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Preface

This edition is a reincarnation of the popular textbook born in 1986! The book begins with glimpses of the fas-

cinations in mechanics by way of some possible applications. It is new in all respects—computer- composed 

text and figures, all revised and improved additional solved examples and well-arranged experiments in order 

to make things clear to teachers and students alike.  We would like to express our gratitude to all the teachers 

and students who provided useful feedback. This edition should make them glad they did!

I hope that students of Civil, Mechanical, Electrical, Electronics, Chemical, Aero, Agricultural and other 

engineering and design disciplines find this book a worthwhile possession in their initial course until design 

projects, and thereafter as reference in their working life.

Chapters on applications of Statics and Dynamics, e.g., S1, S2, …, D1, D2, … have been designed to ‘stand 

alone’ so that teachers and students may suit their curricula and  gain greater flexibility in their sequence of 

teaching–learning. It is more comprehensive than the syllabus of any single university or institution, thereby 

enabling it to cater to the syllabi of different universities. 

Let me also add that, in revising the text, I have retained all the positive aspects of the book, i.e., emphasis 

on concepts, abundance of examples, extent of coverage, review questions and problems, experimentation in 

mechanics, etc.

Here are some of the highlights of this edition:

• Glimpses of the Fascinations of Studying Mechanics at the beginning

• Terminal Objectives, i.e., Intended Student Abilities for all chapters

• Review of SI Units and Vector Operations for ease of use by the students

• Separate Chapters on Applications of Statics

• Completely revised figures and text for all chapters

• Separate Chapters on Applications of Dynamics

• More Solved Examples with alternative solutions and comments

• Experiments in mechanics in different chapters, as appropriate

• Concept-review questions and Multiple-choice questions for all chapters

• Hints for solutions to all Tutorial problems at the end of the book

• Your Feedback Form for the authors for subsequent editions

• Comprehensive Pedagogy including the following

– 330 Figures

– 15 Laboratory Experiments with relevant topics

– 111 Concept Review Questions

– 341 Tutorial Problems

– 115 Multiple Choice Questions

To give you a brief overview of what you’ll find if you mechanically flip through this book: 

 is designed to refresh your memory with foundational concepts that you may have consigned to 

oblivion at vacation time. It introduces the subject formally and establishes Newton’s second law as the ‘law of 

motion’. The Review section should rake up your memory of SI units and vector operations.  takes 

you on an exhaustive journey through forces and force systems—bringing out the concept of resultant forces 

and moments—while  experiments with the conditions necessary for equilibrium. This chapter 
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lays the foundation of Statics and leads us to its applications covered in Section S on Simple Structures, Thin 

Beams and Systems with Friction including simple machines.

Discover why it’s important to compute the centroid, centre of mass and centre of gravity of an object in 

 which enables us to determine the central points for lengths, areas, volume, mass and weight! 

 is where things begin to move and  deals with their motion under the application of 

forces. In these chapters, among other things, enrich your knowledge of the kinematics and dynamics of 

a particle. Allow yourself the flexibility to analyze rigid bodies in s , and don’t overlook 

8 in a moment of inertia! Applications of dynamics are dealt with in section D; these are Impact of 

Two Bodies in Section D1 and Central Force Motion in Section D2. 

Did you know that virtual work can be hard work too?  is a little digression on Virtual Work, 

Potential Energy and Work-Energy principles. And finally, swing along to  to create and  investigate 

vibrations of some simple mechanical systems. 

I invite you all to go through the book, use it and let me know if it helps you to learn the subject by way of 

building your fundas. I have added ‘Hints to Tutorial Problems’ for all problems at the end of different chap-

ters and placed the same at the end. The idea is to give you some assistance in solving the problems as and 

when you need it! It would reduce the teacher’s task a bit and it should promote self-learning by the students. 

That is really my intention in these days of self-reliance and fast pace of learning.

Acknowledgements are due to all those staff members, who have contributed by way of feedback and 

additional information; also to Tata McGraw Hill who have patiently worked to produce it elegantly.  

Writing, revising and updating a good book is a massive job; I have taken Ms , a qualified 

scholar, as my coauthor and manager who has indeed done a great deal of work in bringing out this reincarna-

tion. I trust that the readers will give her all the support she deserves to keep the book at the leading edge!

Enjoy learning the subject, dear students and teachers!   If you like the book, tell everyone else. And if you 

don’t, tell me!
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Terminal Objectives
(Intended Student Abilities on Learning the Subject)

The subject matter has been so developed and large number of illustrations, solved examples recapitulation, 

 multiple-choice items and tutorial problems have been provided in order to enable the learner, i.e., the  engineering 

student, to achieve a number of terminal objectives. Objectives of chapters on applications are clubbed with the 

main chapters. On successful completion of all the activities, planned and provided  chapterwise, a learner will 

be able to:

1.0

• Explain the importance of Mechanics in the context of engineering;

• idealise a body as a particle, rigid body, continuum or a deformable substance;

• draw free body diagrams of the components of a given system and state the basic laws of mechanics;

• perform basic vector operations, e.g., addition, dot product, cross products, differentiation and integration, 

divergence and curl of vectors, and

• employ vector methods to describe the motion of a point.

2.0

• Identify the types of force fields and force systems, and

• determine the resultant of a concurrent force system, a parallel force system, a coplanar force system and 

a spatial force system.

3.0

• Derive the conditions of equilibrium of a statical system; i.e., a particle, a rigid body and a system of 

particles,

• solve simple equilibrium problems with plane and spatial force systems;

• identify simple just-rigid trusses,

• analyse the forces in the members of just-rigid trusses by the method of joints and the method of sections;

• define loading, shear force and bending moment at a cross section of a beam and relate them;

• draw the bending-moments diagram for a simply supported beam;

• state the laws of sliding friction;

• explain the mechanism of rolling; and

• solve simple mechanical problems with frictional forces.

4.0

• Explain the concepts of centroid, centre of mass and centre of gravity;

• determine the centroid of a given length, an area and a volume;

• locate the centre of mass and centre of gravity of a given body.
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5.0

• Analyse the motion of a particle with reference to fixed rectangular coordinates, cylindrical polar coordi-

nates or path coordinates;

• analyse the motion of a particle with reference to a moving frame of reference; and

• interpret the terms Coriolis acceleration, tangential acceleration and centripetal acceleration.

6.0

• Formulate the equation of motion for a particle or for the centre of mass of a system;

• solve the equation and describe the motion;

• derive the work-energy principle and hence the energy conservation principle in mechanics;

• derive the impulse-momentum principle and hence the momentum conservation principle in 

mechanics

• establish the moment of momentum equation and hence the conservation of moment of momentum 

principle; and

• apply different principles to study the motion of a particle or the motion of the centre of mass of a 

system.

7.0

• Classify the types of motions of a rigid body;

• locate the instantaneous centre of rotation of a body; and

• determine the relative velocity and acceleration for points on a rigid body.

8.0

• Determine the area moment of inertia of simple and composite sections;

• compute the mass moment of inertia for thin plates and solid bodies; and

• apply the parallel-axis theorem vis-a-vis area and mass moments of inertia.

9.0

• Analyse the motion of a rigid body in translation in fixed-axis rotation and in general plane motion 

 vis-a-vis Newton’s laws and the Euler’s equation of motion;

• apply the work-energy principle to analyse the plane motion of a rigid body;

• describe the plane motion of a rigid body by employing the impulse-momentum principle;

• develop the equation of motion for a rigid body moving in space under the action of an external force 

system;

• describe the gyroscopic action for a spinning body undergoing precession;

• classify different types of impacts of two rigid bodies;

• define the coefficient of restitution;

• solve simple problems on direct and indirect central impact;

• analyse a problem with central force motion;

 Terminal Objectives
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• describe the trajectory of a particle under a central force; and

• solve simple problems for synchronous satellites.

10.0

• Establish and apply the principle of virtual work to analyse the motion of simple mechanical systems, 

and

• develop and apply the principle of minimum potential energy and conditions of equilibrium for simple 

engineering problems.

11.0

• Identify the basic elements of a mechanical system and write their constitutive equations;

• solve simple problems on linear and angular free vibrations; and

• describe pendulum motions for simple, compound, torsional and conical pendulums.

s s s ss

s s s s s

s s s s s s

A video, ‘MECHANICS—An Insight’ developed by the author at IIT, Delhi goes a long way in 

 clarifying some basic concepts in mechanics and it focuses on some common misconceptions 

in the subject. Copies of the video are available from the Educational Technology Facility, IIT, 

New Delhi 110 016, India. Website:

http://web.iitd.ac.in/eklavya/vediocourse/iitscourselist.pdf

(Look up General Engineering and Sciences)

Terminal Objectives



Notation

Symbol

, a Acceleration

a Constant; distance; semi-major axis of an ellipse

BA Acceleration of B relative to A

cor Coriolis acceleration

A Area

B Body force

b Width; distance; semi-minor axis of an ellipse

 Velocity of light

c Constant

 Couple

C Centroid

C Centre of mass

d Distance

e Coefficient of restitution; base of natural logarithms

n’ t Unit vectors along normal and tangent

r’ q Unit vectors in radial and transverse directions

f Frequency; scalar function

, F Force; friction force

g Acceleration due to gravity

G Centre of gravity; constant of gravitation

h Height

 Angular momentum

, ,  Unit vectors along coordinate axes

Ixx Moment of inertia (about x axis)

Ixy Moment of inertia (about x and y axes)

I Instantaneous centre of rotation

k Spring constant; Radius of gyration

l Length

L Length; span

m Mass

, M Moment of a force

Me Mass of earth

M Mass

N Normal component of reaction

O, o Origin of coordinates

p Pressure

 Momentum

P Power; point

 Position vector

r Radius; distance

 Reaction; distance



xx Notation

R Radius of earth

s Distance; length of arc

t Time; thickness; tangential direction

t Tension coefficient

T Tension; kinetic energy

 Velocity

u Speed along x-axis

 Velocity

v Speed along y-axis

VB/A Velocity of B relative to A

V Volume; potential energy

w Load per unit length

W, W Weight; load

W Work

x, y, z Rectangular coordinates; distances

r, q, z Cylindrical coordinates

R, q, f Spherical coordinates

q, a Angular acceleration

d  Virtual displacement

dW Virtual work

h Efficiency

m Coefficient of friction; dynamic viscosity

r Density; radius of curvature

t Period; periodic time; shear stress

f Angle of friction; angle

ω, w Angular velocity

w Circular frequency

W Angular velocity of frame of reference

Prefixes

D, d, d Infinitesimal increment

∂/∂x Partial differential with respect to x

d/dx Ordinary differentiation with respect to x

Subscripts

x, y, z for components along rectangular coordinates

r, q, z for components along cylindrical coordinates

R, q, f for components along spherical coordinates

1, 2, 3 at, for or about

R Reaction; e.g. R, R

b for bending

t for torsion

a for axial or normal

S for shear

B s s s

s s s s s

s s



Prelude

Mechanics is perhaps the most fascinating core subject in engineering and technology. Once 

you know the things you can do by employing the basic principles of mechanics, you may want 

to learn more about it!!

Τake, for example, a structure, say a space truss. You can work out the tensile and compressive 

forces in its members for any given loading conditions. You can even design one for a given situ-

ation. Analyse the forces in the members of cranes and lifting equipment and design those too!

 
 A Timber Frame Truss Cranes at Work  

The Fascinations of

Studying Mechanics!
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You can analyse beams and cantilevers; bridges and flyovers, at least by making some simplifying assump-

tions. You can work out the shearing forces and bending moments at different points, which are so crucial to 

their safe design.

 
A Beam Bridge over a Small River Flyovers and Highways in Hawaii 

Lifting machines! You can analyse the operation of all kinds of lifting machines, like screw jacks, winch 

pulley blocks, etc. and design one for your use. You can ensure that they have a high mechanical advantage 

and be self-locking.

 
An Automobile Lifted by a Jack A Hoist Used in a Workshop 
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Just imagine the range of mechanisms employed in transmitting motion and force! You will be able to anal-

yse their kinematics and dynamics. You may also experience the thrill of designing a new mechanism for a 

desired duty.

 
A Four-Bar Mechanism in Use A Rotary Reversing Mechanism 

You can analyse the motion of satellites and planetary orbits, which are special cases of central force motion.  

Use your knowledge as a launching pad into space mechanics by working out the escape velocity for a hyper-

bolic trajectory!

 
Low Earth Orbital Motions Multiple Planetary Motions
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Collisions! The origin of the earth is said to be from a Big Bang between two bodies. You can study the impact 

between two bodies and draw important  conclusions to aid you in playing different games and outperforming 

other players! 

 
Shooting a Ball in Billiards Positioning the Bat for a Hit in Cricket 

The human structural design is indeed the most elegant and perfect of all designs. So are human mechanisms, 

all the way from your shoulders and elbows down to your ankles and toes!  

A sound conceptual understanding of these is essential to Biomechanics, in case you would like to design 

artificial limbs and support systems for the disabled. You can also improve the quality of life of people by 

designing ergonomic interfaces between humans and machines, e.g., a bio-signal supervision system provid-

ing medical care.

 
A High-Tech Artificial Leg  A Wheelchair in Use 

Electrical, civil, chemical, aeronautical, agricultural and other students in engineering have no less reason to 

be fascinated. They’re the ones who design machines and devices in their domain of work!
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Electrical Machines at Work Innovative Agricultural Equipment 

  
A Super Fast Ferry in Action  A Concorde Being Positioned!  

These are but a few of the things you can do during the course of learning mechanics. Just imagine what you 

would be able to do after completing the course! Maybe study a related course, like Fluid Mechanics or Solid 

Mechanics or Vibrations of Systems! Possibly design vibratory systems for health and relaxation! 

Maybe even take up research and explore the frontiers of knowledge by taking up a course in Advanced 

Mechanics!

 
Vibrations Therapy Vibrations Research Laboratory 



1

Engineering 

Mechanics: 

What and Why?

 1.1 ENGINEERING AND ‘ENGINEERING SCIENCES’

Engineering is an activity concerned with the creation of new systems for the benefit of mankind. 

The process of creativity proceeds by way of research, design and development; new systems 

emerge from innovation and systems may be constituted by mechanical, electromechanical, 

hydraulic, thermal or other elements. Creation of new systems is thus basic to all engineering. 

The Living Webster Encyclopedic Dictionary aptly defines engineering as the art of executing 

a partial application of scientific knowledge.

It is important to understand the difference between engineering and science. Science is 

concerned with a systematic understanding and gathering of the facts, laws and principles govern-

ing natural phenomena. Engineering, on the other hand, is an art of utilisation of the established 

facts, laws and principles to create certain desired phenomena as shown in Fig. 1.1. The activities 

of science and engineering are thus mutually opposite. Both may proceed through similar ways 

and means of analysis and synthesis 

but are oppositely directed. The 

training of scientists and engineers 

should be correspondingly designed 

for their respective objectives.

The sets of core courses meant 

for engineering students are called 

engineering sciences. These are ess-

en    tially basic sciences compartmen-

talised and labelled specially for 

engineering students with regard to 

their future responsibility. The exist-

ing laws and principles are conveyed 

Nature

New systems

Engineering

Science

Basic

science e.g.

Physics

Facts

Laws

Principles

Facts

Laws

Principles

Engineering

sciences e.g.

Mechanics

Fig.1.1 Role of engineering sciences
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to the students by the engineering-science courses and emphasis is laid on their application to real-life problems. 

Some of the engineering-science courses being offered in India and abroad are: Mechanics, Manufacturing 

Processes, Energy Conversions, Transport Phenomena, Material Science and Design Engineering.

 1.2  MECHANICS AND ITS RELEVANCE TO ENGINEERING

Mechanics is the physical science concerned with the statical and dynamical behaviour of material bodies in 

the presence of mechanical disturbances. Since such behaviour is of interest to mechanical, civil,  electrical, 

chemical, aeronautical, textile, metallurgical and mining engineers, it is appropriate to conclude that the 

subject of mechanics lies at the core of all engineering analysis.

Engineering mechanics refers to a course in mec h anics tailored exclusively for engineers. Essential 

 features of such a course are:

 1. The subject matter is not presented as rigorously as a course in analytical or axiomatic mechanics may 

demand.

 2. On the other hand, the contents are not just a series of applications as implied by Applied Mechanics

but a thorough grounding of the basic principles together with engineering applications.

 3. The course is integrated to provide a sound foundation in engineering-science.

 4. The course comprises the foundation for a number of courses that are to be built upon it. Some of them 

are shown in Fig. 1.2.

Foundations of

Engineering Mechanics

Axioms, Laws and Principles

Engineering

fluid

mechanics

Mechanics

of

solids

Continuum

mechanics

Advanced topics in
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 1.3 DIFFERENT FORMULATIONS OF MECHANICS

The subject of mechanics has been dealt with by a number of scientists from Archimedes (287–212 B.C.)

to Einstein (1879–1955). Apart from the historical development of the subject, the following three broad 

 classifications have come to stay in view of the different axioms and principles employed:

 1. Classical mechanics

 2. Quantum or wave mechanics

 3. Relativistic mechanics

The subject of classical mechanics rests on the classical foundations laid by Galileo, Kepler, Newton 

and Euler. The laws of linear motion due to Newton and the law of angular motion due to Euler have 

stood the test of time remarkably well. These are valid for the dynamic behaviour of most of the observ-

able bodies. Alternative foundations to classical mechanics were provided by Lagrange in terms of the 

Lagrangian equation and by Hamilton in terms of the canonical equations. Later, the ‘principle of least 

action’ on the basis of variational concepts was proposed as the single principle governing the behaviour 

of bodies is most circumstances. The word ‘classical’ therefore, is justifiable with respect to its dictionary 

meaning:

ss s s s

The classical pattern breaks down for a body approaching the speed of light on the one hand and for 

 particles of size comparable with atoms on the other. It is for these reasons that the structure of an atom 

remained unexplained until the principles of Quantum Mechanics were framed and the problems of very 

high-speed bodies remained a mystery until the formulation of the special and general theories of relativity 

by Albert Einstein in the twentieth century. Relativistic mechanics is based upon novel concepts of space and 

time, mass and energy, and the frame of reference.

Table 1.1 gives the names of some scientists in relation to their respective regimes of mechanics. The 

regimes of different formulations in mechanics are represented schematically in Fig. 1.3.

Further advances have not diminished the value of the Newtonian or classical ‘universal-time and  absolute-

distance’ concepts except for setting the upper bounds. The bulk of the engineering work rests upon the 

foundation of classical mechanics and it is, therefore, important to lay utmost emphasis on the teaching of 

classical mechanics to engineers.

Principle of least

action

Lagrangian and Hamiltonian

formulations in mechanics

The realm of

classical mechanics

(for observable material bodies)

s

Quantum

mechanics

(for atomic and

subatomic size

objects)

Relativistic

mechanics

(for velocities

approaching

the speed

of light)

Relativistic

quantum mechanics

Fig. 1.3 Regimes of mechanics
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 1.4 FOUNDATIONAL CONCEPTS

The axiomatic foundations of mechanics, have the following ingredients:

Undefined terms 
�

 Defined 
�

 Axioms 
�

 Theorems

  and concepts  entities  and laws  and principles

Some terms and concepts cannot be absolutely defined but are developed for axiomatic thinking and 

mutual understanding. Examples of such classical terms are: point, line and plane; space, time and matter; 

mass, force and energy.

Space refers to the unlimited general expanse of physical dimensions in which all material objects are 

located. Measurements and locations in space involve the concepts of point, direction, length and displacement.

A point, for example, is just an exact indication of a location in space, requiring no space at all for itself. Time

refers to the sequence of events. It is related to the concepts of before, after and simultaneous occurrence of 

two or more events. Measurement of time is made with the help of a clock. Matter refers to the substance of 

which physical objects are composed, the constituent substances are indeed the atoms and molecules. The 

quantity of matter associated with an object is measured as its mass. A physical object may consist of matter 

which is uniformly or non-uniformly distributed. Bodies with the same quantity of matter or the same mass 

can possess different shapes and sizes depending upon the distribution of matter in them.

Defined entities include momentum, moment of a force, impulse, work, equilibrium, rigid body, etc. 

Axioms are the relatively universal statements relating undefined concepts and defined concepts. Examples 

of axioms are Newton’s 2nd law, laws of friction and the law of gravitation.

Table 1.1 Pioneers of Mechanics

Quantum or wave mechanics Classical mechanics Relativistic mechanics

Schr dinger (1887–1961)  ≡ Non-relativistic Lorentz (1853–1928)

 ≡ Newtonian

Broglie (1892–1987)      Newton (1643–1727) Einstein (1879–1955)

Equivalent foundations by

 Lagrange (1736–1813) Bose (1894–1974)

 Hamilton (1805–1865)

 D’Alembert (1717–1783)

 Jacobi (1804–1851)

Contributions mainly by

 Kepler (1571–1630)

 Archimedes (287–212 B.C.)

 Galileo (1564–1642)

 Euler (1707–1783)

 Coulomb (1736–1806)

 Coriolis (1792–1843)

 Foucault (1819–1868)

 Bernoulli (1700–1782)
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Theorems and principles are derived from the axioms. Theorems and principles can be proved. Examples 

of principles are Work-Energy principle, Lami’s theorem and Impulse-Momentum principle.

 1.5 FRAMES OF REFERENCE

It is necessary to refer the motion of a body under study to some datum or reference space and clock. A refer-

ence frame, therefore, consists of a space and a clock to measure time. A reference frame should be such that 

the relative location of any two arbitrary points in it remains the same. It follows that the distance between any 

two points in the reference frame should remain invariant. A reference frame is called fixed frame of reference

or absolute frame if each point on the frame is at ‘absolute rest’. It is impossible to locate a fixed frame of 

reference in the universe. Rectangular Cartesian axes can be embedded in a frame of reference. The origin 

and orientation of axes can be according to convenience.

A reference frame is termed as moving frame of reference if each point on the frame is not at rest. A moving 

frame may be inertial or non-inertial. An inertial frame is one which moves at a constant velocity, i.e., the 

velocity of each point identified on the frame is the same and remains constant. Obviously, an inertial frame 

can move in a straight line at constant speed. In other words, an inertial frame can be defined as a frame which 

does not have any acceleration. An inertial frame is also known as Galilean frame.

The state of rest of a body refers to the absence of motion relative to some coordinate system. By absolute 

rest we mean a state of fixedness in space. Such a state could provide an absolute reference for the motion of 

other objects. However, it is doubtful if any such reference exists in the solar system or in the entire universe. 

It is, therefore, appropriate to speak of relative rest of a body with reference to a moving frame of reference. 

A reference frame fixed on the earth is both an approximation of the rest-frame and a convenient choice for 

all earth-bound objects for most engineering applications. A better choice from the point of view of physicists 

and mathematicians would be the centres of the earth, solar system, galaxy, and so on.

 1.6 IDEALISATION OF BODIES

A body is a distinct mass, continuously distributed over a volume V enclosed in a surface S. An element of 

a body is referred to occupy a small volume ΔV and have a small mass Δm.

The words ‘body’ and ‘system’ are often used interchangeably. By general consensus, a body implies a 

single material configuration and a system refers to a combination of bodies. For example, a car is said to be 

a body if we were to consider the whole car as a single lump of mass but the car is referred to as a system of 

engine, chassis and wheels if we were to identify these items collectively.

It may be understood that the mathematical modelling of a system should be done for the specific purpose in 

view: different mathematical models of a system are made for different objectives of analysis. For example, an 

aeroplane may be regarded as (a) a concentrated mass with negligible dimensions for the purpose of tracing its 

trajectory when it is flying sky-high, (b) merely a wing with a large span for the analysis of its lifting characteristics, 

(c) a distributed mass system for the stability analysis under different flight conditions and (d) a deformable shell 

for the purpose of calculations of the strain when subjected to different pressures inside and outside the cabin.

Different idealisations of bodies bear standard nomenclature and have specific implications. These are:

P s s R

Particle When the dimensions or size of a body are considered to be negligible and are irrelevant to the 

description of its motion, the body is modelled as a particle. A particle is a point mass or a material point in 

the abstract sense. A body is, therefore, represented as a particle if its dimensions are small compared to the 

coordinates describing its motion as shown in Fig. 1.4.
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Examples A cricket ball as viewed by a spectator; a distant 

aeroplane tracked by a ground observer; a satellite orbiting 

the earth and seen by an observer on the earth; a planet as 

seen from another planet.

System of Particles When two or more bodies are 

represented by particles and are dealt with together, 

a system of particles is constituted. A system of particles 

is an idealisation of a collection of point masses. A body 

or a set of bodies is, therefore, represented as a system of 

particles if each part of the body or each body individu-

ally qualifies to be represented by a particle. A system 

of particles may comprise a rigid collection or a deform-

able collection in accordance with the criteria of rigid or 

deformable bodies which follow.

Examples Billiard balls observed by a viewer in the gallery; sun-earth-moon system; electron-proton- neutron 

nature of atom.

Continuum When the microscopic nature of matter is disregarded and properties of the substance are 

defined assuming a continuous distribution of mass, the embodiment of matter so modelled is called a 

 continuum. In a continuum, the gross effects of the actions of the molecules and atoms are conveyed by the 

concepts of density, pressure and temperature which simplify our study considerably.

The mass density r at a point P in a continuum is defined as the ratio of the mass element Δm to the volume 

ΔV enclosing the point, in the limit when ΔV tends to zero

 ρ = =
→

lim
Δ

Δ
ΔV

m

V

dm

dV0

 (1.1a)

The expression of the mass of a body in terms of its density is, therefore,

 m dV= ∫ ρ  (1.1b)

where r, the density of the continuum may be constant or may vary continuously with the space coordinates.

A body may, therefore, be represented as a continuum if the approximations about the continuity of mass 

and the continuous variation of the physical variables are acceptable in terms of analysis and results.

A continuum may be a rigid or a deformable medium in accordance with the definitions which follow.

Rigid Body When the dimensions, linear, volumetric or angular, of a body do not change during the course 

of events, the body is modelled as a rigid body. A rigid body, in other words, is the one in which the distance 

between any two arbitrary points is invariant. A body, therefore, qualifies to be represented as a rigid body if 

the deformation between its parts is negligible in the course of its analysis.

Examples An aeroplane observed in roll, pitch and yaw; a spinning top; a wheel of a cart; a body being 

pulled by applied forces.

Deformable Body When the dimensions, linear, volumetric or angular, of a body change during its 

analysis, the body is modelled as a deformable body. Deformation may be brought about in a variety of 

Particle w.r.t.

x-o-y (r  l ) A body

l
C

r ′

r

o ′

y ′

x ′

y

x

Not a particle

w.r.t. x ′-o ′-y ′

o

Fig. 1.4 Criteria of idealisation of bodies
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ways; it may be temporary or permanent, instantaneous or continuous. A body is, therefore, represented as a 

 deformable body if the relative deformation between its parts cannot be ignored in the course of its analysis.

Examples A bar deflecting under the application of a load; a shaft twisting under the application of a torque.

Fluid A substance which deforms continuously under the application of shear stresses, however small, is called 

a fluid. The process of continuous deformation is called a flow. A fluid must, therefore, flow when subjected 

to a shear stress. In the absence of shear stresses the fluids behave as static masses or as rigid bodies in motion.

Examples A liquid, e.g., water, oil or molten metal; a gas, e.g., air, oxygen or a vapour, blood, slurry, milk 

and beer.

Solid A substance characterised by some preferred configuration of its own, i.e., possessing a definite shape 

and a definite volume, is called a solid. Any change of shape or volume of a solid is accompanied by its tendency 

to regain its original configuration or stay in the new configuration with a change in some of its properties. 

Solids can be regarded as rigid bodies or as deformable bodies depending on their mathematical-modelling 

requirements.

Examples A straight metre scale for linear measurements is regarded as a rigid-solid body; a metre rod bent 

to draw a curve is regarded as a deformable solid.

 1.7 EXTERNAL AND INTERNAL FORCES

A force is said to be ‘external’ if it is applied to a body from outside. An 

‘internal’ force comes up from within the body in an attempt to resist the 

applied external force.

For example, if a bar is acted upon by axial forces  and , as shown in 

Fig. 1.5(a) trying to pull it apart; they are external forces. The bar resists the 

pull by generating internal forces  and , as shown in Fig. 1.5(b).

Likewise, if a bar is pushed by two coaxial forces, the directions of the 

internal forces would be reversed.

External forces are those which act on a body or a system from outside. 

It is indeed the forces exerted on a body from outside that govern its state 

of motion.

If a component, say a gear, is to be considered for analysis, the forces exerted by the other gears and 

 components on it are external forces.

It should be clear that a force is classified as internal or external depending upon the boundaries of the 

system. For example, the force between the earth and the moon is external if we were to consider the motion of 

the moon alone but the same force is internal if we were to consider the motion of the earth-moon system.

The concept of internal and external action is equally valid for moments also. Internal moments are those 

originating from inside a body or a system, whereas external moments are by virtue of sources outside the 

body or the system under consideration.

 1.8 PRINCIPLE OF TRANSMISSIBILITY OF FORCE

The principle of transmissibility of force states that the condition of motion of a rigid body remains 

unchanged if a force  of a given magnitude, direction and sense acts anywhere along the same line 

Fig. 1.5(a)  External forces on a bar

Bar

Fig. 1.5(b)  Internal forces in 

the bar resisting the 

external forces
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of action on the rigid body. For example a force 

acting at a2 along the line of action a1a2 is equivalent 

to a force  acting at a1 along the same line of action 

a1a2 as shown in Fig. 1.6. Another example of a rigid 

body motion is provided if a mass m being lifted 

with an acceleration  by means of a force applied 

differently at different places by along the same line 

of action passing through the centre of gravity C as 

shown in Fig. 1.7. A string with tension  pulling 

it up or an upward force  applied from below or a 

combination of the two such that

= = 1 + 1

result in the same motion of the body.

The principle of transmissibility applies only to a 

rigid body and is valid only from the point of view of 

the net external effect for the state of motion of the 

rigid body. It applies neither to the rigid body from the 

point of view of internal resistance or internal forces 

developed in a body nor to deformable bodies under 

any circumstances. 

 1.9 CONCEPT OF FREE-BODY DIAGRAM

No system, natural or man-made, consists of a single body alone or is complete by itself. A single body or a 

part of the system can, however, be isolated from the rest by appropriately accounting for its effect. A free-body 

diagram (  f bd ) consists of a diagrammatic representation of a single body or a subsystem of bodies isolated from 

its surroundings but shown under the action of forces and moments due to external actions.

Consider, for example, a book lying flat on a table Fig. 1.8 (a). the book exerts its weight on the table and the 

table exerts its own weight as well as transmits the weight of the book on the ground. A free-body diagram for 

the book alone would consist of its weight W acting through the centre of gravity and the reaction exerted on 

the book by the table top as shown in Fig. 1.8(b).

Let us consider one more case; a trailer of weight 

 (and mass m) being pulled by a car of weight W

(and mass M) by a tractive force  produced by the 

engine on a level road as shown in Fig. 1.9(a).

Considering pure rolling of wheels, the free-

body diagrams of the car and the trailer are shown 

in Fig. 1.9(b). Notice that the net forward force on 

the car is ( – ) which must be accelerating the Car 

of mass M; the net forward on the trailer is , which 

must be accelerating the trailer of mass m with the 

same acceleration.

Drawing a free-body diagram (  f bd ) of a body 

is an essential step, generally the first step, to anal-

yse a given problem in mechanics. Whether the Fig. 1.9(a) A car pulling a trailer

Fig. 1.7 Examples of transmissibility of force

Pulling

Pushing

1

1

Part pulling

and pushing

mg mg

C

mg

CC

Fig. 1.6 Transmissibility of force

a1

a2

a1

a2

Fig. 1.8  (a) Book on a table top (b) Free-body diagram 

of the book

W

R

(a) (b)
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body is at rest or in some kind of motion, an f  bd is 

equally important. In fact, it is the analysis follow-

ing the f  bd which would decide the state of rest or 

motion of the body!

A free-body diagram may be drawn for any single 

member of a system, any subsystem of the system or 

the entire system irrespective of whether the system 

is in e uilibrium: at rest, in uniform motion or in a 

dynamic state of motion.

The example of a book lying flat on a table is that 

of static equilibrium. In such cases the forces and moments acting on the body must be in conformity with 

the conditions of equilibrium which are dealt with in detail in Chapter 3.

Free-body diagram of a single member or a subsystem of a dynamic system, on the other hand, would 

reveal an unbalance of the forces and moments; the unbalanced resultants causing accelerations, linear or 

angular. Further discussion on the subject of free-body diagram for dynamic systems will be resumed in the 

chapters on dynamics and when the concept of inertia forces is introduced.

 1.10 LAWS OF MOTION

The three laws of motion due to Newton, a literal translation from the original Latin ‘Principia Mathematica 

Philosophia Naturalis’ written in 1667 are collated:

Law 1 Every body perseveres in its state of rest, or of uniform motion in a right line unless it is compelled 

to change that state by forces impressed thereon.

Law 2 The alteration (acceleration) of motion is ever proportional to the motive force impressed; and is 

made in the direction of the right line in which that force is impressed.

Law 3 To every action, there is always opposed an equal reaction: or the mutual actions of two bodies upon 

each other are always equal, and directed to contrary parts.

The laws due to Newton reproduced as above are indeed philosophical and useful but need some clarification:

 1. The word ‘body’ is undefined. It either refers to a particle or to the centre of mass of a rigid body.

 2. The term ‘motion in a right line’ appears in the first and second law but no attempt has been made to 

govern the rotational and general motion of the bodies of finite size.

 3. Only the ‘forces’ have been considered; the action of a moment is not included.

 4. The second law which relates acceleration to the forces impressed assumes the constancy of mass of 

the body.

 5. If ‘force’ is recognised as a primitive concept, then the first law can be considered to be contained in 

the second law.

 6. The action-reaction principle put forth by the third law can also be derived from the second law for 

rigid bodies.

 7. The first and third laws are, therefore, not entirely independent of the second law; the message can be 

conveyed by the second law alone.

The second law applies to a body of mass m under the application of the motive force . Mathematically, 

the acceleration

 ∝

Fig. 1.9(b) Free-body diagram of the car and trailer

m

R

R

W
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or

 = k

where k is a constant of proportionality. This constant, determined experimentally, equals the mass of the 

system.

Hence, = =m m
d

dt
 (1.2a)

It is obvious that the force  and acceleration  must be collinear, vector  being m times vector . Further, 

the units of force are derived from the base units of mass and acceleration.

Mass kg

Acceleration m/s2

Force kg × m/s2 = kg m/s2 ≡ N or newton

Quantitatively, a force of 1 N causes an acceleration of 1 m/s2 of a body of mass 1 kg.

The second law is not immediately applicable to the systems of variable mass. The law can, however, be 

reframed to cover the motion of constant-mass and variable-mass bodies by writing

 =
d

dt
m( )  (1.2b)

The bracketed term (m ) is the momentum p

of the body of mass m moving at a velocity . The 

second law, in other words, states:

The rate of change of momentum of a body e uals 

the force impressed upon it.

In view of the fact that the first and third laws are 

contained in this law, only this law will be retained 

and henceforth referred to as Newton’s law.

In order to appreciate that the first and third laws 

of motion due to Newton are substantially contained 

in the second law, we proceed as follows:

From the second law,

 = =m m
d

dt
 

If F a= = =0, 0
d

dt
 

whence = zero or constant.

It follows that, in the absence of an external force, 

a body will continue to be in a state of rest or of 

uniform velocity. This is, in essence, the statement 

of the first law.

This reduction may also be seen graphically by 

plotting vs  as shown in Fig. 1.10. The resulting 

straight line with slope m passes through the origin 

where,

for = 0,  = 0 Fig. 1.10 Derivations from the Second Law

= 0

B

= m

= m

+ R = mA B = mB

+ ve x

= 0

R

s

A
B

1

m

(a) First Law from the Second Law

(b) Third Law from the Second Law
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 Again, consider a rigid body moving at an acceleration  under the application of a force . By the second law,

 = m  (i)

Imagine the body to be constituted of two sub-bodies A and B such that the surface of contact is S as shown 

in Fig.1.10. The sub-bodies have their masses mA and mB for A and B respectively such that

 mA + mB = m (ii)

Since the whole body was moving at an acceleration , every part of the body must have the same accelera-

tion . The total applied force  is, however, distributed over the parts of the body to bring about this state. 

In particular, let the force acting to accelerate the part B be B such that, by the second law,

B = mB  (iii)

In other words, the action of the body A on B is the force B. Let the reaction of B on A be R. Consequently, 

the net external force acting on A is given by

 + R = mA  (iv)

Adding (iii) and (iv),

B + + R = mB + mA = (mA + mB)

Employing (ii),

B + + R = m

and comparing with (i),

= m

it follows that

B + + R =
whence

B + R = 0

and

R = − B (v)

Relation (v) proves that the reaction force R by the body B is equal in magnitude and direction to the action B

exerted on it but is opposite in sense. In other words, to an action B, there is an equal and opposite reaction R. This 

is, in essence, the third law of motion due to Newton.

While claiming to prove that the second law contains the first and third laws one must not underestimate 

the conditions of validity:

 1. The first law would have served to define the terms ‘force’, ‘frame of reference’ and ‘state of rest’. These 

terms need to be defined axiomatically if the first law is regarded derivable from the second law.

 2. The third law can be derived from the second law under the condition of transmissibility of force 

which is only valid for rigid bodies.

 3. The third law as stated by Newton does not restrict the action and reaction principle to forces only. 

Since the first two laws relate to forces and their actions only and the concept of moment was not intro-

duced by Newton, the third law as stated by Newton refers to the action and reaction of forces alone.

 4. The action and reaction principle, in general, is valid for moments also. The concept of reaction may, 

therefore, be introduced axiomatically referring both to forces and moments as actions.

Having recognised that Newton’s laws are, by themselves, inadequate to govern the general motion of finite-

size bodies under the action of forces and moments and also that only the restated second law is carried over, it is 

but natural to decide and state a complete set of laws for the general motion of observable bodies. The complete 

set of laws should include the laws governing the behaviour of mass, momentum and energy. The basic assump-

tions in classical mechanics are that the mass must be conserved and the energy must be conserved separately. 

Rates of changes of linear momentum and angular momentum must be governed by the laws of motion.
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In quite the same way as Newton’s law governs the 

motion of a particle (or of the centre of mass of a body), 

Euler’s law governs the motion of a rigid body. Euler’s 

law states that

 M = =
d

dt
( ) �

where  is the angular momentum of the body about a 

point and  is the moment of the external forces acting 

on the body about that point.

It is interesting to note the similarity of the Newton’s 

and Euler’s laws:

 Newton’s Law F = =
d

dt
( ) �  (1.3)

 Euler’s Law M = =
d

dt
( ) �  (1.4)

The role of force in the rate of change of linear 

momentum is similar to the role of moment in the rate

of change of angular momentum. In fact, both the laws 

relate to the rate of change of momentum; Newton’s for 

the linear momentum and Euler’s for the angular momentum. The force and the moment refer to the external 

action; the force for translational motion and the moment for rotational motion or tendencies thereof. A general 

statement to include both the laws may be made thus:

The rate of change of momentum of a body is proportional to the external action impressed upon it.

It should be clear that the word ‘action’ implies ‘force’ or ‘moment’ and the corresponding ‘momentum’ 

is linear or angular.

The law of conservation of energy may at first appear redundant to the problems in mechanics. This is not true 

because the law explains a number of dissipative phenomena on the one hand and degenerates to a simple form on 

the other hand for reversible phenomena. A pictorial representation of the laws of mechanics is given in Fig. 1.11.

Newton′s
law

Euler′s
law

Law of mass

conservation

Law of energy

conservation

Governing equations

applicable to

continuum, Particles

Rigid bodies

Deformable bodies

Fluids and solids

Fig. 1.11 Law of mechanics

Table 1.2 Laws of Mass, Momentum and Energy

Entity Law Statement Mathematical formulation

Mass Law of conservation 

of mass

Mass can neither by created nor destroyed 

by any physical or chemical means.
d

dt
m( ) = 0

Linear

momentum

Newton’s law The rate of change of momentum of a 

body equals the force impressed upon it. F p= = =
d

dt
m

d

dt
( ) ( ) �

Angular

momentum

Euler’s law The rate of change of angular momentum of 

a body about an origin O equals the moment 

impressed upon it about the origin.

= × = =
d

dt
m

d

dt
( ) �

 

Energy Law of conservation 

of energy

The rate of change of internal energy and 

kinetic energy of any mechanical system 

equals the sum of the rates of work done 

by the external forces and the energy flux 

across the boundary as well as the energy 

developed within the system.
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 1.11 LAW OF GRAVITATION—WEIGHT OF A BODY

In addition to the fundamental laws of motion, there are some more laws concerned with the origin and 

nature of forces. The law of gravitation due to Newton is perhaps the closest to the foundational laws and is 

discussed below.

Any two particles will be attracted towards each other along a 

line connecting their centres with a mutual force whose magnitude 

is directly proportional to the product of their masses and inversely 

proportional to the s uare of the distance between them.

The law of gravitation requires that the force of attraction between 

two particles of masses m1 and m2 separated by a distance r as shown 

in Fig. 1.12 is given by

 F G
m m

r
= 1 2

2
 (1.5)

where G is the universal constant of gravitation; its value being 6.67 × 10–11 N m2/kg2 or m2/kg s2. Quantitatively, 

an attractive force of 6.67 × 10–11 N is exerted by a body of mass 1 kg on another body of mass 1 kg at 1 m 

distance from it. Obviously, the attractive force of reaction by the other body on it must also be equal to the 

same value.

The law of gravitation helps in defining the weight of a body. The weight of a body is the force exerted on it 

by the planet. For an earth-bound object of mass m, the weight is approximately given by

 W G
M m

r

e=
2

 (1.6)

where Me is the mass of the earth = 5.9761 × 1024 kg and r is the radial distance between the centres of the 

earth and the object.

It is customary to write

 W = mg (1.7)

where g
GM

R

e

e

= =
2

29 806 65. m/s  (1.8)

and Re = mean radius of the earth ≈ 6371 km.

Since g is a constant for a planet and, when multiplied by the mass of a body, it provides the force on the 

body, it is termed as acceleration due to gravity. It is indeed the acceleration acquired by a body falling freely, 

i.e., without resistance, in the gravitational field of the planet.

Example 1.1 The mass of a body is 10 kg.

(a) Determine its weight, assuming g = 9.81 m/s2.

(b) Estimate its weight by employing the Newton’s law of gravitation, considering the following values

G, gravitational constant = 6.67 × 10–11 N m2/kg2

Me, mass of the earth = 5.98 × 1024 kg

r, the radius of the earth = 6370 km

Solution

(a) The weight of a body W is related to its mass m by the equation, W = mg

    Hence, W = 10 × 9.81 = 98.1 N.

Fig. 1.12 Concept of gravitation

1

r

F

m1
m2

F
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(b) By Newton’s law of gravitation, the force between the body and the earth is also the weight,

W F G
mM

r

e= =

= × ×
× ×

×( )
=

−

2

11
24

2
6 67 10

10 5 98 10

6370 1000
98 0

.
.

. N

The two results are the same, within permissible error of calculations!

Example 1.2 A body weighs 200 N on the earth’s surface.

(a) What would it weigh on the moon’s surface?

Assume that the mass of the moon is 0.0123 times the mass of the earth and its radius is 0.273 times that 

of the earth.

(b) Estimate the value of g at the moon.

Solution 

(a) On the surface of the earth,

 W = mg; m = 200/9.81 = 20.39 kg

From the Newton’s law of gravitation,

 
F G

m m

r
= 1 2

2

We notice that the force exerted on a body is directly proportional to the mass of the ‘planet’ m2 and inversly 

proportional to the square of the radius of the planet.

Hence, weight of the body on the moon is given by

 
=

( )
× = = × =

0 0123

0 273
0 169

2

.

.
.W W 0.169 200 33.37 N

(b) Once we know the weight and mass of a body, the value of g is estimated from

 W = mg

Hence, g = 33.37/20.39 = 1.64 m/s2 at the moon.

Concept Review Questions

  Comment on the scope of classical mechanics 

vis-a-vis other formulations in mechanics.

  Comment on the need to idealise a body as a 

particle, a rigid body, a deformable body or a 

continuum.

  What is the advantage of drawing a free-body dia-

gram? Is it possible to draw a free-body  diagram 

of a body or a system undergoing  acceleration? 

Give examples.

  State Newton’s second law of motion and show 

that the first and third laws are contained in it.

  What is meant by the state of equilibrium of a 

body? State the dynamical conditions of equi-

librium and comment whether the conditions are 

both necessary and sufficient or not.
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Multiple-Choice Questions

Select the correct or most appropriate response from 

among the available alternatives in the following 

multiple-choice questions.

In all engineering problems a frame of reference at 

rest with respect to the earth is taken as an  inertial 

frame. The assumption is valid because

 (a)  the centrifugal force on the earth and the force 

of attraction between the earth and the sun 

balance each other

 (b)  the acceleration and angular velocity of the earth 

is so small that the error caused is negligible

 (c)  the error due to the acceleration of the earth is 

taken care of by the experimental calculation 

of the value of g

 (d) the earth does not have any acceleration

Zero work done by a system of forces acting on a 

body implies that 

 (a) the resultant of the system of forces is zero

 (b)  the cross product of the resultant of the system 

of forces and the vector in the direction of 

motion of the body is zero

 (c) the body does not have any motion

 (d)  the motion of the body is in a direction 

perpendicular to the direction of the simplest 

resultant of the system of forces

An inertial frame of reference is one which 

 necessarily has

 (a)  fixed directions of its coordinate axes but the 

origin can move with constant speed

 (b)  fixed directions of its axes but the origin can 

move with constant velocity

 (c)  a fixed origin but directions can change with time

 (d) fixed origin and fixed directions of its axes

A free-body diagram of a body shows a body

 (a) isolated from all external effects

 (b)  isolated from its surroundings and all external 

forces acting on it

 (c)  isolated from its surroundings and all external 

actions acting on it

 (d)  separately from its surroundings and all 

external and internal forces acting on it

The free-body diagram of a satellite rotating 

about the earth will show the satellite isolated 

from its surroundings and

 (a) no force acting on it

 (b) its velocity shown on it

 (c)  the force of gravity and centrifugal force 

acting on it

 (d) only the force of gravity acting on it

An implication of Newton’s law is that

 (a)  the total momentum (linear + angular) of the 

body is conserved

 (b)  the linear and angular momentum of the body 

are conserved separately 

 (c)  only the linear momentum of the body is 

conserved

 (d)  a rigid body will tend to rotate if a force is 

applied at a point other than the centre of mass 

of the body

An implication of Euler’s law is that

 (a)  a rotating wheel will not change the orientation 

of its axis of rotation unless acted upon by an 

external torque

 (b)  a rotating body will not change its angular 

velocity unless a couple is applied to it

 (c)  a stationary body cannot be made to rotate by 

the application of a single force only

 (d) the total momentum of a body is conserved

8 The momentum of a particle

 (a)  does not depend on the frame of reference at 

all

 (b)  does not depend on the frame of reference so 

long as it is an inertial frame of reference

 (c) is zero if no external force is acting on it

 (d) is conserved under all circumstances

If a body moving in a horizontal line with a certain 

velocity starts ejecting mass downwards at a con-

stant rate, the horizontal velocity of the body will

 (a) remain unchanged

 (b) start decreasing at a constant rate

 (c) start increasing at a constant rate

 (d) start increasing at an increasing rate
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The force of gravitation between two bodies 

will be inversely proportional to the square of 

the distance between their centre of masses if the 

bodies

 (a) are of constant densities

 (b) are symmetrical about their centres of mass

 (c) are of any arbitrary shape

 (d) are of same shape, size and orientation

A man falling down from a height h starts rotating 

mid-way of his fall. The vertical velocity with 

which he will touch the ground will be

 (a) 2 gh

 (b) less than 2 gh

 (c) more than 2 gh

 (d)  less or greater but never equal to 2 gh

Answers to Multiple-Choice Questions

1 (b)    2 (e)    3 (b)    4 (c)     5 (c)    6 (d)    

7 (b)    8 (a)    9 (a)    10 (b)    11 (b)





Review Section
In this section, an attempt has been 

made to review the SI units and 

vector operations which are 

required throughout the study 

of mechanics:

� R1 REVIEW OF SI UNITS

� R2 REVIEW OF VECTORS





A review of the Syst me International d’Unit s, abbreviated as SI Units with special reference 

to mechanics is presented as follows:

 R1.1 SI UNITS AND BASE UNITS

Name Symbol Measure Definition/Justification

m length 0.1 millionth of the distance 

from the earth’s equator to 

the North Pole measured 

through Paris

kg mass The mass of one litre of 

water

s s time 1/(24 × 60 × 60) of the day

A electric current

K temperature One hundredth of the 

difference between the 

boiling and freezing points 

of water

mol quantity of matter One gram per atomic mass 

unit

cd luminous intensity Average candle intensity

R1
Review of SI Units

s

length

s

mass

m

kg

times
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Base units Unit symbol Dimensions Physical uantity

kilogram kg M mass

metre m L length

second s T time

kelvin K t temperature

ampere A I current

candela cd luminous intensity

mole mol amount of substance

Supplementary Units

radian rad — plane angle

steradian sr — solid angle

 R1.2 SI DERIVED UNITS WITH NEW NAMES

Derived unit Unit symbol Physical uantity

newton N = kg m/s2 force

joule J = Nm = kg m2/s2 energy, work, heat

watt W = J/s = N m/s = kg m2/s3 power

pascal Pa = N/m2 = kg/ms2 pressure, stress

hertz Hz = s−1 frequency

Notes:

 A. Note that kilogram is written as kg and not as kgm, kgf, etc. Similarly second as s, not sec or sec., etc. 

No full stops, plurals, dots or dashes should be used. For example, torque is in Nm, not N.m, N-m, 

Nms, etc.

 B. The unit of force is newton with symbol N and there is no such thing as kilogram force in SI units; just 

N and its multiple and submultiples. The unit of energy in any form is joule, J = Nm

  No horsepower or metric horsepower; just watt, W = J/s = N m/s and its multiples and submultiples.

 C. Always leave a space between the number and the unit symbol, e.g., 23.2 cm and 2500 N.

 D. For numbers less than unity, zero must be put on the left of the decimal and for larger numbers 

exceeding five figures, one space after every three digits counting from the right end must be left blank 

without any commas, e.g. 0.23 cm and 15 232 756 are the correct ways of writing these numbers.

 E. It is permissible and perhaps advisable that one space be left between any two unit symbols and no 

space be left after a multiple or submultiple symbol, e.g., kg m2/s, kJ/kg K.

 R1.3 UNITS OF SOME COMMON PHYSICAL QUANTITIES

Physical uantity Unit Unit symbol

Acceleration metre/second2 m/s2

Angular acceleration radian/second2 rad/s2

(Continued )
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Physical uantity Unit Unit symbol

Angular displacement radian rad

Angular momentum kilogram metre2/second kg m2/s

Angular velocity radian/second rad/s

Area Square metre m2

Couple, moment newton metre N m

Density kilogram/metre3 kg/m3

Discharge metre3/second m3/s

Displacement metre m

Energy joule or newton metre J or N m

Force newton or kilogram 

metre/second2
N or kg m/s2

Frequency hertz or per second Hz or /s

Length metre m

Mass kilogram kg

Moduli of elasticity pascal or newton/metre2 Pa or N/m2

Moment newton metre N m

Momentum kilogram metre/second or 

newton second

kg m/s or Ns

Moment of inertia kilogram metre2 kg m2

Plane angle radian rad

Power watt or newton metre/second W or N m/s

Pressure, Stress pascal or newton/metre2 Pa or N/m2

Specific energy joule/kilogram J/kg

Specific volume kilogram/metre3 Kg/m3

Speed metre/second m/s

Time second s

Torque newton metre N m

Velocity metre/second m/s

Velocity potential metre2/second m2/s

Viscosity (dynamic) newton second/metre2 or 

pascal second

N s/m2 or Pa s

or

kilogram/metre second kg/m s

Volume metre3 m3

Weight newton or kilogram 

metre/second2
N or kg m/s2

Work joule or newton metre J or N m

 R1.4 MULTIPLES AND SUBMULTIPLES

tera T 1012 milli M 10−3

giga G 109 micro μ 10−6

mega M 106 nano n 10−9

kilo k 103 pico p 10−12

deci d 10−1 femto f 10−15

centi c 10−2 atto a 10−18
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 R1.5 SOME CONVERSION FACTORS

To convert the following Into Multiply by Conversely multiply by

inch cm 2.5400 0.3937

foot m 0.3048 3.2808

mile km 1.6093 0.6214

gallon m3 4.546 × 10−3 220

pint m3 0.5683 × 10−3 1.76 × 103

gallon (US) m3 3.785 × 10−3 264.2

degree rad 0.017 45 57.2957

pound (lb) kg 0.4536 2.2046

ton kg 1016.0 9.842 × 10−4

tonne kg 1000.0 10−3

knot m/s 0.5144 1.943

r.p.m. rad/s 0.1047 9.550

pound/foot3 kg/m3 16.02 0.0624

cusec m3/s 0.0283 35.31

g.p.m. m3/s 0.0758 × 10−9 13.20 × 109

lbf N 4.448 0.2248

kgf N 9.807 0.1019

tonf kN 9.964 0.1003

kgf/cm2 kPa 98.07 0.0102

p.s.i. kPa 6.895 1.1450

inch (water gauge) kPa 0.2491 4.015

inch (Mercury) kPa 3.386 0.2953

torr kPa 1.333 0.7502

foot pound J 1.356 0.7375

h.p. kW 0.7457 1.341

poise N s/m2 0.1 10

stoke m2/s 10−4 104

 R1.6 VALUES OF SOME USEFUL CONSTANTS

Constant uantity Symbol Value SI units

Speed of light in vacuum c 2.997 925 × 108 m/s

Planck’s constant h 6.6253 × 10−34 J s

Gravitational constant G 6.670 × 10−11 N m2/kg2

Universal gas constant R0 8314.4 J/K mol

Zero Celsius (centigrade) 0°C 273.15 K

Triple point of water tr 273.16 K

Characteristic gas constant for air Ra 287 J/kg K

Mean molecular weight of air Ma 28.966

Mean ICAO  air density ra 1.225 kg/m3

Mean ICAO  air viscosity ma 18 × 10−6 Ns/m2

(Continued )
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Constant uantity Symbol Value SI units

Mean density of dry air (S.T.P.) r 1.293 kg/m3

Standard atmosphere (pressure) atm 101.325 kN/m2

Standard atmosphere (temperature) Ts 288.15 K

Lapse rate for standard atmosphere L 6.5 K/km

Mass of atmosphere 5.27 × 1018 kg

Voltage gradient, fine weather; average 100 V/m

Solar constant for earth Sc 1400 J/m2 s

Sonic speed in air at STP a 340.3 m/s

Gravitational parameter GM 3.986 × 1014 m3/s2

Mass of the earth M 5.976 × 1024 kg

Standard gravitational acceleration gc 9.806 65 m/s2

Mean radius of the earth re 6371 km

Mean density of the earth re 5515 kg/m3

Escape velocity at the surface Ve 11.2 km/s

Rotational velocity at the equator 465 m/s

Mean velocity in orbit 29.78 km/s

Approximate age of the earth 4.5 × 109 years

Area of land surface 148.9 × 1012 m2

Area of water surface 362.2 × 1012 m2

Height of Mount Everest 8847.7 m

Depth of Marianas Trench 11.033 km

Acceleration g = 9.80616 – 0.025928 cos 2λ + 0.000069 cos2l – 0.000003h m/s2 at a place with latitude l and at height 

h metres above the sea level for the earth.

International Civil Aviation Organisation.

 R1.7 PROPERTIES OF WATER, MERCURY AND AIR

Fluid properties Water Mercury Air

Density kg/m3 (at 20 C) 1000 13546 1.20

Viscosity, N s/m2 1 × 10−3 1.55 × 10−3 18 × 10−6

Surface tension, N/m 0.073 0.472 —

Melting point, K 273 234 —

Boiling point, K 373 630 83

Sonic speed m/s (at 1 bar) 1410 1370 340

Test Your SI Power

 Write down the seven base units and the two sup-

plementary units in SI. Show, by way of express-

ing the following physical quantities in terms of 

these units, that this is a complete set of the base 

and supplementary units:

 (a) force

 (b) energy

 (c) pressure

 (d) charge

 (e) illuminance
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( s  kg, m, s, K, A, cd, mol; rad, sr: kg m/s2,

kg m2/s2, kg/ms2, As, cd sr/m2)

 Recognise the following units and express them 

in equivalent symbolic forms: newton, joule, 

watt, pascal, poise, tesla.

 ( s  N ≡ kg m/s2, J ≡ N m ≡ kg m2/s2

W ≡ J/s ≡ N m/s ≡ kg m2/s3, Pa ≡ N/m2 ≡ kg/m s2

P ≡ g/Ms ≡ 0.1 kg/m s ≡ 0.1 N s/m2 ≡ 0.1 Pa s

T ≡ Wb/m2 ≡ V s/m2 ≡ Ws A m2)

 Pick up the correct SI abbreviations:

 N m/S, N-m/s, N/m2.s, Ns/m2.s, N s/m2, Pa-s, 

WS/A2, N.m/S, kgf /m
2, kgf m, kg/s2.m, kg m/s2,

Cd sr., N m/kgf , N m/N, C, K.

 ( s  N s/m2, kg m/s2, N m/N)

 Convert the following quantities into coherent SI 

units:

  1 kgf /cm2, 20 kN/cm2, 2 grams/cm3, 5 foot 

pounds, 20 Chu, 10 metric horse power, 20 knots, 

3000 r.p.m., 2 quintals, 0.05 cumecs, 2 centipoise, 

10 centistokes, 20 C 1 kcal/kg C, 10 lumens/

foot2, 2 light years.

 ( s  98.07 × 103 N/m2; 200 × 106 N/m2,

2000 kg/m3, 6.78 J, 38 × 103 j.

  7.355 × 103 W, 10.288 m/s, 314.1 rad/s, 

200 kg, 0.05 m3/s,

  0.002 N s/m2, 10 × 10–6 m2/s, 293.15 K, 

4.187 × 103 J/kg K,

  107.64 1x, 18.921 × 1015 m)

 State the value of the universal gas constant in 

SI units and hence express the characteristic gas 

 constants for the following gases:

Gas Molecular Weight

 (a) air 28.966

 (b) carbon dioxide 44.01

 (c) oxygen 32.00

 (d) hydrogen 2.016

 ( s  8314.4 J/k mol; 287, 188.9, 259.8, 

4124.2 J/kg K)

 Write down the accurate mean value of g, the 

acceleration due to gravity on the earth. What is 

the approximation usually made by engineers? 

State the circumstances under which a quantity 

should be multiplied by g in SI units?

( s  9.806 65 m/s2, 9.81 m/s2; only to calculate 

the weight of a given mass, e.g., 1 kg mass 

weighs 1 × 9.81 kg m/s2 or 9.81 N)



 R2.1 NUMBERS, SCALARS AND VECTORS

The magnitude of a physical variable in terms of a pre-determined unit of measurement is 

expressed in numbers.

The quantities which are specified completely by the magnitude and units are called scalars

or scalar uantities.

Vector uantities are those which are specified completely by the magnitude with units,

direction and sense. Vectors must, in addition, obey the laws of vector operations and, in 

particular, the parallelogram law of addition.

Examples

 Numbers 1, 2, 3.14159, 9.80665, 10, 20

 Scalars 2 kg mass, 3.14159 m length, 1 s time, 10 m/s speed

 Vectors  20 N force vertically downwards, 2 m/s velocity along the forward tangent to 

the path,

 9.80665 m/s2 acceleration directed towards the centre of the earth,

10 N m torque about the positive z-axis.

A vector is represented by a bold-faced letter such as  and B in print and by overbars in 

handwriting such as A  and B .

Geometrically, a vector is represented by a bold line segment with an arrow at one end such 

that the length of the line represents the magnitude A with units, the orientation of the line 

shows the direction of the vector and the arrow mark specifies the sense of the vector, i.e., to 

or from a point.

A vector  is geometrically represented as in Fig. R2.1(a). In a right-handed system or  dextral 

system of coordinates, a vector represented by an arrowed-line segment in a certain  direction 

R2
Review of Vectors
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may also imply its rotational character governed by the right-handed screw-rule. For example, a vector 

 representing angular velocity, angular acceleration or moment would imply the sense by the right-handed 

screw rule as shown in Fig. R2.1(b).

Vectors are categorised as sliding, free, or bound as follows:

A sliding vector or transmissible vector may be applied anywhere along its line of action; the line segment 

can be taken anywhere on the line of action so that the magnitude, direction and sense as well as the line of 

action remain the same. A force acting on a rigid body and producing acceleration is a transmissible vector. 

The principle of transmissibility of force is taken up further in Art. 2.6. A free vector may be moved anywhere 

in space provided its magnitude, direction and sense remain the same. A bound vector must be specified with 

a point of application; a bound vector has the magnitude, direction and sense as well as the point of applica-

tion specified. A representation of these concepts is made in Figs. R2.1(c) and (d).

A vector is said to be a unit vector if its magnitude equals unity. A unit vector may, therefore, be chosen 

in any direction and with any sense. In particular, the unit vector along a vector  or in the direction of the 

vector  must be

 = =
A A

1
 (R2.1)

which is in the same direction as  but with a magnitude 

of unity as shown in Fig. R2.1(e).

The unit vectors along the coordinate axes are given a 

special status.

In the rectangular coordinates,

≡ unit vector along the x-axis

≡ unit vector along the y-axis

≡  unit vector along the z-axis

In the cylindrical coordinates,

r ≡  unit vector radially outwards in the x-y

plane

q ≡  unit vector in circumferential direction in the 

x-y plane.

z ≡  unit vector along the z-axis

In the spherical coordinates,

R ≡ unit vector radially outwards in space

q ≡  unit vector in circumferential direction referred 

to the z-axis

f ≡  unit vector in circumferential direction in the 

x-y plane.

The unit vectors in different coordinate systems are illus-

trated in Fig. R2.2(a), (b) and (c). 

A null or zero vector is defined as a vector whose 

magnitude is zero. The role of a zero vector in vector 

operations is equivalent to the role of zero value in scalar 

operations. Interestingly, a zero vector may be thought of 

as parallel to any direction for convenience since a zero 

vector must be parallel to all directions simultaneously.

(a)

Direction ≡
Angle with a reference lineq

Right-handed screw:

Unscrewing along the

arrow

(b)

Line of action

(c)

Transmissible vector 

(Fixed)

P

Free vector Bound vector 

Length

Length  1 Unit

Unit vector 

along vector 

(e)

(d)

Sense ≡ Along the

               arrow head

Magnitude ≡
Length of

the line

Fig. R2.1 Vector representation
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Two vectors are said to be e ual vectors if their magnitudes, directions and sense are the same. Two vectors 

are said to be e uivalent or e uipollent vectors if, in a certain sense, they produce the same effect. It may be 

mentioned that the equality of vectors does not necessarily mean their equivalence of effect. A vector is said 

to be negative of another vector, if they have the same magnitude and direction but are opposite in sense.

It is necessary to understand the concept of the angle 

between two vectors. The included angle is defined as 

the angle, restricted to the interval 0 ≤ q ≤ p, formed 

between two vectors when both are taken from or towards 

a common initial point. In other words, it is the smaller 

of the two angles formed between the directions of the 

vectors when their arrows point out or towards a common 

point. Clearly, the concept of the angle between two vec-

tors is restricted to a pair of coplanar vectors. Vectors may 

be mutually orthogonal or parallel if the angle between 

them is p/2 or 0 respectively. Two vectors are said to be 

skew if a common plane cannot be passed through them.

The correct angle between two vectors  and B has

been shown as in different situations in Fig. R2.3. In par-

ticular, B3 is perpendicular to , B5 is parallel to  and 

B6 is antiparallel or parallel and opposed to .

(a) Rectangular coordinates

Y

y

x

O
O

r

P(x, y, z)

r
q

z

z

z

r

r

r

P

Y

P
θ

q

q

(b) Cylindrical (Polar) coordinates

(c) Spherical coordinates

O Y

R

P(R, q, f)

R

q

f

q

f

(r, q, z)
P

P

Fig. R2.2 Unit vectors in different coordinate systems

q

q = p
q = 0

q q
q

B4

B6

B5

B2
B3

B1

a

q

q

q

q

a

aa

B

B

O

qr Correct angle and a, incorrect angle

Fig. R2.3 Angle between two vectors
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 R2.2 ADDITION OF VECTORS

The most fundamental law of vector algebra is the parallelogram law of vector addition; so much so that the 

quantities possessing direction, magnitude and sense may be denied the vectorial status, if they do not obey 

the parallelogram law. Conformity with the law may as well be incorporated in the definition of the vector 

quantities.

The parallelogram law of vector addition states 

that if two vectors comprise the adjacent sides of a 

parallelogram, pointing towards or away from the 

point of intersection, then the diagonal of the para-

llelogram passing through the same point and with 

the same sense represents the sum of the two  vectors. 

The addition of vectors  and B requires that

1.  and B be placed together to point towards or 

away from a point O

2. A parallelogram be made with  and B as

adjacent sides

3. The diagonal of the parallelogram passing 

through O with the arrow pointing towards or 

away from O as the case may be, represents 

 the sum of two vectors  and B as shown 

in Fig. R2.4(a).

A corollary of the parallelogram law is the law 

of triangle of vectors illustrated in Fig. R2.4(b). The 

additive vectors  andB are placed one after the other 

in the same sense to constitute two sides of a triangle, 

the third side of which, drawn from the initial point 

of  to the final point of B, represents the sum of the 

vectors  and B. It can be seen that  added to B or

B added to  results in the same vector, i.e.,

+ B = B +

The difference of two vectors can be obtained by 

adding the additive vector to the negative of the sub-

tractive vector, i.e.,

= − B = + (– B)

If it is desired to add more than two vectors, then the parallelogram law can be used to continue 

adding two at a time or the triangle law can be extended to comprise the polygon law as demonstrated 

in Fig. R2.4(c).

The triangle resulting from the triangle law of vectors addition may be solved by invoking the sine law and 

cosine law from trigonometry:

sine law :
sin sin sin

A

a

B

b

C

c
= =

Fig. R2.4 Addition of vectors

B
B

O
= + B

B

= + B

−B

=
− 
B

B

O
= + B

B

= B + = + B

(a) Parallelogram Law of Vector Addition

(b) Triangle Law of Vector Addition

B

B

+ B

+ B + 

+ B + + 

(c) Polygon Law of Vector Addition
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cosine law : cosC A B AB c= + −2 2 2

The addition of a vector to itself results in a vector twice its magnitude 

but the same in direction and sense. In general, a vector is n times another 

vector if its magnitude is n times that of the other and the direction and 

sense are the same. The laws of vector addition and rules of  multiplication 

by scalars are given below.

 + B = B +  (Commutative law of addition)

+ (B + ) = ( + B) +   (Associative law of addition)  (R2.2)

s

 n = n     (Commutative)

 m(n ) = (mn)     (Associative)

 (n + m) = n + m (Distributive)

 n( + B) = n + nB (Distributive)

where n and m are scalars.

 (R2.3)

 R2.3 RESOLUTION OF VECTORS

The resolution of a vector into its constituent vectors is defined as the reverse action of addition of the com-

ponent vectors to result in the given vector. Thus if + B = , i.e., if  and B can add to give , then  can 

be resolved to give  and B, i.e., = + B.

In general, a vector can be resolved into an infinite pair of 

constituent vectors but the resolution of a vector in any two stipu-

lated directions coplanar with the given vectors is unique. Just as 

a number of vectors can be added to comprise a resultant, a given 

vector can be resolved into a number of  constituent vectors.

In particular, it is important to understand the resolution of 

a vector into three mutually orthogonal component vectors. 

A vector  is resolved into three components corresponding 

to its projections along the three orthogonal coordinate axes, 

i.e., x, y and z along the x, y and z axes respectively as 

shown in Fig. R2.5. It can be seen that x and y add up to 

constitute OQ which when added to z results in vector .

Conversely, the vector  is considered resolved into z and 

OQ and OQ further resolved into x and y giving rise to x,

y and z as the three orthogonal components.

In terms of the unit vectors ,  and in the Cartesian system of coordinates,

x = Ax

y = Ay

z = Az

We may, therefore, state that the scalar components of a vector  are Ax, Ay and Az along the x, y and z

directions respectively. The scalar components are generally referred to as the components of the vector. It 

also follows by the Pythagoras theorem that

Fig. R2.5 Components of a vector

z

Az

Ax

Ay
y

Q

k

A P

x

i

j
O

Sine and cosine laws

A

b

c

a

B

C
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 A A A Ax y z= = + +    2 2 2  (R2.4)

It may be noted here that the process of arriving at the components of a vector by our analysis has been 

long and requires the use of the parallelogram law of vectors. In fact, it was stated that the parallelogram law is 

fundamental to the existence of the vectors and that it could be included in the definition of a vector quantity. 

This is indeed the modern approach where the parallelogram law is not talked of and the vector  components 

are defined straightaway. By definition, then, a vector is a quantity possessing n components, i.e.,

 = (r1, r2, ..., ri, ..., rn) (R2.5)

such that the components commute, associate, etc., according to a set of rules. The components can then be 

specialized for the orthogonal systems as arrived at here.

A vector  can be expressed in terms of its scalar components as

 = Ax + Ay + Az

Similarly B = Bx + By + Bz

 = Cx + Cy + Cz

and = Dx + Dy + Dz

(i) If = + B

then = Cx + Cy + Cz

  = (Ax + Bx) + (Ay + By) + (Az + Bz)

because the scalar components can be added numerically.

Hence, Cx = Ax + Bx

 Cy = Ay + By

 Cz = Az + Bz

(ii) If = B

then = Dx + Dy + Dz

  = (Ax – Bx) + (Ay – By) + (Az – Bz)

and Dx = Ax – Bx

 Dy = Ay – By

 Dz = Az – Bz

In general, if R = + B – …

            Rx + Ry + Rz = (Ax + Bx – …) + (Ay + By– …) + (Az + Bz – …)  (R2.6)

Example R2.1 A vector of magnitude 10 units is directed 30 degrees north of east. Represent it 

graphically and analytically and determine its components due east and north.

Solution Vector  shown in Fig. Ex. R2.1 with its length OP of 10 units to a chosen scale, direction 30  

with the east, the x-axis and arrow to indicate its sense O to P, is the required vector. Its components due 
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east and north, found by measuring its projections on the x and 

y axes respectively to the same scale, are 8.66 units and 5 units 

as shown. Alternatively, its component due east is

OP cos 30  = A cos 30  =10 × cos 30  = 8.66 units

and its component due north is

 OP sin 30  = A sin 30  = 10 × sin 30  = 5.00 units

The vector may therefore be expressed analytically as

 = 8.66 + 5 

where and are the unit vectors along x and y axes respectively. The analytical representation implies that 

the magnitude of the vector is

 A = + =8 66 5 102 2. units

and that the vector makes an angle q with the x-axis.

 
= ⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

= ° =

− − −sin
.

cos
.

tan
.

1 1 15 00

10

8 66

10

5

8 66

30 pp /6 rad

Example R2.2 A vector of magnitude 100 units makes an angle of 30  with the z-axis and its 

projection on the x-y plane makes an angle of 45  with the x-axis. Determine (a) the components of the 

vector and (b) the angles of the vector with the axes.

Solution The vector  represented in Fig. Ex. R2.2 

has the components represented by O  along the 

x-axis, OY along the y-axis and O  along the z-axis.

 The projection of  on the x-y plane is OQ which is 

composed of O  and OY component.

 O = A cos 30  = 100 × 0.8606 = 86.6 units

 OQ = A sin 30  = 100 × 0.500= 50.0 units 

whence, by further resolution,

 O = OQ cos 45  = 50 × 0.707 = 35.35 units 

 OY = OQ sin 45  = 50 × 0.707 = 35.35 units

 The components of the vector along the x, y and z axes 

are 35.35, 35.35 and 86.6 units respectively.

= 35.35 + 35.35 + 86.6 

 It may be checked that

( . ) ( . ) ( . )35 35 35 35 86 6 1002 2 2+ + = units as expected

z

Y
y

Q

x

P

g

b
30°

45°

O
a

Fig. Ex. R2.2 (Solution)

Fig. Ex. R2.1 (Solution)

10 Units

North, y

East, x

P

O
8.66 Units

30°

5
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 The direction cosines are determined as follows:

 
l = = = =cos 0.3535α

O

OP

35 35

100

.

 
m = = = =cos 0.3535β

OY

OP

35 35

100

.

 
n

O

OP
= = = =cos 0.866g

86 6

100

.

 It follows that the angles in the respective axes are

 a = 69.3 , b = 69.3 , g = 30

 It may be checked that

 0 3535 0 3535 0 866 12 2 2. . .+ + =

in accordance with the relationship

 l2 + m2 + n2 = 1

Example R2.3 The coordinates of the initial and terminal points of a vector are (3, 1, –2) and (4, –7, 10) 

respectively. Determine the components of the vector and its angles with the axes. Specify the vector.

Solution The components of the vector are

 4 – 3 = 1 along the x-axis

–7 – 1 = –8 along the y-axis

 10 – (–2) = 12 along the z-axis

 The magnitude of the vector is, therefore,

 A = + − + =1 8 12 14 462 2 2( ) .

and its direction cosines are

 
l = = =cos α

1

14 46
0 069

.
.

 
m = =

−
= −cos β

8

14 46
0 553

.
.

 
n = = =cos γ

12

14 46
0 830

.
.

whence,  α = 86.04 , b = 123.57 , g = 33.9

 The vector is specified as 

= 1 – 8 + 12 

or, alternatively stated as a vector of magnitude 14.46 units making angles of 86.04 , –56.43  and 33.9  

with the x, y and z axes respectively with its sense from the initial to the terminal point.
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Example R2.4 Two vectors  andB are added and subtracted to comprise vectors  and . Determine 

these vectors and the unit vector along them.

= 2 + 3 

B = 3 − 2 

Evaluate also the magnitude of vector E = 2 + 0.75 .

Solution

For , Ax = 2 Ay = 3

For B, Bx = 3 By = –2

For , Cx = Ax + Bx = 5 Cy = Ay + By = 1

For , Dx = Ax – Bx = –1 Dy = Ay – By = 5

 Hence, = 5 +
 = – + 5 

 The magnitude of  is given by

 C = + =5 1 5 12 2 . units

 Hence the unit vector along  must be given by

 C
= + = +

5

51

1

51
0 981 0 196

. .
. .

 Clearly, the magnitude of the unit vector can be checked to be

 0 981 0 196 12 2. . ,+ = as expected

 Similarly, the unit vector along  is given by

 

−

+
+

+
= − +

1

1 5

5

1 5
0 196 0 981

2 2 2 2
. .

which is also unity in magnitude.

 Graphically,  and B are added to yield  by the parallelogram method of addition. B is subtracted from 

 if –B is added to  to comprise  by the same procedure.

E = 2 + 0.75 

 = 2(5 + 1 ) + 0.75( –1 + 5 )

 = 9.25 + 5.75 

 Magnitude E = + =9 25 5 75 10 892 2. . . units

 The unit vector along E is given by

 

9 25

10 89

5 75

10 89

.

.

.

.
+ = +0.849 0.528

-B

y

x

E

B
O

Fig. Ex. R2.4 (Solution)
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Example R2.5 Find the resultant of the four given vectors:

 = 3 + 2 

 B = 2 + 3 

 = 3  4 

 = 5  2 

Solution Analytically, the components of the resultant vector R are given by

 Rx = Ax + Bx + Cx + Dx

  = 3 + 2 + 3 – 5 = 3

 Ry = Ay + By + Cy + Dy

  = 2 + 3 – 4 – 2 = –1

 Hence, R = 3

R

B

y

x

E

O

B

E

R

O
x

(a) By parallelograms (b) By polygon method

Fig. Ex. R2.5 (Solution)

 Graphically,  and B are added to comprise E which when added to  provides  and that added to 

 results in the final vector R as shown in Fig. Ex. R2.5(a). Alternatively, the polygon method of vector 

addition as shown in Fig. Ex. R2.5(b) requires vector B to be placed at the tip of vector ,  at the tip of B

and  at the tip of . The closing line of the polygon directed from the starting point O is the resultant R.

Example R2.6 Three vectors , B and  are given as

 = 2 + 3  4 

 B = 3  4 + 5 

 = 2  3 

Determine (a) the resultant vector R, (b) the vector E to make the sum of , B,  and E zero and (c) the 

vector = ( + B – 2 ).

Solution

(a) Writing , and components columnwise,

 = 2 + 3  4 

 B = 3  4 + 5 

 = 2 + 0  3 

R = + B + = 7  1  2 
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 (b) Since + B + = R

E must be equal to – R so that

 + B + + E = 0

 Hence, E = –R = 7 + + 2 

 (c) Writing , and components of , B and –2  columnwise,

 =  2 + 3  4 

 B =  3  4 + 5 

 –2 = –4 + 0 + 6 

 + B – 2 =  1  – 1 + 7 

 R2.4 CONCEPT OF PRODUCTS

Numbers, scalars and vectors can be multiplied to yield meaningful results:

(a) Product of a scalar by a number means the magnitude multiplication of the scalar.

Example 10 m length multiplied by 4.2 means 42 m length

(b) Product of a scalar by a scalar means the multiplication of the magnitudes as well as that of the units 

to result in the units of the resulting physical quantity.

Example 10 m/s speed for 5 s time results in a distance of 50 m.

(c) Product of a vector by a number means that the magnitude of the vector is multiplied by the number, 

the direction and sense of the vector remaining the same.

Example 5 times the acceleration of 9.81 m/s2 means an acceleration of 49.05 m/s2 in the same direction 

and sense.

(d) Product of a vector by a scalar implies the multiplication of their magnitudes as well as that of 

the units resulting in a new vector quantity with its magnitude as the product of their magnitudes and the 

direction and sense the same as before.

Example A velocity of 10 m/s for 5 s time produces a displacement of 50 m directed forward along the 

velocity vector.

(e) Product of a vector by a vector  should also provide meaningful results. There are two types of vector 

products of interest to us, i.e., scalar or dot product and vector or cross product.

(e1) Scalar or dot product of two coplanar vectors  and B denoted by ⋅ B and read as  dot B  implies 

a scalar quantity equal to (a) the magnitude of  times the magnitude of the projection of B on  or (b) the 

magnitude of B times the magnitude of the projection of  on B or (c) the product of the magnitudes of 

 and B and the cosine of the smaller angle between them.

 ⋅ B = AB cos q  (R2.7)

as shown in Fig. R2.6(a).

The dot product of two skew vectors is not defined. The dot product of two collinear or parallel  vectors 

must result in a scalar quantity equal to the multiplication of the magnitudes of the two vectors since 

cos q = 1 for q = 0.

 ⋅ n = n A2

The dot product of two equal vectors results into the square of its magnitudes

 ⋅ = A2 (R2.8)
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The dot product of two orthogonal vectors 

must be zero since cos 90  = 0.

In particular, the dot products of the unit vec-

tors are:

⋅ = 1 × 1 cos 0  = 1

⋅ = 1 × 1 cos 0  = 1

⋅ = 1 × 1 cos 0  = 1

⋅ = ⋅ = 1 × 1 cos 90  = 0 (R2.9)

⋅ = ⋅ = 1 × 1 cos 90  = 0

⋅ = ⋅ = 1 × 1 cos 90  = 0

In terms of the rectangular components,

= Ax + Ay + Az

B = Bx + By + Bz

⋅ B = AxBx + AyBy + AzBz = B ⋅  (R2.10)

Since      ⋅ = ⋅ = ⋅ = 1

and

⋅ = ⋅ = ⋅ = … = 0

 
⋅ = = + +A A A Ax y z

2 2 2 2

The scalar or dot product is both commutative 

and distributive

⋅ B = B ⋅
 ⋅ (B + ) = ⋅ B + ⋅  (R2.11)

          n( ⋅ B) = n ⋅ B = ⋅ nB

If ⋅ B = 0, then either = 0 or B = 0 or both 

are zero (trivial case), or and B are mutually 

perpendicular vectors. The angle between two vectors and B is given by 

   
cosq =

⋅ B
AB

The magnitude of a vector is given by

 A A A A Ax y z= = ⋅ = + +2 2 2 2

Example If a force = 10 N acts upon a particle causing a displacement S = 3 m at an angle of 60  to the 

direction of the force, the work done on the particle equals

 10 × 3 × cos 60  = 15 N m
(e2) Vector or cross product of two coplanar vectors and B is a vector denoted by × B and read as 

 cross B  such that (a) its magnitude equals the product of the magnitudes of the vectors and B and the 

sine of the smaller angle between them, (b) its direction is perpendicular to the plane of and B, and (c) its 

sense is given by the right-handed screw rule.

 = × B = AB sin q  (R2.12)

Geometrically, the magnitude of the cross product vector  equals the area of the parallelogram bounded by 

the vectors and B as the adjacent sides as shown in Fig. R2.6(b). The direction of vector  is perpendicular 

to this area with an arrowhead decided by the right-handed screw rule.

B c
os

 q

B

q

B

q

(a) Scalar or Dot Product

(b) Vector or Cross Product

B

. B = AB cos q

A cos q

q

q

B

Area = AB sin q

= × B
= AB sin q

Anticlockwise , r

2

, q

+ve

, z 3 1

Aid to Memory: Cross Product

× =

× =

× =

r × q = z

q × z = r

z × r = q

Fig. R2.6 Products of vectors



 Review of Vectors 43

The cross product of two skew vectors is not definable.

The cross product of two collinear or parallel vectors must vanish since sin 0  = 0.

The cross product of two orthogonal vectors must be a vector directed along the third orthogonal axis 

given by the cross-product rule.

In particular, the cross products of the unit vectors are:

 
× = 0  × = 0  × = 0

× = × = – 

× = × = – 

× = × = – 

 (R2.13)

In terms of the rectangular components,

= Ax + Ay + Az

B = Bx + By + Bz

 × B = (Ay Bz – Az By) + (Az Bx – Ax Bz) + (Ax By – Ay Bx)

= A A A

B B B

x y z

x y z

 (R2.14)

 × = 0

The vector or cross product is not commutative  but obeys the distributive law:

 × B ≠ B ×  (R2.15)

 × B = –B ×
 × (B + ) = × B + ×
 n( × B) = n × B = × nB

If × B = 0, then either = 0 or B = 0 or both are zero (trivial case), or is parallel to B, or and B

are collinear.

The angle between two vectors and B is given by

 sinq =
× B

AB
 (R2.16)

 (f ) Triple products of vectors can also be meaningfully defined as follows:

 (f1) Scalar triple product of three vectors , B and  is defined as

 B⋅ =( )×

A A A

B B B

C C C

x y z

x y z

x y z

 (R2.17)

where = Ax + Ay + Az

B = Bx + By + Bz

 = Cx + Cy + Cz

The scalar triple product results in a scalar quantity represented by the 

volume of the parallelopiped having , B and  as the adjacent edges.

This can be shown with reference to Fig. R2.7

B × = BC sin q

B ×

B

q

A cos f

f

Fig. R2.7 Representation of A ⋅ (B × C)
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a

b

a

500 N

45° 60°
o

b

Fig. Ex. R2.7

⋅ (B × ) = BC sin q A cos f

=  Area of the parallelogram contained by B and  multiplied by the perpendicular distance between the 

face OBC and the one parallel to it

= Volume of the parallelopiped contained by the three vectors , B and

Volume is a scalar quantity. One can arrive at the volume of a parallelopiped by multiplying the area of its 

faces by the perpendicular distance between that face and the one parallel to it. Hence the order of vectors in 

a scalar triple product is immaterial. Hence

 ⋅ (B × ) = B ⋅ ( × ) = ⋅ ( × B) (R2.18)

If the scalar triple product ⋅ (B × ) is zero, then either or B or  is zero singly or in combination, 

or they are coplanar vectors or two or all are collinear vectors.

 (f  2) Vector triple product of three vectors , B and  is defined as

 × (B × ) = ( ⋅ )B – ( ⋅ B)

  ( × B) × = ( ⋅ ) B – ( ⋅ B)  (R2.19)

and × (B × ) ≠ ( × B) ×
If the vector triple product × (B × ) = 0 then either or B or  is zero singly or in combination, or

is in the plane containing B and .

Example R2.7 Determine the components of the 500 N 

force shown along the aa and bb axes.

Solution Let the x axis be along oa and the y axis perpendicular to it.

 Unit vector along oa is  and the unit vector along ob is cos 60 +
sin 60 = 0.5 + 0.866 .

 The 500 N force is expressed as

(−500 cos 45 + 500 sin 45 ) N

or (–353.5 + 353.5 ) N

 The component of the force along oa is 

(–353.5 + 353.5 ) ⋅ = –353.5 N

and the component along ob is

(–353.5 + 353.5 ) ⋅ (0.5 + 0. 866 ) = – 176.8 + 306.2 = 129.4 N

 One can as well determine the desired components geometrically by estimating the projections of the 

500 N force along oa and ob respectively. The projection along oa is –500 cos 45 , i.e., –353.5 N and the 

projection along ob is 500 cos (90 – 60 + 45), i.e., 500 cos 75  or 129.4 N.

b

x, a

y

500 N

45° 60°

o

Fig. Ex. R2.7 (Solution)
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Example R2.8 Determine the component of the vector (3 + 2 + 5 ) along the vector (4 – 3 ).

Solution The dot product of a vector with another results in the product of the projection of one vector 

along the other and the magnitude of the other vector.

 ⋅ B = A cos q B = AB cos q

where q is the angle between and B.

 If  is unit vector along B then

 ⋅ = A cos q

the component of along B.

 The unit vector along (4  3 ) is

 
e

i j
i j=

−

+
= −

( )
. .

4 3

4 3
0 8 0 6

2 2

 The desired component is

(3 + 2 – 5 ) ⋅ (0.8 – 0.6 ) = 2.4 – 1.2 = 1.2 units

 The component vector is, however, given by

 1.2(0.8 – 0.6 ) = 0.96 – 0.72 .

Example R2.9 Two vectors and B are given as

= 2 + 3 

B = 3

Determine (a) the dot product ⋅ B, (b) the cross product × B and (c) the angle between  and B.

Solution

(a) The dot product is given by

 ⋅ B = AxBx + AyBy = 2 × 3 + 3 × (–1) = 3 units

(b) The cross product is expressed as

  

B× = =
−

i j k i j k

A A A

B B B

x y z

x y z

2 3 0

3 1 0

 = 2 × (–1) –3 × 3 = –11 

 This is represented in Fig. Ex. R2.9.

(c) From the definition of the dot product,

⋅ B = AB cos q

q

y

z

B

x × B

O

Fig. Ex. R2.9 (Solution)



Engineering Mechanics46

 

cos
. .

.q = =
+ × +

=
×

=
⋅B

AB

3

2 3 3 1

3

3 61 316
0 264

2 2 2 2

and q = 74.7  

    Alternatively, from the definition of cross product,

 × B = AB sin q

 
sin

. .
.q =

×
=

×
=

B

AB

11

3 61 316
0 964

and q = 74.7  

Example R2.10 Two vectors  and B are given:

 = 2 + 3 +
B = 3 − 3 + 4

Determine (a) their dot product, (b) their cross product and the unit vector along it, and (c) the included 

angle between vector  and the vector resulting from the cross product.

Solution

(a) ⋅ B = 2 × 3 + 3 × (–3) + 1 × 4 = 1

(b) B× =
−

i j k

2 3 1

3 3 4

            = 3 × 4 – (–3) × 1 – 2 × 4 – 3 × 1 + 2 × (–3) – 3 × 3  

          = 15 – 5 – 15 

  The magnitude of this product is

 15 5 15 475 2182 2 2+ + = = .

  The unit vector along it is, therefore, given by

 
15

218

5

218

15

218. . .
− − = − −0.688 0.229 0.688 

(c)  The included angle between the vector resulting from the cross product and either of the constituent 

vectors must be 90  = p/2. Examining the same for the present case,

 

B× × =
− −

( )

i j k

2 3 1

15 5 15

 = (– 45 + 5) – (–30 – 15) + (–10 – 45) 

 = – 40 + 45 – 55 

  The magnitude of which is

 40 45 55 81 552 2 2+ + = .
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  and

 
sin θ =

×
=

81 55

3 74 218
1

.

. .

  whence q, the angle between  and × B, is 90 .

 R2.5 DERIVATIVES AND INTEGRALS OF VECTORS

(a) Derivatives of Vectors

The derivative of the vector  with respect to a scalar, say time t, is expressed as

 
d

dt t

t t A t

tt
= =

+ −
→ →

lim lim
( ) ( )

Δ Δ

Δ
Δ

Δ
Δ0 0

 (R2.20)

where the vector  is a function of the scalar t and Δ
refers to the changes in  during intervals of scalar Δt as 

shown in Fig. R2.8a.

If = Ax + Ay + Az

then    
d

dt

dA

dt

dA

dt

dA

dt

x y z= + +  (R2.21)

The derivative of a given vector with respect to a 

scalar results in a vector representing the rate of change 

of the given vector with respect to the scalar.

An extension of the usual rules of differential calcu-

lus leads to the following rules:

 
d

dt
n n

d

dt
( ) ≡

 

d

dt

d

dt

d

dt
( )B

B
+ ≡ +

 d

dt

d

dt

d

dt
( )f f

f
≡ +  (R2.22)

 

d

dt

d

dt

d

dt
( )B

B
B⋅ ≡ ⋅ + ⋅

 

d

dt

d

dt

d

dt
B

B
B×( ) ≡ × + ×

where n is a real number and f is a scalar function of t.

It may be noted that the derivative of a constant vector  with respect to any scalar must be zero, i.e.,

 
d

dt
= 0

(b) Derivatives of Unit Vectors

Derivatives of the unit vectors , and along the fixed space coordinates x, y and z respectively must be zero 

with respect to any scalar.

Fig. R2.8(a) Change in vector A

x

O

Vector  at

time t
y

z

Vector + Δ
at time t + Δt Δ

′
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d

dt

d

dt

d

dt
= = =0 ...

 Let us consider the derivatives of the unit vectors in radial and tangential direction, i.e., of r and 
q
 as shown 

in Fig. R2.8(b)

               r = cos q + sin q 

           
d

dt

d

dt

r = − +( sin cos )θ θ
θ

 Since           
q

= – sin q + cos q 

and             ω
θ

=
d

dt

                 
d

dt

r = ω θ e

 Similarly,

 

d

dt

d

dt

r

θ θ θ
θ

ω

= − −( )
= −

cos sin

(c) Integrals of Vectors

If a vector  is a function of a scalar variable, say time t,

 (t) = Ax + Ay + Az

then the integral of  over the range t1 to t2 is

 
( ) ( )t dt A A A dt

t

t

x

t

t

y z

1

2

1

2

∫ ∫= + +

 = +∫∫ ∫A dt A dt A dtx y

t

t

t

t

z

t

t

1

2

1

2

1

2

 (R2.23)

Example R2.11 Assuming = (r0 sin w t) + (r0 cos w t)  evaluate (a) r, the magnitude of the vector 

at any time t, (b) 
d

dt
, (c) 

d

dt

2

2
 and (d) the integral of  from t = 0 to t = p/w.

Solution

(a) r r t r t= + =( sin ) ( cos )0
2

0
2

0w w

(b)
d

dt
r t r t= ( ) − ( )0 0ω ω ω ωcos sin

the magnitude of which is given by

     ( cos ) ( sin )r t r t r0
2

0
2

0ω ω ω ω ω+ =

r

x
i

j

y

q Δ q

Δ r

r

q

O

Fig. R2.8(b) Change in unit vectors
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(c)
d

dt
r t r t

2

2 0
2

0
2 2= −( ) − ( ) = −ω ω ω ω ωsin cos

the magnitude of which is given by w2

(d) dt r t dt r t dt= +∫ ∫∫
0

0 0

00

π ω π ωπ ω

ω ω
/ //

sin cos

 = − +
r t r t0

0

0

0

cos sin
/ /ω

ω
ω

ω

π ω π ω

 = − − − + −
r r0 01 1 0 0
ω ω

( ) ( )

 =
2 0r

ω

Example R2.12  If = 2t 2 + t  – t 3  and B = sin t + cos t evaluate (a) d

dt
( )B⋅

(b)
d

dt
( )⋅   (c) 

d

dt
( )B×   (d) 

d

dt
( )×

Solution

(a)
d

dt

d

dt

d

dt
( )B

B
B⋅ = ⋅ + ⋅

 = (2t 2 + t – t 3 ) ⋅ (cos t – sin t ) + (4t + –3t 2 ) ⋅ (sin t + cos t )

          = 3t sin t + 2t 2 cos t + cos t

(b)
d

dt

d

dt

d

dt

d

dt
t t t t t( ) ( ) ( )⋅ = ⋅ + ⋅ = ⋅ = + − ⋅ + −2 2 2 4 32 3 2

== + +16 2 63 5t t t

(c)
d

dt

d

dt

d

dt
( )B

B
B× = × + ×

            = (2t 2 + t – t 3 ) × (cos t – sin t ) + (4t + – 3t 2 ) × (sin t + cos t )

            = –t 3 sin t – t 3 cos t – (2t 2 sin t + t cos t) + 3t 2 cos t – 3t 2 sin t + (4t cos t – sin t)

           = (–t 3 sin t + 3t 2 cos t) – (t 3 cos t + 3t 2 sin t) + (3t cos t – (1 + 2t 2) sin t)

(d)
d

dt

d

dt
( ) ( )× = =0

 Alternatively, the bracketed vector operations can be performed first and differentiation done later. For 

example, in part (b),

d

dt

d

dt
t t t t t t

d

dt
t t t⋅( ) = + − ⋅ + −( )⎡

⎣
⎤
⎦ = + +2 2 42 3 2 3 4 2 6) ( ( )

                 = 16t 3 + 2t + 6t 5

which is the same as obtained earlier.

r0 sin wt

q = w
t q

o

R
ef

er
en

ce

t
= 

0

r0

r P

y

x

r0 cos wt

Fig. Ex. R2.11 (Solution)
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 R2.6 GRADIENT, DIVERGENCE AND CURL

If a vector  and a scalar f are functions of the space coordinates x, y and z then a vector differential operator

∇ called ‘del’,

 ∇ ≡ + +
∂

∂
∂

∂
∂
∂x y z

 (R2.24)

can be operated to define the following:

(a) Gradient of a Scalar f

 
grad φ φ

∂
∂

∂
∂

∂
∂

φ= ∇ = + +
⎛
⎝⎜

⎞
⎠⎟x y z

                   = + +
∂φ
∂

∂φ
∂

∂φ
∂x y z

 (R2.25)

Physically, the gradient of a scalar is a vector in the direction of the steepest variation of f with respect 

to the space coordinates. The component of grad f in any direction is the rate of change of f in that 

direction.

(b) Divergence of a Vector A

 div = ∇ × =
∂
∂

+
∂
∂

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟

× + + =
∂
∂

+
∂

∂
+

∂
x y z

A A A
A

x

A

y

A
x y z

x y
( ) zz

z∂
 (R2.26)

The divergence of a vector refers to the net efflux of the vector at a point in space.

(c) Curl of a Vector A

 Curl = × =
∂

∂
∂

∂
∂

∂
∇

x y z

A A Ax y z

 (R2.27)

 R2.7 SOME VECTOR OPERATIONS

Some useful results in vector algebra and calculus are summarized in Table R2.1.

 R2.8  POSITION VECTOR, DISPLACEMENT, VELOCITY AND ACCELERATION

The position of a moving point A in space is described by a position vector, a vector directed from an origin to 

the point. Thus  is the position vector of A in Fig. R2.8(a) at an instant. At a later instant after an interval 

of time Δt, the position vector will be ′ corresponding to the new position of the moving point. The change 

in the position from A to A′ is called the displacement vector or just the displacement.

 Displacement = ′ = Δ = Δ x + Δy + Δ  z  (R2.28)

Since this displacement is brought about in a time interval Δt, the velocity of the point is given by

 
= = =

→
lim

Δ

Δ
Δt t

d

dt0
�
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  = + + = + +
dx

dt

dy

dt

dz

dt
x y z� � �  (R2.29)

 Similarly, the rate of change of velocity is the acceleration given by

 
a i j k= = = + +

d

dt

d

dt

d x

dt

d y

dt

d z

dt

2

2

2

2

2

2

2

2

 = = = + +� �� �� �� ��x y z  (R2.30)

It is thus noted that (with respect to time):

The derivative of the position vector is the velocity and the derivative of the velocity is acceleration.

Alternatively (with respect to time),

The integral of the velocity is the position vector and the integral of the acceleration is the velocity

 
( )t dt

t

t

1

2

∫ = −2 1

 = change in position = displacement (R2.31)

 
( )t dt

t

t

1

2

∫ = −2 1

 = change in velocity in the interval (R2.32)

Example R2.13 Show that ∇f is a vector perpendicular to the surface f (x, y, z) = C where C is a 

constant. Hence find the unit vector normal to the surface 3xz2 – 3xy – 4x = 7 at the point (1, 2, –2) and 

an equation to the tangent plane at this point.

Solution Let = x + y + z be the position vector of any point P (x, y, z) on the surface f (x, y, z) = C.

Vector d = dx + dy + dz must, therefore, be along a tangent to the surface at that point.

 By differential calculus,

 
∂φ

∂φ
∂

∂φ
∂

∂φ
∂

= + +
x

dx
y

dy
z

dz

or

 

∂φ
∂

∂φ
∂

∂φ
φx y z

dx dy dz+ +
⎛
⎝⎜

⎞
⎠⎟

⋅ + + =( ) 0

or ∇ ⋅ =φ d 0

which implies that ∇f must be perpendicular to d . Since d  is tangential to the surface, vector ∇f must 

be normal to it.

 Another interesting point worth noting is that 

since df = ∇f ⋅ d

 

d

ds

d

ds

φ
φ= ∇ ⋅
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where s is an arbitrary space direction. For df/ds to be maximum, ∇f and d /ds must be collinear and d /ds

being unity, df/ds = ∇f. In other words, the greatest rate of change of f, i.e., the maximum directional 

derivative takes place in the direction of, and has the magnitude of the vector ∇f.

 For the given surface,

 3xz2 – 3xy – 4x = 7 = f (x, y, z)

           ∇f = ∇ (3xz2 – 3xy – 4x)

              = (3z2 – 3y – 4) – 3x + 6xz

 At (1, 2, 2), 2 3 12 , − ∇ = − − ∇ = + − + − =φ φ 2 3 12 12 532 2 2( ) ( ) .

 Since ∇f is normal to the surface, the unit vector normal to the surface is given by

 

2

12 53

3

12 53

12

12 53
0 16 0 24 0 96

. . .
. . .− − = − −

 If d  is tangential to the surface

or ∇ ⋅φ d 0

 (2 – 3 – 12 ) × (x + y + z ) – ( + 2 – 2 ) = 0 

which provides 2 (x – 1) – 3 ( y – 2) – 12 (z + 2) = 0

as the equation of the tangent plane at the point (1, 2, –2).

Example R2.14 The motion of a point is expressed as x = 2t3, y = t2 + 4t, z = 3t – 5 in terms of the time 

parameter t. At time t = 2, determine (a) the velocity and acceleration, (b) the components of the velocity 

and acceleration in the direction of (4 + 3 ), and (c) the unit tangent at the point. Also, determine the 

displacement of the point from t = 0 to t = 2.

Solution

(a) The position vector  is expressed as 

 = x + y + z

 = 2t3 + (t2 + 4t) + (3t – 5) 

Velocity V
d

dt
t t= = + + +6 2 4 32 ( )

 = 24 + 8 + 3 at t = 2.

 Acceleration a = = +
d

dt
t12 2

 = 24 + 2 at t = 2

(b) The unit vector along (4 + 3 ) would be

 

4

4 3

3

4 3
0 8 0 6

2 2 2 2+
+

+
= +. .

The velocity component at t = 2 along this direction is

 (24 + 8 + 3 ) × (0.8 + 0.6 ) = 19.2 + 4.8 = 24 units.
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The acceleration component at t = 2 along this direction is

 (24 + 2 ) × (0.8 + 0.6 ) = 19.2 + 1.2 = 20.4 units.

(c) The velocity vector must be tangential to the curve at the point and time considered.

Since V = + + = =24 8 3 649 25 482 2 2 .

The unit tangent at that instant must be

 
24

25 48

8

25 48

3

25 48
0 94 0 31 0 12

. . .
. . .+ + = + +

(d) Since
d

dt
= + +6   (2 4) 32t t

 d = (6t2 + (2t + 4) + 3 ) dt

Displacement ( )2 1− = ∫ d

t

t

1

2

 
= + + +∫ ( ( ) )6 2 4 32

0

2

t t dt

 = + + +( )2 4 33 2
0
2t t t t

                = 16 + 12 + 6 

The displacement may alternatively be determined by finding the initial and final positions:

 At the initial position, t = 0,

 x1 = 2t3 = 0; y1 = t2 + 4t = 0; z1 = 3t  – 5 = –5 

 At the final position, t = 2,

 x2 = 2t3 = 16; y2 = t2 + 4t = 12; z2 = 3t – 5 = 1 

 The displacement is given by

2 – 1 = (16 – 0) + (12 – 0) + (1 – (–5)) 

                 = 16 + 12 + 6 

Example R2.15 Determine and sketch the curve traced by a point such that x = 200 t and y = 1000 – 4 t 2.

Also, comment on the salient features of the motion if the distances are in metres and time is in seconds.

Solution Eliminating t from the parametric equations,

 
t

x
y

x
= = − ⎛

⎝⎜
⎞
⎠⎟200

1000 4
200

2

,

 y = 1000 – 0.0001x2

 This is the equation of the curve to be traced.

x (metre) 0 1000 2000 2236 3162

y (metre) 0 900 600 500   0

 The curve is sketched in Fig. Ex. R2.15
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 At t = 0, x = 0 and y = 1000 m correspond to point A where the observation starts. In general, the velocity 

components are

 
V

dx

dt
x = = 200 m/s

   
V

dy

dt
ty = = −8 m/s

 At t = 0, Vx = 200 m/s and Vy = 0

which shows that the initial velocity at A is wholly horizontal and equals 200 m/s, whereas with the passage 

of time, the horizontal component stays at 200 m/s and the vertical component increases downwards linearly 

with time. The acceleration is

 
a

dv

dt
y

y= = −8 m/s2

which is approximately 80% of the gravitational acceleration due to the earth. The case in hand closely 

resembles the motion of a bomb released from the low-altitude bomber aircraft flying at 200 m/s parallel to 

the ground. The bomb, when dropped, travels horizontally and, with the passage of time, acquires a vertical 

velocity by virtue of the acceleration due to gravity and is resisted by the aerodynamic drag.

 It reaches the base at B where y = 0 and x = 3162 m. The time taken to reach the base is t = 3162/200 =
15.81 seconds. The velocity components at the base B are

 Vx = 200 m/s, Vy = –8 × 15.81 = –126.48 m/s

or

 B = 200 –- 126.48  m/s

where VB = + =200 126 48 236 642 2. . m/s

and

 θ = ⎛
⎝⎜

⎞
⎠⎟

= =− −tan
.

tan . .1 1126 48

200
0 6324 32 32�

 R2.9 SOME OTHER VECTOR QUANTITIES

In addition to certain vector quantities already referred to, a number of other important vector quantities are 

listed in this section. No attempt is made here to define the quantities but merely to recognise them as vector 

quantities. It may also be noted that only the position vector and the force be conferred the vector status 

 axiomatically; rest of the vector quantities can be proved to be vectors by virtue of their definitions.

1000
900

600
500

0
0 1000 2000 2236 3162

B

A

VB

q

y

x

Fig. Ex R2.15 (Solution)
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Force Force  is an action exerted on a body which changes or tends to change the state of rest or of 

 rectilinear motion of the body.

Moment Moment  refers to the turning effect of a force  about a point O

= ×
 The magnitude of the moment is given by

 M = rF sin q = F ⋅ p (R2.33)

where  is the position vector of any point on the line of action of the force and p is the perpendicular dis-

tance from the point to the line of action of the vector . The moment is directed perpendicular to the plane 

 containing  and  as shown in Fig. R2.9.

The principle of moments due to Varignon called Varignon theorem, states that The moment of a force 

e uals the sum of the moments due to its components.

Consider a force  and moment  of the force about an origin O. By definition,

 = ×
Let  be resolved into components 1, 2, ..., i, ... n  such that

 = 1 + + ... + i + ... + n

 
=

=
∑ i

i

n

1

and the position vector  refers to each of these forces as well.

q

p

= × 

Fig. R2.9 Force and moment

x

y

z

1

2

3

O

S

r

Fig. R2.10 Concurrent forces

 Then,

 = ×
              = × ( 1 + 2 + 3 + ... + i + ... + n)

 Therefore,                   = 1 + 2 + ... + i + ... + n

        
= × =

= =
∑ ∑i i

i

n

i

i

n

1 1

It will be noticed that this theorem has no outstanding concept to offer. The theorem was proposed by the 

French mathematician long before the introduction of vector algebra.

Linear Momentum Linear momentum  of a body of mass m moving at a velocity  at a certain instant is 

defined as the product of the mass and velocity
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= m  (R2.34)

Angular Momentum Angular momentum or moment of momentum  is expressed as the cross product 

of the position vector and linear momentum or the moment of the linear momentum m  about a point O as 

shown in Fig. R2.11.

 = × m  (R2.35)

The angular momentum vector is directed perpendicular to the plane of  and , i.e., perpendicular to the 

instantaneous plane of motion.

(b) Velocity and angular velocity

      Acceleration and angular acceleration

(a) Momentum and angular momentum

= m

= × m

O

w, a

w, a

= w ×
= a ×

r

O

Fig. R2.11 Some other vector quantities

Infinitesimal Rotation Infinitesimal rotation dq, defined as a infinitesimally small amount of the angle 

of rotation, is a vector quantity. It is important to note here that finite rotation ‘q’ is not a vector quantity. The 

reason is that the finite rotations q1, and q2, although possessing magnitudes, directions and sense, do not 

obey the commutative law of addition, i.e.,

q1 + q2 ≠ q2 + q1 (R2.36)

This has been demonstrated in Fig. R2.12(a) 

where (a) foot rule is shown subjected to rotations 

about the x and y axes respectively. An initial rotation 

q1 = p/2 about the x-axis and a subsequent rotation 

q2 =p/2  about the y-axis bring the sheet into positions 

(Aa) and (Aab). On the other hand, an initial rotation 

q2 = p/2 about the y-axis and a subsequent rotation 

q1 = p/2 about the x-axis result in positions (Ab) 

and (Aba) as shown. Obviously, the final positions 

(Aab) and (Aba) are not the same showing that the 

commutative law for finite rotations fails; admission 

disqualifying them from being put under the category 

of vector quantities.

The case of addition of infinitesimal rotations dq1

and dq2 is also shown in Fig. R2.12(b). The position 

of the foot rule after an initial rotation dq1 is shown 

as (Ba) whereas that after an initial rotation dq2 is 

shown as (Bb). The final orientation of the foot rule 

after both dq1 and dq2 have been imparted, in either 

q2

y

q1 xO

Initial position of the foot rule

(Aa) After q1
(Aab) After (q1 + q2)

(Aba) After (q2 + q1)

(Ab) After q2

Fig. R2.12(a) Summation of finite rotations q1 and q2
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order, is approximately the same in the limiting 

case shown in the same figure. Hence,

 Δ Δ Δ Δq q q q1 2 2 1+ +�

and in the limit,  dq1 + dq2 = dq2 + dq1 (R2.37)

Angular Velocity Angular velocity w is defined 

as the rate of change of angular displacement or 

rotation of a body about an axis

              ω
θ

=
d

dt
 (R2.38)

It follows from the vector nature of infinitesimal rotation dq and the scalar nature of time  interval dt that the 

angular velocity must be a vector quantity.

If a point is located with a position vector  with respect to an origin O on the axis of rotation, the linear 

velocity  of the point is given by

= w ×  (R2.39)

as shown in Fig. R2.11(b).

Angular Acceleration Angular acceleration a is defined as the rate of change of angular  velocity, i.e.,

 α
ω θ

= =
d

dt

d

dt

2

2
 (R2.40)

 The linear acceleration  of a point with a positive vector  with respect to an origin O on the axis of rota-

tion is given by
 = a ×  (R2.41)

as also shown in Fig. R2.11(b).

Example R2.16 A force = 3 + 2   passes through a point (0, 2) with respect to an origin O.

Determine the moment of the force about the origin and establish its uniqueness with respect to arbitrary 

position vectors.

Solution The fact that the force passes through a 

point (0, 2) suggests that the vector 0 + 2 = 2   is 

a position vector.

  Hence = 2 × (3 + 2 )

  = – 6 

 Alternative position vectors, e.g., (1.5 + 3 ) and 

(– 3 ) would result in the same answer

(1.5 + 3 ) × (3 + 2 ) = 3 – 9 = – 6 

        ( –3 ) × (3 + 2 ) = – 6 

 If, instead, the perpendicular distance p from O

to the line of action of  is known, Fig. Ex. R2.16 (Solution)

y

c x−3 O

B

P

p

A

1.5 + 3 

= 3 + 2 

2

q

(q1 = p/2, q2 = p/2)

(Ba) After Dq1

(Bb) After Dq2

After (Dq1  +  Dq2)

After (Dq2  +  Dq1)

The same resulting position

Fig. R2.12(b)  Summation of infinitesimal rotations 

Δq1 and Δq2
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= ⋅ p (clockwise)

 = + × − = −3 2 1 66 62 2 . ( )

 In fact, = × = rF sin q 

 = F ⋅ r sin q

 = F p

which means that the cross product takes care of the included angle between the constituent vectors and 

allows no discrepancy in the result for different choices of the position vector.

Example R2.17 A vertical pole is guyed by three cables PA, PB and PC tied at a common point P 10 m 

above the ground. The base points of the cables are:

A (−  4, −3, 0), B (5, 1, −1) and C (−1, 5, 0)

If the tensile forces in the cables are adjusted to be 15, 18 and 20 kN, find the resultant force on the 

pole at P.

Solution Since P is 10 m above the ground at O, the forces in the cables must be directed along PA, PB and

PC such that

P

P
o
le

C

O Y

A

B

O
Y

Fp

P

15 kN

18 kN 20 kN

Given sketch Free-body diagram of point P

Fig. Ex. R2.17 (Solution)

P = – 4 – 3  –10 PA = + + =4 3 10 11182 2 2 .

PB = 5 + 1  – 11 PB = + + =5 1 11 12 122 2 2 .

P = –1 + 5  – 10 PC = + + =1 5 10 11 222 2 2 .

 The unit vectors along these directions are

e1 = − − − = − − −
4

1118

3

1118

10

1118
0 358 0 268 0 894

. . .
. . .
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Fig. Ex. R2.18

2

45°
30°

1

1000 N

 
e2 = − + − = + −

5

12 12

1

12 12

11

12 12
0 412 0 082 0 907

. . .
. . .

 
e3

1

11 22

5

11 22

10

11 22
0 089 0 445 0 891=

−
+ − = − + −

. . .
. . .

 The forces in the cables are, therefore, given by

 15 1 = –5.37 – 4.02  – 13.41 

 18 2 = 7.42 + 1.48  – 16.33 

   20 3 = –1.78 + 8.90  – 17.82 

 Resultant force at P = 0.27 + 6.36  – 47.56 

This is 48 kN in magnitude and acts predominantly downwards to hold the pole in position.

Example R2.18 A force of 1000 N in a particular direction 

must be applied to tow a boat. For some reason, it is not possible to 

 apply the force in that direction but two forces can be app lied to 30  

and 45  on either side of it in the same plane containing the given 

force. D etermine the magnitudes of the forces required along these 

 directions.

Solution This is an example on the resolution of a force into two 

components at desired inclinations to it.

 1000 = 1 + 2

 Sum of the components of 1 and 2 along  should add to 1000 N, 

whereas their components perpendicular to it must cancel.

1 cos 30  + 2 cos 45  = 1000

1 sin 30  = 2 sin 45

 From these two equations,

 1 = 732.1 N and 2 = 517.6 N

 Alternatively, the components can be determined geometrically by 

realising that 1000 N force must form the diagonal of the parallelogram 

with adjacent sides 1 and 2. Completion of the parallelogram and 

measurement of 1 and 2 on the same scale to which the 1000 N force is 

drawn yields 1 and 2.

 Alternatively, vectorially,

 1000 = 1 1 + 2 2

where 1 and  are the unit vectors along the respective forces as shown in Fig. Ex. R2.18(b).

Fig. Ex. R2.18(a) (Solution)

45°
30° 1000 N

2

2

1

1

2

1

y

x

105°

30°45°
30° 1000 N

12

Fig. Ex. R2.18(b) (Solution)
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 Choosing x-axis along the 1000 N force, and y-axis perpendicular to it as shown,

=

1 = cos 30   – sin 30  

2 = cos 45  + sin 45  

 Hence, 

 1000 = 1 (cos 30   – sin 30  ) + 2 (cos 45  + sin 45  )

 =  ( 1 cos 30  + 2 cos 45 ) + ( 2 sin 45  – 1 sin 30 )

and the two component equations are

 1000 = 1 cos 30  + 2 cos 45

 0 = 2 sin 45  – 1 sin 30

which are indeed the two equations set up in the first method and give

1 = 732.1 N and 2 = 517.6 N

 It may be commented that if the x-axis was chosen in some other direction, say along 1 then the equations 

will be different. For x-axis along 1 the equations are

1 + 2 cos 75  = 1000 cos 30

2 sin 75  = 1000 sin 30

which again provide the same answer.

 Alternatively, the components can be determined by observing that the components 1 and 2 add to 

result in 1000 N by way of a vector triangle as shown in Fig. Ex. R2.18(c). Applying the sine rule,

 
1 2

45 30

1000

105sin sin sin� � �
= =

 whence, F1

1000 45

75
732 1= =

sin

sin
.

�

�
N

 F2 = =
1000 30

75
517 6

sin

sin
.

�

�
N

 Another point can be discussed with reference to this example. If the two components desired were not 

constrained to lie in the plane containing the given force as stated in the question, they will still have to lie in 

the same plane for equivalence. Hence, the phrase ‘in the same plane containing the given force’ is indeed 

superfluous. If, instead, the given force was to be resolved into three or more components in the same plane, 

then an infinite number of combinations of the magnitudes would be possible even if their directions  were 

specified. On the other hand, if the given force was to be resolved into three space components at given 

inclinations, it would be possible to determine their magnitudes uniquely. Again, an infinite combination 

of the magnitudes would be possible for four or more number of space components even in the specified 

directions.
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20 cm

10 cm

y

P
x

60°

m = 200 N

Fig. Ex R2.19

Example R2.19 A running person has, at an 

instant, his right foot oriented as shown. The muscular 

force he exerts is m = 200 N directed at 60  with the 

ground. Calculate the moment of the muscular force 

about the point of contact P with the ground.

Solution Considering P as the origin, the position vector of the force is 

= P = –10 +20

 m =  200 (cos 60 + sin 60 )   = 100 +173.2  N

 The moment of the force about P is, therefore, given by

 p = × m = (–10 + 20 ) × (100 + 173.2 )

= −1732 − 2000 = −3732

The negative sign shows that the moment is clockwise, i.e., in the direction of running.

Concept Review Questions

Match the following terms with the statements.

        Terms         Statements

(a) Sliding vector (a)  Adding a reversed 

vector to a vector

(b) Bound vector (b)  Division of vector 

quantities

(c) Undefined (c)  A vector divided by 

its magnitude

(d) Zero vector (d)  The transmissibility 

principle of vectors

(e) Unit vector (e)  Equivalence of effect

(f ) Equipollent  (f ) Application at a

vectors              unique point

If a force = r r + q q acts on a body with 

a position vector = lr in the  – q plane, which 

of the following expressions would result in the 

moment by the force about the origin.

(i) ×      (ii) ⋅ q q

(iii) × r  (iv) ⋅ r r

Discuss why

(a) the parallelogram law must be obeyed by the 

vector quantities

(b)  the commutation rule fails for the vector 

products

(c)  the scalar triple product results in the volume 

of a parallelopiped

(d)  the position vector and the force must be 

vector quantities.
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 Show geometrically or otherwise that

(a) + B + n = n + B +
(b) ⋅ = ⋅
(c) × ≠ ×

  A vector may vary in magnitude and in direc-

tion with the passage of time. Illustrate the 

concepts of

(a) derivative of a vector with respect to time

(b) integral of a vector with respect to time

Give one example for each of the applications of 

differentiation and the integration operations.

  Define the vector operator del, ∇, and illustrate 

the physical significance of

(a) the gradient of a scalar f

(b) the divergence of a vector 

(c) the curl of a vector B.

 Prove that

(a) df ≡ ∇f ⋅ d

(b) ∇ × ∇f ≡ 0

(c) ∇ ⋅ (∇ × ) ≡ 0

where f is a scalar,  is a vector and d  is a 

differential displacement vector.

Tutorial Problems

R   A vector quantity of 100 units acts along a 

line OP, terminating at P. If the coordinates 

of O and P are (3, – 1, 2) and (10, 5, 8) respec-

tively specify the vector quantity in terms of 

the unit vectors.

( s 63.6 + 54.5 + 54.5 )

R   An object must be lifted from the ground point 

P(0, 0) to a point (0, 10) vertically above P.

It is feasible to lift the object directed from 

(0, 0) to (3, 4) as far as necessary and then 

transport it horizontally to the destination. 

How long is the feasible path?

( s 20 units)

R   A point is located as (–5, 2, 14) with respect to 

an origin (0, 0, 0). Specify its position vector:

 (a) in terms of the rectangular components,

 (b) in terms of its direction cosines and

 (c) in terms of its unit vector.

  ( s  (a) = –5 + 2 + 14 (b) =
15 l + 15 m + 15 n ; l = –0.33, m = 0.13, 

n = 0.93 (c) = 15 r; r = –0.33 + 0.13 +
0.93 )

R   For a triangle with sides of lengths a, b and c

and the angles facing these sides A, B and C

respectively, prove that

 (a) c2 = a2 + b2 – 2ab cos C (cosine law)

 (b) 
sin sin sinA

a

B

b

C

c
= =  (sine law)

R   An object is projected at a velocity of 70 m/s 

perpendicular to the plane containing vectors 

= 2  – 6  – 3  and B = 4 + 3  – . Express 

the velocity in terms of the unit vectors.

 ( s  30 – 20 + 60 m/s)

R   Two vectors  and B have an included angle 

of 60 . If = 4 + 7 + 6  and B is recorded 

as 3 + 3 + ( )  where the coefficient of  is 

missing, calculate this coefficient.

 ( s −1.7)

R   If = 2  – 3  – , B = + 4  – 2  and 

= 2 , evaluate the following:

 (a) ⋅ B       (b) × B

 (c) ( + B) ⋅ (  – B)  (d)  ( + B)

× (  – B)

 (e) ( × B) ⋅       (f ) ( + B) ×
  ( s  (a)  –8 (b) 10 + 3 + 11 

(c)  –7 (d) –20 – 6  – 22 

(e) 20 (f )  –6  – 2 )

R 8  Show that

(a)  (2/3 – 2/3 + 1/3 ), (1/3 + 2/3 + 2/3 

) and (2/3 + 1/3  – 2/3 ) comprise a 

set of orthogonal unit vectors.

(b)  (2 – + ), ( + 2  – 3 ) and 

(3 – 4 + 5 ) are noncoplanar vectors.

R   If = 3t + 2t2 + 4 t–1 , and B = 2t2 + 3t

+ t 4 , compute
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 (a) 
d

dt
          (b) 

d

dt
( )B  ⋅  

 (c) A t dt

T

T

( )

1

2

∫   and  (d) 
d

dt
( )B×

 ( s  (a) 3 + 4 t  – 4t –2  (b) 48t2

(c) 3 2 2 32
2

1
2

2
3

1
2/ /T T T T−( ) + −( )

4 2 1log /T T+ ( )
 (d) 12t 5 + (8 – 15t 4) + (18t – 16t 3) )

R   The motion of a point is described by the 

position vector

    = (2 + 5t2) + (4 – 3t3)

  the distance being in metres for the time 

lapsed in seconds. Compute the velocity and 

acceleration at the instant t = 2 seconds.

 ( s = (20 – 36 ) m/s

= (10 – 36 ) m/s2)

R   A vertical pole is guyed by three cables PA, PB

and PC tied at a common point P at 8 m above 

the ground. The base points of the cables are:

   A(4, 0, 0), B( –1, 4, 0) and C( –2, –3, 0) m.

  If the tension in PA is 20 kN, calculate the 

tensions to be provided in PB and PC so that 

the resultant force exerted on the pole is ver-

tical. Find the force exerted on the pole.

 ( s  22 kN and 28.6 kN, 63 kN)

R   A force 300 N in magnitude acts through a 

point P(1, 6, –5) directed towards another 

point Q(0, 4, –3). Calculate the moment of 

the force about a point O(1, 0, –1), if the 

 distances are in metres.

 ( s  (400 + 400 + 600 ) N m)

R   If  is the position vector of a point, show 

that

 (a) div = 3

 (b) curl = 0

 (c) div ( n ) = (n + 3) n

R   Interpret the significance of the following 

relations:

 (a) ⋅ d = 0

 (b) × d = 0

 (c) ∇ × = 0

  where  is a vector and d  its differential 

change.

R   In a fluid flow the velocity of a particle is 

given by

= x y + xy m/s

  where the distances are measured in metres. 

Referred to the origin (0, 0, 0) compute 

the cross product ×  for a fluid particle 

located at (2, 3, 4).

 ( s  42 + 4  – 24 )

R   In a magnetic field the velocity of an elec-

tron is given by

= 100 + 25 m/s

 and the magnetic flux density by

B = 0.01  – 0.001  Wb/m2

  Compute the cross product × B for the 

electron. ( s  –0.35 Wb/s m)

R   The Indian satellite Aryabhatta is imparted 

steadiness in its orbit by spinning it about 

the spin-axis as shown in Fig. Prob. R2.17. 

If the spin is maintained at 50 revolutions 

per minute, calculate the linear velocities of 

the solar cells

  C1 (0.3 m, 0.0 m, 0.5 m) and C2(0.6 m, 0.2 m, 

0.5 m)

 with respect to the spin-axis.

 ( s  –2.618  m/s, 1.047 – 2.618  m/s)

Top Shell

PanelsSolar

Base Shell

C2
C1

z

0

Spin Axis

1.16 m

1.47 m

y

x

Fig. Prob. R2.17

R 8   A force of 200 N must be replaced by two 

forces inclined at right angles to it on one 
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side  and at 45  on the other. Show that the 

magnitude of these forces should be 200 N

and 282.6 N respectively.

Also show that, if the components are 

equally inclined to the given force, the mag-

nitude of each component increases as the 

inclination with the given force increases 

until the inclination approaches p/2.

R The vertical mast of a flag is positioned 

by three ropes tied to a common point on 

the mast with their other ends fixed on the 

ground. If the angles between the ropes and 

the mast are 30 , 25  and 30  respectively 

and they are spaced equally apart in the plan 

view, determine the magnitudes of the forces 

in the ropes if the net downward force at the 

common point is 1000 N.

 ( s  422, 357, 357 N)

R Determine the magnitude of each of the 

three forces 1, 2 and 3 which when put 

together at a point result in a single force 

100 N in a given direction ( = 0.6 + 0.8 ).

The unit vectors in the respective directions 

are as follows:

1 = 0.5 + 0.5 + 0.707 

2 = 0.707 + 0.707 

3 = 0.8  – 0.6 

 ( s  –363, 363 and 169 N)

Look up Hints to Tutorial Problems at the end!

Multiple-Choice Questions

Select the correct or most appropriate response from 

among the available alternatives in the following 

multiple-choice uestions:

Two vectors are equal if

 (a) their magnitudes are equal

 (b)  their magnitudes and directions are the same

 (c)  they are equal in magnitude and are 

collinear

 (d)  their magnitudes, direction and the sense are 

the same and they may lie anywhere in space

The magnitude of a vector quantity is

 (a) the dot product of the vector with itself

 (b)  the cross product of the vector with unit 

vector along itself

 (c)  the dot product of the vector with unit vector 

along itself

 (d)  the cross product of the vector with itself

Orthogonality of two vectors demands that

 (a) their dot product equals unity

 (b)  the magnitude of the dot and cross products 

are equal

 (c) their cross product vanishes

 (d) their cross product equals unity

If the dot product of two vectors is zero, then

 (a) either of the vectors or both must be zero

 (b)  the vectors must be perpendicular to each other

 (c) either (a) or (b) is satisfied

 (d) the vectors must be concurrent

If the cross product of two vectors is zero, then

 (a) either of the vectors or both must be zero

 (b) the vectors must be parallel to each other

 (c)  the vectors must be perpendicular to each other

 (d) the vectors must be collinear

The derivative of a vector with respect to a scalar 

must be

 (a) in the direction of the given vector

 (b) perpendicular to the given vector

 (c) zero if the vector has a constant magnitude

 (d) zero if the vector is a constant vector

The integral of a vector with respect to a scalar

 (a)  results in a vector in the direction of the 

given vector

 (b) is called the line integral

 (c) must be a definite integral

 (d)  may have a direction other than that of the 

given vector
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8  The gradient of a scalar function

 (a) must be a scalar quantity

 (b)  must be a vector in the direction of the steepest 

variation of the scalar

 (c)  must be a vector with its magnitude equal to 

the scalar

 (d) is undefinable

The divergence of a vector

 (a)  implies the net efflux of the vector at a point 

in space

 (b) must be a vector quantity

 (c) is less than the curl of the vector

 (d) implies the continuity of the vector space

The curl of a vector

 (a) may or may not be a vector

 (b) refers to the rotationality of the vector field

 (c) refers to the efflux of the vector

 (d)  vanishes if the vector has a constant 

magnitude

The linear momentum of a particle

 (a)  must be directed along the velocity of the 

particle

 (b)  is the dot product of the mass with its velocity

 (c)  is the cross product of the mass with its 

velocity

 (d) is a scalar quantity

The angular momentum of a particle is the

 (a) linear momentum per unit angle

 (b)  product of the mass with its angular velocity

 (c)  moment of the product of the mass and the 

angular velocity about an origin

 (d)  cross product of the position vector and the 

linear momentum

The simplest resultant of a plane force system 

is always

 (a) a single force

 (b) a wrench

 (c) a single moment

 (d) a single force or a single moment

A force acts in the plane of a paper from top to 

bottom. An anticlockwise moment is applied on 

it. The line of action of the force will shift paral-

lel to itself to get the simplest resultant

 (a) above the plane of the paper

 (b) under the plane of the paper

 (c)  to the right of the given line of action of 

force in the same plane

 (d)  to the left of the given line of action of force 

in the same plane

A plane system of forces has a single force resul-

tant if the sum of the moments 

 (a) about the origin is zero

 (b) about any point on the plane is zero

 (c)  about any point on a particular line in that 

plane is zero

 (d)  about any point on or outside the plane is 

zero.

For a plane system of forces to have the simplest 

resultant as a single moment

 (a) the forces must be parallel

 (b)  the force system must constitute moments 

and/or couples only

 (c)  the force system cannot have the forces as 

concurrent

 (d)  the force system cannot have an odd number 

of forces

Answers to Multiple-Choice Questions

1 (d)    2 (c)     3 (e)     4 (c)    5 (b)     6 (d)    7 (d)       8 (b)

9 (a)   10 (b)   11 (a)   12 (d)   13 (d)   14(c)   15 (c)   16 (b)
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Forces and Force 

Systems

 2.1 FORCE AND MOMENT CONCEPTS

It has been stated in Chapter 1 that an ‘action’ which changes or tends to change the state of 

rest or of uniform motion of a body must be a force or a moment. A force when exerted on the 

centre of mass of a body causes or tends to change the state of rest or of uniform rectilinear 

motion of the body. Action of a moment causes or tends to cause a rotational motion of a body. 

The moment of a force about a point has been defined as the turning effect of the force about 

that point

= ×  (2.1)

 = r F sin q or F d, perpendicular to the plane containing  and 

where  is the force, , the position vector of any point on the line of action of the force with 

the origin at the point about which the moment is desired, d the perpendicular distance from the 

point to the line of action of the force and q the angle between  and  as shown in Fig. 2.1.

Force and moment concepts are most important 

in the study of Newtonian mechanics. As a matter of 

fact, the laws of Newton and Euler lay the founda-

tion of force-based mechanics. An alternative for-

mulation called energy-based mechanics is based 

on energy concepts where force and moment do not 

play the primary role. Since we are concerned with 

the Newtonian formulation of mechanics, we shall 

have to allot special status to force and moment 

concepts.

A body may be subjected to a single force or a 

moment or a system of forces under the action of 

Resultant, Equivalence 
and Origin of Forces

d

O

= ×

q

Fig. 2.1 Concept of moment due to a force
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Fig. Ex. 2.1

which the body may stay at rest, be in uniform motion or in general motion. It is important, therefore, to  recognise 

the total effect of a system of forces acting on a body. This is represented by the concepts of resultant and equiva-

lent systems which are discussed at length for different force systems acting on a particle or rigid body.

Forces may originate from a variety of circumstances. It is neither possible nor desirable to cover all 

the possible modes of origin and the nature of forces but it should be helpful to introduce the concepts of 

 gravitational, electromagnetic or hydrostatic force field and frictional and drag forces. The origin and nature 

of forces is a fundamental subject and must be conceived before their effect is dealt with in statics and 

dynamics. There is little scope of solving any numericals on the nature of forces at this stage. Appropriate and 

adequate number of examples will be taken up in the context of statics and dynamics during our study.

Example 2.1 A 50 cm × 30 cm horizontal plate ABCD is acted on 

by a 10 kN force at B in the plane of the plate as shown in Fig. Ex. 2.1. 

Determine the moment of the force about D and about A.

Solution In order to determine the moment about D, fix the origin at D and let the x and y axes be along 

DC and DA respectively as shown in Fig. Ex. 2.1 (Solution).

 The force is specified as

= 10 cos 60  + 10 sin 60  

 = 5 + 8.66  kN

and the position vector for a point B on the line of action of the force is

B = 0.5 + 0.3  m

 The moment of the force about D is, therefore,

D = B ×
 = (0.5 + 0.3 ) × (5 + 8.66 )

 = 2.83  kN m

 It may also be noticed that the magnitude of the moment equals

 MD = 10 d

where d is the perpendicular distance from D to the line of action of the force. From the knowledge of this 

distance by a drawing to scale or by trigonometry, the moment is determined as

 MD = 10 × 0.283 = 2.83 kN m

directed anticlockwise, i.e., along the positive z direction.

 Similarly, the moment about point A may be evaluated by selecting the origin at A and the axes in the 

same directions as before

B = 0.5 

= 5 + 8.66 

A = B × = 0.5 × (5 + 8.66 ) = 4.33  kN m

10 kN

5 kN

8.66 kN

y

x

A
B

C

DD
O

d

r

Fig. Ex. 2.1 (Solution)
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 2.2 FORCE FIELDS: LINEAR, PLANE AND SPATIAL

A force may be originated by the action of one body on another body in contact with it or by virtue of a force 

field. A force field implies the existence of a force as a function of the space coordinates and time. In general, 

in a force field,

= (x, y, z, t) = (r, q, z, t)

A force field is said to be steady if, at any point in space, it is independent of time, i.e.,

= (x, y, z) = (r, q, z)

Force fields are classified as linear, plane and spatial as follows:

Linear Force Field A linear force field is confined to a line only, i.e., the force at any point is a function 

of one dimension only.

= (x) or = (s)

A linear spring is an example of a linear force field. As shown in Fig. 2.2(a), the force  on the weight W

by the spring is a function of the horizontal displacement x of the weight only.

Plane Force Field A plane force field refers to a field where the force varies with two space coordinates, 

i.e., x, y or r, q, etc.

= (x, y) or (r, q)

The magnetic field generated by a current-carrying conductor with rectangular cross-section AB is an example 

of a plane force field. The force exerted on any magnetic particle near it is a function of its two coordinates 

(x, y) as shown in Fig. 2.2(b).

Spatial Force Field A spatial force field is a general force field in which the force varies with respect to 

the position of the point in space, i.e., with all the three coordinates x, y, z, or r, q, z, etc.

= (x, y, z) or = (r, q, z)

The gravitational force field generated by a body is an example of a spatial force field. The force exerted 

on any particle P towards the body is a function of the position of this particle with respect to the body in 

space, i.e., x, y, z as shown in Fig. 2.2(c).

(b) Plane force field = (x, y)

x

y

P

y

x
A B

N SBar Magnet

z

z

P

x

x

y

y

(c) Spatial force = (x, y, z)

W

(a) Linear force field = (x)

x

Fig. 2.2 Examples of force fields
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Fig. Ex. 2.2

Example 2.2 A force field represented by

= 6 x y + 3 x

acts on a circular plate of 2 m radius placed in the x y plane 

with the z-axis passing through the centre of the plate. Determine 

the force at some salient points on the periphery of the plate.

Solution Let us consider the points A, B, C, D, E, F, G and H on the periphery as shown in Fig. Ex. 2.2. 

The forces at these points are determined by substituting the values of corresponding x and y. For example, 

at point A(2, 0),

= 6 × 2 × 0 + 3 × 2 = 6 

Point x y Force 

A 2 0 6

B 1.414 1.414 12 + 4.242 

C 0 2 0

D −1.414 1.414 −12 − 4.242 

E −2 0 −6

F −1.414 −1.414 12 − 4.242 

G 0 −2 0

H 1.414 −1.414 −12 + 4.242 

 2.3 DISTRIBUTED FORCE FIELDS

A distributed force field is characterised by the action of a continuously distributed force. Such forces may 

act over a line, a surface or a volume; these are correspondingly denoted as lineal, surface and body forces.

Lineal Force A lineal force is one that acts along a line on the body. The force d  at any small length dl is 

given by

 d = w dl

where w is the intensity of loading at dl.

An example of the lineal distributed force is a loaded cable as shown in Fig. 2.3(a).

Surface Force A surface force acts over a surface and the force d  at any area dA is given by

 d = p dA

where p, the intensity of force per unit area, is generally termed as pressure.
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Hydrostatic pressure acting on the surface of a cylinder immersed in water as shown in Fig. 2.3(b) is an 

example of a surface force.

Body Force A body force is essentially the force exerted on the mass or volume content of the body.

Thus the body force d  on an element of mass dm or volume dV is given as

d = g dm

or d = g dV

where g is the force per unit mass on the small mass dm or g is the force per unit volume on the volume dV.

An example of body force is the force exerted on a body due to gravitational attraction of the earth as 

shown in Fig. 2.3(c). The force is distributed throughout the volume or mass of the body.

d

ds

Lineal force, = (s)

s s s E s

Cable

A loaded cable

Loading w = w(l)

s

(a)

d

dA

dV

d

Surface force, = (A) A cylinder immersed in water

(b)

Body force, = (V ) A body under the force of gravity

(c)

Fig. 2.3 Examples of distributed forces

 2.4 FORCE SYSTEM ACTING ON A BODY

A body may be subjected to a number of forces in a specified manner

1, 2, 3, ...

acting such that the position vectors of any points on their lines of action are

1, 2, 3, ...

respectively referred to an arbitrary origin O.
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Some of the forces may be equal and opposite and may  constitute 

couples. The couples are sometimes bracketed separately from the 

other forces and are taken into account by way of couple moments. 

There may, in addition, be moments acting otherwise. Thus, the 

body may be acted upon by moments

1, 2, 3, ...

The forces acting in a specified manner and the moments 

acting on the body constitute a force system or a system of forces 

as represented in Fig. 2.4. A force system is sometimes referred 

to as an ‘external action’ on the body.

The force system acting on a body may consist of forces which 

may be qualified in one or more of the following classifications:

 1. Concurrent force systems: Collinear, planar or spatial

 2. Parallel force systems: Planar or spatial

 3. Coplanar force systems: Concurrent and non-concurrent, parallel and non-parallel

 4. Spatial force systems: Concurrent and non-concurrent, parallel and non-parallel.

It is obvious that a particle can only be subjected to a concurrent force system whereas a rigid body may 

be under the action of any force system.

 2.5 RESULTANT OF A FORCE SYSTEM

The resultant of a force system acting on a body implies the net external action on the body. In other words, the 

resultant action is a simple equivalent force system which can replace the given force system for an equi valence 

of effect so far as motion or tendency of motion of the body is concerned. The definition of a rigid body permits 

no internal dimensional or structural changes within the body; the resultant concept applied to a rigid body 

stands for complete equivalence of action and is therefore highly meaningful. Similarly, a particle conceived as a 

relatively small or point object allows the resultant concept to be used to advantage due to complete equivalence 

of action represented by it. We shall, therefore, confine ourselves to the resultant concept for a particle and a 

rigid body.

The action of a force is two-fold: first, in its own right as a translational action and second, to generate a 

moment or rotational action about an arbitrary point or an axis.  It follows that the resultant of a force system 

should, in general, comprise of (a) a force and (b) a moment, as shown in Fig. 2.5.

It is necessary to qualify the point of action or line of action of the 

force and the direction of the moment as will be shown later. It is also 

likely that a force system can result in a force only or in a moment 

only for certain force fields and certain choices of the point of action 

of the resultant.

Sometimes, the resultant of a force system is referred to as the 

equivalent or equipollent action. It is, in general, incorrect to term the 

resultant as the equivalent because the equivalence of an action has a 

wider implication. The equivalence of action on a body may be desired 

with different objectives. For example, the objective may be to study 

the motion of the body, to analyse its internal forces or to compute its 

deformation or rate of deformation. Thus, by definition, the equivalent 

2

1

1

2

3

O

1

2

3

Fig. 2.4 A force system acting on a body

R

C

M

Fig. 2.5  Resultant action for the force 

system acting on a body
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system of forces for a given system of forces is such that it produces the same desired effect. In particular, for 

a rigid body in motion or having a tendency of motion, the analysis of motion can be made with the resultant 

replacing the given system of forces. The resultant is, therefore, the equivalent action of a system of forces 

for the dynamic consideration of a rigid body.

It may be seen that the resultant of a plane system of forces must be a force in that plane which may be accom-

panied by a couple-moment in a direction normal to that plane. Similarly, the resultant of a system of parallel 

forces should be a force parallel to them which may be accompanied by a moment in a direction normal to the 

parallel forces. The resultant of a system of concurrent forces should be a single force which must pass through 

the point of concurrency. These statements cannot be taken for granted; let us discuss the individual cases.

 2.6 PRINCIPLE OF PARALLEL TRANSFER OF A FORCE

Consider a force  acting through a point P1 on a rigid body as shown in Fig. 2.6(a). If it is desired that the 

force be applied through a point P2 on the body, then the force  applied at P2 must be accompanied by a 

moment with magnitude

 M = Fd

perpendicular to the plane of transfer of the force for equivalence where d is the perpendicular distance of 

the parallel transfer of force. This is the principle of translation of a force to a parallel position. The principle 

can be proved by imagining a pair of equal and opposite forces  and −  adding to null at point P2 in the first 

instance. The perpendicular distance from P2 to the given force is d. The system of three forces thus  constituted 

P1

(a) Given force  through P1

−

P2

P1

d
P

1

(b) A null force added at P2

M = Fd

P2

P
2

Plane of

transfer of

the force

(c) Force  through P2 and a moment (d) A force  and a moment 

reduced to a single force P2

P1

P
2
P

1

P2

P2

−

−

Fig. 2.6 Principle of parallel transfer of force
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as shown in Fig. 2.6(b), may be visualised as a force  acting through P2 and a couple of forces  and −
acting through points P1 and P2 respectively. The couple of forces comprise a couple-moment  given by

 M = Fd (2.2)

in magnitude, perpendicular to the plane of transfer of the force .

The sense of the accompanying couple-moment may either be visualised with the help of a neat sketch or 

observed vectorially as follows:

Let the position vector of a point P2 on the new line of action of , called P2
, with reference to a point 

P1 on the initial line of action of the force, be P P2 1
. Then, the moment vector accompanying the transferred 

force is

= − ×P P P2 1 2

specified completely in magnitude and direction. If the magnitude of the displacement vector is d and it is 

the perpendicular distance through which the force is transferred, then the direction of the accompanying 

moment of magnitude

 M = Fd

is equal and opposite to the moment exerted by P2
 about a point on the initial line of action of the force as 

shown in Fig. 2.6(c).

Let us now discuss the reverse problem. If a force  and a moment  act on a rigid body such that the 

force passes through a point P1 and the moment has no component along the direction of the force then the 

given system of  and  may be replaced by a single parallel force P2
 passing through the point P2.

The transfer of  so as to pass through P2 would have required as accompanying moment

− ×P P P2 1 2

which, in this case, must nullify the existing moment  normal to the plane of transfer. Hence,

 − = − ×P P P2 1 2

or = ×P P P2 1 2
 (2.3)

The point P2 can be located with respect to P1 by solving Eq. (2.3) by way of decomposing it into scalar equa-

tions as shown in Fig. 2.6(d).

A force acting through a point and a moment can be replaced by a single parallel force for equivalence if 

the moment has no component in the direction of the force. Let us observe the difficulty when the moment 

has a component in the direction of the force. Clearly, the transfer of the force parallel to itself involves the 

application of a moment perpendicular to the plane of transfer of the force; no moment along the direc-

tion of the force may creep in. Conversely, any amount of transference of a force parallel to itself cannot 

involve a moment along the direction of the force so as to nullify the given component along that direction. 

The simplest system to which an arbitrary force acting at a point and a moment acting on the rigid body 

may be reduced is the force parallel to itself and a moment along the line of action of the force. The simplest 

equivalent form, i.e., a force and couple-moment directed along the force is called wrench. If the force in the 

wrench is displaced to any parallel position, the moment directed along the force will remain unaltered and 

an additional moment arising from the parallel transfer of the force will be required.

The concept of a wrench is explained with reference in Fig. 2.7(a) where an arbitrary force  passing 

through a point P1 in a rigid body and an arbitrary moment  are given. The moment has a component f

along the direction of the force and a component n normal to the direction of the force. The force  may 

be transferred to act at another point P2 in the body such that it is equivalent to  at P1 and the component 

n of . There is no possibility for the component f in the direction of the force to be taken care of by a 
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Fig. Ex. 2.3

parallel transfer of . The simplest equivalent system which remains is, therefore, a force  through P2 and a 

moment f in the direction of the force. This system, called a wrench, is shown in Fig. 2.7(b).

Example 2.3 A rigid parallelepiped is made of 

parallel bars AB, CD, EF and OP as shown in Fig. Ex. 2.3. 

A force F of 10 kN acting along CD is to be replaced by 

an equivalent action by applying the force along any of the 

other parallel bars. Determine the equivalent action in each 

case.

Solution If a 10 kN force were to act along EF, it should be accompanied by a moment

 M = 10 × 2 = 20 kN m

along the positive z-axis or by the moment vector

= − EC × E

= −(−2 ) × 10 = 20  kN m

 If it were to act along AB, the accompanying moment would be

 M = 10 × 3 = 30 kN m

along the negative x-axis or by a moment vector

= − AC × A

 = −(−3 ) × 10 = −30  kN m

 Similarly, if the force were transferred to the bar OP, the moment accompanying it would be

 M = × + =10 3 2 36 062 2( ) . kN

along a direction normal to the plane containing CD and OP, i.e., normal to the plane OCDP.

 Vectorially, the accompanying moment would be

= − OC × C

 = −(−2 − 3 ) × 10 = 20 − 30  kN m

n

f

P1

P1

P2

f

d

Wrench

(a) Given: Arbitrary  at P1 and (b)  Transferred to P2 and f

Fig. 2.7 Concept of a wrench on a rigid body
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Example 2.4 A force  acts at a position vector :

= 5 + 6 + 4  kN

= −2 + 3 + 4  m

 A couple-moment  also acts:

= 2 + 3  kN m

 It is desired to replace the system by a wrench. Specify the equivalent wrench.

Solution The unit vector in the direction of the force  is

 =
+ +

+ +
= + +

5 6 4

5 6 42 2 2
0.57 0.684 0.456 

 The given couple moment may be resolved into a component f  in the direction of the force and a 

component n normal to it.

f = ×
 = (2 + 3 ) × (0.57 + 0.684 + 0.456 )

 = 1.14 + 2.05 = 3.19 kN m

f = 3.19 (0.57 + 0.684 + 0.456 )

 =1.82 + 2.18 + 1.45 

n = − f

 = (2 + 3 ) − (1.82 + 2.18 + 1.45 )

 = 0.18 + 0.82 − 1.45 

The moment component f is there to stay as a 

component of the wrench but the normal component 

n may be eliminated by way of parallel transfer of the 

force. Let the force be transferred to a new position P2

defined by a position vector

x + y + z

 The displacement vector for the force is

P P2 1
= (x − (−2)) + ( y − 3) + (z − 4) 

 = (x + 2) + (y − 3) + (z − 4) 

 The parallel transfer must be accompanied by a moment vector

− ×P P P2 1 2

 = − + − −x y z2 3 4

5 6 4

which should be negative of n in order to nullify it, i.e., equal to −0.18 − 0.82 + 1.45 .

 The solution of this equation provides x, y and z which implies that the equivalent wrench is such that the 

force 5 + 6 + 4  passes through this point x + y + z  and the accompanying moment in the direction 

of the force is 1.82 + 2.18 + 1.45 .

x

y

z

P1

r

P1P2 Wrench

P2

O

x + y + z

n

f

Fig. Ex. 2.4 (Solution)
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1.5 m

Fig. Ex. 2.5

Example 2.5 Replace the force system 

consisting of three forces shown in the figure by a 

wrench passing through a point in the y z plane.

Solution The resultant force R = 200 + 300 − 150  N. The moment of the given forces about the origin 

o is given by

= 1.2 × 200 + 1 × 300 + 1.5 × (−150 )

 = −300 + 225 − 240  Nm.

Let the wrench be located at point P(o, y, z) located by the position vector y + z . The moment must be 

M , i.e. normal to y z plane.

 Then,

(y + z ) × (200 + 300 − 150 ) + M = −300 + 225 − 240 .

whence, 300 z + 150 y = M 

 200 z = 225 

 200 y = 240 

 y = 1.2 m, z = 1.125 m, M = 217.5 Nm 

The desired wrench, therefore, consists of a force 200 + 300 − 150  N and a moment 217.5  Nm at the 

point (0, 1.2, 1.125 m).

R = 200 + 300 − 150  N

  217.5  NmP

(0, 1.2, 1.125)

Fig. Ex. 2.5 (Solution)

 2.7 RESULTANT OF A CONCURRENT FORCE SYSTEM

A concurrent force system may be collinear, coplanar or spatial; collinear if the forces have the same line of 

action, coplanar if the lines of action of the forces lie in a plane and spatial if the lines of action of the forces 

lie in space as shown in Fig. 2.8.
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(a) Collinear Forces

A system of collinear forces

1, 2, 3, ...

acting on a body may be replaced by a single resultant force R acting in the same line of action as the given 

forces where

 R = 1 + 2 + 3 + ... (2.4)

In other words, the sum of the forces in the collinear force system must provide the resultant.

(b) Coplanar Concurrent Forces

A system of coplanar concurrent forces

1, 2, 3, ...

1 2 n R

(a) Collinear forces

≡

1

4

n

O

2

3 O

R

O
1

2

3

R

4

n

O

(b) Coplanar forces

(c) Spatial forces

Fig. 2.8 Concurrent force systems
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O
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P 1

2

3
Pole

Fig. Ex. 2.6

acting on a body may be replaced by a single resultant force R passing through the point of concurrency in 

that plane where
 = 1 + 2 + 3 + ... 

In terms of rectangular components,

1 = F1x + F1y

2 = F2x + F2y

3 = F3x + F3y

and R = (F1x + F2x + ...) + (F1y + F2y + ...) 

 = Rx + Ry  (2.5)

Geometrically, a polygon of forces can be constructed to add the coplanar concurrent forces 1, 2, 3, ... 

to result in R.

(c) Spatial Concurrent Forces

A system of concurrent forces not confined to a plane,

1, 2, 3, ...

acting on a body may also be replaced by a single resultant force  passing through the point of concurrency 

such that
 R = 1 + 2 + 3 + ... 

 = (F1x + F2x + ...) + (F1y + F2y + ...) + (F1z + F2z + ...) 

 = Rx + Ry + Rz  (2.6)

In view of the space distribution of the forces, the geometrical construction, though possible is not feasible 

for adding the spatial forces because of the complexity of drawing space diagrams.

Example 2.6 At a point P on a vertical mast three forces 1, 2 and 

3 act:

1 = 50 

2 = −30 − 15 

3 = −25 − 10 + 5 

Determine the resultant force at P.

Solution The resultant of the concurrent forces is given by

R = 1 + 2 + 3

 = 50 − 30 − 15 − 25 − 10 + 5 

 = −5 − 25 + 5 

 This single force when applied at P results in the same dynamic action as that exerted by the given system 

of concurrent forces.



Engineering Mechanics80

 2.8 RESULTANT OF A PARALLEL FORCE SYSTEM

A force system consisting of parallel forces may be planar or spatial: planar, if the parallel forces lie in a 

plane and the moments applied externally or couple-moments by the applied forces are directed normal to 

the plane and spatial, if the parallel forces are in space or the moments applied externally are directed in 

arbitrary directions.

An analysis of parallel force systems such as that of concurrent force systems can be made under the heads 

of plane and spatial systems but the parallel force systems constitute an important class in engineering and 

will, therefore, be dealt with separately.

Plane Parallel Force System

Consider a simple case of two parallel forces. Any two parallel forces must be coplanar. Let the two paral-

lel forces be equal in magnitude. If they are in the same sense as in Fig. 2.9(a, i), they add up to result in a 

single force which has twice the magnitude of each force, directed parallel to them and in the same sense as 

the constituent forces. The forces also produce a net moment about any point in the plane. The net moment is 

zero about any point midway between the forces. The net effect of the pair of forces, in this case, is to result 

in a resultant force R as well as an appropriate moment about the point considered. If they are in the oppo-

site sense as in Fig. 2.9(a, ii), they add up to result in a null force. In addition, they have a net turning effect. 

In fact, they constitute a couple and the net turning effect is denoted by the moment of the couple. The

moment of the couple is determined as

= ¥

where  is the position vector of a point on the line of action of one force with respect to an origin taken on 

the line of action of the other and  is the former force.

Fig. 2.9 Resultant of parallel forces

R = 2

−

= × = Fd

d

(a) Equal parallel forces

(i) (ii)
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2
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d2
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2

d1

d2

O

(b) Unequal parallel forces

O d1 d2

d3

1

2
n

3
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3

(c) General coplanar parallel forces
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Alternatively, the magnitude

 M = rF sin q

= Fr sin q = Fd

where d is the perpendicular distance between the forces 

constituting the couple and q is the angle between  and .

It follows that the moment of the couple is directed 

perpendicular to the plane containing  and , i.e., per-

pendicular to the plane of the couple. It can be concluded, 

therefore, that a pair of equal parallel forces with opposite 

sense can be replaced by an equivalent moment. It must 

be understood that the moment is a free vector; the direc-

tions and the lines of action of the forces constituting the 

couple are of no consequence. Whether the couple is in 

a particular plane or in any parallel plane is also immaterial. The moment may well be due to an equivalent 

couple of smaller forces but placed further apart as illustrated in Fig. 2.10.

Consider next the case of a pair of parallel but unequal forces, 1 and 2. If they have the same sense, their 

resultant R is parallel to them with the same sense and its magnitude

R = 1 + 2

If they have opposite sense, their resultant R is parallel to them in sense of the larger force and the magnitude

 R =  1 − 2  (2.7)

The net effect of the forces is also in producing a turning effect; the moment of the forces 1 and 2 is 

different at different places. If a line AB is drawn perpendicular to the lines of action of the forces, it is easy 

to observe that the net moment of the force is different both in magnitude and sense about different points. 

In each case, a point O can be located such that the net moment about that point is zero. This point O should 

lie closer to the larger force; on the side of the smaller force if they are in the same sense and on the opposite 

side of the smaller force if they are in opposite sense. In terms of d1 and d2, the distances between the forces 

1 and 2, and the point O,

 F1d1 = F2d2 (2.8)

as is clear in Fig. 2.9(b).

Let us now consider a case of coplanar parallel forces as shown in Fig. 2.9(c).

1, 2, 3, ...

The resultant force is

R = 1 + 2 − 3 + ... (2.9)

and the resultant moment about a point O through which R is passed has the magnitude

 M = F1d1 + F2d2 − F3d3 + ... 

whereas, in vector notation,

O = 1 × 1 + 2 × 2 − 3 × 3 + ... (2.10)

is the moment vector about O accompanying the resultant force  passed through this point.

The general case of coplanar parallel forces can, therefore, be represented by an equivalent system of a 

single force R passing through a point P and a moment about an axis perpendicular to the plane of the forces. 

If R is non-zero, it can be made to pass through a point such that the moment vanishes and the single resul-

tant force R becomes the equivalent. If R is zero, the moment remains as the single equivalent. The single 

x

y

z

O

Fig. 2.10 Equivalent couple moments
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resultant of a system of coplanar parallel forces may, therefore, be a single force if the force is non-zero or a 
single moment if the resultant force is zero.

The concept of equivalence of coplanar parallel forces may be extended to the case of spatial parallel 
forces. If the system of parallel forces in space consists of

 1, 2, 3, ... 
specified by the position vectors
 1, 2, 3, ... 

respectively as shown in Fig. 2.11, then the resultant force is given by

 R = 1 + 2 + 3 + ... 

and if this force is passing through the origin O, the moment accompanying it for equivalence should be

 O = 1 × 1 + 2 × 2 + ... 

The system of parallel forces cannot generate a moment in the direction of the parallel forces; the moment O

is wholly normal to the lines of action of the parallel forces. It is, therefore, possible to reduce the resultant to

 (i) a single equivalent non-zero force by shifting it parallel to itself so as to reduce the accompanying 
moment to null,

 (ii) a single equivalent moment if the resultant force happens to be zero, or
 (iii) a null force and null moment in a particular case.

x

y

z

O

1

2

3
1

2

3

(a) Specified spatial force system

x

y

z

O

Mx

My

(b) Equivalent system at 0

x

y

z

O

x

y

1

(c) Single non-zero equivalent force

Fig. 2.11 Equivalence of spatial parallel forces
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A B

y

x
D

C
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30 kN

20 kN40 kN

15 kN

2 m

Fig. Ex. 2.7

Example 2.7 A rigid bar AB is subjected to a 

system of parallel forces as shown in Fig. Ex. 2.7. 

Reduce the given system of forces to an equivalent 

(a) single resultant, (b) force-moment system at A,

(c) force-moment system at D and (d) force-

moment system at B.

Solution The resultant force for the coplanar 

parallel force system is

 R = 1 + 2 + 3 + 4

= 15 − 40 + 30 − 20 = −15  kN

which implies that it is 15 kN downward. This 

force may be made to act through any desired 

point in the bar.

(a) In order that the single force −15  kN be 

equivalent to the given system of forces, it should 

be so located that the moment exerted by it about 

any point should be the same as that exerted by the 

given system of forces. For example, let us consider 

the moments about A for the given system

A = 1 × (−40 ) + 3 × 30 + 5 × (−20 )

 = −40 + 90 − 100 = −50  (i)

If the resultant is assumed to act at a distance x

from A, then

 A = x × (−15 ) = −15x  (ii)

Equating (i) and (ii) as postulated before,

 −15 x = −50

 x = 3.33 m

(b) If the force of −15  were acted at A, the 

moment accompanying it should be

A = −50  kN m

as determined before.

(c) If the force of −15  were acted at D, the moment accompanying it would be

D = −3 × 15 − 2 × (−40 ) + 2 × (−20 )

 = (− 45 + 80 − 40) = −5  kN m

(d) If the force of −15  were acted at B, the moment accompanying it would be

B = 5 × 15 − 4 × (−40 ) − 2 × 30 

 = (−75 + 160 − 60) = 25  kN m

The results (a), (b), (c) and (d) are shown in Fig. Ex. 2.7 (Solution).

A B

15 kN

x = 3.33 m

(a) Single resultant force

A B

15 kN

50 kN M

(b) Equivalent force – Moment at A

A B

A B

15 kN

15 kN

D

5 kN m

25 kN m

(c) Equivalent force – Moment at D

(d) Equivalent force – Moment at B

Fig. Ex. 2.7 (Solution)
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Fig. Ex. 2.8

Example 2.8 A 4 m × 5 m slab carries 

four forces normal to it as shown in Fig. Ex. 2.8. 

Determine the equivalent action which can be 

applied only at point O and determine the single 

resultant of the force system.

Solution The resultant force R for the given force system must be

R = −4 − 3 + 5 − 6 = −8  kN

which means that it should be 8 kN force acting vertically downward. If this was located to pass through O,

the moment accompanying it for equivalence would be

O = 4 × (−4 ) + (1 + 1 ) × (−3 ) + (2 + 3 ) × 5 + (1 + 4 ) × (−6 )

 = −12 + 15  kN m

 The moment accompanying the force 8 kN down-

ward applied at O is, therefore, such that it has an 

x- component of −12 kN m and the y-component of 

15 kN m as shown in Fig. Ex. 2.8(a) (Solution).

 In order to locate the point (x, y) through which the 

force −8  should be passed for complete equivalence, 

the moment accompanying it should be null. In other 

words, the moment generated due to the parallel 

transfer of the force should just cancel the moment 

O, i.e.,

 − O = − × xy

 −(−12 + 15 ) = −(x + y ) × (−8 )

 = −8x + 8y

whence 8y = 12;    y = 1.5 m

 −8x = −15; x = 1.875 m

 The single resultant force −8  kN can, therefore, 

be equivalent to the prescribed parallel force system 

if it is applied at a point (1.875 m, 1.5 m) as shown in 

Fig. Ex. 2.8(b) (Solution).

 2.9 RESULTANT OF A COPLANAR FORCE SYSTEM

When the forces constituting a force system lie in a plane and the moments applied externally or generated by 

the applied forces are directed normal to the plane, the force system is said to be coplanar. Coplanar systems 

x

y

z

O

12 kN m

15 kN m

8 kN

(a) Equivalent action applied at 0

x

y

z

O

8 kN

(1.875, 1.5)

(b) Single equivalent force

Fig. Ex. 2.8 (Solution)
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may consist of concurrent or non-concurrent forces, parallel or non-parallel forces. The analyses of plane 

concurrent and plane parallel forces has been dealt with already. Attention is now focussed on the analysis of 

general coplanar systems.

For a coplanar force system in the x-y plane, there can be no forces in the z-direction and no moments 

about the x and y axes.

A system of coplanar forces

1, 2, 3, ...

whose lines of action are specified by the position vectors

1, 2, 3, ...

confined in the x-y plane and couple moments

1, 2, 3, ...

directed normal to the x-y plane are reducible to a resultant force

R = 1 + 2 + 3 + ... (2.11)

which can be made to pass through any point and a resultant moment . If the resultant force R is acted 

through the origin O, the moment which must accompany it is given by

= 1 × 1 + 2 × 2 + ...

 = 1 + 2 + 3 + ... (2.12)

This is shown in Figs 2.12(a) and (b).

It is possible to shift the resultant force R parallel to itself until the moment  is cancelled. The position 

vector of the line of R would then be  such that

× R =
as shown in Fig. 2.12(c).

In case the resultant force vanishes,

R = 0; Rx = 0, Ry = 0

the resultant of the coplanar force system may be a couple-moment.

= 1 × 1 + 2 × 2 + ...

 = 1 + 2 + ...

In case the couple-moments add to zero in addition to the resultant force being zero, the resultant is a null 

force and a null couple-moment.

The discussion on coplanar force systems may be summed up by stating that the force system may be 

replaced by a non-zero single force R in that plane passing through any desired point and an appropriate 

moment by a non-zero single force R appropriately located in that plane, by a single moment normal to that 

plane if the resultant force R is zero or by a zero moment and zero force in some particular case.

A  known as funicular polygon method is usually applied to determine the resultant 

of a plane system of parallel or non-parallel forces.

The forces 1, 2, 3, ... are drawn and the areas enclosed between their lines of action are marked in capi-

tal letters. Such a figure is called space diagram. If the space on the left of the line of action of 1 is called A

and the other spaces as B, C, D, ... as shown in Fig. 2.13(a), the forces are also referred to as AB, BC, CD, ... 

in terms of the space notation.

The next step is to draw the force polygon by drawing the forces in magnitude and direction and joining 

them end to end. In the force polygon the forces are named in small letters thus the force between regions 

A and B will be named ab in the force polygon. The closing side of the polygon in opposite order gives the 

resultant of the forces in magnitude and direction in accordance with the polygon law of forces.
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In order to find the line of action of the resultant, the following procedure is adopted:

Take any arbitrary point p inside or outside the force polygon and join all the vertices of the polygon with 

this point. This arbitrary point is called pole and the lines joining the pole to the vertices of the force polygon 

are called rays. These rays can be imagined as the components of the force, e.g. cp and pd are components 

of cd; bp and pc are components of bc, and so on. The diagram showing the force polygon, pole and rays is 

called ray diagram as shown in Fig. 2.13(a). Starting with an arbitrary point s on the line of action of the force 

1, a line sb is drawn parallel to the ray pb such that it intersects the line of the action of the next force 0 as 

shown in Fig. 2.13(b). From that point, another line is drawn parallel to the next ray pc and produced to inter-

sect the line of action of the next force, and so on. Finally, a line parallel to sa is drawn through the starting 

point s and the point of intersection O with the last line drawn as above is located. This is the point through 

which the resultant R of the given forces should act. The figure so drawn is called funicular polygon. The 

resultant is, therefore, completely specified by stating that it is a force denoted by ae in magnitude and direc-

tion as shown in the force polygon and acting through the point O located by drawing the funicular polygon.

It may be pointed out that, in general, the ray diagram should be such that it does not coincide with or 

is parallel to the forces; otherwise it may not be possible to draw the funicular polygon. This fact places a 

Fig. 2.12 Resultant force and moment of a given coplanar system of forces
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restriction on the choice of the pole p, namely, the pole should not lie on the closing side ae of the force 

 polygon. In particular, when the given forces are parallel, the force polygon is made up of collinear lines and 

the pole p must not lie on the line.

The graphical procedure is a geometrical manifestation of the theoretical method. The simplicity offered 

by it is at the expense of accuracy of results. Moreover, the graphical procedure is restricted to the plane 

system of forces. An insight into the equivalence of the graphical procedure with the theoretical method is 

provided as follows.

The closing side ae of the force polygon abcde provides the direction and magnitude of the resultant force 

in accordance with the polygon law of forces. The construction of the ray diagram enables us to replace each 

of the given forces by two components, e.g., 1 by ap and pb, 2 by bp and pc and 3 by cp and pd. Summation 

of the forces shows that the resultant R is made up of ap and pe because the pairs of forces pb and bp, pc and 

cp, etc. cancel off mutually as shown by the arrows on the force diagram. The construction of the funicular 

diagram by drawing lines parallel to the rays enable us to locate the points on a hypothetical string such that it 

is in equilibrium. The force 1 is balanced by the virtual tensions ap and pb in the string. Similarly, the force 

2 is balanced by bp and pc, and so on. A point O is located where the resultant R would be balanced by the 

components ap and pe, so that point must be the point of application of the resultant. It may be noted that 

different choices of the pole result in different rays and hence in different shapes of the funicular polygons. In 

each case, however, the equilibrium criteria is automatically satisfied and the point O finally located must lie 

on the line of action of the resultant force. It may also be added that a funicular polygon is indeed the shape 

of a string it would acquire under the application of the given forces at the corresponding points. For the same 

reason, the method of funicular polygon is also called string analogy method.
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Example 2.9 Three forces of magnitudes 1, 2 and

2 N act along the sides of a rigid, triangular frame formed 

by the lines AB, BC and CA specified by 

x + y = 1, y − x = 1 and y = 2

in the same order. Find the resultant and the equation of 

its line of action.

Solution The sides of the triangle are given by

 y = −x + 1, y = x + 1 and y = 2

indicating that their slopes are −1, +1 and 0 respectively. The unit vectors along the sides are, therefore,

0.707 − 0.707 , 0.707 + 0.707  and −  respectively.

 The three forces are, in turn, represented as

1 = 0.707 − 0.707  passing through (0, 1)

2 = 1.414 + 1.414  passing through (0, 1)

3 = −1.414       passing through (0, 2)

 The resultant R is given by their sum

R = 0.707 + 0.707 

The line of action of the resultant is located by considering the equivalence of the given system with the 

resultant in regard to the moments about the origin O;

(x + y ) × (0.707 + 0.707 ) = 1 × (0.707 − 0.707 ) + 1 

   × (1.414 + 1.414 ) + 2 × (−1.414 )

whence 0.707x − 0.707y = 0.707 

or x − y = 1 

which is the line of action of the resultant force.

Example 2.10 The moments of a given plane system of forces about three points (1, 0), (0, 1) and 

(1, 2) are +4, +25, +22 units respectively. Find the resultant force and prove that it acts along the line 

12x − 9y = 16.

Solution The plane system of forces may be replaced by a resultant force

Rx + Ry

in that plane acting at a point (x, y) in accordance with the concept of equivalence.

A

B

C

x

y

O

1 2

y = x + 1

y = −x + 1

y = 2

R = 0.707 i + 0.707 j

x − y = 1

√2

Fig. Ex. 2.9
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 The moments of the resultant force are expressed as follows:

 ((x − 1) + (y − 0) ) × (Rx + Ry ) = 4 

 ((x − 0) + (y − 1) ) × (Rx + Ry ) = 25 

 ((x − 1) + (y − 2) ) × (Rx + Ry ) = 22 

whence

 (x − 1) Ry − yRx = 4 (i)

 xRy − (y − 1) Rx = 25 (ii)

 (x − 1) Ry − (y − 2) Rx = 22 (iii)

 Subtracting (i) from (iii) and (ii) respectively,

 Rx = 9, Ry = 12

 Hence, the resultant of the force system is

R = 9 + 12 

 From (i), 12 (x − 1) − 9 y = 4 

or

 12x − 9y = 16

is the relationship between x and y. The point of application (x, y) cannot be determined uniquely because 

Eqs. (i), (ii) and (iii) cannot provide any additional information, they being a set of three equations for four 

unknowns.

 Since, the point (x, y) can lie on a straight line

 12x − 9y = 16

this equation is the locus of the points on the line of application of the resultant force. The resultant force 

is, therefore, directed along this line.

Example 2.11 A wrench of 20 cm size is used to tighten a pipe assembly 

ABC at socket A, as shown. Determine the moment the vertically downwards 

force of 100 N, exerts on the socket along x-axis when both the pipe assembly 

and the wrench lie in the x–y plane.

Solution In terms of vector notation, and SI units

= −100 kN

= = 0.5 + 0.15 cos 45 − 0.2 sin 45 + 0.15 sin 45 + 0.2 cos 45 

 = (0.5 + 0.106 − 0.141) + (0.106 + 0.141) 

 = 0.445 + 0.247 m

 Moment of the force about the point A is given by

 = × = +( ) × −( ) = −0 445 0 247 100 44 5 24 7. . . .Nm
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 The moment which acts about the x-axis in tightening the socket is given by

 Mxx = ⋅ = (44.5 − 24.7 ) ⋅ = −24.7 Nm.

Reflection on the Solution

We could have determined the moment of the applied force about B instead of A and simplified the solution. 

In that case,

= B = −0.055 + 0.247  m

and the moment acting about the x-axis would have resulted to be the same!

 It is also interesting to observe that a scalar solution to this plane problem would have been easier. 

 The perpendicular distance from  to the x-axis is

 d = 0.15 sin 45  + 0.2 cos 45  = 0.247 m

The moment of the 100 N downward force about the x-axis would then be 100 × 0.247 = 24.7 Nm clockwise, 

i.e., −ve.

 2.10 RESULTANT OF A SPATIAL FORCE SYSTEM

Let us now arrive at some conclusions regarding the equivalence of a system of forces which are arbitrarily 

placed on a rigid body. The forces

1, 2, 3, ...

act through points specified by the position vectors

1, 2, 3, ...

respectively as shown in Fig. 2.14(a).

The forces which constitute couples and produce couple-moments together with any external moment are

1, 2, 3, ...

The resultant force R must be given by

 R = 1 + 2 + 3 + ... (2.13)

no matter which point it is made to pass through. If it is made to pass through point O as shown in Fig. 2.14(b), 

then the moment which must accompany the force for equivalence is given by

 = 1 × 1 + 2 × 2 + ... + 1 + 2 + 3 + ... (2.14)

The moment  may have a component MR in the direction of R and MN in a plane normal to R. The force R

may now be transferred parallel to itself to a point P such that the MN component of moment is nullified and 

the simplest equivalent system is a wrench with force R passing through P and moment MR in the direction 

of R as shown in Fig. 2.14(c).

1

2

3

n

O

2

1

1
2

3

(a) Spatial system of forces

O

R

Mn

MR

(b) Equivalent force and moment (c) Equivalent wrench

P

R

R

Fig. 2.14 Resultant of a spatial force system
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Example 2.12 A horizontal plate, 3 m × 3 m is acted upon 

by three forces A, B and C at A, B and C respectively, as 

shown.

(a)  Can the forces be replaced by a single force ?

(b)  Can the forces be replaced by a wrench? If so, locate the force 

and moment components of the wrench, i.e., point P where its 

line of action intersects the plate.

Solution

(a) The force system consists of A, B and C which add to a single force 80 + 60 + 40 . In order to 

replace the given forces, it must be positioned such that the moment due to this force equals the moments 

due to the given forces at the same point. Let the point be P(x, y). Moments due to A and B would be along 

the z-direction, which could balance each other but the moment due to C would be in x and y direction; 

there is nothing to balance it. Hence, there is no point possible where the single force could be applied to 

result in zero moment; hence not possible to be replaced by a single force !

(b) Any given force system can, of course, be reduced to a wrench, i.e., a force  and a collinear moment M

at a point. Let such a point be P(x, y) through which the force may be made to pass.

 The force component of the wrench must be

= 80 + 60 + 40 , which has the magnitude,

 = + + =80 60 40 1082 2 2 N

 If this has to pass through P(x, y), the accompanying moment

 
P y x x y= × + − × + − − ×80 3 60 3 40( ) ( ( ) )

 = −80 y + (x−3) 60 + ( − 40 x ) − (3 − y) 40 

 = −120 + 40 y − 40 x + (60(x − 3) − 80y)

= 40(y − 3) − 40 x + (60 x − 180 − 80y)

 This must be collinear with 80 + 60 + 40 , which means that

 40 3

80

40

60

60 180 80

40

( )y x x y−
=

−
=

− −

or
y x x y−

=
−

=
− −3

2

2

3

3 9 4

2

or 3y − 9 = − 4x; − 4x = 9x −27 − 12y

or 4x + 3y = 9; 13x − 12y = 27 

whence x = 2.2 m and y = 0.07 m

 The moment MP can now be determined by substituting x and y in the expression above:

 P = − − × + × − − ×
= − −

40 0 07 3 40 2 2 60 2 2 180 80 0 07

117 2 88 53

( . ) . ( . . )

. ..6

and
P = + + =117 2 88 53 6 1562 2 2. . N

A = 8 N

B = 60 N

C = 40 
CB

xP

y

A O3

3

y

x

Fig. Ex. 2.12
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 2.11 GRAVITATIONAL FORCE FIELD

Newton’s law of universal gravitation states that

Any two particles or point-masses are attracted towards each other along a line connecting them with a 

mutual force whose magnitude is directly proportional to the product of the masses and inversely propor-

tional to the s uare of the distance between the particles.

Mathematically, the magnitude of the gravitational force is

 F G
m m

r
= 1 2

2
 (2.15)

where G is the universal constant of gravitation, its value being 6.67 × 10−11 Nm2/kg2 or m3/kg s2, m1 and m2

are the masses of the bodies and r is the distance between them.

The gravitational force field of the earth is due to its mass M and acts on a body of mass m placed at a 

height h above the surface of the earth of radius R

 F GM
m

R h
=

+( )2
 (2.16)

Denoting the acceleration due to gravity g, and recognising that the weight of the body is given by

 W = F = m g (2.17)

 
g

GM

R h
=

+( )2  (2.18)

It may, however, be pointed out here that the earth has been assumed as a spherical and stationary body. 

Since the earth is not a perfect sphere, the radial distance of the surface from the centre of the earth varies 

with the latitude as well as the altitude. The variation of g has been investigated and expressed as

 g = 9.806 16 − 0.025 928 cos2
l + 0.000 069 cos2 2l − 0.000 003 h m/s2 (2.19)

where l is the latitude of the place and h is the height in metres above the mean sea level.

It is usual in engineering to consider g, the acceleration due to gravity as constant and the weight force 

directed perpendicular to the surface of the earth for most earthbound objects. This assumption is known as

assumption of a flat earth. It is indeed incorrect to allow such an assumption in principle but it is acceptable 

to admit this assumption for most practical purposes, particularly when the analysis is confined to a region 

close to the earth.

Another noteworthy fact is that the gravitational force between two bodies of finite sizes is not necessarily 

along the line joining their centres, nor is it necessary that the magnitude of the force be given by Eq. (2.15). 

A careful reading of the statement of Newton’s law of gravitation would reveal that the law relates to the 

force between two particles or point bodies. A body of finite size may be thought of as a distributed mass or a 

distribution of mass elements over the domain of the body. According to the law of gravitation, each element 

on a body would experience a force from each element of the other body and the total force on a body would 

require double-volume integration. Only in the special case of two homogeneous solid or thin hollow spheres 

does the law hold in its stated from because the force of gravitation turns out to be along the line joining their 

centres and the magnitude is given by Eq. (2.15). It is for this reason that the law holds fairly well for the nearly 

spherical celestial bodies. In fact, Kepler’s laws of planetary motion, formulated before Newton was born, 

contain Newton’s law of gravitation for spherical planetary bodies; Newton’s original contribution was to state 

the laws applicable to particles or infinitesimal elements which may belong to any distributed masses of which 

spheres are only particular cases.
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a b

x

x O
m

dx
M

Fig. Ex.  2.13

Example 2.13 Determine the gravitational force 

of attraction of a thin uniform rod of length a and 

mass M on a concentrated mass m outside the rod but 

on the same line as the rod and at a distance b from the 

nearer end.

Solution The force on the concentrated mass m can be determined by writing the force due to an element 

of length dx situated at a distance x from it and integrating the same for the entire length of the uniform rod. 

Let the mass density of the rod be r per unit length of the rod. The infinitesimal element of length dx has a 

mass r dx and the force of attraction on the mass m due to it is

 dF
Gm dx

x
=

ρ
2

 (i)

 The total force of attraction due to the entire length of the rod must be

 
F dF

Gm dx

x
b

a b

= =
+

∫∫
ρ
2

 
= −

+

Gm
x b

a b

ρ
1

 =
+

=
+

Gm a

b a b

GmM

b a b

ρ
( ) ( )

 (ii)

where the mass of the rod is taken as

 M = ra

 The distance between the concentrated mass and centre of the rod is

 xc = b + a/2

 If the mass of the rod was concentrated at its mid-point, the force of attraction would have been

 F
GmM

b a
c =

+( / )2 2
 (iii)

It may be appreciated that  and c are of different magnitudes; they are closer if the length of the rod is 

less,
a → 0,  → c

 Equation (iii) enables us to interpret that the force of attraction of the rod would be the same if the entire 

mass of the rod was concentrated at xs

where F
GmM

b a b

GmM

xs

=
+

=
( ) 2

whence x b a bs = +( )

 Again, xs coincides with xc if a tends to zero, as expected.

2.12 HYDROSTATIC FORCE FIELD

In a static fluid, the intensity of pressure at a point is the same in all directions.  This statement is due to Pascal 

and can be proved by considering the equilibrium of a fluid element at a point.
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The rate of change of pressure in a vertically downward direction must e ual the local specific weight of 

the fluid.  This statement comprises the hydrostatic law, mathematically

 dp

dz
g= ρ  (2.20)

where dp/dz is the rate of change of pressure in the downward 

direction and rg is the specific weight or weight density, r being 

the mass density and g, the acceleration due to gravity.

Alternatively, Eq. (2.20) is written as

 dp = rg dz (2.21)

implying that the increment of pressure dp in the vertically-

 downward direction over a distance of dz equals the product 

of mass density r, gravitational acceleration g and the distance 

dz.

In a fluid of constant density, i.e., incompressible fluid,

 dp g dz g dz∫ ∫∫= =ρ ρ

Assuming the atmospheric pressure at the free surface of a liquid, as the reference, the pressure at a point with 

the atmospheric pressure as the reference is

 p gz= ρ  (2.22)

In other words, the pressure varies linearly as the depth in an incompressible fluid at rest.

The pressure on a surface acts normal to that surface, by

 = p DA normal to the area DA. (2.23)

Fig. 2.15 Pascal’s law and hydrostatic law

Concept Review Questions

  Classify the following statements as true or false 

and state the reasons:

 (a)  The simplest equivalent of a force system is 

either a force or a couple-moment.

 (b)  The force in a force-field must vary 

monotonically only.

 (c)  Force is a transmissible vector or a free vector.

 (d)  Equivalent forces are defined on the basis of 

providing an identical action in a particular 

capacity.

 (e)  Resultant and equivalent are identical 

concepts.

 (f)  A particle may be subjected only to a 

concurrent force system; collinear, coplanar 

or spatial.

 (g)   A force is a bound vector; its line of action 

on a rigid body must be specified.

 (h)  A moment is a free vector; its line of action 

on a rigid body need not be specified.

 (a)  Can a system of forces acting on a rigid 

body be replaced by a wrench at any desired 

point on it?

 (b)  If a rigid slender bar is subjected to a number 

of forces, which factors would decide 

whether the resultant will be a single force 

or not? Is it necessary that the system of 

forces should not be distributed in space?

  A number of plane forces act on a simply sup-

ported rigid body at two points. Determine 

the resultant of these forces and appreciate 

the fact that it is also the equivalent force 

so far as the determination of the reactions 

from the supports is concerned but is not the 
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 equivalent force if the body is analysed either 

for  deflection or for the resisting moments and 

forces developed in the body.

  Which of the following system of forces may be 

represented by a single resultant non-zero force

 (a) Concurrent force system

 (b) Parallel force system

 (c) Coplanar force system

 (d) Spatial force system.

  State Newton’s law of gravitation for two point-

objects of masses m1 and m2 placed a distance r

apart. How would you proceed to determine the 

gravitational force between two bodies which 

have an arbitrary but specified distribution of 

mass, e.g., a cricket bat and ball.

  A plate AB of mass m and dimensions 2 m × 3 m 

is to be lifted by a string tied to it and going over 

a set of pulleys with a suspended mass M at the 

other end as shown in Fig. CRQ 6. Recognise the 

sources of force in the system.

Fig. CRQ 6

  If the sum of couple-moments and moments of 

all the forces of a force system about any three 

noncollinear points is zero, show that the force 

system results in a null.

Tutorial Problems

   It is desired to transfer a 50 kN force para-

llel to itself from a point (2, 1) to a point 

(1, 2) as shown in Fig. Prob. 2.1. Determine the 

additional moment, if any, required to maintain 

equivalence. ( s  70.7 kN m; 50 + 50 )

x

y

z

O

50 kN

(2, 1)

(1, 2)

Fig. Prob. 2.1

   A force of 100 N acting tangential to a drum 

at A must be transferred parallel to itself to its 

centre O or to a diametrically opposite point B.

Determine the moments which should accom-

pany it for equivalent effect.

 ( s  25 N m and 50 N m)

O

A

B

100 N

0
.5

 m

Fig. Prob. 2.2

  Determine the resultant of the coplanar concur-

rent force system shown in Fig. Prob. 2.3

 ( s  49 N, q = −26 )
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Fig. Prob. 2.3

   Determine the resultant of the concurrent 

force system acting at a point O as shown in 

Fig. Prob. 2.4.

 ( s  19.7 N; a = 43; b = 56  and g = 66 )

O

x

y

z

6 N

8 N

10 N

(4, 0, 3)

(4, 3, 0)

(0, 3, 2)

Fig. Prob. 2.4

  Two unlike parallel forces, each 10 N, act 0.3 m 

apart as shown in Fig. Prob. 2.5(a). What is their 

resultant action? If one force was 11 N instead 

of 10 N as shown in Fig. Prob. 2.5 (b), what 

would the resultant action be? Can these sys-

tems be replaced by single resultant forces for 

equivalence? ( s  3 Nm; 1N, 3.15 Nm)

(a)

(b)

10 N

10 N

0.3 m

10 N

11 N

0.3 m

Fig. Prob. 2.5

  Determine the resultant action of a coplanar 

parallel force system in Fig. Prob. 2.6.

 ( s M = −30 N m)

100 N 200 N

20 cm 20 cm

200 N

300 N

400 N

Y

40 cm30 cm

Fig. Prob. 2.6

  The resultant of four vertical forces is a couple-

moment 30 N m acting counterclockwise. 

Three of the four forces are shown in Fig. Prob. 

2.7. Determine the fourth force.

 ( s  33 N upward at 44.5 cm to the right 

     of A on AB)

40 N

20 N
27 N

BCA

25 cm 25 cm

Fig. Prob. 2.7

8   The following forces act parallel to the z-axis.

Their respective points of application in the x y

plane are also given. Determine the single resul-

tant and locate it in each of the following cases:

  Case 1

Force in 

kN

3 −4 2 −5

x, y in m (2, 5) (1, −5) (3, 3) (−4, −4)

  Case 2

Force in N 100 200 −300

x, y in cm (10, 10) (20, −50) (30, −40)

 ( s  Case 1: R = −4 kN at (−7.0, −15.3) m

 Case 2: Mx = 30 N m, My = 40 N m)

  A coplanar parallel force system consisting of 

three forces acts on a rigid bar AB as shown in 

Fig. Prob. 2.9. Determine the simplest equiva-

lent action for the force system. If an additional 

force of 10 kN acts along the bar A to B, what 

would be the simplest equivalent action?

 ( s −10 kN along 40 kN force; 

14.14 kN, −45 )
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20 kN

30 kN

40 kN

A B

3 m 2 m

Fig. Prob. 2.9

  A pulley of 1 m diameter is subjected to 2 kN 
and 1 kN force at A and B respectively as shown 
in Fig. Prob. 2.10. Its own weight of 0.5 kN acts 
at the centre O. Determine the resultant force 
and its line of action with respect to AOB.

 ( s  3.04 kN making an angle of 80.5° 
     with AOB)

2 kN

O

0.5 kN

1 kN
B

A

Fig. Prob. 2.10

  A bell-crank lever AOB is subjected to a hori-
zontal force 10 N at A while a weight of 7.5 N 
is attached at B. Determine the resultant action 
on the lever. If the 10 N force were transferred 
to point P, what would be the change in the 
resultant action?

 ( s  In equilibrium; 1 N m moment and lever 
    turning counterclockwise)

A

B O

P

0.1 m

10 N

7.5 N

0.4 m

0.2 m

Fig. Prob. 2.11

  A dam is subjected to three forces; 50 kN 
force on the upstream vertical face AB, 30 kN 
force on the downstream inclined face and 
its own weight 120 kN. Determine the single 
equivalent force and locate its point of inter-
section with the base AC, assuming all the 
forces to lie in the same plane.

 ( s 137 kN; y + 5.6 x = 0)

Fig. Prob. 2.12

  A 2 m × 4 m plate is subjected to a system 
of three coplanar forces as shown in Fig. 
Prob. 2.13. Determine the equivalent action at
O which may replace the force system.

 ( s  5.9 kN and 1.7 kN m)

A B

CD

5 kN

45°

5 kN

4 kN

60°

1 m

2 m O

Fig. Prob. 2.13

  A symmetrical truss is loaded by five forces 
as shown in Fig. Prob. 2.14. Obtain the resul-
tant load and its line of action.

 ( s  15.5 kN along 0.29 − 0.95 )

  Determine the resultant of the forces acting on 
a bell-crank lever as shown in Fig. Prob. 2.15.

 ( s  4.25 Nm clockwise)
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2 kN

4 kN

3 kN

3 kN
4 kN

30°

3 m

3 m

Fig. Prob. 2.14

Fig. Prob. 2.15

50 N

60°

30°

100 N

120 N

20 cm 20 cm

40 cm

  A bracket is subjected to a coplanar force 

system shown in Fig. Prob. 2.16. Determine 

the magnitude and the line of action of the 

single resultant of the system.

 ( s −200 −154  ; 35 cm from A)

400 N
200 N300 N

60°

50 Nm

A B
30 cm 20 cm

Fig. Prob. 2.16

  Reduce the wrench along the x-axis as shown 

in Fig. Prob. 2.17 to a system of two forces 

perpendicular to the y-axis acting at A and B

on the y-axis. It is given that OA = 0.2 m and 

OB = 0.6 m.

 ( s  100 − 7.5 ; − 50 + 7.5 )

y

z

O
A

R = 100 N

= 300 N cm

x

B

Fig. Prob. 2.17

8   A system of three forces acts on a parallelo-

piped as shown in Fig. Prob. 2.18. Replace 

the forces by a wrench and specify its point of 

action on a face.

x y

z

80 N

50 N

5
0
 N

10 cm
15 cm

25 cm

Fig. Prob. 2.18

  Reduce the given force system to an equivalent 

force plus couple-moment system at corner O

as shown in Fig. Prob. 2.19.

    ( s −56.5 + 17.4 − 17.4 ; −3.5

− 28.7 + 30 )

10 Nm

100 N

O

50 N

20 cm

20 cm

50 cm

Fig. Prob. 2.19
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  Find the force of attraction between two 

homogeneous solid spheres of radii r1 and r2

and masses m1 and m2 placed at a distance r

between their centres.

s.
Gm m

r

1 2

2

⎛
⎝⎜

along the line joining their 

centres
⎞
⎠⎟

  Find the force of attraction of a thin uniform 

rod of length 2a and mass M on a particle of 

mass m placed at a distance b from its mid-

point such that the particle is equidistant from 

its ends.

s.
Gm m

r

1 2

2

⎛
⎝⎜

along the line joining the 

mid-point of the rod
⎞
⎠⎟

  Determine the maximum possible friction 

force which may be developed between a 

pair of sliding surfaces if the normal reaction 

between them is 20 kN and the coefficient of 

static friction is 0.30. What happens to the 

frictional force if the applied tangential force 

is increased further and the bodies acquire 

relative motion? ( s  6 kN)

  A stack of plates of different materials are 

placed one above the other and a horizon-

tal force  is applied to one of them in the 

middle of the stack. Discuss the circum-

stances under which (a) the plate on which 

force is applied and all the plates above it 

slide together (b) the place on which force is 

applied and some more plates below it slide 

together and (c) only the plate on which force 

is applied slides out.

  Three forces act along the three sides of a 

triangle in the same order with their magni-

tudes proportional to the sides along which 

they act. Prove that their simplest resultant 

is a single moment whose magnitude is pro-

portional to twice the area of the triangle. 

Hence, extend it for a polygon of any  number 

of sides.

  Replace the three forces shown in Fig. Prob. 

2.25 by a resultant force R passing through 

the point O and a couple  for equivalent 

effect.

 ( s R = 200 − 400 − 500 N

= 15 − 24  N m)

y

x

z

O 200 N

400 N parallel to y axis

500 N parallel to z axis

3cm 3cm

Fig. Prob. 2.25

  Determine the tension in cable BC (Fig. 

Prob. 2.26). Neglect the weight of AB.

 ( s  5.0 kN)

B

4 kN30°

40°

C

A

90°

2 m

4 m

Fig. Prob. 2.26
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   Determine the point on the line joining the 

centres of the earth and moon (Fig. Prob. 

2.27) at which the gravitational forces of the 

earth and moon are equal. It is given that the 

mass of moon is .0123 times that of earth and 

distance from earth to moon is 3.8 × 105 km.

 ( s. 3.45 × 105 km from earth)

Earth

Moon

d

Fig. Prob. 2.27

  In the punch shown in Fig. Prob. 2.28 links 

OA and AB have negligible mass and all fric-

tion may be neglected. The punch has a mass 

of 2 kg and moves in a vertical direction only. 

Find the moment which must be applied to 

OA to maintain its speed constant at 10 rad/s 

clockwise, with the mechanism in the position 

shown in Fig. Prob. 2.28 and with  zero.

 ( s  4.53 Nm)

O

0.2 m

60°

30°

B

A

Fig. Prob. 2.28

  Determine the moment of a force 10 kN 

acting as shown in Fig. Prob. 2.29, (a) about 

the point C (b) about the point H and (c) about 

the axis CF.

 ( s  (a) and (b) 3.71 + 5.94  Nm;

      (c) 2  Nm)

y

D

F

E H

A

B C
x

0.7 m

0.25 m

G

0.4 m

10 kN

Fig. Prob. 2.29

  (a)  Find the resultant of the force system 

shown in Fig. Prob. 2.30 and locate the 

position of its line of action on the x-axis.

(b)  Determine the magnitude and sense of a 

single vertical force to be applied at point 

C so as to make the resultant of the entire 

system pass through A. Also, find that 

resultant.

 ( s  (a) 300 − 280  N at 107 mm from O

 (b) 72  N; 300 − 208  N at A)

125 mm

100 m

O

300 N

C

75 mm

120 N 400 N

D
A

Fig. Prob. 2.30
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Look up Hints to Tutorial Problems at the end!

Multiple-Choice Questions

 A rigid body is acted upon by a force system. It 

can in general be brought to equilibrium by the 

 application of a force acting

 (a) on a suitable point on the body

 (b) anywhere along a suitable line

 (c)  along a suitable line and a moment along the 

direction of the force

 (d)  along a suitable line and a moment in the 

direction perpendicular to the direction of force

 The simplest resultant of a spatial parallel force 

system is always

 (a) a wrench

 (b) a force

 (c) a moment

 (d) a force and moment

 The force of gravitation between two bodies 

will be inversely proportional to the square of 

the distance between their centres of masses if 

the two are

 (a) of constant densities

 (b) spherical

 (c) of any arbitrary shape

 (d) of the same shape and size

 A force  acting on a rigid body at a point P can 

be replaced by a force of equal magnitude and 

in the same direction at a point Q on the body, 

together with a moment

 (a)  equal in magnitude to PQ times F, acting 

normal to the plane of  and P

 (b)  equal in magnitude to F times the distance 

moved in the lines of actions of the force, 

acting in the plane of P  and 

 (c) given by × P

 (d) given by × P

Answers to Multiple-Choice Questions 

1 (c)    2 (c)    3 (b)    4 (c)
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Equilibrium of 

a Particle and 

a Rigid Body

 3.1 EQUILIBRIUM CONCEPT IN MECHANICS

A body is said to be in a state of equilibrium if the body is either at rest or is moving at a constant 
velocity. The phrase ‘constant velocity’ implies motion along a straight line at a constant speed. 
The state of equilibrium, in other words, implies that the body must be at rest with respect to 
some inertial frame. Equilibrium is a kinematic state of the body; a special state when there is 
no motion or when the motion is at a constant speed along a straight line. Clearly, all other pos-
sible states of motion do not qualify to be categorised as states of equilibrium. Such states are 
characterised by the presence of the rate of change of momentum, linear and angular. Examples 
of non-equilibrium are: a particle accelerating along a straight line, a particle going round a 
curved path and a body rotating about any axis within or outside it.

Let us now try and relate the concept of equilibrium to the action of forces and moments 
acting on a body. The laws of mechanics governing the motion of a body are

 

Newton’s Law: 

Euler’s Law:

F = =

= = ×

�

�

( )

( )

For a body in equilibrium, there should be no rate of change of momentum, linear or  angular, i.e.;

 
� �p H= = = × =( ) ( )0 0and  

and hence, the necessary conditions are

= 0 and = 0

The resultant external force and resultant external moment about any point should, therefore, 
vanish for a body to be in equilibrium.
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Let the forces acting on a body be 

1, 2, 3, ...

and the position vectors of any points on the lines of action of the forces be 

1, 2, 3, ...

respectively with reference to an arbitrary origin O as shown in Fig. 3.1. The forces will then tend to compel 

the body to change its state of rest or of constant velocity in two ways:

 1. By adding to comprise a resultant force

R = Σ = 1 + 2 + 3 + ... (3.1)

tending to destroy the equilibrium by bringing about a translational acceleration.

 2. By generating moment vectors about the reference point O,

1 = 1 × 1

2 = 2 × 2

3 = 3 × 3

and the sum of the moments

 Σ = 1 + 2 + 3 + ...

tending to destroy the equilibrium by bringing about 

angular acceleration.

It is possible that the force system acting on a body 

can as well include some couples with couple-moments

1, 2, 3, ...

in addition to the forces. In that case, the sum of the 

moments should include the couples provided the 

forces comprising the couples are not counted in their 

own right  for producing moments.

 Σ = 1 + 2 + ... + 1 + 2 + ... (3.2)

It follows, therefore, that the necessary conditions of equilibrium for a body are:

 
     Σ = 0

  Σ = 0  (3.3)

These are, however, not the sufficient conditions for the equilibrium of a body.

In words, the sum of all the forces acting on the body should be zero and the sum of all the moments 

 produced due to the force system about any point should also be zero for equilibrium. It may also be seen that 

each of these vector equations represents three scalar equations, i.e., one along each coordinate axis. In the 

rectangular system of coordinates, the equivalent scalar equations are:

 Σ x = 0 Σ x = 0

Σ y = 0 and Σ y = 0

 Σ z = 0 Σ z = 0 (3.3a)

If, in a given situation, a body which is acted upon by a system of forces is to be brought to a state of 

equilibrium it is achieved in two steps:

 1.  The system of forces is reduced to an equivalent force, its point of application as desired and the accom-

panying moment.

 2.  An equilibrant action equal and opposite to the corresponding equivalent action is applied in the desired 

manner:

1

2

z

2

1

1

x

y
O

Fig. 3.1  Equilibrium under the action of 

a system of forces
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(2, 2, 1)
(7, 2, 3)

1

3 2

z

x

4

y
(0, 0, 0)

(5, 1, 0)
(4, 0, −1)

Fig. Ex. 3.1

Ef = −R = −Σ 
Em = −Σ 

If the simplest equivalent for a particular case can be reduced to a single force R suitably applied, then the 
simplest equilibrant for that case

E = −R
may also be applied along the same line of action.

Example 3.1 The following forces as shown 
in Fig. Ex. 3.1 are applied to a rigid body initially at 
rest:

1 = 2 + + 3  at (7, 2, 3),

2 = − 2 − 4  at (5, 1, 0),

3 = −2 + 2 + 2  at (4, 0, −1),

4 = − − −  at (2, 2, 1)

Show that the body is in equilibrium.

Solution The necessary conditions of equilibrium of a body are

 Σ = 0 and Σ = 0. In this case,
 Σ = (2 + − 2 − ) + ( − 2 + 2 − ) + (3 − 4 + 2 − )

 = zero, identically.
Taking moments about the origin (0, 0, 0),

 Σ 0 =  (7 + 2 + 3 ) × (2 + + 3 ) + (5 + 1 + 0 ) × ( − 2 − 4 )
+ (4 + 0 − 1 ) × (−2 + 2 + 2 ) + (2 + 2 + ) × (− − − ) = 0,

identically, which shows that the necessary conditions of equilibrium are identically, satisfied. The body 
should, therefore, be in equilibrium.

It is interesting to observe that for a body in equilibrium, the summation of the moments about any 
arbitrary point must vanish. Let us take moments about the point (2, 2, 1):

Σ =  ((7 − 2) + (2 − 2) + (3 − 1) ) × (2 + + 3 ) + ((5 − 2) + (1 − 2) + (0 − 1) )
× ( − 2 − 4 ) + ((4 − 2) + (0 − 2) + (−1 − 1) ) × (−2 + 2 + 2 )

  = (−2 + 2 + 0) + (−11 + 11 + 0) + (5 − 5 + 0) 
= zero, identically, as expected

 3.2 FREE-BODY DIAGRAMS

The first step to solving a problem in mechanics is to draw the free-body diagram (  f bd ) of the body under 
study. It is pointed out in Chapter 1 that a free-body diagram results in showing all the external forces on the 
body, when isolated from its surroundings. Typically, an f bd consists of
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Some further examples of f bd are illustrated in Fig. 3.3. The f bd of a ladder on a rough floor but smooth 

wall is shown with a component of frictional force at the floor, tending to resist slippage. The f bd of the beam 

is drawn to show the vertical reactions at the knife-edge support and the roller support. The f bd of the sub-

merged body is shown in the hydrostatic forces.

 the weight of the body shown acting at a point 

 the external applied forces and moments

 the reactions of the surroundings, from which it is isolated

 the reactions of the supports, from which it is also isolated; tension in the string, if any

What is the idea of drawing an f bd?

It is the f bd which shows all the forces (and moments) that a body is subjected to, whether it is in equilib-

rium (i.e., at rest or in uniform motion) or in a state of acceleration. Hence, the f bd shows the action of all the 

forces (and moments) on a body, which is the starting point of all analysis.

Let us consider a case of two cylinders 1 and 2 resting in a V-groove, as shown in Fig. 3.2(a).

The f bd of the upper cylinder 1 is shown in Fig. 3.2(b). It shows the weight of the cylinder and the reac-

tions from the groove at A and from the other cylinder 2 because these are the external forces acting on it.

The f bd of the lower cyclinder 2, shown in Fig. 3.2(c) consists of its weight and reactions from the 

surroundings.

Now, the f bd of the two cylinders, taken together as one subsystem, would be as shown in Fig 3.2(d). 

Notice that the actions and reactions between the two cylinders do not come up as the external forces as they 

mutually cancel!

(d) Fbd of cylinders 1 and 2

W1

R1A

R2A
R2B

W2

(c) Fbd of cylinder 2

W2

R2A R2B

R21

1

2
A B

(a) Two cylinders in a V-groove (b) Fbd of cylinder 1

W1

R1A R12

Fig. 3.2 Two cylinders resting in a V-groove
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(b) Fbd of a beam

Knife-Edge Roller

1 2

W W

R1 R2

(c) Fbd of a submerged body

Liquid

1 2

3

W

W W

2

1

1

2

Rough floor

1

S
m

o
o
th

 w
al

l

(a) Fbd of a ladder

Fig. 3.3 Examples of free-body diagrams of objects

 3.3 REACTIONS BY SUPPORTS

Different types of supports are employed to hold structural members and components in motion. The purpose 

of a support is to provide a desirable reaction. Let us see the nature of reactions offered by different types of 

supports as shown in Fig. 3.4.

Fig. 3.4 (Continued )

Type of support

R =

90°

O

Ball or 

roller

Rough Smooth
or

Reaction

q

Pin

joint
Hinge

q

Ry R

RxO

Ball and 

socket

Rz

Rx

Ry R

O

R

q

ORough O

a

(a) Normal to the surface at that point

(c) Vertical and horizontal components

(d) Along the member in space (three components)

(b) With normal and tangential components
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C

DB

A E

P

Fig. Ex. 3.2

A ball or roller support on a rough surface can roll and hence not provide a tangential reaction. The reac-

tion at a ball or roller support is, therefore, normal to the surface at that point. Similarly, the reaction by a 

smooth surface to a member in contact with it must be normal to the surface.

Reaction by a rough surface to an element in contact with it can be non-normal, i.e., at an angle q to it 

even if the member is inclined at any angle a or normal to it. This is because both normal and tangential 

components of reaction are possible.

A pin-joint or a hinge gives rise to reaction along the axis of the member.

A ball-and-socket joint provides reaction along the axis of the member. Since a ball-and-socket joint is a 

universal joint in space, the reaction is also in space.

A fixed end of a member is capable of providing a general reaction R and a general moment .

A cord or a cable tied to a surface can be under tension only, the reaction must be along the cord or the cable.

A bearing of a rotating shaft can provide a reaction R and a frictional moment .

Example 3.2 Draw the free-body diagrams of all the members of 

a simple-loaded system sketched in Fig. Ex. 3.2 and comment on their 

usefulness in the analysis of the system.

Solution First, the free-body diagram of the centre system is drawn in Fig. Ex. 3.2(a) Solution. This is 

necessary to estimate the reactions at the supports A and E. The unknowns RA and RE can be determined 

by considering the equilibrium of the system.

Fig. 3.4 Nature of Reactions by some Typical Supports

Type of support Reaction

Fixed 

end

R

O

R

q
O

Cord or cable

Tied
q

O

(e) A moment and a force depending upon loading

(f ) Tension in the cable

(g) A normal force and a twisting moment

R

O

Bearing
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 Free-body diagrams of the members are drawn in 

Fig. Ex. 3.2 (Solution) (b) and (c).

 In Fig. Ex. 3.2 (Solution) (b) all the reactions are 

taken in the direction of the positive coordinate axes. 

By doing so we get 15 reaction unknowns, viz. x, y,

Bx,Bx′,By,By′, etc. These 15 unknowns can be solved by 

using three equilibrium equations for each member and 

2 action-reaction equations at each joint of two mem-

bers. (Total number of equations = 3 × 3 + 2 × 3 = 15.)

 Though such a procedure leads to the correct 

solution of the structure, it is not a normal practice 

to assume all the reactions to be initially positive in a 

free-body diagram.

 While drawing the direction of these forces in free-

body diagram, the following points are considered:

1.  The action-reaction equations are applied directly 

while drawing the free-body diagram itself. For 

example in Fig. (c), the action- reaction principle 

gives that at joint C, x = − x′, y = − y′. These 

two equations are eliminated from the calcula-

tions and x′, y′ are shown equal and opposite 

to x, y respectively in the free-body diagram 

itself. By doing this in the present case at every 

point we are left to analyse the structure for 9 

equilibrium equations only.

2.  It is a usual practice to assume the direction of 

the reactions intuitively rather than taking them 

arbitrarily. For example, in Fig. (c) on the member 

BD, By and y should act in upward direction in 

order to balance   Similarly intuitively we can 

see that y, Ey should act upward and x should 

act to the left on CA. However, a later check by 

the equilibrium equations decides the validity of 

these assumptions.

 It must also be noted that free-body diagrams of the 

members are not mutually independent and hence it 

is, in general, not possible to determine the unknowns 

on a member by considering the equilibrium of that 

member alone. For example, suppose after finding 

RA and RE, we wish to determine the reactions at B, C

and D, i.e., Bx, By, x, y, x and y. There are four unknowns on the members ABC considered alone and 

also four unknowns on the member CDE considered alone, but taken together as ABCDE, there are again 

only four unknowns. Similarly, on member BD alone, there are four unknowns. It may not be possible to 

solve for the unknowns by considering the equilibrium of each member one by one, but it must be possible 

to determine all the unknowns by writing all the equations of equilibrium for all the members.

C

B

x

y Ey

EA

P D

(a)

y

C C

P

D

x

By B¢y

¢y

¢x

y

xD
B¢x

¢y

¢x

Ey

E

B

x A

y

Bx B

(b)

Fig. Ex. 3.2 (Solution)

(c)

y

C
C

x

y

x

y

Ey

E

D

x

By y

x
D

P

B

x A

y

By

B
Bx
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 3.4 EQUILIBRIUM OF A PARTICLE

A particle, by definition, has negligible dimension in comparison with the coordinates describing its motion. 

It is an idealisation of a real body when its mass can be considered to be concentrated at a central point. 

A particle can, therefore, experience a system of forces which must be concurrent at the particle. The 

 concurrent system of forces can act along a common line to constitute collinear forces or they can belong to 

a plane or a spatial system as shown in Fig. 3.5. In each case, the condition of equilibrium must be

 Σ = 0

Since there is a point through which all the forces pass, it follows that the summation of the moments of 

all the forces about that point vanishes. The summation of the moments of the concurrent forces about any 

other point in space must also be zero. The other condition

 Σ = 0

is, therefore, automatically satisfied by the state of concurrency of the forces. As a matter of fact, the condi-

tions of equilibrium, namely

= 0 and = 0

are alternative conditions for a concurrent force system; one implies the other also. Hence, it is a matter of 

choice whether to use one or the other.

For equilibrium under the action of coplanar concurrent forces,

 Σ = 0

which implies that       1x + 2x + ... = 0; 1y + 2y + ... 0

In words, the sums of the components of the forces along any two mutually perpendicular directions in 

the plane of the forces must be zero for the equilibrium of a particle under the action of coplanar concurrent 

forces. The polygon of forces should automatically close to provide the zero resultant force for equilibrium.

It is interesting to observe that two concurrent forces must be coplanar since a plane can always be passed 

through two intersecting straight lines. Further, three concurrent forces in e uilibrium must be coplanar, for if the 

third force was not in the plane of the other two it would result in a component normal to the plane and upset the 

equilibrium. However, four concurrent forces in equilibrium may be coplanar or spatial. Three concurrent forces 

F1, F2 and F3 which maintain the particle in equilibrium as shown in Fig. 3.5(c) are related by the sine law.

Fig. 3.5 Equilibrium of a particle

P

F1

F2
Fn

F3

(b) Concurrent forces (c) Three concurrent forces

F1

A

C
B

F1

F1

F2

F2

F3

g
g

b b

a

a

F3

O

Triangle of forces

sin a

F2

sin b

F3

sin g
= =

P1 2 3

(a) Collinear forces

n
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Lami’s Theorem

Lami’s theorem states that, if three forces acting on a particle keep it in equilibrium, then each force is 

proportional to the sine of the angle between the other two and the constant of proportionality is the same. 

Symbolically,

 
F F F

k1 2 3

sin sin sina b g
= = =  (3.4)

where a, b and g are the angles between 2, 3; 1, 3 and 1, 2 respectively. The triangle of forces, in this 

case, should close to provide the resultant force zero for equilibrium and by applying the sine-rule for a 

 triangle. Lami’s theorem may be obtained as follows:

For the triangle ABC shown in Fig. 3.5(c) corresponding to the forces 1, 2 and 3, acting at a point O,

 ∠CAB = 180° − a

 ∠ABC = 180° − b

 ∠BCA = 180° − g

From the sine rule for the triangle,

F F F1 2 3

180 180 180sin ( ) sin ( ) sin ( )� � �−
=

−
=

−a b g

and from the fact that sin (180° − a) = sin a, etc., it reduces to the Lami’s theorem

 

F F F1 2 3

sin sin sina b g
= =

For equilibrium, under the action of spatial concurrent forces,

 Σ = 0

which implies that

1x + 2x + ... = 0

1y + 2y + ... = 0

1z + 2z + ... = 0

In words, the sums of the components of the forces along the three coordinate directions must be zero for 

the equilibrium of a particle under the action of spatial concurrent forces.

Let us discuss another aspect of the state of a particle. If a particle is subjected to a system of concurrent 

forces

1, 2, 3, ...

then it may or may not be in equilibrium. If it is in equilibrium, then

Σ = 1 + 2 + 3 + ... = 0

If it is not in equilibrium, then the system reduces to a resultant force

R = 1 + 2 + 3 + ...

which represents the net external force on the particle. In case it is desired to bring the particle in equilibrium, 

provision  must be made to apply a force equal and opposite to R. The force which, when applied on it brings 

it to a state of equilibrium, is called the e uilibrant force denoted by  E

 E = −R (3.5)
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B

O

z

x

y

1
3

P

800 N

Fig. Ex. 3.3

Example 3.3 A body weighing 800 N is hung from a 

horizontal ring 6 m in diameter by means of three cords, each 

5 m long. On the ring, two of the cords are placed 90  apart and 

the point of attachment of the third cord bisects the remaining 

arc of the ring. Find the tension in each cord.

Solution With reference to Fig. Ex. 3.3 where the body is represented by a particle P,

 B P= = = − − = −3 3 3 2 3 2 5, , ,  / /

From these vectors

P = 3 + 5 , PB = 3 + 5 , P = −2.12 − 2.12 + 5 

and the unit vectors along these cords are given by

  PA = + + = +( ) . .3 5 3 5 0 51 0 862 2/

PB = 0.51 + 0.86 

PC = −0.36 − 0.36 + 0.86 

Let the tension in these cords be F1, F2 and F3 respectively in magnitude. Vectorially,

1 = F1 (0.51 + 0.86 )

2 = F2 (0.51 + 0.86 )

3 = F3 (−0.36 − 0.36 + 0.86 )

For equilibrium of the particle P,

1 + 2 + 3 − 800 = 0 is fine.

whence

 0.51 1 − 0.36 3 = 0

 0.51F2 − 0.36F3 = 0

 F1 + F2 + F3 = 800/0.86 = 930

and solving these equations,

 F1 = 272 N, F2 = 272 N and F3 = 386 N
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 EXPERIMENT E1 EQUILIBRIUM UNDER COPLANAR FORCES

OBJECTIVE TO STUDY THE EQUILIBRIUM OF A PARTICLE UNDER THE ACTION OF FORCES 

IN A PLANE.

Apparatus A horizontal circular force table, also called , as shown in Fig. E 1.1(a), or 

a vertical rectangular force table, also called , as shown in Fig. E1.1(b), 

standard weights and metre rod.

P

(b) Vertical rectangular force table

W2

W1

W4 W3

2

34

1

W1

W2

W3

W4

4

P

(a) Horizontal circular force table

3

2

1

Fig. E1.1 Force table

Background Information The state of equilibrium of a particle refers to a state of uniform velocity of rest. 

In the present case, it is intended to study the forces acting on a particle when it is at rest.

A particle cannot be in equilibrium when a single force is applied on it. It would be in equilibrium under 

the action of two or more forces if the vectorial summation of forces is zero

 Σ = 0 (E1.1)

In particular, if a particle is subjected to only two forces, the forces must be equal and opposite, i.e., equal 

in magnitude, in the same line of action but opposite in sense in order to keep it in equilibrium. If it is sub-

jected to only three forces, the three forces must be coplanar for equilibrium. Conversely, three non-coplanar 

forces cannot keep a particle in equilibrium.

This fact can be appreciated by recognising that the resultant of any 

two must be equal and opposite to the third force for equilibrium, and 

this cannot happen unless the three forces lie in one and the same plane. 

If a particle is in equilibrium under the action of four or more forces, 

the forces may be spatial, i.e., not necessarily confined to act along the 

same line or in the same plane.

When a particle is in equilibrium under the action of three forces 1,

2 and 3, as shown in Fig. E1.2, the condition of equilibrium, i.e.,

 Σ = 0; 1 + 2 + 3 = 0

may alternatively be expressed as Lami’s theorem or Triangle Law of 

Equilibrium.

1

3

2
g

a
b

P

Fig. E1.2 A particle in equilibrium
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ami’s Theorem If a particle is in e uilibrium 

under the action of three forces, each force must bear 

the same proportionality with the sine of the angle 

between the other two forces.

F F F1 2 3

sin sin sina b g
= =

Triangle aw of E uilibrium If a particle is in 

e uilibrium under the action of three forces, the 

forces must be represented in magnitude, direction 

and sense by the sides of a triangle, taken in order, 

in the same sense.

When a particle is in equilibrium under the action of more than three coplanar forces, the condition of 

equilibrium i.e.,

Σ = 0; 1 + 2 + 3 + 4 + ... = 0

may alternatively be stated in terms of the polygon law of e uilibrium.

If a particle is in e uilibrium under the action of n coplanar forces, the forces must be represented in 

 magnitude, direction and sense by the n sides of a polygon, taken in order, in the same sense.

Observations and Calculations The table of observations and calculations depends precisely on the motiva-

tion of the experiment which may be one or more of the following:

(a) To demonstrate the triangle law or polygon law of e uilibrium

In this case, a particle may be subjected to as many forces as desired on either force table and the positions 

of the strings together with the loads suspended at the corresponding endpoints are noted. The forces, in 

 magnitude and direction, are drawn end to end, in order to verify whether a closed triangle or polygon is 

formed. If so, within the allowable limits of error, the corresponding law is verified; if not, the sources of 

error must be recognised and minimised to allow a closer prediction by the law.

1

3

2

1

1

3
3

2

2

Fig. E1.3  Possible triangles to represent force F1, F2 and F3

Fig. E1.4 Polygon law of equilibrium

(a) Polygon of forces for Fig. E.1.1(a) (b) Polygon of forces for Fig. E.1.1(b)

2 3

4

1

2

1

(b) To demonstrate the application of Lami’s theorem

In this case, only three forces must be made to act on the particle on either force table. The three forces must 

automatically be coplanar for maintaining equilibrium.
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Measurements must be made for the directions of the three strings and the loads applied at the ends. 

The included angles between every pair of forces are calculated and, as per Fig. E3.2, the following constants 

are calculated:

 k
F

k
F

k
F

1
1

2
2

3
3= = =

sin
;

sin
;

sina b g

If k1, k2 and k3 are equal within the allowable limits of error, the validity of the Lami’s theorem is upheld; 

if not efforts must be made to recognise the sources of error and to improve upon the result.

(c) To determine the two unknown loads hanging at the ends of two strings

In this case, Lami’s or triangle law/polygon law of equilibrium is taken for granted to be valid and, from the knowl-

edge of the other forces, the unknown forces are determined. The procedure is to record all the directions of the 

strings and all the known loads. Then apply Lami’s theorem or use the triangle law if the number of total forces is 

three or use the polygon law if the number of forces exceed three. It will be seen that, with all the directions known 

and with magnitudes for two less than all the forces known, it is possible to complete the polygon. The unknown 

forces are then read off from the corresponding sides of the closed polygon to the same scale as the other forces.

(d) To demonstrate the validity of the condition Σ = 0 for a given case of e uilibrium

In this case, the measurements of the inclinations of the strings may be made with reference to x- and y-axis

selected arbitrarily. The corresponding forces in the strings are known from the loads applied at the ends. The 

forces are then resolved into x and y components. Summation of the x components and of the y components 

are made separately and observed whether the results are close to zero or not, i.e.,

Σ x = x1 + x2 + x3 + …
Σ y = y1 + y2 + y3 + …

If the summations Σ x and Σ y are each close to zero, the experimental values obey the condition of 

 equilibrium Σ = 0, if not the sources of error must be minimised.

Result  The results, whether or not a theorem or law holds for the situations examined, should be recorded. 

Discrepancies, if any, may be mentioned.

Points for Discussion

State the sources of error in the experiment. Notice if the pulleys have friction, if the threads have knots, 

if the central ring and the strings are coplanar, if the strings are tied to the ring radially, if the weights are 

standard, if the graduations are uniform, etc.

The condition of equilibrium Σ = 0 is valid in general. The graphical conditions, i.e., the triangle law 

and polygon law of equilibrium apply only when the forces are coplanar. Can you suggest how the graphi-

cal method may be extended to be employed for spatial forces?

When the experimental values differ from the theoretical and graphical values, which of them must be in 

error and why?

Should the condition Σ = 0 hold good for the equilibrium of a rigid body if it is subjected to a system 

of forces which are

 (a) concurrent

 (b) non-concurrent

 (c) coplanar and

 (d) spatial

 Discuss why the answer is yes  in all these cases.

What happens to the point P if a weight, say W1, is increased by 10%? What needs to be done to bring it 

back to equilibrium?
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Example 3.4 Four pieces of string knotted at 
A support two equal masses in equilibrium in a vertical 
plane as shown from pulleys at D and E. Determine 
the tensions in the strings AB and AC and the angle q
between AB and AE for minimum tension in AB.

Solution As shown in Fig. Ex. 3.4 the tension in AE must be mg; so also the tension in AD must be mg,

since the pulleys are assumed to be frictionless.

 Let the x-axis be along AE and y-axis perpendicular to it. Then,

AE = mg

AD = −mg cos 30 − mg sin 30 

 = −
3

2
mg − mg/2

AB = FAB (cos q + sin q )

AC = FAC (−cos 45 + sin 45 ) = − +
F FAC AC

2 2

 For equilibrium at A, Σ = 0

 or FAB + FAC + FAD + FAE = 0 

 mg mg F
F

AB
AC− + − =

3

2 2
0cosθ  (i)

  − + + =mg F
F

AB
AC/ sin2
2

0q  (ii)

 These are 2 equations for the three unknowns FAB, FAC and q. The third equation comes up from the 

physical constraint, i.e., the force in AB must be the minimum.

From (i), F
F

mgAB
ACcosq − = −

⎛

⎝⎜
⎞

⎠⎟2

3

2
1

and from (ii), F
F mg

AB
ACsinq + =
2 2

Adding the two,

 F mgAB (cos sin )
( )

q q+ =
−3 1

2

Minimum FAB corresponds to maximum (cos q + sin q)

i.e.,
d

dθ
θ θcos sin+( ) = 0

−sin q + cos q = 0 

y

C

D

m

A

45°

30°
q

B

E

m

x

Fig. Ex. 3.4
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or sin q = cos q, i.e., q = 45°

Now, F mgAB

1

2

1

2

3 1

2
+

⎛
⎝⎜

⎞
⎠⎟

=
−( )

whence, F mg mgAB =
−

≅
( )

.
3 1

2 2
0 26  

Now, 0 26
1

2 2 2
. mg

F mgAC⋅ + =  

 FAC = 0.45 mg

 3.5 EQUILIBRIUM OF A RIGID BODY

A rigid body may be subjected to one of the force systems classified as follows:

 (a) Concurrent force system: Collinear, plane or spatial

 (b) Parallel force system: plane or spatial

 (c) Coplanar force system: concurrent and non-concurrent, parallel and non-parallel

 (d) Spatial force system: concurrent and non-concurrent, parallel and non-parallel.

(a) Concurrent Force System

The analysis of the static equilibrium of a rigid body under the action of concurrent forces is quite similar to 

that of a particle. Concurrent forces may be collinear, coplanar or spatial and the vector method or the alge-

braic method can be employed with advantage.

If there are two forces acting at a point in equilibrium, the forces must be collinear. If there are three forces 

acting at a point in equilibrium, the forces must lie in a plane, i.e., the force system must be coplanar. This 

follows from the fact that any two lines of forces acting at a point must constitute a plane and the third force 

cannot have a component normal to that plane; otherwise that unbalanced component would upset the equi-

librium. If there are four or more forces acting at a point in equilibrium, these may be coplanar or spatial.

The condition of equilibrium for a rigid body under the action of concurrent forces

1, 2, 3, ...

is that their resultant

R = Σ = 1 + 2 + 3 + ...

must vanish, i.e.,

R = Σ = 0

This vector equation for equilibrium stands for three scalar equations for a general concurrent force system:

Rx = Σ x = 0 = 1x + 2x + 3x + ...

Ry = Σ y = 0 = 1y + 2y + 3y + ...

Rz = Σ z = 0 = 1z + 2z + 3z + ...

where x, y and z are the coordinate axes arbitrarily drawn through the point of concurrency as shown in 

Fig. 3.6(a).

If, on the other hand, there is a rigid body subjected to a system of concurrent forces resulting in R, then 

an equilibrant force E given by

E = −R
must be applied passing through the point of concurrency in order to bring the body to equilibrium.
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(b) Parallel Force System

If a rigid body is subjected to a parallel force system, 

the resultant of the forces may be a non-zero force or a 

zero force, unaccompanied or accompanied by a couple-

moment. Equilibrium of the rigid body demands that the 

resultant force and resultant moment must vanish:

 Σ = 0; Σ = 0 (3.6)

It may be understood that the moment about any arbi-

trary point O as shown in Fig. 3.6(b) may be considered 

and should be equated to zero.

For a plane parallel-force system, the moment of the 

forces about any point in the plane of the forces must be 

perpendicular to the plane of the forces. It is interesting to 

note that moment summation about different points pro-

vide different equations, such as

 Σ 1 = 0, Σ 2 = 0, Σ 3 = 0, ...

In fact, there can be only two of these equations mutually 

independent; one in its own right and the other in lieu of

 Σ = 0

It follows that for a system of plane parallel forces acting 

on a body, the conditions of equilibrium may alternatively 

be stated as 

 Σ 1 = 0 and Σ 2 = 0 (3.7)

where 1 and 2 are two suitably chosen points.

(c) Coplanar Force System

If the forces applied on a rigid body are such that their lines 

of action lie in the same plane and the moments due to 

the couples or otherwise are directed perpendicular to the 

plane, the body is said to be subjected to a coplanar force 

system. It is usual to choose the x-y plane in the plane of 

the coplanar force system and the x- and y-axes are chosen 

conveniently in regard to the directions of the forces as 

shown in Fig. 3.6(c). The necessary conditions of equilib-

rium reduce to a set of three equations:

   Σ x = 0 and Σ = 0 (3.8)

 Σ y = 0

The moment summation referred to above is about any 

point in the plane of the forces; it is about the z-axis through the chosen point.

An interesting and extremely useful point is to express the force summations of equilibrium in terms of 

equivalent moment summations. The advantage of doing so is that the moments can be taken about the line 

of action of a force which is unknown and needs to be eliminated at least temporarily. For example, if there 

are three unknown coplanar forces in a system, then moments about the line of action of each force, in turn, 

will yield three moment equations.

y

1
2

n

3

1

y

2

n

x

3

3

1

2

x

O

y

2

3

4
n

1

z

x

1

2

3

3

O

O

(c) Plane forces (in x-y plane)

(b) Parallel forces

(a) Concurrent forces

Fig. 3.6  Different force systems acting on 

a rigid body
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 Σ 1 = 0

 Σ 2 = 0 (3.9)

 Σ 3 = 0

which comprise a set equivalent to Eq. (3.8).

It may as well be decided to consider the equivalent equations of equilibrium as

 Σ 1 = 0

 Σ y = 0 (3.10)

 Σ 2 = 0

In each case, there are, in essence, two force equations and one moment equation; the apparent difference 

is only in the embodiment of these equations. It may so happen that the three equations set up in a particular 

case may not form an independent or a complete set, e.g., when a moment is taken about the point of intersec-

tion of two or more lines of forces. In such cases further equations for moment summations would provide 

an answer. It may also be noted that it is often advisable to set up a redundant equation to provide a check on 

the solution of the problem.

(d) Spatial Force System

The necessary conditions of equilibrium for a rigid body subjected to a general force system are those speci-

fied earlier by general equilibrium considerations

 Σ = 0

 Σ = 0

These two vector equations are equivalent to a set of six scalar equations:

 Σ x = 0 Σ x = 0

                   Σ y = 0   and  Σ y = 0 (3.11)

 Σ z = 0 Σ z = 0 

where the x, y and z axes are chosen arbitrarily but with due regard to convenience of handling the force 

system. For example, it may be preferable to have an axis in a direction in which a number of forces act and 

it may be advantageous to choose the x-y plane as the plane in which a number of forces lie.

 3.6 EQUILIBRIUM OF A SYSTEM OF PARTICLES

Consider a system consisting of three particles P1, P2 and P3 as shown in Fig. 3.7. The system is subjected to 

net external forces 1 at P1, 2 at P2 and 3 at P3 as shown.

The resultant action on the system of particles consists of a single force  equal to the sum of the external 

forces.

= 1 + 2 + 3

The system will be in equilibrium if the resultant 

of the external forces vanishes, i.e.,

= 1 + 2 + 3 = 0

or 1, 2 and 3 constitute a closed triangle.

It is essential that each constituent particle of a 

system must also be in equilibrium. Take, for exam-

ple, particle P1. It is subjected to the external force 1

as well as the internal forces, 13 due to particle P3

and 12 due to particle P2. Obviously, 1, 12 and 13

must keep the particle in equilibrium.

P3

P2

P1

3

32

31

23

2

21

12

13

1 3

1 2

Fig. 3.7 A system of three particles
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P

p

m

Q

R

r

m

2m

Fig. Ex. 3.5

Since action and reaction must be equal and opposite

12 = − 21; 12 + 21 = 0

13 = − 31; 13 + 31 = 0

23 = − 32; 23 + 32 = 0

It follows that the sum of all internal forces in a system must be zero.

Extending the argument to a system of a number of particles, say n, the equilibrium demands that

 1. The vector sum of all external forces is zero

 Σ e = 0

 2. The vector sum of all external plus all internal forces must be zero

 Σ e + Σ i = 0

in order that each particle be in equilibrium separately.

It is interesting to note that a system of three particles must lie in a plane and the forces on the particles 

must constitute a coplanar force system for equilibrium. A system of four or more particles may not be 

 coplanar and may constitute spatial force systems for equilibrium.

General Comments

A number of rigid bodies may be interconnected to comprise a system. In such a case, if the total system of rigid 

bodies is in equilibrium, every subsystem and every component of the system must also be in equilibrium.

It follows, therefore, that the necessary conditions for equilibrium may be written for the total system 

as well as for any desired subsystem or a component of the system. For example, if two rigid bodies are 

 connected by an inextensible string which is kept taut, then the net external forces and moments should 

 satisfy the conditions of equilibrium as well as the net external forces and moment, as observed from the 

free-body diagram of each body, should also satisfy the conditions of equilibrium separately.

Example 3.5 Three homogeneous cylinders of the same material 
having masses m, 2 m and m are placed in a container with a curved base 
as shown in Fig. Ex. 3.5. Determine the reaction on cylinder P from the 

left wall, upper cylinder and curved base. Assume that the cylinders are 

of equal length and that they are placed such that their centres of gravity 

lie in the same vertical plane. The radius of the curved base is three 

times the radius of cylinder P.

Solution By geometry of the system,

 op = 3r + r = 4r

 pc = 3r − r = 2r

 oc r r r= − =( ) ( ) .4 2 3 4642 2

 p = r + 2 r = 2.414r

and c r r= − =2 414 2 1 352 2. .

P
p
mg

RA

RB

y

mg

c

x

4r

O

RQ

2r

Fig. Ex. 3.5 (Solution)
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C3

2

3

C2

q q

1

C1

Fig. Ex. 3.6

because the radius of the top cylinder is 2 r from the ratio of their masses, i.e., given by the expression

 

2 2⋅π ρ
π ρ

r l

l

The free-body diagram of the cylinder P shows the following forces acting on it:

 Reaction RA by the left vertical wall; RA must be horizontal.

 Reaction RB from the supporting curved surface; RB must be directed along op.

 Reaction RQ by the top cylinder Q; RQ is directed along p.

 Weight  of the cylinder itself; acting downwards.

From the equilibrium consideration of the cylinder P,

RA + RB + RQ + mg = 0

or R R R R RA B B Q Q

r

r

r

r

r

r

r

r
mgi i j i j j− + − − − =

2

4

3 464

4

2

2 414

1 35

2 414
0

.

.

.

.
 

whence,

  RA − 0.5 RB − 0.829 RQ = 0 (i)

and 0.866 RB − 0.56 RQ − mg = 0 (ii)

 It is also known that the vertical component of RQ must be equal to half the weight of the top cylinder;

 0.56 RQ = mg

or RQ = 1.79 mg (iii)

Substituting RQ from (iii) in (ii),

 R
mg

mgB = =
2

0 866
2 31

.
.

and substituting these values in (i),

 RA = (0.5 × 2.31 + 0.829 × 1.79) mg = 2.64 mg

The reactions RA, RB and RQ are, therefore, given by

RA = 2.64 mg

RB = (−0.5 + 0.866 ) × 2.31 mg = −1.155 mg + 2 mg

RQ = (−0.829 − 0.56 ) × 1.79 mg = −1.484 mg − mg

Example 3.6 Three identical  cylinders, 

each weighing W, are stacked, as shown in 

Fig. Ex. 3.6, on smooth inclined surfaces, each 

inclined at an angle q with the horizontal. 

 Determine the smallest angle q to prevent the 

stack from collapsing.
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Painter

Scaffold

0.75 kN
1 kN

2

Free end
B

T1

A

T2

x

x

10 m

Fig. Ex. 3.7

Solution The free-body diagrams are drawn (Fig. Ex. 3.6 (Solution)) for cylinders 1 and 3 in order to 
understand the forces acting on each of them. The limiting case of collapse of the stack implies that the 
reaction between cylinder 2 and cylinder 1 becomes zero

 R21 = 0

 From the equilibrium of the cylinder 3 with regard to 
its free-body diagram,

Σ y = 0; R13 cos 30° + R23 cos 30° − W = 0

 Σ x = 0; R23 sin 30° − R13 sin 30° = 0

whence R R
W

13 23
2 30

=
°cos

 

From the equilibrium of cylinder 1 with regard to its 
free-body diagram,

 Σ y = 0; Rs cos q − W − R31 cos 30° = 0

 Σ x = 0; R31 sin 30° − Rs sin q = 0

Substituting

 R R
W

31 13
2 30

= =
°cos

Simplifying and solving for q,

 tan
tan .

.θ = = =
30

3

0 577

3
0 1924

�

and q = 10.9° 

 It shows that if the inclined surfaces are frictionless, the angles between the surfaces and the horizontal 
line should not be less than 10.9°. If it is less, the reaction Rs will not be able to provide a horizontal resi-
sting component to balance the horizontal component of R31 and the cylinders will fall apart. On the other 
hand, if the angle exceeds 10.9°, Rs will  provide a horizontal resisting component in excess of that required 
by R31 and then the reaction from cylinder 2 will also act to guarantee equilibrium.

Example 3.7 A painter’s scaffold 10 m long 
and weighing 0.75 kN is supported in a horizon-
tal position by vertical ropes attached at equal dis-
tances from the ends of the scaffold as shown in 
Fig. Ex. 3.7. Find the greatest distance from the 
ends that the ropes may be attached to permit a 1 kN 
painter to stand safely at one end of the scaffold.

Solution If the painter stands at A then the free-body diagram of the scaffold is as shown in Fig. Ex. 3.7. 
The tensions in the strings are T1 and T2. For equilibrium of the scaffold,

y

j

i
x

C3

R23 R13

R31

W

C1

p 1

W/2 W/2

W/2

W

3

30°

30°

R21 = 0

Rs3W/2

0

q

Fig. Ex. 3.6 (Solution)
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W

5 m6
 m

a

q

Fig. Ex. 3.8

 Σ = 0; T1 + T2 = 1 + 0.75 = 1.75 kN (i)

 Σ A = 0; T1x + T2 (10 − x) − 0.75 × 5 = 0 (ii)

For x to be as large as possible, the tension T2 in the string 2 reduces to zero. Then,

 T1 = 1.75 kN

and x =
×

=
0 75 5

1 75
2 14

.

.
. m

 If x is more than 2.14 m, i.e., if the ropes are attached closer to each other, then the solution of (i) and (ii) 

would show negative tension T2; a state of compression which is not possible in a rope. On the other hand, 

if x is less than 2.14 m, i.e., if the ropes are attached farther, T2 remains positive, permitting safe operation 

of the painter.

 As a digression, let us demonstrate what we meant by the equivalence of the set of conditions, Eq. (3.7) with 

the set of conditions, Eq. (3.6) for equilibrium. In this example, the conditions chosen to provide Eqs. (i) and 

(ii) came from Eq. (3.6). Instead, Eq. (3.7) would provide, say,

 Σ 1 = 0;       1x − 0.75(5 − x) + T2 (10 − 2x) = 0

 Σ 2 = 0; 1(10 − x) − T1 (10 − 2x) + 0.75(5 − x) = 0

or

 1.75x + 10T2 − 2T2x = 3.75 (iii)

 −1.75x − 10T1 + 2T1x = −13.75 (iv)

which are equivalent to Eqs. (i) and (ii). For x to be as large as possible T2 = 0 which when substituted in 

Eq. (iii), provides

 x = =
3 75

1 75
2 14

.

.
. m

and from (iv)

 T1 = 1.75 kN, as before

Example 3.8 The boom of a crane is shown in Fig. Ex. 3.8. If the weight of 

the boom is negligible compared with the load W  60 kN, find the compression 

in the boom and also the limiting value of the tension  when the boom 

approaches the vertical position.

Solution By drawing the free-body diagram of the boom, we observe that it is under the action of three 

forces:

 (i) 60 kN acting downwards at B

 (ii)  Tension  along the string inclined at an angle a with the horizontal. It can be resolved into T sin a

and T cos a components acting vertically and horizontally respectively at B.

(iii)  Reaction  at A acting along AB. It can be resolved into A sin q and A cos q components as shown in 

Fig. Ex. 3.8 (Solution).
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q1

q2

q3

A

B

C

D

2.5 kN

2.5 kN

2.5 kN

3 kN

Fig. Ex. 3.9

For equilibrium of the boom,

 Σ = 0; Σ x = 0, Σ y = 0

 A T
A

cos cos ; cos
cos

q a a
q

− = =0
T

 T A
T

A
sin sin ; sin

sin
a q a

q
+ − = =

−
60 0

60

whence tan
cos

sin
α

θ
θ

=
−60 A

A
 (i)

By the geometrical configuration,

 tan
sin

cos
α

θ
θ

= =
−

=
−CD

BD

AC AD

BD

6 5

5
 (ii)

From Eqs (i) and (ii), by comparison, A must be 50 kN

and T 2 (cos2
a + sin2

a) = A2 cos2
q + (60 − A sin q)2

or T 2 = A2 + 3600 − 120 A sin q

For vertical position of the boom,

 q = 90°, sin q = 1

 T 2 = A2 + 3600 − 120A  = 2500 + 3600 − 6000 = 100

and T = 10 kN

 It is interesting to observe the implication of this answer. The reaction at A remains 50 kN for all values 

of q, i.e., for all inclinations of the boom. The load of 60 kN, therefore, requires only 10 kN to be shared 

by the string.

Example 3.9 A three-bar pendulum ABCD has three 

bars each 2 m in length and weighing 2.5 kN as shown in 

Fig. Ex. 3.9. It is held in equilibrium by applying a horizontal 

force of 3 kN at the free end. Determine the angles q1, q2

and q3 made with the vertical.

Solution

 AB = BC = CD = 2 m

Weight of each bar assumed to act at their respective midpoints = 2.5 kN

 Consider the equilibrium of bar CD:

 Σ c = 0; 3 CD cos q3 − 2.5 CD/2 sin q3 = 0

C

D

A sin q

T cos a

T sin a

a

T

B

y

x

A cos q

60 kN

q
A

Fig. Ex. 3.8 (Solution)
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C

D
BA

3 m

4 m2 m

Fig. Ex. 3.10

whence    tan
.

.θ3

6

2 5
2 4= =

and         q3 = 67.4°
 Also, by the equilibrium of bar CD,

 Σ = 0; R1 + 3 − 2.5 = 0

whence R1x = −3 kN and R1y = 2.5 kN

 Consider now the equilibrium of bar BC:

  Σ B =  0;  −2.5 × 2/2 sin q2 + 2 (sin q2

− cos q2 ) × (3 − 2.5 ) = 0

or −2.5 sin q2 − 5 sin q2 + 6 cos q2 = 0

tan
.

.θ2

6

7 5
0 8= =

 q2 = 38.66°
Σ = 0; R2 + 3 − 2.5 − 2.5 = 0

and R2 = 5 − 3 

and the free-body of bar AB is drawn. For the equilibrium of AB,

Σ A = 0; −2.5 × 2/2 sin q1 + 2 (sin q1 − cos q1 ) × (3 − 5 ) = 0

or −2.5 sin q1 − 10 sin q1 + 6 cos q1 = 0 

tan
.

.θ1

6

12 5
0 48= =

 q1 = 25.64°
It may be checked that

R3 = −3 + 7.5 

by applying the condition of Σ = 0 for this bar. This value of R3 was expected from the equilibrium 

consideration of the entire system:

R3 + 3 − 2.5 − 2.5 − 2.5 = 0

R3 = −3 + 7.5 

Example 3.10 A uniform bar AB hinged at A, is kept

horizontal by supporting and settling a 40 kN weight with the 

help of a string tied at B and passing over a smooth peg C as 

shown in Fig. Ex. 3.10. The bar weighs 20 kN. Determine the 

reactions at the supports A and C as well as the tension in the 

string.

y

x
R1

R2

R3

C
C

B

B

A

D
3 kN

2.5 kN

2.5 kN

2.5 kN

3 − 2.5 

3 − 5 

Fig. Ex. 3.9 (Solution)
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Solution Consider the equilibrium of the bar AB

with reference to its free-body diagram as shown 

in Fig. Ex. 3.10 (Solution). It may be noted that 

the weight of 40 kN is partly resting on the bar 

and is partly supported by the string to the extent 

of tension T.

Σ A = 0

From this relation

− (40 − T ) × 2  –20 × 3 + 6 × T (−cos q 

+ sin q ) = 0

or −140 + 2T + 6T sin q = 0 

Taking sin q =
3

5
= 0.6,

 T = 25 kN

 Σ x = 0; Ax − T cos q = 0

 Ax = 25 × 4
5

= 20 kN

 Σ y = 0; Ay + T sin q − (40 − T ) − 20 = 0

 Ay = 20 kN

Hence the tension in the string is 25 kN and the reaction at the hinge A is (20 + 20 ) kN which is 28.28 kN 

inclined at 45° upwards with the bar. Consider now the equilibrium of the entire system with reference to 

the free-body diagram:

 Σ x = 0; Ax + Cx = 0

 Σ y = 0; Ay − 40 − 20 − Cy = 0

whence Cx = −Ax = −20 kN 

Cy = Ay − 60 = 20 − 60 = −40 kN

which shows that the reaction at C must be (−20 − 40 ) kN

Example 3.11 A rectangular table 1 m × 2 m 

is mounted on three equal supports. The table 

weighs 2 kN which acts through its centre of 

gravity c. If two vertical loads 1 kN and 4 kN 

are applied on the surface of the table as shown 

in Fig. Ex. 3.11, calculate the reaction at the 

supports.

Solution Choosing the plane of the table as the x-y plane, the origin O at 1 and coinciding the y-axis with 

the line joining the reactions 1 and 2 as shown, the loads and reactions are specified as follows:

Cy

Cx

Ax

Ay

A

C

D
B

T

B

y

x
q

Ax

Ay

A

20

20 kN

40 − T

40 kN

Fig. Ex. 3.10 (Solution)

z

O

c

D C

B
A

y

x

4 kN0.25 m

1

1kN

2 kN3

R1

R3

R2

2

Fig. Ex. 3.11
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Description Load Position vector

1 kN downward −1 0.75

2 kN downward −2 0.25 + 1 

4 kN downward −4 −0.25 + 1 

Reaction R1 R1 0 + 0 

Reaction R2 R2 2

Reaction R3 R3 0.75 + 1 

 For equilibrium, the necessary conditions are:

 Σ = 0 and Σ 0 = 0

From the former,

 (−1 − 2 − 4 + R1 + R2 + R3) = 0

or R1 + R2 + R3 = 7 (i)

 From the latter,

0.75 × (−1 ) + (0.25 + 1 ) × (−2 ) + (−0.25 + 1 )

× (−4 ) + 0 + 2 × R2 + (0.75 + 1 ) × R3 = 0

or 0.75 + 0.5 − 2 − 1.00 − 4 + 2 R2 − 0.75 R3 + R3 = 0 

whence (−6 + 2R2 + R3) = 0

or 2R2 + R3 = 6 (ii)

and (0.25 + 0.75 R3) = 0

 0.75 R3 = 0.25 (iii)

or

 From (iii), R3 = 0.33 kN

 From (ii), R2 = 2.835 kN

and

 From (i), R1 = 3.835 kN

Example 3.12 A horizontal rigid bar AB weighing 1 kN/m carries a load of 2 kN at its free end A.

It is supported by the ball-and-socket joint at B and the cables PQ and RS are taut. Determine the tensions 

in the cables and the reaction at B.
y

R

P

S

z

A
Q

B

x

1 m

1 m

1 m

1 m

0.5 m

1 m

2kN

Fig. Ex. 3.12
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Solution With reference to the x, y and z-axes, as shown in Fig. Ex. 3.12, the forces on the bar AB are shown 

and tabulated below. The unit vector QP along QP may be determined by locating P and Q;

P(−1, 1, 0) and Q(0, 0, 2)

 QP =
− − + − + −

− + + −

( ) ( ) ( )

( ) ( )

1 0 1 0 0 2

1 1 22 2 2
 = −0.41 + 0.41 − 0.82 

Similarly, the unit vector SR along SR is expressed as

SR =
− + − + −

+ +

( ) ( ) ( )

( )

1 0 1 0 0 1

1 1 12 2 2
= 0.58 + 0.58 − 0.58 

Description Force Position vector

1. Weight at the free end −2 2.5

2. Q, the force in cable QP FQ(−0.41 + 0.41 − 0.82 ) 2

3. s, the force in cable SR Fs(0.58 + 0.58 − 0.58 ) 1

4. Weight of the bar –1 1.25

5. Reaction at B Bx + By + Bz 0

For equilibrium, S = 0 and S = 0.

From the summation of the forces on AB,

 −0.41 FQ + 0.58 Fs + Bx = 0 (i)

 −2 + 0.41 FQ + 0.58 Fs − 1 + By = 0 (ii)

 −0.82 FQ − 0.58 Fs + Bz = 0 (iii)

The moments of the forces about the origin at B are calculated as follows:

 1. 2.5 × (−2 ) = 5 

 2. 2 × FQ (−0.41 + 0.41 − 0.82 ) = (−0.82 − 0.82 ) FQ

 3. 1 × Fs (0.58 + 0.58 − 0.58 ) = (0.58 − 0.58 ) Fs

 4. 1.25 × (−1 ) = 1.25 

 5. 0

Summation of the moments about the origin yields

Σ = 5 + (−0.82 − 0.82 ) FQ + (0.58 − 0.58 ) Fs + 1.25 = 0

whence,

 6.25 − 0.82 FQ − 0.58 Fs = 0 (iv)

 −0.82 FQ + 0.58 Fs = 0 (v)

Now, we have a set of five Eqs (i) to (v) for the five unknowns

FQ, Fs, Bx, By and Bz

which may be solved to provide

FQ = 3.80 kN along QP

Fs = 5.37 kN along SR

Bx = 1.56 kN

By = −1.67 kN

Bz = 6.23 kN
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D = 3V 2

20 kg

60 kg

Fig. Ex. 3.13

a b

Fig. Ex. 3.14

Example 3.13

(a)  A parachuter of mass 60 kg descends to the ground in a parachute of mass 

20 kg. If the drag on the parachute varies as 3V 2 N where V is the speed 

of the decent, will the parachute be in equilibrium before it reaches the 

ground?

(b)  Comment on the falling of the raindrops from the cloud to the ground; are 

they in equilibrium before reaching the ground?

Solution

(a)  The parachute commences with almost zero vertical speed but it soon acquires a speed V.

 For equilibrium, 20 × 9.81 + 60 × 9.81 = 3V 2

whence V = 16 m/s.

 It may be noted that a body moving at a constant velocity, such as this, is in equilibrium!

 Just to get an estimate how fast it happens, imagine the descent without drag

V u g t

t t

= +
= + ≈16 0 9 81 1 6. ; . s

 In reality, it may take a few seconds, to attain a speed of 16 m/s but it will happen well before it reaches 

the ground.

(b)  Raindrops are tiny masses, subjected to wind drag while falling from the cloud. They also attain 

equilibrium at a constant speed, well before reaching the ground.

Example 3.14 Three identical wooden blocks, 

each with mass m and length a are stacked on

top of each other as shown in Fig. Ex. 3.14 with 

overhangs on one side. Determine the maximum 

possible overhang the top block can have from the 

bottom of the stack in order to stay in equilibrium.

Solution While the base block is stable, the other two blocks 1 and 2 are likely to topple over at points P1

and P2 respectively.

 Let the overhang of block 1 be b1 and the further overhang of block 2 be b2, as shown in Fig. 3.14 

(Solution). First, we must ensure ‘no toppling’ of the top block 2 over the point P2. That requires b2 to be a 

maximum of a/2. In order to determine the maximum b1, let us redraw the figure and ensure ‘no toppling’ 

over point P1.
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3 m 3 m3 m

A B

P

C D

4 m

Fig. Ex. 3.15

P1

P2(a − b1)

b2

a/2

y

a/4a/4

b1a

Fig. Ex. 3.14(b) (Solution)

P1

P2

2

1

b2b1

Fig. Ex. 3.14(a) (Solution)

 Taking moments of the components of the weights of the blocks about the point P1 and equating to zero,

a
mg a b mg

a a
mg b mg

4 4 2
01 1⋅ + −( ) − +⎛

⎝⎜
⎞
⎠⎟

− =

or
a

a b
a a

b
4 4 2

01 1+ − − − − =  

or
a

b b
a

2
2 0

4
1 1− = =; .  

 The maximum possible overhang of the top block from the bottom of the stock is, therefore,

b b b
a a a

= + = + =1 2
2 4

3

4
.

Reflection The problem does not state that the overhangs b1 and b2 are equal; that would not be the case 

for the maximum possible overhang of (b1 + b2). Nor can one start by finding out b1 before finding out 

b2. It means that one has to start from the top block and proceed downwards. For example, if these were 

four blocks, the maximum overhang possible would have been a/2 + a/4 + a/8, i.e., 7/8a. What does it 

mean? Larger the number of blocks, greater the maximum possible overhang, tending to be equal to a

itself !

Example 3.15 A bar ABCD is hinged at A

and supported by a cable, at BC, passing over 

a frictionless pulley at P above it. Determine the 

tension in the cable and the reaction at A for a load 

of 500 N hanging at D.

Solution The cable passes over a frictionless pulley; the tension the part BP must be the same in the part 

CP. A free-body diagram of the bar is drawn, as shown.
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500 N
q

1

1 m 3 m

2

Fig. Ex. 3.16

Rx
BA C D

Ry

500

y

x
3 m 3 m 1 m

Fig. Ex. 3.15(a) (Solution)

270 N

−310 N

Fig. Ex. 3.15(b) (Solution)

 For equilibrium of the bar,

 Σ x xR T= − =
3

5
0  (i)

 Σ y yR T T= + − + =500
4

5
0  (ii)

 Σ A T T= + × − × =3
4

5
6 500 7 0  (iii)

From (iii), 7.8 T = 3500

 T = 450 N

By substitution in (i) and (ii)

 R x = 270 N

 R y = −310 N

which shows that the reaction at A consists of a vertically down component.

Example 3.16 A rigid weightless diving board, supported 

on two springs 1 and 2, each of stiffness 20 kN/m is in the 

horizontal position. Determine the angle of tilt q the board will 

make when a person of weight 500 N stands at the edge of the 

board, before diving.

Solution Let the compressions of the springs 1 and 2 be x1 and 

x2 when the diving board is tilted at an angle q. Assuming that the 

board tilts by turning over a point a metre to the left of spring 1,

x1 = aq; x2 = (a + 1) q

whence x2 = x1 + q (i)

Considering the f bd of the diving board, as shown in Fig. Ex. 3.16, 

for equilibrium,

 Σ = + − =0 500 01 2; k x k x  (ii)

 Σ 1 2 20 1 500 4 0
2000

20 1000
0 1= × − × = =

×
=; ; .k x x m

500 N

kx1

1

y

2

kx2

x

Fig. Ex. 3.16 (Solution) fbd of the 

diving board
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Pulleys

Strings

Cart

Ramp

15°

Fig. Ex. 3.17

R
C

W

h
P

bO

2r - h

r - h

Fig. Ex. 3.18(a)

By substituting in (i),         x1 = 0.1 − q

and by substituting in (ii),    k (0.1 − q ) + k × 0.1 − 500 = 0

whence, θ

π

=
− × × ×

×
=
= × = °

500 2 20 1000 0 1

20 1000

0 175

0 175 180 10 0

.

.

. .

radian

/

 

Example 3.17 An exercise machine is designed 

to be a lightweight cart on an inclined ramp on which a 

lady may lie and hold herself with two parallel strings, 

which are attached to her cart through frictionless 

pulleys. If the lady weighing 700 N is able to pull and 

keep the strings horizontal while the ramp is inclined 

at 15 , determine the force she is exerting by each 

hand. Find also the reaction of the ramp on the cart.

Solution Let the pull exerted by each hand be P,

then the total pull 2P exerted horizontally is also 

the tension in the strings pulling her up the incline. 

Referring to the f bd of the lady,

ΣΣ x = − − ° + ° =0 2 2 15 700 15 0; cos sinP P

whence, 3.93 P = 181.2; P = 46 N 

     ΣΣ y = − ° + ° =0 700 15 2 15 0; cos sinR P

whence, R = 676.1 − 23.8 = 652.3 N

Example 3.18 A person on a wheelchair is trying to roll up a 

small step of 10 cm. If the diameter of the wheel is 60 cm and the 

combined weight of the person and the wheelchair is 1500 N, how 

much force will he need to apply at the periphery of the wheel? What 

should be a reasonable incline of a ramp if the person can exert up to 

100 N force?

Solution For the given position, the free body diagram shows the horizontal force F applied by the person, 

weight W acting at the centre of the wheel and reaction R at the corner point P. At the instant of the wheel 

being lifted up, the reaction at O must be zero.

2P

2P

R

700 N

15°

y

x
90°

Fig. Ex. 3.17 (Solution)
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Fig. Ex. 3.19

From the geometry,

b2= r 2−(r− h)2 = 2rh−h2 = 2 × 0.3 × 0.1−0.12

and b = 0.224 m

Taking moments about the point P and equating to zero 

for equilibrium,

−F (2r − h) + Wb = 0

F = ×⎛
⎝⎜

⎞
⎠⎟

− =
1500

2
0 224 0 6 0 1 335. ( . . ) .N

It is assumed that each wheel takes half the total load 

and the person applies an equal force F by each hand.

The force of 335 N is indeed too much for a 

wheelchair-ridden person.

 In order to roll over a ramp of inclination q, the person must apply a force F, as shown, along the incline 

such that the sum of moments about a point O is zero. In doing so, the force (due to reaction and friction) 

at O does enter the calculations and need not be known.

W
d

Fd
2

0sinθ − =

whence  F
W

=
2

sinq

 If the total weight of the wheelchair and person, 1500 kg is assumed to be shared equally by two wheels, 

W  750 kg.

F = =
750

2
375sin sinq q

For an inclination of 30 , F = 187.5 N

For, 20 , F = 128 N

For, 15 , F = 97 N

For, 10 , F = 65 N

A value of 10  to 15  requiring a force less than 100 N appears to be a reasonable incline.

Example 3.19 A jib crane as shown in 

Fig. Ex. 3.19 consists of a boom anchored by two 

coplanar strings above it. At an instant when 

the boom and the strings make angles of 30°and

15° with the horizontal respectively and the load 

carried at the look is 100 kN, determine the forces 

in the boom and each of the two strings making 

an angle of 30° between them.

Solution Let us consider the equilibrium at the tip O. Assuming the forces (tensile) as shown; OC

being the force in the boom on OB the resultant of forces F in each of the two strings. Notice that each of 

the string forces F is inclined OB on either side of it at 30/2, i.e., 15°. Such that 

Fig. Ex. 3.18(b)

q

W

P

O

c d
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 OB = 2 F cos 15°
Let us solve this problem by two different methods, i.e. by using vectors 

and graphically:

By Vector Method

  Σ = 0

 

ΣΣ x OB OC

F OC

= = ° + °

= ° ° + °
= × ×

0 15 30

2 15 15 30

2 0 966 0

cos cos

cos cos cos

. .9966 0 866

1 87 0 866

F OC

F OC

+
= +

.

. .

 

ΣΣ y OB OC

F OC

= = − − ° − °

= − − ° ° − °
=

0 100 15 30

100 2 15 15 30

sin sin

cos sin sin

−− − × × −
= − − −

100 2 0 966 0 259 0 5

100 0 5 0 5

. . .

. .

F OC

F OC

which reduces to

 1.87 F + 0.866 OC = 0

 0.5 F + 0.5 OC = −100

whence, F = 172 kN and OC = −371 kN

which means that,

 (a) each of the two strings is under tension of 172 kN and

 (b) the boom OC is under compression of 371 kN.

By Graphical Method

The graphical method can be used to draw the polygon of forces 

only if the forces are coplanar. In this case, the three forces ,

and  acting at point o are coplanar; hence a triangle of forces can be drawn by drawing lines parallel to 

the three forces, respectively.

 The triangle drawn must be closed because the three forces ,  and  keep the point o in equilibrium. 

The force  was drawn to a chosen scale of 1cm = 50 kN; 2 cm in length. Measuring the lengths of  and 

 and using the same scale results in the following:

 

= →
= →

6 6 330

7 4 370

.

.

cm kN

cm kN

Also, it is seen that the direction of  is the same 

as was assumed; so the strings are in tension. 

The direction of  is reversed which means that 

the boom is under compression of 370 kN force.

 Now, the force  of 330 kN is, in fact, the 

resultant of forces F, F in the two strings anchoring 

the boom. We can use the graphical method to draw 

the triangle or parallelogram of forces, as follows, 

to evaluate F.

Fig. Ex. 3.19(b) (Solution)

C
15
15

Fig. Ex. 3.19(c) (Solution)

Fig. Ex. 3.19(a) (Solution)

15°

30°

100 kN

B

y

A

O
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 Employing the same scale, 1 cm = 50 kN, in drawing the parallelogram of forces, we measure

 F = →3 4 170. cm kN

which shows that each string is in tension with 170 kN force!

Comparing the two methods

It is seen that the vector method is more accurate and applicable to all situations whereas the graphical 

method applies only to plane forces and it is inherently not so accurate; it also requires drawing work.

 EXPERIMENT E2 EQUILIBRIUM UNDER SPATIAL FORCES

OBJECTIVE TO STUDY THE EQUILIBRIUM OF A PARTICLE UNDER THE ACTION OF FORCES 

IN SPACE.

Apparatus A skeleton space frame consisting of bars 

with provisions to pass the strings over 

frictionless pulleys at the desired points. 

Standard weights and metre rod.

Background Information The equilibrium of a par-

ticle under the action of forces in space is essentially 

 governed by the condition

Σ = 0

i.e., the vector sum of all the forces must vanish.

In the space frame shown in figure a load W is sup-

ported by three strings AP, BP and CP in order to keep 

the knot P in equilibrium at rest. Taking the origin at 

a corner point O, the coordinates of A, B, C and P are 

measured and are used to find the unit vectors 

and  along AP, BP and CP respectively.

For example,

A = xA + zA

P = xP + yP + zP

AP = (xA – xP) + yP + (zA − zP)

whence,  AP x x y z zA P P A P= − + + −( ) ( )2 2 2

and =
−

+ +
−( ) ( )x x

AP

y

AP

z z

AP

A P P A P

The forces 1, 2 and 3 in AP, BP and CP respectively are such that

 S = 0; 1 + 2 + 3 − W = 0

or F1 + F2 + F3 − W = 0 

From a knowledge of the unit vectors  and  in terms of ,  and , this vector equation is rewritten 

as three scalar equations and the three unknowns 1, 2 and 3 are obtained.

In the apparatus the strings are kept taut under the application of hanging loads at A, B and C. Neglecting 

friction at the pulleys, the tensions in the strings must equal the corresponding applied loads.

B

W1

z

1

y

x
O

W2

2
3

W3

P

W

A

C

Skeleton space Frame



Observations and Calculations It is advisable to record the coordinates and to formulate the equations in a 

tabular form. For example, the table of force 1 is as follows:

POINT P POINT A FOR AP

xP yP zP xA yA zA  (xA – xP) (yA – yP) (zA – zP)

 AP =

Table of Results

Member Forces in members Difference

Theoretical ( N) Experimental ( N) Abs.%

AP

BP

CP

Points for Discussion

1. State the necessary and sufficient conditions of equilibrium for a rigid body. In particular, is the condition

Σ =

just necessary or necessary and sufficient as far as the equilibrium of a particle is concerned?

2. If a load W hangs from P maintained in equilibrium under the action of 1, 2 and 3 as done in the 

experiment and the load W is increased by 10%, what will happen to the position of the strings and why? 

Would the strings stay unaltered if the tension in each string were increased by 10%?

3. Enumerate the sources of error in the experiment and suggest how each can be minimised.

4. Would you suggest some other design of the skeleton frame to be able to perform experiments on equi-

librium under the action of spatial and coplanar forces?

Concept Review Questions

 (a)  If a system is in equilibrium, is it necessary 

that it should be static? Relate the concept 

of equilibrium with the laws of motion.

 (b)  If a rigid body is rotating at a constant 

angular velocity about some axis, is the 

body said to be in equilibrium or not?

 Draw the free-body diagrams for the following:

 (a) a nut-cracker in action

 (b) a ladder leaning against a wall

 (c) a bullock-cart in motion

 (d) an aeroplane in flight

 (e) a body floating in a liquid.

  (a)  State the Lami’s theorem for the equilibrium 

of a body under the action of three coplanar 

forces.

 (b)  Prove that a body must be in equilibrium if 

Lami’s theorem is obeyed.

  Examine the truth in the following statements 

and rewrite them after necessary corrections.

 (a)  A rigid body must be in equilibrium if the 

resultant of the force system acting on it 

vanishes.

 (b)  A rigid body subjected to a couple may be 

brought to equilibrium by a force placed 

suitably in the plane of the couple.

 (c)  A pin joint and a hinge are identical supports 

so far as the reaction is concerned.

 (d)  If three concurrent forces keep a particle or 

a rigid-body in equilibrium, then the forces 

must be coplanar.
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 (e)  The equilibrant action required to bring a 

rigid-body into equilibrium should be equal 

and opposite to any equivalent force system 

acting on the body.

  Illustrate why the necessary conditions of 

equilibrium

Σ = 0    and Σ = 0

can be replaced by the equivalent moment 

equations

Σ 1 = 0    and Σ 2 = 0

for a plane force system acting on a body.

Tutorial Problems

  A small boat is held static in a river by means 

of three inextensible taut ropes OA, OB and OC.

The water in the river exerts a force on the boat in 

the direction of the flow. If the tensions in OA and 

OB are 1 kN and 0.6 kN respectively, as shown in 

Fig. Prob. 3.1, determine the force exerted by the 

flow on the boat and the tension in rope OC.

 (a)  Will the boat remain in equilibrium if 

rope OC breaks?

 (b)  What would be the tension in OA after 

OC breaks?

 ( s  0.116, 0.808 kN; yes, 0.067, 0.133 kN)

Fig. Prob. 3.1

  A force  applied to a stretched elastic string at 

O stretches it to a position AOB as shown in Fig. 

Prob. 3.2. If the tension in each part of the string 

is 50 N, determine the magnitude and direction 

of the force applied. ( s  61 N, 7.5 )

A

B

45°

30°

O
q

Fig. Prob. 3.2

  In an old drawing, four forces are shown acting 

at a point but the line of action of the fifth force 

has been disfigured. However, it is known that 

the moments exerted by the forces about some 

origin in space are: 2 + 2  – 3 , 3  – 4 + 7 ,

2 + 3  – 4  – 8 +  – 2  and 1  – 2 + 2 

respectively. Determine whether the fifth force 

passes through the same point or not.

 ( s  Yes, since Σ M = 0)

  A 4 m × 5 m slab carries four forces normal to 

it as shown in Fig. Prob. 3.4.

 (a)  Determine the magnitude and point 

of application on it of a single force 

equivalent to the given system of 

forces.

 (b)  If the slab is to be in equilibrium, 

determine the magnitude and location of 

the equivalent.
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 (c)  If the slab must be brought into equilibrium 

by holding it at the origin O, determine 

the reaction necessary from the device to 

hold it.

 (d)  Is it possible to hold the slab in equilibrium 

by applying suitable forces at the three 

free corners A, B and C?

 ( s  – 8 kN; at 1.9 m, 1.5 m point)

z

x

A

C

B

y

3 kN

6 kN

O

(1, 1) (1, 4)

(2, 3)

5 kN

4 kN
4 m

5 m

Fig. Prob. 3.4

  A simple stone-crushing mechanism consists 

of a piston on which a force of 15 kN acts and 

three rigid weightless links OA, OB and OC

hinged at O, A, B and C as shown in Fig. Prob. 

3.5. At the given orientation, what is the force 

exerted on the stone S trapped between the jaw 

and the fixed wall. ( s  28 kN)

15 kN

Jaw

15°
O

15°

A

C B
JS

Fig. Prob. 3.5

  A cylinder having a diameter of 0.5 m and 

mass 50 kg is supported on a uniform rigid link 

AO 2 m long and of mass 10 kg by means of a 

string OB held taut as shown in Fig. Prob. 3.6. 

Assuming the surfaces of contact of the  cylinder 

as frictionless, calculate the tension in the string 

and the reaction at the hinge A.

 ( s T = 335 N, RA = 424 N at 

               89.4° to horizontal)

String

LinkCylinder

O

30°

30°

B

A

Fig. Prob. 3.6

 (a)  A weight W tied to the lower end of a sus-

pended cord of length l is pulled by a horizon-

tal force  so as to displace it by a distance d

away from its vertical position. Express the 

force  and tension T in the cord as a function 

of the horizontal displacement of the weight.

 (b)  Determine the horizontal distance to which 

a 10 m long inextensible nylon thread hold-

ing a mass of 1000 N can be drawn before 

it breaks. The thread can withstand a maxi-

mum tension of 10 kN.

   ( s = W cot (cos–1 d/l ), T = W

             cosec (cos–1 d/l ), d = 10 m)

l T

Bα

d

A

F

W

Fig. Prob. 3.7

8   A uniform metre rod AB, assumed rigid, of mass 

0.5 kg is suspended from its ends in an inclined 

position and a mass of 1 kg is suspended from 

a point D. Determine the tension in each string. 
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Where should the suspended mass be placed in 

order to get equal tension in the strings?

 ( s 1 = 4.9 N and 2 = 9.81 N; at C)

A

C W

D

B

21

50 cm

30°

25 cm

Fig. Prob. 3.8

  A crane is idealised by a uniform rigid arm of 

weight Wa supported on a knife edge of the 

rest and held by a cable together with a coun-

ter weight of 5 kN as shown in Fig. Prob. 3.9. 

The 10 kN load held by it is moved outward on 

the arm with a constant velocity v of 0.2 m/s. 

Assuming the system to be in equilibrium when 

q = 30° find the rate of change of the tension T

in the cable.

 
s

dT

dt

V
= =

⎛
⎝⎜

⎞
⎠⎟

5 1 155
cos

.
θ

kN/s

v

v

6 m

Arm

10 kN

Post

W
q

Cable 2 m

Fig. Prob. 3.9

  Two cylinders 1 and 2 are connected by a 

rigid bar of negligible weight hinged at each 

cylinder and are left to rest in equilibrium in 

the position shown under the application of 

a force P applied at the centre of cylinder 2. 

Determine the magnitude of force P if the 

masses of the cylinders are m1 = 100 kg and 

m2 = 50 kg.

 ( s  263 N)

P60°

45°60°

15°
2

1

Fig. Prob. 3.10

  Three identical balls rest on a smooth horizontal 

surface touching one another as shown in Fig. 

Prob. 3.11. A fourth ball of the same size and 

weight is placed on top of these three to form a 

pyramid and the three lower balls are now held 

together by an encircling string as shown in the 

plane view. Determine the tension in the string 

if the mass of each ball is 900 kg. Assume all 

surfaces of contact to be smooth.

 ( s  1200 N)

String

Balls

Fig. Prob. 3.11

  Figure Prob. 3.12 shows a weight W tied to the 

end of a cord of length L. Find the  magnitude 
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of the force  required to pull the weight to 

an angle a from its vertical position and the 

tension in the cord.

 ( s W cot a, W cosec a)

L

A

d

B

L

a

T

W

Fig. Prob. 3.12

  A three-wheeler scooter rickshaw with 

weight 2 kN acting at its centre of gravity 

C is shown schematically in Fig. Prob. 3.13. 

The driver D weighing 0.5 kN and the pas-

senger P weighing 0.8 kN are located as 

shown. Calculate the reactions at the wheels 

1, 2 and 3 for equilibrium on a horizontal 

road.

 ( s  1.00, 1.23, 1.07 kN)

0.3 m

0.1 m

2

P

3

C D
1

0.5 m

0.5 m

0.6 m 0.3 m

Fig. Prob. 3.13

  A vertical tower of height h is subjected 

to a horizontal force  at its top and it is 

anchored by two equal guy wires symmetri-

cally as shown in Fig. Prob. 3.14. Determine 

the tension T in the guy wires if h = 20 m, 

a = 3 m, b = 4 m and (b) the horizontal force 

= 10 kN. ( s  34.5 kN)

O

B

A

b

b

a

Guy-wires
Vertical 

tower

Fig. Prob. 3.14

   A vertical mast AB is supported in a ball-

and-socket joint at A and by cables BC and 

DE as shown in Fig. Prob. 3.15. A force

= 500 + 400  – 300 

    is applied at B. Calculate the reaction provided 

by the ground at A.

 ( s  5100 N)

D

E

Ax F y

C

B

3 m

5 m

4 m

4 m
2 m

Fig. Prob. 3.15
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  Two cables BG and BH are attached to hold the 

boom ABC 1.4 m long, hinged at A, horizon-

tally as shown in Fig. Prob. 3.16. Determine 

the tensions in the cables if a load of 1 kN 

acts at C.

y

G

A

C

x

z

B

H

1.2 m

1.2 m

1.5 m

0.8 m

1 m

0.4 m

1 kN

1.2 m

Fig. Prob. 3.16

( s 1230 N and 486 N)

Look up Hints to Tutorial Problems at the end!

Multiple-Choice Questions

Select the correct or most appropriate response from 

among the available alternatives in the following 

multiple-choice uestions:

 A rigid body is in equilibrium under the action of 

three forces. It implies that the forces must

  (a) be concurrent

  (b) be coplanar

  (c) either be concurrent or coplanar

  (d) pass through the centre of mass

 A rigid body is in equilibrium. Given that the 

moment of all the forces acting on the body about 

some axis is zero and also given that forces are 

concurrent, implies that

  (a) the resultant force is zero

  (b)  the forces have a line of action passing through 

the axis

  (c)  the resultant forces have a line of action parallel 

to the axis

  (d) any of (a), (b), (c) can be true

 A body is acted upon by a force system. It can in gen-

eral be brought to equilibrium by the application of

  (a) a force acting on a suitable point on the body

  (b) a force acting anywhere along a suitable line

  (c)  a force acting along a suitable line and a 

moment along the direction of the force

  (d) a wrench acting anywhere on the body.

Lami’s theorem

  (a)  relates the forces with the sines of angles

  (b)  state that, for equilibrium under the action 

of three concurrent forces, there is a unique 

constant of proportionality between a force 

and the angle between the other two forces
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  (c)  may be applied to consider a relationship 

between forces and angles of a polygon repres-

entation of forces

  (d)  may be applied for a body which may or may 

not be in equilibrium

 If the sum of all the forces acting on a body is 

zero, it may be concluded that the body

  (a) must be in equilibrium

  (b) cannot be in equilibrium

  (c)  may be in equilibrium provided the forces are 

concurrent

  (d)  may be in equilibrium provided the forces are 

parallel

Answers to Multiple-Choice Questions

1 (b) 2 (d) 3 (c) 4 (b) 5 (c)





Applications in Statics
This section consists of some salient 

applications in Statics under the 

following three chapters:

� S1 SIMPLE STRUCTURES

� S2 THIN RIGID BEAMS

� S3 APPLICATION WITH FRICTION





 S1.1 TYPES OF STRUCTURES

A structure may consist of a truss or a frame pin-connected or rigidly secured. A truss is an 
assemblage of slender bars fastened together at their ends by smooth bolts or ball-and-socket 
joints acting as hinges. A truss, by definition, is a pin-connected structure. The bar members, 
therefore, act as two-force members which can either be in tension or in compression; there 
can be no transverse force in a member of a truss. A frame structure, on the other hand, consists 
of members which may be subjected to a transverse load in addition to the axial load. We shall 
again limit our discussion to pin-connected frames. The reason for leaving out rigidly-secured 
structures, such as welded trusses is that the members may then be subjected to initial loads, 
axial or transverse, the estimation of which is a task by itself.

A simple structure is thus a pin-connected frame or truss. A truss consists of slender-bar 
members which can carry no transverse loads. It follows that the loading in a truss must be at 
the joints only. A truss consisting of members which lie in a plane and are loaded in the same 
plane is called . If a truss is made of non-coplanar members, it is referred to as 

. Similarly, a frame may be a plane frame or a space frame depending upon its structure.
Let us now examine trusses with regard to their rigidity. Trusses are classified as 

and . If the members are allowed any relative movement, then 
the assemblage of members is called a non-rigid truss or mechanism and if the members are not 
allowed any relative movement, then it is called a rigid truss. A just-rigid truss is that which, on the 
removal of any single member, becomes non-rigid. An over-rigid truss is the one that has redun-
dant members which may be removed to render the truss just-rigid. Examples of such trusses are 
shown in Fig. S1.1. We shall confine our study to the just-rigid simple trusses and frames.

The number of joints  in a truss is related to the number of members . A necessary relation-
ship between the number of joints  and the number of members  for a just-rigid plane truss is

= 2  – 3

S1
Simple Structures
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B

CD

A

(c) Over-rigid truss

B

C C

C′

D′

D
D

1
2

A

(a) Non-rigid truss —a mechanism

BA

(b) Just-rigid truss

Fig. S1.1 Types of trusses

This is, however, not a sufficient relationship. In other words, a truss cannot be just-rigid if m and j are related 

otherwise but a truss may not be  just-rigid even if m and j are related as before.

Consider, for example a simple truss ABCDEF as shown in Fig. S1.2. A just-rigid truss requires the 

number of members to be given by

 m = 2 j – 3

According to the law, the number of members must be (2j – 3) for a truss to be just-rigid but if the number 

is different from (2 j – 3) the following may happen:

m < (2 j – 3)  the truss cannot be just-rigid; parts of which must be under-rigid and a part may be just-rigid 

or over-rigid as shown in Fig. S1.2(b)

m > (2 j – 3)  the truss cannot be just-rigid; parts of which must be over-rigid and a part may be under-rigid 

or just-rigid as shown in Fig. S1.2(c).

It may be appreciated that m = (2 j – 3) is no guarantee for a truss to be just-rigid. Some parts of such 

a truss may be over-rigid and some other parts under-rigid. For example, in Fig. S1.2(d), parts ABCF are 

under-rigid and FCDE over-rigid.

It may be appreciated that simple or just-rigid trusses are generated from the basic triangular truss by 

 successively adding a pair of new members to the existing joints and by generating a new joint by connect-

ing the new members. Now, for a basic triangular truss which is just-rigid, the number of joints j = 3. For each 

additional joint, two members must be added to keep it just-rigid. If we wish to visualise a truss of j joints, then 

( j – 3) joints must be added to the basic triangular truss. The number of members which will be added are 

2( j – 3) and the total number of members become

 m = 2(  j – 3) + 3

whence m = 2 j – 3 

It may also be observed from the equation that the number of members in a simple just-rigid truss must be odd.

A space truss (or frame) consists of members which do not lie in a single plane. If the non-coplanar mem-

bers are pin jointed, it is called a simple space truss. A necessary relationship between the number of joints j

and the number of members m for a just rigid simple space truss is

 m = 3 j – 6
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Types of truss Joints j Members m Condition m  2j  3

(a) Warren Truss  7 11 Satisfied

(b) Pratt Truss 12 21 Satisfied

(c) Howe Truss 12 21 Satisfied

(d) K-Truss 16 29 Satisfied

Table S1.1 Typical just-rigid trusses
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(c) m > (2j − 3), part over-rigid

Over-rigid

parts

Just-rigid

Under-rigid

part

Under-rigid

part

Under-rigid

part

Just-rigid

RigidOver

A

F

E

A

F C

B

D

C

B

DE

(d) m = (2j − 3), non-just-rigid trusses
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Fig. S1.2 Conditions of rigidity of a truss



Engineering Mechanics148

There are some standard types of trusses known after the names of the originators or their shape. Some 

of them, Warren truss, Pratt truss, Howe truss and K-truss are shown in Figs. S1.3(a), (b), (c) and (d). Let us 

check the just-rigidity of the trusses:

 Just-rigid trusses are statically determinate and the over-rigid trusses are statically indeterminate. This 

statement follows from the fact that the number of members in a just-rigid truss are in accordance with the 

necessary conditions of equilibrium for the number of joints. We shall, therefore, confine ourselves to 

the analysis of just-rigid trusses. The task of determining the reactions at the supports and the forces in the 

(d) K-truss

(b) Pratt truss

(a) Warren truss

(c) Howe truss

Fig. S1.3 Some standard types of trusses
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 members of simple plane trusses is achieved by three standard techniques known as method of joints, method

of sections and graphical method.

This is because the basic space truss is a tetrahedron consisting of 6 members and 4 joints, i.e., m = 6, j = 4. 

It can be extended to a bigger space truss by adding 3 non-coplanar members from any 3 previously existing 

joints and creating one additional joint, i.e., m = 9, j = 5 and m = 12, j = 6, etc. which leads to the equation 

m = 3 j – 6. Like plane truss relationship, this relationship is necessary but not a sufficient condition for a space 

truss to be just-rigid. For example, a truss may be partly over-rigid and partly non-rigid even if m = 3j – 6.

 S1.2 INTERNAL FORCES: TENSION AND COMPRESSION

In a truss members are interconnected by pin joints. If a member is in  tension 

as shown in Fig. S1.4(a), the member is pulled towards its ends on either 

side by external forces. Consequently, the internal forces in the member 

tend to resist it and hence act in a sense away from the end.

Likewise, if a member is in compression as shown in Fig. S1.4(b) the 

external forces compress it at its ends and the internal forces tend to resist it.

External and internal forces on a member are indeed in accordance with 

the action and reaction principle.

Members in a frame may be subjected only to forces along them. 

A member in a truss cannot be subjected to a transverse force. That is why 

members are said to be 2-force (or two-force) members, i.e., subjected to a 

pair of tensile forces or a pair of compressive forces.

 S1.3 ANALYSIS BY THE METHOD OF JOINTS

A plane truss or frame can be subjected only to a coplanar force system. Any joint of a plane truss or frame 

may be subjected only to a coplanar and concurrent force system. A space truss or frame can be subjected to 

a spatial force system. Any joint of a space truss may be subjected to a spatial concurrent force system. The 

condition of concurrency of a force system at a joint in a truss follows from the equilibrium of the forces at 

that joint which is also the point of concurrency.

The method of joints consists of taking up one joint at a time and analysing it for equilibrium. At every 

joint in a truss the forces must be along the members at that joint. The forces acting at every joint must satisfy 

the necessary condition of equilibrium:

 Σ = 0

which implies that

 Σ x = 0, Σ y = 0, Σ z = 0

for spatial forces at a joint

and

 Σ x = 0,  Σ y = 0

for plane forces at a joint.

In addition to the equations of equilibrium at each joint, the overall equilibrium of a truss provides additional 

equations which can be used to determine the reactions of the supports. In fact, one of the first tasks in the 

method of joints is to evaluate the reactions from the supports. The equations of overall equilibrium are:

 Σ = 0

 Σ = 0

A

A

External forces

Internal forces

B
B

External forces

(a) A member in tension

(b) A member in compression

Internal forces

A
B

Fig. S1.4  Internal forces in 

members
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which, for a plane truss reduce to only three equations:

 Σ x = 0  Σ y = 0

and Σ = 0 

or an alternative set of equations

 Σ y = 0

and Σ 1 = 0,  Σ 2 = 0 

as has been shown earlier.

The points about which moments are taken may be the points of application of the support reactions for 

convenience and for simplicity in analysis.

Once the reactions are known, there must be a pin-joint in a simple just-rigid plane truss where there are 

only two or less unknown forces in magnitude. These values are determined by analysing the joint for equi-

librium. The force in any member at a joint being known, the force at the joint at the other extremity of that 

member is known by the action-reaction principle. We then look for another joint where there are a maximum 

of two unknown forces in magnitudes and analyse it for equilibrium. In this manner, a chain process is set up 

to proceed from one joint to another and analyse the forces in the members. When the objective is to deter-

mine the force in a particular member, it is necessary to search a joint nearest to the member where to start 

with and proceed towards a joint where the member is connected.

It is a useful convention in the method of joints to indicate the forces at a joint such that the known forces are 

taken in the correct directions and the unknown forces are assumed positive, away from the joint. On evaluation, 

if a force turns out to be positive, the member must be in tension and if a force comes out to be negative, the 

member must be in compression. It is also a universal practice to designate the force at a joint due to a member by 

the name of the member itself. For example, the force exerted by a member BC at B or C is refered to as B .

It may also be noted that bold-face notation does not necessarily mean ‘vector’ but ‘magnitude of vector’. 

Also, it may happen to use bold-face and nonbold-face interchangeably for the sake of convenience!

Some remarks on the loading conditions of some joints are also in order:

1. If there are only two members and no external force at a joint, the two members must be collinear in 

order that any force is taken by them. The reason for this is that the two forces maintaining a point 

in equilibrium must act along the same line of action and their magnitudes must be equal. The two 

members at the joint should, therefore, not only be collinear but also have equal forces and their nature 

must be the same, i.e., either both tensile or both compressive.

  It follows from this that, in the special case when the two members do not have any forces, they may 

not be collinear. Conversely, if in a truss, there exists a joint of two members which are non-collinear 

and there is no external force, the forces in the members must be zero. This is shown in Fig. S1.5(a).

  It also follows that if an external force acts on a two-member joint then the members cannot be collinear.

 2. If there are only three members and no external force at a joint, the members will carry forces in accor-

dance with the condition of equilibrium. If two of the three members are collinear, these two members 

should have equal forces and the third must be a zero-force member, otherwise equilibrium will not be 

maintained.

  If an external force is applied at a joint of three members, the forces in the members can again be 

determined in the light of equilibrium of the joint. If two of the three members are collinear and the 

force acts in line with the third member, then the force in the third member must be equal and opposite 

to the external force. These facts are illustrated in Fig. S1.5(b).
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Fig. Ex. S1.1

10 kN

B

A C

O

Example S1.1 A pin-jointed frame ABCO is supported and 

loaded as shown in Fig. Ex. S1.1. The members AB and BC are each 

3 m long. Find the magnitude and nature of force in each of the 

members due to a load of 10 kN at the apex.

A

B

D

C

B
BC

AB

AB

AB = BC

BC

A

BD = 0
AB = BC

BD =
B

D

B

C

A

AB = BC 

B

B

BC

DE

CD = DE = 0

C

E

D

AB
DCD

(a) Consideration of joints B and D

B

AB

AB = BC BE = BD

BD

BC

BE

A

D

EB

C

(c) Consideration of joint B(b) Consideration of joint B in each case

Fig. S1.5 Consideration of joints

 3. If there are four members at a joint, the members will carry forces in accordance with equilibrium. If, 

however, there are two pairs of collinear members at a joint and there is no external force then the forces 

in the collinear members must be equal. One such example is shown in Fig. S1.5(c) where the joint B

is in equilibrium under the action of two pairs of collinear forces.
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1 kN

1 kN1 kN

P

Q

R

U

T

S

1.5 kN

4 m

4 m4 m4 m

Fig. Ex. S1.2

Solution Let us first draw the fbd of the frame, 

as shown in Fig S1.1 (Solution). Considering the 

equilibrium of the structure as a whole

 Σ y = 0;  RAy +Rc – 10 = 0

 Σ x = 0;       RAx = 0

and Σ A = 0; 3 Rc – 10 × 3/2 = 0

whence Rc = 5 kN, RAy = 5 kN, RAx = 0

 For equilibrium of the joint A (Fig. Ex. S1.1 

(Solution)),

 Σ y =  0; 5 +  sin 30  

+ B sin 60  = 0

 Σ x =  0; B cos 60  

+  cos 30  = 0

= –0.577 B

and 5 + 0.866 B − 0.577/2 B = 0

whence B = –8.66 kN; compression

and = 5.00 kN; tension

 For equilibrium of the joint B,

 Σ x = 0; B sin 30  – B sin 30  = 0

 Σ y = 0; – 10 – B – B cos 30 – B cos 30  = 0

whence, B = B = – 8.66 kN; compression

and B + 2 × 0.866 B = –10

or B = –10 + 2 × 8.66 × 0.866

or B = 5 kN; tension

and = = 5 kN; tension

Example S1.2 A frame PQRSTU is hinged to a 

rigid support at P and is simply supported at T. It is 

loaded as indicated in the Fig. Ex. S1.2. Estimate the 

magnitude and nature of the force in the members 

PQ and UT.

Solution The free-body diagram of the structure is shown in Fig. Ex. S1.2. For equilibrium,

 Σ = 0

 Σ y = 0; Py +  – 1 – 1 – 1 = 0

Py + = 3 kN

Fig. Ex. S1.1 (Solution)

10 kN

5 kN

10 kN

A

A

B

x

y

B

B

30° 30°

B

B

RAy RC

RAx

B

C

O



 Simple Structures 153

1000 kN
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1 m
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1 m 1 m

1 m

B

CD

E

A

Fig. Ex. S1.3

 Σ x = 0; 1.5 – Px = 0

Px = 1.5 kN

 Σ p = 0

8T – 1 × 4 – 1 × 8 – 1 × 12 – 1.5 × 4 = 0

whence = 3.75 kN

and hence Py = 3 – 3.75 = – 0.75 kN

 Consider the equilibrium at joint P:

 Σ x = 0; –1.5 + P + P  cos q = 0

 Σ y = 0; P  sin q  – 0.75 = 0

 Taking sin .θ = =
2

20
0 447

and cos .θ = =
4

20
0 895

P = 0.75/0.447 = 1.68 kN; tension

P = 1.5 – 1.68 × 0.895 = 0

 Since UQ is perpendicular to PU and UT, UQ can transmit no force and the force in UT must be the same 

as in PU which is zero.

 Hence = 0

Example S1.3 A simple structure ABCDE is supported on a hinge at 

A and on rollers at B while it carries a horizontal force of 1000 kN at E

as shown in Fig. Ex. S1.3. Determine the force in member AC, using the 

method of joints.

Solution:

Method of Joints Starting with E

 For joint E,

 Σ Fx = 0; 1000 + EC sin 30  – ED sin 30  = 0

 Σ Fy = 0; –EC cos 30  – ED cos 30  = 0

1 kN1 kN

R

P
Px

Py

P

P

P

x

y

1.5 kN

0.75 kN

q

1.5 kN
1 kN

Fig. Ex. S1.2 (Solution)
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whence –EC = ED = 1000 kN

 Next, for joint D,

 Σ Fx = 0; DE cos 60  + CD = 0

 Σ Fy = 0; DE sin 60  – DA = 0

whence, CD = – 500 kN

 DA = 866 kN

 Finally, for joint C,

 Σ Fx = 0; – DC  – EC cos 60  – AC cos 45  = 0

 Σ Fy = 0; – BC  – AC sin 45  + EC sin 60  = 0

and from the former

 500 + 1000/2 – AC × 0.707 = 0

whence AC = =
1000

0 707
1414

.
kN

which implies that the force in AC is 1414 kN 

tensile. The internal forces in AC are shown in Fig. 

Ex. S1.3 (Solution) and it is clear that the external 

force on AC must be tensile.

Method of Joints Starting with B

For this method, we should first determine the reactions at A and B.

 Let the reaction at hinge A be

Ax + Ay

and the reaction at the roller support B be vertical, i.e., B .

For the equilibrium of the structure,

 Σ Fx = 0;  Ax + 1000 = 0

 Σ Fy = 0;  Ay + B = 0

 Σ MA = 0; B × 1 – 1000 × 1.866 = 0

whence B = 1866, Ax = – 1000 and Ay = – 1866 kN 

 At B, the reaction is vertical and there are two members BA and BC; one horizontal and the other 

vertical. The horizontal member can carry no force because if it did it would not be balanced.

 For joint A,

 Σ Fx = 0; Ax + AC cos 45  = 0

 Σ Fy = 0; Ay + AD + AC sin 45  = 0

whence AC = =
1000

0 707
1414

.
kN  

 The internal or resistive forces in AC are outwards which, as before, imply that the member AC carries a 

tensile force of 1414 kN.

DC

AC

EC

C

BC

30° 30°

E

ECED

1000 kN

60°

DE

CD

DA

D

AD AC

AB = 0

Ay

Ax

A

External

Force at C

External

force at A

Internal

forces

C

A

Fig. Ex. S1.3 (Solution)



 EXPERIMENT E3 FORCES IN A PLANE TRUSS

OBJECTIVE TO DETERMINE THE FORCES IN THE MEMBERS OF A STATICALLY DETERMINATE 

PLANE TRUSS.

Apparatus  A pin-joined, simply supported plane determinate truss, some members of which have spring 

balances installed in them. Standard weights and a metre rod.

Background Information The forces in the members of a truss may be computed analytically by the method of 

joints and by the method of sections and also graphically based upon the concept of equilibrium of the whole 

or of a part of the truss. Experimentally, the spring balances installed within the members are read off without 

loading and with loading in order to estimate the forces developed due to the loading of the truss. A typical truss 

ABCDEFGHIJ hinge-supported at A and roller-supported at G as shown in Fig. E3.1, may be subjected to loads 

at C, D and E, for example. If it is required to determine the force in member AC, the procedure would be to 

determine the reactions RA and RG at A and G respectively in the first instance. This may be done by considering 

the equilibrium of the entire truss. For the vertical loading as given, RA and RG are directed upwards.

 Σ = 0;    RA + RG + WC + WD + WE = 0 (i)

 Σ G = 0;  WC 3l + WD 2l + WEl – RA4 l = 0 (ii)

whence RA and RG are determined.

By the method of joints, one would first consider the simplest joint B where only two members AB and 

BC are pinned at right angles. From the free-body diagram of joint B, it is seen that it can be in equilibrium 

only if each of BA and BC is zero, because if either is non-zero it will leave an unbalanced force at B. Next, 

consider the joint A. The free-body diagram of joint A shows that there are two forces AJ and AC unknown in 

magnitude as shown in Fig. E3.2. From the equilibrium of A,

 Σ Fx = 0;  AJ + AC sin q = 0 (iii)

 Σ Fy = 0;  RA – AC cos q = 0 (iv)

The solution of Eqs (iii) and (iv) provide the desired force in the member AC. Whether the member is in 

 tension or compression may be sorted out by observing the sign of AC. It would come out to be positive in this 

d

G

FE

WE

WD

D

WC

C

Weights
B

A
J I H

IIII

Spring
Balances

Fig. E3.1 Free-body diagram of a loaded plane truss
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case which may be interpreted as tension, following the text; 

otherwise, a free-body diagram of the member AC may be 

drawn as also shown in Fig. E3.3. The internal forces being 

inward, the external forces at A and C must be outward which 

suggest that the member AC must bear a tensile force.

By the method of sections, one would cut a section through 

members AJ, AC and BC. Consequently external forces AJ,

AC and BC are shown acted upon the left section in its free-

body diagram drawn in Fig. E3.3. Consider the section for 

equilibrium:

 Σ MA = 0;  BC d = 0

whence the force BC is seen to be zero.

 Σ Fx = 0;  AJ + AC sin q + BC = 0

 Σ Fy = 0;  RA – AC cos q = 0

The desired force AC is thus obtained from these equa-

tions. The sign of AC would decide whether it is tensile or 

compressive. It would come out to be positive in this case 

which may be interpreted as tension; otherwise, as noted 

from the fact that the external force AC on the member AC is 

outward, the member must be in tension.

Experimentally, the spring balance installed in the 

member AC would show a tensile force acting on the 

member when the truss is loaded as shown.

Table of Results Forces in the members with spring balances 

for the prescribed loading should be reported.

Forces in members AC DH EG

Experimentally 

Analytically

Difference 

Results on the linearity of response of the system should be reported in the form of a curve plotted between 

the load at C and the force in AC.

Points for Discussion

Recognise the sources of error in the experiment. In particular, observe the play in the spring balances 

and joints. The use of a spring balance which operates on the principle of elongation of the member is 

inherently prone to error.

Suggest some means of eliminating the sources of error. One of the ways of minimising the error in the 

experiment would be to use larger loads for the first part of the experiment and to change the load in 

larger steps in the second part of the experiment.

Explain the truth in the statement: The method of joints is a special case of the method of sections .

Do the forces in members of a truss respond linearly to loading? How?

A

C

Member ACJoint AJoint B

BA

B
BC

x

y

BA = 0

BC = 0
AC

AJ

AB = 0

q

RA

A

Fig. E3.2 Free-body diagram

RA

A

d

B

θ

AJ

AC

BC

Fig. E3.3 Free-body diagram of the section
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1000 kN

1 m 1 m

1 m

1 m

1 m

1 m

B

CD

E

A
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Fig. Ex. S1.4

 S1.4 ANALYSIS BY THE METHOD OF SECTIONS

The method of sections consists of hypothetically cutting a section of the given truss and analysing it for equi-

librium. Equilibrium of the entire truss guarantees the equilibrium of every part of the truss. In the method 

of joints, equilibrium of every joint was considered. In the method of sections, equilibrium of any selected 

section of the truss is considered. The section of the truss is selected in such a way as to ‘cut’ the desired 

member only once. The free-body diagram of the section will thus include the unknown force in the member. 

The analysis of the section for equilibrium requires the application of

 Σ = 0  and          Σ = 0

For a plane section, the necessary conditions of equilibrium reduce to

 Σ Fx = 0, Σ Fy = 0  and  Σ Mz = 0

or an equivalent set of three equations.

The force system acting on a section of a plane truss can only be a coplaner force system. The three neces-

sary equations as above are also sufficient conditions of equilibrium.

The free-body diagram of the desired section of a truss may have one, two, three or more unknown forces. 

The equations of equilibrium written for a section may or may not be adequate to determine all the unknowns. 

In case a selected section of the truss is not amenable to solution, an attempt must be made to locate a section 

which includes some of the unknown forces of the desired section that can be determined. The knowledge 

gained from the analysis of simpler sections must enable us to determine all the unknowns. It may be appre-

ciated that the method of joints is a special case of the method of sections. When a section is chosen in the 

vicinity of a joint so as to enclose the joint, the section in question reduces to the joint only. Equilibrium of 

the section implies equilibrium at the joint. The method of joints is thus the method of sections applied to 

enclose one joint at a time.

It is a useful convention in the method of sections to indicate the forces on a section such that the known 

forces are taken in the correct directions and the unknown forces are assumed acting away from the section 

under consideration. On evaluation, if a force turns out to be positive, the member must be in tension and if 

a force comes out to be negative, the member must be in compression. The forces are named after the names 

of the members for convenience in recognition.

Example S1.4 A simple structure ABCDE is supported on a hinge at 

A and on rollers at B while it carries a horizontal force of 1000 kN at E

as shown in Fig. Ex. S1.4. Determine the force in member AC, using the 

method of sections.
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Solution

Method of Sections (a)

A section SS can be cut through members AD, AC and BC as shown in Fig. Ex. S1.4 (Solution), and a 

consideration of equilibrium of either side of the section should lead to the force in AC. Consider the 

upper part of the structure. The external forces on the part are

 (a) 1000 kN at E, acting horizontally

 (b)  Forces along AD, AC and BC due to the lower part of the structure; tensile if away from the section 

under consideration.

 For equilibrium,

 Σ Fx = 0; 1000 – AC cos 45  = 0

 Σ Fy = 0; – AD – BC – AC sin 45  = 0

and from the former,

 AC =
1000

0 707.

 = 1414 kN

which shows that the member AC is subjected to 1414 kN tensile force.

Method of Sections ( b)

It is instructive to consider the free-body diagram and the equilibrium of the lower part of the section SS for 

the desired purpose and to show that it involves more work. The additional work is required to calculate the 

reactions by considering the equilibrium of the entire structure first. After obtaining that

 By = 1866 kN

Ax = –1000 kN

and Ay = –1866 kN 

 The equilibrium of the lower part requires that

45°

45°

45°

1000 kN

1000 kN

1866 kNBy

B
B

AD

AD

AB

AD

AC

AC

AC

BC

BC

C

C

D

D

E

E

x

S S

S

S

S

S

y

A

Fig. Ex. S1.4 (Solution) 
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20 m

12 m
15 m

1000 kN

15 m

9 m

Fig. Ex. S1.5

 Σ = 0; +  cos 45  = 0

 Σ = 0; + + + +  sin 45  = 0

whence

 = =
1000

0 707
1414

.
kN

which shows that the member  is subjected to 1414 kN tensile force.

The section  may instead be cut through members ,  and  and the part of the structure on its right 

can be considered for equilibrium

 Σ = 0; 1000 –  –  cos 45  = 0 (i)

 Σ = 0; 1866 –  –  sin 45  = 0 (ii)

 Σ = 0; –1000 × 1.866 + 1 × + × 0.707 = 0 (iii)

whence,

+ 0.707 = 1000 (i)

 + 0.707 = 1866 (ii)

 + 0.707 = 1866 (iii)

and it can be noticed that the Eqs (ii) and (iii) are identical. The three unknown forces ,  and 

cannot be evaluated by only two independent equations.

 Another look on the section reveals that the three forces under question are concurrent. Such sections 

which render three concurrent forces as unknowns are not plausible.

 The way out of this difficulty can be found by evaluating one of the three unknowns by considering some 

other section or joint for equilibrium. In this case, we notice from the consideration of equilibrium at ,

that the force in  is zero.

 Hence, from Eq. (i),
 0.707 = 1000

= 1414 kN

which shows that  must carry a tensile force of 1414 kN.

Example S1.5 A derrick crane has ball-and-

socket joints at , ,  and  as shown in Fig. Ex. S1.5.

Determine the forces in links ,  and  when 

it is supporting a dead load of 1000 kN.
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P

B

A

C

8 m

6 m

1280 kN

4 m

4 m

4 m

4 m

O

y

x

D

Fig. Ex. S1.6

Solution With respect to the given origin O, position vectors of the salient points 

are as follows:

= –15 

B = 15 

= 12  – 9 

= 20 

 It follows that the unit vectors along the three members all pointing to D are:

 e
OD OA

OD OA

j i
j iAD =

−

+
=

+
= +

2 2

20 15

25
0 8 0 6. .

 e
j k

j kBD =
−

= −
20 15

25
0 8 0 6. .

 
e

j i k
i j kCD =

− +
= − + +

20 12 9

25
0 48 0 8 0 36. . .

 Let the magnitudes of forces in members be denoted by AD, BD and CD, then for equilibrium,

AD (0.8 + 0.6 ) + BD (0.8  – 0.6 ) + CD (– 0.48 + 0.8 + 0.36 ) – 1000 = 0

 This vector equation is written as three component scalar equations:

 0.6 AD – 0.48 CD = 0,  for x-direction

 0.8 AD + 0.8 BD + 0.8 CD – 1000 = 0,  for y-direction

and – 0.6 BD + 0.36 CD = 0,  for z-direction

 Solving these equations,

 AD = 416.7 kN, BD = 312.5 kN, CD = 520.83 kN.

 The unit vectors were taken pointing to the common point D. Now that AD, BD and CD all turn out 

positive the members exert forces pointing to D as shown in Fig. Ex. S1.5 (Solution) which means the 

members must be under compression.

Example S1.6 A simple crane rests on a 

ball-and-socket joint O and it is supported by 

two strings AB and AC as shown in Fig. Ex. S1.6. 

Determine the forces in the cables and the reaction 

at O when it holds a load of 1280 kN.

1000 kN

D

Fig. Ex. S1.5 (Solution)
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Solution Position vectors of A, B, C and D are as 

follows:

= 8 

B = – 8 + 4 

= – 8  – 4 

= 4 + 6 

and the load applied at D is –1280  kN.

 The unit vectors along the cables, pointing 

towards A are

 e
j i k

i j kCA =
+ +

= + +
8 8 4

12

2

3

2

3

1

3

 
e

j i k
i j kBA =

+ −
= + −

8 8 4

12

2

3

2

3

1

3

 The negative sign implies that the forces exerted by the strings are not pointing towards A but away from 

A, which means that they must be in tension. This is indeed true for strings and cables.

 The ball-and-socket joint at O cannot resist any moment. It can provide only force reactions. Therefore, 

using

 Σ = 0

for equilibrium of the crane structure,

720
2

3

2

3

1

3
720

2

3

2

3

1

3
− − +⎛

⎝⎜
⎞
⎠⎟

+ − − −⎛
⎝⎜

⎞
⎠⎟

i j k i j k

 − + + + =1280 0j i j kR R Rx y z

whence

 Rx = 960 kN

 Ry = 2240 kN

 Rz = 0

 Taking moments about the joint O,

 (–8 + 4 ) × AB BA + (–8  – 4 ) × AC CA + (4 + 6 ) × (–1280 )

 = − + × + −⎛
⎝⎜

⎞
⎠⎟

+ − − × + +⎛
⎝⎜

⎞
⎠⎟

( ) ( )8 4
2

3

2

3

1

3
8 4

2

3

2

3

1

3
i k i j k i k i j kAB AC  

 + (6 + 4 ) × (–1280 )

 = − − + −⎛
⎝⎜

⎞
⎠⎟

− + − +⎛
⎝⎜

⎞
⎠⎟

−
16

3

8

3

8

3

8

3

16

3

8

3

8

3

8

3
7680k j j i k j j i kAB AC

 
= − − − − +3000

8

3

16

3
k i k( ) ( )AB AC AB AC

 Now e
i k i k

OB =
− +

=
− +8 4

80

2

5
 

and e
i k

OC =
− −2

5

Ry

Rz

Rx

Fig. Ex. S1.6(b) (Solution)

A

Fig. Ex. S1.6(a) (Solution)
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A

D

B

C

z
y

x

3 m

3 m

4 m

1 kN

1 m

3 m

Fig. Ex. S1.7

 The moment about axis OB, i.e.,

OB O OB= ⋅  must be zero for equilibrium.

− − − + +⎡
⎣⎢

⎤
⎦⎥

− +⎡

⎣
⎢

⎤

⎦
⎥ =⋅8

3

16

3
1440

2

5
0( ) ( )AB AC AB ACi k

i k

16

3 5

16

3 5
1440 0( ) ( )AB AC AB AC− − + + =

or
−

= ×
32

3 5

16

3 5
1440AC  

or AC = –720 kN. 

 By symmetry (or by considering the moment about axis OC ), AB = –720 kN.

Example S1.7 A vertical pole CD is supported on a hinge 

D at the base and two guy wires tied at its top as shown in 

Fig. Ex. S1.7. The pole is supporting a horizontal pull of 1 kN 

along x-axis. Determine the reactions at the support A, B and C.

Solution Reactions at A and B should be along the guy wires; Reaction at C consists of Rx, Ry and Rz.

 From the coordinates of the points A(0, 3, 1), B(0, –3, 1), C(4, 0, 0) and D(4, 0, 4), unit vectors along 

the wires are

 e i F eDA DA DAF= − + −( 4  3 3  )/ 34

 e i F eDB DB DAF= − + −( 4  3 3  )/ 34

 By symmetry forces in guy wires must be equal. As shown in Fig. 

Ex. S1.7 (Solution) the force exerted by the wires on the pole at D is

DA DB F+ = − − = − − ′( 8 6 ) ( 8 6 )/ 34

For equilibrium of the pole,

(–8  – 6 ) F ′ + 1000 + Rx + Ry + Rz = 0

The isolated component along y; Ry = 0.

 –8 F ′+ 1000 + Rx = 0

 –6 F ′+ Rz = 0

D

C Rx

Ry

Rz

1 m

1000 N(− 8 − 6 )F′

3 m

Fig. Ex. S1.7 (Solution)
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A

E

D

B

C 400

N

15
 c
m

5 cm
10 cm

10 cm 10 cm

10 cm

Fig. Ex. S1.8

and Σ c = 0; 4 × (– 8  – 6 ) F ′ + 3 × 1000 = 0

whence (–32 F ′+ 3000) = 0; F ′ = 93.75

and F = × =34 93 75 547.    N

 Also, Rx = 8 × 93.75 – 1000 = –250 N

 Rz = 6 × 93.75 = 562.5 N

 Let us check the solution. Taking moments about D, for example,

 –1000 × 1 – 4 Rx = 0; Rx = –250 N

which is the same as before.

Example S1.8 A simple smoothly jointed frame work hinged to 

vertical wall at A and B, as shown, carries a load of 400 N at D. Find 

the forces in members EC and BC.

Solution The first step is to determine the reactions at A and B. From 

the f bd of the entire framework, Fig. Ex. S1.8(a) (Solution).

 From geometry,

 AP = −10 2 52 2. = 9.7 cm = KC

 AD = 2  AP = 19.4 cm

 AK = 2.5 cm

 KB = −15 9 72 2. = 11.4 cm

 AB = 2.5 +11.4 = 13.9 cm.

 For equilibrium,

Σ Fx = 0 = Σ Fy

RAx + RBx = 0

RAy + RBy  400 = 0

and MA = RBx AB  400  AD = 0

whence RBx

AD

AB
= = =400 400

19 4

13 9
644. .

.

.
N

 Therefore, RAx =  RBx = – 644 N.

 It is not possible to determine RAy and RBy from the single equation 

between them!

A

K

E

D
P

BRBx

RBy

RAy

RAx

C

400 kN

Fig. Ex. S1.8(a) (Solution)

RBy

RBx

RB

q

Fig. Ex. S1.8(b) (Solution)
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 But we know that there is a hinge at B and just one member BC which can only bear a tensile or 

compressive force; the reaction at B must, therefore, be along BC. Hence

 

R

R

By

Bx

KC

KB
= = = =tan

.

.
.θ

9 7

11 4
0 85

and RBy = 0.85 × 644 = 547 N

RAy = 400 – 547 = –147 N

 Now, Let us proceed to determine the required forces in the members:

 For equilibrium at joint D,

        DE = × =400
10

5
800 N (tension)

DC = × =400
10

5
800 N (compression)

 For equilibrium at E,

EC = 400 N  (compression)

EA = 800 N  (tension)

 For equilibrium at C, by measuring to the scale,

CA = 230 N  (compression)

CB = 860 N  (compression)

 S1.5 ANALYSIS BY THE METHOD OF TENSION COEFFICIENTS

This method is another version of the method of joints. It is a powerful method to analyse pin-jointed 

3-dimensional space frames and it can be adapted for 

computer-based analysis.

In this method, for each joint, we consider the length 

of the members and the coordinates of the joints. All 

the members are initially assumed to be in tension in 

order to commence the analysis.

What is a tension coefficient?

If the tension in a member is assumed as  and the 

length of the member is L, then 

t
L

= is the tension coefficient for that member.

Let us consider a joint A with members AB, AC, AD, 

etc. pin-jointed at A. Let us concentrate on a member 

AB with tension (assumed) AB and the coordinates of 

A be (xA, yA) and B be (xB, yB). Fig. S1.6

DC

DE

400 N

800 N

EC

EA

Fig.  Ex. S1.8(c) (Solution) 

CB

CE

CD

CA

400 N

800 N
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With reference to the chosen coordinates,

 
cos ; sinθ θ=

−
=

−x x

AB

y y

AB

B A B A

The tension AB in AB can be resolved into the component along x-axis as

AB
AB

B A AB B A
AB

x x t x xcos ( )θ = − = −( )
Likewise, the component of AB along the y-axis is

 
AB

AB
B A AB B A

AB
y y t y ysinθ = −( ) = −( )

where = t
AB

AR
AB= , the tension coefficient for bar AB.

One can write similar equations for each of the other numbers AC, AD, etc., and then apply the condi-

tions of equilibrium to determine the magnitude and nature of forces in the members. ‘Positive’ forces imply 

 ‘tension’ and ‘negative’ compression.

The method of tension coefficients may simply be extended to space frames, merely be writing 3 equa-

tions, i.e., in x, y and z directions (in place of 2 for plane frames) for each joint. If a space frame has j joints, 

then we shall get 3j equations.

Fig. Ex. S1.9

Example S1.9 A load of 7.2 kN is supported 

by two ropes, suspended from two points 5 m 

apart. Determine the forces in the ropes.

Solution Let us solve the problem by two different methods.

By the Method of Joints

There is first one joint  A. We consider the equilibrium of the joint A. Noting that the ropes subtend a right angle 

at A; also the angles BPA and APC  are right angles, we can get BP =1.8 m, PC = 3.2 m and AP = 2.4 m.

   

Σ Fx AC AB

AC AB

AC

= − =

− =

−

0

1 8

3
0

0 8 0 6

;

.

. .

cos    cos 0

3.2

4

q f

or, AB = 0 (i)

             

Σ Fy AC AB

AC AB

AC

= + − =

+ − =

+

0 7 2 0

2 4

4

2 4

3
7 2 0

0 6

; sin .

. .
.

.

sinq f

or, 00 8 7 2 0. .AB − =  (ii)

from (i) and (ii),

AB = 5.76 kN; AC = 4.32 kN. Fig. Ex. S1.9(a) (Solution)
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20 m

15 m

15 m

12 m

1000 kN

z

x

y

OA

B

C

D

9 m

Fig. Ex. S1.10

By the Method of Tension Coefficients

Now, we write the equations for the joint A, in x and y directions:

 Along x-axis, −1.8 tAB + 3.2 tAC = 0

 Along y-axis, 2.4 tAB + 2.4 tAC − 7.2 = 0
where tAB and tAC are the tension coefficients for the members AB and 

AC respectively. 

 From these equations, tAB = 1.92, tAC = 1.08.

 We know, by definition of tension coefficients,

 
t

AB
t

AC
AB

AB
AC

AC= =or

whence,

AB = 1.92 × 3 = 5.76 kN

and AC = 1.08 × 4 = 4.32 kN 

Positive values of both AB and AC show that these are indeed tensions!

Comment

On the first look, the method of tension coefficients may not appear to be ‘significantly better’ than the 

method of joints but it is not true. The method of tension coefficients proves to be more useful and much 

easier for 3-dimensional or space frames!

Example S1.10 A derrick crane has ball-and-socket 

joints at A, B, C and D as shown. Determine the forces 

in links AB, BD and CD when it is supporting a dead 

load of 1000 kN.

Solution Let us write 3 equations along the 3 axes at the joint D, considering the origin at D.

Along x-axis 12 tDC + 0 tDB – 15 tDA = 0 (i)

Along y-axis −9 tDC + 15 tDB + 0 tDA = 0 (ii)

Along z-axis −(20 tDC + 20 tDB + 20 tDA) − 1000 = 0 (iii)

 From (iii), tDC + tDB + tDA = −50

Fig. Ex. S1.9(b) (Solution)

A

f

AB AC

7.2 kN

x

y

q
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Fig. Ex. S1.11

 Solving the above equations,

 tDC = −20.83, tDB = −12.5, tDA = −16.66

 Lengths of the links are given by 

 CD = + + =12 9 20 252 2 2 m

 BD = + =15 20 252 2 m

and AD = + =15 20 252 2 m

 Hence DC = −20.83 × 25 = −520.8 kN (compressive)

DB = −12.5 × 25 = −312.5 kN  (compressive)

and DA = −16.66 × 25 = −416.5 kN (compressive)

Example S1.11 A simple space frame (also called shear-legs frame) 

as shown carries a load of 21 kN. Determine the forces in the three 

members.

Solution Let us solve this problem by the method of tension coefficients. Let the 

origin be at A and the x, y, z axes as shown to follow the right-hand screw rule.

 Writing the 3 equations along the axes:

 Along x-axis, 2 tAB − 2 tAD = 0 (i)

 Along y-axis, −2 tAD − 2 tAB − 4 tAC = 0 (ii)

 Along z-axis, −3 tAB − 3 tAD − 3 tAC 21 = 0 (iii)

 From (iii), tAB + tAD + tAC = −7

Using other equations, tAB = −7, tAD = −7 and tAC = +7

These are the tension coefficients for the members AB, AD and AC respectively.

 Now,

 AC = + =3 4 52 2 m

 AB AD= = + + =2 2 3 4 122 2 2 . m

 Therefore,

AC = 7×5 = 35 kN (tension)

y

z

x

A
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AB = AD = −7 × 4.12 = −28.86 kN (compression)

 If we were to use a computer to solve the equations, the three equations for tension coefficient would 

have to be written in a tabular form. For the present case, the table would appear as follows:

Joint Direction Equation Tension coeff.

A x 2 tAB − 2 tAD = 0 tAB = tAD

y −2 tAB − 2 tAD − 4 tAC = 0 tAB = −tAC

z −3 tAB − 3 tAD − 3 tAC − 21 = 0 tAC = +7

 Computation would involve solving 3 simultaneous equations at each pin-joint of the space frame.

EXPERIMENT E4 FORCES IN A SPACE FRAME

OBJECTIVE TO DETERMINE THE FORCES IN THE MEMBERS OF A LOADED SHEAR-LEGS SPACE 

FRAME EXPERIMENTALLY,  VECTORIALLY 

AND GRAPHICALLY.

Apparatus Shear-legs apparatus consisting of two 

rigid bars AB and AC and a tie-bar AD together with 

a pro vision for loading at A as shown in Fig. E4.1. 

Metre rod, spring balances and standard weights.

Background Information Since the frame is in equi-

librium, every part and sub-part of the frame must also 

be in equilibrium. Consider, for example, the joint A.

The forces that act at A to keep it in equilibrium are 

the known loads acting vertically downward and the 

forces along AB, AC and AD. The directions of AB,

AC and AD are determined from coordinate geometry; only the magnitudes of forces are unknown which may 

be obtained experimentally by reading the spring balances installed in the members. Theoretically, the method of 

vector analysis or a graphical construction may be employed to estimate the forces.

Vectorially, let the unit vectors along AB, AC and AD be ,  and  respectively. These are obtained by 

measuring the coordinates of the end points. For example, if the origin is chosen at O,

A = xA + zA

B = −yB

AB = B − A = −(xA + yB + zA )

whence AB x y zA B A= + +( )2 2 2  

and = − − −
x

AB

y

AB

z

AB

A B A  

Let the unknown forces be F1, F2 and F3 in the members AB, AC and AD respectively. Then, for equilib-

rium of the joint A
 Σ = 0

F1 + F2 + F3 − W = 0

This equation may be written as three equations, one along each coordinate direction to obtain the three 

unknowns.

Fig. E4.1 Shear legs apparatus



Graphically, the forces in the members may be 
determined in two steps. First, a fictitious member AO

is assumed to replace the bars AB and AC. The point 
A may then be considered for equilibrium under the 
action of the load and forces in AO and AD. A triangle 
of forces is drawn whence, by measurement to appro-
priate scale, the forces in AO and AD are determined, as 
shown in Fig. E4.2.

It is advisable to draw a scale diagram ADO of the 
frame with the fictitious member AO before drawing the 
triangle of forces. It may be seen that the force in AD

must be 3 and the force in AO in 12. The nature of forces in AD and AO is observed by drawing the arrows of 
the internal forces and of the external forces on the members.

Since the force exerted by the member AD on the joint is 3, directed A to D, the external force acting at A
on AD must be equal and opposite to it as shown by the dotted lines in Fig. E4.3. Outward external forces on 
AD imply that it must be in tension. Similarly, the fictitious member AO is observed to be in compression.

The second step is to resolve the force 12 along AO into forces 1 and 2 along AB and AC respectively. 
After drawing the force 12 along AO, the directions of AB and AC are drawn and the force 12 is resolved into 

1 along AB and 2 along AC by completing the parallelogram of forces with AO as the resultant diagonal as 
shown in Fig. E 4.4.

B

O

A

C

1

2
12

Fig. E4.4  Construction of 

parallelogram of forces
Fig. E4.3 Internal forces in members

Table of Results

Force in 

member

Experimental values Vectorial 

analysis

Graphical 

procedure
Initial reading When loaded Force (by difference)

AB

AC

AD

W

A

D
O

W

O

d

a
3

12

Fig. E4.2 Construction of triangle of forces
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Points for Discussion

What are the assumptions made in the vectorial and graphical analyses in respect of the rigidity and mass 

of the members?

Examine the joints and supports of the frame and comment on the validity of your analysis in view of the 

same.

Is it possible to calibrate one of the spring-balances to determine the weight of a given body?

Comment on the validity of the assumption of a fictitious member AO lying in the plane of AB and AC.

Concept Review Questions

(a) What is meant by a simple structure?

 (b)  Differentiate between a structure and 

mechanism.

 (c)  Can a simple structure be a space structure?

(a)  Draw a just-rigid structure with five mem-

bers and another just-rigid structure with 

five joints. Draw one additional member in 

each of them to render them over-rigid.

 (b)  Is it possible to have a just-rigid structure 

with an even number of members? Why or 

why not?

In the analysis by the method of joints, should 

one proceed from a joint on the extreme 

left to the joint on the extreme right or the 

reverse or are there some other important 

considerations?

Draw the free-body diagram of a member sub-

jected to tension. What would be the internal 

forces at the two joints?

Recalling the comments on loading conditions, 

fill in the blanks:

(a)  If there are only two members and no 

external force at a joint,.........

(b)  If there are three members, two of which are 

collinear and there is no external force at a 

joint,......

Illustrate the implication of the Bow’s notation. 

What are the space diagram and rays diagram?

Comment on the graphical method of analysing 

a simple structure. Under what conditions is the 

graphical method preferred and for what condi-

tions does it fail?

Tutorial Problems

Determine the forces in the members of the 

pin-jointed truss shown in Fig. Prob. S1.1.

( s x = 3W

x = 2W, = −3W, B = −W (Comp),

B = −W (Comp), AC = 2W ( ),tens

= W (tens), BD = 2 tens2W ( ),

BE = −3W (comp), E = 0)

a

a

a

a a
A

C

B

W

E

D

W

Fig. Prob. S1.1
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A coplanar simple truss ABCDE is loaded 

with a force of 50 kN at A as shown in 

Fig. Prob. S1.2. Determine

(a)  the forces exerted in the members of the 

truss

 (b) the force exerted on the pins at the joints.

( s B = −86.6 kN (comp) = B ,

E = 50 kN = E , EB = 0 = E )

D

E
W

C

B

A

30°

30°

30°

Fig. Prob. S1.2

 Using the method of joints or the method of 

sections, calculate the force in each member 

of the trusses shown in Fig. Prob. S1.3. State 

whether the members are in tension or in 

compression

4 m

50 kN

3 kN 2 kN

2 kN

3 kN

3 m

3 m 3 m

50 kN

2 m
3 m

4 m

3 m2 m

A

C
E

F
B

P
K

L
M N

O

D

Fig. Prob. S1.3

( s B = 40.6, = 34.6, B = 27.95 kN 

PN = =2 2, 2

E = 29.8, = −36.6, E = 29.5 kN 

P = 2, = 2

= 5, P = 0 = P

LP = =2 2, 5)

Determine the forces in the members of the 

given simple truss. (Fig. Prob. S1.4)

( , ,s B / /= = −100 2 3 100 2 3 

E E/3= =100

B = −100/3 = E =  etc.)

B C

DEF

20 kN

20 kN

30 kN

A

Fig. Prob. S1.4

A simple truss is loaded as shown in Fig. Prob. 

S1.5. Calculate the forces in the members.

B

C

DG

H

EF

30 kN10 kN

20 kN

20 kN

2 m

2 m

2 m

A

3 m

Fig. Prob. S1.5
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( s B = B = 0 = = E, = −24.0,

= 13.3 = G

= −10.0, G = 24.0, = 0.0 = E,

G = 106.7, GE = 96.1 kN )

Compute the forces in the members of the 

given pin-jointed truss. (Fig. Prob. S1.6).

( s = 9.1, B = 12.93, E = 20.0 

B = 28.28, G = 40.0, = 28.28, 

GE = 27.87 kN)

45°A B C

G H

D
EF

a a a a

20 kN10 kN

a

a

Fig. Prob. S1.6

A triangular simple truss is loaded as shown in 

Fig. S1.7. Determine the forces in the members.

( s = 0.46, = 10.15, B = 10.60, 

B = 0.55 = B)

10 kN

A
D

B

C
3 m 3 m

2 m

45°
15 kN

Fig. Prob. S1.7

8 A frame is subjected to a horizontal load to 

2 kN at C, a vertical load of 1 kN and a moment 

of 1.5 kNm at the mid-point of DE as shown in 

Fig. Prob. S1.8. Determine the reactions at the 

support A and B and the force on the pin at D.

( s RAx = −2 kN, RAy = −1.21 kN, 

RB = 2.21 kN; Zero)

B

C

D E

2 kN

3.0 m

1.0 m

A

1 kN

1.5 kNm

6.0 m

Fig. Prob. S1.8

A ball-and-socket jointed space frame is 

loaded with a single load of 10 kN at C in 

the y-z plane as shown in Fig. Prob. S1.9. All 

dimensions are in metres. Determine the force 

in the member CG.

( s G = 7.07 kN (comp); = B = −1.6;

G = G = 1.6; EG = 3.35 (comp))

45°

10 kN z

x

y

C (0, 0, 2)
G (0, 6, 2)

F (−2, 6, 0)

E (0, 8, 0)

D (2, 6, 0)
A (2, 0, 0)

B (−2, 0, 0)

O

Fig. Prob. S1.9
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Determine the forces produced in the bars 

of the system due to the horizontal force P

applied at the hinge B (Fig. Prob. S1.10)

( s B = = P (tension); 

B = 0 = 1.414 P (comp))

A
B

CD

P

Fig. Prob. S1.10

Look up Hints to Tutorial Problems at the end!

Select the correct or most appropriate response from 

among the available alternatives in the following 

multiple-choice uestions:

If, for a plane pin-jointed truss, m  2j − 3 with 

the usual notion,

 (a) it must be a just-rigid truss

 (b)  it cannot be over-rigid over any part of the truss

 (c) it may or may not be a just-rigid truss

 (d)  it cannot be non-rigid over any part of the 

truss

The method of joints for the analysis of forces in 

the members of a pin-jointed truss

 (a) is a special case of method of sections

 (b)  does not need the determination of reactions 

at the supports

 (c)  works equally well, irrespective of starting 

point for the analysis

 (d)  fails when there are only two members at a 

joint and no external load is applied there

In the method of sections for the analysis of forces 

in the members of a pin-jointed truss,

 (a)  the section can be cut through any set of 

members for equal ease of analysis

 (b)  the sections must be cut so that the number 

of unknowns is limited and determined by 

employing the conditions of equilibrium.

 (c)  care must be taken to ensure that the section 

being cut is in equilibrium

 (d)  the sections to be cut are as small as possible

Answers to the Multiple-Choice Questions

1 (c)    2 (a)    3 (b)

Multiple-Choice Questions



 S2.1  TYPES OF BEAMS

A beam is a structural member, generally horizontal, which can take transverse load in  addition 

to other loading. By ‘transverse load’, we mean ‘perpendicular to the length’ of the beam. 

A beam may also take other loads, e.g., load in the axial direction, i.e., tension or compression 

and torsion about the axis!

A beam is a very important structural member and is often used in engineering structures, 

bridges, etc., wherever a transverse load is encountered. In contrast, members of pin-jointed 

frames can take only compressive or tensile load. Shafts typically take only twisting loads. Struts 

take only compressive loads. Beams can take it all! A two-force frame member becomes a beam 

if it also takes transverse load Similarly, a shaft transmitting power becomes a beam if it also takes 

transverse load! Beams may carry different types of transverse loads, e.g., point loads, uniformly 

distributed loads or varying loads or 

even time dependent loads along its 

length. We shall consider the beams 

as ‘rigid beams’, which implies that 

the size and shape of the beam must 

remain the same. A rigid beam cannot 

deflect  under-applied loads; there may, 

however, be a tendency to deflect or 

curve under the action of shear forces 

and bending moments, which we shall 

work out.

Beams are classified depending 

upon the types of supports. The sim-

plest of all beams is called a ‘simply 

S2

A structure showing a horizontal beam in front

Simply Supported 

Beams: Shear 

Forces and Bending 

Moments
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supported beam’, which means a beam supported on a hinge at one end and a roller support at another. Such 

a beam can carry only a transverse load, as shown in Fig. S2.1. A simply supported beam could as well be an 

overhanging beam at one or both ends, as shown in Fig. S2.2.

W

Hinge
Roller

support

Fig. S2.1 A simply supported beam

W

Hinge
Roller

support

w/unit length

Fig. S2.2 A simply supported overhanging beam

A beam fixed at one end and free at the other 

is called a cantilever beam or just a cantilever.

Cantilevers are useful because they can  support 

transverse loads on overhangs and at such places 

where a second support cannot be placed. Examples 

of cantilevers are fixed-end wall brackets, common-

place balconies and half-bridges from either side of 

the over. Look at the Cantilever Tower Bridge over 

river Thames in London. It opens up for ships to 

pass by and comes down flat to make the road!

A cantilever may be loaded with point loads or 

distributed loads as shown in Fig. S2.3.

A beam could also be supported by fixed 

 supports, such as by nails, bolts, rivets, welding or 

be cast in concrete. Such beams are called fixed-

end beams. A continuous beam is one which has 

more than two supports. Some such beams as shown 

in Figs. S2.4 (a, b and c) are also called ‘statically 

indeterminate’ beams because the reactions cannot 

be obtained by employing only the equations of 

equilibrium.

Double cantilever tower bridge, London

W

w/unit length

Fig. S2.4 (a) A fixed-ends beam

W

w/unit length

Fig. S2.4 (b)  A continuous beam: with 

an intermediate support

W

w/unit length

Fig. S2.4 (c) A continuous beam: with two intermediate supports

W

w/unit length

Fig. S2.3 A cantilever beam
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 S2.2 SHEAR FORCE AND BENDING MOMENT AT A CROSS-SECTION IN A BEAM

By virtue of the fact a beam takes transverse load, i.e., across the longitudinal axis, it is bound to experience 

resisting forces and moments over the cross-sections. The internal resisting forces over a cross section are 

called shear forces and the internal resisting moments are called bending moments.

Shear force acting at a cross section tend to shear the beam across that cross section. The bending moment 

at a cross section tends to curve the beam concave upwards or convex upwards. But the beam is considered 

to be rigid; resisting shear and bending. It may also be pointed out that the cross section of a beam is either a 

rectangle with more depth than width, or it is I or T shaped to resist shear and bending stresses.

Consider the free-body diagram of simply supported beam, as shown in Fig. S2.5. It shows the external 

load W and the reactions at the supports. The roller support at B can only provide a vertical reaction, whereas 

the hinge can, in principle, provide a vertical and a horizontal reaction depending upon the need. In this case, 

however, there is not going to be a horizontal reaction because there is no other horizontal force! The vertical 

reactions at A and B can be easily worked out by considering the equilibrium of the beam and applying sum-

mation of ‘forces’, and ‘moments about any point’ to be zero!

How can we work out the shear force and  bending 

moment at a given cross section?

Simple! Consider a part of the beam, say the left 

part, until that cross section and consider its equilib-

rium, as shown in Fig. S2.5. At that cross section, the 

equilibrant force would be the shear force  and the 

equilibrant moement called the bending moment .

Clearly, the shear force  at P would be equal 

to RA acting downwards

= RA

and the bending moment  at P would be 

= RA AP = RA  x

acting in anticlockwise direction

What would have happened if we considered that part of the beam to the right of P?

Let us draw the f bd and proceed to determine the shear force and bending moment at P.

The shear stress comes out to be

= W − RB

which is the same, in magnitude as RA because

W = RA + RB

But  is now acting upward.

The two answers for the shear force at the same point must be the same in magnitude and sense. How do 

we resolve the issue of sign difference? Notice that the downward  was acting on a positive face of the cross 

section upward  is now acting on the negative face.

W

A C B

Hinge
Roller

support

Fig. S2.5 Free-body diagram of a simply supported beam

A x

RA

P

Fig. S2.5 (a)  Free-body diagram of 

part to the left of the 

cross section

W

P C
B

RB

Fig. S2.5 (b)  Free-body diagram of part to the right 

of the cross section
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Sign Convention for Shear Force V

A shear force is said to be positive if it acts downwards on a posi

tive face such that the right part of the beam tends to shear down 

compared to the left part.

Now, the shear force at P in the case is +  because it is downward 

on the left part; it was tending to shear the right part downwards! 

The shear force obtained by considering the part of the beam on 

the right of the section is also +  since it acts on a negative face.

The bending moment at the same point P can be obtained but 

it would appear to be negative of the obtained earlier. How do we 

resolve the issue of sign difference?

Sign Convention for Bending Moment M

A bending moment is said to be positive if it acts anticlockwise 

on a positive face such that the left part of the beam tends to sag 

down compared to the right part.

We should always assume and show the bending moment to be 

positive in a fbd and decide on it actually being positive or nega-

tive depending upon the sign that emerges by equilibrium analysis.

Let us determine the shear force at any cross-section between C and B by choosing a point P in that part 

and considering the equilibrium of the part on the left or right of that cross-section as before. The shear force 

at a point P in that part, Fig. S2.8 as given by

= W − RA

acting upwards. That means it is negative, by using the sign convention, i.e., − .

But, that is not how we should proceed. It is recommended to draw the f bd by showing the positive shear 

force (any positive bending moment) and then by working out whether it is indeed positive or negative, 

depending upon what sign we get from equilibrium consideration. So, we should draw an f bd by assuming 

 as positive downward, as shown in Fig. S2.9.

x

Fig. S2.6  Sign convention: positive shear 

force V downward on a positive 

face and upward on 

a negative face

x

Fig. S2.7  Sign convention: positive bending 

moment M anticlockwise on a 

positive face and clockwise on a 

negative face

W

C
P

RA

Fig. S2.8  Free-body diagram of the part 

on the left of cross section

W

C
P

RA

xA

Fig. S2.9  Free-body diagram of the part on the left of 

cross section with V and M assumed positive

The analysis shows that, for equilibrium,

 − + RA − W = 0

whence, = RA − W

and that would be negative in numerical terms, W being greater than RA.

The bending moment at this section is given by

 − RA ⋅ AP + W⋅ AC = 0

whence, − RA ⋅ AP − W⋅ AC = RA x − W ⋅ (x − AC )

It results in  , both in magnitude and sign.
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Now that we understand the shear force  and bending  

moment are vectors, we also understand that we are 

generally dealing with vertical loading, reactions and 

forces, and we are dealing with MAGNIT DES, so we 

may as well not use vector notation. et us write the 

loading as W and w, reactions as R, shear force as  and 

bending moment as M.

Let us now consider the shear force and bending 

moment at some sections in the cantilever shown in 

Fig. S2.3 by drawing its fbd as shown in Fig. S2.10.

By equilibrium considerations,

 RA − W − (w ⋅ DB) = 0

and MA − W ⋅ AC − (w ⋅ DB ⋅ AK ) = 0

where K is the midpoint of DB

whence, RA = W + (w ⋅ DB)

and MA = W⋅ AC + (w ⋅ DB ⋅ AK)

Once the reactions at the support are known, it easy to draw the fbd

of any required part of the cantilever to determine the shear force 

at any cross section. In order to obtain the shear force at a section 

between A and C, the fbd of the left hand part of the cantilever is drawn in Fig. S2.11.

By equilibrium of the part with V and M shown positive according to the sign convention and the moment 

also positive, according to sign convention,

RA − V = 0; V = RA

and MA + M − RA ⋅ AP = 0

or M = RA ⋅ x − MA

which would provide M both in magnitude and direction.

Likewise, the bending moment at another section on the right 

of the load W can be obtained by looking at the part of the canti-

lever. By equilibrium of the part with V and M both shown positive 

according to the sign conventions in Fig. S2.12,

MA + M − RA ⋅ x + W⋅ (x − AC ) = 0
whence,     M = RA ⋅ x − MA − W⋅ (x − AC )

both in magnitude and direction.

 S2.3 SHEAR FORCE DIAGRAM FOR A BEAM

A diagram showing the variation of shear force at different cross sections along the beam is called Shear 

Force Diagram (often referred as SF Diagram).

In order to draw a shear force diagram, one needs to find out shear forces at some salient points, i.e., cross 

sections of a beam and then draw a continuous graph. Now that we have to determine shear forces at several 

salient points, we should proceed by writing a general expression, by inspection of a given beam and loading, 

which can result in shear forces without drawing so many free-body diagrams and taking too many steps. It is 

possible to do so with some practice. Let us demonstrate how to write general expressions for some cases:

For the simply supported beam example,

V = + RA | − W

W

CA D K B

RA

MA

w/unit length

Fig. S2.10 Free-body diagram of the cantilever beam

A
P

M

C

V
W

RA

MA

x

Fig. S2.12  Free-body diagram of the 

cantilever part AP

A P

M

V

RA

MA

x

Fig. S2.11  Free-body diagram of the 

cantilever part
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which means that the shear stress is + RA ‘until the next load’ and + RA − W, thereafter!

The shear force diagram may now be drawn. It is usually drawn right under the loading diagram to show 

point by point correspondence as in Fig. S2.13:

It may be noted that the diagram shown the shear force V to be positive and equal to RA. Form A to C and 

then it shows it to be negative and equal to W − RB from C to B.

Let us now draw the SF diagram for the canti lever shown loaded in Fig. S2.13. We write an expression for 

shear force V in the cantilever:

V R W= − − −A w x x AD( )

which means that the shear force is RA from A to C; RA − W from C to D it varies linearly from D to B.

The SF diagram is now drawn in Fig. S2.14 under the loading diagram.

 S2.4 BENDING MOMENT DIAGRAM FOR A BEAM

A diagram showing the variation of bending moment at different cross sections along the beam is called 

Bending Moment Diagram (often referred as BM Diagram).

In order to draw a bending moment diagram, one needs to find out bending moment at some salient points, 

i.e., cross sections of a beam and then draw a continuous graph. Now that we have to  determine bending 

moment at several salient points, we should proceed by writing a general expression, by inspection of a given 

beam and loading, which can result in bending moments without drawing so many free-body diagrams and 

taking too many steps. It is  possible to do so with some practice. Let us demonstrate how to write general 

expressions for some cases:

For the simply supported beam, the general expression for the bending moment is

M R x W x ACA− ⋅ + ⋅ −( ) = 0

whence, M R x W x ACA− ⋅ − ⋅ −( )  

W

CA D M B

RA

w/unit length

Loading diagram of the cantilever

A

W

C

D

B

Fig. S2.14 Shear force diagram for the cantilever

W

C

C

A

V

A

B

B

Loading diagram of the beam

Fig. S2.13 Shear force diagram for the beam
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Implying that it is RA ⋅ x until the next load and the whole expression thereafter. The bending moment diagram 

is shown plotted in Fig. S2.15. It may be noted that the bending moment is the maximum at C, where shear 

force changed sign and passed through zero!

Let us now turn to the cantilever. The general expression for the bending moment at any cross section can 

be written by equilibrium:

M M R x W x AC w x AD x ADA A+ − ⋅ + ⋅ −( ) + −( )⋅ −( ) =/2 0

whence, M M R x W x AC w x AD x ADA A= − + ⋅ − ⋅ −( ) − −( )⋅ −( ) /2
 

with usual meanings. The bending moment diagram is shown plotted under the loading diagram in Fig. S2.16. 

It may also be noted that the bending moment has maximum values at A and C, where the shear force passes 

through zero!

 S2.5 GENERAL RELATION BETWEEN LOADING, SHEAR AND BENDING MOMENT

It is possible to relate the loading with shear and bend-

ing moment at the same cross section of a beam with 

distributed loads. Consider a beam with loading w per 

unit length, considered positive downwards, as shown 

in Fig. S2.17.

The shear force V and moment M are shown positive, 

by convention, on both faces of the element, isolated 

from the beam. Distances are measured from an origin 

O. Equilibrium of the element requires that

 V − w ⋅ dx − ( V + d V ) = 0

and M + w ⋅ dx ⋅ dx/2 + (V + d V ) ⋅ dx − (M + d M ) = 0

From the former, w = − d V/dx

W

CA D K B

RA

MA

w/unit length

Loading diagram of the cantilever beam

A

MA

C D BM

Fig. S2.16 Bending moment diagram for the cantilever

W

Cx B

RA RB

Loading diagram of the beam

C BA

RA
. xBM

Fig. S2.15 Bending moment diagram for the beam

A
O

dx

dxx

Loading w = f(x)

(Positive downwards)

PV

V + d V

M + d MM

Fig. S2.17 An element of a beam
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3 m 1 m

8 kN

C

BA

Fig. Ex. S2.1 

It shows that the slope of the shear force diagram must be equal to the negative of the loading at that cross 

section. This equation also holds good on either side of a concentrated load but not at the point of the load.

Integrating the above equation w.r.t. x,

 d w dxV∫ ∫= − ⋅

which means that the area under the loading curve must be equal to the shear force at a cross section.

The moment equation for the equilibrium of the element simplifies to provide

V = d M/dx

which expresses that the slope of the bending moment curve equals the shear force at that point. Likewise, 

by integration of the above

 d dxM V= − ⋅∫∫
shows that the area under the area under the shear force diagram equals the bending moment at that point.

It may also be noted that the second derivative of M w.r.t. x must be equal to − w. It also shows that if w is

a given function of x, the shear force and bending moment diagrams can be drawn very easily!

The following observations are also helpful:

1.    That the degree of the curve for shear force is one higher than that for loading. And the degree for curve 

of bending moment is one higher than that for the shear force.

2. That the shear force must have a step change at a point of concentrated load; it usually changes sign!

3. That a point of zero shear force must correspond to a point of maximum or minimum bending moment.

Some conclusions are summed up in Table S2.1.

Table S2.1 Shapes of loading, shear force and bending moment diagrams

Type of loading 

on a beam

Shape of loading 

diagram

Shape of shear force 

diagram

Shape of bending 

moment diagram

Zero; No Load Zero Line Rectangular Triangular Line

Uniform Loading Rectangular Triangular Line Parabolic Curve

Linearly Varying Loading Triangular Line Parabolic Curve Cubic Curve

Example S2.1 A simply supported beam 4 m 

long carries a 5 kN load at 1 m from one end, as 

shown. Calculate the shear force and bending 

moments at a point on either side of the load.

Solution We need to determine the reactions by con sidering the equilibrium of the beam AB. Reaction RB

at the roller end must be vertical; hence the reaction at the hinge must also be vertical since the external 

load is only vertical!

 ∑ = + − = + =F R R R Ry A B A B0 8 0 8; kN
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 ∑ = × − × = =M R RA B B0 4 3 8 0 6; kN

and, by difference, RA = 2 kN.

 Now, consider the equilibrium of a part AP of the beam from the left 

end, with shear force V shown positive downward on a positive face.

By equilibrium,

 2 − V = 0; V = 2 kN

The shear force at P is +2 kN. Shear force V at all 

sections from A to C on this part of the beam is 

+2 kN.

 Now, consider the equilibrium of a part AP ′
where P ′ is on the right side of the applied load, 

again assuming V to be +ve, acting downwards.

By equilibrium,

 +2 −8 − V = 0; V= −6 kN

It is seen that, at point C, the V changes from +2 kN to −6 kN, i.e., 

by 8 kN which due to the applied load of 8 kN.

 In order to determine the bending moment at a cross section, we 

again need to consider the equilibrium of a part of the beam until 

that cross section.

 Considering the part AP, of length x, metre, the equilibrium moment 

at P (exerted by the rest of the beam on part AP) must be +2x kN/m. It 

shows that it varies linear by from O at A to 2 × 3 or 6 kN/m at C.

 Now, consider the equilibrium of part AP ′ as before and the equilibrant 

moment at P ′ should be +2x − 8 (x − 3), i.e., −6x + 24 kN/m.

This again varies linearly between C and B.

 M at C = 6 kN/m

 M at B = 0

Reflection

There are two useful observations:

 1. We need to verify the answers as we proceed and 2. We may decide to 

determine the V and M at a cross section by considering the part of the beam from the left or from the right 

of convenient to us. In order to verify the V and M at P ′, we could have considered the same cross section by 

choosing the right part of the beam as follows:

 The equilibrant force at P ′ would be −6 kN but it is at a −ve face; meaning a negative −6 kN, as before.

Likewise, the equilibrant moment at P ′ would be −6x ′ but it is at a −ve face; meaning a positive BM.

Since x ′ is measured from B,

 M at B = 0

M at C = 6 × 1 = 6 kN/m.

We have verified our results by considering the part of the beam from the right end.

 We could have written expressions for V and M at all the sections from one end to the other:

 

V

M

= + −
= + −

2 8

2 8 3

�

�

kN

x x( )

A P

+ve face

2 kN

M

x

Fig. Ex. S2.1(c) (Solution)

8 kN

C

A
P¢

V

2 kN

+ve face

Fig. Ex. S2.1(b) (Solution)

A P

+ve face

2 kN

V

Fig. Ex. S2.1 (a) (Solution)

B

B

−ve

face

6 kN

6 kN

6 kN

P¢

P¢

x¢

Fig. Ex. S2.1(d) (Solution)
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 For the cross section at P: by equilibrium

RA − V = 0; V = RA ⇒ 7 kN

M + MA − RA ⋅ x = 0; M = RA ⋅ x − MA

 Likewise, just imagine (or draw) the fbd of a part equal distance of the beam until a point P on the right 

of the 5 kN load.

 By equilibrium 

RA − V − 5 − 1(x − 6) = 0; V = 7 − 5 − 1(x − 6)

M M R+ − + − + − =A Ax x x5 6 1 6 2 02( ) ( ) /

whence  M M R= − − + − − −A Ax x x5 6 1 6 22( ) ( ) /

 We could have written down expressions for V and M at all the 

sections from A to the other end by a little imagination:

V

M

= + − − −

= − + − − − − = − + − − −

7 5 1 6

5 6 1 6 2 44 7 5 62

�

� �

( )

( ) ( ) / ( ) (

x

M R x x x x xA A xx − 6 22) /

6 m 2 m

5 kN

BA

1 kN/m

C

Fig. Ex. S2.2

where the first term applies from A to C and the total expression for the part C to B.

 The advantage of doing so is to be able to write such expressions for all different sections of a beam with 

several different types and points of loading.

Example S2.2 Calculate the shear and bending 

moment at a point on either side of the concentrated 

load for the cantilever AB carrying a concentrated 

load and a uniformly distributed load as shown.

Solution We draw a fbd for the cantilever and determine the reaction at A:

 
∑ = − − × = =F R Ry A A0 5 1 2 0 7; ; kN

 

∑ = − × − × × + =

= + =

M M

M

A A

A

0 5 6 2 1 6 6 1 0

30 14 44

; ( )

.kN/m

 Let us draw the fbd of a part of the beam starting from left side A, and assume both V and M to be +ve.

x

x

y

5 kN

C

1 kN/m

MA

RA 6 m 2 m

B

Fig. Ex. S2.2(a) (Solution)

x

RA

MA M
P

V

Fig. Ex. S2.2(b) (Solution)
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3 m 1 m

8 kN

C

BA

Fig. Ex. S2.3

where the parts before the vertical divider apply from A to C and the whole of it applies from C to B. From 

the above,

at x = 3 m V = +7 kN M = −23 kN/m

at x ≤ 6 m V = +7 kN M = −2 kN/m

at x ≥ 6 m V = +2 kN M = −2 kN/m

at x = 7 m V = +1 kN   M = −
1

2
kN/m

at x = 8 m V = 0       M = 0

Shear force and bending moment are both zero at the free end B, indeed!

Example S2.3 Draw the loading diagram for 

the simply supported beam shown in Fig. Ex. S2.3. 

Calculate the shear force and bending moment at 

some salient points and hence sketch the shear force 

and bending moment diagrams.

Solution The reactions at A and B are calculated in solving Ex. S2.1. The shear forces and bending 

moments at some representative sections are also calculated there.

 Taking into account those values, let us draw the loading, shear force and bending moment diagram as 

follows: Notice that the loading diagram is the free-body diagram for the beam.

8 kN

6 kN

C

A

B

2 kN

Loading diagram

CA

+ 2 kN

− 6 kN − 6 kN

+ 2 kN

B

Shear force diagram

C B

+ 6 kN/m

A

M

Bending moment diagram

V

Fig. Ex. S2.3 (Solution)
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x B
A

10 kN
10 kN

4 kN/m 2 kN/m

1 m 1 m 1m2 m 2 m

R1 R2

Fig. Ex. S2.5

6 m 2 m

5 kN

BA

1 kN/m

Fig. Ex. S2.4 

Example S2.4 Draw the loading diagram for the 

cantilever shown in Fig. Ex. S2.4. Calculate the shear 

force and bending moment at some salient points and 

hence sketch the shear force and bending moment 

diagrams.

Solution The reaction at A is calculated in the solution of Ex. S2.2. The shear forces and bending moments 

at some representative sections are also calculated there.

 Taking into account those values, let us draw the loading (free-body) diagram, shear force and bending 

moment diagrams as follows.

+44 kN

5 kN

7 kN

C
BA

1 kN/m

x

x

y

Loading diagram

Shear force diagram

7 kN

C BA

2 kN

C BA
M

− 2 kN/m

− 44 kN/m Linear

Parabolic curve

Bending moment diagram

6 m 2 m

Fig. Ex. S2.4 (Solution)

Example S2.5 Draw the SF and BM diagrams for the beam loaded as shown in Fig. Ex. S2.5. Also 

locate the points of contraflexure.
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Solution From the conditions of equilibrium of the beam

Σ = 0; −10 + R1 − 4 × 2 − 10 + R2 − 2 × 2 = 0

R1 + R2 = 32

Σ B = 0;  −10 × 1 − 8 × 1 − 10 × 3 

+ R2 × 4 − 4 × 5 = 0

R2 = 12 kN and R1 = 32 − 12 = 20 kN

 The shear force V at a point on the left of the 

concentrated load may be obtained by drag the 

fbd of the left hand part as shown in Fig. Ex. 

S2.5(c) (Solution) where V has been assumed to be 

positive.

 For equilibrium,

−10 − 4 × 2 − V = 0; V = −18

 Likewise, imaging or cross section any where 

in the beam, the general expression for shear 

force is

 
V = − + − − − + − −10 20 4 10 12 2� � � �( (x x1) 5)

upto 3

 Let us check for x = 7 m,

 
V = − + − − − + −

= − + − − + − =
10 20 4 3 10 12 2 2

10 20 8 10 12 4 0

( ( )

; !

1)� � �

true

 1 < x < 3  M + 10x − 20(x − 1) + 4(x − 1)2/2 = 0

  M = −2(x − 1)2 + 10x − 20

 At x = 1 M = −10; at x = 2 BM = −2

 At x = 3 M = 2

 3 < x < 4 M + 10x − 20(x − 1) + 8(x − 2) = 0

  M = 2x − 4

 At x = 3 M = 2; at x = 4 BM = 4

 4 < x < 5  M + 10x − 20(x − 1) + 8(x − 2) 

+ 10(x − 4) = 0

  M = −8x + 36

 At x = 4 M = 4; at x = 5 BM = − 4

 5 < x < 7  M + 10x − 20(x − 1) + 8(x − 2) 

+ 10(x − 4) −12(x − 5) 

+ 2(x − 5)2/2 = 0

  M = − (x − 5)2 + 4x − 24

 At x = 5 M = − 4; at x = 6 BM = −1

 At x = 7 M = 0, as expected at the end F.

 The points of contraflexure can be located by observing the change of sign of BM

 For P1, −2(x − 1)2 + 10x − 20 = 0 x = 2.38 m

 For P2, −8x + 36 = 0 x = 4.50 m

Shear force diagram

V

B A

+10 kN

−10 kN

−8 kN

+2 kN

+4 kN

Fig. Ex. S2.5(a) (Solution)

BM diagram

+2

P2

+4

OO

−4

−10

P1

Fig. Ex. S2.5(b) (Solution)

V

B

10 kN

4kN/m

20 kN

1m 2 m

P

M

x

Fig. Ex. S2.5(c) (Solution)
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A D

3 t 5 t
w/unit length

x

B C

RB Rc

a b a

Fig. Ex. S2.6 

Example S2.6  A beam carrying a  uniformly-

distributed load rests on two supports b m apart with an 

equal overhang of a m at each end. Determine the ratio 

b/a for the maximum bending moment to be as small as 

possible. Use this result to determine the most economical 

length for a railway sleeper if the rail centres are 1.6 m 

apart and also for the metre-gauge rails.

Solution Consider the variation of the bending moment along the length of the beam

 For  0 < x < a M + wx ⋅ x/2 = 0; M = −wx2/2

 For       x = a M = −wa2/2

The reactions are symmetrically located; these are each

w(2a + b)/2

 From the above expression,

 at x = 2 m,    V = −10 + 20 − 4 = + 6 kN

 at x = 3 m,  V = −10 + 20 − 8 = + 2 kN

 at x < 4 m,  V = −10 + 20 − 8 = + 2 kN

 x > 4 m,   V = 2−10 = − 8 kN

 at x = 5 m,  V = −8 + 12 = + 4 kN

 at x = 6 m,  V = +4 − 2 = 2 kN

 at x = 7 m,  V = 2 − 2 = 0, or expected!

 This data enables us to draw the shear force diagram as shown in Fig. Ex. S2.6 (Solution).

 In order to determine the bending moment M at any 

point, one may also proceed to consider the equilibrium 

of the same part of the beam as for shear forces, by 

assuming M to be positive at the section P.

By equilibrium,

M + 10 x −20 (x − 1) + 4 × 2 × (x −2) = 0

where  M = −10x + 20x −20 −8x + 16

 = 2x −4

at x = 3 m, M = +2 kN/m.

and at        x < 4 m, M = +4 kN/m.

 We could continue by writing the general expression for 

M until the other end A but it may be easier to proceed bit 

by bit and as follows:

 Considering the equilibrium of different parts of the 

beam, starting from the left end, (by drawing the fbd or 

just imagining it),

0 < x < 1 M + 10x = 0, M = −10x

At x = 1, M = −10 kN/m

 For  a < x < (a + b) M + wx ⋅ x/2 − w(2a + b)/2 ⋅ (x − a) = 0

 M = −wx2/2 + wax − wa2 + wbx/2 − wab/2

A
B

D
C

a

a + b/2

a + b

Fig. Ex. S2.6 (Solution)
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3 m 2 m1 m L

O O

E
A B C D

6 kN

1.5 kN

−2.5 kN −2.5 kN
−3 kN

1.5 kN

Fig. Ex. S2.7

As is clear from the nature of the BM diagram (Fig. Ex. S2.6 (Solution)) the bending moment can be 

maximum either at x = a and x = a + b or at x = a + b/2. The maximum bending is the least when the 

numerical values at these places are equal:

wa2/2 = −w(a + b/2)2/2 + wa(a + b/2) − wa2 + wb(a + b/2)/2 − w ab/2

whence, cancelling w and simplifying,

 a b= / 8

and a b/ = 1 8/

It is clear that, for a b> / 8 the BM at x = a, i.e., at the supports is maximum and for a b< / 8  the BM at 

x = a + b/2, i.e., at the centre is maximum.

 The railway sleepers rest uniformly on the ground and are subjected to two equal point loads as a first 

approximation. For 1.6 m gauge rails,

b a= = =1 60 1 6 8 0 57. ; . / . m

 The most economical length of the railway sleeper is, therefore,

    l = 0.57 + 1.60 + 0.57 = 2.74 m

 For the metre gauge rails,

 b a= = =1 00 1 8 0 36. ; / . m

and the most economical length of the sleeper is

 l = 0.36 + 1 + 0.36 = 1.72 m

Example S2.7 Figure Ex. S2.7 shows the SF

diagram for a beam supported at two points and 

loaded in some manner. Determine the position 

of the supports and details of loading over the 

entire length.

Solution Conclusions in respect of the relationship between the loading, shear force and BM diagrams can 

be drawn from the fact that

 d

dx
w

( )V
= −  (i)

and
d

dx

( )M
V=  (ii)

Between A and B, the shear force is constant; the loading must be 

zero. At A and at B, the shear force changes abruptly indicating Fig. Ex. S2.7 (Solution)
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the presence of concentrated loads at A and B. Positive shear force at A and from A to B indicates +ve, i.e., 

upward force of 6 kN at A. A change of sign of SF at B requires a downward concentrated force of 8.5 kN 

at B. Between B and C, there is no loading. Again, at C, there must be an upward force of 4 kN raising the V

to 1.5 kN. Again, no loading between C and D and a downward force of 4.5 kN at D is observed from the 

SF diagram. From D to E the V increases linearly showing that the loading must be uniform and upward. 

This force is, by difference, 3 kN.

 It appears that the supports are placed at A and C which provide upward reactions. There is additional 

support between D and E, which is uniform perhaps by way of floatation or some other way.

Example S2.8 A log of wood, specific gravity 0.78, 3 m long and 25 cm × 25 cm in cross-section 

floats in water. Determine the load that should be placed centrally on the log so that the log is just 

completely immersed in water. Draw the SF and BM diagrams of the log.

Solution The log of wood is subjected to an upward hydrostatic force from below, as shown in Fig. Ex. S2.8 

(Solution) the hydrostatic pressure being

 p = r gh = 1000 × 9.81 × 0.25 = 2452.5 N/m2

which comes to an upward uniform loading

 w1 = 2452.5 × 0.25 = 613 N/m

 The weight of the log appears as downward uniform loading

 w2 = 0.78 × 1000 × 9.81 × 0.25 × 0.25 = 478 N/m

 The effective uniform loading is

 w = w1 − w2 = 613 − 478 = 135 N/m upward

Fig. Ex. S2.8 (Solution)

O x

y

C

C

C

Hydrostatic

Force

Loading diagram

O

O

SF  diagram

BM  diagram

Weight

of Log

V
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2.5 m 5 m

0.5 m

2.0 m

5 kN/m

1 kN/m

0.5 kN/m

2 kN

1 kN

Rx

Ry

M0

y

x

O A B

C

Fig. Ex. S2.9

 The centrally placed weight should, therefore, be

W = 135 × 3 = 405 N

in order to keep the log in equilibrium.

 The shear-force distribution is calculated thus:

 For 0 < x < 1.5, −V + 135x = 0; V = +135x

 At x = 0, V = 0 
 At x = 1.5, V changes from +202.5 N to −202.5 N 

 For 1.5 < x < 3, −V + 135x − 405 = 0; V = −405 + 135x

 At x = 1.5, V = −202.5 N 
 At x = 3, V = 0, as expected at the free end 

 The BM diagram can be plotted from the following:

 For 0 < x < 1.5, M − 135x  x/2 = 0; BM = 67.5x2

 At x = 0, M = 0; at x = 1.5 BM = 152 N/m 

 For 1.5 < x < 3, M − 135x  x/2 + 405(x − 1.5) = 0 

 M = 67.5x2 − 405(x − 1.5)

 At x = 1.5, M = 152 N/m 

 At x = 3, M = 0, as expected at the free end 

Example S2.9 Draw the SF and BM diagrams 
of the beam shown in Fig. Ex. S2.9.

Solution From the equilibrium of the beam,

 Σ = 0; Ry − (1/2 + 1)/2 × 5 − 1 = 0; 

Ry = 4.75 kN

Rx − 2 = 0; Rx = 2 kN

 
∑ = − − − × =∫M0 0

2 9

7 5

0 5 1 10 0;
.

.

M wx dx

where the loading w is determined as a function of x as follows:

 w = ax + b

 

0 5 2 5

1 0 7 5
0 1 0 25

. .

. .
. , .

= +
= +

⎤

⎦
⎥ = =

a b

a b
a b

or w = 0.1x + 0.25

and M0 = 34.7 kN/m
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3 m 4 m 4 m 3 m

45°

50 N/m

300 N/m

Fig. Ex. S2.10

 Consideration of the shear force at different 

sections shows that

 For 

0 < < 2.5, − + 4.75 = 0; = + 4.75 kN

 For       2.5 < < 7.5,

     − + − +( ) =∫4 75 0 25 0 1 0

2 5

. . .

.

= −0.05 2 − 0.25 + 5.67

 At = 2.5, = + 4.75 kN 

 At = 5.0, = + 3.17 kN 

 At = 7.5, = + 1.00 kN 

 For 7.5 < < 10, 

− + − + =∫4 75 0 25 0 1 0

2 5

7 5

. ( . . )

.

.

= +1.00 kN

 The bending moment at different sections is determined as follows:

 For  0 < < 2.5, − 4.75 + 34.7 = 0; = 4.75 − 34.7

 At = 0, = − 34.7 kN/m 

 At = 2.5, = − 22.8 kN/m 

 For 2.5 < < 7.5, = 4.75 + 34.7 + (0.25 + 0.1)( − 2.5) 

 = 4.75 − 34.7 − 0.125 ( − 2.5)2

 0.05 ( − 2.5)2 + 0.033 ( − 2.5)3

 At = 2.5, = −22.8 kN/m 

 At = 5.0, = −11.77 kN/m 

 At = 7.5, = −7.5 kN/m 

 For 7.5 < < 8,     varies linearly from −7.5 kN/m to −7 kN/m 

 At = 8,  changes abruptly from −7 kN/m to −2 kN/m 

 For 8 < < 10,  varies linearly from − 2 kN/m to 0. 

Example S2.10 Compute the shear force, axial 

force and bending moment over the length of the 

bent beam shown in Fig. Ex. S2.10.

+1 kN+1 kN
+4.75 kN

−34.7 kN −22.8 kN/m

 diagram

 diagram

Fig. Ex. S2.9 (Solution)
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Solution From the equilibrium of the beam,

 Σ F = 0; −300 − 14 RA + 50 × 4 × 5 = 0; RA = 50 N

 Σ = 0; −50 × 4 + 50 + RFY = 0; RFY = 150 N; RF = 0

 Consider a section at a distance s from A along AB. From the free-body diagram of the beam segment 

Fa sin 45  − V cos 45  + 50 = 0

Fa cos 45  + V sin 45  = 0

whence, Fa = −70.7 N; V = +70.7 N

 M = 50 s cos 45

 = 35.35 s

 At s = 4.24,   M = 150 N/m

Consider now a section between B and C. From the free-body diagram,

−V + 50 = 0; V = +50 N and AF = 0

 M − 50(s − 4.24 + 3) = 0

 or M = 50s − 62.0 

 At s = 4.24, M = 150 N/m; at s = 8.24 M = 350 N/m

 From the free body of a section between C and D of the beam,

 −V + 50 − 50(s − 4.24 − 4) = 0; V = −50s + 462

 AF = 0

50 N

A

A

B

V

Fa

M

Fa

M

V

45°

50 N

s = 4.24 m

s

50 N

A

V
AF

M

45°

s

s

s

s

s

A

50 N/m

3 m 8 m

V

Fa

Mq

q

Fig. Ex. S2.10 (Solution)
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3 t 5 t

0.6 t /m

Fig. Ex. S2.11

 At s = 12.24,   V = 150 N 

 M − 50 (s − 4.24 + 3) + 50(s − 4.24 − 4)2/2 = 0 

 M = 50s − 62 − 25(s − 8.24)2

 At s = 8.24, M = 350 N/m 

 At s = 12.24, M = 150 N/m 

 For a section between D and E, from the free-body diagram of the part on the left,

−V cos q − Fa sin q + 50 − 200 = 0

−V sin q + Fa cos q = 0

whence V = −150 cos q and Fa = −150 sin q

M − 50(s − 4.24 + 3 + 3 sin q) + 200(2 + 3 sin q) = 0

 M = 50s − 450 sin q − 462

 At s = 12.24, M = 150 N/m and q = 0

 At s = 12.24, M = −168 N/m and q = p/4

 At E, the bending moment changes abruptly from −168 N/m to 132 N m and varies linearly down to zero 

between E and F. The shear force and the axial force are given by

 V = −150 cos q; Fa = −150 sin q

until F where these values drop down to zero.

Example S2.11 An overhanging beam AB 20 m 

long simply supported at A and D carries a 

 uniformly-distributed load and two concentrated 

loads as shown in Fig. Ex. S2.11. Determine the 

location of the supports placed 12 m apart sharing 

the load equally. Draw the BM diagram and locate 

the points of zero shear force in the beam.

Solution From the equilibrium of the beam,

Σ = 0; RC + RD − 3 − 0.6 × 20 − 5 = 0

     RC + RD = 20

and using the condition   RC = RD,

      RC = 10 = RD

Σ A = 0;

  10L + 10(L + 12) − 5 × 20 − 20 × 0.6 × 10 = 0

whence L = 5 m the distance of C from A.

For evaluating the bending moment in tonne metres

along the beam, taking the origin at A and proceeding 

for the equilibrium of different sections:

 0 < x < 5 M + 3x + 0.6x2/2 = 0;   M = −3x − 0.3x2

 At x = 0,  M = 0, as expected at the end

 At x = 2.5, M = −9.375

 At x = 5, M = −22.5

11.67 m

A

M

C M D
B

− 22.5

− 17.7

x

Bending-moment diagram

Fig. Ex. S2.11 (Solution)
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3 m

Fig. Ex. S2.12

 5 < x < 17 M + 3x + 0.6x2/2 − 10 (x − 5) = 0

 M = 7x − 0.3x2 − 50

 At x = 5, M = −22.5, providing a check 

 At x = 11, M = −9.3

 At x = 17, M = −17.7

 17 < x < 20 M + 3x + 0.6x2/2 − 10 (x − 5) − 10(x − 17) = 0

 M = +17x − 0.3x2 − 220

 At x = 17, M = −17.7, providing a check 

 At x = 20, M = 0, as expected at the end 

The BM diagram is shown in Fig. Ex. S2.11 (Solution). There is no point of contraflexure in the beam 

because the bending moment does not change sign at any point.

The point of zero shear in the beam corresponds to the location of the minimum bending moment:

 d

dx
 (7x − 0.3x2 − 50) = 0

 7 − 0.6x = 0

or at x = 11.67 m; at point M as shown.

 It may also be noted that the shear force changes sign, i.e., passes through zero at points C and D but the 

value at these points is not said to be zero.

Example S2.12 A flat plate (4 m × 1 m) (Fig. Ex. S2.12) hinged at the top 

1 m edge serves as a wide wall of a tank containing oil of specific gravity 0.9 

to a depth of 3 m above the lower edge of the plate. Determine the horizontal 

force required at the lower edge of the plate to keep it in equilibrium. Draw the 

SF and BM diagrams of the plate.

Solution The pressure at a depth h in oil is given by

 p = r gh

 = 900 × 9.81 × h = 8829h N/m2

 = 8.83h kN/m2

 Total hydrostatic force acting on the plate is

 
P = = × ×∫∫ p dA h dh8 83 1

0

3

. ( )

                    

= ⎡⎣ ⎤⎦ = ×

=

8 83 2 8 83 9 2

39 74

2

0

3

. / . /

.

h

kN

which acts at 1 m from the base of the plate, i.e., at 3 m below the hinge.

 For equilibrium of the plate

 Σ 0 = 0;

 4F = 39.74 × 3

whence F = 29.80 kN
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 The reaction at the hinge 0 must be (39.74 − 29.80) = 9.94 kN towards right in the horizontal 

direction.

 The shearing force is estimated as follows:

 For       0 < x < 1,  V = +9.94 kN

 For      1 < x < 4,

 or 0 < h < 3,    V = + − ⋅ ×∫9 94 8 83 1

0

. . ( )h dh

h

 = +9.94 − 4.41h2 kN

 which is zero at h = =
9 94

4 41
1 50

.

.
. m

 or at         x = 1.50 + 1 = 2.5 m

 and maximum being

      +9.94 − 4.41 × 32 or −29.80 kN

 At    h = 3 m or x = 4 m

which was expected because the reaction of 29.80 kN would bring it to zero at the end.

 The bending moment is calculated as follows:

 For 0 < x < 1, M = 9.94x kN/m

 At x = 1, M = 9.94 kN/m

 For 1 < x < 4,

 or 1 < h < 3, M = 9.94x − 4.41 h2 ⋅ h/3

 = 9.94(h + 1) − 1.47h3

 = 9.94 + 9 + 94h − 1.47h3 kN/m

Fig. Ex. S2.12 (Solution)



 It may be seen that the bending moment is maximum at h = 1.5 m.

Maximum M = 9.94 + 9.94 × 1.5 − 1.47 × 1.53

= 19.9 kN m

 It should also be appreciated that, at h = 3 m, the M reduces to

9.94 + 9.94 × 3 − 1.47 × 33 = 0

as is expected at the lower end of the plate.

 The SF and BM diagrams are consequently as shown in Fig. Ex. S2.12 (Solution).

EXPERIMENT E5 SHEAR FORCE AND BENDING MOMENT IN A BEAM

OBJECTIVE TO DETERMINE THE SHEAR FORCE AND BENDING MOMENT AT A CROSS SECTION 

OF A BEAM AND TO COMPARE THE SAME WITH THE CORRESPONDING THEORETI-

CAL VALUES.

Apparatus  A simply supported level beam with provision for loading at the desired points and spring balances 

provided to enable the measurement of shear force and bending moment at a cross section.

Background Information The shear force at a cross section  of a 

beam is defined as the transverse force tending to cause shear across 

the section. The bending moment in a beam at any cross-section  is 

the transverse moment tending to cause bending of the beam in the 

plane of the loading.

Experimental determination of the shear force and bending 

moment at a cross-section is made by improvising a beam in two 

parts and by measuring the reaction of one part on the other.

Initially, the unloaded beam is positioned to be horizontal by 

adjusting the wing nuts provide on the spring and the initial read-

ings on the spring are noted. The beam is then loaded as desired. 

This may be achieved by suspending masses m1, m2 and m3 at three 

places at distances of x1, x2 and x3 from the left end A as shown in 

Fig. E5.1. The loads acting at these locations are, therefore, m1g,

m2g and m3g. The two parts of the beam tend to get disturbed from 

the horizontal position on the application of the loads. The wing 

nuts are turned suitably to bring them in the horizontal position.

The magnitude of the shear force at the cross section equals the 

corrected reading on the spring balance S1

         V = S1 (E5.1)

The theoretical value may be obtained by computing the reac-

tions RA and RB and then by noting that, for the equilibrium of the 

left-hand part,

 RA − m1g − m2g + V = 0
whence V = −m1g − m2g + RA (E5.2)

The magnitude of the bending moment at the cross-section equals the moment exerted by the force 

observed as the corrected reading S2 on the spring balance placed at an arm of length a, i.e.,

 M = S2 ⋅ a (E5.3)

Fig. E5.1  Measurement of shear force 

and bending moment
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The theoretical value may be obtained by observing that, for the equilibrium of the left-hand part,

−RA ⋅ + m1g ⋅ ( − x1) + m2g ⋅ ( − x2) + M = 0

whence M = RA ⋅ − m1g ( − x1) − m2g ( − x2) (E5.4)

Observations and Calculations The initial and final readings of the springs for the unloaded and loaded 

beams respectively are recorded:

A set of observations and calculations for a prescribed loading may be arranged as follows:

Length of the Beam:

Loading on the Beam:

Distances of Loads:

Distance a:

Initial Final Difference

Spring balance A

Spring balance B

Spring balance S1

Spring balance S2

   SF = S1 =
BM = S2a =

Results The measured values of the shear force and bending moment at the section  may be recorded 

and compared with the theoretical values.

Points for Discussion

Comment on the difference between the experimentally measured and the theoretical values of shear 

force and bending moment.

Compute the percentage error for each system of loading and observe whether the percentage error incre-

ases as the value of theoretical shear force and bending moment decrease. If so, why? If not, why not?

Have you taken the weight of the beam into account? Explain how?

Can the method of measuring the shear force and the bending moment be employed on a cantilever? 

Explain how with the help of a sketch. Can the method be used on a beam with the fixed end supported 

and with other end conditions?

Is it possible to state from the observations S1 and S2 taken from the spring balances whether the shear 

force and bending moment are positive or negative?

Concept Review Questions

 (a)  What is the difference between a beam and a 

member of a simple truss?

 (b)  What are the implications of a beam referred 

to as thin and rigid?

State the different means of supporting a beam 

and differentiate between an overhanging beam, 

a cantilever beam and a continuous beam.
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  (a)   Define the terms shear force and bending 

moment at a cross-section in a beam. How 

are the SF and BM diagrams drawn and what 

useful purpose is achieved by drawing them?

 (b)  Comment on the sign conventions for 

the shear force and bending moment at a 

section.

 (c)  Can a structural member have shear force 

and bending moment at a cross-section?

  (a)  How are the distributions of the loading, the 

shear force and bending moment related to 

each other? Are there any pre-conditions for 

the relationship?

 (b)  Sketch a simply supported beam with some 

transverse and inclined loading. Draw the 

SF and BM diagrams for the same alongside 

the sketch.

What are the implications of sudden changes of

 (a) loading

 (b) shear force

 (c) bending moment

 for a simply supported beam?

Is it possible to predict the location and mode of 

failure of a beam subjected to a given loading? 

Is it necessary to draw the SF and BM diagrams 

before predicting the same?

Tutorial Problems

Draw the SF and BM diagrams for the beams 

and loading shown in Fig. Prob. S2.1(a), 

(b), (c).

Fig. Prob. S2.1(a), (b), (c)

40 kN20 kN

3 m 3 m2.5 m

A
B C D

3 kN/m

10 kN
20 kN

2 m 2 m 2 m1 m1 m

A
B C

D E F

2 kN/m

10 kN/m
3 m 3 m 3 mA

B C D

(b)

(c)

(a)

A beam of length L is loaded by an external 

moment M as shown in Fig. Prob. S2.2. Draw 

the SF and BM diagrams.

A
M

B
P

a

L

Fig. Prob. S2.2

A simply supported overhanging beam 4 

m long is uniformly loaded at 2 kN/m over 

the entire span and carries a triangularly dis-

tributed load over the left half of the span as 

shown in Fig. Prob. S2.3. Draw the SF and 

BM diagrams for the beam. 

1 m 1 m2 m

2 kN/m
5 kN/m

B

A

C

D

Fig. Prob. S2.3

A uniform beam AB of weight W rests 

 horizontally on two supports C and D at one 

third of the span from either and respectively. 

There are two loads, each 2W at one third the 

distance between C and D measured from 
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Look up Hints to Tutorial Problems at the end !

Multiple-Choice Questions

Select the correct or most appropriate response from 

among the available alternatives in the following 

multiple-choice uestions.

A thin rigid beam hinged at one end and roller-

supported at its mid-points is said to be 

 (a) a symmetrical simply supported beam

 (b) an overhanging simply supported beam

 (c) a cantilever beam

 (d) a fixed beam

The shear force at a section in a beam is given 

by

 (a) the external force at that section

 (b)  the transverse component of the external force 

at that section

 (c)  the transverse force from the part of the beam 

on one side of the section to that on the other 

side of the section

 (d)  the addition of the forces at (b) and (c) above

C and D respectively. Draw the SF and BM

 diagrams for the beam.

A train of weight W and length L is in the centre 

of a bridge whose span is twice the length of 

the train as shown in Fig. Prob. S2.5. Assuming 

that the weight of the train is uniformly dis-

tributed throughout its length, calculate the 

bending moment at the centre of the bridge. 

Compare it with the value when one end of the 

train just reaches the pier-end of the bridge.

Train W

BA

Pier
Pier

Fig. Prob. S2.5

Draw the SF and BM diagrams for a light 

horizontal cantilever 4 m long carrying 

concentrated loads each of 2 kN at its centre 

and its free end.

The SF diagram for a part of a loaded beam is 

shown in Fig. Prob. S2.7. All the SF values are 

in kN. Draw the loading diagram and the BM

diagram for the beam.

2 m

5 kN 5 kN

− 5 kN

2 m1 m 1 m

A BC D E

Fig. Prob. S2.7

8 The BM diagram for a beam 1 m long is 

 parabolic with a maximum of 20 kN m at the 

 mid-span of a beam as shown in Fig. Prob. S2.8. 

Sketch the corresponding SF and  loading 

diagrams.

A B

Fig. Prob. S2.8
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The bending moment at a section in a beam is 

given by

 (a)  the external moment at that section

 (b)  the summation of all the moments about that 

section

 (c)  the summation of moments of all the forces 

about the section

 (d)  the net moment exerted by the part of the 

beam on one side of the section to that on the 

other side of the section

The point of contraflexure in a loaded beam is one 

where

 (a) the bending moment is maximum

 (b) the shear force is maximum

 (c) the bending moment changes sign

 (d) the shear force changes sign

In a symmetrically overhung simply supported 

beam, the maximum bending moment will be the 

least possible when

 (a) the supports are near the ends

 (b)  the supports coincide to become a single 

support at the centre

 (c)  the distance between the supports becomes 

one-third of the length of the beam.

 (d)  the numerical values of the bending moment 

at either supports and at the centre of the 

beam are equal

The maximum bending moment in a simply 

supported beam length L loaded by a concentrated 

load W at the mid point is given by

 (a) WL

 (b) WL/2

 (c) WL/4

 (d) WL/8

Answers to the Multiple-Choice Questions

1 (b)    2 (c)    3 (d)    4 (c)    5 (d)    6 (c)



 S3.1 FRICTION AND IMPENDING MOTION

W s s  Forces of friction come into play when 

two surfaces in contact with each other exert force normal to each other and one surface slides or 

tends to slide with respect to the other. The force of friction is also called frictional resistance or 

simply friction. The mechanism of friction can be explained by the interlocking of the roughnesses 

of the surfaces or by the development of adhesive forces as the molecules of the surfaces come 

close together or by some other  hypothesis; these explanations are of little consequence if the net 

effect is expressed in terms of a macroscopic parameter, coefficient of friction, defined as follows:

Consider a body of mass m resting on a surface as shown in Fig. S3.1. If a normal force Fn

acts normal to the lower surface, the body continues to be at rest because an equal and opposite 

force R acts upon it by the lower surface. The normal force Fn may be due to the weight of the 

body or by some other action. If now a small tangential force Ft is also acted upon the body, the 

body may still continue to be at rest. The applied tangential force Ft, is balanced by the friction 

force f due to the lower surface. Until a certain limiting value of Ft

f = Ft

the body stays at rest. Clearly, the body would slide if the magnitude of Ft is increased beyond 

this limiting value. This state of the body is called state of impending motion; a critical border 

line condition between the static and dynamic conditions of the body.

The state of impending motion can be modelled in terms of s s :

1. The maximum force of friction is independent of the magnitude of area in contact 

between the surfaces.

S3

Applications with 

Friction

These laws are stated without proofs at this stage. Premature statements are given merely to introduce 

the pressure intensity and force concepts in the context of force fields.
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2. The maximum force of friction is proportional to the normal force on the area of contact.

3. The maximum force of friction is less and practically constant at low velocities of sliding than that at 

the state of impending motion.

The first law allows us to ignore the extent of the area in contact. The area does not enter the picture, 

perhaps because the extent of mechanical interlocking or cohesive forces adjusts with respect to the normal 

forces along which acts the total force of friction. 

The second law provides a proportionality

 f Nmax ∝

or fmax = ms N (S3.1)

where fmax is the limiting force of friction, 

N the normal reaction force and ms the constant of 

proportionality.

Coefficient of friction between two surfaces is the 

constant of proportionality ms between the limiting 

for fmax and the normal reaction R.

 
ms =

f

N

max

If two surfaces have the coefficient of friction ms = 0, 

the surfaces are said to be smooth. Surfaces with a non-

zero coefficient of friction are called rough surfaces.

Obviously, a smooth surface cannot provide a force 

of friction and hence the reaction of a smooth surface 

must always be normal to it. If, however, a body with a 

smooth surface rests on another smooth surface and a 

tangential force is applied to it, the body must slide and 

accelerate under the action of the applied forces.

Static

state

f

Case (b)
Case (a)

Case (b)Case (a)

State of impending

motion

Case (c)

ms

Case (d)

m = md

Ft

Dynamic state md N
fmax = ms N

f

Fn

Ft = 0
Ft

Ft
a

RN

fd

fmax

f

Fn

Fn
Fn

Ft

R

R

Resultant

N

NN

fs

f

N
< ms

fmax

N
= ms = tan fs

Case (c) Limiting case of impending motion

Case (d) Motion with friction

fd<fs

md<ms

f

N
 = md = tan fd

R

O O

O

O

Fig. S3.1 Concept and variation of frictional force

Table S3.1 Coefficients of static friction ms

Pair of Surfaces Range of ms

Wood and wood 0.2 – 0.6

Wood and leather 0.2 – 0.5

Rope and wood 0.6 – 0.7

Steel and cast iron 0.4 – 0.5

Steel and leather 0.4 – 0.6

Mild steel and mild steel 0.5 – 0.6

The coefficient of dynamic friction is about 25% less 

than that for static friction.

The friction force

f Nmax = ms
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given by the coefficient of friction is the maximum frictional force which can be developed between the two 

surfaces for a given normal reaction force N. In actual practice,

   (i)  if a body is at rest on a surface, the friction force at an instant may be less than the limiting value, it 

being only equal to the applied tangential component of the force such as that shown in case (b) in 

Fig. S3.1 where

f N< ms

 (ii) if the body is in motion, the friction force is given by the coefficient of dynamic friction or the 

coefficient of kinetic friction. This coefficient is indeed less than the coefficient of static friction; 

the difference being a function of the velocity and the nature of surfaces in contact. The coefficient 

of dynamic friction is written as md to differentiate it from the coefficient of static friction which is 

often simply denoted as m. In the dynamic state, as shown in case (d), Fig. S3.1.

F N= md  (S3.2)

where md ≈ 75% ms

 (iii) if the body is in an unsteady state, e.g., in intermittent or reversed sliding motion, the coefficient of 

friction may be quite different from the steady state value.

It is usual to define the term angle of friction. Angle of friction is the angle between the line of action of 

the total reaction by one body on the other and the normal to the common tangent to the surfaces in contact 

in the state of impending motion.

Angle of friction f ms s=
⎛
⎝⎜

⎞
⎠⎟

=− −tan tanmax1 1f

N
 

or μ φs s= tan  (S3.3)

The angle of friction fs is, therefore, the maximum angle between the normal reaction R and the resultant 

reaction at the instant of impending motion.

Fig. S3.2 Frictional force on a body on an incline
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q
Rough inclineF

Block

Pulley

Fig. Ex. S3.1

It can also be shown that the angle to which an inclined plane may be raised before the object resting on 

it slides under the action of its weight and the reaction of the plane, also called as the angle of repose, equals 

the angle of friction. This is shown in Fig. S3.2. Also shown in the figure are the cases of a less than fs and 

greater than fs.

Fluid Resistance

Surface contact between two material bodies which results in friction forces is permitted only when the fric-

tional forces are usefully employed. This is, however, not the case in most circumstances when the relative 

velocity of sliding is required and the resistive forces must be minimised. In such case the interspaces must 

be filled with suitable fluid lubricants. Drag forces resulting from the fluid resistance appear on the moving 

components. In general, a drag force appears when a solid body moves in a mass of fluid or when a fluid 

flows around a solid body.

Two different modes of drag formation resulting from the relative velocity between a solid and a fluid must 

be recognised. First, the laminar flow drag, when the relative velocity is low and the fluid flow is character-

ised by thin sliding laminas sliding over each other; second, the turbulent flow drag, when the relative velocity 

is higher and the fluid flow is characterised by random turbulence and eddy formation.

While the mechanics of drag formation in laminar and turbulent flow is not discussed at this stage, it is 

worthwhile stating that the variation of drag with the basic parameters is different in the two cases as shown 

in Table S3.2.

Table S3.2 Variation of drag

Laminar Flow Turbulent Flow

∝ speed ∝ speed2

Drag Force ∝ viscosity ∝ density

∝ size ∝ size2

Example S3.1 A wooden block of mass 1 kg 

rests on a rough incline at an angle q as shown in 

Fig. Ex. S3.1. If the coefficient of friction between 

the contact surfaces is 0.5, determine the force 

required to be applied to the string passing through 

a frictionless pulley to initiate motion of the block 

down the plane. At what angle q would the force 

required be zero? What would happen if the angle is 

increased beyond that value?

Solution Consider the free-body diagram of the block shown in Fig. Ex. S3.1 (Solution). It is subjected 

to a weight force mg acting downward, a string force F down the plane and a frictional force f up the plane 

because the impending motion is down the plane and the normal reaction R perpendicular to the plane. At 

the state of impending motion, the frictional force must be such that

 F = mR (i)

where R is the normal reaction by the plane on the block.
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1

2

a

a

c
F

Fig. Ex. S3.2

 For equilibrium of the block,

 Σ Fx = 0; F − F − mg sin q = 0 (ii)

 Σ Fy = 0; N − mg cos q = 0 (iii)

 From Eq. (iii), N = mg cos q 

and from Eq. (i), f = mmg cos q 

which when substituted in Eq. (ii) provides

 F = mmg cos q − mg sin q

or F = (m cos q − sin q) mg (iv)

 Substituting m = 0.5 and m = 1 kg 

 F = (0.5 cos q − sin q) 1 × 9.81

 = (4.905 cos q − 9.81 sin q) N

 The force required would be zero when

 m cos q − sin q = 0

or tan q = m 

 For the present case,

 q = tan−1 0.5 = 26.56

 If the angle of incline is increased beyond 26.56 , the force required to initiate the motion is negative 

which means that an upward force is required to hold the block in equilibrium. If the angle of incline is 

decreased below 26.56 , the force required to initiate the motion increases.

Example S3.2 Two boxes of weights W1 and W2 are stacked on the 

floor as shown in Fig. Ex. S3.2. The coefficient of friction between the 

boxes is m1 and between the box and the floor is m2. A horizontal force 

F is applied to the top of the boxes and gradually increased. What is 

the maximum force before the equilibrium is destroyed? How will the 

equilibrium be destroyed?

Solution The free-body diagram of each box is drawn in Fig. Ex. S3.2 (Solution). The upper box 1 is subjected 

to the applied force F, weight W1, normal reaction R1 from box 2 and frictional force f1 acting by virtue of contact 

with box 2. In turn, box 2 is acted upon by a frictional force equal and opposite to f1 as well as a normal reaction 

equal and opposite to R1 at its upper surface. It is, in addition, subjected to a normal reaction R2 and a friction 

force f2 at its base surface due to contact with the floor and its own weight W2.

 Let us examine the different possibilities of upsetting the equilibrium.

 1. Box 1 may slide to the right, box 2 remaining intact.

 2. Boxes 1 and 2 may remain stuck and slide together over the ground.

 3. Box 1 may tip over its right edge A, box 2 remaining intact.

 4. Boxes 1 and 2 may remain stuck and tip together over the bottom right edge B.

q q

mg

C

N

y

x

f
F

Fig. Ex. S3.1 (Solution)
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 Since the force F is increased from a zero value, 

the mode of upsetting the equilibrium depends 

upon which of the four possibilities materialises 

first. We, therefore, evaluate the minimum forces 

required to materialise each possibility and the 

least of them would be the decisive force.

 For the first possibility, consider the equilibrium 

of box 1 at the state of impending motion.

 Σ Fx = 0;   F1 = f1 = m1N1

 Σ Fy = 0; N1 = W1

whence F1 = m1W1 (i)

 Similarly for the second possibility,

N = W1 + W2

 F2 = f = m2N = m2 (W1 + W2) (ii)

 For the tipping of the upper box alone,

F3 × a = W1 × c/2

whence F
W

3
1

2
=

c

a
 (iii)

For the tipping of the two blocks together,

F4 × (a + b) = (W1 + W2) × c/2

whence F
W W

4
1 2

2
=

+
+

( )

( )

c

a b
 (iv)

An observation of the results (i) to (iv) reveals that the magnitudes of F1, F2, F3 and F4 depend upon the 

values of weights, coefficients of friction and the dimensions of the blocks. In particular, if

 m1 = m2 = 0.3

 W1 = W2 = 100 N

 a = b = c = d, say

 F1 = 0.3 × 100 = 30 N

F2 = 0.3 × (100 + 100) = 60 N

 
F3

100

2
50=

×
×

=
d

d
N

 
F4

100 100

2
50=

+ ×
+

=
( )

( )

d

d d
N

 Since F1 is the smallest, the boxes will no longer be in equilibrium if the applied force F exceeds 30 N. 

The equilibrium will be destroyed by the slippage of the upper box, the lower remaining intact.

F

W1

W2

f

B

N

F

W1

W2

f1

f1

f2
B

A

N2

a

b

1

2

N1

Fig. Ex. S3.2 (Solution)
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 EXPERIMENT E6   COEFFICIENT OF STATIC FRICTION

OBJECTIVE TO DETERMINE THE COEFFICIENT OF STATIC FRICTION BETWEEN TWO GIVEN 

MATERIAL SURFACES WITH THE HELP OF AN INCLINED PLANE.

Apparatus An adjustable inclined plane with a frictionless pulley, a block, inextensible string and standard 

weights.

Background Information The mating surfaces of 

the block and the incline are faced with sheets of 

materials between which the coefficient of friction 

is desired. At a fixed angle of inclination q, the sus-

pended mass is increased until the block is at the 

verge of upward slippage, i.e., in the state of impend-

ing motion. Referring to the free-body diagram of the 

block at such a state, as shown for equilibrium,

 T = Mg = f + mg sin q

 R = mg cos q

whence   m
q

q

q

q
= =

−
=

−
f R

M
/

Mg mg

mg

m

m

sin

cos

sin

cos
 

Observations and Calculations The mass of the 

block as well as the mass of the suspended weight 

together with the chosen angle of inclination should 

be recorded:

Material 1 Material 2

S. No. q m M sin q cos q m

1

2

The observations and calculations are repeated with different selections of the two masses or two angles 

of inclination or both.

Result The average value of the coefficient of static friction m may be obtained and the range of variation 

of m may be noted.

Points for Discussion

Compare the value of m between the two surfaces with the value given in a standard handbook. Account 

for the difference, if any.

Would the value of m be the same if the materials on the incline and block are interchanged?

In the first method, supposing a weight W is placed over the block, would the angle of repose remain the 

same?

What is the corresponding value of the coefficient of dynamic friction md between the same pair of 

 surfaces? Explain, giving examples, as to where m is used and where md is to be used?

Fig. E6.1 Determination of coefficient of static friction m

Engineering Mechanics207
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q
120 N

Fig. Ex. S3.3

Supposing a block is placed on an incline and there is no pulley and string, etc. Can’t we find the 

 coefficient of static friction by creating a condition  of downward impending motion? By increasing the 

inclination q; by adding more weight on the block? Can we? How would it compare with our method?

The assumptions made in the analysis of observations are frictionlessness of the pulley, inextensibility of 

the string, correctness of masses and angles measured. How far are the assumptions justified and what 

are the possible sources of error?

If the rectangular block were faced with the same material on all faces, would the observations and 

 calculations alter if the block were placed one face or the other resting on the incline?

Example S3.3 A ladder of length 5 m and weight 

120 N is placed on a flat floor against a vertical wall as 

shown in Fig. Ex. S3.3. If the coefficients of friction are 

0.3 and 0.2 and the ladder is considered homogeneous, 

determine the smallest angle q the ladder can be placed 

at the floor for equilibrium.

Solution At the position of the smallest angle q, the ladder would be in the state of impending skid at 

 and at .

= 0.3  and = 0.2 

 For equilibrium,

 Σ = 0 − = 0; =
 Σ = 0 − 120 + = 0; = 120 −
 Σ = 0 × 5 sin q + × 5 cos q − 120 × 2.5 cos q = 0

 From these equations,

= 0.3   and 120 − = 0.2 

whence, = 113.2 N and = 34 N 

and = 34 N and = 6.8 N 

 Finally, 170 sin q + (34 − 300) cos q = 0 

 tan q = 1.565, q = 57.4

Example S3.4 A man wishes to climb a 5 m long ladder placed at 60  on a horizontal surface (m = 0.3) 

against a vertical wall (m = 0.2). How far can he climb without the ladder slipping? The man and the ladder 

weigh 800 N and 150 N respectively.

Solution The free-body diagram of the ladder shows that it is subjected to 6 forces of which 4 are unknown 

and we wish to find the maximum value of , i.e., at the state of impending slip at  and .

 Then, = 0.3  and = 0.2 

 For equilibrium,

 Σ = 0;  – = 0; =

 Applications with Friction 208
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x

y

NA

fA

fB

NB

qA

C

W

B

Fig. Ex. S3.5 (Solution)

 Σ Fy = 0; NA + fB − 150 – 800 = 0; fB = 950 − NA

 Σ MA = 0;  5 NB sin 60  + 5 fB cos 60  − 800 d cos 60  −150 ×
2.5 cos 60  = 0; 4.33 NB + 2.5 fB − 400 d = 187.5

 From these equations,

 NB = 0.3 NA, 950 − NA = 0.2 NB

whence NA = 896.3    and   NB = 268.9

and fA = 268.9   and   fB = 53.7 in N units.

 Finally,  −400 d = 187.5 − 1164.3 − 134.3 = −1111.1

and d = 2.77 m

The ladder will skid as the man reaches a distance of 2.77 m up the 

ladder.

Let us verify this result by considering the summation of moments about 

point B.

 Σ MB = 800 (5 − 2.77) cos 60  + 150 × 2.5 cos 60  + 268.9 × 5 sin 60  − 896.3 × 5 cos 60

  = 889 + 187.5 + 1164.4 − 2240.7 ≈ 0.0

which shows that the distance of 2.77 m up the ladder is the right answer for the equations. Any mistake 

in the setting up of the equations is not checked by the verification. That can be ensured by checking the 

results vis-a-vis the data in the problem. From the fact that m = 0.3 at the floor, fA = 0.3 NA. The value of fA as 

268.9 N is compatible with that of NA as 896.3 N. Similarly, the value of fB as 53.7 N is compatible with that of 

NB as 268.9 N for a m of 0.2 at the wall. The result is, therefore, correct.

Example S3.5 A homogeneous ladder is placed on a flat horizontal surface to rest against a vertical 

wall. Assuming that the coefficient of friction at each surface is m, determine the minimum possible 

inclination of the ladder with the horizontal. Can the angle be less than 45 ?

Solution From the free-body diagram of the ladder, the posi-

tion of minimum inclination corresponds to that of impending 

skidding.

 fA = mNA and fB = mNB

 For equilibrium,

 Σ Fx = 0 fA − NB = 0; mNA = NB

 Σ Fy = 0 NA + fB − W = 0; NA + mNB = W

 Σ FA = 0 NB × L sin q + fB × L cos q − W × L/2 cos q = 0

 From these equations,

 
N N W N

W
A A A+ = =

+
m

m

2

21
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m
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Fig. Ex. S3.4 (Solution)
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(a) Sliding down

30° 981
N1

F1 f1

30° 981
N2

f2F2

(b) Sliding up

Fig. Ex. S3.6 (Solution)

whence tanθ
μ

μ
=

−1 2 2

For smooth surfaces, m = 0, tan q → ∞, q → 90

For q to be 45 , tan q = 1, 1 – 2m2 = m, or m = 0.5

 Hence it is possible for the inclination to be less than 45  if the coefficient of friction is greater 

than 0.5.

 For example a value of m = 0.6 implies that tan q = (1 – 0.72)/0.6 = 0.467, q = 25 . Interestingly, q = 0 

corresponds with 1 – 2 m2 = 0; m = 0.707.

Example S3.6 A small block of mass 100 kg is placed on a 30  incline with a coefficient of 

friction of 0.25. Determine the horizontal force to be applied on it in order to keep it in equilibrium at 

rest.

Solution The block would stay in equilibrium at rest for 

a range of horizontal forces between F1 and F2 where F1

is the minimum force required to prevent it from sliding 

down and F2 is the maximum force applied without 

sliding it up. For the case of impending sliding down the 

incline,

F1 cos 30  − 981 sin 30  + f1 = 0

where  f1 = 0.25 N1 = 0.25 × (F1 sin 30  + 981 cos 30 ).

0.866 F1 − 490.5 + 0.125 F1 + 212.4 = 0

whence F1 = 280.6 N

 For the case of impending sliding up the incline,

F2 cos 30  − 981 sin 30  − f2 = 0

where  f2 = 0.25 N2 = 0.25 × (F2 sin 30  + 981 cos 30 )

  0.866 F2 − 490.5 − 0.125 F2 − 212.4 = 0

whence F2 = 948.6 N

 The block would, therefore, be in equilibrium if the horizontal force applied is between 280.6 N and 

948.6 N as shown.

Example S3.7 A horizontal force F acts on a block at a height h above the surface of the table where it lies. 

Explain the condition when the body (a) slides (b) overturns.

Solution When a horizontal force F acts at some distance from the base, the point of application of 

R and f, i.e., point O is not vertically below C. The point O locates itself such that the moment due to 

couple F and f is balanced by the moment due to couple Fn and N. As long as O lies within the base, the 

body has a tendency to slide.
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(a) Sliding
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(b) Overturning

Fig. Ex. S3.7 (Solution)

 Now, if the point O moves to a corner because 

the frictional force f keeps increasing due to a 

high value of ms, the coefficient of static friction 

then, the body has a tendency to overturn or tip 

over that corner. In that case,

 f h ≥ Fn a

or ms Fn h ≥ Fn a

or h ≥ a/m

 The tendency to overturn is more if the base 

width is small, coefficient of friction is large or 

the height, h is large.

Example S3.8 A ‘levelling plank’ is often used in a field to level off the earth by sliding the plank 

over it. One such plank requires a horizontal force of 600 N to slide it on a horizontal field at a constant 

velocity when the frictional resistance is 1.5 N per kg mass of the plank. It is employed to level a field 

inclined at 5  to the horizontal. The span of the plank is 2 m and the force is applied along the direction 

of movement. It is used for levelling, both going up and coming down the incline end to end, alternately. 

Estimate the force required each way and compare the average force required with that required for a 

horizontal field.

Solution The horizontal force of 600 N on a levelling plank 

must equal the frictional resistance for levelling at a constant 

velocity.

 Mass of the plank = 600/1.5 = 400 kg

Weight of the plank = 400 × 9.81 = 3920 N

 The normal reaction on the horizontal surface is 3920 N. 

The coefficient of friction m is, therefore, 600/3920 = 0.153.

 For going up the incline, from the free-body diagram of the 

plank shown in Fig. Ex. S3.8(a) (Solution),

 N = 3920 cos 5  = 3900 N

f = mR = 0.153 × 3900 = 597 N

 F = 3920 sin 5  + 597 = 939 N

 For going down the incline,

R = 3900 N and f = 597 N as shown in the free-body diagram (Fig. Ex. S3.8(b) Solution).

F = 597 − 3920 sin 5  = 255 N

 The average force required for the inclined field is

(939 + 255) /2 = 597 N

 The force required for a horizontal lawn is 600 N which is slightly more than 597. In fact, it can be 

observed that the difference is due to the decrease of the normal component of reaction for the inclined 

surface.

5°

F
f

N

3920 KN

Fig. Ex. S3.8(b) (Solution)

5°

F

f

N 3920 N

Fig. Ex. S3.8(a) (Solution)
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Fig. Ex. S3.9

Example S3.9 A block of mass 150 kg is to be raised by 

means of inserting a 10  wedge weighing 50 kg under it and 

by applying a horizontal force at it as shown in Fig. Ex. S3.9. 

Assuming the coefficient of friction between all surfaces 

of contact as 0.3, determine what minimum horizontal force 

should be applied to raise the block. What would happen if the 

horizontal force is removed?

Solution It is necessary to visualise the forces and to draw the free-body diagrams of the block and of the 

wedge for the impending motion of the block upwards.

 For equilibrium of the block (Fig. Ex. S3.9 (Solution)),

W = R2 cos a − f1 − f2 sin a

N1 = f2 cos a + R2 sin a

where f1 = m1R1, f2 = m2R2, and W is the weight of 

the block.

 For equilibrium of the wedge,

 F = f2 cos a + f3 + N2 sin a

 N3 = R2 cos a + w − f2 sin a

where f2 = m2N2 f3 = m3N3

 Putting W = 150 kg = 1470 N 

 W = 50 kg = 490 N

 m1 = m2 =m3 = 0.3, and solving.

 N1 = 869.8 N   f1 = 261.0 N

 N2 = 1854.6 N f2 = 556.4 N

 N3 = 2219.8 N f3 = 665.9 N

 F = 1535.94 N

 S3.2 ROLLING RESISTANCE

Rolling resistance occurs as a result of the small deformation of the surface upon which a rolling object rolls. 

The surface of the rolling object may also be deformed in the process. A cylindrical or spherical object is shown 

rolling in Fig. S3.3. The force F required parallel to the surface must be adequate to lift the object out of the 

depression in the surface. The process of deformation of the surfaces is continuous during the rolling  movement 

and hence a constant force F must be applied to overcome the resistance offered by the deformation.

With reference to Fig. S3.3, the sum of the moments about the point O must be zero for equilibrium.

 W ⋅ r sin f − F ⋅ r cos f = 0

or F = W tan f

Since the angle f subtended by the length deformation must be very small,

 
tan sinφ φ≈ ≈

a

r

N2

R1

R2
C

W

W

f1

f2

f2

f3

f2

f2

f3

f1

F

N3

a

Fig. Ex. S3.9 (Solution)
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Hence F
W

= a
r

 

The distance a reckoned as the ‘forward length of defor-

mation’ is defined as the coefficient of rolling resistance. The 

coefficient of the rolling resistance, unlike the coefficient of 

friction, has the units of length.

It is interesting to observe that the coefficient of rolling 

resistance is defined as the forward length of deformation 

rather than a non-dimensional quantity. The rolling resistance 

is, therefore, a function of (a) the weight or load W normal to 

the surface, (b) the radius of the cylinder and (c) the coefficient 

of rolling resistance.

It follows that less force is required to roll a wheel of bigger 

radius than a wheel of smaller radius for the same load and the 

same pair of materials.

 S3.3 SLIDING AND ROLLING OF CYLINDERS

If a circular cylinder is placed in contact with a surface and subjected to a force, it may either slip or roll about 

the point of contact. The same is likely to happen when it is placed on an incline. Whether it will actually slip 

or roll depends upon the friction characteristics, force and angle of incline. In many problems, it is necessary 

to ascertain whether a cylinder will tend to slip or roll, particularly when it is in contact with two surfaces. 

Consider, for example a cylinder and a flat-based block on an incline and the angle of incline is gradually raised 

until the equilibrium is disturbed as shown in Fig. S3.4.

In the limiting condition, the block must slide down the 

incline at its base whereas the cylinder may slip at B and 

roll at A or it may slip at A and remain stuck at B. It may 

be seen that a cylinder cannot roll about two points on it 

because the meaning of rolling about a point is that the 

velocity at that point is zero and at all other points non-

zero. However, slipping of a cylinder about two points on 

it cannot be ruled out in general and it is decided by the 

constraints. In the present case, slipping at A and B would 

mean rotation about O, i.e., the cylinder rotates about its 

axis which is obviously not possible without an external 

moment. Hence, the cylinder may slip at A or B and roll 

W

N

R

fO

a
f

f

F
C

r

W = N = R cos f

F = f = R sin f

Fig. S3.3 Mechanism of rolling resistance

Table S3.3 Coefficient of rolling resistance

Pair of Surfaces Range of a (cm)

Steel on steel 0.02–0.04

Steel on wood 0.15–0.25

Tyre on road 0.05–0.15

Hardened steel surfaces 0.0005–0.0015

C

B

O

A

q

Fig. S3.4 Cylinder and block on an incline
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F

B

A

30°

Fig. Ex. S3.10

about the other point. There is no simpler way to decide as to which is the actual mode except by consider-

ing each mode for the state of impending motion and analysing the situation.

At each contact point, a cylinder experiences a normal reaction directed towards the centre of the cylinder. 

It also experiences the frictional force at each contact point. At a point where it may slip, the frictional force 

is related to the normal reaction,

 f = mN

but at the point where it may roll, the frictional force is left as an unknown. It should be between zero and the 

maximum possible value mR at that point. For rolling, therefore,

 0 < f < mN (S3.2)

where m is the coefficient of static friction between the contacting surfaces.

Example S3.10 A circular cylinder of radius 0.5 m 

and mass 200 kg is placed in contact with a rectangular 

block of mass 150 kg on an incline at 30  as shown in 

Fig. Ex. S3.10. If the coefficient of static friction is 0.6, 

determine the minimum force F to be applied up the plane 

at the block to prevent the bodies from sliding down.

Solution We should first consider the equilibrium of the cylinder at the state of impending downwards 

motion. The free-body diagram is constructed by including the normal and frictional reactions by the 

contact surfaces as well as the weight of the cylinder itself as shown in 

Fig. Ex. S3.10 (Solution). There are two possible modes of the cylinder 

coming down the incline. It may roll at A and slide at B or it may slide 

at A. Let us consider the first possibility, i.e., sliding at B,

fB = mNB (i)

and fA = any thing between zero and mRA

 For equilibrium of the cylinder

 Σ Fx = 0;  NB + fA – mg sin 30  = 0 (ii)

 Σ Fy = 0; fB + NA – mg cos 30  = 0 (iii)

 Σ M0 = 0;   fA × 0.5 – fB × 0.5 = 0 (iv)

 From these relations,

 
N B

mg
=

+
=

×
+

=
2 1

200 9 81

2 1 0 6
613

( )

.

( . )m
N

fB = 0.6 × 613 = 368 N; fA = 368 N

  NA = 1331 N

 A check on the value of fA shows that it lies between 0 and 0.6 × 1331, i.e., 799 N. The possibility that 

the cylinder rolls at A and slips at B is, therefore, feasible.

30°

NB

NAm

fA

fB

x

y

O

Fig. Ex. S3.10(a) (Solution)
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30°

Fig. Ex. S3.11

 Now, consider the equilibrium of the block at the state of impending downward motion,

 Σ = 0; − + −  sin 30  = 0

 Σ = 0; − −  cos 30  = 0

 Since = 613 N, = 368 N

= m = 0.6 

these relations provide

= 1615 N and = 380 N

 A force of 380 N is, therefore, required to be applied 

up the plane at the block to check the state of impending 

downward motion; this is the minimum force required to 

keep the assembly of the block and cylinder in equilibrium 

on the incline.

 The problem could have been formulated in a different way. 

The block and cylinder could have been shown on the 30  

incline in the absence of any applied force  and one could 

be asked to determine whether the bodies are in a state of 

equilibrium or not. It can now be suggested to attempt the 

problem in exactly the same way as done here and determine 

the force  required. If  comes out to be positive, as it did come in the given case, the bodies would not be in 

equilibrium without holding them up by any up-the-incline force. If  comes out to be negative, it means that 

the bodies were in equilibrium at rest.

Example S3.11 A circular cylinder of radius 0.5 m 

and mass 200 kg is placed in contact with a rectangular 

block of mass 150 kg on an incline at 30  as shown in 

Fig. Ex. S3.11. If the coefficient of static friction is 0.6, 

determine the minimum force  to be applied up the plane 

at the block to initiate an upward motion of the bodies.

Solution The cylinder, while tending to move up, may either tend to roll at  and slide at  or slide at .

Taking the former possibility first, consider the free-body diagram drawn in Fig. Ex. S3.11(a) (Solution), 

for equilibrium.

 Σ = 0; − −  sin 30  = 0 

 Σ = 0; – + −  cos 30  = 0 

 Σ 0 = 0; × 0.5 − × 0.5 = 0 

and = m = 0.6 

 From these relations,

 = 2452 N;         = 3170 N

30°

30°

Fig. Ex. S3.10(b) (Solution)
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45°
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Wall

Cylinder
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Fig. Ex. S3.12

= 0.6 × 2452 = 1471 N; = 1471 N

 A check on the value of  shows that it lies between 0 and 

0.6 × 3170, i.e., 1902 N.

 It may, therefore, be taken that the cylinder would roll at 

and slip at .

 Next, consider the equilibrium of the block with reference to 

the free-body diagram shown in Fig. Ex. S3.11(b) (Solution).

 Σ = 0; − − −  sin 30  = 0

 Σ = 0; + −  cos 30  = 0

and = m = 0.6 

 Since = 2452 N and = 1471 N, these relations provide,

= 3070 N

 A force of 3070 N is, therefore, required to be applied up the 

incline at the block in order to initiate an upward motion of the 

bodies.

 It was observed in the previous problem that a force of 380 N 

is required to hold the bodies in equilibrium against coming 

down the plane. It has now been seen that a 3070 N force is 

required to move the bodies up the plane. Obviously, if a force 

in between 380 N and 3070 N is applied, the bodies would stay 

in equilibrium.

. The block and cylinder would have been shown on the 

30  incline and a force of some magnitude shown applied at the block and one could be asked to ascertain 

whether the bodies are moving down, in equilibrium, or moving up. If the applied force was less than 

380 N, the bodies would be moving down; if more than 3070, the bodies would be moving up and if in 

between these two values, the body must stay at rest in equilibrium.

Example S3.12 A cylinder of radius  and weight  is wed-

ged between a vertical wall and a light-hinged bar as shown in 

Fig. Ex. S3.12. The coefficient of friction between the cylinder 

and wall is 0.2 and that between the bar and cylinder is 0.4. What is 

the force  which, when applied at the end of the bar at right angles 

to it, is just sufficient to cause the cylinder to move upward?

30°

30°

g

(a)

30°

30°

g

(b)

Fig. Ex. S3.11 (Solution)
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Solution The cylinder can slip upward at either point; not 

necessarily at both points simultaneously. In other words, the 

cylinder may slip at the bar point B and roll about A or it may 

slip at the wall point A and roll about B. We should, therefore, 

examine both possibilities.

 When there is impending motion at B, the free-body diagram 

drawn at Fig. Ex. S3.7(a) (Solution) shows the forces acting on 

the cylinder.

 By considering the equilibrium,

 Σ Fx = 0; NA − fB cos 45  − 2.5F cos 45  = 0

 Σ Fy = 0; −fA + 2.5 F sin 45  − fB sin 45  − W = 0

 Σ M0 = 0; fB × radius = fA × radius

and fB = 0.4 × 2.5F = F

 From these relations,

fA = F = 16.5 W and NA = 40.8 W

 It may be seen that the ratio of the friction to the normal 

reaction at A is

 

f

N

A

A

= =
16 5

40 8
0 4

.

.
.

but the maximum possible ratio is 0.2. Since the slippage at 

B leads to this impasse, it is impossible for slippage to occur

at B before it occurs at A.

 The free-body diagram for the second possibility, i.e., 

slippage at A is shown in Fig. Ex. S3.12(b) (Solution).

 By equilibrium consideration,

 Σ Fx = 0; NA − 2.5 F cos 45  − fB cos 45  = 0

 Σ Fy = 0; −0.2NA × W − fB sin 45  + 2.5 F sin 45  = 0

 Σ M0 = 0; fB × radius = 0.2 NA × radius.

 From these relations,

fB = 0.39 W, NA = 1.94 W

and F = 0.94 W

 We may again like to check the ratio of friction to the normal reaction at B.

 

f

N

B

B

=
×

=
0 39

2 5 0 94
0 17

.

. .
.

which is considerably less than the limiting value of 0.4.

 It may, therefore, be concluded that the force required at the end of the rod is 0.94 W and that the cylinder 

will slip at A, the point of contact with the wall.

 S3.4 BAND-BRAKE AND BELT FRICTION

A flexible member, such as a band, belt or rope passing over or wrapped around a cylinder can be used as 

band-break for power absorption or as a belt rope drive for power transmission.

NA
x

y

45°
2.5F

A

B

W

Slipping

here

fB

fA = 0.2 RA

Fig. Ex. S3.12(a) (Solution)

NA
x

45°

A

B

W

fB = 0.4 × 2.5F

Slipping here

O

fA

y

2.5F

Fig. Ex. S3.12(b) (Solution)
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dq

dq

T + dT

Free-body diagram
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Fig. S3.5 Analysis of belt drive

Consider a flexible member passing over a cylinder as shown in Fig. S3.5. The total angle subtended at 

the centre by the flexible member is q. Consider the equilibrium of a small segment over an angle dq. The 

tensions on either side are T and T + d T which may be considered collinear over the small segment. The dif-

ference in the tensions is due to the force of friction which would be a maximum at the state of impending 

motion between the flexible member and the cylinder.

 d T = f = mFn

where m is the static coefficient of friction between the two surfaces. The normal force Fn must be given by

Fn = T dq

Thus d T = mT dq 

or
d T

T
d= m q  

Integrating T from T2 to T1 over an angle q

d T

T
d

2

1

0

∫ ∫= =m q mq
q

or loge

T

T

1

2

= μθ  

and
T

T
e1

2

= μθ  (S3.3)

It may be noticed that the tension T1 and T2 can be widely different depending only upon the coefficient 

of friction m and the angle of contact q. The side of the belt with greater tension, T1 is called the tight side

and the other with less tension, T2 is called the slack side of the drive. The difference between T1 and T2

is responsible for transmitting the power. the difference can be increased by placing the pulleys closer and 

by employing a cross-belt drive instead of an open belt drive as far as possible. The power transmitted is 

given by

Power = −( )T T v1 2

where v is the linear speed of the belt.

If T2 is desired to be much smaller than T1, as is the case of drum pulley blocks and capstans, the rope 

can be wound round the drum a few turns. For n turns round the drum the angle of contact q becomes 2p
times n.
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Example S3.13 A rope is placed round a fixed circular post over an angle q. Determine the ratio of

tensions T1 and T2 for impending slip in the anticlockwise direction.

Solution Let p be the pressure per unit length of the rope on the post. For an elementary length rdq of the 

rope, the normal force is prdq and the frictional force is mprdq. It is subjected to tensions T and T + d T on 

either side. For equilibrium as shown in Fig. Ex. S3.13(a) (Solution).

T + d T − T = mp r dq

or d T = mp r dq (i)

and Tdq = p r dq 

or T = mr (ii)

 From these two equations

δ
μδθ

T

T
=

 Integrating over the length of contact

 
log

T

T

1

2

= μθ

or
T

T
e1

2

= μθ  

where q is the angle of lap over the post.

 If the post was non-circular, even then the T1/T2 ratio would be 

the same as emq where q is the angle of lap determined w.r.t. a centre 

located by drawing normals to T1 and T2.

 This is because every little element can be approximated a being that of a circle, even though the centre 

of the circle keeps changing by the additional elements.

 Supposing it was  a belt going over a shaft instead of a rope going over a post. No difference. The T1/T2

ratio for the impending slip of the belt over the shaft would be the same provided the belt was massless. 

Therefore, for a belt drive,

 
T

T
e1

2

= μθ

 It may, however, be noted that a belt is usually required to transmit power from a driver pulley to a driven 

pulley which creates a tight side with tension T2 and a slack side with tension T1 as shown in Fig. Ex. S3.13(b) 

(Solution). It may be observed that the angle of lap on the bigger pulley is greater than 180 degrees and that 

on the smaller pulley is less than 180 degrees. It is, therefore, more likely to slip on the smaller pulley.

Example S3.14 A horizontal drum of a belt drive carries the belt over a semicircle around it. It is 

rotated anticlockwise to transmit a torque of 300 Nm. If the coefficient of friction between the belt and 

the rope is 0.3, calculate the tensions in the limbs 1 and 2 of the belt and the reaction on the bearings. 

The drum has a mass of 20 kg and the belt is assumed to be massless.

Solution Clearly, T1 should be more than T2.

Tight side

Slack side

1

2

Driver Driven
pulley

Fig. Ex. S3.13(b) (Solution)

B A

T1 T2

T + dT

r dq
T

mprdq

p ⋅ rdq

Fig. Ex. S3.13(a) (Solution)
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Fig. Ex. S3.15

0.5 m

12

Fig. Ex. S3.14 (Solution)

 According to this condition,

 

T

T
e1

2

0 3 2 57= =. .π

or T1 = 2.57 T2 (i)

 From the knowledge of the torque transmitted,

 (T1 − T2) × 0.5 = 300

 T1 − T2 = 600 N (ii)

from (i) and (ii)

T1 = 982 N; T2 = 382 N

 The downward force exerted by the belt on the drum is 

T1 + T2 = 982 + 382 = 1364 N

 Since the weight of the drum is

W = 20 × 9.81 = 196 N

the vertical reaction on the bearing should be the sum, i.e.,

 1364 + 196 = 1560 N

Example S3.15 Two pulleys, one 450 mm in 

diameter and the other 200 mm in diameter, are on 

parallel shafts 1.95 m apart and are connected by 

a crossed belt as shown in Fig. Ex. S3.15. Find the 

length of the belt required and the angle of contact 

between the belt and each pulley.

 What power can be transmitted by the belt when the 

larger pulley rotates at 200 rev/min, if the maximum per-

missible tension in the belt is 1 kN and the coefficient of 

friction between the belt and the pulley is 0.25?

Solution From the geometry of the problem,

 
sin

. .

.
. ; .a a=

+
= = °

0 225 0 1

1 95
0 167 9 6

 q1 = 180  + 2 × 9.6 = 199.2  = × =199 2
180

3 477. .
π

rad

 q2 = q1 = 3.477 rad

 Length of the belt is given by

 L = 0.225(3.477) + 0.1(3.477) + 2 × 1.95 cos 9.6  = 4.98 m

 According to the condition of impending slippage of the belt over the pulleys,

 

T

T
e e1

2

0 25 3 477 2 385= = =×μθ . . .

or T1 = 2.385 T2
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Fig. Ex. S3.16

 If the greater of the tensions is allowed to the maximum permissible, i.e.,

T1 = 1000 N

then T2 = 419 N

 The power transmitted must be given by

 Power = (T1 − T2) × speed of the belt

 = − ×
× ×

( )
.

1000 419
0 45 200

60

π
 = 2738 W = 2.738 kW

Example S3.16 A mass of 500 kg is to be maintained 

in position by pulling a rope taken over a half barrel 

and wrapped twice around a capstan as shown in 

Fig. Ex. S3.16. If the coefficient of static friction is 0.2 

for all contact surfaces, calculate the minimum force F

required to maintain the load.

Solution Consider the equilibrium of the segment of the 

rope taken over the half barrel. According to the condition 

of impending slippage of the rope downwards,

 

T

T
e1

2

0 2 2 1 37= =×. / .π

or T1 = 1.37 T2

whence  
T

T
2

1

1 37

500 9 81

1 37
3583= =

×
=

.

.

.
N

 

Now consider the equilibrium of the rope wrapped around the capstan. For the state of impending motion 

of the rope towards left, i.e., in lowering the load,

 

3583
12 350 2 4

F
e= =×. .p

whence F = 290 N

 It may be seen that the load of 4905 N can be maintained in position against falling down, by the 

application of a force which is merely 20% of its magnitude through frictional devices.

 Let us also work out the force F which would be required to initiate an upward motion of the load. The 

impending motion of the rope would then be upwards and towards right and by equilibrium considerations,

F = 500 × 9.81 × 1.37 × 12.35  = 82,990 N = 82.99 kN

which is over 16 times the load itself. It follows that the rope passed over the half barrel and wound round 

the capstan is a good device if the load is to be maintained in position but very inefficient if the load is to 

be lifted.

F

T2

T1

3583 N

Fig. Ex. S3.16 (Solution)
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Drum
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B

Fig. Ex. S3.17

Example S3.17 Two blocks A and B are to be held 

in position by means of an inextensible rope passing 

over a fixed drum as shown in Fig. Ex. S3.17. The 

coefficient of friction between the blocks, between the 

block and the inclined surface, and between the rope and 

the drum is 0.2. The mass of B is 500 kg. Determine 

the minimum weight of A so that B is prevented from 

moving downwards. The drum cannot rotate.

Solution A tendency of B to slip down the incline implies that the tendency of the upper block A must be to 

slip upward. The friction force is, therefore, shown accordingly. Friction on the non-rotatable drum implies 

that the tensions TA and TB on either side of the inextensible string are unequal and from the knowledge of 

impending motion

TB > TA

 The inclination of the slope is specified by

tan sin . cos .θ θ θ= = =
3

4
0 6 0 8or and

 With reference to the free-body diagram for the 

block A, as shown in Fig. Ex. 3.17 (Solution) the 

conditions of equilibrium are

TA − fA − mA g sin q = 0

RA − mA g cos q = 0

and the condition of impending motion is

fA = mRA

 Substituting for the coefficient of friction and q

 TA − 0.2RA − 0.6 mA g = 0 (i)

 RA − 0.8 mA g = 0 (ii)

 For block B,

 TB + fA + fB − mB g sin q = 0

 RB – RA − mB g cos q = 0

and fB = mRB

whence TB + 0.2 RA + 0.2 RB − (500 × 9.81) × 0.6 = 0

 RB – RA − (500 × 9.81) × 0.8 = 0

or TB + 0.2RA + 0.2RB = 2943 (iii)

 RB − RA = 3924 (iv)

TA

TA

TB

TB

qfA

fA

fB

mAg

mB g

RA

RB

RA

RD

Block A

Block B

Drum

Fig. Ex. S3.17 (Solution)
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 For the drum,

 RD − TA − TB = 0

 Since TB > TA

 TB/TA = emj = e0.2p = 1.874 (v)

 We have now set up five equations, (i) to (v), for the five unknowns TA, TB, RA, RB and mA of which only 

the last one is desired. Even so, the simultaneous set of equations must be solved.

 Obtaining TB = 1.874 TA  from Eq. (v),

 RA = 0.8 mA g  from Eq. (ii),

RB = RA + 3924 = 0.8 mA g + 3924

from Eq. (iv) and substituting in Eq. (i)

TA − 0.16 mA g − 0.6 mA g = 0

or TA = 0.76 mA g

and now substituting in Eq. (iii),

1.874(0.76 mA g) + 0.16 mA g + 0.16 mA g + 785 = 2943

whence mA g = 1237 

and mA = 126 kg 

 The minimum mass of block A should, therefore, be 126 kg; for mA less than 126, the lower block would 

slide down the incline and the upper block up the incline.

 S3.5 LIFTING BY A SCREW JACK

A screw jack consists of a square-threaded central rod called a screw fitted into the internally-threaded 

collar of a jack. The load W is placed on the screw and the effort F is applied horizontally at the end of 

a lever of arm L as shown in Fig. S3.6. The lift-

ing action of the screw jack takes place through 

the normal and frictional forces deve loped at 

the threaded surface of contact within the collar. 

Considering a typical element of the threaded 

surface in contact, the normal force is dN and the 

 friction force is df opposing the input moment

 M = FL

constituted by the effort F applied at an arm L. The 

total reaction force at the contact surface must bal-

ance the vertical force W and horizontal component 

H given by

 H = M/r = FL/r

At the state of impending motion, or during the 

lifting action of the screw, the resultant reaction force makes an angle f with the normal where f = tan–1
m

and m is the static coefficient or kinetic coefficient of friction as the case may be.

If a is the pitch angle of the screw, then for equilibrium,

 R cos (a + f) = W

 R sin (a + f) = M/r = FL/r

Fig. S3.6 Analysis of a screw jack
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and from these equations,

F = W tan (a + f) r/L  (S3.4)

If the load W was being lowered instead of being raised, the friction force would be directed up the incline 

and the resultant reaction R would be inclined to the line of action of W by an angle (a – f). The force F

required to lower the load would be given by

 F = W tan (a − f) × r/L (S3.5)

which is indeed much smaller than that required to raise the load.

The efficiency of a screw jack is defined as the ratio of the work output to the work input over the same 

period of time. Work input for one revolution of the effort

  = 2 pLF = W ⋅ 2pr tan (a + f)

Work output in the same duration

= W × pitch of the screw

  = W 2 pr tan a

Efficiency h
p a

p a f
=

+
⋅

⋅
W r

W r

2

2

tan

tan ( )

or η
α

α φ
=

+
tan

tan ( )
 (S3.6)

The efficiency can alternatively be interpreted as the ratio of the force required to lift a load in the absence 

of friction to the actual force required to lift the load.

 F (without friction) = W tan (a + 0) ⋅ r/L

 F (actual) = W tan (a + f) ⋅ r/L

 
η

α
α φ

= =
+

F

F

(without friction

actual

)

( )

tan

tan( )

An expression for the maximum efficiency of a screw jack can be obtained by setting

 dh/da = 0

or
1

0
2 2cos tan ( )

tan

sin ( )α α φ
α

α φ+
−

+
=

or sin 2 (a + f) = sin 2a

whence a = p/4 − f/2

The maximum efficiency is given by

 η
π φ
π φ

φ
φmax

tan ( / / )

tan ( / / )

sin

sin
=

−
+

=
−
+

4 2

4 2

1

1
 (S3.7)

Assuming that the coefficient of friction is 0.15, f = tan–1 0.15 = 8.53 degrees; a = p /4 − 8.53/2 = 40.73 

degrees hmax = 74.2%.

Let us also examine the condition for a screw jack to be self-locking. A screw jack is called self-locking if, 

in the absence of the applied moment FL, the screw jack does not unwind to lower the load. Since

 F × L = W tan (a − f) × r

Equating F × L to zero or making it negative implies

 tan (a − f) ≤ 0

or tan a − tan f ≤ 0 (S3.8)
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or a ≤ f

 tan a ≤ m

The screw jack will be self-locking if tan a equals or is less than m.

From the expression for its efficiency

 
η

α
α φ

=
+

tan

tan ( )

it follows that, if a = f

 η
α
α

α α
α

= =
−tan

tan

tan ( tan )

tan2

1

2

2

 = 0.5 − 0.5 tan2
a (S3.9)

which must be less than 50%.

Example S3.18 A screw jack requires a force F applied at a radius a on a handle to lift a load W on top 

of it. Determine the M/F for raising the load for a helix angle a for the screw and coefficient of friction 

m. Would the M/F be different for lowering the load?

Solution For an elemental area ds of the surface of the screw, the normal reaction is pds where p is the 

normal pressure on it. The vertical force is (Ref. Fig. Ex. S3.18 (a) (Solution)).

pds cos a − mpds sin a

 For the screw jack

 
W p p ds p p A= − = −∫ ( cos sin ) ( cos sin )a m a a m a

and M r p p ds F a r p A= + = = +∫ ( sin cos ) ( sin cos )α μ α α μ φ α⋅

 

M

F

r
=

+
−

(tan )

tan

α μ
μ α1

ds p

A

h

a

2pr

mp

(a)

ds p

A

h

a

2pr

mp

(b)

Fig. Ex. S3.18 (Solution)

 Now, for lowering the load, the screw is turned in the reverse direction; the frictional force acts in the 

opposite direction (see Fig. Ex. S3.18(b) (Solution)).

 We get W = ( p cos a + m p sin a) A (Fig. Ex. S3.18(b) (Solution))

 M = r ( p sin a − mp sin a)

and hence M F
r

/ =
−

+
( tan )

tan

μ α
μ α1

 

It is, of course, less than the M/F value for raising the load.
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 A screw jack is said to be self-locking if it does not let the load come down even if the applied moment 

or force at the lever arm is zero, i.e., it does need a moment or a force at the lever arm to lower the load,

 m > 0

or r (m – tan a) > 0 

or tan a < m 

or tan a < tan f 

or a < f 

i.e., when the helix angle is less than the friction angle.

Example S3.19 A screw thread of a screw jack has a mean diameter of 10 cm and a pitch of 1.25 cm. 

The coefficient of friction between the screw and its nut-housing is 0.25. Determine the force F that must 

be applied at the end of a 50 cm lever arm to raise a mass of 5000 kg. Is the device self-locking? Also 

determine its efficiency.

Solution From the definition of the pitch of a screw,

 
tan

.
.α

πγ π
= =

×
=

p

2

1 25

2 5
0 04

 a = 2.28

 Also, m = 0.25 = tan f; f = 14.04

 The force required at the end of 50 cm long lever is given by

 F = W tan (a + f) × r/L

  = 5000 × 9.81 tan (2.28 + 14.04) × 5/50

  = 1436 N

 For the screw jack

a < f

 Hence, the screw jack must be self-locking.

 The efficiency of the jack is given by

 
η

α
α φ

=
+

= =
tan

tan ( )

.

.
.

0 04

0 293
0 137

 = 13.7%
 The force required at the end of the lever to lower the load may be determined as follows:

 F = W tan (a − f) × r/L

  = 5000 × 9.81 tan (2.28 − 14.04) × 5/50

  = −1021 N

 The force required to lower the load is thus 1021 N in a direction opposite to that required to raise it.

 S3.6 DISC AND BEARING FRICTION

It is often necessary to estimate the torque required to overcome the frictional resistance offered by a surface 

to the rotation of the other surface. It may also be of interest to estimate the power lost in friction at a given 

speed of rotation.
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Consider, for example, the end of a rotating cylindrical shaft resting on 

a flat surface. Such a pair of surfaces constitute a thrust bearing. Let the 

axial force transmitted by the shaft on the flat pad be P . The force may be 

distributed uniformly or non-uniformly over the area of contact. The prob-

lem is dealt with by consi dering an elementary area of contact subtending 

angle dq at the centre and of width dr at a radius r as shown in Fig. S3.7. 

The area of the strip is

 dA = rdr dq

The normal force and hence the normal reaction at the strip is

 dFn = pr dr dq

where p is the intensity of normal force over the small area. The elementary 

frictional force over the area, acting tangent to the radius, must be given by

 df = md dFn

  = md pr dr dq

where md is the coefficient of dynamic friction between the contacting 

surfaces.

The elementary moment exerted by the elementary frictional forces 

acting at a radius r from the centre and at an angle q from the x-axis about 

the axis of the shaft is

 dM = df r

  = md pr2 dr dq

and the moment exerted by the entire frictional effect at the contacting surfaces is

 
M dM pr dr d p r drd d

RRR

= = = ×∫∫∫∫ μ θ μ π
π

2 2

000

2

0

2

 = ∫2 2

0

πμd

R

pr dr  (S3.10)

Integration of this expression may be carried out for an assumed or given distribution of p with r. Let us 

consider two cases:

Case (a)

If p
P

R
= constant

π 2

then M p r drd

R

= ∫2 2

0

π μ

or M = 2p md p R3/3 = 2/3 P Rmd (S3.11)

Case (b)

If the pressure intensity is assumed to be inversely proportional to the radius,

 
p

a

r
=

 
P rp dr aR

R

= =∫ 2 2

0

π π

Fig. S3.7 Analysis of disc friction

M

P

p p

O
R

y

O
x

dr

r df

dq

rdq

q
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F

R
M

R1 R2

p

Fig. Ex. S3.20

whence a
P

R
=

2π

and p
P

Rr
=

2π
With this expression, the moment is determined as

 
M

P

Rr
r drd

R

= ∫2
2

2

0

πμ
π

 = 1/2 PRmd (S3.12)

Example S3.20 A shaft of radius R with an axial load F acting on it 

rests on a flat thrust bearing of radii R1 and R2 as shown in Fig. Ex. S3.20. 

Determine the torque, M for impending rotation of the shaft.

Solution Consider an elementary area

 dA = r dq × d r

at a radial distance r, subtending an angle dq at the centre as shown in Fig. Ex. S3.20 (Solution).

 For a pressure p, the moment is given by

 

M r p r r

R

R

= ⋅ ⋅∫∫ μ δθ δ
π

0

2

1

2

and F p r r

R

R

= ⋅∫∫
0

2

1

2 π

δθ δ  

 If p = constant 

 
M R R p= −

2

3
2
3

1
3μ π ( )

 F R R p= −π ( )2
2

1
2

and M E
R R

R R
/ =

−

−
2

3

2
3

1
3

2
2

1
2

μ  

 If p varies inversely as r, p
C

r
=

then M F
R R

/ =
+

μ 1 2

2
 

O
r

dq

dr

mp

Fig. Ex. S3.20 (Solution)
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F

M
R

R2

R1

dr

ds
pr

a

Fig. Ex. S3.21 (Solution)

5 cm

5 kN

1 cm

S

30°

Fig. Ex. S3.22

Example S3.21 A shaft of radius R with axial load F is provided with a conical thrust bearing of radii 

R1 and R2 and cone angle a. Determine the torque  needed to rotate it.

Solution Consider an elementary area dA = r ⋅ dq ⋅ d r/sin a at a radial distance r, subtending a small angle 

dq at the centre.

 For a constant pressure p the frictional moment is given by

 
M r p r r p

R R

R

R

= ⋅ ⋅ ⋅ ⋅ =
−

∫∫ μ δθ δ α μ α
π

0

2

2
3

1
3

1

2

3
/sin sin

and the thrust is

 

F p r r p
R R

R

R

= ⋅ ⋅ ⋅ =
−

∫∫
0

2

2
2

1
2

1

2

2

π

δθ δ α α/sin sin

 
M F

R R

R R
/ =

−

−

⎛

⎝⎜
⎞

⎠⎟
2

3

2
3

1
3

2
2

1
2

μ α/ sin

 If pressure p varies inversely as the radius,

 
p

C

r
=

then, M F
R R

/ =
+m

asin

1 2

2

Example S3.22 The conical end of a shaft of diameter 

5 cm rests in a conical bearing of cone angle 60  as shown

in Fig. Ex. S3.22. If the coefficient of dynamic friction is 

0.3, calculate the frictional torque and power required to 

rotate the shaft at 1000 revolutions per minute, if the axial 

load on the shaft is 5 kN.

Solution Consider a strip of the conical surface in contact. For an inclined length ds, the area of the strip is

 dA = 2 p (s sin 30 ) ds

where s is the inclined distance on the surface measured from the apex.

 The axial force due to pressure p on the strip is

 dP = dAp sin 30 =
π
2

ps ds
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and the total axial force is

 p dp= ∫
 The limits of integration are from

 
S S1

1

30
5=

°
=

cos
 or 1.155 cm to cm2

 
P ps ds p s= =∫

p p

2 2
2

0 01155

0 05
2

0 0115

0 05

.

.

.

.
/

 Since P = 5 kN

 5 = 0.001 86 p

whence p = 2690 kN/m2

 The frictional force df on the strip must be given by

 df = md p dA = 0.3 × 2690  2ps sin 30  ds kN

and the frictional moment dN is such that

 dM = df s sin 30  = 1267 s2 ds kN/m

 The total frictional moment is given by

 
M dM s= = =∫ 1267 3 523

0 0115

0 05

/ N/m
.

.

 The speed of 1000 revolutions per minute corresponds to 

 
ω

π
=

×
=

2 1000

60
104 7. rad/s

 The frictional power is given by

 Power = Mw = 52 × 104.7 = 5445 W = 5.445 kW

Example S3.23 A simple disc brake consists of four shoes, each subtending an angle a with the inner 

radius R1 and outer radius R2. The shoes are pressed against a coaxial rotating disc with a force 4P.

Determine the torque exerted on the disc if the coefficient of static frictions is m.

Solution The area of contact of a single shoe is (Ref. Fig. Ex. S3.23 (Solution))

 
A R R= −

α
2

2
2

1
2( )

and the pressure intensity is given by

 
p

P

A

P

R R
= =

−
4

4

1 2

2
2

1
2a ( )

 The elementary frictional moment on an element of area rdq dr is

 
dM r df r dF r pr d dr

P

R R
r d drn= = = × =

−
×m m q

m

a
q

2

2
2

1
2

2

( )

and the total moment for one shoe is given by

M dM
P

R R
r dr d

R

R

= =
−∫ ∫∫

2

2
2

1
2

2

01

2m

a
q

a

( )

P

OR1

R2

a

Fig. Ex. S3.23 (Solution)



 Applications with Friction 231
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 For the shoe brake with four shoes, the moment is

 
′ =

−

−
M

P R R

R R

8

3

2
3

1
3

2
2

1
2

m ( )

( )

 It may be noted that the resulting torque is independent of the angle a subtended by each shoe at the 

centre of the disc brake.

 S3.7 INPUT/OUTPUT OF SIMPLE MACHINES

A machine is a device which enables us to employ the input to advantage for achieving a desired output. A machine 

may consist of a single element or an assemblage of elements. Machines are classified as  electrical, mechanical, 

electro-mechanical and others depending upon the nature of the input and output. We confine ourselves to the 

consideration of a simple mechanical machine where the input may be a small force or a moment at a convenient 

point and the output may be a larger load being lifted or moved against resistance.

It is usual to employ the terms mechanical advantage, velocity ratio and mechanical efficiency to describe 

the features of a lifting machine. The mechanical advantage is the ratio of the load lifted to the effort 

applied:

 Mechanical advanta e
Load lifted

Effort applied
g = =

W

P
 (S3.13)

The velocity ratio refers to the ratio of the velocities of the points of application of the effort and load. 

Assuming the lifting process to take place steadily, i.e., at the constant rate, the velocity ratio over an interval 

of time may also be defined as

 Velocity ratio
Distance moved by the point of application 

=
oof effort

Distance moved by the load
=

y

x
 (S3.14)

where the distances are measured along the directions of the respective forces 

as shown in Fig. S3.8.

The efficiency of a machine is defined as the ratio of the work output to the 

work input, i.e.,

 Efficiency, η = =
Work output

Work input

Wx

Py
 =

W

P

y

x

 =
Mechanical advantage

Velocity ratio
 (S3.15)

A machine is said to be ideal if the efficiency is 100% which may be so in the absence of dissipation actions, 

such as friction. For an ideal machine, therefore,

Mechanical advantage = Velocity ratio

In actual practice, some energy must be lost in dissipative action and the efficiency is consequently less 

than 100%. The mechanical advantage must, therefore, be less than the velocity ratio. It follows that

 
W y

xP
≤  (S3.16)

Load

Effort, P

W

Lifting

machine

Fig. S3.8  Input and output of 

a lifting machine
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depending upon whether a machine is ideal or not. Let us consider the reversed operation of a machine. The 

reversed operation refers to the movement of the machine components under the application of the load only 

when the effort is removed. It is possible when the work done by the load overcomes the frictional work over 

the same time interval,

Wx ≥ Py − Wx

or

 2Wx ≥ Py

or

 
W

P

y

x
≥ 0 5.

or

h ≥ 0.5 (S3.17)

A machine may, therefore, operate in the reverse direction on the removal of the effort if its efficiency 

exceeds or equals 50%. It is often necessary to stop the reversed operation of a machine. This may be done by 

reducing the efficiency to less than 50%. The machine is then said to be self-locking. The condition of self-

 locking is  contradictory to the condition of an ideal operation.

The relationship between the load lifted and effort required, sometimes called law of the machine is such that

 P aW b= +  (S3.18)

which shows that the effort bears a linear relationship with the load as shown in Fig. S3.9. The relationship 

shows that a minimum effort equal to the intercept b is required to lift a load, however small, because the fric-

tional resistance is to be overcome. The effective frictional resistance at the point of application of the effort 

is defined as the difference between the ideal effort for a friction-

less machine and the actual effort for a real machine. The effective 

frictional resistance Fc increases with the load as also shown in 

Fig. S3.9. From the expression for mechanical efficiency,

 
η =

W

P

y

x

and the law of the machine

 P = aW + b

the efficiency may be written as

 η =
+

=
+

W

aW b

y

x

x y

a b W

/

/
 (S3.19)

This expression for h shows that the efficiency of a machine 

must be zero at zero load and that the efficiency increases as the 

load increases.

As W
x

ay
→ ∞ →, η  

The maximum efficiency is thus given by

 ηmax =
×

1

a velocity ratio
 (S3.20)

as shown in Fig. S3.10, and the corresponding mechanical advantage is given by

 Mechanical advantage velocity ratio= =η
1

a
 (S3.21)

W

h hmax

0
0

Fig. S3.10  Variation of efficiency with load

b Fe1

W

Fe2

P

1

Ideal machine

Actual machine

20

Fig. S3.9 Law of the machine
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Lifting machines may employ one or more of elements such as levers, pulleys, gears, inclined planes and 

screw-threads.

Example S3.24 A drum of mass 6 kg holding water of mass 40 kg is to be raised from a well by the 

application of a 120 N human force. Would you recommend the use of a single pulley of diameter 10 cm, 

a simple wheel and axle of diameters 40 cm and 10 cm or a differential wheel and axle of diameters 

40 cm, 10 cm and 5 cm? (Ref. Fig. Ex. 3.24)

Load

W

P

W

Load

P

(a)

W

Load

Effort

Load

W
P

Effort
P

d D
Dd2 d1

(b) (c)

Fig. Ex. S3.24

Solution The requirement of the lifting machine to lift a load

 W = (6 + 40) × 9.81 = 451.3 N 

by an effort P = 120 N 

 The mechanical advantage is

 

W

P
= =

451 3

120
3 76

.
.

 A single pulley has a velocity ratio of 1.0. If it operates without friction, its efficiency may be 100% and 

the mechanical advantage is then 1.0. If the mechanical efficiency is short of 100% due to friction, etc., the 

mechanical advantage would be less than 1.0. Thus a single pulley may have a mechanical advantage of 1.0 

under ideal conditions. It is usefully employed if it is desired to change the direction of the effort applied 

with respect to the direction of the load being lifted as shown in Fig. Ex. S3.24(a). It is unsuitable for the 

present problem where the mechanical advantage desired is far beyond 1.0.

 A simple wheel and axle of diameters D and d as shown in Fig. Ex. S3.24(b) operates such that the ratio 

of the distance moved by the effort to the distance moved by the load, i.e.,



Engineering Mechanics234

W

I

F

Fig. Ex. S3.25

 
Velocity ratio = =

π
π

D

d

D

d

which equals 40/10 = 4.0 in the given case. The efficiency of the machine would be 

 h = 3.76/4.0 = 0.94 = 94% 
 A differential wheel and axle of diameters D, d1 and d2 as shown in Fig. Ex. S3.24(c) operates such that

 
Velocity ratio =

−
=

−
π

π π
D

d d

D

d d1 2 1 2  
which, in the present case, would be 40/(10 – 5) = 8.0. The efficiency of the machine would then be

 h = 3.76/8.0 = 0.47 = 47% 

 In order to decide the preference in favour of the simple or differential wheel and axle, it may be noted 

that both are adequate as far as the lifting action is  concerned. A simple wheel and axle is more efficient 

but the device is capable of operating in the reversed direction if the effort is removed. On the other hand, 

the differential wheel and axle has less than 50% efficiency, a fact which ensures self-locking when the 

effort is removed.

 For the simple wheel and axle, the effort lost in overcoming the frictional resistance equals the actual 

effort minus the ideal effort

 
120

451 3

4 0
7 2− =

.

.
. N

 
whereas the effort lost in overcoming friction in the differential wheel and axle is

 
120

451 3

8 0
63 6− =

.

.
. N

 
 One would prefer the simple wheel and axle arrangement unless the need for a self-locking arrangement 

can justify the additional effort lost in friction.

Example S3.25 Determine the effort required 

at the end of an arm 40 cm long to lift a load of

5 kN by means of a simple screw jack with screw 

threads of pitch 1 cm if the efficiency at this load 

is 45%. Also calculate the effort needed if the jack 

is converted into a differential screw jack with 

internal threads of pitch 7 mm and the efficiency 

of operation is 30% (Ref. Fig. Ex. 3.25).



 Applications with Friction 235

Fig. Ex. S3.26

Solution The velocity ratio of the simple screw jack is given by the ratio of the distance moved by the point 

of application of the effort, i.e., 2p × 0.40 = 0.8p m and the distance moved by the load, i.e., 0.01 m if the 

arm is turned by one revolution

 
Velocity ratio = =

0 8

0 01
251 3

.

.
.

π

 The mechanical advantage must be

 W/P = 251.3 × 0.45 = 113.1

whence P = W/113.1 = 5000/113.1 = 44.2 N 

 If the jack is converted into a differential screw jack, the distance moved by the point of application of 

the effort over one revolution remains the same, i.e., 0.8p but the corresponding distance through which 

the load moves becomes

 0.01 − 0.007 = 0.003 m

and the velocity ratio becomes

 0.8p/0.003 = 837.8

 The mechanical advantage must now be

 W/P = 837.8 × 0.30 = 251.3

whence P = 5000/251.3 = 19.9 N 

Example S3.26 A carpenter’s hand drill consists of a spindle AB

which has a drill at A and a bearing at B as shown in Fig. Ex. 3.26. 

A rope is wrapped round the spindle 4 turns and the ends of the rope 

are tied to a handle CD. During operation, the handle is applied an 

effort P with one hand while the block at B is kept pressed with a 

force W with the other hand. Calculate the maximum torque which 

can be produced at the drill if the spindle has a diameter of 5 cm and 

the coefficient of friction between the rope and the spindle surface 

is 0.15. The tension in the slack side of the rope may be assumed to 

be 5 N.

Solution The torque at the drill would be maximum when the torque applied at the spindle is maximum, 

the two being equal. In the limiting case,

 
T

T
e2

1

= mq  (i)

and the torque is given by

 M = (T2 – T1) r (ii)

with the usual rotation.
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8 cm

F

3 cm

4 cm

Fig. Ex. S3.27

 From the data,

 T1 = 5 N m = 0.15

 r = 5/2 = 2.5 cm = 0.025 m

 q = 4 turns = 4 × 2p = 8 rad

 From (i),

 T2 = 5 × e0.15 × 8p = 5e1.2p= 217 N

 From (ii),

 M = (217 − 5) × 0.025 = 5.3 Nm

Example S3.27 A uniform solid cube of side 

8 cm and weight 100 N  is resting with an edge on 

the ground and its base on the edge of a 3 cm step, 

as shown. An increasing horizontal force F is applied 

at the edge. In what ways is the cube likely to lose 

equilibrium? At what minimum value of F would it 

happen?

 Assume the coefficient of friction between the cube 

and the ground and between the cube and the step 

as 0.3.

Solution The cube can lose equilibrium in two possible 

ways: (a) by sliding at both points of contact or (b) by 

overturning about the edge of the step. Which one is 

likely to happen first?

 Well, that depends upon the configuration, coefficient 

of friction, etc., so there is no easier way than to calculate 

the value of force F in each possibility.

 Let us first consider case (a), sliding at both points 

of contact and draw the fbd of the block in Fig. Sol. 

Ex. 3.27. It shows all the external forces on the 

block.

 At the verge of equilibrium being lost in sliding,

F − 0.3 RA − 0.3RP cos q − RP sin q = 0

and RA − 100 + RP cos q − 0.3 RP sin q = 0 

 Taking moments about A,

F × 0.08 cos q + 100 cos q × 0.04 − 100 sin q × 0.04 − RP 0.05 = 0

or

 8 F cos q + 400 cos q − 400 sin q − 5 Rp = 0

D

y

x

F
B

RA

A

RP

3 cm

P

C

3 cm
0.3RP

0.3RP

4 cm

4 cm

100

N

q

Fig. Ex. S3.27 (Solution)
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Wooden block

60 N
20° Wedge

Fig. Ex. S3.28

 With sinθ = 3 5/  and cosθ = 4 5/ , the equations reduce to

5 1 5 4 2 0

100 0 62 0

6 4 80 5 0

F R R

R R

F R

A P

A P

P

− − =
− + =

+ − =

. .

.

.

 From these equations, F ≈ 300 N

Now, let us consider the case (b), topping over the step edge P. One way use the same fbd as above except for 

the fact that, at the instant of toppling over point P, the contact at A is lost, i.e., the reactions, at A become zero. 

With that in mind, taking moments about P,

 F × 0.08 cos q − F × 0.05 sin q − 100 × 0.01 cos q − 100 × 0.04 sin q = 0 

or 8 F cos q − 5 F sin q − 100 cos q − 400 sin q = 0 

 Using  sin cosθ θ= =3 5 4 5/ and /  

 
F = × =

16

17
100 94 N

 

 We notice that this value of 94 N for losing the equilibrium in toppling is for less than the value of 300 N 

for sliding. The cube will, therefore, topple over the step at F = 94 N.

Example S3.28 A wooden block is being split by 

a 20° wedge with a force of 60 N applied horizontally

as shown. Taking the coefficient of friction between 

the wood and the wedge as 0.4, estimate the vertical 

force tending to split the wood apart.

Solution Draw the free-body diagram, as shown with P

and  forces acting at f with the  respective normals n and 

n to the wedge surfaces above and below it.

 From m = 0.4 = tan f; f = 21.8°
 By equilibrium,

 P sin (f + 20) + Q sin f − 60 = 0 (i)

and −P cos (f + 20)  Q cos f  0 (ii)

Substituting f = 21.8°, and solving for P and Q,

P = 62.5 N, Q = 50 N

 The vertical component of P is −62.5 cos 41.8° = −46.5 N

 The vertical component of Q is 50 cos 21.8° = 46.5 N.

Of course, the two are equal and opposite for equilibrium!

n
y

x

P

Q n

20

20° 60 N

f

f

Fig. Ex. S3.28 (Solution)
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 EXPERIMENT E7  PERFORMANCE OF SIMPLE LIFTING MACHINES

OBJECTIVE TO DETERMINE THE EFFORT REQUIRED TO LIFT A LOAD AND EFFICIENCY OF 

LIFTING BY SOME SIMPLE MACHINES.

Apparatus Simple lifting machines, such as a screw jack, wheel and differential axle, worm and worm 

wheel, winch crab, as shown in Figs. E7.1 to E7.4; metre rod and standard weights.

Background Information A lifting machine is employed to lift a larger load W at a point by employing a 

smaller force P at some other point. During the process, the distance y moved by the effort may be much more 

than the distance x, moved by the load:

 Work input  = Py

 Work output = Wx

Fig. E7.3 Worm and worm wheel

d

W

D

N1

N2

P

Fig. E7.4 Winch crab

D d1

Axies

Wheel

Bearing

W

W

d2

Bearing

Fig. E7.2 Wheet and differential axleFig. E7.1 Screw jack
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Efficiency of the machine, h = =
Wx

Py

W P

y x

/

/

 
h =

Mechanical advantage

Velocity ratio

where the term mechanical advantage stands for the 

ratio of the load to the effort applied to lift the load at 

a constant velocity and the term velocity ratio  stands 

for the ratio of the distance moved by the effort to the 

distance moved by the load. Conventionally, the load 

is lifted vertically up and the point of application of 

effort is moved vertically down. The larger the load, 

the more the effort required. The plot of P vs. W is 

usually linear, whereas that between h and W is non-

linear as shown in Fig. E7.5.

While the effort applied to lift a given load at a constant velocity is recorded by measurement, the velocity 

ratio is determined from a consideration of the distances moved by the points of application of the load and 

effort.

For a screw jack, the distance moved by the effort is pD for the load to be lifted by a distance p where D

is the diameter of the drum and p is the pitch of the screw

 
VR

D

p
=

π

For a wheel and differential axle, the distance moved by the effort is pD for the load to be lifted by a dis-

tance (pd1 − pd2) where D is the diameter of the wheel and d1 and d2 are the diameters of the axles on which 

the string is wound in the opposite directions:

 
VR

D

d d

D

d d
=

−
=

−
π

π π1 2 1 2

For a worm and worm wheel, the distance moved by the effort is pD for the load to be lifted by a distance 

pd divided by the number of teeth N on the worm wheel where D and d are the diameters of the power drum 

and the load drum respectively

 
VR

D

d N

ND

d
= =

π
π /

For a winch crab or lift, the distance moved by the effort is pD for the load to be lifted by a distance pd

divided by the ratio N2/N1 of the teeth of the wheel and pinion where D and d are the diameters of the power 

drum and load drum respectively

 
VR

D

d N N

N D

N d
= =

π
π /( / )2 1

2

1

Observations and Calculations It is necessary to note the parameters which enter into the determination 

of the velocity ratio for a given machine. The velocity ratio VR is thus obtained. The effort required to lift 

a load at a constant speed is determined practically and the experiment is repeated for various loads in 

 convenient steps.

E
ff

o
rt

 P

Load WO

E
ff

ic
ie

n
cy

 h

Load WO

Fig. E7.5 Variation of effort and efficiency with load
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S. No. W P W/P VR

1

2

.

.

.

Result  Plots of P vs. W and h vs. W for the lifting machine may be made from the measured and calculated 

values. One may like to express the P vs. W plot in the form of a linear relationship.

 P = aW + b

often called the law of the machine. The values of a and b are obtained from the plot.

Points for Discussion

A machine is said to be self-locking if the load stays in  position even though the effort is removed. What 

is the condition, in terms of efficiency, for a machine to be self-locking? Which of the machines tested by 

you are self-locking?

How should the effort vary with the load for an ideal, i.e., a frictionless machine? How does the plot alter 

due to friction?

Assuming that the law of the machine is linear, what should be the maximum mechanical advantage and 

maximum efficiency of the machine?

Of the various lifting machines known to you, how would you decide which one to choose for a  particular 

situation? For example, which lifting machine is best suited, in your opinion, for the following jobs:

(a) lifting a drum of water from a well?

(b) lifting a heavy consignment from a ship?

(c) lifting the body of a truck for the purpose of changing a wheel?

Concept Review Questions

  Comment on the nature of friction between two 

surfaces and the concept of impending motion.

  A block of base dimensions a × b and height h

is subjected to a horizontal force F at its mid-

height. Draw the free-body diagram of the block

 (a) for small F

 (b) for large F

  both being before the state of impending action. 

Examine the difference in the point of applica-

tion of the resultant of the normal reaction and 

the frictional force at the base of the block.

  Under what conditions can a cylinder roll down 

and under what conditions can it slide down an 

inclined plane?

  In the analysis of a belt-drive, the relationship 

between the tensions in the tight side and the 

slack side incorporates the coefficient of static 

friction m. Explain why it is not the coefficient 

of dynamic friction instead.

  Whenever a rope or a wire under tension is to be 

held, it is wrapped round a tree-trunk or a pole by 

giving it a number of turns. Why?
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  Explain why the lifting action of a screw jack is 

likened to pushing up an incline.

  From the expression for the efficiency of a screw 

jack,

h
a

a f
=

+
tan

tan ( )

  where a is the equivalent inclination and f is 

the friction angle, obtain the expression for the 

maximum efficiency and also the efficiency for 

it to be self-locking.

8   Define and relate the mechanical advantage 

velocity ratio and efficiency of a machine. What 

is meant by the law of the machine?

Tutorial Problems

  Figure Prob. S3.1 shows the location of the 

centre of gravity in a model of a car which 

can be driven either by its rear or front wheels. 

If the inertia of the wheels, rolling resistance 

and aerodynamic drag are ignored, what is the 

ratio of the maximum accelerations in the two 

cases when the coefficient of friction between 

the tyres of the car and ground is  0.7?

2

3 4

Fig. Prob. S3.1

  In Fig. Prob. S3.2, the coefficients of friction 

between the weight and the wedge is m1 and 

between the wedge and the lower block m2.

Ignoring the weight of the wedge and assuming 

no friction, determine the applied force required 

to raise by forcing the wedge to the right.

q

m1

m2

m = 0

Fig. Prob. S3.2

Ans μ
μ θ

μ θ1
2

21
+

+
−

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥

tan

tan

 A homogeneous ladder 6 m long and weighing 

400 N rests against a smooth wall. The angle 

between it and the floor is 70 . The coefficient 

of friction between the floor and the ladder is 

0.25. How far up the ladder can an 80 kg man 

walk before the ladder slips? ( s  4.41 m)

  A horizontal force, is applied to a block 

which rests on an inclined plane, as shown in 

Fig. Prob. S3.4. Find the force required to ini-

tiate motion up the plane.

 s =
+
−

⎛
⎝⎜

⎞
⎠⎟

sin cos

cos sin

q m q

q m q

q

q

a

Fig. Prob. S3.4

  The block of weight  is on a surface (the 

 coefficient of friction is m) which is inclined 

at angle q with the horizontal as shown in Fig. 

Prob. S3.5. This surface is part of a  triangular 
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block of weight W1. A horizontal force P

causes the system to have an acceleration a to 

the right. What value of P will cause the top 

block to move relative to the surface? Assume 

no friction of the bottom surface. What is the 

acceleration?

 

s a
g

P
W W

=
−

+
⎛
⎝⎜

=
+ −

+
⎞
⎠⎟

( tan )

( tan )
,

( ) ( tan )

tan

m q

m q

m q

m q

1

1

1

q

W

P

W1

Fig. Prob. S3.5

  A uniform rod of mass m and length L is 

lying on a rough horizontal table. A horizon-

tal force P is applied to the rod perpendicu-

lar to its axis at a distance kL k >⎛
⎝⎜

⎞
⎠⎟

1

2
from

one end so that it just moves. Show that the rod 

rotates about a point distance hL from the 

same end and that P = m mg (1 – 2h), where 

h k k k= − − +⎛
⎝⎜

⎞
⎠⎟

2

1 2
1

2

/

.

  A bar rests on two pegs and makes an angle 

b with the horizontal. The coefficients of 

friction are m1 at one peg, which is at a dis-

tance a from G, the centre of gravity of the 

bar, and m at the other peg at distance b from 

G. Show that for an equilibrium condition 

to exist.

tan
( )

β
μ μ

≤
+
+

1 2b a

a b

8  At what height above the surface of a bil-

liard table should a ball of radius r be struck 

by a horizontal force F in order to have no 

sliding at the point of contact? (as shown in 

Fig. Prob. S3.8).

C

F

h

P

Fig. Prob. S3.8

  A cylinder of diameter d weighing W rests 

at a corner of two surfaces as shown in 

Fig. Prob. S3.9. Prove that the maximum 

force P that can be applied as shown without 

causing the cylinder to rotate is 3/8 W. Take 

the coefficient of friction for each pair of 

 contacting surfaces as 0.5.

d

P

Fig. Prob. S3.9

  Find the minimum weight W of the triangu-

lar block such that it remains in equilibrium 

under the action of the force 1 kN applied to it 

as shown in Fig. Prob. S3.10. Take m = 0.25.

 ( s  2.12 kN)

0.5 m

0.5 m

1 kN

W

Fig. Prob. S3.10
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  A cylinder of diameter 0.3 m and mass 25 kg 

rests on a rough surface as shown in Fig. Prob. 

S3.11, with ms = 0.4 and md = 0.35. Determine 

the force P to be applied shown to roll the 

cylinder without slip over the step.

 ( s P = 70.5 N)

30°

0.3 m

0.025

P

Fig. Prob. S3.11

  A cylinder weighing 2670 N, 1.2 m in 

 diameter is acted upon by a force of 445 N, 

as shown in Fig. Prob. 3.12 with the help of a 

cord wrapped around it. Determine the coef-

ficient of friction required to prevent slip-

ping. What would happen if the coefficient 

of friction is reduced?

 ( s m = 0.21; it would roll with 

slip at the point of contact)

C

445 N

Fig. Prob. S3.12

  A rope is wrapped three and a half times 

around a cylinder, as shown in Fig. Prob. 

S3.13. Determine the force T1 exerted on 

the free end of the rope, that is required 

to support a 1 kN weight. The coefficient 

of friction between the rope and cylinder 

is 0.25.

Cylinder

T1

T2

m

W

Fig. Prob. S3.13

  A belt passes over a number of fixed cylin-

ders, as shown in Fig. Prob 3.14. Find the 

tension T for a given tension T0 in terms of 

the coefficients of frictions and angle.

T2

T1

T2

T0

T1

T

m3

m1

m2

b3

b1

b2

Fig. Prob. 3.14

 s T T e=( )− + +
0

11 1 2 2( ...)μ β μ β

  A square-threaded screw jack has a pitch 

of 1 cm and a mean diameter of 7.5 cm. 

The mean diameter of the bearing surface 

between the cap and the screw is 9 cm. 
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The coefficient of friction between all sur-

faces is 0.10. What force is required at the 

end of a lever 90 cm long to raise 40 kN?

 ( s  440 N)

  Four turns of a rope around a horizontal 

post are just able to hold a 450 kg mass 

with a pull of 45 N. Determine the coef-

ficient of friction between the rope and the 

post.

 ( s m = 0.18)

  Two equal pulleys, each of diameter 75 cm, 

are connected by a belt. The tension in 

the tight side of the belt is 200 N. If the 

 coefficient of friction is 0.25, determine 

the tension in the slack side of the belt at 

the instant of impending slip.

 ( s  91 N)

8   A screw jack has a pitch of 6 mm and the 

mean radius of the threads is 60 mm. The 

mean diameter of the bearing surface under 

the cap is 80 mm. What is the turning 

moment necessary to lift a 680 kg box? Take 

m = 0.06.

 ( s  46.4 N/m)

  An axial force P presses the disc brake of 

radius R onto a flexible elastic surface so 

that the contact pressure decreases para-

bolically from p0 at the centre to zero at the 

periphery of the disc. Show that the pressure 

 distribution can be expressed as

p
P

R
r R= −

2
1

2

2 2

π
( / )

  Also show that the torque required to cause 

the impending motion of the disc brake is 

given by M = 8/15 ms PR.

  Find the lifting force P required to raise the 

load 100 N supported as shown in Fig. Prob. 

S3.20. Take m = 0.3. What would happen if 

the force P is less than this value? What is 

the minimum force P required to just hold 

the load in position?

 ( s  658.6 N; No lifting; 15.2 N)

P 100 N

Fig. Prob. S3.20

  A drum brake consists of a drum with brake 

lining over an angle 4a as shown in Fig. 

Prob. S3. 21. The brake shoes are pressed 

on it with a force P to produce a braking 

couple C.

 Show that

2
2

1h
P

C

h

R
=

+
±

( sin cos )

sin

α α α
μ α

where the sign depends upon the direction of 

motion of the drum.

a

q

Drum

Brake

lining

Shoe

P

h

h

R

O

P

Fig. Prob. S3.21
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Look up Hints to Tutorial Problems at the end!

Multiple-Choice Questions

Answers to Multiple-choice Questions

1 (d)    2 (a)    3 (b)    4 (d)    5 (c)    6 (c)    7 (b)

8 (d)    9 (c)

Select the correct or most appropriate response from 

among the available alternatives in the following 

multiple-choice uestions:

 The force of friction between two bodies in 

 contact is

 (a)  a function of the relative velocity between 

them.

 (b) dependent on the areas of contact.

 (c) always normal to the surface of contact.

 (d)  never shown in the free-body diagram of the 

system of these two bodies.

The frictional force is independent of

 (a) the area of contact

 (b) the coefficient of friction

 (c) the normal reaction

 (d) the angle of friction

The coefficient of friction depends upon

 (a) the normal reaction

 (b) the surface roughness

 (c) the tangential force applied

 (d) the speed of movement

 Once a body just begins to slide, it continues to 

slide because

 (a) the body has inertia

 (b) inertia force acts on the body

 (c) the body accelerates

 (d) the frictional force becomes less.

 The frictional force on a body acted upon by a 

force on a rough horizontal surface is

 (a)  always equal and opposite to the horizontal 

component of the force.

 (b) equal and opposite to the applied force.

 (c)  equal and opposite to the horizontal component 

of the applied force if the body is at rest or 

moving with a constant velocity.

 (d)  independent of the vertical component of the 

force.

 The coefficient of friction between two surfaces 

is the constant of proportionality between the 

applied tangential force and the normal reaction

 (a) at the instant of application of the force.

 (b) at any instant when the body is at rest.

 (c) at the instant of impending motion.

 (d) at an instant after the motion takes place.

 The ratio between the tensions in the tight side 

and slack side of a flat belt drive increases

 (a) in direct proportion to the angle of lap.

 (b) exponentially as the angle of lap increases.

 (c)  in direct proportion to the coefficient of 

friction.

 (d) proportional to the width of the belt.

8  The condition for a screw jack to be self-locking 

is that

 (a)  its efficiency should be the maximum possible.

 (b)  its efficiency should be the minimum possible.

 (c) its efficiency should be more than 50%.

 (d)  it should not unwind to lower the load if left 

to itself.

 The maximum efficiency of a machine

 (a) should be 100% under ideal conditions.

 (b) is directly proportional to the velocity ratio.

 (c)  is given by mechanical advantage divided by 

velocity ratio.

 (d)  should occur when the load is 50% of 

maximum permissible load.



4

Centroid, Centre 

of Mass and Gravity

 4.1 INTRODUCTION

It is often necessary to define a point such that the entire length of a curve, area of a surface or 

volume, mass or gravitational force for a body should be representable to act at that point for 

some purposes. The point should serve as a convenient origin for the coordinate axes moving 

with the body. It can be regarded as a convenient base point for the application of the principle 

of moment of momentum. It can also be taken as the fundamental base for the moment of iner-

tia computations. In view of so many good reasons it is natural to define a central point for a 

given physical entity, more so, if a single point can satisfy all the above criteria.

Central points or centroids of simple geometrical shapes are well known, as shown in 

Fig. 4.1. The centre C of a circle, a circular plate or a sphere is also the centroid!

The centre of a straight line segment must also be its centroid. Hence, the point of intersec-

tion of the diagonals of a figure must be the centroid of the figure. The centroid of a rectangle 

or a rectangular plate must, therefore be at C.

Mathematically, a central point is that point about which the summation of the first 

moments of the elements of the body results in zero. Alternatively, if an origin is chosen 

arbitrarily, then the central point is that 

where the entire physical quantity may be 

assumed to be concentrated for the purpose 

of calculating moment about the origin. 

This definition, as will be seen later, makes 

the central point very meaningful since it is 

unique and invariant with the choice of the 

origin and the orientation of the set of axes 

with respect to the body.

x

y

C

y

C x

Fig.  4.1 Centroids of simple figures
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The terminology of the central point for different physical entities is as follows:
P

Centroid Length of a curve
Centroid Area of a surface
Centroid Volume of a body
Centre of Mass Mass of a body
Centre of Gravity Gravitational force on a body

 4.2 CONCEPT OF FIRST MOMENT

The of an ‘element’ about an origin is defined as the product of its position vector with the 
 element itself. The element may belong to any physical quantity, such as continuous length, area, volume, 
mass or distributed gravitational force. The element is correspondingly termed as

 Length element  for length (i)
 Area element  for area (ii)
 Volume element  for volume (iii)
 Mass element  for mass (iv)
 Force element  for gravity (v)

It may be seen that the element can be a scalar quan-
tity as in (i) to (iv) and a vector quantity as in (v). The 
product definition of the first moment implies a magni-
tude multiplication for the scalar elements and a cross 
product for the vector elements.

Consequently, if the element is located by a position 
vector  with respect to an origin  as shown in Fig. 4.2, 
the first moments are expressed as follows:

for the length element
for the area element
for the volume element
for the mass element

× (– ) for the gravitational 
 force element (4.1)

In general, the position vector has three rectangular components:

= + +

The first moments for the length, area, volume, mass and force elements can be expressed as follows:

+ +  for length (i)
+ +  for area (ii)
+ +  for volume (iii)
+ +  for mass (iv)
 –  for gravity (v) (4.2)

The first moment of any element can be positive or negative, depending upon the choice of the origin and 
the contribution of the element. For example, the component of the first moment of an area  element, i.e.,

Element , , ,

, or − g

Fig. 4.2 Location of an element



Engineering Mechanics248

will acquire the sign of x if the area actually exists and it will acquire a sign opposite to that of x if the area in 

question is a void from the total area counted as positive. The sign and magnitude of x will, of course, depend 

upon the choice of the origin.

 4.3 DEFINITIONS OF CENTROID, CENTRE OF MASS AND GRAVITY

The central point is defined as a point where the entire physical quantity can be assumed to be concentrated 

to give the same first moment as that obtained by considering the elements of the body. The central points for 

a length, an area and a volume are called the centroids whereas the central points for the distribution of mass 

and gravitational force are termed as the centre of mass and centre of gravity respectively.

The central point is denoted by C and its position vector by

c = xc + yc + zc

Thus, for a line in space whose total length is l the first moment is written as c l. Equating it to the 

summation of the first moments of the length elements over the entire length.

 r rc l dl= ∗∫
whence r rc dl l= ( )∫  (4.3)

Similarly, denoting the total area of a surface by A, its centroid is given by

 rc dA A= ( )∫  (4.4)

Likewise, the centroid of a volume V is given by

 rc dV V= ( )∫  (4.5)

and the centre of mass of a body of mass m is located by

 
rc dm m= ( )∫

 = ( )∫ ρ dv m  (4.6)

where r is the mass density.

The centre of gravity of a body acted upon by a parallel and uniform gravitational force –mg  is given by

 r k) kc mg g dm× − = × −∫( ( )

    r k r kc m dm× = ×∫ ( )  (4.7)

The central point, i.e., the centroid, centre of mass or centre of gravity may or may not lie on the body itself 

but it is a point fixed with respect to the body. The choice of the coordinate axes and origin is arbitrary; the 

centroid is a unique point for the given physical quantity which may be a length, an area, a volume, a mass 

or a distributed force. The central point, therefore, represents the given physical quantity so far as its first 

moment about any origin is concerned.

 4.4 CENTROID OF A LENGTH

The centroid of length l of a curve in space is given by Eq. (4.3), i.e.,

 r rc dl l= ( )∫
In general, the limits for such definite integrals are not written for the sake of convenience.
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which implies that the coordinates of the centroid are

 

= ( )∫
= ( )∫

 = ( )∫

 (4.8)

and

(a) Space curve (b) Plane curve (c) Straight line

Fig. 4.3 Centroid of a length

For a plane curve, the  and  coordinate axes being chosen in the plane of the curve,

 = ∫ ( )/  (4.9)

and = ∫ ( )/  

For a straight line, the -axis being chosen along the length,

 = ( )∫  (4.10)

It may be noted that the centroid of a curve may or may not lie on the curve for space and plane curves 

but it must lie at the mid-point of straight line. Further, the centroid for a curve is independent of the choice 

of coordinates and the origin. In other words, the centroid is a point for a curve and is not concerned with the 

choice of the origin  and the orientation of the axes.

Example 4.1 Locate the centroid of an arc of a circle of radius  and subtended angle 2a. Hence 

determine the coordinates of the centroid of

  (i) a quarter circular arc

    (ii) a semicircular arc

 (iii) a complete circular arc.
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Solution Consider an arc of a circle with reference to the coordinate axes at the centre of the circle drawn 

symmetrically with respect to the arc. Symmetry of the x axis ensures that the centroid is located on the 

x axis or

 yc = 0

In order to determine xc, consider a length element

 dl = R dq

at an angle q from the x-axis as shown in Fig. Ex. 4.1. (Solution) 

 By definition,

 x x dl l x dl dlc = ( ) = ( )∫ ∫ ∫

 =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

− −
∫ ∫x R d R dθ θ
α

α

α

α

 Substituting x = R cos q,

 x R d R dc =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

− −
∫ ∫2 cos θ θ θ
α

α

α

α

  =
− −R

R

2

2

(sin sin ( ))α α
α

  
=

R sin α
α

(i) For a quarter circular arc,

 2a = p/2; a = p/4

Consequently,

x
R

Rc = =
sin /

/

π
π π

4

4

2 2

and yc = 0

Rdq

x

y

y

R cos q

O
q

dq

xc
R

C

a

a

(a) Arc of a circle

O x
C

(c) Semi-circular arc

(b) Quarter-circular arc

C
O

R

45°

x ′

x

y ′

Fig. Ex. 4.1 (Solution)

Description Shape Length xc

(Arc of a circle)

O
2a

xc

C

x

y
2Ra

R sin α
α

(Quarter circular arc) 

2a = p  /2
R

2

2 2R
π

(Semicircular arc) 

2a = p
p R

2R
π

(Circular arc) 

2a = 2p
2p R 0

Table 4.1 Centroid of Length of an Arc



 Centroid, Centre of Mass and Gravity 251

A

x

y

B

1 m

O
C1 C C2

Fig. Ex. 4.2

 (ii) For a semicircular arc

2a = p ; a = p/2

    x
R R

c = =
sin /

/

π
π π

2

2

2

                       yc = 0

(iii) For a complete circular arc,

 2a = 2p ; a = p

 x
R

c = =
sin π
π

0

 yc = 0

 The centre of the circle must be the centroid of the complete circular arc by virtue of its symmetry about 

the diameteral axes.

 4.5 CENTROIDS OF A COMPOSITE LENGTH

When the length of a curve can be decomposed into simpler shapes, such as straight lines, arcs of circles, etc., the 

centroid of the length can be determined by employing the knowledge for these simpler shapes. The principle is:

The first moment of the total length must e ual the algebraic sum of the first moments of the lengths of its 

parts which indeed follows from the definition of the centroid.

If a composite length consists of component lengths l1, l2, l3, ... with centroids at (xc1, yc1), (xc2, yc2), etc., 

respectively, then the centroid of the composite area is located by

 
x

x l x l

l l l
c

c c=
+ +

+ + +
1 1 2 2

1 2 3

...

...

 
=

Σ
Σ
x l

l

c  (4.11)

and y
y l y l

l l l
c

c c=
+ +

+ + +
1 1 2 2

1 2 3

...

...
=

Σ
Σ
y l

l

c
 (4.12)

Care must be taken to regard the component lengths as positive or negative depending upon their contribu-

tion to the composite length. The coordinates of their individual centroids, referred from the same origin, can 

be positive or negative.

Example 4.2  A thin wire is bent into a semicircle and its diameter 

of 2 m.
 (a) Find the centroid of the composite length.
 (b)  If there was an additional straight piece of wire attached at O, towards

left, what should be its length so that the centroid is at O itself ? 
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Solution Referring to the Fig. Ex. 4.2, centroid of part AB is at

C1 (0, 0) and the centroid of the semicircle is at C2 (2R/π, 0)

 Therefore, for the composite length, 

       L = + =2 /π2 2 5 14. m

        x
R

c =
× + ×0 2 2 2 2

5 14

/ /p p .

.

        = = = × =
2

5 14
0 389 0 389 2 2 0 389

R
R

.
. . . ./ m

and yc = 0 because both C1 and C2 are on the x-axis.

Now, if there was additional straight length of wire x to the 

left of O assuming Fig. Ex. 4.2 (Solution), the location of its 

centroid would have been x/2  to the left. In that case, for the 

total composite length.

 L x x= + + × = +2 2 2 5 14π / ( . ) m

the location of the centroid would have been

 x
x x

x

x

x
c =

− + × + × ×
+

=
−

+
.

( . ) .

/ / /2 2 0 2 1

5 14

2 2

5 14

2π π

If it is to be at the origin, xc = 0;

 2 2 0 4 22 2− = = =x x x/ ; ; .m

 4.6 CENTROID OF AN AREA

From the definition of the centroid of an area (Eq. (4.4))

 rc dA A= ( )∫
the x, y and z coordinates for a set of axes, with an arbitrary O as shown in Fig. 4.4, are given by

 

x x dA Ac = ( )∫
y y dA Ac = ( )∫
z z dA Ac = ( )∫

 (4.13)

For a plane area, the x and y coordinate axes being chosen in the plane of the area as shown in Fig. 4.4(b),

x x dA Ac = ( )∫

 y y dA Ac = ( )∫  (4.14)

A

x

y

B

O C1

C3 C

C2

x

x/2

Fig. Ex. 4.2 (Solution)
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It may be added to clarify that the centroid of an area may or may not lie on the area in question and that 

it is a unique point for a given area regardless of the choice of the origin and the orientation of the axes about 

which we take the first moments.

If an area has an axis of symmetry, the centroid must lie on that axis. If an area has two axes of symmetry, 

then the point of intersection of the axes must be the centroid. For example, a circle and a rectangle shown in 

Fig. 4.1 are symmetrical about the x and y axes; point of intersection of x  and y is, therefore, the centroid.

Example 4.3 Locate the centroid of a right-angled triangle with base b and height h.

Solution Let us consider an area element dA with respect to the x and y axes drawn from the right-angled 

vertex O as shown in Fig. Ex. 4.3(a) (Solution).

 x x dA A y y dA Ac c= ( ) = ( )∫ ∫and  

x

y

K

h

c

b

L

O

x

xc

y
yc

dA = dx dy

(a) (b)

h

h′

h/3

C

h′/3

Fig. Ex. 4.3 (Solution)

introducing            dA = dx dy = dy dx

and recognising the equation of the straight line KL as

O x

y

C

yc

y

xc

x

(b) Plane surface

O x

z

y

CdA

xc

zc
z

x

c

yc

y

(a) Curved surface

Fig. 4.4 Centroid of area
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 y
h

b
x h= − +

or x
b

h
y b= − +  

and that   A bh=
1

2
 

                    x x dx dy Ac

b

h
y b

h

=

− +⎛
⎝⎜

⎞
⎠⎟

∫∫ /

00

                     = − +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥∫

b

h
y b dy A

h

0

2

2

                      = + −
b

h

y
b y

b

h
y bh

h
2

2

3
2

2
2

0
3

                     =
b

3
Similarly,

                           y y dy dx Ac

h

b
x h

b

=

− +⎛
⎝⎜

⎞
⎠⎟

∫∫ /

00

                     = − +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫
h

b
x h dx A

b 2

0

2

        = + −
h

b

x
h y

h

b
x A

b
2

2

3
2

2
2

0
3

                       =
h

3
 The centroid of a right-angled triangle is, therefore, located at one-third the distance along the base 

and one-third the distance along the height. It may be noted that, in general, for any triangle, the centroid 

is located at one-third the height of the triangle from the base. Obviously, any side can be taken as the 

base and the rule of one-third height applies to any orientation. The centroid of a triangle can, therefore, 

be located easily by this consideration.

 It is also interesting to note that the centroid of a triangle is coincident with the point of intersection of 

its medians, as shown in Fig. Ex. 4.3(b) (Solution).

Example 4.4 Locate the centroid of the area of a circular sector. Hence, obtain the coordinates of the 

centroid of a quarter circle and a semi-circle with reference to a set of axes at the centre of the circle.

Solution Consider the sector of a circle as shown in Fig. Ex. 4.4 (Solution) with reference to the coordinate 

axes at the centre of the circle drawn symmetrically with respect to the sector. Symmetry about the x-axis

ensures that the centroid lies on the x-axis or

 yc = 0
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In order to determine xc, consider an area element

 dA R R d R d= ⋅ =
1

2

1

2

2q q

at an angle q from the x-axis. The centroid of the elementary area must 

be at 2/3 R from the centre such that

 x R=
2

3
cos θ

 By the definition of centroid,

 x x dA dAc = ( )∫ ∫

 = ⋅
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥− −

∫ ∫
2

3

1

2

1

2

2 2R R d R dcos θ θ θ
α

α

α

α

 = −

−

2

3
R

sin θ

θ
α

α

α
α

 =
2

3
R

sin α
α

 For a quarter-circle,

 
2α

π
α

π
= =

2 4
;

Hence, the limits of integration become

– p  /4 to + p  /4

 The x-coordinate of the centroid is

 x R
R

c = =
2

3

4

4
2

4

3

sin /

/

π
π π

Generally, the centroid of a quarter circle is referred to the x′ and y′
axes:

 ′ = ′ = = =x y x
R

Rc c c cos .
p

p4

4

3
0 424

 For a semicircle,

 2a = p ; a = p  /2

and the limits of integration become

– p  / 2 to +p  / 2

 The x coordinate of the centroid is

 x R
R

Rc = = =
2

3

2

2

4

3
0 424

sin /

/
.

π
π π

Rdq

y

xO

R

Ca

a

2/3 R cos q

dq

q

xc

(a) Sector of a circle

x

y

C

R

O

x ′c

y ′c

y ′

x ′

p/4

p/4

(b) Quarter-circle

p/2

p/2

O
C

x

y

R

(c) Semi-circle

Fig. Ex. 4.4 (Solution)
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Fig. Ex. 4.6

a
O x

y

b

y 2 = kx

q

R

O

Fig. Ex. 4.5

Example 4.5 Two non-viscous, incompressible and immiscible liquids 

of densities r and 1.5 r are poured into the two limbs of a circular tube of 

radius R and small cross-section kept fixed in a vertical plane as shown 

in Fig. Ex. 4.5. Each liquid occupies one-fourth the circumference of the 

tube.

 Find the angle q that the radius vector to the interface makes with the 

vertical in equilibrium position.

Solution Centroids C1 and C2 of the liquids in the circular tube are located 

by

OC R OC1 = =
2 2

2π

Masses of the two liquids are ra p R/2 and 1.5 ra p R/2 respectively.

The centroid of the composite column BD lies on the vertical line OA.

Taking moments, for equilibrium,

ρ
π

π
θa

R
g R

2

2 2
45⋅ × +sin ( )

     = ⋅ × −1 5
2

2 2
45. sin ( )ρ

π
π

θa
R

g R

whence, sin (45 + q) = 1.5 sin (45 – q)

sin 45 cos q + cos 45 sin q = 1.5 sin 45 cos q – cos 45 sin q

 1

2
4 5

3

2
45 0sin . cos cos sinθ θ− =

cos sin ; tan ; .θ θ θ θ− = = = °3 0
1

3
18 43

Example 4.6 Determine the centroid of the area bounded by 

the x-axis, the line x = a and the parabola y2 = kx as shown in 

Fig. Ex. 4.6.

B

O

D

C
BCA

q

R

C1

C2

1.5 r

r

Fig. Ex. 4.5 (Solution)
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Solution We may choose to consider a differential area element

 dA = dx dy

located by x, y coordinates, as in the case of a triangle or we may 

prefer to deal with strip elements, as in the case a circular sector 

(Fig. Ex. 4.6 (a) and (b)) (Solution). In this case, let us do it both 

ways and see the equivalence of the procedures.

Method I 

Choosing a differential area element

 dA = dx dy

at a location (x, y), the centroid is given by

 x x dA A y y dA Ac c= ( ) = ( )∫ ∫,

Noting that      A dA dx dy

y k

ab

= = ∫∫∫
20 /

 = −∫ ( / )a y k dy

b
2

0

 
= − = −ay

y

k
ab

b

k

b
3

0

3

3 3

and k
y
x

b
a= =

2 2

 

therefore, A ab
b a

b

ab
= − =

3

23

2

3
 

 x x dx dy Ac

y k

ab

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫∫

20 /

 

= −
⎛

⎝
⎜

⎞

⎠
⎟∫ ( / )/a y k dy A

b
2 4 2

0

2

 = −
⎛

⎝⎜
⎞

⎠⎟
1

2 5

2
5 2

2
a b

b a

b
A  

 
= =

2

5

3

2

3

5

2a b
ab

a
 

 y y dy dx Ac

y

k xa

=
=
∫∫ /

00

 

 =
⎛

⎝
⎜

⎞

⎠
⎟ =∫

k x
dx A

k x
A

a a

2 4
0

2

0

 

 = ⋅ =
b

a

a

ab
b

2 2

4

3

2

3

8

 

The centroid is, hence, at 
3

5

3

8
a b,

⎛
⎝⎜

⎞
⎠⎟

.

O x

y

y 2 = kx

x = a

y = 0

x

y

Fig. Ex. 4.6(a) (Solution)
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Method II

Choose an elementary strip of area

dA = y dx

at a distance x from the y-axis, the centroid of the strip being at y/2

from the base, the centroidal ordinate for the given area is

 y y y dx Ac = ⋅( )∫ /2

  =
⎛

⎝
⎜

⎞

⎠
⎟∫

k x
dx A

a

2
0

 =
ka

A
2

4

 
= ⋅ ⋅ =

b

a

a

ab
b

2 2

4

3

2

3

8

Similarly, by taking a strip of area

 dA = (a – x) dy

with its centroid at

x
a x x a

+
−

=
+

2 2
from the y-axis, the abscissa is given by

 x
x a

a x dy Ac

b

=
+

⋅ −
⎛

⎝
⎜

⎞

⎠
⎟∫ 2

0

( )

 = −
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟∫

1

2
0

2
4

2

b

a
y

k
dy A

 = −
⋅⎛

⎝⎜
⎞

⎠⎟
1

2 5

2
5 2

4

0

a y
y a

b
A

b

 
= ⋅ =

2

5

3

2

3

5

2a b
ab

a.

The centroid is again observed to be at the point 
3

5

3

8
a b,

⎛
⎝⎜

⎞
⎠⎟

Table 4.2 Centroids of Geometrical Shapes

Fig. Ex. 4.6(b) (Solution)

O x

y

O x

x

y

dx
(a, 0)

(a, b)

(0, a)

(a, b)

dA = ydx

y

y/2

dy

(a − x)

(a−x)/2

dA = (a − x)dy

Description Shape Area xc yc

Rectangle

Square

(h = b = a)

x

y

O

b

2

h

2
C

h

b

bh

a2

b/2

a/2

h/2

a/2

(Continued )
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Table 4.2 (Continued )

Description Shape Area xc yc

Parallelogram 

Rectangle

(a = p/2)
x

y

O

b

a

Ca

ab sin a

ab

b a+ cos α
2

b/2

a sin α
2

a/2

Triangle

x

y

O

C

a

b

h

h

3

1

2
bh 1/3 (a + b) h/3

Semi-circle C

R

O
x

y

4 R/3p

π R2

2
0

4

3
0 424

R
R

π
= .

Quarter circle
C

R
x

y

O

xc

yc

π R2

4

4

3

R
R

π
 0.424 

4

3

R
R

π
 0.424 

Sector of a circle
O x

y

xc

R

C

a

a R2a
2

3

Rsina

a
0

(Continued )
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Description Shape Area xc yc

Quarter ellipse

x

y

O

b C

yc

xc

a

x2

a2

y2

b2
+ = 1

πab

4

4

3

a

π
4

3

b

π

Quarter parabola

y 2 = kx

b

a
O

C

yc

xc

x

y

2

3

ab 3

5
a

3

8
b

General spandrel 

Parabolic spandrel

(n = 2)

a

b

y = kx n

xc

yc

x

y

O
C

ab

n + 1

ab

3

n

n
a

+
+

1

2

3

4

a

n

n

b+
+

⋅
1

2 1 2

3

4

b

Table 4.2 (Continued )

Example 4.7 Locate the centroid of the given composite area 

with a hole in it as shown in Fig. Ex. 4.7.

O1

O2

10 cm

15 cm

O x

40 cm

20 cm

30 cm

20 cm

y

Fig. Ex. 4.7
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Solution The given area can be considered to comprise a rectangle 40 cm × 50 cm plus a semicircle of 

20 cm radius minus a circle of 10 cm radius. With respect to the x-y axes with the origin at O, we proceed 

by preparing a table:

Component Area (cm2) xc(cm) yc(cm) xc A (cm3) yc A (cm3)

Rectangle 2000 20 25 40 000 50 000

Semicircle with centre O1

 

π ×
=

20

2
628 3

2

. 20
50 + 0.424 

× 20

= 58.5 12 566 36 756

Circle with centre O2 (void area) – p × 102 = –314.2 15 20  – 4712  – 6284

Total

Σ A

 —  — 8

Σ xc A

8

Σ yc A

 Employing the relations for the centroidal point,

     x
x A

A
y

y A

A
c

c
c

c= =
Σ

Σ
Σ

Σ
and

we obtain,

 
xc = =

47 854

2314 1
20 68

.
. cm

 
yc = =

80 472

2314 1
34 77

.
. cm

 4.7 THEOREMS OF PAPPUS-GULDINUS

There are two very important theorems initially due to the Greek geometer Pappus and later restated by the 

Swiss mathematician Guldinus which deal with the surfaces and volumes of revolution.

Theorem 1

The area of a surface of revolution is e ual to the length of the generating curve times the distance  travelled 

by the centroid of the generating curve while the surface is generated.

Proof of Theorem 1

A variety of generating curves can be employed to generate the surfaces of revolution as shown in Fig. 4.5.

Consider a generating curve, say the general spandrel to generate a surface of revolution as shown in 

Fig. 4.5(b). An elementary length dl of the curve of length l generates a surface area

 dA = 2p y × dl

The total surface area generated by the given curve is

 
A dA y dl

l

= = ∫∫ 2

0

π
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= ∫2

0

π y dl

l

 = ⋅2π y lc  (4.15)

Since y lc = ∫ y dl

by the definition of the centroid of a curve.

Hence, the area of the surface generated is given 

by the product of 2pyc and the length of the surface 

l; as if the entire length of the generating curve were 

concentrated at the radius yc. In other words, the area 

of the surface generated equals the area of a cylindri-

cal surface of radius yc and length l.

Theorem 2

The volume of a body of revolution is e ual to the 

generating area times the distance travelled by the 

centroid of the area while the body is generated.

Proof of Theorem 2 and its scope

Consider a surface area A bounded by a curve, y = 0 

and x = a lines as shown in Fig. 4.6. An area element 

dA of the surface, when revolved about the x-axis 

generates a volume

 dV = 2py × dA

The entire volume generated by the total area is

 
V dV y dA= = ∫∫ 2π

 
= =∫2 2π πy dA y Ac  (4.16)

Since y A y dAc = ∫
by the definition of the centroid of an area.

Hence the volume of the body generated is 

given by the product of 2p yc and the magnitude 

of area A of the surface as if the entire area of 

the generating surface was concentrated at its cen-

troid at radius yc. In other words, the volume of 

the body generated equals the volume of a right 

circular cylinder of radius yc and cross-sectional 

area A.

The theorems of Pappus–Guldinus provide 

simple means of relating the areas and volumes of 

C
A

dA y yc

a
x

Generating surface with

area A

Volume = 2p yc A

C
y yc

x

Fig. 4.6 Volume generated by a surface

Fig. 4.5 Surfaces of revolution

(b) General spandrel

O x

y y  kx n

I

O x

dl

General surface

xx

(d) Circle above the x-axis

x x

Torus

(c) Semi-circle

x x

Sphere

x x

A x

B

GENERATING

CURVE

(a) Straight line

x

SURFACE

GENERATED

Surface of cone
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yc

C

O

Hemisphere

generated

2pyc

x

y

Fig. Ex. 4.9 (Solution)

Semicircle

Rotated

about A–A

A A

4 R/3p

C

Fig. Ex. 4.8 (Solution)

the surfaces and bodies of revolution to the lengths and areas of the generating curves and surfaces. These 

relationships can be used with advantage both ways, i.e., to determine the areas and volumes of the sur-

faces and bodies of revolution from the given curves and surfaces to generate these or to locate the cen-

troids of the curves and surfaces from the knowledge of the areas and volumes of the surfaces and bodies 

generated.

Example 4.8 A semicircle is rotated about its diameter to generate a sphere. Calculate the volume 

of a sphere of radius R.

Solution The theorems of Pappus-Guldinus can be 

used to great advantage in this case. The centroid 

of the semicircle is 4R/3p above the diametral axis. 

The area of the semicircle is pR2/2. According to 

the Pappus-Guldinus, the volume of the body of 

revolution generated should be same as that which 

would be obtained if the entire area pR2/2 were 

concentrated at a radius 4R/3p. The volume of the 

sphere is, therefore,

 
2

4

3 2

4

3

2
3π

π
π

π
R R

R× =

Example 4.9 Determine the centroid of a quadrant of a circle using the theorems of Pappus and 

Guldinus.

Solution It is an interesting application of the theorem to locate the 

centroid of an area if the volume generated by revolving the area over 

an axis is known. In this case, the volume generated by revolving the 

quadrant of a circle about either the x-axis or the y-axis is that of a 

hemisphere, i.e.,

2

3

3π R

 Since the area of the quadrant of a circle is

π R2

4

The distance travelled by the centroid of the quadrant of a circle in 

generating the hemispherical volume must be

 2

3 4

8

3
3

2

π
π

R
R R

=
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Equating it to 2pyc for rotation about the x-axis

y
R

c =
4

3π

Similarly, the x-coordinate of the centroid may be determined by rotating the quadrant about the y axis

x
R

c =
4

3π

 4.8 CENTROID OF A VOLUME

The centroid of a volume, by definition, is given by Eq. (4.5), i.e.,

 c dV V= ∫( )
whence the coordinates of the centroid are obtained as

 x x dV Vc = ∫( )

 y y dV Vc = ∫( )  (4.17)

 z z dV Vc = ∫( )

as are shown for the volume of a matka in Fig. 4.7.

The centroid of a volume is a point about which the 

first moment of the volume equals the summation of 

the first moment of the distributed volume elements. It 

is a unique point for the volume and its location is the 

body is independent of the choice of the origin or the 

orientation of the axes.

When a volume V possesses a plane of symmetry, the 

centroid of the volume must lie in that plane. When a 

volume possesses two planes of symmetry, the centroid 

must lie on the line of intersection of the two planes. 

When a volume has three or more planes of symmetry, 

the centroid  must be located at the point of intersection 

of these planes. The centroid of the volume of a sphere, 

a cube, an ellipsoid or a rectangular  parallelopiped can 

be located readily by considering their triple or mul-

tiple symmetry.

The centroid of a volume of revolution must lie 

on the axis of symmetry but the distance of the cen-

troid from the apex must be determined by integration. It is cautioned that the centroid of a volume of 

revolution may not coincide with the centroid of its cross-section containing the axis. A summary of the 

centroids of some volumes of revolution is given in Table 4.3.

x

y

z

O

y

yc

zc

ze

z

c

x

xc

C

Fig. 4.7 Centroids of volumes of revolution
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Fig. Ex. 4.10

Example 4.10 Locate the centroid of the volume of a right circular 

cone of base radius  and height .

Hemisphere
3

8

2

3

3π

Right circular cone
4

1/3p 2

Semi-ellipsoid of 

revolution

3

8
2/3p 2

Paraboloid of revolution
3

1/2p 2

Table 4.3 Centroids of  Volumes of Revolution
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h

R

Fig. Ex. 4.11

Solution A right circular cone possesses an axis of symmetry; the centroid must be located on this axis. Let 

the origin be at O, the apex and x-axis along the axis of symmetry as shown in Fig. Ex. 4.10.

Consider an elementary disc of radius r and width dx at a distance x from the origin. The volume of the 

elementary disc is

 dv = pr2 dx

and its centroid is at a distance x from O.

For the entire volume of the cone, by definition,

 x x dV Vc = ( )∫
 =

⎛

⎝
⎜

⎞

⎠
⎟∫ x r dx V

h

π 2

0

Substituting r
R

h
x V R h= =and

1

3

2π

 x
R

h
x dx R hc

h

=
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝⎜

⎞
⎠⎟∫

π
π

2

2

0

3 21

3

 = × =
π

π
R h

R h
h

2 2

24

3 3

4

The centroid of a right circular cone is, therefore, located at uarter height from its base.

Example 4.11 A right circular cone of base radius R and height h is 

attached to a hemisphere of radius R as shown in Fig. Ex. 4.11. Determine 

the ratio h/R for which the centroid of the composite volume is located in 

the plane between the cone and the hemisphere.

Solution With reference to the origin O at the apex of the cone, as shown in Fig. Ex. 4.11 (Solution) the 

centroid of the cone alone lies at

xc h1

3

4
and the centroid of the semicircle lies at

x h Rc2

3

8
= +
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 Recollecting that the volume of the cone is

 
V h1 =

1

3

2R

 and that the volume of the hemisphere is

 V R2
3=

2

3
p

 the centroid of the composite volume must be located such that

      xc(V1 + V2) = xc1V1 + xc2V2

         = + +⎛
⎝⎜

⎞
⎠⎟

3

4

1

3

3

8

2

3

2 3h R h h R Rπ π

In order that the centroid lies in the plane between the cone and 

the hemisphere,

                 xc = h

 Then,

 h R h R R h R h R
1

3

2

3

1

4

2

3

1

4

2 3 2 2 3 4π π π π π+⎛
⎝⎜

⎞
⎠⎟

= + +

or
h

Rh
h

Rh
R2 2 2

3

2

3 4

2

3 4
+ = + +

or h2 = 3R2

and finally h R/ = 3  

 4.9 CENTRE OF MASS

The centre of mass for a body of mass m is a point where the entire mass m can be assumed to be concentrated 

to give the same first moment as that obtained by considering the element of mass continuously distributed 

over the body:

 
c dm m= ( )r

In terms of an arbitrarily chosen set of x-y-z axes, as in Fig. 4.8(a),

x x dm mc = ∫( )
 y y dm mc = ∫( )  (4.18)

z z dm mc = ∫( )
The centre of mass is an important point in the study of dynamics. If the external forces acting on a body 

pass through its centre of mass then the body will behave, for all practical purposes, as if it were, a point mass 

concentrated at the centre of mass.

For a body with constant mass density r, also known as homogeneous body,

 dm = r dv

and m = rv

O

xc = h

R

C1

C2

xc1

xc2

Fig. Ex. 4.11 (Solution)
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hence                 x x dv v x dv vc = ∫( ) = ∫( )ρ ρ  
Similarly,

                y y dv v z z dv vc c= ∫( ) = ∫( )and  (4.19)

which means that the centre of mass is coincident with the centroid of volume. It is indeed the variation in 

density which makes the centre of mass different from the centroid of volume for a body.

If the distribution of the mass of a body is symmetrical about an axis, the centre of mass must lie on that axis. 

If there are more than one axes of symmetry, the point of intersection of such axes corresponds to the centre of 

mass. For a body of revolution of uniform mass density, the centroid must lie on the axis of symmetry.

The centre of mass for a composite mass consisting of masses m1, m2, m3, ... with the mass centres at 

(xc1, yc1, zc1) (xc2, yc2, zc2), etc., respectively is located by

 
x

x m x m

m m m
c

c c=
+ +

+ + +
1 1 2 2

1 2 3

�

�

 =
Σ

Σ
x m

m

c  (4.20)

 y
y m y m

m m m
c

c c=
+ +

+ + +
1 1 2 2

1 2 3

...

...

 =
Σ

Σ
y m

m

c  (4.21)

 z
z m z m

m m m
c

c c=
+ +

+ + +
1 1 2 2

1 2 3

...

...

 =
Σ

Σ
z m

m

c  (4.22)

Care must be taken, however, to ensure the proper sign of coordinate distances and masses of the com-

ponent bodies. For example, the centre of mass of a composite body shown in Fig. 4.8(b) is determined by 

selecting the origin at O from where all x-distances are positive but the void mass 3 is considered negative 

because the mass 1 refers to the undrilled solid body.

xc

y

Drilled hole

0 3
1 2C

x

xc1

xc3

xc2

xc =
xc1

m1 + xc2
m2 − xc3

m3

m1 + m2 − m3

Fig. 4.8(b) Centre of mass of a composite body

z

y

x

y

O

yc

x

xc

c

z zc

C

dm

Fig. 4.8(a) Centre of mass
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O

y

h

a α

2l

x

Fig. Ex. 4.13

x

x

dm

dx

0

Fig. Ex. 4.12

Example 4.12 The density at any point of a slender 

rod varies with the first power of the distance of the point 

from one end of the rod. Locate the mass centre.

Solution For the slender rod of length l shown in Fig. Ex. 4.12, the density at a distance x from the left 

end, say, is

 r = k x

where r, the density is taken as the mass per unit length of the rod.

 The mass dm of an element located at a distance x from the origin is, therefore,

 dm = r dx = k x dx

 From the definition of the centre of mass,

x x dm m x dm dmc = ∫( ) = ∫( ) ∫

                  = ∫
⎛
⎝⎜

⎞
⎠⎟ ∫

⎛
⎝⎜

⎞
⎠⎟

k x dx k x dx
l l

2

0 0

                  = ⋅ =
k x

k x
l

l
3

2

0
3

2 2

3

The centre of mass for this rod is located at two-third of the length from the end chosen as a reference. This 

is obviously different from the centroid of volume of the slender rod which is at its mid-point.

Example 4.13 A thin wire of homogeneous material is 

bent to form an isosceles triangle as shown in Fig. Ex. 4.13. 

Determine the base angle a for which the centre of mass of 

the wire coincides with the centroid of the area enclosed by the 

wire.

Solution The centroid of the area of a triangle is at one-third the height of the triangle from the base. 

Further, by symmetry about the y-axis, the centroid must lie on it. Therefore,

 xc = 0 and y
h

c =
3

The centre of mass of the wires of the triangle must also lie on the y-axis and the y-coordinate can be 

obtained by considering it as a composite mass:

 Y
h l h

l l h
c =

+

+ +

ρ

ρ

2 2

2 22 ( )
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A B C

O

5
 c

m

1
5
 c

m

10 cm 10 cm 10 cm

x

Fig. Ex. 4.14

Equating it to 
h

3
 and cancelling r,

h l h
h

l
h

l h2 2 2 22

3

2

3
+ = + +

or h l h l2 2+ =  2h  

or l2 + h2 = 4l2

and h = 3 l

whence α = = ( ) = °− −tan tan1 1 3 60
h

l
 

Example 4.14 A hollow cylindrical component 15 cm outer diameter and 5 cm inner diameter is 

30 cm long as shown in Fig. Ex. 4.14. Its mass density varies from 4000 kg/m3 at the left end to 10 000 

kg/m3 at the right end. Locate the centre of mass 

of the component.

(a)  by assuming a linear variation of density 

over the length of the component.

(b)  by assuming that it consists of three com-

ponents A, B and C of mass densities 

4000 kg/ m3, 7000 kg/m3 and 10 000 kg/m3.

Solution By virtue of axisymmetry of the component about x-axis as shown in Fig. Ex. 4.14, the mass 

centre must be located on the x-axis.

 The area of the cross-section is

 α
π

=
−( . . )0 15 0 05

4

2 2

(a) By definition of the centre of mass,

 x x dm dmc = ∫( ) ∫

  
= ∫( ) ∫x dV dVr r

Component Length Mass yc yc × Mass

Base 2l 2rl 0 0

Each side l h2 2+ ρ ( )l h2 2+ h

2

ρh
l h

2

2 2+

Total for the triangle –– 2 2 2ρ( )l l h+ + Yc ρh l h2 2+
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 = ∫( ) ∫x dx dxr r

For linear variation of density,

 f = 4000 + (10 000 – 4000) ×
x

0 3.

 = 4000 + 20 000 x

where x is in m.
 With reference to the origin at the left end  ,

x

x xdx

x dx
c =

+∫

+∫

( )

( )

.

.

4000 20000

4000 20000

0

0 3

0

0 3

         =
+

+

4000 2 20000 3

4000 20000 2

2 3

0

0 3

2

0

0 3

x x

x x

/ /

/

.

.

           
= =

360

2100
0.1715 m = 17.15 cm from the left end.

(b) For the components of the composite mass,

Component Mass xc xc × Mass

A 4000 × a × 0.1 0.05 20 a

B 7000 × a × 0.1 0.15 105 a

C 10 000 × a × 0.1 0.25 250 a

Totals a a

The centre of mass of the composite area is, therefore, located at

 
x

a

a
c = =

375

2100
0 1786. m

 = 17.86 cm from the left end.

It can be observed that the process of taking the averaged density over the segments yields the same 
mass, i.e., 2100 a kg as by assuming a linear variation of the density as expected but the location of the 
mass centre is different because the first moments of the variable-density mass involve second-order 
terms.

Example 4.15 A concentric hole of diameter 10 cm is drilled half way through a 20 cm diameter, 30 cm 
long solid cylinder of brass. The hole is then filled completely with gold and finished flush to make it a 
complete cylinder again as shown in Fig. Ex. 4.15. Locate the centre of mass of the finished cylinder.
  Assume that the density of brass is 8500 kg/m3 and density of gold is 19 500 kg/m3.
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Solution The composite mass may be visualised as being composed of:

a solid brass cylinder 20 cm diameter and 30 cm long

– a solid brass cylinder 10 cm diameter and 15 cm long

+ a solid gold cylinder 10 cm diameter and 15 cm long

This can also be interpreted as

1.  a solid brass cylinder 20 cm diameter and 30 cm long plus

2.  a solid cylinder 10 cm diameter and 15 cm long with a density equal to the difference of densities in 

gold and brass.

Consequently, taking the origin at the left end of the cylinder on the axis, as shown in Fig. Ex. 4.15.

Component xc (cm) m (kg) xc m (kg cm)

1 15
π ×

× ×

=

20

4
30

8500

10

80 1

2

6

.

1201.5

2 7.5
π ×

× ×
−

=

10

4
15

19500 8500

10

12 96

2

6

( )

.     97.2

Total 8

 The distance of the centre of mass of the finished composite cylinder from the left end of the cylinder 

on the axis is

xc = =
1298 7

93 06
13 96

.

.
. cm

 4.10 CENTRE OF GRAVITY

The centre of gravity for a body of mass m acted upon by a parallel and uniform gravitational force field 

is a point through which the resultant force due to gravity would act whatever the orientation of the body 

may be.

BrassGold

15 cm

30 cm

1
0
 c

m

2
0
 c

m

Fig. Ex. 4.15
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For a given orientation of the body, the gravitational 

force acts vertically downward. The line of action of 

the resultant force must also be a vertical line and 

the resultant force must be a summation of the forces 

acting on the mass elements, i.e.,

       = ∫ = − ∫dF kg dm

      = − ∫ = −g dm mgk k  (4.23)

which is also the total gravitational pull on the body as 

shown in Fig. 4.9.

The line of action of the resultant gravitational 

force, i.e., – mg  should be such that the moment by the resultant about any arbitrary origin or about any set 

of axes must be the same as that exerted by the elemental forces distributed over the mass

             c g dm× = ∫ × −r k( )

or             c × −( ) = ∫ × −mg g dmr k( )  

or                
c m dm× = ∫ ×r k  (4.24)

whence,

                  x x dm m x dV mc = ∫( ) = ∫( )r

and                 y y dm m y dV mc = ∫( ) = ∫( )r  (4.25)

If the body is now turned through some angle, say by 90 , about an axis other than the vertical axis, 

another line of action of the resultant gravitational force can be located and the point of intersection of the 

two lines of action locates the centre of gravity.

The coordinates of the centre of gravity are the same which locate the centre of mass of a body. It follows that 

the line of action of the gravitational force on a body of mass m must also pass through its centre of mass.

The centre of gravity can be different from the centre of mass only when the gravitational force field is not 

parallel and uniform, i.e., if there is a change in the magnitude or the direction of the gravitational force. It can 

be visualised that the centre of gravity of a large body with the dimensions not negligible in comparison with 

the radius of the earth or of a body of considerable width where the gravitational force must be taken directed 

towards the centre of the earth will differ from the centre of mass. For most practical purposes and unless 

otherwise stated, the centre of gravity and centre of mass are assumed to be identical. It is for this reason that 

many authors do not distinguish between them.

The centre of gravity of a material body may also become identical with the centroid of volume of the body 

if the material is homogeneous, i.e., if the density

 r = Constant

Further, for a thin plate of constant thickness and homogeneous material, the centre of gravity may tend to 

coincide with the centroid of area of the plate. This, then, offers an experimental method of determining the 

centroid of area of a thin lamina. If the lamina is suspended by a thread from a point at its periphery, the line 

of suspension of the thread passes through the centroid. If now the lamina is suspended again from another 

point at its periphery, the new line of suspension of the thread also passes through its centroid. The point of 

intersection of the two lines locate the centroid as shown in Fig. 4.10. One may, however, suspend the lamina 

for a third time and ensure the location of the centroid.

z

x

O
y

mg

dv

dm

c
c

−gdm

Fig. 4.9 Concept of centre of gravity
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1 cm

1 cm

2
.5

 c
m

Fig. Ex. 4.16

Example 4.16 Locate the centre of gravity of an idealised bullet of 1 cm diameter 
with a cone in the front and a hemisphere cut from the back as shown in Fig. Ex. 4.16. 
Assume the material to be homogeneous.

Solution By virtue of axisymmetry about the x-axis, the centre of gravity which is also the same as the 
centre of mass or centroid of volume due to homogeneity of the material must lie on the x-axis.
 The bullet is idealised to consist of a cone plus a cylinder minus a hemisphere as shown in Fig. Ex. 4.16. 
The following table is made with reference to O as origin.
  The x coordinate of the centroid of the bullet is given by

xc = =
3 1258

1 963
1 592

.

.
.  cm from the base.

1

1

First suspension:
 centroid on 1–1

2

Second suspension:
centroid on 2–2

2

C

1

1

Fig. 4.10 Experimental determination of the centroid for a thin plate

xc

C

x

O

Fig. Ex. 4.16 (Solution)

Component
Volume

cm( )2

x

cm

c

( )

x Volume

cm

c ×
( )4

Cone
π
3

0 5 1 0 2622( . ) .× = 2 5 0 25 2 75. . .+ = 0.7205

Cylinder π × ( ) × =0 5 2 5 1 963
2

. . . 1.25 2.4544

Hemisphere − ×

= −

2

3
0 5

0 262

3π ( . )

.

3 0 5

8

0 1875

×

=

.

. –0.0491

Total 8
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P

1

32

( − )

Fig. Ex. 4.17

Example 4.17 An isosceles triangle is to be cut out from one 

edge of a square piece of thin uniform sheet as shown in Fig. Ex. 4.17 

such that the remaining sheet when suspended from the apex P of the 

cut will remain in equilibrium in any position. Find the area of the 

triangle cut-out.

Solution In order that a body remains in equilibrium in any orientation when suspended from a point,

the point must be the centre of gravity. For the piece of thin uniform sheet, the point also qualifies to be the 

centre of area or the centroid.

 The apex point P can, therefore, be located by the definition of the centroid:

 
( )

( )
− ×

−
− × × × =

2
2

1

2 2 3
0

or 2 2 – 6 + 3 2 = 0

whence, =
± −6 36 24

4

2 2

 

 = ±( ) /3 3 2

 = +( ) / ) /3 3 2 2or (3 3−

 Rejecting the first solution which requires  to be more than ,

 = − =( ) / .3 3 2 0 634

 The area of the triangle cut out is, therefore,

 0.634 × /2 = 0.317 2

 Alternatively, the apex point P can be located by the fact that this is arrived at by removing the cut-out 

triangle of area  from the given square piece of area 2.

 
2 1

2

2

3
0× − −⎡

⎣⎢
⎤
⎦⎥

× =( )

  Using the fact that =
2

2 1

2

2 4

3
0× − −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ − × =

or 8 2 – 12 2 + 3 4 = 0 

 
=

± −12 144 96

16

2 4 4

 = ±( )/3 3 4 2

 Again, rejecting the impermissible solution, the answer is

 = − =( ) / .3 3 4 0 3172 2
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Example 4.18 A wooden block of cross-section 10 cm ×
10 cm is fixed on top of a semicircular steel cylinder of radius 

5 cm as shown in Fig. Ex. 4.18. Determine the maximum 

height h of the wooden block so that the composite body will 

be in stable equilibrium at its base. It is given that the density 

of wood is one-tenth that of steel.

Solution The composite body should be in stable equilibrium as long as the centre of gravity lies on the 

semi-cylindrical base. This is so because then a restoring couple will act on the body when it is tipped on 

either side.

 In the parallel and uniform gravitational field of the earth, the centre of mass must be the centre of 

gravity. We proceed in a tabular form with reference to the mid-point on the base, to determine the centre 

of mass of the composite body.

Wooden

block

10 cm

10 cm

Steel base

h

Fig. Ex. 4.18

Component Mass (kg) yc (cm) yc × Mass (kg cm)

Wooden block 10 10

100

1

1

× × ×

=

h

h

ρ
ρ

5
2

+
h

5
2

100 1+⎛
⎝⎜

⎞
⎠⎟

×
h

hρ

Semi-cylindrical base
π

ρ

ρ

×
×

=

5

2
10

390

2

2

2

4 5

3

2 1

×
×

=
π
.

820 r2

Total hρ + ρ hρ + h ρ + 8 ρ

 The centre of mass of the composite body is, therefore, situated at

 
y

h h

h
c =

+ +

+

500 50 820

100 390

1
2

1 2

1 2

r r r

r r

which must be a maximum of 5 cm. Equating it to 5 cm to obtain the maximum height h of the wooden

block

 
5

500 50 820

100 390

1
2

1 2

1 2

=
+ +

+
h h

h

ρ ρ ρ
ρ ρ

or 1950 r2 = 50 h2r1 + 820 r2

whence h = 4 75 2

1

.
ρ
ρ
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 Since r2 = 10 r1

h = =4 75 10 15. cm

 It may be noted that if the block and base are made of the same material, i.e., r2 = r1, then

 h = 4.75 cm

but if the block material is lighter than the base material, the length of the block can be made much longer 

for maintaining stable equilibrium. On the other hand, if the block material is heavier than the base material, 

the length of the block would be less than 4.75 cm.

Concept Review Questions

 State why

 (a)  The centroid of a curve, an area or a volume 

is independent of the choice of the origin or 

the orientation of the coordinate axes?

 (b)  The theorems of Pappus and Guldinus are 

valid for a complete revolution or a fraction 

of a revolution of the generating line or 

area?

  Comment on the concept of the first moment of 

an element about an origin and about a line. Does 

the first moment have any relationship with the 

moment of a force?

  Compare the location of the centroids of an arc 

of a circle and a sector of a circle subtending the 

same angle at the centre of the circle.

  Under what conditions do the following 

coincide?

 (a) Centre of mass and centre of gravity.

 (b) Centroid of volume and centre of mass.

 (c) Centre of gravity and centroid of area.

  Would you agree or disagree with the following 

statements and why?

 (a)  The centroid of a body may or may not lie 

on a material point in the body.

 (b)  The centroid of an area symmetrical about 

two axes must be the point of intersection of 

these axes.

 (c)  The centroid of a parallelogram is located 

by the point of intersection of its diagonals 

because the diagonals are the axes of 

symmetry.

 (d)  The vertical line of free suspension of a thin 

sheet of homogeneous or non-homogeneous 

material must contain the centre of gravity.

Tutorial Problems

  Determine the moment of a semicircular arc 

about its diameter and hence locate its centroid.

s 2
2

02R
R

; ,
π

⎛
⎝⎜

⎞
⎠⎟

Determine the y coordinate of the centroid of 

the area between the x-axis and the curves y =
sin x between 0 and p.  ( s. p / 8)

  Locate the centroid of the area of a segment of a 

circle which subtends an angle 2q at the centre.

( s 0, 2R sinq 3q)

  Locate the centroid of a trapezium with the 

base b and the parallel sides h1 and h2.

 
s x

b h h

h h
y

h h h h

h h
c c=

+
+

=
+ +

+

⎛

⎝⎜
⎞

⎠⎟
( )

( )
,

( )

1 2

1 2

1
2

2
2

1 2

1 2

2

3 3
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  Determine the location of the centroid of the area 

bounded by the x-axis and the sine curve y = a sin 

px/l from x = 0 to x = l. ( s  (l/2, pa/8))

  Find the centroid of the L-section shown in 

Fig. Prob. 4.6. ( s xc = 2.6 cm, yc = 3.17 cm)

y

x

2 cm

8 cm

1
0
 c

m

1.5 cm

O

Fig. Prob. 4.6

  A flywheel of outside diameter 5 m has a heavy 

rim of the cross-section shown in Fig. Prob. 4.7. 

Determine the mass of the rim if the density of 

the material of the rim is 7000 kg/m3.

 ( s  13 030 kg)

2.5m

Radius
25 cm

50 cm

10 cm

2
0
 c

m

Fig. Prob. 4.7

8   From a circular area of diameter 2d, a smaller 

circle of diameter d is removed as shown 

in Fig. Prob. 4.8. Locate the centroid of the 

remaining area. ( s d/6 left of 0)

d2d O

Fig. Prob. 4.8

  Find the surface area of the annular torus 

formed by revolving the circle about the x-axis

as shown in Fig. Prob. 4.9. ( s  4 p2rR)

x

R

r

Fig. Prob. 4.9

  An area is bounded by the curves y2 = 9x and 

x2 = 6y. Sketch the area and find the coordi-

nates of the centroid.

 ( s xc = 3.09, yc = 3.54)

  A concentric hole of 10 cm diameter is drilled 

to a depth of 15 cm in a perspex cylinder of 

diameter 20 cm and 40 cm long as shown in 

Fig. Prob. 4.11. The hole is filled with lead 

to make it a complete cylinder again. Locate 

the centre of mass of this cylinder. Take the 

density of perspex as 1200 kg/m3 and of lead 

as 12 000 kg/m3.

 ( s. 5.72 cm below the centre of cylinder)

10 cm

20 cm

15 cm

40 cm

Fig. Prob. 4.11
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  A square hole is punched out of a thin circu-

lar lamina, the diagonal of the square being 

equal to the radius of the circle as shown in 

Fig. Prob. 4.12. Find the centre of gravity of 

the remaining lamina.

 ( s  0.095 R left of 0)

R

O

Fig. Prob. 4.12

  A frustrum of a solid right circular cone of base 

diameter 2 m, top diameter 1 m and height 2 m 

has an axial hole of 0.5 m diameter in it. Locate 

the centroid of volume of the hollow cone.

 ( s  0.76 m from the base and on the axis) 

  Determine the maximum height h of a right 

circular cylinder mounted on a hemispherical 

base as shown in Fig. Prob. 4.14 so that the 

composite body may be in stable equilibrium 

on its base. Assume that the material for the 

block and the base is the same. How would 

the maximum height of the block change if 

the base was made of steel and the block made 

of wood, the density of wood being one-tenth 

that of steel? s R R/ ,2 5( )

Cylinder

Hemi-

sperical

base

2 m

h

Fig. Prob. 4.14

  A thin rectangular plate of length a and width 

b of homogeneous material is suspended from 

a corner. Calculate the angle the longer side 

will make with the vertical in the equilibrium 

position?

s tan−⎛
⎝⎜

⎞
⎠⎟

1 b

a

 Determine the length of a thin homogeneous 

wire which is bent into a semicircular arc of 

radius R together with extensions on either 

end as shown in Fig. Prob. 4.16 such that the 

centroid is located at the centre O.

( ( ) )s π + 2 2 R

a

R

O

Fig. Prob. 4.16

  A thin semicircular bar of weight w is sus-

pended from a hinge at A as shown in Fig. 

Prob. 4.17. Determine the angle between the 

diameter and the vertical line. What would 

the angle be if a weight W is suspended from 

point B?

 
s tan tan

( )

− −

+
⎛
⎝⎜

⎞
⎠⎟

1 12 2

2π π
and

w

w W

B

A

q

O

Fig. Prob. 4.17
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8   Knowing that the surface and volume of 

a sphere of radius r are 4p r2 and 4/3p r3

respectively, deduce the centroid of a semi-

circular arc and a semi-circular disc, each of 

radius r.

( s  2r/p; 4r/3p)

  A frame consists of a wire bent into a 

 rectangular shape 0.3 m by 0.2 m plus a length 

of the same wire bent into a semicircle of 

0.3 m diameter fixed to a 0.3 m side. Find the 

distance of the mass-centre of the frame from 

the 0.3 base.

 ( s  0.163 m)

Look up Hints to Tutorial Problems at the end!

Multiple-Choice Questions

Select the correct or most appropriate response from 

among the available alternatives in the following 

multiple-choice uestions:

 The length of a line can be considered to be 

concentrated at the centroid of that line for the

purpose of calculating.

 (a)  the area of the surface of revolution generated 

by revolving the line about any axis outside it.

 (b)  the average distance of the line from any axis 

outside it.

 (c)  the volume of the body generated by revolving 

the line about any axis outside it.

 (d) the weightage factor for all purposes.

 The centre of volume and centre of mass of a 

body coincide

 (a) if and only if the body is of uniform density.

 (b)  if the body is geometrically symmetrical 

about the centre of mass.

 (c)  if the density variation is symmetrical about 

the centroid.

 (d)  if and only if the body is made of homogeneous 

material.

The centroid of a body

 (a) must be a point on that body.

 (b)  is a point which can be made to lie on or outside 

the body by changing the coordinate system.

 (c)  is a fixed point in space regardless of the 

orientation of the body.

 (d)  is a unique point fixed with respect to the body.

 The first moment of area of a semicircular area 

about its diameter d is given by

 (a) d3/12.

 (b) d3/24.

 (c) d3/6.

 (d) d3/36.

 The first moment of a triangular area of base b

and height h taken about an axis coincident with 

the base is given by

 (a) bh3/12.

 (b) b2h/6.

 (c) bh2/6.

 (d) h/3.

 Given that there is a rectangle and a triangle, each 

of base b and area A, the first moment of the area 

of the rectangle about its base

 (a)  equals the first moment of the triangular area 

about its base b.

 (b)  is more than the first moment of the triangular 

area about its base b.

 (c)  is less than the first moment of the triangular 

area about its base b.

 (d)  equals twice that of the triangular area about 

its base b.

Answers to Multiple-Choice Questions

1 (a)    2 (c)    3 (d)    4 (a)    5 (c)    6 (c)



5

Kinematics of 

a Particle

 5.1 KINEMATIC CONCEPTS

Kinematics refers to the study of motion i.e., displacement, velocity and acceleration of bodies 

without reference to mass or force. It deals with ‘displacement, velocity and acceleration’ of a 

point of interest at a particular time or with the passage of time.

The simplest case of ‘kinematics of a particle’ is a point object moving along a straight 

line, called rectilinear motion.

A single coordinate, say x can des-

cribe the displacement, velocity and 

acceleration with time t.

V
dx

dt

a
dV

dt

d x

dt

=

= = ⋅
2

2

Another common example of a  rectilinear motion is the free fall of a particle along the 

s-direction.

a = 
dV

dt
 = g = 9.81 m/s2

By integration,

 V = U + gt

Also,

 V2 – U2 = 2g s.

A particle may trace a plane trajectory, e.g., a circle or an ellipse or an arbitrary plane curve 

as shown in Fig. 5.1(b).

y

P P ′
P ′

dx x

U

P

V

g

s

Fig. 5.1(a) Examples of rectilinear motion
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y

+ Δ Δ

P ′

P

xO

y

P

x

P ′

O

y

P

x

P′

O

Fig. 5.1(b) Plane motion of a particle

A point may be displaced from its initial position in any direction, i.e., the displacement of a particle can 

have arbitrary components along the three mutually perpendicular directions. The number of the degrees 

of freedom of a particle in a given configuration equals the minimum number of coordinates required to 

describe its configuration. 

 5.2  MOTION REFERRED TO FIXED RECTANGULAR COORDINATES

Consider a point P moving in space with respect to a rectangular or 

cartesian frame of reference fixed in space as shown in Fig. 5.1(c). 

The position vector of the point is denoted by a vector .

 = x + y + z  (5.1)

at a certain instant of time t. In words, the point is located by tracing 

x along the x-axis, y along the y-axis and z along the z-axis.

Over a short interval of time Δt, the point moves over to a new 

position P ′ described by the position vector + Δ ,

+ Δ = (x + Δ x) + ( y + Δy) + (z + Δz)

The point is said to have been displaced by Δ  such that

 Δ = ( + Δ ) – = (x + Δ x) + (y + Δ y) + (z + Δ z)

 – (x + y + z ) = Δ x + Δ y + Δ z

In words, the displacement Δ  of a point is composed of displacements Δ x along the x-axis, Δ y along the 

y-axis and Δ z along z-axis.

The velocity of the point is the rate of change of displacement:

 

= = + +
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

→ →

Δ
Δ

Δ
Δ

Δ
Δ

Δ
Δ

Δ Δ
t

x

t

y

t

z

t
t t0 0

 
= = + +

d

dt

dx

dt

dy

dt

dz

dt

 = Vx + Vy + Vz  (5.2)

where  
V

dx

dt
xx = = -component of the velocity

z

y

O

+ Δ Δ

P′

P

x

Fig. 5.1 (c) Space motion of a particle
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V

dy

dt
yy = = -component of the velocity

 

  
V

dz

dt
zz = = -component of the velocity

 

and V V V Vx y z= + + =2 2 2 speed, the magnitude of the velocity.  

The acceleration of the point is the rate of change of velocity:

 a = =
→

lim
Δ

Δ
Δt t

d

dt0

 = = + +
d

dt

d x

dt

d y

dt

d z

dt

2

2

2

2

2

2

2

2

 = + +
dV

dt

dV

dt

dV

dt

x y z

 = ax + ay + az  (5.3)

where  a
dV

dt

d x

dt
xx

x= = =
2

2
-component of the acceleration  

 a
dV

dt

d y

dt
yy

y= = =
2

2
-component of the acceleration

 a
dV

dt

d z

dt
zz

z= = =
2

2
-component of the acceleration

and a a a ax y z= + +2 2 2 , magnitude of the acceleration vector.

It is possible to rewrite Eqs. (5.2) and (5.3) in the integral form

 r = +∫ dt

 V = +∫ dt

where  and  are the vector constants of integration.

In terms of definite integrals, the change in velocity is given by

 − = ∫0 dt

t

t

0

 (5.4)

and the displacement is expressed as

 r r− = ∫0 dt
t

t

0

 (5.5)

where 0 and 0 are the velocity and displacement respective at time t0.

It may also be noted that a differential element of the arc-length is given by

 ds = (d ⋅ d )1/2 = (dx)2 + (dy)2 + (dz)2 1/2 (5.6)

The distance travelled by a point along its trajectory can be calculated by integrating this expression over 

the appropriate time interval.

The plane motion of a particle may be studied by referring to two coordinates as shown in Fig. 5.1(b). 
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 5.3 RECTILINEAR MOTION OF A POINT

In order to study the rectilinear motion of a point, we choose the x-axis along the line of motion as shown in 

Fig. 5.1(b). From the expressions for the position vector, displacement, velocity and acceleration, we write

 = x ; Δ = Δ x

 
= =

dx

dt
Vx

 

 
a = = =

d x

dt

dV

dt
ax

x

2

2
 

Since all these vectors are directed along the x-axis only, the vector notation and suffixes may be dropped.

Hence,

 
V

dx

dt
x V dt C= = +∫,

 

and a
d x

dt

dV

dt
V a dt K= = = +∫

2

2
,  

If the acceleration a is constant, V = at + K

and if the initial velocity of the point at time t = 0 is U,

then at any time t,

 V = U + at (5.7)

From the expression for x, the distance moved by 

the point

 s U at dt= +∫ ( )

or s Ut at= +
1

2

2  (5.8)

Eliminating t in Eqs. (5.7) and (5.8)

 V2 – U2 = 2 as

Motion curves or motion diagrams are drawn to 

show the variation of displacement, velocity and accel-

eration with time for the rectilinear motion of a  particle. 

An important aspect of the motion curves is that these 

are mutually related. Drawing of motion curves is 

useful to obtain a graphical picture of the distance tra-

versed, velocity at any instant, the average velocity and 

the effect of acceleration particularly when the motion 

occurs in distinct phases.

The motion curves of some typical motions of a 

particle are shown in Fig. 5.2. In order to explore the 

relationship between the curves, consider the motion 

of the particle over a time interval (t2 – t1).

From the relationship,

 ΔV V V a dt= − = ∫2 1

1

2

(a) Constant velocity (b) Constant acceleration

s = Vt s = Ut + 1
at 2

Parabola

V = Const.

a = Const.

V = U + at

a = 0

s2 − s1
s2 − s1

V2 − V1

2

2

1

1

2

2

1
1

a

t t

V

s

a

V

s

1 2 1 2

2

Fig. 5.2 Motion curves
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it is clear that the area under the acceleration diagram for a time interval must equal the change of the velocity 

during that interval.

From the relationship,

 Δs s s= − = ∫2 1

1

2

V dt

it follows that the area under the velocity diagram for a time interval must equal the displacement over the 

time interval.

Some comments on the shape of the motion curves can now be made:

 1. The linear displacement diagram corresponds to uniform velocity, i.e., zero acceleration.

 2. Constant acceleration implies linear velocity variation and a parabolic displacement diagram.

 3. The point of zero acceleration must correspond to the point of maxima or minima or inflexion on the 

velocity curve and the point of inflexion on the displacement diagram.

 4. The slope of the velocity curve must be the maximum at the point of the maximum acceleration.

 5. The reversal of the motion of a particle corresponds to a drop in the displacement curve, reversal of 

velocity and maximum acceleration.

The rectilinear motion of a particle due to gravitational acceleration of the earth is of a special interest. 

In such a case,

 a = g = 9.81 m/s2 directed towards the centre of the earth.

A particle approaching the earth in this manner is said to be in a state of free fall.

During a free fall, as shown in Fig. 5.3,

 V = U + gt

and V2 – U2 = 2gh

In particular, if a particle is dropped from rest, U = 0, then

 V = gt

and V 2 = 2gh or V gh= 2

whence t h g= 2 /  
For an upward motion of a particle in the gravitational field,

 V = U – gt

and V 2 – U 2 = –2gh

since it is acted upon by a deceleration –g.

When it comes to rest, V = 0

 U = gt

 U2 = 2gh

and again, t h g= 2 /  

Example 5.1 A point moving in a straight line is observed to accelerate as

 a = 12t – 20

 It passed through a reference point at t = 0 and another point 20 cm away after an interval of 5 s. 

Calculate the displacement, velocity and acceleration of the point after a further interval of 5 s.

U

V

g

Fig. 5.3 Free fall
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Solution

 a = 12t – 20

 Integrating with respect to time t,

 V = 6t2 – 20t + C1

and integrating once again,

 S = 2t3 – 10t2 + C1t + C2

 Using the boundary conditions,

at t = 0; S = 0; C2 = 0  and  at t = 5 s, S = 20 cm, C1 = 4

 The expressions for the displacement, velocity and acceleration are, therefore,

 S = 2t3 – 10 t2 + 4t cm

 V = 6t2 – 20t + 4 cm/s

 a = 12t – 20 cm/s2

 Substituting t = 5 + 5 = 10 s 

 S = 1040 cm = 10.4 m

 V = 404 cm/s = 4.04 m/s

 a = 100 cm/s2 = 1 m/s2

Example 5.2 A particle, while at rest at the position (5, 6, 2) is accelerated at

= 6t  – 24t2 + 10  m/s2

Determine the acceleration; velocity and displacement of the particle after a lapse of one second.

Solution

 At t = 0

= 5 + 6 + 2 

and = 0

 From the acceleration

 = 6t  – 24t2 + 10  (i)

the velocity at any instant must be

 
V = +∫ dt

 = 3t2  – 8t3 + 10t +
Now = 0 from the initial condition,  = 0 at t = 0

 Hence, = 3t2  – 8t3 + 10t  (ii)

Integrating Eq. (ii) with respect to time t again,

 r = +∫ dt

 = t3  – 2t4 + 5t2 +
From the initial condition

= 5 + 6 + 2  at t = 0

= 5 + 6 + 2 
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and

 = (t3 + 5) + (6 – 2t4) + (5t 2 + 2)  (iii)

 t = 1 s

the acceleration is obtained from Eq. (i)

= (6  – 24 + 10 ) m/s2

the velocity is obtained from Eq. (ii)

= (3  – 8 + 10 ) m/s

and the position vector is obtained from Eq. (iii),

= (6 + 4 + 7 ) m

The displacement from the initial position must be

= (6 + 4 + 7 ) – (5 + 6 + 2 )

 = ( − 2 + 5 ) m

 5.4 MOTION REFERRED TO CYLINDRICAL POLAR COORDINATES

Consider the motion of a point on a circular trajectory in 

the x-y plane, i.e., the r–q plane as shown in Fig. 5.4.

The position of a point P at any time t can be 

 specified by the x and y coordinates or the r and q coor-

dinates such that

 x = r cos q

 y = r sin q

or r x y= +2 2   and tanθ =
y

x

Let the angular displacement of the point be Δq over 

a differential time interval Δt. The angular velocity is, 

therefore,

 ω
θ θ

= ⎛
⎝⎜

⎞
⎠⎟

=
→

lim
Δ

Δ
Δt t

d

dt0

directed about an axis normal to the plane; anticlockwise positive for the right-handed triad.

The linear velocity V of the point is given by

 V r r
d

dt
= =ω

θ
 (5.9)

directed tangentially to the circular path.

Over a differential time interval dt, the velocity of the point changes both in magnitude and in direction 

as shown in the sketch.

Change Direction Remarks

dV Tangentially forward; q +ve, if the speed increases

Vdq Radially inwards; –r –ve always, because r is +ve radially out

V¢

V

dV

dV

Vdq

V

x

y

P

eq r

er
P′

O

dq

dq

q

q

Fig. 5.4 Circular motion of a point
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The acceleration of the point is the rate of change of velocity with time. The components of acceleration are

Tangential:
dV

dt
r

d

dt

d

dt
r

d

dt
r= ⎛

⎝⎜
⎞
⎠⎟

= =
θ θ

α
2

2
 (5.10a)

Radial: − = − = − = −
Vd

dt
V

V

r
r

θ
ω ω

2
2  (5.10b)

The tangential component of acceleration dV/dt is by virtue of a change in speed only whereas the radial 

component called the centripetal acceleration is by virtue of the circular trajectory of radius r traced at a 

speed V. Obviously,

 1. For a rectilinear motion, the ‘radial’ component is zero because the radius r of the ‘circle’ is infinite.

 2. For a circular motion at a constant speed V, the tangential component dV/dt = 0 and the point undergoes 

only the centripetal acceleration w2r directed radially inwards towards the centre or axis of rotation. 

For such a case,

= w
2r r

In terms of angular quantities alone,

angular displacement = dq

angular velocity = =ω
θd

dt

angular acceleration = = =α
ω θd

dt

d

dt

2

2

and in the integral form,

 
ω α= + ′∫ dt K

and
θ = + ′∫ ω dt C

 
If the angular acceleration a is constant,

 w = w0 +α t  (5.11)

where the initial angular velocity at time t = 0 is w0

and θ ω α= + + ′∫ ( )0 t dt C  

or θ ω α= +0
21

2
t t  (5.12)

where the angular displacement q is referred to q = 0 at t = 0.

Eliminating t between the equations

 ω ω αθ2
0
2 2− =  (5.13)

The relations for the angular quantities are similar to those for the linear quantities derived earlier. Table 5.1 

brings out a systematic comparison.

Let us now consider the general motion of a point in space referred to cylindrical coordinates as shown in 

Fig. 5.5(a).

At any instant of time t, the position vector of the point P is

 R = r r + z z (5.14)
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and at a later instant t + Δt, the position vector for the location Q of the point is

R + ΔR = (r + Δr)( r + Δ r) + (z + Δz) z

The displacement of the point is, therefore, given by Δ R, which by subtraction is,

 ΔR = Δr r + r Δ r + Δz z

neglecting the term (ΔrΔ r) which is smaller in order of magnitude than the other terms.

The velocity of the point is expressed as

 

R R
= =

→
lim
Δ

Δ
Δt t

d

dt0

or = + +
dr

dt
r

d

dt

dz

dt
r

r
z

 (5.15)

This expression requires the knowledge of the temporal derivative of the unit vector 
q
 . It can be seen from 

Fig. 5.4(b) that a small change in r takes place in the direction of (+
q
) and a small change in 

q
 takes place 

Linear motion Angular motion Relationship

Displacement s q ds = r dq

Velocity
v

ds

dt
= ω

θ
=

d

dt

V = rw

Acceleration
a

dv

dt
= α

ω
=

d

dt

a = ra

Initial velocity U w0 Valid only for 

constant accelerationExpressions relating the 

displacement, velocity, 

acceleration and time 

V = U + at

s Ut at= +1 2 2

V2 – U2 = 2as

s V dt C= +∫
V a dt K= +∫

w = w0 + a t

q w a= +0
21 2t t

w – w0 = 2aq

θ ω= + ′∫ dt C
 

ω α= + ′∫ dt K

Table 5.1 Linear vs. Angular Motion

Δ q

Δ r

q

q

r

Δr

R + ΔR

q + Δ qr + Δr

q

z

x

k

r

P

r

q

RO

Q

y

(a) (b) (c)

q

1sin q

cos q

y

j

i
x

r

rq
O

Fig. 5.5 Motion referred to cylindrical coordinates
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only along the direction of (– r). The magnitude of the change in each case is given by the product of the 

magnitude of the unit vector, i.e., unity and the small angle Δq through which the unit vector is turned;

 1 Δq = Δq

Consequently,

 

d

dt t t

e

r

t

r

t
= =

=
→ →

lim lim
Δ Δ

Δ
Δ

Δ
Δ0 0

q

q

q
ω  (5.16)

 

d

dt t tt t
r

r

q q q

w

= = −

= −
→ →

lim lim ( )
Δ Δ

Δ
Δ

Δ
Δ0 0

 (5.17)

The temporal derivatives of the unit vectors r and 
q
 may alternatively be obtained as follows with 

 reference to Fig. 5.5(c). If, at a particular instant, the radial direction makes an angle q with the x direction,

r = cos q + sin q

since the magnitude of r is unity.

Differentiating with respect to time t

 
d

dt

d

dt

d

dt

r = − +sin cosq
q

q
q

 
= − +

=

d

dt

q
q q

q

( sin cos )

ωSimilarly,

q
= – sin q + cos q

 

d

dt

d

dt

r

q q
q q= − +

= −

(cos sin )

ω

Returning to the equation for the velocity of the point,

 V = + +� �r r zr zω
q

or = Vr r + V
q q

+ Vz z (5.18)

Hence, the acceleration of the point,

a = = + +
d

dt

d

dt
r r zr z( )� �ω

q

 = + + + − +�� � �r r r r r zr r zω ω ω ω
q q q

2

 a = − + + +( ) ( )�� � �� � � ��r r r r zr zq q q
q

2 2  (5.19)

where dot ( ) stands for derivative, and double dot ( ) stands for second derivative with respect to time.

Observation of the results for  and  lead us to some interesting and useful conclusions:

For plane motion in the x-y plane

 z z z= = =Const., 0 ��

the point can, therefore, have neither velocity nor acceleration in a direction perpendicular to the plane.
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Fig. Ex. 5.3

For constant speed of rotation w

 w q q= = = =� ��Const., ω 0

the point can, therefore, not have any angular acceleration.

For plane circular motion in the x-y plane

 z = Const., � ��z z= =0

and r = Const., � ��r r= =0  
the expressions for the velocity and acceleration reduce to

= rw q

= –rw2
r + ra q

which shows that the velocity of the point is wholly tangential at any instant whereas the acceleration has two 

components:

rw 2   radially inwards, towards the centre of the circle, due to the rotational speed of the point about the centre

ra tangentially directed due to the angular acceleration a of the point.

In particular, for a plane circular motion at constant speed, the tangential acceleration vanishes and the 

point is only subjected to a tangential velocity together with a radially inwards acceleration often termed as 

the centripetal acceleration.

For helical motion, i.e., particle moving along a helix, as shown in Fig. 5.6, dealing in terms of cylindrical 

coordinates,
 r = R, a constant

 z = kRf

where k is the tangent of the helix angle. Note that k = 0 corresponds to plane circular notion.

Now, let  �φ = w 

and � �z kR kR= =φ ω  

With these values, velocity = = +� R kR zw wf

and the acceleration

 = = = − + +� �� � �R R kRr zω ω ωφ
2

If the particle moves at a uniform speed along the helix, the angular  acceleration 

is zero and only the radial acceleration remains.

Then, = – R w2
r .

The radius of curvature r of the helix is given by

 r = R (1 + k 2).

For a helix angle of 45 , r = 2R

For a helix angle of zero, r = R, i.e., the radius itself since it reduces to plane 

circular motion.

Example 5.3 A Scotch yoke mechanism 

consists of a crank CA of radius r turning 

with a constant angular velocity w rad/s and a 

reciprocating slotted sliding member S as shown 

in Fig. Ex. 5.3. Obtain the expression for the 

displacement, velocity and acceleration of the 

sliding member.

tan–1 k

R

r

y

x
f

z

R P

Fig. 5.6



Engineering Mechanics292

O q
x

A

B
r

Fig. Ex. 5.4

Solution

 For θ = ° =30
6

π
radians,

 
 

π
6

0 5 2= . t

whence t = 1.87 seconds 

 For r = 3 – 0.4 t2 = 3 – 0.4 × 1.872 = 1.6 m 

 �r t= − = − × = −0.8 0.8 1.87 1.5 m/s

 ��r = −0.8 m/s2

 Correspondingly, 
 

θ
π

= = = 0.15  0.524 rad2t
6  

 �θ = = × = 0.3 0.3 1.87 0.561 rad/st

 ��θ = 0.3 rad/s2

 Velocity of the collar B is such that

 V rr 1.5 m/s= = −�

 V rθ θ= = × =� 1.6 0.561 0.9 m/s

which is 1.75 m/s at an angle a with the arm as shown in Fig. Ex. 5.4 (Solution) (a) such that 

α = = °−tan
.

.

1 0 9

1 5
31

Solution Let the motion of the slider be referred to its extreme left position O as the origin when the angle 

of the crank is zero at t = 0
 x = OC – l – CA cos q

 = (l + r) – l – r cos q = r (1 – cos q)

 Differentiating with respect to time t and recogni sing that

 d

dt

θ
ω=  the constant rotational speed

and q = w t

 
V

dx

dt
r t= = ω ωsin

and differentiating again,

 
a

dV

dt
r t= = ω ω2 cos .

Example 5.4 A 3 m long arm OA rotates in a plane such that 

q = 0.15 t2 where q is the angle with x-axis in radius and t is in seconds. 

A slider collar B slides along the arm in such a way that its distance 

from the hinge O is given by r = 3 – 0.4 t2 where r is in metres. 

Determine the velocity and acceleration of the collar at an instant the 

arm has turned through 30 .
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Solution For the point A on the wheel (Ref. Fig. Ex. 5.5 (Solution))

 r = 0.5 m  and  w = 2 rad /s = q⋅

 The velocity is given by

        V = + +� � �r r zr zθ q
 (i)

     = ×
×

×
 0  0.5 2  eq

0 01 2

2

.

π z

           = q + 0.0032 z m/s

 The acceleration is obtained as

                      a = − + + +( ) ( )�� � �� � � ��r r r r zr zθ θ θ2 2 q  (ii)

        = (0 – 0.5 × 22) r + (0.5 × 0 + 2 × 0 × 2) q + 0 z

               = –2 r m/s2, i.e., 2 m/s2 radially inwards

 For the second case,

 r = 0.5 m, w = q⋅ = 2 rad/s and q
⋅⋅
 = 0.6 rad/s2

 The velocity is given by Eq. (i) as

= q + 0.3 z m/s

the same as before and the acceleration from Eq. (ii) becomes,

= (0 – 0.5 × 22) r + (0.5 – 0.6 + 2 × 0 × 2) q + 0.0032 × 0.6 z

 = – 2 r + 0.3 q + 0.0019 z rad /s2

Wheel

Screw

A

Fig. Ex. 5.5

 The acceleration of the collar is such that

 a r rr = −�� �θ 2

= – 0.8 – 1.6 × (0.561)2 = –1.3 m/s2

 a r rθ = +�� � �θ θ2

         = 1.6 × 0.3 + 2 × (–1.5) × 0.561 

      = –1.2 m/s2

which is 1.77 m/s2 at an angle b with the arm as shown in Fig. Ex. 5.4 (Solution) (b) such that 

β = =−tan
.

.
. .1 1 2

1 3
42 7

Example 5.5 A wheel of radius 0.5 m is turned to advance up 

on a right-handed screw of pitch 1 cm as shown in Fig. Ex. 5.5. At 

an instant when the wheel is turned at a rotational speed of 2 rad/s, 

determine the velocity and acceleration of the hand held at A. If the 

wheel was accelerated rotationally at 0.6 rad/s2, what would be the 

velocity and acceleration of the hand?

O

1.5 m/s

1.75

0.9 m/s

30°

a

O
30°

b

1.77

1.3 m/s2

1.2 m/s2

(a) (b)

Fig. Ex. 5.4 (Solution)

A

q

r

z

r

Fig. Ex. 5.5 (Solution)
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  It may be noted that the speed and acceleration of advance of the wheel along the z-axis are related to the 

rotational speed and rotational acceleration respectively of the wheel. This fact has been used to evaluate z

and z terms in the analysis.

 5.5 MOTION REFERRED TO PATH COORDINATES

It is sometimes very convenient to describe the kinematics of a point in terms of the path coordinates, i.e., 

the geometric features of the curve traced by the point as shown in Fig. 5.7(a). It may be appreciated that the 

path of a point may not be known a priori and hence the path coordinates cannot be specified until the point 

traces a curve in the vicinity of the position of interest. For this reason, the path coordinates are also known 

as intrinsic coordinates.

The orthogonal triad in the path coordinates consists of the following unit vectors:

t tangential to the path

n directed towards the instantaneous centre of curvature

b perpendicular to the plane containing t and n so as to form a right-hand triad.

In terms of the path coordinates, the velocity of a point is given by

 
R R R

= = = =
→

lim
Δ

Δ
Δt

t
t

d

dt

d

ds

ds

dt
V

0
 (5.20)

which means that the velocity must be tangential to the path at any instant as shown in Fig. 5.7(b).

(b) Velocity

z

O

R n

t
t

n

S

ΔRP

y

x
C

R ΔR

Δq

P

= V t

C

xO

y

r

r

Q

Δ t

= Δq n

Δq

(c) Acceleration (d) Change in t unit vector

O x

P

a

C

y
dV

dt

V2

(a) Features of the path coordinates

t

t

n

Fig. 5.7 Motion referred to path coordinates
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The acceleration of the point is expressed as

 a = =
d

dt

d

dt
V t( )

 
= +

dV

dt
V

d

ds

ds

dt
t

t

 = +
d s

dt
kVt n

2

2

2

 a
d s

dt

V
t n= +

2

2

2

ρ
 (5.21)

where k, the curvature of the path =
d

ds

θ
 and r, the radius of curvature = =

ds

d kθ
1

. For a plane curve, 

 ρ =
+

=
+

−
( ( / ) )

/

( )/ /1 2 3 2

2 2

2 2 3 2dy dx

d y dx

x y

xy yx

� �

��� ���
 (5.22)

The components of acceleration are shown in Fig. 5.7(c). The fact that

 
d

d

d

ds

d

ds
kt t

n nθ
θ

ρ
⋅ = = =

1

used in the above derivation can be appreciated with reference to a circular diagram (Fig. 5.7(d)). The unit 

vector t suffers a small change Δ t along the + n direction

 
d

ds s
kt

s
n n n=

⋅
= =

→
lim

Δ

Δ
Δ0

1 1θ
ρ

 (5.23)

Let us examine the relations for the simple case of motion of point on a circular trajectory. The curvature 

of a circle is the inverse of the radius

 k
r

=
1

The velocity and acceleration of the point are 

= V t

and = + = +
d

dt

V

r
a at n t t n n

2

It may be seen that the velocity is directed along a tangent to the circle 

at any instant. The acceleration, on the other hand, is made up of a tan-

gential component, dV/dt; sense forward and normal component, V2/r;

sense inwards. This is shown in Fig. 5.8. In particular, if the point moves 

at a constant speed on a circular path, the tangential component of acce-

leration vanishes and only the radially inward centripetal acceleration 

remains.

at

a

O

= V t

an

Fig. 5.8  Velocity and acceleration 

for a circular trajectory
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P
y2 = 4x

O

y

x
4 m

4 m

t

n

a

Fig.  Ex.  5.6

Example 5.6 A particle is projected to move along a 

parabola

y2 = 4x

 At a certain instant, when passing through a point P(4, 4) 

its speed is 5 m/s and the rate of increase of its speed is 3 m/s2

along the path. Express the velocity and acceleration of the 

particle in terms of rectangular coordinates.

Solution Since the data relate to the path of the particle, the path coordinates may be used to advantage. 

The unit vectors are related as follows:

t = cos a + sin a  (i)

n = sin a  – cos a  (ii)

where  tan atα =
dy

dx
P  

 From the equation of the path,

y2 = 4x

differentiation with respect to x yields

 2 4y
dy

dx
=

and dy

dx y x
= =

2 1  

which, at P, is 
1

4
 or 0.5

and a = tan–1 0.5 = 26.57  = 0.464 rad 

 Equations (i) and (ii) at point P become

t = 0.894 + 0.447 

n = 0.447  – 0.894 

 The velocity of the particle is given by

= V t = 5(0.894 + 0.447 )

 = 4.47 + 2.235  m/s

 The tangential component of acceleration is

t = 3(0.894 + 0.447 ) = (2.68 + 1.34 ) m/s2

 The normal component of acceleration is

 
n n

V
=

2

ρ
 The radius of curvature r is given by

 ρ =
+( ( / ) )

/

/1 2 3 2

2 2

dy dx

d y dx

 =
+

=
( . )

.
.

/1 0 5

0 0625
22 36

2 3 2

m
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y

O

q

x

30 m/s

P
4

3

C

n

t

r

Fig.  Ex.  5.7

because
d y

dx
x

2

2

3 21 2 0 0625= −( ) =−/ ./  

 The normal component of acceleration is

 n n

V
=

2

ρ

 = × ( )5

22 36
0 447

2

.
. – 0.894 

 = 0.5  – 

 The acceleration is, therefore, given by

= n + t

 = 2.68 + 1.34 + 0.5  – 

 = (3.18 + 0.34 ) m/s2

Example 5.7 A particle moves in the xy plane with a velocity 

of 30 m/s directed at an angle of tan–1 4/3 as shown in Fig. Ex. 5.7. 

It accelerates as ax = –1.8 m/s2 and ay = – 9 m/s2. Compute the 

radius of curvature of the path and the rate of change of speed 

along the path.

Solution The unit vector along the velocity vector is

t = cos q + sin q = 0.6 + 0.8 

 The unit vector along the inward normal is

n = 0.8  – 0.6 

 In terms of path coordinates, the acceleration is expressed as

= f t + V2/r n

where f is the rate of change of speed along the path and r is the radius of curvature.

or − − = −( )1.8 9   (0.6   0.8 ) 0.6f
900

0 8
ρ

.  

which results in two equations:

 0.6 f + 720/r = –1.8

and 0.8 f – 540/r = – 9 

whence f = – 8.3 m/s and r = 227 m. 
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 5.6 PLANE MOTION OF A POINT: GRAVITATIONAL FIELD

A point is said to be in plane motion if the point continues to move in one and the same plane, i.e., its trajec-

tory is in a plane. Let us choose the xz plane to coincide with the plane of motion as shown in Fig. 5.1(b). 

From the expressions for the position vector, displacement, velocity and acceleration,

= x + z

 Δ = Δ x + Δ z

 
= + = +

dx

dt

dz

dt
V Vx z

 = + = + = +
d x

dt

d z

dt

dV

dt

dV

dt
a ax z

x z

2

2

2

2

Of special interest here is the case of a particle projected at an angle a  to the horizontal in the gravitational 

field of the earth close to its surface as shown in Fig. 5.9. Then,

 ax = 0  and  az = –g

= –g ; constant acceleration.

Starting with the equation

 = +∫ dt

and substituting = –g

= –gt +
 Vx + Vz = –gt + Vx0 + Vz0

 = Vx0 + (Vz0 – gt)

where Vx0 and Vz0 are the initial components of velocity 0 at t = 0.

It follows that,

 Vx = Vx 0

i.e., the horizontal component of velocity remains the same during motion 

and V z = Vz0 – gt

i.e., the vertical component of velocity undergoes a linear change.

Starting now with the equation

 = +∫ dt

O
a b

z

Vz0

V0

Vx0

Vz

Vx

Vx

x

z = x tan b

A
t

(x, z)

Parabolic path

A
x
is

 o
f

P
ar

ab
o
la

I

Fig. 5.9 Parabolic trajectory of a particle
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and substituting = Vx 0 + (Vz 0 – gt)

x z V t V t gtx z+ = + −⎛
⎝⎜

⎞
⎠⎟0 0

21

2

where x and z are measured from the initial point O as the origin at t = 0

It follows that,
 x = Vx 0 t (5.24)

 z V t gtz= −0
21

2
 (5.25)

Eliminating t and using the relations

 
V

V
V V

z

x

x

0

0

0 0= =tan cosα αand

 z x
gx

V
= −tan

cos
α

α

2

0
2 22

 (5.26)

This is the equation of the trajectory. Since it represents a parabola, the path of a particle projected in some 

oblique direction must be a plane parabolic trajectory.

The assumptions in this analysis are:

 1. Air-resistance is negligible

 2. The gravitational acceleration g is constant

 3. The point stands for the particle or centre of mass of a body.

These assumptions restrict the analysis to short-range and low-altitude motion of small objects in the 

atmosphere.

Let us now inspect the equation to provide some further information.

(a) Maximum attainable height zmax occurs when

 Vz = 0 or 
∂
∂

z

x
= 0

From the expression for z,

 

∂
∂

α
α

z

x

gx

V
= − =tan

cos0
2 2

0

whence α =
⎛

⎝
⎜

⎞

⎠
⎟

−1

2

21

0
2

sin
gx

V
 

 x V
g

= 0
2 2

2

sin α

and the ordinate of the vertex is given by

 zmax =
V

g

0
2 2

2

sin α
 (5.27a)

(b) Range of the particle on a horizontal plane equals twice the x coordinate for zmax.

 Range OA
V

g
= 0

2 2sin α
 (5.27b)

This is a maximum for a = 45 , Maximum range =
V

g

0
2
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(c) Range of the particle on an inclined plane OI is determined by solving for (x, z), the point of  interaction 

of the parabola and the inclined plane z = x tan b.

(d) Variation of zmax with a is observed from the relationship

 z
V

g
max

sin
= 0

2 2

2

α
 

and zmax is the maximum possible when a = 90 , i.e., when the particle is projected vertically 

upwards.

(e) For a particle projected horizontally,

 a = 0

 z
gx

V
= −

2

0
22

 (5.28)

(f ) For a particle projected vertically upwards,

 a = 90 , tan a → ∞ and x = 0

the problem reduces to that of a rectilinear motion along the gravitational acceleration due to the earth.

(g) The time taken to reach a particular point on the trajectory can be estimated from the relations,

 x = Vx 0 t

 z V t gtz= −0
21

2

If the initial velocity 0 (in terms of, Vx0 and Vz0) is known, the time taken can be estimated by knowing 

either the x or z coordinate of the point on the trajectory.

The time of flight tmax of the particle from the origin O to the end point A, at the initial level can be 

 calculated by observing that
 z = 0  at  t = tmax

 0
1

2
0

2= −V t gtz max max

whence t
V

g

V

g

z

max

sin
= =

2 20 0 α
 (5.29)

Alternatively, t
x

Vx

max
max=

0

 = =
V

gV

V V

gVx x

0
2

0

0 0

0

2 2sin sin cosα α α

 = = =
2 2 20 0

0

0 0
V V

gV

V

g

V

g

z x

x

z sin α

The time of flight on an inclined plane can be seen to be

 t
V

g
max

sin ( )

cos
=

−2 0 α β
β

 (5.30)

since the initial velocity component normal to the inclined plane is V0 sin (a – b) instead of V0 sin a = Vz0 and 

the acceleration due to gravity is g cos b instead of g.

The range of flight on an inclined plane can be calculated by working out the horizontal coordinate x first,

x = Vx0 tmax = V0 cos a tmax

    =
−2 0

2V

g

cos sin ( )

cos

α α β
β
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The range s on the incline is given by

 s
x

=
cos β

or s
V

g
=

−2 0
2

2

cos sin ( )

cos

α α β
β

 (5.31)

It may be checked that when b = 0, it reduces to the expression

 s
V

g
= 0

2 2sin α

as obtained earlier for the horizontal plane.

(h) At any time t, the velocity of the particle can be computed from

 Vx = Vx 0

 Vz = Vz 0 – gt

and hence, = Vx + Vz = Vx0 + (Vz0 – gt)  (5.32)

which is ( ( ) )V V gtx z0
2

0
2+ −  in magnitude 

and directed at an angle tan–1 V gt

V

z

x

0

0

−⎛

⎝⎜
⎞

⎠⎟

(i) At a certain height h, the velocity of the particle can be computed from

 Vx = Vx0

V V ghz z= −( ) /
0
2 1 22

and hence, = Vx + Vz

 = + −V V ghx z0 0
2 1 22( ) /  (5.33)

( j)  If the angle of projection a is negative, the z-coordinate continues to decrease, Vz continues to increase 

and the particle tends to drop down closer to the vertical line with the passage of time.

Example 5.8 A gun is fired, aimed at a ball, from a ground position simultaneously as the ball is let 

go vertically down. Show that the shot will hit the ball regardless of the initial velocity of the shot and the 

distances.

Solution Let the ball be at a horizontal distance x and be at an angle of elevation q with respect to the gun 

as shown in Fig. Ex. 5.8 (a) (Solution). Let the velocity of the shot at the instant of firing be V0 at an angle 

of elevation of q in the line of sight of the ball.

 The time taken for the shot to travel a horizontal distance x is

 t
x

V

x

V

H

V

H

Vx

= = = =
0 0 0 0cos

/tan

cos sinθ
θ
θ θ

 (i)

 The vertical coordinate z of the shot in that time is given by

 
z V t gtz= −0

21

2
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= −

⎛

⎝⎜
⎞

⎠⎟
V

H

V
g

H

V
0

0 0

2
1

2
sin

sin sin
θ

θ θ

or

 
z H

gH

V
= −

2

0
2 22 sin θ  (ii)

 During the same time interval t given by Eq. (i), the ball drops through a distance s where

 s gt g
H

V

g H

V
= =

⎛

⎝⎜
⎞

⎠⎟
=

1

2

1

2 2

2

0

2 2

0
2 2sin sinθ θ

and the z coordinate of the ball becomes

 z H
gH

V
= −

2

0
2 22 sin θ

which is the same as that of the shot. The shot should, therefore, hit the ball irrespective of the initial 

coordinates of the ball with respect to the gun and initial velocity of the shot.

 It may be noted that the drop of the ball before it is shot is

s
gH

V

g x

V

gx

V
= = =

2

0
2 2

2

0
2 2

2

0
2 22 2 2sin

( tan )

sin cosθ
θ

θ θ
which does vary with all the parameters. The drop is less if the initial velocity V0 of the bullet is more, range 

angle q is more or horizontal distance x is less.

 It may also be noted that the shot will hit the ball whether the ball is initially at an angle of elevation, 

level, or an angle of depression with respect to the gun so long as the gun is fired at the initial line of sight 

of the ball. This is illustrated in Figs. Ex. 5.8(b) and (c) (Solution).

Gun q

V0

Ball

(a)

q
Gun

Ball

Ball
Gun

(b) Initial level

s

H

z

x

(c) Initial depression

Fig. Ex. 5.8 (Solution)
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z

V02

V01

2 m
O

x

45°

20 m

70 m

Fig. Ex. 5.9

Example 5.9 The world records for the 

shot put and discus throw are 20 m and 70 m 

respectively. Assuming that their respective 

masses are 7 kg and 2 kg respectively, compare 

the work done by the champions in making 

their record throws if each trajectory starts at an 

elevation of 2 m and has an initial inclination of 

45  with the horizontal. Neglect air resistance.

Solution The equation of the trajectory of an object projected at an angle a with an initial speed V0 from 

the point O in the gravitational field of the earth is

 
z x

gx

V
= −tan

cos
α

α

2

0
2 22

 For the shot put

 − = −
×

2 20 45
9 81 20

2 45

2

01
2 2

tan
.

cos

�

�V

whence V01 = 13.36 m/s

The kinetic energy at the instant of its projection is

 
1

2

1

2
7 13 36 6251 01

2 2m V = × × =. J

 For the discus throw

     − = −
×

2 70 45
9 81 70

2 45

2

02
2 2

tan
.

cos

�

�V
whence   V02 = 26.2 m/s

and the kinetic energy at the instant of projection is

 

1

2

1

2
2 26 2 6872 02

2 2m V = × × =. J

 Neglecting that the discus has a tendency of spinning during flight, the work done by a champion must 

equal the kinetic energy imparted to the object at the instant of projection, i.e., at the same datum. The 

champion throwing the discus, therefore, does more work than the champion putting the shot.

Example 5.10 A large balloon is rising up with a velocity of 9.81 m/s at an altitude of 39.2 m from 

the ground. At that instant, a stone of mass 5 kg is dropped from it. After how many seconds will the stone 

reach the ground?

Solution The acceleration due to gravity g = 9.81 m/s2. Considering all quantities positive downwards,

 U = – 9.81 m/s, g = + 9.81 m/s2

and employing, S Ut gt= +
1

2

2
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39 2 9 81
1

2
9 81 2. . .= − +t t

whence t2 – 2t – 8 = 0 

 t = 4  or  t = –2

 Rejecting the negative value of time, t = 4 s.

Example 5.11 A car A is travelling on a straight level road with a uniform speed of 60 km/hr. It is 

followed by another car B moving at a speed of 70 km/hr. When the distance between them is 2.5 km, the 

car B is decelerated at 20 km/hr2. Will the car B catch up with A? If not, why not? If yes, at what distance 

and time?

Solution Let us suppose that car B catches up the car A in t hours. (If it doesn’t, t will turn out to be 

negative or imaginary!)

 In that time, A travels 60 t km. The distance travelled by B will be given by

 
S ut at= +

1

2

2

 
= − × = −70

1

2
20 70 102 2t t t t

 Since the car A is already leading by 2.5 km, the condition for B to catch up with A is

 70 t – 10 t2 = 60 t + 2.5

whence, 10 t2 – 10 t + 2.5 = 0,  t = 0.5 hr. 

 In that time, A travels 60 × 0.5 = 30 km and B travels 70 × 0.5 – 10 × 0.52 i.e., 32.5 km.

Example 5.12 A stone is dropped gently from the top of a tower. During its last one second of motion 

it falls through 64% of the height. Find the height of the tower.

Solution Assuming that the total time of fall is t seconds,

 h gt=
1

2

2  (i)

 In (t – 1) seconds it falls through a distance given by 
1

2
 ( 1)2g t −  which is only 36% of its height,

 0 36
1

2
1 2. ( )h g t= −  (ii)

 Dividing (i) by (ii), 
1

0 36 1 2

2

2.
=

+ −
t

t t

whence 0.64 t2 – 2t + 1 = 0  and t = 2.5 seconds 

 From (i), h = × × =
1

2
9 81 2 5 30 652. . . m.  



 Kinematics of a Particle 305

Example 5.14 An elevator ascends with an upward acceleration of 1.2 m/s2. At the instant when the 

upward speed is 2.4 m/s, a loose bolt drops from the ceiling of the elevator located 2.75 m from its floor. 

Calculate:

(a) the time of flight of the bolt from ceiling to floor of the elevator

(b) the displacement and the distance covered by the bolt during the free fall relative to the elevator shaft.

Solution

(a) The bolt, initially travelling up with a velocity of 2.4 m/s drops under gravity; its downwards 

displacement is

 S t t1
22 4

1

2
9 81= − + ×. .

 The floor of the elevator is displaced up in the same time,

 S t t2
22 4

1

2
1 2= + ×. .

 The sum of the two must be 2.75 m.

 Hence, (4.9 + 0.6)t2 = 2.75;  t = 0.707 s. 

(b) Displacement of the bolt is given by

 S1
22 4 0 707

1

2
9 81 0 707 0 75= − × + × × =. . . . . m

Example 5.13 Two motor cars start from A simultaneously and pass through B after 2 hours on the 

same road. The first travelled half the distance at a speed of 30 km/hr and the other half at a speed of 

60 km/hr. The other car covered the entire distance with a constant acceleration. At what instants of time 

were the speeds of both the vehicles the same?

Solution Let the distance AB be 2x.

 From the data for the first car,

x x
x x

30 60
2 40 2 80+ = = =hrs  km.; ,

 For the second car,

 80 0
1

2

1

2

2 2= + =at az

 a = 40 km/hr2.

 V = 0 + 40 × 2 = 80 km/hr at B

 At any instant of time, for car B

 V = 40 t

It becomes 30 km/hr at t = 3/4 hours and it becomes 60 km/hr at t = 3/2 hours after departure from A.

 Let us check the state of the first car at these timings. At t = 3/4 hours, it was 30 × 3/4, i.e., 22.5 km from 

A running at 30 km/hr. At t = 3/2, it was indeed running at 60 km/hr, having crossed the 40 km mark. Hence, 

the two had the same speed at these two timings. It can be checked that there was no overtaking!



Engineering Mechanics306

0
P1 P2

20 m

30 m
a

170 m

20 m

Fig. Ex. 5.15

 The distance travelled by the bolt is the sum of distances it goes up first and then comes down. It goes 

up until its velocity becomes zero,
2 – 2 = –2 

0 – 2.42 = –2 × 9.81 ×  ; = 0.293 m

It comes down such that the final downward displacement is 0.75 m, i.e., it traverses 0.293 m down and 

then 0.75 m down, making a total distance of 0.293 + 0.293 + 0.75 = 1.34 m.

Example 5.15 A bullet is projected so as to 

graze the tops of two walls each of height 20 m 

located at distances of 30 and 170 m in the same 

line from the point of projection as shown in 

Fig. Ex. 5.15. Find the angle and the speed of 

projection of the bullet.

Solution

From the equation,

 = −tan
cos

α
α

2

0
2 22

for the two points P1 and P2,

 
20 30

9 81 30

2

2

0
2 2

= −
×

tan
.

cos
α

α

30
4415

0
2 2

= −tan
cos

α
α

 (i)

and 20 170
9 81 170

2
170

141 7552

0
2 2

0
2 2

= −
×

= −tan
.

cos
tan

cos
α

α
α

α
 (ii)

we can determine both a and 0.

Calling ‘ 0
2 2cos α ’ as a parameter 

 642 963
141 755

= −tan α

 20 170
141 755

= −tan α

whence tan a = 0.784 ; a = 38.1  

Substituting the value of a in (i),

0 = 45 m/s

Example 5.16 A shell bursts on contact with the ground and pieces fly off in all directions with 

speeds up to 30 m/s. A person is standing 40 m away. What is the time duration over which he can be hit 

by a piece?
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Solution With the maximum initial velocity of 30 m/s, the horizontal range of 40 m requires that

 40
30 2

9 81
2 0 435

2

=
×

=
sin

.
; sin .

α
α

whence 2a = 25.8  or 154.2 ; a = 12.9  or 77.1  

The first piece that can hit the person has an angle of projection of 12.9  and initial velocity 30 m/s takes time

 t1
2 30 12 9

9 81
1 36=

× ×
=

sin .

.
. seconds.

The last piece that can hit the person has an angle of projection of  77.1  and initial velocity 30 m/s which 

takes time t2

2 30 77 1

9 81
5 96=

× ×
=

sin .

.
. seconds.

 How about the maximum time taken by a piece at less than 30 m/s? Well, then the higher value of a
would be less than 77.1  and hence t2 would be less.

 The duration over which the person can be hit by a piece is a period of 4.6 seconds, beginning 1.36 

seconds and ending 5.96 seconds after the bursting of the shell.

Example 5.17 The maximum horizontal range of a gun is Rmax. Determine the firing angle which 

should be used to hit a target located at a distance Rmax / 2 on the same level.

Solution The range of a bullet fired with a velocity V0 at an angle a is given by

 R
V

g
= 0

2 2sin α
 (i)

 This would be maximum for  a = 45

 R V gmax /= 0
2

 
 The target is located at

 R R V g= =max / /2 20
2  (ii)

 Equating it to (i),

 
V

g

V

g

0
2

0
22

2

sin α
=

 sin 2
1

2
α =  

 whence 2a = 30  and a = 15  

 The gun should therefore, be fired at an inclination of 15  to hit the target.

 One may check the result by considering the equation of trajectory,

 z x
g x

V
= −tan

cos
α

α

2

0
2 22

 For the target, z x V g= =0 20
2, /  

 0
2 8

0
2

0
2

2
= −

V

g

V

g
tan

cos
α

α
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E

S

N

Y

W

2

60°
O

1

Fig. Ex. 5.18

whence, tan
cos

; sinα
α

α= =
1

4
2 1 2

2
/  

which is the same as determined earlier.

 5.7 MOTION REFERRED TO MOVING FRAMES OF REFERENCE

In order to arrive at the description of the motion of a point with reference to an inertial frame for the applica-

tion of Newton’s laws it may be necessary to first ascertain the motion in relation to a moving frame and then 

refer it to an inertial frame for the sake of convenience. The moving frame may, in general, translate and rotate 

as well as accelerate linearly or angularly. It is the purpose of the following treatment to arrive at a systematic 

procedure for referring the space motion of a point with respect to a frame of reference if its motion is known 

in relation to another frame moving with respect to the former.

This task is achieved through a series of simple 

steps for the sake of clarity and understanding.

(a) Relative Motion of Two Points

Consider a pair of points, P1 and P2 moving with the 

velocities 1 and 2 and the accelerations 1 and 2

with respect to a fixed frame of reference. The veloc-

ity of P1 with respect to P2 is given by

 12 = 1 – 2 (5.34)

and the acceleration of P1 with respect to P2 is given by

12 = 1 – 2 (5.35)

This is demonstrated in Fig. 5.10. It can also be 

appreciated that

21 = 2 – 1 = – 12

and

21 = 2 – 1 = – 12

Example 5.18 Two roads cross at 60  angle at an 

intersection at O. At an instant of time, a scooter 1 at 

100 m east of the intersection moving at a velocity of 

50 km/hr decelerates at 5 km/hr/s as it approaches the 

intersection O. At the same instant, a car 2 passes the 

intersection at a velocity of 20 km/hr and accelerates 

at 10 km/hr/s as shown in Fig. Ex. 5.18. Determine 

(a) the velocity of the scooter with respect to the car 

and (b) the acceleration of the car with respect to the 

scooter at the instant of observation as well as after a 

lapse of 3 s and, in general after t seconds.

O

Fixed

frame

Y

1

2

P2 2

1

P1

Fig. 5.10 Relative velocity and relative acceleration
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B

C

A

= 5 cm/s

a = 10 cm/s2

30°30 cm

Cam

Rod

follower

Fig. Ex. 5.19

Solution Choosing the  and Y axes as shown,

 At the instant of observation,

1 = –50  km/hr

1 = + 5  km/hr/s

2 = 20 (sin 60 + cos 60 )

 = (17.32 + 10 ) km/hr

2 = 10(sin 60 + cos 60 )

 = (8.66 + 5 ) km/hr/s

(a) 12 = 1 – 2 = –50  – 17.32  – 10 

= (– 67.32  – 10 ) km/hr

(b) 21 = 2 – 1 = 8.66 + 5  – 5 

 = (3.66 + 5 ) km/hr/s

 At an instant after a lapse of 3 s

1 = –50 + 3 × 5 = –35  km/hr

2 = 17.321 + 10 + 3(8.66 + 5 )

 = (43.3 + 25 ) km/hr

(a) 12 = 1 – 2 = –35  – 43.3  – 25 

 = (–78.3  – 25 ) km/hr

(b) the relative acceleration remains the same;

21 = (3.66 + 5 ) km/hr/s

 In general, after a lapse of t s

1 = –50 + 5t = (–50 + 5t)  km/hr

2 = 17.32 + 10 + (8.66 + 5 )t

            = (17.32 + 8.66t) + (10 + 5t)  km/hr

 The relative velocity of the scooter with respect to the car is

12 = (–50 + 5t – 17.32 – 8.66t)  – (10 + 5t)  km/hr

 = (–67.32 – 3.66t)  – (10 + 5 t)  km/hr

 The relative acceleration remains the same as at the earlier instants because the acceleration of each 

vehicle is unaltered with time.

21 = (3.66 + 5 ) km/hr/s

Example 5.19 A rod follower AB is subjected to a vertical 

up-and-down movement while resting on the circular contour 

of radius 30 cm of a cam. The cam moves to the right with 

a velocity of 5 cm/s and an acceleration of 10 cm/s2. Find 

the velocity and acceleration of the point B on the rod at the 

instant of interest as shown in Fig. Ex. 5.19.
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Solution It is an interesting and a fairly simple problem which can be 

solved by a variety of methods.

 Let us demonstrate the power of two different methods by solving 

this problem.

Method 1

The point B moves with the same velocity and acceleration as A. The 

motion of A may in turn be related to the motion of A′, a coincident 

point on the cam

A = A′ + AA′

A = 0.05 + AA′ (–0.866 + 0.5 ) (i)

since the velocity of A must be along the y-axis, that of A′ is given along 

the x-axis and the velocity of A with respect to A′ is assumed up the tangent intuitively.

 From Eq. (i),

0.05 – 0.866 VAA′ = 0

 VA – 0.5 VAA′ = 0 

whence

 VAA′ = 0.0577 m/s

 VA = 0.0289 m/s = VB

 Similarly, for the acceleration,

 a a a i jA A AA
AAV

= + + − −′ ′
′

2

0 3
0 5

.
( . )0.866

                = − + − −′0 1 0 866
0 0577

0 3
0 5

2

. ( . )
.

.
( . )0.5 0.866aAA  (ii)

 From this, the x-component of acceleration is equated to zero.

0.1 – 0.866 aAA′ – 0.0055 = 0

 Then, aA = 0.5aAA′ + 0.0096 

whence

 aAA′ = 0.109 m/s2

 aA = – 0.045 m/s2 = aB

Hence, the point B moves up with a velocity of 0.0289 m/s and decelerates at 0.045 m/s2 while moving 

upward.

Method 2

One may like to visualise the cam to be at rest and the point A of the rod follower to slide up the circular 

path with the x-component of velocity –5 cm/s and x-component of acceleration –10 cm/s2, the equation of 

the path, then being

 x2 + y2 = (0.3)2

 Differentiating it with respect to time t,

 xx yy� �+ = 0  (i)

and differentiating it again with respect to time t,

 xx x yy y�� � �� �+ + + =2 2 0  (ii)

 The position of A is given by

 x = 0.3 sin 30  = 0.15 m

y B

A

A′

j

i
x

30°

0

Fig. Ex. 5.19 (Solution)
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 y = 0.3 cos 30  = 0.26 m

 From Eq. (i)

 
y
. . ( . )

.
.= −

× −
=

0 15 0 05

0 26
0 0288 m/s

which must be the velocity of A and of B.

 From Eq. (ii)

y
.. . ( . ) ( . ) .

.
.= −

× − + − +
=

0 15 0 1 0 05 0 0288

0 26
0 045

2 2
2m/s

which must be the acceleration of A and B.

(b) Translation of a Moving Frame

If a moving frame of reference x-y-z translates with 

respect to a fixed frame -Y- , as shown in Fig. 5.11, 

then any pair of parallel lines in the two frames 

remain parallel to each other with the passage of 

time. It follows that the unit vectors ,  and  in the 

moving frame remain parallel to themselves and their 

magnitudes remaining unity, the unit vectors remain 

invariant.

If the velocity of the moving frame is 0 and the 

velocity of a point with respect to the moving frame 

is Pm, the velocity of the point with respect to the 

fixed frame is given by

 Pf = Pm + 0 (5.36)

Similarly, the acceleration of a point with respect 

to the fixed frame is

 Pf = Pm + 0 (5.37)

where Pm is the acceleration of the point with respect 

to the moving frame and 0 is the linear acceleration of the moving frame with respect to the fixed frame.

It should be understood that a translating frame may translate either in space or in a plane or along a 

straight line. The velocity 0 and acceleration 0 of the moving origin may, in general, be in different direc-

tions at any instant of time. Only for the case of rectilinear translation, i.e., for motion along a straight line 

would 0 and 0 be collinear.

(c) Rotation of a Moving Frame

Consider a moving frame of reference x-y-z and a fixed or inertial reference frame -Y- . Infinitesimal rota-

tions dqx, dqy and dqz of the moving frame are specified about the ,Y and  axes respectively and are repre-

sented by vector components along the respective axes with , ,  unit vectors as shown in Fig. 5.12.

Angular velocity components wx, wy and wz refer to the rates of rotation about , Y and  axes 

respectively.

 w = wx + w y + wz

 
= + +

d

dt

d

dt

d

dt

x y zθ θ θ

 

O

Fixed

frame

Translating

frame

x

Pm

Pm

0

Pf

Pf

0

z

k

O

j
i

Y

y

Fig. 5.11 Translation of a moving frame
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(d) Derivatives of Moving Unit Vectors

Consider the change in the unit vector  observed from the 

fixed frame (d )f , due to the differential rotation (dqx, dqy,

dqz) to the moving frame as shown in Fig. 5.12:

dqx produces no change in 

dqy produces a change = – dqy in

dqz produces a change = dqz in

 Total change (d )f = dqz – dqy

and the rate of change of  with respect to t is given by

d

dt

d

dt

d

dtf

z y

z y

⎛
⎝⎜

⎞
⎠⎟

= − = −
q q

w w

which is the same as w ×

Hence
d

dt f

⎛
⎝⎜

⎞
⎠⎟

= ×w  

Similarly, expressions for the rates of change of  and  can 

be obtained:

d

dt f

⎛
⎝⎜

⎞
⎠⎟

= ×w

d

dt f

⎛
⎝⎜

⎞
⎠⎟

= ×w

d

dt f

⎛
⎝⎜

⎞
⎠⎟

= ×w

 (5.38)

(e) Derivative of a Constant Vector in a Moving Frame

Consider a fixed position vector  of a point P fixed with respect to a moving frame x-y-z which is rotating at 

an angular velocity w as shown in Fig. 5.13.

The axis of rotation must be along the w vector. Writing the position vector of P and differentiating it with 

respect to t as observed from the moving frame,

= x + y + z

d

dt

dx

dt

dy

dt

dz

dt
x

d

dt
y

d

dt
z

d

f f f

⎛
⎝⎜

⎞
⎠⎟

= + + + ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

+
dt f

⎛
⎝⎜

⎞
⎠⎟

Since the position vector is fixed with respect to the moving system,

 d

dt

dx

dt

dy

dt

dz

dtm

⎛
⎝⎜

⎞
⎠⎟

= + + = 0

 
d

dt
x y z

f

⎛
⎝⎜

⎞
⎠⎟

= × + × + ×( ) ( ) ( )w w w

 = w × (x + y + z )

 = w ×

O O ′

Fixed

frame

Moving frame

− dqy

di

dqz
X

Y

z

x

y

W

Fig. 5.12 Rotation of a moving frame

O

O

Fixed

frame
x

z

P A
Q

′

Y
w

y

Fig. 5.13 Reference to fixed and moving frames
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Hence,

 
d

dt f

⎛
⎝⎜

⎞
⎠⎟

= ×w

Let there be a vector  fixed with respect to the x-y-z frame rotating at w. if the position vectors of its end 

are  and ′, then = ′ – .

 
d

dt f

⎛
⎝⎜

⎞
⎠⎟

= ×w

 
d

dt f

′⎛
⎝⎜

⎞
⎠⎟

= × ′w

 d

dt f

( ) ( )′ −⎛
⎝⎜

⎞
⎠⎟

= × ′ −w

 d

dt f

⎛
⎝⎜

⎞
⎠⎟

= ×w  (5.39)

(f) Derivatives of a Position Vector for Different References

Let the position vector of a moving point P be  referred to the moving frame x-y-z and R referred to the fixed 

frame -Y- .
= x + y + z

R = R0 +
Differentiating  with respect to t observed from the moving frame and fixed frame respectively,

 
d

dt

dx

dt

dy

dt

dz

dtm

⎛
⎝⎜

⎞
⎠⎟

= + +

 
d

dt

dx

dt

dy

dt

dz

dt
x

d

dt
y

d

dt
z

d

dtf

⎛
⎝⎜

⎞
⎠⎟

= + + + + +

 
= + + + × + × + ×

dx

dt

dy

dt

dz

dt
x y z( ) ( ) ( )w w w

 = ⎛
⎝⎜

⎞
⎠⎟

+ × + + = ⎛
⎝⎜

⎞
⎠⎟

+ ×
d

dt
x y z

d

dtm m

w w( )  (5.40)

(g) Velocity of a Point

The velocity of a point relative to a reference frame is the time derivative, as seen from the reference of the 

position vector with respect to that reference. Referring to Fig. 5.14.

 R

Pf

f

d

dt
= ⎛

⎝⎜
⎞
⎠⎟

 
Pm

m

d

dt
= ⎛

⎝⎜
⎞
⎠⎟

Differentiating R with respect to time for the f reference

 
d

dt

d

dt

d

dtf f f

R R⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

0

or Pf

m

d

dt
= + ⎛

⎝⎜
⎞
⎠⎟

+ ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 w  
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 Pf = Pm + 0 + w ×  (5.41) 

This is interpreted by stating that the velocity Pf of a particle as observed from a fixed reference frame 

must be the vector sum of the velocity Pm as observed from a moving reference frame, the velocity 0 of the 

moving origin and the term w ×  due to rotation of the moving frame at an angular velocity w with respect 

to the fixed frame.

(h) Acceleration of a Point

The acceleration of a point relative to a reference frame 

is the time derivative, as seen from the reference frame 

of the velocity relative to that reference. Referring to 

Fig. 5.14 again,

Pf Pf

f

d

dt
= ⎛

⎝⎜
⎞
⎠⎟

Pm Pm

m m

d

dt

d

dt
= ⎛

⎝⎜
⎞
⎠⎟

=
⎛

⎝⎜
⎞

⎠⎟
2

2

Pf Pf

f

d

dt
= ⎛

⎝⎜
⎞
⎠⎟

= + ⎛
⎝⎜

⎞
⎠⎟

+ ×⎛
⎝⎜

⎞
⎠⎟0

d

dt

d

dt
Pm

f f

( )w

d

dt

d

dt
Pm

f

Pm

m

Pm

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+ ×w

= Pm + w × Pm

 
d

dt

d

dt

d

dtf f f

( )w w
w

×⎛
⎝⎜

⎞
⎠⎟

= × ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

×

 
= × ⎛

⎝⎜
⎞
⎠⎟

+ ×
⎡

⎣
⎢

⎤

⎦
⎥ + ×w w a

d

dt m

 = × + × + ×w w aPm

 = w × Pm + w × (w × ) + a ×
Finally,

Pf = Pm + 0 + a × + 2 w × Pm + w × (w × )  (5.42)

The interpretation of the terms is as follows:

Pf acceleration of the point P with respect to the fixed frame of reference.

Pm acceleration of the point P with respect to the moving frame of reference.

0 translational acceleration of the origin of the moving frame with respect to the fixed origin.

a ×   acceleration due to the moving frame accelerating with an angular acceleration ; the tangential 

component as seen from the fixed origin. It vanishes when  and  are parallel, collinear or when 

either is zero.

2w × Pm  Coriolis component of acceleration due to w, the rotation of the moving frame and Pm, the rela-

tive velocity of the point P in the moving frame. It is zero when w is parallel to or collinear with 

Pm or either of them vanishes.

Fixed

frame

O Y

y
O ′

P

w

R0
x

R

0

z

Moving

frame (m)

0α

Fig. 5.14 Motion observed from fixed and moving frames
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w × (w × )  normal component of acceleration as seen from the fixed frame; also called centripetal 

 acceleration, which for plane circular motion of the point becomes w
2. It vanishes where w

and  are collinear or when either w or  is zero.

(i) A Note on Coriolis Acceleration

It is interesting to demonstrate the origin of Coriolis acceleration and the concept of its direction physically 

by a simple example.

Consider a slidable collar P made to slide at a constant velocity Pm with respect to a rod rotating at a con-

stant angular velocity w about  as shown in Fig. 5.15(a). Placing a frame of reference on the rod, we notice 

that the relative acceleration of P with respect to the rotating rod, angular acceleration of the rotating frame 

and the absolute acceleration of the origin on the rotating frame are specified as zero. For this simple case of 

plane motion only, the centripetal component w × (w × ) and the Coriolis component 2w × Pm are non-zero. 

The former, w
2 in magnitude, is directed radially towards O whereas the latter, 2w × Pm is directed at right 

angles to Pm and w.

c

(Along w)

O

w
Pm

(Outward)

(c) Sign convention ‘OUT-ALONG’

(b) Change in velocity(a) Sliding collar on a rotating arm

Pm

PmΔqΔq

Pm

B

A

E

D

O

C

( + Δ ) w

w

V

V

P

P

O

Rod

( + Δ ) w

Δq

w+ Δ

Fig.5.15 Coriolis acceleration

In order to appreciate the origin of the Coriolis acceleration, consider the change in system configuration over 

a small time interval Δt as shown in Fig. 5.15(b). Initially, the velocity of P was made up of two components:

   Radial: Pm shown by OA

Tangential: w shown by OC

Finally, after a lapse of time Δt, the components of the velocity of P are:

 Radial: Pm shown by OB

Tangential:  ( + Δ )w shown by OE

The initial velocity vector P can be obtained by adding OA and OC and the final velocity vector by adding 

OB and OE, but these are purposely not shown to avoid unnecessary details. It is preferred to show the change 

of the velocity of P in three stages:

 1. Due to the rotation of the relative sliding velocity

  AB = Pm Δq
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O

0.5 mx

B A y

f Yz

2 m

Fig. Ex. 5.20

 2. Due to the rotation of the rod

  CD = w Δq

 3. Due to the sliding effect on the rotational velocity

  DE = ( + Δ ) w – w = Δ w

It is the sum of AB and DE, divided by Δt, in the limiting case which is called Coriolis acceleration:

Coriolis acceleration a
t

c
t

Pm=
⋅ + ⋅⎛

⎝⎜
⎞
⎠⎟→

lim
Δ

Δ Δ
Δ0

q w

 = + = +Pm Pm Pm

d

dt

d

dt

q
w w w

or

 ac = 2w Pm

directed perpendicular to the rod as indicated by the limiting case of the velocity diagram for Δt → 0 and Δw

getting smaller.

Similarly, the rate of change of CD corresponds to the centripetal acceleration:

 Centripetal acceleration a
t

r
t

=
⋅⎡

⎣⎢
⎤
⎦⎥→

lim
Δ

Δ
Δ0

w q

or

 a
d

dt
r = =w

q
w

2

directed towards the centre of rotation of the rod as also observed from the limiting case of the velocity diagram.

It is sometimes difficult to visualise the direction of the Coriolis acceleration. Actually, there is no difficulty 

about the direction of any component of acceleration when proceeding vectorially but a rule or sign convention 

(shown in Fig. 5.15(c)) may be stated for the graphical procedure applicable to the plane motion of rigid bodies:

If the slider collar moves radially with respect to the centre of rotation of the arm on which it slides, the 

Coriolis acceleration of the is the direction of rotation. This is called the Out-Along convention.

Example 5.20 A platform as shown in 

Fig. Ex. 5.20 rotates about its axis with an angu-

lar speed of 2 rad/s counterclockwise and dece-

lerates with an angular deceleration of 3 rad/s2.

A rod OA rotates about the hinge O with an angu-

lar velocity 4 rad/s and accelerates at a rate 5 rad/s2

with respect to the platform. A collar B slides 

outward on the rod OA with a velocity of 2 m/s 

and an acceleration of 3 m/s2 with respect to the 

rod. Compute the absolute velocity and accelera-

tion of the collar if it is at 0.5 m from O.
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Solution Let the fixed frame Y  be fixed with the ground with its origin coincident with the centre of the 

platform and let the moving frame xyz be attached to the rod OA with its origin at O.

 Next, it is necessary to identify the motion of the collar with respect to the moving frame and the motion 

of the moving frame with respect to the fixed frame.

The collar moves with respect to the moving frame identified with the rod such that

= 0.5 , Pm = 2   and Pm = 3 

 The moving frame moves with respect to the fixed frame such that

 w = 2 + 4 = 6 

 α ω= = − =� 5 3 2k k k

R0 = 2 

 V R k i j0 0 2 2 4= = × =�

 R0 0 3 2 2 4 6 8= = − × + × = − −��

 The absolute velocity and acceleration of the collar are determined by recalling the corresponding 

expressions:

Pf = Pm + 0 + w × = 2 + 4 + 6 × 0.5 

                = (–3 + 6 ) m/s

Pf = Pm + 0 + α × + 2 w × Pm + w × (w × )

       = 3  – 6  – 8 + 2 × 0.5 + 2(6 × 2 ) + 6 × (6 × 0.5 )

        = (–33  – 21 ) m/s2

 Alternatively, the moving frame xyz could have been attached to the platform with the origin either at O or 

at the centre of the platform. If the origin is located at O, the collar moves with respect to the moving frame 

such that

= 0.5 

Pm = 2 + 4 × 0.5 = (–2 + 2 ) m/s

 aPm r zr r r r z= − + + +( ) ( )�� � �� � � ��θ θ θ θ
2 2

 = (3 – 0.5 × 42)  – (0.5 × 5 + 2 × 2 × 4)

 = (–18.5  – 5 ) m/s2

 The motion of the moving frame with respect to the fixed frame is such that

 w = 2 

 a w= = −� 3

R0 = 2 

  0 0 4= =�R j

 0 0 6 8= = − −��R j i

 Again, from the expressions for the absolute velocity and acceleration,

Pf = Pm + 0 + w ×
 = – 2 + 2 + 4 + 2 × 0.5 

 = (–3 + 6 ) m/s

Pf = Pm + 0 + a × + 2 w × Pm + w × (w × )

 = – 18.5  – 5  – 6  – 8  – 3 × 0.5 

+ 2(2 × (– 2 + 2 )) + 2 × (2 × 0.5 )

 = (–33  – 21 ) m/s2
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Example 5.21 A crane rotates about a vertical axis 

with a constant angular velocity of 0.4 rad/s while the 

boom is being raised with a constant angular velocity 

of 0.5 rad/s relative to the cab as shown in Fig. Ex. 5.21. 

If the length of the boom is 10 m, determine

(a) the angular velocity of the boom,

(b) the angular acceleration of the boom,

(c) the velocity of the tip of the boom and

(d) the acceleration of the tip of the boom.

Solution The problem may be tackled in a variety of ways by considering the moving frame attached to 

any moving component at any desired point. We shall consider some of the different possibilities with a 

view to gaining experience of analysing such motions.

Method 1

Moving frame x-y-z attached to the rotating cabin with its origin at O and the fixed frame -Y-  fixed in 

space but with its origin also at O.

 The angular velocity w of the moving frame is then 0.4 rad/s about the z axis, i.e.,

 w = 0.4 

 From the given length OP = 10 m, the tip of the boom P is located by the position vector

= 10 (cos 30 + sin 30 ) = 8.65 + 5 

 The velocity of P with respect to the fixed frame is given by

Pf = Pm + 0 + w ×
where      Pm = 0.5 × (8.66 + 5 )

 = 4.33  – 2.5 

0 = 0, the origin being coincident with O

and     w × = 0.4 × (8.66 + 5 ) = –3.465 

 Hence, Pf = (–3.465 – 2.5 + 4.33 ) m/s 

 The angular velocity of the boom must be the sum of the angular velocity of the moving frame on the cab 

and the angular velocity of the boom with respect to the cab, i.e.,

 wboom = w1 + w2 = (0.4 + 0.5 ) rad/s

 The angular acceleration of the boom can be likewise visualised as that due to the rotation of the boom 

on a rotating cab.

 aboom = w1 × w2 = 0.4 × 0.5 = 0.2  rad/s2

 The acceleration of P with respect to the fixed frame is given by

Pf = Pm + 0 + a × + 2 w × Pm + w × (w × )

where Pm = 0.5 × (0.5 × (8.66 + 5 )) = –2.16  – 1.25 

0 = 0
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 α × = 0

 2 w × Pm = 2 × 0.4 × (4.33  – 2.5 ) = 2 

 w × (w × ) = 0.4 × (0.4 × (8.66 + 5 )) = –1.385 

 Hence,

Pf = –2.165  – 1.25 + 2  – 1.385 = (2  – 3.55  – 1.25 ) rad/s2

Method 2

Moving frame x-y-z attached to the boom with its origin at O and the fixed frame fixed in space but with its 

origin also at O.

 In this case,

 w = 0.4 + 0.5 

is the angular velocity of the moving frame attached to the boom.

= 8.66 + 5  as before

Pf = Pm + 0 + w ×
where Pm = 0, the point P being on the boom itself and

0 = 0, the origin being coincident with O.

 w × = (0.4 + 0.5 ) × (8.65 + 5 ) = –3.465  – 2.5 + 4.33 

 Hence, Pf = (–3.465  – 2.5 + 4.33 ) m/s 

 The angular acceleration of the boom is obtained by w1 × w2 by imagining the moving frame undergoing 

a relative rotation with respect to a rotating frame.

 aboom = 0.4 × 0.5 = 0.2  rad/s2

 This is also the angular acceleration of the moving frame in this case.

 a = aboom = 0.2  rad/s2

 The acceleration of P with respect to the fixed frame is

Pf = Pm + o + a × + 2w × Pm + w × (w × )

where Pm = 0 

 Now, 0 = 0 

 a × = 0.2 × (8.66 + 5 ) = 1 

 2 w × Pm = 0

 w × (w × ) = (0.4 + 0.5 ) × ((0.4 + 0.5 ) × (8.66 + 5 ))

 = 1  – 3.55  – 1.25 

 Hence,

Pf = (2  – 3.55  – 1.25 ) m/s2

Method 3

No moving frame at all -Y-  fixed with reference to frame fixed in space with its origin at O.

 The angular velocity of the boom is due to w1 of the cab and w2 of the boom with respect to the cab, i.e.,

 wboom = w1 + w2 = (0.4 + 0.5 ) rad/s

 The angular acceleration of the boom is obtained by

 
a

w w w

boom
boom=

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

d

dt

d

dt

d

dt
f f f

1 2

 Now, 
d

dt
f

w1 0
⎛
⎝⎜

⎞
⎠⎟

=  
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because the cab rotates at a constant angular velocity with respect to the fixed frame but the boom has a 

constant angular velocity with respect to the cab. Observing that w2 rotates with the cab at w1

 
a

w
w wboom =

⎛
⎝⎜

⎞
⎠⎟

= ×
d

dt
f

2
1 2

 = (0.4 × 0.5 = 0.2 ) rad/s2

 The velocity of P is given by

P = w × = (0.4 + 0.5 ) × (8.66 + 5 )

 = (–3.465  – 2.5 + 4.33 ) m/s

 The acceleration of P is likewise computed:

P = α boom × + wboom × (wboom ×) + )

 = 0.2 × (8.66 + 5 ) + ((0.4 + 0.5 ) × (0.4 + 0.5 ) × (8.66 + 5 ))

 = (2  – 3.55  – 1.25 ) m/s2

Method 4

By multiple references. A moving frame -Y-  attached to the boom with its origin at O and another moving 

frame attached to the cab with its origin at O and a fixed frame -Y-  also with its origin at O.

 The velocity and acceleration are now determined first with respect to the intermediate reference m1 and 

then with respect to the fixed frame in the next step.

 For the first step in respect of velocity.

Pm1 = Pm + 0 + w ×
where Pm = 0 

0 = 0

 w × = 0.5 (8.66 + 5 ) = 4.33  – 2.5 

w being the angular velocity of the boom with respect to the cab.

 Hence,

Pm1 = – 2.5 + 4.33 

and for the second step,

Pf = Pm1 + 0 + w ×
where Pm1 = – 2.5 + 4.33 

0 = 0

 w × = 0.4 (8.66 + 5 ) = –3.465 

w being the angular velocity of the cab with respect to the ground.

 Hence,

Pf = (3.465  – 2.5 + 4.33 ) m/s

 Similarly, for the first step in respect of acceleration,

Pm1 = Pm + 0 + a × + 2 w × Pm + w × (w × )

where Pm = 0 

0 = 0 

 a × = 0 

 2 w × Pm = 0, as Pm = 0 

 w × (w × ) = 0.5 × (0.5 × (8.66 + 5 )) = –2.165  – 1.25 

 Hence, Pm1 = –2.165  – 1.25 
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and for the second step,

Pf = Pm1 + 0 + α × + 2 w + Pm1 + w × (w × )

 = –2.165  – 1.25 + 0 + 0 + 2 × 0.4 × (–2.5 + 4.33 ) + 0.4 × (0.4 × (8.66 + 5 )

 = (2  – 3.55  – 1.25 ) m/s2

 Some comments can be made on the choice of a method. Methods 1 and 2 invoke a single moving frame 

whereas method 3 does not require any moving frame and method 4 requires more than one moving frame. 

Method 3 tends to be difficult because it requires thinking of the complete motion in one go. Method 4 

offers simplicity of understanding and is indeed the choice if the number of moving components is large. 

There can be a number of intermediate moving frames for convenience. Methods 1 and 2 combine two 

steps into one and reduce the length of the procedure at the cost of clarity. However, in many problems, it is 

necessary to choose one moving frame for expressing the motion of every two rotating members. Methods 

1 and 2 are, therefore, representative of a typical choice.

 The origin of every moving frame was fixed at O only for convenience because then 0 = 0 and 0 = 0. 

There is no bar to fix the origin of the moving frame at any point. For example, it can be fixed at P, the tip 

of boom itself. Then, = 0 and 0 ≠ 0 and 0 ≠ 0. Expressions for position vector, velocity and acceleration 

in rectangular and cylindrical coordinates are summarized in Table 5.2 for ready reference.

Example 5.22

(a) A tennis ball has a velocity of 30 m/s at angle of +30  with the 

horizontal, just after being struck by a player. Determine the radius 

of curvature of its trajectory.

(b) What would be the radius of curvature when it reaches the 

 maximum height?

Solution

P

At this instant, the ball has a velocity of 30 m/s and it is going up the trajectory, while subjected to the 

gravitational acceleration g, 9.81 m/s2 downwards. This acceleration can be resolved into a ‘normal’ and a 

‘tangential’ component:
 an = g cos 30  = 8.5 m/s2

 at = – g sin 30  = – 4.9 m/s2

 In terms of path coordinates,

 
a

v
n = =

2

8 5
ρ

. m/s2

 

whence ρ = =30 8 5 105 92 . . m 
 is the radius of curvature.

 Also, at = rate of change of speed equals – 4.9 m/s2.
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P

At the given instant, the horizontal component of velocity is 30 cos 30 , i.e., 26 m/s. In the absence of 

horizontal forces, this component remains unaltered throughout the trajectory.

 When it reaches the maximum height, it has just the horizontal component of velocity, i.e., 26 m/s only. 

It is still subjected to the gravitational acceleration g, 9.81 m/s2 downwards. At that instant, the ‘normal’ is 

also downwards;

 

a g

v

n = =

= =

9 81

26

2

2 2

. m/s

ρ ρ
whence ρ = =26 9 81 68 92 / m. . , which is the radius of curvature at that instant.

 Further, since g is wholly equal to an, there is no tangential acceleration,

 at = 0 

which means that the rate of change of speed in zero!

Example 5.23 Determine the horizontal and vertical components 

of the acceleration of a particle describing a circle of 10 m radius, 

with a constant speed of 20 m/s, while passing the position P at +30

with the horizontal.

Solution The particle describing a circular path must be subjected to a normal, i.e., centripetal acceleration 

an = =
20

10
40

2

m/s2 ,  as shown. The horizontal and vertical components are determined as follows, with 

regard to x and y taken +ve as shown:

Horizontal component = – 40 cos 30  = – 34.64 m/s2

  Vertical component = – 40 sin 30  = – 20 m/s2

Example 5.24 A motor-cycle accelerates linearly, starting with an initial acceleration of 1.5 m/s2 to

6 m/s2 over a distance of 50 m. Find the velocity acquired and the time taken, assuming the initial velocity 

to be 5 m/s at t = 0.

Solution It is a question of varying acceleration; we must use the general equations

 a
dv

dt
=  and v

ds

dt
a v

dv

ds
= =;  

or v a dt s v dt= = ∫∫ and  

 From the data, a s
s

= + −( ) = +1 5 6 1 5 50 1 5 4 5
50

. . . ./  

 
v

dv

ds

s
= +1 5 4 5

50
. .
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⎡
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Let us sketch the acceleration-distance and the velocity distance graphs for the sake of interest.

6.0

m/s2

1.5

m/s2

O
0 m s

Acceleration-distance graph

50 m

a

Fig. Ex. 5.24(a) (Solution)

20

m/s

5.0

m/s

0 m

Velocity-distance graph

s 50 m

ν

O

Fig. Ex. 5.24(b) (Solution)

  Comment on the truth of the following statements:

 (a)  The displacement of a particle during an 

interval of time may not be the same as the 

distance moved by it.

 (b)  Directions of velocity and acceleration of 

a point at any instant may not be the same 

whereas the directions of displacement and 

velocity at any instant must be the same.

Concept Review Questions

Entity Cartesian coordinates Cylindrical coordinates

x + y + z r r + z z

u + v + w Vr r + V
q
 

q
+ Vz z

ax

∂
∂

∂
∂

∂
∂

∂
∂

u

t
u

u

x
v

u

y
w

u

z
+ + +

∂
∂

∂
∂

∂
∂θ

∂
∂

θ θV

t
V

V

r

V

r

V
V

V

z

V

r

r
r

r r
z

r+ + + −
2

ay

∂
∂

∂
∂

∂
∂

∂
∂

v

t
u

v

x
v

v

y
w

v

z
+ + + ∂

∂
∂
∂

∂
∂θ

∂
∂

θ θ θ θ θ θV

t
V

V

r

V

r

V
V

V

z

V V

r
r z

r+ + + +

az

∂
∂

∂
∂

∂
∂

∂
∂

w

t
u

w
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v

w
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z
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∂
∂
∂

∂
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∂
∂

θV
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V

V

r

V

r

V
V

V

z

z
r

z z
z

z+ + +

Table 5.2 Expressions for position vector, velocity and acceleration in different coordinate systems
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 (c)  The acceleration of a particle undergoing 

simple harmonic motion must be directed 

towards the centre of oscillations whereas 

the velocity may either be towards or away 

from it.

 (d)  A vector may be constant in a moving frame 

of reference but it may not be constant as 

observed from a fixed frame of reference.

  State the assumptions made in the derivations of 

the relations

             V = U + at

S Ut at= +
1

2

2

 and    V2 – U2 = 2as

 and hence state when these relations are not 

applicable.

  Explain the meaning of the terms: centripetal 

acceleration, Coriolis acceleration and normal 

acceleration as applied to the motion of a particle.

 Show that

             d

dt

r = ω θ

d

dt
r

θ ω= −

           d

dt

n
t=ω

d

dt

t
n= −ω

  Under what circumstances are the cylindrical 

coordinates preferred to the rectangular coor-

dinates and under what conditions are the path 

coordinates preferred to both?

  Would the unit vectors ,  and  of a moving 

frame appear to change with time as observed 

from a fixed frame, if the moving frame

 (a) translates at a constant velocity?

 (b)  translates rectilinearly with a variable 

velocity?

 (c) rotates at a constant rotational velocity?

 (d) rotates at a variable rotational velocity?

Tutorial Problems

 The acceleration of a particle is given by

a = t3 – 3t2 + 5 m/s2

 where the time t is in s. If the velocity of 

the particle at t = 1 s is 6.25 m/s and the 

displacement is 8.80 m, calculate the velocity 

and the displacement at t = 2 s.

 ( s  8 m/s and 16.1 m)

  A particle, starting from rest, moves in a straight 

line and its acceleration is given by

a = 50 – 36t2 m/s2

 where t is in s. Determine (a) the velocity of 

the particle when it has travelled 52 m, and 

(b) the time taken by it before it comes to rest 

again.

 ( s  4 m/s, 2.04 m)

  A particle passes through a point (3, 4, 5) with 

a velocity of

V = 10 + 11 + 12 

 at a time t = 1 s. A constant acceleration

= 2  – 3 

 is impressed upon it for 10 s. Compute the 

position and velocity of the particle at the final 

instant.

 ( s  203, –36, 125; 30  – 19 + 12 )

  A particle is observed at t = 0, and 2 s when it 

passes through positions (0, 3, 0) and (20, 3, – 4) 

respectively. If the velocity vector has the form

= At + B + C

 determine its position and velocity at t = 5 s.

 ( s  (125, 3, – 10), (25  – 2 ) m/s)
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  A point moving with simple harmonic motion 

has an amplitude of 1 m and the period of 

one complete oscillation is 2 s. Determine its 

 displacement, velocity and acceleration at an 

instant 0.4 s after passing an extremity.

 ( s  0.309 m, 2.99 m/s, 3.05 m/s2)

  A particle moving with simple harmonic motion 

performs 10 complete oscillations per minute 

and its speed, when at a distance of 8 cm from 

the centre of oscillation is 60% of the maximum 

speed. Find the speed of the particle when it is 

6 cm from the centre of oscillation.

 ( s x0 – 10 cm, V = 8.38 cm/s)

  A particle moving with simple harmonic motion, 

has a time period of 0.6 s. Its speed at its mean 

position is 1.5 m/s. Determine its speed when 

it is half way between its mean position and an 

extremity.

( s 1.3 m/s at x = 0.0715 m)

8   Determine from first principles, the angle at 

which a bullet must be fired over a horizontal 

plane such that the greatest height attained by it 

equals the range on the plane.

 ( s a = 76 )

  Two guns are projected at each other, one 

upward at an angle of 30  and the other at the 

same angle of depression, the muzzles being 

30 m apart as shown in Fig. Prob. 5.9. If the 

guns are shot with velocities of 350 m/s upward 

and 300 m/s downward respectively, find when 

and where the bullets may meet.

 ( s  0.0462 s, (14 m, 8.07 m))

B

P

A

30°

30°

30 m

x

y

Fig. Prob. 5.9

  Show that there are two directions in which a 

particle may be projected at the same veloc-

ity so that it passes through a given target. 

Establish the minimum velocity-of-projection 

requirement such that the particle does reach 

the target.

( s q1 1/2 sin-1(gx/v2), p/2-q  1 ;

 V min ≥ [gx2/2(x tan q − y 1/2 for q1 and q2))

  The horizontal distance of a target to be hit 

by a projectile is 10,000 m. The shell leaves 

the gun with a velocity of 600 m/s as shown 

in Fig. Prob. 5.11. What must be the angle of 

elevation a of the gun if a mountain 2000 m 

high intervening midway between the gun and 

the target is to be cleared?

 ( s a = 82.1 )

Target
2000 m

10 000 m

600 m/s

Gun a

Fig. Prob. 5.11

  A projectile is fired from a cliff 120 m above 

sea level with an initial velocity of 500 m/s 

directed at an angle of elevation of 30  to 

the horizontal. Estimate the time of flight 

and the horizontal range if the target is at 

the sea level.

s  51.4 s, 22 276 m)

  Two particles are projected simultaneously from 

two points A and B such that h is the hori zontal 

distance and k the vertical distance between 

them. They are projected at the same inclina-

tion a to the horizon with the same velocity 

V as shown in Fig. Prob. 5.13. Show that their 

distance from each other will be minimum after 

a time.

t
n

V
=

2 cos α

  and that the minimum distance will be k.
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  If a body travels half its total path in the last 

second of its free fall, starting from rest, find 

the total time and height of its fall.

 ( s  3.414 seconds; 57.2 metres)

  A ball rolls off the top of a stairway with a 

horizontal velocity of 1.5 m/s. The steps are 

20 cm wide and 20 cm high. Which step will 

the ball hit first?

( s  The path y = – 2.18 x2 intersects the line 

y = – x at x = 0.45 m; hence, 3rd step)

  Determine the minimum speed with which the 

motorcycle must leave the 30  ramp at A to reach 

the point B, clearing the pond in between.

 ( s  37 km/hour)

A

Β 2 m

12 m

30°

Fig. Prob. 5.16

  A helicopter is descending vertically down-

ward with a uniform velocity. At a certain 

instant, a food packet is dropped from it 

which takes 5 seconds to reach the ground. 

As this packet strikes the ground, another 

food packet is dropped from it, which takes 4 

seconds to reach the ground. Find the velocity 

with which the helicopter is descending and 

its height, when second packet is dropped. 

Also find the distance travelled by the heli-

copter during the interval of dropping the 

packets.

( s  11.04 m/s downwards at 177.8 m 

height; 55.2 m downwards)

8   A point moves on a curve xy = 16 according 

to the law x = 4 t2 where x and y are expressed 

in meters and t is in seconds. Find the magni-

tude and direction of the velocity of the point 

(a) when t = 1 second and (b) when x = 2 metres.

( s Vx = 8 t, Vy = – 8/t3 in m/s;

(a) t = 1, x = y = 4; Vx = 8, Vy = – 8 m/s 

(b) x = 2, y = 8, t = 0.707s; Vx = 5.66, 

Vy = – 22.6 m/s)

  A gun fires a bullet with such an initial velo-

city and such an angle of elevation that the 

maximum height to which it rises is h. Find 

the maximum range that can be obtained with 

the same initial velocity.

 ( s h = zmax = V

g

0
2

2
 at a = 90 : 

xmax = V0
2 sin 2 a/g = 2h at a = 45 )

  A body travels a distance s in a duration of t

seconds. It starts from rest and ends at rest. 

In the first part of its journey it moves at a 

constant acceleration a and in the second part 

with a constant retardation r. Show that

t s a r= +2 1 1( / / )

 ( : Set up the three equations; 

t = t1 + t2, s = 1/2 (a t1
2 + r t2

2) and 

a t1 = r t2 and eliminate t1 and t2)

  The rotor of a motor has an angular accelera-

tion which is directly proportional to the time 

t. The motor starts from rest at time t = 0. 

After 3 seconds, the rotor has completed 5 

revolutions. Obtain the equation of motion of 

the rotor and estimate its angular velocity at 

t = 2 seconds

s a = dw dt = 20/9 p t; 14 rad/s)

  A 250 m long railway train is travelling along 

a curved track of 1 km radius at a speed of 

60 km/hour and decelerates at 0.2 g. Calculate 

the velocity and acceleration of the engine as 

seen by the guard at the tail end of the train.

 ( s  16.67 (  – ) m/s; (–1.68  – 2.24 ) m/s2)
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Fig. Prob. 5.22

  The path of a particle P is an Archimedean 

spiral. The motion of the particle is defined 

by the relations,

r = 10 t  and q = 2 t

 where r is in metres, t is in seconds and q

is in radians. Determine the velocity and 

acceleration of the particle (a) when t = 0 and 

(b) when t = 0.25 seconds.

 ( s  (a) 10 i, 40p j; (b) 10 j – 5 p i, – 40 

p i – 10p
2 j)

y

P

r

x

q

Fig. Prob. 5.23

  An aeroplane is flying with a constant velocity 

v at a constant height h. Show that, if a gun is 

fired point blank at the aeroplane as it passes 

directly over the gun with an angle of elevation 

a, the shell will hit the aeroplane provided

2(V cos a – v) v tan2
a = gh

      where V is the initial velocity of the shell.

  A bomber is flying horizontally at a speed of 

500 km/h at an altitude of 3 km such that a 

ship lies in a vertical plane through the line of 

sight as shown in Fig. Prob 5.25. Determine 

the angle of the line of sight of the bomber 

with the ship at the instant a bomb is released 

so as to hit the ship. Where would the bomber 

be at the instant the ship is wrecked?

s q = 48.9 ; Over the ship)

Bomber

q

3 km

Line of sight

Trajectory

Ship

Line of flight

Fig. Prob. 5.25

  The motion of a point in the vertical plane is 

given by

r = 3 t2, q = 0.5 sin p t/4

 where r is in cm and q in radian and t in s. 

Determine the velocity and acceleration of the 

point when t = 3 s.

 ( s  19.5 cm/s, 16.4 cm/s2)

  A wheel rotates at an angular speed 10 rad/s 

and the rotational speed increases at 2 rad/s2.

A collar C moves out on a horizontal spoke 

such that its speed and acceleration with 

respect to the spoke are 3 m/s and 2 m/s2

respectively as shown in Fig. Prob. 5.27. 

Compute the absolute velocity and accel-

eration of the collar if it is at 0.5 m from the 

centre of rotation.

 ( s  5.83 m/s; 77.62 m/s2)

0.5 m

CO

Fig. Prob. 5.27

8   A tracking device stationed at the launching 

point of a missile records the r and q coordi-

nates of the missile with the passage of time. 
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It is noticed that if r is in km, q in degrees and 

t in s, the following expressions represent the 

motion closely

r = 2 t – t2/20

q 
2= 1300 – t 2

 for the plane trajectory of the missile. Estimate 

the position, velocity and acceleration of the 

missile at t = 20 s.

 ( s  20 km, – 0.2333 km/s. 0.104 km/s2)

  A particle moves on a frictionless wire bent 

into a cubic y = 2x3. At a point (1, 2), the speed 

of the particle is 3 m/s and it decreases at a rate 

of 2 m/s. Compute its velocity and  acceleration 

in terms of the rectangular coordinates.

 ( s  0.493, 2.96 m/s; –0.79, –1.84 m/s2)

  A particle P slides down an incline of 30  

frictionlessly and then moves up a circular 

arc of 1 m radius as shown in Fig. Prob. 5.30. 

Compute the velocity and acceleration of the 

particle at A just before the start of the arc and 

at B midway on the arc.

 ( s  5.18 m/s; 8.5, 27.3 m/s2)

0.5 m

P

BA

1 m

30°

Fig. Prob. 5.30

  A load P is being raised by means of an 

assemblage of two links AB and BP as shown 

in Fig. Prob. 5.31. At the instant of interest 

link AB rotates and accelerates at 3 rad/s and 

4 rad/s2 respectively with respect to the ground 

whereas link BP with an angle of 90  AB

rotates and accelerates at 5 rad/ and 2 rad/s2

with respect to link AB. If AB is 5 m long 

and BP is 2 m long with an angle of 60  at 

the instant of interest, determine the accel-

eration of the load with respect to the ground 

reference.

B

P

A

Fig. Prob. 5.31

  Two boys A and B stand diametrically oppo-

site on a plane horizontal table of diameter 

5 m rotating anticlockwise at 10 radians 

per second as shown in Fig. Prob. 5.32. If A

throws a ball towards B at a speed of 5 m/s, 

how will it tend to move on the table and 

why?

 ( s  50 m/s tangential, 5 m/s radius)

w

0
A B

Fig. Prob. 5.32

  A rotating spotlight is at a perpendicular 

distance l from a horizontal floor. The light 

revolves at constant N revolutions per minute 

about a horizontal axis perpendicular to the 

plane representing it in Fig. Prob. 5.33. Derive 

expressions for the velocity and acceleration 

of the light spot travelling along the floor. Let 

q be the angle between the vertical line l and 

the light beam at time t.

 ( s w = 0.1051 N sec2
q,

a = 0.0221 N2 sec2
q tan q)
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Spot on

floor

Rotating

spotlight

q

Fig. Prob. 5.33

  A flexible chain of length  rests on a smooth 

table with length  overhanging the edge as 

shown in Fig. Prob 5.34. The system origi-

nally at rest is released. Describe the motion. 

The chain weighs  N/m.

 ( / / ;s �� − = =
1

2

       
exp ( / ) exp ( / )+ −

1

2

( - )

Fig. Prob. 5.34

  A straight tube is attached to a vertical shaft 

at a fixed angle a as shown in Fig. Prob. 5.35. 

The shaft rotates with a constant angular 

velocity w. A particle moves along the tube 

with a constant velocity  relative to the tube. 

find the magnitude of the acceleration of the 

particle when it is at a distance  along the tube 

from the centre.

 

s = +
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ω α
ω

2

2

1
2

sin

w

a

Fig. Prob. 5.35

Look up Hints to Tutorial Problems at the end!

Multiple-Choice Questions

The displacement of a point

 (a) implies the distance moved by the point

 (b)  is a vector, from the initial to the final position 

of the point

 (c)  is always less than the distance traversed by 

the point

 (d)  is independent of the distance and the direction 

of movement of the point

 The relationship 2 – 2 = 2 , with conventional 

notation, is applicable for

 (a) all possible motions of a point

 (b) constant velocity of a point
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Answers to Multiple-Choice Questions 

1 (b)    2 (c)    3 (d)    4 (a)    5 (d)

 (c) constant acceleration of a point

 (d) variable acceleration of a point

 One of the following assumptions is not necessary 

in obtaining the equation for parabolic trajectory 

of a particle:

 (a) Air resistance is negligible

 (b) The gravitational acceleration g is constant

 (c) The body can be represented by a particle

 (d)  The body must not change its mass during the 

motion

The unit vector ‘normal’ to a curve

 (a)  is directed towards the local centre of curvature

 (b)  is directed outward along the join of the centre 

of curvature and the point

 (c) is the same as the radial unit vector

 (d)  must only be perpendicular to the path of the 

point

The Coriolis acceleration may not vanish if the

 (a)  relative velocity of the moving point becomes 

zero

 (b)  rotational velocity of the moving frame 

becomes zero

 (c)  rotational velocity of the moving frame and 

the relative velocity become collinear

 (d)  angular acceleration of the point becomes 

zero



7

Kinematics of 

a Rigid Body

 7.1 INTRODUCTION

A body is said to be a  when its dimensions and the relative positions of points 
within it do not change during the course of events. Mathematically, distances between any 
pairs of points within the body remain constant. For example, two arbitrary points P1 and P2

shown in a rigid body in Fig. 7.1(a) remain a 
constant distance apart no matter what happens 
to the body. Mathematically, P1P2 = . In other 
words, the body is undeformed under the static 
and dynamic actions. The idealisation of a 
rigid body allows the distribution of matter, 
uniformly or non-uniformly over the extent of 
the body.

Kinematics of a rigid body refers to the rela-
tionship of position, velocity and acceleration 
with time for a rigid body. We first visualise the 
three modes of linear displacement and three 
modes of angular displacement and hence six 
types of motion a rigid body can undergo and 
classify them as 

and . We then proceed 
to study the kinematics in the same order for two 
reasons: one, to go from simple to not-so-simple 
and two, because the more general motions can 
be thought of as superpositions of the simpler 
motions namely translation and rotation.

Fixed

Fixed

P1

P2

P3

dq

dq

d

d

d
dq

dq = dq dq dq

d  = d d d

Fig. 7.1(a)  Definition of a rigid body and six 

modes of displacement
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A great deal of attention is paid to the relative motion of rigid bodies with reference to the moving and 

fixed frames of reference. A number of examples on the analysis of motion, i.e., on the determination of 

velocity and acceleration, both analytically and graphically, are given.

 7.2 TYPES OF MOTION

A rigid body may be displaced from its initial 

position rectilinearly along one or more of the 

three axes or angularly about one or more of the 

three axes, the set of axes being chosen arbitrarily. 

There are altogether six modes of displacement 

and hence six coordinates are needed to specify 

the motion; a rigid body is said to have six degrees 

of freedom as shown in Figs. 7.1(a) and (b). 

Correspondingly, a rigid body may have six 

components each of velocity and of acceleration 

as shown in Table 7.1.

The degrees of freedom of a rigid body 

can be thought of in another way. Suppose 

that a rigid body is to be located in space 

during its motion. The number of indepen-

dent coordinates required to specify its location at a time t is equal to the number of degrees of free-

dom it enjoys. A little reflection will show that if a body is held at one point, it can rotate about that 

point; if it is held at two points, it can rotate about the axis passing through the two points and if it is 

held at three non-collinear points, it is held fully constrained. It follows that the position of the body 

is fully specified if the coordinates of any three non-collinear points on the body are specified such

as that shown in Fig. 7.1(c). Each of the three points requires three coordinates to be specified which 

makes a total of nine coordinates for the entire body. Of these nine coordinates, only six are independent 

because the distance between the points remains fixed by the definition of the rigid body. In other words, the

nine coordinates are

x1, y1, z1 x2, y2, z2 and x3, y3, z3

Pitching

Yawing

U
p
 a

n
d

d
o
w

n
 m

o
ti

o
n

Rolling

Longitudinal Motion

T
ransverse M

otion

Fig. 7.1(b) Degrees of freedom

Table 7.1 Displacement, velocity and acceleration of a rigid body

Cartesian components

x y z Numbers

Linear displacement

Angular displacement

d x

dqx

d y

dqy

d

dq

z

z

⎫
⎬
⎭

6

Linear velocity

Angular velocity

Vx

wx

Vy

wy

Vz

zω
⎫
⎬
⎭

6

Linear acceleration

Angular acceleration

ax

ax

ay

ay

az

zα
⎫
⎬
⎭

6
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and the three constraints are

(x2 − x1)
2 + ( y2 − y1)

2 + (z2 − z1)
2 = C1

(x3 − x1)
2 + ( y3 − y1)

2 + (z3 − z1)
2 = C2

(x3 − x2)
2 + ( y3 − y2)

2 + (z3 − z2)
2 = C3

The number of independent coordinates is thus 

reduced to six.

The motion of a rigid body is usually subjected to 

certain kinematic constraints, thus bringing down the 

number of degrees of freedom.

A rigid body allowed to rotate about a fixed axis has 

only one degree of freedom, i.e., it can only undergo 

angular displacement about that axis. A rigid body 

allowed to translate in general has three degrees of 

freedom, i.e., it can acquire displacements along the x,

y and z axes. If the translation is restricted in a plane, 

it has only two degrees of freedom and if it is required 

to go along a specified curve, it is left with only one 

degree of freedom.

The concept of the degrees of freedom of a rigid 

body can be extended to a number of connected rigid 

bodies. Each rigid body has six degrees of freedom. 

From the total, the number of constraints must be subtracted to find the degrees of freedom of the system of 

bodies.

A mechanism is an assemblage of rigid linkages which have relative motion between them but the motion 

of every linkage is uniquely determined if one of them is given a prescribed motion. A mechanism has, there-

fore only one degree of freedom.

A structure is an assemblage of members capable of withstanding loads without any change in their 

dimensions. No relative motion is allowed between the structural members. A structure can, therefore, be 

thought of as a rigid body with zero degree of freedom.

The definition of a rigid body has far-reaching implications. There can be no component of velocity of 

a point relative to another point along the line joining the two points in the rigid body because the distance 

between them cannot change. The velocity of a point relative to another point in the rigid body must, there-

fore, be wholly perpendicular to the join of the two points. For example, with reference to Fig. 7.1(c), point 1 

can have any arbitrary velocity V1 but points 2 and 3 cannot have arbitrary velocities. The component of V1

along 1-2 must be the same as that of V2 along 1-2. Similarly, the component of V3 along 1-3 must equal the 

component of V1 along 1-3 and of V3 along 3-2 must equal the component of V2 along 3-2. In other words,

V21 is perpendicular to line 1-2

V12 is perpendicular to line 1-2

V13 is perpendicular to line 1-3, etc.

It implies that a point on a rigid body can only undergo an angular displacement with respect to another 

point on the body at any instant. The absence of relative velocity along the join of two points on a rigid body 

does not imply the absence of relative acceleration along the join of the points. In fact, whenever there is rela-

tive velocity between two points in a rigid body, there must be a component of acceleration along the join. In 

addition, there may be a component of acceleration normal to the join of the points resulting from the rate of 

change of the relative velocity of the points.

Fixed

Fixed

x

y

z

O

3

C1

C2

2

z1

z3

z2

1

y1

x1

y2

x3

y3

x2

Fixed

Fig. 7.1(c) Degrees of freedom of a rigid body
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Let us look at different types of motion of a rigid body. It is important to understand their characteristics and 

how they help us simplify our solutions to problems.

Translation A rigid body is said to be in translation if the linear displacement of every point in the rigid 

body is the same. Translatory motion is characterised by the movement of a typical line element PQ parallel 

to itself. In other words, the translational motion of a rigid body is characterised by each point on the body to 

have the same velocity and also the same acceleration at an instant. It should be understood that a rigid body 

can undergo a change in velocity both in magnitude and direction during translation. In rectilinear transla-

tion, a typical point P translates along a straight line P P1 P′ and an element PQ moves to P1Q1, P ′Q ′ as 

shown in Fig. 7.2(a). In curvilinear translation, a typical point P may trace a plane or a space curve PP1P ′
and a line PQ P1Q1 P ′Q ′ as shown in Fig. 7.2(b). The curve traced by each point must be identical on a 

rigid body in a translation. It follows that all the points of the body have the same linear displacement, same 

velocity and same acceleration at a given instant.

P P ′

C ′

Q ′

P ′

C ′

Q ′

P1

C

Q
Q1

(a) Rectilinear translation

P1

P

C

Q
Q1

(b) Curvilinear translation

Fig. 7.2 Translation of rigid body

z

w w

z

P

C

Q

(a) Axis within the body

z

z

P

C

Q

(b) Axis outside the body

Fig. 7.3 Rotational motions

Rotation Rotational motion is characterised by the same angular displacement of all the points in the rigid 

body. It follows that the angular displacement, angular velocity and angular acceleration at a given instant are 

the same for all the points in the body with reference to the axis of rotation. The axis of rotation, chosen as 

z–z, may lie within the body or outside it as shown in Figs 7.3 (a) and (b). The trajectory of each point on the 

rigid body in rotation must be a circle with its centre on the axis of rotation. It may be noted that the velocity 

of a point Q with a position vector  on a body in rotation at angular velocity w is given by

 q = w ×  (7.1)
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The acceleration of a point is likewise given by

 = a × + w × (w × ) (7.2)

The words pure translation and pure rotation are often used to stress the absence of rotation and translation 

respectively.

In general, a rigid body may translate and rotate simultaneously. Conversely, a general rigid body motion 

may be thought of as a superposition of a pure rotation and a pure translation, viz., (a) pure rotation about 

an axis through a chosen point and (b) pure translation along the join of the initial and final positions of the 

chosen point.

A rigid body is said to be in fixed-axis rotation if there exists a fixed straight line within or outside the body 

such that the points identified with the body but on that line have zero velocity and zero acceleration. The 

straight line thus qualified is called axis of rotation of the body. Rotation may also be specified to be about a 

point if there exists only a fixed point identified with the body where both the velocity and acceleration vanish. 

An example of fixed-axis rotation is a shaft rotating in a fixed journal bearing and an example of fixed-point 

rotation is a spinning top rotating about the tip in steady or unsteady states.

Plane Motion The motion of a rigid body is said to be plane motion if all the points in the body stay in the 

same parallel planes. A plane motion may be composed of translation and rotation. Examples of plane rota-

tion are given as follows:

 1. Curvilinear translation is a plane motion if the curve traced by any point on it is a plane curve. A thin 

plate hanging by two equal inextensible strings is an example of plane curvilinear translation, e.g., AP

and BQ oscillating in its own plane as shown in Fig. 7.4(a).

 2. Linear translation of a rigid body must be a plane motion.

 3. Rotation of a rigid body about a fixed axis must be a plane motion.

 4. Translation and rotation can result in a plane motion if the rotation takes place about an axis 

perpendicular to a plane of motion as shown in Fig. 7.4(b).

 5. Rolling without slipping of a cylindrical object on a flat or curved surface must be a plane motion as 

shown in Fig. 7.4(c).

Space Motion Space motion of a rigid body is a general type of motion, with 6 degrees of freedom, not 

 constrained to be categorised in any of the restricted motions. Examples of such motions are the flying 

P

Link PQ

P ′

C ′

Q ′

C

Q

(b) Translation and rotation

Motion of P, Q and C in parallel planes

P

P

P¢

P¢

C¢

C¢

C

C
Q

Q

Q¢

Q¢

(c) Rolling of a cylinder(a) Curvilinear translation

A

P P ′

B

Q Q ′

C ′
C

Fig. 7.4 Examples of plane motion
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objects, vehicles on land, etc. The rolling of a cone on a flat or curved surface and the final stage of the motion 

of a spinning top are space motion. The space motion of a body in which one point remains fixed in space 

is called motion about a fixed point. An example of such a motion is the entire span of spinning motion of a 

top on a rough floor.

 7.3 FIXED-AXIS ROTATION

For a rigid body rotating about a fixed axis z z within the body as in Fig. 7.3(a) or outside the body as in 

Fig. 7.3(b).

 Angular velocity w
q

=
d

dt
 (7.3)

 Angular acceleration a
w q

w
w

q
= = =

d

dt

d

dt

d

d

2

2
 (7.4)

Two cases of fixed-axis rotation are considered as follows.

Rotation with Constant Angular Velocity

w = Const.,  a = 0

since w
q

=
d

dt
 

whence               q = q0 + w t (7.5)

where q0 is the initial angular displacement and

q  is the angular displacement at any instant.

Rotation with Constant Angular Acceleration

 a
w

= =
d

dt
Const.

whence              w w a= +0 t  (7.6)

Since               w
q

=
d

dt
 

it follows that              q q w a= + +0 0
21

2
t t  (7.7)

and also w w a q q
2

0
2

02= + −( )  (7.8)

where w0 is the initial angular velocity at q0.

 7.4 PLANE MOTION OF A RIGID BODY

Let us now focus our attention to the plane motion of a rigid body. By definition, the motion is said to be 

plane if all the points in the body stay in the same and parallel planes. In other words, for a plane motion, any 

chosen point in the body should continue to be in the same plane once a plane is preferred by it during the 

motion. The other points are then obliged to move in planes parallel to this plane because the distance of every 

other point from this point must remain the same by the definition of a rigid body. The concept of motion of 

the points to stay in parallel planes for the plane motion of a rigid body enables us to consider only one of the 

parallel planes and analyse the motion of the points lying in that plane. The parallel planes may not appear to 

be identical in shape and size but there is no difficulty because any plane of the body can be hypothetically 

extended by a massless extension of the rigid body for the purpose of kinematic studies.
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Consider, for example, the motion of a rectangular 

rigid block as shown in Fig. 7.5. It is said to undergo a 

translation if it is displaced such that an arbitrary line, 

say the top front horizontal edge, remains parallel to 

itself. The translation is rectilinear if any point, say the 

centre of mass C of the block, traces a straight line such 

as C1C2 or C1C3. On the other hand, the translation is 

said to be curvilinear if the point traces a curve such as 

C2C3. In contrast to translation, the block is said to have 

undergone pure rotation about an axis as identified to be 

on the block as also shown in Fig. 7.5.

The general plane motion of the block would be 

such that it may both translate and rotate; the rotation 

being allowed about an axis perpendicular to the paral-

lel planes. Once the body starts moving, the parallel 

planes remain the same thereafter as shown in Fig. 7.6. 

These remarks apply equally well to the general plane 

motion of a rigid body of arbitrary shape and size as 

shown in Fig. 7.7. A general plane motion of a rigid 

body may, therefore, be considered as the sum of a 

plane translation and a rotation about an axis perpen-

dicular to the plane of motion.

A rigid element PQ is shown displaced to a 

 position P′Q′ in a general plane motion in Fig. 7.8. 

The displacement may be considered to comprise a 

translation of an arbitrary point on the element plus a 

rotation about an axis perpendicular to the plane and 

passing through that point. For example, the following 

8 combinations are equivalent:

Path

Path

C1 C2

C3

C1 C2  Rectilinear translation

C2 C3  Rectilinear translation

C3 C1  Rectilinear translation

(a) Translation of a rectangular block

a

a

w

(b) Rotation of a rectangular

      block about an axis a-a

Path

Fig. 7.5 Types of plane motion of a rigid body

w1

V1

V1

V1

V1

w2

V2

V2

V2

V2

Position (a) Position (b)

Fig. 7.6 General plane motion of a rectangular block

w1

V1

V1

V1

w2

V2

V2

V2

Position (a) Position (b)

Fig. 7.7 General plane motion of a rigid body
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The equivalent combinations are described as follows:

Figure 7.8(a) Translation from PQ to P′Q1 and rotation about P′
Figure 7.8(b) Translation from PQ to P1Q′ and rotation about Q′
Figure 7.8(c) Translation from PQ to P1Q1 and rotation about C′
Figure 7.8(d) Translation from PQ to P1Q1 and rotation about O′
Figure 7.8(e) Rotation from PQ to PQ1 about P and translation to P′Q′
Figure 7.8(f ) Rotation from PQ to P1Q about Q and translation to P′Q′
Figure 7.8(g) Rotation from PQ to P1Q1 about C and translation to P′Q′
Figure 7.8(h) Rotation from PQ to P1Q1 about an arbitrary point O and translation to P′Q′

Of course, translation and rotation for a plane motion are commutative; the order of rotation and translation 

in the summation is immaterial as can be verified geometrically. For example, Figs. 7.8(e) and (f ) show equal 

amount of translation and rotation but in Fig. 7.8(h) translation is done first and rotation later and in Fig. 7.8(f ) it 

is the other way round. Similarly, Figs. 7.8(a) and (e), (c) and (f ); (d) and (h) also commutative.
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P ′
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P ′

Q ′
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Q
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Q
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Q ′
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P ′

Q ′
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Q1
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P P ′

Q ′Q1

Q
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Initial positions of PQ Final positions of P ′ Q ′ Final positions of P ′ Q ′Initial positons of PQ

Fig. 7.8 Different equivalent combinations of translation and rotation
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It is also important to note that, whatever be the mode of combination, the amount of rotation is the same. 

The angular velocity w of every point on the element is therefore the same. It is, therefore, in order to use the 

term angular velocity of the link or of the rigid  body rather than about any particular point on it.

The fact that a general plane motion can be thought of as a superposition of translation and rotation is a 

special case of Chasle’s theorem. The theorem, in general, states that any general motion of a rigid-body can 

be considered as an appropriate superposition of a translational motion and a rotational motion. In particular, if 

a rigid body is displaced from position 1 to position 2 in space, then it is possible to visualise the body to have 

undergone translation from position 1 to an intermediate position in regard to a certain point O on the body and 

then rotation about the point O. The extent of translation up to the intermediate position depends upon the choice 

of the reference point on the body whereas the extent of rotation is independent of the choice. Alternatively, a 

rigid body can be visualised to have rotated about a reference point first and then translated to the final position. 

In other words, the order of superposition of the translational and rotational motions is immaterial.

 7.5 RIGID-BODY MOTION OF FLUIDS

It is possible that fluids, particularly liquids, may undergo rigid-body translation and rigid-body rotation.

An example of translation is a liquid mass in a 

container subjected to a constant linear acceleration a

along any direction. For the simplest case of constant 

horizontal acceleration a, the liquid orients itself with 

its free surface inclined at q as shown in Fig. 7.9(a) 

such that

 tan q =
a

g
 (7.9)

An example of rotation is a forced-vortex flow of air 

in the core region of a tornado or cyclone. Another case 

of solid-body rotation is that of a liquid in a container 

subjected to a constant angular velocity w about any 

axis, passing through the liquid or outside it. The surface 

of the liquid orients itself in the form of a  paraboloid of 

revolution as shown in Fig. 7.9(b) such that

 z z
r

g
= +min

2 2

2

w
 (7.10)

where z is the depth of the liquid at a radial distance r from the axis of rotation and zmin is the minimum depth. 

Equations (7.9) and (7.10) have been stated without proofs.

 7.6 INSTANTANEOUS CENTRE OF ROTATION

Recalling the statement that a general plane motion of a rigid body may be considered as the sum of a plane 

translation and a rotation about an axis perpendicular to the plane of motion, the velocity of a rigid body is 

completely specified by stating the translational velocity VP of a point P and the rotational velocity w about 

an axis through the point as shown in Fig. 7.10(a).

The fact that at an instant, the rotational velocity w is the same for every point in the body and the extent 

of translation is different for different choices of the points of rotation suggests that a point can exist such 

that the body may be assumed to rotate about an axis though that point at the instant. Such a point is called 

Fig. 7.9 Right body motion of fluids
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30°

C

P

Q

R

I

VC = 10 m/s

ac = 5 m/s
2

Fig. Ex. 7.1

the instantaneous centre of rotation. The velocity of the instan-

taneous centre of rotation is zero at that instant. Location of 

such an instantaneous point I requires that the perpendicular 

distance from it to the velocity at a point P in one of the parallel 

planes should be such that

 VP = IP × w    or VP = rw    and r = VP /w (7.11)

The velocity of the other points in the body can be deter-

mined by considering the body to rotate about an axis pass-

ing through I and normal to the parallel planes of motion. For 

example,

VQ = (IQ) × w perpendicular to IQ

and VR = (IR) × w perpendicular to IR

This fact provides another method for locating the instanta-

neous centre of rotation I if the directions of the velocities at 

any two points on a rigid body are known. The point of inter-

section of the perpendiculars to the directions of the velocities 

must be I. In case the directions of the two points are the same, 

the magnitudes of the velocities are required to locate I by the 

join of the extremities of the velocity vectors as at P and R

in Figs. 7.10(b) and (c). The instantaneous centre of rotation 

is a point identified with the body where the velocity is zero; 

conversely if a point identified with the rigid body is at rest at 

an instant within or outside a rigid body, it must be the instan-

taneous centre of rotation.

The instantaneous centre of rotation of a body undergo-

ing pure translation must be at infinity since the directions of 

velocities of all the points in the body are the same in pure 

translation. The instantaneous centre of rotation of a cylindri-

cal body rolling without slip must be I, the instantaneous point 

of contact between the body and the surface as shown in Fig. 7.10(d) because this point on the cylinder is 

instantaneously at rest.

It should also be noted that the acceleration at I may not be zero; only the velocity is zero.

Example 7.1 A wheel of radius 0.5 m rolls 

without slipping down an incline as shown in 

Fig. Ex. 7.1. At the instant of interest, the velocity 

and acceleration of the centre are 10 m/s and 

5 m/s2 respectively. Determine the velocity of the 

instantaneous centre of rotation and the velocities 

of the point P, Q and R on the periphery.

(a) (b)

I

P
P

R

R

(c)

P

P

Q

C

Q

C

I

(d)

P

RQ P

R

Q

I

w

P

P

w

Fig. 7.10 Instantaneous centre of rotation



Engineering Mechanics394

Solution The rolling of a wheel without slip on a surface requires the point of contact to have zero velocity 

and hence to be the instantaneous centre of rotation I. By definition, the instantaneous velocity of I is zero. 

The velocity of any other point on the wheel can be determined from the knowledge of the velocity of one 

point, say C. The rate of rotation about I is

 w = = =
V

IC

P 10

0 5
20

.
rad/s

 Consequently,

VP = 20 IP = 20 × 0.707 = 14.14 m/s 

perpendicular to the join IP as shown in Fig. Ex. 7.1(a) (Solution).

VQ = 20 IQ = 20 × 2 × 0.5 = 20 m/s 

perpendicular to IQ or parallel to VC as shown in Fig. Ex. 7.1(b) (Solution).

VR = 20 IP = 20 × 0.707 = 14.14 m/s 

perpendicular to IR as shown in Fig. Ex. 7.1(b) (Solution).

 The motion of the wheel can alternatively be visualised as that of rotation about C and translation down 

the incline. In that case the velocity of a point on the periphery is composed of a component V
q
 tangential 

to the periphery and a translational component of 10 m/s. The tangential component must also be 10 m/s 

for rolling without slip. Vector addition of the tangential velocity of 10 m/s to the down-slope component 

of 10 m/s at P, Q, R and I result in the velocities of 14.14 m/s, 20 m/s and 0 respectively.

Q
Q

C

R
R

10 m/s

I

10 m/s

C
C

P

Q

R R
Q

P

P

I

Fig. Ex. 7.1(a), (b) (Solution)

Example 7.2 A straight rigid link AB 40 cm long has, at a given instant, end B moving along a line 

O  at 4 m/s and the other end A moving along YO, OY being a right angle. Find the velocity of the end 

A and of the mid-point of the link when inclined at 30  with O .

Solution The instantaneous centre of rotation of the link AB can be located by the knowledge of the direc-

tions of the velocities of the ends A and B. The point of intersection of the dotted lines drawn normal to the 

direction of velocities at A and B, as shown in Fig. Ex. 7.2 (Solution) should be the instantaneous centre I. The 

instantaneous angular speed with which the entire link AB rotates about the instantaneous centre I is given by

 w = =
V

IA

V

IB

A B

 = = =
VC

0 3464

4

0 20
20

. .
rad/s
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 The velocity of the point A must, therefore, be

VA = 20 × 0.3464 = 6.93 m/s

 Once the angular velocity of a link about an 

instantaneous centre is known, the velocity of any 

point on the link can be determined. The velocity 

of the midpoint C of the link is

VC = w × (IC )

 = 20 × 0.20 = 4 m/s

in magnitude and its direction is perpendicular to 

the join IC.

 It may be noted that the lengths IA, IB and IC

are determined either by measurement if the whole 

drawing is made to scale or by trigonometry.

 7.7 RELATIVE VELOCITY AND ACCELERATION FOR POINTS ON A RIGID BODY

From the fact that a general plane motion is made 

up of a translation of a reference point P and a rota-

tion about P, the absolute velocity of a point Q is 

given by

 Q = P + w ×  (7.12)

where  is the position vector of Q with respect to P

as shown in Fig. 7.11.

Alternatively,

Q = P + QP

Hence QP = w ×  (7.13)

which implies that the velocity of a point Q with 

respect to a point P on a rigid link must be perpen-

dicular to the plane containing w and , i.e., must be 

in the plane of the motion and directed perpendicu-

lar to the line joining P and Q.

Similarly, the absolute acceleration of a point Q in terms of the acceleration of a reference point P is given by

Q = P + QP (7.14)

The acceleration of Q with respect to a point P may be made up of

Tangential component: a ×
Normal component: w × (w × )

In the plane motion of a rigid body, attention is focussed on one of the parallel planes  the velocity of a 

point in the plane must stay in that plane and the rotation of the body must be about an axis normal to that 

plane. It follows that the velocity of P and Q as well as the relative velocity of Q with respect to P must lie in

that plane. Likewise, the accelerations of P and Q and the components of the relative acceleration of Q with 

respect to P must all lie in the same plane. From the fact that w and a are collinear and r is perpendicular to 

either of them, the magnitudes of the vectors are identified easily:

Q = P + QP

P

P

Q

Q

P

Q
QP

t

w

Q = P + QP

QP = a t + w n

QP

P

P

P

a

a

n

t
Q

w

QP = w × 

Fig. 7.11 Relative velocity and acceleration

C2
0
 c

m

30°
O

B
x

I

y

A

34.64 cm

Fig. Ex. 7.2 (Solution)
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45°O

P
B

x

A

Fig. Ex. 7.3

There may, in addition, be a Coriolis component of acceleration if there is a velocity of sliding B, of an 

element S sliding over the link PQ and being coincident with Q at that instant. The Coriolis acceleration of 

S would be

 cor = 2w × B (7.15)

Some facts regarding the graphical or vectorial representation of the velocities and accelerations for 

link-motions are summarised as follows:

 1. The velocity of a point on a link with respect to another point on the same link must be perpendicular 

to the line joining the two points.

 2. The acceleration of a point on a link with respect to another point on the same link may have a 

component perpendicular to the line joining the points and a component along the line joining them.

 3. The velocity of a point on a member sliding relative to a link must be along the line and the velocity 

of a point on a link sliding relative to a surface must be along the tangent to that surface at that point.

 4. If a member slides along a link rotating about a point of an axis in space, the member is subjected to the 

Coriolis component of acceleration in addition to the other components. If the member slides outward 

from the centre of rotation; the Coriolis component is along the direction of rotation and vice versa.

 5. The velocity and acceleration diagrams are drawn for a known configuration of the linkage or 

mechanism and give results which are valid for that instant only. The velocity and acceleration 

diagrams are, therefore, instantaneous diagrams and keep changing from instant to instant.

Example 7.3 A straight bar AB is placed in a semi-

cylindrical trough of radius 20 cm and released to slide in 

it such that the end A slides inside the trough as shown in 

Fig. Ex. 7.3, while the bar touches and slips at the corner O.

At an instant when the bar makes 45  with the diametral axis 

Ox and the end A is known to slide at 5 m/s, determine the 

velocity of sliding of the bar at point P.

Solution This example will be solved both graphically and vectorially to demonstrate the methods as well 

as to appreciate the simplicity offered by the graphical method for the plane motion of rigid bodies.

 The bar AB slides at the corner point O of the trough. The point P on the bar is coincident with the point 

O on the trough such that P has a relative velocity with respect to O as shown in Fig. Ex. 7.3(a) (Solution). 

Since O is a stationary point, this is also the absolute velocity of P. It is related to the velocity of A as

P = A + PA

Absolute velocity of P  Absolute velocity of A  Velocity of P relative to A.

Vector Magnitude Direction

QP = w × w Perpendicular to 

QPt
= αα ×× a Perpendicular to 

QPn
= ωω ×× ωω ××( ) w 2 From Q to P
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By Graphical Method

Draw a line oa to represent the velocity of A as 5 m/s tangential to the semicircumference at A. Draw 

Pa perpendicular to PA to represent the relative velocity of P with respect to A. Since P can slide past O

only along the bar, the absolute velocity of P must be shown by op drawn parallel to the bar. Now that point 

p is located, by measurement,

P = op = 3.55 m/s

down along the bar.

By Vector Analysis

Let the coordinate axes xy be drawn through the point O as shown in Fig. Ex. 7.3(b) (Solution). In terms of 

the unit vectors  and ,

A = 5 

 The velocity of P with respect of A, i.e., PA must be perpendicular to the joint of P and A. The unit vector 

along PA is

 − −( ) / 2

such that

 PA PA= − − −( ) / 2

where PA is the magnitude of PA.

 One could write the unit vector as i j+( ) / 2,  assuming it positive and the sign of PA would take care of 

it automatically. However, proceeding with respect to the Fig. Ex. 7.3(c) (Solution), the velocity of P should 

be along the bar and assuming it P to A as shown, the unit vector along it is

 i j−( ) / 2

O a

p

5 m/s

3.55 m/s

x

y

A

O
P

P

A

PA

A

B

C
P

P

A

I(a) (b)

(c)

Fig. Ex. 7.3(a), (b), (c) (Solution)
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such that

 P P= −( )i j / 2

 Substituting these relations in the vector equation,

P = A + PA

 p PA( ) / ( ) /− = + − −2 5 2

or P PA PA P+ −( ) + −( ) =5 2 0i j  

whence 
P PA+ −( ) =5 2 0

 

and PA − P = 0  or  P = PA 

 From these relations,

 
P = =

5 2

2
3 54. m/s

Finally, the velocity vector for P where the bar slides at the corner of the trough is

 P = −( )3 54 2. /i j

 = 2.54 ( − )

Comparison of the Two Methods

It is probably quite clear from this simple example that the graphical construction offers great simplicity. 

This is indeed true for the plane motion of rigid bodies in general. However, it may be remarked that the 

velocity and acceleration diagrams are only valid for the instant they are drawn. For every instant of motion, 

we may re uire to draw separate diagrams. Analytically, on the other hand, one can write the equations for 

the velocity and acceleration in terms of the variables and obtain the results by numerical substitution for 

different instants. for example, in this case, vector equations for P and PA can be written for any angle q

instead of 45  and at different instants, substitution for q would give the results whereas the graphical 

construction will have to be repeated many times.

 The same problem can be solved by employing the concept of the instantaneous centre of rotation. The 

centre of rotation can be located by knowing that the velocity of A is tangential to the trough at A and the 

velocity of P is along the bar at O. Lines IA and IP drawn normal to the directions of velocity at A and P

respectively to locate the instantaneous centre of rotation I as shown in Fig. Ex. 7.3(c) (Solution).

 By measurement from the figure drawn to scale or from trigonometry,

 IA = 2 CA = 40 cm

 IP = + =( ) .20 20 28 282 2 cm

 Considering the bar to be in pure rotation about I at this instant,

 
P A

IP IA
=

P = 5 × 28.28/40 = 3.54 m/s

 It may also be remarked that the ‘instantaneous centre of rotation’ concept can be employed to advantage 

in some cases.
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c

a

b

1.6 m/s

(a) Velocity diagram (b) Acceleration diagram

O
60°

1
.3

9
 m

/s

0.8 m/s

2
0
 m

/s
2

a

a ′

c

4 m/s2

O
79°

b

c ′

Fig. Ex. 7.4 (Solution)

C

Y

A

O B

Fig. Ex. 7.4

Example 7.4 A straight rigid link AB 40 cm long has, at 
a given instant, end B moving along a line O  at 0.8 m/s and 
accelerating at 4 m/s2 and the other end moving along YO, OY

being a right angle as shown in Fig. Ex. 7.4. Find the velocity 
and the acceleration of the end A and of the mid-point C of the 
link when inclined at 30° with O .

Solution For the velocity diagram

A = B + AB

C = B + CB

 Draw a line ob representing the absolute 
velocity of B along O  to some scale. Point a can 
be located by drawing a line from O parallel to YO

and a line from b perpendicular to AB as shown 
in Fig. Ex. 7.4(a) (Solution). This is because the 
velocity of A is along YO as well as the velocity of 
A relative to B on a link AB must be perpendicular 
to the link AB. The absolute velocity of a is, 
therefore, represented by oa to the same scale as 
ob represents the velocity of B. By measurement,

A = oa = 1.39 m/s

 The mid-point C on the link must have its 
velocity with respect to B perpendicular to the 
link and half in magnitude to the velocity of A

with respect to B. The point c is, therefore, located 
by the fact that

 cb = ab/2

 oin o to c to give the absolute velocity of point C as

C = 0.8 m/s

directed at an angle of 60° with O  as shown in Fig. Ex. 7.4(a) (Solution).
For the acceleration diagram

A = B + AB

 The acceleration of B is given as 4 m/s2 along O  and drawn to some scale as ob whereas the relative 
acceleration AB has two components:
 (i) Normal or centripetal component given by

 
bd

IA

ab

AB

AB′ = =
2 2

= =
1 6

0 4
6 4

2
2.

.
. m/s

directed along AB towards B where wAB is the angular velocity of the link AB.
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Fig. Ex. 7.5

 (ii) Tangential component given by

′ = a

directed perpendicular to  where a  is the angular acceleration of the link . The acceleration of the 

end  is known in direction, i.e., it must be along the line . The point  on the acceleration diagram is 

thus located by the point of interesection of a line parallel to  drawn from  and a line perpendicular to 

 drawn from  as shown in Fig. Ex. 7.4(b) (Solution). Finally, by measurement,

= = 20 m/s2

 The link rotates with an angular velocity given by

w = = =
1 6

0 4
4 2.

.
rad/s

and accelerates with an angular acceleration given by

 
α =

′
= =

4 8

0 4
12 2.

.
rad/s

 The acceleration of any point on the link can now be determined. For the mid-point , in particlar,

= +
where the components of  are

 Centripetal: ′ = 0.2 × 42 = 3.2 m/s2

 Tangential: ′ = 0.2 × 12 = 2.4 m/s2

 The acceleration of mid-point  is, therefore, represented by . By measurement

= = 10 m/s2

directed at an angle of 79  with  as shown in the acceleration diagram.

 It may be appreciated that the point  can alternatively be located on the line  which represents the 

relative acceleration of  with respect to . Since  is the mid-point of , the point  must be the mid-

point of . This is because both the centripetal and tangential components of the relative acceleration of 

 with respect to  are halved for the point .

Example 7.5 A reciprocating engine 

mechanism shown in Fig. Ex. 7.5 has a crank 

of radius 150 mm rotating at 10 revolutions per 

second in the clockwise direction. The connecting 

rod  is 700 mm long and its centre of gravity is 

200 mm from . Find the velocity and acceleration 

of the piston and of the centre of the connecting 

rod when the crank is 45  past the inner dead centre 

as shown. Find also the angular velocity and the 

angular acceleration of the connecting rod .

Solution The solution is attempted both by the  graphical method and by vectorial analysis.

The link diagram is first drawn to a suitable scale as shown. From the data,

 w = 2p × 10 = 62.83 rad/s

= w × = 62.83 × 0.15 = 9.42 m/s
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 The velocity diagram is now constructed to a suitable scale. Line oa is drawn perpendicular to OA to represent 

the absolute velocity of A. The velocity of B must be along BO and the velocity of B with respect to A on the link 

AB must be perpendicular to AB. Point b is thus located by drawing a line from o parallel to BO and a line from a 

perpendicular to AP as shown in Fig. Ex. 7.5(a) (Solution). The velocity of the piston at B is, therefore, given by

 VB = ob = 7.65 m/s

directed towards O.

 The angular velocity of AB is

w AB
ABV

AB

ab

AB
= = = =

6 75

0 7
9 64

.

.
. rad/s

 The velocity of the centre of gravity C can be determined by locating the point c on ab such that

 
ac

ab

AC

AB
=

 By measurement, the velocity of C is

 VC = oc = 8.4 m/s

at an angle of 34.5  with respect to the line of dead centres as shown in the velocity diagram.

 For the acceleration diagram,

B = A + BA

C = A + CA

 The acceleration of A is known as

 a OAA OA= = ×w 2 262 83 0 15. .

 = 592 m/s2

directed from A towards O, the centre of rotation of the crank. This is represented by the line oa drawn 

parallel to OA as shown in the acceleration diagram (Fig. Ex. 7.5(b) (Solution)).

 The piston B is constrained to slide along BO; the acceleration of B must also be along BO, i.e., the point b

must lie on a line parallel to BO drawn from o. The acceleration of B with respect to A has two components.

 Centripetal: w AB AB2 29 64 0 7= ×. .  

 =  65.1 m/s2

directed from B to A, shown by line ab′ drawn parallel to BA.

o
35°

a

6.75 m/s

9.42 m/s

8.4 m/s

7.65 m/s

c

b

o
35°

515 m/s2

592 m/s2

65.1 m/s2

418 m/s2

a

b ′

b

c

(a) Velocity diagram (b) Acceleration diagram

Fig. Ex. 7.5 (Solution)
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 Tangential: aAB directed normal to ab shown by b′b  which locates the point b.

 The acceleration of the piston B is found by measurement as

 aB = ob = 418 m/s2

directed towards O.

 The acceleration of the centre of gravity C is determined by locating the point c such that

 

ac

ab

AC

AB
=

 The acceleration of the centre of gravity of the connecting rod is, therefore, aC = oc = 515 m/s2 directed 

at −35  with the line of dead centre.

By vectorial analysis

From the data and the geometry,

 wOA = −2p × 10 = −62.83  rad/s

OA = 0.15 × (−cos 45  + sin 45  )

 = −0.106 + 0.106 

A = wOA × OA = −62.83 × (−0.106 + 0.106 )

 = 6.66 + 6.66  m/s

B = B

 At the instant of interest, the connecting rod is inclined at an angle f with the x-axis such that

 0.7 sin f = 0.15 sin 45

 sin f = 0.1515

whence f = 8.71  and cos f = 0.988

 The unit vector along AB is

1 = cos f + sin f = 0.988 + 0.1515 

and the unit vector normal to AB is

2 = −sin f + cos f = −0.1515 + 0.988 

 The velocity of B must be given by

B = A + BA

 Substituting the values of the terms to the extent these are known,

B = 6.66 + 6.66 + (−0.1515 + 0.988 ) BA

which may be written as two scalar equations,

B = 6.66 − 0.1515 BA

 0 = 6.66 + 0.988 BA

whence VBA = −6.741 m/s

and VB = 7.68 m/s

 It may be noted that the negative sign of BA implies that the velocity of B with respect to A is opposed 

to the unit vector 2 whereas the positive sign of B means that the velocity of B is indeed directed 

towards O.
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 The angular velocity of the connecting rod is given by

 
wBA

BAV

BA
= = − = −

6 741

0 7
9 63

.

.
. rad/s

The velocity of C must be given by

C = A + CA

 
= + + −( )× − +( )6 66 6 66 6 741 0 1515 0 988. . . . .i j i j

CA

BA

 = 6.95 + 4.76 

The magnitude of C is, therefore,

 VC = + =( . . ) .6 95 4 76 8 422 2 m/s

and it is inclined to the x-axis at an angle

 
θ = ⎛

⎝⎜
⎞
⎠⎟

= °−tan
.

.
.1 4 76

6 95
34 4

The acceleration of B may be obtained from the relation

B = A + BA

which, upon substitution of the known facts, becomes

B = wOA × (wOA × OA) + wBA × (wBA × BA) + a × BA

or aB = −62.83 × (−62.83 × (−0.106 + 0.106 )) + (−9.63 ) × (−9.63 )

× 0.7 (−0.988 − 0.1515 )) + a × 0.7(−0.988 − 0.1515 )

or aB = 418.4 − 418.4 + 64.14 + 9.84 + 0.106a − 0.69a

which may be written as two scalar equations,

 aB = 482.54 + 0.106

 0 = − 408.4 − 0.69a

whence a = −592 rad/s2

and aB = 420 m/s2

 The acceleration of C may be obtained by utilising the fact that

c = A + CA

or

c

CA

BA
= − + + + −( )418 4 64 14. .i j i j i j418.4 9.84 0.106 0.69a a

            = 418 − 300 

which shows that the magnitude of the acceleration of C is

 ac = + =418 300 514 52 2 2. m/s

and it is directed at an angle of

 
β =

−⎛
⎝⎜

⎞
⎠⎟

= − °−tan .1 300

418
35 67

with the line of dead centres.
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Example 7.6 A quick-return shaping mechanism consists of a crank CA rotating clockwise, as 

shown in Fig. Ex. 7.6, at 50 revolutions per minute. At an instant when the crank makes 30  with the x-axis,

determine the velocity of the ram F moving in the horizontal direction. Determine also the stroke length 

of the ram and the velocity of the ram, which carries the cutting tool, during the cutting stroke of the ram 

when the oscillating link OE and the crank CA are vertical.

F

x

O

F1 F2

Fm

Em

Am

AP

A1 A2

E2E1

S1

S2

E

C q

Link

diagram

Cutting stroke

Quick return stroke

CA = 10 cm 

OC = 35 cm 

OE = 55 cm 

EF = 10 cm

    q = 30°

Fig. Ex. 7.6

Solution The link diagram is first drawn to a suitable scale as shown in Fig. Ex. 7.6 (Solution). The 

angular velocity of the crank CA is

 
w

p
=

×
=

2 50

60
5 24. rad/s

and the linear velocity of point A is

 VA = 5.24 × 0.1 = 0.524 m/s

 Consider P as a point on link OE coincident with the point A on the crank CA. The points A and C have, 

therefore, a relative motion of sliding in the slot s1s2 shown in the line diagram.

 At the instant shown,

 q = 30

 OA = OP = 41 cm
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o 0.55 m/s
c

op = 0.355 m/s

oe = 0.480 m/s

0.524 m/s

0.524 m/s

f

ep

p

Velocity

diagram

a

a
o

c

e

0.64 m/s

Fig. Ex. 7.6 (Solution)

 For the velocity diagram, draw ca = 0.524 m/s 

perpendicular to CA to represent the velocity 

of A. Since P can slide with respect to A along 

the slot, draw pa parallel to the slot as shown in 

Fig. Ex. 7.6 (Solution). Knowing that P is on the 

rotating link OPE, the absolute velocity of P must 

be perpendicular to OPE; this is shown by drawing 

op perpendicular to OPE and thus locating P. From 

the link diagram,

 
V

V

OE

OP

E

P

=

oe is, therefore, mode 55/41 times op.

oe = 0.355 × 55/41 = 0.48 m/s

 Since F can only move horizontally, of is 

drawn a horizontal line. The velocity of F with 

respect to E on the link EF must be perpendicular 

to EF; ef is drawn thus locating the point f. By 

measurements from the velocity diagram drawn 

to scale,

VF = of = 0.55 m/s towards right

 The stroke length of the ram is

 F1F2 = E1E2

which, by measurement in the link diagram is 31.5 cm.

 The velocity of the ram in the cutting stroke when the crank is in the vertical position as shown by CAm is 

now determined. The velocity diagram at that instant would be as shown in Fig. Ex. 7.6 (Solution). A quick 

reflection will show that the velocity of P equals the velocity of A and also that the velocity of F equals the 

velocity of E.

 Thus,

 cp = oa; pa = 0

 VF = VE;    ef = 0

and oe = of = 55/45 × 0.524 = 0.64 m/s

 The cutting velocity of the shaper machine at that instant is, therefore,

VF = 0.64 m/s

 This is very nearly the maximum velocity of the tool.

Example 7.7 Two links O1P1 and O2P2 rotate in parallel planes, one immediately above the other 

as shown in Fig. Ex. 7.7. Determine the velocity and the acceleration of the ‘point of crossing’ P for the 

given orientation. Assume that w1 = 5 rad/s and w2 = 10 rad/s.
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Solution By drawing the link diagram to scale as 

shown and by measurement,

 O1P = 0.259 m

 O2P = 0.366 m

 The point P is the point of crossing of the two 

links; it can be considered to be a point on either 

link and moving with respect to the other. If it is 

considered moving along the rotating link O1P1 it 

has two component of velocity:

(i) w1 O1P perpendicular to O1P1

(ii)  a component along O1P1 due to the sliding of P.

If it is considered moving along the rotating link 

O2P2, the velocity components are:

(i) w2 O2P perpendicular to O2P2

(ii)  a component along O2P2 due to the sliding of P.

 Consequently, from a point o, a line op1′
is drawn perpendicular to O1P1 as shown in 

Fig. Ex. 7.7(a) (Solution)

 op′1 = w1 O1P = 5 × 0.259

 = 1.295 m/s

and from p1, a line ′p p1
 is drawn prallel to the link 

O1P1. Similarly, op′2  and ′p p2
 are drawn such that

op O P′ = = × =2 2 2 10 0 366 3 66w . . m/s

and the point p is located by drawing ′p p2
 parallel 

to O2P2.

 The absolute velocity of the point of crossing of 

the links is, therefore, given by

VP = op = 4.38 m/s

at an angle of 22  with the base line O1O2 as shown 

in the velocity diagram.

P2

O1 O2

P

P1

w2

w1

45° 30°

1 2

50 cm

Fig. Ex. 7.7

p′1

o (O1, O2)

p′2

p

1.295 m/s

4.38 m/s

3.66 m/s

Velocity

diagram

Acceleration

diagram

(a)

(b)

2.35 m/s

4.2 m/s 22°

o (O1, O2)

p′2

p

p′1

I1 I2

42 m/s2

5
6
 m

/s
247 m/s2

90°

Fig. Ex. 7.7 (Solution)
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z

A

x

O y

2 m

α

1 m

Fig. Ex. 7.8

 Also, from the velocity diagram, the velocities of sliding of P are

 ps1 with respect to link 1 = 4.20 m/s

 ps2 with respect to link 2 = 2.35 m/s

 The acceleration of P is also obtained in a similar manner. First, consider P to be moving in relation to 

the rotating link O1P1; it has three components of acceleration.

  (i) Centripetal component given by

 52 × 0.259 = 6.48 m/s2

directed from P1 to O1.

 (ii) Coriolis component given by

 2w1 ps1 = 2 × 5 × 4.2 = 42.0 m/s2

directed perpendicular to O1P1 and

(iii) Sliding component along O1P1.

 Draw line op′1  perpendicular to OP showing the Coriolis component of acceleration as shown in 

Fig. Ex. 7.7(b) (Solution). Draw a line l1 perpendicular to OP1 at ′p1
 containing the centripetal and the 

sliding component of acceleration.

 Now, consider the point P moving in relation to the rotating link O2P2; it has three components of 

acceleration:

  (i) Centripetal component given by

 102 × 0.366 = 36.60 m/s2

directed from P2 to O2,

 (ii) Coriolis component given by

 2w2 ps2 = 2 × 10 × 2.35 = 47.0 m/s2

directed perpendicular to O2P2 and

(iii) Sliding component along O2P2.

 The Coriolis component of acceleration is shown by op2. Draw a line l2 perpendicular to OP2 at P2

containing the centripetal and sliding component of acceleration.

 The point P can now be located at the intersection of the lines l1 and l2 and the absolute acceleration of P

may be read as 56.0 m/s2 directed along op.

Example 7.8 A right circular cone of base 1 m 

diameter and height 2 m rolls without slip on a flat 

horizontal surface such that its centreline OA rotates at 

a constant angular velocity of 3 radians per second about 

the vertical axis O  as shown in Fig. Ex. 7.8. Determine 

the angular velocity and angular acceleration of the cone 

relative to the ground when it is in the yz plane as shown.

Solution From the geometry,

 tan
.

.α = =
0 5

2
0 25
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O

S

A

B

x

y

Spool

Wheel

String

10 m/s

0.2 m

30°

0.5 m

Fig. Ex. 7.9

 a = 14.05 ; sin a = 0.243, cos a = 0.97

 The instantaneous axis of rotation of the cone must be the line of contact of the cone with the flat surface 

and the angular velocity relative to the ground is given by

w = w = w1 + w2 (i)

where w1 is the angular velocity of the centreline of the cone about the z axis and w2 is the angular velocity 

of the cone about its centreline. From the data,

 w1 = 2p × 3 = 18.85  (ii)

and w2 = w2 (cos a + sin a )

 = 0.97 w2 + 0.243 w2  (iii)

 Substituting Eqs. (ii) and (iii) in Eq. (i)

w = 18.85 + 0.97 w2 + 0.243 w2

which results into the scalar equations,

 w = 0.97 w2

 0 = 18.55 + 0.243 w2

whence

 w2 = −77.57 rad/s

and w = −75.25 rad/s

 The angular acceleration a of the cone relative to the ground must be given by

 αα
ωω

ωω ωω= = +
d

dt

d

dt
( )1 2

 = + = + ×� �ωω ωω ωω ωω1 2 1 20

 = 18.85 × (−77.57 × (0.97 + 0.243 )) 
 = 1420  rad/s2

 The motion of the cone relative to the ground is such that while it rotates about OY with an angular 

velocity of 75.25 rad/s anticlockwise as seen from O, it accelerates about O  with an acceleration of 

1420 rad/s2 clockwise when seen from O.

Example 7.9 A wheel is made to roll without 

slip, towards right, by means of pulling a string wrapped 

around a coaxial spool as shown in Fig. Ex. 7.9. 

Determine the velocity of pulling the string such that 

the centre of the wheel has a velocity of 10 m/s.

 Compute the angular velocity of the wheel and 

velocity of the point marked B on the wheel.
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Solution The condition for a wheel rolling without slip on a surface is that the point of contact A must be 

the instantaneous centre of rotation, i.e.,

A = 0

 From the data,

0 = 10 

 Therefore, the velocity of O relative to  must be

OA = 0 + A = 10 

which should also be equal to w × OA

 Hence w × 0.5 = 10 

or w = −20 rad/s

which implies that the wheel rotates at 20 rad/s clockwise as seen from this end.

 The velocity of point S or of the string would be given by

S = A + w × SA

 = 0 + (−20 ) × 0.3

= 6  m/s

 The velocity of point B marked on wheel would be given by

B = A + w × BA

 = 0 + (−20 ) × 0.5 (cos 30 + sin 30 )

 = (5 − 8.66 ) m/s

Example 7.10 A link OAR rotates 

anticlockwise at an angular velocity of 1 rad/

s. Another link BCS at right angles to it has a 

collar at B which slides over OAR at 1 m/s and 

decelerates at 2 m/s2 with respect to OAR as 

shown in Fig. Ex. 7.10. A collar D slides over 

BCS with a velocity of 3 m/s and decelerates at 

4 m/s2 with respect to BCS as shown. Obtain the 

velocity and acceleration of the collar D with 

respect to ground reference at the instant of 

interest.

Solution There are many alternative methods of locating the moving frame of reference. Accordingly, the 

methods of solution differ.

Method I

The moving frame can be fixed at point C on the link BCS such that

 w = 1  rad/s

 a = 0

and D = 0 

since the points C and D are coincident.

Dm = 3  m/s

R

B

A

C

S

4 m/s2

1 rad/s

O

1
 m

/s
2
 m

/s
2

4 m

3 m/sD

3 m

Fig. Ex. 7.10
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Df = Dm + C + w × D

  = 3 + (1 × (4 − 3 ) − 1 ) + 0

 = 6 + 3  m/s

 Similarly, Dm = −4  m/s

and Df = Dm + C + a × D + 2w × Dm + w × (w × D)

 = −4 + (2 + 1 × (1 × (4 − 3 )) + 2 

× 1 × (−1 ))+ 0 + 2 × 1 × 3 + 0

 = −6 + 11  m/s2

Method II

Let the moving frame be fixed at O on the link OAR such that

 w = 1  rad/s

 a = 0

and D = 4 − 3 

 The velocity of the collar D with respect to the link OAR is

Dm = (3 − ) m/s

and the acceleration of the collar with respect to the link OAR is

Dm = (−4 + 2 ) m/s2

 Velocity of the collar D with respect to ground reference is

Df = Dm + 0 + w × D

 = (3 − ) + 0 + 1 × (4 − 3 )

 = 3 − + 4 + 3 = 6 + 3  m/s

 Acceleration of the collar D with respect to the ground 

reference is

Df = Dm + 0 + a × D + 2w × Dm + w × (w × D)

 =  (−4 + 2 ) + 0 + 0 + 2 × 1 × (3 − ) +
1 × (1 × (4 − 3 ))

 = −4 + 2 + 6 + 2 − 4 + 3 

  = −6 + 11  m/s2

Method III

Let us now fix the moving frame at point A on the link OAR

such that

 w = 1  rad/s

 a = 0

and D = 4 

 Velocity and acceleration of the collar D with respect to the link OAR are first obtained:

Dm = (3 − ) m/s

Dm = (−4 + 2 ) m/s2

 Velocity of the collar D with respect to the ground reference is then expressed as

Df = Dm + A + w × D

 = (3 − ) + 1 × (−3 ) + 1 × (4 )

  = 3 − + 3 + 4 = 3 + 6  m/s

Velocity diagram

DC = 3

D = 6 + 3 

b

a
A = 3

O

B
A

=

c d

C
B

=
4

Fig. Ex. 7.10(a) (Solution)

4

6

4

2

2

3

O

Acceleration diagram

D = − 6 + 11

d

c b

d′

b′

Fig. Ex. 7.10(b) (Solution)
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 Acceleration of the collar D with respect to the ground reference is given by

Df = Dm + A + a × D + 2 w + Dm + w × (w × D)

  = −4 + 2 + 1 × (1 × (−3 )) + 0

+ 2 × 1 × (3 − ) + 1 × (1 × 4 )

  = −4 + 2 + 3 + 6 + 2 − 4 

  = −6 + 11  m/s2

Method IV

The moving frame may alternatively be fixed on the intermediate collar B but at a location coincident with 

A such that

 w = 1  rad/s

 a = 0

and D = 4 

 The velocity and acceleration of the collar D with respect to the collar B on link BCR are

Dm = 3  m/s

Dm = −4  m/s

 The velocity of the collar D with respect to the ground reference is expressed as

Df = Dm + B + w × D

  = 3 + (1 × (−3 ) −1 ) + 1 × (4 )

 = 3 + 3 − 1 + 4 

 = 6 + 3  m/s

 The acceleration of the collar D with respect to the ground reference is given by

Df = Dm + B + a × D + 2 w × Dm + w × (w × D)

  = −4 + (2 + 1 × (1 × (−3 )) + 2 × 1 × (− ))

+ 2 × 1 × (3 ) + 1 × (1 × 4 )

  = −4 + 2 + 3 + 2 + 6 − 4 

  = −6 + 11  m/s2

Method V

Let us, in this case, proceed by choosing a moving frame of reference at C on link BCS and an intermediate 

moving frame at A on link OAR. Let these frames be denoted m1 and m2 respectively and

 For m1 with respect to m2 For m3 with respect to ground reference

 w1 = 0               w2 = 1  rad/s

 a1 = 0               a2 = 0

 The velocity and acceleration of the collar D with respect to the moving frame m1 are, respectively.

Dm1 = 3  m/s

Dm1 = −4  m/s2

 Since D and C are coincident points,

Dm1 = 0

Dm2 = Dm1 + Cm2 + w1 × Dm1

 = 3 − 1 + 0 = 3 − 1 

and Dm2 = Dm1 + Cm2 + a2 × Dm1+ 2 w1 × Dm1 + w1 × (w1 × Dm1)

 = −4 + 2 + 0 + 0 + 0 = −4 + 2 

 These are indeed the values of the velocity and acceleration of the collar D with respect to the link OAR

as intuitively written in method III. Now the moving reference is fixed at A on link OAR as in the method III 

and the velocity and acceleration with respect to the ground reference are obtained,
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Df = 3 + 6  m/s

Df = −6 + 11  m/s2

Method VI

There is no end to the choice and location of the moving frames. Moving frames may be fixed at intermediate 

locations on the links but no advantage can be gained by such choices. Finally, let us see how we can solve 

the problem by two extreme choices of the moving frames:

 (a) Without fixing the moving frame anywhere.

 (b) By fixing the moving frame at the collar D itself.

 In case (a), the moving frame is coincident with the fixed frame.

 w = 0

 a = 0

 The velocity and acceleration in the moving and the fixed frame are such that

Dm = Df

Dm = Df

 The entire thinking of the components and the constitution of Df  and Df is, therefore, done mentally in 

one long step. This is clearly inconvenient and unmanageable.

 In case (b), the moving frame is at the collar D itself such that

Dm = 0

Dm = 0

which leave the entire job of finding out Df and Df  to the application of the formulae in one long step. 

The method is as inconvenient as that in case (a). Thus, we can state that if a moving frame is desired to be 

used to advantage then it may not be chosen to be at the object. The moving frame should be located at a 

convenient point intermediate between the object and the ground reference.

Example 7.11 A cylinder of radius R rolls over a flat surface. Show that the motion is equivalent to 

‘pure translation plus pure rotation’ if there is no slip. State an expression for the kinetic energy of the 

rolling cylinder.

Solution A body in pure translation has the same velocity for all particles. For a cylinder, therefore, the 

centre of mass, a point at the top and a point at the bottom (or a point any where on it) has the same velocity 

vC, as shown in Fig. Ex.7.11(a) (Solution).

 A body in pure rotation at w, as shown should have its centre of mass at rest (i.e., zero velocity at centre of 

mass) and linearly increasing speed, with radius, in the direction of rotation. Hence, a cylinder in pure rotation 

should have speeds at a point at the top and a point at the bottom as shown in Fig. Ex. 7.11(b) (Solution).

 If the rotational speed w is such that v = Rw = vC in magnitude then, the combination of pure translation 

and pure rotation results in rolling motion about the bottom point B at that instant.

 Clearly, velocity of a rolling cylinder is zero at the bottom, vC at the centre of mass and vC + Rw i.e., 2vC

at the top point. This is what is meant by stating that B is the instantaneous centre of rotation’ because B is at 

rest and the velocity at other points increases linearly as we go away from B.

 Velocity at C = Rw

 Velocity at T = 2 Rw

 Velocity at any other point must be perpendicular to the line joining B to that point and be equal to w

times the distance to that point. For example,



 Kinematics of a Rigid Body 413

 Velocity at P = PB.w perpendicular to PB

 Velocity at Q = QB.w perpendicular to QB, etc.

Having shown the equivalence,

KE KE KE
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M r I

C C

C

rolling trans rotation= +
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where IB is the moment of inertia of the cylinder about the instantaneous centre of rotation.

Concept Review Questions

Fig. Ex. 7.11 (Solution)

(c) Rolling about B: combination

of translation and rotation

vC

vC

vCB

C

v = 0

v = Rw

v = Rw B

C

w

vC

Q

P

v = 0

B

C

w

vC + Rw

(a) Pure translation (b) Pure rotation

  State with justifications if the following state-

ments are true or false:

 (a)  A rigid body may move along a curved path 

but may not be in a state of rotation.

 (b)  A general plane motion must be a combina-

tion of a translation and a rotational motion 

about an axis perpendicular to the plane.

 (c)  There must always be an instantaneous 

centre of rotation and a centre of angular 

acceleration of a rigid body no matter what 

the mode of motion of the body may be.

 (d)  The plane motion of a rigid body is char-

acterised by the locus of the instantaneous 

centre of rotation to be a plane curve.

  Classify the following motions as translation, 

rotation, plane motion or space motion:

 (a) A cone rolling on a flat surface.

 (b) A cone sliding on a flat surface.

 (c)  A door being shut by turning about the 

hinges.

 (d) A spherical ball rolling down an incline.
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 (e)  An aeroplane banked and taking a steady 

turn.

 (f )  A compound pendulum oscillating about the 

fulcrum.

 (g) A spinning top in an unsteady motion.

   (a)  Under what conditions do the instantaneous 

centres of rotation and acceleration coincide 

for the motion of a rigid body?

    (b)  When would you prefer to use the methods 

of instantaneous centre of rotation, graphical 

construction and vectorial analysis for the 

analysis of link motions?

 (a)  Show that the angular velocity of every 

point on a link in a general plane motion is 

the same and hence show that the angular 

velocity refers to the entire link rather than 

for any point on the link.

    (b)  Also show that in a general plane motion of 

a link, the translational velocity of the link is 

not uniquely defined.

Tutorial Problems

  A simple engine mechanism consists of a crank 

of radius OA = 20 cm and a connecting rod AB

of length 1 m. The crank rotates clockwise at a 

constant rate of 500 revolutions per minutes as 

shown in Fig. Prob. 7.1. Determine the velocity 

and acceleration of the piston when the crank 

makes an angle q with the inner dead centre 

line. Determine the positions of the crank and 

the corresponding values of the velocity and 

acceleration of the piston when (a) the piston 

has the maximum velocity and (b) the piston has 

the maximum acceleration.

  ( s  10.47 (sin q + cos q tan f) (a) 10.68 

cm/s; q = 78.7 f = 11.3  (b) O; q = O, p)

B

A

Piston

q

O

Fig. Prob. 7.1

  A disc of radius 10 cm rolls down the inner 

curve of a circular ring of radius 20 cm as 

shown in Fig. Prob. 7.2. Find the acceleration 

of the point A and B on the horizontal diameter 

of the disc when the centre C of the disc has a 

velocity of 10 m/s at the instant shown.

( s  1000 m/s2, A to C )

A
C

B

Fig. Prob. 7.2

  A circular disc of radius 0.4 m rolls without slip 

up a 30  incline plane as shown in Fig. Prob. 7.3. 

The centre of the disc C has a uniform velocity 

V = 10 m/s parallel to the plane. Determine the 

velocity and acceleration of the point A on the 

disc vertically above C.

 ( s  250 m/s2; downward)

A
V

C

30°

Fig. Prob. 7.3

  An oscillating quick-return mechanism  consists 

of a 3 cm crank O1A rotating clockwise at 
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5 rad/s. The end A is pinned to a collar C which 

can slide along an oscillating bar O2B 15 cm 

long. At the instant shown in Fig. Prob. 7.4, 

determine

(i) the velocity of B

(ii) the angular velocity of the bar O1B

(iii) the angular acceleration of the bar O2B.

( s  (2.27 − 10 ) m/s; −0.87  rad/s 

and −95.3  rad/s2)

A

C B

60°

10 cm
O2 O1

Fig. Prob. 7.4

  A stone-crusher mechanism is shown in 

Fig. Prob. 7.5. The crank OA rotates clockwise 

at 100 revolutions per minute. For the given con-

figuration, determine the velocity and accelera-

tion of the points marked on the crusher jaw.

 ( s  0.094 m/s)

Stones

25 cm

1
5
 c

m

5
0
 c

m

25 cm

A

B

C

O

O1

O2

OA   = 5 cm

AB = 48 cm

O1C = 35 cm

C = 10 cm

O2B = 25.02 cm

BC = 25.02 cm

O1 = 30 cm 

Jaw

Fig. Prob. 7.5

  A straight bar OA rotates and accelerates about a 

fixed axis through O as shown in Fig. Prob. 7.6. 

It carries a collar C which slides and accele rates 

with respect to the bar as shown. Find the total 

absolute acceleration of the collar.

 ( s  (−260 + 180 ) m/s2)

10 cm

Av = 20 cm/s

a = 10 cm/s2

a = 2 rad/s2

w = 5 rad/s

30°
O

C

Fig. Prob. 7.6

  In a four-bar mechanism ABCD shown in 

Fig. Prob. 7.7, link AB rotates anticlock-

wise at 5.25 rad/s and accelerates clockwise 

at 23 rad/ s2. Obtain the angular velocity and 

angular acceleration of the link CD.

 ( s  4.05 rad/s anticlockwise and 17 rad/s2

anticlockwise)

15 cm

10 cm10 cm

17 cm

45°
A

CB

D

Fig. Prob. 7.7

8   A slender bar AB slides down a circular sur-

face and on a horizontal surface as shown in 

Fig. Prob. 7.8. At an instant when q = 45  the 

velocity of the end A is 2 m/s. Determine the 

angular velocity of the bar and velocity of 

the point of contact on the  circular surface.

 ( s  7.07 rad/s; 1.414 m/s)

B

A
2 m/s

20 cm

q

Fig. Prob. 7.8
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  A wheel of diameter 0.5 m with three equi-

spaced spokes rolls without slip on a flat sur-

face and proceeds to the right at 20 m/s as 

shown in Fig. Prob. 7.9. Determine the angular 

speed of the wheel and velocity of the point 

where the top spoke joins the rim when it is 

vertical.

 ( s  80 rad/s clockwise; 40  m/s)

20 m/s

Fig. Prob. 7.9

  A slotted link mechanism consists of a curved 

slotted link AB and a straight link CD with 

a pin P on it. At the instant of interest, the 

angular velocity of AB is 3 rad/s clockwise 

as shown in Fig. Prob. 7.10 and increases at 

the rate of 2 rad/s each second. At this instant 

the centre of the link S lie at the line CA pro-

duced. Determine the angular velocity of the 

link CD.

( s  0.89 rad/s clockwise)

A

B

C

D

P

S

12 cm

10 cm 10 cm

Fig. Prob. 7.10

  A link AB 20 cm long oscillates about B

while a slider at A slides in a straight slot in 

a link CD which is made to oscillate about O.

At the instant of interest, q = 30  shown in 

Fig. Prob. 7.11, the link AB rotates at 5 rad/s 

and accelerates at −25 rad/s2. Determine the 

angular velocity of the slotted member CD at 

this instant.

 ( s  9.97 rad/s anticlockwise)

1
2
 c

m20 cm

0
A

C

D

B

q

10 cm

Fig. Prob. 7.11

  In Fig. Prob. 7.12, a mass m and a drum of 

radius a are attached to a string of radius r that 

winds around the drum as the mass rotates 

about it. Initially, the distance between the 

mass and drum is R and the angular velocity 

of the mass of w0. Express the radius r as a 

function of time, and find the time at which it 

reduces to zero. Assume that the system is on 

a frictionless horizontal table.

 

s R
a t

R
R a1

3
30

1 3

0−
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

w
w

/

/and

Drum

r
m

a
V

Fig. Prob. 7.12

  A cylinder rolls inside a second hollow cylinder 

as shown in Fig. Prob. 7.13. If a cord wrapped 
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around the outside of the larger  cylinder is 

pulled at a velocity V and acceleration a,

find the magnitudes of the angular veloc-

ity and angular acceleration of the inner 

cylinder.

 
s

r

r r
v

r

r r
a2

1 3

2

1 3

;
⎛

⎝⎜
⎞

⎠⎟

Cord

No slipping

v

a

1

r1

r2

r3

2

3

Fig. Prob. 7.13

  A circular cylinder of radius R is supported 

between two horizontal planks as shown in 

Fig. Prob. 7.14. The planks have horizontal 

velocities x
.
1 and x

.
2 as shown. Find the veloc-

ity of the centre of the cylinder.

 
s
� �x x1 2

2

+⎛
⎝⎜

⎞
⎠⎟

The end A of a straight bar moves with a 

constant tangential velocity v along a semi-

cylindrical trough as shown in Fig. Prob. 

7.15. Find the velocity of the point B at 

the point of contact of the bar and the edge 

of the trough as a function of the angle f

between the bar and the horizontal. The bar 

moves in a plane normal to the axis of the 

trough.

( s v/2 sin f)

B

A

f

Fig. Prob. 7.15

  In Fig. Prob. 7.16, C is a roller fixed to 

the link OB and sliding in a slot in QD.

Determine the velocity of A when q = 30  

if QD rotates at constant speed 10 rad/s 

clockwise.

( s 4.28 m/s)

x1

x2

R

Fig. Prob. 7.14

A

B
C

D

O

Q

0.2 m
OB = 0.6 m

OC = 0.4 m

AB = 1.3 m

q
Ω

Fig. Prob. 7.16



Engineering Mechanics418

  Figure Prob. 7.17 shows diagrammatically 

the quick-return mechanism of a machine 

tool in which the driving crank AB rotates 

clockwise with a uniform speed of 150 revo-

lutions per minute. What is the velocity and 

 acceleration of the cutting tool at E when the 

crank AB makes an angle of 60  with the ver-

tical line passing through the pivots A and C?

C

A
B

DE

120 mm

160 mm

60°

AB = 60 mm

CD = 300 mm

DE = 400 mm

Fig. Prob. 7.17

Look up Hints to Tutorial Problems at the end!

Multiple-Choice Questions

Select the correct or most appropriate response from 

among the available alternatives in the following 

multiple-choice uestions:

 Degrees of freedom of a rigid body imply the

 (a) angles that it may turn through

 (b) angular motions the body can have

 (c) constraints to its motion

 (d) total number of modes of displacement

 A rigid body, in translation,

 (a) can only move in a straight line

 (b) may move along a straight or curved path

 (c) cannot move on a circular path

 (d) must undergo plane motion only

The instantaneous centre of rotation

 (a)  should also be the instantaneous centre of 

acceleration

 (b) is a hypothetical concept to solve problems

 (c) can exist for any space motion

 (d) must exist for any plane motion

For the motion of a rigid link in any mechanism,

 (a) the velocity of one of the ends should be zero

 (b)  the velocity of one end with respect to that of 

the other should be perpendicular to the link

 (c)  the acceleration of one end with respect to that 

of the other should be perpendicular to the link

 (d)  the two ends of the link may have different 

components of velocity along the link

Answers to Multiple-Choice Questions

1 (d)    2 (b)    3 (d)    4 (b)



6
 6.1 INTRODUCTION

Dynamics refers to the study of motion of bodies in an inertial frame of reference under the 
application of external forces or moments. The same laws of dynamics are applicable to the 
motion of a particle and to the centre of mass of any system undergoing translation. This is 
because the mass of a particle is assumed to be concentrated at a point  which is also its centre 
of mass. This fact is supported by kinematic considerations; the general motion of a rigid body 
may be considered to comprise the translation of the mass centre and a rotation superimposed 
upon it. The laws and principles studied in this chapter apply to the translation of any body or a 
system of bodies. The terms ‘centre of mass’ and ‘particle’ are at times used interchangeably in 
this chapter and should cause no confusion on the scope of application of the equations.

The dynamics of a mass centre or of a particle is governed by the Newton’s law which states 
that the external force equals rate of change of momentum: 

= ( )  (6.1(a))

This is the fundamental equation of motion which governs the interaction of the applied force 
 with the motion of a particle or a mass centre with variable mass  and velocity . Problems 

in dynamics may be concerned with the determination of the motion, i.e., acceleration, velocity 
and positions for a prescribed force or vice versa.

It may be stated at the outset that the work-energy principle, impulse-momentum principle 
and the moment of momentum principle are alternative forms of Newton’s law. One or the 
other may be preferred under different circumstances. A comparative study of the equivalent 
dynamical equations is given in Table 6.1. This is indeed a summary of the principles derived 
and discussed in this chapter.

Dynamics of a 

Particle 

and of the Mass Centre of a System
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 6.2 EQUATION OF MOTION

The equation of motion due to Newton Eq. 6.1(a) for the centre of mass of any system or a particle of 
 reduces to 

 = = =
2

2
 (6.1 (b))

Case (a) = Const.

Case (b) = ( )

Case (c) = ( )

Case (d) = ( )

Fig. 6.2  Rectilinear translation

= = = =

Fig. 6.1 Implication of Newton’s law

It may be noted that for a particle, the net force, velocity and acceleration refer to the point representation 
of the particle, while for a rigid body, the net force may be applied anywhere on it but the velocity and accel-
eration are referred to the mass centre only as shown in Fig. 6.1.

The motion can be determined from a knowledge of the applied force . Let us first consider some simple 
cases of rectilinear translation as visualised in Fig. 6.2.

Case (a): Constant Force F along s-direction

Then,
 = =

2

2
/

On integration,

 
= = +/ 1

and = + +
1

2

2
1 2/  

The constants of integration are determined from the given conditions.

Case (b): Force F(t) is Function of Time along s-direction

Then, = =
2

2
( ) /  

On integration,

 
= = +∫ ( ) 1

and = +( ) +∫∫ ( ) 1 2
 

where the constants 1 and 2 are again determined from the given conditions.

Case (c): Force F(V) is a Function of Speed along s-direction

Then, = = ( )/  
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20 kg

C 30°30°

Case (b)Case (c)

Case (a)

Fig. Ex. 6.1

Fig. 6.3

or, 

dV

F V m
dt

( )
=

1

 
On integration,

 

dV

F V m
t C

( )∫ = +
1

1
 

which provides V = f (t)

and on further integration, yields an expression for the displacement s, the constant being determined from 

the given conditions.

Case (d): Force F(s) is Function of the Rectilinear Displacement s

Then, a
dV

dt
F s m= = ( )/  

or, 
dV

ds

ds

dt
V

dV

ds
F s m= = ( )/  

or V dV
m

F s ds=
1

( )  

On integration,

 
V

m
F s ds C

2

1
2

1
= +∫ ( )

 

and V
ds

dt m
F s ds C= = +⎡

⎣⎢
⎤
⎦⎥∫

2
1

1 2

( )

/

 

Separating the variables and integrating again provides s as a function of t, the constants of integration 

being determined from a knowledge of the given conditions.

If the motion of a particle is prescribed, the force required to accomplish it may be determined by employing 

the equation of motion
= m

and substituting the value of  in it.

Case (e):  Force of constant magnitude which is always perpendicular to 

the velocity of the particle

In this case,
⋅ = 0

because  has no component along the velocity vector.

Since  is constant in magnitude, the particle must have its acceleration 

 constant in magnitude. Directions of ,  and  may vary.

Example 6.1 A 20 kg box is to be slided on 

a flat horizontal surface with dynamic coefficient 

of friction m = 0.25. Determine the acceleration of 

the box and hence its velocity after 2 seconds of 

starting from rest in three cases:

(a)  When the force of 200 N is applied horizontally.

(b)  When the force of 200 N is applied to pull up 

a string at 30 .

(c) When the force of 200 N is applied to push down the box at 30 .
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Solution

(a) Let us draw the f bd of the box for case (a)

 By equations of motion

Σ Fx = m ax

Σ Fy = m ay

 In this case, 

 200 − f = 20 ⋅  ax

R − mg = 0, there being no acceleration in y direction

whence R = mg = 20 × 9.81 = 196.2 N

and f = mR = 0.25 × 196.2 = 49 N

 Therefore, 200 − 49 = 20 ax

 ax = 7.55 m/s2

 This is a case of constant force and constant acceleration.

 Therefore, V = 0 + 7.55 × 2 = 15.1 m/s.

(b)  With reference to f bd for case (b), where the vertical component 

of the reaction is shown as R, the equation of motion along x-axis

 Σ Fx = m ax

results in

  200 cos 30  − f = m ax (i)

and    R − mg + 200 sin 30  = 0 (ii)

 From the second equation,

 
R mg= − ×200

1

2

 = 196.2 − 100 = 96.2 N

and f = 0.25 × 96.2 = 24 N

Substituting in (i),

 
ax =

× −
=

200 0 866 24

20
7 46 2.
. m/s

 This is again a case of constant force and constant acceleration.

 Therefore, V = 0 + 7.46 × 2 = 14.92 m/s.

(c) For case (c), referring to the f bd, the equations of motion

 Σ Fx = m ax

  Σ Fy = m ay

provide

 200 cos 30  − f = max  (i)

 R − mg − 200 sin 30  = 0 (ii)

 From the second equation, 

R = 196.2 + 100 = 296.2 N

and f = 0.25 × 296.2 = 74 N

 Substituting in (i)

 
ax =

× −
=

200 0 866 74

20
4 96 2.
. m/s

 The velocity after 2 seconds, starting from rest is 

 V = 0 + 4.96 × 2 = 9.92 m/s.

R
f

= 200 N

mg

C

y

x

Fig. Ex. 6.1(a) (Solution)

R
f

mg

C x30°

200 N

Fig. Ex. 6.1(b) (Solution)

R
f

mg

C

30°

200 N

x

Fig. Ex. 6.1(c) (Solution)
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Ref lections

By comparing the resulting acceleration in each case with the same force 

applied at different angles, it is noticed that ‘pulling is better than pushing’! 

This is because, in pushing, the reaction from the floor and hence the frictional 

resistance increases! While pulling, the frictional resistance decreases.

 Is q = 30  the best angle for pulling up? Let us analyse the general case of 

pulling at an angle q and discover the value of q for maximum acceleration.

 Consider the f bd of the block with the force acting at an arbitrary angle q,

as shown.

 Then,

 F cos q − f = m ax (i)

  F sin q + R − mg = 0 (ii)

 From (ii), R = mg − F sin q

and f = m (mg − F sin q)

 Substituting in (i)

 F cos q − m (mg − F sin q) = m ax

whence a
F

m
gx = +( ) −cos θ θ μμ sin  

 For maximum/minimum ax,

 

da

d

x

θ
μ θ= − + =0 0; sinθ cos

 
    sin q /cos q = tan q = m 

 In this case, tan q = 0.25 

whence             q = 14  

and     sin 14  = 0.24 cos 14  = 0.97 

 Therefore, ax( ) = + ×( ) − ×
max

. . . . .
200

20
0 97 0 25 0 24 0 25 9 81  

 =10.3 − 2.45 = 7.85 m/s2.

Example 6.2 A particle of mass 1 kg moves in a straight line under the influence of a force which 

increases linearly with time at the rate of 60 N/s, it being 40 N initially. Determine the position, velocity 

and acceleration of the particle after a lapse of 5 s if it started from rest at the origin.

Solution From the statement of the problem,

 F = 40 + 60t

which, by Newton’s law should equal mass times acceleration of the particle. Since the mass is 1 kg,

 a
d x

dt
t= = +

2

2
40 60  

Integrating the terms with respect to time t.

 v
dx

dt
t t C= = + +40 30 2

1
 

and integrating again,

 x = 20t2 + 10t3 + C1t + C2

R
f

mg

C

F

θ

Fig. Ex. 6.1 (d) (Solution)
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 From the initial conditions,

 v = 0 and x = 0 at t = 0

the constant C1 and C2 vanish.

 Hence, v = 40t + 30t 2

and x = 20t 2 + 10t 3

 At the instant, t = 5 s

 a = 40 + 60 × 5 = 340 m/s2

 v = 40 × 5 + 30 × 52 = 950 m/s

 x = 20 × 52 + 10 × 53 = 1750 m from the origin.

Example 6.3 A particle moving with a velocity v along a straight line is retarded such that the 

retardation is (a) proportional to velocity and (b) proportional to square of velocity. Determine the 

expressions for velocity as a function of time and the distance traversed before it comes to rest for both 

cases.

Solution For case (a), let the retardation be kv

i.e., a
dv

dt
k v= = −  

or
dv

dt
k v+ = 0;  

 On integration 
dv

v
k dt

t

u

v

+ =∫∫
0

0  

or loge

v

u
k t+ = 0

 v = u–kt

 Also, a
dv

ds

ds

dt
v

dv

ds
k v= ⋅ = = −  

or dv k ds

u

v s

∫ ∫+ =
0

0  

 v − u + k s = 0

 v = u − k s

 
s

u v

k
=

−

 For case (b), let the retardation be m v2

i.e., a
dv

dt
v= = − μ 2  

or
dv

dt
v+ =μ 2 0  

 On integration, 
dv

v
dt

t

u

v

2
0

0+ =∫∫ μ  

  
− + + =

1 1
0

v u
tμ
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or v
u

u t
=

+1 μ
 

 Also, a
dv

ds

ds

dt
v

dv

ds
v= ⋅ = = − μ 2  

or
v

dv

ds
v+ =μ 2 0

 

 
dv

v
ds

s

u

v

+ =∫∫ μ
0

0

 loge

v

u
s+ =μ 0

 v u e s= − μ

  
s

u

v
e=

1

μ
log

 It may be noticed that the distance traversed before coming to rest in case (a) is finite whereas that in 

case (b) is infinite!

Example 6.4 If a body of mass m moves through a liquid at low velocity, the force of resistance due 

to viscosity is given by

F = k v

where k is the resisting force at unit velocity. Show that the velocity would decrease exponentially with 

time and linearly with displacement.

Solution The motion of the centre of mass of the body is given by

 
F m a m

dv

dt
k v= = = −

whence 
dv

dt
k m v= − /  

or dv

v

k

m
dt= −

 
 On integration,

 loge v
k

m
t C= − +

 Using the condition, v = v0 at t = 0, C = loge v0

 loge

v

v

k

m
t

0

⎛

⎝⎜
⎞

⎠⎟
= −

or v

v
e mtk

0

= − /  

which shows that the velocity decreases exponentially with respect to time.

 Writing v
dx

dt
=  

  
dx

dt
v e k mt= ⋅ −

0
/
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or
dx v e dtk mt= ⋅ −

0
/  

which, upon integration gives

 
x

v

k
e k mt= −( )−0 1 /

 Substituting for v1

 v = v0 − k x

which shows that the velocity of the body decreases linearly with displacement.

Example 6.5 The angular velocity of a flywheel is observed to decrease by 10% in the first minute. 

Calculate the decrease in the second minute if the retardation is proportional to the angular velocity.

Solution Given that

 
d

dt
k

ω
ω= −

 Hence, 
d

dt
k

ω
ω+ = 0  

and

d
k dt

tω
ωω

ω

+ =∫∫
00

0  

or log
ω
ω0

0+ =k t  

and
ω
ω0

= −e kt

 

 In the first one second , ω
ω0

 becomes 90%.

 In the second , it will become 90% of that, i.e., 81% of the original velocity.

Example 6.6 An object of mass m falls vertically down in a medium with the resistance R

proportional to the velocity. Obtain an expression for the velocity at time t if it starts from rest at time 

t = 0. What is the terminal velocity?

Solution The motion of the centre of mass C of the object may be studied by employing the Newton’s law,

 
= =m a m

dv

dt

but the net external force on the object is given by

= m g − k v

as shown in Fig. Ex. 6.6(a) (Solution).

 Therefore m
dv

dt
m g kv= −

or dv

mg k v

k

m
dt

/ −
=

R = kv

x

+ x

W = mg

a v

Fig. Ex. 6.6(a) (Solution)
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S

1.9 kg

2.9 kg

Fig. Ex. 6.7

R = kv

mg

v

C

a

x

Fig. Ex. 6.6(b) (Solution)

 On integrating,

 
− −( ) = +ln mg k v

k

m
t C/ 1

 Recognising that       v = 0 at t = 0

 C1 = − ln (mg/k)

 Hence − ln (mg/k − v) = k/m t − ln (mg/k)

or
mg k v

mg k
e k m t/

/

( / )−
= −

from which v = mg/k (1 − e (–k/m)t) (i)

 The terminal velocity of the centre of mass occurs at t tending to infinity;

 V = mg/k (ii)

 If it is desired to obtain an expression for the displacement of the centre 

of mass of the object, the fact that v
dx

dt
=  together with Eq. (i) provides

 dx = mg/k (1 − e(–k/m)t) dt

whence, by integration with the prescribed condition,

 x = mg/k t + m2g/k 2e(–k/m) t − m2g/k 2

or x V t
V

g
e k m t= − − −

2

1( )( / )

 It may also be added that the case of the resistance R being proportional to the velocity of an object is a 

factual situation for low-speed movements through viscous fluids. At higher speeds, however, the resistance 

is proportional to the square of velocity of the object.

 Another very important comment must be noted. The object was assumed to have a symmetrical 

shape such that the weight and resistance act along the same line. This assumption was not necessary. 

In fact, the object chosen could have been unsymmetrical and the line of action of the resistance to motion 

could have been displaced with respect to that of the weight mg, although parallel as shown in Fig. 6.6(b) 

(Solution). The equations still apply as far as the motion of the centre of mass is concerned and the results 

obtained are correct because the net external force is still given by

 F = m g − k v

and the displacement, velocity and acceleration of the centre of mass are implied. The centre of mass drops 

vertically down. It is quite a different matter whether the object rotates or not. The rotation aspect is not 

within the purview of the Newton’s law of motion.

Example 6.7 Two blocks of mass 2.9 kg and 1.9 kg are suspended from a rigid 

support S by two inextensible wires each of length 1 metre, see Fig. Ex. 6.7. The upper 

wire has negligible mass and the lower wire has a uniform mass of 0.2 kg/m. The whole 

system of blocks, wires and support have an upward acceleration of 0.2 m/s2. Acceleration 

due to gravity is 9.8 m/s2.

  (i) Find the tension at the mid-point of the lower wire.

(ii) Find the tension at the mid-point of the upper wire.
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21

Fig. Ex. 6.9

37°

Fig. Ex. 6.8

0.2 m/s2

18.62

0.98 N

0.2 m/s2

1.9 kg

2.9 kg

1m

1m

0.2 kg/m

Fig. Ex. 6.7 (Solution)

(b)(a)

10 kg

37°
37°

g

Fig. Ex. 6.8 (a) and (b) (Solution)

Solution For the free-body diagram of the lower mass together with 
50% of the lower wire, the forces acting are as shown in Fig. Ex. 6.7 
(Solution). Applying the Newton’s law of motion,

− 18.62 − 0.98 = (1.9 + 0.1) × 0.2

whence = 0.4 + 19.6 = 20 N

 In order to find the tension at the mid point of the upper wire, 
consider the free body diagram of the entire part below it. Then,

− 18.62 − 1.96 − 2.9 × 9.8 = (1.9 + 0.2 + 2.9) × 0.2

whence = 50 N

Example 6.8 A block of mass = 5 kg rests on a smooth 
inclined surface of a wedge of mass = 10 kg. The wedge is 
resting on a smooth horizontal surface. Assuming the pulley to 
be weightless, smooth and frictionless and the string to be light 
and inextensible, find the acceleration of mass 

Solution From the free-body diagram of the mass , as 
shown in Figs. Ex. 6.8(a) and (b) (Solution),

= cos 37° = 5 × 9.81 × 0.8 = 39.2 N.

= sin 37° = 5 × 9.81 × 0.6 = 29.4 N.

 Now, let us consider the  of the wedge.
 The horizontal force acting on it is  sin 37°

 = 39.2 × 0.6 = 23.6 N
whence 10 × = 23.6

= 2.36 m/s2

Example 6.9 Two blocks 1 = 2 kg and 2 = 5 kg are initially resting 
on the floor. They are connected by a light and inextensible cord running 
over a weightless and frictionless pulley as shown in Fig. Ex. 6.9. Find the 
acceleration of each block and the pulley if an upward force F applied to the 
pulley is (i) 14 N, (ii) 70 N. Find the force required to lift both the blocks.
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Solution Weights of the two blocks are 2 × 9.81 = 19.62 and 5 × 9.81 = 49.05 N respectively.

(i)  With F = 14 N, neither of the weights is overcome; none will be lifted. a1 = 0 = a2 = ap

(ii) With F = 70 N, tension in each cord = 35 N.

 For the smaller block,

35 − 19.62 = 0 2 a1; a1 = 7.69 m/s2

 But the bigger block cannot move, a2 = 0

 The pulley moves up with the average velocity and acceleration,

 ap = (7.69 + 0)/2 = 3.85 m/s2

 Both the blocks will move up if tension in each string exceeds 49.05 N, the weight of the bigger block. 

Then F = 2 × 49.05 = 98.10 N.

Example 6.10 Two blocks A and B are held 

stationary 10 m apart on a 20  incline as shown in 

Fig. Ex. 6.10. The coefficient of dynamic friction be-

tween the plane and A is 0.3 whereas between the plane 

and B is 0.1. If the blocks are released simultaneously, 

calculate the time taken and distance travelled by each 

block before they are at the verge of collision.

10 m

20°

m = 0.30

m = 0.10
A

B

Fig. Ex. 6.10

Solution From the free-body diagrams of the blocks, as shown in Fig. Ex. 6.10 (Solution) for block A,

 mA g sin 20  − 0.3RA = mA aA

 RA = mA g cos 20

or mA g sin 20  − 0.3 mA g cos 20  = mA aA

or   9.81 × 0.342 − 0.3 × 9.81 × 0.94 = aA

aA = 0.59 m/s2

 Similarly, for block B,

 mB g sin 20  − 0.1RB = mB aB

 RB = mB g cos 20

whence aB = 2.43 m/s2

 If t is the time taken for the blocks to reach at the same elevation to be at the verge of collision, the distance 

travelled by A would be 10 m less than that travelled by B over the same time.

 1

2
10

1

2

2 2a t a tA B+ =

or
1

2
0 59 10

1

2
2 432 2× + = ×. .t t

whence t = 3.30 s

 The distances travelled by A and B are

 S a tA A= = × × =
1

2

1

2
0 59 3 30 3 22 2. . . m

 S a tB B= = × × =
1

2

1

2
2 43 3 30 13 22 2. . . m

which could have alternatively been determined as

 SB = SA + 10 = 3.2 + 10 = 13.2 m

mAg

f = 0.3 RA
S

Motion

20°

20°
RA

A

mBg

f = 0.1 RB
S

Motion

20°

RB

B

Fig. Ex. 6.10 (Solution)
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30°

A

B

2 cm
4 cm

Fig. Ex. 6.11

Example 6.11 A frictionless step-pulley 

mounted at the top of an incline supports a block

A restrained to slide over the incline and a block 

B hanging from it as shown in Fig. Ex. 6.11. If the 

block A of mass 3 kg should accelerate at 2 m/s2

up the incline, determine the mass of block B

(a) if the incline is frictionless and

(b)  if the coefficient of dynamic friction between 

the incline and block A is 0.3.

Solution Assuming the step-pulley to be friction-

less as well as massless, the tensions in the cords 

are such that the summation of their movements 

about the centre of rotation vanishes

 2TA − 4TB = 0

or TA = 2TB (i)

 From the free-body diagrams of the blocks as 

shown in Figs. Ex. 6.11(a) and (b) (Solution), the 

forces along the direction of motion are evaluated 

and substituted in the equations of motion:

(a) For frictionless incline

For block A,

     TA − mA g sin 30  = mA aA (ii)

For block B,

           mB g − TB = mB aB (iii)

From kinematic considerations for the 

step-pulley,

       aB = 2aA = 2 × 2 = 4 m/s2 (iv)

Substituting Eqs. (i) and (iv) into Eqs. (ii) and (iii),

2TB − 3 × 9.81 × 0.5 = 3 × 2

    9.81 mB − TB = 4 mB

From the former,

 TB =
+

=
6 14 715

2
10 36

.
. N

and from the latter,

 mB = =
10 36

5 81
1 78

.

.
. kg

(b) For frictional incline

 For block A,

TA − mA g sin 30  − 0.3 RA = mA aA

2 cm

mAg

mBg

TA

TA

A

RA

TB

TB

Motion

M
o
ti

o
n

B

Pulley

4 cm

30°
30°

Fig. Ex. 6.11 (a) and (b) (Solution)
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A

TRUCK

B

Fig. Ex. 6.13

Fig. Ex. 6.12

where RA = mA g × cos 30  

  = 3 × 9.81 × 0.866 = 25.49 N

 Then, TA − 3 × 9.81 × 0.5 − 0.3 × 25.49 = 3 × 2 

or TA − 22.36 = 6 

whence TA = 28.36 

 For block B,

mB g − TB = mB aB

 Employing the facts that TA = 2TB and aB = 2aA = 4 m/s2

it becomes    9.81mB − 28.36/2 = 4 mB

whence            mB = 2.44 kg 

 It may be noted that the presence of friction on the incline results in considerably higher tension in the 

cords and requires a larger mass of the hanging block to cause the same acceleration of the block on the 

incline. A little reflection will show that if a single pulley was employed instead of a step-pulley, the problem 

would be lot easier but the mass of block B required for the same purpose would be considerably more!

Example 6.12 A painter of mass 100 kg standing in a jhoola, i.e., suspended 

cage of mass 25 kg has arranged to pass the rope over a fixed pulley. He pulls the rope 

with an acceleration in order to rise. At an instant, he exerts an effective weight of 

450 N on the jhoola, find the

  (i) acceleration of the painter and

(ii) tension in the string.

Solution Let us draw the free body diagram of the jhoola as also of 

the painter alone. (Ref. Ex. 6.12 (Solution))

 For the two free-bodies respectively,

 T − F − m1g = m1a T + F − m2g = m2a

T − 450 − 25 × 9.81 = 25 a T + 450 − 100 × 9.81 = 100 a

 T − 25 a = 695.3 T − 100 a = 531

 From these two equations, a = 2.19 m/s2, T = 750 N.

Example 6.13 A baggage truck pulls two carts A

and B as shown in Fig. Ex. 6.13. If the mass of the truck 

is 500 kg and the carts A and B carry 700 and 300 kg 

respectively, and the truck developes a tractive force of 

2 kN, determine the acceleration of the truck and carts 

moving together.

 Find the horizontal forces between the truck and the 

cart A and between the two carts.

T

a

F
1

m1g

T

a
F

m2g

Fig. Ex. 6.12 (Solution)



 Dynamics of a Particle and of the Mass Centre of a System 345

Solution The tractive force is indeed developed 

by the coupling but its acts on the truck by virtue 

of the friction at the wheels of the truck. Wheels 

of carts A and B merely roll. Therefore, no further 

frictional force comes into play.

 For the truck and the carts moving together,

 F = m a

2000 = (500 + 700 + 300) a

whence a = =2000 1500 1 33. m/s2

 Now, consider the f bd of the truck alone,

where T = 2000 − 665 = 1335 N

 This force acts at the compling between the truck and cart A.

 Now consider the f bd of cart A above

T − t = 700 × 1.33

whence t = T − 700 × 1.33 = 400 N

which is the force on the coupling between the two carts.

 We can verify the answer by considering the f bd of the cart B above.

t = 300 × 1.33 = 400 N

which is what we have obtained above.

 6.3 D’ALEMBERT PRINCIPLE: INERTIA FORCES

If the mass centre of a body or a particle of mass m is 

subjected to a net force  and it acquires an accelera-

tion , then,

 + (−m ) = 0 (6.2a)

This is indeed a restatement of Newton’s law but 

it suggests that the term (− m ) may be considered 

as a fictitious force, often called D’Alembert force or 

the inertia force as depicted in Fig. 6.4.

According to the D’Alembert principle, the net 

external force  actually acting on the body and the inertia force i together keep the body in a state of 

 ‘fictitious equilibrium’

+ i = 0 (6.2b)

The principle tends to give the solution procedure of a dynamic problem an appearance akin to that of a static 

problem. The rule of equilibrium for statics, i.e.,

Σ = 0

may, therefore, be employed for a dynamic problem with the introduction of the concept of fictitious dynamic 

e uilibrium.

The significance of D’Alembert principle does not end with the extension of our ability of using the 

 methods of statics in dynamics but goes beyond to be coupled with the principle of virtual work and to lead to 

an alternative formulation of mechanics on the basis of energy considerations. A glimpse of this formulation 

is given in Chapter 10 under the heading ‘Variational Principles’.

2000 N
T

Fig. Ex. 6.13(a) (Solution)

t T

Fig. Ex. 6.13(b) (Solution)

t

Fig. Ex. 6.13(c) (Solution)

≡

+ i = + ( − m ) = 0

c

m

c

m
i = − m

= m

Fig. 6.4 Newton’s law − D’Alembert’s principle
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Let us consider the motion of a particle along a 

 circular path on a smooth plane with  reference to 

Newton’s law and the D’Alembert principle. At any 

instant of time, the velocity must be tangential to the 

circular path and the acceleration may consist of a 

tangential component and a radially inward or centri-

petal component. If the speed of the body is  constant, 

it experiences only the centripetal acceleration, equal 

in magnitude to v2/r. The force  that must act on the 

body to enable the body to move in a circular path 

must be radially inwards at all times such that

= m

with a magnitude mv2/r.

This is so shown for two positions of the body in Fig. 6.5(a). The force  actually required to be acted on 

the body is called the centripetal force.

According to the D’Alembert principle, the equation of motion may be written as

+ (−m ) = 0

and the fictitious force (–m ) is called the centrifugal force. The equation is interpreted by saying that the 

body may be considered in a state of ‘equilibrium’ under the application of two forces: the actual or centrip-

etal force  and a fictitious or centrifugal forces CF equal to (–m ).

The two forces must be equal and opposite. The centripetal force being radially inward, the centrifugal 

force must be radially outward at any instant. This is so shown for two positions of the body in Fig. 6.5(b).

Since the concept of centrifugal force replaces that of the ‘acceleration’ of the body, the body is  considered 

‘non-accelerating’ or in ‘equilibrium’ once the centrifugal force is imagined to be acting upon it.

Let us consider the traditional example of a small 

stone of mass m tied at the end of a string of length 

l and whirled at a constant speed v. If whirled in a 

horizontal plane, the stone is subjected to a verti-

cally downward force equal to its weight mg and a 

radially outward horizontal centrifugal force equal 

to mv2/r. The force due to the string, also in a hori-

zontal plane, can only balance the centrifugal force 

leaving the vertical force mg unbalanced. The con-

clusion is that a stone cannot be whirled, by means 

of a string, keeping the string in a horizontal plane. Instead, the string must be inclined downward, going 

outward, to provide a vertical component in the string force to balance the weight as shown in Fig. 6.6. The 

centrifugal force is still horizontal. It may be observed that the angle of inclination q is given by

 tan
/

θ = = =
mg

CF

mg

mv r

gr

v2 2  (6.3)

The angle is independent of the mass of the stone but increases as the velocity decreases or the radius of 

the circular path increases.

If the stone is whirled in a vertical plane, the three forces, i.e., its weight mg acting downward, the centrifu-

gal force CF equal to mv2/r acting radially outward and the string force T radially inward may be considered 

to keep it in ‘equilibrium’ at any instant as shown in Fig. 6.7. At the lowest position,

m
CF

CF

V

V

mO

r

O

Centripetal force Centrifugal

force

(a) (b)

Fig. 6.5 Motion along a circular path

r

q

l

mg

String
Stone

CF

Fig. 6.6 Whirling of a stone in a horizontal plane
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T CF mg
mv

r
mg= + = +

2

whereas at the uppermost position,

 CF = T + mg

whence  T CF mg
mv

r
mg= − = −

2

The tension in the string must be positive at the lowest posi-

tion for all values of v but it can drop to zero at the uppermost 

position if

mv

r
mg

2

0− ≤

or           v gr≤  (6.4)

Since a string cannot remain straight without being in tension, 

the stone will not reach the uppermost position on the circle if the velocity of whirling drops below   gr .

 6.4 WORK, POWER AND ENERGY

If a body is subjected to a force  and the point of application of the force is displaced by an infinitesimal 

displacement d  as shown in Fig. 6.8(a), the work done by the force is defined as the scalar or dot product of 

the force and the infinitesimal displacement
 dW = ⋅ d  (6.5)

       = F dr cos q

TT

T

r

mg

mg

mg
CF

CF

CF

v1

v2
v

Fig. 6.7 Whirling of a stone in a vertical plane

d p

P

C

d c

1p 2p

2c

1c

(c) Action of a force on a rigid body

P

d

2

1

Trajectory of the

particle

(a) Action of a force on a particle

q

C

d c

1

2

Trajectory of the

mass centre

(b) Action of a force at a mass centre

q

Fig. 6.8  Action of a force on a particle, mass centre and a rigid body
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where q is the angle between the force and displacement vectors. In other words, the work done by a force 
is the product of the magnitude  of force and the distance  cos q moved by the point of application of 
the force in the direction of the force. Alternatively, the work done may be considered to be the product of 
the magnitude  of the displacement and the component  cos q of the force acting in the direction of the 
displacement of the point of application of the force. The work done by a force may be positive or negative 
depending upon whether the force component is directed along or opposite to the direction of displacement, 
i.e., whether the angle between the force and displacement is acute or obtuse.

For a particle, the force acts at the same point for which the displacement is considered. For a rigid body, 
on the other hand, the displacement of the point of application of the force must be considered.

For a finite displacement of a particle, therefore, the work done due to a force  is given by

 = ⋅∫
1

2

 (6.6)

where 1 and 2 refer to the initial and final positions 1 and 2 as shown in Fig. 6.8(a).
The force  acting on the particle may be a function of the space coordinates and the displacement  may 

also be in space. The elementary work done can, therefore, be written as

= ( + + ) ⋅ ( + + )

 = + +
where ,  and  may vary with the space coordinates. The total work done to displace the particle from 
state 1 to state 2 is given by

 
= = + +∫ ∫∫∫

1

2

1

2

1

2

1

2

For a finite displacement of a rigid body, the work done by a force  acting at the centre of mass  is

 

= ⋅∫
1

2

where  refers to the displacement of  as in Fig. 6.8(b). If the force  acted at some other point P such that 
 did not fall on the line of action of  as in Fig. 6.8(c), then the work done by the force  on the body would be

 
= ⋅∫

1

2

where  refers to the displacement of P. It must be noted that the expression.

 ⋅∫
1

2

does not mean the work done by the force as it is acting but, instead, the work done by the force 

It is interesting to observe the cases where no work is done by a force: (a) when the displacement is zero, e.g., 
by the force acting on a stationary structure and (b) when the displacement is perpendicular to the force applied, 
e.g., work by the gravitational force on an object moving horizontally on the surface of the earth.

The rate at which work is done is called , given by

 Power =  (6.7)

Since = ⋅
for a force  whose point of application is displaced by an infinitesimal displacement ,
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 Power =
⋅

= ⋅ = ⋅
d

dt

d

dt
 (6.8)

which shows that power equals the dot product of the force and the velocity of the point of application of the 

force at that instant.

The term ‘power of a force component’ appears quite often in engineering. For example, the propulsive 

power of an aircraft implies the power associated with the propulsive force only. An aircraft may be flying at a 

constant velocity , the net external force on it being zero, yet the propulsive power could be finite. Similarly, 

the power dissipated in a process is referred to the power associated with the dissipative forces.

The kinetic energy possessed by a particle of mass m moving with a velocity  is defined as

 KE mv=
1

2

2  (6.9)

where v is the speed or magnitude of . The kinetic energy of a rigid body of mass m in translation at a veloc-

ity  is also defined by the same expression but the kinetic energy of rigid body in general translational and 

rotational motion must be determined from a consideration of the velocity of the individual elements dm.

 KE v dm= ∫body

1

2

2  (6.10)

where the integration is taken over the entire mass of the body. Similarly, the total kinetic energy for a system 

of n particles is obtained by the addition of the kinetic energies possessed by the individual particles,

 KE m vi i

i

n

=
=
∑ 1

2

2

1

 (6.11)

It is also possible to demonstrate that the total kinetic energy of a system can be considered to be com-

posed of two parts: the kinetic energy of the total mass moving with the velocity vc of the mass centre and the 

kinetic energy of motion of the elements of the system relative to the mass centre:

 KE mv m vc i ic= + ∑1

2

1

2

2 2

It may be remarked that the units of work and energy are the same. In SI units, the unit of work is joule, 

J ≡ N m and the unit of energy is kg m2/s2 ≡ Nm ≡ J.

A force field is said to be conservative if the force  in the field is continuous in space and is expressible 

as a gradient of a scalar function f, i.e.,

= (x, y, z)

and = f = ∇f

or F F F
x y z

x y z    = + +
∂φ
∂

∂φ
∂

∂φ
∂

whence F
x

F
y

F
z

x y z= = =
∂φ
∂

∂φ
∂

∂φ
∂

, ,  (6.12)

The scalar function or force potential f must be such that its partial derivative with respect to a coordinate 

results in the force component along that direction.

Alternatively, the condition for  to be equal to the gradient of f requires that

 ∇ × = or 0

The work done by a conservative force  as the particle is displaced from an initial position 1 to a final

position 2 is given by

 
W d F F F dx dy dzx y z= ⋅ = + + ⋅ + +∫∫ ( ) ( )

1

2

1

2
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 = + +∫ ( )F d F d F dx x y y z z

1

2

 = + +
⎛
⎝⎜

⎞
⎠⎟∫

∂φ
∂

∂φ
∂

∂φ
∂y

dx
y

dy
z

dz

1

2

 
= = −∫ dφ φ φ2 1

1

2

The change of potential energy PE of a particle between positions 1 and 2 equals the negative of the work 

done by the conservative force as the particle moves from position 1 to 2,

 (PE2 − PE1) = − W = f1 − f2

and it follows that

 PE = −f

and
∂

∂
∂

∂
∂

∂
( )

,
( )

,
( )PE

x
F

PE

y
F

PE

z
Fx y z= − = − = −

or simply, 
∂
∂
PE

s
Fs= −  (6.13)

along a space coordinate s.

It is important to understand that the existence of the potential energy function PE requires the presence of a 

conservative force field. In other words, potential energy cannot be defined for dissipative and discrete forces. 

The potential energy of a body in a conservative force field may be defined as the work which the system of 

forces can do on the body if the body passes from its present configuration to a standard  configuration, called 

the datum position. Further, of a total force  acting on a body, a part may be conservative,

= Cons. + Non-cons.

It is possible to identify a potential energy function for the conservative part Cons. and not for the non-

conservative part.

It may also be appreciated from the relation

 W = f2 − f1 = PE1 − PE2 (6.14)

that the work done between two positions 1 and 2 in a conservative force field depends only upon the end 

states and not upon the path followed by the point of application of the force. If PE1 and PE2 are the potential 

energies, initial and final, respectively, the work done in the field must be PE1 − PE2 no matter how the par-

ticle or mass centre is taken from 1 to 2. It also follows that in a conservative force field, the work done along 

a closed contour, e.g., 1 − 2 − 1, must be zero

 W = (PE1 − PE2) + (PE2 − PE1) = 0

These facts are shown in Figs. 6.9(a) and (b).

Consider, for example, the true gravitational field enveloping the earth. Newton’s law of gravitation states 

that

 = −
GMm

r
r2

or r

GMm

r

PE

r
= − = −

2

∂( )

∂
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whence    PE
GMm

r
= −  

At r → ∞ PE → 0 

The difference in potential energy between the two 

points P1 and P2 at radii r1 and r2 respectively from the 

centre of the earth, i.e., with an elevation difference

h = r2 − r1

is given by

ΔPE
GMm

r

GMm

r

GMm r r

r r
= − + =

−

2 1

2 1

1 2

( )

≈ =
GMm

r
h mgh

2

where r1 ≈ r2 = r, if the points are close together. It may 

also be appreciated that the gravitational force field of the 

earth appears to consist of parallel lines of force instead 

of the radial lines. The expression for a change in potential 

energy is then given by

 DPE = mgh

as is commonly used for earth-bound objects.

Example 6.14 A vertical lift of total mass 500 kg acquires an upward velocity of 2 m/s over a 

distance of 3 m of motion with constant acceleration, starting from rest. Calculate the tension in the cable

supporting the lift.

 If the lift, while stopping, moves with a constant deceleration and comes to rest in 2 s, calculate the 

force transmitted by a man of mass 75 kg on the floor of the lift during that interval.

Solution The upward acceleration a is obtained by using

 V2
2 − V1

2 = 2as

a =
×

=
2

2 3
0 67

2
2. m/s

 Examining the forces acting on the lift as shown in Fig. Ex. 6.14(a) (Solution), the net force must equal 

mass times acceleration in accordance with the Newton’s law,

 T − mg = ma

whence T = m(g + a)

 = 500(9.81 + 0.67)

 = 5240 N

 Alternately the D’Alembert principle suggests that an inertia force equal to (− ma), i.e., ma downward be 

imagined acting on the lift together with the external force T and mg as shown in Fig. Ex. 6.14(b) (Solution) and 

the problem be solved as an equilibrium problem in statics. By this principle,

 Σ = 0

 T − mg + (− ma) = 0

or T − 500 × 9.81 − 500 × 0.67 = 0

whence T = 5240 N

2 . PE2

PE1

W PE1 − PE2

W (PE1 − PE2) + (PE2 − PE1)  0

1

1

2

(a) Alternative paths from 1 to 2 in a

conservative force field

(b) Closed loop in a conservative

force field

Fig. 6.9 Work done in a conservative force field
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 While stopping, the acceleration of the lift is

 
a =

−
= −

0 2

2
1 m/s2

 The negative sign of acceleration implies that the 

acceleration is opposed to the direction of velocity, 

as shown in Fig. Ex. 6.14(c) (Solution).

 The force transmitted by the man on the floor on 

the lift equals the reaction R exerted by the lift on 

the man. With reference to the free-body diagram,

R − m g = m a

      R = m a + m g

          = 75 (–1 + 9.81)

               = 661 N

 The force transmitted by the man on the floor of 

the lift is, therefore, 661 N downwards.

 It is interesting to understand that the man in the lift 

experiences the acceleration imposed upon him and, 

consequently, experiences a change in his weight W.

The reaction R exerted by the lift on the man is equal 

and opposite to the weight W felt by him. The weight 

felt by a man is less than mg while accelerating 

downwards and more than mg while accelerating 

upwards. In particular, if the lift was to be accelerated 

downwards at an acceleration g, the man would feel weightless and the reaction by the floor of the lift on the man 

would become zero. The weight felt by a man in a lift moving at a constant velocity would be mg. The pictorial 

representation of the weight felt by him in a lift during a round trip is shown in Fig. Ex. 6.14 (d) (Solution).

Example 6.15 A segment of a smooth circular curved road of radius 30 m is located in a zone of 

40 km/h speed limit. What should be the angle of banking so that a vehicle may travel on it without any 

outward side thrust?

 If the coefficient of static friction between the road and tyres of a vehicle was 0.3, calculate the maximum 

possible speed before the vehicle experiences a side-slip.

Fig. Ex. 6.14 (c) (Solution)

R

mg

(c) Man being decelerated

 +x v ax v a

mg

T

mg

ma

T

(a) Upward acceleration (b) Downward inertia force

Fig. Ex. 6.14 (a) and (b) (Solution)

Fig. Ex. 6.14 (d) (Solution) Weight felt in a lift
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Solution When a vehicle negotiates a circular 
curve, it may be considered in ‘equilibrium’ under 
the action of three forces, namely the weight mg,
centrifugal force CF equal to mv2/r and reaction 
R which is normal to the road in the absence of 
friction.
 Resolving the forces along the incline and 
writing for equilibrium, Fig. Ex. 6.15 (a)

mg F
mv

r
sin cos cosθ θ θ= =

2

whence   tanθ =
v

gr

2

 For the case in hand ,

       tan
( / )

.
.θ =

×
×

=
40 1000 3600

9 81 30
0 42

2

and         q = 22.76°

 In the presence of frictional force which would act down the plane if the velocity exceeds 40 km/h, the limiting 
velocity may be worked out with reference to the free-body diagram drawn in Fig. Ex. 6.15(b) (Solution).
 Along the x-axis,

CF cos q − mR − mg sin q = 0

or
mv

r
mg

2

0cos sinq m q− − =R  (i)
and along the y-axis,

R − mg cos q − CF sin q = 0

or R − − =mg
mv

r
cos q q

2

0sin  (ii)
 From Eq. (ii)

R = +mg
mv

r
cos q q

2

sin

 Substituting in Eq. (i) and simplifying it,

 v gr2

1
=

+
−

⋅
μ θ

μ θ
tan

tan
 (iii)

For the case in hand,

v2 0 3 22 76

1 0 3 22 76
9 81 30=

+
−

× ×
. tan .

. tan .
.

°
°

whence v = 15.565 m/s 

 
= × =15 565

3600

1000
56. km/h

 It is interesting to note that the angle of banking for a circular road calculated on the basis of no-friction 
is safer because the presence of friction allows even higher maximum velocity without any danger of side-
slip. In other words the angle of banking calculated by taking friction into account would have been less 
than 22.76° as may be seen by substituting the given values in Eq. (iii).

R

q

q

CF

mg

R

θ

Y

 = mR

CF

mg

(a) (b)

Fig. Ex. 6.15 (a) and (b) (Solution)
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H

1
B A

R

60°

O

Fig. Ex. 6.17

Fig. Ex. 6.16

Example 6.16 A small spherical object comes rolling 

down a ramp and leaves the edge horizontally with a velocity 

V0. Describe its trajectory.

Solution The spherical object would continue to have its 

rolling motion at constant angular velocity, in the absence of air resistance, on leaving the ramp.

 At any instant of time t,

x = V0 t z = –1/2 gt 2

 Eliminating t,

 
z

gx

V
= −

2

0
22

which is the equation of the trajectory without air resistance, etc.

How far away would it go horizontally before it strikes the ground below depends upon how far below 

(z) the ground is and upon the initial velocity V0.

 If V0 is zero, x = 0 and z = –1/2 gt 2.

 As V0 increases, x increases. However, there is no maximum x for a given V0 since this is a parabolic path.

Example 6.17 A small object slides without friction 

from a height H and then loops the vertical loop of radius 

R = 20 cm from which a symmetrical section of angle 

120  has been removed. Determine the height H such that 

the object, after leaving contact at A and flying through air 

reaches point B and continues the loop (Fig. Ex. 6.17).

Solution As shown in Fig. Ex. 6.17 (Solution) time taken for the vertical component of velocity to change 

from v sin 60° to − v sin 60° is given by 

 
t

v

g

v

g
=

°
=

2 60 3sin

 It must travel the horizontal distance 2 R sin 60°, i.e., 3R  in the same time 

with the constant horizontal velocity v cos 60°.

i.e.,        v
v

g
Rcos 60

3
3° × =  

whence  v = 2 m/s

 Equating the potential energy at 1 with the potential plus kinetic energy at A,

 
mgH mg R R mv= + ° +( sin )30

1

2

2

60°

60°

v

V

A

O

B

Fig. Ex. 6.17 (Solution)
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q r

Fig. Ex. 6.18

 
H = +⎛

⎝⎜
⎞
⎠⎟

+ ×0 2 1
1

2

1

2

2

9 81

2

.
.

 = 0.5 m = 50 cm.

Example 6.18 A particle of mass 0.05 kg slides down the circular periphery of 

a horizontal smooth cylinder of radius 12 cm when let go from the top position, as 

shown in Fig. Ex. 6.18. Determine the reaction of the cylinder on it when it reaches 

30  degree position.

 Will it leave the surface? If so, where and with what velocity?

Solution From the free-body diagram of the mass as shown in Fig. Ex. 6.18 

(Solution) at an angle q,

 mg R m
v

r
cos q − =

2

 (i)

 Also, by conservation of energy,

 
mgh mg r r mv= − =( cos )q

1

2

2

or g v r( cos ) /1
1

2

2− =q  (ii)

 Eliminating v2/r between (i) and (ii)

 R = mg cos q − 2 mg (1 − cos q)

 = 0.05 × 9.81 × 0.866 − 2 × 0.05 × 9.81 (1 − 0.866)

 = 0.29 N.

 It must leave the circular periphery, latest when it reaches the extremity of the horizontal diameter when 

the velocity is zero or the mass is zero. With its finite mass and velocity it will lose contact with the cylinder 

where R = 0, i.e.

Equating mg cos q with m ⋅ 2g ⋅ (1 − cos q)

 cos q = 2 (1 − cos q)

cos q = 2 − 2 cos q

 3 cos q = 2

 q = cos –1 2/3 = 48.2

 At this location,

 v2 = 2 gr (1 − cos q) = 2 × 9.81 × 0.12 (1 − 2/3) = 0.78

whence, v = 0.886 m/s

 The direction of the velocity must be tangent to the circle at that point, i.e., at (− 48.2 ) with the horizontal 

direction.

h

R

m

q

Fig. Ex. 6.18 (Solution)
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60°

w, a

Fig. Ex. 6.20

1

2

Fig. Ex. 6.19

Example 6.19 Two blocks 1 and 2, of masses 2 and 4 kg 

respectively are placed one on the other on a horizontal table and 

connected to a suspended weight  through a frictionless pulley as 

shown in Fig. Ex. 6.19. The coefficient of static friction between 1

and 2 is 0.4 and the coefficient of kinetic friction between m2 and 

the table is 0.2. Find the maximum mass of the block M in order that 

m2 accelerates over the table without m1 slipping over m2.

Solution For the free-body diagram of mass 1 as 

shown in Fig. Ex. 6.19(a) (Solution), the frictional 

force is 0.4 × 2 × 9.81, i.e., 7.85 N. The maximum 

acceleration of 1 should be limited to , such that

1
27 85

2
3 925× = = =7.85; m/s

.
.

 Now, let us draw the free-body diagram of the two 

masses 1 and 2 together as also for the suspended 

mass M (Ref. Fig. Ex. 6.19 (b) (Solution)).

 By dynamical equations,

− 11.77 = (2 + 4) × 4; = 35.77 N

− = × 4; = 35.77/(9.81 − 4) = 6.15 kg

Example 6.20 A bob of mass = 20 grams is attached to a 20 cm

long string tied to the apex of a cone with rough surface as shown in 

Fig. Ex. 6.20. At time = 0, the cone is imparted a constant angular 

acceleration a = 0.5 rad/s2 about its vertical axis. Assuming that the 

bob has no relative motion w.r.t. the surface of the cone,

  (i) at what time will the bob leave contact with the surface?

(ii) what would be tension in the string at that instant?

Solution Consider the free-body diagram of the bob at any instant in rotation as shown in Fig. Ex. 6.20 

(Solution).

 cos 30° −  cos 60° = w
2

 sin 30° +  sin 60° =

whence, 
3

2 2
0 173 2− = × . ω

and
2

3

2
9 81− = × .

which leads to = − ×(0.173 3  9.81)2ω

1 2

1

= 0.2 × (4 + 2) × 9.81

= 11.77 N

(a) (b) (c)

Fig. Ex. 6.19 (a, b, and c) (Solution)

g

60°30°
  0.173 m

Fig. Ex. 6.20 (Solution)
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m1

m2

Fig. Ex. 6.21

It leaves contact when R = 0; w = 9.9 rad/s

(i) From the relationship,

 w = w0 + a t

 t = 9.9/0.5 = 19.8 seconds

(ii) Solving for T from the above,

 T = 0.39 N

Example 6.21 Two masses m1 and m2 are connected by a massless inextensible 

string which passes over a massless and frictionless pulley, Fig. Ex. 6.21. This 

constitutes an Atwood’s machine. Find the acceleration of mass m1 and the tension in 

the string as the system moves under gravity.

Solution Considering the free-body diagram of each of the masses (Fig. Ex. 6.21 Solution),

 m1 g − T = m1 a

T − m2 g = m2 a

 From these equations,

 
a

m m

m m
g=

−
+

1 2

1 2

and T
m m

m m
g=

+
( )2 1 2

1 2

 Atwood used this system to determine the value of g, the acceleration due to gravity. If m1 = 2m2, which 

meant a = g/3, i.e., the system accelerates at one third the value of g. He used different values of m1 and m2

and measured the resulting acceleration whence he computed the value of g;

 
g

m m

m m
a=

+
−

1 2

1 2

.

 One can get the same result by employing the work-energy principle or the conservation-of-energy 

principle in this case. Let us apply the latter.

 If the mass m1 moves down by x the resulting velocity would be given by considering

 PE + KE = Const.

( ) ( )m m g x m m v1 2 1 2
21

2
− = +

or ( ) ( )m m g x m m x1 2 1 2
21

2
− = + �

Differentiating it w.r.t. time, 

 ( )m m g x m m x x1 2 1 2− = +( )� �� �

m1
m2

T T

Fig. Ex. 6.21 (Solution)
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and dividing by �x , which in general is non-zero,

 (m1 − m2)g = (m1 + m2) a

whence a
m m

m m
g=

−
+

⎛

⎝⎜
⎞

⎠⎟
1 2

1 2

 

Example 6.22 Establish that the gravitational force field close to the surface of the earth and the 

force field due to a linear spring are conservative force fields.

Solution

(a) Gravitational force field

 Consider a particle of mass m placed in a parallel gravitational force field close to the surface of the earth is 

shown in Fig. Ex. 6.22(a) (Solution).

O

z2

z1

z

z

x

y

h

mg

PE = mgz

Fig. Ex. 6.22 (b) (Solution) An approximation 

of the Earth’s field

r1

h p2

F

er

r2

O
Earth

p1

Fig. Ex. 6.22 (a) (Solution)

 Fx = 0, Fy = 0

 Fz = −mg, the weight of the particle

 A potential function f should exist for a conservative force field. For this case,

  F
x

x = =
∂φ
∂

0  (i)

 F
y

y = =
∂φ
∂

0  (ii)

  F
z

mgz = = −
∂φ
∂

 (iii)

 From Eqs. (i) and (ii) it may be seen that the potential function is not a function of x or y. Therefore 

integrating Eq. (iii),
 f = −mgz + Constant

 The existence of f is a guarantee for the field to be conservative. The potential energy for the gravitational 

force field is
 PE = –f = mgz

it being reckoned zero at the origin of the coordinates arbitrarily.
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(b) Force field of a linear spring

 For a linear spring compressed by x, Fig. Ex. 6.22(b) (Solution) 

the force field is such that

 Fx = −kx

 Fy = 0, Fz = 0

 In an effort to determine the potential function, let

 F
x

kxx = = −
∂φ
∂

 (i)

 F
y

y = =
∂φ
∂

0  (ii)

 F
z

z = =
∂φ
∂

0  (iii)

 Equations (ii) and (iii) in this case suggest that f is neither a function of y nor of z. Integrating Eq. (i), 

therefore,

 φ = − +
1

2

2kx Const.

 The existence of the potential function is a sure proof of the conservative nature of the force field due to 

a linear spring.

The potential energy for the field of a linear spring is

 
PE kx= − =φ

1

2

2

referred to zero potential energy in the unstretched position when x = 0, i.e., the spring in the equilibrium 

position.

 It may be observed that, in the gravitational field, the change in potential energy from a position 1 at z1

to a position 2 at z2 is simply

 DPE = PE2 − PE1 = mg(z2 − z1) = mgh

where h is the vertical height from position 1 to 2.

 In case of a linear spring, the change in potential energy in compression from a position 1 at x1 to a 

position 2 at x2 is

 
ΔPE PE PE= − = − = −2 1 2

2
1
2

2
2

1
21

2

1

2

1

2
kx kx x x( )

Example 6.23 Establish whether the force field defined by

= ( y2z3 − 6xz2) + 2xyz3 + (3xy2z2 − 6x2z)

is a conservative field or not. Determine the potential function, if possible.

Solution A force field is conservative if and only if there exists a scalar function f such that

 
= = + + =grad F Fφ

∂φ
∂

∂φ
∂

∂φ
∂x y z

Fx y z

 For the given force field ,

 
∂φ
∂ x

y z xz= −2 3 26  (i)

F = -kx

Fk

x

Equilibrium

position

PE = 0

x = 0

Fig. Ex. 6.22 (c) (Solution)
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 ∂φ
∂ y

xyz= 2 3  (ii)

 ∂φ
∂ z

xy z x z= −3 62 2 2  (iii)

 Integrating Eqs. (i) with respect to x keeping y and z constant,

 f = y2z3x − 3x2z2 + f (y, z)

 Similarly, from Eqs. (ii) and (iii) on partial integration,

 f = xy2z3 + g (x, z)

and f = xy2z3 − 3 x2z2 + h(x, y)

 From these results,

 f = xy2z3 − 3x2z2 + C

and the potential energy is given by

 PE = 3x2z2 − xy2z3 + k

 Since a scalar potential function for the given force field exists, the field must be conservative.

 Alternatively, the condition for the force field to be conservative, i.e., for the existence of f

 ∇ × = 0

could be used. From the data,

 

∇ × =

− −

∂
∂

∂
∂

∂
∂x y z

y z x z xyz xy z x z2 3 2 2 3 2 2 26 2 3 6

 
= − −

⎡

⎣
⎢

⎤

⎦
⎥

∂
∂

∂
∂y

xy z x z
z

xyz( ) ( )3 6 22 2 2 3

 
+ − − −⎡

⎣⎢
⎤
⎦⎥

∂
∂

∂
∂z

y z x z
x

xy z x z( ) ( )2 3 2 2 2 2 26 3 6

 
+ − −

⎡

⎣
⎢

⎤

⎦
⎥

∂
∂

∂
∂x

xyz
y

y z x z( ) ( )2 63 2 3 2 2

 = (6xyz2 − 6xyz2) + (3y2z2 − 12xz − 3y2z2 + 12xz) + (2yz3 − 2yz3)

   = 0 + 0 + 0 = 0

 6.5 WORK–ENERGY PRINCIPLE

Consider a force  acting on a particle or on a mass centre which may be displaced from 1 to 2 over the 

course of action. The work done by the force would be

 
W d

r

r

= ⋅∫
1

2
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= + + ∫∫∫ F dx F dy F dzx y z

z

z

y

y

x

x

1

2

1

2

1

2

Newton’s law provides that

 
F = m

d

dt

Now, ⋅ = ⋅∫ ∫
r

r

d m
d

dt
d

1

2

1

2

 

 
= ⋅∫m

d

dt

d

dt
dt

t

t

1

2

 = ⋅∫m
d

dt
dt

t

t

1

2

 
=

⎛

⎝⎜
⎞

⎠⎟∫m
d

dt

v
dt

t

t 2

2
1

2

 
= ⎡

⎣⎢
⎤
⎦⎥

1

2

2

1

2

mv

  = −
1

2

1

2
2
2

1
2mv mv

or W mv mv= −
1

2

1

2
2
2

1
2  

and finally, W KE KE= −2 1  (6.15)

This is the well-known ‘work-energy equation’ in mechanics. In words, the work done on a particle must 

e ual the change in kinetic energy of the particle. For a rigid body, the work done by the resultant force, as if 

acting at the mass centre, must equal the change in the translational kinetic energy possessed by the body by 

virtue of its mass and the velocity  of the mass centre.

There are no reservations in using this relation. The work done on the left-hand side is due to the net 

external force acting on the particle; the force may vary in magnitude and direction as the particle moves, the 

integration being performed along the path with due regard to the variation of . The particle may accelerate 

as it moves. The work energy equation is as general as the Newton’s law, it being an alternative form of the 

law. In fact, there are some points in favour of the work-energy equation.

 1. The work-energy equation is a scalar equation relating scalar variables, i.e., work and kinetic energy 

as against the Newton’s law relating vector quantities, i.e., force and acceleration.

 2. The work-energy equation is obtained by a path-integration of the equation of motion; it is a step 

closer to the solution of the second order equation of motion.

 3. In certain situations, where the work done may be evaluated readily, the velocities may be computed 

by employing the work-energy equation.
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 6.6 CONSERVATION OF MECHANICAL ENERGY

Let us now examine the case where the force is conservative. In a conservative force field, the work done 

in moving a particle or a mass centre from position 1 to 2 depends upon the potential energy PE of the end 

states only,

W = PE1 − PE2

Equating this expression for the work done with 

that provided by the work-energy equation, i.e.

      W = KE2 − KE1;

 PE1 − PE2 = KE2 − KE1

whence PE1 + KE1 = PE2 + KE2

or ( ) ( )PE KE PE KE+ = +1 2  (6.16)

which implies that in a conservative force field, 

the sum of the potential energy and kinetic energy 

remains constant for all positions of a particle or a 

mass centre. The sum of the potential energy and 

kinetic energy is called mechanical energy. Equation 

(6.16) is referred to as the Principle of conservation 

of mechanical energy. In other words, the mechani-

cal energy of a mass centre or a particle is conserved 

when it moves in a conservative force field, as also 

visualised in Fig. 6.10.

If a particle is, instead, made to move in a force field, a part of which is conservative and another part 

non-conservative, then
= Cons. + Non-cons.

and a potential energy function PE may be determined for the conservative part of the force Cons. The work-

energy principle provides that

W d KE KE= ⋅ = −∫ 2 1

1

2

Substituting for ,

Cons. Non-cons Non-consd d PE PE W+ = − +∫∫ . ( )1 2

 = KE2 − KE1

or WNon-cons. = (KE2 + PE2) − (KE1 + PE1)

or W KE PE KE PENon-cons. = + − +( ) ( )2 1  (6.17)

 In other words, the work done by the non-conservative forces on a particle moving in a mixed force-field 

must equal the change in mechanical energy of the particle. This is also as general a statement as is the basic 

work-energy equation or the Newton’s law of motion and it may be applied to the motion of a particle or a 

mass centre in any situation.

KE

PE

PE

Mechanical energy = PE + KE

Datum line

KE

KE

PE

A

P

Process

Fig. 6.10  Visualisation of the motion with 

conservation of mechanical energy 

(PE + KE = Const.)
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Example 6.24 A slider of mass 2 kg attached to a 

spring of stiffness 400 N/m and unstretched length 0.5 m

is released from rest at A as shown in Fig. Ex. 6.24. 

Determine the velocity of the slider as it passes through B

and C. Assume that the slider moves over the bent rod with 

negligible friction.

 Also compute the distance beyond C where the slider 

should come to rest again.

Solution In the absence of friction between the slider and rod, the reaction on the slider must be normal 

to the motion and hence it does not contribute to the work done on the slider. The slider may then be 

considered to be in a conservative force field comprising of gravitational and spring forces. Referring to 

A as the datum,

 
PE mgh kx= − +

1

2

2

where h is the height of the slider below the reference point and x is the compression of the spring for the 

position considered.

 
PEA = × × − =

1

2
400 1 0 5 502( . ) Nm

 
PEB = − × × + × × − = −2 9 81 0 5

1

2
400 0 707 0 5 1 242. . ( . . ) . Nm

 PEC = –2 × 9.81 × 0.5 = –9.81 Nm

 The kinetic energy at each point is expressed as follows:

 KEA = 0

 
KE mv v vB B B B= = × =

1

2

1

2
0 5 0 252 2 2. .

 
KE mv v vC C C C= = × =

1

2

1

2
0 5 0 252 2 2. .

 Employing the principle of conservation of mechanical energy,

 (PE + KE) = Constant

 50 + 0 = –1.24 + 0.25vB
2 = –9.81 + 0.25vC

2

whence vB = 14.32 m/s

and vC = 15.47 m/s

 Let us consider a point D where the slider would come to rest again

 
PE xD = − × × + × ×2 9 81 0 5

1

2
400 2. .

 KED = 0

0.5 m

0.5 m

0.5 m

O

D
B C

Spring

Slider

A

h

?

Fig. Ex. 6.24
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0.3 m
K

0.8 m

30°

m

A

Fig. Ex. 6.25

 Again, by conserving mechanical energy,

50 0 2 9 81 0 5
1

2
+ = − × × + × ×. . 400 2x

 x = 0.55 m

 The stretch of the spring being 0.55 m, its stretched length should be 0.55 + 0.5 = 1.05 m which suggests that

 CD = (1.052 − 0.52)1/2 = 0.92 m

Example 6.25 A block of mass 5 kg is  released from 

rest from a position A on a 30   incline as shown in Fig. Ex. 

6.25. Determine the maximum compression of the spring if 

the spring constant is 8 N/cm and the coefficient of friction 

between the block and the incline is 0.2.

Solution

 Weight of the block = 5 × 9.81 = 49.05 N

 With reference to the free-body diagram,

 R = 49.05 cos 30  = 42.5 N

         f = 0.2 × 42.5 = 8.5 N

 Application of the work energy equation between the initial position (1) of the 

block and the position (2) when it just touches the spring yields

( . sin . ) ( )

.

49 05 30 8 5
1

2
5 0

0

0 8

2
2� − = × × −∫ dx v

or = =16 025 2 50
0 8

2
2. ..x v  

and v2 = 2.265 m/s 

 From position (2) it just touches the spring to the position (3) of maximum 

compression d the work-energy equation provides

( . sin . ) ( )49 05 30 8 5 8 100
1

2
5 0 0

2

0

� − − × = × −∫ x dx v

δ

 16.025 − 400d2 = –12.82

or 400d2 − 16.025d − 12.82 = 0

whence δ =
± +

×
16 025 256 8 20 512

2 400

. . ,
 

 = 0.2 m

 The maximum force developed by the spring is

F = 0.2 × 8 × 100 = 160 N

49.05

30°

f = 0.2Rx
R

Fig. Ex. 6.25 (Solution)
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 6.7 IMPULSE OF A FORCE

Impulse  of a force  acting over a time interval 

from t1 to t2 is defined as the time integral of the 

force over the interval of time

 I = ∫ dt

t

t

1

2

 (6.18)

The force  may vary or remain constant over a 

period of time. The impulse of a force be visualised 

as the area under a force vs time curve. As an illustration, a force acting over an interval of 20 s causing a 

particle to move along the direction of the force, as shown in Fig. 6.11, produces an impulse

Magnitude of =
×

= × − +
× −

+
10 8

2
10 12 8

10 16 12

2
0( )

( )

 = 40 + 40 + 20 + 0 = 100 Ns

computed as the area under the -t curve.

The concept of impulse is particularly useful if large forces act over short intervals of time. The action 

may then be classified as impulsive and expressed in terms of an impulse  in its own right without regard to 

the force associated with it.

The impulse of a force is often called linear impulse in order to differentiate it from angular impulse which 

may arise due to a moment acting over a period of time.

 6.8 IMPULSE–MOMENTUM PRINCIPLE

Newton’s law for a particle or a mass centre provides that

 = m
d

dt
which may be rewritten as

dt = m d

Integrating each side from an initial position at t1 when the velocity is 1 to final position at t2 when the 

velocity is 2

 dt m d m

t

t

v

v

1

2

1

2

2 1∫ ∫= = −( )  (6.19)

In words,

Impulse = Change in momentum

or Initial momentum + Impulse = Final momentum

This is a vector equation which applies to a particle or mass centre of a rigid body or of a system of bodies. 

It is the velocity c of the mass centre that must be considered to evaluate the linear momentum of a rigid  

body at any instant, no matter where the force actually acts on the body.

The left hand side of Eq. (6.20) can be rewritten as

 

dt F dt F dt F dt

t

t

x

t

t

y z

t

t

t

t

1

2

1

2

1

2

1

2

∫ ∫ ∫∫= + +

10

5

0
4 8 12 16 20

t

Fig. 6.11 Force vs Time Curve
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and similarly the right hand side can also be written as

 = m(v2x − v1x) + m(v2y − v1y) + m(v2x − v1z)

Equating the left hand and right hand sides of Eq. (6.20), we get

 

F dt m V Vx

t

t

x x

1

2

2 1∫ = −( )

 

F dt m V Vy

t

t

y y

1

2

∫ = ( )2 1−

 

F dt m V Vz

t

t

1

2

∫ = ( )2z 1z−

 6.9 CONSERVATION OF MOMENTUM

It may be observed from the impulse-momentum principle that the momentum of a particle or of the centre of 

mass of a system is conserved in the absence of an external impulse or an external force acting on it. Then,

 Initial momentum = Final momentum

Example 6.26 A force given by

= 3t2 + 5t − (8t3 + 400)  N

acts from t = 0 to t = 10 s. Determine the impulse of the force. If this impulse acted at the centre of mass 

of a body of mass 500 kg and brought it to rest, estimate the velocity of the body before it acted.

Solution

  
I = ∫ dt

 
= + − +∫∫∫ 3 5 8 4002 3

0

10

0

10

0

10

t dt t dt t dt( )

 
= + − +t t t t3

0

10
2

0

10
4

0

10

2 5 2 400.

 = 1000 + 250 − 24,000  Ns

 From the impulse-momentum principle,

= m( 2 − 1)

 1000 + 250 + 24,000 = 500(0 − 1)

whence 1, the velocity before the action of impulse should be

(–2 − 0.5 + 48 ) m/s
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30°

Fig. Ex. 6.28

Fig. Ex. 6.27

Example 6.27 A railroad coal car of tyre weight 0 is 

moving at a constant speed  while being loaded with coal 

at a constant rate of  per second as shown in Fig. Ex. 6.27. 

Determine the force  necessary to sustain the constant 

speed, neglecting friction.

Solution Considering change of momentum of the car,

( )+ − =
2 1

because the velocity  is constant.

 This must be equal to the impulse

=
whence =
in the direction of motion.

Example 6.28 A 10 kg shell is fired with a velocity 

of 600 m/s at angle of 30  from an old 2000 kg gun as 

shown in Fig. Ex. 6.28. Assuming that the barrel of the 

gun is rigidly attached to the frame and that the frame 

can recoil freely determine the recoil velocity of the gun 

and the reaction on the gun if the shell leaves the barrel 

10 milliseconds after firing.

Solution For the gun-and-shell system the momentum must be conserved in the horizontal direction 

because there is no external horizontal force.

 10 × 600 × cos 30° + 2000 × = 0

whence the recoil velocity = –2.6 m/s in the opposite direction.

 Applying the impulse-momentum principle in the vertical direction,

 (10 × 600 × sin 30° − 0) = × 10/1000

whence = 300,000 N = 300 kN.

 This must also be reaction by the ground on the frame in the vertically upward direction.

Example 6.29 A 0.001 kg bullet has a velocity of 1000 m/s as it enters a fixed block of wood. It 

comes to rest 0.002 s after entering the block. Determine the average force that acted on the bullet and the 

distance penetrated by it.
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Solution From the impulse-momentum principle,

 
I = = ⋅ =∫ dt F t Fav avΔ 0 002

1

2

.

 = m( 2 − 1) = 0.001(0 − 1000) = –1 N

whence, Fav = –1/0.002 = –500 N

which implies that a resistive force of 500 N acts opposite to the direction of motion of the bullet.

 The distance penetrated by the bullet into the block may be worked out quite simply by employing the 

work energy principle or by using Newton’s law of motion.

 By the work-energy principle,

 
⋅ = −∫ d m v v

r

r

1

2 1

2
2
2

1
2( )

or 500
1

2
× = × × −distance penetrated  0.001 (0 1000 )2 2  

whence the distance penetrated = 1.0 m

 Alternatively, the acceleration of the bullet should be 

= /m = ( 2 − 1)/Dt

 =
−

= −
0 1000

0 002
500 000 2

.
, m/s

and the distance penetrated is given by

 v v a s2
2

1
2− = 2

whence s =
−

×
=

0 1000

2 500 000
1 0

2

. m  

Example 6.30 A person of mass 60 kg stands at one end of a 6 m long floating boat of mass 240 kg. 

If the person walks across to the other end at a steady rate of 1.2 m/s, determine (a) the velocity of the 

boat as observed by an observer on the ground during the process, (b) the distance by which the boat is 

shifted, (c) the velocity of the boat if the person stops at the other end and (d) the velocity of the boat if 

the person, while walking, falls out of the boat at the other end.

Solution Considering the person (1) and the boat (2) as a single system, there is no external force on it. 

The momentum of the person and the boat taken together must, therefore, be conserved. Distances and 

velocities are referred positive to the right as shown in Fig. Ex. 6.30 (Solution).

(a) Initially, the person and the boat are at rest; their total momentum is zero. As the person moves with a 

velocity of 1.2 m/s to the right with respect to the boat, the 

boat may be moving with a velocity V2 m/s. The absolute 

velocity of the person is, therefore,

 V1 = (–1.2 + V2) m/s

 Momentum of the system in the process is

 m1V1 + m2V2 = 60(–1.2 + V2) + 240 V2

 = 300 V2 − 72

which must be equal to the initial momentum, i.e., zero

 300 V2 − 72 = 0

whence V2 = 0.24 m/s 

6 m

C2

+ x

+ V

C1

2

Fig. Ex. 6.30 (Solution)
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and V1 = –1.2 + 0.24 = − 0.96 m/s

 An observer on the ground will, therefore, observe the boat to be drifting to the right with a velocity of 

0.24 m/s and the person moving to the left with a velocity of 0.96 m/s.

(b) The time taken by the person to walk across the other end is

 t = 6/1.2 = 5 s

and the distance the boat travels in 5 seconds is

 x2 = 5 × 0.24 = 1.2 m

(c) If the person stops at the other end, the boat should also stop because their total momentum must remain 

zero.

(d) If the person, while walking falls out of the boat at the other end, he would take with him a 

momentum
 m1V1 = 60 (–1.2 + 0.24) = –57.6 Ns

 The momentum possessed by the boat is, therefore, +57.6 Ns because the sum of the momenta equals 

zero all the time. The boat must have a velocity V2 after the person fell out 

 
V2

57 6

240
0 24= =

.
. m/s

 In the absence of any external force, the boat will thus continue to move to the right at 0.24 m/s.

An alternative approach to the solution of the first two parts of the problem would be as follows:

 The person and the boat taken together do not experience any external force. Therefore, the centre of 

mass of the system must remain unaltered.

 Initially xc =
× + ×

+
=

60 6 240 3

60 240
3 6. m

 Finally, after the person has moved to be other end ,

 
3 6

60 0 240 3

60 240

2 2.
( ) ( )

=
× + + +

+
x x

  =
+300 720

300

2x

whence, x2 = 1.2 m

which shows that the boat must have moved by 1.2 m to the right.

 The velocity of the boat during the process is determined from the knowledge of the time taken by the person 

and the displacement of the boat

V
x

t
2

2 1 2

6 1 2
0 24= = =

.

/ .
. m/s

Example 6.31 A military truck of mass 4000 kg 

while developing a tractive force of 12 kN tows a jeep 

of mass 2000 kg with the help of an inextensible cable 

up an incline of 1 in 10. A winch mounted on the 

jeep is operated to approach the truck with a constant 

acceleration of 0.5 m/s2. Before the winch is operated, 

the truck and jeep were travelling at 12 m/s each. 

Determine their speed after a lapse of 10 s (refer Fig. Ex. 6.31).

 What would the final velocities be if the winch did not operate?

q
Slope 1 in 10

Fig. Ex. 6.31
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Solution This problem is best solved by employing 

the impulse-momentum equation. This preference is in 

view of the obvious requirement to deal with the action 

of forces over a prescribed time and to determine the 

velocities as a result of change of momentum.

 Taking the truck and jeep together as a single system, 

the magnitude of the external force acting on it is 

F = 12 − (4000 + 2000) × 9.81 sin q/1000

 = 12 − (4 + 2) × 9.81 × 1/10 = 12 − 3.93 − 1.96

 = 6.11 kN

 The magnitude of the impulse acting on the system is

 I = F × 10 = 6.11 × 10 = 61.1 kNs

 Initial momentum of the system is

 p1 = (4000 × 12 + 2000 × 12)/1000

 = 72 kNs

 Denoting the final velocity of the truck by Vt and that of the jeep by Vj where

 Vj = Vt + 0.5t

the final momentum of the system is

 p2 = (4000 × Vt + 2000 × Vj)/1000

 = (4Vt + 2(Vt + 0.5 × 10))

 = (6Vt + 10) kNs

 Since

 Impulse = Change in momentum

 61.1 = 6Vt + 10 − 72

whence Vt = 20.52 m/s 

and Vj = 20.52 + 0.5 × 10 = 25.52 m/s 

 In the absence of a winch, the final momentum of the system would have been given by

 p2 = (4000 × V + 2000 × V ) /1000

 = 4V + 2V = 6V

because the velocities of the truck and the jeep would have remained identical;

 Then, by the impulse momentum principle,

 61.1 = 6V − 72

whence V = 22.18 m/s

which would be the final velocity of the truck as well as that of the jeep.

Example 6.32 A body of mass 20 kg slides up an incline of 30  under the action of an applied force 

300 N along the incline and in the presence of friction, m = 0.2. If the body moves from rest determine, 

after a period of 5 seconds:  (a) acceleration of the body, (b) velocity of the body, (c) distance travelled by 

the body, (d) kinetic energy of the body, (e) work done on the body, (f) momentum possessed by the body 

and (g) impulse applied on it.

 If the body now moves along a level surface with friction, m = 0.2, and the external force is removed, 

how long will it take for the body to come to rest and how far will it have travelled?

3.93 kN

1.96 kN 12 kN

Fig. Ex. 6.31 (Solution)
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Solution During the first phase of motion over the incline, the free-body diagram of the body shown in 
Fig. Ex. 6.32 (solution) that the force acting in the direction of motion is

F = 300 − 20 × 9.81 sin 30° − 20 × 9.81 cos 30° × 0.2 = 168 N

(a) From the Newton’s law,

 F = ma

 a = 168/20 = 8.4 m/s2

(b) Again, from the Newton’s law

 
F m

dv

dt
=

 
dv

F

m
dt=

and v v
F

m
t t2 1 2 1− = −( )

 Taking time t1 = 0 at the beginning when v1 = 0

 
v2

168

20
5 42= × = m/s

 Alternatively, from
 v = u + at

 v = 0 + 8.4 × 5 = 42 m/s
(c) From the Newton’s law,

 
F m

d s

dt
=

2

2

 s
F

m
t C t C= + +2

1 22/

 Noting that both C1 and C2 are zero for the given conditions,

 s = × =
168

20
5 2 105

2
/ m

 Alternatively, from

 
s ut at= +

1

2

2

 s = × × =0 m
1

2
8 4 5 1052.

(d) The kinetic energy is given by

1

2

1

2
mv2 220 42 =17,640 = × ×

(e) The work done on the body is
⋅ s = 168 × 105 = 17,640 

which is indeed equal to the change in kinetic energy of the body.

(f ) The momentum possessed is
 m = 20 × 42 = 840 kg m/s or Ns

A

N

N

W

W

Applied
force

B

f = mN

f = mN

30°
O

Fig. Ex. 6.32 (Solution)
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(g) The impulse imparted to the body is

= dt = 168 × 5 = 840 Ns

which is indeed equal to the change in momentum of the body.

 For the second phase of the motion, i.e., along a horizontal surface, the force along the direction of 

motion is

 −f = −m N = −0.2 × 196.2 = –39.2 N

 The work done on the body is

 –39.2 × distance travelled

 Equating it to the change in kinetic energy, –17,640 J

 the distance travelled is 17,640/39.2 = 450 m

 The impulse on the body is

 –39.2 × time of action

 Equating it to the change in momentum,

 0 − 840 = –840 Ns

the time of travel is 840/39.2 = 21.43 s

 Alternatively, the acceleration of the body can be determined as

 a = − 39.2/20 = –1.96 m/s2

and from the Newton’s law in the form

 
= m

dv

dt

the time can be determined and from the form

 
= m

d s

dt

2

2

the distance travelled can be calculated.

 Alternatively, employing the relations

 v = u + at and s = ut + 1/2 at2

 
t =

−
−

=
0 42

1 96
21 43

.
. s

and s = 42 × 21.43 + 1/2 × (–1.96) × 21.432 = 450 m 

 6.10 MOMENT OF MOMENTUM

The term ‘moment of momentum’ is defined analogous to the moment of a force. The momentum possessed by a 

body of mass m moving with a linear velocity  being m , the definition for the moment of momentum  is that

= r × m

where  is the position vector of the centre of mass of the body at a given instant with respect to a reference 

point.

The term ‘angular momentum’ is used interchangeably with moment of momentum. This term is possibly 

designed to denote its difference from the linear momentum m , also written simply as momentum. The 

physical interpretation of Moment of Momentum is not readily clear from its definition but the meaning can 

be appreciated in the following article, where the rate of change of moment of momentum is related to the 

external moment about the same reference point for the body.
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O

5 m/s

1m

P

Fig. Ex. 6.33

 6.11 MOMENT OF MOMENTUM EQUATION

Starting with the Newton’s law in the form

 F =
d

dt
m( )

and taking moment of each term of the equation about a point O in space as shown in Fig. 6.12

 
× = ×

d

dt
m( )

The addition of a zero term, namely

 
d

dt
m× = 0

on the right hand side of the above equation yields

 
r F× = × + ×

d

dt
m

d

dt
m( )

or M0 = × = ×
d

dt
m( )  (6.20)

or M0
0

0= =
d

dt
�

This is the moment of momentum equation which states that the moment of the resultant force on a par-

ticle or at the mass centre of a system about a fixed point O equals the time rate of change of moment of 

momentum about the same point.

 6.12 CONSERVATION OF MOMENT OF MOMENTUM

If the moment of the resultant force acting on a particle or at the centre of mass of a system about a fixed 

point in space is zero, then

 
d

dt
m( )× = 0

or × m = Const. =  (6.21)

i.e., , the moment of momentum is conserved. The moment of the resultant force would be zero if either the 

force is zero or the force is directed towards or away from the origin O.

Example 6.33 A particle of mass 2 kg tied at 

the end of an inextensible string is rotated at 20 rad/s 

along a circle of 1 m radius over a smooth horizontal 

table top. The string is pulled down through a slot 

at the centre of the table top at a speed of 5 m/s 

as shown in Fig. Ex. 6.33. Calculate the speed of 

the particle when it reaches 0.5 m from the centre. 

Comment on the variation of tension in the string 

with time.

m

v

a

Fixed point Trajectory of the particle
O

Fig. 6.12 Trajectory of the particle
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Solution As the particle is rotated over the table and the string is pulled in, the only force that acts on the 
particle is the tension in the string which is always radial. Consequently, the fact that

× = 0

prompts the utilisation of the principle of conservation of moment of momentum, i.e.,

× m = Const. =
 Since the motion is confined to a plane, the velocity at any instant of time must be given by

= vr r + v
q q

and × m = × m(vr r + v
q q

)

 = × mv
q q

=
or h = /m = r v

q

 = r2
w = Constant (i)

 Initially, h1 = 12 ⋅ 20 = 20 m2/s

and finally, h2 = 0.52 ⋅ w2 = w /4 m2/s
 From the conservation principle,

 h1 = h2

 20 = w/4, w2 = 80 rad/s
and v

q 2 = 0.5 × 80 = 40 m/s
 Since vr2 = 5 m/s
the speed of the particle is

 v = + =40 5 40 32 2 . m/s

 The tension in the string may be estimated by applying the Newton’s law to the particle. There is no force 
and no acceleration in the tangential direction.
 In the radial direction,

 −F = 2(− rw
2)

or F = 2rw
2 (ii)

 It is prescribed that r = 1 − 5t

and from the moment of momentum conservation Eq. (i)

 r2
w = 12 ⋅ 20 = 20

 
ω =

−
20

1 5 2( )t

which, when substituted in Eq. (ii), gives

     
F t

t
= −

−
2 1 5

20

1 5

2

4
( )

( )

or F
t

=
−
800

1 5 3( )
N  

It is interesting to note that the force required to pull the string at a constant speed is not constant; it 
increases as the particle approaches the centre-slot. The following table should supplement the understanding 
of the phenomenon.
 It is noticed that the particle turns increasingly faster as it approaches the centre and it may, therefore, 
be expected that the string must break at some position. However, in reality friction and drag come into 
play and neither the rotational speed nor tension is allowed to increase to such an extent. The fact that 
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the rotational velocity of a mass increases as it is drawn closer to the axis of rotation is used by expert 

figure skaters on the ice and figure dancers on smooth floors. They break into a whirl with both their 

arms and one leg extended and then, upon drawing the arms and the leg in, they obtain a greatly increased 

angular velocity, which is both amusing and amazing!

Example 6.34 A thin circular ring of mass 100 kg and radius 2 m resting flat on a smooth surface is 

subjected to  a sudden application of a force of 300 N at a point on its periphery. Calculate (a) the angular 

acceleration of the ring and (b) the acceleration of the mass centre.

Solution

(a) Applying the moment of momentum equation with the origin chosen at the 

mass centre of the ring and realising that ,  and  are mutually perpendicular,

 
M

d

dt
rm v

d

dt
r m= =( ) ( )2 ω

 = r m2 �ω

whence ω =
M

r m2
 

 
=

×
×

=
300 2

2 100
1 5

2

2. rad/s

(b) The acceleration of the mass centre may be determined by applying Newton’s law,

= m c

 Then 
c = =

300

100
3 2m/s

 The Newton’s law is indeed applicable although the force is acting at a point other than the centre of mass C.

Example 6.35 A vertical lift has a cage of total mass of 300 kg raised through a distance of 100 m 

by a cable. It commences with an acceleration of 1.5 m/s2 which is held constant until it catches a 

speed of 10 m/s. During the final stage, it has a constant retardation to bring it to rest. It takes a total 

of 15 seconds for the 100 m distance. Estimate the tension in the rope during acceleration, at a constant 

speed and during retardation.

Table 6.2

t (s) r (m) w (rad/s) F(N)

0 1 20 800

0.05 0.75 35.56 1,896

0.10 0.50 80 6,400

0.15 0.25 320 51,200

0.20 0 ∞ ∞

C

300 N

100 × 9.81

R

Fig. Ex. 6.34 (Solution)
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Solution One can solve this problem by writing the equations for different stages of the motion, e.g.,

v = 0 + 1.5 t1 and s t1 1
20

1

2
1 5= + × .

 v = const s2 = v t2

 v = d t3 s d t3 3
21

2
= − . ,  etc. 

which produce too many simultaneous equations to be solved.

 Alternatively, one may construct a simple velocity-time graph as follows.

 The advantage of such a graph is that the area under 

the v-t graph must be the distance traversed.

 For stage 1,

 10 = 1.5 t1; t1 = 6.67 s

s1

1

2
10 6 67 33 35= × × =. . m

 It follows that t2 + t3 = 15 − 6.67 = 8.33 s and the 

remaining distance is 100 − 33.35 = 66.65 m

 From the graph,

 

10 10 2 66 65

2 13 33

2 3

2 3

t t

t t

+ =

+ =

/ .

.

but t2 + t3 = 8.33 

 Hence, t2 = 5 s, t3 = 3.33 s

 The deceleration in the final stage must be given by

 o = 10 − d × 3.33

 d = 10/3.33 = 3 m/s2

 Now, let us draw a free-body diagram of the cage in general, as shown in Fig. Ex. 6.35(b) (Solution). By 

equation of motion,

T –mg = ma

or T = m (a + g)

 For stage 1, T1 = 300 (1.5 + 9.81) = 3393 N = 3.39 kN

 For stage 2, T2 = 300 (9.81) = 2943 N = 2.94 kN

 For stage 3, T3 = 300 (–3 + 9.81) = 2043 N = 2.04 kN

 It may be noted that the ‘power’ required is also different in the three stages. Given by

Power = T.v. It is the maximum in the first stage; equals 33.9 kW.

Example 6.36 A spring of stiffness 20 kN/m is installed between two horizontal plates with an initial 

compression of 0.025 m. A collar of mass 5 kg is dropped from a height of 200 mm on to the upper plate. 

Estimate the initial energy stored in the spring and the further compression of the spring. Neglect energy 

lost during the impact.

1 2 3

t3t2t1

10 m/s

v

Fig. Ex. 6.35(a) (Solution)

a

T

m

Fig. Ex. 6.35(b) (Solution)
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Solution The spring is initially under a compressive force of

20 ×1000 × 0.025, i.e., 500 N

 Energy stored must be the strain energy given by

E k x1
2 21

2

1

2
20 1000 0 025 6 25= = × × × ( ) =. . J

 This must also be equal to the triangular area under the -compression

graph;

 
E F x1

1

2

1

2
500 0 025 6 25= ⋅ = × × =. . J

 Now, the collar drops by a total distance of (0.2 + ) m where  is the 

additional compression. Energy released by the collar must equal to additional 

strain energy in the spring.

 

5 9 81 0 2

1

2
20

1

2
20

10 0 025 10 0 025 10

2 2

2 2

× × +

= + −

= + − × =

. ( . )

( )

( . ) .

x x

(( . ).2 0 05+
whence can be calculated.

Fig. Ex. 6.36 (Solution)

Concept Review Questions

  Recognise and explain the truth in the following 

statements:

 (a)  The acceleration or deceleration for a 

rectilinear motion is ascertained on the basis 

of like or unlike signs for the acceleration 

and velocity vectors rather than on the basis 

of the acceleration vector alone.

 (b)  An object may be travelling at a 

constant speed but it may have variable 

acceleration.

 (c)  The laws of motion applicable to a particle 

must also be applicable to the centre of 

mass of any system whether or not the force 

acts at the centre of mass.

 (d)  The work-energy principle, impulse-

mo mentum principle, moment of momen-

tum principle and D’Alembert principle are 

alternative manifestations of the Newton’s 

law of motion.

  Under what circumstances is Newton’s law of 

motion applicable? When would you prefer the 

work-energy, impulse-momentum or moment 

of momentum principle formulations? How 

does the D’Alembert principle differ from the 

Newton’s law?

  Which of the following are conserved in a 

 central-force motion and why?

 (a) Force

 (b) Linear momentum

 (c) Moment of momentum

 (d) Mechanical energy.

4.  Match the following definitions correctly with 

the features of the plots indicated.

 Net applied force 

Slope of velocity vs time

 Change in kinetic energy 

Area of acceleration vs time
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 Change in velocity 

Area of velocity vs time

 Change in the applied force 

Slope of position vs time

 Change in displacement 

Area of force vs position

 Instantaneous acceleration 

Slope of kinetic energy vs position

 Instantaneous velocity 

Slope of linear momentum vs time

 Change in linear momentum 

Area of force vs time

Tutorial Problems

  A stone is dropped into a well. If the splash is 

heard 2.50 seconds later determine the depth 

of the water surface assuming that the velocity of 

sound is 330 m/s.

 ( / . . , .Hint d d: / m)d 330 + = =2 9 81 2 50 28 6

  A particle accelerates as a x= 9  where a

is in m/s2 and x is rectilinear displacement in 

metres. At t = 3 seconds, the displacement is 16 

m and the velocity is 27.7 m/s. Determine the 

displacement, velocity and acceleration of the 

particle one second later.

 ( s  67.5 m, 81.6 m/s, 73.9 m/s2)

  A block of mass 2 kg slides down the face of a 

smooth 45  wedge of mass 10 kg as shown in 

Fig. Prob. 6.3. The wedge is placed on a friction-

less horizontal surface. Determine the  acceleration 

of the wedge. ( s  0.89 m/s2)

Block

ab Wedge

10 kg

aw = ?

2 kg

Fig. Prob. 6.3

  A vehicle is uniformly accelerated upon an 

incline of 1 in 20 from rest and attains a velocity 

of 5 m/s in 15 s. Determine the tractive force 

if the vehicle has a mass of 2000 kg and the 

 resistance to motion is 200 N.

 ( s 0.33 m/s2, 1848 N)

  Three blocks of masses m1, m2 and m3 are con-

nected by two cords as shown in Fig. Prob. 6.5. 

Obtain an expression for the acceleration a of the 

system and determine the tension in the cords.

 

s a
m m m g

m m m

T m g
m g m m m

=
− −

+ +
⎛

⎝⎜

= +
− −

( )

( )

3 1 1 2 2

1 2 3

1 1 1
1 3 1 1 2 2

μ μ

μ μ
μ

mm m m

T m g
m g m m m

m m m

1 2 3

2 3
3 3 1 1 2 2

1 2 3

+ +

= −
− −
+ +

⎞

⎠⎟
( )μ μ

m1 m2

m2m1

m3

Cord 1 Cord 2

Frictionless

pulley

Fig. Prob. 6.5

  A block A resting on a smooth floor and  carrying 

a block B upon it is pulled by a horizontal force 

as shown in Fig. Prob. 6.6. Determine the accel-

eration of A to cause a slip between A and B if 

the coefficient of friction between them is m.

A

B

Fig. Prob. 6.6

 ( s a = mg)
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  An object of mass m falls vertically down in a 

medium with resistance R proportional to the 

square of the velocity. Obtain an expression for 

the velocity at time t if it starts from rest at time 

t = 0. What is the terminal velocity?

 

s V
mg

k

e

e

mg

k

t kg m

t kg m
=

−

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−

−

1

1

2

2

/

/
;

8   A particle of mass m is projected vertically 

upward with a velocity v0 in a medium whose 

resistance is kv. Determine the time for the par-

ticle to come to rest. What would be the time if 

the resistance was kv2 instead of kv?

 
s m k kv mg/ ln ( / )1 0+( and

 
m kg v k mg/ tan /1

0 )−

  A horizontal force of 100 N is exerted on block A

of mass 20 kg which is tied by an inclined string 

to block B of mass 5 kg as shown in Fig. Prob. 6.9. 

The coefficients of friction between the plane and 

block surfaces A and B are 0.25 and 0.5 respec-

tively. Calculate the tension in the string and the 

acceleration of the system.

 ( s  28 N, 1.11 m/s2)

A
B

10°

Fig. Prob. 6.9

  A particle of mass m rests on the top of 

a smooth sphere of radius r as shown in 

Fig. Prob. 6.10. Assuming that the particle 

starts moving from rest, at what point will it 

leave the sphere?

(Hint: − N + mg s q = mrw2 and

mg sin q = mra,

ω
θ

α
ω

α θ ω ω
θ ω

= = =∫ ∫
d

dt

d

dt
d d, ,

0 0

Substituting N = 0, cos q = 2/3, q = 48.2 )

O

q

m

Fig. Prob. 6.10

  A conical pendulum consists of a particle of 

mass m tied to a cord of length l such that it 

traces a circular path of radius r at an angular 

velocity w when the cord makes an angle q with 

the axis of rotation as shown in Fig. Prob. 6.11. 

If its velocity increases, the particle rises and 

the radius r of the circular path and angle q

increase. Derive a relationship between q and 

w for constant angular velocity and express the 

frequency in terms of q.

 
s ω θ θ= =⎛

⎝⎜
⎞
⎠⎟

g l f g l/ cos , / cos
1

2π

r

l

m

O

q

Fig. Prob. 6.11

  A small block of mass 2 kg, held by a cord 

rests on a smooth inclined plane which can 

turn about the vertical axis z z as shown 

in Fig. Prob. 6.12. The cord is 0.6 m long. 

Determine the tension in the cord when the 

angular velocity of the plane and block is 10 

revolutions per minute.

  Also calculate the angular velocity and 

tension in the cord when the block is at the 

verge of losing contact with the inclined plane.

 ( s  10.75 N; 5.72 rad/s, 39.24 N)
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30°

0.6 m

z

z

Fig. Prob. 6.12

  A wagon of mass 5000 kg is loose shunted to 

acquire a speed of 10 m/s before it goes and hits 

a bumper. If the spring constant of the stationary 

bumper is 200 N/cm and the spring constant of 

the wagon pumper is 300 N/cm, calculate (a) the 

maximum compression of the stationary bumper 

and (b) the time taken to reach that state.

 ( s  3.87 m; 0.72s)

Wagon

Fig. Prob. 6.13

  A photograph of the 7.25 kg shot-put cham-

pion in action shows that the initial angle of 

projection was 45 . The toss on a level ground 

was 22 m. Calculate the velocity of projection 

and the time of flight (a) assuming that the 

height of the champion is negligible in com-

parison with the toss and (b) assuming that the 

height of the point of projection is 2 m. 

 ( s  14.7 m/s, 2.15 s; 14.1 m/s, 2.2 s)

  A 2 kg ball is suspended by an inextensible 

string from a ceiling to comprise a pendulum of 

length 3 m. The ball is released from a position 

where the string makes an angle of 45  with 

the vertical. Determine the velocity of the ball 

when the string makes an angle of 30  with the 

vertical and when it is at the bottom position.

 ( s  3.06 m/s, 4.15 m/s)

  Determine the minimum velocity a body 

must have at the top of a vertical circular cyl-

inder of radius r if, when moving circularly, 

it is to remain in contact with the circular 

cylinder.

 ( s v grmin = )

  A bead of mass m moves around a vertical 

circle of radius r. If the tangential velocity is 

vt at the top of the circle, find the tangential 

velocity vb at the base of the circle. Assume 

that the friction is negligible.

 ( s v v grb t= +( )2 4 )

8   A 1 kg stone is whirled at 60 revolutions per 

minute in a plane vertical circle of radius 1.5 m 

by means of a string. Determine the tensions 

in the string at the top and bottom  positions. 

How would the tensions alter if

(a) the mass of the stone were halved?

(b) the whirling speed were halved?

(c) the radius of the circle were halved?

 ( s  49.4, 69 N; 24.7, 34.5 N; 5.0, 24.6 N; 

19.8, 39.4 N)

  In a circus, a motor cyclist is moving inside 

a spherical cage of radius 3 m. The motor 

cycle and the man together have a mass of 

725 kg. Find the least velocity with which 

the motor cyclist must pass the highest point 

on the cage without losing contact with the 

cage.

 
(Hint mg

mV

r
: The reaction and−

⎛

⎝⎜
⎞

⎠⎟
≥

2

0

 . )V gr m/s= = 5 42

  A cyclist, riding at 5 m/s, wishes to turn as fast 

as he can without skidding. If the coefficient 

of static friction between the tyres and the road 

is 0.25, estimate the minimum safe radius of 

his turn.

 
(Hint

mV

r
mg: To avoid sliding,  and 

2

≤ μ

 ; .V gr r m)10 2≤ =μ
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  A particle of mass m slides down a frictionless 

track and enters a vertical loop of radius r at A

to ‘loop the loop’ as shown in Fig. Prob. 6.21. 

what should be the minimum height h at the 

starting point of the particle in order that it 

may make a complete circuit in the loop?

 (Hint: v ghA = 2  and the top position is the  critical 

point were the reaction N = 0 and the velocity v is 

given by v2 = vA
2 − 4gr. Employing mg = mv2/r,

h = 2.5r. If the particle is started from a height less 

than 2.5r it will not reach the top position and if it is 

started from a height more than 2.5r, it should loop 

the loop successfully.)

r

h

M

O

q

A

Fig. Prob. 6.21

  A vertical shaft rotating at 5 rad/s has a light 

horizontal arm fixed with it. Two identical 

collars A and B each of mass 3 kg, slide out 

with respect to the arm at 2 m/s as shown 

in Fig. Prob. 6.22. Determine the angular 

 acceleration of the arm.

 (Hint: d/dt ( × m ) = 0 = d/dt(r2mw)

r2dw/dt + 2rw dr/dt = 0 

 Hence, dw/dt = − 10 rad/s2)

5 rad/s

2 m/s2 m/s

A B

2 m2 m

Fig. Prob. 6.22

  Determine the work done in winding up a 

homogeneous cable which hangs from a 

horizontal drum if its free length is 20 m and 

weighs 1 kN as shown in Fig. Prob. 6.23.

 ( s  98.1 kJ)

20 m

dx

x

Fig. Prob. 6.23

  A bullet enters a 5 cm thick plank with a speed 

of 600 m/s and leaves with a speed of 240 m/s. 

Determine the greatest thickness of the plank 

that can be penetrated by the bullet.

 ( s  5.95 cm)

  A particle weighing 10 N is supported as a 

simple pendulum by a massless inextensible 

string, 2 m in length. The pendulum is released 

from rest at an angle of 30  as shown in Fig. 

Prob. 6.25. When the string is just vertical, it 

strikes a rigid support and the particle contin-

ues to swing as a pendulum of shorter length 

(a) Find the maximum value of the angle f.

(b) Find the force exerted on the weight by the 

string when f = 30 .

 ( s  43 , 111.2 N)

Fig. Prob. 6.25

30°

2 m

Particle

1 m

φ
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  A particle of mass m rests on a smooth table and 

is attached to a string which passes through a 

small hole in the table and supports a mass M in 

a vertical position as shown in Fig. Prob. 6.26. 

The mass m is given a velocity v perpendicu-

lar to the horizontal portion of the string when 

the mass is at a distance a from the hole, and 

the system is then released. After a fall of 

h the mass M will stop and m will continue 

to move in a circle of radius r. Determine r.

 
s

mv

Mg

Mga

mv

2

23
1

2
+⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

 After a flood , a goat weighing 40 kg finds 

itself adrift on one end of a 50 kg log, 6 m 

long. As the other end touches the shore, the 

goat manoeuvres to that end. When it gets 

there, how far is it from the shore? Assume 

the log is at right angle to the shore and the 

water is almost calm after the storm! 

 ( s  2.67 m)

8   A spring of unstretched length 2a and spring 

constant k is connected to a fixed point O and 

to a point B on the edge of a wheel as shown 

in Fig. Prob. 6.28. Find the total work done 

by the force exerted on the wheel due to the 

spring as the wheel is rotated from B1 to B2.

 ( s  0.472 ka2)

2a

B2 B

a

O B1

Fig. Prob. 6.28

m

M

v

r

O
a

Fig. Prob. 6.26

Look up Hints to Tutorial Problems at the end of the book!

Multiple-Choice Questions

Select the correct or most appropriate response from 

among the available alternatives in the following 

multiple-choice uestions.

The motion of a particle, in general, is described by

 (a)  the Newton’s law and not the work-energy 

equation

 (b)  the impulse-momentum principle alone if 

there is no external force

 (c)  the Newton’s law, the work-energy equation, 

impulse momentum principle or the moment-

of-momentum principle

 (d)  the principles of conservation of energy and 

momentum

The D’Alembert principle

 (a) is a hypothetical principle

 (b)  provides no special advantage over Newton’s 

law

 (c) is based upon the existence of inertia forces

 (d)  allows a dynamical problem to be treated akin 

to a statical problem

The centrifugal force

 (a) is not an inertia force

 (b)  tends to overturn a body outwards on a curved 

path

 (c) is a fictitious force

 (d)  is the real force experienced by a body 

negotiating a bend
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 A particle of mass m is projected with a velocity 

V making an angle of 45  with the horizontal. The 

magnitude of the angular momentum of the parti-

cle about the point of projection when the particle 

is at its maximum height h is

  (a) zero (b) mV g3 4 2/( ),

 (c) mV g3 2( )  (d) m gh2 2

 The momentum of a system of two bodies is 

conserved

 (a)  if either body does not exert a force on the 

other

 (b)  when there is no external force acting on 

either body

 (c) when the external forces act only on one body

 (d)  when the external moment on the system is 

zero.

The impulse-momentum principle is applicable

 (a)  if there is no external force acting on the body

 (b) when the impulse is conserved

 (c) when the momentum is conserved

 (d) wherever Newton’s law is applicable.

 The principle of conservation of mechanical energy 

requires that

 (a) the acceleration should be zero

 (b) there should be no external forces

 (c)  the motion should be restricted to the 

gravitational field only

 (d) the force-field should be conservative

8  A simple pendulum mounted on a lorry moving 

on a horizontal track with a constant acceleration 

a will be deflected away from the vertical

 (a)  towards the direction of acceleration, q = sin–1

(a/g)

 (b)  against the direction of acceleration, q = sin–1

(a/g)

 (c)  against the direction of acceleration, 

 (d)  towards the direction of acceleration, 

θ =
⎛
⎝⎜

⎞
⎠⎟

−tan 1 a

g

Answers to Multiple-Choice Questions

1 (c)    2 (d)    3 (c)    4 (b)    5 (b)    6 (d)    7 (d)    8 (c)



8

Moment of Inertia: 

Area and Mass

 8.1 INTRODUCTION

The area of a surface and mass of a body are important concepts but not less important are the 

concepts of relative distribution of area and mass over the domains. The shape and orientation 

of a surface with respect to some reference axes are vital. Quantitative estimates of the relative 

distribution of area and mass over the regions of interest are made by the concepts of ‘moment 

of inertia’ and ‘radius of gyration’. The former is the second moment and the latter a length 

concept emanating from the second moment.

The concept of inertia is provided by Newton’s first law of motion. The property of matter 

by virtue of which it resists any change in its state of rest or of uniform motion is called . The 

translatory inertia is identified as  whereas the rotational inertia is termed as

 In other words, the moment of inertia is the rotational analogue of mass, i.e., it plays 

the role of resisting a change in rotational motion in quite the same sense as mass plays the role 

of resisting a change in translatory motion.

The concepts of the moment of inertia and radius of gyration are developed for an area and 

a mass in quite the same way. The area moment of inertia and mass moment of inertia will, 

therefore, be dealt with together. It is shown in the text that for thin bodies of uniform thick-

ness and homogeneous density, the area moment of inertia and the mass moment of inertia are 

directly related.

It may appear, in the first instance, that the same notation for the area-inertia as for the 

mass-inertia is confusing particularly when the words ‘area’ and ‘mass’ are not used for speci-

fying the moments of inertia. But there is no confusion because the moments of inertia refer 

to the area or mass in question and it is unnecessary to qualify the moment of inertia once it is 

known whether it refers to an area or a mass.
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 8.2 INERTIAL CONCEPTS: AREA

Consider a plane area  as shown in Fig. 8.1. Let the reference axes be and  in the plane of the area as 

indicated. The moments of inertia of the area about the  and  axes are defined as the second moments of the 

area about the  and  axes respectively.

= ∫ 2
 (8.1)

           = ∫ 2  (8.2)

It follows from the definitions that the moments of iner-

tia of an area cannot be negative whether the coordinates of 

its elements are positive or negative because it is the sum-

mation of the product of square quantities, i.e., 2 or 2 and 

. It can also be observed that the moment of inertia for 

an element farther from the axis is more and the moment of 

inertia of an element on the axis is zero.

The moments of inertia may also be written as

 = 2  (8.3)

 = 2  (8.4)

where  and  are called the corresponding radii of gyration. The coordinates  and  locate a point in the 

area which depend upon the shape of the area and its relationship with the reference axes. 

Comparing the forms of writing the moments of inertia,

 
= = ∫2 2

 
= = ∫ ( )/2

and
= = ∫ ( )/2

 

 relates an area to a set of axes. For example,

 = ∫ (8.5)

which may be negative or positive depending upon the location of the area with respect to the reference axes. 

In particular, the product of inertia is zero if the area is symmetrical about any of the axes.

 of an area  about an axis normal to the area and passing through a pole 

is defined as

 0
2= ∫

Fig. 8.1 Consideration for inertial concepts



 Moment of Inertia: Area and Mass 421

y

dy

x
O

P

Ch

y

k

b

Fig. Ex. 8.1 (Solution)

 
= +∫ ( )x y dA

A

2 2

 
= + ∫∫ y dA x dA

AA

2 2

or J0 = Ixx + Iyy (8.6)

It is thus noted that, by definition, the polar moment of inertia about an axis through a pole must be the 

sum of the moments of inertia about the axes through the pole in the plane of the area. The polar moment of 

inertia is also denoted by J in literature.

Also,
 J0 = k0

2 A

 = Ixx + Iyy

 = kx
2 A + ky

2 A

and k0
2 = kx

2 + ky
2 (8.7)

Example 8.1 (a) Determine the moment of inertia of a rectangle with sides b and h about an axis 

coincident with side b. Determine also the radius of gyration about this axis.

(b) Evaluate the moment inertia about the axis coincident with side h. Also determine the polar moment 

of inertia about an axis, normal to the plane of the rectangle, passing through the corner O.

Solution Let the x-axis be along the side b and y-axis along h. It is 

convenient to consider a strip-element of width dy and area.

Part (a)
 dA = b dy

 The moment of inertia of the strip-element about the x-axis is

 dIxx = y2 dA = y2 b dy

and the moment of inertia of the entire rectangle is

 
I y b dy

bh
xx

h

= =∫ 2
3

0
3

 Expressing it in terms of the radius of gyration,

 Ixx = k2A = k2bh

and comparing with bh3/3,

 k
h

=
3

 The point P located by the radius of gyration is, in general, different from C, the centroid of the area because 

the latter is related to the first moment of area whereas the former depends upon the second moment of area. The 

point P is also a function of the axes whereas C is not. Moreover, the point P is not unique whereas C is uniquely 

located for a given area. An axis passing through the centroid and lying in the plane is called a centroidal axis.

Part (b)

 The moment of inertia about the y-axis, coincident with side h is evaluated, by analogy with the result 

first obtained.

 I
hb

yy =
3

3
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and the radius of gyration

 k
b

=
3

 Now, the polar moment of inertia must be the sum of the two about the axes passing through O:

 

J I I

bh hb bh
h b

A
h b

xx yy0

3 3
2 2

2 2

3 3 3

3

= +

= + = +( )
= +( )

where A = bh is the area of the rectangle.

Example 8.2 Determine the moments of inertia of the area of a circle about the centroidal axes. 

Determine also the radius of an equivalent cylindrical surface of the same area for the same polar moment 

of inertia.

Solution Considering a small element of area

 dA = dr . r dq

as shown in the figure and noting its moments of inertia,

 dIxx = (r sin q)2 dr . r dq

 Integrating over the circular area,

 
I r d drxx

r

R

=
= =
∫ ∫

0

3 2

0

2

sin θ θ
θ

π

 
= =

=
∫π

π
r dr

R

r

R
3

4

0
4

 Similarly,

I r d dr
R

yy

r

R

= =
==
∫∫ 3 2

4

00

2

4
cos θ θ

π

θ

π

r

O C

dq

q

dr

dA = dr . r dq

x
R

y

Fig. Ex. 8.2(a) (Solution)

z

y

C

x

Width

Fig. Ex. 8.2(b) (Solution)
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and Izz = J0 = Ixx + Iyy

 = + =
π π πR R R4 4 4

4 4 2

The radii of gyration about the x, y and r axes are:

 k
R

R
R R

x =
⎛

⎝⎜
⎞

⎠⎟
= =

π
π

4
2

2

4 4 2

 k k
R

y x= =
2

and k
R

R
R R

z =
⎛

⎝⎜
⎞

⎠⎟
= =

π
π

4
2

2

2 2 2
 

 The radius of the equivalent cylindrical surface having the same polar moment of inertia as the circular 

area is, therefore, R / .2  The width of the cylinder is given by

 2
2

π π
R

R× =width 2

whence     width =
R

2
 

which is the same as the radius of the cylinder.

Example 8.3 Calculate the polar area moment of inertia and the radius of gyration for the area of a 

flat circular ring of radii R1 and R2.

Solution The polar moment of inertia of a circular area can be determined conveniently by considering 

concentric ring-elements. For an elementary ring of width dr at a radius r, the elementary area is

 dA = 2pr dr

and its polar moment of inertia is

 d J0 = r2 . 2pr dr = 2pr3 dr

 For the entire ring,

 J r dr

R

R

0
32

1

2

= ∫ π  (i)

 =
−π ( )R R2

4
1
4

2
 (ii)

 It may be seen that the polar moment of inertia of a circular 

area could be obtained if the limits in Eq. (i) were 0 to R or if 

R1 = 0 and R2 = R are substituted in Eq. (ii).

 For the ring, the area is

 A R R= −π( )2
2

1
2

dr

O R2
R1

r

Fig. Ex. 8.3 (Solution)
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 By expressing the moment of inertia as

 J0 = k2 A

and comparing with the result Eq. (ii)

 k
R R2 1

2
2
2

2
=

+

whence k
R R

=
+1

2
2
2

2
 (iii)

 The radius of gyration of a circular area can also be obtained by substituting R1 = 0 and R2 = R in Eq. (iii).

 Alternatively, a ring may be visualised as a circle of radius R2 with a circle of radius R1 removed from its 

centre. Recalling that the polar moment of inertia of a circular area is p R4/2, the polar moment of inertia 

of the composite area is

 
J

R R
0

2
4

1
4

2 2
= −

π π

 
=

−π ( )R R2
4

1
4

2

and the corresponding radius of gyration is again obtained as above.

 8.3 PARALLEL-AXIS THEOREM: AREA

The parallel-axis theorem, also known as the transfer theorem, permits us to relate the moment of inertia Iaa

of an area with respect to a given axis aa to the moment of inertia Icc of the area with respect to a centroidal 

axis cc parallel to aa.

By definition,

 I r d Aaa

A

= ∫ 2

Substituting r = rc + s, as shown in Fig. 8.2,

 I r dA r s dA s dAaa c

A

c

AA

= + +∫ ∫∫2 22

The first term on the right-hand side represents the moment of 

inertia of the area about the centroidal axis cc and the second term 

vanishes because it is

 2 2sr dA s r dAc

A

c

A

∫ ∫=

and the first moment of area about the centroid is zero by the definition of centroid. The third term is

 s dA s dA s A

A A

2 2 2∫ ∫= =

dA

A

c
C

c

a a

rc

r

s

Fig. 8.2 Parallel axes
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Finally,

Iaa = Icc + s2A  (8.8)

This is the statement of the parallel-axis theorem. In words, the moment of inertia of an area about an axis 

aa is in excess of the moment of inertia of the area about a parallel centroidal axis cc by a positive amount 

s2A where s is the distance between the axes aa and cc. Obviously, the moment of inertia of an area is the least 

about an axis passing through the centroid.

The parallel-axis theorem for products of inertia appears in the form

I I s s Axy x y= +′ ′ 1 2

(

)

for any (for a parallel set of

set of axes  ccentroidal axes)

 (8.9)

where s1 and s2 are the perpendicular distances from the centroid to the x and y axes respectively.

The parallel-axis theorem for the polar moment of inertia of the area states that 

J0 = Jc + s2A  (8.10)

where s is the distance between O and C.

Let us take an illustration of the application of the Parallel-Axis Theorem:

For a rectangular area b × h with b along the x-axis, as shown in Fig. Ex. 8.1 (Solution),

Ixx about the base =
bh3

3
 then the moment of inertia about the parallel axis passing through the centroid c

located at h/2 above the base

 I
bh

A
h

xxc = − ⎛
⎝⎜

⎞
⎠⎟

3 2

3 2

where A = b . h

Hence I
bh bhh bh bh bh

xxc = − = − =
3 2 3 3 3

3 4 3 4 12
 

Generally, the moment of inertia about the centroidal axes are available in the Tables, such as Table 8.1. 

The application of the parallel-axis theorem enables us to determine the moment of inertia about any desired 

axes. For a rectangular area,

 I
bh

I
hb

J
bh

b hxx yy c= = = +( )
3 3

2 2

12 12 12
, ,

then, the moment of inertia about the base x′x′

 
I

bh
bh

h bh
x x′ ′ = + ⎛

⎝⎜
⎞
⎠⎟

=
3 2 3

12 2 3

Similarly,

 
I

hb
bh

b hb
y y′ ′ = + ⎛

⎝⎜
⎞
⎠⎟

=
3 2 3

12 2 3

and J
bh

b h
b h bh

b h0
2 2

2 2

2 2

12 2 2 3
= +( ) + ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

= +( )  



Engineering Mechanics426

Figures Description Area Moments of inertia

y y ′

x x

x ′x ′

y ′y
O

0

C

b

h

Rectangle (Upright) bh

I
bh

I
bh

xx x x= =′ ′

3 3

12 3
;

I
hb

I
hb

yy y y= =′ ′

3 3

12 3
;

J
bh

b hc = +
12

2 2( )

J
bh

b h0
2 2

3
= +( )

p

C

p
b

h Rectangle (Upright) bh
I

b h

b h
pp =

+

3 3

2 26( )

C

b

h/3

h

y

x

x ′ x ′

x

y

Triangle
bh

2

 
I

bh
I

bh
xx x x= =′ ′

3 3

36 12
;

I
hb

yy =
3

48
( )for iso. Δ

C

b

h/3

h

y

y

xx

Right-Angle

Triangle

bh

2

I
bh

xx =
3

36

I
hb

yy =
3

36

I
b h

xy = −
2 2

72

y

x x

y

C

d

Circle
πd 2

4

I
d

Ixx yy= =
π 4

64

J
d

c =
π 4

32

Table 8.1 Moment of inertia of plane figures

(Continued )
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(Continued )

Table 8.1 (Continued )

Figures Description Area Moments of inertia

y

y

x x
C

dd

Semicircle
πd 2

8

I d

I
d

xx

yy

=

=

0 00687

128

4

4

.

π

y

y

x x
C

t

d

Ring p dt

I
td

Ixx yy= =
π 3

8

J
td

c =
π 2

4

y

x x

y

C
d1

d2

Area between

Concentric Circles

π( )d d2
2

1
2

4

−
I

d d
Ixx yy=

−
=

π( )2
4

1
4

64

J
d d

c =
−π( )2

4
1
4

32

x ′x ′

xx

y

y

C

d/2

Quarter Circle
π d 2

16

I d I

I
d

xx yy

xx

= =

=

0 00344

256

4

4

.

π

xx

y

y

2a

2b Ellipse pab

I
ab

yx =
π 2

4

I
ba

yy =
π 2

4

J
ab

a bc = +
π

4

2 2( )
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 8.4 MOMENT OF INERTIA OF COMPOSITE SECTIONS

The inertial concepts can be applied to determine the moments and products of inertia of plane sections. 

The values for simpler geometrical shapes are obtained by integration and remembering these values, the 

moments and product of inertia for composite sections can be worked out. The moment of inertia of simple 

plane sections are tabulated in Table 8.1, whereas those for composite sections are computed by subdivid-

ing the area into its components. Let a composite area A have its components A1, A2, A3, ..... of which the 

moments of inertia about the axis in question are obtainable from Table 8.1 and by the application of the 

parallel-axis theorem. Let these moments of inertia be I1, I2, I3, ... respectively. The moment of inertia of 

the entire area A about an axis is the algebraic sum of the moments of inertia of its component areas about 

the same axis:

I = I1 + I2 + I3 + ....  (8.11)

It may be mentioned that the composite area can be made up of additive or subtractive component areas. 

The moment of inertia of a component area may, therefore, be additive or subtractive in the algebraic summa-

tion to compute the moment of inertia of the composite area. It should be noted that the radius of gyration k 

for the composite area about an axis is not e ual to the sum of the radii of gyration of the component areas 

about the same axis:

 k ≠ k1 + k2 + k3 + ...

Instead, the radius of gyration of a composite area is determined from the moment of inertia of the 

composite area:

 k
I

A

I I I

A A A
= =

+ + +
+ + +

1 2 3

1 2 3

�

�
 (8.12)

For example, the composite area shown in Fig. 8.3 

is made up of the component areas as

 A = A1 + A2 – A3 + A4

The moment of inertia of the composite area will, 

therefore, be given by

Ixx = I1xx + I2xx – I3xx + I4xx

and the radius of gyration of the composite area will 

be given by

 k
I

A
xx

xx=

Example 8.4 A composite area is made by removing a circle from a rectangle and adding it back to 

it at top as shown in Fig. Ex. 8.4. Determine: (a) the moment of inertia about the base ox, (b) the product 

of inertia about the x y axes and (c) the polar moment of inertia about an axis perpendicular to the area, 

passing through O.

x
A = A1 + A2 − A3 + A4

lxx = lxx1
+ lxx2

− lxx3
+ lxx4

x

A1

A4

A2A3

Fig. 8.3 Composite area
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Solution Since the radius of the circle is 0.15 m, the centre of the circle removed is 0.85 m from the x-axis

and the centre of the circle added is 1.15 m from the x-axis. The centroid of the rectangle would have been 

0.5 m above the x-axis.

Part (a)

Using the parallel axis theorem,

I xx = × × + ×( ) ×
1

12
0 5 1 0 5 1 0 503 2. . .

            (for rectangle)

 = 0.1667 m4

 I xx = + × ×
π

π
( . )

( . ) .
0 15

4
0 15 0 85

4
2 2

(for circle removed)

 = 0.0515 m4

 I xx =
×

+ + ×
π

π
0 15

4
0 15 1 15

4
2 2.

( . ) .

(for circle added)

 = 0.0939 m4

 The moment of inertia for the composite area is, therefore,

 Ixx = 0.1667 – 0.0515 + 0.0939 = 0.2091 m4

Part (b)

The product of inertia about the base and left side can  be calculated as follows:

 Ixy = 0 + (1 × 0.5) × 0.5 × 0.25

 (for rectangle)

 = 0.0625 m4

y

x
O

0.3 m

1.0 m

0.5 m

Fig. Ex. 8.4
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2 cm

y

y

xx

2 cm

2 cm

20 cm

15 cm

Fig. Ex. 8.5

          Ixy = 0 + (p × 0.152) × 0.85 × 0.25

     (for circle removed)

           = 0.0150 m4

          Ixy = 0 + (p × 0.152) × 1.15 × 0.25

       (for circle added)

            = 0.0203 m4

 For the composite area,

          Ixy = 0.0625 – 0.0150 + 0.0203 = 0.0678 m4

Part (c)

The polar moment of inertia about the pole O can be calculated in a similar way.

I0
2 2 2 21

12
0 5 1 0 0 5 1 0 5 1 0 0 25 0 5= ×( ) × +( ) + ×( ) × +( ). . . . . . .

 (for rectangle)

   = 0.2084 m4

   I0

4
2 2 20 15

2
0 15 0 85 0 25=

×
+ ×( ) × +( )p

p
.

. . .

 (for circle removed)

   = 0.0563 m4

   I0

4
2 2 20 15

2
0 15 1 15 0 25=

×
+ ×( ) × +( )p

p
.

. . .

 (for circle added)

   = 0.0983 m4

 For the composite area,

           I0 = 0.2084 – 0.0563 + 0.0983 = 0.250 m4

Example 8.5 Determine the moments of inertia with respect to the 

centroidal axes of the wide-flange beam section shown in Fig. Ex. 8.5.

Solution From the symmetry of the section, the centroid can be located by inspection. The moment of 

inertia of the composite section can be determined by different choices of the subdivisions. Let us consider 

some choices for Ixx.

Choice I

By subdividing it into three rectangles; 15 cm × 2 cm at top, 15 cm × 2 cm at the bottom and 20 cm × 2 cm 

in the middle.
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 I xx = ×
×

+ × ×
⎡

⎣
⎢

⎤

⎦
⎥2

15 2

12
15 2 11

3
2( )

  (for the top and 

 bottom rectangles)

 = 7280 cm4

 I xx =
×

=
2 20

12
1333

3
4cm

(for the middle 

  rectangle)

 Ixx of the composite section = 7280 + 1333 = 8613 cm4

Choice II

By subdividing it into five rectangles, 24 cm × 2 cm in the middle and two each above and below of 

6.5 cm × 2 cm

 I xx = ×
×

+ × ×
⎡

⎣
⎢

⎤

⎦
⎥4

6 5 2

12
6 5 2 11

2
2.

( . )

(for the four rectangles 

  at top and bottom)

 = 6309 cm4

 I xx =
×

=
2 24

12
2304

3

cm4

(for the middle 

  rectangle)

 Ixx for the composite section = 2304 + 6309 = 8613 cm4

Choice III

The easiest choice is perhaps the composition of the section by removing two rectangles 20 cm × 6.5 cm 

each from a larger rectangle of 24 cm × 15 cm. Then,

       I xx =
×

− ×
×

=
15 24

12
2

6 5 20

12
8613

3 3
4.

cm

 Similarly, Iyy can be determined by decomposing the area by different choices. It can be seen, by inspection 

that the quickest method in this case is to consider that section to be made up to three rectangles as per 

Choice I discussed before.

                   I yy =
×

=
20 2

12
13 3

3
4. cm

(for the middle rectangle)

                    I yy = ×
×⎛

⎝⎜
⎞

⎠⎟
=2

2 15

12
1125

3
4cm

(for the top and 

bottom rectangles)

Iyy for the composite section = 13.3 + 1125 = 1138.3 cm4

 The third choice which happened to be the easiest for finding Ixx is not the easiest for finding Iyy. In 

view of the facts demonstrated here, it should be noticed that different composite areas may be constituted 

differently for the purpose required.
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 8.5 PRINCIPAL AXES AND PRINCIPAL MOMENTS OF INERTIA: AREA

For an area A and the coordinate axes ox and oy,

         

I y dAxx

A

= ∫ 2

I x dAyy

A

= ∫ 2

I xy dAxy

A

= ∫

The coordinates of an area element are (x, y) with 

respect to the ox–oy axes and

 x′ = x cos q + y sin q

 y ′ = – x sin q + y cos q

with respect to the ox′–oy′ axes inclined at an angle q

with ox

 I y dA

A

x x′ ′ = ′∫ ( )2

 = − +∫ ( sin cos )x y dA

A

θ θ 2

 = + −I I Iyy xx xysin cos sin cos2 2 2θ θ θ θ

or, by using the identities,

 cos2
q = (1 + cos 2 q) /2

 sin2
q = (1 – cos 2 q) /2

 2 sin q cos q = sin 2q

 I
I I I I

I
xx yy xx yy

xyx x′ ′ =
+

+
−

−
2 2

2 2cos sinθ θ  (8.13)

 Similarly,

  I
I I I I

I
xx yy yy xx

xyy y′ ′ =
+

+
−

+
2 2

2 2cos sinθ θ  (8.14)

and I
I I

I
xx yy

xyx y′ ′ =
−

+
2

2 2sin cosθ θ  (8.15)

These equations permit us to determine the moment of inertia and products of inertia of an area about any 

set of axes with an origin O from the knowledge of Ixx, Iyy and Ixy about a known set of axes with the same 

origin.

It can be appreciated that these equations are the parametric equations of a circle. Eliminating q, by using 

the identity

 sin2 2q + cos2 2q = 1

y ′ y

A

y sin q

x

x ′ x ′

x

x cos q

q

x

y

O

y ′

Fig. 8.4 Rotation of axes
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 We obtain,

I
I I

I
I I

Ix x

xx yy

x y

xx yy

xy′ ′ ′ ′−
+⎛

⎝⎜
⎞

⎠⎟
+ =

−⎛

⎝⎜
⎞

⎠⎟
+

2 2

2

2

2

2

 Setting the average moment of inertia

 I
I Ixx yy

av =
+

2
 (8.16)

and R
I I

I
xx yy

xy=
−⎛

⎝⎜
⎞

⎠⎟
+

2

2

2  (8.17)

it can be rewritten as

 ( )I I I Rx x x y′ ′ ′ ′− + =av
2 2 2  (8.18)

which is the equation of a circle of radius R cen-

tered at a point located by (Iav , 0) on the abscissa Ix′x′
and ordinate Ix′y′. This circle is often called Mohr’s 

circle.

A typical point P on the circle denotes that the moment of inertia about an axis represented by radius 

vector CP is Ix′x′ and the product of inertia with reference to the axes is Ix′y′ as shown in Fig. 8.5. In particular, 

the product of inertia at A and B is zero. The moment of inertia Ix′x′ is also an extremum at these points; Imax

at A and Imin at B. These points are located by setting

 Ix′y′ = 0

whence tan 2
2

θm

xy

xx yy

I

I I
( ) = −

−
 (8.19)

This equation defines two values of 2qm which are 180  apart, i.e., or two values of qm at right angles. 

The two axes thus defined are called the principal axes. By definition, therefore, the principal axes of an 

area about a point O are a mutually perpendicular set of axes, one about which the moment of principal is 

a maximum and the other about which the moment of inertia is a minimum. The maximum and minimum 

moments of inertia about a point are also called the principal moments of inertia about that point. From the 

circle diagram shown in Fig. 8.5,

  Imax = Iav + R (8.20)

and Imin = Iav – R (8.21)

or I
I I I I

I
xx yy xx yy

xymax⋅ =
+

±
−⎛

⎝⎜
⎞

⎠⎟
+min

2 2

2

2
 (8.22)

The product of inertia of a given area with respect to the principal axes at a point O is zero. It was 

stated earlier that the product of inertia for a set of axes vanishes if the area is symmetrical about any 

of the axes. It follows that if an area possesses an axis of symmetry through a point O, this axis must be 

a principal axis through O. It may also be understood that axes other than the axes of symmetry can be 

principal axes. An area may or may not possess one or more axes of symmetry but it must have a set of 

principal axes or inertia about any given point O in the area or outside the area. If the point O is chosen to 

coincide with the centroid C, the principal axes of the area at this point are called the principal centroidal

axes of the area.

Ix′y′

Ix′x′

P

R

A

2qC

B
O

Ix′y′

Imin

Iav

Imax

Ix′x′

Fig. 8.5 Mohr’s circle diagram
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y

x ″

x ″

x

x ′

x ′

h = 3 m

b = 2 mO

Axis of

Maximum I
qm1qm2

Axis of

minimum I

Fig. Ex. 8.6 (Solution)

Example 8.6 Locate the axes of minimum and maximum moments of inertia at the corner of 

a rectangle and determine the values of the moments of inertia about those axes for a rectangle with 

b = 2 m and h = 3 m.

Solution With reference to Fig. Ex. 8.6 (Solution),

   I
bh

xx =
3

3

  I
hb

yy =
3

3

 I xy dA yx dx dyxy

A

bh

= =∫ ∫∫
00

  =
b h2 2

4

 Inclinations of the axes of maximum and 

minimum moments of inertia are located by

 tan 2
2

θm

xy

xx yy

I

I I
( ) = −

−

 = −
−

= −
−

2 4

3 3

3

2

2 2

3 3 2 2

b h

bh hb

bh

h b

/

/ / ( )
 For the case in hand,

 b = 2 m  and  h = 3 m

 Ixx = 18 m4, Iyy = 8 m4, Ixy = 9 m4

 tan
( )

.2
3 2 3

2 3 2
1 8

2 2
θm( ) = −

× ×
−

=

or 2qm = 119.05 , 299.05  

and qm = 59.53 , 149.53  

 The principal planes are, therefore, inclined at 59.53  and 149.53  to the x-axis as shown.

 The principal moments of inertia are obtained by employing Eq. (8.22).

 I Ixx yy+
=

2
13 m4

 I Ixx yy−
=

2
5m4

 Imax m= + + =13 5 9 23 32 2 4.

 Imin m= − + =13 5 9 2 72 2 4.

 If the sides of the rectangle were equal, i.e., if it was a square, i.e., b = h, then  tan 2qm would be infinite 

and qm = 45  and 135 , i.e., along the diagonal and perpendicular to it. The principal axes for a square at 

one of its corners must be along the diagonal through that corner and perpendicular to it. This is, however, 

not the case for a rectangle, as has been seen above. Let us calculate the moment of inertia about one of its 

diagonals, say OP. For this diagonal,
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 tan .θ = =
h

b
1 5

 q = 56.31

 2q = 112.62

 sin (2q) = 0.923  cos (2q) = – 0.385

 Employing the expressions for the moments of inertia from Eqs. (8.13) and (8.14),

Ix″ x″ = 13 + 5 × (– 0.385) – 9 × 0.923

 = 2.77 m4

 Iy″ y″ = 13 + 5 × (0.385) + 9 × 0.923

 = 19.38 m4

 It can be verified that

 Ix′′ y′′ ≠ 0

 8.6 INERTIAL CONCEPTS: MASS

The mass moment of inertia is a measure of its inertial behaviour, i.e., resistance to the rotational acceleration 

of the mass of the body. Consider a body of mass m whose distribution with reference to a Cartesian frame 

of reference xyz is known.

Let an element of mass dm, also denoted by

 dm = r dV

in terms of the mass density and its volume be 

located by a position vector .

= x + y + z

as shown in Fig. 8.6.

The mass moment of inertia of the element 

about the x, y and z axes respectively are defined as 

follows:

 dIxx = (y2 + z2) dm (8.23)

 dIyy = (x2 + z2) dm (8.24)

 dIzz = (x2 + y2) dm (8.25)

The moment of inertia of an element about an axis 

is given by the product of the mass element and the 

square of the perpendicular distance from the axis. 

The moment of inertia about the x-axis is shown in 

Fig. 8.6.

The mass moments of inertia of that entire body 

is, therefore,

I y z dm y z dvxx

V

= + = +∫∫ ( ) ( )2 2 2 2 ρ (8.26)

I x z dm x z dvyy

V

= + = +∫∫ ( ) ( )2 2 2 2 ρ (8.27)

 I x y dm x y dvzz

V

= + = +∫∫ ( ) ( )2 2 2 2 ρ  (8.28)

kx

C

dm = rdv
Solid

body

√y2 + z2

z

P ′

z

y

x

x

y

O

r

√y2 + z2

Ixx = ∫ ( y2 + z2) dm = k2
x . m

Fig. 8.6 Mass moment of inertia
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The mass products of inertia of the body are similarly defined as

I xy dv Ixy yx= =∫ ρ  (8.29)

I xz dv Ixz zx= =∫ ρ  (8.30)

I yz dv Iyz zy= =∫ ρ  (8.31)

about the pairs of the axes specified in the indices.

For a given body, there are nine elements of moments and products of inertia defined above but only six of 

them are mutually independent; the set depends upon the mass distribution in the body and its relative orientation 

with respect to the reference axes.These are

Ixx , Iyy , Izz and Ixy , Iyz , Izx

The sum of the moments of inertia at a point in space for a given body is invariant. This important property 

can be proved readily by addition and showing that the sum is

 I I I dvxx yy zz

V

+ + = ∫ 2
2 ρ  (8.32)

which is constant for the chosen point irrespective of the inclination of the reference axes at that point.

It can be observed from the definitions that the moments of inertia must be positive quantities whereas 

the products of inertia can be positive or negative. If two axes of a body form a plane of symmetry for 

the mass distribution of the body, the products of inertia related to the normal to the plane of symmetry 

must be zero. The products of inertia may also vanish at a point for a pair of axes other than the axes of 

symmetry.

The moments of inertia may also be expressed in terms of the corresponding radii of gyration

 I k mxx x= 2  (8.33)

 I k myy y= 2
 (8.34)

 I k mzz z= 2  (8.35)

The radius of gyration of a body is that distance from the axis of rotation where the entire mass of the body 

may be assumed to be concentrated for the same mass moment of inertia as the body offers.

The mass moments of inertia and the mass products of inertia of a body may be visualised as the nine 

components of a matrix called the inertia matrix

I =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

I I I

I I I

I I I

xx xy xz

yx yy yz

zx zy zz

The diagonal components are the moments of inertia about the x, y and z axes whereas the other compo-

nents are the products of inertia. As already shown,

 Ixy = Iyx Ixz = Izx and Iyz = Izy

The inertia matrix is, therefore, expressed as

I =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

I I I

I I I

I I I

xx xy xz

xy yy yz

xz yz zz
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0

l1 l2

dx

x

+x

l

Fig. Ex. 8.7

Example 8.7 A uniform slender rod of length l is 
supported and made to rotate in the plane of the paper, i.e., 
about the vertical axis through the bar at distance l1 from one 
end. Obtain an expression for the moment of inertia about 
the axis and hence evaluate the moment of inertia if the rod 
is supported

(a) at its end
(b) at its mid-point.

Solution Let us solve this problem by two different mehods.

Method 1

Consider an elementary length dx of the rod at a distance x from the axis of rotation. The mass of the 
element is

 dm = r a dx

where r is the uniform density and a is the cross-section area
 The mass of the rod can be seen to be

 m = r a l

 The moment of inertia of the element about the axis of rotation is

 dI0 = x2 dm = x2
r a dx (i)

 The moment of inertia of the entire rod is obtained by integrating it between the end limits of the rod.

 I ax dx

I

I

0
2

1

2

=
−

+

∫ r  (ii)

 
=

−

+

ra
x

I

I3

3
1

2

 =
+

ra
l l( )1

3
2
3

3
 (iii)

where  l1 + l2 = l

is the length of the rod. 

 In terms of the mass of the rod

 m = r a l

the moment of inertia is expressed as

 I m
l l

l
0

1
3

2
31

3
=

+( )
 (iv)

(a) If the rod is supported at an end, either l1 or l2 is zero depending upon at which end it is supported. For 
support at its left end,

 l1 = 0  and  l2 = l

and I al ml0
3 21

3

1

3
= =r  (v)
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(b) If the rod is supported at its mid-point,

  
l l l1 2

1

2
=

and I al ml0
3 21

12

1

12
= =r  (vi)

Method 2

Let us consider the slender rod of length l in isolation and first find its moment inertia about yy axis passing 

through its centriod C.

 Considering an elementary mass dm with length dx at a distance x from the centroid

 dm = r adx

where ρ is the uniform density on a is the cross section area.

 
I ax x dxyyc

l

= ⋅∫2

0

2

r

/

 

= =

=

2
3 12

12

3

0

2
3

2

r ra
x

a
l

ml

l /

where the mass m = r. a.l.

 We already got the answer to Part (b) of the question:

 For part (a), I
ml

m
l ml

yyc = + ⎛
⎝⎜

⎞
⎠⎟

=
2 2 2

12 2 3
 

 Now, for the given orientation with the hinge at O,

 

I
ml

m l
l l

ml
m

l l

yyc = + −
+⎛

⎝⎜
⎞
⎠⎟

= +
−⎛

⎝⎜
⎞
⎠⎟

2

2
1 2

2

2
2 1

2

12 2

12 2

 

=
+( )

+
−( )⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= + −( )

m
l l l l

m
l l l l

1 2

2

2 1

2

1
2

2
2

1 2

12 4

3which is the same as

 
I

m l l

l l

m l l

l
yyc =

+
+

⎛

⎝⎜
⎞

⎠⎟
=

+( )
3 3

1
3

2
3

1 2

1
3

2
3

Example 8.8 A rectangular prism of cross-section (a × b) and uniform density r has a length l.

Determine its moments of inertia and the products of inertia about the longitudinal and transverse axes 

passing through the centre of mass.

y

y

e

dm

dx

C
x

l
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a

C

l

b

x

y

z

Fig. Ex. 8.8 (Solution)

Solution For the rectangular prism and coordinate axes 

through C as shown in Fig. Ex. 8.8 (Solution).

 I y z dv

V

xx = +∫ ( )2 2 ρ

 = +
−−−
∫∫∫ ( )

/

/

/

/

/

/

y z dx dy dz

a

a

l

l

b

b

2 2

2

2

2

2

2

2

ρ

 
= +

−−
∫∫ ( )

/

/

/

/

y z a dy dz

l

l

b

b

2 2

2

2

2

2

ρ

 = +
⎛

⎝⎜
⎞

⎠⎟−
∫

l
z l a dz

b

b 3
2

2

2

12
/

/

ρ

 = + = +
r r

r
abl ab l

abl l b
3 3

2 2

12 12
12( )/

 =
+

=
+

ρv
l b

m
l b2 2 2 2

12 12
 Similarly,

 I x z dvyy

V

= +∫ ( )2 2 ρ

 =
+

m
a b2 2

12

 I x y dvzz

V

= +∫ ( )2 2 ρ

 =
+

m
a l2 2

12

 The products of inertia are obtained as follows:

  I xy dvxy

V

= ∫ ρ

 =
−−−
∫∫∫ xy dx dy dz

a

a

l

l

b

b

ρ
/

/

/

/

/

/

2

2

2

2

2

2

 
= −

⎛

⎝⎜
⎞

⎠⎟

=
−−
∫∫

1

2 4 4

0

2 2

2

2

2

2

y
a a

dy dz

l

l

b

b

/

/

/

/

 This result was expected from the symmetry; the above integration is only as an exercise. Similarly, by 

symmetry,

              Iyx = Iyz = Ixz = 0

 It may be verified that if three axes were drawn through a corner instead of the centre of mass C, the 

results would have been

 
I m

l b
xx =

+2 2

3
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I m
a b

yy =
+2 2

3

I m
a l

zz =
+2 2

3
and the products of inertia would not vanish due to lack of symmetry

I m
al

lyxxy = =
4

I m
ab

Ixz zx= =
4

I m
bl

Iyz zy= =
4

 8.7 MOMENTS OF INERTIA OF THIN PLATES

Let us now consider the moments of inertia of the uniform flat plates of homogeneous material where the 

reference axes x and y are contained in the plane and z is normal to the plane of the plate. Consider a flat plate 

of uniform thickness t and mass density r as shown in Fig. 8.7.

  
I y z dvxx

V(

( )

mass)

= +∫ 2 2 ρ

 = + = +∫∫ρ ρ( ) ( )y z dV y z t dA

AV

2 2 2 2

  
= +∫ρt y z dA

A

( )2 2

 Hence I t Ixx xx= r

( ) ( )mass area

 (8.36)

 Similarly,

 
I t Iyy yy

( ( )mass) area

= r

 
I t Izz zz

( ( )mass) area
= r

It can also be observed that, in the limit when the thickness of 

the flat plate t → 0 and the density r → ∞ such that rt → 1, the 

mass moments of inertia reduce to the area moments of inertia. 

This is expected because the limiting process was designed to bring the z coordinate to zero, thus reducing 

the body to a mere area.

The statement that

 Izz = Ixx + Iyy  (8.37)

which was shown to be true for the area moments of inertia is true for the mass moments of inertia only if, 

the thickness t tends to zero. The relationship is, however, used for plates of small thickness with little error. 

For thicker plates and for cylindrical bodies, as for other bodies, the mass moments about the three reference 

axes are mutually independent and must be determined separately.

y

z

x

t

Fig. 8.7 A thin plate of uniform thickness
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3 m

5 m

x

3 m

Fig. Ex. 8.9 (Solution)

Example 8.9 A triangular metal sheet of uniform thickness 10 cm and uniform density 5000 kg/m3

is hinged on its base 6 m long as shown in Fig. Ex. 8.9. Determine the moment of inertia about the hinge. 

The other two sides are 5 m each.

Solution For a thin plate of thickness t and uniform density

 
I t Ixx xx

( ( )mass) area

= ρ

 The problem is, therefore, reduced to that of finding the 

area moment of inertia. Consider an elementary strip of 

width dy at a height y above the x-axis. From the fact that

 y = 0 for x = 3

and y = 4 for x = 0

it can be seen that

 x = −0.75y + 3

  The length of the strip is thus

 2x = 6 − 1.5y

and the area of the strip is

 2x dy = (6 − 1.5y) dy

whose moment of inertia is

 dIxx = (6 − 1.5y) y2 dy = (6y2 − 1.5y3) dy

 Therefore, the moment of inertia of the entire area is

   
I dI y y dyxx xx

A

= = −∫∫ ( . )6 1 52 3

0

4

 
= − =2

3

8
323 4

0

4

4y y m

 

I xx = × × =5000 0 1 32 16 000 2. , kg m

(mass)

 
Mass of the sheet kg=

×
× × =

6 4

2
5000 0 1 6000.

 The radius of gyration is, therefore,

 
k = =

16 000

6000
1 63

,
. m

 8.8 PARALLEL-AXIS THEOREM (MASS MOMENT OF INERTIA)

The parallel-axis theorem for the mass moment of inertia states that the mass moment of inertia with respect 

to any axis is equal to the moment of inertia with respect to a parallel axis through the centre of mass plus the 

product of the mass and the square of the perpendicular distance between the axes. Mathematically,

 I I saa cc= + 2 m  (8.38)
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where Iaa is the mass moment of inertia about an axis aa

and Icc is the mass moment of inertia about an axis paral-

lel to aa and passing through the centre of mass C. The 

two axes are s apart and the mass of the body is m.

With reference to Fig. 8.8 where a thin strip of mass 

dm is taken parallel to either of the parallel axes and the 

vectors , c and s are measured in a plane perpendicular 

to the parallel axes and passing through C

 
I r dmaa = ∫ 2

 Substituting

= c + s or r2 = ⋅ = ( c + s) ⋅ ( c + s)

 = rc
2 + 2 c ⋅ s + s2

 
I r dm dm s dm I saa c c cc= + ⋅ + = +∫ ∫∫2 2 22s  m

because the middle term vanishes by virtue of the definition of the centre of mass, i.e.,

 
2 2 0s s⋅ = ⋅ =∫∫ r rc cdm dm

Similarly, the parallel axes theorem for the mass products of inertia states that

 I Ixy xy

(for any set
of axes

(for a parallel set of axes
at 

= ′′

tthe centre of mass)

m+ s s1 2  (8.39) 

where s1 and s2 are the perpendicular distances from the centre of mass to the x and y axes respectively.

Example 8.10 Determine the mass moments of inertia for a hollow cylinder of radii R1 and R2 and 

axial length l about the longitudinal and transverse axes at the centre of mass.

Solution Consider a thin sliced ring element of radius r

having an infinitesimal thickness dz and radial width dr

at the distance z from the centre of mass C as shown in 

Fig. Ex. 8.10 (Solution). The mass of this element is

r 2pr dr dz

 The mass moments of inertia of this ring is related to 

its corresponding area moments of inertia as

dI dI t(mass) (area)= × π

 Consequently,

dIzz = r 2pr2 dr dz

             = 2rpr3 dr dz

 The mass moment of inertia for the entire cylinder is obtained by double integration

 

I dI r dr dzzz zz

R

R

l

l

= = ∫∫∫
−

2 3

2

2

1

2

ρπ
/

/

a

dm dm

C
C

c

a

r

c

c

s

Elevation view Side plane through C

Fig. 8.8 Parallel axes for moment of inertia

z r
dz

x

dr

y

Cz

l

R1

R2

Fig. Ex. 8.10 (Solution)
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 =
−
∫ 2

4

4

2

2

1

2

ρπ
r

dz

R

R

l

l

/

/

 
= −( )

−
∫

ρπ
2

2
4

1
4

1 2

1 2

R R dz

/

/

= −( )ρπ
2

2
4

1
4R R l

 Since the mass of the hollow cylinder is given by

 m = rp (R2
2 – R1

2) l

the moment of inertia can be expressed as

 I R R l
m

R R l
zz = − ×

−
ρπ

ρπ2
2
4

1
4

2
2

1
2

( )
( )

or, I m R Rzz = +
1

2
1
2

2
2( )  

 In order to determine the moments of inertia about the x and y axes, we again start with the moments of 

inertia of the ring about the x and y axes. In view of the symmetry about x and y axes

 dIx′x′ = dIy′y′ = dIzz /2

 = rpr3 dr dz

about the axes at the centre of the ring. By the parallel-axis theorem, the moment of inertia of the ring about 

the axes through the centre of mass C is

 dIxx = dIyy = rpr3 dr dz + r 2pr dr dz . z2

 For the hollow cylinder,

 

I I r dr dz r z dr dzxx yy

R

R

l

l

= = +∫∫
−

ρπ ( )

/

/

3 2

2

2

2

1

2

 

=
−

+ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−

∫ρπ
R R

R R z dz

l

l

2
4

1
4

2
2

1
2 2

2

2

4
( )

/

/

=
−

+
−

ρπ ρπ
( )R R

l
R R

l2
4

1
4

2
2

1
2

3

4 12

 In terms of the mass of the hollow cylinder,

 m = rp (R1
2 + R2

2) l

I I m R R
ml

m l R Ryyxx = = + + = + +
1

4 12

1

12
31

2
2
2

2
2

1
2

2
2( ) ( ( ))

 Let us examine the results for a solid cylinder where

 R1 = 0  and  R2 = R

 
I

mR
I I m l Rzz xx yy= = = +

2
2 2

2

1

12
3; ( )
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 In particular, for a long or slender rod where R is very small and

R l

I I I mlzz xx yy

<<

≈ = =0
1

12

2;

 On the other hand, the moment of inertia for a thin cylindrical shell is determined by considering mean 

radius

 
R

R R
=

+1 2

2

and (R2 – R1) << R

such that R R R1
2

2
2 22+ ≈  

 
I m R mRzz = =

1

2
2 2 2

 
I I l R m l Rxx yy= = + ×( ) = +( )1

12
3 2

1

12
62 2 2 2

 8.9 MOMENT OF INERTIA OF COMPOSITE BODIES

The moment of inertia of bodies composed of simpler homogeneous bodies can be determined from the 

knowledge of the corresponding values for the components about the same axes. The steps for computing the 

moment of inertia for a composite body are, therefore, as follows:

 1. decompose the body into its simpler components, positive or negative depending upon the fact that the 

mass is additive or subtractive

 2. look up or recall the moment of inertia of the component bodies about their centroidal axes

 3. determine the moment of inertia of the component bodies about the desired axes by the application of 

the parallel-axis theorem

 4. add algebraically the moment of inertia of the component bodies to obtain the moment of inertia of the 

composite body

 I = I1 + I2 + I3 + ... (8.40)

The moments of inertia of some simple homogeneous bodies are tabulated in Appendices 2 and 3 for ready 

reference. It may be noticed that the moments of inertia of these bodies can be deduced from the values for a 

rectangular prism, hollow circular cylinder and hollow sphere which must be remembered.

It may be added that the radius of gyration of a com-

posite body cannot be obtained by adding the radii of 

gyration of the component bodies

 k ≠ k1 + k2 + k3 + ...

but it may be determined from the moment of inertia of 

the composite body, i.e.,

k
I

m

I I I

m m m
= =

+ +
+ + +
1 2 3

1 2 3

�

�
 (8.41)

For example, the composite body shown in Fig. 8.9 

consists of a mass m given by

 m = m1 + m2 – m3

m = m1 + m2 − m3

l = lzz1
+ lzz2

− lzz3

Mass removed

m2

m1

zz
m3

Fig. 8.9 A composite body
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Example 8.11 A clock pendulum consists of a slender rod 

and a circular disc with a hole in it as shown in Fig. Ex. 8.11. 

The rod has a density of 7000 kg/m3 and cross sectional area of 

50 mm2 and the disc has a density of 8000 kg/m3 and a thickness 

of 5 mm. Compute the moment of inertia of the pendulum about 

an axis of rotation perpendicular to the plane of oscillations.

Solution Let us consider the pendulum to consist of three composite parts:

        (i) a slender rod 20 cm long plus

       (ii) a solid disc 10 cm diameter and minus

     (iii) a solid disc 5 cm diameter

for the sake of computing its moment of inertia.

 For the slender rod,

    
I m

l
0

2
6 2

3
7000 50 10 0 2 3= = × × ×−( . /

    = 9.33 × 10–4 kg m2

 For the solid disc of 10 cm diameter,

 m = 8000 × 5 × 10– 3 × p × 0.12 = 1.257 kg.

   

I mR m OP0
2 2

2 2

2

1

2

1

2
1 257 0 1 1 257 0 25

0 085

= + ( )

= × × + ×

=

. . . .

. kg m

 For the solid disc 5 cm diameter

 m = 8000 × 5 × 10– 3 × p × (0.05)2 = 0.314 kg

          

I mR m OP0
2 2

2 2

2

1

2

1

2
0 314 0 05 0 314 0 25

0 02

= + ( )

= × × ( ) + ×

=

. . . .

. kg m

P

20 cm

O

10 cm5 cm

Fig. Ex. 8.11
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The moment of inertia of the pendulum about the axis of rotation through O is

 I0 = 9.33 × 10–4 + 0.085 – 0.02 = 0.066 kg m2

 EXPERIMENT E8 MOMENT OF INERTIA OF A BODY

OBJECTIVE TO DETERMINE THE MOMENT OF INERTIA OF A STEPPED PULLEY OR A FLYWHEEL 

EXPERIMENTALLY.

Apparatus A stepped pulley or flywheel mounted with its axle on bearings as shown in Fig. E8.1. Provision 

for a cord to be wound round it, to pass over a frictionless fixed pulley, to hold a known mass and 

to allow its fall through a known height.

Background Information The equations expressing 

the moment of inertia in terms of the measurable 

para meters are obtained by employing either the 

energy principle or Euler’s equation of motion.

In terms of the energy principle, a mass m fall-

ing through a vertical height h releases its potential 

energy mgh which is transformed to the following: 

(a) the translational kinetic energy 1/2 mv2 of the fall-

ing mass m; (b) the rotational kinetic energy 1/2 Iw2

of the rotating body with moment of inertia I about 

its axis of rotation; and (c) the friction energy loss in 

the bearings, nF where n is the number of revolutions 

during the descent of the mass and F is the frictional 

energy in J/revolution. If the flywheel takes N revolu-

tions to dissipate the entire rotational energy 1/2 Iw2

from the instant the mass reaches the ground,

NF = 1/2 Iw2

whence nF
n

N
I= ⋅

1

2

2ω

By energy balance,
 mgh mv I

n

N
I= + + ⋅

1

2

1

2

1

2

2 2 2ω ω  (E8.1)

 Substituting v = rw and rearranging the terms,

                I
mgh mr

n N
=

−
+

2

1

2 2

2

ω
ω ( / )

 (E8.2)

 If n is negligible compared to N, the frictional effect would be negligible and the moment of inertia would 

be given by

                I
mg mr

=
−2 2 2

2

ω
ω

 (E8.3)

 It may be noted that w, the rotational speed when the mass has descended to the ground is obtained from

                w = a t

as the body starts from rest at the reference time t = 0. The angular acceleration a of the rotating body is 

related to the linear acceleration a of the falling mass as

                 a = ra

r
I

Initial level
Cord

Bearing Bearing

Pulley
block

Falling
mass

Table

Ground

Bracket

hm

Fig. E8.1 Apparatus for determining moment of inertia
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and the linear acceleration a is such that

 h = 1/2 at2

whence a
h

t
=

2
2

 

and ω =
2h

rt
 (i)

 With this substitution, Eq. (E8.3) becomes

 I mr
gt

h
mr

g a

a
= −

⎛

⎝⎜
⎞

⎠⎟
=

−⎛
⎝⎜

⎞
⎠⎟

2
2

2

2
1  (E8.4)

 Alternatively, if the time taken to complete N revolutions before the rotating body comes to stop after the 

instant the falling mass touches the ground is T, the average angular velocity would be

 ω
π

av =
2 N

T
 (ii)

 Since the deceleration is assumed to be constant, the angular velocity at the instant of touchdown of the 

mass should be twice the average value

 
ω ω

π
= × =2

4
av

N

T

 If it is substituted in Eq. (E8.2), it reduces to

                I mr

ghT

N r

n

N

=
−

+⎛
⎝⎜

⎞
⎠⎟

2

2

2 2 28
1

1

π  (E8.5)

and if n is negligible compared to N, i.e., if the frictional effect is neglected,

                I mr
ghT

N r
= −

⎛

⎝⎜
⎞

⎠⎟
2

2

2 2 28
1

π
 (E8.6)

 It can be seen that Eqs. (E8.2) and (E8.5) are identical and that Eqs. (E8.3), (E8.4) and (E8.6) are also 

identical, the difference being the use of w from Eq. (i) or Eq. (ii).

Observations and Calculations The scheme of taking observations and calculations depends upon whether 

it is intended to account for friction or not and as to which of the two methods, (i) and (ii) for evaluating the 

rotational velocity w at the instant of touchdown of the mass on the ground is preferred.

 It is probably easiest to evaluate first and to substitute the same in either Eq. (E8.2) or Eq. (E8.3) accord-

ingly depending on whether friction is to be accounted for or not. It may be noted that the fall h of the mass 

is related to the number of turns n the body makes before the touchdown of the falling mass as

 h = 2pr n

 A recommended tabulation of observation and calculations would be as follows:

S.No. m r h t T N n w I

Units kg m m s s — — rad/s kgm2

 1

 2

 3

 4

 Moment of Inertia: Area and Mass



1.5 m

0.1

1 m

0.55
0.9

Rim of the 

flywheel

Spokes

Fig. Ex. 8.12

Results and Points for Discussion

Obtain the average moment of inertia  from the set of observations and calculations.

Measure the dimensions of the body and estimate its mass. From a knowledge of its moment of inertia 

and mass, calculate the radius of gyration .

Comment on the accuracy in the measurements of time, length and mass in relation to the accuracy in 

the measurement of the moment of inertia. Would you recommend the use of a better stop watch, a more 

accurate scale or a better weighing machine in order to improve the accuracy of the value of the moment 

of inertia?

From a knowledge of the dimensions of the body, obtain its moment of inertia theoretically and compare 

it with the experimental result. Account for the difference.

What is the role of the moment of inertia of a body in its rotational motion? Explain why a flywheel 

should have a large moment of inertia.

Can you suggest some alternative methods for determining the moment of inertia of a body about a 

given axis if the body is cylindrical or irregular in shape. Examine the method of rolling a body down an 

inclined plane and the method of oscillating a body about a mean position.

Example 8.12 A spoked flywheel as shown in 

Fig. Ex. 8.12 consists of four spokes each 0.9 m long and of 

mass 50 kg which are cast with a rim of inner and outer radii 

1 m and 1.5 m respectively and having a mass of 5000 kg. 

The shaft at the centre of the wheel has a diameter of 0.2 m 

and a mass of 1500 kg. Calculate the moment of inertia of 

the flywheel about the axis of rotation and also its radius of 

gyration.

Solution The moment of inertia of flywheel is the sum of the moments of inertia of the central shaft, 

spokes and rim. Let the centre of the flywheel be called O.

 The greatest contribution is by the rim as is obvious from the figure and the values of the masses. Taking 

the components one by one,

= = × × =
1

2

1

2
1500 0 1 7 502 2 2. .

( )

kg m

shaft

 The moment of inertia of one spoke about an axis passing through  and parallel to the axis of 

rotation is

= =
×

=
2 2

2

12

50 0 9

12
3 375

.
.

( )

kg m

spoke
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2

3

O

Shaft

0.2 m diameter

Blades

C
1

Three-bladed rotor

1.5 m

1 m length

Fig. Ex 8.13

and by the parallel-axis theorem.

 
Ioo = + × =3 375 50 0 55 18 852 2. . .

( )

kg m
spoke

 For four spokes

 

Ioo = × =18.85 4 75.40 kg m2

( )fourspoke

 The moment of inertia of the rim is

          
I m R Roo = +

1

2
1
2

2
2( )

(rim)

            
= × × +( ) =

1

2
5000 1 1 5 81252 2 2. kg m

 The moment of inertia of the flywheel is, therefore,

 7.50 + 75.40 + 8125 = 8207.9 kg m2

 It can be seen that the rim alone contributes to the moment of inertia to the extent of

             

8125

8207 9
100 98 99

.
.× =

 The radius of gyration of the flywheel can be determined from

                    Ioo = mk2

whence                

k 2 28207 9

4 50 5000 1500
1 225=

× + +
=

.
. m

 
and k = 1.107 m 

Example 8.13 A three-bladed rotor of a helicopter 

consists of a 0.2 m diameter shaft, 1 m long and 1.5 m 

long radial blades. The shaft is made of steel, specific 

gravity 7, and the blades have a mass of 20 kg/m. 

Assuming the blades as uniform rods, estimate the polar 

moment of inertia of the rotor about the axis of rotation.
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Solution The polar moment of inertia of the shaft alone is

 

I
mR

oo =
2

2
( )shaft

 

=
×

× × × ×

=

π 0 2

4
1 7 1000

0 1

2

1 1

2 2

2

. .

. kg m

 The moment of inertia of one uniform-rod blade about an axis through C parallel to the axis of rotation is

 
I

ml
cc =

2

12( )blade

 
= × × =( . )

.
.1 5 20

1 5

12
5 625

2

kg m2

 By the parallel-axis theorem, for each blade

 

Ioo = + ×( )× +( )

=

5 625 1 5 20 0 75 0 1

27 3

2

2

. . . .

.

( )

kg m

blade

 For the three blades of the rotor,

 
Ioo = × =27 3 3 81 9 2. .

( )

kg m
three blades

 For the complete rotor, then

 Ioo = 1.1 + 81.9 = 83 kg m2

Example 8.14 Determine the moment of inertia of a hollow sphere of radii R1 and R2 and hence 

estimate the moments of inertia of

(a) a solid sphere of radius 0.5 m and mass 50 kg

(b)  a thin spherical shell of mean radius 0.5 m and mass 20 kg.

Solution Consider a ring element of radius r, radial 

width dr and axial width dz at a distance z from the 

centre of the sphere. The mass of this element is

r ⋅ 2pr ⋅ dr dz

and its moment of inertia about the z-axis is

 dI dr dzzz = r p2 3

(mass)

 (i)

 The moment of inertia of the hollow sphere is 

obtained by integration over the domain:

r R z

z R R R R

varying from to

varying from to and from to

0 2
2 2

1 2 1 2

( )−
− −

⎡

⎣
⎢⎢
⎢

x

y

z

dr

dz

O

r

R1

z

R2

Fig. Ex. 8.14 (Solution)
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and

r R z R z

z R R

varying from to

varying from to 

( ) ( )1
2 2

2
2 2

1 1

− −
−

⎡

⎣
⎢
⎢

 

I r dr dzzz

R z

R

R

= ⋅
−

∫∫ ρ π2 3

0

2

2 2

1

2

 

+ ⋅
−−

∫∫ ρ π2 3

0

2

2 2

1

2

r dr dz

R z

R

R

+ ⋅ = + +
−

− −

−
∫∫ ρ π2 3

1 2 3

1

2 2

2

2 2

1

1

r dr dz I I I

R z

R z

R

R

 The sum of the first two integrals is

 
2 2

4

2
2 2 2

1

2

⋅ ⋅
−

∫ ρ π
( )R z

dz

R

R

 
= + −ρπ R z

z
R

z

R

R

2
4

5

2
2

3

5
2

3

2

= ⋅ + − − − +
⎛

⎝⎜
⎞

⎠⎟
ρ π R

R
R R R

R
R R2

5 2
5

2
5

2
4

1
1
5

2
2

1
3

5

2

3 5

2

3

 
= ⋅ − − +⎛

⎝⎜
⎞
⎠⎟

ρ π
8

15

1

5

2

3
2
5

2
4

1 1
5

2
2

1
3R R R R R R

 The third integral is now evaluated as

 
ρ π⋅ − − −⎡⎣ ⎤⎦

−
∫ 2 42

2 2 2
1
2 2 2

1

1

( ) ( )R z R z dz

R

R

 
= − + −

−
∫

ρπ
2

22
4

1
4

1
2

2
2 2

1

1

( ( ) )R R R R z dz

R

R

 

= − + −
−

ρπ
2

2
3

2
4

1
4

1
2

2
2

3

1

1

( ) ( )R R R R
z

R

R

 
= − −⎛

⎝⎜
⎞
⎠⎟

ρπ R R R R R2
4

1 2
2

1
3

1
52

3

1

3

 Finally, adding the three integrals,

 
I R R R R R R R R R R Rzz = − − + + − −⎛

⎝⎜
⎞ρπ

8

15

1

5

2

3

2

3

1

3
2
5

2
4

1 1
5

2
2

1
3

2
4

1 2
2

1
3

1
5

⎠⎠⎟
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 = ⋅ −( )8

15
2
5

1
5ρπ R R  (ii)

 Since the mass of the hollow sphere is

 
m R R= −

4

3
2
3

1
3πρ ( )

the moment of inertia can be expressed as

I m
R R

R R
zz

( )

( )

( )hollow sphere

=
−

−
2

5

2
5

1
5

2
3

1
3

 (iii)

 By symmetry about the axes and by interchangeability of the axes,

 Ixx = Iyy = Izz

 Let us now observe two special cases as a matter of interest:

(a) Solid Sphere

Setting R1 to zero and R2 = R

 I mRzz

( )solid sphere

=
2

5

2  (iv)

 In fact, the moment of inertia of a solid sphere could be determined ab-initio by considering elementary 

rings as for hollow sphere but with simple limits of integration, i.e.

r R zvarying from  to 0 2 2−
and z varying from –R to R

 In that case,

I r dr dzzz

R z

R

R

( )sphere
=

−

−
∫∫ ρ π2 3

0

2 2

 
=

−

−
∫ ρ π2

4

2
2 2 2( )R z

dz

R

R

 
= + −

−
∫

ρπ
2

22
4 4

2
2 2( )R z R z dz

R

R

 
=

8

15

2ρ π R

In terms of the mass of a sphere,

 
m R=

4

3

3ρπ

 I mRzz
( )sphere

=
2

5

2  (v)

For the given sphere;

 R = 0.5 m; m = 50 kg

 I zz = × × =
2

5
50 0 5 52 2. kg m
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‘Drop’

Fig. Ex. 8.15

 By symmetry and interchangeability of the axes,

 Ixx = Iyy = Izz = 5 kg m2

(b) Thin Spherical Shell

A thin spherical shell is characterised by a mean radius

 R
R R

=
+1 2

2
and the shell thickness

 DR = (R2 – R1) << R

or DR/R1 << 1  and  R1 → R

 

I
mR

R

R

R

R

zz

( )thin shell
= ×

⎛
⎝⎜

⎞
⎠⎟

−

⎛
⎝⎜

⎞
⎠⎟

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
2

3

1

1

1
2

2

1

5

2

1

3

⎥⎥
⎥
⎥
⎥

= ×
+

⎛
⎝⎜

⎞
⎠⎟

−

+
⎛
⎝⎜

⎞
⎠⎟

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2

5

1 1

1 1

1
2 1

5

1

3
mR

R

R

R

R

Δ

Δ

 
= ×

⎡

⎣
⎢

⎤

⎦
⎥

2

5

5

3
1
2 1

1

mR
R R

R R

Δ
Δ

/

/

 
= =

2

3

2

3
1
2 2mR mR

 For the given shell:

 R = 0.5 m  and  m = 20 kg

 
I zz = × × =

2

3
20 0 5 3 332 2. . kg m

 By symmetry and interchangeability of the axis,

 Ixx = Iyy = Izz = 3.33 kg m2

Example 8.15 The moment of inertia of a 

‘flywheel and its shaft’ assembly is determined by 

letting it roll down an incline consisting of two parallel 

tracks, starting from rest. The incline is kept very 

low to ensure the shaft to roll without slipping. The 

experiment is repeated for two different heights in order 

to eliminate the effect of the frictional resistance.

 In a test, the assembly of mass 20 kg rolled 2.0 m down the incline, dropping by 5 cm in 50 seconds. In 

the second test, it rolled 2.0 m down the incline, dropping by 10 cm in 30 seconds. Estimate the moment of 

inertia of the assembly, taking the shaft diameter of 5 cm.
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Solution Shaft diameter = 0.05 m.

 The assembly rolls under constant acceleration; average speed of roll must be half of the maximum speed 

at the end of the roll.

For test 1:   Average speed of roll = =2 50 0 04/ . m/s

Maximum speed at end of roll = 0.08 m/s

Angular velocity at end of roll = =
0 08

0 025
3 2

.

.
. rad/s

For test 2:   Average speed of roll = =2 30 0 067/ . m/s

Maximum speed at end of roll = 0.133 m/s

Angular velocity at end of roll = =
0 133

0 025
5 33

.

.
. rad/s

Energy balance during a roll-down motion requires

Loss of potential energy – Work against frictional resistance R = Gain of kinetic energy

Hence, for each roll down motion,

 mgh R I m v− = +
1

2

1

2

2 2ω
 For the two tests,

 mg R I× − = × + × ×0 05
1

2
3 2

1

2
20 0 082 2. . .  (i)

 mg R I× − = × + × ×0 10
1

2
5 33

1

2
20 0 1332 2. . .

 (ii)

 By subtraction, R is eliminated and

20 0 1 0 05
1

2
5 33 3 2

1

2
20 0 133 0 08

9 81 9 1

2 2 2 2× −( ) = −( ) + × −( )
=

g I. . . . . .

. . II

I

+

= ≈

0 113

0 99 12 2

.

. kg m kg m

Concept Review Questions

  Bring out briefly the conceptual mistakes, if any, 

in the following statements:

 (a)  The area moment of inertia and mass moment 

of inertia are two entirely unrelated concepts.

 (b)  The products of inertia can be obtained by 

multiplying the moments of inertia about 

the chosen axes.

 (c)  The product of inertia vanishes for an axis of 

symmetry involved in the product but zero 

product of inertia provides no indication for 

an axis of symmetry.

 (d)  The radius of gyration for an area can be eval-

uated if the corresponding moment of inertia 

and the location of the centroid are known.

 (e)  Moments of inertia about non-centroidal 

axes may be larger or smaller than the 

centroidal values for parallel axes.

 (a)  Comment on the similarity of the concepts 

of mass and moment of inertia.

 (b)  The mass of a body remains the same 

irrespective of its location or inclination of the 

axis of rotation but the value of the moment of 

inertia about an axis of rotation depends upon

 (i)  the position and direction of the axis 

of rotation

 (ii)  the distribution of the mass of the body 

with respect to that axis.
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  Explain this apparent dissimilarity of the 

concepts of mass and moment of inertia.

 Which is more in the following?

 (a)  the moment of inertia of a sphere about its 

diameter or about a tangent.

 (b)  the moment of inertia of an equilateral 

triangle about a side or the moment of inertia 

of a square of the same area about its side.

 Fill in the blanks:

 (a)  The principal moments of inertia of area are 

the  values which occur when the 

product of inertia is . The axes along 

which the principal inertia values occur are 

called . These axes  the axes of 

symmetry at the point under consideration.

 (b)  The parallel axis theorem is valid for the 

transference of the inertia values from one 

axis to another axis parallel to it if .

 (c)  Angles on the Mohr’s circle representation 

are  the angles on the section or body 

itself and the centre of the circle represents 

the .

 (d)  The sum of the moments of inertia about the 

axes lying on a section of the body must be 

the polar moment of inertia, i.e., about an axis 

normal to those axes for bodies .

 (e)  The relationship between the area moment 

of inertia and the mass moment of inertia is 

.

 (f )  The sum of the moment of inertia values 

about a point, regardless of its orientation, 

is always .

 (g)  In order that an axis through a point 

in a rigid body be a principal axis, the 

.

  What should be the length to radius ratio, i.e., 

l/R of a solid cylinder such that the moments of 

inertia about the longitudinal and transverse axes 

are all equal.

s l R/ = 3

  From the fact that the moments of inertia for a 

hollow right circular cylinder are

I I m l R Rxx yy= = + +
1

12
32

1
2

2
2( ( ))

 and

 I m R Rxx = +( )/1
2

2
2 2

 Obtain the expression for the moment of inertia of

 (a) a solid cylinder of radius R

 (b) a slender rod of length l

 (c) a thin cylindrical shell of mean radius R

 (d) a thin disc of radius R

 (e) a thin ring of radii R1 and R2

  You are given two spheres of the same mass, size 

and appearance but one of them is hollow at the 

centre and the other is solid throughout. How will 

you find out which is hollow and which is solid?

 (Hint: Consider their moments of inertia and try 

relating their accelerations when rolled down the 

same incline. The solid sphere accelerates faster 

and hence reaches down the incline first.)

8   What is the relative significance of the moment 

of inertia and the radius of gyration? With what 

intention are these defined? Under what circum-

stances is it desirable to have small and large 

values of the moment of inertia?

  Would you imagine that the moment of inertia 

of the earth around its own axis is a negligible 

fraction of its moment of inertia about the axis 

of rotation around the sun?

  Take the mean radius of the earth as 6371 km 

and the mean radius of rotation around the sun as 

149.7 × 106 km.

s  Yes, it is true

Tutorial Problems

8   Determine the moments of inertia of an ellip-

tical disc of mass m and the semi-major and 

semi-minor axes a and b respectively.

s
1

4

1

4

1

4

2 2 2 2ma mb m a b, , ( )+⎡
⎣⎢

⎤
⎦⎥
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8   An isosceles triangle of base b and height h is 

such that the moment of inertia about the base 

equals the moment of inertia about a perpen-

dicular axis through the vertex. Determine the 

b to h ratio. s b = 2h

8   Show that the moment of inertia about a centroi-

dal axis parallel to a side for a cube of mass m is

I ma=
1

6

2

  where a is the length of a side.

8   Determine the moments of inertia about z axis 

of a right circular cone of mass m, base radius R

and height h, as shown in Fig. Prob. 8.4.

s I mRzz =⎡
⎣⎢

⎤
⎦⎥

3

10

2

x

z

R

h

Fig. Prob. 8.4

8   Determine the moment of inertia of a hollow 

sphere of radii R1 and R2 and determine the 

radius of gyration of a solid sphere.

s 2 5 0 632
5

1
5

3 3
/ ; .m

R R

R R
R

−

−

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

8   Determine the moments of inertia of an ellip-

soid of revolution of mass m, semi-major axis a

and semi-minor axis b.

s
2

5

2

5

2

5

2 2 2 2mb ma m a b, , ( )+⎡
⎣⎢

⎤
⎦⎥

8  The moment of a thin circular plate of mass 400 kg

about an axis AA is 109 kg m2. Determine 

(a) the moment of inertia about an axis BB,

(b) the moment of inertia about an axis CC,

(c) the radius of the plate, (d) the polar moment 

of inertia for pole O, and (e) moment of  inertia 

about an axis DD (Ref. Fig. Prob. 8.7).

s  265 kg m2, 73 kg m2, 0.3 m, 18 kg m2

and 109 kg m2

B A

D

D
30°

B

0.3 m

A C C

0.5 m

0.4 m

0.5 m

O

Fig. Prob. 8.7

8 8   Calculate the radius of gyration of a 30 cm long 

aluminum rod pivoted

   (a) at one end

   (b) at its mid-span

   (c) at a point quarter length from one end.

s 17.3 cm, 8.66 cm and 11.46 cm

8   A semicircle of radius r has been cut of a circle 

of radius R as shown in Fig. Prob. 8.9. Calculate 

the polar moment of inertia about O for the resul-

ting section.

y

x
O

R

r

Fig. Prob. 8.9

8   A T-section is 15 cm × 15 cm × 2 cm as shown in 

Fig. Prob. 8.10. Calculate the moment of inertia 

of the section about an axis parallel to the base 

of the T and passing through its centroid.

 s  1160 cm4
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2 cm

2 cm

15 cm

15 cm

Fig. Prob. 8.10

8   Find the moment of inertia of a channel section 

shown in Fig. Prob. 8.11 about the centroidal 

axes. s 4558 and 760 cm4

2.5 cm

10 cm

20 cm

Fig. Prob. 8.11

8   The cross-section of a cast iron beam is shown 

in Fig. Prob. 8.12. Determine the moments of 

inertia about the centroidal axes.

s 2885 and 340 cm4

12 cm

2.5 cm

2.5 cm

5 cm

15 cm10 cm

Fig. Prob. 8.12

8   Calculate the moment of inertia of a cast iron 

pulley with respect to its axis of rotation. 

Mass density of cast iron is 7200 kg/m3.

20 cm

5 cm

3 cm
6 cm

1
8
 c

m

Fig. Prob. 8.13

8   A spherical bob of radius R and mass mb is 

attached to a slender rod of length l and mass 

mr. Calculate the moment of inertia of the 

assembly about the axis of rotation.

s
1

3

2

5
22 2 2m l m R l R mr b b+ + +⎡

⎣⎢
⎤
⎦⎥

( / )

l

R

Cmb

mr

O

Fig. Prob. 8.14

8   A flywheel consist of a 1 m diameter plate 

10 cm thick with four holes, each 20 cm in 

diameter cut at a pitch circle diameter of 40 cm 

symmetrically. Compute the mass moment of 

inertia of the flywheel about the axis of rotation. 

The material of the flywheel is cast iron with 

specific gravity 7.5. s. 69.4 kg m2
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20 cm 100 cm

40 cm

O

Fig. Prob. 8.15

Look up Hints to Tutorial Problems at the end!

Multiple-Choice Questions

Select the correct or most appropriate response from 

among the available alternatives in the following 

multiple-choice uestions:

The moment of inertia of a body is
 (a) the moment of its inertia
 (b) the rotational moment acting on the body
 (c) the rotational analogue of mass
 (d) the inertial moment acting on the body

 The moment of inertia of a rectangular lamina of 
sides b and h about its neutral axis parallel to the 
side b is given by

 (a) bh3/12
 (b) bh3/36
 (c) hb3/12
 (d) hb3/36

 The second moment of a plane area about any 
axis as compared to its second moment about the 
 neutral axis

 (a) is always more
 (b) is always less

 (c)  is sometimes more or less depending upon 
some factors

 (d) is equal

 The moments of inertia of a solid circular section of 
radius r and of a hollow circular section of radii r and 
R, each about the diametral lines, are equal. Then,

 (a) R = 2r

 (b) R r= 2

 (c) R r2 22=
 (d) R = 4r

 A rectangle is divided into two smaller rectangles 
by drawing the neutral axis parallel to its smaller 
sides. If the moments of inertia of the smaller rect-
angles of areas A1 and A2 about the neutral axis are 
I1 and I2, the moment of inertia of the total area of 
the given rectangle about the neutral axis would be

 (a) I1 + I2

 (b) I1 – I2

 (c) I I1
2

2
2+

 (d) I I1 2+

Answers to Multiple-Choice Questions

1 (c)    2 (a)    3 (a)    4 (c)    5 (a)
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Dynamics of 

a Rigid Body

 9.1 INTRODUCTION

A rigid body may be subjected to external forces and moments and kinematic parameters such 

as velocity and acceleration may be predicted. Conversely, it may be required to evaluate the 

external action necessary for a desired set of kinematic conditions. This can be achieved by 

applying Newton’s law of motion for the linear motion of the centre of mass of the rigid body 

and Euler’s equation for the rotation of the rigid body. The purpose of this chapter is to present 

the methodology of applying the laws under different circumstances.

It is chosen, for the sake of simplicity of understanding, to study the dynamics of rigid bodies 

in steps, i.e., pure translation, fixed-axis rotation, plane motion and finally, space motion. The 

general form of the Euler’s equation obtained for space motion is shown to contract for the spe-

cial cases of translation, fixed-axis rotation, etc. There is no difficulty, therefore, if it is desired 

to reverse the approach, i.e., to proceed from general to particular cases.

A rigid-body model is not too hypothetical a model for many engineering situations. Most 

engineering materials maintain their shape and size and can be considered to be undeformed 

during their overall motions. It may also be appreciated that most engineering devices can be 

modelled as undergoing plane motion. More stress is, therefore, laid on the plane motion of 

rigid bodies than on space motion.

 9.2 TRANSLATION OF A RIGID BODY

Recalling the fact that the acceleration and velocity of each element on a rigid body must be the 

same in a pure translation, the translational motion must be governed by the Newton’s law,

 = m  (9.1)
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where  is the net external force acting on the body and  is the acceleration of any point on the body. The net 

external force, sometimes written as Σ , must be the vector sum of all the external forces acting on the body

 or Σ = 1 + 2 + 3 + ...

as also shown in Fig. 9.1.

There being no tendency of rotation, the angular velocity and the 

angular acceleration remain zero. In other words, the relative veloc-

ity of any point on the body referred to the centre of mass is zero and 

the angular momentum of the entire body with respect to the centre of 

mass is zero. It follows from the Euler’s equation that the summation of 

moments about the centre of mass, C must also vanish:

 Σ c = 0 (9.2)

These two relations govern the general translatory motion of a rigid 

body. If the body undergoes a plane motion, the parallel planes of motion 

being parallel to the x y plane, the component equations governing the 

motion reduce to
 Fx = max

 Fy = may

where ax and ay are rectangular components of acceleration of the centre of mass, as also of any other point on 

the body and Fx and Fy are the rectangular components of the net force acting on the body. Also, the moment 

about the z-axis passing through the centre of mass must vanish:

 Mz = 0

Example 9.1 A motor of mass 8000 kg resting on 

two supports A and B is pulled along a smooth horizontal 

surface by a string passing through a hook as shown in 

Fig. Ex. 9.1.

 Calculate the acceleration of the motor and the reac-

tions at the supports for a tension T applied in the string. 

Calculate the maximum tension in the string for the slid-

ing motion.

Solution From the free-body diagram of the motor as shown in Fig. Ex. 9.1 (Solution),

 Fx = Tx = T cos 30  = 0.866 T

 Fy = Ty − mg + RA + RB = 0.5 T − 78,500 + RA + RB

Mz = 0.5 T × 0.5 + RB × 0.5 − 0.866 T × 0.6 − RA × 0.5

 = 0.5RB − 0.5 RA − 0.27 T

 By the equations of motion for a rigid body in translation,

 Fx = 0.866 T = ma = 8000 a

 Fy = 0.5 T − 78,500 + RA + RB = 0

 Mz = 0.5RB − 0.5RA − 0.27 T = 0

Fig. Ex. 9.1

y T

xC

A B

0.5 m

0.6 m

30°

Motor

Smooth Surface

String

1

3

2

1

2

C

y

x

a

a

a

Fig. 9.1 A rigid body in translation
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 From these equations,

 a = 0.000 108 T m/s2

 RA = 39  250 − 0.52 T

 RB = 39  250 + 0.02 T

 It can be observed that the reaction RA decreases with 

the tension T increasing. In the limiting case of sliding,

RA = 0 = 39  250 − 0.52 T

and

T = 39  250/0.52 = 75  480.8 N = 75.48 kN

beyond which the point A will not be restrained to move 

along the surface. The motor may then overturn forward.

0.5 m

mg

RA RB

0.5 m 0.6 m

30°
Tx

Ty

a

y

x

Fig. Ex. 9.1 (Solution)

Example 9.2 A horizontal uniform bar PQ of mass 100 kg 

and length 30 cm is supported by strings from A and B 30 cm apart 

and is released from rest when q = 60  as shown in Fig. Ex. 9.2.

 For a plane curvilinear motion of the bar, determine the tension in 

the string at the instant when

(a) it is released from rest

(b) it crosses the mean position

(c) q = 30 .

Solution From the free-body diagram of the bar PQ at any instant as shown 

in Fig. Ex. 9.2 (Solution),

 Fr = T1 − T2 + mg cos q

Fq = mg sin q

 Mz = −T1 p1 + T2 p2

where p1 and p2 are the perpendicular distances from C to the lines of action 

of T1 and T2 respectively.

 Since p1 = p2 = p

from the symmetry and

 Mz = 0

for pure translation of the rigid body, it follows that

 T1 p − T2 p = 0

or T1 = T2 = T

i.e., the tensions in the strings must be equal at all times. Then,

 Fr = −2T + mg cos q

 Fq = mg sin q

 The acceleration of any point on the body is made up of two components; the radially inward component, i.e.,

−r w2 = −0.4 w2

p1

P

eq
er

aq

mg

Q

ar

C

1 2

p2

q q

Fig. Ex. 9.2 (Solution)

q

40 c

M  100 g

30 c

A B

QP

Fig. Ex. 9.2
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and the tangentially forward component, i.e.,
 ra = 0.4a

 By employing the equations of motion,

 −2T + mg cos q = 100 × (−0.4 w
2) = −40 w

2 (i)

or 2T − mg cos q = 40 w2

and mg sin q = 100 × 0.4a

or mg sin q = 40a (ii)

Case (a)

At the instant of release,

 q = 60 , w = 0

 From Eq. (i) 2T − mg/2 = 0

 T = mg/4

 = 100 × 9.81/4 = 245.25 N

and the angular acceleration a is obtained from Eq. (ii) as

 
α =

× ×
=

100 9 81 0 866

40
21 24 2. .

. rad/s

Cases (b) and (c)

At any instant when the strings are inclined at q with the vertical, from Eq. (ii),

 
α

θ ω
ω

ω
θ

= = = −
mg d

dt

d

d

sin

40

or w /dw = −mg/40 sin q dq 

and integrating each side,

 w
2/2 = mg/40 cos q + C

 Employing the initial condition,

 w = 0 at q = 60

 C = (−mg/40) cos 60  = −mg/80

and w
2 = mg/20 cos q − mg/40 (iii)

( b) When it crosses the mean position, q = 0

From Eq. (ii),

 a = −mg sin q/40 = 0

and from Eq. (iii), w
2 = mg/20 − mg/40 = mg/40

 w
2 = 100 × 9.81/40 = 24.52

or w = 4.95 rad/s 

 From Eq. (i), 2T = mg cos q = 40w
2

 2T = 40 × 24.52 + 100 × 9.81

 = 1962 N

and the tension T = 981 N

(c) At an instant when q = 30

From (ii), a = −100 × 9.81/80 = −12.26 rad/s2

and from (iii), w
2 = 42.5 − 24.5 = 18.0

 w = 4.24 rad/s

 From (i), 2T − mg cos q = 40 × 18 = 720

 2T = 720 + 100 × 9.81 × 0.866

and the tension T = 785 N
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 It can be observed that the tension in each string is the least at the extremities of the oscillatory motion. 

It is the maximum at the mean position. At this position, the weight of the bar acting downward is

mg = 981 N

but the total tension in the two strings upward is 1962 N. The vertically upward unbalanced force (1962–1981) 

N is the one which is responsible for the radially inward (in this position, vertically upward) acceleration, 

i.e., 0.4 w2. If, on the other hand, the mass was in equilibrium, supported by two equal vertical strings AP

and BQ, the tension in each string would only be mg/2, i.e., 490.5 N each.

 9.3 ROTATION OF A RIGID BODY ABOUT A FIXED PRINCIPAL AXIS

The case of a rigid body rotating about a fixed principal-axis is a special case of plane motion of a rigid body. 

Let the principal-axis of rotation be the z-axis passing through O such that O and C lie on a plane normal to 

the axis of rotation. With reference to the coordinate system shown in Fig. 9.2, the rotational velocity and 

acceleration are w and a respectively.

An elementary strip of mass dm chosen parallel to the fixed-

axis located at a position vector  as shown is then imparted a 

velocity and an acceleration given by

= rw
q

= −rw2
r + ra

q

The elementary mass must have been acted upon by an 

elementary force d  in accordance with Newton’s law, i.e.,

 d = dm = (−rw r + ra
q
) dm

The moment of the elementary force about the axis of rota-

tion passing through O is

 d z = × d

 = r r × (−rw2
r + ra

q
) dm

 = r2
a dm

This is the moment which must be exerted about O so as to 

accelerate the elementary mass at an angular acceleration a. The 

total moment required to rotate and accelerate the rigid body 

about an axis through O is, therefore,

 z zd M r dm= =∫ ∫α 2

or z = Iza (9.3)

where Iz, the mass moment of inertia of the body about an axis through O is, by definition, given by

 I r dmz = ∫ 2

and the moment vector z is directed perpendicular to the parallel planes of rotation.

It should be recorded here that the moment z acting on the rigid body about an axis through O is due to 

the entire system of forces on the rigid body. For example, the weight of the body, reactions from the supports 

and other external actions as obtained by drawing a free-body diagram of the rigid body must be taken into 

account to obtain the net moment z.

y

C

dm

xO

r

q

z

w,a

Fig. 9.2 Rotation about a fixed principal axis
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The centre of mass C is imparted a velocity and an acceleration given by

c = w × = rcw 
q

c = − rcw r + rca 
q

The equation of motion for the centre of mass is given by

 = m c (9.4)

The net external force  on the rigid body is due to the weight, reactions from the supports and 

other actions. This equation is useful if the desired goal is to find the reactions from the supports on a

dynamic body.

In particular, if the axis of rotation passes through the centre of mass, i.e., O and C coincide,

= m c = 0

 Mz = Iza

It is usual to define a point called centre of percussion as a location on a rigid body through which the 

resultant of the applied forces acts.

Consider, for example, a rigid-body model of a cricket bat free to rotate about an axis through O as shown 

in Fig. 9.3(a). Its centre of mass is at C but the centre of percussion is at a point P such that if the force due 

to a ball striking it passes through P, there is no horizontal reaction at O where the bat is held by the batsman 

and he can receive the ball comfortably, without jarring.

If the moment of inertia of the body about its axis of rotation is I0 and the corresponding radius of gyration 

is k0, the distance p at which the centre of percussion is located is given by

 p
k

h
= 0

2

This may be shown by considering the free-body diagram of the bat and by determining the condition of 

zero horizontal reaction at O. Referring to the free-body diagram shown in Fig. 9.3(b), the equation of motion 

for the centre of mass is

 Rx − F = ma (i)

and the Euler’s equation for rotation about the axis of 

rotation through O is

−F ⋅ p = I0a = (Ic − mh2)a

 = mk0
2
a = m(kc

2 + h2) a (ii)

Eliminating F between Eqs. (i) and (ii)

 
R ma

mk

p
ma

m k h

p
x

c= − = −
+0

2 2 2α α( )

Considering the fact that

a = ha

the condition for Rx to be zero is

 p
k

h

k h

h

c= =
+0

2 2 2

 (9.5)

C

h

p

Held by

hands

Ball

(a) Ball hitting the bat

held by a player

(b) Free-body diagram

of the bat at the instant of impact

Bat
P

Rx = 0

a
C

mg

P F

y

x

O

Ry

w

a

Fig. 9.3 Concept of the centre of percussion
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Example 9.3 A rectangular plate 2 m × 3 m of mass 100 mg/m2 is 

supported by hinges at A and B as shown in Fig. Ex. 9.3. If the support A

is removed, determine the reaction at B, the angular acceleration of the 

plate and acceleration of the centre of mass.

3 m

2 m

A

B

Fig. Ex. 9.3

Solution At the instant when the support A is removed, the plate tends to rotate 

about the axis passing through B and normal to the plane of the plate. From

the free-body of the plate at that instant, as shown in Fig. Ex. 9.3 (Solution)

 Fx = Rx

 Fy = Ry − mg = Ry − 600 × 9.81 = Ry − 5886

 MB = mg × 1 = 5886 N m

           IB = × × + + × +
1

12
600 (3 2 ) 600 (1.5 1 )2 2 2 2

              = 2600 kg m2

 By the equation of motion for a rigid-body rotation about a fixed axis,

 MB = IBa

or a = 5886/2600 = 2.26 rad/s2

 Also, Mc = Ica

 
1 1 5

1

12
600 3 2 2 262 2× − × = × × + ×R Ry x. ( ) .   

 Ry − 1.5 Rx = 1469

and Fx = Rx = max = 600 ax

 Fy = Ry − 5886 = 600 ay

 At the initial instant, the body starts from rest, w = 0 although the acceleration a is finite as determined 

above. The acceleration of the centre of mass C is

c = a ×
 = 2.26 × (−1 − 1.5 ) = 3.39 − 2.26 

whence, ax = 3.39 m/s2, ay = −2.26 m/s2

 Substituting these values in the equations of motion

 Rx = 600 × 3.39 = 2034 N

 Ry = 600 × (−2.26) + 5886 = 4530 N

Y

B

C
1 m

mg

x

Ry

Rx

Fig. Ex. 9.3 (Solution)
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 It can be checked that

 Ry − 1.5 Rx = 4530 − 1.5 × 2034

 = 1479

which is obtained earlier by employing the equation of motion about the centre of mass C.

 The answers required are:

 Reaction at B consists of

 Rx = 2034 N and Ry = 4530 N

 The angular acceleration a = 2.26 rad/s2, anticlockwise

 The acceleration of the centre of mass is given by

 ax = 3.39 m/s2 and ay = −2.26 m/s2

Example 9.4 A disc of radius 0.5 m and uniform thickness 

weighing 300 N is supported on a shaft in a bearing centrally, the 

shaft being normal to the plane of the disc as shown in Fig. Ex. 9.4. 

The disc is made to spin at 1500 revolutions per minute and then let 

to decelerate due to bearing friction. It comes to rest in 2 minutes. 

Assuming that the bearing friction is independent of speed, calculate: 

(a) the bearing torque and (b) the number of revolutions the disc turns 

before coming to rest.

Solution The disc comes to rest in the face of a constant bearing torque which implies that the acceleration 

is constant

 
α

ω ω ω
= =

−d

dt t

2 1

=
− ×

× ×
= −

( )
.

0 1500 2

2 60 60
1 31 2π

rad/s

 The mass moment of inertia of the disc about the axis of rotation is 

 
Ic = =

1

2

300

9 81
0 5 3 822 2

.
( . ) . kg m

 (a) The torque acting on the disc due to the bearing friction is 

 Mc = 3.82 × (−1.31) = −5.00 N m

where the negative sign shows that the bearing friction torque acts to resist the motion and to bring about 

deceleration of the disc.

 This resisting torque is equivalent to a constant resisting force of

 5.00/0.5 = 10.00 N

acting over the rim of the disc.

w

Mc

0.5 m
a

c

Bearing

DISC

Fig. Ex. 9.4
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 (b) From a = −1.31 rad/s2

ω
π

1

1500 2

60
157 1=

× ×
= . rad/s

and w2 = 0 

 Since w2
2 − w1

2 = 2a q 

whence, θ =
−
× −

=
0 157 1

2 1 31
9420

2.

( . )
rad  

and n = 9349/2p = 1499.2 revolutions

 9.4 PLANE MOTION OF A RIGID BODY

Plane translation, rectilinear or curvilinear, together with rotation about an axis perpendicular to the paral-

lel planes in which translation takes place, constitutes a general plane motion. Conversely, a general plane 

motion can be regarded equivalent to a combination of translation of the centre of mass and rotation about an 

axis passing through the centre of mass. Correspondingly, the dynamic behaviour of a rigid body is governed 

by the set of equations

 Fx = max (9.6)

 Fy = may

for translation of the centre of mass

and Mc = Ica (9.7)

for rotation about an axis passing through the centre of mass of the body.

Example 9.5 A cord passing over a light 

frictionless pulley carries a weight W1 suspended 

vertically at one end and is wrapped around a cylinder 

of weight W2 as shown in Fig. Ex. 9.5. Assuming that 

the cylinder can roll without slip on a horizontal plane, 

calculate the acceleration of the suspended weight.

O

W2

W1

Cylinder

Pulley
r

Fig. Ex. 9.5

Solution The free-body diagrams of the cylinder and the suspended mass are shown in Fig. Ex. 9.5 

(Solution).

 The tensions in the cord on the two sides of the frictionless 

pulley are equal, each equal to T. The downward accel eration 

of the suspended weight is not the same as the accelera tion of 

the centre of the cylinder. The equations of motion for the 

cylinder and the suspended weight are as follows:

       T f
g

a− =
W2

2
 (i)

O

T

R

f

z T

W1

x

W2

a2

a1

Fig. Ex. 9.5 (Solution)
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 − 2 = 0 (ii)

 ( )+ =
⎛
⎝⎜

⎞
⎠⎟

1

2

2 2α  (iii)

 
1

1
1− =  (iv)

 Substituting a = 2 /  for the rolling cylinder, Eq. (iii) reduces to

 + =
1

2

2
2

 (v)

From Eqs. (i) and (v)

 
=

3

4

2
2

which, when substituted in Eq. (iv) yields

 
1

2

1

2

3

4
= −

 From the kinematics of motion, the acceleration of the top point on the cylinder equals the acceleration 

of the suspended weight

1 = 2 a = 2 2

 Hence,

 

1
2

1

1
3

8

=
+

 An observation of this equation shows that 2/ 1 is the only factor which governs the acceleration of 

the suspended weight. The size of the cylinder is immaterial. When 2/ 1 is zero, 1 = , the acceleration 

of the free-fall. As 2/ 1 increases, the acceleration of the suspended weight decreases, tending to become 

zero as 2/ 1 tends to infinity.

Example 9.6 A wheel and a differential axle 

assembly has a mass m and a radius of gyration . The radii 

of the two parts of the axle are 1 and 2. Cords wrapped 

round these parts carry suspended weights 1 and 2 as 

shown in Fig. Ex. 9.6. Determine the acceleration of the 

suspended weights when the weight 1 descends.

Wheel

BearingBearing

2

1

1

2

Differential

axle

1 2

Fig. Ex. 9.6

Solution Let the acceleration of the suspended weights be 1 and 2 downwards and upwards respectively. 

The angular acceleration a of the wheel and differential axle assembly is
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α = =

a

r

a

r

1

1

2

2

 With reference to the free-body diagrams of the suspended weights

          W
W

g
a1 1

1
1− =T  (i)

         T2 2
2

2− =W
W

g
a  (ii)

 The net external moment on the assembly due to the suspended weight is

             M = T1r1 − T2r2

which must be equal to

                 Ia = mk2
a

or           T1r1 − T2r2 = mk2
a

 Substituting for T1 and T2 from Eqs. (i) and (ii) and solving

             
α =

−

+ +

W r W r

mgk W r W r
g1 1 2 2

2
1 1

2
2 2

2

                a1 = r1a and a2 = r2a

a 1

T1 T2

a 2

W1 W1

Fig. Ex. 9.6 (Solution)

Example 9.7 A thin uniform bar of mass m and length 2L

is held at angle q with the horizontal by means of two vertical 

inextensible strings, one at each end as shown in Fig. Ex. 9.7. 

If the string at the right end breaks, leaving the bar to swing, 

determine the tension in the string at the left end and the angular 

acceleration of the bar immediately after the string breaks. C

A

B

q L

I

Fig. Ex. 9.7

Solution Let us write down the equations of motion with reference to the free-body diagram of the bar at 

an instant when the right end string just breaks, as shown in Fig. Ex. 9.7 (Solution).

 T − mg = may (i)

 0 = max (ii)

−TL cos q = Ica (iii)

 It follows from Eq. (ii) that

 ax = 0

 By kinematic considerations, the acceleration a of 

the centre of mass is related to the angular accelera-

tion a of the bar by
 ay = L a cos q (iv)

 Substituting Eq. (iv) in Eq. (i)

 T − mg = mLa cos q

T
ax

ay

aA m
A

B
No force here

y

x

C

q

a

Fig. Ex. 9.7 (Solution)
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1

ay

N1

N2

ax

a

q

C

W
2

O

y

x

Fig. Ex. 9.8 (Solution)

and solving for T and a simultaneously with Eq. (iii), remembering that

 I
m L mL

c = =
( )2

12 3

2 2

the expressions for T and a appear as follows:

 
T =

+
mg

1 3 2cos θ

and α
θ

θ
=

−
+
3

1 3 2

g

L

cos

( cos )

 It may be remarked that the positive sign of T shows that the string is indeed in tension and the negative 

sign of a indicates that the angular acceleration is clockwise and not anticlockwise as assumed in the free-

body diagram.

Solution With reference to the free-body diagram of the bar 

where the reactions at the two surfaces are taken normal only due 

to the absence of friction, let us consider the motion of the bar 

with reference to its centre of mass C. Assuming the motion as a 

plane motion in the plane of the figure, the equations describing 

its motion are

 N1 = max (i)

 N2 − W = may (ii)

 N N1 2
2 2

L L
Icsin cosθ θ α− =  (iii)

 Taking I
mL

c =
2

12

and W = mg

Example 9.8 A uniform bar of length L and weight

W rests on smooth surfaces as shown in Fig. Ex. 9.8. Obtain

an expression for the angular velocity of the bar and 

determine the angle q at which the bar no longer touches 

the vertical wall.

W

y

x

C

L/2

L/2

2

1

O q

Fig. Ex. 9.8
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for the rod, and substituting N1 and N2 from Eqs. (i) and (ii) into Eq. (iii),

 a a g
L

x ysin cos cosθ θ θ α− = +
6

 (iv)

 The linear accelerations ax and ay of the centre of mass are related to its angular acceleration a by the 

geometry of the motion. From the coordinates of the centre of mass at any instant,

 x
L

=
2

cos θ  and y
L

=
2

sin θ

 Differentiation with respect to t leads to

 
V

dx

dt

dx

d

d

dt

L d

dt
x = = ⋅ = −

θ
θ

θ
θ

2
sin

 
a

dV

dt

L d

dt

L d

dt
x

x= = − ⎛
⎝⎜

⎞
⎠⎟

−
2 2

2 2

2
cos sinθ

θ
θ

θ

 Similarly,

 
a

dV

dt

L d

dt

L d

dt
y

y= = − ⎛
⎝⎜

⎞
⎠⎟

+
2 2

2 2

2
sin cos

θ
θ

θ

and α
ω θ θ

= = ⎛
⎝⎜

⎞
⎠⎟

=
d

dt

d

dt

d

dt

d

dt

2

2

 Substituting these relations in Eq. (iv)

 
d

dt

g

L

2

2

3

2

θ
θ= − cos  (v)

the angular speed w is obtained by integration,

 ω θ= −
3

1
g

L
( sin )  (vi)

assuming that the bar started from rest at q = 90 , i.e., when the bar was vertical.

 The condition of it no longer touching the wall means

N1 = 0

and from Eq. (i)

 ax = 0

or − ⎛
⎝⎜

⎞
⎠⎟

− =
L d

dt

L d

dt2 2
0

2 2

2
cos sinθ

θ
θ

θ
 (vii)

 Substituting for the first and second derivatives of q in Eq. (vii),

 sin .θ = =
2

3
0 667

whence q = 41.8
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0.3 m 1 m

F

D
is

c

D
is

c

Axle

Fig. Ex. 9.9

Example 9.9 Two homogeneous cylindrical 

discs, each of diameter 1 m and mass 10 kg connected 

by an axle of diameter 0.3 m and mass 15 kg, lie on a 

rough surface as shown in Fig. Ex. 9.9.

 A string wrapped round the axle as shown, 

exerts a force of 50 N at the mid-span of the axle. 

Analyse the motion to determine the acceleration 

of the system.

Solution With reference to the free-body diagram of the 

system where the motion is assumed to be towards right and 

the frictional force f is shown to act in a direction to oppose 

the motion, as shown in Fig. Ex. 9.9 (Solution):

 For the reference axes fixed at the centre of mass C, the 

equations of motion are:

 Fx = 50 − f = max

 Fy = R − (10 + 10 + 15) g = may

 
M f Ic c= × − × =50

0 3

2

1

2

.
a

 Using the fact that  ay = 0

 because the body is not being lifted along the y-axis and 

 
Ic = × × ×⎛

⎝⎜
⎞
⎠⎟

+ × × =2
1

2
10 0 5

1

2
15 0 15 2 672 2. . . kg m

and           m = 2 × 10 + 15 = 35 kg

the equations of motion simplify to

 50 − f = 35ax (i)

 R − 35g = 0 (ii)

 7.5 − f /2 = 2.67 a (iii)

 Substituting

 
α =

ax

0 5.

in Eq. (iii) reduces it to

 15 − f = 10.68ax

which, together with Eq. (i), provides

 ax = 1.44 m/s2

0.5 m

0.15 m

W

C

f

R

y

x

50 N

Fig. Ex. 9.9 (Solution)



EXPERIMENT E9 LOOPING THE LOOP

OBJECTIVE TO DETERMINE THE MINIMUM INITIAL HEIGHT OF A BALL IN ORDER THAT IT 

MAY SUCCEED IN ‘LOOPING THE LOOP’.

Apparatus A channel-track arranged in the form of a looping-the-loop apparatus as shown in Fig. E9.1, 

spherical ball and a metre scale.

Background Information When a spherical ball is released from rest from a position on the straight part of 

the track, it rolls down and gains speed until it reaches the bottom of the loop. Thereafter, it is subjected to a 

centripetal force and a varying reaction N normal to the track. Considering the free-body diagram of the ball 

at a point P, as shown in Fig. E9.2, the equations of motion for its centre of mass C are

Tangential: mg sin q − f = ma (E9.1)

Normal: N − = =mg
mv

R r

mr

R r
cos

( ) ( )
q

w
2 2

− −
 (E9.2)

where v is the velocity of the centre of mass of the ball, (R − r) is the radius of the path of the centre of mass 

as the ball of radius r moves within the circular loop of radius R and w is the angular velocity of the centre 

of mass of the ball.

q = 180°

Loop
h

Straight

track
q

P

r

Fig. E9.1 ‘Looping-the-loop’ apparatus

q

N

P

mg

C
r

f

Fig. E9.2  Free-body diagram of the ball

The Euler’s equation for the rotation of the ball must be

 
fr I mr

d

dt
c= =a

w2

5

2

 =
2

5

2mr
d

d
ω

ω
θ

 (E9.3)

Integrating Eq. (E9.3) and substituting for f from Eq. (E9.1) together with the fact that

 
a r r

d

dt
r

d

d
1 = = =α

ω
ω

ω
θ

it is seen that

 ω θ=
−

+
− +log ( )

cos
log ( )R r

r

h R r

r7 72 2
 (E9.4)

where the initial height h is related to the velocity of the ball by the principle of energy conservation applied 

during the rolling of the ball down the incline without friction

 mgh I mvc= +
1

2

1

2
0
2

0
2ω  (E9.5)
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where v0, the translational velocity of the centre of mass of the ball at q = 0 position equals r times the 
 rotational velocity w0 of the ball at the same position.

Substituting the value of w in Eq. (E9.2),

 N = +
−

−
+

− +⎡
⎣⎢

⎤
⎦⎥

mg
mr

R r

R r

r

h R r

r
cos

log ( )
cos

log ( )
θ θ

2

2 27 7
 (E9.6)

It is noticed that the reaction N from the track on the ball varies with q, the angular position of the ball for 
a given initial height h, the other parameters, i.e., the radii of the ball and the track remaining the same. The 
position where the ball loses contact with the track must be such that the reaction N becomes zero. If the ball 
is to complete the loop, it must be able to go all the way up to the position q = 180° because it would then 
continue on the track thereafter.

Substituting q = 180°, cos q = −1 and N = 0 in Eq. (E9.6) and simplifying the result,

 h1 = 2.7(R − r) (E.9.7)

This is the minimum initial height of the ball for it to succeed in looping the loop.
Alternatively, the analysis may be considerably simplified if the moment of inertia of the ball is ignored, 

i.e., if the ball is assumed to be represented by a mass sliding frictionlessly. In that case only the normal equa-
tion of motion, i.e., Eq. (E9.2) together with the energy conservation principle would provide the result

 N mg
mv

R r
− cosq =

−

2

 (i)

 mgh mv mg R R= + −
1

2

2 ( cos )q  (ii)

Substituting q = 180°; cos q = −1 and N = 0 as well as the value of v from Eq. (ii) in Eq. (i),

 
mg

mgh mg R r

R r
=

− −
−

2 4 ( )

( )

whence h2 = 2.5 (R − r) (E9.8)

It may be seen that this result is remarkably close to the one obtained above, Eq. (E9.7). In practice,

neither of them may be valid because the ball may roll as well as slide with friction simultaneously.

Observations and Calculations The experiment is indeed very interesting. The condition of success of the 

ball in looping the loop is independent of the mass of the ball, angle of inclination of the straight track and 

value of g at a particular place. The minimum initial height h required for a ball to be able to reach the top 
position and to complete the loop is determined experimentally by hit and trial.

Result  State the average of the minimum experimental heights obtained together with the percentage
discrepancy in comparison with the theoretical results by the alternative analysis.

 R = r =

S.N. hexp h1 = 2.7(R − r) h2 = 2.5 (R − r)
h h

h

exp − 1
100× Differences in

Eq. (E9.7) Eq. (E9.8)
h h

h

exp −
×2

100
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Points for Discussion

Under what circumstances is a ball likely to roll without sliding and under what conditions is it likely to 

roll as well as slide?

Examine the percentage variation within the experimental results and compare the same with the percent-

age difference between the experimental and theoretical values. Which of the two theoretical results is 

closer to the actual result?

The energy conservation principle has been employed in the theoretical analyses. Discuss the validity of 

the principle for the case of a ball rolling without sliding as assumed in the first analysis. The validity 

of the principle for frictionless sliding as assumed in the second analysis is quite clear.

If a ball were allowed to complete the loop and made to go up another incline, would it attain a height 

equal to the initial height h?

Supposing it was desired to determine the dissipation of energy between the initial position of the ball and 

its top position in the loop in the limiting case, how would you proceed to estimate it?

If you were to improve the experimental equipment, would you recommend

 (i) the selection of a smoother ball, a lighter ball or a smaller ball?

 (ii)  the improvement of the track by minimising friction, by decreasing the radius of the loop or by 

increasing the inclination of the straight track?

 (iii) the use of a small circular cylinder or a small rectangular block instead of a spherical ball? 

Example 9.10 A string is wrapped around the periphery of a thin disc of 

radius 0.5 m and mass 10 kg as shown in Fig. Ex. 9.10. At an instant when 

the string is pulled up with a force of 200 N, determine the acceleration of the 

centre of the disc and the angular acceleration of the disc.

Fig. Ex. 9.10

T

C

0.5 cm

Solution Considering the free-body diagram of the disc, and taking C as the reference point,

 T − W = may (i)

 0 = max (ii)

 −Tr = Ica = mr2/2  a (iii)

 From (i),   ay =
− ×

=
200 10 9 81

10
10 2 2.

. m/s

and from (ii)   ax = 0

 From (iii)     α =
− × ×

×
= −

200 0 5 2

10 0 5
80

2

2.

.
rad/s

which means that the angular acceleration is 80 rad/s2 in the clockwise 

direction.

T

C

W

ay

ay
P a

Fig. Ex. 9.10 (Solution)
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 One may also determine the acceleration of the string which is the tangential component of acceleration 

of the disc at point P.

a = 10.2 + 0.5 × 80 = 50.2 m/s2 upwards.

 9.5 WORK–ENERGY FORMULATION FOR PLANE MOTION

Let us recapitulate the definitions of work and energy, obtain expressions for them and formulate the work-

energy principle as an alternative principle for studying the dynamics of a rigid body.

The work done due to a force  acting at an arbitrary point P on a body equals the dot product of the force 

with the displacement of the point of application of the force:

 d W = d p

For a finite displacement of the point of application of force, i.e., from 1 to 2, the work done is given by

W d p

r

r

= ⋅∫
1

2

If, instead, it is sought to evaluate the integral

 W d c

r

r

′ = ⋅∫
1

2

 (9.8)

as is the case in the work-energy formulation to follow, the integral does not represent the work done by the 

force on the body, it only represents the work which would have been done by the force on the body if the 

force acted at its centre of mass.

The action of a moment  due to a couple on a rigid body results in an angular displacement q of the 

body. The work of the moment is expressed by

 d W = q

and for infinite angular displacement of the body from q1 to q2 the work done is given by

 W = ⋅∫ θ
θ

θ

1

2

 (9.9)

The mechanical energy possessed by a rigid body is partly due to the potential energy by virtue of its posi-

tion referred to a datum and partly due to the kinetic energy by virtue of its absolute velocity.

The potential energy due to the gravitational field is directly 

proportional to the height h of the centre of mass above the datum 

level

             PE = mgh (9.10)

The kinetic energy of a rigid body is due to the motion of the 

elements of the body. Consider an element of mass dm located at a 

position P specified by a position vector

 with respect to C, the mass centre

and R with respect to O, a fixed point as shown in Fig. 9.4.

For the element,

d KE dm( ) ( )= ⋅
1

2
V V

by definition.

y

x

u dm
P

C

c

c

O

R

w

Fig. 9.4 Consideration of kinetic energy
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For the entire body

                KE dm= ⋅∫
1

2
( )

 

= + ⋅ +

= +

= +

∫

∫∫

∫

1

2

1

2

1

2

1

2

1

2

2 2

2 2 2

( ) ( )c c

c

c

dm

V dm u dm

mV r dm ω

or                KE mV Ic c= +
1

2

1

2

2 2ω  (9.11)

It may be noted that, for the case of pure translation of a rigid body, i.e., when w = 0, the kinetic energy 

is given by

 
KE mVc=

1

2

2

and for the case of pure centroidal rotation, i.e., when Vc = 0, the kinetic energy is given by

 
KE Ic=

1

2

2ω

In view of these facts, it may be stated that the kinetic energy of a rigid body in a general plane motion, as 

given by Eq. (9.11), may be thought of as the sum of

 1. The kinetic energy (1/2)mVc
2 associated with the motion of the centre of mass C of the body as if the 

total mass were concentrated at that point

 2. The kinetic energy (1/2)Icw
2 associated with the rotation of the body about an appropriate axis through C.

If a rigid body undergoes fixed axis rotation about an axis which does not pass through the centre of mass C,

the expression for the kinetic energy of the body in plane may surely be employed but a simpler expression is 

more convenient. In order to arrive at it, consider a rigid body rotating about an axis through O as shown in 

Fig. 9.5. The expression for kinetic energy is

 KE mV Ic c= +
1

2

1

2

2 2ω
 Substituting Vc = rcw

 
KE mr Ic c= +

1

2

1

2

2 2 2ω ω

 
= +

1

2

2 2( )I mrc c ω

 =
1

2
0

2I ω  (9.12)

which implies that the kinetic energy of a rigid body during a non-centroidal fixed-axis rotation may also be 

written as (1/2) I0w
2 provided the moment of inertia I0 is taken about the axis of rotation. The same fact could 

have been established by considering a small element of mass dm at an arbitrary point P. The kinetic energy 

of the element is

V

R

C

O

r

P

dm
w

Fig. 9.5 Fixed-axis rotation
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 KE V dm= ∫
1

2

2

 = ∫
1

2

2( )R dmω

 
= ⋅∫

1

2

2 2R dm w

or KE I=
1

2
0

2
w  

where I0, the moment of inertia of the entire body about the axis of rotation through O equals the integral 

R dm2∫ .

The work-energy equations for a rigid body may be obtained from the Newton’s law and Euler’s equation. 

From the Newton’s law applied to the centre of mass of the body,

= m c

the work-energy equation which may be derived as

 W d m V V KE KEc c c

r

r

= ⋅ = − = −∫
1

2 2 1

1

2

2 2
2 1( )  (9.13)

It may again be pointed out that the left-hand side expression does not stand for the actual work done by 

the net force  acting on the body unless the net force happens to act at the centre of mass. The expression 

indicates that work would have been done if the net force were acted at the centre of mass. Similarly, the right-

hand side expression represents the change in translational kinetic energy associated with the total mass m of 

the body if it were concentrated at the centre of mass. In spite of the ‘ifs and buts’ in the interpretation of the 

equation, the equation is called the work-energy e uation applied to the centre of mass of the body because it 

is an alternative form of the Newton’s law describing the motion of the centre of mass the body.

From the Euler’s equation applied at the centre of mass of the body in a plane motion,

 Mc = Ica

the work-energy equation which may be derived as

 W = = − =∫ c cd I KE KEq w w

q

q

1

2 1

2
2
2

1
2

2 1( ) −  (9.14)

The left-hand side expression stands for the work done by the net moment acting on the body about 

the centre of mass which results in an angular displacement from q1 to q2. The right-hand side expression 

stands for the change in rotational kinetic energy referred to at the centre of mass. The equation is, therefore, 

referred to as the ‘work energy equation for rotation about the centre of mass’ and used as an alternative to 

the Euler’s equation applied at the centre of mass of the body.

The total work done by the action of forces and moments acting on a body must be the sum of the work 

done by the net force, as if it acted at the centre of mass, and the work of the net moment about the centre 

of mass. The total change in kinetic energy of a rigid body is likewise the sum of the change in translational 

kinetic energy, as if the entire mass is concentrated at the centre of mass, and the change in rotational kinetic 

energy due to rotation about the centre of mass.

Symbolically,

 Wtotal = ⋅ + ∫∫ d dc c

r

r

q

q

q

1

2

1

2

 (9.15)
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and ( ) ( ) ( )KE KE m V V Ic c c2 1
2 2

2
2

1
21

2

1

22 1
− = − + −total w w  (9.16)

It also follows that

 Wtotal = (KE2 − KE1)total

 ⋅ + = − + −∫∫ d d m V V Ic c c c c

r

r

θ ω ω
θ

θ

1

2

2 1

1

2 1

2

1

2

2 2
2
2

1
2( ) ( )  (9.17)

which is termed as the total work-energy equation for the plane motion of a rigid body.

The total work-energy e uation may be reduced to a conservation of energy e uation in the absence of dis-

sipative external forces and moments acting on a body or a system of bodies. The work done by a conservative 

force  during a displacement of the centre of mass from position 1 to 2 equals the change in potential energy 

and remembering that the action of a moment c about the centre of mass cannot bring about a change in its 

position, the total work done is

Wtotal = (PE1 − PE2)total

Equating it to the total change in kinetic energy,

 (PE1 − PE2)total = (KE2 − KE1)total

Rearranging the terms,

 (KE1 + PE1)total = (KE2 + PE2)total
 (9.18)

which shows that, under the action of a conservative force field, the sum of the total kinetic energy and poten-

tial energy of a rigid body is conserved. This is also referred to as the principle of conservation of mechanical 

energy for a rigid body.

Solution Let us consider the motion of the system of the flywheel together with the drum and suspended 

mass. The free-body diagram of the system is shown in Fig. Ex. 9.11 (Solution). Note that the tension in 

the string does not enter the picture.

 The work done by the weight of the suspended mass over a fall of 1.0 m is given by

 mgh = 100 × 9.81 × 1.0 = 981 N m

Example 9.11 In a laboratory, a flywheel of 

diameter 0.5 m is made to rotate, starting from rest,

by means of a suspended mass of 100 kg by an 

inextensible string wound around a concentric drum 

of 0.3 m diameter as shown in Fig. Ex. 9.11. If the 

frictional moment in the bearing is estimated to be 50 

N m, determine the moment of inertia of the flywheel if 

the velocity of the suspended mass after a fall of 1 m is 

estimated to be 0.3 m/s.

0.3 m

100 kg

0.5 m

Drum

Bearing

Flywheel

Fig. Ex. 9.11



Engineering Mechanics480

and the negative work done by the frictional moment of 50 N m during 

an angular displacement of

 
θ = =

1 0

0 15
6 67

.

.
. rad

is given by

 M q = −50 × 6.67 = −333.5 N m

 Total work done by the net external force and the net external moment 

acting on the system is

Wtotal = 981 − 333.5 = 647.5 N m

 The final total kinetic energy of the system must be the sum of 

the rotational kinetic energy of the flywheel together with the drum 

and the translational kinetic energy of the suspended mass.

 
KE Ic2 total = × × + ⎛

⎝⎜
⎞
⎠⎟

1

2
100 0 3

1

2

0 3

0 15

2

2

( . )
.

.

 = 4.5 + 2 Ic

 Since the assembly started from rest, the initial kinetic energy must be zero. The total change in kinetic 

energy is also given by

(KE2 − KE1)total = 4.5 + 2 Ic

 Using the work energy principle,

 4.5 + 2 Ic = 647.5

whence Ic = 321.5 kg m2

Ry

Rx

V

W = 981 N

50 Nm

w

Fig. Ex. 9.11 (Solution)

Example 9.12 The following bodies are released 

from rest on an incline at the same elevation. In each 

case, the mass is m and the maximum radius is R.

(a) A solid sphere, (b) a hollow sphere of inner radius R/2,

(c) a solid cylinder, (d) a hollow cylinder of inner radius 

R/2 and (e) a hoop.

 Determine the velocity of each body after it has rolled 

down the incline through the same distance s.

 What would have been the velocity of each body if the 

incline was frictionless and the bodies slided instead of 

rolling?

Solution Consider the rolling motion of a cylindrical body in general. The motion takes place in the 

gravitational field of the earth and the frictional forces do no work in the rolling motion; the mechanical 

energy of the system is, therefore, conserved.

 (KE + PE )1 = (KE + PE )2

 KE1 = 0

C2

2

h s

1

O

C1

q

Fig. Ex. 9.12
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PE1 = 0; initial position referred as datum

 KE mV Ic c2
2

2
21

2

1

22
= + ω

and                PE2 = −mgh

 Substituting

 w2 = Vc2 /R

 h = s sin q

and from the conservation of mechanical energy,

 
0

1

2

1

22

22

2

2
= + −mV I

V

R
mghc c

c

whence V
gh

I

mR

gs

I

mR

c

c c

2

2 2

2

1

2

1

=

+

=

+

sin θ  

 Introducing the appropriate values of the moments of inertia for each case,

Case Body Ic Vc2

(a) Solid sphere
2

5

2mR 0 845 2. sings θ

 (b) Hollow sphere
2

5

2

2

5 5

3 3
m

R R

R R

−
−

( / )

( / )
0 832 2. sings θ

 (c) Solid cylinder
1

2

2mR 0 816 2. sings θ

 (d) Hollow cylinder
1

2
22 2m R R( ( / ) )+ 0 785 2. sings θ

 (e) Hoop mR2 0 707 2. sings θ

 If the incline was frictionless, the bodies would not be able to roll down. Frictionless sliding through an 

inclined distance s would be equivalent to a free fall through a vertical distance h

 h = s sin q

 The velocity of each body would then be

 2 2gh gs= sin θ
 A comparison of the final velocities of the bodies is indeed meaningful. Frictionless fall down the incline 

results in the maximum possible velocity. The final velocities in the other cases are less not because of 

frictional loss of energy but because of the energy stored in rotation of the bodies. The rotational energy 

depends on the moment of inertia of the bodies and for this reason their final velocities differ. Of the given 

bodies of the same mass m and same outer radius R, the solid sphere has the least moment of inertia and 

hence the greatest final velocity. On the other extreme, in the case of a hoop, the entire mass is concentrated 

at the radius R which makes its moment of inertia the maximum and its final velocity the least.

 The results can be interpreted in another way, i.e., if the bodies in the list were allowed to start from 

rest at the same level simultaneously, the acceleration of the bodies would be such that the velocity at a 

later instant would be determined in the analysis. The body which accelerates most reaches first. The solid 
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sphere will, therefore, reach the finishing point of the race first and then the hollow sphere, solid cylinder 

and hollow cylinder in that order. The hoop will be the last to reach. It is also interesting to note that the 

final velocities attained over a given distance along the slope or the accelerations acquired by the bodies are 

independent of their mass and size. In other words, whether a sphere is small or large, light or heavy, it will 

reach the finishing point before the other bodies do. It also follows that if a number of spheres of different 

sizes and mass densities are allowed to go down an incline starting from rest simultaneously, they will all 

acquire the same acceleration and reach the finishing point simultaneously.

 Let us also demonstrate the application of the dynamical equations in terms of forces and moments for 

this problem. With reference to the free-body diagram shown in Fig. Ex. 9.12 (Solution) the dynamical 

equations may be written as

      Fx = mg sin q − f = macx = mac (i)

       Fy = mg cos q − R = macy = 0 (ii)

     M f R I I
a

R
c c c

c= − = = −
⎛
⎝⎜

⎞
⎠⎟

α  (iii)

whence,   f I
a

R
c

c=
2

 

and on substitution in Eq. (i)

 
mg I

a

R
mac

c
csinθ − =

2

whence,   a
mg

I R m

g

I m R
c

c c

=
+

=
+

sin

( / )

sin

( / )

θ θ
2 21

 In view of the fact that the acceleration of the mass centre C

must be constant,

 V V a sc c c2 1

2 2 2− =
 Since the bodies start from rest,

 Vc1 = 0

             V a sc c2 2=

               
=

+
2

1 2

gs

I m Rc

sin

/

θ

which is the same expression as that obtained by the conservation of energy principle.

Y

R

R

C

mg
q

q

Fig. Ex. 9.12 (Solution)

Example 9.13 A uniform slender bar AB of mass m and length L supported 

by a frictionless pivot at A is released from rest at its near-vertical position as 

shown in Fig. Ex. 9.13. Calculate the reaction at the pivot when the bar just 

acquires the horizontal position shown dotted. If, at this instant, the bar is released 

from its support gently and allowed to move for t seconds further, estimate its 

angular speed and the velocity of the centre of mass at that instant.

B

A

Fig. Ex. 9.13
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Solution Applying the energy conservation principle between the vertical position (1) and the horizontal 

position (2),

              (KE + PE)1 = (KE + PE)2

( )0 2
1

2

1

2
02 2+ = + +⎛

⎝⎜
⎞
⎠⎟

mgL I mVc c/ w

 Using the facts that I
mL

V Lc c= =
2

12
2and ω / ,  

 w
2 = 3g/L or w = 3g L/

in the clockwise direction.

 Considering the free-body diagram at the instant when it just acquires the horizontal position (Fig. 

Ex. 9.13 (Solution)).

Ry

Rx

A

A

A

A

A

B

B

B

B

Vc

Vc

C

C

C

C

C

mg

B

y

x

L/2 L/2 Vc

Vc0
Vc0

= √3g L /2

Vc = √3g L/2 + gt

w = √3g /L

a = 0

Fig. Ex. 9.13 (Solution)

 For the centre of mass of the bar,

 Rx = macx (i)

 Ry − mg = macy (ii)

and by the Euler’s equation applied at A,

 − = =mg L I
mL

A/2
3

2

α α  (iii)

 From Eq. (iii), the angular acceleration

a = −3g/2L

 From kinematics, it is known that

 acx = − w 
2L/2

and acy = a L/2

 Substituting these values in Eqs. (i) and (ii)

 Rx = − 3mg/2 and Ry = mg/4
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1

2

/2

/2

Fig. Ex. 9.14

Example 9.14 A carpet of mass made of 
inextensible material is rolled along its length in 
the form of a cylinder of radius  and is kept on 
a rough floor. The carpet starts unrolling without 
sliding on the floor when a negligibly small push 
is given to it. Calculate the horizontal velocity of 
the axis of the cylindrical part of the carpet when 
its radius reduces to /2.

 After the bar is gently released from the support, it is left with only one force  on it acting at its centre 
of mass. The angular acceleration vanishes and the angular velocity would remain constant at

 ω = 3 /

 The bar will thus continue to rotate with this angular velocity and its centre of mass will drop vertically 
down with an acceleration  downwards as shown in Fig. Ex. 9.13 (Solution).
 The velocity of the centre of mass at the instant it was released is

0
2 3 2= =ω / / downwards.

 At any time  later, the downward velocity is given by

 = +
0

 = +3 2/

Solution 

The potential energy thus released is converted to the kinetic energy of the rolling part, the flat 
part being at rest.
 Initial potential energy =
 Potential energy at the point of interest

 = /4 /2 = /8

because the rolling mass must be quarter fraction of the initial mass.
 Release of potential energy = 7/8 
 The kinetic energy at this instant must be given by

 
= ⋅ +

1

2 4

1

2

2 2ω

 
= + ⋅

( )
⋅
⎛
⎝⎜

⎞
⎠⎟

=
2 2 2

2

8

1

2 4

2

2 2
3 16

/

/
/

 Hence, 3/16 2 = 7/8 

and = 14 3/  
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P

A

B

2.4 m

1.0 m

Fig. Ex. 9.15

Example 9.15 A small sphere rolls down 

without slipping from the top of a track in a 

vertical plane. The track has an elevated section 

and a horizontal part as shown in Fig. Ex. 9.15. The 

horizontal part is 1.0 metre above the ground level 

and the top of the track is 2.4 metres above the ground. 

 Find the distance on the ground with respect to 

the point B (which is vertically below the end of the 

track as shown) where the sphere lands. During its 

flight as a projectile, does the sphere continue to 

rotate about its centre of mass? Explain.

Solution At the initial point P,

KE1 = 0, PE1 = 2.4 mg

 At the end point A,

KE mv I2
2 21

2

1

2
= + ω

         
= + ⎛

⎝⎜
⎞
⎠⎟

1

2

1

2

2

5

2 2
2

2
mV m R

V

R

        
= + =

1

2

1

5

7

10

2 2 2mV mV mV

PE2 = 1.0 mg

 By conservation of energy in the absence of dissipation,

 
0 2 4

7

10
1 02+ = +. . ;mg mV mg

whence, V g= 2  
 After leaving A, the sphere would continue to rotate at the same rotational speed in the absence of my 

external moment acting on it.

 Then, z
g x

V
= −

2

0
22

 

 Therefore, x g g= × × =2 2 1 2 0/ . m.  

A

B C

1 m

Fig. Ex. 9.15 (Solution)

Example 9.16 State whether the following statement is TRUE 

or FALSE. Give very brief reasons in support of your answer.

 A ring of mass 0.3 kg and radius 0.1 m and a solid cylinder 

of mass 0.4 kg and of the same radius are given the same kinetic 

energy and released simultaneously on a flat horizontal surface 

such that they begin to roll as soon as released towards a wall 

which is at the same distance from the ring and the cylinder as 

shown in Fig. Ex. 9.16. The rolling friction in both cases is neg-

ligible. The cylinder will reach the wall first.

w

C Vc
0.1 m

Fig. Ex. 9.16
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Solution For the ring, For the cylinder,

 m = 0.3 kg m = 0.4 kg

 r = 0.1 m r = 0.1 m

 Ic = 0.3 × 0.12 = 0.003 kg m2 Ic = × =0 4
0 1

2
0 002

2
2.

.
. kg m

 For the ring, For the cylinder,

 KE Va= × ×
1

2
0 3 2. KE Vc= × ×

1

2
0 4 2.

+ × ×
⎛
⎝⎜

⎞
⎠⎟

1

2
0 003

0 1

2

.
.

Vc + × ×
⎛
⎝⎜

⎞
⎠⎟

1

2
0 00 2

0 1

2

.
.

Vc

 = + =0 5 0 15 0 32 2 2. . .V V Vc c c = + =0 2 0 1 0 32 2 2. . .V V Vc c c

 Since they have the same kinetic energy at the start, the expressions for KE require that they have the 

same velocity as well. There being no change in potential energy and negligible friction, they will reach

the wall simultaneously.

 The given statement is, therefore, FALSE.

Example 9.17 A sphere of radius 0.5 m and mass 10 kg is released 

gently from rest on a 30  incline as shown in Fig. Ex. 9.17. If it rolls without 

slipping, determine the minimum coefficient of friction compatible with the 

rolling motion. What would be the velocity of its centre of mass after it rolled 

down 5 m distance.

Solution Considering the free-body diagram of the sphere as shown in Fig. Ex. 9.17 (Solution) rolling 

without slipping,

           a = ra

          R = mg cos q (i)

       mg sin q − f = ma (ii)

         mg sin q ⋅ r = ma ⋅ r + Ia 

or        mg sin q r = m a r2 + 2/5 mr2 ⋅ a 

whence,

 α
θ

= =
× ×

×
=

5

7

5 9 81 30

7 0 5
7 2g

r

sin . sin

.

�

rad/s

and a = 0.5 × 7 = 3.5 m/s2

C

O

30°

r

Fig. Ex. 9.17

C

f mg

R

a
30°

30°

a

Fig. Ex. 9.17 (Solution)
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 From (ii), f = 10 × 9.81 × sin 30 − 10 × 3.5 = 14.05 N

 For f = mR = m ⋅ mg cos q 

 m = 14.05/(10 × 9.81 × cos 30) = 0.165

 Since the acceleration of the centre of mass is constant, 3.5 m/s2, the velocity 5 m down the plane is 

such that

 v2 − 0 = 2 × 3.5 × 5

whence v = 5.91 m/s

 Let us determine the velocity of the sphere if it was sliding all the way on a frictionless plane. Then f = 0,

 mg sin q = ma, a = 0 

 a = g sin q

 v2 − 0 = 2 × 9.81 × sin 30  × 5

 v = 7 m/s

 This is more than the velocity of the rolling sphere but there is no rotational velocity in this case. Let us 

compare the kinetic energies in the two cases, i.e., with rotation and frictionless sliding. In the former,

 
KE mv I= +

1

2

1

2

2 2ω

 = + = × × =
1

2
1 2 5

7

10
10 5 91 2452 2mv ( ) ./ J

 In the latter,

 
KE = × × ≈

1

2
10 7 2452 J

 The kinetic energy (as also the potential energy) is the same in both cases. It is indeed so because pure 

rolling does not entail loss of energy.

 Let us do a little reflection. If it was a cylinder instead of a sphere, the moment equation would be

 mg sin q ⋅ r = m a r2 + m r2/2 ⋅ a = 3/2 mr2 a

whence α
θ

= =
× ×

×
=

2

3

2 9 81 30

3 0 5
6 54

g

r

sin . sin

.
. rad/s

 a = 0.5 × 6.54 = 3.27 m/s2

 Then, f = 10 × 9.81 × sin 30 − 10 × 3.27 = 16.35 N 

and m = 16.35/(10 × 9.81 × cos 30) = 0.192 

which means that the surface must be more rough for the rolling of a cylinder than for a sphere. In other 

words, if an incline is rough enough to cause a cylinder to roll without slip, a sphere of the same mass and 

radius would surely roll without slip! Extending the same analysis to a hoop of the same mass and radius, 

m = 0.288 implies that the hoop is even more likely to slip than a cylinder on the same slope.

 9.6 IMPULSE–MOMENTUM FORMULATION FOR PLANE MOTION

The equations of motion due to Newton and Euler may be integrated with respect to time to constitute an 

alternative set of equations for studying the dynamics of a rigid body.

The statement of the Newton’s law

 
F = =m m

d

dt
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integrated with respect to time t over the limits t1 to t2 results in

 dt m m

t

t

= = −∫ ( )1
2

2 1

1

2

 (9.19)

The left-hand side of Eq. (9.19) is the linear impulse due to the net external force  over the period of 

action whereas the right-hand side is the change in linear momentum of the centre of mass over the same 

interval of time. The equation is, therefore, called the linear impulse momentum e uation, sometimes referred 

simply as the impulse-momentum equation.

The Euler’s equation,

 
M I I

d

dt
c c c= =a

w

on integration with respect to time t over the limits t1 and t2 results in

 M dt I Ic c c

t

t

= = −∫ ( )w w w1
2

2 1

1

2

 (9.20)

The left-hand side of Eq. (9.20) is the angular impulse due to the net moment c acting about the 

centre of mass C over the period of action, whereas the right-hand side is the change in angular momen-

tum about the centre of mass over the same interval of time. The equation is, therefore, known as the 

angular impulse-momentum principle. It may be noted that for the plane motion of a rigid body, the 

angular impulse as well the angular momentum about the centre of mass must only be about the axis of 

rotation through C.

There is no doubt that the principles of linear impulse-momentum and angular impulse-momentum 

applied to a rigid body are mutually independent principles; one not derivable from the other and both of 

them are required jointly to tackle a problem on rigid-body dynamics in just the same way as Newton’s law 

and Euler’s equation are used. Preference for the impulse-momentum principles over the said laws is natural 

when concerned with the gross effect of the change in linear and angular velocity over a period of time. In 

particular, when the net external force or net external moment is zero, the corresponding impulse-momentum 

principle reduces to momentum conservation and may be used more conveniently. A system of two bodies 

in an encounter, say an impact, have no external force or moment acting upon them; the momentum conser-

vation principle may be applied to advantage to the system of the two bodies. The momentum conservation 

principles for two bodies may be stated as follows:

            Linear-momentum conservation principle:

 m V m V m V m Vc c c c1 2 1 21 2 1 2
+ = ′ + ′  (9.21)

            Angular-momentum conservation principle:

 I I I Ic c c c1 2 1 21 2 1 2ω ω ω ω+ = ′ + ′  (9.22)

where suffixes 1 and 2 refer to the two bodies; unprimed variables for conditions just before and primed 

variables for conditions just after the phenomenon.
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Example 9.18 A uniform circular cylinder of mass m and radius r is 

given an initial angular velocity w0 and no initial translational velocity as 

shown in Fig. Ex. 9.18. It is placed in contact with a plane inclined at a to 

the horizontal and it moves up. Assuming the coefficient of friction m for 

sliding between the cylinder and the plane, find the distance the cylinder 

moves before sliding stops. Assume that m is greater than tan a.

Solution  Consider the free-body diagram of the cylinder as shown in Fig. Ex. 9.18. (Solution). Let us choose 

the centre of mass O as the reference point and use the angular impulse momentum equation to determine the 

time t required to decrease the velocity to a value w.

 
− = − = −μ ω ω ω ωRrt I

mr
( ) ( )0

2

0
2

 Since R = mg cos a

 t
r

g
=

−( )

cos

ω ω
μ α

0

2
 (i)

The velocity of the centre O parallel to the plane is obtained by applying the 

linear impulse momentum equation.

 mg (m cos a − sin a)t = m(v − 0) (ii)

with positive direction up the plane.

 At the instant sliding stops and pure rolling begins,

 v = r w .

 From (i) and (ii),

 
ω

μ α α
μ α α

ω=
−
−

⋅
cos sin

cos sin3
0

and t
r

g
=

−
ω

μ α α
0

3( cos sin )
 

The forces acting on the cylinder remain constant during sliding and hence acceleration is constant. The 

distance travelled while sliding must be

                   d = 1/2 vt

=
−

−

r

g

2
0
2

22 3

ω μ α α
μ α α
( cos sin )

( cos sin )

Example 9.19 Determine the angular momentum of a uniform thin bar of length L and mass m when 

it is rotating at a constant angular velocity w

(a) about its centre of mass

(b) about one end

provided that it stays in the same plane.

a
mR

O

mg
R

Fig. Ex. 9.18 (Solution)

r

a

w0

Fig. Ex. 9.18
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Solution The mass per unit length of the bar is m/Lh.

 For case (a), the element of mass (m/L ⋅ dr) shown in Fig. Ex. 9.19 (Solution) rotates at a velocity rw ; its 

angular momentum is r m/L rw dr.

 Integrating from −L/2 to + L/2, for the whole bar, 

H
m

L
r dr

m

L

r
mLc

L

L

L

L

= =
⎛

⎝⎜
⎞

⎠⎟
=

−

+

−

+

∫
ω ω

ω2
2

2

2

2

2

2

3
1 12

/

/

/

/

/

= 1/12 m L2
w = Ic w

where Ic is the moment of inertia of the bar about its centroid.

 Similarly, for case (b), considering the origin at O and locating the element dr at a distance r for O,

 
H

m

L
r dr m L Ic

L

= = =∫
ω

ω ω2 2
0

0

1 3/ .

r

C
L

O

dr w

Fig. Ex. 9.19 (Solution)

Example 9.20 A uniform bar AD of length 2 m and mass 5 kg 

hanging freely from a frictionless pivot at A is struck by a 25 g bullet 

approaching at a velocity of 500 m/s as shown in Fig. Ex. 9.20. The bullet 

pierces through the bar and emerges with a velocity 40% of its initial 

value.

 Determine the angular velocity of the bar just after the bullet emerges 

and the maximum angle through which the bar would swing. Comment 

on the total loss of energy in the process.

A

C

1

B

2

D

1.5 cm

0.5 cm

30°

Bar

Bullet

Fig. Ex. 9.20

Solution The free-body diagrams are drawn (Fig. Ex. 9.20 (Solution)) or simply visualised in order to decide 

whether to apply the linear impulse-momentum principle or the angular impulse-momentum principle.

 The fact that there is going to be an unknown impulsive reaction at the pivot A rules out the conservation 

of linear momentum along any axis. From the fact that the moment of impulsive reaction at A taken about 

A is zero, the angular impulse momentum principle about A can be employed with advantage. It should be 

understood that there is no external force acting at B as far as the system of bullet and bar is concerned. The 

bullet exerts a force on the bar and the bar reacts it undiminished on the bullet.

 The net angular impulse must equal the change in the angular momentum. Initially, the angular impulse 

or the moment of linear momentum taken about A is

 0.025 × 500 cos 30  × 1.5 = 16.24 kg m2/s

 Finally, the angular impulse or the summation of the moments of the linear moment of the system about A is

0.025 × (500 × 0.4) cos 30  × 1.5 + 5 × 12 × w = (6.5 + 5w) kg m2/s
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 Net angular impulse about A is

   16.25 − (6.5 + 5w) = (9.75 − 5w) kg m2/s (i)

 Starting from rest, the bar acquires an angular velocity so 
that the change in the angular momentum is

        Icw w w= × × =
1

2
5 2 1 672 . /kg m s2  (ii)

 Equating Eqs. (i) and (ii)

        9.75 − 5w = 1.67w

whence         w = 1.46 rad/s

 Alternatively, the angular impulse-momentum principle 
applied to the bar can be interpreted as,
 Net angular impulse imparted by the bullet on the bar = Change 
in angular momentum of the bar about its centre of mass
 The left-hand side term is

0.025 × (500 − 0.4 × 500) cos 30° × 1.5 = 9.75 kg m2/s

and the right-hand side term is

 

1

3
5 2 0 6 672× × − =( ) . /w w kg m s2

which when equated, provide w = 1.46 rad/s, the same result as obtained earlier.
 The maximum swing of the bar can be calculated by applying the energy conservation principle because 
there are no dissipative actions from the instant the bullet emerges out of the bar to the instant of maximum 
swing. Considering the initial position as the reference position,

               PE1 = 0

KE1
2 21

2

1

3
5 2 1 46 7 1= × × ×⎛

⎝⎜
⎞
⎠⎟

× =. .

 Finally, the bar swings through an angle q and the centre of gravity is lifted by

                 
h = × − = −

2

2
1 1( cos ) ( cos )θ θ

               PE2 = 5 × 9.81 × (1 − cos q)

                    = 49.05(1 − cos q)

and              KE2 = 0 

because the bar comes to momentary rest at the position of maximum swing.
 By energy conservation,

 PE1 + KE1 = PE2 + KE2

 7.1 = 49.05(1 − cos q)

whence q = 31.2° 

 In order to estimate the total loss of energy in the process, consider the energy in the system just before 
and after impact.
 Just before the impact, only the bullet has kinetic energy given by

 

1

2
0 025 500 31252× × =.

A A

C

1
2

Free-body diagram Impulsive action

∫Rdt

impulsive
reaction

w

Fig. Ex. 9.20 (Solution)
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 Just after the impact, the bullet has a part of its kinetic energy and the bar has kinetic energy given by

 

1

2
0 025 200

1

2

1

3
5 2 1 462 2 2× × + × × ×⎛

⎝⎜
⎞
⎠⎟

×. .

 = 507.1 J

 Loss in energy of given by

 3125 − 507.1 = 2617.9 J

which is

 
2617 9

3125
100 83 8

.
.× =

of the initial energy of the bullet.

The percentage energy imparted to the pendulum in moving the pendulum is

 
7 1

3125
100 0 23

.
.× =

which is indeed a very small fraction of the initial energy of the bullet.

It is the mechanical energy which is lost; in fact, it is converted into heat and sound and thus dissipated.

 If it is desired to determine the impulsive reaction at A, it is now possible to do so by applying the linear 

impulse momentum principle.

 R dtx∫ = − ° − × ×0 025 500 200 30 5 1 1 46. ( ) cos .

 = − 0.8 N s

  R dty∫ = − °0.025 (500 200) sin 30

 = 3.75 N s

 It may be appreciated that the impulsive reaction will not be parallel to the velocity of the bullet because 

the final momentum of the bar also contributes to the impulsive reaction as seen above.

 EXPERIMENT E10 CONSERVATION OF ANGULAR MOMENTUM — A HUMAN EXPERIENCE

OBJECTIVE TO UNDERGO A HUMAN EXPERIENCE OF THE PRINCIPLE OF CONSERVATION OF 

ANGULAR MOMENTUM.

Apparatus Two equal handy masses and a turn-table for a person to stand on it, as shown in Fig. E10.1.

Background Information The angular momentum H of a body of mass M rotating in a circle of radius r about 

an axis is given by
 H = rMn = Mr2

w

where v is the linear velocity of the mass and w its angular velocity about the axis of rotation.

The angular momentum of a body is conserved if the body is not acted upon by an external moment. In 

that case

 Mr2
w = Const. (E10.1)

If, therefore, a mass M is made to rotate along a circle of radius r1 at an angular velocity w1 is shifted to rotate 

along a circle of radius r2 without the action of an external moment, the new angular speed w2 is given by

 Mr Mr
r

r
1
2

1 2
2

2 2
1
2

1

2
2

ω ω ω
ω

= =;  (E10.2)



Observation of a Human Experience If a person 
holding two equal masses with his/her hands stretched 
while standing on a frictionless turn-table, as shown in 
Fig. E10.1 is set into motion with an angular velocity 
w1 about the vertical axis, he/she should continue 
to rotate at the same angular velocity. If now he/she 
retracts his/her arms to bring the masses as close to 
the vertical axis as possible, he/she would experience 
an increase in the rotational speed w2.

It may be noticed that the rotational speed of the 
mass increases inversely as the square of the radius of 
rotation if only the masses were to rotate. When the 
masses are held by a person whose own moment of 
inertia about the vertical axis is , the initial angular 
momentum is 

 1 1
2

1 12= +ω ω
and the final angular momentum after the masses are 
retracted is

 
2 2

2
2 22= +ω ω

Equating the angular momenta in the absence of 
any external moment

2 21
2

1 1 2
2

2 2ω ω ω ω+ = +

whence 
ω
ω

2

1

1
2

2
2

2

2
=

+

+
 (E10.3)

It may be seen from Eq. (E10.3) that the ratio of 
angular speeds w2/w1 would be more if the moment 
of inertia  of the person is minimised. 

w2 w1

Points for Discussion

From the definition of the angular momentum for the general case of motion of a body, i.e.,

= ×
obtain the expression

= 2
w

as defined for the present case.

Can you suggest some other experiment to verify the angular momentum conservation principle?

Can you use the apparatus of this experiment to determine the moment of inertia of a person about the 
vertical axis? If, so determine your own moment of inertia about the vertical axis.

w1

1

1

Person on a 
turntable

Elevation

2

Plan view

Plan view

Arms extended
(slow rotation)

Arms retracted
(fast rotation)

w2

1

Elevation

Fig. E10.1  Human experience of conservation 

of angularmomentum
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Example 9.21 A cylinder of radius r and mass m rests on a 

rough horizontal rug. If the rug is pulled from under it with an 

acceleration A perpendicular to the axis of the cylinder, describe 

the motion of the centre of mass of the cylinder assuming that it 

does not slip.

O

m

r

A

Fig. Ex. 9.21

Solution Consider the free-body diagram of the cylinder as shown in Fig. Ex. 9.21 (Solution) and taking 

O as the reference point, taking f as the force transmitted by the pull of the rug

 f = ma (i)

 f r I mr⋅ = = ⋅0
21

2
α α  (ii)

and for no slip, a + ra = A (iii)

 From (i) and (ii),

              a r=
1

2
α  (iv)

 Now, from (iii) and (iv),

         a = 2/3 A/r

and from (iii), again,

 a = A/3

 These two equations, i.e.,

          
a

dv

dt
A= = /3

and α
ω

= =
d

dt
A r2 3/ /

together describe the motion of the centre of mass of the cylinder.

mg

O
V

a

f

R

w

a

Fig. Ex. 9.21 (Solution)

Example 9.22 A vehicle of mass m negotiates 

a circular path of radius r with a constant speed n.

At what speed does the vehicle tend to overturn and at 

what speed would the vehicle slip sideways?

 How would the safe speed for negotiating a curve 

change if the road is banked at an angle q ?

b

rO

D

R1 R2

f2f1

b

C

h

r
mv 2

Fig. Ex. 9.22
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Solution From the free-body diagram of the vehicle as shown in Fig. Ex. 9.22.

R1 + R2 − mg = 0

 f f1 2

2

+ = m
v

r

and, by taking moments about the contact point P of the inner wheel,

 
R2

2

2⋅ − ⋅ = ⋅b mg b m
v

r
h

 From these equations,

  
R1

2

2 2
= − ⋅

mg h

b
m

v
r

 
R2

2

2 2
= + ⋅

mg h

b
m

v
r

The vehicle tends to overturn when the reaction at the inner wheel becomes zero and the entire weight is 

taken by the outer wheel.

 
R1

2

2 2
0= − ⋅ =

mg h

b
m

v

r

or v b h gr= /  (i)

 It shows that the safe velocity limit is higher for

• large b, i.e., wide-base vehicles

• low h, i.e., low centre of mass

• high r, i.e., curve of large radius

and for a location with a higher value of g!

 The vehicle would slip side ways when the lateral force equals the frictional resistance.

m
v
r

2

= +μ( )1 2R R

 = m mg

whence     v gr= μ  (ii)

 Comparing (i) and (ii), it is observed that on 

a smooth road, i.e., m less than b/h, the vehicle 

will skid rather than overturn. For a rough road, m

greater than b/h, the vehicle tends to overturn than 

slip sideways.

 Let us now consider the free-body diagram of 

the vehicle turning on a banked road (as shown in 

Fig. Ex. 9.22 (Solution)).

 f f mg m
v

r
1 2

2

+ + =sin cosθ θ

 
R R1 2

2

+ − =mg m
v

r
cos sinθ θ 

R2

2

2⋅ − − = +b mg b h m
v

r
b h( cos sin ) ( sin cos )θ θ θ θ

R1
O

f1

f2

R2

h

b

C

mg

b

q

Fig. Ex. 9.22 (Solution)
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 For the condition of overturning, R1 = 0,

 
v

h b

b h
b h gr=

+
−

⋅
1

1

/ tan

/ tan
/

θ
θ

 It shows that the ‘safe’ velocity in respect of overturning increases by a factor of

 =
+
−

1

1

h b

b h

/ tan

/ tan

θ
θ

 (iii)

 The angle of banking q is usually kept at 15 to 30 degrees depending on the radius of the turn and the 

intended velocity. For racing cars, roads are banked at higher angles at the turns.

 Now, a vehicle would slip sideways when

 f1 + f2 = m (R1 + R2)

which, upon substitution of values gives,

 
v g r=

+
−

1 1

1

/ tan

tan

μ θ
μ θ

μ

 It shows that the safe velocity in respect of slipping sideways increases by a factor of

 =
+
−

1 1

1

/ tan

tan

μ θ
μ θ

 (iv)

 Let us determine the speed at which the side thrust becomes zero, i.e.,

f1 + f2 = 0

 This happens if

 
mg m

v

r
sin cosθ θ= =

2

or tanθ =
v

gr

2

 

whence v gr= tan θ  

When the vehicle is stationery, it will overturn if 

tan q> b/h, i.e., when the line of action of its weight 

falls outside the base. It will slip sideways if tan 

q > m, i.e., when the angle of banking exceeds the 

friction angle. Normally, roads made of asphalt 

or concrete have m = 0.6 or less. For wet roads,

m = 0.4 and for snow-covered roads m = 0.2. High 

speed vehicles are designed for high b/h, i.e., more 

width and less height of centre of mass.

 It is, therefore, more probable for a vehicle to 

slip sideways than to overturn.

 Do heavier vehicles have a greater tendency 

to overturn or slip sideways? No, the conditions 

of overturning and slip are independent of the 

weight of the vehicle. But then, we do know that 
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heavy lorries and trucks overturn more often than cars do. The reason is that lorries and trucks are often 

loaded to make h high which makes b/h low. Hence, overturning. That’s why speed limits for heavy 

vehicles are kept lower than those for light vehicles.

 9.7 GENERAL MOTION OF A RIGID BODY

Let us now establish the dynamical equations of the general motion of a rigid body. By general motion, we 

imply a combination of translation in space and rotation about the coordinate axes.

Consider a rigid body in general motion referred to 

the fixed reference frame Y  as shown in Fig. 9.6. Let 

a set of body axes xyz be fixed at the point A. Let the 

body axes rotate with the angular velocity w and the 

angular acceleration a whereas the origin A has a gen-

eral translatory motion with respect to the origin O. For 

an element of mass dm, the position vector is

        R = RA +  (9.23)

and the velocity is given by

        = +� �RA
 (9.24)

The linear momentum of the element is

         dm dm dmA= = +� � �R R( )  (9.25)

and the angular momentum or the moment of momen-

tum about A is

         d dmA AH = × +R( )� �  (9.26)

For the entire body, the angular momentum about A is

H A A Ad dm dm= = × + ×∫∫∫ R� �

           = ( ) × + ×∫ ∫Rdm dmA
� �

or        H A cA Am dm= × + ×∫R� �  (9.27)

The first term on the right-hand side becomes zero under either of the following conditions:

 1. A is a point fixed in space such that �RA the velocity of A is zero.

 2. A is a point coincident with the centre of mass, for then cA e uals zero.

 3. A is a point moving towards or away from the centre of mass, for then cA and �RA are collinear.

It is usual to choose A as a fixed point on the body or at the centre of mass C so that the angular momentum 

is given by

 H = ×∫ � dm  (9.28)

Noting that the velocity of dm relative to point A is given by

 � = ×w

A
R

C

dm

Element

RA

RA

y

Y

RA
x

O
Fixed

axes

Body

axes

z a

w
CA

Fig. 9.6  General motion of a rigid body
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and the rectangular components of , w and A are given by

= x + y + z

 w = wx + wy + w2

= Hx + Hy + Hz

the expression for the components of angular momentum about A become

 H y z dm xy dm xz dmx x y z= + − − ∫∫∫ω ω ω( )2 2

 H z x dm yz dm yx dmy y z x= + − − ∫∫∫ω ω ω( )2 2

 H x y dm zx dm zy dmz z x y= + − − ∫∫∫ω ω ω( )2 2

Recalling the definitions of the moments of inertia, e.g.,

 I y z dmxx = +∫ ( )2 2

 I xy dmxy = ∫
               . . . . . . . . . . . . . . . . . .
the angular momenta can be expressed as

 Hx = Ixx wx − Ixy wy − Ixz wz

 Hy = Iyy wy − Iyz wz − Iyx wx (9.29)

 Hz = Izz wz − Izx wx − Izy wy

In matrix form,

 

H

H

H

I I I

I I I

I I I

x

y

z

xx xy xz

yx yy yz

zx zy zz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

− −

− −

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ω
ω

ω

x

y

z

or
A = A w

 (9.30)

The components of the inertia matrix are defined with respect to axes attached to and rotating with the 

body; these are invariant with respect to the body axes. If the body axes are selected to be the axes of sym-

metry or if these are the principal axes at the reference point, then the products of inertia vanish i.e.,

 Ixy = Iyz = Izx = Iyx = Ixz = Izy = 0

and the principle moments of inertia are

 Ix = Ixx , Iy = Iyy  and  Iz = Izz

Then the angular momentum is expressed as

= Hx + Hy + hz

where Hx = Ix wx

 Hy = Iy wy

 Hz = Iz wz (9.31)

If the body axes are the principal axes and, in addition, the angular velocity w is directed along a principal 

axis, then

 H = Iw (9.32)

An example of such a motion is the rotation of a body of revolution about its axis of symmetry; the angular 

velocity w and the angular momentum H are then along the axis of rotation.
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The Euler’s equation

 M = �  (9.33)

can be written in terms of the components of the moment, moment of inertia and angular velocity as 

follows:

= Mx + My + Mz

 � = ⎛
⎝⎜

⎞
⎠⎟

+ ×
d

dt m

ω  (9.34)

 = + + +� � �H H H

H H H

x y z x y z

x y z

ω ω ω

 
= + − + + −( ) ( )� �H H H H H Hx y z z y y z x x zω ω ω ω

 + + −( )�H H Hz x y y xω ω  (9.35)

 Substituting for �  in Eq. (9.33)

 
M H H Hx x y z z y= + −� ω ω

 M H H Hy y z x x z= + −� ω ω  (9.36)

 
M H H Hz z x y y x= + −� ω ω

 It can be appreciated that if the values of Hx, Hy and Hz are substituted from Eq. (9.27), the equations 

become highly complex.

When the body axes are the principal axes, the values of Hx, Hy and Hz are picked up from Eq. (9.29).

 

M I I Ix x x y z y z= − −�ω ω ω( )

M I I Iy y y z x z x= − −�ω ω ω( )

M I I Iz z z x y x y= − −�ω ω ω( )

 (9.37)

This set of equations is generally referred to as the Euler’s e uations of motion for a rigid body. The condi-

tions under which these equations are applicable are as follows:

1. The reference point where the body axes are fixed is a point fixed in space or is the centre of mass 

itself. It can also be shown that a point accelerating towards or away from the centre of mass also 

ualifies to be a reference point.

2. The xyz reference frame is fixed on the body and is directed along the principal axes at the reference 

point.

3. The moments of the force are taken about the reference point and also the components of the inertia 

matrix are determined with respect to the body axes at that point.

It must be remembered that the dynamics of a rigid body is governed by the Newton’s law of motion 

applied to its centre of mass as far as its translation is concerned. The complete set of equations for the 

 general motion of a rigid body is, therefore, as follows:
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F ma

F ma

F ma

x x

y y

z z

=
=

=

⎫

⎬
⎪

⎭
⎪

for the centre of mass

M I I I

M I I I

M I I I

x x x y z y z

y y y z x z x

z z z x y x y

= − −

= − −

= − −

⎫α ω ω

α ω ω

α ω ω

( )

( )

( )

⎬⎬
⎪⎪

⎭
⎪
⎪

about the centre of mass  (9.38)

These equations simplify in size and number for some special case of rigid body motion. Let us consider 

some such cases.

Case I: Space Motion with Constant Angular Velocity

 a = 0

whence, ax = ay = az = 0

and the set of equations reduce to

 

F ma

F ma

F ma

x x

y y

z z

=
=

=

⎫

⎬
⎪

⎭
⎪

for the centre of mass

 

M I I

M I I

M I I

x y z y z

y z x z x

z x y x y

= − −

= − −

= − −

⎫

⎬
⎪⎪

⎭
⎪
⎪

( )

( )

( )

ω ω

ω ω

ω ω

about thhe centre of mass  (9.39)

Case II: Space Motion with Zero Angular Velocity

 w = 0

whence, wx = wy = wz = 0

and the set of equations reduces to

 

F ma

F ma

F ma

x x

y y

z z

=
=

=

⎫

⎬
⎪

⎭
⎪

for the centre of mass

 

M I

M I

M I

x x x

y y y

z z z

=
=

=

⎫

⎬
⎪

⎭
⎪

α
α

α

about the centre of mass (9.40)

Case III: Torque-Free Motion

 = 0

whence, Mx = My = Mz = 0 (9.41)

and the Euler’s equations are simplified suitably. This, in other words, means the conservation of angular 

momentum.
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Case IV: General Plane Motion

Considering that the different elements of the rigid body are confined in parallel planes parallel to the xy

plane,

 ω ω ω ωx y x y za= = = = =0 0 0; � � and

The set of equations reduces to the following

 

F ma

F ma

x x

y y

=
=

⎫
⎬
⎪

⎭⎪
for the centre of mass.

 Mz = Izaz about the centre of mass (9.42)

Case V: Fixed-Axis Rotation

Selecting the fixed-axis, which should also be the principal axis, as z-axis, only the w z and �ω z  are 

non-zero

 ω ω ω ωx y x y= = = =0 0; � �

and the linear accelerations also being zero, the set of equations reduces to only one equation,

 Mz = Iz az (9.43)

Case VI: Translation of a Rigid Body

 w = 0 and �ω = 0

whence, wx = wy = w z = 0 

and
� � �ω ω ωx y z= = = 0

The Euler’s equations are then reduced to naught and the dynamical equations for the body are:

 Fx = max

 Fy = may

 Fz = maz (9.44)

where ax , ay and az are the acceleration components for any point of the body, as also for the centre of 

mass.

For a plane translatory motion, therefore,

 Fx = max

 Fy = may

if the parallel planes of motion are parallel to the xy plane.

For a rectilinear motion along the x-axis, the sole equation of motion must be

 Fx = max

 9.8 GYROSCOPIC ACTION

If an axisymmetric rigid body such as a plate or wheel spins about its axis of symmetry and this axis is pre-

cessing with a uniform angular velocity about an axis perpendicular to that of spin, then a couple called a 

gyroscopic couple acts on the body which is directed normal to the axes of spin and precession.
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If a body spins at a constant angular velocity w

about its x-axis as shown in Fig. 9.7(a) and it has a 

moment of inertia I about this axis then the angular 

momentum possessed by it is given by

H = Iw

which is shown by a vector oa. In a short inter-

val of time Dt, the axis of spin precesses about the 

z axis by an angle of Df. The angular momentum 

of the body remains the same in magnitude, i.e., 

Iw but changes in direction through an angle Df

as represented by a vector Ob. The change from 

the initial to the final position over the time Dt is 

given by Iw Df and the rate of change of angular 

momentum,

�H = = =
→

Lt
Δ

Δ
Δt

p

I

t
I

d

dt
I

0

ω φ
ω

φ
ω ω

because the precessional angular velocity is given 

by

 
ω

φ
p

d

dt
=

The rate of change of angular momentum, by 

Euler’s equation, must equal the external moment 

acting on the body

 M = I w wp
(9.45)

This moment is also termed the gyro-couple.

It may be noted that the gyro-couple acts in accordance with the right-

handed triad. The rule to determine the direction of the gyro-couple may be 

stated as follows:

The spin w , gyro-couple M and precession wp are consistent if all of 

them are along the  positive axes or if two of them are along the  negative 

axes.

A typical gyroscope looks like a suspension of a high-speed gyro rotor 

as shown in Fig. 9.7(b). The high-speed disc rotor spins about its x x axis 

in the inner gimbal ring. The inner gimbal ring is free to rotate about its 

y y axis relative to the outer gimbal ring. The outer gimbal ring is, in turn, 

free to rotate about the fixed z z axis. The mass centre O of the gyro rotor 

remains fixed at the same point. The gyroscopic action can result in a space 

moment if the axis of spin and precession are not mutually perpendicular or 

if the spin and precession velocities vary with time but the analysis becomes 

simple and practically important when the axes of spin, precession and gyro-

couple are mutually perpendicular as assumed in the analysis.

Axis of

gyro-couple

Axis of

spin

M

x

b

y

x

a

y

O

w

ωp

x-y Plane

O

Iw

Iw

IwDfDf

or

b

y

x
a

O

Iw

Iw
IwDf

Df

Vector diagram in the x-y plane for gyroscopic phenomenon

z

Axis of

precession

Fig. 9.7 (a) Gyroscope and gyroscopic action

Fig. 9.7 (b) Typical gyroscope
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Example 9.23 A circular disc of radius 10 cm and mass 1 kg is made 

to spin about its axis of symmetry and at the same time the axis rotates in

a horizontal plane with a precessional velocity of 5 revolutions per minute 

anticlockwise as viewed from the top as shown in Fig. Ex. 9.23. Calculate

the angular velocity of spin compatible with the steady motion of the 

system if the length L of the pin attached to the disc is 30 cm.

Solution As shown in the schematic figure, Fig. Ex. 9.23 (Solution)

 wp = 5 revolutions per minute

 = 5 × 2 p/60 = 0.524 rad/s

about the z-axis

 The moment of inertia about the spin-axis is

 
Ico = × × =

1

2
1 0 10 0 0052. . kg m2

and the external moment acting about the origin due to the weight of the 

disc is

M = 1 × 9.81 × 0.30 = 2.94 N m 

about the y-axis

 By the principle of the gyroscope,

                M = Iw wp

             ω
ω

= =
×

M

I p

2 94

0 005 0 524

.

. .
= 1122 rad/s

= ×1122
60

2π
10,720 revolutions per minute

As is typical of a gyroscopic action, the spinning speed of the gyro-rotor is extremely high. The high 

speed of rotation of 10,720 revolutions per minute is, hence, not unexpected.

 Another fact that emerges from this example is that the gyroscopic couple can be large to be able to 

precess a rotating body. If the polar moment of inertia of the gyro-rotor is large and the spinning velocity is 

made extremely high, then the gyro-couple required to precess the rotor by a small angle can be very large. 

This fact about a gyroscope is exploited by using it to provide stability to vehicles both on the earth and in 

space. But for gyroscopic stability, it would have been impossible to drive a two-wheeler vehicle such as a 

bicycle or motorcycle. some other examples of the gyroscope are gyrocompass, rate-of-turn gyro, artificial 

horizon for aircraft and stabilisation of aero-engines, rockets and ships.

Example 9.24 A horizontal circular disk platform in a children’s park can spin about its frictionless 

vertical axis. The platform has a mass of 50 kg and a radius of 2 m. If it is turned at 1 rad/s and a child of 

mass 20 kg steps on it, how will the speed of rotation change if he/she moves slowly towards the centre?

C

y

xO

wp

w

z

Fig. Ex. 9.23 (Solution)

L

wp

w

Fig. Ex. 9.23



Engineering Mechanics504

Solution  The platform is turning freely about its axis; moment of momentum must be conserved!

 Moment of inertia of the platform is given by

 
I MRp = = × × =

1

2

1

2
50 2 1002 2 2kg m

Moment of momentum

H = I w

 When the child just steps on it,

 

I I

H

p1
2 2

1
2

1

2
20 2 140

140 1 140

= + × × =

= × =

kg m

kg m s/

 When the child is at a radius r,

 

I r r

H r

r

r

= + × × = +

= +( ) ×

100
1

2
20 100 10

100 10

2 2

2 ω

 Equating the moments of momenta,

 
H H

r
r = =

+
; ω

140

100 10 2

 At r = 1.5 m w = 1.143 rad/s

 At r = 1.0 m w = 1.27 rad/s

 At r = 0.5 m w = 1.366 rad/s

 At r = 0.0 m w = 1.40 rad/s

which shows that the rotational speed increases as the child moves slowly towards the centre.

Example 9.25 A force F = 1.5 t newton, where t is in seconds, acts on a mass 200 kg initially at rest, 

for a period of 20 seconds. Determine

(a) the impulse on the mass

(b) the velocity of the mass and

(c) the average force which would have resulted in the same velocity.

Solution

The force F = 1.5 t N

 

Impluse

Ns

=

= =

=

∫

∫

F dt

t dt
t

T

0

2

0

20

0

20
1 5

1 5

2

300

.
.

 We know that

 Impulse = change in momentum

 300 = m (v2 − v1) = 200 (v2 − 0)

 Hence v2 = 1.5 m/s

 Now,  Force = rate of change of momentum
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mg

q1
5

Fig. Ex 9.26

Solution The work-energy equation states that

and

W F dr KE= ⋅ = −

= = = °
∫ c KE2 1

1 5 0 2 11 54sin . ; .θ θ

 The weight of the car is mg = 1200 × 9.81 = 11,770 N 

and the component along the incline is 11,770 sin q = 2354 N.

 The frictional resistance is 300 N, in addition to breaking force P which makes the net force down the 

incline as F = 2354 − 300 − P = 2054 − P.

 Work done W = (2054 − P) × 50 J.

 

KE

KE

1

2
1

2
1200

80 1000

3600
296 300= ×

×⎛
⎝⎜

⎞
⎠⎟

=

=

, J

 02

 Hence, (2054 − P) 50 = 0 − 296,300

 P = 7980 N = 7.98 kN.

 = 200 (1.5 − 0)/20 = 15 N

 This must be the equivalent average force.

 Alternatively,  Average Force
Impulse

Time
N.= = =

300

20
15  

Example 9.26 A car of mass 1200 kg descends 

a hill of 1 in 5 incline. Estimate the average braking 

force required to bring the car to rest from a speed 

of 80 km per hour in a distance of 50 m. Take the 

frictional resistance as 300 N.

Example 9.27 A lift is being raised by means of a rope-drum assembly with 

the rope coiled over the drum. The lift accelerates, starting from rest for 5 seconds 

and rises by 10 m. Data for the lift and rope-drum assembly is as follows:

Mass of the lift 1000 kg

Diameter of the drum 1.5 m

Mass of the drum 750 kg

Radius of gyration of drum 0.6 m

Estimate

(a) the angular acceleration of the drum,

(b) the tension in the rope raising the lift,

(c) the torque on the drum shaft driving the drum and

(d) the power required

Rope

Drum

Lift

Fig. Ex. 9.27
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Solution

 From the data M = 1000 kg

 r = 0.75 m

 m = 750 kg

 k = 0.6 m

 For the lift,
 t = 5 s, s = 10 m, u = 0

the upward acceleration a is given by

 

s ut at

a a

= +

= + ⋅ =

1

2

10 0
1

2
5 0 8

2

2 2

;

; . m/s

 This is also the acceleration of the rope, which goes over the drum.

(a) Angular acceleration of the drum a = = =
a

r

0 8

0 75
1 07 2.

.
. rad/s

(b) Considering the free-body diagram of the lift, the equation of motion is

 F − W = Ma

whence F = Ma + Mg = M(a + g)

 = 1000(0.8 + 9.81) = 10610 N = 10.6 kN

(c)  Considering the free-body diagram of the drum, the torque on the drum shaft T must be providing the 
moment with force F acting at the radius r in addition to the angular acceleration,

 T = F r + I α

 Taking the value of F, r, α as above and

 I = mk2 = 750 × 0.62 = 270 kg m2

we get  T = 10610 × 0.75 + 270 × 1.07
 = 8246 Nm = 8.2 kNm

(d) The power required must be

P = T ⋅ w
where w is the angular velocity at the instant when maximum velocity is reached, i.e., at 5 s from the 
start.

 w = 0 + 1.07 × 5 = 5.35 rad/s

 Hence P = 8246 × 5.35 = 44120 W = 44.1 kW.

Example 9.28 

(a)  Explain the mechanics of a two-wheeler vehicle (say, bicycle) negotiating a curve, stating clearly the 
role of frictional forces.

(b) Calculate the angle of banking on a bend of 100 m radius so that vehicles can travel round the bend at 
60 km/hour without side thrust on the tyres.

Fig. Ex. 9.27 (Solution)

r

T

m

W

a

M
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Solution

Part (a)

Visualising the motion of the two wheeler on a circular track of radius 

r, as shown, the two wheeler can take a turn only if the wheels provide 

frictional reactions of 1 and 2. The resultant of 1 and 2 must be radial 

and equal to the centripetal force required to turn the vehicle.

Centripetal force = mass × radial acceleration towards the centre 

of the circular track.

 F m
v

r
= .

2

 Vector sum of 1 and 2 must, therefore, be equal 

to m v2/r. It is indeed the frictional forces on the 

wheels, directed radially inwards, as shown which 

permit negotiation of a curve. If the surface is 

smooth or frictionless like deep frozen ice or if the 

tyres are worn out, etc., the frictional forces 1 and 

2 would not be provided; hence the vehicle would 

skid, i.e., appear to go outward although it would 

actually go along a straight line (in accordance 

with the Newton’s First law of Motion!)

Part ( b)

For a correct angle of banking q, there is no 

side thrust on the tyres; the only real forces are 

the weight mg acting downwards and the normal 

reaction N, normal to the inclined surface.

 The normal reaction is balanced by the mg cos q component of the weight,

N = mg cos q

The mg sin q component of the weight along the incline should provide for the centripetal force directed 

towards the centre of the curved path, i.e., mv2/r.

 However, it is the component along the incline, i.e., mv2/r ⋅ cos q. which is the one provided by the force 

mg sin q.

 Hence, mg
mv

r
sin cosθ θ=

2

or, tanθ =
v

gr

2

 Given that v

v

= =
×

=

=

60
60 1000

3600
16 67

100

km/hour m/s

m

.

so, tan
.

.
.q =

×
=

16 67

9 81 100
0 283

2

and . .q = °15 8  

1

O

2

u

r

Fig. Ex 9.28(a) (Solution)

Fig. Ex. 9.28(b) (Solution)

qmv
2 /r ⋅ cos q

mv 2/r

q q

q

r

mg mg sinq

mg cosq



 EXPERIMENT E11 PRINCIPLE AND ACTION OF A GYROSCOPE — A HUMAN EXPERIENCE

OBJECTIVE TO UNDERGO A HUMAN E PERIENCE OF THE PRINCIPLE OF A G ROSCOPE AND 
TO STUD  ITS ACTION.

Apparatus A bicycle wheel mounted on handles and a turntable for a person to stand on it as shown in 
Fig. E11.1.

Background Information The angular momentum  of an axisymmetric rigid body spinning about its axis at 
a constant angular velocity w is given by

= w

where  is the moment of inertia of the body about the axis of rotation. If the spinning body such as a disc, as 
shown in Fig. E11.2, is to precess about an axis perpendicular to the axis of spin at a constant angular velocity 
w  then a moment, also called a gyroscopic couple, acts on the disc such that the magnitude of the moment 
is w w , the direction of action is perpendicular to the plane containing the axes of spin and precession and 
the sense is governed by the right-handed screw rule such that the axes of the spin couple and precession 
constitute a triad as also shown in the same figure. 

Observation of a Human Experience If a person holds 
the wheel of a bicycle mounted on handles and, while 
standing on a turntable, sets the wheel spinning at a 
high angular velocity about a transverse axis, he should 
be able to stand upright and stationary as shown in 
Fig. E11.1. If now he precesses the spinning body by 
way of quickly turning the hands and the wheel about 
the fore-and-aft axis, he should experience a gyro-
scopic moment about the vertical axis. The direction of 
moment would be in accordance with the right-handed 
screw rule applied to the axes of spin, couple and preci-
sion. Referring to Fig. E11.1, if the wheel is spun about 
its axis in a counter-clockwise direction as seen from 
the left-hand side of the person and it is precessed coun-
terclockwise as seen by the person, the moment would 
be in a counterclockwise direction as experienced by 
the person looking towards the ground.

It is interesting to observe this rule and to verify 
what happens to the direction of the moment if either 
the spin or precession or both of them are reversed.

The gyroscopic properties of spinning rotors 
have been put to many practical uses. The property 
of keeping its direction fixed when mounted freely 
suggests its use as a gyro-compass instead of a magnetic 
compass. The property of precession on the application 
of an external moment has been used in auto-pilots for 
ships and aircrafts, in steering torpedoes, in stabilising 
rifle bullets and in many other ways including the 
 stabilisation of land, air and sea vehicles. A vehicle 

Df

w

wDf

w

Fig. E11.2  Angular momentum diagram. The principle 

of a gyroscope

Left
Rotor

Side viewElevation

Man on a 
turntable

w

w

w

w

 Axis of spin
    Axis of gyrocouple
    Axis of precession

Fig. E11.1  Human experience of the principle and 

action of a gyroscope
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may thus be equipped with more than one gyro. A ship, for example, may be fitted with a number of stabiliser 
gyros, a control gyro as well as a gyro-compass!

Points for Discussion

Estimate the speed at which the cycle wheel spins. Repeat the experience at two or three different speeds 
and arrive at the conclusion that the rotor of a practical gyroscope should spin at a very high speed. It may 
be noted that rotors are run by continuous-rating motors at speeds in the range 20,000 to 30,000 revolu-
tions per minute.

Explain, with reference to your observations with a spinning-cycle wheel gyroscope, the gyroscopic 
action used by a cyclist or motorcyclist.

Sketch an arrangement constituting a gyroscope for the purpose of a gyro-compass.

Concept Review Questions

 State, giving reasons, why
(a) the reference point on a rigid body is usually 

chosen as the centre of mass or a point fixed 
in space.

(b) the reference axes are attached with a rigid 
body oriented to coincide with the principal 
axes.

(c) Newton’s law and Euler’s equation together 
govern the motion of rigid bodies.

(d) the kinetic energy of a rigid body in general 
motion is the sum of the translational kinetic 
energy associated with the centre of mass 
and the rotational kinetic energy of the mass 
rotating about the centre of mass.

  Under what conditions and for what states of 
motion is the simple form

M = Ia

 adequate to describe the motion of a rigid body?

  Write down the set of equations governing the 
dynamic behaviour of
(a) a rigid body in rectilinear translation, plane 

translation, and space translation.
(b) a rigid body in general plane motion.
(c) a rigid body rotating about a fixed axis 

which is also its principal axis.

 Why is it that
(a) Euler’s equations do not contain the products-

of-inertia terms?

(b) the components of the inertia matrix do not 
change with time during the motion of a 
rigid body?

(c) the reference point has to be chosen with 
restrictions for the application of Euler’s 
equations?

  State the assumptions made in the development 
of euler’s equations and trace the origin of these 
assumptions.

  State the form of the following principles as 
applied to the dynamics of a rigid body.
(a) Impulse-momentum principle
(b) Work-energy principle
(c) Energy conservation principle.

  Explain how the gyroscopic action helps in sta-
bilising the motion of a bicycle, a two-wheeler 
scooter and an aeroplane.

8   The following are shown in the figure: (a) homo-
geneous semicylinder rolling without slip on a 
convex surface, (b) a composite cylinder rolling 
without slip on an incline, (c) a uniform ladder 
sliding between the wall and the ground, (d) a 
homogeneous cylinder rolling without slip on a 
concave surface and (e) a homogeneous cylinder 
rolling without slip on a flat accelerating surface. 
A number of points are marked on each figure. 
For each point, state, by the side of the figures,
whether the Euler’s equation in the form M = Ia

is applicable or not giving reasons.
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Given figures Yes No Reason for the answer

C Centre of mass

O

r C

A

4r
3p

O

A
Neither fixed nor accelerating 

towards or away from  nor C ccentre

of mass of the body.

⎡

⎣

⎢
⎢
⎢

C1

O

C2

4r
3p

A

2-Steel

1-Copper

C1

C2

O

A

Neither fixed points nor centre

of mass of the composite boddy

nor accelerating towards or away

from the centre of mass  of the 

composite body

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

A

C

I

B
O

C

I

A

B

O

Centre of mass

Instantaneous centre of rotation;

accelerating towards C

Neither fixed points nor 

accelerating towards or away from   

nor centres of mass

Not identified with the body

C

⎡

⎣

⎢
⎢
⎢
⎢

O1

O2

B

A

O2

A

O1

B

Centre of mass

Instantaneous centre of rotation

acceleratin

;

gg towards C

⎡

⎣

⎢
⎢
⎢

Not identified with the body[

O

A

T

O

A

Centre of mass 

Accelerating in a direction other

than towards or away from the

centre of mass

Answer
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Tutorial Problems

  A filing cabinet of mass 50 kg rests flat on 

a horizontal floor. A man wishing to slide it 

sideways applies a force of 200 N as shown in 

Fig. Prob. 9.1.

 Determine the minimum height h for which 

the application of the force would result in 

tipping about the corner B. Assume that the 

coefficient of static friction between the cabinet 

base and the floor is 0.3. Determine also the 

sideways acceleration of the cabinet if the force 

were applied below the critical height.

 ( s h = 0.8 m, a = 1.06 m/s2)

Filing

cabinet

200 N

0.5 m

0.7 m

C

A B

h

Fig. Prob. 9.1

  A heavy spherical ball is constrained in a frame 

as shown in Fig. Prob. 9.2. 

 Considering the inclined surface as smooth 

determine the maximum acceleration with 

which the frame can move horizontally without 

causing the ball to leave the frame.

 ( s a = 5.66 m/s2 to right)

Ball

30°

Frame

Fig. Prob. 9.2

  A simple wheel and axle has a mass m and a 

radius of gyration k (Fig. Prob. 9.3).

 The system is accelerated by a descending 

weight W attached to a cord wound round the 

axle of radius r. Determine the acceleration of 

the descending weight and tension in the cord.

s a
mgk r

g
mg k

r mgk
=

+

⎛

⎝⎜
=

+

⎞

⎠⎟
W

W
T

W

W2 2

2

2 2/
,

Wheel

Axle

m
r

W

Bearing

Fig. Prob. 9.3

  A wheel-and-axle is made to roll without slip on 

a horizontal surface by means of a 10 kg mass 

suspended by a light and inextensible string 

wrapped around the axle as shown in Fig. Prob. 

9.4. If the mass of the wheel-and-axle is 50 kg 

and the radius of gyration about the centroidal 

axis cc is 0.2 m, calculate the angular speed 

acquired by it when it has rolled a distance of 

2 m, starting from rest.

( s 6.1 rad/s)

0.2 m
0.3 m

C
C

10 kg 10 kg

Fig. Prob. 9.4
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  A cord passes over a pulley of mass m, radius r

and radius of gyration k and carries suspended 

weights W1 and W2 at its ends. Assuming that 

W1 > W2 and that the cord does not slip over the 

pulley, determine the acceleration of the cord 

and the difference in the tension on the two 

sides of the cord.

 
s a

mgk r
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−

+ +

W W

W W
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1 2
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1 2
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⎛

⎝⎜
⎞

⎠⎟
⎞

⎠
⎟

 A circular disc (2) is driven through frictional 

contact with disc (1) as shown in Fig. Prob. 9.6. 

External torque T1 acts on disc (1). Determine 

the resultant angular acceleration of disc (2).

 s α =
+

⎛

⎝⎜
⎞

⎠⎟
r r

r I r I

1 2 1

2
2

1 1
2

2

T

r2

1
r1

w2

w1

2

1

Fig. Prob. 9.6

R

C

m

Fig. Prob. 9.7

  A horizontal force F applied to the centre of 

mass of a sphere of radius R and mass m causes 

it to roll without slip (Fig. Prob. 9.7).

  (a)  Find the acceleration of the sphere.

  (b)   If there was a cylinder of the same radius 

and mass instead of a sphere and the force 

was applied centrally on it, would it have 

accelerated more or less and why?

 Assume the friction coefficient as m in each 

case.

 ( s  (5F/7) m and (2F/3) m less)

8   At what distance p should the horizontal force F

be applied to the homogeneous bar, homogeneous 

cylinder and homogeneous sphere so that the 

horizontal component of the reaction at the point 

of suspension is zero (Ref. Fig. Prob. 9.8).

 
s

2

3

3

4

7

10
d d d, and

⎛
⎝⎜

⎞
⎠⎟

Bar

d
P

F
F

Cylinder

P

F

P
d

Sphere

Fig. Prob. 9.8

  An aeroplane is flying at 500 km/hr. Find the 

angle with the horizontal at which it must bank 

in order to turn without slip sideways, in a cir-

cular path of radius 5 km. Assume that the resul-

tant air pressure on it acts through its centre of 

gravity at right angles to the angle of banking.

( s 21.5 )

 A uniform rigid cylinder of mass m and radius r

rolls without slip on a horizontal surface. What is 

its kinetic energy when its centre has a speed Vc?

 Would a sphere of the same radius, same mass 

and same velocity of the centre of mass have 

less or more kinetic energy?

 
s

3

4

7

10

2 2mV mVc c; ,less
⎛
⎝⎜

⎞
⎠⎟

 A bar AB of mass M and length L is pinned to a 

disc of mass m and radius r and the two are sus-

pended at point a to hang freely. If a horizontal 

force F is applied at the centre of the bar, deter-

mine the angular accelerations of the bar and 

disc at the instant as shown in Fig. Prob. 9.11.

 
s

24

13

12

13

f

mL

f

mr
,

⎛
⎝⎜

⎞
⎠⎟
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A

A

F L

r
B

Disc

Bar

Fig. Prob. 9.11

  A thin bar of steel of length L and weight W,

bent through a right angle is suspended from 

a fulcrum O. If it is released from rest when 

one limb of the bar is vertical as shown 

in Fig. Prob. 9.12, determine the maximum 

angular velocity acquired by it.

s
3

2 1
g

L
( )−

⎛

⎝⎜
⎞

⎠⎟

O

L/2

L/2

Fig. Prob. 9.12

  A box containing a bar of length L and mass 

m suspended from its ceiling at C as shown in 

Fig. Prob. 9.13 is accelerated horizontally at an 

acceleration a. Determine the inclination of the 

bar with the vertical in the steady state. What 

difference will it make if the acceleration was 

imparted at an angle q with the horizontal?

 ( s  tan q = a/g and ax /(ay + g))

O

Bar
L

a

Box

Fig. Prob. 9.13

  A uniform bar of length L and weight W rests 

on rough surface as shown in Fig. Prob. 9.14. 

Assuming that the coefficient of friction on 

both surfaces is 0.2, determine the reaction 

by the surfaces at an instant when the bar is 

released from rest at q = 30 .

 ( s  0.98 W, 1.23 W)
1

L

2q

Fig. Prob. 9.14

  Find the angular acceleration of the thin 

homogeneous lever of length 0.5 m and mass 

2 kg when it is in the horizontal position (Fig. 

Prob. 9.15).

( s −12.4 rad/s2)

0.25 m 0.25 m

2 kg 4 kg

Thin lever

Fig. Prob. 9.15

  A slender rod of length L and mass m is released 

from rest in the position shown in Fig. Prob. 

9.16. Determine the normal reaction exerted 

by the horizontal surface on the roller at the 

base of the rod at the instant after release.

( s mg (1 − 3/4 sin2 q)

θ

Fig. Prob. 9.16

  A thin homogeneous bar of length L and mass 

m is placed on the horizontal top of a table with 

its centre overhanging by a distance a from the 

edge as shown in Fig. Prob. 9.17. The bar is 
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released from rest when it is horizontal and 

begins to rotate about the edge of the table. 

Assuming the static coefficient of friction, 

compute the angle with the horizontal the bar 

makes after which the bar slips over the edge.

 
s tan

( )

−

+

⎛

⎝⎜
⎞

⎠⎟
1

2

2 236

L

L a

L/2

a

L/ 2

Fig. Prob. 9.17

8   A uniform bar of length 1 m and mass 20 kg 

hangs freely below a 0.5 m long thin rigid bar 

firmly attached to it as shown in Fig. Prob. 9.18. 

A bullet of mass 25 g approaching horizontally 

at 500 m/s pierces the bar and emerges hori-

zontally with a velocity of 200 m/s. Determine 

the velocity of the lower end of the bar just 

after the bullet leaves it and the maximum 

angle through which the bar may swing.

 ( s  0.52 m/s; 6.6 )

0.5 mThin rigid 

bar

0.5 m

0.5 m

Bar

Bullet

Fig. Prob. 9.18

  An inextensible cord going round a homo-

geneous cylinder A of mass 100 kg holds a 

massless plate B. The collar C of mass 30 kg 

is released from rest in the position shown 

in Fig. Prob. 9.19 and drops upon the plate. 

Determine the velocity of the collar when it 

has descended an additional 0.5 m after strik-

ing the plate. Assume that there is no rebound. 

i.e., C and B move downwards locked together 

and that the cord remains taut.

( s 2.5 m/s)

1 m

1 m

Cylinder

A

Cord

Collar

Plate B

C

Fig. Prob. 9.19

  In Fig. Prob. 9.20, a homogeneous cylinder 

and a homogeneous sphere of equal weights 

W = 200 N and equal radii R are harnessed 

together by a light frame and are free to roll 

without slip down a plane inclined 28  with the 

horizontal. Determine the force in the frame. 

Assume that the bearings are frictionless

( s  3.25 N)

Sphere

Cylinder

28°

Fig. Prob. 9.20

  A thin uniform hemispherical shell has a 

weight W and radius r. The shell is pulled 

along a horizontal surface by a constant hori-

zontal force F. The coefficient of sliding fric-

tion between the shell and the surface is m

which may be assumed to be constant. Find 

the distance above the plane that the force F

should be applied so that there is no tipping of 
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the shell. What is the acceleration of the shell 

under these conditions?

s x
r

a g= −⎛
⎝⎜

⎞
⎠⎟

=
−⎛

⎝⎜
⎞
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⎛
⎝⎜

⎞
⎠⎟2

1
μ μW

F

F W

W
,

r

a

F

Fig. Prob. 9.21

 A homogeneous bar of length L is pivoted about 

a point which is at a distance a from one end as 

shown in Fig. Prob. 9.22. If the bar is released 

from rest in the 30  position, what will be the 

angular speed when the bar is vertical?

 
s ω 2

2 2

4 2

3 3
=

−
− +

⎛

⎝⎜
⎞

⎠⎟
g L a

L La a

( )

a

LO

q

Fig. Prob. 9.22

 A 5 kg homogeneous disc 20 cm in diameter is 

attached rigidly to a 20 kg homogeneous disc 

40 cm in diameter. If the assembly is released 

from rest as shown in Fig. Prob. 9.23, what will 

be the angular speed when the small disc is at 

the bottom of its travel? ( s  3.9 rad/s)

20 cm

40 cm

Fig. Prob. 9.23

  A sphere rolling with an initial velocity of 

9 m/s starts up an inclined plane of 30  with 

the horizontal. How far would it roll up the 

incline, assuming rolling without slip?

( s 11.56 m)

  Find the acceleration of the falling weight and 

of the cylinder weighing 200 N connected by 

an inextensible string passing over a friction-

less pulley as shown in Fig. Prob. 9.25.

( s 5.61 m/s2 ac = 2.8 m/s2, a = 28 rad/s2)

0.1 m

100 N

C

P

O

Fig. Prob. 9.25

  A ball of weight 100 N is supported in a verti-

cal plane by a string AB and a bar BC hinged 

at C, as shown in Fig. Prob. 9.26. Find the 

force in the bar BC while it is in equilibrium. If 

now the string AB is gently cut, find the force 

in the bar just after the string is cut. Neglect 

the weight of the bar.

 ( s  73.21 N; 50 N)

A

B

C

45°

60°

1.5 m

Fig. Prob. 9.26
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  A slender prismatic bar of length L and weight 

W is supported in a horizontal position as 

shown in Fig. Prob. 9.27. Find the instanta-

neous reaction at the hinge support A just after 

the string attached at B is gently cut.

A B

String

L/3 L/3 L/3

Fig. Prob. 9.27

8   A solid circular cylinder and a solid sphere of 

the same mass and same diameter are started 

from rest at the top of an inclined plane at the 

same time and both roll without sliding down 

the plane.

(a) Which one would reach the bottom of the 

plane first and why?

(b) If one leads the other by 0.12 m at the 

instant of reaching the bottom of the plane, 

find the total length of the plane.

( s  (a) Solid sphere; less Ic (b) 3.48 m)

  A homogeneous plate of mass 20 kg having 

the shape of an equilateral triangle with each 

side 40 cm long hangs in a vertical plane by 

pins at two of its corners A and B as shown in 

Fig. Prob. 9.29. The pin B is removed gently. 

Determine the reaction at A just after that 

instant.

 ( s RAx = − 68 N, RAy = + 78.4 N)

C

A B40 cm

20 kg

Fig. Prob. 9.29

  A homogeneous rectangular block with a mass 

of 200 kg rotates at 10 rad/s about a main 

diagonal held by bearings at A and B mounted 

on a vehicle moving at a speed of 10 m/s as 

shown in Fig. Prob. 9.30. Calculate the kinetic 

energy of the block.

 ( s KE translation 10 kNm; KE rotation 2700 Nm)

A B
10 rad/s

10 m/s

2 m

1.5 m

0
.5

 m

Fig. Prob. 9.30

Look up Hints to Tutorial Problems at the End!

Multiple-Choice Questions

Select the correct or most appropriate response from 

among the available alternatives in the following 

multiple-choice uestions:

 The centre of percussion is a point on a rigid 

body

 (a)  through which the resultant of the applied 

forces acts

 (b) where the impact is made

 (c) where the largest external force acts

 (d) about which the body may rotate
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 Euler’s equation of motion should not be applied 

about

 (a)  the centre of mass of the body

 (b)  the fixed point about which the body may 

rotate

 (c)  a point accelerating towards the centre of 

mass

 (d) a point fixed in space.

 The kinetic energy of a rigid body of mass m

moving such that the velocity of its centre of 

mass is Vc and the rotational velocity is w, is 

given by

 (a) 1/2 mVc2

 (b) 1/2 Icw 
2

 (c) 1/2 mVc 2 + 1/2 Ic w 
2

 A solid cylinder, solid sphere and a loop, each of 

radius R and mass m, are released simultaneously 

from rest on an incline at the same elevation. The 

order in which they will pass through a common 

mark at the same level will be

 (a) cylinder, sphere and hoop

 (b) sphere, cylinder and hoop

 (c) hoop, sphere and cylinder

 (d) hoop, cylinder and sphere

 The principle of conservation of angular momen-

tum for a rigid body is applicable when

 (a) the external forces add to zero

 (b) the internal forces add to zero

 (c)  the external forces and moments are absent

 (d) the resultant external moment is zero

Answers to Multiple-Choice Questions

1 (a)    2 (d)    3 (c)    4 (b)    5 (d)





Applications in 

Dynamics

This section consists of some salient 

applications in dynamics under the 

following two chapters:

� D1 IMPACT OF TWO BODIES

� D2 CENTRAL FORCE MOTION





D1

Impact of Two 

Bodies

 D1.1 INTRODUCTORY CONCEPTS

An impact is a sudden short-term encounter between two 
bodies. The common form of impact is the collision between 
two bodies. The bodies experience large variable forces over short 
 intervals of time with various dissipative phenomena, such as 
wave propagation, partial plastic deformation, relative slipping 
under friction and radiation of heat, sound and light. In view of 
these complications, exact solutions for the collision problems do 
not exist but simplified  treatments based upon some postulates 
and empiricism have been developed.

When two bodies collide, it is assumed that they come in 
contact over an infinitesimal plane area surrounding the point of 
contact. The plane of the area is known as the as
shown in Fig. D1.1.

 is defined as a line, normal to plane of contact at the point of contact. The 
plane of contact  and line of impact are shown in Fig. D1.1. The direction along the line of 
impact is called the normal direction whereas the direction along the plane of contact is called 
the tangential direction. The velocity of a body just before and just after the impact may be 
resolved into a normal component and a tangential component.

 D1.2 TYPES OF IMPACT

An impact, i.e., collision of two bodies may be quite general, with two arbitrary shaped bodies 
with initial velocities 1, w1, and 2, w2 colliding at a point P as shown in Fig. D1.2 (a). Such 
a general case of ‘non-central’ and ‘indirect impact’ is beyond our scope.

Some other types of impact are shown in Figs D1.2 (b, c, d and e).

Line ofimpact

P
la

ne
 o

f
co

nt
ac

t

Fig. D1.1 Impact: collision



Engineering Mechanics522

C2

C1

1 2

A

B

P

Line of

impact

Plane of

contact

C2C1

1 2

A

B

P

P

Line of

impact

(c) Indirect or oblique central impact

Line of

impact

(d) Direct non-central impact
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(e) Direct central impact

(b) Non-central indirect impact(a) General impact
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Fig. D1.2 Classification of impacts

If the line of impact passes through the centres C1 and C2 of masses m1 and m2 respectively, it is called 

central impact and if the line of impact does not pass through the centres of masses, it is called non-central or 

eccentric impact. If the velocities of the bodies before collision are collinear with the line of impact, it is said to 

be direct impact, otherwise indirect or obli ue impact.

W s s

s

. P s s

s s.

It is postulated that the total period of impact Dt

consists of two components Dt1 and Dt2 characterised 

as the deformation and recovery periods. Over these 

short intervals of time, the contact forces are large 

and the impulse of each force is assumed to be finite. 

In comparison with the large contact forces, other 

finite forces such as that due to gravity are usually 

neglected.

Pre-

collision

Post

collision

Impulse of

deformation

Impulses of

recovery,

Ir

Force

RecoveryDeformation
TimeDt1 Dt2

O

Id

Dt

Fig. D1.3 Postulated contact force-time history 
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The impulses of deformation and of recovery 

are finite even though the time interval of impact is 

extremely small. This implies that there is a step change 

in the velocities of the two bodies without any change of 

coordinates.

From the fact that the contact force acts wholly along the 

line of impact,

⋅ n = F, the magnitude of  (D1.1)

where n is the unit vector along the line of impact. similarly, 

the impulse is wholly along the line of impact,

 dt dt In⋅ = =∫∫  (D1.2)

If a collision takes place without any external force, the 

internal forces, i.e., the forces exerted by either body on the 

other be equal and opposite. It follows that the impulses of 

the forces on the two bodies must also be equal and oppo-

site. The contact-force time history of each body must be the same. The force-time history drawn in Fig. D1.3, 

therefore, applies to either body with due care to the sign. The contact force develops from zero value when the 

collision starts and increases to a maximum value at the end of the period of deformation. The period of recov-

ery is characterised by a diminishing contact force until it reaches a zero value again at the end of the collision. 

Free-body diagrams of the bodies during impact are shown in Fig. D1.4.

 D1.3 COEFFICIENT OF RESTITUTION

The energy dissipation effects are assumed to be described by a single scalar parameter e, the coefficient of 

restitution defined as the ratio of the impulses of recovery and deformation for either body. Considering the 

equation of motion for each body, the impulse of contact force equals the change in momentum for the body 

along the line of impact in the vicinity of the contact point.

With reference to an indirect or oblique central impact, as shown in Fig. D1.5.

e
I

I

r

d

= =
Impulse of recovery

Impulse of deformation

 = ∫ ∫F dt F dt

t

t t

Δ

Δ Δ

1

2 1

0

m2m1

Collision Post-collision

m1

V ′1

V ′1n

m2

V ′2

V ′2n

Pre-collision

m1

V1

V1n V2n
m2

V2

Fig. D1.5 Indirect central impact  

Period of deformation

Period of restitution

1 2

t

n

− −

1 ′ 2 ′
− ′− ′

(a) Free-body diagrams of the bodies during collision

Fig. D1.4 Direct central impact 
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For body 1,
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For body 2,
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(ii)

Combining Eqs. (i) and (ii) 
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e = −

Velocity of separation along the line of impact

Velocity  of approach along the line of impact

The coefficient of restitution e may now be related to the dissipation of energy during a direct central 
impact. Assuming that the potential energy of each body remains the same during the infinitesimal time of 
impact, the kinetic energy just before the impact is

 KE m V m V= +
1

2

1

2
1 1

2
2 2

2 (D1.4)

and the kinetic energy just after the impact is

 KE m V m V′ = ′ + ′
1

2

1

2
1 1

2
2 2

2 (D1.5)

Assuming that the second body remains at rest,

 V2 = 0 = V ′2
such as the case of a ball striking the f loor, the initial and the final kinetic energies are 

1

2

1

2
1
2

1
2mV mVand ′

respectively.
The ratio of the final kinetic energy to the initial kinetic energy is
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=
2

2e (D1.6)

Hence, e2 can be thought of as the ratio of the final kinetic energy to the initial kinetic energy in a direct 

central impact of a body against a massive body practically at rest.
As an example, consider a body freely dropped from a height H to a flat plate on the surface of the earth. 

The kinetic energy just before the impact is equal to the initial potential mgH. The height of rebound h should 
be such that the kinetic energy just after the impact which is also equal to the final potential energy mgh,
is related to the initial kinetic energy by Eq. (D1.6), i.e.,

mgh

mgH
e= 2

or h = e2H
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The value of e for a pair of bodies depends upon the properties of the surfaces of the materials to a large 

extent. The geometry of bodies and size, centrality or non-centrality of impact, velocity of approach and some 

other factors have also but a marginal influence on the value of e.

 EXPERIMENT E12 COEFFICIENT OF RESTITUTION

OBJECTIVE TO DETERMINE THE COEFFICIENT OF RESTITUTION FOR THE GIVEN PAIRS OF 

MATERIALS.

Apparatus A trolley with an attachment for a block of material on one end and a cord on the other, a trolley 

track with an attachment for the other material on a bumper and a pulley-in-slot arrangement for 

hanging a weight as shown in Fig. E12.1, different materials and a metre rod.

Background Information The trolley is placed on the bumper end of the track. The cord and weight are tied 

to it at the other end and released. As soon as the weight drops to the ground the trolley is let go freely on the 

track. It decelerates and comes to rest after a distance S1 given by 

   u1
2 = 2aS1 (E12.1)

where u1 is the speed of the trolley at the instant the weight just touches the ground.

Fig. E12.1 Apparatus for coefficient of restitution

If the trolley is now placed on the other side of the pulley and the weight, attached to the same length of the 

cord, is dropped by the same height h, the speed acquired by the trolley would be u1 and it would go on for a dis-

tance S1. However, after the trolley travels a distance S2, an impact takes place, a fraction of energy is dissipated 

and the trolley retracts by a distance S3 instead of the distance (S1 – S2) as expected in the absence of an impact.

The speed of the trolley just before the impact is given by

 u1
2 – u2

2 = 2aS2

whence u2
2 = u1

2 – 2aS2 = 2aS1 – 2aS2 = 2a (S1 – S2)

and u a S S2 1 22= −( ) (E12.2)

The speed of the trolley just after the impact would be such that

 u aS u aS3
2

3 32 2= =; (E12.3)



 By the definition of coefficient of restitution,
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1 2

2

2 ( )
(E12.4)

Observations and Calculations A tabulated record of S1, S2 and S3 is all that is required for each pair of  materials 

under test. If the falling weight, length of the cord and height of the fall are kept the same, S1 and S2 will remain 

the same and the distance S3 can be calibrated straightaway in terms of the coefficient of  restitution. The scale 

will, however, not be linear.

 Average S1 = Average S2 =
 Average (S1 – S2) =

Pairs of materials Values of S3 Average S3

Calculation of the coefficient e

Pairs of materials S3 S1  S2

S

S S

3

1 2−
e

S

S S
=

−
3

1 2

Result The coefficient of restitution for the given pairs of materials may be recorded. From the fact that 

S3 = 0 for e = 0 and that S3 = S1 – S2 for e = 1 in addition to the known values of S3 for the pair of materi-

als tested, an attempt may be made to devise a scale such that S3 the distance of rebound after the impact is 

 calibrated in terms of e, the coefficient of restitution.

Points for Discussion

  Compare the values of e determined for the given pairs of materials with the standard values looked up 

in a reference book.

  What percentage of kinetic energy initially possessed by the trolley is lost during the impact in each case?

  List the sources of error in the experiment and examine, in the light of these errors, whether the actual 

coefficients of restitution are more or less than the values determined by you.

  One is likely to feel that more direct methods could be devised in order to estimate e for a pair of 

materials. Suggest some alternative methods and the parameters which need to be measured in each 

case. Which would you think would be the best and most accurate method?

 Does the definition of e hold for all types of impacts, i.e., central, non-central, normal, direct and indirect?

 Relate the coefficient of restitution e to the impulses of deformation and recovery during an impact.

The value of e is unity if the collision is elastic, i.e., if energy is not dissipated during the collision. 

Minimum value of e is zero for plastic collision, i.e., if the energy is entirely dissipated. Typical values of 

e are given in Table D1.1.

Value of e Type of materials

1 Perfectly elastic materials

0.5 to 1 Steel, cast iron, brass

0 to 0.5 Plasticine, rubber, wood

0 Perfectly plastic materials

Table D1.1 Typical values of coefficients
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 D1.4 PLANE CENTRAL COLLISION

Let us now analyse a plane central collision of two bodies with reference to Fig. D1.6

1 2

x

1

Vy1

y2
2

Vx1
x2

1 ¢x2

¢y2 ¢2

Collision Post-collision velocities

2

Pre-collision velocities

y

1¢x1

¢y1

¢12

Fig. D1.6 Central collision of two bodies 

Body 1 Body 2

Precollision velocity 1 2

Post-collision velocity ′1 ′2

With the knowledge of the initial conditions, computation of post-collision velocities implies the  evaluation 

of four velocity components. Four scalar equations must, therefore, be set up:

 1, 2. Conservation of momentum for the pair of bodies during the impact would provide two scalar 

equations. It may be noted that the momentum of the pair of bodies taken together is conserved 

because no external force acts on them taken together as a system.

 3. The definition of the coefficient of restitution e provides one more equation. It expresses empirically 

the gross effect of the energy loss.

 4. One more equation must come from the friction characteristics of the surfaces or the constraints to 

motion. The absence of friction at the surfaces implies that the velocity components in the tangential 

direction remain unaltered.

By the conservation of momentum principle,

 m1 1 + m2 2 = m1 ′1 + m2 ′2 (D1.7)

In the scalar form,

 m V m V m V m Vn n n n1 1 2 2 1 1 2 2+ = ′ + ′ (D1.8)
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 m V m V m V m Vt t t t1 1 2 2 1 1 2 2+ = ′ + ′ (D1.9)
From the definition of e,

 e
V

V

V V

V V

sn

an

n n

n n

= − = −
′ − ′

−
1 2

1 2
(D1.10)

From the frictionless constraints, one gets

 ′ = ′ =V V V Vt t t t1 1 2 2and (D1.11)

However, ′ = ′V Vt t1 2 (D1.12)

for rough surfaces of bodies satisfying the ‘stick condition’.

It can also be seen that a direct central impact is even easier to analyse. The velocities are then along the 

line of impact only. Let us consider a direct central impact when the precollision velocities of the bodies are 

in the same direction and sense as shown in Fig. D1.7.

By the conservation of momentum principle,

 m V m V m V m V1 1 2 2 1 1 2 2+ = ′+ ′  (D1.13)

and by definition of e,

 e
V

V

V V

V V

sn

an

= − = −
′− ′
−

1 2

1 2
 (D1.14)

This is a set of equations for the two unknowns, 

say the final velocities after the impact.

It is interesting to see the change of kinetic energy 

during the impact: 

Before the impact

 KE m V m V= +
1

2

1

2
1 1

2
2 2

2

After the impact

 
KE m V m V′ = ′ + ′

1

2

1

2
1 1

2
2 2

2

By employing Eqs. (D1.13) and (D1.14), the expression for KE′ can be reduced in terms of V1 and V2. The 

amount of kinetic energy dissipated is given by

 KE KE
e m m

m m
V V− ′ =

−
+

−
1

2

2
1 2

1 2

1 2
2( ) (D1.15)

It may be noted that the dissipation of kinetic energy depends upon the coefficient of restitution e, masses 

m1 and m2 and the initial difference of velocities of the bodies. The dissipation is zero if e = 1,   i.e., when the 

impact is elastic.

Perfectly Elastic Direct Central Impact

For a perfectly elastic direct central impact, as shown in Fig. D1.7(a), the coefficient of restitution is unity

 
e

V

V

V V

V V

sn

an

= = − = −
′− ′
−

1 1 2

1 2

(D1.16)

It follows that

 V1′ – V2′ = V2 – V1 = – (V1 – V2) (D1.17)

V ′1 V ′2

m1m1

V1 V2

Before impact Collision After impact

Before impact Collision After impact

(a) Elastic impact

m1

V1 V2

m2

(b) Plastic impact

V ′1  V ′2  V ′

m1
m2

m2
m2

Fig. D1.7 Direct central impact
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which means that the velocity of separation equals the velocity of approach in magnitude but is opposed to 

it in direction.

From Eq. (D1.15), for e = 1, the kinetic energy dissipated is

 KE – KE′ = 0 (D1.18)

Since the potential energy remains unaltered during a collision, Eq. (D1.18) may be interpreted to imply 

that the mechanical energy of the system of bodies is unaltered during a direct central elastic collision. If the 

surfaces are frictionless, the mechanical energy will also be conserved in an indirect central elastic collision 

because the tangential velocity component of each body will then remain unaltered during the collision.

 KE KE KE KE1 2 1 2+ = ′ + ′

or
1

2

1

2

1

2

1

2
1 1

2
2 2

2
1 1

2
2 2

2m V m V m V m V+ = ′ + ′  (D1.19)

Perfectly Plastic Direct Central Impact

For a perfectly plastic direct central impact, as shown in Fig. D1.7(b).

 e
V

V

V V

V V

sn

an

= = − = −
′− ′
−

0 1 2

1 2
  (D1.20)

It follows that

 ′− ′ = ′= ′ = ′V V V V V1 2 1 20;  (D1.21)

which means that the two bodies move together at a common post-collision velocity V ′ following a direct 

central plastic impact.

From Eq. (D1.15), for e = 0, the kinetic energy dissipated is

 KE KE
m m

m m
V V− ′ =

+
−

1

2

1 2

1 2

1 2
2( )  (D1.22)

This is incidentally not the entire kinetic energy possessed by the bodies before the collision. The kinetic 

energy KE before the collision was

 
KE m V m V= +

1

2

1

2
1 1

2
2 2

2

and that after the collision is

 
KE m m V′ = + ′

1

2
1 2

2
( )

The percentage dissipation of energy is given by

 
KE KE

KE

− ′
× 100

 D1.5 COLLISION OF A SMALL BODY WITH A MASSIVE BODY

If a small body collides with a massive rigid body of a flat or curved surface, as shown in Fig. D1.8, the 

velocity of the massive body remains unaltered because of its large mass and the large momentum required 

to produce a small change in its velocity. If a normal is drawn at the point of impact, the velocity component 

of the small body in the direction of the normal must obey the restitution hypothesis

e
V

V

n

n

= −
′

or ′ =V eVn n  (D1.23)
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which implies that Vn′ is opposed to Vn and is reduced in  magnitude 

by a factor e. The velocity component tangential to the surface 

remains unaltered in the absence of frictional forces,

 ′ =V Vt 1 (D1.24)

The angle of incidence q1 is given by

 tanθ1 =
V

V

t

n

 (D1.25)

and the angle of deflection q ′ is given by

 tan tan /θ θ1 1
′ =

′
′

= − = −
V

V

V

V e
et

n

t

n

(D1.26)

This implies that q1′ must be reverse in sign to that of q1, i.e., the 

angles of incidence and deflection must be  subtended on either side of the normal direction. Since e may lie 

within O and l for different materials, numerically

tan tanθ θ1 1
′ ≥

or θ θ1 1
′ ≥  

In particular, for an elastic impact, e = 1

 tan q1′ = tan q1; q1′ = q1

the angles of incidence and deflection must be e ual.

For a plastic impact, e = 0
tan ;θ θ1 1 90′ → ∞ ′ = �

The small body must be def lected tangential to the massive body at the point of contact.

Example D1.1 (a) A small steel ball is dropped on to a plane surface from a height h and it rebounds 

to a height h1 after impact. If the ball is allowed to drop and rebound repeatedly, determine the height 

of rebound after n impacts. (b) If the ball bounces down a flight of stairs of step height d, determine the 

height h for which the ball will bounce to the same height above each step.

Case (i) Case (ii)

h

h

h

h

d

Steps

h

Ball

SurfacePlane

+

P

Fig. Ex. D1.1

Massive body

n

V1n

V1n

V1t

V1
V′1

V′1t

1

t

q1 q ′1

Fig. D1.8  Collision of a small body with 

a massive rigid body
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OO

1 2

O

h

q

Before impact After impact Maximum swing

Fig. Ex. D1.2 

Solution Assigning suffix 1 to the ball and 2 to the stationary plane surface, the pre-collision velocities are

 V gh V1 2 0= − =and 2

 Since the ball rebounds to a height h1, the post-collision velocities must be

′= ′ =V gh V1 1 22 0and

 Employing the definition of the coefficient of restitution,

 
e

V

V

gh

gh

h

h

sn

an

= − = =
2

2

1 1

 The height of rebound after the second impact is

 
h

h

h

h

h
×

⎛
⎝⎜

⎞
⎠⎟

=1

2

1
2

and after n impacts, the height of rebound is

 h
h

h

h

h

n n

n
×

⎛
⎝⎜

⎞
⎠⎟

= −
1 1

1

  For the second case, the height of rebound above a datum on any step is (h – d ) for a height h of fall. 

Hence,

 e
h d

h
=

−

or e2h = h – d

whence h
d

e
=

−1 2  
 It has been assumed that the ball drops approximately vertically on each step and that the step width is small.

Example D1.2 A bullet of mass 20 g moving 

with a velocity of 100 m/s hits a 2 kg bob of a simple

pendulum horizontally as shown in Fig. Ex. D1.2. 

Determine the maximum angle through which the 

pendulum string 0.5 m long may swing if

(a) the bullet gets embedded in the bob

(b) the bullet escapes from the other end at 20 m/s

(c)  the bullet is rebounded from the surface of the 

bob at 20 m/s

Solution Just before the impact, for the bullet,

V1 = 100 m/s  and m1 = 0.02 kg,

 m1V1 = 2 kg m/s

and for the bob

       V2 = 0 and  m2 = 2 kg;  m2V2 = 0

 Now, m1V1 + m2V2 = 2 kg m/s 
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Case (a)

Just after the impact, the bullet and the bob become united to travel at a velocity of V ′m/s and their 

momentum is

(2 + 0.02)V ′ = 2.02V ′ kg m/s

 Equating the initial and final momenta,

2.02 V ′ = 2, V ′ = 0.99 m/s

 After the impact, the bob must rise by a distance h according to the principle of energy conservation

 
mV

mgh
′

=
2

2

whence, h =
×

=
0 99

2 9 81
0 05

2.

.
. m

 

and θ =
−⎛

⎝⎜
⎞
⎠⎟

= °−cos
. .

.
.1 0 5 0 05

0 5
25 85

 
Case (b)

If the bullet escaped from the other end of the bob at a velocity of 20 m/s, the final momentum would have 

given by

0.02 × 20 + 2 × V ′2
which when equated to the initial momentum 2 kg m/s provides,

 V ′2 = 0.8 m/s

 The height through which the bob is lifted becomes,

 
h =

×
=

0 8

2 9 81
0 0326

2.

.
. m

and θ =
−⎛

⎝⎜
⎞
⎠⎟

= °−cos
. .

.
.1 0 5 0 0326

0 5
20 8

 
Case (c)

If, instead the bullet rebounded at 20 m/s, the final momentum would be given by

−0.02 × 20 + 2 × V ′2
which when equated to the initial momentum of 2 kg m/s provides,

 V ′2 = 1.2 m/s

 
h =

×
=

1 2

2 9 81
0 0734

2.

.
.

and θ =
−⎛

⎝⎜
⎞
⎠⎟

= °−cos
. .

.
.1 0 5 0 0734

0 5
31 4

Example D1.3 Two homogeneous spheres A and B of masses 10 kg and 2 kg and radii 30 cm and

20 cm respectively are moving initially along parallel paths 10 cm apart as shown in Fig. Ex. D1.3. If the 

coefficient of restitution between the two surfaces is 0.4 and friction is negligible, determine the velocities 

of the spheres immediately after the collision. Also estimate the energy lost during the collision.
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Solution From the geometry at the scene of collision,

 
sin .θ = =

10

50
0 2

30 cm

10 cm
20 cm

10 m/s

5 m/s
A

B

Fig. Ex. D1.3 

Scene just before collision

Scene just after collision ¢B

10 m/s

5 m/s

A

B

P

mA = 10 kg

mB = 2 kg

q

Plane of

contact

Line of

impact

1 m/s

1.47 m/s

7.35 m/s

2 m/s

Line of

impact

¢A

f2

f1

Fig. Ex. D1.3 (Solution)
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and θ = °11 54.

 Just before the collision,

A = 5 cos q + 5 sin q = (4.9 + 1 ) m/s

B = –10 cos q  – 10 sin q = (– 9.8  – 2 ) m/s

During the collision process, no external force acts on the pair of spheres. The forces of impact are 

internal forces for the pair of bodies and frictional forces are negligible. The momentum must, therefore, be 

conserved during the collision. Conserving the momentum along the line of impact,

10V ′An + 2V ′Bn = 10VAn + 2 VBn

 = 10 × 4.9 – 2 × 9.8 = 29.4 m/s

or 10V ′An + 2V ′Bn = 29.4 m/s (i)

The additional information that there is no frictional retardation on either body in the tangential direction 

enables us to write that

 V ′At = VAt

 V ′Bt = VBt (ii)

 From the definition of the coefficient of restitution,

 
e

V V

V V

An Bn

An Bn

= −
′ − ′

−

 V ′An – V ′Bn = – 0.4 × (4.9 – (9.8)) = – 5.88 m/s (iii)

or 2V ′An – 2V ′Bn = – 11.76 

and from (i), 10V ′An + 2V ′Bn = 29.40 

 On addition, 12V ′An = 17.64 

whence, V ′An = 1.47 m/s 

and V ′Bn = 7.35 m/s 

 Finally,

 ′A = ( )1.47   1  m/s

 ′B = −( )7.35 2  m/s

 With reference to the figure showing the components of velocity after the collision,

′A = 1.76 m/s: f1 = tan–1 (1/1.47) = 34.2

′B = 7.62 m/s; f2 = tan–1 (2/7.35) = 15.2

 The kinetic energy before the collision = × × + × ×
1

2
10 5

1

2
10 102 2

 = 625 J

and kinetic energy after the collision = × × + × ×
1

2
10 1 76

1

2
10 7 622 2( . ) ( . )

 = 301.30 J
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q
V

m/2 m/2

h = 
V

2
sin

2
q

2g

Fig. Ex. D1.5

C
1 kg 3 kg

1 2

Fig. Ex. D1.4

Since there is no change in the potential energy, the energy loss is

= 625 – 301.30

 = 323.70 J

Example D1.4 State whether the following statement is true 

or false. Give reasons for your response:

Two particles of masses 1 kg and 3 kg move towards each 

other under their mutual force of attraction. No other force acts 

on them. When the relative velocity of approach of the two particles is 2 m/s, their centre of mass has a 

velocity of 0.5 m/s. When the relative velocity of approach becomes 3 m/s, the velocity of the centre of 

mass is 0.75 m/s.

Solution From the fact that there is no external force acting on the two masses taken together, their 

momentum must be conserved. This is equivalent to stating that their centre of mass must continue to move 

with the same velocity because

 Momentum = m1 1 + m2 2 = (m1 + m2) C = m1 ′1 + m2 ′2
 From the given statement of the problem, the velocity of the centre of mass changes from 0.5 m/s to 

0.75 m/s. This is just not possible as the momentum should be conserved. Hence, the statement is false.

Example D1.5  A shell is fired from a cannon with a 

velocity V at an angle q  with the horizontal direction as 

shown in Fig. Ex. D1.5. At the highest point in its path 

it explodes into two pieces of equal mass. One of the 

pieces retraces its path to the cannon and the speed of the 

other piece immediately after the explosion is:

(A) 3V cos q   (B) 2V cos q

(C)
3

2
V cos q    (D)

3

2
V cos q

Solution The velocity of the shell as it reaches the highest point is given by

Vx = V cos q

Now, it explodes into two pieces. The momentum possessed by the total shell, i.e., mV cos q must be 

preserved.

 mV
m

V
m

Vcos cosθ θ= − + ′
2 2

 whence V ′ = 3 V cos q 

 Therefore (A) is correct. All others are incorrect.

Example D1.6 A mass explodes, breaking into three pieces. Two pieces 2 kg and 4 kg fly off in 

perpendicular directions with velocities 6 m/s and 4 m/s respectively. Find the mass of the third piece if 

it flies off at 40 m/s.
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Solution During the process of explosion, there is no external force; hence the momentum of the system 

is conserved.

4 × 4 + 40 m cos q = 0 along x-axis

 –2 × 6 + 40 m sin q = 0 along y-axis

whence m cos q = –2/5 

 m sin q = 3/10 

and tan /θ = − × = −
3

10

5

2
3 4

 
 q = –36.9 , 143.1  

 m = =
3

10
143 1 0 5sin . . kg

Example D1.7 An object of mass 5 kg is projected with a velocity of 20 m/s at an angle of 60  to 

the horizontal. At the highest point of its path the projectile explodes and breaks up into two fragments 

of masses 1 kg and 4 kg. The fragments separate horizontally after the explosion. The explosion releases 

internal energy such that the kinetic energy of the system at the highest point is doubled. Calculate the 

separation between the two fragments when they reach the ground.

Solution For the highest position, (see Fig. Ex. D1.7 (Solution))

 h = 0
2 sin2 60/2 g = 400 × 0.75/2 g = 15.29 m

  During explosion, the momentum of the system must be 

conserved ,

 m m m1 1 2 2′ + ′ =

 = ′ + ′ = × =4 1 5 10 501 2  (i)

 Before the explosion, the kinetic energy is

1

2

1

2
5 10 2502 2mV = × × = J

and the potential energy is

 mgh = 5 × 9.81 × 15.29 = 750 J.

Before explosion After explosion

40 m/s

6 m/s

4 m/s
x

y

O

q

2 kg

4 kg

Fig. Ex. D1.6

x

h

60°

Fig. Ex. D1.7 (Solution)
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H

h

t1

t2

x

Fig. Ex. D1.8

 After the explosion, the kinetic energy becomes

 

1

2
4

1

2
1 2 250 5001

2
2

2⋅ ⋅ ′ + ⋅ ⋅ ′ = × =V V

 4 10001
2

2
2′ + ′ =V V (ii)

From (i) and (ii)

V ′1 = 5 or 15 m/s and V ′2 = –10 and 15 m/s

 Feasible sets of answers are

               V ′1 = 5   and V ′2 = 30 m/s     Set I

and V ′1 = 15 and V ′2 = –10 m/s    Set II

 The horizontal separation between the two on the ground equals the sum of their ranges.

 Time taken to reach the ground is given by

 0
1

2
15 29 1 7662+ = =g t t. ; . seconds

                       D = 15 × 1.766 + 10 × 1.766 = 44.15 m      for set I

 Alternatively,

 D = 30 × 1.766 – 5 × 1.766 = 44.15 m     for set II

The two answers happen to be indentical

Example D1.8 A freely falling body from a 

given height H hits an inclined plane in its path at 

a height h as shown in Fig. Ex. D1.8. As a result of 

the impact, the direction of the velocity becomes 

horizontal. For what value of h/H will the body 

take maximum time to reach the ground?

Solution Time taken for the body to fall until it hits the incline t1, is given by

 
H h g t− =

1

2
1
2

whence,  t
H h

g
1

2
=

−( )

 Further time, t
h

g
2

2
=
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P ′LO

P

Fig. Ex. D1.9 

 Total time t t t
H

g

h

H

h

H
= + = + −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

2
1

 Let h H r
H

g
K/ ,= =and a constant

2

t K r r= + −( )1

 For maximum time, 
dt

dr
K

r r
= −

−

⎛

⎝
⎜

⎞

⎠
⎟ =

1

2

1

2 1
0

and r = h/H = 1/2 = 0.5 

It should hit the incline half way above the ground.

Example D1.9 A simple pendulum is suspended from a peg on a vertical 

wall. The pendulum is pulled away from the wall to a horizontal position and 

released (see Fig. Ex. D1.9). The ball hits the wall, the coefficient of restitution 

being 2 5/ . What is the minimum number of collisions after which the 
amplitude of oscillation becomes less than 60 degrees?

Solution In the initial state, with P as datum,

PE = mg L, KE = 0

 Just before hitting the wall,

PE = 0, KE = mV2

 By energy conservation,

 

1

2
22mV mgL V gL= =;

 Now, e
V

V
= =

′
=

Velocity of separation

Velocity of approach

2

5
 

It also implies that the kinetic energy becomes e2, i.e., 4/5 times i.e., 80% with every impact.

 At the position of 60  oscillation,

PE = mg L(1 – sin 30) = mg L/2

which corresponds to a kinetic energy 50% of the original value. The kinetic energy would be less than 50%
after 3 collisions since

80% × 80% × 80% is just less than 50%
 The minimum number of collisions is, therefore, three.
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2

4

1

P

2

4

Fig. Ex. D1.10 

Example D1.10 A block  of mass 2  is placed on another 

block  of mass 4  which in turn is placed on a fixed table. The 

two blocks have the same length 4  and they are placed as shown in 

Fig. Ex. D1.10. The coefficient of friction (both static and kinetic) 

between the block  and the table is m. There is no friction between 

the two blocks. A small object of mass  moving horizontally 

along a line passing through the centre of mass ( , see figure) of 

the block  and perpendicular to its face with a speed  collides 

elastically with the block  at a height  above the table.

(a)  What is the minimum value of  (call it 0) required to make 

the block  topple?

(b)  If = 2 0, find the distance (from the point P in the figure) at which the mass  falls on the table after 

collision. Ignore the role of friction during the collision.

Solution The block  would topple if the block  below it slides past it half way, i.e., a distance of 2  to the 

right. The frictional force   between the table and the block  at the state of impending motion and thereafter 

is given by

= 6 m

opposing the  direction of motion of the block. The energy required for the block to move a distance of 2

is, therefore,

= 6 mg × 2 = 12 m

(a) The minimum value of velocity of the block  just after impact should be such that

1

2
4 122( ) ⋅ = μ

 
whence = 6 μ  
 During the impact, the momentum is conserved,

 4 + = 0

 4 + = 0

and, by the definition of restitution,

 
= −

−

−

⎛

⎝⎜
⎞

⎠⎟
=

0
1

0

 From these two equations

= = = −
2

5
6 3 51 0μ ; /

or 0

5

2
6= μ  

(b) In this case,

 = =2 5 60 μ

 For momentum conservation during the impact,

 4 ⋅ ⋅ =
and by virtue of elastic impact
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e

V V

V
V V V

Bf Af

Bf Af= −
−

−

⎛

⎝⎜
⎞

⎠⎟
= − =

0
1;

whence, V VAf = −
3

5
 

 
= − = − × ×

3

5
2

3

5
2

5

2
60( )V g dμ

 = −3 6 μ g d

Example D1.11 A drop hammer 1 with a mass of 6 Mg falls from rest 0.8 m 

onto a forged anvil 2  mounted on springs which have a composite stiffness 2 MN/m 

as shown in Fig. Ex. D1.11. Find the maximum compression of the springs after the 

impact if the anvil has a mass of 4 Mg and the coefficient of restitution between the 

hammer and the anvil is e = 0.5. Neglect the friction along the vertical guide posts.

Solution The velocity of the hammer just before the impact is given by

 

1

2
1 1

2
1m V m gh=

V1 2 9 81 0 8 3 96= × × =. . . m/s

 During the impact, momentum is conserved,

 m1V1 + m2V2 = m1V1′ + m2V2′

whence 6 × 103 × 3.96 + 0 = 6 × 103 V1′ + 4 × 103 V2′ 

or 3V1′ + 2V2′ = 11.88 (i)

 (Note: 1 Mg = 1 × 106 g = 1000 kg)

 Also, from the definition of coefficient of restitution,

      
e

V

V

V V

V V

s

a

= − =
′ − ′
−

2 1

1 2

 
0 5

3 96 0

2 1.
.

=
′ − ′

−
V V

or ′ − ′=V V2 1 1 98.  (ii)

 From (i) and (ii)

V2′ = 3.564 m/s; V1′ = 1.584 m/s.

The kinetic energy possessed by the anvil is used up in creating the potential energy of the springs:

 

1

2
4000 3 564

1

2
2 102 6 2

× × × ×. = x

Fig. Ex. D1.11 

0.8 m

1

2
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P

V1

u1

w1

P

V2

u2

w2

Just before impact Just after impact

Fig. Ex. D1.12

 The spring compression is given by

x = 0.16 m

provided that the hammer does not hit the anvil again.

Example D1.12 A ball of radius r hits the ground 

with an initial velocity V1 and top-spin, i.e., angular 

velocity w1. Determine an expression for its linear 

velocity V2 just after the impact (see Fig. Ex. D1.12).

Solution Just before the impact, the ball may have a horizontal component and a vertical component of 

velocity, say u1 and V1 respectively.

 The vertical rebound and change in the vertical component of velocity from V1 to V2 takes place 

depending upon the coefficient of restitution between the ball and the ground. It is not effected by the spin 

of the ball.

 The horizontal component of velocity changes from u1 to u2 and the spin changes from w1 to w2. It is 

reasonable to assume that the slipping at the point of contact will cease, the earth being fairly rough and 

sticky. Consequently, the angular velocity of the ball just after the impact will only be u2/r;

w2 = u2/r

 During impact, there is no change in the moment of momentum of the ball about the point of contact P.

m(u1r + k2 w1) = m (u2r + k2 u2/r)

 It is noticed that the change in the vertical velocity component does not figure in the moments of 

momenta.

 From the above, u
r u k r

r k
2

2
1

2
1

2 2
=

+

+

ω
 

 For a hollow sphere,  k2 = 2/3 r2

and u u r2 1 1

3

5

2

5
= + ω  

 For a solid sphere, k2 = 2/5 r2

and u u r2 1 1

5

7

2

7
= + ω  

 Golf balls are solid as also small and rough. For a golf ball to stop dead on touching the ground,

 
u u r2 1 1

5

7

2

7
0= + =ω

whence w1 = –2.5 r u1

which means that the golf ball should have an initial under-spin of 2.5 r times initial velocity in order to 

stop immediately on hitting the ground.
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a

3a

2a

8 m

2 m

2V

C

Bm

A

V

Fig. Ex. D1.14

A

B

C

6 m/s

10 m/s

0.5 m

0.5 m

Fig. Ex. D1.13

Example D1.13  A thin uniform bar lies on a 

frictionless horizontal surface and is free to move in any 

way on the surface. Its mass is 0.16 kg and length is 3
metres. Two particles, each of mass 0.08 kg, are moving 

on the same surface and towards the bar in a direction 

perpendicular to the bar, one with a velocity of 10 m/s 

and the other with 6 m/s, as shown in Fig. Ex. D1.13. 

The first particle strikes the bar at point A and the other 

at point B. Points A and B are at a distance of 0.5 m from 

the centre of the bar. The particles strike the bar at the 

same instant of time and stick to the bar on collision. 

Calculate the loss of kinetic energy of the system in the 

above collision process.

Solution The initial kinetic energy is given as

1

2
0 08 10 6 5 442 2

× ×. .+( ) = J

There is no change of potential energy in the entire process.

 Momentum of the upper particle = 0.08 × 10 = 0.8 kg m/s and for the lower particle, 0.08 × 6 = 0.48 kg m/s.

 For the system, in the absence of external forces, the linear momentum is conserved.

0.8 + 0.48 = (0.16 + 0.08 + 0.08) Vc

whence Vc = 4 m/s 

 Also, in the absence of external moments, the moment of momentum of the system must be conserved.

0 8 0 5 0 48 0 5 0 16 3 12 2 0 08 0 52 2. . . . . ( ) / . ( . )× × × × × ×− = +ω

 Therefore, w = 2 rad/s 

 The final kinetic energy is given by

1

2
0 16 0 08 0 08 4

1

2
0 08 22 2

. . . .+ +( ) + ( )× × ×

= 2.56 + 0.16 = 2.72 J

 Loss of kinetic energy in the process is, therefore, 5.44 – 2.72, i.e., 2.72 J.

Example D1.14 A uniform bar of length 6 a and mass 8 m lies on 

a smooth horizontal table. Two point masses m and 2 m moving in the 

same horizontal plane with speeds 2 V and V, respectively, strike the bar 

(as shown in Fig. Ex. D1.14) and stick to the bar after collision. Denoting 

angular velocity (about the centre of mass), total energy and centre of mass 

velocity by w, E and Vc respectively, which of the following is (are) true 

after collision?

(A) Vc = 0 (C) w =
V

a5

(B) w =
3

5

V

a
 (D) E

mV
=

3

5

2
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C

m

L/4 L/4

Fig. Ex. D1.15

Solution In the state before striking the bar, the linear momentum of masses A and B are

 pA = –2 mV and pB = 2 mV respectively.

 The bar being at rest, the total initial momentum is

 – 2 mV + 2 mV + 0 = 0

 In the absence of any external force on the system of three bodies, the linear momentum is conserved. 

The final momentum of the system must be zero. Hence Vc = 0 which means that (A) is correct.

 The initial angular moments of the masses A, B and the bar are 2 mVa, 4 mVa and zero respectively which 

add to 6 mVa. The final angular momenta of the masses rotating at w are

 HA = 2 m (aw) a = 2 ma2 w

 HB = 4 m (2 aw) a = 8 ma2 w

and for the bar, it is 1/12 (8 m), (6a)2 w = 24 ma2 w

 In the absence of any external moment, the moment of momentum is conserved.  

 Hence,
 6 mVa = (2 ma2 + 4 ma2 + 24 ma2) w

whence 
w = ( )V

a5
which means that C is correct

 
and (B) is incorrect.

Finally, the total energy of the system after the collision must be

 
E m V mV IA B C= + +

1

2

1

2

1

2

2 2 2ω

 
= ⋅ ⎛

⎝⎜
⎞
⎠⎟

=
1

2
30

5

3

5

2

2

2ma
V

a
mV

which means that (D) is also correct.

Example D1.15 A bar of length L and mass m lies on a frictionless 

horizontal plane. A pellet, also of mass m, moving with a speed v0

strikes perpendicular to it at L/4 from one end. If the collision is elastic, 

determine the final velocity of the pellet and the angular velocity of the 

bar after collision (ref. Fig. Ex. D1.15).

Solution

Let the velocity of the pellet after the collision be v and that of the centre of mass of the bar be vc. By 

conservation of momentum,

 m v + m vc = m v0 (i)

 By conservation of angular momentum,

 m v L/4 + 1/12 m L2 w = m v0 L/4 (ii)

 By conservation of mechanical energy for elastic collision,

 1/2 mv2 + 1/2 mvc
2 + 1/2 ⋅ 1/12 mL2w2 = 1/2 mv0

2 (iii)

 Solving these equations,

 v = 3/11 v0, vc = 8/11 v0 and w = 24/11 v0 /L
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Fig. Ex. D1.16

V1 = 20 km/hr
V2 = 10 km/hr

Example D1.16 A big vehicle moving at 20 km 

per hour hits a smaller vehicle, half its mass, while

coasting  in front of it, in neutral at 10 km/hr along 

the same straight line on a level road. Assuming the 

coefficient of restitution as 0.3, estimate

(a) their speeds after the collision, 

(b) loss of energy, if any, and

(c)  the maximum force of impact over one tenth of a second during which it increases and then decreases 

linearity

Solution This is a case of simple collinear plane central impact without any external force, i.e., braking 

or driving force.

V V1 2

20 1000

3600
5 55

10 1000

3600
2 78=

×
= =

×
=. ; .m/s m/s

 m m m m1 22= =
 By conservation of momentum,

 
m V m V m V m V1 1 2 2 1 1 2 2+ = +′ ′

 2 5 55 2 78 2 1 2× + = +. .m m mV mV′ ′

or 11 10 2.78 2 m/s1. .+ = + =′ ′V V2 13 88  

 Now, e
V V

V V

V V V V
=

′ − ′

−
= =

′ − ′

−
=

′ − ′
2 1

1 2

2 1 2 10 3
5 55 2 78 2 77

.
. . .

 

whence, V V2 1 0 83′ − ′ = .  

(a) Solution for V V1 2
′ ′ and 

V V1 24 35 5 18′ = ′ =. .m/s and m/s

(b) The collision is on a level surface; the energy before and after is only kinetic energy.

    Before the collision,

E m m= × + ×
1

2
2 5 55

1

2
2 782 2. .

                               = 34 66. m Nm

After the collision,

 
E m m′ = + ×

1

2
2 4 35

1

2
5 182 2. .

 = 32 34. m Nm

Loss of energy = (34.66 − 32.34) m = 2.32 m Nm.

 The energy is lost because the impact is not elastic; part of it goes in disfiguring the vehicles and part in 

sound and heat!

 Momentum transfer has taken place between the two vehicles. It can be determined by considering the 

change in momentum of either vehicle. For the smaller vehicle,
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Gain in momentum = × − × =m m5 18 2 78 2 4. . . m

 (For the larger vehicle, loss of momentum is 2 m × (5.55  4.35) = 2.4 m; the same)

This must equal the impulse = Fdt

or
F

F
×

× = =
0 5

2
2 2 4 4 8

.
. ; .m m

 Justify the truth in the following statements, if true:

(a)  The contact force which acts on a body 

during a collision must be the same as that 

acting on the other body.

 (b)  The impulse of deformation equals the 

impulse of recovery for an elastic impact.

 (c)  The entire kinetic energy is dissipated during 

a plastic impact.

 (d)  The momentum is conserved for all central, 

non-central, direct and indirect impacts of 

two bodies.

 (e)  Two bodies going together after an impact 

indicate that they must have had a plastic 

impact.

 (f ) An elastic impact must be noiseless.

  A spherical mass approaching with a veloc-

ity v strikes an identical spherical mass at rest. 

What would their final velocities be if the impact 

was (a) perfectly elastic and (b)  perfectly plastic.

  Define the term ‘coefficient of restitution’ and 

state what factors influence its value for a pair of 

two materials. Can you suggest a simple experi-

ment to estimate the coefficient of restitution for 

a given pair of materials?

  Define the terms ‘impulse of deformation’ and 

‘impulse of recovery’. Why is the concept of 

impulse preferred to that of force for impact 

problems?

  A body freely dropped from a height H on to 

a flat surface rises to a height h after rebound. 

What should be the value of the coefficient of 

restitution?

    If the coefficient of restitution is 0.5, to what 

fraction of its original height of drop would a 

body rise after the rebound?

  A steel ball falling freely strikes an inclined 

 surface and, after impact, proceeds horizontally. 

Express the angle of the incline in terms of the 

coefficient of restitution e and also relate the 

final velocity just after the impact to the initial 

velocity just before the impact.

Concept Review Questions

Tutorial Problems

  A spherical object drops from the ceiling of a 

room and after rebounding twice from the floor 

it reaches a height half as that of the ceiling. 

Show that the coefficient of restitution is 0.841.

  A ball of mass 0.2 kg moving with a velocity of 

3 m/s impinges on a ball of mass 0.4 kg moving 

with a velocity of 1 m/s. The velocities of the 

balls are parallel and inclined at 30  to the line 

joining their centres at the instant of the impact. 

If the coefficient of restitution is 0.5, determine 

the velocities of the balls after the impact.

 ( s  2.52 and 1.26 m/s)
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  A billiards ball 1 is hit at position (a) to reach at 

position (b) where it impacts with a stationary 

ball 2 and goes off into the pocket as shown in 

Fig. Prob. D1.3. Determine the line of impact, 

i.e., angle q if the coefficient of restitution 

between the balls is 0.8. ( s q = 34 )

Fig. Prob. D1.3

  A ball of mass 0.15 kg approaching with a 

velocity of 30 m/s hits a stationary block of 

mass 0.2 kg centrally as shown in Fig. Prob. 

D1.4. If the coefficient of restitution is 0.7. 

Find the distance travelled by the block on a 

flat horizontal rough surface with dynamic 

friction 0.3. ( s  81.1 m)

0.2 kg
0.15 kg

30 m/s

m = 0.3

Fig. Prob. D1.4

  Two identical simple pendulums hang side by 

side when the bobs just touch each other. If 

one of them is displaced by 30  as shown in 

Fig. Prob. D1.5 and released to collide with 

the bob of the other centrally and directly, 

determine the maximum angular displacement 

of the second pendulum if the coefficient of 

restitution between the materials of the bobs 

is 0.8. Also determine the kinetic energy lost 

in the collision. ( s  27  and 0.236 J/kg)

30°

1 m

1

2

O1

P

O2

Fig. Prob. D1.5

  Two spherical balls of masses 0.5 kg and 

0.2 kg approach each other to collide obliquely 

as shown in Fig. Prob. D1.6. Determine their 

velocities of separation just after the impact if

(a)  the impact is elastic

(b)  the impact is plastic.

  ( s  11.24 and 27.35 m/s; 14.47 m/s)

30° 60°

20 m/s

8 m/s

C1 C2

Fig. Prob. D1.6

  A uniform slender bar of mass 2 kg and 1.2 m 

long hangs freely about a hinge O to be able to 

swing in a plane as shown in Fig. Prob. D1.7. 

When the bar is at rest in the vertical position, 

a small object of mass 0.02 kg hits it at P, as 

shown, with a velocity of 400 m/s. Determine 

the maximum angle through which the bar 

may swing if

(a)  the collision is perfectly elastic, i.e., there 

is no loss of energy

(b)  the collision is perfectly plastic, i.e., the 

object is embedded in the bar

(c)  if the object pierces through the bar and 

appears with a velocity of 200 m/s along 

the original direction of flight.
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 ( s  11.5 rad/s, rotation w = 5.77 rad/s, 111 ;

 2.95 rad/s, 49.5 )

1 m

2

P

45° 0.2 m

1

Fig. Prob. D1.7

8   A tennis ball moving with a velocity of 25 m/s 

strikes the court at an angle of 70  to the 

 vertical. If the coefficient of restitution is 

0.75, find the velocity and direction of motion 

of the ball after the impact.

 ( s  24.35 m/s, 74.75  to the vertical)

  A bullet of mass 0.018 kg strikes and becomes 

embedded in a stationary block of mass 5 kg 

which is free to move horizontally. If the bullet 

is travelling horizontally at 600 m/s, find the 

velocity of the block after the impact. What 

percentage of the energy is lost in the impact? 

  ( s  2.155 m/s, 99.65%)

 A head-on collision takes place between a car 

and a truck. The car has a mass of 1000 kg 

and was travelling at 60 km/h and the truck 

has a mass of 15 000 kg and was travelling 

at 20 km/h. After the collision, the two vehi-

cles remain locked together. Determine the 

magnitude and direction of the velocity after 

collision. Calculate the total kinetic energy 

before and after impact and account for the 

difference. 

( s. 15 km/h in the direction of the initial 

velocity of the truck; 370 kJ and 138.5 kJ; 

plastic deformation, heat and sound!)

 A bullet of mass m is fired horizontally 

with velocity v into a block of mass M that 

rests on a horizontal surface as shown in 

Fig. Prob. D1.11. Determine the distance to 

which the block slides on the surface before it 

comes to rest. Assume that M is much greater 

than m.

 ( s m2v2/2M2mg)

MV
m

Coefficient of friction, m

Fig. Prob. D1.11

 Four identical bodies each of mass m are set 

up in a straight line on a smooth horizontal 

plane with distance d between them. A fifth 

body, identical to the other four, approaches 

with a velocity v and makes a perfectly elas-

tic impact with the first body, as shown in 

Fig. Prob. D1.12.

(a)  Describe the motion of the bodies.

(b)  If the distances d approach zero, what is 

the resulting motion?

 ( s  Each body moving with velocity v in turn;

d = 0, v′1 = 3/5 v; v′2 = 2/5 v)

d d dv

Fig. Prob. D1.12

  A glass ball is dropped on to a smooth horizon-

tal floor from which it bounces to a height of 

9 m. On the second bounce it attains a height 

of 6 m. What is the coefficient of restitution 

between the glass and the floor?

 ( s e = 0.82)

 A ball thrown from position A against a 

smooth vertical circular wall rebounds and 

hits position B at the other end of the diam-

eter through A as shown in Fig. Prob. D1.14. 

Show that the coefficient of restitution is 

equal to the square of the tangent of angle q.

 s e = q



Engineering Mechanics548

C
A

B

θ

Fig. Prob. D1.14

 A 30 kg block is dropped from a height of 

2 m onto the 10 kg pan of a spring scale as 

shown in Fig. Prob. D1.15. Assuming the 

impact to the perfectly plastic, determine the 

maximum deflection of the pan. The spring 

has a  stiffness of k = 20 kN/m.  

  ( s  0.23 m)

30 kg

10 kg

2 m

Fig. Prob. D1.15

 A ball is dropped from a height of 2.4 m upon 

a 15  incline and it rebounds. If the coeffi-

cient of restitution e is 0.8, find the distance 

s along the incline where the ball would next 

strike the incline.  

  ( s  2.04 m down the plane)

 Two simple pendulums with their bobs 

weighing W and 3W hang side by side as 

shown in Fig. Prob. D1.17. The pendulum 

of the smaller bob is released from rest from 

a position of 60  and strikes the bigger bob 

centrally. Assuming a purely elastic impact, 

calculate the angle through which the other 

pendulum would swing? What would have 

been the angle of swing if the bobs of the 

pendulums weighed the same?

  ( s  29  and 60 )

W
3W

60° q

Fig. Prob. D1.17

Look up Hints to Tutorial Problems at the end !

Multiple-Choice Questions

Select the correct or most appropriate response from 

among the available alternatives in the following 

multiple-choice uestions:

Central impact of two bodies

 (a)  also implies direct impact

 (b)  requires that the bodies should not rotate at all

 (c)  must always be elastic impact in nature

 (d)  may either be direct or indirect.

 The coefficient of restitution is defined on the 

basis of

 (a)  velocity components along the line of impact 

only

 (b)  velocity component normal to the line of impact

 (c)  velocity vectors before and after the collision

 (d)  energies of bodies before and after the impact.

For a perfectly plastic central impact

 (a)  the entire kinetic energy of the two bodies 

must be lost

 (b)  the two bodies must move stuck together, 

whether the impact is direct or indirect
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 (c)  the two bodies must move stuck together only 

if the impact is direct

 (d)  a body, initially at rest, should stay at rest.

 When two bodies collide without the presence of 

any other forces or force fields,

 (a)  their total momentum must be conserved

 (b)  their total kinetic energy must be conserved

 (c)  the collision must be direct

 (d)  the collision must be central.

Answers to Multiple-Choice Questions

1 (d)    2 (a)    3 (c)    4 (a)



 D2.1 INTRODUCTORY CONCEPTS

Central force motion of a body is referred to a fixed point in space such that the force on the 
body is directed towards or away from that fixed point. For example, the centre of the earth is 
assumed to be the fixed point towards which the 
force of gravity acts on all earth-bound objects. 
The motion of a freely falling body is, therefore, 
a central force motion. Likewise, repulsive force 
between a massive and a small like-charged 
bodies may also result in a central force motion 
of the small body. These are, however, simple 
examples of radial or rectilinear motion. In gen-
eral, central force motion may take place along 
a trajectory, e.g., throwing of a stone at an angle 
inclined to the horizontal direction or a periodic 
motion of a satellite.

The motion of a particle under the action 
of a force directed towards or away from a 
fixed point is termed as .
The force which is directed towards or away 
from a fixed point , as shown in Fig. D2.1, 
is called a central force and the force field Fig. D2.1 Central force motion

 1 000 

 40 000

igh  e i ic i

 e h i

Medi
e h i

 10 000 

Central Force 

Motion and 

Space Mechanics

D2
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is referred to as . A central force is generally a function of the radial distance from the

fixed point
 = ( )  (D2.1)

where  is a unit vector along the outward radial direction. The central force is said to be one of attraction if 

directed towards  and of repulsion if directed away from . For example, in studying the motion of a satel-

lite in relation to the gravitational field of the earth, the central force is attractive and varies according to the 

inverse square law with the radial distance from the centre of the earth

 F = −
2

 (D2.2)

In a central-force motion, the moment

 0 = × = 0 

since  and  are collinear at all times.

In the absence of external moment, the rate of change of angular momentum must also vanish

 0 0= =�

and = × = a constant vector 

or × = a constant vector,  (D2.3)

This result leads us to a very important conclusion:

 sin q , i.e.,
1 1 sin q1 = 2 2 sin q2

during any two positions of the particle. The direction of  is perpendicular to the plane containing  and 

or the plane of motion;  constant direction of  implies that 

. In other words, a  central-force motion is a plane motion in which ,  and q are related by the 

constancy of  sin q.

Realising that

 sinθ ω
θ

θ= = =

it can be observed that

 θ ω
θ

= = = =Const. 2 2  (D2.4)

It may be seen from Fig. D2.1 that as the particle P generates a trajectory, the radius vector P sweeps an 

area; the area swept by it over an infinitesimal time  is

 = ⋅ ⋅ =
1

2

1

2

2θ θ

The areal velocity of the particle is

 =
1

2

2 θ
 (D2.5)

which is indeed constant in view of Eq. (D2.4). The conclusion, therefore, is that when a particle moves under 

a central force, its areal velocity is constant. In other words, the radius vector is such that 

. Another point which follows from the above discussion is that the tangential velocity 
q

varies inversely with . At small ,
q
 is large and vice versa.

 
D2.2

 ACCELERATION DUE TO GRAVITY

(Above and below the surface of the earth)

The gravitation intensity or acceleration due to gravity at a point is given by equating the force to inertial 

mass  times acceleration .
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Hence, gr

GM

r
= −

2
 

At the surface of the earth, r = R

 
g

GM

R
= −

2

directed towards the centre of the earth.

It follows that

 gr /g = (R/r)2

which means that, above the surface of the earth, the acceleration due to gravity varies inversely as the square 

of the distance from the centre of the earth. This is shown plotted in Fig. D2.2.

At an altitude, i.e., height above the earth’s surface h, r = R + h

g g
R

R h

h

R
r / =

+
⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

−2 2

1

which, approximated by the binomial theorem, 

becomes

   gr /g = 1 − 2 h/R (D2.6)

or gr = (1 − 2 h/R) g = g − 2 h/R g

or      gr − g = − 2 h/R g (D2.7)

It implies the reduction in acceleration due to 

gravity at a point h above the surface of the earth in 

comparison with that on the surface is 2h/R g, for 

small height h.

Let us now look at the variation of the acceleration due to gravity below, 

i.e., inside the surface of the earth at a point P as shown in Fig. D2.3. In this 

case, the mass of the earth inside it is

M′ = (b/R)3 M

where M is the mass of the earth.

This is because the mass is proportional to volume for constant density 

and the volume is proportional to the cube of the radius of a sphere.

We are neglecting the gravitational effect of hollow sphere of outer radius 

R and inner radius b or assuming that the net effect of that is zero.

Then, the gravitational force is given by

 
F = −

′Gm M

b
r2

and g
GM

b

GM

R
b Rb r r= −

′
= −

2 2
/  

whence gb = g b/R  or gb /g = b/R (D2.8)

which means that, below the surface of the earth, the acceleration due to gravity varies directly as the radial 

distance from the centre of the earth as also shown plotted in Fig. D2.2.

From this simple analysis, we also conclude that the acceleration due to gravity gmax is the maximum at the 

surface of the earth itself ignoring the variation in density of the earth.

S

O
b R r

g (R/r)2
gb/R

gmax = 9.81 m/s2

AboveBelow

Earth
h

Fig. D2.2 Variation of acceleration due to gravity above 

and below the surface of the earth

P

b
R

r

M¢ = (b /R)3 M

Fig. D2.3 
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It is also interesting to consider the variation of the accel-

eration due to gravity with latitude q. The  variation is due to 

the differential contribution of acceleration by virtue of the 

spinning motion of the earth.

The point P located by R and q as shown in Fig. D2.4 is 

in a circular motion of radius r (= R cos q) with a rotational 

speed w. A body placed at P experiences a real accelera-

tion g = GM/R2 towards the centre of the earth and a pseudo 

acceleration gs = w2r as shown. The resultant acceleration g′
is given by

 g g g g gs s′ = + −⎡⎣ ⎤⎦
2 2

1

22 cos θ

= + −⎡⎣ ⎤⎦g R g R g1 22 2 2 2 2
1

2( / ) cos / cosω θ ω θ

At the equator, q = 0, cos q = 1, r = R

       g′ = g − R w2 (D2.9)

which is the least anywhere on the earth.

At the pole, q = 90 , cos q = 0, r = 0

       g′ = g

since there is no effect of spin of the earth at the poles.

Non-spherical shape of the earth may also be taken into account by considering the actual radial distance 

of the point from the centre of the earth. Since the earth is flattened near the poles, the acceleration due to 

gravity at the poles (9.83 m/s2) is more than that at the equator (9.78 m/s2). For a mean radius of the earth the 

value of g at the surface has been standardised as 9.80665 m/s2.

Non-homogeneity of the material inside the earth, i.e., variation of density does not have any effect on the value 

of the acceleration due to gravity at points at and above the surface of the earth. The effect of  non-homogeneity 

on the value of acceleration due to gravity below the surface of the earth is non-linear and complicated.

O

R
g g¢q

P
gs

r

North

pole

South pole

Equator

Fig. D2.4 

Example D2.1 A particle undergoing central force motion has a tangential velocity of 20 m/s while 

at a distance of 300 m from the central point. Using the fact that the areal velocity of the particle must be 

constant, find its tangential velocity when it is 400 m away from the central point. 

Solution Given that

V
q1

= 20 m/s at r1 = 300 m

 The areal velocity, i.e., rate of change of the area swept by the particle must be

 

dA

dt
r

d

dt
k= =

1

2

2 θ

 Noting that 
d

dt

V

r

θ
ω θ= =  

dA

dt
r

V

r
rV k= = =

1

2

1

2

2 θ
θ
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implying that r V
q

= Constant

 Therefore, V
q2

at 400 m distance must be

Vθ2

20 300

400
15=

×
= m/s.

 D2.3 TRAJECTORIES FOR CENTRAL FORCE MOTION

From the Newton’s law of motion and the law of gravitation

F =
−

=
GM

r
m mr2

it follows that

= −
GM

r
r2
 (D2.10)

The interpretation of this equation is that, in a central-force motion, the acceleration is always directed 

towards the central point O. Of course, the force and acceleration must be collinear. For a satellite motion, the 

acceleration is independent of the mass of the satellite but it is in direct proportion to the mass of the earth or, 

in general, to the mass of the planet in question.

Substituting the value of acceleration, the equation of motion becomes

 

d r

dt
r

d

dt

F

m

GM

r

2

2

2

2
− ⎛

⎝⎜
⎞
⎠⎟

= =
−θ

 Substituting u = 1/r

and
d

dt

C

r
Cu

θ
= =

2

2

 The equation of motion is transformed to

 
d u

dt
u

F

mC u

GM

C

2

2 2 2 2
+ = =  (D2.11)

 The solution of the differential equation is obtained by adding the particular solution

                    
u

GM

C
=

2

to the general solution

 u = D cos (q − qa)

where D is constant, i.e.,

 
1

2r
u

GM

C
D= = + cos θ  (D2.12)

if the polar axis is chosen so that q0 = 0. This is the equation of a conic section in the cylindrical coordinates 

with the origin O located at the centre of the earth. Comparing it with the standard form of a conic section

 1 1 1

r
u

ep p
= = + cos θ  (D2.13)

it is seen that

D
p

=
1
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ep
C

GM
=

2

or e
DC

GM
=

2

 (D2.14)

which is the eccentricity of the conic section.

Four cases are given in Table D2.1.

Case Value of e Features Type of conic section

1 e = 0 D = 0, r
C

GM
=

2

Circle

2 e < 1 Finite r for all q Ellipse

3 e = 1 r → ∞ at q = π Parabola

4 e > 1 r → ∞ for two values of q Hyperbola

Table D2.1 Trajectories under central force

The eccentricity of the orbit

e
DC

GM
=

2

depends upon the constant quantities G and M as well as the constants of motion, C and of the conic section, D.

The state of a satellite can be predicted with the help of Eq. (D2.13) if the conditions at any one state, say the 

moment of burnout, are known.

Assuming that the burnout occurs at the end of a powered flight at a position P in space such that the velocity 

of the rocket is parallel to the surface of the earth, as shown in Fig. D2.5, the satellite or space vehicle is said to 

O
r

4

3

2

1

Circle e = 0

Ellipse e < 1;

Parabola e = 1;

Hyperbola e > 1;

Ellipse with

P as Apogee

Tra ectory, e Launchin  Velocity, V

V > √2GM/r0

V = √2GM/r0

V < √2GM/r0

P

V
V = √GM/r0

V < √GM/r0

Fig. D2.5 Possible satellite trajectories
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begin its free-flight at the vertex P. If the satellite, at this instant, is located at a distance r0 from the centre of the 

earth and has a velocity V0 parallel to the surface of the earth

 C = r0V0

and
1

0
2r

GM

C
D= +  (D2.15)

whence D
r

GM

C r

GM

r V
= − = −

1 1

0
2

0 0
2

0
2

 

 
= −

1

0

2

0
2

0
2r

gR

r V

since g the acceleration at the surface of the earth is given as 

 g
GM

R
=

2  (D2.16)

where R is the radius of the earth.

Let us again discuss the four possible cases in terms of the launching parameters. Reference is made in 

Figs. D2.2 and D2.3.

Circular Orbit

e
DC

GM
D= = =0 0

2

;

The path is given by

1 1
2

0
2

0
0

r

GM

C

GM

r V r
= = = =

( )θ

Constant

whence V
GM

r
g rθ0

0

0 0= =  (D2.17)

This is the velocity required to launch the satellite for a circular orbit. It can be seen that the velocity of a 

satellite in a circular orbit is more if it is closer to the earth and less if away from it.

Modern-day communication satellites are geo-stationary or synchronous i.e., remain fixed in location 

relative to the earth spinning about their own axes; the period of revolution of a communication satellite 

should also be 24 hours. The orbit of a communication satellite must be circular and it must be in the equa-

tional plane of the earth. The rotational speed of the earth is

ω
π

=
× ×

=
2

24 60 60
0 000073. rad/s

The rotational speed of a geo-stationary satellite must also be the same.

 w = V
q
  /r = 0.000 073 rad/s 

V
q

= 0.000 073 r m/s (i)

But, for a circular orbit

V GM r rθ = = ×/ . /3 9860 1014  (ii)
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From Eqs. (i) and (ii)

 r = 42,180,000 m = 42,180 km

and V
q

= 3080 m/s = 11,100 km/h

Geo-stationary satellites must, therefore, be 

located at a radial distance of 42,180 km or at an alti-

tude h given by

 h = 42,180 − 6370 = 35,810 km

above the mean surface of the earth and must move 

with a velocity of 11,100 km/h in circular orbits in an equatorial plane of the earth and in the same sense as 

shown in Fig. D2.6. The period of rotation of a communication satellite must be 24 hours.

Parabolic Trajectory

 
e

DC

GM
D

GM

C
= = =1

2

2
,

The path is given by

 

1
2r

GM

C
D= + cos θ

For launching at q = 0 and r = r0

D
r

GM

C

GM

C
= − =

1

0
2 2

Substituting C = r0Vqe
 in this equation

 V
GM

r
g r V

e cθ θ= = =
2

2 2
0

0 0  (D2.18)

 = 2  times the launching velocity for a circular orbit

If this velocity is imparted to a particle, it will follow a parabolic path, i.e., escape from the gravitational 

field of the earth. For such a path

 
θ π→ → → ∞, ,

1
0

r
r

Since GM is a constant for the earth, the escape velocity V
q0

 is maximum at the surface of the earth and it 

decreases if the satellite is launched from higher altitudes. This fact explains why satellites are launched after 

reaching very high altitudes by powered flights!

Elliptical Orbit

 
0 1 1

2

< < <e
DC

GM
,

The launching velocity is obviously between the values

V
GM

rc
q

=
0

 for a circular orbit 

and V
GM

re
q

=
2

0

 for a parabolic escape trajectory 

Earth

Vθ

h

Geo-stationary

satellite

h = 35,810 km

Vq = 11,100 km/h

Fig. D2.6 A communication satellite
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If, however the launching velocity is less than that for a circular orbit, i.e.,

 
0

0

< <V
GM

r
θ

the satellite still goes on an elliptical orbit with the centre of the earth as the second focus instead of the first. 

It may also be appreciated that the launching velocity can be adjusted to touch the surface of the earth at the 

diametrical opposite point.

If the launching velocity is less than this value, the object will hit the surface of the earth while tending to 

complete the elliptical orbit. A bullet fired from a gun or stone thrown by hand are examples of this case. In 

the first instance, it may appear contrary to our belief that the trajectory of an earth-bound object, such as a 

stone, bullet or jet of water should be parabolic. The paradox is resolved by remembering that the value of g

is taken as constant in magnitude and direction for the motion of earth-bound objects. Analysis with constant 

g yields a parabolic trajectory which is an approximation to the elliptical path obtained by taking variable g

directed towards the centre of the earth.

Although it is admissible to have the eccentricity e between 0 and 1, it is usual to keep it very low, i.e., the 

orbit close to a circular orbit. The orbital eccentricities of the planets are also very low. For example,

Orbital eccentricity of the earth  0.017

Orbital eccentricity of the moon  0.055

Some salient features of an elliptic conic section are shown in Fig. D2.7.

Eccentricity e
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Fig. D2.7 Features of an ellipse
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Area of the ellipse = pab

Equation of the orbit is given by

 r = a(1 − e cos q) (D2.19)

whence rmax = a(1 + e)

and rmin = a(1 − e)

 ep = a(1 − e2)

Hyperbolic Trajectory

 
e

DC

GM
> >1 1

2

,

 
V

GM

r
θ0

2

0

>

From the equation of the trajectory,

1
2r

GM

C
D= + cos θ

it may be observed that when r → ∞

 
0

2
= +

GM

C
D cos θ

cosθ = − = −
GM

DC e2

1

and θ = −⎛
⎝⎜

⎞
⎠⎟

−cos 1 1

e
 

describes the asymptote for the final direction of the particle.

It is observed that if the launching velocity equals or exceeds the escape value, i.e.,

 
V

GM

r
θ0

2

0

≥

the object escapes the gravitational field of the earth. This is indeed the case of a mission to reach the Moon 

or Mars or any other planet in the solar system.

The time taken for a particle in a central-force motion to travel from a position q0 to a position q can be 

computed by starting from

 

r d

dt
C

2 θ
=

or dt
r d

C
=

2 θ  
The time taken T is given by

 

T dt
C

r d= =∫ ∫
1 2

0

q

q

q

 =

+⎛
⎝⎜

⎞
⎠⎟

∫
1

2

2

0

C

d

GM

C
D

q

q
q

q

cos

 (D2.20)
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For an elliptical orbit, the area traversed in one revolution is pab and the areal velocity is

dA

dt
r

d

dt

C
= =

1

2 2

2 θ

The time period for one revolution is, therefore,

 T = 2p ab/C (D2.21)

For a circular orbit,

 a = b = r0

and the time period is

 T r C r V= =2 20
2

0 0
π π θ/ /  (D2.22)

It can again be observed that a synchronous or geo-stationary satellite would have a time period of 

24 hours.

T r V= = × ×2 0 0
24 60 60π θ/ s

or V
q

= 0.000 073 r m/s

which is the same as determined earlier in Eq. (i) under ‘Circular Orbit’.

 D2.4 ENERGY EXPENDED FOR DIFFERENT TRAJECTORIES

Energy methods may be used to advantage for studying some aspects of the central-force motion. For the 

gravitational field ,

 
F

GM m

r
Fr = − =

2
0, θ

The potential energy PE is given by

 

d P E

dr
F

GM m

r
r

( )
= − =

2

or PE
GM m

r
= −  (D2.23)

which implies that the gravitational force field is a conservative force field. The law of conservation of 

mechanical energy is, therefore, applicable in a central-force field:

KE + PE = Constant

or
1

2

2m V
G Mm

r
− = Constant  (D2.24)

For a body at the surface of the earth of radius R

 
PE

G Mm

R
= −

If a satellite is launched from a radial position at a distance r0 from the centre of the earth,

KE PE mV
G Mm

r
+ = −

1

2
0
2

0

Conservation of mechanical energy

 
1

2

1

2

2
0
2

0

mV
G Mm

r
mV

G Mm

r
− = −  (D2.25)
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provides a relation to relate the velocity with the radial position of a satellite in terms of the launching 

conditions.

For a circular orbit, the radial distance r is constant and equal to r0 at all times; so is the velocity V equal to 

V0 at all times.

The escape velocity Ve of a body may be determined from the fact that the body should continue indefinitely 

and reach

r → ∞ when V = 0

where KE PE mV
G Mm

r
+ = −

1

2

2  

= 0 − 0 = 0

From the conservation of mechanical energy, the conditions at the launching position should be such that,

(KE + PE)launching = 0 

or
1

2
02

0

m V
G Mm

r
e − =  

whence V
GM

r
e =

2

0

 

Since by definition,

 

G Mm

r
mg

0
2 0=

 V
GM

r
g re = =

2
2

0

0 0  (D2.26)

Table D2.2 Energy expended for different trajectories

Trajectory Velocity Energy expended

Circular orbit

  

V
GM

r
=

0

E
G Mm

r
=

2 0

Elliptic orbits (i) V
GM

r
<

0

E
G Mm

r
<

0

(ii)
GM

r
V

GM

r0 0

2
< <

 

GMm

r
E

GMm

r2 0 0

< <

Escape trajectory 

(Parabolic-minimum values)
  

V
GM

r
=

2

0

E
GMm

r
=

0

Hyperbolic escape

  
V

GM

r
>

2

0

E
GMm

r
>

0

(Continued )
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If a satellite is launched from a position r0, the energy required to be expended to set the satellite into a 
trajectory may be determined if the intended velocity of the satellite at any position is known

E mV
G Mm

r

G Mm

r
= −⎛

⎝⎜
⎞
⎠⎟

− −
⎛

⎝⎜
⎞

⎠⎟
1

2

2

0

 = + −
⎛

⎝⎜
⎞

⎠⎟
1

2

1 12

0

m V G Mm
r r

 =
1

2
0
2mV  (D2.27)

Energy requirements for different trajectories are given in Table D2.2.

 D2.5 LAUNCHING OF SATELLITES AT AN ANGLE

Consider a general case of launching at r = r0 with an angle of launch a, as shown in Fig. D2.8. Let the 
launching velocity be 0 such that,

V V
q

a
0 0= cos

Vr0
= V0 sin a

Axis of

symmetry

q

q0

r0

P

a

V0

Vq0
Vr0

Launching at P

Fig. D2.8(a) Launching of a Satellite at an angle

Let q0 be the angle between the axis of symmetry of the conic and the radius vector 0.

1

0
2 0

r

GM

C
D= + cos θ

for the position of launching.
In general,

 
1

2 0
r

GM

C
D= + cos θ

and

Vr = DC sin q; V DCr0 0= sinq
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0
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 INDIA
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A general view
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Fig. D2.8(b)
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0
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1
= −  
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r
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0=  
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C
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 (D2.28)

 
e

DC

GM
=

2

Consider the condition for the escape of the satellite, e = 1. We can obtain that

r V r V GM0 0
2 2

0 0
2 2 0cos ( )α − =

whence, the escape velocity  V
GM

r
0

0

2
=  
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This is independent of the angle of launching  may it be 0 , 90

or any other. A satellite projected vertically or radially outwards 

from the surface of the earth, as shown in Fig. D2.9, can also 

escape the earth’s gravitational field at the same speed. It may, 

however, be added that the V0 for escape is measured with respect 

to the centre of earth considered as an inertial frame. The motion 

of the earth’s surface adds to the final velocity of the  satellite if 

the blast off takes place on the equator and along the rotation 

of the earth and subtracts from the final velocity if the blast off 

opposes the rotation. No such ‘gain’ or ‘loss’ is experienced in the 

velocity if the satellite is fired from the poles.

Another interesting fact is that if a space vehicle is launched 

in order to escape the gravitational field of the earth, it may so 

happen that the space vehicle escapes the entire solar system. This 

is due to the fact that the earth is rotating around the Sun at approximately 30 km/s and this may add to the 

absolute velocity of launching of the space vehicle (if launched along the rotation of the earth around the 

Sun), thus attaining even the escape velocity for the Sun.

Let us now consider the vertical projection of a particle in some detail. Let V be the speed and = V r the 

velocity at any time t. By the Newton’s law of motion,

 
− =

G Mm

r
m

dV

dt
r r2

or − = = ⋅ = =
⎛

⎝⎜
⎞

⎠⎟
GM

r

dV

dt

dV

dr

dr

dt
V

dV

dr

d

dr

V
2

2

2
 

By integrating with respect to r on each side

GM

r

V
K= +

2

2

The constant K can be evaluated from the boundary condition. If V = V0 at r = R at the point of 

projection,

 
K V

GM

R
= −0

2 2/

Hence, V V GM
r R

2
0
2 2

1 1
= + −⎛

⎝⎜
⎞
⎠⎟

 

Let r = R + h,

 
V V

G Mh

R R h

2
0
2 2

= −
+( )

whence V V
G Mh

R R h
= −

+0
2 2

( )
 (D2.29)

It may be observed from here that if h must be made to approach infinity,

 V V
GM

R
→ −⎛

⎝⎜
⎞
⎠⎟0

2 2
 (D2.30)
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Fig. D2.9 Vertical projection
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If, in addition, the velocity V at h → ∞ becomes negligibly small or V → 0, then the launching velocity V0

equals 2GM

R
 which is the escape velocity of the particle as is expected from the earlier analysis of launching 

at any arbitrary angle.

Alternatively, the equation

 
V V

GMh

R R h

2
0
2 2

= −
+( )

shows that the maximum height attained by a particle would correspond with the minimum residual velocity 

squared V 2, i.e., V 2 = 0

Hence, hmax is given by

 
V

G Mh

R R h
0
2 2

0−
+

=max

max( )

whence h
V R

GM

R
V

V R

g R V
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( )
=

−⎛
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⎞
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=
−

0
2

0
2

0
2

0
2

2
2

 (D2.31)

It is obvious from this expression that if

 
V

GM

R
0
2 2=

or V g R
GM

R
0 2 2= =  

hmax would become infinite, i.e., the particle would escape the gravitational field of the earth. On the contrary, 

if hmax is small, let hmax = h and h/R is negligible,

 
( )2 0

2 0
2

g R V
h

R

V R

R
− =

 
2 0

2
0
2gh V

h

R
V− =

 V gh0 2=  (D2.32)

which is a familiar expression for distance close to the surface of the earth.

 D2.6 ASTRONOMICAL FACTS AND LAWS OF KEPLER

A system consisting of a star, planets and satellites is called a solar system. A star is a source of light,  planets 

only reflect light and orbit around the star and the satellites revolve about the planets. Satellites may be 

 natural or artificial. Man-made artificial satellites may be launched to revolve around the planets.

In our solar system, the sun is the star; the nine planets are Mercury, Venus, Earth, Mars, Jupiter, Saturn, 

Uranus, Neptune and Pluto in order of their mean distance from the sun. Thirty satellite bodies orbit around 

these planets. The moon is the satellite of the earth. A number of artificial satellites are orbiting the earth with 

a view to weather forecasting, intercontinental television relaying and spying missions.

A study of the central-force motion would be incomplete without discussing the contribution of Kepler 

who laid the foundation of orbital mechanics as also of Newtonian mechanics.
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The three laws of Kepler for planetary motion are:

 1. Every planet moves in an orbit which is an ellipse with the sun at one focus.

 2. The radius vector drawn from the sun to any planet sweeps out e ual areas in e ual times.

 3. The s uares of the periods of the planets are proportional to the cubes of the semi-major axes of their 

orbits.

These laws were enunciated by Kepler (1571–1630) from an analysis of the data recorded by Tycho Brahe. This 

was long before the enunciation of the laws of motion by Newton and the development of mathematical calculus. 

Newton (1643–1727) published his work in 1687 and set the stage for the development of classical mechanics.

Kepler’s laws related to planetary motion can be derived from the laws of Newton and Newton’s law can 

also be derived from Kepler’s laws.

The first law refers to a conclusion derivable from the study of central-force motion; the motion in a cen-

tral-force field must be plane and for the eccentricity e < 1, the conic section traced is an ellipse for an inverse 

square force field due to the Newton’s law of gravitation.

The second law refers to the conclusion that the areal velocity is constant for a particle in a central-force 

field. It means that the areas swept by the particle are equal in equal time intervals. When the particle passes 

through the perigee, it must move faster than when it passes through the apogee. Planets move faster when 

they are nearer the sun

In order to prove the third law of Kepler, we proceed as follows:

The time period for an elliptical orbit is

T = 2pab/C

From the geometry of the ellipse,

 b a e= −1 2

and by comparing with the standard form of the equation for an ellipse with that for the planetary motion,

 ep a e
C

GM
= − =( )1 2

2

From these relations,

 T 2 = 4p 
2a3/GM  or T 2

a a 3 (D2.33)

which shows that the squares of time periods of planets are proportional to the cubes of the semi-major axes 

of their elliptical orbits.

Apogee

P

Q

S

B

Perigee

A

Fig. D2.10

Example D2.2 The Aryabhatta was launched by a Soviet launch pad and set into an orbit by being 

imparted a velocity of 7600 m/s at a distance of 600 km above the surface of the earth and parallel to it at 

that point.

 Comment on its orbit and its salient features. It is given that GM for earth = 3.9860 × 1014 m3/s2 and the 

radius of the earth is 6371 km.
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Solution The satellite Aryabhatta had the following initial conditions:

r0 = 600 + 6371 = 6,971 km = 6,971,000 m

                   
Vθ θ

0
7600= =m/s and 0

               C r V= = ×0
10

0
5 30 10θ . /m s2

 The orbit is described by the equation

1
2r

GM

C
D= + cos θ

and D
r

GM

C
= −

1

0
2

 

 
= −

×
×

1

6 971 000

3 9860 10

5 30 10

4

10 2, ,

.

( . )

 = 1.50 × 10−9 m−1

 The eccentricity is given by

e
DC

GM
= =

× × ×
×

=
−2 9 10 2

14

1 50 10 5 30 10

3 9860 10
0 01

. ( . )

.
.

 The Aryabhatta has, therefore, gone into an elliptic orbit described by

1 3 986 10

5 30 10
1 50 10

14

10 2

9

r
=

×
×

+ × −.

( . )
. cos θ

or
1

r
= + × −(142 1.5 cos ) 10 9θ  

 The coordinates of the satellite at salient locations are:

q

q = 3 p/2

r = 7043 km

q = 0

r = 6971 km

q = p

r = 7117 km

r = 7043 km

q = p/2

O

Fig. Ex. D2.2 (Solution a, b)
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 q = 0     r = 6971 km

q = p/2 r = 7043 km

 q = p r = 7117 km

q = 3p/2 r = 7043 km

 The maximum distance of the satellite from the surface of the earth is

7117 − 6371 = 746 km

 It can be seen that the velocity that would have been required to set the satellite into circular orbit is

V
GM

r
c = =

×

0

143 986 10

6 971 000

.

, ,

 = 7562 m/s

The velocity actually imparted to the Aryabhatta is 7600 m/s which is slightly more than this value. 

From this or from the fact that the eccentricity is 0.01, it can be concluded that the orbit is nearly circular 

as shown in Fig. Ex. D2.2(b) 

 The periodic time of the satellite is

T
ab

C
=

2π

 For the elliptical orbit,

 a =
+

=
6971 7117

2
7044 km

 b = × =6971 7117 7043 6. km

 C = 530 × 1010 m2/s

 Hence, T =
× × × ×

×
2 7044 10 7043 6 10

5 30 10

3 3

10

π .

.
 

                 = 5880 s = 1.63 h

It makes 15 revolutions per day around the earth. It is far from being geo-stationary.

Example D2.3 A satellite is given a perigee launch from an altitude of 300 km with a velocity of 

30,000 km/h. Obtain the following information: (a) the apogee altitude and (b) the time elapsed and 

position when a quarter-orbit has been completed.

Perigee

300 km

r0

S 2896 km
Apogee

Fig. Ex. D2.3 (Solution)

Solution At the perigee, (Ref. Fig. D2.3 (Solution))

    r0 = 300 + 6371 = 6671 km = 6,671,000 m

  V0 = 30,000 × 1000/3600 = 8333 m/s

    C = 6,671,000 × 8333 = 5.56 × 1010 m2/s

    GM = 3.9860 × 1014 m3/s2

    D
r

GM

C
= −

1

0
2

 = 21 × 10 −9 m−1
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           e
DC

GM
= =

× × ×
×

−2 9 10 2

14

21 10 5 56 10

3 9860 10

( . )

.
= 0.163

The orbit is, therefore, elliptic with the equation

 

1
2r

GM

C
D= + cos θ

 
=

×
×

+ × −3 9860 10

5 56 10
21 10

14

10 2

9.

( . )
cosθ

or
1

1 289 0 21 10 7

r
= + × −( . . cos )θ  

 (a) At the apogee, q = p

 r = 9,267,000 m = 9267 km

and the altitude at the apogee is

 9267 − 6371 = 2896 km

 (b) Time elapsed for one complete revolution is

 T
ab

C
=

2π

and the time for one-quarter orbit is

t
ab

C
=

π
2

In this case,

 
a =

+
=

6671 9267

2
7969 km

 b = × =6671 9267 7862 km

 t = π × 7969 × 7862 × 106/2 × 5.56 × 1010

 = 1770 s = 0.492 h

Example D2.4  Determine the escape velocity of a satellite to escape from the gravitational field of 

the earth when launched from

(a) the surface of the earth

(b) any altitude above the surface of the earth and comment on the most favourable mode of escape.

Solution

The escape velocity is given by

 
V

GM

r
re = = × ×

2
2 3 9860 10

0

14
0.

 = ×28 2 106
0. r m/s

if r0 is expressed in m.
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(a) At the surface of the earth,

      r0 = 6371 km

Ve = × ×28 2 10 6371 106 3.

      = 11,170 m/s = 11.17 km/s

(b) At any altitude h km above the earth.

 r0 = 6371 + h

 V he = × +28 2 10 63716. /

h (km) Ve (m/s)

1000 10,390

3000 9210

5000 8360

10,000 6970

It may be seen from the curve plotted between Ve and h that the velocity of escape is less if the satellite is 

launched from higher altitudes as shown in Fig. Ex. D2.4 (Solution). On the other hand, it is a problem to reach 

a high altitude of the order of thousands of kilometres. If we were to escape, we would attach the satellite to a 

multistage rocket motor which would take it up into the thin air and when all the stages drop off, the satellite 

would be on its own. We would also like to take advantage of the spinning motion of the earth and launch the 

satellite so as to gain a component of the velocity from the spin of the earth before leaving it.

Example D2.5 A body is released at a distance far away from the surface of the earth. Calculate its 

velocity when it is near the surface of the earth, ignoring air resistance and all other forces except gravity.

6970

8360

9210

10390

11170

0 1000 3000 5000 10000

h (km)

Ve
(m/s)

Fig. Ex. D2.4 (Solution)

Solution For the body, gain in kinetic energy equals loss in potential energy

1

2

1 12mV GM
L R

m
G Mm

R
= − −⎛

⎝⎜
⎞
⎠⎟

=

taking 1/L as zero for L to be very large.

 Then, V
GM

R
g R2 2

2= =  

                  = 2 × 9.81 × 6.37 × 106

and V = 11.17 × 103 m/s 

Example D2.6 A satellite of mass 200 kg, initially at rest on the earth, is to be launched in a circular orbit 

at a height equal to the radius of the earth, i.e., 6.37 × 106 m. Calculate the minimum energy required.

Solution Radius of the circular orbit is 2R.

 Initial mechanical energy of the satellite at the surface of the earth is

E1 = −GMm/R
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 Mechanical energy of the satellite in the circular orbit of radius 2R should be

1

2 2
0
2m V

GMm

R
+ −⎛

⎝⎜
⎞
⎠⎟

Since V
GM

R
0

2
=  

the mechanical energy in rotation becomes

 
E m

GM

R

GMm

R

GMm

R
2

1

2 2 2

1

4
= − = −

 The minimum energy required to launch the satellite should be

 
E E

GMm

R

GMm

R
2 1

1

4
− = − − −⎛

⎝⎜
⎞
⎠⎟

 
= =

3

4

3

4

GMm

R
gR

 
= =× × × ×

3

4
9 81 6 37 10 9 365 106 9. . . J

Example D2.7 The Mars and the earth have their masses in proportion to 0.107 and their radii in the 

ratio of 0.53 (Mass being smaller), compare their (i) densities; (ii) gravitational intensities; (iii) escape 

velocities; and (iv) periods of their satellites.

Solution

 

M

M

m

e

= 0.107,
R

R

m

e

= 0 53.

 

(i) Density is mass divided by volume, i.e., M R
4

3

3π

 

d

d

M

M

R

R

m

e

m

e

e

m

= ⋅
⎛

⎝⎜
⎞

⎠⎟
= × =

3

3
0 107

1

0 53
0 718.

.
.

(ii) Gravitational intensity g
GM

R
=

2

 

g

g

M

M

R

R

m

e

m

e

e

m

=
⎛

⎝⎜
⎞

⎠⎟
= × =

2

2
0 107

1

0 53
0 381.

.
.

(iii) Escape velocity equals 
2GM

R

 

V

V

M

M

R

R

em

ee

m

e

e

m

= ⋅ = × =0 107
1

0 53
0 45.

.
.
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(iv) Period of a satellite =
⎛

⎝⎜
⎞

⎠⎟
4 2

3π
GM

R

 

T

T

M

M

R

R

m

e

e

m

m

e

= ⋅
⎛

⎝⎜
⎞

⎠⎟
= × =

3

31

0 107
0 53 1 18

.
. .

Example D2.8 A sky laboratory of mass 2000 kg has to be lifted from a circular orbit of radius 2R to 

another circular orbit of radius 3R. Calculate the minimum energy required to do so.

Solution Mechanical energy of the satellite in a circular orbit of radius r is

1

2

2m V
GMm

r
−

where V
GM

r
=  

 At a radius 2R, the mechanical energy 

E m
GM

R

G Mm

R

GMm

R
1

1

2 2 2

1

2 2
= − = −

 At a radius 3R, the mechanical energy

E m
GM

R

GMm

R

GMm

R
2

1

2 3 3

1

2 3
= − = −

 The minimum energy required 

  
E E

GMm

R

GMm

R

GMm

R
2 1

1

2 3

1

2 2

1

12
− = − − −⎛

⎝⎜
⎞
⎠⎟

=

  = = × × × ×
1

12

1

12
9 81 6 37 10 20006gR . .  

 = 10.4 × 109 J 

Example D2.9 An artificial satellite revolves about the earth (radius 6380 km) at a height h above the 

surface. Determine the orbital speed and orbital period so that a person in the satellite will be in a state of 

weightlessness.

Solution ‘Weightlessness’ of a person refers to a state of ‘dynamical equilibrium’ when the centrifugal 

force balances the gravitational force of the earth

 mV

r

GMm

r

gR m

r

2

2

2

2
= =  (i)
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where R is the radius of the earth, g the gravitational acceleration and r the radial distance of the satellite 

from the centre of the earth. In terms of the altitude h above the surface of the earth

 r = R + h

which, when substituted in Eq. (i) results in

 
V

g

R h
R=

+

 The orbital time t may be computed from a knowledge of the distance 2p r travelled in one 

revolution.

 t
r

V

R h

R

R h

g

R h

R g
= =

+ +
=

+2 2 2 3 2π π π( ) ( ) /

 (ii)

 In the special case when the satellite is close to the surface of the earth,

 h R<<

 V gR=

and t R g= 2π /  

 If R = 6380 km      and g = 9.81 m/s2

the orbital speed V = × × =6380 1000 9 81 7910. m/s 7.9 km/s  

and the orbital time t = × =2 6380 1000 9 81 5070π / . s 84.5 minutes  

Example D2.10 A space shuttle releases a 400 kg communications satellite while in an orbit 250 km 

above the surface of the earth. A rocket engine on the satellite boosts it into a geosynchronous orbit. 

Determine the energy provided by the engine.

Solution A geosynchronous orbit is that in which the satellite stays directly over a single location on the 

earth. For example, a satellite which is always first above New Delhi is geostationary! Such a satellite should 

also be spinning with the earth with a period of 24 hours or 86,400 seconds with an angular velocity.

  
w p

q
= = =2

86 400
0 000073. / /rad s V r

 Also, V GM r
q

= / Taking GM = 3.9860 × 1014 m3/s2

 r = 42.18 × 106 m and V
q

= 3080 m/s

 Now, let us look at satellite ready to be released by the space shuttle.

 R = 250 000 + 6370 000

 = 6.62 × 106 m

 Energy associated with a circular orbit of radius r0 is expressed as

 
E

GMm

r
=

−
2 0
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E1 6

1

6 62 10
, energy before release 

2
J=

−
×

⎛
⎝⎜

⎞
⎠⎟

GMm

.

 
E

GMm
2 62

1

42 18 10
,

.
energy in geosynchronous orbit J.=

−
×

⎛
⎝⎜

⎞
⎠⎟

For m = 400 kg, the energy provided by the engine 

 E = E2 − E1 = 1.01 × 1010 J.

Example D2.11 The Indian satellite ROHINI launched on July 18, 1980, was set into a circular 

orbit completing a revolution in 97 minutes. No further details were available in the newspapers. 

Determine the altitude and the launching velocity assuming that it was  launched at zero angle of 

launching.

Solution Given that GM for the earth = 3.9860 × 1014 m3/s2 and r, the radius of the earth = 6371 km, the 

launching velocity V0 can be determined from the equation

 V
GM

r r
0

0

6

0

20 10
= =

×
m/s  (i)

where r0 is the radius of the circular orbit.

It is also given that time period for one revolution is 97 minutes.

 Therefore, 97 60
2 0

0

× =
p r

V
,  

whence  V0 = 2pr0/(97 × 60) (ii)

 From Eqs. (i) and (ii), we get

 

2

97 60

20 100
6

0

πr

r×
=

×

i.e., r0
3/2 = 18,493 × 106

and r0 = 6,993,170 m

or r0 = 6,993,17 km

 The satellite is launching at an altitude given by

 h = r0 − r = 6993.17 − 6371 = 622.17 km

 The launching velocity is given by

 
V0

620 10

6 993 170
7563=

×
=

, ,
m/s
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Concept Review Questions

Indian satellite Launcher Date of launch

APPLE Ariane, France 19 June 1981

Aryabhatta SL-8, Russia 19 April 1975

Bhaskara-1 SL-8, Russia 07 June 1979

Bhaskara-2 SL-8, Russia 20 November 1981

Rohini-IB SLV-3, India 18 July 1980

Rohini-2 SLV-3, India 31 May 1981

Rohini-3 SLV-3, India 17 April 1983

SROSS-C2 PSLV-D2, India 4 May 1994

SROSS-C3 ASLV-D3, India 20 May 1992

IRS-1A SL-3, Russia 17 March 1988

…………. …………. ………….

SRE-I PSLV-C7, India 10 January 2007

CARTOSAT-2 PSLV-C7, India 10 January 2007

INSAT-4B Ariane-5ECA, French 

Guyana

12 March 2007

INSAT-4CR GSLV-F04, India 2 September 2007

IMS-1 PSLV-C9, India 28 April 2008

CARTOSAT-2A PSLV-C9, India 28 April 2008

Chandrayaan-1 PSLV-C11, India 22 October 2008

RISAT-2 PSLV-C12, India 20 April 2009

ANUSAT PSLV-C12, India 20 April 2009

Oceansat-2 PSLV-C14, India 23 September 2009

THE INDIAN SATELLITE STORY

  Establish the correctness of the following 

statements:

 (a)  The acceleration of a particle in a central-

force motion must be directed towards or 

away from a fixed centre.

 (b)  A central-force motion is a plane motion 

because the moment of momentum is 

conserved for the motion.

 (c)     A particle projected to travel a short range 

over the surface of the earth traces a part 

of an ellipse which closely resembles a 

parabola.

 (d)  The angle of launching has no influence on 

the magnitude of the escape velocity.

  Show that the minimum velocity required to 

enable a body to escape the gravitational field of 
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the earth is 2  times the velocity to set it into a 

circular orbit at the same location.

 Will a person travelling in a geo-stationary satel-

lite feel weightlessness, heaviness, partial-weight 

relief or some other weight effect?

  Show that the energy expended in enabling a 

body to escape the gravitational field of the earth 

is twice the energy expended on it for a circular 

orbit at the same launching position.

  Is the escape velocity greater at the surface of 

the earth or at the surface of the moon? Explain 

why? It is given that the moon’s radius is about 

0.27 that of the earth and its acceleration of 

gravity at the surface is 0.165 that of the earth at 

earth’s surface.

Tutorial Problems

  A satellite orbits the earth 900 km above the sur-

face. Find the orbital speed and orbital time of the 

satellite if the radius of the earth is 6370 km.

 ( s  7410 m/s, 6165 s)

  A satellite of mass 5000 kg is in an elliptic orbit 

around the earth. Its position varies between 

300 km and 30,000 km above the surface of 

the earth of radius 6370 km. Determine the 

eccentricity of the orbit, its velocities at the 

nearest and farthest points from the earth and 

its angular momentum.

 ( s  0.690, 10,040 m/s, 18,420 m/s; 

335 × 1013 kg m2/s)

  A 5000 kg space vehicle is to be put into a cir-

cular orbit 10 000 km above the earth’s surface. 

Find (a) the orbital velocity, (b) the orbital kinetic 

energy and (c) the total energy expended on it.

( s 4930 m/s, 6.08 ×1010 J)

  With what speed must a 15,000 kg lunar 

module be launched from the moon’s surface 

in order to escape into interplanetary space? 

What kinetic energy would be required?

  A satellite is launched with a velocity of 7745 

m/s parallel to the earth’s surface at a distance 

of 6.624 × 106 m from the centre of the earth.

 (a) What kind of trajectory will it have?

 (b)  What will be its greatest distance from 

the centre of the earth?

 (c)  Compute the time taken for it to travel 

from the minimum to the maximum 

distance from the earth.

 (d)  What would be the minimum escape 

velocity for this position of launching?

 ( s  Elliptic orbit, e = 0.0046; 

6.564 × 106 m; 44.35 min; 10,970 m/s)

  A particle is projected radially outwards, as 

shown in Fig. Prob. D2.6 from an altitude h.

Compute the minimum velocity and mini-

mum energy for it to escape the gravitational 

field.

r

m

h

R
O

M

Fig. Prob. D2.6

  Compute the radius of the moon’s orbit in 

terms of the radius R of the earth, 6370 km, 

acceleration due to gravity g, 9.81 m/s2 and 

the time period T, 27.3 days for the moon to 

revolve once around the earth.
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8   A spacecraft describing a circular orbit at an 

altitude of 3000 km above the earth’s surface 

must reduce its speed to V0 in order to describe 

an elliptic trajectory for re-entry. It is desired 

that its splash-down occurs at a point S on the 

surface of the earth of radius 6370 km at a 

location where q = 60 . Determine the speed 

V0 at point A. A

V0

q

Earth

S

Fig. Prob. D2.8

Look up Hints to Tutorial Problems at the end!

Multiple-Choice Questions

Select the correct or the most appropriate response 

from among the available alternatives in the follow-

ing multiple-choice uestions:

 Constancy of areal velocity for a central-force 

motion of a particle does not imply that

(a)  equal areas are swept by the radius vector in 

equal times

(b)  the tangential velocity varies inversely as the 

length of the radius vector

(c) the angular momentum is conserved

(d) the particle should stay in an orbit.

 If satellite is launched with a velocity given by 

V GM r= 2 0/ , with usual notation,

(a)  the trajectory would be parabolic only if the 

angle of launch is zero

(b)  the satellite will escape the gravitational field 

of the earth except if the launching is radially 

outwards

(c)  the energy expended on the satellite should be 

given by GMm/2r0

(d)  the satellite will escape the gravitational 

field of the earth regardless of the angle of 

launch.

A geo-stationary satellite

(a) stays at a fixed position in space

(b) follows a circular orbit at any desired height

(c)  follows a circular orbit at any desired height 

but it has a time period of 24 h

(d)  follows a circular orbit at a unique altitude and 

has a time period of 24 h.

Answers to Multiple-Choice Questions

1 (d)     2 (d)    3 (d)



10
 10.1 INTRODUCTION

It is appropriate at this stage of presentation of the subject to look at the formulation of  problems 
by methods other than Newton’s laws of motion. We are here referring to the energy-based 
 principles in mechanics. The advantages offered by the energy-based  principles include 
 freedom from drawing the free-body diagram, dealing with scalar quantities, namely energy 
and work instead of the vector quantities, such as force, velocity, acceleration, momentum, etc., 
ease of application to multibody systems and relative simplicity of analysis in the long run.

The principle of virtual work is introduced first for static equilibrium and then, together with 
the D’Alembert principle, it is extended to the analysis of dynamical systems. While we are on the 
subject of equilibrium, an alternative method known as the principle of potential energy, is also 
introduced. These principles are helpful in understanding the variational principles in mechanics.

 10.2 VIRTUAL WORK

Consider a particle P subjected to a force . Work is said to be done by the force if the particle 
is actually displaced, say d , and the work dW is given by 

dW =   d  (10.1)

Although the force  and displacement d  are vector quantities, work, the dot product of  and 
d  is a scalar quantity. If the unit of force are N and units of displacement are m, the units of 
work must be Nm, i.e., oule .

If the particle is only imagined to be displaced, say d , hypothetically or virtually then we 
can imagine virtual work done by the force,

 dW = d  (10.2)

Virtual Work and 

Potential Energy 

Principles
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It is not ‘real’ work because the particle does not actually get displaced. 

The concept of virtual work is important in analysing complex mechanical 

systems by imagining virtual displacements.

Whether a body is actually at rest or in motion, a virtual or possible 

displacement can be visualised in view of the constraints. Such a displace-

ment is hypothetical or imaginary  it may or may not be along the actual 

displacement but it must be one of the physically possible displacements only.

Consider, for example, a body sliding up an incline under the action of some 

forces. The fact that the body can slide either up or down without violating 

the constraints, i.e., without being lifted from the incline or piercing into it or 

going sideways, the virtual displacement d  can be given either up or down 

the plane. Thus either of the modes of virtual displacements shown in Figs. 10.2(a) and (b) is acceptable. The fact 

that the body is actually moving up is of no consequence as far as the choice of virtual displacement is concerned. 

The actual mode of displacement is, however one of the ways a virtual displacement may be given. Virtual dis-

placement d  is assumed to be very small or infinitesimal so that it is accompanied by an infinitesimally small 

amount of virtual work d  W. The term virtual work, therefore, implies the hypothetical work which would have been 

done to result in a virtual displacement under the application of the given system of forces and couple-moments.

The virtual work d W due to a force  resulting in 

virtual displacement d  at the point of application of 

the force is

d W =   d 

It follows that the virtual work for an infinitesi-

mal virtual displacement of a particle subjected to a 

system of forces is

 d W = Σ  d  (10.3)

where Σ  is the resultant or equivalent force on the particle.

Alternatively, if a system of forces and couple-moments

1, 2,... n; 1, 2... n

act on a rigid body in a specified manner and the linear possible virtual displacements at the points of 

application of the forces are

d 1, d 2, ... respectively

and the angular virtual displacements due to the moments are

dq1, dq2, ... respectively

as shown in Fig. 10.3, then the total virtual work done on the body must be

 d W = 1 ⋅ d + 2 ⋅ d 2 + ... + n ⋅ d n

      + 1 ⋅ dq1 + 2 ⋅ dq2 + ... + 1 ⋅ dqn  (10.4)

The summation of virtual work done by ‘each force  for its virtual displacement’ may be written as the 

virtual work done by the resultant force Σ for the virtual displacement of the centre of mass, i.e.,

 1 d 1 + 2  d 2 + … = Σ d  (10.5)

 Likewise, the summation of virtual work done due to applied moments can be expressed as Σ ⋅ dq, which 

means that 

 d W = Σ   d + Σ   dq (10.6)

a

d
d

a

(a) (b)

Fig. 10.2 A body on an incline

Fig. 10.1 Work of a force

O

p p′
d

+ d
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For example, the rolling cylinder shown in Fig. 10.4 is subjected to a system of forces as shown in the 

free-body diagram. From the constraints on the motion, the virtual displacements at the points of action of 

the forces can be visualised readily is also shown and this procedure of finding the virtual work can be used 

with advantage.

 10.3 PRINCIPLE OF VIRTUAL WORK 

The condition of equilibrium of a body are 

 Σ = 0 and Σ = 0

The virtual work d W for infinitesimal virtual displacements is given by

d W = Σ d + Σ dq

Since Σ = 0 and Σ = 0,

 d W must be zero! (10.7)

1

d 1

1

2
dq2

dq1

d 2

Initial

position

Virtually

displaced

position

2

(a) Given system of forces

          and virtual displacements

C

Initial

position

Virtually

displaced

position
d

dq

(b) Equivalent system of forces

  and virtual displacements

Fig. 10.3 System of forces acting on a rigid body

W

k

Welded 

bar

Rolling

cylinder

(a) A rigid body subjected to a system of forces

d 1

1

d 2

2

dq

3

d 3 = 0

(b) Free-body diagram and the virtual

displacements

Fig. 10.4  Example of a rigid body subjected to a system of forces
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m1

m2

Double incline

a1
a2

O

Fig. Ex. 10.1

This is the principle of virtual work. It states that the virtual work should be zero for a body to be in e uilibrium.

The question that arises next is whether the virtual work principle offers any advantage over the conditions 

of equilibrium, which follow directly from Newton’s law and Euler’s equation. The answer is yes . There are 

definite advantages, some of which are explained as follows:

1. It may be easier and more convenient to determine the virtual work than to evaluate the resultant force 

and resultant moment. It is easier because the constraining forces which may be due to the normal reactions 

by the surfaces and the internal action-reaction forces do not contribute to the virtual work. For example, the 

reaction by a smooth surface can do no virtual work on a body when it is virtually displaced by sliding over 

the surface because the reaction force and displacement are at right angles to each other. The merit of the 

virtual work principle is, therefore, that the reaction forces and other constraining forces need not be deter-

mined at all. This step is unavoidable if we were to evaluate the resultant force for equating it to zero for 

equilibrium. Some other forces which do not contribute to the virtual work and need not be evaluated are:

 (i) Reaction at a smooth pin for rotation about the pin 

 (ii) Reaction at a roller moving along a track

 (iii) Weight of a body when its centre of gravity moves horizontally

 (iv) Friction force acting on a wheel rolling without slip.

2. The principle of virtual work applies to a system of connected particles or of rigid bodies as good as to 

a single rigid body or to a single particle. Only the forces external to the system of connected bodies need be 

considered for virtual work; the internal forces cannot contribute to the virtual work. Care must be taken to 

select the virtual displacements in a manner which do not violate the constraints.

3. It may appear, in the first instance, that the virtual work principle applies only to a body in equilibrium 

and provides an alternative, single condition of equilibrium which is a little simpler. A little consideration of 

the D’Alembert’s principle will show that if a body of mass m is accelerating at an acceleration  under the 

action of an external force , then,

 + (– m ) = 0 (10.8)

The form of the equation suggests that if a hypothetical force called inertia force

 1 = – m  (10.9)

is to act on the body in addition to the external force , then the body would hypothetically come to a state 

of equilibrium. It shows that the D’Alembert’s principle used simultaneously with the virtual work principle 

should be able to extend the virtual work principle to bodies not in e uilibrium. As a closing comment, it should 

be mentioned here that this statement is so true that a complete formulation of energy method in mechanics 

has already overshadowed the Newtonian mechanics. Energy equations due to Langrange and Hamilton can 

be shown equivalent to the Newtonian formulation.

Example 10.1 A frictionless double-incline with 

angle a1 and a2 as shown in Fig. Ex. 10.1 carries a set of 

sliding masses m1 and m2 connected with an inextensible 

string and passing over a frictionless pulley at O. Obtain 

the relationship between a1 and a2 in terms of m1 and m2

for equilibrium and hence determine a2 if

a1 = 30  and m1 = 2m2

 How would the angle change if the surfaces had a 

coefficient of friction m instead of being smooth?
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Solution Let us draw and observe the free-body diagrams of the two 

masses in the absence of friction (Fig. Ex. 10.1 (Solution)).

 Since the motion is possible only up and down the inclines, let us 

give a virtual displacement dr1 up the a1 incline to mass m1. The virtual 

displacement of mass m2 must then be dr1 down the a2 incline because 

the string is inextensible and hence is of constant length.

 The virtual work done by R1 for the displacement dr1 of mass m1

must be zero because they are at right angles. Similarly, the virtual 

work by R2 for the displacement dr1 of mass m2 must be zero. R1 and R2 need not be determined. Now, 

the virtual work done by T1 for displacement dr1 of mass m1 along 1 is 1dr1 and the virtual work done 

by 2 for displacement dr1 of mass m2 along 2 is 2dr1. The total work done by the tension forces in the 

inextensible string is

1d r1 + 2d r1

which must be zero because 1 is equal and opposite to 2, there being no friction in the pulley.

The only forces which indeed do virtual work are the external forces on the bodies. In this case m1g and 

m2g are the only external gravitational forces. The virtual work done by them adds up to

– m1g sin a1 d r1 + m2g sin a2 d r1

 According to the virtual work principle, the virtual work must be zero for the system to be in equilibrium

–m1g sin α1 d    r1 + m2g sin a2 d r1 = 0

 Cancelling dr1 and g from both terms,

 

sin

sin

α
α

1

2

2

1

=
m

m

 It may appear that the virtual work method is also lengthy and requires careful elimination of the non-

contributory forces. However, this is untrue. It was unnecessary to draw the free-body diagram actually 

or even to eliminate the normal-reaction and internal e ual tension forces. Only a general statement is 

adequate and the required proof is between the two asterisks ( ) above.

 When m1 = 2m2 and a1 = 30  

sin a2 = 2 sin 30  = 1

whence a2 = 90  

 Let us now investigate the effect of friction at the inclined surfaces. The virtual displacement still being 

the same as before, the frictional forces would enter into the virtual work.

 On mass m1, the frictional force would be

m m1g cos a1

down the incline a1, and the virtual work contributed by it

–m m1g cos a1 d r1

 Similarly, the virtual work done by the frictional force on mass m2 would be

–mm2g cos a2 a r1

 The virtual work principle would be applied to the total virtual work, i.e.,

–m1g sina1 d r1 + m2g sina2 d r1 – m m1g cosa1 d r1 – m2g cosa2 d r1 = 0

R1

1

dr1

a1

dr1
a2

2 R2

m1g
m2g

Fig. Ex. 10.1 (Solution)
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R

Crank

l

fq

Crosshead

Fig. Ex. 10.2

 Cancelling d r1 and g,

 m1(sin a1 + m cos a1) = m2 (sin a2 – m cos a 2)

or
sin cos

sin cos

α μ α
α μ α

1 1

2 2

2

1

+
−

=
m

m

A noteworthy comment at this stage is that this relationship applies to the equilibrium against sliding in 

accordance with the chosen mode of virtual displacement. If d r1 was reversed in direction, frictional forces 

would also reverse and the virtual work principle would yield

sin cos

sin cos

α μ α
α μ α

1 1

2 2

2

1

−
+

=
m

m

for equilibrium. The application of the virtual work principle for systems with dissipative forces such as 

friction, aero-dynamic drag, etc., requires as much attention as the application of Newtonian laws.

Example 10.2 Determine the relationship 

between the moment  applied at the crank 

of radius R and the force  applied at the 

crosshead in the slider crank mechanism shown in 

Fig. Ex. 10.2.

Initial position

Virtually displaced

       positiony

O x

l

dxx

x

R

dq
+q

Fig. Ex. 10.2 (Solution)

Solution Let the system be virtually displaced as 

shown in Fig. Ex. 10.2 (Solution). The virtual work 

done by the moment  and the force  adds up to

        – dq – dx (i)

which must be equated to zero in the absence of any 

other external force or moment. Here, x is chosen 

positive to the right and q positive anticlockwise 

as per our usual convention.

 From the geometry of the configuration,

 x = R cos q + l cos f (ii)

and R sin q = l sin f

or cos2f = 1 – sin2 f = 1 – (R/l )2 sin2 q (iii)

and differentiating Eq. (ii) and using Eq. (iii)

 
δ δ δx R R l

R l
= − ⋅ −

−
sin /

sin cos

( / ) sin /
q q

q q

q
q2

2 2 1 21

which when substituted in Eq. (i) and equated to zero results in the required relationship

 

= +
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

R
R

l R l
sin

cos

( / ) sin
q

q

q
1

1 2 2
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y

l/2mg

C

P

x

Bx

y

q

A

l/2

Fig. Ex. 10.3

Example 10.3 A ladder AB of weight mg and length l is held 

in equilibrium by a horizontal force P as shown in Fig. Ex. 10.3. 

Assuming the ladder to be idealised as a homogeneous rigid bar, 

relate P to mg. Assume the surfaces to be smooth.

Solution Let the virtual displacement of B be dx towards right, i.e., along the x-axis. The virtual work done 

by P is

 WP = –P dx

 The virtual displacement of C will have x and y components, but the virtual work done by W must be

 dWw = –mg dy

where d y is the vertical component of the virtual displacement of C.

 By the virtual work principle for equilibrium,

 dW = dWP + dWW = 0

or,  –P dx e– mg dy = 0 (i)

 From the geometry of placement

 x = l sin q and y l=
1

2
cosθ

then, dx = l cos q dq

and δ θ δθy l= −
1

2
sin

 Substituting for dx and dy in terms of the single variable q, for the one-degree of freedom system in Eq. (i),

 
− + =Pl mglcos sinq dq dq

1

2
0

whence P =
1

2
mg tanq  

 It may be noted that the reactions by the smooth surfaces are normal to the respective surfaces and would, 

therefore, not contribute to the virtual work. There is no need to draw a complete free-body diagram of the 

member  it is only necessary to recognise the active or driving forces which contribute to the virtual work.

 If the surfaces were not smooth but rough with friction coefficients mA for the horizontal surface and 

mB for the vertical surface, the frictional forces would also be active forces at the points of contact. The 
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frictional forces would oppose the respective virtual displacements and contribute to the virtual work. For 

the positive dxB and positive dyA, the frictional virtual work is

–fA dyA – fB dxB

where fA and fB are the frictional forces at A and B respectively.

 10.4 PRINCIPLE OF POTENTIAL ENERGY

If a system operates under the action of conservative forces, e.g., due to gravity, elastic elements, etc., the 

potential energy concept can be used to advantage. The potential energy PE for a conservative force F(s)

acting in a direction s as shown in Fig. 10.5(a) may be recollected to be given by

 d PE

ds
F s

( )
( )= −  (10.10)

For a gravitational force acting downward, as 

shown by Fig. 10.5(b)

 F = –mg

 
d PE

dz
mg mg

( )
( )= − − =

whence   PE = mg (z2 – z1) = mgh

referred to zero potential energy at h = 0.

 For an elastic element, the restoring force, as 

shown in Fig. 10.5(c), is

 F = –kx

and
d PE

dx
kx kx

( )
( )= − − =

whence PE kx=
1

2

2

referred to zero potential energy at the equilibrium 

position, x = 0.

The principle of potential energy for the equilib-

rium of a body or a system of bodies follows from the 

fact that the external force F should be zero. Then,

 d PE

ds

( )
= 0  (10.11)

In words, the potential energy principle states that 

if the potential energy is a function of a single space 

coordinates, then the potential energy must have a 

stationary value at the position of e uilibrium; the 

derivative of the potential energy with respect to that 

coordinate must vanish. The single coordinate in 

question may be x, y, z, q or some other coordinate 

chosen for convenience. It can be appreciated from 

Calculus that a function may have a stationary value 

(s)

s
d (PE )

ds
= − (s)

K

PE = 1
2

kx2

+ ve
PE = 0

x

= - kx

x = 0
Equilibrium position

(c) Elastic element force field

(a) Force field as a function of s

z

x

z2

= −mg

Dz

= −mg

PE = mgh

h

PE = 0

yO

(b) Gravitational force field

z1

Fig. 10.5 Principle of potential energy: conservative fields
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at a maxima, a minima, a point of inflexion or a flat 

region of the curve. For example, if a curve PE vs. s

appears as that shown in Fig. 10.6, the body must be 

in equilibrium at points A, B, C, D, E, F, etc.

Following from the fact that the vanishing exter-

nal force,

= 0

is a necessary condition and not a sufficient con-

dition for equilibrium, it may be appreciated that 

Eq. (10.11) is not only a necessary but also an alter-

native condition for equilibrium.

Let us now turn to the three different states of equi-

librium, viz. stable, unstable and neutral equilibrium. 

Consider a bar with its centre of gravity at C and 

 suspended from a point O in three different ways.

Case (a): O above C

Case (b): O below C

Case (c): O coincident with C

as shown in Figs. 10.7(a), (b) and (c) respectively. In 

each case, the bar is in equilibrium when O and C are 

in the same vertical line, i.e., when the bar is vertical. 

Now, let us observe what happens to the bar when it 

is slightly displaced from its equilibrium position in 

each case.

In Case (a), the bar tends to return to its initial posi-

tion. In Case (b), the bar continues to deviate from the 

initial position and in Case (c) the bar stays wherever it is left. This is so because the moment created by the shift 

of the centre of gravity from C to C ′ tends to restore equilibrium in the first case, deviate it further in the second 

case and there is no such moment in the third case. The state of equilibrium in which a slight disturbance from 

the equilibrium position is accompanied by a restoring moment so as to bring the body back into its initial state 

of equilibrium is called stable e uilibrium. On the other hand, if the slight disturbance is accompanied by an 

adverse moment to displace the body further, the state is said to be unstable and if the slight disturbance fails to 

generate a restoring or a worsening moment, the body is said to be in a state of neutral equilibrium.

Since the potential energy of a suspended body reckoned to its point of suspension O is minimum when the 

centre of gravity C is below O, maximum when the centre of gravity C is above O and remains unchanged when 

C and O coincide it is clear that the states of stable, unstable and neutral e uilibrium correspond to the  minimum, 

maximum and stationary’ potential energy respectively. This fact can also be appreciated by the observation that 

a slight angular displacement of the bar is accompanied by a rise of C to C ′ in Case (a), lowering of C to C ′ in 

Case (b) and all-time coincidence of C and C ′ in Case (c) showing thereby that while in the vertical equilibrium 

position C must be the lowest possible in Case (a), highest in Case (b) and unchanged in Case (c).

From Differential Calculus, we can recollect that PE is a minima when

 
d PE

ds

2

2
0

( )
>  (10.12)

and a maxima when

 
d PE

ds

2

2
0

( )
<  (10.13)

A

B

C

D

E F

PE

s

Unstable

Neutral

Stable

Fig. 10.6  Variation of potential energy and positions 

of equilibrium

O

R0

C C ′

W

C ′
C

R0

O
W

O

R0

W

C ′C

(a) Stable (b) Unstable (c) Neutral

Fig. 10.7 State of equilibrium
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and the point of inflexion and the state of ‘stationary’ P  are characterised by

P
2

2
0

( )
=

It may be remarked that a point of inflexion of P  vs.  is not classified as stable, unstable or neutral 
equilibrium. This is because slight displacement one way may imply stability but a slight displacement the 
other way may lead to instability. In fact, the body has little chance to restore to its initial position because 
it can become unstable as soon as it overshoots the equilibrium position. A summary of the results obtained 
so far is presented in Table. 10.1.

Table 10.1 States of equilibrium

State Stable nstable Neutral

Common condition ‘for all states’: E
d PE

ds
==

Action of moment generated due
to slight displacement Restoring Worsening Nil
Tendency of the body Returns to Status 

Quo
Further tilting Stays as it is

Sign of , the height

of  above + ve – ve ero

Potential energy Minimum Maximum Constant

Functional form of (P ) P
2

2
0

( )
>

P
2

2
0

( )
<

P
2

2
0

( )
=

Referring again to Fig. 10.6, we can now qualify the states of equilibrium at the different points.
At : maxima, unstable equilibrium
At : inflexion, unstable equilibrium
At : minima, stable equilibrium
At : inflexion, unstable equilibrium
At  and : constant P , neutral equilibrium.

The concept of stability of equilibrium may be extended to a body capable of oscillations without any 
hinge or fulcrum. One such case of great importance is a floating body, e.g., a floating cylinder in a liquid or a 
floating ship in water. In the equilibrium position the weight of the body acting downward through the centre 
of gravity  is exactly balanced by the upthrust or buoyancy force acted by the surrounding liquid through 
the centre of buoyancy .

=
A homogeneous cylinder floating upright in a liquid must be in a state of equilibrium as shown in Fig. 10.8(a).
If the body is tilted through a small angle dq, the centre of gravity is displaced in space but remains fixed 

with the body at , whereas the centre of buoyancy shifts to new position 1 because the volume of the 
body immersed in the liquid changes in shape. The  buoyancy force 1, the same in magnitude as , acts 
upward through 1. The weight acting downward through  and 1 acting upward through 1 constitute a 
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couple which may act to produce different effects: if 

it helps to restore the body to initial equilibrium as in 

Fig. 10.8(b), it is said to be in a stable state. If it acts to 

tilt the body further, as in Fig. 10.8(c), it is in unstable 

state and if it produces no effect, the body is said to 

enjoy neutral equilibrium as shown in Fig. 10.8(d).

A comparison of the mechanics of the states 

of equilibrium of a floating body with that for 

a body suspended from a point shows that there 

is some difference. The point of suspension for 

a suspended body is fixed and the potential energy 

is referred to this fixed point. The fixed point also 

provides a reaction force R0 to constitute a couple 

which comes into play when the body is dis-

placed. In a floating body there is no fixed point 

to provide the reaction; the reaction is provided by 

the surrounding liquid acting through the centre 

of buoyancy B or B1. The line of action of FB1

through B1 intersects the centreline of the body 

at M. The point M called the metacentre lying on 

the centreline of the body plays the same role as 

O, the point of suspension of the suspended body. 

This is quite clear from an observation of Fig. 

10.8. The height of the metacentre M reckoned to 

the centre of gravity C, denoted by CM is called 

the metacentric height. The metacentric height should be positive for stability, zero for neutrality and 

negative for instability of equilibrium.

The states of equilibrium of a homogeneous cylinder placed on top of differently curved surfaces are 

shown in Table 10.2. In each case the initial equilibrium is assured by the fact that the tangent at the point 

of contact is a horizontal line showing that the potential energy would remain unaltered for an infinitesimal 

displacement dq of the cylinder.

The principle of potential energy may be extended and it be applied to the problems concerning the state 

of equilibrium of a body or a system with more than one degree of freedom. The potential energy should 

have a stationary value with respect to each of the independent coordinates chosen to specify the orientation 

of the body or the system. For example, a system with n degrees of freedom requires that

 
∂

∂
∂

∂
∂

∂
( ) ( )

...
( )PE

x

PE

x

PE

xn1 2

0= = = =  (10.14)

for it to be in equilibrium. The conditions for stability, neutrality and instability are, however, not so simple 

as to be stated or used conveniently.

For a two-degree-of-freedom system, in particular, where the independent coordinates are chosen as 

x and y, the condition for equilibrium is

 
∂

∂
∂

∂
( ) ( )PE

x

PE

y
= =0  (10.15)

and the stability of equilibrium demands that simultaneously

C

B

B

Wt
Wt

C

B B1

B1

M

(a) Equilibrium position (b) Stable (M above C)

C

M

B

B1

B1

Wt

(c) Unstable (M below C )

M

B1

C

B

Wt

B1

(d) Neutral (CM = 0)

CL CL

CLCL

Fig. 10.8 Mechanics of equilibrium of a floating body
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Example 10.4 The potential energy of a system is given in joules by the expression

PE = 10x3 + 8x2 – 9x

where x is in m.

    Determine the equilibrium positions and the states of equilibrium.

Table 10.2 States of equilibrium of a homogeneous cylinder

In each case,
d PE

d

( )

q
= 0 for equilibrium

dq

C

O

C

O

C

O

C

O

State Stable Unstable Unstable Neutral

PE Minimum Maxima Inflexion Constant

Function
d PE

d

2

2
0

( )

θ
>

d PE

d

2

2
0

( )

θ
<

d PE

d

2

2
0

( )

θ
=

d PE

d

2

2
0

( )

θ
=

Solution Given that PE = 10x3 + 8x2 – 9x

 For equilibrium positions,

 
d PE

dx
x x

( )
= + − =30 16 9 02

whence x1 = –0.876 m

 x2 = + 0.3425 m

 Now, the second derivatives of the PE are

 
d PE

dx
x

2

2
60 16

( )
= +

 At x1 = –0.876 m,  
d PE

dx

2

2
36 56 0

( )
. ;= − <  

 At x2 = 0.3425 m,  
d PE

dx

2

2
36 55 0

( )
. ;= + >  

 The equilibrium position at x = –0.876 m corresponds to unstable equilibrium and that at x = 0.3425 m 

corresponds to stable equilibrium.
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∂

∂

2

2

2

2
0

( ) ( )PE
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⎛
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>  (10.16)
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√

C

hR

Dh

R + (h − r) cos q
q

R

h

R R R

C C C C

R

n > 2 n = 2n < 2

2
3

1.1R

1.1R

(c)

Datum line

R

(a)

(b)

Fig. Ex. 10.5 (Solution)

C
nR

h R

H

Fig. Ex. 10.5

Example 10.5 A rectangular block and a semicylinder of the 

same length made of the same homogeneous material are secured 

together and placed on a flat rough surface in equilibrium as 

shown in Fig. Ex. 10.5. Determine the minimum radius R of the 

semicylinder in terms of the height H of the block if the width of 

the block is n times the radius of the semicylinder in order that 

the composite body be in stable equilibrium. Assume that the 

semicylinder may roll without slip on the flat surface.

Solution Let the centre of gravity of the composite body be h above the base in the  equilibrium position.

 When it is tilted by a small angle q as shown, the centre of gravity drops to a new height

R + (h – R) cos q

 Referring to the initial or equilibrium position, the potential energy of the body is

 PE = –mg Δh

 = mg (R – h)(1 – cos q )

where m is the mass of the composite body.

 Now,             
d PE

d
mg R h

( )
sin

θ
θ= −( )
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 This is zero when sin q = 0 or q = 0 showing that the initial position is indeed the position of equilibrium,

 

d PE

d
mg R h

2

2

( )
( ) cos

q
q= −

which, for q = 0, becomes

 

d PE

d
mg R h

2

2

( )
( )

q
= −

 This should be positive for stable e uilibrium. The geometric condition for stability of the composite body

is, therefore, that R should be greater than h. In other words, the centre of gravity should lie below the centre 

of the circle in the view shown in Fig. Ex. 10.5 (Solution). When h = R, the state is of neutral equilibrium: the 

body would stay where it is left. When h is greater than R, as initially assumed, the equilibrium is unstable.

 In order that the centre of gravity be located at the centre of the circle for the limiting case,

H
nR H

R R

2

4

3 2

2

× × = ×( )
π

π

whence  H
R

n
=

2

3

 It is interesting to observe that the wider the block, more is n and less is H. The thinner the block, less is 

n and more is H.

 In the limits,

n → ∞, H → 0

and n → 0, H → ∞
 In the special case when the width of the block equals the diameter of the semicylinder,

 n = 2

and H R R= =
2

3
0 8165.  

 Three such cases of n < 2, n > 2 and n = 2 are shown in the neutral equilibrium condition. The bodies 

exhibit stable equilibrium of the height of the block is reduced, but are unstable if the height is slightly 

increased beyond the heights shown for neutral equilibrium.

 Another interesting case is of securing a block of square cross-section on the semicylindrical block. The 

maximum side of the square cross-section for stable equilibrium would be

 a = H = nR

which together with

 
H

R

n
=

2

3

provides n = (4/3)1/3 = 1.1

and a = 1.1R

as shown in Fig. Ex. 10.5(c) (Solution).

 10.5 GENERALISED COORDINATES

The position of a particle on a given line is described by one coordinate; on a plane by two coordinates and in 

space by three coordinates. The coordinates may refer to any set of axes; these may involve distances and angles 

in any combination. to describe the position of two particles in space, we use six coordinates. For a larger number 

of particles moving in a certain fashion, particularly when the particles refer to one or more of the rigid bodies, we 
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may have to use a larger number of coordinates. It is always possible to select the  smallest number of independent 
variables to describe a system; The values 
of these generalised variables, whatever they may be, completely define a system and can be varied to define other 
states in keeping with the constraints on the system. There is no unique choice of the generalised coordinates.

The number of such coordinates to describe the position is called the .
If a system can be defined by a minimum of 1, 2, ....  generalised coordinates, it is said to have 1, 2, ...,
degrees of freedom respectively. Such coordinates required to specify a system are denoted as 1, 2, ..., 
for  degrees of freedom.

If time  is also independent coordinate in the description of a system, the number of degrees of freedom 
will remain the same as the number of coordinates excluding .

A mechanical system consisting of  particles may have any number of degrees of freedom less than 3 ,
depending upon the geometrical restrictions placed on their motions. Certain systems, such as a coil spring, 
vibrating string or beam which are assumed to consist of an infinite number of particles possess infinite 
degrees of freedom. In a variety of engineering problems, however, the connecting strings and masses of 
springs may be neglected and hence the system is taken to possess a finite number of degrees of freedom.

There is usually a wide range of the choice of coordinates as to which of the  coordinates are to be 
regarded as independent. For a simple pendulum the angular displacement of the string q, or the  or  coor-
dinate of the bob or any other one coordinate only is adequate to describe its configuration at any instant of 
time. The choice of such coordinates depends largely on insight and experience so as to be directly meaning-
ful in the interpretation of the result in the light of the geometrical constraints imposed upon its motion.

If the number of independent coordinates employed is less than , the problem is indeterminate; if a larger 
number of independent coordinates are employed, additional relationships interrelating the excess number 
of coordinates must be available, otherwise the entire analysis is null and void; such is the importance of the 
generalised coordinates for a system.

The transformation equations relating the rectangular coordinates of  particles to their  generalised 
coordinates are expressible as

 
=
=
=

( , ..., , )

( , , ..., , )

( , , ...,

1 2

1 2

1 2 , )

⎫

⎬
⎪

⎭
⎪

Continuous functions

with continuous derivatives
 (10.17)

where  runs from 1 to , the number of particles.

  State whether the following statements are true 
or false and justify your answer.
(a) Virtual displacements are assumed to take 

place only instantaneously.
(b) The virtual work concept applies only to 

systems in equilibrium.
(c) Only the active or driving forces need be 

considered for the application of the virtual 
work principle.

(d) The weight of a body is an active force for 
all modes of motion of the body.

(e) Frictionless constraints cannot provide any 
active force.

(f  ) The principle of virtual work applies to 
a system of bodies as well as to a single 
body.

  If a body is actually moving under the applica-
tion of a system of forces and there is actual 
work done by the forces, then will it be neces-
sary, preferable or unnecessary to consider virtual
work the same as actual work?

Concept Review Questions
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  Under what circumstances will you use the prin-

ciple of virtual work in preference to the other 

 formulations for equilibrium?

  Is the virtual work method restricted to single 

degree-of-freedom bodies and systems or is it 

valid for any system with any number of degrees 

of freedom? Support your comments by an 

example.

  State the correctness of the following statements 

along with short comments.

(a) The potential energy principle applies to a 

body in equilibrium, whether it is at rest or 

in uniform motion.

(b) The potential energy principle applies as 

well to a system of interconnected bodies as 

to a single body.

(c) A body may be in stable equilibrium although 

the potential energy is not a minima.

(d) The point of inflexion on the curve showing 

the variation of potential energy with a space 

coordinate is potentially a point of unstable 

equilibrium.

(e) The potential energy method is the only 

method which can decide the stability, 

neutrality and instability of equilibrium 

unambiguously.

(f ) The potential energy method may be 

extended to systems with any number of 

degree of freedom.

  Relate the potential energy conditions for the 

states of equilibrium of a suspended body to the 

states of equilibrium of a floating body.

  Imagine a right circular cone placed on a flat 

plate. Sketch the modes of placement for

 (a) stable equilibrium

 (b) unstable equilibrium

 (c) neutral equilibrium

 and explain the states of equilibrium on the basis 

of the potential energy principle by sketching the 

variation of potential energy in each case.

8   Why are generalised coordinates so called? Must 

the number of generalised coordinates be equal 

to, less than or more than the degrees of freedom 

of a system?

Tutorial Problems

  Using the method of virtual work, determine 

the value of  to hold the frame in equilib-

rium under the action of a force P as shown in 

Fig. Prob. 10.1. Each link is of length 2a and 

q = 45 .

 s F = P/2 tan q; P/2)

a a

q
P

a a

a a a a

A

B

Fig. Prob. 10.1

  Using the method of virtual work, determine 

the force in the top member of the simple truss 

consisting of equilateral triangles.

 ( s 0.577 P)

C

A
E

D

B

P

Fig. Prob. 10.2

  A simple parallelogram linkage carries three 

forces as shown in Fig. Prob. 10.3 while the 

members AB and CD capable of oscillating 
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about A and D respectively are at 60  with the 

base line AD. Determine the moment M  required 

to maintain equilibrium of the linkage.

1 kN 1.5 kN

B

2 kN

M = ?

D

AB = CD = 0.2 m, BC = 0.3 m

60°

C

A

Fig. Prob. 10.3

  A simple linkage consisting of two equal mass-

less bars and a sliding block B is subjected to 

a set of two forces 1 and 2 as shown in Fig. 

Prob. 10.4. Express the angle q as a function of 

F1 and F2 for equilibrium.

 ( s tan q = F1/2F2)

1

l

2A

q

P

B

Fig. Prob. 10.4

  Two inextensible strings of equal lengths and 

two equal concentrated masses comprise a 

double pendulum as shown in Fig. Prob. 10.5. 

A force  is applied horizontally at the lower 

end to keep it in equilibrium. Express the 

angles q1 and q2 with the vertical in terms of 

F and m.

 ( s  tan q1 = F/2 mg, tan q2 = F/mg)

q1

m q2

l

l

m

Fig. Prob. 10.5

  A uniform rectangular plank of height h, base 

width b and mass m rests on top of a convex 

circular surface of radius R. Establish the rela-

tionship between the height of the plank and 

the radius of the convex surface for the stable 

and unstable equilibrium of the plank in roll-

ing without slipping over the convex surface.

 ( s  Equilibrium: OPQ vertical; Stable 

 for R > h/2; Unstable for R < h/2)

Q

O

R

P

b

Plank

h

Fig. Prob. 10.6

  Two weights W1 and W2 are placed at the ends of 

a massless bar of length l pivoted at a distance l1
from the weight W1 as shown in Fig. Prob. 10.7. 

If the bar is free to oscillate in the vertical plane 

discuss the criteria for the states of equilibrium.

 ( s  Condition of equilibrium: Either 

q = 0 and any W1 and W2 at any l1 and l2

 respectively and stable if W2l2 > W1l1 or 

W1l1 = W2l2 at any q and neutral all 

 the time)

W1

l1

O

q

l2

W2

Fig. Prob. 10.7
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8   A homogeneous body is composed of a hemi-

sphere of radius R and a circular cylinder of 

radius R and height H as shown in Fig. Prob. 

10.8. Discuss the relationship between R and 

H for equilibrium and hence find the maxi-

mum value of H consistent with the stability 

of the body. Assume the hemisphere to roll 

without slipping on the horizontal surface.

 ( s H = R/ 2 )

H

y

C1

C2R

H/2

3
8

R

O
x

Fig. Prob. 10.8

  A heavy uniform cube is balanced on the high-

est point of a fixed sphere of radius R. If the 

sphere is rough enough to prevent sliding and if 

the side of the square is pR/2, show that the cube 

can rock through a right angle without falling.

Cube

Sphere

πR/2

R

Fig. Prob. 10.9

  A composite body made up of a cone and 

hemisphere of a homogeneous material rests 

on a rough flat surface. Show that the great-

est height of the cone such that the equilib-

rium may be stable is 3 times the radius of 

hemisphere.

 A solid circular cylinder of radius r and 

height h has a specific gravity of 0.6. Find 

the minimum ratio r/h for which the cylinder 

will float in water with its axis vertical and 

just be stable.

( s 0.693)

Look up Hints to Tutorial Problems at the end!

Multiple-Choice Questions

Select the correct or the most appropriate response 

from among the available alternatives in the follow-

ing multiple-choice uestions:

Virtual work refers to work

 (a) by virtue of actual forces

 (b) by virtue of actual displacements

 (c) in overcoming the constraints

 (d) associated with a possible displacement

 The principle of virtual work states that the virtual 

work should be zero for a body

 (a) to be in equilibrium, in general

 (b) in equilibrium if it does not rotate

 (c) moving with a constant acceleration

 (d) rotating at a constant angular velocity

The existence of potential energy implies that

 (a) a general force field exists

 (b) a conservative force field exists



 Virtual Work and Potential Energy Principles 597

 (c)  there must either be a spring or gravitational 

field

 (d) the body should be in equilibrium

Stability of equilibrium of a body requires that

 (a) 
d PE

ds
= 0

 (b) d PE

ds

d PE

ds
= <0 0

2

2
and

 (c) d PE

ds

d PE

ds
= >0 0

2

2
and

 (d) 
d PE

ds

2

2
0=

 The time taken by a small frictionless bead to 

slide on a thin wire in the gravitational field is the 

minimum if the shape of the wire is

 (a) a straight line (c) a parabola

 (b) a cycloid (d) an involute

Answers to Multiple-Choice Questions

1 (d)    2 (a)    3 (b)    4 (c)    5 (b)
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 11.1 ELEMENTS OF MECHANICAL SYSTEMS

A system, by definition, is an assemblage of interacting elements constituted for a desired objective. 

The elements of a system may be simple mechanical, electrical, optical, thermo-mechanical, elec-

trodynamical or some other devices which are characterised by their behaviour. A system is termed 

dynamical system if the system response is a function of time. It is interesting, under the systems 

approach, to deal with different classes of systems in a unified fashion. We shall, however, confine 

ourselves to the mechanical systems. The study can, however, be extended to other systems.

A mechanical system comprises of mechanical elements which have the following properties 

or characteristics:

 1. Inertia  2. Compliance  3. Damping.

These characteristics may either be translational or rotational. It may be noted that a suitable 

combination of the translational and the rotational characteristics can provide the desired charac-

teristics in any motion, by simple superpositions, if the basic characteristics are linear. We shall 

restrict our discussion to the linear elements. Let us now focus our attention on each of the above 

characteristics.

1. Inertia (tendency to resist motion, e.g., by mass)

Basic Concept Translational Mass m Rotational Moment of Inertia I

Acceleration =
d x

dt

2

2
α =

d

dt

2

2

θ

Action Force Moment

Constitutive E uation = =m m
d x

dt

2

2 = =I I
d

dt
a

2

2

q
(11.1)

Vibrations of Simple 

Mechanical Systems
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Comments Inertial elements, i.e., mass in translation and in rotation are pure translational and pure rota-

tional elements respectively. By pure, it is implied that they have no other properties, such as deformability, 

etc. The motion of an inertial element is governed by the laws of Mechanics.

2. Compliance (with conservative elements, e.g., springs)

Translational Rotational

Concept: Elastic

Elements

Translational Spring 

(spring constant) k

Rotational Spring

(spring constant) K

Displacement x     q
Action Force     Moment M

Constitutive E uation = k x   M = Kq (11.2)

Representation of elements producing compliance: Refer Fig. 11.3. Examples: Refer Fig. 11.4.

m

I

Translating mass

a

Rotating wheel

Fig. 11.2 Inertial elements

= m

or

= Ia

Slope

m or I

Acceleration or a

D
y
n
am

ic
 a

ct
io

n
 

o
r

Fig. 11.1 Characteristic of an inertial element

Translational springs: = k x

Coil

spring

Beam or plate

x
x

x

Gas

x

Shaft

Helical

spring

M

q

q

Rotational springs: = Kq

Fig. 11.4 Elements producing compliance

= k x

y

x

or

= Kq

Slope k

or K

Displacement x or q

D
y
n
am

ic
 a

ct
io

n
 

o
r

Fig. 11.3 Characteristic of a compliance element

Representation of inertial elements: Refer Fig. 11.1. Examples: Refer Fig. 11.2.
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Comments A compliance element complies with a steady force to produce a corresponding steady 

 deformation. Compliance elements such as springs are said to be pure if they are assumed to be devoid of 

mass and are capable of conserving energy under all modes of operation. A compliance element must return 

to its equilibrium position when the applied force is removed.

3. Damping (with dissipative elements, e.g., dashpots)

Translational Rotational

Concept: Dissipative

Elements

Translational Damper 

(damping constant) c

Rotational Damper

(damping constant) C

Velocity V
dx

dt
= w

q
=

d

dt

Action Force Moment

Constitutive E uation = =cV c
dx

dt
M C C

d

dt
= =w

q
 (11.3)

Representation of damping elements: Refer Fig. 11.5. Examples: Refer Fig. 11.6.

V

x
Dashpot

F = cV

Coulomb dry friction

c = 0
F = Const.

x
V

Rotational damper

M = Cw

M

C

w

q

Oil

Fig. 11.6 Elements producing damping

= cV

or

= C w

Slope

c or C

Velocity V or w

D
y
n
am

ic
 a

ct
io

n
 

o
r

Fig. 11.5 Characteristic of a damping element

Comments A damping element is associated with dissipative action. Dissipation of energy may be achieved 

through dry friction, viscous shearing or otherwise. Mass and elasticity of the components of the dampers 

are assumed to be zero for pure dampers. A damping element stays where it is, when the applied force is 

removed.
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 11.2 SIMPLE DYNAMICAL SYSTEMS

Simple mechanical systems are those which can be conceived as simple combinations of the system 

elements.

A spring-mass combination with the mass subjected to a force along the line of the spring and passing 

through the centre of mass of the spring is called a linear spring mass system. If the mass is also subjected to a 

damping force, it is called a damped spring-mass system. The system may be arranged to operate in translation 

or in rotation and the action of forces and moments may be adjusted to comprise a variety of systems, examples 

of which are shown in Figs. 11.7 and 11.8.

We next define the number of degrees of freedom of 

a mechanical system. The number of independent coor-

dinates required to specify the position of a body has 

been defined as the degrees of freedom of the body. For 

constrained motion of a body, the number of constraints 

must be subtracted from six to obtain the degrees of free-

dom. It is, therefore, the possible modes of motion of a 

body which amount to the degrees of freedom. Now, for 

a mechanical system of n interconnected bodies there can 

be a maximum number of 6 n degrees of freedom. The 

actual degrees of freedom which a system enjoys is the 

actual possible modes of motion. In other words, if there 

are c constraints on the system, then

    Degrees of freedom = 6 n − c (11.4)

Mechanical systems may, therefore, possess one, two or more degrees of freedom up to a maximum of 6 n.

It is not the number of masses or the springs or the complexity of appearance which increases the number of 

degrees  it is the modes of motion to which a system can be subjected. For example, all the five simple systems 

Fig. 11.7 Single-degree-of-freedom systems

Spring-mass systems

Damped spring-mass system

k

k

C

k

k

k

I

m1

m2

m

m

O

m

O

Rotational systems

Frictional

contact

Inelastic

cord

I

m

C

m1

O

m21

Elastic

cord

2

k1

1 2

k2

m, I

k

m1

m2

m3

m   I

Fig. 11.8 Multi-degree-of-freedom systems
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shown in Fig. 11.7 are one-degree-of-freedom systems. The mass in the first three spring-mass systems can 

only translate along the length of the spring. The bar in the rotational system can only oscillate about O in 

the plane of the figure. The disc carrying the masses can only oscillate about O, the cord being locked on its 

periphery due to friction; the up-and-down motion of the masses m1 and m2 are uniquely related to the angular 

motion of the disc. One-degree-of-freedom systems are also called simple systems. The systems shown in 

Fig. 11.8 possess more than one-degree-of-freedom each. The first two are two-degrees-of-freedom systems 

whereas the last one has four degrees of freedom.

Systems are sometimes classified as zero order, first order, second order, and so on. The order of a system 

is determined by the order of the differential equation which governs its dynamical behaviour.

Zero-order Systems These are those in which the input and output are related in direct proportion without 

the need for a differential equation. For example, a steadily operating spring balance shows the displacement 

of the pointer in direct proportion of the weight force applied

 F kx x
k

= =or

Another example of a zero-order system is a potentiometer where the output voltage across the terminals 

varies directly with the displacement of the jockey.

First-order Systems These are systems which are described by first-order differential equations in respect 

of their dynamical behaviour. For example, a spring-dashpot system is governed by a first order equation

 = +kx c
dx

dt

and hence it constitutes a first-order system. Another example of a first-order system is a liquid-in-glass 

thermometer where the displacement of the mercury level is related to the temperature surrounding the bulb 

by a first-order differential equation.

Second-order Systems These are likewise characterised by second-order differential equations governing 

their dynamical behaviour. For example, spring-mass systems, undamped and damped , constitute second-

order system governed by the equations

 
m

d x

dt
kx

2

2
0+ =

 
m

d x

dt
c

dx

dt
kx

2

2
0+ + =

for undamped free and damped free vibrations respectively.

 11.3 FEATURES OF VIBRATING SYSTEMS

A motion which repeats itself in e ual intervals of time is called periodic motion. The representation of a 

system undergoing periodic motion is made in terms of its displacement-time plot as shown in Fig. 11.9.

One cycle of a periodic motion consists of the motion of the system from a given state or configuration to the 

same state or configuration after passing through the intermediate states only once. The time period or period t
of a periodic motion is the time interval required to execute one cycle. t is usually expressed in seconds.

Cyclic fre uency, or simply, frequency f is the number of cycles executed per unit time and is, therefore, 

inverse of the period t, i.e.,
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      f =
1

t
 (11.5)

The cyclic frequency is usually expressed in cycles 

per second denoted as Hertz (Hz).

The angular or circular fre uency w is 2p times the 

cyclic frequency; usuallly expressed in rad/s units.

      ω π
π
τ

= =2
2

f  (11.6)

Amplitude of a periodic motion is the maximum 

displacement of the system from its equilibrium

position.

The periodic motion or vibration of a system is caused 

by the application of disturbing forces which create dis-

placements in the elastic elements of the system. By virtue of displacements, the elastic elements develop 

restoring forces which tend to bring the system to its initial state. The restoring motion may occur in such a 

way as to overshoot the initial state, i.e., to pass the initial state with some velocity. The overshooting action 

will be accompanied by displacements in the elastic elements which, by developing restoring forces, tend to 

restore the system to its initial state. The initial state may again be overshot, and so on. In the absence of any 

resisting force, the vibrations thus set will continue to go on but in the presence of resisting forces, vibrations 

may be short-lived.

If a disturbing force is applied just to start the vibration and is then removed from the system leaving it 

to vibrate by itself, the system is said to undergo free vibrations. On the other hand, if the disturbing force 

continues to act at periodic intervals on the system, the system is said to undergo forced vibrations.

It is essential that a system possesses one or more elastic elements before it can vibrate. Resisting forces 

may act or may be developed by virtue of vibrations to oppose the elastic forces. The vibrations are then said 

to be damped. The presence of resisting forces in free vibrations makes them damped-free vibrations and in 

forced vibrations makes them damped-forced vibrations.

Free and forced vibrations, damped or undamped, constitute periodic motion. There are, however, some 

more terms generally used for vibrating systems.

The frequency of a system undergoing free vibrations damped or undamped, is called natural fre uency

and is denoted by wn. Free vibrations are also called transient vibrations because of their disappearance with 

time. On the other hand, steady-state vibrations are those which continue to repeat themselves with time. 

Forced vibrations are examples of steady-state vibrations.

A concept very frequently referred to in the study of periodic motion is simple harmonic motion. The 

simple harmonic motion of a particle is such that its acceleration is directed towards the equilibrium position 

and is proportional to the displacement from that position. It will be observed in the course of analysis that the 

periodic motion in the absence of external driving forces and resisting forces corresponds to simple harmonic 

motion. In other words, free undamped vibrations constitute simple harmonic motion.

A case of special interest is a simple harmonic motion. A particle P is said to execute a simple harmonic 

motion about a point O if its rectilinear displacement from O on either side of it is represented by the projection 

of a point p moving on the periphery of a circle with O as centre as shown in Fig. 11.10.

If the point p rotates about the centre O at a constant angular velocity w and the time is referred from t = 0 at 

an extremity E1 on the x-axis, the angular location of the point after time t is given by

q = w t

and the radial distance from O remains x0, the radius of the circle.

D
is

p
la

ce
m

en
t Amplitude

O

x or q

Equilibrium

position
Time

t

Duration of

one cycle

Time period

Fig. 11.9 Periodic motion—nomenclature
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The projection of Op on the line of motion of the 

particle is the displacement of the particle at any 

instant

x = x0 cos q = x0 cos w t 

Differentiating it with respect to time t,

dx

dt
V x t= = − 0ω ωsin

= − − = − −ω ω ωx x t x x0
2

0
2 2

0
2 2cos

and differentiating with respect to t again,

d x

dt

dV

dt
a x t x

2

2 0
2 2= = = − −ω ω ωcos

Some conclusions from these relations for the  

simple harmonic motion are listed as follows:

 1. A simple harmonic motion of a particle is a 

rectilinear motion; the displacement, velocity 

and acceleration all being along the same line.

 2. The displacement from a central point O is 

represented by the projection of a point moving 

on the periphery of a circle with centre O.

 3. The velocity of the particle varies sinusoidally, 

it being (i) a maximum of x0w in magnitude at 

q = p /2 and 3p /2 or x = 0, i.e., at the centre point 

O and (ii) a minimum of 0 in magnitude at q = 0 

and p or x = +x0 and −x0, i.e., at the extremities.

 4. The acceleration of the particle varies directly 

with its displacement x from the centre point 

O, it being (i) directed towards the centre point 

O, (ii) a maximum of x0w
2 in magnitude at 

x = + x0, and −x0 i.e., at the extremities, and 

(iii) a minimum 0 in magnitude at x = 0, i.e., at 

the centre point O.

In other words, the particle passes through 

the centre point O with a maximum veloc-

ity x0w and zero acceleration. While passing 

through the  extremities, the particle deceler-

ates to zero velocity and accelerates from zero 

velocity with the maximum acceleration x0w
2.

 5. The amplitude of motion of the particle is the maximum displacement, i.e., x0, from the centre point 

to either of the extremities.

 6. The period of oscillation is the time the particle takes to complete one cycle. This is the time the point 

p takes to complete one revolution, i.e., angle 2p at an angular velocity of w,

 
τ

π
ω

=
2

p

P

x-axis

O
E2

E1

x0

w

q = wt

x

Amplitude

Maximum velocity,

zero acceleration

at O

Centre

Zero velocity,

max. acceleration

at E2

Zero velocity,

max. acceleration

at E1

a

V

Vmax
V

x

x

Variation of velocity

amax

amax

a

x0

Variation of acceleration

Fig. 11.10 Features of simple harmonic motion
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 7. The frequency of oscillation is the number of cycles per unit time described by the particle,

 
f = =

1

2τ
ω
π

Example 11.1 A point moves with a simple harmonic motion such that it has a velocity of 9 m/s when it 

is at a distance of 2 m from the centre and a velocity of 4 m/s when it is at a distance of 3 m from the centre of 

the same side for the point moving in the same direction. Calculate

(a) the amplitude of the motion

(b) the time period of the motion

(c) the time interval between the two positions

(d) the acceleration of the point at these positions, and

(e) the greatest acceleration.

x

x0

x2

t1

V2

a2

t2
V1

t = 0

V = 0

a1

x1

Fig. Ex.11.1 (Solution)

Solution For the simple harmonic motion of a point,

 x = x0 cos w t (i)

 V x x= − −ω 0
2 2

 (ii)

and a = −xw2 (iii)

 (a) For the data, from Eq. (ii),

 9 4 4 90
2

0
2= − − = − −ω ωx xand

whence, x0 =  3.2 m and w = 3.6 rad/s 

 The amplitude of motion of the point is 3.2 m.

 (b) The time period is given by

 
T = = =

2 2

3 6
1 75

π
ω

π
.

. s

 (c) Assuming that t = 0 at x = x0, times t1 and t2 for positions x1 and x2 are given by 

 3 = 3.2 cos 3.6 t1; t1 = 0.099 s

 2 = 3.2 cos 3.6 t2; t2 = 0.249 s

and the time interval is

 t2 − t1 = 0.249 − 0.099 = 0.15 s

 (d) From Eq. (iii), the accelerations are

 a1 = −3 × 3.62 = −38.88 m/s2

 a2 = −2 × 3.62 = −25.92 m/s2

 (e) The maximum acceleration must be

 amax = −x0w
2

 = −3.2 × 3.62 = −41.47 m/s2

at the right extremity and the same in magnitude but opposite in direction at the left extremity.
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 11.4 LINEAR FREE VIBRATIONS

A system of a single mass constrained to move along the axis of a horizontal spring attached to it, the other end 

of which is fixed, undergoes free vibrations. The equilibrium position of the mass shown in Fig 11.11(a) cor-

responds to the unstretched length of the spring, which is also the reference position for the periodic motion.

(b) Free-body diagram of the mass

m
C

= k x
x

Reference

0

Equilibrium

position

m

xLength of

unstretched

spring

(a) Spring-mass system

Frictionless

Fig. 11.11 Simple spring-mass system

At an instant when the mass is displaced by x, the restoring force acting on it is

 F = −k x

The equation of motion in accordance with the Newton’s law is

 F = ma

or − =kx m
d x

dt

2

2
 

or
d x

dt

k

m
x

2

2
0+ =  

The most general solution of this second-order linear differential equation is

 x = A sin wn t + B cos wn t

whence, by differentiating with respect to time t,

 

dx

dt
A t B tn n n n= −ω ω ω ωcos sin

 

d x

dt
A t B t xn n n n n

2

2

2 2 2= − − = −ω ω ω ω ωsin cos

Substituting these values in the equation of motion,

 − + =ωn x
k

m
x2 0

whence,

 Angular frequency,  ωn

k

m
= ,

 

 Cyclic frequency, f
k

m

n= =
ω

π π2

1

2
and

 

 Time period, τ π= =
1

2
f

m

k  
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It can be observed that the mass is set into vibrations by applying an initial force of k x0, say towards right, 

to bring the mass at rest at a distance x0 from the equilibrium position. If the time there is reckoned at t = 0, 

then from the general solution

 x = A sin wn t + B cos wn t

the initial condition

 t = 0  at      x = x0

gives A = 0  and  B = x0

rendering the solution as

 x = x0 cos wnt

The maximum displacement xmax corresponds to cos wn t = 1, i.e., at the extremities of the periodic motion

  xmax = x0

The maximum velocity vmax corresponds to sin wn t = 1, i.e., at the instant when the system passes through 

the mean position.

  vmax  = x0 wn

It follows that

 
ωn

v

x
= max

max

The velocity of the mass at any instant is

 v
dx

dt
x t x

k

m
tn n n= = − = −0 0ω ω ωsin sin

In particular, the velocity of the mass at the instant when it passes through the equilibrium position is 

obtained by substituting

 tE = t/4,   3t/4,   5t/4, ...

Since
τ

π
ω

=
2

n

,  

 tE

n n n

=
π
ω

π
ω

π
ω2

3

2

5

2
, ,...

 v x
k

m
x

k

m
E n

n

1 0 0
2

= −
⎛

⎝⎜
⎞

⎠⎟
= −sin ω

π
ω

 v x
k

m
x

k

m
E n

n

2 0 0

3

2
= − ⋅

⎛

⎝⎜
⎞

⎠⎟
=sin ω

π
ω

 v x
k

m
E3 0= − ,

and so on as the mass passes through the same position successively.

The value of the maximum velocity can as well be determined by using the principle of conservation of 

mechanical energy, i.e.,

 PE + KE = Const.

The potential energy PE stored by the spring at t = 0 is

 
PE kx1 0

21

2
=

when the kinetic energy KE1 = 0 for the mass, it being at rest. The kinetic energy of the mass when it passes 

through the equilibrium position is
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KE m vE2

21

2
=

when the potential energy PE2 = 0 for the spring, it being the zero-stretch position.

By the conservation principle,

 PE1 + KE1 = PE2 + KE2

 

1

2

1

2
0
2 2kx m vE=

whence v x
k

m
E = 0

 
From the knowledge of the maximum velocity and maximum displacement of the system, the frequency 

and time period can also be estimated

 
ωn

v

x

x k m

x

k

m
= = =max

max

/0

0

 
τ

π
ω

π= =
2

2
n

m

k

 
f

k

m
= =

1 1

2τ π
It is interesting to observe the periodic motion graphically. This is shown in Fig. 11.11(c). The mass is 

released at t = 0 from a position x = x0 from a state of rest. The mass passes through the equilibrium positions 

E1, E2, E3, etc., when x = 0 and its velocity is maximum at these positions.

x,

x = x0 cos wnt

sin wntvE2
= x0

E1 E2
E3 Time t

P

P

t = 0

V

V

(c) Displacement and velocity vs time

v = − x0

x x0

t = 2p

x0
m
k

k
m

m
k

Fig. 11.11 Simple spring-mass system

The case of free vibrations of a mass attached to a vertical spring fixed at the upper end is similar to the 

horizontal spring-mass system just considered. A reference to Fig. 11.12 shows that the equilibrium position 

of the spring-mass system in this case does not correspond to the unstretched state of the spring but to the 

spring stretched by the static deflection

 
δ =

W

k
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At the equilibrium position, the weight W of the 

mass acting downward balances the tension T devel-

oped in the spring

 W = mg = T = kd

For a displacement x from the equilibrium position, 

the restoring force acting on the mass equals

 F = −k (d + x) + W

  = −k (d + x) + kd

  = −k x

which is precisely the same as that seen for a 

horizontal spring-mass system. The procedure to 

obtain and solve the equation of motion is therefore 

identical to that case. The reference position, i.e., the 

mean position of the oscillations is the equilibrium 

position corresponding to the static deflection d.

It may also be seen that in this case

 
δ = =

W

k

mg

k

or
k

m

g
=

δ
The results are reproduced for ready reference:

  Angular frequency, ω
δn

k

m

g
= =  (11.8)

  Cyclic frequency, f
k

m

g
= =

1

2

1

2π π δ
 (11.9)

  Time period ,  τ π π
δ

= =2 2
m

k g
 (11.10)

  Velocity of the mass, v x
k

m
t x tn n n= − = −0 0sin sinω ω ω  (11.11)

The maximum velocity is v x
k

m
xE n= =0 0ω

 

at the equilibrium position, directed alternatively upwards and downwards.

Acceleration of the mass a xn= −ω 2  (11.12)

Maximum acceleration a xnmax = −ω 2
0

at the extremity and directed towards the equilibrium position.

k

t

Unstretched

position

Mass m

Highest

position

x = −

Equilibrium

position

with the weight

Position at

any time

during motion

Lowest position

x = 

C

x

O

Deflection due

to weight d

Fig. 11.12 Simple vertical spring-mass system
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Example 11.2 A small motor of mass 20 kg is symmetrically mounted on four equal springs, each 

with a spring constant of 25 N/cm. Estimate the frequency and period of vibration of the motor.

Solution The four springs arranged ‘in parallel’ may be considered equivalent to a single spring located in 

line with the centre of mass of the motor with

 k = 4 × 25 = 100 N/cm = 10,000 N/m

Cyclic frequency f
k

m
= =

1

2

1

2

10 000

20π π
,  

 = 3.56 Hz

Time period τ = =
1

0 28
f

. s

Example 11.3 A vertical U-tube manometer contains a liquid 

of mass density r as shown in Fig. Ex. 11.3. A sudden increase of 

pressure on one column forces the level of the liquid down. When 

the pressure is released, the liquid colums start vibrating. Neglecting 

the frictional damping, determine the period of vibration. Comment 

if the period is affected by changing the liquid, diameter of the tube 

or length l of the liquid column.

d

Equilibrium Position
x

x

l

Fig. Ex. 11.3

Solution The equilibrium position of the liquid columns is when these are in level. At any instant during 

vibration, one column rises by a distance x while the other falls by the same distance. The restoring force, 

therefore, equals the weight of a liquid column 2x high.

F = − 2xp (d 2/4) rg

 This must equal the product of the mass of the total length of the liquid column in motion and the 

acceleration,

 
− ⋅ =2 4 42 2

2

2
x d g l d

d x

dt
π ρ π ρ( / ) ( / )

which, on simplification, yields the equation of motion

 

d x

dt

g

l
x

2

2

2
0+ =
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 The general solution of this equation is

 x = A cos wnt + B sin wnt

whence 
d x

dt
A t B t xn n n n

2

2

2 2= − + = −ω ω ω ω( cos sin )
 

and substituting it in the differential equation provides

 
ωn

g

l
=

2

 
f

g

l
=

1

2

2

π

  
τ π= 2

2

l

g

 The period is unaffected by the density of the liquid and the diameter of the tube. The total length of the 

liquid column, however, does effect the period of vibration.

 For a typical vertical manometer with a total column 0.5 m long,

 
τ π= ×

×
=2

0 5

2 9 81
1

.

.
s

which implies that the manometer is capable of oscillating visibly at 1 cycle per second in the absence of 

damping effects which may arise from fluid friction between the liquid and the tube material.

 Another interesting observation is that if the plane of the manometer is set at an angle q to the horizontal, 

as is the case for low pressure-difference measurement, the restoring force becomes sin q times the above 

value and the period of vibration becomes

 
τ π

θ
= 2

2

l

g sin

which shows that the time period increases or the frequency decreases; again neglecting any damping forces.

 EXPERIMENT E13 OSCILLATION OF A SIMPLE PENDULUM

OBJECTIVE TO DETERMINE THE TIME PERIOD OF A SIMPLE PENDULUM AND TO ESTIMATE 

THE VALUE OF G, THE ACCELERATION DUE TO GRAVITY.

Apparatus A simple pendulum consisting of a string and a bob, a metre rod and a stop watch.

Background Information A simple pendulum consists of a small but heavy bob with a smooth surface sus-

pended by means of a long inextensible light string from a fixed support. Theoretically, it is a point mass m

suspended by means of a massless string of constant length l. When displaced from its mean position by an 

angle q, as shown in Fig. E13.1, the bob is subjected to a restoring force mg sin q which, for small displace-

ment q may be taken as mg q. The equation of motion for the bob is then,

       
d

dt

g

l

2

2
0

θ
θ+ =  (E13.1)
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whence, the time period t may be obtained as

τ π= 2
l

g
 (E13.2)

and

g l=
4 2

2

π
τ

 (E13.3)

Observations and Calculations The time period may be 

obtained by observing the time for a number of oscillations, 

say 20. The observation may be repeated 5 to 10 times for 

the same length of string. If possible, the experiment may be 

repeated for a different length of string.

S. No. l (m) Time for 20 oscillations t (s) g (m/s2)

The average value of g for the observations is the best 

 estimate of g.

Result and Points for Discussion

Compare the value of g obtained by you with the standard value

g = 9.80665

and comment on the difference. Note that the difference is due to the latitude l and height h above the sea 

level as well as the experimental errors. Count the sources of error.

Would an improved value of g be obtained if only

(a) the length of the pendulum were increased?

(b) the mass of the bob were increased?

(c) the volume of the bob were decreased?

(d) the surface finish of the bob were improved?

(e) the simple pendulum were enclosed in a vacuum chamber?

(f ) the amplitude of oscillations is increased?

Is it necessary that the oscillations should be in one and the same vertical plane?

What would be the effect of the earth’s spinning about its own axis on the motion of the simple pendulum 

over a prolonged period of time?

Compare the accuracy of this method of determining g with other methods known to you.

If a simple pendulum is taken to a location as far away from the surface of the earth as its radius, what 

would be the time period in relation to the time period at the surface of the earth?

O

q

h = l (1 − cos q)

E

P
mg sin q

mg

mg cos q

q

l

Fig. E13.1 Analysis of a simple pendulum
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 EXPERIMENT E14 MULTIPLE ELASTIC IMPACTS

OBJECTIVE TO UNDERSTAND THE IMPLICATIONS OF THE SIMULTANEOUS CONSERVATION OF 

MOMENTUM AND ENERGY IN MULTIPLE ELASTIC IMPACTS.

Apparatus A row of identical simple pendulums with steel bobs hanging in close contact with each other.

Background Information The momentum of a system of bodies is conserved if no external force acts upon 

them. The mechanical energy of a system of bodies is conserved if the motion or interaction of the bodies takes 

place in a conservative force field. Simultaneous conservation of momentum and mecahnical energy may also 

take place. For example, if a number of balls, touching each other, and are struck by one or more balls directly 

and centrally, the motion is governed by the conservation of momentum and energy simultaneously. Assuming 

that the mass of each ball is m, let us analyse the effect of one or more balls striking the row of balls.

Before the impact After the impact

Hitting with three balls

Hitting with two balls

Hitting with one ball

Fig. E14.1 Playing with simple pendulums
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If the bob of a pendulum at one end is released from a small angle, its bob would move with a velocity v

as it approaches the next bob. The momentum possessed by the first bob was mv and the mechanical energy 

was 1/2 mv2. The number of balls that would be displaced, after multiple elastic impacts, would be such that 

the laws of conservation of momentum and energy are obeyed simultaneously.

If n balls moved out with velocities (v1, v2, v3, .......vn) respectively, then

 v = v1 + v2 + v3 + ……… + vn

and

 v v v v vn
2

1
2

2
2

3
2 2= + + +�

These equations cannot be satisfied unless n equals 1, in which case v = v1. The conclusion is that only the 

last one ball may move out with the same velocity with which the striking ball approached them. Only one 

pendulum will swing out. If two pendulums are released, causing two balls to approach with a velocity v each, 

the initial momentum of the system would be 2 mv and the initial energy mv2. It will be discovered that, in 

this case, two end balls would move out, each with velocity v after the series of impacts. Supposing only one 

ball were to move out at velocity v1, then

 2mv = mv1; v1 = 2v

and mv mv v v2
1
2

1
2 21

2
2= =;

which is an inconsistent set of equations.

Similarly if three pendulums are released, then three pendulums would swing out!

Points for Discussion

When a ball rolls without slip on another surface, energy is conserved. Explain why and how?

Is the momentum conserved for every ball, taken one at a time, in the system? Recognise the balls for 

which momentum is conserved separately and for which it is not conserved separately. Is the energy con-

served separately for each ball?

Would the pendulums keep on oscillating indefinitely?

Suggest some other experiment where you can gain visual experience on the conservation of momentum 

and energy, separately and simultaneously?

Example 11.4 A simple pendulum swings 5 oscillations in the same time as another 0.48 m longer 

swings 3 oscillations. Determine their lengths.

Solution Let the length of the first pendulum be l metres; the length of the second must be (l + 0.48) 

metres.

 In time T, the former swings 5 oscillations, its time period must be T/5.

 Therefore, T
l

g
/5 2= π  

 Similarly, T
l

g
/

( . )
3 2

0 48
=

+
π  
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 From these two equations,

 9

25 0 48
=

+
l

l .

whence l = 0.27 m

 The length of the second pendulum is 0.27 + 0.48 = 0.75 m.

Example 11.5 A spring of stiffness 7 N/m 

is cut into two halves and fixed to a block of mass m 

which is constrained to vibrate between two fixed 

end points. If it is observed to vibrate at 3 Hz, 

determine its mass. (Refer Fig. Ex. 11.5.)

Solution When the spring is cut into two halves, the stiffness of each half is doubled, i.e., it becomes

14 N/m. Now, two such springs are used to constrain the vibration of the mass, the effective spring stiffness 

is further doubled, i.e., 28 N/m.

 Using the expression,

 t
m

k
= 2π

or
1

3
2

28
= π

m

whence m = 0.079 kg = 79 grams

m

Fig. Ex. 11.5

Example 11.6 A spring-pan system consists of a spring of stiffness k and pan 

of mass M as shown in Fig. Ex. 11.6. If a mass of 1.5 kg is placed in the pan, it 

vibrates with a time period of 2.4 s; if a mass of 2 kg is placed, it vibrates with a time 

period of 2.6 s. Determine the values of k and M.

M

k

Fig. Ex. 11.6
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Solution From the fact that

 t
m

k
= 2π

  t
M

k
1 2

1 5
2 4=

+
=π

.
.

and t
M

k
2 2

2
2 6=

+
=π .  

 Solving the two equations,

 M = 1.38 kg and k = 19.7 N/m

Example 11.7 A weightless bar is supported by two springs from 

above and carries a mass m suspended from a spring from its centre as 

shown in Fig. Ex. 11.7. Calculate the natural undamped frequency of the 

mass. k1

k3

3
m

O
1 2

k2

Fig. Ex. 11.7

Solution In the equilibrium position, the stretch of each spring is:

 Spring 3:  δ3

3

=
mg

k

Spring 2:       δ2

22
=

mg

k

Spring 1:    δ1

12
=

mg

k

since the load is equally shared by springs 1 and 2 but acts wholly on spring 3.

 The displacement d of the mass in the equilibrium position is

 
δ

δ δ
δ=

+
+1 2

3
2

as can be visualised from the given configuration.
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δ = +

⎛

⎝⎜
⎞

⎠⎟
+

1

2 2 21 2 3

mg

k

mg

k

mg

k

 
=

+ +⎛

⎝⎜
⎞

⎠⎟
mg

k k k k k k

k k k

4

4

1 2 1 3 2 3

1 2 3

 Employing the expression

 
f

g
=

1

2π δ

the frequency f
k k k

m k k k k k k
=

+ +
1

2

4

4

1 2 3

1 2 1 3 2 3π ( )
 (i)

It has been intrinsically assumed that the mode of vibration in unequal stretching of the upper two 

supporting springs is so as to share the load equally by inclining the weightless bar.

 If, instead, the bar was assumed to stay horizontal all the time, the stretch of the two supporting springs 

1 and 2 would be equal irrespective of the proportion of sharing the load. The frequency would then be 

determined as follows:

 The equivalent spring constant for the upper two supporting springs is

(k1 + k2)

and the equivalent k for all the three springs is given by

1 1 1

1 2 3k k k k
=

+
+

( )

whence k
k k k k

k k k
=

+
+ +

1 3 2 3

1 2 3

and the natural frequency

 f
k

m
=

1

2π

=
+

+ +
1

2

1 3 2 3

1 2 3π
k k k k

m k k k( )
 (ii)

Are the two answers (i) and (ii) very different? Not really, unless the load sharing is far from equal. One 

may like to try to find the result for assumed value of k1 = 20, k2 = 25 and k3 = 40 N/cm. The answer is the 

same within working accuracy. But if k1 and k2 are widely different, the answers are incomparable; solution 

(i) is more realistic.

 11.5 ANGULAR FREE VIBRATIONS

Angular periodic motion of a system can be analysed by considering an arbitrary angular displacement from 

its equilibrium position and by writing its equations of motion governed by (a) Newton’s law, F = ma and 

(b) Euler’s equation M = Ia.
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Table 11.1 Analogy between rectilinear and rotational system

Item
Rectilinear System Rotational System

Symbol nit Symbol nit

Time t s t s

Displacement x m q rad

Velocity v  dx/dt m/s w  dq/dt rad/s

Acceleration a  d 2x/dt2 m/s2 a  d 2q/dt 2 rad/s2

Inertia m kg I kg m2

Effort   m d 2x/dt 2  ma N   Ia N m

Momentum m v N s Iw N m s

Impulse dt∫ N s T dt∫ N m s

Kinetic energy KE mv=
1

2

2
J KE I=

1

2

2ω J

Potential energy PE kx=
1

2

2
J PE k=

1

2

2θ J

Work dx∫ J dθ∫ J

Spring constant k N/m K N m/rad

Damping coefficient c N s/m C N m s/rad

Damping factor ζ = =
c

C

c

kmc

1

2 — ζ =
C

Cc

=
1

2

C

KI
—

Angular natural

  frequency ωn k m= / rad/s ωn K I= / rad/s

Natural frequency fn n= ω π/2 fn n= ω π/2

=
1

2π
k

m
Hz =

1

2π
k

I
Hz

It may well be that in some cases only the Newton’s law or the Euler’s equation provides the equation of 

motion and can be solved to provide the frequency and time period. A summary of the salient results for 

rectilinear and rotational systems is given in Table 11.1.

Examples of angular periodic motions are a variety of pendulum motions which are discussed separately. 

Some examples in respect of spring-mass-inertia oscillatory systems are given as follows:
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Example 11.8 A spring-mass system shown in Fig. Ex. 11.8 is 

capable of vibrating in the vertical plane of the figure. Determine its 

natural frequency.

k

m

O

q

d

l /2

q

Fig. Ex. 11.8

Solution Consider a position of the vertical link displaced by an angle q as shown. The restoring forces act 

at the location of the mass as well as at the junction of the spring. The restoring moment about O is

 M = −(mg sin q l + kd l/2)

 = −(mglq + k l/2q l/2)

 = −(mglq + kl2q/4)

 According to the Euler’s law,

 M = Ia

or − + =( / )mgl kl ml
d

dt
θ θ

θ2 2
2

2
4

 

whence, d

dt

g

l

k

m

2

2 4
0

θ
θ+ +⎛

⎝⎜
⎞
⎠⎟

=
 

 The general solution of the equation of motion is 

 q = A sin wnt + B cos wnt

 Substituting for 
d

dt
n

2

2

2θ
ω θ= −  in the equation of motion

 − + +⎛
⎝⎜

⎞
⎠⎟

=ω θ θn

g

l

k

m

2

4
0

whence, 
ωn

g

l

k

m
= +⎛

⎝⎜
⎞
⎠⎟4  

and the cyclic frequency

 
f

g

l

k

m

n= = +⎛
⎝⎜

⎞
⎠⎟

ω
π π2

1

2 4
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Example 11.9 A cylinder of radius r and mass 

m rests on a curved path of radius R as shown in 

Fig. Ex. 11.9. Show that the cylinder can oscillate 

about the bottom position when displaced and left 

to itself. Find the period of oscillation. Assume 

that the cylinder rolls without slipping.

S

C ′

C
mg

O

q

qf

R

Fig. Ex. 11.9

Solution The cylinder, when displaced by a small angle θ, as shown, is acted upon by a restoring moment

 M = −mg sin q r = −mg r q

about an axis through the point of contact O with the curved path. This moment tends to roll the cylinder 

back to its equilibrium position at the bottom position. The presence of an equilibrium position and a 

restoring action to that position warrant oscillations.

The angular acceleration of the cylinder in roll is

 
α

φ
=

d

dt

2

2

where f is the angle of rotation of the cylinder about its axis of symmetry.

 It can be observed that

 rf = (R − r) q

or φ θ=
−R r

r
 

 Consequently

 
α

φ θ
= =

−d

dt

R r

r

d

dt

2

2

2

2

 The moment of inertia I about an axis through the point of contact is

 I = mr2/2 + mr2 = 3/2 mr2

 By the Euler’s law,

 M = Iα

 
mgr mr

R r

r

d

dt
− = ⋅

−
θ

θ
3 2 2

2

2
/
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or
d

dt

g

R r

2

2 3 2
0

θ
θ+

−
=

/ ( )
 

whence, ωn

g

R r
=

−3 2/ ( )

and the period of oscillation

 
τ π π=

−
=

−
2

3 2 6/ ( ) ( )R r

g

R r

g

Example 11.10 A system capable of undergoing angular periodic motion is shown in Fig. Ex. 11.10. 

Calculate its natural frequency.
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mg

a = ra

I

l

r

Fig. Ex. 11.10

Solution In the equilibrium position, the spring is stretched by

d = lq0

such that

k d l = mgr

or k l2 q0 = mgr (i)

In a slightly displaced position at any time t, the equations of motion, due to Newton and Euler, for the 

mass and the cylinder respectively are

mg − T = ma = mra (ii)

Tr − kl (q0 + q)l = Ia (iii)
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 Substituting the value of T from Eq. (ii) into Eq. (iii),

 m(g − ra) ⋅ r − kl2q0 − kl2q = Ia

 Employing Eq. (i) and rearranging,

 (I + mr2) a + kl2q = 0

or ( )I mr
d

dt
kl+ + =2

2

2

2 0
θ

θ

or
d

dt

kl

I mr

2

2

2

2
0

θ
θ+

+
=

from which the cyclic frequency f is obtained as

 
f

kl

I mr
=

+
1

2

2

2π

Example 11.11 A uniform horizontal plank is 

resting symmetrically on two counter rotating drums, 

i.e., with equal and opposite angular velocities 

as shown in Fig. Ex. 11.11. Show that the plank 

performs simple harmonic motion, if displaced 

slightly from the equilibrium position. Find the 

distance between the drums for it to be equivalent to 

a seconds pendulum. Assume that the coefficient of 

friction m between the plank and the drums is 0.8.

2l

R1

mR1

l + x l − x

mg

mR2

R2

Fig. Ex. 11.11

Solution Consider the free-body diagram of the plank in a slightly displaced position, as shown.

 R1 + R2 = mg (i)

and mR1 − mR2 = ma (ii)

Taking moments about the left support

 
R l mg l x R

mg

l
x2 22

2
1× = + = +( ); ( )

 Similarly, R
mg

l
x1

2
1= −( )

 Hence, from (ii),

 

μ mg

l
x x ma

2
1 1( )− − − =

whence, a
gx

l
k x= − = −

μ

which shows that the acceleration varies directly with the displacement and it is directed towards the mean 

position. The motion is, therefore, simple harmonic.
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 Time period T
m

k

l

g
= =2 2π π

μ
 For a seconds pendulum T = 2 seconds,

 Hence, 2
0 8 9 81

2 0 8π
l

l
. .

; .
×

= = m  

Distance between the drums = 2 l = 1.6 m.

 11.6 PENDULUM MOTIONS

A pendulum is used to generate harmonic motion of a desired frequency. There are three different types of 

pendulums commonly used in engineering. These are illustrated in Fig. 11.12.

The simple pendulum consists of a concentrated mass m at end of an inextensible string, of negligible 

mass, the upper end of which is tied to a rigid support as shown in Fig. 11.13(a). The initial disturbance is 

given by displacing the bob through a small angle q and then releasing it to perform a periodic motion.

The compound pendulum consists of a rigid body that oscillates about a horizontal axis through the body 

at some point other than the centre of mass as shown Fig. 11.13(b). The moment of inertia of the entire rigid 

body comes into play to establish the frequency of the periodic motion.

The torsional pendulum consists of a rigid body suspended by a vertical elastic shaft which when twisted 

develops a restoring moment as shown in Fig. 11.13(c). The rigid body is generally a horizontal circular disc 

or a spherical bob.

Supported on

horizontal axis

Small angle

Centre of

mass

C

Rigid body

(b) Compound pendulum

Rigid support; point suspension

E

Small angle

(  6°)

Inextensible

string

Position under equilibrium

Point

mass

Fixed end

Elastic

shaft

Rigid

body

Small

angle

(c) Torsional pendulum(a) Simple pendulum

Fig. 11.13 Types of pendulums 

There are other pendulums, such as the conical pendulum, ‘Foucault’s pendulum’, double and multiple-

bob pendulums.

(a) Simple Pendulum

A simple pendulum, consisting of a massless and inextensible string of length l supporting a bob of concen-

trated mass m Fig. 11.14, generates a free harmonic motion under the action of the following factors:

1. The initial disturbing force is applied by hand to bring it to one of its extreme positions and then it is 

‘let go’.
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 2. The restoring force is the component of the 

gravitational force of the bob, i.e., its weight 

along the motion of the bob.

 3. When the initial disturbing force is removed, 

the restoring force is a function of the angular 

location of the bob; maximum at the extrem-

ities and zero at the equilibrium position.

The restoring force F is given by

mg sin q ≈ mgq

for small q (<6 ) directed towards the equilibrium 

position. Since the positive direction is denoted away 

from the equilibrium position,

 F ≈ -mgq

According to the Newton’s law of motion,

 F = ma

− = =mg m l ml
d

dt
θ α

θ
( )

2

2

Cancelling the mass m from both sides and rearranging,

d

dt

g

l

2

2
0

θ
θ+ =  (11.13)

This is the equation of motion of the simple pendulum.

The e uation of motion for a simple pendulum may as well be set up with reference to the Euler’s e uation

 M = Ia

The restoring moment about the origin O is

 M = -mg sin q l

 = -mgq
for small q.

Since the moment of inertia of the mass m about the same origin O is

 I = ml2

and the angular acceleration is

 
α

θ
=

d

dt

2

2

the equation of motion becomes

 
− =mg l ml

d

dt
θ

θ2
2

2

which, on rearranging gives

d

dt

g

l

2

2
0

θ
θ+ = =  (11.13a)

The e uation of motion can alternatively be obtained by employing the principle of conservation of energy:

At any instant, the height of the bob above the equilibrium position is given by

h = l(1 - cos q)

O

q

q +ve

+ve
=

mg sin q

= mg cos q

mg cos q

q

P P

mg mg

h = l(1 - cos q)

E

l

Fig. 11.14 Analysis of a simple pendulum



 Vibrations of Simple Mechanical Systems 625

and the potential energy stored in the bob is

 mgh = mgl (1 - cos q)

The velocity of the bob is given by

 
v l

d

dt
=

θ

and the kinetic energy possessed by the bob is

 

1

2

1

2

2 2

2

mv ml
d

dt
= ⎛

⎝⎜
⎞
⎠⎟

θ

By the principle of conservation of energy,

 
mgh mv+ =

1

2

2 Constant

or mgl ml
d

dt
( cos )1

1

2

2

2

− + ⎛
⎝⎜

⎞
⎠⎟

=θ
θ

Constant  

Differentiating each term with respect to t and simplifying it,

d

dt

g

l

2

2
0

θ
θ+ =  (11.13b)

which is the equation of motion.

This is a linear differential equation of the second order. Its solution is

 q = A sin wnt + B cos wnt (11.14)

whence, 
d

dt
A t B tn n n n

θ
ω ω ω ω= −cos sin  

and
d

dt
A t B tn u n n

2

2

2 2θ
ω ω ω ω= − −sin cos  

 = − + = −ω ω ω ω θn n n nA t B t2 2( sin cos )

Substituting the values of q and 
d

dt

2

2

θ
 in the differential equation,

 
− + =ω θ θn

g

l

2 0;

whence, ωn

g

l
=  (11.15)

The frequency of the harmonic motion is

 f
g

l

n= =
ω

π π2

1

2
 (11.16)

and the time period is

 τ π= =
1

2
f

l

g
 (11.17)
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Some of the salient features of the periodic motion of a simple pendulum are:

 1. The motion is along a plane arc of a circle as long as g is constant and the effects of spinning of the 

earth about its own axis as also of the rotation of the earth around the sun are negligible.

 2. The velocity of the bob varies as

 
v l

d

dt
l A t B tn n n n= = −

θ
ω ω ω ω( cos sin )

   It is the maximum at the equilibrium position, t = 0

v l A lA
g

l
A l gnmax = = =ω

  and zero at the extremities.

 3. The acceleration of the bob varies as

 
a l

d

dt
l n= = −

2

2

2θ
ω θ

   It is zero at the equilibrium position, q = 0 and increases with q but it is always directed towards the 

equilibrium position. At the extreme positions, where the velocity is zero the acceleration is maximum 

and at the equilibrium positions, where the velocity is maximum, the acceleration is zero.

 4. The restoring force F acting on the bob equals mg sin q which, for small q, is

 F ≈ mgq

  implying that F varies linearly with q. This fact can be appreciated with reference to Fig. 11.15 where 

the variation of the restoring force is shown as a function of q.

 5. The frequency and time period of the motion are 

independent of the mass of the bob. The tension 

in the string is obviously proportional to the mass 

of the bob.

 6. The frequency and time period are independent of 

the amplitude q of motion. Their dependence upon 

the length of the string l and the acceleration due to 

gravity g is employed to determine the value of g.

7.  If there were no resisting forces, the periodic 

motion would go on for ever but, in practice, there 

are resisting forces such as aerodynamic force on the bob which damp the motion to bring it to rest 

eventually.

8.  The surface of the earth has been considered to provide an inertial frame. This is, however, untrue because 

the earth is spinning about its own axis. If the spinning of the earth is taken into account, the plane of oscil-

lations of the pendulum precesses with time. Such precessional motion is ignored for a simple pendulum.

F

O−p/2 q (+ve) +p/2q (−ve)

Small
q

Fig. 11.15 Variation of the restoring force 

Example 11.12 Determine the following parameters for a simple pendulum at the mean surface of the 

earth:

(a) length of a 1-second pendulum

(b) period of a 1-metre pendulum.

 If these pendulums are taken to the mean surface of the moon where g = 1.67 m/s2, determine the 

corresponding periods.
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Solution The value of g at the mean surface of the earth is 9.81 m/s2. Employing the relation,

 
τ π= 2

l

g

(a) For a 1-second pendulum,

l = × =
1

4
9 81 0 284

2π
. . m

(b) For a 1-metre pendulum,

 
τ π= =2

1

9 81
2 01

.
. s

 At the surface of the moon where g = 1.67 m/s2, the time periods of the two pendulums are

 
τ πi = =2

0 248

1 67
2 42

.

.
. s

 
τ πii = =2

1

1 67
4 86

.
. s

 The time period on the moon is indeed in the ratio of

 

g

g

earth

moon

= 2 42.

(b) Compound Pendulum

A compound pendulum supported about a horizontal axis at a distance r above the centre of mass C, oscillat-

ing to produce a periodic motion, is shown in Fig. 11.16(a).

The restoring moment due to the weight of the pendu-

lum about the pivot O is given by

 M = (−mg sin q) r

Considering the moment to be positive along q increasing.

By Euler’s law, the equation of motion is

 
M I I

d

dt
= =α

θ2

2

where I is the moment of inertia about the pivotal axis.

It follows that

 
− =mgr I

d

dt
sinθ

θ2

2

which, for small q, becomes

 
d

dt

mgr

I

2

2
0

θ
θ+ =  (11.18)

The most general solution to the second order linear dif-

ferential equation is given by

 q = A sin wnt + B cos wnt

O

r
+ve

(+ve)

C

A

B

W

C
I

mg

mg sin q

qq

90°

(a) (b)

Fig. 11.16  (a) Analysis of compound pendulum 

(b) Kater’s pendulum
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whence, 
d

dt
A t B tn n n n

θ
ω ω ω ω= −cos sin

and
d

dt
A t B tn n n n

2

2

2 2θ
ω ω ω ω θ= − + = −( sin cos )

Substituting the value of q and 
d

dt

2

2

θ
 in the differential equation

 
− + =ω θ θn

mgr

I

2 0

whence, ωn

mgr

I
=  (11.19)

The cyclic frequency is

 f
mgr

I

n= =
ω

π π2

1

2
 (11.20)

and the time period is

 τ π= =
1

2
f

I

mgr
 (11.21)

It is rather interesting to observe that the simple pendulum is a ‘simple’ case of the compound pendulum, 

i.e., when the mass is concentrated at the centre of mass and the distance r is large in comparison with the 

dimensions of the mass.

The moment of inertia about the pivotal axis is

 I = m(k2 + r2)

where k is the radius of gyration.

For a simple pendulum r >> k

hence, I = m r2

Substituting this value of I in the expression for the time period

 
τ π π= =2 2

2mr

mgr

r

g

Recognising that r is essentially the length of the thread.

 
τ π= 2

l

g

which is the expression desired for the simple pendulum.

An adaptation of the compound pendulum is the Kater’s pendulum. It consists of a bar with two knife-edges 

A and B, as shown in Fig. 11.16(b), such that they are not obviously at the same distance from the mass centre C.

The distance l between them can be measured with great precision. It is the accuracy and certainty with 

which this distance can be measured that makes it superior to the compound pendulum where the mass centre 

cannot be ascertained easily and the simple pendulum whose string cannot be weightless and inelastic. There 
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is a counterweight mg in the Kater’s pendulum which can be adjusted so that the period of oscillation t is

the same when a either knife-edge is used. The relation

 
τ π π= =2 2

I

mgr

l

g

applies to the Kater’s pendulum and the results obtained are more accurate than with either the simple or 

 compound pendulum.

O1

O2

C

mg

r1 = L/2

r2 = L/4

L

Fig. Ex. 11.13 (Solution)

Example 11.13 A rod of length L and mass M is pivoted at one end to constitute a pendulum. Determine 

its period of oscillation and calculate its length if the period is desired to be 1 second.

 If the rod was instead suspended from a point at one quarter of its length, what would be the expression 

for the period and what would be the length of the rod required for a period of 1 second?

Solution For the first case of suspension from the pivot O1,

 
r

L
=

2

 I = ML2/12 + M(L/2)2 = ML2/3

and τ π π= =2
3

2

2

3

2

2
ML

Mg L

L

g

/

/
 

 For t = 1 s, L = 3g/8p2 = 0.373 m 

 For the second case of suspension from the pivot O2,

                  r = L/4

I = ML2/12 + M(L/4)2 = 7/48 ML2

and              τ π π= =2
7 48

4
2

7

12

2/

/

ML

MgL

L

g
 

 For             t = 1 s, L
g

= =
12

28
0 426

2π
. m  

 An extension of this example leads us to an interesting question: What will t be if the rod is suspended 

at the centre of mass C?

 If the pivot is located at the centre of mass,

 
τ π=

×
⎛
⎝⎜

⎞
⎠⎟

→ ∞2
0

I

mg

which shows that the periodic motion is not possible in this case; obviously because the restoring moment 

disappears as the weight of the body acts at the pivot itself.
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Example 11.14 A disc of radius 10 cm is suspended from a point on its circumference. Determine its 

frequency of oscillation.

C

r = 0.1 m

Fig. Ex. 11.14 (Solution)

Solution Referring to Fig. Ex. 11.4 (solution). The moment of inertia 

about the pivotal axis is

 
I M

r
Mr Mr= + =

2
2 2

2

3

2

 
= × =

3

2
0 1 0 0152 2M M. . kg m

where M is the mass of the disc.

 The frequency is given by

 
f

M

M
=

× ×
= −1

2

9 81 0 1

0 015
1 287

π
. .

.
. s 1

and the time period

 
τ = = =

1 1

1 287
0 777

f .
. s

 EXPERIMENT E15 OSCILLATION OF A COMPOUND PENDULUM

OBJECTIVE TO DETERMINE THE TIME PERIOD OF OSCILLATION OF A COMPOUND PENDULUM 

AND TO ESTIMATE THE VALUE OF g, THE ACCELERATION DUE TO GRAVITY.

Apparatus A bar-shaped compound pendulum with provision to suspend it from over a knife edge at 

different points along its length as shown in Fig. E15.1. A beam compass, a stop watch and a 

metre rod.

Background Information From the equation of motion of a compound pendulum,

 
d

dt

mgr

I

2

2
0

θ
θ+ =  (E15.1)

The time period is given by

 τ π= 2
I

mgr
=

+
2

2 2

π
mk mr

mgr

=
+

2
2 2

π
( )/k r r

g
 (E15.2)

Comparing of this expression with the expression for the time period of a simple pendulum, i.e.,

 
τ π= 2

l

g

shows that the length of an equivalent simple pendulum
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 l
k r

r
=

+2 2

which, for a straight uniform bar becomes

 l
L r

r
=

+2 212/

where L is the length of the bar.

From Eq. (E15.2), which is a quadratic equation in r,

 r gr k2

2

22

4
0− + =

π
it is noticed that there must be two values of r for the same time 

period t of the pendulum such that

k r

r

k r

r

2
1
2

1

2
2
2

2

+
=

+

whence r1r2 = k2 (E15.3)

Since k 2 must be a positive quantity, it follows that r1 and r2

must have the same sign, i.e., the two points of suspension at a distance r1 and r2 from the centre of mass must 

be on the same side of it. Similarly, there must be two points of suspension on the other side of the centre of 

mass which yield the same time period. In all, there are four points of suspension on a bar pendulum which 

provide the same time period.

The value of g, the acceleration due to gravity may be obtained from a single measurement of the time 

period for a known r and by applying Eq. (E15.2). Averaging on the basis of a number of isolated readings 

would be an improvement over the method. Better still is to draw a curve of the time period vs. the distance of 

the point of suspension from the centre of mass on one side or on both sides of it. Averaging for the value of 

g on the basis of pairs of values of the distances on either side of the centre of mass for the same time period 

has the added advantage of using the faired curves drawn on the basis of all the measurements.

Observations and Calculations The time period may be obtained by observing the time for a number of oscil-

lations, say 30. The experiment is repeated for 10 different points of suspension of the rod on either or both 

sides of the centre of mass C. Distances may be measured accurately with the help of a beam compass.

S. No. r (m) Time for 30 oscillations t (s)

1.

2.

 .

 .

 .

A curve or a set of curves is drawn, as shown in Fig. E15.2 and the acceleration due to gravity is obtained 

as follows:

 r1 = OA, r1′ = OA′; average r1 = (OA + OA′)/2
 r2 = OB, r2′ = OB′; average r2 = (OB + OB′)/2

and k2 = r1r2

Knife edge

Bar

r

L C

Fig. E15.1 Compound pendulum 
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From Eq. (E15.2),

g
k r

r
= ⋅

+4 2

2

2 2π
τ

two estimates of g are obtained for the average r1 and r2 and k 2 as above and t recorded from the plot as CO.

Similarly, estimates of g are obtained from the set of points P, Q, P′ and Q′, and so on and an average value 

of g is determined.

Result and Points for Discussion

 A value of g can as well be obtained from each observation of r and t by employing Eq. (E15.2). What is 

the advantage of the method adopted by you over this procedure?

Theoretically, for a uniform bar,

 k2 = L2/12

while it is actually,

 k2 = r1r2

 Which is closer to the true radius of gyration squared and why?

 Determine the length of an equivalent simple pendulum for the compound pendulum and state why it 

must be less than the actual length of the pendulum below the point of suspension.

 Which gives a more accurate value of the acceleration due to gravity, a simple pendulum or a compound 

pendulum?

What is the mean value of g over the surface of the earth and what is the value of g at the location of the 

experiment? Do the values compare with the estimate of g made by you?

Note that the moment of inertia of a rigid body about an axis may be determined by suspending the body 

about that axis and by noting the time period of oscillations by using Eq. (E16.2), if the acceleration due to 

gravity is known. Would you recommend this method of finding the moment of inertia of a rigid body?

What is the time period of oscillation of a bar when suspended from its centre of mass?

8 What is the minimum time period of the bar? Why can it not be less than  this value?

Fig. E15.2 Operation of a compound pendulum
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r, L, G

q

l

Fig. 11.17 Torsional pendulum 

(c) Torsional Pendulum

A torsional pendulum consisting of a rigid body attached to an elastic shaft 

operates by virtue of the restoring moment due to the elastic deformation of 

the shaft as shown in Fig. 11.17.

The restoring moment exerted by the shaft on the rigid body on a 

 displacement q is given by

 
M

r G

L
= −

π
θ

4

2

By Euler’s law, the equation of motion is

 M = Ia

or − =
π

θ
θr G

L
I

d

dt

4 2

22

which on rearranging becomes

 
d

dt

r G

LI

2

2

4

2
0

θ π
θ+ =  (11.22)

The general solution of the second-order linear differential equation is expressed as 

 q = A sin wnt + B cos wnt

whence,  
d

dt
n

2

2

2θ
ω θ= −

Substituting for q and 
d

dt

2

2

θ
 in the equation of motion.

 − + =ω θ
π

θn

r G

LI

2
4

2
0

whence, the angular frequency

 ω
π

n

r G

LI
=

4

2
 (11.23)

the cyclic frequency

 f
r G

LI
n= =

1

2

1

2 2

4

π
ω

π
π

 (11.24)

and the time period

 τ π
π

= =
1

2
2

4f

LI

r G
 (11.25)
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r = 0.005 m

L = 1 m

G = 35 × 109 N/m2

I = 0.187 kg m2

O

O

Fig. Ex. 11.15

Example 11.15 A horizontal steel disc 30 cm in diameter and 3 cm 

thick is attached at its centre to a 1 m long vertical brass shaft of 1 cm 

diameter, the upper end of which is fixed. Assuming the density of steel 

as 7860 kg/m3 and the modulus of rigidity for brass as 35 × 109 N/m2,

calculate the frequency and time period of the assembly.

Solution The mass of the disc is

 
m =

×
×

⎛

⎝⎜
⎞

⎠⎟
× =

π ( . )
. .

0 30

4
0 03 7860 16 67

2

kg

 The moment of inertia about the axis of the shaft is

 I
mr

= = × =
2

2 2

2

16 67

2
0 15 0 187

.
( . ) . kg m

 The angular frequency is

 
ω

π
πn

r G

LI
= = × ⎛

⎝⎜
⎞
⎠⎟

× × × ×
4 4

9

2

0 01

2
35 10 2 1 0 187

.
/( . )

 = 13.6 s−1

 The cyclic frequency f is given by

 f n= = = −ω
π π2

13 6

2
2 16 1.

. s

 The time period of oscillations is

 
τ = = =

1 1

2 16
0 46

f .
. s

(d) Conical Pendulum

A conical pendulum consists of a mass m suspended by an inextensible string of length l from a point O fixed 

on a vertical rotating rod as shown in Fig. 11.18. The equation of motion of the mass m can be written as

= m

where , the net external force equals

−mg − T sin q + T cos q 

 and  being unit vectors as shown in Fig. 11.18.
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  The acceleration of the mass in rotation at a constant angular velocity is 

purely centripetal

 = × × = × × = −ω ω ω ω θ ω θ( ) ( sin ) sinl l2

Hence

−mg −  sin q +  cos q = −mw2l sin q

whence, the two scalar equations appear as

−mg + T cos q = 0

or T cos q = mg

and T sin q = mw2l sin q

 It follows that

 T = mw2l (11.26)

and q = cos−1 (g/w2l ) (11.27)

The mass m describes a circle of radius r whereas the string and mass taken 

together describe the surface of a cone. The system has, therefore, acquired the 

name ‘conical pendulum’.

(e) Foucault’s Pendulum

The Foucault’s pendulum is essentially a simple pendulum with a very 

long string. A string of over 10 m length allows the bob to oscillate 

with an amplitude of 1 m with a small angular amplitude. The bob 

is capable of oscillation over a long period of time, say 24 hours 

or more. A fact which stands out is that the plane of oscillation of

a simple pendulum should precess about the vertical axis due to 

the spinning of the earth as shown in Fig. 11.19. The period of 

precession would, of course, be different at different locations on 

the earth. The fact that the earth spins about its own axis is borne 

out by the experimental observations on the Foucault’s pendulum. 

One such pendulum is installed at the entrance of the Science 

Museum, London. The pendulum is ‘let go’ in a plane motion 

in the mornings and, as the time passes, the plane of oscillations 

changes continuously with time, thus demonstrating the spinning 

of the earth about its own axis, day in and day out.

(f) Double Pendulum

A double pendulum consists of a mass m1 suspended on a string 

of length l1 from a fixed support and another mass m2 sus-

pended on a string of length l2 from the first mass, as shown in 

Fig. 11.20. The mass m2 can oscillate about the centre of mass 

m1 whereas the mass m1 can oscillate about the fixed point O.

For a very special case when

      m1 = m2 = m

 l1 = l2 = l

and q = sin q, cos q = 1 for small angles q1 and q2.

The equations of motion are

Fig 11.19  Shift of vertical place of oscillation 

from oacb to OA′CB′ with time of 

day due ot spinning of the earth

O

B′

A′

B

C

A

O

l

m

mg

q

w

r

Fig 11.18 Conical pendulum 
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Concept Review Questions

  Elaborate the concept of ‘elements’ of a system. Is 

it necessary for an element to be pure and linear? 

Can every engineering system be simulated by 

an interconnection of mechanical elements? Are 

the results thus obtained fair approximations of 

the real situation?

  The elements of a mechanical system are classi-

fied by the properties of inertia, compliance and 

damping. Some authors prefer to classify them 

by name, e.g., a rigid element, an elastic element 

and a damper. Show that the properties refer to 

the same elements.

  Give one example each of the linear elements 

and the non-linear elements of a mechanical 

system.

  Why are mechanical systems (for that matter, 

any system) prone to vibrations, so much so that 

the dynamics of a system implies its oscillatory 

characteristics?

  Recognise the correct statements in the following:

 (a) The degrees of freedom of a system

 (i)  are the constraints applied on a system

 (ii) refer to the order of a system

 (iii)  are the modes of motion of the system

 (iv)  equal the number of masses in a system.

 (b) A periodic motion of a system occurs

 (i)  if the initial state of the system is in 

equilibrium

 (ii)  if the restoring forces or moments 

come into play as soon as the system is 

disturbed.

 (iii)  if and only if the system undergoes 

simple harmonic motion

 (iv)  if the initial state as well as the disturbed 

states are in equilibrium.

 (c)  The resisting force in an oscillatory system 

tends to

 (i) reduce the time period

 (ii)  oppose the restoring force proportionately

1

1

2

2

q1

q2

Fixed support

Fig 11.20 Double pendulum 

 
2 2

2
1

2

2
2

2 1

θ θ
θ+ = −  (11.28)

and

 
2

1

2

2
2

2 2

θ θ
θ+ = −  (11.29)

Substituting

 q1 = 1 cos w   and q2 = 2 cos w 

 2( − w 2) 1 − w 2 2 = 0

and − w 2 1 + ( − w 2) 2 = 0

whence, ω ω1
2

2
22 2 2 2

=
+

=
−( ) ( )

and  (11.30)

and the normal frequencies are given by

1
1

2

1

2

2 2
= =

+ω
π π

( )
 (11.31)

2
2

2

1

2

2 2
= =

−ω
π π

( )
 (11.32)

It may be noted that w1 and w2 correspond to the normal modes in which the bobs move in the opposite 

and same directions respectively.
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Tutorial Problems

  A small ball of mass m is fixed at the mid-

length of a taut wire of length l with tension P

in it as shown in Fig. Prob. 11.1. Show that the 

ball executes a simple harmonic motion for 

small displacements. Also calculate the time 

period of the ball.

s τ π=
⎛

⎝⎜
⎞

⎠⎟
2

4

ml

P

P
q

m

P

l
x

Fig. Prob. 11.1

  A solid aluminium sphere with 50 cm diam-

eter is attached to the lower end of 10 m long 

aluminium rod of 5 cm diameter, the upper 

end of which is fixed. Find the period of 

this pendulum. Take G = 24 × 109 N/m2 and

r = 27,000 kg/m3 for aluminium.

 ( s  0.12 s)

  A block of steel of mass 50 kg is supported 

by an alternative spring arrangements as 

shown in Figs. Prob. 11.3(a) and (b) and 

(c). Determine the natural frequency of the 

block in vertical motion. Estimate also the 

maximum velocity and acceleration of the 

block if the amplitude is 5 cm. Take k1 = 40 

N/cm and k2 = 50 N/cm.

 ( s  (a) 0.214 s−1, 0.067 m/s, 0.09 m/s2

 (b) 0.106 s−1, 0.0334 m/s, 0.0222 m/s2

 (c) 0.257 s−1, 0.08 m/s, 0.13 m/s2)

 (iii) reduce the amplitude

 (iv) reduce the amplitude with time

 Differentiate critically between

 (a) simple pendulum and compound pendulum

 (b) damping forces and driving forces

 (c) angular frequency and cyclic frequency.

  Make simple sketches to illustrate three oscillat-

ing systems

 (a) capable of linear oscillations

 (b) capable of angular oscillations.

8   Can every oscillating system be reduced to an 

equivalent spring-mass-damper system? Establish 

the equivalence of any one linearly and one angu-

larly oscillating system.

  Ill-effects of the resonance of a system can be 

avoided

 (a)  by keeping the resonating frequency as low 

as possible

 (b)  by making the frequency of the driving 

force as low as possible

 (c)  by passing the system through the state of 

resonance as quickly as possible.

 Why is it that the equation of motion of a simple 

pendulum can be obtained either by Newton’s law 

or by Euler’s law or by the principle of conser-

vation of mechanical energy, whereas the equa-

tion of motion for a compound pendulum cannot 

be obtained by the application of Newton’s law 

alone?

Assuming that g
GM

R h
=

+( )2

 where G is the gravitational constant, M is the 

mass of the earth, h is the vertical distance from 

the surface of the earth and R is the radius of the 

earth, establish a relationship between h and the 

length of a simple pendulum of period 1 second 

at all altitudes.
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k1 k2

k1

C

(a) (b)

k1 k2

C

(c)

k1

k2

C

Fig. Prob. 11.3

  A vertical U-tube manometer containing mer-

cury for a total length of 0.3 m is subjected to a 

sudden pressure differential which is removed 

and the columns are set to vibrate. Determine 

        the frequency of vibration and comment on its 

value if

 (a)  the size of the manometer is changed to a 

tube of half its diameter and a length half 

as much and if

 (b) the mercury is replaced by water

 (c)  the U-tube is inclined with its plane making 

an angle of 30  with the horizontal.

 ( s f = 1.29 Hz; (a) no change with 

diameter but f = 1.82 Hz for half length

(b) no change, (c) 0.912 Hz)

  A semicircular cylinder of radius r and mass 

density m rests in the equilibrium position on 

its curved surface on a flat plate. Establish that 

the semi-cylinder is capable of oscillating and 

determine its period of oscillation.

 
s τ π

π
=

−⎛

⎝⎜
⎞

⎠⎟
2

9 16

2

( )r

g

A mass m attached to a rigid rod which is 

held in position by two horizontal springs is 

made to vibrate in the plane of the springs 

(Fig. Prob. 11.6). What condition must be sat-

isfied for equilibrium in the vertical position? 

Obtain the equation of motion and express

the natural frequency of the system in terms of 

the given parameters.

When will the period of oscillations be 

infinite?

 

s l
mgl

k

kl

ml

g

l
1

2 2

2

2

2
2

2
2

2
= = −

⎛

⎝
⎜

⎞

⎠
⎟; τ π

m

k

Hinge

k

l1

l2

Fig. Prob. 11.6

  Calculate the frequency of oscillation of a sys-

tem consisting of a plate and cylinder attached 

to a spring as shown in Fig. Prob. 11.7.

Evaluate the frequency for

l = 1 m, r = 0.2 m, m1 = 50 kg,

m2 = 20 kg and k = 50 N/cm

 ( s f = 0.98 Hz)

Fig. Prob. 11.7

O

l/2

l/2

m2

m1

C1
k

C2

r

b
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8   A lever of length L is placed on a fulcrum, O

off-centre by a distance l, and is held by two 

springs on the other end. Obtain an expression 

for the frequency of the system. Assuming the 

mass of a 2 m lever as 20 kg and the spring 

constant of each spring as 100 N/cm, calcu-

late the distance l for the largest frequency of 

vibration.

 

s f
k Ll l

m L l
=

+
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1 6

12

2

2 2π
( )

( )

C

l
L

k

O

Fig. Prob. 11.8

  A particle P of mass m oscillates along a 

vertical line in a system of springs shown in 

Fig. Prob. 11.9. Determine the frequency of 

oscillation assuming all other members as 

massless elements.

 s ω 2

1 2 3 4

4

1

4

1

4

1 1
=

+ + +
⎛

⎝⎜
⎞

⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟m

k k k k

l1

l2 l2

k1 k2 k4

k3

P

l1

Fig. prob. 11.9

  A circular disc of diameter d and mass m is 

free to roll without sliding on a horizontal 

plane. Two identical springs of stiffness k

are attached to as shown in Fig. Prob. 11.10. 

Determine the period of small oscillations of 

the disc.

 

s f
k L l

m L l
=

+
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1 6 2

12

2

2 2π
( / )

( )

k

a

O

d

k

Fig. Prob. 11.10

  Find the period for small oscillations if a rod 

of length L and mass M is suspended from a 

point L/4 from one end.

 
s 2

7

24

L

g

⎛

⎝⎜
⎞

⎠⎟

 A pulley having a moment of inertia I about 

its axis of rotation supports a rope which car-

ries a mass m at one end, while the other end 

is connected to a spring of spring constant k

as shown in Fig. Prob. 11.12. Find the period 

of oscillation of the system. Assume that the 

rope does not slip on the pulley.

 
s 2

2

2
π

I mR

k R

+⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

m

R

k

Fig. Prob. 11.12
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  Two parallel cylindrical rollers rotate in oppo-

site directions as shown in Fig. Prob. 11.13. 

The distance between the centres of the roll-

ers is a. A straight, uniform horizontal rod 

of length l and weight W rests on top of the 

rollers. The coefficient of kinetic friction 

between the rod and the roller is m. Taking 

x as the distance from the centre of the rod 

to the midpoint between the rolls, write the 

equation of motion of the rod, assuming that 

it has been initially displaced from the central 

position. Find the frequency of the resulting 

vibratory motion.

 s 2μg a/( )
l/2

W

a

w w

l/2

Fig. Prob. 11.13

Look up Hints to Tutorial Problems at the End!

Multiple-Choice Questions

Select the correct or the most appropriate response 

from among the available alternatives in the following 

multiple-choice uestions:

A linear response implies that

(a) the elements are in one line

(b) the response is along the given line

(c) the sensitivity is constant

(d) the response is not exponential

A vibrating system

(a) does not pass through an equilibrium position

(b) passes through the equilibrium position once 

every cycle

(c) passes through the equilibrium position twice 

every cycle

(d) starts from an equilibrium position and does 

not return to it

Resonance occurs when

(a) a freely vibrating system is made to vibrate at 

increasingly higher frequencies

(b) the forcing frequency equals the natural 

frequency of the system

(c) the system vibrates at its natural frequency

(d) the amplitude of vibrations exceeds twice the 

amplitude of free vibrations

Answers to Multiple-Choice Questions

1 (c)    2 (a)    3 (b)





Appendices A1 and A2

This section consists of appendices 

with information useful for the 

study of mechanics:

� APPENDIX 1  PROPERTIES OF PLANE FIGURES 

(LINE AND AREA ELEMENTS)

� APPENDIX 2  PROPERTIES OF SOLID BODIES 

(THIN, SOLID AND HOLLOW BODIES)
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Appendix 2

Properties of Solid Bodies
(Thin, Solid and Hollow Bodies)

Figure Description Mass Moment of Inertia

a

z

C

x

A

A

y

l

O

Slender (Thin) 

Rod

m = rl . a Iyy = Izz = m l 2/12

Ixx = 0

IAA = m l 2/3

a

Cx

A

Ar

y

z

Thin Hoop

(Ring)

m = 2 rpr . a Ixx = Izz = m r 2/2

Iyy = m r 2

IAA = 2m r 2

A

B

z

y

x

O
a

b

l

C

A
B

Solid

Rectangular

Parallelopiped

m = rab l Ixx = m (a2 + l2)/12

Iyy = m (b2 +l2)/12

Izz = m (a2 + b2)/12

Ixy = Iyz = Ixz = 0

IAA = m (a2 + l2)/3

IBB = m (a2 + 4l2)/12

(Continued )
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Appendix 2 (Continued)

Figure Description Mass Moment of Inertia

a

b

z

y

t

x

x

Thin

Rectangular

Plate

m abt= ∫ I maxx =
1

12

2

I mbyy =
1

12

2

I m a bzz = +
1

12

2 2( )

x

y

z

A

A

C

l

r
Solid Right 

Circular

Cylinder

m = rpr2l Izz = m r2/2

Iyy = Ixx = m (3r2 + l2)/12

IAA = m (3r2 + 4l2)/12

t

z

Cx

A

A

y

Thin Circular

Plate

m = r . pr2 . t Ixx = Izz = m r2/4

Iyy = m r 2/2

IAA = 3m r 2/2

x

t

r

z

C

y

l

A

A

Thin

Cylindrical

Shell

m= 2pr t l Ixx = m r 2

Iyy = Izz = m (6r2 + l 2)/12

IAA = m (3r2 + 2l 2)/6

(Continued )
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Appendix 2 (Continued)

Figure Description Mass Moment of Inertia

b
y

A Aa
l/4

x

l

B B

z

O

C

Right

Rectangular

Solid Pyramid

m = rabl/3

OC = l/4

Ixx = m (4b2 + 3l2)/80

Iyy = m (4a2 + 3l2)/80

Izz = m (a2 + b2)/20

IAA = m (b2 + 2l2)/20

IBB = m (b2 + 12l2)/20

l

x

l/4
O

ry

AA

B B
z

C

Right Circular 

Solid Cone 

m = rpr2l/3

OC = l/4

Iyy = Ixx = 3 m (4r2 + l2)/80

Izz = 3 m r2/10

IAA = m (3r2 + 2l2)/20

IBB = 3m (r2 + 4l2)/20

x

y

z

C

r

Solid Sphere m = 4rpr3/3 Ixx = Iyy = Izz = 2/5 m r 2

a

y

x
C

z

b

c

Solid Ellipsoid m = 4rp abc/3 Ixx = m (b2 + c2)/5

Iyy = m (a2 + b2)/5

Izz = m (a2 + c2)/5

(Continued )
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Figure Description Mass Moment of Inertia

C

x

r R
y

z

Solid Torus

(like a tyre )

m = 2rp2r2 R Ixx = m (4R2 + 3r2)/4

Iyy = Izz = m (4R2 + 5r2)/8

x

z

y

C r

t

Thin Spherical 

Shell

m = r ⋅ 4pr2 ⋅ t Ixx = Iyy = Izz = 2/3 m r2

O

x

z

AA

y

C
3r/8

Solid

Hemisphere

m = r ⋅ 2/3p r3

OC = 3r /8

Ixx = Iyy = 83mr2/320

≈ 1/4 m r2

Izz = 2/5 m r2

IAA = 2/5 m r2

Appendix 2 (Continued)



Hints to Tutorial Problems

CHAPTER R2

R  Vector P = (10 – 3) + (5 + 1) + (8 – 2) /(72 + 62 + 62).

R   The feasible path is from P(0, 0) to x, y passing through (3, 4) and then to the left horizontally to reach 

(0, 10). Unit vector along the incline is u = i j(3 + 4 5) / . One must go until y =10; hence x = 7.5.

 Distance along the incline is 10 7 5 12 52 2+ =. . units.

 Total distance travelled = 12.5 + 7.5 = 20 units.

R = (–5 – 0) + (2 – 0) + (14 – 0)

 Magnitude of  r  is 5 2 142 2 2+ + = 15 units.

= 15 (l + m + n ); By comparison with above,

  l = –5/15, m = 2/15, n = 14/15, etc.

R   For an arbitrary triangle ABC, drop a perpendicular from B to side AC and use Pythagorus theorem 

to prove the two laws.

R   The direction of projection is along the cross product of A and B vectors which is given by

2 6 3

4 3 1

15 10 30− − − +, .,i e i j k .

 Find the unit vector along it and multiply by 70 m/s.

R  By definition, ⋅ B = AB cos 60 

 Find A = 101 units, B x= +18 2  units and hence, by comparing, 

x = –35.15 units as the feasible answer.

R  Use the rules as stated in the text.

R 8  (a) You need to show that

  e1 ⋅ e2 = 0,

  e2 ⋅ e3 = 0 and

  e3 ⋅ e1 = 0

 (b) Find × B and B × .

 Now show that the dot product of the two results is not zero; hence non-coplanar.

R   For (a), differentiate term-by-term. For (b), differentiate the scalar after dot product, 16t3 and get the 

answer 48t2. Likewise for (c) and (d).
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R Velocity = d dt and substitute t = 2 seconds.

 Acceleration = d dt and substitute t = 2 seconds.

R  Unit vector along PA= − + + − +( ) ( )4 0 0 0 8 4 82 2

 Force along PA= −( )20 4 8 80i k

 Forces in other cables are T1 4 8 81− + −( )i j k

 and T2 2 3 8 77    ( ) .− − −

 Equating the sum of all three  and  components and zero, T 1 = 22 kN, T 2 = 28.6 kN.

 Forces exerted on the pole = sum of  components which is 63 kN.

R  Get PQ = –  – 2 + 2  with = (–  – 2 + 2 )/3. The force is 100 . The distance PO is 6  – 4 

and the moment ×  can be found.

R Use the definitions and apply the rules.

R (a) that  is a constant vector or zero.

 (b) that the two are collinear or parallel or one is zero.

 (c) irrotationality!

R r V =×
−

2 3 4

2 2x y xy

, etc.

R B×
−

100 25 0

0 01 0 001 0. .

, etc.

R w = 2p × 50/60 = 5.236 rad/s

 For C1, = 0.5 , = w × , etc.

 For C2. = 0.2 + 0.5 , = ω × , etc.

R 8  Construct the force triangle with the desired conditions and show that the components are 200 and 

282.6 N. For equally inclined components,

F1 cos q + F2 cos q = R

F1 sin q = F2 sin q ; F1 = F2 = R/(2 cos q )

 As q increases, cos q decreases until q = 90  where cos q = 0 and F1 and F2 tend to infinity.

R For equilibrium,

 –T1 cos 30 – T2 cos 25 – T3 cos 30 = –1000

 and T1 sin 30 cos 30 – T3 sin 30 cos 30 = 0

 and T1 sin 30 sin 30 + T2 sin 25 – T3 sin 30 sin 30 = 0

 which provide, T1 = T3 = 356.6 N, T2 = 421.9 N.

R  The resultant force 100(0.6 + 0.8 ) must be the vectorial sum of F1(0.5 + 0.5 + 0.707 ), etc. Find 

the values of the magnitudes F1, F2 and F3.
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CHAPTER 2

  While at (2, 1), it exerts a moment (2 + 1 ) × (– 50 ), i.e., 100  – 50  about 0. Now, while at a (1, 2), 

it exerts 50  – 100 . The difference is required to maintain equivalence.

  By the priniciple of parallel transfer of force, it is necessary to accompany with a moment 100 × 0.25 

for O and 100 × 0.5 for B.

  Resolve them into components and add, e.g., 150 cos 30 + 150 sin 30 + 180 cos 45  – 180 sin 45  …

 Resolve them into x, y and z components and add.

  They result in a couple of moment 0.3 × 10 Nm clockwise normal to the plane. If one force was 11 N, 

the resultant force would be 1 N in that direction and additional moment of 0.15 × 1 Nm.

  Resultant force is zero but the resultant moment about any arbitrary point is –30 Nm.

  Let the fourth force be F located at a distance x from A. Write the equations for resultant action and 

solve for F and x.

8   Proceed by considering the resultant as the summation of forces and summation of moments about any 

arbitrary chosen points.

  Summation of forces and moments about any chosen point provides the answer. Addition of a force 

along the bar is made vectorially.

 The resultant force is (3  – 0.5 ) kN. Find the magnitude and the angle.

 The pivot provides force-reactions to balance the forces. Sum of moments is zero. If the 10 N force 

moves to P, there is a net moment!

 Proceed by summing the forces and moments and locating the single equivalent force.

 The equivalent action at O should consist of F and M which are summations of forces and their moments 

about O.

 Resolve the loads into x and y components and add. Find the magnitude of the load and the unit vector 

only along which it acts.

 Consider the sum of forces and moments about the fulcrum.

 Single resultant = – 400 cos 60  – (– 300 – 200 + 400 sin 60)  with the moment 400 sin 60 × 0.3 × 50 

– 200 × 0.5 = F y × x.

 at A and B = 3/0.4 = 7.5 N. The force R referred to A is 100  acting at A together with a moment 

100 × 0.2 in the z-direction. Equivalent couple force are 50 N, 0.4 m apart. Hence the replacement.

8 = – 50 + 80  – 50  passing through 0 and 0 = 1250  – 500 + 750 . Find the unit vector along 

and the component of the moment along it is 0 = 351.1 units. This could be eliminated by transferring 

the force parallel to itself such that × = n.

 Find the angle q1 of the 50 N force with the base diagonal as 20.4 degrees. The angle q  2 between the 

x-axis and the base diagonal is 68.2 degrees. Write for the force and then the moments as × . Find 

the resultant force and moment.
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 Consider two parallel elementary discs of radii r1 and r2 of the spheres at a distance (r – x – y) between them. 

Write the expression for the elementary force of attraction and integrate over the radii of the spheres.

 Consider two rod elements equidistant from the point mass. The horizontal components of the forces cancel 

and the vertical components add up. Mass per unit length of the rod is M/2a. Integrate the force from 

0 to a.

 Limiting friction = 0.3 × 20 × 103 = 6 kN. With relative motion the frictional force decreases.

 It all depends upon the masses and coefficient of friction between different pairs of surfaces. Draw a 

figure with, say, five plates and apply a horizontal force at the mid plate 3 with plates 2 and 1 above it 

and 4 and 5 below it. If F is greater than m3 (m1 g + m2 g + m3 g) and m2 (m1 g + m2 g) is greater than F1

them the plate number 3 and those above it will slide. Like this, discuss different possibilities.

 Resultant force = k + k + k  but + = –  by the parallelogram law of forces. Therefore, the resul-

tant is zero. Moment about an arbitrary point equals 2  times area of the triangle. A polygon can be 

considered to be composed of constituent triangles; hence the fact!

 Resultant = 200  – 400  – 500  units. If it is passed through the point O, the accompanying moment 

would be 3 × (– 500 ) + 6 × (– 400 ).

A = 4 × 4 sin 40  – T × 6 cos (90 – (180 – (90 + 30 + 40))). Equate it to zero for equilibrium and find T.

 Consider a particle of mass m at a distance d from the earth. Then,

GM e .m/d 2 = GM m .m/(3.8 × 105 – d )2

Find d.

8  The upward force at B must equal the weight of the punch, 2 × 9.81 N. Force in AB = 2 × 9.81/cos 30 

and the moment = 0.2 × force in AB.

 Express the force in components and express the position vector E or B to find the moment about C,

similarly, about H. Moment along the axis CF is given by the dot product of the moment about C with 

the unit vector along CF.

 Proceed by taking summation of forces and take moments about the point D. Next, employ the ‘parallel 

force transfer’ principle to get the answer for the second part.

CHAPTER 3

  Consider the free-body diagram of the  boat including force  exerted by the f low and tension T in OC

to find their magnitudes. Now draw the f.b.d without T and determine the tensions in OA and OB. Both 

being positive, the boat will remain in equilibrium.

  Consider the forces at O for equilibrium and apply the Lami’s theorem.

 For a concurrent force system, Σ = 0. Check if it is true in this case.

  Find Σ  and Σ 0. Let (x + y ) x – 8 = – 12 + 15 .

For (d), yes by choosing three forces which add to 8  and their 0 = 12  – 15 .

 First, consider the equilibrium at O. Force in OC is 29 kN.

Then, P = 29 cos 15 = 28 kN.

  First, consider the f .b.d of the cylinder, and then for the link taking into account the 570 N force exerted 

by the cylinder normal to the link.
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  For (a), apply the Lami’s theorem. For (b), substitute for T and W; d = 10 m.

8   Find the tensions from the f . b. d of the rod. Determine x from A so that A = 0.

  First, use ΣM0 = 0 for the arm. Then, at a time t, let the load be at x and at t + Δt, it beat x + Δx.

By subtraction and using x = t, dx = dt get the answers! Substitute q = 30  at the end.

 From the f.b.d of cylinder 1, get the force in the bar as 1200 N. Then, from the f.b.d of the cylinder 2, get P.

 For the tetrahedron joining the four centres, locate the centre of the top ball; sin θ = 1 3/ .  From the 

f.b.d of the top ball, 3N cos f = mg. For a lower ball, N sin q = 2T cos 30.

For equilibrium at B apply the Lami’s theorem.

Use Σ = 0 and take moments about the axis 2 – 3 and then about axis CD for Σ = 0.

Taking the origin at O, the unit vector along OA is

( ) .b a h b a hi j k− − + +2 2 2 Also, find for OB and consider the equilibrium at O.

Tension in BC is T1 8 4 2 84− + −( )k j i and in DE is

T2 5 4 41− −( )k j . Consider Σ A = 0 for equilibrium. R x = 0, R y = 840 and RA = 5100 N.

Locate B, C, G and H. Find the unit vector along BH and BG and consider the f.b.d of the boom.

CHAPTER S1

 Reaction at D consists of x and y components, D x and D y. Reaction at roller E is only horizontal, E x.

Take moments about E and then at D and use ΣF y = 0.

Consider equilibrium at A; then at C and B.

 Consider equilibrium at A to get forces in AB and AE. Then consider equilibrium at B and then at E.

Find reaction at D and force in DC by equilibrium at D.

 Determine the inclinations of AB and AC by geometry. Reactions are found by considering the 

equilibrium of whole truss. By equilibrium at A, find forces in AB and AC. Force in BC can be found by 

considering equilibrium at B or C. Same way, attempt the next problem.

 Reaction at R has both components Ax and A y; reaction at D is only vertical, D y. Find them by equilibrium 

of the total truss. Then consider equilibrium at D, C, F and A in turn.

 Determine F x, F y and E y. Cut a section through AH, AC and BC and consider the equilibrium of the 

upper part. Either cut another section through HG, CG and CD or proceed by taking joints B, H, C and 

D, in turn.

 Determine F x, F y and D y by equilibrium of the whole truss. Then use the method of joints by taking D, 

C, H, etc., reaching F at the end only.

 Find the reactions Ax, A y and C y first. Then take up joints C, D and A or B, in turn. One of the last two 

can be used for verification.

8  Find the reactions Ax, Ay and By by equilibrium of the whole frame. Consider the f.b.d. separately 

for BEC and ADC and DE. Each of them is in equilibrium. BE must be a 2-force member (only in 

compression) because reaction at B must be vertical only.
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  Reactions can be found by considering that Σ and Σ  are both zero at all hinges. All forces have 2 or 

3 components depending upon the geometry of the members.

 There being only horizontal force P at B and only one member to take horizontal force, force in BC

must be zero and AB must be in tension. Then consider the joint B.

CHAPTER S2

(a)  Find RB = 48.3 kN, RD = 11.7 kN. SF from A to B is 20 kN; it becomes 28.3 beyond B and rises 

to 11.67 beyond C, until D. BM is zero at A, changes and drops linearly to 50 kNm at B and 

rises linearly to 85 kNm at C and drops linearly to zero again at D.

 (b)  Reaction at A is a force 6 kN upward and a 17 kNm moment anticlockwise. The SF is 6 kN from 

A to B, reduces linearly to zero at C and remains zero C to D. BM is 17 kNm at A, rises linearly 

to +1 at B, rises parabolically to +10 kNm at C and remains constant until D.

 (c)  The 10 kN force implies that there is a 10 kN force plus a 10 kNm moment at C. Find RA as 14.4 kN 

and RD = 9.6 kN. SF changes from 14.4 to 5.6 at B; to 15.6 at C, to 6 kN at D, stays 6 kN until 

E and then drops linearly to zero at F. Likewise BM varies linearly between AB, BC, CD and DE.

At C, it changes from 17.6 to 27.6 kNm. From E to F, it drops to zero parabolically.

SF remains constant at M/L from A to B. BM rises linearly from zero at A to Ma/L at P; drops 

to M(L a)/L at P and decreases linearly to zero at B.

Find RA = 5.44 kN, Rc = 7.56 kN.

 SF at A is 5.44 kN, rises parabolically to 3.56 at B and linearly to 5.76 at C, where it drops to 2 kN 

and then rises to zero at D. The BM diagram consists of parabolic and cubic segments with 3.52 kNm 

at B and 1 kNm at C.

Reactions are 2.5 kN each.

SF W/L x + 2.5 W  2W  2W + 2.5W.

Likewise,

BM + W/L x2/2 2.5 (x L/3) + 2W (x  4L /9)  etc.

For mid-load,

BM W/2 ⋅ L/2 + W/2 ⋅ L/8 = 0; BM = 3/16 WL

For the train reaching the pier B,

BM 3/4 ⋅ L/2 + W ⋅ L/4 = 0; BM = 1/8 WL (This is less).

 Reaction at the fixed end is 4 kN upward force and a 12 kNm moment. SF from free end to mid point is 

2 kN, changes to 4 kN at mid point and remains constant until the fixed end. BM is zero at the free end, 

charges linearly to 4 at mid point or the linearly to 12 kN m at the fixed end.

 Loading; A to C should be 2.5 kN/m ud; C to E 5 kN/m ud. No load from E to B. BM diagram must be 

parabolic where SF is linear; or linear where SF is constant. BM is 5 kNm at C, +17.5 kNm at D, +15

kNm at E.

8 SF should be linearly varying from zero at A to 80 kN at mid point, where it rises to +80 kN; it 

again drops to zero at B. The loading must be ‘uniformly distributed’ from A to B, with a mid-load (or 

reaction) R for equilibrium.
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CHAPTER S3

  Reaction at front wheels is 4/7 Mg; hind wheel 3/7 Mg. For rear-wheel drive, the maximum frictional 

force equals 0.7 × 4/7 Mg = 0.4 Mg, which is also the maximum possible force to accelerate the car. 

For just front wheel drive, F = 0.7 × 3/7 Mg = 0.3 Mg. For the 4-wheel drive

 F = 0.7 Mg 

which is the sum of the above two types of drives!

  From the f.b.d. of the wedge, at the verge of impending motion, frictional forces  m1N1 and m2N2 act 

upon it where N1 is the normal reaction above and N2 is the normal reaction below it.

F = m1N1 + m2N2 cos q + N2 sin q.

 N1 = W; N2 cos q m2N2 sin q = N1, etc.

  At the position of impending slip, the horizontal reaction at the upper end is N1 and the vertical reac-

tion at the lower end is N2, together with frictional force mN2 opposing motion. Take moments about 

the lower end or equate to zero. From equilibrium, N1 = 296, N2 = 1185 N. Determine the inclination 

as 70  and h = 4.41 m.

 For the f.b.d. of the block,

 W = N cos q mN sin q
 F = N sin q + mN cos q.

Solve the equations to get F in terms of W.

 For the f.b.d. of the block,

 W = mN sin q + N cos q and

 mN cos q N sin q = Wa/g, etc.

  Let the pivot be at ‘hL’ from the left as the force P is applied at ‘KL’ from the left end. Consider an 

element dx, frictional force on that element equals m (m/L) g . dx. Integrate over the left of the O and 

right of O or using P as an external force, the net force must be zero. Likewise, the net moment about 

O must be zero.

  From the f.b.d. of the peg for equilibrium, W sin b equals or is less than (m1N1 + m2N2) and W cos 

b = N 1 + N 2. Taking moments about the pegs, proceed to determine tan b.

8   Draw the f.b.d. of the ball for impending sliding motion. Application of F at height h causes a turning 

moment Fh about the point of contact but F(h r) about the centre of mass.

  Draw the f.b.d. at the instant of impending sliding at both surfaces. Use summation of forces and 

moments to zero to solve for equilibrium and get P = 3/8 W.

Draw the f.b.d. of the block and solve for equilibrium at the instant of impending motion.

 The reaction at the corner point must pass through the centre of the cylinder. 0.275 P cos 30 +
0.08(P sin 30  25 g) = 0

whence P = 70.5 N

 Draw the f.b.d. at that instant and solve for equilibrium, assuming m as the coefficient of friction. Get 

m = 0.21.

Employ T 1/T 2 = e mq and q is 3.5 times 2p radians.
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 Employ T 1/T 2 = e mq and notice that the friction coefficients are m1, m2, m3, etc. and q  s are different for 

all cylinders.

For a screw jack,

 F = W tan (a f) × r/L

Use              tan f = 0.1

Here,                 q = 4 times 2p radians.

T 1 = 450 g and T 2 = 45 N

Find m by using T 1/T 2 = e mq.

Employ T 1/T 2 = e mq to find T 2.

8 Use the relations m = FL and F = W tan (a f) × r/L for the jack.

Let the pressure be expressed as p = Ar 2 + C. The total force P is given by 

P p rdr T r p dr

RR

= ⋅ = ⋅ ⋅ ⋅∫∫ 2 2 2

00

π π μ and .

 Notice that q = 2p radians. If P is less than 658.6 N, there is no lifting; it just stays there. Minimum P

required to hold it in position is 15.2 N, which is 100/(658.6/100) N.

 Proceed by assuming that the pressure p acts uniformly at the area of contact. Integrate it over the 

limits to get the total force P.

CHAPTER 4

  Consider an element of arc of length R dq. Its moment about the diameter is x . R dq. Substitute x = R

cos q and integrate 0 to p to get 2R2. Now, y R R dc = ∫2 2 θ .

  Consider a strip of area dA = x dy. Use y = sin x and dy = cos x dx. Now, y y dA dac = ∫ ∫ .

  Take an elementary area contained by radii r and r + dr and angle d f at f from one end. dA = r df dr

and y = r sin f. Apply y y dA dAc = ∫ ∫ .

  Divider the trapezium into a right angled triangle and a rectangle. Find the xc and yc for each and hence 

for the composite area, e.g.

x x A x A A Ac c c= +( ) +( )
1 221 2 1 2

  For yc, consider a strip parallel to x-axis; y y xdy xdyc = ∫ ∫( ) .  Substitute the given relation and  integrate 

zero to 1.

 Divide the L-section into two rectangles, locate xc and yc for each and proceed.

Volume = −( )π R R h2
2

1
2 in principle. Here,

V = p (2.52 – 2.32) × 0.5 + (2.32 – 2.22) × 0.25.  Alternatively, locate the radius of the centre of arc rc

and also the area of the given cross section.

Volume = 2 p rc × A.
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8  Consider the centroids of the composite areas (– p d2/4) and (p d2) and proceed.

 Using Pappus and Guldinus theorem, A = (2p r) × (2p R).

 Draw the intersecting curves tentatively, intersecting in the first quadrant. Locate the points of intersec-

tion (0, 0) and (6.87, 7.86). Now,

x xdA dA x y y dx y yc = = − −∫∫∫ / ( ) /( )2 1 2 1  dx and simplify. Similarly proceed for yc.

 Use y y m y m y m m m mc c c c= − + − +( ) ( )
1 2 31 2 3 1 2 3  where suffix 1 stands for the complete perspex cyl-

inder, 2 for the hole and 3 for the lead filling.

yc = 0 by symmetry about the x-axis. Side of the square is R / 2  and area is R2/2, etc.

x0 = 0 by symmetry about the y-axis. Volume = p/3 r h h r h1
2

1 2 2
2

2( )+ −( ) . Use the fact that yc for a com-

plete cone is at h/4 from the base.

For the hemisphere, yc = (R – 3/8R) = 5/8R and V = 2/3p R3. For the cylinder yc = R + h/2, etc.

 For equilibrium, the centre of gravity should be vertically below the point of suspension and hence at 

the lowest position.

For the circular arc, ls = p R and Ycs = 2R/p + A. Find a such that 

Ls ⋅ ycs + 2a ⋅ a 2 = (Ls + 2a) ⋅ a. Get a R= 2 and total length = +( ) .π 2 2 R

 The centroid of the semicircular wire, which is at 2R/p from the diameter should be vertically below 

the point of suspension, for equilibrium. If W is suspended from B, then take moments about the hinge 

and equate the sum to zero.

8  Empoly the Pappus–Guldinus theorem. For a hemisphere, 4p r2/2 = p r x distance covered by the 

generating arc p yc. Hence yc = 2r/p and xc = 0. Similarly yc for a semicircular disc = 2 /3p r3/(p r2/2. p
= 4r/3p).

 For the arc, yc = 0.2 + 2 × 0.15/p = 0.295 m; l = p × 0.15 and proceed.

CHAPTER 5

  Integrate a
dv

dt
=  w.r.t. t in order to get v = t4/4 – t3 + 5t + c1 and evaluate the constant c1 by substituting 

t = 1 s, v = 6.25 m/s. Integrate again to get s.

  From a
dv

dt
= ,  find v and then find s using v = 0 at t = 0 and s = 0 at t = 0. It will stop again when v = 0. 

Find t at that instant.

  Final velocity is (2  – 3 ) × 10 more than the initial velocity! Determine the x, y and z components by 

employing s = u t + 1/2a t2 along each direction.

  At t = 0, x = 0, y = 3, z = 0; at t = 25, x = 20, y = 3, z = – 4. Determine the constants A, B and C to come 

out as 5, 0 and –2 respectively. Then find the velocity at t = 5 s.

  Let x = x0 cos w t v = – w x0 sin w t and a = – w2 x0 cos w t referred to an extremity. Use x0 = 1m,

r = 2p /w = 2s.
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 Let x = x0 sin w t, referred to the mid-point. Here w = p/3. Use the boundary conditions.

  Here t = 0.6 = 2p/w. At the mean position, vmax = w x0 = 1.5. At half way position, 0.5 = sin w t. So, w t
= 0.523 and v = 1.5 cos 0.523 = 1.3 m/s.

8   For the projectile path, x v t and z v t g tmax maxcos sin / ( / ) .= ⋅ = ⋅ −θ θ  2
1

2
2 2  Equate xmax to zmax and use 

the fact that z = 0 at xmax; t = 2v sin q/g.

  The horizontal distance between them, 30 cos 30  is the sum of the distances traversed by the bullets, 

i.e. 350 cos 30 . t + 300 cos (– 30 ). t whence t = 0.0462 s, etc.

 For simplicity consider the target at xm horizontally = v cos q . t and t = 2v sin q/g . xm = v2 sin 2q /g.

Since sin y = sin (p – y), q1 = 1/2 sin–1 (gx/v2); q2 = p /2 – q1.

z = x tan a – gx2/(2v2 cos2 a). For x = 5z ≥ 2 and x = 0, z = 0. From the equation, sin 2a = 0.2725, 2a =
15.81  and 164.2 . Hence find the appropriate a.

z = – 120 = x tan a – gx2/(2r2 cos2 q). Find x for q = 30. Use x = v cos q . t.

 At any time t, separation between them is given by x = h – (2v cos at) and z = z2 – z1. Distance d between 

them is x z2 2+( ) . For it to be minimum, differentiate it w.r.t. time and equate to zero!

 For the first half distance s g t/2
1

2
1

2= −( )  and for the next half distance, s/2 = g(t – 1) + 1/2 g.12.

Equate the two expressions and proceed.

 The path of the ball is given by z = – gx2/(2 × 1.52 × 1), i.e., z = – 2.18x2. Find the point of its intersection 

with z = – x, the slope of the tips of the stairs; x = 0.45 m which means the third step.

 For the path, z = tan q – gx2/(2V2 cos2 q ), substitute x = 12 m, z = – 2 m, q = 30 , and with g = 9.81 m/s2,

determine the speed V as 37 km/hour.

 Assuming that the helicopter is descending with a vertical u, initial height h, use h = u t + 1/2 gt2. For 

the second packet, the height is (h – 5u), etc.

8  Obtain dx/dt = 8t and also dy/dt by using x y = 16. Substitute t = 1 second to get the velocity components. 

For x = 2 m, get t = 0.707 second and proceed the same way.

Given that, for a = 90 , h = zmax

Now, x V a g hmax sin / .= = = °0
2 2 2 45at α

Proceed by taking s a t s r t t t t a t r t/ / , / / , ,2 1 2 2 1 21
2

2
2

1 2 1 2= = = + = .

Given that a = kt = dw/dt. Intergrate w.r.t. time and substitute the data.

Draw a line joining G to E and write vector expressions for position, velocity and acceleration.

 First differentiate the given relations w.r.t. time for velocity and acceleration and then substitute the data 

each time.

 The time taken for the bullet to hit it is expressed as h/(V cos a – v) tan a from tan a = h/x ′ and 

x = x ′ + vt where x ′ is the horizontal distance at the instant of firing and x is at the instant of striking the 

shell. Then, find h by using the expression V sin a t – 1/2 gt 2.

Use z = 1/2 gt2 to find the time and x = V x . t . x/h = tan q; q = 48.9 .
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 Differentiate r and q w.r.t. time and use = +�r rr ω θ  and substitute t = 3 seconds. Differentiate 

again  w.r.t. time to get the acceleration.

Notice that w = 10 rad/s,

a = 2 rad/s, �r = 3 m/s, ��r = 2 m/s ,2  r = 0.5 m. Substitute in the terms for velocity and acceleration in 

cylindrical co-ordinates.

8  From the given expression for r and q, determine, r, q, at t = 20 seconds and differentiate twice to get 

velocity and acceleration respectively in cylindrical co-ordinates.

 From y = 2 x3, � �y x x= ⋅6 2 .  Now, v x y v x y= = + =� � � �i + j and | | 2 2 3  whence �x = 0 493.  and 

�y = 2 96. m/s . Similarly, from y = 2 x3, get ��y  and proceed.

 By energy conservation until A and B V V V gh h lA B, ; .= = = = +2 0 5  cos 30 . The acceleration at A

is g cos 30  along the slope and hence – g cos 60  tangential to the arc; the radial component being V2/r

towards the centre of the arc. Using v = 5.18 m/s from the above, obtain the total acceleration.

 Use aPf = Pm + 0 + a × + 2w × Pm + w × (w × ). Place the moving frame at B on the link AB.

 Then a = 4, w = 3, Pm = 2 × 5 = 10 , Pm = 4 + 50 , 0 = 0. Substitute these values above to get the 

result.

p = 5 m/s radial plus 5 × 10, i.e. 50 m/s tangential velocity. It can never reach B.

 From x = l tan q, get x
.

by using w = 2p N/60 rad/s. Again, differentiate and substitute the data and get 

the acceleration.

 Consider the chain at an instant t when a length x has dropped and (l – c – x) is flat on the table. Consider 

the tension T in the chain at the edge; then, T + (c + x) w/g �� ��x c x w T c x w x g= + = + −( ) ( ) ( / )or 1  for the 

vertical part. Also, T = (l – c – x) w/g ��x  for the horizontal part. The two to get the differential equation 

describing the motion. Solve the equation as well.

V r = V sin α( ),= �r lr = l sin a (= r). Now, a = − +r rrω ω θ
2 2 � .  The magnitude of acceleration is given 

by l Vsin ) ( sin )α ω α ω2 22+  which simplifies to yield the answer.

CHAPTER 6

  The splash of water is heard after the stone drops a distance and the sound travels up the same distance. 

Hence 2 5 2 330. / /= +d g d  which gives d = 28.6 m.

  Here 9. x
dv

dt

dv

dx

dx

dt
v

dv

dx
= = ⋅ = ⋅  whence vdv x dx v x= =9 121 2 3 4/ /,

 Now v
dx

dt
= . Substitute and integrate to get x = 67.5 m, v = 81.6 m/s and a = 73.9 m/s2.

  For the free-body diagram of the block, write the equations of motion along the horizontal and vertical 

axes. Also, write for the free-body diagram of the wedge. Solve the equations.

  Find the acceleration by using v = u + at and write the equation of motion along the incline for the 

verticle. Then

F = 2000 × 0.33 + 200 + 2000 × 9.81 × 1/20 = 1848 N.
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  For the total system of masses accelerating at a, the net external force along the motion is m3g – m1m1g –

m2m2g; equate it to (m1 + m2 + m3) times acceleration. Then, consider the free-body diagram of the 

blocks m3 and m1 and solve the equations of motion.

  Consider the free-body diagram of block B. ma = m m g; a = m g. The force F on block A causes resis-

tance m m g and inertia force ma on B.

  Net force on the object is mg kv ma m
dv

dt
− = =2 . Separating the variables, dt = dv /(g – k/m ⋅ v2).

Intergrate it logarithmically and obtain the expression.

8   For the upward motion of the particle, – mg – kv – ma = 0. Expressing a
dv

dt
=  and separating the vari-

ables and integrating both sides logarithmically, get the answers. For the second case – mg – kv2 – ma = 0 

and proceed the same way.

  From the free-body diagram of the block A, F = mA NA – T cos q – Ma = 0 and NA – Mg – T sin q = 0. 

Eliminate NA. Now consider block B and get T = m (a + mb
 g)/(cos q + mb sin q). Then use the given 

values and solve for T and a.

 For the position at an angle q, mv 2/r – mg cos q – N = 0 and N = 0 at the instant of leaving the sphere. 

Referred to the initial position, mechanical energy is conserved. Solve for q.

 For the conical pendulum, at the instant shown, T cos q – mg = 0 and T sin q – m v2/r = 0. Use v = r w
and sin q = r/l to get the answers.

 For the free-body diagram of the rotating block,

T cos 30  = m w2 r + N cos 60  and

T sin 30  = mg – N sin 60 .

 Solve the equations. At the instant it loses contact, N = 0. Find T and w.

 Kinetic energy of the wagon just before it touches the spring is 1/2 m v2 and the potential energy stored 

in the spring after compression is 1 2 1 1
2

2 2
2/ k x k x+( ) . Equate the two, using x2 = 2/3 x1 . Next, for the free 

body diagram of the wagon, m a + k x = 0. Using a
dv

dt

dx

dt
= ⋅ , separating the variables and integrating  

we get – v2/2 = k/m . x2/2 – 50, etc.

 For (a), t = 22/V cos 45 , V sin 45  t – 1/2g t2 = 0.

 For (b), t = 22/V cos 45 , V sin 45  t – 1/2g t2 = – 2.

 Use conservation of mechanical energy principle,

v = × × ° − ° =2 9 81 3 45 30 3 06. (cos cos ) . m /s

 For the free-body diagram at the top position, m v2/r – m g – N = 0. For no contact, N V gr= =0, .

 Equating the mechanical energies at the top and bottom positions, 1/2 m Vt
2 + mgr = 1/2m

2Vb - mgr.

Solve for Vb.

8  At the top position, Tt = mw2r – m g and at the bottom position, 

 T b = m w2 r + m g.

     If mass is halved, both tensions are also halved. If w is halved, substitute w = p and solve.

At the highest position, m V  2/r = m g + N and N = 0 for loss of contact.
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The centripetal force, m V  2/r must be less than or equal to the frictional force m m g.

 At the top position of the loop, v ≥ gr and at the bottom position, 1 2 2 1 22 2/ / ;m v m g r m vb+ × =
5v g rb ≥ . If it starts from a height h, m g h m vb= 1 2 2/ . Then, h = 2.5 r for it to complete the loop. 

For h = 0.5 g r, it will loop until the top point and separate thereafter!

 Use conservation of angular momentum in the absence of external moment, i.e., d/dt ( × m ) = 0 and 

hence w r2 = constant. Differentiate it to get 

 α ωr r r2 2 0+ =�  and proceed.

 Find the work done in lifting the elementary length dx from the lower end and then integrate it from 

0 to 20 m.

 As such, the bullet speed reduces by 360 m/s. What should be the thickness, with the same properties of 

the plank, to reduce the speed to zero, i.e., by 600 m/s? It is the energy lost by the bullet which equals 

the work done in overcoming resistance by the plank material!

 Find the kinetic energy of the bob when it just passes the vertical position. Then use the simple pendu-

lum of 1 m length to determine where the potential energy becomes zero! That’s the angle required.

 Apply the ‘conservation of angular momentum’ principle because there is no external moment acting 

upon it!

 Apply the ‘conservation of linear momentum’ principle because there is no external force acting on 

the system. Water is assumed to float the boat frictionlessly and the force by the goat is internal to the 

goat-plus-boat system.

8  Use geometry to determine the change in length of the spring. The energy realeased by the spring 

should equal the work done!

CHAPTER 7

A = w0A × 0A and B = B = A + BA. Find B and BA. For maximum B, differentiate w.r.t.

q and equate to zero. Use the fact, 0.2 sin q = 1 sin f. When the angle at A is 90 , find q. The position 

has maximum acceleration at q = 0 = p. Then, VB = 0.

C = –10 m/s, w = +100  rad/s, aA = w × (w x AC ) + a x AC = 100 m/s2 along A to C.

C = 10 (cos 30 + sin 30 ), w = – 25  rad/s, A = C = AC = 18.66 + 5  m/s.

d = s sin 60  = (10 + 3 cos 60 ) tan f, f = 12.74 . Write for w, A, VC and find CA, etc. Then, 

w = – VC /15 = – 0.87 rad/s and determine c and solve for a.

  For a plane problem of kinematics, one may proceed graphically by drawing a line oa perpendicular to 

OA, equal to 0.524 m/s. Also, from a, draw a line perpendicular to O2 B1, etc. Finally, from o draw a line 

ox perpendicular to O  and measure it.

  Let  be up the slope and  normal to it. w = 5  rad/s a = – 2 rad/s2, etc. and substitute terms in the 

expression for ac.

B = 10 × 5.25 , αB = –10 × 23 . One may draw the velocity diagram and the acceleration diagram 

or proceed vectorially.

8  VC (cos 45  – sin 45 ) = 2 + VCA (–cos 45  – sin 45 ).
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 Obtain VC = VCA = 1.41 m/s and w of CA is 1.414/0.2 = 7.07 rad/s.

 20 = 0. + w × 0.25 = – 0.25 w  whence, w = – 80 rad/s. Then,

C = 20 +  (–80 × 0.25 ) = 40  m/s.

 Let a moving frame of reference be placed on pin P fixed with CD and let Q be on the link AB. Use 

cosine law and sine law. Q = 12.5  – 6.4  and P = Q + PQ. Finally, w of CD = VP/12 = – 10.7/12 =
– 0.89 rad/s.

 From geometry, AO = 11.33 cm, OP = 10 cm, etc. Take A′ on CD, coincident with A. Then A′ =
A + A′A. Also, from geometry, q = 27.9 . Finally, w of OP = 99.7/10 = 9.97 rad/s.

 In this case, angular momentum must be conserved. × m = constant, r2 m w2 = constant = R2mω0
2 .

From geometry of moment,

R = r + 2p a. q /2p = r + a q. Express r and �r and integrate w.r.t. t to get the desired expressions.

 Let the inner cylinder rotate at wi. The velocity at the bottom is r3wi. For ‘no-slip’ condition, this is 

also the velocity of the inside of the hollow cylinder. The tangential velocity of the hollow cylinder 

is r3wi/r2 = v/ri, whence wi = r2/(r1r3) . v. Similarly, proceed for the angular acceleration.

 The velocity of C must be the average of the two. It can also be determined by equating the values of the 

rotational velocity w of the cylinder as seen from C, both above and below; ( )/ ( ) /� �x v R v x R1 2− = − .

 Write the expressions for A and B and use B = A + BA. Solve the equation.

 From the geometry, ∠OCQ = 25.7 , ∠OCQ = 94.3 , etc. Find VC and VCP and hence compute VB and 

VA, taking into account the fact that A can move only horizontally.

 From the geometry, find the angle ACB and proceed either graphically or vectorially.

CHAPTER 8

8   Take a strip of width dy and length 2x at a distance y from the x axis. Use the equation x2/a2 + y2/b2 = 1 

and substitute x = a cos q and y = b sin q. Integrate, q = –p/2 to +p/2.

8  Equate the I xx to I yy, i.e. bh3/12 = hb3/48. Hence b = 2h.

8   Consider an elemental strip of length a, cross section dx x dy and find I cc. Integrate between the limits 

–a/2 to +a/2.

8   Consider an elemental disc of radius r0 at a distance z from the apex. Then, r0 /z = R/h and m = r . 1/3p 
R2h. Find I zz by double integration.

8  The proof is given in Ex. 8.14 for a solid sphere, set R1 to zero and R2 = R.

8   Consider a circular disc of radius y at a distance x from the y axis. First, find the volume and the mass 

of the ellipsoid. Then, use I xx = my2/2 for the disc and integrate.

8   I xx = I yy = m R2/4 = 100 R2. Further, IAA = 100 R2 + 400 (0.5)2 = 109 etc.

8 8   Consider an element dx at a distance x from the centre. Find I yy about the desired points and substitute 

l = 30 cm.

8   Polar moment of inertia I 0 = p D4/32 = p R4/2 for the circular section andp r2/4 for the semicircle 

removed therefrom.
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8  First find the height of the centroid above the base, 4.48 cm and then find I cc by using components.

8  Find I xxc by the method of components. Locate xc = 2.14 cm and find I yyc, I zzc
.

8  The given section is equivalent to the circumscribing rectangle minus two semicircles. Area of the net 

section is 101.46 cm2. Then locate xr = 2.12 cm and find the I xx and I yy.

8  It is equivalent to a composite hollow cylinder of diameters 20 cm and 3 cm minus a hollow cylinder of 

diameters 18 cm and 6 cm with widths 5 cm and 4 cm respectively. Use I m R R0 1
2

2
2 2= +( ) .

8  For the composite body,

 I 0 = mrod l2/12 + mrod (l / 2)2 + 2/5 mbob R2 + mbob ( l + R/2)2.

8  For the flywheel considered as a solid cylinder of radius 0.5 m width 4 cylinders of radii 0.1 m each 

removed,

 I0 = M × 0.52/2 – 4 (m × 0.12/2 + m × 0.22), where

 M = p × 0.52 × 0.1 × 7500 = 580 kg and m = 23.5 kg.

CHAPTER 9

  Applying the equation of motion along the horizontal direction to the free-body diagram of the body, 

F- m m g = m a, whence, a =1.06 m/s2. The cabinet would tip about the corner B if the moment Fh of the 

applied force exceeds the resisting moment 50 × 9.81 × 0.5 × 1.06 × 0.7 where 50 × 1.06 is the inertia 

force.

  The ball can leave the frame only if the system is accelerated to the right with an acceleration a. Then,

mg sin 30 – ma sin 30 – N1 cos 30 = 0. At the verge of loss of contact, N1 = 0; a = g tan 30 = 5.66 m/s2.

  I = mk2; T . r = mk2. a and T + W/g .a – W = 0. From kinematics, a = a/r. Find T and a.

  For the free-body diagrams, N – m1g – T = 0 and T + m2a2  – m2g = 0. Also, T.r - fR = Ia and a1 = Ra by 

kinematics. Find a1 and a. Use s = u t + 1/2 a t2 to find t and wf = wI + a t to find wf .

 For the free-body diagrams of the pulley and the two weights,

 T1 – W1 – W1a/g = 0, T2 – W2  – W2 – W2 a/g = 0 and (T2 – T1). r = mk2. a. Also, from kinematics,

a = ra. Solve the equations.

 For the two discs of polar moments of inertia I1 and I2 respectively,

T1 – f r1 = I1a1, f r2 = I2a2 and by kinematics, a = a1 r1 = a2 r2. Eliminate f and a1 to get the answer.

  For the free-body diagram of the sphere (with just a force F at the centre and a frictional force f at the 

base) F – f = m a and f . r = Ia. Using a = ra, and I = 2/5 mr2 for the sphere, a = 5F/7 m. For the cylinder, 

I = mr 2/2 and a =  2F/3 m.

8  F . p = I 0 . a and a = a.l/2. For no horizontal component at the pivot,

 F = m a = ma l/2 and p = 2I 0/m l.

 For a bar, I 0 = ml2/3; p = 2/3 l.

 For a cylinder, I 0 = mr2/2 + mr2; p = 3/4 l.

 For a sphere, I 0 = 2/5 mr3 + mr2; p = 7/10 l.

  Given that v = 138.9 m/s and r = 5000 m Resolving forces along the wing of the plane, mv2/r cos q =
mg sin q; tan q = v2/gr, q = 21.4 .



Engineering Mechanics666

Kinetic energy 1/2 = + =mV I V rc c c
2 1 2/ ; / .ω ω2

 For a cylinder, I mr KE m Vc c= =2 22 3 4/ , /

 For a sphere, I mr KE mVc c= =2 5 7 102 2/ , /  which is less than that for a cylinder.

 For the bar, F  R = M . ab. Taking moments about A, F . L/ 2  R L = IA . ab . Using ab = L/2 . ab and

IA = m L2/3 for the bar and R = m ad and I0 = m r2/2, ad = r. ad for the disc, solve the equations.

    I 0 = 1/3 m (L/2)2 × 2 = mL2/6. It will have the maximum angular velocity at the mean, i.e. the lowest hanging 

position when y L=  /( )4 2 . Use conservation of mechanical energy, i.e. (PE + KE) = constant.

 In the inclined position of the bar under horizontal acceleration, m g sin q = m a cos q ; tan q = a/g. For 

an acceleration along an incline at an angle f with the horizontal, tan y = (a cos f)/(a sin f + g).

 For the free-body diagram of the bar, N1 + f 2 m g = m a y and N 2 f 1 = m a x. Taking moments about the 

centroid, using I c = m2/12 and a x = L/2 cos q. a, also using f1 = m1 N1 and f 2 = m2 N 2. Substitute the data!

 When the lever accelerates, the suspended masses need be considered to result in forces T1 and T2

respectively, T 1 = m1 (g + a), T 2 = m2 (g – a).

 Also, (T2 – T1) × 0.25 = Ic a and a = 4a. If the masses were not suspended but attached at the ends, one could 

simply apply a = M/Ic where M is the net moment due to weights and Ic is for the composite system.

 For the rod, I0 = mL2/3. The roller reaction must be vertical only;

R m g = m ay and ax = 0. Use ac = L/2. a. Find R.

 At what instant of slip, draw the free-body diagram of the bar making an angle q with the horizontal. Now, 

I0 = mL2/12 + m a2, h = a sin q and m g h = 1/2 Iw 2. Also, – mg a cos q = I ⋅ a. Solve the equations.

8  By angular momentum conservation, 0.25 × 500 × 1 = Iw = 7.5 units.

I m L x dx0
2

0 5

1 5

21 67= =∫ ( / ) . .

.

.

 Find w and then VE = r. w.

 Initial  kinetic energy = 1/2 Iw2 = 1.3 J = mg( 1 – cos q ).

 From 1/2 mv2 = mgh, v = 4.43 m/s.

 Now, Iw + m V r = m v r = 132.9 kg m2/s where V is after striking.

 Using w = V/r, I = 1/2 Mr2, solve the equations.

KE = 1/2 Iw2 + 1/2 mV2 = 110.3 J, PE = 147.2 J, then find

V I mV Vf f f from J. m/s1 2 257 5 2 542 2/ . .ωφ +( ) = =

 From the free body diagrams of the cylinder and the sphere, taken separately, F + f 1 – mg sin q = – m a, 

f 2 – F – m g sin q = – m a f 1 r = I1 a, f 2 r = I2 a and I1 = m r2/2, I2 = 2/5 m r2, solve the equations.

 From the free-body diagram of the shell W = R, f = mR, F  f = W/g . A where A is the horizontal accel-

eration. Also, F . a = W/g . A . r/ 2 and solve the equations. 

I0 = 1/12 mL2 + m (L/2 – a)2. Equate the loss in potential energy the gain in its kinetic energy and get 

the answer. 

 Loss in potential energy of the small disc (5 × 9.81 × 0.1 × 2) equals the gain in the kinetic energy for 

the same movement,

 i.e., 1/2 Ic-big . w
2 + 1/2 mV 2

c + 1/2 I0-small . w
2. Hence, the answer.
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 Loss in kinetic energy from the given initial velocity and coming to rest equals the gain in the potential 

energy up the incline.

 For the free-body diagrams of the cylinder and the falling weight, write the equations of motion and use 

the kinematics equation, a = ra.

 First find the force in the bar BC by employing the triangle law of forces. For the free-body diagram of 

the cylinder with no force along AB, as the string is cut, write and solve the equations of motion. The 

cylinder has rotational kinetic energy for rotation about C.

 Draw the free-body diagram with no force in the string, as the string is cut, write and solve the equa-

tions of motion.

8  Loss in potential energy equals gain in kinetic energy of the body. Rolling down the same distance along 

the same incline, they lose equal potential energies. The cylinder, with higher moment of inertia, would 

achieve less velocity to acquire the same kinetic energy. Hence the sphere reaches first. For the sphere,

mg L mV mRS Ssin / / / .θ ω= + ⋅1 2 1 2 2 52 2 2  Similarly for the cylinder,

 mg (L – 0.12) q = change in kinetic energy. Dividing one by the other and solving, L = 3.48 m.

 Draw the free-body diagram at the instant of removal of pin B, with zero reaction at B. Write and solve 

the equations of motion together with the kinematic condition, ac = r × a about the pivot A.

 The kinetic energy of the block is due to translation of the mass horizontally and its rotation about the 

given axis. The two, being scalar, are additive!

CHAPTER D1

  As it reaches the floor first time, V gh1 2= .  After the first impact, V V e gh ge h1 1
22 2′ = ⋅ =/ .

Similalry, after the second impactV ge h2
42′ =  since it rises to h/2, e4h = h/2; e = 0.814.

 Along the line of impact m V m V m V m Vn n n n1 1 2 2 1 1
1

2 1+ = ′ + ′  whence

   V Vn n1 21 155 2 02′ = ′ =. , . m/s.  In the absence of relative slippage, tangential components of velocities 

remain unaltered.

 Hence, V V1
2 2

21 1552 0 5 1 26 2 52′ = + = ′ =. . . .m/s, m/s.

  Along the line of impact, V V V n1 1 290 30cos ( ) sin ( )− = ′ − + ′θ θ  and ( ) /( ) . .V V V Vn n n n2 1 1 2 0 8′ − ′ − =

Given that V1
′  is along the line towards the pocket, find q!

( ) /( ) .V V2 1 0 30 0 7′ − ′ − = and 30 0 15 0 2 0 151 2× = ′ + ′. . .V V , which provide V1
′ = 21.86, V1

′ = 0.86 m/s. 

Retarding force is m m g. Use the work energy principle to find the distance s.

  Now, V g1 2 1 30= −( cos )  and ( ) / . .V V V1 2 1 0 8′ − ′ =  By momentum conservation, mV1 = m (V1
′ + V1

′ ).

Next, equate the loss in kinetic energy to gain in potential energy to find the rise and hence the angle.

  For the elastic impact, cos ( cos ) /( )20 30 8 60 12 1− − ′ − ′ =V Vn n  and employ the momentum 

conservation to get the answers. For the plastic impact, V Vn n2 1
′ = ′  the two being stuck together and 

0 5 0 2 7 861 2. . . .V Vn n
′ + ′ =  Solve the equations to get the answers.
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  Initial angular momentum about the pivot = × × =0 02 1 400 2 5 66. / .  kg m /s2  Finally, 0.02 v × 1 +
Iw = 5.66. For perfectly elastic collision, there being no energy loss, equate the kinetic energies that are 

required to reach the vertically upward position, the bar will continue to rotate at 1154 radius/second.

 For perfectly plastic collision, the object is embedded on the bar. Find the swing of the bar by finding 

the potential energy gained.

 When the object pierced through the bar,

0 02 400 200 2 0 96 1 2 0 6 1 49 52. ( ) / . / . ( cos ) .− = = × − = °ω ω θ θand I mg
.

8  Here, − ′ =Vn / cos .25 70 0 75 and the tangential velocity

V Vt t
′ = = 25 70sin .

  Initial kinetic energy = 1/2 × 0.018 × 6002 and m1V1 = (m1 + m2) V ′, whence Vn
′   2.155  m/s.2  The 

final kinetic energy being

 1/2. (5 + 0.018) × 2.1552 = 11.6 J only, the remaining, i.e., 99.65% is lost.

 By momentum conservation, V ′ = (1 × 60 – 15 × 20)/(1 + 15). The difference between the total initial 

and final kinetic energies is manifested in noise, deformation, friction and heating!

 Now m v = (M + m) V. Retarding frictional force = (M + m) g .m. By the work-energy principle, 

1/2 (M + m) (m/(M + m))2 v2 = (M + m) g .m . s. Solve for the distances.

 For the first collision, both momentum and kinetic energy being conserved,

MV mV mV V V V= ′ + ′ = ′ + ′
1 2 1 2;  (i)

 1 2 1 2 1 22
1

2
2

2 2
1

2
1

2/ / / ;mV m V mV V V V= ′ + ′ = ′ + ′  (ii)

 Squaring (i) and comparing with (ii) shows that V V1 2 0′ ′ = .

 Since V2
′ cannot be zero for a body on a smooth surface, V1 0′ = .

 Hence one body moves at a time and the motion propagates to the last body.

 If d approaches zero, the four bodies are taken together as a single entity of mass 4 m. Then, 

mV mV mV= ′ − ′
1 24 ,  etc. would show that

V V1 23 5 2 5′ = − ′ =/ V and / V.

V g V g e V V1 1 1 12 9 2 6 6 9 0 82= ′ ⋅ ⋅ = ′ = =. / / . .and

 Draw a tangent at C. Then V V V V Vt t= = ′ = ′ − = ′sin sin ( ) cosθ θ θ90 .

Now, e = V ′ cos (90 − q )/V cos q = V ′ V tan q tan2 q.

V g1 2 2 6 26= × = . m/s.  By momentum conservation,

30 6 26 30 10 6 26 11 2 2 1× = ′ + ′ ′ − ′ =. ( ) / .V V V Vand  whence V2 9 4′ = . m/s

  Now, 1/2 × 10 × 9.42 + 10 × g d = 1/2 × 20 × 1000 × d 2 whence, d = 0.23 m.

V g V Vn n1 12 2 4 6 86 5 30= × = − ′ =. . .m/s and (0 )/6.86 cos 15 0.8; m/s,1 etc.

 Determine V1 for the small bob before impact and V2
′  for the bigger bob after the impact. Conservation 

of mechanical energy for the bigger bob provides the angular displacement. For equal masses and 

elastic impact, q must be the same as the initial angle of the striking bob.
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CHAPTER D2

r0 = 6370 + 900 = 7270 km. For circular orbit,

V GM r0 0

14

3

3 986 10

7270 10
7410= =

×
×

=/
.

m/s

 Orbital time = 2p × 7270/7410 × 1000 = 6165 seconds = 1.712 hours.

 At perigee, rmin = 300 + 6370 = 6670 km, at apogee rmax = 36370 km.

 a = (6670 + 36370)/2 = 21520 km and

 b e= × = −6670 36370 15575 2km 21520 1 ; e = 0.69.

 Determine D = 1/p from trigonometry and apply central force formulae.

V0 = 20 × 106/ ( ,10 000 6370 1000+ × = 4940 m/s; KE = 1/2 × 5000 × 49402 = 6.1 × 1010 J

 Total energy expended on it is

 GMm/(2r0) = 3.986 × 1014 × 5000/(2 × 16370 × 1000)

 Escape velocity equals

2 0GM r/ = (2 × 3.986 × 1014 × 0.0123/(6370 × 1000 × 0.273))1/2

 KE required = 1/2 × 15,000 × 23752 = 4.2 × 1010 J.

C = 7745 × 6.624 × 106 = 5.13 × 1010 m2/s,

V GM rc = = × × =/ . / .0
14 63 986 10 6 624 10 7757 m/s.  Since the velocity is less than V0, it must 

be an elliptic orbit. Its escape velocity would have been 7757 2 10 970× = , m/s.  The satellite must 

have been launched at the perigee, rmin = 6.624 × 106 m. Find d, then e = 0.0046. Use ellipse geometry 

and find the time as half of the time period, 2 p a b/C.

V
GM

r
GM r Re = = × +

2
2

0

( )  irrespective of the direction of escape.

E GMm r GMm r R= = +/ /0 ( )

  Assuming the moon to orbit on a circular path, i.e., ellipse with low eccentricity, use the expression 

for time period and for velocity along a circular orbit.

8   The problem reduces to finding V0 for an elliptic orbit such that the apogee is at 9370 km. Calculate 

the virtual perigee from the geometrical data.

CHAPTER 10

  Let the virtual displacement of C the point of application of force be dx. Then the virtual displacement 

dy of B is given by

 (a cos q + dx)2 + (a sin q + dy)2 = a2 whence, dy = –dx tan q.

 Virtual work P. dx + 2a F . dy = 0 whence, F = P/2 tan q. At q = 45, F = P/2.

  Let ED be virtually displaced through an angle dq . sin q.

 Virtual work FCD . a dq sin . q – P/2 adq = 0 whence FCD = 0.577P.
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  Let the virtual displacements of AB and BC be through an angle dq. dxm = 0.1 dq sin q, dyN

= 0.2dq cos q.

2x dxM + (1 + 1.5) dyN Mdq = 0 whence, M = 0.533 kNm

  For virtual displacement at P, d x = ldq and dy = –ldq cos q.

 – F1 × dy + (–F2) × dx × 2 = 0, whence F1/2 F2 = tan q.

  In a 2-degree of freedom system, one can vary q1 and q2 independent of each other. Let us keep q1

constant and change q2 by dq2.

 Then, dx2 = l dq2 cos q2, dy2 = –l dq2 sin q2 and F. dx2 = mg dy2 = 0;

 tan q2 = F/mg. Now change only q1 by dq1 and proceed to get

 tan q1 = F/2 mg dq

  Initial height of centroid is R + h/2. After virtual displacement, it is (R + h/2) cos q + Rq sin q. Find the 

drop dh and PE = –mg dh. For equilibrium, ∂PE/∂q = 0 whence, R/(h/2) = tan q /q.

  For a virtual displacement of dq, dyA = l1dq sin q and dyB = –l2 dq sin q. Find PE and ∂PE/∂ = 0 for 

equilibrium. Also the second derivative should be greater than zero for stability.

8   The centroid should be at the centre of the circle, as in a solved example, 1/2. 4/3 ⋅ pR3 × 3/8 R – pR2

H ⋅ H/2 whence, H = R/ 2  for stable equilibrium.

 For equilibrium, R/(h/2) = tan q/q; q = h/2R . tan q.

 For stability, R cos q – h/2 (sin2 q/cos q + cos q) > 0. Using the fact, h = pR/2 q = p/4 = 45 degrees 

on either side of the top position.

The centroid is located by 1/2 ⋅ 4/3 ⋅ pR3 ⋅ 3/8 R – 1/3 pR2 ⋅ HH/4; H = 3R.

 The buoyancy force acts at the centre of buoyancy, B but the body oscillates about a metecentre M.

From fluid mechanics, BM = I/V = p R4/4.

 1/(p r2d) = r2/(2 . 4h). BC = h/2 – d/2 = 0.2h. CM = r2/(2 . 4h) – 0.2h. For stable equilibrium, M
should be above C or at most coincide with C, i.e., r/h = 0.693.

CHAPTER 11

  For the initially displaced position, the restoring force on the mass is 2 . P sin q = 4Px/l. The equation 

of motion is 4P/L + md2x/dt2 = 0, whence τ π= 2 ml p/ .4

 Mass of the bob = 1413.7 kg, I = 2/5 × 1413.7 × 0.52, t = 0.124 second.

 Equivalent spring constants, k are: for (a), 40 + 50, for (b), 

 40 × 50/(40 + 50) and for (c), 40 + 50 + 40. For each case,

 50 d2x/dt2 + kx = 0 and wn = k / 50 , f = wn /2 p and vmax = x0wn, a = x0wn

  Restoring force in the displaced position is –2x ⋅ p d2/4. rg which equals mass times acceleration, l.

p d2/4 ⋅ r ⋅ D2 x/dt2. Solve to get f = 1.29 Hertz. No change with d. If l is halved, f becomes 2  times. If 

the U-tube is inclined at 30 degrees with the horizontal, restoring force is sin 30 times and g is replaced 

by g sin 30. Then, f  becomes l/1/ 2  times.

I0 = mr2/2 where m is the mass of the semicylinder. Also, 

 I0 = Ic + m (4r/3p)2 and I p = I c + m (r – 4r/3p)2, etc. Restoring moment = mg ⋅ 4r ⋅ 3p ⋅ q. It can, 

therefore, oscillate. For the equation of motion, find t.
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 Displacements x1 = l1 q and x2 = l2 q

 and –2kx1l1 + mgx2 = m l2
2 ⋅ d2q/dt2. Solve and get t.

 PE = 2 ⋅ 1/2, k x1
2  – m g l2 (1 – cos q), ∂P/∂E = 0 and get the answer.

 Restoring force in the spring = –k x = –k ⋅ l/2 ⋅ q,

 Restoring moment = –k l/2 q ⋅ l/2 – m1g l/2 – m2g (L + r)

 I0 for the system = m1 l3/3 + m2r
2/2 + m2 (r + l )2

 Apply Euler’s equation M = I0 ⋅ a, and solve for f. Substitute the data now!

8   Initial deflection d = (L/2 + l ) ⋅ a. Write the equation of motion and get f and fmax by differentiating f

and equating to zero.

 Deflections in the springs are d4 = mg/2k4, d3 = mg/2k3,

d1 = mg/4k1, d2 = mg/4k2. Deflection of P is the average of the two springs. Then find w.

 For displacement q substended at the bottom of the disc, horizontal displacement x in each spring is 

(d/2 + a) q. Now, write the equation of motion and find t.

I0 = m l2/12 + m (l/4)2 = 7/48 m l2 about the pivot. Restoring moment = m g l/4. Hence m g 1/4 q + 7/48 

m l2 ⋅ d2q/dt2 = 0; τ π= 2 7 12l g/ .

 Initial extension due to hanging mass = Rq. Restoring moment = k R q . R about the axis of rotation of 

the pulley. (I + mR2) d2 q/dt2 + kR2 q = 0.

 Consider the slightly displaced position towards right of the equilibrium by x. Find the reactions, R1 =
W(a + 2x)/2a, R2 = W(a – 2x)/2a. The frictional force f1 tends to restore it and frictional force f2 tends to take 

it away. Hence –f1 + f2 = W/g ⋅ d2x/dt2. Use f1 = mR1 and f2 = mR2, etc. and find wn and f as required.
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