cos t – 2 cos 2t + 3 cos t + sin t

 = 5 cos t – 2 cos 2t + sin t

Example 63  Solve (D2 + 1) y = x . cos 2 x , x > 0, given that y = 0 = y¢ when x = 0.

Solution Here, 
2

{ cos2 }
4

d s
L x x

ds s

Ê ˆ
◊ = - Á ˜+Ë ¯

 = 
2 2 2

1 8

4 ( 4)s s
-

+ +
 y0 = 0, y1 = 0

\   The subsidiary equation is 

 
2( 1) ( )s y s+  = 

2 2 2

1 8

4 ( 4)s s
-

+ +

or  y  = 
2 2 2 2 2

1 8

( 1)( 4) ( 1)( 4)s s s s
-

+ + + +

 = 
2 2 2 2 2 2

1 1 1 8 1 1 3

3 9( 1) 3( 4) 1 4 ( 4)s s s s s

È ˘
- - - -Í ˙

+ + + + +Í ˙Î ˚

 = 
2 2 2 2

5 1 5 1 8 1

9 9 31 ( 4) ( 4)s s s
- + +

+ + +
Taking I.L.T., we get

 y(x) = 
5 5 1 1

sin sin 2 sin 2 cos2
9 18 3 2

x x x x x
Ê ˆ- + + -Á ˜Ë ¯

 

Example 64  Solve (D2 + 25) y = 10 cos 5 t, given that y = 2, y¢ = 0 when t = 0.

Solution Taking LT of the given DE, we get

The subsidiary equation

 
2 (0) (0) 25s y s y y yÈ ˘- - ¢ +Î ˚  = 

2
10

25

s

s
◊

+

 
2( 25)s y+  = 

2

10
2

25

s
s

s
+

+

or  y  = 
2 2 2

10 2

( 25) 25

s s

s s
+

+ +
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Taking I.L.T., we get

 y (t) = t sin 5 t + 2 cos 5 t

Example 65  Solve (D2 + 9) y = cos 2t, given that 

 y (0) = 1, 1
2

y
pÊ ˆ = -Á ˜Ë ¯

Solution (D2 + 9) y = cos 2 t (1)

Taking LT of both sides of(1), we get

The subsidiary equation.

 
2 (0) (0) 9s y s y y y- - ¢ +  = 

2 4

s

s +

or  
2( 9)s y+  = 

2
[ (0) say]

4

s
s A y A

s
+ + =¢

+

or  y  = 
3

2 2 2

5

( 4)( 9) 9

s s A

s s s

+
+

+ + +

 y  = 
2 2 2

1 4

5 54 9 9

s s A

s s s
◊ + +

+ + +

Taking I.L.T., we get

 y = 
1 4

cos2 cos3 sin3
5 5 3

A
t t t+ +  (2)

On putting 1
2

y
pÊ ˆ = -Á ˜Ë ¯

 in (2), we get

 –1 = 
1

0
5 3

A
- + -

 or  A = 
12

5

Putting the value of A in (2), we get

 y (t) = 
1 4 4

cos2 cos3 sin3
5 5 5

t t t+ +

 y (t) = 
1

[cos2 4cos3 4sin3 ]
5

t t t+ +   

EXERCISE 16.3

Solve the following differential equations:

 1. (D2 + 1) y = 0, given that y = 1, y¢ = 1 at t = 0.

 2. (D2 – 3D + 2)y = 4 e 2t, given y = – 3, y¢ = 5 at t = 0
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 3. (D2 + 2D + 5)y = 0, given y = 2, y¢ = – 4, when t = 0.

 4.  
2

2
2 3 cos 3 11 sin 3

d y dy
y t t

dtdt
+ - = - ; given y(0) = 0 and y¢ (0 ) = 6

 5.  
3 2

3 2
2 2 0

d y d y dy
y

dtdt dt
- - = ; given y (0) = y¢ (0) = 0 and y¢¢ (0 ) = 6

 6. 

2

2
9 18 ; given (0) 0

2

d y
y t y y

dt

pÊ ˆ+ = = = Á ˜Ë ¯

 7. 
2

2
cosh

d y
y a t

d t
- = ; given y (0) = 0  =  y¢ (0) 

 8. (D2 + w2) y = cos wt, t > 0; given y (0) = 0 = y¢ (0)

 9. ; given (0) 1tdy
y e y

dt
- = =

Answers

 1. y = sin t + cos t 2. –7 et + 4 e2t + 4 te2t

 3. y (t) = e–t (2 cos 2 t – sin 2 t) 4. y (t) = et – e–2t + sin 3t

 5. y (t) = et – 3e
–t + 2 e–2t 6. y (t) = p sin 3 t + 2 t

 7. ( ) sin
2

a t
y t h t

Ê ˆ= ◊Á ˜Ë ¯
 8. 

1
( ) sin

2
y t tw

w

Ê ˆ
= Á ˜Ë ¯

 9. y (t) = et + tet = (1 + t) et

16.27   SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS WITH 
VARIABLE COEFFICIENTS

The Laplace transform technique is very useful in solving the equations having the terms of the form 

t
m yn (t) whose Laplace transform is

 ( 1) { ( )}
m

m n

m

d
L y t

d s
-  (60)

Example 66  Solve 
2

2
0

d y d y
t y

d td t
+ - = ; given y (0) = 0, y¢ (0) = 1.

Solution Taking LT on both sides of the given equations, we get

 L{y¢¢} + L{ty¢} – L{y} = L{0}

 
2 (0) (0) { } { }

d
s y s y y L y L y

ds
- - ¢ - -¢  = 0

or  2 1 [ (0)]
d

s y s y y y
ds

- - - -  = 0
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or  2( 2) 1
d y

s s y
ds

- + - -  = 0

or  
2 1d y

s y
ds s s

Ê ˆ+ - -Á ˜Ë ¯
 = 0

 
2d y

s y
ds s

Ê ˆ+ -Á ˜Ë ¯  = 
1

s

which is linear in y  and s

\    IF = 

2
s ds

P d s se e

Ê ˆ-Á ˜Ë ¯=
ÚÚ

 IF = 

2

2 log
2

s
s

e
-

 = 

2

2 2

s

s e
-

◊

The complete solution is 

 

2

2 2

s

y s e
-

◊ ◊  = 

2

2 2
1

s

s e d s c
s

-Ê ˆ- ◊ +Á ˜Ë ¯Ú

 

2

2 2

s

y s e
-

◊ ◊  = 

2

2

s

e c
-

+ ; c is any constant

c must vanish if ( )y s  is a transform since, ( ) 0 asy s sÆ Æ •

\  ( )y s  = 1

2 2

1 1
or L

s s

- Ï ¸
Ì ˝
Ó ˛

.

or y(t) = t which is the required solution.

EXERCISE 16.4

Solve the following differential equations:

 1. ty¢¢ + y¢ + 4ty = 0, given y (0) = 3, y¢ (0) = 0.

 2. 
2

2
1

d y d y
t y

d td t
- + = , given y (0) = 1, y¢ (0) = 2.

 3. 
2

2
0

d y d y
t t y

d td t
+ + = , given y (0) = 0, y¢ (0) =0

Answers

 1. y = 3J0 (2t)  2. y = 1 + 2 t  3. y = 2 J0 (t)
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16.28  SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

In this case also the same transformations procedure on each of the equations is applied.

Example 67  Solve , sintd x d y
y e x t

d t d t
- = + = ; given x (0) = 1, y (0) = 0.

Solution We can write the above equations into the form of

 D x – y = et and Dy + x = sin t

Taking LT of the given equations, we get

 [ (0)]sx x y- -   = 
1

1s -

or  1s x y- -   = 
1

1s -

or  s x y-   = 
1

s

s -
 (1)

and  (0)s y y x- +   = 
2

1

1s +

or  x s y+   = 
2

1

1s +
 (2)

Solving (1) and (2) for andx y  , we have

 
2

2 2 2

1

( 1)( 1) ( 1)

s
x

s s s
= +

- + +
 

 
2 2 2 2

1 1 1 1

2 1 1 1 ( 1)

s
x

s s s s

È ˘
= + + +Í ˙

- + + +Í ˙Î ˚
 

and  
2 2 2( 1) ( 1)( 1)

s s
y

s s s
= -

+ - +
 

 
2 2 2 2

1 1 1

2 1( 1) 1 1

s s
y

ss s s

È ˘
= - - +Í ˙

-+ + +Í ˙Î ˚
 

Taking I.L.T. of both sides, we get

 x = 
1 1

2 2 2 2

1 1 1 1

2 1 1 1 ( 1)

s
L L

s s s s

- -È ˘ È ˘
+ + +Í ˙ Í ˙

- + + +Í ˙ Í ˙Î ˚ Î ˚

 = 
1 1

cos sin (sin cos )
2 2

t
e t t t t tÈ ˘+ + + -Î ˚

 

1

2 2 2 2

1 1
(sin cos )

( ) 2
L at at at

s a a

-È ˘
= -Í ˙

+Î ˚
∵

 = 
1

cos 2sin cos
2

t
e t t t tÈ ˘+ + -Î ˚
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and  y = 1 1

2 2 2 2

1 1 1

2 1( 1) 1 1

s s
L L

ss s s

- -È ˘ È ˘
- - +Í ˙ Í ˙

-+ + +Í ˙ Í ˙Î ˚ Î ˚

 = 
1 1

sin cos sin
2 2

t
t t e t tÈ ˘- - -Î ˚

 = 
1

sin cos sin
2

t
t t e t tÈ ˘- + -Î ˚  

1

2 2 2 2

1 1
sinat

( ) 2
L t

s a a

-
È ˘È

=Í ˙Í
+ÍÍ ˙ÎÎ ˚

∵

Hence  x = 
1

cos 2sin cos
2

t
e t t t tÈ ˘+ + -Î ˚

 y = 
1

sin cos sin
2

t
t t e t tÈ ˘- + -Î ˚  

Example 68  Solve

 (D2 + 2) x – D y = 1,

 D x + (D2 + 2) y = 0,  with t > 0, x (0) = 0, x¢ (0) = 0,

 y (0) = 0 = y¢ (0), x and y both being functions of t.

Solution Taking the LT of the given equations, we get

 [ ]2 (0) (0) (0) 2s x s x x s y y xÈ ˘- - - - +Î ˚     = 
1

s

 
2 2s x x s y- -    = 

1

s

or  
2( 2)s x s y+ -   = 

1

s
 (1)

and  [ ] 2(0) (0) (0) 2s x x s y s y y yÈ ˘- + - - ¢ +Î ˚    = 0

 
2( 2)s x s y+ +   = 0 (2)

Solving (1) and (2) for ,x y  , we get

 

2

2 2 2 2

2 1

2( 1)( 4) 3( 1) 6( 4)

s s s
x

ss s s s s

+
= = - -

+ + + +
 

 2 2 2 2

1 1 1 1

3( 1)( 4) 1 4
y

s s s s

È ˘
= - = - -Í ˙

+ + + +Í ˙Î ˚
 

Taking ILT of both sides, we get

 x = 
1 1 1

cos cos2
2 3 6

t t- -

and  y = 
1 1

sin sin 2
3 6

t t- +  
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EXERCISE 16.5

Solve the following simultaneous Differential equations:

 1.  3 3 5 25cos
d x d y

x t
d t d t

+ + =

  2 3 5sin
d x d y

t
d t d t

- =  given that x(0) = 2, y(0) = 3.

 2. (D2 + 3). x – 2 y = 0, (D2 – 3)x + (D2 + 5) y = 0

  given that x (0) = 0 = y (0), x¢ (0) = 3, y¢ (0) = 2.

 3. D x + y = sin t, x + D y = cos t; given that x (0) = 2, y(0) = 0.

 4. (D – 2) x – (D + 1) y = 6 e3 t.

  (2 D – 3) x + (D – 3) y = 6 e3t; given that x (0) = 3, y(0) = 0

 5. D x + 4 y = 0, D y – 9 x = 0; given that x (0) = 2, y (0) = 1.

Answers

 1. x = 2 cos t + 3 sin t, y = 3 cos t + 2 sin 2 t

 2. 
11 1

sin sin3
4 12

x t t= - + , 
11 1

sin sin3
4 4

y t t= - .

 3. x = e t + e–t, y = e–t –  et + sin t.

 4. x = et + 2 tet + 2 e3t
, y = sin h t + cos ht – e–3t – tet.

 5. 
2

sin6 2cos6
3

x t t= - + , y = cos 6 t + 3 sin 6 t.

16.29  SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS (PDE)

Let y be a function of x and t.

Let the PDE be 

 
2 2 2

1 2 3 4 52 2
( , )

y y y y y
c c c c c y f x t

x t x tx t

∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂∂ ∂
 (61)

Let t be the principal variable and x be the secondary variable independent of t.

Consider  L{y(x, t)} = ( , )y x s 

Then  
y

L
t

∂Ï ¸
Ì ˝∂Ó ˛

 = ( , ) ( , 0)sy x s y x- 

 

2

2

y
L

t

Ï ¸∂Ô Ô
Ì ˝

∂Ô ÔÓ ˛
 = 2

0

( , ) ( , 0)
t

dy
s y x s sy x

dt =

Ê ˆ- - Á ˜Ë ¯
 

Also, we have

 
y

L
x

∂Ï ¸
Ì ˝∂Ó ˛

 = ( , )
d

y x s
dx
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2

2

y
L

x

Ï ¸∂Ô Ô
Ì ˝

∂Ô ÔÓ ˛
 = 

2

2
( , )

d
y x s

dx
 

 

2
y

L
x t

Ï ¸∂Ô Ô
Ì ˝∂ ∂Ô ÔÓ ˛

 = ( , ) ( , 0)
d

s y x s y x
dx

- ¢ 

Applying LT to every term of (61) and using the above value, we get

 

2
2

1 2 2 4 52
( , ) ( ) ( , ) [ ] ( , )

d d
y x s c s c y x s c s c s c y x s

dxdx
+ + + + +   

 = 1 2 4 2

0

( , ) ( ) ( , 0)
t

dy
f x s c c s c y x c

dt =

Ê ˆ+ + + + Á ˜Ë ¯
 (62)

Here, ( , )y x s  is the unknown function and the functions of x, y(x, 0) and 

0t

dy

dt =

Ê ˆ
Á ˜Ë ¯

constitute the initial conditions. Since Eq. (62) is of second order, it is necessary to know two additional 

limiting conditions. If these conditions are of the form

y(x0, t) = a then Eq. (62) is in LT Having determined ( , )y x s , we can determine y(x, t) by Inverse 

Laplace Transforms (ILT).

Example 69  Solve 
2

2
2

y y

t x

∂ ∂
=

∂ ∂
; given that y(0, t) = 0, y(5, t) = 0, y(x, 0) = –10 sin 4p x.

Solution Taking Laplace transform of the given equation, we get

 
y

L
t

∂Ï ¸
Ì ˝∂Ó ˛

 = 
2

2

y
L

x

Ï ¸∂Ô Ô
Ì ˝

∂Ô ÔÓ ˛

 ( , ) ( , 0)s y x s y x-  = 
2

2

( , )
2

d y x s

dx

 

or 10sin 4s y xp-  = 
2

2
2

d y

dx

 

or 
2

2
2

d y
s y

dx
-

 
  = –10 sin 4 px

or 

2

2

1

2

d y
s y

dx
-

 
  = – 5 sin 4 px

 
2

2

s
D y

Ê ˆ-Á ˜Ë ¯
  = 5 sin 4 ;

d
x D

dx
p- ∫

AE is  2

2

s
m -  = 0

2

s
mfi = ±

 CF = 
2 2

1 2

s s
x x

c e c e

Ê ˆ Ê ˆ
-Á ˜ Á ˜

Ë ¯ Ë ¯+
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 PI = 
2

1
( 5 sin 4 )

2

x
s

D

p-
Ê ˆ-Á ˜Ë ¯

 = 
2

5
sin 4

16
2

x
s

p

p

-

- -
 = 

2

10
sin 4

32
x

s
p

p +

The general solution is 

 
2 2

1 2 2

10
( , ) . . . . sin 4

32

s s
x x

y x s C F P I c e c e x
s

p
p

-
= + = + +

+
  (1)

Now using boundary conditions:

 y(0, t) = 0 (0, ) 0y tfi = 

\ 0 = c1e
ox + c2e

ox + 0

or c1 + c2 = 0 (2)

 y(5, t) = 0 (5, ) 0y tfi = 

 0 = 
5 5

2 2
1 2 2

10
sin 20

32

s s

c e c e
s

p
p

+ -
+ +

+

Since  sin 20p = 0,

\   this is possible only when c1 = 0 = c2

Then (1), becomes

 ( , )y x s  = 
2

10
sin 4

32
x

s
p

p +
Taking ILT, we get

 y(x, t) = 1

2

10
sin 4

32
L x

s
p

p

- È ˘
Í ˙

+Î ˚

 y(x, t) = 
23210 sin 4t

e x
p p- ◊

Example 70  Solve 1 ; 0 1, 0ty y
e x t

x t

-∂ ∂
- = - < < >

∂ ∂
Given that  y(x, 0) = x

Solution Taking LT of the given equation, we get

 
y y

L L
x t

∂ ∂Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂
 = L(1 – e–t)

 [ ( , 0)]
d y

sy y x
d x

- -
 

  = 
1 1

1s s
-

+

or 
d y

sy x
d x

- +
 

  = 
1 1

1s s
-

+
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or 
d y

sy
d x

-
 

  = 
1 1

1
x

s s

Ê ˆ
- -Á ˜+Ë ¯

  which is LDE in andy x 

 IF = 
sdx sx

e e
- -=Ú

Complete solution is 

 
sx

y e
-◊  = 

1 1

1

sx sx sx
e e xe dx

s s

- - -Ê ˆ
- -Á ˜+Ë ¯Ú

or 
1 1

( 1)
y x

s s s
= +

+
 

 1 1 1

1
y x

s s s
= + -

+
 

Taking ILT, we get

 y(x, t) = x + 1 – e–t

EXERCISE 16.6

Solve the following PDE:

 1. 
2

2
3

y y

t x

∂ ∂
=

∂ ∂
; given that , 0

2
y t

pÊ ˆ =Á ˜Ë ¯

  0 0x

y

x
=

∂Ê ˆ =Á ˜Ë ¯∂
 and y (x, 0) = 30 cos 5x.

 2. 
2

2

u u

t x

∂ ∂
=

∂ ∂
; given u (x, 0) = sin p x.

 3. 
2

2
2

u u

t x

∂ ∂
=

∂ ∂
; given u (0, t) = 0, u(5, t) = 0 

  u(x, 0) = 10 sin 4 p x – 5 sin 6 p x.

 4. 
2

2
4

u u
u

t x

∂ ∂
= -

∂ ∂
, given u (0, t) = 0, = u(p, t)

  u(x, 0) = 6 sin x – 4 sin 2 x.

 5. 
2 2

2 2
9

y y

t x

∂ ∂
=

∂ ∂
; given y (0, t) = 0 = y (2, t)

  y (x, 0) = sin 5 p x

Answers

 1. y (x, t) = 30 e–75t
 cos 5x.   2. u (x, t) = sin p x ◊ 

2
s t

e
-

 3. u(x, t) = 
2 272 325 sin 6 10 sin 4t t

e x e x
p pp p- -- +

 4. u(x, t) = 4 86 sin 4 sin 2t t
e x e x

- -- -  5. y (x, t) = sin 5p x ◊ cos 5p t
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SUMMARY
1. Defi nition of Laplace Transform

The Laplace transform of a function F(t), denoted by L{F(t)} is defi ned as

 L{F(t)}= 

0

( ) ( )st
f s e F t dt

•
-= ◊Ú

Here, L is called the Laplace transformation operator. The parameter s is a real or complex number and t 

is a variable independent of s. In general, the parameters are taken to be a real positive number.

2. Laplace Transforms of Elementary Functions

 (i) 
1

{1} ; 0L s
s

= >

 (ii) 
1

( 1)
{ }n

n

n
L t

s
+
+

= , if s > 0 and n > – 1

  In a particular case, if n is a positive integer then

  1 !n n+ =  and hence 
1

!
{ }n

n

n
L t

s
+=

 (iii) 
1

{ } ,at
L e s a

s a
= >

-

 (iv) 
1

{ } ;at
L e s a

s a

- = > -
+

 (v) 
2 2 2 2

{cos } , {sin }
s a

L at L at
s a s a

= =
+ +

 (vi) 
2 2

{sin }
a

L h at
s a

=
-

 (vii) 
2 2

{cos }
s

L h at
s a

=
-

3. Linearity Property of Laplace Transform

Suppose f(s) and g(s) are Laplace transforms of F(t) and G(t) respectively. Then

 L{aF(t) + bG(t)}= aL{F(t)} + bL{G(t)} where a and b are any constants.

Note: Generalizing this result, we obtain

 1 1

( ) ( )

n n

r r r r

r r

L C F t C L F t

= =

Ï ¸Ô Ô =Ì ˝
Ô ÔÓ ˛
Â Â o t

4. Theorem: First Shifting (or First Translation) Theorem

If L{F(t)} = f(s) then ( ) ( )at
L e F t f s a= -o t

5. Theorem: Second Translation or Heaviside’s Shifting Theorem

If L{F(t)} = f(s) and G(t) = 
( ) if

0 if

F t a t a

t a

- >Ï
Ì <Ó
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then L{G(t)} = ( )as
e f s

-

Another form
If f(s) is the Laplace transform of F(t) and a > 0 then e–as

f(s) is the Laplace transform of F(t – a) H(t – a), 

where

 H (t) = 
1 if 0

0 if 0

t

t

>Ï
Ì <Ó

6. Theorem: Change-of-Scale Property

If L{F(t)} = f(s) then L{F(at)} = 
1 s

f
a a

Ê ˆ
Á ˜Ë ¯

7. Laplace Transform of Derivatives

If  L{F(t)} = f(s) then L{F¢(t)} = sf(s) – F(0): s > 0

By applying the above theorem to F¢¢(t), we have

Result I  L{F¢¢(t)} = sL{F¢(t)} – F¢(0)

Result II   = s{sf(s) – F(0)} – F¢(0)

   = s2
f(s) – sF(0) – F¢(0)

Similarly, for LT of derivatives of order n,

 L{F
n(t)} = sn f(s) – sn–1

F(0) – sn–2
F¢(0) – … – F(n–1)(0)

8. Laplace Transform of (Multiplication by t)

If L{F(t)} = f(s) then

  L{tF(t)} ( 1) ( ) ( 1) ( )
d

f s f s
ds

= - = - ¢

In general, L{t
n
F(t)} ( )( 1 ) ( ) ( 1) ( )

n
n n n

n

d
f s f s

ds
= - = -

9. Laplace Transform of the Integral of a Function

If L{F(t)} = f(s) then

  0

( )
( ) ; 0

t
f s

L F u du s
s

Ï ¸Ô Ô = >Ì ˝
Ô ÔÓ ˛
Ú

Result: Similarly if L{F(t)} = f(s) then

  

1

1 2

0 0

1
( ) ( )

tt

L dt F u du f s
s

Ï ¸Ô Ô =Ì ˝
Ô ÔÓ ˛
Ú Ú

Generalization for nth integral

  n-times

0 0 0

1
( ) ( )

t t t
n

n
L F t dt f s

s

Ï ¸Ô Ô =Ì ˝
Ô ÔÓ ˛
Ú Ú Ú
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10. Integration of Laplace Transform of Division by t

If L{F(t)} = f(s) then

  

( )
( )

S

F t
L f u du

t

•
Ï ¸

=Ì ˝
Ó ˛ Ú

11. Heaviside’s Unit Function (Unit-Step Function)

If a function is of the form

 F(t) = 0; t < a

    = 1; t > a

then H(t – a) is defi ned as the Heaviside’s unit function. See 

the following fi gure.

Let us consider a function H(t) given by

 

( ) , for 0
( )

0 , for <

F t t
H t

t a

≥Ï
= Ì

Ó

12. Dirac’ Delta Function (or Unit-Impulse Function)

Dirac delta function (or unit-impulse function) denoted by d(t – a) as Œ Æ 0, i.e.,

 0
( ) lim ( )t a F t ad Œ

ŒÆ
- = ◊ -

Then the Laplace transform of the Dirac delta function is obtained as

 0
{ ( )} lim { ( )}L t a L F t ad Œ

ŒÆ
- = ◊ -

       0

(1 )
lim

s
as e

e
s

-Œ
-

ŒÆ

-
= ◊

Œ

 L{d(t – a)} = e–as

Thus, the Dirac delta function is a “generalized function” defi ned as

 

, if =
( )

0, otherwise

t a
t ad

•Ï
- = Ì

Ó

subject to 

0

( ) 1t a dtd

•

- =Ú

13. Laplace Transform of a Periodic Function

A function F(t) is said to be a periodic function of period T > 0 if

 F(t) = F(t + T) = F(t + 2T) = … = F(t + nT).

The Laplace Transform of a periodic function F(t) with period T is

 
0

1
{ ( )} ( ) , 0

(1 )

T
st

sT
L F t e F t dt s

e

-
-= >

- Ú

14. The Error Function

The error function, abbreviated as ‘erf’’ or ‘E’, is defi ned as 

 

2

0

2
x

x
erf x e dx

p

-= Ú

Fig. 16.11



 Laplace Transform 16.73

and erfc x, read as ‘the complement of error function’, is defi ned as

 erfc x = 1 – erf x

    

2

0

2
1 x

e dx
p

•
-= - Ú

15. Initial- and Final-Value Theorems

(i) Initial-Value Theorem

If L{F(t)} = f(s) then

 0
lim ( ) lim ( )
t s

F t s f s
Æ Æ•

=

(ii) Final-Value Thorem
If L{F(t)} = f(s) then

 
lim ( ) lim ( )
t s

F t s f s
Æ• Æ•

=

16. The Inverse Laplace Transform

If the Laplace transform of a function F(t) is f(s), i.e., L{F(t)} = f(s), then F(t) is called an inverse Laplace 

transform (ILT) of f(s). 

We also write F(t) = L–1{f(s)}.

L
–1 is called the inverse Laplace transformation operator.

The inverse Laplace transforms of the functions F(s) are given in the following table:

Table 16.3

F(s) F(t) = L–1{f(s)}

1/s 1

1/s2
t

1

1
n

s
+

1

n
t

n +

1

s a- e
at

2 2

a

s a+
sin at

2 2

s

s a+
cos at

2 2

1

s a-
1

sin h at
a

2 2

s

s a-
cos h at
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17. Linearity Property

If L{F(t)} = f(s) and L{G(t)} = g(s) and if a, b are constants then 

 L
–1{a f(s) + b g(s)} = a L–1{f(s)} + b L–1{G(s)} = a F(t) + b G(t)

18. First Shifting Property

If L–1{f(s)} = F(t) then 1{ ( )} ( )at
L f s a e F t

- - = ◊ .

19. Second Shifting Property

If L–1 {f(s)} = F(t) then L–1{e
–as f(s)} = G(t), where

 

( ),
( )

0,

F t a t a
G t

t a

- >Ï
= Ì >Ó

Remarks: This result is also expressible as

 

1 ( ) if 0
{ ( )}

0 if 0

a s F t a t
L e f s

t

- - - >Ï
= Ì <Ó

or 1{ ( )} ( ) ( )a s
L e f s F t a H t a

- - = - ◊ -

20. Change-of-scale Property

If L–1 {f(s)} = F (t) then 1 1
{ ( )}

s
L f a s F

a a

- Ê ˆ
= Á ˜Ë ¯

21. Inverse Laplace Transforms of Derivatives

If 
1{ ( )} ( )L f s F t

- =  then 1 ( ) 1{ ( )} ( )
n

n

n

d
L f s L f s

d s

- - Ï ¸Ô Ô= Ì ˝
Ô ÔÓ ˛

 = ( 1) ( )n n
t F t- ◊ ◊

22. Inverse Laplace Transform of Division by s

If 1 { ( )} ( )L f s F t
- =  then 

1

0

( )
( )

t
f s

L F u du
s

- Ï ¸
=Ì ˝

Ó ˛ Ú

Also, 1

2

0 0

( )
( )

t t
f s

L F u du du
s

- Ï ¸
=Ì ˝

Ó ˛ Ú Ú

In general, 1

0 0 0

( )
... ( )

t t t
n

n

f s
L F u du

s

- Ï ¸
=Ì ˝

Ó ˛ Ú Ú Ú

23. Inverse Laplace Transforms of Integrals

If 1{ ( )} ( )L f s F t
- =  then 1 ( )

( )

s

F t
L f u du

t

•
-

Ï ¸Ô Ô =Ì ˝
Ô ÔÓ ˛
Ú

24. Inverse Laplace Transforms of Multiplication by s

If 1{ ( )} ( )L f s F t
- =  and F(0) = 0 then L –1{s f (s)} = F¢ (t)
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25. Convolution 

Suppose two Laplace transforms f(s) and g(s) are given. Let F(t) and G(t) be their inverse Laplace 

transforms respectively, i.e., F(t) = L–1{f(s)} and G(t) = L–1{g(s)}. Then the inverse H(t) of the product of 

transforms h(s) = f (s)◊g(s) can be calculated from the known inverse F(t) and G(t).

Convolution H(t) of F(t) and G(t), denoted by (F *G) (t) is defi ned as 

 H(t) = (F*G)(t) = 

0

( ) ( )

t

F u G t u du◊ -Ú  = 

0

( ) ( )

t

G u F t u du◊ -Ú  = (G * F) (t)

F*G is called the convolution of F and G, and can be regarded as a generalized product of these 

functions.

26.

 1{ ( )} ( )L f s F t
- =  and 

1{ ( )} ( )L g s G t
- =  then

 

1

0

{ ( ) ( )} * ( ) ( )

t

L f s g s F G F u G t u du
- ◊ = = ◊ -Ú

27. The Heaviside Expansion Formula

If y(s) = 
( )

( )

F s

G s
, where F (s) and G (s) are polynomials in s, the degree of F(s) £ degree G(s) and if

 G(s) = (s – a1)(s – a 2) (s – a3) … (s – a n)

where a1, a2, … an are distinct constants real or complex 

then 1

1

( ) ( )
( )

( ) ( )
r

n
tr

rr

f s F
y t L e

g s G

aa

a
-

=

Ï ¸
= = ◊Ì ˝ ¢Ó ˛

Â

28. Method of Finding Residues

Method I: Residue at a simple pole

 (i) If f (z) has a simple pole at z = Z then Res (z = a0) = 
0

0lim ( ) ( )
z z

z z f z
Æ

- ◊È ˘Î ˚

 (ii) If f (z) is of the form f (z) = 
1

2

( )

( )

f z

f z
 where f1(z0) = 0 but f2(z0) π 0 then

 Res (z = z0) = 
1 0

2 0

( )

( )

f z

f z¢

Method II: Residue at a pole of order ‘n’

 Res (z = z0) = 
1

01

1
( ) ( )

( 1)! o

n
n

z zn

d
z z f z

n dz

-

=-

È ˘
- ◊Í ˙

- Í ˙Î ˚

Residue at a pole z = z0, of any order where z = a + t.

Then Res (z = z0) = Res f (z0) = coeffi cient of 
1

t

Ê ˆ
Á ˜Ë ¯ .
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29. Inversion Formula for the Laplace Transform

If F(t) has a continuous derivative and is of exponential order then

 F (t) = 
1

( )
2

r i

st

r i

e f s ds
ip

+ •

+ •
Ú ; t > 0

    = sum of the residues of est f(s) at poles of f(s)

where f(s) = L{F(t)}.

OBJECTIVE-TYPE QUESTIONS

 1. The Laplace transform of a unit step ramp 

function starting at t = a, is

 (a) 
2

1

( )s a+
 (b) 

2( )

as
e

s a

-

+

 (c) 
2

as
e

s

-
 (d) 

2

a

s

 [GATE (ECE) 1994]

 2. The inverse Laplace transform of the function 

5

( 1)( 3)

s

s s

+
+ +

 is

 (a) 2e
–t – e–3t (b) 2e

–t + e–3t

 (c) e
–t – 2e

–3t (d) e
t + e–3t

 [GATE (ECE) 1996]

 3. The Laplace transform of eat cos at is equal 

to

 (a) 
2 2( )

s

s a

a

a

-
- +

 (b) 
2 2( )

s

s a

a

a

+
- +

 (c) 
2

1

( )s a-
 (d) none of these

 [GATE (ECE) 1997]

 4. f(s) = (s + 1)–2 is the Laplace transform of

 (a) t
2 (b) t

3

 (c) te
–t (d) e

 –2t

 [GATE (ME) 1998]

 5. The Laplace transform of (t2 – 2t) u(t – 1) is

 (a) 
3 2

2 2s
se

e
s s

-
--  (b) 2

3 2

2 2s s
e e

s s

- --

 (c) 
3

2 1s s
e e

ss

- --  (d) none of these

 [GATE (EE) 1998]

 6. The Laplace transform of a unit step function 

ux(t) defi ned as

 

0, for 1
( )

1, for
a

a
u t

t a

<Ï
= Ì >Ó

 (a) 
as

e

s

-
 (b) se

–as

 (c) s – u(0) (d) se
–as – 1

 [GATE (Civil Engineering) 1998]

 7. Laplace transform of(a + bt)2, where ‘a’ and 

‘b’ are constants is given by

 (a) (a + bs)2 (b) 2

1

( )a bs+

 (c) 
2 2

2 3

2 2a ab b

s s s
+ +  d) 

2 2

2 3

2a ab b

s s s
+ +

 [GATE (ME) 1998]

 8. If 
2 2

[ ( )]
s

L f t
s w

=
+

, then the value of 

lim ( )
t

f t
Æ•

 is

 (a) cannot be determined

 (b) is zero

 (c) is unity

 (d) is infi nite

 [GATE (ECE) 1998]

 9. If L[f(t)] = F(s), then L[f(t – T) is equal to

 (a) e
+sT

F(s) (b) e
– sT

F(s)

 (c) 
( )

1 sT

F s

e+
 (d) 

( )

1 sT

F s

e
--

 [GATE (ECE) 1999]
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 10. The Laplace transform of the function

 
, 0

( )
0,

k t c
f t

c t

< <Ï
= Ì < < •Ó

 is

 (a) ksk
e

s

-  (b) ksk
e

s

 (c) ke
–ks (d) (1 )csk

e
s

-Ê ˆ
-Á ˜Ë ¯

 [GATE (CE) 1999]

 11. The Laplace transform of the function sin2 2t 

is

 (a) 
2

(1/ )

2( 16)

s s

s

-
+

 (b) 
2 16

s

s +

 (c) 
2

(1/ )

4

s s

s

-
+

 (d) 
2 4

s

s +
 [GATE (ME) 2000]

 12. Given 
2

1
[ ( )]

1

s
L f t

s

+
=

+
, L[g(t)]

  = 
2 1

( 3)( 2)

s

s s

+
+ +

, h(t) = 
0

( ) ( )
t

f t g t dt t-Ú , 

L[h(t)] is

 (a) 
2 1

3

s

s

+
+

 (b) 
1

3s +

 (c) 
2

2

1 2

( 3)( 2) 1

s s

s s s

+ +
+

+ + +
 (d) none of these

 [GATE (ECE) 2000]

 13. Let F(s) = L[f(t)] denotes the Laplace 

transform of the function f(t) which of the 

following statement is correct

 (a) 
0

1
( ), ( )

tdf
L F s L f d

dt s
t t

È ˘ È ˘=Í ˙ Í ˙Î ˚Î ˚ Ú
   = –sF(s) – f(0)

 (b) ( ) (0)
df

L sF s f
dt

È ˘
= -Í ˙Î ˚

,

  
0

( )
t dF

L f d
ds

t t
È ˘ = -Í ˙Î ˚Ú

 (c) 
0

( ) (0), ( )
tdf

L sF s F L f d
dt

t t
È ˘ È ˘= -Í ˙ Í ˙Î ˚Î ˚ Ú

   = F(s – a)

 (d) 
0

( ) (0), ( )
tdf

L sF s f L f d
dt

t t
È ˘ È ˘= -Í ˙ Í ˙Î ˚Î ˚ Ú

   = 
( )F s

s

 [GATE (Civil Engg.) 2000]

 14. The inverse Laplace transform of 
2

1

2s s+
 is

 (a) (1 – e2t) (b) 1 – e–2t

 (c) 
21

2

t
e-

 (d) 
21

2

t
e

--

 [GATE (Civil Engg.) 2001]

 15. The Laplace transform of the following 

function

  
sin , 0

( )
0,

t t
f t

t

p

p

£ <Ï
= Ì >Ó

 is

 (a) 
2

1
, 0

1
s

s
>

+
 (b) 

2

1
,

1
s

s
p<

+

 (c) 
2

1
, 0

1

s
e

s
s

p-+
>

+
 (d) 

2
, 0

1

s
e

s
s

p-
>

+

 [GATE (Civil Engg.) 2002]

 16. Let Y(s) be the Laplace transform of the 

function y(t), then the fi nal value of the 

function is

 (a) 
0

lim ( )
s

Y s
Æ

 (b) lim ( )
s

Y s
Æ•

 (c) 
0

lim ( )
s

sY s
Æ

 (d) lim ( )
s

sY s
Æ•

 [GATE (EE) 2002]

 17. If L defi nes the Laplace transform of a 

function, L[sin at] will be equal to

 (a) 
2 2

a

s a-
 (b) 

2 2

a

s a+

 (c) 
2 2

s

s a+
 (d) 

2 2

s

s a-
 [GATE (Civil Engg.) 2003]
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 18. The Laplace transform of a function f(t) is

 

2

2

5 23 6
( )

( 2 2)

s s
F s

s s s

+ +
=

+ +

  As t Æ •, f (t) approaches to

 (a) 3 (b) 5

 (c) 
17

2
 (d) •

 [GATE (EE) 2005]

 19. Consider the function f(t) having Laplace 

transform 0
2 2

0

( ) , [ ] 0eF s R s
s

w

w
= >

+
. The 

fi nal value of f(t) would be

 (a) 0 (b) 1

 (c) –1 £ f(•) £ 1 (d) •
 [GATE (ECE) 2006]

 20. The Dirac-Delta function d(t) is defi ned as

 (a) 
1, 0

( )
0, otherwise

t
td

=Ï
= Ì

Ó

 (b) 
, 0

( )
0, otherwise

t
td

• =Ï
= Ì

Ó

 (c) 
1, 0

( )
0, otherwise

t
td

>Ï
= Ì

Ó
 and 

   
( ) 1t dtd

•

-•
=Ú

 (d) 
, 0

( )
0, otherwise

t
td

• =Ï
= Ì

Ó
 and

   
( ) 1t dtd

•

-•
=Ú

 [GATE (ECE) 2006]

 21. Given that F(s) is the one-sided Laplace 

transform of f(t), the Laplace transform of 

0
( ( )

t
f dt tÚ  is

 (a) sF(s) – f(0) (b) 
( )F s

s

 (c) 
0

( )
s
F dt tÚ  (d) 

1
[ ( ) (0)]F s f

s
-

 [GATE (ECE) 2009]

 22. The inverse Laplace transform of 1/(s2 + s) 

is

 (a) 1 + et (b) 1 – et

 (c) 1 – e–t (d) 1 + e–t

 [GATE (ME) 2009]

 23. The Laplace transform of f(x) = cosh ax is

 (a) 
2 2

a

s a-
 (b) 

2 2

s

s a-

 (c) 
2 2

a

s a+
 (d) 

2 2

s

s a+
 [GATE (Civil Engg.) 2009]

 24. The Laplace transform of the function

  f(t) = 
1, 0 2

1, 2 4

t

t

£ <Ï
Ì- £ <Ó

, f(t + 4) = f(t) is given 

as

 (a) 
2

2

1

(1 )

t

s

e

s e

-

-
-
+

 (b) 
2

2

1

(1 )

s

s

e

s e

-

-
+
+

 (c) 0 (d) 
1

1

s

s

+
-

 [UPTU 2009]

 25. The inverse Laplace transform of log 
1

1

s

s

Ê ˆ+
Á ˜-Ë ¯

 

is given by

 (a) 
2cosh t

t
 (b) 

2 sinh t

t

 (c) 2t cos t (d) 2t sin t

 [UPTU 2009]

 26. A delayed unit step function is defi ned as

 

0, for
( )

1, for

t a
u t a

t a

<Ï
- = Ì ≥Ó

  Its Laplace transform is

 (a) ae
–as (b) e

–as/s

 (c) e
as/s (d) e

–as/a

 [GATE (ME) 2004]

 27. An input x(t) = exp(–2t)u(t) + d(t – 6) is 

applied to an LTI system with impulse 

response h(t) = u(t). The output is

 (a) [1 – exp(–2t)] u(t) + u(t + 6)

 (b) [1 – exp(–2t)] u(t) + u(t – 6)

 (c) 0.5[1 – exp(–2t)] u(t) + u(t + 6)

 (d) 0.5[1 – exp(–2t)] u(t) + u(t – 6)

 [GATE (EC) 2011]

 28. If 
2

2( 1)
( ) { ( )}

4 7

s
F s L f t

s s

+
= =

+ +
 then the 

initial and fi nal values of f(t) are respectively
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 (a) 0, 2 (b) 2, 0

 (c) 
2

0,
7

 (d) 
2

, 0
7

 [GATE (EC) 2011]

 29. The inverse Laplace transform of the funtion 

1
( )

( 1)
F s

s s
=

+
 is given by

 (a) f(t) = sin t (b) f(t) = e–t sin t

 (c) f(t) = e–t (d) f(t) = 1 – e–t

 [GATE (ME) 2012]

 30. The unilateral Laplace transform of f(t) is 

2

1

1s s+ +
. The unilateral Laplace transform 

of t f(t) is

 (a) 
2 2( 1)

s

s s
-

+ +
 (b) 

2 2

2 1

( 1)

s

s s

+
-

+ +

 (c) 
2 2( 1)

s

s s+ +
 (d) 

2 2

2 1

( 1)

s

s s

+
+ +

 [GATE (EE) 2012]

 31. The solution to the differential equation
2

2
0

d u du
k

dxdx
- =  where k is a constant, subject 

to the boundary, conditions u(0) = 0 and 

u(L) = U is

 (a) 
x

u U
L

=  (b) 
1

1

kx

kL

e
u U

e

Ê ˆ-
= Á ˜

-Ë ¯

 (c) 
1

1

kx

kL

e
u U

e

-

-

Ê ˆ-
= Á ˜

-Ë ¯
 (d) 

1

1

kx

kL

e
u U

e

-

-

Ê ˆ+
= Á ˜

+Ë ¯

 [GATE (ME) 2013]

 32. The function f(t) satisfi es the differential 

equation 
2

2
0

d f
f

dt
+ =  and the auxiliary 

conditions, f(0) = 0, (0) 4
f

t

∂
=

∂
. The Laplace 

transform of f(t) is given by

 (a) 
2

1s +
 (b) 

4

1s +

 (c) 2

4

1s +
 (d) 4

2

1s +

 [GATE (ME) 2013]

 33. The Laplace transform of f(t) = 2t + 6 is

 (a) 
2

1 2

s s
+  (b) 

2

3 6

4 s
-

 (c) 
2

6 2

s s
+  (d) 

2

6 2

s s
- +

 [GATE (BT) 2013]

 34. The Laplace Transform representation of the 

triangular pulse shown below is

Fig. 16.12

 (a) 2

2

1
[1 ]s

e
s

-+

 (b) 2

2

1
[1 ]s s

e e
s

- -- +

 (c) 2

2

1
[1 2 ]s s

e e
s

- -- +

 (d) 2

2

1
[1 2 ]s s

e e
s

- -- +
 [GATE (IN) 2013]

 35. A system is described by the differential 

equation 
2

2
5 6 ( ) ( )

d y dy
y t x t

dtdt
+ + = . Let x(t) 

be a rectangular pulse given by

 

1, 0 2
( )

0, otherwise

t
x t

< <Ï
= Ì

Ó

  Assuming that y(0) = 0 and 0
dy

dt
=  at t = 0, 

the Laplace transform of y(t) is

 (a) 
2

( 2)( 3)

s
e

s s s

-

+ +
 (b) 

21

( 2)( 3)

s
e

s s s

--
+ +

 (c) 
2

( 2)( 3)

s
e

s s

-

+ +
 (d) 

21

( 2)( 3)

s
e

s s

--
+ +

 [GATE (EC) 2013]
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 36. Laplace transform of cos (w t) is 
2 2

s

s w+
. 

The Laplace transform of e–2t cos(4t) is

 (a) 
2

2

( 2) 16

s

s

-
- +

 (b) 
2

2

( 2) 16

s

s

+
- +

 (c) 
2

2

( 2) 16

s

s

-
+ +

 (d) 
2

2

( 2) 16

s

s

+
+ +

 [GATE (ME) 2014]

 37. For the time domain function, f(t) = t
2, 

which ONE of the following is the Laplace 

transform of 

0

( )

t

f t dtÚ ?

 (a) 
4

3

s
 (b) 

2

1

4s

 (c) 
3

2

s
 (d) 

4

2

s

 [GATE (CH) 2014]

 38. The unilateral Laplace transform of f(t) is 

2

1

1s s+ +
. Which one of the following is the 

unilateral Laplace transform of g(t) = t f(t)?

 (a) 
2( 1)

s

s s

-
+ +

 (b) 
2 2

(2 1)

( 1)

s

s s

- +
+ +

 (c) 
2 2( 1)

s

s s+ +
 (d) 

2 2

2 1

( 1)

s

s s

+
+ +

 [GATE (EC) 2014]

 39. A system is described by the following 

differential equation, where u(t) is the input 

to the system and y(t) is the output of the 

system.

 y(t) + 5y(t) = u(t)

  When y(0) = 1 and u(t) is a unit step function, 

y(t) is

 (a) 0.2 + 0.8e
–5t (b) 0.2 – 0.2e

–5t

 (c) 0.8 + 0.2e
–5t (d) 0.8 – 0.2e

–5t

 [GATE (EC) 2014]
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 31. (b) 32. (c) 33. (c) 34. (d) 35. (b) 36. (d) 37. (d) 38. (d) 39. (a)



1. Greek Letters

 a alpha  b beta

 g gamma  d delta

 i iota  l lambda

 z zeta  h eta

 x  xi  y psi

 f phi  Œ epsilon

 q theta  k kappa

 p pi  m mu

 n nu  r rho

 s sigma  t tau

 c chi  w omega

 G capital gamma  D capital delta

 S capital sigma  W capital omega

2. Notation

 » union  « intersection

 Œ belongs to  œ does not belong to

 fi implies  ¤ implies and implied by

 ' such that

3. Properties of Logarithms

 (i) loga a = 1, loga 1 = 0, loga 0 = – •  if a > 1,

  log10 10 = 1, loge 2 = 0.6931, loge10 = 2.3060, log10 e = 0.4343

 (ii) logam
n = nlogam  (iii) log log loga a a

m
m n

n

Ê ˆ = -Á ˜Ë ¯

 (iv) loga(mn) = logam + logan  (v) 
log

log log log
log

b
a b b

b

n
m b n

a
= ◊ =

Appendix: Basic 

Formulae and Concepts
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4. Differential Calculus

 (i) ( )x xd
e e

dx
=  (ii) ( ) logx x

e

d
a a a

dx
=

 (iii) (sin ) cos
d

x x
dx

=  (iv) (cos ) sin
d

x x
dx

= -

 (v) 2(tan ) sec
d

x x
dx

=  (vi) 2(cot ) cosec
d

x x
dx

= -

 (vii) (sec ) sec tan
d

x x x
dx

=  (viii) (cosec ) cosec cot
d

x x x
dx

= -

 (ix) 
1

(log )
log

a

d
x

dx x a
=  (x) 

1
(log )e

d
x

dx x
=

 (xi) 1

2

1
(sin )

1

d
x

dx x

- =
-

 (xii) 1

2

1
(cos )

1

d
x

dx x

- = -
-

 (xiii) 1

2

1
(tan )

1

d
x

dx x

- =
+

 (xiv) 1

2

1
(cot )

1

d
x

dx x

- -
=

+

 (xv) 1

2

1
(sec )

1

d
x

dx x x

- =
-

 (xvi) 1

2

1
(cosec )

1

d
x

dx x x

- -
=

-

 (xvii) 1( )n nd
x nx

dx

-=  (xviii) (sinh ) cosh
d

x x
dx

=

 (xix) (cosh ) sinh
d

x x
dx

=  (xx) 2(tanh ) sech
d

x x
dx

=

 (xxi) 2(coth ) cosech
d

x x
dx

= -  (xxii) ( . )
d dv du

u v u v
dx dx dx

= +

 (xxiii) 
2

du dv
v u

d u dx dx

dx v v

-Ê ˆ =Á ˜Ë ¯
 (xxiv) 

dy dy du

dx du dx
= ◊  (chain rule)

 (xxv) 
y y

dy dr ds
r s

∂ ∂
= +

∂ ∂
 (total derivative rule)

 (xxvi) 1( ) ( )n nd
ax b na ax b

dx

-+ = +

5. nth Derivative

(i) 
n

ax b n ax b

n

d
e a e

dx

+ +=

(ii) ( ) ( 1)( 2) ( 1) ( )
n

m n m n

n

d
ax b m m m m n a ax b

dx

-+ = - - - + + 
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(iii) 

1( 1) ( 1)!
[log( )]

( )

n n n

n n

d n a
ax b

dx ax b

-- -
+ =

+

(iv) {sin( )} sin
2

n
n

n

d n
ax b a ax b

dx

pÊ ˆ+ = + +Á ˜Ë ¯

(v) {cos( )} cos
2

n
n

n

d n
ax b a ax b

dx

pÊ ˆ+ = + +Á ˜Ë ¯

(vi) 
1

1 ( 1) !

( )

n n n

n n

d a n

ax bdx ax b
+

Ê ˆ -
=Á ˜+Ë ¯ +

(vii) 2 2 /2 1{ sin( )} ( ) sin( tan / )
n

ax ax n

n

d
e bx c e a b bx c n b a

dx

-+ = ◊ + + +

(viii) 2 2 12{ cos( )} ( ) cos( tan / )

nn
ax ax

n

d
e bx c e a b bx c n b a

dx

-+ = + + +

(ix) Leibnitz’s Theorem:

  
0 1 21 1 2 2( )

r n

n

c n c n c n c n r r c nn

d
u v n u v n u v n u v n u v n uv

dx
- - -◊ = + + + + + +  

6. Integral Calculus

 (i) 
1

( 1)
1

n
n x

x dx n
n

+

= π
+Ú  (ii) x x

e dx e=Ú

 (iii) 
1

logedx x
x

=Ú  (iv) / logx x
ea dx a a=Ú

 (v) cos sinx dx x=Ú  (vi) sin cosx dx x= -Ú
 (vii) tan logcos log secx dx x x= - =Ú  (viii) cot log sinx dx x=Ú

 (ix) sec log(sec tan )x dx x x= +Ú  (x) cosec log(cosec cot )x dx x x= -Ú
 (xi) 2sec tanx dx x=Ú  (xii) 2cosec cotx dx x= -Ú

 (xiii) 
2 2 2

2 2 1( )
( ) sin

2 2

x a x a x
a x dx

a

-- Ê ˆ- = + Á ˜Ë ¯Ú

 (xiv) 
2 2 2

2 2 1( )
( ) sinh

2 2

x a x a x
a x dx

a

-+ Ê ˆ+ = + Á ˜Ë ¯Ú

 (xv) 
2 2 2

2 2 1( )
( ) cosh

2 2

x x a a x
x a dx

a

-- Ê ˆ- = - Á ˜Ë ¯Ú
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 (xvi) 1

2 2

1
tan

dx x

a aa x

- Ê ˆ= Á ˜Ë ¯+Ú  (xvii) 
2 2

1
log

2

dx a x

a a xa x

+Ê ˆ= Á ˜Ë ¯--Ú

 (xviii) 
2 2

1
log

2

dx x a

a x ax a

Ê ˆ-
= Á ˜+Ë ¯-Ú  (xix) 1

2 2
sin

dx x

aa x

- Ê ˆ= Á ˜Ë ¯-
Ú

 (xx) 
1

2 2
sinh

dx x

ax a

- Ê ˆ= Á ˜Ë ¯+
Ú  (xxi) 

1

2 2
cosh

dx x

ax a

- Ê ˆ= Á ˜Ë ¯-
Ú

 (xxii) 
2 2

sin ( sin cos )
ax

ax e
e bx dx a bx b bx

a b
= -

+Ú

 (xxiii) 
2 2

cos ( cos sin )
ax

ax e
e bx dx a bx b bx

a b
= +

+Ú

 (xxiv) sinh coshx dx x=Ú  (xxv) cosh sinhx dx x=Ú
 (xxvi) tanh logcoshx dx x=Ú  (xxvii) coth logsinhx dx x=Ú
 (xxviii) 2sech tanhx dx x=Ú  (xxix) 2cosech cothx dx x= -Ú

7. Defi nite Integral

 (i) ( ) [ ( )] ( ) ( )

b
b
a

a

f x dx x b af f f= = -Ú
  where f(x) is the primitive or antiderivative of a function f(x) defi ned on [a, b].

 (ii) ( ) ( )

b b

a a

f x dx f y dy=Ú Ú

 (iii) ( ) ( )

b b

a a

f x dx f x dx= -Ú Ú

 (iv) ( ) ( ) ( )

b c b

a a c

f x dx f x dx f x dx= +Ú Ú Ú , where a < c < b

 (v) 
0

2 ( ) , if ( ) is an even function
( )

0, if ( ) is an odd function

a
a

a

f x dx f x
f x dx

f x
-

Ï
Ô

= Ì
Ô
Ó

ÚÚ

 (vi) ( ) ( )

b b

a a

f x dx f a b x dx= + -Ú Ú
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 (vii) If f(x) is a periodic function with period T then

 0 0

( ) ( )

nT T

f x dx n f x dx=Ú Ú

 (viii) If f(x) is a periodic function with period T then ( )

a T

a

f x dx

+

Ú  is independent of a.

8. Integral Function

Let f(x) be a continuous function defi ned on [a, b] then a function F(x) defi ned by

 

( ) ( ) , [ , ]

b

a

F x f t dt x a b= ŒÚ

is called the integral function of the function f.

9. Summation of Series using Defi nite Integral as the Limit of a Sum

If f(x) is an integrable function defi ned on [a, b] then we defi ne

 
0

( ) lim [ ( ) ( ) ( 2 ) ( ( 1) )

b

n
a

f x dx h f a f a h f a h f a n n
Æ

= + + + + + + + -Ú  

where 
b a

h
n

-
=

As h Æ 0, we have n Æ •

\ ( ) lim [ ( ) ( ) ( 2 ) ( ( 1) ]

b

n
a

f x dx h f a f a h f a h f a n h
Æ•

= + + + + + + + -Ú   (1)

Putting a = 0, b = 1, 
1 0 1b a

h
n n n

- -
= = =  in (1), we get

 

1

0

1 1 2 1
( ) lim (0)

n

n
f x dx f f f f

n n n nÆ•

È ˘-Ê ˆ Ê ˆ Ê ˆ= + + + +Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚
Ú  

 

1 1

00

1
( ) lim

n

n
r

r
r f x dx f

n n

-

Æ• =

Ê ˆ= Á ˜Ë ¯ÂÚ   (2)

Equation (2) is very useful in fi nding the summation of infi nite series, which is expressible in the 

form 
1 r

f
n n

Ê ˆ
Á ˜Ë ¯Â .

To fi nd the value of the given infi nite series, fi rst of all express the series in the form 
1

lim
n

r
f

n nÆ•

È ˘Ê ˆ
Í ˙Á ˜Ë ¯Î ˚

Â ,

and replace S by Ú, 
r

n
 by x and 

1

n
 by dx. Obtain lower and upper limits by computing lim

n

r

nÆ•

Ê ˆ
Á ˜Ë ¯

 for 

the least and greatest values of r respectively. Then evaluate the integral.
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10. Vectors

 (i) If vector , ) ˆˆ ˆ( , zr x y xi yj zk== + +
 

 then

  
2 2 2| | (r x y z= + +

 
 and direction-cosines of r

 
 will be

  
2 2 2 2 2 2 2 2 2

, ,
( ) ( ) ( )

x y z

x y z x y z x y z+ + + + + +

 (ii) Unit vector along r
 

 is

  
ˆ

| |

r
r

r
=

 

 

 (iii) ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1, 0i i j j k k i j j k k i◊ = ◊ = ◊ = ◊ = ◊ = ◊ =  and

  ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0; , ,i i j j k k i j k j k i k i j¥ = ¥ = ¥ = ¥ = ¥ = ¥ =   (clockwise product)

  ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ,j i k k j i i k j¥ = - ¥ = - ¥ = -  (anticlockwise product)

 (iv) Properties of Scalar Product

 (a) The scalar product of two vector’s is commutative, i.e., 

   a b b a◊ = ◊
    

 (b) ( ) and ( )a b c a b a c b c a b a c a◊ + = ◊ + ◊ + = ◊ + ◊
             

 (c) Let ,a b
  

  be two vectors inclined at an angle q. Then | | | | cosa b a b q◊ =
    

 (d) Let anda b
  

 be two nonzero vectors. Then 0a b a b◊ = ¤ ^
    

[read as vector a
 

 perpendicular to b
 

]

 (v) Properties of Vector Product

 (a)  Vector product is not commutative, i.e., if anda b
  

 are any two vectors, then 

a b b a¥ π ¥
    

, however, a b b a¥ = - ¥
    

 (b) If anda b
  

 are two vectors and l is a scalar then ( )a b a b a bl l l¥ = ¥ = ¥
      

 (c)  If anda b
  

 are two vectors and a, b are scalars then

   ( ) ( ) ( )a b a b a b a ba b ab a b b a¥ = ¥ = ¥ = ¥
        .

 (d) Let , ,a b c
   

 be any three vectors; then

   ( ) and ( )a b c a b a c b c a b a c a¥ + = ¥ + ¥ + ¥ = ¥ + ¥
              

 (e)  If q is the angle between two vectors anda b
  

 then ˆ| | | | sina b a b nq¥ =
    

, where n̂  is 

a unit vector perpendicular to the plane of anda b
  

.

 (f)  The vector product of two nonzero vectors is a zero vector iff they are parallel (collinear), 

i.e., 0 || , ,a b a b a b¥ = ¤
      

 are nonzero vectors.

 (g) If anda b
  

 are adjacent sides of a triangle then the area of the triangle = 
1

| |
2

a b¥
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 (h)  If anda b
  

 are adjacent sides of a parallelogram then the area of the parallelogram = 

| |a b¥
  

.

 (i) The area of a parallelogram with diagonals 
1

and is | |
2

a b a b¥
    

.

 (j)  The area of a plane quadrilateral ABCD is 
1

| |
2

AC BD¥
        

, where AC and BD are its 

diagonals.

 (vi) Scalar Triple Product

  Let , ,a b c
   

 be three vectors. Then the scalar ( )a b c¥ ◊
   

 is called the scalar triple products of 

, , anda b c
   

 is denoted by [ ] or [ ] or [ ]a b c b c a c a b
         

.

  Thus, [ ] = ( )a b c a b c¥ ◊
      

 (vii) Coplanar Vectors

  The necessary and suffi cient condition for three nonzero, noncollinear vectors , ,a b c
   

 to be 

coplanar is that [ ] 0 i.e., , ,a b c a b c=
      

 coplanar [ ] 0a b c¤ =
   

.

 (viii) The volume of the parallelpiped with , ,a b c
   

 as coterminous edges.

  = [ ] ( )a b c a b c= ◊ ¥
      

 (ix) The volume of a tetrahedron, whose three coterminous edges in the right-handed system are 

, ,a b c
   

 is 
1 1

( )
6 6

a b c a b cÈ ˘ È ˘= ◊ ¥Î ˚ Î ˚
      

 (x) Vector Triple Product

  Let , ,a b c
   

 be any three vectors then the vectors ( ) and ( )a b c a b c¥ ¥ ¥ ¥
      

 are called vector 

triple product of , ,a b c
   

, i.e., ( ) ( ) ( )a b c a c b a b c¥ ¥ = ◊ - ◊
         

11. Algebraic Formula

 (i) Quadratic Equation

 ax
2 + bx + c = 0  (1)

 

2( 4 )

2

b b ac
x

a

- ± -
=

  Let 

2 2( 4 ) ( 4 )
and

2 2

b b ac b b ac

a a
a b

- + - - - -
= =  are the roots of the quadratic equation (1).

  Then

 (a) 
b

a
a b

-
+ =

 (b) 
c

a
ab =

 (c) If b2 – 4ac > 0 then roots are real and distinct.

 (d) If b2 – 4ac < 0 then roots are complex.

 (e) If b2 – 4ac = 0 then roots are equal.

 (f) If b2 – 4ac is a perfect square then roots are rational.
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 (ii) Progressions

 (a) Arithmetic progression (AP) a, a + d, a + 2d, a + 3d, …

   its nth term Tn = a + (n – 1)d and sum of n terms = [2 ( 1) ]
2

n

n
S a n d= + -

 (b) Geometric Progression (GP)

  a, ar, ar
2, ar

3, ar
4, …

   Its nth term Tn = ar
n – 1 and sum of n terms 

(1 )
, ; 1

1 1

n

n

a r a
S S r

r r
•

-
= = <

- -
 (c) Harmonic Progression (HP)

  

1 1 1 1
, , , ,

2 3a a d a d a d+ + +
 

   Its nth term 
1 1

,
( 1)

[(2 ( 1) )]
2

n nT S
na n d

a n d

= =
+ - + -

 (d) Let a and b be any two numbers then their

   Arithmetic Mean (AM) = 
1

( )
2

a b+

   Harmonic Man (HM) = 
2

( )

ab

a b+

   Geometric Mean (GM) = ( )ab

 (e) Let 1, 2, 3, 4, 5, …, n be the set of natural numbers then

 

( 1)

2

n n
n

+
=Â

 

2 ( 1)(2 1)

6

n n n
n

+ +
=Â

 

2

3 ( 1)

2

n n
n

+Ï ¸= Ì ˝
Ó ˛

Â

 (iii) Binomial Expansion

 (a) When n is a positive integer, 
1 2 3

2 3(1 ) 1
n

n n
c c c cx n n x n x n x+ = + + + + + 

 (b) When n is a negative integer or a fraction

    

2 3( 1) ( 1)( 2)
(1 ) 1

2! 3!

n n n n n n
x nx x x

- - -
+ = + + + + • 

 (c) 
1 r

n r
r cT n x

-
+ =

 (iv) Some Important Expansions

 (a) Exponential Series

  

2 3

1
1! 2! 3!

x x x x
e = + + + + • 



 Appendix: Basic Formulae and Concepts A.9

  

2 3
2 31 (log ) (log ) (log ) ,( 0)

2! 3!

x
e e e

x x
a x a a a a= + + + + • > 

 (b) Logarithmic Series

  

2 3 4

log (1 )
2 3 4

e

x x x
x x+ = - + - + • 

  
2 3 4

log (1 )
2 3 4

e

x x x
x x- = - - - - - • 

 (v) Sine and Cosine Series

 (a) 
3 5 7

sin
3! 5! 7!

x x x
x x= - + - + • 

 (b) 
2 4 6

cos 1
2! 4! 6!

x x x
x = - + - + • 

12. Trigonometric Products and Sums

 (i) sin(A ± B) = sin A cos B ± cos A sin B

 (ii) cos(A ± B) = cos A cos B ∓ sin A sin B

 (iii) 
tan tan

tan( )
1 tan tan

A B
A B

A B

±
± =

∓

 (iv) sin sin 2sin cos
2 2

C D C D
C D

+ -
+ =

 (v) sin sin 2cos cos
2 2

C D C D
C D

+ -
- =

 (vi) cos cos 2cos cos
2 2

C D C D
C D

+ -
+ =

 (vii) cos cos 2sin sin
2 2

C D D C
C D

+ -
- =

 (viii) 2 sin A cos B = sin (A + B) + sin (A – B)

 (ix) 2 sin A sin B = cos (A – B) – cos (A + B)

 (x) 2 cos A sin B = sin (A + B) – sin (A – B)

 (xi) 2 cos A cos B = cos (A + B) – cos (A – B)

 (xii) 
2

2 tan
sin 2 2sin cos

1 tan

A
A A A

A
= =

+

 (xiii) cos 2A = cos2
A – sin2

A

  = 
2

2 2

2

1 tan
2cos 1 1 2sin

1 tan

A
A A

A

-
- = - =

+
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 (xiv) 
2

2 tan
tan 2

1 tan

A
A

A
=

+
 (xv) sin 3A = 3 sin A – 4 sin3 A

 (xvi) cos 3A = 4 cos3 A – 3 cos A

 (xvii) 

3

2

3 tan tan
tan3

1 3tan

A A
A

A

-
=

-

13. Complex Numbers

 (i) If z = x + iy

    = r cos q + ir sin q; 
Put cos

sin

x r

y r

q

q

=Ê ˆ
Á ˜=Ë ¯

  z = r(cos q + i sin q)

 (ii) Euler’s theorem: eiq = cos q + i sin q

 (iii) De Moivre’s theorem: (cos q + i sin q)n = cos nq + i sin nq

14. Hyperbolic Functions

(i) sinh
2

x x
e e

x
--

=

(ii) 
2

cosh
2

x
ex e

x
-+

=

(iii) 
sinh cosh

tanh , coth
cosh sinh

x x
x x

x x
= =

(iv) sin(ix) = i sinh x, cos(ix) = cosh x, tan(ix) = i tanh x

(v) 
1 2sinh log[ ( 1)]x x x

- = + +

(vi) 1 2cosh log[ ( 1)]x x x
- = + -

(vii) 
1 1 1

tanh log
2 1

x
x

x

- Ê ˆ+
= Á ˜-Ë ¯
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Characteristic roots and vectors (or eigenvalues 

and eigenvectors)  1.33

Charpit’s method  14.50

Chemical reactions and solutions  10.46

Clairaut’s equation  14.21

Classifi cation of partial differential equations of 

order one  14.2

Classifi cation of partial differential equations of 

second order  14.48

Classifi cation of singularities  13.1

Comparison test  8.11

Complete solutions of y¢¢ + Py¢ + Qy = R in 

terms of one known solution belonging to 

the CF  12.1

Complex quadratic form  1.50

Composite function  3.21

Concavity  4.18

Condition for consistency theorem  1.28

Condition for inconsistent solution  1.28

Conditional convergence  8.27

Conservative fi eld and scalar potential  7.15

Continuity  7.2

Convergence of a sequence  8.2

Convergence of improper integrals  5.55

Convexity  4.18



I.2 Index

Convolution  16.48

Curve tracing  4.21

 cartesian coordinates  4.22

 parametric form  4.31

 in polar coordinates  4.27

D

D’Alembert’s ratio test  8.16

Deduction from Euler’s theorem  3.14

Defi nite integral  5.2

Defi nition of Laplace transform  16.1

Derivation of transmission line equations  15.50

Diagonalization matrix  1.43

Differentiability of a Vector Function  7.2

Differential operator D  11.1

Differentiation  2.1

Differentiation of transforms  16.13

Diracs delta function (or unit-impulse

function)  16.17

Dirichlet’s conditions for a fourier series  9.4

Dirichlet’s integral  5.93

Divergence and curl  7.3

Double integrals  5.63

Duplication formula  6.35

E

Echelon form of a Matrix  1.17

Elementary operations  1.13

Elementary transformation  1.13

Equality of two matrices  1.5

Equation reducible to linear equations with 

constant coeffi cients  14.44

Error function  16.21

Euler’s formulae  9.3

Euler’s theorem on homogeneous

functions  3.12

Exact differential equations  10.28

Expansion of functions of several variables  3.41

Expansion of functions of two variables  3.41

Exponential series  8.36

F

Final-value theorems  16.23

First-order and fi rst-degree differential

equations  10.3

Formation of an ordinary differential

equation  10.2

Formation of partial differential equations  14.2

Fourier half-range series  9.21

Fourier series  9.2

Fourier series for discontinuous functions  9.4

Fourier series for even and odd functions  9.12

Frobenius method  13.12

Function of Class A  16.11

Functional dependence  3.30

G

Gamma function  6.31

Gauss’s divergence theorem (relation between 

volume and surface integers)  7.28

General methods of fi nding particular integrals 

(pi)  11.6

Generating function for Jn(x)  6.6

Generating function of Legendre’s

polynomials  6.16

Geometric interpretation of partial

derivatives  3.2

Geometric series  8.6

Geometrical interpretation of defi nite

integral  5.2

Geometrical meaning of derivative

at a point  2.1

Gradient  7.3

Green’s Theorem in the plane: Transformation 

between line and double integral  7.24

H

Harmonic analysis and its applications  9.39

Heaviside expansion formula  16.51

Heaviside’s unit function  16.17

Hermitian  1.9

Homogeneous equations  10.6



 Index I.3

Homogeneous function  3.11, 10.7

Homogeneous systems of linear equations  1.27

I

Important properties of Jacobians  3.28

Important vector identities  7.10

Improper integrals  5.54

Indefi nite integral  5.1

Infi nite series  8.2

Initial-value theorems  16.23

Integral form of Bessel’s function  6.8

Integrating factors by inspection (grouping of 

terms)  10.38

Integration of transform! (Division by t)  16.15

Intrinsic equations  5.27

Inverse Laplace Transform (I.L.T.)  16.33

Inverse of a Matrix  1.13

Inversion formula for the Laplace

transform  16.52

J

Jacobian  3.27

Jacobians of implicit functions  3.30

K

Kinds of improper integrals  5.55

L

Lagrange’s method of multipliers  4.12

Lagrange’s method of solving the linear partial 

differential equations of fi rst order  14.10

Laplace defi nite integral for Pn(x)  6.18

Laplace transform of Bessel’s functions J0(t) 

and J1(t)  16.22

Laplace transform of the integral of a

function  16.14

Laplace transform of the Laplace

transform  16.24

Laplace transforms of derivatives  16.13

Laplace transforms of elementary

functions  16.3

Laplace transforms of periodic functions  16.19

Legendre polynomials  6.13

Leibnitz test  8.7

Leibnitz’s rule of differentiation under the sign 

of integration  5.2

Leibnitz’s theorem  2.9

Liebnitz’s Linear Equation  10.16

Limit  7.2

Line integrals  7.12

Linear differential equations  10.16

Linear partial differential equation  14.1

Linear partial differential equation with constant 

coeffi cients  14.23

Linear systems of equations  1.26

Linearity property of Laplace transforms  16.6

Liouville’s extension of Dirichlet’s theorem  

5.94

Logarithmic series  8.36

M

Maxima and minima of functions of two 

independent variables  4.1

Maximum and minimum values for a function

f(x, z)  4.10

Method of fi nding CF when equations are of the 

Type (1)  14.38

Method of fi nding CF when equations are of the 

Type(2)  14.40

Method of fi nding particular integrals (PI)  14.40

Method of fi nding residues  16.52

Method of fi nding the complementary function 

(CF) of the  14.24

Method of fi nding the particular integral (PI or 

ZP) of the linear homogeneous PDE with 

constant coeffi cients  14.29

Method of separation of variables  15.1

Method of variation of parameters  12.23

Moment of inertia  5.51

Monge’s method  14.53

Monge’s method of integrating  14.57

Monotonic sequence  8.2



I.4 Index

More on fourier series  9.32

Multiple integrals  5.63

N

Nature of the characteristic roots  1.34

Necessary conditions for the existence of 

maxima or minima of f(x, y) at the

point (a, b)  4.1

Newton’s law of cooling  10.43

Non-homogeneous differential equations 

reducible to homogeneous form  10.10

Non-homogeneous linear partial differential 

equations with constant coeffi cients  14.38

Nonlinear equation reducible to linear

form  10.22

Nonlinear partial differential equations of fi rst 

order  14.15

Nonlinear partial differential equations of 

second order  14.53

Notation and terminology  1.1

Null function  16.33

O

One-dimensional heat equation  15.17

Ordinary and singular points  13.2

Orthogonal properties of Legendre’s

polynomial  6.20

Orthogonal trajectories and geometrical 

applications  10.48

P

Parametric representation of vector functions  7.1

Partial derivatives of fi rst order  3.1

Partial derivatives of higher orders  3.2

Periodic function  9.1

Physical applications  10.41

Physical interpretation of curl  7.6

Point of infl ection  4.18

Positive defi nite quadratic and Hermitian

forms  1.51

Positive-term series  8.10

Power series  8.31, 13.3

Power-series solution about the ordinary

point  13.4

Properties of matrices  1.5

Properties of matrix multiplication  1.7

p-series test  8.11

Q

Quadratic forms  1.48

R

Raabe’s test  8.24

Range  8.1

Rank of a matrix  1.17

Rate of growth or decay  10.43

Rectifi cation  5.19

Recurrence Formulae for Pn(x)  6.22

Recurrence formulae/Relations of Bessel’s 

equation  6.3

Reduction formula for the integrals  5.3

Relation between beta and gamma

functions  6.32

Relations between second-order derivatives of 

homogeneous functions  3.13

Removal of the fi rst derivative: reduction to 

normal form  12.10

Rodrigues’ formula  6.17

Rules for fi nding an integral (solution) 

belonging  12.3

S

Sectionally continuous  16.11

Sequence  8.1

Short methods of fi nding the particular integral 

when ‘R’ is of a certain special forms  11.7

Similarity of matrices  1.43

Simple electric circuits  10.47

Simultaneous ordinary differential

equations  16.64

Skew-Hermitian matrices  1.9

Solution of Bessel’s differential

equation  6.1



 Index I.5

Solution of higher order homogeneous linear 

differential equations  with constant 

coeffi cient  11.2

Solution of higher order non-homogeneous 

linear differential equation with constant 

coeffi cients  11.5

Solution of Legendre’s equations  6.13

Solution of one-dimensional heat equation  15.18

Solution of one-dimensional wave equation  15.5

Solution of ordinary differential equations with 

variable coeffi cients  16.62

Solution of ordinary linear differential equations 

with constant coeffi cients  16.57

Solution of partial differential equations 

(PDE)  16.66

Solution of third-order LDE by Method of 

variation of parameters  12.25

Solution of two-dimensional heat equation by 

the method of separation of variables  15.34

Solution of two-dimensional Laplace’s equation 

by the method of separation of variables  15.37

Solution of two-dimensional wave equation  15.27

Solutions of simultaneous linear differential 

equations  11.21

Some important remark’s  1.51

Some important theorems on characteristic roots 

and characteristic vector  1.34

Some standard results on integration  5.1

Special types of matrices  1.2

Special waveforms  9.37

Stokes’ theorem (Relation between line and 

surface integrals)  7.36

Successive differentiation  2.2

Suffi cient conditions for maxima and minima 

(Lagrange’s condition for two independent 

variables)  4.2

Surface integrals: surface area and fl ux  7.17

Surfaces of solids of revolution  5.39

Symmetric and skew-symmetric matrices  1.8

Systems of linear non-homogeneous

equations  1.27

T

Taylor’s and Maclaurin’s theorems for three 

variables  3.43

Test for absolute convergence  8.27

Theorems on Jacobian (without proof)  3.30

To convert non-exact differential equations in to 

exact differential equations using integrating 

factors  10.32

Transformation of the equation by changing  12.16

Transmission-line equations  15.49

Transpose of a matrix  1.8

Transposed conjugate  1.9

Triple integral  5.87

Two-dimensional heat fl ow  15.33

U

Uniform Convergence  8.32

Uniqueness of inverse Laplace

transform  16.33

Unit-step function  16.17

Use of Partial fractions to fi nd ILT  16.45

V

Variable-separable  10.3

Vector integration  7.12

Velocity of escape from the Earth  10.52

Vibrating membrane—two-dimensional wave 

equation  15.26

Volume integrals  7.21

Volumes and surfaces of solids of

revolution  5.31

W

Working rule for solving equations by

changing  12.17

Working rule for Solving problems by using 

normal form  12.12

Working Rule for solving second order

LDE by the method of variation of 

parameters  12.24
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