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Engineering Mathematics for Semesters III and IV deals with the applications of applied Mathematics 

in the field of Engineering. This subject is generally taught in the 3rd and 4th semester of engineering. 

In the Engineering Mathematics for Semesters I and II we learnt about the basics of engineering 

mathematics as a branch of applied mathematics concerning mathematical models (mathematical 

methods and techniques) that are typically used in engineering and industry. This book on semesters 

III and IV will prepare students for their domain-specific study and applications in their respective 

branches.

This book will also introduce the students to the concepts of Fourier transform, Z-transform, complex 

variables, probability and numerical techniques.

Salient Features

Engrossing problem sets based on real life situations like Modulation techniques and Heat 

Flow

360° coverage of subject matter: Introduction–History–Pedagogy–Applications

Introduction to Fourier Transform, Z-transform, Complex Variable, Probability and Numerical 

Techniques with reference to applications in the field of engineering

582 Solved problems with stepwise solutions

535 MCQs for various competitive examinations

Appendix includes Statistical Tables and List of Formulae

Other pedagogical aids include:

Drill and Practice Problem: 1100

Chapter Organization

The book is divided in fifteen chapters. In Chapter 1, we have discussed Fourier transform which 

includes Fourier transform of some basic functions and the properties of the Fourier Transform. 

Chapter 2 deals with Z-Transform, inverse Z-transform, Cauchy’s residue theorem, convolution 

theorem and properties of Z-transform. In Chapter 3, basic concepts of complex theory including 

basic concepts of complex numbers, Cauchy–Riemann equations, conjugate and conjugate harmonic 

equations, complex integrals, expansion of analytic functions as power series, zeros of analytic 

functions, calculus of residues, singularities, complex integrals, Cauchy’s residue theorem, etc.,

are discussed. Chapter 4 covers empirical laws and curve fitting along with scatter diagram and 

various methods of curve fitting. In Chapter 5, we present various statistical methods while in
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Chapter 6 basic concepts of probability such as additive law, multiplicative and conditional probability, 

Baye’s theorem, probability distribution (discrete and continuous in general) and some specific 

distributions such as binomial, Poisson, uniform, exponential and normal are discussed. Chapter 7 deals 

with sampling, inference and testing of hypotheses which includes parameters and statistics, type I and 

II errors, confidence intervals and F, chi-square and Z statistic. Chapter 8 deals with finite difference 

and interpolation while Chapters 9 and 10 deal with numerical solution of differential equations and 

various formulas for numerical differentiation and integration, respectively. Chapters 11 and 12

talk about numerical solutions of ordinary differential equations and partial differential equations, 

respectively. In Chapter 13, linear programming and various methods to solve linear programming 

including transportation and assignment problems, duality and dual simplex method, etc., have 

been discussed. Chapters 14 and 15 cover the method of variational with fixed boundaries while

Chapter 15 deals with integral equations.

Online Learning Center

The Online Learning Center can be accessed at http://www.mhhe.com/gupta/em3/4 and contains the 

Instructor Elements: Solutions Manual.
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1.1 INTRODUCTION

Fourier transform is a mathematical tool which plays an important role in the field of science, engineering 

and medical science. The Fourier transform and inverse Fourier transform are defined in continuous 

and discrete domain. The discrete Fourier transform are very useful to solve the problem of image 

processing, image encoding, image enhancement and image restoration. It is also used to decompose 

time series signals into frequency components each having an amplitude and phase  and using the 

inverse Fourier transform the time-series signal can be reconstructed from its frequency domain. It is 

one of the most important concept in digital signal processing. Besides, this Fourier transform are very 

useful to solve the integral equations, ordinary differential equations and partial differential equations.

Jean Baptiste Joseph Fourier was a French mathematician born on 21 March 

1768 in Auxerre, Bourgogne, France. His father who was a tailor, who died when 

Fourier was 8 years old. In order to give the boyhim a proper education, his aunt 

and uncle put him in Ecole Royale Militaire where he proved to be a conscientious 

student showing high intellect particularly in mathematics. The teachers saw a his 

bright future in the field for him; however, Fourier seemed to have different plans. 

He then joined the Church for which he went to St. Benôit-sur-Loire to take his 

vows. Meanwhile, he taught mathematics to his fellow learners. Fourier was 

elected to the Acadêmie des Sciences in 1817. In 1822 Delambre, who was the 

Secretary to the mathematical section of the Academié des Sciences. Later in 

1822, he succeeded Jean Baptiste Joseph Delambre as Permanent Secretary of the French Academy of 

Sciences. He died on 16 May 1830 in Paris, France.

1.1.1 Integral Transform

Integral transform theory is a mathematical tool which can be used to solve various initial and boundary 

value problem in engineering like, conduction of heat, transverse oscillation of an elastic beam, etc. 

The integral transform of function f (x) is denoted by f (s) and it is defined as

I{F(x)} = ( ) ( , ) ( ) or ( ) ( , ) ( )

b

a

f s K s x f x dx f s K s x f x dx

where K(s, x) is called kernel of the transform and s is a parameter independent of x.

Fourier

Transforms1
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The interpretation of f (s) depends on the kernel K(s, x)

When K(s, x) = 0, then f (s) = 0

It means meaning less.

Now if K(s, x) = xs will give us the sth moment of f (x) whenever f (x) is probability density function 

and if s = 1, this is just mean of distribution f (x). The some of the well known transform are according 

to the kernel K(s, x).

(i) If K(s, x) = e–sx, then 

0

{ ( )} ( ) ( ) sx
L f x f s f x e dx  called Laplace transform.

(ii) If K(s, x) = x Jn(sx) (Bessel function), then

0

{ ( )} ( ) ( ) ( )nH f x f s f x x J sx dx  is called Hankel transform.

(iii) If K(s, x) = xs – 1, then

1

0

{ ( )} ( ) ( ) s
M f x f s f x x ds  is called Mellin transform.

(iv) If K(s, x) = e – isx

ˆ{ ( )} ( ) ( ) isx
F f x f s f x e dx  is called Fourier transform, it is also defined as

ˆ{ ( )} ( ) ( ) i x
F f x f f x e dx  when parameter s replace by .

Note:  We know that cos sini x
e x i x , if x is time, then f (x) can appears as a waveform in 

time and ˆ| ( )|f  represents the strength of the frequency in the original signals.

1.2 FOURIER INTEGRAL THEOREM

If a function f (x) is piecewise and periodic on [–l, l] or [0, l], then f (x) can be represented by a Fourier 

series. However, we may be able to represent the function f (x) is an integral form.

Consider f (x) have the following properties:

(i) Function f (x) is a piecewise continuous on [–l, l].

(ii) Function f (x) has left and right hand derivatives, at every x on the real axis.

(iii) Function f (x) is absolutely integrable on the real axis, i.e.,

       

| ( ) | convergesf x dx

Then in the interval [–l, l], the Fourier series representation of f (x) is given by

f (x) = 0

1

cos sinn n

n

n x n x
a a b

l l
(1)
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where a0 =
1

( )
2

l

l

f t dt
l

an = 
1

( )cos

l

l

n t
f t dt

l l

and bn = 
1

( )sin

l

l

n t
f t dt

l l

Putting the values of a0, an and bn in Eq. (1), we get

f (x) = 
1

1 1
( ) ( ) cos cos sin sin

2

l l

nl l

n t n x n t n x
f t dt f t dt

l l l l l l

=
1

1 1 ( )
( ) ( ) cos

2

l l

nl l

n t x
f t dt f t dt

l l l
(2)

Now, consider the limit l , then

         

1 1
( ) ( )

2 2

l

l

f t dt f t dt
l l

As l , the first term of Eq. (2), tends to zero.

Putting ,
c

 then the second term of Eq. (2) becomes

       1

1
( )cos[ ( )]

l

n l

f t n t x dt

This is of the form 
1

( ) ,
n

f n  whose limit as  0 is 

0

( )f d

As l , Eq. (2) becomes

f (x) = 

0

1
( ) cos ( )f t t x dt d (3)

The integral on the right of Eq. (3) is known as the Fourier integral representation for f (x).

At a point of discontinuity the value of the integral on the right is 
1

[ ( 0) ( 0)].
2

f x f x

Expand cos (t – x) and separating the integral in two parts in Eq. (3), can be written as:

f (x) = 

0 0

1 1
cos ( )cos sin ( )sinx f t t dt d x f t t dt d (4)

If f (t) is an even function, f (t) cos t is also even, while f (t) sin t is odd function.



1.4 Engineering Mathematics for Semesters III and IV

Therefore, the second term in Eq. (4) vanishes and we get

f (x) = 

0 0

2
cos ( )cosx f t t dt d (5)

Similarly, if f (t) is an odd function, f (t) cos t is odd, while f (t) sin t is even.

The first term in Eq. (4) vanishes and we get

f (x) = 

0 0

2
sin ( )sinx f t t dt d (6)

The integrals in Eqs (5) and (6) are respectively known as Fourier cosine and sine integrals.

In case of half range series, a function f (x) defined over the interval (0, ), it may be expressed either 

as a Fourier sine integral or as a cosine integral. Equation (4), may also be expressed in the form

f (x) = 

0

[ ( ) cos ( )sin ]a x b x d (7)

where a( ) = 
1

( ) cosf t t dt  and

b( ) = 
1

( )sinf t t dt

1.3 FOURIER INTEGRAL IN COMPLEX FORM

Since, the function cos( (t – x)) is an even of , therefore Eq. (3) can be written in the form of

f (x) = 
1

( ) cos ( )
2

f t x t dt d (8)

and sin( ( ))t x  is an odd function of , then

0 = 
1

( ) sin ( )
2

f t x t dt d (9)

Multiplying Eq. (9) by i and adding to Eq. (8), we have

f (x) = 
1

( ) cos ( ) sin ( )
2

f t x t i x t dt d

= ( )1
( ) [ cos sin ]

2

i x t i
f t e dt d e i

f (x) = 
1

( )
2

i x i t
e f t e dt d (10)



Fourier Transforms 1.5

Example 1 Express the function

1 if | | 1
( )

0 if | | 1

x
f x

x
  as a Fourier integral hence evaluate 

0

sin cos x
d

[Andhra 2000, Kerala 1990, U.T.U. 2007]

Solution The Fourier integral for the function f (x) is given by

f (x) = 

0

1
( ) cos ( )f t t x dt d (11)

=

1

0 1

1
1 cos ( )t x dt d

=

1

10

1 sin ( )t x
d

=

0

1 sin (1 ) sin (1 )x x
d

=

0

1 1 2sin (1 1 ) (1 1 )
cos

2 2

x x x x
d

=

0

2 sin cos x
d (12)

Equation (12) represent the required Fourier integral.

Therefore,
0

sin cos
( )

2

x
d f x

=
if | | 1

2

0 if | | 1

x

x

For |x| = 1, which is a point of discontinuity of f (x), the integral has the value

(1 0)

2 2
 = 

4

Example 2 Express as a Fourier integral representation of the function f (x), where

          f (x) = 

0; 0

1; 0 1

0; 1

x

x

x

Hence, show that 

0

sin
2 .

2

x

dx
x
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Solution The Fourier integral for f (x) is

f (x) = 

0

1
( ) cos ( )f t t x dt d (13)

f (x) = 

1

0 0

1
1 cos ( )t x dt d

or =

1

00

1 sin ( )t x
d

=

0

1 sin (1 ) sinx x
d

or f (x) = 

0

1 1 (1 ) (1 )
2sin cos

2 2

x x x x
d

=

0

(1 2 )
sin cos

2 2 2

x

d (14)

Equation (14) is the Fourier integral representation of the given function.

Let x = 
1 1

, then 1
2 2

f

Hence, I = 

0

2 1 1
sin cos 1 2

2 2 2
d

=

0

2 1
sin cos0

2
d

=

0

2 1
sin

2
d

or

0

1
sin

2
d  = 

2

or
0

1
sin

2

x
dx

x
 = 

2
Hence, proved.

Example 3 Find the Fourier sine integral for f (x) = e–kx, x  0, where k is a positive constant.

Hence show that 
2 2

0

sin
.

2

kxx
d e

k
[Gulbarga 1996, Andhra 2000, G.E.U. 2009]
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Solution The Fourier sine integral for the function f (x) is

f (x) = 

0 0

2
sin ( ) sinx f t t dt t (15)

Putting ( ) kx
f x e  in Eq. (15), we get

e
–kx = 

0 0

2
sin sinkt

x e t dt d

=
2 2

00

2
sin ( sin cos )

kt
e

x k t t d
k

   
2 2

sin ( sin cos )
ax

ax e
e bx a bx b bx

a b

=
2 2

0

2
sin 0x d

k

=
2 2

0

2 sin x
d

k

or
2 2

0

sin x
d

k
 = 

2

kx
e Hence, proved.

Example 4 Find the Fourier cosine integral representation of 

cos ; 0
2

( ) .

0;
2

x x

f x

x

Solution The Fourier cosine integral for f (x) is

f (x) = 

0 0

2
cos ( )cosx f t t dt d (16)

=

/2

0 0 /2

2
cos cos cos 0cosx t t dt t dt d

=

/2

0 0

2
cos cos cosx t t dt d

=
2

0

cos
2 2cos

1
x d
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or f (x) = 
2

0

cos
2 2 cos

1
x d

Example 5 Obtain complex Fourier integral representation for the function

f (x) = 
| |, if

0, otherwise

x x

Solution The Fourier integral in complex form for the function f (x) is given by

f (x) = 
1

( )
2

i x i t
e d f t e dt (17)

f (x) = 
1

| |
2

i x i t
e d t e dt

=

0

0

1
( )

2

i x i t i t
e d t e dt t e dt

=

0

2 2

0

1

2 ( ) ( )

i t it i t i t
i x te e te e

e d
i ii i

=
2 2 2 2

1 1 1 1 1

2

i x i ii i
e e e d

=
2 2 2

1 1 1 2

2

i x i ii i
e e e d

=
2

1 1
[ sin cos 1] i x

e d

1.4 FOURIER TRANSFORM

Let the function f (x) be defined on (– , ) and it is piecewise continuous in each finite partial interval 

and absolutely integrable in (– , ), then the equation (10) of Section (1.3) as

f (x) = 
1

( )
2

i x i t
e d f t e dt

or f (x) = 
1 1

( )
2 2

i x i t
e f t e dt d

if ˆ( )f  = 
1

( ) ( )
2

i x
f x e dx (18)
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then f (x) = 
1 ˆ( ) ( )
2

i x
f e d (19)

The function ˆ( )f  in Eq. (18) is called the Fourier transform of f (x) or some times known the 

exponential Fourier transform and integral in Eq. (19) recovers f (x) from ˆ( )f  is called inverse Fourier 

transform. Another notation that is often useful involves representing the Fourier transform of function 

f (x) by F{f (x)} so that ˆ{ ( )} ( )F f x f  and when this notation is used the inverse Fourier transform is 

written as 1 ˆ{ ( )} ( ).F f f x

Where F is called the Fourier transform operator, while F –1 is called inverse Fourier transform 

operator.

Note: Some authors also define the Fourier transform in the following manner:

(i) ˆ( )f  = ( ) i x
f x e dx

  and f (x) = 
1 ˆ( )

2

i x
e f d

(ii)    ˆ( ) ( ) i x
f f x e dx

   and f (x) = 
1 ˆ( )

2

i x
e f d

1.5 FOURIER COSINE AND SINE TRANSFORMS

The Fourier cosine and sine transforms arise as special cases of the Fourier transform, according as f (x)

is even or odd. Now, we considering the Fourier cosine transform of function f (x) that can be defined 

when f (x) is an even function. The Fourier transform defined in (18) in Section (1.4) can be written as

      
1ˆ( ) ( )[cos sin ]
2

f f x x i x dx (20)

but if f (x) is an even function, the product f (x) cos x is also an even function, so its integral over 

(– , ) does not vanish, while the product f (x) sin x is an odd function, so its integral over (– , )

vanishes, thus Eq. (20) becomes

      

1ˆ ( ) ( ) cos
2

Cf f x x dx

If we use the result f (–x) = f (x), then change the interval of integration to (0, ) this last integral 

becomes

FC{f (x)} = 

0

2ˆ ( ) ( ) cosCf f x x dx (21)
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The integral of Eq. (21) is called the Fourier cosine transform of f (x).

Now, the inverse Fourier cosine transform is denoted by 1 ˆ( ) { ( )}C Cf x F f  and is defined as

f (x) = 

0

2 ˆ ( ) cosCf x d (22)

In a similar manner if f (x) is an odd function, then Eq. (20) gives

      

1ˆ ( ) ( )sin
2

Sf f x x dx

If we use the result f (–x) = –f (x), then change the interval of integration to (0, ), then we have

FS{f (x)} = 

0

2ˆ ( ) ( ) sinSf f x x dx (23)

The integral of Eq. (23) is called the Fourier sine transform of f (x).

Now, the inverse Fourier sine transform is denoted and defined as

f (x) = 1

0

2ˆ ˆ{ ( )} ( )sinS S SF f f x d (24)

The Fourier cosine transform of f (x) in Eq. (21) only involves f (x) for x  0, though it was derived 

from the Fourier transform on the assumption that f (x) was an even function defined for all x. Similarly, 

the Fourier sine transform of f (x) in Eq. (23) only involves f (x) for x  0, though it was derived on the 

assumption that the function f (x) was an old function.

Because Eqs (22) and (23) have been derived from Eq. (18) in Section (1.4), it follows that if f (x)

is discontinuous, the expression on the left must be replaced by 
1

[ ( 0) ( 0)],
2

f x f x  because the 

Fourier sine and cosine transforms have the same convergence properties as the Fourier transform.

Following examples will illustrate the methods that are explained above:

Example 6 Find the Fourier transform of

f (x) = 
1, if | |

0, if | |

x a

x a
[Bangalore 1994, J.N.T.U. 2000, RTU 2001, U.T.U. 2006]

Solution The Fourier transform of f (x) is given

F{f (x)} = 
1ˆ( ) ( )
2

i x
f f x e dx

=
1

0 1 0
2

a a
i x i x i x

a a

e dx e dx e dx

=
1

2

a
i x

a

e dx
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=
1 1

2 2

a
i x i a i a

a

e e e

i i

=
1

2

i a i a
e e

i

      

1 2sinˆ( ) ; 0
2

a
f

=
2

; if 0
2

a

Example 7 Find the Fourier sine and cosine transform of e–x.

Solution Here f (x) = e–x

The Fourier cosine transform of f (x) is

      0

2ˆ ( ) ( )coscf f x x dx

=

0

2
cosx

e x dx

=
2

0

2
( cos sin )

1

x
e

x x

=
2

2 1

1

Similarly, the Fourier sine transform is

      0

2ˆ ( ) ( )sinsf f x x dx

=

0

2
sinx

e x dx

         

2
0

2

2
( sin cos

1

2

1

x
e

x x
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Example 8 Find Fourier sine transform of .
ax

e

x
[V.T.U. 2003]

Solution The Fourier sine transform of f (x) is

      0

2ˆ ( ) ( ) sinsf f x x dx

=
0

2
sin

ax
e

x dx
x

Let I = 
0

sin
ax

e
x dx

x

       0 0

cos cos
ax

axdI e
x x dx e x dx

d x

=
2 2

0

( cos sin )
ax

e
a x x

a

       
2 2

dI a

d a

Integrating with respect to , we get

I = 
2 2

d
a C

a

I = 
1tan a C

Hence,    12 2ˆ ( ) ( ) tansf I C
a

Example 9 Find the cosine transform of 
2

.x
e [Calicut 1994]

Solution Here
2

( ) x
f x e

The Fourier cosine transform of f (x) is

      

2

0

2ˆ ( ) cosx
Cf e x dx

Let I = 
2

0

cosx
e x dx (25)

then     
2ˆ ( )Cf I (26)
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Differentiating Eq. (25) w.r.t , we get

       

2

0

sin

2

x
dI x e x dx

d

=

2
2

0 0

sin
cos

2 2

x
xe x

e x dx

       
0

2

dI
I

d

or      2

dI
d

I (27)

Integrating Eq. (27), we obtain

log I = 
2

log A
4

or I = 
2 /4

A e

Now, if  = 0, 
2

0
2

x
I e dx

      
2 /4so

2 2
A I e

Hence, Eq. (26) becomes

      
2 2/4 /42 1ˆ ( )

2 2
Cf e e

Example 10 Find the Fourier cosine transform of 
2

1
.

1 x

[Bhopal 1998, V.T.U. 2003, U.P.T.U. 2005]

Solution Let f (x) = 
2

1

1 x
.

The Fourier cosine transform of f (x) is

      
2

0

2 1ˆ ( ) cos
1

cf x dx
x

Let I = 
2

0

cos

1

x

x
(28)

then    
2ˆ ( )cf I (29)
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Differentiating Eq. (28) w.r.t. to , we get

       
2

0

sin

1

dI x x
dx

d x

=
2

2
0

sin

(1 )

x x
dx

x x

=
2

2
0

(1 1)sin

(1 )

x x
dx

x x

=
2

0 0

sin sin

(1 )

x x
dx dx

x x x

       
2

0

sin

2 (1 )

dI x
dx

d x x

Again differentiating w.r. to , we have

      

2

2 2 2
0 0

cos cos

(1 ) 1

d I x x x
dx dx

d x x x

or
2

2

d I

d
 = I  (using Eq. (28))

or
2

2

d I
I

d
 = 0 (30)

The solution of Eq. (30) is

I = Ae Be

But, when  = 0 so 
2

0
1

dx
I

x

=
1

0(tan )
2

x

and     
2

dI

d

Therefore
2

A B (31)

and A + B = 
2

(32)

Solving Eqs (31) and (32), we get

        
0 and

2
A B



Fourier Transforms 1.15

       
2

I e

Hence, Eq. (29) becomes

      
2ˆ ( )

2 2
cf e e

Example 11 Find the Fourier sine transform of 
2

.
1

x

x

Solution Do same as above example. Here we conclude the cosine transform of 
2

1

1 x
 and sine 

transform of 
21

x

x
 are same i.e.,

   
2 2

1
.

21 1
S c

x
F e F

x x

Example 12 Use the sine inversion formula to find 
2

ˆ( ) if ( ) .
1

Sf x f

Solution Using inverse Fourier sine transform, we have

f (x) = 
2

0

2
sin

1
x d

=
2

2
0

2 ( 1 1)
sin

(1 )
x d

=
2

0 0

2 sin 2 sin

(1 )

x x
d d

=
2

0

2 2 sin

2 (1 )

x
d

f (x) = 
2

0

2 sin

2 (1 )

x
d (33)

Differentiating Eq. (33) w.r.t. x, we get

       
2 2

0 0

2 cos 2 cos

(1 ) 1

df x x
d d

dx
(34)

Again differentiating Eq. (34) w.r.t. x, we get

      

2

2 2
0

2 sin

1

d f x
d

dx
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or
2

2

d f

dx
 = f

or
2

2

d f
f

dx
 = 0 (35)

Solution of Eq. (35) is

f (x) = x x
Ae Be (36)

      x xdf
Ae Be

dx
(37)

Now when 0,
2

x f  (using Eq. (33))

and     
2

0

2

21

df d

dx

From Eq. (36), 
2

A B  and from Eq. (37)

2
 = A – B

Solving both equations, we get A = 0 and 
2

B

Hence, Eq. (36) becomes

f (x) = 
2

x
e

Example 13 Find the inverse Fourier transform of 
| |ˆ( ) .y

f e

Solution We know that

| | = 
; 0

; 0

The inverse Fourier transform of ˆ( )f  is

f (x) = 
1 ˆ( )
2

i x
f e d

= | |1

2

y i x
e e d

=

0

0

1 1

2 2

y i x y i x
e e d e e d
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=

0
( ) ( )

0

1 1

2 2

y ix y ix
e d e d

=

0
( ) ( )

0

1 1

( )2 2

y ix y ix
e e

y ix y ix

=
1 1 1

2 y ix y ix

=
2 2

2

2 ( )

y

x y

f (x) = 
2 2

2 y

x y

Example 14 Find f (x) if its cosine transform is

      

2

1
if 2

ˆ ( ) .2

0 if 2

c

a a
f

a

Solution Using inverse Fourier cosine transform, we have 

f (x) = 

0

2 ˆ ( )coscf x d

=

2

0 2

2 1 2
cos 0 cos

22

a

a

a x d x d

=

2 2

2
0 0

1 1
sin cos

2 2

a a

a x x
x x

=
2

1 cos2

2

ax

x

Hence,
2

2

sin
( ) .

ax
f x

x

Example 15 Find the Fourier sine transform of e–|x| and hence evaluate 
2

0

sin
.

1

x mx
dx

x

[Kerala 1990, Madurai 1987, Madras 2003, V.T.U. 2004, U.P.T.U. 2003, 2004]

Solution Since, x is +ve in (0, ) so that

e
–|x| = e–x = f (x)
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The Fourier sine transform of e–x is

FS{e
–x} = 

0

2
sinx

e x dx

=
2

0

2
( sin cos )

1

x
e

x x

=
2

2

1

Using inversion formula for Fourier sine transform, we get

f (x) = 

0

2
{ ( )} sinSF f x x d

or e
–x = 

2
0

2
sin

1
x d

Putting x = m, we obtain

e
–m = 

2
0

2 sin

1

m
d

or e
–m = 

2
0

2 sin

1

x mx
dx

x

Hence,
2

0

sin

1

x mx
dx

x
 = 

2

m
e Hence proved.

Example 16 Find the Fourier transform of the function

f (x) = 
21 ; for | | 1

0; for | | 1

x x

x

and hence evaluated 
3

0

cos sin
cos .

2

x x x x
dx

x

[Warangal 1996, Karnataka 1993, Anna 2003, V.T.U. 2003

Madras 1991, 1993, 1996, 1997, U.P.T.U. 2005, G.E.U. 2009, 2011]

Solution The Fourier transform of f (x) is given by

F{f (x)} = 
1

( )
2

i x
f x e dx

=

1
2

1

1
(1 )

2

i x
x e dx
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=

1
2

1

1
(1 ) (cos sin )

2
x x i x dx

=

1 1
2 2

1 1

1
(1 ) cos (1 ) sin

2
x x dx i x x dx

=

1
2

1

1
(1 ) cos

2
x x dx        [Using a property of definite integral on

IInd integration]

or ˆ( )f  = 

1
2

0

2
(1 ) cos

2
x xdx

=

1 1
2

0 0

2 sin sin
(1 ) ( 2 )

x x
x x dx

=

1

0

2 sin
2

x
x dx

=

1 1

0 0

2 2 cos cosx x
x dx

=

1

0

2 2 cos 1 sin x

=
2

2 2 cos sin

=
3

2 sin cos
2

Now using inversion formula for Fourier transform, we have

f (x) = 
1 ˆ( )
2

i x
f e d

=
3

1 2 sin cos
2 (cos sin )

2
x i x d

=
3 3

2 sin cos sin cos
cos sinx d i x d

=
3

0

2 sin cos
2 cos x d    [Using a property of definite 

integral]
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or f (x) = 
3

0

4 sin cos
cos x d

or
3

0

sin cos
cos x d  = ( )

4
f x

=
2(1 ), for | | 1

4 0, for | | 1

x x

x

Putting
1

2
x  in above expression, we have

3
0

sin cos
cos

2
d  = 

3

16

or
3

0

cos sin
cos

2
d  = 

3

16

Hence
3

0

cos sin
cos

2

x x x x
dx

x
 = 

3
.

16

Example 17 Find the Fourier transform of the function

1 ; for 0

( )
1 ; for 0

0; otherwise

x
a x

a

xf x
x a

a

[G.E.U. 2009, U.T.U. 2007, U.P.T.U. 2002]

Solution The Fourier transform for f (x) is given by

F{f (x)} = 
1ˆ( ) ( )
2

i x
f f x e dx

=

0

0

1
1 1

2

a
i x i x

a

x x
e dx e dx

a a

=

0

0

1 1 1

2

a a
i x i x i x

a a

e dx x e x e dx
a a

=

0

2 2

0

1 1 1

( ) ( )2

a a
i x i x i x i x i x

a
a

e e e x e e
x

i a i a ii i

=
2 2 2

1 1 1 1

2

i a i a i a i a i a i a
e e a e e a e e

i a i a i
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=
2 2

1 1 1 1
(1 ) ( 1)

2

i a i a
e e

a

=
2 2

2 1
( )

2 2

i a i a
e e

a a

or ˆ( )f  = 
2

1 2
(1 cos ) ; 0

2
a

a

If  = 0, then

ˆ( )f  = 

0

0

1 1
1

a a

a a

dx x dx x dx
a a

=

0
2 2

0

1 1
2

2 2

a

a

x x
a

a a

= 2
2 2

a a
a

= a

Hence, ˆ( )f  = 
2

1 2
(1 cos )

2
a

a
  if  0

= a    if  = 0

Example 18 Solve the integral equation

0

( ) cosf x x dx  = 
(1 ) if 0 1

0 if 1

and hence show that 
2

2
0

sin
.

2

u
du

u
[Coimbatore 1988, Punjab 1990, Madras 1993]

Solution Let

f ( ) = 

0

1 ; 0 1
( ) cos

0; 1
f x x dx

2
( )f  = 

0

2
( ) cosf x x dx

or ˆ ( )Cf  = 

0

2
( ) cosf x x dx (38)

Using inversion formula for Fourier cosine transform, we have

f (x) =

0

2 ˆ ( ) cosCf x d
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=

0

2
( ) cosf x dx

=
1

0 1

2
(1 ) cos 0.cosx d x d

=

1

2
0

2 sin cos
(1 ) ( 1)

x x

x x

=
2

2(1 cos )x

x
(39)

Now, we have

0

( )cosf x x dx  = 
1 ; 0 1

0; 1

2
0

2 (1 cos )
cos

x
x dx

x
 = 

(1 ); 0 1

0; 1
  [Using Eq. (39)]

or
2

0

1 cos
cos

x
xdx

x
 = 

(1 ); 0 1

0; 12

Put  = 0, we get

2
0

1 cos x
dx

x
 = 

2

or

2

2
0

2sin
2

x

dx
x

 = 
2

Again put x = 2u so that dx = 2 du

2

2
0

2sin
2

4

u
du

u
 = 

2

or

2

2
0

sin u
du

u
 = 

2
Hence proved.

Example 19 Solve the integral equation

0

1; 0 1

( ) sin 2; 1 2 .

0; 2

f x x dx
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Solution Let

f ( ) = 

0

1; 0 1

( )sin 2; 1 2

0; 2

f x x dx

2
( )f  = 

0

2
( ) sinf x x dx

or ˆ ( )Sf  = 

0

2
( ) sinf x x dx

Using inversion formula for Fourier sine transform, we have

f (x) = 

0

2 ˆ ( ) sinSf x d

or f (x) = 

0

2
( )sinf xd

=

1 2

0 1

2
sin 2sinx d x d

=

1 2

0 1

2 cos cos
2

x x

x x

f (x) = 
2

[1 cos 2cos2 ]x x

Example 20 Find the Fourier transform of the function f (x) = e–4(x–2)2, when 
2 2 /4{ } .x

eF e

Solution Given   
2 2 /4{ }x

eF e (40)

F{e
–4x2

} = F{e
–(2x)2}

=
21

( /2)
4

2
e

=
2 /16

2
e

Hence F{e
–4(x – 2)2} = 

22 /16

2

i
e e

=
2[2 /16]

2

i
e
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1.6 PROPERTIES OF FOURIER TRANSFORM

Some properties of Fourier transform are as follows:

Property 1

Linearity property If ˆ ( )rf  is the Fourier transform of the function fr(x) for r = 1, 2, 3, …, n,

then.

1 1

ˆ( ) ( )
n n

r r r r

r r

F a f x a f

where ar is constant for r = 1, 2, 3, …, n.

Proof By the definition of Fourier transform; we get

      

1ˆ ( ) ( )
2

i x
r rf f x e dx

Now,

1 1

1
( ) ( )

2

n n
i x

r r r r

r r

F a f x a f x e dx

=
1

1
( )

2

n
i x

r r

r

a f x e dx

=
1

1
( )

2

n
i x

r r

r

a f x e dx

=
1

1
( )

2

n
i x

r r

r

a f x e dx

=

1

ˆ ( )
n

r r

r

a f

Thus, we obtain,

1 1

ˆ( ) ( )
n n

r r r r

r r

F a f x a f

where ar is constant for r = 1, 2, 3, …, n.

Note:

(i)
1 1

ˆ( ) ( )
n n

c r rc r rc

r r

F a f x a f

  where ar is a constant for r = 1, 2, 3, … n and ˆ ( )rcf  is the Fourier cosine transform of fr(x).

(ii)
1 1

ˆ( ) ( )
n n

S r rS r rS

r r

F a f x a f

  where ar is a constant for r = 1, 2, 3, …, n and ˆ ( )rSf  is the Fourier sine transform of fr(x).
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Property 2

Scalar property If ˆ( )f  is the Fourier transform of the function f (x), then

F{f (ax)} = 
1

f̂
a a

where a is a non-zero constant.

Proof By the definition of Fourier transform, we have

     

1ˆ( ) ( ) { ( )}
2

i x
f f x e dx F f x

Therefore,

    

1
{ ( )} ( )

2

i x
F f ax f ax e dx

= /1 1
( ) [put ]

2

i z a
f z e dz z ax

a

=
1 1

( )
2

i z
af z e dz

a

    

1 ˆ{ ( )}F f ax f
a a

Property 3

Shifting property If ˆ( )f  is the Fourier transform of the function f (x), then 

ˆ{ ( )} ( )i a
F f x a e f  where a is constant.

Proof By the definition of Fourier transform, we have

      

1ˆ( ) { ( )} ( )
2

i x
f F f x f x e dx

  
1

{ ( )} ( )
2

i x
F f x a f x a e dx

F{f (x– a)} = ( )1
( ) [put ]

2

i z a
f z e dz x a z

=
1

( )
2

i a i z
e f z e dz

= ˆ( )a
e f

This property is also known as first shifting property.
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Property 4

Second Shifting property If ˆ( )f  is the Fourier transform of the function f (x) and ( ) ( ).iax
g x e f x

Then ˆ{ ( )} ( ),F g x f a  where a is any constant.

Proof By the definition of Fourier transform, we have

      

1ˆ( ) { ( )} ( )
2

i x
f F f x f x e dx

    ( )1ˆ( ) ( )
2

i a x
f a f x e dx

=
1

( )
2

iax i x
f x e e dx

=
1

( ( ) )
2

iax i x
f x e e dx

=
1

( )
2

i x
g x e dx

= ˆ( ) { ( )}g F g x Hence, proved.

Property 5

Modulation property If ˆ( )f  is the Fourier transform of the function f (x), then 

1 ˆ ˆ{ ( ) cos } { ( ) ( )],
2

F f x ax f a f a  where a is constant.

Proof We know that the Fourier transform of f (x) is

     

1ˆ{ ( )} ( ) ( )
2

i x
F f x f f x e dx

    ( )1ˆ( ) ( )
2

i a x
f a f x e dx

and   
( )1ˆ( ) ( )

2

i a x
f a f x e dx

Now,

( ) ( )1 1ˆ ˆ( ) ( ) ( ) ( )
2 2

i a x i a x
f a f a f x e dx f x e dx

 = ( ) ( )1
( )[ ]

2

i a x i a x
f x e e dx
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=
1

( ) ( )
2

i x iax iax
f x e e e dx

1 1ˆ ˆ[ ( ) ( )] ( )
2 22

iax iax
i x e e

f a f a f x e dx

=
1

( ( ) cos )
2

i x
f x ax e dx

= F{f (x) cos ax}

Property 6

Fourier transform of the derivative Let f (x) is a continuous function and 
0

lim ( ) 0
x

f x , also the 

derivative of f (x) is absolutely integrable then

     
ˆ ˆ{ ( )} ( ), where ( ) { ( )}.F f x i f f F f x

Proof We know that

F{f (x)} = 
1ˆ( ) ( )
2

i x
f f x e dx

F{f (x)} = 
1

2

1

2
f x e dx e f x i e f x dx

i x i x i x( ) ( ) ( ) ( )

( )
2

i xi
e f x dx

i F{f (x)}

F{f (x)} = ˆ( )i f

In general

( ) ˆ{ ( )} ( ) ( ),n n
F f x i f  where n is any integer and f (n)(x) exists.

Property 7

Convolution theorem Let f (x) and g(x) be two piece wise continuous, bounded and absolutely 

integrable functions in –  < x <  and Fourier transform of f (x) and g(x) are given by 

      
1ˆ( ) ( )
2

i x
f f x e dx  and

      

1
ˆ( ) ( )

2

i x
g g x e dx
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respectively, then their convolution is denoted and defined as

f * g = 
1

( ) ( )
2

f t g x t dt

Then

(i) ˆ ˆ{ ( ) * ( )} [ ( )] [ ( )] ( ) ( )F f x g x F f x F g x f g

(ii)
1 ˆ ˆ( ) ( ) ( ) ( )*
2

i x
f x g x f g e d (Inverse Fourier transform)

Proof We know that

F{f (x)} = 
1

( )
2

i x
f x e dx

F{f (x) * g(x)} = ( ) ( )F f t g x t dt

=
1

( ) ( )
2

i x
f t g x t dt e dx

=
1

( ) ( )
2

i x
f t g x t e dt dx

= ( )1
( ) ( ) [Put

2

or ]

i x z
f t g z e dz dt x t z

x t z

dx dt dz

dxdt dzdt

=
1

( ) ( )
2

i t i t
f t e dt g z e dz

= ˆ ˆ{ ( )} { ( )} ( ) ( )F f x F g x f g

(ii) Now ˆ ˆ( ) ( ) i x
f g e d

= ˆ( ) ( )i t i x
f t e dt g e d

=
( )ˆ( ( ) i x t

f t g e d dt



Fourier Transforms 1.29

 = ( ) ( )f t g x t dt   [Using I.F.T]

= f (x) * g(x)  [Using definition of convolution]

Hence, proved.

Property 8

If      

0

ˆ ( ) ( ) sin andSf f x x dx

      0

ˆ ( ) ( ) cos , thenCf f x x dx

(i)
1 ˆ ˆ{ ( ) cos } ( ) ( )
2

S S SF f x ax f a f a

(ii)
1 ˆ ˆ{ ( ) sin } ( ) ( )
2

C S SF f x ax f a f a

1.7 PARSEVAL’S THEOREM

(a) The Fourier transform of f (x) and g(x) are ˆ ˆ( ) and ( ),f g  respectively, then

(i)
2 21

( ) ( )
2

f x dx f d

(ii)
1 ˆˆ( ) ( ) ( ) ( )

2
f x g x dx f g d

  where ( )g x  is the complex conjugate of g(x).

(b) The Fourier sine and cosine transform of  the functions f (x) and g(x) are 
ˆ ˆˆ ˆ( ), ( ) and ( ), ( )S S C Cf g f g  respectively, then.

(i)
0 0

2 ˆ ˆ( ) ( ) ( ) ( )S Sf x g x dx f g d

(ii)

0 0

2 ˆ ˆ( ) ( ) ( ) ( )C Cf x g x dx f g d

(iii)
2 2

0 0

2
( ) [ ( )]Sf x dx f d

(iv)
2 2

0 0

2
( ) [ ( )]Cf x dx f d
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Example 21 If Fourier transform of 

2 2

2 2( ) is 2

x

f x e e  then find { ( 2 )}.F f x

Solution Given

F f x F e e

x

{ ( )}

2 2

2 22  = f
^
( ).

Now

   
1

{ ( 2 )}
2 2

F f x F [Using property 2]

=

2
1

2 21
2

2
e

=

2

4e

Example 22 If
1 ;

( )
0 ;

x a
f x

x a
 and

2 sinˆ( ) ( 0),
a

f  then prove that 

2

2
0

sin

2

ax a
dx

x

Solution Using Parseval’s theorem for Fourier transform, we have 

22 1 ˆ( ) ( )
2

f x dx f d

or

2

2 1 2sin
0 1 0

2

a a

a a

a
dx dx dx d

or     

2

2

1 4sin

2

a

a

a
dx d

or
22 sin a

d  = 2 a

or

2sin
2

2

a
d a

or

2sin a
d a
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or

2

0

sin
2

a
d a

or

2

0

sin

2

a a
d

2

0

sin 2

2

x a
dx

x
Hence, proved.

Example 23 Using modulation theorem, to find the Fourier transform of f (x) cos bx, where f (x)

is defined by

f (x) = 
1; if

0; if

x a

x a

Solution Fourier transform of the function f (x) is

      

2sin
if 0ˆ( )

2 if 0

a

f

a

Now

1 ˆ ˆ{ ( ) cos } ( ) ( )
2

F f x bx f b f b [Using modulation property]

or =

sin ( ) sin ( )

2

b a b a

b b

a

Example 24 Evaluate the energy spectrum of the function

f (x) = 
; for 0

0; for < 0

ax
e x

x

Solution The Fourier transform of the function f (x) is

f ( ) = 
1

( )
2

i x
f x e dx

= ( )

0 0

1 1

2 2

ax i x a i x
e e dx e dx

=
( )

0

1 1 1

( )2 2

a i x
e

a i a i
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=
2 2

1

( )2

a i

a

Now, the energy spectrum is

=
2

( )f

=
2 2 2 2

( )
( ) ( )

2 ( ) 2 ( )

a i a i
f f

a a

=
2 2

1

2 ( )a

Example 25 Show that the Fourier transform of 1 is 2 ( ).

Solution We know that

F{ (x)} = 1

By inverse Fourier transform, we have

(x) = 
1

2

i x
e dx

or ( ) = 
1

2

i x
e dx  [Interchange  and x]

Since delta function is even, we have

( ) = 
1

( )
2

i x
e dx

=
1 1

{1}
2 2

F

F{1} = 2 ( ) Proved.

1.8 FOURIER TRANSFORM OF SOME BASIC FUNCTIONS

In this section, we shall discuss the Fourier transform of the some basic functions.

(i) The top-hat function The top-hat function is denoted by a and is defined as

a(x) = 

0 ;
2

1 ;
2 2

0 ;
2

a
x

a a
x

a
x
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Fig. 1.1

Fourier transform is as follows:

F{ a(x)} = ( ) i x
a x e dx

=

/2

/2

1

a
i x

a

e dx

=

/2
2 2

0 /2

i a i a
a

i x

a

e e e

i i

=

sin
2

sin ( )
/ 2

a

c a

  The sine function is defined as sin
sin

( ) .
x

c x
x

(ii) The Dirac-Delta function The Dirac-delta function is denoted by (t – a) and it is defined 

as

    

;
( )

0 ; otherwise

t a
t a

2 2

Fig. 1.2
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Then, its Fourier transform is

F{ (t – a)} = ( ) i x
t a e dt

=
i a

e ( ) 1 and ( ) ( ) ( )t dt f t t a dt f a

(iii) The shah function: The shah function is denoted by ( )T t  and is defined as 

( ) ( ).T

n

t t nT

T T

Fig. 1.3                 Fig. 1.4

  its Fourier transform 
00{ ( )} ( )T fF t f f  where 

0

1
f

T

(iv) The triangle function The triangle function is defined as

A(x) = 
1 1

1

0 otherwise

A
x A T x T

T

         Fig. 1.5 Fig. 1.6

  Its Fourier transform

    1 1
ˆ{ ( )} ( ) sin ( )F x AT c T
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(v) The Gate Function: The gate function is defined as

f (t) = 
1; if

0; if

t a

t a

  Then its Fourier transform is

      

sinˆ( ) { ( )} 2 ; 0
a

f F f t

= 2a ; = 0

(vi) Signum Function The Signum function is denoted by sgn(t) and is defined as

Sgn(t) = 
1; if > 0

1; if < 0

t

t

Fig. 1.7

  Its Fourier transform is

F{Sgn(t)} = 
2

i

(vii) The Gaussian function is defined as

f (t) = 
2

at
e

  its Fourier transform is

      

2 /4ˆ ( ) a
f e

a

Fig. 1.8
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1.9 DISCRETE FOURIER TRANSFORM

The discrete Fourier transform (DFT) is the transform that deals with a finite  number of discrete time 

signal and a finite or discrete number of frequencies is of the form

Wr = 
2

; 0, 1, 2, 1r r N
N

Let f (r) be the continuous functions. Let N samples be denoted as f (0), f (1), f (2),…, f (N – 1), then 

the discrete Fourier transform of f (r) is

F( ) = 

21

0

1
( )

i rN

N

r

f r e
N

 for  = 0, 1, 2, … N – 1

and discrete inverse Fourier transform of F( ) is

f (r) = 

21

0

( )

i rN

NF e

1.9.1 Discrete 2-D Fourier Transform

The discrete 2D Fourier transform of f (r, s) is 

F( , ) = 

1 1 2

0 0

1
( , )

r sM N i
M N

r s

f r s e
MN

for r = 0, 1, 2, …, M – 1, s = 0, 1, 2 …, N – 1 and the discrete 2D inverse Fourier transform of F( , )

is

f (r, s) = 
1 1 2

0 0

( , )

r sM N i
M NF e

for r = 0, 1, 2, …, M – 1, s = 0, 1, 2 …, N – 1

1.9.2 Properties of Discrete Fourier Transform

(i) Linearity Property: Let F( ) and G( ) be the DFT of discrete time signals f (r) and g(r)

respectively, then DFT of 

af (r) + bg(r) = aF( ) + bG( ), where a and b are any constants.

(ii) Time Reversal: Let F( ) be the DFT of periodic discrete time signal f (r), then DFT of f (–r) is 

F(– ).

(iii) Reciprocity: Let F( ) be the DFT of f (r), then the DFT of F(r) is Nf (– ).

1.9.3 Fourier Transform of Discrete Time Aperiodic Signals (DTFT)

Transformation is a mathematical tool, which transform the domain of the signals in order to find out 

the specific characteristic of it.

Mathematically it is defined as

( ) ( ) e jwn

n

X w x n (41)

where X(w) is Fourier Transform of x(n) and x(n) is discrete time aperiodic signals.
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We can obtain x(n) from X(w) by taking inverse Fourier transform and it is given by

1
( ) ( )

2

jwn
x n X w e dw (42)

The frequency range of w is –  to  or 0 to 2 . So X(w) becomes periodic with period 2 .

The Fourier transform is convergent if

( )
n

x n

It means Fourier transform exists only if discrete time signal is absolutely summable. This is 

necessary and sufficient condition for the existence of Fourier transform.

Now, DTFT explain with the help of energy discrete time signal x(n) is given by

2
( )X

n

E x n (43)

or ( ) * ( )X

n

E x n x n [ x*(n) is complex conjugate of x(n)] (44)

where the inverse DTFT

x(n) = 
1

( )
2

jwn
X w e dw

x*(n) = 
1

( )
2

jwn
X w e dw (45)

Putting Eq. (45) in Eq. (44), we get

      

*1
( ) ( )

2
XE X w X w dw

But
2

*( ) ( ) ( )X w X w X w

EX = 
21

( )
2

X w dw (46)

From Eqs (43) and (46), we have

EX = 
2 21

( ) ( )
2n

x n X w dw (47)

Equation (47) is the Parseval’s relation for discrete time periodic signal with finite energy.

Basically X(w) is complex frequency function. Therefore, we can define it in terms of magnitude 

and angle as

( )( ) ( ) j
X w X e

where |X( )| is magnitude spectrum and ( ) is the phase spectrum.
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Now, the energy density spectrum of x(n) is denoted by SXX( ) and is given by

SXX = |X( )| 2.

We explain this theory with the help of the following example:

Example 26 Determine the Fourier transform of single sided exponential pulse and energy density 

spectrum for a = 0.5 and a = –0.5 where the energy, discrete time signal is

x(n) = an
u(n); –1 < a < 1.

Solution The exponential signal an
u(n) exists from 0 to .

It is shown in the Fig. 1.9.

Using Eq. (41), we get

X( ) = 
0

n j n

n

a e

=
0

( )j n

n

a e

or X( ) = 
1

; 1
1

j

j
a e

ae

X( ) = 
1

; 1 cos sin 1
1

j

j
a e j

a e

which is known as frequency spectrum or function.

Now, the energy density spectrum is given by

2
( ) ( ) ( ) * ( )XXS X X X

where X
*( ) is complex conjugate of X( )

X
*( ) = 

1

1 ej
a

Thus SXX = 
1 1

11 j aa e

=
2 2

1 1

1 ( ) 1 2 cosj j
a e e a a a

Case I

When a = 0.5

x(n) = (0.5)n
u(n) and 

1
( )

1 cos 0.25
XXS

Case II

When a = –0.5

x(n) = (–0.5)n
u(n) and 

1
( )

1 cos 0.25
XXS

Fig. 1.9
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Example 27 Determine the discrete time signal x(n), whose Fourier Transform is

( ) 1; if

0; if

c cj

c

X

Solution We want to evaluate the discrete time signal x(n) so we take the  inverse Fourier transform of 

the given signal. (See the Fig. 1.10)

Fig. 1.10

Using Eq. (42), we get

x(n) = 
1

1
2

c

c

w

jwn

w

e d

=
1

2

c

c

w
j n

w

e

jn

=
1 1

2sin
2 2

c cjw n jw n
ce e w n

jn n

or x(n) = 
sin cw n

n

Example 28 Calculate the 4-point discrete Fourier transform of f (r) with period 4 and given by 

f (–2) = 1, f (–1) = 0, f (0) = 2 and f (1) = 0.

Solution The 4-point discrete Fourier transform of the given signal is

F( ) = 

21

4

2

( )

ir

r

f r e

=

4 2 2

04 4 4( 2) ( 1) (0) (1)

i i i

f e f e f e f e

= 1 0 2 1 0i
e

= 2i
e

Now

F(–2) = e–2 i + 2 = cos 2  + i sin 2  + 2 = 1 + 2 = 3

F(–1) = 2 cos sin 2 1 2 1i
e i
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F(0) = e0 + 2 = 1 + 2 = 3

F(1) = e i + 2 = –1 + 2 = 1

Thus F( ) = {3, 1, 3, 1}

The amplitude spectrum of F( ) is shown in the following Fig. (1.11).

Fig. 1.11 Amplitude Spectrum of F( )

Example 29 Find 4-point discrete Fourier transform of F(r) = {1, 1, 0, 0}

Solution The 4-point discrete Fourier transform is

F( ) = 

23

4

0

( )

i r

r

f r e

=

2 4 6

4 4 4(0) (1) (2) (3)

i i i

f f e f e f e

= 21 1 0 0

i

e  = 21

i

e

Now F(0) = 21 1 2, (1) 1 1

i

F e i

F(2) = 

3

21 1 1 0, (3) 1 1

i

i
e F e i

Thus F( ) = {F(0), F(1), F(2), F(3)} = {2, 1 – i, 0, 1 + i}

The amplitude spectrum of F( ) is shown in the following Fig (1.12)

| F( ) | = 2 1 1 0 1 1 2 1 4142 0 1 41422 2 2 2, ( ) , , ( , . , , . )

Fig. 1.12 Amplitude spectrum of F( )
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Example 30 Calculate 4-point inverse DFT of the discrete signal F( ) with period 4 given by

F(0) = 1, F(1) = 0, F(2) = 0, F(3) = 1.

Solution Given F( ) = {1, 0, 0, 1}

Using discrete inverse FT, we have

f (r) = 

23

4

0

( )

i r

F e

=

2 4 6

4 4 4(0) (1) (2) (3)

ir ir ir

F F e F e F e

=

3

21 0 0

ir

e

f (r) = 

3

21

ir

e

Now

f (0) = 1 + 1 = 2

f (1) = 

3

21 (1 )

i

e i

f (2) = 31 1 1 0i
e

f (3) = 

9

21 (1 )

i

e i

Hence f (r) = {2, (1 – i), 0, (1 + i)}

EXERCISE 1.1

(a) Fourier Integral Obtain the Fourier integral representations of the following functions:

1. (i)

0 ; 0

1
( ) ; 0

2

; 0x

x

f x x

e x

.   (ii)
; 1

( )
0 ; 1

x x
f x

x
.

2. Find Fourier sine integral of the function f (x) = e– x.

3. Find the Fourier sine and cosine integral of the function.

f (x) = 
sin if 0

0 if

x x

x

4. Find the complex form of the Fourier integral representations of

f (x) = 

0 ; 1

; 1 0

0 ; 0

x

x x

x
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(b) Fourier Transform

5. Find the Fourier transform of 

f (x) = 
; if

0 ; if

x x a

x a

6. Show that the Fourier transform of 

2 2

2 2( ) is

x

f x e e

7. Find the Fourier sine and cosine transform of the function.

      

; if 0 1

( ) 2 ; if 1 2

0 ; if 2

x x

f x x x

x

8. Find the Fourier cosine transform of 

f (x) = 

1
; if 0 < <

2

1
1 ; if 1

2

0 ; if 1

x x

x x

x

9. Find the Fourier cosine transform of f (x) = e–2x + 4e
–3x

10. Evaluate the following using Parseval’s theorem

(i)
4

2
0

sin x
dx

x
  (ii)  

2

0

1 cos x
dx

x

11. If
1

2

1 2ˆ ( ) tan ,
2

Cf  then find f (x).

12. If
1 ; 0

( )
0 ;

x
f x

x
 then show that 

0

; 01 cos
sin 2

0 ;

x
x d

x

13. Find the Fourier transform of the single gate function (rectangular pulse) shown in Fig. 1.13.

Fig. 1.13
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14. Find the Fourier transform of the function shown in Fig. 1.14.

Fig. 1.14

15. Find Fourier sine and cosine transform of f (x) = cosh x – sinh x.

16. If
2

ˆ ( )
1

Cf , find f (x)

17. If
sin ; 0ˆ ( )

0 ;
Cf , then find f (x)

18. Find 1
a

S

e
F  and hence evaluate 1 1

.SF

19. Find f (x) if 
2

1ˆ ( ) .
1

Cf

20. Using Parseval’s  property, find the value of the integral

       
2 2 2 2

0

.
( ) ( )

dx

a x b x

21. Calculate the N-point DFT of a finite-time sequence f (r) defined by

f (r) = 
1 ; for 0 1

0 ; otherwise

r L

22. Find 4-point discrete Fourier transform of discrete-time signal f (r) = (–1)r for all r.

23. Find 5-point discrete Fourier transform of discrete-time signal f (r) with period 5 and defined 

by

f (–2) = –1, f (–1) = –2, f (0) = 0, f (1) = 2 and f (2) = 1

24. Find 4-point discrete Fourier transform of the discrete time signals f (r) with period 4 and 

given by

f (0) = 3, f (1) = 4, f (2) = 5, f (3) = 5.
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Answers

1. (i)
2

0

1 sin cos
( )

1

x x
f x (ii)

2
0

2(sin cos )
( ) sinf x x d

2.
2 2

0

2 sin x
d   3.

2 2
0 0

2 sin 2 1 cos
sin ; cos

1 1

x
x d x d

4.
2 2

1 1 1 1

2

i x i
e e d

i
5.

2

2 ( cos sin )i a a a

7.
2 2

2 2 2 2
sin (1 cos ); cos (1 cos )

8.
2 2 2

2 2cos /2 cos 1
9.

2 2

2 2 12

4 9

10. (i)
2

   (ii)
2

11. sinx
e x

x

13. sin
2

T
T c 14.

1 2
sin (1 2 cos )

2

15.
2 2

1
,

1 1
16. e

–x

17.
2

2 sin

(1 )

x

x
18. 12

tan ; .
2

x

a

19. e
–x 20.

2 ( )ab a b

21.

2

2

1
,

1

irL

N

ir

N

e

e

, r = 0, 1, 2, …, N – 1. 22. ( ) {0,0,4,0}F

23.
4 2

2 sin 4 sin
5 5

r r
i i 24.

5 1 5
( ) 4.25, , ,

2 4 4
F
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1.10 FINITE FOURIER TRANSFORM

The finite Fourier sine transform of a function f (x) which is sectionly continuous over some finite 

interval (0, l) of the variable x it is defined as

       0

ˆ ( ) ( )sin ;

l

s

x
f f x dx I

l

Similarly, the finite Fourier cosine transform of f (x) in (0, l) is defined as

     0

ˆ ( ) ( )cos ;

l

c

x
f f x dx I

l

In the interval (0, ) of the variable x,

      

0

ˆ ( ) ( )sinsf f x x dx  and

      0

ˆ ( ) ( )coscf f x x dx

1.11 INVERSE FINITE FOURIER TRANSFORM

(i) In the interval (0, l)

1

2 ˆ( ) ( ) sins

x
f x f

l l
 is called inverse Finite Fourier sine transform.

and
1

1 2
( ) (0) ( )cosc c

x
f x f f

l l l
 is

  called inverse finite Fourier cosine transform where 

0

(0) ( )

l

cf f x dx

(ii) In the interval (0, )

  For sine transform

f (x) = 
1

2
( )sinsf x

  For cosine transform

f (x) = 
1

1 2
(0) ( )cosc cf f x

where

0

(0) ( )cf f x dx
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Example 31 Find Finite Fourier sine and cosine transforms of f (x) = 2x; 0 < x < 4.

Solution Given f (x) = 2x; 0 < x < 4

(i)    

4

0

( ) 2 sin
4

s

x
f x dx

=

4

4

0

0

cos cos
4 42 2

4 4

x x

x dx

=

32
(1 cos ); 0

0; 0

(ii)    

4

0

( ) 2 cos
4

c

x
f x dx

=

4

4

0

0

sin sin
4 42 2

4 4

x x

x dx

=

4

0

cos
32 8 4sin

4

x

=
2 2

32
(cos 1); 0

= 16;  = 0

EXERCISE 1.2

1. Find the finite Fourier transforms (sine and cosine) of the function f (x) = 1; 0 < x < .

2. Find finite Fourier sine transform of the function f (x) = sin nx, where n is an integer.

3. Find the finite Fourier cosine transform of 

2

( ) 1 .
x

f x

4. Find the finite Fourier sine and cosine transforms of f (x) = x2 where 0 < x < .

5. Find F
–1
S{fS( )}, if 1

3

2
( ) ( 1) , 1, 2, ...Sf  where 0 < x < .

6. Find 1
sin

2{ ( )}, if ( ) if 1, 2, 3, ... and
2 4

C C CF f f  if  = 0, where 0 < x < 2 .
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7. Find f (x) if its finite sine transform is given by 
2

1 cos
( )

( )
Sf  where 0 < x < .

8. Find the finite cosine transform of f (x) if 
cos ( )

( )
sin

p x
f x

p

Answers

1.
0 if 1, 2, 31

( ) 1 ( 1) , ( )
if 0

S Cf f

2.

0 ; if

( )
; if

2

S

n

f
n

3.
2

2
; if 0

( )

; if 0
3

Cf

4.

2

3

3

2

2
(cos 1) cos ; if 1, 2, 3, ...

( )

; if 0
3

2
( ) (cos 1)

S

C

f

f

5.
1

3
1

2 2 ( 1)
sin x

6. 2

1

sin1 1
cos

4 2
x

7.
3 2

1

2 1 cos
sin x

8.
2 2

1
, 0, 1, 2, 3, ...K k

K

1.11.1 Ordinary Differential Equation with Constant Coefficients

Suppose nth order linear differential equation with constant coefficients is

      
1 2

0 1 21 2
( )

n n n

nn n n

d y d y d y
a a a a y f x

dx dx dx
(48)
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Taking Fourier transform both sides on Eq. (48), we have

      
1 2

0 1 2[ ( ) ( ) ( ) ] { ( )} { ( )}n n n
na i a i a i a F y x F f x

If F{y(x)} exists, then

F{y(x)} = 
{ ( )}

( )

F f x

P i

where 1
0 1 1( ) n n

n nP D a D a D a D a  is the operator on the left hand side of the differential 

equation.

Let
1

( )P i
 has an inverse Fourier transform

g(x) = 
1

2 ( )

i i x

i

e
d

P i

Then using convolution theorem, we get

y (x) = 
1

( ) ( )
2

f x g x t dx

Example 32 Solve 
22 ( ) ; .t

y y H t e t  Using Fourier transform, where H(t) = u0(t)

is the unit step function.

Solution Given
22 ( ) t

y y H t e (49)

Taking Fourier transform both sides on Eq. (48) we have

    
2{ 2 } { ( ) }tF y y F H t e

1
( 2) { ( )}

2
i F y t

i

or    
2

1 1
{ ( )}

(2 )(2 ) 4
F y t

i i

Taking inverse Fourier transform, we get

y (t) = 1 2 | |

2

1 1

44

t
F e

=

2

2

1
; 0

4

1
; 0

4

t

e t t

e t

It is the required solution of the given equation.

Example 33 Using convolution theorem for Fourier transform, solve the differential equation 

y y  = –H(1 – |x|); –  < x <  with ( ) 0 and ( ) 0 as | | .y x y x x
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Solution Given   y y  = –H(1 – |x|) (50)

where H is the Heaviside’s unit step function and it is defined as

H(1 – |x|) = 
1; if | | 1

0; if | | 1

x

x

Fig. 1.15

Now, taking Fourier transform of both sides of the given Eq. (50), we obtain

2[( ) 1] { ( )} { (1 | |}i F y x F H x

=

1

1

i x
e dx

=
2sin

or 2 2sin
( 1) { ( )}F y x

or F{y(x)} = 
2

2sin

( 1)

But 1 2sin
(1 | |) andF H x

1 | |

2

1 1

21

x
F e

Using convolution theorem, we have

y(x) = 1

2

2sin 1

1
F

= | |1 1
(1 | |)

2 2

x
e H x t dx
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=

1
| |

1

1

4

x
x

x

e dx

=

sinh(1) , for 1

1 cosh
1 , for 1 1

2

sinh(1) , for 1

x

x

e x

x
x

e

e x

1.11.2 Fourier Transform of the Derivative of Function

Let ˆ ( , )u t  be the Fourier transform of the function u(x, t), then

      

ˆ( , ) { ( , )} i x
u t F u x t ue dx

Now, the Fourier transform of 

2

2

u

x
 is

    

2 2

2 2

i xu u
F e dx

x x

= 2( ) ( )i x i x i xu
e e u i i ue dx

x

    
2

2

2
{ }

u
F F u

x
 As x , u  and 0

u

x

Similarly, the Fourier sine and cosine transform, we have

     

2
2

02
( ) { }s x s

u
F u F u

x

and  
2

2

2
0

{ }c c
x

u u
F F u

xx

In general, the Fourier transform of the nth derivative of u(x, t) is given by

( ) { }
n

n

n

d u
F i F u

dx

1.11.3 Selection of Fourier Sine and Cosine Transform

Suppose we want to remove a term 
2

2

u

x
 in a differential equation, so we require the knowledge of the 

value.
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(i) If 0( ) ,xu  is given, then we use Fourier sine transform and

(ii) If
0

,
x

u

x
 is given, then we use Fourier cosine transform.

1.11.4 Application of Initial Boundary Value Problem

In this section, we shall discuss the some of the Boundary Value Problem (BVP) using Fourier 

transforms.

Example 34 If u is the temperature at time t and K is the diffusivity of the material, find u from 

the partial differential equation

       

2

2
; 0, 0

u u
K x t

t x

With the boundary condition u = u0 when x = 0, t > 0 and the initial condition u = 0 when t = 0, 

x > 0.

Solution Since u = 0 when x = 0 is given, so we apply the Fourier sine transform.

Taking Fourier sine transform on the given PDE, we get

2

2
0 0

sin sin
u u

x dx K x dx
t x

or 2
0

0

sin [ ( ) { }]x s

d
u x dx K u F u

dt

or 2
0

ˆ ˆ( )s s

d
u K u K u

dt

or 2
0

ˆ
ˆs

s

du
K u K u

dt
(51)

With the boundary condition ˆ 0su  when t = 0 (52)

Equation (51) is an ordinary linear differential equation. The solution of (51) is

     

2 2

0
ˆ K t K t

su e u K e dt c

or    
2 2

0ˆ K t K t
s

u
u e e c (53)

Using Eq. (52), in Eq. (53), we get 0u
c

      
2

0ˆ [1 ]Kt
s

u
u e (54)

Taking inverse Fourier sine transform, we get

        
2

0

0

2 sin
[1 ]Ktu x

u e d (55)
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But 2

0

sin
,

x
d  then (48) becomes

        
2

0

0

2 sin
1 Kt x

u u e d

Example 35 Solve the equation 
2

2
; 0, 0

u u
x t

t x
 under the conditions

(i) u = 0, when x = 0, t > 0

(ii)
1; 0 1

0; 1

x
u

x
 when t = 0, and

(iii) u(x, t) is bounded.

Solution Since u = 0 when x = 0 is given, so here we apply the Fourier sine transform.

Now, taking the Fourier sine transform both sides on the given PDE, we have

2

2
0 0

sin sin
u u

x dx x dx
t x

or 2
0

0

ˆsin ( )x s

d
u x dx u u

dt

or 2ˆ ˆ0s s

d
u u

dt

or 2
ˆ

ˆ 0s
s

du
u

dt
(56)

With the boundary condition 
1; 0 1

ˆ when 0
0; 0

s

x
u t

x
(57)

Equation (56) is an ordinary differential equation. The solution of (57) is

2

1
ˆ t

su c e  where c1 is a constant.

Now, using (57), we have

     

0

0

ˆ( ) ( ,0) sins tu u x xdx

=

1

0 1

1 sin 0 sinx dx xdx

=
1

0

cos 1 cosx
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Now 0 1

1 cos
ˆ( )s tu c

      
21 cos

ˆ t
su e (58)

Taking inverse Fourier sine transform, on (58), we get

     
2 ( )

0

2 1 cos
( , ) sint

u x t e x d

Example 36 If the flow of heat is linear so that the variation of  (temperature) with z and y axis 

may be neglected and if it is assumed that no heat is generated in the medium, then solve the equation 

governing the conduction of heat in solids.

       

2

2
,K

t x
 where –  < x < .

with  = f (x) when t = 0, f (x) being a given function of x.

Solution Taking the Fourier transform both sides on the given equation, we have

2

2
0 0

i x i x
e K e dx

t x

or  2

0

ˆi xd
e dx K

dt

or      2
ˆ

ˆd
K

dt
(59)

with the initial condition

        ˆ( ) ( )i x
f x e dx f  when t = 0 (60)

Solution of (59), we get

       

2

1
ˆ K t

c e
(61)

Using
0

ˆ ˆ( ) ( ),t f  then 1
ˆ( )c f

      
2ˆ ˆ( ) K t

f e (62)

Taking inverse Fourier transform on (62), we get

(x, t) = 
21 ˆ( )

2

K t
f e d

where ˆ( )f  is the F.T. of f (x).
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Example 37 Determine the distribution of temperature in the semi-infinite medium x  0 when the 

end x = 0 is maintained at zero temperature and the initial distribution of temperature is f (x).

Solution Let u(x, t) be the temperature at point x and time t.

The heat flow equation in semi-infinite medium is

       
2

2

2
0, 0

u u
c x t

t x

(63)

With the boundary condition u(0, t) = 0 and the initial condition u(x, 0) = f (x)

Since (u)x = 0 = 0 is given, so here we use the Fourier sine transform, we have

  

2
2

2
0 0

sin sin
u u

xdx c x d
t x

or     2 2
0

ˆ
ˆ[ ( ) ]s

x s

d u
c u u

dt
 = 2 2 ˆ

sc u

or 2 2
ˆ

ˆ 0s
s

d u
c u

dt
(64)

with the conditions 0
ˆ( ) ( )s t su f (65)

Solution of Eq. (64) is

        
2 2

1
ˆ c t

su c e (66)

using Eq. (65), 1 ( )sc f

      
2 2

ˆ ( ) c t
s su f e (67)

Taking inverse Fourier sine transform, we get

u(x, t) = 
2 2

0

2
( ) sinc t

sf e x d

Example 38 Using Fourier cosine transform to show that the steady temperature u in the

semi-infinite solid y > 0 when the temperature on the surface y = 0 is kept at unity over the strip |x| < a

and at zero outside the strip is

     

1 11
tan tan

x a a x

y y

The result 1

0

sin
tan , 0, 0x rx r

e dx r
x

 may be assumed.

Solution Here the steady temperature u(x, y) in the semi-infinite solid is governed by two-dimensional 

Laplace equation.

  
2 2

2 2
0

u u

x y
(68)
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      0 < y < , –  < x < .

Subject to the conditions

u = 1, y = 0, –a < x < a

and u = 0, y = 0 when |x| < a

Now taking Fourier cosine transform both sides on (68), we have

      

2 2

2 2
0 0

cos cos 0
u u

x dx x dx
x y

or        

2
2

2
0

ˆ
ˆ 0c
c

x

d uu
u

x dy

or             
2

2

2

ˆ
ˆ 0c
c

d u
u

dy
(69)

Its solution is 1 2
ˆ y y
cu c e c e (70)

Now as ˆ, 0cy u

c1 = 0

Hence,    2
ˆ y
cu c e (71)

But      
0

ˆ coscu u xd x

    0 0

0

ˆ( ) ( ) cosc y yu u x dx

=

0

1 cos

a

x dx =
sin a

   Eq. (71) gives 2

sin a
c

Hence,     
sin

ˆ y
c

a
u e .

Taking IFCT, we get

u(x, y) = 

0

2 sin
cosya

e x d

=

0

1
(2sin cos )

y
e

a x d

=

0

1
[sin( ) sin( ) ]

y
e

a x a x d

= 1 11
tan tan

a x a x

y y
Hence, proved.
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EXERCISE 1.3

1. Use Fourier sine transform to solve the equation

2

2
2

u u

t x

  under the conditions

(i) u(0, t) = 0  (ii) ( , 0) x
u x e    (iii) u(x, t) is bounded

2. The temperature u in the semi-infinite rod 0 x <  is determined by the equation

2

2

u u
K

t x

  under the conditions

(i) u(x, 0) = 0

(ii)
0

(a constant), 0
x

u
t

x
 using cosine transform, show that

2

2
0

2 cos
( , ) (1 )K t x

u x t e d

3. Use the complex form of the Fourier transform to show that 

2
( )

4
1

( )
2

x

tu f e d
t

is the solution of the boundary value problem 
2

2
,

u u

t x
 –  < x < , t > 0 and u = f (x)

when t = 0.

4. Find the temperature u(x, t) in a slab 0 < x < , initially at temperature u = 1, its faces being 

kept at temperature zero and K is the diffusivity, being taken to be 1.

5. Solve
2

2
, 0, 0

u u
K t x

t x
, under the conditions u(x, 0) = 2x u(0, t) = u( , t) = 0

6. Solve
2

2
, 0

u u
t

t x
, subject to the condition 

2

( , 0) x
u x e

7. Solve 3 2 ( ) siny y y H t t , for t > 0 satisfying 
0

lim ( ) 0
t

y t  and 
0

lim ( ) 1.
y

y t .

8. Solve | |3 2 ,t
y y y e  using Fourier transform.

Answers

1.
22

2
0

2
( , ) sin

1

t
u x t e x d 4.

2

1

2 2
( , ) cos sint

u x t e
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5.
2

0

cos
( , ) 4 sint

u x t e x d 6.
2

1 4
2

( , )
(1 4 )

x
tu x t e

t

7.

2

2 2 2 2
( )

1 4 2( 3 2) 2( 3 2)

t t i t i t
e e ie ie

y t
i i

8. 22 1
( )

3 2

t t t
y t e te e

SUMMARY

Following topics have been discussed in this chapter:

1. Fourier Integral in Complex Form

Since the function cos ( (t – x)) is an even of , therefore equation (3) can be written in the form of

f (x) = 
1

( )cos ( )
2

f t x t dt d

2. Fourier Transform

Let the function f (x) be defined on (– , ) and it is piecewise continuous in each finite partial interval 

and absolutely integrable in (– , ), then the Fourier transform is given by 

   
1ˆ( ) ( ) ( )
2

i x
f f x e dx

then    
1 ˆ( ) ( ) ( )
2

i x
f x f e x

The function ˆ( )f  in above equation called the Fourier transform of f (x) or some times known 

the exponential Fourier transform and its integral recovers f (x) from ˆ( )f  is called inverse Fourier 

transform.

3. Fourier Cosine and Sine Transform

The Fourier cosine and sine transforms arise as special cases of the Fourier transform, according as 

f (x) is even or odd. Now, we considering the Fourier cosine transform of function f (x) that can be 

defined when f (x) is an even function.

0

2ˆ{ ( )} ( ) ( )cosC CF f x f f x x dx

The integral given in the equation is called the Fourier cosine transform of f (x).

Now, the inverse Fourier cosine transform is denoted by 1 ˆ( ) { ( )}C Cf x F f  and is defined as 

0

2 ˆ( ) ( )cosCf x f x d
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In a similar manner if f (x) is an odd function, then

     0

2ˆ{ ( )} ( ) ( )sinS SF f x f f x x dx

The integral in the given equation is called the Fourier sine transform of f (x).

Now, the inverse Fourier sine transform is denoted and defined as

1

0

2ˆ ˆ( ) { ( )} ( )sinS S Sf x F f f x d

4. Properties of Fourier Transform

Some properties of Fourier transform as are as follows:

Property 1: Linearity property If ˆ ( )rf  is the Fourier transform of the function fr(x) for r = 1, 2, 

3, ..., n, then.

1 1

ˆ( ) ( )
n n

r r r r

r r

F a f x a f

where ar is constant for r = 1, 2, 3, ..., n.

Property 2: Scalar property If ˆ( )f  is the Fourier transform of the function f (x), then

1 ˆ{ ( )} aF f ax f
a

where a is a non-zero constant.

Property 3: Shifting property If ˆ( )f  is the Fourier transform of the function f (x), then

F{f (x – a)} = ei a ˆ( )f  where a is constant.

Property 4: Second shifting property If ˆ( )f  is the Fourier transform of the function f (x) and

g(x) = eiax
 f (x). Then F{g(x)} = ˆ( ),f a  where a is any constant.

Property 5: Modulation property If ˆ( )f  is the Fourier transform of the function f (x), then

1 ˆ ˆ{ ( ) cos } ( ) ( )],
2

F f x ax f a f a

Property 6: Fourier transform of the derivative Let f (x) is a continuous function and 
0

lim ( ) 0,
x

f x

also the derivative of f (x) is absolutely integrable then

ˆ ˆ{( ) } ( ), where ( ) { ( )}F f x i f f F f x

Property 7: Convolution theorem Let f (x) and g(x) be two piece wise continuous, bounded and 

absolutely integrable functions in –  < x <  and Fourier transform of f (x) and g (x) are given by

1ˆ( ) ( ) and
2

i x
f f x e dx

1
ˆ( ) ( )

2

i x
g g x e dx

respectively, then their convolution is denoted and defined as
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1
* ( ) ( )

2
f g f t g x t dt

Then

(i) ˆ ˆ{ ( )* ( )} [ ( )] [ ( )] ( ) ( )F f x g x F f x F g x f g

(ii)
1 ˆ ˆ( )* ( ) ( ) ( )
2

i xf x g x f g e d   (Inverse Fourier transform)

Property 8:
0

ˆ ( ) ( )sinsf f x x dx and

0

ˆ ( ) ( ) cos ,Cf f x x dx then

(i)
1 ˆ ˆ{ ( ) cos } ( ) ( )
2

S S SF f x ax f a f a

(ii)
1 ˆ ˆ{ ( ) sin } ( ) ( )
2

C S SF f x ax f a f a

5. Parseval’s Theorem

(a) The Fourier transform of f (x) and g(x) are ˆ ˆ( ) and ( ),f g  respectively, then

(i)
2 21

( ) ( )
2

f x dx f d

(ii)
1 ˆ ˆ( ) ( ) ( ) ( )

2
f x g x dx f g d

  where ( )g x  is the complex conjugate of g(x).

(b) The Fourier sine and cosine transform of the function f (x) and g(x) are ˆ ˆ( ), ( )S Sf g  and  

ˆ ˆ( ), ( )C Cf g  respectively, then

(i)

0 0

2 ˆ ˆ( ) ( ) ( ) ( )S Sf x g x dx f g d

(ii)

0 0

2 ˆ ˆ( ) ( ) ( ) ( )C Cf x g x dx f g d

(iii)
2 2

0 0

2
( ) [ ( )]Sf x dx f d

(iv)
2 2

0 0

2
( ) [ ( ) ]Cf x dx f d
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6. Discrete Fourier Transform

The discrete Fourier transform (DFT) is the transform that deals with a finite number of discrete time 

signal and a finite or discrete number of frequencies is of form

2
; 0, 1, 2, ... 1rW r r N

N

Let f (r) be the continuous functions. Let N samples be denoted as f (0), f (1), f (2), ..., f (N – 1), then 

the discrete Fourier transform of f (r) is

2 /1

0

1
( ) ( )

rN
N

r

F f r e
N

 for  = 0, 1, 2, ..., N – 1

and discrete inverse Fourier transform of F( ) is

2 /1

0

( ) ( )

rN
NF r F e

Discrete 2-D Fourier Transform

The discrete 2D Fourier transform of f (r, s) is

1 1 2

0 0

1
( , ) ( , )

r sM N i
M N

r s

F f r s e
MN

for r = 0, 1, 2, ..., M – 1, s = 0, 1, 2, ..., N– 1 and the discrete 2D inverse Fourier transform of F( , ) is

1 1 2

0 0

( , ) ( , )

r sM N i
M Nf r s F e

for r = 0, 1, 2, ..., M – 1, s = 0, 1, 2, ..., N – 1

Properties of Discrete Fourier Transform

(i) Linearity Property Let F( ) and G( ) be the DFT of discrete time signals f (r) and g(r)

respectively, then DFT of

af (r) + bg(r) = aF( ) + bG( )

(ii) Time Reversal Let F( ) be the DFT of periodic discrete time signal f (r), then DFT of f (r)

is F( ).

(iii) Reciprocity Let f ( ) be the DFT of f (r), then the DFT of F(r) is Nf (– ).

7. Finite Fourier Transform

The finite Fourier sine transform of a function f (x) which is sectionally continuous over some finite 

interval (0, l) of the variable x it is defined as

0

ˆ ( ) ( )sin ;

t

s

x
f f x dx I

l

Similarly, the finite Fourier cosine transform f (x) in (0, l) is defined as

0

ˆ ( ) ( ) cos ;

t

c

x
f f x dx I

l
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In the interval (0, ) of the variable x,

0

ˆ ( ) ( )sin andsf f x x dx

0

ˆ ( ) ( ) coscf f x x dx

8. Inverse Finite Fourier Transform

(i) In the interval (0, l)

1

2 ˆ( ) ( )sins

x
f x f

l l
 is called inverse Finite Fourier sine transform.

and  

1

1 2
( ) (0) ( ) cosc c

x
f x f f

l l l
 is called inverse finite Fourier cosine transform where 

0

(0) ( )

l

cf f x dx

(ii) In the interval (0, )

  For sine transform

1

2
( ) ( )sinsf x f x

  For cosine transform

1

1 2
( ) (0) ( )cosc cf x f f x

   where  
0

(0) ( )cf f x dx

Ordinary Differential Equation with Constant Coefficients

Suppose nth order linear differential equation with constant coefficients is
1 2

0 1 21 2
( )

n n n

nn n n

d y d y d y
a a a a y f x

dx dx dx

Taking Fourier transform both sides of above equation, we have

      
1 2

0 1 2[ ( ) ( ) ( ) ] { ( )} { ( )}n n n
na i a i a i a F y x F f x

If F{y(x)} exists, then

{ ( )}
{ ( )}

( )

F f x
F y x

P i

where P(D) = a0D
n + a1D

n–1 +  + an – 1D + an is the operator on the left hand side of the 

differential equation.

Let
1

( )P i
 has an inverse Fourier transform

1
( )

2 ( )

i i x

i

e
g x d

P i
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Then using convolution theorem, we get

1
( ) ( ) ( ) .

2
y x f x g x t dx

9. Selection of Fourier Sine and Cosine Transform

Suppose we want to remove a term 
2

2

u

x
 in a differential equation, so we require the knowledge of 

the value.

(i) (u)x = 0, if we use Fourier sine transform

(ii)
u

x
 if we use Fourier cosine transform

OBJECTIVE TYPE QUESTIONS

1. The function f (t) has the Fourier transform 

g(w). The Fourier transform

{ ( )} ( ) j t
F f t g t e dt  is

(a)
1

( )
2

f w (b)
1

( )
2

f w

(c) 2 f (–w) (d) None of these

[GATE (ECE) 1997]

2. If the Fourier transform of deterministic signal 

g(t) is G(f), then

(i) The Fourier transform of g(t – 2) is

(a) 4( ) j f
G f e

(ii) The Fourier transform of g(t/2) is

(b) G(2f)

(c) 2G(2f)

(d) G(f (-2))

[GATE (CE) 1997]

3. The Fourier transform of a function X(t) is X(f).

The Fourier transform of ( )
d

X f
df

 will be

(a)
( )dX f

df
(b) j2 fX(f)

(c) jfX(f) (d)
( )X f

jf

[GATE (ECE) 1998]

4. A signal X(t) has a Fourier transform X(w). If 

X(t) is a real and odd function of t then X(w) is

(a) A real and even function of w

(b) An imaginary and odd function of w

(c) An imaginary and even function of w

(d) A real and odd function of w

[GATE – (ECE) 1999]

5. The Fourier transform of the signal 
23( ) t

X t e  is of the following form, where 

A and B are constants:

(a) A e
–B|f | (b) A e

–Bf

(c) A + B|f |2 (d)
2

Bf
Ae

[GATE(ECE) 2000]

6. The complex Fourier transform of dirac delta 

function {x – a} is

(a) 2 (b) –1

(c) 0 (d) e
isa

[GATE (ECE) 2002]

7. The Fourier transform of a conjugate 

symmetric function is always

(a) imaginary

(b) conjugate anti-symmetric

(c) real

(d) conjugate symmetric

[GATE (EC) 2004]
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8. Let
21

( ) ( ); ( ) ( ),
2

n

X n u n Y n X n  and 

Y(e jw) be the Fourier transform of y(n). Then 

Y(e j0) is

(a) 1/4 (b) 2

(c) 4 (d) 4/3

[GATE (EC) 2005]

9. Let
1

( ) rect ,
2

X t t  where rect (x) = 1 

for
1 1

2 2
x  and = 0, otherwise

Then if 
sin

Sinc( ) ,
x

x
x

 the Fourier transform 

of X(t) + X(–t) is

(a) Sinc
2

(b) 2 Sinc
2

(c) 2 Sinc cos
2 2

w

(d) Sinc sin
2 2

w

[GATE (EE) 2008]

10. The Fourier transform of ( ) ( ),at
X t e u t

where u(t) is the unit step function

(a) Exists for any real value of a

(b) Does not exist for any real value of a

(c) Exists if the real value of a is strictly –ve

(d) Exists if the real value of a is strictly +ve

[GATE (IN) 2008]

11. The 4-point discrete Fourier transform of a 

discrete time sequence {1, 0, 2, 3} is

(a) [0, –2 + 2j, 2, – 2 – 2j]

(b) [2, 2 + 2j, 6, 2 – 2j]

(c) [6, 1 – 3j, 2, 1 + 3j]

(d) [6, –1 + 3j, 0, –1 – 3j]

[GATE (EC) 2009]

12. Consider the signal 
, 0

( ) .
0, 0

t
e t

X t
t

 Let 

X(w) denote the Fourier transform of this 

signal. The integral 
1

( )
2

X w d  is 

(a) 0 (b) 1/2

(c) 1 (d)

[GATE (IN) 2001]

13. The Fourier transform of a signal h(t) is H(jw)

= (2 cos w) (sin 2 w)/w. The value of h(0) is

(a) 1/4 (b) 1/2

(c) 1 (d) 2

[GATE (EE & IN) 2012]

14. Let
2

( ) t
g t e  and h(t) j is a filter matched 

to g(t). If g(t) is applied as input to h(t) then 

the Fourier transform of the output is

(a)
2

f
e (b)

2
f c

e

(c) | |f
e (d)

22 f
e

[GATE (EC) 2013]

15. Let f (t) be a continuous time signal and let 

F(w) be its Fourier transform; defined by 

( ) ( ) jwt
F w f t e dt  and g(t) defined by 

( ) ( ) jut
g t F u e du

What is the relation ship between f (t) and g(t)?

(a) g(t) would always be proportional to f (t)

(b) g(t) would be proportional to f (t), if f (t) is 

an even function

(c) g(t) would be proportional to f (t) only if 

f (t) is a sinusoidal function

(d) g(t) would never be proportional to f (t)

[GATE (EE) 2014]

16. A signal is represented by

1 if | | 1
( )

1 if | | 1

t
X t

t

The Fourier transform of the convolved signal 

( ) (2 )*
2

t
y t X t X  is

(a)
2

4
sin sin (2 )

2

w
w

w

(b)
2

4
sin

2

w

w

(c)
2

4
sin (2 )w

w
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(d) 2

2

4
sin w

w
[GATE (EE) 2014]

17. If X(K) is the discrete Fourier transform of a 

6-point real sequence X(n). If X(0) = 9 + j0,

X(2) = 2 + j2, X(3) = 3 – j0, X(5) = 1 – j1, then 

X(0) is

(a) 3 (b) 9

(c) 15 (d) 18

[GATE (IN) 2014]

18. If F{f (x)} = F( ), then F{f (x – a)} is

(a) e
i a

F( ) (b) e
–i a

F( )

(c) e
a

F( ) (d) zero

19. If FC{f(ax)} = K FC{ /a}, then K is

(a) 1/a (b) a/2

(c) –1/a (d) /a

20. Fourier sine transform of 1/x is

(a) /2 (b) 2/2

(c) 2/3 (d) 3/2

21. If FS{f (x)} = FS( ), then f (x) is

(a)

0

2
( )sinSF x d

(b)

1

0

2
( )sinSF x d

(c)

0

2
( )cosSF x d

(d)
2

( )sinSF x d

22. If FC{f (x)} = FC( ), then f (x) is

(a)

0

2
( )coscF xd

(b) ( )cosCF x d

(c)

0

2
( )cosCF x dx

(d)

0

2
( )cosf x x dx

23. The Fourier transform of xn
f (x) is

(a)

0

( )n i t
t f t e dt (b) ( )n i t

t f t e dt

(c) ( ) i t
f t e dt (d) none of these

24. The Fourier cosine transform of f (x) is

(a)

0

( )sinf x x dx

(b)

0

( )cosf x x dx

(c) ( )cosf x x dx

(d)

0

( )cosf x x dx

25. If
1, 0

( ) ,
0,

x
f x

x
 then FS{f (x)} is

(a)
{1 ( 1) }

(b)
1

(1 cos )

(c)
1

(1 sin ) (d)
1

(1 cos )

ANSWERS

1. (c) 2. (i) a (ii) c  3. (c) 4. (d) 5. (d) 6. (d) 7. (c) 8. (a) 9. (b)

10. (a)  11. (d) 12. (d) 13. (c) 14. (d) 15. (b) 16. (a) 17. (a) 18. (a) 19. (a)

20. (b) 21. (a) 22. (a) 23. (b) 24. (b) 25. (b)



2.1 INTRODUCTION

The Z-transform plays an important role in the field of science and engineering such as radar detection, 

signal processing circuit, coding theory, etc. The Z-transform is simply a power series representation of a 

discrete-time sequence and it is an essential mathematical tool which is used for the analysis and design 

of discrete-time control systems. Basically, the Z-transform is a discrete-time counter part of the Laplace 

transform. The properties of the Z-transform is similar to the properties of the Laplace transform except 

the difference between the discrete-time signals and continuous time functions. The application of 

Z-transform in discrete-time systems is similar to that of the Laplace transform is continuous time systems.

In this chapter, we shall discuss the fundamentals of Z-transform, properties and application to solve 

difference equations.

Pierre-Simon Laplace was born on 23 March 1749. He was a French mathematician 

and astronomer whose work was pivotal to the development of mathematical 

astronomy and statistics. He formulated Laplace’s equation, and pioneered the 

Laplace transform which appears in many branches of mathematical physics. The 

Laplacian differential operator, widely used in mathematics, is also named after 

him. He restated and developed the nebular hypothesis of the origin of the solar 

system and was one of the first scientists to postulate the existence of black holes 

and the notion of gravitational collapse and he died on 5 March 1827.

The basic idea of the Z-transform first given by Laplace, and reintroduced in 1947 

by W. Hurewicz as a tractable way to solve linear, constant-coefficient difference equations. The modified 

or advanced Z-transform was later developed and popularized by EI Jury. 

2.2 BASIC CONCEPT OF SEQUENCE

Sequence: A function whose domain is a set of natural numbers N and range, a subset of real number 

R is called a sequence.

Let f (n) be an element of a sequence S and it is defined as

S = {f (n)}; –  < n < , where n is an integer.

2.2.1 Z-Transform for Discrete Values of t

Let f (t) is a function defined for discrete values of t, where t = nT, n = 0, 1, 2, …, T being the period of 

sampling, then Z-transform of f (t) is defined as

Z-Transforms

2
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0

{ ( )} ( ) ( )n

n

Z f t f nT z F z

2.2.2  Some Basic Discrete Time Signals Sequences and Their Graphical 
Representation

1. Unit Impulse Sequence: The unit impulse sequence is defined by

1; for 0
[ ]

0; for 0

n
n

n

[ ]

1

–3 –2 –1 1 2 3

Fig. 2.1

2. Unit-Step Sequence: The unit-step sequence is defined by

1; for 0
[ ]

0; for 0

n
u n

n

Fig. 2.2
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3. Sinusoidal Sequence: It is defined as

S[n] = A cos (w0n + )

  where A is the amplitude, w0 is the angular frequency and  is the phase of S[n]. The graphical 

representation in the Fig. 2.3.

S

Fig. 2.3

4. Unit-Ramp Sequence: It is defined as

; for 0
[ ]

0; for 0

n n
r n

n

Fig. 2.4
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2.3 Z-TRANSFORM

The Z-transform of a given discrete sequence f [n] is denoted by F(z) or Z{f (n)} and is defined as

Z{f (n)} = ( ) ( ) ,n

n

F z f n z (1)

where z is a continuous complex variable and Z{·} is the Z-transform operator.

Equation (1) represents the bilateral Z-transform.

The unilateral Z-transform of a given sequence f[n] is defined as

Z{f (n)} = 
0

( ) ( ) n

n

F z f n z (2)

2.3.1 Geometrical Representation

In the Z-transform, the complex variable z can be expressed as

z = Re(z) + Im (z),

where Re(z) is the real part of z and Im(z) is the imaginary part of z

z = cos sini
re r ir

Hence, Re(z) = cos , Im( ) sinr z r .

Fig. 2.5 Complex number z in complex plane

In Fig. 2.5 the position of the point i.e., z is represent in the complex Z-plane. If modulus of z, i.e., 

|z| = 1, then r = 1.

The Z-transform of f[n] is

Z{f [n]} = F(ei ) which is the discrete-time Fourier transform of f [n].

Example 1 Find the Z-transform of a unit step sequence u[n] is defined as

1; 0
[ ]

0; 0

n
u n

n
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Solution By the definition of Z-transform

( ) { ( )} ( ) n

n

F z Z f n f n z

1 2 3

0

{ ( )} ( ) 1 1n

n

Z u n U z z z z z

=
1

1
;

11

z

zz
 Provided |z| > 1.

Example 2 Find the Z-transform of a polynomial function defined by

      

; 0
[ ]

0; 0

n
a n

P n
n

Solution The Z-transform of a function P[n] is 

0

{ [ ]} ( ) n n

n

Z P n P z a z

=
1

0

( )n

n

a z

= 1 1 21 ( ) ( )a z a z

=
1

1

1 ( )a z

= for | |
z

z a
z a

Example 3 Find the Z-transform of the exponential function. 
; 0

[ ] .
0; 0

anT
e n

E n
n

Solution The Z-transform of a function E[n] is

     0 0

{ [ ]} ( ) [ ] n anT n

n n

Z E n E z E n z e z

=
0

( )aT n

n

e z

or  
1

1
( )

1 ( )aT
E z

e z

= for | | aT

aT

z
z e

z e
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Example 4 Find the Z-transform of sinusoidal function 
sin( ); 0

( ) .
0; 0

nT n
S n

n

Solution The Z-transform of S(n) is

0

{ ( )} ( ) sin( ) n

n

Z S n S z nT z

=
0 2

i nT i nT
n

n

e e
z

i

=
0

1
[

2

i nT i nT n

n

e e z
i

= 1

0 0

1
[ ) ( )

2

i nT n i T n

n n

e z e z
i

=
1 1

1 1 1

2 1 1i T i Ti e z e z

=
1

1 2

1 ( )

2 1 ( )

i T i T

i T i T

e e z

i e e z z

or  
1

1 2

sin( )
( )

1 2 cos( )

z T
S z

z T z

=
2

sin( )
for | | 1.

2 cos( ) 1

z T
z

z z T

Example 5 Find the Z-transform for the finite length sequence.

; for 1
( )

0; otherwise

n
a M n N

f n

Solution The Z-transform of f (n) is

{ ( )} ( ) ( ) n

n

Z f n F z f n z

=
1N

n n

n M

a z

=
1

1( )
N

n

n M

az

=

1 1

1

( ) 1 ( )

1

M N M
az az

az
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=
11

M M N N
a z a z

az

2.3.2 Region of Convergence (ROC)

The Z-transform does not converge for all sequences or for all values of z. The set of values of z for 

which the Z-transform converges is called the region of convergence.

The Z-transform of f [n] exists if the sum | ( ) |
n

f n  converges. However, the Z-transform of f (z),

i.e., the discrete time Z-transform of the sequence f (n) r
–n exists (or converges) if

| ( ) | , wheren i

n

f n r z r e

This | ( ) | | | n

n

f x z  for the existence of the Z-transform.

Example 6 Find the Z-transform and region of convergence for the right-sided exponential 

sequence.

Solution Consider f [n] = an
u [n], where u[n] is unit step sequence.

The Z-transform of f [n] is

( ) [ ] [ ]n n n

n n

F z f n z a u n z

=
0

n n

n

a z  = 1

0

( )n

n

az

= 1 1 2 1 31 ( ) ( ) ( )az az az

=
1

1

1 ( )az

( )
z

F z
z a

For the convergence

1

0

| |
n

az

which is only the case if 1| | 1 or | | | |az z a .

Hence, in the ROC, ( ) ; | | | |
z

F z z a
z a
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Fig. 2.6

Note:  The Z-transform of f [n] only exists if the ROC includes the circle of unit radius, when 

|a| < 1 or |a| > 1, then the ROC does not include the unit circle, and the Z-transform does not exist.

Example 7 Find the Z-transform for the sum of two exponentials.

Solution The sum of two exponentials is

1 1
[ ] [ ] [ ],

2 3

n n

f n u n u n (3)

where unit step sequence 
1; 0

[ ]
0; 0

n
u n

n

The Z-transform of sequence in Eq. (3) is

( ) [ ] n

n

F z f n z

=
1 1

[ ] [ ]
2 3

n

n n

n n

u n z u n z

=
0 0

1 1

2 3

n n

n n

n n

z z

or
1 1

1 1
( ) .

1 1
1 1

2 3

F z

z z

From the above problem, the first term is converges for 
1

| |
2

z  and the second term for 
1

| |
3

z .

F(z) is converges in the intersection of these regions.
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1

1 1

2 /6 1
( ) for | |

3
1 1

2 3

z
F z z

z z

=

1
2

112
for | |

1 1 3

2 3

Z z

z

z z

EXERCISE 2.1

1. Find the Z-transform of the following:

(i)
1

n
(ii) n

2 (iii) cos
2

n

(iv) n(n – 1) (v) u(n – 1) (vi) a
n cos n

2. Find Z{f (n)}, where the sequence f (n) is defined as

(i)
2 if 0, 2, 4, ..., 2 , ...

( )
1 if 1, 3, 5, ..., 2 1, ...

n k
f n

n k

(ii) ( ) 1, 1and (0) 0f n n f

(iii) ( ) {0, 0, 1, 2, 3}; 0 3f n n

3. Find the Z-transform of

(i) cos( ), 0n
e n n

(ii) sin 2t
e t

Answers

1. (i) log , | | 1
1

z
z

z
(ii)

3

( 1)

( 1)

z z

z

  (iii)

2

2
, | | 1

1

z
z

z
(iv)

3

2
; | | 1

( 1)

z
z

z

  (v)
1

, | | 1
1

z
z

(vi) , | | | |
z

z a
z a

2. (i)

2

2

2

1

z z

z
(ii)

1

1z
(iii) 2 3 42 3z z z

3. (i)
2 2

( cos )

2 cos

z z e

z e z e
(ii)

2 2

sin 2

2 cos2

ez

z ez e
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2.4 THE INVERSE Z-TRANSFORM

The process of inverse Z-transform is the reverse process of Z-transform. The inverse Z-transform is 

given by a complex integral.

1 11
[ ] { ( )} ( ) ,

2

n

C
f n Z F z F z z dz

i (4)

where C is a simple closed curve enclosing the origin and lying outside the circle |z| = r.

In this section, we shall discuss some methods for finding the inverse Z-transform.

2.4.1 The Cauchy Residue Theorem

Example 8 Find the inverse Z-transform of the function ( ) ,
( 1)( 2)

z
F z

z z
 using Residue 

theorem.

Solution Given ( )
( 1)( 2)

z
F z

z z

The given function has the poles at z = 1 and z = 2. The inverse Z-transform of F(z), using Eq. (4) is

11
( )

2 ( 1)( 2)

n

C

z
f n z dz

i z z

1
( ) 2

2
f n i

i
 (sum of the residue of the integral)

= 1( ) ( )
i

n
i z z

z z F z z

= 1( )
( 1)( 2)

i

n
i

z z

z
z z z

z z

=

1 2

1 12
1

( )
( )

( 1)( 2) ( 1) ( 2)

n n

z z z z

z z zz
z z z z

z z z z

=
1 1

1 2
1 2

[ 1, 2]
2 ( 1)

n n

z z

z z
z z z z

z z

= 1 1(1) 2(2)n n

= (2n – 1)

Example 9 Find the inverse Z-transform of the function ( ) ,
( 2) ( 4)

z
F z

z z
 using Residue 

theorem.

Solution Given ( )
( 2) ( 4)

z
F z

z z

The given function has the poles z = 2 and z = 4.
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The inverse Z-transform of F(z) is

11
( ) ( )

2

n

C
f n F z z dz

i

=
1

2 i
(2 i· sum of the residue of the integral)

= 1( ) ( )
i

n
i z z

z z F z z

=
1 1

4 22 4

n n

z z

z z
z z

z z

= 1 14 2
(4) (2)

2 2

n n

=
1 1

(4) (2)
2 2

n n

=
1

(4) (2)
2

n n

2.4.2 Using Partial Fraction Method

Example 10 Find the inverse Z-transform of 

F(z) = 
2

2

3
, using partial

( 1) ( 2)

z z

z z
 fraction method.

Solution We write F(z) as partial fractions

F(z) = 
2

2 2

3 2 5 2
2 2

1 2 2( 1)( 2) ( 2)

z z z z

z zz z z

so that its inverse Z-transform.

1( ) [ ( )]f n Z F z

= 1

2

5 2
2 2

1 2 2 ( 2)

z z z
Z

z z z

= 1 1 1

2

5 2
2 2

1 1 2 ( 2)

z z z
Z Z Z

z z z

=

1

1

2

5
2 1 2 2 2

2

( )

n

n n

n

z
Z a

z a
n

az
Z na

z a

= 1 12 2 5 2n n
n
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2.4.3 Power Series Expansion

If the Z-transform of a sequence f (n) is given as a power series in the form

( ) ( ) n

n

F z f n z

= 2 1 1 2( 2) ( 1) (0) (1) (2)f z f z f f z f z

then any value in the sequence can be obtain in the coefficient of the appropriate power of Z–1.

Example 11 Find inverse Z-transform of

F(z) = log (1 + az
–1), |z| > |a|, by power series expansion.

Solution Here

1( ) log(1 )F z az

1

1

( 1)
( )

n n n

n

a z
F z

n

[Using the power series expansion of log (1 + z) in |z| < 1.]

Therefore, the required sequence is

1( 1)
; 1

( )

0; 0

n n
a

n
f n n

n

Example 12 Find the inverse Z-transform of 
2

( ) , | | 1
( 1)

z
F z z

z
 by power series method.

Solution Here,

2
( )

( 1)

z
F z

z

=
2 1 2(1 )

z

z z

= 1 1 2(1 )z z

= 1 1 2 3 4(1 2 3 4 5 )z z z z z

= 1

1

( 1)n n

n

n z

Therefore, the required sequence is

1( ) ( 1)n
f n n

Example 13 Find the inverse Z-transform of F(z) = z(z – a)–1 by power series expansion.

Solution Here,

1( ) ( )F z z z a
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= 1 1 1(1 )z z az

= 1 1(1 )az

or 1 2 2( ) 1F z az a z

=

0

n n

n

a z

Therefore, the required sequence is

f (n) = an.

EXERCISE 2.2

1. Find the inverse Z-transform of 
2

( ) .
5 6

z
F z

z z

2. Using convolution theorem, find

2
1 .

( 1)( 3)

z
Z

z z

3. If 1 ( 1) ,
1

nz
Z

z
 then find 1 1

1
Z

z
.

4. Find f (n) if 
3

( )
3 1

F z
z

.

5. Find
2

1 8

(2 1) (4 1)

z
Z

z z

6. Using residue method to find.

(i) 1

2 7 10

z
z

z z
(ii)

2
1

2 2

( 1)

( 1)

z z
z

z

7. If ( ) ,
T

z
F z

z e
 find lim ( )

t
f t

8. Using power series method to find 
1 log .

1

z
Z

z

Answers

1. 3 2n n 2. 11
(3 1)

2

n

3. 1( 1) , 1,2,3,...n
n 4.

1 1
1 1

or ( 1)
3 3

n n

u n
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5.
1 1

2 , 0,1,2,..
2 4

n n

n

6. (i)
1

{( 2) ( 5) }
3

n n      (ii) 1 1{( ) ( ) }, 0,1,2,...
2

n nn
i i n

7. 0 8.

0, for 0

( ) ( 1)
, otherwise

n

n

f n

n

2.5 PROPERTIES OF THE Z-TRANSFORM

In this section, if F(z) denotes the Z-transform of a sequence f (n) and all the ROC of F(z) is denoted by 

Rx, then this relationship is defined as

( ) ( ), ROC
z

xf n F z R

Property 1 (Linearty) If Z{f (n)} = F(z) and Z{g(n)} = G(z), then

{ ( ) ( )} { ( )} { ( )}Z af n bg n aZ f n bZ g n

= ( ) ( )aF z bG z

Proof:
0

{ ( ) ( )} { ( ) ( )} n

n

Z af n bg n a f n b g n z

=

0 0

( ) ( )n n

n n

a f n z b g n z

= { ( )} { ( )}a Z f n bZ g n

= ( ) ( )a F z bG z Hence proved.

Property 2 (Shifting property) Let the Z-transform of a casual sequence f (n) is F(z), i.e.,

Z{f (n)} = F(z) and m is any positive integer then

{ ( )} ( );m
Z f n m z F z n m  (shifting to the right)

Proof: We have

     0

{ ( } ( ) n

n

Z f n m f n m z

putting n – m = l, we get

{ ( )} ( ) m l

l m

Z f n m f l z

=
0

( ) l m

l

f l z z

= ( )m
z F z Hence, proved.
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Note:
1

0

{ ( )} ( ) ( )
m

m n

n

Z f n m z F z f n z  (shifting to the left).

Property 3 (Scaling in the Z-domain) Let F(z) be the Z-transform of f (n). Then

{ ( )}n z
Z a f n F

a

Proof: We know that

{ ( )} ( ) ( )n

n

Z f n f n z F z

( )

n

n

z z
F f n

a a

= ( )
n

n
n

z
f n

a

= ( ) n n

n

f n a z

{ ( )}nz
F Z a f n

a
Hence, proved.

Property 4 (Time Reversal) Let F(z) be the Z-transform of f (n). Then

1
{ ( )}Z f n F

z

where f (–n) represents mirror image of the signal f (n).

Proof: We have

{ ( )} ( ) n

n

Z f n f n z

Putting n = –k, we get

   
1 1

{ ( ) ( ) ( )

k

k

n n

Z f n f k z f k F
z z

Hence, proved.

Property 5 (First Shifting Theorem) If { ( )} ( ),Z f t F z  then { ( )} ( ).at aT
Z e f t F ze

Proof:  We have

0

{ ( )} ( )at anT n

n

Z e f t e f nT z

=
0

( ) ( )aT n

n

f nT z e
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= ( )aT
F ze Hence, proved.

Property 6 (Second Shifting Theorem) If { ( )} ( ),Z f t F z  then { ( )} [ ( ) (0)].Z f t T z F z f

Proof:  We have

0

{ ( )} ( ) n

n

Z f t T f nT T z

= ( 1)

0

[( 1) ] n

n

z f n T z

=
1

( ) k

k

z f kT z

=
0

( ) (0)k

k

z f kT z f

= ( ) (0)z F z f Hence, proved.

Property 7 (Initial Value Theorem) If { ( )} ( ),Z f t F z  then lim ( ) (0).
z

F z f

Proof:  We have

0

( ) { ( )} ( ) n

n

F z Z f t f nT z

= 1 2(0. ) (1. ) (2 )f T f T z f T z

=
2

1 1
(0) ( ) (2 )f f T f T

z z

lim ( ) (0)
z

F z f Hence, proved.

Note: If f (0) = 0, then (1) lim ( )
z

f z f z .

Property 8 (Final Value Theorem) If { ( )} ( ),Z f t F z  then 
1

lim ( ) lim( 1) ( )
t z

f t z F z .

Proof: We have

0

{ ( ) ( )} ( ) ( ) n

n

Z f t T f t f nT T f nT z

0

{ ( )} { ( )} ( ) ( ) n

n

Z f t T Z f t f nT T f nT z

or
0

( ) (0) ( ) ( ) ( ) n

n

z F z z f F z f nT T f nT z [By Property (6)]

1 1
0

lim ( 1) ( ) (0) lim ( ) ( ) n

Z z
n

z F z z f f nT T f nT z
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1
0

lim ( 1) ( ) (0) ( ) ( )
z

n

z F z f f nT T f nT

= lim ( ) (0) (2 ) ( ) {( 1) } ( )
n

f T f f T f T f n T f nT

= lim {( 1) (0)}
n

f n T f

= ( ) (0)f f

1
lim ( 1) ( ) (0) lim ( ) (0)
z t

z F z f f t f

or
1

lim ( 1) ( ) lim ( )
z t

z F z f t

Property 9 (Differentiation in the Z-domain)  Let Z-transform of a sequence f (n)

{ ( )} ( )Z f n F z  exist in the region 
1

| |z
R

where R is ROC. Then

{ ( )} ( )
d

Z nf n z F z
dz

which is also convergent in the region 
1

| |z
R

.

Note:
1

[ ] ; 0,1,2,..., and | | | |
( )

K
zn

K

an
Z a u n K z a

K z a

2.6 CONVOLUTION OF SEQUENCES 

Let {f (n)} and {g(n)} be two sequences. Then the convolution of these sequences is defined as

{ ( )}* { ( )} { ( )* ( )} ( ) ( )
m

f n g n f n g n f m g n m

Note: If it is one sided (right) sequence, let

( ) 0 ( )f m g m  for m < 0, then

0

{ ( ) * ( )} ( ) ( )
m

f n g n f m g n m

2.6.1 Convolution Theorem

Let {f (n)} and {g(n)} be any two sequences.

Let the Z-transform of {f (n)}, z(f (n)} = F(z) exist in the region 
1

1
| |z

R
 and Z{g(n)} = G(z) exist 

in the region 
2

1
| |z

R
.
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Then { ( ) * ( )} ( ) ( )z f n g n F z G z  exist in the region 
1

| | ,z
R

 where 
1 2

1 1 1
Max ,

R R R
.

Proof: We have

( ) ( ) { ( )} Z{ ( )}F z G z Z f n g n

=
0 0

( ) ( )n n

n n

f n z g n z

=

1 2

1 2

(0) (1) (2) ( )

(0) (1) (2) ( )

n

n

f f z f z f n z

g g z g z g n z

= 1 2 2(0) (0) (0) (1) (1) (0) (0) (2) (1) (1) (2) (0)

(0) ( ) (1) ( 1) ( ) (0) n

f g f g f g z f g f g f g z z

f g n f g n f n g z

=

0 0

( ) ( )
n

n

n m

f m g n m z

=
0

( ) * ( ) n

n

f n g n z

= { ( ) * ( )}z f n g n Hence, proved.

Note: 1{ ( ) ( )} ( )* ( )Z f z G z f n g n .

Example 14 Using convolution theorem to find the inverse Z-transform of

2

( ) .
1 1

2 3

z
H z

z z

Solution Here,
2

( )
1 1 1 1

2 3 2 3

z z z
H z

z z z z

Let ( ) and ( )
1 1

2 3

z z
F z G z

z z

So that

1 1 1
( ) { ( )}

1 2

2

n
z

f n Z F z Z

z

1 1 1
( ) { ( )}

1 3

3

n
z

g n Z G z Z

z
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Thus, the convolution theorem gives

1

0

1 1
{ ( ) ( )}

2 3

m n mn

m

Z F z G z

=
0 0

1 1 1 3
3

3 2 3 2

n m m mn n
n

m m

=

2 3
3 3 3

3 1
2 2 2

n

=
1

1

3
3 2 1

2

n
n

n

= (3.2 2.3 )n n

Example 15 Using convolution theorem to show that 1 2

3

( 1)
.

( 1)

z z
Z n

z

Solution We write

3 2

( 1) 1

1( 1) ( 1)

z z z z

zz z

=
2

1

1 1( 1)

z z

z zz

We take

2

1
( ) and ( )

1 1( 1)

z z
F z G z

z zz

So that

1 1

2
( ) { ( )}

( 1)

z
f n Z F z Z n

z

1 1 1
( ) { ( )}

1 1

z
g n Z G z Z

z z

= ( ) ( 1)H n H n

Thus, the convolution theorem gives

1 1

3

( 1)
{ ( ) ( )}

( 1)

z z
Z Z F z G z

z

= ( )* ( )f n g n
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=
0

( ) ( 1)
n

m

m H n m H n m

= n
2 Hence, proved.

Example 16 Verify the initial value theorem for the function F(z) in the above example.

Solution

Here   
3

( 1)
( )

( 1)

z z
F z

z
 and 2( )f n n

We have f (0) = 0

and   
3

( 1)
lim ( ) lim 0

( 1)z z

z z
F z

z

(0) lim ( ).
z

f F z  Hence, theorem is verified.

Example 17 Find the Z-transform of {f (n)}, where 
3 ; 0

( ) .
5 ; 0

n

n

n
f n

n

Solution

Z{f (n)} = ( ) n

n

f n z

=
1

0

3 5n n n n

n n

z z

= 3 3 2 2 1 1

2 3

5 25 125
3 3 3 1z z z

z z z

=
1

1

1

3 1

51 3 1

z

z

z

=
3 5

z z

z z

=
( 5) (3 )

( 5)(3 )

z z z

z z

=
[ 2]

( 5)( 3)

z

z z

=
2 5

; 1, 1.
( 3) ( 5) 3

z z

z z z
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Example 18 Find the Z-transform of 
1

.
3

n

Solution

    

1 1

3 3

n n

n

n

Z z

=
1

0

1 1

3 3

n n

n n

n n

z z

=
1

03 3

n n

n n
n n

z z

=
1

0

3 1

(3 )

n

n
n nz z

=

3 2 1

2 3

3 3 3 1 1 1
1

3 (3 ) (3 )z z z z z z

=

3 2

2 3

1 1 1
1

3 3 3 3 (3 ) (3 )

z z z

z z z

=
3 1

; 3 Sum of G.P
3 3 1 3 1

z z a
z

z z r

=
8

.
(3 1) (3 )

z

z z

Example 19 Find the Z-transform of the sequence 
0 0

{ ( )} 2 3 .n n

n n

f n

Solution We know that

Z{2n} = 1 2 2 3 3

0

2 1 2 2 2n n

n

z z z z

=
1

1

1 2z

Similarly Z{3n} = 
1

1

1 3z

Z{f (n)} = Z{2n} {3n}

=
1 1

1 1

1 2 1 3z z
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=
2

( 2) ( 3)

z z

z z

=
2

.
( 2)( 3)

z

z z

Example 20 Let
( 1)

( ) .
!

n
n a

f n
n

 Determine Z-transform of f (n).

Solution We know that

Z{f (n)} = 
0

( ) n

n

f n z

Given f (n) = 
( 1)

!

n
n a

n

f (n) = 
1

! !

n nn
a a

n n

Z{f (n)} = 
! !

n n
a a

Z n Z
n n

=
! !

n n
d a a

z Z Z
dz n n

(5)

Now     

0! !

n n
n

n

a a
Z z

n n

=

2
1 1

1
1! 2!

a a

z z

=

a

ze

Hence, Eq. (5) gives

Z{f (n)} = { }

a a

z z
d

z e e
dz

=
2

a a

z z
a

z e e
z

=

a a

z z
a

e e
z

= 1 .

a

z
a

e
z
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Example 21 Using the convolution of sequences, to show that

1 1 2
* .

! ! !

n

n n n

Solution We know that

      0

1 1 1 1
*

! ! ! ( )!

n

mn n m n m

=
1 1 1 1

! 1!( 1) 2!( 2)! !n n n n

=
1 ( 1)

1
! 2!

n n
n

n

= 0 1 2

1

!

n n n n
nC C C C

n

=
2

.
!

n

n
Hence, proved.

Example 22 Using convolution theorem, find 
2

1 .
( 3)( 5)

z
Z

z z

Solution Let

F(z) = and ( )
3 5

Z Z
G z

z z

f (n) = 1 13 and ( ) 5
3 5

n nZ z
Z g n Z

z z

Using convolution theorem, we get

Z
–1{F(z)·G(z)} = f (n) * g(n)

= {3n * 5n}

=
0

(3) (5)
n

m n m

m

= 5n + 31(5)n – 1 + 32(5)n – 2 + ...+ 3n

=
3 9

5 5 5 3 .
5 25

n n n n

Example 23 Find
2

1 2 3
.

( 2)( 4)

z z
Z

z z
[J.N.T.U. 2002]

Solution Let

F(z) = 
22 3

( 2)( 4)

z z

z z
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or        
( ) 2 3

( 2)( 4)

F z z

z z z

       

( )
[By partial fraction]

2 4

F z A B

z z z

or        
( ) 1 11 1

6( 2) 6 4

F z

z z z

or          
1 11

( )
6 2 6 4

z z
F z

z z

Z
–1{F(z)} = 1 11 11

6 2 6 4

z z
Z Z

z z

or f (n) = 
1 11

( 2) (4) .
6 6

n n

Example 24 Find
2

1

2
.

1

z
Z

z

Solution Let

F(z) = 
2

2 1

z

z

Then     

2

( )

( )( )1

F z z z

z z i z iz

=

1 1 1
[Using partial fraction]

2 z i z i

=

2 2

1 1 1

2 i i

z e z e

or F(z) = 

2 2

1

2 i i

z z

z e z e

Z
–1{F(z)} = 1 1

2 2

1

2 i i

z z
Z Z

z e z e

= 2 2
1

2

n i n i

e e

Z
–1{F(z)} = cos .

2

n
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Example 25 If
2

4

2 5 14
( ) .

( 1)

z z
F z

z
 Find f2 and f3.

Solution We can write the given function as

F(z) = 
1 2

2 1 4

1 2 5 14

(1 )

z z

z z

Using initial value theorem, we obtain

f0 = lim ( ) 0
z

F z

f1 = 0lim { ( ) }
z

F z f

=

1 2

2 1 4

2 5 14
lim 0 0

(1 )z

z z
z

z z

Now f2 = 2 1
0 1lim { ( ) }

z
z F z f f z

=

1 2
2

2 1 4

2 5 14
lim 0 0

(1 )z

z z
z

z z

= 2

and f3 = 
3 1 2

0 1 2lim { ( ) }
z

z F z f f z f z

=

1 2
3

2 1 4 2

2 5 14 2
lim 0 0

(1 )z

z z
z

z z z

=

2
3

4 2

2 5 14 2
lim

( 1)z

z z z
z

z z

=

3 2
3

2 4

13 2 8 2
lim

( 1)z

z z z
z

z z

= 13.

Example 26 If
3 2

2

3 5 7 1
{ ( )} ( ) ,

( 1)( 2)

z z z
Z f n F z

z z
 then find lim ( ).

n
f n

Solution Using final value theorem.

     1
lim ( ) lim ( 1) ( )
n z

f n z F z

or      
3 2

21

3 5 7 1
lim ( ) lim ( 1)

( 1) ( 2)n z

z z z
f n z

z z
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=
3 2

21

3 5 7 1
lim

( 2)z

z z z

z

=
3 5 7 1

9

=
2

.
9

2.7 TABLE OF Z-TRANSFORMS

Table of Z-transforms is as follows:

Sequence Z-transform ROC

[n] 1 all z

u[n]
1

z

z
|z| > 1

u[–n]
1

1 z
|z| > 1

u[n – 1]
1

1z
|z| > 1

u[n + 1]
2

1

z

z
|z| > 1

a
n
u[n], a  0

z

z a
|z| > |a|

–u[–n – 1]
1

z

z
|z| < 1

–a
n
u[–n – 1]

z

z a
|z| < |a|

na
n
u[n]

1

2 1 2
or

( ) (1 )

az az

z a az
|z| > |a|

–na
n
u[–n – 1]

1

1 2(1 )

az

az
|z| < |a|

n u [n]
2( 1)

z

z
|z| > 1

(Contd.)



Z-Transforms 2.27

Sequence Z-transform ROC

(n – 1) u [n – 1] 2

1

( 1)z
|z| > 1

1

!n

1

ze
all z

0cos( ) [ ]n u n

2
0

2
0

cos

2 cos 1

z z

z z
|z| > 1

0sin( ) [ ]n u n
0

2
0

sin

2 cos 1

z

z z
|z| > 1

( )n k z
–k all z

1

1n
log

1

z
z

z
|z| > 1

u(n – k)
1

k z
z

z
|z| > 1

cos ( )
2

n
u n

2

2 1

z

z
|z| > 1

sin ( )
2

n
u n

2 1

z

z
|z| > 1

n
k

1

!

( 1)k

k z

z
|z| > 1

a
n
f (n)

z
F

a
all z

n·f (n) ( )
d

z F z
dz

all z

n
m + 1 ( ) ( )

m
m

m

d
z z n

dZ
all z

sinh (n ) 2

sinh

2 cosh 1

z

z z
|z| > 1

cosh (n ) 2

( cosh )

2 cosh 1

z z

z z
|z| > 1

(Contd.)
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Sequence Z-transform ROC

a
n sin n 2 2

sin

2 cos

az

z az a
|z| > 1

a
n cos n 2 2

( cos )

2 cos

z z a

z az a
|z| > 1

2.8 SOME USEFUL INVERSE Z-TRANSFORM

Some useful inverse Z-transforms have been given in the table as following:

F(z) Inverse of F(z) i.e., Z–1 {F(z)}

1

z a
1 [ 1]n

a u n

z

z a
[ ]n

a u n

2

2( )

z

z a
( 1) [ ]n
n a u n

3

3( )

z

z a

1
( 1)( 2) [ ]

2!

n
n n a u n

2

1

( )z a
2( 1) [ 2]n

n a u n

3

1

( )z a

31
( 1) ( 2) [ 3]

2

n
n n a u n

2.9 SOLUTION OF DIFFERENCE EQUATIONS USING Z-TRANSFORMS

Consider a relation is of the form

1 1 2 2 ( )n k n k n k k ny a y a y a y f n (6)

where a1, a2, …, ak are all constants, is called a linear difference equation with constant coefficient of 

order k.

The order of a difference equation is the difference between the largest and the smallest arguments 

in the difference equation.

Equation (6) is called homogenous if f (n) = 0, and non-homogeneous if f (n)  0.

Equation (6) can be solved with the help of Z-transform.

Following steps can be use to solve:

1. Take the Z-transform of both sides of the given difference equation.

2. Using the given conditions (Initial or boundary), transpose all the terms without Y(z) to the 

right, where Y(z) = Z{yn}. Here yn = y(n).

3. Simplify and find Y(z).
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4. Take the inverse Z-transform of Y(z) and compute yn, which is the required solution to the 

given difference equation.

Note:

1. Z{yn} = Y(z)

2. 11 2
0 2 1

{ } ( )k k
n k k

yy y
Z y z Y z y

z z z

  In particular

(i) 1 0{ } { ( ) }nZ y z Y z y

(ii) 2 1
2 0{ } ( )n

y
Z y z Y z y

z

(iii) 3 1 2
3 0 2

{ } ( ) and so on.n

y y
Z y z Y z y

z z

3. { } ( )k
n kZ y z Y z

Example 27 Solve 2 16 9 2 ;n
n n ny y y  given y0 = 0 = y1.

Solution Given

2 16 9 2n
n n ny y y (7)

Taking Z-transform of both sides on Eq. (7),

2 1{ 6 9 } {2 }n
n n nZ y y y Z

or 2 1{ } 6 { } 9 { } {2 }n
n n nZ y Z y Z y Z

or
2 1

0 0( ) 6 ( ) 9 ( )
2

y z
Z Y z y Z Y z y Y z

z z

Since y0 = 0 and y1 = 0, we have

2{ ( )} 6 ( ) 9 ( )
2

z
Z Y z ZY z Y z

z

or  
2( 6 9) ( )

2

z
z z Y z

z

or
2

( )
( 2) ( 6 9)

z
Y z

z z z

     =
2( 2) ( 3)

z

z z

or
2 2

( ) 1

2 3( 2) ( 3) ( 3)

Y z A B C

z z zz z z
(8)
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Equation (8) gives, 
1 1 1

, and
25 25 5

A B C

Therefore Eq. (8), becomes

2

( ) 1 1 1 1 1 1

25 ( 2) 25 (2 3) 5 ( 3)

Y z

z z z

     or
2

1 1 1
( )

25 2 25 3 5 ( 3)

z z z
Y z

z z z

Taking inverse Z-transform on both sides, we get

1 1 1 1

2

1 1 1
{ ( )}

25 2 25 3 5 ( 3)
n

z z z
y Z Y z Z Z Z

z z z

11 1 1
(2) ( 3) ( 3)

25 25 5

n n n
ny n

or
1 5

(2) ( 3) ( 3)
25 3

n n n
ny n

Example 28 Solve 2 13 2 0,n n ny y y  given y0 = 0 and y1 = 1.

Solution Given

2 13 2 0n n ny y y (9)

Taking Z-transform both sides on Eq. (9), we have

2 1{ } 3 { } 2 { } 0n n nZ y Z y Z y

2 1
0 0( ) 3 { ( ) } 2 ( ) 0

y
z y z y z Y z y Y z

z

Since y0 = 0 and y1 = 1, we have

2 1
( ) 3 { ( )} 2 ( ) 0

2
z Y z z Y z Y z

or 2( 3 2) ( ) 0z z Y z z

or
2

( )
3 2

z
Y z

z z

  =
( 1) ( 2)

z

z z

or
( ) 1 1 1

( 1)( 2) 2 1

Y z

z z z z z

or ( )
2 1

z z
Y z

z z
(10)
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Taking inverse Z-transform both sides on Eq. (10), we get

1 1 1{ ( )}
2 1

n

z z
y Z Y z Z Z

z z

or (2 1); 0,1,2,3,...n
ny n

Example 29 Solve 2 12 3 5,n n ny y y n  subject to the condition y0 = 0 = y1.

Solution Given 2 12 3 5n n ny y y n (11)

Taking Z-transform, both sides on Eq. (11), we have.

2 1{ } 2 { } { } {3 5}n n nZ y Z y Z y Z n

     

2 1
0 0 2

( ) 2 { ( ) } ( ) 3 5
1( 1)

y z z
z Y z y z Y z y Y z

z zz

Since, y0 = 0 and y1 = 0, we have

2

2
( ) 2 ( ) ( ) 3 5

( 1)( 1)

z z
z Y z zY z Y z

zz

or     2

2
( 2 1) ( ) 3 5

1( 1)

z z
z z Y z

zz

or         
2 2

3 5
( )

( 1)( 2 1) ( 1)( 2 1)

z z
Y z

z z z z z z

            
4 3

3 5
( )

( 1) ( 1)

z z
Y z

z z
(12)

Taking inverse Z-transform both sides on Eq. (12), we get

   

1 1 1

4 3
{ ( )} 3 5

( 1) ( 1)
n

z z
y Z Y z Z Z

z z

= 1

1
3 [ ] 5 [ ] Z [ ]

3 2 ( )

K
n

K

n n na z
u n u n a u n

Kz a

=
1 5

( 1)( 2) ( 1) [ ]
2 2

n n n n n u n

=
1

( 1) [ 2 5] [ ]
2

n n n u n

       

1
( 1) ( 3) [ ]

2
ny n n n u n

or      
1

( 1) ( 3) [ [ ] 1]
2

ny n n n u n
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Example 30 Solve 1

1

7 10

4

n n n

n n n

x x y

y x y

given x0 = 3 and y0 = 2.

Solution Taking the Z-transform, to 1 7 10 ,n n nx x y  we get

1{ } 7 { } 10 { }n n nZ x Z x Z y

or       0{ ( ) } 7 ( ) 10 ( )z X z x X z Y z

Since x0 = 3, we have

[ ( ) 3] 7 ( ) 10 ( )z X z X z Y z

or      (7 ) ( ) 10 ( ) 3z X z Y z z (13)

Again, taking Z-transform, to 1 4 ,n n ny x y  we get

1{ } { } 4 { }n n nZ y Z x Z y

        0{ ( ) } ( ) 4 ( )Z Y z y X z Y z

or 0( ) ( 4) ( ) 2 [ 2]X z z Y z z y (14)

Eliminate X(z) from Eqs (13) and (14), we get

     
2 2( 11 18) ( ) 2 11z z Y z z z

or    
22 11

( ) [By partial fraction]
( 2) ( 9) 9 2

z z z z
Y z

z z z z

Taking inverse Z-transform, we have

       

1 1 1{ ( )}
9 2

n

z z
y Z Y z Z Z

z z

       9 2n n
ny

From the given Eq (14), we get

1 4n n nx y y

= 1 19 2 4(9 2 )n n n n

= 9.9 2.2 4(9 2 )n n n n

       5.9 2.2n n
nx

Hence, 5.9 2.2 and 9 2n n n n
n nx y .
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EXERCISE 2.3

Solve the following difference equation by Z-transform:

1. Solve 1 01; given 0.n ny y y

2. Solve 2 0 15.2 ; given 1, 0.n
n ny y y y

3. Solve 2 1 0 15 6 6 ; if 0 .n n ny y y n y y

4. Solve 1 [ ] [ 1].n ny y u n u n

5. Solve 1 1 0 00; 1; 0, 1.n n n ny x x y x y

6. Solve 3 1 0 1 23 2 3 ; 2, 1, 6.n
n n ny y y y y y

7. Solve 2 1 0 110 25 ; 1, 5.n n ny y y n y y

8. Solve 2 04 ( 1); 1.n ny y n y

9. Find the Z-transform of the following sequence

(i) a
n  (ii) a

–n  (iii) ax
e   (iv)

!

n
e

n

10. Using convolution theorem, to find the inverse Z-transform of the

(i)
2

2
( )

( 1) ( 1)

z
F z

z z
(ii)

10

( 1) ( 2)

z

z z

Answers

1.
1

{1 ( 1) }
2

n
ny 2. 2 2sin

2

n
n

n
y

3.
1 1 1

6 3 2
12 3 4

n n n
ny 4. 1 2ny n

5.
1

1 cos sin
2 2 2

1
sin cos 1

2 2 2

n

n

n n
x

n n
y

6.
1

16(2) (3) 15 4 ( 1)
16

n n n
ny n

7.
1

(545 3 )( 5) 5(3 1)
540

n
ny n n 8.

1
29( 4) 4 5

25

n
ny n

9. (i)
z

z a
   (ii)

1

az

az
   (iii)

a

z

z e
   (iv) /a z

e

10. (i)
( ) ( )

( ) 1
1 1

n n
i i

f n
i i

    (ii) ( ) 10(2 1); 0,1,2,3,...,n
f n n
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EXERCISE (MIXED PROBLEMS)

1. Show that 
1

log
1

z
Z z

n z
[Madras 2003]

2. Find Z-transform of 
1

.
( 1)n n

[Mangalore 1999]

3. If
2

4

2 3 12
( ) ,

( 1)

z z
F z

z
 then find the values of f2 and f3.

4. Find lim ( ),
n

f n  where 
2 3 5

( ) { ( )} .
( 1)( 2)

z z
F z z f n

z z

5. Find the inverse Z-transform of 
10

( ) .
( 1) ( 2)

z
F z

z z
[Madras 2003]

6. Find the inverse Z-transform
5

.
(3 1)(2 )

z

z z
[Madras 1999]

7. Find
2

1

2( 1)( 1)

z z
Z

z z
[Madras 2003]

8. If
3 2

2

3 2 1
{ ( )} ,

( 1)( 3)

z z z
Z f n

z z
 using final value theorem to evaluate lim ( ).

n
f n

9. Determine f0, f1 and f2 when Z{f (n)} = F(z) is as given below:

(i)
2

2 1

z

z
  (ii)

2

2

( 1) ( 2)

( 3)( 5)

z z

z z

10. Determine Z{nf (n)} and Z{n
2
f(n)}, where f (n) = an.

11. Find the inverse Z-transform of 

2

( ) .
z

F z
z a

12. Find 1 1

1 1

2 3

Z

z z

 when

(i)
1 1

3 2
z   (ii)

1
.

2
z

13. Using residues method to evaluate the inverse Z-transform of 
3

2

9
.

(3 1) ( 2)

z

z z
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Following topics have been discussed in this chapter:

1. Sequence

A function whose domain is the set of natural numbers N and range, a subset of real number R is 

called a sequence.

Let f (n) be an element of a sequence S and it is defined as

S = {f (n)}; –  < n < , where n is an integer.

14. Using Z-transform to solve the difference equation 
1

1 1
( 0)

4 4

n

n ny y n  with y(0) = 0

15. Using Z-transform to solve the equation 
1

1 1
( ) ( 1).

4 3
n ny y u n u n

16. Solve 2

1 1
cos ( 0).

25 5 2

n

n n

n
y y n

Answers

3. f2 = 2, f3 = 11 4. 1

5. f (n) = 10(2n – 1), n = 0, 1, 2, 3, ... 6.
1

( ) 2
3

n
f n

7. 2 21
( ) 1 ( ) ( )

2

n n
f n i i 8.

1

16

9. (i) f0 = 1, f1 = 0, f2 = –1  (ii) f0 = 1, f1 = –13, f2 = 111

10.
2 3

( )
,

( ) ( )

az az z a

z a z a
11. (n + 1)a

n.

12. (i) 1

6
if 0

( ) 3

12.2 if 0

n

n

n
f n

n

  (ii)
1 1

1 1
( ) 6 , 1

2 3n n
f n n

13. 29 1 ( 2)
( ) 2

25 5 3

n

n

n
f n 14.

1 1
( ) 2 2

4 4

n n

y n

15.

1
1 1

( )
12 4

n

y n 16.
1 1

( ) ( 2) cos
2 25n

n
y n n

SUMMARY
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2. Z-Transform for Discrete Values of t

Let f (t) is a function defined for discrete values of t, where t = nT, n = 0, 1, 2, …, T being the period 

of sampling, then z-transform of f (t) is defined as

0

{ ( )} ( ) ( )n

n

Z f t f nT z F z

3. Z-Transform

The z-transform of a given discrete sequence f [n] is denoted by F(z) or Z{f (n)} and is defined as

{ ( )} ( ) ( ) n

n

Z f n F z f n z

where Z is a continuous complex variable and Z{·} is the Z-transform operator.

Given equation represent the bilateral Z-transform.

The unilateral Z-transform of a given sequence f [n] is defined as

0

{ ( )} ( ) ( ) n

n

Z f n F z f n z

Region of Convergence (ROC)

The Z-transform does not converge for all sequences or for all values of Z. The set of values of Z for 

which the Z-transform converges is called the region of convergence.

The Z-transform of f [n] exists if the sum | ( ) |
n

f n  converges. However, the Z-transform

F(z) of f (n), i.e., the discrete time Z-transform of the sequence f (n) r
–n exists (or converges) if 

| ( ) | , wheren i

n

f n r Z r e

| ( ) | | | n

n

f x z

for the existence of the Z-transform.

4. The Inverse Z-Transform

The process of inverse Z-transform is the reverse process of Z-transform. The inverse Z-transform is 

given by the complex integral.

1 11
[ ] { ( )} ( )

2

n

C
f n Z F z F z z dz

i

where C is a simple closed curve enclosing the origin and lying outside the circle |z| = R.

In this section, we shall discuss some methods for finding the inverse Z-transform.

5. Properties of the Z-Transform

Property 1 (Linearty) If Z{f (n)} = F(z) and Z{g(n)} = G(z), then

{ ( ) ( )} { ( )} { ( )}Z af n bg n aZ f n bZ g n  = ( ) ( )aF z bG z
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Property 2 (Shifting property)  Let the Z-transform of a casual sequence f (n) is F(z), i.e.,

Z{f (n)} = F(z) and m is any positive integer then

{ ( )} ( );m
Z f n m z F z n m

 (shifting to the right)

Property 3 (Scaling in the Z-domain)  Let F(z) be the Z-transform of f (n). Then

{ ( )}n z
Z a f n F

a

Property 4 (Time Reversal)  Let F(z) be the Z-transform of f (n). Then

1
{ ( )}

2
Z f n F

where f (–n) represents mirror image of the signal f (n).

Property 5 (First Shifting Theorem) If { ( )} ( ),Z f t F z  then { ( )} ( )at aT
Z e f t F ze .

Property 6 (Second Shifting Theorem) If { ( )} ( ),Z f t F z  then { ( )} [ ( ) (0)]Z f t T z F z f .

Property 7 (Initial Value Theorem)  If { ( )} ( ),Z f t F z  then lim ( ) (0)
z

F z f .

Note:  If f (0) = 0, then (1) lim ( )
z

f zf z .

Property 8 (Final Value Theorem)  If { ( )} ( ),Z f t F z  then 
1

lim ( ) lim( 1) ( )
t z

f t z F z .

Property 9 (Differentiation in the Z-domain):  Let Z-transform of a sequence f (n)

{ ( )} ( )Z f n F z  exist in the region 
1

| |z
R

where R is Radius of Convergence, then

{ ( )} ( )
d

Z nf n z F z
dz

which is also convergent in the region 
1

| |z
R

.

6. Convolution of Sequences 

Let [f (n)} and {g(n)} be two sequences. Then the convolution of these sequences is defined as

{ ( )}* { ( )} { ( ) * ( )} ( ) ( )
m

f n g n f n g n f m g n m

Note:  If it is one sided (right) sequence, let

( ) 0 ( )f m g m  for m < 0, then

0

{ ( ) ( )} ( ) ( )
m

f n g n f m g n m
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Convolution Theorem

Let {f (n)} and {g(n)} be any two sequences.

Let the Z-transform of {f (n)}, Z(f (n)} = F(z) exist in the region 
1

1
| |z

R
 and Z{g(n)} = G(z) exist 

in the region 
2

1
| |z

R
.

Then { ( ) * ( )} ( ) ( )Z f n g n F z G z  exist in the region 
1

| | ,z
R

 where 
1 2

1 1 1
Max ,

R R R
.

Note: 1{ ( ) ( )} ( ) * ( )Z f z G z f n g n .

7. Solution of Difference Equations Using Z-Transforms

Consider a relation is of the form.

1 1 2 2 ( )n k n k n k k ny a y a y a y f n

where a1, a2, …, ak are all constants, is called a linear difference equation with constant coefficient 

of order k.

The order of a difference equation is the difference between the largest and the smallest arguments 

in the difference equation.

Given equation is called homogenous if f (n) = 0, and non-homogeneous if f (n)  0.

Given equation can be solved by Z-transform if we follow the following steps:

1. Take the Z-transform of both sides of the given difference equation.

2. Using the given conditions (Initial or boundary), transpose all the terms without Y(z) to the 

right, where Y(z) = Z{yn}, Here yn = y(n).

3. Simplify and find Y(z).

4. Take the inverse Z-transform of Y(z) and compute yn, which is the required solution to the 

given difference equation.

Note:

1. Z{yn} = Y(z)

2. 11 2
0 2 1

{ } ( )k k
n k k

yy y
Z y z Y z y

z z z

  In particular

(i) 1 0{ } { ( ) }nZ y z Y z y

(ii) 2 1
2 0( ) ( )n

y
Z y z Y z y

z

(iii) 3 1 2
3 0 2

{ } ( ) and so on.n

y y
Z y z Y z y

z z

3. { } ( )k
n kZ y z Y z
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OBJECTIVE TYPE QUESTIONS

1. The Z-transform F(z) of the function 

f (nT) = anT is

(a)
T

z

z a
(b)

T

z

z a

(c)
T

z

z a
(d)

T

z

z a

[GATE (EC) 1999]

2. The region of convergence of the z-transform

of a unit step function is

(a) |z| > 1 (b) |z| < 1

(c) Re(z) > 0 (d) Re(z) < 0

[GATE (EC) 2001]

3. The z-transform of a system is ( ) .
0.2

z
H z

z

If the ROC is |z| < 0.2, then the impulse 

response of the system is

(a) (0.2)n
 u(n) (b) (0.2)n

 u(–n – 1)

(c) –(0.2)n
 u(n) (d) –(0.2)n

 u(–n – 1)

[GATE (EC) 2004]

4. The region of convergence (ROC) 

of z–transform of the sequence. 

5 6
( ) ( 1)

6 5

n n

u n u n  must be

(a)
5

| |
6

z (b)
6

| |
5

z

(c)
5 6

| |
6 5

z (d)
6

| | .
5

z

[GATE (EC) 2005]

5. If u(t) is the unit step function and (t) is 

the unit impulse function, then the inverse 

z-transform of 
1

( )
1

F z
z

 for K  0 is

(a) ( 1) ( )K
K (b) ( ) ( 1)K

K

(c) ( 1) ( )K
u K (d) ( ) ( 1)K

u K

[GATE (EE) 2005]

6. The region of convergence (ROC) of Xn(n)

+ X2(n) is 
1 2

| | ,
3 3

z  then the ROC of 

Xn(n) – X2(n) includes

(a)
1

| | 3
3

z (b)
2

| | 3
3

z

(c)
3

| | 3
2

z (d)
1 2

| |
3 3

z

[GATE (EC) 2006]

7. The region of convergence of the z-transform

of the discrete-time signal X(n) = 2n
u[n] will 

be

(a) |z| > 2 (b) |z| < 2

(c)
1

| |
2

z (d)
1

| |
2

z

[GATE (IN) 2008]

8. For input X(t), an ideal impulse sampling 

system produces the output

( ) ( ) ( ),

K

y t X KT t KT

where (t) is the Dirac-delta function. The 

system is

(a) Non-linear and time invariant

(b) Non-linear and time variant

(c) Linear and time invariant

(d) Linear and time variant

[GATE (IN) 2009]

9. The region of convergence of the discrete–

time sequence

1 1
( ) ( ) ( 1)

3 2

n n

X n u n u n  is

(a)
1 1

| |
3 2

z (b)
1

| |
2

z

(c)
1

| |
3

z (d) 2 < |z| < 3

[GATE (EC) 2009]

10. The z-transform of a signal. X(n) is given 

by 4z
–3 + 3z

–1 + 2 – 6z
2 – 2z

3. It is applied 
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to a system, with a transfer function H(z) = 

3z
–1 – 2. Let the output by y(n). Which of the 

following is true?

(a) y(n) is non-casual with finite support

(b) y(n) is casual with infinite support

(c) y(n) = 0; |n| > 3

(d) Re{ ( )} Re{ ( )} ;j j
z e z e

Y z Y z

Im{ ( )} Im{ ( )} ;j j
z e z e

Y z Y z

[GATE (EE) 2009]

11. Consider the z-transform X(z) = 5z
2 + 4z

–1 + 

3; 0 < |z| < . The inverse z-transform X(n) is

(a) 5  (n + 2) + 3 (n) + 4 (n – 1)

(b) 5  (n – 2) + 3 (n) + 4 (n + 1)

(c) 5 u (n + 2) + 3u (n) + 4u (n – 1)

(d) 5u (n – 2) + 3u (n) + 4u (n + 1)

[GATE (EC) 2010]

12. A system is defined by its impulse response 

H(n) = 2n
 u(n – 2). The system is

(a) Stable and casual

(b) Casual but not stable

(c) Stable not casual 

(d) Unstable and non-casual

[GATE (EC) 2011]

13. Consider the difference equation 

1
( ) ( 1) ( )

3
y n y n X n  and suppose that 

1
( ) ( ).

2

n

X n u n  Assuming the condition 

of initial rest, the solution for y(n), n  0 is

(a) 1 1
3 2

3 2

n n

(b)
1 1

2 3
3 2

n n

(c)
2 1 1 1

3 3 3 2

n n

(d)
1 1 2 1

3 3 3 2

n n

[GATE (IN) 2011]

14. If
| |

1 1
( ) ( ),

3 2

n n

X n u n  then the region

of convergence of its z-transform in the z-plane

will be

(a)
1

| | 3
3

z (b)
1 1

| |
3 2

z

(c)
1

| | 3
2

z (d)
1

| |
3

z

[GATE (IN & EE) 2012]

15. Let y(n) denote the convolution of h(n) and 

g(n), where 
1

( ) ( )
2

n

h n u n  and g(n) is a 

casual sequence. If y(0) = 1 and 
1

(1) ,
2

y

then g(1) equals

(a) 0 (b)
1

2

(c) 1 (d)
3

2

[GATE (EE & IN) 2012]

16. Let
1 1

( ) ( ) ( 1).
9 3

n n

X n u n u n

The region of convergence (ROC) of the 

z-transform of X(n) is

(a)
1

| |
9

z (b)
1

| |
3

z

(c)
1 1

| |
9 3

z (d) does not exist

[GATE (EC) 2014]

17. Consider a discrete time signal 

, 0 10
( )

0, otherwise

n n
X n . If y(n) is the 

convolution of X(n) with itself, the value of 

y(4) is(10) [GATE (EC) 2014]

18. Let
3

1
( )

1
X z

z
 be the z-transform of a 

casual signal x(n). Then the value of X(2) and 

X(3) are

(a) 0 and 0 (b) 0 and 1

(c) 1 and 0 (d) 1 and 1
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19. Two casual discrete-time signals X(n) and 

Y(n) are related as 

0

( ) ( ).

n

n

Y n X m  If the 

z-transform of y(n) is 
2

2
,

( 1)z z
 the value of 

X(2) is______(0).

[GATE (EC) 2015]

20. Consider two real sequences with time origin 

marked by the value,

x1(n) = {1, 2, 3, 0}, x2 (n) = {1, 3, 2, 1}.

Let X1(K) and X2(K) be 4–point discrete Fourier 

transform of x1(n) and x2(n) respectively. 

Another sequence x3(n) is derived by taking 

4-point inverse DFT of x3 (n) = X1(K)·X2(K).

The vale of x3(n) is (11)

[GATE (EC) 2015]

21. Consider a discrete time signal given by

( ) ( 0.25) ( ) (0.5) ( 1)n n
x n u n u n

The region of convergence of its z-transform

would be

(a) The region inside the circle of radius 0.5 

and centered at origin

(b) The region outside the circle of radius 

0.25 and centered at origin

(c) The annular region between the two 

circles, both centered at origin and having 

radii 0.25 and 0.5

(d) The entire z-plane

[GATE (EE) 2015]

22. If X(n) = |n|; 0 < | | < 1, then the region of 

convergence of X(n) is

(a)
1

| |z (b) |z| > 

(c)
1

| |z (d) |z| > 1

[GATE (IN) 2015]

23. The Z-transform of na
n is

(a)
( )

Z

Z a
(b)

2( )

az

z a

(c)
2( )

az

z a
(d)

3( )

az

z a

24. The Z-transform of 
1

!n
 is

(a)

1

ze (b)

1

ze

(c) e
z (d) e

–z

25. 1 1

2
Z

Z
 is

(a) 2n+ 1 (b) 2n–1

(c) 2n (d) 2–n

ANSWERS

1. (a) 2. (a) 3. (d) 4. (c) 5. (c) 6. (d) 7. (a)

8. (d) 9. (a) 10. (b) 11. (a) 12. (b) 13. (b) 14. (c)

15. (a) 16. (c) 17. (10) 18. (b) 19. (0) 20. (11) 21. (c)

22. (a) 23. (b) 24. (b) 25. (b)





3.1 COMPLEX NUMBER

An ordered pair of real numbers x and y to be written as z = (x, y) is called a complex number. Also, we 

may write z = (x, y) = x + iy, where imaginary unit i(iota) is defined as i = (0, 1). Here x is called real 

part of z and y is called imaginary part of z. The real part of z is denoted by Re(z) and the imaginary 

part of z by Im(z).

Set of Complex Numbers

The set of all complex numbers is denoted by C, i.e.,

C = {x + iy | x, y R}.

Since a real number ‘x’ can be written as x + oi,

Every real number is a complex number. Hence R C, where R is the set of all real 

numbers.

3.2 EQUALITY OF COMPLEX NUMBERS

Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal if x1 = x2 and y1 = y2, i.e. Re(z1) = Re(z2)

and Im(z1) = Im(z2).

3.3 FUNDAMENTAL OPERATIONS WITH COMPLEX NUMBERS

Let z1 = x1 + iy1 and z2 = x2 + iy2 be two complex numbers, then

(i) Addition of Complex Numbers

Addition of two complex numbers z1 and z2 is denoted by z1 + z2 and is defined as

   z1 + z2 = (x1 + x2) + i(y1 + y2)

  i.e., Re(z1 + z2) = Re(z1) + Re(z2)

  and Im(z1 + z2) = Im(z1) + Im(z2).

Properties of Addition of Complex Numbers

(a) Addition is commutative for any two complex numbers z1 and z2, we have 

z1 + z2 = z2 + z1.

(b) Addition is associative For any three complex numbers z1, z2, z3, we have

(z1 + z2) + z3 = z1 + (z2 + z3).

Complex Variables 

and Calculus3
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(c) Existence of additive identity The complex number 0 = 0 + 0i is an identity element 

for addition, i.e. z + 0 = z = 0 + z for al z C.

(d) Existence of additive inverse For every non-zero complex number z = x + iy and there 

exists an additive inverse z = –(x + iy), then 

z + (–z) = (x + iy) – (x + iy)

  = 0 + 0i

  = 0

(ii) Subtraction of Complex Numbers

  The subtraction of z2 from z1 is denoted by z1 – z2 and is defined as the addition of z1 and z2.

  Thus, z1 +(–z2) = z1 – z2 = (x1 + iy1) – (x2 + iy2)

        = (x1 – x2) + i(y1 – y2).

(iii) Multiplication of Complex Numbers

  The multiplication of z1 with z2 is denoted by z1z2 and is defined as the complex number

(x1x2 – y1y2) + i(x1y2 + x2y1).

Thus,   z1z2 = (x1 + i y1)  (x2 + iy2)

        = (x1x2 – y1y2) + i(x1y2 + x2y1).

z1z2 = [Re(z1) Re(z2) – Im(z1) Im(z2)] + i [Re(z1) Im(z2) + Re(z2) Im(z1)]

Properties of Multiplication

(a) Multiplication is commutative For any two complex numbers z1 and z2, we have

z1z2 = z2z1.

(b) Multiplication is associative For any three complex numbers z1, z2, z3, we have

(z1 z2) z3 = z1(z2 z3).

(c) Existence of identity element for multiplication The complex number 1 = 1 + oi is the 

identity element for multiplication, i.e. for every complex number z, we have

   z  1 = z = 1 z.

(d) Existence of multiplicative inverse For every non-zero complex number z = x + iy,

there exists a complex number z1 = x1 + iy1. Such that 

z z1 = 1 = z1 z.

(e) Multiplication of complex numbers is distributive over addition of complex numbers For 

any three complex numbers z1, z2, z3, we have

  (i)   z1(z2 + z3) = z1z2 + z1z3  (Left distributivity)

  (ii)  (z2 + z3)z1 = z2z1 + z3z1  (Right distributivity)

3.4 DIVISION OF COMPLEX NUMBERS

The division of a complex number z1 by a non-zero complex number z2 is defined as the multiplication 

of z1 by the multiplicative inverse of z2 and is denoted by 11
1 2 1

2 2

1
( )

z
z z z

z z
.
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3.5 MODULUS OF A COMPLEX NUMBER

The modulus of a complex number z = x + iy is denoted by |z| and is defined as

|z| = 2 2 2 2{Re( )} {Im(z)} ( )z x y

Clearly, 0 .z z C

Properties of Modulus

If z, z1 and z2 be the three complex numbers, then

(i) |z| = 0 z = 0, i.e. Re(z) = Im(z) = 0

(ii) | |z z z

(iii)
2

z z z

(iv) 1 2 1 2z z z z

(v)
11

2
2 2

; 0
zz

z
z z

(iv)
2 2 2

1 2 1 2 1 22 Re ( )z z z z z z

(vii) 2 2 2

1 2 1 2 1 22 Re ( )z z z z z z

(viii)
2 2 2 2

1 2 1 2 1 22 ( )z z z z z z

3.6 GEOMETRICAL REPRESENTATION OF COMPLEX NUMBERS

Every complex number z = x + iy can be represented geometrically as 

a point in the XY-plane. The complex number z can be represented by 

a point P = (x, y), whose co-ordinates are x and y relative to rectangular 

axes X and Y. To every complex number there corresponds one and 

only one point in the XY-plane, conversely to every point in the plane 

there exists one and only one complex number. This plane is known 

complex plane or Argand plane. The representation of z is called 

Argand diagram. X and Y axes are called real and imaginary axes 

respectively.

3.7 POLAR FORM OF A COMPLEX NUMBERS

Let P = (x, y) be any point in the complex plane corresponding to a complex number z = (x, y). The polar 

coordinates x = r cos  and y = r sin ,  Then, 

z = x + iy = r (cos  + i sin ) = rei . (1)

|z| = 2 2 2 2 2 2| | ( ) cos sinx iy x y r r r

Fig. 3.1
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and  = 1tan .
y

x

Equation (1) is called the polar form of the complex number z.

r and  are called polar coordinates of z. r is called the absolute 

value of z and angle  is called argument or amplitude of complex 

number z and it is denoted as  = amp(z) or  = arg(z). If –

and satisfies Eq. (1) then value of  is said principal value of the 

amplitude.

3.8 CONJUGATE COMPLEX NUMBER

If z = x + iy is any complex number, then its conjugate denoted by is or ( , )z z x iy z x y .

Thus, z  is the mirror image of the complex point z in to real axis. This shows that z z z  is 

purely a real number.

Following remarks are easy consequences of the above definition:

(i) 1 2 1 2z z z z

(ii) 2 Re( )z z z

(iii) 2 Im ( )z z i z

(iv) z z  is real and positive unless z = 0

(iv) 1 1

2 2

z z

z z

3.9 DE MOIVRE’S THEOREM

Abraham De Moivre was a French mathematician born on 26 May 1667 
in Champagne, France. His father’s belief in education prompted Moivre 
to gain a good education but he never gained a proper degree in 
mathematics. Due to the beginning of religious persecution in France, De 
Moivre’s family moved to London. During his stay in London, he started 
excelling in mathematics and soon became a proficient mathematician 
with knowledge of the standard texts. He published his first paper about 

fluxions in Principia. After the paper was published, De Moivre also generalized Newton’s 
renowned ‘Binomial Theorem’ to ‘Multinomial Theorem’. He put forward many theories such 
as ‘the centripetal force of any planet is directly related to its distance from the center of the 
forces and reciprocally related to the product of the diameter of the evolute and the cube of 
the perpendicular on the tangent. His book ‘Doctrine of Chances’ published in 1718 was on the 
subject of probability containing many innovations such as method of approximating to 
functions of large numbers. He is also known for his ‘De Moivre’s Formula’ about complex 
numbers. He predicted his death date based upon his minutes of sleep added up to 24 hours, 
which turned out to be the correct date. De Moivre died on 27 November 1754 in London.

Fig. 3.2



Complex Variables and Calculus 3.5

Statement

(i) If n z (the set of integers), then 

    (cos  + i sin )n = cos n  + i sin n

(ii) If n Q (the set of rational numbers), then cos n  + i sin n  is one of the values of

(cos  + i sin )n.

Remarks

(a) Notation of cos  + i sin  = cis .

                   Let z = cos  + i sin , then

1

z
 = 

1

cos sini
 = (cos  + i sin )–1

= cos(– ) + i sin (– ) = cos  – i sin = cis (– ).

(b) (cis )n = cis n

(c) (cis )–n = 
1

cos sin
(cis )n

n i n

(d) (cis ) (cis ) = cis(  + )

(e)
cis

cis
 = cis (  – ).

Example 1 Prove that 
1 sin cos

cos sin .
1 sin cos 2 2

n
i n n

n i n
i

Solution We know that

2 2 2(sin cos )(sin cos ) sin cosi i i

= 2 2 2sin cos 1i

= 1.

Therefore,

    

1 sin cos (sin cos )(sin cos ) sin cos

1 sin cos 1 sin cos

n n
i i i i

i i

=
(sin cos ) (1 sin cos )

(1 sin cos )

n
i i

i
 = [sin  + i cos ] n

= cos sin
2 2

n

i  = cos sin
2 2

n n
n i n

Hence, proved.

Example 2 If cos cos cos sin sin sin 0,  then prove that

cos 3  + cos 3  + cos 3  = 3 cos (  +  + ) and sin 3  + sin 3  + sin 3  = 3 sin (  +  + ).

Solution

Let a = cos  + i sin , b = cos  + i sin  and c = cos  + i sin , then

a + b + c = (cos  + i sin ) + (cos  + i sin ) + (cos  + i sin )
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= (cos  + cos  + cos ) + i (sin  + sin  + sin )

= 0 + i0 = 0.

a
3 + b3 + c3 = 3abc [ a + b + c = 0]

    

3 3 3(cos sin ) (cos sin ) (cos sin )

3(cos sin ) (cos sin ) (cos sin )

i i i

i i i

or   (cos3 sin3 ) (cos3 sin3 ) (cos3 sin3 ) 3 cos( ) sin ( )i i i i

or   (cos3 sin3 cos3 ) (sin3 sin3 sin3 ) 3 cos( ) sin ( )i i

Equating real and imaginary parts, we get

   cos 3  + cos 3  + cos 3  = 3 cos (  +  + ) and

    sin 3  + sin 3  + sin 3  = 3 sin (  +  + ) Hence, proved.

Example 3 Prove that 2 2 12( ) ( ) 2( ) cos tan .

m m m

n n n
m b

a ib a ib a b
n a

Solution Put

a = r cos  and b = r sin , we have

r
2 = 2 2 2 2ora b r a b

and tan  = 
b

a
          or 1tan

b

a

     ( ) ( ) (cos sin (cos sin )

m m m m
n n n na ib a ib r i r i

= (cos sin ) (cos sin )

m m m m

n n n nr i r i

= cos sin cos sin

m

n
m m m m

r i i
n n n n

= 2cos

m

n
m

r
n

=
2 2 122 ( ) cos tan

m

n
m b

a b
n a

Hence, proved.

Example 4 If 2 3
0 1 2 3(1 ) ,n

x a a x a x a x  show that

(i) 2
0 2 4 2 cos

4

n
n

a a a   (ii) 2
0 3 5 2 sin .

4

n
n

a a a

Solution Given 2 3
0 1 2 3(1 )n

x a a x a x a x (2)

Put x = i both sides in Eq. (2), we get

(1 + i)n = 
2 3 4 5

0 1 2 3 4 5a a i a i a i a i a i
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=
2 3 4 5

0 1 2 3 4 5 1, , 1,a ia a ia a ia i i i i i i

(1 + i)n = 0 2 4 1 3 5( ) ( )a a a i a a a (3)

Let 1 + i = r (cos  + i sin ) (4)

Equating real and imaginary parts, both sides on Eq. (3), we get

r cos  = 1, r sin  = 1

r
2 = 1 + 1 = 2 or 2r

and tan  = 1 or .
4

Thus, 1 + i = 2 cos sin
4 4

i

(1 + i)n = 2 cos sin
4 4

n

i

= 22 cos sin
4 4

n n

i

or (1 + i)n = 22 cos sin
4 4

n
n n

i (5)

Using Eq. (5) in (3), we have

       

2
0 2 4 1 3 52 cos sin ( ) ( )

4 4

n
n n

i a a a i a a a

Equating real and imaginary parts, we get

a0 – a2 + a4 = 22 cos
4

n
n

and a1 – a3 + a5 = 22 sin
4

n
n

Hence, proved.

3.10 ROOTS OF A COMPLEX NUMBER

We can find all n-roots of a complex number by De-Moivre’s theorem.

Since sin  = sin (2 n  + )

and cos  = cos (2n  + )

or cis  = cis (2n  + ), where n is an integer.

(cis )1/k = [cis (2n  + ]1/k
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=
2

cis ; 0, 1, 2, ..., 1
n

n n
k

Thus, (cis )1/k has k distinct roots.

3.11 EULER’S FORMULA

For any value of x, we have

e
x = 

2 3 4

1
2! 3! 4! !

n
x x x x

x
n

sin x = 
3 5

3! 5!

x x
x

cos x = 
2 4

1
2! 4!

x x

Using above series, we get

e
ix = 

2 3 4 5( ) ( ) ( ) ( )
1

2! 3! 4! 5!

ix ix ix ix
ix

or e
ix = 

2 4 3 5

1
2! 4! 3! 5!

x x x x
i x

e
ix = cos x + i sin x (6)

Similarly, e
–ix = cos x – i sin x (7)

Equations (6) and (7) are called Euler’s formulae.

3.12  EXPONENTIAL (OR EULERIAN) FORM OF A 
COMPLEX NUMBER

We know that

e
i  = cos  + i sin .

Let z be any complex number, then in polar form z can be written as

z = r(cos  + i sin )

or z = r e
i . (Using Euler’s notation)

This form of z is known as exponential or Eulerian form.

3.13 CIRCULAR FUNCTIONS

For any real or complex number ‘x’, we have the Euler’s formula

e
ix = cos x + i sin x (8)

and e
–ix = cos x – i sin x (9)

Adding Eqs (8) and (9), we get

cos x = 
2

ix ix
e e
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Subtracting Eq. (9) from Eq. (8), we get

sin x = 
2

ix ix
e e

i

Thus, tan x = 
1 ix ix

ix ix

e e

i e e

cot x = 
ix ix

ix ix

e e
i

e e

cosec x = 
2

ix ix

i

e e

sec x = 
2

.
ix ix

e e

3.13.1 Inverse Circular Function of a Complex Number

If two complex numbers (x + iy) and (u + iv) are connected by the relation

cos (x + iy) = u + iv, then (x + iy) is called cosine inverse of (u + iv) and it is written as

(x + iy) = cos–1(u + iv).

Similarly, if sin (x + iy) = u + iv, then (x + iy) is called sine inverse of u + iv and it is written as

(x + iy) = sin–1(u + iv).

Similarly, tan–1(u + iv) = x + iy

  cot–1(u + iv) = x + iy, etc.

3.13.2  The Principal Value and General Value of a Inverse Circular
Function

We know that

u + iv = cos (x + iy)

u + iv = cos ( ) cos cos2 2n x iy n

By the above definition the general value of inverse cosine of u + iv is 2n  (x + iy), and is 

denoted by cos–1(u + iv) i.e., the first letter ‘C’ as capital.

The inverse cosine of u + iv is a many-valued function. Its principal value is that value of

2n  (x + iy) in which the real part lies between 0 and , and it is denoted by cos–1(u + iv).

Thus Cos–1 (u + iv) = 2n  (x + iy)

Cos–1(u + iv) = 2n  cos–1(u + iv).

In a similar manner if sin (x + iy) = u + iv, then its general value is n  + (–1)n (x + iy) and is denoted 

by sin–1(u + iv).
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Its principal value is that value of n  + (–1)n (x + iy) for which the real part lies between

2
 and .

2

Thus, Sin–1(u + iv) = n  + (–1)n sin–1 (u + iv).

In the same way the other inverse circular functions defined as:

Tan–1(u + iv) = n  tan–1(u + iv)

Sec–1(u + iv) = 2n  sec–1(u + iv)

Cot–1(u + iv) = n  + cot–1(u + iv)

Cosec–1(u + iv) = n  + (–1)n cosec–1 (u + iv).

It should be noted that the principal value for the case of cos and sec is that value for which the real 

part lies between 0 and  while for the case of sin, cosec, tan and cot is that value for which its real part 

lies between and .
2 2

3.14 HYPERBOLIC FUNCTIONS

For any real or complex ‘x’, the hyperbolic sine and cosine of x is defined as:

sin hx = and cosh .
2 2

x x x x
e e e e

x

Other hyperbolic functions are defined as

tan hx = 
x x

x x

e e

e e

cot hx =
x x

x x

e e

e e

cosec hx = 
2

x x
e e

sec hx = 
2

.
x x

e e

3.14.1 Inverse Hyperbolic Functions

If cos hy = x, then y is called inverse hyperbolic cosine of x and is defined as

y = cos h–1
x.

Similarly, we can define sin h–1
x, cosec h–1

x, sec h–1
x, tan h–1

x and cot h–1
x.

Let z be any real number, then

(i) cos h
–1

z = 2log ( 1)z z

(ii) sin h
–1

z = 2log ( 1)z z
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(iii) tan h
–1

z  = 
1 1

log
2 1

z

z

3.14.2 Relation between Circular and Hyperbolic Function

(i) sin h(ix) = i sin x, cos h(ix) = cos x, tan h(ix) = i tan x

(ii) sec h(ix) = sec x, cosec h(ix) = – i cosec x, cot h(ix) = – i cot x

(iii) sin (ix) = i sin h x, tan (ix) = i tan hx, cos (ix) = cos hx

3.14.3 Real and Imaginary Parts of Hyperbolic Functions

(i) sin h(x + iy) = sin hx cos y + i cos hx sin y

(ii) cos h(x + iy) = cos hx cos y – i sin hx sin y

(iii) tan h(x + iy) = 
sin 2 sin 2

cos 2 cos 2 cos 2 cos 2

h x y
i

h x y h x y

3.15 REAL AND IMAGINARY PARTS OF CIRCULAR FUNCTION

(i) sin (x + iy) = sin x cos (iy) + cos x sin (iy)

= sin x cos hy + i cos x sin hy

(ii) cos (x + iy) = cos x cos (iy) – sin x sin (iy)

= cos x cos hy – i sin x sin hy

(iii) tan (x + iy)  = 
sin ( )

cos ( )

x iy

x iy
 = 

2 sin ( ) cos ( )

2 cos ( ) cos ( )

x iy x iy

x iy x iy

=
sin 2 sin (2 )

cos 2 cos (2 )

x iy

x iy
 = 

sin 2 sin 2

cos 2 cos 2

x i h y

x h y

=
sin 2 sin 2

cos2 cos 2 cos2 cos 2

x h y
i

x h y x h y

3.16 LOGARITHM OF A COMPLEX NUMBER

Let (x + iy) and (a + ib) be two complex numbers such that (a + ib) = e(x + iy), then (x + iy) is said to the 

logarithm of (a + ib) to the base e.

Thus (x + iy) = loge(a + ib).

Since e
i2n  = cos 2n  + i sin 2n  = 1

e
(x + iy) = e(x + iy)

e
i2n  = ex+i(y + 2n ) for all n Z.

If (x + iy) is the logarithm of (a + ib), then x + i(2n  + y) is also logarithm of (a + ib) for all n z.

The value [x + i(2n  + y)] is called the general value of log (a + ib) and it is denoted by Log (a + ib)

and is defined as:

Log(a + ib) = 2n i + log (a + ib).

Let a = r cos , b = r sin , then (a + ib) = r (cos  + i sin ) = r e
i ,
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where 2 2 1( ) and tan .
b

r a ib a b
a

Then log (a + ib) = log (rei ) = log r + i

or  2 2 1log ( ) log ( ) tan
b

a ib a b i
a

is called the principal value of the logarithm of (a + ib).

Example 5 To show that 

2
25

19 1
4i

i

Solution We have

2 225

19 16 3

24

1 1
i i i

i i i

=

22 3
3

4

1 i
i i

i i

= (–i + i3)2 = (–i – i)2 = (–2i)2

= 4i
2 = 4 Hence, proved.

Example 6 Find the least positive value of n, for which 
1

1

n
i

i
 is real.

Solution We know that

1

1

i

i
 = 

2

2

1 1 (1 )

1 1 1

i i i

i i i

=
21 2

1 1

i i
 = 

1 1 2

2

i
i

Therefore,
1

1

n
i

i
 is real

i
n is real

n is a multiple of 2.

Hence, the smallest positive value of n is 2.

Example 7 Express the complex number 1 3 i  in Eulerian form.

Solution Let z = 1 3 i

Modulus of z is 1 3z i

= 2 2( 1) ( 3)  = 1 3  = 2
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and argument of z is

tan  = 13 4
3 tan 3 .

1 3

Hence, the required Eulerian form of z is 

4

32 .

i

e

Example 8 Prove that (1 + i)n + (1 – i)n = 
1

22 cos .
4

n
n

Solution Let 1 + i = r (cos  + i sin ) (10)

Now r = 2 21 1 1 2i

and tan  = 11
1 tan (1)

1 4

1 + i = 2 cos sin
4 4

i (from Eq. (10))

(1 + i)n = ( 2 ) cos sin
4 4

n

n
i

(1 + i)n = 22 cos sin
4 4

n
n n

i (11)

Similarly, (1 – i)n = 22 cos sin
4 4

n
n n

i (12)

Adding Eqs (10) and (11), we get

(1 + i)n + (1 – i)n = 22 cos sin cos sin
4 4 4 4

n
n n n n

i i

= 122 2 cos
4

n
n

(1 + i)n + (1 – i)n = 
1

22 cos
4

n
n

Hence, proved.

Example 9 Find log (1 + i).

Solution   log (1 + i) = log 1 amp (1 )i i i [  log z = log |z| + i amp (z)]

= log ( 2)
4

i

log (1 + i) = 
1

log 2
2 4

i
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Example 10 If
4

2,z
z

 find the maximum value of |z|.

Solution We have

     |z| = 
4

z
z z

   
4 4

z
z z

(  |z1 + z2|  |z1| + |z2|)

or       
4 4

| | 2 2z z
z z

     |z|2 – 2|z| – 4  0

      ( 1 5) ( 1 5) 0z z

      (1 5) (1 5)z

Hence, the maximum value of |z| is (1 5).

Example 11 Find log (log i).

Solution

log (log i) = log [log (0 + i)]

= log [log | 0 + i| + i arg (0 + i)]

= log [log 1 + i tan–1 (1/0)]

= log 0
2

i  = log 0 arg 0
2 2

i i
i

=
2

1 /2
log tan

4 0
i  = log .

2 2
i

Example 12 If z is a complex number having least absolute value and | z – 2 + 2i | = 1, then 

find z.

Solution We have

|z – 2 + 2i| = 1

|z – (2 – 2i)| = 1

z lies on a circle having centre at (2, –2) and radius 1.

In the Fig. (3.3) the complex number z is given by the point P.

OP makes an angle 45° with X-axis and

OP = OC – CP

=
2 22 2 1  = 2 2 1. Fig. 3.3
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The coordinates of P are

         (2 2 1) cos , (2 2 1) sin
4 4

 i.e., 
1 1

2 , 2
2 2

Hence, z = 
1 1

2 2
2 2

i  = 
1

2 (1 ).
2

i

Example 13 Find the smallest positive integer n for (1 + i)2n = (1 – i)2n.

Solution We have

(1 + i)2n = (1 – i)2n

or

2
1

1
1

n
i

i

or

2
2(1 )

1
(1 )(1 )

n

i

i i

or      i2n = 1

   2n is a multiple of 4.

Hence, the smallest positive value of n is 2.

EXERCISE 3.1

1. Find the maximum value of |z|, when z satisfies the condition 
2

2.z
z

2. Find the value of ii.

3. If z = x + iy and w = 
1

,
i z

z i
 show that |w| = 1 z is purely real.

4. If n is a positive integer, prove that 
1( 3 ) ( 3 ) 2 cos .

6

n n n n
i i

5. Find the value of 

13
1

1

( ), where 1.n n

n

i i i

6. Find the argument of 
1 3

.
1 3

i

7. If
2 0 andiz z z  is the complex conjugate of z, where 1i  find values of |z|.

8. Show that arg( ) + arg ( ) 2 .z z n

9. The sum and the product of two complex numbers are both real, show that the two numbers 

are either both real or complex conjugates.
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Answers

1. ( 3 1)   2. 2e

5. i – 1   6.
3

7. |z| = 0, 1

3.17 SUMMATION OF TRIGONOMETRIC SERIES – (C + iS) METHOD

This method can be applied to find the sum of the series of the form:

0 1 2 3sin sin( ) sin ( 2 ) sin ( 3 )a a a a

or 0 1 2 3cos cos( ) cos( 2 ) cos( 3 )a a a a

Method Putting the given series is equal to S(or C) according as it is a series of sines (or cosines).

Let      0 1 2 3sin sin( ) sin( 2 ) sin( 3 )S a a a a

and     0 1 2 3cos cos( ) cos( 2 ) cos( 3 )C a a a a

Multiplying the series of sines by i and adding to the sum of cosines, then we get the series of 

complex numbers as

    

C iS a i a i a i0 1 2 2(cos sin ) cos( ) sin( ) cos( ) sinn( )

cos( ) sin( )

2

3 33a i

=
( ) ( 2 ) ( 3 )

0 1 2 3 cos sini i i i i
a e a e a e a e i e

or C + iS = 
2 3

0 1 2 3
i i i i

e a a e a e a e

=
2 3

0 1 2 3 , wherei i
e a a x a x a x x e

or C + iS = ei · f (x).

The series represented by f (x) can be sum up, if it is in any one of the following:

(i) Gregory’s series

(ii) Exponential series

(iii) Logarithmic series

(iv) Geometric series

(v) sine, cosine, sinh or cosh series

(vi) Binomial series

The following standard series will be used:

(i)
3 5 7

1tan
3 5 7

x x x
x x

3 5 7
1 1 1

tanh log
3 5 7 2 1

x x x x
x x

x
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(ii)
2 3

1
2! 3!

x x x
e x

2 3

1
2! 3!

x x x
e x

(iii)
2 3

log(1 )
2 3

x x
x x

2 3

log(1 )
2 3

x x
x x

(iv) 2 (1 )
to terms

1

n
a r

a ar ar n
r

2 if 1
1

a
a ar ar r

r

(v)
3 5 7

sin
3! 5! 7!

x x x
x x

2 4

cos 1
2! 4!

x x
x

3 5 7

sinh
3! 5! 7!

x x x
x x

2 4

cosh 1
2! 4!

x x
x

(vi) 2 3( 1) ( 1)( 2)
(1 ) 1

2! 3!

n n n n n n
x nx x x

2 3( 1) ( 1)( 2)
(1 ) 1

2! 3!

n n n n n n
x nx x x

2 3( 1) ( 1)( 2)
(1 ) 1

2! 3!

n n n n n n
x nx x x

Example 14 If 2 3 51 1
cos cos cos3 cos cos5 ,

3 5
C  then show that

tan 2C = 2 cot2 .

Solution Given

    3 51 1
cos cos cos cos3 cos cos5

3 5
C

Let  3 51 1
cos sin cos sin3 cos sin 5

3 5
S
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C + iS = 
3

5

1
cos (cos sin ) cos (cos3 sin3 )

3

1
cos (cos 5 sin 5 )

5

i i

i

=
3 3 5 51 1

cos cos cos
3 5

i i i
e e e

=
3 51 1

cos (cos ) (cos )
3 5

i i i
e e e

= 3 51 1
cos

3 5

i
x x x x e

= tan–1
x

C + iS = tan–1(cos ·ei )

C + iS = 1tan [cos (cos sin )]i (13)

Replace –i by i in Eq. (13) we get,

C – iS = tan–1[cos  (cos  – i sin ] (14)

Adding Eqs (13) and (14), we get

2C = 
1 1tan [cos (cos sin )] tan [cos (cos sin )]i i

or 2C = 
1 cos (cos sin ) cos (cos sin )

tan
1 cos (cos sin ) cos (cos sin )

i i

i i

=

2
1

2 2 2

2cos
tan

1 cos (cos sin )

=

2
1

2

2 cos
tan

1 cos
 = 

2
1

2

2cos
tan

sin

2C = 
1 2tan 2 cot

or    2tan 2 2 cotC Hence, proved.

Example 15 Find the sum to infinite terms of the series

2 4cos2 cos 4
1

2! 4!

x x

Solution Let

C = 
2 4cos2 cos 4

1
2! 4!

x x

S = 
2 4sin 2 sin 4

2! 4!

x x
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C + iS = 1
2

2 2
4

4 4
2 4

x
i

x
i

!
cos sin

!
cos sin

=
2 4

2 41
2! 4!

i ix x
e e

=
2 4

1 , where
2! 4!

iz z
z xe

= cosh z.

or C + iS = cosh (x e
i ) = cosh [ (cos sin )]x i

= cos [ (cos sin )]i x i  = cos[ cos sin ]ix x

= cos( cos ) cos( sin ) sin( cos ) sin( sin )ix x ix x

C + iS = cosh (x cos )·cos(x sin ) + i sinh (x cos )·sin(x sin ).

Equating the real parts, we have

C = cosh (x cos )·cos(x sin )

3.18 INTRODUCTION TO THEORY OF COMPLEX VARIABLES

When we study the real number system, we have seen that there does not exist any real number whose 

square is a negative real number. Thus, the concept of 1  is not valid. Euler (1707–1783) was the 

first mathematician who introduced the symbol i with the proper 1.i  It was Gauss (1777–1855) 

who first studied that an algebraic equation with real coefficients has complex roots of the form x + iy,

where x and y are real numbers. It is a powerful method which is useful in the study of fluid dynamics, 

electrostatics and heat flow.

3.19 BASIC CONCEPTS OF THE COMPLEX VARIABLE

1. Point set: Any collection of points in the complex plane is called a point set and each point of 

the set is called a member or element of the set.

2. Neighbourhoods: The neighbourhood of a point z0 is set of all points z, such that.

|z – z0) < , where (delta) is any given positive number.

  A deleted -neighbourhood of z0 is a neighbourhood of z0 in which the point z0 is omitted, i.e. 

0 < |z – z0| < .

3. Limit point: A point z0 is called a limit point of a point set S if every deleted -neighbourhood

of z0 contains points of S. The limit of a set S may or may not belong to the set S, and it is also 

known as limiting point, cluster point or point of accumulation.

4. Closed set: A point set S is said to be closed if every limit point of S belongs to S, i.e.,

  If set S contains all its limit points.

  For example, the set of all points z such that

|z|  1 is a closed set.

5. Bounded set: A set S is called bounded if we can find a constant M, such that |z| < M for every 

point z S. An unbounded set is one which is not bounded.

  A set which both bounded and closed is called compact.



3.20 Engineering Mathematics for Semesters III and IV

6. Interior, exterior and boundary points: A point z0 is said to be an interior point of a set S if 

their exists a -neighbourhood of z0 contains points belong to S. If every -neighbourhood

of z0 contains points belonging to set S and also points not belonging to S, then z0 is called a 

boundary point.

  If a point is not an interior or boundary point of a set S, then it is an exterior point of S.

7. Open set: An open set is a set which consists only of interior points.

  For example, the set of points z such that |z| < 1 is an open set.

8. Connected set: An open set S is said to be connected if any two points of the set S are joined 

by a polygonal path, all the points of which lie in set S.

9. Domain: A set S is said to be domain if every point of set S is an interior point and connected; 

a domain is denoted by D.

10. Region: A region is a domain together with all, some or none of its boundary points. Thus, a 

domain is always a region but a region may or may not be a domain.

  For example, an open disk is both a domain and a region but a closed disk is a region and not 

a domain. A region is denoted by R.

11. Circle: |z – z0| < , represents a circle with centre z0 and radius .

12. Complex variable: If a symbol z which can stand for any one of a set of complex numbers is 

called a complex variable.

13. Function of a complex variable: We define the function of a variable in a similar way as the 

function of a real variable. Let S1 and S2 be two non-empty sets of complex numbers. If there is 

a rule f, which assigns a complex number w in S2 for each z in S1, then f is said to be a complex 

valued function of a complex variable z and is denoted by

w = f (z).

  The set S1 is called the domain of definition of f and the set S2 is called the range of f.

w = f (z) = u(x, y) + iv(x, y)

  Here u(x, y) and v(x, y) real valued functions of x and y, are known as the real and imaginary 

parts of the functions w.

Fig. 3.4

14. Single valued and multiple valued functions: w is said to be single-valued or multiple valued 

function of z according as for a given value of z corresponds, one or more than one values 

of w.

15. Limit: A number l is said to be the limit of f (z) as z z0 and is denoted by

0

lim ( ) .
z z

f z l
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  If for every  > 0, there exists a positive number  > 0 such that |f (z) – l| <  whenever 

|z – z0| < .

16. Continuity: A function f (z) is said to be continuous at z = z0 if an arbitrary  > 0, there exists a 

number  > 0 such that

0 0( ) ( ) , whenever .f z f z z z

  If follows from the above definition that f (z) will be continuous at z = z0 if

0
0lim ( ) ( )

z z
f z f z

  If a function f (z) is said to be continuous in a domain D if it is continuous at every point of 

D.

  A function f (z) is not continuous at z = z0 if 
0

lim ( )
z z

f z  does not exist or 
0

0lim ( ) ( )
z z

f z f z  is 

called discontinuous at z = z0.

Remarks:

(1) If f (z) and g(z) are two continuous functions in a domain D, then their sum f + g,

difference f – g, product f · g and quotient f/g are all continuous in D.

(2) If f (z) = u(x, y) + iv(x, y) is continuous if both u and v are continuous.

17. Differentiability: Let f (z) be a single valued function defined in a domain D. The function f (z)

is said to be differentiable at a point z = z0, if

0

0

0

( ) ( )
lim .
z z

f z f z

z z

  This limit is called the derivative of f (z) at z = z0 and is denoted by f (z0)

0

0
0

0

( ) ( )
( ) lim .

z z

f z f z
f z

z z

Note: If function f (z) is differentiable at z = z0, then it must be continuous at z = z0.

18. Analytic function: A function f (z) is said to be analytic at a point z = z0, if it is differentiable at 

the point z0 and also at each point in some neighbourhood of the point z0. Thus, the analyticity 

at z0 means f (z) is differentiable is some open disk about z0.

  A function f (z) is said to be analytic in a domain D, if it is analytic at every point in D. Analytic 

function is also known as regular or holomorphic functions.

19. Entire function: A function f (z) which is analytic everywhere is said to be an entire function. 

For example, a polynomial of any degree is an entire function.

Note: Entire  Analytic  Differentiable  Continuous, but not vice-versa.

3.20 CAUCHY–REIMANN EQUATIONS

Cauchy–Reimann (C.R.) equations are used to determine whether a given function f (z) is analytic or 

not.

Necessary conditions for a function to be analytic: According to the following theorems.

Theorem Suppose that the function f (z) = u(x, y) + iv(x, y) is continuous in some neighbourhood of 

the point z = x + iy and is differentiable at z. Then, the first order partial derivatives of u(x, y) and v(x, y)

exist and satisfy the equations

and
u v u v

x y y x
 at the point z.
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Proof: Since the given function f (z) is differentiable at z, we have

f (z) = 
0

( ) ( )
lim
z

f z z f z

z

f (z) = lim
( , ) ( , ) ( , ) ( , )

(x
y

u x x y y iv x x y y u x y iv x y

0
0

xx i y)
(15)

Since the limit exists, it must have the same value independent of the path along which z  0. We 

consider the following two parts.

(i) Let y  0 and then x  0. The limit in Eq. (15) becomes, ( z = x)

f (z) = lim
( , ) ( , ) ( , ) ( , )

x

u x x y u x y

x
i

v x x y v x y

x0

f (z) = 
u V

i
x x

(16)

(ii) Let x  0 first and then y  0. The limit of Eq. (15) becomes ( z = i y)

f (z) = lim
( , ) ( , ) ( , )

y

u x y y

i y
i

v x y y v x y

i y0
 = 

1 u v

i y y

           or f (z) = .
v u

i
y y

(17)

  Since, f (z) is differentiable at z, the two limits given in Eqs. (16) and (17) must be equal.

  Therefore,

   
.

u v v u
i i

x x y y

  Comparing the real and imaginary parts, we get

and
u v u v

x y y x
(18)

  Or in short notation

ux = vy and uy = –vx.

Fig. 3.5
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The Eq. (18) is called the Couchy–Riemann equations and are the necessary conditions for 

differentiability and analyticity of the function f (z) at a given point. Thus if the function f (z) does not 

satisfy the Couchy–Reimann equations at a point, it is not differentiable and hence not analytic at that 

point.

Sufficient conditions for a function f (z) to be analytic:

Theorem Let u(x, y) and v(x, y) are the real and imaginary parts of the function f (z) = u(x, y) + 

iv(x, y) and have the continuous first order partial derivatives in a domain D. If u(x, y) and v(x, y) satisfy 

the Cauchy–Reimann equations at all points in D, then the function f (z) is analytic in D and

f (z) = .
u v v u

i i
x x y y

Proof Since the partial derivatives of u(x, y) and v(x, y) are continuous, we can write

u = 1 2( , ) ( , ) x yu x x y y u x y u x u y x y

v = 3 4( , ) ( . ) ,x yv x x y y v x y v x v y x y

where 1, 2, 3, 4  0 as x  0 and y  0.

Now w = f (z + z) – f (z) = u + i v

w = 1 3 2 4( ) ( ) ( ) ( ) .x x y yu iv x u iv y i x i y

Using the Cauchy–Reimann equations, we get

w = 1 3 2 4( ) ( ) ( ) ( )x x x xu iv x v iu y i x i y

Now,  1 3 2 4

( ) ( )
( ) .x x

f z z f z x y
u iv i i

z z z

Since 1 and 1,
x y

z z
 we obtain 

0

( ) ( )
lim ( ) x x
z

f z z f z
f z u iv

z
 = vy – iuy.

Therefore, f (z) is differentiable at an arbitrary point z in D, i.e., the function f (z) is analytic in D.

3.20.1  Cauchy–Reimann Equation of the Function
f (z) = u(x, y) + iv(x, y) at Origin

f (z) = u(x, y) + iv(x, y) (19)

0

( , 0) (0, 0)
lim
x

u u x u

x x

0

(0, ) (0, 0)
lim
y

u u y u

y y

0

( , 0) (0, 0)
lim
x

v v x v

x x

0

(0, ) (0, 0)
lim
y

v v y v

y y
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If at z = 0, and .
u v u v

x y y x

Thus the C–R equations are satisfied at z = 0.

3.20.2 Polar Form of the Cauchy–Reimann Equations

Let f (z) = u(r, ) + iv(r, ), where z = rei

We have x = r cos , y = r sin 

r
2 = 

2 2 2 2
x y r x y

and  = 1tan .
y

x

Using chain rule of differentiation, we get

u

r
 = 

u x u y

x r y r
 = (cos ) (sin )

u u

x y
(20)

u
 = 

u x u y

x y
 = ( sin ) ( cos )

u u
r r

x y
(21)

v

r
 = 

v x v y

x r y r
 = (cos ) (sin )

r v

x y
(22)

v
 = 

v x v y

x y
 = ( sin ) ( cos )

v v
r r

x y
(23)

Using the Cauchy–Riemann equation and ,
u v u v

x y y x
 we can write Eqs (22) and (23) as

v

r
 = ( cos ) (sin )

u u

y x

=
1

( sin ) ( cos )
u u

r r
r x y

 = 
1 u

r
(Using Eq. 21)

and
v

 = ( sin ) ( cos )
y u

r r
y x

= (cos ) (sin )
u u

r
x y

 = .
u

r
r

(Using Eq. 20)

Therefore, the Cauchy–Reimann equations in polar form are as follows:

       

1
and .

v u v u
r

r r r
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George Friedrich Bernhard Riemann was born on 17 September 1826, in the village 
of Breselenz near Dannenberg, Germany. His father Friedrich Bernhard Riemann 
was a pastor and his mother was Charlotte Ebell who died when he was just a child. 
Riemann was under confident as a child with a fear of public speaking and had many 
nervous breakdown attacks. On the other hand, he was a gifted mathematics genius 
with exceptional calculation aptitude. He used to solve extremely complex math 
problems surprising even his teachers. His teacher was Carl Friedrich Gauss, who 
encouraged him to talk to his parents and switch to a degree in Mathematics rather 

than theology. Once getting their approval, Riemann transferred to the University of Berlin in 1847 and 
remained there for the next two years. He had an extraordinary command over complex analysis which 
he interconnected with topology and number theory. Other revolutionary contributions include the tensor 
analysis, theory of functions, differential geometry and the most notable being the theory of manifolds. 
His work in geometry defined new probabilities by generalizing the notions of distance and curvature. 
Many theorems are named after him; for example, the Reimann-Roch theorem. Seeing the brilliance of 
Reimann, efforts were made in order to promote him to a position of an extraordinary Professor. This, 
however, could not be done and he was paid like any other professor in the University of Göttingen. He 
was later made the Head of Mathematics Department. He spent the final days of his life in Italy in the 
village of Selasca with his wife and daughter. Riemann died on 20 July 1866.

Example 16 Prove that the function f (z) = |z|2 is continuous everywhere but nowhere differentiable 

except at the origin.

Solution The given function f (z) = |z|2 = x2 + y2 is continuous everywhere.

Now f (z0) = 

2 2

0 0

0
lim
z

z z z

z

=
0 0 0 0

0

( ) ( )
lim
z

z z z z z z

z
 = 0 0

0
lim
z

z
z z z

z

= 0 0
0

lim ( 0, as 0)
z

z
z z z z

z

Therefore at z0 = 0, this limit is zero so that f (0) = 0.

When z0  0, let z = r(cos  + i sin ), then z– = r(cos  – i sin )

         
cos sin

cos sin

z i

z i
cos2 sin 2 .i

This limit depends upon the arg z, so that which does not tend to unique unit.

Hence, the function f (z) is not differentiable for any non-zero value of z.

Example 17 If  = f (z) = u + iv be an analytic function of z = x + iy, show that the curves 

u = constant, v = constant represented on the z-plane intersect at right angles.

Solution Since f (z) = u + iv be an analytic function of z, the functions u and v will satisfy C–R 

equations

       
and

u v u v

x y y x
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Multiplying these, we obtain.

       
0

u v u v

x x y y

which is the condition that the curves u = constant and v = constant intersect at right angles.

Hence, if f (z) is a regular function of z, then the curves

u = R[f (z)] = constant and v = I[f (z)] = constant form an orthogonal system, i.e. they intersect at 

right angles.

Example 18 Determine whether the following function 
2 2 2 2

( )
x y

f z i
x y x y

 of the 

complex variable z = x + iy is an analytic function.

Solution Here

      
2 2 2 2

( , ) and ( , ) .
x y

u x y v x y
x y x y

Therefore,     
2 2 2 2

2 2 2 2 2

( ) 1 2

( ) ( )

u x y x x y x

x x y x y

      and     2 2 2

2 2 2

2
( 1)( ) (2 )

( )

u xy
x x y y

y x y

       

2 2 2

2 2 2

2
( 1)( ) (2 )

( )

v xy
y x y y

x x y

and         
2 2 2 2

2 2 2 2 2 2

( ) 1 2
.

( ) ( )

v x y y y x y

y x y x y

Since,
u v

x y

  Cauchy–Riemann conditions are not satisfied. Hence, the given function is not analytic.

Example 19 Show that the function f (z) = xy + iy is everywhere continuous but not analytic.

[Bundelkhand 2003]

Solution Given f (z) = u + iv = xy + iy

u(x, y) = xy and v(x, y) = y.

Since u and v are polynomials of x and y. Thus both u and v are continuous everywhere. Hence, f (z)

is continuous everywhere.

Now,        , , 0 and 1.
u u v v

y x
x y x y

Thus, we have and .
u v u v

x y y x

  Cauchy–Riemann equations/conditions are not satisfied anywhere.

Hence, f (z) is not analytic at any point. Hence, proved.
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Example 20 Prove that f (z) = sinh z is an analytic function of the complex variable z = x + iy.

Solution Given f (z) = u + iv = sinh z

=
2

z z
e e

or u + iv = 
( )

2

x iy x iy
e e

 = 
2

x iy x iy
e e e e

=
1

(cos sin ) (cosy sin )
2

x x
e y i y e i y

or u + iv = 
1

( )cos ( ) sin
2

x x x x
e e y i e e y

= cos sin
2 2

x x x x
e e e e

y i y

u + iv = sinhx · cos y + i coshx sin y.

u(x, y) = sinhx cos y and v(x, y) = coshx sin y

Now,     cosh cos , sinh sin
u u

x y x y
x y

and        sinh sin , cosh cos .
v v

x y x y
x y

Thus, we see that

       
and .

u v u v

x y y x

  Cauchy–Reimann equations are satisfied. Hence, the given function is analytic.

3.21 HARMONIC AND CONJUGATE HARMONIC FUNCTIONS

Harmonic function: Any function of x, y which has first and second order continuous partial derivatives 

and satisfies the Laplace equation is called harmonic function.

3.21.1 Conjugate Harmonic Function

If f (z) = u(x, y) + iv(x, y) be an analytic function, then the real part u(x, y) of f (z) is known as the 

conjugate harmonic function of v(x, y) and vice-versa.

Theorem The real and imaginary parts of an analytic function f (z) = u(x, y) + iv(x, y) are harmonic.

Proof: f (z) = u(x, y) + iv(x, y) be an analytic function.

Then Cauchy–Reimann equations

       and
u v u v

x y y x
 are satisfied

i.e.,      
u v

x y
(24)
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and     
u v

y x
(25)

Differentiating Eqs (24) and (25) partially w.r.t. x and y respectively, we get

        

2 2

2

2 2

2

u v

x yx

u v

y xy

(26)

Adding Eqs (26), we get

    

2 2 2 2 2 2

2 2
0; Since

u u v v v v

x y y x y x x yx y

or 2
u = 0.

Thus, u is a solution of Laplace equation. Hence, u is a harmonic function.

Similarly, differentiating Eqs (24) and (25) partially w.r.t. y and x, we get

      

2 2

2

u v

y x y
(27)

      
2 2

2
.

u v

x y x
(28)

Adding Eqs (27) and (28), we get

2 2 2 2

2 2
0

v v u u

x y y xx y

or           2
v  = 0.

Thus v is a solution of Laplace equation. Hence, v is a harmonic function.

3.22 METHOD OF CONSTRUCTING CONJUGATE FUNCTION

If f (z) = u(x, y) + iv(x, y) be an analytic function, where u(x, y) is known then the conjugate function 

v(x, y) is determined as follows:

We know that .
v v

dv dx dy
x y

(29)

Since function f (z) is analytic, so by C–R equations

and ,
u v u v

x y y x
 then Eq. (29) becomes

.
u u

dv dx dy
y x

(30)

Equation (30) is of the form dv = M(x, y) dx + N(x, y) dy, where

       
and

u u
M N

y x
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2 2

2 2
, .

M u N u

y xy x

Function u(x, y) is harmonic if 
2 2

2 2
0

u u

x y

or      
2 2

2 2
so that .

u u M N

y xx y

   Equation (30) satisfy the condition of an exact differential equation. Then v(x, y) can be 

determined by integrating of Eq. (30).

Thus, we have

v(x, y) = 
u u

dx dy
y x

= (the terms of which is independent of ) .M dx N x dy c

If u(u, y) is given, v(x, y) can be determined. If v(x, y) is known, then u(x, y) can be determined by 

using u(x, y) = 
1 1(the terms of independent of ) (constant)M dx N x dy d

When M1 = 
v

y

N1 = .
v

x

3.23  METHOD OF CONSTRUCTING AN ANALYTIC FUNCTION OR
A REGULAR FUNCTION

Milne–Thomson’s Method

Using Milne–Thomson’s method, the analytic function f (z) = u(x, y) + iv(x, y) is directly constructed, 

without finding v(x, y), if u(x, y) is given and vice-versa.

Since z = andx iy z x iy

Therefore, x = , and ,
2 2

z z z z
y

i
  then

f (z) = u(x, y) + iv(x, y) can be written as

f (z) = , ,
2 2 2 2

z z z z z z z z
u iv

i i
(31)

Equation (31) can be regarded as a formal identity in two independent variables z and z–

On putting z– = z, we get

f (z) = u(z, 0) + iv(z, 0) (32)
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Now f (z) = 
u v

i
x x

or f (z) = 
u u

i
x y

  (By C–R equations)

If we write 
1 2( , ) and ( , ) then

u u
x y x y

x y

f (z) = 1(x, y) – i 2(x, y)

f (z) = 1(z, 0) – i 2(z, 0).  [Replacing x by z and y by 0]

Integrating both sides, we get

f (z) = 1 2( , 0) ( , 0) ,z dz i z dz C

where C is an arbitrary constant.

Similarly if v(x, y) is given, we have

f (z) = 1 2( , 0) ( , 0) ,z dz i z dz D

where      1 2( , ), ( , )
v v

x y x y
y x

 and D is an arbitrary constant.

Example 21 Find the analytic function f (z) = u(x, y) + iv(x, y) of which the real part u(x, y) = 

e
x(x cos y – y sin y).

Solution Given u(x, y) = ex(x cos y – y sin y)

( cos sin ) cosx xu
e x y y y e y

x

( sin sin cos )xu
e x y y y y

y

1(x, y) = ( cos sin ) cosx xu
e x y y y e y

x

2(x, y) = ( sin sin cos ).xu
e x y y y y

y

By Milne’s Thomson method;

f (z) = 1 2( , 0) ( , 0)z i z dz C

 = ( 1) 0z
e z i dz C  = ( )z z

ze e dz C

= (z – 1) ez + ez + C = z e
z + C

Another method

We have        
v v

dv dx dy
x y
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u u
dv dx dy

y x
  [By C–R equations]

( sin cos sin ) ( cos sin cos ) .x x
dv e x y y y y dx e x y y y y dy

Integrating, both sides, we get

v = ( sin cos sin ) (those terms which do not contain ) .x
e x y y y y dx x dy C

v = sin ( cos sin ) 0x x
y xe dx y y y e dx dy C

v = ( ) sin cos sinx y y y y e C
x1

v(x, y) = ( sin cos ) .x
x y y y e C

f (z) = u(x, y) + iv(x, y)

= ( cos sin ) ( sin cos )x x
e x y y y i e x y y y C

= (cos sin ) (cos sin ) .x x
xe y i y iy e y i y iC

= ( ) .x iy z
x iy e e D ze D

Example 22 Find the analytic function of which the real part is e–x[(x2 – y2) cos y + 2xy sin y].

Solution Given u(x, y) = e–x[(x2 – y2) cos y + 2xy sin y], then

2 2[2 cos 2 sin ] ( ) cos 2 sinx xu
e x y y y e x y y xy y

x

2 22 cos ( ) sin 2 sin 2 cosxu
e y y x y y x y xy y

y

1(x, y) = 
u

x
e x y y y e x y y xy y

x x2 2 22 2cos sin ( ) cos sin

2(x, y) = 2 22 cos ( ) sin 2 sin 2 cos .xu
e y y x y y x y xy y

y

By Milne’s Thomson method

f (z) = 1 2( , 0) ( , 0)z i z dz C

=
2(2 )z

e z z dz C  = 2(2 ) (2 2 )z z
z z e z e dz C

= 2(2 ) (2 2 )( ) 2z z z
z z e z e e dz C

f (z) = z2
e

–z + C

Example 23 If w = u + iv = log z, find 
dw

dz
 and determine, whether w is non-analytic.

Solution Given w = u + iv = log z = log(x + iy)
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2 2 11

log( ) tan
2

y
w x y i

x

u(x, y) = 2 2 11
log( ) and ( , ) tan

2

y
x y v x y

x

2 2 2 2 2 2 2 2
, , and

u x u y v y v x

x y x yx y x y x y x y

Here     and .
u v u v

x y y x

Since the C–R. Equations are satisfied and the partial derivatives are continuous except at (0, 0). 

Hence, w is analytic everywhere except at z = 0.

Now,     
dw y v

i
dz x x

2 2 2 2 2 2

dw x y x iy
i

dz x y x y x y
 = 

1 1

( )( ) ( )

x iy

x iy x iy x iy z

1
; 0.

dw
z

dz z

Example 24 Determine whether 
1

z
 is analytic or not?

Solution Given f (z) = 
1

u iv
z

 = 
1

x iy
 = 

2 2

x iy

x y

u(x, y) = 
2 2 2 2

and ( , )
x y

v x y
x y x y

2 2 2 2

2 2 2 2 2 2 2 2

( ) 1 2 2
,

( ) ( ) ( )

u x y x x y x u xy

x yx y x y x y

2 2

2 2 2 2 2 2

2
and .

( ) ( )

v xy v y x

x yx y x y

Since     and .
u v u v

x y y x

Thus the C–R equations are satisfied. Also the partial derivatives are continuous except (0, 0).

Therefore, f (z) = 
1

z
 is analytic except z = 0.

Also f (z) = 
2

1

z

f (z) exists everywhere except at z = 0.
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Hence
1

z
 is analytic except at z = 0.

Example 25 Find the values of C1 and C2 such that the function f(z) = x2 + C1y
2 – 2xy + i(C2 x

2 –y
2 + 2xy)

is analytic. Also find f (z).

Solution Given f (z) = u + iv = (x2 + C1y
2 – 2xy + i(C2 x

2 – y
2 + 2xy).

       22 2 , 2 2
u v

x y C x y
x x

12 2 and 2 2
u v

C y x x y
y y

Since function f (z) is analytic, so C–R equations are satisfies.

2 2
u v

x y
x y

(33)

and      1 22 2 2 2 .
u v

C y x C x y
y x

By equating the coefficients of x and y, we get

2C1 = 1 2 22 1 and 2 2 1.C C C

Putting C2 = 1 in ,
v

x
 we get 2 2

v
x y

x

Now f (z) = (2 2 ) (2 2 )
u v

i x y i x y
x x

= 2(1 + i) x + 2(–1 + i)y

= 2(1 + i) x + 2i(1 + i) y = 2(1 + i) (x + iy)

f (z) = 2(1 + i) z.

Example 26 Show that the function f (z) = z |z| is not analytic anywhere.

Solution Given f (z) = z |z|

= (x + iy) |x + iy|

=
2 2( ) ( )x iy x y

Also f (z) = 2 2 2 2
u iv x x y iy x y

u(x, y) = 2 2 2 2and ( , )x x y v x y y x y

2 2 2
2 2

2 2 2 2

2u x x y
x y

x x y x y
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2 2 2
2 2

2 2 2 2 2 2 2 2

2
, and

u xy v xy v y x y
x y

y x yx y x y x y x y

Since     and .
u v u v

x y y x

Hence, the C–R, equations are not satisfied at any point, the function z|z| is not analytic anywhere.

Example 27 Show that the function f (z) = |z| 2 is analytic at z = 0, although the Cauchy–Reimann 

equations are satisfied at that point.

Solution Given f (z) = |z| 2 = z z
–

 = (x + iy) (x – iy) = x2 + y2

f (z) = u + iv = x2 + y2

u = x2 + y2 and v = 0.

At z = 0
2

0 0

( , 0) (0, 0) 0
lim lim 0
x x

u u x u x

x x x

2

0 0

(0, ) (0, 0) 0
lim lim 0
y y

u u y u y

y y y

0 0

( , 0) (0, 0) 0 0
lim lim 0
x x

v v x v

x x x

0 0

, 0)(0, ) (0 0 0
lim lim 0
y y

v v y v

y y y

Hence,     and .
u v u v

x y y x

Thus, C–R equations are satisfied at the origin.

Also, f (0) = 
0

( ) (0)
lim

0z

f z f

z
 = 

2 2

0

( ) 0
lim
z

x y

x iy

Let z  0 along the line y = mx, then

f (0) = 
2 2 2

0
lim
x

x m x

x imx
 = 

2

0

(1 )
lim

(1 )x

m x

im
 = 0.

Therefore, f (0) is unique. Hence, the function f (z) = |z|2 is analytic at z = 0.

Example 28 Show that the function f (z) = |xy| 1/2 is not analytic at the origin, although the Cauchy–

Riemann equations are satisfied at that point.

Solution Given f (z) = u + iv = |xy| 1/2

u(x, y) = |xy| 1/2, v(x, y) = 0

At z = 0,
0

( , 0) (0, 0)
lim
x

u u x u

x x
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0

(0 0)
lim 0
x

u

x x

0

(0, ) (0, 0)
lim
y

u u y u

y y
 = 

0

(0 0)
lim 0
y y

0

( , 0) (0, 0)
lim
x

v v x v

x x
 = 

0

(0 0)
lim 0
x x

0

(0, ) (0, 0)
lim 0.
y

v v y v

y y

Thus    and .
u v u v

x y y x

Hence, the C–R. equations are satisfied at z = 0

Now,   f (0) = 

1/2

0 0

0( ) (0)
lim lim .

0z z

xyf z f

z x iy

If z  0 along the path y = mx, then we have

f (0) = 

1/2
2 1/2

0 0
lim lim .

( ) (1 )x x

mx m

x mix im

Limits depends on m. So f (z) is not unique at origin. Thus f (0) does not exist. Hence f (z) is not 

analytic at origin.

Example 29 Show that the function f (z) = u + iv,

where f (z) = 
3 3

2 2

(1 ) (1 )
; 0

x i y i
z

x y

f (0) = 0

is continuous and that the Cauchy–Riemann equations are satisfied at the origin yet f (z) does not exist 

at z = 0.

Solution Given

f (z) = u + iv = 
3 3 3 3

2 2

( ) ( )
; 0

x y i x y
z

x y

u(x, y) = 
3 3 3 3

2 2 2 2
and ( , ) ; , 0.

x y x y
v x y x y

x y x y

(i) To prove that f (z) is continuous everywhere. When z  0, u and v both are rational functions 

of x and y with non-zero denominators. It follows that u, v and with non-zero denominators. It 

follows that u, v and therefore also f (z) are continuous functions everywhere except at z = 0.

  To test the continuity of u and v at the origin, we change u, v to polar co-ordinates.

u = r (cos3  – sin3 ), v = r (cos3  + sin3 ).
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  As z  0, r  0

  Now,  
0 0

lim 0 lim
r r

u v

0
lim ( ) 0
z

f z

0
lim ( ) 0 (0)
z

f z f

f (z) is continuous at z = 0.

  Hence f (z) is continuous everywhere.

(ii) To show that C–R equations are satisfied at z = 0.

f (0) = 0 u(0, 0) + iv(0, 0) = 0

  u(0, 0) = 0 = v(0, 0)

         Now,  
0 0

( , 0) (0, 0) 0
lim lim 1
x x

u u x u x

x x x

0 0

(0, ) (0, 0) 0
lim lim 1
y y

u u y u y

y y y

0 0

( , 0) (0, 0) 0
lim lim 1
x x

v v x v x

x x x

0 0

(0, ) (0, 0) 0
lim lim 1
y y

v v y v y

y y y

        Thus,  , at 0.
u v u v

z
x y y x

  Thus, the C–R equations are satisfied.

(iii) To prove that f (0) does not exist.

f (0) = 
0 0

( ) (0) ( ) 0
lim lim
z z

f z f f z

z z
 = 

3 3 3 3

2 20

( ) ( )
lim .

( )( )z

x y i x y

x y x iy

Let z  0 along the path y = x, then

f (0) = 

3 3 3 3

2 20

( )
lim .

(1 )( )( )x

x x i x x i

ix x x ix

Let z  0 along x-axis, then

f (0) = 

3 3

20

0 ( 0)
lim 1

( 0)( 0)x

x i x
i

x x i

f (0) = 
along the path 

1

1 along the path 0

i
y x

i

i y

Since the values of f (0) are not unique along different paths. Hence f (0) does not exist.
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Example 30 If f (z) = u + iv is analytic function and u – v = ex (cos y – sin y), find f (z) in terms 

of z.

Solution Given 

f (z) = u + iv (34)

i f (z) = i(u + iv) (35)

i f (z) = iu – v

Adding Eqs (34) and (35), we get

(1 + i) f (z) = (u – v) + i(u + v)

Taking u – v = U, u + v = V and (1 + i)f (z) = F (z), we obtain 

F (z) = u + iv. (36)

Since f (z) = u + iv is analytic F(z) = U + iV is analytic.

Now, u – v = U = ex(cos y – sin y)

U

x
 = 1(x, y) = ex(cos y – sin y)

U

y
 = 2(x, y) = ex(–sin y – cos y)

1(z, 0) = ez(cos 0 – sin 0) = ez

2(z, 0) = ez(–sin 0 – cos 0) = –e
z.

By Milne’s Thomson method,

F(z) = 1 2[ ( , 0) ( , 0)]z i z dz C

F(z) = (1 )z
e i dz C

F(z) = (1 + i) e
z + C

or (1 + i) f (z) = (1 + i) e
z + C

or f (z) = 
1

1

z
e C

i

or f (z) = ez + C1 1

1

1
C C

i

Example 31 If f (z) is a regular function of z, then  prove that

2 2
2 2

2 2
( ) 4 ( )f z f z

x y

Solution Let f (z) = u + iv, so that

2 2 2( ) ( , ) say.f z u v x y

2 2
u v

u v
x x x
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2 22 2 2

2 2
2 2 2 2

u u v v
u v

x xx x x

2 22 2 2

2
2 .

u u v v
u v

x xx x x
(37)

Similarly,

       

2 22 2 2

2
2 .

u u v v
u v

y yy y y
(38)

Adding Eqs (37) and (38), we get

2 2 2 2 2 2

2 2 2 2
2 2

u u v v
u v

x y x y x y

2 22 2

2 .
u u v v

x y x y
(39)

Since f (z) is a regular function, then u and v have to satisfy C–R equations and the Laplace equation. 

So we have

,
u v u v

x y y x

2 2 2 2

2 2 2 2
0, 0.

u u v v

x y x y

Equation (39), becomes.

2 2 2 22 2

2 2
2

u v v u

x x x xx y

=

2 2

2 2 2
u v

x x
 = 

2 2

4
u v

x x

2 2
2

2 2
4 ( )f z

x y

    
2 2

2 2

2 2
( ) 4 ( )f z f z

x y
Hence, proved.

3.24  DETERMINATION OF VELOCITY POTENTIAL AND STREAM 

FUNCTION

Consider the irrotational motion of an incompressible fluid in two dimensions. We assume the flow to 

be in planes parallel to the xy-plane, the velocity v  of a fluid particle as follows:

ˆ ˆ.x yv v i v j (40)
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Since the motion is irrotational, therefore, there exists a scalar function (x, y) such that

ˆ ˆ( , ) ( , )v x y i j x y
x y

ˆ ˆ.v i j
x y

(41)

The function (x, y) is called the velocity potential and the family of curve (x, y) = C are known as 

equipotential lines. From Eqs (40) and (41), we have

vx = and .yv
x y

(42)

Since, the fluid is incompressible, so that

  Div 0 0
yx

vv
v

x y
(43)

Using Eq. (42) in Eq. (43), we get
2 2

2 2
0.

x y
(44)

Equation (44) shows that the velocity potential  is harmonic. It follows that there must exist a 

conjugate harmonic function (x, y), such that

F (z) = (x, y) + i (x, y) (45)

Now, the slope at any point of the curve (x, y) = C1 is given by

/

/

dy x

dx y

/

/

dy y

dx x
   (by C–R. equations)

or  .
y

x

vdy

dx v
  (by Eq. (42)) (46)

Equation (46) shows that the velocity potential of the fluid particle is along the tangent to the curve 

(x, y) = C1, i.e. the particle moves along this curve. Such curves are known as stream lines and (x, y)

is called the stream function. Also, the equipotential lines (x, y) = C and the stream lines (x, y) = C1

are orthogonal.

By Eq. (45), we have

dF
i

dz x x
 = i

x y
  (by C–R equations)

x y

dF
v iv

dz
  (by Eq. (47))

Thus, the flow pattern is fully expressed by the function F(z) which is known as the complex potential. 

Similarly, the complex potential F(z) can be taken to represent any other type of 2-dimensional steady 

and heat lines.

If (x, y) is given, then we can find (x, y) and vice-versa.



3.40 Engineering Mathematics for Semesters III and IV

Example 32 In a two-dimensional fluid flow, the stream function is (x, y) = tan–1(y/x). Find the 

velocity potential.

Solution Given

(x, y) = tan–1 (y/x) (47)

        
2 2 2 2

and
d y d x

dx dyx y x y

d  = dx dy
dx y

d  = dx dy
dy x

  (by C–R equations).

or d  = 
2 2 2 2

x y
dx dy

x y x y
(48)

which is an exact differential equation.

Integrating Eq. (48), both sides, we get

 = 
2 2

0
x

dx C
x y

 = 2 21
log ( )

2
x y C

which is the required velocity potential.

EXERCISE 3.2

1. Obtain Cauchy–Riemann equations for an analytic function.

2. Find an analytic function whose real part is ex cos y.

3. Find an analytic function whose real part is:

  (i) u(x, y) = x3 – 3xy
2 + 3x

2 – 3y
2 + 1

 (ii) u(x, y) = ex cos y + y

(iii) u(x, y) = x3 – 3xy
3

4. Show that the function 
4

( ) ; 0z
f z e z  and f (0) = 0 is not analytic at z = 0 although the 

C–R equations are satisfied at that point.

5. Prove that the function f (z) = e2z is analytic and find f (z).

6. Show that the function f (z) = sinx coshy + i cosx sinhy is continuous as well as analytic 

everywhere.

7. Show that the function 
3

2 6
( ) ; 0, (0) 0

xy
f z z f

x y
 is not continuous at the origin.

8. Show that the function

 (i) 2 21
( , ) log ( )

2
u x y x y

(ii) u(x, y) = cos x cosh y are harmonic, and find their harmonic conjugates.
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9. Find the analytic function whose imaginary part is 

 (i) v(x, y) = e–x (x cos y + y sin y)

(ii) v(x, y) = ex  sin y.

10. Prove that u(x, y) = x2 – y2 – 2xy – 2x + 3y is harmonic. Find a function v(x, y) such that 

f (z) = u + iv is analytic.

11. If
2

2 4

( )
( ) ; 0, (0) 0,

xy x iy
f z z f

x y
 prove that 

( ) (0)
0

f z f

z
 as z  0, along any radius 

vector, but not as z  0 in any manner.

12. An electrostatic field in xy-plane is given by the potential function (x, y) = x2 – y2, find a 

stream function. [Grad. ITE 1979]

13. If the potential function of an electrostatic field is (x, y) = 3x
2
y – y3, find the stream function.

[Grad. ITE 1978]

14. Find the analytic function whose imaginary part is ex(x sin y + y cos y).

[Madurai 1973]

15. Find an analytic function whose real part is sin 2x/(cosh 2x – cos 2x).

[K.U.K. 1983, Gulbarga 1984, Coimbatore 1984]

16. Show that an analytic function cannot have a constant modulus without reducing to a 

constant.

  or

  Show that an analytic function with constant modulus is constant.

[Meerut 1992, 94, 95, 96, 97, 98]

17. Examine the nature of the function 
2 5

4 10

( )
( ) ; 0, (0) 0

x y x iy
f z z f

x y
 in a region including 

origin. [Gorakhpur 2009]

18. Find an analytic function whose real part is 2 2log ( ),x y  also find its imaginary part.

[Ranchi 1980]

19. Show that the function f (z) = |z|2013 satisfies the Cauchy–Riemann equations only at the 

origin.

20. Determine the analytic function f (z) = u + iv, if the imaginary part is v(x, y) = log(x2 + y2) + x – 2y.

21. If u – v = (x – y) (x2 + 4xy + y2) and f (z) = u + iv is an analytic function of z, then find f (z) in 

terms of z. [Barilly 2009, Gorakhpur 2010]

22. If f (z) = u + iv is an analytic function of z and u = 4xy + x + 1. Prove that

f (z) = z – 2i z
2 + 3i + 1, when f (1) = 2i.

23. Show that the function f (z) = z3 is analytic everywhere.

24. Show that the function ( )
2

z
f z

z
 is analytic at z = .

Answers

2. f (z) = ez

3. (i) f (z) = z3 + 3z
2 + 1 + iC  (ii) f (z) = cz – iz + C  (iii) f (z) = z3 + iC

4. (i) ize–z + C  (ii) e
z + C
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12. (x, y) = 4xy 13. (x, y) = 6xy
2 – x

3

14. f
–
(z) = z e

z + C 15. f (z) = cot z + iC

17. Not analytic at origin. 18. I.P. is 1tan .
y

x

20. f (z) = (i – 2)z + 2i log z + C. 21. 3
1 1( ) , where .

1

c
f z i z c c

i

3.25 INTRODUCTION TO COMPLEX INTEGRATION

In this section we define definite integrals of complex variable are known as line integrals. As in the 

case of real variable, an indefinite integral of a complex variable is a function whose derivative equals 

a given analytic function.

The theory of line integrals, along with the theory of residues and power series forms play a very 

important role in the theory of functions of a complex variable. These theories contain some of the 

most powerful theorems which have the application in pure and applied mathematics as well as in 

engineering.

3.26 LINE INTEGRAL IN COMPLEX PLANE

(i) Continuous Arc: A set of points (x, y) defined by x = (t) and y = (t) with parameter ‘t’ in the 

interval (a, b), defined a continuous arc provided  and  are continuous functions.

(ii) Domain (Region): A set S of points in the Argand plane is said to be connected set if any two 

of its points can be joined by a continuous curve, all of whose points belong to S.

  An open connected set is said to be an open domain. If the boundary points of S are also added 

to an open domain, then it is called a closed domain.

(iii) Contours: A contour is a continuous chain of a finite number of regular arcs.

  If the contour is closed and does not intersect itself, then it is said closed contour. For example,  

the boundaries of triangles and rectangles.

(iv) Simply and multiply connected regions: A region in which every closed curve can be shrunk 

to a point without passing out of the region is called a simply connected region. Otherwise it 

is said to be multiply connected region.

  Example:

Fig. 3.6
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3.27 COMPLEX FUNCTION INTEGRALS

Let f (z) is continuous at every point of a closed curve C having a finite length, i.e. C is rectifiable 

curve.

Subdivided C into n parts by means of points z0, z1, z2, …, zn, let a = z0, b = zn.

We choose a point nk on each arc joining zk–1 to zk–2 form the sum.

1

1

( ) ( ).
n

n r r r

r

S f n z z

Fig. 3.7

Suppose maximum value of (zn – zn–1)  0 as n . Then the sum Sn tends to a fixed limit which 

does not depend upon the mode of subdivision and denoted this limit by

( ) or ( )

b

a C

f z dz f z dz

which is called the complex line integral or line integral of f (z) along the curve C.

3.28 PROPERTIES OF COMPLEX INTEGRALS

Property 1     f z g z dz f z dz g z dz

C CC

( ) ( ) ( ) ( ) .

It can be easily generalized for a finite number of functions.

Property 2 ( ) ( ) ,

C C

f z dz f z dz

where –C is the curve traversed in the opposite direction.

Property 3

1 2 1 2

( ) ( ) ( )

C C C C

f z dz f z dz f z dz

Property 4 ( ) ( ) ,

C C

K f z dz K f z dz  where K is any complex constant.
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Property 5 ( ) ( ) .

C C

f z dz f z dz

Example 33 Evaluate 
1

,

C

dz
z a

 where C is a circle |z – a| = r.

Solution

C: |z – a| = r

or z – a = r e
i :   0  2

or z = a + r e
i

or       
idz

r i e
d

or dz = r i e
i

d ;  0  2

Now  

2

0

1 1 i

i
C

dz r i e d
z a r e

 = 0

=

2

0

i d  = 

2

0

i d  = 
2
0[ ]i

     

1
2

C

dz i
z a

Example 34 Integrate z
2 along the straight line OA and also along the path OAB consisting of two 

straight line segments OB and OA, where O is the origin, B is the point z = 3 and A is the point z = 3 + i.

Hence show that the integral of z2 along the closed path OBAO is zero.

Solution

Fig. 3.8

Given f (z) = z2 = (x + iy)2 = x2 – y2 + 2 ixy
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On the line OA, x = 3y so that dx = 3dy and y varies from 0 to 1 as z moves on OA from O to A.

I1 = 
2( )

OA OA

f z dz z dz

=

1
2 2

0

( 2 ) ( )x y i xy dx i dy  = 

1
2 2 2

0

(9 6 ) (3 )y y iy dy i dy

=

1
2 2

0

(8 6 ) (3 )y i y i dy  = 

1
2

0

(8 6 ) (3 )i i y dy

=

1
3

0

(8 6 ) (3 )
3

y
i i  = 

1
(8 6 ) (3 )

3
i i

I1 = 
26

6 .
3

i (49)

Now, the integral of z2 along the path OBA. On the line OB, y = 0 so that dy = 0 and on the line BA,

x = 3 so that dx = 0.

Also varies from 0 to 3 as z moves along OB and y varies from 0 to 1 as z moves along BA.

Hence,

I2 = 
2

OBA

z dz  = 
2 2

OB BA

z dz z dz

= 2 2 2 2( 2 ) ( 2 )

OB BA

x y ixy dz x y ixy dz

= 2 2 2 2( 2 ) ( ) ( 2 ) ( )

OB BA

x y ixy dx idy x y ixy dx idy

=

3 1
2 2

0 0

(9 6 )x dx y iy i dy  = 

3 1
3 3 2

0 0

9 6
3 3 2

x y y
i y i

=
1

9 9 3
3

i i  = 
26

9 3
3

i

I2 = 
26

6 .
3

i (50)

Also,   
2 226 26

6 6 .
3 3

OA AO

z dz i z dz i (51)

Now, the integral of z2 along the path OBAO is 

2 2 2

OBAO OBA AO

z dz z dz z dz  = 
26 26

6 6
3 3

i i  = 0.
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3.28.1 Relation between the Real and Complex Line Integrals

If f (z) = u + iv; where z = x + iy, then the complex line integral ( )

C

f z dz  can be expressed in terms of 

the real line integrals as

( ) ( ) ( )

C C

z x iy
f z dz u iv dx idy

dz dx idy

= ( ) ( )

C C

udx v dy i v dx udy

Thus, the complex line integral can be expressed in terms of real line integral.

Note: For the integral [ ]

C

Mdx Ndy

(i) If ,
M N

y x
 then the line integral does not depend upon the path of integration.

(ii) If ,
M N

y x
 then the line integral depends upon the path of integration.

(iii) If ,
M N

y x
 then the value of the integral round a closed path is zero, i.e., 

    

0.

C

Mdx Ndy

Example 35 Evaluate 

(1,1)

2 2 2 2

(0,0)

(3 4 3 ) ( 3 4 )x xy y dx x xy y dy

(i) along y = x2 and (ii) along y = x. Does the value of the integral depend upon the path?

Solution Let

        

(1,1)

2 2 2 2

(0,0)

(3 4 3 ) ( 3 4 )I x xy y dx x xy y dy (52)

(i) Along the curve y = x2 so that dy = 2xdx and x varies from 0 to 1.

 Thus, Eq. (52) gives

I = 
1

2 2 2 2 2 2 2 2

0

3 4 3 ( ) 3 4( ) 2

x

x x x x dx x x x x xdx

= 3 4 3 2 6 82 3 4 3 4 5

0

1

x x x x x x dx

x

=

1
3 4 5 4 5 6

0

3 4 3 2 6 8

3 4 5 4 5 6

x x x x x x
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=

1

3 4 5 4 5 6

0

3 1 6 4

5 2 5 3
x x x x x x

=

1

6 5 4 3

0

4 9 3

3 5 2
x x x x

=
4 9 3

1 0
3 5 2

 = 
169

30

(ii) Along the line y = x so that dy = dx and x varies from 0 to 1.

  Thus, Eq. (52) gives

I = 3 4 3 3 42 2 2 2

0

1

x x x x dx x x x x dx

= 3 4 3 3 42 2 2 2 2 2

0

1

x x x x x x dx

=

1
2

0

18x dx  = 

1
3

0

1
18 18 0

3 3

x
 = 6

Since, both the values of integration along the path y = x2 and y = x are not same.

Hence, the value of integration depend upon the path of integration.

Example 36 Evaluate 

2 3
2

1

( )

i

i

z z dz  along the line joining the points (1, –1) and (2, 3).

Solution Equation of the line joining the points (1, –1) and (2, 3) is

y – (–1) = 
3 ( 1)

( 1)
2 1

x

or y + 1 = 
3 1

( 1)
1

x

or y = 4x – 5

The complex variable z = x + iy

or z = x + i(4x – 5)

or z = (1 + 4i)x – 5i

dz = (1 + 4i)dx

Now z
2 = (x + iy)2 = x2 – y2 + 2ixy = x2 – (4x – 5)2 + 2ix(4x – 5)

= (–15x
2 + 40x – 25) + i(8x

2 – 10x)

Now

2 3 2
2 2 2

1 1

( ) ( 15 40 25) (8 10 ) (4 5) (1 4 )

i

i x

z z dz x x i x x x i x i dx

            = 

2
2 2

1

(1 4 ) ( 15 41 25) (8 6 5)i x x i x x dx



3.48 Engineering Mathematics for Semesters III and IV

=

2
3 2

1

(1 4 ) ( 15 8 ) (4 6 ) (25 5 )
3 2

x x
i i i x i x

=
3 14

(1 4 )
2 3

i
i  = 

1
(64 103)

6
i

Example 37 Evaluate

1
2

0

( ) .

i

x y ix dz

(i) Along the straight line from z = 0 to z = 1 + i.

(ii)  Along the real axis from z = 0 to z = 1 and then 

along a line parallel to imaginary axis from z = i

to z = 1 + i.

(iii)  Along the imaginary axis from z = 0 to z = i and 

then along a line parallel to real axis from z = i to 

z = 1 + i.

Solution

(i) Along the straight line OC joining the points O(z

= 0) and C(z = 1 + i), i.e., (0, 0) to (1, 1) Equation 

of line is

y = x so that dy = dx

  and x varies from x = 0 to 1.

  Therefore,

1 1
2 2

0 0

( ) ( ) ( )

i i
z x iy

x y ix dz x y ix dx idy
dz dx idy

=

1
2

0

( ) (1 )x x ix i dx  = 

1
2

0

(1 )i x i dx

=

1
3

0

( 1)
3

x
i  = 

1
.

3 3

i

(ii) Along the path OAC

      
1

2 2 2

0

( ) ( ) ( )

i

OA AC

x y i x dz x y ix dz x y ix dz (53)

Now along OA: y = 0, dz = dx and x varies from 0 to 1.

  

1
2 2

0

( ) ( )

OA

x y ix dz x ix dx  = 

1
2 3

02 3

x ix
 = 

1
.

2 3

i

Also, along AC: x = 1 so that dz = idy and y varies from 0 to 1.

  
1

2

0

( ) (1 )

AC

x y ix dz y i idy  = 

1

0

( 1)i iy dy

Fig. 3.9
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=

1
2

02

y
iy i y  = 

1
1

2
i i = 1.

2

i

  Hence, from Eq. (53), we get

1
2

0

1 1 5
( ) 1 .

2 3 2 2 6

i
i i

x y ix dz i

(iii) Along the path OBC

1
2 2 2

0

( ) ( ) ( )

i

OB BC

x y ix dz x y ix dz x y ix dz (54)

  Now, along the path OB: x = 0 so that dz = idy and y varies from 0 to 1.

  

1
2

0

( ) ( )

OB

x y ix dz y idy  = 

1
2

0

.
2 2

y i
i

  Also, along the path BC: y = 1 so that dz = dx and x varies from 0 to 1.

    
1

2 2

0

( ) ( 1 )

BC

x y ix dz x ix dx  = 

1
2 3

02 3

x x
x i  = 

1
1

2 3

i
 = 

1
.

2 3

i

  Hence, from Eq. (54), we get

1
2

0

1
( )

2 2 3

i
i i

x y ix dz  = 
1

.
2 6

i

Example 38 Evaluate 

(2,4)

2

(1,1)

( )x ixy dz  along the curve x = t and y = t2.

Solution Equations of the path of integration are x = t, y = t2.

So that dx = dt and dy = 2t dt,

At (1, 1), t = 1 and (2, 4), t = 2

    

(2,4) (2,4)

2 2

(1,1) (1,1)

( ) ( ) ( )x ixy dz x ixy dx idy  = 

2
2 3

1

( ) ( 2 )

t

t it dt it dt

=

2
2 4 3

1

( 2 ) (3 )t t i t dt  = 

2
3 5 4

1

2 3

3 5 4

t t t
i

=
8 2 3 1 2 3

32 16
3 5 4 3 5 4

i
i

=
151 45

15 4
i
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EXERCISE 3.3

1. Evaluate the integral 2 2( )

C

x y dz  from z = 0 to z = 2 + 4i along the line segment joining the 

points (0, 0) and (2, 4).

2. Evaluate

4 2

0

( ) ,

i

x iy dz  along the curve given by z = t2 + it.

3. Evaluate
1

,

C

dz
z

 where C is the semi-circular arc |z| = 1 from z = –1 to z = 1 above or below 

the real axis.

4. Show that ( 1) 0,

C

z dz  where C is the boundary of the square whose vertices are at the 

points z = 0, z = 1, z = 1 + i and z = i.

5. Evaluate
2 3

,

C

z
dz

z
 where c is

(i) upper half of the circle |z| = 2 in clockwise direction

(ii) lower half of the circle |z| = 2 in anticlockwise direction

(iii) the circle |z| = 2 in anticlockwise direction.

6. Evaluate 2( ) ,

C

z z dz  where c is the upper half of the circle |z| = 1. [Mysore 1980]

7. Show that for every path between the limits.

2
2

2

(2 ) .
3

i
i

z dz
[Andhra 1977]

8. Prove that 
0

2 ,

C

dz
i

z z
 where C is the circle |z – z0| = r. [Punjab 1983]

9. Evaluate the integral 2 ,z dz  along the rectilinear path joining the points z = 0 to 2 + i.

10. Find the value of the integral | | ,

C

z dz  where c is the contour, left half of the circle |z| = 1 from 

z = –1 to i.

Answer

1. –8(1 + 2i) 2.
8

10
3

i

3. – i or i

5. (i)  8 – 3 i  (ii)  8 + 3 i  (iii)  6 i 6.
2

3

9. (3i – 1) 10. (4 + 8i)
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3.29 CAUCHY FUNDAMENTAL THEOREM

Let f (z) be an analytic function in simply connected domain D, and C be any closed continuous curve 

in D, then

( ) 0.

C

f z dz

Augustin-Louis Cauchy was born on 21 August 1789 in Paris, France. 
He was a French mathematician. He laid the foundation for modern day 
analysis and did many significant works in the field of mathematics. 
After his graduation in 1810, Cauchy got a job in Cherbourg as ‘junior 
engineer’. Even while at this extremely time taking job, he managed to 
write three mathematical manuscripts which he submitted to ‘Institute 
de France’. He was also appointed as a member of the ‘Académie des 
Sciences’ in 1816. He got the position of associate professor of 

mathematics at Polytechnique in 1815 and by the next year he was promoted to the position 
of a full professor. He left for Prague to tutor Duke of Bordeaux till 1838. Their relationship 
as teacher and student was not great but Cauchy still tried his best to teach his pupil the most 
he could. Cauchy did not gain his academic positions again, however, tried to remain in touch 
with his roots till his death in 1857.

3.30 CAUCHY’S THEOREM

Let D be a simply connected region and let f (z) be single valued continuously differentiable function of 

D, i.e. f (z) exists and is continuous at each point of D. Then

( ) 0;

C

f z dz  where C is any closed contour in D.

Proof: Let f (z) = u + iv, where z = x + iy dz = dx + idy

    ( ) ( ) ( )

C C

f z dz u iv dx idy

( ) ( ) ( ).

C C C

f z dz udx v dy i v dx u dy (55)

Now f (z) = u + iv

f (z) = .
u v v u

i i
x y y y

  (by C–R equation) (56)

Since f (z) is continuously differentiable, it follows from Eq. (56) that , , ,
u u v v

x y x y
 all exist 

and are continuous in D. Then, by Green’s theorem R.H.S. Eq. (55) becomes

( )

C D D

v u u v
f z dz dx dy i dx dy

x y x y
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=

D D

v v u u
dx dy i dx dy

x y x y
(By C–R equations).

( ) 0.

C

f z dz

Note 1: Cauchy’s theorem is also known as Cauchy’s integral theorem.

   2: f (z) is not continuous, then Cauchy’s theorem is known as Cauchy’s Goursal theorem.

3.31 CAUCHY’S INTEGRAL FORMULA

If f (z) is an analytic function with in and on a closed contour C, and if z0

is any point within C, then

f (z0) = 
0

1 ( )
.

2 ( )
C

f z dz

i z z

Proof: Suppose f (z) is an analytic function within and on a closed contour 

C and z0 is an interior point of C.

To prove that 0
0

( )
( ) .

2
C

f z dz
f z

i z z
 To describe a circle  about the 

centre z = z0 of small radius r; such that the circle : |z – z0| = r does not

intersect the curve C. Then the function 

0

( )
( )

f z
z

z z
 is analytic in the

double connected region C and .

Since C be a closed contour contain another closed counter  and f (z) be analytic at every point in 

C and , then

0 0

( ) ( )

C

f z dz f z dz

z z z z
(57)

or     
0 0

0 0 0

( ) ( ) ( )( )
.

C

f z f z f z dzf z dz
dz

z z z z z z
(58)

Since f (z) is analytic within C and so it is continuous at z = z0 so that given  > 0, there exists 

 > 0 such that |f (z) – f (z0)| <  for |z – z0| < . Now for any point z on , |z – z0| = r or (z – z0) = re
i

and 0  2

    

2
0 0

0

( ) ( ) i d

i
O

f z f z r e
dz

z z r e
id  = 2 i f (z0).

Using Eq. (58),

00
0

0 0 0

( ) ( )( ) ( )( )
2 ( ) | |

| |
C

f z f zf z f zf z dz
i f z dz dz

z z z z z z

                       
2 2dz r

r r

Fig. 3.10
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or     0
0

( )
2 ( ) 2 .

C

f z dz
i f z

z z

Since  is arbitrary and so making  0, we get

0
0

( )
2 ( ) 0

f z dz
i f z

z z

or f (z0) = 
0

1 ( )

2
C

f z dz

i z z
Hence, proved.

3.32  CAUCHY INTEGRAL FORMULA FOR THE DERIVATIVE OF 
AN ANALYTIC FUNCTION

Let f (z) be an analytic function within and on a closed contour C and z0 is any point lying in it, then

f (z0) = 
2

0

1 ( )
.

2 ( )
C

f z dz

i z z

Proof: Let (z0 + h) be a neighbouring point of a point z0, then by Cauchy’s integral formula,

f (z0) = 
2

0

1 ( )
.

2 ( )
C

f z dz

i z z

and f (z0 + h) = 
0

1 ( )
.

2 ( )
C

f z dz

i z z h

Now    0 0

0 0

( ) ( ) 1 ( ) 1 1

2
C

f z h f z f z
dz

h i h z z h z z

=

1

0 0

1 ( )
1 1

2 ( )
C

f z h
dz

i z z h z z

=

2 3

0 0 0 0

1 ( )

2 ( )
C

f z h h h
dz

i z z h z z z z z z

=

2

2 3
0 0 0 0

1 ( ) 1
.

2 ( ) ( ) ( )
C

f z h h
dz

i z z z z z z z z

Taking limit as h  0, we get

0 0

0
0 0

( ) ( ) 1 ( ) 1
lim 0 0 0

2 ( ) ( )h
C

f z h f z f z
dz

h i z z z z

or f (z0) = 
2

0

1 ( )
.

2 ( )
C

f z dz

i z z
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3.33  CAUCHY INTEGRAL FORMULA FOR HIGHER ORDER 
DERIVATIVES

Let f (z) be an analytic function in a simply connected region D, and C be a closed contour in D and z0

is any point in C, then

f
(n) (z0) = 

1
0

! ( )

2 ( )n
C

n f z dz

i z z

Proof: We prove this theorem by using mathematical induction.

Axiom-I Statement must be true for n = 1

f (z0) = 
2

0

1 ( )

2 ( )
C

f z dz

i z z

which is true, this is Cauchy integral formula for derivative.

Axiom-II Let the statement is true for n = k

f
(k) (z0) = 

1
0

! ( )

2 ( )k
C

k f z dz

i z z
(59)

Axiom-III The statement is true for n = k, then we want to prove that the statement is true for

n = k + 1. Now, differentiate Eq. (59) both sides w.r.to z0, we get,

( 1) 2
0 0

!
( ) ( 1) ( ) ( 1) ( )

2

k k

C

k
f z k z z f z dz

i

=
2

0

! ( 1) ( )

1 ( )k
C

k k f z
dz

i z z
 = 

2
0

( 1) ! ( )

2 ( )k

k k f z
dz

i z z

( 1)
0 ( 1) 1

0

( 1)! ( )
( )

2 ( )

k

k
C

k f z
f z dz

i z z

The above statement is true for n = k + 1.

Hence, this is true in general

f
(n)(z0) = 

1
0

! ( )
.

2 ( )n
C

n f z dz

i z z

3.34 POISSON’S INTEGRAL FORMULA

If f (z) is an analytic function within and on a circle C defined by |z| = R and if z0 is any point within C,

then
2

0 0
0 2

0 0

( ) ( )1
( ) .

2 ( ) ( )
C

R z z f z
f z dz

i z z R z z

3.35 MORERA’S THEOREM (CONVERSE OF CAUCHY’S THEOREM)

If f (z) is a continuous function in a domain D and if for every closed contour C in the domain D,

( ) 0

C

f z dz
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Then f (z) is analytic within D.

Proof: Let z0 be a fixed point and f (z) be a continuous function in D, then by the definition of continuity 

for any arbitrary  > 0 there exist a positive number , such that

Consider an auxiliary function.

F(z) = 

0

( )

z

z

f t dt

F(z + h) = 

0

( )

z h

z

f t dt

F(z + h) – F(z) = 

0 0

( ) ( )

z h z

z z

f t dt f t dt  = ( )

z h

z

f t dt

Now    
( ) ( )

( )
F z h F z

f z
h

 = 
1

( ) ( )

z h

z

f t dt f z
h

=
1

h
f t f z dt

z

z h

( ) ( )

1

h
f t f z dt

z

z h

( ) ( ) | | (60)

Since f (z) is continuous at each point in D, i.e. |f (t) – f (z)| < , when ever |t – z| < 

1
z h

z

dt
h

1
1

z h

z

dt
h

h
h

As  0

( ) ( )
( ) 0

F z h F z
f z

t

0

( ) ( )
lim ( )
h

F z h F z
f z

h

F (z) = f (z)

Hence, f (z) is analytic in D.

3.36 FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS

Let f (z) be single valued analytic function in a simple connected domain D. If a, b D, then 

( ) ( ) ( ),

b

a

f z dz F b F a

where f (z) is an indefinite integral of f (z).
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Proof: We prove these theorem with the help of indefinite integral,

F(z) = 

0

( )

z

z

f t dt

F(b) – F(a) = 

0 0

( ) ( )

b a

z z

f t dt f t dt  = 
0

0

( ) ( )

zb

z a

f t dt f t dt  = ( )

b

a

f t dt

or    ( ) ( ) ( )

b

a

f z dz F b F a Hence, proved.

3.37 CAUCHY’S INEQUALITY THEOREM

Let f (z) be an analytic function in a domain D and let D contain the interior and the boundary of the 

circle  defined by |z – z0| = . If |f (z)| M on , then 

0( ) !n

n

M
f z n

Entire function:  A function f (z) which is analytic in every finite region of the z-plane is called an entire 

function or an integral function.

3.38 LIOUVILLE’S THEOREM

Let f (z) be an integral function satisfying the inequality |f (z)| M for all values of z, where M is a 

positive constant. Then f (z) is constant.

Proof: Consider z1, z2 be any two points in the z-plane. Let  be a circle with centre z1 and radius R such 

that the point z2 is interior to C. Then by Cauchy’s integral formula, we have

f(z1) = 2
1 2

1 ( ) 1 ( )
and ( )

2 2
C C

f z f z
dz f z dz

i z z i z z

f (z2) – f (z1) = 
1 1

1 ( ) 1 ( )

2 2
C C

f z dz f z dz

i z z i z z

= 2 1

1 2

( ) ( )1

2 ( )( )
C

z z f z dz

i z z z z

= 2 1

1 2

( ) ( )
.

2 ( )( )
C

z z f z dz

i z z z z
(61)

We choose R is larger so that |z2 – z1| < R/2.

Then since [z – z1] = R, we have

|z – z2| = |z – z1 + z1 – z2| = |(z – z1) – (z2 – z1)|

          |z – z1| – |z2 – z1| .
2 2

R R
R

Also       |f (z)| M.

Fig. 3.11
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Hence, from Eq. (61)

|f (z2) = f (z1)| = 2 1

1 2

( )

2 ( ) ( )
C

z z f z dz

i z z z x

2 1

1 2

| ( )| |( )|

2 | | | |
C

z z f z dz

i z z z z

2 1
| |

2

2
C

z z M
dz

R
R

=
2 1

2

2

2
C

M z z
dz

R
 = 

2 1

2

2
2

2

M z z
R

R

=
2 12 M z z

R
(62)

f (z2) – f (z1) = 0 as R

or f (z2) = f (z1).

This shows that the function f (z) is constant.

3.39 EXPANSION OF ANALYTIC FUNCTIONS AS POWER SERIES

3.39.1 Taylor’s Theorem

If a function f (z) is analytic within a circular C1 with its centre z0 and radius R, then at every point z in 

side C2,

f(z) = ( ) 0
0

0

( )
( )

!

n
n

n

z z
f z

n

f (z) = 

2
0

0 0 0 0

( )
( ) ( ) ( ) ( )

2!

z z
f z z z f z f z

Proof: Let z be any point  inside the circle C1 with centre z0 and radius 

R. Let |z – z0| = r and let C2 be the circle with centre z0 and radius , such 

that r <  < R. So that the point z lies inside C2 (see the figure). Then by 

Cauchy’s integral formula, we have

1 ( )
( )

2 ( )
C

f t
f z dt

i t z
(63)

To obtain the desired result, we consider

0 0 0 0

0

1 1 1 1

( ) ( ) ( )
1

t z t z z z t z z z

t z

=

1

0

0 0

1
1

( )

z z

t z t z

Fig. 3.12
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=

2 1

0 0 0 0

00 0 0 0 0

0

1 1
1

( )
1

n n
z z z z z z z z

z zt z t z t z t z t z

t z

=

2 1
0 0 0 0

2 3
0 0 0 0 0

( ) ( ) ( )1 1
.

( )( ) ( ) ( ) ( )

n n

n n

z z z z z z z z

t z t zt z t z t z t z
(64)

Using Eq. (64) in (63), we get

    f (z) = 

2 1
0 0 0 0

2 3
0 0 0 0 0

( ) ( ) ( )1 1 1
( ) .

2 ( )( ) ( ) ( ) ( )

n n

n n
C

z z z z z z z z
f t dt

i t z t zt z t z t z t z
(65)

Using Cauchy’s integral formula for nth derivative

( )
0

1
0

( ) 1 ( )

! 2 ( )

n

n
C

f z f t dt

n i t z
 in Eq. (64), we get

f (z) = 

2 1
( 1)0 0

0 0 0 0 0 0

( ) ( )
( ) ( ) ( ) ( ) ( ) (z z ) ,

2! ( 1)!

n
n n

n

z z z z
f z z z f z f z f z R

n
(66)

where Rn = 
0

1 ( )

2 ( ) ( )n
C

f t dt

i t z t z
(67)

Theorem will be proved if we show that Rn  0 as n . To prove this, we know that |z – z0| = r,

|(t – z0)| =  and therefore |t – z| = |(t – z0) – (z – z0)|  |t – z0| – |z – z0| =  – r.

Hence, when M denotes the maximum value of f (t) on C2, we get Eq. (67)

|Rn| = 

0

1 ( )

(2 ) ( ) ( )n
C

f t dt

i t z t z 0

( )1

|2 | | | | |n
C

f t dt

i t z t z

1

2 ( )
n n

C

M dt
R

r 2 ( ) n
C

M
dt

r

= 2
2 ( ) n

M

r

= .
( ) n

M

r
(68)

Since r < , the RHS of (68) tends to zero as n  and consequently Rn  0 as n . Thus as 

n , the limit of the sum of the first n terms on the RHS of Eq. (66) is f (z).

f (z) is represented by the infinite series.

f (z) = ( )0
0 0

1

( )
( ) ( )

!

n
n

n

z z
f z f z

n
(69)

Equation (69) known as Taylor’s series/Theorem.
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When z0 = 0 then Eq. (69) reduces to

f (z) = ( )

1

(0) (0)
!

n
n

n

z
f f

n

which is known as Maclaurin’s series.

3.39.2 Laurent’s Theorem

Let f (z) be analytic in the ring shaped region D bounded by two concentric circles C1 and C2 with centre 

z0 and radii 1 and 2 ( 1 > 2) and let z be any point of D.

Then f (z) = 0 0

0 1

( ) ( ) ,n n
n n

n n

a z z b z z

where an = 

1 2

1
01

0

1 ( ) 1
, ( ) ( ) .

2 2( )

n
nn

C C

f t
dt b t z f t dt

i it z

Proof: Let D be an annulous region bounded by two concentric circle C1: |t – z0| = 1 and

C2: |t – z0| = 2 ( 1 > 2).

Obviously region is multiply connected region, so we convert it in to simply connected region by 

making a cut ABCD.

Then by Cauchy integral formula for any fixed z in D,

(a)                 (b)
Fig. 3.13

f (z) = 
1 ( )

2 ( )
D

f t
dt

i t z
 = 

1 2

1 ( )

2 ( )
C AB C CD

f t dt

i t z

=

1 2

1 ( )

2 ( )
C C

f t dt

i t z
( AB = CD, but opposite in direction).

f (z) = 

1 2

1 ( ) 1 ( )

2 ( ) 2 ( )
C C

f t dt f t dt

i t z i t z

=

1 2

1 ( ) 1 ( )

2 ( ) 2 ( )
C C

f t dt f t dt

i t z i z t
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= I1 + I2. (70)

 Now I1 = 

1

1 ( )
.

2 ( )
C

f t
dt

i t z

Consider

0 0 0
0

0

1 1 1

( )
( ) 1

t z t z z z z z
t z

t z

=

1

0

0 0

1
1

( )

z z

t z t z

                  = 

2 1

0 0 0 0

0 0 0 0 0 0

0

1 1
1

( )
1

n n
z z z z z z z z

t z t z t z t z t z z z

t z

=

2 1
0 0 0 0

2 3 1 1
0 0 0 0 0

( ) ( ) ( ) ( )1 1
.

( ) ( )( ) ( ) ( ) ( )

n n

n n

z z z z z z z z

t z t zt z t z t z t z

Substitute the value of 
1

t z
 in I1, we get

I1 = 

1 1

0

2
0 0

1 ( ) ( )

2 ( ) 2 ( )
C C

z zf t dt f t dt

i t z i t z

1 1

1
0 0

1 1
0 0

( ) ( )( ) ( ) 1
.

2 2 ( )( ) ( )

n n

n n
C C

z z z zf t dt f t
dt

i i t zt z t z

Putting an = 

1

1
0

1 ( )

2 ( )n
C

f t dt

i t z

I1 = a0 + (z – z0) a1 + (z – z0)
2

a2 + … + (z – z0)
n

an + Rn+1

= 0 1

0

( ) ,n
n n

n

a z z R

where Rn+1 = 

1

1
0

1
0

( ) ( ) 1
.

2 ( )( )

n

n
C

z z f t dt

i t zt z

Now our aim is to show that Rn+1  0 as n .

|Rn+1| = 

1

1
0

1
0

( ) ( ) 1

2 ( )( )

n

n
C

z z f t dt

i t zt z
1

1

0

1

0

( )
.

2

n

n
C

z z f t dt

t z t z
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Since |z – z0| = r, |t – z0| = 1

|t – z| = |t – z0 + z0 – z| = |(t – z0) – (z – z0)|

 |t – z0| – |z – z0|

1 – r

and |f (t)| M.

1

1

1 1
1 1

2 ( )

n

n n
C

M dtr
R

r

1

11
1 1

2
2 ( )

n

n

r M

r

1
1

1 1
1 1

.
( )

n

n n

M r
R

r

As n , Rn+1  0

I1 = 0

0

( ) .n
n

n

a z z

Now, I2 = 

2

1 ( )
.

2 ( )
C

f t dt

i z t

Consider

0 0 0 0

1 1 1

( ) ( )z t z z z t z z t z
 = 

1

0

0 0

1
1

( )

t z

z z z z

                 = 

2 1

0 0 0 0

0 0 0 0 0 0

0

1 1
1

( )
1

n n
t z t z t z t z

z z z z z z z z z z t z

z z

     = 

2 1
0 0 0 0

2 3 1 1
0 0 0 0 0

( ) ( ) ( )1 1
.

( )( ) ( ) ( ) ( )

n n

n n

t z t z t z t z

z z z tz z z z z z z z

Substitute the value of 
1

z t
 in I2, we get

I2 = 

2 2

02
0 0

1 1 1 1
( ) ( ) ( )

( ) 2 2( )
C C

f t dt f t t z dt
z z i iz z

   
2

0 11
0

1 1
( ) ( )

2( )

n
nn

C

t z f t dt S
iz z

Put bn = 

2

1
0

1
( ) ( ).

2

n

C

t z f t
i
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Then

I2 = 1 2 1 12 1
0 0 0

1 1 1
.

( ) ( )
n nn

b b b S
z z z z z z

= 0 1

1

( ) ,n
n n

n

b z z S

where Sn+1 = 

2

1
0

1
0

( ) ( )1
.

2 ( ) ( )

n

n
C

t z f t
dt

i z z z t

Now our aim is to show that Sn+1  0 as n

|Sn+1| = 

2

1
0

1
0

( )1 ( )
.

2 ( )( )

n

n
C

t z f t
dt

i z tz z
2

1

0

1

0

( )1
.

2

n

n
C

t z f t dt

z z z t

Since |t – z0| = 2, |z – z0| = r and |t – z| = 2 – r, |(f (t)| M

       |Sn+1|

1
2 2

1
2( )

n

n

M

r r

Sn+1  0 as n

I2 = 0

1

( ) .n
n

n

b z z

Substitute the values of I1 and I2 in Eq. (71), we get

I = 0 0

0 1

( ) ( ) ,n n
n n

n n

a z z b z z

where an = 

1 2

1 1
0 0

1 ( ) 1 ( )
, .

2 2( ) ( )
nn n

C C

f t dt f t dt
b

i it z t z

Obviously bn = a–n

f (z) = 0 0

0 1

( ) ( )n n
n n

n n

a z z a z z

f (z) = 0( )n
n

n

a z z Hence, proved.

3.39.3 Problems on Cauchy’s Integral Formula

Example 39 Use Cauchy’s integral formula, evaluate

1
, where : 3 1

( )
C

dz C z i
z z i
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Solution By Cauchy’s integral formula, f (z0) = 
0

1 ( )
,

2
C

f z dz

i z z

where z = z0 is a point inside the contour C.

Here    
1

( )f z
z

, then 
( )

( )
C

f z
I dz

z i

= 2 i f (– i)

=
1

2 i
i

 = –2.

Example 40 Evaluate
3

sin
,

4

C

z
dz

z

 where 
1

: .
4 2

C z

Solution Let
3

sin 1
; :

4 2

4

z
I dz C z

z

Here f (z) = sin z, and f (z) = cos z, f (z) = –sin z.

By Cauchy integral formula

  

( )
01

0

( ) 2
( )

!( )

n

n
C

f z i
dz f z

nz z

  
3

sin 2

2! 4

4

C

z i
dz f

z

 = 
1

2 2

i
i

Example 41 Evaluate 
2(9 )( )

C

z dz

z z i
, where C: |z| = 2 described in positive sense.

Solution  Let

I = 
2(9 )( )

C

z dz

z z i

Here f (z) = 
2

,
9

z

z
 then.

I = 
( )

,

C

f z dz

z i
z = –i lies in side ‘C’,

= 2 i f (–i)

=
2

2
9 ( )

i
i

i
 = 2

9 1 5

i
i

Fig. 3.14
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Example 42 Evaluate

2

4
,

( 1)

z

C

e
dz

z
 where C: |z| = 3

Solution By Cauchy’s integral formula

( )
0 1

0

! ( )
( )

2 ( )

n

n
C

n f z dz
f z

i z z

Here f (z) = e2z, n = 3, z0 = –1

f
(3)(z) = 8 e2z

f
(3) (–1) = 

2

8

e

  
2

(3)

4 2

2 2 8
( 1)

3! 6( 1)

z
e i i

dz f
z e

 = 
2

8

3

i

e

Example 43 Use Cauchy’s integral formula, evaluate

2 2sin cos
,

( 1)( 2)
C

z z
dz

z z
 where C: |z| = 3

Solution Here f (z) = sin z
2 + cos z

2 is analytic in side |z| = 3.

z = 1, 2 lie inside C, where 
2 2sin cos

( 1)

z z

z
 is not analytic, then

1

2 2 2 2sin cos (sin cos )/( 2)

( 1)( 2) ( 1)
C C

z z z z z
dz dz

z z z
2

2 2(sin cos )/( 1)

( 2)
C

z z z
dz

z

=
2 2 2 2

1 2

sin cos sin cos
2 2

( 2) ( 1)
z z

z z z z
i i

z z
 (By Cauchy integral 

formula)

=
0 1 0 1

2 2
1 1

i i

=  2 i + 2 i = 4 i

Example 44 Evaluate 

3

3
,

( )

iz

C

e
dz

z
 where C: |z – | = 

16
.

5

Solution Here f (z) = e3iz and z = –  (triple pole) lies outside C, then by Cauchy integral formula.

3

3
0

( )

iz

C

e
dz

z
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Example 45 Evaluate
2

2

1 1
, where :

21
C

z
dz C z

z

Solution Here f (z) = z2 + 1, and the poles z = 1, –1 lies outside C, i.e. 
1

: ,
2

C z  then by Cauchy 

integral formula

2

2

1
0.

1
C

z
dz

z

Example 46 Evaluate 
2 28

,
( 2) ( 3)

C

z
dz

z z
 if c is the circle |z – 4i| = 3.

Solution Here
2 28

( )
( 2)( 3)

z
f z

z z

Putting the denominator equal to zero, i.e.,

(z – 2) (z – 3) = 0  or z = 2, 3.

Thus, the circle c: |z – 4i| = 3 with centre 4i and radius 3 

does not enclose z = 2 and z = 3.

Hence, by Cauchy’s integral theorem

2 28
0

( 2) ( 3)
C

z
dz

z z

Example 47 Evaluate 
2

2

2
,

1
C

z z
dz

z
 where c is the circle of unit radius with centre at z = 1.

[U.P.T.U. 2004]

Solution Here
2

2

2
( )

1

z z
F z

z

Putting z
2 – 1 = 0 or z = 1, –1.

The given circle c: |z – 1| = 1.

which includes the point z = 1 only.

Let     
22

( )
1

z z
f z

z

Clearly, f (z) is analytic in the circle |z – 1| = 1.

Hence, by Cauchy’s integral theorem, we have

2

2

2 ( )

( 1)1
C C

z z f z
dz dz

zz
 = 2 i f (1)

=
2

1

2
2

1 z

z z
i

z
 = 

3
2

2
i  = 3 i.

Fig. 3.15

Fig. 3.16
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Example 48 Evaluate
2013

3

sinh ( )
,

C

z
dz

z
 where c is the circle |z| = 1.

Solution Put z
3 = 0 or z = 0 is a singularity of order 3.

Clearly z = 0 lies inside the circle |z| = 1.

Let f (z) = sinh (z2013), clearly f (z) is analytic within and on the circle |z| = 1.

Hence, by Cauchy’s integral formula for derivative, we have

2013

3 3

sinh ( ) ( )

c c

z f z
dz dz

z z
 = 

2

2
0

2
( )

2!
z

i d
f z

dz

=
2013

0

sinh ( )

z

d d
i z

dz dz

= i
d

dz
z z

z

2013 2012 2013

0

cosh ( )

= 2013 2012 20132011 2013 2012 2012 2013
i z z z z zcosh ( ) sinh ( )

z 0

= 0.

Example 49 Evaluate ,
ez

c

e
dz

z ei
 where c is the ellipse |z – 2| + |z + 2| = 6.

Solution Let

ez

c

e
I dz

z ei
(71)

Since c is an ellipse

|z – 2| + |z + 2| = 6

or     ( 2) ( 2) 6x iy x iy

or          

1 1

2 2 2 22 2( 2) 6 ( 2)x y x y

Squaring both sides, we get

     

1

2 2 2 2 2 2 24 4 36 ( 4 4) 12 ( 2)x y x x y x x y

or    

1

2 2 212( 4 ) 36 8x y x x

or    

1

2 2 23( 4 ) 9 2x y x x

Again squaring, we get

                   9(x2 + y2 + 4x) = (9 + 2x)2
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or    2 2 29( 4 ) 81 4 36 .x y x x x

or       5x
2 + 9y

2 = 45

or       
2 2

1
9 5

x y

Compare
2 2 2 2

2 2
1 with 1,

9 5

x y x y

a b
 we get

a
2 = 9, b2 = 5

or a = 3, 5 2.2b  (approx.)

Clearly, z = ei = 2.71 i, lies outside the c.

Hence, by Cauchy’s integral theorem.

    

0.
ez

c

e
dz

z ei

Example 50 Using Cauchy–integral formula to evaluate 
2

,
3 2

c

z dz

z z
 where c is the circle 

1
2 .

2
z [U.P.T.U. 2009]

Solution Poles of the integrand function is

Put z
2 – 3z + 2 = 0

or (z – 1) (z – 2) = 0  or z = 1, 2

The given circle 
1

2
2

z  has centre 2 and radius 
1

.
2

Clearly z = 2 lies inside the given circle [See Fig. 3.17]

Hence, by Cauchy integral formula.

  
2

1

23 2
c c

z

z dz z
dz

zz z

or =
( )

, where ( )
2 1

c

f z z
dz f z

z z

=
2

2
1 z

z
i

z
 = 

2
2

1
i  = 4 i

Example 51 Using Cauchy’s integral formula to evaluate 
2

,
1

zt

c

e
dz

z
 where c is the circle |z| = 3.

[U.P.T.U. 2009]

Solution Poles of the integrand are given by

z
2 + 1 = 0  or z = i.

Fig. 3.17
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The circle |z| = 3 has centre at z = 0 and radius 3.

Clearly, both the poles z = i and z = –i lies inside the given circle.

Hence, by Cauchy’s integral formula

1 2

( )

2 1

zt ztzt e e
z i z i

c c

e
dz dz dz

z i z iz

= 2 2
zt zt

z i z i

e e
i i

z i z i

= 2
2 2

it it
e e

i
i i

 = 2
2

it it
e e

i
i

 = 2 i sin t.

Example 52 Using Cauchy’s integral theorem, to evaluate 
2 2 2

,
( )

z

c

e
dz

z
 where c is the circle 

|z| = 4.

[U.P.T.U. 2008]

Solution Put (z2 + 2)2 = 0

or z = i are the poles of order 2.

The given circle |z| = 4 has centre zero and radius 4.

Clearly, the given circle encloses both the poles. Hence, by Cauchy’s theorem, we have

2 2

1 2

( ) ( )

2 2 2 2 2( ) ( ) ( )

z z
e ez

z i z i

c c

e
dz dz dz

z z i z i

=
2 2

2 2
( ) ( )

z z

z i z i

d e d e
i i

dz dzz i z i

=
3 3

( 2) ( 2)
2 2

( ) ( )

z z

z i z i

e z i e z i
i i

z i z i

=
2 2

1 1

2 2

i i
 = .

i
[ e

i = cos  + i sin  = 1]

Example 53 Evaluate f (z), if f (z) = a + bz + cz
2 and 

2 3

( ) ( ) ( )
2

c c c

f z f z f z
dz dz dz i

z z z

where c is the circle |z| = 1.

Solution Given

( )
2

c

f z
dz i

z
(72)

Here z = 0 is a simple pole which lies inside the circle |z| = 1.

Hence, by Cauchy’s integral formula, Eq. (72) gives

          2 i [f (z)]z = 0 = 2 i

Fig. 3.18
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or      2 i [a + bz + cz
2]z = 0 = 2 i

or             2 i (a) = 2 i

or        1a

Now,     
2

( )
2

c

f z
dz i

z
(73)

Here, z = 0 is a pole of order 2, which lies inside the circle |z| = 1.

From Eq. (73)

        
0

2
( ) 2

1! z

i d
f z i

dz
  [By C–I formula for derivative]

or    2

0

2 ( ) 2
z

d
i a bz cz i

dz

or        02 2 2zi b cz i

or            2 i(b) = 2 i

or           1b

Also given

3

( )
2

c

f z
dz i

z

(74)

Here z = 0 is a pole of order 3, which lies inside the circle |z| = 1.

From Eq. (74)

        
2

2
0

2
( ) 2

2!
z

i d
f z i

dz
  [By C–I formula for derivative]

or    

2
2

2
0

2
( ) 2

2
z

i d
a bz cz i

dz

or           02 2zi c i

or             1c

Hence,          f (z) = (1 + z + z2)

3.39.4 Problems on Taylor’s and Laurent’s Theorem/Series

Example 54 Expand the following functions in a Taylor’s series about z = 0 and determine the 

region of convergence in each case.

(i) sin z  (ii) e
z    (iii) cos z.

Solution

(i) Let f (z) = sin z, then

f (z) = cos z, f (z) = –sin z, f (z) = –cos z, f
iv(z) = sin z etc.
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f (0) = 0, f (0) = 1, f (0) = 0, f (0) = –1, f iv(0) = 0

  In general f (2n – 1)(0) = (–1)n+1.

  Since f (z) = sin z is analytic for all values of z, we have 

f (z) = sin z
2 3 2 1

(2 1)(0) (0) (0) (0) (0)
2! 3! (2 1)

n
nz z z

f zf f f f
n

  

3 2 1
10 0 0 ( 1)

3! (2 1)!

n
nz z

z
n

  

3 2 1
1( 1)

3! (2 1)!

n
nz z

z
n

         =
2 1

1

1

( 1) ,
(2 1)!

n
n

n

z

n
 when |z| < .

(ii)       f (z) = ez, then f (z) = ez, f (z) = ez, f (z) = ez, f
(iv)(z) = ez, ..., f (n)(z) = ez

f (0) = 1, f (0) = 1, f (0) = 1, …, f (n)(0) = 1.

   Since f (z) = ez is analytic for every value of z, we have

f (z) = ez = f (0) + zf (0) + 
2

( )(0) (0)
2! !

n
nz z

f f
n

=
2 3

1
2! 3! !

n
z z z

z
n

=
0 !

n

n

z

n
 when |z| < .

(iii) Proceeding as in (i), we can obtain

cos z = 
2

2

1

1 ( 1) ,
(2 )!

n

n

z

n
 when |z| < .

Example 55 Find the Taylor’s and Laurent’s series which represents the function

f (z) = 
2 1

( 2) ( 3)

z

z z
 in the regions

(i) |z| < 2,  (ii) 2 < |z| < 3,  (iii) |z| > 3.

Solution

f (z) = 
2 1 5 7

1
( 2) (2 3) ( 2) ( 3)

z z

z z z

F(z) = 
3 8

1
2 3z z

(75)
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(i) When |z| < 2, then 1
2

z

f (z) = 
3 1 8 1

1
2 3

1 1
2 3

z z
 = 

1 1
3 8

1 1 1
2 2 3 2

z z

=

2 3
3

1 1
2 2 2 2

z z z
2 3

8
1

3 3 3 3

z z z

=
0 0

3 8
1 ( 1) ( 1)

2 32 3

n n
n n

n n
n n

z z

f (z) = 
1 1

0

3 8
1 ( 1) .

2 3

n n

n n
n

z

  This is the Taylor’s series valid for |z| < 2.

(ii) When 2 < |z| < 3, then |z| > 2 and |z| < 3

      
2

1 and 1
3

z

z

f (z) = 

1 1
3 2 8

1 1 1
3 3

z

z z

=

2 3 2 3
3 2 2 2 8

1 1 1
3 3 3 3

z z z

z z z z

=
0 0

3 2
1 ( 1) ( 1)

3 3

n n

n n

n n

z

z z

=
1 1

0

3.2 8
1 ( 1)

3

n n
n n

n n
n

z
z

z

(iii) When |z| > 3, then 
3 2 2

1, 1
3z z

f (z) = 
3 8

1
2 3z z

 = 

1 1
3 2 8 3

1 1 1
z z z z

=
0 0

3 2 8 3
1 ( 1) ( 1)

n n

n nz z z z

=
1

0

1
1 ( 1) [3.2 3 8]n n n

n
n z
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Example 56 Find the Laurent series expansion of the function
2

1
( )

(1 )
f z

z z
 about z = 0.

Solution

f (z) = 1

2 2

1 1
(1 )

(1 )
z

z z z
 = 2 3

2

1
(1 )z z z

z

f (z) = 
2

0

1
.n

n

z
z

or f (z) = 
2

1

1 1
1 n

n

z
zz

Example 57 Show that

1 2
2

0

1
, where cos[ sin ]

2

c
z

nz
n n

n

e a z a n c d

Solution The function 

1
/2

( )
c z

zf z e  is analytic except at z = 0 and z = . Hence f (z) is analytic in 

the annulus region r1  |z| r2 where r1 is small and r2 is large.

f (z) can be expanded in Laurent’s series in the form.

f (z) = 
0 1

,n n
n n

n n

a z b z

where an = 
1

1 ( )
, .

2
n nn

C

f z dz
b a

i z
C: |z| = 1 or z = rei , 0  2

an = 

2
sin

( 1)
0

1

2

i
i c

i n

e i d
e

i e
 = 

2
[ sin ]

0

1

2

i c n
e d

or an = 

2 2

0 0

1
cos ( sin ) sin ( sin ) .

2 2

i
c n d c n d (76)

IInd integral of Eq. (76) is zero, because, by the property of definite integral 

0

( ) 0)

za

f x dx  if 

f (2a – x) = – f (x).

an = 

2

0

1
cos[ sin ] .

2
c n d (77)

Equation (76) is also expressible as

f (x) = 
0 1

n n
n n

n n

a z a z  = 
0 1

n n
n n

n n

a z a z
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f (z) = .n
n

n

a z (78)

Equation (77) and (78) shows the required result. Hence, proved.

EXERCISE 3.4

1. Prove that the value of the integral of 
1

z
 along a semi-circular are |z| = 1 from –1 to +1 is

– i or i according as the are lies above or below the real axis.

2. Evaluate

C

z dz  from z = 0 to z = 4 + 2i along the curve C defined by

(i) z = t2 + it

(ii) the line from z = 0 to z = 2i and the line from z = 2i to z = 4 + 2i.

Brook Taylor was born on 18 August 1685 in Edmonton, England. Taylor was 
home tutored before starting his studies in St. John’s College, Cambridge. He 
acquired the degrees of LLB in 1709 and LLD in 1714. He was interested in 
Art and Music, but his first love was mathematics. He portrayed exceptional 
abilities in mathematics by writing a very important paper even before his 
graduation. It gave the explanation of the oscillation of a body. Noticing Taylor’s 
extraordinary expertise in the subject, he was elected as a member of the Royal 

Society by Machin and Keill. In 1714, Brook Taylor became the secretary of the Royal Society. He 
died on 29 December 1731.

Pierre Alphonse Laurent born in 18 July 1813  Paris, France. He was a French 
mathematician best known as the discoverer of the Laurent series, an expansion of 
a function into an infinite power series, generalizing the Taylor series expansion. 
Laurent graduated from the École Polytechnique in 1832, and entered the 
engineering corps as second lieutenant. He then attended the École d’Application 
at Metz until he was sent to Algeria. His result was contained in a memoir submitted 

for the Grand Prize of the Académie des Sciences in 1843, Laurent died at age 41 in 2 September 
1854 in Paris, France.

3.40 ZEROS OF AN ANALYTIC FUNCTION

Let f (z) be an analytic function in a domain D. Then it can be expanded in Taylor’s theorem about the 

point z = z0 in D is

f (z) = 0 1
0 0

1 ( )
( ) , where, .

2 ( )

n
n n n

n C

f z
a z z a dz

i z z
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If a0 = a1 = a2 = … = am – 1 = 0 but am  0, then z = z0 is a zero of f (z) of nth order.

If f (z) satisfies the conditions of the Laurants theorem, then

f (z) = 0 0

0 1

( ) , ( ) ,n n
n n

n n

a z z b z z

where an = 
1 1

0 0

1 ( ) 1 ( )
,

2 2( ) ( )
nn n

f t dt f t dt
b

i it z t z

the term 0

1

( ) n
n

n

b z z  is called the principal part of the function f (z) at z = z0.

3.41 SINGULARITIES

Consider a function f (z) which is analytic at all points of a circular bounded region D except at a finite 

number of points, these exceptional points are known as singular point or singularities.

There are two types of the singularities:

(i) Isolated Singularities

A point z = z0 is said to be an isolated singularity of f (z), if f (z) is analytic at each point in the 

neighbourhood of z0. For example

f (z) = 
2 5

( 1)

z

z z

At z = 0 or 1, function f (z) does not define.

z = 0 or z = 1 are singularities but f (z) is analytic in the neighbourhood of z = 0 or z = 1.

Hence, z = 0 and 1 are isolated singularity.

(ii) Non-isolated Singularities

A point z = z0 is said to be a non-isolated singularity of f (z), if f (z) is not analytic at z = z0 and in the 

neighbourhood of z0.

Note: Isolated singularities are further specify by Pole’s, essential singularity and removable 

singularity.

Let a function f (z) is analytic in a domain except at z = z0. Then f (z) can be expanded by using 

Laurent series expansion in to the form of 

0 0

0 1

I II

( ) ( ) ( )n n
n n

n n

f z a z z b z z

The second term of the expansion in the RHS is known as principal part of f (z) at z = z0.

Now there are the following three possibilities:

(a) Pole: If the principal part of f (z) consist only a finite number of terms say m. Then z = z0 is said 

to be a pole of order m. If m = 1, then z0 is called a simple pole.

(b) Essential Singularity: If the principal part in Laurent expansion of f (z) consists an infinite 

number of terms, then z = z0 is called an isolated essential singularity.
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(c) Removable Singularity: If the principal part in Laurent expansion of f (z) does not contain any 

terms, that is, all bn are zero, then z = z0 is called a removable singularity.

Example 58 Find Laurent expansion of 
2

1

( 2)z z
 about z = 0 and indicate the character of the 

singularity.

Solution We have

f (z) = 
2

1

( 2)z z
 = 

1

2

1
1

22

z

z

=

2 3

2

1
1

2 2 22

z z z

z
 = 

2

1 1 1 1

2 2 4 8

z

zz

Thus, the Laurent expansion about z = 0 has only two terms in the principal part.

Hence, z = 0 is a pole of 2nd order.

Example 59 Find the Laurent expansion of e
1/z about z = 0 and indicate the character of the 

singularity.

Solution We have 

f (z) = 

1

ze  = 

2 3
1 1 1 1 1

1
2! 3!z z z

 = 
2 3

1 1 1 1 1
1

2! 3!z z z

Thus, the Laurent expansion about z = 0 contain an infinite number of terms in the principal part of 

f (z).

Hence, z = 0 is an essential singularity.

Example 60 Find the Laurent expansion of 
sin z

z
 about z = 0 and name of the singularity.

Solution We have

f (z) = 
sin z

z
 = 

1
(sin )z

z

=
3 5 71

3! 5! 7!

z z z
z

z
 = 

2 4 7

1
3! 5! 7!

z z z

Thus, the Laurent expansion about z = 0 does not contain no terms in the principal part of f (z).

Hence, z = 0 is a removable singularity.

Example 61 Find the singularities of f (z) = 
2 2( 4)

z

z
 and indicate the character of the 

singularities.

Solution We have 

f (z) = 
2 2 2( 4) [( 2 )( 2 )]

z z

z z i z i
 = 

2 2
.

( 2 ) ( 2 )

z

z i z i
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Since 2

22 2
lim ( 2 ) ( ) lim 0,

8( 2 )z i z i

z i
z i f z

z i
 it follows that z = –2i is a pole of order 2. 

Similarly, z = +2i is a pole of order 2. Further, we can find such that no other singularity other than 

z = 2i lies inside the circle |z – 2i| = . For example if = 1. Hence z = 2i is an isolated singularity. 

Similarly, z = –2i is also an isolated singularity.

Example 62 Specify the nature of singularity at z = –2 of 

f (z) = 
1

( 3) sin
2

z
z

Solution Zero’s of f (z) are given by

f (z) = 
1

0 ( 3)sin 0
2

z
z

z = 3 and 
1 1

sin 0 sin 0 ( 1) (0)
2 2

n
n n

z z

z = 
1

2
n

 for n = 0, 1, 2, 3, …

   z = –2 is an isolated singularity.

EXERCISE 3.5

1. Using Cauchy’s integral formula to evaluate 
sin cos

,
( 1) ( 2)

c

z z
dz

z z
 where C is the circle |z| = 

4. [U.P.T.U. 2008]

2. Evaluate

2

2

3
,

1
c

z z
dz

z
 where c is the circle |z – 1|.

3. Using Cauchy’s integral formula to evaluate 
2

1
,

( 2)( 1)
c

z
dz

z z
 where c is the circle 

|z –i| = 2.

4. Using Cauchy’s integral formula to evaluate 
3

1
,

( 1)
c

dz
z

 where c is the circle |z –1| = 1.

5. Using Cauchy’s integral theorem to evaluate 

2 2cos sin
,

( 1) ( 2)
c

z z
dz

z z
 where c is the circle 

|z| = 3. [U.P.T.U. 2005]

6. Evaluate
2

sin
,

( 3) ( 4)( 1)

z

c

e z
dz

z z z
 where c is the circle |z| = 2.

7. Evaluate
3 2

,
( 1) .

z

c

e
dz

z z
 where c is the circle |z| = 2.

8. Expand the function 
2

1
( )

3 2
f z

z z
 in the region (i) 1 < |z| < 2   (ii) 0 < |z – 1| < 1.

[U.P.T.U. 2006, 2008, 2010]
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9. Using Laurent’s series, expand the function 
3

1 cos
( )

z
f z

z
 about the point z = 0.

[U.P.T.U. 2002]

10. Using Taylor’s theorem; show that 
2 3( 1) ( 1)

log ( 1)
2 3

z z
z z  where |z – 1| < 1.

[U.P.T.U. 2004]

11. Find the Laurent’s series expansion for the function 
3 2

7 2
( )

2

z
f z

z z z
 in the regions given 

by

  (i)  0 < |z + 1| < 1  (ii)  1 < |z + 1| < 3  (iii) |z + 1| > 3. [U.P.T.U. 2003, 2005]

12. Find the Laurent series that represents the function 2

2

1
( ) sinf z z

z
 in the domain 

0 < |z| < .

13. Find the Taylor’s series expansion of the following functions:

(i) sin–1
z in powers of z

(ii)
4

4 1

1

z

z
 about the point z = 0 [U.P.T.U. 2007]

14. Define the Laurent series expansion of a function. Expand the function ( 2)( )
z

zf z e  in a 

Laurent series about the point z = 2. [U.P.T.U. 2009]

15. The series expansions of the functions 2 31 1 1
and are 1

1 1 1
z z z

z z z
 and 

2 3

1 1 1 1 1
1

1z z z z z
 on adding, we get 2

2

1 1 1
(1 ) 1 0.z z

z z z
 Is 

this result true? If not, give the region.

16. Discuss the singularity of the function 
1

( ) sin at 1.
1

f z z
z

17. Discuss the nature of singularity of the function 
3

sin
( ) at 0.

z z
f z z

z

18. Discuss the nature of the singularity, of 
2

2 1
( ) sin at 1.

1

z
f z z

zz

19. Discuss the nature of the function 
1

( ) at .
1

z

z

e
f z z

e

20. Show that the function 
2

1

( ) zf z e  has no singularities.

21. Discuss the singularity of 
2

cot
( )

( )

z
f z

z a
 at z = a and z = .

22. Prove that the singularity of f (z) = cot z at z =  is a non-isolated essential singularity.

23. Show that 31 1 7
cosec ; 0 .

3! 360
z z z z

z
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24. Prove that 
3 5

1tan
3 5

z z
z z  when |z| < 1.

25. Expand sin z in a Taylor’s series about .
4

z

Answer

1. 4 i     2.  4 i

3.
2

9

i
     4.

4

9

i

5. –4 i     6.
10

ie

7.
11

4 i
e

8. (i)
0 0

1 1 1

2 2

n n

n n

z

z z
  (ii)

0

1
( 1)

1

n

n

z
z

9. 31 1 1

2! 4! 6!
z z

z

11. (i)
0 0

3 2 1
( 1)

1 3 3

n

n

n n

z
z

z
(ii)

0 0

1 1 3 2 1

1 1 1 3 3

n n

n n

z

z z z

  (iii)
0 0

1 1 3 2 3

1 1 1 1 1

n n

n nz z z z z

12.
4

1

( 1) 1
1 .

(2 1)!

n

n
n n z

13. (i)

3 53

6 40

z z
z   (ii) 2

0 0 0

3 5 1
( 1) 2 ( 1) .

4 4 2

n n n n n

n n n

z z z z

14.
0

1 2
.

! 2

n

n

e
n z

15. No, the given first series is valid only for |z| < 1 and the 2nd series is valid only for |z| > 1. 

There is no common point where both the series are valid.

16. z = 1 is an isolated essential singularity.

17. z = 0 is a removable singularity.

18. z = 1 is an isolated essential singularity.

19. Non-isolated essential singularity.

21. z = a is a double pole and z =  is a non-isolated essential singularity.
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3.42 THE CALCULUS OF RESIDUES

3.42.1 Residue at a Pole

Suppose a single valued function f (z) has a pole of order m at z = z0, then the principal part of Laurent 

expansion of (z) consist only m terms so that

f (z) = 0 0

0 1

( ) ( ) ,n n
n n

n n

a z z b z z (79)

where an = 
1 1

0 0

1 ( ) 1 ( )
,

2 2( ) ( )
nn n

C C

f z f z
dz b dz

i iz z z z

C being a circle |z – z0| = r.

The coefficient b1, in the principal part of the expansion, given by

b1 = 
1

( )
2

C

f z dz
i

(80)

The coefficient b1 is called the residue of f (z) at the pole z = z0 and is denoted by the symbol 

Res(z =  z0) = b1. Evidently the value of b1, given by Eq. (80), does not depend upon the order of the 

pole and hence it represents a general definition of the residue at a pole then Eq. (80) becomes 

f (z) = 1
0

00

( ) ,n
n

n

b
a z z

z z

Thus, the residue at z = z0 is

Res(z = z0) = 
0

0 1lim ( ) ( )
z z

z z f z b

            = 
1

( ) .
2

C

f z dz
i

  (using Eq. (80))

3.42.2 Residue at Infinity

Residue of f (z) at z =  is defined as 
1

( ) ,
2

C

f z dz
i

 where the integration is taken round C in anti-

clockwise direction.

3.42.3 Method of Finding the Residues

1. If f (z) has a pole of order one at z = z0:

  Since z = z0 is a pole of order 1, the Laurent series expansion becomes

f (z) = a0 + a1(z – z0) + a2(z – z0)
2 + … + b1(z – z0)

–1.

  Multiplying both sides by (z – z0), we get

(z – z0) f (z) = a0 (z – z0) + a1 (z – z0)
2 + … + b1

0
0 1 0lim ( ) ( ) Res ( )

z z
z z f z b z z
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2. If f (z) has a pole of order ‘m’ at z = z0:

  Since z = z0 is a pole of order ‘m’, the Laurent expansion becomes

f (z) = a0 + a1(z – z0) + a2(z – z0)
2 + … + b1(z – z0)

–1 + … + bm(z – z0)
–m.

  Multiplying both sides by (z – z0)
m, we get

(z – z0)
m

f (z) = a0 (z – z0)
m + a1(z – z0)

m+1 + … + b1(z – z0)
m–1 + … + bm.

  Differentiating both sides (m – 1) times w.r.to z and taking the limit as z z0, we get

0

1

0 11
lim ( ) ( ) ( 1)!

m
m

mz z

d
z z f z b m

dz

          or Res(z = z0) = b
m

d

dz
z z f z

z z

m

m

m
1

1

1 0

1

1 0( )!
lim ( ) ( ) .

3. If f (z) in the form given by

f (z) = 0 0

( )
; ( ) 0, ( ) 0,

( )

z
z z

z

  where z = z0 is a pole of order 1, then

Res (z = z0) = 0

0

( )
.

( )

z

z

4. Residue of f (z) at a simple pole (z = z0) = coefficient of 
1

t
 in f (z0 + t) expanded in powers of 

t, where t is sufficiently small.

5. Residue of f (z) at ( ) lim [ ( )]
z

z z f z

  or    = [Coefficient of 1/z in the expansion of f (z) for values of z in the neighbourhood of 

z = ].

3.43 CAUCHY’S RESIDUE THEOREM

If f (z) is analytic within and on a closed contour C, except at a finite number of poles z1, z2, z3, …, zn

within C, then

1

( ) 2 Res ( = ),
n

r

rC

f z dz i z z

where RHS denotes sum of residues of f (z) at its poles lying within ‘C’.

Proof: Suppose 1, 2, 3, …, n are the circles with centres at z1, z2, …, zn, respectively and radii so 

small that they lie within closed curve C and do not overlap. Then f (z) is analytic within the region 

enclosed by the curve C and these circles. Hence by Cauchy’s theorem for multi-connected regions, 

we have

1 2

( ) ( ) ( ) ( )

nC

f z dz f z dz f z dz f z dz (81)
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But       

1

1 1

1
( ) residue of ( ) at (  = ) = Res (  = )

2
f z dz f z z z z z

i

           

1

1( ) 2 Res ( )f z dz i z z

Using this in Eq. (81), we get

      
1 2( ) 2 Res ( ) 2 Res ( ) 2 Res ( )n

C

f z dz i z z i z z i z z

      1

( ) 2 Res )
n

r

rC

f z dz i z z

Example 63 Evaluate the residues of 
2

( 1) ( 2)( 3)

z

z z z
 at z = 1, 2, 3 and infinity and show 

that their sum is zero.

Solution Suppose f (z) = 
2

( 1) ( 2)( 3)

z

z z z

Res (z = 1) = 
1

lim ( 1) ( )
z

z f z  = 

2

1
lim ( 1)

( 1)( 2)( 3)z

z
z

z z z

=
2

1
lim

( 2)( 3)z

z

z z
 = 

1 1

(1 2)(1 3) 2

Res (z = 2) =
2

lim ( 2) ( )
z

z f z  = 

2

2

4
lim 4

( 1)( 3) (2 1)(2 3)z

z

z z

Res (z = 3) = 
3

lim ( 3) ( )
z

z f z  = 

2

3

9 9
lim

( 1)( 2) (3 1) (3 2) 2z

z

z z

Now,

Res(z = + ) = lim ( )
z

z f z

      

3

lim 1
( 1)( 2) ( 3)z

z

z z z

Sum of the residues

R+ = Res(z = 1) + Res (z = 2) + Res (z = 3) + Res (z = )

=
1 9

4 1 0
2 2

Hence, proved.
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Example 64 Using residue theorem, evaluate 
2( 1)

z

C

e
dz

z z
 where C is circle |z| = 2.

Solution Here f (z) = 
2( 1)

z
e

z z

For pole, put denominator of f (z) = 0

i.e. z(z – 1)2 = 0 or z = 0, z = 1. (Twice)

z = 0 and z = 1 lying within |z| = 2.

z = 0 is a simple pole and z = 1 is a pole of order two.

Now

Res (z = 0) = lim ( ) ( ) lim
( )z z

z

z f z
e

z0 0 2
0

1
1

Res (z = 1) = lim
!

( ) ( )
z

d

dz
z f z

1

21

1
1

Res (z = 1) = 
1

lim
z

z

d e

dz z
 = 

21

1
lim

z z

z

e z e

z
 = 

21

( 1)
lim 0.

z

z

z e

z

 By Cauchy residue theorem

2
2 [Res ( = 0) + Res ( 1)]

( 1)

z
e

dz i z z
z z

= 2 i [1 + 0] = 2 i.

Example 65 Find the residue of 

3

2 1

z

z
 at z = .

Solution Here

f (z) = 

3

2 1

z

z
 = 

13

2 2

1
1

z

z z

=
2 4 6

1 1 1
1z

z z z
 = 

3 5

1 1 1
z

z z z

Res (z = ) = 
1

coefficient of
z

 = – (1) = –1.

Example 66 Find the poles and residue of the function 
2

4

1
.

z
e

z

Solution Here

f (z) = 
2

4

1 z
e

z
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The pole of f (z) is evidently z = 0 (not of the 4th order).

Since

2 2
3

4 4

1 1 4 2
1 1 2

2! 3

z
e z

z z
z z

 = 

2 3

3

4 2
2 2

3 3
z z z

z

   The pole is of order 3.

Now, Res(z = 0) = 

2 2
3

2 40

1 1
lim ( 0)

2!

z

z

d e
z

dz z

=

2 3

2

20

4 8
1 1 2

1 2 6lim
2z

z z
z

d

zdz

=

2
2

20

4
2

1 3lim
2z

z z
d

zdz
 = 

0

1 8 2 4
lim 6

2 3 3 3z
z

Example 67 Evaluate 

2

2 2

2 3
,

( 2) ( 4)
C

z
dz

z z
where C is the square with the vertices at

1 + i, 2 + i, 2 + 2i and 1 + 2i.

Solution Here

f (z) = 
2

2 2

2 3

( 2) ( 4)

z

z z

The poles of f (z) are

z = –2 (order two)

z = ±2i (simple pole).

Since the poles z = –2 and 2i does not lie in side the C with vertices 1 + i, 2 + i, 2 + 2i and 1 + 2i,

Hence by Cauchy integral theorem.
2

2 2

2 3
0.

( 2) ( 4)
C

z
dz

z z

Example 68 Find the residue at the poles of the function 
2

cot
( ) .

( )

z
f z

z a
Solution We have

f (z) = 
2 2

cot cos

( ) ( ) sin

z z

z a z a z

The poles of the given function f (z) are given by (z – a)2 sin z = 0

(z – a)2 = 0 and sin z = 0

or z = a (pole of order 2)

Fig. 3.19
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and z = n; n I (simple pole if n is finite)

Now, residues at z = a is

Res(z = a) = 
1

lim cot
1!z a

d
z

dz
 = 2lim cosec

z a
z  = –  cosec2

a

and Residues at z = n is

Res (z = n) = 

cos

( ) ( )
lim Res ( ) lim

cos ( )

z
z

z a

z n z a

z
z a

z z

=
2

cos

( )

cos

n

n a

n
 = 

2

1
.

( )n a

Example 69 Find the sum of the residues of the function 
sin

( )
cos

z
f z

z z
 at its poles inside the 

circle |z| = 2.

Solution We have 
sin

( ) .
cos

z
f z

z z
 The poles of f (z) are given by

z cos z = 0 z = 0 and cos z = 0

z = 0 is a simple pole and

z = (2 1) ;
2

n n I  (simple poles if n is finite)

Out of these poles, 0,
2

z z  lie inside the circle |z| = 2.

Residues at the pole z = 0 is

Res (z = 0) = 
0

sin
lim ( 0)

cosz

z
z

z z
 = 

0

sin
lim 0

cosz

z

z

Residues at the pole and are
2 2

z

2

sin 0
Res lim form

2 2 cos 0z

z
z z

z z

=
2

cos sin
22

lim
sin cosz

z z z

z z z

Similarly,
2

Res
2

z

Hence, sum of residues = 
2 2

0 0.
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Example 70 Using residue theorem to evaluate the integral 
2 2

1

2 ( 2 2)

zt

c

e
dz

i z z z
 at its poles 

inside the circle |z| = 3.

Solution Here

2 2
( )

( 2 2)

zt
e

f z
z z z

The poles of f (z) are given by

z
2(z2 + 2z + 2) = 0

or z = 0 (double pole) and

2 2 2 0 1 (simple poles)z z z i

Residue at z = 0 is

2

2 20

1
Res( 0) lim ( 0)

1! ( 2 2)

zt

z

d e
z z

dz z z z

=
20

lim
2 2

zt

z

d e

dz z z
 = 

2

2 20

( 2 2) ( ) ( )(2 2)
lim

( 2 2)

zt zt

z

z z t e e z

z z

=
1

2

t

Residue at z = (–1 + i) is

Res ( ) lim ( )
( )( )

z i z i
e

z z zz i

zt

1 1
2 21 2 2

=
2 2( 1 ) ( 1 )

( 1 )
lim lim

( 2 2)

zt

z i z i

e z i

z z z

=
( 1 )

2

1

2( 1 )

i t
e

ii
 = 

( 1 )

4

i t
e

Similarly,

Res ( ) lim ( )
( )( )

z i z i
e

z z zz i

zt

1 1
2 21 2 2

 = 
( 1 )

4

i t
e

Hence, by residue theorem

2 2
2 (sum of residues)

( 2 2)

zt

c

e
dz i

z z z

=
( 1 ) ( 1 )1

2
2 4 4

i t i t
t e e

i  = 
1 1

2 cos
2 2

tt
i e t
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or  
2 2

1 1 1
cos .

2 2 2( 2 2)

zt
t

c

e t
dz e t

i z z z

Example 71 Find the residue of the function 
3

cot coth
( ) at 0.

z z
f x z

z
Solution We have

f (z) = 
3

cot cothz z

z

or f (z) = 
3

cos cosh

sin sinh

z z

z z z
 = 

2 4 2 4

3 3 5 3 5

1 1
1 ! 4! ! 4!

3! 5! 3! 5!

z z z z

z z

z z z z z
z z

=

6

4
5

1
6

1
90

z

z
z

 = 

1
6 4

5

1
1 1

6 90

z z

z
 = 4

5

1 7
1

45
z

z

Hence, the residue at z = 0 is

= coefficient of 
1

z
 in the expansion of f (z)

=
7

.
45

Example 72 Find the residue of 
1

( ) cosf z z
z

 at z = 0.

Solution Let

f (z) = 
1

cosz
z

or f (z) = 
2 4

1 1 1
1

4!2!
z

z z
 = 

3

1 1

2 24
z

z z

   Residue at z = 0 = coefficient of 
1

z
 in the expansion of f (z)

=
1

.
2

Example 73 Find the residue of ( ) .
sin

z
f z

z

Solution The poles of f (z) are given by

sin 0 ;z z n n I



Complex Variables and Calculus 3.87

z = 0 is not a pole; since
sin

1 as 0.
z

z
z

0
Re ( ) lim ( ) form

sin 0z n

z
s z n z n

z

=
(2 )

lim
cosz n

z n

z
 = 

( 1)n

n
 = (–1)–n·n .

EXERCISE 3.6

Evaluate the following integrals using Cauchy’s residue theorem.

1.
2

,
( 1) ( 2)

C

z
dz

z z
 where C is the circle |z – 2| = 

1
.

2

2.
1

,
( 1) ( 1)

C

dz
z z

 where C is the circle |z| = 3.

3.
2

( 1)
,

( 3)
C

z
dz

z z
 where C circle |z| = 4.

4.
2 2cos sin

,
( 1)( 2)

C

z z
dz

z z
 where C is circle |z| = 3.

5.
3

cos
,

2

C

z z
dz

z

 where C is circle |z – 1| = 1.

6.

2

2

(3 1)
,

( 1)( 3)
C

z z
dz

z z
where C is circle |z| = 2.

7.
2

2
,

( 1) ( 2)
C

z
dz

z z
 where C is the circle |z| = 5/2.

8.
2 2

1
,

( 1)( 4)
C

dz
z z

 where C is the circle |z| = 3/2.

9. Show that the residue of the function 
3

1
( ) (cosec cosec )f z z h z

z
 at z = 0 is 

1
.

60

10. Let C be a circle with equation |z| = 4. Determine the value of the integral 
2 1

cosec

C

z dz
z

 if 

it exists.

11. Determine the residues at the poles of the function 
2

3 2

4
( ) .

2 2

z
f z

z z z
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12. Prove that 
3

cosh
,

C

z
dz i

z
 where C is the square with vertices at 2 2i.

13. Evaluate

2

2 2 2

2 5
,

( 2) ( 4)
C

z
dz

z z z
 where C is a circle |z – 2i| = 6.

14. Find the residue of 
3

4( 1) ( 2)( 3)

z

z z z
 at its poles and hence evaluate ( ) ,

C

f z dz  where C is 

the circle 
5

.
2

z [U.P.T.U. 2003]

15. Find the residue of the following functions:

(i)
2 1

sin at 0z z
z

  (ii)

3

at
1

z
z

z

(iii)
2 3

1
at

( 1)
z i

z
  (iv)

2

2
at 1

( 1) ( 2)

z
z

z z

Answers

1. –2 i    2.  0

3. 0    4.   – 4 i

5. –2 i    6.
4

i

7. 2 i    8.   0

11. Poles z = 0, –1 i, Res(z = 0) = 2, Res (z = –1 + i) = 
(1 3 )

2

i
, Res (z = –1 – i) = 

1
(1 3 ).

2
i

14.
27

8

i

15. (i)
1

6
  (ii)  –1  (iii)

3

16

i
  (iv)

5
.

9

3.44 EVALUATION OF REAL DEFINITE INTEGRALS

In this section we discuss the applications of  residue theorem to evaluate real definite 

integrals.

3.44.1 Integration Around the Unit Circle

Suppose the integral of the form 

2

0

(cos , sin ) ,f d (82)

where the integrand function is a rational function of sin  and cos .

Let C: |z| = 1, i.e., C is a circle with centre zero and radius 1.
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Putting z = ei

Then dz = i e
i

d  = iz d  and

cos  = 
1 1

( ), sin ( )
2 2

i i i i
e e e e

i

=
1 1 1 1

,
2 2

z z
z i z

then Eq. (82) converts into the integral.

( )

C

f z dz (83)

where f (z) is a rational function of z and C is the unit circle |z| = 1.

Thus, integral (83) can be solved by using Cauchy’s residue’s theorem.

Example 74 Evaluate the integral 

2

0

.
2 sin

d
I

Solution Substitute z = ei , we get dz = ei
i d

or
dz

d
iz

sin  = 
21 1 1

2 2

z
z

i z iz

2 + sin  = 
2 21 4 1

2 .
2 2

z z iz

iz iz

Now, I = 

2

0
2 sin

d
 = 

2 2

2 2
( )

4 1 4 1
C C C

iz dz dz
f z dz

izz iz z iz

where f (z) = 
2

2

4 1z iz
 and C: |z| = 1.

Putting z
2 + 4 iz – 1 = 0 z = ( 2 3) i

Let z1 = 
2( 2 3) and (2 3) .i z i

The pole z = z1 lies inside the contour C: |z| = 1.

Res (z = z1) = 
1 1

1
2

1
lim [( ) ( )] 2 lim

z z z z
z z f z

z z
 = 

1 2

1

3

z

z z i

Hence, I = 1

2
( ) 2 [Res ( )]

3
C

f z dz i z z
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Example 75 Evaluate 

0

,
cos

d

a b
 where a > |b|. Hence, or otherwise evaluate 

2

0

.
2 cos

d

Solution We have

I = 
2

0 0

2
cos cos

d d

a b a b

or   

2

0 0

1

cos 2 cos

d d

a b a b
(84)

Substitute z = ei  so that cos 

21 1 1
and

2 2

z dz
z d

z z iz

    

2

0

1

1cos

2
C

d dz

ba b iz
a z

z

 = 
2

2 2
( ) ,

( 2 )
C C

dz
f z dz

ii bz az b

where f (z) = 
2

1

( 2 )bz az b
 and C is the circle |z| = 1.

Putting bz
2 + 2 az + b = 0 z = 

2 2
a a b

b

Let z1 = 

2 2 2 2

2,
a a b a a b

z
b b

If a > |b|, then z = z1 lies inside the C: |z| = 1.

Res (z = z1) = 
1

1lim [( ) ( )]
z z

z z f z

 = 
1

1
1 2 1 2

1 1
lim ( )

( ) ( ) ( )z z
z z

b z z z z b z z

Res (z = z1) = 
2 2 2 2

1

2 2

b

b a b a b

    By Cauchy residue theorem

I = 
2 2 2

2 2 1
2

2 2C

dz
i

i ibz az b a b
 = 

2 2

2

a b
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Hence by Eq. (85)

        
2 2

0
cos

d

a b a b

Hence,    

2

0

[ 2, 1]
2 cos 2 1

d
a b

Example 76 Apply residue theorem to prove that 

2 2
2 2

2
0

sin 2
;

cos
d a a b

a b b

where 0 < b < a.

Solution Suppose

I = 

2 2

0

sin

cos
d

a b
 = 

2

0

1 cos2

2( cos )
d

a b

= Real part of 

2 2

0

1

2 2 cos

i
e

a b
(85)

Substitute z = ei  so that 
1 1

cos
2

z
z

 and .
dz

d
iz

Then

2 2 2

0

1 1

12 2 cos
2

i

C

e z dz

a b iz
a b z

z

=
2

2

1
,

( 2 )
C

z
dz

i bz az b

where C is circle |z| = 1.

Poles of the integrand are the roots of bz
2 + 2 az + b = 0

i.e., z = 

2 2 2 22 4 4

2

a a b a a b

b b

let z1 = 

2 2 2 2

2and .
a a b a a b

z
b b

Here |z2| > 1 so that z = z1 is lies inside C.

Also bz
2 + 2 az + b = b(z – z1) (z – z2), then.

Res (z = z1) = 
1

2

1
1 2

1
lim ( )

( ) ( )z z

z
z z

i b z z z z
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Res (z = z1) = 
1

2

2

1
lim

( )z z

z

i b z z
 = 

2
1

1 2

1

( )

z

i b z z

=

1 1
1

1 2

1

( )

z z
z

i b z z
 = 1 2 1

1 2

( )

( )

z z z

i b z z
[ z1z2 = 1]

= 1z

ib
 = 

2 2

2

a a b

ib

Hence by Cauchy’s residue theorem

     

2

12

1
2 [Res ( )]

( 2 )
C

z
dz i z z

i bz az b

=
2 2

2
2

a a b
i

i b
 = 2 2

2

2
( )a a b

b

I = 
2 2

2 2

2
0

sin 2
( ).

cos
d a a b

a b b
Hence, proved.

Example 77 Evaluate the integral 4

0

sin .d

Solution We have

I = 
4

0

sin d  = 

2
4 4

0

sin sind d

Putting  = 2  –  in the 2nd integral and simplifying, we get

2
4 4 4

0 0 0

sin sin sind d d

= 4

0 0 0

2 sin ( ) ( ) .d f x dx f y dy

I = 

2
4

0

1
sin .

2
d

Substitute z = ei , so that 
21 1 1

sin
2 2

z
z

i z iz
 and d  = .

dz

iz

I = 

4
21 1

( ) ,
2 2

C C

z dz
f z dz

iz iz
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where f (z) = 
2 4

5

( 1)

32

z

z i
 and C: |z| = 1.

The integrand has the pole of order 5 at z = 0.

Now,

Res (z = 0) = 
4

5

40

1
lim ( 0) ( )

(5 1)! z

d
z f z

dz

=
4 2 4

5

4 50

1 ( 1)
lim

4! 32z

d z
z

dz i z
 = 

4 2 4

40

1 ( 1)
lim

4! 32z

d z

idz

=
4

8 6 4 2

40

1
lim {( 4 ) 6 4 1)}

786 z

d
z z z z

i dz

=
144

786 i
[ D

n
z

n = n!]

=
3

16 i

 By Cauchy residue theorem

I = 
3

2
16

i
i

 = 
3

.
8

Example 78 Evaluate 

2
cos

0

cos (sin )e n d  by Cauchy residue theorem.

Solution Let

I = 

2
cos

0

cos (sin )e n d

= Real part of 

2
cos (sin )

0

i n
e e d

= Real part of 
2

[cos (sin )]

0

i n
e d

= Real part of 

2
(cos sin )

0

i in
e e d

I = Real part of 

2

0

i
e in

e e d

Substitute z = ei  so that d  = 
dz

iz
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I = Real part of 
1

R.P. .
z

z n

n
C C

dz e
e z dz

iz i z

=
1

( )

C

f z dz
i

where f (z) = 
1

z

n

e

z

The integrand has the pole of order (n + 1) at z = 0

Now,

Res (z = 0) = 1

0

1
lim ( ( ))

!

n
n

nz

d
z f z

n dz

=
0

1
lim

!

n
z

nz

d
e

n dz
 = 

0

1 1
lim

! !

z

z
e

n n

Hence, by Cauchy’s residue theorem

I = 
1 1

( ) . 2
!

C

i
f z dz R P

i i n
 = 

2
.

!n

3.45 IMPROPER REAL INTEGRALS OF THE FORM f(z) dz

Any integral of the form ( )

b

a

f x dx  is called an improper integral if either (i) one or both of the 

limits of integration are not finite or (ii) the integrand function has an infinite discontinuity at a or at

b(a, b finite) or at some point c, a < c < b.

The integral ( ) ,f z dz  where the function f (z) is such that no pole of f (z) lies on the real line.

But the poles lie in the upper half of z-plane. Now, evaluate the above integral along the closed. 

Contour ‘C’ consisting of

(i) semi circle : |z| = R in the upper half plane.

(ii) real axis from –R to R.

Then, we want to show that integral along  vanishes as |z| .

    ( ) ( ) ( ) .

R

C R

f z dz f z dz f z dz

Taking limit as R , then.

( ) ( )

C

f z dz f z dz

Fig. 3.20
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By Cauchy’s residues theorem

( )f z dz  = 2 i (sum of residues within C).

Example 79 Using contour integration, show that 
2

0

.
21

dx

x

Solution Let

I = 
2

1
( ) , where ( )

1
C

f z dz f z
z

    ( ) ( ) ( )

R

C R

f z dz f z dz f x dx (86)

(Refer Fig. 3.20)

Here C is the closed contour consisting of , the upper half of the semi circle C: |z| = R and the real 

axis from –R to R.

The poles of the function f (z) are

z = ± i

Only the pole z = i lie inside C, then

Res (z = i) = lim ( ) ( )
z i

z i f z  = 
1

lim ( )
( ) ( )z i

z i
z i z i

 = 
1 1

lim .
2z i z i i

By Cauchy’s residue, theorem

1
( ) 2 Res ( ) 2

2
C

f z dz i z i i
i

from Eq. (86), we get

     
2

( )
1

R

R

dx
f z dz

x
(87)

Taking R  in Eq. (87), we get

     

2
lim ( )

1R

dx
f z dz

x

or
2

0
1

dx

x
 [By the definition of Gauss Jordan Lemma lim ( ) 0

R
T

f z ]

or      
2

0

2
1

dx

x

or       
2

0

.
21

dx

x
Hence, proved.
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Example 80 Evaluate
2

0

cos
.

1

ax
dx

x

Solution Let the integral

    
( ) ( ) ( ) ,

R

C R

f z dz f z dz f x dx
(88)

where
2

( ) ,
1

iaz
e

f z
z

 here C is the closed contour. Consisting of , the upper half of the circle |z| = R

and the real axis from –R to R.

The poles of f (z) are z = ± i

Since the pole z = i lies in side the circle C, then the residue of f (z) at z = i is

Res (z = i) = lim ( )
( ) ( ) 2

iaz a

z i

e e
z i

z i z i i

    ( ) ( ) ( ) 2 [Res ( )]

R

C R

f z dz f z dz f x dx i z i  = 2
2

a
e

i
i

 = e
–a

( ) ( )

R
a

R

f z dz f x dx e

or      
2

( )
1

R iax
a

R

e
f z dz dx e

x

Taking R , we get

2
lim ( )

1

iax
a

R

e
f z dz dx e

x

By Gauss Jordan Lemma, lim ( ) 0,
R

f z dz

       
2 1

iax
ae

dx e
x

Equating real part both side, we get

2

cos

1

aax
dx e

x

or         2
0

cos
.

21

aax
dx e

x
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3.46 IMPROPER INTEGRALS WITH POLES ON THE REAL AXIS

In the previous section we have supposed that the function f (z) has no 

pole on the real axis. In the present section the function f (z) has poles 

within the semicircle  as well as on the real axis. We exclude the poles 

on the real axis by enclosing them with semi circles of small radii. This 

procedure is said identing the semi circle contour.

Example 81 Evaluate the integral 

0

sin
.

x
dx

x

Solution Let ( )
iz

e
f z

z

Suppose the integral ( ) ,

C

f z dz  where C is the closed contour consisting of , upper half circle 

|z| = R and real axis from –R to R idented at z = 0. Consider r be the radius of identation. Since the 

function f (z) has no singularity within C and by Cauchy residue theorem.

     ( ) 2

C

f z dz i  (sum of residues within C)

= 2 i  (0) = 0

or     ( ) ( ) ( ) ( ) 0

r R

R r

f x dx f z dz f x dx f z dz

By Gauss’s Jordan’s Lemma, we have

       

lim ( ) 0.
R

f z dz

Further, Since 
0 0

lim ( ) lim 1
iz

z z

e
z f z z

z

We have

0
lim ( ) (0 ) 1
r

f z dz i i [  If AB is the arc 1 <  <  of the circle |z – z0| = r and if 

0
0lim ( ) ( ) (constant)

z z
z z f z K  then 2 1lim ( ) ( )

r
AB

f z dz i K

Hence, as r  0 and R , we get

         

0

0

( ) ( ) 0f x dx f x dx i

or              ( )f x dx i

Fig. 3.21
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or     

0

or
2

ix ix
e e

dx i dx i
x x

Equating real and Imaginary parts, we get

    
0 0

cos sin
0 and

2

x x
dx dx

x x

EXERCISE 3.7

1. Show that 

2

0

2
.

2 cos 3

d

2. Use calculus of residues to prove that

    

2

0

cos 2
.

5 4 cos 6

d

3. Use calculus of residues to prove that

    

2 2 2
0

.
cos (1 )

a d

a a

4. Prove that 

2
cos

0

2 ( 1)
cos ( sin )

!

n

e n d
n

 where n is a positive integer.

5. Show that 

0

tan ( ) , where ( ) 0.ia d i R a

6. Use calculus of residues to prove that

    
2

2 2
0

cos 2
,

1 2 cos 1

d a

a a a
 where –1 < a < 1.

7. Prove that 
4 4 3

0

2
,

4

dx

x a a
 where a > 0.

8. Use method of contour integration, to prove that

    
2 2

0

.
4(1 )

dx

x

9. Prove that 
2

2 2
.

3( 1) ( 4)

x dx

x x
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10. Prove that 
2 2 2 2 2 2

cos
, 0.

( ) ( ) ( )

b a
x dx e e

a b
b ax a x b a b

11. Prove that 
2

0

1 cos
.

2

x
dx

x

12. Use calculus of residues to prove that

    
2

0

cos cos
( ), 0.

2

ax bx
dx b a a b

x

3.47 CONFORMAL MAPPING

A function w = u(x, y) + iv(x, y) defined in a domain D of the z-plane. A transformation or mapping 

which maps the domain D of the z-plane in to a domain D  of the w-plane.

Thus the point P(x0, y0) of the z-plane is mapped in to the point Q(u0, v0) of the w-plane.

Let the curves c1 and c2 intersecting at (x0, y0) be mapped respectively into the curves c1 and c 2

intersection at (u0, v0). Then if the transformation is such that the angle between c1 and c2 at (x0, y0) is 

equal both in magnitude and sense to the angle between c1 and c 2 at (u0, v0), it is said to be conformal 

at (x0, y0).

(a)                 (b)
Fig. 3.22

Before, we derive the conditions for testing whether a mapping w = f (z) is conformal in a domain, 

we define a few important transformations.

3.47.1 Linear Transformation

A transformation or mapping of the form

w = az + b (89)

where a, b are real or complex constants, is said a linear mapping or a linear function or a linear 

transformation.

3.47.2 Translation Mapping

The mapping w = z + c, where c is a complex constant.

Let z = x + iy, c = c1 + i c2 and
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w = (x + iy) + c1 + i c2 = (x + c1) + i(y + c2)

w = u + i v: where u = x + c1, v = y + c2.

Thus, the image in the w-plane of any region of the z-plane is the translation of that region in the 

direction of the c1 + i c2.

Hence, the image of w plane is the same as image in z-plane with different origin.

3.47.3 Rotation Mapping

The mapping w = z e
i .

Let z = r e
i , then.

w = r e
i(  + ), |w| = r and arg(w) =  + .

Under this transformation, the point z(r, ) in z-plane is mapped as a point w(r,  + ) in w-plane.

    The mapping rotates a region in the z-plane through an angle  in w-plane.

Hence, if  > 0, the rotation is anti-clockwise and if  < 0, the rotation is clock-wise.

3.47.4 Magnification

The mapping w = cz, where c is a real and c > 0.

Let z = r e
i , then w = cr e

i , c > 0.

|w| = cr and arg(w) = .

A point in z-plane is moved radilly to a new position at a distance cr from the origin.

Hence, if c > 1, then vector in the z-plane is magnified, if c < 1, then vector is contracted and w = z

is an identity mapping, if c > 1.

3.47.5 Inverse Mapping

The mapping 
1

,w
z

let z = r e
i , then

1 1
, where, andi i

w e R e R
r r

Under this transformation 
1

,w
z

 a point z(r, ) in z-plane is mapped in to the point w(R, ) in 

w-plane.

Thus, the image in z-plane is mapped upon the reciprocal image in w-plane.

Example 82 Determine the region in the w-plane, corresponding to the triangular region bounded 

by the lines x = 0, y = 0, and x + y = 1 in the z-plane under the transformation.

4

i

w z e

Solution Given 4

i

w z e

u + i v = 4( )

i

x i y e  = ( ) cos sin
4 4

x i y i
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=
1

( ) (1 )
2

x i y i  = 
1

( ) ( )
2

x y i x y

u = 
1 1

( ), v ( )
2 2

x y x y

(a)                   (b)
Fig. 3.23

The line x = 0 maps into ,
2 2

y y
u v  or into u = –v

The line y = 0  maps in to , ,
2 2

x x
u v  i.e. into u = v

The lines x + y = 1 maps into 
1

2
v

Thus, the given triangular region in the z-plane is transformed into the triangular region in the 

w-plane bounded by the lines u = v, u = –v and
1

.
2

v  The regions are shown in the Fig. 3.23.

Example 83 Consider the rectangular region in the z-plane be bounded by x = 0, y = 0, x = 2 and y = 3. 

Find the region of the w-plane in to mapped in the z-plane under the transformation 42 . .
i

w e z

Solution Given 42 .
i

w e z

2 cos sin .( )
4 4

u iv i x iy

=
2

1
2

i x iy  = (1 + i) (x + iy)

u = x – y, v = x + y

Now, the line x = 0 is maps into u = –y, v = y, i.e. u = –v

The line y = 0 is maps into u = x, v = x, i.e. u = v

The lines x = 2 is maps into u = 2 – y, v = 2 + y  or in to u + v = 4
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and the line y = 3 is maps in to u = x – 3, v = x + 3

or in to v – u = 6

(a)                 (b)
Fig. 3.24

Example 84 Find the image of the region bonded by the lines x + y > 2 and  x – y < 2 under the 

mapping
1

.w
z

Solution Putting z = x + iy and w = u + iv in ,w
z

i.e.     
1

u iv
x iy

or      
2 2

1 u iv
x iy

u iv u v

Compare both sides real and imaginary parts, we get 
2 2

u
x

u v
 and 

2 2
.

v
y

u v

The region x + y > 2 is transformed as 
2 2

2
u v

u v

or     2 2 1
( ) 0

2
u v u v  or 

2 2
1 1 1

.
4 4 8

u v

The boundary of this region is a circle 

1 1
(1 )

4 2 2
w i  with center at 

1 1
,

4 4
 and radius 

1

2 2
.

Similarly, the region x – y < 2 is transformed as 
2 2

2
u v

u v
 or

2 2 1
( ) 0

2
u v u v or

2 2
1 1 1

4 4 8
u v
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The boundary of this region is a circle 

1 1
(1 )

4 2 2
w i

with center at 
1 1

,
4 4

 and radius 
1

.
2 2

Fig. 3.25

Example 85 Determine the image in to w-plane of the circle |z – 3| = 2 in the z-plane under the 

inverse transformation 
1

.w
z

Solution Substitute z = x + iy and w = u + iv in 
1

,w
z

 i.e.,

2 2

1 x iy
u iv

x iy x y
or,

2 2

1 u iv
z x iy

u iv u v

       
2 2 2 2

and
x y

u v
x y x y

Now, the circle |z – 3| = 2 is transformed as  |x + iy – 3| = 2 or 
2 2

3 2
u iv

u v

or     

2

2 2
3 4

u iv

u v

or     
2 2 2 2 2 2 2 2

3 . 3 4
u v u v

i i
u v u v u v u v

or     
2 2 2 2

2 2 2 2 2 2 2 2 2 2

6
3 4 or 5 0

( ) ( )

u v u v u

u v u v u v u v

or     
2 2

1 6
5 0

u

u v
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or     2 21 6 5( ) 0u u v

or     

2 2

23 2
.

5 5
u v

The image of  |z – 3| = 2 is a circle with center 
3

, 0
5

 and radius 
2

.
5

(a)                   (b)
Fig. 3.26

The center (3, 0) of the circle in z-plane is mapped in to 
1

( , ) , 0
3

u v  in the w-plane, which is 

inside the mapped circle.

   Under the transformation 
1

,w
z

 the region under the circle |z – 3| = 2 is mapped onto the region  

inside the circle in the w-plane.

3.48 BILINEAR (OR MOBIUS OR FRACTIONAL) TRANSFORMATION

The mapping as transformation 

         ,
az b

w
cz d

(90)

where a, b, c, d, are  complex constant and  ad – bc  0 is called bilinear or mobius transformation.

The transformation Eq. (90) is said to be normalized if ad – bc = 1

The transformation Eq. (90) is expressed as 

0cwz dw az b (91)

Evidently it is linear both in w and z, it is called a bilinear transformation.

A transformation w = f (z) is said to be univalent if z1 z2  implies f (z1) f (z2)

Some Important Points

(i) If c = 0, d = 1, then the transformation Eq. (90) becomes 

w = az + b (92)

  The transformation Eq. (92) will always transform a circle in z-plane into a circle in w-plane.
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(ii) If a = d = 0, b = c, than Eq. (90) becomes 

1
w

z

(93)

  The transformation Eq. (93) is called inversion, will always transforms a circle into a circle.

(iii) Every bilinear transformation of the form given in Eq. (90) maps the circle and straight lines 

in the z-plane on to circles and straight lines in the w-plane.

(iv) The product of two bilinear transformations is a bilinear transformation.

(v) A linear fractional transformation with one fixed point z0 is called parabolic and is expressible 

as

        
0

0 0

1 1
ifh z

w z z z

         or w = z + h if z0 = .

(vi) A linear fractional transformation with two different fixed points z1 and z2 is expressible as 

    

1 1
1 2

2 2

if ,
w z z z

k z z
w z z z

  If z2 = , then it becomes w – z = k(z – z1).

  A transformation with two different fixed points is called hyperbolic if k > 0, and elliptic if 

k = ei  and  0 and loxodromic if k = a e
i , where a  1,  0,  and a both are real numbers 

and a > 0.

3.49 CROSS RATIO

If z1, z2, z3 and z4 are distinct points, then the ratio 
4 1 2 3

2 1 4 3

( ) ( )

( ) ( )

z z z z

z z z z
 is called the cross ratio of z1, z2,

z3, z4 and is denoted as (z1, z2, z3, z4).

Example 86 Determine the bilinear transformation which maps the points 1 2 32, , 2z z i z

into the points 1 2 31, , 1.w w i w

Solution Let the required bilinear transformation is

1 2 3 1 2 3

1 2 3 1 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

w w w w z z z z

w w w w z z z z

Putting the values, we get

   

( 1) ( 1) ( 2) ( 2)

(1 ) ( 1 ) (2 ) ( 2 )

w i z i

i w i z

or
2 2( 1) ( 1) ( 2) (2 )

( 1) (1 ) (1 ) ( 2) (2 ) (2 )

w i z i

w i i z i i

or     
2 2( 1) (1 ) ( 2 ) (2 )

( 1) . 2 ( 2) (4 1)

w i z i

w z
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or      
( 1) .2 ( 2 ) . (3 4 )

( 1) .2 ( 2) .5

w i z i

w z

or        
( 1) ( 2) (3 4 )

( 1) 5 ( 2)

w z i

w i z
  =

( 2) (4 3 )

5 ( 2)

z i

z

or      
( 1) ( 1) ( 2) (4 3 ) 5( 2)

( 1) ( 1) 5( 2) ( 2) (4 3 )

w w z i z

w w z z i

or            
2 ( 2) (4 3 ) (5 10)

2 5 10 ( 2) (4 3 )

w z i z

z z i

               

4 8 3 6 5 10

5 10 4 3 8 6

z iz i z
w

z z iz i

=
3(3 ) 2(1 3 )

(1 3 ) 6(3 )

i z i

i z i
 = 

3 2(1 3 ) / (3 )

6 (1 3 ) / (3 )

z i i

i z i

or             w = 
3 2 1 3

6 3

z i i
i

zi i
  By simplification

which is the required bilinear transformation.

Example 87 Find the bilinear transformation which maps outside. |z| = 1, on the half plane 

R(w)  0 so that the points z = 1, –i, –1 correspond to w = i, 0, –i respectively.

Solution Let z1 = 1, z2 = –i, z3 = –1, w1 = i, w2= 0, w3 = –i

Suppose the required bilinear transformation is 

1 2 3 1 2 3

1 2 3 1 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

w w w w z z z z

w w w w z z z z
(94)

Putting the values in (94), we get 

      

( ) (0 ) ( 1) ( 1)

( 0) ( ) (1 ) ( 1 )

w i i z i

i i w i z

or         
1

1

w i z
i

w i z
 = 

1

iz i

z

or     
( ) ( ) ( ) ( 1)

( ) ( ) ( ) ( 1)

w i w i iz i z

w i w i iz i z

2 (1 ) (1 )

2 (1 ) (1 )

w z i i

i z i i

or         

1

11

11

1

i
z

ii
w i

ii
z

i



Complex Variables and Calculus 3.107

=
1

( )
1

z i i
i i i

z i i

    
z i

w
z i

(95)

which is the required transformation.

From Eq. (95), 
1

( ) .
1

w
w z i z i z i

w
(96)

|z|  1 is transformed in to 
1

1
1

w
i

w

or     2 2( 1) ( 1)w w

or     2 2 2 2( 1) ( 1)u v u v

r R(w) = 4 

Hence, the exterior of the circle |z| = 1 is transformed in to half plane R(w)

Example 88 Show that the transformation 
2 3

4

z
w

z
 maps the circle 2 2 4 0x y x  on to 

the straight line 4u + 3 = 0 and explain why the curve obtained is not a circle.

Solution The inverse transformation is 
4 3

2

w
z

w
(97)

Now, the equation 2 2 4 0x y x  can be written as 2 0zz z z

Putting for andz z  from Eq. (97), we get

      

4 3 4 3 4 3 4 3
. 2 0

2 2 2 2

w w w w

w w w w

or 16 12 12 9 2 4 3 8 6 4 3 8 6 0ww w w ww w w ww w w

or 22 33 0w w [ w = u + iv]

or 44u + 33 = 0

or 4u + 3 = 0 as required.

Thus, the circle is transformed in to a straight line which is possible under a bilinear transformation.

Since we regard a straight line as a particular case of a circle .

Example 89 Find a mobius transformation of the upper half plane I(z) > 0 on to the interior |w| < 1 

of the unit circle  |w| = 1.

Solution Choose 1 2 31, 0, 1z z z  on the real axis so that the upper half-plane is on the left of an 

observer moving along the real axis in the direction from z1 to z3 through z2.
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Now, we choose three points w1, w2, w3 on the circle.

|w| = 1 such that its interior is on the left of an observer moving along the circle in the direction from 

w1 to w3 through w2.

 Suppose w1 = 1, w2 = i, and w3 = –1, then the required mobius Transformation is 

1 2 3 1 2 3

1 2 3 1 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

w w w w z z z z

w w w w z z z z

or        
( 1) ( 1) ( 1) (0 1)

.
(1 ) ( 1 ) ( 1 0) (1 )

w i z

i w z

or                  
1 ( 1) (1 )

1 ( 1) (1 )

w z i

w z i
 = 

2

2

1( 1) (1 )

( 1)( 1) (1 )

i zz i

zz i

or            
( 1) ( 1)

( 1) 1

i z i
w

i z i
=

1

1( 1)
.

1( 1)

1

i
z

ii

ii
z

i

      

z i
w i

z i

which is the required mobius transformation.

Example 90 Find the bilinear transformation that maps the points z1 = , z2 = i and z3 = 0 into the 

points w1 = 0, w2 = i and w3 = . [Meerut 1994, 96, 97, 98, 99, GEU 2010, 13]

Solution The bilinear transformation is

     

1 2 3 1 2 3

1 2 3 1 2 3

( ) ( ) ( )( )

( )( ) ( )( )

w w w w z z z z

w w w w z z z z

or      
( 0) ( ) ( )( 0)

(0 ) ( ) ( )(0 )

w i z i

i w i z

or       
w i

i z

or w = 
1

z

which is the required transformation.

Example 91 Find a bilinear transformation which maps the upper half of the z-plane into the unit 

circle in the w-plane in such a way that z = i is mapped into w = 0 while the point at infinity is mapped 

into w = –1.

Solution We have

w = 0 corresponding to z = i

and w = –1 corresponding to z = .

Then, the bilinear transformation is given by

0

0

iz z
w e

z z
Fig. 3.27(a)
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Corresponding to z = i

0 = 0

0

i z

i z
 so that z0 = i.

Now, corresponding to z = , we have

–1 = 0

0

1i iz
e e

z

Hence, the required bilinear transformation is

w = 0 0( 1) so that
1

z i
z i z i

z

w = 
i z

i z

Example 92 Prove that the bilinear transformation can be considered as a combination of the 

transformations of translation, rotation, stretching and inversion.

Solution We know that

w = 
z

z
(98)

we can write Eq. (98) as

w = 
( )

( )

z z
2

w = r
s

z t
(99)

where r s t,
( )

and
2

 are constants.

Then the transformation is equivalent to

 = z + t,
1

and w r s

which are the combinations of the transformations of translation, rotation, stretching and inversion.

Hence, proved.

3.50 APPLICATIONS OF COMPLEX VARIABLES

Complex variables play a very important role in the field of engineering and science. In this section we 

shall discuss the applications to heat flow, electrostatics and fluid flow problems.

3.50.1 Applications to Heat Flow

Let a solid having a temperature distribution and the quantity of heat conducted per unit area per unit 

time across a surface of the solid is called the heat flux across the surface, which is given by

q = –K grad (100)

Fig. 3.27(b)
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where  is the temperature and K is the thermal conductivity which depends on the material of solid is 

made.

Now Eq. (100) can be written as

q = K i
x y

= Qx + iQy, where ,x yQ K Q K
x y

Let C be any simple closed curve in z-plane, which represents the cross-section of a cylinder.

If Qn and Qt denotes the normal and tangential components of the heat flux.

If it is in steady state condition, then the total heat flow is zero inside the curve C.

     0 0n x y

C C

Q ds Q dy Q dx (101)

and    0 0t x y

C C

Q ds Q dx Q dy (102)

We assume, no sources or sinks inside the curve C. Then the Eq. (101) yields.

0
yx

QQ

x y
(103)

or       

2 2

2 2
0 andx yQ K Q K

x yx y
(106)

Equation (104) represents the condition of harmonic function so that the function  is harmonic.

If  is the harmonic conjugate function, then

( ) ( , ) ( , )z x y i x y  is analytic function and it is called the complex temperature. The families 

of curves (x, y) = c1 and (x, y) = c2 are called isothermal and flux lines respectively.

Example 93 Determine the steady-state temperature at any point of the region shown in the 

following figure if the temperature are maintained as indicated.

(a)                      (b)
Fig. 3.28

Solution The region of z-plane is mapped to the upper half of the w-plane by the mapping 

1
.w z

z
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u + iv = 
1

( )
( )

x iy
x iy

 = 
( )

( )
( ) ( )

x iy
x iy

x iy x iy

=
2 2

( )
( )

x iy
x iy

x y
 = 

2 2 2 2

x y
x iy i

x y x y

or u + iv = 
2 2 2 2

x y
x i y

x y x y

Now, the solution to the given problem in w-plane is given by

 = 1 10 1 1 2
2tan tan

( 2) 2

T T T Tv v
T

u u
(105)

or = 1 10 60 60 0
tan tan 0

2 2

v v

u u

or = 1 160 60
tan tan

2 2

v v

u u

or  = 1 160
tan tan

2 2

v v

u u

where u = 
2 2 2 2

and .
x y

x v y
x y x y

Note:  Equation (106) is the solution of the equation

0

1

2

if

0, 0 and ( , ) if

if

xx yy

T x a

y x y T a x a

T x a

where T0, T1 and T2 are constants.

Example 94 Find the steady-state temperature at any point of the region shown in the

Figures 3.29 and 3.30. Also find the isothermal and flux lines.

Fig. 3.29
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Solution The shaded region of the z-plane is mapped on to the upper half of the w-plane by the 

mapping function w = z;
1

; .
2

m
w z m

Fig. 3.30

u + iv = x + iy

u = x and v =y.

Now, the solution of the given problem in w-plane is given by

 = 1 10 1 1 2
2tan tan

T T T Tv v
T

u u

or = 1 130 45 45 60
tan tan 60

v v

u u

or = 1 115 15
60 tan tan

v v

u u

or  = 130
60 tan ,

v

u
(106)

where u = x and v = y

Equation (106) represents the steady-state temperature and if (x, y) = constant, then it is known as 

isothermal lines and (x, y) = constant is the flux lines determine, using analytic function.

3.50.2 Applications to Fluid Flow

The solution of the various fluid flow problems obtained by the method of complex variable techniques 

under the following:

(a) The fluid flow is stationary:  When the velocity of fluid at any point depends only on the 

position (x, y) and on the time.

(b) Velocity potential: Let Vx and Vy be the velocity components of the fluid at (x, y) in the 

positive directions of x and y, then there exists a velocity potential , such that

Vx = and yV
x y

(107)

  Let c be any simple closed curve in the z-plane, and velocity tangential component on c is Vt,

then
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0t x y

c c

V ds V dx V dy (108)

  Equation (108) represents the circulation of the fluid along the curve c. If the circulation is 

zero, then the motion of flow is irrotational.

(c) Incompressible fluid: If the mass or density per unit volume of the fluid is constant, then the 

fluid is incompressible. Let the normal component of velocity is Vn on the curve c, then

0n x y

c c

V dS V dy V dx

         or  0
yx

VV

x y
(109)

  Equation (109) represents the equation of continuity.

(d) Complex potential: Using Eqs (107) and (109) become

2 2

2 2
0,

x y

  which is represents the velocity potential  is harmonic.

  If (x, y) is conjugate harmonic function, such that (z) = (x, y) + i (x, y) is analytic and 

(x, y) is called stream function.

  Thus, the function (z) is called complex potential.

  Also, the families of curves (x, y) = c1 and (x, y) = c2, where c1 and c2 are constants are 

orthogonal called the equipotential lines and streamlines of the flow.

Example 95 Determine the complex potential for a fluid moving with constant speed V0 in 

the direction making an angle  with the positive x-axis. Also find the velocity potential and stream 

function.

Solution

Fig. 3.31
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The velocity components along x and y direction are

Vx = V0 cos  and

Vy = V0 sin 

The complex velocity (V) = Vx + iVy

= V0 cos  + i V0 sin 

V = V0 e
i

The complex potential 0( ) .id
z V V e

dz

on integrating, we get

(z) = V0 e
–i

z.

Now    0( ) ( , ) ( , ) i
z x y i x y V e z

= 0 0 0(cos sin ) ( ) ( cos sin ) ( cos sin )V i x iy V x y iV y x

     0( , ) ( cos sin )x y V x y

and   0( , ) ( cos sin )x y V y x  are the velocity potential and stream function.

3.50.3 Applications to Electrostatics

We know that the function

(z) = (x, y) + i (x, y) is analytic in the region which is not a occupied charge and the function 

(z) is called the complex electrostatic potential or complex potential.

Then the electrostatic potential

 = –grad  = i
x y

= Using C R equationsi
x y

=
d

dz
 = ( ).z

Its magnitude is ( )E z = ( ) .z

The families of curves (x, y) = c1 and (x, y) = c2 are known as equipotential lines and flux lines 

respectively.

Thus, the electrostatic potential due to a line charge (q) per unit length at z0 is given by

(z) = –2q log(z – z0)

and represents a source or sink according as q < 0 or q > 0.

Note:  When the medium is not a vacuum then the charge ,
q

q
K

 where K is any constant.

Example 96 Determine the complex electrostatics potential due to a line of charge q per unit 

length perpendicular to the z-plane at z = 0. Also discuss the similarity with the complex potential for 

a line sink or source in fluid flow.
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Solution The normal component of electric vector is Vn (which is a 

constant) while the tangential component of electric Vt is zero.

Let c be any cylinder of radius r with axis at z = 0, then by Gauss’s 

divergence theorem;

,n r

c c

V ds V ds (where Vr is the radial velocity)

= Vr · 2 r

= 4 q,  where .
2

rr V
q

Since Vr = 2 logq r
r

 (omitting the constant of integration)

   The real part of the required complex electrostatics potential is

(z) = – 2q log z

Now, the complex potential has the same form of a line sink of fluid if K = +2q because .r

K
V

r
 If 

q is a negative charge then it is a line source.

EXERCISE 3.8

1. Find the mobius transformation which maps the circle |w| = 1 in to the circle |z – 1| = 1 and 

maps w = 0, w = 1 in to 
1

, 0
2

z z  respectively.

2. Find the bilinear transformation which maps the points z = –2, 0, 2 in to the points w = 0, i, –i

respectively.

3. Find the mobius transformation which maps 1, –1,  on to 1 + i, 1 – i, 1 respectively.

4. Find the image of the region x   in the z-plane under the mapping 
(4 1)

.
( 2 )

z
w

z i

5. Find the image of the annulus region 1 < |z| < 2 under the mapping .
1

z
w

z

6. Find the condition that the transformation 
az b

w
cz d

  transforms a straight line of z-plane in 

to the unit circle in w-plane.

7. Show that the transforms 
1

1

z
w i

z
 transforms the circle |z| = 1 on to the real axis of 

w-plane and the interior of the circle |z| < 1 into the upper half of the w-plane.

8. Show that the relation 
2

.
4 1

i z
w

z
 transforms the real axis in z-plane to a circle in w-plane.

Find the centre and radius of circle and the point in z-plane which is mapped onto the centre 

of the circle.

9. Show that the transformation 2 3 5 4w z i z i  is equivalent to u = 2x + 3y + 5 and 

v = 2y – 3z – 4.

Fig. 3.32
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10. The straight lines y = 2x, x + y = 6 in the xy-plane are mapped on to the w-plane by the mapping 

w = z2.

11. If a b are two fixed points of the bilinear transformation, show that it can be written in the 

form

,
z a w a

z b w b
 where , is a constant.

12. Fluid emanates at a constant rate from an infinite line source perpendicular to the z-plane at 

z = 0, determine the speed of the fluid at a distance r from the source. Also find the complex 

potential.

13. Determine the potential at any point of the region shown in the figure given below, if the 

potential on the x-axis is given as

0

0

if 0
( , )

if 0

V x
x y

V x

  Hence, find the equipotential and flux lines.

Fig. 3.33

14. Show that the complex potential due to a source of strength K > 0 in a fluid moving with speed 

V0 is (z) = V0(z) + K log z.

Answer

1.
1

2

w
z

w
  2.

2

2 3

z
w i

z
  3.

z i
w

z

4. 9u + 4v – 36  0  w  = 1 if |a| = |c|.

12. Speed (V) = ,
K

K
r

 is a constant

(z) = K log z.

13. The required potential is 
0

2
1 ,V  where 1tan .

y

x

  The equipotential and fluxlines are

    

1 2 2
0 1 2

2
1 tan and .

y
V c x y c

x
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SUMMARY

Following topics have been discussed in this chapter:

1. Complex Number

An ordered pair of real numbers x and y to be written as z = (x, y) is called a complex number. 

Also, we may write z = (x, y) = x + iy, where imaginary unit i(iota) is defined as i = (0, 1). Here x is 

called real part of z and y is called imaginary part of z. The real part of z is denoted by Re(z) and the 

imaginary part of z by Im(z).

(i) Set of Complex Numbers

The set of all complex numbers is denoted by C, i.e.

C = {x + iy | x, y R}.

Since a real number ‘x’ can be written as x + oi

Every real number is a complex number. Hence, R C, where R is the set of all real 

numbers.

2. Conjugate Complex Number

If z = x + iy is any complex number, then its conjugate denoted  by or ( , ).z x iy z x y

Thus, z
–
 is the mirror image of the complex point z in to real axis. This shows that z z z  is 

purely a real number.

3. De-Moivers’s Theorem

Statement:

(i) If n z (the set of integers), then 

    (cos  + i sin )n = cos n  + i sin n

(ii) If n  (the set of rational numbers), then cos n  + i sin n  is one of the values of 

(cos  + i sin )n.

4. Exponential (or Eulerian) Form of a Complex Number

We know that

e
i  = cos  + i sin 

Let z be any complex number, then in polar form z can be written as

z = r(cos  + i sin )

or z = r e
i    (Using Euler’s notation)

This form of z is known as exponential or Eulerian form.

5. Hyperbolic Functions

For any real or complex ‘x’, the hyperbolic sine and cosine of x is defined as:

    sinh and cosh
2 2

x x x x
e e e e

x x
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Other hyperbolic functions are defined as

tan hx = 
x x

x x

e e

e e
, cot hx =

x x

x x

e e

e e
, cosec hx = 

2
x x

e e
, sec hx = 

2
x x

e e

6. Logarithm of a Complex Number

  log ( ) log tana ib a b i
b

a

2 2 1

is called the principal value of the logarithm of (a + ib).

7. Cauchy–Reimann Equations

Cauchy–Reimann (C.R.) equations are used to determine whether a given function f (z) is analytic 

or not.

Necessary Conditions for a Function to be Analytic

Theorem: Suppose that the function f (z) = u(x, y) + iv(x, y) is continuous in some neighborhood of the 

point z = x + iy and is differentiable at z. Then, the first order partial derivatives of u(x, y) and v(x, y)

exist and satisfy the equations

and
u v u v

x y y x
at the point z.

Sufficient Conditions for a Function f (z) to be Analytic

Theorem: Let u(x, y) and v(x, y) are the real and imaginary parts of the function f (z) = u(x, y) + iv(x, y)

and have the continuous first order partial derivatives in a domain D. If u(x, y) and v(x, y) satisfy the 

Cauchy–Reimann equations at all points in D, then the function f (z) is analytic in D and

f (z) = =
u v v u

i i
x x y y

8. Polar form of the Cauchy–Riemann Equations

1
and

v u v u
r

r r r

9.  Method of Constructing an Analytic Function or a Regular
Function

Milne–Thomson’s Method Using Milne–Thomson’s method, the analytic function

f (z) = (u(x, y) + iv(x, y)) is directly constructed without finding v(x, y), if u(x, y) is given and vice-versa.

f (z) = 1 2( , 0) ( , 0) ,z dz i z dz C  where C is an arbitrary constant.

Similarly, if v(x, y) is given, we have

f (z) = 1 2( , 0) ( , 0)z dz i z dz D

where    
1 2( , ), ( , )

v v
x y x y

y x
 and D is an arbitrary constant.
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10. Cauchy’s Theorem

Let D be a simply connected region and let f (z) be single valued continuously differentiable function 

of D, i.e. f (z) exists and is continuous at each point of D.

Then ( ) 0;

C

f z dz  where C is any closed contour in D.

11. Cauchy’s Integral Formula

If f (z) is an analytic function within and on a closed contour C, and if z0 is any point within C, then

f (z0) = 
0

1 ( )

2 ( )
C

f z dz

i z z

12.  Cauchy Integral Formula for the Derivative of an Analytic
Function

Let f (z) be an analytic function within and on a closed contour C and z0 is any point lying in it, then

f (z0) = 
2

0

1 ( )

2 ( )
C

f z dz

i z z

13. Cauchy Integral Formula for Higher Order Derivatives

Let f (z) be an analytic function in a simply connected region D, and C be a closed contour in D

and z0 is any point in C, then

f
(n) (z0) = 

1
0

! ( )

2 ( )n
C

n f z dz

i z z

14. Poisson’s Integral Formula

If f (z) is an analytic function within and on a circle C defined by |z| = R and if z0 is any point

within C, then

f (z0) = 

2
0 0

2
0 0

( ) ( )1

2 ( ) ( )
C

R z z f z
dz

i z z R z z

15. Liouville’s Theorem

Let f (z) be an integral function satisfying the inequality |f (z)| M for all values of z, where M is a 

positive constant, then f (z) is constant.

16. Expansion of Analytic Functions as Power Series

(i) Taylor’s Theorem If a function f (z) is analytic within a circular C1 with its centre z0 and radius 

R, then at every point z in side C2,

f (z) = ( ) 0
0

0

( )
( )

!

n

n

z z
f z

n
 = f (z0) + (z – z0) f (z0) + 

2
0

0

( )
( )

2!

z z
f z
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(ii) Laurent’s Theorem Let f (z) be an  analytic function  in the ring shaped region D bounded by 

two concentric circles C1 and C2 with centre z0 and radii 1 and 2 ( 1 > 2) and let z be any point 

of D.

Then f (z) = 0 0

0 1

( ) ( ) ,n n
n n

n n

a z z b z z

where an = 

1 2

1
01

0

1 ( ) 1
, ( ) ( )

2 2( )

n
nn

C C

f t
dt b t z f t dt

i it z

17. Singularities

Consider a function f (z) which is analytic at all points of a circular bounded region D except at a 

finite number of points, these exceptional points are known as singular point or singularities.

There are two types of the singularities, which are as follows:

(i) Isolated Singularities A point z = z0 is said to be an isolated singularity of f (z), if f (z) is 

analytic at each point in the neighbourhood of z0.

(ii) Non-isolated Singularities A point z = z0 is said to be a non-isolated singularity of f (z), if f (z)

is not analytic at z = z0 and is the neighbourhood of z0.

18. Cauchy’s Residue Theorem

If f (z) is analytic within and on a closed contour C, except at a finite number of poles z1, z2, z3, … 

zn within C, then

1

( ) 2 Res ( = )
n

r

rC

f z dz i z z

where RHS denotes sum of residues of f (z) at its poles lying within ‘C’

19. Conformal Mapping

A function w = u(x, y) + i v(x, y) defined in a domain D of the z-plane defines a transformation or 

mapping which maps the domain D of the z-plane in to a domain D of the w-plane. We have define 

a few important transforms.

(i) Linear Transformation A transformation or mapping of the form

w = az + b

where a, b are real or complex constants, is said a linear mapping or a linear function or a linear 

transformation.

(ii) Translation Mapping The mapping w = z + c, where c is a complex constant.

Let z = x + iy, c = c1 + i c2 and

w = (x + iy) + c1 + i c2 = (x + c1) + i(y + c2)

w = u + i v: where u = x + c1, v = y + c2.

Thus, the image in the w-plane of any region of the z-plane is the translation of that region in the 

direction of the c1 + i c2.

Hence, the image of w plane is the same as image in z-plane, with different origin.
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(iii) Rotation mapping The mapping w = z e
i .

Let z = r e
i , then.

( ) ,i
w re  |w| = r and arg(w) =  + .

Under this transformation, the point z(r, ) in z-plane is mapped as a point w(r,  + ) in 

w-plane.

Therefore, the mapping rotates a region in the z-plane through an angle  in w-plane.

Hence, if > 0, the rotation is anti-clockwise and if  < 0, the rotation is clock-wise.

(iv) Magnification The mapping w = cz, where c is a real c > 0.

Let z = r e
i , then w = cr e

i , c > 0.

Therefore,  |w| = cr and arg(w) = .

A point in z-plane is moved radilly to a new position at a distance cr from the origin.

Hence, if c > 1, then vector in the z-plane is magnified, if c < 1, then vector is contracted and

w = z is an identity mapping, if c > 1.

(v) Inverse Mapping The mapping 
1

w
z

 let z = r e
i , then

w =
1

,i i
e R e

r
 where 

1
R

r
 and  = –

Under this transformation 
1

,w
z

 a point z(r, ) in z-plane is mapped in to the point w(R, ) in 

w-plane.

Thus, the image in z-plane is mapped upon the reciprocal image in w-plane.

20. Bilinear (or Mobius or Fractional) Transformation

The mapping as transformation 

az b
w

cz d

where a, b, c, d are  complex constant and 0ad bc  is called Bilinear or Mobius transformation.

The transformation of 
az b

w
cz d

 is said to be normalized if 1.ad bc

The transformation 
az b

w
cz d

 is expressible as 0cwz dw az b

Evidently it is linear both in w and z, it is called a bilinear transformation.

A transformation w = f (z) is said to be univalent if z1 z2 implies 
1 2( ) ( ).f z f z

21. Cross Ratio

If z1, z2, z3 and z4 are distinct points, then the ratio 
4 1 2 3

2 1 4 3

( ) ( )

( ) ( )

z z z z

z z z z
 is called the cross ratio of

z1, z2, z3 and z4 and is denoted as (z1, z2, z3 and z4).
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OBJECTIVE-TYPE QUESTIONS

1. The modulus of the complex number 
3 4

1 2

i

iis

(a) 5 (b) 5

(c)
1

5
(d)

1

5

2. The function 
2 21

( , ) log ( )
2

u x y x y  is

(a) Not a harmonic function

(b) The harmonic conjugate of u is 

1tan
y

c
x

(c) Satisfies the Laplace equation

(d) None of the above

3. The function f (z) = |z|2 is

(a) Continuous and differentiable every where

(b) Continuous at z = 0 but not differentiable 

at z = 0

(c) Continuous every where but nowhere 

differentiable

(d) None of the above

4. A function is said to be harmonic if

(a) uxx + uyy = 0 (b) uxx + uxy = 0

(c) uy – ivx = 0 (d) None of the above

5. The function ( )f z z z  is

(a) Analytic at z = 0

(b) Not analytic at z = 0

(c) No where analytic

(d) None of these

6. The Cauchey–Riemann equations for f (z) = u

+ iv are

(a) ux = vx, uy = vy (b) ux = vy, uy = –vx

(c) ux = vy, uy = vx (d) ux = –vy, uy = vx

7. The polar form of Cauchey–Riemann 

equations are

(a)
1

,r ru v u r v
r

(b) ,r ru v u v

(c) ,r ru r v u r v

(d) None of the above

8. The value of 

2

3
| | 3

1 3 4

2 ( 1)
z

z z
dz

i z
 is

(a) 2 (b)  i

(c) 0 (d) –  i

9. If C is a circle |z| = 1, then 

C

zdz  is

(a)  i (b) 2  i

(c) 0 (d) –  i

10. The value of the integral 
cos 2

,
(2 1) ( 3)c

z
dz

z z

where c is a closed curve |z| = 1 is

(a)
5

i
(b)

2

5

i

(c) –  i (d)  i

11. The value of 

2 2

2

sin cos
,

( 1) ( 2)c

z z
dz

z z
 where 

c is the circle |z| = 3 is

(a) 4  (  + 1)i (b) –4  (  – 1) i

(c) 0 (d) 2  i

12. The function 
1

( )
n

f z
z

 is

(a) Analytic for all z

(b) Singularities at z = 0

(c) Singularities at n = 0

(d) None of these

13. For the function 
2

4
( ) , 1

( 1)

z
e

f z z
z

 is a

(a) Pole

(b) Removable singularity

(c) Essential singularity

(d) None of these

14. For the function 
2

1

( ) , 0 iszf z z e z
(a) Pole

(b) Removable singularity

(c) Essential singularity

(d) None of these

15. Using Cauchy’s integral theorem, the value of 

the integral (integration being taken in counter 

clockwise direction)
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3

| | 1

6

3z

z
dz

z i
 is

(a)
2

4
81

i (b) 6
8

i

(c)
4

6
81

i (d) 1

[GATE (CE) 1996]

16. Consider the circle |z – 5 – 5i| = 2 in the 

complex plane (x, y) with z = x + iy. The 

minimum distance from the origin to the circle 

is

(a) 5 2 2 (b) 54

(c) 34 (d) 5 2

[GATE (AEI) 2005]

17. Consider likely applicability of Cauchy’s 

integral theorem of evaluate the following 

integral, contour around the unit circle c,

sec ,
c

I z dz  then the value of I is

(a) I = 0; singularity set = { }

(b) I = 0; singularity set 

  =
2 1

, 0, 1, 2, ...
2

n
n

(c) ;
2

I  singularity set = { n , n = 0, 1, 2, 

…}

(d) None of the above

[GATE (CE) 2005]

18. Let
3 ,z z  where z is a complex number not 

equal to zero, then z is a solution of

(a) z
2 = 1 (b) z

3 = 1

(c) z
4 = 1 (d) z

9 = 1

[GATE (AIE) 2005]

19. For the function 
3

sin z

z
 of a complex variable 

z, the point z = 0 is a

(a) Pole of order 3 (b) Pole of order 2

(c) Pole of order 1 (d) Not a singularity

[GATE (AIE) 2006]

20. The value of the integral of the complex 

function
3 4

( )
( 1) ( 2)

z
f z

z z
 along the path 

|z| = 3 is

(a) 2  i (b) 4  i

(c) 6  i (d) 8  i

[GATE (AEI) 2006]

21. Assuming 1i  and t is a real number, the 

value of integral 

/6

0

it
e dt  is

(a)
3

2 2

i
(b)

3

2 2

i

(c)
1 3

2 2
i (d)

1 3
1

2 2
i

[GATE (ME) 2006]

22. The value of the contour integral 

2| | 2

1

4z i
dz

z
 in positive sense is

(a)
2

i
(b)

2

(c)
2

i
(d)

2

[GATE (ECE) 2006]

23. Let 1,i  the value of (i)i is

(a) i (b) –1

(c)
2

(d)
/2

e

[GATE (AIE) 2007]

24. The semi-circular contour D of radius 2 is 

shown in the figure

then the value of the integral 
2

1

1D
dz

z
 is

(a)  i (b) –  i

(c) (d) –

[GATE (EC) 2007]
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25. The value of the integral
2

1
,

1c
dz

z
 where

c is the contour |z – i /2| = 1 is

(a) 2 i (b)

(c) tan–1 (z) (d)  i tan–1 (z)

[GATE (ECE) 2007]

26. The integral ( )f z dz  evaluated round 

the unit circle on the complex plane for 

cos
( )

z
f z

z
 is

(a) 2  i (b) 4  i

(c) –2  i (d) 0

[GATE (ME) 2008]

27. The equation sin z = 10 has

(a) No real or complex solutions

(b) Exactly two distinct complex solutions

(c) A unique solution

(d) An infinite number of complex soluting

[GATE (ECE) 2008]

28. The residue of the function 

2 2

1
( )

( 2) ( 2)
f z

z z
 at z = 2 is

(a)
1

32
(b)

1

16

(c)
1

16
(d)

1

32

[GATE (ECE) 2008]

29. Given
2

( )
( )

z
X z

z a
 with |z| > a, the 

residue of X(z)zn – 1 at z = a for n  0 will be

(a) a
n – 1 (b) a

n

(c) n a
n (d) n a

n – 1

[GATE (EE) 2008]

30. The value of the integral 
cos 2

,
(2 1) ( 3)c

z
dz

z z

where c is a closed curve given by |z| = 1 is

(a) –  i (b)
5

i

(c)
2

5

i
(d)  i

[GATE (CE) 2009]

31. If z = x + iy, where x and y are real, the value 

of |eiz| is

(a) 1 (b) e

(c) e
y (d) e

–y

[GATE (AIE) 2009]

32. The value of 
sin

,
z

dz
z

 where the contour of 

integration is a simple closed curve around the 

origin is

(a) 0 (b) 2  i

(c) (d)
1

2 i

[GATE (AIE) 2009]

33. If f (z) = c0 + c1 z
–1, then 

| | 1

1 ( )

z

f z
dz

z
 is 

given by

(a) 2  c1 (b) 2  (1 + c0)

(c) 2  i c1 (d) 2  i (1 + c0)

[GATE (ECE) 2009]

34. The analytic function 
2

1
( )

1

z
f z

z
 has 

singularities at

(a) 1 and –1 (b) 1 and i

(c) 1 and –i (d) i and –i

[GATE (CE) 2009]

35. An analytic function of a complex variable z = 

x + iy is expressed as f (z) = u(x, y) + iv(x, y),

where 1.i  If u = xy, the expression for v

should be

(a)
2( )

2

x y
K (b)

2 2

2

x y
K

(c)

2 2

2

x y
K (d)

2( )

2

x y
K

[GATE (ME) 2009]

36. The residues of a complex function 

1 2
( )

( 1)( 2)

z
X z

z z z
 at its poles are

(a)
1 1

, and 1
2 2

(b)
1 1

, and 1
2 2

(c)
1 3

, 1 and
2 2

(d)
1 3

, 1,
2 2

[GATE (ECE) 2010]



Complex Variables and Calculus 3.125

37. The value of the integral
2

4 3
,

( 4 5)c

z
dz

z z

where c is the circle |z| = 1 is given by

(a) 0 (b)
1

10
(c)

4

5
(d) 1

[GATE (ECE) 2011]

38. Given
1 2

( ) .
1 3

f z
z z

 If c is a counter 

clockwise path in the z-plane such that 

|z + 1| = 1, the value of 
1

( )
2 c

f z dz
i

 is

(a) –2 (b) –1

(c) 1 (d) 2

[GATE (ECE) 2012]

39. Integral

2

2

4

4c

z
dz

z
 evaluated anticlockwise 

around the circle |z – i| = 2, where 1,i is

(a) –4 (b) 0

(c) 2 + (d) 2 + 2 i

[GATE (EE) 2013]

40. For a 2–D flow field, the stream function  is 

given as 2 23
( ).

2
y x  The magnitude of 

discharge occurring between the stream line 

passing through points (0, 3) and (3, 4) is

(a) 6 units (b) 3 units

(c) 1.5 units (d) 2 units

[GATE (CE) 2013]

41. For the function 
1

( ) ,
(2 ) ( 2)

f z
z z

 the 

residue at z = 2 is _____. [GATE (CH) 2013]

42. Square root of –i, where 1i  are

(a) i, –i

(b)
3

cos sin , cos
4 4 4

3
sin

4

i

i

(c)
3 3

cos sin , cos
4 4 4

sin
4

i

i

(d)
3 3

cos sin ,
4 4

3 3
cos sin

4 4

i

i

[GATE (EE) 2013]

43. The real part of an analytic function f (z),

where z = x + iy is given by e
–y cos x. The 

imaginary part of f (z) is

(a) e
y cos x (b) e

–y sin x

(c) –e
y sin x (d) –e

–y sin x

[GATE (ECE) 2014]

44. If z = (xy) log (xy), then

(a) 0
z z

x y
x y

(b)
z z

y x
x y

(c)
z z

x y
x y

(d) 0
z z

y x
x y

[GATE (ECE) 2014]

45. Integration of the complex function 
2

( ) ,
1

z
f z

z
 in the counter clockwise 

direction, around |z – 1| = 1 is

(a) –  i (b) 0

(c)  i (d) 2  i

[GATE (EE) 2014]

46. An analytic function of a complex variable. 

z = x + iy is expressed as f (z) = u(x, y) + iv(x, y),

where 1.i  If u(x, y) = 2xy, then v(x, y)

must be

(a) x
2 + y2 + K (b) x

2 – y2 + K

(c) –x
2 + y2 + K (d) –x

2 – y2 + K

[GATE (ME) 2014]

47. If c is a closed path in the z-plane given by |z|

= 3. The value of the integral

2 4

2c

z z j
dz

z j
 is

(a) –4 (1 + 2j) (b) 4 (3 – 2j)

(c) –4 (3 + 2j) (d) 4 (1 – 2j)

[GATE (ECE) 2014]

48. Given 1,i  the value of the definite 

integral,

/2

0

cos sin

cos sin

x i x
I dx

x i x
 is

(a) 1 (b) –1

(c) i (d) –i

[GATE (CE) 2015]
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49. Consider the following complex function

2

9
( )

( 1) ( 2)
f z

z z

which of the following is one of the residues 

of the above function?

(a) –1 (b)
9

16
(c) 2 (d) 9

[GATE (CE) 2015]

50. Let ( ) .
az b

f z
cz d

 If f (z1) = f (z2) for all z1

z2, a = 2, b = 4 and c = 5, then d should be 

equal to ______.

[GATE (ECE) 2015]

51. If c denotes the counterclockwise unit 

circle, the value of the contour integral 

1
Re( )

2 c
z dz

j
 is

[GATE (ECE) 2015]

52. If c is a circle of radius r with centre z0, in the 

complex z-plane and if n is a non-zero integer, 

then
1

0

1

( )nc
dz

z z
 equals

(a) 2  n j (b) 0

(c)
2

j

n
(d) 2  n

[GATE (ECE) 2015]

53. Let z = x + iy be a complex variable. Consider 

that contour integration is performed along the 

unit circle in anticlockwise direction. Which 

one of the following statement is not true?

(a) The residue of 
2 1

z

z
 at z = 1 is 

1

2

(b)
2 0

c
z dz

(c)
1 1

1
2 c

dz
i z

(d) z– (complex conjugate of z) is analytical 

function

[GATE (ECE) 2015]

54. Evaluate the integral 
1

,dz
z

 where the 

contain is unit circle taken in clockwise 

direction is

(a) 2  i (b) 0

(c) –2  i (d) 4  i

[GATE (IN) 2015]

55. Given two complex numbers 1 5 (5 3)z i

and 2

2
2 ,

3
z i  the argument of 1

2

z

z
 in 

degree is

(a) 0 (b) 30

(c) 60 (d) 90

[GATE (ME) 2015]

56. The bilinear transformation which maps the 

points z = 1, z = 0, z – 1 of z-plane in to w = i,

w = 0, w = –i of w-plane respectively is

(a) w = z (b) w = i(z + 1)

(c) z = iz (d) None of these

57. Under the transformation w = (1 + i) z + 2 – i,

the line x = 0 is mapped into the line

(a) 3u + 2v = 1 (b) u + v = 1

(c) 2v – u = 1 (d) None of these

58. The bilinear transformation 
(1 )

1

i z
w

zmaps

(a) i, 1, –1 on to 1, 0, 

(b) –1, 0, 1 onto 0, i, 3i

(c) both (a) and (b)

(d) Neither (a) nor (b)

59. The invariant points of the transformation 

1

1

z
w

z
 are

(a)
2

5

i
z (b) z = i

(c) z = i (d) z = 3i – 2

60. The condition of a conformal mapping is

(a)
,

0
,

u v
J

x y
(b)

,
0

,

x y
J

u v

(c)
,

0
,

u v
J

x y
(d)

,
0

,

x y
J

u v

61. The bilinear transformation which maps the 

half plane Im(z)  0 on to the circular disc 

|w|  1, is

(a) i z
w e

z

(b)
i z

w e
z
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(c)
1

i z
w e

z

(d) None of these

62. A transformation 
5 4

4 2

z
w

z
 transform the 

circle |z| = 1 into a circle in w-plane whose 

centre is

(a)
1 1

,
2 2

(b)
1

, 0
2

(c)
1 1

,
2 2

(d)
1

, 0
2

63. The fixed points of the bilinear transformation 

2

z
w

z
 are

(a) 0, 1 (b) 0,

(c) 1, 2 (d) 3, 5

64. The cross ratio z1, z2, z3, z4 is real if and only 

if the four points z1, z2, z3, z4 lies on a

(a) Circle (b) Square

(c) Straight line (d) None of these

65. Laurent’s series of 
1

( )
( 1) ( 3)

f z
z z

 in 

the region 1 < |z| < 3 is

(a)
2 3

1 1 1

2 2 2z z z

(b)
2 3

1 1 1

2 2 2z z z

(c)
2 3

1 1 1

z z z

(d) None of these

66. Expansion of the function 
sin

( )
( )

z
f z

zabout z =  is

(a)
2 4( ) ( )

1
3! 5!

z z

(b)

2 4( ) ( )
1

2! 4!

z z

(c)
2 4( ) ( )

1
3 5

z z

(d)
2 4( ) ( )

1
2! 5!

z z

67. The coefficient of 
1

z
 in the Laurent’s series of 

2

sin 2z

z
 is

(a) –1 (b) – 2

(c) 2 (d) 0

68. Taylor’s series of 

2 1
( )

( 2) ( 3)

z
f z

z z
 for 

|z| < 2 is

(a)

3

13 ( 1)
1 9 ( 1)

2 2 3

n
n z

(b)
3 8

1 ( 1) ( 1)
2 2 3 3

n n

n nz z

(c)
3 8

1 ( 1) ( 1)
2 2 3 3

n n

n nz z

(d) None of these

69. The analytic part of Laurent’s series is

(a)

0

( )n
n

n

a z a (b)

0

( ) n
n

n

a z a

(c)

1

( )n
n

n

a z a (d) None of these

70. The coefficient of 
1

z
 in the expansion of 

log
1

z

z
 valid in |z| > 1 is

(a) 1 (b) –2

(c)
1

2
(d) –1

71. The residue of 
1

sin cosz z
 at 

4
z  is

(a)
1

2
(b)

1

2

(c) –1 (d) 0

72. The residue of 

3

( )
( 1)( 2)( 3)

z
f z

z z z
 at 

z =  is

(a) –6 (b) 9

(c) 6 (d) –9

73. The residue of 
2 2

log

(1 )

z

z
 at z = i is
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(a)
2

i (b)
2

i

(c)
1

4 2
i (d)

2

74. The residue of 
3 2

1

(1 )z z
 at z =  is

(a) 0 (b) 1

(c) –1 (d) 4

75. If z = 0 is a simple pole of the function f (z),

then the residue at z = 0 is

(a)
0

lim ( )
z

z f z (b)
0

( )
lim
z

f z

z

(c) lim ( )
z

z f z (d) ( )lim z
f z

z

76. The residue of 
3 1

cos
2

z
z

 at z = 2 is

(a)
143

124
(b)

143

134

(c)
143

142
(d)

134

421

77. The residue of the function f (z) at z =  is

(a)
1

lim
z

z f
z

(b) lim ( )
z

z f z

(c) lim ( )
z

f z (d) lim ( ) ( )
z

z a f z

78. Residue of 

2

( )
( )( )( )

z
f z

z a z b z c
 at 

z =  is

(a) 1 (b) –1

(c) 0 (d)
1

abc

79. The value of ,

c

dz

z a
 where c is a circle 

|z – a| = r is

(a) i (b) 2 i

(c) 4 i (d) – i

80. What is the form of a bilinear transformation 

if  is the only fixed point

(a)
b

w z
d

(b)
b

w z
d

(c)
d

w z
b

(d)
b

w az
d

81. What is the form of a bilinear transformation 

if it is maps the half plane I(z)  0 on to the 

circular disc |w|  1

(a)
i z

e
z

(b)
i z

e
z

(c)
i z

e
z

(d)
z

z

82. The transformation of 
1

( )f z
z

 maps

(a) |z| < 1 on to |f (z)| < 1

(b) |z| < 1 on to |f (z)| > 1

(c) |z| > 1 on to |f (z)| > 1

(d) |z| < 1 on to |f (z)| > 1

83. The bilinear transformation that maps the 

points z1 = , z2 = i and z3 = 0 into the points 

w1 = 0, wz = i and w3 =  is

(a)
1

z
(b)

1

2z

(c)
1

z
(d)

2

z

84. The bilinear transformation 
2

2

z
w

z
 maps 

{z: |z – 1| < 1} on to

(a) {w: Re(w) < 0} (b) {w: Im(w) > 0}

(c) {w: Re(w) > 0} (d) {w: |w + 2| < 1}

85. The transformation ,
1

i z
w e

z
 where 

 is a constant, maps, |z | < 1 on to

(a) |w| > 1 if | | > 1 (b) |w| < 1 if | | < 1

(c) |w| = 1 if | | = 1 (d) |w| = 3 if | | = 0

86. The magnification factor of the conformal 

mapping 42 (1 2 )

i

w z e i  is

(a) 2 (b) 3

(c) 2 (d) 1

87. If z = z0 is an essential singularity of f (z)

and
0( ) ( )n

n

n

f z a z z  is its Laurent’s 

expansion in annulus (z0, 0, R). Then z = z0 is 
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an essential singularity if

(a) an  0 for many positive n

(b) an  0 for infinitely many negative n

(c) an  0 for all integers n

(d) an = 0 for all integers n

88. If a function f (z) is analytic at all points of 

a bounded region except at infinitely many 

points, then these exceptional points are 

known

(a) Singularity (b) Poles

(c) Zeros (d) Simple points

89. For the function 
sin

( ) ;
z

f z
z

z = 0 is a

(a) Pole

(b) Essential singularity

(c) Removable singularity

(d) Non-essential singularity

90. The least positive integer n for which 
1

1

n
i

iis real, is

(a) 2 (b) 8

(c) 4 (d) 0

91. If 1 ,i  then

334 365

1 3 1 3
4 5 3

2 2 2 2

i i

is equal to

(a) 1 3 i (b) 1 3 i

(c) 3 i (d) 3 i

92. If 1i  and n is a positive integer, then 
1 2 3n n n n

i i i i  is equal to

(a) 1 (b) i

(c) 0 (d) i
n

93. The smallest positive integer n for which 

(1 + i)2n = (1 – i)2n is

(a) 4 (b) 8

(c) 10 (d) 2

94.

8

8

sin cos
8 8

sin cos
8 8

i

i

 is equal to

(a) 1 (b) –1

(c) 0 (d) i

95. The value of 

6 6

1 3 1 3

1 3 1 3

i i

i i
 is

(a) 1 (b) 2

(c) –2 (d) –1

96. The value of ii is

(a) –w
2 (b) w

(c)
2

(d) 2e

97. If
4 4

cos sin ,
3 3

x i  then the value of 

3
1

2

x
x

 is

(a) (–1)n (b) (–1)2n

(c)
3

( 1)

2

n

n
(d) 1

98. The value of log (log i) is

(a) log
2 2

i (b) log
2 2

i

(c) log
2 2

i
(d) None of these

99. If (1 – i)n = 2n, then n is equal to

(a) 0 (b) 1

(c) 2 (d) –1

100. If
100(1 3) ,x iy i  then the value of 

(x, y) is

(a)
99 99(2 , 2 3) (b)

99 99( 2 , 2 3)

(c)
99 99(2 , 2 3) (d) (0, 0)
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ANSWERS

1.(b) 2.(b) 3.(c) 4.(a) 5.(c) 6.(b) 7.(a) 8.(a) 9.(b) 10.(b)

11.(a) 12.(b) 13.(a) 14.(c) 15.(a) 16.(a) 17.(b) 18.(c) 19.(b) 20.(c)

21.(d) 22.(d) 23.(d) 24.(a) 25.(b) 26.(a) 27.(b) 28.(a) 29.(d) 30.(c)

31.(d) 32.(a) 33.(b) 34.(a) 35.(c) 36.(c) 37.(a) 38.(c) 39.(a) 40.(b)

41. 1
4

42.(b) 43.(b) 44.(c) 45.(c) 46.(c) 47.(c) 48.(c) 49.(a) 50.(10)

51.(0) 52.(b) 53.(d) 54.(b) 55.(a) 56.(c) 57.(b) 58.(a) 59.(c) 60.(c)

61.(b) 62.(b) 63.(a) 64.(a) 65.(b) 66.(a) 67.(c) 68.(b) 69.(a) 70.(a)

71.(b) 72.(a) 73.(c) 74.(a) 75.(a) 76.(a) 77.(b) 78.(b) 79.(b) 80.(a)

81.(a) 82.(b) 83.(c) 84.(a) 85.(b) 86.(c) 87.(b) 88.(a) 89.(c) 90.(a)

91.(c) 92.(c) 93.(d) 94.(a) 95.(b) 96.(d) 97.(c) 98.(b) 99.(a) 100.(b)



4.1 INTRODUCTION

Quite often we come across situations where we need to express the given data, obtained from 

observations, in the form of law, which involves two or more than two variables. This law is generally 

called empirical relation law. For example, we are interested to study the law between the height of 

father and elder son, height and weight of an individual, etc. This relation is used for future studies.

4.2 SCATTER DIAGRAM

It is the simplest way of diagrammatically depicting the data which involves two variables known 

as bivariate data. Thus, for a bivariate distribution (xi, yi), i = 1, 2, …, n, if the values of variable X

plotted along the x-axis and value of variable Y is plotted along y-axis, respectively, in the xy-plane, the 

diagram of dots so obtained is known as scatter diagram.

From the scatter diagram, we can form a fairly good, though vague idea whether the variables are 

correlated or not. But if number of observations are fairly large, this method, however, is not suitable.

4.3 CURVE FITTING

To express the given data approximately, a number by equations of various types can be obtained. But 

question arises how to find an equation of the curve which fits the data best and can be used to predict 

the unknown values. The method of finding such an equation of ‘best fit’ is called curve fitting.

Let (x1, y1), (x2, y2),… (xn, yn) be n pairs of observed data then the given data that can be fitted in an 

equation which will contain n arbitrary constants and to find these n arbitrary constants, n simultaneous 

equations for n unknown values can be solved. But if we want equations to have less than n unknown 

values then the following four methods are used for this purpose:

(i) Graphical Method

(ii) Least Square Method

(iii) Group Averages Method

(iv) Moments Method

It is difficult to find the values of unknown uniquely by Graphical methods amongst help of the 

remaining three methods, the least square method is considered of best to fit to a curve for a given data. 

This method has wide applications and can be easily implemented in computer. Now, in the coming 

sections we shall discuss all the four methods in details.

Empirical Laws 

and Curve Fitting4
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4.4 GRAPHICAL METHOD

Let the linear law y = ax + b be the curve representing the given data, then we proceed as per the 

following steps:

(i) Plot the given data (x1, y1), (x2, y2),…, (xn, yn) of n pairs on the graph paper on xy plane by 

using suitable scale.

(ii) Draw the straight line which fits the data best.

(iii) Calculate slop of line a and intercept on y-axis b by taking any two points of n pairs of given 

prints.

If we do not get an approximate straight line with these plotted n pairs of given data, then we draw 

a smooth curve through them and from the shape of graph, we try to find a law of the curve by which 

we can reduce this to the curve of the form.

y = ax + b

4.4.1 Linear Laws

Following are some of the laws which are commonly used and indicating the way how these can be 

reduced to linear form by suitable substitutions:

(i) Fitting of the curve y = ax
m + b. Let y = ax

m + b (1)

  Taking x
m = X and Y = y, then Eq. (1) becomes

Y = aX + b (2)

(ii) Fitting of the curve y = ax
b. When y = ax

b (3)

  Taking log of both sides, we get

log10y = 10 10log loga b x (4)

  Let 10 10 10log , log , logy Y a A x X

  then Eq. (3) reduces to

Y = A + bX (5)

(iii) Fitting of the curve y = ax
m + b log x. Let y = ax

m + b log x (6)

  Dividing both sides of Eq. (6) by log x, we get

log

y

x
 = 

log

ma
x b

x
(7)

  Put ,
log log

m
y x

Y X
x x

  then the given law becomes

Y = ax + b (8)

(iv) Hitting of an exponential curve y = a e
bx. Suppose y = a e

bx (9)

  Taking log of both sides

log10y = 10log a bx (10)

  Let 10 10log and logy Y a A

  then law reduces to

Y = A + bx (11)
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Example 1 For the following data, find a law of the type y = ax
2 + b

x 1 2 3 4 5 6 7 8

y 1.0 1.2 1.8 2.5 3.6 4.7 6.6 9.1

Solution Given law

y = ax
2 + b

Let x
2 = X

then y = aX + b

Table for X and Y is given as follows:

X = x
2 1 4 9 16 25 36 49 64

Y 1.0 1.2 1.8 2.5 3.6 4.7 6.6 9.1

Plot these points and draw the straight line of best fit through these points as shown in Fig. 4.1.

Fig. 4.1

Slope of the line is as follows:

2.5 1.8 0.7
0.1

16 9 7

and using y = aX + b

2.5 16 0.1

16 2.4

2.4
0.15

16

a

a

a

Example 2 The following values of x and y follow the law y = ax
2 + b log10x. Find graphically the 

suitable values of a and y.
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x 2 3 4 5

y 2 4 6 10

Solution

Given y = ax
2 + b log10 x (12)

10log

y

x
 = 

2

10log

x
a b

x
(13)

Let   

2

10 10

and
log log

y x
Y X

x x

Then Eq. (13) becomes

Y = ax + b

The table for Y and X is given as follows:

2

10log

x
X

x
13.29 18.86 26.58 35.77

10log

y
Y

y
6.64 8.38 9.97 14.31

Fig. 4.2

Slope can be calculated using Fig. 4.2.

Slope b = 
14.31 6.64 7.67

0.34
35.77 13.29 22.48

BC

AB

a = P1 lies on straight line

2
10

6.64 (13.29) .34

0.47

0.47 (0.34) log

a

a

y x x
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Example 3 Fit a curve y = ae
bx for the following data:

x 1 2 3 4 5 6 7 8

y 1.0 1.2 1.8 2.5 3.6 4.7 6.6 9.1

Solution

Given curve is y = ae
bx (14)

Taking log of both sides we get

log10y = log10a + bx (15)

Let log10y = Y

log10a = A

Therefore, Eq. (15) becomes

Y = A + bx

Table for x and y is given as follows:

x 1 2 3 4 5 6 7 8

Y = log10y 0.00

P1

0.08

P2

0.26

P3

0.40

P4

0.56

P5

0.67

P6

0.82

P7

0.96

P8

The points on x-y plane are depicted in Fig. 4.3. Draw the straight line of best and find the values of 

A and b.

Fig. 4.3
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EXERCISE 4.1

1. Find a law of the type y = a + bx
2 for the following data:

x 10 20 30 40 50

y 8 10 15 21 30

2. For the following data, fit a linear curve y = ax + b and compute y when x = 100.

x 50 70 100 120

y 12 15 21 25

3. Fit the curve y = ae
bx to the following data:

x 0 2 4

y 5.1 10 31.1

(Coimbatore 1997)

4. For the following data, fit a linear curve y = a + bx.

x 1 1 2 2 3 3 4 5 6 7

y 2 7 7 10 8 12 10 14 11 14

5. Find the values of c and d for the following data which follows the law v = cu
2 + d log10v.

u 2.85 3.88 4.66 5.69 6.65 7.77 8.67

v 16.7 26.4 35.1 47.5 60.6 77.5 93.4

6. Find the best values of b and m for the following data which follows the law y = bx
m.

x 25 56.2 100 1.56

Y 1.0 1.5 2.0 2.5

7. Following data follow the law ,N c d M  find the values of c and d graphically which fits 

the data best.

M 500 1000 2000 4000 6000

N 0.20 0.33 0.38 0.45 0.51

8. Fit the curve y = a + bx to the following data:

y 1.8 3.0 4.8 5.0 6.5 7.0 9.0 9.1

x 20.0 30.5 40.0 55.1 60.3 74.9 88.4 95.2

Answer

1. a  7.35 and b  0.0085; y = 7.35 + 0.0085 x2

2. a = 0.1879, b = 2.2759; y = 21.07

3. a = 4.1; b = 0.43; y = 4.1 e0.43 x

4. a = 4.71, b = 1.41; y = 4.71 + 1.41 x

5. c = 0.99, d = 20.2; v = (0.99)u2 + (20.20) log10u

6. b = 0.5012, m = 0.5

7. c = 0.20, d = 0.0044

8. y = 0.2177 + 0.0957 x
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4.5 LEAST SQUARE METHOD

The principle of least squares is the most popular and widely used method of fitting a mathematical 

function best to a given set of data. This method gives very good results. The principle of least square 

method is that the sum of the difference between observed values of yield and the expected values of 

yi (i = 1, 2, …, n) should be minimum. The various curves that may be used to describe the given data 

are as follows:

If y be the value of a variable corresponding to independent variable x, then

(i) A straight line: y = a + bx

(ii) A second degree parabola: y = a + bx + cx
2

(iii) k
th degree polynomial = y = a0 + a1x + a2x

2 + … + anx
n

(iv) Exponential curve: y = ab
x

log10y = log10a + x log10 b

Let log10y = Y, log10a = A and log10b = B

Y = A + Bx

4.5.1 Fitting of a Straight Line

Let the following equation be required to fit

y = a + bx (16)

Let (x1, y1), (x2, y2),…, (xn, yn) be n observations of an experiment then for a value xi, the observed 

value yi and the expected value is ŷi = a + bxi, so that the error is Ei = yi – ŷi = yi – a – bxi. Therefore, 

the sum of squares of these errors for the data is as follows:

      

2 2 2 2 2
1 1 2 2

1 1

( ) ( ) ( ) ( )
n n

i i i n n

i i

E y a bx y a bx y a bx y a bx

E will be minimum if 0 and 0
E E

a b

1 1 2 2 22(( )( 1) 2 )... 2( ) 0ny a bx y a bx y a bx (17)

and      
1 1 1 2 2 20 2 ( ) 2 ( )...2 ( ) 0n n n

E
x y a bx x y a bx x y a bx

b
(18)

by Eq. (17) we get

1 2 1 2( )n ny y y na b x x x

i.e.,     
1 1

n n

i i

i i

y na b x (19)

and by Eq. (18) we get

       
2 2 2

1 1 2 2 1 2 1 2n n n nx y x y x y ax ax ax bx bx bx

i.e.,    2

1 1

n n

i i i i

i i

x y a x b x (20)
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The Eqs (19) and (20) are called normal equations and can be solved simultaneously to find the 

values of a and b. By putting the values of a and b in Eq. (1), we get the desired curve of best fit.

4.5.2 Fitting of a Second Degree Parabola

Suppose we want to fit a parabola

y = a + bx + cx
2

Write the normal equations based on the given data (x1, y1), (x2, y2),…, (xn, yn) as follows:

2

1 1 1

n n n

i i i

i i i

y na b x c x (21)

2 3

1 1 1 1

n n n n

i i i i i

i i i i

x y a x b x c x (22)

2 2 3 4

1 1 1 1

n n n n

i i i i i

i i i i

x y a x b x c x (23)

By solving the Eqs (21), (22) and (23) we can find the values of constants a, b and c and putting 

these values of a, b, c in the equation y = a + bx + cx
2 will give the best fit of second degree parabola 

to the given data.

4.5.3 Fitting of a kth Degree Polynomial 

Suppose we want to fit a polynomial of kth degree 2
0 1 2 .n

ny a a x a x a x

Write the k+ normal equations based on the given data (x1, y1), (x2, y2),…, (xn, yn)

      

2
0 1 2

1 1 1 1

n n n n
n

i i n

i i i i

y na a x a x a x

    

2 3 1
0 1 2

1 1 1 1 1

n n n n n
n

i i i i i n i

i i i i i

x y a x a x a x a x

    

2 3 4 2
0 1 2

1 1 1 1 1

1 4 2
0 1 2

1 1 1 1 1

n n n n n
n

i i i i i n

i i i i i

n n n n n
k k k k n

i i i i i n

i i i i i

x y a x a x a x a x

x y a x a x a x a x

Solve the above k + 1 normal equations and find the values of a0, a1, …, an. Put the values of

a0, a1, …, an the polynomial which will give the best fit of kth degree polynomial to the given data.

4.5.4 Fitting of Exponential Curve

Suppose we want to fit an exponential curve y = ab
x (24)

log10y = log10a + x log10b

Let log10y = Y, log10a = A and log10b = B
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then the given curve becomes Y = A + Bx; which is now the equation of straight line. Now find the 

values of A and B in the similar manner as in fitting of a straight line. After finding the values of A and 

B, compute

a = antilog A

and b = antilog B

Put the values of a and b in given equation of exponential curve which will give you the best fit 

curve of given data.

Example 4 For the following data, fit a straight line y = a + bx

x 35.3 29.7 30.8 58.8 61.4 71.3 74.4 76.7 70.7 57.5 46.4 28.9 28.1 39.1 46.8

y 11.0 11.1 12.5 8.4 9.3 8.7 6.4 8.5 7.8 9.1 8.2 12.2 11.9 9.6 10.9

x 48.5 59.3 70.0 70.0 74.4 72.1 58.1 44.6 33.4 28.6

y 9.6 10.1 8.1 6.8 8.9 7.7 8.5 8.9 10.4 11.1
Compute the value of y when x

= 50

Solution

Here n = 25

      

25 25 25
2

1 1 1

25 25
2

1 1

1314.90, 76 308.53, 235.70

2286.07, 11 824.44

i i i

i i i

i i i

i i

x x y

y x y

Normal equations are as follows:

   

235.70 25 1314.90

11824.40 1314.90 76308.53

a b

a b

Solving the above two normal equations, we get

a = 13.64 and b = –0.08 x

  Curve of best fit y = 13.64 – 0.8 x

when x = 50

y = 13.06 – (0.08) 50 = 9.64

Example 5 For the following data fit a straight line y = a + bx

x 5 15 25 35 45 50

y 10 18 20 25 32 45

Solution

To find a straight line, normal equations are as follows:

      
2

y na b x

xy a x b x



4.10 Engineering Mathematics for Semesters III and IV

2Here 6, 175, 6625, 150

5385

150 6 175

5385 175 6625

n x x y

xy

a b

a b

Solving above two equations, we get

a = 5.75 and b = 0.66

Line of best fit y = 5.75 + 0.66 x

Example 6 Following are measurements of air velocity (x) and revaporation coefficient (y) of 

burning fuel droplets in an impulse engine:

x 20 60 100 140 180 220 260 300 340 380

y 0.18 0.37 0.35 0.78 0.56 0.75 1.18 1.36 1.17 1.65

Fit a straight line y = a + bx to the given data:

Solution

Here n = 10, x = 2000, xy = 2175.40

y = 8.35, x
2 = 532,000

normal equations are as follows:

8.35 = 10 a + 2000 b

2175.40 = 2000 a + 532000 b

Solving the above equations, we get

a = 0.069 and b = 0.00383

Line of best fit is

y = 0.069 + 0.00383 x

Example 7 Following are the data on the drying time of a certain varnish and the amount of an 

additive that is intended to reduce the drying time:

Amount of Varnish additive groups (x) 0 1 2 3 4 5 6 7 8

Drying time (hours) y 12.0 10.5 10.0 8.0 7.0 8.0 7.5 8.5 9.5

(a) Fit a second degree parabola y = a + bx + cx
2

(b) Use the result of part (a) to predict the drying time of the varnish when 6.5 g of additive is 

being used.

Solution

(a) The normal equations to fit the parabola y = a + bx + cx
2 are as follows:

    

2

2 3

2 2 3 4

y xa b x c x

xy a x b x c x

x y a x b x c x
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  Here n = 9, y = 80.5, x = 36, x
2 = 204

      
3 4 21296, 8772, 299, 1697x x xy x y

80.5 = 9a + 36b + 204c

299 = 36a + 204b + 1296c

1697 = 204a + 1296b + 8772c

  Solving the above three equations, we get

a = 12.2, b = –1.85 and c = 0.183

y = 12.2 – 1.85 x + 0.183 x2

(b) When x = 6.5

y = 12.2 – (1.85) 6.5 + (0.183) (6.5)2

y = 7.9

Example 8 Find an exponential curve y = ab
x to the following data:

x 1 2 3 4 5 6 7 8

y 1.0 1.2 1.8 2.5 3.6 4.7 6.6 9.1

Solution

To fit the curve y = ab
x

Taking log of both the sides

10 10 10log log logy a x b Y A Bx

where 10 10 10log , log and logY y A a B b

x 1 2 3 4 5 6 7 8

y 1.0 1.2 1.8 2.5 3.6 4.7 6.6 9.1

Y = log10y .0000 .0792 .2553 .3979 .5563 .6721 .8195 .9590

x
2 1 4 9 16 25 36 49 64

xY .0000 .1584 .7659 1.5916 2.7815 4.0326 5.7365 7.6726

Normal equations are as follows:

       
2

Y nA B x

xY A x B x

Here    28, 36, 22.7385, 3.7393, 204n x xY Y x

3.7393 = 8 A + 36 B

22.7385 = 36 A + 204 B
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Solving above two equations we get

      

0.1662 antilog 0.6821

0.1408 antilog 1.383

0.6821(1.383)x

A a A

B b B

y

EXERCISE 4.2

1. If P is the pull required to lift a load w by means of a pulley block, find a linear law of the form 

P = mw + c connecting P and w, using the following data:

P 12 15 21 25

w 50 70 100 120

  where P and w are taken in kg wt. Compute P when; W = 150 kg wt.

(U.P.T.U. 2007, V.T.U. 2002)

2. By the method of least squares, fit the straight line that best fits the following data:

x 1 2 3 4 5

y 14 27 40 55 68

(U.P.T.U. 2008)

3. Fit a straight line to the following data:

Year (x) 1961 1971 1981 1991 2001

Production (y) 8 10 12 10 16

  and find the expected production in 2006 (in thousand tonnes).

4. Find the best possible curve of the form y = a + bx, using method of least squares to the data:

x 1 3 4 6 8 9 11 14

y 1 2 4 4 5 7 8 9

(V.T.U. 2011)

5. Fit a straight line to the following data:

x 1 2 3 4 5 6 7 8 9

y 9 8 10 12 11 13 14 16 5

(Bhopal 2008)

6. Fit a straight line to the following data:

x 6 7 7 8 8 8 9 9 10

y 5 5 4 5 4 3 4 3 3

(J.N.T.U. 2008)

7. Fit a second degree parabola to the following data:

x 0 1 2 3 4

y 1 1.8 1.3 2.5 6.3

(P.T.U. 2006)
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8. Find the parabola of the form y = a + bx + cx
2 which fits most closely with the observations:

x –3 –2 –1 0 1 2 3

y 4.63 2.11 0.67 0.09 0.63 2.15 4.58

(V.T.U. 2006, J.N.T.U. 2005)

9. Fit a parabola y = a + bx + cx
2 to the following data:

x 2 4 6 8 10

y 3.07 12.85 31.47 57.38 91.29

(V.T.U. 2003S)

10. Fit a second degree parabola to the following data:

x 1 2 3 4 5 6 7 8 9 10

y 124 129 140 159 228 289 315 302 263 210

(U.P.T.U. 2009)

11. Following data gives the results of the measurements of train resistance, V is the velocity in 

miles/hour. R is the resistance in pounds per ton.

V 20 40 60 80 100 120

R 5.5 9.1 14.9 22.8 33.3 46.0

  If R is related to V by the relation R = a + bV + cV
2, find a, b and c.

(U.P.T.U. 2002)

12. The velocity V of a liquid is known to vary with temperature according to a quadratic law

V = a + bT + cT
2, find the best values of a, b and c for the following data:

T 1 2 3 4 5 6 7

V 2.31 2.01 3.80 1.66 1.55 1.47 1.41

(U.P.T.U. M.C.A. 2010)

13. For the normal equations

       
2

y na b x

xy a x b x

  Prove that 
2 2

and
( )

n xy x y
a y bx b

n x x

14. Verify that 

1

0
n

i

i

E  where ( ), 1, 2, ...,i i iE y a bx i n

15. Fit a second degree parabola to the following data:

x 1989 1990 1991 1992 1993 1994 1995 1996 1997

y 352 356 357 358 360 361 361 360 359

(U.P.T.U. 2009)
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16. Fit an exponential curve y = ab
x to the following data:

x 3 6 9 12 15 18

y 115,000 147,000 239,000 356,000 579,000 864,000

Answers

1. m = 0.1879, c = 2.2785; P = 0.1879 w + 2.2785

2. y = 13.6 x as a = 0, b = 13.6

3. 15.2 thousand tonnes.

4. a = 0.545, b = 0.636; y = 0.545 + (0.636)x

5. a = 4.193, b = 1.117; y = 4.193 + (1.117)x

6. a = 8.0, b = –0.5; y = 8 –(0.5)x

7. a = 1.42, b = –1.07, c = 0.55; y = 1.42 – (1.07)x + (0.55)x2

8. a = 1.04, b = –0.198, c = 6.244; y = 1.04 – (0.198)x + (.244)x2

9. a = 0.34, b = –0.78, c = 0.99; y = 0.34 – (0.78)x + (0.99)x2

10. a = 18.866, b = 66.158, c = –4.333;

y = 18.866 + (66.158)x – (4.333)x2

11. a = 3.48, b = –0.002, c = 0.0029;

R = 3.48 – 0.002 V + (0.0029)V2

12. a = 2.593, b = –0.326, c = 0.023;

V = 2.593 – (0.326)T + (0.023)T2

15. a = –10000106, b = 1034.29, c = –0.267;

y = –10000106 + 1034.29x – (0.267)x2

16. a = 69502.4; b = 1.149; y = 69502.4(1.149)x

4.6 FITTING OF OTHER CURVES

4.6.1

Suppose we want to fit a curve

y = ax
b (25)

Taking log of both the sides of Eq. (25)

10 10 10log log logy a b x
(26)

Let 10 10 10log , log , logy Y a A x X  then (26) becomes

Y = A + bX (27)

which is nothing but a linear curve. So normal equations of (27) will be

      
2

Y nA b X

XY A X b X

Solving above two equations, we find the values of A and b. Then form the value of A, we find

a = antilog A, Put the values of a and b in Eq. (25), this will give the best fit curve y = ax
b to the given 

data.
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4.6.2

Suppose y = ae
bx (28)

Taking log of both the sides of Eq. (28)

10 10 10log log logy a bx e (29)

Let
10 10log , logy Y a A

then (29) becomes

Y = A + bx (  log10e = 1) (30)

normal equations for (30) are

      
2

Y nA b x

xY A x b x

Solving above equations, we find the values of a and b and then put these values in (28), which gives 

the best fit y = ae
bx to the given data.

4.6.3

Suppose xy
a = b (31)

Taking log of both the sides of Eq. (31)

10 10 10

10 10 10

10 10

log log log

1 1
or log log log

1 1
Let log , log and

x a y b

y b x
a a

y Y b A B
a a

then the above equation becomes

Y = A + Bx (32)

and normal equations for the above equations are as follows:

          
2

Y nA B X

XY A X B X

By solving above equations, we find the values of a and b, and putting these values of a and b in

Eq. (31), we get the best fit curve x y
a = b to the given data.

Example 9 Find the least square fit of the form y = a + bx
2 to the following data:

X 0 1 2 3

y 1 4 2 0

Solution Let x
2 = X, then given curve becomes y = a + bX

Normal equations for the above curve are as follows:

       
y na b X
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2 ,Xy a X b X  the values of 2, ,X X Xy , etc., are given in the following table:

Total

x 0 1 2 3 6

y 1 4 2 0 7

X = x2 0 1 4 9 14

X
2 0 1 16 81 98

Xy 0 4 8 0 12

Here      n = 4, y = 7, X = 14, Xy = 12, X
2 = 98.

7 4 14 37
and 50/14

12 14 98 14

a b
a b

a b

The best fit curve is 237 50

14 14
y x

Example 10 Fit the curve y = ax
b to the following data:

x 100 200 300 400

y 50 30 10 25

Solution Given y = ax
b

Taking log of both the sides, we get

10 10 10

10 10 10

log log log

Let log , log and log

y a b x

y Y a A x X

then above equation becomes

Y = A + bx

Normal equations are as follows:

     
2

Y nA b X

Xy A X b X

The values of 2, , andX Y X XY  are given in the following table:

x y X = log10x Y = log10Y X
2

XY

100 50 2.00 1.70 4.00 3.40

200 30 2.30 1.48 5.29 3.40

300 10 2.48 1.00 6.15 2.48

400 25 2.60 1.40 6.78 3.64

Here n = 4, 29.38, 5.58, 22.22, 12.92X Y X XY
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5.58 4 9.38

12.92 9.38 22.22

A b

A b

Solving above equations, we get A = 3.11 and b = –0.73

then a = Antilog A = Antilog 3.11 = 1288.2496  1288.25

y = 1288.25x
(–0.73)

Example 11 The pressure and volume of a gas are related by the equation pv
Y = k, Y and k being 

constants. Fit this equation to the following set of observations:

p(kg/cm
2
) 0.5 1.0 1.5 2.0 2.5 8.0

v(litres) 1.62 1.00 0.75 0.62 0.52 0.46

(V.T.U. 2011)

Solution The curve to be fitted is

pv  = k (33)

Taking log of both the sides

10 10 10 10 10 10

1 1
log log log log log logp v k v p k (34)

Let 10 10 10

1 1
log , and log , logp X B k A v Y

then (34) becomes

Y = A + BX

Normal equation are as follows:

     
2

Y nA B X

XY A X B X

Using the above data, we get

     

10

10

2

log 1.0511

log 0.7442

0.4214

0.5982

6

X p

Y v

XY

X

n

–0.7442 = 6A + 1.0511 B

–0.4214 = 1.0511 A + 0.5982B

Solving above equations, we get the values of A and B respectively, which are B = –0.7836 and 

A = 0.0132

       

1 1
1.2762

( 7836)B
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and k = Antilog (A ) = Antilog (0.0168) = 1.039

The best fit curve pv  = k is

    
1.2762 1.039pv

EXERCISE 4.3

1. Using method of least squares, fit a relation of the form y = ab
x to the following data:

x 2 3 4 5 6

y 144 172.8 207.4 248.8 298.5

(Tiruchirapalli 2001)

2. Fit the curve of the form y = ae
bx to the following data:

x 77 100 185 239 285

y 2.4 3.4 7.0 11.1 19.6

(V.T.U. 2015, J.N.T.U. 2006)

3. Obtain the least squares fit of the form 3 2( ) t t
f t ae be  for the following data:

t 0.1 0.2 0.3 0.4

f (t) 0.76 0.58 0.44 0.35

(U.P.T.U. 2008)

4. Predict y at x = 3.75, by fitting a power curve y = ax
b to the following data:

x 1 2 3 4 5 6

y 2.98 4.26 5.21 6.10 6.80 7.50

(J.N.T.U. 2003)

5. Find the least square curve 
b

y ax
x

 for the following data:

x 1 2 3 4

y –1.5 0.98 3.88 7.66

(Madras 2003)

6. If V (km/h) and R(kg/ton) are related by a relation of the type R = a + bV
2, find by the method 

of least squares a and b with the help of the following data:

V 10 20 30 40 50

R 8 10 15 21 30

(Indore 2008)

7. Fit the curve 
b

y ax
x

 to the following data:

x 1 2 3 4 5 6 7 8

y 5.4 6.3 8.2 10.3 12.6 14.9 17.3 19.5

(U.P.T.U. 2010)
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8. Estimate y at x = 2.25 by fitting the indifference curve of the form xy = Ax + B to the following 

data:

x 1 2 3 4

y 3.0 1.5 6.0 7.5

(J.N.T.U. 2003)

9. Predict the mean radiation dose at an altitude of zero feet by fitting an curve y = ab
x to the 

following data:

Altitude (x) 50 480 780 1200 4400 4800 5300

Dose of radiation (y) 28 30 32 36 51 58 69

(S.V.T.U. 2007, J.N.T.U. 2003)

10. Find the least squares fit of the form y = a0 + a1 x
2 to the following data:

x –1 0 1 2

y 2 5 3 0

(U.P.T.U. 2008)

11. Find y at x = 3000, using curve y = ae
–bx for the following data:

x 50 450 780 1200 4400 4800 5300

y 28 30 32 36 51 58 69

12. The number of inches which a newly built structure is setting into the ground is given by 

y = 3 – 3e
–ax, where x is its age in months.

x 2 4 6 12 18 24

y 1.07 1.88 2.26 2.78 2.97 2.99

  Use the method of lead square to estimate the value of a.

  (Note: Relation between log (3 – y) and x is linear.)

Answers

1. a = 99.86, b = 1.2; y = 99.86(1.2)x

2. a = 0.1839, b = 0.0221; y = 0.1839 e0.221 x

3. f (t) = 0.678 e–3t + 0.312 e–2t

4. y = 2.978 x0.5143; at x = 3.75, y = 5.8769

5.
3.275

0.988, 3.275; 0.988a b y x
x

6. a = 6.32, b = 0.0095; R = 6.32 + 0.0095 V2

7.
2

3, 2; 3a b y x
x

8. A = 7.187, B = –5.16; xy = 7.187 x – 5.16 at x = 2.25; y = 4.894

9. log10(y) = Y = 1.4521 + 0.000067 x; y at x = 3000 = 44.9 (Approx.)

10. a0 = 4.169, a1 = –1.111; y = 4.167 – 1.111 x2
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11. 44.86

12. a = 0.240

4.7 GROUP AVERAGES METHOD

Suppose we want to fit a straight line y = a + bx best on the set of n pairs of observations

(x1, y1), (x2, y2),…, (xn, yn).

When x takes the value of x1, then observed value of y is y1 and expected value of 

y = a + bx1 (35)

The residuals or error between observed and expected value of y for x = x1 is given by

E1 = y1 – (a + bx1)

Similarly,

      

2 2 2 2

3 3 3 3

3

( ) for

( ) for

( ) forn n n

E y a bx x x

E y a bx x x

E y a bx x x

These Ei’
s could be positive or negative or 0.

The method of group averages is based on the principle that 

1

0
n

i

i

E , i.e., the sum of errors is 

equal to zero. To find the values of a and b, we need two equations. Therefore, we divide the entire data 

into two group of sizes m and n – m respectively.

i.e., (x1, y1), (x2, y2),…, (xm, ym) constitute first group and

(xm + 1, y m + 1), (x m + 2, y m + 2),…, (xn, yn) constitute second group.

Assuming that for both the groups sum of errors is zero, we get

1 1 2 2

1 1 2 2

( ) ( ) ( ) 0

( ) ( ) ( ) 0

m m

m m m m n n

y a bx y a bx y a bx

y a bx y a bx y a bx

1 2 1 2( )m nx x x y y y
a b

m m
(36)

and 1 2 1 2( )m m n m m nx x x y y y
a b

n m n m
(37)

or

1 1

m m
i i

i i

x y
a b a b x y

m m
(38)

Where andx y  are the means of first group. Similarly

1 1

n n
i

i

i m i m

y
a b x n m

n m

, here anda bx y x y  are means of second group. (39)
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We solve Eq. (38) and (39) to find the values of a and b respectively and then putting these values 

in (35), we obtain the required equation.

4.8 FITTING OF A PARABOLA

Suppose we want to fit a second degree parabola

y = a + bx + cx
2 (40a)

using method of averages based on the n pairs of observations (x1, y1), (x2, y2),…, (xn, yn). To fit this, 

we know y = y1 for x = x1

y1 = a + bx1 + cx1
2 (40b)

Subtracting Eq. (40b) from (40a), we get

2 2
1 1 1

1 1 1 1 1

( ) ( )

( ) ( )( ) ( ) ( )

y y b x x c x x

b x x c x x x x x x b c x x

or     1
1

1

( )
y y

b c x x
x x

(41)

Let    1

1

y y
Y

x x
 and x + x1 = X then (41) becomes

Y = b + cX

Now we can find the values of b and c as before and then we can find the value of a. By putting the 

values of a, b and c in Eq. (40b), we shall obtain the equation of a parabola which fits the data best.

Remarks: The main draw-back of this method is that different sub groups of the given observations 

will yield different values of andx y  and hence different values of a and b, therefore to avoid this 

we should divide the entire data in such a way that each subgroup contains almost equal number of 

observations.

Example 12 For the following data fit a straight line using method of averages:

x 0 5 10 15

y 10 15 20 25

Solution Here n = 4, let m = 2, then n – m = 2

       
y a bx

For first group
1 2

10 15
12.5

2
y y y

For first group
0 5

2.5
2

x

For second group 
20 25

22.5
2

y

For second group 
10 15

12.5
2

x
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For first group 12.5 = a + b (2.5)

For second group 22.5 = a + b (12.5)

Solving the two equations we get a = 10, b = 1

Straight line y = 10 + x.

Example 13 For the following data, fit a straight line y = a + bx using method of averages.

x 0 2 4 6 8 10

y 4 6 8 10 12 14

Solution

n = 6, let m = 3 n – m = 3

For first group
0 2 4 4 6 8

2, 6
3 3

x y

For second group 
6 8 10 10 12 14

8, 12
3 3

x y

Putting the values of both the groups in equation

      ,y a bx  we get

For first group     6 = a + 2b and

For second group 12 = a + 8 b

Solving the equations, we get a = 4 b = 1

y = 4 + x is the straight line.

Example 14 Fit a straight line to the following data by method of averages

x 1 3 5 7 9 11 13 15

y 3 5 7 9 11 13 15 17

Solution Here

n = 8, Let m = 4 = n – m

For first group:
1 3 5 7 3 5 7 9

4, 6
4 4

x y

For second group: 
9 11 13 15 11 13 15 17

12, 14
4 4

x y

Putting these values of andx y  in equation

       

, we get

6 4

y a bx

a b

and 14 = a + 12b

Solving the equations, we get a = 2, b = 1

y = 2 + x is the equation of straight line.
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Example 15 Fit a straight line to the following data:

x 0 4 8 12 16 20

y 6 12 18 24 30 36

Solution Here n = 6, let m = 3 = n – m

andx y  for first group are: 4, 12x y

andx y  for second group are: 16, 30x y

For first group 12 = a + b · 4

and for second group 30 = a + 16 · b

by solving the equations, we get a = 6, b = 1.5

y = 6 + (1.5) x is the equation by straight line.

Example 16 For the following data, fit a parabola y = a + bx + cx
2

x 4 8 12 16 20 24

y 10 20 30 40 50 60

Solution To fit a parabola y = a + bx + cx
2, we need the values of a, b and c. For the purpose, let us 

take a value of x = 12, y = 30 a particular point on y = a + bx + cx
2, we get

30 = a + 12 b + (12)2
c (42)

y · 30 = b(x – 12) + c(x2 – 122)

    
30

( 12)
12

y
b x c

x
(43)

Let    
30

, 12
12

y
Y x X

x

then (43) becomes

Y = b + cX

x y X = x + 12
( 30)

12

y
Y

x

4 10 16 2.5

8 20 20 2.5

12 30 24 0

X = 6.0 Y = 5.0

16 40 28 2.5

20 50 32 2.5

24 60 36 2.5

X = 96 Y = 7.5
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To find the values of b and c, we use the relation

Y = b + cX

i.e.,      Y b cX

5 60
or 20

3 3

7.5 96
32

3 3

2.5
12 0.069

3

5
20(0.69) 0.287

3

c
b b c

c
b b c

c c

b

by (42)

30 = a + 12 b + 144 c

= a + 12 (0.287) + 144 (0.069)

a = 16.62

y = 16.62 + 0.287 x + 0.069x
2 is the equation of the parabola which fits the data.

Example 17 Fit a parabola to the following data:

x 0 2 4 6 8 10 12 14

y 4 6 8 10 12 14 16 18

Solution

y = a + bx + cx
2 (44)

Equation (44) gives the parabola to be fitted on the basis of given data.

Let x = 6, y = 10

10 = a + 6b + 36c (45)

(y – 10) = b(x – 6) + c(x2 – 36)

    
10

( 6)
6

y
b x c

x

Let      
10

6 and
6

y
X x Y

x

Then Y = b + cX
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x y X = x + 6 10

6

y
Y

x

0 4 6 1

2 6 8 1

4 8 10 1

6 10 12 0

X = 36 Y = 3

8 12 14 1

10 14 16 1

12 16 18 1

14 18 20 1

X = 69 Y = 4

To find the values of b and c, use equation

      Y b cX Y b cX

by I subgroup:
3 36

9
4 4

b c b c

       

4 68
17

4 4
b c b c

by solving above equations

0.25 = 8 c c = 0.031

b = 0.473

Putting the values of b and c in Eq. (45), we get

       

10 6(.473) 36(0.031)

6.046

a

a

26.046 0.473 0.031y x x  is the equation of the second degree parabola which fits the 

given data.

EXERCISE 4.4

1. Fit a parabola y = a + bx + cx
2 corresponding to the following data:

x 36.9 46.7 63.7 77.8 84.0 87.5

y 181 197 235 270 283 292

  (Hint: To solve take x = 84 which lies on the parabola).
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2. Fit a straightline of the form y = a + bx to the following data by the method of averages:

x 0 5 10 15 20 25

y 12 15 17 22 24 30

(Tiruchirapalli 2001)

3. The latent heat of vaporization of steam r is given in the following table at different

temperature t.

t 40 50 60 70 80 90 100 110

r 1069.1 1063.6 1058.2 1052.7 1049.3 1041.8 1036.3 1030.8

  For the range of temperature, a relation of the form r = a + bt is known to fit the data. Find the 

values of a and b by the method of group of averages.

(Madras 2003)

4. By the method of averages, fit a curve of the form y = ae
bx to the following data:

x 5 15 20 30 35 40

y 10 14 25 40 50 62

(Madras 2002)

5. Fit a straight line of best fit y = a + bx to the following data:

x 10 9 8 7 6 5 4 3 2 1

y 108.4 102.2 95.5 87.2 81.1 75.4 70.2 65.0 58.7 52.5

6. Fit a parabola y = a0 x
2 + a1 x + a2 to the following data:

x 120 100 80 60 40 20

y 46.0 33.3 22.8 14.9 9.1 5.5

Answers

1. y = 97 + 2.1x + 0.0014 x2

2. a = 11.1, b = 0.71; y = 11.1 + 0.71 x

3. a = 1090.26, b = –0.534; r = 1090.26 – 0.534 t

4. a = 1.459, b = 0.062; y = 1.459 e0.062 x

5. a = 1.52, b = 0.49; y = 1.52 + 0.49 x

6. a0 = 3, a1 = 2, a2 = 0.

4.9 MOMENTS METHOD

To fit a curve to the given data of n pairs of observations (x1, y1), (x2, y2),…, (xn, yn)

let x2 – x1 = x3 – x2 = … = xn – xn – 1 = k.

First we define the moments of observed values of y as following:

First moment 1
1m k y

Second moment 1
2m k xy

Third moment 1 2
3m k x y
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Fourth moment 1 3
4m k x y  and so on.

Now we define the moments of the calculated values of y of curve which fits the data as follows:

First moment 

1

2

1

2

n
k

x

k
x

m ydy

Second moment 

1

2

2

2

n
k

x

k
x

m xy dy

Third moment 

1

2
2

3

2

n
k

x

k
x

m x y dy

Fourth moment 

1

1

2
3

4

2

k
x

k
x

m x y dy

Then by equating 1 ( 1, 2, 3, ...) and ( 1, 2, ...)i im i m i , we get the values of unknown constants

a, b, c, …, etc. For example, suppose we want to fit y = a + bx then calculate 
1 1
1 2 1 2, , andm m m m  and 

equate 1 2
1 2 1 2andm m m m , we will find the values of a and b and for other curve as well.

Example 18 For the following data, fit a straight line y = a + bx by the method of moments:

X 0 1 2

Y 1 5 10

Solution To fit the straight line y = a + bx

Here k = 1

We calculate

1
1

1
2

1
2 2.5

2 2

1
0.51

0
2

1

1(16) 16

and 1(0 5 20) 25

and ( )
2

6.25 .25
2.5 .5

2 2

3 3

m k y

m k xy

bx
m a bx dx ax

b
a b a

m a b
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1
2

.252 3
2

2

1 .5
0

2

2

( )d
2 3

6.25 15.625 .25 .125

2 3 2 3

3 5.25

a bx
m x a bx x x

a b a b

m a b

To find values of a and b we put 1 1
1 1 2 2andm m m m

3a + 3b = 16

3a + 5.25 b = 25

Solving these equations

we get a = 4/3, b = 4

4
4

3
y x  is the equation of straight line which fits the data.

Example 19 Use the method of moments to fit the straight line y = a + bx to the following data:

X 1.5 2.5 3.5 4.5

y .10 .20 .30 .40

Solution

1

1 1
1 2

1 1
4.5 552 2 2

1 1
11 1 1

1.5
2 2

55 5 2 3
2

2
11 1

.1 1, 1.(3.5) 3.5

1( )d ( )d 4 12
2

and ( )d ( )d
2 3

25 125 9 1
12 48

2 3 2 3

nx

x

m k y k m k xy

bx
m ky dx a bx x a bx x ax m a b

ax bx
m k xy x ax bx x

a
b b a b

To find equate

       
1 1
1 1 2 2andm m m m

4a + 12 b = 1, 12 a + 48 b = 3.5

a = 0.125, b = 0.417

y = 0.125, + 0.0417 x is the required equation.
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Example 20 Using the method of moments, fit a parabola to the following data:

x 4 3 2 1 0

y 38 22 10 5 1

Solution We have to fit the parabola y = a + bx + cx
2 for which calculate 1 1 1

1 2 3, ,m m m  and m1, m2, m3

      1
1 1(76) 76m k y

       

1
2

1 2
3

1
4

2
2

1

1
0

2

4.5
2

2

0.5

4.5
2 2

3

0.5

1(243) 243

( ) 1(851) 851

( )d 5 10 30.4

( )d 10 30.4 102.5

( )d 30.4 102.5 369.1

m k y

m k x y

m k a bx cx x a b c

m k x a bx cx x a b c

m k x a bx cx x a b c

By putting 1 1 1
1 1 2 2 3 3, , ,m m m m m m  we get

a = 0.4, b = 3.15 and c = 1.4

y = 0.4 + 3.15 x + 1.4 x2 is the best fit parabola to the given data.

EXERCISE 4.5

1. Fit a straight line y = a + bx to the following data by the method of moments:

x 1 2 3 4

y 16 19 23 26

(Madras 2015)

2. Fit a straight line to the following data, using the method of moments:

x 1 3 5 7 9

y 1.5 2.8 4.0 4.7 6.0

(Madras 2001)

3. By using the method of moments, fit a parabola to the following data:

x 1 2 3 4

y 0.30 0.64 1.32 5.40

(Madras 2000S)
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4. By using the method of moments, fit a straight line y = a + bx to the following data:

x 0 1 2 3

y 10 20 30 40

5. Fit a straight line y = a + bx to the question 3 of the Exercise 4.5.

6. Fit a straight line y = a + bx to the solved Example 20.

Answers

1. a = 13.02, b = 3.19; y = 13.02 + 3.19x

2. a = 1.184, b = 0.523; y = 1.184 + 0.523x

3. a = 0.485, b = 0.397x, c = 0.124; y = 0.485 + 0.397x + 0.124x
2

4.
100 100

, 0;
3 3

a b y

5. a = 7, b = 12; y = 7 + 12x

6. a = –2.3, b = 8.75; y = –2.3 + 8.75x

SUMMARY
Following topics have been discussed in this chapter:

1. Empirical law

2. Scatter diagram

3. Curve fitting by following four methods:

  (i) Graphical method

 (ii) Least square method;

(iii) Group average method, and 

(iv) Moments method

In least square for fitting of a kth degree polynomial, 

y = a0 + a1x + a2 x
2 + … + akx

k

The normal equations are

2
0 1 2

2 3 1
0 1 2

2 3 2
0 1 2

k
k

k
k

k k k k k
k

y na a x a x a x

xy a x a x a x a x

x y a x a x a x a x

To find a0, a1, …, an we solve the above equations.
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OBJECTIVE TYPE QUESTIONS

(c) Anywhere between 1 and 2

(d) None of these

6. y = ax
b + c can be reduced to linear form of 

type y = aX + c if

(a) X = xb (b) X = x

(c)
1
b

X
x

(d) 2b
X x

7. y = ax
b + 3 can be reduced to linear form of 

type y = ax + 3 if

(a) X = xb (b)
1
b

X
x

(c) X = c (d) X·xb = 3

8. To fit a straight line y = a + bx, the normal 

equations are

2

(a) y a b x

xy a x b x

2(b) y na b x

xy a x b x

2

(c) y na b x

xy a x b x

(d) None of these

9. To fit a straight line a + bx = y by least square 

method the number of normal equations are 

(a) 2 (b) 3

(c) 4 (d) 1

10. To fit a parabola y = a + bx + cx
2 by least square 

method, the number of normal equations are

(a) 2 (b) 3

(c) 4 (d) 5

11. To fit a polynomial of m degree by least square 

method, the number of normal equations are

(a) m (b) m + 1

(c) m – 1 (d) m + 2

12. To fit y = ab
x by least square, the number of 

normal equations are

(a) 1 (b) 2

(c) 3 (d) 4

13. In the method of group averages, the sum of 

residuals is

(a) 0 (b) 1

(c) 2 (d) 3

1. The curve 2
0 1 10logy a x a x  reduces to

linear of the form Y = a0 X + a1, if

(a)
2

10 10

,
log log

y x
Y X

x x

(b) Y = y

(c)
10log

x
X

x

(d) None of these

2. The curve y = 2x
2 + 3 log10x reduces to linear 

of the form Y = 2X + 3 if

(a) Y = y

(b)
2

10log

x
X

x

(c)
2

10 10

,
log log

y x
Y X

x x

(d) None of these

3. The curve y = a0x
2 + a1x converted to linear of 

the form Y = a0 X + a1 if

(a) ,
y

Y X x
x

(b) Y = y, X = x

(c) 2,
y

Y X x
x

(d) None of these

4. The curve xy
z = h can be converted to the 

linear of the form Y = A + B X, if

(a)
10

1
logA p

z

(b)
10

10 10

1 1
log , ;

log and log

A B
z z

X p Y y

(c)
1

B
z

(d) None of these

5. In least of square method
2

1

n

i

i

E  (sum of 

squares all errors) is

(a) Minimum

(b) Maximum
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14. The method in which moments of observed 

values of y are respectively equal to the 

moments of the calculated values of y is 

known as

(a) Graphical method

(b) Least square method

(c) Group averages method

(d) Moments method

15. If y = ax
b and let x = 50, y = 80, xy = 

1030, x
2 = 750 and n = 10, then a and b are 

respectively equal to

(a) 1.5

1.26

a

b

(b)  1.7

1.26

a

b

(c)  1.7

1.16

a

b

(d) None of these

16. The curve 
x

y
ax b

 can be converted to the 

linear form Y = a + bX if

(a)
1

,X x Y
y

(b)
1

,X Y y
x

(c)
1 1

,X Y
x y

(d) none of these

17. The first normal equation to the curve y = a + 

bx to the following data is as follows:

x 0 1 2 3

y 2 3 4 6

(a) 15 = 4a + 6b (b) 6 = 4a + 6b

(c) 15 = 6a + 4b (d) None of these

18. The first normal equation to the curve y = a + 

bx + cx
2 to the following data is

(a) 15 + 4a + 6b + 14 c

(b) 14 = 4a + 6b + 15c

(c) 27 = 49 + 6b + 14c

(d) None of these

19. If y = 2x + 10 is the best fit for 10 pairs of the 

values (xi, yi) by the method of least squares 

and y = 200, then x is equal to

(a) 40 (b) 50

(c) 60 (d) 100

20. Given

x 0 1 2

y 0 2 4

then to fit the straight line of best fit a + bx by 

least square method, the values of a and b are

(a) 0

2

a

b

(b) 2

0

a

b

(c) 0

0

a

b

(d) 2

2

a

b

ANSWERS

1. (a) 2. (c) 3. (a) 4. (b) 5. (a) 6. (a) 7. (a) 8. (c) 9. (a) 10. (b)

11. (b) 12. (b) 13. (a) 14. (d) 15. (b) 16. (c) 17. (a) 18. (a) 19. (b) 20. (a)



5.1 INTRODUCTION

According to Croxton and Cowden, statistics may be defined as the science of collection, presentation, 

analysis and interpretation of numerical data or in other words, we can say that statistics is a branch of 

applied mathematics which specializes in data. It has wide applications in diversified spheres of life—

social as well as physical—such as biology, psychology, sociology, education, economics, management, 

engineering, etc. It is hardly possible to enumerate even a single department of human activity where 

statistics does not creep in. It has rather become indispensable in all phases of human endeavour.

Statistics, with its wide applications in almost every sphere of human activity, is not without 

limitations. Following are some of its important limitations:

(i) Statistics is not suited to study of qualitative phenomenon.

(ii) Statistics does not study individuals.

(iii) Statistics laws are not exact.

(iv) Statistics is liable to be misused.

According to kings, “Statistics are like clay of which one can make a God or Devil as one pleases”. 

Therefore, the requirement of experience and skill for judicious use of statistical methods restricts their 

use to experts only and limits the chances of the mass popularity of this useful and important science.

5.2 STEPS OF STATISTICAL METHODS

The most important steps which are taken in statistical methods are collection and classification of data, 

which will be discussed in the following sections:

5.2.1 Collection of Data

For any statistical investigation, the collection of data is the starting point. Data may be collected for 

each and every unit of universe or lot under study which is called population or a part of items, or 

some of the whole items which is called a sample. The study based on each unit of population has 

more accuracy; but when number of units are more then it is not only difficult, but expensive and time 

consuming also. Therefore a sample is drawn from the population and conclusions are drawn based 

on the sample to the population, the most important point which is to be kept in mind while drawing a 

sample from the population is that it should be unbiased and representative of the entire population.

Statistical Methods

5
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5.2.2 Classification of Data

Once the data is collected for a single characteristic of a large number of individuals, often it becomes 

necessary to condense the data as far as possible without losing any information of interest.

Example 1 Let us consider the marks in engineering mathematics obtained by 50 students selected 

at random from among those appearing in an university examination.

32 47 41 30 20 25 40 45 44 33

26 24 30 20 19 15 49 49 26 36

46 45 49 20 12 16 44 43 30 29

40 41 39 38 34 33 32 20 22 25

30 32 34 36 40 44 45 30 32 39

The above data does not provide any useful information and rather confusing in mind. A better way 

may be to express the figures in an ascending or descending order of magnitude but it will not reduce 

the bulk of data. It is represented in the following table.

A bar (|) called tally mark is put against the number when it appears. Having appeared 4 times, the 

5th appearance is represented by putting a cross tally (1) on the first four tallies. In the end count the 

tally mark.

Marks No. of Students Tally marks Total Marks No. of Students Tally marks Total

12 | 1 31

13 32 |||| 4

14 33 || 2

15 | 1 34 || 2

16 | 1 35

17 36 || 2

18 37

19 | 1 38 | 1

20 |||| 4 39 || 2

21 40 ||| 3

22 | 1 41 || 2

23 42

24 | 1 43 | 1

25 || 2 44 ||| 3

26 || 2 45 ||| 3

27 46 | 1

28 47 | 1

29 | 1 48

30 |||| 5 49 ||| 3

50

Total 50



Statistical Methods 5.3

This kind of representation is called frequency distribution. Marks are known as variable x and the 

number of candidates against the marks is called frequency (f) of the variable. The frequency means how 

frequently a variable occurs. In the above case the frequency of 32 is 4, i.e., 4 students got 32 marks.

This data is better but still confusing. Another way of representing data is to divide the observed 

range of variables into a suitable number of class-intervals and write the number of observations in 

each class. Such a table showing the distribution of the frequencies in the different classes is called 

frequency table and the way in which the frequencies are distributed over the class intervals is called 

the grouped frequency distribution. The above data can be represented in the given table.

Marks (x) No. of Students

10–14 01

15–19 03

20–24 06

25–29 05

30–34 13

35–39 05

40–44 09

45–49 08

Total 50

Although it has great importance in the analysis of statistical data, but there is no hard and fast 

rule to construct a grouped frequency distribution but still we should keep the following points in our 

mind:

1. The classes should be clearly defined.

2. The classes should be mutually exclusive and non-overlapping.

3. The classes should be exhaustive, i.e. each observation must fall in one or the other class.

4. The classes should be of equal width.

5. Open ended classes, i.e. less than x or greater than y should be avoided.

6. The number of classes should not be too large or too small. Preferably, it should not be greater 

than 20 or less than 15.

Magnitude of the Class Interval

First fix the number of classes. After that divide the range (difference between the greatest and smallest 

observation) by the number of classes and the nearest integer to this value will be the magnitude of the 

class interval.

Continuous Frequency Distribution:  If we deal with continuous variable, it is not possible to arrange 

the data in the class interval of above type. Let us consider the distribution of age in years. If intervals 

are 10–14, 15–19, 20–24, then the persons of age between 14 and 15, 19 and 20 are not taken into 

consideration. Then the class intervals are formed in the following ways:

Age in years

Below 5 years

5 or more but less than 10 years

10 or more but less than 15 years
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15 or more but less than 20 years

20 or more but less than 25 years

and so on.

But for all practical purposes, it is written as following:

0–5, 5–10, 10–15, 15–20, 20–25 and so on.

This kind of frequency distribution is called continuous frequency distribution.

5.3  GRAPHICAL REPRESENTATION OF FREQUENCY
DISTRIBUTION

It is generally useful to represent a frequency distribution diagrammatically by which data becomes 

intelligent and gives the general behavior of the data. By the help of diagrammatic representation, we 

can compare two or more frequency distributions.

There are three main graphs to represent a frequency distribution which are as follows:

(i) Histogram

(ii) Frequency Polygon and

(iii) Cumulative Frequency curve or ogive

We shall discuss these three in details in the upcoming sections.

5.3.1 Histogram

While making a histogram for a given continuous frequency distribution, first of all mark all the intervals 

on a suitable scale, along the x-axis. On each interval, construct rectangulars with heights proportional 

to the frequency of corresponding class interval so that the area of the rectangle is proportional to the 

frequency of the interval. When the class intervals are not of equal width then the heights of rectangles 

will be proportional to the ratio of the frequencies to the width of the class.

Note:  If frequency distribution is not continuous, first make it continuous. Consider the example of 

marks of 50 students in engineering mathematics, since the frequency distribution is not continuous, 

to make it continuous we subtract 
1

2
 from left and added 

1

2
 to the right end of the class interval. By 

doing this we get the following continuous frequency distribution.

Marks No. of Students

9.5–14.5 01

14.5–19.5 03

19.5–24.5 06

24.5–29.5 05

29.5–34.5 13

34.5–39.5 05

39.5–44.5 09

44.5–49.5 08

Total 50

Histogram of the above distribution is shown in Fig. 5.1.
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Fig. 5.1

5.3.2 Frequency Polygon

For an ungrouped distribution, frequency polygon is obtained by plotting points of x-axis as the 

variable and along y-axis the corresponding frequencies and these points are joined by straight lines. 

For a grouped distribution, we mark mid-value of the class intervals on x-axis and corresponding class 

frequencies along y-axis and then join them with dotted lines. If class intervals are of equal length then 

the mid points of the upper side of the rectangles of the histogram are joined by straight lines (Graph is 

shown along with Histogram in Fig. 5.1).

5.3.3 Cumulative Frequency Curve or Ogive Curve

Sometimes we are interested to know the frequency of the variable which takes more than or less than 

a given value. Such kind of curves are called ogive curves.

Consider the following example in which x takes the following values of frequencies:

(a) (b)

x frequency (f) x f

Less than 10 7 Greater than or equal to 5 40

Less than 15 13 Greater than or equal to 10 33

Less than 20 18 Greater than or equal to 15 27

Less than 25 27 Greater than or equal to 20 22

Less than 30 31 Greater than or equal to 25 13

Less than 35 35 Greater than or equal to 30 09

Less than 40 38 Greater than or equal to 35 05

Less than 45 40 Greater than or equal to 40 02

Greater than or equal to 45 00

The ogive curves of the above data are given in Fig. 5.2.
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Fig. 5.2

Example 2 Draw the histogram, frequency polygon and the ogive less than and more than from 

the following distribution.

Class Frequency
Cumulative Frequency

Less than More than

0–5 5 5 75

5–10 10 15 70

10–15 15 30 60

15–20 20 50 45

20–25 25 75 25

Solution Histogram, polygon are shown in Fig. 5.3, while ogive curve (less than) and more than one 

shown in Fig. 5.4.

Fig. 5.3 Histogram and Polygon           Fig. 5.4
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5.4 COMPARISON OF FREQUENCY DISTRIBUTION

The conversion of given raw data into frequency distribution gives vital information which are useful 

in analyzing and interpreting the data. These informations are based on certain constants, calculated 

from the frequency distribution and after calculating these constants we can compare various frequency 

distributions. The main constants which tell about the fundamental characteristics of frequency 

distribution can be classified as following:

(i) Measures of Central Tendency

(ii) Measures of Dispersion and

(iii) Measures of Skewness

We shall now discuss all these in details in upcoming sections.

5.5 MEASURES OF CENTRAL TENDENCY

Measures of central tendency are also known as averages or measures of location. These are statistical 

constants which tell us about the significance of the whole data in a single effort. Averages provides the 

concentration of the whole data in the central part of the distribution.

We have the following five measures of central tendency:

1. Arithmetic mean or simply mean

2. Median

3. Mode

4. Geometric mean and

5. Harmonic mean

Before we discuss the above five averages, first we shall discuss about the requirements of an ideal 

measure of central tendency which are as follows:

(i) It should be rigidly defined,

(ii) It should be based on all observations,

(iii) It should be easy to calculate and readily comprehensible,

(iv) It should not be much affected by fluctuation of sampling and

(v) It should be suitable for further mathematical treatment.

5.5.1 Arithmetic Mean Or Simply Mean

Let x1, x2, …, xn be n observations, then arithmetic mean of these observations are given by

        1 2

1

n
n i

i

x x x x
x

n n
(1)

If x1, x2, …, xn have the frequencies f1, f2, …, fn respectively, then

        1 1 2 2 1

1 2 1

1

1

n

i i n
n n i

i in
n i

i

i

f x
f x f x f x

x f x
f f f N

f

(2)

where
1

n

i

i

f N

In case of grouped or continuous frequency distribution xi(i = 1, 2, n) is taken as mid-point of the 

class interval sometimes the values of x or (and) f are large, then to calculate x  by Eq. (2) becomes 
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quite tedious and time consuming, in such case we subtract a number A from each xi and find the x

as follows:

Let    , then ( )i i i i i i i i ix A d f d f x A f x Af

     
1 1 1

n n n

i i i i i i i i

i i i

f d f x A f f x A f

   
1 1

1 1
( )

n n

i i i i i

i i

f d f x A f N
N N

       
1

1 n

i i

i

x A f d
N

(3)

In case of grouped or continuous frequency distribution, if h is the width of class interval, then x

can be calculated as following:

Let       i
i i i

x A
d hd x A

h

and proceeding, we get

        
1

n

i i

i

h
x A f d

N
( )iN f (4)

Remark:

1. Let x1, x2, …, xn be n values with f1, f2, …, fn frequencies then 
1

( ) 0.
n

i i

i

f x x

Proof:

   1 1

( ) 0
n n

i i i i

i i i i i i i i

i ii i

f x f x
f x x f x x f f x f x

f f

2. Let 1 2, , , kx x x  are the means of k-component series of sizes n1, n2, …, nk respectively, then 

the mean x  of the compute series is given by

        1 1 2 2 1

1 2

1

ˆ

n

i i

k k i

n
k

i

i

n x
n x n x n x

x
n n n

n

Example 3

(a) Find the arithmetic mean of the following data

x 0 2 3 4 5 6 7 8

f 4 5 10 15 16 10 10 5

(b) Calculate the arithmetic mean by the following distribution using Eqs (2), (3) and (4).

Marks 0–10 10–20 20–30 30–40 40–50 50–60

No. of students 12 18 27 20 17 6
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Solution

(a)
350

4.67
75

i i

i

f x
x

f

(b)

Marks No. of Students (f) Mid value (x) fx di = xi – 35 fidi

0–10 12 5 60 –30 –360

10–20 18 15 270 –20 –360

20–30 27 25 675 –10 –270

30–40 20 35 700 0 0

40–50 17 45 765 10 170

50–60 06 55 330 20 120

Total 100 = N 2800 –700

By using Eq. (1)

     

1 2800
28

100
x fx

N

By using Eq. (2)

     

1 1
35 ( 700) 28

100
i ix A f d

N

By using Eq. (3)

     
, here 10 , i

i i i

x Ah
x A f d h h d

N h

x
i

i

x A
d

h
f fidi

5 –3 12 –36

15 –2 18 –36

25 –1 27 –27

35 0 20 0

45 1 17 17

55 2 06 12

Total –3 100 –70

       
10

35 ( 70) 28
100

x

It is verified that using any of the three formulas, we get the same answer.

5.5.2 Median

The value of the variable which divides the distribution into two equal parts is called the median. It is 

the value which has equal number of observations above and below it.



5.10 Engineering Mathematics for Semesters III and IV

(i) In case of ungrouped data the median is calculated as follows:

   Let there are n observations, then arrange these in ascending or descending order. Then 

median

Md = the value of x corresponding 
1

obs.
2

n
 if n is odd

= the average of thand 1
2 2

n n
 value if n is even.

(ii) In case of discrete distribution: The median is calculated by cumulative frequency. Let

N = fi, total frequency. Find ,
2

N
 see the cumulative frequency just greater than ,

2

N
 the 

corresponding value of x is the value of median.

(iii) In the case of continuous frequency distribution. The class corresponding to cumulative 

frequency just greater than the 
2

N
 is called median class and

       2
d

h N
M l c

f

   where l = lower limit of the median class

f = frequency of the median class

h = magnitude or width of the class

c = cumulative frequency of class preceding the median class.

Example 4 Find the median of the following distributions:

(a) 7, 12, 19, 8, 25, 2, 11

(b) 80, 70, 60, 90, 200, 100

(c)

x 1 2 3 4 5 6 7 8

f 5 4 8 2 12 20 21 8

(d) Find the median salary of the following distribution:

Salary in ($) 20–30 30–40 40–50 50–60 60–70

Number of workers 3 5 20 10 5

Solution

(a) Arranging the data in ascending order

  2, 7, 8, 11, 12, 19, 15, 
1

7 (odd) 4
2

n
n

Median = Fourth value in ascending order = 11.

(b) Arrange the data in ascending order

     60, 70, 80, 90, 100, 200, n = 6, 3
2

n

  the Md = Average of the 3rd and 4th obs.

   

80 90
85

2
dM
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(c)

x 1 2 3 4 5 6 7 8

f 5 4 8 2 12 20 21 8

cf (cumulative frequency) 5 9 17 19 31 51 72 80

         Median class

       
80 40

2
i

N
N f

Md = 6

(d)

Salary (in $) No. of Workers (f) Cumulative frequency

20–30 3 3

30–40 5 8

40–50 20
    28  Median 

class

50–60 10 38

60–70 5 43

      
43, 21.5, 40, 10, 20, 8

2

N
N l h f c

    
10

40 (21.5 8) 46.25
2 20

d

h N
M l c

f

Median salary = $ 46.25.

5.5.3 Mode

Mode is the value which occurs most frequently and around which the other items of the set cluster 

density. In the case of discrete frequency distribution, the mode of the value of x corresponding to the 

maximum frequency. In case of continuous frequency distribution, mode is given by

Mode = 1 0 1 0
0

1 0 2 1 1 2 0

( ) ( )

( ) ( ) 2

h f f h f f
M l l

f f f f f f f

where l = lower limit

h = magnitude and f1 is the frequency of model class

f0 = frequency of the preceding the model class

f2 = frequency of the succeeding the model class

Example 5 Find the mode of the following distributions:

(a)

x 1 2 3 4 5 6 7 8

f 2 8 10 15 25 17 3 2
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(b)

Class interval 10–20 20–30 30–40 40–50 50–60 60–70 70–80

Frequency 4 8 12 30 20 16 10

Solution

(a) The given distribution is discrete, the maximum frequency is 25  Mode M0 = 5

(b) Given distribution is continuous. Maximum frequency

= 30  model class = 40–50

l = 1 0
1 0 2 0

1 0 2

( )
40, 10, 30, 12, 20

2

h f f
h f f f M l

f f f

Mode = 
0

10(30 20)
40 46.43

2(30) 12 20
M

Remark If we know the values of two among three mean, median and mode, then the third can be 

calculated by using the relation.

Mode = 3 Median – 2 Mean

      0 3 2dM M x

5.5.4 Geometric Mean

Let x1, x2, …, xn be the n observations then their geometric mean G is the nth not of their product.

i.e.,      
1

1 2( , ,..., )n
nG x x x

     
1 2

1

1 1
log (log log log ) log

n

n i

i

G x x x x
n n

        1

1
Anti log log

n

i

i

G x
n

If x1, x2, …, xn have the frequencies f1, f2, …, fn respectively, then geometric mean,

G = 1 2

1

1 2
1

( ) ( ) ( ) , wheren

n
ff f N

n i

i

x x x N f

log G = 
1 1 2 2

1

1 1
[ log log log ] log

n

n n i i

i

f x f x f x f x
N N

G = 
1

1
Anti log log

n

i i

i

f x
N

5.5.5 Harmonic Mean

Let x1, x2, …, xn be the n observations, then harmonic mean H is defined as

H = 

1 2 1

1 1

1 1 1 1n

n ii
x x x x
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i.e., Harmonic mean is the reciprocal of arithmetic mean of the reciprocal of the values.

In case of discrete frequency distribution where x1, x2, …, xn take frequencies f1, f2, …, fn respectively, 

here

H = 

1

1
.

n
i

ii

f

x

In case of grouped frequency distribution or continuous frequency distribution xi(i = 1, 2, …, n) is 

the mid value of the ith class.

Example 6 Ram goes to his college by scooter from his home at the speed of 40 km per hour and 

come back at the speed of 60 km per hour. Find the average speed.

Solution

Let the distance between Ram’s home and college be x km. The time taken by Ram to go to college and 

coming back to home is and
40 60

x x
 hours respectively.

Total distance covered by Ram = 2 km in hours
40 60

x x
x

Average speed = 
Total distance covered

Total time taken

=
2

48 km/hour

40 60

x

x x

Remark From the above discussion from sections 5.5.1 to 5.5.5, we come to a conclusion that there 

is no single average or measure of central tendency which is suitable to all partical purposes. Therefore, 

the use of a particular average depends on the nature of data and purpose, however, arithmetic mean is 

an ideal measure of central tendency which has wide applications in statistical theory.

5.5.6 Partition Values

In addition the averages discussed above, there are certain values which divide a series in equal parts.

(i) Quartiles: Three points which divides the series into four equal parts are known as quartiles. 

Three quartiles Q1, Q2 and Q3 are known as first (lower), second (median) and third (upper) 

quartiles. Q1 is the first quartile which exceeds 25% data and exceeded by 75%, Q2 is nothing 

but median and Q3 exceeds 75% data and exceeded by 25% of data.

(ii) Deciles: Nine points D1, D2,…, D9 called first, second, ninth decile which divide the series 

into 10 equal parts. For example D1 is the decides which exceeds 10% data and exceeded by 

90% data, similarly D9 is the value which exceeds 90% data and exceeded by 10% data. 

(iii) Percentiles: 99 points P1, P2, …, P99 which divides the data into 100 equal points.

Remark For continuous distributions

1. Calculation of Quartiles: 1
4

h N
Q l c

f

       
3

3

4

h N
Q l c

f
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2. Calculation of Decils: , 1 to 9
10

i

h N
D l i c i

f

3. Calculation of Percentiles: , 1 to 99
100

i

h N
P l i c i

f

  Where l, h, f, N and c have usual meanings as defined in median.

  Similarly, they can be calculated for ungrouped data.

Example 7 For the following data, calculate median, lower (Q1) and upper (Q3) quartiled, 6th decile 

and 30th percentile.

x 0 1 2 3 4 5 6 7 8

f 1 9 26 59 72 52 29 7 1

Solution

x 0 1 2 3 4 5 6 7 8

f 1 9 26 59 72 52 29 7 1

Cumulative frequency cf 1 10 36 95 167 219 248 255 256

For median
256

128 4
2 2

d d

N
M M

For Q1, 1

256
64, 3

4 4

N
Q

Q3
,   

3

3 3 256
192, 5

4 4

N
Q

For D6,   6

6 6 256
153.6 4

10 10

N
D

and  for P30, 30

30 30 256
76.8 3.

100 100

N
P

Example 8 Find the missing frequencies of the following distribution, whose median is 46.

Variable Frequency Variable Frequency

10–20 12 50–60 ?

20–30 30 60–70 25

30–40 ? 70–80 18

40–50 65 Total 229

Solution

Let f1 and f2 be the frequencies of the class 30–40 and 50–60 respectively. Given Md = 46  40–50 is 

the median class.

      1

10 229
40 (42 )

2 65 2
d

h N
M l C f

f
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f1 = 33.5  34 (as frequency is over in fraction)

Now 229 = 12 + 30 + f1 + 65 + f2 + 25 + 18

= f1 + f2 + 150 f1 + f2 = 79

Now f1 = 34

f2 = 79.34 = 45

EXERCISE 5.1

1. Represent the following distribution by (i) a histogram (ii) a frequency polygon and (iii) an 

ogive.

Scores Frequency Scores Frequency

20–30 01 60–70 20

30–40 01 70–80 22

40–50 03 80–90 12

50–60 14 90–100 02

2. For the question 1, find the mean score of the distribution.

3. Following are the weekly salaries in rupees of 30 employees in a firm:

  1400, 1390, 1260, 1140, 1000, 880, 620, 770, 990, 1030, 1080, 1290, 1440, 1480, 1340, 630, 

690, 1480, 1320, 1180, 1420, 1160, 1230, 1040, 950, 800, 850, 1060, 1230 and 1330. The 

firm gave bonus of `100, 150, 200, 250, 300 and 350 for individuals in the respective salary 

group: exceeding 600 but not exceeding 750, exceeding 750 but not exceeding 900, exceeding 

900 but not exceeding 1050, exceeding 1050 but not exceeding 1200, exceeding 1250 but not 

exceeding 1350, exceeding 1350 but not exceeding 1500. Find the average bonus paid.

4. Find the mean, median and mode for the following:

Mid value 15 20 25 30 35 40 45 50 55

Frequency 02 22 19 14 03 04 06 01 01

(Kerala 1990)

5. The table below gives the distribution of a sample of 50 people according to weight. Calculate 

the mean, median and mode.

Weight (kg) 45–50 50–55 55–60 60–65 65–70 70–75 75–80 80–85 85–90 90–95

Frequency 02 03 05 07 09 11 07 02 03 01

6. The mean of marks obtained by a group of 100 in an examination is found to be 49.96. The 

mean of the marks obtained in the same examination by another group of 200 students is 

52.32. What is the mean of two combined group.

7. The mean marks got by 300 students in statistics are 45. The mean of top 100 of them was found 

to be 70 and the mean by the last 100 was 20. Find the mean of remaining 100 students.
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8. Consider the following distribution:

Weekly earning (in $) No. of Persons

25–26 25

26–27 70

27–28 210

28–29 275

29–30 430

30–31 550

31–32 340

32–33 130

33–34 90

34–35 55

35–36 25

  For the above data:

(a) What is the mean earning?

(b) What is median of earning?

(c) What is most usual (mode) earning?

(d) What are the wage limits for the central 50% of wage earners?

(e) What percentage earned less than 27.5 dollars?

(f) What percentage earned more than 31.5 dollars?

(g) What percentage of persons earned between 28.5 dollars to 30.5 dollars?

9. Following table shows the distribution of 100 families according to their expenditure per week. 

Number of families corresponds to expenditure groups Rs. (1000–2000) and Rs. (3000–4000) 

are missing from the table. The median and mode are given to be Rs. 2500 and Rs. 2400. 

Calculate the missing frequencies.

Expenditure 0–1000 1000–2000 2000–3000 3000–4000 4000–5000

Frequency 14 ? 27 ? 15

10. Following table gives the frequency distribution of marks in a class of 65 students.

Marks No. of Students Marks No. of Students

0–4 10 16–20 05

4–8 12 20–24 03

8–12 18 24–28 04

12–16 07 28 and above 06

Total 65

Calculate Q1 and Q3.

11. The average weight for group of 25 adult was calculated 78.4 kg. It was later found that one 

weight was 60 kg instead of 96 kg. Calculate the correct weight.
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Answers

2. 68.33

3. Average bonus Rs. 245

4. Mean 27.9,x  Median Md = 25.66, Mode M0 = 21.85

5. Mean 68.9,x  Median Md = 69.44, Mode M0 = 71.6

6. 51.53

7. 88

8. (a) $ 30.14,x  (b) Md = $ 30.16, (c) M0 = $30.36,

(d) 28.89 to 31.26, (e) 9%, (f) 20%, (g) 40%

9. 25 and 24 respectively.

10. Q1 = 10.08, Q2 = 17.40

11. 79.48 kg.

5.6 MEASURES OF DISPERSION

So far we were discussing the averages of measures of central tendency, which tell us about the 

concentration of data in the central part of the distribution. But if we know the average, it does not give 

the complete information about the distribution. For example, consider the three series:

(i) 6, 12, 18, 24, 30, (ii) 14, 16, 18, 20, 22 and (iii) 16, 17, 18, 19, 20.

In all the three series, number of observations are 5 and mean x– = 18, therefore it is difficult to find 

which of the series we have considered. So we see that average is not able to give complete idea of the 

distribution. There must be some other measure, one of such measure is the measure of dispersion or 

measure of variation.

By studying the dispersion or variation, we have an idea the line homogeneity of heterogeneity 

of the distribution. By seeing we can say that series  (iii) is more homogeneous (less scattered) than

(i) and (ii) series is more homogeneous than (i).

Following are the measures of dispersion (variation):

(i) Range

(ii) Quartile deviation or Semi-Interquartile range

(iii) Mean deviation

(iv) Standard deviation

5.6.1 Range

Let A and B be the greatest and smallest observation in the distribution, then range R is the difference 

of A and B i.e., 

R = A – B

For example, for the following distribution 20, 19, 25, 28, 30, the range R = 30 – 19 = 11.

5.6.2 Quartile Deviation or Semi-Interquartile Range

Let Q1 be the first (lower) and Q3 be the third (upper) quartiles of the distribution, then quartile deviation 

Q is given by

        
3 1

1
( ).

2
Q Q Q
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5.6.3 Mean Deviation

Let x1, x2, …, xn be the observations of the distribution with frequencies f1, f2, …, fn respectively then 

mean deviation about average A(A can be mean, median or mode) is given by

Mean deviation = 
1 1

1
| |, when .

n n

i i i

i i

f x A N f
N

When |xi – A| represents the absolute value of the deviation (xi – A),  then the negative sign is 

ignored.

Remark Mean deviation is least when measured about median.

5.6.4 Standard Deviation

Standard deviation (S.D) denoted by sigma ( ) is calculated as follows:

 = 2

1

1
( )

n

i i

i

f x x
N

i.e., if x1, x2, …, xn observations of a frequency distribution has frequencies f1, f2, …, fn respectively and 

its mean is equal to 
1

and
n

i

i

x N f , then standard deviation of the distribution is defined as above.

Remark If deviations are measured from any other value A instead of ,x  it is called the root mean 

square deviation.

5.6.5 Variance

The square of SD is called variance of the distributed and denoted by 2.

      2 2

1

1
( )

n

i i

i

f x x
N

5.6.6 Different Formulas to Calculate Variance

(i) We know 2 21
( )i if x x

N

= 2 21
( 2 )i i if x x x x

N

= 2 21
2i i i i if x x f x x f

N

= 2 21 1
2 ( )i i i if x x N x N x x f x

N N

      

2 2 21
i if x x

N

(ii) If the values of x and f are large, then it is difficult to calculate fx and fx2. In such case we take 

deviation from any arbitrary point A.

2 21
( )i if x x

N
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2 21
( )i if x A A x

N
   Let di = xi – A

= 21
( )i if d A x

N

  On solving, we get

     

2
2 21 1

i i i if d f d
N N

(iii) If we take i
i

x A
d

h

  then 2 2 2 21 1
( )i i i ih f d f d

N N

Remark

1. The positive square root of variance is known as standard deviation.

2. SD has unit but variance does not.

5.7 COEFFICIENT OF VARIATION

Coefficient of variation (C.V.) is given by

      
C.V. 100

x

i.e., C.V. is the percentage variation in the mean, standard deviation being considered as the total 

variation in the mean.

The coefficient of variation is calculated to compare the variability of two series. The series whose 

C.V. is more is said to be more variable than the other and the series whose C.V. is less is lesser 

variable than the other.

5.8 VARIANCE OF THE COMBINED SERIES

Let 1 2,x x  be the means 1 and 2 be the standard deviations of two series of sizes n1 and n2 respectively, 

then the variance of the combined series is given by:

     

2 2 2 2 2
1 1 1 2 2 2

1 2

1
( ) ( ) ,n d n d

n n

where      
1 1 2 2and ,d x x d x x

1 1 2 2

1 2

n x n x
x

n n
 is the mean of combined series and  = positive square root of 2 is known standard 

deviation of combined series.

Remark

1. Quartile deviation = 
2

3
 SD

2. Mean deviation = 
4

5
 SD
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Example 9 Calculate the mean and SD for the following table giving the weight (in kg) distribution 

of 542 members.

Weight (in kg) 20–30 30–40 40–50 50–60 60–70 70–80 80–90

No. of members 03 61 132 153 140 51 2

Solution

Here h = 10, let A = 55 then 
55

10

i
i

x
d

Age group Mid value (x) Frequency (f) di fidi fidi
2

20–30 25 03 –3 –9 27

30–40 35 61 –2 –122 244

40–50 45 132 –1 –132 132

50–60 55 153 0 0 0

60–70 65 140 1 140 140

70–80 75 51 2 102 204

80–90 85 02 3 06 18

542iN f 15i if d 2 765i if d

      
2

2 2 21 1
i i i ih f d f d

N N

and    mean
15

55 10 54.72
542

i if d
x A h

N

and     
2

2 2 1 15
10 (765) 141.07

542 542

    SD 141.07 11.9 kg.

Example 10 A student obtained the mean and standing deviation of 100 observation as 40 and 5.1 

respectively. It was later found that he had wrongly copied down an observation as 50 instead of 40. 

Find the correct mean and standard deviation.

Solution

       40 4000
100

i i

i

x x
x x

n

       
2 2 21

( )ix x
n

      2 2 2( ) ( )ix n x

= 100 [(5.1)2 + (40)2] = 162601

Let x be the given variable corrected xi = 4000 –50 +40 = 3990

and corrected 2 2 2162601 (50) (40) 161701ix
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Corrected mean = 
3990

39.9
100

and corrected variance 2 2161701
(39.9) 25

100

and corrected standard deviation  = 5

Example 11 The first of two samples has 100 items with mean 15 and standard deviation 3. If the 

whole group has 250 items with mean 15.6 and standard deviation 13.44.  Find the standard deviation 

of the second group.

Solution

Given n1 = 100, 1 115 and 3x

n = 1 2 2250 150, 15.6 and 13.44n n n x

      

1 1 2 2 2
2

1 2

100 15 150
15.6 16

250

n x n x x
x x

n n

     1 1 0.6d x x

      2 2 0.4d x x

    2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 2

1 2

1 1
( ) ( ) 100(3 ( 0.6) ) 150( (0.4) )

250
n d n d

n n

     2
2 216 and 4

Example 12 An analysis of monthly salary paid to the employees in two companies X and Y

belonging to the same group gives the following result:

Company X Company Y

No. of Employees 500 600

Average monthly salary (in $) 186.00 175.00

Variance of distribution of wages 81 100

(i) Which company X or Y has a large bill?

(ii) In which company X or Y has greater variability in individual’s salary?

(iii) Calculate (a) the average monthly salary, (b) the variance of the distribution of salary of all the 

employees in company X and Y together.

Solution

(i) Company X: n1 = 500, 1 $ 186.00x

  Average monthly salary = 
Total salary

No. of employees

  
Total salary

186 = Total salary 500 186
500

 = $93,000

  Company Y: n2 = 600, 2 $ 175x

 Total salary = 600 × 175 = $105,000
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  Therefore company Y has larger salary bill.

(ii) C.V. for company 1

1

100 81
100 4.84

186
X

x

  C.V. for company 2

2

100 100
100 5.71

175
Y

x

Company Y has greater variability in comparison to company X as C.V. of Y > C.V. of X.

(iii) (a)  Let x  be the average monthly salary of all the employees of company X and Y together 

and 2 is the variance.

    Then 1 1 2 2

1 2

500 186 600 175
$ 180.00

1100

n x n x
x

n n

  (b) 2 2 2 2 2
1 1 1 2 2 2

1 2

1
[ ( ) ( )],n d n d

n n

    where 1 1 186 180 6d x x

     2 2 175 180 5d x x

     2 2 21
500(81 (6) ) 600(175 ( 5) ) 121.36

500 600

Example 13 Calculate the mean and standard deviation for the following:

Size of item 6 7 8 9 10 11 12

Frequency 3 6 9 13 8 5 4

(V.T.U. 2001)
Solution

Size of item Frequency (f) di = xi – 9 fidi fidi
2

6 3 –3 –9 27

7 6 –2 –12 24

8 9 –1 –9 9

9 13 0 0 0

10 8 1 8 8

11 5 2 10 20

12 4 3 12 35

48iN f 0i if d 2 124i if d

Mean   
0

9 9
48

i i

i

f d
x A

f

SD = 

2 22
124 0

1.607
48 48

i i i i

i i

f d f d

f f
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EXERCISE 5.2

1. Calculate the mean and standard deviation of the following distribution:

Group Frequency Group Frequency

2.5–7.5 12 32.5–37.5 176

7.5–12.5 28 37.5–42.5 120

12.5–17.5 65 42.5–47.5 66

17.5–22.5 121 47.5–52.5 27

22.5–27.5 175 52.5–57.5 9

27.5–32.5 198 57.5–62.56 3

2. Show that the variance of first n positive integers is 21
( 1)

12
n (V.T.U. 2013)

3. The mean of five items of an observation is 4 and the variance is 5.2. If three of the items are 

1, 2 and 6, then find the other two. (V.T.U. 2002)

4. Calculate (i) mean deviation about the mean, (ii) mean deviation about the median for the 

following distribution:

Class 3–4.9 5–6.9 7–8.9 9–10.9 11–12.9 13–14.9 15–16.9

f 5 8 30 82 45 24 6

(Madras, 2002)

5. The following table shows the marbles obtained by 100 candidates in an examination. Calculate 

the mean, median and standard deviation.

Marks obtained 1–10 11–20 21–30 31–40 41–50 51–60

No. of Candidate 3 16 26 31 16 8

(Osmania 2003S, V.T.U. 2003S)

6. Calculate the mean deviation from median age, for the following age distribution of 100 life 

insurance policy holders.

Age as on nearest birthday Number

17–19.5 9

20–25.5 16

26–35.5 12

36–40.5 26

41–50.5 14

51–55.5 12

50–60.5 6

61–70.5 5

7. For a frequency distribution of marks in statistics of 200 students, the mean and standard 

deviation were found to be 40 and 15 respectively. Later it was discovered that the score 43 

was misread 53 in obtaining the frequency distribution. Find the corrected mean and standard 

deviation corresponding to the corrected distribution.



5.24 Engineering Mathematics for Semesters III and IV

8. Scores of two golfers for 24 rounds were as follows:

  Golfer A: 74, 75, 78, 78, 72, 77, 79, 78, 81, 76, 72, 72, 77, 74, 70, 78, 79, 80, 81, 74, 80, 75, 

71, 73

  Golfer B: 86, 84, 80, 88, 89, 85, 86, 82, 82, 79, 86, 80, 82, 76, 86, 89, 87, 83, 80, 88, 86, 81, 

84, 87

  Find which golfer may be considered to be more consistent player.

9. Prove that the mean of first n natural numbers is 
1

.
2

n

10. Lives of two models of refrigerators turned in for new models in a recent survey are:

Life (No. of years) 0–2 2–4 4–6 6–8 8–10 10–12

No. of refrigerators Model I 5 16 13 7 5 4

No. of refrigerators Model II 2 7 12 19 9 1

  What is the average life of each model of these refrigerators? Which has more uniformity?

11. Particulars relating to the wage distribution of two manufacturing firms are as follows:

Firm A Firm B

Mean wage Rs. 175 Rs. 180

Median wage Rs. 172 Rs. 170

Model wage Rs. 167 Rs. 162

Quartiles Q1 = 162, Q3 = 178 Q1 = 165, Q3 = 185

S.D. 13 19

  Calculate coefficient of variation for firm A and B.

12. Find the coefficient of variation of a frequency distribution, whose mean is 120 and variance 

is 25.

13. If the coefficient of variation and standard deviation of a frequency distribution are 5 and 2 

respectively, find the mean of the distribution.

14. Obtain the range and semi-interquartile range for the data given as follows:

(i) Greatest and smallest observation are 31.8 and 6.2 respectively

(ii) Q4 = 14.95, Q3 = 22.95

15. Find the mean and standard deviation for the following distribution:

Group 0.5–5.5 5.5–10.5 10.5–15.5 15.5–20.5 20.5–25.5 25.5–30.5 30.5–35.5

Frequency 3 4 68 30 10 6 2

Answers

1. Mean = 30.005; SD = 0.01 3. 4 and 7

4. (i) 1.845; (ii) 1.8175 5. Mean 32, Median 32.6, SD = 12.4

6. Median = 38.25; Mean deviation = 10.605

7. Mean = 39.95; SD = 14.974 8. Golfer B is more consistent.
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10. C.V. (Model I) = 54.9% 11. C.V. for A = 7.43

  C.V. (Model II) = 36.2% C.V. for B = 10.56

  Model II has more uniformity.

12. 4.17 13. Mean = 40

14. Range = 25.6 15. Mean = 15.68, S.D. = 6.57

  Semi-Interquartile range = 4

5.9 SKEWNESS

Before we discuss skewness of a distribution, we shall discuss moments about origin and moments 

about mean which have vital applications in the study of statistics and its applications in the various 

fields.

5.9.1 Moments

k
th moment about any point A of a variable x is defined by

       0
1

1
( ) ; where , 1

n
k

k i i i

i

f x A N f
N

      1

1
( )i if x A

N

if A = 0, then 1

1
i if x x

N
 called first moment about origin, which is .x  mean of the 

distribution.

k
th moment about mean of a variable x about mean x  is defined as:

        1

1
( ) ,

k
k

k i i i

i

f x x N f
N

In particular,

1 = 0

        

2 2
2

1
( )i if x x

N

Second moment about mean is called variance of the distribution.

      2 2
2

1
2i i if x x x x

N

= 2 21 1 1
2i i i i if x x f x f x

N N N

= 2 21 1
2 (but )i i

i i i i

f x
f x x x f f N

N N N

= 2 21
2i if x x x x

N
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= 2 2 21
2i if x x x

N

=

2

21 i i
i i

f x
f x

N N

        
2

2 2 1( )

Similarly,

        3
3 3 2 1 13 2

        
2 4

4 4 3 1 2 1 14 6 3

and so on.

5.9.2 Skewness

Skewness mean lack of symmetry. Skewness is studied to have an idea about the shape of the curve 

which is drawn with the help of the data. A distribution is said to be skewed if

1. Mean  Median  Mode i.e., Mean, Median and Mode fall at different points.

2. Quartiles are not equidistant from median i.e.,

    Md – Q1 Q3 – Md

3. The curve drawn with the help of given data is not symmetrical but sketched more to one side 

than to the other.

5.9.3 Measures of Skewness

Following are the measures of skewness (sk):

(i) k ds x M

(ii) 0ks x M

  where Mean,x Md = Median and M0 = Mode

(iii)
3 1( ) ( )k d ds Q M M Q

(i), (ii) and (iii) are three absolute measures of skewness. For comparing two series we do not use 

absolute measures of skewness, but we use relative measures which are called coefficients of skewness 

which are pure numbers and independent of units of measurements.

We have following coefficient of skewness

(a) 0
k

x M
s  where Mean,x M0 = Mode and  = S.D.

Taking 0 3 2 ,dM M x  we get

     ( )
3 d

k

x M
s (5)

  Equation (5) is called Karl Pearson coefficient of skewness.
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dx M
 always lies between –1 and 1, therefore, sk always lies between –3 and 3.

(b) Quartile coefficient of skewness: 3 1 2

3 1

2
k

Q Q Q
s

Q Q

where Q1 = first quartile

Q3 = third quartile

Q2 = Median

  Here –1 sk  1

(c) Coefficient of skewness based on third moment: 
1 1 ,Y

  where 2 2
1 3 2|

1 1Y  gives the simplest  measure of skewness.

Remark If 0 or dx M x M . Skewness is positive and if 0 or ,dx M x M  skewness is 

negative.

5.10 KURTOSIS

By measures of Kurtosis, we check the peakness of a distribution and its measure is given by

     
2

2 4 2|

Y2 = 2 – 3 defines the excess of kurtosis. If 2 = 3, then curve is called normal curve or mesokurtic 

curve given in Fig. 5.5 (a), the curve with 2 > 3 is called leptokurtic shown in Fig. 5.5 (b) and the curve 

2 < 3 is called platykurtic and shown in Fig. 5.5(c).

Fig. 5.5

Example 14 Calculate the Karl Pearson coefficient for the following distribution. Also, calculate 

quartile coefficient of skewness.

Group 1–5 6–10 11–15 16–20 21–25 26–30 31–35

Frequency 3 4 68 30 10 6 2
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Solution

Group Mid value x f f·x f·x2 Cumulative Frequency 

(C.F.)

0.5–5.5 3 3 9 27 3

5.5–10.5 8 4 32 256 7

10.5–15.5 13 68 884 11492 75

15.5–20.5 18 30 540 9720 105

20.5–25.5 23 10 230 5290 115

25.5–30.5 28 6 168 4704 121

30.5–35.5 33 2 66 4059 123

123f N 1929fx 2 35548fx

Karl Pearson coefficient of skewness

       
0

k

x M
s

       
1929

15.68
123

fx
x

N

       
2 2 2 21 1

(35548) (15.68) 43.15
23

fx x
N

 = 6.57

To calculate M0:

Model class = 10.5 – 15.5

      
1 0

0
0 2

( ) 5(68.4)
10.5 13.64

2 2(68) 4 30i

h f f
M l

f f f

       
15.68 13.64

0.31
6.57

ks

To calculate quartile coefficient of skewness, we have to calculate Q1, Q3 and Q2 (Median)

       1

123
, 30.75

4 4 4

N h N
Q l c

f

=
5

10.5 (30.75 7) 10.5 2.44 12.94
68

=
3 3

, 92.25
4 4

N h N
l c

f

=
5

15.5 (92.25 75) 18.38
30

Q2 = , 61.5
2 2

d

N h N
M l c

f
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=
5

10.5 (61.5 7) 14.51
68

Quartile coefficient of skewness

= 1 3 2

3 1

2Q Q Q

Q Q

=
12.94 18.38 2(14.51) 31.32 29.02

0.42.
18.38 12.94 5.54

Example 15 The first moments about the working mean 28.5 of a distribution are 0.294, 7.144, 

42.409 and 454.98. Calculate the moments about the mean. Also calculate 1, 2 and comment upon 

the skewness and kurtosis of the distribution. (V.T.U. 2003S)

Solution The first moments about the arbitrary point 28.5 are given as 1 20.294, 7.144,

m3  = 42.409 and 4 454.98.

By definition

       1

1 1
( 28.5) 28.5i i i if x f x

N N

     0.294 28.5 28.794x x

1 = 0

        2 2
2 2 1 7.144 (0.294) 7.058

        

3
3 3 2 1 1

3

3 2

42.409 3(7.144) (0.294) 2(0.294)

= 36.151

Similarly,

        
2 4

4 4 3 1 2 1 14 6 3 408.738

Therefore,

       

2 2
3

1 3 3
2

(36.151)
3.717

(7.058)

     

4
2 2 2

2

408.738
8.205

(7.058)

and 1 1 3.717 1.928  considerable skewness of the distribution

2 2 3 8.205.3 5.205 3  The given distribution is leptokurtic.
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EXERCISE 5.3

1. Calculate the first four moments of the following distribution about the mean.

x 0 1 2 3 4 5 6 7 8

f 1 8 28 56 70 56 28 8 1

  Also evaluate 1 and 2. (V.T.U. 2004, Madras 2003)

2. Find Karl Pearson’s coefficient for the following data:

Class 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89

Frequency 5 9 14 20 25 15 8 4

(V.T.U. 2005)

3. The following table gives the monthly wages of 72 workers in a factory. Compute the standard 

deviation, quartile deviation, coefficient of variation and skewness. (V.T.U. 2001)

Monthly wages (in $) No. of workers Monthly wages (in $) No. of workers

12.5–17.5 2 37.5–42.5 4

17.5–22.5 22 42.5–47.5 6

22.5–27.5 19 47.5–52.5 1

27.5–32.5 14 52.5–57.5 1

32.5–37.5 3

4. Compute the quartile coefficient of skewness for the following distribution.

x 3–7 8–12 13–17 18–22 23–27 28–32 33–37 38–42

f 2 108 580 175 80 32 18 5

(Madras 2002, V.T.U. 2000)

5. Compute skewness and kurtosis, if the first four moments of a frequency distribution f(x)

about the value x = 4 are respectively 1, 4, 10 and 45. (Coimbatore 1999)

6. The first three moments of a distribution about the value 2 of the variable are 1, 16 and –40. 

Show that the mean = 3, the variance = 15 and 3 = –83. (V.T.U. 2003S)
7. A frequency distribution gives the following results:

  (i) coefficient of variation = 5,

 (ii) Karl Pearson’s coefficient of skewness = 0.5, and

(iii)  = 2. Find the mean and mode of the distribution.

8. Consider the question no. 11 of Exercise 5.2. Calculate Karl Pearson’s coefficients of skewness 

for firm A and B.

Answers

1. 1 3 2 4 1 20, 2, 11; 0, 2.75

2. sk = –0.2064

3. SD = 8.85, Quartile deviation = 5.25, C.V. = 0.32; skewness = 1.09

4. Quartile coefficient = 0.22; skewness = 1.157
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5. Skewness = 0; Kurtosis = 2.9

6. 1 = 0.493, 2 = 0.655; platykurtic

7. Mean = 40, Mode = 39

8. Coefficient of skewness for firm A = 0.615

  Coefficient of skewness for firm B = 0.947

5.11 CORRELATION

So far we have discussed the analysis and interpretation of a single variate. But this is not true always, 

sometimes we come across the situation where two variables are under study. For example, we are 

interested in the study of height and weights of a group of persons, here a variable is related to height 

and another variable is related to weight, such kind of distribution is called a bivariate distribution.

In bivariate distribution we may be interested whether two variables have any relationship or not 

between them or they are correlated or not. If the change in one variable affects a change in the other 

variable, then the variables are correlated and if the change in one variable does not affect the change in 

other variable, they are not correlated or unrelated. If they deviate in the same direction i.e., if increase 

(decrease) in one variable results in a corresponding increase (decrease) in the other variable, then 

correlation is positive or direct and if the increase (decrease) in one variable results in a corresponding 

decrease (increase) in the other variable, then the correlation is negative or indirect. If change in one 

variable does not change in other variable then we say that both the variables are unrelated or they do 

not have any correlations.

For example: The correlation between

(i) the income and expenditure, and

(ii) the height and weight of a person is positive, while the correlation between

(iii) the volume and pressure of a gas

(iv) price and demand of a commodity is negative.

5.11.1 Karl Pearson Coefficient of Correlation

As a measure of linear relationship between two variables, Karl Pearson gave a formula, known as 

correlation coefficient.

Let X and Y be two variables, then correlation coefficient between them is denoted by rxy or r(X, Y)

is a numerical measure of linear relationship between them and rxy is defined by

     

Cov( , )
xy

X Y

X Y
r

Where Cov (X, Y) is covariance of (X, Y), X and Y are SD of X and Y respectively.

Then
1

1
Cov( , ) ( ) ( )

n

i i

i

X Y x x y y
n

=
1

1 n

i i i i

i

x y x y xy x y
n

=
1

i i i i

i i i i

x y y y x y x y
n
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=

1

and

i i i

i i

i

i

x y nx y n x y n x y x nx
n

y x y

=
1

i i

i

x y x y
n

Similarly,   2 2 21
X i

i

x x
n

and      2 2 21
Y i

i

y y
n

      
22 2 2

1
( )

1 1

i i

i
xy

i i

x y x y
n

r

x x y y
n n

rxy also calculated by the formula

       
,

xy

xy
xx yy

s
r

s s

where      

i i

i i
xy i i

i

x y

s x y
n

       

2

2

i

i

xx i

i

x

s x
n

       

2

2

i

i

yy i

i

y

s y
n

      
2 22 2

.

i i i i

i i i
xy

i i i i

i i i i

n x y x y

r

n x x n y y

Figures 5.6(a), 5.6(b), 5.6(c), 5.6(d) and 5.6(e) present scattered data showing r > 0, r < 0, r = 0,

r = 1, and r = –1.
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Fig. 5.6 (a)          Fig. 5.6 (b)           Fig. 5.6 (c)

Fig. 5.6 (d)        Fig. 5.6 (e)

Limits of correlation coefficient:  Correlation coefficient lies between –1 and 1, i.e. –1 rxy  1.

If r = +1, then correlation is perfect and positive, and

if r = –1, then correlation is perfect and negative. If r = 0, then there is no correlation between two 

variables and X, Y are independent or unrelated.

Example 16 Calculate the correlation coefficient for the following heights in inches of the fathers (x)

and their sons (y).

x 65 66 67 67 68 69 70 72

y 67 68 65 68 72 72 69 71

Solution

                   n = 8 Total

x 65 66 67 67 68 69 70 72 544

y 67 68 65 68 72 72 69 71 552

x
2 4225 4356 4489 4489 4624 4761 4900 5184 37028

y
2 4489 4624 4225 4624 5184 5184 4761 5041 38132

xy 4355 4484 5355 4556 4896 4968 4830 5112 37560

        

1 1 1 1
(544) 68, (552) 69

8 8
i i

i

x x y y
n n

       
2 2 2 2

1

1 1
( ) ( )

i i

i
xy

i i

x y x y
n

r

x x y y
n n
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=
2 2

37560
(68)(69)

8 0.603
1 1

(37028) (68) (38132) (69)
8 8

rxy = 0.603

Example 17 Using formula ,
xy

xy

xx yy

S
r

S S
 find the correlation coefficient of the following 

data:

Air velocity (x) 20 60 100 140 180 220 260 300 340 380

Evaporation coefficient (y) 0.18 0.37 0.35 0.78 0.56 0.75 1.18 1.30 1.17 1.65

Solution

For the above data: n = 10

       

10 10 10

1 1 1

2000, 8.35, 2175.4i i i i

i i i

x y x y

      

10
2 2

1 1

532000, 9.1097
n

i i

i i

x y

      
22 21 1

532000 (2000) 132000
10

xx i i

i i

s x x
n

       

22 21 1
9.1097 (8.35) 2.13745

10
yy i i

i i

s y y
n

       
s x y

n
x yxy i i i i

i

1
2175 4

1

10
2000 8 35 505 4. ( )( . ) .

      
505.4

0.9515
132000 2.13745

xy

xy

xx yy

s
r

s s

5.12 RANK CORRELATION

Let a group of n individuals is arranged in order of merit of proficiency having two characteristics A and 

B. The ranks of two characteristics A and B are generally different. For example, if we are interested to 

find relation between intelligence and beauty, it is not always true that an intelligent person is always 

beautiful or vice-versa.

Let (xi yi), i = 1, 2i, ..., n be the ranks of ith individual in two characteristics A and B respectively. 

The correlation coefficient between the ranks of 1 and ix s y s  is called the rank correlation coefficient 

between characteristics A and B.

Case I When no two individuals are bracketed i.e., no two ranks are same, i.e. each variable takes 

values 1, 2i, ..., n then

1 1
(1 2 )

2

n
x n y

n
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Let
2 2andx y  are the variances of x and y respectively, then

     

2 2 21
( )x i

i

x x
n

=

2
2 2 21 1

[1 2 ]
2

n
n

n

=

2 2
21 ( 1)(2 1) 1 1

6 2 12
y

n n n n n

n

Let ( ) ( ),i i i i id x y x x y y  squaring and summing over i from 1 to n and dividing by n

we get

     

2 2 21 1
( ) ( ) 2( ) ( )i i i i i

i i

d x x y y x x y y
n n

= 2 21 1 1
( ) ( ) 2 ( ) ( )i i i i

i i i

x x y y x x y y
n n n

     

2 2 2
1

1
2cov( )i x y

i

d x y
n

2 2 2 2
0

1 1
( ) , ( )

.
1

and ( ) ( ) cov ( , )

i x i

i i

i i

i

x x y y
n n

x x y y x y
n

We also know that

        

cov( , )
cov( , ) x y

x y

x y
r x y r

2 2 21
2i x y x y

i

d r
n

 where r is the rank correlation coefficient between A and B.

    2 2 2 2 21
2 2i x x x yd r

n

       
2

2
1

1 6
2

n
i

i x

d
r

n

        

2

1

2

6

1
( 1)

n

i

i

d

r
n n

(6)

Equation (6) is called Spearman’s formula for the rank correlation coefficient. Rank correlation 

always lies between –1 and 1 i.e., –1 r  1.

Note:
1

n

i

i

d  is always zero.
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Case (ii) Repeated Ranks: If two or more individuals are bracketed equally in any classification 

with respect to characteristic A and B i.e., ranks are repeated. In such case we cannot use Spearman’s 

rank correlation coefficient because .x y

In this case common ranks are given to the repeated item. This common rank is the average of the 

normal ranks of these items would have taken if they were different, and we add 
2

2( 1)
to

12

m m
d

in the formula.

       

2
2

2

( 1)
6

12
1

( 1)

m m
d

r
n n

where m is the number of times and item is repeated. 
2( 1)

12

m m
 is called correction factor and is to be 

added for each repeated item.

Example 18 The ranks of same students in statistics and physics are as follows: The numbers 

within brackets denote the ranks of the students in statistics and physics.

(1, 1), (2, 10), (3, 3), (4, 4), (5, 5) (6, 7), (7, 12), (8, 6), (9, 8), (10, 11), (11, 15), (12, 9), (13, 14), 

(14, 12), (15, 16), (16, 15).

Calculate the Spearman’s rank correlation coefficient for proficiencies of this group in statistics and 

physics.

Rank in statistics 

marks (x)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ranks in Physics marks 

(y)
1 10 3 4 5 7 12 6 8 11 15 9 14 12 16 15

di = xi – yi 0 –8 0 0 0 –1 –5 –2 1 –1 –4 3 –1 2 –1 1

di
2 0 64 0 0 0 1 25 4 1 1 16 9 1 4 1 1

Solution

      
2 136, 16id n

Spearman’s rank correlation coefficient 

2

2 2

6 6(136)
1 1 0.80

( 1) 16(16 1)

id
r

n n

Example 19 Obtain the rank correlation coefficient for the following data:

X 68 64 75 50 64 80 75 40 55 64

Y 62 58 68 45 81 60 68 48 50 70

Solution

X Y Rank of X (x) Rank of Y (y) di = xi – yi di
2

68 62 4 5 –1 1

64 58 6 7 –1 1

75 68 2.5 3.5 –1 1

50 45 9 10 –1 1
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64 81 6 1 5 25

80 60 1 6 –5 25

75 68 2.5 3.5 –1 1

40 48 10 9 1 1

55 50 8 8 0 0

64 70 6 2 4 16

Total 0id 2 72id

In X series 75 is repeated twice, 64 repeated thrice and in Y-series 68 also repeated twice so we add 
2( 1)

12

m m
 to d

2 each times.

For X-series: that correction factor is

=
2 2 2( 1) 2(2 1) 3(3 1) 5

12 12 12 2

m m

For Y-series: Correction factor is

    

2 2( 1) 2(2 1) 1

12 2

m m

n

Total correction factor to be added to 
2 5 1

3
2 2

d

Rank correlation coefficient

        

2

2

5 / 2 1 / 2
1 6

( 1)

d
r

n n

=
2

72 3
1 6 0.545

10(10 1)

5.13 REGRESSION

The term regression means stepping back towards the average. But now this term in statistics is only a 

convenient term without having reference to biometry.

5.13.1 Lines of Regression

If the variables in a bi-variate distribution are related, then the points in scatter diagram cluster around 

some curve and this curve is called curve of regression. If the curve is a straight line, it is called the 

line of regression and we say that two variables have linear regression, otherwise it is curve linear 

regression between them.

The line of regression is the line which gives the best estimate to the value of one of variable for 

any specific value of the other variable. Thus, the line of regression is line of ‘best fit’ and obtained by 

‘principle of least squares’.

Let (xi, yi), i = 1, 2i, ..., n represents a bi-variate distribution in which x is independent and y is 

dependent variable.
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Let the line of y on x is y = a + bx where a and b are constants. To find the value of a and b, we use 

the normal equation as follows:

      
i i

i i i

y a b x

     
i i

i i

y na b x (7)

      2
i i i i

i i i

x y a x b x (8)

dividing Eq. (7) by n, we get

     
y a bx

(9)

Thus the line of regression of y on x passing through the point ( , )x y  is given by

    ( )y y b x x (10)

The value of b can be found in the following way:

Let   11

1
cov( , ) i i

i

x y x y x y
n

  
11

1
i i

i

x y x y
n

(11)

and variance of 2 2 2 2 2 21 1
, ( )x i i x

i

x x x x x
n n

(12)

Dividing Eq. (8) by n we get

     

2
i ii i

i

i

x xx y
a b

n n n

    2 2
11 ( )xx y ax b x (13)

Multiply Eq. (9) by ,x  we get

     2
x y ax bx (14)

Substituting Eq. (14) from Eq. (13) we get,

    2 11
11 2x

x

b b (15)

‘b’ is called the slope of the regression line of y on x

Regression line of y on x is

    11

2
( )

x

y y x x (16)

If r be the correlation coefficient between x and y, then

     

11
11

cov( , )
x y

x y x y

x y
r r
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then Eq. (16) becomes

      2
( )

x y

x

r
y y x x

or     ( )
y

x

r
y y x x (17)

Equation (17) is called regression line of y on x.

Similarly, the regression line of x on y is

      ( )x

y

x x r y y (18)

How to find values of a, b:  Let y = a + bx be the line of regression of y on x, then

        

i i

i i

y b x

a
n

and      
2

2

1 1

( )i i i i

i i i

n n

i i

i i

n x y x y

b

n x x

These values are obtained by principle of least squares which gives normal equations (7) and (8) and 

by solving Eqs (7) and (8), we get the values of a and b respectively.

Line of best fit y = a + bx

Note:  If 1,r  then

    
( )y y x x

that two lines of regression coincide and we get only one line of regression.

Regression Coefficient: ‘b’ the slope of the line of regression of y on x is called the coefficient of 

regression of y on x. It can be written as

byx = regression coefficient of y on 
2

cov( , ) y

xx

rx y
x

Similarly, bxy = regression coefficient of x on y = 
2

cov( , ) x

yy

x y
r

Example 20 Show that correlation coefficient is geometric mean of regression coefficients.

Solution

Proof Let and
y x

yx xy
x y

b r b r  are the regression coefficients of y on x and x on y

respectively.

Then geometric mean of byx and xy yx xyb b b
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  =
2y x

x y

r
r r

       yx xyr b b

Example 21 Establish the relation

1
( )

2
yx xyb b r

i.e., arithmetic mean of regression coefficients is greater than or equal to correlation coefficient.

Solution

Let byx and bxy are the coefficient of regression of y on x and x on y respectively.

A.M of byx and bxy = 
1

( )
2

yx xyb b

=
1

2

y x

x y

r r

To prove 
1

( )
2

yx xyb b r

    
1

2

y x

x x

r r
r

        
2

y x

x y

= 2 2 2 0y x x y

=
2( ) 0y x

which is always true because 2( )y x  is the square of real quantity

      
1

( )
2

yx xyb b r

Example 22 If  be the angle between lines of regression, then show that 

      

2

2 2

1
tan

x y

x y

r

r
(U.P.T.U. 2007, V.T.U. 2007)

Explain the significance when r = 0 and r = 1.

Solution Let

( ) and ( )
y x

x y

y y r x x x x r y y  be the lines of regression of y on x and x on y

respectively.
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Slopes of these two lines one given by

and
y x

x y

r r

If  is the angle between two lines then

      

2

2

tan

1 1

y y y y

x x x x

y y y

x x
x

r r

r r

r

r

      

2 2
2

2 2 2 2

( 1)( ) 1
tan ( 1)

( )

x y x y

x y x y

r r
r

rr

(i) If r = 0

      
1tan , tan ( ) / 2

If two variables are unrelated then lines regression are perpendicular to each other.

If r = 1

  then tan  = 0  = 0 or 

  If two variables are perfectly correlated then lines of regression either coincide or parallel 

to each other as both lines pass through ( , ),x y  so they can not be parallel to each other.

 They coincide with each other  we get only one line.

Example 23 Various dozes of a poisonous substances were given to groups of 25 mice and the 

following results were observed:

Dose (mg) (x) 4 6 8 10 12 14 16

No. of deaths (y) 1 3 6 8 14 16 20

(a) Find the equation of regression line of y on x, which fits the date best.

(b) Estimate the number of deaths in a group of 25 mice who receive a doze of 7 mg of this 

poison.

Solution

(a) 270, 68, 812, 862, 7i i i i ix y x x y n

line of regression of best fit of y on x is

y = a + bx

   where i iy b x
a

n

   and b
n x y x y

n x x

i i i i

i i
2 2 2

7 862 70 68

7 812 70
1

( ) ( ) ( )

( ) ( )
.6625
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68 (1.625) (70)

6.536
7

a

y = –6.536 + 1.625 x

(b) when  x = 7

y = –6.536 + (1.625) × 7 = 4.839  5 mice.

Example 24 Find the most likely price in city C2 corresponding to the price of Rs. 70 at city C1

from the following data:

Average price city C1 city C2

65 67

Standard deviation 2.5 3.5

Correlation coefficient between the prices of commodities in two cities is 0.8.

Solution Let the prices in city C1 and city C2 be denoted by x and y respectively. Then, given

     
65, 67, 2.5, 3.5, 0.8x y xyx y r r

We want to calculate value of y when x = 70

Line of regression of y on x is

    

( )x

y

y y r x x

   
3.5

67 0.8 ( 65)
2.5

y x

y = 67 + 1.12 (x – 65)

y = 1.12 x – 5.8

when x = 70

y = 1.12 (70) – 5.8 = 72.6

Example 25 While calculating correlation coefficient between two variable x and y from 25 pairs 

of observations, the following results were obtained:

n = 25, x = 125, x
2 = 650, y = 100, y

2 = 460, xy = 508,

It was however, later discovered at the time of checking that the hard disk copied down two pairs as 

6 14

8 6

x y

 while the correct values were 8 12

6 8

x y

. Find the correct value of correlation coefficient.

Solution

Corrected x = 125 – 6 – 8 + 5 + 6 = 125

Corrected y = 100 – 14 – 6 + 12 + 8 = 100

Corrected x
2 = 650 – 62 – 82 + 82 + 62 = 650
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Corrected y
2 = 100 – 142 – 62 + 122 + 82 = 436

Corrected xy = 508 – (6) (14) – (8)(6) + (8) (12) + (6) (8) = 520

Corrected rxy = 
n xy x y

n x x n y y
2 2 2 2

=
2 2

25(520) 125 100 2
0.67

325(650) (100) 25(436) (100)

Line of regression of y on x is

     
( ) ( )

y

x

y y r x x

       
100 125

4, 5
25 25

y
y x

x

       

2 2 21 1
( ) (650) (25) 26 25 1

25
x x x

n

       
y

n
y y

1 1

25
436 4 1 44 1 22 2 2( ) ( ) . . .

Line of regression of y on x is

      

2 1.2
4 ( 5)

3 1
y x

y – 4 = 0.8 (x – 5)

       4 0.8 4 0.8 .y x y x

5.13.2 Multiple Regression

In 5.13.1 we have studied the simple linear regression model. This model gives the idea, how one 

variable gives the best estimate for any specific value of other variable. This idea is extended in this 

section by considering two different models: the polynomial model, in which the single independent 

variable can appear to a power greater than one, and the multiple linear model, in which more than 

one distinct independent variables can be used. The techniques employed in each case are similar and 

conceptually easy.

5.13.3 Least-Square Procedures for Model Fitting

(i) Let X1, X2, …, Xp be random variables and x1, x2, …, xp be their numerical values and y/x1,

x2, …, xp be the numerical value of dependent variable Y corresponding to the independent 

variable’s numerical values x1, x2, …, xp. Then the general linear model is defined as:

y = 0 1 1 2 2 p pa a x a x a x (19)
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  Equation (19) is a straight forward generalization of simple linear regression.

(ii) The polynomial model of regression is defined as:

y = 
2

0 1 2
p

pa a x a x a x (20)

  where Eq. (20) is a polynomial regression model of degree p for the variables x and y.

Normal equations to solve polynomial model of regression are as follows:

Let (xi, yi), i = 1, 2, …, n represents a bivariate distribution in which x is independent and y is 

dependent variable. Multiple regression linear model between x and y is defined as Eq. (20), then to 

find the values of a0, a1, a2, …, ap, we use the following normal equations:

     

2
0 1 2

1 1 1

2
0 1 2

1 1 1 1

12 3
0 1 2

1 1 1 1 1

1 2 2
0 1 2

1 1 1 1

n n n
p

i i i p i

i i i i

n n n n
p

i i i p i

i i i i

n n n n n
p

i i i i i p i

i i i i i

n n n n
p p p p p

i i i i i p i

i i i i

y a a x a x a x

y na a x a x a x

x y a x a x a x a x

x y a x a x a x a x
1

n

i

(21)

These Eqs (19), (20) and (21) are solved simultaneously for the p + 1 unknown a0, a1, …, ap.

Special Model:

(a) Let p = 2, then

y = a0 + a1x + a2x
2

  which is quadratic in nature.

(b) Let p = 3, then

y = a0 + a1x + a2x
2 + a3x

3

  which is cubic model, and so on.

(c) In general model if x1 = x, x2 = x2, …, xp = xp then (19) becomes:

y = a0 + a1x + a2x
2 + … + apx

p

  and the values of a0, a1, …, ap can be estimated using normal equations by Eq. (21).

  But, if y = a0 + a1x1 + a2x2 + … + apx
p

  then to find the values of a0, a1, a2, …, ap we use the following normal equations:

     

0 1 1 2 2
1 1 1 1

2
0 1 1 1 2 1 2 1

1 1 1 1 1

2
0 1 1 2 1 2

1 1 1 1 1

n n n n

i i i p pi

i i i i

n n n n n

i i i i i i p i pi

i i i i i

n n n n n

pi i pi pi i i i p pi

i i i i i

y na a x a x a x

x y a x a x a a x a x x

x y a x a x x a p x a x

(22)
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  where (x1i, x2i, …, xki) are the n values corresponding to k-independent variables 

x1, x2, …, xk.

Example 26 A study is conducted to develop an equation by which the unit cost of producing 

a new drug (Y) can be predicted based on the number of units produced (X). Estimate the value of Y

corresponding to the value of X = 30, using a polynomial of degree 2.

No. of units produced (x) 5 5 10 10 15 15 20 20 25 25

Cost in hundreds of dollars (y) 14.0 12.5 7.0 5.0 2.1 1.8 6.2 4.9 13.2 14.6

Solution

The proposed model is a polynomial of degree 2.

i.e., y = a0 + a1x + a2x
2

normal equations are

      

2
0 1 2

1 1 1

n n n

i i i

i i i

y na a x a x

     

2 3
0 1 2

1 1 1 1

n n n n

i i i i i

i i i i

x y a x a x a x

     

2 2 3 4
0 1 2

1 1 1 1

n n n n

i i i i i

i i i i

x y a x a x a x

From these data

      

10 10 10 10
2 3 4

1 1 1 1

10 10 10
2

1 1 1

10, 150, 2750, 56, 250, 1223,750

81.3, 1228, 24,555

i i i i

i i i i

i i i i i

i i i

n x x x x

y x y x y

Substituting these values in normal equations, we get

81.3 = 10 a0 + 150 a1 + 2750 a2

1228 = 150 a0 + 2750 a1 + 56250 a2

24555 = 2750 a0 + 56250 a1 + 1223750 a2

Solving the above three equations in a0, a1 and a2, we get

a0 = 27.3, a1 = –3.313 and a2 = 0.111

The regression model of degree 2 becomes

y = 27.3 – 3.313 x + 0.111 x2

If x = 30 then estimated value of y is

y = 27.3 – (3.313) 30 + 0.111(30)2

y = 27.3 – 99.39 + 99.90 = 27.81 dollars
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Example 27 The following are data for the gasoline mileage (y) of an automobile based on its 

weight (x1) and temperature (x2) at the time of operation. Estimate y for x1 = 1.2 and x2 = 35.

Car Number 1 2 3 4 5 6 7 8 9 10

Miles per gallon (y) 17.9 16.5 16.4 16.8 18.8 15.5 17.5 16.4 15.9 18.3

Weight in tons (x1) 1.35 1.90 1.70 1.80 1.30 2.05 1.60 1.80 1.85 1.40

Temperature in F(x2) 90 30 80 40 35 45 50 60 65 30

Solution

Here regression model is

y = a0 + a1x1 + a2x2

where x1 takes values x1i, (i = 1, 2, …, 10) and x2 takes values x2i(i = 1, 2, …, 10)

The normal equations are

      

10

0 1 1 2 2
1 1 1

n n

i i i

i i i

y na a x a x

     

10
2

1 0 1 1 1 2 2
1 1 1 1

n n n

i i i i i ix

i i i i

x y a x a x a a a

     

2
2 0 2 1 2 1 2 2

1 1 1 1

n n n n

i i i i i i

i i i i

x y a x a x x a x

Here n = 10,
10 10 10

2
1 2 1

1 1 1

16.75, 525, 28.6375i i i

i i i

x x x

      

10 10 10
2
2 1 2

1 1 1

31475, 874.5, 170i i i i

i i i

x x x y

     

10 10

1 2
1 1

282.405, 8887.0i i i i

i i

x y x y

Substituting these values in the above normal equations we get

170 = 10 a0 + 16.75 a1 + 525 a2

282.405 = 16.75 a0 + 28.6375 a1 + 874.5 a2

8887 = 525 a0 + 874.5 a1 + 31475 a2

Solving the above equations, we get

a0 = 24.75, a1 = –4.16 and a2 = –0.014897

Model of regression is

y = 24.75 – 4.16 x1 – 0.014897 x2

If x1 = 1.2 and x2 = 35

then y = 24.75 – 4.16 × 1.2 – 0.14897 x2
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If x1 = 1.2 and x2 = 35

then

y = 24.75 – 4.16 × 1.2 – .014897 × 35

y = 24.75 – 4.992 – 0.521395 = 19.2366

EXERCISE 5.4

1. Psychological tests of intelligence  of engineering ability were applied to 10 students. Here is a 

record of ungrouped data showing intelligence ratio (IR) and engineering ratio (ER). Calculate 

the coefficient of correlation.

Student A B C D E F G H I J

I.R. 105 104 102 101 100 99 98 96 93 92

E.R. 101 103 100 98 95 96 104 92 97 94

(Andhra 2000)

2. The given correlation table shows that the ages of husbands and wives of 53 married couples 

living together on the census night of 1991. Calculate the coefficient of correlation between 

the age of the husband and that of two wives.

(J.N.T.U. 2003)

Age of husband
Age of wife

Total
15–25 25–35 35–45 45–55 55–65 65–75

15–25 1 1 - - - - 2

25–35 2 12 1 - - - 15

35–45 - 4 10 1 - - 15

45–55 - - 3 6 1 - 10

55–65 - - - 2 4 2 8

65–75 - - - - 1 2 3

Total 3 17 14 9 6 4 53

3. Calculate the correlation coefficient for the following data:

x 10 7 12 12 9 16 12 18 8 12 14 16

y 6 4 7 8 10 7 10 15 5 6 11 13

4. Find the correlation coefficient and the regression lines of y on x and x on y for the following 

data:

x 1 2 3 4 5

y 2 5 3 8 7

(V.T.U. 2010)

5. Find the correlation coefficient between x and y from the given data:

x 78 89 97 69 59 79 68 57

y 125 137 156 112 107 138 123 108

(J.N.T.U. 2005)
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6. Find the coefficient of correlation between industrial production and export using the following 

data and comment on the result.

Production (in crore tons) 55 56 58 59 60 60 62

Exports (in crore tons) 35 38 38 39 44 43 45

(Madras 2000)

7. Find the rank correlation for the following data:

x 56 42 72 36 63 47 55 49 38 42 68 60

y 147 125 160 118 149 128 150 145 115 140 152 155

(S.V.T.U. 2009, J.N.T.U. 2003)

8. Obtain the rank correlation coefficient for the following data which give the I.Q. of a group of 

6 persons who sat in an examination.

I.Q.(x) 110 100 140 120 80 90

Marks(y) 70 60 80 60 10 20

9. A sample of 12 fathers and their eldest sons gave the following data about their heights in 

inches:

Father 62 63 67 64 68 62 70 66 68 67 69 71

Sons 68 66 68 65 69 66 68 65 71 67 68 70

  Find the coefficient of rank correlation.

10. The ranking of 10 students in two subjects A and B are given as follows, find coefficient of 

rank correlation.

A 3 5 8 4 7 10 2 1 6 9

B 6 4 9 8 1 2 3 10 5 7

11. The following are the numbers of hours which 10 students studied for an examination and the 

score they obtained:

No. of hours studied (x) 8 5 11 13 10 5 18 15 2 8

Scores (y) 56 44 79 72 70 54 94 85 33 65

Calculate rank correlation coefficient.

12. Find two times of regression and coefficient of correlation for the data given below:

n = 18, x = 12, y = 18, x
2 = 60, y

2 = 96, xy = 48

(U.P.T.U., M.C.A. 2009)

13. If the coefficient of correlation between two variables x and y in 0.5 and the acute angle 

between their lines of regression is tan–1(3/8), show that 
1

.
2

x y

(V.T.U. 2004)

14. For two random variables x and y with the same mean, the two regression lines are y = a x + b

and x = y . Show that 
1

.
1

b a
 Find also the common mean.

(U.P.T.U. 2010)

15. Two random variables have the regression lines with equation 3x + 2y = 26 and 6x + y = 31. 

Find the mean values and the correlation coefficient between x and y.

(Madras 2002)
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16. The regression equations of two variables x and y are x = 0.7 y + 5.2, y = 0.3x + 2.8. Find the 

means of the variables and the coefficient of correlation between them.

(Osmania 2002)

17. Consider the model y = a0 + a1x1 + a2x2. The following data are available:

y 9 8 7

x1 0 2 4

x2 8 9 8

(a) Find
3 3 3 3 3 3 3 3

2 2
1 2 1 2 1 1 2 1

1 1 1 1 1 1 1 1

, , , , , , ,i i i i i i i i i i i

i i i i i i i i

x x x x x y x x y x y

(b) Find the normal equations

(c) Show that a0 = 9, a1 = –0.5 and a2 = 0 are the solutions of the normal equations

(d) Find the value of y when x1 = 3 and x2 = 10.

18. The following data represent carbon dioxide (CO2) emission from coal-fluid boilers (in units 

of 1000 tons) over a period of years 1965 and 1977. The independent variable (year) has been 

standardized yield the following table:

Year (x) 0 5 8 9 10 11 12

CO2 emission (y) 910 680 520 450 370 380 340

Write the normal equation for regression model of degree 2, i.e. y = a0 + a1x + a2x
2

Answers

1. rxy = 0.59 2. rxy = 0.91

3. rxy = 0.749

4.  rxy = 0.81; line of regression of y on x: y = 1.3x + 1.1; line of regression of x on y; x = 0.5y + 

0.5

5. rxy = 0.96 6. rxy = 0.92

7. 0.932 8. 0.882

9. 0.722 10. –0.30

11. 0.98

12. rxy = 0.632; regression line of y on x; y = 0.467 + 0.8x and regression line of x on y; x = 0.167 

+ 0.5y

14. Common mean = 
b

a
15. 4, 7, 0.5xyx y r

16. 9.06, 5.52; 0.46xyx y r

17. (a) 2 2
1 2 1 2 1 1 2

2

6, 25, 50, 44, 20, 209,

24, 200

i i i i i i i i

i i i

x x x x x y x x

y x y

(b)   24 = 3a0 + 6a1 + 25a2

    44 = 6a0 + 20a1 + 50 a2
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Following topics have been discussed in this chapter:

1. Classification of Data

(i) Frequency distribution grouped and ungrouped.

2. Graphical Representation

(i) Histogram (ii) Frequency polygon and (iii) ogive

3. Measures of Central Tendency

     

1
Mean i if x

n

    

Median
2

h N
l c

f

Mode = 1 0

1 2 0

( )

2

h f f
l

f f f

Geometric Mean = 
1

1
Antilog log

n

i i

i

f x
N

Harmonic Mean = 
1

i

i

f

x

4. Measure of Dispersion

  Range: A–B

   Quartile deviation: 
3 1

1
( )

2
Q Q

   Standard deviation 21
( )i i

i

f x x
N

   Variance 2 21
( )i i

i

f x x
N

  200 = 25a0 + 50a2 + 209 a2

(d) y = 7.5

18. Normal equations are:

3650 = 7a0 + 55a1 + 535a2

23570 = 55 a0 + 535a1 + 5169 a2

218670 = 535 a0 + 5169 a1 + 56659 a2

  (Find the values of a0, a1 and a2 to fit a regression model of degree 2.)

SUMMARY
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   Coefficient of variation = 100
x

   Quartile deviation = 
2

3

   Mean deviation = 
4

5

   k
th moment about any point A

1
( )k

k i if x A
N

   k
th moment about mean x

1
( )k

k i if x x
N

2
2 2 1

3
3 3 2 1 13 2

2 4
4 4 3 1 2 1 14 6 3

5. Measures of Skewness

k ds x M

0ks x M

3 1( ) ( )k d ds Q M M Q

  Karl Pearson coefficient of skewness

3( )d
k

x M
s

  Quartile coefficient of skewness:

3 1 2

3 1

2
k

Q Q Q
s

Q Q

1 1

2
3

1 3
2

  Measures of Kurtosis:

2 2 3

4
2 2

2
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6. Correlation

   Correlation coefficient 
22 2 2

1

1 1

i i

xy

i i

x y x y
nr

x x y y
n n

   Rank correlation coefficient:
2

2
1 6

( 1)

id
r

n n

   Line of regression of y on x:

( ) ( )
y

yx
y

y y b x x y y r x x

  and line of regression of x on y:

( ) ( )x
xy

y

x x b y y x x r y y

    
yx xyr b b

  If  is angle between regression lines of y on x and x on y then 
2

2 2

1
tan

x y

x y

r

r

7. Multiple regression of single variable of degree p is defined as:

2
0 1 2

p
py a a x a x a x

8. Multiple regression of k variables is defined as:

20 1 1 2
k

ky a a x a x a x

OBJECTIVE TYPE QUESTIONS

1. The mean of 9, 10, 11, 12 and 13 is

(a) 11 (b) 12

(c) 13 (d) none of these

2. The median of 13, 12, 10, 9 and 11 is

(a) 10 (b) 11

(c) 12 (d) 13

3. The median of 4, 5, 6, 7, 8, 9 is

(a) 6 (b) 6.5

(c) 7 (d) 7.5

4. The mode of 5, 5, 5, 7, 8, 9, 9, 9, 10 is

(a) 5 and 9 (b) 5 only

(c) 9 only (d) none of these

5. Variance is defined by

(a)
( )f x x

f
(b)

2
( )f x x

f

(c) 2( )f x x (d)

2( )f x x

f

6.
1

( )
n

i i

i

f x x  is always equal to

(a) 0 (b) 1

(c) 2 (d) 3
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7. Median is the measure of

(a) Central tendency (b) Dispersion

(c) Kurtosis (d) Skewness

8. In the relation, Mode = x(Median) –2 mean, 

the missing value x is equal to

(a) 1 (b) 2

(c) 3 (d) 4

9. Median of the distribution divides the entire  

data in parts equal to

(a) 1 (b) 2

(c) 3 (d) 4

10. If Q1 = 3, Q3 = 5, then semi-interquartile is 

equal to

(a) 1 (b) 4

(c) 8 (d) none of these

11. The range for the following distribution 9, 15, 

25 and 40 is

(a) 9 (b) 15

(c) 25 (d) 31

12. If n = 5, xi
2 = 125, x– = 5, then standard 

deviation is equal to

(a) 0 (b) 1

(c) 2 (d) 3

13. If n = 5, xi
2 = 125, xi = 25, then variance x

2

is equal to

(a) 3 (b) 2

(c) 1 (d) 0

14. Coefficient of variation is equal to

(a) 100
x (b) 100

x

(c) 100
x

(d) 100
x

15. If 25, 100,x  then coefficient of variation 

is equal to 

(a) 50 (b) 5

(c) 100 (d) none of these

16. Mean deviation is minimum when calculated 

about

(a) Mean (b) Median

(c) Mode (d) Geometric mean

17. Quartile deviation is equal to

(a) 2

3
 standard deviation

(b) 4

5
 standard deviation

(c)
3

2
 standard deviation

(d)
5

4
 standard deviation

18. If standard deviation of a distribution is 3, 

then quartile deviation is

(a) 1 (b) 4.5

(c) 2.4 (d) 4.5

19. Mean deviation is equal to

(a)
2

3
 standard deviation

(b)
3

2
 standard deviation

(c)
4

5
 standard deviation

(d)
5

4
 standard deviation

20. If mean deviation of a distribution is 4 then 

standard deviation is equal to

(a) 4

(b) 5

(c) 6

(d) None of these

21. The mean of first n positive integer is

(a)
1

2

n
(b)

1

2

n

(c)
2

n
(d) n + 1

22. The variance of first n positive integer is equal 

to

(a)
2 1

12

n
(b)

2 1

12

n

(c)
2 1

2

n (d)
2 1

2

n

23. If the coefficient of variation and standard 

deviation of a frequency distribution are 5 and 

2, then the mean of the distribution is

(a) 5 (b) 2

(c) 20 (d) 40

24. If Q1 = 14.95, Q3 = 22.95, then semi-

interquartile range is equal to

(a) 2 (b) 3

(c) 4 (d) none of these
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25. If the equations of regression lines are 

y = 0.4 x + 2 and x = 0.5y + 3, the correlation 

coefficient is equal to

(a) 0.20 (b) 0.20

(c) –0.20 (d) 0.20

26. If the correlation coefficient is +1, then two 

lines of regression are 

(a) Parallel

(b) Perpendicular

(c) Inclined at 60° to each other

(d) Coincident

27. If two regression lines are perpendicular 

to each other, then correlation coefficient 

between x and y is

(a) 0 (b) –1

(c) 1 (d) 0.50

28. The correlation coefficient rxy lies between

(a) –1, 0 (b) –1, 1

(c) 0, 1 (d) 1, 2

29. If regression coefficient of y on x is 2 and that 

of x on y is 4.5, then correlation coefficient is 

equal to

(a) 3 (b) 2

(c) 4 (d) 5

30. If y = x + 1 and x = 3y – 7 are the two lines of 

regression then x–  is equal to

(a) 2 (b) 3

(c) 4 (d) 1

31. If y = x + 1 and x = 3y – 7 are the two lines of 

regression then y– is equal to

(a) 1 (b) 2

(c) 3 (d) 4

32. If y = x + 1 and x = 3y – 7 are the two lines of 

regression then correlation coefficient is

(a) 1 (b) 2

(c) 3 (d) 3

33. If x and y are independent variables then 

correlation coefficient is equal to

(a) 0 (b) 1

(c) –1 (d)
1

2

34. If the two regression lines are perpendicular to 

each other then correlation coefficient is

(a) –1 (b) 0

(c)
1

2
(d) 1

35. The point of intersection of the two regression 

lines is

(a) x (b) y

(c) ( , )x y (d) None of these

36. The moment coefficient of skewness is given 

by

(a) 1 (b) 1

(c) 2 (d) 2 – 3

37. A frequency curve is said to be Mesokurtic if 

2 is equal to

(a) 0 (b) 1

(c) 2 (d) 3

38. When the variables are independent, the two 

lines of regression are

(a) Perpendicular

(b) Parallel

(c) Coincide to each other

(d) Inclined at 45° to each other

39. Degree of peakedness is measured by

(a) Central tendency (b) Dispersion

(c) Kurtosis (d) Skewness

40. Quartile deviation of skewness is equal to

(a) 3 1 2

3 1

2Q Q Q

Q Q
(b) 3 1 2

3 1

2Q Q Q

Q Q

(c) 3 1

2

Q Q
(d) 3 1

2

Q Q

ANSWERS

1.(a) 2.(b) 3.(b) 4.(a) 5.(b) 6.(a) 7.(a) 8.(c) 9.(b) 10.(a)

11.(d) 12.(a) 13.(d) 14.(b) 15.(a) 16.(b) 17.(a) 18.(a) 19.(c) 20.(b)

21.(a) 22.(b) 23.(d) 24.(c) 25.(b) 26.(d) 27.(a) 28.(b) 29.(a) 30.(a)

31.(c) 32.(c) 33.(a) 34.(b) 35.(c) 36.(b) 37.(d) 38.(a) 39.(c) 40.(a)



6.1 INTRODUCTION

In this chapter we shall discuss some elementary definitions related to the probability theory such as 

addition rule of probability, joint probability, independent events, conditional probability, theorem of 

total probability, Baye’s theorem and its application. We shall also discuss the discrete and continuous 

random variables and in the later part of the chapter some important discrete distributions such as 

binomial and poisson distributions and continuous distributions such as uniform, exponential, normal 

distributions along with their properties and related problems will be discussed.

Probability or chance is a word which is used by everyone in his/her lives. For example, we may 

say probably it may rain today, we may say it is more likely to have a good yield of wheat in district 

A than in district B, it means that we expect better yield of wheat from district A than from B. This 

expectation, of course comes from the knowledge about the conditions of whether in the month of 

particular season.

In fact we can say that the branch of mathematics  which studies the influence of chance is known as 

theory of probability. Therefore, the probability is a concept which numerically measures the degree of 

uncertainty or uncertainty of occurrence or non-occurrence of events. Probability theory is quite useful 

in the study of subjects like engineering, social science, genetic, physics, chemistry, biology, medical 

sciences, etc.

In (1501–1576), an Italian mathematician Jerome Cardon wrote the first book on probability theory 

entitled “Book on Game of Chance”. Later Pascal (1623–1662), Fermat (1601–1665), J. Bernoulli 

(1654–1705), De Moivre (1667–1754), Chebychev (1821–1894), A.A. Markov (1854–1922) and other 

mathematicians made out standing contributions in probability theory.

Before giving the proper and various definitions of probability, we shall define certain terms which 

will be used in the theory of probability.

6.2 TERMINOLOGY

(i) Set:  A set is a collection of objects under study. Sets are usually denoted by capital letters

A, B, C, X, Y, Z, etc. For example, students of electrical engineering in a college, rivers of 

India, states of India, etc.

(ii) Experiment:  An experiment is a physical process that is observed and whose result is noted. 

For example, turning a switch on or off, throwing a dice, etc. Experiments are of two types

(a) deterministic and (b) non-deterministic experiment.

Probability and 

Distribution6
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(a) Deterministic experiment:  If we are sure about the outcome of the experiment before 

conducting the experiment, then it is known as deterministic experiment. For example, 

constructing a wall, throwing a stone upwards, etc.

(b) Non-deterministic experiment:  An experiment is called a non-deterministic, random, 

probabilistic or stochastic if we are not sure that which of the possible outcomes will 

occur when an experiment is conducted. Here after an experiment means random 

experiment. For example, tossing a coin, throwing a dice, etc.

(iii) Trial:  A single performance of an experiment is called a trial. For example, tossing a coin.

(iv) Sample space or sample point:  A collection of all possible outcomes of a random experiment 

is called a sample space and usually denoted by S. The elements of a sample space are called 

sample points.

  For example, if a dice is thrown, then any one of 1, 2, 3, 4, 5 or 6 will appear on the face. 

Hence, sample space S = {1, 2, 3, 4, 5, 6}.

  Therefore, set S is called sample space and 1, 2, 3, 4, 5 and 6 are called sample points of S.

(v) Discrete sample space:  A sample space is called to be discrete, if it has finitely many or 

a countably infinite number of elements. For example, tossing of a coin the sample space

S = {H, T}, throwing a dice, the sample space S = {1, 2, 3, 4, 5, 6}, etc.

(vi) Continuous sample space:  A sample space is said to be continuous; if the elements of the 

sample space constitute a continuum. For example, all the points on a line segment.

(vii) Event:  Any subset A of a sample space S is called an event. In tossing of a coin, we have

S = {H, T}.

Here , {H}, {T} and {H, T} are sub sets of S and each of them is an event.

  An event can further be divided into two categories (a) simple or elementary event and

(b) compound event.

(a) Simple or elementary event:  If an event has only one sample point and cannot be further 

divided into smaller events then it is known as simple or elementary event. For example, 

getting 1, 2, 3, 4, 5 and 6 in throwing a dice is an elementary event.

(b) Compound event:  If an event has more than one sample point and can be obtained by 

combining the several elementary events is called a compound event. For example, 

when a coin is tossed twice then sample space S = {HH, HT, TH, TT} and each event of 

S is a compound  event.

(viii) Favourable events:  The number of cases which favours an event in a trial is the number of 

favourable outcomes which entail the happening of the event. For example, in throwing two 

dice, the number of cases favourable of getting the sum 5 is {1, 4}, {2, 3}, {3, 2} and {4, 1}, 

i.e., 4.

(ix) Equally likely events:  If there is no reason to expect any one event in preference to any other 

event, then the events are called equally likely events. For example, in throwing a die, all the 

six faces are equally likely to occur.

(x) Compliment of an Event:  Let S be a sample space and A be any event than compliment of 

event A denoted by A  is the set of all those points of S which 

are not in A. It is also denoted by .A

orA A S A

(xi) Mutually Exclusive Events:  Let A and B be two events then A

and B are said to be mutually exclusive events, if there is no 

common point in both the events i.e., A B
Fig. 6.1
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For example, in throwing a dice

    S = {1, 2, 3, 4, 5, 6}

and let A = set of odd numbers = {1, 3, 5} and B = set  of even numbers = {2, 4, 6}

A B  and A, B are mutually exclusive events or some times we call them disjoint 

events.

(xii) Exhaustive events:  The total number of possible outcomes in any trial of a random experiment 

is called exhaustive events.

(xiii) Odd in favour of an event and odd against an event:  Let there are be m outcomes favourable 

to a certain event and n outcomes are not in favour to the event in a sample space S, then odd 

in favour of the event 
m

n
 and odd not in favour or against of the event = .

n

m

(xiv) Permutation:  A permutation is an arrangement of objects in a definite order. The number of 

permutations of n distinct objects used r at a time, denoted by

!
or

( )!

n
r

n n
P

n r n r

(xv) Combination: A combination is a selection of objects regardless of any order. The number of 

combinations of n distinct objects selected r at a time denoted by 

      

!
or

! ( )!

n
r

n n n
C

r r n r r n r

(xvi) Union of Events:  Let A and B be two events, then A union B(A B) is the event that consists 

all the points either in A or in B or in both A and B.

(xvii) Intersection of Events:  Let A and B be two events then A intersection B (A B) is the set of 

all those points that are contained in both A and B.

Example 1 In how many ways can one make a first, second, third, and fourth choice among the 

ten firms leasing construction equipment.

Solution

n = 10 and r = 4 then the number of ways = 10
4 4

10!

(10 4)!

n
P P

 = 
10!

10 9 8 7 5040 ways
6!

Example 2 An electronic controlling mechanism requires 4 identical  memory chips. In how 

many ways can this mechanism be assembled by placing the 4 clips in the four positions within the 

controller?

Solution

n = 4 and r = 4, then no. of ways = 4
4

4! 4!

(4 4)! 0!
P  = 4·3·2·1 = 24

Example 3 In how many ways can 3 of 20 laboratory assistants be chosen to assist with an 

experiment?

Solution

n = 20 and r = 3, the number of ways = n
r

n
C

r
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= 20
3

20 20! 20! 20 19 18
1140 ways

3 3!(20 3)! 3!17! 3 2 1
C

Example 4 In how many different ways can the head of a research laboratory choose 2 chemists 

from among 7 applicants and 3 physicists from among 9 applicants?

Solution The 2 chemists can be chosen in 
7

2
 ways = 21 ways and 3 physicists can be chosen in 

9

3ways = 84 ways.

Total number of ways of choosing 2 chemists and 3 physicists

= 21 × 84 = 1,764 ways.

Example 5 Let S = {x|x = 1, 2, 3, 4, 5, …}, where x is the time in hours required to complete a 

chemical reaction be a sample space which is used to model,

Let      { | 2 15} and

{ |1 110}

A x x

B x x

be two events defined on S. Find

(a) A B  (b) A B  (c) A

Also represent them by Venn diagrams.

Solution

(a) { |1 110} {1, 2, ..., 110}A B x x

(b) { | 2 15} {2, 3, ..., 14}A B x x

(c) { | } { | 15} {15, 16,...,}A x x A x x

S, A B, A B and A1 are denoted by the following diagrams known as Venn diagrams.

Fig. 6.2
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EXERCISE 6.1

1. If there are 9 cars in a race, in how many different way can they be placed first, second and 

third?

2. A special purpose computer contains 3 switches, each of which can be set in 3 different way. 

In how many ways can the computer’s bank of switches be set?

3. In an optics kit there are 6 convex lenses, 4 concave lenses and 3 prisms. In how many ways 

can one choose one of the convex lenses, concave lenses and one of the prisms?

4. In a small class, each of the students must write a report on one of 8 field trips. In how many 

different ways can they choose one of the field trips if:

(a) Number 2 students may choose the same field trip;

(b) There is no restrictions on their choice.

5. In how many ordered ways can a television director schedule 6 different commercials during 

the 6 times slots allocated  to commercials during the telecast of the first period of a cricket 

match.

6. Determine the number of ways in which a manufacturer can choose 2 of 15 locations for a new 

warehouse?

7. A carton of 12 rechargeable batteries contain one that is defective. In how many ways can an 

inspector choose 3 of the batteries and

(a) get the one that is defective;

(b) not get the one that is defective

8. If A is the event that a certain student is taking a course in Engineering Mathematics and 

B is the event that the student is taking a course in Engineering Graphics. What events are 

represented by the shaded regions of four Venn diagram in Figs 6.3(a) and (b).

9. Find n if (i) 21
2

n
(ii) 105

2

n

Fig. 6.3
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10. Use Venn diagram to show that

    ( )A B A B

Answers

1. 504    2.  6

3. 72    4.  (a)  1680 (b)  4096

5. 720    6.  105

7. (a)  55  (b)  165

8. (i) A  (ii) A   (iii) A B (iv) A B

9. (i) n = 7(ii) n = 15

6.3 DEFINITION OF PROBABILITY

The chance of happening of an event when expressed quantitiatively is called probability. We shall 

define probability in the following three ways.

(i) Classical definition of probability.

(ii) Empirical or statistical definition of probability.

(iii) Axiomatic definition of probability.

(i) Classical Definition of Probability Let a random experiment results ‘n’ mutually 

exclusive and equally likely outcomes and out of which ‘m’ outcomes are favourable to a particular 

event A, then the probability of A is denoted by

      

Number of favourable outcomes
( )

Total number of outcomes

m
P A

n

Here m = number of favourable outcomes to A

n – m = non-favourable number of outcomes to A and set of non-favourable number of 

outcomes is denoted by ( ) 1 1 ( )
n m m

A P A P A
n n

P(A) + P(A ) = 1

       If P(A) = Probability of success of an event A = p and

P(A ) = Probability of failure of event A = q

then p = ( ) , 0 1
m

P A p
n

and q = ( ) 1 1 , 0 1
n m m

P A p q
n n

p + q = 1

Example 6 Find the probability of drawing a queen from a well-shuffled deck of 52 cards.

Solution

Number of queens = 4

Total number of cards = 52

Number of ways a queen can be drawn from four queens = 4C1 = 4 = m
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Number of ways a card can be drawn from 52 cards = 52
C1 = 52 = n

Let A be the event that drawn card is queen, then

    

4 1
( )

52 13

m
P A

n

Example 7 If from a lottery of 30 tickets, marked 1, 2,…, 30, four tickets are drawn, what is the 

probability that the drawn tickets always marked with number 1 and 2 among them.

Solution When two tickets are always numbered 1 and 2, then remaining two tickets can be drawn in 
28

C2 ways. Let A be the event that among drawn four cards 2 are marked 1 and 2.

     28 28
2 2( ) 1.1.n A m C C

4 cards from 30 tickets can be drawn in 30c2
 ways = n

     

28
2

30
2

2
( )

145

Cm
P A

n C

Remark If P(A) = 1, then A is called sure event and if P(A) = 0, it is known as impossible event.

Limitations of classical definition of probability are as follows:

1. The elementary events must be equally likely, which is not always possible.

2. n, the number of exhaustive events must always be finite.

If n is infinitely large, then we use Empirical or Statistical definition of probability.

(ii) Empirical  or Statistical Definition of Probability

Let m = frequency of occurrence of event A

   n = number of independent trials of a random experiment which are repeated under the same 

conditions.

Then ( ) lim ,
n

m
P A

n
 provided limit is unique and finite. Where 

m

n
 relative frequency of the

event A in n trials. If n  then 
m

n
 is very close to actual probability. This definition of probability is 

also known as relative frequency definition of probability.

Example 8 If records show that 800 of 1000 tested ceramic insulators were able to withstand a 

certain thermal shock. Find the probability that any one untested insulator will be able to withstand the 

thermal shock.

Solution Here m = 800, n = 1000. Let A be the event that any untested insulator will be able to 

withstand the thermal stock.

P(A) = 
800

0.80
1000

Example 9 An electric engineer is studying the peak demand at a power plant. It is observed that 

90 of the 100 days randomly selected for study from past records, the peak demand occurred between

6 and 7 p.m. What is the probability of occurring the peak demand between 6 and 7 p.m. on next day?

Solution Here, m = 90, n = 100
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Let A be the event that demand will be on peak between 6 and 7 p.m. on next, then

      

90
( ) 0.90

100
P A

Limitations of the Statistical Definition of Probability:  Here the difference between the relative 

frequency
m

n
 and actual probability p will be smaller and smaller as n becomes larger and larger, i.e. 

m
p

n
 as n , but in actual practice n is always a finite number however large. Therefore 

m

n
 will 

not give an exact probability, it will always give an approximate value.

(iii) Axiomatic Definition of Probability If S is the sample space and A be any event of a 

random experiment, then

(a) 0 ( ) 1P A  for each event A S

(b) P(S) = 1

(c) If A1 and A2 are two mutually exclusive events in S, then

P(A1 A2) = P(A1) + P(A2)

(a), (b) and (c) are known as axioms of probability.

Example 10 Mr. X who is a broker feels that the probability that a given stock will go up in value 

during the day’s trading is 0.6 and the probability that it will go down in value is 0.1. What is the 

probability that it will go up or down?

Solution Let A be the event that a given stock will go up in value and B be the event that a given stock 

will go down in value.

Given P(A) = 0.6 and P(B) = 0.1

    ( ) ( ) ( ) 0.6 0.1 0.7P A B P A P B  (Using (iii) axiom of probability)

Generalization of third axiom of probability:  If A1, A2, …, An are mutually exclusive events in a 

sample space S, then

    1 2 1 2( ... ) ( ) ( ) ( )n nP A A A P A P A P A

or    
1

1

( )
nn

i i
i

i

P A P A

This can be proved using mathematical induction.

Example 11 A transport company needs tyres for its trucks and the probabilities are 0.18, 0.22, 

0.02, 0.23, 0.30 and 0.05 that it will buy Goodyear tyres, Uniroyal tyres, Michelin tyres, General tyres, 

Goodrich or Armstrong tyres. Find the probability that it will buy

(i) Goodyear or General tyres.

(ii) Uniroyal, Michelin or Goodrich tyres.

(iii) Goodyear, Uniroyal, Armstrong or Goodrich tyres.

Solution Let A, B, C, D, E and F be the events that the transport company will buy Goodyear, Uniroy-

al, Michelin, General, Goodrich and Armstrong tyres respectively.

Given ( ) 0.18, ( ) 0.22, ( ) 0.02, ( ) 0.23P A P B P C P D

( ) 0.30 and ( ) 0.05P E P F  (All events are mutually exclusive events).
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(i)    ( or ) ( ) ( ) ( ) 0.18 0.23 0.41P A D P A D P A P D

(ii) ( or or ) ( ) ( ) ( ) ( )

0.22 0.02 0.30 0.54

P B C E P B C E P B P C P E

(iii) ( or or or ) ( )

( ) ( ) ( ) ( )

0.18 0.22 0.05 0.30 0.75

P A B F E P A B F E

P A P B P F P E

Example 12 The distribution of blood type in the United States is roughly 41% type A, 9% type B,

4% type AB and 46% type O. An individual brought into emergency room and is to be one of above 

blood-typed, what is probability that the type will be A, B, or AB.

Solution Let A, B, C, D be the events that blood of an individual will be of type A, B, AB or O respec-

tively, then

( ) 0.41, ( ) 0.09, ( ) 0.04 and ( ) 0.46P A P B P C P D

To find ( ) ( ) ( ) ( )P A B AB P A P B P C    ( A, B and C be are mutually exclusive events)

= 0.41 + 0.09 + 0.04 = 0.54

6.4  ADDITION LAW OF PROBABILITY OR THEOREM OF TOTAL 
PROBABILITY

Theorem 6.4.1

Let A and B be the mutually exclusive events, then prove that ( ) ( ) ( )P A B P A P B
Proof:  Let n be the total number of equally likely cases unit of which m1 be the number that event A

occurs and m2 be the number that event B occurs then the number of favourable cases of occurring A

or B = m1 + m2

   1 2 1 2( or ) ( )
m m m m

P A B P A B
n n n

but     1 2( ) and ( )
m m

P A P B
n n

    ( ) ( ) ( )P A B P A P B

Theorem 6.4.2

Let A and B be two events then show that ( ) ( ) ( ) ( )P A B P A P B P A B

Fig. 6.4



6.10 Engineering Mathematics for Semesters III and IV

Proof:  Using Venn diagram

      ( )A B A A B

where andA A B  are mutually exclusive events.

    ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

P A B P A P A B

P A P A B P A B P A B

P A P B P A B

( ) and ( ) and mutually exclusive

events and ( ) ( )

( ) ( ) ( )

A B A B

B A B A B

P B P A B P A B

    ( ) ( ) ( ) ( )P A B P A P B P A B .  Hence, the result.

Remark:  If A and B are mutually exclusive events, then

   ( ) 0P A B

and ( ) ( ) ( )P A B P A P B   (Which is same as theorem 6.4.1)

Theorem 6.4.3

If A, B and C are any three events then

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P A B C P A P B P C P A B P A C P B C P A B C

Proof:

  

( ) ( ) [ ] ( ) [ ]

(Using Theorem 6.4.2)

( ) ( ) ( ) ( ) ( ) ( )

P A B C P A B C P A P B C P A B C

P A P B P C P B C P A B P A C

         

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

P A P B P C P B C P A B P A C P A B C

P A P B P C P A B P A C P B C P A B C

Hence, the result.

Theorem 6.4.4

Prove that ( ) 0P

Proof: S S   (S and  are mutually exclusive events)

    ( ) ( )P S P S

( ) ( ) ( )P S P P S

      ( ) 0P
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Theorem 6.4.5

Show that ( ) 1 ( )P A P A

Proof:   A A S

(A and A1 are mutually exclusive events)

   ( ) ( ) ( ) ( ) 1 ( ( ) 1)P A A P A P A P S P S

     ( ) 1 ( )P A P A

Hence, the result.

Example 13 A single dice is thrown once. Find the probability of getting a 3 or 5.

Solution In throwing a dice, the sample space is

S = {1, 2, 3, 4, 5, 6}

       (1) (2) (6) 1/6 (all are mutually exclusive events)P P P

    
1 1 1

(3 or 5) (3) (5)
6 6 3

P P P

Example 14 Find the probability of drawing a king or a heart or both from a dack of cards?

Solution Let A be the event that a king is drawn B be the event that drawn card is a heart.

then     
4

1

52
1

4 1
( )

52 13

C
P A

C

and     

13
1

52
1

13 1
( )

52 4

C
P B

C

and   
1

( )
52

P A B

    
1 1 1 4

( ) ( ) ( ) ( )
13 4 52 13

P A B P A P B P A B

Example 15 In throwing a pair of dice, find the probability of getting 3, 5 or 11.

Solution Total number of cases in throwing a pair of dice = 6 × 6 = 36.

Let A, B and C be the events that in throwing a pain of dice we get 3, 5, or 11.

then    
2 4 2

( ) , ( ) , ( )
36 36 36

P A P B P C

( ) ( ) ( ) ( ) ( , and are mutually exclusive events)

2 4 2 2

36 36 36 9

P A B C P A P B P C A B C
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Example 16 A bag contains 15 balls numbered from 1 to 15. If a ball is drawn at random, what is 

the probability of having a ball with a number which is a multiple of 2 or 3.

Solution Let A be the event that drawing ball has a number of multiple of 2 and 3 be the event that 

drawing ball has a number of multiple of 3.

, 12, 14} ( ) 7/15

{3, 6, 9, 12, 15} ( ) 5/15

{2, 4, 6, 8, 10

{6, 12} ( ) 2/15

( ) ( ) ( ) ( )

7 5 2 10 2

15 15 15 25 3

P A

B P B

A

A B P A B

P A B P A P B P A B

6.5 CONDITIONAL PROBABILITY

In our daily life, it is not always possible that two or more events always happen independently but their 

occurrence may depend on one another, i.e., the probability of one event depends on the happening of 

another event.

Definition:  Let A and B be two events in S, then conditional probability of A given B is

=
( )

( ) , ( ) 0.
( )

P A B
P A B P B

P B

Similarly probability of B given 
( )

( ) , ( ) 0.
( )

P A B
A P B A P A

P A

6.5.1  Theorem on Compound Probability of Multiplication Law of 
Probability

If A and B are any two events in sample space S, then

     

( ) ( ) ( ) ( ), if ( ) 0

( ) ( ), if ( ) 0

P A B P AB P A P B A P A

P B P A B P B

Similarly let A, B and C be three events then

  ( ) ( ) ( ) ( / ), provided ( ), ( ) 0.P A B C P A P B A P C A B P A P A B

6.5.2 Independent Events

Two events are said to be independent if happening or non-happening of the events do not depend on 

each other. If A and B are two events, then A and B are said to be independent if

or     

( ) ( ) and ( ) ( )

( ) ( ) ( ) ( )

P A B P A P B A P B

P AB P A B P A P B

This is called special multiplication rule for independent events.

Remark:  Therefore, we can say that two events A and B are independent, if and only if

(i) ( ) ( ), (ii) ( ) ( ) and (iii) ( ) ( ) ( )P A B P A P B A P B P A B P A P B

and if ( ) ( ) ( ),P A B P A P B  then A and B are not independent events. (iii) can be extended for more 

than two events.
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Definition:  Let E1, E2, …, En be n events, then E1, E2,…, En are independent if and only if

    1 2 1 2( ) ( ) ( ) ( )n nP E E E P E P E P E

Theorem

If A and B are independent events, then show that

(a) andA B  are independent events.

(b) andA B  are independent events.

(c) andA B  are independent events.

Proof:

(a) A B A B

    ( ) ( ) 1 ( ) [Using result ( ) 1 ( )]P A B P A B P A B P A P A

    

( ) 1 ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( and are independent events)

1 1 ( ) ( ) 1 ( )

1 ( ) 1 ( )

( ) ( )

P A B P A P B P A B

P A P B P A P B A B

P A P B P A

P A P B

P A P B

   Hence, the result.

(b) ( ) ( )B A B A B

andA B A B  are mutually exclusive events

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) 1 ( )

( ) ( )

P B P A B P A B

P A P B P A B

P A B P B P A

P A P B

andA B  are independent events.

(c) Same as (b).

Remark:  Term ‘independent’ is defined in terms of probability of events whereas mutually exclusive 

is defined in terms of events. Moreover, mutually exclusive events never have an outcome common 

but independent events do have common outcome(s) provided each event is non-empty. Clearly 

‘independent’ and ‘mutually exclusive’ do not have the some meaning.

Example 17 A dice is rolled. If the outcome is an even number what is the probability that it is 

prime?

Solution In rolling a dice, the sample space S = {1, 2, 3, 4, 5, 6}. Let A be the event that the number is 

even = {2, 4, 6} and B be the event that number is prime = {2, 3, 5}.
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Then {2} ( ) 2/6 1/3A B P A B

and ( ) 3/6 1/2P A

P(getting a prime number/getting an event number)

=
( ) 1/3 2

( ) 1/2 3

P A B

P A

Example 18 A family has two children. What is the probability that both are girls, given that at 

least one of them is a girl?

Solution

The sample space S = {(b, b), (b, g), (g, b), (g, g)},

where b = boy, g = girl.

Let A and B be the events that both are girls and at least one is girl respectively. Then

     
( ) 1/4 1

( / ) .
( ) 3/4 3

P A B
P A B

P B

Example 19 Find the probability of a 4 turning up at least once in two throws of a fair die.

Solution Let A be the event that a 4 turns up in first throw and B be the event that a 4 turns up in second 

throw.

   ( ) ( ) 1/6P A P B

    ( ) ( ) ( ) ( )P A B P A P B P A B

but A and B are independent events

    ( ) ( ) ( )P A B P A P B

( ) ( ) ( ) ( ) ( )

1 1 1 1 11

6 6 6 6 36

P A B P A P B P A P B

Example 20 The probability that a teacher will take an unannounced test during any class hour is 

1
.

6
 If a student is twice absent, what is the probability that he will miss at least one test?

Solution Let A be the event that the first test held on his first day of absence and B be the event of 

second test held on second day of his absence. A and B are independent events. Probability that he will 

miss at least one test is

     

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

6 6 6 6

11

36

P A B P A P B P A B

P A P B P A P B
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Example 21 If
1 1 2

( ) , ( ) and ( ) ,
2 3 3

P A P B P A B  then prove that andA B  are independent 

events.

Solution

1 1
Given ( ) ( )

2 2

1 2
( ) ( )

3 3

2
and ( )

3

P A P A

P B P B

P A B

We know that

2 1
( ) ( ) 1 ( ) 1

3 3
P A B P A B P A B

To prove andA B  are independent events, we must have

1
( ) ( )

3

1 1
2/3

2 3

P A P B

Hence, the result.

Example 22 A bag contains 10 red and 15 white balls. Two balls drawn in succession. What is the 

probability that one of them is white and other is red?

Solution Let A be the event that drawn ball is white and B be the event that drawn ball is red.

Total number of cases of drawing two balls = 25
C2

15 10
( ) and ( )

25 24
P A P B

The probability that one of them is white and then is red

( ) ( ) ( )

15 10 1
.

25 24 4

P A B P A P B

Example 23 A pair of dice is thrown, in which one is black and other is yellow and the events A

and B are defined as follows:

A is the event that doubles is rolled and B is the event that yellow dice shown a 1 or 4. Are the events 

A and B independent?

Solution Number of favourable cases to A = 6

      
6 1

( )
36 6

P A

Number of favourables cases to B = 12
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12 1

( )
36 3

P B

and
2 1

( )
36 18

P A B

     
( ) 1 1 1 ( ) 1 1 1

( ) , ( )
( ) 18 3 6 ( ) 18 6 3

P A B P A B
P A B P B A

P B P A

    ( ) ( ) ( ) 1/18P A P B P A B

But ( ) 1/6 ( ), ( ) ( ), and

( ) ( ) ( )

P A P A B P B A P B

P A B P A P B

A and B are independent events.

Example 24 If
1 2 3( ) 0.5, ( ) 0.4 and ( ) 0.3P A P A P A  and 

1 2 3( ) 0.06.P A A A  Are A1,

A2 and A3 independent events?

Solution For independence

1 2 3 2 3

1 2 3

( ) ( ) ( ) ( )

0.5 0.4 0.3 .06 ( )

P A A A P A P A P A

P A A A

Yes, A1, A2, A3 are independent events.

Example 25 Find P(A|B) if (i) , ( ) , and (iii) .A B ii A B B A

Solution

(i) Given A B

( ) ( )
( ) 0

( ) ( )

P A B P
P A B

P B P B

(ii) Given
( ) ( )

( / ) 1
( ) ( )

P A B P B
A B A B B P A B

P B P B

(iii) Given B  A A B = A

  
( ) ( )

( )
( ) ( )

P A B P A
P A B

P B P B

Example 26 A and B take turns in throwing two dice and the person who throws 9 first is to be 

awarded a prize. Show that if A has the first turn, their chances of winning the prize are in the ratio of 

9:8.

Solution Let E be the event of getting a sum of a when two dice are throwing. Following cases are 

favourable to the event E.

First dice 3 4 5 6

Second dice 6 5 4 3 (i.e., 4)

P(E) = 1/9 = p(say)

and P(E
–

) = 8/9 = q(say)
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According to the question, A will win if he throws 9 in first, third or fifth, ... throws.

Chance of A  winning A = p + q2
p + q4

p + ...

=
2 4

2 2 2

1 1/9
(1 )

1 1 8
1

9

p
p q q p

q q

=

1

99

17/81 17

Chances of winning B is = 
9 8

1
17 17

Ratio of chances of winning A and B are 
9 8

:
17 17

i.e. 9 : 8

Example 27 Ram and Rahul appear in an interview for two vacancies of the same post. The 

probability of Ram’s selection is 
1

7
 and that of Rahul’s selection is 

1
.

5
 What is the probability that

(i) both of them will be selected?

(ii) only one of them will be selected?

(iii) none of them will be selected?

Solution Let A and B respectively be the event that Ram and Rahul will be selected.

Given
1 1

( ) , ( )
7 5

P A P B

(i) P(Both will be selected) = 
1 1 1

( ) ( ) ( )
7 5 35

P A B P A P B

  (A and B are independent events)

(ii) P(only one of them will be selected) = ( or )P A B A B

      = ( ) ( )P A B P A B

  ( ( ) and ( )A B A B  are mutually exclusive events)

= ( ) ( ) ( ) ( )P A P B P A P B

=
1 1 1 1 2

1 1
7 5 7 5 7

(iii) P (none of them will be selected) = ( ) ( ) ( )P A B P A P B

                  = 
1 1 24

1 1
7 5 35
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6.5.3 Extension of Multiplication Law of Probability to n Events

Let A1, A2, …, An be n events, then

1 2 1 2 1 3 1 2 1 2 1( ) ( ) ( ) ( ), ( )n n nP A A A P A P A A P A A A P A A A A

where ( )i j k lP A A A A  be the conditional probability of the event Ai given that the events Aj,

Ak…, Al have already happened.

(i) Extension of Multiplication Law of Probability for n-independent Events—Let A1, A2, …, An

be n-independent events then

     
1 2 3 1 2( ) ) ( ) ( ) ( )n nP A A A A P A P A P A (1)

  The above result can be proved using the concept of independence, if A1, A2, …, An are 

independent events then

2 1 2 3 1 2 3 1 2 1( ) ( ), ( ) ( ), , ( ) ( )n n nP A A P A P A A A P A P A A A A P A

1 2 1 2( ) ( ) ( ) ( )n nP A A A P A P A P A

(ii) Pairwise Independent Events—Let A1, A2, …, An defined on the same space so that P(Ai) > 0; 

i = 1, 2, …, n, then these events are said to be pairwise independent, if every pair of two events 

is independent, i.e.,

( ) ( ) ( ), 1, 2, ...,i j i jP A A P A P A i j n

(iii) Mutually Independent Events—Let S denote the sample space for a number of events. The 

events in S are said to be mutually independent if the probability of the simultaneous occurrence 

of any finite number of them is equal to the product of their separate probabilities, i.e. if A1, A2,

…, An be n events in a sample space S, then they are said to be mutually independent if

1 2 1 2( ) ( ) ( ) ( )i i ik i i ikP A A A P A P A P A

  Hence, the events are mutually independent if they are independent by pairs, by triplets, and 

by quadruples and so on.

Example 28 Two fair dice thrown independently. Three events A, B and C are defined as 

follows:

(i) Odd face with the first dice.

(ii) Odd face with the second dice.

(iii) Sum of the number in the two dice are odd.

Are A, B and C mutually independent?

Solution A and B be the events in which odd face is with first and second dice respectively. When two 

dice are theorem then sample space S is as follows:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6); (2,1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6); (4,1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6); (6,1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

S

Now    
18

( ) 1/2, ( ) 18/36 1/2
36

P A P B
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The probability of sum of the numbers on the two dice is odd i.e., P(C) = 1/2

We have ( ) ( ) ( ) 1/4P A B P B C P A C

    ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

P A B P A P B

P A C P A P C

P B C P B P C

Now we have ( ) 0P A B C  because C can not happen when A and B happen.

Hence, ( ) ( ) ( ) ( )P A B C P A P B P C

The events A, B and C are pairwise independent but not mutually independent.

Example 29 For any three events A, B and C, show that

( ) ( ) ( ) ( )P A B C P A C P B C P A B C

Solution We have

( ) ( ) ( ) ( )P A B P A P B P A B

    [( ) ( )] ( ) ( ) ( )P A C B C P A C P B C P A B C

Dividing both sides by P(C), we get

( ) ( ) ( ) ( ) ( )
, ( ) 0

( ) ( )

A C B C P A C P B C P A B C
P P C

P C P C

=
( ) ( ) ( )

( ) ( ) ( )

P A C P B C P A B C

P C P C P C

       
[( )]

( ) ( ) ( )
( )

P A B C
P A C P B C P A B C

P C

       ( ) ( ) ( ) ( )P A B C P A C P B C P A B C

Example 30 Let A1, A2 and A3 be three events defined on a sample space S such that A2 A3 and 

P(A1) > 0, then prove that 2 1 3 1( ) ( ).P A A P A A

Solution

P A A
P A A

P A

P A A A A A A

P A
( )

( )

( )

( ) ( )

( )
3 1

3 1

1

2 3 1 2 3 1

1

=
P A A A

P A

P A A A

P A

( )

( )

( )

( )

2 3 1

1

2 3 1

1

2 3 1 2 3 1( ) and ( ) are mutually exclusive events) .A A A A A A
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    3 1 2 3 1 2 3 1( ) ( ) ( )P A A P A A A P A A A

=
2 3

2 1 2 3 1
2 3 2

( ) ( )
A A

P A A P A A A
A A A

        3 1 2 1 2 3 1( ) ( ) 0P A A P A A A A A

Example 31 If A, B and C are mutually independent events then A  B and C are also 

independent.

Solution We have to prove

P A B C P A B P C[( ) ] ( ) ( )

LHS = [( ) ]P A C B C   (By distributive law)

= ( ) ( ) ( )P A C P B C P A B C

= ( ) ( ) ( ) ( ) ( ) ( ) ( )P A P C P B P C P A P B P C [ A,B and C are mutually 

independent]

= ( )[ ( ) ( ) ( )] ( ) ( ) RHSP C P A P B P A B P C P A B

Hence, proved.

A B and C are independent events. 

Example 32 A book on statistics is independently reviewed by three reviewers favourably with 

probabilities
3 4 2

, and
5 7 5

 respectively. What is the probability that of the reviews:

(a) All will be favourable

(b) At least two reviews will be favourable

Solution Let A1, A2 and A3 be the events that the book on statistics is reviewed favourably by first, 

second and third reviewer. Then we are given

1 2 3

3 4 2
( ) , ( ) and ( )

5 7 3
P A P A P A

(a) P(All three will be favourable) = P(A1 A2 A3)

        = P(A1)·P(A2)·P(A3)          [ A1, A2 and A3 are mutually independent]

=
3 4 2 24

5 7 5 175

(b) P(At least two reviews will be favourable)

= 1 2 3 1 2 3 1 2 3 1 2 3( ) ( ) ( ) ( )P A A A A A A A A A A A A

= 1 2 3 1 2 3 1 2 3

1 2 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

P A P A P A P A P A P A P A P A P A

P A P A P A

       [ all events are mutually exclusive and A1, A2, A3 are 

mutually independent]
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=
3 4 3 3 3 2 2 4 2 3 4 2

5 7 5 5 7 5 5 7 5 5 7 5

=
94

175

EXERCISE 6.2

1. A committee consists of students, two of which are from 1st year, three from 2nd year and four 

from 3rd year. Three students are removed at random. What is the chance that (i) the three 

students belong to different classes, (ii) two belong to the same class and third to the different 

classes, (iii) the three belong to the same class.

(V.T.U. 2002S)

2. What is the chance of that a non-leap year should have 53 Saturdays.

(Madras 2003)

3. A bag contains 7 red and 12 white balls. Find the probability of drawing a red ball.

4. In a single throw of two dice, find the probability of getting a total of 9 or 11.

5. Given
1 1 1

( ) , ( ) and ( ) ,
2 3 4

P A P B P A B  find the value of P(A B).

(Burdwan 2003)

6. Let A and B be two events with 
1 1 1

( ) , ( ) and ( ) .
2 2 4

P A P B P A B  Find P(A/B),

( ).P A B

(Kurukshetra 2009, V.T.U. 2003S)

7. When a coin is tossed four times, find the probability of getting (i) exactly one head (ii) at most 

three heads and (iii) at least two heads.

(V.T.U. 2003)

8. Ten coins are thrown simultaneously. Find the probability of getting at least seven heads.

(P.T.U. 2003)

9. Suppose 5 cards are drawn at random from a pack of 52 cards. If all cards are red, what is the 

probability that all of them are hearts?

(Mumbai 2005)

10. If the odds in favour of an event are 4 to 5. Find the probability that it will occur.

11. Find the probability of drawing either an ace or a spade or both from a pack of 52 cards.

12. In a class of 66 students 13 are boys and the rests are girls. Find the probability that a selected 

student will be a girl.

13. Given that a boy will pass an examination in 
2

5
 and for a girl it is 

2
.

5
 What is the probability 

that at least one of them passes examination?

14. A bag contains discs of which 4 are red, 3 are blue and 2 are yellow. A disc is drawn at random 

from the bag. Find the probability that it will be (i) red, (ii) yellow, (iii) blue (iv) not blue.

15. For any two events A and B, prove that

(i) ( ) ( ) ( )P A B P A P A B

(ii) ( ) ( ) ( )P A B P B P A B



6.22 Engineering Mathematics for Semesters III and IV

16. If B  A, then show that

(i) ( ) ( ) ( )P A B P A P B

(ii) ( ) ( )P B P A

(iii) ( ) ( )P A B P A  and 

 (iv) ( ) ( )P A B P B

17. If A, B and C are three mutually exclusive events. In this assignment, are the following 

probabilities possible?

P(A) = 0.3, P(B) = 0.4 and P(C) = 0.5

18. If P(A) = 0.9 and P(B) = 0.6, then show that ( ) 0.5.P A B

19. If ( ) 0.9, ( ) 0.6 and ( ) 0.5,P A P B P A B  determine (i) ( )P A B  and (ii) ( ).P A B

20. Three groups of children contains 3 girls and 1 boy; 2 girls and 2 boys; 1 girl and 3 boys 

respectively. One child is selected at random from each group. What is the probability that 

among three selected children one is girl and 2 are boys.

21. Two computers C1 and C2 are to be marketed. A salesman who is assigned the job of finding 

customers for them has 60% and 40% chances respectively of succeeding in case of computers 

C1 and C2. The computers can be sold independently. Given that he was able to sell at least one 

computer, what is the probability that computer C1 has been sold?

22. Amar can either take a course in computer or mathematics. If Amar takes the computer course, 

then he will get an A grade with probability 
1

,
2

 if he takes the mathematics course then he 

will get an A grade with probability 
1

.
3

 Amar decides to base his decision  on the flip of a fair 

coin. What is the probability that Amar will get an A grade in mathematics?

23. A pair of dice is tossed twice. Find the probability of scoring 7 points (a) once (b) at least once 

(c) twice. (Kurukshetra 2009S; V.T.U. 2004)

24. A box A contains 2 white and 4 black balls. Another box B contains 5 white and 7 black balls. 

A ball is transferred from the box A to box B. Then a ball is drawn from the box B. Find the 

probability that it is white. (V.T.U. 2004)

25. A biased coin is tossed till a head appears for the first time. What is the probability that the 

number of required tosses is odd? (Mumbai 2006)

26. Two persons A and B toss an unbiased coin alternatively on the understanding that the first 

who gets the head wins. If A starts the game, find their respective chances of winning.

(Madras 2000S)

27. Two cards are selected at random from 10 cards numbered 1 to 10. Find the probability p that 

the sum is odd if

  (i) the two cards are drawn together.

 (ii) the two cards are drawn one after the other without replacement.

(iii) the two cards are drawn one after the other with replacement.

28. The odds that a book will be reviewed favourably by three independent critics are 5 to 2, 4 to 

3 and 3 to 4. What is the probability that of the three reviews, a majority will be favourable?

(V.T.U. 2003)
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29. I can hit A target 3 times in 5 shots, B target 2 times in 5 shots and C target 3 times in 4 shots. 

They fire a volley. What is the probability that (i) two shots hit (ii) at least two shots hit?

(A.M.I.E.T.E, 2003, Madras 2000S)

30. A problem in mechanics is given to three students A, B and C whose chances of solving it are 

1 1 1
, and

2 3 4
 respectively. What is the probability that the problem will be solved?

(V.T.U. 2004)

31. The students in a class are selected at random one after the other for an examination. Find the 

probability p that the boys and girls in the class alternate if

(i) the class consists of 4 boys and 3 girls.

(ii) the class consists of 3 boys and 3 girls.

(J.N.T.U. 2003)

32. A purse contains 2 silver and copper coins and a second purse contains 4 silver and 4 copper 

coins. If a coin is selected at random from one of the two purses, what is the probability that it 

is a silver coin?

(Osmania 2002)

33. A box I contains 5 white balls and 6 black balls. Another box II contains 6 white balls and 4 

black balls. A box is selected at random then a ball is drawn from it; (i) what is the probability 

that the ball drawn will be white? (ii) Given that the ball drawn is white, what is the probability 

that it came from box I.

(Mumbai 2006)

34. A speaks the truth in 75% cases and B in 80% cases. In what percentage of cases, are they like 

to contradict each other in stating the same fact?

(V.T.U. 2002S)

35. A student takes his examination in four subjects P, Q, R and S. He estimates his chances of 

passing in P as 
4

,
5

 in Q as 
3

4
 in R as 

5

6
 and in S as 

2
.

3
 To qualify, he must pass in P and at 

least two other subjects. What is the probability that he qualifies?

(Madras 2000S)

36. Let A1 and A2 be mutually exclusive events such that P(A1), P(A2) > 0. Show that  these events 

are not independent.

37. Let A1 and A2 be independent events such that P(A1), P(A2) > 0. Show that these events are not 

mutually exclusive events.

38. If A, B and C are random events in a sample space and if A, B and C are pairwise independent 

and A is independent of (B C), then show that A, B and C are mutually independent.

39. Consider the example 32 and calculate the probability

(a) Exactly one review will be favourable.

(b) Exactly two reviews will be favourable.

(c) At least one of the reviews will be favourable.

Answers

1.(i)
2

7
(ii)

55

84
     (iii)

5

84
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2.
1

7
  3.

7

19
   4.

1

6

5. 7/12  6.
3 7

( / ) , ( )
4 12

P A B P A B

7. (i)
1

4
  (ii)

7

8
  (iii)

11

16

8.
15

1024
  9.  0.11   10.

4

9

11.
4

13
  12.

53

66
   13.

19

25

14. (i)
4

9
  (ii)

2

9
  (iii)

1

3
  (iv)

2

3

17. No ( ) ( ) ( ) ( ) 1.2 1P A B C P A P B P C

19. (i)  0.4  (ii)  0

20.
13

22
  21.  0.7895   22.

1

6

23. (a)
5

18
  (b)

11

36
  (c)

1

36
  24.

16

39

25.
1

1 q
 (where p is the probability of getting a head and q is the prob. of getting a tail).

26. Chance of A’s winning = 2/3 and chance of B’s winning is = 
1

.
3

27. (i) p = 5/9  (ii)
5

9
p   (iii) p = 1/2

28.
209

343
   29.(i) 0.45 (ii) 0.63

30.
3

4
   31.(i)

1

35
(ii)

1

10

32.
5

12
   33.(i)

83

110
(ii)

25

83

34.
7

20
   35.

61

90

39. (a)
63

175
  (b)

70

175
(c)

157

175
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6.6 BAYE’S THEOREM

Before we discuss Baye’s theorem, we shall define the rule of elimination or theorem of total 

probability.

6.6.1 Rule of Elimination or Theorem of Total Probability

If the event A can occur along with event E. Suppose that event E occur in n mutually exclusive ways 

E1, E2, …, En, then

1

( ) ( ) ( ),
n

i i

i

P A P E P A E  provided ( ) 0 1, 2, ..., .iP E i n

Proof

1 2 nA A E A E A E

Events 1 2( ), ( ), ( )nA E A E A E  are mutually exclusive events.

P(A) = 1 2( ) ( ) ( )nP A E A E A E

P(A) = 1 2( ) ( ) ( )nP A E P A E P A E

=

1

( )
n

i

i

P A E

Using conditional probability

( ) ( ) ( )i i iP A E P E P A E

      

1

( ) ( ) ( )
n

i i

i

P A P E P A E

6.6.2 Baye’s Theorem

Let E1, E2, …, En be n mutually exclusive events of which one of them must occur. Let A be any event, 

then

1

( ) ( ) ( )
( )

( )
( ) ( )

i i i
i n

i i

i

P A E P E P A E
P E A

P A
P E P A E

Example 33 A consulting firm rents cars from three agencies A1, A2 and A3. 20% of the cars are 

rented from A1, 20% from A2 and remaining 60% from A3. If 20% of the cars rented from A1, 10% of 

cars rented from A2 and 2% of cars rented from A3 have bad tyres. What is the probability that a car 

rented from consulting firm will have bad tyres?

Solution Let E1, E2 and E3 be the events that cars are rented from firms A1, A2 and A3 respectively, and 

let A be the event that car has bad tyres.

Given   1 2 2( ) 0.20, ( ) 0.20 and ( ) 0.60P E P E P E

1 2 3( ) 0.20, ( ) 0.10, ( ) 0.02P A E P A E P A E
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3

1

( ) ( ) ( )i i

i

P A P E P A E

= 20 × 0.20 + 0.20 + 0.10 + 0.60 × 0.02 = 0.072

Example 34 A bag contains 3 black and 4 white balls. Two balls are drawn at random one at a 

time without replacement. What is probability that second ball is white?

Solution Let E1 and E2 be the events that first ball is black and first ball is white respectively. Let A be 

the event that second ball is white.

then      1 2( ) ( )A A E A E

1 1 1( ) ( ) ( )P A E P E P A E

=
3 4 2

7 6 7

2 2 2Similarly ( ) ( ) ( / )P A E P E P A E

=
4 3 2

7 6 7

P(A) = 1 2

4
( ) ( )

7
P A E P A E

Example 35 At an electronics firm, it is known from past experience that the probability a new 

worker who attended the company’s programme meets the production quota is 0.90. The corresponding 

probability for a new worker who did not attend the training programme is 0.25. It is also known that 

80% of all new workers attend the company’s training programme. Find the probability that a new 

worker who met the production quota would have attended the company’s training programme?

Solution Let E1 be the event that a new worker attended the company’s training programme and E2 be 

the event that a new worker did not attend the company’s training programme. Let A be the event that 

a new worker met the production quota.

    1 1
1

1 1 2 2

( ) ( )
( )

( ) ( ) ( ) ( )

P E P A E
P E A

P E P A E P E P A E
  (Using Baye’s Thoerem)

where    1 1( ) 0.80, ( ) 0.90P E P A E

2 2( ) 0.20, ( ) 0.25P E P A E

    
1

0.80 0.90 72
( )

0.80 0.90 0.20 0.25 77
P E A

Example 36 There are 3 true coins and one false coin with ‘head’ on both sides. A coin is chosen 

at random and tossed 4 times. If ‘head’ occurs all the 4 times, what is the probability that the false coin 

has been chosen and used?
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Solution Let T and F be the events of being true coin and false coin respectively, then

3 1
( ) , ( )

4 4
P T P F

Let A be the event of getting 4 heads in 4 losses, then

4
1 1

( ) , and ( ) 1
2 16

P A T P A F

    
( ) ( )

( )
( ) ( ) ( ) ( )

P F A F
P F A

P F P A F P T P A T
  (By Baye’s Theorem)

=

1 1
1

164 4
1 3 1 19/64 19

1
4 4 16

Example 37 In a certain college 25% of boys and 10% of girls are studying mathematics. The 

girls constitute 60% of the student body.

(i) What is the probability that mathematics is being studied.

(ii) If a student is selected at random and is found to be studying mathematics, find the probability 

that student is a girl?

Solution Let G be the event that student is girl and B be the event that student is boy. Let M be the 

event that mathematics being studied.

     ( ) 0.60, ( ) 1 0.60 0.40P G P B

The probability that mathematics is studied that a student is boy i.e., P(M|B) = 0.25

Similarly P(G|B) = 0.10

(i) The probability that mathematics being studied

( ) ( ) ( ) ( ) ( )

0.60 0.10 0.40 0.25

0.06 0.10 0.16

P M P G P M G P B P M B

(ii) The probability that a mathematics student is a girl

( ) ( )
( )

( )

0.60 0.10 .06 3

0.16 .16 8

P G P M G
P G M

P M

EXERCISE 6.3

1. An urn I contains 3 white and 4 red balls and an urn II contains 5 white and 6 red balls. One 

ball is drawn at random from one of the urn and is found to be white, find the probability that 

it was drawn from urn I.
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2. For example 36, if a student is selected at random and is found to be studying mathematics, 

find the probability that student is a boy.

3. There are three bags: first containing 1 white, 2 red, 3 green balls; second containing 2 white, 

3 red, 1 green balls and third containing 3 white, 1 red and 2 green balls. Two balls are 

drawn from a bag chosen at random. These are found to be one white and one red. Find the 

probability that the balls so drawn came from the second bag. (J.N.T.U. 2003)

4. The contents of three urns are; 3 white, 2 red, 3 green balls; 2 white, 1 red, 1 green balls and

4 white, 5 red and 3 green balls. Two balls are drawn from an urn chosen at random. These are 

found to be one white and one green. Find the probability that the balls are drawn came from 

the third urn. (Kurukshetra 2007)

5. In a bolt factory, there are four machines A, B, C, D manufacturing 20%, 15%, 25% and 40% 

of the total output respectively. Of their outputs 5%, 4%, 3% and 2% in the same order are 

defective bolts. A bolt is chosen at random from the factory’s production and found defective. 

What is the probability that the bolt was manufactured by machine A or machine D.

(Hissar 2007, J.N.T.U. 2003)

6. In a bolt factory, machines A, B and C manufactures 25%, 35% and 40% of the total of their 

inputs 5%, 4% and 2% are defective bolts. A bolt is drawn at random from the product and is 

found to be defective. What are the probabilities that it was manufactured by machines A, B

or C? (V.T.U. 2006, Rohtak 2005, Madras 2000S)

Answers

1.
33

68
2. 5/8

3.
6

11
4.

15

59

5. 0.3175, 0.254 6.
25 28 16

, ,
69 69 69

6.7 RANDOM VARIABLE

A random variable X is a function that associates a real number with each element in the sample space 

S.

or

Let E be a random experiment and S be a sample space associated with it, a function X(s). Where s

S is called a random variable.

Fig. 6.5
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or

If a real variable X is associated with the outcome of a random experiment is called a random 

variable. Suppose that our experiment E consists of tossing two fair coins, letting X denote the heads 

appearing then X is a random variable taking one of the values 0, 1, 2 with respective probabilities as 

follows:

1
( 0) ( , )

4

( 1) ( , ), ( , ) 1/2

( 2) ( , ) 1/4

P X P T T

P X P H T T H

P X P H H

We have ( 0) ( 1) ( 2) 1P X P X P X

Hence X, is a random variable taking values 0, 1, 2. As the values of X depend on chance, it is also 

called a chance variable, stochastic variable or simply a variable.

6.8 TYPES OF RANDOM VARIABLE

A random variables can be classified in two types:

(i) Discrete Random Variable, and

(ii) Continuous Random Variable.

6.8.1 Discrete Random Variable

A random variable X is said to be discrete, if its set of possible outcomes is countable or if it assumes 

only a finite number of countably infinite values of X. For example, a number of students who fails in 

a quiz marks obtained in an examination, number of telephone calls per unit time, number of accidents 

per month and number of complaints received at the office of police station in a week, etc.

6.8.2 Continuous Random Variable

A random variable X is said to be continuous if it takes the infinite number of values in an interval or 

when a random variable can take on values on a continuous scale. For example, height of a person, 

distance of two cities, price of a house, weight of a student, temperature of a room, etc.

6.9 DISCRETE PROBABILITY DISTRIBUTION

6.9.1 Probability Mass Function

A discrete random variable assumes each of its values with a certain probability. If X is a discrete 

random variable with distinct values x1, x2, …, xn, …, then the function p(x) is defined as

( ) ( ) if

0, if , 1, 2, ...

i i i

i

P x P X x p x x

x x i

where (i) p(xi)  0 for all values of i and ( ) 1i

i

P x  is called the probability mass function (p.m.f.) 

of random variable X. Probability mass function is also known as discrete probability distribution or 

discrete density function.
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The set of ordered pains ( , ), ( , ), ..., ( , ),x p x p x pn n1 1 2 2  specified the probability distribution of 

the random variable X.

6.9.2 Distribution Function

If X is a discrete random variable, then the function F(x) is defined as

1

( ) ( ) ( )
x

i

i

F x P X x p x  where x is any integer is called distribution function of X, it is also 

known cumulative distribution function (CDF) of X. The domain of distribution function is (– , ) and 

its range is [0, 1]. The graph of F(x) will be stair step form as shown in Fig. 6.6.

Fig. 6.6

Properties of F(x)

(i) The domain of F(x) is (– , ) and range is [0, 1]

(ii) 0 F(x)  1

(iii) ( ) lim ( ) 0 and ( ) lim ( ) 1
x x

F F x F F x

(iv) If x < y, then ( ) ( ) ( )P x x y F y f x

(v) If , then ( ) ( )x y F x f y

(vi) If x < y, then

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( )

P x X y F y F x P X x

P x X y F y F x P X x P x X y F y F x P X x

Example 38 If a pair of fair dice is rolled, find the probability distribution for getting their sum 

2, 3, 4, …, 12.
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Solution If a pair of fair dice is rolled, then

S ( , , , , , ) ( , , , , , )

( , ) ( , ) ( , ) ( , ) ( , ) (

1 2 3 4 5 6 1 2 3 4 5 6

1 1 1 2 1 3 1 4 1 5 11 6 2 1 2 2 2 3 2 4 2 5 2 6

3 1 3 2 3 3 3 4

, ); ( , ) ( , ) ( , ) ( , ) ( , ) ( , );

( , ) ( , ) ( , ) ( , ) (33 5 3 6 4 1 4 2 4 3 4 4 4 5 4 6

5 1 5 2 5 3

, ) ( , ); ( , ) ( , ) ( , ) ( , ) ( , ) ( , );

( , ) ( , ) ( , ) (55 4 5 5 5 6 6 1 6 2 6 3 6 4 6 5 6 6, ) ( , ) ( , ); ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

Let X be the random variable defined as the sum of two fair dice, then

P X P

P X P

P X P

( ) ( , )

( ) ( , ), ( , )

( ) ( , ),

2 1 1 1 36

3 1 2 2 1 2 36

4 1 3

/

/

(( , ) ( , )

( ) ( , ), ( , ), ( , ), ( , )

(

2 2 3 1 3 36

5 1 4 2 3 3 2 4 1 4 36

/

/P X P

P XX P

P X P

6 1 5 2 4 3 3 4 2 5 1 5 36

7 1 6

) ( , ), ( , ), ( , ), ( , ), ( , )

( ) ( , ), (

/

22 5 3 4 4 3 5 2 6 1 6 36

8 2 6 3 5 4 4

, ), ( , ) ( , ), ( , ), ( , )

( ) ( , , ( , ), ( ,

/

P X P )), ( , ), ( , )

( ) ( , ), ( , ), ( , ), ( , )

5 3 6 2 5 36

9 3 6 4 5 5 4 6 3 4 3

/

/P X P 66

10 4 6 5 5 6 4 3 36

11 5 6 6 5

P X P

P X P

( ) ( , ), ( , ), ( , )

( ) ( , ), ( , )

/

22 36

12 6 6 1 36

/

( ) ( , )P X P /

Hence the probability distribution of X is given as follows:

X = x 2 3 4 5 6 7 8 9 10 11 12

P(X = x)
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

Example 39 Find the distribution function for the following probability distribution:

X = x 0 1 2 3 4

P(X = x)
1

16

4

16

6

16

4

16

1

16

Solution

F(x) = 
0

( ) ( )
x

i

i

P X x p x

F(0) = 
1 11

, (1) (0) (1) 5/16, (2) (0) (1) (2)
16 16

F p p F p p p

F(3) =
15

(0) (1) (2) (3) , (4) (0) (1) (2) (3) (4) 1
16

p p p p F p p p p p
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Distribution function in tabular form is given as follows:

x 0 1 2 3 4

p(x) 1/16 4/16 6/16 4/16 1/16

F(x) 1/16 5/16 11/16 15/16 1

Also distribution function can be written as:

( ) 0, 0

1
, 0 1

16

5
, 1 2

16

11
, 2 3

16

15
, 3 4

16

1, 4

F x x

x

x

x

x

x

Example 40 A random variable X has the following probability distribution:

X = x –2 –1 0 1 2 3

P(X = x) 0.1 k 0.2 3k 2k 0.3

(i) Determine k and hence,

(ii) Compute P(X < 2), P(X  2),

(iii) Find the minimum value of k such that P(X  1) > 0.32.

Solution Using definition of probability distribution

(i)
3

2

( ) 1 0.1 0.2 3 2 0.3 1i

i

p x k k k

1
6 0.4

15
k k

(ii)
17

( 2) ( 1) (1) 0.1 0.2 3 0.3 0.4
30

P X P X F k k k

17 13
( 2) 1 ( 2) 1 (1) 1

30 30
P X P X F

(iii) P(X  1) > 0.32

F(1) = 0.1 + k + 0.2 + 3k > 0.32

= 0.3 + 0.4 k > 0.32

= 0.4k > 0.02

=
0.02

0.005
0.4

k

Minimum value of k = 0.005.
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Example 41 From a lot of 10 items containing 3 defective, a sample of 4 items is drawn at random 

without replacement.

(i) Find the probability distribution of X, the number of defectives.

(ii) Compute F(x) and (iii) Find P(X  1), P(X  1), P(0 < X < 2).

Solution

A sample of 4 can be drawn from a lot of 10 items is 10
C4 ways which are equally likely.

Let X be the number of defectives, then the number of defectives x out of 3 can be chosen in 3
Cx

ways and remaining 4–x items can be chosen from 7 items in 7C4–x ways

where x = 0, 1, 2, 3, then

7 3
4

10
4

( ) x xC C
P X x

C

(i) Hence probability distribution of X:

x 0 1 2 3

p(x)
1

6

1

2

3

10

1

30

(ii) F(x) = 0, x < 0

=
1

, 0 1
6

x

=
2

, 1 2
3

x

=
29

, 2 3
30

x

= 1, x  3

(iii)
1 1 2

( 1) (1) (0) (1)
6 2 3

P X F p p

1
( 1) (1) (2) (3) 1 (0) 1 5/6

6
P X p p p p

1
(0 2) 0 1/2

2
P X

6.10 CONTINUOUS PROBABILITY DISTRIBUTION

6.10.1 Probability Density Function

A continuous random variable has a probability zero of assuming exactly any of its values. The function 

f (x) is said to be probability density function of a continuous random variable X, if it is defined as

(i) ( ) 0,f x x   (ii) ( ) 1,f x

(iii) ( ) ( )d
b

a
P a X b f x x
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6.10.2 Continuous Distribution Function

If X is a continuous random variable, then the function f (x) is defined as:

( ) ( ) ( ) ,
x

F x P X x f t dt x

is called the continuous distribution function and f (x) is probability density function.

Properties of F(x)

(i) The domain of F(x) is (– , ) and range [0, 1]

(ii) F(x) is non-decreasing function of x on the right.

     
( ) ( ) 0F x f x

(iii) F(x) is a continuous function of X on the right. 

(iv) ( ) lim ( )d 0
x

x
F f t t

and ( ) lim ( )d 1
x

x
F f t t

(v) ( ) ( ) ( ) ( ) ( ) ( )P a X b P a X b P a X b P a X b F b F a

(vi) Since ( ) ( ),F x f x  we have

d
( ) ( ) d ( ) ( ) ( ) ( )

d
F x f x F x f x F x F x

x

F(x) is known as probability differential of X.

Example 42 If a random variable X has the probability distribution as follows:

1
; 2 2

( ) 4

0; otherwise

x
f x

(i) Compute ( 1) and (ii) (2 3) 5P X P X

Solution

(i)
1 1 1

2
2

1 1 3
( 1) ( )d d ( )

4 5 4
P X f x x x x

(ii)
1

(2 3) 5 2 5 3 1 ( )d 1 ( 1)P X P x P X f x x P X

3 1
1

4 4

Example 43 If X has the probability density

3 ; 0
( )

0; otherwise

x
ke x

f x

Find the value of k.
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Solution

To find 3

0
( )d 1 d 1 3x

k f x x ke x k

Example 44 The probability density of a random variable X is

; 0 1

( ) 2 ; 1 2

0; 2

x x

f x x x

x

Obtain the cumulative distribution function of X.

Solution

( ) ( ) ( )d
x

F x P X x f t t

(i) For x < 0

0 0
( ) ( )d 0 d 0F x f t t t

(ii) For 0 x < 1

2
0

0 0
( ) ( )d ( )d 0 d

2

x x x
F x f t t f x x x x

(iii) For 1 x < 2

F(x) = 
2 0 1

0 1
( )d ( )d d (2 )d

x
f t t f t t x x t t

=
2 2

1

1
2 2 1

2 2 2

x

t x
t x

(iv) For x  2

F(x) = 
0 1 2

0 1 2
( )d ( )d ( )d ( )df t t f t t f t t f t t

=
0 1 2

0 1 2
0 d d (2 )d 0 d 1t x x x x x

F(x) = 0;   x < 0

=
2

;
2

x
  0 x < 1

=
2

2 1;
2

x
x 1 x  < 2

= 1;   x  2
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Example 45 Find a probability density function for the random variable X where distribution 

function is given by

0; 0

( ) ; 0 1

1; 1

x

F x x x

x

Also, draw the graph.

Solution

To find the density function, we have

d
( ) ( ) ( )

d
F x F x f x

x

Then    

0; 0

( ) 1; 0 1

0; 1

x

f x x

x

Also we know that F(x) is continuous from right and as F(x) is not continuous at x = 0 and x = 1, 

we put f (0) and f (1) both equal to 0 as it does not matter how the probability density is defined at these 

two points.

Hence, we have

1; 0 1
( )

0; otherwise

x
f x

Graph of f (x):

Fig. 6.7

6.11 EXPECTATION AND VARIANCE

6.11.1 Expectation

Let X be a random variable with probability distribution f (x), then the mean or expected value of X is

     ( ) ( ),i i

i

E x x f x  if x is discrete
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= ( )d ,x f x x  if x is continuous.

In general the mean or expected value of a function g(x) of a random variable X is given by

E[g(x)] = ( ) ( ) ( ), if is discreteg x i i

i

g x f x X

              = ( ) ( )d , if is continuous.g x f x x X

6.11.2 Variance

If a random variable X has probability distribution f (x), then the variance of X is given by

E[(x – )2] = 2 2( ) ( ), if is discrete

i

i ix f x X

= 2( ) ( )d , if is continuous.ix f x x X

The positive root of variance is called standard deviation (SD), i.e.

SD = 2( )E X

6.11.3 Computational Formula for Variance

(i) 2 2 2( ) ,

i

i ix f x  if X is discrete

(ii)
2 2 2( )d ,ix f x x  if X is continuous

Proof:

(i) We know that

2 = 2 2 2( ) ( ) ( 2 ) ( )

i

i i i i i

i

x f x x x f x

= 2 2( ) 2 ( ) ( )

i i

i i i i i

i

x f x x f x f x

= 2 2

( )

( ) 2 1
and ( ) 1

i

i

i

i i

i i

i

x f x

x f x
f x

= 2 2
1 ( )ix f x

Similarly (ii) can be proved for continuous random variable by replacing summation with integration.

Properties of Expectation and Variance

(i) If X be a random variable and c be a constant, then show that

(a) E(c) = c

(b) E[cx] = c E(x)

(c) E[c + x] = c + E(x)
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   Proof:

(a)   E(c) = ( ) ( ) ( ) 1
x x c

c f x c f x c f x

(b) E(cx) = ( ) ( ) ( )
x x

cx f x c xf x cE x

(c) E(c + x) = ( ) ( ) ( ) ( )
x c x

c x f x c f x x f x

             = c + E(x)

  Note: For all the above three cases, we have proved for discrete random variable. Similar 

results can be obtained for continuous case by changing summation to integration.

(ii) Let X be a random variable and c be a constant, then

(a) Var c = 0

(b) Var(cx) = c2 Var (x)

Proof:

(a) To prove Var c = 0

  By definition, Var c = E(c2) – [E(c)]2

= 2 2( )
c

c f x c

= 2 2 2 2( ) 1 0
c

c f X c c c

(b) Var cX = E[(cx)2] – [E(cx)]2

= E[c2
x

2] – {E[cx]}2

=
22 2 2( ) ( )

x x

c x f x c x f x

=
22 2 ( ) ( )

x

c x f x xf x

= c E x E x c x
2 2 2 2( ) ( ) ( )Var

6.11.4 The rth Moment about Origin

The r
th moment of a random variable X with probability distribution f (x) is given by

( ), if is discrete

i

r
r i ix f x x

=
1 ( )d , if is continuousr

x f x x x

if       11 ( ) or ( )d ( )

i

i ir x f x x f x x E x

i.e., mean or expected value of X is the first moment about origin.
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6.11.5 The rth Moment about Mean

The r
th moment of a random variable X with probability distribution f (x) is given by

2( ) ( ), if is discrete

i

r i ix f x X

= 2( ) ( )d , if is discreteix f x x X

Let r = 2, then

2 = 2( ) ( ), if is discretei i

i

x f x X

= 2( ) ( )d , if is continuousix f x x X

= 2

i.e., variance of x is nothing but, it is a second moment about mean.

6.11.6 Mean Deviation from the Mean

The mean deviation from the mean of a random variable X is given by

= | | ( ), if is discrete

i

i ix f x X

= | | ( ) d , if is continuousix f x x X

Note:
2 2

2

Example 46 Find the mean and variance of the following probability distribution.

x 1 2 3 4 5 6

f (x) 1/6 1/6 1/6 1/6 1/6 1/6

Solution

Mean  = 
6

1

1 1 1 1 1 1
( ) 1 2 3 4 5 6

6 6 6 6 6 6
i i

i

x f x

=
1 7

(1 2 3 4 5 6)
6 2

Variance 2 = 2 2( )i ix f x

=

2

2 2 2 2 2 21 1 1 1 1 1 7
1 2 3 4 5 6

6 6 6 6 6 6 2

=

2

2 2 2 2 2 21 7 35
(1 2 3 4 5 6 )

6 2 12
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Example 47 A random variable X has the following probability distribution:

x –2 –1 0 1 2 3

f (x) 0.1 0.1 0.2 0.2 0.3 0.1

Find the mean and variance of the distribution and hence compute the standard deviation.

Solution

Mean  = ( ) ( )

i

i iE x x f x

= ( 2)(0.1) ( 1)(0.1) (0)(0.2) (1)(0.2) (2)(0.3) (3)(0.1)

= (0.2) (0.1) 0 (0.2) (0.6) (0.3) 0.8

Variance 2 = 2 2( )i ix f x

= 2 2 2 2 2 2 20.1( 2) 0.1( 1) 0.2(0) (0.2)(1) (0.3)(2) 0.1(3 ) (0.8)

= 0.4 0.1 0 0.2 1.2 0.9 0.64

= 2.80 – 0.64 = 2.16

S.D.  = 2 16 1.47

Example 48 If the probability density function of a continuous random variable X is given by

2; 0 1
( )

0; otherwise

kx x
f x

Find the value of k and hence compute its mean and variance.

Solution To find k

1 2 3 1
0

0
( )d 1 d 1 ( ) 1 3

3

k
f x x kx x x k

23 ; 0 1
( )

0; otherwise

x x
f x

Mean  = 
1 2 4 1

0
0

3 3
( )d 3 d ( )

4 4
x f x x x x x x

Variance 2 = 2 2( )dx f x x

=

2
1 2 2 5 1

0
0

3 3 9
3 d ( )

4 5 16
x x x x

=
3 9 3

5 16 80
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Example 49 The probability distribution of a random variable X is given by

X –3 6 9

f (x) 1/6 1/2 1/3

Compute E(X), E(X)2 and hence find E(3X + 2)2.

Solution

E(X) = 
1 1 1 11

( ) ( 3) 6 9
6 2 3 2

i

i ix f x

E(X2) = 2 2 2 21 1 1 93
( ) ( 3) 6 9

6 2 3 2
i

i ix f x

E(3X + 2)2 = 2 2[9 6 4] 9 ( ) 6 ( ) 4E x x E x E x

=
3 11 837 66

9 6 4 4
2 2 2 2

=
911

455.50
2

Example 50 The probability distribution of a random variable x is given by

f (x) = k x
3; 0 x  1

= k (2 – x)3; 1 x  2

= 0;  otherwise

Find the value of k and hence calculate its (i) mean (ii) variance, (iii) standard deviation and

(iv) mean deviation about mean.

Solution Since the total probability is 1.

  
1 23 3

0 1
( )d 1 d (2 ) d 1f x x k x x k x x

k = 2

      
3

3

( ) 2 ; 0 1

2(2 ) ; 1 2

0; otherwise

f x x x

x x

(i) Mean
1 23 3

0 1
( ) 2 2(2 ) d 1E X x x x x x

(ii) To find variance, compute

E(X2) = 
1 22 3 2 3

0 1

16
2 2(2 ) d

15
x x x x x

2 = 2 2 216 1
( ) [ ( )] 1

15 15
E X E X
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(iii) Standard deviation:
1

15

(iv) Mean deviation about mean:

=
1 23 3

0 1
| 1 | 2 d | 1 | 2 (2 ) dx x x x x x

= 2 1 1 23 3

1

2

0

1
( ) ( ) ( )x x x x x xd d

=
1 1 1 1

2 0 .
4 5 20 5

6.12 MOMENT GENERATING FUNCTION

The moment generating function (M.G.F.) of a random variable X is given by

if is discret( ) [ ] ( ), ei

i

txtx
X iM t E e e f xx

= ( )d , if is continuoustx
e f x x x

and      
0

d
( )

d

r

r Xr
t

M t
t

Example 51 Find the moment generating function of the following distribution:

2
1

( ) ; 0
2

0; otherwise

x

f x e x

Hence find its mean, variance and standard deviation.

Solution

MGF MX(t) = 12

0

1 1
[ ] d (1 2 ) ,

2 2

x

tx tx
E e e e x t t

= 2 31 2 4 8t t t

      
1 2

01
0

d
mean ( ) 2 8 24 2

d
tX

t

M t t t
t

2
1 2

02 2
0

d
( ) ( ) 8 48 8

d
tX

t

E X M t t
t

Variance 2 1 2 2
2 1 8 (2) 4

Standard deviation 4 2
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EXERCISE 6.4

1. A random variable X has the following probability function:

Value of X –2 –1 0 1 2 3

p(x) 0.1 k 0.2 2k 0.3 k

  Find the value of k and calculate mean and variance.

(S.V.T.U. 2007, V.T.U. 2004, Madras 2003)

2. Determine whether the following can be the probability distribution of a random variable X

which can take only 4 values 1, 2, 3 and 4.

(i) (1) 0.26 (2) (3) (4)p p p p

(ii) (1) 0.15, (2) 0.28, (3) 0.29, (4) 0.28p p p p

(iii)
1

( ) , 1,2,3, 4
16

x
p x x

3. A random variable X has the following probability distribution:

X 0 1 2 3

P(X = x) 1/8 3/8 3/8 1/8

Find F(x).

4. A random variable X is defined as the sum of the numbers on the faces when two unbiased dice 

are thrown. Find its mean.

5. A random variable X has the following probability distribution:

X = x 0 1 2 3 4 5 6 7

P(X = x) 0 k 2k 2k 3k k
2 2k

2 7k
2 + k

Find (i) the value of k and hence calculate (ii) P(X  5), (iii) P(X > 5), and (iv) P(0 < X < 6).

6. Following is the probability distribution of a random variable X:

X 0 1 2

p(x) k 2k 3k

 (i) Find the value of k and hence write its F(x).

(ii) What is the smallest value of C for which ( ) 1/2.P X C

7. Find whether the following function is a probability density function:

2

( ) ; 1 3
4

0; otherwise

x
f x x

8. Is the function defined as follows, a density function?

1
( ) (3 2 ); 2 4

18

0; otherwise

f x x x

  Also find the probability that a variate having this density falls in the interval 2 X  3
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9. Verify that

2

2

0; 0

; 0 1/2

( ) 1
1 3(1 ); 1

2

1; 1

x

x x

F x
x x

x

  is a distribution function and derive density function f (x) of X.

10. If a coin is tossed two times. Find the probability distribution for getting number of heads. 

Also find mean number of heads and its variance.

11. A random variable X has the following probability distribution:

X = x 0 1 2 3

P(X = x)
1

4

1

2

1

8

1

8

Find (i) P(X > 1)  (ii) P(X < 3)

12. A dice is tossed thrice. A success is getting 1 or 6 on a toss. Find the mean and variance of the 

number of successes.

(V.T.U. 2011S, Rohtak 2004)

13. The probability density function of a variate X is

X 0 1 2 3 4 5 6

p(x) k 3k 5k 7k 9k 11k 13k

(i) Find ( 4), ( 5), (3 6)P X P X P X

(ii) What will be minimum value of k so that ( 2) 3P X

(V.T.U. 2010)

14. X is a continuous random variable with probability density function given by
( ) (0 2)

2 (2 4)

6 (4 6)

f x kx x

k x

kx k x

  Find k and mean value of X. (J.N.T.U. 2003)

15. The power reflected by an aircraft that is received by a radar can be described by an exponential 

random variable X. The probability density of X is given by

0

0

1
( ) ; 0

0; 0

x

x
f x e x

x

x

  where x0 is the average power received by the radar.

(i) What is the probability that the radar will receive power larger than the power received 

on the average?

(ii) What is the probability that the radar will receive power less than the power received on 

the average?

(Mumbai 2006)
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16. The frequency function of a continuous random variable is given by f (x) = y0x(2 – x), 0 x  2, 

find the value of y0, mean and variance of X. (Kerala 2005, J.N.T.U. 2003)

17. A random variable gives measurements X between 0 and 1 with a probability function.
3 2( ) 12 21 10 ; 0 1

0; otherwise

f x x x x x

(i) Find
1

( 1/2) and
2

P X P X

(ii) Find a number k such that 
1

( )
2

P X k

18. The probability density f (x) of a continuous random variable is given by
| |

0( ) ;x
f x y e x

   Prove that 0

1
.

2
y  Find the mean and variance of the distribution.

(S.V.T.U. 2008, Kurukshetra 2007, V.T.U. 2004)

19. Let X be a random variable with mean 30 and variance 5, then find E(5x) and Var (5x).

20. Let X be a random variable with mean 10 and variance 2 such that E(cx) = 20. Find the value 

of c and hence, calculate Var (cx).

Answers

1. 21; 0.8, 2.232k

2. (i)  No, ( ) 1,

x

p x (ii)  Yes, ( ) 1,

x

p x (iii)  No, ( ) 1

x

p x

3. ( ) 0; 0

1
; 0 1

8

4
; 1 2

8

7
; 2 3

8

1; 3

F x x

x

x

x

x

4.  = 7

5. (i) k = 0.1,  (ii) 0.81,   (iii) 0.19,  (iv)  0.81

6. (a)
1

( ) 0; 0
6

1
; 0 1

6

1
; 1 2

2

1; 2

k F x x

x

x

x



6.46 Engineering Mathematics for Semesters III and IV

(b) C = 2

7. No.

8. Yes;
4

.
9

9.
1

( ) 2 ; 0
2

1
6 ; 1

2

0;

f x x x

x x

10. X = no. of heads

X = x 0 1 2

; mean  = 1; Variance 2 1
.

2p(x)
1

4

1

2

1

4

11. (i)
1

,
4

(ii)  7/8

12. 2 2
1;

3

13. (i)
16 24 33

( 4) , ( 5) , (3 6)
49 49 49

P X P X P x

(ii) Minimum value of 
1

30
k

14.
1

; 3
8

k

15. (i)  0.37  (ii)  0.63

16. y0 = 3/4; Mean = 1; Variance = 1/5

17. (i)
9 7

, , (ii) 0.45
16 16

k

18. 0.2.

19. E(5x) = 150, Var (5x) = 125

20. c = 2, Var(cx) = 8.

6.13 SOME IMPORTANT DISTRIBUTIONS

In this section, we shall be describing some important distributions such as Bernoulli, binomial 

and Poisson distributions which are discrete in nature. Some continuous distributions viz. uniform, 

exponential and normal will also be discussed. These distributions will be discussed one by one.
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6.14 BERNOULLI DISTRIBUTION

When we are tossing a coin then the possible outcomes are two-head and tail which may be referred to 

success or failure. Each time a coin is tossed, the possible outcomes are head and tail. Such a process 

involves consisting of repeated trials whose results into only two mutually exclusive possibilities is 

often known as Bernoulli process and each trial of this process is called a Bernoulli trial.

Let X be a random variable which takes only two values 1 and 0 with probability p and q respectively 

termed as a Bernoulli variate and the distribution of X is called Bernoulli distribution which is given 

by

1( ) ( ) ; 0, 1 and 1x x
f x P X x p q x p q

6.14.1 Properties of Bernoulli Process

(i) Each trial results in an outcome that may be classified as a success or a failure.

(ii) The experiment consists of n repeated trials which are independent.

(iii) The probability of success remains constant from trial to trial.

6.14.2 Mean and Variance of Bernoulli Distribution

The mean  = E(X) = p

The variance 
22 2( ) ( )E X E x pq

6.15 BINOMIAL DISTRIBUTION

The concept of binomial distribution was first discovered by James Bernoulli in the year 1700. 

Actually binomial distribution is an extension of the multiplicative theorem of probability. Let X be the 

random variable denote the number of successes in n independent Bernoulli trials. Let p and q be the 

probabilities of success and failure in each trial which are constant. Then in n independent  Bernoulli 

trials the probability there will be x successes and n-x failures are given by

( ) , 0, 1, 2, ..., .n x n x
xP X x C p q x n

It is also denoted by

( ; ) , 0, 1, 2, ..., .n x n x
xb x n p C p q x n

where p + q = 1, n and p are known as parameters of the distribution. The probability distribution of the 

random variable X is therefore given by

X 0 1 2 … … x … n

p(X = x)
0 0

0
n n
C p q

1 1
1

n n
C p q

2 2
2

n n
C p q … … n x n x

xC p q … n n n n
nC p q

Hence the probability distribution is called binomial distribution because for x = 0, 1, 2, …, n the 

probabilities are the successive terms of the binomial expansion (q + p)n.

Note:  For N set of n trials the successes 0, 1, 2, …, x, …, n are given by N(q + p)n, which is called 

binomial frequency distribution.
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6.15.1 Constants of Binomial Distribution

We shall calculate mean and variance of binomial distribution.

(a) Mean of Binomial Distribution:  The First moment about origin or E(x) or mean ( ) of binomial 

distribution is given by

 = 
1

0

( ) ( )
n

x n x

x x

n
E x x f x x p q

x

         

1 2

1 1

1 2 2

1 2 2

1 1 1

1 2 1

1

0 1 2

( 1)

( 1)

1 1

[ ] 1

n

n n n n
C C

n n n

n n n

n n n
C C

n

q n pq n p q np

np q n n p q np

np q n pq p

np q n pq n p

np q p np np

Mean np

(b) Variance of Binomial Distribution

2 = 
121

2 1

1
2 = 2 2

0

( )
n

x n x

x x

n
x f x x p q

x

=

0

( 1)
n

x n x

x

n
x x x p q

x

=
1

0 0 0

( 1)
n n

x n x x n x x n x

x x x

n n n
x p q x x p q x p q np

x x x

         

0

2 2

0

2 2

2

2 2

2( 1)
( 1)

2( 1)

2
( 1)

2

( 1) ( )

( 1) 1 ( 1)

1 ( 1) 1

( 1 )

n
x n x

x

n
x n x

x

n

nn n
np x x p q

xx x

n
np n n p p q

x

np n n p q p

np n n p q p

np n p np np p

np q np n p qnp p q

2 = 2 2 2 2 2
2 ( )n p npq np npq

  2Variance npq



Probability and Distribution 6.49

(c) Other constants: Like 1 2 2, and ,  we can calculate other moments of binomial distribution. 

Such as

3 4( ), 1 3( 2)npq q p npq n pq

Now,

Kurlosis  
2 2
3

1 2
2

( )
( )

q p

npq

and      4
2 2

2

1 6
3

pq

npq

    skewness = 
1 2p

npq

Remark:

1. The mean of binomial distribution is greater than variance.

2. If skewness is zero then p = q = 1/2 

3. If
1

,
2

p  skewness is positive and if 
1

,
2

p  skewness is negative.

6.15.2 Moment Generation Function of Binomial Distribution

The M.G.F. of X is given by

MX(t) = [ ] ( )tx tx tx k n x

i x

n
E e e p x e p q

n

=
0

( )
n

t x n x

x

n
pe q

x

( ) ( )t n
M t q pe

Example 52 Six dice are thrown 729 times. How many times do you expect at least three dice to 

show a five or six?

Solution Let p be the probability of getting 5 or 6 with one dice.

then
1 1 2

1
3 3 3

p q

Given n = 6, N = 729

Then binomial distribution is

N(q + p)n = 

6
1 2

729
3 3

=

3 3 4 2 5 6

6 6 6 6
3 4 5 6

1 2 1 2 1 2 1
729

3 3 3 3 3 3 3
C C C C

= 233
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Example 53 The mean and variance of a binomial distribution are 4 and 3 respectively. Find the 

probability of getting exactly six successes in this distribution.

Solution

Given     24, 3np npq

       3/4 1/4 and hence 16q p n

The probability of six successes = 

6 10
16 1 3

( 6) .
6 4 4

P X

Example 54 In 800 families with 4 children each, how many families would be expected to have

(i) 2 boys and 2 girls

(ii) at least 1 boy

(iii) no girl

(iv) at least 2 girls

Assuming that equal probabilities for girls and boys.

Solution Let p be the probability of having a boy and q be the probability of having a girl. Given 

p = q = 1/2 

n = 4, N = 800

The binomial distribution is given by N(q + p)n

=

4
1 1

800
2 2

(i) Expected number of families having 2 boys and 2 girls

=

2 2

4
2

1 1
800 300

2 2
C

(ii) Expected number of families having at least 1 boy.

=

3 2 2 3 4

4 4 4 4
1 2 3 4

1 1 1 1 1 1 1
800 750

2 2 2 2 2 2 2
C C C C

(iii) The expected number of families having no girl.

=

4

4
4

1
800 50

2
C

(iv) The expected number of families having at least two girls.

=

2 2 3 4

4 4 4
2 3 4

1 1 1 1 1
800 550

2 2 2 2 2
C C C

Example 55 If 10% of the bolts produced by a machine are defective. Find the probability that out 

of 5 bolts selected at random, at most one will be defective.

Solution Let X be the number of defective bolts.

p = 0.10, x = 5
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P(X  1) = The probability of at most one defective

=
0 5 45 5

( 0) ( 1) (0.10) (0.90) (0.10) (0.90)
0 1

P X P X

=

5 4
9 1 9

5 5
10 10 10

Example 56 The following data are the number of seeds germinating out by 10 on damp filter for 

80 sets of seeds. Fit a binomial distribution to these data.

x 0 1 2 3 4 5 6 7 8 9 10 Total

f 6 20 28 12 8 6 0 0 0 0 0 80

Solution Given n = 10, N = 80 = f

The mean   
174

0.6 1.20 10.0
80

fx

f

      
174 174

0.2175
80 80 10

np p

q = 1 – 0.2175 = 0.7825

The binomial distribution to be fitted to the data is

10( ) 80 (0.7825 0.2175)n
N q p

Hence, the theoretical frequencies are as follows:

x 0 1 2 3 4 5 6 7 8 9 10

f 6.9 19.1 24 17.8 8.6 2.9 0.7 0.1 0 0 0

EXERCISE 6.5

1. Prove that sum of binomial probability distribution is 1.

2. A dice is tossed thrice. Getting an even number is considered success. What is the variance of 

the binomial distribution.

3. If moment generating function of a binomial variate is (0.6 + 0.4e
t)6 . Find its mean, variance 

and standard deviation.

4. The mean and variance of binomial distribution are 4 and 
4

3
 respectively. Find P(X  1).

5. The items produced by a firm are supposed to contain 5% defective items. What is the 

probability that a sample of 8 items will contain less than 2 defective items.

6. The probability that a pen manufactured by a company will be defective will be 
1

.
10

 If 12 

such pens are manufactured, find the probability that

(a) exactly two will be defective,

(b) at least two will be defective, and 

(c) none will be defective. (V.T.U. 2004, Burdwan 2003)



6.52 Engineering Mathematics for Semesters III and IV

7. In 256 sets of 12 tosses of a coin, in how many cases we can expect 8 heads and 4 tails.

(J.N.T.U. 2003)

8. In sampling a large number of parts manufactured by a machine, the mean number of defectives 

in a sample of 20 is 2. Out of 1000 such samples, how many would be expected to contain at 

least 3 defective parts.

9. Determine the binomial distribution for which mean = 2 and mean + variance = 3. Also find 

P(X  3). (Kerala 2005)

10. If the chance that one of the ten telephone lines is busy at an instant is 0.2.

(a) What is the chance that 5 of the lines are busy?

(b) What is the most probable number of busy lines and what is the probability of this 

number?

(c) What is the probability that all the lines are busy? (V.T.U. 2002S)

11. If the probability that a new born child is a male is 0.6, find the probability that in a family of 

5 children there are exactly 3 boys. (Kurukshetra 2005)

12. If on an average 1 vessel in every 10 is wrecked, find the probability that out of 5 vessels 

expected to arrive, at least 4 will arrive safely. (P.T.U. 2005)

13. Out of 800 families with 5 children each, how many would you expect to have (a) 3 boys

(b) 5 girls (c) either 2 or 3 boys? Assume equal probabilities for boys and girls?

(V.T.U. 2004)

14. A sortie of 20 aeroplanes is sent on an operational flight. The chance that an aeroplane fails to 

return is 5%. Find the probability that (i) one plane does not return (ii) at most 5 planes do not 

return, and (iii) what is the most probable number of returns? (Hissar 2007)

15. In a bombing action there is 50% chance that any bomb will strike the target. Two direct hits 

are needed to destroy the target completely. How many bombs are required to be dropped to 

give a 99% chance or better to completely destroying the target.

(V.T.U. 2003S)

16. 500 articles were selected at random out of a batch containing 10,000 articles, and 30 were 

found to be defective. How many defectives articles would you reasonably expect to have in 

the whole batch?

(J.N.T.U. 2003)

17. Fit a binomial distribution to the following frequency distribution:

x 0 1 2 3 4 5 6

f 13 25 52 58 32 16 4

(Kurukshetra 2009, S.V.T.U. 2007)

18. Fit a binomial distribution for the following data and compare the theoretical frequencies with 

the actual ones:

x 0 1 2 3 4 5

f 2 14 20 34 22 8

(Bhopal 2006)
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Answers

2.
3

4
3. 22 4; 1 44; 1 2

4. 0.99863 5. 1 (App.)

6. (a) 0.2301,   (b) 0.3412   (c)  0.2833 7. 31

8. 323 9.
1 15

4, ;
2 16

n p q

10. (a) 0.02579;  (b) 0.04571;  (c) 1.024 × 10–7

11. 0.3456 12.
45927

50000
13. (a) 250; (b) 25;  (c) 500

14. (i)
1

19
1 19

20
20 20

C   (ii)

205

0

1 19
20 (iii) 19

20 20x

x x

C

x

15. 11 16. 600

17. 200 (0.554 + 446)
6

18. 100(0.432 + 0.568)
5
.

6.16 POISSON DISTRIBUTION

In 1837, a French mathematician Simeon Poisson discovered the concept of Poisson distribution. 

Poisson distribution is a limiting form of the binomial distribution under the following constants:

(i) the number of trials is infinitely large, i.e. n .

(ii) the probability of success for each trial is infinitely small, i.e. p  0.

(iii) np is a finite quantity say . Hence,

, 1 1p q p
n n

The probability of x successes in a binomial distribution

P(X = x) = 
!

! ( )!

x n x x n xn n
p q p q

x x n x

=
( 1)( 2) ( 1)

!

x n xn n n n x
p q

x

=
1 2 1

1 1 1 ( ) (1 ) / !x n xx
np p x

n n n

Taking limit n , p  0, such that np = , we have

P(X = x) = 

0

1 2 1
limit 1 1 1 1

!

n xx

n
p

x

x n n n n

= limit 1 limit 1 1
! !

n x n xx x

n nx n x n n
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= limit 1 and limit 1 1
!

nx

n n

e
e

x n n

The probability of x = 0, 1, 2, …, x, … successes are

2

, , , ,
1 2

x
e e e

e
x

 respectively and the sum of all these probabilities is 1.

A random variable X is said to have a Poisson distribution if its probability mass function is 

given by

( ) , 0, 1, 2, ...
x

e
P X x x

x

6.17 CONSTANTS OF POISSON DISTRIBUTION

6.17.1 Mean

The first moment or mean ( ) or E(x) is given by

1

1

0 1

( )
1

x x

x x

xe
E x e

x x

=
2

1
1 2

e

 = e e

Mean

6.17.2 Variance

Variance    2 1 2
2

1 2
2

0 0

( 1)
x x

x x

e e
x x x x

x x

=
0 0

( 1)
x x

x x

e x e
x x

x x

=

2
2

2 02

x x

x x

xe
e

x x

2
1 2
2

2 2

x

x

e e e
x

= 2
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2 2 2

2

      
2 Variance

Note:  The mean and variance of Poisson distribution is same.

Standard deviation .

6.17.3 Other Moments

Third moment about mean 1 3 2
3 3

Third moment about mean 3 = 

Similarly,    1 4 3 2
4 6 7

and     2
4 3

Now,  Kurtosis 

2
3

1 3
2

1

4
2 2

2

1
3

skewness   1 1

1

2 2

1
3

When , 1 = 0 and 2 = 3

Hence, the Poisson distribution is always positively skewed.

6.17.4 Moment Generating Function of Poisson Distribution

0

( ) [ ]

x
x t

tx tx
X

x x

e e
M t E e e e

x x

= ( 1)t t
e e

e e e

    ( 1)( )
t

e
XM t e

The moments 
1 1 1 1
1 2 3 4, , and  can be easily found either by simply expanding the expression of 

MX(t) given above or by differentiating it with respect  to t and then putting t = 0.

6.17.5 Application of Poisson Distribution

Poisson distribution is used in many situations such as:

(i) Emission of radioactive particles.

(ii) Number of cars passing a certain street at a time t.
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(iii) Number of faulty blades in a packet of 1000.

(iv) Number of printing mistakes at each chapter of the book.

(v) Number of suicides or deaths due to heart attack in one minute.

(vi) Number of children born blind per year in a city.

(vii) Number of accidents that take place on a busy road at a time t.

(viii) Number of telephone calls received at a particular switch board in one minute and many 

more.

Example 57 Six coins are tossed 6,400 times. Using the Poisson distribution, what is the 

appropriate probability of getting 6 heads x times.

Solution Let p be the probability of getting all the 6 heads in a throw of 6 coins.

       

6
1 1

,
2 64

p  given n = 6400

       
1

6400 100
64

np

    
100 (100)

( ) , 0, 1,2, ...
x x

e e
P X x x

x x

Example 58 In a Poisson distribution P(x) = 0.1 for x = 0. Find the mean given that

loge10 = 2.3026.

Solution

0

( ) ( 0) 0.1
0

x
e e

P X x P X e
x

      0.1 10 log 10 2.3026ee e

Mean,  = 2.3026

Example 59 If the probability that an individual suffers a bad reaction from injection of a given 

serum is 0.001. Find the probability that out of 2000 individuals (i) exactly 3 (ii) more than 2 individuals 

and (iii) none of them suffer from bad reaction.

Solution Let X be the number of individual who suffer from bad reaction and p be the probability that 

an individual suffers a bad reaction from injection of a given serum.

Given p = 0.001, n = 2000

 = np = 2000 × 0.001 = 2

and   
2 (2)

( ) , 0, 1, 2, ...
x

e
P X x x

x

(i)
2 3(2)

( 3) 0.18
3

e
P X
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(ii)

3
2 2

( 2) 1 ( 2) 1 ( 0) ( 1) ( 2)

4
1 2 0.323

2

P X P X P X P X P X

e
e e

(iii)
2 0

2(2)
( 0) 0.135

0

e
P X e

Example 60 Fit a Poisson distribution to the following data and calculate theoretical 

frequencies:

Deaths (x) 0 1 2 3 4

Frequencies (f) 122 60 15 2 1

Solution

The Poisson distribution is ( ) , 0, 1, 2, ...
x

e
P X x x

x

Here mean 
0.122 1.60 2.15 3.2 4.1

0.5
200

xf

f

Hence, the theoretical frequencies of Poisson distribution

=
0.5 (0.5)

200 , 0, 1,2, 3, 4

xx eNe
x

x x

but     0.5 0.61 (App.)e

Therefore for x = 0, 1, 2, 3, 4, the theoretical frequencies are 122, 61, 15, 2 and 1 respectively.

EXERCISE 6.6

1. Show that for Poisson distribution ( ) , 0, 1, 2, ... 1
x

e
P X x x

x

2. Show that for Poisson distribution with mean 

1 1

d
,

d
r r

r
r

m
 where

0

( )
x

r
r

x

e
x

x

3. For Poisson distribution, prove that ( 1) ( ), 0, 1, 2, ...
1

P x P x x
x

4. Using the above recurrence relation, if the variance of Poisson distribution is 2. Find the 

probability for x = 1, 2, 3, 4. Also find P(X  4).
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5. Show that for a Poisson distribution 1 2 1  when  and  are the standard deviation 

and mean respectively. (S.V.T.U. 2008)

6. If X is a Poisson variate such that ( 2) 9 ( 4) 90 ( 6).P X P X P X  Find the variance of 

X.

7. If X is a Poisson variate such that 3 ( 3) 4 ( 4),P X P X  find P(X = 7).

8. If a random variable has a Poisson distribution such that P(1) = P(2), find (i) mean of the 

distribution (ii) P(4).

(V.T.U. 2003)

9. A car-hire firm has two cars which it hires out day by day. The number of demands for a car 

on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of 

days (i) on which there is no demand, (ii) on which demand is refused. 1/5( 0.2231)e

(Bhopal 2008S, J.N.T.U. 2003)

10. A source of liquid is known to contain bacteria with the mean number of bacteria per cubic 

centimeter is equal to 3. Ten 1 c.c., test tubes are filled with the liquid. Assuming that Poisson 

distribution is applicable, calculate the probability that all the test-tubes will show growth, i.e., 

contains at least 1 bacterium each. (V.T.U. 2003)

11. 10% of bolts produced by a certain machine turns out to be defective. Find the probability that 

in a sample of 10 bolts, selected at random two will be defective using (i) Poisson distribution 

and (ii) binomial distribution.

12. Wireless sets are manufactured with 25 soldered joints each on the average 1 joint in 500 

defective. How many sets can be expected to be free from defective points in a consignment 

of 10000 sets.

13. Fit a Poisson distribution to the following:

x 0 1 2 3 4

f 46 38 22 9 1

(Kurukshetra 2009, Bhopal 2008; V.T.U. 2003S)

14. Fit a Poisson distribution to the following data given the number of yeast cells per square for 

400 squares:

No. of cells  per sq. 0 1 2 3 4 5 6 7 8 9 10

No. of squares 103 143 98 42 8 4 2 0 0 0 0

(S.V.T.U. 2007)

15. The frequency of accidents per shift in a factory is given in the following table:

Accidents per shift 0 1 2 3 4 Total

Frequency 192 100 24 3 1 320

  Calculate the mean no. of accidents per shift and compare with actual frequencies.

Answers

4. P(1) = 0.2706, P(2) = 0.2706, P(3) = 0.1804; P(4) = 0.0902, P(X  4) = 0.1431.

6. Variance 2 = 1. 7.

3 73

7

e
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8. (i) 22
2;

3
e 9. (i)  0.2231; (ii)  0.1913

10. 0.6 11. (i)  0.184; (ii)  0.194

12. 9512

13. Theoretical frequencies are 44, 43, 21, 7, 1

14. Theoretical frequencies are 109, 142, 92, 40, 13, 3, 1, 0, 0, 0, 0.

15. Theoretical frequencies are 194, 97, 24, 4, 1.

6.18 UNIFORM DISTRIBUTION

A continuous random variable X is said to follow an uniform distribution on interval [a, b] if its 

probability density function f (x) is given by:

1
;

( )

0; otherwise

a x b
f x b a

where a and b are known the parameters of uniform distribution and b > a. Uniform distribution is also 

known as Rectangular Distribution.

The distribution function F(x) of X can be found easily as follows:

F(x) = ( ) ( )dP X x f t t

= 0, x < a

= ( )d ( )d , for
a x

a
f t t f t t a x b

=
1

0 d ,
x

a

x a
t a x b

b a b a

= ( )d ( )d ( )d , for
a b x

c b
f t t f t t f t t x b

= 1

= ,
x a

a x b
b a

= 1, x b

The graphs of f (x) and F(x) are shown in Fig. 6.8(a) and (b) respectively.

Fig. 6.8
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6.18.1 Mean and Variance of Uniform Distribution

(a) Mean of Uniform Distribution:  The first moment about origin or mean ( ) or expected value 

of uniform random variable X is given by

1
1

2 2

( ) ( )d

1 1
d ( )

2

b

a

b

a

E X x f x x

b a
x x b a

b a b a

(b) Variance of Uniform Distribution:

2 1 2
2 1

      
3 3

1 2 2 2
2

1 1
( ) ( )d d

3

b b

a a

b a
E X x f x x x x

b a b a

2 2
1
2

3

b a ab

2 22 2 2 2
2 2

3 2 12 12

b a ab b a b a ab b a

6.18.2 Moment Generating Function of Uniform Distribution

1
( ) [ ] d

( )

bt at
btx tx

X
c

e e
M t E e e x

b a t b a

6.19 EXPONENTIAL DISTRIBUTION

A continuous random variable is said to follow exponential distribution with parameter  if its 

probability density function is given by

( ) ; 0, 0

0; otherwise

xf x e x

The distribution function F(x) of an exponential variate is given by

0
( ) ( ) d 1

x x x
F x P x x e x e

     

0; 0

( ) 1 ; 0

1; otherwise

x

x

F x e x

6.19.1 Mean and Variance of Exponential Distribution

(a) The mean 1
1

0
( ) ( )d dx

E x x f x x x e x
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=
120

0

Using Gamma Function
2

d ( )
d

x

n ax

n

x e x n
x e x

a

2

1 1

(b) The variance 2 1 2
2 1

E(X2) = 
1 2 2 2
2

0 0
( )d d dx x

x f x x x e x x e x

=
3 3 2

3 2 2

2 = 

2

2 2

2 1 1

6.19.2 Moment Generating Function of Exponential Distribution

MX(t) = 
0

[ ] ( )d dxttx tx x
E e e f x x e e x

= ( )

0
d ,t x

e x t
t

MX(t)  = , t
t

(a) Graph of f(x)       (b) Graph of F(x)

Fig. 6.9

Example 61 A random variable X has the uniform distribution with the density function given 

by

1
( ) ; 0 100

100

0; otherwise

f x x
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Obtain (i) P(X > 60) and (ii) P(20 x  40).

Solution

(i)
100 100

60 60

1 40
( 60) ( )d 1 d 0.40

100 100
P X f x x x

(ii)
40 40

20 20

1 20
(20 40) ( )d 1 d 0.20

100 100
P x f x x x

The graphs of f (x) and F(x) of exponential distribution are given in Fig. 6.9(a) and (b) 

respectively.

Example 62 If X is uniformly distributed with mean 1 and variance 
4

.
3

 Find P(X < 0).

Solution The uniform distribution is

1
;

( )

0; otherwise

a x b
f x b a

The mean   
2

b a

The variance 2 21
( )

12
b a

Given  1 2
2

b a
b a (2)

and      2 2 24 1
( ) 16 ( ) 4

3 12
b a b a b a  (3)

By Eqs (2) and (3) a = –1 and b = 3

Now
0 0

1 1

1
( 0) ( )d d

3 ( 1)
P X f x x x

= 0
1

1 1
( ) (0 1) 1/4

4 4
x

Example 63 Find the distribution function for Example 61.

Solution The probability distribution function for Example 61 is as follows:

1
( ) ; 1 3, as 1

4

0; otherwise 3

f x x a

b

F(x) = 0, x < –1



Probability and Distribution 6.63

=
1

; 1 3
4

x
x

= 1; x  1

Example 64 A random variable X has an exponential distribution with probability density function 

f (x) given by

22 ; 0
( )

0; otherwise

x
e x

f x

What is the probability that X is not less than 2?

Solution

2
2 4

2
2

2
( 2) 2 d .

2

x
x e

P X e x e

Example 65 The sales-tax return of a sales person is exponentially distributed with the density 

function f (x) is given by

1

4
1

; 0
( ) 4

0; otherwise

x

e x
f x

What is the probability that his sale will exceed Rs. 10,000 assuming that sales-tax is levied at the 

rate of 5% on the sales?

Solution Given that

1

4
1

; 0
( ) 4

0; otherwise

x

e x
f x

If sale exceeds Rs. 10,000, then the sales-tax will exceed 

5
10,000 Rs. 500

100

The required probability is
1

1254

500

1
( 500) d .

4
P X e x e

Example 66 Find the mean and variance of an uniform random variable X whose pdf is given by

1
; 4 8

( ) 12

0; otherwise

x
f x
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Solution

Mean    
8 ( 4)

6
2 2

b a

Variance   

22
2 ( ) 8 ( 4)

12
12 12

b a

Example 67 For Example 65, find the mean and variance of X.

Solution

1 1

4 4

0 0

1 1
d d 4

4 4
x e x x e x

Alter:  Given f (x) is a exponential distribution with 
1

4

       
1

4

and variance 2 2

2

1
(4) 16.

EXERCISE 6.7

1. Let X has an exponential distribution

/1
; 0

( )

0; otherwise

x
e x

f x

  Find mean, variance and moment generating function of X.

2. The amount of time that a surveillance camera will run without having to be reset is a random 

variable X having exponential distribution with  = 50 days. Find the probability that such a 

camera.

(a) will have to be reset in less than 20 days

(b) will not have to be reset at least 60 days.

3. Let
1

( ) , 3 3,
6

f x x  0, otherwise, be the pdf of X. Graph the pdf f (x) and CDF F(x), and 

calculate, the mean and variance of X.

4. Customers arrive randomly at a bank teller’s window. Given that one customer arrived during 

a particular 10-minute period. Let X equal the time within the 10 minutes that the customer 

arrived. If X is uniformly distributed over (0, 10), then find (i) the pdf of X, (ii) P(X  8),

(iii) P(2 X  8), (iv) E(X) and (v) Var X.
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5. If the moment generating function of X is
5 4

( ) , 0 and (0) 1
t t

X X

e e
M t t M

t

Find (a) E(X), (b) Var (X) and (c) P(4.2 X  4.7).

6. What are the pdf, the mean, and the variance of X, if the moment generating function of X is 

given by the following:

(a)
1

( ) , 1/3
1 3

XM t t
t

    (b)
3

( ) , 3
3

XM t t
t

Answers

1. Mean = Variance = ; 1( ) (1 )XM t t

2. (a)  0.3297;  (b) 0.3012

3. Mean  = 3; 2 = 3

4. (i)
1

( ) , 0 (10); 0, otherwise
10

f x x

     (ii) 0.2; (iii) 0.6; (iv)  = 5; (v) 2 25

3

5. (a)
9

( )
2

E X (b)
1

Var( ) ;
12

X (c) 0.5

6. (a) 23
1

( ) , 0 ; 3, 9
3

x

f x e x

  (b) 3 21 1
( ) 3 , 0 ; ,

3 9

x
f x e x

6.20 NORMAL DISTRIBUTION

Normal distribution is one of the most widely used continuous probability distribution in application of 

statistical methods. First of all, English mathematician De Moivre discovered this distribution in 1723 

as a limiting case of binomial distribution.

The normal distribution has wide application in the analysis and evaluation of every experimental 

data in Science, Engineering and Medicine. Normal distribution can also be obtained as limiting 

case of Poisson distribution with parameter . Normal distribution is also known as Gaussian 

distribution.

A continuous random variable X is said to have the normal distribution, if its probability density 

function is given by

2
1

21
( , , )

2

x

f x e (4)

     , , 0,x

where  = mean and  = standard deviation.
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 and  are called parameters. A random variable X which has normal distribution with parameters 

 and  is denoted by X ~ N ( , 2).

Equation (4) which is probability distribution function of normal distribution is the limiting case of 

binomial distribution when n , neither p nor q being very small.

6.20.1 Properties of Normal Distribution

Fig. 6.10

The normal probability curve is given by

2
1

21
( ) ,

2

x

y f x e x

(i) Area under the curve is unity.

(ii) The mean, mode and median of the normal distribution coincide.

(iii) The curve is bell shaped and symmetric about the mean x = . as shown in the figure.

(iv) It is unimodel with coordinates decreasing rapidly on both sides of the mean. The maximum 

ordinate is 
1

,
2

 which we can get by putting x =  in (4).

(v) The point of inflection are , which we get by putting 
2

2

d
0

d

y

x
 and 

3

3

d
0,

d

y

x
 which are 

equidistant from the mean on both the sides.

(vi) The mean deviation from the mean 

  

2
1

21
| | d

2

2 4
or (App.)

5

x

x e x

(vii) The x-axis is an asymptote to the curve.

(viii) A linear combination of independent normal variates is also a normal variate.

(ix) The odd moments about the mean 

2 1 0, 0, 1,2, 3, ...n n



Probability and Distribution 6.67

  and even moments about the mean

2
2 1 3 5 ...(2 1) , 0, 1, 2, 3, ...n

n n n

   4
2 4

2 , 3

Hence   
2
3 4

1 23 2
2 2

0 and 3

  i.e. the coefficient of skewness is always zero and kurtosis is 3.

(x) As f (x), the probability density is always non-negative, i.e. no portion of the curve lies below 

the x-axis.

(xi) The probability of X lying between a and b is defined by

2
1

21
( ) d

2

x
b

a
P a x b e x

2
2

1

1

2
1 d

d where , d ,
2

zz

z

x x
e z z z

1 2,
a b

z z

=

2 2
2 1

1 1

2 2

0 0

1 1
d d

2 2

z zz z
e z e z

= F2(z) – F1(z)

  The values of each of the above integrals can be found by the table which gives the value of

     
21

2

0

1
( ) d

2

zz
F z e z  of various value of z.

  This integral is called the probability integral or the error function due to its use in the theory 

or errors and theory of sampling.

  The variable 
X

Z  is known as standard normal variate with mean 0 and variance 1. Z is

denoted by Z ~ N(0, 1) and its pdf is given by 

2

2
1

( ) ,
2

z

y f z e z  and its graph 

is shown in Fig. 6.11.

(xii) Using this table, we see that the area under the normal curve from z = 0 to z = 1 i.e., from x = 

 to  +  is 0.3413. Therefore

(a) 68.27% area lies between the ordinates x =  and x =  + , i.e. between –1 < z < 1, thus 

2

3
 of the values lie within these limits.

(b) About 95.5% area lies between x =  – 2  and  + 2 , i.e. –2 < z < 2, which implies that 

about 4.5% of the values lie outside these limits.

(c) 99.73% area lies between 3 and 3x , i.e. –3 < z < 3.

(d) 95% are lies between 1.96 and 1.96x x , i.e. 1.96 1.96z
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(e) 99% area lies between 2.58 and 2.58x x , i.e. 2.58 2.58z  and (f )

99.9% area lies between 3.29 and 3.29 ,x x  i.e. 3.29 3.29z .

  Therefore, (a), (b), (c), (d), (e) and  (f) can be written as

( ) ( 1 1) .6827P X P z

( 2 2 ) ( 2 2) .9544P X P z

( 3 3 ) ( 3 3) .9973P X P z

( 1.96 1.96 ) ( 1.96 1.96) .9500P X P z

( 2.58 2.58 ) ( 2.58 2.58) .99P X P z

      and  ( 3.29 3.29 ) ( 3.29 3.29) .999P X P z

  These can be represented as follows in Fig. 6.11:

Fig. 6.11

(xiii) The moment generating function of a normal variate X is given by

2 2

2( )

t
t

XM t e

6.20.2 Normal Frequency Distribution

A normal curve can be fitted to any distribution. If N be the total frequency,  be the mean and 2 be 

the variance of the given distribution, then the curve

2
1

2( )
2

x
N

y f x e



Probability and Distribution 6.69

will fit the given distribution as best as the data allow. The frequency of the variable between x1 and x2

as given by the fitted curve, will be under 
x

z  from x1 to x2.

6.20.3 Probable Error

All of us aware that any lot of goods manufactured always subject to some small errors i.e., it deviates 

from its required specification. There errors are generally of random nature, and therefore follow a 

normal distribution. Let probable error is denoted by  which is such that the probability of an error 

falling with the limits –  and +  is exactly equal to the chance of an error falling outside these 

limits, i.e. the probability of an error lying with –  and +  = 1/2.

       d

1

21 1
Let

2 2

x

x

x
e z

                        dz = dx

      

2

/
2

0

1 1
d 0.6745

4 2

z

e z  (By normal table)

or     0.67456

Example 68 If random variable X has mean 10 and standard deviation 5, then find (i) P(X  15) 

(ii) P(X  15) and (iii) P(10 X  15).

Solution Given 2~ ( 10, 25)X N

(i)
10 15 10 10

( 15)
5 5 5

( 1) (1) 0.8413 (Using normal table)

X X
P X P Z

P Z F

(ii) ( 15) 1 ( 15)

10 15 10
1

5 5

1 ( 1) 1 .8413 0.1587

P X P X

X
P

P Z

(iii)
10 10 10 15 10

(10 15)
5 5 5

(0 1) (1) (0)

0.8413 0.5000 0.3413 (Using normal table)

X
P X P

P X F F
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Example 69 Show that F(–z) = 1 – F(z).

Fig. 6.12

Solution

      

( ) ( ) ( ) (Using symmetry)

1 ( ) 1 ( )

F z P Z z P Z z

P Z z F z

Hence the result.

Example 70 If X is normally distributed with mean 8 and standard deviation 4, find

(i) (5 10)P X (ii) ( 15)P X  (iii) ( 5)P X

Solution Given X ~ N (8, 16)

(i)
5 8 8 10 8

(5 10)
4 4 4

X
P X P

=
8

( 75 50)
4

X
P Z Z

= (0 50) ( 0 75)F F

= 0 5000 0 2266 0 2734 (Using table)

(ii)
15 8

( 15) 1 ( 15) 1
4

P X P X P Z

= 1 (1 75) 1 9599 0.0411 (Using table)F

(iii)
5 8

( 5) ( 75) 0 2266 (Using table)
4

P X P Z F

Example 71 The marks of 1000 engineering students in a college are found to be normally 

distributed with mean 70 and variance 25. Find the number of students whose marks will be between 

(i) 60 and 75, (ii) more than 75, and (iii) less than 68.

Solution Let X denote the marks of the students.

      X ~ N (70, 25)
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70

25

X
Z

(i)
60 70 70 75 70

(60 75)
5 5 5

X
P X P

= ( 2 1) (1) ( 2)P Z F F

= (1) 1 (2) 0.8413 1 0.9772 1.8185 1 0.8185F F   (Using table)

Number of students whose marks are between 60 and 75

= 1000 × 0.8185 = 818.5  819

(ii)  ( 75) ( 1) 1 ( 1) 1 (1) 1 0.8413 0.1587P X P Z P Z F   (Using table)

  Number of students greater than 75 marks = 1000 × 0.1587

= 158.7  159

(iii)
68 70

( 68) ( 0.4)
5

P X P Z P Z

= ( 0.4) 1 (0.4) 1 0.6554 0.3446F F   (Using table)

  Number of students < 68 marks = 1000 × 0.3446 = 344.6  345.

Example 72 In a photographic process, the developing time of prints may be looked upon as a 

random variable X having normal distribution with mean 16.28 seconds and standard deviation 0.12 

second. For what value is the probability 0.95 that it will be exceeded by the time it takes to develop 

one of the prints?

Solution Let X be the developing time

then X ~ N [16.28, (0.12)2]

Let k be the number which exceeds the time

    
16.28

( ) 0.95
0.12

X k
P X k P

    
16.28

0.95
0.12

k
P Z

  
16.28

1 0.95
0.12

k
P Z

    
16.28

0.05
0.12

k
P Z

      
16.28

0.05
0.12

k
F

        
16.28

1.645
0.12

k

            k = 16.0826
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Example 73 If the probability of committing an error of magnitude x is given by 
2 2

h xh
y e

Compute the probable error from the following data:

1 2 3 4 5

6 7 8 9 10

1.305; 1.301; 1.295; 1.286; 1.138

1.321; 1.283; 1.289; 1.300; 1.286

m m m m m

m m m m m

(Kurukshetra 2005)

Solution Data is normally distributed. Therefore, the mean

 = 
10

1

1 12.984
1.2984

10 10
i

i

m

and variance 2 = 
10

2

1

1
( )

10
i

i

m

2 21
(1.305 1.2984) (1.286 1.2984)

10

0.0001594

Hence, standard deviation .0001594 0.012625371

Probable error = 
2 2

0.012625373
3 3

= 0.0084169

Example 74 Fit a normal curve to the following distribution:

x 2 4 6 8 10

f 1 4 6 4 1

(V.T.U. 2001)

Solution

Mean     
2 1 4 4 6 6 8 4 10 1

16

fx

f

=
2 16 36 32 10 96

6
16 16

Variance   

22 2 2 2 2 2 2
2 1(2) 4(4) 6(6) 4(8) 1(10) (6)

16

fx fx

f f

                =
4 64 216 256 100

36 40 36 4
16

Standard deviation 4 2

The equation of normal curve 

2
1 1 2

2 2
1 1 6

( )
22 2 2

x
x

y f x e e
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21
( 6)

8
1

( )
2

x

f x e (5)

Area under Eq. (5) in (x1, x2)

1 2 1
1 2 1

2
2

2
( )

2

2

2

x x xX
P x X x P z

x
z

=
1 2 2 1( ) ( ) ( ) and

x
P z Z z F z F z Z

To evaluate the probabilities, we refer the table of normal distribution.

Mid point (x) (x1, x2) (z1, z2) Area under (x1, x2) or (z1, z2)
Expected Frequency = 

N(Area under x1, x2)

2 (1, 3) z1 = –2.5 z2 = –1.5
F(–1.5) – F(–2.5)

= 0.0668 – .0062 = .0606
16 × .0606 = 0.9696  1

4 (3, 5) z1 = –1.5 z2 = –0.5
F(–0.5) – F(–1.5)

= .3085 – .0668 = .2417
16 × .2417 = 32.8672  4

6 (5, 7) z1 = –0.5 .z2 = 0.5
.6915 – .3085

= F(0.5) – F(–5) = 0.383
16 × .383 = 6.128  6

8 (7, 9) z1 = 0.5 z2 = 1.5
F(1.5) – F(0.5)

= .9332 – .6915 = .2417
16× .2417 = 3.8672  4

10 (9, 11) z1 = 1.5 z2 = 2.5
F(2.5) – F(1.5)

=  .9938 – .9332 = .0606
16 × .0606 = .9696  1

Hence the expected (theoretical) frequencies are 1, 4, 6, 4 and 1, which are same to the given 

observed frequencies. This shows that normal curve is a proper fit to the given distribution.

EXERCISE  6.8

1. X is a normal variate with mean 30 and S.D. 5, find the probabilities that (i) 26 X  40

(ii) X  45 and (iii) |X – 30| > 5.

(J.N.T.U. 2005)

2. In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and 

S.D. of the distribution.

(V.T.U. 2009, S.V.T.U. 2008, Kurukshetra 2007S)

3. In a test on 2000 electric bulbs, it was found that the life a particular make, was normally 

distributed with an average life of 2040 hours and S.D. of 60 hours. Estimate the number of 

bulbs likely to burn for:

(a) more than 2150 hours, (b) less than 1950 hours and

(c) more than 1920 hours and but less than 2160 hours.

(Bhopal 2008S, U.P.T.U. 2008)
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4. If X is a normal variate with mean 12 and S.D. 4. Find (i) ( 20),P X

(ii) ( 20)P X  and (iii) (0 12)P X .

5. For a certain normal distribution the first moment about 10 is 40 and the fourth moment about 

50 is 48. What is mean and variance of the normal distribution.

6. Students of a class were given an aptitude test. Their marks were found to be normally distributed 

with mean 60 and SD 5. What percentage of students, scored more than 60 marks.

7. If the heights of 300 students are normally distributed with mean 64.5 inches and SD 3.3 inch, 

how many students have height.

  (i)  less than 5 feet, (ii) between 5 feet and 5 feet 9 inches. Also find the height below which 

99% of the students lie.

8. A random variable X is normally distributed with mean 12 and SD 2. Find 

P(9·6 < X < 13·8).

9. The mean height of 500 students is 131 cm, and the standard deviation is 15 cm. Assuming 

that the heights are normally distributed, find how many students’ height lie between 120 and 

155 cm?

(Burdwan 2003)

10. In a certain examination, the percentage of candidates passing and getting distinctions were 45 

and 9 respectively. Estimate the average marks obtained by the candidates, the minimum pass 

and distinction marks being 40 and 75 respectively. (Assume that the distribution of marks to 

be normal).

(Kottayam 2005)

11. Assuming that the diameters of 1000 brass plugs taken consecutively from a machine, form a 

normal distribution with mean 0.7515 cm and standard deviation 0.0020 cm, how many of the 

plugs are likely to be rejected if the approved diameter is 0.752  0.004 cm.

(Bhopal 2002)

12. The income of a group of 10,000 persons was found to be normally distributed with mean

Rs. 750 p.m. and standard deviation of Rs. 50. Show that of this group, about 95% had income 

exceeding Rs. 668 and only 5% had income exceeding Rs. 832. Also find the lowest income 

among the richest 100.

(U.P.T.U. 2004S)

13. Given that the probability of committing an error of magnitude x is 
2 2

.h xh
y e  Find the 

probable error.

14. If 10% of the items produced by a factory are defective. Find the standard deviation of the 

number of defectives and equation to the normal curve to represent the number of defectives.

15. Find the equation of the best fitting normal curve of the following data:

x 0 1 2 3 4 5

f 13 23 34 15 11 4

16. Fit a normal curve to the following frequency distribution:

Length of line (cm) x 6 7 8 9 10 11 12

Frequency 3 6 9 13 8 5 4
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Answers

1. (i)  0.7653; (ii)  0.0014; (iii)  0.3174

2. Mean = 50; S.D. = 10.

3. (a)  67 (App.) (b)  184 (App.) (c)  1909 (App.)

4 (i)  0.0228; (ii)  0.9772; (iii)  0.4987

5.  = 6.05; 2 = 6.26

6. 50% 7. (i)  26; (ii)  248; 72.18 inch

8. 0.37 9.  294

10. 36.4 11. 52

12. Rs. 866 13. 0.4769/h

14. p = 0.1, q = 0.9, 2 = npq = 9  S.D.  = 3, np =  = 10, n = 100

  Equation of normal curve is
2

1 10

2 3100
( )

/ 2

x

f x e

15.

2( 2)

3 4
100

( ) ;
3.4

x

f x e x

16.

2
1

21
( ) ,

2

x

f x e  where  = 9,  = 7.543.

6.21 NORMAL APPROXIMATION TO BINOMIAL DISTRIBUTION

Let X be a random variable having binomial distribution inch parameters n and p. The we can show 

that ( ) ( ) as
X np

P z P Z z F z n
npq

 when n is large, the binomial distribution can be 

approximated using normal distribution. The approximation is acceptable for values of n and p when 

either p  0·5 and np > 5 or p > 0·5 and nq > 0·5.

Example 75 A manufacturer knows that on the average 2% of washing machines that he makes 

will require repair within 90 days after the machines are sold. Use normal approximation to the binomial 

distribution to determine the probability that among 1200 of these machines at least 30 will require 

repair within 90 days after they are sold 1.

Solution Let X be the number of machines that require repairs within 90 days after they are sold.

X has binomial distribution with n = 1200, p = 0.02

       21200 0.02 24 and 23.52 23.52 4.85np npq

   
. 30 24

( 30) ( 1.24)
4.84

X np
P X P P Z

npq

= 1 ( 1.24) 1 (1.24) 1 0.8925 0.1075P Z F   (Using table)
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Correction of continuity:  Since for continuous random variable P(X x) = P(X > x) or P(X x) = 

P(X < x), which is not true for discrete random variable. When we approximate binomial probability 

by normal probability, we must ensure that we do not lose the point. This is achieved by continuity of 

correction.

Example 76 Consider Example 75 and use continuity correction to calculate probability.

1 1
( 30) 30 (Subtract for continuity)

2 2
P X P X

=
29.5 24

( 1.13)
4.85

P Z P Z

or 1 ( 1.13) 1 (1.13) 1 0.878 0.122P Z F   (Using table)

Example 77 A safety engineer feels that 30% of all industrial accidents in his plant are caused 

by failure of employees to follow instructions. Find approximately the probability that among 84 

industrial accidents any where from 20 to 30 (both inclusive) will be able to failure of employees to 

follow instructions.

Solution Let X be the number of accidents due to failure of employees to follow instructions:

n = 84, p = 0.30 np =  = 25.2

and 2 = npq = 17.64  = 4.2

1 1
(20 30) 20 30

2 2
P X P X

(For continuity correction subtract 
1

2
 from L.H.S. and add 

1

2
 in the right hand side)

19.5 25.2 30.5 25.2
(20 30)

4.2 4.2
P X P Z

= ( 1.36 1.26)P Z

= F(1.26) – F(–1.36)

= (1.26) 1 (1.36) 0.8962 1 0.9131 0.8093F F   (Using table)

6.22 CHEBYSHEV’S INEQUALITY

If a probability distribution has mean  and standard deviation , the probability of getting 

a value which deviates from  by at least k  is at must 
2

1

k
 i.e., 

2

1
| |P X k

k
 or 

2

1
| | 1P X k

k
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| |P X k  is the probability associated with the set of outcomes for which x, the value of 

random variable having the given probability distribution is such that | | .x k

Example 78 The number of customers who visit a car dealer’s show room on a day is a random 

variable with  = 18 and  = 2.5. With that probability can we assert that there will be between 8 and 28

customers?

Solution Given  = 18,  = 2.5

      
28 18 18.8

4
25 2.5

k

The probability is at least 
2

1 15
1

16k

EXERCISE 6.9

1. Let X be a random variable having binomial distribution with n = 20 and p = 0.3. Use the 

normal approximation to approximate each of the following:

  (i) P(X  3)

 (ii) (3 6)P X

(iii) ( 4)P X

2. If 20% of the memory chips made in a certain plant are defective. Use normal approximation 

to binomial distribution to find the probabilities that in a lot of 100 randomly chosen for 

inspection.

(a) at most 15 will be defective

(b) exactly 15 will be defective.

3. Find the probability of getting between 3 heads to 6 heads in 10 tosses of a fair coin using the 

normal approximation to binomial distribution.

4. Show that for 40,000 flips of a balanced coin, the probability is at least 0.99 that the probability 

of heads will fall between 0.475 and 0.525.

5. The tensile strength of some synthetic fibres can be determined by tying two strands together 

and putting until either the right or left hand strand breaks. If 144 pairs of strands will be 

broken, what does Chebychev’s inequality with k = 4 tell in about the number of cases where 

the left hand strand broke?

Answers

1. (i)  0.1093; (ii) 0.5512; (iii) 0.7704

2. (a)  0.1344  (b)  0.0461

3. 0.7718

5. The probability of getting more than 95 or less than 49 left hand breaks is 
1

.
16
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SUMMARY

Following topics have been discussed in this chapter:

1. How to calculate mathematical, statistical axiomatic probabilities. We also defined important 

terms such as:

  Sample space, mutually exclusive events, event, permutation, combination, impossible 

event, etc.

2. Additive law of Probability:
( ) ( ) ( ) ( )P A B P A P B P A B

  if A and B are mutually exclusive events

  then ( ) ( ) ( ).P A B P A P B

3. Conditional probability

( )
( | ) , ( ) 0

( )

A B
P A B P B

P B

  if A and B are independent events then
( ) ( ) ( ).P A B P A P B

4. Define Random variable (Discrete and continuous): How to calculate mean and variance of 

a random variable X.

( ) ( ),

x

E X x p x  if x is discrete, ( )d ,x f x x  if x is continuous

2 2 2 1 2
2( ) [ ( )]E X E X

2 2( ) ( ),

x

E X x p x  if x is discrete and 2 ( )d ,x f x x  if X is continuous.

  Moment generating function:

( ) [ ] ( ),x x

x

t t
XM t E e e p x  if X is discrete

= ( )d ,xte f x x  if X is continuous

0

d
( )

d

r

r Xr
t

M t
t

5. Bernoulli, Binomial and Poisson distributions as a special case of discrete random variable.

(a) For Bernouli’s Distribution:
1 2( ) (1 ) , 0, 1; , , ( )x x t

Xf x p p x p pq M t q pe

(b) For Binomial Distribution:

2( ) , 0, 1, 2,..., ; , , ( ) ( )x n x t n
X

n
f x p q x n np npq M t q pe

x

(c) For Poisson Distribution:

2 ( 1)( ) , 0, 1, 2, ..., ; , ( )
t

x
e

X

e
f x x n M t e

x
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6. For continuous random variable, uniform, exponential and normal distributions are 

discussed.

(i) For uniform distribution:

1
( ) , ; 0, otherwisef x a x b

b a

2
2 ( )

; , ( )
2 12 ( )

bt at

X

b a b a e e
M t

t b a

(ii) For Exponential Distribution:

( ) , 0

0, otherwise

x
f x e x

1

2

2

1 1
, , ( ) 1 ,X

t
M t t

t

(iii) For Normal Distribution:
2

1

21
( ) , .

2

x

f x e x x

2 2

2 2( ) , Var( ) , ( ) ,

t
t

XE X X M t e

~ (0, 1)
X

Z N

( ) 1 ( )F z F z

7. Normal Approximation to Binomial Distribution:

8. Chebychev’s inequality:

2

1
| | 1P X k

k

OBJECTIVE TYPE QUESTIONS

1. The probability that A happens is 
1

.
4

 The odd 

against happening of A are

(a) 2 : 2 (b) 2 : 1

(c) 3 : 1 (d) 5 : 1

2. The odds in favour of an event B are 6 to 4. 

The probability of success of B is

(a)
4 2

6 3
(b)

4 2

10 5

(c)
6 3

10 5
(d) None of these

3. If
2

( ) , then ( ) is
3

P A P A

(a)
1

3
(b)

1

2

(c)
2

3
(d)

1

4

4. If  is an impossible event and S be sample 

space, then P( ) is

(a) 1 (b) 0.5

(c) 0 (d) None of these
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5. ( / ) ( )P A B P B  is equal to

(a) ( )P A B (b) ( )P A B

(c) ( )P A B (d) ( )P A B

6. If A and B are mutually exclusive events, such 

that ( ) 0.5, ( ) 0.6,P A P B  then ( )P A B

is equal to

(a) 0.8 (b) 0.9

(c) 0.7 (d) None of these

7. The probability of drawing any one spade card 

from a pack of cards is

(a)
1

52
(b)

1

13

(c)
4

13
(d)

1

4

8. The probability of drawing one white ball 

from a bag containing 6 red, 8 black 10 yellow 

and 1 green balls is

(a)
1

25
(b) 0

(c) 1 (d)
24

25

9. A coin is tossed three times in succession. The 

number of sample points in sample space is

(a) 6 (b) 9

(c) 3 (d) 8

10. In the simultaneous tossing of two prefect 

coins, the probability of having at least one 

head is

(a)
1

2
(b)

1

4

(c)
3

4
(d) 1

11. In the simultaneous tossing of two prefect 

dice, the probability of obtaining 4 as the sum 

of the resultant face is

(a)
1

3
(b)

1

12

(c)
1

4
(d)

1

6

12. A single letter is selected at random from the 

word ‘probability’. The probability that it is a 

vowel is

(a)
3

11
(b)

2

11

(c)
4

11
(d) 0

13. A number is chosen at random among first 

120 natural numbers. The probability of the 

number chosen being a multiple of 5 or 15 is

(a)
1

5
(b)

1

8

(c)
1

16
(d)

1

9

14. If A and B are mutually exclusive events, 

then

(a) ( ) ( ) ( )P A B P A P B

(b) ( ) ( ) ( )P A B P A P B

(c) ( ) 0P A B

(d) None of these

15. If
1 1

( ) , ( ) and
2 3

P A B P A B

P(A) = P(B) = p, then the value of p is

(a)
1

2
(b)

7

8

(c)
1

3
(d)

7

12

16. A and B are independent events such that 

3 8
( ) and ( ) .

25 25
P A B P A B

If P(A) < P(B), then P(A) is

(a)
1

5
(b)

2

5

(c)
3

5
(d)

4

5

17. A and B are independent events such that 

( ) 0.7, ( )P A P B k  and ( )P A B  = 0.8, 

then k is

(a)
5

7
(b) 1

(c)
2

7
(d) None of these

18. If the events S and T have equal probability 

and are independent with ( ) 0,P S T p
then P(S) is

(a) p (b) p
2
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(c)
2

p
(d) p

19. Events S and T are independent with P(S) < 

P(T),
6

( )
25

P S T  and P(S/T) + P(T/S) = 1.

Then P(S) is

(a)
1

25
(b)

1

5

(c)
6

25
(d)

2

5

20. An unbiased dice is thrown two independent 

times. Given that the first throw result in an 

even number, the probability that the sum 

obtained is 8 is

(a)
5

36
(b)

1

6

(c)
4

21
(d)

7

36

21. If 1 1
( ) , ( )

2 2
P A B P A B  and

2P(A) = P(B) = p, then the value of p is

(a)
1

4
(b)

1

2

(c)
1

3
(d)

2

3

22. The probability that a leap year would have 53 

Mondays is

(a)
1

7
(b)

2

7

(c)
3

7
(d)

4

7

23. The probability of getting 3, 4 or 6 from a 

single dice is

(a)
1

2
(b)

1

3

(c)
2

3
(d)

2

5

24. The mean of a Bernoulli distribution with 

probability of success 0.5 is

(a) 0.6 (b) 0.4

(c) 0.5 (d) 0.8

25. The mean of a binomial distribution with 

n = 100 and p = 0.4 is

(a) 40 (b) 4

(c) 60 (d) 6

26. The variance of a binomial distribution with 

n = 50 and p = 0.6 is

(a) 30 (b) 20

(c) 12 (d) 10

27. If the mean of a binomial distribution is 20 

and n = 100 then probability of success p is

(a) 0.6 (b) 0.4

(c) 0.2 (d) 0

28. If n = 20 and p = 0.6, then moment generating 

function of binomial distribution is

(a)
20(0.4 0.6 )t

e (b)
20(0.6 0.4 )t

e

(c)
2 20(0.4 0.6 )t

e (d)
2 20(0.4 0.6)t

e

29. If the mean of a Poisson distribution is 20, 

then its variance is

(a) 10 (b) 15

(c) 20 (d) 25

30. If the mean of a Poisson distribution is 10, 

then its standard deviation is

(a) 10 (b) 10

(c) 20 (d) 20

31. The standard deviation of binomial distribution 

is

(a) np (b) np

(c) npq (d) npq

32. In a Poisson distribution if P(X = 2) = 2P(X = 1), 

then the mean is

(a) –1 (b) 0

(c) 2 (d) 4

33. If the probability of hitting a target by one 

shot is p = 0.8, then the probability that out of 

10 shots, seven will hit the target

(a) 0.1188 (b) 0.1288

(c) 0.1388 (d) 0.1488

34. If X has Poisson distribution such that

P(X = 1) = P(X = 2), then the variance of X is

(a) 0 (b) 1

(c) 2 (d) 3

35. If A and B are independent events such that 

P(A) = 0.14 and P(B/A) = 0.24, then P(B) is

(a) 0.24 (b) 0.14

(c) 0.30 (d) None of these
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36. If A and B are independent events such that 

( ) 0.75 and ( / ) 0.15P B P A B  then ( )P A  is

(a) 0.15 (b) 0.75

(c) 0.25 (d) 0.85

37. If the mean of a normal distribution is 2, then 

its median is

(a) 1 (b) 2

(c) 3 (d) 4

38. If the median of normal distribution is 4, then 

its mode is

(a) 1 (b) 2

(c) 3 (d) 4

39. If mode of the normal distribution 5, then its 

mean is

(a) 2 (b) 3

(c) 4 (d) 5

40. The distribution of whose mean, mode and 

median are same is known is

(a) Binomial (b) Poisson

(c) Uniform (d) Normal

41. The discrete distribution for which mean is 

always greater than its variance is known

(a) Binomial (b) Poisson

(c) Uniform (d) Normal

42. For a normal distribution 1 is

(a) 0 (b) 1

(c) 2 (d) 3

43. For a normal distribution 2 is

(a) 0 (b) 1

(c) 2 (d) 3

44. If a random variable X has Poisson distribution 

with mean 2, then its moment generating 

function MX(t) is

(a) 2( 1)t
e

e (b) e
2

(c) ( 1)t
e

e (d) none of these

45. If a normal distribution has mean 2 and 

variance 6 then its moment generating function 

is

(a)
22 3t t

e (b)
2

t t
e

(c)
23 2t t

e (d)
22 6t t

e

46. If moment generating function of a random 

variable X having normal distribution is 
24 6t t

e  then its mean is

(a) 4 (b) 6

(c) 12 (d) 8

47. The number of ways in which 5 persons can 

be lined up to get on a bus are

(a) 100 (b) 120

(c) 140 (d) 150

48. The probability of getting a total of 5 when a 

pair of fair dice is tossed is

(a)
1

9
(b)

2

9

(c)
3

9
(d)

1

36

49. If P(A) = 0.81 and P(A B) = 0.18, then 

P(B/A) is

(a)
2

9
(b)

1

9

(c)
3

9
(d)

4

9

50. If two unbiased dice are thrown simultaneously, 

the probability that the sum of the numbers on 

them is at least 10 is

(a)
4

6
(b)

3

6

(c)
2

6
(d)

1

6

51. Let X be a random variable having Poisson 

distribution such that P(X = 2) = P(X = 3), 

then P(X = 0)

(a) e
3 (b) e

–3

(c) e
2 (d) e

–2

52. If X ~ N (  = 10 and 2 = 4), then ( 10)P X

is

(a) 0.69 (b) 0.85

(c) 0.50 (d) none of these

53. If A and B are independent events such that 

1 1
( ) , ( ) ,

2 3
P A P B  then ( )P A B  is

(a)
1

6
(b)

1

3

(c)
1

2
(d) 1

54. If X is binomial with n = 50 and 
1

5
p  then 

its standard deviation is

(a) 2 2 (b) 2

(c) 3 (d) 3
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55. If A and B are mutually exclusive events then 

( )P A B  is

(a) 0 (b)
1

2

(c) 1 (d)
1

4

56. The probability of selecting 3 white balls from 

a bag containing 5 white and 5 red balls

(a) 5
C3/

10
C3 (b) 5/10

(c) 3/10 (d) none of these

57. Let X be a binomial distribution, under which 

condition(s) X tends to Poisson distribution

(a) n

(b) p  0

(c) np constant

(d) p  0 n  so that np is fixed

58. If the mean and variance of binomial variate 

are 12 and 4 respectively, then n is

(a) 12 (b) 18

(c) 24 (d) 36

59. If A and B are mutually exclusive events such 

that P(A) = 0.29, P(B) = 0.43, then ( )P A B
is

(a) 0.29 (b) 0.42

(c) 0.72 (d) none of these

60. If A and B are mutually exclusive events 

such that P(A) = 0.43 and P(B) = 0.29, then 

( )P A B  is

(a) 0.1653 (b) 0.1563

(c) 0.1356 (d) none of these

61. If A and B are two events such that 

1 1
( ) , ( )

3 2
P A P B  and ( ) 1/4,P A B

then P(B/A) is

(a)
3

4
(b)

1

2

(c)
1

4
(d) none of these

62. The chance of throwing 7 in a single throw of 

two dice is

(a)
1

6
(b)

2

6

(c)
3

6
(d)

4

6

63. The probability distribution of binomial 

distribution is

(a) ; 0,1, 2, ...,x n xn
p q x n

x

(b) x n x
p q

(c)
n

pq
x

(d) none of these

64. If X be a random variable having uniform 

distribution on (–4, 4), then its probability 

distribution function is given by

(a)
1

8
(b)

1

4

(c)
2

8
(d)

3

8

65. The cumulative distribution function of a 

uniform random variable on (–2, 2) is

(a)

0, 2

2
, 2 2

4

1, 2

x

x
x

x

(b)
2

4

x

(c)
2

2

x

(d) none of these

66. The mean of a random variable which is 

uniformly distribution over (–3, 3) is

(a) 0 (b) 1

(c) 2 (d) 3

67. The variance of a random variable which is 

uniformly distributed over (–3, 3) is

(a) 0 (b) 1

(c) 2 (d) 3

68. The mean of a uniform random variable on 

[a, b] is

(a)
2

b a
(b)

2

b a

(c)
2

a
(d)

2

b

69. The variance of a uniform distribution on 

[a, b] is
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(a)
2

b a
(b)

2

b a

(c)
2( )

12

b a
(d)

2( )

2

b a

70. The probable error is

(a)
4

5
(b)

2

3

(c)
3

4
(d) none of these

where  is standard deviation.

71. A card is drawn from well-shuffled pack of 52 

cards, then the probability of this card being a 

red coloured queen is

(a)
1

26
(b)

2

26

(c)
3

26
(d)

4

26

72. If P(X = 1) = P(X = 2) of a Poisson distribution, 

then its variance is

(a) 0 (b) 1

(c) 2 (d) 3

73. If X be Poisson variate such that P(X = 1) = 0.3

and P(X = 2) = 0.2, then P(X = 0) is

(a) e
–4 (b) e

–3

(c) e
–2 (d) e

–4/3

74. If A and B are two events such that 

2 3
( ) , ( ) ,

3 4
P A P A B  and 

1
( ) ,

4
P A B

then ( )P B  is

(a)
1

3
(b)

1

4

(c)
2

3
(d)

2

4

75. If A and B are two events such that 

2 3
( ) , ( ) ,

3 4
P A P A B  and 

1
( ) ,

4
P A B

then P(B) is

(a)
1

3
(b)

1

4

(c)
2

3
(d)

2

4

76. If the mean of Poisson distribution is 4 then its 

variance is

(a) 4 (b) 8

(c) 2 (d) 6

77. If , 0 1( )

0, otherwise

kx xf x  then k is equal to

(a) 1 (b) 2

(c) 3 (d) 4

78. If 2 , 0 1( )

0, otherwise

x xf x ; then E(X) is

(a)
1

3
(b)

2

3

(c)
1

4
(d) none of these

79. If ( ) 2 , 0 1

0, otherwise

f x x x ; then 1
2 is

(a)
1

3
(b)

1

2

(c)
1

4
(d) 2/3

80. If
2 , 0 1

( )
0, otherwise

x x
f x ; then 2 is

(a) 0 (b)
1

2

(c)
1

3
(d)

1

18

81. If V(X) = 2, then Var (2X + 2) is

(a) 2 (b) 4

(c) 6 (d) 8

82. If E(X) = 5, then E(2X + 5) is

(a) 5 (b) 10

(c) 15 (d) 20

83. The probability distribution function of 

exponential distribution with mean 2 is

(a)

1

2
1

, 0
2

e x (b) 22 , 0x
e x

(c)

1

2 , 0
x

e x (d) 2 , 0x
e x

84. If X has exponential distribution with pdf 
33 , 0,

0, otherwise

x
e x  then its mean is

(a) 3 (b)
1

3
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(c)
2

3
(d) 1

85. If X has exponential distribution with pdf 
1

4
1

, 0,
4

e x  otherwise then its variance is

(a) 4 (b) 8

(c) 16 (d)
1

16

86. If
2

( ) , 1,2, 3, 4, 5f x x x
c

 then the value 

of c is

(a) 1

7
(b)

1

7

(c)
5

7
(d) –5/7

87. If
3, 0 1

( )
0, otherwise

kx x
f x , then k is equal

to

(a) 1 (b) 2

(c) 3 (d) 4

88. If , 0x
e x  is pdf of exponential 

distribution then E(X) is

(a) (b) 2

(c)
1

(d)
2

1

89. If , 0x
e x  is pdf of exponential 

distribution then 2 is

(a) (b) 2

(c)
1

(d)
2

1

90. If X is a continuous random variable having 

uniform distribution on [–5, 5] then its cdf 

F(x)

(a)
5

, 5 5
10

x
x

(b)
5

, 5 5
10

x
x

(c)
5

, 5 5
5

x
x

(d)
5

, 5 5
10

x
x

91. If Z ~ N(0, 1) then E(Z) is

(a) 0 (b) 1

(c) 2 (d)
1

2

92. If X be a normal variance with mean 2 and 

variance 9 then Z is

(a)
2

9

X
(b)

3

3

X

(c)
2

3

X
(d)

3

2

X

93. If Z be a standard normal variate then its 

variance is

(a) 0 (b) 1

(c) 2 (d) 3

94. For a standard normal variate F(–z) is

(a) 1 – F(z) (b) F(z)

(c)
1

1 F
z

(d) none of these

95. The marks obtained by students were found 

normally distributed with mean 75 and 

variance 100. The percentage of students who 

scored more than 75 marks is

(a) 25% (b) 30%

(c) 40% (d) 50%

96. The standard normal variate is represented by

(a) N(0, 1) (b) N(0, 0)

(c) N(1, 1) (d) N(1, 0)

97. The points of inflexion of X ~ N ( , 2) are

(a) 3 (b) 2

(c) (d) 4

98. The area under the whole normal curve is

(a) 1 (b) 2

(c) 3 (d) 4

99. The normal distribution if variance is 25, then 

its mean deviation is

(a) 4 (b) 5

(c) 20 (d) 25

100. To fit a normal distribution, the parameter(s) 

which required are

(a) mean only

(b) variance only

(c) mean and variance both

(d) none of these
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ANSWERS

1.(c) 2.(c) 3.(a) 4.(c) 5.(a) 6.(b) 7.(a) 8.(b) 9.(d) 10.(c)

11.(b) 12.(c) 13.(a) 14.(b) 15.(d) 16.(a) 17.(c) 18.(a) 19.(d) 20.(b)

21.(d) 22.(b) 23.(a) 24.(c) 25.(a) 26.(c) 27.(c) 28.(a) 29.(c) 30.(a)

31.(d) 32.(d) 33.(b) 34.(c) 35.(a) 36.(d) 37.(b) 38.(d) 39.(d) 40.(d)

41.(a) 42.(a) 43.(d) 44.(a) 45.(a) 46.(a) 47.(b) 48.(a) 49.(a) 50.(d)

51.(b) 52.(c) 53.(a) 54.(a) 55.(a) 56.(a) 57.(d) 58.(b) 59.(c) 60.(a)

61.(a) 62.(a) 63.(a) 64.(a) 65.(a) 66.(a) 67.(d) 68.(a) 69.(c) 70.(b)

71.(a) 72.(c) 73.(d) 74.(c) 75.(a) 76.(a) 77.(a) 78.(b) 79.(b) 80.(d)

81.(d) 82.(c) 83.(a) 84.(b) 85.(c) 86.(d) 87.(d) 88.(c) 89.(d) 90.(a)

91.(a) 92.(c) 93.(b) 94.(a) 95.(d) 96.(a) 97.(c) 98.(a) 99.(a) 100.(c)



7.1 INTRODUCTION

Before giving the notion of sample, we shall first define ‘population’. The group of individuals under 

study is called ‘population or universe’. Thus in statistics, population is an aggregate of objects, animals 

or inanimate which are under study. The population may be finite or infinite.

It is obvious that for any statistical investigation complete enumeration of the population is rather 

impractical. For example, if we are interested to know the average per capita (monthly) income of the 

citizens of India, we will have to enumerate all the earning individuals in the country, which is a very 

difficult task to do.

If the population is infinite, complete enumeration is impossible. Also, if the units are destroyed 

in the course of inspection (i.e., inspection of crackers, explosive materials, etc.), 100% inspection, 

though it is possible but not at all desirable. But even if the population is finite or the inspection is 

not destructive, 100% inspection is not taken recourse to be cause of multiplication of causes, viz., 

administrative and financial implications, time factor, etc., and we take the help of ‘sampling’.

A finite subset of statistical individuals in a population is called a ‘sample’ and the number of 

individuals in a sample is called ‘sample size’.

Sampling is quite often used in our day-to-day practical life. For example, in a shop we assess the 

quality of sugar, wheat or any other commodity by taking a handful of it from the bag and then divide 

to purchase it or not. A housewife normally tastes the cooked food to find if it is cooked properly or not 

and contains the required quantities of salt, etc.

7.2 TYPES OF SAMPLING

Some of commonly known and frequently used types of sampling are as follows:

(i) Purposive sampling

(ii) Random sampling

(iii) Stratified sampling, and

(iv) Systematic sampling

We shall focus on random sampling in the upcoming section.

7.2.1 Random Sampling

A random sample is the one in which each unit of population has an equal chance of being included 

in it. Suppose, we take a sample of size n from a finite population of size N. Then there are 
nCN

possible samples. A sampling techniques in which each of the N
nC samples has an equal chance of 

Sampling and 

Inference and Testing 

of Hypothesis

n

7
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being selected is known as ‘random sampling’ and the sample obtained by this technique is known as 

random sample.

7.2.2 Simple Sampling

Simple sampling is the random sampling method in which each unit of population has an equal chance, 

say p, of being included in the sample and this probability is independent of the previous drawings. 

Thus, a simple sample of size n from a population may be identified with a series of n independent trials 

with constant probability of success ‘p’ for each trial.

Remark: It may be noted that random sampling is not necessarily a simple sampling, though 

its converse is always true. To ensure that sampling is simple, it must be done with replacement, if 

population is finite. However in case of infinite population, no replacement is necessary.

7.3 PARAMETERS AND STATISTICS

The statistical constants such as mean ( ), variance ( 2), etc., of a population are called parameters 

and the statistical constants such as sample mean ( )x , sample variance (s2), etc., calculated based on 

samples are known as statistics.

7.4 STATISTICAL INFERENCE

As we know that it is difficult to calculate the statistical constants of a population, so to gather maximum 

information about parameters with least cost, time and efforts, we compute the statistical constants 

based on samples. Therefore, the objective of sampling studies is to obtain the best possible values of 

the parameters under specific conditions and such a generalization from sample to population is called 

‘statistical inference’.

7.5 SAMPLING DISTRIBUTION

If we draw a sample of size n from a finite population of size n, then the total number of possible 

samples is as follows:

!
(say)

!( )!

N
n

N
C k

n N n

For each of these k-samples, we can compute some statistic 1 2( , , , ),nt t x x x  in particular sample 

mean x– and sample variance s1
2 etc., as given in the table:

Sample no. 1 2 3 … k

Statistic t t1 t2 t3 … tk

x
1x 2x 3x …

kx

s
2

2
1s

2
2s

2
3s

… 2
ks

A set of these values of the statistic so obtained, one for each sample, constitutes what is called 

the ‘sampling distribution’ of the statistic. For the example, the values of t1, t2, …, tk determines the 

sampling distribution of the statistic t. In other words, statistic t may be regarded as a random variable 

which can take the values t1, t2, …, tk and we can compute various statistical constants like mean, 

variance, skewness, kurtosis, etc., for its distribution. Therefore, the mean and variance of sampling 

distribution of statistic t are given by
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1 2
1

1 1
( )

k

k i

i

t t t t t
t k

and 2
1

1
var( ) ( )

i

t t t
k

7.6 STANDARD ERROR

The standard deviation of the sampling distribution of a statistic is called the ‘standard error’ (S.E.). 

For example, S.E. of the sampling distribution of means is called S.E. of means. Standard error is used 

to know the discrepancy between the observed and expected value of a statistic. The reciprocal of S.E. 

is known as precision.

If n  30, the sample is called large, otherwise small. For large values of n, the sampling distribution 

of a statistic is normal.

i.e.,
( )

~ (0, 1)
( )

t E t
Z N

V t

Remark: S.E. of a statistic may be reduced by increasing the sample size, but this results in 

corresponding increase in cost, labour and time, etc.

7.7 TESTING A HYPOTHESIS

Based on sample information, to reach decisions about populations, certain assumptions are made 

about the population, such assumptions which may or may not be true, are called statistical hypothesis. 

With the help of testing of hypothesis we accept or reject that hypothesis. We make a hypothesis about 

the population parameter which is taken is correct and by a method we calculate the probability of 

getting the observed value of statistic based on sample. If this probability is less than some reassigned 

value, the hypothesis is rejected otherwise accepted.

7.8 ERRORS

When we test a hypothesis based on a sample, then either we reject or accept. But if a hypothesis 

is rejected when it should have been accepted, then an error has been committed by us, known a

Type I error. On the other hand, if a hypothesis is accepted while it should have been rejected, we say 

that another error has been made and this error is known as Type-II error. The aim of statistical testing 

hypothesis is limiting the Type-I error to a preassigned value (say: 1% or 5%) and to minimize the 

Type-II error. Both types of errors can be reduced by increasing the sample size.

7.9 NULL AND ALTERNATE HYPOTHESIS

A statement given for the parameter of the population to reject under the assumption that it is true, 

is called null hypothesis and denoted by H0. The hypothesis which is to be established based on the 

sample is known as alternative hypothesis and denoted by H1. To test whether one procedure is better 

than another, then assumption is made that there is no difference between the procedures. Similarly, 

suppose we are interested to find relationship between two variables, the assumption is made that they 

are independent. By accepting the hypothesis, we mean that the hypothesis is accepted based on this 

sample, while it may be wrong. Similarly, rejection of a hypothesis does not mean that it is wrong.
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7.10 LEVEL OF SIGNIFICANCE

The level of significance  is the probability level below which we reject a hypothesis, and the region 

in which the value of the statistic, calculated based on the sample falls and rejected in known as ‘critical 

region’. Generally, two critical regions which cover 5% and 1% areas of the normal curves are taken.

Fig. 7.1

The shaded portion in the figure corresponds to 5% level of significance.

Thus the ‘level of significance’ is the probability of the value of the variable falling in the critical 

region.

One-tailed or Two-tailed test: In one tailed test only the area on the right of an ordinate (known as 

right tailed test) or area on the left of an ordinate (known as left tailed test) is taken into consideration, 

and it depends on the nature of the problem. For two-tailed test, we consider the areas of both the tests. 

For example, to test whether a coin is biased or not, two tailed test should be used, because a biased 

coin can give more number of tails than heads.

7.11 TESTS OF SIGNIFICANCE

The procedure which tells us whether we accept or reject a hypothesis is called test of significance. 

In test of significance, we list whether there is any difference between the sample values and the 

population values or the difference between the values of two samples, and they are so large that they 

provide significant evidences against the hypothesis or these differences are so small by which it is not 

possible to know the fluctuations of sampling.

7.12 CONFIDENCE LIMITS

J Neyman developed the modern theory and terminology of confidence limits. According to him, let a 

statistic t having sampling distribution which is normal in nature, has mean  and variance 2, then 95% 

times the statistic t lies between ( – 1.96  and + 1.96 ) and that is why (t – 1.96 , t + 1.96 ) is known 

as 95% confidence interval for estimating the value of . The end points of this interval (t  1.96 ) are 

called 95%. Confidence limits or fiducial limits for t. Similarly, t  2.58 are called 99% confidence limits. 

The number 1.96, 2.58, etc., are called confidence coefficients. The values of confidence coefficients for 

the different values of level of significance can be found from the normal table.

7.13 SIMPLE SAMPLING OF ATTRIBUTES

Let a population be defined by a particular characteristic whether it has or not that characteristic, i.e., we 

can possess the particular attribute or not. If we draw a simple sample of n items from this population 

then each item will be independent having the same probability of success (say p). Let X be the number 

of successes, then X will have a binomial distribution with mean np and variance npq. Then
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(i) Mean proportion of successes = 
np

p
n

(ii) Variance of proportion of success = 
2

npq pq

nn
 and standard error of the proportion of success 

= /pq n  and

(iii) Precision of proportion of success = ,
n

pq
 as p and q are constants the precision of proportion 

of success varies when n varies, and becomes more and more, when increase the value of n.

7.14 TEST OF SIGNIFICANCE FOR LARGE SAMPLES

All of us are aware that for large values of n, a binomial distribution tends to normal distribution. 

Suppose we want to test that in each trial the probability of success is p, we assume that it is true, then 

the sampling distribution (S.D.) of a number of successes it will have a mean  = np and variance
2 = npq, i.e., S.D. npq .

So for a normal distribution, 99% members lie within  2.58  and 95% lie with  1.96 . Let 

x be the number of successes in the sample, then 
x

z  will have a normal distribution with mean

= 0 and variance = 1 i.e., it is a standard normal variate.

Therefore, we have the tests of significance which is as follows:

(a) If |z| < 1.96, the difference between the observed and expected number of successes is not 

significant at 5%.

(b) If |z| > 1.96, the difference between the observed and expected number of successes is 

significant at 5% level of significance.

(c) If |z| < 2.58, the difference between observed and expected number of successes is not 

significant at 1% level of significance, and

(d) If |z| > 2.58, the difference between observed and expected number of successes is significant 

at 1% of level of significance.

In general, we can say that (|z| > z1) or (|z| < z1) where z1 can be found from normal distribution table 

for a given level of significance.

Example 1 A dice is thrown 9,000 times and a throw of 3 or 4 is observed 3,240 times. Show that 

the dice cannot be regarded as unbiased at 5% level of significance.

Solution Let the dice be unbiased.

Then the probability of getting  3 or 4 = 2/6 = 1/3 = p

Let x = number of getting a 3 or 4 = 3,240; n = 9,000

then the mean can be calculated as following:

1
9000 3000

3
np

Variance npq = 2000

3240 3000
5.36

2000

x np
z

npq

|z| = 5.36 > 1.96, null hypothesis is rejected
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Therefore dice is biased.

Example 2 A random sample of 500 apples was taken from a large assignment and 60 were found 

to be bad. Obtain the 98% confidence limits for the percentage of bad apples in the consignment.

Solution Let p be the proportion of bad apples in the consignment 

i.e.,
60

0.12 and 1 0.12 0.88
500

p q

98% confidence limits for p are as follows.

0.12 0.88
0.12 2.33 0.12 (2.33) (0.01453)

500

= (0.08615, 0.15385)

Hence, 98% confidence limits for percentage of bad apples in consignment are (8.61, 15.39).

Example 3 A coin was tossed 1,600 times and the tailed turned up 864 times. Test the hypothesis 

that the coin is unbiased at 1% level of significance.

Solution Let the coin be unbiased.

and x be the number  of tails turned up = 864

Let p be the probability of coming a tail = ½

Expected number  of successes = 
1

1600 800
2

and the observed values of successes = 864

Variance = 
1 1

1600 400
2 2

npq

S.D. 400 20npq

864 800 64
3.2

20 20

x np
z

npq

as z > 2.58, the hypothesis is rejected at 1% level of significance i.e., we conclude that the coin is 

biased.

Example 4 A random sample of 500 pineapples was taken from a large consignment and 65 were 

found to be bad. Show that standard error of the proportion of bad ones in a sample of this size is 0.015. 

Also, find 99% confidence limits for proportion of bad pineapples.

Solution Here, n = 500

Let X be the number of bad pineapples in the sample = 65

and p be proportion of bad pineapples = 
65

0.13
500

p

q = 1 – 0.13 = 0.87
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Therefore standard error of bad proportion = /pq n

=
0.13 0.89

0.015
500

99% confidence limits for proportion of bad pineapples.

= 0.13  2.58 (0.015)

= 0.13  0.0387 = (0.0913, 0.1687)

7.15 COMPARISON OF LARGE SAMPLES

Let p1 and p2 be the proportions of characteristic A’s of two large samples of sizes n1 and n2 taken from 

two populations.

(a) We want to test that both the population are same with respect to characteristic A. Let p be the 

proportion of both the combined samples then

1 1 2 2

1 2

n p n p
p

n n

  Let E1 and E2 be the standard errors in the two samples, then

2 2
1 2

1 2

and
pq pq

E E
n n

  If E be the standard error of the difference between p1 and p2, this

2 2 2
1 2

1 2 1 2

1 1
( )

pq pq
E E E pq

n n n n

1 2p p
z

E

1 2

1

~ (0, 1)
1 1

p p
z N

pq
n n

(i) If z < 2, the difference between p1 and p2 may be due to the fluctuation of simple 

sampling.

(ii) If z > 3, then p1 and p2 are different

(iii) If 2 < z < 3, then difference between p1 and p2 is significant at 5% level of significance.

(b) To test that both the population are not same with respect to characteristic A, then standard 

error (E) of p1 – p2 is given by

1 1 2 2

1 2

p q p q
E

n n

and  1 2

1 1 2 2

1 2

~ (0, 1)
p p

z N
p q p q

n n

If z < 3, the difference between p1 and p2 is due to fluctuations of simple sampling.
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Example 5 Random samples 400 men and 600 women were taken whether they would like to 

have a flyover near their residence. Around 200 men and 325 women were in favour of the proposal. Is 

the proportions of men and women are really in favour of the proposal.

Solution Let p1 and p2 be the proportions of men and women in favour of flyover near their residence, 

then 1 2

200 325
0.500, 0.541

400 600
p p

1 2

1 1 2 2

1 2

0.500 0.541 0.041
1.269

0.03230.50 0.50 541(0.459)

400 600

p p
z

p q p q

n n

z < 3, hence, the proportion of men and women are really in favour of the proposal.

Example 6 A cigarette manufacturing firm claims that its brand A of the cigarettes out sells its 

brand B. If it is found that 42 out of a sample of 200 smokers prefer brand A and 18 out of another 

random sample of 100 smokers prefer brand B. Test whether the difference is a valid claim. (Use 5% 

level of significance).

Solution n1 = 200, n2 = 100

Let x1 be the number  of smokers who use brand A = 42

and x2 be the number of smokers who use brand B = 18

p1 = proportion of smoker who use brand A = 
42

0.21
200

p2 = proportion of smoker who use brand B = 
18

0.18
100

1 2

1 1 2 2

1 2

0.21 0.18 0.03
0.625

0.048

p p
z

E p q p q

n n

z = 0.625

The value z at 5% level is 1.96 from the liable

z = 0.625 < 1.96

Hence, the difference between the two brands is a valid claim.

Example 7 In two large populations, there are 40% and 30%, respectively, are blue-eyed people. Is 

this difference likely to be hidden in sample of 1,000 and 800, respectively, from the two populations?

Solution Here, n1 = 1000, n2 = 800

Let p1 = proportion of blue-eyed people in the first population = 40%

= 0.40

and p2 = proportion of blue-eyed people in the second population = 0.30 = 3.0%

1 1 2 21 0.60, 1 0.70q p q p
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1 2

1 1 2 2

1 2

0.40 0.30 0.10
4.55

0.022 0.022

p p
z

p q p q

n n

Hence, it is likely that the real difference is hidden.

EXERCISE 7.1

1. A coin was tossed 400 times and the head turned up 216 times. Test the hypothesis that the 

coin is unbiased at 5% level of significance. (V.T.U. 2007)

2. A dice was thrown 9,000 times and a throw of 5 of 6 was obtained 3,240 times. On the 

assumption of random throwing, does  the data indicate an unbiased dice? (V.T.U. 2010)

3. A dice is tossed 960 times and if falls 5 upwards 184 times. Is it dice biased?

(V.T.U. 2006)

4. In a sample of 1,000 people in Maharashtra; 540 are rice eaters and the rest are wheat eaters. 

Can we assume that both rice and wheat are equally popular in this state at 1% level of 

significance?

5. In two large populations, there are 30% and 25% respectively of fair haired people. Is this 

difference likely to be hidden in samples of 1,200 and 900, respectively, from the two 

populations? (Coimbatore 2001)

6. An experience shows that 20% of a manufactured product is of top quality. In one day’s 

production of 400 articles, only 50 are of top quality. Show that either the production of the 

day taken was not a representative sample or the hypothesis of 20% was wrong.

7. By a mobile court checking in certain buses it was found that out of 1,000 people checked 

on a certain day in a city, 10 persons were found to be ticket-less travellers. If daily 1 lakh 

passengers travel by the buses, find out the estimated limits to the ticket-less travellers.

8. In a random sample of 100 men taken from a village A, 60 were found to be consuming alcohol. 

In another sample of 200 men taken from village B, 100 were found to be consuming alcohol. 

Do the two villages differ significantly in respect of the proportion of men who consume 

alcohol?

9. In a referendum submitted to the students body at a university 850 men and 566 women voted. 

530 of the men and 304 of the women voted yes. Does this indicate a significant difference of 

opinion on the matter at 1% level of significance, between men and women students?

10. In a city A, 20% of a random sample of 900 school boys had a certain slight physical defect. 

In another city B, 18.5% of a random sample of 1600 school boys had the same defect. Is the 

difference between the proportions significant? (V.T.U. 2003S)

11. A machine produces 16 imperfect articles in a sample of 500. After machine overhauled, it 

produces 3 imperfect articles in a batch of 100. Has the machine been improved?

(Rohtak 2005, Madras 2003)

12. In a sample of 600 men from a certain city, 450 are found smokers. In another sample of 900 

men from another city 450 are smokers. Do the data indicate that the cities are significantly 

different with respect to the habit of smoking among men? (J.N.T.U. 2003)

13. In a locality containing 10,000 families, a sample of 600 families were selected at random. Of 

these 600 families, 150 families were found to have a monthly income of $500 or less. It is 

desired to estimate how many out of 10,000 families have a monthly income of $500 or less. 

Within what limits would you place your estimate?
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14. In a large city A, 20% of a random sample of 900 school children had defective eye-sight. 

In the other city B, 15% of random sample of 1,600 children had the same defect. Is this 

difference between the two proportions significant? Obtain 15% confidence limits for the 

difference in the population proportions.

Answers

1. z = 1.6 < 1.96 i.e., coin is unbiased.

2. z = 5.4 > 2.58 i.e., dice is biased.

3. Dice is biased

4. z = 2.532 < 2.58  wheat and rice an equally popular in the state.

5. z  2.5  It is unlikely that real difference is hidden.

6. z = 3.75

7. 997 to 1003.

8. z = 1.85

9. z = 3.2, significant

10. z = 0.37 < 1, the difference between the proportions is not significant.

11. No

12. No

13. 19.70% and 30.30% app.

14. 1 2 20 0.15

900 0.20 1600 0.15 1 900 0.20 1600 0.15 1 1

900 1600 900 1600 900 1600

p p
z

E

z = 3.21 > 1.96  It is significant at 5% level.

  95% confidence limits are

  (p1 – p2)  1.96 E = (0.019 and 0.081)

7.16 SAMPLING OF VARIABLES

In this section, we will discuss in detail the sampling of variables such as age, income, height, weight, 

etc. In case of sampling of variables, each member of the population provides the value of the variable 

and aggregate of these values form the frequency distribution of the population . From the population, 

a random sample of size n is drawn which will be equal to the n values of the variables from those of 

the distribution.

7.17 SAMPLING DISTRIBUTION OF THE MEAN

Let X be a normal population with mean  and variance 2, suppose a random sample of x1, x2, …, xn

is taken from X, then each Xi (i = 1, 2, …, n) will be independent and will have a normal distribution 

with mean  and variance 2. The sample mean x  and variance of x  will also have normal distribution 

with mean  and variance 2/n i.e., 

If X ~ N( , 2), then

Xi ~ N ( , 2), i = 1, 2, …, n and independent, then E ( X ) = 

and 2var ( ) /X n

i.e., 2~ ( , / )X N n
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Standard error of /X n  and precision = ,
n

 if n increases then precision of a sample mean 

also increases.

7.18 CENTRAL LIMIT THEOREM

Central limit theorem plays an important role in the distribution of the mean of a sample, if the 

population from which sample is taken is not normal and size of the sample n is large.

Let X has a distribution, which is not normal with a mean  and variance 2 then for large values 

of n.

as
/

x
z n

n
 has a standard normal distribution with mean = 0 and variance = 1. The 

result hold good if n  25.

So we can say, if X ~ N( , 2) then X  ~ N( , 2/n) but some results holds good for n > 25 even X is 

not normal. Therefore, normal distribution has a wide applications in the theory of statistics.

7.19 CONFIDENCE LIMITS FOR UNKNOWN MEAN

Let a random variable X which represents a population having a mean  and variance 2,  is unknown. 

Let a random sample x1, x2, …, xn of size n is drawn from X. We are interested to find a range of values 

of  for which the observed value of sample mean x  of the sample is significant at any assigned level 

of probability.

The relative deviation of sample mean x  from population mean  is

,
/

x

n
 if x  is not significant at 5% level of significance, then

( ) 1.96x n

1.96 1.96x n x
n

Therefore, the 95% confidence or fiducial limits for the mean of population mean  to the given 

n sample are 1.96x
n

. Similarly, 99% confidence limits for  are 2.58x
n

 or in general 

/2x Z
n

 (where  is the level of significance).

Example 8 A sample of 625 members has a mean of 3.50 cm. Can it be reasonably regarded as 

a truly random sample from a large population with mean = 3.20 and variance = 2.25 at 5% level of 

significance.

Solution Here n = 625, 3.50,x  = 3.20, 2 = 2.25

3.50 3.20 0.30
5.0

0.06/ 2.25 / 625

x
z

n

z = 5.0 > 1.96, the deviation of the sample mean from the population mean is significant at 5% level 

of significance.  Hence, it cannot be a regarded as a random sample.
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Example 9

(a) A sample of 900 members has a mean = 3.4 cm and standard deviation = 2.61 cm. Is the 

sample from a large population of mean = 3.25 cm and S.D. = 2.61 cm? (use  = 0.05).

(b) If the population is normal and its mean is unknown, find the 95% and 98%. Confidence limits 

for true mean .

Solution Here n = 900,  = 3.25,  = 2.61, 3.40x

  then
3.40 3.25

~ (0,1) 1.73
/ 2.61/ 900

x
z N

n

|z| = 1.73 < 1.96, the deviation of sample mean x  from the population mean is not 

significant at 5%. Hence, it can be regarded as a random sample.

(b)  is  unknown, then

(i) 95% confidence limits for  are as follows:

(2.61)
1.96 3.40 1.96

900
x

n

= 3.40  0.1705

= (3.5705 and 3.2295)

(ii) 98% confidence limits for  are

2.61
2.33 3.40 2.33

900
x

n

  = 3.40  0.2027

  = (3.6027 and 3.1973)

Example 10 As an application of central limit theorem, show that if E is such that 

(| | ) 0.95,P x E  then the minimum sample size n is given by 
2 2

2

(1.96)
n

E
 where  and 2

are the mean and variance, respectively, of the population and x  is the mean of the random sample.

Solution By central limit theorem, we know that

2
1~ ( / ),x N n  for large n

~ (0,1),
/

x
z N

n
 for large n

1.96 0.95
/

x
P

n

or | | 1.96 0.95P x
n

(1)

We are given that | | 0.95P x E (2)
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From Eqs (1) and (2),

2 2 2

2 2

(1.96) 3.84
1.96E n

E En

Hence, minimum sample size for estimating  with 95%. Confidence coefficient is given by 
2

2

3.84

E
,

where E = permissible error.

Example 11 The mean muscular endurance score of a random sample of 60 subjects was found

to 145 with a variance 1600. Construct a 95% confidence interval for the true mean. Assume the sample 

size to be large enough for normal approximation. What size of sample is required to estimate the mean 

with 5 the true mean with a 95% confidence?

Solution Here n = 60, 2145, 1600, 40x

95% confidence limits for  are

40
1.96 145 1.96 145 10.12

60
x

n

= 134.88 and 155.12

95% confidence interval for  is (134.88, 155.12) to find n

2(1.96 4)
245.86 246

5
n

minimum sample size = 246

7.20 TEST OF SIGNIFICANCE FOR DIFFERENCE OF MEANS

Let 1x  be the sample mean by sample of size n1 from a population with mean 1 and variance 2
1 and 

let 2x  be the mean of an independent random sample of size n2 from another population with mean 2

and variance 2
2 . Then

2 2
1 2

1 1 2 2
1 2

~ , and ~ ,x N x N
n n

sample sizes are large.

Also 1 2 ,x x  being the difference of two independent normal variates is also a normal variate with 

mean
2 2
1 2

1 2
1 2

and variance
n n

.

1 2 1 2 1 2
1 2

2 2 2 2
1 2 1 2

1 2 1 2

( )( )
~ (0, 1) ( 0)

x x x x
z N

n n n n

because we want to test the difference between two sample mean 1 2andx x  is significance.

1 – 2 = 0 and also cov(X1, X2) = 0 as both the samples are independent of each other.

Therefore, for large values of n1 and n2
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Test of significance is as follows:

If z > 1.96, then the difference between 1 2andx x  is significant at 5% level of significance.

In general if

/2| | ,z z  the difference between 1 2andx x  is significant at  level of significance, /2z  can 

be calculated from normal table.

Remark: If 2 2
1 2  i.e., if both the samples are drawn from the same population then

1 2

1 2

~ (0, 1)
1 1

x x
z N

n n

Example 12 The means of simple samples of sizes 400 and 400 are 250 and 220 respectively. 

Can the sample be drawn from the two populations having s.d. 40 and 55 respectively having the same 

population means at 5% level of significance.

Solution

1 2

2 2 2 2
1 2

1 2

250 220
8.82

40 55

400 400

x x
z

n n

|z| = 8.82 > 1.96. Therefore, the mean of two populations are not same.

Example 13 The means of sample sizes 400 and 1600 are 70.0 and 65.0 cm, respectively. Can the 

sample be regarded as drawn from the same population of variance 4 at 1% level of significance.

Solution Here, we have n1 = 400, n2 = 1600

1 270.0, 65.0, 4 2x x

1 2

1 2

70 65
44.72

1 1 1 1
2

400 1600

x x
z

n n

|z| = 44.72 > 2.58. There significant difference between the means of two samples. Thus the sample 

can not be regarded as drawn from the same population.

EXERCISE 7.2

1. The means of simple samples of sizes 1000 and 2000 are 67.5 and 68.0 cm, respectively. Can 

the samples be regarded as drawn from the same population of S.D. 2.5 cm. (use  = 0.05)

(Madras 2002)

2. An insurance agent has claimed that the average age of policy holders who insure through him 

is not equal to the average for all agents, which is 30.5 years.

  Age last birthday: 16–20 21–25 26–30 31–35 36–40

  Number of persons: 12 22 20 30 16

  Calculate the mean and standard deviation of this distribution and use these values to test his 

claim at the 5% level of significance.
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3. The standard deviation of a population is 2.70 cm. Find the probability that in a random 

sample of size 66, the sample mean will differ from the population mean by 0.75 or more.

4. A normal population has a mean of 0.1 and standard deviation 2.1. Show that the probability 

that mean of a sample of size 900 will be negative is 0.0764.

5. The guaranteed average life of a certain type of electric light bulb is 1000 hours with a standard 

deviation of 125 hours. It is decided to sample the output so as to ensure that 90 percent of 

the bulbs do not fall short of the guaranteed average of more than 2.5 percent. What must be 

minimum size of the sample?

6. The average hourly wage of sample of 150 workers in a plant A was Rs. 2.56 with a standard 

deviation of Rs. 1.08. The average hourly wage of a sample of 200 workers in plant B was 

Rs. 2.87 with a standard deviation of Rs. 1.28. Can an applicant safely assume that the hourly 

wages paid by both the plants do not differ at 5% level of significance.

7. The mean height of 50 male students who showed above average participation in college athletics 

was 68.2 inches with a standard deviation of 2.5 inches, while 50 male students who showed no 

interest in such participation had a mean height of 67.5 inches with a standard deviation of 2.8 

inches. Can the samples be regarded as drawn of from the same population? (use  = 0.05)

8. In a random sample of 500, the mean is found to be 20. In another independent sample of 400 

the mean is 15. Could the samples have been drawn from the same population with standard 

deviation 4 at 5% level of significance.

9. A sample of heights of 6,400 Englishmen has a mean of 67.85 inches and S.D. 2.56 inches, while 

a sample of heights of 16,00 Australian has a mean of 68.55 inches and S.D. of 2.52 inches. Do 

the data indicate that Australians, on the average are different to the Englishmen. (use  = 0.05)

10. From the population of 169 units it is desired to choose a simple random sample of size n. If 

the population standard deviation is 2, determine the smallest n for which the probability that 

the sample mean differs from the population mean by more than 0.95 controlled at 0.05.

11. An economist would like to estimate the mean income  in a large city. He has decided to use 

the sample mean as an estimate of  and would like to ensure that the error in estimation is 

not more than 100 with probability 0.95. How large a sample should be taken if the standard 

deviation is known to be 1000?

Answers

1. z = 5.1 > 1.96. Samples can not be regarded as drawn from the same population.

2. z = –2.681  |z| = 2.681 > 1.96. Significant at 5% level of significance.

3. 0.0246.

5. Minimum n = 41.

6. |z| = 2.46 > 1.96, significant at 5% level.

7. z = 1.32 < 1.96, not significant at 5% level.

8. |z| = 18.63 > 1.96, significant at 5% level.

9. |z| = 9.2, significant at 5% level.

10. n = 6147.

11. n = 271

7.21 SAMPLING OF VARIABLES – SMALL SAMPLES

We have seen that if a sample of large size is taken from any population, then using central limit 

theorem, the sampling distribution of the statistic computed from the sample always approaches 
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normal distribution and the values of statistic are always considered the best estimates of the unknown 

parameters of the population from which the sample is drawn. But it is always not possible, suppose 

a sample of small size is drawn, then instead of using central limit theorem in which statistic follows 

approximately a normal distribution a new technique is available, which involves the concept of degree 

of freedom, which is explain in the upcoming section.

7.21.1 Number of Degrees of Freedom

Let x1, x2, …, xn be a sample of size n then the degrees of freedom (d.f.) is (n –1). In particular let

x1 + x2 + x3 + x4 = 20, we can assign any arbitrary values to x1 + x2 + x3 and estimate the value of x4.

Therefore, in this case x1 + x2 + x3 are free and independent choices to find the value of x4.

Hence, these are degrees of freedom, and here d.f. is 3. So, we can say the number of degrees of 

freedom is nothing but is the number of values in a sample which are assigned arbitrary. Let x1, x2, … xn

be random sample of size n from a population, then to calculate sample mean ( )x , one degree of 

freedom is used therefore to estimate the population variance based on this sample (n – 1) degrees of 

freedom are left.

7.22 STUDENT’S t-DISTRIBUTION

Let x1, x2, x3, …, xn be a random sample of small size n from a normal population  and variance 2. If 

x  and s2 be the sample mean and sample variance, respectively, then the statistic ‘t’. which is defined 

as following:

2 2

1 1

1 1
, where and ( )

1/

n n

i i

i i

x
t x x s x x

n ns n

has t-distribution with (n – 1) d.f. and the distribution of t is given by

1
2 2

( ) ;

1

v

A
f t t

t

Where  = n – 1 and A is a constant such that the area under the curve is unity.

7.22.1 Properties of t-Distribution

1. Since f (–t) = f (t), the probability curve is symmetrical about the line t = 0. As t increases, f (t)

decreases rapidly and tends to zero as t , so that t-axis is an asymptote to the curve.

Fig. 7.2
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  The maximum value of t-curve also at t = 0, hence, the mode and mean of t-distribution are same.

2. When n , then 

21

2

( ) ,
2

t

A e
f t , i.e., for large values of n, t-distribution

tends to standard normal distribution. Therefore for large values of n instead of using t-table,

we can use normal table.

3. [ ] ( )p T t f t dt

  The values of t  have been calculated for various values of p and different values of  = n – 1 

(d.f.) from 1 to 30.

4. Since f (t) is symmetrical about t = 0, then all the moments of odd order about origin/and mean 

are zero, i.e., 

2 1 2 10, 0, 1, 2,...k kk

i.e. 1 = mean = 0

  The moments of even order are given by

2

(2 1)(2 3) 3.1
,

( 2)( 4) ( 2 ) 2
k

nk k k n
k

n n n k

  In particular

2

1
, ( 2)

2 2

n
n n

n n

2 2

4

3.1 3
, 4

( 2)( 4) ( 2)( 4)

n n
n

n n n n

2
3 4

1 23 2
2 2

( 2)
0 and 3 , 4

( 4)

n
n

n

Remark:

1. As n , 1 = 0 and 2 = 3

2. For n > 2, 2 > 1 i.e., the variance of t-distribution is greater than the variance of standard 

normal distribution.

3. For n > 4, 2 = 3, therefore, t-distribution is more flat on the top than normal curve.

4. ,| |p t t

,| | 1p t t

5. The t-distribution is generally used to test the hypothesis about the mean when the variance of 

the population is unknown.

6. Population from which sample is drawn is always taken normal.

7.22.2 Significance Test of a Sample Mean

Let x1, x2, …, xn be a random sample of size n from a normal population with a specified population 

mean 0. To test the hypothesis  = 0 or there is no significance difference between sample mean x

and population mean 0,
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(i) Compute the statistic 

2 20

1

1
, where ( )

1/

n

i

i

x
t s x x

ns n .

(ii) Find the value of P for the given degrees of freedom from the table.

(a) if tcal > t.05, then the difference between sample mean x  and specified population mean 

0 is significant at 5% level of significance; otherwise not significant.

(b) if tcal > t.01, then the difference between sample mean x  and specified population mean 

0 is significant at 1% level of significance otherwise not significant.

(c) In general if tcal > t , then the difference between sample mean x  and population mean 

0 is significant at level of significance .

Example 14 The mean weekly sales of soap bars in departmental stores was 146.3 bars per store. 

After an advertising campaign the mean weekly sales in 22 stores for a typical week increased to 

153.7 and showed a standard deviation of 17.2. Was the advertising campaign successful at 5% level 

of significance.

Solution Here, 022, 153.7, 17.2, 146.3n x s

0 , where 1 21
/

x
t n

s

=
153.7 146.3

9.03
17.2/ 21

ttab at  = 21 = 2.08

tcal = 9.03 > 2.08  It is highly significant. We conclude that the advertising campaign was highly 

successful.

Example 15 The heights of 10 males of a given locality are found to be 70, 67, 62, 68, 61, 68, 70, 

64,  64 and 66 inches. Is it reasonable to believe that the average height is greater than 64 inches?

Test at 5% level of significance assuming that for 9 degrees of freedom P(t > 1.83) = 0.05.

Solution

0

660
10, 66, 64

10

x
n x

n

2 21 90
( ) 10

1 9
is x x

n

0 66 64
2

/ 10/10

x
t

s n

For 9 d.f. ttab, .05 = 2.26

tcal < 2.26. Average height is not greater than 6 inches.
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Example 16 A random sample of 10 boys had the following IQs: 70, 120, 110, 101, 88, 83, 95, 98, 

107 and 100. Do these data support the assumption of a population mean IQ of 100? Find a reasonable 

range in which most of the means IQ values of samples of 60 boys lie.

Solution Here n = 10, 0 = 100

97.2ix
x

n

2 21
( ) 203.73

1
is x x

n

0 97.2 100
0.62

/ 203.73/10

x
t

s n

|t| = 0.62

ttab at 5% = 2.262 > 0.62  the data is consistent with the assumption of mean IQ of 100 in the 

population.

95% confidence limits are as follows:

.05

203.73
/ 97.2 2.262

10
x t s n

= 97.2  10.21 = 107.41 and 86.99

95% C.I is [86.99, 107.41]

Example 17 A random sample of 16 values from a normal population showed a mean of

41.5 inches and the sum of squares of deviation from this mean is equal to 135 square inches. Show 

that the assumption of mean of 43.5 inches for the population is not reasonable. Obtain 95% fiducial 

limits for the same.

Solution Here 216, 41.5 inches and ( ) 135 sq. inchi

i

n x x x

2 21 1
( ) (135) 9, 3

1 15
is x x s

n

0 = 43.5 inches

0 41.5 43.5
2.669

/ 3/ 16

x
t

s n

|t| = 2.667

t.05 for 15 d.f. = 2.131

|t|cal = 2.667 > 2.131 and we conclude that the mean 43.5 inches for the population is not reasonable 

95% fiducial limits are as follows:

.05 41.5 2.131 4.15 1.598
s s

x t
n n

39.902 <  < 43.098
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7.23 SIGNIFICANT TEST OF DIFFERENCE BETWEEN TWO SAMPLES

(i) Suppose two independent samples x1, x2, …, xn1
and y1, y2, …, yn2

 of sizes n1 and n2 have been drawn 

from two normal populations having means X and Y, respectively, and same variance 2 = 2
X = Y

2,

that statistic is

1 2

( ) ( )
,

1 1

X Yx y
t

s
n n

where
1/i

i

x x n ;  2/j

j

y y n

2 2 2

1 2

1
( ) ( )

2
i j

i j

s x x y y
n n

has a t-distribution with n1 + n2 – 2 d.f.

If tcal > t.05, the difference between sample means andx y  is significant at 5% level of significance, 

otherwise not significant.

If tcal > t.01, then the difference between sample means andx y  is significant at 1% level of 

significance, otherwise not significant .

In general if tcal > t , then the difference between the sample means andx y  is significant % level 

of significance, otherwise not.

(ii) Paired t-test for difference between two samples.

If (a) n1 = n2 = n (say) and

(b) Two samples are not independent but the sample observations are paired together i.e., (xi, yi)

(i = 1, 2, …, n) observations corresponds to the same ith sample

Then the problem is to test if sample means differ significantly or not i.e. increments are due to 

fluctuations of sampling. The statistic 
/

d
t

s n
,

where
1 1

( ),i id di x y
n n

 where di = xi = yi.

and 2 21
( ) ,

1
s di d

n
 has t-dist. with n – 1 d.f.

then find t , if t > t . The difference is significant, otherwise not.

Example 18 Given is the gain in weights (in kg) of pigs fed on two diet A and B.

Gain in weight

Diet A: 25, 32, 30, 34, 24, 14, 32, 24, 30, 31, 35, 25

Diet B: 44, 34, 22, 10, 47, 31, 40, 30, 32, 35, 18, 21, 25, 29, 22

Test, if the two diets differ significantly as regards their effect on increase in weight.

Solution Here n1 = 12, n2 = 15

336 450
28, 30

12 12 15 15

ji
yx

x y
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2 2 2

1 2

1
( ) ( ) 71.6

2
i js x x y y

n n

1 2

28.30
0.609

1 11 1
71.6

12 15

x y
t

s
n n

|t| = 0.609

Tcal for (n1 + n2 – 2) d.f. = t.05 for (12 + 15 – 2) t.05 for 25 d.f. = 2.06 

       |t|lab = 6.09 < 2.06  two diets not differ significantly as 5% level of significance.

Example 19 A certain stimulus administrated to each of the 12 patients resulted in the following 

increase of blood pressure:

5, 2, 8, –1, 3, 0, –2, 1, 5, 0, 4 and 6

Can it be concluded that the stimulus will, in general, be accompanied by an increase in blood 

pressure. (V.T.U. 2007)

Solution We have to test that stimulus will increase the blood pressure. To test this 
/

d
t

s n
 has a 

t-dist. with n – 1 d.f.

Here n = 12,

d = xi – yi 5 –2 8 –1 3 0 –2 1 5 0 4 6

di
2 25 4 64 1 9 0 4 1 25 0 16 36

31
2.583

12

id
d

n

22

1

1
( ) 9.5382

1
i

i

s d d
n

2.58
2.89

/ 9.5382 / 12

d
t

s n

ttab at 5% with (12 – 1) d.f. = 2.20

|t|cal = 2.89 > 2.20  The stimulus does not increase the blood pressure

Example 20 In a certain experiment to compare two types of animal foods A and B, the following 

results in weights were observed in animals:

Animal number 1 2 3 4 5 6 7 8 Total

Increase weight in lb
Food A 49 53 51 52 47 50 52 53 407

Food B 52 55 52 53 50 54 54 53 423

(i) Assuming that the two samples of animals are independent, can we conclude that there is no 

difference in Food A and B. (Use  = 0.05)
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(ii) Also, examine the case when the same set of eight animals were used in both the food. (Use 

 = 0.05)

Solution (i)

1 2

1 1

x y
t

s
n n

407 423
50.875, 52.875

8 8

i i

i

x y
x y

n n

2 2 2
1

1 2

1
( ) ( ) 3.41

2
i

i

s x x y y
n n

50.875 52.875
2.17

1 1
3.41

8 8

t

   |t| = 2.17

  t.05 with 14 d.f. 2.14

  |t|cal = 2.17 > 2.14  food A and B do not differ significantly at 5% level of significance with 

regards to their effect on increase in weight.

(ii) where
/

i i i
d x yd

t d
n ns n

xi 49 53 51 52 47 50 52 53 Total 407

yi 52 55 52 53 50 54 54 53 423

di –3 –2 –1 –1 –3 –4 –2 0 –16

di
2 9 4 1 1 9 16 0 0 44

16
2

8

id
d

n

2 21
( ) 1.7143

1
is d d

n

|t| = 
2

2
4.32

1.7143 / 8/

d

s n

  tab t.05  for (8 – 1) = 7 dif f = 2.36

  |t|cal > 2.36  ‘t’ is significant at 5% level of significance and we conclude that both foods A

and B do not differ.
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EXERCISE 7.3

1. Nine items of a sample holds the following values: 45, 47, 50, 52, 48, 47, 49, 53, 51. Does the 

mean of these differ significantly from the assumed mean of 47.5? (V.T.U. 2010)

2. A mechanic is making engine parts with axle diameter of 0.7 inch. A random sample of 10 

parts show mean diameter 0.742 inch with a standard deviation of 0.04 inch. On the basis of 

this sample would you say that the work is inferior. (V.T.U. 2009)

3. Prove that 95% confidence limits for the population mean  are 0.05x t
n

.

4. A random sample of 10 boys had the following IQ.

  70, 120, 110, 101, 88, 83, 95, 98, 107, 100

  Do these data support the assumption of a population mean IQ of 100 at 5% level of significance?

(V.T.U. 2006, Coimbatore 2001)

5. A random sample of size 25 from a normal population has the mean 47.5x and s.d. s = 8.4. 

Does this information refute the claim that the mean of the population is  = 49.1.

(J.N.T.U. 2003)

6. The means of two random samples of sizes 9 and 7 are 196.42 and 198.82, respectively. The 

sum of squares of the deviations from the means are 26.94 and 18.73, respectively. Can the 

sample considered to have been drawn from the same normal population? (Mumbai 2004)

7.  For a random sample of 10 pigs, fed on a diet A, the increase in weights in a certain period were:

  10, 6, 16, 17, 13, 13, 12, 8, 14, 15, 9 lbs

  For another random sample of 12 pigs fed on diet B, the increase in the same period were.

  7, 13, 22, 15, 12, 14, 18, 8, 21, 23, 10, 17 lbs.

  Find if the two samples are significantly different regarding the effect of diet. (Use  = 0.05)

8. Eleven students were given a test in statistics. They were given a month’s further tuition and 

a second list of equal difficulty was held at the end of it. Do the marks give evidence that 

students have been benefited by extra coaching?

Boys 1 2 3 4 5 6 7 8 9 10 11

Marks I test: 23 20 19 21 18 20 18 17 23 16 19

Marks II test: 24 19 22 18 20 22 20 20 23 20 17

(V.T.U. 2011S)

9. Test runs with 6 models of an experimental engine showed that they operated for 24, 28, 21, 

23, 32 and 22 minutes with a gallon of fuel. If the probability of a type I error is at numbers 

0.01, is this an evidence against a hypothesis that with this average, engine will operated for 

at least 29 minutes per gallon of the same fuel. Assume normality. (J.N.T.U. 2003)

10. Two houses A and B were tested according to the time (in seconds) to run a particular race with 

the following results:

House A: 28 30 32 33 33 29 and 34

House B: 29 30 30 24 27 and 29

  Test whether you can discriminate between two houses? (Rohtak 2005, Coimbatore 2001)

11. A group of 10 rats fed on a diet A and another group of 8 rats fed on a different diet B, 

recorded  the following increase in weight:

  Diet A:  5, 6, 8, 1, 12, 4, 3, 9, 6, 10 gms

  Diet B: 2, 3, 6, 8, 10, 1, 2, 8 gms
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  Does it show the superiority of diet A over diet B? (Madras 2003)

12. The average number of articles produced by two machines per day are 200 and 250 with 

standard deviations 20 and 25, respectively, on the basis of records of 25 days production. Can 

you regard both the machines equally efficient at 5% level of significance.

13. A company is interested in knowing if there is a difference in the average salary received 

by foremen in two divisions. Accordingly samples of 12 foremen in the first division and 

10 foremen in the second division are selected at random. Based upon experience foremen’s 

salaries are known to be approximately normally distributed and the standard deviations are 

about the same.

Sample size First division Second division

12 10

Average weekly salary of foremen (Rs) 1050 980

Standard deviation of salaries (Rs) 68 74

The table value of t for 20. d.f. at 5% level of significance is 2.09.

14 A random sample of size 25 from a normal population has mean x  = 47.5 and s.d. s = 8.4. 

Does this information refute the claim that the mean of the population is  = 42.1

(J.N.T.U. 2003)

Answers

1. t = 1.83, t.05 for 8 d.f. = 2.31, not significant. 2. t = 3.16.

3. t = 0.62, yes. 4. Refute the claim.

5. No. 6. t = 1.51.

7. t = 1.48. 8. Accept null hypothesis.

9. Yes with 75% confidence. 10. No.

11. |t| = 7.65. 12. t = 2.2.

14. Refute the claim as t = 3.21.

7.24 CHI-SQUARE ( 2) TEST

Introduction: The square of a standard normal variable Z ~ N(0, 1) is known as a Chi-square variate 

with let f.

If 2~ ( , ), then ~ (0.1)
X

X N Z N  and

2
2 X

Z  is a Chi-square variate with 1 d.f.

In general, if X1, X2, …, Xn are n independent normal variates  with means 1, 2, …, n and variance 

2 2 2
1 2, , , n , respectively, then

2

2

1

,
n

i i

ii

X
 is a Chi-square variate with n.d.f.
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The p.d.f. of 2 is given by

2

1
2 2 2 2

1

12
( ) exp ( )

2

2

n

n

f
n

=
1

2 2 22

2

1 1
exp ( ) , 0

2
2

2

n

n
x

or

f ( 2) = 
21 ( 1)

22 2( )C e (3)

where C is a constant and  = n – 1

The graph of the equation of  2 – curve which is given in  eq. (3) is shown in Fig. 7.3.

Fig. 7.3

7.24.1 Properties of 2-distribution

1. If  = 1, then Eq. (3) becomes 
21

2 ,y Ce  which is exponential distribution. 

2. The mean of a 2 distribution with  d.f. is  and various is 2 .

3. Mode of 2 distribution with  d.f. = n – 2

4. If  = 1, the curve of 2-variate is tangential to x-axis at origin and positively skewed.

5. The probability P that the value of 2 from a random sample will exceed 2 is given by

2

2 2 2( )P f dx P

  and the values of 2 have been tabulated for various values of P and for values of degrees of 

freedom  from 1 to 30.

  If  > 30, then 2-distributin fallows normal distribution and we use normal distribution tables 

for significant values of 2.

6. As the equation of 2-curve does not involve any of the parameters of the population, therefore 
2-distribution does not depend on the distribution of the population and hence very useful in 

statistical theory.
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7.24.2 Chi-Square ( 2) Test of Goodness of Fit

A very powerful test for testing the significance of the discrepancy between theory and experiment was 

given by Prof. Karl Pearson in 1900 and is known as “Chi-Square test of goodness of fit”. It enables 

us to find if the deviation of the experiment from theory is just by chance or is it really due to the 

inadequacy of the theory to fit the observed data.

Let oi(i = 1, 2, …, n) be a set of observed (experimental) frequencies and ei(i = 1, 2, …., n) be the 

corresponding set of expected (theoretical or hypothetical) frequencies, then

2

2

1

n
i i

ii

o e

e
 has a 2-distribution with (n – 1) d.f.

Procedure to test significance and goodness of fit:

(a) Set up a ‘null hypothesis’.

(b) Compute

2

2

1

n
i i

ii

o e

e

(c) Find the degrees of freedom and also from the table of 2, find the value of 2 at desired level 

of significance with corresponding d.f.

(d) Also, find the probability P corresponding to the calculated value of 2 for the given d.f. from 
2 table.

(e) If P < 0.01, the value is significant at 1% level of significance 

  If P < 0.05, the value is significance at 5% level of significance

  If P > 0.05, the value is not significant and it is a good fit at 5% level of significance. 

Similarly

  If P > 0.01, the value is not significant and it is a good fit at 1% level of significance

  In general, we can say if 

  P > , the value is not significant at a given level of significance  and it is a good fit.

  If P  then value is significant.

Remark: As we don not make assumptions on the population distribution, the test of 2 is also 

known as non-parametric test

Example 21 The demand for a particular spare part in a factory was found to vary from day to day. 

In a sample study the following information was obtained:

Days Mon Tue Wed Thu Fri Sat

No. of parts demanded 1124 1125 1110 1120 1126 1115

Test the hypothesis that the number of parts does not depend on the day of the week.

Solution The null hypothesis Ho. The number of parts demanded does not depend on the day of week.

Under the null hypothesis the expected frequencies of the spare part demanded on each of the six 

days would be

1 6720
(1124 1125 1110 1120 1126 1115) 1120

6 6
 calculated by 2
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Days: Mon Tue Wed Thu Fri Sat Total

Observed frequencies (oi) 1124 1125 1110 1120 1126 1115 6720

Expected Frequencies (ei) 1120 1120 1120 1120 1120 1120 6720

(oi – ei)
2 16 25 100 0 36 25 202

2( )i i

i

O e

e

0.014 0.022 0.089 0 0.032 0.022 0.179

Number of d.f. = (6 – 1) = 5

Tabulated value of 2
.05 with 5 d.f. = 11.07

2
cal = 0.179 < 11.07  It is not significant and null hypothesis is accepted at 5% level of significance, 

Hence, we conclude that the number of parts demanded are same over the 6 days period.

Example 22 A sample analysis of examination results of 200 engineering students was made. It 

was found that 46 students failed, 68 secured a third division, 62, secured a second division and rest 

were placed in a first division. Are these figures commensurate with the general examination result 

which is in the ratio of 4 : 3 : 2 : 1 for various categories respectively?

Solution Null hypothesis: The observed figures do not differ significantly from the hypothetical fre-

quencies which are in the ratio of 4 : 3 : 2 : 1. In three words, the given data are commensurate with the 

general examination result which is in the ratio  of 4 : 3 : 2 : 1.

1 2 3

1 1 1
(200 4) 80, (200) 3 60, (200) 2 40,

10 10 10
e e e  and 4

1
(200) 1 20

10
e

Calculation for 2

Category

Frequency

(oi – ei)
2

2

i i

i

o e

eObserved (oi) Expected (ei)

Failed 46 80 1156 14.450

III division 68 60 64 1.069

II division 62 40 484 12.100

I division 24 20 16 0.800

Total 200 200 28.417

d.f = 4 – 1 = 3, Tab 2
0.05 for 3 d.f. = 7.815

2
cal = 28.417 > 7.815. It  is significant and null hypothesis is rejected. Hence, we may conclude 

that data are not commensurate with the general examination.

Example 23 When the first proof of 392 pages of a book of 1200 pages were read, the distribution 

of printing mistakes were found to be as follows:

No. of mistakes in a page (x) 0 1 2 3 4 5 6

No. of pages (oi) 275 72 30 7 5 2 1
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Fit a Poisson distribution data and test the goodness of the given.

Solution Null hypothesis: The given data fit the Poisson distribution

Here
6

1 0

1 189
0.482

392
i ix f x

N

The frequency of x mistakes per page is given by the Poisson law as follows:

e(x): N p(x) = 
0.482392. (0.482)

, 0, 1, 2, , 6
!

x
e

x
x

eo = 242.1, e1 = 116.7, e2 = 28.1, e3 = 4.5, e4 = 0.5, e5 = 0.1, e6 = 0

Calculation of 2

Mistakes per page x

Frequency

(oi – ei)
2

2

i i

i

o e

eObserved (oi) Expected (ei)

0 275 242.1 1082.41 4.471

1 72 116.7 1998.09 17.121

2 30 28.1 3.61 0.128

3 7

5
15

2

1

4.5

0.5
5.1

0.1

00

98.01 19.217

4

5

6

Total 392 392 40.937

d.f. = 7 – 1 – 1 – 3 = 2

( One d.f. being lost because of calculating x  and 3.d.f. are lost because of pooling the last four 

expected cell frequencies, which are less than 5).

Tabulated value of 2 for 2 d.f. at 5% level = 5.99
2
cal = 40.937 > 75.98. It is highly significant. Hence, Poisson distribution is not good fit.

Note:

1. If any parameter(s) is(are) calculated based on sample data, the degrees of freedom will be 

reduced to the no. of parameter(s) computed

2. If any cell frequency is <5 then add these cell frequencies to the proceeding or succeeding cell 

and number of degrees will be reduced the number of those cells for which frequencies are 

added to another cell.

3. In above example x  is calculated from sample data and 3 frequencies are added to their 

proceeding cell there fore number of d.f.

= (n – 1) – 1 – 3 = (7 – 1) – 1 – 3 = 2.
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EXERCISE 7.4

1. A set of 5 similar coins is tossed 320 lines and the result is 

Number of heads 0 1 2 3 4 5

Frequencies 6 27 72 112 71 32

  Test the hypothesis that the data follows a binomial distribution

(Kottayam, 2005: P.T.U., 2005; V.T.U. 2004)

2. Fit a Poisson distribution to the following data and test the goodness of fit at a level of 

significance 0.05.

x 0 1 2 3 4

f 419 352 154 56 19

(V.T.U., 2008)

3. The following table gives the number of aircrafts accidents that occurred during the various 

days of the week. Whether the occident are uniformly distributed over the week?

Days Sun Mon Tue Wed Thu Fri Sat Total

Number of accident 14 16 08 12 11 9 14 84

(Hissar, 2005)  

4. A survey of 800 families with four children each revealed the following distribution:

Number of boys 0 1 2 3 4

Number of girls 4 3 2 1 0

Number of families 32 178 290 236 64

  Is this result consistent with the hypothesis that male and female births one equally 

probable?

5. The following figure show the distribution of digits in numbers chosen at random from a 

telephone directory:

Digits 0 1 2 3 4 5 6 7 8 9 Total

Frequency 1026 1107 997 966 1075 933 1107 972 964 853 10,000

  Test whether the digits may be taken to occur equally frequently in the directory.

6. Fit a normal distribution to the following data of weights of 100 students of an university and 

test the goodness of its

Weight (kg) 60-62 63-65 66-68 69-71 72-74

Frequency 5 18 42 27 8

7. Fit a Poisson distribution to the following data and test the goodness of fit.

x 0 1 2 3 4 5 6 7

f 305 366 210 80 28 9 2 1

8. A dice was thrown 60 times and the following frequency distribution was observed. Test 

whether the dice in unbiased?

Faces 1 2 3 4 5 6 Total

f 15 6 4 7 11 17 60
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Answers

1. 2
cal = 78.68, data do not follow binomial distribution at 5%.

2. 2
cal = 5.748, data fit the Poisson distribution at 5%.

3. Yes, accidents are uniformly distributed.

4. 2
cal =19.63, male and female births are not equally probable at 5%.

5. 2
cal = 58.542, digits are not uniformly distributed.

6. 2
cal = 0.8362 (here d.f. 2 as mean and variance are computed.

7. 2 = 3.097, Poisson distribution gives a good fit at 5% level.

8. Significant at 5%.

7.25 F-DISTRIBUTION

F-distribution introduced by English statistician R.A. Fisher is defined as follows:

Let X and Y are two independent Chi-square variates with v1 and v2 d.f., respectively, then F-statistics

is given by

1

2

/

/

X v
F

Y v

In other words, F is defined as the ratio of two independent Chi-square variates divided by their 

respective degrees of freedom and devoted by F(v1, v2).

7.25.1 Application of F-distribution

F-distribution has wide applications in the theory of statistics. One of them is F-test for equality 

of two population variances, which is defined as follows: Let x1, x2, …, xn1
, and y1, y2, …, yn2

 be 

the two independent random samples drawn from the normal populations with the same variance 
2. Let andx y  be the sample means and 2 2andx ys s  be the sample variances of two samples, and 

1 2

1
21 1

1 1
,

n n

i j

i j

x x y y
n n

,
1 2

2 2 2 2

1 21 1

1 1
( ) , ( )

1 1

n n

x i y j

i j

s x x s y y
n n

. Then F = 
2

2

x

y

s

s
 has 

F-distribution with n1 – 1 = v1 and n2 – 1 = v2 degrees of freedom. The larger variance is always taken 

as numerator, so that the values of F is always positive.

7.25.2 Properties of F-distribution

1. The graph of F-distribution is shown as follows in Fig. 7.4

Fig. 7.4
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2. The curve of F-distribution always lie in first quadrant as F > 0 (always).

3. F-distribution is unimodel and its mode is always < 1.

4. F-distribution depends on v1  and v2 not on the population variants 2  i.e, it is independent of 2.

5. v1, v2 are known as degrees as degrees of freedom of numerator and denominator, 

respectively.

6. 1 2 1 2( , ) ( , )P F v v F v v .

7. F (v1, v2)
1 2 1

1

( , )F v v
.

7.25.3 Significance Test

F tables gives 5% and 1% points of significance for F. 1% points of F mean that area under the F-curve 

to the right of the ordinate at a value of F, is 0.01. The value of at 1% significance level is more that at 

5%. F-distribution has wide applications and has a base for analysis of variance.

Example 24 In one sample of 8 observations, the sum of squares of derivations of the sample 

values from the sample mean was 84.4 and in the other sample of 10 observations it was 102.6. Test 

whether this difference is significant at 5% level of significance.

Solution  Here n1 = 8, n2 = 10, 
8 10

2 2

1 1

( ) 84.4, ( ) 102.6i j

i j

x x y y

2 2

1

1 1
( ) (84.4) 12.057

1 7
x is x x

n

and 2 2

2

1 1
( ) (102.6) 11.4

1 9
y js y y

n

2

2

12.057
1.0576

11.4

x

y

s
F

s

Tabulated value

F.0.5(7, 9) = 3.29 (from F-table)

Fcal = 1.0576 < 3.29. It is not significant

7.26 FISHER’S Z-DISTRIBUTION

If we put 21
log or

2

z
ez F F e  in the F-distribution, we get Fisher’s Z-distribution.

Z-distribution is more symmetrical then F-distribution. For various values of v1 and v2 degrees of 

freedom, a table showing the values of z that will be exceeded in simple sampling with probabilities 

0.01 and 0.05.

7.26.1 Significance Test

In Z-table, we have critical values as P[Z Zd] = 

Therefore, the 1% or 5% points of Z imply that the area to the right of ordinate Z.05 or Z.01 is 0.05 

or 0.01. In other words, 1% and 5% points of Z-correspond to 2% and 10% level of significance 

respectively. As we generally use two-tailed test.
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Example 25 Two gauge operations are tested for precision in making measurements. One operator 

completes a set of 26 readings with a standard deviation of 1.34 and the other does 34 readings with a 

standard deviation 0.98. What is the level of significance of this difference. (We can use Z.05 = 0.305, 

Z.01 = 0.432) for v1 = 25 and v2 = 33)

Solution Here n1 = 26, n2 = 34, sx = 1.34, sy = 0.98

sx
2 = (1.34)2

and sy
2 = (0.98)2

F =
2 2

2 2

(1.34)
1.8696

(0.98)

x

y

s

s

Z =
1

log
2

e F = 1.1513 log10 (1.8696) = 0.31286

Calculated value of Z > .305 but less than 0.432

 level of significance lies between 1% and 5% which is closer to 5%

EXERCISE 7.5

1. Two samples of sizes 9 and 8 give the sum of squares of deviation from their means equal 

to 160 inches2 and 91 inches2, respectively. Can these be regarded as drawn from the same 

normal population. [V.T.U. 2002]

2. Pumpkins were grown under two experimental conditions. Two random samples of 11 and 9 

pumpkins show the sample standard deviations of their weights as 0.8 and 0.5 respectively. 

Assuming that the weight distributions are normal, the hypothesis that two variances are equal 

against the alternative that they are not at 5% level.

3. Two random samples gave the following results.

Sample Size Sample mean Sum of squares of deviation from the mean

1. 10 15 90

2. 12 14 108

  Test whether the samples come from the same normal population at 5% level of significance.

4. The following are the values in thousands of an inch obtained by two engineers in 10 and 9 

successive measurements with the same micrometer. Are both engineers significant of each 

other.

Engineer A 503 505 497 505 495 502 499 493 510 501

Engineer B 502 497 492 498 499 495 497 496 498

5. Two random samples of sizes 8 and 11, drawn from the two normal populations are characterized 

as follows:

Sample Size Sum of observation Sum of squares of observations 

1 8 9.6 61.52

2 11 16.5 73.26

  Test whether two populations can be taken to have the same variance.

6. Two samples of sizes 9 and 8 have variances 1101.1 and 319.7, respectively. Is the variance 

1101.1 significantly greater than variance 319.7.
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7. The IQ’s of 25 students from one institute showed a variance of 20 and those of an equal 

number from the other institute had a variance of 10. Discuss whether there is any significant 

difference in variability of intelligence.

8. Show how you would use Fisher’s Z test to decide whether the two sets of observations 15, 25, 

16, 23, 25, 27, 25, 21, 15 and 14, 14, 18, 14, 18, 15, 13 and 19 indicate samples from the same 

universe.

Answers

1. 1.54F , F.05(8.7) = 3.73, not significant.

2. F = 2.5, F.05(10, 8)  3.35, not significant.

3. F = 1.018, F0.05(11, 9) = 3.10, not significant.

4. F = 2.4.

5. F = 1.47.

6. F = 3.44, F.05(8, 7) = 3.73 and F.01 (8, 7) = 6.84.

  It is significant at both the level of significance.

7. F = 2.

8. F = 4.25, z = 0.72346.

SUMMARY

In this chapter, the following topics have been discussed:

1. Population and sample.

2. Population parameters:  and 2 etc.

3. Sample statistic: 2 2 21
, etc, , ( )

1

i
i

x
x s x s x x

n n

4. Standard error: Standard deviation of sampling variance s2

5. Null and alternate hypothesis = H0 and H1

6. P(Type I error ) = P(rejecting null hypothesis when null hypothesis is true)

P(Type II error) = P(accepting null hypothesis when it is wrong)

7. P(Type I error) and level of significance are generally same.

8. Confidence limits for 

( is known)x z
n

x t
n

 (  is unknown and  is estimated based on sample)

9. Central limit theorem: 
( )

~ (0, 1)
var ( )

X E x
z N

x

  For large n  30, any distribution of X will follow standard normal distribution.

10. and
x x

z t
n s n
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11.

2

2

x

y

s
F

s

12.

2

2 2
1

1

~
n

i
n

i

13.
1

log
2

ez F

OBJECTIVE TYPE QUESTIONS

1. If s1
2 = 10 and s2

2 = 5,  then F is equal to

(a) 2 (b) 3

(c) 1 (d) 2.5

2. If S
2 be sample variance of n observations, 

then it is equal to

(a)
21

( )i

i

x x
n

(b)
21

( )
1

i

i

x x
n

(c)
21

( )i

i

x x
n

(d)
21

( )
1

i

i

x x
n

3. If a random variable X has 2 distribution, 

with 4 d.f. then its mean is equal to

(a) 4 (b) 3

(c) 2 (d) 1

4. If a random variable X has 2-distribution with 

2 d.f., then its standard deviation is

(a) 4 (b) 3

(c) 2 (d) 1

5. If p = 0.13, n = 500, then standard error is 

equal to

(a) 0.011 (b) 0.012

(c) 0.013 (d) 0.015

6. X is normally distributed with mean 5 and 

variance 25. If a random sample of size 25 is 

drawn from X then variance of X  is equal to 

(a) 1 (b) 2

(c) 5 (d) none of these

7. If standard error of X  = 0.2, then its precision 

is equal to 

(a) 0.5 (b) 1

(c) 2 (d) 5

8. If n = 625, X  = 3.50,  = 3.20 and 2 = 2.25, 

then z is equal to

(a) 5 (b) 2

(c) 1 (d) 0.5

9. If t distribution has mean zero, then its variance 

is

(a) > 12 (b) < 12

(c) = 12 (d) none of these

10. Variance of t distribution is always

(a) Greater than 1 (b) Less than 1

(c) Equal to 1 (d) Greater than 0.5

11. If we reject null hypothesis when it is correct 

we get _____ error

12. To use t-statistic, the population from 

which sample is drawn should have _____ 

distribution.

13. If the standard deviation of 2-distribution is 

10, then its degree of freedom is

(a) 25 (b) 50

(c) 75 (d) 100

14. The test statistic, 

2

2

x

y

s
F

s
 is  used when

(a)
2 2
x ys s (b)

2 2
x ys s

(c)
2 2
x ys s (d) none of these

15. In a t-distribution of sample size 18, the degree 

of freedom are

(a) 18 (b) 17

(c) 16 (d) 15
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16. Fisher’s z transformation is equal to

(a)
1

log
2

ez F (b) 10

1
log

2
z F

(c) z = loge F (d) log10 F

17. The range of t-statistic is

(a) (0, ) (b) (– , )

(c) (– , 0) (d) (2, )

18. If mean of 2-distribution is 4, then its mode is

(a) 4 (b) 3

(c) 2 (d) 1

19. If 6, 27, 72, 112, 71 and 32 are the observed 

frequencies; and 10, 50, 100, 100, 50 and 10 

are respectively the expected frequencies of 

an experiments, respectively, then the value 

of 2 is

(a) 78.68 (b) 76.88

(c) 68.78 (d) 86.78

20. If
1 2 1 267.5, 68.0, 100, 2000x x n n

and r = 2, then z is

(a) 4.9 (b) 5.0

(c) 5.1 (d) 5.2

ANSWERS

1. (a) 2. (b) 3. (a) 4. (c) 5. (d) 6. (a) 7. (d) 8. (a) 9. (d) 10. (a)

11. Type I  12. Normal 13. (b) 14. (a) 15. (b) 16. (a) 17. (b) 18. (c) 19. (a)

20. (c)





8.1 INTRODUCTION

Numerical analysis is a branch of Mathematics in which we analyse the computational methods for 

solving scientific and engineering problems by applying basic arithmetic operations. The results 

obtained by using numerical methods are usually approximate to the true results. These approximations 

to the true results represent/involve errors but can be made more accurate up to some extent. There 

can several reasons behind the approximations, when we use a method to solve a problem may not be 

exact.

For example, cos x can be solved by expressing it as an infinite power series. This series has to be 

truncated to the finite number of terms. This truncation introduces an error in the calculated result.

8.2 FLOATING POINT REPRESENTATIONS

In computational calculations, a very small numbers such as size of an electron or very big numbers 

such as velocity of light occur frequently. These numbers cannot be represented in a usual manner. 

There are two ways of representing these numbers, called fixed point and floating point.

In a fixed-point representation all numbers are given with a fixed number of decimal places.

For example, 62.358, 0.015, 1.000 and 1.001; all correctly expressed up to third decimal places.

In a floating-point representation, the number of significant digits is kept fixed (whereas the decimal 

point is floating as seen from the exponent). Examples are 6.236 × 103, 1.306 × 10–3 which are all given 

as four significant figures.

Significant Digits

The concept of significant digits has been introduced primarily to indicate the accuracy of a numerical 

value.

Significant digit of a number K is any given digit of K, except possibly for zeros to the first non-zero 

digit that serve only to fix the position of the decimal point.

Following rules are applied when zeros are encountered in the numbers:

(i) Zeros placed after other digits but behind a decimal point are significant; 3.80 has three 

significant digits.

(ii) Zeros placed before other digits are not significant; 0.038 has two significant digits.

(iii) Zeros placed between other digits are always significant; 3007 has four significant digits.

(iv) Zeros at the end of a number are significant if they are behind a decimal point as in Example  1,

Part (iii) and (v).

Finite Differences 

and Interpolation8
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Example 1 Find the accuracy of the following numbers:

(i) 83.234

(ii) 0.0037

(iii) 3800.00

(iv) 38

(v) 7200

(vi) 0.0536000

Solution

(i) The number 83.234 has five significant digits/figures.

(ii) The number 0.0037 has two significant digits.

(iii) Number 3800.00 has six significant digits because zeros were made significant by writing 0.00 

after 3800.

(iv) The number 38 has only two significant figures.

(v) In the number 7200, it is not clear if the zeros are significant or not. The number of significant 

digits in 7200 are at least two but it could be three or four. To find the accuracy we use the 

scientific notation to place significant zeros behind a decimal point.

   7.2 × 103 has two significant digits

   7.20 × 103 has three significant digits

   7.200 × 103 has four significant digits

(vi) The number 0.0536000 has six significant digits.

8.3 ROUNDING-OFF AND CHOPPING

All the non-exact numbers can be approximated with a finite number of digits of precision in the 

following manners:

If n digits are used to represent a non-terminating number then the simplest process is to kept the 

first n digits and chop off all remaining digits.

We know that 
22

3.1415926
7

2 1.4142134, 2.71828182e

The digits on the right are approximating to the exact value of the numbers on the left.

To round off a number to n significant digits, discard all digits to the right of nth digit and if this 

discarded number is

(i) less than 5 in (n + 1)th place, leave the nth digit unchanged. For example, the number 3.892 

round off to 3 significant digit is 3.89.

(ii) greater than 5 in (n + 1)th place, add 1 to the nth digit. For example, the number 8.3466 round 

off to 3 significant digits is 8.35.

(iii) exactly 5 in (n + 1)th place, add 1 to the n
th digit if it is an odd otherwise leave n

th digit 

unchanged. For example, 12.375  12.38 and 12.765  12.76 correct to 4 significant digits.

8.4 ERROR

An error is the difference between the true value or actual value and the approximate value from the 

numerical computation or from the experimental observations.
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Let the true value be X and the approximate value be Xa, then

Error ( ) = X – Xa

8.4.1 Type of Errors

In numerical calculations the types of errors are following:

(a) Round-off errors: An error is caused by chopping (i.e., discarding all decimals from some 

decimal on) or rounding. This error is called rounding off error.

(b) Inherent errors: These errors are already present in the statement of a problem before its 

solution and such errors are called inherent errors. These errors are present either due to the 

given data being approximated or due to the limitations of mathematical measurements.

(c) Absolute, relative and percentage errors: The absolute error of measurement, number 

or calculation is the numerical difference between the true value of the quantity and its 

approximate value as given or calculated.

  Relative error is the absolute error divided by the true value of the quantity. The percentage 

error is 100 times of the relative error.

  Let X be the true value and Xa be the approximate value, then

  Absolute error ( )a aE X X

  Relative error ( )
a

r

X X
E

X

  Percentage error ( ) 100P aE E

(d) Truncation error: These errors are caused by the usage of a closed form such as the first few 

terms of an infinite series to express a quantity defined by limiting process.

  For example, consider, use of a finite number of terms in the infinite series expansion of cos x

or sin x by using Taylor’s or Maclaurin’s series expansion, such type of errors are called the 

truncation errors.

Remark:

1. The relative and percentage errors are independent of the units while the absolute error is 

expressed in terms of units used.

2. If the relative error in an approximate number is less than 
1

1
,

( 1) 10nk
 the number is

correct to n significant digits.

3. If the relative error of any number is not greater than 
1

,
2 10 n

 the number is certainly correct

to n significant digits.

4. If the first significant figure of a number is k, and the number is correct to n significant figures,

then the relative error < 
1

1
.

10nk

5. Let X be a real number and X1 be a another number having non-terminal decimal expansion,

then X1 represents X rounded to k decimal places if

1

1
10 ;

2

kX X  where k is a positive integer.
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Example 2 Round off the following numbers to four significant figures:

(i) 30.0567

(ii) 0.042514

(iii) 0.0049125

(iv) 0.00010125

(v) 3.14159

Solution We have to retain first four significant figures:

(i) 30.0567 to 30.06

(ii) 0.042514 to 0.04251

(iii) 0.0049125 to 0.004912 (because the digit in 4th place is even)

(iv) 0.00010125 to 0.0001012 (because the digit in 4th place is even)

(v) 3.14159 to 3.142

Example 3 If  = 3.14159265, then find out to how many decimal places the approximate value 

of
22

7
 is accurate?

Solution

222
Error 0.00126449 1.26 10

7

Since 21
0.00126449 0.005 10

2
Hence, k = 2

So, we conclude that the approximation is accurate to two decimal places or three significant digits.

Example 4 If 0.333 is the approximate value of 
1

3
, then find absolute, relative and percentage errors.

[U.P.T.U. 2002]

Solution Here, we have 
1

3
X  and Xa = 0.333.

Absolute error ( )a aE X X

=
1

0.333
3

=
1 333

3 1000

=
1000 999

3000

=
1

3000

= 0.00033
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Relative error ( ) a
r

E
E

X

=
0.00033

1

3

= 0.00099

Now, percentage error (Ep) = Er × 100

= 0.00099 × 100

= 0.099

Example 5 Given x = 0.005998, if x is rounded off to three decimal digits, find absolute, relative 

and percentage errors. [U.P.T.U. 2004]

Solution Number x rounded of three decimal digits is 0.006

Now, error = 0.005998 – 0.006

= –0.000002

Now, Absolute error ( ) | 0.000002 |aE

= 0.000002

Relative error ( ) a
r

E
E

x

=
0.000002

0.005998

= 0.0033344

and Percentage error ( ) 100p rE E

= 0.0033344 × 100

= 0.33344

Example 6 Find the sum 3 5 7S  to four significant figures. Also find the absolute, 

relative and percentage errors. [U.T.U. 2012, U.P.T.U. 2004]

Solution We know that 

3 1.732, 5 2.236, and 7 2.646

3 5 7S

= 1.732 + 2.236 + 2.646

= 6.614
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Since, 3, 5 and 7  each has 3 decimal places, so each has the error = 31
10

2
= 0.0005

The absolute error (Ea) = 0.0005 + 0.0005 + 0.0005

= 0.0015

= 0.15 × 10–2

This absolute error shows that the sum of error is correct to 2 decimal places. Thus, the sum(S) is 

correct to 3 significant digits only.

We assume S = 6.61

The relative error ( ) a
r

E
E

S

=
20.15 10

6.61

= 0.0002

Now, percentage error ( ) 100p rE E

= 0.0002 × 100

= 0.02

Example 7 Round off the number 75462 to four significant figures also find the absolute, relative 

and percentage errors. [U.P.T.U. (CO) 2004]

Solution The number 75462 is round off to four significant figures = 75460

Now Absolute error ( ) | 75462 75460 |aE

= 2

Relative error ( )
number

a
r

E
E

=
2

75462

= 0.0000265

and percentage error ( ) 100p rE E

= 0.0000265 × 100

= 0.00265

8.5 GENERAL ERROR FORMULA 

Let 1 2 3( , , , , )nu f x x x x  be a function of independent variables 1 2 3, , , , nx x x x  and let the errors 

1 2 3, , , , nx x x x  in 1 2 3, , , , nx x x x .

Then the error u in u is given by

1 1 2 2 3 3( , , , , )n nu u f x x x x x x x x
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In order to obtain an expression for u, we write Taylor’s expansion of the right hand side,

Thus,

1 2 1 2 3
1 2 3

( , ,..., )n n
n

f f f f
u u f x x x x x x x

x x x x

2 2 2
2 2 2

1 22 2 2
1 2

1
( ) ( ) ( )

2!
n

n

f f f
x x x

x x x

Since, the errors 1 2 3, , , ..., nx x x x  are assumed to be so small that their squares, products and 

highest powers can be neglected, we have

1 2
1 2

n
n

f f f
u u u x x x

x x x

or      1 2
1 2

n
n

f f f
u x x x

x x x

We observe that this formula has the same form as that for the total differential of u. Thus the 

relative error is given by

r

u
E

u

= 1 2

1 2

n

n

xx xu u u

x u x u x u

8.6 ERRORS IN NUMERICAL COMPUTATIONS

(i) Error in Addition of Numbers: Let 1 2 3 nu x x x x  be a function. Suppose 

1 2 3, , , ..., nx x x x  be the errors in 1 2 3, , , , nx x x x  respectively.

  Then 1 1 2 2( ) ( ) ( )n nu u x x x x x x

    1 2 1 2( ) ( )n nu u x x x x x x

1 2 nu x x x

  Thus, the relative error ( )r
u

E
u

   = 1 2 nxx x

u u u
  Maximum relative error is

    

31 2

4

nx xx xu

u u u u

(ii) Error in Subtraction of Numbers: Let u = x1 – x2, then

   1 1 2 2( ) ( )u u x x x x

   1 2 1 2( ) ( )u u x x x x

1 2u x x
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  Now, absolute error is 1 2| | | |u x x

   1 2| | | |x x

  Absolute relative error is

          

1 2x xu

u u u

(iii) Error in division of numbers: Let 
1

2

x
u

x

   
1 2

1 2

u u
u x x

x x

1 2

1 2

x xu u u

u u x u x
(1)

  Now,
1

2
1 2 2 2

1
and

xu u

x x x x

Equation (1) becomes

    

1 2 1

2
1 12 2

2 2

1x x xu

x xu x x

x x

    

1 2

1 2

x xu

u x x

  Thus, the relative error is 

    

1 2

1 2

x xu

u x x

(iv) Error in Product of Numbers: Let 1 2 3 nu x x x x  be a function.

  Then 1 2
1 2

n
n

u u u
u x x x

x x x
(2)

  Now, 2 3
1

n

u
x x x

x

    
1 3

2
n

u
x x x

x

    
1 2 4

3
n

u
x x x x

x

    

    
1 2 3 1n

n

u
x x x x

x
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  Putting the values of 
1 2

, , ,
n

u u u

x x x
 in Eq. (2), we get

    1 2 3 2 1 3 1 2 3 1( ) ( ) ( )n n n nu x x x x x x x x x x x x x

1 2
2 3 1 3 1 2 1( ) ( ) ( )n

n n n

xx xu
x x x x x x x x x

u u u u

  or 1 2 3 2 1 3 1 2 1

1 2 3 1 2 3 1 2 1

( ) ( ) ( )

( ) ( ) ( . )

n n n n

n n n n

x x x x x x x x x x x xu

u x x x x x x x x x x x x

  or 1 2

1 2

n

n

xx xu

u x x x

The maximum relative error is

    

1 2

1 2

n

n

xx xu

u x x x

8.7 ERROR IN A SERIES APPROXIMATION

The Taylor’s series expansion for f (x) at x = a with a remainder after n terms is given.

2 1
1( ) ( )

( ) [( ) ( )] ( ) ( ) ( ) ( ) ( ) ( ),
2! ( 1)!

n
n

n

x a x a
f x f a x a f a x a f a f a f a R x

n

where
( )

( ) ( );
!

n
n

n

x a
R x f a x

n

The last term Rn(x), which is called the remainder term. If the series is convergent then

Rn(x)  0 as n . Thus, if f (x) is approximated by the first n terms of this series, then the maximum 

error committed in this approximation is given by the remainder term.

Example 8 Compute the percentage error in the time period 2 /T l g  for l = 1 M, if the error 

in measurement of l = 0.01. [G.E.U. 2015]

Solution We have

2 /T l g (3)

Taking log both sides of Eq. (3), we get

1 1
log log2 log log

2 2
T l g

Differentiating both sides, we obtain

1 1

2
T l

T l

Percentage error is

1 1
100 100

2
T l

T l
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=
1

0.01 100 0.05%
2 1

Example 9 Given that 
2

3

5
, , and

xy
u x y z

z
 denote the errors in x, y and z respectively, such 

that x = y = z = 1 and x = y = z = 0.001. Find the maximum relative error in u. [U.P.T.U. 2007]

Solution Given
2

3

5xy
u

z
(4)

We know that

u u u
u x y z

x y z
(5)

From Eq. (4), we have

2 2

3 3 4

5 10 15
, and

u y u xy u xy

x y zz z z

Taking above values in Eq. (5), we get

2 2

3 3 4

5 10 15y xy xy
u x y z

z z z

2 2

max 3 3 4

5 10 15
( )

y xy xy
u x y z

z z z

= | 5 0.001| |10 0.001| | 15 0.001|

= 0.005 + 0.010 + 0.015

= 0.030

The maximum relative error is given by

max
max

( ) 0.030
( )

5
r

u
E

u
 = 0.006

Example 10 Given that 
2 3

4

4x y
u

z
 and the errors in x, y and z be 0.001, compute the maximum 

relative error in u when x = y = z = 1. [U.P.T.U. 2003]

Solution Do same as above example, 

(Er)max = 0.009

Example 11 The error in the measurement of the area of a circle is not allowed to exceed 0.1%. 

How accurately should the diameter be measured?
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Solution The area of a circle with diameter (d) is 

2

4

d
A

Taking log both sides, we get

log log 2log log 4A d

Differentiating both sides, we have

2A d

A d

Percentage error in diameter is

100 2 100
A d

A d

1 1
100 100 0.1 0.05

2 2

d A

d A

Example 12 In a ABC, a = 30 cm, b = 80 cm and B = 90°. Find the maximum possible error in 

the computed value of area of ABC, if possible errors in a and b are 
1 1
% and %

3 4
 respectively.

Solution Given a = 30 cm, b = 80 cm

1 30
0.1

100 3 300

a
a

1 80
0.2

100 4 400

b
b

Area of ABC, is given by

1
( )

2
A a c

or 2 2( )
2

a
A b a

2 2

2 2 2 2

1 2 1
,

2 2( ) ( )

A b a A ab

a bb a b a

A A
A a b

a b

A A
A a b

a b

=

2 2

2 2 2 2

2

2 2

b a ab
a b

b a b a

Fig. 8.1



8.12 Engineering Mathematics for Semesters III and IV

=

2 2

2 2 2 2

80 2 30 30 80
0.1 0.2

2 80 30 2 80 30

= 6.33748

Example 13 Find the number of terms of the exponential series such that their sum gives the value 

of e
x correct to six decimal places at x = 1.

Solution We know that

2 3 1

1 ( )
2! 3! ( 1)!

n
x

n

x x x
e x R x

n
(6)

where ( ) ; 0
!

n

n

x
R x e x

n

The maximum absolute error at  = x is

=
!

n
xx
e

n

and the maximum relative error = 
!

nx

n

Thus,
max

1
( ) at ( 1)

!
rE x

n

For a six decimal accuracy at x = 1, we have

61 1
10

! 2n

or  
6! 2 10 10n n

Hence, we need 10 terms of the series in Eq. (6) in order that its sum is correct to 6 decimal places.

Example 14 Use the series of 
3 51

log 2
1 3 5

e

x x x
x

x
 to compute the value of 

log (1.2) correct to 7 decimal places and find the number of terms retained. [U.P.T.U. 2002]

Solution Given that

3 5 2 11
log 2 ( )

1 3 5 2 1

n

e n

x x x x
x R x

x n

If we retain n terms then

2 1 1
( ) 2 log ; 0

2 1 1

n

n

x
R x x

n

Maximum absolute error at  = x

=
2 1 1

2 log
2 1 1

n
x x

n x
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and maximum relative error

= 2 12

2 1

n
x

n

Let
1

( ) 1.2 1 1.2(1 )
1

x
f x x x

x

or
0.2 1

2.2 11
x

Hence,

2 1

max

1 2 1
( ) at

11 2 1 11

n

rE x
n

For accuracy of seven decimal places,
2 1

72 1 1
10

2 1 11 2

n

n

2 1 7(2 1) (11) 4 10n
n

which gives n > 2

Thus, retaining the first three terms of the given series, we get

3 5

log(1.2) 2
3 5

x x
x

= 0.1823215; at 
1

11
x

EXERCISE 8.1

1. The true value of x is 
10

3
 and approximate value is 3.33. Find the absolute and relative 

errors.

2. Round off the following numbers to 4 significant digits.

(i) 48.3668 (ii) 8.4155

(iii) 0.80012 (iv) 0.0049125

(v) 0.00020215

3. Consider the number 
2

3
. Its floating point representation rounded to 5 decimal places is 

0.66667. Find out to how many decimal places the approximate value of 
2

3
 is accurate?

4. Round the number x = 2.2554 to 3 significant digits. Find the absolute and relative error.

5. What is the relative error in the computation of x – y, where x = 0.3721448693 and 

y = 0.3720214371 with 5 decimal place of accuracy?

6. Compute the relative error in computations x – y for x = 12.05, y = 8.02 having absolute errors 

x = 0.005 and y = 0.001.

7. Find the number of correct digits in the number x given its relative error is 0.3 and x = 386.4.

8. If 62 5 ,u x x  find the percentage error in u at x = 1, if the error in u is 0.05.
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9. The function f (x) = cos x can be expanded as 
2 4 6

cos 1
2! 4! 6!

x x x
x . Compute the 

number of terms required to estimate cos
4

 so that the result is correct to at least two 

significant figures.

10. If

2

3

4xy
u

z
 and errors in x, y, z be 0.001, show that the maximum relative error at x = y = z = 1

is 0.006.

11. If
2 3

4

4x y
u

z
 and errors in x, y, z be 0.001, find the maximum relative error in u, when 

x = y = z = 1.

12. If 63 ( 2),r h h  find the percentage error in r at h = 1, if the percentage error in h is 5.

13. If 29 5.385 and 11 3.317,  correct to four significant digits. Find the relative error in 

their sum and difference.

14. Calculate the value of x – x cos  correct to 3 significant figures if x = 10.2 cm and  = 5°. Find 

the permissible errors in x and .

15. Determine the number of terms required in the series for loge(1 + x) to evaluate log (1.2) 

correct to six decimal places.

16. If 3 2 210u x y z  and errors in x, y, z are 0.03; 0.01, 0.02 respectively at x = 3, y = 1 and z = 2. 

Compute absolute and percentage relative error in u.

Answers

1. Ea = 0.003333, Er = 0.000999 2.  (i) 48.37 (ii) 8.416

     (iii) 0.8001 (iv) 0.004912

     (v) 0.0002022

3. k = 5 4. Ea = 0.0054, Er = 0.0024

5. Er = 1.3 × 10–5 6. 0.00029

7. 1 8. –11.667%

9. n = 3 11. 0.009

12. 25% 13. 1.149 × 10–4, 4.835 × 10–4

14. 0.0656, 0.00028 15. n = 10

16. 75.6, 7%

8.8 FINITE DIFFERENCES

The calculus of finite differences is an interesting topic and has wide applications in various fields. 

Using this concept, we deal with the changes that take place in the value of the function, the dependent 

variable due to finite changes in the independent variable.
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Suppose a table of values (xi, yi), i = 1, 2, 3, …, n, of any function y = f (x), the values of x being 

equally spaced, i.e. xi = x0 + ih, i = 0, 1, 2, …, n. We are required to obtain the values of f (x) for some 

intermediate values of x or to obtain the derivative of f (x) for some x in the range x0 x xn. Following 

three types of differences are found useful:

(i) Forward Differences: If a function y = f (x) is tabulated for the equally spaced arguments

x0, x0 + h, x0 + 2h, …, x0 + nh giving the functional values y0, y1, y2, …, yn.

  The constant difference between two consecutive arguments (x) is called the interval of 

differencing and is denoted by h.

  The forward difference operator  is defined as

   0 1 0 1 2 1 2 3 2, ,y y y y y y y y y  and so on 1n n ny y y

   0 1 2, , , , ny y y y  are called first forward differences.

  The differences of the first forward differences are called 2nd forward differences and are 

denoted by 2 2 2 2
0 1 2, , , , ,ny y y y  defined as

   2
0 0( )y y

= 1 0( )y y

= 1 0y y

= 2 1 1 0( ) ( )y y y y

= 2 1 1 0y y y y

2
0 2 1 02y y y y

  Similarly, we can define the 3rd forward differences, 4th forward differences, etc.

   Thus 3 2 2
0 0 1 0( ) ( )y y y y

= 2 2
1 0 3 2 1 2 1 0( 2 ) ( 2 )y y y y y y y y

=
3 2 1 03 3y y y y

  and 4 3 3
0 1 0y y y

   0

4
4 3 2 1 04 6 4y y y y y y

  In general,

   
1 1

1
n n n
n n ny y y

  The following table shows how the forward differences of all orders can be formed.

x y y
2
y

3
y

4
y

x0

x1

x2

x3

x4

y0

y1

y2

y3

y4

y0

y1

y2

y3

2
y0

2
y1

2
y2

3
y0

3
y1

4
y0
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(ii) Backward Differences: If a function y = f (x) is tabulated for the equally spaced arguments 

x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, …, yn. The backward 

difference operator  is defined as

   1 1 0 2 2 1 3 3 2 1, , , , n n ny y y y y y y y y y y y

  are called the first backward difference operator.

  In a similar way, we can define the backward differences of higher orders.

  Thus,
2

2 2 2 1( ) ( )y y y y

= 2 1y y

= 2 1 1 0( ) ( )y y y y

= 2 1 02y y y

   
3

3 3 2 1 03 3 , etc.y y y y y

  The following table shows how the backward differences of all orders can be formed:

x y y 2
y

3
y

4
y

x0

x1

x2

x3

x4

y0

y1

y2

y3

y4

1y

2y

3y

4y

2
2y

2
3y

2
4y

3
3y

3
4y

4
4y

(iii) Central Differences: Some times it is a very useful to employ another system of differences 

known as central differences. The central difference operator (delta) is defined by the 

relations

   

1 0 1 2 1 3/2

2

, ,y y y y y y

   

1 1

2

n n
n

y y y

  Similarly, the central differences of higher orders are defined as

   
2

3/2 1/2 1y y y

   
2

5/2 3/2 2 ;y y y

   2 2 3
2 1 3/2y y y  and so on.
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  Central Difference Table

x y y 2
y

3
y

4
y

x0

x1

x2

x3

x4

y0

y1

y2

y3

y4

1/2y

3/2y

5/2y

7/2y

2
1y

2
2y

2
3y

3
3/2y

3
5/2y

4
2y

  It is clear that, when we use forward, backward or central differences.

  Thus, we have

   0 1 1/2y y y

   3 3 3
2 5 7/2y y y  etc.

(iv) Shift operator: The shift operator E is defined as

   
( ) ( ) or x x hEf x f x h Ey y

   
2 2

2( ) ( 2 ) or x x hE f x f x h E y y

    

   
( ) ( ) orn n

x x nhE f x f x nh E y y

  The inverse operator E–1 is defined as

   
1 1( ) ( ) or x x hE f x f x h E y y

   
2 2

2( ) ( 2 ) or x x hE f x f x h E y y

    

   
( ) ( ) orn n

x x nhE f x f x nh E y y

(v) Averaging operator: The averaging operator (mu) is defined as

   

1
( )

2 2 2

h h
f x f x f x

Remark

1. Pascal’s triangle: It is start from 11 and is defined as

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

  and so on.
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  The forward and backward differences of different orders are defined as

   
( ) ( ) ( )f x f x h f x

   
2 ( ) ( 2 ) 2 ( ) ( ) and so onf x f x h f x h f x

   
5 ( ) ( 5 ) 5 ( 4 ) 10 ( 3 ) 10 ( 2 ) 5 ( ) ( )f x f x h f x h f x h f x h f x h f x

  Now, ( ) ( ) ( )f x f x f x h

   
2 ( ) ( ) 2 ( ) ( 2 )f x f x f x h f x h

   
3 ( ) ( ) 3 ( 2 ) 3 ( 3 ) ( 4 ) etc.f x f x f x h f x h f x h

2. In the difference calculus, the operators , ,  and  can be expressed in terms of shift 

operator E.

8.9 RELATION BETWEEN OPERATORS

(i) Relation between ,  and E

  We know that

   x x h xy y y

=
x xEy y

   
( 1)x xy E y

  or 1E

  or 1E (7)

  Now, x x x hy y y

= 1 x
xy E y

  or 11 E

  or
1

1
E (8)

  From Eqs (7) and (8), we have

   

1
1

1

  or
1

1
1 1

1

(ii) Relation between  and E

  We know that 

   /2 /2x x h x hy y y
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= 1/2 1/2
x xE y E y

   
1/2 1/2( )x xy E E y

  or

1 1

2 2E E

(iii) Relation between  and E

  We know that 

   

1
( )

2 2 2

h h
f x f x f x

=
1 1

2 2
1

( ) ( )
2

E f x E f x

  or
1 1

2 2
1

( ) ( )
2

f x E E f x

  or
1 1

2 2
1

2
E E

(iv) Relation between , , andE

  We know that

   
( ( )) ( ( ) ( ))E f x E f x f x h

= ( ) ( )Ef x Ef x h

= ( ) ( )f x h f x

= ( )f x

E (9)

  Now ( ( )) ( )Ef x f x h

= ( ) ( )f x h f x

= ( )f x

   E (10)

   

1

2 ( ) ( / 2) ( ) ( )E f x f x h f x h f x

= ( )f x

1/2
E (11)

  From Eqs (9), (10) and (11), we obtain, 

   
1/2

E E E
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  Similarly, we can prove that

(i) hD
E E

(ii) 2

(iii)
2 2

1
2 4

(iv) 11

2 2
E

(v)

Theorem (Differences of a Polynomial)

The n
th differences of a polynomial of nth degree are constant and all higher order differences are zero 

when the values of the independent variable are at equal interval.

[U.P.T.U. 2002, 2004, M.C.A. 2004]

Proof:

Let the rational integral function of the nth degree in x be.
1 2( ) n n n

f x ax bx cx kx l

where n is a positive integer, a, b, c, …, l are constants and a  0.

1 2( ) ( ) ( ) ( ) ( )n n n
f x h a x h b x h c x h k x h l

Now, ( ) ( ) ( )f x f x h f x

= 1 1[( ) ] [( ) ]n n n n
a x h x b x h x kh

or 1 2 3( ) n n n
f x anhx b x c x k x l (12)

where , , ...,b c l  are new constants coefficients.

Thus, the first difference of a rational integral function/polynomial of nth degree is a rational integral 

function of degree (n – 1)

The 2nd difference of f (x) is

2 ( ) [ ( )]f x f x

= [ ( ) ( )]f x h f x

= ( ) ( )f x h f x

2 2 2 3( ) ( 1) [using Eq. (12)]n n
f x an n h x b x k

Thus, the 2nd difference is a polynomial of degree (n – 2).

By continuing in this manner, we arrive at the result.

( ) ( )n n n
f x ax

= [ ( 1)( 2)...1] n n n
a n n n h x

= !n
ah n
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The n
th difference is constant, and all higher differences are zero, that is, the (n + 1)th and higher 

differences of a polynomial of the nth degree are zero.

Remark

The converse of the above theorem is also true, i.e.

If the nth differences of a tabulated function are constant when the values of the independent variable 

are taken at equal intervals, the function is a polynomial of degree ‘n’.

Example 15 Evaluate 3(1 ) (1 2 ) (1 3 )x x x .

Solution

Let
( ) (1 )(1 2 )(1 3 )f x x x x

3 2( ) 6 11 6 1f x x x x

So that the polynomial f (x) is of degree 3.

3 3 3 2( ) ( 6 11 6 1)f x x x x

= 3(–6x
3) + 3(11x

2) – 3(–6x) + 3(1)

= (–6) (3!)

= –36

Example 16 Prove that 
2

2

x
x x

x

Ee
e e

E e
 the intervals of differencing being h.

[G.E.U. 2015]

Solution We know that

( 1)x x h x x h
e e e e e

2 ( )x x
e e

= [ ( 1)]x h
e e

= [ ] ( 1)x h x h
e e e

= 2( 1)x h
e e

x x h
Ee e

Now,
2

2 1( )x x
e E e

E

= 2 x h
e

= 2 2( 1)h x h x h
e e e e e

R.H.S. = 2

2
( 1)

( 1)

x h
h x h

x h

e
e e e

e e



8.22 Engineering Mathematics for Semesters III and IV

=
2

2

( 1)

( 1)

h
x h x h x

h

e
e

e

= e
x

= L.H.S Hence, proved.

Example 17 Construct a forward difference table for the data given below: [Gulbarga 1993]

x 10 20 30 40

y 1.1 2.0 4.4 7.9

Solution Forward difference table is

x y y
2
y

3
y

10

20

30

40

1.1

2.0

4.4

7.9

0.9

2.4

3.5

1.5

1.1
–0.4

Thus 3
y10 = –0.4

Example 18 If u0 = 3, u1 = 12, u2 = 81, u3 = 2000, u4 = 100, calculate 4
u0. [Kerala 1990]

Solution The forward difference table is

x u u
2
u

3
u

4
u

0

1

2

3

4

3

12

81

2000

100

9

69

1919

–1900

60

1850

–3819

1790

–5669
–7549

Thus 4
u0 = –7459

Example 19 Evaluate 3 4log 40 and log 50  for the data given below: [G.E.U. 2015]

x 10 20 30 40 50

y = log x 1 1.3010 1.4771 1.6021 1.6990
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Solution Backward difference table is given:

x y y 2y 3y 4y

10

20

30

40

50

1

1.3010

1.4771

1.6021

1.6990

0.3010

0.1761

0.1250

0.0969

–0.1249

–0.0511

–0.0281

0.0738

0.0230

0.0508

From the given table, we have
3 log 40 0.0735 and

4 log50 0.0508

Example 20 Construct a backward difference table from the data given:

sin 30° = 0.5, sin 35° = 0.5736, sin 40° = 0.6428 and sin 45° = 0.7071. Assuming 3rd difference to 

be constant, find the value of sin 25°. [G.E.U. 2012]

Solution Backward difference table is

x y y 2
y

3
y

25

30

35

40

45

0.4225

0.5000

0.5736

0.6428

0.7071

0.0775

0.0736

0.0692

0.0643

–0.0039

–0.0044

–0.0049

0.0005

–0.0005

Since, the 3rd differences are constant
3

40 0.0005y

2 2
40 35 0.0005y y

2
350.0044 0.0005y

or 2
35 0.0039y

35 30 0.0039y y

30 300.0736 0.0039 0.0775y y

Again 30 25 250.0775 0.0775 0.5y y y

= 0.4225

sin 25 0.4225
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Example 21 With usual notation, prove that,

1 !
( 1)

( )( 2 )...( )

n
n n n h

x x x h x h x nh

Solution

11 1n n

x x

1 11 1

( )

n n h

x h x x x h

2 1
( )

( )

n
h

x x h

2 1 1
( 1) n

x x h

2 1 1 1 1
( 1)

2

n

x h x x h x h

2 2 1 1
( 1)

2

n

x h x x h

2
2 2

( 1)
( )( 2 )

n h

x x h x h

2
2 2 2!

( 1)
( )( 2 )

n h

x x h x h

or

3
3 3 3!

( 1)
( )( 2 )( 3 )

n h

x x h x h x h

1 !
( 1)

( )( 2 )...( )

n
n n n h

x x x h x h x nh
Hence, proved.

Example 22 Evaluate 10 2 3 4(1 )(1 )(1 )(1 )ax bx cx dx  if h = 1.

[U.P.T.U. (A.g.) 2004, G.E.U. 2011]

Solution Here 2 3 4( ) (1 )(1 )(1 )(1 )f x ax bx cx dx

10 9 8 7

6 5 4

3 2

( )

( ) ( ) ( )

( ) 1

abcd x bcd x acd x cd abd x

bd abc x bc ad x ac d x

abx b c x ax

10 ( ) (10)!f x abcd  (since, maximum degree of polynomial f (x) is 10 and coefficient of x10 is abcd).
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Example 23 Calculate y6, given that y0 = –3, y1 = 6, y2 = 8, y3 = 12; the 3rd difference being constant.

Solution Prepare the difference table from the given data:

x y y
2
y

3
y

0

1

2

3

–3

6

8

12

9

2

4

–7

2

9

Now 6 6
0 6 0 0(1 )y E y y

2 3
0(1 6 15 20 )y

[ 3
y0 = 9 and the higher order differences 

will be zero]
2 3

0 0 0 06 15 20y y y y

3 6 9 15 7 20 9

= 126

Example 24 Evaluate n[sin(ax + b)].

Solution sin( ) sin[ ( ) ] sin( )ax b a x h b ax b

= 2sin cos
2 2

ah h
a x b

= 2sin sin
2 2

ah ah
ax b

Now,
2 sin( ) 2sin sin

2 2

ah ah
ax b ax b

2sin 2sin sin
2 2 2 2

ah ah ah ah
ax b

2

2sin sin 2
2 2

ah ah
ax b

Continuing in the same manner, we get
3

3 sin( ) 2sin sin 3
2 2

ah ah
ax b ax b

      

sin( ) 2sin sin
2 2

n

n ah ah
ax b ax b n
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Example 25 Evaluate [cos( )]n
ax b .

Solution Do same as in Example 24,

cos( ) 2sin cos
2 2

n

n ah ah
ax b ax b n

Example 26 Prove that 
0(1 )n

ny y

              = 2
0 1 0 2 0 0

n n n
y C y C y y

Solution Let 0 1 2, , , ..., ny y y y  be the entries of ( ) at ; 0,1,2,...,iy f x x x i n .

From the definition of forward difference, we have

0 1 0 1 0 0y y y y y y

or y1 = 0(1 )y (13)

1 2 1 2 1 1y y y y y y

y2 = 1(1 )y

or y2 = 0(1 )(1 ) [using Eq. (13)]y (14)

2 3 2 3 2 2y y y y y y

= 2(1 )y

3
3 0(1 )y y     [using Eq. (14)] (15)

4
4 0(1 )y y     [using Eq. (15)] (16)

Continuing in the same manner, we get

0(1 )n
ny y

= 2 3
1 2 3 0[1 ]n n n n

C C C y

or 2 3
0 1 0 2 0 3 0 0

n n n n
ny y C y C y C y y

Hence, proved.

8.10 FACTORIAL NOTATION

The product of factors of which the first factor is x and the successive factors decrease by a constant 

difference is called a factorial function or polynomial and is denoted by “x
(n), n being a positive integer 

and is read as x raised to the power n factorial”. In general, the interval of differencing is h.

The factorial polynomial x(n) is defined as

( ) ( )( 2 )...[ ( 1) ]n
x x x h x h x n h

In particular
(0) (1) (2)1, , ( ),x x x x x x h
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(3) ( )( 2 ), etc.x x x h x h

Differences of x
(n)

The first difference of x(n) is

( ) ( ) ( )( )n n n
x x h x

= ( )( )( )( 2 )...[ ( 2) ] ( )( 2 )...[ ( 1) ]x h x x h x h x n h x x h x h x n h

= ( )( 2 )...[ ( 2) ] [( ) ( ( 1) )]x x h x h x n h x h x n h

= ( )( 2 )...[ ( 2) ]x x h x h x n h nh

( ) ( 1)n n
x nhx

Similarly, 2 ( ) ( )[ ]n n
x x

= ( 1)[ ]n
nhx

= 2 ( 2)( 1) n
n n h x

Continuing, this process r times, we have

( ) ( )( 1)( 2)...( 1) ,r n r n r
x n n n n r h x

where r is a positive integer and n > r.

In particular, if h = 1, then

( ) 1 ( )! and 0n n n n
x n x

8.11 RECIPROCAL FACTORIAL

If h is the interval of differencing, then the reciprocal factorial function x(–n) is defined as

( ) 1

( )( 2 )...( )

n
x

x h x h x nh

=
( )

1

( ) n
x nh

In particulars, ( 1) ( 2)

(2)

1 1
,

( ) ( 2 )
x x

x h x h

or ( 2) 1

( )( 2 )
x

x h x h

Differences of a reciprocal factorial

( ) ( ) ( )( )n n n
x x h x

=
1 1

( 2 )( 3 )...[ ( 1) ] ( )( 2 )...[ ( )]x h x h x n h x h x h x nh

=
( ) [ ( 1) ]

( )( 2 )..( )[ ( 1) ]

x h x n h

x h x h x nh x n h

= ( 1)n
nhx
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Similarly,

2 ( ) 2 ( 2)( )( 1)n n
x n n h x

= 2 2 ( 2)( 1) ( 1) n
n n h x

and in general

( ) ( )( 1) ( 1)( 2)...( 1) ;r n r r n r
x n n n n r h x n r

8.12 EXPRESSION OF ANY POLYNOMIAL f (x) IN FACTORIAL 
NOTATION

Let f (x) be a polynomial of degree n, that is

1 2
0 1 2( ) n n n

nf x a x a x a x a

where 0 1 2, , , ..., na a a a  are constants and 0 0a .

Thus, the polynomial f (x) can be expressed in the factorial notation as

( ) ( 1) ( 2) (1) (0)
0 1 2 1( ) n n n

n nf x A x A x A x A x A x (17)

Our aim is to find the values of A0, A1, A2, …, An – 1, An by applying the following process.

Dividing the R.H.S. of Eq. (17) by x, the remainder is An and dividing the quotient again by (x – h),

the remainder is An – 1 and then dividing the quotient again by (x – 2h), the remainder is An – 2 and so 

on. After getting An, An – 1, An – 2, A0 putting these values in Eq. (17), we obtain the required expression 

in factorial form.

Example 27 Obtain the function whose first difference is 2x
3 + 3x

2 – 5x + 4.

Solution Let f (x) be the required function given: 3 2( ) 2 3 5 4f x x x x

Write f (x) in factorial notation form, we have

3 2 (3) (2) (1)2 3 5 4x x x Ax Bx Cx D (18)

Using method of synthetic division, we divide by , ( 1), ( 2),x x x  successively, then,

1 2 3 –5 4 = D

0 2 5

2 2 5 0 = C

0 4

3 2 9 = B

0

2 = A

Putting the values of A, B, C and D in Eq. (18), we get

(3) (2)( ) 2 9 4f x x x (19)
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Integrate both sides of Eq. (19), we obtain
(4) (3)

(1)( ) 2 9 4
4 3

x x
f x x k

=
1

[ ( 1)( 2)( 3)] [ ( 1)( 2) 4 ]
2

x x x x x x x x k

Example 28 Express 4 2 2( ) 12 24 30 9f x x x x x  and its successive differences in factorial 

notation. Hence, show that 5 ( ) 0.f x

Solution Let (4) (3) (2) (1)( )f x Ax Bx Cx Dx E (20)

Using the method of synthetic division, we divide by , ( 1), ( 2) and ( 3),x x x x  then

1 1 –12 24 –30 9 = E

0 1 –11 13

2 1 –11 13 –17 = D

0 2 –18

3 1 –9 –5 = C

0 3

4 1 –6 = B

0

1 = A

Putting the values of A, B, C, D and E in Eq. (20), we get

(4) (3) (2) (1)( ) 6 5 17 9f x x x x x

(3) (2) (1)( ) 4 18 10 17f x x x x

2 (2) (1)( ) 12 36 10f x x x

3 (1)( ) 24 36f x x

4 ( ) 24f x

and 5 ( ) 0f x Hence, proved.

Example 29 Find the missing values in the given table

x x0 = 45 x1 = 50 x2 = 55 x3 = 60 x4 = 65

y y0 = 3 y1 = ? y2 = 2 y3 = ? –24 = y4
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Solution

Method-I

The total entries of y are 5, but 3 entries y0, y2, y4 are given; so we assume the 3rd difference is zero.
3 0; 0,1xy x

3( 1) 0xE y

3 2( 3 3 1) 0xE E E y

or 3 23 3 0x x x xE y E y Ey y

or 3 23 3 0x h x h x h xy y y y (21)

Putting x = 0 and h = 1 in Eq.(21), we get

3 2 1 03 3 0y y y y

or 3 16 3 3 0y y

or 1 33 9y y (22)

Again putting x = 1 and h = 1 in Eq. (21), we get

4 3 2 13 3 0y y y y

or
3 124 3 3 2 0y y

or
1 3( 3 ) 18y y (23)

Solving Eqs (22) and (23) for y1 and y3, we get

1 3

45 63
and

8 8
y y

Method-II

The difference table is

x y y
2
y

3
y

45

50

55

60

65

y0 = 3

y1

y2 = 2

y3

y4 = –24

y1 – 3

2 – y1

y3 – 2

–24 – y3

–2y1 + 5

y3 + y1 = – 4

–2y3 – 22

y3 + 3y1 = 9

3y3 + y1 = –18

From the difference table, we get

3y1 + y3 = 9

y1 + 3y3 = –18

on solving, we obtain 
1 3

45 63
and

8 8
y y

Pascal triangle

1 1

1 2 1

1 3 3 1
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Example 30 Estimate the production for the year 1964 and 1966 from the following data:

Year (x) 1961 1962 1963 1964 1965 1966 1967

Production (y) 200 220 260 - 350 - 430

[G.E.U. 2015]

Solution Since 5 entries are known, we assume the 5th order differences is zero. Since two entries are 

unknown, we need two equations to determine.

Thus, 5 5
0 10 and 0y y

5 5
0 1( 1) 0 and ( 1) 0E y E y

5 4 3 2
0( 5 10 10 5 1) 0E E E E E y

and 5 4 3 2
1( 5 10 10 5 1) 0E E E E E y

or 5 4 3 2 1 05 10 10 5 0y y y y y y

and 6 5 4 3 2 15 10 10 5 0y y y y y y

Putting the known values of y, we get

5 310 3450y y
(24)

5 35 10 5010y y
(25)

Solving Eqs (24) and (25) for y3 and y5, we obtain

y3 = 306 and y5 = 390

Hence, the production for year 1964 = 306 and production for year 1966 = 390.

Example 31 Find the missing value of the following data:

x 1 2 3 4 5

y 7 - 13 21 37

[U.P.T.U. 2002]

Solution Since the four entries are known and one value is unknown so we assume all the 4th order 

differences is zero.

Hence, 4
1 0y

4
1( 1) 0E y

or
4 3 2

1( 4 6 4 1) 0E E E E y

or 5 4 3 2 14 6 4 0y y y y y (26)

Substituting the known values in Eq. (26), we get

237 4 21 6 13 4 7 0y

or 38 – 4y2 = 0

or y2 = 9.5

Pascal triangle

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
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EXERCISE 8.2

1. Evaluate the following taking h = 1:

(i)  log x (ii) 1tan ax

(iii) ( )cx
ab (iv) 2 sin x

(v) ( )n ax
e (vi) 2

2

5 12

5 6

x

x x

2. Given u0 = 3, u1 = 12, u2 = 81, u3 = 200, u4 = 100 and u5 = 8, find 5
u0.

3. Prove the relation:

(i) (1 )(1 ) 1 (ii) ( )

where  and are forward and backward difference operators respectively.

4. Obtain the first term of the series whose 2nd and subsequent terms are as follows

  8, 3, 0, –1, 0.

5. Given u0 + u8 = 1.9243, u1 + u7 = 1.9590, u2 + u6 = 1.9823, u3 + u5 = 1.9956, then evaluate u4.

6. Construct a forward difference table from the given data:

x 0 1 2 3 4

y 1 2 4 8 14

  Hence, evaluate 3
y1 and yx

7. A 3rd degree polynomial passes through the points (0, –1), (1, 1), (2, 1) and (3, –2). Find the 

polynomial.

8. Express the function 3 22 3 3 10x x x  in factorial notation and find its differences.

9. Evaluate the values of 2 3
10 20 15, ,y y y  and 5

10 ,y  from the following set of values:

x 10 15 20 25 30 35

y 19.97 21.51 22.47 23.52 24.65 25.89

10. yx is a function of x for which fifth differences are constant and

1 7 2 6 3 5786, 686, 1088y y y y y y  find y4.

11. Given log 100 = 2, log 101 = 2.0043, log 103 = 2.0128, log 104 = 2.0170. Find log 102.

12. Find the missing terms in the following table:

x 2 2.1 2.2 2.3 2.4 2.5 2.6

y 0.135 – 0.111 0.100 – 0.082 0.074

[U.P.T.U. 2004]

13. Express x
3 – 2x

2 + x – 1 in to factorial notation. Hence, show that 4 ( ) 0f x .

14. Express 4 3 2( ) 3 4 6 2 1f x x x x x  as a factorial polynomials and find differences of all 

orders.

15. Evaluate

(i) 2 2( ) ( ); ( 1)x x h (ii)
2

3
x

E
(iii) sin x

E
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16. Assuming that the following values of y belong to a polynomial of degree 4, find the next three 

terms.

x 0 1 2 3 4 5 6 7

y 1 –1 1 –1 1 – – –

17. Compute f (6) and f (7), from a table of differences for the function:

    
3( ) 5 7 for 1,0,1,2,3,4,5f x x x x

18. Prove that with the usual notations, 

1 1 1

2 2 2( ) (1 ) 2E E

19. Show that

(i) 10 2 2 4 10[(1 )(1 2 )(1 3 )(1 4 ) 24 10! 2x x x x  if h = 2

(ii) 4[(1 )(1 2 )(1 3 )] 0x x x  if h = 1

20. Obtain the function whose first difference is 3 23 5 12x x x .

Answers

1. (i)
1

log 1
x

(ii) 1

2 2 2
tan

1

a

a x a x

  (iii) ( 1)c cx
a b b (iv) 2(cosh 1) sin( )x x h

  (v) ( 1)ah n ax
e e (vi)

2(5 16)

( 2)( 3)( 4)( 5)

x

x x x x
2. 755

4. y1 = 15

5. u4 = 0.99996

6.
3 2 3 4

1

13 11 5 1
0, 1

12 24 12 24
xy y x x x x

7. 3 21
( 3 16 6)

6
x x x

8.
(3) (2) (1) (2) 2 (1) 32 3 2 10, 6 , 12 6, 12.y x x x y x y x y

9. 2
y10 = –0.58, y20 = 1.05, 3

y15 = –0.01 and 5
y10 = 0.72.

10. 570.90

11. log (102) = 2.0086

12. 2.1 2.40.123, 0.0904y y

15. (i) 8 (ii) 6xh
2    (iii) 2(cos h – 1) sin x

16. 124, 222, 351

17. 239, 371

20. (4) (3) (2) (1)1 9
2 125

4 2
x x x x K
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8.13 INTERPOLATION

Interpolation is an interesting topic and has wide applications in various fields. It is the process of finding 

the value of a function for any value of arguments or nodes within an interval for which some values 

are given. Suppose the experimental or observed data is in the form a set of say (n + 1) ordered pairs 

(xi, yi); i = 0, 1, 2, …, n which is tabular form of an unknown function y = f (x). The process of finding 

the value of y for any 0[ , ]nx x x  is called an interpolation. The method for solving this problem which 

attempts to find a polynomial P(x) passing through the (n + 1) given arguments such that

( ); 0,1,2,3,..., ,i iy P x i n

where yi are the given values at xi is known as interpolation technique and the polynomial is called 

interpolation polynomial.

Extrapolation is the process of finding the value of a function outside an interval [x0, xn] for which 

some values are given.

8.14 NEWTON’S-GREGORY FORWARD INTERPOLATION FORMULA

Suppose the values of yi = f (xi) are given for equally spaced values of the arguments or the independent 

variable xi = x0 + i h for i = 0, 1, 2, …, n. Here h known as the size/differencing interval or spacing is 

constant. We have

x x0 x0 + h x0 + 2h … x0+ n h

y = f (x) f (x0) f (x0 + h) f (x0 + 2h) … f (x0 + n h)

Suppose we want to compute the functional value P(x) for x = x0 + uh, where –1 < u < 1.

We have,

0
0( ) ( ), where

x x
P x f x uh u

h

Using shift operator and binomial theorem, we have

0( ) ( )u
P x E f x

=
0(1 ) ( )u

f x

= 2 3
0

( 1) ( 1)( 2)
1 ( )

2! 3!

u u u u u
u f x

2 3
0 0 0 0

( 1) ( 1)( 2)
( ) ( ) ( ) ( ) ( )

2! 3!

u u u u u
P x f x u f x f x f x

which is called Newton’s-Gregory forward difference interpolation formula.

Note: Newton’s forward difference interpolation formula is used for interpolating the values of the 

function near the beginning of a set of tabulated values.

8.15  NEWTON’S-GREGORY BACKWARD INTERPOLATION FORMULA

Suppose the values of yi = f (xi) are given for equally spaced values of the arguments xi = x0 + i h for

i = 0, 1, 2, …, n. Here  h known as the size or spacing of interval is constant. We want to calculate the 

functional value ( ) for , 1 1,nP x x x uh u  we have
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( ) ( ); where n
n

x x
P x f x uh u

h

Using shift operator and binomial theorem, we have

1( ) ( ) (1 ) ( ) [ 1 ]u u
n nP x E f x f x E

2 3( 1) ( 1)( 2)
( ) 1 ( )

2! 3!
n

u u u u u
P x u f x

= 2 3( 1) ( 1)( 2)
( ) ( ) ( ) ( )

2! 3!
n n n n

u u u u u
f x u f x f x f x

which is known as Newton’s-Gregory backward interpolation formula.

Note: Newton’s backward interpolation formula is used for interpolating the values of the function 

near the end of a set of tabulated values.

8.16 ERRORS IN NEWTON’S INTERPOLATION POLYNOMIAL

Suppose we have (n + 1) values can be represented by a unique polynomial of degree n. Hence, the 

Newton forward and backward differences interpolation formulae are basically the same, and have the 

same error. Both formulae give the nth degree polynomial P(x) passing through (n + 1) given points

(xi, yi); i = 0, 1, 2, 3, …, n.

Hence, the error involved is the same as that described for the Larange’s interpolation. (Explain in 

next section).

The maximum absolute error is given by

( 1)

0 0

( )
max ( ) max ; ,

( 1)!

n
n

a i n

f
E x x x x

n

where 0[ , ] andnx x x

0 0 1( ) ( )( )...( )n
i nx x x x x x x x

.

Example 32 Fit a polynomial of degree three which takes the following values:

x 0 1 2 3

y = f (x) 1 2 1 10

Solution The Newton’s-Gregory forward interpolating polynomial takes the given set of points

(x0, y0), (x1, y1), (x2, y2) and (x3, y3) and is given by

2 3
0 0 0 0

( 1) ( 1)(u 2)
( ) ( ) ( ) ( ) ( )

2! 3!

u u u u
P x f x u f x f x f x (27)
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where 0 0
and 1 (given)

1

x x x
u x h

h

The difference table

x f (x) f (x)
2
f (x)

3
f (x)

0

1

2

3

1

2

1

10

1

–1

9

–2

10
12

Substituting the values of f (x0), f (x0),
2
f (x0),

3
f (x0) and u = x in Eq. (27), we obtain

( 1) ( 1)( 2)
( ) 1 1 2 12

2 6

x x x x x
P x x

2 3( ) 1 6 7 2P x x x x

or 3 2( ) 2 7 6 1P x x x x

Note: If we applying Newton’s backward interpolating polynomial, we obtain the same polynomial 

of degree three.

Therefore, Newton’s-Gregory backward interpolation formula.

2 3( 1) ( 1)( 2)
( ) ( ) ( ) ( ) ( )

2! 3!
n n n n

u u u u u
P x f x u f x f x f x

=
( 3)( 2) ( 3)( 2)( 1)

10 ( 3) 9 10 12
2 6

x x x x x
x

= 3 22 7 6 1x x x

Example 33 From the following table of half-yearly premium for policies maturing at different 

ages, estimate the premium for maturing at the age of 63:

Age 45 50 55 60 65

Premium (In rupees) 114.84 96.16 83.32 74.48 68.48

Solution Since, we want to finding the premium at the age of 63 year, which is lies between 60 and 

65 (from the given table), so here we applying Newton’s backward interpolation formula, for this

h = 5 and

63 65 2
0.4

5 5

nx x
u

h
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The difference table is

Age (x) Premium (in `) y
2
y

3
y

4
y

45

50

55

60

65

114.84

96.16

83.32

74.48

68.48

–18.68

–12.84

–8.84

–6

5.84

4

2.84

–1.84

–1.16
0.68

By Newton’s backward difference interpolation formula

2 3
65 65 65 65

4
65

( 1) ( 1)( 2)
(63)

2! 3!

( 1)( 2)( 3)

4!

u u u u u
P y u y y y

u u u u
y

( 0.4)(0.6) ( 0.4)(0.6)(1.6)
68.48 ( 0.4)( 6) 2.84 1.16

2 6

( 0.4)(0.6)(1.6)(2.6)
0.68

24
= 70.5852

Example 34 From the above example, estimate the premium for policies maturing at age of 46. 

The difference table is:

Age (x) Premium (y) y 2y 3
y

4
y

45

50

55

60

65

114.84

96.16

83.32

74.48

68.48

–18.68

–12.84

–8.84

–6

5.84

4

2.84

–1.84

–1.16
0.68

Solution Since, the premium for policies maturing at the age of 46, which is lies between age 45 and 

50. Thus, we applying the Newton’s forward difference interpolation formula is

2 3 4
45 45 45 45 45

( 1) ( 1)( 2) ( 1)( 2)( 3)
(46)

2! 3! 4!

u u u u u u u u u
P y u y y y y

=
(0.2) (0.2 1)

114.84 (0.2)( 18.68) 5.84
2

(0.2)(0.2 1)(0.2 2) (0.2)(0.2 1)(0.2 2)(0.2 3)
( 1.84) (0.68)

6 24

= 110.5256

Hence, the premium for policies maturing at the age of 46 is `110.5256.
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Example 35 Commute y(2.2) using forward differencing and linear, quadratic and cubic 

interpolation from the following table:

x 1 2 3 4 5 6 7 8

y 2.105 2.808 3.614 4.604 5.857 7.451 9.467 11.985

Solution We form the forward difference table:

x y y
2
y

3
y

1

2

3

4

2.105

2.808

3.614

4.604

0.703

0.806

0.990

0.103

0.184
0.081

If two nearest points are used (n = 1), i.e. linear interpolation, then x1 = 2, y1 = 2.808

Let x0 = 2, y0 =2.808 (which is near by 2.2)

0
0 0( )

x x
y x y y

h

(2.2) 2.808 0.2 0.806 2.9692y

Again, if 3 nearest points are used (n = 2), i.e., the quadratic interpolation, then we have

0 0 1 1 2 21, 2.105, 2, 2.808, 3, 3.614x y x y x y

Then
2.2 1

1.2
1

u

2
0 0 0

( 1)
(2.2)

21

(1.2)(0.2)
2.105 1.2 0.703 0.103

2

u u
y y u y y

= 2.961

Again, if 4 nearest points are used (n = 3) i.e., cubic interpolation, then we take x0 = 1, x1 = 2, 

x2 = 3, and x4 = 4.

Then
2.2 1

1.2
1

u

1.2 .2 1.2 0.2 0.8
(2.2) 2.105 1.2 0.703 0.103 0.081

2 6
y

(2.2) 2.958y

Example 36 The following are the numbers of deaths in four successive ten year age groups. 

Find the number of deaths at 45–50 and 50–55.
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Age group 25–35 35–45 45–55 55–65

Deaths 13229 18139 24225 31496

Solution Difference table of cumulative frequencies:

Age upto (x) No. of deaths f (x) f (x)
2
f (x)

3
f (x)

35

45

55

65

13229

31368

55593

87089

18139

24225

31496

6086

7271
1185

Here h = 10, x0 = 35, 
0 50 35

1.5
10

x x
u

h

By Newton’s forward difference formula.

2 3
35 35 35 35

( 1) ( 1)( 2)
(50)

2! 3!

u u u u u
P y u y y y

=
1.5 .5 1.5 .5 0.5

13229 1.5 18139 6086 1185
2 6

= 42645.6875 42646

Deaths at the age between 45–50 is y50 – y45 = 42646 – 31368 = 11278

Deaths at the age between 50–55 is y55 – y50 = 55593 – 42646 = 12947.

8.17 CENTRAL DIFFERENCE INTERPOLATION FORMULAE

The Newton’s forward and backward difference formulae are not appropriate for approximating f (x)

when x lies near the centre of the table because neither will permit the highest order difference to have 

x0 close to x. In the present section, we will discuss the central difference formulae which are most 

suited for interpolation near the middle of a tabulated set of values.

Central difference table

x y y
2
y

3
y

4
y

5
y

6
y

x–3

x–2

x–1

x0

x1

x2

x3

y–3

y–2

y–1

y0

y1

y2

y3

y–3

y–2

y–1

y0

y1

y2

2
y–3

2
y–2

2
y–1

2
y0

2
y1

3
y–3

3
y–2

3
y–1

3
y0

4
y–3

4
y–2

4
y–1

5
y–3

5
y–2

6
y–3
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8.17.1 Gauss’s Central Difference Formulae

Carl Friedrich Gauss was born on 30 April 1777 in Germany. He was a 

great mathematician, who worked in various fields including number 

theory, statistics, analysis, differential geometry and geophysics, 

electrostatics, astronomy and geodesy, but he excelled most in the field of 

mathematics. Due to his impressive contributions and portrayal of pure 

brilliance in the subject, he is known as the ‘Prince of mathematics’ and 

the ‘Greatest Mathematician since Antiquity’. His teachers straightaway 

spotted the potential when he added up the 1 to 100 integers by noticing 

that the result was 50 pairs of numbers the answer of each sum was 101. 

He attended the University of Göttingen from 1795 to 1798. During this 

time he worked and solved many theorems. In 1796, he solved the major 

construction problems by proving that Fermat Prime Polygon can be constructed by a compass and ruler. 

Furthermore, Gauss constructed a heptadecagon. He went deeper into modular arithmetic to further 

simplify the number theory. In 1809, he published a book on the theory of the motion of the planets 

called the ‘Theoria Motus Corporum Coelestium’. He used the method of least squares which is also used 

today to calculate the values from existing annotations. He was also the first to develop Non-Euclidean 

geometry. Gauss was made a member of the Royal Swedish Academy of Sciences in 1821. He collaborated 

with Wilhelm Weber (a Physics professor) to develop new ideas in magnetism and circuit laws in 

electricity. His work the ‘Dioptrische Untersuchungen’ was published in 1840. A perfectionist and hard 

worker by nature, Gauss accomplished a lot in the field of mathematics by making important discoveries. 

He died on 23 February 1855.

(i) Gauss’s Forward Interpolation Formulae

Let yx be a function which takes the values .. y–3, y–2, y–1, y0, y1, y2, y3, … for equally spaced values and 

with unit intervals of u, i.e.  –3, –2, –1, 0, 1, 2, 3, …, where u = 0x x

h
.

The Newton’s forward difference interpolation formula is

yu = 
1 2 3

2 3
0 0 0 0c c cy u y u y u y (28)

But  
2 2 2 2 3

0 1 1 1 1(1 )y Ey y y y

3 3 3 3 4
0 1 1 1 1(1 )y Ey y y y

and  
4 4 5

0 1 1, etc.y y y

In general 1
0 1 1

r r r
y y y

yu = 
2 3 3 4

0 0 1 1 1 1

( 1) ( 1)( 2)
( ) ( )

2! 3!

u u u u u
y u y y y y y

4 5
1 1

( 1)( 2)( 3)
( )

4!

u u u u
y y

2 3
0 0 1 1

4
1

( 1) ( 1) ( 1)( 2)

2! 2! 3!

( 1)( 2) ( 1)( 2)( 3)

3! 4!

u u u u u u u
y u y y y

u u u u u u u
y
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or yu = 
1 2

2 1 3 1 4
0 0 1 3 1 4 1

u u
C Cy u y u y C y C y

1 5 1 6
5 1 6 1

u u
C y C y (29)

Again, expanding the 4th and higher order differences of y at u = –1 in Eq. (29) using

1
1 2 2

r r r
y y y , we have

yu =
2 3

0 0 1 1

( 1) ( 1) ( 1)

2! 3!

u u u u u
y u y y y

4 5
2 2

( 1) ( 1)( 2) ( 2) ( 1) ( 1) ( 2)

4! 5!

u u u u u u u u u
y y

or yu =
2

2 3
0 0 1 1

( 1) ( 1)

2! 3!

u u u u
y u y y y

2 2 2
4 5

2 2

( 1) ( 2) ( 1)( 4)

4! 5!

u u u u u u
y y (30)

Equation (30) is known as Gauss’s  forward formula for equal intervals.

Remark-1 This formula be central differences notation as:

yu =
2

3 3
0 1/2 0 1/2

( 1) ( 1)

2! 3!

u u u u
y u y y y

2
2

0

( 1)( 2)

4!

u u u
y

Remark-2 This formula is useful when 0 < u < 1, measured forwardly from the origin.

Remark-3 It is follow the different order of differences, which is shown as

Fig. 8.2

(ii) Gauss’s Backward Difference Interpolation Formulae

Due to Gauss’s may be derived in a similar manner, we have

y0 = y–1 + 2
y–1

2
y0 =

2
y–1 + 3

 y–1,
3
y0 = 3

 y–1 + 4
 y–1, etc.

In general r
y0 =

r
y–1 + r + 1

y–1, and

r
y–1 =

r
y–2 + r + 1

y–2

Substituting in Eq. (28) and grouping the terms, we get

yu =
2 3

0 1 1 2

( 1) ( 1) ( 1)

2! 3!

u u u u u
y u y y y
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4
2

5
3

( 2) ( 1) ( 1)

4!

( 2)( 1) ( 1)( 2)

5!

u u u u
y

u u u u u
y (31)

Equation (31) is known as Gauss’s backward interpolation formula.

Remark-1 It is follow the different order of differences, which is shown as

Fig. 8.3

Remark-2 This formula is useful when –1 < u < 0.

Remark-3 It is also written in central differences notation

yu = y0 + 
1

1 2 1 3 2 2
1/2 2 0 3 1/2 4 0

u u u
Cu y C y C y C y

(iii) Stirling’s Formula

Taking the average of the Gauss’s forward and backward interpolation formulae, i.e. Eqs (30) and (31), 

we obtain

yu =
2

20 1
0 1

2 2!

y y u
y u y

3 32 2
1 2( 1 )

3! 2

y yu u 2 2 2
4

2

( 1 )

4!

u u
y (32)

Equation (32) is known as Stirling’s formula for equal intervals.

Remark This formula is more accurate, when 
1 1

4 4
u .

(iv) Bessel’s Formula

The Gauss’s backward interpolation formula is 

yu =
2

2 3
0 1 1 2

( 1) ( 1)

2! 3!

u u u u
y u y y y

2
4

2

( 2)( 1)

4!

u u u
y (33)

Shift the origin to 1 by replacing u by u – 1 and adding 1 to each arguments 0, –1, –2, –3, … in the 

above formula Eq. (33), we get

yu =
2 3

1 0 0 1

( 1) ( 1)( 2)
( 1)

2! 3!

u u u u u
y u y y y

2
4

1

( 2)( 1)

4!

u u u
y

(34)
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Taking the average of Eq. (34) and Gauss’s forward difference formula in Eq. (30), we get

yu =

2 2
0 1 1 0

0

1 ( 1)

2 2 2! 2

y y y yu u
u y

          
4 42

3 2 1
1

1
( 1)

( 1)( 2)2

3! 4! 2

u u u
y yu u u

y
(35)

Equation (35) is known Bessel’s interpolation formula for equal intervals.

Remark This formula is more accurate if 
1 3

4 4
u

(v) Laplace-Everett’s Interpolation Formula

The Laplace-Everett’s formula can be written as 

yu = 1 2 2 4
1 3 0 5 1

u uu y C y C y 1 2 2 4
0 3 1 5 2

v vv y C y C y

where v = 1 – u

This formula is convenient especially when using tables in which only differences of even order are 

tabulated. It is more accurate, when 0 < u < 1.

8.18 GUIDELINES FOR THE CHOICE OF INTERPOLATION

The choice of an interpolation formula, depends on the position of the interpolated value is given 

tabulated data:

Following rules will be found useful:

Rule 1: If interpolation is desired near the beginning of a table, then we use Newton’s forward 

interpolation formula.

Rule 2: If interpolation is desired near the end of a table, then we use Newton’s backward interpolation 

formula.

Rule 3: If interpolation near the middle of a table, then we can use either Stirling’s formula gives the most 

accurate result for
1 1

4 4
u  or Bessel’s formula is most efficient near 

1 1 3
;

2 4 4
u u

or use Everett’s formula.

Rule 4: If interpolation is required for u lying between 0 and 1, then we apply the Gauss’s forward 

formula.

Rule 5: If interpolation is required for u lying –1 and 0, then we apply the Gauss’s backward formula

Example 37 Use Gauss’s forward interpolation formula to find the value of y when x = 3.75 for 

the following data:
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x 2.5 3.0 3.5 4.0 4.5 5.0

y = f (x) 24.145 22.043 20.225 18.644 17.262 16.047

Solution Since, x = 3.75 lying between 3.5 and 4.0 so we take 3.5 as the origin, then

u = 0 3.75 3.50
0.5

0.5

x x

h
    (Here h = 0.5)

u = 0.5 lying between 0 and 1 so we apply the Gauss’s forward formula.

The difference Table is:

u x y y
2
y

3
y

4
y

5
y

–2

–1

0

1

2

3

2.5

3.0

3.5 

4.0

4.5

5.0

24.145

22.043

20.225   

18.644

17.262

16.047

–2.102

–1.818

–1.581

–1.382

–1.215

0.284

0.237

0.199

0.167

–0.047

–0.038

–0.032

0.009

0.006
– 0.003

The Gauss’s forward interpolation formula is 

P(x) = yu = y0 + u y0 + 2 3
1 1

( 1) ( 1) ( 1)

2! 3!

u u u u u
y y

4 5
2 2

( 1) ( 1)( 2) ( 2) ( 1) ( 1)( 2)

4! 5!

u u u u u u u u u
y y

P(3.75) = y0.5 = 20.225 + (0.5)  (–1.581) + 
(0.5) (0.5 1)

0.237
2

(0.5 1)(0.5)(0.5 1)
0.038

6

(0.5 1)(0.5)(0.5 1)(0.5 2)
0.009

24

(0.5 2) (0.5 1) (0.5) (0.5 1) (0.5 2)
( 0.003)

120

= 20.225 – 0.7905 – 0.029625 + 0.00238 + 0.0023750 + 0.0002106

= 19.41 (approximate)

Hence, the estimated value of y when 

x = 3.75 is 19.41

Further, we can find the value of the function  y = f (x) at x = 3.75, we use Gauss’s backward formula.
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P(x) = yu = y0 + u y–1 + 2 3
1 2

( 1) ( 1)( 1)

2! 3!

u u u u u
y y

4 5
2 3

( 2)( 1) ( 1) ( 2)( 1) ( 1)( 2)

4! 5!

u u u u u u u u u
y y

P(3.75) = 20.225 + (0.5)(–1.818) +
(0.5)(0.5 1)

0.237
2

(0.5)(0.5 1)(0.5 1) (0.5 2)(0.5 1)(0.5)(0.5 1)
( 0.047) (0.009) 0

6 24

= 20.225 – 0.909 + 0.088875 + 0.00294 – 0.00035

= 19.40747  19.41 (approximate)

Hence, y0.5 = 19.41 by Gauss’s backward interpolations formula.

Example 38 Using Gauss’s backward interpolation formula find the population for the year 1936 

for the following data:

Year (x) 1901 1911 1921 1931 1941 1951

Population (y) (in  thousand) 12 15 20 27 39 52

Solution Since 1936 lies between 1931 and 1941 we take 1931 as the origin and h = 10, then 

0 1936 1931 5
0.5

10 10

x x
u

h

u x y y
2
y

3
y

4
y

5
y

–3

–2

–1

0

1

2

1901

1911

1921

1931

1941

1951

12

15

20

27

39

52

3

5

7

12

13

2

2

5

1

0

3

–4

3

7
10

The Gauss’s backward formula is

2 3
0 1 1 2

( 1) ( 1)( 1)

2! 3!
u

u u u u u
y y u y y y

4 5
2 3

( 2) ( 1) ( 1) ( 2) ( 1) ( 1)( 2)

4! 5!

u u u u u u u u u
y y

y0.5 = 27 + 0.5 × 7 + 
1.5 .5 1.5 .5 0.5 2.5 1.5 0.5 0.5

5 3 7
2 6 24
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= 27 + 3.5 + 1.875 – 0.1875 + 0.2734 – 0.1172 
2.5 1.5 0.5 0.5 1.5

10
120

= 2.3427 thousands.

Hence, the estimated population for the year 1936 is 32.3427 thousands.

Example 39 Using Gauss’s  forward interpolation formula to find y at x = 30 from the following table:

x 21 25 29 33 37

y 18.4708 17.8144 17.1070 16.3432 15.5154

Solution Since x = 30 lies between 29 and 33.

We take 29 as the origin and h = 4

u = 0 30 39
0.25 (0 1)

4

x x
u

h

Thus, here we apply the Gauss’s forward formula.

The difference table is

u x y y
2
y

3
y

4
y

–2

–1

0

1

2

21

25

29

33

37

18.4708

17.8144

17.1070

16.3432

15.5154

–0.6564

–0.7074

0.7638

–0.8272

–0.0510

0.0564

–0.0640

–0.0074

0.0076
0.0022

The Gauss’s forward formula is

P(x) = yu = y0 + u y0 + 2 3 4
1 1 2

( 1) ( 1) ( 1) ( 1) ( 1)( 2)

2! 3! 4!

u u u u u u u u u
y y y

P(30) = y0.25 = 17.1070 + (0.25) (–0.7638) + 
(0.25)( 0.75)

( 0.0564)
2

(1.25)(0.25)( 0.75) (1.25)(0.25)( 0.75)( 1.75)
( 0.0076) ( 0.0022)

6 24

= 17.1070 – 0.19095 + 0.00529 + 0.0003 – 0.00004

= 16.9216 (approximate)

Example 40 Using Gauss’s backward formula to obtain y28; given y20 = 49225, y25 = 48316

y30 = 47236, y35 = 45926 and y40 = 44306

Solution Since x = 28 lying between 25 and 30 so, we take 30 as the origin and interval difference h = 5.

u =
28 30

0.4
5
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The difference table is

u x y y
2
y

3
y

4
y

–2

–1

0

1

2

20

25

30

35

40

49225

48316

47236

45926

44306

–909

1080

–1310

–1620

–171

230

–310

59

–80
21

Now, the Gauss’s backward formula is

yu = y0 + u y–1 + 2 3
1 2

( 1) ( 1) ( 1)

2! 3!

u u u u u
y y

      4
2

( 2) ( 1) ( 1)

4!

u u u u u
y (36)

Putting the values in Eq. (36), we get

y28 =
( 0.4 1)( .4)

47236 ( 0.4) ( 1080) 230
2

( 0.4 1)( 0.4)(0.4 1) ( 0.4 2)( 0.4 1)( 0.4)( 0.4 1 1)
59 ( 21)

6 24

= 47686

Example 41 Using Stirling’s interpolation formula to final y at x = 32 from the given table:

x 20 30 40 50

y 512 439 346 243

Solution Since x = 32 lying between 30 and 40. So we take 30 as the origin and h = 10.

0 32 30
0.2

10

x x
u

h

Here u = 0.2 which lies between 
1 1

.
4 4
u

Hence, we apply the Stirling’s formula

The difference table is

u x y y
2
y

3
y

–1

0

1

2

20

30

40

50

512

439

346

243

73

93

103

20

–10

10
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The Stirling’s formula is

P(x) = yu = 
2

2
0 0 1 1

2 2!

u u
y y y y

3 32 2
2 1( 1 )

3! 2

y yu u

P(35) = y0.2 = 439 + 0.2 
93 73 0.04

( 20) 0
2 2

             = 439 – 16.60 – 0.40

      = 422

Example 42 Using Bessel’s interpolation formula to find y25; given y20 = 2854, y24 = 3162, 

y28 = 3544 and y32 = 3992.

Solution Since x = 25 lying between 24 and 28, so that we take 24 as the origin and h = 4. 

0 25 24 1
0.25

4 4

x x
u

h

Here
1

4
u , which lies in 

1 3
.

4 4
u

Hence, we apply Bessel’s formula.

The difference table is

u x y y
2
y

3
y

–1

0

1

2

20

24

28

32

2854

3160

3544

3992

308

382
74

66
8

The Bessel’s formula is

yu =

2 2
1 0

0 1 0

1 1 ( 1)
( )

2 2 2! 2

y yu u
y y u y 3

1

1
( 1)

2

3!

u u u

y

=
1 1 1

(3160 3544) 382
2 4 2

1 1 1 1
1

1 1 74 66 4 2 2 4
1 (8)

4 4 2 3!

= 3353 – 95.5 – 6.5625 – 0.0625

= 3250.8750

Hence the value of y25 = 3250.8750

Example 43 Use Laplace–Everett’s interpolation formula to find y25 using the data and table of 

Example 42.
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Solution Here u = 0.25 lies in 0 < u < 1 and v = 1 – 0.25 = 0.75

Everett’s formula is

yu =
2 2 2 2 2 2

2 4
1 0 1

( 1 ) ( 1 ) ( 2 )

3! 5!

u u u u u
uy y y

2 2 2 2 2 2
2 4

0 1 1

( 1 ) ( 1 ) ( 2 )

3! 5!

v v v v v
vy y y

y0.25 =
20.25[(0.25) 1]

0.25 3544 6.6 0
6

20.75[(0.75) 1]
0.75 3162 74 0

6

= 886 – 2.578125 + 2371.5 – 4.046875

= 3250.8750 (approximate).

Example 44 If the third differences are constant, prove that

2 2
1 1 1

2

1 1
( ) ( )

2 16
x x x x

x
y y y y y

Solution Bessel’s formula up to 3rd difference is 

yx =

2 2
1 0

0 1 0

1 1 ( 1)
( )

2 2 2! 2

y yx x
y y x y 3

1

1
( 1)

2

3!

x x x

y
(37)

Putting
1

2
x  in Eq. (37), we get

2 2
1/2 0 1 1 0

1 1
( ) ( )

2 16
y y y y y

Changing the origin to x, we have

2 2
1/2 1 1

1 1
( ) ( )

2 16
x x x x xy y y y y Hence, proved.

Example 45 Using a suitable formula to compute y(12.2) form the following table

(y(x) = 1 + log10sin x):

x° 10 11 12 13 14

10
5
y(x) 23,367 28,060 31,788 35,209 38,368
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Solution Since x = 12.2 lies between 12 and 13. So that we take 12 as the origin and h = 1. 

0 12.2 12
0.2

1

x x
u

h

Thus, u = 0.2, which lies between 
1 1

and
4 4

.

Hence, we apply the Stirling’s  formula will be quite suitable.

Stirling’s formula is

yu = y0 + 
3 32 2

20 1 1 2
1

( 1)

2 2! 3! 2

y y y yu u u
u y

2
4

2

( 1)

4!

u u
y (38)

The difference table is

u x° 10
5
y y

2
y

3
y

4
y

–2

–1

0

1

2

10

11

12

13

14

23,967

28,060

31,788

35,209

38,368

0.04093

0.03728

0.03421

0.03159

–0.00365

0.00307

0.00062

0.00058

0.00045
0.00013

y0.2 =
20.03728 0.03421 (0.2)

0.31788 0.2 ( 0.00307)
2 2

2(0.2) [(0.2) 1] 0.00058 0.00045

6 2

2 2(0.2) [(0.2) 1]
[ 0.00013]

24

= 0.31788 + 0.00715 – 0.00006 – 0.000002 + 0.0000002

= 0.32497 (approximate).

EXERCISE 8.3

Using Newton’s interpolation formulae, evaluate the following:

1. The population of a city (in thousands) were as under. Estimate the population for the year 1965.

Year 1961 1971 1981 1991 2001

Population (in thousand) 46 66 81 93 101

2. Given sin 45° = 0.7071, sin 50° = 0.7660, sin 55° = 0.8197 and sin 60° = 0.8660, find sin 52°.

3. From the given data, find the number of students whose weight is between 60 and 70.

Weight in kg 0 – 40 40 – 60 60 – 80 80 – 100 100 – 120

No. of students 250 120 100 70 50
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4. Find the polynomial of least degree passing through the points (0, –1), (1, 1), (2, 1) and (3, –2)

5. In an examination the number of students who obtained marks between certain limits were as 

follows:

Marks 0 – 19 20 – 39 40 – 59 60 – 79 80 – 99

No. of students 41 62 65 50 17

  Estimate the number of students who obtained fewer than 70 marks.

6. If the following table, values of y are consecutive terms of a series of which 23.6 is the

6th term. Find the Ist and 10th terms of the series.

x 3 4 5 6 7 8 9

y 4.8 8.4 14.6 23.6 36.2 52.8 73.9

(M.D.U. 2004)

7. Using Gauss’s forward interpolation formula to obtain y(32) given that y(25) = 0.2707,

y(35) = 0.3386, y(30) = 0.3027 and y(40) = 0.3794.

8. If f (x) is a polynomial of degree 4 and given that f (4) = 270, f (5) = 648, f (5) = 682,
3
f (–4) = 132. Find f (5.8) using Gauss’s backward interpolation formula.

9. Use Stirling’s formula to find y28; given 

y20 = 49225, y25 = 48316, y30 = 47236, y35 = 45926 and y40 = 44306.

10. Use Stirling’s formula to find y25, given 

y20 = 24, y24 = 32, y28 = 35 and y32 = 40

11. Use Bessel’s interpolation formula to obtain y(9); given that

x 4 6 8 10 12 14

y 3.5460 5.0753 6.4632 7.7217 8.8633 9.8986

12. Using Laplace-Everett’s interpolation formula to find y25 for the following data:

y20 = 2854, y24 = 362, y28 = 3544 and y32 = 3992.

13. Use Gauss’s interpolation formula to obtain y41 with the help of following data:

y30 = 3678.2, y35 = 2995.1, y40 = 2400.1, y45 = 1876.2 and y50 = 1416.3

14. From the following table, find the value of f (0.5437) by Gauss’s Stirling’s, Bessel’s and 

Everett’s interpolation formula.

x 0.51 0.52 0.53 0.54 0.55 0.56 0.57

f (x) 0.529244 0.537895 0.546464 0.554939 0.663323 0.571616 0.579816

15. Using Stirling’s formula to obtain f (1.22) from the following data:

x 1.0 1.1 1.2 1.3 1.4

f (x) 0.841 0.891 0.932 0.963 0.985

16. Evaluate f (0.5437) for the probability integral function 
2

0

2
( ) ,

x
tf x e dt  using the same 

data in Q. 14.

17. Given the following table, construct a difference table and from it estimate y when (i) x = 0.15 

and (ii) x = 0.35



8.52 Engineering Mathematics for Semesters III and IV

x 0 0.1 0.2 0.3 0.4

y 1 1.095 1.129 1.251 1.310

18. Using Stirling’s formula to show that tan 16° = 0.2867; given that

q 0° 5° 10° 15° 20° 25° 30°

tan 0.0000 0.0875 0.1763 0.2679 0.3640 0.4663 0.5774

19. From the following table, find the value of log10337.5 by Gauss’s, Stirling’s, Bessel’s  and 

Everett’s interpolation formulae.

x 310 320 330 340 350 360

log10x 2.4913617 2.5051500 2.5185139 2.5314789 2.5440680 2.5563025

Answers

1. 54.8528 thousands. 2. 0.7880032

3. Number of students whose weight is between 60 and 70 

= y(70) – y(60)

= 424 – 370

= 54

4. 3 21
( 3 6 6)

6
x x x 5. 201

6. 3.1, 100 7. y0.4 = 0.3165

8. f (5.8) = 1162.944 9. y28 = 47692

10. y25 = 32.9453 11. y(9) = 7.1078

12. y25 = 3250.875 13. y41 = 2290.1

14. 0.558052 15. 0.9389968

16. 0.5580 17. f (0.15) = 1149, f (0.35) = –1.282

   19. 2.5282738 by each of the formula

8.19 INTERPOLATION FOR UNEQUAL INTERVALS

In the preceding section, we have discussed the interpolation formulae with equally spaced values of 

the arguments or nodes.

In the present section, we shall discuss the interpolation formulae with unequal spaced values of the 

arguments.

8.20 LAGRANGE’S INTERPOLATING POLYNOMIALS

To determine a polynomial of degree one through the two distinct points (x0, y0) and (x1, y1) is the same 

as approximating a function f for which f (x0) = y0 and f (x1) = y1 by means of a first degree polynomial 
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interpolating with, the values of f at the given points. Using this polynomial for approximation within 

the interval given by the end points is called polynomial interpolation.

Now, we define the functions

L0(x) = 01
1

0 1 1 0

and ( )
x xx x

L x
x x x x

The linear Lagrange’s interpolating polynomial through the points (x0, y0) and (x1, y1) is given by

P1(x) =
1

0 0 1 1

0

( ) ( ) ( ) ( ) ( ) ( )i i

i

L x f x L x f x L x f x

or P1(x) = 01
0 1

0 1 1 0

( )( )
( ) ( )

( ) ( )

x xx x
f x f x

x x x x
(39)

But Li(xj) =
1; if

0; if

i j

i j
(40)

i.e., L0(x0) = 1, L0(x1) = 0, L1 (x0) = 0 and L1(x1) = 1.

P1(x0) = 1 f (x0) + 0f (x1) = f (x0) = y0

and P1(x1) = 0 f (x0) + 1 f (x1) = f (x1) = y1

Hence, P(x) is the unique polynomial of degree at most one.

In a similar way, the Lagrange polynomial of degree two passes through three points (x0, y0),

(x1, y1) and (x2, y2) is given as 

P2(x) =
2

0

( ) ( )i i

i

L x f x

or P2(x) = 0 2 0 11 2
0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

( )( ) ( )( )( )( )
( ) ( ) ( )

( )( ) ( )( ) ( )( )

x x x x x x x xx x x x
f x f x f x

x x x x x x x x x x x x

(41)

To generalize the concept of linear interpolation, Let we construct a polynomial interpolation of 

degree at most n that passes through the (n + 1) points (x0, y0), (x1, y1) … (xn, yn). A sketch of the graph 

Pn(x) when n is even is shown in Fig. 8.4.

Fig. 8.4
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Thus, Pn(x) =
0

( ) ( )
n

i i

i

L x f x (42)

where, for each i = 0, 1, 2, 3 …, n

Li(x) =
0 1 2 1 1

0 1 2 1 1

( )( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )

i i n

i i i i i i i i n

x x x x x x x x x x x x

x x x x x x x x x x x x

=
0

( )

( )

n
k

i kk
i k

x x

x x
(43)

where Li(x) are polynomials in x of degree n.

Since P(xj) = f (xj) for j = 0, 1, 2, …, n and also satisfy Eq. (40).

Equation (42) is called Lagrange’s interpolation polynomial, the coefficients Li(x) defined in Eq. (43) 

are called Lagrange interpolation coefficients.

Joseph Louis Lagrange was born in 25 January 1736 in Turin, Italy. Lagrange 

was raised as a Catholic, but he soon turned Agnostic when he joined college. 

He discovered his passion for mathematics at the age of 17 when he 

fortuitously came across a paper on the subject written by Edmund Halley. He 

was largely self-taught and pushed himself to reach the top of the ladder 

during the early 18th century. One of the most proficient mathematicians at 

the time, Lagrange was responsible for developing many theories related to 

mechanics and also studied the number system. He studied a wide variety of 

topics and was a published astronomer who studied the solar system in great 

depths. His consistent works in the field of radicals, permutations, and fluid mechanics made him a 

pioneer of his time. He was appreciated by Napoleon for his efforts and was awarded the Legion of 

Honor. Lagrange was also given the honor of becoming a member of the Academy of Sciences. With his 

wide range of admirers and an unbeatable passion for work, Joseph Louis Lagrange went on to become 

one of the first and definitely, one of the most influential faces in the history of mathematics and science. 

After a brief stint as a mathematics professor in an artillery school, Lagrange decided to concentrate 

work on a specific division of mathematics that interested him the most; calculus. He developed theories 

in 1754 and also engaged himself in the subject of classical mechanics. Along with the help of his pupils 

in 1758, he established a guild called the Turin Academy of Sciences where he wrote elaborate papers 

and dissertations called the ‘Miscellanea Taurinensia’ and even discussed calculus at great lengths. His 

passion to understand the dynamics of the solar system got him to discover various solutions that came 

to be known as the ‘Lagrangian points’. He defied traditional science and contributed heavily to even 

‘Newtonian Mechanics’ which were later renamed as ‘Lagrangian Mechanics’. Life started to get back 

on track in 1794 when Lagrange was appointed professor at the ‘Ecole Polytechnique’ where he was 

admired and venerated by his pupils. He was given the honor of the ‘Mathematical chair’ at the new 

institution called ‘Ecole Normale’. After much deliberation and research, Lagrange’s theory on the 

decimal subdivision was finally accepted by the French commission in 1799. Joseph Louis Lagrange died 

on 10 April 1813, in Paris just a week after he was awarded the ‘Grande Croix’.

8.20.1 Another Form of Lagrange’s Polynomial

Suppose, we have (n + 1) values of the function y = f (x) be f (x0), f (x1), f (x2) …, f (xn) corresponding to 

the arguments x0, x1, x2, …, xn.
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Let Pn(x) is a polynomial in x of degree at most n.

Then Pn(x) = A0(x – x1) x – x2) .. . (x – xn) + A1(x – x0)(x – x1) … (x – xn)

+ A2(x – x0)(x – x1)(x – x3) … (x – xn) + …

An(x – x0)(x – x1) … (x – xn–1) (44)

where A0, A1, A2, …, An are constants. We determine the (n + 1) constants. So as to make

Pn(x0) = f (x0), Pn(x1) = f (x1), …, Pn(xn) = f (xn)

To determine A0, put x = x0 and Pn(x0) = f (x0) in (43), we get 

f (x0) = A0 (x0 – x1)(x0 – x2) … (x0 – xn)

or A0 =
0

0 1 0 2 0

( )

( )( ) ( )n

f x

x x x x x x

Similarly, A1 =
1

1 0 1 2 1

( )

( )( ) ( )n

f x

x x x x x x

         

An =
0 1 1

( )

( )( ) ( )

n

n n n n

f x

x x x x x x

Substituting the values of A0, A1, A2, …, An in Eq. (44), we obtain

Pn(x) = 1 2 0 2
0 1

0 1 0 2 0 1 0 1 2 1

( )( ) ( ) ( )( ) ( )
( ) ( )

( )( ) ( ) ( )( ) ( )

n n

n n

x x x x x x x x x x x x
f x f x

x x x x x x x x x x x x

0 1 1

0 1 1

( ) ( ) ( )
( )

( )( ) ( )

n

n
n n n n

x x x x x x
f x

x x x x x x

Which is known as Lagrange interpolation formula.

Note:

(i) The Lagrange’s interpolating formula can also used whether the values of arguments 

[xi : i = 0(1)n] are equally spaced or not.

(ii) This formula can also be used to split the given function into partial fractions.

(iii) The main drawback is that if another interpolation value is inserted, then the interpolation 

coefficient are required to be calculated.

8.21 ERROR IN LAGRANGE’S INTERPOLATION FORMULA

Suppose x0, x1, x2, …, xn are distinct arguments in the interval [a, b]. Then for each x [a, b], a number 

(x) between x0, x1, …, xn and hence in [a, b] exists with

f (x) – Pn(x) =
( 1)

0 1

( )
( ) ( ) ( ) ( )

( 1)!

n

n n

f
R x x x x x x x

n
(45)

where Pn(x) is the interpolating polynomial given in Eq. (42)
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Then, the estimate error

EL =
[ , ]
Max ( )n

a b
R x (46)

If we assume that

( 1)
1( ) ;n

nf M a b (47)

Then

EL

1

[ , ]
0

( )
( 1)!

n
n

i
a b

i

M
Max x x

n

Example 46 If x0 = 2, x1 = 2.75 and x2 = 4, to find the second degree Lagrange’s interpolation 

polynomial for f (x) = 1/x.

Solution Let the 2nd degree Lagrange polynomial.

P(x) =
2

0

( ) ( )i i

i

L x f x

= L0(x) f (x0) + L1(x)f (x1) + L2(x) f (x2) (48)

Now, to determine the Lagrange’s coefficients L0(x), L1(x) and L2(x)

L0(x) =
( 2.75)( 4) 2

( 2.75) ( 4)
(2 2.75)(2 4) 3

x x
x x

L1(x) =
( 2)( 4) 16

( 2) ( 4)
(2.75 2)(2.75 4) 15

x x
x x

and L2(x) =
( 2)( 2.75) 2

( 2) ( 2.75)
(4 2)(4 2.75) 5

x x
x x

Also, f (x0) = 1 2

1 4 1
(2) , ( ) (2.75) and ( ) (4)

2 11 4
f f x f f x f

Thus Eq. (48) becomes

P(x) =
1 64 1

( 2.75) ( 4) ( 2)( 4) ( 2)( 2.75)
3 165 10
x x x x x x

=
2 35 49

22 88 44

x x

Example 47 Using Lagrange’s interpolation formula, to determine f (10) from the following table:

x 5 6 9 11

f (x) 12 13 14 16

Solution Here x0 = 5, x1 = 6, x2 = 9 and x3 = 11

Also f (x0) = f (5) = 12, f (x1) = f (6) = 13, f (x2) = f (9) = 14 and f (x3) = f (11) = 16
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Suppose the 3rd degree Lagrange’s interpolation polynomial is

P(x) =
3

0

( ) ( )i i

i

L x f x

= L0(x) f (x0) + L1(x)f (x1) + L2(x) f (x2) + L3(x)f (x3) (49)

Where the Lagrange’s coefficients

L0(x) = 1 2 3

0 1 0 2 0 3

( )( )( ) ( 6)( 9)( 11) 1
( 6)( 9)( 11)

( )( )( ) (5 6)(5 9)(5 11) 24

x x x x x x x x x
x x x

x x x x x x

L1(x) = 0 2 3

1 0 1 2 1 3

( )( )( ) ( 5)( 9)( 11) 1
( 5)( 9)( 11)

( )( )( ) (6 5)(6 9)(6 11) 15

x x x x x x x x x
x x x

x x x x x x

L2(x) = 0 1 3

2 0 2 1 2 3

( )( )( ) ( 5)( 6)( 11) 1
( 5)( 6)( 11)

( )( )( ) (9 5)(9 6)(9 11) 24

x x x x x x x x x
x x x

x x x x x x

L3(x) = 0 1 2

3 0 3 1 3 2

( )( )( ) ( 5)( 6)( 9) 1
( 5)( 6)( 9)

( )( )( ) (11 5)(11 6)(11 9) 60

x x x x x x x x x
x x x

x x x x x x

Substituting the values of L0, L1, L2, L3, f (x0), f (x1), f (x2) and f (x3) in Eq. (49), we get

P(x) =
( 6) ( 9) ( 11) ( 5) ( 9) ( 11)

12 13
24 15

x x x x x x

( 5) ( 6) ( 11) ( 5) ( 6) ( 9)
14 16

24 60

x x x x x x

=
1 13

( 6)( 9)( 11) ( 5)( 9)( 11)
2 15

x x x x x x

7 4
( 5)( 6)( 11) ( 5)( 6)( 9)

12 15
x x x x x x (50)

Putting x = 10 in Eq. (50), we obtain

P(10) =
1 13

(10 6)(10 9)(10 11) (10 5)(10 9)(10 11)
2 15

7 4
(10 5)(10 6)(10 11) (10 5)(10 6)(10 9)

12 15

P(10) = 14.66666667

Example 48 Using Lagrange’s interpolation formula, prove that y1 = y3 – 0.3(y5 – y–3) + 0.2(y–3 – y–5)

approximately.

Solution If we shift the origin to 5, then the values of y are y0, y2, y8 and y10,

So, we are obtain y6.

Using Lagrange interpolation formula, we have
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y6 = 0 2

(6 2)(6 8)(6 10) (6 0)(6 8)(6 10)

(0 2)(0 8)(0 10) (2 0)(2 8)(2 10)
y y

8 10

(6 0)(6 2)(6 10) (6 0)(6 2)(6 8)

(8 0)(8 2)(8 10) (10 0)(10 2)(10 8)
y y

or y6 = –0.2 y0 + 0.5 y2 + y8 – 0.3 y10

Now shifting back the origin, we obtain

1 3 5 3 3 30.3 ( ) 0.2 ( )y y y y y y Hence proved.

Example 49 Using Lagrange’s interpolation formula to express the function 

2 6 1

( 1)( 1)( 4)( 6)

x x

x x x x
 as a sum of partial fractions.

Solution

Let Pn(x) = x
2 + 6x –1

x0 = 1, x1 = –1, x2 = 4 and x3 = 6

Then Pn(x0) = Pn(1) = 6

Pn(x1) = Pn(–1) = –6

Pn(x2) = Pn(4) = 39

Pn(x3) = Pn(6) = 71

2 6 1 6 6

( 1)( 1)( 4)( 6) ( 1) 2 3 5 ( 1) 2 5 7

x x

x x x x x x

39 71

( 4) 3 5 2 ( 6) 5 7 2x x

=
1 3 13 71

5( 1) 35( 1) 10( 4) 70( 6)x x x x

Which is the required partial fraction.

Example 50 The function f (x) = sin x is defined on the interval [1, 3], find the Lagrange‘s linear 

interpolation polynomial in this interval and find the bound on the truncation error. Also find the 

approximate values of f (1.5) and f (2.5).

Solution

Let x0 = 1  and x1 = 3

f (x0) = f (1) = sin 1 = 0.8415

f (x1) = f (3) = sin 3 = 0.1411

and f x) = –sin x.
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Suppose the Lagrange’s linear polynomial on [1, 3] is

P(x) =

1

0 0 1 1

0

( ) ( ) ( ) ( ) ( ) ( )i i

i

L x f x L x f x L x f x (51)

Now L0(x) =
3 1

( 3)
1 3 2

x
x

L1(x) =
1 1

( 1)
3 1 2

x
x

Putting the values of L0(x) and L1(x) in Eq. (51), we get

P(x) =
1 1

( 3) 0.8415 ( 1) 0.1411
2 2
x x

= –0.3502x + 1.1917

[1, 3] [1, 3]

1
( ) max ( 1)( 3) max sin 0.5

2
LE x x x x

Now, f (1.5) = P(1.5) = 0.6664 and f (2.5) = P(2.5) = 0.3152.

8.22 DIVIDED DIFFERENCES

Divided difference methods introduced in this section are used to successively generate the polynomials 

themselves.

Suppose f (x0), f (x1), f (x2) …, f (xn) be the (n + 1) values corresponding to the arguments x0, x1, x2,

…, xn, where the interval space/difference are not equal. Then the first divided differences of f (x) for 

the two arguments x0, x1; x1, x2, etc. are defined as

|
1

0( )
x

f x  = 0 1
0 1

0 1

( ) ( )
[ , ]

f x f x
x x

x x

Similarly, |
2

1( )
x

f x  = 1 2
1 2

1 2

( ) ( )
[ , ]

f x f x
x x

x x
 and so on

The second divided difference of f (x) for three arguments x0, x1, x2 is defined as

1 2

2

0
,

( )|
x x

f x  = 0 1 1 2
0 1 2

0 2

( , ) ( , )
[ , , ]

f x x f x x
x x x

x x
 = 0 1 1 2

0 2

[ , ] [ , ]x x x x

x x

Similarly,
2 3

2

1
,

( )|
x x

f x  = 1 2 2 3 1 2 2 3
1 2 3

1 3 1 3

( , ) ( , ) [ , ] [ , ]
[ , , ]

f x x f x x x x x x
x x x

x x x x

Now the 3rd divided difference for x0, x1, x2, x3 is defined as

1 2 3

3

0( )|
x x x

f x  = 0 1 2 1 2 3
0 1 2 3

0 3

[ , , ] [ , , ]
[ , , , ]

( )

x x x x x x
x x x x

x x

In general, the nth divided difference for x0, x1, …, xn is defined as

|
1 2

0

, , ...,

( )

n

n

x x x

f x  = [x0, x1, x2 , …, xn]
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=
0 1 1 1 2

0

( , , , ) ( , , , )n n

n

f x x x f x x x

x x

Divided Difference Table:

x f (x) ( )| f x 2 ( )| f x 3 ( )| f x

x0

x1

x2

x3

x4

x5

f (x0)

f (x1)

f (x2)

f (x3)

f (x4)

f (x5)

0 1
0 1

0 1

( ) ( )
[ , ]

f x f x
x x

x x

1 2
1 2

1 2

( ) ( )
[ , ]

f x f x
x x

x x

2 3
2 3

2 3

( ) ( )
[ , ]

f x f x
x x

x x

3 4
3 4

3 4

( ) ( )
[ , ]

f x f x
x x

x x

4 5
4 5

4 4

( ) ( )
[ , ]

f x f x
x x

x x

0 1 1 2
0 1 2

0 2

( , ) ( , )
[ , , ]

f x x f x x
x x x

x x

1 2 2 3
1 2 3

1 3

( , ) ( , )
[ , , ]

f x x f x x
x x x

x x

2 3 3 4
2 3 4

2 4

( , ) ( , )
[ , , ]

f x x f x x
x x x

x x

3 4 4 5
3 4 5

3 5

( , ) ( , )
[ , , ]

f x x f x x
x x x

x x

0 1 2 1 2 3
0 1 2 3

0 3

( , , ) ( , , )
[ , , , ]

f x x x f x x x
x x x x

x x

1 2 3 2 3 4
1 2 3 4

1 4

( , , ) ( , , )
[ , , , ]

( )

f x x x f x x x
x x x x

x x

2 3 4 3 4 5
2 3 4 5

2 5

( , , ) ( , , )
[ , , , ]

f x x x f x x x
x x x x

x x

8.22.1 Properties of Divided Differences

Property 1: The nth divided differences of a polynomial of the nth degree are constant.

Property 2: Divided difference is a symmetrical function of all the arguments involved, i.e.,

[x0, x1] = [x1, x0], etc.

Property 3: The divided difference of the algebraic sum of any number of functions is the algebraic 

sum of their separate divided differences. i.e.,

| | |[ ( ) ( )] ( ) ( )f x g x f x g x

Property 4: The divided difference of the product of a constant and a function is the product of the 

constant and the divided difference of the functions, 

i.e.   | [ ( )] ( )|f x f x

Property 5: The n
th divided difference can be expressed as the quotient of two determinants, each of 

order (n + 1).

8.22.2 Newton’s Divided Differences Formula

Suppose f (x0), f (x1), …, f (xn) be the values of the function f (x) for the values of the arguments

x0, x1, …, xn respectively which are not equally spaced.
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We know that the first divided difference of f (x) is given by

0
0 0

0

( ) ( )
| ( ) [ , ] ( , )

f x f x

x x
f x x x f x x

or f (x) = f (x0) + (x – x0) f (x, x0) (52)

Also, the 2nd divided difference is given by

| 2 0 0 1
0 1 0 1

1

, )
, ) [ , ,

( , ) (
( ) ( , ]

x
x x x x

x x

f x x f x
f x f x x

0 0 1 1 0 1) ) , )( , ( , ) ( ( ,f xf x x x x x x f x x

0
0 1 1 0 1

0

( ) ( )
( , ) ( ) ( , , )

f x f x
f x x x x f x x x

x x

or f (x) = f (x0) + (x – x0)f (x0, x1) + (x – x0) (x – x1) f (x0, x1, x2) (53)

Similarly, f (x) = f (x0) + (x – x0) f (x0, x1) + (x – x0)(x – x1) f (x0, x1, x2)

 + (x – x0) (x – x1) (x – x2) f (x, x0, x2, x2) (54)

Continuing in the same manner, we have

f (x) = f (x0) + (x – x0) f (x0, x1) + (x – x0)(x – x1) f (x0, x1, x2)

+ (x – x0)(x – x1) (x – x2) f (x0, x1, x2, x3) + …

+(x – x0)(x – x1) … (x – xn–1) f (x0, x1, x2 … xn)

+ (x – x0)(x – x1) … (x – xn) f (x, x0, x1) …, xn + 1) (55)

Since, the function f (x) is a polynomial of degree n, then f (x, x0, x1, …, xn+1) = 0

Hence, Eq. (55) becomes,

f (x) = f (x0) + (x – x0) f (x0, x1) + (x – x0) (x – x1) f (x0, x1, x2)

+ … + (x – x0)(x – x1) … (x – xn–1) f (x0, x1, x2, …, xn)

or f (x) = f (x0) + (x – x0)
2

0 0 1 0( ) ( ) ( ) ( )| |f x x x x x f x

3
0 1 2 0( ) ( ) ( ) ( )|x x x x x x f x

0 1 2 1 0( ) ( ) ( ) ( ) ( )| nnx x x x x x x x f x

Which is called Newton’s divided general interpolation formula.

Note: Newton’s divided differences interpolation formula reduces to Newton’s Gregory forward 

difference formula if the values of the arguments are equally spaced.
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Example 51 Find the 3rd difference with arguments 2, 4, 9, 10 of the function f (x) = x3 – 2x.

[U.P.T.U. 2005]

Solution Given f (x) = x3 – 2x.

f (2) = 4, f (4) = 56, f (9) = 711 and f (10) = 980

The divided difference table is

x f (x) ( )| f x 2 ( )| f x
3 ( )| f x

2

4

9

10

4

56

711

980

4 56
26

2 4

56 711
131

4 9

711 980
269

9 10

26 131
15

2 9

131 269
23

4 10

15 23
1

2 10

Hence, the 3rd divided difference

3 ( ) 1| f x

Example 52 Prove that 3 1 1
|
bcd a abcd

Solution We have 
1

( )f x
x

 and the arguments a, b, c and d.

The divided difference table is

x f (x) ( )| f x 2 ( )| f x
3 ( )| f x

a

b

c

d

1

a

1

b

1

c

1

d

1 1

1a b

a b ab

1 1

1b c

b c bc

1 1

1c d

c d cd

2

1 1

1
( 1)ab bc

a c abc

2

1 1

1
( 1)bc cd

b d bcd

2

3

1 1
( 1)

1
( 1)

abc bcd

a d abcd
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From the table, we obtain the 3rd divided difference

3 31 1
( 1)|

bcd a abcd

=
1

abcd
Hence, proved.

Example 53 Using Newton’s divided difference formula to calculate f (8) and f (15) from the 

following data:

x 4 5 7 10 11 13

f (x) 48 100 294 900 1210 2028

[U.P.T.U. 2004, 2006, G.E.U. 2010]

Solution To prepare the divide difference tables

x f (x) ( )| f x 2 ( )| f x
3 ( )| f x

4 ( )| f x

4

5

7

10

11

13

48

100

294

900

1210

2028

48 100
52

4 5

100 294
97

5 7

294 900
202

7 10

900 1210
310

10 11

1210 2028
409

11 13

52 97
15

4 7

97 202
27

5 10

202 310
27

7 11

310 409
33

10 13

15 21
1

4 7

21 27
1

5 11

27 33
1

7 13

1 1
0

4 11

1 1
0

5 13

The Newton’s divided formula is

f (x) =
2

0 0 0 0 1 0( ) ( ) ( ) ( )( ) ( )| |f x x x f x x x x x f x

+ (x – x0)(x – x1) (x – x2)
3 4

0 0 1 2 3 0( ) ( )( )( ) ( ) ( )| |f x x x x x x x x x f x

= 48 + (x – 4)  52 + (x – 4) (x – 5)  15 + (x – 4) (x – 5) (x – 7)  1 + 0

f (8) = 48 + (8 – 4)  52 + (8 – 4) (8 – 5)  15 + (8 – 4) (8 – 5) (8 – 7)  1

= 48 + 208 + 180 + 12

= 448
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and f (15) = 48 + (15 – 4)  52 + (15 – 4)(15 – 5)  15 + (15 – 4)(15 – 5) (15 – 7)  1

= 48 + 572 + 1650 + 880

= 3152

Example 54 Using the Newton’s divided difference formula to find a polynomial from the 

following data:

x –4 –1 0 2 5

f (x) 1245 33 5 9 1355

[U.P.T.U. 2004, M.D.U. 2007, R.T.U. 2008]

Solution To prepare the divided difference table as

x f (x) ( )| f x 2 ( )| f x 3 ( )| f x
4 ( )| f x

–4

–1

0

2

5

1245

33

5

9

1355

1245 33
404

4 1

33 5
28

1 0

5 9
2

0 2

9 1355
442

2 5

404 28
94

4 0

28 2
10

1 2

2 442
88

0 5

94 10
14

4 2

10 88
13

1 5

14 13
3

4 5

Using the Newton’s divided formula

f (x) = f (x0) + (x – x0)
2

0 0 1 0( ) ( )( ) ( )| || |f x x x x x f x

3 4
0 1 2 0 0 1 3 0( ) ( ) ( ) ( ) ( )( )( ) ( )| || |x x x x x x f x x x x x x x f x

= 1245 + (x + 4)  –404 + (x + 4) (x + 1)  94 + (x + 4)(x + 1) (x – 0)  –14

  +(x + 4)(x + 1)(x – 0)(x – 2)  3

f (x) = 3x
4 – 5x

3 + 6x
2 – 14x + 5

Which is the required polynomial.

Example 55 Find the polynomial of the lowest possible degree which takes the values 3, 12, 15, –21.

When the arguments (x) are 3, 2, 1 –1 respectively. [U.P.T.U. 2008]

Solution Suppose x0 = –1, x1 = 1, x2 = 2, x3 = 3.

Also f (x0) = –21, f (x1) = 15, f (x2) = 12, f (x3) = 3
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Now, to prepare the divided difference table as

x f (x) ( )|| f x 2 ( )|| f x
3 ( )|| f x

–1

1

2

3

–21

15

12

3

21 15
18

1 1

15 12
3

1 2

12 3
9

2 3

18 3
7

1 2

3 9
3

1 3

7 3
1

1 3

Now, using Newton’s divided difference formula, we have

f (x) = f (x0) + (x – x0)
2

0 0 1 0( ) ( )( ) ( )| |x x x x x f xf

3
0 1 2 0( )( )( ) ( )|x x x x x x f x

= –21 + (x + 1)  18 + (x + 1)(x – 1)  –7 + (x + 1)(x – 1)(x – 2)  1

= –21 + 18x + 18 – 7x
2 + 7 + x3 – 2x

2 – x + 2

f (x) = x
3 – 9x

2 + 17x + 6 

8.23 INVERSE INTERPOLATION

Inverse interpolation is the process to calculate the value of the argument corresponding to a given 

value of the function (which is not in the table) is known inverse interpolation. For the case of inverse 

interpolation, we can apply the several methods like Lagrange’s formula, Method of successive 

approximation, method of reversion of series etc., but in this section we shall discuss only Lagrange’s 

formula in Section (8.20) in which the variables x and y are interchanging so, we obtain 

0

( ) ( ) ( ),
n

n i i

i

P y L y f y  where for each i = 0, 1, 2, …, n

where
0 1 2 1 1

0 1 2 1 1

( ) ( )( ) ( ) ( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )

i i n

i
i i i i i i i i n

y y y y y y y y y y y y
L y

y y y y y y y y y y y y

Example 56 Using Lagrange’s formula to obtain the value of x corresponding to y = 12, from the 

following table:

x 1.2 2.1 2.8 4.1 4.9 6.2

y 4.2 6.8 9.8 13.4 15.5 19.6

Solution Here  x0 = 1.2, x1 = 2.1, x2 = 2.8, x3 = 4.1

x4 = 4.9, x5 = 6.2 and y0 = 4.2, y1 = 6.8

y2 = 9.8, y3 = 13.4, y4 = 15.5, y5 = 19.6
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Suppose the Lagrange’s polynomial is

P(y) =
5

0

( ) ( )i i

i

L y f y [Here xi = f (yi)]

At y = 12, we have

P(12) =
5

0 0 1 1

0

(12) ( ) (12) ( ) (12) ( )i i

i

L f y L f y L f y

32 2 3 4 4 5 5(12) ( ) (12) ( ) (12) ( ) (12) ( )L f y L f y L f y L f y (56)

Where the Lagrange’s coefficients are

L0(12) = 1 2 3 4 5

1 2 3 4 5

(12 )(12 )(12 )(12 )(12 )

(4.2 )(4.2 )(4.2 )(4.2 )(4.2 )

y y y y y

y y y y y

=
(12 6.8)(12 9.8)(12 13.4)(12 15.5)(12 19.6)

(4.2 6.8)(4.2 9.8)(4.2 13.4)(4.2 15.5)(4.2 19.6)

L0(12) = 0.01833

Similarly L1(12) = –0.11143, L2(12) = 0.44714, L3(12) = 0.83390, L4(12) = –0.19673,

L5(12) = 0.00887

Hence Eq. (56) becomes

P(12) = 0.01833  1.2 – 0.11143  2.1 + 0.44714  2.8 + 0.83390  4.1

– 0.19673  4.9 + 0.00887  6.2

P(12) = 3.55

8.24 HERMITE INTERPOLATION POLYNOMIAL

If f is a continuous function on [a, b] and x0, x1, …, xn [a, b] are distinct, then the unique polynomial 

of least degree agreeing with f and f  at x0, x1, …, xn is the Hermite polynomial of degree at most

(2n + 1) given by

2 1

0 0

ˆ( ) ( ) ( ) ( ) ( )
n n

n i i i i

i i

H x H x f x H x f x

where 2( ) 1 2( ) ( ) ( )i i i i iH x x x L x L x

and 2ˆ ( ) ( ) ( )i i iH x x x L x

Also, Li(x) denoting the ith Lagrange’s coefficient of degree n.

Example 57 Using Hermite formula to obtain the values of f (x) for x = 0.5 and x = – 0.5 from the 

following table:

x –1 0 1

f (x) 1 1 3

f (x) –5 1 7
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Solution We first compute the Lagrange’s polynomials and their derivatives, we have

L0(x) = 21 2

0 1 0 1

( )( ) ( 0)( 1) ( 1) 1
( )

( )( ) ( 1 0)( 1 1) 2 2

x x x x x x x x
x x

x x x x

L1(x) = 2 20 2

1 0 1 2

( )( ) ( 1)( 1)
( 1) 1

( )( ) (0 1)(0 1)

x x x x x x
x x

x x x x

and L2(x) = 20 1

2 0 2 1

( )( ) ( 1)( 0) 1
( )

( )( ) (1 1)(1 0) 2

x x x x x x
x x

x x x x

Now, L 0(x) = 1 2

1 1
(2 1), ( ) 2 and ( ) (2 1)

2 2
x L x x L x x

To compute the polynomials Hi(x) and ˆ ( ); 0, 1, 2iH x i

Hi(x) = [1 – 2(x – xi) Li (xi)] [Li(x)]2

H0(x) = [1 – 2(x – x0) L 0(x0)] [L0(x)]2 = 

2

23 1
1 2 ( 1) ( )

2 2
x x x

H0(x) = 2 21
(3 4) ( )

4
x x x

H1(x) = [1 – 2(x – x1) L 1(x1)] [L1(x)]2 = [1 – 2(x – 0) 0] (1 – x2)2

H1(x) = (1 – x2)2

and H2(x) = [1 – 2(x – x2) L 2(x2)] [L2(x)]2 = [1 – 2(x – 1) (3/2)]

2
2

2

x x

H2(x) = 2 21
(4 3 )( )

4
x x x

ˆ ( )iH x  = (x – xi) [Li(x)]2

0
ˆ ( )H x  = 2 2 2

0 0

1
( ) [ ( )] ( 1) ( )

4
x x L x x x x

1
ˆ ( )H x  = (x – x1) [L1(x)]2 = (x – 0) (1 – x2)2 = x(1 – x2)2

2
ˆ ( )H x  = (x – x2)[L2(x)]2 = 2 2 2 21 1

( 1) ( ) ( 1)( )
4 4

x x x x x x

Here n = 2, then the required Hermite polynomial 

H5(x) =

2 2

0 0

ˆ( ) ( ) ( ) ( )i i i i

i i

H x f x H x f x

= [H0(x) f (x0) + H1(x) f (x1) + H2(x) f (x2)]

0 0 1 1 2 2
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )H x f x H x f x H x f x
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H5(x) = 2 2 2 2 2 21 1
(3 4)( ) 1 (1 ) 1 (4 3 )( ) 3

4 4
x x x x x x x

2 2 2 2 2 21 1
( 1)( ) ( 5) (1 ) 1 ( 1)( ) 7

4 4
x x x x x x x x

H5(0.5) = 2 2 2 2 2 21 3
(3 0 5 4)(.5 .5) (1 0.5 ) (4 3 0 5) (0.5 0.5)

4 4

2 2 2 2 2 25 7
(0 5 1)(0.5 0.5) 0.5(1 0.5 ) (0.5 1)(0.5 0.5)

4 4

H5(0.5) = 1.37500

Similarly, H5(–0.5) = 0.37500

EXERCISE 8.4

1. Using Lagrange’s formula; to compute f (5) and f (6) given that f (1) = 2, f (2) = 4, f (3) = 8,

f (4) = 16, f (7) = 128.

2. The function y = f (x) is given at the points (7, 3), (8, 1), (9, 1) and (10, 9). Find the value of

y for x = 9.5, applying Lagrange’s formula. [U.P.T.U. 2004]

3. Apply Lagrange’s formula; evaluate f (4) for the following table:

x 0 1 2 5

y 2 5 7 8

4. Find the value of f (x) at x = 2.5, from the following data:

x 1 2 3 4

f (x) 1 8 27 64

[U.P.T.U. 2001]

5. Find the cubic Lagrange’s polynomial for the given data:

x 0 1 2 5

f (x) 2 3 12 147

[U.P.T.U. 2004]

6. Find a polynomial of degree 2 for the following points (1, 1), (3, 27) and (4, 64).

[U.P.T.U. 2003]

7. Using Lagrange’s interpolation formula to compute a polynomial from the following data:

x 0 1 3 4

f (x) –12 0 12 24

[M.D.U. 2003]
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8. Prove that 

(i)
2

|
y

x x y (ii)
2 3

,
|
y z

x x y z (iii)
2 2

,
1|

y z
x

9. Using Newton’s divided difference formula; to compute f (6) for the following table:

x 1 2 7 8

f (x) 1 5 5 4

[U.P.T.U. 2002]

10. Using Newton’s divided formula, find log10301, from the following table:

x 300 304 305 307

y = log10x 2.4771 2.4829 2.4843 2.4871

[U.P.T.U. 2001]

11. Using Newton’s divided formula, find f (4) from the following table:

x 1.5 3 6

f (x) –0.25 2 20

12. Find f (x) as a polynomial in x, from the table given below:

x 5 6 9 11

f (x) 12 13 14 16

  Also, find f (10).

13. Using Hermite formula to find a polynomial from the following data:

x 0 1 2

f (x) 0 1 0

f (x) 0 0 0

14. Using Hermite polynomial; to find f (1.5) from the following data:

x 1.3 1.6 1.9

f (x) 0.6200860 0.4554022 0.2818186

f (x) –0.5220232 –0.5698959 –0.5811571

Answers

1. f (5) = 33, f (6) = 67 2. f (9.5) = 3.625  3. f (4) = 8.4

4. f (2.5) = 15.625 5. x
3 + x3 – x + 2

6. 8x
2 – 19x – 12 7. x

3 – 6x
2 + 17x – 12

9. f (6) = 6.2 10. 2.4786

11. 6 12. f (10) = 14.6666

13. H(x) = (x2 – 2x)2 14. H5(1.5) = – 0.5118277
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SUMMARY

Following topics have been discussed in this chapter:

1. Significant Digits

The concept of significant digits has been introduced primarily to indicate the accuracy of a numerical 

value.

Significant digit of a number K is any given digit of K, except possibly for zeros to the first non-

zero digit that serve only to fix the position of the decimal point.

Following rules are applied when zeros are encountered in the numbers.

(i) Zeros placed after other digits but behind a decimal point are significant; 3.80 has three 

significant digits.

(ii) Zeros placed before other digits are not significant; 0.038 has two significant digits.

(iii) Zeros placed between other digits are always significant; 3007 has four significant digits.

(iv) Zeros at the end of a number are significant if they are behind a decimal point as in (i).

2. Rounding-Off and Chopping

All the non-exact numbers can be approximate with a finite number of digits of precision in the 

following manners.

If n digits are used to represent a non-terminating number then the simplest process is to kept the 

first n digits and chop off all remaining digits.

We know that 
22

3.1415926
7

2 1.4142134, 2.71828182e

The digits on the right are approximated to the exact value of the numbers on the left.

To round off a number to n significant digits, discard all digits to the right of nth digit and if this 

discarded number is

(i) less than 5 in (n + 1)th place, leave the nth digit unchanged.

(ii) greater than 5 in (n + 1)th place, add 1 to the nth digit.

(iii) exactly 5 in (n + 1)th place, add 1 to the nth digit if it is an odd otherwise leave nth digit 

unchanged.

3. Error

An error is the difference between the true value or actual value and the approximate value from the 

numerical computation or from the experimental observations.

Let the true value be X and the approximate value be Xa, then

Error (E) = X – Xa

Type of errors: Following are the type of errors:

(a) Round-off errors: An error is caused by chopping (i.e., discarding all decimals from some 

decimal on) or rounding. This error is called rounding off error.

(b) Inherent Errors: This error is already present in the statement of a problem before its 

solution is called inherent errors. Such errors are present either due to the given data being 

approximated or due to limitations of mathematical measurements.



Finite Differences  and Interpolation 8.71

(c) Absolute, Relative and Percentage Errors: The absolute error of measurement, number 

or calculation is the numerical difference between the true value of the quantity and its 

approximate value as given or calculate.

  The relative error is the absolute error divided by the true value of the quantity. The 

percentage error is 100 times of the relative error.

  Let X be the true value and Xa be the approximate value, then

  Absolute error ( )a aE X X

  Relative error ( )
a

r

X X
E

X

  Percentage error ( ) 100P aE E

(d) Truncation Error: This error is caused by the usage of a closed form such as the first few 

terms of an infinite series to express a quantity defined by limiting process.

  For example, consider, use of a finite number of terms in the infinite series expansion of cos 

x or sin x by using Taylor’s or Maclaurin’s series expansion, such type of errors are called 

the truncation errors.

4. Error in a Series Approximation

The Taylor’s series expansion for f (x) at x = a  with a remainder after n terms is given.

2 1
1( ) ( )

( ) [( ( )] ( ) ( ) ( ) ( ) ( ) ( )
2! ( 1)!

n
n

n

x a x a
f x f a x a f a x a f a f a f a R x

n

where
( )

( ) ( );
!

n
n

n

x a
R x f a x

n

The last term Rn(x), which is called the remainder term. If the series is convergent then

Rn(x)  0 as n . Thus, if f (x) is approximated by the first n terms of this series, then the maximum 

error committed in this approximation is given by the remainder term.

5. Finite Differences

The calculus of finite differences is an interesting topic and has wide applications in various fields. 

Using this concept, we deal with the changes that take place in the value of the function, the dependent 

variable due to finite changes in the independent variable.

Suppose a table of values (xi, yi), i = 1, 2, 3, …, n, of any function y = f (x), the values of x being 

equally spaced i.e., xi = x0 + ih, i = 0, 1, 2, …, n. We are required to obtain the values of f (x) for some 

intermediate values of x or to obtain the derivative of f (x) for some x in the range x0 x xn. The 

following three types of differences are found useful.

(i) Forward Differences: If a function y = f (x) is tabulated for the equally spaced arguments x0,

x0 + h, x0 + 2h, …, x0 + nh giving the functional values y0, y1, y2, …, yn.

The constant difference between two consecutive arguments (x) is called the interval of differencing 

and is denoted by h.

The forward difference operator  is defined as

0 1 0 1 2 1 2 3 2, ,y y y y y y y y y  and so on 1n n ny y y
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0 1 2, , , , ny y y y  are called first forward differences.

The differences of the first forward differences are called 2nd forward differences and are denoted 

by 2 2 2 2
0 1 2, , , , ,ny y y y  defined as

2
0 2 1 02y y y y

Similarly, we can define the 3rd forward differences, 4th forward differences, etc.

Thus 3 2 2
0 0 1 0( ) ( )y y y y = 3 2 1 03 3y y y y

and 4
0 4 3 2 1 04 6 4y y y y y y

In general,
1 1

1
n n n

n n ny y y

(ii) Backward Differences: If a function y = f (x) is tabulated for the equally spaced arguments x0,

x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, …, yn. The backward difference 

operator  is defined as

1 1 0 2 2 1 3 3 2 1, , , , n n ny y y y y y y y y y y y

are called the first backward difference operator.

In a similar way, we can define the backward differences of higher orders.

Thus, 2
2 2 2 1( ) ( )y y y y = 2 1 02y y y

3
3 3 2 1 03 3 , etc.y y y y y

(iii) Central Differences: Some times it is a very useful to employ another system of differences 

known as central differences. The central difference operator (delta) is defined by the relations

21 0 2 1 3/2, ,yy y y y y y

1 1

2

n n
n

y y y

Similarly, the central differences of higher orders are defined as
2

3/2 1/2 1y y y

2
5/2 3/2 2;y y y

2 2 3
2 1 3/2y y y  and so on.

(iv) Shift operator: The shift operator E is defined as

( ) ( ) or x x hEf x f x h Ey y

2 2
2( ) ( 2 ) or x x hE f x f x h E y y

( ) ( ) orn n
x x nhE f x f x nh E y y
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The inverse operator E–1 is defined as

1 1( ) ( ) or x x hE f x f x h E y y

2 2
2( ) ( 2 ) or x x hE f x f x h E y y

    

( ) ( ) orn n
x x nhE f x f x nh E y y

(v) Averaging operator: The averaging operator (mu) is defined as

1
( )

2 2 2

h h
f x f x f x

6. Relation between Operators

(i) Relation between ,  and E is

   1

(ii) Relation between  and E

   

1 1

2 2E E

(iii) Relation between  and E

   

1 1

2 2
1

2
E E

(iv) Relation between , , andE  is

   
1/2

E E E

7. Factorial Notation

The product of factors of which the first factor is x and the successive factors decrease by a constant 

difference is called a factorial function or polynomial and is denoted by x(n), n being a positive integer 

and is read as x raised to the power n factorial”. In general, the interval of differencing is h.

The factorial polynomial x(n) is defined as

    
( ) ( )( 2 )...[ ( 1) ]n

x x x h x h x n h

In particular
(0) (1) (2)1, , ( ),x x x x x x h

    
(3) ( )( 2 ), etc.x x x h x h

Differences of x
(n)

The first difference of x(n) is

( ) ( ) ( )( )n n n
x x h x

Or ( ) ( 1)n n
x nhx

Similarly, 2 ( ) ( )[ ]n n
x x
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= ( 1)[ ]n
nhx

= 2 ( 2)( 1) n
n n h x

Continuing, this process r times, we have

( ) ( )( 1)( 2)...( 1) ,r n r h r
x n n n n r h x

where r is a positive integer and n > r.

In particular, if h = 1, then

( ) 1 ( )! and 0n n n n
x n x

8. Reciprocal Factorial

If h is the interval of differencing, then the reciprocal factorial function x(–n) is defined as

( ) 1

( )( 2 )...( )

n
x

x h x h x nh
 = 

( )

1

( ) n
x nh

In particulars, ( 1) ( 2)

(2)

1 1
,

( ) ( 2 )
x x

x h x h

or ( 2) 1

( )( 2 )
x

x h x h

Differences of a reciprocal factorial
( ) ( ) ( )( )n n n

x x h x

=
1 1

( )( 2 )...[ ( )]( 2 )( 3 )...[ ( 1) ] x h x h x nhx h x h x n h

=
( ) [ ( 1) ]

( )( 2 )..( )[ ( 1) ]

x h x n h

x h x h x nh x n h

= ( 1)n
nhx

Similarly, 2 ( ) 2 ( 2)( )( 1)n n
x n n h x

= 2 2 ( 2)( 1) ( 1) n
n n h x

and in general

( ) ( )( 1) ( 1)( 2)...( 1) ;r n r r n r
x n n n n r h x n r

9. Interpolation

Interpolation is an interesting topic and has wide application in various fields. It is the process of 

finding the value of a function for any value of arguments or nodes within an interval for which some 

values are given. Suppose the experimental or observed data is in the form a set of say (n + 1) ordered 

pairs (xi, yi); i = 0, 1, 2, …, n which is tabular form of an unknown function y = f (x). The process 

of finding the value of y for any 0[ , ]nx x x  is called an interpolation. The method for solving this 

problem which attempts to find a polynomial P(x) passing through the (n + 1) given arguments such 

that

( ); 0,1,2,3,...,i iy P x i n
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where yi are the given values at xi is known as interpolation technique and the polynomial is called 

interpolation polynomial.

Extrapolation is the process of finding the value of a function outside an interval [x0, xn] for which 

some values are given.

10. Newton’s-Gregory Forward Interpolation Formula

Newton’s-Gregory forward difference interpolation formula given as following:

2 3
0 0 0 0

( 1) ( 1)( 2)
( ) ( ) ( ) ( ) ( )

2! 3!

u u u u u
P x f x u f x f x f x

11. Newton’s-Gregory Backward Interpolation Formula

Newton’s-Gregory backward interpolation formula given as following:

P(x) = 2 3( 1) ( 1)( 2)
( ) ( ) ( ) ( )

2! 3!
n n n n

u u u u u
f x u f x f x f x

12. Central Difference Interpolation Formulae

(i) Gauss’s Central Difference Formulae

yu =

2
2 3

0 0 1 1

( 1) ( 1)

2! 3!

u u u u
y u y y y

2 2 2
4 5

2 2

( 1) ( 2) ( 1)( 4)

4! 5!

u u u u u u u
y y

(ii) Gauss’s Backward Difference Interpolation Formula:

yu =
2 3

0 1 1 2

( 1) ( 1) ( 1)

2! 3!

u u u u u
y u y y y

4 5
2 3

( 2) ( 1) ( 1) ( 2)( 1) ( 1)( 2)

4! 5!

u u u u u u u u u
y y

(iii) Stirling’s Formula:

Taking the average of the Gauss’s forward and backward interpolation formulae, we obtain

yu = 
2

20 1
0 1

2 2!

y y u
y u y

2 2 3 3
1 2( 1 )

3! 2

u u y y 2 2 2
4

2

( 1 )

4!

u u
y

Which is known as Stirling’s formula for equal intervals.

(iv) Bessel’s Formula:

Bessel’s interpolation formula for equal intervals is given below:

yu =
2 2

0 1 1 0
0

1 ( 1)

2 2 2! 2

y y y yu u
u y

2 4 4
3 2 1

1

1
( 1)

( 1)( 2)2

3! 4! 2

u u u
u u u y y

y
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(v) Laplace-Everett’s Interpolation Formula:

The Laplace-Everett’s formula can be written as 

yu = 1 2 2 4
1 3 0 5 1

u u
u y C y C y

1 2 2 4
0 3 1 5 2

v v
v y C y C y

where v = 1 – u

13. Lagrange’s Interpolating Polynomials

The Lagrange’s interpolating formula is given below

Pn(x) =
0

( ) ( )

n

i i

i

L x f x

where, for  each i = 0, 1, 2, 3 …, n

Li(x) =
0 1 2 1 1

0 1 2 1 1

( )( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )

i i n

i i i i i i i i n

x x x x x x x x x x x x

x x x x x x x x x x x x

=
0

( )

( )

n
k

i kk
i k

x x

x x

where Li(x) are polynomials in x of degree n.

Since P(xj) = f (xj) for j = 0, 1, 2, …, n.

The coefficients Li(x) are called Lagrange interpolation coefficients.

Another Form of Lagrange’s Polynomial

The Lagrange’s interpolating formula is given below

Pn(x) = 1 2 0 2
0 1

0 1 0 2 0 1 0 1 2 1

( )( ) ( ) ( )( ) ( )
( ) ( )

( )( ) ( ) ( )( ) ( )

n n

n n

x x x x x x x x x x x x
f x f x

x x x x x x x x x x x x

0 1 1

0 1 1

( )( ) ( )
( )

( )( ) ( )

n
n

n n n n

x x x x x x
f x

x x x x x x

14. Divided Differences

Divided difference methods introduced in this section are used to successively generate the 

polynomials themselves.

Suppose f (x0), f (x1), f (x2) …, f (xn) be the (n + 1) values corresponding to the arguments x0, x1, x2,

…, xn, where the interval space/difference are not equal. Then the first divided differences of f (x) for 

the two arguments x0, x1; x1, x2, etc. are defined as

1

0( )|
x

f x  = 0 1
0 1

0 1

( ) ( )
[ , ]

f x f x
x x

x x

Similarly,
2

2

1( )|
x

f x  = 1 2
1 2

1 2

( ) ( )
[ , ]

f x f x
x x

x x
 and so on
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The second divided difference of f (x) for three arguments x0, x1, x2 is defined as

1 2

0
,

( )|
x x

f x  =
0 1 1 2

0 1 2
0 2

( , ) ( , )
[ , , ]

f x x f x x
x x x

x x

= 0 1 1 2

0 2

[ , ] [ , ]x x x x

x x

Similarly
2 3

2

1
,

( )|
x x

f x  =
1 2 2 3 1 2 2 3

1 2 3
1 3 1 3

( , ) ( , ) [ , ] [ , ]
[ , , ]

f x x f x x x x x x
x x x

x x x x

Now the 3rd divided difference for x0, x1, x2, x3 is defined as

1 2 3

0( )|
x x x

f x  =
0 1 2 1 2 3

0 1 2 3
0 3

[ , , ] [ , , ]
[ , , , ]

( )

x x x x x x
x x x x

x x

In general, the nth divided difference for x0, x1, …, xn is defined as

1 2 3

0
( , , ..., )

( )|
x x x

f x  = [x0, x1, x2 , …, xn]

=
0 1 1 1 2

0

( , , , ) ( , , , )n n

n

f x x x f x x x

x x

(i) Newton’s Divided Differences Formula

  Newton’s divided general interpolation formula is given as following:

f (x) = f (x0) + (x – x0)
2

0 0 1 0( ) ( ) ( ) ( )| |f x x x x x f x

   
3

0 1 2 0( ) ( ) ( ) ( )|x x x x x x f x

   0 1 2 1 0( ) ( ) ( ) ( ) ( )|
n

nx x x x x x x x f x

15. Inverse Interpolation

The Inverse interpolation is given as following:

0

( ) ( ) ( ),

n

n i i

i

P y L y f y  where for each i = 0, 1, 2, … , n

0 1 2 1 1

0 1 2 1 1

( ) ( )( ) ( ) ( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )

i i n
i

i i i i i i i i n

y y y y y y y y y y y y
L y

y y y y y y y y y y y y

16. Hermite Interpolation Polynomial

If f is continuous on [a, b] and x0, x1, …, xn [a, b] are distinct, then the unique polynomial of least 

degree agreeing with f and f  at x0, x1, …, xn is the Hermite polynomial of degree at most (2n + 1) given by

2 1

0 0

ˆ( ) ( ) ( ) ( ) ( )

n n

n i i i i

i i

H x H x f x H x f x

where
2( ) 1 2( ) ( ) ( )i i i i iH x x x L x L x

and 2ˆ ( ) ( ) ( )i i iH x x x L x

Also, Li(x) denoting the ith Lagrange’s coefficient of degree n.
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OBJECTIVE TYPE QUESTIONS

1. The value of En
f (x) will be

(a) f (x – h) (b) f (x – nh)

(c) f (x + nh) (d) f (x)

2. If degree of f (x) = n then n
f (x) is

(a) constant (b) zero

(c) 1 (d) (n – 1)!

3. If f (x) = x(x – 1), then f (x) will be

(a) x(x – 1)(x – 2) + c

(b) x(x – 2) + c

(c) (x – 1)(x – 2) + c

(d)
1

( 1)( 2)
3

x x x c

4. If f (0) = –3, f (1) = 6, f (2) = 8 and f (3) = 12, 

then 3
f (0) is

(a) 9 (b) 6

(c) 3 (d) 5

5. If f (x) = 2x
3 – 3x

2 + 3x – 10 then 3
f (x) is

(a) 3 (b) 6

(c) 2 (d) 12

6. If y = a(2)x + bx(2)x and h = 1 then ( 2 – 2

+ 1)y is

(a) 0 (b) 1

(c) 2 (d) 8

7. The value of 
1 1 1

2 2 2( ) (1 )E E
 is

(a) (b) 2 + 

(c) 2 – (d)

8. The value of 2
5y  for the following data

x 1 2 3 4 5

y 2 5 10 17 26

(a) 1 (b) 2

(c) –2 (d) 4

9. For the values of f (0) = 3, f (1) = 6, f (2) = 11, 

f (3) = 18 and f (4) = 27, then the function f (x)

will be

(a) x
2 + 3x + 3 (b) 2x

2 + 3x + 1

(c) x
2 + 2x + 3 (d) x

2 – 2x – 1

10. A second degree polynomial P(x) passes 

through the following data

x 0 1 2 3

y 1 3 7 13

(a) x
2 + x + 1 (b) x

2 + 3x + 4

(c) x
2 – 2x + 5 (d) 3x

2 – x – 1

11. The value of 

10 2 3 4(1 ) (1 ) (1 ) (1 )ax bx cx dx  is

(a) abcd(8!) (b) abc(10!)

(c) abcd(10!) (d) 0

12. If f (x) = 3x
3 – 2x

2 + 1, then 3
f (x) will be

(a) 18 (b) 20

(c) –18 (d) 41

13. If f (x) = x3, then 
3 3 3

3

, ,c

| ( )
a b

f x  is

(a) a
3 + b3 + c3 (b) 0

(c) a + b + c (d) a
2 + b2 + c2

14. The Lagrange’s interpolation formula can be 

used when the values x0, x1, x2, …, xn are

(a) zero spaced only

(b) unequally spaced only

(c) equally spaced or not

(d) none of these

15. If
1

( ) at , , , ;f x x a b c d
x

 then 3| ( )
bcd

f x  is

(a) abcd (b)
1

abcd

(c)
1

abcd
(d) 2 1

( 1)
abc

16. Which is correct

(a) 11 E (b)

1 1

2 2E E

(c) 1 E (d) all the above

17. A polynomial P(x) satisfies the following 

P(1) = P(3) = P(5) = 1, P(2) = P(4) = –1.

The minimum degree of such a polynomial 

is

(a) 1 (b) 2

(c) 3 (d) 4

[GATE (CS) 2000]

18. The values of a function f (x) are tabulated 

below

x 0 1 2 3

f (x) 1 2 1 10
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Using Newton’s forward difference formula, 

the cubic polynomial that can be fitted to the 

above data is

(a) 2x
3 + 7x

2 – 6x + 2

(b) 2x
3 – 7x

2 + 6x – 2

(c) x
3 – 7x

2 – 6x + 1

(d) 2x
3 – 7x

2 + 6x + 1 [GATE (ME) 2004]

19. Match the correct combination

P Gauss–Siedel

method

1. Interpolation

Q Newton’s forward 

formula

2. Non-linear

differential

equations

R Runge–Kutta

method

3. Numerical

integration

S Simpson’s rule 4. Linear algebraic 

equations

(a) P-1, Q-4, R-3, S-2

(b) P-1, Q-4, R-2, S-3

(c) P-1, Q-3, R-3, S-4

(d) P-4, Q-1, R-2, S-2

[GATE (ME) 2006]

20.
2
E

–2 is equal to

(a) 1 – 2E
–1 + E –2 (b) 1 + 2 E

–1 + E –2

(c) 2E
–1 + E –2 – 1 (d) 1 + 2E + E2

21. If E
2
ux = x2 and h = 1, then ux is equal to

(a) (x – 2)2 (b) (x + 2)2

(c) (x + 2)3 (d
2

1

( 2)x

22. The value of 
2

3
x

E
 is (h = 1)

(a) 6x (b) –6x

(c) 3x (d) 6x
2

23. The value of (  – ) x
2 is (h = 1)

(a) 2 (b) 3

(c) 1 (d) 4

24. The value of 2 (ab
x) is

(a) a(bh – 1)bx (b) a(bh – 1)2.bx

(c) 0 (d) None of these

25. The value of [log f (x)] is

(a)
( )

log 1
( )

f x

f x
(b)

( )
1

( )

f x

f x

(c)
( )

log 1
( )

f x

f x
(d) 0

ANSWERS

1. (c) 2. (a) 3. (d) 4. (a) 5. (d) 6. (a) 7. (b) 8. (b) 9. (c) 10. (a)

11. (c) 12. (a) 13. (c) 14. (c) 15. (b) 16. (b) 17. (d) 18. (d) 19. (d) 20.(a)

21.(a) 22.(a) 23.(a) 24.(b) 25.(a)





9.1 INTRODUCTION

Numerical methods hold great importance in scientific and engineering problems for determining the 

roots of an equation

f (x) = 0 (1)

Algebraic formulae are used to determine the roots of Eq. (1), when it is a quadratic, cubic or a 

biquadratic. On the other hand when Eq. (1) is a polynomial of higher degree or an expression involving 

transcendental functions algebraic methods are not available, then we use the numerical methods.

In this section, we shall discuss the basic terminology of the equations and some useful numerical 

method like Bisection, Regula Falsi, Iteration and Newton Raphson methods.

Polynomial An expression of the form 1 2
0 1 2( ) ,n n n

nf x a x a x a x a  where all ai’s are 

constants, provided a0  0 and n is a positive integer called a polynomial in x of degree n.

Polynomial or algebraic equation An equation of the form f (x) = 0 is algebraic if it contains 

power of x, i.e., f (x) is a polynomial.

For example, 2 73 0, 3 7, (1 3 ), etc.x x x x x x

Transcendental equation Equation (1) is called transcendental equation, if it contains power 

of x and some other functions such as hyperbolic, trigonometric, logarithmic, exponential, etc.

For example, 2sin 0, , tan , etc.x
x x e x x x

Root of equation The value of x which satisfies Eq. (1) say x = a is called root of Eq. (1).

Geometrically, a root of Eq. (1) is that value of x, where the graph y = f (x) cuts the x-axis.

9.2 SOME BASIC PROPERTIES OF AN EQUATION

Some of the basic properties of an equation are as follows:

(i) The total number of roots of an algebraic equation is the same as its degree.

(ii) If f (x) is exactly divisible by (x – a), then x = a is a root of equation f (x) = 0.

(iii) If 1 2
0 1 2( ) n n n

nf x a x a x a x a  have the roots  1,  2, 3, …, n, then

Sum of roots = 
1

0

;i

i

a

a

Numerical Solution 

of Equations9
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  Sum of the product of two roots = 
2

0

;i j

i j

a

a
 and product of the roots = 

0

( 1) .n n
i

i

a

a

(iv) Every equation of the odd degree has at least one real root.

(v) If  + i  is a root of the equation f (x) = 0, then – i  must also be its root.

(vi) An algebraic equation can have at most as many positive roots as the number of changes of 

sign in the coefficients of f (x).

(vii) An algebraic equation can have at most as many negative roots as the number of changes of 

sign in the coefficient of f (–x).

(viii) If an algebraic equation of degree ‘n’ has at the most P positive roots and at the most n

negative roots, then the equation has at least (n – p – n) imaginary roots.

(ix) Intermediate Value Theorem:  If f (x) is a continuous function on [a, b] and the sign of f (a) is 

different from the sign of f (b); that is f (a)·f (b) < 0, then there exists a point c, in the interval 

(a, b) such that f (c) = 0. Hence, any value c  (a, b) can be taken as an initial approximation 

to the root.

Note 1. Using the above theorem, the equation f (x) = 0 has at least one real root or an odd number 

of real roots in (a, b).

     2. Interval in the form of may be integer values or fractional values where the given function 

have opposite signs.

Example 1 Equation 5 2( ) 6 3 4 0f x x x x .

Solution Changes of sign in f (x): + – – + = 2. Hence, the number of positive roots = 2

Changes of sign in f (–x): – – + + = 1

Hence, the number of negative roots = 1

Thus, the number of imaginary roots

= degree of equation – (sum of positive and negative roots)

= 5 – (2 + 1)

= 5 – 3

= 2.

Example 2 Find the initial approximation to the root of the equation

2x – log10x = 7.

Solution Let f (x)  2x – log10x – 7 = 0.

The values of f (x) are as given:

x 1 2 3 4

f (x) –5 –3.301 –1.477 0.397

Since f (3)·f (4) < 0. Hence, any value between x = 3 and x = 4, i.e., (3, 4) can be taken as an initial 

approximation.

9.3 BISECTION METHOD

This is one of the simplest method and is based on the Intermediate value theorem. This method is also 

known as the bisection method of Bolzano or binary-search method.
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This bisection method is defined as follows:

(i) Using Intermediate value theorem, find an interval (a, b) if f (a) f (b) < 0, then the root lies in 

(a, b).

(ii) The first approximation to the root is 1 .
2

a b
x  If f (x1) = 0, then x1 is a root of f (x) = 0, 

otherwise.

(iii) Use the Intermediate value theorem to decide whether the root lies in (a, x1) or (x1, b).

(iv) Repeat the step using the interval either (a, x1) or (x1, b).

(v) The procedure is repeated while a length of the last interval is less than the desired accuracy. 

The mid-point of this last interval is the required root of the given equation f (x) = 0.

9.3.1 Geometrical Interpretation

The function f (x) has a desired root between a and b, since function f (x) intersects the X-axis. The 

midpoint of a and b is x1, i.e. 1 .
2

a b
x  It is also observed that the function f (x) intersects the x-axis

in between a and x1. Again find 1
2

2

a x
x  and we observed that the function f (x) intersects the X-axis

in between x1 and x2, then find 1 2
3 .

2

x x
x  Thus, we observe that after every bisection the length of 

interval is reduced and we approaches the desired root of the equation f (x) = 0, as shown in Fig. 9.1.

Fig. 9.1 Geometrical interpretation of Bisection method

9.3.2 Error Analysis

The maximum error after the nth iteration using 
2

n n

b a

Taking logarithms on both sides and on simplification, we obtain

        
log ( ) log

log 2

e e n

e

b a
n (2)

Inequality in Eq. (2) gives the number of iteration required to achieve an accuracy , we have 

1 1
.

2

n

n

Thus, this method converges linearly.
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Example 3 Find a real root of the equation f (x) = 2x – 3x = 0 in interval 0 x  2 by the bisection 

method.

Solution Since f (0) = 1 > 0 and f (2) = – 2 < 0, hence, a root lies between 0 and 2.

Iteration 1: Let a = 0 and b = 2, then the first approximation 1

0 2
1

2 2

a b
x

Now 1
1( ) (1) 2 3 1 1 0f x f  and f (0) f (1) < 0

The root lies between 0 and 1.

Iteration 2: The 2nd approximation

       
2

0 1
0.5

2
x

Now f (x2) = f (0.5) = –0.0857 < 0 and f (0) f (0.5) < 0

The root lies between 0 and 0.5

Iteration 3:  The 3rd approximation

       
3

0 0.5
0.25

2
x

Now f (x3) = f (0.25) = 0.439 > 0

and     f (0.25)·f (0.5) < 0

The root lies between 0.25 and 0.5

Iteration 4: 4

0.25 0.5
0.375

2
x

Now f (x4) = f (0.375) = 0.172 > 0 and f (0.25)·f (0.172) < 0

The root lies between 0.172 and 0.25.

The successive approximations by bisection method are tabulated in the following table:

Iteration a b
a + b

x =
2

f (x)

1

2

3

4

5

6

7

8

9

10

11

0

0

0

0.25

0.375

0.4375

0.4375

0.45313

0.5313

0.45703

0.45703

2

1

0.5

0.5

0.5

0.5

0.46875

0.46875

0.46094

0.46094

0.45898

1

0.5

0.25

0.375

0.4375

0.46875

0.45313

0.46094

0.45703

0.45898

0.458007

–1

–0.857

0.4392

0.1718

0.04176

–0.0223

0.009627

–0.006377

0.001620

–0.002379

–0.0003798

Hence, the solution of this equation is 0.458 after 11 iterations.
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Example 4 Find a real root of the equation x log10x = 1.2 by bisection method correct to 4 decimal 

places. [G.E.U. 2015]

Solution

Let f (x) = x log10x – 1.2

Since f (2.74) = –0.000563 < 0

and f (2.75) = 0.0081649 > 0

Hence, a root lies between 2.74 and 2.75.

Iteration 1:  Let a = 2.74 and b = 2.75, then the first approximation 
1

2.74 2.75
2.745

2
x

Now f (x1) = f (2.745) = 0.003798 > 0 and f (2.74)·f (2.745) < 0

Hence, root lies between 2.74 and 2.745.

Iteration 2:  The 2nd approximation 2

2.74 2.745
2.7425

2
x

Now f (x2) = f (2.7425) = 0.001617 > 0

and f (2.74)·f (2.7425) < 0

The root lies between 2.74 and 2.7425.

Iteration 3:  The 3rd approximation 3

2.74 2.7425
2.74125

2
x

Now f (x3) = f (2.74125) = 0.0005267 > 0

and      f (2.74)·f (2.74125) < 0

The root lies between 2.74 and 2.74125.

Iteration 4: The 4th approximation

       4

2.74 2.74125
2.740625

2
x

Now f (x4) = f (2.740625) = – 0.00001839 < 0

and     f (2.74125)·f (2.740625) < 0

The root lies between 2.740625 and 2.74125

Iteration 5: The 5th approximation

       
5

2.740625 2.74125
2.7409375

2
x

Now f (x5) = f (2.7409375) = 0.000254 > 0

and     f (2.7409375)·f (2.740625) < 0

The root lies between 2.7409375 and 2.740625.

Iteration 6: The 6th approximation

       
6

2.7409375 2.740625
2.74078125

2
x
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Now f (x6) = f (2.74078125) = 0.0001178 > 0

and     f (2.740625)·f (2.74078125) < 0

The root lies between 2.740625 and 2.74078125.

Iteration 7:  The 7th approximation is

      
7

2.740625 2.74078125
2.740703125

2
x

Now f (x7) = f (2.740703125) = 0.00004973 > 0

and     f (2.740625)·f (2.740703125) < 0

The root lies between 2.740625 and 2.740703125.

Iteration 8: The 8th approximation is

      
8

2.740625 2.740703125
2.740664063

2
x

Now f (x8) = f (2.740667063) = 0.00001567 > 0

and    f (2.740625)·f (2.740664063) < 0

The root lies between 2.740625 and 2.740664063.

Iteration 9: The 9th approximation is

      
9

2.740625 2.740664063
2.7406445

2
x

Since x8 and x9 are equal up to 4 decimal places.

Hence, the required root of the given equation is x = 2.7406.

Example 5 Find a positive real root of the equation x – cos x = 0 by bisection method correct up 

to 4 decimal places between 0 and 1. [U.P.T.U. 2002]

Solution

Let f (x) = x – cos x = 0

Since f (0) = 0 – cos 0 = –1 < 0

and f (1) = 1 – cos 1 = 0.45970 > 0

Now, perform the same iteration as in example 4, after iteration 7 or 8, we reach to the desired root 

up to 4 decimal places.

Hence, the root x = 0.7391.

9.4 FIXED POINT ITERATION METHOD

A fixed point  for a function (x) is a number, when the value of the function does not change.

Fixed point iteration or successive approximation method find a root of an Eq. (1).

The first step of this method is to write the Eq. (1) is of the form

x = (x) (3)

Let x0 be an initial approximation to the root of Eq. (1), then the first approximation is x1 = (x0).
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The successive approximations are as follows:

x2 = (x1)

x3 = (x2)

x4 = (x3)

In general, 1 ( ); 0, 1, 2, 3, ...n nx x n  is called the fixed-point iteration.

9.5 GEOMETRICAL INTERPRETATION OF ITERATION METHOD

Let f (x) = 0 is an equation and it can be rewritten in to the form of x = (x). Now, the intersection of the 

curve y = (x) and the line y = x gives the root of the equation f (x) = 0. Let the initial arbitrary root x = x0.

If the point (x0, y1) does not lie on the line y = x, then we consider the another point (x1, y1) and check if it 

is on the line or not. The process will continue and if it is converges, then we obtain a desired root.

Fig. 9.2

9.5.1 Fixed-point Theorem

Let C[a, b] be such that (x)  [a, b], for all x [a, b]. Suppose (x) exists on (a, b) and constant 

0 < k < 1 exists with

         
( ) , ( , )x k x a b

Then, for any x0  [a, b], the sequence

       1 ( ); 0, 1, 2, 3, ...n nx x n

Converges to the unique fixed point x in [a, b].

Remarks

(i) The round off errors are minimized where as these errors are computed by other methods.

(ii) The iteration method for x = (x) is convergent if ( ) 1.x  If ( ) 1x  and (x) < 1, the 

number of iterations would be large. But (x) is very small, then the number of iterations will 

be reduced.

(iii) If ( ) 1,x  then the iterative process is divergent.
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Example 6 Find a real root of an equation 2x – log10x = 7 correct to four decimal places using 

iteration method.

[U.P.T.U. 2004]

Solution Given

     
10( ) 2 log 7 0f x x x (4)

Now, find opposite sign function, we have

f (3) = 6 – log103 – 7 = – 1.4471

and f (4) = 8 – log104 – 7 = 0.3980

f (3)·f (4) < 0

Hence, a root lies between 3 and 4.

Now, Eq. (4), rewritten in to the form of

        
10

1
(log 7) ( ) (say)

2
x x x

      
10 10 10

1 1
( ) log log log log

2
ex e x x e

x

  ( ) 1; (3, 4)x x  and log10e = 0.4343

Since (4) (3) ,f f  so the required root is near to 4.

Hence, iteration method is applicable.

Let the initial approximation x0 = 3.6, then the successive approximations are as follows: 

x1 = 0 10 0

1
( ) log 7

2
x x

or x1 = 10

1
(3.6) log 3.6 7 3.77815

2

x2 = 1 10

1
( ) log 3.77815 7 3.78863

2
x

x3 = 2 10

1
( ) log 3.78863 7 3.78924

2
x

x4 = 3 10

1
( ) log 3.78924 7 3.78927

2
x

Since x3 and x4 are equal. Hence, the required root is x = 3.7892, correct to 4 decimal places.

Example 7 Obtain a real root of the equation 1 + cos x = 3x correct to three decimal places using 

iteration method.

Solution We have

        f (x)  cos x – 3x + 1 = 0 (5)

To find an interval for which the function f (x) have the opposite signs.

Now, f (0) = cos 0 – 3 × 0 + 1 = 2
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3 3
cos 1 1 3.71239

2 2 2 2
f

       (0) 0
2

f f

Hence, the required root lies in 0,
2

Equation (5) can be rewritten into the form of

        

1
(1 cos ) ( ) (say)

3
x x x

We have   
sin

( )
3

x
x

and     
1

( ) sin
3

x x

=
1

sin
3

x

        
( ) 1; 0,

2
x x

Since,      (0)
2

f f

Thus, the required root is near to 0.

Let the initial approximation x0 = 0.

Then the successive approximations are as follows:

x1 = 0

1 2
( ) (0) (1 cos0) 0.6667

3 3
x

x2 = 1

1
( ) (0.6667) (1 cos0.6667) 0.5953

3
x

x3 = 2

1
( ) (1 cos0.5953) 0.6093

3
x

x4 = 3

1
( ) (1 cos0.6093) 0.6067

3
x

x5 = 4

1
( ) (1 cos0.6067) 0.6072

3
x

x6 = 5

1
( ) (1 cos0.6072) 0.6071

3
x

Since x5 and x6 are almost equal.

Hence, the required root is x = 0.607 correct to 3 decimal places.

Note:  The another interval is (0, 1), where f (0) = 2 and f (1) = –1.4597.
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Example 8 Compute a real root of the equation 10(x – 1) = sin x using the iteration method.

Solution Given

f (x)  sin x – 10x + 10 = 0 (6)

Obtain an interval for which the function f (x) have opposite signs.

Now, f (1) = sin 1 – 10 × 1 + 10 = 0.84147

f (2) = sin 2 – 10 × 2 + 10 = –9.09070

      f (1) f (2) < 0

Hence, the required root lies in (1, 2)

We can rewrite Eq. (6) as

       
sin

1 ( )
10

x
x x

Now    
cos

( )
10

x
x

     
1

( ) cos 1; (1, 2)
10

x x x

Thus, the iteration  method is applicable.

Since, (1) (2) ,f f  so the root is near to 1. Assume initial value of x is 1. Then the successive 

approximations are as follows:

x1 = 0

1
( ) 1 sin(1) 1.08415

10
x

x2 = 1

1
( ) 1 sin(1.08415) 1.08839

10
x

x3 = 2

sin(1.08839)
( ) 1 1.08859

10
x

x4 = 3

sin(1.08859)
( ) 1 1.08860

10
x

x5 = 4

sin(1.08860)
( ) 1 1.08860

10
x

Since, x4 and x5 are almost equal.

Hence, the required root is x = 1.08860.

9.6  ITERATION METHOD FOR THE SYSTEM OF 
NON-LINEAR EQUATIONS

Consider the non-linear system of equation are as follows:

( , ) 0

( , ) 0

f x y

g x y
(7)

whose real roots are to be required within the given degree of accuracy.
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Let us assume

       
( , )

( , )

x x y

y x y
(8)

where the functions  and  satisfy the conditions

1 and 1
x y x y

(9)

in the neighbourhood of the root.

Suppose ( , ) be the exact roots of Eq. (7) and let (x0, y0) be the initial approximations.

Then from Eq. (8), the successive approximations are as follows:

x1 = 0 0 1 0 0( , ), ( , )x y y x y

x2 = 1 1 2 1 2( , ), ( , )x y y x y

x3 = 2 2 3 2 2( , ), ( , )x y y x y

and so on, we get following two iterative formulae:

       1 1( , ) and ( , )n n n n n nx x y y x y

If these formulae converges, then we get

        
( , )and ( , )

Hence, ( , ) gives the root of system of Eq. (7).

Example 9 Using iteration method, find a real root of the system of equations

x = 0.2x
2 + 0.8

y = 0.3xy
2 + 0.7

Solution Let us assume that

      
2

2

( , ) 0.2 0.8

( , ) 0.3 0.7

x y x

x y xy

(10)

Now,    0.4 , 0x
x y

and     20.3 , 0.6y xy
x y

Initially, we choose 
0 0

1 1
, .

2 2
x y  Then

       
1 1 1 1, ,
2 2 2 2

0.2 1
x y

and     
1 1 1 1, ,
2 2 2 2

0.3 0.6

4 4x y
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=
0.9

1
4

Thus, conditions in Eq. (9) are satisfied.

Hence, the successive approximations are as follows:

x1 = 

2

0 0

1 1 1
( , ) , (0.2) 0.8 0.85

2 2 2
x y

y1=

2

0 0

1 1 1 1
( , ) , (0.3) 0.7 0.74

2 2 2 2
x y

x2 = 
2

1 1( , ) (0.85, 0.74) (0.2)(0.85) 0.8 0.9445x y

y2 = 
2

1 1( , ) (0.85, 0.74) (0.3)(0.85)(0.74) 0.7 0.8396x y

x3 = 
2

2 2( , ) (0.2)(0.9445) 0.8 0.9784x y

y3 = 2
2 2( , ) (0.3)(0.9445) (0.8396) 0.7 0.8997x y

From these three approximations, we conclude that the root converges to (1, 1).

Also from Eq. (10), we get

(1, 1) = 1 and (1, 1) = 1

9.7 NEWTON’S METHOD

Newton–Raphson (or Newton’s) method is one of the most powerful and well-known numerical 

method.

Let x0 be an approximate root of the equation f (x) = 0 and let (x0 + x) be an exact root.

Therefore, f (x0 + x) = 0 (11)

Expanding Eq. (11) in Taylor’s series, we obtain

         

2

0 0 0

( )
( ) ( ) ( ) 0

2!

x
f x x f x f x

Neglecting the second and higher powers of x, we have

0 0( ) ( )f x x f x  = 0

or      0

0

( )

( )

f x
x

f x

Hence, 0
1 0

0

( )

( )

f x
x x

f x
 is an approximation.

Thus, the successive approximations is given by

      
1

( )
; 0, 1, 2, 3, ...

( )

n
n n

n

f x
x x n

f x

which is the Newton’s–Raphson formula.
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9.7.1 Geometrical Interpretation

In the Fig. (9.3), starting with the initial approximation x0, the approximation x1 is the x-intercept of the 

tangent line to the curve y = f (x) at the point A[x0, f (x0)]. Now the approximation x2 is the x-intercept

of the tangent line to the curve y = f (x) at the point B[x1, f (x1)] and so on.

Fig. 9.3

9.7.2 Steps of Newton’s Method

Following are the steps for Newton’s Method:

1. Find the interval, where the function f (x) have opposite signs.

2. Take initial approximation (x0) in the interval.

3. Find f (x0) and f ( x0)

4. Compute the approximations using

    
1

( )
; 0, 1,2,3, ...

( )

n
n n

n

f x
x x n

f x

5. Continuing this process till, when the two successive approximations are almost same.

  i.e., 1 error; 0, 1,2, ...n nx x n

9.7.3 Some Important Points for Newton’s Method

Some important points related Newton’s Method are as follows:

1. It is useful, when the curve y = f (x) crossing the x-axis is nearly vertical.

2. It converges, provided the initial approximation is chosen sufficiently close to the root.

3. It can be used to compute complex roots.

4. It gives better results as compared to other methods.

5. It is conditionally convergent.

6. It converges, if 
2

( ). ( ) ( ) .f x f x f x

7. It has a quadratic convergence.

8. It has a linear convergence for the double root.
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Special Note The Newton’s method does not always converge to a simple root. It has

(i) divergent sequence for the function f (x) = xe
–x with x0 = 2.

(ii) divergent oscillating sequence for the function f (x) = tan–1
x with x0 = 1.44 and

(iii) cyclic sequence for the function f (x) = x3 – x – 3 with x0 = 0.

Example 10 Find a real root of the equation 3x = cos x + 1, using Newton’s method.

Solution

Let    f (x)  3x – cos x – 1 = 0 (12)

f (x) = 3 + sin x (13)

Now f (0) = 3 × 0 – cos 0 – 1 = –2 < 0

and f (1) = 3 × 1 – cos 1 – 1 = 1.4597 > 0

Since f (0) and f (1) are opposite signs. Hence, the root lies in [0, 1].

Let us take x0 = 0.6.

The Newton’s method is

xn + 1 = 
( )

( )

n
n

n

f x
x

f x

=
3 cos 1

3 sin

n n
n

n

x x
x

x

or xn + 1 = 
sin cos 1

;
3 sin

 0,  1,  2,  3,  n n n

n

x x x

x
n (14)

The first approximation to the root is

x1 = 0 0 0

0

sin cos 1 0.6sin(0.6) cos(0.6) 1

3 sin 3 sin(0.6)

x x x

x

= 0.6071

The second approximation to the root is

x2 = 1 1 1

1

sin cos 1 (0.6071)sin(0.6071) cos(0.6071) 1

3 sin 3 sin(0.6071)

x x x

x

x2 = 0.6071

Since x1 = x2, hence, the root is 0.6071 correct to four decimal places.

Example 11 Using Newton’s method to find a real root of the equation x log10x = 1.2 correct to 

four decimal places. [U.P.T.U. 2004, M.D.U. 2004, 2006, G.E.U. 2010]

Solution

Let      f (x) x log10x – 1.2 = 0 (15)

      10 10 10 10

1
( ) log log log log logx

f x x x e x e e
x

= 10 10 10log log log 0.4343x e x (16)
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Now f (1) = –1.2 < 0

f (2) = 2 log102 – 1.2 = –0.5979 < 0

and f (3) = 3 log103 – 1.2 = 0.2314 > 0

Since f (2) and f (3) are opposite sign, therefore root lies in [2, 3].

Let the initial approximation (x0) = 2

Now, the Newton’s method is

xn + 1 = 
( )

( )

n
n

n

f x
x

f x

=
10

10

log 1.2

log 0.4343

n n
n

n

x x
x

x

or xn + 1 = 
10

0.4343 1.2
; 0, 1, 2, 3, ...

log 0.4343

n

n

x
n

x
(17)

Putting n = 0 in Eq. (17), we get the first approximation is

x1 = 0

10 0 10

0.4343 1.2 (0.4343) 2 1.2

log 0.4343 log 2 0.4343

x

x
 = 2.8133

Putting n = 1 in Eq. (17), the second approximation is

x2 = 1

10 1 10

0.4343 1.2 (0.4343)(2.8133) 1.2

log 0.4343 log (2.8133) 0.4343

x

x
 = 2.7411

Putting n = 2 in Eq. (17), the third approximation

x3 = 2

10 2 10

0.4343 1.2 0.4343)(2.7411) 1.2

log 0.4343 log (2.7411) 0.4343

x

x
 = 2.7408

Putting n = 3 in Eq. (17), the fourth approximation is

x4 = 3

10 3 10

0.4343 1.2 (0.4343)(2.7408) 1.2

log 0.4343 log (2.7408) 0.4343

x

x
 = 2.7408

Since x3 = x4, hence, the root is 2.7408 correct to four decimal places.

Example 12 Find the smallest root of the equation e–x = sin x, up to four decimal places.

Solution

Let     f (x) e
–x – sin x = 0 (18)

f (x) = –e
–x – cos x (19)

Now, f (0) = e–0 – sin 0 = 1 > 0

f (1) = e–1 – sin 1 = –0.47359 < 0

Since, f (0) and f (1) are opposite sign, so the root lies in [0, 1].

Let us take x0 = 0.6.

Using Newton–Raphson method

xn + 1 = 
( )

; 0, 1, 2, 3, ...
( )

n
n

n

f x
x n

f x
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xn + 1 = 
sin

cos

n

n

x
n

n x
n

e x
x

x e

xn + 1 = 
sin

; 0, 1, 2, ...
cos

n

n

x
n

n x
n

e x
x n

e x
(20)

Putting n = 0 in Eq. (20), we get the first approximation

x1 = 
0

0

0
0

0

sin

cos

x

x

e x
x

e x

x1 = 
0.6

0.6

sin(0.6)
0.6

cos(0.6)

e

e
 = 0.58848

Putting n = 1 in Eq. (20), we get the 2nd approximation

      
1

1

0.58848
1

2 1 0.58848
1

sin sin(0.58848)
0.58848

cos(0.58848)cos

x

x

e x e
x x

ee x

x2 = 0.58853

Since x1 and x2 are almost same, hence, the smallest root of the given question is 0.5885 up to 4 

decimal places.

Example 13 Using Newton–Raphson method to find a real root of the equation xe
x = 1.

Solution Do same as Example 12. In this the interval is [0, 1] and we take x0 = 1.

x = 0.5671.

9.8 REGULA FALSI METHOD

The Regula falsi method is also known as method of false position. With the help of this method, we 

can compute the real roots of the equation f (x) = 0. The graphical interpretation of this method is shown 

in the Fig. (9.4).

Fig. 9.4
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This method follows a test to ensure that the root is always bracketed between successive 

approximations. Start two initial approximations x0 and x1 (x0 < x1) with f (x0) f (x1) < 0. Then the graph 

of y = f (x) cuts the x-axis at some point between x0 and x1. Therefore, the equation of the chord joining 

two points A[x0, f (x0)] and B[x1, f (x1)] is

y – f (x0) = 1 1 0
0

1 0

( ) ( )
( )

f x f x
x x

x x
(21)

Since Eq. (21) intersects the X-axis, where y = 0.

Thus, –f (x0) = 1 0
0

1 0

( ) ( )
( )

f x f x
x x

x x

or x = 1 0
0 0

1 0

( )
( )

( ) ( )

x x
x f x

f x f x

Hence, the first approximation to the root is

x2 = 1 0
0 0

1 0

( )
( )

( ) ( )

x x
x f x

f x f x
(22)

In general

       1
1 1 1

1

( )
( )

( ) ( )

n n
n n n

n n

x x
x x f x

f x f x
(23)

Provided that at each step f (xn – 1)·f (xn) < 0.

Now, to decide which secant line to use to find the approximation x3, consider, if f (x2)·f (x1) < 0, then 

x1 and x2 bracket a root. x3 is the x-intercept of the line joining the points [x1, f (x1)] and [x2, f (x2)].

If not, choose x3 as the x-intercept of the line joining the points [x0, f (x0)] and [x2, f (x2)] and then 

interchange the indices on x0 and x1 in Eq. (22). Continuing this process until we get the root to desired 

accuracy.

9.9 SECANT METHOD

Newton’s method is a powerful technique, but it has a weakness, the need to compute the value of f  at 

each approximation. To avoid computation of f , f (xn) is replaced by 1

1

( ) ( )n n

n n

f x f x

x x
 and we obtained 

secant method as

       1
1

1

( )
( ) ( )

n n
n n n

n n

x x
x x f x

f x f x
(24)

This technique is called the secant method. This method starting two initial approximations x0 and 

x1, the approximation x2 is the x–intercept of the secant line joining two points [x0, f (x0)] and [x1, f (x1)].

The approximation x3 is the x-intercept of the secant line joining two points [x1, f (x1)] and [x2, f (x2)]

and continuing this process until we get the root to desired accuracy.
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Fig. 9.5

Example 14 Using Regula-Falsi method, find a real root of the equation x log10x = 1.2 correct to 

four decimal places.

Solution

Let     f (x) x log10x – 1.2 = 0 (25)

Now f (2) = –0.59794 < 0

f (3) = 0.23136 > 0

Since, f (2) and f (3) are opposite sign, so a root lies between 2 and 3.

Iteration 1:  Using Regula–Falsi method

x2 = 
1 0

0 0
1 0

( )
( ) ( )

x x
x f x

f x f x

x2 = 
(3 2)

2 0.59794
0.23136 0.59794

0 2 1

| | |
2 3x x x

=
0.59794

2
0.82930

x2 = 2.72102

f (x2) = – 0.01709 < 0

Now, root lies between 2.72102 and 3.

Iteration 2:

x3 = 
1 2

2 2
1 2

( )
( ) ( )

x x
x f x

f x f x
    2 3 1

| | |
x x x

or x3 = 
3 2.72102

2.72102 0.01709
0.23136 0.01709
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=
0.27898

2.72102 0.07709
0.24845

x3 = 2.74021

f (x3) = – 0.00038 < 0

Hence, root lies between 2.74021 and 3.

Iteration 3:

x4 = 
1 3

3 3
1 3

( )
( ) ( )

x x
x f x

f x f x
3 4 1

| | |
x x x

x4 = 
(3 2.74021)

2.74021 0.00038
(0.23136 0.00038)

x4 = 2.74064

f (x4) = –0.00001 < 0

Iteration 4:

x5 = 1 4
4 4

1 4

( )
( ) ( )

x x
x f x

f x f x 4 5 1

| ||
x x x

=
3 2.74064

2.74064 0.00001
(0.23136 0.00001)

x5 = 2.74064

Since x4 = x5, hence, the required root correct to four decimal places is 2.7406.

Example 15 Using Regula-Falsi method to find the smallest positive root of the equation

x – e–x = 0.

Solution

Let f (x) = x – e–x

Since f (0.56) = – 0.01121 and f (0.58) = 0.201.

Hence, root lies in (0.56, 0.58).

Let x0 = 0.56 and x1 = 0.58.

Iteration 1: Using Regula-Falsi method

x2 = 1 0
0 0

1 0

( )
( ) ( )

x x
x f x

f x f x
0 2 1

| | |
0.56 0.58x x x

x2 = 
(0.58 0.56)

0.56 0.01121
(0.201 0.01121)

x2 = 0.56716

f (x2) = 0.00002619 > 0

Now, the root lies in (0.56, 0.56716).
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Iteration 2: We have

x3 = 
2 0

0 0
2 0

( )
( ) ( )

x x
x f x

f x f x 0 3 2

| | |
x x x

=
0.56716 0.56

0.56 ( 0.01121)
0.00002619 0.01121

 = 0.56714.3

Since    3 2 0.567143 0.56716x x  = 0.00002 < 0.005

Hence, the required root is 0.567.

Example 16 Compute the real root of the equation x3 – 5x + 3 = 0 in the interval [1, 2] by the 

Secant method by performing four iterations.

Solution

Let f (x) = x3 – 5x + 3 (26a)

In the interval, f (1) = –1 and f (2) = 1, take x0 = 1 and x1 = 2.

Hence, one root lies in [1, 2]

Using the iterative formula

       

1
1

1

( )
( ) ( )

n n
n n n

n n

x x
x x f x

f x f x (26b)

Iteration 1: Putting n = 1 in Eq. (26b), we get

x2 = 
1 0

1 1
1 0

( )
( ) ( )

x x
x f x

f x f x

x2 = 
2 1

2 1 1.5
(1 1)

f (x2) = – 1.125 < 0

Iteration 2: Put n = 2 in Eq. (27), we get

x3 = 
2 1

2 2 1 2
2 1

( ) 1.5, 2
( ) ( )

x x
x f x x x

f x f x

x3 = 
2 1.5

2 1 1.7647
1 1.125

f (x3) = – 0.3279036 < 0

Iteration 3: Put n = 3 in Eq. (26b), we get

x4 = 3 2
3 3

3 2

( )
( ) ( )

x x
x f x

f x f x

x4 = 
2 3

1.7647 2
1.7647 0.3279 2, 1.7647

0.3279 1
x x

x4 = 1.8228

f (x4) = 0.2090399 > 0

Similarly Iteration 4: x5 = 1.8312
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9.10 CONVERGENCE FOR ITERATIVE METHODS

Let
0n n

x  is a sequence that converges to x, with xn x for all n. If the positive constants  and 

exist with

1
lim ,

n

n
n

x x

x x

then
0n n

x  converges to x of order , with asymptotic error .

In an iterative method of the form xn = (xn – 1) or xn + 1 = (xn) is said to be of order  if the sequence 

0n n
x  converges to the solution x = (x) of order .

If  = 1 and  < 1, then the sequence is linearly convergent

If  = 2, then the sequence is quadratically convergent.

9.10.1 Rate of Convergence of Bisection Method

In Bisection method the error in th
1nx  approximation is bounded by one half of the error in xn

th

approximation. In other words

    
1

1

2
n n

or 1n n

Hence, the Bisection method is linearly convergent.

9.10.2 Rate of Convergence of Iteration Method

Suppose f (x) = 0 is an equation, which can be expressed as x = (x). The iterative formula for solving 

this equation is

xn + 1 = (xn) (27)

If  is the root of the equation x = (x) lies in (a, b) such that  = ( ).

The formula in Eq. (27) may also be written as

       1 ( )n nx x x

Using mean value theorem, we have

       1 ( ) ( ) ( ); ( , )n n n nx x c c a b

But ( ) = 

      1 ( ) ( )n n nx x c

or    1 ( ) ( )n n nx x c (28)

Now, if n+1 and n are the error for the approximations xn + 1 and xn, then

       1 1 andn n n nx x
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Using these, then Eq. (28) becomes

       1 ( )n n nc

Since, (x) is a continuous function, therefore it is bounded.

     ( ) ; ( , )nc a b

or      1n n

Since, the index of n is one, hence the rate of convergence of the iterative method is linear.

9.10.3 Rate of Convergence of Newton’s Method

We have

       
1

( )

( )

n
n n

n

f x
x x

f x
(29)

Also, we have

and      

1 1

orn n n n

n n

x x

x
(30)

From Eq. (29) and (30), we have

( n + 1 + ) = 
( )

( )
( )

n
n

n

f

f

or n + 1 = 
( )

( )

n
n

n

f

f

On expanding by Taylor’s Theorem, we get

n + 1 = 

2

2

( ) ( ) ( )
2!

( ) ( ) ( )
2!

n
n

n

n
n

f f f

f f f

Neglecting the third and higher order, we get

       
1

( ) ( )
Since is a root of ( ) 0

( ) ( ) [ ( ) 0]

n
n n

n

f f
f x

f f f

=
( )

( ) ( )

n
n

n

f

f f

=

2 ( )

( ) ( )

n

n

f

f f

or n + 1 = 

12 ( ) ( )
1

( ) ( )

n
n

f f

f f

=

2 ( ) ( )
1 [Using Binomial theorem]

( ) ( )

n
n

f f

f f
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n + 1 = 2 ( )

( )
n

f

f

or      2
1

( )
, where

( )
n n

f
M M

f

or      2
1n n

This shows that the subsequent error is proportional to the square of the previous error. Hence, the 

rate of convergence of Newton’s method is quadratic.

9.10.4 Rate of Convergence of Regula-Falsi Method

Let x =  is the exact root of f (x) = 0 and n – 1, n and n + 1 are the errors in xn – 1, xn and xn + 1

approximation respectively, then

       

1 1

1 1

n n

n n

n n

x

x

x

(31)

Using Regula-Falsi method, we have

       1
1

1

( )
( )

( ) ( )

n n
n n n

n n

x x
x x f x

f x f x
(32)

From Eqs (31) and (32), we get

     

1
1

1

( ) ( )
( ) ( )

n n
n n n

n n

f
f f

or      
1

1
1

( )
( )

( ) ( )

n n
n n n

n n

f
f f

Expand by Taylor’s Theorem, we get

2

1

1 2 2
1

1

( ) ( ) ( ) ( )
2!

( ) ( ) ( ) ( ) ( ) ( )
2! 2!

n
n n n

n n

n n
n n

f f f

f f f f f f

Neglecting the 3rd and higher order terms of n and n – 1, we get

       

2

1
1

( ) ( )
2!

( ) ( )
2

n
n

n n
n n

f f

f f

After simplifications, we get

       2
1 1

1 ( )
( )

2 ( )
n n n n

f
O

f
(33)
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Now, we shall find a constant  such that

n + 1 = 
1andn n n

or n – 1 = 

1

1/
n

Thus, from Eq. (33), we have

n  = 

1

1/ ( )
, where

2 ( )
n n

f
M M

f

or n  = 

1
1

1/
nM

Equating both sides, the powers of n, we get

 = 21
1 or 1 0 (34)

Solving Eq. (34), we have

        

1 5

2

The positive value of  is 
1

(1 5) 1.618
2

Hence, 1.618
1n n

Thus, the order of convergence of Regula-Falsi method is 1.618.

EXERCISE 9.1

1. Using Bisection method, find a real root of the following equations:

(i) x
3 – x – 1 = 0 which lies between 1 and 2. [U.P.T.U. 2004]

(ii) x
3 – 4x – 9 = 0 which lies between 2 and 3.

(iii) 3 (1 sin ) 0.x x

(iv) 3x + sin x – ex = 0 [U.P.T.U. 2005]

(v) e
x = 3x

(vi) x = e–x which lies between 0 and 1.

(vii) x
3 – 5x + 3 = 0

(viii) x
3 – 9x + 1 = 0 in [2, 4] [U.P.T.U. 2005]

(ix) 28x

(x)
1

sin x
x

 which lies in [1, 1.5] [V.T.U, 2003]

2. Using iteration method, find a real root of the following equations:

(i) x = 0.21 sin(0.5 + x) with x0 = 0.12 [U.P.T.U. 2003]

(ii) Find 3 15x  in (2, 3).

(iii) e
–x = 10 x
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(iv)
2

1

( 1)
x

x

(v) xe
x = 1.

(vi) 2x = 7 + log10x in (3, 4)

(vii)
2 3 4 5

2 2 2 2
1 0.

(2!) (3!) (4!) (5!)

x x x x
x

(viii) 3x – log10x = 6 correct to four significant digits.

3. Find a real root of the equation x3 + x2 – 1 = 0 on [0, 1] with an accuracy up to four places of 

decimal.

4. Using Newton’s method to find a root of the equation x3 – 2x – 5 = 0. [U.P.T.U. 2005]

5. Using Newton-Raphson’s method to find the real root of the equation x5 – 5x + 2 = 0.

6. Using Newton’s method, find a real root of the following equations:

(i) log x – cos x = 0

(ii) x
4 – x – 10 = 0

(iii) x = e–x

(iv) x
2 – 25 = 0

(v) 1 – x e
1 – x = 0

7. Find a positive value of 

1

3(17)  correct to four decimal places by Newton’s method.

(U.P.T.U. 2003]

8. Find a positive root of cos x – xe
x = 0, correct to four decimal places by Newton’s method.

9. Using Regula-Falsi method, to find a positive root of the equation xe
x = 2.

[U.P.T.U. 2007] 

10. Find the smallest positive root of the equation x – e–x = 0 using false position method.

11. Find the root of the equation xe
x = cos x in the interval (0, 1) using Regula-Falsi method 

correct to four decimal places.

12. Solve x
6 – x4 – x3 – 1 = 0 by False-position method method in the interval (1.4, 1.41).

13. Find the real root of the equation x3 – 9x + 1 = 0 by Regula–Falsi method.

14. Solve x tan x = – 1, using False–position method starting with x0 = 2.5 and x1 = 3 correct to 3 

decimal places.

15. Using Secant method, find the root of the following equations:

(i) x
2

e
–x/2 = 1 in the interval [0, 2]

(ii) x
2 – 2x – 3cosx = 0

(iii) cos x – xe
x = 0

16. Find an Newton iterative formula to find n , where n is a positive number and hence, find 

12  correct to 4 decimal places.

17. Using Newton’s method to find a positive root of the equation x4 – x = 10 correct to 3 decimal 

places.

18. Using the iterative method, to find a root of the equation 3x – log10x = 6 correct to 4 significant 

digits.

19. The equation x2 + ax + b = 0 has two real roots  and . Show that the iteration method 
2

1
n

n

x b
x

a
 is convergent near x =  if 2 .
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Answers

1. (i) 1.325 (ii) 2.7066 (iii) 0.39 (iv) 0.3604

    (v) 1.5121 (vi) 0.5671477 (vii) 0.657   (viii) 2.94282

  (ix) 5.2915 (x) 1.11719

2. (i) 0.12242 (ii) 2.466 (iii) 0.91276 (iv) 0.4656

  (v) 0.5671477 (vi) 3.7892 (vii) 1.44 (viii) 2.108

3. 0.7549

4. 2.2790

5. 4.5616

6. (i) 1.303 (ii) 1.856 (iii) 0.5671 (iv) 5

7. 2.5713   8. 0.517757

9. 0.852605   10. 0.567

11. 0.5177   12. 1.4036

13. 2.9428   14. 2.798

15. (i) 1.429 (ii) 1.728 (iii) 0.5177574

16. 3.4641   17. 1.856

18. 2.108

9.11 LINEAR SYSTEM OF EQUATIONS

Linear system of equations arises in the study of many fields, both directly in modelling of physical 

problem and indirectly in the numerical solution of other mathematical models. To determine the 

numerical solution of a system of linear equations is an important part of the study. Numerical methods 

for solving linear algebraic systems can be divided into two methods, namely, direct iterative or 

indirect methods. In this section, we shall discussed the direct methods, namely, Gauss’s elimination, 

Triangularisation Gauss’s Jordan and Crout’s methods and the iterative methods, namely, Gauss’s–

Jacobi and Gauss’s–Seidel methods.

A linear system of n equations in n unknowns x1, x2,…, xn is a set of equations of the form:

         

1 2

1 11 1 12 2 1 1

2 21 1 22 2 2 2

1 2

:

:

:

n n

n n

n n n nn n n

E a x a x a x b

E a x a x a x b

E a x a x a x b

(35)

We can write Eq. (35) in matrix form as

AX = B (36)

where, the coefficient matrix ij
n n

A a
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11 12 1

21 22 2

1 2

n

n

n n nn n n

a a a

a a a

a a a

The column vector 
1 2, , ,

T

nX x x x  and 

the constant matrix 1 2, , ,
T

nB b b b

If B = 0, then the system Eq. (35) is called homogeneous; otherwise it is non-homogeneous.

The augmented matrix C of the system Eq. (35) is

11 12 1 1

21 22 2 2

1 2

n

n

n n nn n

a a a b

a a a b
C A B

a a a b

(37)

A solution of Eq. (35) is a set of numbers x1, x2, …, xn that satisfy all the n equations, and a solution 

vector of Eq. (35) is a vector X whose components constitute a solution of Eq. (35).

9.12 GAUSSIAN ELIMINATION METHOD

This method is applied on the linear system Eq. (35) and we write the augmented matrix

      

11 12 1 1

21 22 2 2

1 2

n

n

n n nn n

a a a b

a a a b

A B

a a a b

The entries in the (n + 1)th column are the values of B, i.e., , 1i n ia b  for each i = 1, 2, …, n.

Provided a11  0, now we perform the operations corresponding to

1

1
11

j

j j

a
E E E

a
 for each j = 2, 3, …, n, to eliminate the coefficient of x1 in each rows.

The entries in rows 2, 3, …, n are change, for each of notation we again denote the entry in the

i
th row and the jth column by aij.

We follow a sequential procedure for i = 2, 3, …(n – 1) and perform the operation

ji

j j i
ii

a
E E E

a
 for each j = i + 1, i + 2, …, n, provided aii  0 and we have a resulting matrix 

is of the form
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      A B

a a a

a a

a

a

a

a

n

n

nn

n

n

n n

11 12 1

22 2

1 1

2 1

1

0

0 0

,

,

,

(38)

Now, we write Eq. (38) in equation form as

         

11 1 12 2 1 1, 1

22 2 2 2, 1

, 1

n n n

n n n

nn n n n

a x a x a x a

a x a x a

a x a

Using back substitution find x1, x2, …, xn.

We define the above procedure with the help of the following example.

Example 17 Solve the following equations by Gauss’s elimination method:

2x1 + 4x2 + x3 = 3

3x1 + 2x2 – 2x3 = –2

x1 – x2 + x3 = 6

Solution We write the given system in matrix form as

1

2

3

2 4 1 3

3 2 2 2

1 1 1 6

x

x

x

or AX = B (39)

where      
1

2

3

3 4 1 3

3 2 2 , , 2

1 1 1 6

x

A X x B

x

The augmented matrix

      A B

2 4 1

3 2 2

1 1 1

3

2

6

(40)

Interchanging the first and third row in Eq. (40), we have

      

A B

1 1 1

3 2 2

2 4 1

6

2

3
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2 2 1

3 3 1

1 1 1 6
3

0 5 5 20~
2

0 6 1 9

R R R

R R R

      

2

1 1 1 6
1

~ 0 1 1 4
5

0 6 1 9

R

      
3 3 2

1 1 1 6

6 ~ 0 1 1 4

0 0 5 15

R R R (41)

Using back substitution, we get

    

1 2 3

2 3

3

6

4

5 15

x x x

x x

x

or x3 = 3, x2 = – 1, x1 = 2

X = (x1, x2, x3)
T = (2, –1, 3)T

Example 18 Solve the following equations by Gauss’s elimination method:

  

1 2 3

1 2 3

1 2 3

2 3 9

6

2

x x x

x x x

x x x

Solution

We write the given system in matrix form

1

2

3

2 1 3 9

1 1 1 6

1 1 1 2

x

x

x

A X = B (42)

where       

1

2

3

2 1 3 9

1 1 1 , , 6

1 1 1 2

x

A X x B

x

Now, the augmented matrix

      

A B

2 1 3

1 1 1

1 1 1

9

6

2
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Interchanging first and third row, we have

      

A B

1 1 1

1 1 1

2 1 3

2

6

9

      

2 2 1

3 3 1

1 1 1 2

~ 0 2 0 4

2 0 1 1 5

R R R

R R R

      

2 2

1 1 1 2
1

0 1 0 2
2

0 1 1 5

R R

      

3 3 2

1 1 1 2

~ 0 1 0 2

0 0 1 5

R R R

Now, we write the above system in equations form as

    

1 2 3

2

3

2

2

5

x x x

x

x

Using back substitution, x = 1, x2 = 2 and x3 = 5.

9.13 GAUSS’S–JORDAN METHOD

This method follow the same procedure of Gauss’s elimination method, but also from E1, E2, …, Ei – 1.

The augmented matrix [A|B] reducing as

        

(1)(1)
1, 111

(2)(2)
2, 122

( ) ( )
, 1

0 0

0 0

0 0

n

n

n n
nn n n

aa

aa

a a

The solution is obtained by 

( )
, 1

( )
,

i
i n

i i
ii

a
x

a
 for each i = 1, 2, 3, …, n.

Now, we explain the above procedure with the help of the following example:

Example 19 Solve the system of linear equations, using Gauss’s–Jordan method:

1 2 3

1 2 3

1 2 3

2 3

2 3 3 10

3 2 13

x x x

x x x

x x x
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Solution We write the given system in matrix form as

1

2

3

1 2 1 3

2 3 3 10

3 1 2 13

x

x

x

(43)

or AX = B (44)

where        

1

2

3

1 2 1 3

2 3 3 , and 10

3 1 2 13

x

A X x B

x

Now, the augmented matrix

      

A B

1 2 1

2 3 3

3 1 2

3

10

13

         

2 2 1

3 3 1

2 1 2 1 3

~ 0 1 1 4

3 0 7 1 4

R R R

R R R

         

3 3 2

1 2 1 3

7 0 1 1 4

0 0 8 24

R R R

         

3 3

1 2 1 3
1

0 1 1 4
8

0 0 1 3

R R

         

2 2 3

1 1 3

1 2 0 0

~ 0 1 0 1

0 0 1 3

R R R

R R R

         

1 1 2

1 0 0 2

2 0 1 0 1

0 0 1 3

R R R

Now the solution of given system is obtain by

xi = 

( )
, 1

( )
; 3

i
i n

i
ii

a
n

a
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x1 = 

(1)
1,4

(1)
11

2
2

1

a

a

Similarly x2 = –1 and x3 = 3.

Hence, x1 = 2, x2 = –1 and x3 = 3.

9.14 CROUT’S METHOD

Crout’s method determining the numerical solution of a system of linear equations and it has an 

advantage over the Gauss’s elimination method in that it requires the number of less computations. 

Suppose, the systems of linear equations is of the form AX = B

where
ij

m n
A a  for each i = 1(1)m and j = 1(1)n,

1 2 1 2, , ..., , , , ...,
T T

m mB b b b X x x x

Then      C A B

a a a

a a a

a a a

b

b

b

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2

Now, we define an Auxiliary matrix

       C A B

Using C , we determine the solution column X.

Prescott Durand Crout was an American mathematician born on 28 July 28 1907 in Ohio. In the year of 

1929, he finished his MIT class. His PhD thesis entitled “The Approximation of Functions and Integrals 

by a Linear Combination of Functions” was completed under the supervision of George Rutledge. He 

was the member of the Faculty of Mathematics from 1934 to 1973 and emeritus from 1973 till his 

death in 1984. He belonged to the Radiation Laboratory staff from 1941 to 1945. His students at the 

MIT were Francis Hildebrand (1940), Carl Nordling (1941), Frank Bothwell (1946), Norman Painter 

(1947), Merle Andrew (1948), Frederick Holt (1950), and Carl Steeg, Jr. (1952). He died, aged 77, 

in Lexington, Middlesex, Massachusetts. Prescott Durand Crout wrote the book “The Determination of 

Fields Satisfying Laplace’s Poisson’s, and Associated Equations by Flux Plotting”. He is probably the 

inventor of the Crout matrix decomposition method.

9.14.1 Rules for Determining the Auxiliary Matrix C

Rule 1: The elements in first column of matrix C are equal with the corresponding elements in first 

column of matrix C and the remaining elements of each row and column as follows:

       11 11 21 21 1 1, , n na a a a a a

       
13 112

11 11 1112 13 1, , , na aa
na a aa a a

       
1

111
b

ab
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Rule 2: The elements on or below the principal diagonal of C  are calculated by subtracting from the 

corresponding elements of C, the inner product of its row and column in C  when all uncalculated 

elements are consider as zero; using

       

1

1

for

j

ij ij ik kj

k

a a a a i j

and      

1

1

1
for

i

ij ij ik kj
ii k

a a a a i j
a

Rule 3: The elements of B  are evaluated by subtracting from the corresponding elements of B, the inner 

product of column B  and its row in A  and then divided by the diagonal elements of its row in A  i.e.,

        

1

1

1 i

i i ik k
ii k

b b a b
a

Rule 4: The solution of given system calculated in the order of xn, xn – 1, xn – 2, …, x2, x1 from bottom 

to top as using the formula.

        1

n

i i ik k

k i

x b a x

Explain the above procedure with the help of the following example:

Example 20 Using Crout’s method, solve the following system of equations:

  

1 2 3

1 2 3

1 2 3

1

3 3 5

2 5 10

x x x

x x x

x x x

Solution We have, augmented matrix

        

C A B

1 1 1

3 1 3

1 2 5

1

5

10

Suppose the auxiliary matrix

       

C A B

a a a

a a a

a a a

b

b

b

11 12 13

21 22 23

31 32 33

1

2

3

Now, our aim to determine the values of x1, x2 and x3 using (R4), we have

x3 = 3 2 2 23 3,b x b a x  and 

x1 = 1 12 2 13 3b a x a x

For this we calculate matrix C .
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According (R1 to R3) a11 = 1 = a 11,
1312

12 13
11 11

1, 1
aa

a a
a a

 and 1
1

11

1.
b

b
a

Also,     21 21 31 313, 1a a a a

Now, for     22 22 21 12 1 3.1 2a a a a

       
23 23 21 12

22

1 1
3 3 1 3

2
a a a a

a

      
2 2 21 1

22

1 1
5 3 1 1

2
b b a b

a

Also,     32 32 31 12 2 1 1 3a a a a

       33 33 31 13 32 23a a a a a a

       33 5 1 1 ( 3) 3 3a

and      3 3 31 1 32 2
33

1
( )b b a b a b

a

=
1

3
10 1 1 3 1 2( ( ) ( )

Thus, the auxiliary matrix

       

1 1 1 1

3 2 3 1

1 3 3 2

C

Now, x3 = 3 2 2 23 32, 1 3 2 7b x b a x

and x1 = 1 12 2 13 3b a x a x

= 1 – 1 × –7 – 1 × 2 = 6

x1 = 6, x2 = –7, x3 = 2.

which is the required solution.

Example 21 Using Crout’s method, solve the following system of equations:

1 2 3

1 2 3

1 2 3

2 3 2 2

10 3 4 16

3 6 6

x x x

x x x

x x x

Solution

We have     C A B

2 3 2

10 3 4

3 6 1

2

16

6
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To determine the values of x3, x2 and x1 and

x3 = 3 2 2 23 3,b x b a x  and

x1 = 1 12 2 13 3b a x a x

Using rule R1 to R3, we obtain the auxiliary matrix

       

3
12 1

2

1 1
10 12

2 2

3 11
3 3

2 4

C

Thus, we get

x1 = 1, x2 = –2 and x3 = 3.

9.15 LU DECOMPOSITION METHOD

The Gauss’s elimination method is the principal tool in the direct solution of linear system of equations. 

The LU decomposition method has the property that the matrix decomposition step can be performed 

independent of the right hand side vector. In this method the coefficient matrix A is expressed as the 

product of lower triangular matrix (L) and an upper triangular matrix (U), that is

A = LU (45)

Then, the linear system of equations,

AX = B becomes

LUX = B (46)

Let UX = Y, (47)

then Eq. (46) becomes

LY = B (48)

Now, first we solve the lower triangular system Eq. (48) for Y. Once Y is known, then solve the 

upper triangular system Eq. (47) for X.

We shall discussed the following three approaches of decomposition using 3 × 3 matrices.

9.15.1 Doolittle Decomposition

In this method we choose lii = 1 for i = 1, 2, 3 and we write the given system as

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0

1 0 0

1 0 0

a a a u u u

a a a l u u

a a a l l u
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9.15.2 Crout’s Decomposition

In this method, we choose uii = 1 for i = 1, 2, 3 and we write the given system as

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

0 0 1

0 0 1

0 0 1

l u u a a a

l l u a a a

l l l a a a

9.15.3 Cholesky’s Method

This method is applicable for a symmetric and positive definite matrix A (i.e., A
T = A and

0 for all 0),T
X AX X  then, according to this method matrix A can be written as the product of two 

triangular matrix such that

A = LL
T,

where L is lower triangular matrix and LT is an upper triangular matrix.

A
–1 = (L L

T)–1

= (LT)–1
L

–1

= (L–1)T
L

–1

A
–1 = ST

S;   where S = L–1

which gives the inverse of matrix A.

We illustrate the above procedure with the help of an example.

Example 22 Using LU Decomposition method to solve the equations:

1 2 3

1 2 3

1 2 3

2 3 14

2 3 4 20

3 4 14

x x x

x x x

x x x

Solution

The coefficient matrix 

1 2 3

2 3 4 ,

3 4 1

A  which is symmetric

We write A = L U, with uii = 1,

   
11 12 13

21 22 23

31 32 33

1 2 3 0 0 1

2 3 4 0 0 1

3 4 1 0 0 1

l u u

l l u

l l l

or
11 11 12 11 13

21 21 12 22 21 13 22 23

31 31 12 32 31 13 32 23 33

1 2 3

2 3 4

3 4 1

l l u l u

l l u l l u l u

l l u l l u l u l

Compare both side the corresponding elements, we have

l11 = 1, l21 = 2, l31 = 3, l11 u12 = 2 u12 = 2
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l11 u13 = 3 u13 = 3, l21 u12 + l22 = 3 l22 = –1

l21 u13 + l22 u23 = 4  2 × 3 + (–1) u23 = 4

u23 = 2

l31 u12 + l32 = 4  3 × 2 + l32 = 4

l32 = –2

l31 u13 + l32 u23 + l33 = 1

or 3 × 3 + (–2) × 2 + l33 = 1 l33 = 1 – 5 = –4

Hence,     

1 0 0 1 2 3

2 1 0 , 0 1 2

3 2 4 0 0 1

L U

Now LUX = B (49)

Let UX = Y (50)

Using Eqs (50) and (49) becomes

LY = B

1

2

3

1 0 0 14

2 1 0 20

3 2 4 14

y

y

y

y1 = 14, 2y1 – y2 = 20 y2 = 8    [Using forward substitution]

3y1 – 2y2 – 4y3 = 14

42 – 16 – 4y3 = 14

or 4y3 = 22 – 14

4y3 = 8

y3 = 2

Y = [14, 8, 2]T

Now from Eq. (50), we have

UX = Y

or      
1

2

3

1 2 3 14

0 1 2 8

0 0 1 2

x

x

x

Using back substitution, we have

x3 = 2; x2 + 2x3 = 8 x2 = 4

and x1 + 2x2 + 3x3 = 14 x1 = 0

Hence, X = [0, 4, 2]T is the required solution of the given linear system of equations.
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Example 23 Determine the Cholesky decomposition or factorization (L L
T) of the positive definite 

matrix

        

4 1 1

1 4.25 2.75

1 2.75 3.5

A

Solution Using Cholesky decomposition method, we write the given matrix

A = L L
T

or   

11 11

21 22 21 22

31 32 33 31 32 33

4 1 1 0 0 0 0

1 4.25 2.75 0 0

1 2.75 3.5

l l

l l l l

l l l l l l

=

11 11 21 31

21 22 22 32

31 32 33 33

0 0

0 0

0 0

l l l l

l l l l

l l l l

=

2
11 11 21 11 31

2 2
11 21 21 22 21 31 22 32

2 2 2
11 31 21 31 22 32 31 32 33

l l l l l

l l l l l l l l

l l l l l l l l l

Compare both side the corresponding elements, we have

       
2
11 11 11 21 214 2, 1 0.5l l l l l

      2 2
11 31 31 21 22 221 0.5, 4.25 2l l l l l l

2 2 2
21 31 22 32 32 31 32 33 332.75 1.5, 3.5 1.l l l l l l l l l

Thus

        

2 0 0 2 0.5 0.5

0.5 2 0 0 2 1.5

0.5 1.5 1 0 0 1

A

which is the required Cholesky decomposition.

Example 24 Determine the Crout’s factorization of the linear system of equations:

  

1 2

1 2 3

2 3 4

3 4

2 1

2 0

2 0

2 1

x x

x x x

x x x

x x

Hence, find the solution.
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Solution We write the given system in matrix form, we have

        

1

2

3

4

2 1 0 0 1

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

x

x

x

x

i.e., AX = B (51)

Since, the coefficient matrix A is symmetric, we write

A = L U

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0 0 02 1 0 0 1

0 01 2 1 0 0 1

00 1 2 1 0 0 1

0 0 1 2 0 0 0 1

l u u u

l l u u

l l l u

l l l l

=

11 11 12 11 13 11 14

21 21 12 22 21 13 22 23 21 14 22 24

31 31 12 32 31 13 32 23 33 31 14 32 24 33 34

41 41 12 42 41 13 42 23 43 41 14 41 24 43 34 44

l l u l u l u

l l u l l u l u u u l u

l l u l l u l u l l u l u l u

l l u l l u l u l l u l u l u l

Comparing both sides, the corresponding elements, we have

       11 11 12 12

1
2, 1

2
l l u u

       21 21 12 22 22

3
1, 2

2
l l u l l

      22 23 23 32 41 31

2
1 , 1, 0, 0

3
l u u l l l

    32 23 33 33 33 34 34

4 3
2 , 1

3 4
l u l l l u u

       43 43 34 44 41 14 41 24 44

5
1, 0

4
l l u l l u l u l

 The Crout’s factorization

        

2 0 0 0 1
1 0 0

23
1 0 0

22 0 1 0
34

0 1 0
33 0 0 1
45

0 0 1
0 0 0 14

A LU
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Now     

1

2

3

4

2 0 0 0 1
3

1 0 0 0
2

4
0 1 0 03

5 10 0 1
4

y

y

LY B
y

y

which gives 
1 1 1

, , , 1
2 3 4

T

Y

and      

1

2

3

4

1 1
1 0 0

2 2

2 1
0 1 0

3 3

3 1
0 0 1

4 4

0 0 0 1 1

x

x
UX Y

x

x

which gives X = [1, 1, 1, 1]T.

9.16 ITERATIVE METHODS

In this section, we shall discuss the iterative or indirect methods, an iterative method repeats its process 

over and each time using the current approximation to produce a better approximation for the exact 

solution, until the current approximation is sufficiently close to the exact solution that is we expect that 

x
(k) to be close to x if ( ) ( 1)k k

x x  is very small.

An iterative methods to solve the n × n linear system AX = B start with an initial approximation x(0)

to the solution x and generates a sequence of vectors x
k

k

( )

0
 that converge to x. Now, we describe 

the Jacobi and the Gauss–Seidel iterative methods.

9.16.1 Jacobi’s Method

This method converges, if the coefficient matrix A strictly diagonally dominant; that is

       ii ij

i j

a a  for i = 1, 2, 3, …, n. (52)

The iterative formula for the linear system of equations AX = B by Jacobi method can be written as

      

( 1) ( )

1

1 n
k k

i ij j i
ii j

j i

x a x B
a

(53)

for i = 1, 2, 3, …, n; provided aii  0.
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Working Procedure

Step-I: Check the condition in Eq. (52) for the coefficient matrix A.

Step-II:  Write the given system as in the form of Eq. (53).

Step-III:  Assume initial solution is (0) 0ix  (if not given) for i = 1, 2, …, n.

Step-IV:  Using Step-III, compute ( )k
ix  and continuing this process till if 

( ) ( 1) .k k
i ix x

Example 25 Solve the following linear system of equations by Jacobi method:

8x1 – 3x2 + 2x3 = 20; 4x1 + 11x2 – x3 = 33; 6x1 + 3x2 + 12x3 = 36.

Solution

Step-I:    11 22 33 8 11 12 31iia a a a

      
12 13 21 23 31 32ij

i j

a a a a a a a

= 3 2 4 1 6 3

= 19

        ii ij

i j

a a

Step-II:  We write the given equations as

      ( 1) ( ) ( )
1 2 3

1
20 3 2

8

k k k
x x x (54)

      ( 1) ( ) ( )
2 1 3

1
33 4

11

k k k
x x x (55)

      ( 1) ( ) ( )
3 1 2

1
36 6 3

12

k k k
x x x

(56)

Step-III:  Assume the initial solution is

(0) (0) (0)
1 2 3( , , ) (0, 0, 0).x x x

Step-IV:   (1)
1 2.5000x

       (1)
2 3.0000x

       
(1)
3 3.0000x

Using (1) (1) (1)
1 2 3, , ,x x x  then Eqs (54), (55) and (56) give

       
(2) (2) (2)
1 2 32.8750, 2.3636, 1.0000x x x

Continuing this process, after 10 iterations we obtain the approximate solution
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(10) (10) (10)
1 2 3( , , ) (3.0000, 1.9999, 0.9999)x x x  as shown in the following table:

k
( )
1

k
x

( )
2
k

x
( )
3
k

x

1 2.5000 3.0000 3.0000

2 2.8750 2.3636 1.0000

3 3.1364 2.0455 0.9716

4 3.0241 1.9478 0.9205

5 3.0003 1.9840 1.0010

6 2.9938 2.0000 1.0038

7 2.9990 2.0026 1.0031

8 3.0002 2.0006 0.9998

9 3.0003 1.9999 0.9997

10 3.0000 1.9999 0.9999

Example 26 Solve the following equations by Jacobi’s method:

1 2 3

1 2 3

1 2 3

27 6 85

6 15 2 72

54 110

x x x

x x x

x x x

Solution

Step-I:    11 22 33 96iia a a a

     
12 13 21 23 31 32ij

i j

a a a a a a a

= 6 1 6 2 1 1  = 17

        ii ij

i j

a a

Step-II:  We write the given equations as

      ( 1) ( ) ( )
1 2 3

1
85 6

27

k k k
x x x (57)

      ( 1) ( ) ( )
2 1 3

1
72 6 2

15

k k k
x x x (58)

      ( 1) ( ) ( )
3 1 2

1
110

54

k k k
x x x (59)

Step-III:  Assume the initial solution is

x x x1
0

2
0

3
0 0 0 0( ) ( ) ( ), , ( , , )
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Step-IV:  Using initial solution, Eqs (57), (58) and (59) give

       
(1) (1) (1)
1 2 33.150, 4.800, 2.040x x x

Using (1) (1) (1)
1 2 3, , ,x x x  then Eqs (57), (58) and (59) give

       
(2) (2) (2)
1 1 12.160, 3.270, 1.890x x x

Continuing this process, after 7 iterations, we obtain the approximate solution

x x x1
7

2
7

3
7 2 426 3 572 1 926( ) ( ) ( ), , ( . , . , . )  as shown in the following table:

k
( )
1

k
x

( )
2
k

x
( )
3
k

x

1 3.150 4.800 2.040

2 2.160 3.270 1.890

3 2.491 3.684 1.936

4 2.401 3.545 1.923

5 2.432 2.583 1.927

6 2.423 3.570 1.926

7 2.426 3.572 1.926

Another Form of the Jacobi’s Method

To solve the linear system of equations AX = B, where

1 2 1 2; , , ..., ; [ , , , ]
t t

ij n n
n n

A a X x x x B b b b

Now, the matrix A is split in to

A = L + D + U

where     

11

22

0 0

0 0

0 0 nn

a

a
D

a

 be

the diagonal part of A, whose diagonal elements are the diagonal elements of A.

L is the strictly lower-triangular part of A and U is strictly upper triangular part of A.

        

12 1

21

1,

1 , 1

0 0 0

,

0 0 0

n

n n

n n n

a a

a
L U

a

a a

Therefore, we have

(L + D + U) X = B

or DX = –(L + U)X + B
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Since, aii  0 for each i, that is D–1 exists, then

       

1

11 22

1 1 1
diag , , ,

nn

D
a a a

       1 1( )X D L U X D B

     ( 1) 1 ( ) 1( )k k
X D L U X D B

     
( 1) ( )k k

j jX M X C

where 1 1( )andj jM D L U C D B

The matrix Mj is called the iteration matrix.

Example 27 Using Jacobi matrix method to solve the following linear equations:

1 2 3 1 2 1 30, 3 2, 2 3x x x x x x x

Assume the initial solution (0) (0) (0)
1 2 3( , , ) (0.8, 0.8, 2.1).x x x

Solution

Suppose that the matrix representation of matrix A in the form of

        

0 0 0 1 0 0 0 1 1

1 0 0 0 3 0 0 0 0

1 0 0 0 0 2 0 0 0

A L D U

Now,     1( )jM D L U

=

1 0 0 0 1 1
0 1 1

1 1
0 0 1 0 0 0 0

3 3
1 0 0

1 1
0 0 0 0

2 2

and      1

1 0 0 0
0

1 2
0 0 2

3 3
3

1 3
0 0

2 2

jC D B

      ( 1) ( )
1 2 3; ( , , )k k t

j jX M X C X x x x

     

( 1) ( )

0 1 1 0

1/3 0 0 2/3

1/2 0 0 3/2

k k
X X
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(1)

0 1 1 0.8 0 1.3

1/3 0 0 0.8 2/3 0.9333

1/2 0 0 2.1 3/2 1.9

X

Again

       

(2) (1)

0 1 1 0

1 2
0 0

3 3

1 3
0 0

2 2

X X

       

(2)

0 1 1 1.3 0
1.3 0.9667

1 2 2
0 0 0.9333 1.1000

3 3 3
1.9 2.1500

1 3 3
0 0

2 2 2

X

Continuing this process, after 9 iterations, we obtain the solution of the given system is

X = (1, 1, 2)t.

9.16.2 Gauss–Seidal Method

The iterative formula for the linear system of equations AX = B by Gauss–Seidal method can be written 

as

1
( 1) ( 1) ( )

1 1

1 i n
k k k

i ij j ij j i
ii j j i

x a x a x B
a

(60)

for i = 1, 2, 3, …, n; provided aii  0.

Note-1 This method converges, if the matrix A is symmetric and positive definite.

Note-2  If this method does not converges, then the Jacobi method does not converge. But if 

Jacobi method converges then Gauss–Seidel method converges and the convergence of 

this method is faster.

Note-3  Putting the initial value 
(0)
jx  for the unknown on the RHS of Eq. (60), we obtain (1).jx

Again putting the new value (1)
jx  on the RHS of Eq. (60) and obtain (2)

jx  and continuing 

this process until ( )k
jx  is equal to ( 1)k

jx  with in the required accuracy.

The Gauss–Seidel matrix formulation, for the linear system AX = B is

(L + D + U) X = B  or  (L + D)X = –UX + B

or       1 1( ) ( )X L D UX L D B

        ,S SX M X C

where     1 1( ) and ( ) .S SM L D U C L D B
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The Gauss–Seidel matrix iteration is

      
( 1) ( ) ; 0, 1, 2, 3, ...k k

S SX M X C k

Example 28 Solve the following system of equations:

0, 3 2, 2 3x y z x y x z  by the Gauss–Seidel method. Also, write its matrix 

form. Assume the initial solution X = (0.8, 0.8, 2.1)t.

Solution The iterative process for Gauss–Seidel method is given by

       ( 1) ( ) ( )k k k
x y z (61)

      ( 1) ( 11
(2 )

3

k k
y x (62)

      ( 1) ( 1)1
(3 )

2

k k
z x (63)

Using initial solution y(0) = 0.8 and z(0) = 2.1, then Eq. (61) gives

x
(1) = 1.3

Now putting x(1) = 1.3 in Eq. (62), we have

y
(1) = 1.1

Putting x
(1) = 1.3 in Eq. (63), we get z(1) = 2.15

Again putting y(1) = 1.1 and z(1) = 2.15 in Eq. (61), we get

x
(2) = 1.05

Put x
(1) = 1.3 in Eq. (62) and (63), we get

y
(2) = 1.01667, z(2) = 2.025

Similarly, x
(3) = 1.00833, y(3) = 1.00278 and z(3) = 2.004165

x
(4) = 1.001385, y

(4) = 1.00046, z
(4) = 2.00069

x
(5) = 1.00023, y

(5) = 1.000077, z
(5) = 2.000115

Since (5) (4) (5) (4) (5) (4)0.0012, 0.0038 and 0.00057.x x y y z z

The error after 5th iterations correct to two place accuracy, hence, the solution of the given system 

is X = (1, 1, 2).

The matrix form can be written as:

      

( 1) ( )

1 0 0 0 1 1 1 0 0 0

1 3 0 0 0 0 1 3 0 2

1 0 2 0 0 0 1 0 2 3

k k
X X

= ( )

0 6 6 0
1 1

0 2 2 4
6 6

0 3 3 9

k
X

Starting the initial solution X(0) = (0.8, 0.8, 2.1), we have X = (1, 1, 2).
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Example 29 Using Gauss–Seidel method to solve the following system of linear equations;

8 3 2 20, 4 11 33, 6 3 12 36.x y z x y z x y z

Solution The iteration process for the Gauss–Seidel method is given as

      ( 1) ( ) ( )1
20 3 2

8

k k k
x y z (64)

      ( 1) ( 1) ( )1
33 4

11

k k k
y x z (65)

      ( 1) ( 1) ( 1)1
36 6 3

12

k k k
z x y (66)

Let the initial solution (0) (0) (0) (0)( , , ) (0, 0, 0)X x y z

Using y
(0) = 0, z(0) = 0 in Eq. (64), we get

x
(1) = 2.5000

Using x
(1) = 2.5000, z0 = 0 in Eq. (65), we have

y
(1) = 2.0909

Using x
(1) = 2.5000, y(1) = 2.0909 in Eq. (66), we have

       z
(1) = 1.2273

Similarly, using y(1) and z(1) in Eq. (64), we have

x
(2) = 2.9773

Using x
(2) and z(1) in Eq. (65), we have

y
(2) = 0.0289

Using x
(2) and y(2) in Eq. (66), we have

z
(2) = 1.0041

Continuing this process, after 6 iteration, we obtain the solution X = (3, 2, 1)t as shown in the 

following table:

k x
(k)

y
(k)

z
(k)

1 2.5000 2.0909 1.2273

2 2.9773 2.0289 1.0041

3 3.0098 1.9968 0.9959

4 2.9998 1.9997 1.0002

5 2.9998 2.0001 1.0001

6 3.0000 2.0000 1.0000
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EXERCISE 9.2

1. Using Gauss elimination method to solve the following linear system of equations:

1 2 3

1 2 3

1 2 3

3,

4 3 4 8

9 3 4 7.

x x x

x x x

x x x

2. Use Gauss elimination method to solve

10x1 – 7x2 = 7; –3x1 + 2.099 x2 + 6x3 = 3.901; 5x1 – x2 + 5x3 = 6.

3. Solve the following system by Gauss elimination method

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

5 4, 7 12,

6 5, 4 6.

x x x x x x x x

x x x x x x x x

4. Solve the following systems using the Gauss elimination method:

   

1 2 3 1 2 3

1 2 3 1 2 3 4

1 2 3 1 2 3 4

2 3 4

(i) 3 2 3 5 (ii) 0

4 2 4 2 3 2 7

2 4 8 8 3 4 12

3 5 9

x x x x x x

x x x x x x x

x x x x x x x

x x x

5. Using LU–decomposition method to solve the following system:

   

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

(i) 2 5 (ii) 4 2 3.6

3 2 4 3 2.5

6 4 2 2 4.0

x x x x x x

x x x x x x

x x x x x x

6. Solve the following system of linear equations using LU–decomposition method:

1 2

1 2 3

1 2 3

6 2 14

9 21

3 7 5 9.

x x

x x x

x x x

7. Using Gauss–Jordan method to solve the following system of linear equations:

  

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

(i) 9, (ii) 10 12,

2 3 4 13, 2 10 13,

3 4 5 40. 5 7

x x x x x x

x x x x x x

x x x x x x

8. Using Crout’s method to solve the following system of equations:

      1 2 3 1 2 3 1 2 33 2 7 4, 2 3 5, 3 4 7.x x x x x x x x x

9. Solve the following system of equations by

(i) Crout’s method      (ii) Cholesky’s method

(a) 1 2 3 1 2 3 1 2 32 7; 3 2 4 13; 4 3 2 8.x x x x x x x x x

(b) 1 2 3 1 2 3 1 2 310 2 13; 3 10 14; 2 3 10 15.x x x x x x x x x
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(c) 1 2 3 1 2 3 1 2 32 6 8 24; 5 4 3 2; 3 2 16.x x x x x x x x x

(d) 1 2 3 1 2 3 1 2 33; 2 3 16; 3 3.x x x x x x x x x

10. Solve the following system of linear equations using

(i) Jacobi’s method       (ii) Gauss–Seidel method

(a) 1 2 3 1 2 3 1 2 38 8; 2 4 4; 3 3 5x x x x x x x x x

(b) 1 2 3 1 2 3 1 2 32 1; 2 6; 2 3x x x x x x x x x

(c) 20 2 17; 3 20 18; 2 3 20 25x y z x y z x y z

(d)
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

10 2 3; 2 10 15;

10 2 27; 2 10 9

x x x x x x x x

x x x x x x x x

Answers

1. 1 2 3

1 4
, 4, .

5 5
x x x

2. x1 = 0, x2 = –1, x3 = 1.

3. X = (1, 2, –1, –2)t.

4. (i)
1 1

1, , ; (ii) (1, 1, 2, 2) .
2 2

t

t
X X

5. (i) X = (2, 0, 1)t; (ii) X = (0.3, 0.4, 1)t.

6. X = (2, –1, 2)t.

7. (i) X = (1, 3, 5)t, (ii) X = (1, 1, 1)t.

8. 1 2 3

7 9 1
( , , ) , , .

8 8 8

t

t
X x x x

9. (a) X = (–1, 2, 3)t (b) X = (1, 1, 1)t

  (c) X = (1, 3, 5)t (d) X = (1, –2, 4)t.

10. (a) X = (0.83, 0.32, 1.07)t (b) X = (1, 2, –1)t

  (c) X = (1, –1, 1)t (d) X = (1, 2, 3, 0)t.

9.17 MATRIX INVERSION

Let
ij

n n
A a  is a non-singular square matrix of order n if an n × n matrix A

–1 exists with

AA
–1 = I = A–1

A. Then the matrix A–1 is called the inverse of A. In this section, we shall discuss the 

following methods to find the inverse of a given square matrix.

(i) Gauss elimination method

(ii) Gauss–Jordan’s method

(iii) Crout’s method

(iv) Cholesky’s method

We explain the above methods with the help of an example.
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Example 30 Find the inverse of matrix A, where

       3 3

1 2 6

2 5 15

6 15 46

A

Solution

(i) Gauss–Elimination method:  In this method we write the given matrix A as [ ],A A I

where I is the identity matrix of same order of A and perform the elementary operations reduce 

the LHS in to an identity matrix and identity matrix in A–1 such that I = A A
–1.

  Now, we write A as

1 2 6 1 0 0

2 5 15 0 1 0

6 15 46 0 0 1

A

2 2 1

3 3 1

1 2 6 1 0 0
2

0 1 3 2 1 0~
6

0 3 10 6 0 1

R R R
A

R R R

3 3 2

1 2 6 1 0 0

3 ~ 0 1 3 2 1 0

0 0 1 0 3 1

R R R A

2 2 3

1 1 3

1 2 0 1 18 6
3

0 1 0 2 10 3~
6

0 0 1 0 3 1

R R R
A

R R R

1 1 2

1 0 0 5 2 0

2 0 1 0 2 10 3

0 0 1 0 3 1

R R R A

           I = A A
–1

1

5 2 0

2 10 3

0 3 1

A

(ii) Gauss–Jordan’s method:  This method is similar to the Gauss–elimination method in which 

the a11 entry should be unit if not divide itself or interchange any two rows.
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Now, writing the given matrix A side by side with the identity matrix of order 3, we have

A I

1 2 6

2 5 15

6 15 46

1 0 0

0 1 0

0 0 1

2 2 1
11

3 3 1

1 2 6 1 0 0
2

~ 0 1 3 2 1 0 1
6

0 3 10 6 0 1

R R R
a

R R R

3 3 2

1 2 6 1 0 0

3 0 1 3 2 1 0

0 0 1 0 3 1

R R R

2 2 3

1 1 3

1 2 0 1 18 6
3

0 1 0 2 10 3
6

0 0 1 0 3 1

R R R

R R R

1 1 2

1 0 0 5 2 0

2 0 1 0 2 10 3

0 0 1 0 3 1

R R R

  Hence, the inverse of the given matrix is

1

5 2 0

2 10 3

0 3 1

A

Example 31 Find the inverse of matrix A,

For 

0 2 4

2 4 6

6 2 2

A

Solution Writing the matrix A side by side with the identity matrix of order 3, we have

      

A I a

0 2 4

2 4 6

6 2 2

1 0 0

0 1 0

0 0 1

011

      

1 2 11

2 4 6 0 1 0

~ 0 2 4 1 0 0 2

6 2 2 0 0 1

R R a
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1 1 11

1
1 2 3 0 0

2
1

~ 0 2 4 1 0 0 1
2

6 2 2 0 0 1

R R a

      

3 3 1

1
1 2 3 0 0

2

6 ~ 0 2 4 1 0 0

0 10 16 0 3 1

R R R

      

3 3 2

1
1 2 3 0 0

2

5 ~ 0 2 4 1 0 0

0 0 4 5 3 1

R R R

     

3 3

1
1 2 3 0 0

2
1

0 2 4 1 0 0
4

5 3 1
0 0 1

4 4 4

R R

      

2 2 3

1 1 3

15 11 3
1 2 0

4 4 4
4

0 2 0 4 3 1
3

5 3 1
0 0 1

4 4 4

R R R

R R R

      

1 1 2

1 1 1
1 0 0

4 4 4

0 2 0 4 3 1

5 3 1
0 0 1

4 4 4

R R R

      

2 2

1 1 1
1 0 0

4 4 4

1 3 1
0 1 0 2

2 2 2

5 3 1
0 0 1

4 4 4

R R
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Hence, the inverse of matrix A is

      

1

1 1 1

4 4 4

3 1
2

2 2

5 3 1

4 4 4

A

(i) Crout’s method:  In this method, we write the matrix A as

A = L U  with uii = 1. (67)

where   

11 12 13

21 22 23

31 32 33

0 0 1

0 and 0 1

0 0 1

l u u

L l l U u

l l l

Now Eq. (67) gives

A
–1 = (LU)–1 = U–1

L
–1 (68)

We want to find U–1, U
–1 = X, where X is an upper triangular matrix.

UX = I

Now, find L–1, L
–1 = Y, where  is a lower triangular matrix.

LY = I

For the matrix 

1 2 6

2 5 15

6 15 46

A

A = LU

  

11 12 13

21 22 23

31 32 33

1 2 6 0 0 1

2 5 15 0 0 1

6 15 46 0 0 1

l u u

l l u

l l l

=

11 11 12 13 11

21 21 12 22 13 21 22 23

31 31 21 32 31 13 32 23 33

l l u u l

l l u l l l l u

l l u l l u l u l

l11 = 1, l21 = 2, l31 = 6

11 12 122 2l u u

21 12 22 225 1l u l l

31 12 32 3215 3l u l l

13 11 136 6l l l

13 21 22 23 2315 3l l l u u
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31 13 32 23 33 3346 1l u l u l l

       

1 0 0 1 2 6

2 1 0 , 0 1 3

6 3 1 0 0 1

L U

To find U
–1, U

–1 = X UX = I

     

11 12 13

22 23

33

1 2 6 1 0 0

0 1 3 0 0 1 0

0 0 1 0 0 0 0 1

x x x

x x

x

11 12 22 13 23 33

22 23 33

33

2 2 6 1 0 0

0 3 0 1 0

0 0 0 0 1

x x x x x x

x x x

x

x11 = 1, x22 = 1, x33 = 1

    12 22 12 23 33 232 0 2, 3 0 3x x x x x x

    13 23 33 132 6 0 0x x x x

      1

1 2 0

0 1 3

0 0 1

U

Now, to find L–1, L
–1 = Y or LY = I

     

11

21 22

31 32 33

1 0 0 0 0 1 0 0

2 1 0 0 0 1 0

6 3 1 0 0 1

y

y y

y y y

or  

11

11 21 22

11 21 31 22 32 33

0 0 1 0 0

2 0 0 1 0

6 3 3 0 0 1

y

y y y

y y y y y y

y11 = 1, y22 = 1, y33 = 1

    11 21 212 0 2y y y

    22 32 323 0 3y y y

11 21 31 316 3 0 0y y y y

      1

1 0 0

2 1 0

0 3 1

L
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  Hence, A
–1 = U–1

L
–1

=

1 2 0 1 0 0

0 1 3 2 1 0

0 0 1 0 3 1

       1

5 2 0

2 10 3

0 3 1

A

(ii) Cholesky’s method:  This method is discussed in the Section 9.16.3, we have A–1 = ST
S, where 

S = L–1 with lii = 1.

  For the matrix 

1 2 6

2 5 15

6 15 46

A

  Clearly, matrix A is symmetric and positive definite. We have

A = L L
T

21 31

21 32

31 32

1 2 6 1 0 0 1

2 5 15 1 0 0 1

6 15 46 1 0 0 1

l l

l l

l l

=

21 31

2
21 21 21 31 32

2 2
31 31 21 32 31 32

1

1

1

l l

l l l l l

l l l l l l

  We obtain l21 = 2, l31 = 6

l21 l31 + l32 = 15 l32 = 3.

  Thus,

1 0 0

2 1 0

6 3 1

L

  Now, to find L–1, L
–1 = X or LX= I.

        

11

21 22

31 32 33

1 0 0 0 0 1 0 0

2 1 0 0 0 1 0

6 3 1 0 0 1

x

x x

x x x

   or

11

11 21 22

11 21 31 22 32 33

0 0 1 0 0

2 0 0 1 0

6 3 3 0 0 1

x

x x x

x x x x x x

x11 = 1, x22 = 1, x33 = 1

11 21 212 0 2x x x
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11 21 31 316 3 0 0x x x x

22 32 323 0 3x x x

Thus     1

1 0 0

2 1 0 (say)

0 3 1

L S

      

1 2 0

0 1 3

0 0 1

T
S

Hence, 1

1 2 0 1 0 0

0 1 3 2 1 0

0 0 1 0 3 1

T
A S S

       1

5 2 0

2 10 3

0 3 1

A

EXERCISE 9.3

1. Find the inverse of matrix A by

  (i) Gauss-Elimination method

 (ii) Gauss–Jordan’s method

(iii) Crout’s method

(iv) Cholesky’s method

  (a)

1 1 2

1 2 3

2 3 1

A      (b)

1 2 3

2 2 1

3 1 3

A

2. Find the inverse of the matrix A by Jordan’s method, where

50 107 36

25 54 20

31 66 21

A

3. Using Gauss-Jordan’s method, find the inverse of the matrix

1 1 3

1 3 3

2 4 4

A
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4. Find the inverse of the matrix

5 2 1

7 1 5

3 7 4

A

5. Find the inverse of the matrix

3 1 2

2 3 1

1 2 1

A

Answers

1. (a) 1

7 5 1
1

5 3 1
4

1 1 1

A     (b) 1

5 1 1

12 4 3

7 1 2

12 4 3

1 1 1

12 4 3

A

2. 1

186 129 196

95 66 100

24 17 25

A      3. 1

3
3 1

2

5 1 3

4 4 4

1 1 1

4 4 4

A

4. 1

1 1 3

8 8 8

1 1 5

8 8 8

3 5 23

8 8 8

A        5.
1

1 1 1

4 4 4

3 1 7

20 20 20

1 7 11

20 20 20

A

9.18 EIGEN VALUE PROBLEMS

Let A is n × n matrix with elements aij, then A defines a linear transformation.

Consider the transformation

AX = X, where  is a scalar and X is an eigen vector

or (A – I)X = 0 (69)
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Equation (69) is a system of homogeneous linear algebraic equations, it will have a non-trivial 

solution if

det (A – I) = 0 (70)

Equation (70) is called nth order characteristic equation in  and if solved, we obtain n values of ,

which are called characteristic roots or latent roots or eigen values or invariant roots corresponding to 

n values of , in general, there will be n-non-zero solutions of Eq. (69) which are called eigen vectors 

or characteristic vectors or invariant vectors.

9.18.1 Properties

Some important properties of eigen values and eigen vectors are as follows:

1. If  is an eigen value of matrix A, then 
1

 is the eigenvalue of A–1.

2. The eigen values of A and AT are same but in general, not the eigen vector’s.

3. If  is an eigen value of A nearest to a number p, then (  – p) shall be the eigen value of the 

matrix (A – pI).

4. If  is an eigen value of an orthogonal matrix, then 
1

 is also its eigen value.

5. If  is an eigen value of matrix A, then r is an eigen values of Ar.

6. All the eigen values of symmetric matrix are real.

7. The sum of all the eigen values of matrix A is equal to the trace of A.

8. The product of all the eigen values of matrix A is equal to the determinant of A.

9.18.2 Critical Points of Linear Systems

We can use the eigen value problem in the Section 9.19 to investigate the critical points of a linear 

system AX = B, where 

2 2

a b
A

c d

X = 1 2 1 2[ , ] and [b , ] .T T
x x B b

The nature of the isolated critical point (0, 0) depends on the two non-zero eigen values 1 and 2

of the matrix A are:

(i) if the eigen values are real and unequal with the same sign, then the critical point is an improper 

node.

(ii) if the eigen values are real and unequal with opposite signs, then the critical point is unstable 

saddle point.

(iii) if the eigen values are real and equal, then the critical point is a proper node.

(iv) if the eigen values are pure imaginary, then it is a center.

(v) if the eigen values are complex conjugate, then the critical point is a spiral point.

9.18.3 Power Method

This method is applicable to determine the largest eigen-value (in magnitude). Let matrix A has a 

complete set of eigen vectors X1, X2, X3, ..., Xn corresponding to eigen values 1, 2, 3, ..., n, such that

1 2 3 ,n (71)

where 1 is the dominant eigen value.
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Since the n vectors may be expressed as a linear combination.

Thus, let a vector

y0 = 
1

n

r r

r

X (72)

Construct the iterative scheme

Zi + 1 = 1
1and ; 0, 1, 2, ...i

i i
i

Z
A y y i

c
(73)

where ci is largest (in magnitude) component of Zi + 1.

Therefore, y1 = 1
0

0 0

1
;

Z
A y

c c
c0 is the largest element of A y0.

y2 = 2
1 0

1 0 1

1 1
;A y A y

c c c
c1 is largest element of A y1

In general,

yk = 
1 2 0

1

...k kc c c
A

k
y0

=
1 2 0 1...

k n

r r
k k r

A
X

c c c

=
1 2 0 1

1
( )

...

n
k

r r
k k r

A X
c c c

=
1 1 0 1

1

...

n
k

r r r
k k r

X
c c c

= 1 1 1 2 2 2
1 2 0

1 k k k
n n n

k k

X X X
c c c

yk = 1 2
1 1 2 2

1 2 0 1 1

kkk
n

n n
k k

X X X
c c c

Since
1

1i  for i = 2, 3, 4, ..., n, then

1

lim 0

k

i

k
 for i = 2, 3, 4, ..., n

yk = 1
1 1 1

1 2 0

( 0)

k

k k

X
c c c

(74)
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Also, yk + 1 = 

1
1

1 1
1 0

k

k k

X
c c c

(75)

The j
th element of yk and yk + 1 are as follows:

yk(j) = 1
1 1

1 2 0

( )
,

k

j
k k

x
c c c

 where xji is the jth element of X1 (76)

and yk + 1(j) = 

1
1

1 1
1 0

( )k

j
k k

x
c c c

(77)

From Eqs (76) and (77), we at once obtain

1 = 1( )
lim ; 1, 2, 3, ...,

( )

k

k
k

y j
j n

y j

Example 32 Find the largest eigen value and corresponding the eigen vector of the following 

matrix using power method correct to 2 decimal places, where 

2 1 0

1 2 1 .

0 1 2

A

Solution

Suppose
0

1

1

1

y  be the initial arbitrary vector.

Then Z1 = 0 1

2 1 0 1 1 1

1 2 1 1 0 ; 0

0 1 2 1 1 1

A y y

Z2 = 1

2 1 0 1 2

1 2 1 0 2

0 1 2 1 2

A y  = 2

1

2 1 2

1

y

Z3 = 
2

2 1 0 1 3

1 2 1 1 4

0 1 2 1 3

A y  = 

0.75

4 1

0.75

 = 4 y3

Z4 = 
3

2 1 0 0.75 2.5

1 2 1 1 3.5

0 1 2 0.75 2.5

A y  = 

0.714

3.5 1

0.714

 = 3.5 y4

Z5 = 4

2 1 0 0.714

1 2 1 1

0 1 2 0.714

A y  = 5

0.708

3.42 1 3.42

0.708

y
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Z6 = 5

2 1 0 0.708

1 2 1 1

0 1 2 0.708

A y  = 
6

0.707

3.416 1 3.416

0.707

y

Z7 = 6

2 1 0 0.707 0.707

1 2 1 1 3.414 1

0 1 2 0.707 0.707

A y  = 3.414 y7

For 2 decimal places

( 1) 2
1 1

1
10

2

k k  = 0.005

Here 7
1 = 3.414 and 6

1 = 3.416

7 6
1 1 3.414 3.416 0.002 0.005

Hence, the largest eigen value 1 = 3.41 and eigen vector is 

0.707

1 ~ [1 1.414 1] .

0.707

T

Example 33 Find the largest eigen value and its corresponding eigenvector for the matrix A,

where

25 1 2

1 3 0

2 0 4

A

Solution Suppose the initial arbitrary vector be

0

1

0

0

y

and Zi + 1 = 
1 1

1
, ( ); 0, 1, 2, 3, ...i i i

i

A y y Z i
c

 where ci is the largest element of Zi + 1.

Now Z1 = 0

25 1 2 1 25

1 3 0 0 1

2 0 4 0 2

A y

=

1

25 0.04

0.08

 = 25 y1
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Z2 = 1

25 1 2 1 25.2

1 3 0 0.04 1.12

2 0 4 0.08 1.68

A y  = 

1

25.2 0.0444

0.0667

 = 25.2 y2

Z3 = 2

25 1 2 1

1 3 0 0.0444

2 0 4 0.0667

A y  = 

25.1778 1

1.1332 25.1778 0.0450

1.7337 0.0688

 = 25.1778 y3

Z4 = 3

25 1 2 1 25.1826

1 3 0 0.0450 1.135

2 0 4 0.0688 1.7248

A y =

1

25.1826 0.0451

0.0685

 = 25.1826 y4

Z5 = 
4

25 1 2 1 25.1821

1 3 0 0.0451 1.1323

2 0 4 0.0685 1.7260

A y  = 

1

25.1821 0.0451

0.0685

 = 25.1821 y5

Since Z4 Z5, hence the largest eigen value is 1 = 25.182 and eigen vector  is

1

0.0451

0.0685

Note:  For 3 decimal places 1 3
1 1

1
10 0.0005

2

k k

Here 4
1 = 25.1826, 5

1 = 25.1821   |25.1821 – 25.1826| = 0.0005.

SUMMARY

Following topics have been discussed in this chapter:

1. Some Basic Properties of an Equation

(i) The total number of roots of an algebraic question is the same as its degree.

(ii) If f (x) is exactly divisible by (x – a), then x = a is a root of equation f (x) = 0.

(iii) If 1 2
0 1 2( ) n n n

nf x a x a x a x a  have the roots 1, 2, 3, ..., n, then

  Sum of roots = 1

0

;i

i

a

a

  Sum of the product of two roots = 
2

0

;i j

i j

a

a
 and product of the roots = 

0

( 1) .n n
i

i

a

a
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(iv) Every equation of the odd degree has at least one real root.

(v) If  + i  is a root of the equation f (x) = 0, then  – i  must also be its root.

(vi) An algebraic equation can have at most as many positive roots as the number of changes of 

sign in the coefficients of f (x).

(vii) An algebraic equation can have at most as many negative roots as the number of changes of 

sign in the coefficient of f (–x).

(viii) If an algebraic equation of degree ‘n’ has at the most p positive roots and at the most n

negative roots, then the equation has at least (n – p – n) imaginary roots.

(x) Intermediate Value Theorem:  If f (x) is a continuous function on [a, b] and the sign of f (a) is 

different from the sign of f (b); that is f (a)·f (b) < 0, then there exists a point c, in the interval 

(a, b) such that f (c) = 0. Hence, any value c  (a, b) can be taken as an initial approximation 

to the root.

Note: Using the above theorem, the equation f (x) = 0 has at least one real root or an odd number 

of real roots in (a, b).

2. Bisection Method

This is one of the simplest method and is based on the Intermediate value theorem. This method is 

also known as the bisection method of Bolzano or Binary or Binary-search method. This bisection 

method is defined as following:

(i) Using Intermediate value theorem, find an interval (a, b) if f (a) f (b) < 0, then the root lies in 

(a, b).

(ii) The first approximation to the root is 1 .
2

a b
x  If f (x1) = 0, then x1 is a root of f (x) = 0, 

otherwise.

(iii) Use the Intermediate value theorem to decide whether the root lies in (a, x1) or (x1, b).

(iv) Repeat the step using the interval either (a, x1) or (x1, b).

(v) The procedure repeated while an length of the last interval is less than the desired accuracy. 

The mid-point of this last interval is the required root of the given equation f (x) = 0.

3. Fixed Point Iteration Method

A fixed point  for a function (x) is a number, when the value of the function does not change.

Fixed point iteration or successive approximation method find a root of an equation

f (x) = 0.

The first step of this method is to write the above equation in the form

x = (x)

Let x0 be an initial approximation to the root of f (x) = 0, then the first approximation is

x1 = (x0).

The r
th successive approximations are as follows:

xn + 1 = (xn); n = 0, 1, 2, 3, ... is called the fixed-point iteration.

4. Newton’s Method

Newton–Raphson (or Newton’s) method is one of the most powerful and well-known numerical 

method.
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The successive approximations is given by

1

( )
; 0, 1, 2, 3, ...

( )

n
n n

n

f x
x x n

f x

is known the Newton’s–Raphson formula.

5. Regula Falsi Method

The Regula falsi method is also known as method of false position with the help of this method, we 

compute the real roots of the equation f (x) = 0. 

Hence, the first approximation to the root is x2 = 1 0
0 0

1 0

( )
( )

( ) ( )

x x
x f x

f x f xIn general 

1
1 1 1

1

( )
( )

( ) ( )

n n
n n n

n n

x x
x x f x

f x f x

Provided that at each step f (xn – 1)·f (xn) < 0.

6. Secant Method

Newton’s method is a powerful technique, but it has a weakness, the need to compute the value of 

f  at each approximation. To avoid computation of f , f (xn) is replaced by 1

1

( ) ( )n n

n n

f x f x

x x
 and we 

obtained secant method as

1
1

1

( )
( ) ( )

n n
n n n

n n

x x
x x f x

f x f x

This technique is called the secant method. This method starting two initial approximations

x0 and x1, the approximation x2 is the x–intercept of the secant line joining two points [x0, f (x0)] and 

[x1, f (x1)]. The approximation x3 is the x-intercept of the secant line joining two points [x1, f (x1)] and 

[x2, f (x2)] and continuing this process until we get the root to desired accuracy.

7. Rate of Convergence for Iterative Methods

(i) Rate of Convergence of Bisection Method is linearly convergent.

(ii) Rate of Convergence of Iteration Method is linear.

(iii) Rate of Convergence of Newton’s Method is quadratic.

(iv) The order of convergence of Regula-Falsi method is 1.618.

8. Gaussian Elimination Method

This method is applied on the linear system and we write the augmented matrix

A B

a a a

a a a

a a a

b

b

b

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2
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The entries in the (n + 1)th column are the values of B i.e., , 1i n ia b  for each i = 1, 2, …, n.

Provided a11  0, now we perform the operations corresponding to 
1

1
11

j

j j

a
E E E

a
 for each 

j = 2, 3, …, n, to eliminate the coefficient fx1 in each rows.

The entries in rows 2, 3, …, n are change, for each of notation we again denote the entry in the

i
th row and the jth column by aij.

We follow a sequential procedure for i = 2, 3, …(n – 1) and perform the operation

ji

j j i
ii

a
E E E

a
 for each j = i + 1, i + 2, …, n, provided aii  0 and we have a 

resulting matrix is of the form

A B

a a a

a a

a

a

a

a

n

n

nn

n

n

n n

11 12 1

22 2

1 1

2 1

1

0

0 0

,

,

,

Now, we write the above equation form as

11 1 12 2 1 1, 1

22 2 2 2, 1

, 1

n n n

n n n

nn n n n

a x a x a x a

a x a x a

a x a

Using back substitution find x1, x2, …, xn.

9. Gauss’s–Jordan Method

This method follow the same procedure of Gauss’s elimination method, but also from E1, E2, …, Ei – 1.

The augmented matrix [A|B] reducing as

(1)(1)
1, 111

(2)(2)
2, 122

( ) ( )
, 1

0 0

0 0

0 0

n

n

n n
nn n n

aa

aa

a a

The solution is obtained by 

( )
, 1

( )
,

i
i n

i i
ii

a
x

a
 for each i = 1, 2, 3, …, n.

Now, we explain the above procedure with the help of the following example:

10. Crout’s Method

Crout method is used to determine determining the numerical solution of a system of linear equations 

and it has an advantage over the Gauss’s elimination method in that it requires the number of less 

computations. Suppose, the systems of linear equations is of the form AX = B
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where
ij

m n
A a  for each i = 1(1)m and j = 1(1)n,

1 2 1 2, , ..., , , , ...,
T T

m mB b b b X x x x

Then C A B

a a a

a a a

a a a

b

b

b

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2

Now, we define an Auxiliary matrix

C A B

Using C , we determine the solution column X.

11. LU Decomposition Method

The Gauss’s elimination method is the principal tool in the direct solution of linear system of 

equations. The LU decomposition method has the property that the matrix decomposition step can 

be performed independent of the right hand side vector. In this method the coefficient matrix A is 

expressed as the product of lower triangular matrix (L) and an upper triangular matrix (U), that is

A = LU

Then, the linear system of equations,

AX = B becomes

LUX = B

Let UX = Y,

then the given equation UX = B becomes

LY = B

Now, first we solve the lower triangular system for Y. Once Y is known, then solve the upper 

triangular system for X.

We shall discussed the following approaches of decomposition using 3 × 3 matrices.

(i) Doolittle Decomposition

In this method, we choose lii = 1 for i = 1, 2, 3 and we write the given system as

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0

1 0 0

1 0 0

a a a u u u

a a a l u u

a a a l l u

(ii) Crout’s Decomposition

In this method, we choose uii = 1 for i = 1, 2, 3 and we write the given system as

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

0 0 1

0 0 1

0 0 1

l u u a a a

l l u a a a

l l l a a a
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(iii) Cholesky’s Method

This method is applicable for a symmetric and positive definite matrix A, (i.e., A
T = A and

0 for all 0),T
X AX X  then, according to this method matrix A can be written as the product of 

two triangular matrix such that

A = LL
T,

where L is lower triangular matrix and LT is an upper triangular matrix.

A
–1 = (L L

T)–1

= (LT)–1
L

–1

= (L–1)T
L

–1

A
–1 = ST

S;   where S = L–1

which gives the inverse of matrix A.

12. Iterative Methods

In this section, we shall discuss the iterative or indirect methods, an iterative method repeats its 

process over and over, each time using the current approximation to produce a better approximation 

for the exact solution, until the current approximation is sufficiently close to the exact solution that 

is we expect that x(k) to be close to x if ( ) ( 1)k k
x x  is very small. An iterative methods to solve the 

n × n linear system AX = B start with an initial approximation x(0) to the solution x and generates a 

sequence of vectors x
k

k

( )

0
 that converge to x. Now, we describe the Jacobi and the Gauss–Seidel 

iterative methods.

(i) Jacobi’s Method

This method is converges if the coefficient matrix A strictly diagonally dominant; that is

ii ij

i j

a a  for i = 1, 2, 3, …, n.

The iterative formula for the linear system of equations AX = B by Jacobi method can be written 

as

( 1) ( )

1

1 n
k k

i ij j i
ii j

j i

x a x B
a

for i = 1, 2, 3, …, n; provided aii  0.

(ii) Gauss–Seidal Method

The iterative formula for the linear system of equations AX = B by Gauss–Seidal method can be 

written as

1
( 1) ( 1) ( )

1 1

1 i n
k k k

i ij j ij j i
ii j j i

x a x a x B
a

for i = 1, 2, 3, …, n; provided aii  0.
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OBJECTIVE TYPE QUESTIONS

1. The iteration formula to find the square root of 

a positive real number b using the Newton’s–

Raphson method is

(a) 1 3( ) 2k k kx x b x

(b) 1 3( ) 2k k b kx x x

(c)
2

1 2 ( )k k k kx x x x b

(d) none of the above

[GATE (CS) 1995]

2. Newton’s–Raphson iteration formula for 

finding
3 , 0c c  is

(a)

3 3

1 2

2

3

n
n

n

x c
x

x

(b)

3 3

1 2

2

3

n
n

n

x c
x

x

(c)

3

1 2

2

3

n
n

n

x c
x

x

(d)

3

1 2

2

3

n
n

n

x c
x

x

[GATE (CS) 1996]

3. We wish to start x
2 – 2 = 0 by Newton’s–

Raphson technique. Let the initial guess. x0 = 

1.0 subsequent estimate of x (i.e., x1) will be

(a) 1.414 (b) 1.5

(c) 2.0 (d) none of these

[GATE (ME) 1998]

4. If a > 0, the reciprocal value of 
1

a
 by Newton–

Raphson algorithm for f (x) = 0 is

(i) The Newton–Raphson algorithm for the 

function will be

(a) 1

1

2
k k

k

a
x x

x

(b)
2

1

1

2
k k kx x a x

(c)
2

1 2k k kx x ax

(d)
2

1
2

k k k

a
x x x

(ii) For a = 7 and starting with x0 = 0.2, the first 

two iterations will be

(a) 0.11, 0.1299 (b) 0.12, 0.1392

(c) 0.12, 0.1416 (d) 0.13, 0.1428

[GATE (CE) 2005]

5. Starting from x0 = 1, one step of Newton–

Raphson method in solving the equations

x
3 + 3x – 7 = 0 gives the next value (x1) is

(a) 0.5 (b) 1.406

(c) 1.5 (d) 2

[GATE (ME) 2005]

6. Consider the series 1

9
,

2 8

n
n

n

x
x

x

x0 = 0.5 obtained from the Newton–Raphson 

method. The series converges to

(a) 1.5 (b) 2
(c) 1.6 (d) 1.4

[GATE (ECE) 2005, (CS) 2008]

7. For k = 0, 1, 2, …, the steps of Newton–

Raphson method for solving a non-linear 

equation is given by

2
1

2 5

3 3
k k kx x x

Starting from a suitable initial choice and

k  the iterate xK tends to

(a) 1.7099 (b) 2.2361

(c) 3.1251 (d) 5.0000

[GATE (AIE) 2006]

8. Identify the Newton–Raphson iteration 

scheme for finding the square root of 2 is

(a) 1

1 2

2
n n

n

x x
x

(b)
1 2

2
n

n

x
x

(c) 1

2
n

n

x
x

(d) 1 (2 )n nx x

[GATE (AIE) 2007]

9. The following equation needs to be numerically 

solved by using the Newton–Raphson method 
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x
3 + 4x – 9 = 0. The iterative equation for this 

purpose is (k indicates the iteration level)

(a)

3

1 2

2 9

3 4

k
k

k

x
x

x

(b)

2

1 2

3 4

2 9

k
k

k

x
x

x

(c)
2

1 3 4k k kx x x

(d)

2

1 2

4 3

9 2

k
k

k

x
x

x

[GATE (CE) 2007]

10. The equation x
3 – x

2 + 4x – 4 = 0 is to be 

solved using the Newton–Raphson method. 

If x = 2 is taken as the initial approximation 

of the solution, then the next approximation 

using the method will be

(a)
2

3
(b)

4

3

(c) 1 (d)
3

2

[GATE (ECE) 2007]

11. The recursion relation to solve x = e–x using 

Newton–Raphson method is

(a) 1
nx

nx e

(b) 1
nx

n nx x e

(c) 1 (1 )
1

n

n

x

n n x

e
x x

e

(d)

2

1

(1 ) 1n

n

x
n n

n x
n

x e x
x

x e

[GATE (ECE) 2008]

12. The Newton–Raphson iteration

1

1

2
n n

n

R
x x

x

can be used to compute the

(a) square of R (b) reciprocal of R

(c) square root of R (d) logarithms of R

[GATE (CE) 2008]

13. Let x
2 – 117 = 0. The iterative steps for the 

solution, using Newton’s–Raphson method is 

given by

(a) 1

1 117

2
k k

k

x x
x

(b) 1

117
k k

k

x x
x

(c) 1
117

k
k k

x
x x

(d) 1

1 117

2
k k k

k

x x x
x

[GATE (EE) 2009]

14. A numerical solution of the equation 

( ) 3 0f x x x  can be obtained using 

Newton–Raphson method. If the starting 

value is x = 2 for the iteration, the value of x

that is to be used in the next step is

(a) 0.306 (b) 0.739

(c) 1.694 (d) 2.306

[GATE (ECE) 2011]

15. The bisection method is applied to compute a 

zero of the function 4 3 2( ) 4 0f x x x x

in the interval {1, 9}. The method converges 

to a solution after iterations

(a) 1 (b) 3

(c) 5 (d) 7

[GATE (CS) 2012]

16. When the Newton–Raphson method is applied 

to solve the equation 
3( ) 2 1 0,f x x x

the solution at the end of the first iteration 

with the initial guess value as x0 = 1.2 is

(a) –0.82 (b) 0.49

(c) 0.705 (d) 1.69

[GATE (EE) 2013]

17. The function f (x) = ex –1 is to be solved using 

Newton’s–Raphson method. If the initial 

value of x0 is taken as 1.0, then the absolute 

error observed at second iteration is _____.

[GATE (EE) 2014]

18. Newton–Raphson method is used to find the 

roots of the equation x3 + 2x
2 + 3x – 1 = 0. If 

the initial guess is x0 = 1, then the value of x

after 2nd iteration is ______.

[GATE (ME) 2015]

19. The iteration step in order to solve for the cube 

roots of a given number N using the Newton–

Raphson method is
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(a)
3

1

1
( )

3
k k kx x N x

(b) 1 2

1
2

3
k k

k

N
x x

x

(c)
3

1

1
( )

3
k k kx x N x

(d) 1 2

1
3

3
k k

k

N
x x

x

[GATE (IN) 2014]

20. The order of convergence in Newton–Raphson 

method is

(a) 0 (b) 2

(c) 3 (d) None of these

21. The order of convergence of iterative formula 
2

1 3 of is
2

n n
n

x x
x a

a

(a)
3

2
(b) 0

(c) 2 (d) 1

22. Newton’s-Raphson method is useful in case 

of large values of

(a) f (x) (b) f (x)

(c) f (x) (d) f (x)

23. The order of convergence of the iterative 

method

0
1 0

0

( )
( )

( ) ( )

n
n n

n

x f x
x x f x

f x f x

for finding a simple root of the equation 

f (x) = 0 is

(a) 1 (b) 2

(c) 3 (d) 4

24. The rate of convergence in bisection method 

is

(a) 1 (b) 2

(c) 3 (d) 4

25. The bisection method for finding the roots of 

an equation f (x) = 0 is

(a) 1 1

1
( )

2
k k kx x x

(b) 1 1

1
( )

2
k k kx x x

(c)
1 2

1
( )

2
k k kx x x

(d) None of these

ANSWERS

1. (d) 2.(c) 3. (a) 4. (i-c) (ii-b) 5. (b) 6. (a) 7. (a)

8. (a) 9. (a) 10. (d) 11.(c) 12. (c) 13. (a) 14. (1.694)

15. (b) 16. (0.705) 17. (0.06) 18. (0.3043) 19. (b) 20.(b) 21.(a)

22.(c) 23.(a) 24.(b) 25. (a)



10.1 NUMERICAL DIFFERENTIATION

Numerical differentiation is concerned with the method of finding the successive differentiations of a 

function at the given arguments, that is, it is the process of determining the value of the derivative of a 

function y = f (x) at some assigned  values of independent variable from the given set of values (xi, yi).

If the values of the arguments are equally spaced and if the derivative is to be found near the beginning 

of the table, then we apply Newton’s forward formula, if it is required near the end of the table, then we 

apply the Newton’s backward formula. If we want to find the derivative near the middle of the given set 

of values, then we apply any one of the central difference formula. If the values of the arguments are 

Numerical

Differentiation

and Integration10

Isaac Newton was born on 4 January 1643 in Lincolnshire, England. He was 

one of the greatest and most influential man to have contributed to numerous 

fields such as physics, mathematics, astronomy, philosophy and theology. Newton 

began a life that was to become an inspiration for the scientific world for 

centuries to come. After his early education from ‘The King’s School’ in 

Grantham, Newton tried his luck for Trinity College of the Cambridge University. 

Succeeding in his attempt he entered Trinity College in June 1661 where he 

acquired knowledge of the modern philosophers and astronomers like Descartes, 

Galileo, Kepler and Copernicus. He showed immense aptitude in mathematics 

and physics and soon he was working on binomial theorems and developing mathematical theories that 

were later to form a branch of mathematics called infinitesimal calculus. Newton’s Law of Gravitation 

was conceived in 1665. Newton worked in all branches of mathematics portraying pure brilliance in each 

one. He particularly advanced calculus by giving solutions to problems of analytical geometry by using 

differentiation and integration. Newton’s method, Newton’s Identities, binomial theorem, improvements 

to the theory of finite differences and solution to Diophantine Equations are all credited to Newton. His 

work in the field of Optics also resulted in major advances that gave clarity to previous vague theories. 

Newton investigated through various experiments, known as the ‘Experimentum Crucis’, the refraction 

of light showing that when white light passes through a glass prism, it forms into spectra of different 

colors with each color refracting at a different angle. He used various media like oil, water and even soap 

bubble to work more on his color theory. His work ‘Opticks’ is a model of his theories of Optics, published 

in 1704. Newton was the master of all sciences. He died on 20 March 1726 in Kensington, Middlesex, 

England.
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not equally spaced, then for determining the derivative by using Newton’s divided difference formula 

or Lagrange’s interpolation formula.

To determine the maximum or minimum value of a tabulated function, then we find the necessary 

differences from the given table and put them in an appropriate interpolation formula. Now, we compute 

the first derivative of the function obtained from the interpolation formula and put the derivative equal 

to zero and obtain the values of stationary point(s) and then determine the maximum or minimum value 

of the function.

10.2  NUMERICAL DIFFERENTIATION USING THE INTERPOLATION 

FORMULAE

10.2.1 Newton’s Forward Interpolation Formula

Newton’s forward interpolation formula is given by

y = 2 3
0 0 0 0

( 1) ( 1)( 2)

2! 3!

u u u u u
y u y y y (1)

where u = 0x x

h

Differentiating Eq. (1) with respect to u, we get

       2 3
0 0 0

2 1 3 6 2

2! 3!

dy u u u
y y y

du
(2)

Now,

      
2 3 2

2 3 4
0 0 0 0

1

1 2 1 3 6 2 4 18 22 6

2! 3! 4!

dy dy du dy

dx du dx h du

u u u u u u
y y y y

h
(3)

At x = x0, u = 0, then (3) becomes

0

2 3 4
0 0 0 0

1 1 1 1
.

2 3 4x x

dy
y y y y

dx h

Similarly, higher order derivatives

0

0

2
2 3 4

0 0 02 2

3
3 4

0 03 3

1 11

12

1 3
and

2

x x

x x

d y
y y y

dx h

d y
y y

dx h

and so on.
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10.2.2 Newton’s Backward Interpolation Formula

Newton’s backward interpolation formula is given by

       2 3( 1) ( 1)( 2)

2! 3!
n n n n

u u u u u
y y y y y (4)

where       nx x
u

h
(5)

Differentiating Eq. (4) w.r.t. u and Eq. (5) w.r.t. x, we obtain

    

2 3 4

2
2 3 4

2 2

3
3 4

3 3

1 1 1 1

2 3 4

1 11

12

1 3

2

n

n

n

n n n n
x x

n n n

x x

n n

x x

dy
y y y y

dx h

d y
y y y

dx h

d y
y y

dx h

 and so on.

10.2.3 Stirling’s Central Difference Formula

To compute the values of the derivatives of the function near the middle of the given set of arguments. 

We have

        

3 32 2
20 1 1 2

0 1

( 1)

2 2! 3! 2

y y y yu u u
y y u y

      
5 52 2 2 2 2

4 2 3
2

( 1) ( 1)( 2 )

4! 5! 2

y yu u u u u
y (6)

where     0 .
x x

u
h

(7)

Differentiating Eq. (6) w.r.t. u and Eq. (7) w.r.t. x; we obtain

   

0

0

5 53 3
0 1 2 31 2

2
2 4 6

1 2 32 2

1 1 1

2 6 2 30 2

1 1 1

12 90

x x

x x

y y y yy ydy

dx h

d y
y y y

dx h

and so on.
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10.2.4 Bessel’s Central Difference Formula

The Bessel’s formula is

       

2 2
0 1 1 0

0

1 ( 1)

2 2 2! 2

y y y yu u
y u y

4 4
3 2 1

1

6 6
5 3 2

2

1
( 1)

( 1) ( 1)( 2)2

3! 4! 2

1
( 1) ( 1)( 2)

( 2)( 1) ( 1)( 2)( 3)2

5! 6! 2

u u u
y yu u u u

y

u u u u u
y yu u u u u u

y (8)

where     0x x
u

h
(9)

Differentiating Eq. (8) w.r.t. u and Eq. (9) w.r.t. x and we have

    

0

2 2 4 4
31 0 2 1

0 1

6 6
5 3 2

2

1 1 1 1

2 2 12 12 2

1 1

120 60 2

x x

y y y ydy
y y

dx h

y y
y

    

0

2 2 4 42
31 0 2 1

12 2

6 6
5 3 2

2

1 1 1

2 2 12 2

1 1

24 90 2

x x

y y y yd y
y

dx h

y y
y

and so on.

10.2.5 Newton’s Divided Difference Formula

We have

    

| |

| |

2
0 0 0 0 1 0

3 4
0 1 2 0 0 1 2 3 0

( ) ( ) ( ) ( ) ( )( ) ( )

( )( )( ) ( ) ( )( )( )( ) ( )

f x f x x x f x x x x x f x

x x x x x x f x x x x x x x x x f x (10)

Differentiating Eq. (10) w.r.t. ‘x’ we have

     

f x f x x x x f x x x x x x

x x

( ) ( ) ( ) ( ) ( )

(

| |0 0 1
2

0
2

0 1 2

0

2 3 2

11 1 2 2 0
3

0x x x x f x) ( )|

10.2.6 Lagrange’s Interpolation Formula

This formula is applied in both cases, that is if the arguments are equally spaced or unequally spaced. 

The Lagrange’s interpolation formula is as follows:
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1 2 0 2

0 1
0 1 0 2 0 1 0 1 2 1

( )( ) ( ) ( )( ) ( )
( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

n n

n n

x x x x x x x x x x x x
f x f x f x

x x x x x x x x x x x x
(11)

Differentiating Eq. (11) w.r.t. x one or more times and we obtain the derivatives of f (x).

10.2.7 Maxima and Minima of a Function given the Tabulated Values

To determine the value(s) of arguments x at which the curve y = f (x) is maxima or minima can be 

obtained by equating 
dy

dx
 to zero. The same procedure can be used to find maxima or minima for the 

tabulated function by differentiating the interpolating function. Explain the detailed procedure with the 

help of following example.

Example 1 Compute the minimum value of y from the following table:

x 0 1 2 3 4 5

y 0 0.25 0 2.25 16.00 56.25

Solution Since the values of arguments x are equally spaced. Also, clearly the minimum value of

y occurs at x = 0 or x = 2. Here we apply Newton’s forward interpolation formula. The difference table 

is given as following:

x y y
2
y

3
y

4
y

0

1

2

3

4

5

0

0.25

0

2.25

16.00

56.25

0.25

–0.25

2.25

13.75

40.25

–0.50

2.50

11.50

26.50

3

9

15

6

6

       

2
0 0 0

( 1)

2!

dy u u
y u y y

dx

For minimum of y,

       

1 ( 1) 1
0 0 0

4 2 2

dy u u
u

dx

u – u2 + u = 0

u(u – 2) = 0 u = 0; u = 2

At u = 0

x = x0 + uh x = 0 + 0 × 1 x = 0

and at u = 2

x = x0 + uh x = 0 + 2 × 1 = 2

Also  
2

2 3
0 02 2

0

1

x

d y
y y

dx h
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= [–0.50 – 3] = –3.50 < 0

and  
2

2 3
0 02 2

2

1

x

d y
y y

dx h

= [2.25 – 9] = –6.75 < 0

Hence, x = 0 and x = 2 are minimum.

Therefore, y = 0 is the minimum value at x = 0 and x = 2.

Example 2 From the following table find f (6) and the maximum value of f (x).

x 0 2 3 4 7 9

y = f (x) 4 26 58 112 466 922

Solution

Since the arguments are not equally spaced, therefore we can use either Newton’s divided difference 

formula or Lagrange’s interpolation formula. Here we apply Newton’s formula. 

Divided difference table is as follows:

x y = f (x) | ( )f x | 2 ( )f x | 3 ( )f x | 4 ( )f x

0

2

3

4

7

9

4

26

58

112

466

922

11

32

56

118

228

7

11

16

22

1

1

1

0

0

Since the third divided differences is constant, so the Newton’s divided difference formula is as 

follows:

      

| |

|

2
0 0 0 0 1 0

3
0 1 2 0

( ) ( ) ( ) ( ) ( )( ) ( )

( )( )( ) ( )

f x f x x x f x x x x x f x

x x x x x x f x

= 4 ( 0) 11 ( 0)( 2) 7 ( 0)( 2)( 3) 1x x x x x x

= 3 22 3 4.x x x

Therefore, 2( ) 3 4 3f x x x

      
2(6) 3(6) 4 6 3f

= 135.

For maxima of f(x), putting f (x) = 0

  2 2 5
3 4 3 0

3 3
x x x i

Since, roots are imaginary.

Therefore, there is no extreme value in the range. In fact, it is an increasing curve.
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Example 3 Using the following data, compute f (5):

x f (x) | f (x) |
2
f (x) |

3
f (x)

0

2

3

4

7

9

4

26

58

112

466

922

11

32

54

118

228

7

11

16

22

1

1

1

Solution

Since, the arguments are not equally spaced, we use Newton’s divided difference formula, we have

| |

|

2
0 0 0 0 1 0

3
0 1 2 0

( ) ( ) ( ) ( ) ( )( ) ( )

( )( )( ) ( )

f x f x x x f x x x x x f x

x x x x x x f x (12)

Differentiating Eq. (12) w.r.t. x, we get

| |

|

2 2
0 0 1 0 0 1 2 0 1 1 2 2 0

3
0

( ) ( ) 2 ( ) ( ) 3 2 ( )( )

( )

f x f x x x x f x x x x x x x x x x x x

f x (13)

Put      0 1 2 35, 0, 2, 3, 4x x x x x

f (5) = 11 + 56 + 31

= 98.

Example 4 Following table reveals the velocity v of a body during the time t. Find its acceleration 

at t = 1.1.

t 1.0 1.1 1.2 1.3 1.4

v 43.1 47.7 52.1 56.4 60.8

[UPTU 2002; GEU 2015]
Solution

Since, the arguments are equally spaced. Therefore, we use the Newton’s forward interpolation 

formula.

The difference table is:

t v v
2
v

3
v

4
v

1.0

1.1 

1.2

1.3

1.4

43.1

47.7  

52.1

56.4

60.8

4.6

4.4  

4.3

4.4

–0.2

–0.1   

0.1

0.1

0.2  
0.1

Here x0 = 1.1, v0 = 47.7 and h = 0.1.



10.8 Engineering Mathematics for Semesters III and IV

The acceleration at t = 1.1 is given by

    

2 3
0 0 0

1.1

1 1 1

2 3t

dv
v v v

dt h

=
1 1 1

4.4 ( 0.1) (0.2) 45.1667
0.1 2 3

Hence, the acceleration is 45.1667.

Example 5 A rod is rotating in a plane. The following table gives the angle  (in radians) through 

which the rod has turned for various values of time t (in seconds)

t 0 0.2 0.4 0.6 0.8 1.0 1.2

0 0.12 0.49 1.12 2.02 3.20 4.67

Compute the angular velocity and angular acceleration of the rod at time t = 0.6 sec.

[U.P.T.U. 2003, 2004]

Solution Since the arguments are equally spaced. We compute the velocity and acceleration at t = 0.6 

so we use any central difference interpolation formula.

The difference table is

t
2 3 4

0

0.2

0.4

0.6  

0.8

1.0

1.2

0

0.12

0.49

1.12   

2.02

3.20

4.67

0.12

0.37

0.63

0.9

1.18

1.47

0.25

0.26

0.27

0.28

0.29

0.01

0.01

0.01

0.01

0

0

0

Here t0 = 0.6, 0 = 1.12 and h = 0.2

Hence, we apply Stirling central difference formula.

Angular velocity at t = 0.6 sec is given by

    

3 3
0 1 1 2

0.6

1 1

2 6 2t

d

dt h

=
1 0.9 0.63 1 0.01 0.01

0.2 2 6 2

= 3.8167 rad/sec

and angular acceleration

    

2
2 4

1 22 2
0.6

1 1

12t

d

dt h
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=
2

1
[0.27}

(0.2)

= 6.75 rad/s2

Example 6 The distance covered by an athlete for the 50 metre race is given in the following 

table:

Time (sec) 0 1 2 3 4 5 6

Distance (metre) 0 2.5 8.5 15.5 24.5 36.5 50

Determine the speed of athlete at t = 5 second.

Solution Since the arguments are equally spaced and we find the derivative at t = 5 which is near the 

end of the table.

Hence, we shall apply Newton’s backward difference formula.

The backward difference table is as follows:

Time (t) Distance(s) s
2
s

3
s

4
s

5
s

6
s

0

1

2

3

4

5

6

0

2.5

8.5

15.5

24.5

36.5

50

2.5

6

7

9

12

13.5

3.5

1

2

3

1.5

–2.5

1

1

–1.5

3.5

0

–2.5

3.5

–2.5

1

Now, the speed of athlete at t = 5 s is given by

     

2 3 4 5

5

1 1 1 1 1

2 3 4 5t

ds
s s s s s

dt h

=
1 1 1 1 1

12 3 1 0 3.5
1 2 3 4 5

= 13.13333 metre/second or 13.13333 m/s

Example 7 Determine f (1.1) and f (1.1) from the following table:

x 1.0 1.2 1.4 1.6 1.8 2.0

f (x) 0 0.1280 0.5440 1.2960 2.4320 4.0000

[U.P.T.U. 2004, 2006]

Solution Since, the arguments are equally spaced.

i.e., h = 0.2. To find the derivatives at x = 1.1 which lies between given arguments x = 1.0 and 1.2.

So, we use Newton’s forward interpolation formula. The difference table is as follows:
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x f (x) f (x)
2
f (x)

3
f (x)

4
f (x)

1.0

1.2

1.4

1.6

1.8

2.0

0

0.1280

0.5440

1.2960

2.4320

4.0000

0.1280

0.4160

0.7520

1.1360

1.5680

0.2880

0.3660

0.3840

0.4320

0.0480

0.0480

0.0480

0

0

Therefore, Newton’s forward formula.

      2 3
0 0 0 0

( 1) ( 1)( 2)
( ) ( ) ( ) ( ) ( )

2! 3!

u u u u u
f x f x u f x f x f x (14)

where     0 1
5( 1)

0.2

x x x
u x

h
(15)

Differentiating Eq. (14) w.r.t. ‘x’, we have

2
2 3

0 0 0

(2 1) 3 6 2
( ) ( ) ( ) ( )

2! 3!

u u u du
f x f x f x f x

dx

2
2 3

0 0 0

(24 1) 3 6 2
( ) 5 ( ) ( ) ( )

2 6

u u
f x f x f x f x (16)

From (15), 5
du

dx

At x = 1.1, u = 5(1.1 – 1) = 0.5

f (1.1) = 
22 .5 1 3(.5) 6 .5 2

5 0.1280 (.2880) .0480
2 6

= 5[0.1280 + 0 – 0.0020]

f (1.1) = 0.6300

Now, differentiating Eq. (16), w.r.t. x, we have

      

2 3
0 0

64 6
( ) 5 ( ) ( )

6

du
f x f x f x

dx

    (1.1) 25[0.2880 (0.5 1) 0.0480]f

f  = 6.600

Example 8 Following table gives the result of an observations.  is the observed temperature 

in degree centigrade of a vessel of cooling water, t is the time in minutes from the beginning of the 

observations:

t 1 3 5 7 9

85.3 74.5 67.0 60.5 54.3

Find the approximate rate of cooling at t = 3 and 3.5.
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Solution Since, arguments are equally spaced, so we use the Newton’s forward interpolation 

formula.

The difference table:

t
2 3 4

1

3

5

7

9

85.3

74.5

67.0

60.5

54.3

–10.8

–7.5

–6.5

–6.2

3.3

1.0

0.3

–2.3

–0.7
1.6

When t = 3, 0 = 74.5, h = 2

Therefore, rate of cooling

     

2 3 4
0 0 0 0

3

1 1 1 1

2 3 4t

d

dt h

=
1 1 1

7.5 1 0.7
2 2 3

= –4.1167 °C/min

Since, t = 3.5 is non-tabular value, so, Newton’s forward formula

  
2 3 2

2 3 4
0 0 0 0

1 2 1 3 6 2 2 9 11 3

2 6 12

d u u u u u u

dt h
(17)

Here, t = 3.5, h = 2 and t0 = 3, then 
3.5 3

0.25
2

u

Equation (17), becomes

    

2

3.5

1 2 .25 1 3(.25) 6 .25 2
7.5 1 ( 0.7)

2 2 6t

d

dt

= –3.9151 °C/min.

EXERCISE 10.1

1. Compute f (1.5) and f (1.5) from the following data:

x 1.5 2.0 2.5 3.0 3.5 4.0

f (x) 3.375 7.000 13.625 24.000 38.875 59.000

2. Find f (2.5) from the following table:

x 1.5 1.9 2.5 3.2 4.3 5.9

f (x) 3.375 6.059 13.625 29.368 73.907 196.579
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3. A slider in a machine moves along a fixed straight rod. Its distance (x) in cm along the rod is 

given at various times (t) in seconds:

t 0 0.1 0.2 0.3 0.4 0.5 0.6

x 30.28 31.43 32.98 33.54 33.97 33.48 32.13

  Calculate
dx

dt
 at t = 0.1 and 0.5.

4. From the following table, calculate f (10):

x 3 5 11 27 34

f (x) –13 23 899 17315 35606

5. Using the divided differences, computer f (8); given that f (6) = 1.556,

    f  (7) = 1.690, f (9) = 1.908, f (12) = 2.158.

6. The following data given below corresponding values of pressure and specific values of a 

super heated steam:

V 2 4 6 8 10

P 105 42.7 25.3 16.7 13

  Calculate the rate of change of pressure (P) with respect to volume (V), where V = 2.

7. A curve passes through the points (0, 18), (1, 10), (3, –18) and (6, 90) find the slope of the 

curve at x = 2.

8. The population of a certain town is given below. Find the rate of growth of the population in 

1941 and 1961.

Year 1931 1941 1951 1961 1971

Population in lakhs 40.62 60.80 79.95 103.56 132.65

9. Find the first, second and third derivatives of the function tabulated below, at the point

x = 1.5:

x 1.5 2.0 2.5 3.0 3.5 4.0

f (x) 3.375 7.000 13.625 24.000 38.875 59.000

10. Find the gradient of the road the middle point of the elevation above a datum line of seven 

points of road which are given below:

x 0 300 600 900 1200 1500 1800

y 135 149 157 183 201 205 193

11. Find x for which y is maximum and find y for value of x:

x 1.2 1.3 1.4 1.5 1.6

y 0.9320 0.9636 0.9855 0.9975 0.9996
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12. From the following table, for what value of x, y is minimum. Also find y at this value:

x 3 4 5 6 7 8

y 0.205 0.240 0.259 0.260 0.250 0.224

13. Compute f (50) from the following data:

x 50 55 60 65

f (x) 1.6990 1.7404 1.7782 1.8129

14. Compute f (1) and f (1) using Newton’s forward difference formula from the following data:

x 1 2 3 4 5

f (x) 2 4 10 18 27

15. Using Newton’s forward difference formula compute f (1.1) and f (1.1) from the following 

data:

x 1 1.2 1.4 1.6

f (x) 1.00 1.17 1.32 1.55

16. The values of pressure (p) and specific volume (v) of a superheated steam are given in the 

following table:

v 2 4 6 8 10

p 105 42.7 25.3 16.7 13

  Find the rate of change of (i) pressure with respect to volume when v = 2 and (ii) volume with 

respect to pressure when p = 105.

17. The population of a certain town is shown in the following table:

year 1951 1961 1971 1981 1991

Population (in thousand) 19.96 39.65 58.81 77.21 94.61

  Compute the population in the years 1996 and 1993. Also find the rate of growth of population 

in the year 1981.

18. Find f (0.4) and f (0.4) from the following data:

x 0.1 0.2 0.3 0.4

f (x) 1.10517 1.2214 1.34986 1.49182

19. Find the first and second derivative of the function at 15y x x  from the following 

data:

x 15 17 19 21 23 25

y (x) 3.873 4.123 4.359 4.583 4.796 5.000

20. The angular displacement ( ) radians at different interval of time (t) seconds given as 

follows:
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0.052 0.105 0.168 0.242 0.327 0.408 0.489

t 0 0.02 0.04 0.06 0.08 0.10 0.12

  Estimate the angular velocity at t = 0.06 seconds.

Answers

1. f (1.5) = 4.750, f (1.5) = 9 2. f (2.5) = 16.750

3. 32.44166 cm/s; –24.05833 cm/s 4. 233

5. 0.1086 6. 52.4

7. –16 8. 1.8378; 2.6553

9. 4.750; 9.000; 6.000 10.
900

0.0852
x

dy

dx

11. max1.576, (1.576) 0.9999x y 12. min5.6875, (5.6875) 0.2628.x y

13. 0.0087 14.
11 83

and
12 12

15. 0.003 and 3.92 16. (i) –52.4  (ii) –0.0191

17. 49.3, 97.68, 1.8 thousands per year 18. 1.4913, 1.4770

19. 0.1789, –0.004 20. 4.054.

10.3 NUMERICAL INTEGRATION

In many physical problems, the process to compute the definite integral 

0

( ) ,
nx

x

f x dx  where f (x) may be 

known explicitly or as a tabulated data (equally or unequally spaced) is called numerical integration.

If the integrand is a function of one variable, the process is called mechanical quadrature and if 

the integrand is a function of two independent variables, the process of double integration is called 

mechanical cubature. We divide the given interval into a large number of subintervals of equal size 

(h) and replace the function tabulated at the points of subdivision by any one of the interpolated 

polynomial.

Fig. 10.1
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10.4 NEWTON–COTE’S QUADRATURE FORMULA

Let

0

( ) ,
nx

x

I f x dx  where y = f(x) takes the values y0, y1, y2, …, yn for x = x0, x1, x2, …, xn. The interval 

(x0, xn) divided into n equal subintervals with equal step size (h) shown in the following table:

x x0 x1 = x0 + h x2 = x0 + 2h … xn = x0 + nh

y = f (x) y0 y1 y2 … yn

Now I = 

0

0( ) [put , ]
nx

x

f x dx x x rh dx h d r

= 0

0

( )

n

h f x r h dr

= 2 3
0 0 0 0

0

( 1) ( 1)( 2)

2! 3!

n
r r r r r

h y r y y y dr

[Using Newton’s forward interpolation formula]

=

2
2 3

0 0 0 0

(2 3) ( 2)

2 12 24

n n n n n
nh y y y y (18)

which is known as the Newton–Cote’s quadrature formula. A number of formulae can be deduced from 

Eq. (18) by putting n = 1, 2, 3, ….

10.4.1 Trapezoidal Rule

Putting n = 1 in Eq. (18) and taking the curve through two points (x0, y0) and (x1, y1) as a straight line, 

we have

   

0

0

0 0 0 1 0 1 0

1
( ) ( )

2 2

x h

x

h
f x dx h y y y y y y y

Similarly

   

0

0

2

1 1 1 2

1
( ) ( )

2 2

x h

x h

h
f x dx h y y y y

  

0

0

1

( 1)

( )
2

x nh

n n

x n h

h
f x dx y y
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Adding these n integrals, we get

   

0

0

0 1 2 1( ) ( ) 2( )
2

x nh

n n

x

h
f x dx y y y y y

= (Sum of first and last terms) 2 Sum of remaining terms
2

h

which is known as Trapezoidal rule.

10.4.2 Simpson’s One-third Rule

Putting n = 2 in Eq. (18) and taking the curve through the points (x0, y0), (x1, y1) and (x2, y2) as a 

parabola, we get

   

0

0

2

2
0 0 0

1
( ) 2

6

x h

x

f x dx h y y y

= 0 1 24
3

h
y y y

Similarly,

   

0

0

4

2 3 4

2

( ) 4
3

x h

x h

h
f x dx y y y

0

0

2 1

( 1)

( ) 4 ,
3

x nh

n n n

x n h

h
f x dx y y y  when n is even.

Adding all these integrals, we obtain

0

0

0 1 3 1 2 4 2( ) ( ) 4( ) 2( ) ; is even
3

x nh

n n n

x

h
f x dx y y y y y y y y n

=
3

h
 [(sum of first and last terms) + 4 (sum of odd terms) + 2 (sum of even terms)]

This formula is known as Simpson’s one-third rule.
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Thomas Simpson was born on 20 August 1710 in Leicestershire. His father was 

a weaver and he owed his education to his own efforts. His mathematical interests 

were first aroused by the solar eclipse which took place in 1724, and with the aid 

of a fortune-telling pedlar he mastered Cocker’s Arithmetic and the elements of 

algebra. He then gave up his weaving and became an usher at a school, and by 

constant and laborious efforts improved his mathematical education, so that by 

1735 he was able to solve several questions which had been recently proposed 

and which involved the infinitesimal calculus. In 1743, he was appointed as a 

professor of mathematics at Woolwich. The works published by Simpson prove 

him to have been a man of extraordinary natural genius and extreme industry. 

The most important of them are his Fluxions, 1737 and 1750, with numerous applications to physics and 

astronomy  his Laws of Chance and his Essays, 1740; his theory of Annuities and Reversions, 1742; his 

Dissertations, 1743, in which the figure of the earth, the force of attraction at the surface of a nearly 

spherical body, the theory of the tides, and the law of astronomical refraction are discussed; his Algebra, 

1745; his Geometry, 1747; his Trigonometry, 1748, in which he introduced the current abbreviations for 

the trigonometrical functions; his Select Exercises, 1752, containing the solutions of numerous problems 

and a theory of gunnery; and lastly, his Miscellaneous Tracts, 1754. The work last mentioned consists of 

eight memoirs, and these contain his best known investigations. The first three papers are on various 

problems in astronomy; the fourth is on the theory of mean observations; the fifth and sixth on problems 

in fluxions and algebra; the seventh contains a general solution of the isoperimetrical problem; the eighth 

contains a discussion of the third and ninth sections of the Principia, and their application to the lunar 

orbit. In this last memoir Simpson obtained a differential equation for the motion of the apse of the lunar 

orbit similar to that arrived at by Clairaut, but instead of solving it by successive approximations, he 

deduced a general solution by indeterminate coefficients. The result agrees with that given by Clairaut. 

Simpson solved this problem in 1747, two years later than the publication of Clairaut’s memoir, but the 

solution was discovered independently of Clairaut’s researches, of which Simpson first heard in 1748 and 

he died on 14 May 1761.

10.4.3 Simpson’s Three-eight Rule

Putting n = 3 in Eq. (18) and taking the curve through the points (x0, y0), (x1, y1), (x2, y2) and (x3, y3) as 

a polynomial of third order, we get

   

0

0

3

2 3
0 0 0 0

3 3 1
( ) 3

2 2 8

x h

x

f x dx h y y y y

=
0 1 2 3

3
3 3

8

h
y y y y

Similarly
0

0

6

3 4 5 6

3

3
( ) 3 3

8

x h

x h

h
f x dx y y y y  and so on.

Adding these expressions from x0 to x0 + nh, where n is a multiple of 3, we have

   

0

0

0 1 2 4 5 1

3 6 9 3

3
( ) ( ) 3( )

8

2( )

x nh

n n

x

n

h
f x dx y y y y y y y

y y y y
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=
3

8

h
 [(sum of first and last term) + 3 (sum of remaining terms) + 2 (sum of multiple of 3)]

which is known as Simpson’s three-eight rule.

10.4.4 Boole’s Rule

Putting n = 4 in Eq. (18) and taking the curve through the points (xi, yi); i = 0(1).3 as a polynomial of 

order four, we obtain

0

0

0 1 2 3 4 4 5 6 7 8 4

3 2 1

7 32 12 32 (7 7 ) 32 12 32 7 72
( )

32 12 32 745

x nh

n

n n n nx

y y y y y y y y y y yh
f x dx

y y y y

which is known as a Boole’s rule.

10.4.5 Weddle’s Rule

Putting n = 6 in Eq. (18) and taking the curve through the points (xi, yi); i = 0(1)5 as a polynomial of 

order six, we obtain

   

0

0

0 1 2 3 4 5 6 6 7

8 9 10 11 12

6 5 4 3 1

0

5 6 5 ( ) 5
3

( ) 6 5 ( )
10

5 6 5

3

10

nhx

x
n n n n n n

n

i

i

y y y y y y y y y
h

f x dx y y y y y

y y y y y y

h
y

where  = 1, 5, 1, 6, 1, 5, 1, 1, 5, 1, 6, 1, 5, 1, etc.

which is known as Weddle’s rule.

Note:

1. In Trapezoidal rule, the shape of each strip between any consecutive points is taken to 

trapezium. Area of every strip compute separately that the area bounded by y = f (x), x = x0 and 

x = xn is approximately equal to the sum of the areas of ‘n’ trapezium.

2. In Simpson’s one-third rule, the interval must be divided into even number of equal sub-

intervals. This rule is also known as parabolic rule.

3. In Simpson’s three-eight rule, the number of sub-intervals should be taken as multiple of 3.

4. In Boole’s rule, the number of sub-intervals should be taken as a multiple of 4.

5. In Weddle’s rule, the number of sub-intervals should be taken as a multiple of 6.

6. Weddle’s rule is generally more accurate than any of the other rules as discussed above while, 

among two Simpson’s rules, the one-third is better than the three-eight rule.

10.5 ERROR’S IN QUADRATURE FORMULAE

(i) Truncation error in Trapezoidal Rule: Let y = f (x) be a continuous function and have

continuous derivatives in [x0, xn]. Expanding y in a Taylor’s series about x = x0, we obtain the 

error

        3
0 1

1
( ) in [ , ]

12
E h n y x x x
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= 2( )
( );

12

b a
h y x nh b a

  where y (x) is the largest value of the n quantities.

(ii) Error in Simpson’s one-third rule:  The error in [x0, x2] is 4( )
( ),

180

ivb a
E h y x  where yiv (x)

is the largest value of the 4th derivative.

(iii) Error in Simpson’s three-eight rule:  The error in [x0, x3] is

    

53
( )

80

iv
E h y x

(iv) Error in Boole’s rule:  The error in [x0, x4] is 78
( )

945

vi
E h y x

(v) Error in Weddle’s rule:  The error in [x0, x6] is 71
( )

140

vi
E h y x

Example 9 Evaluate the integral 

5.2

4

log x dx  using Trapezoidal rule.

Solution Divide the interval (4, 5.2) in to six equal parts, each of width 
5.2 4

0.2.
6

h  Then the 

value of y = log x for each points of sub-division are given below:

x 4 4.2 4.4 4.6 4.8 5.0 5.2

y = log x 1.38629

y0

1.43508

y1

1.48160

y2

1.52605

y3

1.56861

y4

1.60943

y5

1.64865

y6

Then by Trapezoidal rule

    

5.2

0 6 1 2 3 4 5

4

log ( ) 2( )
2

h
x dx y y y y y y y

                            = 
0.2

(1.38629 1.64865) 2(1.43508 1.48160 1.52605 1.56861 1.60943)
2

= 0.1 × 18.27648

= 1.827648

Example 10 Evaluate 

6

2
0

1

1
dx

x
 by using

(i) Trapezoidal rule

(ii) Simpson’s one-third rule

(iii) Simpson’s three-eight rule

(iv) Weddle’s rule. [U.P.T.U. 2002, 2004, G.E.U. 2015]
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Solution Divide the interval (0, 6) in to six equal parts, each of width 
6 0

1.
6

h  Then the values 

of
2

1

1
y

x
 for each points of sub-division are given below:

x 0 1 2 3 4 5 6

y
1

y0

0.5

y1

0.2

y2

0.1

y3

0.05882

y4

0.03846

y5

0.02703

y6

(i) Using Trapezoidal Rule:

    

6

0 6 1 2 3 4 52
0

1
( ) 2( )

21

h
dx y y y y y y y

x

=
1

(1 0.02703) 2(0.5 0.2 0.1 0.05882 0.03846)
2

= 1.41080

(ii) Using Simpson’s one-third rule

    

6

0 6 1 3 5 2 42
0

1
( ) 4( ) 2( )

31

h
dx y y y y y y y

x

=
1

(1 0.02703) 4(0.5 0.1 0.03846) 2(0.2 0.05882)
3

=
1

1.02703 2.55384 0.51764
3

= 1.36617

(iii) Using Simpson’s three-eight rule, we have

     

6

0 6 1 2 4 5 32
0

3
( ) 3( ) 2( )

81

dx h
y y y y y y y

x

=
3 1

(1 0.02703) 3(0.5 0.2 0.05882 0.03846) 2(0.1)
8

= 1.35708

(iv) Using Weddle’s rule, we have

     

6

0 1 2 3 4 5 62
0

3
5 6 5

101

dx h
y y y y y y y

x

=
3

1 5(0.5) 0.2 6(0.1) 0.05882 5(0.03846) 0.02703
10

= 1.37345
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Example 11 From the following table, find the area bounded by the curve y = f (x) and the x-axis

from x = 7.47 to x = 7.52:

x 7.47 7.48 7.49 7.50 7.51 7.52

y 1.93

y0

1.93

y1

1.98

y2

2.01

y3

2.03

y4

2.06

y5

Solution We know that the area bounded by the curve y = f(x) and x-axis is

=

7.52

7.47

y dx  and interval width h = 0.01.

Using Trapezoidal Rule,

Area =

7.52

7.47

y dx

=
0 5 1 2 3 4( ) 2( ) From the given table

2

h
y y y y y y

=
0.01

(1.93 2.06) 2(1.93 1.98 2.01 2.03)
2

=
0.01

[19.89]
2

= 0.10  0.0995

Example 12 Evaluate the integral 
1.4

0.2

(sin log )x
ex x e dx

Using:

(i) Trapezoidal rule

(ii) Simpson’s one-third rule

(iii) Simpson’s three-eight rule

(iv) Weddle’s rule

Solution Divide the interval (0.2, 1.4) into 12 sub-intervals with each equal width 
1.4 0.2

0.1.
12

h

Then, the values of the function y = sin x – logex + ex are given in the following table:

x sin x logex e
x

y = sin x – logex = e
x

0.2 0.19867 –1.60943 1.22140 3.02950 = y0

0.3 0.29552 –1.20397 1.34986 2.84935 = y1

0.4 0.38942 –0.91629 1.49182 2.79753 = y2

0.5 0.47943 –0.69315 1.64872 2.82130 = y3

0.6 0.56464 –0.51083 1.82212 2.89759 = y4

0.7 0.64422 –0.35667 2.01375 3.01464 = y5
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0.8 0.71736 –0.22314 2.22554 3.16604 = y6

0.9 0.78333 –0.10537 2.45960 3.34830 = y7

1.0 0.84147 0.00000 2.71828 3.55975 = y8

1.1 0.89121 0.09530 3.00417 3.80008 = y9

1.2 0.93204 0.18232 3.32012 4.06984 = y10

1.3 0.96356 0.26236 3.66930 4.37050 = y11

1.4 0.98545 0.33647 4.05520 4.70418 = y12

(i) Using Trapezoidal rule, we have

      

1.4

0 12 1 2 3 4 5 6 7 8 9 10 11

0.2

( ) 2(
2

h
y dx y y y y y y y y y y y y y

                            = 
0.1

(3.02950 4.70418) 2(2.84935 2.79753 2.82130 2.89759 3.01464
2

3.16604 3.34830 3.55975 3.80008 4.06984 4.37050)

=
0.1

7.73368 2(36.69492)
2

= 4.05617

(ii) Using Simpson’s one-third rule, we have

      

1.4

0 12 1 3 5 7 9 11 2 4 6 8 10

0.2

( ) 4( ) 2( )
3

h
y dx y y y y y y y y y y y y y

=
0.1

7.73368 4(20.20417) 2(16.49075)
3

= 4.05106

(iii) Using Simpson’s three-eight rule, we have

      

1.4

0 12 1 2 4 5 7 8 10 11 3 6 9

0.2

3
( ) 3( ) 2( )

8

h
y dx y y y y y y y y y y y y y

=
3 0.1

7.73368 3(26.90750) 2(9.78742)
8

= 4.05106

(iv) Using Weddle’s rule, we have

     

1.4

0 1 2 3 4 5 6 7 8 9 10 11 12

0.2

3
5 6 5 2 5 6 5

10

h
y dx y y y y y y y y y y y y y
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3 0.1
3.02950 5(2.84935) 2.79753 6(2.82130)

10

2.89759 5(3.01464) 2(3.16604)

5(3.34830) 3.55975 6(3.80008)

4.06984 5(4.37050) (4.70418)

= 4.05098.

Example 13 A solid of revolution is formed by rotating about x-axis, the area between the x-axis,

the lines x = 0 and x = 1 and a curve through the points with the following co-ordinates:

x 0.00 0.25 0.50 0.75 1.00

y 1.0000 0.9896 0.9589 0.9089 0.8415

Compute the volume of the solid formed using Simpson’s one-third rule.

Solution Here interval width h = 0.25 and the values of y are as follows:

y0 = 1.0000, y1 = 0.9896, y2 = 0.9589, y3 = 0.9089 and y4 = 0.8415.

Then, the required volume of the solid generated is

     

1
2 2 2 2 2 2

0 4 1 3 2

0

( ) 4( ) 2( )
3

h
y dx y y y y y

= 2 2 2 20.25
(1 0.8415 ) 4(0.9896 0.9089 ) 2(0.9589 )

3

=
0.25 3.1416

1.7081 7.2216 1.8390
3

= 2.8192

Example 14 The velocity (v) of a particle at distance (s) from a point on its path is given by the 

following table;

Distance (s) (metres) 0 10 20 30 40 50 60

Velocity (v) (m/sec) 47 58 64 65 61 52 38

Calculate the time taken to travel the distance of 60 metres by using Simpson’s one-third rule.

Solution Here, the interval width h = 10 and we know that velocity (v) = 
ds

dt

dt = 
ds

v

To compute the time taken to travel the distance of 60 metres, we have to find

       

60 60

0 0

ds
dt

v
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=

60

0

1
, wherey ds y

v

The table values of y for different values of S are given below:

S 0 10 20 30 40 50 60

1
y

v

0.0213

y0

0.0172

y1

0.0156

y2

0.0154

y3

0.0164

y4

0.0192

y5

0.0263

y6

Using Simpson’s 
1’‘
3

 rule; we have

      

60

0 6 2 4 1 3 5

0

( ) 2( ) 4( )
3

h
y ds y y y y y y y

=
10

(0.0213 0.0263) 2(0.0156 0.0164) 4(0.0172 0.0154 0.0192)
3

= 1.0627

Hence, the time taken to travel 60 metres is 1.0627 seconds.

Example 15 A car is moving at the speed of 30 m/sec, if suddenly brakes are applied. The speed 

of the car per second after ‘t’ seconds is given below:

Time (t) 0 5 10 15 20 25 30 35 40 45

Speed (v) 30 24 19 16 13 11 10 8 7 5

Using Simpson’s three-eight rule to compute the distance covered by the car in 45 seconds.

[U.P.T.U. 2003]

Solution If the car covered the distance (s) metres in t seconds, then

       

45
45

0

0

t

ds
v s v dt

dt
(19)

From the given table the width h = 5 and the values of v are v0 = 30, v1 = 24, v2 = 19, v3 = 16, v4 = 13, 

v5 = 11, v6 = 10, v7 = 8, v8 = 7, v9 = 5.

Using Simpson’s three-eight rule, we have

      

45

0 9 1 2 4 5 7 8 3 6

0

3
( ) 3( 2( )

8

h
vdt v v v v v v v v v v

=
3 5

(30 5) 3(24 19 13 11 8 7) 2(16 10)
8

= 624.3750 metres.

Hence, the distance covered by car in 45 seconds is 624.3750 metres.
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Example 16 Evaluate the integral 

4

2
0

,
1

dx

x
 using Boole’s rule taking (i) h = 0.5, (ii) h = 1.

Compare the result with the actual value and compute the error in both cases.

Solution Divide the interval (0, 4) in to 8 equal. Sub-intervals with each equal with 
4 0

0.5.
8

h

Then the values of 
2

1

1
y

x
 are given in the following table:

x 0 0.5 1 1.5 2 2.5 3 3.5 4

2

1

1
y

x

1

y0

0.8

y1

0.5

y2

0.3077

y3

0.2

y4

0.1379

y5

0.1

y6

0.0755

y7

0.0588

y8

Using Boole’s rule, we have

      

4

0 1 2 3 4 5 6 7 8

0

2
7 32 12 32 14 32 12 32 7

45

h
y dx y y y y y y y y y

=
7 1 32 0.8 12 0.5 32 0.3077 14 0.22 .5

32 0.1379 12 .1 32 0.0755 7 0.058845

= 1.326373

But the actual value is

     

4
1 4 1

02
0

(tan ) tan (4) 1.325818
1

dx
x

x

Now, the error is = 
1.325818 1.326373

100
1.325818

= 0.0419%

(ii) Divide the interval (0, 4) into 4 equal sub-interval with width (h) = 1. The values of 
2

1

1
y

xare given in the following table:

x 0 1 2 3 4

2

1

1
y

x

1

y0

0.5

y1

0.2

y2

0.1

y3

0.0588

y4

  Using Boole’s rule, we have

     

4

0 1 2 3 42
0

2
7 32 12 32 7

451

dx h
y y y y y

x

=
2 1

7 1 32 0.5 12 0.2 32 0.1 7 0.0588
45

=
2

(29.0116)
45
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4

2
0

1

dx

x
 = 1.289412

  But the actual value is

4

2
0

1

dx

x
 = 1.325818

  Now, the error is

E = 
1.325818 1.289412

100
1.325818

 = 2.746%

Example 17 Evaluate the integral 

0.7

0.5

x
x e dx  approximately by using a suitable formula.

Solution Divide the interval (0.5, 0.7) in to 4 equal sub-intervals each of width 
0.7 0.5

0.05.
4

h

The values of x
y x e  for each point of sub-interval are given in the following table:

x 0.5 0.55 0.60 0.65 0.7

x
y x e

0.4288818

y0

0.4278774

y1

0.4251076

y2

0.4208867

y3

0.4154730

y4

Using Simpson’s one-third rule, we have

   

0.7

0 4 1 3 2

0.5

( ) 4( ) 2( )
3

x h
x e dx y y y y y

=
0.05

(0.4288818 0.4154730) 4(0.4278774 0.4208867) 2(0.4251076)
3

=
0.05

(5.0896264)
3

 = 0.0848271

Example 18 Evaluate 
6

1

2 sin(2 ) ;x dx  using

(i) Trapezoidal rule and (ii) Simpson’s one-third rule with 11 points.

Solution Divide the interval (1, 6) in to 10 equal sub-intervals each of width 
6 1

0.5.
10

h  The 

values of 2 sin (2 )y x  for each point of sub-interval are given in the following table:

x 1 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

y
2.90930

y0

2.63816

y1

2.30807

y2

1.97932

y3

1.68305

y4

1.43530

y5

1.24320

y6

1.10832

y7

1.02872

y8

1.00024

y9

1.01736

y10
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(i) Using Trapezoidal rule, we have

6

0 10 1 2 3 4 5 6 7 8 9

1

2 sin(2 ) ( ) 2( )
2

h
x dx y y y y y y y y y y y

=
(2.90930 1.01736) 2(2.63816 2.30807 1.97932 1.683050.5

1.43530 1.24320 1.10832 1.02872 1.00024)2

= 8.19386

(ii) Using Simpson’s one-third rule, we have

    

6

0 10 1 3 5 7 9 2 4 6 8

1

2 sin(2 ) ( ) 4( ) 2( )
3

h
x dx y y y y y y y y y y y

=
(2.90930 1.01736) 4(2.63816 1.97932 1.43530 1.108320.5

1.00024) 2(2.30807 1.68305 1.24320 1.02872)3

=
0.5

3.92666 32.64536 12.52608
3

= 8.18302

EXERCISE 10.2

1. Evaluate the integral 

1 2

3
0

,
1

x
dx

x
 using Simpson’s rule and hence find the value of loge3.

(U.P.T.U. 2006)

2. Evaluate
5

2
3

4

2
dx

x
 by dividing the range into 8 equal parts.

3. Evaluate
1.5

0.4
sinh

x
dx

x
 by dividing the 12 sub-intervals, using Weddle’s rule.

4. Using Boole’s rule to evaluate 
/2

0

sin x dx . [U.P.T.U. 2008]

5. A river is 80 metres wide. The depth (y) of the river at a distance (x) from bank to given by the 

following table:

x 0 10 20 30 40 50 60 70 80

y 0 4 7 9 12 15 14 8 3

  Using Boole’s rule find the approximate area of cross-section of the river.

[U.P.T.U. 2004]
80

0

Area of cross-section of the river y dxHint :
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6. Evaluate

6

0
1

x
e

dx
x

 using Simpson’s three-eight rule. [U.P.T.U. 2006]

7. Evaluate the integral 

5

0
4 5

dx

x
 using Weddle’s rule.

8. Evaluate the integral 

1.5 3

0

,
1x

x
dx

e
 using Weddle’s rule.

9. Evaluate the integral 

10

2
1

dx

x
 using Simpson’s one-third rule.

10. Evaluate the integral 

1

0
1

dx

x
 using Trapezoidal rule. [U.P.T.U. 2005]

11. Using Simpson’s three-eight rule to find the value of 

0.3
3 1/2

0

(1 8 ) .x dx

12. Evaluate

1

0

(sin cos )x x dx  correct to five decimal places using 7 ordinates.

13. Using trapezoidal and Simpson’s rules to evaluate 

1
2

0

1 .I x dx

14. The velocities of a train at intervals of minutes are given below:

Time in minutes 0 2 4 6 8 10 12

Velocity in Km/hr 0 22 30 27 18 7 0

  Apply Simpson’s rule to find the distance covered by the train.

15. Evaluate the integral 

7
2

3

logx x dx  by taking 4 strips.

16. A reservoir discharging through sluices at a depth (h) below the water surface has a surface 

area (A) for various values of h as given below:

h in ft 10 11 12 13 14

A in sq. ft 950 1070 1200 1550 1530

  If t denotes the time in minutes, the rate of fall of the surface is given by

48dh h

dt A

  Estimate the time taken for the water level to fall from 14 ft to 10 ft above the sluices.

17. A rocket is launched from the ground vertically upwards. Its acceleration (a) is registered 

during the first 80 seconds and is given in the table
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Following topics have been discussed in this chapter:

1. Newton’s Forward Interpolation Formula

(i)
0

2 3 4
0 0 0 0

1 1 1 1

2 3 4x x

dy
y y y y

dx h

(ii)

0

2
2 3 4

0 0 02 2

1 11

12x x

d y
y y y

dx h

(iii)

0

3
3 4

0 03 3

1 3

2x x

d y
y y

dx h

and so on.

Time (s) 0 10 20 30 40 50 60 70 80

a(m/s2) 30.00 31.00 33.44 35.47 37.75 40.33 43.29 46.69 50.67

  Estimate the velocity and the height of the rocket at time t = 80 seconds.

18. Prove that the trapezoidal and Simpson’s rules are convergent.

19. Use Simpson’s one-third rule to prove that loge7 is approximately 1.95.

20. When do we need numerical integration?

21. How does truncation error relate the accuracy of numerical integration.

22. What are the difference between iterative and non-iterative methods of numerical integration 

for  (i) Trapezoidal   (ii) Simpson’s rules?

23. Will numerical integration method useful in numerical differential equation?

24. Are numerical integration methods iterative?

25. What is Simpson’s rule for numerical integration? What is the order of error in Simpson’s 

rule?

Answers

1. 0.23108 2. 26.716

3. 1.01019 4. 1.18062

5. 708 6. 70.1652

7. 0.4023 8. 0.6155

9. 1.29962 10. 0.69413

11. 0.29159 12. 1.13935

13. 0.784567, 0.785073 14. 3.556

15. 177.4830 16. 29.0993

17. Speed/Velocity = 3087 m/s, height = 112.75 Km.

SUMMARY
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2. Newton’s Backward Interpolation Formula

2 3 4

2
2 3 4

2 2

3
3 4

3 3

1 1 1 1

2 3 4

1 11

12

1 3

2

n

n

n

n n n n
x x

n n n

x x

n n

x x

dy
y y y y

dx h

d y
y y y

dx h

d y
y y

dx h

and so on.

3. Stirling’s Central Difference Formula

Differentiating the above equation w.r.t. u and x respectively we obtain

0

0

5 53 3
0 1 2 31 2

2
2 4 6

1 2 32 2

1 1 1

2 6 2 30 2

1 1 1

12 90

x x

x x

y y y yy ydy

dx h

d y
y y y

dx h

and so on.

4. Bessels’s Central Difference Formula

     

0

2 2 4 4
31 0 2 1

0 1

6 6
5 3 2

2

1 1 1 1

2 2 12 12 2

1 1

120 60 2

x x

y y y ydy
y y

dx h

y y
y

     

0

2 2 4 42
31 0 2 1

12 2

6 6
5 3 2

2

1 1 1

2 2 12 2

1 1

24 90 2

x x

y y y yd y
y

dx h

y y
y

and so on.

5. Newton’s Divided Difference Formula

We have

| |

| |

2
0 0 0 0 1 0

3 4
0 1 2 0 0 1 2 3 0

( ) ( ) ( ) ( ) ( )( ) ( )

( )( )( ) ( ) ( )( )( )( ) ( )

f x f x x x f x x x x x f x

x x x x x x f x x x x x x x x x f x
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Differentiating the above equation w.r.t. ‘x’ we have

     

| |

|

2 2
0 0 1 0 0 1 2

3
0 1 1 2 2 0 0

( ) ( ) 2 ( ) ( ) 3 2 ( )

( ) ( )

f x f x x x x f x x x x x x

x x x x x x f x

6. Lagrange’s Interpolation Formula

This formula applied in both the cases, that is if the arguments are equally spaced or unequally 

spaced. The Lagrange’s interpolation formula is given below:

     

1 2 0 2
0 1

0 1 0 2 0 1 0 1 2 1

( )( ) ( ) ( )( ) ( )
( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

n n

n n

x x x x x x x x x x x x
f x f x f x

x x x x x x x x x x x x

Differentiating the above equation w.r.t. x one or more times and we obtain the derivatives of f (x).

7. Maxima and Minima of a Function given the Tabulated Values

To determine the value(s) of arguments x at which the curve y = f (x) is maxima or minima can be 

obtained by equating 
dy

dx
 to zero. The same procedure can be used to find maxima or minima for the 

tabulated function by differentiating the interpolating function.

8. Newton–Cote’s Quadrature Formula

0

( )
nx

x

f x dx =
2

2 3
0 0 0 0

(2 3) ( 2)

2 12 24

n n n n n
nh y y y y

which is known as the Newton–Cote’s quadrature formula. A number of formulae can be deduced 

from the above equation by putting n = 1, 2, 3, ….

Newton-Cote’s quadrature formula gives the following numerical formulae to evaluate the 

integration:

9. Trapezoidal Rule

  

0

0

0 1 2 1( ) ( ) 2( )
2

x nh

n n

x

h
f x dx y y y y y

= (Sum of first and last terms) 2 Sum of remaining terms
2

h

10. Simpson’s One-third Rule

  

0

0

0 1 3 1 2 4 2( ) ( ) 4( ) 2( )
3

x nh

n n n

x

h
f x dx y y y y y y y y

=
3

h
 [(sum of first and last terms) + 4 (sum of odd terms) + 2 (sum of even 

terms)]
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11. Simpson’s Three-eight Rule

    

0

0

0 1 2 4 5 1 3 6 9 3

3
( ) ( ) 3( ) 2( )

8

x nh

n n n

x

h
f x dx y y y y y y y y y y y

=
3

8

h
 [(sum of first and last term) + 3 (sum of remaining terms) + 2 (sum of 

multiple of 3)]

12. Boole’s Rule

    

0

0

0 1 2 3 4 5 6 7

8 4 3 2 1

7 32 12 32 14 32 12 322
( )

7 7 32 12 32 745

x nh

n n n n nx

y y y y y y y yh
f x dx

y y y y y y

13. Weddle’s Rule

Putting n = 6 in the above equation and taking the curve through the points (xi, yi); i = 0(1)5 as a 

polynomial of order six, we obtain

0

0

0 1 2 3 4 5 6 7 8 9 10 11

12 6 5 4 3 2 1

5 6 5 2 5 6 53
( )

5 6 510

nhx

n n n n n n nx

y y y y y y y y y y y yh
f x dx

y y y y y y y y

which is known as Weddle’s rule.

OBJECTIVE TYPE QUESTIONS

1. Simpson’s rule for integration gives exact 

result when f(x) is a polynomial of degree

(a) 1 (b) 2

(c) 3 (d) 4

[GATE (CS) 1993]

2. The Trapezoidal rule for integration gives 

exact result when the integrand is a polynomial 

of degree

(a) 0 but not 1 (b) 1 but not 0

(c) 0 or 1 (d) 2

[GATE (CS) 1995]

3. The value of 

2

1

1
,dx

x
 computed using 

Simpson’s rule with a step size of h = 0.25 is

(a) 0.69430 (b) 0.69385

(c) 0.69325 (d) 0.69415

[GATE (EE) 1998]

4. The order of error is the Simpson’s rule for 

numerical integration with step size h is

(a) h (b) h
2

(c) h
3 (d) h

4

[GATE (ME) 1997]

5. The accuracy of Simpson’s rule quadrature 

for a step size h is

(a) O(h2) (b) O(h3)

(c) O(h4) (d) O(h5)

[GATE (ME) 2003]

6. The integration 

3

1

1
,dx

x
 evaluated by using 

Simpson’s
1

3
 rule, on two equal subintervals 

each of length 1, equals

(a) 1.000 (b) 1.098

(c) 1.111 (d) 1.120

[GATE (ME) 2011]

7. The magnitude as the error (correct of two 

decimal places) in the estimation of integral 
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4
4

0

( 10) ,x dx  using Simpson’s 
1

3
 rule is

[GATE (CE) 2013]

8. The estimate of 

1.5

0.5

1
dx

x
 obtained and using 

Simpson’s rule with three-point function

evaluation exceeds the exact value by

(a) 0.235 (b) 0.068

(c) 0.024 (d) 0.012

[GATE (CE) 2012]

9. The value of the integral 
3

0.5

0.1

x
e dx  evaluated 

by Simpson’s rule using 4 sub intervals (up to 

3 digits after the decimal point) is _______

[GATE (CH) 2013]

10. Function f (x) is known at the following 

points

x 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

f (x) 0 0.09 0.36 0.81 1.44 2.25 3.24 4.41 5.76 7.29 9.0

The value of 

3

0

( )f x dx  computed using the 

trapezoidal rule is

(a) 8.983 (b) 9.003

(c) 9.017 (d) 9.045

[GATE (CS) 2013]

11. Match the correct pairs

Numerical Integration 

scheme

Order of fitting 

polynomial

P   Simpson’s 
3

8
 rule 1. First

Q   Trapezoidal rule 2.  Second

R   Simpson’s 
1

3
 rule 3.  Third

(a) P-2, Q-1, R-3 (b) P-3, Q-2, R-1

(c) P-1, Q-2, R-3 (d) P-3, Q-1, R-2

[GATE (ME) 2013]

12. Using the trapezoidal rule and dividing the 

interval of integration in to 3 equal sub-intervals, 

the definite integral 

1

1

| |x dx  is _______

[GATE (ME) 2014]

13. The value of 

4

2.5

log x dx  calculated using 

the Trapezoidal rule with five sub-intervals is 

_______

[GATE (ME) 2014]

14. For step-size, x = 0.4, the value of following 

integral using Simpson’s 
1

3
 rule is _______

0.8
2 3 4 5

0

0.2 25 200 675 900 400x x x x x dx

[GATE (CE) 2015]

15. The integral 

2

1

2

x

x

x dx  with x2 > x1 > 0 is 

evaluated analytically as well as numerically 

using a single application of the trapezoidal 

rule. If I is the exact value of the integral 

obtained analytically and J is the approximate 

value obtained using the trapezoidal rule. 

Which of the following statements is correct 

about their relationship?

(a) J > I

(b) J < I

(c) J = I

(d) Insufficient data to determine the 

relationship

[GATE (CE) 2015]

16. Using a unit size, the value of integral 
2

1

logx x dx  by trapezoidal rule is _______

[GATE (ME) 2015]

17. Simpson’s
1

3
 rule is used to integrate the 

function
23 9

( )
5 5

f x x  between x = 0 and 

x = 1, using the least number of equal sub-

intervals. The value of the integral is _____

[GATE (ME) 2015]

18. The values of function f (x) at 5 discrete points 

are given below
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x 0 0.1 0.2 0.3 0.4

f (x) 0 10 40 90 160

Using Trapezoidal rule step size of 0.1, the 

value of 

0.4

0

( )f x dx  is _______

[GATE (ME) 2015]

19. Simpson’s
1

3
 rule is a special case of Newton’s 

cotes quadrature formula, when n is equal to

(a) 3 (b) 5

(c) 1 (d) 2 or multiple of 2

20. Error in the Simpson’s 
3

8
 rule is

(a) 43
( )

80

iv
h f x (b) 33

( )
80

iv
h f x

(c) 63
( )

80

iv
h f x (d) 53

( )
80

iv
h f x

21. In Trapezoidal rule f (x) is a

(a) constant function

(b) polynomial of 3rd degree

(c) polynomial of 2nd degree

(d) linear polynomial of x

22. Error in the Trapezoidal rule is of the order 

(a) h
4 (b) h

3

(c) h
2 (d) h

23. Simpson’s
3

8
 rule is a special case of 

quadrature formula, when n is equal to

(a) 1

(b) 2

(c) 3 or multiple of 3

(d) 3

24. Error in the Simpson’s 
1

3
 rule is of the order

(a) h (b) h
3

(c) h
2 (d) h

4

25. The value of 
1

2

0
1

dx

x
 by Simpson’s 

1

3
 rule 

1

4
h  is _______

(a) 0.7854 (b) 0.0854

(c) 1.7854 (d) 0.0135

ANSWERS

1.(b) 2.(b) 3.(c) 4.(d) 5.(d) 6.(c) 7.(0.53) 8.(d)

9.(0.3849) 10.(d) 11.(d) 12.(1.11) 13.(1.7533) 14.(1.3674) 15.(a) 16.(0.693)

17.(2) 18.(22) 19.(d) 20.(d) 21.(d) 22.(c) 23.(c) 24.(d)

25.(a)



11.1 INTRODUCTION

Most of the problems in science and engineering can be formulated in terms of differential equations. 

A differential equation is an equation which involves the differential coefficients of dependent variable 

with respect to independent variables. If a differential equation involves only one independent variable 

then it is called an ordinary differential equation (ODE). The solution of this differential equation is 

the relation between dependent and independent variables. When this relation is expressed numerically 

then the solution is known as numerical.

11.1.1 Solution of the ODE

Many ordinary differential equations can be solved using analytical method. However, a majority of 

differential equations appearing in physical problems cannot be solved analytically. Thus, it becomes 

imperative to discuss their solution by numerical methods.

In this chapter, we shall discuss some of the methods for computing numerical solution of the 

(i) First order and first degree ordinary differential equation y  = f (x, y) subject to the condition 

y(x0) = y0.

(ii) Simultaneous first order ordinary differential equations ( , , ) and ( , , )
dy dz

f x y z x y z
dx dxsubject to the condition y(x0) = y0 and z(x0) = z0.

(iii) Second order ordinary differential equations 
2

2
, ,

d y dy
f x y

dxdx
 subject to the conditions 

y(x0) = y0; y (x0) = y 0.

11.2 INITIAL AND BOUNDARY VALUE PROBLEMS

Problems in which all the initial conditions are specified only at the initial points are known as an initial 

value problems (IVP). Thus, in an IVP, all the auxiliary conditions are specified at a point. 

For example, 2 ; (0) 1
dy

y x y y
dx

 and 

y  = y; y(0) = 1.

are an IVP.

Problems involving second and higher order differential equations in which auxiliary conditions are 

specified at two or more points are known boundary value problems (BVP).

For example   y  = xy; y(0) = 0, y(3) = 2 is a BVP.

Numerical Solution of 

Ordinary Differential 

Equations

r

q11
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11.3  ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER
AND FIRST DEGREE

11.3.1 Picard’s Method of Successive Approximations

Consider the differential equation

       
( , )

dy
f x y

dx

(1)

With the initial condition y(x0) = y0.

Integrating Eq. (1) between the limits x0 to x and the corresponding limits y0 to y, we get

     0 0

( , )

y x

y x

dy f x y dx

or    

0

0 ( , )

x

x

y y f x y dx

or      

0

0 ( , )

x

x

y y f x y dx (2)

Equation (2) in which the unknown function y appears under the integral sign, is called an integral 

equation. We solve Eq. (2) by successive approximations. Thus, if the first approximation to y is 

obtained by putting y0 for y on the R.H.S of Eq. (2) and we write

y
(1) = 

0

0 0( , )

x

x

y f x y dx (3)

The integrand in Eq. (3) is now a function of x alone and can be solved in general.

The second approximation is obtained by substituting.

y
(1) for y in the R.H.S of Eq. (2), we get

y
(2) = 

0

(1)
0 ( , )

x

x

y f x y dx

Similarly, third approximation is as follows:

y
(3) = 

0

(2)
0 ( , )

x

x

y f x y dx

and the nth approximation is as follows:

y
(n) = 

0

( 1)
0 ( , )

x
n

x

y f x y dx

Thus, we obtain a sequence of approximate solutions 

y
(1), y

(2), y
(3), …, y(n)

Each giving a better result than the preceding one.
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Charles-Émile Picard was born on 24 July 1856 in Paris, France. He was a 
French mathematician whose theories did much to advance research in analysis, 
algebraic geometry, and mechanics. Picard became a lecturer at the University of 
Paris in 1878 and a professor at the University of Toulouse in the year from 1881 
to 1898 he held various posts with the University of Toulouse and the École 
Normale Supérieure, and in 1898 he was appointed a professor at the University 
of Paris. In 1917, he was elected permanent secretary for the mathematical 
sciences in the French Academy of Sciences. After World War I he led a decade-
long movement to boycott German scientists and mathematicians. Picard made 
his name in 1879 when he proved that an entire function takes every finite value, 

with one possible exception. Then, inspired by Niels Henrik Abel of Norway and Bernhard Riemann of 
Germany, he generalized Riemann’s work to complex functions of two variables. His study of the integrals 
attached to algebraic surfaces and the related topological questions developed into an important part of 
algebraic geometry, with varied applications to topology and functional analysis. Picard also worked on 
Fuchsian and Abelian functions and on the allied theories of discontinuous and continuous groups of 
transformation. Picard successfully revived the method of successive approximations to prove the 
existence of solutions to differential equations. He also created a theory of linear differential equations, 
analogous to the Galois theory of algebraic equations. His studies of harmonic vibrations, coupled with 
the contributions of Hermann Schwarz of Germany and Henri Poincaré of France, marked the beginning 
of the theory of integral equations. He died on 11 December 1941 in Paris, France.

Remark The solution of Eq. (1) is evaluated under the following assumptions:

(i) If f (x, y) is a single valued and continuous function is the domain D, defined by

  |x – x0| k,  –  < y < 

(ii) f (x, y) is bounded in domain D.

(iii) |f (x, y
(n)) – f (x, y

(n + 1)) | L |y(n) – y(n + 1)|

  where L is a positive number and it is called a Lipschitz constant for f.

Example 1 Use Picard’s method to find y(0.2). Given 
dy

x y
dx

 with initial condition y = 1, 

when x = 0.

Solution Here f (x, y) = x – y; x0 = 0 and y0 = 1 = y(0).

Using Picard’s formula

y
(n) = 

0

( 1)
0 ( , )

x
n

x

y f x y dx (4)

Put n = 1 is Eq. (4), we get the first approximation 

y
(1) = 

0

(0)
0 ( , )

x

x

y f x y dx

=

0

1 ( 1)

x

x dx

y
(1) = 

2

1
2

x
x

y
(1)(0.2) = 0.82000



11.4 Engineering Mathematics for Semesters III and IV

Put n = 2 in Eq. (4), we get the second approximation 

y
(2) = 

(1) (1)
0

0 0

( , ) 1 ( )

x x

y f x y dx x y dx

=
2

0

1 1
2

x
x

x x dx

=
3

21
6

x
x x

y
(2)(0.2) = 0.83867

Put n = 3 in Eq. (4), we get the third approximation

y
(3) = (2)

0

0

( , )

x

y f x y dx

= (2)

0

1 [ ]

x

x y dx

=
3

2

0

1 1
6

x
x

x x x dx

=
3 4

21
3 24

x x
x x

y
(3)(0.2) = 0.83740

Similarly, fourth approximation

y
(4) = 

(3)
0

0

( , )

x

y f x y dx

= (3)

0

1 ( )

x

x y dx

=
3 4

2

0

1 1
3 24

x
x x

x x x dx

=
3 4 5

21
3 12 120

x x x
x x

y
(4)(0.2) = 0.83746

Fifth approximation

y
(5) = (4) 4)

0 0

1 [ ( , )] 1 [ ]

x x

f x y dx x y dx

=
3 4 5 6

21
3 12 60 720

x x x x
x x
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y
5(0.2) = 0.83746

Since, y
4(0.2) = 0.83746 = y(5) (0.2), i.e., two successive approximations are same, hence

y(0.2) = 0.83746.

Example 2 Use Picard’s method, to find y(0.1).

Given that with (0) 1.
dy y x

y
dx y x

Solution Here f (x, y) = (0)
0 0; 0, 1.

y x
x y y

y x

Using Picard’s method.

y
(n) = 

0

( 1)
0 ( , )

x
n

x

y f x y dx (5)

The first approximation

y
(1) = 

0

(0)
(0)

0 0 (0)
0

( , )

x x

x

y x
y f x y dx y dx

y x

= 0

0

1
1 1 [2 log (1 ) ]

1

x
xx

dx x x
x

y
(1) = 1 + 2 log (1 + x) – x

y
(1)(0.1) = 1 + 2 log (1.1) – 0.1 = 0.9828.

Second approximation

y
(2) = 

0

(1)
0 ( , )

x

x

y f x y dx

=

(1)

0 (1)
0

x
y x

y dx
y x

=
0

1 2 log(1 ) 2
1

1 2 log (1 )

x
x x

dx
x

=

0

1 2
1 2 log (1 )

x
x

x dx
x

=
2

0 0

1 2 2 ,
1 2 1 2

t tt t
e e

x dt dt
t t

where t = log(1 + x). When x = 0, t = 0.

Which cannot be integrated. Hence, y(0.1) = 0.9828
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Example 3 Find the solution of 1 , (0) 1
dy

xy y
dx

 which passes through (0, 1) in the interval 

(0, 0.5) such that the value of y is correct to 3 decimal places. Taking h = 0.1.

Solution Here f (x, y) = 1 + xy; x0 = 0 and y0 = y(0) = 1.

Using Picard’s formula.

y
(n) = 

0

( 1)
0 ( , )

x
n

x

y f x y dx (6)

n = 1, 2, 3, …

First approximation is as follows:

y
(1) = 

(0) (0)
0

0 0

( , ) 1 [1 ]

x x

y f x y dx x y dx

y
(1) = 

2

0

1 [1 1] 1
2

x
x

x x

Second approximation is as follows:

y
(2) = 

(1)
0

0

( , )

x

y f x y dx

=
2

0

1 1 1
2

x
x

x x dx

y
(2) =

2 3 4

1
2 3 8

x x x
x

Third approximation is as follows:

y
(3) = 

(2)
0

0

( , )

x

y f x y dx

y
(3) = 

2 3 4

0

1 1 1
2 3 8

x
x x x

x x dx

=
2 3 4 5 6

1
2 3 8 15 48

x x x x x
x

Fourth approximation

y
(4) = (3)

0

1 [1 ]

x

x y dx

=
2 3 4 5 6

0

1 1 1
2 3 8 15 48

x
x x x x x

x x dx
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=
2 3 4 5 6 7 8

1
2 3 8 15 48 105 384

x x x x x x x
x

Given x = 0, y = 1.000

When x = 0.1, y(1) = 1.105, y(2) = 1.1053

Since y
(1) = 1.105 = y(2)

y(0.1) = 1.105

When x = 0.2, y(1) = 1.220, y(2) = 1.223, y(3) = 1.223 

Since y
(2) = y(3)

y(0.2) = 1.223

Similarly,

When x = 0.3, y(2) = y(3) = 1.355

y(0.3) = 1.355

When x = 0.4, y(2) = 1.505 = y(3)

y(0.4) = 1.505

when x = 0.5, y(3) = y(4) = 1.677.

y(0.5) = 1.677.

Example 4 Use Picard’s method to obtain the value of y when x = 0.1 given that

23 with (0) 1.
dy

x y y
dx

Solution Here f (x, y) = 3x + y2, x0 = 0 and y0 = y(0) = 1.

Using Picard’s formula

y
(n) = 

0

( 1)
0 ( , ) : 1, 2, 3,

x
n

x

y f x y dx n (7)

First approximation is as follows:

y
(1) = 

0

(0)
0 ( , )

x

x

y f x y dx

= (0) 2

0

1 [3 ( ) )

x

x y dx

=
2

0

3
1 [3 1] 1

2

x
x

x dx x

y
(1)(0.1) = 1.1150

Second approximation is as follows:
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y
(2) = 

0

2
2

(1)
0

0

3
( , ) 1 3 1

2

x x

x

x
y f x y dx x x dx

=
2 3 4 55 4 3 9

1
2 3 4 20

x x x x
x

y
(2)(0.1) = 1.1264

Third approximation is as follows:

y
(3) = (2) 2

0

1 [3 ( ) ]

x

x y dx

=
2 5 6 7 8 9

3 4 10 115 23 25 68 1157 17 47 27 81
1 2

2 12 12 45 1260 32 240 400 4400

x x x x x x
x x x x x

y
(3)(0.1) = 1.1272

Since y
(2) = 1.127 = y(3)

Thus, y(0.1) = 1.127 correct to 3 decimal places.

EXERCISE 11.1

1. Obtain Picard’s second approximate solution of the initial value problem,

    

2

2
; (0) 0

1

dy x
y

dx y

2. Employ Picard’s method to find correct to four decimal places the solution of the equation

    

2 2 for 0.1 with (0) 0
dy

x y x y
dx

3. Using Picard’s method to find y(0.2) of the differential equation log( ); (0) 1
dy

x y y
dx

4. Solve numerically 2 ; (0) 0.9
dy

x y y
dx

 and find y(0.4) by Picard’s method with three 

iterations and compare the result with the exact value.

5. Find an approximate value of y when x = 0.1, if 2 and 1
dy

x y y
dx

 at x = 0, using Picard’s 

method.

Answers

1.
3 9 15

(2)

3 81 1215

x x x
y 2. y(0.1) = 0.0214

3. y(0.2) = 1.0082 4. y(0.4) = 0.7432; 0.7439

5. y(0.1) = 0.9138
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11.3.2 Taylor’s Series Method

Consider ( , )
dy

f x y
dx

 with y(x0) = y0 (8)

is a first order initial value problem. 

Suppose y = (x) is the exact solution of Eq. (8), then (x) expanding as a Taylor’s series about 

x = x0, we have

y(x) = 

2 3
0 0

0 0 0 0 0

( ) ( )
( )

2! 3!

x x x x
y x x y y y (9)

Equation (9) gives a power series for y. The values of 0 0 0, , ,y y y  can be obtain from Eq. (8).

We can write Eq. (8) as

y  = ( , ), x y x yf x y y f f f y f f f

Similarly,

       
[ ] [ ]xx xy yx yy y x yy f f f f f f f f f f f f

       

2 22xx xy yy x y yy f f f f f f f f f

and so on.

This method is explained with the help of following examples:

Example 5 Using Taylor’s series method to solve the initial value problem y  = x + y2 with y(0) = 0 

and hence evaluate y(0.2).

Solution

Here 2
0 0; 0, 0

dy
y x y x y

dx

y0 = x0 + y0
2 = 0 + 0 = 0

Differentiating the given ordinary differential equation successively, we get

y  = 1 + 2yy , y 0 = 1 + 2 0 0 = 1.

y  = 2(y )2 + 2yy , y 0  = 2(0)2 + 2 0 1 = 0

y
iv = 4y y  + 2y y  + 2yy , y0

iv = 4 0 1 + 1 0 1 + 1 0 0 = 0

y
v = 6(y )2 + 6y y  + 2y y  + 2yy

iv, y0
v = 6(1)2 + 6 0 0 + 2 0 0 + 2 0 0 = 6

and so on.

The Taylor’s series expansion about x = 0 is

y(x) = 
2 3 4 5

iv v
0 0 0 0 0 0

( 0) ( 0) ( 0) ( 0)
( 0)

2! 3! 4! 5!

x x x x
y x y y y y y

=
2 3 4 5

0 0 1 0 0 6
2! 3! 4! 5!

x x x x
x

or y(x) = 
2 56

2! 5!

x x
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or y(x) = 
2 5

2 20

x x

y(0.2) = 0.020016.

Example 6 Using Taylor’s series, find y(2.1) correct to 5 decimal places. Given that xy  = x – y

with y(2) = 2.

Solution

Here 1 and (2) 2
x y y

y y
x x

y0 = 0

0

2
1 1 1 1 0

2

y

x

Differentiating the given differential equation successively, we get

y  = 02

1
,

2

y y
y

xx

y  = 02 3

2 2 3
,

4

y y y
y

x x x

y
iv = iv

02 3 4

3 6 6 3
, ,

2

y y y y
y

x x x x
and so on.

The Taylor’s series expansion about x = 2 is

y(x) = 
2 3 4

iv
0 0 0 0 0

( 2) ( 2) ( 2)
( 2)

2! 3! 4!

x x x
y x y y y y

or y(x) = 
2 3 4( 2) 1 ( 2) 3 ( 2) 3

2 ( 2) 0
2! 2 6! 4 24! 2

x x x
x

y(x) = 2 3 41 1 1
2 ( 2) ( 2) ( 2)

4 8 16
x x x

At x = 2.1, we get

y(2.1) = 2.00238.

Example 7 Using Taylor’s series method, solve y  = x + y numerically, Start with x = 1,

y = 0 and carry to x = 1.2 with h = 0.1. Compare the final result with the value of the explicit solution

e
0.2 = 1.221.

Solution

Given

y  = x + y; x0 = 1, y0 = 0

y0 = x0 + y0 = 1 + 0 = 1

y  = 1 + y ,  y0  = 1 + y0  = 1 + 1 = 2

y  = y ,      y0   = y0  = 2



Numerical Solution of Ordinary Differential Equations 11.11

y
iv = y ,       y0

iv = y 0  = 2

        y
v = yiv,       y0

v = y0
iv = 2

and so on.

The Taylor’s series expansion is as follows:

y1 = 
2 3 4

iv
0 0 0 0 0 0( )

2! 3! 4!

h h h
y x h y hy y y y

y1 = 
2 3 4(0.1) (0.1) (0.1)

(1 ) 0 (0.1) 1 2 2 2
2 6 24

y h

or y(1.1) = 0.1103081 = 0.110 (approximate)

Also x1 = x0 + h = 1 + 0.1 = 1.1

Now, y1 = x1 + y1 = 1.1 + 0.110 = 1.21

y1 = 1 + y1 = 1 + 1.21 = 2.21

y1  = 0 + y1 = 2.21

y1
iv = y1   = 2.21

y1
v = y1

iv = 2.21

Therefore,

y2 = y(x1 + h) = 
2 3 4

iv
1 1 1 1 1

2! 3! 4!

h h h
y hy y y y

y(1.1 + 0.1) = 
2(0.1)

(1.2) 0.11 (0.1) (1.21) (2.21)
2

y

           

3 4(0.1) (0.1)
(2.21) 2.21

6 24

y(1.2) = 0.242 (approximate).

Now, the exact solution of the given ODE is 

y = –x – 1 + 2e
x – 1

At x = 1.2, we get

y = –1.2 – 1 + 2 e1.2–1

= –2.2 + 2 e0.2

= –2.2 + 2(1.221)

= 0.242

Thus the approximation solution of y at x = 1.2 is approximately equal to y(1.2).



11.12 Engineering Mathematics for Semesters III and IV

EXERCISE 11.2

1. Using Taylor’s series method solve 2 ; (0) 1 at 0.1, 0.2, 0.3
dy

x y y x
dx

 and 0.4. Also, 

compare the values with exact solutions.

2. Using Taylor’s series method to evaluate y at x = 0.1 and x = 0.2 to five places of decimals 

from 2 1; (0) 1.
dy

x y y
dx

3. Solve
2

; (0) 1
x

y y y
y

 by Taylor’s series method and also find y(0.1).

4. Given 1 ; (0) 1,y xy y  obtain the Taylor’s series for y(x). Compute y(0.1) correct to four 

places of decimal.

Answers

1. y(0.1) = 0.905125, y(0.2) = 0.8212352.

y(0.3) = 0.7491509, y(0.4) = 0.6896519

2. y(0.1) = 0.90033, y(0.2) = 0.80227

3. y(0.1) = 1.0954

4.
2 3 4 5

( ) 1 ; (0.1) 1.1053
2 3 8 15

x x x x
y x x y

11.3.3 Euler’s Method

Euler’s method is one of the oldest and simplest numerical method. It is generally used to find the 

numerical solution of the differential equations, because it provides a simple procedure for computing 

approximations to the exact solutions.

Consider the differential equation of first order is as follows:

       ( , )
dy

f x y
dx

(10)

With initial condition y(x0) = y0.

The general approximations of Eq. (10) is given by

yn+1 = yn + h f (xn, yn), where 0nx x
h

n
(11)

Equation (11) is called Euler’s algorithm.

Thus, starting from x0 when y = y0 and we construct a table for y for given steps of h in x.

Note If the value of h is small, this method is very slow. However, if h is large then this method is 

inaccurate.

Example 8 Using Euler’s method, find the value of y(0.1).

Given  ; (0) 1
dy

x y xy y
dx

 and step size h = 0.025.

Solution Here f (x, y) = x + y + xy, x0 = 0, y0 = 1 and h = 0.025.
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Euler’s algorithm is

yn+1 = yn + h f (xn, yn), n = 0, 1, 2, … (12)

Put n = 0 in Eq. (12), we have

y1 = y0 + h f (x0, y0)

= 1 + 0.025 f (0, 1)

= 1 + 0.025 (0 + 1 + 0  1) = 1.025

Next, we get x1 = x0 + h = 0 + 0.025 = 0.025

Again put n = 1 in Eq. (12), we have

y2 = y1 + h f (x1, y1)

= 1.025 + 0.025 f (0.025, 1.025)

= 1.025 + 0.025 (0.025 + 1.025 + 0.025  1.025)

y2 = 1.0518

Next, we get x2 = x1 + h = 0.025 + 0.025 = 0.05

Again put n = 2 in Eq. (12), we have

y3 = y2 + h f (x2, y2)

= 1.0518 + 0.025 (0.05 + 1.0518 + 0.05  1.0518)

= 1.0806

Next, we get x3 = x2 + h = 0.05 + 0.025 = 0.075

Again put n = 3 in Eq. (12), we have

y4 = y3 + h f (x3, y3)

= 1.0806 + 0.025 (0.075 + 1.0806 + 0.075  1.0806)

y4 = 1.1115

Next, we get x4 = x3 + h = 0.075 + 0.025 = 0.1

When x = x4 = 0.1, then

y = 1.1115, when x = 0.1.

Leonhard Euler was born on 15 April 1707, in Basel, Switzerland. Euler showed 
an early aptitude and propensity for mathematics, and thus, after studying with 
Johan Bernoulli, he attended the University of Basel and earned his master’s 
degree during his teens. Moving to Russia in 1727, Euler served in the navy 
before joining the St. Petersburg Academy as a professor of physics and later 
heading its mathematics division. Euler was one of the most pioneering thinkers 
of mathematics, establishing a career as an academy scholar and contributing 
greatly to the fields of geometry, trigonometry and calculus, among many others. 
He released hundreds of articles and publications during his lifetime, and continued 
to publish after losing his sight. In 1736, he published his first book of many, 

Mechanica. In the mid-1740s, Euler was appointed as the mathematics director of the newly created 
Berlin Academy of Science and Beaux Arts, taking on a variety of management roles as well becoming 
head of the organization itself for a time starting in 1759. He was a revolutionary thinker in the
fields of geometry, trigonometry, calculus, differential equations, number theory and notational
systems—including the utilization of  and f (x)—among a legion of other accomplishments. He died on
18 September 1783.
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11.3.4 Modified Euler’s Method

Modified Euler’s method gives a better improvement in accuracy over the original Euler’s method. 

In this method, we use a line through (x0, y0) whose slope is the average of the slopes at (x0, y0) and

(x1, y1
(1)), where y1

(1) = y0 + h f (x0, y0).

Thus, we obtain a generalization form of Euler’s modified method as following:

y1
(n + 1) = ( )

0 0 0 1 1( , ) ( , ) ; 0, 1, 2,
2

nh
y f x y f x y n (13)

where y1
(n) is the nth approximation to y1.

The iteration formula in Eq. (13) can be started by choosing y1
(1) from Euler’s formula Eq. (11)

i.e., y1
(1) = y0 + h f (x0, y0)

Equation (13) is also known as Single step predictor-corrector method. 

Example 9 Using modified Euler’s method to obtain a solution of the differential equation 

,
dy

x y
dx

 with initial conditions y = 1 at x = 0 for the range 0 x  0.6 in steps of 0.2.

Solution Here f (x, y) = 0 0; 0, 1x y x y  and h = 0.2, we have

y1
(1) = y0 + h f (x0, y0)

= 1 + 0.2 f (0, 1)

y1
(1) = 1 0.2 0 1 1.2

Next, we get x1 = x0 + h = 0 + 0.2 = 0.2.

Using Eq. (13), we get the second approximation as following:

y1
(2) = (1)

0 0 0 1 1( , ) ( , )
2

h
y f x y f x y

=
0.2

1 (0, 1) (0.2, 1.2)
2

f f

= 1
0 2

2
0 1 0 2 1 2

.
. .

y1
(2) = 1.2295

Again using Eq. (13), we get the third approximation as following:

y1
(3) = (2)

0 0 0 1 1( , ) ( , )
2

h
y f x y f x y

=
0.2

1 [ (0, 1) (0.2, 1.2295)]
2

f f

=
0.2

1 (0, | 1 |) (0.2, | 1.2295 |) 1.2309
2

f

Again, using Eq. (13), we get the fourth approximation as following:

y1
(4) = (3)

0 0 0 1 1( , ) ( , )
2

h
y f x y f x y



Numerical Solution of Ordinary Differential Equations 11.15

=
0.2

1 [ (0, 1) (0.2,1.2309)]
2

f f

= 1.2309

Since y1
(3) = y1

(4).

Hence, y1 = 1.2309 at x = 0.2.

Now, we find y for x = 0.4, with x1 = 0.2, y1 = 1.2309 and h = 0.2.

Initially, find

y2
(1) = y1 + h f (x1, y1)

= 1.2309 (0.2) 0.2 1.2309

y2
(1) = 1.4927

Next, we get x2 = x1 + h = 0.2 + 0.2 = 0.4

Now, using Eq. (13), we get

y2
(2) = (1)

1 1 1 2 2( , ) ( , )
2

h
y f x y f x y

= 1 2309
0 2

2
0 2 1 2309 0 4 1 4927.

.
( . , . ) ( . , . )f f

= 1.2309 0.1 (0.2 | 1.2309 |) (0.4 | 1.4927 |)

y2
(2) = 1.5240

Now, y2
(3) = (2)

1 1 1 2 2( , ) ( , )
2

h
y f x y f x y

=
0.2

1.2309 (0.2 | 1.2309 |) (0.4 | 1.5240 | )
2

= 1.5253

Similarly,

y2
(4) = (3)

1 1 1 2 2( , ) ( , )
2

h
y f x y f x y

= 1.5253

Since, y2
(3) = y2

(4).

Hence, y2 = 1.5253 at x = 0.2.

Now, we find y for x = 0.6; with x2 = 0.4, y2 = 1.5253 and h = 0.2

Initially, find y3
(1) = y2 + h f (x2, y2)

= 1.5253 + 0.2 f (0.4, 1.5253)

y3
(1) = 1.8523.

Next, we get x3 = x2 + h = 0.4 + 0.2 = 0.6.

Now, Using Eq. (13), we get



11.16 Engineering Mathematics for Semesters III and IV

y3
(2) = (1)

2 2 2 3 3( , ) ( , )
2

h
y f x y f x x

=
0.2

1.5253 (0.4 | 1.5253 |) (0.6 | 1.8523 |)
2

= 1.8849

Similarly, y3
(3) = 1.8861 = y3

(4)

Since, y3
(3) = y3

(4)

Hence, y3 = 1.8861 at x = 0.6.

Example 10 Using modified Euler’s method find y(0.4) correct to 3 decimal places.

Given 2dy
x y

dx
 with initial condition y(0.2) = 0.02. and step size (h) = 0.2.

Solution Here f (x, y) = x – y2; x0 = 0.2, y0 = 0.02 and h = 0.2.

Next, we get x1 = x0 + h = 0.2 + 0.2 = 0.4

Initially find y1
(1) = y0 + h f (x0, y0)

= 0.2 + 0.2 f (0.2, 0.02)

= 0.2 + 0.2 [0.2 – (0.02)2]

= 0.060

Now, we find y for x = 0.4 by modified Euler’s method in Eq. (13), we have

y1
(2) = (1)

0 0 0 1 1( , ) ( , )
2

h
y f x y f x y

=
0.2

0.02 [ (0.2,0.02) (0.4,0.060)]
2

f f

= 2 20.02 0.1 [(0.2 0.02 ) (0.4 0.060 )]

y1
(2) = 0.080

Again, using Eq. (13), we get

y1
(3) = 

(2)
0 0 0 1 1[ ( , ) ( , )]

2

h
y f x y f x y

=
0.2

0.02 [ (0.2, 0.02) (0.4,0.080)]
2

f f

= 0.079

Similarly,

y1
(4) = (3)

0 0 0 1 1[ ( , ) ( , )]
2

h
y f x y f x y

=
0.2

0.02 [ (0.2, 0.02) (0.4,0.079)]
2

f f

= 0.079
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Since y1
(4) = y1

(3)

Hence, y = 0.079 at x = 0.4.

EXERCISE 11.3

1. Using Euler’s method find (0.6) of 1 2 .y y xy  Given that y(0) = 0, by taking h = 0.2.

2. Solve 1 ; (0) 0y y y  in the range 0 x  0.3 by taking h = 0.1 by Euler’s modified 

method.

3. Given that 2 and (1) 1.y xy y  Find y(2) in steps of 0.2 using Euler’s method.

   (Gulbarga 1996, Warangal 1995)

4. Solve 2 ; (0) 1y x y y  for x = 0.02, 0.04 and 0.06 using Euler’s modified method.

5. Compute y(0.5) for the differential equation 2 2dy
y x

dx
 with y(0) = 1 using Euler’s 

method.

6. Given y  = log10(x + y) with y(0) = 1. Find y(0.2) and y(0.5) using Euler’s modified method.

Answers

1. y(0.6) = 0.4748 2. y(0.1) = 0.095, y(0.2) = 0.180975, y(0.3) = 0.2587823

3. 5.051 4. y(0.02) = 1.0202, y(0.04) = 1.0408, y(0.06) = 1.0619

5. y(0.5) = 1.76393 6. y(0.2) = 1.0082; y(0.5) = 1.0490

11.3.5 Runge–Kutta Method of Fourth Order

As we know, the Euler’s method is less efficient in practical problems because it requires “h” to be 

small for obtaining reasonable accuracy. The Runge–Kutta (RK) method are developed to find the 

greater accuracy and they possess the advantage of requiring only the function values at some selected 

points on the subinterval.

The fourth order RK method is most commonly used in practice and is often referred to as the 

Runge–Kutta method only without any reference to the order.

To solve 0 0( , ); ( )
dy

f x y y x y
dx

 by RK method, compute

K1 = 1
2( , ), ,

2 2
r r r r

Kh
h f x y K h f x y

K3 = 2,
2 2

r r

Kh
h f x y

K4 = 3( , )r rh f x h y K

and yr+1 = 
1 2 3 4

1
( 2 2 ); 0, 1, 2

6
,ry K K rK K (14)

Which is the required fourth order RK method. The inherent error in the fourth order RK method is 

of order h5.
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Example 11 Use RK method to find y(1.2) in step size h = 0.1, given that 

2 2dy
x y

dx
 with y(1) = 1.5.

Solution

Here f (x, y) = x2 + y2; x0 = 1, y0 = 1.5 and h = 0.1

Using Eq. (14), we have

y1 = y(x0 + h) = 0 1 2 3 4

1
( 2 2 )

6
y K K K K

Now,

K1 = h f (x0, y0) = (0.1) f (1, 1.5) = (0.1) [12 + 1.52]

 = 0.3250

K2 = 1
0 0, (0.1) (1 0.05, 1.5 0.1625)

2 2

Kh
h f x y f

= (0.1) f (1.05, 1.6625)

K2 = (0.1) [(1.05)2 + (1.6625)2] = 0.3866

K3 = 2
0 0, (0.1) (1.05, 1.6933)

2 2

Kh
h f x y f

= (0.1) [(1.05)2 + (1.6933)2] = 0.3969

and K4 = h f (x0 + h, y0 + K3) = (0.1) f (1 + 0.1, 1.5 + 0.3969)

= (0.1) [(1.1)2 + (1.8969)2] = 0.4808

y1 = y(1.1) = 
1

1.5 [0.3250 0.7732 0.7938 0.4808]
6

y(1.1) = 1.8954

Again, using Eq. (14), we have; x1 = 1.1 and y1 = 1.8954.

y2 = 1 1 1 2 3 4

1
( ) [ 2 2 ]

6
y x h y K K K K

Now, K1 = h f (x1, y1) = (0.1) f (1.1, 1.8954)

= (0.1) [(1.1)2 + (1.8954)2] = 0.4802

K2 = 1
1 1, (0.1) (1.1 0.05, 1,8954 0.2401)

2 2

Kh
h f x y f

= (0.1) [(1.15)2 + (2.1355)2] = 0.5882.

K3 = 2
1 1,

2 2

Kh
h f x y

= (0.1) f (1.15, 2.1895) = (0.1) [(1.15)2 + (2.1895)2]

K3 = 0.6116
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and K4 = h f (x1 + h, y1 + K3) = (0.1) f (1.1 + 0.1, 1.8954 + 0.6116)

= (0.1) [(1.2)2 + (2.5070)2] = 0.7725

y2 = y(1.1 + 0.1) = 
1

1.8954 [0.4802 1.1764 1.2232 0.7725]
6

or y(1.2) = 2.5041.

Example 12 Using RK method to obtain y(0.1) and y(0.2); given that 2dy
x y

dx
 with initial 

conditions y(0) = 1.

Solution Here f (x, y) = x2 – y, x0 = 0, y0 = 1 and h = 0.1.

Now K1 = h f (x0, y0) = (0.1) f (0, 1)

= (0.1) [02 – 12] = –0.1.

K2 = 1
0 0, (0.1) (0 0.05, 1 0.05)

2 2

Kh
h f x y f

= (0.1) f (0.05, 0.95)

= (0.1) [(0.05)2 – 0.95] = –0.09475

K3 = 2
0 0, (0.1) (0.05, 0.952625)

2 2

Kh
h f x y f

= (0.1) [(0.05)2 – 0.952625] = –0.0950125

and K4 = h f (x0 + h, y0 + K3)

= (0.1) f (0.1, 0.9049875)

= (0.1) [(0.1)2 – 0.9049875] = –0.0894987

Using Eq. (14), we have

y1 = y(x0 + h)  = 0 1 2 3 4

1
[ 2 2 ]

6
y K K K K

y(0.1) = 
1

1 [ 0.1 2( 0.09475) 2( 0.0950125 0.0894987]
6

y(0.1) = 0.9051627

Now, we find y(0.2), taking x1 = 0.1, y1 = 0.9051627

Again using Eq. (14), we have

y2 = 1 1 1 2 3 4

1
( ) [ 2 2 ]

6
y x h y K K K K

Now K1 = h f (x1, y1) = (0.1) f (0.1, 0.9051627)

or K1 = (0.1) [(0.1)2 – 0.9051627] = – 0.0895162

K2 = 1
1 1,

2 2

Kh
h f x y

= (0.1) f (0.15, 0.8604046)
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= (0.1) [(0.15)2 – 0.8604046]

= –0.0837904

Similarly, K3 = 2
1 1,

2 2

Kh
h f x y

= (0.1) f (0.15, 0.8632674)

= –0.0840767

and K4 = h f (x1 + h, y1 + K3)

= (0.1) f (0.2, 0.8210859)

= –0.0781085

y(0.2) = 0.9051627 + 
1

6
 [– 0.895162 + 2(– 0.0837904)

  + 2(– 0.0840767) – 0.0781085]

y(0.2) = 0.8212695

EXERCISE 11.4

1. Using RK method of fourth order find y(0.1), y(0.2) and y(0.3) given that 2 ;y xy y

y(0) = 1.

2. Using RK fourth order method to find an approximate values of y when x = 0.2 given that 

; (0) 1.y x y y
[Calicut 1992, Madras 1991, Rewa 1990]

3. Using RK method, compute y(0.2). Given 3 /2; (0) 1 taking 0.1y x y y h

[Mysore 1994, 1997, Osmania 1995]

4. Using RK method find y(0.2) in steps of 0.1, if 2 ; (0) 1y x y y .

5. Using RK method of fourth, find y(0.2) for the equation ; (0) 1
y x

y y
y x

 and h = 0.2.

Answers

1. y(0.1) = 0.11689, y(0.2) = 1.27739, y(0.3) = 1.50412

2. y(0.2) = 1.2428 3. y(0.2) = 1.1749

4. y(0.2) = 1.2736 5. y(0.2) = 1.1678
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11.3.6 Predictor-Corrector Method

The general solution for this method for the solution of an ordinary differential equation is defined as 

follows:

First step is to predict a solution for the given differential equation using an explicit method and then 

correct the predicted value using another implicit formula of it. Continue this process of prediction and 

correction till the solution reaches within the error limit.

11.3.6.1 Milne’s Predictor-Corrector Method

It is a multi-step predictor-corrector method based on two formulae

(i) Milne’s formula for prediction is as follows:

yn+1 = 3 1 2

4
(2 2 )

3
n n n n

h
y f f f (15)

  Equation (15) is used to predict the value of yn+1, when yn, yn–1, yn–2 and yn–3 are known.

(ii) Simpson’s formula for correction is as follows:

yn + 1 = 1 1 1( 4 )
3

n n n n

h
y f f f (16)

  Equation (16) is used to correct the value of yn+1, where yn+1, yn and yn–1 are known.

  Also fn+1 = f (xn+1, yn+1) is used in eqs (15) and (16) for compute yn+1.

Note:

1. The convergence, stability and accuracy of this method depend only on the correction 

formula.

2. It is a multi-step method, the truncation or discretization error can be computed, which 

improves the accuracy at each step.

3. The speed of convergence is improved by a suitable chosen step-size.

4. Milne’s method is simple with truncation error O(h5). In certain cases, it is unstable and its 

error does not goes to zero even if h is made small. If step-size is too big to give the desired 

degree of accuracy.

Alan Alexander Milne was born in London on 18 January 1882. His father was  a 
headmaster of a small private school. Milne was very good in mathematics when 
he was a boy. Later, he attended Trinity College, Cambridge, to study that subject. 
Milne was educated at Westminster School in London and at the University of 
Cambridge’s Trinity College. While at Cambridge, he studied mathematics and 
also edited and wrote for the student magazine Granta. On realizing that writing 
was his true vocation, he moved to London after his graduation in 1903. He began 

writing for the literary magazine Punch in 1906, and his essays and humorous poetry were published in 
the magazine through 1914. He died on 31 January 1956 in Pooh, Piglet.

Example 13 Using Milne’s predictor-corrector method to find y(2) if y(x) is the solution of 

1
( ),

2

dy
x y

dx
 given that y(0) = 2, y(0.5) = 2.636, y(1) = 3.595 and y(1.5) = 4.968.
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Solution Given

y0 = 2, y1 = 2.636, y2 = 3.595 and y3 = 4.968 for x0 = 0, x1 = 0.5, x2 = 1 and x3 = 1.5.

Now, we find y4 corresponding to x4 = 2

Using prediction formula in Eq. (15), we have

yn + 1 = 3 1 2

4
[2 2 ]

3
n n n n

h
y f f f

y4 = 0 3 2 1

4
[2 2 ]

3

h
y f f f (17)

Here h = 0.5 and fn+1 = f (xn+1, yn+1).

For n = 0, 1, 2, we get

f1 = f (x1, y1) = f (0.5, 2.636) = 
1

(0.5 2.636) 1.568
2

f2 = f (x2, y2) = 2.2975

f3 = f (x3, y3) = 3.234.

Therefore Eq. (17), gives

y4 = 
4 0.5

2 [2 3.234 2.2975 2 1.568]
3

y4 = 6.871.

But f4 = f (x4, y4) = 4 4

1
( ) 4.4355

2
x y

Now, we have corrected this value.

Using Eq. (16), we have

yn + 1 = 1 1 1[ 4 ]
3

n n n n

h
y f f f

y4 = 
2 4 3 2[ 4 ]

3

h
y f f f

y4 = 
0.5

3.595 [4.4355 4 3.234 2.2975]
3

y4 = 6.8732 y4  (say)

Now,  f4  = f (x4, y4) = 4 4

1
( ) 4.4365

2
x x .

Again using corrector formula, we get the second corrected value y4
2.

y4
2 = 2 4 3 2[ 4 ]

3

h
y f f f

=
0.5

3.595 [4.4365 4 3.234 2.2975]
3

= 6.8733

Hence y4 = y(2) = 6.873 correct to 3 decimal places.
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Example 14 Using Milne’s method to find y(0.3) from the differential equation 

2 2 , (0) 1.
dy

x y y
dx

 Find the initial values y(–0.1), y(0.1) and y(0.2) from the Taylor’s series 

method.

Solution

Given y  = x2 + y2 (18)

Differentiating Eq. (18) w.r.t. ‘x’, successively, we get 

y  = 2x + 2yy , y  = 2 + 2 [yy  + (y )2]

At x0 = 0, y0 = 1, we have

y (0) = 1, y (0) = 2, y 0) = 8

The Taylor’s series for y(x) about x = 0 is given by

y(x) = 
2 3

0 (0) (0) (0)
2! 3!

x x
y xy y y

y(x) = 
3

2 4
1

3

x
x x

y(–0.1) = 
3

2 4( 0.1)
1 0.1 ( 0.1) 0.9087

3

y(0.1) = 1 + (0.1) + (0.1)2 + 
34(0.1)

1.1113
3

y(0.2) = 1 + (0.2) + (0.2)2 + 
34( 0.2)

1.2506
3

Now y–1 =  0.9087, y1 = 1.1113, y2 = 1.2506 for x = –0.1, 0.1, 0.2 and h = 0.1

Also, fn+1 = f (xn+1, yn+1)

f0 = f (x0, y0) = f (0, 1) = 1

f1 = f (x1, y1) = f (0.1, 1.1113) = 1.2449

f2 = f (x2, y2) = f (0.2, 1.2506) = 1.6040

Now using Milne’s predictor formula in Eq. (15), we have

y3 = 1 2 1 0

4
[2 2 ]

3

h
y f f f

=
4 0.1

0.9087 [2 1.6040 1,2449 2 1]
3

y3 = 1.4371  for x3 = 0.3

f3 = f (x3, y3) = 2.1552

Using Milne’s corrector formula in Eq. (16), we have

y3 = 1 3 2 1[ 4 ]
3

h
y f f f
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=
0.1

1.1113 [2.1552 6.4160 1.2449]
3

y3 = 1.4385 y3     (say)

Now f3  = f (x3, y3) = f (0.3, 1.4385) = 2.1593

Again using corrector formula, we get the second corrected value y3
2

y3
2 = 1 3 2 1

0.1
[ 4 ] 1.1113 [2.1593 6.4160 1.2449]

3 3

h
y f f f

= 1.4386

Hence, y(0.3) = 1.4386.

EXERCISE 11.5

1. Given 2 (1 ) with (1) 1, (1.1) 1.233,y x y y y y(1.2) = 1.548, y(1.3) = 1.979, compute 

y(1.4) by Milne’s predictor-corrector method.

2. Solve 2
y x y  at x = 0.8 using Milene’s predictor-corrector method. Given that y(0) = 0, 

y(0.2) = 0.0200, y(0.4) = 0.0795, y(0.6) = 0.1762.

3. Solve 2
y y x  by Milne’s predictor-corrector method with the starting values are y(0) = 1, 

y(0.2) = 1.12186, y(0.4) = 1.4682, y(0.6) = 1.7379, and find y(0.8).

4. Using Milne’s predictor-corrector method to solve 2 at 0.8,y xy x  given that 

(0) 2, (0.2) 1.923, (0.4) 1.724, (0.6) 1.471y y y y .

5. Solve , (0) 0 for 0.4 1.0
dy

x y y x
dx

 with h = 0.1 using Milne’s method.

Answers

1. y(1.4) = 2.5750    2. y(0.8) = 0.3049

3. y(0.8) = 2.0111    4. y(0.8) = 1.219

5. 0.0918, 0.1487, 0.2221, 0.3138, 0.4255, 0.5596, 0.7183.

11.3.6.2  Adam’s-Bashforth Method (or Adam’s-Moulton Formula)

It is a very popular and effective fourth-order predictor corrector multi-step method.

We require four starting values of y which are calculated by some other techniques (such as Taylor’s, 

RK, Euler’s or Picard’s method). This method is based on the following two formulae:

(i) predictor formula known as Adams-Bashforth predictor 

(ii) corrector formula known as Adams-Moulton corrector.

To solve the initial value problem 
0 0( , ); ( ) .

dy
f x y y x y

dx

We compute 1 0 2 0 3 0( ), ( 2 ), ( 3 ),y y x h y y x h y y x h  by RK method, Euler’s method or 

Taylor’s series, etc.

Next we determine

f1 = 0 1 2 0 2 3 0 3( , ), ( 2 , ), ( 3 , )f x h y f f x h y f f x h y
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Now using Adams-Bashforth predictor formula

       4 3 3 2 1 0[55 59 37 9 ]
24

p h
y y f f f f (19)

In general Eq. (19) can be written as

       
1 1 2 3[55 59 37 9 ]

24

p
n n n n n n

h
y y f f f f

and Adams-Bashforth corrector formula

       4 3 4 3 2 1[9 19 5 ]
24

c h
y y f f f f , (20)

where
4 0 4( 4 , )

p
f f x h y

In general Eq. (20) can be written as

       
1 1 1 2[9 19 5 ]

24

c
n n n n n n

h
y y f f f f

The improved value of y4 is calculated and then used corrected formula in Eq. (20) to find a better 

value of y4 and continue this process till y4 remains unaltered and then proceed to find y5 as above.

Example 15 Use Adams-Bashforth method to find y(1.4).

Given 2 (1 ) and (1) 1, (1.1) 1.233, (1.2) 1.548, (1.3) 1.979.
dy

x y y y y y
dx

Solution Here f (x, y) = x2(1 + y) and the starting values of the Adams-Bashforth method with h = 0.1 

are as follows:

x0 = 1 2 3 0 1 2 31, 1.1, 1.2, 1.3; 1.000, 1.233, 1.548, 1.979x x x y y y y

f0 = f (x0, y0) = 2(1, 1) 1 (1 1) 2f

f1 = 2
1 1( , ) (1.1, 1.233) (1.1) (1 1.233) 2.702f x y f

f2 = 2 2( , ) (1.2, 1.548) 3.669f x y f

f3 = 3 3( , ) (1.3, 1.979) 5.035f x y f

Using the predictor formula in Eq. (19), we have

       
4

0.1
1.979 [55 5.035 59 3.669 37 2.702 9 2]

24

p
y

       4 2.572
p

y

Now 4 0 4( 4 , ) (1.4, 2.572) 7.001
p

f f x h y f

Using corrector formula in Eq. (20), we have

       4

0.1
1.979 [9 7.001 19 5.035 5 3.669 2.702]

24

c
y  = 2.575

Hence, y(1.4) = 2.575.
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Example 16 Using Adams-Bashforth predictor–corrector formula to evaluate y(1.4) if y(x)

satisfies the differential equation 
2

1
,

dy xy

dx x
 given that

       
(1) 1, (1.1) 0.996, (1.2) 0.986, (1.3) 0.972.y y y y

Solution

Here
2

1
( , )

xy
f x y

x
 and the starting values of the Adams method with h = 0.1 are as follows:

       0 1 2 3 0 1 2 31, 1.1, 1.2, 1.3; 1, 0.996, 0.986, 0.972x x x x y y y y

       0 0 0 2

1 1
( , ) (1,1) 0

1
f f x y f

       1 1 1( , ) (1.1, 0.996) 0.7902f f x y f

       2 2 2( , ) (1.2,0.986) 0.1273f f x y f

       3 3 3( , ) (1.3,0.972) 0.156f f x y f

Using Adams-predictor formula in Eq. (19), we have

        4

0.1
0.972 [55 0.156 59 0.1273 37 0.7902 9 0]

24

p
y

       4 0.8457
p

y

Now     4 0 4( 4 , ) (1.4, 0.8457) 0.09387
p

f f x h y f

Using Adams-corrector formula in Eq. (20), we have

       4

0.1
0.972 [9 0.9387 19 0.156 5 0.1273 ( 0.7902)]

24

c
y

= 0.955

Hence, y(1.4) = 0.955.

EXERCISE 11.6

1. Find 2(0.1), (0.2), (0.3) from ; (0) 1
dy

y y y x y y
dx

, by Taylor’s method and hence obtain 

y(0.4) using Adam’s-Bashforth method.

2. Using Adam’s-Bashforth Method to find y(0.4) given the equation ; (0) 1,
2

xy
y y y(0, 1) 

= 1.0025, y(0.2) = 1.0101, y(03) = 1.0228.

3. Find y(1) by Adam’s-Bashforth method given, 2 3; (0) 1,
dy

x y y
dx

y(0.25) = 0.821028, 

y(0.5) = 0.741168, y(0.75) = 0.741043.

4. Solve 21 ; (0) 1y xy y  for x = 0.4 by Adam’s method, given y(0.1) = 1.105, y(0.2) = 

1.223, y(0.3) = 1.355.
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Mixed Problems

5. Solve the Ricatti equation 2 2 ,
dy

x y
dx

 using Taylor’s series method for the initial condition 

y(0) = 0, where 0 x  0.4 and h = 0.2.

6. Using RK method of fourth order to obtain y(1.1); given that y  = x – y with the initial condition 

y(1) = 1 and take h = 0.1.

7. Using modified Euler’s method to find y(0.25); given that 2
dy

xy
dx

 with the initial condition 

y(0) = 1.

8. Obtain the value of y(0.4) using Milne’s method, given that y  = xy + y
2, y(0) = 1, using 

Taylor’s series to get the values of y(0.1), y(0.2) and y(0.3). [Delhi 1989]

9. For the solution of the first order differential equation y  = f (x, y), obtain the predictor formula 

of the form

    1 1 2 3 1 4 2( )n n n n ny a y h a y a y a y  and its corresponding corrector formula.

10. Given y¢ = 1 + y2 with boundary condition y(0) = 0 in 0 x 1, obtain y as a series in powers 

of x. [Nagpur 1998]

11. Using RK method of fourth order to compute y(0.1); given that y  = 3x + y2 with the condition 

y(0) = 1.

12. Let x = x(t) satisfy the differential equation ( , ),
dx

f x t
dy

 the RK method of order 4 with 

step-size h is

  where 1 2
1 2 3( , ), , , ,

2 2 2 2

K Kh h
K hf t x K hf t x K hf t x  and

K4 = hf(t + h, x + K3).

13. From Q. 10, compute y at x = 0.2, 0.4 and 0.6 take h = 0.2.

14. Using Milne’s method compute y(4.4); given that 25 2 0,xy y  also y(4) = 1, y(4.2) = 

1.0097, y(4.3) = 1.0143.

15. Using Milne’s method, compute y(0.4); given 
2

2(1 )
2

y
y x  also y(0) = 1, y(0.1) = 1.06, 

y(0.2) = 1.12 and y(0.3) = 1.21.

Answers

1. y(0.4) = 0.6896522   2. y(0.4) = 1.0408

3. y(1) = 0.8145958    4. y(0.4) = 1.5

5. y(0.4) = 0.021352    6. y(1.1) = 1.0040458

7. y(0.25) = 1.0645    8. y(0.4) = 1.83698

10. y(1) = 1.5460    11. y(0.1) = 1.127259

12. x(0.1) = x0 + x = 0.0048375

x(0.2) = x1 + x = 0.0187305

13. y(0.2) = 0.2027067, y(0.4) = 0.4228 and y(0.6) = 0.6481

14. y(4.4) = 1.01874    15. y(0.4) = 1.2798
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11.4  NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER
ORDINARY DIFFERENTIAL EQUATIONS

In this section we shall discuss the numerical solution of simultaneous ordinary differential equations 

using Picard’s method and RK method of fourth order.

11.4.1 Picard’s Method

Let ( , , ) and ( , , )
dy dz

f x y z g x y z
dx dx

be the first order simultaneous ordinary differential equations with initial conditions y(x0) = y0 and 

z(x0) = z0. The Picard’s method gives

and   

0

0

1 0 1 1

1 0 1 1

( , , )

( , , )

x

n n n

x

x

n n n

x

y y f x y z dx

z z g x y z dx

(21)

11.4.2 Runge–Kutta Method of Fourth Order

Let ( , , ) and ( , , )
dy dz

f x y z g x y z
dx dx

be the simultaneous first order ODEs with the initial conditions y(x0) = y0 and z(x0) = z0. Starting from 

(x0, y0, z0) and the increments k and l in y and z are given by the following formula:

1 1

1 1 1 1
2 2

2 2 2 2
3 0 3

44 3 3

1 2 3 4

( , , ); ( , , )

, , ; , ,
2 2 2 2 2 2

, , ; , ,
2 2 2 2 2 2

( , , );

1
( 2 2 );

6

r r r r r r

r r r r r r

r r r r r

r r r

k hf x y z l hg x y z

k l k lh h
k hf x y z l hg x y z

k l k lh h
k hf x y z l hg x y z

lk hf x h y k z l

k k k k k

3 3

1 2 3 4

( , , )

1
( 2 2 )

6

r r rhg x h y k z l

l l l l l

(22)

Hence,

      1 1and ; 0,1,2,3,...,r r r ry y k z z l r n (23)

Example 17 Find the approximate values of y and z at x = 0.1, using Picard’s method for the 

solution of the differential equations

3, ( )
dy dz

z x y z
dx dx

 given that y(0) = 1 and 
1

(0) .
2

z

Solution

Here,     0 0 0

1
0, 1,

2
x y z
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and       3( , , ) ; ( , , ) ( )
dy dz

f x y z z g x y z x y z
dx dx

Using Picard’s method in Eq. (21), we have

First approximation (n = 0)

       
0

1 0 0 0

0

1
( , , ) 1 1

2 2

x x

x

x
y y f x y z dx dx

      
0

4
3

1 0 0 0

0

1 1 1 3
( , , ) 1

2 2 2 8

x x

x

x
z z g x y z dx x dx

At x = 0.1; y1 = 1.05 and z1 = 0.5000375

Second approximation (n = 1)

       
0

4 5

2 0 1 1

0

1 3 3
( , , ) 1 1

2 8 2 40

x x

x

x x x
y y f x y z dx dx

       0

4
3

2 0 1 1

0

1 1 3
( , , ) 1

2 2 2 8

x x

x

x x
z z g x y z dx x dx

       

4 5 8

2

1 3 3

2 8 10 64

x x x
z

At x = 0.1, y2 = 1.500008 and z2 = 0.5000385

Third approximation (n = 2)

       
0

4 5 8

3 0 2 2

0

1 3 3
( , , ) 1

2 8 10 64

x x

x

x x x
y y f x y z dx dx

       

5 6 9

3

3
1

2 40 60 192

x x x x
y

       0

5 4 5 8
3

3 0 2 2

0

1 3 1 3 3
( , , ) 1

2 2 40 2 8 10 64

x x

x

x x x x x
z z g x y z dx x dx

        

4 5 8 9 12

3

1 3 3 7

2 8 10 64 360 256

x x x x x
z

At x = 0.1, y3 = 1.500008 and z3 = 0.5000385

Since y2 = y3 and z2 = z3

Hence, y(0.1) = 1.500008

z(0.1) = 0.5000385.
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Example 18 Using Picard’s method to find approximate value of y and z at x = 0.1 of the differential 

equations 2and
dy dz

x z x y
dx dx

 with initial condition y(0) = 2, z(0) = 1.

Solution

Here x0 = 0, y0 = 2, z0 = 1

and 2( , , ) ; ( , , )
dy dz

f x y z x z g x y z x y
dx dx

Using Picard’s method in Eq. (21), we have

First approximation (n = 0)

       0

2

1 0 0 0

0

( , , ) 2 ( 1) 2
2

x x

x

x
y y f x y z dx x dx x

       0

2

1 0 0 0

0

( , , ) 1 ( 4) 1 4
2

x x

x

x
z z g x y z dx x dx x

At x = 0.1, y1 = 2.105, z1 = 0.605

Second approximation (n = 1)

       0

2

2 0 1 1

0

( , , ) 2 1 4
2

x x

x

x
y y f x y z dx x x dx

=
2 33

2
2 6

x x
x

       0

2
2

2 0 1 1

0

( , , ) 1 2
2

x x

x

x
z z g x y z dx x x dx

=
2 4 5

33
1 4

2 4 20

x x x
x x

At x = 0.1, y2 = 2.085, z2 = 0.584

Third approximation (n = 2)

       
0

2 4 5
3

3 0 2 2

0

3
( , , ) 2 1 3

2 4 20

x x

x

x x x
y y f x y z dx x x dx

=
2 3 4 5 63

2
2 2 2 20 120

x x x x x
x

       0

2
2 3

3 0 2 2

0

3
( , , ) 1 2

2 6

x x

x

x x
z z g x y z dx x x dx

=
2 3 4 5 6 73 5 7 31

1 4
2 2 12 60 12 252

x x x x x x
x
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At x = 0.1,

y3 = 2.085, z3 = 0.587

Since y2 = y3 and z2 = z3

Hence, y(0.1) = 2.085 and z(0.1) = 0.587.

Example 19 Using RK method of fourth order to find y(0.1) and z(0.1) from the system of 

equations 2;
dy dz

x z x y
dx dx

 with initial conditions f (0) = 2, z(0) = 1

Solution Here, x0 = 0, y0 = 2, z0 = 1, h = 0.1 and ( , , )
dy

f x y z x z
dx

 and 
dz

dx
 = g(x, y, z) = x – y2.

Using Eq. (22), we get

1
1

2

3

4

(0.1) (0,2,1)
(0.1) (0,2,1) (0

0.1

(0.1) (0.05,2.05,0.8)

(0.1)(0.05 0.8)

0.085

(0.1) (0.05,2.0425,0.79238)

(0.1)(0.05 0.79238)

0.084238

(0.1) (0.1,2.084238,0.5878)

(0.1)[0.1 0.5878]

0.06878

k f
l g

k f

k f

k f

2

2

2

3

2

4

2

.1)[0 2 ]

0.4

(0.1) (0.05,2.05,0.8)

(0.1)[0.05 (2.05) ]

0.41525

(0.1) (0.05, 2.0425. 0.79238)

(0.1)[0.05 (2.0425) ]

0.4122

(0.1) (0.1,2.084238,0.5878)

(0.1)[0.1 (2.084238) ]

0.4244

l g

l g

l g

       
1

[0.1 2(0.085 0.084238) 0.06878]
6

k

k = 0.0845

and      
1

[ 0.4 2(0.41525 0.4122) 0.4244)]
6

l

l = – 0.4132

y1 = y0 + k = 2 + 0.0845 = 2.0845

z1 = z0 + l = 1 – 0.4132 = 0.58678

Hence, y(0.1) = 2.0845 and z(0.1) = 0.58678.

Example 20 Using RK method of fourth order to find y(0.1) and z(0.1) from the system of 

equations ;
dy dz

x yz xz y
dx dx

 with the initial conditions y(0) = 1, z(0) = –1.

Solution Here, x0 = 0, y0 = 1, z0 = –1, h = 0.1

and ( , , ) , ( , , )
dy dz

f x y z x yz g x y z xz y
dx dx
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Using Eq. (21), we get

k1 = (0.1)f (0, 1, –1) l1 = (0.1)g(0, 1, –1) = 0.1

= – 0.1

k2 = (0.1)f (0.05, 0.95, – 0.95) l2 = (0.1)g(0.05, 0.95, – 0.95)

= – 0.08525 = 0.09025

k3 = (0.1) f (0.05, 0.957375, – 0.954875); l3 = (0.1)g(0.05, 0.957375, – 0.954875)

= – 0.0864173  = –0.090963

k4 = (0.1)f (0.1, 0.9135827, – 0.9090369); l4 = (0.1) g(0.1, 0.9135827, – 0.9090369)

= – 0.073048 = 0.082279

Now,

k = 
1

[ 0.1 2( 0.08525) 2( 0.0864173) 0.073048]
6

 = –0.0860637

and l = 
1

[0.1 2(0.09025) 2(0.090963) 0.0822679]
6

= –0.090782

y1 = 0(0.1) 1 0.0860637 0.9139363y y k

z1 = 0(0.1) 1 0.0907823 0.909218z z l

EXERCISE 11.7

Using Picard’s method solve the following (1 to 3):

1. Find the third approximation of the solution of the equations 2 4;
dy dz

z x z x y
dx dx

 with 

initial conditions y(0) = 5, z(0) = 1.

2. Find y(0.3) and z(0.3) for the system of equation 1 ;
dy dz

xz xy
dx dx

 with initial conditions 

y(0) = 0, z(0) = 1.

3. Approximate y and z for the system of equations 22 ; 3
dy dz

x z xy x z
dx dx

 with y(0) = 2, 

z(0) = 0 up to 3rd approximation.

4. Using RK method of fourth order find y and z at x = 0.1, 0.2 for the differential equations 

;
dy dz

x z x y
dx dx

 given that y(0) = 0, z(0) = 1.

5. In question number (2) find y and z at x = 0.3 using RK method of fourth order.

6. Using RK method of fourth order to find y(1.1) and z(1.1); given that ,
xy

y xyz z
z

 with 

1
(1) , (1) 1.

3
y z

7. Using RK method of fourth order to find y and z at x = 0.2, 0.4 for the system of equations 
2,y xz z y  taking step size h = 0.2.
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Answers

1.
4 6 7 9

3

2
5

12 6 63 72

x x x x
y x 2. y(0.3) = 0.3448, z(0.3) = 0.99

3 6 8 9 11
5

3

2 11 7
1

3 9 8 224 264

x x x x x
z x

3. 2 3 5 6
3

3 1
2

20 10
y x x x x 4. y(0.1) = 0.1050, z(0.1) = 0.9998

3 5 7
2

3

3 6 3 3
3

4 5 20 40

x x x x
z x

y(0.2) = 0.2199, z(0.2) = 0.9986

5. y(0.3) = 0.34483, z(0.3) = 0.98999 6. y(1.1) = 0.3707, z(1.1) = 1.03615

7. y(0.2) = 0.9774, z(0.2) = 1.1971

y(0.4) = 0.9, z(0.4) = 1.375

11.5  NUMERICAL SOLUTION OF SECOND ORDER ORDINARY
DIFFERENTIAL EQUATIONS

In this section, we shall discuss the numerical solution of second order ODE by Picard’s method, 

Runge–Kutta method of fourth order and Milne’s method.

11.5.1 Picard’s Method

Consider the second order differential equation 
2

2
, ,

d y dy
f x y

dxdx
(24)

Putting
2

2
and ,

dy d y dz
z

dx dxdx
 then Eq. (24) can be reduced to two first order simultaneous 

differential equations

       
and ( , , ).

dy dz
z f x y z

dx dx

These equations can be solved as discussed above in Section 11.4.1.

Example 21 Using Picard’s method obtain the second approximation to the solution of 

3 3 0y x y x y  with initial condition y(0) = 1, 
1

(0) .
2

y

Solution

Given 3 3 0y x y x y (25)

Putting ,y z y z  then Eq. (25) becomes

3 3 0z x z x y
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      3 3;
dy dz

z x z x y
dx dx

Now solve it in the same way as in Example 17.

Example 22 Using Picard’s method to approximate y at x = 0.1 given that 2 0y xy y  with 

the initial condition y(0) = 0.5, y (0) = 0.1..

Solution

Put so that ,y z y z  then the given differential equation becomes

    
2 0; (0) 0.5, (0) 0.1z xz y y z

Now the problem becomes ( , , )
dy

z f x y z
dx

 and 
dz

dx
 – (2xz + y); x0 = 0, y0 = 0.5, z0 = 0.1,

h = 0.1.

Now using Eq. (20), we get

The first approximation is as follows:

y1 = 

0

0.5 (0.1) 0.5 (0.1)

x

dx x

z1 = 2

0

0.1 [(0.2) 0.5] 0.1 (0.5) (0.1)

x

x dx x x

Second approximation is as follows:

y2 = 2
1

0 0

0.5 0.5 [0.1 0.5 0.1 ]

x x

z dx x x dx

=
2 30.5 0.1

0.5 (0.1)
2 3

x x
x

z2 = 
1 1

0

0.1 [2 ]

x

xz y dx

= 2

0

0.1 [2 (0.1 0.5 0.1 ) (0.5 0.1 )]

x

x x x x dx

=
2 3 4(0.3) (0.2)

0.1 (0.5)
2 3 4

x x x
x

Similarly, third approximation is as follows:

y3 = 
2 3 4 5(0.5) (0.1) (0.1)

0.5 (0.1)
2 2 12 10

x x x x
x

z3 = 
2 3

4 5 6(0.3) (2.5) 2 0.1
0.1 (0.5) (0.2)

2 6 15 6

x x
x x x x

Hence, At x = 0.1

y1 = 0.51, y2 = 0.50746667, y3 = 0.50745933.

y(0.1) = 0.5075 (correct to 4 decimal places).
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11.5.2 Runge–Kutta Method for Second Order O.D.E.

Consider the second order differential equation

       
2

0 0 0 02
, , ; ( ) , ( )

d y dy
x y y x y y x y

dxdx
(26)

Let
2

2
so that ,

dy d y dz
z

dx dxdx
 than Eq. (26) becomes

        
0 0 0 0( , , ); ( ) , ( )

dz
x y z y x y z x z

dx

Therefore, the problem reduces to two simultaneous ordinary differential equations

and     

( , , )

( , , )

dy
z f x y z

dx

dz
x y z

dx
(27)

Subject to the conditions 0 0 0 0( ) , ( ) .y x y z x z

Equation (27) shows the two simultaneous ODEs and this system can be solved in the Section 

11.4.2.

Example 23 Using RK method of fourth order to find the approximate value of y at x = 0.1 of the 

differential equation y xy y  with initial conditions y(0) = 3, y (0) = 0.

Solution

Given     y xy y (28)

with y(0) = 3 and y (0) = 0

Let y  = z so that y z

Therefore Eq. (26) reduces to

and      

( , , )

( , , )

y z f x y z

z xz y x y z
(29)

subject to the conditions y(0) = 3 and z(0) = 0

i.e.,
0 0 00, 3 and 0,x y z  taking h = 0.1

Now using Eq. (22) in Section 11.4.2, we have

     

1 0 0 0 1 0 0 0

2 2

3

4

( , , ) ( , , )

(0.1) (0,3,0) (0.1) (0,3,0)

0 0.3

(0.1) (0.05,3, 0.15) (0.1) (0.05,3

0.015

(0.1) (0.05,2.9925, 0.150375)

0.0150375

(0.1) (0.1,2.9849625, 0.3000018)

0.0300001

k hf x y z l h x y z

f

k f l

k f

k f

3

4

, 0.15)

0.30075

(0.1) (0.05, 2.9925, 0.150375)

0.3000018

(0.1) (0.1,2.9849625, 0.3000018)

0.3014962

l

l
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Again using Eq. (23) in Section 11.4.2, we get

y1 = y(0.1) = y0 + k

= 1 2 3 4

1
3 [ 2( ) ]

6
k k k k

=
1

3 [0 2( 0.015 0.0150375) 0.0300001]
6

y1 = – 0.0150125

and z1 = 0 1 2 3 4

1
(0.1) 0 [ 2( ) ]

6
z z l l l l l

=
1

0 0.3 2( 0.30075 0.3000018) 0.3014962
6

= –0.3004999.

11.5.3 Milne’s Method for Second Order O.D.E.

In the section (11.5.2) the reduced system (2) can be solved by Milne’s method, which is discussed as 

follows:

We applying Milne’s predictor formula, first to z and then to y, we have

1 3 1 2

1 3 1 2

4
2 2 and

3

4
2 2

3

n n n n n

n n n n n

h
z z z z z

h
y y y y y

(30)

Then find 1 1andn nz y  at x = x1 + nh by using (31).

Now, applying Milne’s corrector formula, we have

1 1 1 1

1 1 1

4 and
3

4
3

n n n n n

n n n n n

h
z z z z z

h
y y y y y

(31)

Example 24 Using Milne’s method to find y(0.4), given 0, (0) 1, (0) 0y xy y y y  and 

find y(x) at x = 0.1, 0.2, 0.3 by Taylor’s series method.

Solution Given

    0y xy y (32)

with y(0) = 1, y (0) = 0

Putting y = z so that y  = z

Therefore equation (32) reduces to

( , , ) and

( ) ( , , )

y z f x y z

z xz y x y z
(33)

subject to the conditions y(0) = 1, and z(0) = 0
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Taking h = 0.1

Differentiating (32) n times by Leibnitz theorem, we get

2 1 0n n n ny x y n y y

At x = 0, y(0)
n + 2 = – (n + 1) yn(0)

2 4 6

1 3 5 7

(0) 1, then (0) 1, (0) 3, (0) 15, and

(0) 0, then (0) (0) (0) 0

y y y y

y y y y
(34)

Using Taylor’s series method, y(x) is

2 3

1 2 3( ) (0) (0) (0) (0)
2! 3!

x x
y x y xy y y

y(n) = 
2

4 63 15
1 [Using (3)]

2! 4! 6

x
x x (35)

and z(x) = y (x)

=
3 5

2 8

x x
x

=
2

43
1

2! 4!

x
x x

z(x) = –xy (36)

From (35), we obtain

y(0.1) = 
2

4(0.1) 1
1 (0.1) 0.995

2 8

y(0.2) = 
2 4(0.2) (0.2)

1 0.9802
2 8

y(0.3) = 
2 4(0.3) (0.3)

1 0.956
2 8

Using y(0.1), y(0.2) and y(0.3) then equation (5) gives

z(0.1) = – (0.1)·y(0.1) = –0.1 × 0.995 = –0.0995

z(0.2) = –0.196, z(0.3) = –0.2863

From (33), z (x) = – (xz + y)

Therefore z (0.1) = – (0.1 × –0.0995 + 0.995) = 0.985

z (x) = –0.941 and z (0.3) = –0.87

Applying Milne’s predictor formula (32) in Art (11.5.3), we get for n = 3

z(0.4) = 0

4 0.1
2 (0.3) (0.2) 2 (0.1)

3
z z z z

=
0.4

0 2 0.87 0.941 2 0.985
3

= –0.3692  y (0.4) = –0.3692
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and y(0.4) = 
44 0.1

(0) 2 (0.3) (0.2) 2 (0.1)
3

y y y y

=
0.4

0 [ 0.5736 0.196 0.199]
3

y(0.4) = 0.9231  y

Using (33) z (x) = – (xz + y)

z (0.4) = –[0.4 × –0.3692 + 0.9231]

z (0.4) = –0.7754

Now applying Milne’s corrector formula (34) in Art (11.5.3), we obtain

z(0.4) = (0.2) (0.4) 4 (0.3) (0.2)
3

h
z z z z

=
0.1

0.196 [ 0.7754 3.48 0.941]
3

= –0.3692

and y(0.4) = (0.2) (0.4) 4 (0.3) (0.2)
3

h
y y y y

=
0.1

0.9802 [ 0.3692 1.1452 0.196]
3

= 0.9232

Hence y(0.4) = 0.9232 and z(0.4) = –0.3692.

Example 25 Using Milne’s method compute y(0.4), given y  = xy  – y with initial conditions 

y(0) = 3, y (0) = 0. Find y(0.1), y(0.2) and y(0.3) by using Taylor’s series method. (taking h = 0.1)

Solution Given

y  – xy  + y = 0 (37)

with y(0) = 3 and y (0) = 0

Put y  = z so that y  = z

Therefore equation (37) reduces to

( , , ) and

( , , )

y z f x y z

z xz y x y z
(38)

subject to the conditions y(0) = 3 and z(0) = 0

Differentiating (37) n times by Leibnitz theorem, we get

2 1 0n n n ny x y ny y

At x = 0, 
(0)

2 ( 1) (0)n ny n y

y(0) = 3 so y2(0) = –3, y4(0) = –3, y6(0) = 3 × –3, ...

and y1(0) = 0 so y3(0) = 0 = y5(0) = y7(0) = ... = 0
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Using Taylor’s series method, expand y(x)

y(x) = 
2 3 4

0 1 2 3 4(0) (0) (0) (0)
2! 3! 4!

x x x
y x y y y y

= 2 4 63 1 1
3

2 8 80
x x x (39)

Also z(x) = 
3

53
( ) 3

2 40

x
y x x x (40)

At x = 0.1, 0.2 and 0.3, Eq. (39) gives

y(0.1) = 
2 4 63(0.1) (0.1) (0.1)

3 2.985
2 8 80

y(0.2) = 2.940 and y(0.3) Eq. (40) gives

At x = 0.1, 0.2 and 0.3 Eq. (40) gives

z(0.1) = 
3

5(0.1) 3
3 (0.1) (0.1) 0.299

2 40

z(0.2) = 0.596 and z(0.3) = 0.886

Using (38) z (x) = xz – y

z (0.1) = (0.1) z(0.1) – y(0.1) = 0.1 × 0.299 – 2.985 = – 2.955

z (0.2) = 0.2 × 0.596 – 2.940 = – 2.821

z (0.3) = 0.3 × 0.886 – 2.864 = –2.598

Applying Milne’s predictor formula (37), we get

z(0.4) = 0

4 0.1
2 (0.3) (0.2) 2 (0.1)

3
z z z z

=
0.4

0 [2 2.958 2.821 2 2.955]
3

= –1.105

and y(0.4) = 0

4 0.1
2 (0.3) (0.2) 2 (0.1)

3
y y y y

=
0.4

3 [2 0.886 0.596 2 0.299]
3

y(0.4) = 3.237

Now, using (38) z (x) = xz – y

z (0.4) = 0.4 × –1.105 – 3.237 = –3.679

Now, applying Milne’s corrector formula (38), we get

z(0.4) = (0.2) (0.4) 4 (0.3) (0.2)
3

h
z z z z
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=
0.1

0.596 [ 3.679 4 2.598 2.821]
3

z(0.4) = 0.033  [ y  = z]

and y(0.4) = (0.2) (0.4) 4 (0.3) (0.2)
3

h
y y y y

=
0.1

2.940 [0.033 4 0.886 0.596]
3

y(0.4) = 3.079

Hence, y(0.4) = 3.079 and z(0.4) = 0.033.

EXERCISE 11.8

1. Using Picard’s method to obtain the second approximation to the solution of 3 3 0y x y x y

with
1

(0) 1; (0) .
2

y y

2. Using Picard’s method, find the third approximation of the initial value problem 1y xy

with (0) 1; (0) 0.y y

3. Use Picard’s method to solve the equation 4y y xy  with (0) 3; (0) 0y y  to approximate 

y when x = 0.1.

4. Using RK method, solve the equation 2 2( )y x y y  for x = 0.2 correct to four decimal 

places with initial conditions y(0) = 1 and (0) 0.y

5. Using RK method, to find y(0.1) to the equation y y  with y(0) = 1 and y (0) = 0.

6. Use RK method to find y(0.1) given 3 with (0) 10 and (0) 5.y y y y

7. Solve 2 2 0y x y xy  given that y(0) = 1; (0) 0y  for y(0.1) using RK method.

Answers

1.
5

2

3
1

2 40

x x
y 2.

2 3

3 1
2 6

x x
y

3. y(0.1) = 2.9399 4. y(0.2) = 0.9801

5. y(0.1) = 1.0204 6. y(0.1) = 17.42

7. y(0.1) = 1.005334
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Following topics have been discussed in this chapter:

(i) Picard’s Method of Successive Approximations

For the differential equation

( , )
dy

f x y
dx

With the initial condition y(x0) = y0.

Then the nth approximation is

y
(n) = 

0

( 1)
0 ( , )

x
n

x

y f x y dx

Thus, we obtain a sequence of approximate solutions 

y
(1), y

(2), y
(3), …, y(n)

each giving a better result than the preceding one.

(ii) Taylor’s Series Method

For the differential equation ( , )
dy

f x y
dx

 with initial condition y(x0) = y0.

Suppose y = f (x) is the exact solution of the given equation, then f (x) expanding as a Taylor’s series 

about x = x0, we have

y(x) = y0 + (x – x0)
2 3

0 0
0 0 0

( ) ( )

2! 3!

x x x x
y y y

If the values 0 0 0, , ,y y y   are known, then the above equation gives a power series for y.

0 0 0, , ,y y y  can be obtain from the above equation.

We can write the above equation as

y  = ( , ), x y x yf x y y f f f y f f f

Similarly,

[ ] [ ]xx xy yx yy y x yy f f f f f f f f f f f f

or        2 22xx xy yy x y yy f f f f f f f f f

and so on.

(iii) Euler’s Method

Consider the differential equation of first order is as follows:

( , )
dy

f x y
dx

SUMMARY
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With initial condition y(x0) = y0.

The general approximations of the given equation is

yn+1 = yn + h f (xn, yn), where h = 0nx x

n

This is called Euler’s algorithm.

Thus, starting from x0 when y = y0 and we construct a table for y for given steps of h in x.

Note If the value of h is small, this method is very slow. However, if h is large then this method 

is inaccurate.

(iv) Modified Euler’s Method

Modified Euler’s method gives a better improvement in accuracy over the original Euler’s method. 

In this method, we use a line through (x0, y0) whose slope is the average of the slopes at (x0, y0) and

(x1, y1
(1)), where y1

(1) = y0 + h f (x0, y0).

  Thus, we obtain a generalization form of Euler’s modified method as follows:

y1
(n + 1) = ( )

0 0 0 1 1( , ) ( , ) ; 0,1, 2,
2

nh
y f x y f x y n

  where y1(n) is the nth approximation to y1.

  The iteration formula can be started by choosing y1
(1) from Euler’s formula 

  i.e., y1
(1) = y0 + h f (x0, y0).

  Therefore the above formula is also known as Single step predictor-corrector method. 

(v) Runge–Kutta (RK) Method of Fourth Order

The fourth order Runge–Kutta (RK) method is most commonly used in practice and is often referred 

to as the RK method only without any reference to the order.

To solve ( , );
dy

f x y
dx

y(x0) = y0 by RK method, compute

K1 = h f (xr, yr), K2 = 1,
2 2

r r

h K
h f x y

K3 = 2,
2 2

r r

h K
h f x y

K4 = 3( , );r rh f x h y K

and yr+1 = 1 2 3 4

1
( 2 2 );

6
ry K K K K r = 0, 1, 2 …

Which is the required fourth order RK method. The inherent error in the fourth order RK method 

is of order h5.

(vi) Predictor-Corrector Method

The general solution for this method for the solution of an ordinary differential equation is defined 

as following:

Step one is to predict a solution for the given differential equation using an explicit method and then 

correct the predicted value using another implicit formula of it. Continue this process of prediction 

and correction till the solution reaches within the error limit.
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(a) Milne’s Predictor-Corrector Method It is a multi-step predictor-corrector method based on 

two formulae

(i) Milne’s formula for prediction is as follows:

yn+1 = 3 1 2

4
(2 2 )

3
n n n n

h
y f f f

  It is used to predict the value of yn+1, when yn, yn–1, yn–2 and yn–3 are known.

(ii) Simpson’s formula for correction is as follows:

yn + 1 = 1 1 1( 4 )
3

n n n n

h
y f f f

  It is used to correct the value of yn+1, where yn+1, yn and yn–1 are known.

  Also fn+1 = f (xn+1, yn+1) is used in the given equations to compute yn+1.

(B)  Adam’s-Bashforth Method (or Adam’s-Moulton Formula) It is a very popular and effective 

fourth-order predictor corrector multi-step method.

We require four starting values of y which are calculated by some other techniques (such as 

Taylor’s, RK, Euler’s or Picard’s method). This method is based on the following two formulae:

(i) Predictor formula known as Adams-Bashforth predictor 

(ii) corrector formula known as Adams-Moulton corrector.

To solve the initial value problem 0 0( , ); ( ) .
dy

f x y y x y
dx

We compute 1 0 2 0 3 0( ), ( 2 ), ( 3 ),y y x h y y x h y y x h  by RK method, Euler’s method or 

Taylor’s series, etc.

Next we determine

1 0 1 2 0 2 3 0 3( , ), ( 2 , ), ( 3 , ).f f x h y f f x h y f f x h y

Now using Adams-Bashforth predictor formula

4 3 3 2 1 0[55 59 37 9 ]
24

p h
y y f f f f

It can be written as

1 1 2 3[55 59 37 9 ]
24

p
n n n n n n

h
y y f f f f

and Adams-Bashforth corrector formula

4 3 4 3 2 1[9 19 5 ]
24

c h
y y f f f f

where
4 0 4( 4 , )

p
f f x h y

The above equation can be written as

1 1 1 2[9 19 5 ]
24

c
n n n n n n

h
y y f f f f

The improved value of y4 is calculated and then use corrected formula to find a better value of y4

and continue this process fill y4 remains unaltered and the proceed to find y5 as above.
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1.  Numerical Solution of Simultaneous First Order Ordinary
Differential Equations

(i) Picard’s Method

Let ( , , ) and ( , , )
dy dz

f x y z g x y z
dx dx

be the first order simultaneous ordinary differential equations with initial conditions y(x0) = y0 and 

z(x0) = z0. The Picard’s method gives

and    

0

0

1 0 1 1

1 0 1 1

( , , )

( , , )

x

n n n

x

x

n n n

x

y y f x y z dx

z z g x y z dx

(ii) Runge–Kutta Method of Fourth Order

Let ( , , ) and ( , , )
dy dz

f x y z g x y z
dx dx

be the simultaneous first order ODEs with the initial conditions y(x0) = y0 and z(x0) = z0. Starting 

from (x0, y0, z0) and the increments k and l in y and z are given by the following formula:

1 1

1 1 1 1
2 2

2 2 2 2
3 0 3

44 3 3

1 2 3 4

( , , ); ( , , )

, , ; , ,
2 2 2 2 2 2

, , ; , ,
2 2 2 2 2 2

( , , );

1
( 2 2 );

6

r r r r r r

r r r r r r

r r r r r

r r r

k hf x y z l hg x y z

k l k lh h
k hf x y z l hg x y z

k l k lh h
k hf x y z l hg x y z

lk hf x h y k z l

k k k k k

3 3

1 2 3 4

( , , )

1
( 2 2 )

6

r r rhg x h y k z l

l l l l l

Hence,

1 1and ; 0,1,2,3,...,r r r ry y k z z l r n .

2.  Numerical Solution of Second Order Ordinary Differential
Equations

(i) Picard’s Method

Consider the second order differential equation 
2

2
, ,

d y dy
f x y

dxdx

Putting
2

2
and ,

dy d y dz
z

dx dxdx
 then, the above equation can be reduced to two first order simultaneous

differential equations
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and ( , , )
dy dz

z f x y z
dx dx

.

(iii) Runge–Kutta Method for Second Order (ODE)

Consider the second order differential equation

2

0 0 0 02
, , ; ( ) , ( )

d y dy
x y y x y y x y

dxdx

Let
2

2
so that ,

dy d y dz
z

dx dxdx
 then the equation becomes:

   
0 0 0 0( , , ); ( ) , ( ) .

dz
x y z y x y z x z

dx

Therefore, the problem reduces to two simultaneous ordinary differential equations

  and

( , , )

( , , )

dy
z f x y z

dx

dz
x y z

dx

Subject to the conditions 0 0 0 0( ) , ( )y x y z x z

Given equation shows the two simultaneous ordinary differential equations and this system can 

be solved in the Section 11.4.2 in the chapter. 

OBJECTIVE TYPE QUESTIONS

1. Picard’s method to find the solution of 

0 0( , ); ( )
dy

f x y y x y
dx

 is

(a)

0

0 1( , )

n

x

n

x

y y f x y dx

(b)

0

0 1( , )
nx

n

x

y y f x y dx

(c)

0

1( , )
nx

n n

x

y y f x y dx

(d)

0

0 ( , )
nx

n n

x

y x f x y dx

2. Second order RK method is applied to the 

initial value problem 
0 0; ( )

dy
y y x y

dx

with step size h, then y(x) is

(a) 1 1 2

1
( ) ( )

3
y x y K K

(b) 0 0 0( ) ( , )y x y hf x y

(c) 1 0 1( ) ( , )y x hf x y K

(d) None of these

3. Using Euler’s method to solve y  = – xy with 

y(0) = 1, h = 0.05, then y(0.5) is

(a) 1 (b) –1

(c) 0 (d) 0.9975

4. When y  = x + y2 and y0 = 1, then using Picard’s 

method y1 is
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(a)
2

1
2

x
x (b)

2

1
2

x
x

(c)
2

1
2

x
x (d)

3

1
3

x
x

5. If y  = 2xy with y(0) = 1, using modified 

Euler’s method, y(0.2) is (taking h = 0.25)

(a) 1.0625 (b) 0.3421

(c) 3.2506 (d) 0.0625

6. Runge–Kutta method is a self-starting method

(a) False (b) Do not know

(c) True (d) None of these

7. Given the differential equation y  = x – y

with y(0) = 0. The value of y(0.1), calculated 

numerically upto the third place of decimal by 

the second order Runge–Kutta method with 

step size h = 0.1 is ______.

[GATE (CS) – 1993]

8. Backward Euler’s method for solving the 

differential equation y  = f (x, y) is specified by

(a) yn + 1 = yn + hf (xn, yn)

(b) yn + 1 = yn + hf (xn+1, yn+1)

(c) yn + 1 = yn–1 + 2hf (xn, yn)

(d) yn + 1 = 1+ hf (xn–1, yn–1)

[GATE (CS) – 1994]

9. Gauss–Seidel iterative method can be used for 

solving a set of

(a) Linear differential equation

(b) Linear algebraic equation

(c) Both linear and non-linear algebraic 

equations

(d) Both linear and non-linear differential 

equations

[GATE (EE) – 1997]

10. Match the correct combination

A  Newton–Raphson 1.  Solving non-linear

 method    equations

B  Runge–Kutta 2.  Solving linear

 method    simultaneous

     equations

C  Simpson’s rule 3.  Solving ordinary

     differential

     equations

D  Gauss method 4.  Numerical

     Integration

   5.  Interpolation

   6.  Calculation of eigen

     values

(a) A-6, B-1, C-5, D-3

(b) A-1, B-6, C-4, D-3

(c) A-1, B-3, C-4, D-2

(d) A-5, B-3, C-4, D-1

[GATE (EC) – 2005]

11. Match the items in column I and II

  Column-I    Column-II

A  Gauss–Seidel 1.  Interpolation

 method

B  Newton’s forward 2.  Non-linear

 formula    differential

     equations

C  Runge–Kutta 3.  Numerical

 method    integration

D  Trapezoidal rule 4.  Linear algebraic

     equations

(a) A-1, B-4, C-3, D-2

(b) A-1, B-4, C-2, D-3

(c) A-1, B-3, C-3, D-4

(d) A-4, B-1, C-2, D-3

[GATE (ME) – 2006]

12. While numerically solving the differential 

equation y  + 2xy
2 = 0, y(0) = 1, using Euler’s 

predictor-corrector (improved Euler–Cauchy) 

method with a step size of 0.2 the value of y

after the first step is

(a) 1 (b) 1.03

(c) 0.97 (d) 0.96

[GATE (IN) – 2013]

13. The second order Runge–Kutta method is 

(a) Euler’s method

(b) Modified Euler’s method

(c) Taylor’s series method

(d) None of these

14. Using Euler’s method, solve 
2

,
dy y x

dx yy(0) = 1, then y(0.1) is

(a) 1.1818 (b) 2.0183

(c) 1.6870 (d) None of these

15. Taylor’s series method will be useful to give 

some starting values of

(a) Milne’s method

(b) Runge–Kutta method

(c) Euler’s method

(d) None of these

16. Using RK fourth order method, the approxi-

mate value of y(0.2); given that y  = x + y,

y(0) = 1 is

(a) 1.3678 (b) 1.2468

(c) 0.2468 (d) 2.3678
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17. Given y0, y1, y2, y3, using Milne’s corrector 

formula to find y4 for y  = f (x, y) is

(a) 4 2 2 3 4( 4 )
3

h
y y f f f

(b) 4 1 2 3 4( 4 )
3

h
y y f f f

(c)
4 2 2 3 4( 4 )

3

h
y y f f f

(d) 4 2 2 3 4( 4 )
3

h
y y f f f

18. Using Euler’s method, find y(0.4) for y  = –y

with y(0) = 1, h = 0.01 is

(a) 0.9606 (b) 0.1345

(c) 1.9606 (d) None of these

19. Using RK fourth order to 

1

3 ; (1) 1,y x y y

value of y(1.1) is

(a) 1.10682 (b) 0.10682

(c) 0.10684 (d) 2.10682

20. Taylor’s series method for y  = f (x, y) is single 

step method

(a) True (b) False

(c) Wrong (d) None of these

ANSWERS

1.(b) 2.(d) 3.(a) 4.(a) 5.(a) 6.(a) 7.(0.005) 8.(a) 9.(b)

10.(c) 11.(c) 12.(d) 13.(b) 14.(a) 15.(a) 16.(b) 17.(a) 18.(a) 19.(a)

20.(a)





12.1 INTRODUCTION

Partial differential equation (PDE) plays an important role in the field of technology, science and 

many branches of applied mathematics (like in Fluid dynamics, Human body, electromagnetic fields, 

Debluring problem in image processing, Quantum computation, Study of displacement of a vibrating 

string, Heat transfer quantum mechanics and Study of diffusion of mater, etc.). Most of the physical 

problems can be modelled mathematically by partial differential equations, but only few of them can be 

solved by analytical method. So in most of the cases, we apply the numerical method to approximate 

solution. In this chapter, we shall discuss the explicit, implicit and iterative methods. The method of 

finite differences (explicit) is most commonly used. In this method, the derivatives appearing in the 

equation and the boundary conditions are replaced by their finite difference approximations.

12.2 CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

Let u(x, y) be a continuous function which maps R2 in to R. The general second order partial differential 

equation is of the form

2 2 2

2 2
, , , , , , , 0

u u u u u
x y z

x y x yx y

or
2 2 2

2 2
,

u u u u u
A B C D E Fu G

x y x yx y
(1)

where A, B, C, D, E, F and G are all functions of x and y. Equation (1) can be classified into three types 

according to the numerical value of the discriminant 2 4B AC  which are as follows:

(i) If  < 0 at a point in the (x, y) plane, then the Eq. (1) is called elliptic.

(ii) If  = 0 at a point in the (x, y) plane, then the Eq. (1) is called parabolic.

(iii) If  > 0 at a point in the (x, y) plane, then the Eq. (1) is called hyperbolic.

12.3 SOME STANDARD PDE’s

In this section, we shall list some standard PDEs that play a very important role in various applications 

of science and engineering.

Numerical Solution of

Partial Differential 

Equations12
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12.3.1 Heat Equation

The heat equation represents the flow of heat in a conductor and is defined as

2
2

2
,

u u
C

t x

where C is a constant and u is temperature at time t at a point.

12.3.2 Wave Equation

The wave equation represents vibrations of an elastic body or a particle and is defined as

2 2
2

2 2
,

u u
K

t x

where K
2 is velocity of wave propagation which is constant, u is displacement at time t of a particle in 

space or line.

12.3.3 Laplace’s Equation

The Laplace’s equation represents the steady-state distribution of heat in a body. It is defined as

(i) In 2D,
2 2

2

2 2
0 or 0,

u u
u

x y

  where the Laplace operator in 2D is 
2 2

2

2 2
.

x y

(ii) In 3D,
2 2 2

2

2 2 2
0 or 0,

u u u
u

x y z

  where the Laplace operator in 3D, is 
2 2 2

2

2 2 2
.

x y z

12.3.4 Poisson’s Equation

Poisson’s equation represents potential in 2D or 3D and is defined as

2 2
2

2 2
( , ) or ( , ) in 2 ,

u u
f x y u f x y D

x y

where     
2 2

2

2 2
x y

and  
2 2 2

2

2 2 2
( , , ) or ( , , ) in 3 ,

u u u
f x y z u f x y z D

x y z

where

2 2 2
2

2 2 2
.

x y z

12.3.5 Potential Equation

 This equation is a special form of Poisson’s equation and it is represents electromagnetic or gravitational 

fields.
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2 2
2

2 2
( , ) or ( , ).

u u
x y u x y

x y

12.3.6 Schrödinger’s Equation

For a particle of mass equal to 
2

2

1
is ,

2

u u
i

t x

where units of length and time have been chosen in such a way that Planck’s constant becomes 1.

The Schrödinger’s equation in quantum mechanics for the scattering of a wavepacket by 1-D 

potential V(x) is used for the evaluation of a complex quantity  and it is described as

2

2
( ) ,i V x

t x

where 1i  and t is time.

Note:  In stationary case:
2 2

2 2
( ) 0.V x

x y

12.3.7 Navier–Stokes Equation

It is used in the application of fluid mechanics, when the fluid is incompressible and viscous, then the 

system of partial differential equation is defined as

2 2

2 2

u u u p u u
u v

t x y x x y

2 2

2 2
,

v v v p v v
u v

t x y y x y

where u and v are the components of the velocity vector in a fluid flow and p is the function of 

pressure.

12.3.8 Cauchy–Riemann Equation

The Cauchy–Riemann equation is defined as

0,
u u

i
t x

where 1.i

12.3.9 Boundary and Initial Value Problem

A solution of a partial differential equation, satisfying the differential equation also satisfies certain 

conditions known as boundary condition and initial condition.

The boundary condition can be as following:

(i) If the dependent variable (u) specified on each point of the boundary set T (Dirichlit’s condition) 

and then the problem is called a Dirichlet’s problem.
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(ii) If ,
u

n
 the normal derivative is specified for each point T-the problem with such condition is 

called Neuman’s problem.

(iii) If u is specified on some part of T and 
u

n
 on the other part of T is called mixed boundary 

value problem.

Besides’ the boundary condition, in a time dependent problem the solution also satisfies the condition 

at time t = 0 is called an initial value problem (or Cauchy problems).

A differential equation or problem is said to be well-posed, if sufficient number of boundary and 

initial conditions are given on the solution.

12.4 FINITE DIFFERENCE METHOD

Let a rectangular region R in the (x, y) plane be divided into a rectangular network of sides x = h and 

y = k as shown in Fig. (12.1) by drawing the sets of lines.

; 0, 1, 2, ...

; 0, 1, 2, ...

x ih i

y jk j
(2)

The points of intersection of Eq. (2) are called mesh points, nodal points, lattice points or grid 

points.

y
k

=

( )x – h, y

( )– l, ji

( )
( 1)
x, y + k
i, j +

i, j( )

( )x, y

( + 1)x, y

i,+ j( – 1)

( + , )x h y

( + 1, )i y

x h=

0

x

y

Fig. 12.1 Geometrical representation of partial difference quotients

Now, to obtain the finite difference approximations to the derivatives by using Taylor’s series, we 

have

2

( ) ( ) ( ) ( )
2!

h
f x h f x hf x f x (3)

or       
( ) ( )

( ) ( )
2!

f x h f x h
f x f x

h

or           ( ) ( )
( ) ( ) (error)

f x h f x
f x O h

h
(4)
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Equation (4) is the forward difference approximation for f (x). Similarly, we expand f(x – h) by 

Taylor’s series, we have

2

( ) ( ) ( ) ( )
2!

h
f x h f x hf x f x (5)

or      
( ) ( )

( ) ( )
f x f x h

f x O h
h

(6)

Equation (6) is the backward difference approximations for f (x).

Now  subtracting Eq. (5) from Eq. (3), we get

    

32
( ) ( ) 2 ( ) ( )

3!

h
f x h f x h hf x f x

or         
2( ) ( )

( ) ( ) (error term)
2

f x h f x h
f x O h

h
(7)

Clearly, Eq. (7) gives a better approximation to f (x) comparison to Eqs (4) and (6).

Now, adding Eqs (3) and (5), we get

          

2 42
( ) ( ) 2 ( ) 2 ( ) ( )

2! 4!

ivh h
f x h f x h f x f x f x

or      
2

2

( ) 2 ( ) ( )
( ) ( )

12

ivf x h f x f x h h
f x f x

h

or              2

2

( ) 2 ( ) ( )
( ) ( )

f x h f x f x h
f x O h

h
(8)

Equation (8) is the forward difference approximations. Next, the approximations to the partial 

derivatives for the function u = u(x, y) at (xi, yi), for i = 1, 2, 3, … and u(xi, yi) = uij.

Therefore,

1, 1,

( , ) 2
i i

i j i j

x y

u uu

x h
(9)

2
1, , 1,

2 2
( , )

2

i i

i j i j i j

x y

u u uu

x h
(10)

Similarly, the other first and second order partial derivatives are as follows:

, 1 , 1

( , )
2

i i

i j i j

x y

u uu

y k (11)

and      
2

, 1 , , 1

2 2

( , )

2

i i

i j i j i j

x y

u u uu

y k
(12)

Now using Eqs (9), (10), (11) and 12 in the given partial differential equations and these equations 

converted to difference equations. The solution of difference equations is the solution of the given 

partial differential equations.
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12.5 PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

The parabolic partial differential equation, we consider is the heat, or diffusion equation

2
2

2
; 0 , 0

u u
x l t

t x
(13)

Subject to the conditions

(0, ) 0 ( , ), 0u t u l t t

and    ( , 0) ( ), 0u x f x x l

Fig. 12.2

Consider Xt-plane, the X-axis along the rod and t-axis through O to it. Now we divide the interval 

[0, l] into N equal parts of length x = h each. Thus ix i x ih

0, 1, 2, 3,...( 1),i N N

Also on t-axis, the step size t = k each.

Thus     ; 0, 1, 2, ...jt j t jk j

Draw lines parallel to X-axis through the points tj on t-axis and lines parallel to t-axis through the 

point xi on X-axis.

To converting the region 0 x l, t > 0 in to a mesh point. The point intersection of 

lines are called nodes or mesh point or grid point. The intersection of the lines x = xi and 

t = tj is denoted by (i x, j t) or (xi, tj) or simply (i, j) and the temperature is u(i, j) or ui
j or 

ui, j . We assume that u is known upto the time level tj and we want to find u for the unknown time step 

tj + 1.

12.5.1 Explicit Scheme (Finite Difference Method)

Substituting the finite difference relations defined by Eqs (10) and (11) in Eq. (13), we get

, 1 , 1, , 1,2

2

2 Here

( )

i j i j i j i j i ju u u u u t k

x ht x
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or      2 2
, 1 1, 1, ,2 2

( ) 1 2
( ) ( )

i j i j i j i j

t t
u u u u

x x

or      , 1 1, 1, ,( ) (1 2 ) ,i j i j i j i ju r u u r u (14)

where     2

2
; 0, 1, 2, 3, ...

( )

1, 2, 3, ..., ( 1)

t
r j

x

i N

( + 1)th
( , + 1)l

th

( – , )1 ( , ) ( + 1, )

Fig. 12.3

Computational molecule or Forward difference Stencil for the finite difference method.

Equation (14) is valid when 
1

0 .
2

r  This is an explicit scheme is expressed u at unknown (j + 1)th

time level in terms of the known values of u at jth time level.

For
1

,
2

r  Eq. (14) reduces to

, 1 1, 1,

1
[ ]

2
i j i j i ju u u (15)

Equation (15) is called the Bender–Schmidt recurrence equation/scheme.

12.5.2 Implicit Scheme

In the explicit scheme, the time step ( t) has to be necessarily very small. The explicity scheme is valid 

only for 2

2

1
0 , i.e., .

2 ( )

t
r r

x

Now, the partial differential Eq. (13) is discretized by replacing the time derivative by backward 

difference and the space second derivative by a central difference at the node (i, j + 1), we have

2
, 1 , 2

1, 1 , 1 1, 12
( ) [ 2 ] ( )

( )

i j i j

i j i j i j

u u
O t u u u O x

t x

or       
2

, 1 , 1, 1 , 1 1, 12
[ 2 ] [Neglecting the error terms]

( )
i j i j i j i j i j

t
u u u u u

x

or , 1 1, 1 1, 1 ,(1 2 ) ,i j i j i j i jr u r u r u u (16)

where       2

2( )

t
r

x
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( – 1, + 1) ( , + 1)l

( , )

( + 1, + 1)

– (1 + 2 ) –
( + 1) levelth

( levelth

Fig. 12.4 Implicit Stencil

From Eq. (16), all the values of u on left are unknown and on the right ui, j is known.

12.5.3 Implicit Scheme Second or Crank–Nicolson Scheme or Method

This scheme is based on numerical approximations for the solution of Eq. (13) at the node 

(i, j + 1).

Fig. 12.5

In implicit scheme, the time derivative 
u

t
 is replaced by a backward difference at 

(i, j + 1), i.e.

, 1 ,
( )

i j i ju uu
O t

t t

In this scheme error terms are mixed order, i.e. 2{ ( ) ( ) }.O t O x

For having the error terms as 2 2[ ( ) ( ) ],O t O x  we replace the time derivative at a fictitious 

node
1

,
2

i j  in the mid of (i, j) and (i, j + 1) by a central difference. Then we have a space second 

derivative
2

2

u

x
 at the node 

1
, .

2
i j

We write the average of the approximate at (i, j + 1) and (i, j) so Eq. (13) becomes

2
, 1 ,

2
( )

2( )2
2

i j i ju u
O t

t x

2
1, 1 , 1 1, 1 1, , 1,2 2 ( )i j i j i j i j i j i ju u u u u u O x
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or  
, 1 , 1, 1 , 1 1, 1 1, , 1,

2 2

2 2 2 2

{ ( ) ( ) },

i j i j i j i j i j i j i j i ju u r u u u u u u

O t O x

where
2

2( )

t
r

x

Neglecting the term’s of 2 2[ ( ) ( ) ],O t O x  we have

1, 1 , 1 1, 1 1, 1,(2 2 ) (2 2 ) ,i j i j i j i j i j i jr u r u r u r u r u r u

or  
1, 1 , 1 1, 1 ,(2 2 ) ,i j i j i j i jr u r u r u b (17)

where , 1, , 1,(2 2 )i j i j i j i jb r u r u r u

j = 0, 1, 2, 3, …

i = 1, 2, 3, …, (N – 1).

Equation (17) is valid any value of r, however r is taken small further the LHS of Eq. (17) involves 

3 values of u at unknown step (j + 1).

Now, we write the Eq. (17) for i = 1, 2, 3, … (N – 1).

We have

For i = 1

0, 1 1, 1 2, 1 1,(2 2 )j j j jr u r u r u b

But from the boundary condition u0, j = 0 j

     
1, 1 2, 1 1,(2 2 ) j j jr u r u b (18)

For i = 2

1, 1 2, 1 3, 1 2,(2 2 )j j j jr u r u r u b (19)

For i = N – 1

         2, 1 1, 1 , 1 1,(2 2 )N j N j N j N jr u r u r u b

The boundary condition , 0N ju j

       
2, 1 1, 1 1,(2 2 )N j N j N jr u r u b (20)

Thus, we obtain a set of (N – 1) linear simultaneous equations with (N – 1) unknown’s and the 

coefficient matrix being tridiagonal, i.e.,

(2 + 2 )r –r 0 0

–r (2 + 2 )r

0

0

0 0 –r (2 + 2 )r

–r

u1, + 1j

u2, + 1j

u3, + 1j

uN j–1, + 1

=

b1, j

b2, j

b3, j

bN j–1,
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This system may be solved by either Gaussian elimination method or LU method.

For r = 1, the scheme i.e., Eq. (17) gives

1, 1 , 1 1, 1 ,4i j i j i j i ju u u b (21)

where
, 1, 1,( )i j i j i jb u u

for 1, 2, 3, ... ( 1), 1, 2, 3, ...i N j

This scheme is known as Crank–Nicolson Scheme.

12.5.4 Three Time Level Scheme or Richardson’s Scheme or Method

In the partial differential Eq. (13), we discretize at the node (i, j) by replacing both the derivatives by a 

central difference taking t as one time interval.

( – 1, )

( , + 1)l

( + 1, )

( + 1) levelth

th level

( , – 1)

( – 1) levelth

( , )

Fig. 12.6

Thus we get,

2
, 1 , 1

1, , 1,2
2

2 ( )

i j i j

i j i j i j

u u
u u u

t x

or        1,, 1 , 1, , 12 ,
i ji j i j i j i ju r u u u u (22)

where       
2

2

, 1, 2, 3, ...

; 1, 2,3, ...,( 1)
( )

0

t
r i N

x

j

This scheme is a three time level scheme in which the unknown ui, j + 1 is explicitly expressed in 

terms of known values of u at the previous known (j – 1)th and j th time level’s.

Example 1 One dimensional heat equation 
2

2

u u

t x
 and the boundary conditions

u(0, t) = u(5, t) = 0 and u(x, 0) = x2(25 – x2), using the explicit scheme to find the solution.
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for ( 0, 1, 2, ..., 5; 1) andx i x i h x

1
0, 1, 2, ..., 6; .

2
t j t j k t

Solution

   Here   
2 2

1 1 1
1, , then

2 2( ) 2 (1)

t
x t r

x

We apply the explicit scheme. (Bender–Schmidt scheme)

, 1 1, 1,

1

2
i j i j i ju u u (23)

Also 2 2(0, 0) 0, (1, 0) 24, (2, 0) 2 (25 2 ) 84,u u u

2 2 2 2(3, 0) 3 (25 3 ) 144, (4, 0) 4 (25 4 ) 144u u

2 2(5, 0) 5 (25 5 ) 0u

Now, putting j = 0 in Eq. (23), we get

,1 1, 0 1, 0

1

2
i i iu u u (24)

Put i = 1 in Eq. (24), we get

1,1 2, 0 0, 0

1 1
84 0 42

2 2
u u u

Put i = 2 in Eq. (24), we get

2,1 3, 0 1, 0

1 1
144 24 84

2 2
u u u

Put i = 3 in Eq. (24), we get

3,1 4, 0 2, 0

1 1
144 84 114

2 2
u u u

Put i = 4 in Eq. (24), we get

4,1 5, 0 3, 0

1 1
0 144 72

2 2
u u u

Thus, the second row is filled as given in the table.

Similarly, putting j = 1, 2, 3, 4, 5 in Eq. (23) and the other rows are filled.
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The following table gives the values of ui, j

i

j
0 1 2 3 4 5

0 0 24 84 144 144 0

1 0 42 84 114 72 0

2 0 42 78 78 57 0

3 0 39 60 67.5 39 0

4 0 30 53.25 49.50 33.75 0

5 0 26.6 39.75 43.5 24.75 0

6 0 19.88 35.06 32.25 21.75 0

Example 2 Solve the given equation

2

2

u u

t x

Subject to the condition u(x, 0) = sin x, 0 x  1;

(0, ) (1, ) 0,u t u t  using

(i) Schmidt scheme

(ii) Richardson’s scheme/method

(iii) Crank–Nicolson method/scheme

by taking 
1 1

, .
3 36

x t

Solution

Here
1 1

,
3 36

x t  so that

2 2

1 9 1

36 4( ) 1
36

3

t
r

x

Also    
3

(1, 0) sin
3 2

u

2 3(2, 0) sin
23

u

0

= 0 0

0

0

0

0

(1, 2) (2, 2)

(1, 1) (2, 1)
= 1

3
—
2

3
—
2

Fig. 12.7
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(i) The explicit Schmidt scheme in Eq. (14) is

, 1 1, 1, ,(1 2 )i j i j i j i ju r u u r u

For
1

,
4

r  Eq. (14) becomes

, 1 1, 1, ,

1 1

4 2
i j i j i j i ju u u u

=
1, 1, ,

1
2

4
i j i j i ju u u (25)

Putting j = 0 in Eq. (25), we get

,1 1, 0 1, 0 , 0

1
2

4
i i i iu u u u (26)

Now putting i = 1, 2, in Eq. (26), we obtain

1,1 2, 0 0, 0 1, 0

1 1 3 3
2 0 2 0.65

4 4 2 2
u u u u

2,1 3, 0 1, 0 2, 0

1 1 3 3
2 0 2 0.65

4 4 2 2
u u u u

Again, putting i = 1, 2 and j = 1 in Eq. (25), we get

1, 2 2,1 0,1 1,1

1
2

4
u u u u

=
1

0.65 0 2 0.65 0.49
4

2, 2 3,1 1,1 2,1

1 1
2 0 0.65 2 0.65

4 4
u u u u

= 0.49

(ii) The Richardson’s scheme is given by

, 1 1, , 1, , 1

1 1
2

2 4
i j i j i j i j i ju u u u u r (27)

To starts the calculations, with the help of u1, 1 and u2, 1.

From the above scheme, we have

u1, 1 = 0.65 and u2, 1 = 0.65

Putting i = 1, 2 and j = 1 in Eq. (27), we get

1, 2 0,1 1,1 2,1 1, 0

1
2

2
u u u u u

=
1 3

0 2 0.65 0.65
2 2

u1, 2 = 0.25
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   and   2, 2 1,1 2,1 3,1 2, 0

1
2

2
u u u u u

=
1 3

0.65 2 0.65 0
2 2

u2,2 = 0.54

(iii) Crank–Nicolson method/scheme:  The Eq. (17) becomes

1, 1 , 1 1, 1 ,

1 5 1

4 2 4
i j i j i j i ju u u b

(28)

  where    , 1, , 1,

1 3 1

4 2 4
i j i j i j i jb u u u

Putting i = 1, 2 and j = 0 in Eq. (28), we obtain

          0,1 1,1 2,1 1, 0

1 5 1

4 2 4
u u u b

= 0, 0 1, 0 2, 0

1 3 1

4 2 4
u u u

or     0,1 1,1 2,1 0, 0 1, 0 2, 010 6u u u u u u

or        
1,1 2,1

7 3
10

2
u u (29)

and    
1,1 2,1 3,1 1, 0 2, 0 3, 010 6u u u u u u

or         
1,1 2,1

7 3
10

2
u u (30)

Solving Eqs (29) and (30), we get

1,1 2,10.67 and 0.67u u

Again putting i = 1, 2, and j = 1 in Eq. (28), we obtain

1, 2 2, 210 4.69u u (31)

and    1, 2 2, 210 4.69u u (32)

Solving Eqs (31) and (32), we get

1, 2 2, 20.52 and 0.52u u

Example 3 Solve the heat conduction equation 

2

2
.

u u

t x
 Subject to the conditions u(0, t) = 0 

and u(1, t) = 10; u(x, 0) = 10 x for 0 x  1. Taking 
1

,
4

x
1

18
t  and r = 1 using Crank–Nicolson

method.
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Solution Using the Crank–Nicolson scheme, we have

1, 1 , 1 1, 1 ,4i j i j i j i ju u u b (33)

where     , 1, 1,( )i j i j i jb u u

For j = 0, then Eq. (33) becomes

1,1 ,1 1,1 , 04i i i iu u u b

where     
, 0 1, 0 1, 0( )i i ib u u

Fig. 12.8

Now, writing the scheme for i = 1, 2, 3, we have

1,1 2,1 1, 0 0,14u u b u

= 0, 0 1, 0 0,1( )u u u

= (0 + 2.5) + 0

1,1 2,14 2.5u u (34)

1,1 2,1 3,1 1, 0 3, 04 ( ) 2.5 7.5 10u u u u u (35)

2,1 3,1 3, 0 4,14u u b u

= 2, 0 4, 0 4,1( )u u u

= (5 + 10) + 10

2,1 3,14 25u u
(36)

writing Eqs (34), (35) and (36) in Matrix form

1,1

2,1

3,1

4 1 0 2.5

1 4 1 10

0 1 4 25

u

u

u
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Solving the above matrix system by Gaussian elimination method, so we obtain the equations

   1,1 2,1 3,14 10u u u

     2,1 3,10.27 2.83u u

   3.73 u3, 1 = 27.83

      1,1 2,1 3,11.90, 4.84 and 7.46u u u

EXERCISES 12.1

1. Solve the heat equation 
2

2
, 0 5

u u
x

t x
 by Crank–Nicolson scheme.

Subject to the conditions

u(x, 0) = 20

(0, ) 0, (5, ) 100; 0u t u t t

Taking h = 1 and k = 1

2. Using Crank–Nicolson method, solve

16 ; 0 1, 0xx tu u x t

  Subject to the conditions

( , 0) 0, (0, ) 0, (1, ) 50u x u t u t t

  Find u for two steps in t direction taking 
1

.
4

h

3. Solve the heat equation ut = uxx, subject to the conditions

(0, ) 0, (1, ) 0 and ( , 0) (1 )u t u t u x x x

Taking h = 0.1 and t = 0, 1, 2.

4. Solve
1

2
t xxu u  subject to the conditions (0, ) 0 (4, )u t u t  and u(x, 0) = x(4 – x) taking h

= 1 by using Bender–Schmidt scheme. Continue the solution through 10 time steps.

5. Solve ut = uxx, 0 x  1, t  0 under the conditions (0, ) 0 (1, )u t u t

and  

1
2 for 0

2
( , 0) .

1
2(1 ) for 1

2

x x

u x

x x
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Answers

1.

0 20 20 20 100

0 9.80 30.72 59.92 100

2.

             i

j
0 0.25 0.5 0.75 1

0 0 0 0 0 0

1 0 0.89285 3.5714 13.39285 50

2 0 1.7857 7.1429 26.7857 100

3.

      i

j
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0.09 0.16 0.21 0.24 0.25 0.24 0.21 0.16 0.09 0

2 0 0.08 0.15 0.20 0.23 0.24 0.23 0.20 0.15 0.08 0

4.

i

j
0 1 2 3 4

0 0 3 4 3 0

1 0 2 3 2 0

2 0 1.5 2 1.5 0

3 0 1 1.5 1 0

4 0 0.75 1 0.75 0

5 0 0.5 0.75 0.5 0

6 0 0.375 0.5 0.375 0

7 0 0.25 0.375 0.25 0

8 0 0.1875 0.25 0.1875 0

9 0 0.125 0.1875 0.125 0

10 0 0.094 0.125 0.094 0

5.

       i

j
0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0

0.1 0 0.1936 0.3689 0.5400 0.6461 0.6921 0.6461 0.5400 0.3689 0.1936 0

0.02 2 0.1989 0.3956 0.5834 0.7381 0.7691 0.7381 0.5834 0.3956 0.1989 0
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12.6 SOLUTION OF HYPERBOLIC EQUATIONS

In this section, we shall discuss the numerical solution to the wave equation, an example of a hyperbolic 

partial differential equation.

Consider, 1-D wave equation is

2 2
2

2 2
0; 0 , t

u u
x l

t x
(37)

Subject to the conditions

(0, ) ( , ) 0 for 0u t u l t t

( , 0) ( ) and ( , 0) ( , 0) ( )t

u
u x f x u x x g x

t
 for 0 x l, where  is a constant dependent on the 

physical conditions of the given problem.

The finite differences of

2
, 1 , , 1 2

2 2

2
( )

( )

i j i j i ju u uu
O t

t t

and     
2

1 , 1, 2

2 2

2
( )

( )

i j i j i ju u uu
O x

x x

Therefore Eq. (37) becomes,

       

, 1 , , 1 1, , 1,2 2 2

2 2

2 2
( ) ( )

( ) ( )

i j i j i j i j i j i ju u u u u u
O t O x

t x

or      
, 1 , , 1 1, , 1,2 2 2

2 2

2 2
( ) ( )

( ) ( )

i j i j i j i j i j i ju u u u u u
O t O x

t x

Neglecting the error term 2 2( ) ( ) ,O t O x  we get

2
, 1 , , 1

1, , 1,2 2

2
2

( ) ( )

i j i j i j

i j i j i j

u u u
u u u

t x

or    

2

, 1 , , 1 1, , 1,2 2i j i j i j i j i j i j

t
u u u u u u

x

or    2
, 1 , , 1 1, , 1,2 2 ,i j i j i j i j i j i ju u u r u u u (38)

where
t

r
x

Consider the approximations in both rows j and j – 1 are known.

Equation (38) can be used to compute ui, j + 1 for i = 1, 2, 3, 4, …, N – 1 and j = 1, 2, 3, …

2 2
, 1 , 1, 1, , 12 (1 ) ( ) ( )i j i j i j i j i ju r u r u u u (39)

for i = 1, 2, 3, 4, …, N – 1, j = 1, 2, 3, …. The boundary conditions gives u0, j = 0 = uN, j for each 

j = 1, 2, 3, …
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and the initial condition implies that

, 0 ( ) for each 1, 2, ..., 1i iu f x i N

To find the initial velocity condition

( , 0) ( ); 0
u

x g x x l
t

The partial derivative 
u

t
 is replace by a forward difference approximation 

, 1 , 0
,

i j iu uu

t t
 we 

obtain
,1 , 0 ( ) for 1, 2, ..., 1.i i iu u g x i N

We observe that the 4 known values on the RHS of Eq. (39), which are used to find ui, j + 1 can be 

shown in Fig. 12.9.

r u2
+ 1,i jr u2

– 1,i j

(2 – 2 )r u2
,i j

ui + 1, j

–ui, j – 1

Fig. 12.9

Note: If r = 1, then Eq. (39) becomes

, 1 1, 1, , 1i j i j i j i ju u u u (40)

Example 4 Solve
2 2

2 2
4

u u

t x
 with the boundary conditions (0, ) 0 (4, ), , ( , 0) 0

u
u t u t x

t

and ( , 0) (4 ); 0 4.u x x x x

Solution Here   
2 4 2

Taking x = 1 so we get 
1

0.5
2

x
t

       
2 1

1
2 1

t
r

x

Subject to the conditions (In difference form) are as follows:

0, 4,0 and 0 for eachj ju u j

Now   , 1 ,

1
( , 0) 0 0t i j i ju x u u

t
     when j = 0, ui, 1 = ui, 0 for all i (41)
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( , 0) (4 )u x x x

     (0, 0) 0, (1, 0) 3, (2, 0) 4, (3, 0) 3, (4, 0) 0u u u u u

In difference form

, 0 ( , 0) (4 ) for 0, 1, 2, 3, 4iu u i i i i

Now, using the formula in Eq. (40)

, 1 1, 1, , 1i j i j i j i ju u u u (42)

Put j = 1 in Eq. (42), we get

, 2 1,1 1,1 , 0i i i iu u u u (43)

Putting i = 1, 2, 3 in Eq. (43), we get

1, 2 2,1 0,1 1, 0 4 0 3 1u u u u   [using Eq. (41)]

2, 2 3,1 1,1 2, 0 3 3 4 2u u u u   [using Eq. (41)]

3, 2 4,1 2,1 3, 0 0 4 3 1u u u u    [using Eq. (41)]

Fig. 12.10

i.e., the 3rd row is filled up.

In a similar manner we can fill up the remaining rows as shown in the following table:

i

j
0 1 2 3 4

0 0 3 4 3 0

1 0 3 4 3 0

2 0 1 2 1 0

3 0 –1 –2 –1 0

4 0 –3 –4 –3 0
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Example 5 Using finite difference method to solve utt = uxx with the conditions

1
(0, ) (1, ) 0, ( , 0) (1 ) and

2
u t u t u x x x

ut(x, 0) = 0 taking x = t = 0.1 for 0 t  0.4.

Solution

Here 2 = 1  = 1

0.1
1 1

0.1

t
r

x

Subject to the conditions are

u0, j = 0 and u1, j = 0 for each j

Now    
1 1

( , 0) (1 ), ( , 0) (1 )
2 2

u x x x u i i i

u(i, 0) = 0, 0.045, 0.08, 0.105, 0.120, 0.125, 0.120, 0.105

for i = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

Now, using the formula in Eq. (40)

, 1 1, 1, , 1i j i j i j i ju u u u (44)

Since    , 1 ,

1
( , 0) 0 [ ] 0t i j i ju x u u

t
     when j = 0, ui, 1 = ui, 0 for all i

         Putting j = 0 in Eq. (44), we get

,1 1,0 1,0 , 1i i i iu u u u

= 1,0 1,0 ,1 ,1 , 1[ ]i i i i iu u u u u

or 2ui, 1 = ui + 1, 0 + ui –1, 0

or ui, 1 = 1,0 1,0

1
[ ]

2
i iu u (45)

Putting i = 1, 2, 3, 4, 5, 6 in Eq. (45), we obtain

u1,1 = 2,0 0,0

1 1
[ ] [0.080 0] 0.040

2 2
u u

u2,1 = 3,0 1,0

1 1
[ ] [0.105 0.045] 0.075

2 2
u u

u3,1 = 4,0 2,0

1 1
[ ] [0.120 0.08] 0.100

2 2
u u

u4,1 = 5,0 3,0

1 1
[ ] [0.125 0.105] 0.115

2 2
u u

u5,1 = 6,0 4,0

1 1
[ ] [0.120 0.120] 0.120

2 2
u u
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u6,1 = 7,0 5,0

1 1
[ ] [0.105 0.125] 0.115

2 2
u u

        Putting j = 1 in Eq. (44), we get

,2 1,1 1,1 ,0i i i iu u u u (46)

Now put i = 1, 2, 3, 4, 5 in Eq. (46), we obtain

u1, 2 = 0,1 2,1 1,0 0 0.075 0.045 0.03u u u

u2, 2 = 1,1 3,1 2,0 0.040 0.100 0.08 0.060u u u

u3, 2 = 2,1 4,1 3,0 0.075 0.115 0.105 0.085u u u

u4, 2 = 3,1 5,1 4,0 0.100 0.120 0.120 0.100u u u

u5, 2 = 4,1 6,1 5,0 0.115 0.115 0.125 0.105u u u

In a similar manner we can fill up the remaining rows as shown in the following table:

0 0.1 0.2 0.3 0.4 0.5 0.6

i

j
0 1 2 3 4 5 6

0 0 0 0.045 0.080 0.105 0.120 0.125 0.120

0.1 1 0 0.040 0.075 0.100 0.115 0.120 0.115

0.2 2 0 0.030 0.060 0.085 0.100 0.105

0.3 3 0 0.020 0.040 0.060 0.075 0.080

0.4 4 0 0.010 0.020 0.030 0.040 0.048

EXERCISE 12.2

1. Solve the equation utt = 25 uxx for one half period of oscillation taking h = 1 subject to the 

conditions

(0, ) 0 (5, ); ( , 0) 0tu t u t u x

          and
2 for 0 2.5

( , 0)
10 2 for 2.5 5

x x
u x

x x

2. Solve the wave equation utt = uxx for x = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and t = 0, 0.1, 0.2, subject to 

the conditions.

1
( , 0) sin , (0, ) 0 (1, ), 0

8
u x x u t u t t

   and  ( , 0) 0; 0 1.tu x x

3. Solve 16 xx ttu u  under the conditions

(0, ) 0 (5, ), ( , 0) 0tu t u t u x  and

2( , 0) ( 5). Taking 1u x x x h
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Answers

1.

             i

j
0 1 2 3 4 5

0 0 2 4 4 2 0

0.2 0 2 4 4 2 0

   0.4 0 2 2 2 2 0

0.6 0 0 0 0 0 0

0.8 0 –2 –2 –2 –2 0

1.0 0 –2 –4 –4 –2 0

2.

         x

t
0 0.1 0.2 0.3 0.4 0.5

0 0 0.037 0.070 0.096 0.113 0.119

0.1 0 0.031 0.059 0.082 0.096 0.101

0.2 0 0.023 0.043 0.059 0.07 0.074

3.

         i

j
0 1 2 3 4 5

0 0 4 12 18 16 0

1 0 4 12 18 16 0

2 0 8 10 10 2 0

3 0 6 6 –6 –6 0

4 0 –2 –10 –10 –8 0

5 0 –16 –18 –12 –4 0

12.7  NUMERICAL SOLUTION OF ELLIPTIC PARTIAL 
DIFFERENTIAL EQUATIONS

An elliptical partial differential is of the form

2 2
2

2 2
0 or 0

u u
u

x y
(47)

where     
2 2

2

2 2
x y

Equation (47) is called the Laplace equation.
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Substituting the derivative differences in Eq. (47) from Eqs  (10) and (12), we get

1, , 1, , 1 , , 1

2 2

2 2
0

i j i j i j i j i j i ju u u u u u

h k
(48)

Putting h = k for a square mesh in Eq. (48) from the above expression, we get

, 1, 1, , 1 , 1

1

4
i j i j i j i j i ju u u u u (49)

Equation (49) shows that, the value of u is the average of its values at the four neighbouring mesh 

points to the left, right, below and above. This formula is known as the standard five point formula 

(SFPF) and it is represented in the Fig. (12.11).

Now, if we rotate the co-ordinate axes through 45°, then the Laplace equation remains unaltered. 

Therefore, we may use the values at the diagonal points in place of the neighbouring points. Then the 

formula in Eq. (49) can be written as

, 1, 1 1, 1 1, 1 1, 1

1

4
i j i j i j i j i ju u u u u (50)

Equation (50) shows that, the value of u is the average of its values at the 4 neighbouring diagonal 

mesh points.

This formula is known as the diagonal five point formula (DFPF) and it is represented in Fig. 12.12.

Fig. 12.11 Standard five point formula     Fig. 12.12 Diagonal five point formula

The problems concerning study of Poisson’s equation, equilibrium stress in elastic structures, 

viscous flow, etc., are the elliptic type of equations.

The accuracy of the values of ui, j (which are obtained from the Eqs (49) and (50) is improved by 

either of the following iterative methods.

12.7.1 Point Jacobi’s Method

Let ( )
,
n

i ju  be the nth iterative value of ui, j. Then the iterative formula to solve (49) is

( 1) ( ) ( ) ( ) ( )
, 1, 1, , 1 , 1

1

4

n n n n n
i j i j i j i j i ju u u u u (51)

for the interior mesh points. This procedure is known as the point Jacobi’s method.
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12.7.2 Gauss–Seidal Method

The iterative formula is

( 1) ( 1) ( ) ( 1) ( )
, 1, 1, , 1 , 1

1

4

n n n n n
i j i j i j i j i ju u u u u (52)

It uses the latest iterative values available and scans the mesh points systematically from left to right 

along successive rows.

It can be shown that the Gauss–Seidel scheme converges twice as fast as the Jacobi’s method.

Note 1:  The accuracy of computations depends on the mesh-size; if mesh-size h is small then accuracy 

is better. But if h is too small; it may increase rounding-off error’s.

Note 2:  We iterate all the mesh or grid points systematically from left to right along successive rows 

by the iterative formula (which obtain from Eq. (49) is given as:

( 1) ( 1) ( ) ( ) ( )
, 1, 1, , 1 , 1

1

4

n n n n n
i j i j i j i j i ju u u u u

This formula is called Liebmann’s iterative formula.

Example 6 Solve the elliptic equation uxx + uyy = 0 for the following square mesh with the 

boundary values as shown in the Fig. 12.13. Iterate until the difference between two successive values 

at any point is less than 0.001.

Fig. 12.13

Solution Since the given Fig. 12.13 is symmetrical about the line AC.

Therefore u2 = u3

Let us assume u2 = 0

Now using standard five point formula in Eq. (49), we get

(0)
1

1
1 0 1 0 0.5

4
u

(0)
4

1
0 5 0 5 2.5

4
u

(0)
2

1
0.5 2 4 2.5 2.25

4
u
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Since     
(0) (0)
3 2 2.25u u

Now, using the iterative scheme (51), we get the equations u1, u2 and u4 as:

( 1) ( ) ( )
1 2 3

1
1 1

4

n n n
u u u

= ( ) ( ) ( ) ( )
2 2 3 2

1
2

4

n n n n
u u u u

( 1) ( )
1 2

1
1

2

n n
u u

( 1) ( 1) ( )
2 1 4

1
4 2

4

n n n
u u u

( 1) ( 1) ( )
2 1 4

1
6

4

n n n
u u u

( 1) ( 1) ( 1)
4 3 2

1
5 5

4

n n n
u u u

= ( 1)
2 3 2

1
5

2

n
u u u

Iteration-1 (For n = 0)

(1) (0)
1 2

1 1
1 1 2.25 1.625

2 2
u u

(1)
2

1
6 1.625 2.5 2.53125

4
u

(1) (1)
4 2

1 1
5 5 2.53125 3.765625

2 2
u u

Iteration-2 (For n = 1)

(2) (1)
1 2

1 1
1 1 2.53125 1.765625

2 2
u u

(2) (1) (1)
2 2 4

1 1
6 6 1.765625 3.765625 2.8828125

4 4
u u u

(2)
4

1
2.8828125 5 3.9414063

2
u

Iteration-3 (For n = 2)

(3)
1

1
1 2.8828125 1.9414063

2
u

(3)
2

1
6 1.9414063 3.9414063 2.9707031

4
u

(3)
4

1
5 2.9707031 3.9853516

2
u
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Iteration-4 (For n = 3)

(4)
1

1
1 2.9707031 1.9853516

2
u

(4)
2

1
6 1.9853516 3.9853516 2.9926758

4
u

(4)
4

1
5 2.9926758 3.9963379

2
u

Iteration-5 (For n = 4)

(5)
1

1
1 2.9926578 1.9963289

2
u

(5)
2

1
6 1.9963289 3.9963379 2.9981667

4
u

(5)
4

1
5 2.9981667 3.9990834

2
u

Iteration-6 (For n = 5)

(6)
1

1
1 2.9981667 1.9990834

2
u

(6)
2

1
6 1.9990834 3.9990834 2.9995417

4
u

(6)
4

1
5 2.9995417 3.9997709

2
u

Thus,     
(6) (5)
1 1 1 1.999u u u

(6) (5)
2 2 2 2.999u u u

and     (6) (5)
4 4 4 3.999u u u

Example 7 Using Gauss–Seidel method to solve the Laplace equation 2
u = 0 in the domain of 

the following Fig. 12.14.

Solution

Fig. 12.14



12.28 Engineering Mathematics for Semesters III and IV

Solution

Initially      (0) (0) (0) (0)
1 2 3 4 0u u u u

Now, using the iterative scheme (52), we obtain the following iterations:

Iteration-1 (for n = 0)

(1)
1

1
[1 0 1 0] 0.5

4
u

(1)
2

1
[2 0 2 0.5] 1.125

4
u

(1)
3

1
[1 1.125 1 0] 0.781

4
u

(1)
4

1
[2 0.781 2 0.5] 1.320

4
u

Iteration-2 (for n = 1)

(2)
1

1
[1 1 1.125 1.320] 1.111

4
u

(2)
2

1
[2 2 1.111 0.781] 1.473

4
u

(2)
3

1
[1 1 1.473 1.320] 1.198

4
u

(2)
4

1
[2 2 1.111 1.198] 1.577

4
u

Iteration-3  (for n = 2)

(3)
1

1
[1 1 1.473 1.577] 1.263

4
u

(3)
2

1
[2 2 1.263 1.198] 1.615

4
u

(3)
3

1
[1 1 1.615 1.577] 1.298

4
u

(3)
4

1
[2 2 1.263 1.298] 1.640

4
u

Iteration-4 (for n = 3)

(4)
1

1
[1 1 1.615 1.640] 1.314

4
u

(4)
2

1
[2 2 1.314 1.298] 1.653

4
u

(4)
3

1
[1 1 1.653 1.640] 1.323

4
u
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(4)
4

1
[2 2 1.314 1.323] 1.659

4
u

Iteration-5 (for n = 4)

(5)
1

1
[1 1 1.653 1.659] 1.328

4
u

(5)
2

1
[2 2 1.328 1.323] 1.663

4
u

(5)
3

1
[1 1 1.663 1.659] 1.331

4
u

(5)
4

1
[2 2 1.328 1.331] 1.665

4
u

Iteration-6 (for n = 5)

(6)
1

1
[1 1 1.663 1.665] 1.333

4
u

(6)
2

1
[2 2 1.332 1.331] 1.666

4
u

(6)
3

1
[1 1 1.666 1.665] 1.333

4
u

(6)
4

1
[2 2 1.332 1.333] 1.666

4
u

Since, Iteration-6 is approximately equal to iteration-5.

Hence, u1 = 1.333, u2 = 1.666, u3 = 1.333 and u4 = 1.666.

Example 8 Using the iterative scheme to solve the Laplace equation 2
u = 0, find u1, u2, u3 and 

u4 in the Fig. 12.15.

Fig. 12.15

Solution To find the initial values of u1, u2, u3 and u4, we assume u4 = 0.

Then; using diagonal formula in Eq. (50), we get
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u1 = 
1

[1000 0 1000 2000] 1000
4

and using standard point formula, we have

u2 = 
1

[1000 500 1000 0] 625
4

u3 = 
1

[2000 0 1000 500] 875
4

u4 = 
1

[875 0 625 0] 375
4

Now, using the successive Gauss–Seidel iterative method (52), we have

( 1) ( ) ( )
1 2 3

1
2000 1000

4

n n n
u u u

( 1) ( 1) ( )
2 1 4

1
500 1000

4

n n n
u u u

( 1) ( ) ( 1)
3 4 1

1
2000 500

4

n n n
u u u

( 1) ( 1) ( 1)
4 3 2

1
0 0

4

n n n
u u u

Iteration-1 (for n = 0)

(1)
1

1
2000 625 1000 875 1125

4
u

(1)
2

1
1125 500 1000 375 750

4
u

(1)
3

1
2000 375 1125 500 1000

4
u

(1)
4

1
1000 0 750 0 438

4
u

Iteration-2 (n = 1)

(2)
1

1
2000 750 1000 1000 1188

4
u

(2)
2

1
1188 500 1000 438 782

4
u

(2)
3

1
2000 438 1188 500 1032

4
u

(2)
4

1
1032 0 782 0 454

4
u
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Similarly,

Iteration-3 (for n = 2)

(3) (3) (3) (3)
1 2 3 41204, 789, 1040, 458u u u u

Iteration-4 (for n = 3)
(4) (4) (4) (4)
1 2 3 41207, 791, 1041, 458u u u u

and Iteration-5 (for n = 4)
(5) (5) (5) (5)
1 2 3 41208, 791.50, 1041.50, 458.25u u u u

Thus, there is a very small difference between the 4th and 5th iteration values.

u1 = 1208, u2 = 792, u3 = 1042 and u4 = 458.

EXERCISE 12.3

1. Solve 0xx yyu u  in 0 4, 0 4x y  given that (0, ) 0; (4, ) 8 2 ;u y u y y

2

( ,0)
2

x
u x  and 2( , 4) .u x x  Take h = k = 1 and obtain the result correct to two decimal 

places.

2. Solve the elliptic equation 0xx yyu u  for the following square mesh with boundary values 

as shown in the Fig. 12.16:

Fig. 12.16

3. Solve 0xx yyu u  for the following square meshes Figures (12.17 a and b) with boundary 

conditions.

Fig. 12.17



12.32 Engineering Mathematics for Semesters III and IV

4. Solve
2 28xx yyu u x y  for square mesh given u = 0 on the four boundaries dividing the 

square in to 16 sub-squares of length one unit.

5. The function u satisfies Laplace’s equation at all points within the square in the following 

Fig. 12.18 and has the boundary values indicated. Compute a solution correct to two decimal 

places.

Fig. 12.18

Answers

1. u1 = 1.99, u2 = 4.91, u3 = 8.99, u4 = 2.06, u5 = 4.69, u6 = 8.06, u7 = 1.57, u8 = 3.71 and 

u9 = 6.57.

2. u1 = 939, u2 = 1001, u3 = 939, u4 = 1251, u5 = 1126, u6 = 1251, u7 = 939, u8, 1001, u9 = 939.

3. (a) u1 = 37.5, u4 = 37.5, u2 = 12.5, u3 = 12.5

  (b) u1 = 34.986, u2 = 44.993, u3 = 44.993, u4 = 54.996.

4. –3, –2, –3, –2, –2, –2, –3, –2, –3.

5. u1 = 26.66, u2 = 33.33, u3 = 43.33 and u4 = 46.66.

12.8 SOLUTION OF POISSON’S EQUATION

The elliptic partial differential equation

2 2
2

2 2
( , ) or ( , ),

u u
f x y u f x y

x y

(53)

where  
2 2

2

2 2
x y

where f(x, y) is a given function of x and y. Eq. (53) is called the Poisson’s equation.

Equation (53) can be solved by replacing the derivatives by differences expressions at the points 

x = ih and y = jh.

    
1, , 1, , 1 , , 1 2 2

2 2

2 2
( ) ( ) ( , )

i j i j i j i j i j i ju u u u u u
O h O h f ih jh

h h

Neglecting the error term, we get

2
1, , 1, , 1 , 14 ( , )i j i j i j i j i ju u u u u h f ih jh (54)
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Using Eq. (54) at each interior mesh point, we obtain the linear equations in the nodal values ui, j and 

these equations can be solved by Gauss–Seidel scheme.

Example 9 Solve the Poisson’s equation

2 2
2 2

2 2
10 ( 10)

u u
x y

x y

over the square with sides x = 0, y = 0, x = 3 = y with u = 0 on the boundary and mesh length is 1.

Solution Here x = 0 = y and x = 3 = y, also the mesh length h = 1. See Fig. (12.18).

Fig. 12.19

2 2( , ) 10( 10).f x y x y

Using standard formula Eq. (54), we have

2
1, 1, , , 1 , 14 ( , )i j i j i j i j i ju u u u u h f ih jh (55)

For u1, putting i = 1 and j = 2 in Eq. (55), we get

2, 2 0, 2 1, 2 1, 3 1,14 (1, 2)u u u u u f

or           2 1 30 4 0 10(1 4 10)u u u

or             1 2 3

1
150

4
u u u

Now, for u2, putting i = 2 = j in Eq. (55), we get

3, 2 1, 2 2, 2 2, 3 2,14 (2, 2)u u u u u f

or            
4 2 40 4 0 180u u u

or           2 1 4

1
180

4
u u u

For u3, putting i = 1 = j in Eq. (55), we get

2,1 0,1 1,1 1, 2 1, 04 (1, 1)u u u u u f
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or       3 1 4

1
120

4
u u u

For u4, putting i = 2 and j = 1 in Eq. (55) we get

4 2 3

1
150

4
u u u

Since u1 = u4

       1 2 3

1
150

4
u u u

2 1 4 1

1 1
180 [ 90]

4 2
u u u u

3 1 4 1

1 1
120 [ 60]

4 2
u u u u

To improve the values of u by Gauss–Siedel method.

Let u2 = 0 = u3

Iteration-1

(1)
1 2 3

1 1
150 [0 0 150] 37.5

4 4
u u u

(1)
2

1
[37.5 90] 63.75

2
u

(1)
3

1
[37.5 60] 48.75

2
u

Iteration-2

(2) (1) (1)
1 2 3

1 1
150 63.75 48.75 150 65.625

4 4
u u u

(2) (2)
2 1

1 1
90 65.625 90 77.8125

2 2
u u

(2)
3

1
65.625 60 62.8125

2
u

Iteration-3

(3) (2) (2)
1 2 3

1 1
150 77.8125 62.8125 150 72.65625

4 4
u u u

(3)
2

1
[72.65625 90] 81.328125

2
u

(3)
3

1
[72.65625 60] 66.32815

2
u
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Iteration-4

(4) (3) (3)
1 2 3

1 1
150 81.328125 66.32815 150

4 4

74.414063

u u u

(4)
2

1
74.414063 90 82.207031

2
u

(4)
3

1
74.414063 60 67.207031

2
u

Iteration-5

(5) (4) (4)
1 2 3

1 1
150 82.207031 67.207031 150

4 4

74.853516

u u u

(5)
2

1
74.853516 90 82.426758

2
u

(5)
3

1
74.853516 60 67.426758

2
u

Iteration-6

(6)
1

1
82.426758 67.426758 150 74.963379

4
u

(6)
2

1
74.963379 90 82.481689

2
u

(6)
3

1
74.963379 60 67.481689

2
u

Since, on the iterations 5th and 6th, the values are nearly same and the required solution is

1 2 374.9, 82.5 and 67.5u u u

       4 1 74.9u u

EXERCISE 12.4

1. Using the successive iteration scheme to solve the Laplace equation 2
u = 0 for the following 

figure: [V.T.U. 2000]
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2. Solve the Laplace equation 2
u = 0 with the conditions u(0, y) = 0, u(4, y) = 12 + y for 0 y

 4; u(x, 0) = 3x and u(x, 4) = x2 for 0 x  4.

3. Using Bendre–Schmidt’s scheme to solve the equation ut = 4uxx with the boundary conditions 

u(0, t) = u(8, t) = 0 and 
1

( , 0) (8 )
2

u x x x  at the points

    x = i; i = 0, 1, 2, 3, …, 8 and 
1

; 0,1,2,3,4,5.
8

t j j

4. Solve 2
u = 0 with the boundary values as shown in the figure given below:

5. Using Bendre–Schmidt method to solve the boundary value problem ut = uxx, under the 

conditions u(0, t) = 0 = u (1, t) and u(x, 0) = sin x; 0 x  1 (Take x = h = 0.2 and 

t = k = 0.02). [Madras 1997, Rohtak 2003, V.T.U. 2003]

6. The transverse displacement u of a point at a distance x from one end at any time t of a 

vibrating string satisfies the partial differential equation utt = 25 uxx, under the conditions 

u(0, t) = 0 = u(5, t) and the initial conditions 
20 for 0 1

( , 0)
5(5 ) for 1 5

x x
u x

x x
 and ut(x, 0) = 0. 

(Take h = 1, k = 0.2).

7. Explain the nature of parabolic, hyperbolic and elliptic equations.

8. Define the finite difference scheme.

9. What is the difference between Jacobi’s and Gauss–Seidel methods.

10. Define the boundary and initial value problems.

Answers

1. u1 = 26.66, u2 = 33.33, u3 = 43.33 and u4 = 46.66.

2. 2.37, 5.60, 9.87, 2.89, 6.14, 9.89, 3.02, 6.17 and 9.51.
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3.

       i

j
0 1 2 3 4 5 6 7 8

0 0 3.5 6 7.5 8 7.5 6 3.5 0

1 0 3 5.5 7 7.5 7 5.5 3 0

2 0 2.75 5 6.5 7 6.5 5 2.75 0

3 0 2.5 4.62 6 6.5 6 4.62 2.5 0

4 0 2.31 4.25 5.56 6 5.56 4.25 2.31 0

5 0 2.12 3.94 5.12 5.56 5.12 3.94 2.12 0

4. u1 = 10.188, u2 = 0.5, u3 = 1.188, u4 = 0.25, u5 = 0.625, u6 = 1.25

5.

      i 

j
0 1 2 3 4 5

0 0 0.59 0.95 0.95 0.59 0

1 0 0.475 0.77 0.77 0.475 0

2 0 0.38 0.62 0.62 0.38 0

3 0 0.31 0.50 0.50 0.31 0

4 0 0.25 0.41 0.41 0.25 0

5 0 0.20 0.33 0.33 0.20 0

6.

        i

j
0 1 2 3 4 5

0 0 20 15 10 5 0

1 0 7.5 15 10 5 0

2 0 –5 2.5 10 5 0

3 0 –5 –10 –2.5 5 0

4 0 –5 –10 –15 –7.5 0

5 0 –5 –10 –15 –20 0

SUMMARY

Following topics have been discussed in this chapter:

1. Classification of Partial Differential Equation

Let u(x, y) be a continuous function which maps R2 in to R. The general second order partial differential 

equation is of the form
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2 2 2

2 2
, , , , , , , 0 or

u u u u u
x y z

x y x yx y

2 2 2

2 2
,

u u u u u
A B C D E Fu G

x y x yx y

where A, B, C, D, E, F and G are all functions of x and y. Above equation can be classified into three 

types according to the numerical value of the discriminant 2 4 .B AC

(i) If  < 0 at a point in the (x, y) plane, then the given equation is called elliptic.

(ii) If  = 0 at a point in the (x, y) plane, then the given equation is called parabolic.

(iii) If  > 0 at a point in the (x, y) plane, then the given equation is called hyperbolic.

2. Finite Difference Method

The approximations to the partial derivatives for the function u = u(x, y) at (xi, yi), for i = 1, 2, 3, ….  

and u(xi, yi) = uij.

Therefore

1, 1,

( , ) 2
i i

i j i j

x y

u uu

x h

2
1, , 1,

2 2
( , )

2

i i

i j i j i j

x y

u u uu

x h

Similarly, the other first and second order partial derivatives are as follows:

, 1 , 1

( , )
2

i i

i j i j

x y

u uu

y k

and

2
, 1 , , 1

2 2

( , )

2

i i

i j i j i j

x y

u u uu

y k

Now using the given equations give in partial differential equations and these equations converted 

to difference equations. The solution of difference equations is the solution of the given partial 

differential equations.

3. Parabolic Partial Differential Equations

The parabolic partial differential equation, we consider is the heat, or diffusion equation

2
2

2
; 0 , 0

u u
x l t

t x

Subject to the conditions

(0, ) 0 ( , ), 0u t u l t t

and  
( , 0) ( ), 0u x f x x l
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(i)  Explicit Scheme (Finite Difference Method) Substituting the finite difference relations, we 

get

, 1 , 1, , 1,2

2

2 Here

( )

i j i j i j i j i ju u u u u t k

x ht x

  or  
2 2

, 1 1, 1,2 2
( ) 1 2

( ) ( )
i j i j i j ij

t t
u u u u

x x

  or  , 1 1, 1, ,( ) (1 2 )i j i j i j i ju r u u r u

  where  2

2
; 0, 1, 2, 3, ...

( )

1, 2, 3, ..., ( 1)

t
r j

x

i N

( + 1)th
( , + 1)l

th

( – , )1 ( , ) ( + 1, )

  Computational molecule or Forward difference Stencil for the finite difference method.

   The derived equation is valid when 
1

0 .
2

r  This is an explicit scheme is expressed u at 

unknown (j + 1)th time level in terms of the known values of u at jth time level.

  For
1

,
2

r  so the derived equation reduces to

, 1 1, 1,

1
[ ]

2
i j i j i ju u u

  Above equation is called the Bender–Schmidt recurrence equation/scheme.

(ii)  Implicit Scheme In the explicit scheme, the time step ( t) has to be necessarily very small. 

The explicity scheme is valid only for 2

2

1
0 , i.e., .

2 ( )

t
r r

x

   Now, the partial differential is discretized by replacing the time derivative by backward 

difference and the space second derivative by a central difference at the node (i, j + 1), we 

have

, 1 1, 1 1, 1 ,(1 2 ) i j i j i j i jr u r u r u u

  where   2

2( )

t
r

x

   From the given equation, all the values of u on left are unknown and on the right ui, j is 

known.

(iii) Implicit Scheme Second or Crank–Nicolson Scheme or Method This scheme is based on 

numerical approximations for the solution at the node (i, j + 1).

1, 1 , 1 1, 1 ,(2 2 )i j i j i j i jr u r u r u b
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  where  , 1, , 1,(2 2 )i j i j i j i jb r u r u r u

j = 0, 1, 2, 3, …

i = 1, 2, 3, …, (N – 1).

  For r = 1, the scheme, i.e. the derived equation gives

1, 1 , 1 1, 1 ,4i j i j i j i ju u u b

  where   , 1, 1,( )i j i j i jb u u

  for  1, 2, 3, ... ( 1), 1, 2, 3, ...i N j

  This scheme is known as Crank–Nicolson Scheme.

(iv)  Three Time Level Scheme or Richardson’s Scheme or Method In the partial differential, we 

discretize at the node (i, j) by replacing both the derivatives by a central difference taking t

as one time interval.

  Thus we get,

2
, 1 , 1

1, , 1,2
[ 2 ]

2 ( )

i j i j

i j i j i j

u u
u u u

t x

  or   1,, 1 , 1, , 12 [ ] ,
i ji j i j i j i ju r u u u u

  where  
2

2

, 1, 2, 3, ...

; 1, 2,3, ...,( 1)
( )

0

t
r i N

x

j

   This scheme is a three time level scheme in which the unknown ui, j + 1 is explicitly expressed 

in terms of known values of u at the previous known (j – 1)th and time level’s.

4. Solution of Hyperbolic Equations

In this section, we shall discuss the numerical solution to the wave equation, an example of a 

hyperbolic partial differential equation.

Consider, 1-D wave equation is

2 2
2

2 2
0; 0 , t

u u
x l

t x

Subject to the conditions

(0, ) ( , ) 0 for 0u t u l t t

( , 0) ( ) and ( , 0) ( , 0) ( )t

u
u x f x u x x g x

t
 for 0 x l, where  is a constant dependent on the 

physical conditions of the given problem.

The finite differences of

2
, 1 , , 1 2

2 2

2
( )

( )

i j i j i ju u uu
O t

t t
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and

2
1 , 1, 2

2 2

2
( )

( )

i j i j i ju u uu
O x

x x

Using the above finite differences, the equation becomes

2
, 1 , , 1 1, , 1,2 2i j i j i j i j i j i ju u u r u u u

where  
t

r
x

Consider the approximations in both rows j and j – 1 are known.

The above equation can be used to compute ui, j + 1 for i = 1, 2, 3, 4, …, N – 1 and j = 1, 2, 3, …

2 2
, 1 , 1, 1, , 12 (1 ) ( ) ( )i j i j i j i j i ju r u r u u u

for i = 1, 2, 3, 4, …, N – 1, j = 1, 2, 3, …. The boundary conditions gives u0, j = 0 = uN, j for each 

j = 1, 2, 3, …

and the initial condition implies that

, 0 ( ) for each 1, 2, ..., 1i iu f x i N

To find the initial velocity condition

( , 0) ( ); 0
u

x g x x l
t

The partial derivative 
u

t
 is replaced by a forward difference approximation 

, 1 , 0
,

i j iu uu

t t

we obtain ,1 , 0 ( ) for 1, 2, ..., 1i i iu u g x i N

We observe that the 4 known values on the RHS of given equation, which are used to find ui, j + 1

can be shown in the given figure.

r u2
+ 1,i jr u2

– 1,i j

(2 – 2 )r u2
,i j

ui + 1, j

–ui, j – 1

Note: If r = 1, then (25) becomes

, 1 1, 1, , 1i j i j i j i ju u u u
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5.  Numerical Solution of Elliptic Partial Differential Equations

An elliptical partial differential is of the form

2 2
2

2 2
0 or 0

u u
u

x y

where  

2 2
2

2 2
x y

Above equation is called the Laplace equation.

Substituting the derivative differences in given equation, we get

1, , 1, , 1 , , 1

2 2

2 2
0

i j i j i j i j i j i ju u u u u u

h k

Putting h = k for a square mesh from the above expression, we get

, 1, 1, , 1 , 1

1

4
i j i j i j i j i ju u u u u

Above equation (3) shows that, the value of u is the average of its values at the four neighbouring 

mesh points to the left, right, below and above. This formula is known as the standard five point 

formula (SFPF).

Now, if we rotate the co-ordinate axes through 45°, then the Laplace equation remains unaltered. 

Therefore, we may use the values at the diagonal points in place of the neighbouring points. Then the 

formula can be written as

, 1, 1 1, 1 1, 1 1, 1

1

4
i j i j i j i j i ju u u u u

Above formula shows that, the value of u is the average of its values at the 4 neighbouring diagonal 

mesh points.

The problems concerning study of Poisson’s equation, equilibrium stress in elastic structures, 

viscous flows etc. are the elliptic type of equations.

The accuracy of the values of ui, j (which are obtained from the given equations is improved by 

either of the following iterative methods.

6. Point Jacobi’s Method

Let ( )
,
n

i ju  be the nth iterative value of ui, j. Then the iterative formula to solve the equation is

( 1) ( ) ( ) ( ) ( )
, 1, 1, , 1 , 1

1

4

n n n n n
i j i j i j i j i ju u u u u

for the interior mesh points. This procedure is known as the point Jacobi’s method.

7. Gauss–Seidal Method

The iterative formula is

( 1) ( 1) ( ) ( 1) ( )
, 1, 1, , 1 , 1

1

4

n n n n n
i j i j i j i j i ju u u u u
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It uses the latest iterative values available and scans the mesh points systematically from left to 

right along successive rows.

It can be shown that the Gauss–Seidel scheme converges twice as fast as the Jacobi’s method.

Note 1:  The accuracy of computations depends on the mesh-size; if mesh-size h is small then 

accuracy is better. But if h is too small; it may increase rounding-off error’s.

Note 2:  We iterate all the mesh or grid points systematically from left to right along successive 

rows by the iterative formula (which obtain from derived equation) is given as:

( 1) ( 1) ( ) ( ) ( )
, 1, 1, , 1 , 1

1

4

n n n n n
i j i j i j i j i ju u u u u

This formula is called Liebmann’s iterative formula.

9. Solution of Poisson’s Equation

The elliptic partial differential equation

2 2
2

2 2
( , ) or ( , ),

u u
f x y u f x y

x y

where  
2 2

2

2 2
x y

where f(x, y) is a given function of x and y. Above equation is called the Poisson’s equation.

Above equation can be solved by replacing the derivatives by differences expressions at the points 

x = ih and y = jh we obtain

2
1, , 1, , 1 , 14 ( , )i j i j i j i j i ju u u u u h f ih jh

Using the  above equation at each interior mesh point, we obtain the linear equations in the modal 

values ui, j and these equations can be solved by Gauss–Seidel scheme.

1. The differential equation 4xx + 3uxy + uyy = 0 

is

(a) Elliptic (b) Hyperbolic

(c) Parabolic (d) none of these

2. The explicit scheme ui, j + 1 = r(ui + 1, j + ui – 1, j)

+ (1 – 2r)ui, j is valid for

(a) r = 2 (b)
1

2
r

(c) r = 1 (d)
1

0
2

r

3. The formula , 1 1, 1,

1

2
i j i j i ju u u  is 

known as

(a) explicit (b) implicit

(c) Bender–Schmidt (d) none of these

4. The formula , , 1 1, 1 1, 14 ;i j i j i j i jb u u u

where
, 1, 1,( )i j i j i jb u u  is called

(a) Bender–Schmidth formula

(b) Crank–Nicolson formula

(c) Standard five-point formula

(d) Diagonal five-point formula

5. The scheme
2

, 1 1, , 1, , 12
2 2

( )
i j i j i j i j i j

t
u u u u u

x

is called

OBJECTIVE TYPE QUESTIONS
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(a) C–N scheme

(b) Richardson’s scheme

(c) Bender–Schmidt scheme

(d) None of these

6. The formula

, 1, 1, , 1 , 1

1

4
i j i j i j i j i ju u u u u

is called

(a) Standard five-point formula

(b) Diagonal five-point formula

(c) C–N formula

(d) None of above

7. The formula

, 1, 1 1, 1 1, 1 1, 1

1

4
i j i j i j i j i ju u u u u

is known

(a) C–N scheme

(b) Bender–Schmidt formula

(c) diagonal 5-point formula

(d) none of these

8. The formula

( 1) ( 1) ( ) ( ) ( )
, 1, 1, , 1 , 1

1

4

n n n n n
i j i j i j i j i ju u u u u

is known

(a) Liebmann’s iterative formula

(b) C–N scheme

(c) Richardson’s scheme

(d) Gauss–Siedel formula

9. The equation uxx + uyy = f(x, y) is known

(a) Bendre–Schmidt equation

(b) Poisson’s equation

(c) Laplace equation

(d) None of the above

10. Which of the following is a step by step 

method

(a) Taylor’s

(b) Picard’s

(c) Adams–Basforth

(d) None of the above

11. As soon as a new value of a variable is found 

by iteration, it is used immediately in the 

following equations, this method is called

(a) Relaxation method

(b) Jacobi’s method

(c) Gauss–Jordan method

(d) Gauss–Seidel method

12. Schmidt’s finite difference scheme to solve 

the equation 
2

2

2

u u
c

t x
 is

(a) , 1 1, 1,

1

2
i j i j i ju u u

(b) , 1 1, , 1,

1
2

4
i j i j i j i ju u u u

(c) , 1 1, 1, , 1i j i j i j i ju u u u

(d) None of these

13. The finite difference scheme

, 1 1, 1, ,( ) (1 2 )i j i j i j i ju r u u r u

where 2

2( )

t
r

x
 is apply on

(a) Parabolic equation

(b) Hyperbolic equation

(c) Elliptic equation

(d) Above all

14. The fast iteration method for the solution of 

the partial differential equation is

(a) Gauss–Seidel method

(b) Jacobi’s method

(c) Successive over relaxation method

(d) None of these

15. The equation uxx + uyy = – (x, y) is called

(a) Potential equation

(b) Schrödinger’s equation

(c) Laplace equation

(d) Poisson’s equation

ANSWERS

1.(b) 2.(d) 3.(c) 4.(b) 5.(b) 6.(a) 7.(c) 8.(a) 9.(b) 10.(c)

11.(d) 12.(a) 13.(a) 14.(c) 15.(a)



13.1 INTRODUCTION

In this chapter, we shall be dealing with the problems, which are linear in nature. To solve these 

problems, various methods such as graphical method, simplex method, artificial variable method will 

be used. Duality and dual simplex method used to solve linear programming problems will be discussed 

here in this chapter. In the end of the chapter, transportation problem and assignment problem which 

are special cases of linear programming problem will also be discussed.

In 1941 G.B. Dantzig designed linear programming to solve optimization problem in which objective 

function and all constraints are linear. In fact, linear programming is a technique in which all constraints 

and objective functions are quantitative in nature. In other words, we can say that linear programming 

is the analysis of a problem which, having a linear function of a number of variables called objective 

function. This needs to be optimized (maximized or minimized), when these variables are subject to a 

number of constraints to the mathematical linear inequalities.

Therefore a linear programming is nothing, it is a mathematical programming in which objective 

function and all constraints are linear function of decision variables.

For example,

Maximize 1 2 32 3 6z x x x

Subject to 1 2 34 3 15x x x

1 2 32 6 10 80x x x

1 2 3, , 0x x x

The above problem is a linear programming problem (LPP) because here the objective function z

and all the constraints are linear function of variables x1, x2 and x3.

13.2 GENERAL FORM OF LINEAR PROGRAMMING

Following is the general form of a linear programming problem:

Maximize or Minimize 1 1 2 2 n nz c x c x c x (1)

Subject to constraints

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

or

or

or

n n

n n

mn n m

x x x b

x x x b

m x m x x b

(2)

Linear

Programming13
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1 2, , ..., 0nx x x (3)

In above, Eq. (1), the function which is to be maximized or minimized is called objective function,

Eq. (2) are called constraints and Eq. (3) are called non-negative restrictions (NNR), where as

x1, x2, …, xn are known as decision variables.

Now question arises, how to convert a given problem in above form. This is answered in the 

following article.

13.3 FORMULATION OF MODEL

The most important thing for the effective usage of linear programming in real life problem needs 

proper and correct formulation of the model, which consists of an objective function (to be maximized 

or minimized), constraints and non-negativity restrictions. Following steps are required to formulate a 

linear programming problem.

Step 1: Identify the decision variables.

Step 2: Identify the objective of the problem. (Minimization or Maximization) underlying in it.

Step 3: Construct the objective function.

Step 4: Construct the constraints.

Step 5: Write down the non-negative restrictions, i.e., all decisions variables will have the values 

greater than or equal to zero.

Example 1 A company produces two products X and Y. Production of both the products require 

the same processes P1 and P2. The production of Y also results in a by-product Z at no extra cost. The 

product X can be sold at a profit of `40 per unit and Y at a profit of `60 per unit. Some of these by-

products can be sold at a unit profit of `20, the remainder has to be destroyed and the destruction cost 

is`10 per unit. The company gets 4 units of Z for each unit of Y produced and only up to 6 units of Z

can be sold. The manufacturing times are 4 hours per unit of X on both the processes while Y takes 5 

hours and 6 hours per unit on processes P1 and P2, respectively. Because of the product Z results from 

producing Y, no time is required to produce Z. The available times are 20 and 25 hours for processes P1

and P2, respectively. Formulate this problem as LLP to determine the quantity of X and Y which should 

be produced, keeping Z in mind to make the maximum total profit to the company.

Solution

Step 1: Let x1 = number of units of product X to be produced

x2 = number of units of product Y to produced

x3 = number of units of product Z to produced

and x4 = number of units of product Z to be destroyed

Step 2: Objective is to maximize the profit

Step 3: Construction of objective function

Maximize 1 2 3 440 60 20 10z x x x x

Step 4: Construction of constraints

1 24 5 20x x

1 24 6 25x x

3 6x

2 3 44 0x x x
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Step 5: Non-negative restrictions:

1 2 3 40, 0, 0, 0x x x x

Combining all above steps, we get the following LPP.

Maximize 1 2 3 440 60 20 10z x x x x

Subject to

1 24 5 20x x

1 24 6 25x x

3 6x

2 3 44 0x x x

1 2 3 4, , , 0x x x x

Example 2   A company produces and sells two different products under the brand names 

blue and white. The profit per unit on these products is `50 and `70, respectively. Both the products 

employ the same manufacturing process, which has a fixed total capacity of 50,000 man hours. As 

per the estimates of marketing research department of the company, there is a market demand for 

maximum 8,000 units of blue and 12,000 units of white. Subject to over all demand, the products 

can be sold in any possible combinations. If it takes 5 hours to produce one unit of blue and 4 hours 

to produce one unit of white, formulated the above as linear programming to maximize the profit of 

the company.

Solution Let x1 and x2 be the number of units of blue and white products, respectively, produced by 

the company. Then LPP is as follows:

Maximize z = 50 x1 + 70 x2

Subject to

5x1 + 4x2  50,000

x1  8,000

x2  12,000

x1, x2  0

Example 3 A company has three operational departments weaving, processing and packaging 

with capacity to produce three different types of clothes namely suitings, shirtings and woolens yielding 

a profit `10, `12 and `15 per metre, respectively. One metre suitings requires 4 minutes in weaving,

3 minutes in processing and 2 minutes in packing respectively. One metre of shirting require 5 minutes 

in weaving, 2 minutes in processing and 4 minutes in packing. One metre of woollens require 4 minutes 

in all weaving processing and packing departments. In a week, total run time of each department is 70, 

50 and 90 hours; respectively, for weaving, processing and packing departments. Formulate the above 

as LPP to maximize the profit.

Solution The data of the above problem can be summarized as given in the following table:
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Clothes
Departments Profit 

(`per meter)Weaving Processing Packing

Suitings 4 minutes 3 minutes 2 minutes 10

Shirtings 5 minutes 2 minutes 4 minutes 12

Woollens 4 minutes 4 minutes 4 minutes 15

Availability of time in minutes 70 × 60 = 4200 50 × 60 = 3,000 90 × 60 = 5400

Let x1 be the metres of suitings produced, x2 be the metres of shirtings produced and x3 be the metres 

of woollens produced by company. Then the LPP is as the follows:

Maximize z = 10x1 + 12x2 + 15x3

Subject to

1 2 3

1 2 3

1 2 2

1 2 3

4 5 4 4,200

3 2 4 3,000

2 4 4 5,400

, , 0

x x x

x x x

x x x

x x x

Example 4 David wants to decide the constraints of a diet which will fulfill his daily requirements 

of protein, fats and carbohydrates at a minimum cost. The choice is to be made from four different types 

of foods. The yields per unit of these foods are given the in following table.

Food type
Yield/Unit

Cost per unit (in `)
Proteins Fats Carbohydrates

I 5 4 6 60

II 6 4 5 50

III 8 7 7 80

IV 8 6 5 75

Minimum requirement 1000 350 750

Formulate the above as LPP.

Solution Let x1, x2, x3 and x4 be the unite of food type I, II, III and IV respectively. Then the LPP is

Minimize 1 2 3 460 50 80 75z x x x x

Subject to

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5 6 8 8 1000

4 4 7 6 350

6 5 7 5 750

, , , 0

x x x x

x x x x

x x x x

x x x x

Example 5 A furniture manufacturer wants to determine the number of tables and chains to be 

made by him in order to optimize the use of his available resources. These products utilize two different 

types of timber and he has on hand 4,000 board feet of first type and 2,500 board feet of the second 

type. He has 1500 man hours available for the total job. Each table and chair requires 5 and 3 board feet 
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respectively, of the first type timber and 3 and 4 board feet respectively of the second type timber, 6 man 

hours are required to make a table and 5 main hours required to make a chair. The manufacturer makes 

a profit of `500 on a table and `400 on a chair. Formulate the above as LPP to maximize the profit.

Solution Let x1 and x2 be the number of tables and chains manufactured. Then LPP is as follows:

Maximize z = 500 x1 + 400 x2

Subject to

1 2

1 2

1 2

5 3 4,000

3 4 2,500

, 0 and integers

x x

x x

x x

EXERCISE 13.1

1. A company manufactures two types of sandal soaps. To manufacture these, the company 

requires three different inputs; we call these inputs A, B and C. The sandal soap of first type 

requires 30 grams of input A, 20 grams of input B and 6 grams of input C. On the other 

hand, one sandal soap of second type requires 25, 5 and 15 grams of inputs A, B and C 

respectively. The maximum availability of input A, B and C are 6000, 3000 and 3000 grams, 

respectively.

    The selling prices of sandal soaps of types 1 and 2 are `40 and ̀ 50 per piece, respectively. 

How many sandal soaps of types 1 and 2 should be manufactured within the available inputs 

so that the sales revenue is maximized. Assume the all soaps manufactured are sold. Formulate 

the LPP.

2. A man who wants to keep some hens has `20,000 with him. The young hens which are 

available for `1,000 each lay 5 egs per day. The old hens which are available for `500 lay 

3 eggs per day. He has the capacity to keep 30 hens. Each egg is sold at `4.00. The feed for 

young and old hens costs `100 and `60 per week. How many young and old hens should he 

buy so that the profit per week is maximized?

3. The manager of a milk dairy decides that each cow should get at least 15 units, 20 units and 

24 units of nutrients A, B and C daily respectively. Two varieties of feed are available. In feed 

of variety 1 (Variety 2), the contents of nutrients A, B and C are respectively 1(3), 2(2), 3(2) 

units per kg. The costs of units 1 and 2 are ̀ 20 and ̀ 30 per kg respectively. How much of feed 

of each variety should be purchased to feed a cow daily so that the expenditure is minimized. 

Formulate the above as LPP.

4. An aeroplane can carry a maximum of 200 passengers. A profit of ` 400 is made on each first 

class ticket and a profit of ` 300 is made on each economy class ticket. The airlines reserves 

at least 20 seats for first class. However, at least 4 times as many passengers prefer to travel 

by economy class then by first class. How many tickets of each class must be sold in order to 

maximize profit for airlines. Formulate the problem as an LP model. (Rohtak, 2006)

5. A company produces two types of models M1 and M2. Each M1 model requires 8 hours of 

grinding and 4 hours of polishing, where as each M2 model requires 4 hours of grinding 

and 10 hours of polishing. The company has 4 grinders and 6 polishers. Each grinder works

80 hours a week and each polisher works 120 hours a week. Profit on models M1 and M2 are 

`60 and `80 respectively. Whatever is produced in a week is sold in the week. Formulate the 

above as LPP to maximize the profit.
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6. Food F1 contains 9 units of vitamin A per gram and 10 units of vitamin B per gram and cost 

18 paise per gram. Food F2 contains 12 units of vitamin A per gram and 18 units of vitamin 

B per gram and cost 30 paise per gram. The daily minimum requirements of vitamins A and 

B are 150 units and 180 units respectively, formulate the above as LP model to minimize the 

total cost.

7. A firm manufactures 3 producers P1, P2 and P3. The profits are`30,`20 and`40 on each unit 

of the products P1, P2 and P3 respectively. The firm has 2 machines M1 and M2 and below is 

the required processing time in minutes for each machine on each product.

Product

Machine

P1 P2 P3

M1 4 3 5

M2 2 2 4

    Machines M1 and M2 have 2000 and 2500 machine minutes, respectively. The firm must 

manufacture 100 P1
s, 200 P2

s and 50 P3
s but no more 150 P3

s. Formulate the above as LPP to 

maximize the profit.

8. Three grades of coal A, B and C contain ash and phosphorus as impurities. In a particular 

industrial process, a fuel obtained by blending the above grades containing not more 25% ash 

and 0.03% phosphorus is required. The maximum demand of the fuel is 100 tonnes. Percentage 

impurities and costs of various grades of coals are shown in the table. Assuming that there is 

an unlimited supply of each grade of coal and there is no loss in blending. Formulate this as an 

LPP to minimize the cost.

Coal Grade % ash % phosphorus Cost per ton in `

A 30 0.02 240

B 20 0.04 300

C 25 0.03 280

Answers

1. Let x1 and x2 be the number of sandal soaps of types 1 and 2 respectively, then LPP is

  Maximize z = 40x1 + 50 x2

  Subject to the constraints

1 2

1 2

1 2

1 2

30 25 6000

20 5 3000

6 15 3000

, 0 and integers

x x

x x

x x

x x

2. Let x1 and x2 be the number of young and old hens purchased, respectively, by a man then 

LPP is

  Maximize 1 2 1 24(5 3 ) 100 60z x x x x
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  Subject to the constraints

1 2

1 2

1 2

30

1000 500 20000

, 0 and integers

x x

x x

x x

3. Let x1 and x2 be the amounts of feed 1 and 2, respectively, purchased daily to feed a cow. Then 

LPP is

  Minimize z = 20 x1 + 30 x2

  Subject to the constraints

1 2

1 2

1 2

1 2

3 15

2 2 20

3 2 24

, 10

x x

x x

x x

x x

4. Let x1 and x2 be the number of first class and economy class tickets, respectively. Then LPP 

is

  Maximize z = 400 x1 + 300 x2

  Subject to

1 2

1 2 1

1 2

200

200, 4

, 0

x x

x x x

x x

5. Maximize z = 60 x1 + 80 x2

  Subject to

1 2

1 2

1 2

8 4 320

4 10 720

, 0

x x

x x

x x

6. Minimize z = 18 x1 + 30 x2

  Subject to

1 2

1 2

1 2

9 12 150

10 18 180

, 0

x x

x x

x x

7. Maximize z = 30 x1 + 20 x2 + 40 x3

  Subject to

1 2 3

1 2 3

1

2

3

4 3 5 2000

2 2 4 2500

100 150

0 200

0 50

x x x

x x x

x

x

x
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8. Minimize z = 240 x1 + 300 x2 + 280 x3

  Subject to

1 2 3

1 2

1 2 3

1 2 3

2 0

0

100

, , 0

x x x

x x

x x x

x x x

where x1, x2 and x3 are tonnes of grades A, B and C respectively.

13.4   STANDARD FORM OR EQUATION FORM OF LINEAR 
PROGRAMMING PROBLEM

We can solve a linear programming problem if it is in standard form which is known as equation form 

of LPP. In this section, we shall define the standard form of a LPP and how it is to be converted in 

equation form if it is not in standard form.

(i) The objective function is either to be maximized or minimized, is linear in nature.

(ii) All constraints are in equations form i.e., with equal to = sign.

(iii) right hand side of all the constraints bi
s are greater than equal to zero i.e., all bi

s  0.

(iv) all decision variables are non-negative, i.e.,  0.

So, a LPP can be written in standard or equation form as:

Maximize or minimize 1 1 2 2 n nz c x c x c x

Subject to the constraints

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

1 2, , ..., 0

n n

n n

m m mn n m

n

x x x b

x x x b

x x x b

x x x

or the LLP can be written in matrix form as:

Maximize or minimize T
z c X

Subject to constraints

0

AX b

X

where

1 2

1 2

1 2

( , , ..., )

( , , ..., )

( , , ..., ) 0

T
n

T
n

T
m

c c c c

X x x x

b b b b

are column vectors and A = ( ij) is an m × n matrix.

Therefore, a LPP can be written as follows:

Maximize or minimize 

1

2
1 2( , , ..., )n

n

c

c
z x x x

c
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Subject to constraints

11 12 1 1 1

21 22 2 2 2

1

n

n

m mn mn n n

x b

x b

x b

1 2, , ..., 0nx x x

All LPP can be converted into standard form in the following way:

(i) Addition of a slack variable: If an ith constraint of a LPP is  type then by adding a non-

negative variable si called slack variable to the ith constraint can be converted to the equation 

form. For example: constraint 1 2 32 4 3 80x x x  can be converted into equation form by 

adding a variable s1 (s1  0) known slack variable as 1 2 3 12 4 3 80x x x s

(ii) Addition of a surplus variable: If an ith constraint of a LPP is  type then by subtracting a non-

negative variable si, called surplus variable to ith constraint can be converted to the equation 

form. For example: constraint 1 2 34 3 5 60x x x  can be converted into equation form by 

adding variable (–s1), s1  0 known as surplus variable as 1 2 3 14 3 5 60x x x s

Example 6 onvert the following LPP in standard form.

Maximize 1 2 33 4 6z x x x

Subject to the constraints

–x1 + x2 + 2x3  –4

x1 – 2x2 + 3x3  17

2x1 – 3x2 = 6

x1, x2, x3  0

Solution We have the following constraint:

1 2 3 1 2 32 4 2 4x x x x x x

Now, if we want to convert this constraint into equation then we have to add slack variable s1 (s1  0),

then constraint becomes in equation form

1 2 3 12 4x x x s

Similarly Second constraint

1 2 32 3 17x x x  can be converted into equation form by subtracting surplus variable s2(s2  0) 

and we get constraint in equation form as follows:

1 2 3 22 3 17x x x s

Third constraint is already in equation form. So given LPP can be written in equation form or 

standard form as

Maximize 1 1 33 4 6z x x x

Subject to

1 2 3 1

1 2 3 2

1 2

1 2 3 1 2

2 4

2 3 17

6

, , , , 0

x x x s

x x x s

x x

x x x s s
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Sometimes instead of all the decision variables which are non-negative in nature, it is given that either 

all or some of them are unrestricted in sign, then how to convert that LPP in equation form, this can be 

illustrated with the following example.

Example 7 Convert the following LPP in standard form.

Maximize 1 2 33 4 6z x x x

Subject to the constraints

1 2 3

1 2 3

1 2

1 3 2

2 2 3 3

2 7

1

, 0 and unrestricted in sign.

x x x

x x x

x x

x x x

Solution Now since x2 is unrestricted in sign that is x2 can take any of the values > 0, < 0 or 0. To 

convert the given LPP in equation, x2 can be written as a combination of two variables 2x  and 2x  as 

following:

2 2 2 2 2where , 0x x x x x

If 2 2 2 2 2 2then 0 and if , then 0x x x x x x

Now by replacing x2 by 2 2 ,x x  the standard form of given LPP becomes:

Maximize 1 2 2 33 4( ) 6z x x x x

Subject to the constraints

1 2 2 3 1

1 2 2 3 2

1 2 2

1 2 2 3 1 2

2 2 ( ) 3 3

( ) 2 7

( ) 1

, , , , , 0

x x x x s

x x x x s

x x x

x x x x s s

After seeing above examples, we can say a LPP can be converted into a standard (equation) form of 

LPP by introducing slack, surplus or a combination of two variables of the variable(s) with unrestricted 

in sign.

EXERCISE 13.2

Convert the following problems in standard form.

1. Minimize 3
1 22

2

x
z x x

  Subject to

1 2 3

1 3

1 2

1 2 3

5

2 3 6

3 7

, , 0

x x x

x x

x x

x x x
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2. Maximize 1 2 33 7z x x x

  Subject to

1 2 3

1 2 3

1 2 3

2 7

2 3

, , 0

x x x

x x x

x x x

3. Minimize 1 2 33 4z x x x

  Subject to

1 2 3

1 2 3

1 2 3

7 3 24

4 5 12

2, unrestricted in sign, 0

x x x

x x x

x x x

4. Maximize 1 2 33 2 4z x x x

  Subject to

1 2 3

1 2 3

2 3

1 2 3

2 2 12

2 6

3 2 1

, , 0

x x x

x x x

x x

x x x

5. Linearize the following objective function.

  Minimize 1 2 3 1 2 3Max. {| 2 3 |, | 2 3 2 |}z x x x x x x .

Answers

1. Minimize 3
1 22

2

x
z x x

  Subject to

1 2 3 1

1 3 2

1 2 3

1 2 3 1 2 3

5

2 3 6

3 7

, , , , , 0

x x x s

x x s

x x s

x x x s s s

2. Maximize 1 2 33 7z x x x

  Subject to

1 2 3 1

1 2 3 2

1 2 3 1 2

2 7

2 3

, , , 0

x x x s

x x x s

x x x s s

3. Minimize 1 2 2 33 ( ) 4 2z y x x x

  Subject to

1 2 2 3 1

1 2 2 3 2

7 ( ) 3 22

4( ) 5 10

all variables 0

y x x x s

y x x x s

1 1 1 1 2 2 2 2( Put 2 and ( ))y x x y x x x
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4. Maximize 1 2 33 2 4z x x x

  Subject to

1 2 3 1

1 2 3 2

2 2 12

2 6

all variables 0

x x x s

x x x s

5. Let 1 2 3 1 2 3Max. {| 2 2 |, | 2 3 2 |}x x x x x x y

  Then minimize z = y

(4)
  and either

1 2 3

1 2 3

| 2 2 |

| 2 3 2 |

x x x y

x x x y (5)

  From Eq. (4)

1 2 3

1 2 3

2 2

2 2

x x x y

x x x y

  and from eq (5)

1 2 3

1 2 3

2 3 2

2 3 2

x x x y

x x x y

Then the problem becomes, minimize z = y

Subject to

1 2 3

1 2 3

1 2 3

1 2 3 1 2 3

2 2

2 2

2 3 2

2 3 2 , , , , 0

x x x y

x x x y

x x x y

x x x y x x x y

13.5 SOME IMPORTANT TERMS

(i) Solution: Values of decision variables of a linear programming model is called solution of LPP.

(ii) Basic solution: Some variables of a LPP have zero values while others are non-zero. The 

variables with zero values are known as non-basic while the variables with non-zero values are 

called basic variables. Let there are m equations in n unknowns (n m), a solution obtained by 

selling n – m variables as zero and solving the remaining m equations in m unknown is called 

basic solution.

(iii) Feasible solution: A solution that satisfies all the constraints of a given LPP is called a feasible 

solution.

(iv) Basic feasible solution: A feasible solution which is basic is called basic feasible solution

i.e., a solution which satisfies all the constraints including non-negative restrictions is called 

basic feasible solution (BFS) of a LPP.

(v) Optimal Feasible Solution: A BFS which optimizes the objective function of given LPP is 

called optimal feasible solution.

(vi) Infeasible solution or No-feasible solution: The solution of a LPP which does not satisfy all 

the constraints or non-negative restrictions is called infeasible or no-feasible solution of LPP.

(vii) Degenerate solution: A basic solution if one or more basic variable have value zero is called 

degenerate solution of LPP.
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13.6 SOLUTION OF A LINEAR PROGRAMMING PROBLEM

A given LPP can be solved by the following two methods:

(i) Graphical method, and

(ii) Algebraic method

We shall discuss both the methods in detail in the upcoming section. First we shall discuss graphical 

method.

13.6.1 Graphical Method

If a given LPP contains two variables, it can be solved graphically. The following steps are involved in 

solving a LPP by graphical method:

Step 1: Formulate the problem mathematically.

Step 2: Plot the points in two dimensional axes and draw the lines accordingly of each constraint.

Step 3: Identify the solution area.

Step 4: Identify each of the extreme points known as corner points of feasible reason.

Step 5: Calculate the values of objective function at each corner point of feasible region.

Step 6: The optimal solution of the LPP occurs at that corner point with gives maximum (minimum) 

value of the objective function in case of maximization (minimization) problem.

Example 8 Use graphical method to solve the following LPP :

Maximize 1 25 4z x x

Subject to the constraints

1 2

1 2

1 2

3 5 15

5 2 10

, 0

x x

x x

x x

Solution

Step 1: Given problem already in mathematical form.

Step 2: Now construct the graph by constructing x1 as horizontal axis and x2 as vertical axis.

Step 3: Consider the first constraint 1 23 5 15,x x  which will graph as 3x1 + 5x2 = 15. To plot this 

line, find two points which satisfy the equation and draw a straight line through them.

Now, when 1 2 2 10 3 and when 0 5.x x x x  The two points are (0, 3) and (5, 0). 

Connect these two points by a line, but the given constraint is 3x1 + 5x2  15.

So any point that falls on the line or the area below it satisfies the given constraint.

Fig. 13.1

The shaded area in (Fig. 13.1) satisfy the constraint 3x1 + 5x2  15.
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Step 4: Similarly plot the second constraint 5x1 + 2x2  10 as follows:

Fig. 13.2

The shaded area in (Fig. 13.2) satisfies the constraint 5x1 + 2x2  10 combining both the figures 

(Figs. 13.1 and 13.2) we get the area bounded by all these two constraints, called feasible region, is 

shown in Fig. 13.3 by shaded area OABC.

Fig. 13.3

The coordinates of extreme points of feasible region are as follows:

20 45
(0, 0), (0, 3), , and (0, 3)

19 19
O A B C

Step 5: Calculate the value of objective function at each extreme point of the feasible reason.

Extreme (corner) point Coordinates (x1, x2) Z = 5x1 + 4x2

O (0, 0) 5 × 0 + 4 × 0 = 0

A (0, 3) 5 × 0 + 4 × 3 = 12

B
20 45

,
19 19

20 45 280
5 4

19 19 19

C (2, 0) 5 × 2 + 4 × 0 = 10

Therefore maximum 
280

,
19

Z  which occurs at point B.
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The solution of given LPP is as follows:

1 2

20 45 280
, and

19 19 19
x x z

Example 9 Maximize z = 6x1 + 5x2

Subject to the constraints

1 2

1 2

1 2

46

2 60

, 0

x x

x x

x x

Solution Plot on a graph each constraint by first treating as a linear equation in the same way as ex-

plained in Example 8. We get the feasible region as shown in Fig. 13.4.

Fig. 13.4

The coordinates of extreme points O = (0, 0), A = (0, 30), B = (32, 14), and C = (46, 0).

Calculating the value of objective function z = 6x1 + 5x2 at all these points we get

6 0 5 0 0 at

6 6 0 5 30 150 at

6 32 5 14 262 at

z O

z A

z B

and 6 46 5 0 276 atz C

Maximum of z occurs at point C.

Solution of given LPP is as follows:

x1 = 6, x2 = 0 and z = 276.

Example 10 Minimize z = 50x1 + 60x2

Subject to the constraints

1 2

1 2

1

1 2

2 3 1500

3 2 1500

400

, 0

x x

x x

x

x x
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Solution Plot the constraints on (x1, x2) axis and find the feasible region which is given in Fig. 13.5 by 

shaded area A, B, C.

Fig. 13.5

The coordinates of A = (400, 150), 
700

400, ,
3

B  and C = (300, 300) calculating the value of 

objective function 1 250 60z x x  at A, B and C we get respectively 29,000, 34,000 and 33,000. 

Therefore minimum of z occurs at point A which is equal to 29,000

Solution of LPP is x1 = 400, x2 = 150 and z = 29,000.

13.6.2 Special Cases

(i) Unbounded Solution In a situation in which the values of objective function and decision 

variables increase infinitely without violating the feasibility conditions, the solution is called an 

unbounded solution of the given LPP.

Example 11 Find the maximum value of

z = 6x1 + 2x2

Subject to the constraints

1 2

1 2

1 2

2 3

0

, 0

x x

x x

x x

Solution: Plot the graph in the usual manner, which is shown in the following figure (Fig. 13.6).

The feasible region shown in Fig. 13.6 is unbounded in nature as the values of objective function at 

points B(1, 1) and A(0, 3) are 8 and 6 respectively. As the given problem is a maximization problem, 

there are infinite number of points in feasible region at which the values of objective function is 

more than 8. If we make the values of both the variables randomly large then the value of z will also 

increase. Hence, the given LPP has unbounded solution. But if the objective function is changed from 

maximization to minimization, then the value of z = 6 which occurs at point A and solution of problem 

becomes x1 = 0, x2 = 3 and z = 6.
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Fig. 13.6

(ii) Infeasible Solution If the feasible region is empty i.e., if there is no common region for all 

the constraints or no variable satisfies all the constraints then we have no feasible or unfeasible solution 

of the LPP or we call that feasible solution of the given LPP does not exist.

Example 12 Solve the following LPP graphically

Maximize z = 4x1 + 5x2

Subject to the constraints

1 2

1

2

1 2

4 2 8

4 8

6

, 0

x x

x

x

x x

Solution Plot the graph as usual and region is shown in Fig. 13.7.

Fig. 13.7

If we see Fig. 13.7, we find that there is no common region which is intersection of all the constraints. 

Therefore, the given LPP has no feasible solution.
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Remark: If all the constraints are less than equal type then given LPP will always have a feasible 

solution. This situation occurs only if at least one of the constraints or all the constraints are greater 

than equal to type.

(iii) Alternate Solution When a given LPP has more than one solution i.e., if optimal value of 

objective function occurs at more than one extreme point than all the optimal solutions are known as 

alternate optimal solutions of the given LPP.

Example 13 Maximize z = x1 + x2

Subject to the constraints

1 2

1 2

1 2

2 10

6

, 0

x x

x x

x x

Solution Plotting the graph, we get the following feasible region shown in Fig. 13.8.

Fig. 13.8

Feasible region is given by OABC whose coordinates are O(0, 0), A(0, 5), B(2, 4), C(6, 0) and value 

of z at these points are 0, 5, 6 and 6 respectively. Maximum value of z is 6 which occurs at two points 

B and C. Therefore, this problem has an alternate solution. Solutions of problem are as follows:

(a) x1 = 2, x2 = 4, z = 6 (b) x1 = 6, x2 = 0, z = 6

Remark: If a LPP has optimal solution at more than one point then all the points lying on the line 

joining those points will also be solutions of the problem. Therefore we can say LPP has infinitely 

many solution. For example, if X1 and X2 are two solutions (optimal) of the given problem then

1 2(1 ) , 0 1, 0X X X

This will also be solution of the given LPP for all values of 0  1 and  0. In this case X is 

called convex linear combination of the points X1 and X2.

(iv) Degenerate Solution If one or more than one basic variable has value equal to zero, then 

solution of the given LPP is called degenerate solution.

Example 14 In previous example, we see that one of the optimal solution of the given LPP is

x1 = 6 and x2 = 0 with z = 6. Here x2 is a basic variable which is equal to zero. It implies that the optimal 

solution is a degenerate solution.
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Remark: A region (set) of points is said to be convex if the line joining any two of its points, lies 

completely in the region (sets).

For example,

are convex while

are not convex sets.

EXERCISE 13.3

Use graphical method to solve the following LP problems.

1. Maximize z = 3x1 + 6x2,

  Subject to

1 2 1 2 22 2000, 1500, 600x x x x x 1 2and , 0x x (Rohtak 2004)

2. Minimize z = 20x1 + 30x2

  Subject to

1 2 1 2 1 2 1 22 40, 3 30, 4 3 60, , 0x x x x x x x x

[Kurukshetra 2009S, Mumbai 2004, V.T.U. 2004]

3. Maximize z = 6x1 + 4x2

  Subject to

1 2 1 2 1 2

3
2 1, 3 4 , , 0

2
x x x x x x [Bombay 2004]

4. Minimize z = x1 – 2x2

  Subject to

1 2 1 2 1 21, 2 2, , 0x x x x x x

5. Minimize z = –4x1 + x2

  Subject to

1 2

1 2

1 2

2 2

2 2

, 0

x x

x x

x x

6. Maximize z = x1 + 2x2

  Subject to

1 2 1 2 1 21, 3, , 0x x x x x x
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7. Minimize z = 5x1 + 3x2

  Subject to

1 2

1 2

1 2

6

2 3 3

, 0

x x

x x

x x

8. Maximize z = 4x1 + 3x2

  Subject to

1 2 1 2 1 2 1 22 1000, 800, 400, 700, , 0x x x x x x x x

9. Minimize z = x1 – 2x2

  Subject to

1 2 1 2 1 2 1 23, 4 4, 2 1; , 0x x x x x x x x

10. Minimize z = x1 – x2

  Subject to

1 2 1 2 1 2 1 23, 6, 2 3 6; , 0x x x x x x x x

Answers

1. 1 21000, 500; max 5500x x z 2. 1 215, 0; max 300x x z

3. Unbounded solution 4. 1 20, 1; Min. 2x x z

5. Unbounded solution 6. Infeasible solution

7. 1 2 3; Min. 24x x z 8. 1 2200, 600; Max. 2600x x z

9.
1 2

4 5
, ; Min. 2

3 3
x x z 10. Infeasible solution

13.7 ALGEBRAIC SOLUTION OF A PROGRAMMING PROBLEM

If an LPP has more than two decision variables then it can not be solved by graphical method. We solve 

the LPP algebraically following steps are used to solve the given LPP:

Step 1: Convert the LPP into standard form by introducing slack or surplus variables.

Step 2: Find all the basic solutions of the given LPP. If after converting the LPP in standard form, 

number of decision variables are n and number of constraints are m, then number of basic solutions are 

equal to nCm. This is done by putting n–m variables equal to zero known as non-basic variables.

Step 3: Identify the basic feasible solutions, which are n
Cm.

Step 4: Calculate the value of objective function corresponding to all basic feasible solution.

Step 5: Identify that basic feasible solution(s) which optimize(s) the objective function and this will 

be optimum solution.



Linear Programming 13.21

Example 15 Find all basic solutions of the following LPP

Maximize 1 2 33 3z x x x

Subject to the constraints

1 2 3

1 2 3

1 2 3

2 3 4

2 3 5 7

, , 0

x x x

x x x

x x x

Also, find which of the basic solutions are as follows:

(a) Basic feasible solution

(b) Non-degenerate basic feasible solution

(c) Optimal basic feasible solution.

Solution Here n = 3, m = 2

we have 3C2 = 3 basic solutions, which we shall get by putting n – m = 3 – 2 = 1 variable equal to zero.

These solutions can be shown in the following table.

S.No.
Basic

variables

Non-Basic

variable

Values of 

Basic variables
Value of z Feasible 

Non

degener-

ate

Optimal

1 x1, x2 x3 = 0 x1 = 2, x2 = 1 5 Yes Yes Yes

2 x1, x3 x2 = 0 x1 = 1, x3 = 1 4 Yes Yes Yes

3 x2, x3 x1 = 0 x2 = –1, x3 = 2 3 No No No

From the above table, we see that first two solutions are non-degenerate feasible solutions while the 

third one is non-degenerate, non-feasible solution and the first solution is optimal feasible solution.

Therefore, the optimal solution of the given LPP is as follows:

1 2 32, 1, 0 and 5x x x z

Example 16 Find all the basic solutions of the following system of equations identifying in each 

case the basic and non-basic variables: 1 2 3 1 2 32 4 11, 3 5 14x x x x x x .

[Mumbai 2004, V.T.U. 2003S]

Also identify the degenerate or non-degenerate basic solutions and hence, calculate basic feasible 

solution.

Solution Here n = 3, m = 2, total number of basic solution are 3
C2 = 3, number of basic variables =

m = 2, number of non-basic variable = n – m = 3 – 2 = 1 whose value is equal to zero. All the solutions 

can be shown in the following table.

S.No.
Basic

variables

Non-Basic

variable

Values of 

Basic variables
Feasible Non-degenerate

1 x1, x2 x3 = 0
x1 = 3

x2 = 5
Yes No

2 x1, x3 x2 = 0
x1 = 0.5

x3 = 2.5
Yes Yes

3 x2, x3 x1 = 0
x2 = 3

x3 = –1
No No
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The basic-feasible solutions are as following 

(a) 1 2 33, 5, 0x x x  (b) 1 2 30.5, 0, 2.5x x x  and they are also non-degenerate solutions.

EXERCISE 13.4

1. Show that the following system of linear equations has two degenerate feasible basic solutions 

and the non-degenerate basic solution is not feasible

1 2 3 1 2 32 2, 3 2 3x x x x x x [Kurukshetra 2007S]

2. Find all the basic solutions to the following problem

  Maximize 1 2 33 3z x x x

  Subject to

1 2 3 1 2 32 3 4, 2 3 5 7,x x x x x x  and 1 2 3, , 0x x x

  which of the basic solutions are (a) non-degenerate basic feasible (b) optimal basic feasible?

[Kurukshetra 2009S, Mumbai 2003]

3. Show that the following LPP

  Maximize 1 2 3 42 3 4 7z x x x x

  Subject to

1 2 3 4 1 2 3 4 1 2 3 42 3 4 8, 2 6 7 3, , , , 0x x x x x x x x x x x x  has optimal solution 

1 2 3 4

44 45 419
0, , and max

17 17 17
x x x x z

4. Show that the LPP

  Minimize z = x1 – 2x2

  Subject to

1 2 1 2 1 21, 2 2, , 0x x x x x x  has optimal solution x1 = 0, x2 = 1 and minimize z = –2.

5. Show that the maximum of LPP z = 2x1 – 3x2

  Subject to

1 2 1 2 1 2 1 23 2 6, 1, 2, , 0x x x x x x x x  occurs at (0, 1) and hence, compute the 

value of max z.

Answers

2. Basic solutions are (i) 1 2 32, 1 (basic) and 0x x x

(ii) 1 3 1x x  (basic) and x2 = 0; (iii) x2 = –1, x3 = 2 (basic) and x1 = 0

(a) First two solutions are non-degenerate basic feasible solution

(b) Optimal solution is x1 = 2, x2 = 1 and max z = 5

13.8 SIMPLEX METHOD

When n and m are large then it is very difficult to find the solutions of a given LPP algebraically. For 

example, if m = 10 and n = 4 then number of basic solutions are equal to 10
C4 = 210, so it is very 

difficult to find 210 basic solution, then to find solution of such problems a method was designed by 

G.B. Dontzig in 1947 known as simplex method. This method involves steps of algorithm until an 

optional solution is reached. This is also known as iterative method. In this method, we find first a 

starting basic feasible solution, then move to another basic feasible solution in such a way that the value 
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of objective function improves and continue this until we get an optimal solution. The various steps 

involved in simplex method are as follows:

Step 1: Convert the given LPP in standard form.

Step 2: The matrix A should have an identity matrix I as a submatrix. The variables corresponding to 

I give the starting basic feasible solution as b the right hand side of the LPP.

Step 3: The objective function must be represented in terms of non-basic variables that is in z-row, the 

entries below basic variables are zero.

Step 4: Write the starting table which gives the starting basic feasible solution (BFS).

Step 5: Decide the entering variable.

For maximization problem, the variable with most negative entry in z-row enters as basic variable 

while for minimization problem the variable with most positive entry in z-row enters as basic variable. 

This ensures largest improvement in the objective function.

Step 6: Decide the leaving variable, which can be found by the minimum ratio rule 

solution
min

entering column > 0
 and mark the pivot element which is corresponding to entering 

variable and leaving row.

Step 7: Now make pivot element is equal to 1 and other elements in that column i.e., column 

corresponding to entering variable equal to zero by row operation.

Step 8: Continue till the optimal solution is reached i.e., for maximization problem all variables in 

z-row become  0 and minimization problem all variables in z-row  0.

Remark:

1. In case of tie in entering variable, choose arbitrarily.

2. In case of tie in leaving variable, choose arbitrarily but it may be noted in this case new 

basic feasible solution would be degenerate solution.

Example 17 Solve the following LPP by simplex method:

Maximize 1 2 312 15 14z x x x

Subject to the constraints

1 2

1 3

1 2 3

1 2 3

0

2 0

100

, , 0

x x

x x

x x x

x x x

Solution

Step 1: Convert the given LPP in standard form, i.e, 

Maximize 1 2 3 1 2 312 15 14 0. 0. 0.z x x x s s s

Subject to the constraints

1 2 1

1 3 2

1 2 3 3

1 2 3 1 2 3

0

2 0

100

, , , , , 0

x x s

x x s

x x x s

x x x s s s
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where s1, s2 and s3 are non-negative slack variables with cost coefficient zero. Now, the given LPP can 

be written as follows:

Maximize

1

2

3

1

2

3

(12, 15, 14, 0, 0, 0)

x

x

x
z

s

s

s

Subject to the constraints

1

2

3

1

2

3

1 1 0 1 0 0 0

1 0 2 0 1 0 0

1 1 1 0 0 1 100

x

x

x

s

s

s

1 2 3 1 2 3, , , , , 0x x x s s s

where (12 15 14 0 0 0)T
c

1 2 3 1 2 3( )T
X x x x s s s

1 1 0 1 0 0 0

1 0 2 0 1 0 , 0

1 1 1 0 0 1 100

A b

Step 2: Matrix A has an identity matrix

1 0 0

0 1 0 corresponding to variables

0 0 1

I

s1, s2 and s3 s1, s2 and s3 are starting basic variables and x1, x2, x3 are non-basic variables. Therefore, 

the starting BFS is given by

1

2 1 2 3

3

1 0 0 0

0 1 0 0 0 and 100

0 0 1 100

s

s s s s

s

Step 3: Now the objective function becomes as follows:

1 2 3 1 2 312 15 14 0 0 0 0z x x x s s s

Step 4: Write the starting simplex table as follows, which gives the starting BFS (always write 

basic variables in the end).
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Basic

variable

z x1 x2 x3 s1 s2 s3 Solution

z 1 –12 –15 –14 0 0 0 0

s1 0 –1 1 0 1 0 0 0

s2 0 –1 0 2 0 1 0 0

s3 0 1 1 1 0 0 1 100

Step 5: To decide entering variable, we see that the value in z-row below variable x2 is most negative 

i.e., –15 (as it is maximization case), x2 enters.

Step 6: To decide the leaving variable, we find the 
0 100

min , 0
1 1

 and it is corresponding to 

variable s1 s1 leaves and the element corresponding to x2-column and s1-row is 1 and it is pivot 

element we mark it by .

Step 7: Now we have to apply row-operation to mark a pivot element 1 and all other elements in 

that column as 0 as follows:

2 2 1

3 3 1

1

(new) (old) (new) 0

(new) (old) (new) 1

row(new) row (old) (new) ( 15)

R R R

R R R

z z R

and we get the new simplex table as given in the following table.

Basic variables z x1 x2 x3 s1 s2 s3 Solution

z 1 –27 0 –14 15 0 0 0

x2 0 –1 1 0 1 0 0 0

s2 0 –1 0 2 0 1 0 0

s3 0 2 0 1 –1 0 1 100

New continue this operation till we get all entries in z-row  0.

Basic variables z x1 x2 x3 s1 s2 s3 Solution

z 1 0 0
1

2
3/2 0

27

2
1350

x2 0 0 1
1

2

1

2
0

1

2
50

s2 0 0 0 5 / 2
1

2
1

1

2
50

x1 0 1 0
1

2
0

1

2
50

x3 enters and 
50 50 50

min , , 20,
1/2 5/2 1/2

s2 leaves and we get the following table:
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Basic variables z x1 x2 x3 s1 s2 s3 Solution

z 1 0 0 0 7/5 1/5 68/5 1360

x2 0 0 1 0 3/5 –1/5 2/5 40

x3 0 0 0 1 –1/5 2/5 1/5 20

x1 0 1 0 0 –2/5 –1/5 2/5 40

The value of all variables in z-row  0. Hence, the above table is optimal. Therefore, the optimal 

solution of the given LPP is 1 2 340, 40, 20x x x  and zmax = 1360.

Example 18 Solve the following LPP by simplex method.

Minimize 1 2 33 2z x x x

Subject to the constraints

1 2 3

1 2

1 2 3

1 2 3

3 2 7

2 4 12

4 3 8 10

, , 0

x x x

x x

x x x

x x x

Solution We can proceed in the similar manner to solve the given LPP as example.

Minimize 1 2 3 1 2 33 2 0 0 0z x x x s s s

Subject to the constraints

1 2 3 1

1 2 2

1 2 3 3

1 2 3 1 2 3

3 2 7

2 4 12

4 3 8 10

, , , , , 0

x x x s

x x s

x x x s

x x x s s s

Basic variables z x1 x2 x3 s1 s2 s3 Solution

z 1 –1 3 –2 0 0 0 0

s1 0 3 –1 2 1 0 0 7

 s2 0 –2 4 0 0 1 0 12

s3 0 –4 3 8 0 0 1 10

z 1
1

2
0 –2 0 –3/4 0 –9

s1 0 5 / 2 0 2 1
1

4
0 10

x2 0
1

2
1 0 0

1

4
0 3
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Basic variables z x1 x2 x3 s1 s2 s3 Solution

s3 0 –5/2 0 8 0 –3/4 1 1

z 1 0 0 –12/5 –1/5 –4/5 0 –11

x1 0 1 0 4/5 2/5
1

10
0 4

x2 0 0 1 2/5 1/5
3

10
0 5

s3 0 0 0 10 1
1

2
1 11

all entries in z-row  0, hence the above table is optimal. Therefore optimal solution of the given LPP 

is

1 2 34, 5, 0 and min 11x x x z

Example 19 Use simplex method to solve the following LPP.

Minimize 1 212 15z x x

Subject to the constraints

1 2

1 2

1 2

4 3 12

2 5 10

, 10

x x

x x

x x

Solution Proceed in the same manner as examples 17 and 18 to obtain the optimal solution of the 

problem.

Basic variables z x1 x2 s1 s2 Solution

z 1 12 15 0 0 0

s1 0 4 3 1 0 12

s2 0 2 5 0 1 10

z 1 6 0 0 –3 –30

s1 0 14/5 0 1 –3/5 6

x1 0
2

5
1 0

1

5
2

z 1 0 0 –15/9 –12/7 –300/7

x1 0 1 0 5/14 –3/14 15/7

x2 0 0 1 –1/7 2/7 8/7

All entries in z-row  0. Hence, this is the optimal table as shown in the above table. Therefore 

optimal solution of the given LPP is as follows:
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1 2

15 300
, 8/7, Minimize

7 7
x x z

EXERCISE 13.5

Use simplex method to solve the following LP problems:

1. Maximize z = x1 + 3x2

  Subject to

1 2 1 22 10, 0 5, 0 4x x x x [Kurukshetra 2009, V.T.U. 2003]

2. Maximize 1 2 33 2 5z x x x

  Subject to

1 2 3 1 3 1 2 1 2 32 430, 3 2 460, 4 420, , , 0x x x x x x x x x x

[Mumbai 2004]

3. Minimize 1 2 33 5 4z x x x

  Subject to

1 2 2 3 1 2 3 1 2 32 3 8, 2 5 10, 3 2 4 15, , , 0x x x x x x x x x x

[Mumbai 2004S]

4. Minimize 1 2 33 2z x x x

Subject to

1 2 3 1 2 1 2 3 1 2 33 2 7, 2 4 12, 4 3 8 10, , , 0x x x x x x x x x x x

[Karnataka 1992, IAS 1993, Madras 2006]

5. Maximize 1 24 10z x x

  Subject to

1 2 1 2 1 2 1 22 50, 2 5 100, 2 3 90, , 0x x x x x x x x

[Kurukshetra 2006]

6. Maximize 1 23 2z x x

  Subject to

1 2 1 2 1 24, 2, , 0x x x x x x [Calicut 1990 IAS 1992]

7. Maximize 1 22 3z x x

  Subject to

1 2 1 2 1 2 1 24, 1, 2 5; 0, 0x x x x x x x x [Anantapur 1990]

8. Maximize 1 25 3z x x

  Subject to

1 2 1 2 1 2 1 22, 5 2 10, 3 8 12; , 0x x x x x x x x [Purvanchal 1996]

9. Maximize 1 25 3z x x

  Subject to

1 2 1 2 1 2 1 24, 3, 2 18, 9; , 0x x x x x x x x [Nagarjuna 1995]

10. Maximize 1 2 3 42 4z x x x x

  Subject to

1 2 4 1 2 2 3 4 1 2 3 43 4, 2 3, 4 3, , , , 0x x x x x x x x x x x x

[Madras 1996]
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11. Maximize 1 2 3 44 5 9 11z x x x x

  Subject to

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

15, 7 5 3 2 120

3 5 10 15 100; , , , 0

x x x x x x x x

x x x x x x x x

[Delhi 1999, Bhartidesan 1995]

12. Maximize 1 23 2z x x

  Subject to

1 2 1 2 1 26, 2 6, , 0x x x x x x [Madurai 1993]

13. Maximize 1 24 10z x x

  Subject to

1 2 1 2 1 2 1 22 50, 2 5 100, 2 3 90; , 0x x x x x x x x [Jodhpur 1990]

Answers

1. 1 22, 4; max 14x x z

2. 1 2 30, 100, 230; max 1350x x x z

3. 1 2 3

89 50 62
, , ; max 765/41

41 41 41
x x x z

4. 1 2 34, 5, 0; min 11x x x z

5. 1 20, 20; max 200x x z

6. 1 23, 1; max 11x x z

7.  (i) 1 24, 0; max 8x x z

  (ii) 1 21, 2; max 8x x z

Alternate solution

8. 1 22, 0; max 10x x z

9. 1 24, 3; max 29x x z

10. 1 2 3 4

1 13
1, 1, , 0; max

2 2
x x x x z

11. 1 2 4 3

50 55 695
, 0 , ; max

7 7 7
x x x x z

12. 1 20, 6; max 12x x z

13. 1 20, 20, max 200x x z

13.9 ARTIFICIAL VARIABLE TECHNIQUE

We have seen that to solve a LPP by simplex method, the identity matrix must be present in the LPP 

after adding slack variables. So far we considered only these LPP problem in which we added only 

slack variables and by adding slack variables, we got identity matrix. But this is not possible always. 

For example, consider the LPP.
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Example 20

1

1 2

1 2

1 2

2

1 2

Minimize 3 2  

Subject to the constraint

2

3 3

1

, 0

s

z

x x

x x

x

x x

x

x

x

(6)

Converting the given LPP into standard form, we get

1 2

1 2 1

1 2 2

1 2

1 2 1 2

Minimize 3 2

Subject to the constraints

2

3 3

1

, , , 0

z x x

x x s

x x s

x x

x x s s

(7)

Note that solution of Eq. (7) is also solution of Eq. (6) as objective function of both are same, the 

optimal solution of Eq. (7) is the optimal solution of Eq. (6). But the standard form of Eq. (7) does not 

have an identity matrix as a sub-matrix, so simplex method can not be applied. Now an identity matrix 

can be created artificially by adding artificial variables r; to the system Eq. (7) as follows:

1 2

1 2 1 1

1 2 2

1 2 3

1 2 1 2 1 3

Minimize 3 2

Subject to

2

3 3

1

, , , , , 0

z x x

x x s r

x x s

x x r

x x s s r r

(8)

As for slack (surplus) variables, we shall denote the artificial variables added to ith constraint by ri.

In the above ri  0, so that the above system satisfies the requirements of applications of simplex 

method.

In system Eq. (8) the identity matrix is given by r1, s2 and r3 columns. Now, we can apply simplex 

method to system Eq. (8).

The difficulty is that a solution of Eq. (8) need not be a solution of Eq. (7), because the constraints 

equations of Eq. (8) and Eq. (7) are not same. But a solution of Eq. (8) with all artificial variables 

equal to zero is a solution of Eq. (7). In a LPP, we are interested in BFS. The above holds for BFS 

also. Thus our aim now is to get a BFS of Eq. (8) in which all artificial variables ri are zero. This 

will be a BFS of Eq. (7) also. Therefore we seek methods which give optimal BFS of Eq. (8) with 

all ri = 0. This will be an optimal solution of Eq. (7). There are two methods to set this. One of them 

is known as M-method or method of penalty and second one Two-phase method. We shall discuss 

them one by one.
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13.9.1 M-Method or Method of Penalty

In this we modify the objective function of a maximization problem by adding –M times sum of all 

artificial variables to of where M > 0 a big number. In the case of minimization problem, we add to 

objective function M times sum of artificial variables, where M > 0, a big number. This problem is 

called modified problem. The modified problem of Eq. (8) is

1 2 1 1

1 2 2

1 2

1 2 1

3

3Minimize 3 2

Subject to the constraints

2

3 3

1

all variables 0

x x s r

x x s

x x r

z x x Mr Mr

(9)

We apply simplex method to system Eq. (9). The above is a minimization problem and hence the 

appropriate rules of simplex method will minimize the objective function of Eq. (9). It is clear that the rules 

of simplex method will automatically derive r1 and r3 to zero provided the original problem has a solution, 

because M is a big positive number and all artificial variables  0. M is the penalty of ri to be in the basis 

at a positive level. Big M will drive artificial variables from basis. To understand this let us suppose that 

the optimal solution of Eq. (8) is 1 2 2 1

3 1 11
, , 0, 0, Min .

2 2 2
x x s s z  This is also a BFS of Eq. (9) 

with r1 = 0 = r3. So the optimal solution of Eq. (9) is 1 2 1 2 1 3

3 1 11
, , 0, Min .

2 2 2
x x s s r r z

The optimal solution of Eq. (9) can not have an artificial variable > 0, otherwise the objective function 

will become sufficiently large due to M. Thus, if the given problem has a solution, then the modified 

problem will have a solution with ri = 0. The simplex method will yield this solution.

For applying simplex method to system (9) we make the following table.

Basic variables z x1 x2 s1 r1 s2 r3 Solution

z 1 –3 –2 0 –M 0 –M 0

r1 0 1 1 –1 1 0 0 2

s2 0 1 3 0 0 1 0 3

r3 0 1 –1 0 0 0 1 1

We can not apply simplex method to above table as the objective function is not expressed in terms 

of non-basic variables (there must be zeros below r1, s2 and r3). The above is called initial table. The 

entry 0 on the right at the top of given table is the right hand side (RHS) and not the solution. To get the 

starting table of simplex method, we bring zeros below r1 and r3. (which are basic variables) in z-row

by row operations. Adding M times r1 row and M times r3 row to z-row, we get the starting table and 

then use simplex method. Now all values below basic variables in z-row are zero. The iterations are 

shown in the given table.
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Basic

variables
z x1 x2 s1 r1 s2 r3 Solution

z 1 –3+2M –2 –M 0 0 0 3 M

r1 0 1 1 –1 1 0 0 2

s2 0 1 3 0 0 1 0 3

r3 0 1 –1 0 0 0 1 1

z 1 0 –5+2 M –M 0 0 3–2M 3 + M

r1 0 0 2 –1 1 0 1

s2 0 0 4 0 0 1 2

x1 0 1 –1 0 0 0 1

z 1 0 0 –5/2 5/2 –M 0 11/2

x2 0 0 1
1

2
0 1/2

s2 0 0 0 2 1 0

x1 0 1 0
1

2
0 3/2

The given table is the optimal table. The optional solution is 

1 2

3 1
, , Minimize 11/2

2 2
x x z

Remark:

1. Whenever there is a tie among leaving variables with one as artificial variable then always 

prefer artificial variable because our aim to bring artificial variables to zero.

2. An artificial variable is never considered for re-entry into the basis due to obvious reasons. 

Once it leaves the basis, its purpose is served. Therefore their columns are not calculated in 

next table.

3. If in the optimal table, all artificial variables are not zero, then the original problem has no 

solution. This is because then Eq. (8) has no solution with all ri = 0, otherwise big positive 

penalty M for ri would have given it. That original LP(7) has no solution.

Example 21 Use M-method to solve the following LPP.

Maximize z = –x1 + 3x2

Subject to the constraints

1 2

1 2

1

1 2

2 2

3 3

4

, 0

x x

x x

x

x x



Linear Programming 13.33

Solution

Maximize 1 2 13z x x Mr

Subject to the constraints

1 2 1 1

1 2 2

1 3

2 2

3 3

4

all variables 0

x x s r

x x s

x s

Basic variables z x1 x2 s1 r1 s2 s3 Solution

z 1 1 –3 0 M 0 0 0

r1 0 1 2 –1 1 0 0 2

initial tables2 0 3 1 0 0 1 0 3

s3 0 1 0 0 0 0 1 4

z 1 1–M –3–2M M 0 0 0 –2 M

r1 0 1 2 –1 1 0 0 2

starting tables2 0 3 1 0 0 1 0 3

s3 0 1 0 0 0 0 1 4

z 1 5/2 0
3

2

3

2
M 0 0 3

x2 0
1

2
1

1

2
0 0 1

s2 0 5/2 0
1

2
1 0 2

s3 0 1 0 0 0 1 4

z 1 10 0 0 3 0 9

x2 0 3 1 0 1 0 3

optimal table
s1 0 5 0 1 2 0 4

s3 0 1 0 0 0 1 4

The optimal solution is

x1 = 0, x2 = 3, Maximize z = 9

13.9.2 Two-Phase Method

In M-method, it is not fixed how big M is, M-method therefore, can not be used in computer. This 

necessitates the need for another method which would be suitable for use in computer. Dantizig, Orden 
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and others developed the two-phase method. Consider again Example 21. The aim is to find a BFS of 

Eq. (8) with all artificial variables equal to zero. We will use this as starting BFS of Eq. (7) and apply 

simplex method to solve the problem. This is achieved in two phases. In phase-I, we obtain a BFS of 

Eq. (8) with all artificial variables equal to zero. In phase-II, using the BFS of Phase-I as starting BFS 

of the given problem, we obtain the optimal solution of the original problem.

Phase-I: We formulate the following auxiliary problem

Min r = sum of artificial variables

1 2 1 1

1 2 2

1 2

1 3

3

2

3 3

1

all var

Subject to the same constraint

iabl s

s

e 0

x x s r

x x s

x x r

r r

(10)

Clear the minimum of above problem is r1 = r3 = 0 and Min r = 0. So if we use simplex method to the 

above auxiliary problem we will get a BFS of constraints of the problem Eq. (7) with r1 = r3 = 0. This 

is a BFS of the given problem. Thus in Phase-I by introducing an appropriate objective function, we 

use simplex method to the advantage of a getting a BFS of given system. Now we use simplex method 

to solve systems Eq. (10).

The z-row is

x1 x2 s1 r1 s2 r3 RHS

0 0 0 –1 0 –1 0

Initial Table (IT) and Starting Table (ST) are shown in the given table. To get the starting table of 

simplex method, that is the table in which the entries below basic variables in z-row are zero, we add r1

and r3 rows to z-row. Now apply simplex method to set the optimal solution of the LPP.

Basic variables r x1 x2 s1 r1 s2 r3 Solution

r 1 0 0 0 –1 0 –1 0

r1 0 1 1 –1 1 0 0 2

initial tables2 1 1 3 0 0 1 0 3

r3 0 1 –1 0 0 0 1 1

r 1 2 0 –1 0 0 0 3

r1 0 1 1 –1 1 0 0 2

starting

table
s2 0 1 3 0 0 1 0 3

r3 0 1 –1 0 0 0 1 1

r 1 0 2 –1 0 0 –2 1

r1 0 0 2 –1 1 0 1

s2 0 0 4 0 0 1 2
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Basic variables r x1 x2 s1 r1 s2 r3 Solution

x1 0 1 –1 0 0 0 1

r 1 0 0 0 –1 0 0

x2 0 0 1 –1/2 0 1/2
optimal

table
s2 0 0 0 2 1 0

x1 0 1 0 1/2 0 3/2

The given table is the optimal table of Phase-I, giving a BFS of given problem as

1 1 2

3 1
, , 0

2 2
x x s .

Remark:

1. Remarks 1 and 2 of M-method hold for Phase-I also.

2. As in M-method, if original problem has a solution, then, Equation (10) has a solution with

r1 = 0 = r3.

3. If in the optimal table of Phase-I, all artificial variables are not zero, clearly Min r  0, then 

original problem has no solution.

Phase-II: In the above problem, x2, s2 and x1 rows in optimal table of Phase-I gives a BFS of given 

problem. We now this use as the starting BFS to get optimal solution of given problem. We now replace 

r-row by z-row in the optimal table of Phase-I by the given objective function, that is by z-row and 

omit artificial variables. This gives initial table. Then make all entries corresponding to basic variables

x2, s2 and x1 zero by multiplying x1 and x2 rows by 3 and 2 and adding to z-row.

Basic variables z x1 x2 s1 s2 Solution

z 1 –3 –2 0 0 0

x2 0 0 1 –1/2 0 1/2

initial tables2 0 0 0 2 1 0

x1 0 1 0 1/2 0 3/2

z 1 0 0 –5/2 0 11/2

x2 0 0 1 –1/2 0 1/2

starting tables2 0 0 0 2 1 0

x1 0 1 0 1/2 0 3/2

Above table is the starting simple table of Phase-II. The above table is also optimal table of phase-II 

of the problem as all entries in z row  0 (minimization problem). Hence, the optional solution of the 

LPP is

1 23/2, 1/2, minimize 11/2x x z .

Example 22 Solve the following LPP by Two-phase method.

Maximize 1 2 34 3 9z x x x
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Subject to the constraints

1 2 3

1 2 3

1 2 3

2 4 6 15

6 6 12

, , 0

x x x

x x x

x x x

Phase-I: Minimize r = r1 + r2

Subject to the constraints

1 2 3 1 1

1 2 3 2 2

2 4 6 15

6 6 12

all variables 0

x x x s r

x x x s r

Basic variables r x1 x2 x3 s1 s2 r1 r2 Solution

r 1 0 0 0 0 0 –1 –1 0

r1 0 2 4 6 –1 0 1 0 15
initial table

r2 0 6 1 6 0 –1 0 1 12

r 1 8 5 12 –1 –1 0 0

r1 0 2 4 6 –1 0 1 0 15
starting

tabler2 0 6 1 6 0 –1 0 1 12

r 1 –4 3 0 –1 1 0 3

r1 0 –4 3 0 –1 1 1 3

x3 0 1
1

6
1 0

1

6
0 2

r 1 0 0 0 0 0 0

x2 0 –4/3 1 0 –1/3 1/3 1

x3 0 11/9 0 1 1/18 –2/9 11/6

Phase-II: Phase-II is shown in the following table

Basic variables z x1 x2 x3 s1 s2 Solution

z 1 4 3 9 0 0 0

initial table
x2 0 –4/3 1 0 –1/3 1/3 1

x3 0 11/9 0 1 1/18 –2/9 11/6

z 1 –3 0 0 1/2 1 –39/2

x2 0 –4/3 1 0 –1/3 1/3

starting table
x3 0 11/9 0 1 1/18 2/9
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Basic variables z x1 x2 x3 s1 s2 Solution

z 1 0 0
27

11

7

11

5

11
–15

x2 0 0 1
12

11

3

11

1

11
3

optimal table

x1 0 1 0
9

11

1

22

2

11
3/2

Optimal solution of the given LPP is

1 2 3

3
, 3, 0, Maximize 15

2
x x x z

Remark: In phase-I of Two-phase method, the objective function is always minimization in nature 

which is sum of all artificial variables (In case of both types, i.e., minimization and maximization 

problem).

13.10 EXCEPTIONAL CASES IN LPP

We will discuss some important exceptional cases which are often encountered in the simplex method. 

The cases discussed are as following: 

(i) Non-existing feasible solution or no-feasible solution

(ii) Degeneracy

(iii) Unbounded solution

(iv) Alternate optimal solution

13.10.1 Non-existing Feasible Solution or No Feasible Solution

This case arises when no point satisfies all the constraints. If the number of variables and constraints is 

large, it will not be possible to recognize this situation before hand. If the standard form of the problem 

does not involve any artificial variable, this case will not occur. If use of artificial variable is necessary 

the problem has no feasible solution, if

(a) An artificial variable is non-zero in the optimal table when M-method is used.

(b) Minimum value of the sum of artificial variables obtained after the phase-I of the two-phase 

method is not zero.

The following example will explain (a) and (b) respectively (solve by both M-method and Two-

phase method).

Example 23 Min z = x1 – x2

Subject to the constraints

1 2

1 2

1 2

1

2 3 6

, 0

x x

x x

x x
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Solution M-method

Minimize 1 2 2z x x Mr

Subject to the constraints

1 2 1

1 2 2 2

1

2 6

all var . 0

x x s

x x s r

Basic variables z x1 x2 s2 s1 r2 Solution

z 1 –1 1 0 0 –M 0

s1 0 1 1 0 1 0 1
initial table

r2 0 2 1 –1 0 1 6

z 1 –1+2M 1+2M –M 0 0 6 M

s1 0 1 1 0 1 0 1
starting table

r2 0 2 1 –1 0 1 6

z 1 –2 0 –M –1–2M 0 –1+ 4 M

x2 0 1 1 0 1 0 1
optimal table

r2 0 1 0 –1 –1 1 5

In the above table r2  0  LPP has no feasible solution.

Two-Phase method

Phase-I: Min r = r2

Subject to the constraints

1 2 1

1 2 2 2

1

2 6

all variables 0

x x s

x x s r

Basic variables r x1 x2 s2 s1 r2 Solution

r 1 0 0 0 0 –1 0

s1 0 1 1 0 1 0 1
initial table

r2 0 2 1 –1 0 1 6

r 1 2 1 –1 0 0 6

s1 0 1 1 0 1 0 1
starting table

r2 0 2 1 –1 0 1 6

r 1 0 –1 –1 –2 0 4

x1 0 1 1 0 1 0 1
optimal table

r2 0 0 –1 –1 –2 1 4

r2  0 in the above Table, hence, the given LPP has no-feasible solution.
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13.10.2 Degeneracy

A basic solution is called degenerate, if the value of at least one of the basic variables is zero. Otherwise, 

the basic solution is called non-degenerate. If, in the simplex method there is a tie between two or more 

variables to leave the basis, we can select any one of them to leave the basis but the new basic solution 

thus obtained will have the remaining such variables at zero level and so this new solution will be 

degenerate three cases arise:

(a) We may obtain a degenerate optimal solution

(b) We may obtain a non-degenerate optimal solution (This is called temporary degeneracy)

(c) After applying some iterations to a degenerate solution, the same solution may appear again 

and the optimal solution is never obtained. This is called cycling. There are methods for 

tackling this problem. But we will not consider these here.

Example 24 Maximize 1 2 34 2z x x x

Subject to the constraints

1 2 3

1 2 3

1 2 3

1 2 3

2 4 4

2 2 6 4

2 3

, , 0

x x x

x x x

x x x

x x x

Solution Convert the LPP in standard form and then solve by simplex method.

Maximize 1 2 34 2z x x x

Subject to

1 2 3 1

1 2 3 2

1 2 3 3

2 4 4

2 2 6 4

2 3

all variables 0

x x x s

x x x s

x x x s

Basic variables z x1 x2 x3 s1 s2 s3 Solution

z 1 1 –4 2 0 0 0 0

s1 0 1 2 –4 1 0 0 4

s2 0 2 2 –6 0 1 0 4

s3 0 1 1 2 0 0 1 3

z 1 3 0 –6 2 0 0 8

x2 0
1

2
1 –2

1

2
0 0 2

degenerate 

solution
s2 0 1 0 –2 –1 1 0 0

s3 0
1

2
0 4

1

2
0 1 1

z 1 15/4 0 0 5/4 0 3/2 19/2

(Contd.)
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Basic variables z x1 x2 x3 s1 s2 s3 Solution

x2 0
3

4
1 0

1

4
0

1

2
5/2

optimal

table
s2 0 5/4 0 0 –5/4 1

1

2

1

2

x3 0
1

8
0 1

1

8
0

1

4
1/4

If you see, it is a case of temporary degeneracy as in second table basic variable s2 = 0 but optimal 

solution is non-degenerate i.e., x1 = 0, 2 3

1
5/2,

4
x x  and maximize 

19

2
z .

13.10.3 Unbounded Solution

Unbounded solution can occur when the solution space in unbounded. The solution space is unbounded 

if while applying simplex method, it is observed that in some simplex table all the entries in a column 

corresponding to a non-basic variable are non-positive in all the rows except the z-row and entry in the 

z-row is non-zero. This happens because this variable can enter the basis at an arbitrary level without 

violating the constraints. The optimal solution may or may not be finite. However, in the following 

situations the optimal solution will be unbounded.

If the entry referred to above in z-row in a maximization (minimization) problem is negative (positive) 

i.e., if all the entries of the column of entering variable  0, then LPP has unbounded solution.

Example 25 Minimize 1 24z x x

Subject to

1 2

1 2

1 2

2 2

2 2

, 0

x x

x x

x x

Solution Standard form of the given LPP is as follows:

Minimize 1 24z x x

Subject to

1 2 1

1 2 2

1 2 1 2

2 2

2 2

, , , 0

x x s

x x s

x x s s

Solve the above problem by simplex method.

Basic variables z x1 x2 s1 s2 Solution

z 1 4 –1 0 0 0

s1 0 1 –2 1 0 2

s2 0 –2 1 0 1 2
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Basic variables z x1 x2 s1 s2 Solution

z 1 0 7 –4 0 –8

x1 0 1 –2 1 0 2

s2 0 0 –3 2 1 6

In the given table x2 is to enter in the basis but all the entries in that column are negative so no variable 

can leave the basis, hence, the LPP has unbounded solution.

13.10.4 Alternative Optimal Solution

If in the optimal table, coefficient of a non-basic variable in z-row is zero, there are alternative optimal 

solutions. Another basic optimal solution can be obtained by making such non-basic variable enter 

the basis. Any convex linear combation of basic optimal solution is an optimal solution through it is 

not basic.

Example 26 Maximize 1 26 3z x x

Subject to

1 2

1 2

1 2

1 2

1

2 1

2 1

, 0

x x

x x

x x

x x

Solution Write the given LPP in standard form and then solve by simplex method.

Maximize 1 26 3z x x

Subject to

1 2 1

1 2 2

1 2 3

1

2 1

2 1

all variables 0

x x s

x x s

x x s

Basic variables z x1 x2 s1 s2 s3 Solution

z 1 –6 3 0 0 0 0

s1 0 1 1 1 0 0 1

s2 0 2 –1 0 1 0 1

s3 0 –1 2 0 0 1 1

z 1 0 0 0 3 0 3

(Contd.)
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Basic variables z x1 x2 s1 s2 s3 Solution

s1 0 0 3/2 1
1

2
0

1

2

optimal tablex1 0 1
1

2
0

1

2
0

1

2

s3 0 0 3/2 0
1

2
1 3/2

In the above table (optimal) x2 is non-basic variable but its coefficient in z-row is zero, so the given 

LPP has alternate solution. If we enter x2 variable in the basis then s1 leaves and we get the following 

simplex table which is optimal.

Basic variables z x1 x2 s1 s2 s3 Solution

z 1 0 0 0 3 0 3

x1 0 0 1 2/3
1

3
0 1/3

x1 0 1 0 1/3
1

3
0 2/3

s3 0 0 0 –1 1 1 1

The optimal solutions of the LPP are as follows:

(i) 1 2

1
, 0, max 3

2
x x z

(ii) 1 2

2 1
, , max 3

3 3
x x z

(iii) 1

1 2
(1 ) , 0 1

2 3
x

2

1
(0) (1 ) , 0 1

3
x

1 2( ) (1 )X X X  is called convex linear combination of 1 2,X X  for 0 1.

EXERCISE 13.6

Solve the following LP Problem by M-method

1. Maximize 1 2 35 2 3z x x x

  Subject to

1 2 3 1 2 2 3 1 2 32 2 2, 3 4 3, 3 5, , , 0x x x x x x x x x x

[Mumbai 2004]
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2. Maximize 1 2 3 42 3z x x x x

Subject to

1 2 3 1 2 3 1 2 3 4 1 2 3 42 3 15, 2 5 20, 2 10, , , , 0x x x x x x x x x x x x x x

[Madras 2003, IAS 1995, Meerut 1996, Delhi 1997]

3. Maximize 1 26 4z x x

Subject to

1 2 1 2 1 2 1 22 3 30, 3 2 24, 3; , 0x x x x x x x x

Is the solution unique? If not give two different solutions. [Jodhpur 1993]

4. Maximize 1 23 2z x x

Subject to

1 2 1 2 1 22 2, 3 4 12, , 0x x x x x x

[Madurai 1989, Bharathidesan 1995]

5. Minimize 1 212 20z x x

Subject to

1 2 1 2 1 26 8 100, 7 12 120, , 0x x x x x x [Bharthidesan 1990, 1993]

6. Minimize 1 2 35 6 7z x x x

Subject to

1 2 3 1 2 3 1 2 3 1 2 35 3 15, 5 6 10 0, 5, , , 0x x x x x x x x x x x x

[Delhi 1996]

7. Maximize 1 2 33 2z x x x

Subject to

1 2 3 3 1 2 3 1 2 33 2 2 2 8, 3 4 7, , , 0xx x x x x x x x x

[Karnataka 1994]

8. Maximize 1 22 3z x x

Subject to

1 2 1 2 1 22 4, 3; , 0x x x x x x [North Bengal 1990]

Use Two-Phase method to solve the following LP problems:

9. Minimize 1 2z x x

Subject to

1 2

1 2

1 2

2 4

7 7

, 0

x x

x x

x x
[Rajasthan 2005, Bharthidesan 1994]

10. Maximize 1 25 3z x x

  Subject to

1 2 1 2 1 22 1, 4 6, , 0x x x x x x [Kottayam 2005]

11. Maximize 1 2 35 4 3z x x x

  Subject to

1 2 3 1 2 2 3 1 2 32 2 2, 3 4 3, 5, , , 0x x x x x x x x x x

[Mumbai, 2009]
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12. Minimize 1 25 8z x x

  Subject to

1 2 1 2 1 2 1 23 2 3, 4 4, 5, , 0x x x x x x x x [Meerut, 1995]

13. Minimize 1 2 3z x x x

  Subject to

1 2 3 1 2 2 3

1 2 3

3 4 5, 2 3, 2 4

0, 0 and unrestricted in sign.

x x x x x x x

x x x

[Delhi, 1995]

14. Maximize 1 2 312 15 9z x x x

  Subject to

1 2 3 1 2 3 1 2 3

1 2 3

8 16 12 250, 4 8 10 80, 7 9 8 105

, , 0

x x x x x x x x x

x x x

[Delhi, 1994]

15. Maximize 1 2 35 4 3z x x x

  Subject to

1 2 3 1 2 3 1 2 3

1 2 3

2 6 20, 6 5 10 76, 8 3 6 50

, , 0

x x x x x x x x x

x x x

[Dibrugarh, 1994]

Show that the following LP problem have unbounded solutions.

16. Maximize z = 1 2 3 415 6 9 2x x x x

  Subject to

1 2 3 4

1 2 3 4

1 4 1 2 3 4

2 5 0.6 10

3 3 0.25 12

7 35, , , , 0

x x x x

x x x x

x x x x x x
[Calicut, 1991]

17. Maximize 1 2 3107 2z x x x

  Subject to

1 2 3 4

1 2 3

1 2 3

1 2 3 4

14 6 3 7

16 6 5

3 0

, , , 0

x x x x

x x x

x x x

x x x x

[Meerut, 1992]

Answers

1. 1 2 3

23
, 5, 0; max 85/3

3
x x x z 2. 1 2 3 4

5
, 0; max 15

2
x x x x z

3. Problem has alternate solutions, they are 

     (i) 1 28, 0; max 48x x z (ii) 1 2

12 42
, ; max 48

5 5
x x z
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4. Non-feasible solution 5.
1 215, 5/4; min 205x x z

6. Non-feasible solution 7. Unbounded solution

8. 1 22, 1, max 7x x z 9.
1 2

21 10 31
, ; max

13 13 13
x x z

10. Non-feasible solution 11.
1 2 3

23 85
, 5, 0; max

3 3
x x x z

12. 1 20, 5; min 40x x z 13. 1 2 3

21 22 43
0, , ; min

5 5 5
x x x z

14. 1 2 36, 7, 0; max 177x x x z 15.
1 2 3

55 30 155
, , 0; max

7 7 7
x x x z

13.11 DUALITY IN LINEAR PROGRAMMING

With every LPP we shall be associating another LPP. The first is called primal problem, while the 

second is called dual problem. We shall see that the solution of primal and dual are closely related. 

To be specific, it is sufficient to solve either of them. We solve the one which has smaller number of 

constraints. Besides this there are many other advantages of duality, which will be discussed. To define 

the dual problem of a LPP, we first define canonical form of a LPP.

13.11.1 Canonical Form of a LPP

A LPP is said to be in canonical form, if

(a) it is a minimization problem

(b) all constraints are  type (no restriction on bi
s)

(c) all decision variables  0

Thus the LPP

Minimize z = cT
X

Subject to

AX b, X  0 is in canonical form.

We know that

(a) Maximize z = cT
X can be converted into

  Minimize z = –c
T
X

(b) 1 1 2 2i i in n ix x x b  can be converted into 1 1 2 2i i in n ix x x b  and

(c) 1 1 2 2i i in n ix x x b  can be replaced by two constraints

1 1 2 2i i in n ix x x b

1 1 2 2 1 1 2 2i i in n i i i in n ix x x b x x x b

This suggests that every LPP can be converted into another LPP in canonical form.

Example 27 Transform the following LPP in canonical form.

Maximize 1 2 33 2 4z x x x

Subject to
1 2 3 1 2 3 1 2 3

1 2 3

230, 2 3 4 170, 50

, , 0

x x x x x x x x x

x x x
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Solution Canonical form of the given LPP:

Minimize 1 2 33 2 4z x x x

Subject to

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3

230, 2 3 4 170

50, 50

, , 0

x x x x x x

x x x x x x

x x x

13.11.2 Dual of a LPP

As seen above, every LPP can be transformed into canonical form we shall now define dual of a LPP.

Let a LPP be in canonical form

Minimize

subject to , 0

T
z c X

AX b X
(11)

The dual of Eq. (11) is the LPP

1 2

Maximize

subject to , 0

( , ,..., )

T

T

T
m

w b Y

A Y c Y

Y y y y
(12)

Eq. (12) is called dual and Eq. (11) is called primal.

We notice that dual is a maximization problem obtained from a minimization problem in canonical 

form, objective function is obtained by multiplying bT with 1 2( , , ..., )T
mY y y y  where m is the number 

of constraints of primal LPP and y1, y2,…, yn are known as dual variables associated with each primal

constraint. Constraints of dual are AT
y c. Thus if primal has n-variables and m constraints its dual 

will have n constraints and m variables.

Example 28 Formulate the dual of the LPP

Maximize 1 25 6z x x

Subject to

1 2

1 2

1 2

9 60

2 3 45

, 0

x x

x x

x x

Solution The canonical form of the above LPP is

Minimize 1 25 6z x x

Subject to

1 2

1 2

1 2

9 60

2 3 45

, 0

x x

x x

x x
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Let y1 and y2 be the dual variables associated with first and second constraint respectively. Then 

dual of given LPP is

Maximize w = 60 y1 – 45 y2

Subject to

1 2

1 2

1 2

2 5

9 3 6

, 0

y y

y y

y y

We shall now prove an interesting result, which says that dual of a dual is primal itself.

Theorem: The dual of dual is primal.

Proof: Let primal (in canonical form) be

1

Minimize

subject to: , 0

XT
z c

AX b X
(13)

Dual of Eq. (13) is

Maximize

subject to : , 0

T

T

w b Y

A Y c y
(14)

To write dual of Eq. (14), write this in canonical form, which is as follows:

Minimize

subject to : , 0

T

T

w b Y

A Y c y
(15)

Now dual of Eq. (15) is

Maximize

subject to: ( ) , 0

T

T T T

v c Z

A Z b Z
(16)

Eq. (16) can be written as

Minimize

subject to: , 0

T
c Z

AZ b Z
(17)

Eq. (17) and Eq. (13) are same except for the variable notation Z. Hence, the result

Thus we find that if primal is Eq. (13), its dual is Eq. (14), and if primal is Eq. (14), its dual is 

Eq. (13). In other words we can say that, if primal is

(a) Minimization problem with constraints  type

(b) Maximization problem with constraints  type, then dual of (a) is of (b) type and dual of (b) is 

of (a) type. This suggests that dual can be written directly without converting it into canonical 

form.

Example 29 Write the dual of

Maximize 1 25 6z x x

Subject to

1 2

1 2

1 2

9 60

2 3 45

, 0

x x

x x

x x
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Solution The given LPP can be written as

Maximize z = 5x1 + 6x2

Subject to

1 2

1 2

1 2

9 60

2 3 45

, 0

x x

x x

x x

Let y1, y2 be the dual variables associated with first and second constraints respectively, then its dual is

Minimize 1 260 45w y y

Subject to

1 2

1 2

1 2

2 5

9 3 6

, 0

y y

y y

y y

Let us now take an example, in which there is constraint with = sign.

Example 30 Write the dual of

Minimize 1 2 32 3 4z x x x

Subject to

1 2 3

1 2 3

1 2 3

1 2 3

2 2 3 4

3 4 5 5

7

, , 0

x x x

x x x

x x x

x x x

Solution The given LPP can be written as

Minimize 1 2 32 3 4z x x x

Subject to

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

2 2 3 4

3 4 5 5

7

7

, , 0

x x x

x x x

x x x

x x x

x x x

Lety1,y2,y3 and y4 be dual variables associated with I, II, III and IV constraints. Then dual of given LPP is

Maximize 1 2 3 44 5 7 7w y y y y

Subject to

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 3 2

2 4 3

3 5 4

, , , 0

y y y y

y y y y

y y y y

y y y y



Linear Programming 13.49

In the above dual problem, we find that y3 – y4 appears as one identity, so, if we replace y3 – y4 = y5,

then dual problem becomes.

Minimize 1 2 54 5 7w y y y

Subject to

1 2 5

1 2 5

1 2 5

1 2

2 3 2

2 4 3

3 5 4

, 0

y y y

y y y

y y y

y y

but y5 is unrestricted in sign as y5 = y3 – y4 may have any sign as y3, y4  0. Thus we see that dual can 

directly be written without converting an equal type constraints into  and  type constraints. Only one 

thing we have to keep in mind is that the dual variable associated with = type constraint have to be kept 

unrestricted in sign.

EXERCISE 13.7

Write the dual of the following problems (1 –5)

1. Minimize 1 2 33 3z x x x

  subject to

1 2 3 1 2 1 2 3

1 2 3

2 3 5, 4 2 9, 8 4 3 8

, 0 and unrestricted in sign.

x x x x x x x x

x x x
[Mumbai 2004]

2. Maximize 1 25 7z x x

  Subject to

1 2 1 2 1 2 1 1 29 9, 2 3 6, 12, 2, , 0x x x x x x x x x

3. Maximize 1 2 35 12 4z x x x

  Subject to

1 2 3 1 2 3 1 2 32 5, 2 3 2, , , 0x x x x x x x x x

4. Maximize 1 25 3z x x

  Subject to

1 2 1 2 1 23 5 15, 5 2 10, , 0x x x x x x
[Meerut 1991]

5. Minimize 1 2 3z x x x

  Subject to

1 2 3 1 2 2 33 4 5, 2 3, 2 4x x x x x x x

x1, x2  0, x3 unrestricted [Madras 2000, Jodhpur 1993, Meerut 1994]

6. Write the dual of the following LPP

  Minimize 1 2 34 6 18z x x x

  Subject to

1 2 2 3 1 23 3, 2 5, , 0x x x x x x

  and show that dual of dual is primal it self.
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7. Show that the dual of the dual in case of following LPP is given LPP it self.

  Maximize 1 2 36 4 18z x x x

  Subject to

2 3 1 2 1 23 6, 2 4, , 0x x x x x x

Answers

1. Maximize 1 2 35 9 8w y y y

  Subject to

1 2 3 1 2 3 1 3

1 2 3

2 4 8 3, 3 2 4 2, 3 1,

, 0 and unrestricted

y y y y y y y y

y y y

2. Minimize 1 2 3 49 6 12 2w y y y y

  Subject to

1 2 3 4

1 2 3

1 2 3 4

2 5

9 3 7

, , , 0

y y y y

y y y

y y y y

3. Minimize 1 25 2w y y

  Subject to

1 2

1 2

1 2

1 2

2 5

2 12

3 4

0, unrestricted

y y

y y

y y

y y

4. Minimize 1 215 10w y y

  Subject to

1 2 1 2 1 23 5 5, 5 2 3, , 0y y y y y y

5. Maximize 1 2 35 3 4w y y y

  Subject to

1 2 1 2 3 1 3

1 2 3

1, 3 2 2 1, 4 1

unrestricted, , 0

y y y y y y y

y y y

13.11.3 Duality Principle

Now we shall move towards establishing relations between the solutions of primal and dual.

Let us consider the primal as

Minimize T
z c X

Subject to

1 2 1 2

1 2

, 0

( , , ..., ) ; ( , , ..., )

( , , ..., ) ; ( )

T T
n m

T
n ij m n

AX b x

X x x x b b b b

c c c c A
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and its dual as

Maximize w = bT
Y

Subject to

1 2, 0 where ( , , ..., )T T
mA Y c Y Y y y y

Theorem 1: If X is a feasible solution of primal and Y be the feasible solution of dual, then

Minimize maximize i.e., .T T
z w c X b Y

Theorem 2: If X* is a feasible solution of the primal and Y* a feasible solution of the dual such that 

minimize z = maximize w then X* and Y* are optimal solutions of primal and dual respectively.

Theorem 3: If primal has an optimal solution, then its dual also has an optimal solution.

Remark: It is to mention that if

Primal then Dual

1. Has bounded optimal solution. Has bounded optimal solution.

2. Has unbounded solution. Has no feasible solution.

3. Has no feasible solution. Has either unbounded solution or no feasible solution.

Now, we state an interesting theorem without proof known as complementary slackness theorem 

which brings closer the solution of primal and dual.

Theorem 4: (complementary slackness theorem)

(a) If in a primal, any slack/surplus variable, say, sk, appears as the basic variable in optimal 

solution then corresponding dual variable yk is zero in the optimal dual solution.

(b) If, in a primal, any decision variable, say, xk, appears as the basic variable in the optimal 

solution then the corresponding kth constraint in dual holds an equality i.e., k–th dual slack/

surplus variable is zero.

Example 31 Let the LPP be

1 2

1 2

1 2

Maximize 5 6

subject to

9 60

2 3 45

z x x

x x

x x

(18)

Solve the LPP and its dual by M-method.

Solution: The dual of given LPP is

1 2

1 2

1 2

1 2

Minimize 60 45

subject to

2 5

9 3 6

, 0

w y y

y y

y y

y y

(19)

We solve now both the problems by M-method one by one.
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The primal and dual in standard form can be written as

1 2 1

1 2 1 1

1 2 2

Maximize 5 6

subject to

9 60

2 3 45

all variables 0

z x x Mr

x x s r

x x s

(20)

and

1 2 1 2Minimize 60 45w y y Mr Mr

Subject to

    
1 2 1 1

1 2 2 2

2 5

9 3 6

all variables 0

y y s r

y y s r
(21)

Apply simplex method to find solution of primal and dual respectively.

Solution of primal:

Basic variables z x1 x2 s1 r1 s2 Solution

z 1 –5 –6 0 M 0 0

r1 0 1 9 –1 1 0 60 initial table (primal) 

IPTs2 0 2 3 0 0 1 45

z 1 –5–M –6–9 M M 0 0 –60 M

r1 0 1 9 –1 1 0 60 Starting primal table 

(SPT)
s2 0 2 3 0 0 1 45

z 1
13

3
0 –2/3

2

3
M 0 40

x2 0
1

9
1

1

9

1

9
0 20/3

PT1 (Primal Table 1)

s2 0 5/3 0
1

3

1

3
1 25

z 1 0 0 1/5 –1/5 +M 13/5 105

x2 0 0 1 –2/15 2/15 –1/15 5
OPT (optimal table)

x1 0 1 0 1/5 –1/5 3/5 15

Solution is: 1 215, 5; max 105x x z
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Solution of dual is

Basic

variables
w y1 y2 s1 s2 r1 r2 Solution

w 1 60 –45 0 0 –M –M 0

r1 0 –1 2 –1 0 1 0 5 initial dual 

tabler2 0 –9 3 0 –1 0 1 6

w 1 60–10 M –45+5 M –M –M 0 0 11 M

r1 0 –1 2 –1 0 1 0 5 (SDT)

Starting

primal table r2 0 –9 3 0 –1 0 1 6

w 1 –75+5 M 0 –M
2

15
3

M 0
5

15
3

M 90 + M

r1 0 5 0 –1 2/3 1 –2/3 1
DT1

(Primal

Table 1)y2 0 –3 1 0
1

3
0 1/3 2

w 1 0 0 –15 –5 15–M 5–M 105

y1 0 1 0 –1/5 2/15 1/5 –2/15
1

5 (ODT)

optimal dual 

table
y2 0 0 1 –3/5 1/15 3/5 –1/15

13

5

Solution is 1 2

1 13
, , minimize 105

5 5
y y w

From the above solutions of primal and dual, we note the following:

1. In any simplex table, the matrix under starting basis is B–1 at that step.

  In PT1:

1
1

0
9 09

1 3 1
1

3

  In OPT: 

1
2 1

9 115 15

1 3 2
3 / 5

5

  In DT1:

12
1 21

3
0 3

0 1 / 3
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In ODT: 

1
1 2

1 25 15

3 1 9 23

5 15

Before discussing further, we define, simplex multiplier as 1
1 2( , , ..., )T T

m Bc B  at any step. It 

is clear that if LPP has a bounded solution, then the simplex multiplier of optimal table is the required 

solution of the dual.

2. In PT1: 

1
0

29
(6, 0) , 0

1 3
1

3

  In OPT: 

2 1

1 1315 15
(6, 5) ,

1 5 5
3 / 5

5

  In DT1 : 
1 2/3 2

( , 45) , 15
0 1 / 3 3

M M M

  In ODT: 
1/5 2/15

[ 60, 45] (15, 5)
3/5 1/15

    Thus,  of OPT is an optimal solution of dual with sign of y1 changed because b1 is 

negative in primal. Similarly,  of ODT is an optimal solution of primal. Of course optimal 

value of both primal and dual are 105.

3. The simplex multiplier is used in many more ways. Entries in z-row.

  For example entry below variable xi in z-row

1T
i i B i i i iZ c c B A c A c

.

  In PT 1:

  below x1:
12 13

, 0 (5)
23 3

  below x2:
92

, 0 6 0
33

  below s1:
12

, 0 0 2/3
03

  below s2:
02

, 0 0 0
13

  below r1:
12 2

, 0 ( )
03 3

M M
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In OPT:

below x1:
11 13

, 5 0
25 5

below x2:
91 13

, 6 0
35 5

below s1:
11 13 1

, 0
05 5 5

  below s2:
01 13 13

, 0
15 5 5

  below r1:
11 13 1

, ( )
05 5 5

M M

  same thing can be seen easily on dual tables.

4. As stated earlier,  of optimal table of primal is an optimal solution of the dual. But  to any 

step of simplex iteration need not be feasible solution of dual.

  In PTI: 
2

, 0
3

  1st constraint: 1 2

2
2 5 5

3
y y

  2nd constraint: 1 29 3 6 6 6y y

  Thus it does not even satisfy the dual constraint.

5. Solution at any step is 1T
Bc B b b

  In PT1: 
602

, 0 40
453

  In OPT: 
601 13

, 105
455 5

  In DT1: 
52

, 15 90
63

M M M

  In ODT: 
5

(15, 5) 105
6

Example 32 Using duality solve the following LPP.

Minimize 1 2 310 5 5z x x x

Subject to

1 2 3

1 2

1 3

5 5 3 1

3

7

x x x

x x

x x
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1 2 3

1 2 3

4 4 5

, , 0

x x x

x x x

Solution The dual of given LPP is

Maximize 1 2 3 43 7 5w y y y y

Subject to

1 2 3 4

1 2 4

1 3 4

1 2 3 4

5 4 10

5 4 5

3 5

, , , 0

y y y y

y y y

y y y

y y y y

Now solve dual by simplex method.

Basic variables w y1 y2 y3 y4 s1 s2 s3 Solution

w 1 –1 3 7 –5 0 0 0 0

s1 0 5 –1 1 –4 1 0 0 10

s2 0 –5 1 0 4 0 1 0 5

s3 0 –3 0 –1 1 0 0 1 5

w 1 –29/4 17/4 7 0 0 5/4 0 25/4

s1 0 0 0 1 0 1 1 0 15

y4 0 –5/4
1

4
0 1 0

1

4
0 5/4

s3 0 –7/4 –1/4 –1 0 0 –1/4 1 15/4

In the above table y1 to enter but no variable is to leave as the entries in the corresponding column of

y1 are  0. Therefore the dual has unbounded solution and hence primal has no feasible solution.

EXERCISE 13.8

Using duality solve the following problems (1 – 3)

1. Maximize 1 22z x x

  Subject to

1 2 1 2 1 2 1 2 1 22 10, 6, 2, 2 1, , 0x x x x x x x x x x

[Andhra 2006, Karnataka 1992]

2. Minimize 1 2 32 9z x x x

  Subject to

1 2 3 1 2 3 1 24 2 5, 3 2 4 and , 0x x x x x x x x
[J.N.T.U. 2001]

3. Maximize 1 2 3 42 4 4 3z x x x x

  Subject to:

1 2 3 1 2 4 1 2 3 44, 4 8, , , , 0x x x x x x x x x x
[Delhi 2002]
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4. Maximize 1 2 33 2 5z x x x

  Subject to

1 2 3 1 1 3 2 1 2 32 , 3 2 , 4x x x a x x a x x a

  where a1, a2 and a3 are constraints. For specific values of a1, a2 and a3 the optimal solution is

Basic variables z x1 x2 x3 s1 s2 s3 Solution

z 1 4 0 0 c1 c2 0 1350

x2 0 b1 1 0
1

2

1

4
0 100

x3 0 b2 0 1 0
1

2
0 c3

s3 0 b3 0 0 –2 1 1 20

  where b1, b2, b3, c1, c2 and c3 are constants. Determine

(a) the values of a1, a2 and a3 that yield the given optimal situation.

(b) the values of b1, b2, b3 and c1, c2, c3 in the optimal table.

(c) the optimal dual solution. [Delhi 1996]

  Write down the dual of the following LP problems (5–6) and solve them.

5. Maximize 1 215 10z x x

  Subject to

1 2 1 2 1 23 5 5, 5 2 3, , 0x x x x x x
[Meerut 1991]

6. Maximize 1 25 2z x x

  Subject to

1 2 1 2 1 2 1 26 6, 4 3 12, 2 4, , 0x x x x x x x x [Sambhalpur 1994]

7. Use duality to solve the LPP

  Minimize 1 2 3 43 2z x x x x

  Subject to

1 2 1 2 3 1 3 4 1 2 3 41, 3 7, 3 2 , , , 0x x x x x x x x x x x x

[Delhi 1995]

Answers

1. 1 24, 2; max 10x x z 2. 1 2 3

5
0 , ; min 5/2

2
x x x z

3. 1 2 3 40, 2, 2, 0; max 16x x x x z

4.  (a) 1 2 3430, 460, 480a a a (b)
1 2 3

1 2 3

1 3
, , 4

4 2

1, 2, 230

b b b

c c c

   (c) 1 21, 2; min 1350y y w
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5. 1 2

5 16 235
, ; min

10 9 19
y y w 6. Unbounded solution.

7. Unbounded solution.

13.12 DUAL SIMPLEX METHOD

In situations when a particular basic solution is infeasible, that is one or more basic variables are negative, 

but satisfies optimality criterion and it is possible to move towards feasibility maintaining optimality. 

This is what dual simplex method does. This method developed by Lemke applies to problems in which 

optimality condition is satisfied. It is called dual simplex method because the rules for leaving and 

entering variables are derived from the dual problem but are used in the primal problem.

The procedure to be followed in dual simplex method is as follows:

1. (a) Express the problem in the standard form as following:

  Minimize or maximize T
z c X

  Subject to , 0AX b X ,

  where at least one of the bi
s is negative and A contains identity matrix as a submatrix.

(b) Express z in terms of non-basic variables: The dual simplex method is applicable if optimality 

condition is satisfied in above format. If so, make starting dual simplex table which is same as 

starting simplex table except that at least one entry of solution column (not excluding z-row)

is negative.

2. The above gives a basic solution (not feasible). The leaving variable xr is given by

1
min ( , 0)r i i

i m
x x x

  This ensures that the basic non-feasible solution is forced towards feasibility.

3. The entering variable is xk is selected by

min ; 0
j j jk k

rk jj
r r

Z cZ c

  This ensures that optimality condition will remain satisfied. If all j
r  are non-negative, the 

problem has no feasible solution.

4. The next dual simplex table is obtained by same procedure as in regular simplex method.

5. When a basic solution is reached in which all variables are non-negative, we had obtained the 

optimal solution.

Example 33 Use dual simplex method to solve the following LPP.

Minimize 1 3 5 1 2 32 2 2 4 6 8z x x x s s s

Subject to

1 2 3 1

2 4 5 2

3 4 3

3 2 1500

2 1000

3000

all variables 0

x x x s

x x x s

x x s
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The starting dual simplex table is

Basic z x1 x2 x3 x4 x5 s1 s2 s3 Solution

z 1 –14 –14 –14 –14 –14 0 0 0 –36000

s1 0 –3 –2 –1 0 0 1 0 0 –1500

s2 0 0 –2 0 –1 –2 0 1 0 –1000

s3 0 0 0 –1 –1 0 0 0 1 –3000

In given table optimality condition is satisfied and hence dual simplex method is applicable. Most 

negative basic variable s3 is the leaving variable. To find the entering variable, take the negative entries 

in the row of leaving variable and calculate the ratio of these with corresponding entries in z-row. The 

entering variable is the one corresponding to the minimum of absolute values of these ratios. Here

14 14
min , 14

1 1
 either x3 or x4 is the entering variable. The details are 

shown in following table:

Basic z x1 x2 x3 x4 x5 s1 s2 s3 Solution

z 1 –14 –14 0 0 –14 0 0 –14 6000

s1 0 –3 –2 0 1 0 1 0 –1
1500

–1000

3000

s2 0 0 –1 0
1

–2 0 1 0

x3 0 0 0 1 1 0 0 0 –1

z 1 –14 –14 0 0 –14 0 0 –14 6000

s1 0 –3 –3 0 0 –2 1 1 –1 500

1000

2000

x4 0 0 1 0 1 2 0 –1 0

x3 0 0 –1 1 0 –2 0 1 –1

In above table the basic solution has become feasible and hence it is the optimal solution. The 

optimal solution is

1 2 5 3 10, 2000, 1000; min 6000x x x x x z

Remark:

1. In dual simplex method we first decide leaving variable and then entering variable. Both for 

minimization and maximization problems, the rules regarding leaving and entering variables 

are same.

2. If dual simplex method is applicable then LP can not have unbounded solution. If there is no 

negative entry in the row of leaving variable then LPP has no feasible solution.

Example 34 Solve the following by dual simplex method:

Maximize 1 2 34 6 18z x x x
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Subject to

1 3

2 3

1 2 3

3 3

2 5

, , 0

x x

x x

x x x

Solution Write the given LPP in standard form by introducing slack variables and then use dual sim-

plex method to solve it.

Standard form is

Maximize 1 2 34 6 18z x x x

Subject to

1 3 1

2 3 2

3 3

2 5

all variables 0

x x s

x x s

Basic z x1 x2 x3 s1 s2 Solution

z 1 4 6 18 0 0 0

s1 0 –1 0 –3 1 0 –3

s2 0 0 –1 2 0 1 –5

z 1 4 –3 0 0 9 –45

s1 0 –1 3/2 0 1 –3/2 9/2

Apply regular 

simplex method
x3 0 0

1

2
1 0 –1/2 5/2

z 1 2 0 0 2 6 –36

x2 0 –2/3 1 0 2/3 –1 3

Optimal table
x3 0

1

3
0 1

1

3
0 1

The optimal solution is

1 2 30, 3, 1 and max 36x x x z

EXERCISE 13.9

Using dual simplex method, solve the following problems:

1. Minimize 1 22z x x

  Subject to

1 2 1 2 1 2 1 23 3, 4 3 6, 2 3, , 0x x x x x x x x
[Kurukshetra 2007]
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2. Minimize 1 2 32 2 4z x x x

  Subject to

1 2 3 1 2 3 1 2 3 1 2 32 3 5 2, 3 7 3, 4 6 5 , , 0x x x x x x x x x x x x

[Kurukshetra 2009, Kerala 2005]

3. Maximize 1 22z x x

  Subject to

1 2 1 2 1 2 1 23 3, 4 3 6, 2 3, , 0x x x x x x x x

[Madras 1999, Meerut 1994, Madurai 1992]

4. Minimize 1 2z x x

  Subject to

1 2 1 2 1 22 4, 7 7; , 0x x x x x x
[Kerala 1991]

5. Minimize 1 24 9z x x

Subject to

1 2

1 2

1 2

6

2 3 18

, 0

x x

x x

x x

6. Maximize 1 2 315 5 6z x x x

  Subject to

1 2 3

1 2 3

1 2 3

1 2 3

5 2 3 6

10 3 3 15

10

, , 0

x x x

x x x

x x x

x x x

Answers

1. 1 2

3
, 6/5; min 12/5

5
x x z 2. 1 2 30, 2/3, 0; min 4/3x x x z

3. 1 2

3
, 6/5; max 12/5

5
x x z 4. 1 2

41 11 63
, ; min

26 13 26
x x z

5. 1 29, 0; min 36x x z 6. 1 2 30 , 2; max 12x x x z

13.13 TRANSPORTATION PROBLEM

13.13.1 Introduction

This problem first arose in optimizing the transportation cost of shipment of goods from various sources 

to different destinations. These problems when formulated or say when mathematical models of these 

problems were formulated, then it was noticed that these are LPPs of special type. Later, any LPP when 

had that character was also termed as transportation problem.
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13.13.2 Formulation of Transportation Problem

Let there be m sources, namely S1, S2, …, Sm and n destinations D1, D2, …, Dn. The destinations could 

be shops, godown, warehouses, etc. and the sources could be industries, warehouses, cargo offices, 

distributors etc. The goods are to be transported from Si to Dj (i = 1, 2, …, m; j = 1, 2, …, n). The cost 

of transportation per unit from Si to Dj is denoted by cij. Let ai be the quantity available at ith source

(i = 1, 2,…, m) and bj be the quantity required Dj destination (j = 1, 2, …, n). Then the above data can 

be represented in tabular form as following table.

D1 D2 D3 …. Dn Availability

s1

11c 12c 13c …
1nc a1

x11 x12 x13 x1n

s2

21c 22c 23c …
2nc a2

x21 x22 x23 x2n

Sm

1mc 2mc 3mc …
mnc am

xm1 xm2 xm3 xmn

Requirement b1 b2 b3 … bn

Let xij be the quantity of goods transported from source Si to destination Dj. then transportation 

problem is

1 1

1

1

Minimize

Subject to

, 1, 2, ..., , 0

, 1, 2, ..., , 0

0 and integer

n m

ij ij

j i

n

ij i i

j

m

ij j j

i

ij

z c x

x a i m a

x b j n b

x

(22)

Any LPP of type Eq. (22) is called transportation problem. It has m + n constraints and mn decision 

variables.

13.13.3 Balanced Transportation Problem

If in a transportation problem 
1 1

m n

i j

i j

a b  i.e., total availability is equal to the total requirements then

the problem is called a balanced transportation problem (TP). Also above relation gives
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1 1 1 1 1 1

n m m n m n

ij ij i j

j i i j i j

x x a b

Which allows to eliminate one of the constraints in terms of others in the constraints of (22). Thus 

in case of balanced transportation problem having m sources and n destinations, there are mn variables 

and m + n –1 linearly independent constraints.

13.13.4 Unbalanced Transportation Problem

If in a transportation problem 
1 1

m n

i j

i j

a b , then it is called an unbalanced TP. An unbalanced TP can 

be made balanced TP as follows:

Case I: If
1 1

m n

i j

i j

a b , i.e., availability is more than requirement, which normally term as short 

demand. In such case we create a dummy or a fictitious destination DF with requirement 
1 1

m n

i j

i j

a b

and cost from Si to DF i.e., CiF will be taken zero.

Case II: If
1 1

m n

i j

i j

a b  i.e., availability is less than requirement, which is normally term as short 

supply. In such case we introduce a dummy or fictitious source SF with availability 
1 1

n m

j i

j i

b a  and 

cost from SF to Dj i.e., CFj will be taken zero.

Remark:

1. If problem requires no transportation from Si to Dj, then cij is replace by big-M(M > 0) or .

2. If problem requires transportation to Dj from Si only, then cij is replaced by zero to find optimal 

solution but for optimal cost we add cijxij.

3. In case of short supply i.e., 
1 1

m n

i j

i j

a b , we introduce SF with cost zero to each Di. There 

may arise two situations:

(i) Definition(s) may impose penalties for a short supply on each item supplied short. If at 

destination Dj, the penalty is Pj then cFj is to be taken Pj.

(ii) Demand at Dj must be fulfilled. This case may be treated as SF does not supply any thing 

to Dj i.e., cFj is to be taken as big M(M > 0) or .

4. In case of short demand i.e., 
1 1

m n

i j

i j

a b , we introduce DF with cost zero from each Si.

There may arise two situations.

(i) Source(s) would be left with some quantities of goods which were sent to DF i.e., which 

were untransported. If sources are going to spend some amount on their storage, then 

it has to be included. If source Si occurs an expense of qi on each item then ciF is to be 

replaced by qi.

(ii) If problem requires that source Si must transport all its goods, then we assume that Si

does not supply to DF i.e., CiF is to be taken as big M (M > 0) or .

Thus each transportation problem, after in corporating the above remarks, can be converted into a 

balanced one. We shall now discuss how a balanced transportation problem can be solved.
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13.13.5 Solution of a Balanced Transportation Problem

A TP having m sources and n destinations (balanced) will have a solution consisting of basic and non-

basic variables. Each basic feasible solution (BFS) would have at most m + n–1 non-zero variables. If 

BFS has less than m + n – 1 non-zero variables then BFS would be degenerate solution.

To find optimal solution of a TP, first we would have starting BFS and then will move towards 

optimality.

(a) Basic Feasible Solution

A BFS can be found by the following three methods:

(i) North-West Corner Method 

(ii) Least Cost Entry Method

(iii) Vogal’s Approximation Method

(i) North-West Corner Method (NWCM) We shall select variables which would be our basic 

variables and assign them values. In this method, we shall start from North-West corner variables i.e., 

x11 then proceed to x12, x13, …, x1n, x21, …, x2n, …, xm1, …, xmn.

Assigning a value to xij would mean to determine the quantity of goods to be transported from

Si to Dj which will be Min (ai, bj). After assigning xij, say the value A, we would decrease the value of 

the requirement at Dj by A and the availability at Si by A because of the natural reasons and move to 

next variable.

When all the availabilities and requirements reduce to zero, i.e., get filled, we stop and the boxes 

inside in which some entry is made become basic variables and where the entries are not made are 

called non-basic variables.

Thus we arrive at a BFS, which is starting BFS and the value of objective function is obtained by 

adding the product of basic variables with their cost. We illustrate this concept (method) by an example:

Example 35 Find a BFS for the following transportation problem using NWCM.

D1 D2 D3 D4

S1

1 5 6 4
90

S2

3 2 3 3
50

S3

2 6 1 5
60

S4

6 4 2 2
60

70 60 60 70

Solution It is a balanced TP i.e., 
4 4

1 1

260i j

i j

a b

To find BFS by NWCM, we start from the variable x11 which can take value Min (70, 90) = 70, 

reduced a1 by 70 it becomes 20 and b1 is satisfied completely. Continue this process, till all ai and bj

reduced to zero and the following BFS is obtained.
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D1 D2 D3 D4

S1

1 5 6 4

90 20

70 20

S2

3 2 3 3
50 10

40 10

S3

2 6 1 5
60 10

50 10

S4

6 4 2 2
60

60

70 60

40

60

50

70

60

Starting BFS is

11 12 22 23 33 3470, 20, 40, 10, 50, 10x x x x x x

and x44 = 60 (These variables are known as basic while remaining variables are called non-basic 

variables). The value of the function

1 1

min 70 1 20 5 40 2 10 3 50 1 10 5 60 2 500
n m

ij ij

j i

z c x

(ii) Least Cost Entry Method (LCM) It also works in the same manner as NWCM except that 

we do not start from NW Corner i.e., x11 and proceed to x12, …, xmn but at each step, we pick the box 

with the least cost. In case of tie, we pick the one where maximum number can be assigned. In case of 

further tie, break arbitrarily.

Example 36 Find the BFS of following TP by LCM.

D1 D2 D3

S1

1 5 6
90

S2

3 2 3
10

S3

2 6 0
20

S4

5 4 2
40

60 50 50
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Solution The given TP is balanced i.e., 
4 3

1 1

160i j

i j

a b . To find BFS by LCM, we check the least 

cost which is 0 corresponding to the box (3, 3), so the maximum allocation can be made in this box is 

min (20, 50) = 20 i.e., x33 = 20 and continue this process till all availabilities and requirements reduce 

to zero and we get the following solution.

D1 D2 D3

S1

1 5 6
90

60 30

S2

3 2 3
10

10

S3

2 6 0
20

20

S4

5 4 2
40

10 30

60 50 50

  Thus the BFS is

11 12 22 33 42 4360, 30, 10, 20, 10, 30x x x x x x

  and Transportation cost = 60 1 30 5 10 2 20 0 10 4 30 2 330

  Let no solve the same example 36 by NWCM.

D1 D2 D3

S1

1 5 6
90

60 30

S2

3 2 3
10

10

S3

2 6

10

0
20

10

S4

5 4 2
40

40

60 50 50
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The BFS is

11 12 22 32 33 4360, 30, 10, 10, 10, 40x x x x x x  and transportation cost = 370. Thus it 

emerges that LCM gives better solution then NWCM.

(iii) Vogel’s Approximation Method (VAM) VAM works on the principle of taking into account 

the penalty (extra cost) one has to pay, if least cost is not chosen. We first define the penalty.

Penalty of row (column) is the difference between the lowest cost and the next higher cost in that 

row (column). If the least cost appears at two places in a row (column), then to calculate penalty of that 

row (column), we shall take only the next higher cost i.e., penalty would not be zero, unless all costs 

in that row (column) is same.

We shall follow the following steps in VAM:

1. Calculate the penalty for each row (column) and write them on the right of each row and below 

each column.

2. Choose a row (column) having largest penalty and all of the maximum in the least cost box.

3. Reduce the availability and requirement.

4. Calculate the penalty again after suppressing row (column) satisfied.

5. Continue till all the rows (columns) are satisfied.

Remark

1. If penalty (largest) at any step is not unique then select the one having the least cost box, 

otherwise break the tie arbitrarily.

2. If the least cost in a row (column) is not unique, choose the box where maximum allocation 

can be made, otherwise break the tie arbitrarily.

Example 37 Find a BFS for the following transportation problem by VAM.

D1 D2 D3

S1

1 5 6
90

S2

3 2 3
10

S3

2 6 0
20

S4

5 4 1
40

60 50 50

Solution It is a balanced TP i.e., 
4 3

1 1

160i j

i j

a b .

To find BFS by VAM, calculate the penalty for each row (column) at write then on the right of each 

availability for row and below requirement for each column.
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D1 D2 D3 Row penalty

S1

1 5 6 90

30

4

60

S2

3 2 3
10 1

S3

2 6 0
20 2

S4

5 4 2
40 2

column

penalty

0

60

1

50

2

50

2

The largest penalty is 4 corresponding to row 1, the least cost in row 1 is 1 so maximum allocation 

can be made in box (1, 1) in min (60, 90) = 60, suppress first column and row by 60, we see that 

column 1 is satisfied, now for next iteration we need not to consider column 1 for calculating penalties. 

Continue this process till all the availabilities and requirements are satisfied.

D1 D2 D3 Row penalty

S1

1 5 6 90

30

4  1   1   5

60 30

S2

3 2 3
10 1   1   1   2

10

S3

2 6 0
20 2   6  –   –

20

S4

5 4 2
40

10

2   2   2   4
10 30

column

penalty
60

0

1

–

–

–

50

20

2

2

2

2

50

30

2

2

1

–
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The BFS is as follows:

11 12 22 33 42 4360, 30, 10, 20, 1, 30x x x x x x  and the transportation cost is 330.

Remark:

1. The above problem is solved by all the three methods and we find that LCM and VAM gave 

the same BFS but better than NCWM, but actually, it is mere a coincide. In fact VAM gives 

the best result in comparison of LCM and NWCM. So, generally we apply VAM to find BFS 

of a TP unless otherwise the method is specified.

2. Whenever shipment of all the goods from source Si is over, we say ith row is satisfied. It also 

means i
th constraint of availability is satisfied. Similarly, if shipment to destination Dj is over, 

we say jth column is satisfied. It also means that jth constraint of requirement constraint is 

satisfied.

3. Whenever a row and column are satisfied simultaneously then it would mean two constraints 

are satisfied simultaneously and it would amount to reduction of a basic variable. Therefore in 

such case we assume that only one either row or column is satisfied and the other row (column) 

still has to dispatch (receive) 0 items. This ultimately would mean that in one box, we would 

enter ‘0’ or say one basic variable would be zero or say that BFS would be degenerate.

  Now we take examples of unbalanced problems, and illustrate how to obtain starting BFS.

Example 38 Let there be 3 destinations and 3 sources, cost of transportation, availabilities and 

requirements are given by the following table. Find a starting BFS.

D1 D2 D3

S1 1 5 6 90

S2 3 2 3 10

S3 2 6 1 20

60 50 50

Solution It is an unbalanced problem, 
3 3

1 1

120 and 160i j

i j

a b . To find BFS of the given TP, 

introduce fictitious source SF with availability 160 – 120 = 40 and CFj = 0, j = 1, 2, 3, now use VAM to 

find BFS of the problem.

D1 D2 D3 Row penalty

S1

1 5 6
90 4  1   1   1   1

60 30

S2

3 2 3
10 1   1   1   1   1

10

S3

2 6 1
20 1   5   –   –   –

20
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SF

0 0 0
40 0   0   0   0   –

10 30

column penalty 60

1

–

–

–

–

50

2

2

2

2

3

50

1

1

3

–

–

The BFS is as follows:

11 12 22 23 2 360, 30, 10, 20, 10, 30F Fx x x x x x

Transportation cost = 250.

As xF2 = 10 and xF3 = 30, so the short supply to D2 and D3 are 10 and 30 units respectively.

Example 39 Consider the Example 38 with an additional condition that for short supply there is a 

penalty by Dj, say 2, 4 and 6 respectively by D1, D2 and D3. Find the BFS using VAM.

Solution The cost from fictitious source to destinations D1, D2 and D3 cFj (j = 1, 2, 3) in the Example 

38 are to be replaced by 2, 4 and 6 from 0 and then apply VAM to find BFS as follows:

D1 D2 D3 Row penalty

S1

1 5 6

90   30 4   1   1   1

60 10 20

S2

3 2 3
10 1   1   1   –

10

S3

2 6 1
20 1   5   –   –

20

SF
2 4 6

40 2   2   2   2

40

column

penalty

0

1

–

–

–

10

2

2

2

2

20

1

2

3

0

50 30 20
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The BFS is as follows:

11 12 13 23 33 260, 10, 20, 10, 20, 40 and TC 440Fx x x x x x
.

There is short supply of 40 units to D2.

(b) Optimal Solution

After getting basic feasible solution of a TP, we move towards optimality. Following steps are taken.

1. Allocate variables u1, u2,…, um to each row and v1, v2, v3, …, vn to each column.

2. Find the values of each ui (i = 1 to m) and vj(j = 1 to n), using the formula ui + vj – cij for basic 

variables. As we know that in any TP, with m sources and n destinations, there will be m + n – 1

basic variables having values  0. So for m + n – 1 variables 0i j iju v c  but total no. 

of i ju v m n . So to find values of i ju v , put one of the ui and vj = 0 and then find the 

values of remaining m + n – 1 variables ui and vj.

3. Calculate i j iju v c  for all non basic variables, if all these values  0, then the table is 

optimal, else go to step 4.

4. In order to get optimality, we need entering variable, leaving variable and do iteration(s). 

To decide the entering variable, we pick the box for which i j iju v c  is most positive, the 

corresponding variable will be entering variable.

5. In order to allocate maximum possible goods in this box, at least one of the box is going to 

empty. One of the box, or say variable attached to it, is taken to be  the leaving variable.

In order to do this, after deciding entering variable, we find the basic variables (filled boxes) which 

are going to be affected by it. This is done by constructing a loop by the following method.

Start from the box where entry is to be made vertically or horizontally and return to the starting point 

with the following restrictions.

(i) Loop would have straight lines as edges with corners.

(ii) Corners of the loop should be only in the box of a basic variable i.e., a box where entry has 

already been made.

(iii) The direction of loop is immaterial.

(iv) The loop could be self intersecting.

Now assume ‘ ’ allocating in the starting box, then move in one direction to the corner this 

amount should be reduced in this box, continuing in the same direction, go to next corner,  amount 

to be increased at this corner and continue till we reach to the starting point. Now pick the boxes 

where  has been reduced. Find ‘ ’ which is minimum of the entries in these boxes, so that entry in 

all the corner. This gives the maximum allocation in this starting box. The box which becomes empty 

becomes leaving variable.

Caution: If more than one box becomes empty, then we make only one box empty and leave ‘0’ 

in other box(es). Now allocate the amount so obtained in the starting box and reduce increase at other 

corner boxes. This completes the iteration.

Again assign values to the variables ui and vj and calculate afresh the values of i j iju v c  for non-

basic variable and continue the process till all 0i j iju v c .
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Example 40 Consider the Example 36 and find its optimal solution.

Solution The starting BFS of Example 36 is given by NWCM which is as follows:

D1 D2 D3

S1

1 5 6 90

60 30

S2

3 2 3 10

10

S3

2 6 0 20

10 10

S4

5 4 2 40

40

60 50 50

To find optimal solution, we allocate , ( 1 to 4)iu i  to each row and ( 1 to 3)jv j  to each column 

and calculate values of each ui and vj. For the purpose, we allot ‘0’ to one of ui’s and vj’s. Let v2 = 0.

For basic variables i j ijx v c

i.e.,

1 1 11 1

1 2 12 1

2 2 22 2

3 2 32 3

3 3 33 3

4 3 43 4

1 4

5 5

2 2

6 6

0 6

2 8

u v c v

u v c u

u v c u

u v c u

u v c v

u v c u

Also calculate i j iju v c  for all non-basic variables and put them in south west corner of each box. 

These entries are shown in the following table.
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D1

v1 = –4

D2

v2 = 0

D3

v3 = –6

u1 = 5 S1

1 5 6

60 30 7

u2 = 2 S2

3 2 3

5 10 7

u3 = 6 S3

2 10 6 0

0 0 10

u4 = 8 S4

5 4 3

1 4 40

Remark: If a non-basic variable box has ‘0’ in south-west corner, it means for this transportation 

problem, there is an alternate solution.

The given table is not optimal and south-west corner corresponding to variable x42 is maximum, 

hence, variable x42 enters. Now to decide leaving variable, we constrict a loop starting box x42 and 

whose edges are at boxes corresponding to boxes x32, x33 and x43 as follows and enter  in box x42 and 

reduce  in boxes x32 and x43 and increase x33.

10 – 10 + 

40 – 

Max.  = Min. (10, 40) = 10

So we allocate  = 10 in x42 and reduce and increase accordingly and get the following next BFS in 

the given table.

D1

v1 = 

D2

v2 = 

D3

v3 = 

u1 = S1

1 5 6

60 30

u2 = S2

3 2 3

10

u3 = S3

2 6 0

20

u4 = S4

5 4 2

10 30
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Compute the values of ui and vj afresh and also calculate i j iju v c  for non-basic variables and we 

get the following table.

v1 = –4 v2 = 0 v3 = –2

u1 = 5

1 5 6

60 30 3

u2 = 2

3 2 3

5 10 3

u3 = 2

2 6 0

4 4 20

u4 = 4

5 4 2

5 10 30

all i j iju v c  in above table for non-basic variables are  0. Hence, the above table is optimal table. 

Hence, optimal solution is 11 12 22 32 42 4360, 30, 10, 20, 10, 30x x x x x x  and Min TC = 330.

Example 41 Solve the following transportation problem. Use LCM to find starting basic feasible

solution.

D1 D2 D3

S1 5 1 0 20

S2 3 2 4 10

S3 7 5 2 15

S4 9 6 0 15

5 10 15

Demand at D1 must met from S4 only.

Solution It is an unbalanced problem, i.e., 
4 3

1 1

60 and 30,i j

i j

a b  introduce a dummy destination 

DF with demand 60 – 30 = 30 units with cost CiF = 0 (i = 1, 2, 3, 4). Further it is given that demand at 

D1 must satisfied by S4 only i.e., the cost c11, c21 and c32 should be replaced by big M(M > 0). Now, find 

starting BFS by LCM which is given in following table:
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D1

v1 = 9

D2

v2 = 6

D3

v3 = 5

DF

v4 = 0

u1 = –5 S1

M 1 0 0

20

4 M 5 15 5

u2 = 0 S2

M 2 4 0

10

9 M 4 1 10

u3 = 0 S3

M 5 2 0

15

9 M 1 3 15

u4 = 0 S4

9 6 0 0

15

5 5 5 5

5 10 15 30 TC = 80

Above table is not optimal. x43 enters. Loop is

5 + 15 – 

 = 5, x22 leaves

5 – 

New BFS is given in following table, and also we check its optimality:

v1 = 9

D1

v2 = 1

D2

v3 = 0

D3

v4 = 0

DF

u1 = 0 S1

M 1 0 0

20

9 M 10 10 0

u2 = 0 S2

M 2 4 0

10

9 M 1 4 10

u3 = 0 S3

M 5 2 0

15

9 M 4 2 15

u4 = 0 S4

9 6 0 0

15

5 5 5 5

5 10 15 30

all entries for non basic variables in above table  0.
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Hence it is optimal table. Therefore optimal solution is

12 13 2 3 41 43 410, 10, 10, 15, 5, 5, 5Fx x x F x F x x x  and TC = 55.

Note: The problem has alternate solution as u1 + v4 – ciF = 0, so we can enter variable xiF.

13.13.6 Degeneracy in Transportation Problem

The variable(s) attached to box(es) where allocation is made is a basic variable. If the value of a basic 

variable at any step is equal to zero, then solution is said to be degenerate solution. Degeneracy occurs 

in two cases.

(i) If in NWCM, LCM or VAM, a row and a column is satisfied simultaneously we get one 

variable short in box and there a basic variable with value ‘0’. For this purpose, in this case, 

we assume that only one, either row or a column is satisfied and at the at the other there are ‘0’ 

items to be dispatched or received.

(ii) If in the iteration by forming a loop, two or more boxes become empty at the same time, it also 

yields one variable short in basis, thus a degenerate solution. In this case, we assume that only 

one box has become empty and in the other boxes, there are still ‘0’ allocation and proceed as 

usual.

In case of a degenerate solution, while performing the iteration, which has ‘0’ in one of the boxes 

and is not an optimal solution, a situation may arise that one may have the value  = 0, which should 

be in corporated. This is the case where allocation ‘0’ has shifted from a basic variable to a non-basic 

variable (empty box) without effecting the transportation cost at this step though the solution, thus an 

alternate solution.

13.13.7 Alternate Solution

In a transportation problem, situations of alternate solution arise in the following cases:

(i) As mentioned above, while at any step of iteration an allocation  = 0 is shifted from one box 

to another.

(ii) In an optimal table, an empty box has ‘0’ in south west corner i.e., the value of i j iju v c  for 

a non-basic variable is zero, we can force this variable to enter.

13.13.8 Special Cases

(i) In a balanced transportation problem, if each box in all rows has cost ci, then optimal 

transportation cost is equal to 

1

m

i i

i

c a .

(ii) In a balanced transportation problem, if each box in all columns has cost cj, then optimal 

transportation cost is equal to 
1

n

j j

j

c b .

EXERCISE 13.10

1. Obtain the initial basic feasible solution of the following problem by

(i) North-West Corner Method

(ii) Least Cost Entry Method, and 

(iii) Vogel’s Approximation Method
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D1 D2 D3 D3

S1 21 16 25 13 11

S2 17 18 14 23 13

S3 32 27 18 41 19

6 10 12 15

2. Consider the following transportation problem:

4 2 3 2 6 8

5 4 5 2 1 12

6 5 4 7 3 14

4 4 6 8 8

  Find the initial basic feasible solution of the above problem by

(a) NWCM    (b) LCM    (c) VAM

3. A company has three factories I, II and III and four warehouses A, B, C and D. The transportation 

cost (in `) per unit from each factory to each warehouse, the availability of goods at each 

factory and requirements of each warehouse are given below:

Warehouse

A B C D Availability

I 42 48 38 37 160

II 40 49 52 51 150

III 39 38 40 43 190

Requirement 80 90 110 160

  Determine the optimal schedule to minimize the transportation cost. (use VAM to find initial 

BFS) and answer the following:

(i) Does the problem have degenerate solution.

(ii) Does alternate solution exist for the problem, if yes, find all the solutions.

4. Using VAM, find initial BFS of the following transportation problem, show that the initial 

BFS itself is optimal solution.

6 8 4 14

4 0 8 12

1 2 6 5

6 10 15

5. A person has three factories I, II and III which supply goods to three godowns G1, G2 and G3.

Daily factory capacities are 10, 80 and 15 units respectively while the daily requirements of 

godowns are 75, 25 and 45 units respectively. Unit shipping cost (in `) are given below:

Godown

G1 G2 G3

I 5 1 7

Factory II 6 4 6

III 3 2 5
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  The penalty cost for not satisfying demand on godowns G1, G2 and G3 are `5, `3 and `2 per 

unit respectively. Determine the optimal shipping schedule to minimize the cost.

6. Solve the following transportation problem. The demand at destination 2 must be shipped 

from source 2 only. The entries are transportation cost per unit. Does problem has an alternate 

solution also.

5 1 0 20

3 2 4 10

6 5 0 15

5 10 15

7. Consider the following transportation problem:

D1 D2 D3

S1 2 6 7 90

S2 4 3 4 10

S3 3 7 2 20

60 50 50

  Let the penalty cost per unit for unsatisfied demand for destination D1, D2 and D3 respectively 

are 7, 5 and 3 respectively. Find the optimal solution. (Use VAM to find initial BFS).

8. In Exercise 7, let there be no penalties but the demand at D3 must be satisfied exactly. Find the 

optimal solution.

9. There are four villages V1, V2, V3 and V4 which are affected by floods. Food grain is to be 

dropped in these villages by three aircrafts A1, A2 and A3. The following matrix is given

V1 V2 V3 V4 ai

A1 9 7 5 2 60

A2 7 9 4 2 40

A3 1 4 8 9 50

bj 30 50 60 40

  In above matrix, ai denote, total number of trips that air craft.

Ai can make in a day and bj denote the number of trips required to village Vj in one day, the cost cij

denote the amount of food grains that aircraft Ai can carry to village Vj in one trip. Find the number 

of trips that aircraft Ai should make to village Vj so that the total quantity of food dropped in a day is 

maximized. (use VAM to find initial BFS)

Hint: As it is maximized problem from convent all cij to – cij to make it minimization problem and then 

solve in usual manner.

Answers

1. (i) 11 12 22 23 33 346, 5, 5, 8, 4, 15; TC 1095x x x x x x

  (ii) 14 21 23 31 32 3411, 1, 12, 5, 10, 4; TC 922x x x x x x

  (iii) 11 21 22 24 32 3311, 6, 3, 4, 7, 12; TC 796x x x x x x
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2  (a) 11 12 23 24 34 35 34, 4, 6, 6, 2, 8, 6; TC 104Fx x x x x x x

(b) 14 1 24 25 31 32 33 342, 6, 4, 8, 4, 4, 6, 2; TC 102Fx x x x x x x x

(c) 12 14 24 25 31 33 34, 4, 4, 8, 4, 6, 4; TC 80Fx x x x x x x

3. 14 21 22 32 33160, 80, 10, 80, 110; TC 17050x x x x x

4. 13 21 22 23 3114, 1, 10, 1, 5; TC 73x x x x x

5. 12 21 22 23 31 310, 60, 15, 5, 15 and 40; TC Rs. 505Fx x x x x x

6. Yes, problem has alternate solution.

7. 11 12 22 33 2 360, 30, 10, 20, 10, 30F Fx x x x x x

8. 11 12 13 22 33 260, 0, 30, 10, 20, 40; TC 400Fx x x x x x

9. 11 12 13 22 33 3430, 10, 20, 40, 10, 40x x x x x x

V3 falls short of 30 trips.

  Maximize value = 1240

13.14 ASSIGNMENT PROBLEM

13.14.1 Introduction

Assignment problem is nothing but it is a special case of transportation problem in which the objective 

is to assign a number of sources to the equal number of destinations at a minimum cost.

Assignment problem is a completely degenerate form of transportation problem. The units available 

at each source is 1 and also the units required at each destination is equal to 1. It means in each row and 

each column there will be exactly one cell not like transportation problem (n + n – 1 = 2n – 1 cell).

13.14.2 Mathematical Formulation of Assignment Problem

Let there are n workers and n jobs and the problem is to assign n jobs to n workers in such a way that 

total cost is minimum. The cost matrix {cij} is given below:

Jobs

J1 J2 … Jn Availability

W1 c11 c12 … c1n 1

Workers W2 c21 c22 … c2n 1

Wn cn1 cn2 … cnn 1

Requirement 1 1 … 1

Let xij is the assignment of ith worker to jth job, such that

xij = 0, if ith worker is assigned job j

= 0, otherwise
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Then mathematical formulation of assignment problem is

Minimize
1 1

n n

ij ij

j i

z c x

Subject to

1

1

1 1, 2, ...,

1 1, 2, ...,

0 or 1 1, 2, ..., ; 1, 2, ...,

n

ij

i

n

ij

j

ij

x j n

x i n

x i n j n

As we have mentioned that assignment problem is a special case of transportation problem, but if 

we assignment problem is solved by the methods discussed ahead to solve the transportation problem, 

we will get highly degenerate solution. Therefore an assignment problem is solved by a method known 

as Hungarian Algorithm.

13.14.3 Hungarian Algorithm to Solve an Assignment Problem

An efficient method to solve an assignment problem was developed by Hungarian mathematician D. 

Konig, which is given as below:

Step 1: From the cost matrix, check whether the number of sources is equal to the number of destinations 

or not. If yes, go to the next step otherwise add a dummy source or dummy destination with cost zero 

to make the number of sources and destinations equal.

Step 2: After making number of sources and destinations equal, identify the smallest element in each 

row and subtract the same from each element of row. This will give you at least one zero in each row.

Step 3: In the reduced matrix obtained in step 2, identify the smallest element in each column and 

subtract the same form each element of the each column. This assumes at least one zero in each 

column.

Step 4: By step 2 and 3, we get a reduced matrix in which there is at least one zero in each row and 

each column. Now we can go for optimal assignment as follows:

(i) Examine each row and see which row has a single zero. Enrectangle this zero  and cross 

off all the zeros in its column. Continue until all the rows have been taken care of.

(ii) Similarly, repeat the procedure 4(i) for each column of reduced matrix.

(iii) If a row or and a column has two or more than two zeros and one can not be chosen by inspection 

then assign arbitrarily any one of these rows and cross off all other zeros of the row/column.

(iv) Repeat (i) to (iii) above until the chain of assignment  or cross (X) ends.

Step 5: If the number of assignment  is equal to n (the order of cost matrix), then it is the optimal

solution. If the number of assignment is less than n, then go to the next step 6.
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Step 6: Draw the minimum number of horizontal and/or vertical lines to cover all the zeros of reduced 

matrix. This can be done by using the following procedure.

(i) Mark (V) rows that do not have any assigned zero.

(ii) Mark (V) columns, that have assigned zeros in the marked rows.

(iii) Mark (V) rows that have assigned zeros in the marked columns.

(iv) Repeat (ii) and (iii) above until the chain of marking is completed.

(v) Draw lines through all the unmarked rows and marked columns.

Step 7: Find the new reduced cost matrix as follows:

(i) Find the smallest element of the reduced matrix not covered by any of two lines.

(ii) Subtract this element from all the uncovered elements and all the same to all the elements 

lying at the intersection of any two lines.

Step 8: Go to step 5 and repeat the procedure until we got optimal solutions

Example 42 An engineer wants to assign 3 jobs J1, J2, J3 to 3 machines M1, M2 and M3 in such a 

way that each job is assigned to some machine and no machine works on move than one job. The cost 

of assigning job i to machine is given below:

Machine

M1 M2 M3

J1 7 6 5

Job J2 4 6 7

J3 5 7 6

(a) Draw the associated network

(b) Formulate the network LPP

Solution

(a) Network

(b) LPP is:

  Minimize 11 12 13 21 22 23 31 32 37 6 5 4 6 7 5 7 6z x x x x x x x x x
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  Subject to

11 12 13

21 22 23

31 32 33

11 21 31

12 22 32

13 23 33

1

1

1

1

1

1

0 or 1, 1, 2, 3 and 1, 2, 3ij

x x x

x x x

x x x

x x x

x x x

x x x

x i j

Example 43 Solve the following assignment problem by using Hungarian method. J1, J2, J3, J4 are

jobs and W1, W2, W3, W4 are workers.

The cost matrix is given in `100 in the following table:

Jobs

J1 J2 J3 J4

W1 7 9 11 3

Workers W2 11 5 10 8

W3 10 8 8 7

W4 8 6 9 10

Solution

Step 1: To get the reduce matrix we subtract smallest element of each row, they are 3, 5, 7 and 6 of 

row I, II, III and IV, subtract them from each row respectively, we get the following reduced matrix in 

the following table

J1 J2 J3 J4

W1 4 6 8 0

W2 6 0 5 3

W3 3 1 1 0

W4 2 0 3 4

Step 2: Subtract smallest element of each column which are 2, 0, 1, 0 from the respective element 

and get the next reduced matrix as table

J1 J2 J3 J4

W1 2 6 7 0

W2 4 0 4 3

W3 1 1 0 0

W4 0 0 2 4
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Step 3: Now make assignment as follows:

(i) Consider the first row, there is only one zero, enrectangle it  and cross out (X) all the 

zero in column.

(ii) Enrectangle zero of row 2 and cross out (X) zero in the corresponding column 4.

(iii) Enrectangle zero of third row.

(iv) enrectangle zero of IV row.

By doing these all zeros are either enrectangle or crossed and number of assignments are 4 which 

are shown in table

J1 J2 J3 J4

W1 2 6 7
0

W2 4
0

4 3

W3 1 1
0 0

W4 0 0 2 4

Solution The following assignments are optimal solution made:

1 4

2 2

3 4

4 1

W J

W J

W J

W J

Minimum cost = 100 (3 5 7 6 2 0 1 0) 2400`

13.14.4 Special Cases in Assignment Problem

(a) Maximization Case In some cases the objective function is maximization in nature instead 

of minimization. To solve such problems we can still use the same Hungarian method by changing the 

objective function to minimization from maximization i.e., multiply each element of the given matrix 

by –1 and then solve it in usual manner by the Hungarian algorithm but to find the value of objective 

function we take positive cij instead of –cij.

(b) Prohibited Assignment Sometimes due to some reason, we can put a condition that a particular 

person (machine) cannot be assigned a particular job (activity). In such cases the cost of performing 

that particular job by a particular person is considered to be very large (i.e., M a big positive number) 

as large to prohibit the entry of this pair.
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Example 44 The following is the cost matrix of assigning 4 persons to 4 jobs. Find the optimal 

assignment if person 1 cannot be assigned to job A.

Person
Jobs

A B C D

1 – 6 3 1

2 5 8 6 7

3 6 9 5 4

4 4 7 7 3

What is the minimum total cost?

Solution Reduce the cost matrix by subtracting the smallest element of each row (column) from the cor-

responding row (column). In the reduced matrix make assignments in rows and columns that have single 

row. Draw the minimum number of lines to cover all the zero of reduced matrix as given in following table

M 2 1 0

X 0 0 2

2 2 0 0

1 1 3 0

Note: Cross out 2
nd

, 3
rd

 rows and 4
th

 column.

Modify the reduced cost matrix by subtracting 1 from all the elements not covered by the lines and 

adding 1 at the intersecting two lines. We get Table 2.

M 1 0 0

0 0 0 3

2 2 0 1

0 0 2 0

The optimum solution is

Person 1  Job D  Person 1  Job D

Person 2  Job A or Person 2  Job B

Person 3  Job C  Person 3  Job C

Person 4  Job B  Person 4  Job A

     Minimum cost = 18
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Example 45 A company wishes to assign 4 jobs to 3 machines. The estimates of the times

(in minutes) each machine would take to complete a job is given below. How should the jobs should be 

allocated to the machines so that the total cost is minimum.

Jobs
Machines

M1 M2 M3

I 8 25 14

II 12 26 5

III 34 19 14

IV 17 29 19

Solution Since the given problem is unbalanced, we add a dummy machine M4 with all the entries 

zero and use Hungarian algorithm to find optimal solution.

Now reduce the balanced cost matrix and make assignment in rows and columns having single rows. 

We have the following table:

M1 M2 M3 M4

I 0 6 9 0

II 4 7 0 0

III 26 0 9 0

IV 9 10 14 0

The optimal assignment is:

I  M1, II  M3, III  M2, IV  M4 i.e., job IV remains incomplete. The minimum time is

8 + 5 + 19 = 32 minutes.

EXERCISE 13.11

Solve the following assignment problems (1–4)

1.

A B C D

I 1 4 6 3

II 9 7 10 9

III 4 5 11 7

IV 8 7 8 5

[Madras 1991]
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2.

A B C D

1 10 25 15 20

2 15 30 5 15

3 35 20 12 24

4 17 25 24 20

[IAS 1990, Anantapur 1990]

3.

1 2 3 4

A 10 12 19 11

B 5 10 7 8

C 12 14 13 11

D 8 15 11 9

[Bharthidesan 1995]

4.

M1 M2 M3 M4

J1 5 8 3 2

J2 10 7 5 8

J3 4 10 12 10

J4 8 6 9 4

[Sambhalpur 1994]

5. A dean wants four tasks to be performed by four heads of the department. The heads differ 

in efficiency, and the tasks differ in their intrinsic difficulty. His estimate of time each head 

would take to perform each task is given as follows:

Heads

A B C D

I 20 28 19 13

Tasks II 15 30 16 28

III 40 21 20 17

IV 21 28 26 12

  How should the tasks be allocated one to a head, so as to minimize the total man hour?

6. Solve the following assignment problem by Hungarian algorithm

Men

1 2 3

I 9 26 15

Tasks II 13 27 6

III 35 20 15

IV 18 30 20

[Dyalbagh 1989, IAS 1993]
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7. Find the optimal assignment schedule for the following problem.

Markets

M1 M2 M3 M4

I 81 71 76 73

Salesmen II 76 76 81 86

III 79 79 83 79

What is the total maximum sale?

Answers

1. I  A, II  C, III  B, IV  D; minimum cost = 21

2. 1  A, 2  C, 3  B, 4  D; minimum cost = 55

3. A  2, B  3, C  4, D  1; minimum cost = 38

4. J1  M4, J2  M3, J3  M1, J2  M2; minimum cost = 17

5. I  C, II  A, III  B, IV  D, Minimum man hours = 67

6. I  1, II  3, III  2, IV  4, which is dummy man.

  The minimum cost is 35 hours.

7. I  M2, II  M1, III  M4, IV  M3 (IV salesman is dummy)

  Maximum sales = 226.

SUMMARY
Following topics have been discussed in this chapter:

1. Definition of Linear Programming Problem (LPP).

2. Formulation of LPP.

3. Solution of LPP

(i) Graphical Method

(ii) Algebraic Method

(iii) Simplex Method

(iv) Artificial Variable Method

(a) M-Method

(b) Two Phase Method

4. Exceptional cases in LPP.

5. Construction of a dual problem

6. Relation between primal and a dual problem

7. Dual simplex Method

8. Transportation Problem and its solution

(i) NWCM (North-West) corner Method)

(ii) LCM (Least Cost Entry Method) For initial BFS

(iii) VAM (Vogal's Approximation Method)

(iv) – method for optimal solutionu v

9. Assignment Problem and its solution by Hungarian Algorithm.
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OBJECTIVE TYPE QUESTIONS

(b) 1 26, 1x x

(c) 1 26, 10x x

(d) 1 28, 8x x

7. Which of the following is correct?

(a) An LPP always has unbounded feasible 

region

(b) An LPP has only two constraints 

1 2 12 40 and 30,x x x  besides x1  0

and 2 0x . It would have a feasible 

solution

(c) A constraint 1 22 36x x  of an LPP is 

replaced by the constraint 1 22 24x x .

This would make the LPP more restrictive 

in nature

(d) An LPP cannot have more than one 

redundant constraint

8. Given an LPP to maximize z = –5x2; subject 

to x1 + x2  1, 
1 2

1
5 0

2
x x  and 1 2, 0.x x

Using graphical method, we have 

(a) No feasible solution

(b) Unbounded solution

(c) Unique optimal solution

(d) Multiple optimum solution

9. An LPP is in standard form, if

(a) the constraints are strict equation

(b) the constraints are inequalities of ‘ ’ type

(c) the constraints are inequalities of ‘ ’ type

(d) all the division variables are unrestricted 

in sign

10. Given a system of m simultaneous linear 

equation in n unknowns (m < n), the number 

of basic variables will be

(a) m (b) n

(c) n – m (d) n + m

11. The basic solutions of an LPP having m

constraints and n unknowns (m < n) are

(a)
n

m
(b)

n

m

(c) m (d)
n

m

1. Which of the following is not correct?

Linear Programming must have an

(a) objective that we aim to maximize or 

minimize

(b) constraints that we need to specify

(c) decision variables that we need to 

determine

(d) decision variables are to be unrestricted

2. Which of the following is not correct in LPP?

(a) All constraints must be linear

(b) Objective function must be linear

(c) All the constraints and decision variables 

must be of either ‘ ’ or ‘ ’ type

(d) All decision variables must be non-

negative

3. Which of the following is not associated with 

an LPP?

(a) Proportionality

(b) Uncertainty

(c) Additivity

(d) Divisibility

4. Which is of the following is correct?

(a) LPP takes into consideration the effect of 

time and uncertainty

(b) An LPP can have only two decision 

variables

(c) Decision variables in an LPP may be more 

or less than the number of constraints

(d) Linear programming deals with problems 

involving only a single objective

5. Which of the following is not correct?

(a) Feasible solution of an LPP is independent 

of the objective function

(b) The feasible region of an LPP must be a 

convex set

(c) The feasible region for a constraint is 

restricted if its ‘ ’ or ‘ ’ sign is replaced 

by a  =  sign

(d) It is not possible to obtain feasible solution 

of an LPP by graphical method

6. Using graphical method, the optimum solution 

of the LPP of maximizing 1 210 15z x x ,

subject to: 2x1 + x2  26, x1 + 2x2  28, x2 – x1

 5; x1, x2  0 is obtained as

(a) 1 28, 10x x



Linear Programming 13.89

12. A necessary and sufficient condition for a 

basic feasible solution to a minimization LPP 

to be an optimum is that all entries in z-row

is

(a)  0 (b)  0

(c) = 0 (d) < 0 or > 0

13. At any iteration of usual simplex method, if 

there is at least one basic variable in the basis 

at zero level and all entries in z-row  0, the 

current solution is

(a) Infeasible (b) Unbounded

(c) Non-degenerate (d) Degenerate

14. In a maximization LPP, if at least one artificial 

variable is in the basis, but not at zero level and 

the coefficient of M in z-row is non-negative 

then we have

(a) a feasible solution

(b) infeasible solution

(c) an unbounded solution

(d) an optimum solution

15. In a LPP

(a) number of BFS  number of vertices

(b) number of BFS = number of vertices

(c) number of BFS  number of vertices

(d) number of BFS < number of vertices

16. In some simplex table of a maximization LPP, 

the column corresponding to variable xj is 

(3; –2, –1, 0)T. Then this show that

(a) feasible region is bounded

(b) feasible region is unbounded in 

xj-direction

(c) solution is unbounded

(d) none of the above

17. Consider the system

1 2 3 4 5

2 3 4 5

2 5 2

5 5 2

x x x x x

x x x x

The solution x1 = x3 = x4 = 0, x2 = 7 and x5 = 1 

of the above system is

(a) a basic solution

(b) a basic feasible solution

(c) not a basic solution

(d) none of the above

18. If in a simplex table the coefficient in z-row

for a non-basic variable, then there exists an 

alternate optimal solution provided

(a) it is a starting simplex table

(b) it is a optimal simplex table

(c) it can be any simplex table

(d) none of the above

19. The value in z-row of a basic variable is 

always

(a) negative (b) positive

(c) zero (d) non-negative

20. Phase-I of simplex method

(a) optimizes the objective function of a given 

problem

(b) gives a starting BFS

(c) is required if a variable is unrestricted in 

sign

(d) none of the above

21. In a LPP in standard form there are 6 variables 

and 4 constraints. Then the number of BFS 

are

(a) 15 (b)  15

(c)  15 (d) all of the above

22. If in Phase-I of the simplex method an 

artificial variable remains at positive level in 

the optimal table of Phase-I then

(a) the solution is unbounded

(b) there exists an optimal solution

(c) there exists no solution

(d) there is an alternate solution

23. In any simplex iteration if there is a tie 

between two leaving variables then the next 

iteration will be

(a) optimal solution

(b) degenerate solution

(c) unbounded solution

(d) an alternate solution

24. If a variable xj is unrestricted in sign in the 

primal LPP, then the corresponding (that is jth)

dual constraint is

(a) with  sign if the primal is a minimization 

problem

(b) with  sign if the primal is a maximization 

problem

(c) with equality sign

(d) all the above

25. If the j
th constraint in the primal LPP is an 

equality then the corresponding (that is j
th)

dual variable is

(a) unrestricted in sign

(b) restricted to  0

(c) restricted to  0

(d) strictly = 0
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26. If the primal has an unbounded situation, then 

the dual problem

(a) has an optional solution

(b) has no solution

(c) has an unbounded solution

(d) none of the above

27. In dual simplex method 

(a) the iterations move towards feasibility 

maintaining optimality

(b) the iterations move towards optimality 

maintaining feasibility

(c) the iterations maintain both feasibility and 

optimality

(d) none of the above

28. Let the primal be minimization. Let a feasible 

solution, which is not optimal, of primal has 

value 25. Then which of the following can be 

the value of a dual at a feasible solution of 

dual

(a) 25 (b) 24.5

(c) 26 (d) 28

29. In a balanced TP with m sources and 

n destinations, the number of linearly 

independent constraint is

(a) m + n (b) m + n + 1

(c) m + n – 1 (d) m – n

30. In the optimal table of a TP a zero in the south-

west corner show that

(a) the optimal solution is degenerate

(b) an alternate optimum solution exists

(c) no feasible solution

(d) none of the above

31. In an assignment problem with m jobs and m

persons, the number of assignment will be

(a) m (b) m + 1

(c) m – 1 (d) 2m – 1

32. The assignment problem is a special type of 

transportation problem in which the number 

of sources

(a) equals the number of destinations

(b) is greater than the number of destination

(c) is less than the number of destinations

(d) is less than or equal to the number of 

destinations

33. The minimum number of lines covering all 

zeros in a reduced cost matrix of order n can 

be

(a) at most n (b) at least n

(c) n – 1 (d) n + 1

34. In an assignment problem involving four 

workers and three jobs, total number of 

assignments possible are

(a) 4 (b) 3

(c) 7 (d) 12

35. An assignment problem can be solved if only 

the number of rows are equal to

(a) number of columns

(b) greater than number of columns

(c) less than number of columns

(d) greater than or equal to number of columns

ANSWERS

1.(d) 2.(c) 3.(b) 4.(c) 5.(d) 6.(a) 7.(c) 8.(a) 9.(a) 10.(a)

11.(a) 12.(b) 13.(d) 14.(b) 15.(c) 16.(c) 17.(c) 18.(b) 19.(c) 20.(b)

21.(b) 22.(c) 23.(b) 24.(c) 25.(a) 26.(b) 27.(a) 28.(b) 29.(c) 30.(b)

31.(a) 32.(a) 33.(a) 34.(b) 35.(a)



14.1 INTRODUCTION

Calculus of variations plays an important role in modern developments in analysis, geometry and 

physics. Originating as a study of certain maximum and minimum problems not treatable by the 

methods of elementary calculus, variational calculus in its present form provides powerful methods for 

the treatment of differential equations, theory of invariants, existence theorems in geometric function 

theory, variational principles in mechanics. It is also important to the applications to boundary value 

problems in partial differential equations and in the numerical calculation of many types of problems 

which can be stated in variational form. No literature representing these diverging viewpoints is to be 

found among standard texts on calculus of variations, and in this course an attempt will be made to do 

justice to this variety of problems. The subject matter with which calculus of variations is concerned is 

a class of extremum (i.e., maximum or minimum) problems which can be considered as an extension 

of the familiar class of extremum problems dealt with by elementary differential calculus. In the 

elementary problems, one seeks extremal values of a function of one or more (but in any case a finite 

number) real variables in the more general problems considered by calculus of variations, the functions 

to be extremized, sometimes called functionals, have functions as independent variables. In this chapter, 

we will study various method of variational with fixed boundaries

14.2 FUNCTION

Let X and Y be any two non-empty sets and there be a correspondence or association between the 

elements of X and Y such that for every elements of X and Y, there exists a unique element y Y written 

as y = f (x) then we say that y is a mapping or function from X to Y and written as f: X Y such that 

y = f (x) x X, y X.

14.3 FUNCTIONAL

Let there be functional belonging to class of functions. Then a variable quantity denoted by I[y(x)]  is a 

functional if to each function belonging to the class of functions there is definite value of  I.

Thus functional is a function between the set of functions and set variable quantity. Obviously, 

domain of the functional is a set of functions for which the functional have been defined as following:

(i)
2

1

2

1

x

x

dy
dx

dx
 determines the length of arc between the points (x1, y1) and (x2, y2) on 

the curve y = f (x). Length of the arc is determined by the choice of functions. Thus, we see 

Calculus of 
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corresponding to functions through (x1, y1) and (x2, y2) determine the length of arc between these 

points. Therefore it is a clear example of functional. Thus we note 
2

1

2

( ) 1 .

x

x

dy
I y x dx

dx

We can also write it as I y x f x y x y x dx

x

x

( ) , ( ), ( ) .

1

2

(ii) Area S of a surface bounded by a given curve C is determined by the surface z = z(x, y) and 

given by 

22

1

D

z z
dxdy

x y
 where D is the projection of area bounded by curve 

on xy-plane.

14.4 DIFFERENCE BETWEEN FUNCTION AND FUNCTIONAL

S.No Function Functional

1. The variable y is called a function of a 
variable x, in writing as y = y(x).

The variable I is called a functional  depending on a 
function y = y(x), in writing as I = I[y(x)].

2. If  to each value of x from a certain 
domain there corresponds a certain 
value of y, to a given number x, there 
corresponds a number y.

If to each function y(x), from a certain class of 
function there corresponds a certain value of I, to a 
given function y(x), there corresponds a number I.

3. The increment x of the argument x of
a function y(x) is the difference of two 
values of this argument x = x – x1.
If x is the independent variable, then 
the differential of x coincides with its 
increment dx = x.

The increment or the variation y of the argument 
y(x) of a functional I[y(x)] is the difference of two 
functions y = y(x) – y1(x). It is assumed that the 
argument is y(x) runs through a certain class of 
functions.

4. A function y(x) is said to be a continuous 
function, if small variations of x always 
lead to small variations of the functions 
y(x).

A functional I[y(x)] is said to be a continuous 
function, if small variations of y(x) always lead to 
small variations of the functional I[y(x)].
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5. The function l(x) is called linear if 
l(cx) = cl(x).

The functional L(x) is called linear, if L(cx) = cL(x).

6. If the increment 

y = y = y(x + x) – y(x) is of the form 

( ) ( , ). .y A x x x x x

If the increment I I y x y I y x( ) ) ( )  of a 

functional is of the form

I L y x x y x y y( ), ( ( ), ).max .

7. The differential of a function y(x) is given 

by

0

( . ) .y x x

The variation of a functional I[y(x)] is given by

0

( . ) .I y x y

14.5 CLOSENESS OF CURVES

In the calculus of real variable we have defined the continuity of function at x = a. As the variable x is 

becoming closer to a, then f (x) becomes closer to f (a).

Here in case of functional, domain is the class of functions and here idea of closeness of y(x) and 

y1(x) is to say that the absolute value of their difference,  i.e. |y(x) – y1(x)| is small for all x for which 

y(x) and y1(x) are defined.

If it happens then we say y(x) is close to y1(x) in the sense of zero order proximity. 

2

1

( ) , ( ), ( ) .

x

x

I y x f x y x y x dx  Curve y(x) and y1(x) are said to be close in the sense of n
th order 

proximity if |y(x) – y1(x)|, 1 1( ) ( ) ( ) ( )n n
y x y x y x y x  are small for the values of for x which these 

functions are defined.

14.6 CONTINUITY OF FUNCTIONAL

Domain of functional is the set of functions, therefore continuity of functional at some function is 

defined as following: Functional I[y(x)] is said to be continuous at y = y0(x) in the sense of nth order 

proximity if given for any positive number ,   > 0 such that I y x I y x( ) ( )0

for 0 0 0( ) ( ) , ( ) ( ) ( ) ( )n n
y x y x y x y x y x y x

Linear Property Let the functional I[y(x)] be defined in the linear space M of the functions y(x).

Functional I[y(x)] is said to be linear if it satisfies the following conditions

(a) I c y x c I y x( ) ( )  where c is any arbitrary constant.

(b) 1 2 1 2 ( ) ( ) ( ) ( )I y x y x I y x I y x  where y1(x) and y2(x) M

Example 1 Functional I y x y y dx

a

b

( ) 2  defined in the space which consists of the 

continuous function possessing continuous derivatives of first order.
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Solution

Given Functional  I y x y y dx

a

b

( ) 2

(a)   
I c y x cy cy dx cy cy dx c y y dx c

a

b

a

b

a

b

( ) ( ) 2 2 2 II y x( )

(b) I y x y x y y y y dx

a

b

1 2 1 2 1 22( ) ( )

               = y y dx y y dx I y x I y x

a

b

a

b

1 1 2 2 1 22 2 ( ) ( )

Functional I[y(x)] is said to be linear.

14.7 VARIATION OF FUNCTIONAL

In calculus of real variable, in case of the function y = y(x) of single variable. We have studied that 

incremental ratio 
y

x
 tends to f (x), when x tends to zero suggesting thereby 

y

x
 differs from 

function of f (x) by a small quantity , where  is function of x and tends to zero as x  0. 

1( ) ( , )
y

f x x x
x

y f x x x x A x x x x x
1( ) ( , ) ( ) ( , ) ,  where A(x) is a function 

of x. Principal part of the increment x, i.e. f (x) x is known as differential in y. Likewise in case of 

functional I[y(x)], the increment I is given as I I y x y x I y x( ) ( ) ( )  (domain of functional is 

functional and (y(x)) denotes the corresponding change) which can be written as

I L y x y x y x y y( ), ( ) ( ), max ,

where L y x y x( ), ( )  denotes the functional linear in y and ( ( ), )y x y  tends to zero as the 

maximum value of 0.y  Principal part of the increment y i.e. L y x y x( ), ( )  is called the variation 

of the functional and is denoted by I.

Theorem 1 Variation of the functional I[y(x)] is equal to I y x y x( ) ( )  at  = 0, for fixed y

and y and different values of parameter .

Proof Increment I can be written as

I I y x y I y x L y x y x y x y y( ) ( ) ( ), ( ) ( ), max

= L y x y x y x y y( ), ( ) ( ), max

Now derivative of I y x y( )  with respect to  at  = 0.

=
0 0

Lim Lim
I I

 (  Change from 0 to , since  = )
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=
0

[ ( ),  ] [ ( ),  ] max  
Lim

L y x y y x y y

=
0

[ ( ),  ] 
Lim

L y x y
 as  0 as  0

=
0

[ ( ),  ] 
Lim

L y x y
    (By property of linearity)

[ ( )  ]I y x y  is equal to I, i.e. variation of functional I[y(x)].

14.8 MAXIMA OR MINIMA OF FUNCTIONALS

(i) A functional I[y(x)] is said to have maximum of functional on a curve y = y0(x) if the value of 

the functional on any curve close to y = y0(x) is less than or equal to that of I[y(x)]. In other 

words,
0[ ( )] [ ( )] 0.I I y x I y x

(ii) If I < 0 and is zero only on y = y0(x) then we say that strict maxima is obtained on y = y0(x).

(iii) Functional I[y(x)] attains minimum on a curve y = y0(x) if the values of the functional on any curve 

close to y0(x) is greater than to that of obtained on y = y0(x), i.e. 
0[ ( )] [ ( )] 0.I I y x I y x

(iv) If I > 0 is zero only on y = y0(x), then we say that strict minima is obtained on y = y0(x).

Definition

Distance  between two curves y = y1(x) and y = y2(x) is obtained by  =  (y1, y2) for x0 x x1 and is 

defined as 
0 1

1 2 1 2( , ) max ( ) ( )
x x x

y y y x y x  in reference to concept of zero order proximity:

Similarly with reference to nth order proximity, it is taken as

1 2
0 1

( ) ( )
1 2

1

( , ) max ( ) ( ) .
n

m m

x x x
m

y y y x y x

Example 2 Investigate the closeness of the following curves 
2

sin
( )

nx
y x

n
 and y1(x) = 0 on 

[0, ].

Solution

Consider 1 2 2

sin 1
( ) ( ) 0

nx
y x y x

n n

or 1 2

1
( ) ( ) 0 as y x y x n

n

also 1

cos
( ) , ( ) 0

nx
y x y x

n
1

cos 1
( ) ( ) 0

nx
y x y x

n n

or
1

1
( ) ( ) 0 as y x y x n

n

Hence, curves are close in first order proximity for large value of n.
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Example 3 Find the distance    between the curves  y1(x) = x and y2(x) = x2 on the interval [0, 1].

Solution

Consider  
0 1

2
1 2 1 2

0 1
( , ) max ( ) ( ) max .

x x x x
y y y x y x x x

Let y(x) = x – x2, 1 1
( ) 1 2 0 ,

2
y x x x ( ) 2 0y x   (maxima)

2
1 1 1 1 1

.
2 2 2 4 4

y

14.9 FUNDAMENTAL LEMMA OF CALCULUS OF VARIATION

If for every continuous function (x),
2

1

( ) ( ) 0,

x

x

x x dx  where the function (x) is continuous in the 

closed interval [x1, x2],  then (x) = 0 in the closed interval [x1, x2].

Remarks

(i) Maximum or Minimum of the functional on a curve y = y0(x) means the largest or smallest 

value on the functional is relative to the value of the functional close to the curve y = y0(x).

(ii) Maximum or Minimum obtained by the functional is said to be strong on the curve y = y0(x),

if | y(x) – y0(x)| is small with respect to all the curves y = y(x).

(iii) If functional attains maximum on the curve y = y0(x) with respect to all the curves y = y(x),

such that | y(x) – y0(x)| and | y (x) – y 0(x)| are both small then maximum or minimum is said to 

be weak.

(iv) If a strong maximum or minimum of functional is obtained on the curve y = y0(x), then weak 

maximum or minimum is also obtained on the same curve.

(v) If two curves are close with respect to first order proximity then they are close with respect to 

zero order proximity.

(vi) If a function I[y(x)] attains a maximum or minimum on  y = y0(x), where the domain of 

definition of functional is same class of functions then at y = y0(x), I = 0. 

14.10 EXTREMAL

One of the main problems of the calculus of variation is to determine that curve connecting two given 

points which either maximizes or minimizes some given integral.  Consider the curve y = y(x), where 

y(x1) = y1 and y(x2) = y2 such that for some given known function F(x, y, y ) of variables x, y, y , the 

integral 
2

1

( ) , ( ), ( )

x

x

I y x f x y x y x dx  is either maximum or minimum also called an extremum or 

stationary value. A curve y = y(x) which satisfies this property is called an extremal.

14.11 SOME IMPORTANT LEMMAS

Lemma 1 If (x) is continuous in [a, b], and if ( ) ( ) 0

b

a

x h x dx  for every function h(x)  (a, b) such

that h(a) = h(b) = 0, then (x) = 0 for all x  [a, b].
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Proof Suppose the function (x) is non-zero value at some point in [a, b] then (x) is also positive in 

some interval  [x1, x2] contained in [a, b].

Given ( ) ( ) 0

b

a

x h x dx  for every function h(x)  (a, b) such that h(a) = h(b) = 0.

To show that a(x) = 0 for all x  [a, b].

If we set h(x) = (x – x1)(x2 – x) for all x  [a, b], and h(x) = 0 otherwise, then h(x) satisfies the 

conditions of the lemma. 

1 2( ) ( ) ( )( )( ) 0,

b b

a a

x h x dx x x x x x dx

Since the integrand is positive (except at x1 and x2).

It means that our assumption is wrong (x) = 0 for all x  [a, b].

Lemma 2 If (x) is continuous in [a, b], and if ( ) ( ) 0

b

a

x h x dx  for every function h(x) D1(a, b)

such that h(a) = h(b) = 0, then (x) = c for all x  [a, b], where c is a constant.

Proof Suppose c is a constant defined by the condition ( ) 0

b

a

x c dx  and let 

( ) ( ) 0,

x

a

h x t c dt  so that ( ) ( ) 0

b

a

x h x dx h(x) D1(a, b) and satisfies the condition h(a) = 

h(b) = 0  then on the one hand, ( ) ( ) ( ) ( ) ( ) ( ) .x c h x dx x h x dx c h a h b

a

b

a

b

0  While on the 

other hand, ( ) ( ) ( ) .x c h x dx x c dx

a

b

a

b
2

It follow that (x) – c = 0, i.e. (x) = c for all x  [a, b].

Lemma 3 If (x) is continuous in [a, b], and if ( ) ( ) 0

b

a

x h x dx  for every function h(x)  (a, b)

such that h(a) = h(b) = 0 and h (a) = h (b) = 0,  then (x) = c0 + c1x for all x  [a, b] where c0 and c1

are constants.

Proof Let c0 and c1 be a constant defined by the condition

0 1( ) 0

b

a

x c c x dx  and 0 1( ) 0.

b x

a a

t c c t dt dx

Let 0 1( ) ( )  ,

x t

a a

h x z c c z dz dt  such that h(x) automatically belongs to  (a, b) and satisfies 

the conditions h(a) = h(b) = 0, h (a) = h (b) = 0. Then



14.8 Engineering Mathematics for Semesters III and IV

( ) ( ) ( ) ( ) ( ) ( )x c c x h x dx x h x dx c h b h a

a

b

a

b

0 1 0 c xh x dx

a

b

1 ( )

= c bh b ah a c h b h a1 1 0( ) ( ) ( ) ( ) .

While on the other hand, 
2

0 1 0 1( ) ( ) ( ) 0.

b b

a a

x c c x h x dx x c c x dx  It follows 

0 1 0 1( ) 0 ( )   [ , ].x c c x x c c x x a b

Lemma 4 If (x) and (x) are continuous in [a, b], and if ( ) ( ) ( ) ( ) 0

b

a

x h x x h x dx  for every 

function h(x)  (a, b) such that h(a) = h(b) = 0, then (x) is differentiable, and (x) = (x) for all 

x  [a, b].

Proof Given Let (x)  and (x) are continuous in [a, b], and if

( ) ( ) ( ) ( ) 0

b

a

x h x x h x dx (1)

for every function h(x)  (a, b) such that 

h(a) = h(b) = 0 (2)

To show that (x) is differentiable, and (x)= (x) for all x  [a, b].

Now,   ( ) ( ) ( ) ( ) ( ) ( )

x b b

a a a

A x t dt x h x dx A x h x dx (3)

Equation (1) can be rewritten as ( ) ( ) ( ) 0

b

a

A x x h x dx  (4)

But According to lemma 2, we get –A(x) + b(x) = constant b(x) is differentiable and hence by the 

definition of A(x), for all x  [a, b].

14.12 EULER’S EQUATION

Let us examine the functional

I y x F x y x y x dx

x

x

( ) , ( ), ( ) .

1

2

(5)

Suppose that F is a given function which is twice differentiable with respect to any combination 

of its arguments (i.e., x, y, y ). Again suppose that an admissible curve y(x) exists which is twice 

differentiable on [x1, x2].

Also, satisfies the fixed boundary conditions y(x1) = y1 and y(x2) = y2 (6)

And which extremizes (i.e. minimizes or also maximizes) the functional I [y(x)].

Let (x) be any function with the properties that (x) is continuous and 

(x1) = (x2) = 0. (7)

If  is a small parameter then ( ) ( ) . ( )y x y x x (8)
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represents one parameter family of curves. The other curve in this family from the extremizing curve 

y = y(x) is . (x) as shown in Fig. (14.1).

Fig. 14.1

The difference ( ) ( ) . ( )y x y x x  is known as the variation of the function y(x) and is denoted 

by y(x). This notation can be developed into a useful formula and is the source of the name calculus 

of variation. From Eq. (8), we note that for each family of this type, i.e. for each choice of the function 

(x), the extremizing curve y = y(x) belongs to the family and corresponds to the value of the parameter 

 = 0. 

From Eq. (4),

( ) ( ) . ( )y x y x x  (9)

Now, with (x) fixed, replacing y and y   by ( ) and ( )y x y x  respectively in the functional Eq. (5), 

we get a functional of , I F x y y dx

x

x

[ ] , , .

1

2

(10)

Since setting  = 0 has the effect of replacing ( ) and ( )y x y x  in Eq. (10) by the function y = y(x) and 

its derivatives y (x), if  = 0  then I[ ] must take on its extreme value.

By elementary calculus, a necessary condition is given by I [ ] = 0. (11)

Using Leibnitz’s rule of differentiation under the integral sign, (10) yields

2

1

[ ] ( , ,  )

x

x

I F x y y dx (12)

By the chain rule for differentiating functions of several variables, we get

, , 0
F x F y F y F y F y

F x y y
x y y y y

 by Eqs (8) and (9)
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Hence, (8) reduces to

2

1

 .

x

x

F y F y
I dx

y y

Using Eq. (7), we get

2

1

0
 0lim

x

x

F y F y
dx

y y
(13)

If  = 0  then ( )  ( ) and ( )  ( )y x y x y x y x  using in Eq. (13), we get

2 2 2

1 1 1

( ) '( )  ( )  '( )  0
' '

x x x

x x x

F F F F
x x dx x dx x dx

y y y y

22 2

11 1

( )  ( )  ( ) 0

xx x

xx x

F F d F
x dx x x dx

y y dx y
(14)

Using Eq. (3) in Eq. (10), we get

2

1

. ( ) 0

x

x

F d F
x dx

y dx y
(15)

 The fundamental lemma of the calculus of variations, a necessary condition for the functional to 

have an extremum value is that the extremizing function y = y(x) must satisfy the differential equation

1 20.
F d F

x x x
y dx y

(16)

is known as Euler’s equation.

14.13 ALTERNATIVE FORMS OF EULER’S EQUATION

14.13.1 Derivation of Second Forms Euler’s Equation

Euler’s Equation

0
F d F

y dx y
 (1)

Since F is a function of x, y, y , we have

By total derivatives 
'

F F F
dF dx dy dy

x y y

dF F F dy F dy F F F
y y

dx x y dx y dx x y y
(18)

Again,  
d F d F F

y y y
dx y dx y y
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d F d F F

y y y
dx y dx y y

(19)

Using Eq. (19) in Eq. (18), we get

            
dF F F d F d F

y y y
dx x y dx y dx y

       
dF d F F F d F

y y y
dx dx y x y dx y

     0
d F F F d F

F y y y
dx y x y dx y

 (using Eq. 17)

0
d F F

F y
dx y x

 is an alternative second form of Euler’s equation.

14.3.2 Derivation of Third Forms Euler’s Equation

Since
F

y
 is a function of x, y, y , we have

by total derivatives 
F F F F

d dx dy dy
y x y y y y y

d F F F dy F dy

dx y x y y y dx y y dx

2 2 2

2'

d F F F F
y y

dx y x y y y y
(20)

Using Eq. (20) in Eq. (17), we get

2 2 2

2
0

'

F F F F
y y

y x y y y y
 is an alternative third form of Euler’s equation.

Example 4 On what curves can the functional 

1
2

0

( 12 ) , (0) 0, (1) 1,y xy dx y y  be 

extremized?

Solution

Comparing the given functional with 

1

0

( , , ) ,F x y y dx  we get

2( , , ) ( 12 )F x y y y xy (21)

Given condition y(0) = 0, y(1) = 1, (22)

Euler’s equation 0
F d F

y dx y
(23)
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12 , 2 , and 2
F F d F

x y y
y y dx y

Using in Eq. (23). We get 2
112 2 0 6 3x y y x y x c

y = x3 + c1x + c2 (24)

Using Eq. (22) in Eq. (24). We get  0 = c2 and  1 = 1 + c1 + c2  so that c1 = c2 = 0

an extremum can be achieved only on y = x3.

Example 5 On what curves can the functional 
2

2 2

0

( 2 ) ,y y xy dx y(0) = 0, 0
2

y  be 

extremized?

Solution Comparing the given functional with 
2

0

( , , ) ,F x y y dx  we get

2 2( , , ) 12F x y y y y xy (25)

Given condition (0) 0, 0
2

y y (26)

Euler’s equation 0
F d F

y dx y
(27)

2 2 , 2 , and 2
F F d F

y x y y
y y dx y

 using in Eq. (27), we get

22 2 2 0 6 ( 1) 6 , where
d

y x y y y x D y x D
dx

Auxiliary equating Eq. (28) is

 (D2 + 1) = 0 so that D = i (28)

CF = c1 cos x + c2 sin x

PI = 
2

1
6 6

( 1)
x x

D

Solution is

y = c1 cos x + c2 sin x + 6x (29)

Using Eq. (26) in Eq. (29), we get  0 = c1 and 2

6
0

2
c , so that c1 = 0 and c2 = –3 .

An extremum can be achieved only on y = x – 3  sin x.

Example 6 Find the extremal for the functional 
2

2 2

0

[ ( )] ( 2 sin ) ,I y x y y y x dx y(0) = 0, 

1.
2

y
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Solution Comparing the given functional with 
2

0

( , , ) ,F x y y dx  we get

2 2( , , ) ( ' 2 sin )F x y y y y y x (30)

Given condition

(0) 0, 1
2

y y (31)

Euler’s equation 0.
F d F

y dx y
(32)

2 2sin ,
F

y x
y

2
F

y
y

 and 2
d F

y
dx y

 using in Eq. (3), we get

2 2sin 2 0 siny x y y y x

(D2 + 1)y = sin x, where 
d

D
dx

(33)

Auxiliary Eq. (33) is  (D2 + 1) = 0 so that D = i, CF = c1 cos x + c2 sin x

PI of Eq. (33) =
2

1
sin cos

21

x
x x

D
.

Then the solution is

       1 2cos  sin cos .
2

x
y c x c x x (34)

Using Eq. (31) in Eq. (34), we get  0 = c1 and 1 = c2.

An extremum can be achieved only on sin cos .
2

x
y x x

It is the curve for two given fixed points (0, 0) and , 1
2

 for which the given functional will be 

extremum.

Case I If F is independent of y  so that 0
F

y
, then Euler’s equation 0

F d F

y dx y
 reduce to 

0
F

y
 which is a finite equation, and not a differential equation. The solution of 0

F

y
 does not 

contain any arbitrary constants and does not satisfy the boundary conditions y(x1) = y1 and y(x2) = y2.

In general, there is no solution for this variational problem. Only if the curve 0
F

y
 passes 

through the boundary points (x1, y1) and  (x2, y2) does there exist a curve on which an extremum can 

be attained.
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Example 7 Test for an extremum of the functional 
2

1

2[ ( )] ,

x

x

I y x y dx y(x1) = y1 = y(x2) = y2.

Solution Comparing the given functional with 
2

1

( , , )

x

x

F x y y dx  we get

F(x, y, y ) = y2 (35)

Given condition  y(x1) = y1, y(x2) = y2 (36)

Euler’s equation 0.
F d F

y dx y
 (37)

2 , 0 and 0
F F d F

y
y y dx y

 using in Eq. (37), we get

2y = 0 y = 0. (38)

The extremal y = 0 passses through the points only at y1 = 0 and y2 = 0. If at least one of y1 and y2 is 

not zero, then the functional is not minimized on continuous functions.

Case II If F is linearly dependent on y  such that ( , , ) ( , ) ,F x y y M x y N x y y , then

,
, , ,

dN x yF M N F d F
y N x y

y y y y dx y dx

The Euler’s equation 
,

0 becomes 0
dN x yF d F M N

y
y dx y y y dx

0 so that 0
M N N N dy M N

y
y y x y dx y y

(39)

Which is a finite equation, and not a differential equation. So the curve given by Eq. (39) does 

not satisfy the given boundary condition y(x1) = y1, and y(x2) = y2. Hence, in general, the variational 

problem does not a Solution.

The given functional 
2 2

1 1

[ ( )] ( , , )

x x

x x

I y x F x y y dx Mdx Ndy  is independent of the path of 

integration, the value of the functional I[y(x)] is constant on admissible curves. In such cases, the 

variational problems become meaningless.

Example 8 Test for an extremum of the functional 

1
2 2

0

[ ( )] ( ) ,I y x y x y dx y(0) = 0, y(1) = b.

Solution Comparing the given functional with 
1

0

( , , ) ,F x y y dx  we get

2 2( , , ) ( )F x y y y x y (40)
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Given condition y(0) = 0, y(1) = b (41)

Euler’s equation

0.
F d F

y dx y
(42)

22 , and 2
F F d F

y x x
y y dx y

 using in Eq. (42), we get

2y = 0  2y – 2x = 0 or y = x (43)

Equation (43) satisfies the first boundary condition y(0) = 0. However, the second boundary condition 

y(1) = b is  satisfied by Eq. (43) only if b = 1. But if  b  1 then there is no extremal that satisfy the given 

boundary conditions.

Case III The function F is independent of x and y, i.e., F is dependent only on y  such that F = F(y )

An alternative third form of Euler’s equation

2 2 2

2
0

'

F F F F
y y

y x y y y y
(44)

Since     
2 2

( ) 0 and 0 hence 0 and 0
F F F F

F F y
y x x y y y

Equation (44) reduces to

2 2

2 2
0 0 or 0

' '

F F
y y

y y

If y  = 0  then y = c1x + c2 (which is a two parameter family of straight lines)

If
2

2
0

F

y
 has one or several real roots y  = n, then y = n + C (which is a one parameter family 

of straight lines contained in the two parameter family). In this case, extremals are all possible straight 

lines.

Example 9 Show that the shortest distance between two fixed points in the Euclidean xy-plane is 

a straight line.

Solution Let A(x1, y1) and B(x2, y2) be two given points on a plane. Let P(x, y) be any point on any 

curve joining A and B and let arc (AP) = s, then arc length (AB) is given by 

Fig. 14.2
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2 2

1 1

1

2 2( ) (1 ) ,

x x

x x

arc AB ds y dx (45)

where y(x1) = y1, and y(x2) = y2 (46)

Comparing Eq. (45) with 
2

1

( , , ) ,

x

x

F x y y dx  we have

1

2 2( , , ) (1 )F x y y y (47)

Euler’s equation is 
2 2 2

2
0

'

F F F F
y y

y x y y y y
(48)

From Eq. (47) 0,  0,
F F

y x
 so that 

2

0
F

x y
 and 

2

0.
F

y y

Hence, Eq. (48) reduces to 
2

2
0

'

F
y

y
(49)

Since
2

2
0,

F

y
 Eq. (49) reduces to 

2

1 22
0 or 0 .

d y
y y c x c

dx
(50)

This is a straight line. Since Eq. (50) passes through A(x1, y1) and B(x2, y2). We get

y1 = c1x1 + c2 (51)

and y2 = c1x2 + c2 (52)

Subtracting Eqs (51) and (52), y2 – y1 = c1(x2 – x1) (53)

Subtracting Eqs (51) and (50), y – y1 = c1(x – x1) (54)

Dividing (54) by (53), we obtain 1 1

2 1 2 1

( )

( )

y y x x

y y x x
 or 2 1

1 1
2 1

( )
( )

( )

y y
y y x x

x x

This is a straight line. Joining the given points of A and B. Hence, the shortest between A and B in

a plane is a straight line.

Case IV The function F is independent of y such that F = F(x, y ) then 0
F

y
 and 

Euler’s Equation 0.
F d F

y dx y
 It reduces to 0.

d F

dx y

 Its integration yields ,
F

C
y

 where C is a constant. Since this relation is independent of y, it can 

be solved for y  as a function of x. Another integration, to a solution involving two arbitrary constants

which can be obtained by using the boundary condition y(x 1) = y1 and y(x2) = y2.

Example 10 Show that the extremal of 

2 2

0

[ ( )]
y

I y x dx
x

 with y(0) = 0 and y(2) = 1 is a 

parabola.
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Solution Comparing the given functional with 

2

0

( , , ) ,F x y y dx  we get

2

( , , )
y

F x y y
x

(55)

Given condition y(0) = 0 and y(2) = 1 (56)

Euler’s Equation is 0.
F d F

y dx y
(57)

2
0,

F F y

y y x
 and Eq. (57) 1 1

2
0

d F F y
c c

dx y y x

      1

2

cdy
x

dx

      21 1
2+c  

2 4

c c
dy x dx y x (58)

Using given condition in Eq. (58), we get

0 = c2 and 1 = c1 + c2  such that c1 = 1, c2 = 0

By Eq. (58), an extremum can be attained only on the curve 
2

4

x
y   is a parabola.

Case V The function F is dependent of y and y  alone such that  F = F(y, y ), i.e. F is independent of 

x such that 0.
F

x

Second from Euler’s equation is 0.
d F F

F y
dx y x

Since 0,
F

x
 we have 

10 ,
d F F

F y F y c
dx y y

(59)

where c1 is a constant, since first order Eq. (59) does not contain x explicitly, it may be integrated by 

solving for y  and separating the variables, or by introducing a parameter.

In this case Euler’s equation, first form can also be used.

Example 11 Find the extremal of the functional 

1 2

0

1
[ ( )] ,

'

y
I y x dx

y
 through the origin and 

the point (1, 1).

Solution Comparing the given functional with 

1

0

( , , ) ,F x y y dx  we get

21
( , , ) ,

y
F x y y

y
(60)
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which is independent of x.  Euler’s equation (Case V)

1

F
F y C

y
(61)

2

2

(1 )F y

y y

  The required Euler’s equation 
2 2

1

1 1y y
C

y y

or     
2

1

2
0

1

dy
y y dx

Cy
(62)

The general solution of Eq. (62) is

      1
2

1

2
tan y x C

C
(63)

Using given conditions in Eq. (63), we get 
1

8
C  and C2 = 0.

 An extremum can be attained only on the curve tan .
4

x
y

Example 12 Find the curve passing through the points A(x1, y1) and B(x2, y2) which when rotated 

about the x-axis gives a minimum surface area.

Fig. 14.3

Solution When a curve joining A(x1, y1) and B(x2, y2) is revolved about x-axis, the area of the surface 

of revolution is given by 
2

1

1

2 2[ ( )] 2 (1 ) .

x

x

S y x y y dx
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Comparing this with 
2

1

( , , )

x

x

F x y y dx  and

Omitting the irrelevant factor 2 , we have 

1

2 2( , , ) (1 ) ,F x y y y y

Since F(x, y, y ) F(x, y, y ) is function of y and y  only Euler’s equation is (Case V) 

1

F
F y C

y

  

1 1

2 22 2
1(1 ) (1 ) 2

2

y
y y y y y C

  

1 1 2 2
2 2 2 2 2 12 2

1 1 2
1

(1 ) (1 ) (1 )
y C

y y yy C y y C y y
C

  1
11

1 1 1 1 12 2 2
1

cosh cosh ,

( )

dy dx y x B x B
y C

C C C C C
y C

where B and C1 are two arbitrary constants.  The constants B and C1 can be obtained from the given 

boundary conditions depending on the positions of the points A(x1, y1) and B(x2, y2). There may be one, 

two or no solution.

Example 13 If A(r1, 1) and B(r2, 2) are two points in a plane then the length of the arc of the 

curve joining these points is given by 
2

1

2 2[ ( )] ( ) ,I r r r d  where .
dr

r
d

 By minimizing the 

above integral obtain the equation of a straight line in polar co-ordinates.

Solution Comparing the given functional with 
2

1

( , , ) ,F r r d  and we get 

2 2( , , ) ( )F r r r r (64)

Euler’s Equation is 0.
F d F

r d r
(65)

2 2 2 2
,

( )

F r F r

r rr r r r
 and 

2 2

2 2 2 2

( ) ( )

( ) ( )

d F r r r r rr r r

d r r r r r

.

 The required Euler’s equation

     
2 2

2 2 2 2 2 2

( ) ( )
0

( ) ( ) ( )

r r r r r rr r r

r r r r r r

or     2 2. 2 0r r r r (66)
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Let  
2

2
,

dr d r d dr dp dp dr dp
p r r p

d d d d dr d drd

Using in Eq. (66), we get

      2 2 2 0 2
dp dp p r

r p p r
dr dr r p

(67)

Let ,
r

v
p

 i.e. p = r v  such that 
dp dv

v r
dr dr

Then using above value in Eq. (67) yields 
1 1

2
dv dv

v r v r v
dr v dr v

2

2 2

1

dr vdv

r v
 such that 

1

2 2 2 2
2 2 2

2

( )
2 log log log( 1) 1

r r a
r a v v v

aa

     

1 1 1

2 2 2 2 2 22 2 2( ) ( ) ( )p r a r r a dr r r a
p

r a a d a

     1sec sec( )
r r

a a

r cos(  – ) = a, , where  and a are arbitrary constants. (68)

 Equation (68) is the polar of a straight line. Thus, the minimum distance between two points in a 

plane is a straight line given by Eq. (68).

14.14  VARIATIONAL PROBLEMS FOR FUNCTIONAL INVOLVING 
SEVERAL DEPENDENT VARIABLES

2

1

1 2 1 2, ( ), ( ), .... ( ), ( ), ( ), .... ( )

x

n n

x

F x y x y x y x y x y x y x dx

14.14.1 Case of Two Dependent Variables

is given by 
1 21 2

0 and 0
F d F F d F

y dx y dxy y

is called an Euler’s equations.

14.14.2 Case of nth Dependent Variables

The system of Euler’s equations for finding extremals of the functional

       

2

1

1 2 1 2, ( ), ( ), ...., ( ), ( ), ( ), ...., ( )

x

n n

x

F x y x y x y x y x y x y x dx
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is given by 0
i i

F d F

y dx y
 where i = 1, 2, 3, 4, …, n

Example 14 Find the extremals of the functional 
2

2 2

0

( ), ( ) ( 2 ) ,I y x z x y z yz dx y(0) = 0, 

1,
2

y z(0) = 0 and 1.
2

z

Solution Comparing the given functional with 
2

0

( , , , , ) ,F x y z y z dx

we have 2 2( , , , , ) ( 2 ).F x y z y z y z yz (69)

The system of Euler’s equations is given by

0 and 0
F d F F d F

y dx z dxy z

i.e., 2 (2 ) 0 and 2 (2 ) 0
d d

z y y z
dx dx

i.e., 0 and 0z y y z

i.e.,    
2

2

d y
z

dx
(70)

and    
2

2
.

d z
y

dx
(71)

We shall now solve the system of simultaneous differential Eqs (70) and (71) as follows. 

Differentiating both side of Eq. (70) twice w.r.t. ‘x’, we get

4 2 4

4 2 4
or ,

d y d z d y
y

dx dx dx
 using (71)

(D4 – 1)y = 0 where 
d

D
dx

(72)

Auxiliary Eq. (72) is 4( 1) 0 1,  1,  ,  .D D i i

Hence the general solution of Eq. (72) is given by

        
1 2 3 4cos sinx x

y C e C e C x C x (73)

1 2 3 4sin cosx xdy
C e C e C x C x

dx

      
2

1 2 3 42
cos sinx xd y

C e C e C x C x
dx
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Substituting this value of 
2

2

d y

dx
 in Eq. (70), we have

2

1 2 3 42
cos sinx xd y

z C e C e C x C x
dx

(74)

Given that when x = 0, y = 0 and z = 0.  Hence Eqs (73) and (74) give

     C1 + C2 + C3 = 0 (75)

and      C1 + C2 – C3 = 0 (76)

Also, given that when , 1
2

x y  and z = –1. Hence Eqs (73) and (74) give

2 2
1 2 4 1C e C e C (77)

And     2 2
2 4 1.e C e C (78)

Subtracting Eqs (76) from (75), we have

C3 = 0 (79)

With C3 = 0, Eq. (75) reduces to C1 + C2 = 0 (80)

Subtracting (78) from (77) C4 = 1 (81)

Adding Eqs (77) and (78), we have 2 2
1 2 0C e C e (82)

Solving Eqs (80) and (82), we have C1 = C2 = 0 (83)

Using Eqs (79),  (81) and (83). The required curves are given by y = sin x  and z = –sin x

Example 15 Find the differential equations of the lines of propagation of light in a optically non-

homogeneous medium in which the speed of light is v(x, y, z).

Solution According to well known Fermat’s principle, light propagates from one point A(x1, y1, z1)

and to another B(x2, y2, z2) along a curve, for which the Time T of passage of light will be least. If the 

equation of the required path of the light ray be y = y(x) and z = z(x), then we easily have

2 2

1 1

2 2(1 ' )
 ,

( , , )

x x

x x

y zds
T dx

v x y z v
(84)

where ds is a line element of the path.

Comparing the given functional with 
2

1

( , , , , ) ,

x

x

F x y z y z dx  we have

2 2(1 )
( , , , , ) .

y z
F x y z y z

v
(85)

The system of two Euler’s equation is given by

0
F d F

y dx y
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and     0
F d F

z dx z

      

2 2

2 2 2

(1 )
0

(1 )

y zv d y

y dxv v y z
(86)

        

2 2

2 2 2

(1 )
0

(1 )

y zv d z

z dxv v y z
(87)

The system of Eqs (86) and (87) together determine the lines of light propagation.

14.15  FUNCTIONAL DEPENDENT ON HIGHER ORDER 
DERIVATIVES

14.15.1 Particular Case

The necessary condition for

2

1

[ ( )] ( , , , )

x

x

I y x F x y y y dx to be extremum if 
2

2
0

F d F d F

y dx ydxy
is known as 

Euler–Poisson equation.

14.15.2 General Case

The necessary condition for 
2

1

( )[ ( )] ( , , , , , )

x

n

x

I y x F x y y y y dx  to be extremum, if

2 3

2 3 ( )
( 1) 0

n
n

n n

F d F d F d F d F

y dx y ydx dx dx yy

is known as Euler–Poisson equation.

Remark If the functional I is of the form

I y x z x F x y y y y z z z z dx
n n

x

x

[ ( ), ( )] , , , , , , , ,( ) ( )

1

2

then by varying only y(x) and z(x) to be fixed, we can easily prove that the extremizing function y(x)

and z(x) must satisfies the Euler–Poisson  equation

2

2
( 1) 0

n n
n

n n

F d F d F d F

y dx y ydx dx y
 by varying only z(x) and y(x) to be 

fixed, we can easily prove that the extremizing function y(x) and z(x) must satisfies the Euler–Poisson  

equation
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2

2
( 1) 0

n n
n

n n

F d F d F d F

z dx z zdx dx z

Thus, the functions y(x) and z(x) must satisfy a system of two equations.

Example 16 Find the extremal of the functional 
1

2

0

( ) (1 ) ,I y x y dx  subjected to boundary 

condition y(0) = 0, y (0) = 1, y(1) = 1 and y (1) = 1.

Solution Comparing the given functional with 
2

1

[ ( )] ( , , , ) ,

x

x

I y x F x y y y dx  we get

F(x, y, y , y ) = (1 + y 2) (88)

Euler–Poisson equation is 
2

2
0

F d F d F

y dx y ydx
(89)

0, 0, 2 .
F F F

y
y y y

 Hence Eq. (89) reduces to 
2

2
(2 ) 0

d
y

dx

4

4
0

d y

dx

whose general solution is 
2 3

1 2 3 4 .
2 6

x x
y C C x C C (90)

Using boundary conditions in Eq. (90), we get C1 = 0, C2 = 1, C3 = 0  and C4 = 0

The required extremum can be attained only on line y = x.

Example 17 Find the extremal of the functional 

1
2

0

( ) (140 ) ,I y x y y dx  subjected to 

boundary condition y(0) = 0, y (0) = 0, and y (0) = 0.

Solution Comparing the given functional with 

1

0

[ ( )] ( , , , ) ,I y x F x y y y dx  we get

2( , , , ) (140 )F x y y y y y (91)

Euler–Poisson equation is 
2 3

2 3
0

F d F d F d F

y dx y y ydx dx
(92)

480, 0, 0 and 2
F F F F

y
y y y y

 hence (92) reduces to

3 6

3 6
480 ( 2 ) 0 240

d d y
y

dx dx
 whose general solution is

6 5 4 3 231 2 4
5 6

1

3 72 24 6 2

CC C C
y x x x x x C x C (93)

Using boundary conditions in Eq. (93), we get C4 = 0, C5 = 0, C6 = 0

The required extremum can be  attained only on curve 6 5 4 331 21

3 72 24 6

CC C
y x x x x
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14.16  FUNCTIONALS DEPENDENT ON THE FUNCTIONS OF 
SEVERAL INDEPENDENT VARIABLES

Suppose to find the following functional for an extremum 

[ ( , )] ( , , , , )

D

I z x y F x y z p q dxdy (94)

The values of the function z(x, y) are given on the boundary of the domain that is, a spatial path 

(or contour) is given, through which all permissible surfaces have to pass (see figure). In Eq. (94) 

and .
z z

p q
x y

 We assume that F is thrice differentiable.

Fig. 14.4

Take some admissible surface ( , )z z x y  close to z = z(x, y) and include the surfaces ( , )z z x y

close to z = z(x, y) in a one-parameter family of surfaces

( , , ) ( , )  ,z x y z x y z (95)

where     ( , ) ( , ).z z x y z x y

For  = 0, we get the surface z = z(x, y).

For  = 1, we have ( , ).z z x y z  is called the variation of the function z = z(x, y). On functions of 

the family z(x, y, ), the functional reduces to the function of  which has to have an extremum for 

 = 1, hence, we have

0

( , , )
0.

I z x y
(96)

The derivative of I[z, (x, y, )] with respect to . For  = 0, is known as the variation of the function 

and is denoted by I. Accordingly, we have

0

, , ( , , ), ( , , ), ( , , )

D

I F x y z x y p x y q x y dxdy

     I F z F p F q dxdy F z dxdy F p F q dxz p q

D

z

D

p q( ) ddy

D

(97)
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Equation (95), ( , , ) ( , )  z x y z x y z

    
( , , )

( , , )
z x y

p x y p
x

(98)

and   
( , , )

( , , )
z x y

q x y q
y

(99)

Now, we have

( ) ( )( )
   

p p p p p

p p p

F z F F F z Fz
z F z F p F p z

x x x x x x
(100)

and   
( ) ( )( )

   
q q q q q

q q q

F z F F F z Fz
z F z F q F q z

y y y y y y
(101)

Using Eq. (100) and (101), we have

( ) ( )
(   )

p p q q

p q

D D

F z F F z F
F p F q dxdy z z dxdy

x x y y

( ) ( )
(   ) ,

p q p q

p q

D D D

F z F z F F
F p F q dxdy dxdy z dxdy

x y x y
(102)

where
pF

x
 is known as total partial derivative with respect to x. While computing it, y is assumed 

to be fixed, but the dependence of z, p and q upon x is taken into account. Therefore, we have total 

derivative

       
p p p p

p

F F F F
dF dx dz dp dq

x z p p
   and

      

q q q

q

F F FFq
dF dy dz dp dq

y z p p

      
p

px pz pp pq

F z p q
F F F F

x x x x
(103)

      
q

qy qz qp qq

F z p q
F F F F

y y y y
(104)

Using the well known Green’s theorem** [** ( )

C R

N M
M dx N dy dx dy

x y
], we have

( ) ( )F z

x

F z

y
dxdy F dy F dx z

p q

D

p q 0

C

(105)

The last integral is equal to zero, since on the contour C the variation z = 0 because all permissible 

surfaces pass through one and the same spatial



Calculus of Variations 14.27

Contour C . Using Eqs (105) and (102) reduces to

F p F q dxdy
F

x

F

y
z dxdyp q

D

p q

D

(106)

Using Eqs (106), (97) reduces to

( )
p q p q

z z

D D D

F F F F
I F z dxdy z dxdy F z dxdy

x y x y
(107)

The necessary condition I = 0 for an extremum of the functional Eq. (94) takes the form

0
p q

z

D

F F
F z dxdy

x y
(108)

It follows from the fundamental lemma of the calculus variation that on the extremizing surface 

z = z(x, y), we must have

0 or 0
p q

z

F F F F F
F

x y z x p y q
(109)

Is Euler’s equation form extremal of functional Eq. (94), as before, a stationary function (if one 

exists) in an extremal that satisfies the given boundary conditions.

Thus the required extremizing function z(x, y) is obtained from the Solution of the second order 

partial differential Eq. (109) which is known as Euler–Ostrogradsky equation.

Remarks

1. The functional

     

1 2 1 2 1 2 1 2[ ( , , , )] ..... ( , ,..., , , , ,..., ) ...n n n n

D

I z x x x F x x x z p p p dx dx dx

  where i
i

z
p

x
 in exactly similar way, the following Euler–Ostrogradsky equation 

1

0i
n

p

z
ii

F
F

x
which the function z(x1, x2, …., xn) extremizing the functional I must 

satisfy.

2. If the integrand of the functional I depends on derivatives of higher order. Then, by applying 

several times the transformations used in driving the Euler–Ostrogradsky equation the 

necessary condition for an extremum, that the extremizing function must satisfy an equation 

similar to the Euler–Poisson equation

  For Example The functional [ ( , )] ( , , , , , , , )

D

I z x y F x y z p q r s t dxdy  where

     

, ,
z z

p q
x y

2 2 2

2 2
, , and .

z z z
s r t

x y x y
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  Euler–Poisson equation is

2 22

2 2
0.

p q s tr
z

F F F FF
F

x y x yx y

  Hence, the fourth-order partial differentiable equation must be satisfied by the function 

extremizing the functional

Example 18 Obtain the  Euler–Ostrogradsky equation for

2 2

( , ) 2 ( , ) ,

D

z z
I z x y zf x y dxdy

x x

where the values of z are prescribed on the boundary C of the domain.

Solution Writing , ,
z z

p q
x y

 given functional is

2 2

( , ) 2 ( , )

D

z z
I z x y zf x y dxdy

x x
(110)

Comparing Eq. (110) with [ ( , )] ( , , , , ) ,

D

I z x y F x y z p q dxdy  we have

2 2

( , , , , ) 2 ( , )
z z

F x y z p q zf x y
x x

(111)

Euler–Ostrogradsky equation is

0
F F F

z x p y q
(112)

2 ( , ), 2 2 , 2 2 .
F F z F z

f x y p q
y p x q y

Hence Eq. (112) reduces to

2 2

2 2
2 ( , ) 2 2 0 ( , )

z z z z
f x y f x y

x x y y x y

is well known Poisson’s equation. We are to find a solution continuous in d, of this equation that takes 

on prescribed values on the boundary C of the domain D.

Example 19 Obtain the  Euler–Ostrogradsky equation for

22 2

( , , ) ,

D

u u u
I u x y z dxdydz

x y z

where the values of u are prescribed on the boundary C of the domain D.
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Solution Writing 1 2 3, , ,
u u u

p p p
x y z

 given functional is

22 2

( , , )

D

u u u
I u x y z dxdydz

x y z
(113)

Comparing Eq. (113) with 1 2 3[ ( , , )] ( , , , , , , )

D

I u x y z F x y z u p p p dxdydz

we have     F x y z u p p p p p p( , , , , , , )1 2 3 1
2

2
2

3
2 (114)

Euler–Ostrogradsky equation is

1 2 3

0
F F F F

u x p y p z p
(115)

1 2 3
1 2 3

0, 2 2 , 2 2 and 2 2 ,
F F u F u F u

p p p
y p x p y p z

Hence Eq. (115) reduces to

2 2 2

2 2 2
0 0

u u u u u u

x x y y z z x y z

Example 20 Find the fourth-order partial differential equation satisfied by the function extremizing 

the functional 

222 2

( , ) 2 ,

D

z z z
I z x y dxdy

x y x y
 where the values of z are prescribed 

on the boundary C of the domain D.

Solution Writing
2 2 2

2 2
, , , and

z z z z z
p q r s t

x y x yx y
 given functional is

     

222 2

( , ) 2

D

z z z
I z x y dxdy

x y x y
(116)

Comparing Eq. (116) with [ ( , )] ( , , , , , , , ) ,

D

I z x y F x y z p q r s t dxdy  we have

F x y z p q r s t r t s( , , , , , , , ) 2 2 22 (117)

Then, the partial differential equation satisfied by the function extremizing the functional (1) is 

given by

     
2 2 2

2 2
0

F F F F F F

z x p y q r x y s tx y
(118)
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0, 0, 0, 2 , 4 and 2
F F F F F F

r s t
z p q r s t

Hence, Eq. (118) reduces to

     

2 2 2

2 2
0 (0) (0) (2 ) (2 ) (2 ) 0r s t

x y x yx y

    
2 2 2 2 2 2

2 2 2 2
2 4 2 0

z z z

x y x yx x y y

    
4 4 4

4 2 2 4
2 0

z z z

x x y y
is well known biharmonic equation.

Example 21 Obtain the surface of minimum area, stretched over a given closed curve C, enclosing 

the domain D in the xy plane.

Solution We know that the required given problem reduces to find the extremal of the functional is

22

( , ) 1

D

z z
S z x y dxdy

x y
(119)

Writing , ,
z z

p q
x y

 comparing Eq. (119) with

     

2 2[ ( , )] (1 ) ( , , , , ) ,
D

D

S z x y p q dxdy F x y z p q dxdy

we have F x y z p q r s t r t s( , , , , , , , ) 2 2 22 (120)

Then, Euler–Ostrogradsky equation is 0
F F F

z x p y q
(121)

1 1

2 2 2 22 2

0, , ,

(1 ) (1 )

F F p F p

z p q
p q p q

Hence Eq. (121) reduces to

     

1 1

2 2 2 22 2

0

(1 ) (1 )

p q

x y
p q p q

     
1 1

2 2 2 22 2

0

(1 ) (1 )

yx

x y x y

zz

x y
z z z z

(122)
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where and .x y

z z
z z

x y
 We use the usual notations, 

2 2

2 2
,xx yy

z z
z z

x y
 and 

2

.xy

z
z

x y
 Then, 

Eq. (122) reduces to

1 3 1 3

2 2 2 2 2 2 2 22 2 2 2

2 ( ) 2 ( )
0

(1 ) (1 ) (1 ) (1 )

x x xx y yx yy y x xy y yyxx

x y x y x y x y

z z z z z z z z z z zz

z z z z z z z z

2 2 2 2(1 ) ( ) (1 ) 2 ( ) 0xx x y x x xx y yx yy x y y x xy y yyz z z z z z z z z z z z z z z z

     2 2(1 ) (1 ) 2 0xx y yy x x y xyz z z z z z z

         

2 22 2 2

2 2
1 1 2 0

z z z z z z z

y x x y x yx y

is known as the desired minimal surface.

14.17 VARIATIONAL PROBLEMS IN PARAMETRIC FORM

Consider a functional of the form 
2

1

( ), ( ) ( , , , , ) ,

t

t

I x t y t F t x y x y dt (123)

where      ,
dx dy

x y
dt dt

Subject to given fixed boundary conditions at t1 and t2, where x and y both are functions of another 

parameter t. Proceeding as in previous articles, introduce parameter in Eq. (123) so that

       
2

1

1 2 1 2( ) ( , , , , ) ,

t

t

I F t x y x y dt (124)

where 1 and 2 are functions of t and both at t1 and t2,
1

1

d

dt
 and 2

2 .
d

dt
 Now expanding the  

integrand is Eq. (124) in Taylor’s series, we get

    

2

1

1 2 1 2, , , , higher power of ,

t

t

F F F F
I F t x y x y dt

x y x y

Eliminating higher power of 

     
2

1

1 2 1 2

 ( )
,

t

t

d I F F F F
dt

d x y x y
(125)

Now,
2 2 22

11 1 1

1 1 1 1

t t tt

tt t t

F F d F d F
dt dt dt

x x dt x dt x
{ 1(t1) = 1(t2) = 0}

and

22 2 2

11 1 1

2 2 2 2

tt t t

tt t t

F F d F d F
dt dt dt

y y dt y dt y
{ 2(t1) = 2(t2) = 0}
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Hence Eq. (125) may be 

     
2

1

1 2 ,

t

t

d I F d F F d F
dt

d x dt x y dt y

Applying extremum condition 
 ( )

0,
d I

d
 we have

2

1

1 2 0

t

t

F d F F d F
dt

x dt x y dt y

Giving   0
F d F

x dt x
(126)

and    0
F d F

y dt y
(127)

Equations (126) and (127) are the required Euler’s Equation in parametric form. It should be noted 

that these equations are not equations are not independent, but one equation is a consequence of the 

other to obtain the extremals.

Remarks The Weirstrassian form of Euler’s Eqs (126) and (127)

3

2 2 2
1

1

( )

x y y xF F

r
F x y

(128)

Here, r is the radius of curvature of the external, F1 is the common values of the ratios

   y

1 2 2

y y xx x
F FF

F
xyy x

Example 22 Find the externals of the functional 

1

0

2 2 2( ), ( ) ( )   

t

t

I x t y t x y a xy yx dt

Solution Putting 2 2 2( , , , ) ( )F x y x y x y a xy yx (129)

We see that the function F is positive homogeneous of the first degree and .x y

Taking advantage of the Weierstrassian form of Euler’s equation, we have

        

2 2
  1 2 2 2 3/2

1
, ,

( )

xy

x y y x

F
F a F a F

y x y

For this reason, Eq. (128) assumes in this case the form 

2 2

3

2 2 2
1

1 1
2 2

( )

x y y xF F
a a

r r
F x y

 constant, the extremals are circles.
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Example 23 Find the externals of the functional 

4 2 2
2 2

2 2
0

( ), ( ) 2 2  , and .
d x d y

I x t y t x y xy dt x y
dt dt

Subject to the initial conditions at t = 0, x = y = 0; at , 1;
4

t x y

Solution Comparing the given functional with 

4

0

( ), ( ) ( , , , , ) ,I x t y t F t x y x y dt

We have 2 2( , , , , ) 2 2F t x y x y x y xy (130)

Euler’s equation in parametric form are given by

0
F d F

x dt x
(131)

and       0
F d F

y dt y
(132)

From Eq. (130), 4 , and
F F d F

x y y
x x dt x

 where 

2 2

2 2
and .

d x d y
x y

dt dt

Using above equation in (131), we get

4 0 4 0x y y x (133)

From Eq. (130), 4 , and
F F d F

y x x
x x dt x

Using above equation in Eq. (131), we get

4 0 4 0y x x y (134)

Solve the system of Eqs (133) and (134) we get

4(5) 4 0 16 0 ( 16) 0x y x x D x

where      
d

D
dt

(135)

Auxiliary equation is (D4 – 16) = 0 or D = 2i, 2

Hence the general solution of Eq. (135) is 

       
1 2 3 4cosh 2 sinh 2 cos2 sin 2x C t C t C t C t (136)

Now differentiating Eq. (136), twice w. r . to ‘t’, we have

        
1 2 3 44( cosh 2 sinh 2 cos2 sin 2 )x C t C t C t C t (137)
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Substituting this value of x
.. 

in Eq. (134), we have

        
1 2 3 4( cosh 2 sinh 2 cos2 sin 2 )y C t C t C t C t (138)

Given that x = y = 0 when t -= 0. Hence Eqs (136) and (139) yield

C1 + C3 = 0 and C1 – C3 = 0

So that C1 = C3 = 0 (139)

Also, given that x = y = 1 when 
4

t  hence Eqs (136) and (139) yield

     
2 4 2 4sinh 1 and sinh 1

2 2
C C C C

so that C4 = 0 and 2

1

sinh
2

C (140)

Using Eqs (139) and (140) in Eq. (136) and Eq. (139) . The required extremal in parametric form

        

sinh 2

sin
2

t
x y

14.18 ISOPERIMETRIC PROBLEMS

14.18.1 Working Rules for Isoperimetric Problem

It is necessary to make a given integral 
2

1

( , , )

x

x

I F x y y dx  subject to the constraint 

2

1

( , , )

x

x

J G x y y dx

constant, such problem involve one or more constraint conditions. The necessary condition for integral 

2

1

x

x

Hdx  to be an extremum is 0,
H d H

y dx y
 where H = F G,  is called Lagrange multipliers. 

We determine the Lagrange multiplier , together with the constant of Integration arising in the solution 

of Euler’s equation and J having given constant value.

Example 24 (Dido’s problem) Find the simple closed curve of a given parameter which encloses 

a maximum area.

Solution Let l be the fixed perimeter of a plane curve between the point P and Q with abscissas x1

and x2

Thus
2

1

21
x

x
l y dx  (constraints) (141)  
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Fig. 14.5

If A is the area between x = x1, x2 and x-axis
2

1

x

x
A ydx (142)

We have to maximize Eq. (142) subject to constraints Eq. (141).

Here F = y and 21 'G y

       2  1H F G y y

Now, H must satisfy the Euler’s equation

       0
H d H

y dx y
(143)

2
1 and

1

H H y

y y y

Therefore, Eq. (143) becomes 
2 2

1 0 1
1 1

d y d y

dx dxy y

      y x c y x c y x c
2( ) ( ) ( )1 2 2 2 2

       
2 2 2 2

( ) ( )

( ) ( )

x c x c dx
y dy

x c x c

(144)

Let 2 2 1
( ) 2( ) ( )

2
x c t x c dx dt x c dx dt

Then Eq. (144) 

       1/2 1/2 2 2 2

1/2

1 1
( )  ( )

22

dt
y t dt t b y b t x c

t

                     2 2 2( ) ( )y b x c

which is the equation of circle. Hence the curve is circle.
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Example 25 Find extremals of the isoperimetric problem 
1

0

2( )

x

x

I y x y dx  given that 

1

0

x

x

ydx C

(Constant).

Solution Here F = y 2 and G = y

We write 2 .H F G y y  Now H must satisfy the Euler’s equation

0
H d H

y dx y
(145)

and 2
H H

y
y y

Therefore, Eq. (145) becomes (2 ) 0
d

y
dx

Integrating
2

2 , or ,
2 4 2

dy x a x ax
x y a y y b

dx

where , a, b are determined from the isoperimetric and boundary conditions.

EXERCISE 14.1

1. Find the extremals of the following functional

(i)
2

1

2[ ( )] (1 )

x

x

I y x y x y dx

(ii)
2

1

21
[ ( )] (1 )

x

x

I y x y dx
y

(iii)
2

1

2[ ( )] ( 2  )

x

x

I y x y xy y dx  subjected to condition 1 1 2 2( ) , ( )y x y y x y

(iv)
2

1

2 2[ ( )] ( 2  sec  )

x

x

I y x y y y h x dx

(v)
2

2 2 2

0

[ ( )] ( 4 sin )I y x y y y x dx  subjected to boundary condition 
1

(0) 0, .
2 3

y y

(vi)
2

1

2[ ( )] (2 )

x

x

I y x xy y dx

(vii)
2

1

2 2 3[ ( )] ( 2 )

x

x

I y x y y yx dx
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(viii)
2

1

2 2 2[ ( ), ( )] (2 2 )

x

x

I y x z x yz y y z dx

(ix)
1

2 2

0

[ ( ), ( )] ( )I x t y t xy yx x y dt subjected to boundary condition x(0) = y(0) = 1, 

x(1) = y(1) = 0, where , .
dx dy

x y
dt dt

(x) 2

1

[ ( )] ( ) ; (1) 0, ( ) 1

e

I y x xy yy dx y y e

2. Find the extremals and extremum value of the following functional

(i)
1

2 2

1

2

[ ( )] ( )I y x x y dx

(ii)
2

2

0

[ ( )] ( )I y x x y dx

3. Write down the Euler–Ostrogradsky insulations for the following functionals.

(i)

1

22 2

[ ( , )] 1
D

z z
I z x y dxdy

x y

(ii)

2
2 2

2 2
[ ( , )]

D

z z
I z x y dxdy

x y

(iii)

2 2 2
2 2 2

2 2
[ ( , )] 2 2 ( , )

D

z z z
I z x y zf x y dxdy

x yx y

4. Find the extremal of the functional 2 2

0

( )  y y dx  under the conditions y(0) = 0, y( ) = 1  and 

subject to the constraint 
0

1.ydx

5. Find a function y(x) for which 
1

2 2

0

( )   x y dx  is stationary given that 
1

2

0

  2,y dx y(0) = 0, 

y(1) = 0.

Answers

(i) 1
2

C
y C

x
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(ii) 2 2 2
1 2( )x C y C

(iii)
1 2sinh ( )y C x C

(iv)
1 2cosh sinh sinh cosh  log (cosh )ey C x C x x x x x

(v)
2sin cos2

3

x x
y

(vi)
7

2 3 4 5
1 2 3 4 5 6

7!

x
y C C x C x C x C x C x

 (vii) 2
1 2 3 4

3 3
cos sin

2 2

x

x x x x
y C e C e e C C

  

32
5 6

3 3
cos sin

2 2

x
x x

e C C x

(viii) 1 2 3 4( )cos ( )siny C C x x C C x x  and

   1 2 3 4 2 4( )cos ( )sin 2 sin 2 cosz C C x x C C x x C x C x

(ix)
sinh(1 )

sinh1

t
y

(x) y = ln x or log x

2. (i)
1

3 ; Value 1y
x

(ii)
2

; Value 2
2

x
y x

3. (i)

22 22 2

2
1 2 1 0

z z z z z z z

x y x y x y xy

(ii)
2 2

2 2
0

z z
r

x y

(iii)
4 4 4

4 2 2 4
2 ( , )

z z z
f x y

x x y y

  4.
1 1

(1 cos ) (2 )sin
2 2

y x x

  5. 2sin ,y n x  where n is an integer.
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14.19 SUFFICIENT CONDITIONS FOR AN EXTREMUM

14.19.1 General Definitions

1. Proper Field A family of curve y = y(x, c) is said to form a proper field in a given region D of 

the xy plane if one and only curve of the of the family passes through every point of the region D.

For example (i): Consider the circle x2 + y2 = 1. Inside the circle x2 + y2 1, the family of curve 

y = mx + c is a proper field, because there passes one and only one curve of the family through any 

point of the given circle

Fig. 14.6 Proper field

 (ii) The family of Parabola y = (x + c)2 inside the same circle x2 + y2 = 1 does not form a proper 

field since the parabola of this family inside the circle as shown in Fig. 14.7.

Fig. 14.7 Not proper field

2. Central Field If all the curves of the family y = y(x, c) pass through a certain point (x0, y0) i.e. 

if they form a pencil of curves. them they do not form a proper field in the region D. if the centre of the 

pencil (x0, y0) belongs to D. If the curves of the pencil curve the centre region D and do not intersect 

anywhere in this region, with the exception of the centre of the pencil (x0, y0) then the family y = y(x, c)

is said to form a central field.
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Fig. 14.8 Central field

For example The pencil of sinusoids y = c sin x for  o x a, a <  forms a central field. But the 

above mentioned pencil of sinusoids form a proper field in a sufficiently small neighborhood of the 

segment of x-axis for x a where  > 0, a <  as shown in Fig. 14.8. Again the above mentioned 

pencil of sinusoids does not form a proper field in a neighborhood of the segment of the x-axis, for o

x a, a >   as shown in Fig. 14.9.

Fig. 14.9

Remark: If they passes though a single point (x0, y0) Which is not in D then (x0, y0) is said to be “centre 

of the pencil of curves”

3. Field of Extremals If a proper field or a central field is formed by a family of extremal of a 

given variational problem, then it is known as an extremal field.

Fig. 14.10
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(a) Embedding in a Field of Extremal Let
2

1

[ ( )] ( , , ) 
x

x
I y x F x y y dx  be a functional with external 

y = y(x) and fixed and points (x1, y1) and (x2, y2) we can find a family of extremal y = y(x, c) such that a 

field in formed by this family with extremising curve y(x) as a member of this field for some particular 

value of  C = C1.

Let D be the domain in which y = y(x, c) forms a field. If the extremal does not lie on the boundary 

of the domain D then extremal y = y(x) is said to be embedded in an extremal field.

(b) Embedding in a Central Field Let a pencil of extremals be having centre at Point A(x1, y1) forms 

a central field in the neighborhood of the extremal y = y(x) which passes through A, then the extremal 

y = y(x) is said to be embedded in central field in Fig. 14.11.

Fig. 14.11

Remark: The slop of the tangents to the curve of the pencil at A may be chosen as a parameter of the 

family of extremals.

14.20 JACOBI CONDITION

Consider a one parameter family F(x, y, c) = 0 of planes. The C-discernment of  F(x, y, c) =  0 is the 

focus of the points is given by

( , , ) 0 and 0 
F

F x y c
c

(146)

Here, the C-Discernment included the envelope of the above family of curves, the focus of the nodal 

points and locus of cusps. If we have a pencil of curves with centre at P1(x0, y0) then P1 belongs to 

C-Discernment curve.

Fig. 14.12 (a)          Fig. 14.12 (b)

Consider a pencil of extremals y = y(x, c) passing through P1 and get its C-Discernment curve 

(x, y) = 0. Then the envelope AB of this pencil of curves belong to F(x, y) = 0. The point P1
* at which 

the extremal y = y(x) touches AB is called the conjugate point of P1.
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As shown in Figs (14.12 (a) and (b) we see that the following two situations may arise:

(i) When the conjugate point P1
* of P1 lies between P1 and P2 in this case the extrenals of the 

pencil close to P1P2 intersect and so the extremals P1P2 cannot be included in a central field. 

(Fig. 14.12(a)).

(ii) When the point P(x2, y2) lies between P1 and P1
* in this case the extrenals of the pencil close 

to P1P2 do not intersect. Hence the extremals close to P1P2 form a central field which included 

the arc P1P2.

  Therefore, to embed an arc P1P2  of the extremal in a central field of extremals, it is sufficient 

that the conjugate point of P1 does not lie on the arc P1P2. This is known as Jacobi condition.

Example 26 Is the Jacobi condition fulfilled for extremal of the functional

2 2 2

0
[ ( )] ( )d ,

a
I y x y y x x  that passes through the point A(0, 0) and B(a, 0)?

Solution Comparing the given functional with 
0

[ ( )] ( , , )
a

I y x F x y y dx

We have 2 2 2( , , ) ( )F x y y y y x (147)

The Jacobi equation is given by

( ) 0,yy yy y y

d d
F F u F u

dx dx
(148)

where
( , )y x c

u
c

 and y = y(x, c) in the equation of a pencil of extremals with centre at A(0, 0). From 

Eq. (147), 2, 0yy yyF F  and 2y yF   and so (2) yields (2 0) (2 ) 0
d

u u
dx

or 20 or ( 1) 0u u D u (149)

where .
d

D
dx

 Auxiliary of Eq. (149) is (D2 – 1) = 0 so that D  1. 

Therefore the general solution of (149) is given by

1 2cosh  sinh  u C x C x (150)

Using the condition u(0)= 0, (150) gives C1 = 0. Then Eq. (150) reduces to

u = C2 sinh x (151)

Clearly the curves of the pencil u = C2 sinh x intersect the x-axis only at the point x = 0 hence the 

Jacobi condition is fulfilled for any value of a 

Fig. 14.13 (a)                                         Fig. 14.13 (b)
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Example 27 Show that the Jacobi Condition is fulfilled for the functional 
1 2 2

1
(12 + )dxy y x x

with fixed boundaries A(–1, –2) and B(1, 0).

Solution Comparing the given functional with 
1

1
[ ( )] ( , , )I y x F x y y dx

We have 2 2( , , ) (12 )F x y y xy y x (152)

The Euler’s equation is 0  12 (2 ) 0
F d F d

x y
y dx y dx

36 ( )y x y x Ax B x

( 1) 2 2 1 1y A B B A

(1) 0 0 1 1y A B B A

A = 0 and B = –1

Then the extremal y(x)3 = x3 – 1

The Jacobi condition

( ) 0yy yy y y

d d
F F u F u

dx dx
(153)

0, 0 and 2yy yy y yF F F  then Eq. (153) gives

(0 0) (2 ) 0
d

u u
dx

Or 0 ( )  u u x C x D (154)

( 1) 0 0 ( ) ( 1)u C D C D u x C x

Which implies that u(x) is zero only at x = –1. Hence Jacobi condition is satisfied.

Example 28 Is the Jacobi condition fulfilled for the extremal passing through the condition the 

points A(0, 0) and B(a, 0) of the functional 
22 2

0
[ ( )] ( 4 ) ,

a x
I y x y y e dx

1

2
a n

Solution Comparing the given functional with 
0

[ ( )] ( , , )
a

I y x F x y y dx  then 

We have 
22 2( , , ) ( 4 )x

F x y y y y e (155)

Then the Jacobi condition is

( ) 0yy yy y y

d d
F F u F u

dx dx

(156)

From Eq. (155), 8, 0 and 2yy yy y yF F F  then Eq. (156) gives ( 8 0) (2 ) 0
d

u u
dx

or 2 24 0 ( 1) ( ) 0 1 0 2u u D u x D D i (157)
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Its general solution is u(x) = C1 sin 2x + C2 cos 2x from the condition u(0) = 0 we find that C2 = 0 

so that u(x) = C1 sin 2x

If ,
2

a  then the functional u(x) does not vanish for 0 < x a. and Jacobi condition is fulfilled.  

But if 
2

a  then the solution of the Jacobi equation u(x) = C1 sin 2x vanishes at the point ,
2

x

which lies in the interval [0, a] and on the arc of the extremal y = 0, (0 < x a) there is a point conjugate 

to the point A(0, 0). Thus for 
2

a  there does not exist a central field of extremals that includes the 

given extremal.

Note The Jacobi condition is necessary for attaining an extremum of the functional I[y(x)], i.e., On the 

extremal AB that realizes an extremum, the point conjugate to A cannot lie in the interval x0 < x < x1.

14.21 WEIERSTRASS FUNCTION

E(x, y, p, y ) Consider the extremum of the functional

1

0
0 0 1 1[ ( )] ( , , ) , ( ) , ( )

x

x
I y x F x y y dx y x y y x y (158)

Further, suppose that the extremal C that passes through the points A(x0, y0) and B(x1, y1) satisfies 

the Jacobi’s condition. Hence the extremal ‘C’ can be included in the field whose slope in P(x, y) as 

shown in the Fig. (14.13). To determine the sign of an increment  I of a functional I which obtains 

when passing from an extremal curve C to some other neighboring admissible extremal C* we will 

transform the increment.

( , , ) ( , , ) ,

CC

I F x y y dx F x y y dx (159)

where ( , , )

C

F x y y dx  and ( , , )

C

F x y y dx  denote the value of the functional

1

0

[ ] ( , , )
x

x
I y F x y y dx  taken along the arc of C* or C respectively.

Consider the auxiliary functional F x y p y p F x y p dxp

C

( , , ) ( ) ( , , )

If
dy

y
dx

(160)

which reduces to ( , , )

C

F x y y dx  on the extremal C, since 
dy

y p
dx

 on extremals of the field. Now 

re-writing the functional Eq. (160), we have

( , , )  ( , , )  ( , , )p p

C C C

F x y p dx y F x y p dx p F x y p dx (161)

which is the integral of an exact differential. In fact, the differential of the functional I*[x, y] into which 

the functional I[y(x)] is transformed on the extremals of the field has the form

dI F x y y y F x y y dx F x y y dxy y( , , ) ( , , ) ( , , )
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which differs form the integrand in Eq. (161) with y  replaced by p, the slope of the tangent line to the 

extremal of the field. Thus, on the extremal C the integral of (160) coincides of an exact differential and, 

hence, does not depend on the path of integration. It follows that

F x y y dx F x y p y p F x y p dx

C

p

C

( , , ) ( , , ) ( ) ( , , ) (162)

not only for C = C* but for any choice of C* as well.

Using Eqs (162), (159) may be re-written as

I F x y y dx F x y p y p F x y p dx

C

p

C

( , , ) ( , , ) ( ) ( , , )

or I F x y y F x y p y p F x y p dxp

C

( , , ) ( , , ) ( ) ( , , )

( , , , ) ,

C

I E x y p y dx (163)

where       E x y p y F x y y F x y p y p F x y pp( , , , ) ( , , ) ( , , ) ( ) ( , , ) (164)

and ( , , , )E x y p y  is known as the Weierstrass function, From (163), it clearly follows that 

(i) A sufficient condition for the functional I to attain a minimum on the extremal C is E  0 since 

it implies I  0 similarly

(ii) A sufficient condition for a maximum is E  0  since it implies I  0.

(iii) Further a sufficient condition for a weak minimum is E  0 (or for a weak maximum a sufficient 

conditions is E  0) is satisfied for values of x, y close to the values of x, y on the extremal C

under consideration, and for the values of y  close to p(x, y) on the same extremal.

(iv) The sufficient condition for a strong minimum (or strong maximum) the same inequality must 

hold for the same x, y but now for arbitrary y . Since in the case of a strong extremum, of close 

lying curves may have arbitrary direction of tangent lines and in the case of a weak extremum 

the values of y  on close lying curves arc close  to the value of y  = p on the extremal C. The 

following sufficient condition for the functional I to attain an extremum on the curve C.

14.21.1 For Weak Extremum

(i) The curve C is an extremal satisfying the boundary conditions Eq. (159).

(ii) The extremal C must be included in the field of extremals or Jacobi condition must be 

fulfilled.

(iii) The Weierstrass function E does not change sign at point (x, y) close to the curve c or for values 

of y close to p(x, y) on the extremal.  For a minimum, E  0 and for a maximum E  0.

14.21.2 For Strong Extremum

(i) The curve C is an extremal satisfying the Boundary conditions in Eq. (159).

(ii) The extremal C must be included in the field of extremals or Jacobi condition must be 

fulfilled.

(iii) The Weierstrass function E does not change sign at any point (x, y) close to the curve  C, and 

for a maximum E  0.
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Note We can show that the weierstrass condition is necessary. More precisely, if in a central field 

including the extremal C, the weierstrass function E has opposite signs at points of the extremal for 

contain y , then a strong extremum is not attained, if this property occurs for values of y arbitrary close 

to p, then a weak extremum is not attained.

Example 29 Investigate for the functional 
1 2 3

0
( ) ,y x dx  given y(1) = 1. 

Solution Comparing the given functional by 
1

0
[ ( )] ( , , )I y x F x y y dx

2 3( , , ) ( )F x y y y x (165)

 from (1) 0, 2
'

F F
y

y y

Then the Eulers equations 0 0 (2 ) 0  0
F d F d

y y
y dx y dx

y = C1x + C2 (166)

given 1 2(1) 1 1 1y C C (167)

(2) 1

dy
p C

dx
(168)

Therefore, the Weierstrass functional is

    E x y p y F x y y F x y p y p F x y pp( , , , ) ( , , ) ( , , ) ( ) ( , , )

=
2 3 2 3 2 2( )2 ( ) ( )2y x p x y p p y p y p p

= 2( )( ) ( )2 ( )( 2 ) ( )y p y p y p p y p y p p y p

= 2
1 1( ) ( )y C p C

         ( , , , ) 0E x y p y

Therefore, the given functional Eq. (165) has strong minimum on all its extremals

Example 30 Investigate the functional 
1 2

0
(1 ) ,x y dx  given y(0) = 0, y(1) = 1.

Solution Comparing the given functional with 
1

0
[ ( )] ( , , )I y x F x y y dx  then

2( , , ) (1 )F x y y x y (169)

given y(0) = 0, y(1) = 1. Here ( , , )F x y y  is independent of y.

Then the Eulers

       1
12 (1 ) = 

' 2(1 ) (1 ) 2

CF C C
C y x C y p C

y x x
(170)
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Integrating equations (170)

y = C1log(1 + x) (171)

Given
1(0) 0 0 log(1 ) 0 0y C x

        
1 1

1
(1) 1 1 log2

log2
y C C (172)

Therefore, the Weierstrass functional is

   E x y p y F x y y F x y p y p F x y pp( , , , ) ( , , ) ( , , ) ( ) ( , , )

= 2 2(1 ) (1 ) ( )2 (1 )x y x p y p p x

= ( )1 2 22 2 2
x y p py p

=

2

2 1( ) (1 ) (1 )
1

C
y p x y x

x
E  0 y .

Hence the given function has strong minimum.

Example 31 Investigate for an extremum the functional 
1 2

0

1
[ ( ) 2  

2
I y x x y y dx  given 

y(0) = 0, y(1) = 0. 

Solution Comparing the given functional with 
1

0
[ ( )] ( , , )I y x F x y y dx  then

we have 21
( , , ) 2

2
F x y y x y y (173)

Euler’s equation is 0
F d F

y dx y
(174)

From (1) 2,
F F

y
y y

 so that 
2

2
2 ( ') 0 or 2

d d y
y

dx dx
 integrating 

12
dy

x C
dx

So that 2
1 2y x C x C (175)

Using the given boundary conditions y(0) = 0 and y(1) = 0. 

Eq. (175) Yields C2 = 0 and C1 + C2 + 1 = 0 so that C1 = –1, C2 = 0

Then from Eq. (175)

y = x2 – x (176)

Thus by Eq. (176), now the Jacobi’s equation is given by 

( ) 0yy yy y y

d d
F F u F u

dx dx
(177)

0, 0, and 1.yy yy y y yF F F y F  Then Eq. (177) gives
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Yields
2

2
0 or 0,

du d u

dx dx
 giving 0 ( )  u u x C x D (178)

(0) 0 0 ( ) , ( 0)u D u x C x C

since u(x) = C·x does not vanish (for C  0) anywhere in [0, 1] except at x = 0 we find that the 

Jacobi condition is satisfied and extremal (4) can be included in the centre field of extremals given by 

y = x2 + C1x with centre at the origin O(0, 0) as shown in Fig. 14.14.

Fig. 14.14

Now, the Weierstrass function is given by

E x y p y F x y y F x y p y p F x y pp( , , , ) ( , , ) ( , , ) ( ) ( , , ) (179)

Form Eq. (173),

2

( , , ) 2
2

p
F x y p x y (180)

From Eq. (180),

Fp(x, y, p) = p (181)

Using Eqs (173), (180) and (181), (179) reduces to 

2 2

( , , , )  2 2 ( )
2 2

y p
E x y p y x y x y y p p

2 2 2( )
( , , , )  

2 2 2

y p y p
E x y p y p y

Showing that E  0 for arbitrary y . Hence a strong minimum is attained on the extremal for using 

Eq. (176) we have

      

1 12 2

0 0

1 1
[ ( ) 2  2 (2 1)  

2 2
I y x x y y dx x y x dx

=
1 2 2

0

1
4 3  (  2 1)

2
x x dx y x x y x

=

1
3 2

0

4 3 1 1
4 3 .

3 2 2 3 2 2 3

x x x
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Thus, the value of the strong minimum on the extremal u is 
1

.
3

Example 32 Test for an extremal the functional 3

0
[ ( ) ( )  

a
I y x y dx  given y(0) = 0, y(a) = b a > 0, 

b > 0. 

Solution Comparing the given functional with 
0

( , , )
a

F x y y dx  we have

3( , , ) ( )F x y y y (182)

Euler’s equation is

0
F d F

y dx y
(183)

from 20, 3 so that (6 )  6
F F d F d

y y y
y y dx y dx

Fig. 14.15

with these values Eq. (183) gives

1 20 ( )  y y x C x C (184)

using the boundary condition y(0) = 0 and y(a) = b.

C2 = 0 and C1a + C2 = b so that C2 = 0 and 1 .
b

C
a

Then from (184)

( )
b

y x x
a

(185)

Thus an extremal and the given functional is attained only on the straight lines given by Eq. (185).

Here the pencil of straight lines ( ) ,
b

y x x
a

 centered at the point O(0, 0) forms a central field that 

includes the extremals ( ) ,
b

y x x
a

 as shown in the Fig. 14.15 by straight line OB from Eq. (182).

3( , , )F x y y p  and so 2( , , ) 3pF x y p p (186)
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Now the Weirestrass function is given by

E x y p y F x y y F x y p y p F x y pp( , , , ) ( , , ) ( , , ) ( ) ( , , ) (187)

Using (182), (186) and (187) reduces to

3 3 2 2( , , , ) ( )3 ( ) ( 2 )E x y p y y p y p p y p y p (188)

On the extremal ( ) ,
b

y x x
a

 the slope of the field 0
b

p
a

 and if y  assumes values close to 

,
b

p
a

 then E  0 and hence all the conditions that are sufficient for attaining a weak minimum are 

satisfied. Therefore a weak minimum in attained on the extremal ( ) .
b

y x x
a

On the other hand. if y  takes on arbitrary, values them (y  + 2p) may have any sign and so the 

function E changes sign, and the condition sufficient for attaining a strong minimum are not satisfied. 

further, using this in weiestrass function on the straight line ( ) .
b

y x x
a

Example 33 Test for an extremum the functional 2 4

0
[ ( ) (6 )

a
I y x y y yy dx  given y(0) = 0, 

y(a) = b a > 0, b > 0.

Solution

Comparing the given functional with 
0

( , , )
a

F x y y dx  we have

2 4( , , ) (6 )F x y y y y yy (189)

2 3,    12 4
F F

y y y y
y y

Then Euler’s equation gives

0
F d F

y dx y
(190)

3 2 2(12 4 ) 0 12 12 0 12 12 0
d

y y y y y y y y y y y
dx

2
1 2 ( 12 12 ) 0 0 ( )  y y y y x C x C (191)

The boundary condition hold of the line ( ) ,
b

y x x
a

 which can be included in the pencil y(x) = C1·x,

of extremals that from a central field.

3 2( , , ) and ( , , ) 3pF x y y p F x y p p (192)

Now the Weirestrass function is given by 

    E x y p y F x y y F x y p y p F x y pp( , , , ) ( , , ) ( , , ) ( ) ( , , ) (193)

    
2 4 2 4 3( , , , ) 6 6 ( )(12 4 )E x y p y y y yy p p yp y p p p y

= ( ) ( )y p y py p
2 2 22 6 3
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  Its sign is always opposite to the sign of the last factor 2 22 (6 3 ).y py p  This factor 

vanishes and may change its sign only when y  passes through the value 26 2 ,y p p  if 
26 2 0 or 3.p p

Then for arbitrary y  we have 2 22 (6 3 ) 0y py p  if 6 – 2p
2 > 0 or 3p  then the expression 

2 22 (6 3 )y py p  changes its sign. If at the same time y  in very close to p, then the latter expression 

for p > 1 retains the positive sign, and for p < 1, it retains the negative sign. Consequently if / 1p b a

or b > a, then there is a weak minimum. For E > 0, provides y  is sufficiently close to p. If p = b/a

> 1 or b > a the there is a weak minimum. If p = b/a  3 there is a strong maximum, for this case E

 0 regardless of y  when / 3p b a , then there is no strong extremum, neither minimum, nor 

maximum. Fig. 14.16.

Fig. 14.16

14.22 LEGENDRE CONDITIONS

Consider the extremum of the functional

1

0
0 0 1 1[ ( )] ( , , ) , ( ) , ( )

x

x
I y x F x y y dx y x y y x y (194)

 Further, suppose that the extremal C that passes through the points A(x0, y0) and B(x1, y1) satisfies 

the Jacobi’s condition. Hence the extremal ‘C’ can be included in the field whose slope in P(x, y) as 

shown in the figure. To determine the sign of an increment I of a functional I which obtains when 

passing from an extremal curve C to some other neighboring admissible extremal C* we will trans 

form the increment

( , , ) ( , , )

CC

I F x y y dx F x y y dx (195)

where ( , , )

C

F x y y dx  and ( , , )

C

F x y y dx  denote the value of the functional 
1

0

[ ] ( , , )
x

x
I y F x y y dx

taken along the arc of C*or C respectively.

Consider the auxiliary functional F x y p y p F x y p dxp

C

( , , ) ( ) ( , , )  if 
dy

y
dx

(196)
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which reduces to ( , , )

C

F x y y dx  on the extremal C, since 
dy

y p
dx

 on extremals of the field.

Now re-writing the functional (3), We have

( , , )  ( , , )  ( , , )p p

C C C

F x y p dx y F x y p dx p F x y p dx (197)

which is the integral of an exact differential. In fact, the differential of the functional I*[x, y] into which 

the functional I[y(x)] is transformed on the extremals of the field has the form

dI F x y y y F x y y dx F x y y dxy y( , , ) ( , , ) ( , , )

which differs from the integrand in Eq. (197) with y replaced by p, the field. Thus, on the extremal C

the integral of Eq. (196) coincides of an exact differential and, hence, does not depend on the path of 

integration. It follows that

F x y y dx F x y p y p F x y p dx

C

p

C

( , , ) ( , , ) ( ) ( , , ) (198)

not only for C = C* but for any choice of C* as well.

Using Eqs (198), (192) may be re-written as

       

I F x y y dx F x y p y p F x y p dx

C

p

C

( , , ) ( , , ) ( ) ( , , )

or       I F x y y F x y p y p F x y p dxp

C

( , , ) ( , , ) ( ) ( , , )

       ( , , , )

C

I E x y p y dx (199)

where E x y p y F x y y F x y p y p F x y pp( , , , ) ( , , ) ( , , ) ( ) ( , , ) (200)

Let us assume that the function F(x, y, y ) has third derivative with respect to y , then by Taylor’s 

formula we have

      21
( , , ) ( , , ) ( ) ( , , ) ( ) ( , , )

2!
p y yF x y y F x y p y p F x y p y p F x y q (201)

where q lies between y  and p.

Substituting the value of F(x, y, y ) given by (8) in Eq. (200) we get

    21
( , , , ) ( ) ( , , )

2
y yE x y p y y p F x y q (202)

Showing that the function E does not change sign if ( , , )y yF x y q  does not. It follows that while 

investigating for a weak extremum the function ( , , )y yF x y q  must retain sign for values of x and y

at points close to the points of the extremal under consideration, and for value of q close to p(x, y), if 

( , , ) 0y yF x y y  at points of the extremal C. Then by virtue of continuity of this derivative maintains 

sign both at points close to the curve C and for values of y  close to the values of y  on the curve C*
.
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Thus for testing for a weak minimum, the condition E  0 may be replaced by 0y yF  on the 

extremal C and for a weak maximum the condition E  0 may be replaced by 0y yF  on C this is 

known as the Legendre Condition. 

On the other hand, while testing for a strong minimum the condition E  0 may be replaced by the 

condition ( , , ) 0y yF x y q  at point (x, y) close to points of the curve C for arbitrary value of q. In this 

case, of course, we assume that the formula Eq. (201) holds good for any y . Similarly while testing for 

a strong maximum the condition E  0 may be replaced the condition ( , , ) 0y yF x y q  at point (x, y)

close to points of the curve C for arbitrary values of q. Here again we assume that (8) holds good for 

any y .

Example 34 Investigate the given functional 
2 4 2

0
[ ( )] ( ) ,  (0) 1,  (2) 5.I y x y y dx y y

Solution Comparing the given functional with 
2

0
( , , ) ,F x y y dx  we have

4 2( , , ) ( )F x y y y y (203)

30,  4 2 .
F F

y y
y y

 Then Euler’s equation gives

0
F d F

y dx y
(204)

3 2 20 (4 2 ) 0 12 2 0  ( 12 2) 0
d

y y y y y y y
dx

1 2 0  y y C x C

The extremals are a straight lines y = C1x + C2. The descried extremal satisfying the given boundary 

conditions y(0) = 1, y(2) = 5. 

y(0) = 1 C2 = 1   and y(2) = 5 C1 + C2 = 1 solving C1 = 2, C2 = 1

Then extremal y = 2x + 1. In the given case 212 2y yF y  and at all points of the extremal 

y = 2x + 1 we have 50 0y yF

Legendre strong condition is fulfilled and the extremal y = 2x + 1 may be included in the extremal 

field. This is also evident directly. The extremal y = 2x + 1 lies in the one-parameter family of extremals 

y = 2x +  (where is a parameter) that form a proper field.

Example 35 The given functional 
1 2 2 2

1
( ' 12 ) ( 1) 1, (1) 1x y y dx y y  satisfies the Legendre 

Condition or not?

Solution Comparing the given functional with 
1

1
( , , )F x y y dx  then

2 2 2( , , ) ( 12 )F x y y x y y (205)

224 , 2 .
F F

y x y
y y

 Then the Euler’s equation  0
F d F

y dx y

  2 2 224 (2 ) 0 24 (4 2 ) 0  2 12 0
d

y xy y y xy x y x y xy y
dx
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which is Homogenous linear different equation then its general Solution is  y = C1x
3 + C2x

4.

The extremal y = x3 satisfies the given boundary condition.  It cannot be included in the field. The 

only one parameter family of extremals that contain it in the family y =  x
3. This field does not cover 

the region containing the point with abscissa x = a (the extremals of this family do not pass through 

points of the y-axis with ordinates different from zero

In the given case 22y yF x  and the Legendre Condition is not fulfilled for x = 0. 

Example 36 Examine the extremal of the functional 
1

2

0

1
[ ( )]  ,

x y
I y x dx

y

y(0) = 0, y(x1) = y1

Solution Comparing the given functional with 
1

0
( , , ) .

x
F x y y dx  Then

21
( , , )

y
F x y y

y
(206)

Euler’s equation is

0
F d F

y dx y
(207)

Since F(x, y, y ) is independent of x then Euler’s equation reduced to

Constant
F

F y C
y

  2 1/2 2 1/21 1
(1 ' ) (1 ' ) 2

2
y y y y C

y y
 using Eq. (206)

  2 2 2 1/2 2
11 (1 ) (1 ) 2 ,y y C y y y C (208)

where 1 2

1
2C

C
 introduce the parameter by putting cot .

dy
y t

dx
(209)

Then from Eq. (208)

21 1
12

sin (1 cos2 )
21 cot

C C
y C t t

t

From Eq. (209)

       21
1 1

2C sin cos  
2 sin  (1 cos2 )

' cot

t t dtdy
dx C t dt C t dt

y t

Integrating   1
1 2 2

sin 2
(2 sin 2 ) .

2 2

Ct
x C t C t t C



Calculus of Variations 14.55

Hence, the equation of the given curve in parametric form is given by

      1 1
2 (2 sin 2 ) and  (1 cos2 ).

2 2

C C
x C t t y t (210)

Taking 1

2

C
a  and 2t =  then Eq. (210) reduce to

       
2 ( sin ) and (1 cos )x C a y a (211)

Now given condition (0) 0, 0 (1 cos ) 0y a  so C2 = 0

Then Eq. (211) reduces to

         ( sin ), (1 cos )x a y a (212)

which is equal of a family of eyeloids, where a in determined from the condition that Eq. (212) must 

pass through the second boundary point B(x1, y1) if x1 < 2 as shown in the Fig. 14.17.

Fig. 14.17

Now from (206) we have

3
2

1/2 2 2

1
and so  0 for any

1 ' (1 )

y y y

y
F F y

y y y y

Hence, by Legendre condition, for x1 < 2 a, a strong minimum is attained on the eyeloid Eq. (212).

Example 37 Examine the extremal of the functional 
20

[ ( )] ,
'

a y
I y x dx

y
y(0) = 1, y(a) = b, a

> 0, 0 < b < 1.

Solution Comparing the given functional with 
0

( , , )
a

F x y y dx

we have 
2

( , , )
y

F x y y
y

(213)

Since F(x, y, y ) is function of y and y  only then the

 Euler’s equation of the from Constant
F

F y C
y
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2 3 2 2 2

1 1

2 3 3 3
 where

' 4 4

y y y
y C C

y y y C C

  1/2
1 11/2

1
2

2

dy
C y dy C dx

dx y

Integrating 1/2 2
1 2 1 2or ( )y C x C y C x C (214)

Which is a family of parabolas using the given condition y(0) = 1, then Eq. (214) gives C2 = 1. Now 

the Pencil of Parabolas y = (C1x + 1)2 with centre y = 0 at A(0, 1) has C1-discriminant curve y = 0 as 

shown in the Fig. 14.18. Two parabola of pencil pass through the point B(a, b). There is a conjugate 

point A* to a point A, lying on the arc AB of one of these parabolas (L1). The arc AB of the other 

parabola (L2) contains no conjugate point to A. Therefore, the Jacobi condition for the arc L2 holds and 

consequently this arc may give an extremum.

At a neighborhood of this extremal arc 
4

6
0y y

y
F

y
 for arbitrary y . But due to this fact we 

cannot say that a strong minimum can be attained on the arc L2 since the function 
2

( , , )
y

F x y y
ycannot be represented in the form

      
21

( , , ) ( , , ) ( ) ( , , ) ( , , ).
2!

p y yF x y y F x y p y p F x y p y p F x y q

For arbitrary values of y  due to the presence of a discontinuity of the function F(x, y, y ) when y  = 0. 

However, we can only say that a weak minimum achieved on L2, since for values of y  close to the 

slope of the field on the curve L2 we have an expansion of the function F(x, y, y ) by Taylor’s formula. 

A complete discussion of this function for  an extremum involves the consideration of Weiestrass 

function given by 

    E x y p y F x y y F x y p y p F x y pp( , , , ) ( , , ) ( , , ) ( ) ( , , )

i.e.,  
2

2 2 3 2 3

2 ( ) (2 )
( , , , ) ( ) .

y y y y y p y p
E x y p y y p

y p p y p

Fig. 14.18
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Since the factor (2y  + p)  change sign for arbitrary y  hence with help “Note” of Weiestrass function 

Article. We conclude that a strong minimum cannot be attained on the arc L2.

14.23 LEGENDRE CONDITION FOR QUADRATIC FUNCTION

A quadratic functional L2(h) specified on some normed space is said to be strong-positive if there exists 

a constant k > 0 such that 
2

2 ( )L h k h  for all h

A sufficient condition for a minimum. For a functional I[y(x)] defined in a normed space to have a 

minimum at a stationary point y = y0, it is sufficient that when y = y0 the second variation be strong-

positive, that the following condition be fulfilled:

22
0[ , ]I y y k y  where k = constant, k > 0. Let us seek the extremum of the functional

1

0

1 2 1 1 2, ,.... ( , , ..., , ,  ,... )   

x

n n n

x

I y y y F x y y y y y y dx (215)

dependent on n-functions y1(x), y2(x), …yn(x) with the boundary conditions

0 0 1 1( ) , ( ) ( 1, 2, ..., )k k k ky x y y x y k n (216)

Legendre’s strong condition consists in the requirement that the following inequalities hold true

      

1 1 1 2 1

1 1 1 2 2 1 2 2 2

2 1 2 2

1 2

...

...
0, 0,... 0

....

n

n

n n n n

y y y y y y

y y y y y y y y y y

y y
y y y y

y y y y y y

F F F

F F F F F
F

F F

F F F

(217)

at all points of the indicated extremal of the functional Eq. (215). 

Jacobi’s strong condition consists in the requirement that the interval [x0, x1] not contain a point 

conjugate to the point x0. Legendre’s strong condition Eq. (217) in conjunction with Jacobi’s strong 

condition ensures the existence of at least a weak minimum of the functional Eq. (215).

Example 38 Test for an extremum the functional 

1
2 2

0

, ( )I y z y z dx (218)

(0) 0,  (0) 0 and (1) 1, (1) 2y z y z (219)

Solution Euler’s equations for the functional Eq. (215) are 0 and  0y z

1 2 3 4( )  and ( )y x C C x z x C C x

Utilizing the conditions Eq. (216) we get

1 2 3 40,  1,  0  2C C C C

The desired extremal

y(x) = x and z(x) = 2x (220)

is a straight line passing through the origin.

We have

       2, 0, 0, 2y y y z z y z zF F F F
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Legendre’s strong condition is fulfilled:

2 0
2 0, 4 0.

0 2

y y y z

y y
z y z z

F F
F

F F

(221)

Let us now check to see whether Jacobi’s strong condition is fulfilled of not.

One of the definitions of a conjugate point is the following that. Suppose we have a family of 

extremals of the functional Eq. (221) issuing from an initial point (x0, y10, y20, y30, ..., yn) in close-lying 

but linearly independent directions. 

The point x* [x0, x1] is said to be conjugate to the point x0 if there exists a sequence of extremals 

issuing from an initial point and arbitrarily close to the given extremal such that each of these extremals 

intersects the given extremal, and abscissas of the intersection points converge to the point x*.

In the given example, the extremals are the straight lines Eq. (220). All the extremals issuing from 

the point (0, 0, 0) intersect the extremal Eq. (220) only at that point. Hence, the interval [0, 1] of 

variation of x does not contain a point conjugate to the point x0 = 0. Thus both Legendre’s strong 

condition and Jacobi’s strong condition are fulfilled, so that the extremal Eq. (220) gives the functional 

Eq. (218) a weak minimum.

EXERCISE 14.2

1. Examine the following functional are central and proper field.

  (i)
2 2

3( ) , 1
4 9

x y
y x c

  (ii) 2( 2 )y c x x

  (a)  0 x  1 (b) –1 x  3 (c)
1 3

2 2
x

  (iii) sin
4

y c x

  (a)
4 2

x (b)
3

x (c) 2
8

x

  (iv) 2 2, 1x c
y e x y

2. Indicate the proper and central field of extremals for the following functionals

  (i) 2 2

0
[ ( )] ( ) 0

a
I y x y y dx a

  (ii) 2

0
[ ( )] ( 2 ) , (0) (1) 0

a
I y x y xy dx y y

  (iii) 2

0
[ ( ) (2 ) , (0) 1, (1)

a x
I y x e y y dx y y e

  (iv) 2 2

0
[ ( )] ( ) , ( 0, ) (0) 0, ( ) 0

a
I y x y y dx a a k y y a

  (v)
2 2 2

0
[ ( ) ( ) , (0) 1, (2) 3I y x y x dx y y
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3. Is the Jacobi condition fulfilled for the extremals.

  (i)
1 2 2

1
[ ( )] (12 ) , ( 1) 2, (1) 0I y x xy y x dx y y

  (ii) 2 2

0
[ ( )] ( 9 3 ) (0) 0, ( ) 0

a
I y x y y x dx y y a

4. Check the possibility of including an extremal in the field for the following functional 

(Legendre Condition)

  (i)
1 2

0
[ ( )] ( ) , (0) 0, (1) 0I y x y yy dx y y

(ii)
3

0
[ ( )] , (0) 0, ( ) 0

a
I y x y dx y y a b

  (iii) I y x ny y dx y x y y x y y
x

x
[ ( )] , ( ) , ( ) ,1 02

0 0 1 1
0

1

  (iv)
2 4

0
[ ( )] (6 , (0) 0, ( ) , 0, 0

a
I y x y y dx y y a b a b

5. Test the following functional for extremal.

  (i)
3 2

0
[ ( )] ( ) , (0) 1, (2) 0I y x xy y dx y y

  (ii)
1

1 1 1
0

1
[ ( )] , (0) 0, ( ) , 0, 0I y x dx y y x y x y

y

  (iii)
3

2

21
[ ( )] , (1) 1, (2) 4

x
I y x dx y y

y

  (iv)
3 2

1
[ ( )] (12 ) , (1) 0 (3) 26I y x xy y dx y y

  (v)
/4 2 2

0
[ ( )] (4 6 sin 2 ) (0) 0, ( /4) 1I y x y y y x dx y y

  (vi)
2 2 2

0
[ ( )] ( 2 ) , (0) 0, (2) 3I y x y y xy dx y y

6. Show that the extremal y = 0 of the variational problem

   

1 2 3

0
[ ( )] ( ) , (0) (1) 0I y x y yy dx y y

  give the functional a weak minimum.

7. Test the following functionals for extremal.

  (i)
1 2 2

0
[ ( ), ( )] ( 1 ) , (0) 0, (1) 2, (0) 0, (1) 4I y x z x y z dx y y z z

  (ii)
1 2 2

0
[ ( ), ( )] ( 4 ) , (0) 0, (1) 1, (0) 0, (1) 0I y x z x y z z dx y y z z

8. Find the shortest distance between the points A(1, 0, –1) and B(0, –1, 1) lying on the surface 

x + y + 2 = 0.
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Answer

1.

(i)    Proper field

(ii)   (a) Central field      (b) a field is not formed        (c) Proper field

  (iii)  (a)  Central field     (b) Proper field                      (c) a field is not formed 

  (iv)  A field is not formed since this family of curves does not cover the entire domain D

2.

  (i) y = C1 cosh x from a proper field of extremals

  (ii) The extremal 2(1 )
6

x
y x  is included in the central field of extremals 

3

1
6

x
y C x

with centre at the point O(0, 0).

  (iii)  The extremal y = ex may be included in the Proper field of extremals y = ex + c.

  (iv) If a < , then the extremal y = 0 may be included in the central field of extremals y = c sin 

x with centre at the point O(0, 0) for a >  the family of curves y = c sin x does not form 

a field.

  (v)  The extremal y = x + 1 is included in the Proper field y = x + c.

3. (i)  The Jacobi condition is fulfilled        (ii) The Jacobi condition is fulfilled for any ‘a’

4 . (i)  Yes (ii) Yes (iii) Yes (iv) Yes but Legendre’s condition is only fulfilled for 1
b

a

5.  (i) A strong minimum is attained for 
2

1
4

x
y

  (ii) A weak minimum is attained for 1

1

xy
y

x

  (iii)  A weak minimum is attained for y = x2

  (iv)  A strong minimum is attained for y = x2 – 1

   (v)  A strong maximum is attained for y = sin 2x

  (vi)  A strong maximum is attained for 
sinh

sinh 2

x
y x

7. (i) On the extremal y = 2x, z = 4x is attained a weak minimum.

(ii) The extremal is the parabola y = x, z = x2 – x, which is included in the central field of 

extremals

(8) 6

SUMMARY

Following topics have been discussed in this chapter:

1. Function

Let X and Y be any two non-empty sets and there be correspondence or association between the 

elements of X and Y such that for every elements of X and Y there exists a unique element y Y

written as y = f (x) then we say that y is a mapping or function from X to Y and written as f: X Y

such that y = f (x) x X, y Y



Calculus of Variations 14.61

2. Functional

Let there be functional belonging to class of functions. Then a variable quantity denoted by I[y(x)] is 

a functional if to each function belonging to the class of functions there is definite value of I.

3. Closeness of Curves

In the calculus of real variable we have defined the continuity of function at x = a. As the variable x

is becoming closer to a, Then f (x) becomes closer to f (a).

Here in case of functional, domain is the class of functions and here idea of closeness of y(x) and 

y1(x) is to say that the absolute value of their difference, i.e., 1( ) ( )y x y x  is small for all x for which 

y(x) and y1(x) are defined.

If it happens then we say y(x) is close to y1(x) in the sense of zero order proximity. 

2

1

[ ( )] [ , ( ), ( )] .

x

x

I y x f x y x y x dx  Curve y(x) and y1(x) are said to be close in the sense of nth order

proximity if 1( ) ( ) ,y x y x 1( ) ( )y x y x 1( ) ( )n n
y x y x  are small for the values of for x which 

these functions are defined.

4. Continuity of Functional

Domain of functional is a set of functions therefore continuity of functional at some   function is 

defined as following:

Functional I[y(x)] is said to be continuous at y = y0(x) in the sense of nth order proximity if for 

given any positive number ,  > 0 such that I y x I y x( ) ( )0

for 0 0 0( ) ( ) , ( ) ( ) ... ( ) ( )y x y x y x y x y x y x

Linear Property Let the functional I[y(x)] be defined in the linear space M of the functions y(x).

Functional I[y(x)] is said to be linear if it satisfies the following conditions

(a) I c y x c I y x( ) ( )  where c is any arbitrary constant.

(b) 1 2 1 2 ( ) ( ) ( ) ( )I y x y x I y x I y x , where y1(x) and y2(x) M

5. Variation of Functional

In Calculus of real variable, in case of the function y = y(x) of single variable. We have studied that 

incremental ratio 
y

x
 tends to f (x), when x tends to zero suggesting there by 

y

x
 differs from 

function of called f (x) by a small quantity  say where  is function of x and tends to zero as 

x  0.

( ) ( , ) ( ) ( , ) ( ) ( , )
y

f x x x y f x x x x A x x x x x
x

where A(x) is a function of x. Principal part of the increment x, i.e. f (x) x is known as differential in 

y. Likewise in case of functional I[y(x)], the increment I is given as I I y x y x I y x( ) ( ) ( )
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(Domain of functional is functional and (y(x)) denotes the corresponding change) which can be 

written as 

I L y x y x y x y y( ), ( ) ( ), max

where L[y(x), y(x)] denotes the functional linear in y and a(y(x), y) tends to zero as the maximum 

value of y  0. Principal part of the increment y, i.e. L[y(x), y(x)] is called the variation of the 

functional and is denoted by I.

6. Fundamental Lemma of Calculus of Variation

If for every continuous function h(x),
2

1

( ) ( ) 0,

x

x

x x dx  where the function (x) is continuous in 

the closed interval [x1, x2], then (x) = 0 in the closed interval  [x1, x2].

7. Extremal

One of the main problems of the calculus of variation is to determine that curve connecting two given 

point which either maximizes or minimizes some given Integral.  Consider the curve y = y(x) where 

y(x1) = y1 and y(x2) = y2 such that for some given known function F(x, y, y ) of variables x, y, y  the 

integral 
2

1

[ ( )] ( , ( ), ( ))

x

x

I y x f x y x y x dx  is either maximum or minimum also called an extremum or 

stationary value. A curve y = y(x) which satisfies this property is called an extremal.

8. Euler’s Equation

Examine the functional 
2

1

[ ( )] ( , ( ), ( ))

x

x

I y x F x y x y x dx

The fundamental lemma of the calculus of variations, a necessary condition for the functional to have 

an extremum value is that the extremizing function y = y(x) must satisfy the differential equation

1 20
F d F

x x x
y dx y

 is known as Euler’s equation.

9.  Variational Problems for Functional Involving Several Dependent 
Variables

2

1

1 2 1 2, ( ), ( ),.... ( ), ( ), ( ),.... ( )

x

n n

x

F x y x y x y x y x y x y x dx

(i) Case of two dependent variables 

  is given by 
1 21 2

0 and 0
F d F F d F

y dx y dxy y

  is called an Euler’s equations. 
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(ii) Case of nth
 dependent variables: The system of Euler’s equations for finding extremals of 

the functional

2

1

1 2 1 2, ( ), ( ),.... ( ), ( ), ( ),.... ( )

x

n n

x

F x y x y x y x y x y x y x dx

is given by 0,
i i

F d F

y dx y
 where i = 1, 2, 3, 4, …, n.

10. Functional Dependent on Higher Order Derivatives

 (i) Particular case: The necessary condition for

2

1

[ ( )] ( , , , )

x

x

I y x F x y y y dx to be extremum if 
2

2
0

F d F d F

y dx ydxy

  is known as Euler–Poisson equation.

(ii) General case: The necessary condition for 
2

1

( )[ ( )] ( , , , ,... )

x

n

x

I y x F x y y y y dx  to be 

extremum if
2 3

2 3 ( )
( 1) 0

n
n

n n

F d F d F d F d F

y dx y ydx dx dx yy

  is known as Euler–Poisson equation.

11. Isoperimetric Problems

(i) Working rules for isoperimetric problem: It is necessary to make a given integral

2

1

( , , )

x

x

I F x y y dx  subject to the constraint 
2

1

( , , ) constant,

x

x

J G x y y dx  such problem 

involve one or more constraint conditions. The necessary condition for integral 
2

1

x

x

Hdx  to 

be an extremum is 0
'

H d H

y dx y
 where H = F G,  is called Lagrange multipliers. 

We determine the Lagrange multiplier , together with the constant of Integration arising in 

the solution of Euler’s equation and J having given constant value.

(ii) Analytic form of the Jacobi condition:  The variational problem

1

0
0 0 1 1[ ( )] ( , , ) , ( ) , ( )

x

x
I y x F x y y dx y x y y x y

  If the Solution u = u(x) of the Jacobi equation ( ) 0yy

d d
F Fyy u Fy y u

dx dx
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  That satisfies the condition u(x0) = 0 vanishes at some other point of the interval x0 < x

< x1. Then the point P1
* that is conjugate to the point  P1(x1, y1) lies on the arc AB of the 

extremal.

  If there is a Solution  u = u(x) of the Jacobi equation that satisfies the condition u(x0) = 0 and 

does not vanish at any point of the half-open interval x0 < x x1, then there are no points 

conjugate to P1 on the arc AB. In that case we can include the arc AB of the extremal in the 

central field of extremals  with centre at the point P1(x1, y1).

  It in necessary, in place of y(x), to put the right member of the functions Fyy(x, y, y ),

Fyy (x, y, y ) and Fy y  (x, y, y ) in equation.

(iii) Sufficient condition of Legendre: A sufficient condition for including an extremal of the 

functional
1

0
0 0 1 1[ ( )] ( , , ) , ( ) , ( )

x

x
I y x F x y y dx y x y y x y  in the field of extremals in the 

fulfilment of Legendre strong conditions.

It consists in demanding the fulfilment of the in equality Fy y  > 0 at all points of the extremal 

under consideration that is for all x  [x0, x1].

(iv) Sufficient Conditions for the extremum Consider functional 
1

0

[ ( )] ( , , )

x

x

I y x F x y y dx

  Subject to condition y(x0) = (y0), y(x1) = y1

(v) Sufficient Conditions of Weierstrass: The Weierstrass fun. E(x, y, p, y ) is an function 

defined by the equation E(x, y, p, y ) = {F(x, y, y ) – F(x, y, p) + (y  – p) Fp(x, y, p)},

  where p = p(x, y) is the slope of the extremal field of the variational problem under 

consideration at the point (x, y).

(vi) Sufficient conditions for a weak extremum: A curve C gives the functional 

0

[ ( )] ( , , )
ix

x

I y x F x y y dx  a weak extremum if:

(a) The curve C is an extremal of the functional 

0

[ ( )] ( , , )
ix

x

I y x F x y y dx  which 

satisfies the boundary conditions y(x0) = y0, y(x1) = y1  that is, for the functional 

0

[ ( )] ( , , ) ;
ix

x

I y x F x y y dx  it is a solution of Euler’s equation that satisfies the 

conditions y(x0) = y0, y(x1) = y1.

(b) The extremal C may be included in the field of extremals. This will occur in particular 

if the Jacobi condition is fulfilled.

(c) The Weierstrass function E(x, y, p, y ) must preserve sign at all points (x, y) close to 

the extremal C and for values of y close to p = p(x, y). The functional I[y(x)] will have 

a maximum on C if E  0 and a minimum if E  0.

(vi) Sufficient conditions for a strong extremum: A curve C gives the functional 

0

[ ( )] ( , , )
ix

x

I y x F x y y dx a strong extremum if:

(a) The curve C is an extremal of the functional 

0

[ ( )] ( , , )
ix

x

I y x F x y y dx   that satisfies 

the boundary conditions y(x0) = y0, y(x1) = y1.
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(b) The extremal C may be included in the field of extremals.

(c) The Weierstrass functions E(x, y, p, y ) preserves sign at all points (x, y) close to the 

maximum for E  0 and a minimum for E  0.

(viii) Sufficient condition of Legendre: A function F(x, y, y ) have a continuous partial derivatives 

Fy y  and let the extremal C be included in the field of extremals.

  If on the extremal C we have Fy y  > 0, then a weak minimum is attained on the curve C, if 

Fy y  < 0 on the extremal C, then a weak maximum of the given functional is attained on it. 

These condition are known as Legendre’s strong conditions. 

  When Fy y  0 at points (x, y) close to the extremal C for arbitrary value of y  we have a 

strong minimum when Fy y  0 for the indicated values of the arguments, we have a strong 

maximum.

(A)  The list of sufficient conditions 

x

x

I y x = F x, y, y dx
1

0

[ ( )] ( )

S.No. Weak minimum Strong minimum Weak minimum

1. 0y y

d
F F

dx
0y y

d
F F

dx
0y y

d
F F

dx

2. Jacobi condition Jacobi condition Jacobi condition

3. Fy y

Along the investigated 

extremal.

Fy y

 For those points (x, y) that are close to 

the extremal under examination and for 

arbitrary values of y

It is assumed here that F(x, y, y ) has

third-order derivative with respect to y ,

for all y

E(x, y, p, y¢)  0
for all the points (x, y)

sufficiently close to the 

extremal under examina-

tion, and all y  sufficient-

ly close to p(x, y)

To obtain sufficient conditions for a maximum we have only to change the sense of inequalities.

(B)  For a minimum of simplest functional y(x0) = y0, y(x1) = y1

S.No. Weak minimum Strong minimum Weak minimum

1. 0y y

d
F F

dx
0y y

d
F F

dx
0y y

d
F F

dx

2. Jacobi condition There exists a field of extremals includ-

ing the investigated extremal curve.

There exists a field of 

extremals including the 

investigated extremal 

curve.

3. E(x, y, p, y )  0

for all the the points

(x, y) sufficiently close to the 

extremal under examination 

and arbitrary y

E(x, y, p, y )  0

 For those points (x, y) sufficiently 

close to the extremal under 

examination and all y sufficiently close 

to p(x, y)

E(x, y, p, y )  0 

for all the points (x, y)

sufficiently close to the 

extremal under exami-

nation and arbitrary y

To obtain sufficient conditions for a maximum we have only to change the sense of inequalities.
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OBJECTIVE TYPE QUESTIONS

1. The Functional 

1
2 2

0

4 4
( 4 8 ) , (0) , (1)

3 3

x e
y y ye dx y y

possesses [GATE, 2012]

(a) Strong minima on 
3

x
e

y

(b) Strong minima on 
4

3

x
e

y

(c) Strong maxima on 
3

x
e

y

(d) Strong maxima on 
4

3

x
e

y

2. The maximum value of the Function f (x, y, z)

= xyz subject to the constraint  xy + yz + zx – 

a = 0, a > 0 is [Gate, 2012]

(a)

3

2a (b)

3

2

3

a

(c)

3

23

a
(d)

3

23

2

a

3. Extremal of the isoperimetric problem 

4
2

1

( ) , (1) 3, (4) 24.V y x y dx y y

subject to the condition 

4

1

36ydx  is

(a) straight line (b) a parabola 

(c) a hyperbola (d) a circle

4.  Equation 
d f f

f y
dx y dx

 is

(a) Hamiltion’s equation

(b) Euler’s equation 

(c) Liouville’s Equation

(d) Bessel’s Equation

5. The Solutions of Euler–Poission equation are 

called as

(a) trial solution

(b) extremals

(c) stationary solution

(d) functional

6. The extremals of the functional

2
2 2 2

0

( )y y x dx

that satisfies the conditions

(0) 1, (0) 0, 0, 1
2 2

y y y y  is

(a) y(x) = cos x (b) y(x) = sin x

(c) y(x) = tan x (d) y(x) = sec x

7. A function y(x) such that 2

0

1y dx  which 

makes 2

0

1y dx  a minimum if y(0) = y (0)

= 0, y( ) = y (0) = 0 is

(a) y(x) = an cos nx, n = 0 1, 2, 3, 4, …

(b) y(x) = an sin mx, m = 0, 1, 2, 3, 4, …

(c) y(x) = an sin nx, n = 0, 1, 2, 3, 4, …

(d) ( ) , 0,1, 2, 3, 4, ...
sin

na
y x n

nx

8. The extremals of the functional 

21

2

a

a

y y dx  that satisfies the 

conditions

  y(–a) = 0, y (–a) = 0, y(a) = 0, y (a) = 0 is

(a) 2 2( ) ( )y x x a

(b) 2 2 2( ) ( )
24

y x x a

(c) 2 2 2( ) ( )
24

y x x a

(d)
2 2( ) ( )

24
y x x a
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9. For the boundary value problem 
2 2 , (0) 1, (1) 0.9y y x y y  value of 

y(0.5) is if trial Solution is

2
1 21 1.9 (1 ) (1 ).y x c x x c x x

(a) 0.05 (b) 0.005

(c) 0.50 (d) 0.55

10. Extremals of the isoperimetric problem 

1

0

2( )

x

x

V y x y dx  given that 

1

0

,

x

x

ydx C  a 

constant is

(a) y(x) = x
2 + ax + b

(b) y(x) = x + b

(c) y(x) = b

 (d) y(x) = x + bx
2

11. Function y(x) for which 

1
2 2

0

( )x y dx  is 

stationary, given that 

1
2

0

2; (0) 0y dx y  is

(a) y(x) = sin m x

(b) y(x) = 2 sin m x

(c) y(x) = 4 sin m x

(d) y(x) = 3 sin m x

12. Solid figure of revolution which, for a given 

surface area, has maximum volume

(a) a circle (b) a sphere

(c) a ellipse  (d) a parabola

13. Plane curve of fixed perimeter and maximum 

area is a

(a) circle (b) parabola

(c) straight line (d) hyperbola

14. The Solution of variational problem 
2

2 2

1

( ) 2 ( ) 0,x y y x y dx  given

y(1) = y(2) = 0

(a) y x x x x x( ) log ( ) log
1

21
8 2 72 1

(b) y x x x x x( ) log ( ) log
1

21
8 3 72 2

(c) y x x x x x( ) log ( ) log
1

21
8 2 72

(d) None of the above

15. Curve on which the functional
1

2 2

0

( ) 2 0y y xy dy  with 

(0) 0,
2

y y  be extremized is

(a) ( ) sin
2

y x x

(b) ( ) sin
2

y x x x

(c) 2( ) sin
2

y x x x

(d) ( ) sin
2

y x x

16. Curve on which the functional 

1
2

0

( ) 12 0y xy dy  with y(0) = 0 and 

y(1) = 1,  be extremized is

(a) y(x) = x3 (b) y(x) = x2

(c) y(x) = x (d) y(x) = x4

17. An integral 

2

1

( , , ) ,

x

x

f x y y dx  such as, which 

assumes a definite value for functions of the 

type y = y(x) is called as

(a) Euler’s equation

(b) Extremum

(c) Functional

(d) Stationary function

18. The necessary condition for the integral 

2

1

x

x

H dx  to be an extremum is

(a) 0
H H

y x y

(b) 0
H H

x y x

(c) 0
H H

y x y
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(d) 0
H d H

y dx x

19. Integral

2

1

( , , ) ,

x

x

x

J f y y x dx  with yx has

(a) extremum values

(b) no Extremum  values

(c) no Functional

(d) none of the above

20. Necessary condition for 
2

1

( , , , ) ,

x

x

J F t x x x dt

to be an extremum is that

(a) 0
F d F

x dx x

(b)
2

2
0

F d F d F

x dt x xdt

(c)
2

2
0

F d F d F

x dt x xdt

(d) 0
F F

x t x

21. For ( ) [ , ( ), ( )] ,

a

b

F y x f x y x y x dx F  is 

called

(a) functional (b) range

(c) arc length (d) none of the above

22. Euler–lagrange equation is

(a) 0
f d H

x dx x

(b) 0
f d H

x dx y

(c) 0
f d f

x dx x

(d) 0
f d f

x dy x

23. On the interval [0, 1], Let y be a twice 

continuously differentiable function 

which is an external of the functional 

1 2

0

1 2
[ ]

y
J y dx

x
 with y(0) = 1, y(1) = 2. 

Then, for some arbitrary constant c, y satisfies

[GATE 2011]

(a) y
2(2 – c2

x
2) = c2

x
2

(b) y
2(2 + c2

x
2) = c2

x
2

(c) y
2(1 – c2

x
2) = c2

x
2

(d) y
2(1 + c2

x
2) = c2

x
2

24. The extremal of the functional

1 2
2

0

, (0) 0, (1) 0
4

y
y x dx y y

is extremized is [GATE 2009]

(a) 4(x2 – x) (b) 3(x2  – x)

(c) 2(x2 – x) (d) x
2 – x

25. Let y = s(x) and y(x) = s(x) + t(x) be two 

admissible curves of integral and t(x) is an 

arbitrary function of x, independent of then

the variation y is referred as

(a) strong variation

(b) weak variation

(c) open arc

(d) none of these 

26. Let y = s(x) and y(x) = s(x) + t(x)

be two admissible curves of integral, 

, , ,

b

a

dy
I F x y dx

dx
 where   is an arbitrary 

independent of y and x, t(x) is an arbitrary 

function of x, independent of . with this 

restriction on t(x), the ordinate y is referred as

(a) strong variation

(b) weak variation

(c) open arc

 (d) none of these 

27. The Solution to Euler’s characteristic equation 

is referred as

(a) Extremals (b) Zeros

(c) Nulls (d) None of these

28. The integral , , ,

b

a

dy
I F x y dx

dx
 whose 

end points are fixed, is stationary for weak 

variations, if y satisfies

(a) 0
F d F

y dx y



Calculus of Variations 14.69

(b)
F d F

F
y dx y

(c) 0
F d F

y dx y

(d) None of these

29. The integral , ) ,(

b

a

y dxI F y  whose end points 

are fixed, is stationary for weak variations, if y

satisfies

(a) ,
F

F y C
y

 where C is an arbitrary 

constant

(b) 0
F d F

y dx y

(c) ,
F

F y C
y

 where C is an arbitrary 

constant

(d) None of these

30. The functional 

1
2

0

(1 ) , (0) 0, (1) 1x y dx y y

possesses [GATE 2007]

(a) Strong maxima (b) Strong minima

(c) Weak maxima but not Strong maxima

(d) Weak minima but not Strong minima

ANSWERS

1.(b)  2.(b) 3.(b) 4.(b) 5.(b) 6.(a) 7.(c) 8.(c) 9.(b) 10.(a)

11.(b)  12.(b) 13.(a) 14.(c) 15.(b) 16.(a) 17.(c) 18.(a) 19.(b) 20.(b)

21.(a)  22.(c) 23.(a) 24.(a) 25.(b) 26.(b) 27.(a) 28.(a) 29.(a) 30.(b)





15.1 INTRODUCTION

Integral equations form one of the most useful techniques in many branches of pure analysis, such 

as the theories of functional analysis and stochastic process. It is one of the most important branches 

of mathematical analysis, particularly on account of its importance in boundary value problems in 

the theory of ordinary and partial differential equations. Integral equations occur in many field of 

mechanics and mathematical physics. They are also related with the problems in mechanical vibrations, 

theory of analytic function orthogonal systems, theory of quadratic forms of infinitely many variables. 

Integral equations arise in several problems of science and technology and may be obtained directly 

from physical problems, e.g., radiation transfer problem and neutron diffusion problem etc. They also 

arise as representation formulae for the solutions of differential equations. The differential equations 

can be replaced by an integral equation with the help of initial and boundary conditions. As such, each 

solution of the integral equation automatically satisfies these boundary conditions.

Integral equations have been encountered in mathematics for a number of years, originally in the 

theory of Fourier integrals. One of the first results which can be connected to integral equations were 

the Fourier inversion formulae

       

0

2
( ) ( cosx u x d (1)

       

0

2
( ) ( )cosu x x d (2)

It can be regarded that the Eq. (2) gives a solution of the 

integral Eq. (1), where u(x) is an unknown function and (x) is 

a known function.

In 1826, another integral equation was obtained by Abel: A 

material point under the action of force of gravity moves in the 

vertical plane ( , ) along some smooth curve. It is required to 

define the curve such that material point, starting from rest at a 

point P(x, y) of the curve with coordinate y, reaches the point 

Q( , ) at any instant t. The absolute value of velocity V of the 

moving point is as follows:

        
2 ( )V g y

Fig. 15.1

Integral

Equations15
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2 ( ) sin ,

d
g y

dt

where  is the angle of slope of the tangent with -axis

       .
2 ( ) sin

d
dt

g y

By integrating the limits from 0 to y, we have

     0

( )
2 ( ),

y
d

g f y
y

where

1

1 2( ) (sin ) ( ) ( ) ( ) , ( ) 0

y

a

F y y d F a  known as the Abel’s integral equation,

where F(y) is a given continuous function and ( ) is the unknown function. The time of descent can 

be computed, if the path is known.

The actual development of the theory of integral equations began only at the end of 19th century 

due to the works of the Italian mathematician V. Volterra (1896), and principally to the year 1900, in 

which the Swedish mathematician I. Fredholm published his work on the method of solution for the 

Dirichlet Problem.

15.2 INTEGRAL EQUATION

An integral equation is an equation in which an unknown function, to be determined, appears under one 

or more integral signs. If the derivatives of the functions are involved, it is called an integro–differential 

equation.

An integral equation is called linear if only linear operations are performed in it upon the known 

functions, i.e., the equation in which no non-linear functions of the unknown function are involved, e.g., 

       ( ) ( ) ( , ) ( )

b

a

x f x K x d (3)

       ( ) ( , ) ( )

b

a

x K x d (4)

is a linear integral equation.

And    
3

( ) ( , ) ( )

b

a

x K x d (5)

is a non-linear integral equation.

Here the function (x) in the Eqs. (3), (4) and (5) is the unknown function while all the other 

functions are known. These functions may be complex valued functions of the real variables x and .

An equation of the form

( ) ( ) ( ) ( , ) ( ) 0x x F x K x d
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is called the linear integral equation, where (x) is the unknown function; (x), F(x) and the kernel of 

the integral equation K(x, ) are known functions,  is a non-zero real or complex parameter, and the 

integration extends over the domain  of the auxiliary variable .

Integral equations, which are linear, involve the integral operator.

        

( , )L K x d

having the kernel K(x, ). It satisfies the linearity condition

1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ,L C C C L C L

where ( ) ( , ) ( )L K x d  and C1, C2 are constants.

Linear integral equations are classified into the following two basic types:

I. Volterra Integral Equation An integral equation is said to be a Volterra integral equation, if the 

upper limit of integration is a variable, e.g.,

     

( ) ( ) ( ) ( , ) ( ) .

x

a

x x F x K x d

(i) When = 0, the unknown function  appears only under the integral sign and nowhere else in 

the equation, then

       

( ) ( , ) ( ) ,

x

a

F x K x d a

  is called the Volterra’s integral equation of first kind.

(ii) When = 1, the equation involves the unknown function , both inside as well as outside the 

integral sign then

       

( ) ( ) ( , ) ( )

x

a

x F x K x d

  is called the Volterra’s integral equations of second kind.

(iii) When = 1, F(x) = 0, the equation reduces to

       

( ) ( , ) ( )

x

a

x K x d

  which is called the homogeneous Volterra’s integral equation of second kind.

II. Fredholm Integral Equations An integral equation is said to be Fredholm integral equation, if the 

domain of integration  is fixed, e.g.,

     

( ) ( ) ( ) ( , ) ( ) .

b

a

x x F x K x d
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(i) When  0, the equation involves the unknown function  only under the integral sign, then

       

( ) ( , ) ( ) ,

b

a

F x K x d a x b

  is called the Fredholm integral equation of first kind.

(ii) When  1, the equation involves the unknown function  both inside as well as outside the 

integral sign, then

       

( ) ( ) ( , ) ( ) ,

b

a

x F x K x d a x b

  is called the non-homogeneous Fredholm integral equation of second kind.

(iii) When  1, F(x) = 0, the equation reduces to

       

( ) ( , ) ( ) ,

b

a

x K x d a x b

  called as the homogeneous Fredholm integral equation of second kind.

  Linear integral equations of the first and second kind are the particular cases of the linear 

integral equations of the third kind, (which are of the form I and II) where  is not a constant 

but is a prescribed function of x, i.e.,

     

( ) ( ) ( ) ( , ) ( )x x F x K x d

III. Singular Integral Equation When one or both limits of integration become infinite or the kernel 

becomes infinite at one or more points within the range of integration, the integral equation is called 

singular integral equation. For example

       
( ) ( ) exp ( )x f x x d

and     ( ) ( ) ( ) 0 1

x

a

f x x d

are called the singular integral equation. The second equation represents the Abel’s integral equations 

for
1

.
2

IV. Non-linear Integral Equation If the unknown function appears under an integral sign to a power 

n(n > 1), then the equation is said to be a non-linear integral equation. For example,

       

( ) ( ) ( , ) ( )

b
n

a

x F x K x d

V. Convolution Integral If the kernel K(x, ) of the integral equation is defined as a function of the 

difference (x – ), i.e.,

K(x, ) = K(x – )
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where K is a certain function of one variable, then the integral equation.

       ( ) ( ) ( ) ( )

x

a

x F x K x d (6)

and the corresponding Fredholm equation

       

( ) ( ) ( ) ( )

b

a

x F x K x d

(7)

are called integral equation of the convolution type.

The function defined by the integral

      

0 0

( ) ( ) ( ) ( )

x x

K x d K x d (8)

is called the convolution or the faltung of the two functions K and  and is known as the convolution 

integrals. In general, the convolution integrals may be defined as

( ) ( ) ( ) ( )K x d K x d (9)

*
( ) ( ) ( ) ( , ) ( ) 0x x F x K x d

**
( ) ( ) ( ) ( , ) ( ) 0n
x x F x K x d

***

( ) ( ) ( ) exp ( ) 0x x F x x d
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15.3  DIFFERENTIATION OF A FUNCTION UNDER AN
INTEGRAL SIGN

Consider the function In(x) defined by the relation

       1( ) ( ) ( )

x
n

n

a

I x x f d (10)

where  is a positive integral and a is a constant. We know that

( )

( )

( , ) ( , ) , ( ) , ( )

Q x Q

P x P

d dQ dP
F x d F x d F x Q x F x P x

dx x dx dx

which is valid if F and 
F

x
 are continuous functions of both x,  and the first derivative of P(x) and 

Q(x) are continuous.

Differentiating Eq. (10) under the integral sign, we have

    
2 2( 1) ( ) ( ) ( ) ( )

x
n nn

x

a

d I
n x f d x f

dx

    1( 1) , 1n
n

d I
n I n

dx
(11)

From the Eq. (10), we have

        
1

1( ) ( ) ( )

x

a

d I
I x f d f x

dx
(12)

Differentiating Eq. (11) successively m times, we have

      
( 1) ( 2) ( 3) ( ) ,

m
n

n mm

d I
n n n n m I n m

dx

In particular, we have

      

1

11
( 1)! ( )

n
n

n

d I
n I x

dx

    
1

1

1
( 1)! ( 1)! ( )

n n
n n

n n

d I d IdId
n n f x

dx dxdx dx
(13)

Thus, we have

       
1 1 1( ) ( )

x

a

I x f x dx

       

2
1 1 1( )

x

a

d I
I f x dx

dx

      
2

2 1 1 2( ) ( )

xx

a a

I x f x dx dx
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In general, we have

       
3 2

1 1 2 1( ) ( 1)! ( )
nx x xx

n n n

a a a a

I x n f x dx dx dx dx (14)

From the Eqs. (10) and (14), we have

3 2

1 1 2 1( )
nx x xx

n n

a a a a

f x dx dx dx dx

 = 11 1
( ) ( ) ( )

( 1)! ( 1)!

x
n

n

a

I x x f d
n n

This may be represented as the result of integrating the function f from a to x and then integrating 

(n – 1) times, we have

    

1( )
( ) ( )

( 1)!

x x n
n

a a

x
f d f d (15)

15.4  RELATION BETWEEN DIFFERENTIAL AND ITNEGRAL 
EQUATIONS

There is a fundamental relationship between integral equation and ordinary and partial differential 

equations with given initial values. Consider the differential equation of nth order as

1 2

1 21 2
( ) ( ) ( ) ( )

n n n

nn n n

d y d y d y
a x a x a x y F x

dx dx dx
(16)

with continuous coefficients ai(x), i = 1, 2, 3, …, n. The initial conditions are prescribed as follows:

       1
0 1 2 1(0) , (0) , (0) , ..., (0) ,n

ny C y C y C y C (17)

where the prime denotes differentiation with respect to x.

Consider,    ( )
n

n

d y
x

dx

By integrating and using the initial conditions from Eq. (17), we have

       

1

11
0

( )

xn

nn

d y
d C

dx

      

2
2

1 22
0

( )

xn

n nn

d y
d C x C

dx

     
1 2

1 2 0

0

( )
( 1)! ( 2)!

xn n n n
n

n nn n

d y x x
y y d C C C

n ndx
(18)

where

0

( )

x
n

d  represents for a multiple integral of order n.
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From the Eqs. (16) and (18), we obtain

     

2
1 2

0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )

x x x

nx a x d a x d a x d

     =

1

( ) ( ),
n

i iF x i C x (19)

where    
1( ) ( ) ( ) ( )

1! ( )!

n i

i i i n

x x
x a x a x a x

x i
(20)

     
1

1 2

0

( )
( ) ( ) ( ) ( ) ( ) ) ( ),

( 1)!

x n

n i

x
x a x a x x a x d C x

n
(21)

where    

1

( ) ( ) ( ).
n

i i iC x F x i C x (22)

The Eq. (21) represents the non-homogeneous Volterra’s integral equation of second kind.

Particular Case

Consider the linear differential equation of second order

2

1 22
( ) ( ) ( )

d y dy
a x a x y F x

dxdx
(23)

with initial conditions

       
0 1(0) and (0)y C y C (24)

Consider    
2

2
( )

d y
x

dx

By integrating and using the initial conditions in Eq. (24) we have

        1

0

( )

x
dy

d C
dx

(25)

and       1 0

0

( ) ( )

x

y x d C x C (26)

The given differential equation reduces to

       
1 1 2 1 0

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

x x

x a x d C a x x d C x C y F x

or      1 2

0

( ) ( ) ( ) ( ) ( )

x

x a x a x x d

 = 1 1 1 2 0 2( ) ( ) ( ) ( )F x C a x C x a x C a x
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or      

0

( ) ( ) ( , ) ( ) ,

x

x f x K x d (27)

where    1 2( , ) ( ) ( )( ), 1K x a x a x x

       1 1 1 2 0 2( ) ( ) ( ) ( ) ( )f x F x C a x C x a x C a x (28)

which represents the Volterra’s integral equation of the second kind. Similarly, the boundary value 

problems in ordinary differential equations lead to Fredholm integral equations.

Example 1 Show that the function (x) = 1 – x is  a solution of the integral equation

0

( )

x
x

e d x

Solution

Since (x) = 1 – x

0 0

( ) (1 )

x x
x x

e d e d

=

0

(1 )

x
x

e e d

=
0 0

x x
x x

e e e e d

= e e e e e
x

x
x

x

0 0

= e e e xe e
x x x x x1 1

= x = R.H.S.

Hence, (x) = 1 – x is a solution of the integral equation.

Example 2 Show that the function (x) = 1 is a solution of the Fredholm integral equation

         

1

0

( ) ( 1) ( )x x
x x e d e x

Solution

Since (x) = 1

        

1

0

( ) ( 1) ( )x
x x e d  = 

1
1
0

0

1 ( 1) 1 ( )x x
x e d e x

= 1 ( 1) R.H.S.x x
e x e x

Hence, (x) = 1 is a solution of the integral equation.
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Example 3 Show that the function 
2

( ) 2
3

x
x e x  is a solution of the Fredholm integral 

equation

         

1

0

( ) ( ) 2 , 2x x
x e d xe

Solution

Since     
2

( ) 2
3

x
x e x

      

1

0

( ) ( )x
x e d  = 

1

0

2 2
2 2 2

3 3

x x
e x e d

=

1

2

0

2 2
2 2

3 3

x x
e x e

2 2
2

3 3

2 R.H.S.

x

x

e x

xe

Hence,
2

( ) 2
3

x
x e x  is a solution of the given integral equation.

EXERCISE 15.1

1. Show that the function ( )x x1 2

3

2  is a solution of the Volterra integral equation

       
2 2

0

1
( ) ( )

1 (1 )

x

x d
x x

2. Show that the function 
1

( )x
x

 is a solution of the integral equation

0

( )
1

( )

x

d
x

3. Show that the function 
2 5/2

( )
(1 )

x
x

x
 is the solution of integral equation

3 3

2 2 2 2
0

3 2 3 2
( ) ( )

3(1 ) (1 )

x
x x x x

x d
x x

4. Verify that the given function 
1

( )
2

x  is the solution of the integral equation
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       0

( )

( )

x
d

d x
x

5. Verify that the given function (x) = ex is the solution of the integral equation

       

1

0

( ) 1 sin ( )x x d

Example 4 Form an integral equation corresponding to the differential equation

     

2

2
cos

d y
y x

dx

with initial conditions

y(0) = 0, y (0) = 1

Solution

Consider   
2

2
( )

d y
x

dx

Then     

0

( ) 1,

x
dy

d
dx

and        

0

( ) ( )

y

y x d x

Substituting the given relations in the given differential equation we have

         0

( ) ( ) ( ) cos

x

x x d x x

or        
0

( ) (cos ) ( ) ( )

x

x x x x d

which is the desired integral equation.

Example 5 Form an integral equation corresponding to the differential equation

          

2

2
0

d y dy
x y

dxdx

with the initial conditions

y(0) = 1, y1(0) = 0

Solution

Consider   
2

2
( )

d y
x

dx
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Then     

0

( )

x
dy

d A
dx

=

0

( ) , since (0) 0

x

d y

and      

0

( ) ( )

x

y x B

       0

( ) ( ) 1, Since (0) 1

x

y x d y

Substituting the above relations in the given differential equation, we have

0 0

( ) ( ) ( ) ( ) 1 0

x x

x x d x d

       0

( ) 1 (2 ) ( )

x

x x d

which is the desired integral equation.

Example 6 Reduce the initial value problem

        
( ) ( ) ( )x x F x

with       
(0) 1, (0) 0

Solution

The differential equation is given as

   
( ) ( ) ( )x x F x

     ( ) ( ) ( )x F x x

Integrating both the sides with regard to x, we have

     0 0

( ) ( ) ( )

x x

x dx F x x dx

    
0

0

( ) ( ) ( )

x
x

x F x x dx

0

( ) (0) ( ) ( )

x

x F x x dx

0

( ) ( ) ( ) , Since (0) 0

x

x F x x dx
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Integrating both the sides with regard to x, we have

      

2

0 0

( ) ( ) ( )

x x

x dx F x x dx

   2

0

( ) (0) ( ) ( )

x

x F d

      

0

( ) 1 ( ) ( ) ( ) , Since (0) 1

x

x x F d

which reduces to a Volterra’s integral equation of second kind.

EXERCISE 15.2

1. From an integral equation corresponding to the differential equation

2

2
5 6 0

d y dy
y

dxdx

  with the initial conditions y(0) = 0, y (0) = –1.

2. Form an integral equation corresponding to the differential equation

2

2
sin xd y dy

x e y x
dxdx

  with the initial conditions y(0) = 1, y (0) = –1.

3. Convert the differential equation

( ) 3 ( ) 2 ( ) 4siny x y x y x x

  with the initial condition y(0) = 1, y (0) = –2 into Volterra’s integral equation of second kind.

4. Form an integral equation corresponding to the differential equation

3

3
2 0

d y
xy

dx

  with the initial condition 
1

(0) , (0) 1 (0).
2

y y y

5. Form an integral equation corresponding to the differential equation

3 2
2

3 2
( ) 1xd y d y

x x x y xe
dx dx

  with initial conditions y(0) = 1 = y (0), y (0) = 0.
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Answers

1.

0

( ) (6 5) (5 6 6 ) ( )

x

x x x d

2.

0

( ) sin ( 1) sin ( ) ( )

x
x x

x x x e x x e x d

3.

0

( ) 4( 2 sin ) 3 2( ) ( )

x

x x x x d

4. 2 2

0

( ) ( 1) ( ) ( )

x

x x x x x d

5. 2 2 2

0

1
( ) 1 ( 1) ( )( ) ( )

2

x
x

x xe x x x x x x d

Example 7 Show that the integral equation

       

3

0

1
( ) 1 sin ( )( cos ) ( )

6

x

x x x x e d

is equivalent to the differential equation

       
( ) sin ( ) ( ) , (0) 1, (0) 1x
x x x e x x

Solution

Given      3

0

1
( ) 1 sin ( )( cos ) ( )

6

x

x x x x e d (29)

Differentiating Eq. (29) with regard to x, we have

       

2

0

1
( ) 1 sin ( ) ( cos ) ( )

2

x
d

x x x e d
dx

2

0

1
( ) 1 sin ( ) ( cos ) ( )

2

sin ( )( cos ) ( ) 1

x

x

x x x e d
x

x x x e x x

     
2

0

1
( ) 1 ( cos ) ( ) sin ( )

2

x

x x e d x x (30)
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Differentiating Eq. (30) with regard to ‘x’ we have

      0

( ) ( cos ) ( ) cos ( ) sin ( )

x
d

x x e d x x x
dx

( ) ( cos ) ( ) ( cos ) ( )

c

x x
x

e d e x x
x

x

1

0

oos ( ) sin ( )x x x x

     ( ) ( cos ) ( ) cos ( ) sin ( )x
x x e x x x x x x

     ( ) sin ( ) ( )x
x x x e x x

which is the required differential equation. Putting x = 0 in the Eqs. (29) and (30), we have

       (0) 1 and (0) 1 Hence proved.

Example 8 Show that the integral equation

         0

( ) (1 4sin ) 3 2( ) ( )

x

x x x x d

is equivalent to the differential equation

       ( ) 3 ( ) 2 ( ) 4sin , (0) 1, (0) 2x x x x

Solution

Given

       

0

( ) (1 4sin ) 3 2( ) ( )

x

x x x x d (31)

Differentiating Eq. (31) with regard to ‘x’ we have

     0

( ) 1 4cos 3 2( ) ( )

x
d

x x x d
dx

     
0

( ) 1 4cos 3 2( ) ( ) 3 2( ) ( ) 1

x

x x x d x x x
x

     
0

( ) 1 4cos 3 ( ) 2 ( )

x

x x x d (32)

Differentiating Eq. (32) with regard to ‘x’ we have

      0

( ) 4sin 3 ( ) 2 ( )

x
d

x x x d
dx

     ( ) 4sin 3 ( ) 2 ( )x x x x
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     ( ) 3 ( ) 2 ( ) 4sinx x x x

which is the required differential equation. Putting x = 0 in Eqs. (31) and (32), we have

       (0) 1, (0) 2 Hence, proved.

EXERCISE 15.3

1. Show that the integral equation

0

( ) ( ) ( ) 1

x

x x d

  is equivalent to the differential equation

( ) 2 ( ) 3 ( ) 0, (0) 1, (0) 0.x x x x

2. Show that the integral equation

2

0

1
( ) ( ) ( )

2

x

x x d x

  is equivalent to the differential equation

( ) 1, (0) (0) 0.x xy

15.5  SOLUTION OF NON-HOMOGENOUS VOLTERRA’S INTEGRAL 
EQUATION OF SECOND KIND BY THE METHOD OF 
SUCCESSIVE SUBSTITUTION

Consider the Volterra’s integral equation of second kind as

       ( ) ( ) ( , ) ( ) ,

x

a

x F x K x d (33)

where

(i) the kernel K(x, ) / 0 is real and continuous in the rectangle R: a x b, a b. Consider 

( , )K x  where P is the maximum value in R.

(ii) the function F(x)  0 is real and continuous in an interval a x b. Consider ( ) ,F x Q
where Q is the maximum value in the interval.

(iii)  is a non-zero numerical parameter.

Substituting the unknown function ( ) under an integral sign from the Eq. (33) itself, we have

       
1 1 1( ) ( ) ( , ) ( ) ( , ) ( )

x

a a

x F x K x F K d d

       

2
1 1 1( ) ( ) ( , ) ( ) ( , ) ( , ) ( )

x x

a a a

x F x K x F K x K d d

Performing the operation successively for ( ), we have
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1

2
1

1 2 2 2 1

( ) ( ) ( , ) ( ) ( , ) ( , )

( ) ( , ) ( )

x x

a a a

a

x F x K x F d K x K

F K d d d

1

2
1 1

3
1 1 1 2 2 2 1

( ) ( ) ( , ) ( ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( )

x x

a a a

x

a a a

x F x K x F d K x K F

d d K x K K d d d

In general, we have

       

2
1 1 1

( ) ( ) ( , ) ( )

( , ) ( , ) ( )

x

a

x

a a

x F x K x F d

K x K F d d

     

1

21

3
1 1 2 2 2 1

1 1 2 2 1 1

( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( , ) ( )
n

x

a a a

x
n

n n n

a a a a

K x K K F d d d

K x K K K F

     

1
1

1 1 1 1 2( , ) ( , ) ( , )

x
n

n

a a a

d d d K x K K

     
1

1 1( , ) ( )
n

n n n n

a

K F d d d (34)

Consider the infinite series

       

2
1 1( ) ( ) ( , ) ( ) ( , ) ( , ) ( )

x x

a a a

x F x K x F d K x K F

         
1

3
1 1 1 2 2 2 1( , ) ( , ) ( , ) ( )

x

a a a

d d K x K K d d d (35)

Let     

2

1 2 1

1 1 2 1

( ) ( , ) ( , ) ( , )

( )

nx
n

n n n

a a a

n n n

S x K x K K

F d d d d
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2

1 2 1

1 1 1

( ) ( , ) ( , ) ( , )

( )

nx
n

n n n

a a a

n n

S x K x K K

F d d d

Since ( , ) and ( )K x P F x Q

then   
( )

( )
!

n
n n

n

x a
S x Q P

n

     

( )
( )

!

n

n
n

P b a
S x Q

n

It follows that the series is convergent for all values of , P, Q, (b – a) and hence, the series Eq. (35) 

is absolutely and uniformly convergent.

Again,      

1
1 1

1

( )
( )

( 1)!

n
n n

n

x a
S x MP

n

        

1

1
1

( )
( ) ,

( 1)!

n

n
n

P b a
S x M

n

where M is the maximum value of the absolute value of the function (x) which is continuous in the 

interval I

a x b

1lim ( ) 0.n
n

S x

We notice that the function (x) which satisfies the Eq. (34) is the continuous function given by the 

infinite series in Eq. (35). The integral Eq. (33) has a unique continuous solution in the interval I.

15.6  SOLUTION OF NON-HOMOGENEOUS VOLTERRA’S INTEGRAL 
EQUATION OF SECOND KIND BY THE METHOD OF 
SUCCESSIVE APPROXIMATION

A Volterra integral equation of second kind

       0

( ) ( ) ( , ) ( )

x

x F x K x d

has one and only one solution, given by the relation

       0

( ) ( ) ( , ; ) ( ) ,

x

x F x K x F d

where the resolvent kernel R(x, ; ) is the sum of the series

   1

( , ; ) ( , ) ( , )V
V

V

R x K x K x
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Convergent for all values of .

Consider the Volterra integral equation of second kind

       

0

( ) ( ) ( , ) ( )

x

x F x K x d (36)

where the kernel K(x, ) is a continuous function for 0 x a, 0 a, and the function F(x) is 

continuous for 0 x a.

Consider an infinite power series in ascending powers of  a

       2
0 1 2( ) ( ) ( ) ( ) ( )n

nx x x x x (37)

Let the series in Eq. (37) is a solution of the Eq. (36) then

      2
0 1 2( ) ( ) ( ) ( )n

nx x x x

   = 2
0 1 2

0

( ) ( , ) ( ) ( ) ( ) ( )

x
n

nF x K x d (38)

Equating the coefficients of like power of , we get

      0 ( ) ( )x F x

      
1 0

0

( ) ( , ) ( )

x

x K x d

      

2 1

0

( ) ( , ) ( )

x

x K x d

… … …

… … …

      1

0

( ) ( , ) ( )

x

n nx K x d (39)

Thus, it yields a method for a successive approximation of the function n(x). It may be shown that 

the series in Eq. (37) conveys uniformly in x and  for any  and  [0, a], under these assumptions 

with regard to F(x) and K(x, ), its sun is a unique solution in Eq. (36). Further, from Eq. (39) it follows 

that

      
1

0

( ) ( , ) ( )

x

x K x F d

2 1 1 1

0 0

( ) ( , ) ( , ) ( )

x

x K x K F d d

Here      1 10, ; 0, x
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By interchanging the order of integration, we have

      1

2 1 1 0 1

0

( ) ( ) ( , ) ( , )

x x

x F d K x K d

     2 2 1 1 1

0

( ) ( , ) ( ) ,

x

x K x F d (40)

where  

1

2 1 1( , ) ( , ) ( , ) .

x

K x K x K d (41)

In general we have

0

( ) ( , ) ( ) , 1, 2, ...

x

n nx K x F d n (42)

The functions Kn(x, ) are called iterated kernels, which can readily be shown that

K1(x, ) = K(x, )

and K2(x, ), K3(x, ) etc., are defined recursively by the formula

    1( , ) ( , ) ( , ) , 1, 2, ...

x

n nK x K x z K z dz n (43)

Equation (37) represents the solution of Eq. (36) can therefore be written as follows:

       

1 0

( ) ( ) ( , ) ( )

x
V

V

V

x F x K x F d (44)

where 2
1 2 3

1
1

( , ; ) ( , ) ( , ) ( , )

( , ) ( , )n n
n n

R x K x K x K x

K x K x (45)

    1

0

( , ; ) ( , )V
V

V

R x K x

The function R(x, ; ) is called the resolvent kernel or reciprocal kernel of Eq. (36).

The series converges absolutely and uniformly in the case of a continuous kernel K(x, ). Iterated 

kernels and the resolvent kernel do not depend on the lower limit of an integral equation. The resolvent 

kernel R(x, ; ) satisfies the functional equation

     

( , ; ) ( , ) ( , ) ( , ; )

x

R x K x K x z R z dz

Thus, the solution of the Eq. (36) reduces to

       0

( ) ( ) ( , ; ) ( ) .

x

x F x R x F d
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15.7 DETERMINATION OF SOME RESOLVENT KERNELS 

(a) Consider that the kernel K (x, ) is a polynomial of degree (n –1) in  such that it may be 

expressed in the form

     2 11
0 1 2

( )1
( , ) ( ) ( ) ( ) ( ) ( ) ( )

2! ( 1)!

nna x
K x a x a x x a x x x

n
(46)

  where the coefficients 
1

0

( )
n

V

V

a x  are continuous in the interval [0, a].

  Let the auxiliary function be

     
1

11 ( )
( , ; ) ( ) ( , ; )

( 1)! ( 1)!

x n
n x t

x x R t dt
x n

(47)

  with the conditions

       
2 1

2 1
0 at and 1 at .

n n

n n

d d d
x x

dx dx dx
(48)

  In addition, we have

    
1

( , ; ) ( , ; ).
n

n

d
R x x

dx
(49)

  Since the resolvent kernel satisfies the functional equation

   ( , ; ) ( , ) ( , ) ( , ; )

x

R x K x K x z R z dz (50)

  From Eqs. (49) and (50), we have

2 1
( , ; ) ( , ) ( , ) ( , ; )

xn n

n n

d d
x K x K x z z dz

dx dz
(51)

  
1 2

1 2

( , )
( , ; ) ( , ) ( , )

n n n

n n n

d d K x z d
x K x K x z

zdx dz dz

1

1

x
n

n
z

d K

dz
(52)

  Using Eqs. (46) and (48), the relation in Eq. (52) reduces to

1 2

0 1 11 2
( ) ( ) ( ) 0.

n n n

nn n n

d d d
D a x a x a x

dx dx dx
(53)

  The function (x, ; ) is therefore the integral of the linear equation D  = 0 which satisfies 

the Cauchy conditions. Thus, we have an expression for the resolvent kernel as

    
1

( , ; ) ( , ; )
n

n

d
R x x

dx
(54)

(b) Further, assume that the kernel K(x, ) is a polynomial of degree (n – 1) in x such that it may 

be expressed in this form

2 1
0 1 2

( )1
( , ) ( ) ( ) ( ) ( ) ( ) ( )

2! ( 1)!

nb
K x b b x b x x

x
(55)
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  where the coefficients bV ( ) are continuous in interval [0, a].

  Consider   
1

( , ; ) ( , ; ).
n

n

d
R x x

d
(56)

  The auxiliary function (x, ; ) satisfies the following conditions:

        
2 1

2 1
0 at ; 1 at .

n n

n n

d d d
x x

d d d
(57)

  Therefore, the functional relation reduces to

       ( , ) ( , ) ( , ; )

xn n

n
n

d d
K x K z x z dt

d dt
(58)

  Using the Eqs. (56) and (57) and integrating by parts to the integral on R.H.S, we have

      
1 2

1
1 0 11 2

( ) ( ) ( ) 0
n n n

n

n n n

d d d
D b b b

d d d
(59)

  Thus the auxiliary function (x, ; ) is the integral of the linear equation D1  = 0 which 

satisfies the Cauchy conditions.

    
1

( , ; ) ( , ; )
n

n

d
R x x

d
(60)

Example 9 Find the resolvent Kernel of the Volterra integral equation with Kernel: K(x, ) = 1.

Solution

We know that

1( , ) ( , ) 1K x K x

By the iterated Kernels, we have

     
2 1( , ) ( , ) ( , )

x

K x K x z K z dz

    2 ( , ) ( ) ( )

x
x

K x dz z x

or    2
3

1
( , ) 1 ( ) ( )

2!

x

K x z dz x

or    
2

3
4

( ) 1
( , ) 1 ( )

2! 3!

x
z

K x dz x

… … …

or    
1( , ) 1 ( , )

x

V VK x K z dx
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or    
2

1( ) 1
( , ) 1 ( )

( 2)! ( 1)!

x V
v

V

z
K x dz x

v v

Hence, the resolvent Kernel is determined as we get

     
1

0

( , , ) ( , )V
v

V

R x K x

or    ( )

0

( )
( , , )

!

V v
x

V

x
R x e

v

Example 10 With the aid of the resolvent Kernel find solution of the integral equation

       0

( ) ( ) ( )

x

x x x d

Solution

Here   
1( , ) ( , ) ( )K x K x x (61)

and    1( , ) ( , ) ( , )

x

v vK x K x z K z dz (62)

Substituting v = 1, 2, 3, 4, … in the Eq. (62), we have

     
2 1( , ) ( , ) ( , )

x

K x K x z K z dz

    3
2

1
( , ) ( ) ( ) ( )

3!

x

K x z x z dz x

or    3 2( , ) ( , ) ( , )

x

K x K x z K z dz

    3 5
3

1 1
( , ) ( ) ( ) ( )

3! 5!

x

K x z x z x

… … … … …

By mathematical induction, we have

    

1 2 11
( , ) ( 1) ( ) , 1, 2, 3, ...

(2 1)!

v v
VK x x v

v

The resolvent Kernel is defined as

    

1

1 1

( , ; ) ( , ) ( , ); 1V
V V

V V

R x K x K x
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3 5( ) ( ) ( )

( , ; )
1! 3! 5!

x x x
R x

   ( , ; ) sin( )R x x

The solution of the integral equation is determined as

       0

( ) ( ) ( , ; ) ( )

x

x f x R x f d

      

0

( ) sin ( )

x

x x x d

     ( ) sinx x

Example 11 Find the resolvent Kernel of integral equations with the following Kernels; (  = 1)

(i) K(x, ) = 2x

(ii) K(x, ) = 2 – (x – )

(iii) K(x, ) = –2 + 3(x – )

Solution

(i) Here K(x, ) = 2x;  = 1

  Comparing with the relation (§ 15.6, 46), we have

a0(x) = 2x, and all other aV(x) = 0

  The differential equation (§ 15.6, 53) reduces to

     2 0, 1, at
d

x x
dx

   
2

( ) x
A e (63)

  From Eqs. (62) and (63), we have

  
2 2

( , ; 1) x
x e

  Thus the resolvent Kernel is given by

2 21
( , ; 1) ( , ; 1) 2 xd

R x x xe
dx

(ii) Here ( , ) 2 ( ); 1K x x

  Comparing with the relation (§ 15.6, 46) we have

a0(x) = 2, a1(x) = –1, and all other av(x) = 0

  Thus the equation (§ 15.6, 53) reduces to

2

2
2 0

d d

dxdx

(64)

  with the conditions
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       0 at , 1 at
d

x x
dx

(65)

  The solution of Eq. (64) is given by

       ( ) ( ) x
A B x e (66)

  From Eqs. (65) and (66), we obtain

     
( , ; 1) ( ) x
x x e

  Thus, the resolved Kernel is given by

     

2

2

1
( , ; 1) ( , , 1) ( 2) xd

R x x x e
dx

(iii) Here ( , ) 2 3( ); 1K x x

  Comparing with the relation (§ 15.6, 46), we have

      0 1( ) 2, ( ) 3;a x a x  and all the other aV(x) = 0

  The differential equation (§ 15.6, 53) reduces to

2

2
2 3 0

d d

dxdx
(67)

  with the conditions

        0 at , 1 at
d

x x
dx

(68)

  Equation (67) can be solved as follows:

        3( ) ( )x x
A e B e (69)

  From Eqs. (68) and (63), we obtain

    

( ) 3( )1 1
( , ; 1)

4 4

x x
x e e

  Hence, the resolvent Kernel is given by

    

2

2

1
( , ; 1) ( , ; 1)

d
R n x

dx

= ( ) 3( )1 9

4 4

x x
e e

Example 12 Solve the linear integral equation:

     0

( ) 29 6 5 6( ) ( )

x

x x x d

Solution

Here ( ) 29 6 ; 1 and ( , ) 5 6( )f x x K x x

From the relation (§, 15.6, 46) we get

a0(x) = 5, a1(x) = –6, and all the other aV(x) = 0
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Thus, the equation reduces to

       
2

2
5 6 0,

d d

dxdx

(70)

with the conditions

        0 at , 1 at .
d

d x x
dx

(71)

Thus, the solution of Eq. (70) is given by

     3 2
1( ; 1) ( ) ( )x x

x A x e B x e (72)

From Eqs. (71) and (72) we have

     
3( ) 2( )( , ; 1) x x

x e e

Hence, the resolvant Kernel becomes

     

2

2

1
( , ; 1) ( , ; 1)

d
R x x

dx

or    3( ) 2( )( , ; 1) 9 4x x
R x e e (73)

Thus, the solution of the integral equation is given by

      

3( ) 2( )

0

( ) 29 6 9 4 (29 6 )

x
x x

x x e e d

or       
3( ) 2( ) 3( ) 3( )

2( ) 2( )

0

1 1
( ) 29 6 87 58 54

3 9

1 1
24

2 4

x x x x

x

x x

d x x e e e e

e e

or      3 2( ) 29 6 29 6 93 64x x
x x x e e

= 3 293 64x x
e e

Example 13 Solve the Volterra integral equation of second kind, by using the method of successive 

approximation:

(i) 0

0

( ) (1 ) ( ) , with ( ) 1

x

x x d x

(ii) 0

0

( ) ( ) ( ) , with ( ) 0

x

x x x d x

Solution

(i) The integral equation is given as

       0

( ) (1 ) ( )

x

x x d
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  Here ( ) 1 , ( , ) 1, and 1f x x K x

  The V
th order approximation is given by

      
1

0

( ) ( ) ( , ) ( )

x

V Vx f x K x d

  or   1

0

( ) (1 ) ( )

x

V Vx x d

  Substituting V = 1, 2, 3, …, we have

     
1 0

0 0

( ) (1 ) ( ) (1 ) 1

x x

x x d x d

      

2 1

0

( ) (1 ) ( ) (1 ) 1

x

x x d x x

      
3 2

0

( ) (1 ) ( ) (1 ) 1

x

x x d x x

      

1

0

( ) (1 ) ( ) 1

x

V Vx x d

  Hence, the solution of the integral equation is given by

       
( ) lim ( ) 1V

v
x x

(ii) The integral equation is given as

       

0

0

( ) ( ) ( ) , ( ) 0

x

x x x d x

  Here ( ) , ( , ) , and 1f x x K x x

  The V
th order approximation is given by

1

0

( ) ( ) ( , ) ( )

x

V Vx f x K x d

1

0

( ) ( ) ( )

x

V Vx x x d

  Substituting v = 1, 2, 3, …, we have

     
1 0

0

( ) ( ) ( )

x

x x x d x

      
2 1

0

( ) ( ) ( )

x

x x x d
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=
3

2

0

( )
3!

x
x

x x d x

      
3 2

0

( ) ( ) ( )

x

x x x d

=

3 3 5

0

( )
6 3! 5!

x
x x

x x d x

… … … …

  In general, we have

      

3 5 2 1
1( 1)

3! 5! (2 1)!

V
V

V

x x x
x

v

  Hence, the solution of the integral equation is given by

       
( ) lim ( )V

v
x x

      
3 5 7 2 1

1( ) ( 1)
3! 5! 7! (2 1)!

V
Vx x x x

x x
v

(x) = sin x

EXERCISE 15.4

1. Find the resolvent Kernel of the Volterra integral equation with the following Kernels:

(i) ( , )K x x

(ii)
2 2

( , ) x
K x e

2. With the aid of the resolvent Kernel, find the solution of the integral equation

(i)

0

( ) ( )

x
x x

x e e d

(ii)
2 2 22

0

( ) 2 ( )

x
x x x

x e e d

Answers

1. (i)  
1

sinh ( ), 0x (ii)
2 2( ) ( )x x

e e

2. (i)  ( ) 3 (1 )x x
x e (ii)

2 2( ) (1 2 )x x
x e x
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15.8  SOLUTION OF THE FREDHOLM INTEGRAL EQUATION BY 
THE METHOD OF SUCCESSIVE SUBSTITUTIONS

Consider the Fredholm integral equation of second kind as

     ( ) ( ) ( , ) ( ) ,

b

a

x F x K x d (74)

where

(i) The kernel K(x, ) / 0 is real and continuous in the rectangle R: a x b, a b. Consider 

K(x, ) P, where P is the maximum value in R.

(ii) The function F(x)  0 is real and continuous in an interval I: a x b. Consider ( ) ,F x Q
when Q is the maximum value in the interval.

(iii)  is a non zero numerical parameter.

Since there exists a continuous solution (x) so substituting the unknown function under an integral 

sign from the Eq. (74) itself, we obtain

       

1 1 1( ) ( ) ( , ) ( ) ( , ) ( )

b b

a a

x F x K x F K d d

       

2
1 1 1( ) ( ) ( , ) ( ) ( , ) ( , ) ( )

b b b

a a a

x F x K x F d K x K d d

Proceeding in this manner successively for ( ), we get

       

2
1 1

1 2 2 2 1

( ) ( ) ( , ) ( ) ( , ) ( , ) ( )

( , ) ( )

b b b

a a a

b

a

x F x K x F d K x K f

K d d d

       

2
1 1 1

3
1 1 2 2 2 1

( ) ( ) ( , ) ( ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( )

b b b

a a a

b b b

a a a

x F x K x F d K x K F d d

K x K K d d d

In general, we get

2
1 1 1

2
1 1 2 2 2 1

( ) ( ) ( , ) ( ) ( , ) ( , ) ( ) ,

( , ) ( , ) ( , ) ( )

b b b

a a a

b b b

a a a

x F x K x F d K x K F d d

K x K K d d d

           
1 2) 1 1 1 1( , ) ( , ) ( , ) ( )

b b b
n

n n n n

a a a

K x K K F d d d

           1
1 1 1( , ) ( , ) ( , ) ( )

b b b
n

n n n n

a a a

K x K K F d d d (75)
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Consider the infinite series

       2
1 1( ) ( ) ( , ) ( ) ( , ) ( , ) ( )

b b b

a a a

x F x K x F d K x K F d d (76)

As the kernel K(x, ) and the known function F( ) are real and continuous, so each term of the above 

series represents a continuous function in I, provided it converges uniformly in that interval.

Since ( , ) and ( )K x P F x Q

Contains the maximum value in R and I respectively.

Assume

1 2 1 1 1 1( ) ( , ) ( , ) ( ) ( )

b b b
n

n n n n n

a a a

S x K x K K F d d d

Then       ( ) ( )
n n n

nS x QP b a

It will converge only if

         1
( ) 1

( )
P b a

P b a

(77)

Thus the series in Eq. (75) converges absolutely and uniformly when the relation in Eq. (76) holds.

Again, let 1
1 1 1 1( ) ( , ) ( , ) ( , ) ( )

b b b
n

n n n n n

a a a

S x K x K K F d d d

or,      1 1 1
1( ) ( )n n n

nS x MP b a

where M is the maximum value of the absolute value of the function (x) in I.

If      1( ) 1, then ( ) 0n
n

P b a Lt S x

Thus, we notice that the function (x) which satisfies Eq. (75) is the continuous function given by 

the series in Eq. (74). We can verify by direct substitution that the function (x) defined by Eq. (75) 

satisfies the integral Eq. (74). Multiplying Eq. (75) both the sides with  K(x, ) and integrating term 

by term within the fixed domain, we have,

       

1 1 1( , ) ( ) ( , ) ( ) ( , ) ( )

b b b

a a a

K x d K x F K F d d

The R.H.S. may be expressed as

= 2
1 1 1( , ) ( ) ( , ) ( , ) ( )

b b b

a a a

K x F d K x K F d d

= (x) – F(x)

      ( ) ( ) ( , ) ( )

b

a

x F x K x d Hence, proved.
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Particular Case

When  = 1, the integral Eq. (74) reduces to

       

( ) ( ) ( , ) ( )

b

a

x F x K x d

The equation contains a continuous solution, even though the Eq. (77) is not satisfied, e.g., the 

integral equation

      

1

0

1
( ) ( ) ( )

2 3

x
x x d

has the continuous solution (x) = x although | | P(b – a) = 2 |  1.

The method of solving integral equations of the second kind is based on an iterative technique which 

yields a sequence of approximations leading to an infinite series solution. This is known as Liouville 

Neumann series.

15.9 ITERATED KERNELS

The n
th iterated Kernel Kn (x, ) is determined by the relation

( , ) ( , ) ( , )

b

n m n m

a

K x K x z K z dz m n

We knew that K1(x, ) = K(x, (78)

and    1( , ) ( , ) ( , ) , 2, 3, 4, ...

b

n n

a

K x K x z K z dz n (79)

or,    1 1 1 1( , ) ( , ) ( , )

b

n n

a

K x K x z K z dz (80)

Substituting (n – 1) for n in Eq. (79), we have

    
1 2( , ) ( , ) ( , )

b

n n

a

K x K x z K z dz

or,   1 1 1 2 2 2 2( , ) ( , ) ( , )

b

n n

a

K z K z z K z dz (81)

Substituting Kn–1(z1, ) in the Eq. (80), we have

    
1 1 2 2 2 2 1( , ) ( , ) ( , ) ( , )

b b

n n

a a

K x K x z K z z K z dz dz

or    1 1 2 2 2 2 1( , ) ( , ) ( , ) ( , )

b b

n n

a a

K x K x z K z z K z dz dz (82)
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Substituting (n – 1) for n in Eq. (81) we have

    2 2 2 3 3 3 3( , ) ( , ) ( , )

b

n n

a

K z K z z K z dz (83)

From the relations in Eqs. (82) and (83), we have

1 1 2 2 3 3 3 3 2 1( , ) ( , ) ( , ) ( , ) ( , )

b b b

n n

a a a

K x K x z K z z K z z K z dz dz dz (84)

Performing this operation successively, we have

    

1 1 2 2 3 1 1 3 2 1( , ) ( , ) ( , ) ( , )... ( , )

b b b b

n n n

a a a a

K x K x z K z z K z z K z dz dz dz dz

or,   
1 1 2 2 3 1 1

( 1)th order integral

1 1 3 2 1

( , ) ( , ) ( , ) ( , )... ( , ) ( , ) ...

( , )

b b b b

n n n n n

a a a a

n

n n

K x K x z K z z K z z K z z K z z

K z dz dz dz dz

(85)

Similarity, we obtain

1 1 2 2 3 1 1 3 2 1

( 1)th order
integral

( , ) ( , ) ( , ) ( , )... ( , )

b b b b

m m m

a a a a

m

K x z K x p K p p K p p K p z dp dp dp dp (86)

and

1 1 2 2 3 1 1 3 2 1

( 1)th order
integral

( , ) ( , ) ( , ) ( , )... ( , )

b b b b

n m n m n m

a a a a

n m

K z K z q K q q K q q K q dq dq dq dq (87)

From the relations in Eqs (86) and (87) we have

      

1 1 2

( 1)th order
integral

( , ) ( , ) ( , ) ( , )

b b b b b b

m n m

a a a a a a

m

K x z K z dz K x p K p P

               2 3 1 1 3 2 1( , ) ( , )m mK p p K p z dp dp dp dp

      

1 1 2 2 3 1 1 3 2 1

( 1)th order
integral

( , ) ( , ) ( , ) ( )

b b b b

n m n m

a a a a

n m

K z q K q q K q q K q dq dq dq dq dz
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or

1 1 2 1 1

( 1)th order

( , ) ) ( , ) ( , ) ( , ) ( , ) ( , )

b b b b b

m n m m

a a a a a

n

K x z K z dz K x p K p p K p z K z q

        1 2 1 1 2 1 1 2 1( , ) ( , )n m n m mK q q K q dq dq dq dzdp dp dp (88)

Now without changing the limits of integration, the variables of integration are changed as 

follows:

      1 2 3 1 1 2 3 1m n mp p p p z q q q q

      1 2 3 1 1 2 3 1m m m m m nz z z z z z z z z

Thus we have

      

1 1 2 2 3 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )

b b b b b

m n m m m

a a a a a

K x z K z dz K x z K z z K z z K z z

1 1 1 2 1( , ) ( , )m m n n mK z z K z dz dz dz dz

Hence, from the relations in Eqs (86) and (88) we have

      ( , ) ( , ) ( , ) ,

b

n m n m

a

K x z K x z K z dz m n Hence, proved.

15.10  SOLUTION OF THE FREDHOLM INTEGRAL EQUATION BY 
THE METHOD OF SUCCESSIVE APPROXIMATION

The method of successive approximations (iteration technique) applied in the solution of Volterra 

integral equation may be extended to the basic Fredholm equation of the second kind. Consider the 

Fredholm integral equation of second kind as

       ( ) ( ) ( , ) ( )

b

a

x F x K x d (89)

where

(i) the Kernel K(x, ) / 0 is real and continuous in the rectangle R for which a x b and 

a e b;

(ii) F(x)  0 is real and continuous in an interval I, for which a x b.

(iii)  is a non-zero numerical parameter.

Consider the solution of the integral Eq. (89) is in the form of a power series in  as

       2
0 1 2( ) ( ) ( ) ( ) ( )n

nx x x x x (90)

where the function 0 1 2( ), ( ), ( )x x x  and so on are real and continuous in an interval I.

Let the series (90) is a solution of the integral Eq. (89), then

0 1( ) ( ) ( )n
nx x x
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= F x K x d
n

n

a

b

( ) ( , ) ( ) ( ) ( ) ( )0 1
2

2
(91)

Equating the coefficients of like powers of , we have

      0 ( ) ( )x F x

      
1 1 0 1( ) ( , ) ( ) ( , ) ( )

b b

a a

x K x d K x F d

      
2 2 1 2( ) ( , ) ( ) ( , ) ( )

b b

a a

x K x d K x F d

      
1( ) ( , ) ( ) ( , ) ( ) , 1

b b

n n n

a a

x K x d K x F d n

where   1( , ) ( , )K x K x

     
2 1( , ) ( , ) ( , )

b

a

K x K x z K z dz

     
3 2( , ) ( , ) ( , )

b

a

K x K x z K z dz

and in general, 

    
1( , ) ( , ) ( , ) ( 2, 3, ...)

b

n n

a

K x K x z K z dz n (92)

The functions Kn(x, ) are called the successive iterated kernels of the kernel K(x, )

     ( , ) ( , ) ( , ) ,

b

n n n m

a

K x K x z K z dz m n (93)

Consider the series

     1
2( , ; ) ( , ) ( , ) ( , )n

nR x K x K x K x (94)

    
1

0

( , ; ) ( , )V
V

V

R x K x

The series on the R.H.S. is called the Neumann series of the kernel K(x, ). If M is an upper limit of 

( , )K x  then the iterated kernel 1( , ) ( )n n
nK x M b a  at every point of the Domain D. The series 

Eq. (94) is therefore uniformly convergent in this region, if the parameter 
1

( ).b a
M

 Thus, the 

relation in Eq. (20) which gives the solution of the integral Eq. (91) assumes the form

       ( ) ( ) ( , ; ) ( )

b

a

x F x R x F d (95)
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The function R(x, ; ) is called resolvent or the resolving kernel for Eq. (89). Equation (95) 

represents an explicit solution of the integral equation in terms of the resolvent.

In view of the relation in Eq. (94), it follows that the resolvent kernel R(x, ; ) satisfies the functional 

equation

    
2

0

( , ; ) ( , ) ( , )V
V

V

R x K x K x

    
1

0

( , ; ) ( , ) ( , ) ( , )V
V

V

R x K x K x z K z dz

    ( , ; ) ( , ) ( , ) ( , ; )R x K x K x z z dz

        

( , ; ) ( , ) ( , ) ( , ; )

b

a

R x K x K x z R z dz

Similarly, we may obtain

( , ; ) ( , ) ( , ) ( , ; )

b

a

R x K x K z R x z dz (96)

The first equation is established by transposing x by z in  then multiplying both sides by K(x, z) and 

integrating term by term in the interval (a, b). Similarly we may prove the other relation.

Now, if the resolvent kernel R(x, ; ) satisfies Eq. (96), then the function f(x) in the Eq. (95) satisfies 

Fredholm integral equation. Substituting (x) from Eqs. (95) and (96) we have

( ) ( , ; ) ( ) ( ) ( , ) ( ) ( , ; ) ( )

b b b

a a a

F x R x F d F x K x F R z F z dz d

By transposing  and z, we get

( ) ( ; ) ( ) ( ) ( , ( , ) ( , ; ) ( )

b b b

a a a

F x R x F d F x K x K x z R z dz F d (97)

From Eqs. (96) and (97), we see that the functional relation in Eq. (95) is the unique solution of the 

Fredholm integral Eq. (96) when the absolute value of the parameter  is sufficiently small.

15.11 RECIPROCAL FUNCTIONS

If K(x, ) is real and continuous in R then  a reciprocal function K(x, ) provided that P(b – a) < 1, 

where P is the maximum of ( , )K x  in R.

We know that the iterated Kernels of K(x, ) are represented

     

( , ) ( , ) ( , ) ,

b

n m n m

a

K x K x z K z dz m n

and    1( , ) ( , )K x K x

Let   1 2( , ) ( , ) ( , ) ( , )nk x K x K x K x (98)
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When K(x, ) is real and continuous in R, the infinite series for k(x, ) is absolutely and uniformly 

convergent if P(b – a) < 1, thus, we have

      2 3( , ) ( , ) ( , ) ( , ) ( , )nk x K x K x K x K x

or   
1 1 1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )

b b

n

a a

k x k x K x z K z dz K x z K z dz

or   1 1 1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )

b b

n

a a

k x K x K x z K z dz K x z K z dz

or   1 1 1( , ) ( , ) ( , ) ( , ) ( , )

b

n

a

k x K x K x z K x z K z dz

From Eq. (98) we have

       ( , ) ( , ) ( , ) ( , )

b

a

K x k x k x z K z dz (99)

The functions K(x, ) and k(x, ) are said to be reciprocal if they are both real and continuous in R

and satisfies the condition in Eq. (99). A function k(x, ) reciprocal to K(x, ) will exist, provided the 

series  Eq. (98) converges uniformly.

15.12 VOLTERRA’S SOLUTION OF FREDHOLM’S EQUATION

A function k(x, ) reciprocal to K(x, ) exists where K(x, ) is real and continuous in R, ( , ) 0,K x

f(x) is real and continuous in I, ( ) 0,f x  then the Fredholm’s integral equation of second kind has one 

and only one continuous solution is the interval I, a x b.

Consider the Fredholm integral equation of second kind as

       ( ) ( ) ( , ) ( )

b

a

x f x K x d (100)

where the reciprocal function k(x, ) of K(x, ) is known. Let the Eq. (100) has a continuous solution 

(x), then

       

1 1 1( ) ( ) ( , ) ( )

b

a

f K d

Multiplying by k(x, ) and integrating over the interval (a, b) we have

1 1 1( , ) ( ) ( , ) ( ) ( , ) ( , ) ( )

b b b b

a a a a

k x d k x f d k x K d d

1 1( , ) ( ) ( , ) ( ) ( , ) ( , ) ( )

b b b

a a a

k x d k x f d K x k x d

1 1 10 ( , ) ( ) ( , ) ( )

b b

a a

k x f d K x d
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Again        1 1( , ) ( ) ( ) ( )

b

a

K x d x f x

               ( ) ( ) ( , ) ( )

b

a

x f x K x d (101)

It follows that the integral Eq. (100) has a continuous solution and is given by the Eq. (101) which 

is unique.

Example 14 Find the first two iterated Kernels of the Kernel

2( , ) ( ) ; 1, 1K x x a b

Solution

We know that

2
1( , ) ( , ) ( )K x K x x

or    2 1( , ) ( , ) ( , )

b

a

K x K x z K z dz

or    

1
2 2

2

1

( , ) ( ) ( )K x x z z dz

or    2 2 2
2

2 4 2
( , ) ( ) 2

3 3 5
K x x x x

and    3 2( , ) ( , ) ( , )

b

a

K x K x z K z dz

or    

1
2 2 2 2

3

1

2 4 2
( , ) ( ) ( ) 2

3 3 5
K x x z z z z

or    2 2 2 2
3

56 8 32 8
( , ) ( ) ( )

45 3 9 15
K x x x x

Example 15 Solve the following linear integral equations:

           

1/2

0

( ) ( )x x d

Solution

Here,   ( , ) 1, 1 and ( )K x F x x

We know that

     1 1 1( ) ( ) 1K x K x
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or       
1/2

2

0

1
( , )

2
K x dz

or      

21/2

3

0

1 1
( , )

2 2
K x dz

… … … …

or      

1
1

( , )
2

n

nK x

Thus, the resolvent Kernel is given by

    

1

1

2
( , , )

2 2

n

n

R x

or    ( , ; 1) 2, as 1R x

Hence, the solution of the integral equation is given by

       
( ) ( ) ( , ; ) ( )

b

a

x F x R x F d

or      

1/2

0

1
( ) 2 constant

4
x x d x x

Example 16 Solve the integral equation

1

0

5 1
( ) ( )

6 2

x
x x d

Solution

Here    
1 5

( , ) , , ( )
2 6

x
K x x F x

We know that

     1( , ) ( , )K x K x x

or    
1

2

0

1
( , )

3
K x xz z dz x

or    

21

3

0

1 1
( , )

3 3
K x x z z dz x

… … …

or    

1

1

1
( )

3

n

nK x x

Hence, the resolvent Kernel is given by
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1

1

3
( , ; )

2 3

n

n

x
R x x

or   
1 6

, ; .
2 5

R x x

Thus the solution of the integral equation is given by

       

1

0

5 1 6 5 5
( )

6 2 5 6 6 6

x x x
x x dz x

EXERCISE 15.5

1. Find the iterated Kernels of the following Kernels:

(a) ( , ) sin( ); 0, for 2, 3
2

K x x a b n

(b) ( , ) ; 0, 1K x xe a b

2. Construct the Resolvent Kernel of the following Kernels:

(a) ( , ) 1; 0, 1K x a b

(b) ( , ) ; 1, 1K x x a b

(c) ( , ) sin cos ; 0,
2

K x x a b

(d) 2 2( , ) ; 1, 1K x x a b

Answer

1. (a)  2

1
( , ) sin( ) cos( )

2 4
K x x x

   

2

3

4
( , ) sin( )

16
K x x

(b) ( , )nK x xe

2. (a)  ( , ; ) 2R x

(b)
3 3

( , ; ) ;
3 2 2

x
R x

(c)
2sin cos

( , ; ) ; 2
2

x
R x

(d)
2 25 5

( , ; ) ;
5 2 2

x
R x
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Integral Equation of the Convolution Type

We shall discuss the convolution type integral equations whose Kernels have the form

     
( , ) ( )K x K x

which is a function only of the difference between the two coordinates x and . The method of solution 

generally involves the use of integral transform.

Laplace Transform

The Laplace Transform L( ) of a function d(x) is defined as

  

0

( ) ( ) ( )ux
L u e x dx (102)

The basic result which enables us to solve integral equations of the convolution type is the 

convolution theorem which defines that if K(u) is the Laplace Transform of K(x) then K(u) (u) is the 

Laplace Transform of

         
0

( ) ( )

x

K x S S dS (103)

The Laplace Transform of (103) is given as

         0 0

( ) ( )

x
ux

e dx K x S S dS

Let t = x – S then dt = dx

= ( )

0 0

( ) ( )u t s
e dt K t S dS

=

0 0

( ) ( ) ( ) ( )ut uS
e K t dt e S dS K u u (104)

The inverse Laplace transform is defined as

      
1 1
( ) ( ) ( )

2

i

ux

i

L x u e du
i

(105)

This transformation is also linear because

    ( ) ( ) ( )L a b aL bL (106)

for two constants a and b.

Properties of the Laplace Transform

I. If L f S F p L e f S F P a
aS( ) ( ) ( ) ( )then

II. If L f S F p L f aS
a

L f S
P P a

( ) ( ) ( ) ( )
/

then
1
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=
1 P

F
a a

III. If L f S F P L f S a S a e F P
aP( ) ( ) ( ) ( ) ( )then 1

  This property may be expressed as follows:

  If L f S F P g S
f S a S a

S a
( ) ( ) and ( )

( );

;0

  Then L g S e F P
aP( ) ( )

IV. L f S P L f S f( ) ( ) ( )0

V. L f S P L f S Pf f( ) ( ) ( ) ( )2 0 0

VI. If L f S F P L S f S
d

dP
F P( ) ( ) ( ) ( )then

VII. If L f S F P L S f S
d

dp
F P

n n
n

n
( ) ( ) ( ) ( ) ( )then 1

VIII. If L f S F P L
f S

S
F P dp

P

( ) ( )
( )

( )then

IX.
0

lim ( ) lim ( )
S P

f S Pf P

    0
lim ( ) lim ( )
S P

f S Pf P

X (a) The convolution of two functions f(S) and g(S) is defined as

0 0

* ( ) ( ) ( ) ( )

S S

f g f x g S x dx f S x g x dx

(b) If L f S F P L g S G P( ) ( ) and ( ) ( )

  Then L f S g S f x g S x dx f g

S
1

0

( ) ( ) ( ) ( ) *

or L f S g S f S x g x dx f g

S
1

0

( ) ( ) ( ) ( ) *

  Known as convolution theorem.

Example 17 Solve the integral equations:

(i)

0

( ) cos ( ) , (0) 4

x

x x x d



15.42 Engineering Mathematics for Semesters III and IV

(ii)

0

( ) sin cos ( ) , (0) 0

x

x x x d

Solution

(i) The integral equation is given by

     

0

( ) cos ( )

x

x x x d (107)

  The integral Eq. (107) may be written as

      ( ) ( ) cos , (0) 4x x x x (108)

  Taking Laplace Transform of the relation in Eq. (108), we have

L x L x L x L x( ) ( ) ( ) (cos )

or    PL x
P

L x
P

P
( ) ( ) ( ) .0

1

12

or 1
1

1

1
4

2 2
P

P L x
P

( )

or      L x
P

P P P P P
( )

2

3 2 3 5

1 1
4

4 5 1

  Taking inverse Laplace Transform, we have

     

2 4 2 45 1 5 1
( ) 4 4

2! 4! 2 24
x x x x x

(ii) The integral equation is given by

     

0

( ) sin cos

x

x x x d (109)

  The integral Eq. (109) may be expressed as

      ( ) sin ( )* cos , (0) 0x x x x (110)

  Taking Laplace Transform of the relation in Eq. (110), we have

L x L x L x x( ) (sin ) ( )* cos

or       PL x
P

L x L x*( ) ( ) ( ) cos0
1

12

or       PL x
P

L x
P

P
( ) ( ) ( )0

1

1 12 2

or    1
1

1

1

1 1

1

12 2

3

2 2
P

P L x
P

P

P
L x

P
( ) ( )

or           
3

1
( )L x

P
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  Taking inverse Laplace Transform, we have

       

1 2

3

1 1
( )

2
x L x

P

Example 18 Solve the integral equation

       0

( ) 1 sin( ) ( )

x

x x d

Solution

The integral equations is given by

       

0

( ) 1 sin( ) ( )

x

x x d (111)

The integral Eq. (111) may be expressed as

       
( ) 1 ( ) sinx x x

Taking the Laplace Transform, we have

        ( ) [1] ( ) sinL x L x x

        2

1 1
( ) ( )

1
L x L x

P P

  2

1 1
1 ( )

1
L x

PP

         

2

3 3

1 1 1
( )

P
L x

PP P

Taking inverse Laplace Transform, we have

      

1 1

3

1 1
( )x L L

P P

or      21
( ) 1

2
x x

EXERCISE 15.6

1. Solve the integral equation

0

( )

x
x

e d x
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2. Solve the integral equation

0

( ) 1 ( ) ( )

x

x x d

3. Solve the integral equation

2

0

( ) sin( ) ( )

x

x x x d

4. Solve the integral equation

0

( ) 2 cos( ) ( )

x

x x x d

5. Solve the integral equation

0

( ) ( ) 16 sin 4

x

x d x

Answer

1. ( ) 1x x 2. ( ) cosx x

3. 2 41
( )

12
x x x 4. ( ) 2 ( 1) 2x

x e x x

5. 0( ) 8 (4 )x J x

SUMMARY

In mathematics, an integral equation is an equation in which an unknown function appears under an 

integral sign

There is a close connection between differential and integral equations and some problems may 

be formulated either way.

The mast basic type of integral equation is called a Fredholm equation of the first type

1( ) ( , ) ( )

b

a

f x K x d

Here  is an unknown function, f is known function, and K is another known function of two 

variables often called the Kernel function. Note that the limits of integration are constant this is what 

characterizes a Fredholm euqation.

If the unknown function occurs both inside and outside of the integral equation is known as a 

Fredholm equation of the second type
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( ) ( ) ( , ) ( )

b

a

x f x K x d

The parameter,  is an unknown factor which plays the same role as the eigen value in linear 

Algebra.

If one limit of integration is a variables the equation is called a Volterra equation. The followiong 

are called Volterra equations of the first and second types respectively.

( ) ( , ) ( )

x

a

f x K x d

( ) ( ) ( , ) ( )

x

a

x f x K x d

in all of the above, if the known function f is identically zero, the equation is called a homogeneous 

integral equation. If f is non-zero. It is called an inhomogeneous integral equation.

Applications of Fredholm Integral Equation

Fredholm equations arise naturally in the theory of Signal Processing most notably as the famous 

spectral concentration problem popularized by David Slepian. They also commonly arise in linear 

forward modeling and inverse problems. In physics, the solution of such integral equations allows 

for experimental spectra to be related to various underlying distributions, for instance the mass 

distribution of polymers in a polymeric melt, or the distribution of relaxation times in the system.

Application of Volterra Integral Equation

Volterra integral equations find application in demography, the study of viscoelastic materials and in 

insurance mathematics through the renewal equation.

OBJECTIVE TYPE QUESTIONS

1. The integral equation

( ) ( ) ( ) ( , ) ( )g x y x f x K x y d

with f(x), g(x) and K(x, ) as known functions, 

 and  as known constants and  as a known 

parameter, is a

(a) linear integral equation of Volterra type

(b) linear integral equation of Fredholm type

(c) non-linear integral equation of Volterra 

type

(d) non-linear integral equation of Fredholm 

type

2. The solution of the integral equation

1

0

5 1
( ) ( )

6 2

x
x x d  satisfies

(a) (0) + (1) = 1

(b)
1

2

1

3
1

(c)
1 1

1
4 2

(d)
3 1

1
4 4
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ANSWERS

3. For the Volterra type linear integral equation

0

( ) 2 ( )

x
x

x x e d

The first iterated Kernel of the Kernel ex – 

is

(a) (x – )2
e

2(x – ) (b) (x – ) e
x – 

(c) e
3(x – ) (d) e

(x – )

4. For the Volterra type integral equation

0

( ) 2 ( ) ,

x
x

x x e d

The resolvent Kernel R(x, ; 2) of the Kernel 

e
x –  is

(a) 2 2( )( ) x
x e (b) ( ) x

x e

(c) 3( )x
e (d) ( )x

e

5. For the integral equation

( ) ( ) ( , ) ( )

b

a

u x f x K x u d  to have a 

continuous solution in the interval a x b,

which of the following assumptions are 

necessary?

(a) K(x, ) / 0 is real and continuous in the 

region a x b, a b with |K(x, )|

 M

(b) f(x) /  0, is real and continuous in the 

interval a x b

(c)  is a constant

(d)
1

| | <
( )M b a

6. The integral equation

( ) ( ) ( ) ( , ) ( )

x

a

g x y x f x K x y d

with f (x), g(x) and K(x, ) as known functions, 

 and  as known constants and  as a known 

parameter, is a

(a) linear integral equation of Volterra type

(b) linear integral equation of Fredholm type

(c) non-linear integral equation of Volterra 

type

(d) non-linear integral equation of Fredholm 

type

7. Solution of integral equation given below 

will be

0

3 sin 2 ( ) ( ) ( )

x

x y x x y d

(a) –2 sin x – sin 2x (b) sin x + sin 2x

(c) sin x + sin2
x (d) None

8. For the integral equation

( ) ( ) ( , ) ( )

x

a

u x f x K x u d

to have a continuous solution in the interval 

a x b, which of the following assumptions 

are necessary?

(a) K(x, )  0 is real and continuous in the 

region a x b, a b with |K(x, )| M

(b) f(x)  0, is real and continuous in the 

interval a x b

(c)  is constant

(d)
1

| |
( )M b a

9. Solution of 

1/2

0

( ) ( )y x x y d  is

(a)
1

4
x (b)

1

4
x

(c)
1

2
x (d)

1

4
x

10. Solution of 

/2

0

1
( ) sin ( )

4 4

x
y x x x y d

is a

(a) sinx (b) cosx

(c) –sinx (d) None

1. (b) 2. (a), (d) 3. (d) 4. (c)

5. (a), (b), (d) 6. (a) 7. (d) 8. (a), (b), (c)

9. (b) 10. (a)



Table A.1 Ordinates of the Normal Probability Curve

( )
~ (0, 1)

X

X E X X
Z N

21
( ) ,

2

( ) 1 ( )

z
t

F z e dt z

F z F z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

–5.0 0.0000003

–4.0 0.00003

–3.5 0.0002

–3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

–3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0006 0.0003

–3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005

–3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007

–3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

–2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

–2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

–2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

–2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

–2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

–2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

–2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

Statistical Tables

A

(Contd.)

APPENDIX
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

–2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

–2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

–2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

–1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

–1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0332 0.0314 0.0307 0.0301 0.0294

–1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

–1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

–1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

–1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

–1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

–1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

–1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

–1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

–0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

–0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

–0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

–0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

–0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

–0.4 0.3446 0.3409 0.3372 0.3336 0.3330 0.3264 0.3228 0.3192 0.3156 0.3221

–0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

–0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

–0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

–0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5973 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

(Contd.)
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998

4.0 0.99997

5.0 0.9999997
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Table A.2 Values of |t| with probability P and degrees of freedom n

P

v
0.50 0.10 0.05 0.02 0.01

1 1.000 6.34 12.71 31.82 63.66

2 0.816 2.92 4.30 6.96 9.92

3 0.765 2.35 3.18 4.54 5.84

4 0.741 2.13 2.78 3.75 4.60

5 0.727 2.02 2.57 3.36 4.03

6 0.718 1.94 2.45 3.14 3.71

7 0.711 1.90 2.36 3.00 3.50

8 0.706 1.86 2.31 2.90 3.36

9 0.703 1.83 2.26 2.82 3.25

10 0.700 1.81 2.23 2.76 3.17

11 0.697 1.80 2.20 2.72 3.11

12 0.695 1.78 2.18 2.68 3.06

13 0.694 1.77 2.16 2.65 3.01

14 0.692 1.76 2.14 2.62 2.98

15 0.691 1.75 2.13 2.60 2.95

16 0.690 1.75 2.12 2.58 2.92

17 0.689 1.74 2.11 2.57 2.90

18 0.688 1.73 2.10 2.55 2.88

19 0.688 1.73 2.09 2.54 2.86

20 0.687 1.72 2.09 2.53 2.84

21 0.686 1.72 2.08 2.52 2.83

22 0.686 1.72 2.07 2.51 2.82

23 0.685 1.71 2.07 2.50 2.81

24 0.685 1.71 2.06 2.49 2.80

25 0.684 1.71 2.06 2.48 2.79

26 0.684 1.71 2.06 2.48 2.78

27 0.684 1.70 2.05 2.47 2.77

28 0.683 1.70 2.05 2.47 2.76

29 0.683 1.70 2.04 2.46 2.76

30 0.683 1.70 2.04 2.46 2.75



Appendix: Statistical Tables A.5

Table A.3 Values of 2 with probability P and df v

P

v

0.99 0.95 0.50 0.30 0.20 0.10 0.05 0.01

1 0.0002 0.004 0.46 1.07 1.64 2.71 3.84 6.64

2 0.20 0.103 1.39 2.41 3.22 4.60 5.99 9.21

3 0.115 0.35 2.37 3.66 4.64 6.25 7.82 11.34

4 0.30 0.71 3.36 4.88 5.99 7.78 9.49 13.28

5 0.55 1.14 4.35 6.06 7.29 9.24 11.07 15.09

6 0.87 1.64 5.35 7.23 8.56 10.64 12.59 16.81

7 1.24 2.17 6.35 8.38 9.80 12.02 14.07 18.48

8 1.65 2.73 7.34 9.52 11.03 13.36 15.51 20.09

9 2.09 3.32 8.34 10.66 12.24 14.68 16.92 21.67

10 2.56 3.94 9.34 11.78 13.44 15.99 18.31 23.21

11 3.05 4.58 10.34 12.90 14.63 17.28 19.68 24.72

12 3.57 5.23 11.34 14.01 15.81 18.55 21.03 26.22

13 4.11 5.89 12.34 15.12 16.98 19.81 22.36 27.69

14 4.66 6.57 13.34 16.22 18.15 21.06 23.68 29.14

15 5.23 7.26 14.34 17.32 19.31 22.31 25.00 30.58

16 5.81 7.96 15.34 18.42 20.46 23.54 26.30 32.00

17 6.41 8.67 16.34 19.51 21.62 24.77 27.59 33.41

18 7.02 9.39 17.34 20.60 22.76 25.99 28.87 34.80

19 7.63 10.12 18.34 21.69 23.90 27.20 30.14 36.19

20 8.26 10.85 19.34 22.78 25.04 28.41 31.41 37.57

21 8.90 11.59 20.34 23.86 26.17 29.62 32.67 38.93

22 9.54 12.34 21.34 24.94 27.30 30.81 33.92 40.29

23 10.20 13.09 22.34 26.02 28.43 32.01 35.17 41.64

24 10.86 13.85 23.34 27.10 29.55 33.20 36.42 42.98

25 11.52 14.61 24.34 28.17 30.68 34.68 37.65 44.31

26 12.20 15.38 25.34 29.25 31.80 35.56 38.88 45.64

27 12.88 16.15 26.34 30.32 32.91 36.74 40.11 46.96

28 13.56 16.93 27.34 31.39 34.03 37.92 41.34 48.28

29 14.26 17.71 28.34 32.46 35.14 39.09 42.56 49.59

30 14.95 18.49 29.34 33.53 36.25 40.26 43.77 50.89
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Table A.4 5% and 1% points of F

v
1

v
2

1 2 3 4 5 6 8 12 24

2 18.51 19.00 19.16 19.25 19.30 19.32 19.37 19.41 19.45 19.50

98.49 99.00 99.17 99.25 99.30 99.33 99.36 99.42 99.46 99.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53

34.12 30.82 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.12

4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63

21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37 13.93 13.46

5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36

16.26 13.27 12.06 11.39 10.97 10.67 10.27 9.89 9.47 9.02

6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67

13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88

7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23

12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65

8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93

11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.28 4.86

9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71

10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31

10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54

10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91

12 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30

9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.78 3.36

14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13

8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.43 3.00

16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01

8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.18 2.75

18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92

8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.01 2.57

20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84

8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42

25 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71

7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17

30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62

7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01

40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51

7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.81

60 4.00 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.70 1.39
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Binomial Series
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Circular Functions
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2
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, cot x = 

ix ix

ix ix

e e
i

e e
,
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Hyperbolic Functions

For any real or complex ‘x’

sin hx = , cosh
2 2

x x x x
e e e e

x , tan hx = 
x x

x x
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e e
, cot hx =

x x

x x

e e
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Inverse Hyperbolic Functions

cos h
–1

z = 2log ( 1)z z , sin h–1
z = 2log ( 1)z z  and  tan h–1

z  = 
1 1

log
2 1

z

z

Relation between Circular and Hyperbolic Function

(i) sin h(ix) = i sin x, cos h(ix) = cos x, tan h(ix) = i tan x.

(ii) sec h(ix) = sec x, cosec h(ix) = –i cosec x, cot h(ix) = –i cot x.

(iii) sin (ix) = i sin h x, tan (ix) = i tan hx, cos (ix) = cos hx.

Integration
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A

Adam’s-Bashforth method (or Adam’s-Moulton 

formula)  11.24

Addition law of probability or theorem of total 

probability  6.9

Algebraic method  13.13

Algebraic solution of a programming

problem  13.20

Alternative optimal solution  13.41

Application of F-distribution  7.30

Application of initial boundary value

problem  1.51

Application of Poisson distribution  6.55

Applications of complex variables  3.109

Applications to electrostatics  3.114

Applications to fluid flow  3.112

Applications to heat flow  3.109

Artificial variable technique  13.29

Assignment problem  13.79

Axiomatic definition of probability  6.8

B

Baye’s theorem  6.25

Bernoulli distribution  6.47

Bessel’s central difference formula  10.4

Bessel’s formula  8.42

Bilinear (or mobius or fractional)

transformation  3.104

Binomial distribution  6.47

Bisection method  9.2

Boole’s rule  10.18

Index

C

Calculus of residues  3.79

Canonical form of a LPP  13.45

Cauchy integral formula for higher order 

derivatives  3.54

Cauchy integral formula for the derivative of an 

analytic function  3.53

Cauchy residue theorem  2.10

Cauchy’s inequality theorem  3.56

Cauchy’s integral formula  3.52

Cauchy’s residue theorem  3.80

Cauchy’s theorem  3.51

Cauchy–Riemann equation  3.21, 12.3

Central difference interpolation formulae  8.39

Central limit theorem  7.11

Chebyshev’s inequality  6.76

Chi-square ( 2) test  7.24

Chi-square ( 2) test of goodness of fit  7.26

Choice of interpolation  8.43

Cholesky’s method  9.36

Circular functions  3.8

Classical definition of probability  6.6

Classification of partial differential

equation  12.1

Closeness of curves  14.3

Coefficient of variation  5.19

Combination  6.3

Complex function integrals  3.43

Complex integration  3.42

Complex number  3.1

Confidence limits  7.4

Confidence limits for unknown mean  7.11
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Conformal mapping  3.99

Conjugate complex number  3.4

Conjugate harmonic function  3.27

Continuity of functional  14.3

Continuous distribution function  6.34

Continuous probability distribution  6.33

Continuous random variable  6.29

Convolution integral  15.4

Convolution theorem  2.17

Correlation  5.31

Critical points of linear systems  9.58

Cross ratio  3.105

Crout’s decomposition  9.36

Crout’s method  9.32

Cumulative frequency curve or ogive curve  5.5

Curve fitting  4.1

D

De Moivre’s theorem  3.4

Deciles  5.13

Degeneracy  13.39

Degeneracy in transportation problem  13.76

Derivation of second forms Euler’s

equation  14.10

Derivation of third forms Euler’s

equation  14.11

Determination of some resolvent kernels  15.21

Determination of velocity potential and stream 

function  3.38

Difference between function and

functional  14.2

Differences of a polynomial  8.20

Differentiation of a function under an integral 

sign  15.6

Discrete 2-D Fourier transform  1.36

Discrete Fourier transform  1.36

Discrete probability distribution  6.29

Discrete random variable  6.29

Distribution function  6.30

Divided differences  8.59

Doolittle decomposition  9.35

Dual simplex method  13.58

Duality in linear programming  13.45

Duality principle  13.50

E

Eigen value problems  9.57

Empirical or statistical definition of

probability  6.7

Empirical laws  4.1

Equality of complex numbers  3.1

Equally likely events  6.2

Error in a series approximation  8.9

Error’s in newton’s interpolation

polynomial  8.35

Errors in quadrature formulae  10.18

Errors in numerical computations  8.7

Euler’s equation  14.8

Euler’s formula  3.8

Euler’s method  11.12

Evaluation of real definite integrals  3.88

Exhaustive events  6.3

Expansion of analytic functions as power

series  3.57

Expectation  6.36

Explicit scheme (finite difference method)  12.6

Exponential (or Eulerian) form of a complex 

number  3.8

Exponential distribution  6.60

Expression of any polynomial f(x) in factorial 

notation  8.28

Extremal  14.6

F

Factorial notation  8.26

Favourable events  6.2

F-distribution  7.30

Finite difference method  12.4

Finite differences  8.14

Finite Fourier transform  1.45

Fisher’s Z-distribution  7.31

Fitting of a parabola  4.21

Fixed point iteration method  9.6

Floating point representations  8.1

Formulation of model  13.2

Fourier cosine and sine transforms  1.9

Fourier integral in complex form  1.4

Fourier integral theorem  1.2

Fourier transform  1.8



Index I.3

Fourier transform of discrete time aperiodic 

signals (DTFT)  1.36

Fourier transform of some basic functions  1.32

Fourier transform of the derivative of

function  1.50

Fredholm integral equations  15.3

Frequency polygon  5.5

Functional dependent on higher order 

derivatives  14.23

Functionals dependent on the functions of 

several independent variables  14.25

Fundamental lemma of calculus of

variation  14.6

Fundamental theorem of integral calculus  3.55

G

Gauss’s backward difference interpolation 

formulae  8.41

Gauss’s central difference formulae  8.40

Gauss’s forward interpolation formulae  8.40

Gauss’s–Jordan method  9.30

Gaussian elimination method  9.27

Gauss–Seidal method  9.45. 12.25

Geometric mean  5.12

Geometric mean of regression coefficients  5.39

Geometrical interpretation  9.13

Geometrical interpretation of iteration

method  9.7

Geometrical representation  2.4

Geometrical representation of complex

numbers  3.3

Graphical method  13.13

Graphical method  4.2

Graphical representation of frequency 

distribution  5.4

Group averages method  4.20

H

Harmonic mean  5.12

Hermite interpolation polynomial  8.66

Histogram  5.4

Hungarian algorithm to solve an assignment 

problem  13.80

Hyperbolic functions  3.10

I

Implicit scheme  12.7

Implicit scheme second or Crank–Nicolson 

scheme or method  12.8

Improper integrals with poles on the

real axis  3.97

Improper real integrals  3.94

Initial and boundary value problems  11.1

Integral equation  15.2

Integral transform  1.1

Interpolation  8.34

Interpolation for unequal intervals  8.52

Inverse finite Fourier transform  1.45

Inverse interpolation  8.65

Inverse Z-transform  2.10

Isoperimetric problems  14.34

Iterated kernels  15.31

Iterative methods  9.40

Iteration method for the system of non-linear 

equations  9.10

J

Jacobi’s method  9.40

K

Karl Pearson coefficient of correlation  5.31

Kurtosis  5.27

L

Lagrange’s interpolating polynomials  8.52

Lagrange’s interpolation formula  10.4

Laplace-Everett’s interpolation formula  8.43

Least cost entry method (LCM)  13.65

Least square method  4.7

Least-square procedures for model fitting  5.43

Legendre condition for quadratic function  14.57

Legendre conditions  14.51

Level of significance  7.4

Line integral in complex plane  3.42

Linear programming  13.1

Linear system of equations  9.26

Lines of regression  5.37

Liouville’s Theorem  3.56

Logarithm of a complex number  3.11

LU decomposition method  9.35
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M

Matrix inversion  9.49

Maxima or minima of functionals  14.5

Mean  5.7

Mean deviation  5.18

Mean deviation from the mean  6.39

Measures of central tendency  5.7

Median  5.9

Method of constructing conjugate function  3.28

Milne’s method for second order O.D.E.  11.36

Milne’s predictor-corrector method  11.21

M-method or method of penalty  13.31

Mode  5.11

Modulus of a complex number  3.3

Moment generating function  6.42

Moments  5.25

Moments method  4.26

Morera’s theorem (converse of Cauchy’s 

theorem)  3.54

Multiple regression  5.43

Mutually exclusive events  6.2

N

Navier–Stokes equation  12.3

Newton’s backward interpolation formula  10.3

Newton’s divided difference formula  10.4

Newton’s divided differences formula  8.60

Newton’s forward interpolation formula  10.2

Newton’s method  9.12

Newton’s-Gregory backward interpolation 

formula  8.34

Newton’s-Gregory forward interpolation 

formula  8.34

Newton–Cote’s quadrature formula  10.15

Non-existing feasible solution or no feasible 

solution  13.37

Non-linear integral equation  15.4

Normal approximation to binomial

distribution  6.75

Normal distribution  6.65

Normal frequency distribution  6.68

North-west corner method (NWCM)  13.64

Null and alternate hypothesis  7.3

Numerical differentiation  10.1

Numerical integration  10.14

Numerical solution of elliptic partial differential 

equations  12.23

Numerical solution of second order ODE  11.33

Numerical solution of simultaneous ordinary 

differential equations  11.28

O

Ordinary differential equations of first order and 

first degree  11.2

P

Parabolic partial differential equations  12.6

Parameter and statistic  7.2

Parseval’s theorem  1.29

Percentiles  5.13

Permutation  6.3

Picard’s method of successive

approximations  11.2

Point jacobi’s method  12.24

Poisson distribution  6.53

Poisson’s integral formula  3.54

Polar form of a complex numbers  3.3

Polar form of the Cauchy–Reimann

equations  3.24

Power method  9.58

Power series expansion  2.12

Predictor-corrector method  11.21

Probability  6.1

Probability density function  6.33

Probability mass function  6.29

Probable error  6.69

Properties of an equation  9.1

Properties of 2-distribution  7.25

Properties of complex integrals  3.43

Properties of discrete Fourier transform  1.36

Properties of divided differences  8.60

Properties of F-distribution  7.30

Properties of Fourier transform  1.24

Properties of normal distribution  6.66

Properties of t-distribution  7.16

Properties of the Z-Transform  2.14

Q

Quartile deviation or semi-interquartile

range  5.17

Quartiles  5.13



Index I.5

R

Random sampling  7.1

Random variable  6.28

Range  5.17

Rank correlation  5.34

Rate of convergence of bisection method  9.21

Rate of convergence of iteration method  9.21

Rate of convergence of newton’s method  9.22

Rate of convergence of Regula-Falsi

method  9.23

Real and imaginary parts of circular

function  3.11

Real and imaginary parts of hyperbolic 

functions  3.11

Reciprocal factorial  8.27

Reciprocal functions  15.35

Region of convergence (ROC)  2.7

Regression  5.37

Regula falsi method  9.16

Relation between ,  and E 8.18

Relation between , , E and   8.19

Relation between  and E  8.18

Relation between differential and integral 

equations  15.7

Relation between  and E  8.19

Relation between operators  8.18

Residuals  4.20

Roots of a complex number  3.7

Rounding-off and chopping  8.2

r
th moment about mean  6.39

r
th moment about origin  6.38

Rule of elimination or theorem of total 

probability  6.25

Runge–Kutta method for second order

(ODE)  11.35

Runge–Kutta method of fourth order  11.17

S

Sample space or sample point  6.2

Sampling  7.1

Sampling distribution  7.2

Sampling distribution of the mean  7.10

Sampling of variables  7.10

Sampling of variables – small samples  7.15

Scatter diagram  4.1

Schrödinger’s equation  12.3

Secant method  9.17

Significance test  7.31

Significance test of a sample mean  7.17

Significant digits  8.1

Significant test of difference between two 

samples  7.20

Simple sampling  7.2

Simple sampling of attributes  7.4

Simplex method  13.22

Simpson’s one-third rule  10.16

Simpson’s three-eight rule  10.17

Singular integral equation  15.4

Singularities  3.74

Skewness  5.25, 5.26

Solution of a linear programming

problem  13.13

Solution of difference equations using 

Z-transforms  2.28

Solution of hyperbolic equations  12.18

Solution of non-homogeneous Volterra’s integral 

equation of second kind by the method of 

successive approximation  15.18

Solution of non-homogenous Volterra’s integral 

equation of second kind by the method of 

successive substitution  15.16

Solution of Poisson’s equation  12.32

Solution of the Fredholm integral equation

by the method of successive

approximation  15.33

Solution of the ODE  11.1

Some basic discrete time signals sequences and 

their graphical representation  2.2

Some standard PDE’s  12.1

Special cases in assignment problem  13.83

Standard deviation  5.18

Standard error  7.3

Standard form or equation form of linear 

programming problem  13.8

Statistical inference  7.2

Statistical methods  5.1

Steps of statistical methods  5.1

Stirling’s central difference formula  10.3

Stirling’s formula  8.42

Summation of trigonometric series – (C + iS)

method  3.16



I.6 Index

T

Taylor’s series method  11.9

t-distribution  7.16

Terminology  6.1

Test of significance for difference of

means  7.13

Test of significance for large samples  7.5

Testing a hypothesis  7.3

Tests of significance  7.4

Theory of complex variables  3.19

Three time level scheme or Richardson’s 

scheme or method  12.10

Transportation problem  13.61

Trapezoidal rule  10.15

Two-phase method  13.33

Type of errors  8.3

Types of sampling  7.1

U

Unbounded solution  13.40

Uniform distribution  6.59

V

Variance  5.18, 6.37

Variance of the combined series  5.19

Variation of functional  14.4

Variational problems for functional involving 

several dependent variables  14.20

Variational problems in parametric form  14.31

Vogel’s approximation method (VAM)  13.67

Volterra integral equation  15.3

Volterra’s solution of Fredholm’s

equation  15.36

W

Weddle’s rule  10.18

Weierstrass function  14.44

Z

Zeros of an analytic function  3.73

Z-transform  2.1, 2.4

Z-transform for discrete values of t  2.1
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